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Abstract 

In this thesis we establish sharp LP -+ LG bounds for the circular maximal function 

in the plane. This is accomplished by interpolating a £ 512 -+ £ 5 endpoint estimate 

with Bourgain 's well- known L P -+ L P bounds. The endpoint estimate is proved by 

combining the geometric/combinatorial method of Kolasa- Wolff with a L2 inequality 

on a small ball. The LP -+ Lq estimates for the circular maximal function established 

in this thesis would be a consequence of C. Sogge's sharp local smoothing conjecture 

for the wave equation. 
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CHAPTER 1. INTRODUCTION 1 

Chapter 1 

Introduction 

1.1 Overview and general discussion 

In [18] Stein introduced the maximal function 

Mf(x) = sup r lf(x - ty)I d<J(y) 
O< t <oo } 5d-1 

(1.1) 

(d<J being surface measure on 5d- 1 ) and showed that M: £ P(~d) ➔ V(~d) for the 

optimal range of p's provided d?: 3. The case d= 2 was settled by Bourgain [1]. It 

is easy to see that maximal functions of type (1.1) can never be bounded on any £P 

with p < oo if we replace spheres by boundaries of cubes, say. Indeed, let 

Mf(x) = sup r lf(x - ty)I dµ(y) 
l <t<2 l a[- 1,1Jd 

where dµ is surface measure on 8[-1, l]d . Choose f : ~d ➔ ~ with the following 

properties: f ?: 0, f( x',O) = oo for all x' = (x1, ... ,xd-i ), J IJI Pdx < oo for any 
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finite p. With this choice of f it is clear that M(x', xd ) = oo for all x' E JRd-l , 

xd E (1, 2). More generally, the same example shows that maximal averages over 

any hypersurface containing a piece of a plane can never be bounded on LP for finite 

p. Typically, such hypersurfaces are ruled out by assuming nonvanishing Gaussian 

curvature. It turns out that this condition plays a crucial role in the analysis of M , 

and also in other problems in harmonic analysis, cf. [20]. The reason for this is the 

following well- known result ( which we state for spheres rather than general surfaces). 

Proposition 1.1.1 The Fourier transform of the surface measure dCT of the unit 

sphere sd- l has the following asymptotic expansion: 

(1.2) 

with smooth fun ctions W± on JR+ satisfying 

Proof: This is a standard application of the method of stationary phase to the 

integral 

(1.3) 

Indeed , fix v E sd-I and let ( = >.v , >. > 1. By stationary phase , the main contribu

tions to the integral in (1.3) will come from the critical points of the phase function 

</> : sd- l --+ IR defined by </> ( x ) = x • ( . Clearly, those critical points are given by 
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the points with normal parallel to v, i.e. , x = ±v. Furthermore, by the nonvanishing 

of the Gaussian curvature, these critical points are nondegenerate. Hence stationary 

phase implies that the main contributions to (1.3) come from .>..- 1/ 2 neighborhoods of 

±v, more precisely 

Finally, the full statement (1.2) of the proposition follows by a more detailed analysis 

involving the parameter v E sd-l. We refer the reader to [6], Theorem 7.7.14, or [15], 

Theorem 1.2.1, for details. ■ 

Following Stein, we prove the L2 boundedness of 

Mf(x) = sup r lf(x - ty)I dCJ(y) 
l<t<2 Jsd-1 

(1.4) 

in dimensions d 2 3 using (1.2), cf. [18], [20]. 

Proposition 1.1.2 Supposed 2 3. Then 

(1.5) 

for all f E Cc(ffi.d) ( = continuous functions with compact support). 

Proof: Let 
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where dJt is the normalized surface measure on tsd- I _ We may assume that f 2". 0. 

Then 

sup Atf(x ) < Aif(x) + J2

1!£Atf(x) I dt 
l < t<2 1 dt 

Aif(x ) + j2 

IJ * (:tdJt)( x)I dt. 

Thus 

(1.6) 

By Young 's inequality, 

(1.7) 

To estimate the integral we apply Plancherel's theorem. 

(1.8) 

Since dJ1(x ) = c (d- I)dJ(x/t) and thus J;;t(() = -;f;;.(t() , (1.2) implies that 

(1.9) 

provided d 2". 3. The proposition follows from (1.6)- (1.9) . ■ 

Remarks: a) The operator Mis not bounded on L2 if d = 2, cf. Stein 's example (1.11) 

below. 

b) Estimate (1.5) also holds for t he global maximal function M. Indeed , given suit-

able inequalit ies for M one can pass to corresponding bounds on M by scaling and 
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Littlewood- Paley theory. This is done in detail in chapter 3, section 1 below. In this 

introduction we shall consider only M . 

c) It is possible to extend Proposition 1.1.2 to general f E L2
. Some care has to be 

taken in defining M, see, e.g., section 3. 

It turns out that Proposition 1.1.2 is not optimal, in so far as M is bounded on 

.V(IR.d) for some p < 2 provided d ~ 3. Indeed, we have the following result, which is 

due to Stein [18] in dimension d ~ 3 and Bourgain [1] in dimension 2. 

Theorem 1.1.1 Supposed~ 2, d~l < p::::; oo. Then 

(1.10) 

for all f E Cc(lRd). {1.10) cannot hold for any p::::; d~l. 

The sharpness is immediate from Stein 's example 

(1.11) 

Indeed , f E .V(IRd) for all p::::; d~l, but Mf(x) = oo provided 1 < [xi < 2. 

For the original proofs we refer the reader to the aforementioned papers. Other 

proofs, based on the theory of Fourier integral operators, can be found in Sogge [15] 

and Stein [19]. See also section 2 below. 

The main result in this thesis is the following generalization of Bourgain 's theorem. 
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Theorem 1.1.2 Suppose ( 1., 1.) lies in the interior of the triangle T with vertices 
p q 

(2/5,1/5), (1/2,1/2), (0,0). Then 

(1.12) 

for any f E Cc(ffi.2). Moreover, (1.12) cannot hold for any(},¼) in the exterior ofT. 

In view of Bourgain's theorem, (1.12) also holds if (1-, 1.) lies on the segment p q 

connecting (0, 0) with (1/2, 1/2). The optimality statement is easy. Indeed, for small 

J > 0, let 

fo = X[l-8<lxl<1+8] • 

- I - 2 

Then MJ0 (x) = 1 on lxl < J. Hence llfollP '.::::'. Jjj and IIMfollq 2: Jq. Secondly, let 

IIM!i llq ~ J½(l+¼). Given these properties of Jo and Ji and the translation invariance 

of M we conclude that ( 1.12) can hold only if ( 1., 1.) lies inside the region bounded p q 

by the lines 1 = 1. , 1 + 1. = ~, and 1. = 1.. However, it is easy to see that this region 
q p q p p q 

coincides with the closure of T. 

We shall obtain Theorem 1.1.2 by interpolating the known estimates for M on 

the segment (0, 0), (1/2, 1/2), cf. [1], [18], [10], with the following endpoint result (b 

is some positive constant) 

(1.13) 
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Here M 5 is the maximal average over thin 6 annuli (see page 16) and the norms are 

those of the corresponding Lorentz spaces. In other words, M 5 is of restricted weak 

type (5/2,5). We do not know whether the log 6 term is an artefact of the proof or 

not. 

The proof of (1.13) is a combination of the geometric/combinatorial methods from 

Kolasa- Wolff [8] and a localized L2 inequality for M 6, which seems to be new. The 

details are in chapter 2 below. 

1.2 Fourier integral operators 

The proof of Proposition 1.1.2 suggests that it might be possible to obtain maximal 

function estimates from suitable V --+ Lq estimates for operators of the form 

(1.14) 

with symbol a E s-m(JR.d). Note that the main ingredient in the proof of Proposi

tion 1.1.2 is 

with m = 0, which is a direct consequence of Plancherel 's theorem. It turns out that 

the optimal LP --+ LP estimates for fixed t ( we set t = 1) are 
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For the wave equation these inequalities were established by Peral [11] . More precisely, 

if u solves 

□u 0 

u(· , 0) f, Ut(·, 0) = 0 

in JR.d then Peral showed that 

provided I½ - } I = d:l. Here ½ is the usual Sobolev- Bessel space with norm 

The connection between (1.15) and (1.16) is given by the solution formula 

u(x, t) = r e2
lTiX-I; cos(21rl~lt)](~) d~. 

} 'Rd 

(1.16) 

That one needs at least (d-1)1½-}I many derivatives in (1.16) can be seen by taking 

initial data f which are localized to a thin shell of radius one, say, and a small ball, 

respectively. 

In Seeger-Sogge- Stein [14] it was shown that (1.15) holds for Fourier integral op-

era tors with phase function <I> ( x, 0, homogeneous in ~, satisfying the nondegeneracy 

condition 

cP<I> 
det( oxo~) -/- 0. 

See also Stein [19] and the numerous references to related work given there. 
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It is easy to see that Stein 's theorem 1.1.1 , i.e. , the cased 2 3 follows from (1.15). 

Indeed, by Proposition 1.1.1 spherical means can be written as 

Atf (x ) = r e2ni (x{+ t l( l)w+ (tl(l)i(O d( + r e2ni(x·(-tl(l)w_ (tl(l)i(() d( 
} ]Rd } ]Rd 

p + J(x , t) + p- f( x, t) . 

It suffices to consider p+ f. Let TJ E C0 (IR.) be equal to one on (1, 2). Applying 

Sobolev's theorem in the t variable yields 

with a > 1/ p. The right- hand side of (1.17) can be estimat ed by (1.15) since the 

operator inside the norm is of the form (1.14) with 

d-1 
m=-a+--. 

2 

Indeed , (d - 1) / 2 is simply the rate of decay given by (1.2) , whereas the -a term is 

due to taking a time derivatives, which essentially amounts to taking a derivatives 

in space. Hence (1.17) and (1.15) imply 

provided 

i.e., if d 2 3 and p > d~l, which agrees with Theorem 1.1.1 above. Note that 

this method fails in d = 2 since we need strict inequality in a > 1/ p. However , 
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Mockenhaupt- Seeger- Sogge [10] observed that the above approach does yield Bour

gain's circular maximal theorem provided one replaces (1.15) with the following local 

smoothing estimate 

where 2 < p ~ oo, E > 0 and 

a(p) = ( 
.! - ..1_ 
2 2p 

(1.18) 

(1.19) 

4 < p ~ 00. 

In [10] inequality (1.18) was obtained by an adaptation of C6rdoba's proof of the 

Carleson- Sjolin theorem [3]. Note that (1.19) represents a gain of a fixed number of 

derivatives over the fixed time estimate (1.15), e.g., in case p = 4 of a gain < 1/8. 

We therefore conclude from the previous discussion that Bourgain 's circular maximal 

theorem is a consequence of (1.18). A conjecture of Sogge [15], known as the sharp 

local smoothing conjecture, maintains that (1.18) should hold with 2 < p ~ 4 and 

a(p) = 0. It is shown in [15] that this is best possible and that it would imply the 

Carleson- Sjolin theorem. Moreover , it is easy to see that the the optimal V(ffi.2) --+ 

Lq(ffi.2) bounds for the circular maximal function would follow from Sogge's conjecture. 

Indeed, applying Sobolev imbedding in t as above, that conjecture would imply 

Interpolating this with the simple L1 --+ L00 bound 
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yields 

provided (1-, l) lies on the half open segment connecting (1/4, 1/4) and (2/5, 1/5). p q 

This is precisely the statement of Theorem 1.1.2 above. 

In conclusion we would like to mention that Schlag and Sogge [13] have recently 

established the following local smoothing estimate 

(1.20) 

Firstly, (1.20) would again follow from the sharp local smoothing conjecture by 

interpolating with the appropriate L~ ➔ L'::t bound. Secondly, since 3/10 = 1/2 -

1/5, Sobolev imbedding with 1/5+E derivatives int shows that Theorem 1.1.2 follows 

from (1.20). The proof of (1.20) is based in part on the Klainerman- Machedon 

estimate [7] for the wave equation. However, we shall not discuss the proof here, 

since the emphasis in this thesis lies on the combinatorial method of Kolasa- Wolff 

rather than on the Fourier integral operator methods. [13] also contains variable 

coefficient extensions of Theorem 1.1.2 as well as sharp £P ➔ Lq bounds for spherical 

maximal operators in higher dimensions. 
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1.3 Related questions from geometric measure the-

ory 

Suppose E and F are subsets of the plane with E closed and F measurable. Assume 

that for every x E F there is an rx E (1, 2) so that 

1i1(C(x , rx) n E) > 0 for all x E F 

where tl1 is linear Hausdorff measure (for properties of Hausdorff measure, see Fal

coner's book [5] , chapter one. Dimension in this section will always mean Hausdorff 

dimension) . In this section we shall always assume that E and F are as above. The 

following result is due to Marstrand [9] and Bourgain [1]. We will denote Lebesgue 

measure by I • I-

Theorem 1.3.1 If IFI > 0 then IEI > 0. In other words, the union of a family of 

circles has positive (planar) m easure if their centers form a set of positive m easure. 

Proof: This is a simple consequence of Bourgain's circular maximal theorem. In

deed , assume that U E JR2 is open. Then there is an increasing sequence of nonneg

ative functions fn E Cc(lR2) so that supn fn = Xu- Fix a p E (2 , oo). By monotone 

convergence and Theorem 1.1.1 
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In case IEI = 0 there would be a decreasing sequence of open sets Un => E so that 

nn Un = E and !Uni -+ 0. We could then conclude from the previous inequality that 

However, this contradicts IFI > 0. ■ 

One might ask whether the conclusion of Theorem 1.3.1 will still hold under the 

assumption that dim(F) > c0 for some c0 < 2. The following result of Talagrand [21] 

shows that c0 has to be at least one. 

Proposition 1.3.1 There exist E and F such that 1-l1(F) > 0 but IEI = 0. 

On the other hand, Wolff [22] has shown recently that for F as in the proposition, 

E "barely fails to have positive measure". More precisely he showed 

Theorem 1.3.2 Jf 1-{_l(F) > 0 then dim(E) = 2. 

His proof is based in part on an argument from combinatorial geometry that was 

developed in [4] to obtain bounds on the number of incidences between n spheres and 

m points in JR3 . 

We do not know whether it is possible to deduce c0 = 1 from [22]. Rather, we will 

show that c0 = 1 would be a consequence of the sharp local smoothing conjecture 

from the previous section. This connection, which relies on the theory of capacities, 

was pointed out to me by Thomas Wolff. For the definition of capacity as well as 
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the connection between Hausdorff measure and capacity we refer the reader to the 

appendix. 

Proposition 1.3.2 Suppose dim(F) > 1. Then IEI > 0. 

Proof: Firstly, we may assume that E is compact and that 

for all x E F with -y fixed (since 1{1 is a regular outer measure , see [5]) . Since 

dim(F) > 1 there is an E > 0 so that 1{l+E(F) > 0. Fix E to be that number. Assume 

the proposition fails. Then there is a sequence fj of nonnegative functions in C8°(1R2
) 

so that fj = l on a neighborhood of E and llhll 4 ➔ 0 as j ➔ oo . Pick a cutoff 

function T/ E ego (IR) so that T/ = l on ( 1, 2). Define 

Then Uj > ,/2 on some neighborhood of F' = {( x,rx): x E F} . If the sharp local 

smoothing conjecture is correct then 

Therefore, by the definition of capacity (see appendix) 

Passing to the limit j ➔ oo, this would imply that 

(1.21) 
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However, by the proposition in the appendix we conclude from (1.21) that 

which contradicts the choice of E. ■ 
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Chapter 2 

The main argument 

2.1 A reformulation of the main theorem 

For the combinatorial argument below it is convenient to consider maximal averages 

over thin annuli rather than circles. More precisely, let O < 6 < ½, 1 < r < 2, and 

define for J E S 

C(x, r) 

C., (x, r ) 

M ., J( x ) 

{ x E IR.2 Ix - YI = r} 

{ x E IR.2 r (l - 5) < Ix - YI < r (l + 5)} 

l 1 sup --- J(y) dy 
l <r<2 IC., (x, r)I C.,(x, r) 

where dCJr is the normalized surface measure on r S1
. Unless st ated to the contrary, 

we shall be dealing only with functions defined on IR.2 . 

We shall write ;S to denote ::::; up to an absolute constant. Similarly with 2:, and 
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::::::. For any measure v on JRd , we let v,x.(x) = >,.-dv(>.. - 1x ). First we will consider some 

examples, two of which have already appeared in chapter 1, section 1. 

Examples: 

1. Let f = Xc8(0 ,1)• Suppose b < lxl < 1. Since the difference in curvature between 

C(O, 1) and C(x, 1 + lxl) is:::::: lxl , these circles will pull apart by an amount 6 at 

a distance:::::: #i from the point of tangency. Hence M 8 f(x) ,2: o½ (lxl + o)-½ 
I - 2 

for lxl < 1. Thus I Ill IP:::::: <5:;; and I IM,5fl lq :::::: <)q provided q > 4. 

I 

11. Let f = XR, where R is the rectangle centered at O with dimensions b x 62 . 

- I I 3 

Then Mof(x) :::::: 62 provided lx11 :::::: 1 and lx2I < 62 . Hence IIJIIP ~ 621' and 

I IM"fl lq :::::: o½(l+¼l . 

- 2 -

111. Let f = XB(0 ,8)· Then M,5f(x) ~ 6 for lxl:::::: 1 and thus IIJIIP:::::: <5:;; , IIM,5fllq:::::: 

1v. Let f(x) = (11 - lxll + o)-½XB(o,2)(x). Then 

(2.1) 

To see this write f as 

(2.2) 

Taking the average of f over the annulus C6(x, 1 + lxl) and considering the 

contribution of each dyadic shell in (2.2) separately yields (2.1). Hence llfll2:::::: 
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l -

I log bl 2 and IIM"lll2 2; I log bl. 

In view of these examples one might make the following conjecture (see figure 1) . 

Conjecture: For any 1 E L1 n L00 (IR.2) 

IIMlllq < lllllp in region I (2.3) rv 

IIM"lllq 
2 1 < b<i-P lllllp in region II (2.4) rv 

IIM"lllq < b½(l+¼-¾l 1111 Ip in region III (2.5) rv 

IIM"lllq < b1-i lllllp in region IV. (2.6) rv 

Regions I,III, and IV do not contain the point T = (½, ½ ), where we have the 

well- known, optimal inequality (see Bourgain [1 ] and [2] and example iv above) 

(2.7) 

Otherwise the boundaries are part of the regions. We will prove the fo llowing theorem 

(by CE we shall always mean a constant depending only on E). 

Theorem 2.1.1 For any 1 E L1 n L00 (IR.2 ) and any E > 0, 

IIMlllq < lllllp in region I \ (QP U PT) (2.8) rv 

IIM"ll lq < CEb¾-i -E ll ll lp in region II (2 .9) 

IIM"lllq < CE (5½(1 +¼ -¾) -E I Ill Ip in region III (2 .10) 

IIM"lllq < b1-i 1111 Ip in region IV. (2.11) rv 
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1 
q 

Q = (0, 0) 

Figure 2.1: Regions of boundedness in Theorem 2.1.1 

19 

S = (l , 1) 

1 

R = (l , 0) P 



CHAPTER 2. THE MAIN ARGUMENT 20 

Remarks: a) In certain cases the 5-E term can be replaced by a suitable power of 

I log 51, but we do not elaborate on this. 

b) It can be shown by modifying the proof of Theorem 2 .1.1 that the optimal esti

mates, i.e., (2.9) with E = 0 hold in the region I In { i < ¼} \ (QP UP R). This 

(somewhat technical) argument is given in chapter 3, section 3. 

c) The most interesting statement in Theorem 2.1.1 is probably the estimate at the 

point P (see figure 1), i.e., for all f E L1 n L00 (IR.2 ) and any E > 0 

(2.12) 

(note that the conjecture on page 18 says that this should hold with E = 0). 

The proof of Theorem 2 .1.1 is based on a combinatorial argument from Kolasa 

and Wolff [8] combined with a localized version of the L2 estimate (2.7). For the 

5- free bounds (2.8) we interpolate the (5/2,5) inequality with an estimate obtained 

from the local smoothing theorem in Mockenhaupt, Seeger, and Sogge [10]. 

This chapter is organized as follows. In Section 2 we introduce the notion of multi

plicity µ of a family of annuli. It is shown that certain estimates for µ are equivalent 

to V ---t Lq bounds on M 8. Section 3 contains the localized L2 inequality and a 

bound on the multiplicity is derived from it. In section 4 we establish the main result 

of this thesis, i.e., the restricted weak type (5/2,5) estimate. This is accomplished by 

combining the combinatorial argument from [8] (which is based on Marstrand's three 

circle lemma [9]) with the localized inequality from section 3. Theorem 2.1.1 then 
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follows by various interpolation arguments. This is done in section 5. 

2.2 The combinatorial method 

Fix E C [O, 1 ]2 and O < ,\ :s; 1. Let { x1 }f~1 be a maximally 6- separated set in 

and let r1 E (1, 2) be chosen so that 

for j = 1, 2, ... , M. Henceforth we shall write c; instead of C0(x1, r1) n E and C1 

instead of C0(x1, r 1). We introduce the multiplicity function 

M 

<I>= I:xc;-
1=1 

Following [8] we define µ to be the smallest integer for which there exist at least M /2 

values of j such that 

I { c; : <I> :s; µ} I 2 ~ I cj 1-

Clearly, we can then also find at least M /2 values of j for which 

(2.13) 

The combinatorial method attempts to bound µ from above, typically in terms of 

A, M, and 6. Since 

(2.14) 
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this will imply a lower bound on IEI. The following lemma characterizes the estimates 

ofµ required for I.J' ----t Lq boundedness of Mo. 

Lemma 2.2.1 Let O:::;; a and f3 < 1. Thenµ:::;; A>-.-a M 13 implies 

for all f E L1 n L00 

where p = a+ 1, q = p(l - /3)- 1 and 1 = i - %- We also have the following converse. 

Suppose that for some fixed p > 0, 1 :::;; q:::;; oo, 1 :::;; p < oo, and all f E L1 n L00 

(2.15) 

Then 

(2.16) 

Proof: For the first statement we need to show 

The left- hand side is -::::: ( M <5 2
) ¼, whereas the right- hand side is 

Here we have used (2.14) , i.e., IEJ 2:; µ- 1 >-.NI <5. 

To prove the second statement, we distinguish two cases. First assume that 
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Applying hypothesis (2.15) to the function f = Xe
1 

and using (2.13) we obtain 

which implies the desired inequality (2.16). 

In the other case, i.e., IE1 1 2 µ- 1>-.M6, we use duality. Note that the dual state-

ment to (2.15) is 

(2.17) 
j 

for all 6-separated {yj} in [O, 1]2, all {aj} which satisfy (62 I.:j lajlq')fi :s; 1, and all 

Pj E (1, 2). Let Yj = Xj, Pj = Tj, and aj = (62 Mrt for j = l, 2, ... ' M. Then by 

(2.17) 

which implies (2.16). ■ 

At this point it might be instructive to consider those bounds on µ that correspond 

to the points P, R, S, T in figure 1. By Lemma 2.2.1, 

P: µ < >-. -~ M½ (2.18) ~ 
R: µ < ~ M (2.19) 

S: µ < ~ 6 - 2 (2.20) 

T: µ < ~ )...-16-1. (2.21) 

Not surprisingly, inequalities (2.19) and (2.20) are trivial , whereas (2.21) follows (up 

I 

to a I log6l 2 factor) from (2.7). Our main goal will be to show (2.18) (the result below 
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will involve a I log JI factor, though). In order to do this we shall need an improved 

version of the L2 statement, i. e., inequality (2.21). 

2.3 The L2 theory 

Before formulating the result , we consider an example. 

Example: Let 10 () < lOp < r < ½ and define 

E = {x E IR2 
: 1 - p < lxl < 1} 

and ,\ = ~- It is easy to see that F = {M6xe > ,\} c::: B(O, r) and M '.:::'. ;~. To 

determine µ, note that <I> will be approximately constant on 

Hence 

Thus 

E 1 = {x : 1- p <\xi< 1 - p/2}. 

~- 1 _! ~ ,-1~-l µc:::u p 2 r 2 =A u r. 

We shall prove below that this improved version of (2.21) holds in general (up to 

a I log b"I factor) with r replaced by the typical distance of two intersecting annuli (for 

a precise version of this see pages 31). To this end we need a refined version of the 

L2 inequality (2 .7). First we recall a result from [2]. 
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Lemma 2.3.1 Let KE L1(JR.d) assuming K differentiable. Define for j E Z 

O'.j sup IK(OI 
1~1:::c21 

sup l(VK(O,~)l-
l~l:::c2J 

Then for any fixed j and f E S such that supp(]) C {ffi.d : 2j-l < 1~1 < 2j+l} 

By well- known decay properties of -r;;;. (see Proposition 1.1.1 above) Lemma 2.3.1 

implies that 

for any f E S whose Fourier transform is supported in {IR.2 2j-l < l~I < 2j+l} for 

some j > 0. The following proposition shows that this estimate can be improved if 

one restricts the maximal function to a small ball. We prove this fact by combining 

Bourgain's original argument with Lemma 2.3.2 below. 

Proposition 2.3.1 There exists an absolute constant C0 so that for any j = 1, 2, ... , 

all f ES with supp(}) C {IR.2 : 2j-l < l~I < 2j+1}, and all 0 < t:::; 1, x 0 E ffi.2 

(2.23) 

Proof: We may assume that Xo = 0. Choose cut- off functions 'Ip E Ca(IR.2
) with 

'ljJ = 1 on B(O, 1), 'T/ E C0 (1/2, 4) so that 'T/ = 1 on (1, 2) , and </> E S such that 
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supp(¢) C {1/4 < l~I < 4} and¢= 1 on {1/2 < l~I < 2}. Define 

Let {r7 } 7 be a 2-j net in [1, 2]. Suppose r7 ::::; r < r 7 +l· Then 

and thus 

1~~~2 IA;J12 
< 2' l IA~/1

2 
dp + T' l Id: Aifl

2 

dp 

- 2JA+TJB. 

----By Proposition 1.1.1 dG has the representation 

with w E C 00 (0, oo) and 

for all k = 0, l, 2, .... Hence the integral of A can be written as 

where 

26 

(2.24) 

(2.25) 
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Integrating by parts and applying (2.24) shows that 

provided l~I ~ l~I ~ 2j. Lemma 2.3.2 and Schur's lemma yield 

Similarly, 

and the proposition follows. ■ 

The following lemma is true because the I l~I - l[I I factor reduces the two-

dimensional scaling in the integral below to one dimension. 

Lemma 2.3.2 Let O < t < l. Then 

Proof: Fix a [ E IR2
. Then, on the one hand, 

2i ::; 1 ll 2it ::;i 

~ c 1 + c 2t ~ c 1
. 
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On the other hand, 

A+B. 

The first term in (2.28) can be estimated as follows. 

A ~ ( 1 + tl[l)-2 {_31(1/2 ( 1 + Ir - 1[11)-2 rdr 
l1w2 

( 1 + tl[l)-
2 
l[I :S c 1

. 

For the second term compute 

B ~ r (1 + tI~Ir2 (1 + I~Ir2 d~ + 
j{E: ½1€1:SIW 

28 

(2.28) 

+ { _ ( 1 + tl[l) -
2 

( 1 + l[l)-
2 

d~ 
j{E: ½IEl~IW 

~ j (tI~I)-2 (1 + I~Ir2 
d~ + r _ (1 + I~Ir2 

d~ 
{E: t- 1 :SIW j{E: ½IEl:SIEl:St- 1 } 

+ ( 1 + tl[l)-
2 

( 1+ltl)-
2

1[12 

:S 1 + I log ti + 1 :S C 1
. ■ 

Remark: (2.27) above shows that Proposition 2.3.1 is essentially equivalent to the 

following estimate for the two- dimensional wave equation. Let u solve 

□ U = 0, U ( Q) = f, Ut ( Q) = Q. 
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Then there exists an absolute constant C0 so that 

(2.29) 

for all O < r ~ l. It might be interesting to ask whether such an estimate can hold 

in LP with p =/=- 2. Interpolating (2.29) with Sogge's sharp local smoothing conjecture 

[15], i. e. 

with E > 0 yields 

r1 r lu(x, t)l 4 dx dt ~ c€ llflli4 

lo J~2 • 
(2.30) 

(2.31) 

for 2 ~ p ~ 4, x0 E ffi. 2
, 0 < r ~ 1, E > 0 and all f E S. Solving the wave equation 

above with initial condition J equal to a smooth version of Xc8 (o,r) shows that the 

exponent ~ - ½ is optimal. Moreover, as in the case of local smoothing, (2.31) cannot 

hold for p tj. [2 , 4] or with E = 0 if p > 2. 

It is standard to pass from f as in the statement of Proposition 2.3.1 to general 

f E £ 2
. This is done in the following corollary. 

Corollary 2.3.1 There exists an absolute constant C0 so that for any f E L2 (ffi.2 ), 

x0 E ffi. 2
, and O < 5, t < 1, 

(2.32) 
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Proof: Choose</> ES such that supp(¢) compact, ¢ 2:: 0, ¢ 2:: 0, ¢ 2:: 1 on B(O, 1). 

Given f E L2(IR2), f 2:: 0 let f = Lc;o fj be a Littlewood- Paley decomposition, i.e. 

supp(Jo) C { l~I < 2} and supp(lj) C {IR.2 : 2j-l < l~I < 2H1} for j = l, 2, .... Let 

XJ ,r = dO'r * <pc5. Then clearly 

< XC0 (0 ,r) rv XJ ,r· 

If M denotes the usual Hardy- Littlewood maximal operator it is easy to see that 

IIMJJIIL2(B(xo,t)) < IIMfollL2(B(xo ,t)) + I: II sup IXJ,r * fj I IIL2(B(xo ,t)) rv 
1<2J,:SJ-l l<r<2 

< tllMfoll= + I: IIMfj IIL2(B(xo ,t)) rv 
1<2J,:SJ-l 

1 I: llfj 112 < tllfoll= + t 2 rv 
1<2J,:SJ-l 

1 

< tllfoll, + tli IogOl1 c~-, IIJ;lll), (2.33) rv 

1 1 
< t 2 I log 51 2 I If I I 2 -rv 

In line (2.33) we have used a special case of Bernstein's inequality, namely 

llfoll(X) ;S llfoll2- ■ 

In order to obtain information on µ from (2.32) we shall determine the typical 

distance of the centers of two intersecting annuli in any collection of annuli. More 

precisely, we can specify certain geometric properties (i.e. the distance of the centers 

and the angle of intersection) of those annuli that contribute most to the multiplicity 
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function <I>. Following [8], we let a: [b , 1] x [b, 1] -+ [O, 1] be such that 

L a(2k6, ib) :s; 1. (2.34) 
k?_O ,l"?_O 

Define >. = >.(t, c) = a(t, c)>./2, µ = µ(t, c) = a(t, c)µ, M = M(t, c) = a(t, c)M/2. 

Furthermore, for all i,j E {1, 2, . .. , M} we let (for the meaning of~ see Lemma 2.4.2 

below) 

(2.35) 

<I>f,E L Xe; 
iESf,, 

(recall that Ci= C6 (xi, ri) and Ct= En Ci)- The pigeon hole principle asserts that 

there are numbers t E [ 6, 1], E E [ 6, 1] such that 

(2.36) 

for at least M values of j, say 1 :s; j :s; M (for details see [8], Lemma 4.1). For any a 

satisfying (2.34) we shall always let E and t be those numbers. 

By essentially the same argument as in the second part of Lemma 2.2.1 we can 

now establish the refined version of (2.21). In what follows, C5 will denote a constant 

of the form Cl log Jib, for some absolute constants C and b > 0. 

Lemma 2.3.3 Suppose a= I logb l- 2 in (2.34) and let t be the corresponding typical 
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distance of centers given by (2.36). Then 

(2.37) 

Proof: Let { zi} be a t net and consider the quantities 

M2(i) card{l ::::; j ::::; M Xj E B(zi, 2t)}. 

Then, clearly 

(2.38) 

Since M = aM /2 we conclude from (2.38) that there is a point of the net, say z0 , so 

<I>1 = L xc;-
j: lxj-zol:S:2t 

As in Lemma 2.2.1 we distinguish two cases. If 

then by Corollary 2.3.1 

The expression on the left is 2:, >.(52 M1 )½ by (2.36), whereas the right- hand side is 
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by assumption. Recalling the definition of M1 , M2 , ~ etc., we obtain (2.37). 

If IE1 I ~ µ- 1 ~M2 c5, we use duality. Dualizing (2.32) yields (with t replaced by 2t) 

II L ajXCo(Yi,Pi) IIL2(1R2 ) ::; Co 5-it½ 
j 

(2.39) 

for all ()- separated {yj} in B(z0 , 2t), all {aj} for which (52 I:j lajl 2 )½ ::; 1, and all 

Pj E (1, 2). Let Yj = Xj E B(zo, 2t), Pj = rj, and aJ = (52 M2)-½ for j = l, ... , M2 

and aj = 0 otherwise. By (2.39) 

The left- hand side is~ Pl{E : <I> 1 ~ P}I½ ~ µ(p- 1~M2c5)½ and the lemma follows. 

■ 

2.4 The three circle lemma 

In the previous section implicit information about circles was used to prove an £ 2 

bound on the maximal function and thus a bound on the multiplicity µ. In this 

section we shall attempt to use explicit geometric properties of circles in order to 

bound µ. The procedure we apply here was discovered by L. Kolasa and T. Wolff [8], 

who in turn use Marstrand's three circle lemma, cf. [9] and Lemma 2.4.1 below. The 

underlying principle for that lemma is the following geometric observation. We call 

two tangent circles internally tangent if the smaller one is contained inside the larger 
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one. By assuming that the centers of all circles under consideration are contained in 

a fixed set of diameter one, we shall henceforth rule out external tangencies. 

Fact: Given any three circles which are not internally tangent at a single point, there 

are at most two circles which are internally tangent to the three given ones. 

Kolasa and Wolff observed that this fact can be combined with a basic result from 

extremal graph theory to control the total number of possible tangencies in a large 

collection of circles of which no three are tangent at a single point. Indeed, we have 

the following 

Proposition 2.4.1 Suppose { Cj }f1 is a collection of distinct circles in the plane so 

that no three are tangent at a single point. Then 

card{(i,j) : Ci, Cj are tangent} ,:S N 513
. 

In particular, at least half the circles will be tangent to no more than ,:S N 213 other 

circles. 

Proof: Let 

On the one hand, the above fact implies that 

card(Q)-<: 2 ( N I 
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On the other hand, with ni = card { CJ : Ci, CJ are tangent}, 

Thus 

N N 

I: ni L(ni - 2) + 2N 
i=l i=l 

N 

< (L(ni - 2)3)1/3 N2/3 + 2N 
i=l 

1 

< (: r N
2

i
3

+N ~ 

< ~ N5/3_ 

Since card{(i,j) Ci, CJ are tangent}= I:::1 n1, we are done. ■ 

This proof is just a special case of a well- known argument that provides upper 

bounds for the maximal number of edges in a bipartite digraph with m edges and 

n sinks containing no Ks,t· For the meaning of this terminology, further details and 

applications, and references, see [4]. 

Although the argument below is motivated by the previous discussion, it does not 

directly use the fact or Proposition 2.4.1. Indeed, dealing only with tangencies is too 

restrictive for our purposes. Rather, we shall use the following quantitative version 

of the above fact, cf. [9], which allows for various degrees of tangency. For a more 

general and precise version, see [8]. 
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The number E in Lemma 2.4.1 controls the degree of internal tangency whereas A 

separates the "points of tangency". N0(S) denotes the c5 entropy of the set S, i.e., 

the cardinality of a maximally c5 separated set in S. 

Lemma 2.4.1 Let (xj, rJ)J=i E IR.2 x (1, 2) and fix O < >-, E < 1. Consider the set 

Here 

3 

S = {xEIR.2 \LJB(xJ,E): :lrE(l,2) with llxi-xl-lri-rll<c 
j=l 

fori=l,2,3 and lei(x,r)-eJ(x,r)I >>- fori=/=j ,i,j=l,2,3}. 

Then 

for any O < c5 ~ E. 

Remark: It is easy to see that the bound on N0(S) can be attained. 

Proof: Let 

for i =/= j ,i,j = 1,2,3} 

and F : D ----+ IR.3 be defined by 
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It is easy to see that the Jacobian J F of F satisfies 

Since card(F-1 (p)) ::; C0 for some absolute constant C0 and all p E IR3 , we conclude 

that 

According to the definition of S there exists a function r : S ~ (l, 2) so that for every 

x ES we have IF(x, r(x))I < E. Then clearly 

{(x, r): x ES, Ir - r(x)I < E} C p- 1 (B(O, 2E)) U 

3 

{(x,r): x E Sn LJ B(xJ,3E), lr-r(x)I < E} 
j=l 

The following lemma contains bounds on the diameter and the area of C6(x, r) n 

C6(y, s). In various forms it appears in several papers on this subject , see, e.g., [1], [8], 

[9], [15]. Since the exact version we use here does not seem to be contained explicitly 

in any of these references, we provide a proof for the reader's convenience. Let 

Ll = max(llx -yl - Ir - s11, 5). 

Lemma 2.4.2 Suppose x, y E IR2
, x -/=- y, Ix - YI < ½, and r, s E (1, 2), r -/=- s, 

0 < 5 < 1. Then 
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i. C6 ( x, r) n C6 (y, s) is contained in a o neighborhood of an arc of length ;S ~ 

centered at the point x - r sgn(r - s) 
1

:=ti. 

n. the area of intersection satisfies 

Proof: Let z E C8(x, r) n C8(y, s). Then [z - x[ = r1 and [z - y[ = s1 where 

fr - r1 I < o and [s - s1 I < o. By simple algebra 

2(z - x) · (y - x) = rf - Si+ [y -- x[ 2
. (2.40) 

Assume r < s. Then (2.40) implies 

and thus 

<t(z-x,x-y)'.::::'. (2.41) 

If r > s one estimates <r ( z - x, y - x) in a similar fashion. 

If 6. :::; lOo the bound in ii follows from i. Otherwise consider a = <r ( z - x, x - y) 

as a function of r 1 and s1. Taking partial derivatives in (2.40) yields 

aa 
~ r1[x - y[ sin a 
ur1 

aa 
~ r1[x - y[ sin a 
uS1 

r1 + Ix - y I cos a 
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Thus 

The last equality is true since /::;. > 10b implies that (2.41) holds with '.::::'. instead of 

;S. Since r 1 and s1 vary in a b interval , a will be contained in an interval of length 

;S ~ and ii follows. ■ 
6. lx-yl 

Proposition 2.4.2 below is the main result of this paper. 

Proposition 2.4.2 M 8 is of restricted weak type (5/ 2, 5), i .e. for any f E L1 n 

(2.42) 

where b is some positive number. 

Proof: By Lemma 2.2.1 we need to show 

(2 .43) 

(recall that C8 is a constant of the form Cl log bib) . This will follow from the com-

binatorial argument in [8] , which is based on the three circle lemma, and the refined 

L2 bound from above. As in Lemma 2.3.3 we let a = I log bl - 2
. For simplicity, x ;S y 

will denote x :::; C8 y in this proof. Let C0 be a large constant ( depending on the 

constants in Lemma 2.4.2 above). 
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Case 1: 
1 

,\ < C (~) 2 
- 0 t 

On the one hand, by (2.36) and Lemma 2.4.2 

- 1 . 52 52 
µ-).5 < ~ xc· < card(St1 )- < M-. 

rv L......t ' rv ,E Gt rv Gt C . yfi yfi 
1 iES1 

t,< 

On the other hand, by Lemma 2.3.3 

Thus 

Hence, if 

then 

µ ;S x-1 m½ m½ M 

x-!M½X½M½ m½ ml 

;S x-! M½ G/ m1 Gl Gtm' 

40 

(2.44) 

(2 .45) 

(2.46) 

(2.47) 

where we have used (2.44) and (2.46) in line (2.47) to replace,\½ and M½ , respectively. 

If, on the other hand, 

(2.48) 
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then 

(2.49) 

Here we have used (2.44) and then (2.48) in line (2.49). 

Case 2: ) (2.50) 

Following [8] we let 

Q { (j, i 1 , i 2 , i 3 ) : 1 ::::; j ::::; M, i 1 , i 2 , i 3 E Sl,E and the distance between any two 

(2.51) 

For suitable C0 and C1 , Lemma 2.4.2 implies that any two of the 

for T = l, 2, 3 are separated by a distance 2:; .\. Lemma 2.4.1 therefore implies that 

(
E)2_ 3 3 card ( Q) ;S b >. - M . 

On the other hand, for C0 sufficiently large, 

- ( .\c5 ) 3 card( Q) 2; M µ y'Et, 
c52 / Et 

(2.52) 
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This follows essentially by (2.45) and the definition of the set Q. Hence 

(2.53) 

Combining (2.53) and (2.37) yields 

1 ' .!. 2 . --1 _ 1 --2 E il uM 2 _§__ 

µ ;S mm ,\ 8 t,A ( 8) (-t-) M" · 
( 

I ) 

Hence, if 

- (c)¾ (5M½) ~ M_...!... >. < - -- 12 
- 5 t ' (2.54) 

we conclude that 

(2.55) 

The expressions in (2.55) are obtained by estimating >. by (2.54) and (2.50) , respec-

tively. 

If, on the other hand, 

(2.56) 
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then 

I 

µ ;S x-2 m 1('5~T M~ 

;S x-2 (x ( J~l t Mh r x 

x ( x! ( J~½ )-l Mh) l ( J~½ r M~ (2.57) 

To obtain (2.57), use (2.56) and the inequality 

(E) t (JM½)t -l 1 _ -- <>.3Mu 
6 t rv ' 

which follows from (2.50). Consequently, we have established (2.43) and thus (2.42). 

■ 

2.5 Proof of Theorem 2.1.1 

The following lemma states that instead of averaging over 5 annuli we can average 

over a mollified version of dO'r which is essentially concentrated on a 5 annulus. 

Lemma 2.5.1 Fix a radial function</> E S(lR.2). Suppose that for fixed ~I ::; p::; q::; 

oo, a< 3 
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for all 0 < c5 < 1, f E L 1 n L 00
. Then 

for all 0 < c5 < 1, f ES. 

Proof: Write ¢(1x l) = ¢(x). We construct a radial, non increasing majorant for¢ 

as follows. Let p(r) = r 21¢1(r)I and define 

or equivalently 

'lj;( lx l) = {
00 

l</>!(r)I dr 
l 1x1 

where B is the unit ball in IR.2 . Note that 

{ 'lj;(x) dx = f
00 

p(r) dr = f
00 

'lj;(r)rdr. 
l~2 lo lo 

Let f ES. Then 

supldcrt*(<P5*J)I < { {
6

-

1 +100
} sup l[dcrt*(Xs\6]*1fllP(r)dr 

l<t2 lo 5- 1 l<t<2 

A+B. 

On the one hand 

5-1 

IIAll q < 1 IIM1or6 lflllq p(r) dr rv 

5-1 
< c5-a 1 r - ap(r) dr IIJIIP rv 

< c5-allfllp rv 
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since a< 3. On the other hand , by Young 's inequality with 1 + ! = ! + ! , q p s 

IIB llq ;S 1~ II (XB)1or8 * lflllq p(r)dr 

;S 1~ II (XB)1or8 llsllfllp p(r)dr 

;S 1~ (6r)-fi p(r)dr llfllp 

;S IIJIIP 

and the lemma follows. ■ 

45 

Proof of Theorem 2.1.1: Statements (2.9) , (2.10) of Theorem 2.1.1 follow via Mar-

cinkiewicz 's theorem from the estimates at the points Q,R,T ,P (see figure 1). To prove 

(2.8) , suppose we are given any f E S. Let 

00 

be a Littlewood- Paley decomposition, i.e. supp(i0 ) C {IR2 1,1 < 2} and supp(i1) C 

{IR2 : 21- 1 < 1,1 < 21+1} for j = 1, 2, .. .. On the one hand, (2.10) , (2.9) , and 

Lemma 2.5.1 imply 

if(!,!) E QP U PT (see figure 1) p q (2.58) 

for any c: > 0 and j = 1, 2, .... On the other hand, by the local smoothing theorem 

in [10] (see also [2] and [15]) 

(2.59) 
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where 2 < p < oo, f3 = f3(p) > 0, and j = l, 2,.. .. Interpolating (2.59) with (2.58) 

yields 

(2.60) 

for some 1 = ,(p, q) > 0. Furthermore, 

(2.61) 

by the Hardy- Littlewood and Bernstein inequalities. Finally, (2.8) follows from (2.60) 

and (2.61) by the Littlewood- Paley inequality. 

Up to a I log5I factor, (2.11) follows by interpolating the estimate at T, i.e. (2.7), 

with the ones at the endpoints Rand S: 

(2.62) 

To obtain the sharp estimates, let f = I:~ fj be as above. The analogue of (2.62) is 

(2.63) 

(see Lemma 3.2.1 below). Interpolating (2.63) with the L2 bound (2.22) yields 

(2.64) 

(2.11) now follows from (2.64) by the same type of argument as in the proof of 

Corollary 2.3.1 provided 1 < p. The estimates on the segment SR follow from the 

ones at the endpoints. We skip the details. ■ 
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Chapter 3 

Some remarks and a slight 

improvement 

3.1 Estimates for the global maximal function 

Theorem 2.1.1 holds for the global version of M. Let 

MJ = sup rajdCTr * fj. 
O< r < l 

The number a can vary and will be specified below. One can pass from bounds on 

M 8 to bounds on M by Littlewood- Paley theory. The following lemma is essentially 

a calculation from [1]. 

Lemma 3.1.1 Let 1 :Sp< oo, 1 :Sp :S q :S oo and j3 E IR. Suppose that 

(3.1) 



CHAPTER 3. SOME REMARKS AND A SLIGHT IMPROVEMENT 48 

for all j = 1, 2, ... and f E S such that supp(]) C {lR2 : 2j-l < l~I < 2H1} . Then, 

with a= 2(1/p - 1/q), 

:S I lfl IP if f3 < 0, q ~ 2, and 1 < p 

< C llfllLP if (3 ~ 0, E > 0 
E ,6 +< 

for all f ES. Here V, are the usual Sobolev spaces. 

Proof: Let f = I:~ fj be as in the proof of Theorem 2 .1.1. Recall that (g hk ( x) = 

2-2kg(2-kx). Then (with Ma defined in Lemma 3.1.2) 

Mf = sup sup ra ldar * fl 
k?".0 r~2-k 

< sup sup ra dar * (L fj) + sup sup rka dar * (L fj) 
k?".0 r~2-k jSk k?".0 r~2-k j>k 

:S Ma J + sup L 2-ka (M(fj)2k ) 2-k 

k?".O j>k 

(3.2) 

The first term in (3.2) is bounded by Lemma 3.1.2. Assume first that (3 < 0. Let 

s = max(2,p). Using the inequalities of Young and Littlewood- Paley, we can then 

estimate the second term as follows. 

I 

(L (L2-kall(M(fj)2k)2-k llq)q) q 

k?".0 j>k 

1 

:s (L (L 2(j-k){3l lfj 11P) q) q (3.3) 
k?".0 j>k 
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:S ( 2( llf;ll;r 
:S ll(L lfjl 2 )½11p :S llfllp-

j 

If {3 ;::::: 0 we compute, starting in line (3.3) above, 

for any E > 0. ■ 

In the following lemma we recall a well- known fact about certain maximal aver-

ages. 

Lemma 3.1.2 Let O ::; a< 2 and define for any f E L1 n L00 (IR.2 ) 

Then 

(3 .4) 

Proof: For a = 0 this is just the usual Hardy- Littlewood maximal function. In 

case O < a< 2, q < oo we have the inequality 
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2 

Since the kernel is in weak L 2 -a, (3.4) follows from Young's inequality. Finally, if 

q = oo , (3.4) follows from Holder's inequality. ■ 

We can now state the global version of Theorem 2.1.1. 

Theorem 3.1.1 For any f E S(IR2), 

in region I\ (QP U PT) 

and for any E > 0 

where 

1 2 
in region I I 'Y 

p q 

3 1 1 
in region I I I 'Y -----

2p 2 2q 

2 
in region IV. 'Y - --1 

p 

We have set a = 2( .!. - .!. ) throughout. 
p q 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Proof: The above statements follow from Theorem 2.1.1 and Lemmas 2.5.1 and 3.1.1. 

■ 
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3.2 Some estimates for the wave equation 

It is well- known that circular averages can be imbedded into an analytic family of 

operators. As in [18] we let for all f E 5 

where 

For R( a) ::; 0 this is defined by analytic continuation. In particular, 

I 

and u(x, t) = tAf f solves 

□ u = 0, u(0) = 0, ut(0) = f. 

By interpolation one can obtain analogues of Theorem 2.1.1 and Theorem 3.1.1 for 

the operators 

M°' f sup IAf fl 
l<t:::'.2 

M°' f sup talAf fl. 
O<t:Sl 

Estimates of this type go back to [18] (see also Stein [19], pp. 518-19 and the references 

given there). For simplicity we shall restrict ourselves to the wave equation, i.e. a= ½

Solving the wave equation above with initial conditions given by suitable modifications 
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of examples i- iii on page 16 shows that the following theorem is optimal (up to E). 

For the meaning of the points A etc. see figure 2. 

Theorem 3.2.1 For any f E S let u be a solution of the two- dimensional wave 

equation as above. Then 

in region A \ X Pi U Pi Y U Y Z 

and 

with E > 0 and 

1 2 1 
r - - - - - in region B 

p q 2 
3 1 

in region C r --1--
2p 2q 
2 3 

r 2 
in region D. 

p 

We have set a = 2( .! - .! ) throughout. 
p q 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The most interesting statement in Theorem 3.2.1 is probably the bound at Pi = 

( 7 1 ) • 
10, 10 , 1. e. 

It is easy to see that this is exactly what would follow from the local smoothing 

conjecture. The same remark applies to the operators Ma. On the other hand, the 
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position of all other points in fig. 2 can be explained fairly easily by invoking the 

decay properties of ka. This is done in the following two lemmas. They are proved 

in general dimensions. 

Lemma 3.2.1 For all a = rJ + iT E CC there exist constants Ca such that for any 

j = 1, 2, ... , all JES with supp(}) C {!Rd : 2j-l < l~I < 2j+1}, and 1 :Sp '.S oo 

(3.13) 

(3 .14) 

(3.15) 

Moreover, for every ICJI S S there exists a constant Cs so that for all -oo < T < oo 

Proof: Choose a radial function </> E S(JRd) with supp(¢) C {!Rd ¼ < l~I < 4} 

and so that f = f * c/>2-J for any Jasin the statement of the lemma. By Lemma 3.2.2 

below 

for all 1 :S q '.S oo. Since 

IAf fl < IAf c/>2-J I * Ill 

sup IAf JI < [ sup IAfc/>2-J 1] * Ill, 
l<t<2 l<t<2 

(3.17) 

(3.18) 
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1 
q 

Q = (0, 0) 

A 

X = (½,O) 

Figure 3.1: Regions of boundedness in Theorem 3.2.1 

S=(l,l) 

1 

R = (l, 0) P 
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inequalities (3.13) and(3.14) follow from (3.17) and (3.18), respectively. 

By Lemma 2.3.1 

where 

sup l~(l)I 
1(1'.::'.2] 

sup l(V~(O,l)l-
1,1'.::'.2J 

By (3.19) and (3.20) below 

Thus (3.15) follows. ■ 

Lemma 3.2.2 Let cp ES be a radial function such that supp(¢) C {JR.d : ¼ < Ill < 

4}. Then for any o: = (J' + iT E CC, N = 0, 1, 2, ... there exist constants Ca,N so that 

for all 1 < t < 2, x E JR.d, and j = 0, 1, .... Moreover, the constants Ca,N satisfy the 

growth condition ( 3.16). 

Proof: This will follow from stationary phase. We shall use the asymptotic expan-

----sion of kn derived in Lemma 2.2.3 in Sogge's book [16]: 

(3.19) 
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where w~ and w;; are E C 00 (0, oo). Their decay is given by 

I 
dk w±(s) I < C (1 + s)_ d;1-Rc,-k 
dsk c, - k,c, ' (3.20) 

k = 0, l, ... where the Ck,c, satisfy (3.16), as can be seen by Stirling's formula. Note 

~ 

that the representation ( 3 .19) includes the surface measure d<J = k0 . 

By definition of the At, 

{ e21rix-E r;;((t)¢(rJ() d( 
} Nd 

{ e21ri(x·UtlW wt((t)¢(2-J() d( + 
} Nd • 

+ { e21ri(x-E-tl1;I) w;;((t)¢(2-Jt) d( 
} Nd 

It suffices to consider J _. Introducing polar coordinates yields 

L = 2Jd 1 00 e21ri2J(lxl-t)r wt(2jlxlr)w;;(2jtr)¢(r)rd-l dr + 

+2Jd 1 00 e-21ri2J(lxl+t)r Wo(2jlxlr)w;;(2jtr)¢(r)rd-l dr 

A+B. 

Consider the first integral. 

IAI < CN2''(2'llxl - tl)-N 1= (!) N [w{i(2'1.r.lr)w,:;(2'tr)J;(r)r'· 1
] dr 

< Cc,,N2Jd(2Jllxl - tl)-N L i\2Jlxll(l + 2Jlxlr) _d;
1
-k(2Jt)1 

k+lSN 4 
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Hence 

provided 1 < t < 2. Estimating B in a similar fashion finishes the proof. ■ 

In the following proposition we move point P in figure 1 to position Pi in figure 2 

by Stein's interpolation theorem. 

Proposition 3.2.1 Let f E S(JR.2
) so that supp(}) C {JR.2 2j - l < l~I < 2j+l} for 

some j = l, 2, .... Then for any E > 0 

I 

IIM 2 fllu 0 (!R2) ::; C 2jEIIJlluo;7(1R2)· (3.21) 

Proof: By equation ( 4) in [18], 

(3.22) 

provided ~a> 0. Let a= E + iT. In view of (3.22) Theorem 3.1.1 implies that 

Interpolating this with 

(see inequality (3.13)) via Stein's theorem yields 

(3.23) 
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where p ➔ 10/ 7 and q ➔ 10 as E ➔ 0. The proposition follows by interpolating (3.23) 

with 

I . 

IIM 2 !ll oo ~ 2½ 11!111, 

which is a special case of (3.13). ■ 

Remark: Just as in the case of circular means, the endpoint result (3 .21) would follow 

from the sharp local smoothing conjecture [15]. Namely, by that conjecture 

for any fas in Proposition 3.2.1. Interpolating this with estimate (3 .13) , i. e. 

I . 

IIM 2 fll oo ~ 2½ llflli 

yields (3.21). 

Proof of Theorem 3.2.1: Let f ES such that supp(}) C {IR2 2j -l < l~I < 2H1} 

for some j = l, 2, .... By (3 .13) , (3.14) and (3.15) 

I 

IIM 2 !114/3 ~ 11!114/3 

which correspond to the points Zand Y , respectively. Statements (3.10), (3.11) , and 

(3.12) now follow from the estimates at the points X,R,S,Z,Y,Pi (which we derived 

- _.)_ 

above) via interpolation and Lemma 3.1.1 (note that we can replace M with M 2 in 
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that lemma). Inequalities (3.13) and (3.15) of Lemma 3.2.1 imply that 

if (1, .! ) E QX U QZ \ {X, Z} p q 

for some /3 = f3(p, q) > 0. By what was shown in the first part of this proof 

if (1, .! ) E X Pi U Pi Y U Y Z p q 

for any E > 0. By interpolation, 

if ( .! , .! ) E A \ X Pi U Pi Y U Y Z p q 

for some "( = 'Y(P, q) > 0. Thus (3.9) follows from Lemma 3.1.1 provided q 2'.: 2. 

In [19], Stein proved (3.9) on the segment QZ \ {Z}. The theorem now follows by 

interpolating those estimates with the ones we just derived. ■ 

3.3 A slight improvement 

In this section we prove remark b) from chapter 2, section 1. This will follow from 

an argument similar to the one in section 4. However, we will not use (2.37), which 

contains a logarithmic factor, but rather the following geometric observation. It might 

be worth noting that (3.24) is not sufficient for the (5/2,5) estimate. 

Lemma 3.3.1 Letµ, E, t be as on page 31 (here a is any function satisfying (2.34)). 

Then 

(3.24) 
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The constant in (3.24) is absolute, in particular it is independent of the choice of a. 

h - r JI ;S t and the angle <l: (xi, x, x J) -::: -/d. Hence xi has to lie in a rectangle of 

dimensions approximately (Et) ½ x t. By 5 separatedness t he maximal number of x/s 

is bounded by (3.24). ■ 

Proof of remark b) on page 20: 

Case 1: (3 .25) 

Here C0 is the same constant that appeared in the case distinction in the proof of 

Proposition 2.4 .2. For later purposes we rewrite (3 .25) as 

(3 .26) 

(here ;S is to be understood as defined on page 16). Since card(Sl,J ;S min(M, 1:) by 

the definition (2.35) of the set Sf O we conclude from (2 .45) that 
' 

( 
5) ½ ( 5 M ½ ) ½ 3 ( t

2 
) µ ;S a-2>. - 1 ~ -t- M4 min 1, M 62 . (3 .27) 

It is convenient to rewrite (3 .24) as fo llows: 

(3 .28) 

Let 0 < (3 < ½ and 0 < 'Tl < l - 2(3 . Multiply (3.27) with the (3th power of (3.28) to 

wit 

½(1-,6) ( .!. ) ½(1-3,6) 2 

µl+ ,6 ;S ca-2
-.6 >, -

1
( ~ ) 

6
~

2 

A1 ¾(1+,6) min(1 , ~52) 
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(3.29) 

where we have used (3.26) to obtain (3.29). Let 

(3.30) 

for T > 0. Then we can choose C1 sufficiently large ( depending only on T) so that a 

satisfies (2.34). For suitably small T depending on /3 and 77 we conclude from (3.29) 

that 

( .....!L) 3+2/3 -7) -
µ < >. - 1+ i+ /3 M 4(1+ /3 J = >. -a M 13 

rv l (3.31) 

where 1 < a < 2 and a --t 1 as 77 --t 0, a --t 2 as 77 --t 1 and /3 --t 0. Moreover, 

1 + a 1 - 2/3 - 77 1 + a 
--- = 6 + 2 /3 > 6 and --- --t 6 
1-/3 1+2 +77 1-/3 

as 77 --t 1 - 2/3. Thus, according to Lemma 2.2.1, (3.31) corresponds to weak type 

p --t q estimates with 2 < p < 3 and q > 6. 

Case 2: (3.32) 

We rewrite (3.32) as 

(3.33) 

With Q defined by (2.51), we infer from Lemma 2.4.1 that 

2 ( t2 ) 
2 

card ( Q) ;S ( J) 5.-3 
M min 1, M fl (3.34) 
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The minimum occurs on the right- hand side because for a given choice of xi 1 we must 

have 

Here (j, i1 , i 2 , i3 ) is a typical element of Q (cf. (2.51)). This follows immediately from 

the definition (2.35) of Sf,c Clearly, the same inequality also holds for Xi3 . Combining 

(3.34) with (2.52) we obtain therefore 

(3.35) 

Suppose {3 2". 0. Writing >.6 = >.f3 >..6-f3 in (3.35) and estimating >.f3 by the {3th power 

of (3.33) yields 

(3.36) 

If 1 < {3 < 3 we can choose T in (3.30) so that (3.36) implies 

µ ;S >.-a Ml-(l+o)/5 for 1 < a < 2. (3.37) 

Combining (3.31) and (3.37) and applying Lemma 2.2.1 shows that 

for 2 < p < 3, 6 < q. (3.38) 

Inequality (2.9) of Theorem 2.1.1 with E = 0 now follows from (3.38) and the obvious 

estimates for q = oo via Marcinkiewicz's theorem. ■ 
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3.4 The L2 theory revisited 

The purpose of this section is to rederive the crucial L2 estimate, i.e., Lemma 2.3.3 , 

by purely geometric/combinatorial arguments. This is accomplished by using a two 

circle lemma, see Lemma 3.4.4 below, and a suitable iteration scheme. First we 

introduce some notation, following [22]. By C we shall always mean a family of circles 

with b- separated centers lying in some fixed compact set. Let 

C 

D.(C, C) 

d(C, C) 

C(x,r)={yEIR2
: lx-yl=r} 

{y E IR2 
: r - p < Ix - YI < r + P} 

llx-xl-lr-rll 

Ix - xi + Ir - rl 

c~ {CE C c/2 S D.(C, C) SE, t S Ix - xi S 2t, 

lr-rl::S;4t}. 

The following proposition clearly implies that 

(3.39) 

for any E > 0, which is essentially the same as (2.37). The only difference is that we 

have powers b-E instead of logarithms, which makes no difference as far as the proof 

of Theorem 2.1.1 is concerned. 
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Proposition 3.4.1 For all T/ > 0 there exist constants C1J > 0 and 50 > 0 with the 

following properties: given any family C there exists A C C with IAI > C;;1 ICI so that 

(3.40) 

for all CE A, all 5::; E::; t, 0 <>.,provided 5 < 50 . 

This will follow by iterating Lemma 3.4.5 below. The idea of considering weak type 

inequalities for the multiplicity in the full range of the parameters originates in [22]. 

First we establish some technical lemmas needed in the proof of Lemma 3.4.5. 

Lemma 3.4.1 Suppose .6.(C1 , C2) = {3, d(C1 , C2 ) = T, t ~ 2E, and that 1-1 ~ lOE. 

Then 

(3.41) 

Proof: Let F(x,r) = (Ix - xii - Ir- r 1 1, Ix- x2I - Ir- r2I) be defined on 

D = { ( x, r) t :s; Ix - x j I ::; 2t, j = l, 2}. 

Suppose (x, r) ED and let ei = 
1
:=::

1 
and O"j = sgn(r - rj)- Then 

and thus 

JF(x,r) 
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Here J F 2 denotes the sum of the squares of all 2 x 2 subdeterminants of DF. Suppose 

(x, r) E S1 and IF(x, r)I < E. Then there exist r; so that h - r;I < E and 

Moreover, Ix- xJI ~ t ~ 2E and llr-r1 1 - Ix- xJII < E imply that sgn(r-r;) = CJ1. 

Consider first the case where CJ1 = CJ2 . Then 

and thus 

If CJ1 -/= CJ2 , then by a similar calculation t2a 2 :2: {3T. We conclude that 

By the coarea formula , 

which implies 

{ JF(x,r)dxdr 
Jo.nF- 1 (D(O,E)) 

$T ID n p- 1 (D(O, E))I 
t 
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For example, set /3 = E and t = T in (3.41). Then (3.41) says that the total 

number of circles in C~1 n C~2 is no larger than the maximal number of circles in C~1 

that pass through one of the points C1 n C2. 

To estimate IC~1 n C~2 I in those cases where Lemma 3.4.1 does not apply we will 

use the following observation. Roughly speaking, it says that if Cj = C(xj, 3/4) are 

internally tangent to C ( 0, 1) for j = l, 2 with the points of tangency being far apart, 

then C1 and C2 cross each other. 

Lemma 3.4.2 Let Cj = C(xj, rj) for j = 0, l, 2. Suppose .6.(C0, Cj) < /3j and 

a <t(sgn(r1 - ro)(x1 - xo), sgn(r2 - ro)(x2 - xo)) 

> Ao 
(/31 + /32)(P1 + P2) 

(3.42) 

J or some sufficiently large constant A 0 . Then .6. ( C1, C2) 2". /31 + /32. 

Proof: Let CJj = sgn(rj - r0 ). Then 
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This implies that 

where we have used (3.42) in the last step. Furthermore, d(C1 , C2 ) ,:S p1 + p2 and 

thus finally 

Using Lemma 3.4.2 we can deal with the case /3 S lOE that was left open in 

Lemma 3.4.1. As suggested by the case where C1 and C2 are tangent, we will show, 

roughly speaking, that any circle C E C~1 n C~2 has to intersect the arc of minimal 

length on C1 that contains C1 n C2 . 

Lemma 3.4.3 Suppose C2 E cg;. Then 

(3.43) 

Proof: We may assume that T::; 4t (otherwise C~1 n C~2 = 0). Let 

- C 
Suppose C E CEl 1 satisfies 
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Ao being the constant in (3.42). In view of (3.39) we may then apply Lemma 3.4.2 

In particular C (/. C~2
. We conclude that any CE C~1 n C~2 has to satisfy 

In particular, the centers of all circles in C~1 nC~2 are contained in a 4t x 2t A0,10 rect-

angle centered at x 1 and thus 

as claimed. ■ 

The following result is the aforementioned two circle lemma. 

Lemma 3.4.4 Suppose C2 E cg~. Then 

ICC1 cC21 < t2 • ( jE E ) 
Et n Et ~ 52 mm V -:;. , ffe . (3.44) 

Proof: As before we may assume that T ~ 4t. Moreover, we may also assume that 

2E ~ t. Indeed, since [C~1 n C~2 l ~ 1~ either 

E 1 
or -- < -

,/ffi - 24 
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without loss of generality. In the first case 16E S T S 4t, whereas in the second case 

242E2 S {3T S 6T2 S 6 • 24t2
. Hence, if ~(Ci, C2) 2: lOE we may apply Lemma 3.4.1 

to conclude 

If on the other hand ~(Ci, C2) S lOE, then (3.44) follows from (3.43). ■ 

Lemma 3.4.5 Let a E (0, 1] be fixed and suppose that every CE C satisfies 

(3.45) 

for all S S p S E S t and all O < ,\. 

Then there exists AC C , IAI 2: ½ ICI so that 

(3.46) 

for all C E A, S S p S E S t, and O < ,\_ Here Ai is some absolute constant 

depending on A but not on C or the parameters (in fact, we can take A1 = c0 JA for 

some absolute constant c0). 

Proof: Suppose there are at least ½ ICI many circles C E C with the property that 

for some choice of S S p S E S t and O < ,\_ Then there exist a family B C C with 

IBI 2: I logSl-4 ICI and numbers S Sp SES t and,\> 0 so that (3.47) holds for this 

(fixed) choice of p, E, t , ,\ , and all C E B. 
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Consider the set 

Here {3 and T are chosen by pigeonholing so that the lower bound 

card(S) :2: I log W'IBI (1 log W
1 
,\~Ai I log 01'

12 
,\ - Ii nr ;i r 

I IogJIICI Ai~! (ff or (3.49) 

holds. 

To obtain an upper bound on card(S) we would like to estimate the number of 

choices for C given C1 and C2 by Lemma 3.4.4. However, (3.48) does not specify 

h - r 21 so it is not clear whether C2 E cg~ (see (3.39)). On the other hand, we only 

need to consider those ( C1 , C2 ) which also satisfy 

Indeed, given any (C, C1 , C2 ) ES we can estimate 

as claimed. Let us assume first that T ~ E. Then 



CHAPTER 3. SOME REMARKS AND A SLIGHT nvIPROVENIENT 71 

and thus C2 E cg; for any (C1 , C2 ) that can appear in an element of S. Also note 

that such ( C1 , C2) satisfy 

cf n cf =I- 0. 

Hence 

card(S) < L (3.50) 

(3.51) 

To pass from line (3.50) to line (3.51) we have applied Lemma 3.4.4 to bound the 

cardinality of the intersection whereas the number of terms in the second sum of line 

(3.50) can be estimated by invoking assumption (3.45). In fact, here we have used 

the special case p = (3 of the following estimate 

(3.52) 

which is essentially Lemma 3.2 from [22]. To prove (3.52) write Cf as the union of 

fi13 rectangles {RJJ=i· Let 

Then assumption (3.45) implies that (with m = m(>.)) 

m card( {j : card( { C2 E C;J : RJ n Cf=/- 0}) E [m, 2ml}) (3.53) 

< m >, ,/i1J =A:=(=)% E_N_ 
rv p c5 {3 c5 p 
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By summing (3.53) over the I log bl many dyadic values of m E [1 , b- 2] we obtain 

(3.52). 

We now show that the upper and lower bounds (3.49) and (3.51) are incompatible 

for large A 1 . Consider first the case E ::; {3. Then (keeping in mind that T ::; 4t) the 

right- hand side of (3.51) is 

:S A ICll logbl 7 i 
tE t2 

:S A ICI I log bl b2 b2 

which contradicts (3.49) for large A1 . 

If /3::; Ethen the right- hand side of (3.51) is 

E 

b2 V77J 

where we have used a ::; 1 in order to pass to the last line. For large A1 this will 

again result in a contradiction. 

Recall that we have assumed T ~ E throughout. We will now treat the case T < E. 

As before, 

5 tc ( t ) 
2 

( t) % card(S) 2: I log bl I Bl Ai b2 5 
~ , (3.54) 
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whereas trivially 

(3.55) 

Inequalities (3.54) and (3.55) imply that Af ;S 1, which is a contradiction for large A1 . 

■ 

Proof of Proposition 3.4.1: In view of Lemma 3.4.5 it will suffice to show the fol-

lowing. 

Claim: There exists an absolute constant A so that for any family C 

(3 .56) 

for all C E C, all 5 :s; p :s; E :s; t and O < ,\_ 

If (3.56) failed for one circle C E C and one choice of the parameters then inte

grating µ~ft over GP (as in [8]) would yield 

! 2 2 2 
' A, - 1_. - 1 (t)2 P < ICcl P < t P 
/\p /\ u t ~ 5 "-' Et Jd, "-' 52 Jd,' 

which is a contradiction for large A. ■ 
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Appendix A 

In this appendix we establish a special case of the well- known connection between 

capacity and Hausdorff dimension. For any set E C !Rd, 1 ::; p < oo, and a > 0 we 

let the (p, a) capacity of E ( strictly speaking, the Bessel capacity) be 

Cp,c,(E) = inf{llulli,~ : u 2: 1 on a neighborhood of E}. 

Here ~ (!Rd) is the usual Sobolev- Bessel space with norm 

Suppose p > l and ap < d. Then it is essentially a consequence of Sobolev's inequality 

that there exists a constant C0 depending only on p, a, and d so that 

for all balls B ( x, r). This suggest that Cp,c, and 1-ln-c,p are related. For a general 

statement in this direction see [23], Theorem 2.6.16 and the references to the original 

literature given there. Here we only deal with a special case which is sufficient for our 
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purposes. The following proof is an adaptation of the argument on page 107 in [23] 

to the case of fractional Sobolev spaces. 

Proposition: Let 2 ::; p < oo, 0 < a < 1, and ap < n. Then Cp,c, (E) = 0 implies 

that 

Hn-c,p+t(E) = 0 for all E > 0. 

Proof: By the definition of capacity there exists a sequence Uj E L~ so that Uj ~ 1 

on a neighborhood of E for each j and lluj II L~ < 2-j. We will use the following result 

about the relation between Sobolev spaces defined in terms of Bessel potentials and 

Besov spaces. Let A~,q (!Rd) be the space of functions for which the following norm is 

finite: 

where 1 ::; p, q < oo, 0 < a < 1. It is shown in Stein [18], page 155 , that 

Now let 

and define 

00 

u = L ul E A~,P (JRd) 
j=l 

u(x, r) = r-d r u(y) dy. 
} Br(x ) 

(A.l) 

(A.2) 
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Since uJ 2'.: 1 on a neighborhood of E for each j , u satisfies 

lim inf u(x, r) = oo for all x E E. 
r--+oo 

(A .3) 

Let µ be the measure 

µ(A)= r r lu(y) - u(z)IP dydz. 
J A J fRd IY - zld+pa 

Firstly, µ is finite by (A.l) and (A.2). Secondly we claim that 

limsuprap-d-Eµ(Br( x)) = oo for all x EE. (A.4) 
r--+0 

Indeed , if for a fixed x E E there is a M < oo so that 

then 

In particular , 

which would imply that limJ--+oo u(x, 2-J) exists , contradicting (A.3).Thus (A.4) holds. 

By a standard covering argument, see [23] Lemma 3.2.1, we conclude from (A.4) 

that 

1{d-ap+E ( E) = 0 _ ■ 
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