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ABSTRACT 

A magnetic nucleus located on an internal top can interact with 

the magnetic fields arising from the internal rotation as well as overall 

molecular rotation. The coupling Hamiltonian for this kind of magnetic 

nuclei has been derived following the method of Van .Vleck for the spin­

rotation interaction in rigid molecules. It is shown that the 

Hamiltonian for this problem may be written 

where the first term is the ordinary spin-rotation interaction and the 

second term arises from the spin-internal-rotation coupling. When the 

internal rotation is very fast compared with the overall rotation, it is 

shown that the effective spin-rotation Hamiltonian takes the approxi­

mate form 

where F = 6 IK, c(J) is the effective spin-rotation coupling tensor, 
. K .,.,, 

and D~) is a constant. 

On the basis of this coupling model, an analytic expression of 

T1 , the spin-lattice relaxation time, for 19 F spins in <t>-CF3 -type mole­

cules has been derived and the effect of an internal barrier is discussed. 

A physical model of molecular rotation in cp-CF3 -type molecules 

in their liquid state is proposed and temperature dependence of 19 F 

spin-lattice relaxation time is explained in terms of this model. 
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It seems that the rotation of the internal top (-CF 3 ) about its 

symmetry axis is inertial while rotations of the entire molecule can be 

described better by the diffusion model. 

Thus, the temperature dependence of the internal rotation is 

likely to be different from that for the end-over-end rotation of entire 

molecule. Burke has successfully shown that the temperature de­

pendence of fluorine spin-lattice relaxation time in benzotrifluoride can 

be interpreted in terms of the above model. 

A more complete and quantitative theory of the nuclear spin 

relaxation via the spin-rotation interaction in the presence of internal 

rotation is developed and Hubbard's treatment is generalized for non­

spherical molecules with internal rotors. 
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CHAPTER I 

INTRODUCTION 

1. 1 Spin-Rotation Interaction in Polyatomic Molecules 

When a molecule rotates about its center of mass, the motion of 

its nuclear and electronic charges produce magnetic fields. The inter­

action between the nuclear magnetic moment and the thus produced 

magnetic fields was first indicated by Van Vleck, 1 and his suggestion 

was mathematically formulated by Foley2 and Wick. 3 In his theory 

Wick has assumed that the interaction arises exclusively from the mag­

netic field which results from the circulation of electric charges of 

nuclei and electrons in the rotating moleculeso 

Although this assumption is approximately valid, it has been 

pointed out by Ramsey 4 that an appreciable correction is required when 

the effects of acceleration of the nucleus are considered. One of the 

corrections concerns the fact that the acceleration of the nucleus in the 

molecule is caused by an electric field and the moving nuclear mag­

netic moment interacts with this field. The other concerns the so­

called Thomas precession. 

The interaction between the thus produced magnetic fields and 

the nuclear magnetic moment is averaged over the electronic and 

vibrational states, since electronic and vibrational motions are much 

faster than rotational motions in a molecule . 
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The resulting spin-rotation coupling may be detected in the spec­

troscopy of either the nuclear spin (in a molecular beam resonance 5, 6) 

or the molecular rotation (in a microwave spectrum 7' 8). In a gaseous 

or liquid phase the rotational states of molecules constantly change 

because of incessant intermolecular collisions, and as a result the spin­

rotation interaction energy also fluctuates. Thus the spin-rotation 

interaction can be an important mechanism for nuclear spin relaxation 

both in gaseous and liquid phases. Some experimental results have 

given indirect evidence for this mechanism, 9-l3 but lack of knowledge 

about spin-rotation constants for many of the molecules studied so far 

has made firm conclusions difficult to obtain. 

In spite of this defect, studies of spin-rotation interactions are 

very important since they can provide much information about molecu­

lar rotation and intermolecular collision processes. The rotation of 

molecules in liquids has been studied for a number of years by spec ­

troscopic band shape, and by dielectric and magnetic resonance 

measurements. Nuclear magnetic resonance provides a convenient 

probe for the study of the molecular rotations in liquids since the 

nuclear spin relaxation times are dependent on the details of molecular 

motion. Measurement of NMR relaxation times has given useful infor-

t • 1 1 • t t· 14-20 ma 10n on mo ecu ar reorien a 10n. 

1. 2 Importance of the Spin-Rotation Interaction as a Spin 

Relaxation Mechanism 

Since the spin-rotation interaction arises from the rotational 

motion of a molecule, its effectiveness as a spin relaxation mechanism 
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will depend on how strong this interaction is and how rapidly the rota-

tional states of a molecule fluctuate in gases or liquidso 21 For example, 

in H2 the spin-rotation contribution to (1/T1 ) is only one third of the 

dipole-dipole contribution at room temperature, while for F2 the dipole­

dipole contribution is negligibly small compared with the spin-rotation 

contribution at the same temperature. Therefore it is expected that the 

spin-rotation interaction plays a more important role in the 19 F spin 

relaxation than in the case of proton spins. 

Brown, Gutowsky, and Shimomura22 found that the spin­

rotation interaction is quite effective as a spin relaxation mechanism 

even in liquid phase. They measured the spin-lattice relaxation times 

both for the protons and 19 F nucleus in liquid CH2FC1 at several dif­

ferent temperatures. They discovered that both (1/T1 )F and (l/T1 )H 

are independent of the strength of applied static magnetic field but show 

different temperature dependences. At low temperatures both (l/T1 )F 

and (1 / T1 )H decrease with increasing temperature; however, at high 

temperatures (1/ T1 )F shows a positive slope while (l/T1 )H continues 

to fall as temperature rises. 

In order to interpret their experimental results, Brown et al. 

carefully examined several relaxation mechanisms such as dipole­

dipole interactions, quadrupolar effects, and the anisotropic chemical 

shift. 
22 

They concluded that none of three relaxation mechanisms 

mentioned above could provide satisfactory explanations for different 

temperature dependences of (1/T1)F and (1/T1)H at high temperatures. 

Thus, Brown et al. assumed that the spin-rotation interaction is a 
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dominant relaxation mechanism for 19 F spin at high temperature and 

proposed a transient rotation model for molecular rotation in liquid 

phase. In terms of this model they could predict the correct, though 

qualitatively right, temperature dependence of (1/T1 )F at high tempera­

tures. Similar effects have been observed by Powles and Green24 in 

fluorobenzene and by Rugheimer and Hubbard25 in CF4 • 

13 26 . 
Powles ' has studied the temperature dependence of the 

proton relaxation time of both the ring and side group protons in toluene, 

p-xylene, mesitylene, p-fluorotoluene, and ethylbenzene. From the 

melting point to the critical temperature the ring protons in all the 

compounds exhibit decreasing (1 / T1 ) with increasing temperature 

characteristic of pure dipolar relaxation. However the sidegroup 

protons in all the compounds except ethylbenzene show decreasing 

(1/T1 )'s from the melting point to about 100° C where they have a mini­

mum of about Oo 10-0. 13 sec-1 and then increase with increasing 

temperature. In ethylbenzene the (1/T1 )'s of both the -CH2 and -CH3 

protons decrease continuously up to about 200° C where they are about 

0. 05 sec-1 . 

These observations can be ascribed to the operation of the spin­

rotation mechanism in the methyl group relaxation at high temperature. 

If this is the case, then we ask, 'Why does the spin-rotation interaction 

operate for the relaxation of protons of methyl group while it is rela­

tively ineffective for the protons in the ring and ethyl group?' It is 

considered that the correct answer for this question lies in the fact that 

manners in which the methyl group and the ring and ethyl group undergo 

reorientation in liquids are different. In liquids the small and highly 
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symmetric methyl group is supposed to rotate with relatively definite 

angular momentum between two successive intermolecular collisions 

while the larger and bulkier ring and ethyl group undergo diffusional 

rotations because of severe frictional forces due to neighboring mole­

cule so 

Although the detailed description of the phenomenon goes beyond 

the scope of this introductory chapter, we are going here to give a brief 

discussion of the matter to emphasize tne importance of spin-rotation 

interaction as a spin relaxation mechanism. 

For the convenience of discussion we assume that there are only 

two relaxation mechanisms, dipole-dipole interactions and spin­

rotation interactions, which are the most important mechanisms in 

many cases. For simplicity imagine a system which is composed of 

two identical spins with distance between them fixed. For this system 

it is well-known that27 

(l/Ti)spin-rotation = A kT T J (L 2-1) 

and 

(1. 2-2) 

where r2 is the orientation correlation time and T J is the angular 

momentum correlation time. It should be kept in mind that the spin­

rotation interaction depends only on the angular velocity (or momentum) 

of molecular rotation while other mechanisms such as dipole-dipole 

interactions, quadrupolar effects, and the anisotropic chemical shift 

are governed by the molecular orientation only. In a viscous liquid a 
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molecule will rotate more and more freely as temperature rises, thus 

making T J longer. On the other hand, r2 will be shortened since the 

orientation of the molecule will change more and more frequently as 

temperature becomes higher. Therefore we are easily convinced that 

from Eqs. (1. 2-1) and (1. 2-2) (1/T1 )S-R will increase with increasing 

temperature while (1/T1 )d-d decreases. Of course these explanations 

are quite crude and qualitative. Exact answers should come from a 

detailed study of molecular dynamics which we will see in the next 

several chapters. The weight of importance of these two mechanisms 

are also dependent on the proportional constants A and B in Eqs. 

(1. 2-1) and (1. 2-2). It is well-known that in many liquids the angular 

momentum correlation times are much shorter than the orientation 

correlation times in wide range of temperature. In this case if the 

term AkT is of magnitude comparable to B, then the dipole-dipole 

interaction plays a dominant role in the spin relaxation as we see from 

Eqs. (1. 2-1) and (1. 2-2), which is the case for the protons of phenyl 

ring in many toluene derivatives. However, in some cases the term 

AkT is so large that the spin-rotation interaction completely dominates 

the relaxation process, which is the case for many liquids of fluorine 

compounds. In toluene small and highly symmetric methyl group is 

supposed to rotate relatively freely between intermolecular collisions. 

In this case the orientation correlation time is not much longer than 

the angular momentum correlation time. Moreover, as we shall see 

later, the spin rotation constant for internal rotation is larger than 

that for end-over-end molecular rotation, so that the spin-rotation 
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mechanism is much more effective for the relaxation of sidegroup 

protons than of ring protons. Therefore, it is not surprising that the 

effect of spin-rotation mechanism shows up at high temperatures in the 

sidegroup protons. 

In gases and in some nonviscous liquids such as liquid methane, 

all molecules apparently rotate with relatively definite angular momenta 

between intermolecular collisions. In this case -r J should decrease with 

increasing temperature since the lifetime for a particular rotational 

state is shortened by increase of collision frequency. In this sense the 

analysis of spin-rotation contribution to (1/T1) can provide an important 

method for studying the rotational motion of molecules in liquids. 

1. 3 Spin-Rotation Interaction in the Presence of Internal Rotation 

In the absence of internal rotation the spin-rotation interaction 

in the molecule-fixed frame can be written28 

- -'.ff_ = -I•C·J ~~-R .,... (1. 3-1) 

-where I is the spin angular momentum operator of the nucleus, C is the .,.._ -spin-rotation tensor, and J is the rotational angular momentum of the 

molecule. Recently Dubin and Chan29 indicated that a magnetic nucleus 

located on an internal rotor is not only coupled to the rotational mag­

netic field generated by end-over-end rotation of the molecule but is 

also coupled to the magnetic field produced by internal rotation of the 

top relative to the frame. This spin-internal-rotation coupling can be 

quite important, since the rotational magnetic field per unit angular 
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momentum is always larger for internal rotation than for end-over-end 

molecular rotation. However, as the internal barrier becomes higher, 

the effect of this coupling on the spin-lattice relaxation will be less 

important, because as the height of barrier increases the internal 

motion of the top will be of more and more torsional character. In the 

case of benzotrifluoride it is supposed that the CF 3 group can rotate 

relatively freely30, 31 with respect to the phenyl ring and therefore the 

nuclear spin-internal-rotation coupling must be included in the spin­

rotation interaction Hamiltonian to correctly analyze the spin relaxation 

time data. 

Thus, in the presence of internal rotation not only the modula­

tion of total rotational angular momentum but also the modulation of 

internal rotational angular momentum should be taken into account. 

Green and Powles13 and Faulk and Eisner32 have measured the 19 F 

spin-lattice relaxation time in benzotrifluoride. Especially Faulk and 

Eisner attempted to interpret their experimental results in terms of 

the spin-overall-rotation interaction alone. However, the neglect of 

the importance of spin-internal-rotation interaction made their inter­

pretations look unappropriate. 

Burke33 has shown that at room temperature the spin-internal­

rotation is the dominant relaxation mechanism for 
19 

F spins in <frCF3 

and thus cannot be ignored. Furthermore he has demonstrated that 

the contribution of the spin-overall-rotation interaction increases with 

increasing temperature more rapidly than that of the spin-internal­

rotation interaction. As we shall see later, this difference in temper­

ture dependences is due to the fact that the overall rotational motion of 
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cp-CF3 molecule in liquid can be better described in terms of the dif­

fusion-type model than the inertial-type model while the internal 

rotational motion of the CF 3 top is of more inertial character. If the 

internal rotation is of diffusional character, the spin-internal-rotation 

contribution to (1/ T1) should increase with temperature as rapidly as 

the spin-overall-rotation contribution. The inertial character of inter­

nal rotation of the CF 3 top is probably due to its symmetry about the 

axis of internal rotation. A similar example was given by Moniz, Steele 

and Dixon 17 in mono substituted methanes. On the other hand, rotations 

about other axes perpendicular to the molecular symmetry axis suffer 

severe frictional forces as shown by Shimizu. 34 Therefore it is sup­

posed that the end-over-end rotational motion in cp-CF3 can be described 

better by the diffusion-type model than by the inertial-type model. We 

will not go into further details of the problem here and postpone the dis­

cussion of dynamical processes which modulate the spin-rotation inter­

action in liquids until Chapter IV. 
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CHAPTER II 

HAMILTONIAN OF SPIN-ROTATION INTERACTION IN 

THE PRESENCE OF INTERNAL ROTATION 

As we have mentioned earlier, we have to include the spin­

internal-rotation interaction in discussing the relaxation of a nuclear 

spin on an internal rotor . When a molecule rotates, the rotational 

motion perturbs the electron cloud around the molecule and this per­

turbing effect can be expressed as a coupling between the rotational 

angular momentum and the electronic orbital angular momentum. This 

coupling effect accounts for the greater part of the spin-rotation inter­

action in a molecule and can be mathematically formulated by the 
1 

method of Van Vleck. In order to apply the method of Van Vleck to our 

problem we first need to derive the Hamiltonian for the rotational 

motion of a polyatomic molecule with a symmetric internal rotor. A 

conventional way to obtain a quantum mechanical Hamiltonian is to 

replace dynamical variables in the classical Hamiltonian by corre­

sponding quantum mechanical operators. Therefore we will first 

derive the classical kinetic energy expression for a molecule with a 

symmetric internal rotor. Then we will discuss the operator equi­

valent of classical angular momentum. 

20 1 Classical Kinetic Energy Expression 

The rotational Hamiltonian for a rotating frame with a 
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symmetric top which can undergo its own internal rotational motion has 

been given by Wilson2 and Lin, 3 but for a more general treatment we 

will review here their derivation of the rotational Hamiltonian. 

Consider a rotating frame with a symmetric internal rotor which 

can rotate more or less freely about its own axis with respect to the 

frame. 

As shown in Fig. 1, we pick the origin at the center of mass of 

- - --+ --+ the entire molecule and define r., r ., m., m., a., and µ as follows: 
1 J 1 J J 

and 

mi = a mass point on the frame with mass mi; 

m. 
J -r. 
1 

--+ 
r. 

J 
--+ 
(]. 

J 

= 

= 

= 

= 

a mass point on the top whose mass is mj; 

position vector of mi with respect to the origin; 

position vector of mj with respect to the same origin; 

position vector of mj with respect to the center of mass 

of the internal top; 

--+ µ = position vector of the center of mass of the internal top 

with respect to the origin 0. 

From the above definitions we have 

(2. 1-1) 

The rotational kinetic energy for the system can be written as 

T = (1/2) Li m.22 + (1/2) Li m.22 . 
i 111 j JJJ 

(2o 1-2) 

We will describe the internal rotation of the top about its sym-
--+ 

me try axis by an angle variable, a. And let w be the angular velocity 
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0 

Fig. I A Rotating Body with a Symmetric Top 
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of the overall rotation. Then 

and 

.1..+ - -r.=wxr. 
1 1 

.!....+, --+ ~ ~ --. 
r. = w x r. +ax a. 

J J J 

(2.1-3) 

(2. 1-4) 

Substituting (2. 1-3) and (2. 1-4) in (2. 1-2) and using the vector 

identity 

(AX B) • (C X D) = (A· C)(B· D) - (A· D)(B• C) ' (2.1-5) 

we obtain 

T = (1/2) ~ m.(wx 2)2 + (1/2) ~ m.[ (w X 2) + (cix ~)] 2 

i l 1 j J J J 

+ (1/2) ~ m.[a2a. 2 
- ro:-~)2

] 
j J J J 

+ (1/2) ~ m.[(wx 2) • (£1x 2) + (~x 2) • (wx 2)] 
j J J J J J 

(2 . 1-6) 

Let us consider the physical meanings of the terms on the right­

hand side of Eq. (2.1-6). The first two terms represent the overall 

rotational energy of the system and may be rewritten as (1/ 2) w+, I • w, ,,. 

where I is the inertia tensor of the system. The third term describes .,..,_ 

the internal rotational energy of the top and may be condensed to 

(1/2) ~+. I • --;;, where I is the inertia tensor of the internal top. We .,..,.a ....... a 
can also show that the last term may be abbreviated to 
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- + -4 ..!...+ + -(1/2) (w •!a· a+ a • !.a· w ), which represents the coupling between 

the overall and internal rotations. 

Thus, the kinetic energy T takes the form 

(2. 1-7) 

Let (a, b, c) be three principal axes and let (~, 17, n be the 

direction cosines of the symmetry axis of the internal top with respect 

to the frame (a, b, c). We denote the components of w along the a, b, 

and c axes and along the symmetry axis of the top by wa, wb, w c' and 

w a' respectively. Then 

w = ~ w + 1J wb + ~ w . a a c 
(2. 1-8) 

Now, rewrite Eq. (2. 1-7) as 

+ (1/2) I (w a + a. w ) , a a a 
(2. 1-9) 

where I , lb' and I are three principal moments of inertia of the a C 

entire system, and I is the moment of inertia of the top about its sym­a 
metry axis. Substituting (2. 1-8) in (2. 1-9), we obtain 

+ (1/2) I a2 
+ I a(~ w + 1J wb + ( w ) • a a a c 

(2. 1-10) 
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A conjugate momentum of a cannonical variable, say q, is 

defined by 

and thus for T given by (2. 1-10) we may define 

Pa = aT 
Iawa + ~Iaa --= 

' awa 
(2.1-lla) 

Pb = aT 
Ibwb + 77Iaa --= 

awb ' 
(2. 1-llb) 

Pc = aT = 1 w + n a 
dWC C C Q! ' 

(2. 1-llc) 

and 

Pa 
= aT = 

aa 
Iaa + Ia(~wa + 77wb + ~we) . (2.1-lld) 

As we will see later, Pa' Pb, and Pc are the components of the 

total rotational angular momentum of the entire system including the 

internal motion along a, b, and c axes, and p is the component of the a 
total rotational angular momentum of the top along its symmetry axis. 

Now, in order to formulate the quantum mechanical Hamiltonian 

we have to express the kinetic energy in terms of Pa' Pb' Pc' and Pa· 

For convenience define 

(2. 1-12) 

where p is the internal rotational angular momentum of the top with 

respect to the frame (a, b, c ). 
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From Eqs. (2.1-lla) through (2.1-llc) we may obtain 

w = a (Pa - ~p)/Ia 
' 

(2.l-13a) 

wb = (Pb - 77p)/Ib ' 
(2. 1-13b) 

and 
w = 

C (Pc - ~p)/Ic 
' 

(2. l-13c) 

where we should be careful not to confuse p with p . a 
Let us define 

Pa wa 

- Pb - wb 
p = 

' 
W= 

Pc WC 

. 
Pa O' 

and 

Ia 0 0 na 

0 Ib 0 77Ia 
A= (2. 1-14) 
-" 0 0 IC ~Ia 

na r,Ia ~Ia I 
O' 

Then (2 .1-10) and (2.1-11) may be rewritten as 

- -P = A·W (2.1-15) 
-" 

and 

(2. 1-16) 
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Assume the matrix A is not singular, that is det A ¢ 0, and also 
"' 

note that A is a real symmetric matrix, L eo , A+ = A. 
"' "' "' 

Denote the inverse of the matrix A by A -l. Then we can write 
"' "' 

(2.1-17) 

-1 
Since A is a real symmetric matrix, so is A . Therefore 

"' "' 

-+ -1 -T = (1/2) p O A • p . 
"' 

(2. 1-18) 

Thus, the problem is reduced to finding the inverse of the 

matrix A. However, it is laborious to find A -l from (2. 1-14). There 
"' "' 

is an alternate and easier way to do this, and we will consider it in 

what follows. 

Introducing (2.1-13) into (2.1-10), we have 

(2. 1-19) 

where 

and 

(2. 1-20) 

Thus we can write our rotational Hamiltonian as 

(2.1-21) 
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where V(0, cf>, 1/J, a) is the potential function governing the rotational 

motion of the molecule, expressed in terms of three Eulerian angles, 0, 

<f>, 1/J , of the rotating frame and an internal angle variable, a. 

From (2.1-lld) and (2. 1-13) we can see that p
01 

is related to p 

via 

(2. 1-22) 

which can be considered as a generalized Nielsen transformation. 4 

Substituting (2.1-22) in (2.1-19), we can easily find A-
1

. The .,.,_ 

resulting Hamiltonian takes the following form: 

( 
~2 ) ( 2 ) 2 3C = A+~~ P 2 + B+ TI P 

rot 4DI 2 a 4DI 2 b 
a b 

+ (c + ~2 J p 2 + ~TJ (PaPb + PbPa) 
4DI 2 c 4DI I 

c ab 

1 
+ 2 

4DI a 

+ V(0, cf>, 1/J, a) . (2 . 1-23) 

All the knowledge about forces exerted on the system is con­

tained in the potential function V(0, cf>, 1/J, a). Since V(0, cf>, 1/J, a) includes 
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both external and internal forces exerted on the system, we assume that 

V(0, <P, l/J, a) takes the form 

(2. 1-24) 

where V ext (0, </>, l/J, a) is the potential function due to the external source 

of force and Vint (a) is that due to the internal source. We may arbi­

trarily set V ext (0, <I>, l/J, a) equal to zero when there is no external force. 

Now, in order to obtain the quantum mechanical Hamiltonian we 

have to find quantum mechanical operators corresponding to angular 

momentum components involved in (2. 1-23). We will discuss these 

operators in the next section. 

2. 2 Quantum Mechanical Operators for Pa, Pb, Pc, Pa, p and 

Quantum Mechanical Hamiltonian for Rotational Motion. 

In order to obtain explicit expressions for Pa' Pb' Pc' Pa' and 

p we define the Eulerian angles (<I>, 0, l/J) of the rotating frame (a, b, c) 

following Goldstein. 5 

As shown by Margenau and Murphy, 6 we may write 

w = a cf> sin 0 sin l/J + e cos l/J ' 
(2.2-la) 

wb = ¢ sin 0 cos l/J 
. 

+ 0 sin l/J (2. 2-lb) 

. . 
WC = </> cos 0 + l/J ' 

(2 . 2-lc) 

or alternatively 
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. 
0 = w a cos 1/J - wb sin 1/J 

. 
cp = (wa sin 1/J + wb cos 1/J) cosec 0 , 

. 
1/J = wc - (wa sin 1/J + wb cos 1/J) cot 0 • 

Substituting (2.1-1) into (2.1-10) and considering that 

we have 

Pa = P0 cos 1/J + P cf> cosec 0 sin 1/J - PI/J sin 1/J cot 0 , 

or 

= cos l/J (a~) + cosec e sin l/J (a3cp) 
cp,1/J,a 0,1/J,a 

- sin z/J cot 0 ( fip) , 
0,cp,et 

where we have used the Dirac operator equivalence 

P . a 
cf> - -1 acp ' P . a 

--1-
0 ae 

and 

Similarly, we can obtain 

- sin 1/J (a~) + cosec 0 cos 1/J (/cp) 
cp,7/J,a 0,1/J,a 

- cote cos 1/J (~) , 
0,cp,et 

(2. 2-2a) 

(2. 2-2b) 

(2. 2-2c) 

(2. 2-3a) 

(2 . 2-3b) 
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(2. 2-3c) 

and 

(2. 2-3d) 

The corresponding operator expression for p can be easily 

obtained from (2.1-22) and (2. 2-3). Since Pa, Pb, and Pc are inde­

pendent of a as we see in (2. 2-3), they commute with p . However, a 
they do not commute with one another as pointed out by Klein, 7 

Casimir, 8 and Van Vleck, 1 whence p does not commute with Pa' Pb, 

Pc· In fact, as first noted by Klein, Pa' Pb, and Pc satisfy anomalous 

commutation relations 

[ Pa, Pb] = -iP 
C 

[ Pb' pc] = -iP a 

[Pc, Pa] = -iPb (2. 2-4) 

Thus, if we can express P , Pb, P , and p in terms of corre-a C 

sponding operators, we may use (2. 1-21) as the corresponding quantum 

mechanical Hamiltonian without any change. 

In a molecule like benzotrifluoride we may put ~ = 77 = 0 and 

~ = 1. Therefore (2. 1-21) and (2. 1-23) may be rewritten as 

JC t = A P 2 
+ B Pb2 

+ C P 2 
+ D p

2 
+ V(0, cp, 1/J, a) ro a c 

(2. 2-5) 

and 
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Jerot 

+V(0,c:p,1/J,a), (2. 2-6) 

respectively, where A, B, and C are given by (2. 1-20) and 

and 

(2.2-7) 

As we shall see later, we are going to use (2. 2-5) to derive the 

spin-rotation interaction Hamiltonian, while (2. 2-6) is a more conven­

ient form for evaluation of rotational energy levels. Before attempting 

to derive the Hamiltonian of spin-rotation interaction we will first be 

concerned with the evaluation of rotational energy levels and the spin 

statistics in <f>-CF3 since they are useful for our future discussion of 

the problem. 

2. 3 Rotational Energy Levels and Spin Statistics in Benzotrifluoride 

(A) Rotational energy levels. 

The benzotrifluoride molecule, in the rigid rotor approximation, 

can be considered as an asymmetric rotor with a symmetric internal 

rotor, where one of three principal axes of the entire molecule coin­

cides with the symmetry axis of the CF3 group. Let this axis be 

denoted by z, and the other two principal axes will be designated by 

x and y. 
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Then we may write the rotational Hamiltonian for cp-CF
3 

as 

(2. 3-1) 

where 

JC O = (1/2) (A+ B) (P 2 + P 2
) + C P 2 + F p 2 

- 2 C p p x y zz a zaz (2. 3-2) 

and 

(2o 3-3) 

with 

A 
ti2 

B 
ti2 

C 
ti2 

= 
~ 

= '2"I' = '2"I y z 

ti2 I ti
2 

CZ and F z = 2 (I - I ) = 2I (I - I ) . 
z a a z a 

(2. 3-4) 

In the expressions for JC 0 and JC 1 the angular momentum com­

ponents, P x' Py' P z and pa' are expressed in units of ti. 

A complete set of eigenfunctions for the operator (JC 0 + JC 1 ) is 

not available in any analytic form. However, by forming the energy 

matrix for this operator using a complete set of orthonormal functions 

and diagonalizing this matrix we can obtain eigenfunctions and energy 

levels. In the case of free internal rotation, that is, when V(a) = O, 

eigenfunctions and energy levels can be obtained in analytic forms for 

J ~ 3, where J is the total angular momentum quantum number . 

If the asymmetry of the molecule is not too large, eigenfunctions 

for JC 0 can serve as a convenient basis set to form the energy matrix. 

These eigenfunctions can be represented by 
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(2.3-5) 

where 

(2. 3-6) 

(2. 3-7) 

and 

(2. 3-8) 

with 

t = (1 -cos 0)/2 , and 2p = 2J - {d+s) . (2.3-9) 

(-1/ in SJKM(0, ¢) is the so-called Van Vleck phase factor, 

where f3 corresponds to the larger of M or K. 

From symmetry considerations we see that V(a) for benzotri­

fluoride may be written 

V 
V(a) = ~ 5n (1 - cos 6n a) , 

n 2 

where n = 1, 2, 3, . . . . 

(2. 3-10) 
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It has been empirically shown that the series (2. 3-10) rapidly 

converges in many cases, and therefore in our case we will retain the 

leading term 

V 
-2. (1-cos 6a) . 
2 

Expression (2. 3-11) may be rewritten as 

V 6 (2 6ia -6ia) - -e - e 
4 

(2. 3-11) 

The first term (V 6/2) merely represents a common additional 

constant and may be dropped safely. Thus using (2. 3-5) as basis func­

tions the energy matrix elements can be written 

(JKMm l3C I JKMm) 

= ½ (A+B) J(J+l) + {Cz - ½ (A+B)} K2 + Fm2 
- 2mCzK , (2. 3-12) 

(JKMm j3C !JK±2Mm) 

1 

= - ¼ (A-B) [ { J(J+l) - K(K±l)} { J(J+l) - (K±l) (K±2)}] 2 , (2. 3-13) 

and 

(JKMm !JC !JKMm±6) = - ¼ V 6 • (2. 3-14) 

From now on we will drop Min describing the matrix elements 

since the quantum number M does not appear in the expression of 

energy matrix elements. 
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However, since M can take {2J+l) number of different values, 

that is, M = -J, -J+l, ... , J-1, J, all the energy levels in this prob­

lem are at least (2J+l)-fold degenerate. From (2. 3-13) we see that Je 1 

can only mix two states which differ in quantum number K by 2. Sim­

ilarly V(a) gives nonvanishing matrix elements only between two states 

which differ in quantum number m by 6. 

In this connection we are going to cite some results due to 

Wilson, Lin, and Lide. 2 Since our Hamiltonian is invariant under the 

4s-operations when V(a) has s-fold symmetry, these 4s operations 

will form a group. For s = 6 this group will be isomorphous with the 

group n6h, and its character table has been given by Wilson et al. 

According to them the energy matrix should be factored at least into 

six submatrices. Since there is no matrix element between states of 

even Kand those of odd K, we have only to consider submatrices cor­

responding to either even or odd K. Next we also see that there is no 

matrix element between states with different values of m0 , where 

m = m 0 + 6k with m 0 = 1, 2, 3, 4, 5, 6 and k = O, ± 1, ± 2, . . . . Let us 

call this submatrix the m0-submatrix. Structure of each m-submatrix 

is diagramatically shown below. 

Each submatrix represented by a square box in (2. 3-15) spans 

over the K-space, where it can be factored into two smaller matrices, 

one for even K and the other for odd K, as we have already mentioned. 

Because of symmetry of the type E(K, m) = E(-K, -m), the 

m0 = 2 matrix is identical with the m0 = 4 matrix, and similarly the 

m0 = 1 matrix can be shown identical with that for m 0 = 5. 
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(2. 3-15) 

The matrices for m0 = 3 and m0 = 6 can be further factored by 

performing a transformation on them which is equivalent to choosing 

wave functions of the type 

1/J]KMm = } 2 ( IJKMm) ± IJ-KM-m)) • (2. 3-16) 

Using the structural data for cp-CF3 due to Scott et al., 9 we 

can evaluate 1x, Iy, Iz, and Ia as well as several rotational constants. 

The results are 

I = 10. 432 x 10-38 g. cm2 
, 

X 
1 -38 2 

I = 8. 955 x 0 g. cm , 
y 

A = 

B = 

CZ = 

-38 2 2. 946 x 10 g. cm I = l.469xl0-38 g.cm2 

a 

(ti2 /21x) 
-18 = 5. 33 x 10 erg 

' 
(n

2 
/2I ) 

-18 = 6. 21 x 10 erg y 

(ti2/ -18 2(Iz-Ia)) = 37. 64 x 10 erg 
' 

and 



31 

2; -18 F = (I ti 2I (I - I ) ) = 75. 49 X 10 erg . z a z a 

In the zero barrier limit (i.e., V6 = 0) some rotational energy 

levels have been evaluated on the IBM 7094 and results are tabulated in 

Table I. From (2. 3-12) and (2 . 3-13) one sees that each nonvanishing 

value of l m I, there will be two identical secular equations, so all 

levels are doubly degenerate unless m = 0. In the case of m = O, the 

ordinary rigid rotor levels are obtained, except that the moment of 

inertia about the z-axis is the moment of the framework group (I - I ) z Cl. 

as already shown. In Table I only the cases of m > 0 are tabulated. 

If the anisotropy (A-B) is very small, the energy levels may be 

expanded in powers of (A-B). For large values of the quantum number, 

the diagonal elements of the secular equation will be large and the first 

terms in the expansion in powers of (A-B) may be adequate. Second­

order perturbation theory then gives2 

E = K2 - mdK + (b2/8) {[.f - (K-1}2] 

x[(J+l/ - (K-1/]/(2K-md-2)} 

- (b
2
/8){[J2 - (K+l/] (J+1}2 - (K+1>2/(2K-md+2)} 

where 

b = ½ (A - B)/{ Cz - ½{A+ B)} 

and 

(2.3-17) 

(2. 3-18) 
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TABLE I. Fir st Few Rotational Levels in Benzotrifluoride 

in the Zero Barrier Limit 

J m energy x lif6ergs J m energy x 1()16 ergs 

1 0 0.1187 2 4 7.604 
0.4361 9.689 
0.4452 12.42 

1 1 0.4319 15.79 
0.8726 19.81 
1. 957 3 0 0.7114 

1 2 1. 931 1.007 
1.062 3.134 2.000 4.982 2.001 

1 3 4.937 3.610 
6.903 3.610 
9.514 3 1 1. 025 

1 4 9.452 1. 226 
12.18 1. 469 
15055 2.076 

2 0 0.3560 2.551 
4.279 0.6645 6.652 0.6919 

1.644 3 2 1. 965 
1. 644 2.049 

2 1 0.6692 2.525 
3o 728 1.111 5.575 0.8721 8.067 2.195 11. 20 3.923 

2 2 1.609 3 3 3.531 
4.209 

2. 168 5.531 30372 7.497 5.219 10.11 7.710 13. 36 
2 3 3.853 17. 26 

5.175 3 4 6.520 7.141 7.961 90751 10.05 13.01 12.77 
16. 15 
20.16 
24.82 
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For large values of m, E approaches K2 - mdK. 

Since papers due to Wilson2 and Lin3 give an excellent review 

of this problem, we are not going into further detail. Instead we will 

give some discussion about the symmetry properties of rotational 

states and the spin statistics of <,0-CF3 • 

B. Symmetry of rotational levels and spin statistics. 

As we have already noted in the previous section, the sub­

matrix for m0 = 2 is identical to that for m0 = 4 because of symmetry 

of the type E(K, m) = E(-K, -m) in the energy matrix. Similarly, the 

m0 = 1 matrix can be shown to be identical to the m0 = 5 matrix. For 

these submatrices the rotational states may be written 

(2. 3-19) 

where ~ means the sum over states of even K and ~ stands for odd 
~ K-

K, and superscript (±) on '1t corresponds to the sum over states of 
mo 

K±. If we arrange the matrix elements properly we can see that 

identity of the sub matrix m0 = 2 with that for m0 = 4 requires that 

and 

Similarly, we can show that 
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and 

The matrices for m0 = 3 and m0 = 6 can be factored by choosing 

wave functions of the type 

(2. 3-20) 

By checking these wave functions through every symmetry oper­

ation of the 4s group we can determine the symmetry classification 

given in Table II. To make this table we have used the following 

properties of the symmetric rotor wave functions: 

(i) when we rotate the given molecule by an angle 21rj/n about the 

symmetry axis (identified as the z-axis in our case), where j 

and n are integers, 

and 

,1, = 8 (0 -+.) eiKl/J ima 
.,,R JKM ''+-' e 

l/J' R 
= 8 (0 -+.) iK(l/J + 21rj/n) eima 

JMK ''+-' e 

(2.3-21} 
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(ii) when we apply a twofold rotation about an axis perpendicular to 

the symmetry axis and making an angle o with the axis x' which 

is the origin of the angle l/J measuring the rotation of the mole­

cule about its symmetry axis, we can find that 

= (-l)J+~+M iK(7T+2o) ima S (0 A-.) -iKl/J 
e e J-KM , 'fJ e , 

where ~ is the larger of l KI and IM J. 
The character for the operation Cj is n 

, e21TijK/n -21TijK/n 2 (2 •K/ ) Xe = + e = cos 7TJ n if K ~ 0 

and 

x' = 1 
C 

if K= 0 . 

(2. 3-22) 

(2 . 3-23) 

The character for the operation discussed in the case (ii) like­

wise is zero if K ~ O, and (-l)J if K = 0. 

Now, let us consider the problem of the spin statistical weight 

of rotational levels which is important in analyzing the spectral inten­

sity. For the convenience of discussion we write the complete wave 

function as 

(2. 3-24) 

where the subscripts indicate that the corresponding factor is a 

function of the electronic (including electron spin), vibrational, rota­

tional, translational, and nuclear spin coordinates, respectively. 1/JE 
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and 1/Jy are symmetrical with respect to the permutation of nuclei in 

their ground states, and so is 1/JT since it does not contain any internal 

coordinates. Therefore we have only to consider the parity of 1/JRl/JNS" 

More precisely for <p-CF3 we write 1/JRl/JNS as 1/JR¢~8¢~8, where H and 

F mean proton and fluorine nuclei, respectively. All ip~8 's and ¢~8 's 

are not compatible with a certain class of 7./JR since the Pauli principle 

requires that the total wave function should be antisymmetric with 

respect to the exchange of a pair of particles of half-integral spin. To 

exemplify this let us consider proton spins in cp-CF3 • 

TABLE II. Symmetry Classification of Energy Eigenstates 

Submatrix K-m; even K-m; odd 
designation J: even J:odd J:even J: odd 

1, 5 E20 E20 E10 E10 

2, 4 E1e E1e E2e E2e 

3+ Byo Bxo Ao Bzo 

3 Bxo Byo Bzo Ao 

6+ Ae Bze Bye Bxe 

6 Bze Ae Bxe Bye 

So far as proton spins are concerned, the only symmetry opera­

tion we have to consider is the C2 rotation of the pheny 1 ring plane about 

the symmetry axis of cp-CF3 , which was described as CzC: by Wilson 

et al. 2. The operation CzC: exchanges proton 1 with proton 5 and 

proton 2 with proton 4 ((15)(24)3]. Since the character x' for a given 

permutation is equal to the number of spin functions unchanged by the 
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given permutation, lO the character for CzC3 is 8. 
6 

TABLE III. Character Table for the C2 Group 

A 

B 

Thus we write 

E 

1 

1 

H 
~NS = 20A + 12B . 

C 

1 

-1 

(2. 3-25) 

Ae, Bze' E1e, Bx0 , By0 , and E20 have even parity while Bxe' 

A0 , Bz0 , and E10 have odd parity with respect to the operation CzC! . 

Therefore the rotational states corresponding to even values of (K- m) 

have the proton spin statistical weight 20, and those corresponding to 

odd values of (K- m) have the proton spin statistical weight 12. In a 

similar way for the fluorine spin statistical weight we may write 

F 
~NS = 4A + 4E , (2. 3-26) 

that is, the fluorine spin statistical weights are the same, both for the 

nondegenerate and degenerate levels. 

Therefore, the spin statistics of fluorine spins cannot produce 

any effect on the statistical average of a dynamical variable. The 

statistical average of a dynamical variable is given by 
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38 

Tr{O e-M} 

Tr{ e -/3ac} 
(2. 3-27) 

where 6 is a quantum mechanical operator corresponding to the given 

dynamical variable and 3C is the Hamiltonian for the system which we 

are concerned with. The importance of the spin statistical weight may 

be best exemplified by evaluating the statistical average of some 

angular momentum operators. 

Suppose we evaluate (P;) in a molecule like cp-CF3 • In the 

I JKMm) representation we may write 

~ ~ ~ ~ (JKMmlP; e-{3JCIJKMm) 
(P 2) = _J_M_K_m ____ _...,,. ___ _ 

z ~ ~ ~ ~ (JKMm I e-/3:JCI JKMm) 
JMKm 

(2. 3-28) 

As we have already noted, rotational states with even values of (K- m) 

have the statistical weight 20 while states of odd values of (K- m) have 

the statistical weight 12. Therefore, we write (2. 3-28) as 

(2. 3-29) 

where 

Q = (JKMm I e -(3:JC I JKMm) 
JKm 

(2. 3-30) 

and 
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Fig.II Benzotrifluoride Molecule 
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z = :E :E f 20 :E :E QJK + 20 :E :E QJK 
JM l K+m+ m K-m- m 

(2. 3-31) 

Positive (or negative) superscripts on Kand m in the series 

~ ~ , etc., signify that summations should be performed over rota­
K+ m+ 
tional states of even (or odd) values of Kand m. 

TABLE IV. Character Table of C3 Group 

A 

B 

E 

1 

2 

1 

-1 

Though eigenvalues of the operator :JC0 can be given in an ana­

lytic form, there is no way to obtain an analytic, compact expression 

for Z, nor is it recommendable to evaluate Z on a digital computer 

since rotational levels are appreciably occupied up to J = 100 in 

cp-C F 3 and thus evaluation of the partition function will consume an 

enormous amount of time even on a fast computing machine. To get 

out of this dilemma we use the corresponding classical expression. 

In the next section we will derive a desired analytical expres­

sion of the spin-rotation interaction Hamiltonian for nuclear spins on 

a mobile internal rotor. 
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2. 4 Hamiltonian of Spin-Rotation Interaction in the Presence of 

Internal Rotation 

As we have mentioned briefly in the introductory chapter, the 

circulation of electrons and nuclei resulting from molecular rotation 

produces a molecular magnetic field at the site of a. nuclear spin. This 

magnetic field is supposed to arise from the following two major effects. 

First when a molecule rotates, electron clouds do not necessarily fol­

low the rotation of the nuclear framework. In fact they are supposed 

to lag slightly behind the nuclear framework, thus producing the net 

current required to produce a magnetic field. Second, even in the 

absence of this slippage of electron clouds magnetic fields produced by 

circulating nuclei and electrons do not exactly cancel each other 

since electronic charges are not centered on nuclei. Moreover, there 

will be some contributions from acceleration of the given nucleus due 

to the electric field produced by other nuclei and electrons and from 

Thomas precession. 

In this chapter we will formulate the above ideas into a mathe­

matical formula in a manner similar to Wick, 
11 

Van Vleck, 
1 

and 

Ramsey. 12 

The procedure of the formulation are as follows: 

1. Assuming no electronic slippage, we evaluate magnetic 

fields arising from circulating nuclear and electronic charges. Effects 

of the acceleration of a given nucleus in the electric field produced by 

electrons and other nuclei and the Thomas precession will be included 

here. The resulting interaction between the nuclear magnetic moment 



43 

and thus produced magnetic fields will be averaged over electronic and 

vibrational states; 

2. To include the perturbing effect of molecular rotation on 

electronic states we use the Van Vleck formalism, 1 where the pertur­

bation is expressed as couplings between rotational and electronic 

orbital angular momentum. This effect will also be averaged over 

electronic and vibrational states using perturbation theory. 

According to classical electrodynamics13 magnetic fields pro­

duced by moving nuclear and electronic charges at the site of a given 

nucleus, say K, may be written 

~ 
K'(~K) 

(2. 4-1) 

where vK' and~ represent velocity vectors of nucleus K' and elec-

tron k relative to the stationary frame. The summation ~ is 
K'(~K) 

carried out over all nuclei other than the nucleus Kand~ will be 
k 

summed over all electrons. 

Since the acceleration of the nucleus K is caused by electric 

fields due to other nuclei and electrons, we write the equation of 

motion as 

(2. 4-2) 
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where MK, ZK I e I, vK, and EK are the mass of the nucleus K, its 

charge, the velocity vector, and the electric field at the site of nucleus 

K. However, to the nucleus K moving with velocityvK through the 

electric field EK, there will appear to be a magnetic field13 

(2. 4-3) 

In addition, there will be the purely kinematical Thomas pre­
. 14 15 

cess10n ' 

wK(T) = (dvK/dt) xvK/ 2C2 

ZK!el- vK 
(2. 4-4) = 2M C EKxC ' K 

where the last step comes from Eq. (2. 4-2). 

The associated magnetic field in the Thomas precession may be 

given by 

(2. 4-5) 

where yK is the magnetogyric ratio of the nucleus K. If we replace yK 

by gK'3N, where gK and {3N are the g-factor of nucleus Kand the nuclear 

magneton, respectively, we may rewrite (2. 4-5) as 

(2.4-6) 

Therefore, the internal magnetic field seen at the nucleus K 

due to the motion of the electrons and other nuclei is given by 



tt'(K) = 
int 

= 

where we have used 

-► 

E = K 

45 

z K' I e I (r K - r K') I e I (? K - ric> 
- I:-----

k 

The interaction between the nuclear magnetic moment of 

nucleus K, µK, and the magnetic field H~~{ takes the form 

--+ --+(K) 
J½_ = - µ ·H. K mt 

(2. 4-7) 

(2. 4-8) 

(2. 4-9) 

-where µK may be expressed in terms of the spin angular momentum 
➔ 

vector, IK, as 

(2. 4 -10) 

When the electron clouds surrounding the nuclear framework 

are taken into consideration, the Hamiltonian (2.1-21) should be modi­

fied since only the rotation of bare nuclear framework is involved in 

the derivation of (2. 1-21 ). 

Remembering that only the total angular momentum is con­

served when there is some coupling between the rotational angular 
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momentum and the electronic angular momentum, we define J and j as 

- --+ --+ J = p + L (2. 4-11) 

and 

- - --+ j = p + ! ' (2. 4-12) 

-where Pis the total rotational angular momentum of bare nuclear frame-

work of the entire molecule and pis the internal rotational angular 

momentum of bare framework of the internal top in the rotating frame. 

- --+ L is the total electronic orbital angular momentum and f can be con-

sidered to be tne total orbital angular momentum of electrons localized 

to the internal top in the rotating frame. 

Thus, replacing (2. 4-11) and (2. 4-12) in (2. 1-21), we may write 

2 2 2 2 2 
+ AL + BLb + CL + D! - AJ L a c a a 

Since terms involving L 
2

, etc, are negligibly small compared a 

to those of J;, etc., we see that the coupling between molecular rota-

tion and electronic motions may be represented by a perturbation term 

~ = - 2AJaLa - 2BJbLb - 2CJcLc 

- 2Dj! o (2 . 4-13) 

Now we see that it is these two terms, Xi and Jez, that are 

responsible for the spin-rotation interaction. 

The velocity vector of the nucleus K may be rewritten 
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{

= 1, if the nucleus K is on the internal top 
oK 

= O, otherwise. 

Substitution of (2. 4-14) in (2. 4-7) gives us 

----+H (K) = 
. t m 

(2. 4-14) 

(2. 4-15) 

(2. 4-16) 

Since electronic and vibrational motions are much faster than 

rotational motion in a molecule, we have to average :R'1. and :R'2 over 

electronic and vibrational states to get an effective form of the spin­

rotation interaction. 

Since JCi. and ~ are considered to be very small compared with 

the Hamiltonian involving. electronic and vibrational motions, we may 

use perturbation theory to evaluate the energy correction due to JCi. and 

The first-order energy correction is16 

(2. 4-17) 

and the second-order contribution is 
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w.< O) _ w< O) 
0 n 

(2. 4-18) 

where IO) and In) stand for ground and excited states of electronic and 

vibrational motions, and w<o> and w<o> are the corresponding energy 
0 n 

eigenvalues, respectively. 

For a molecule in the electronic ground state 1b 

Therefore, from Eq. (2. 4-9) and (2. 4-16) we may write 

(OIJ½.IO) 

= - g B 0 Z K' I e I 
K N K'(~K) C 

(2. 4-19) 

(2. 4-20) 

For most molecules in their electronic ground state (b )~ 

does not contribute to the first-order energy correction since La, etc., 

have vanishing diagonal elements in the 1
~ state; however, they have 

nonvanishing off-diagonal elements, thus giving the second-order 

contribution. The same thing is true for the term involving vk in 3<'1· 

In the spin-rotation interaction we concern ourselves only with 

terms like 
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(2. 4-21) 

Thus, the second-order energy correction may be written in the 

form 

(2. 4-22) 

The angular momentum of the electron k about the nucleus K 

can be defined as 

whence we obtain 

(0 !Jei j n)(n l3Cz I 0) 

_ lei 1 
= - 2gK~N <0 11K. ~k me ~ In) 

rKk 

x (n!AJaLa + BJbLb + CJcLc + Dj.f lo) 

Now, let us turn our attention to the Hellmann-Feynman 
17 18 

theorem ' 

(OI ~ 
k 3 

rKK' 

(2 . 4-23) 

(2. 4-24) 
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nucleus K. 

Application of (2. 4-24) to (2. 4-20) leads to 

(2. 4-25) 

For convenience let 

- !el 1Kk 
1T = ~---

K k me rk (2. 4-26) 

Then, the second-order correction may be rewritten as 

n~0 w<o> - w<o) 
o n 

(2. 4-27) 

Now, by making use of the vector identity 

Xx (BxC) = B(A • c) - c("".A • B) (2. 4-28) 

we have 

(2. 4-29) 
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If the nucleus K under consideration is on the internal top and 

the only allowed motion of this internal top is the rotation about its -symmetry axis, FK should be perpendicular to this symmetry axis. 

Therefore, 

FK X {(w+ ~ xrK} 

= (w + ~ ~ (FK)g (R)g - rK ~ (FK)g wg ' (2. 4-30) 

-where R is the distance vector from the origin O to the symmetry axis 

of the internal top. 

Replacing (2. 4-29) and (2. 4-30) in (2. 4-25), we obtain 

6 
K' ( ~K) CrkK' 

(for all K1 

+ g_..A 6 
K'""N K' ( ~K) CrkK, 

(for K' only 
on top) 
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(2. 4-31) 

Now, recall the relations 

and 

where 

~b = T/ ' 

and 

j = I a . 
a 

From (2. 4-27), (2. 4-31), and (2. 4-32) we may write the 

energy correction due to the spin-rotation interaction as 

~ - -I •C(J)(K)•J-J •D(j)(K) 0 -J• 
S-R - K "' K "' ' 

or alternatively 

~ -I ·C(w)(K)·w-I ·D(a)(K)•-a 
S-R = K "' K "' ' 

where 

and 

(2. 4-32) 

(2. 4-33) 

(2. 4-34) 

(2. 4-35) 

(2. 4-36) 

(2. 4-37) 

(2. 4-38) 
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Matrix elements of £(w)(K), Q(a)(K), s/J)(K), and Q(j}(K) take 

the following form: 

D(j)(K) = 
gg' 

+ g /3 6 
K N K'(~K) 

(for all 
nuclei) 

w<o> - w<o) 
o n 
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- C/l:~Kle I {(i~ -r~) FK. rK 6gg' 

-(r;, -r~) <Fi<>g' (r'K)~ ' (2 0 4-40 

(2. 4-41) 

and 
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where lg 's represent the principal moments of inertia of the entire 

molecule. 

When there are several equivalent nuclei on the internal top, 

we have to sum :fCs-R given by (2. 4-35) or (2. 4-36) over these equiva­

lent nuclei, thus giving 

(2. 4-43) 

or 

(2. 4-46) 

even for equivalent nuclei, since they depend on the position vector of 

the nucleus under consideration. However, when the internal rotation 

is much faster than the overall rotation of a molecule, all the spins on 

the internal rotor will see the magnetic field averaged over the internal 

angle. 

In the next section we will discuss the effective spin-rotation 

interaction averaged over the internal angle. 

2. 5 Spin-Rotation Interaction in the Presence of Fast Internal 

Rotation 

As we have already mentioned in the section (1. 3), a molecule 

like <,0-CF3 is supposed to undergo overall rotation of diffusion type 

while the CF3 top apparently rotates with relatively definite angular 

momentum between intermolecular collisions. Therefore, the CF3 

group can continue its rotation even after the overall rotation of the 



56 

molecule is quenched. 19 In this situation it is supposed that Jes-R 

given by (2. 4-43) or (2. 4-44) had better be averaged over the internal 

angle a to provide a more effective form of the spin-rotation inter -

action. 

Now, we are going to show that when the averaging process is 

carried out Jes-R may take the form 

(2. 5-1) 

where (2.5-2) 

(2. 5-3) 

and 

(2. 5-4) 

The validity of Eq. (2. 5-1) is best manifested by considering 

the case of <p-CF3 • 

We denote three fluorine spin sites by (a), (b), (c) as shown in 

Fig. 5 and three fluorine spins will be designated 1, 2, and 3. Let us 

consider the following three different configurations: 

C 
2 

:) Configuration 1 = 
b 

G 
3 

:) Configuration 2 = ' b 

and 
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-- (a3 Configuration 3 
1 

b 

where the symbol (: ! !) means that spin 1 occupies the site a; 

spin 2 site b; and spin 3 site c. 

For configuration 1, (2o 4-43) may be written 

(2. 5-5) 

Similarly, for configuration 2 and 3 we may write 

(2o 5-6) 

and 

(2. 5-7) 

respectively. 

When there is internal rotation, we just cannot tell which spin 

occupies a certain site. Moreover, the above three configurations are 

equally prob;:},hl.e if we ignorA smaH difference in magnetic interaction 

energies among them. 

Therefore we may write 
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y 

Fig.32: Fluorine Spin Sites in Benzotrifluoride 
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(1/ 3) ( JC(l) + JC(2) + :JC(. 3) \ 
S-R S-R S-R ) 

(2. 5-8) 

where giJ), R~), etc. depend on the angle a. 

In order to obtain the averaged spin-rotation interaction we 

have to eliminate the angle dependence of ff>, !?~), etc. If we ignore 

contributions to ff), !?~), etc. from nuclei which are located on the 

phenyl ring (but not on the z-axis) and from electrons localized in the 

phenyl ring, we can write 

(2. 5-9) 

and 

(2. 5-10) 

where R(a) is the rotation .matrix given by 
" 

cos a -sin a 0 

R(a) = sin a cos a 0 (2. 5-11) 
" 

0 0 1 

Similar relations hold for !?~ ~' n<D 
"b ' 

and R~j)o If the angle a 

shown in Fig. 5 is zero, then it can be shown by symmetry considera­

tions20 that 
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D(j) 0 0 xx 

D(j) = 0 D(j) D(j) (2. 5-12) .,.,_a yy yz 

0 D(j) D(j) 
zy zz 

By making use of (2. 5-9) and (2. 5-10) we obtain from (2. 5-12) 

D(j) + 3D(j) 
xx yy 

..fJ (n(j) - D(j)) 
xx yy 

2../'J D(j) 
yz 

D(j) - .!. 
..fJ (n~ - n~) 

3D(j) + D(j) 
"'b - 4 xx yy 

-2D(j) 
yz (2. 5-13) 

2/'J D(j) -2D(j) 4D(j) 
zy zy zz 

and 

D(j) + 3D(j) 
xx yy -..fJ ~D(j) - D(j)~ xx yy 

-2../'J D(j) 
yz 

D(j) - .!. -../3 (n(j) - nO)) 3D(j) + D(j) -2D(j) 
-'"'-C - 4 xx yy xx yy yz (2. 5-14) 

-2v73 D(j) -2D(j) 4D(j) 
zy zy zz 

If we replace nO), etc., by c(J), etc., in (2. 5-12), (2. 5-13), xx xx 
and (2. 5-14), we obtain the corresponding expressions for C (J), Cb(J), .,.,_a .,.,_ 

and f iJ), respectively. 

When a is not zero, nO), Db(j), and D(j) may be written in the 
"'a "' "' C 

following forms: 
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oU) cos2 ri -(DU) _ 0 Ul) 
D(j) sin Cl xx xx yy 

+ D(j) sin2 ci X sin Cl cos Cl yz 
yy 

D(j)(CI) 
-(D(j) - D(j)) D(j) sin2 Cl 

D(j) cos Cl xx yy xx (2. 5-15) ~a 
X sin Cl cos IY + D(j) cos2 ci 

yz 
yy 

D(j) sin a D(j) cos Cl D(j) 
zy zy zz 

2/3 cos a sin a (D(j) - D(j)) 
(D(j) - D(j)) xx yy 

+ cos2 a (D(j) + 3D(j)) 
xx yy 2D(j) (- sin a 

xx yy x (2cos a sin a + yz 

+ sin2 a (3D(j) + D(j)) /3 (cos2 a - sin2 a)) ... ,/3 cos c; 

xx yy 

2,/'J cos a sin a 

oO)(a) l (D(j) - D(j)) x (D(j) - D(j)) 
- 2D(j) (cos a + xx yy (2. 5 -16) ~b 4 xx yy 

+ cos2 a (3D(j) + D(j)) 
yz 

x (2cos a sin a + /3sina) 
,/3 (c os2 a - sin2 a )) 

xx yy 

+ sin2 a (D(j) + 3D(j)) 
xx yy 

2D(j) (-sin a - 2D(j) (cos a 
4D(j) zy zy 

+ ,/'Jcosa ) • /3 sin a) zz 

- 2,/'J cos a sin a 

(D(i) - oO)) -(D(j) - D(j)) 2D(j) (sin a xx yy 

+ cos2 Cl (D(j) + 3D(j)) 
xx yy yz 

x (2cos a sin a -/3cosa) xx yy 
+ ,/3 (cos2 a - sin2 a)) 

. 2 a (3D(j) + oO)) + sm xx yy 

2,/'J cos a sin a 

-(D(j) - D(j)) x (D(j) - D(j)) -2D(j) (cos a xx yy xx yy 
D(j)(a) 1 

yz 
(2 . 5-17) ~c 4 x (2cos a • sin a + cos2 Cl (3D(j) + D(j)) + /3 sin a 

+ /3 (cos2 
a - sin2 a)) xx yy 

+ sin2 a (D(j) + 3D(j)) 
xx yy 

2D~i; (sin a - / 3 cos a) - 2D(j) (cos a + ,/3 sin a) 4D(j) 
zy zz 
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It goes without saying that similar expressions can be obtained 

for C(J) C(J) and C(J)_ 
~a ' ~b ' ~c 

According to classical statistical mechanics under thermal 

equilibrium any function of the angle a can be averaged like 

fTT f(a) e-V(a)/kT da 
-'TT (2. 5-18) 

where V(a) is the potential barrier for internal rotation and is an even 

function of a. 

Since V(or) has the six-fold symmetry in benzotrifluoride, we 

can readily show that 

sin a = cos or = 0 o 

Moreover V(a) is symmetric and sin 2a is antisymmetric about 

a= O. 

Therefore, we have 

cos a sin a = sin 2or = 0 

(Note, however, that cos 2or does not vanish unless the barrier 

height, V6 , is zero. ) 

Therefore, ri(j) matrices take the following forms when aver-
~ 

aged over the internal angle: 
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0 0 

D(j) = 0 
D(j)_ 

..-..a 
xx 

(D(j)_D(j)) cos2 
0 (2o 5-19) 

xx yy a 

0 0 D(j) 
zz 

(¼)(D(j)+3D(j)) 
xx_ yy (,f.3/ 4)(D(j) - D(j)) 

+(½)(n(JtnO)) 
xx yy 

xx yy 

xcos 2a 
0 

xsin2 a 

l?~) = ({3/ 4)(D(j) -D(j)) 
(¼)(3D(j)_D(j)) 

xx yy 
~ yy (2. 5-20) 

xcos 2a 
-(½)(D(J)_D(j)) 0 xx yy 

xsin2 a 

0 0 D(j) 
zz 

and 

0 

0 (2. 5-21) 

0 0 
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Thus, unless the height of the barrier is zero, the three 

matrices D(j), Db(j), and D(j) do not all have the same form, nor are .,.,,a .,.,, .,.,,c . 

they diagonal. 

However, for all three matrices there is one thing in common 

which can be seen in Eqs. (2. 5-19) through (2. 5-21). This is that all 

three matrices have the same zz element, that is, D(j), and also they zz 
have vanishing zx, zy, xz, and yz elements. 

Therefore, we can rewrite (2. 5-8) as 

- (J) - (J") - -Je = -F • C • J - D F • j S-R .,.,, a ' (2. 5-22) 

-since j has only the z component in the body-fixed frame. Thus we 

have proved the validity of (2. 5-1) in the presence of fast internal 

rotation. 

The spin-internal rotation interaction represented by -D~) F· r 
plays an important role in the spin relaxation especially when the 

height of barrier is much less than the average thermal energy of the 

internal top, kT, and therefore we will restrict our attention to this 

case. 

Thus, in case (V6/kT) « 1, we can approximate exp(-V(a)/kT) 

in Eq. (2. 5-18) by (1 - V(a)/kT), giving 

cos 2a ~ O 

and 

sin2 a ~ 1/2 . 

Therefore, for the case of low barrier matrices 'Q~), 'Qg), and 
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Q~) are all the same and approximately diagonal. Discussions given 

so far can also be applied to C(J), Cb(J), and C(J)_ 
"' a "' "' C 

From (2. 5-19), (2. 5-20), and (2. 5-21) we expect that 

c(J) ~ c(J) 
xx yy 

which is confirmed by Burke. 21 

However, in later discussions of spin relaxation we will assume 

that c(J) is diagonal but c(J) -.e c(J)_ 
. "' xx yy 

Thus, we have confirmed that :reS-R given by (2. 5-1) is the 

effective spin-rotation interaction energy in the presence of fast inter­

nal rotation. 

Discussions about the magnetic shielding effect for a nuclear 

spin on an internal rotor will be given in the next section, since the 

magnetic shielding tensor is closely related to the spin-rotation tensor. 

2. 6 Theory of Magnetic Shielding for a Nuclear Spin on Internal Top 

--+ 

In a molecule exposed in the static magnetic field H0 the local 

magnetic which is seen by a nuclear spin at a given site is not usually 

equal to the external field. This shielding effect is mainly due to the 

motions of electrons in the molecule induced by the external field. 

Besides this direct effect the external field can indirectly change the 

electronic states via the nuclear spin-electron spin coupling, thus 

giving an additional shielding effect. 

This induced magnetic field is usually expressed up to the first 
--+ 

order of the external magnetic field Ho in a manner like 
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(2. 6-1) 

where 9:. is called the magnetic shielding tensor for a given nuclear 

spin. 

In order to formulate the idea described above mathematically 

let us write the total Zeeman energy of a given nuclear spin denoted by 

K as 

(2. 6-2) 

- -where the term µK • 9:.(K) • H0 can be regarded as a correction to the 

Zeeman energy of bare nuclear spin due to the magnetic shielding 

effect, and it is expected that an analytical expression may be obtained 

by studying this energy correction. 

The Hamiltonian for this problem may be written 

-+ -+ 1e 1 ti-+ -+ 
3C = 3C0 - ~ µ • H0 + ~ ~ -:- A • V 

K K me k 1 k k 

2 -+-e-~A2 
2mc2 k k 

(2. 6-3) 

where 3C0 is the unperturbed Hamiltonian for the system in the absence - -of external magnetic fie ld, Ak and Vk are the vector potential and the 

gradient operator cti: the po8ition ui k-th electron, respectively, and 

m = mass of electron, 

e = charge of electron, 
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and 

c = velocity of light. 

-If we pick the origin at an arbitrary point O, Ak may be written 

(2. 6-4) 

where ~ k is the position vector of k-th electron with respect to the 

origin O while 1kk is the position vector of the same electron referred 

to the K-th nucleus. The first term on the right-hand side of (2 . 6-4) -is the vector potential associated with a constant field H0 and the second 

term is that due to nuclei in the molecule. 

Then, hl ~ n_ A · V and e2 /2mc2 ~ A. 2 may be rewritten as 
me k 1 k k k k 

follows: 

hl~n.x ·v 
me k 1 k k 

-
(2 . 6-5) 

where 

(2. 6-6) 

and 

~ _ff_ -;:: 
x Kk= T rKkx vk ' (2. 6-7) 

and 
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2 -2 2 
_e_"EA e "E(H - )2 
2mc2 k k = 8mc2 k ox rok 

+ _L "E "E (µK)g(Ho)g,[(~k)g(~)g' 0gg' - (~k)g(rKk)g' 

2mc2 K, k g, g' rKk 

(2. 6-8) 

- -t 0 k and rKk can be considered as the angular momentum of 

k-th electron about the origin O and the K-th nucleus, respectively. 

Now, let 

(2. 6-9) 

(2. 6-10) 

(2. 6-11) 

2 (µK X rKk) • (µK' X rK'k) 
JC'(µ 2) = _e_ "E "E "E 

K 2mc2 k K K' 
(2 . 6-12) 

and 



69 

(2. 6-14) 

To evaluate the energy correction we assume that the wave 

function takes the form 

(2. 6-15) 

which has been used by Tillieu and Guy. 22 - 25 

One may also adopt the wave function ,P of the form26, 27 

(2. 6-16} 

- -but if H0 • l/)1 satisfies the first-order perturbation equation 

(2. 6-17) 

-and if we are interested in terms which are bilinear with respect to µK - - -and H0, it can be shown that we may drop the l/) 2 • 11K. term safely. 

Replacing (2. 6-15) in the formula 

we obtain the following expression for the energy correction ~E: 

e2 - -
== --2 ~ ~ ~ (µK)g(Ho)g' (l/Jo ,~ { {r;,k)g(rKk)g' 6gg' 

2mc g g' K k 

- Wok)g(rKk)g,}/rh ll/Jo) 
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(2. 6-18) 

where we retained only the terms which are bilinear with respect to µK 

and H0 • 

By comparing Eq. (2. 6-18) with 

- -6.E = ~ µK • a(K) • H0 K " 

we obtain 

(2. 6-19) 

Since i/J1 g is a solution to the first order perturbation equation 

given by (2. 6-17), we have 

(2. 6-20) 

where 0 · in i/J1 g(0) indicates the choice of origin since i/J1 g(O) depends on 

gauge transformations. 

Replacing (2. 6-20) in (2. 6-19) and noting 
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we obtain 

(0 I GrK)gln)(n I Lg' IO) 
W(O) - w<o> 

o n 
' 

(2. 6-21) 

- -where L (= ~ 10 k) is the total electronic orbital angular momentum and 
--+ k 
7Tk has been previously defined by (2. 4-26). 

Application of the Hellmann-Feynmann theorem (2. 4-24) to 

Eq. (2. 6-21) gives us 

(2. 6-22) 

When we pick the origin at the site of nucleus K, we see that 

Eq. (2. 6-22) is reduced to the Ramsey formula. 28 
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The first term on the right-hand side of (2. 6-22) is known to be 

responsible for diamagnetic shielding while the remaining terms are 

considered to give the effect of paramagnetic shielding. Thus we write 

for convenience 

and 

d 
a(K)gg' 

Nonempirical calculation of the term 

Re 
~ (0l{7TK)gln)(nlLg,!0) 

n~Q W(O) - W(O) 
o n 

(2. 6-23) 

(2. 6-24) 

(2. 6-25) 

requires the knowledge of electronically excited states which is, in 

general, not available. Therefore, the theoretical calculations of 

either C(K) , or a(K) , cannot help relying on some approximate or gg gg 

semiempirical means. Though there have been several recent suc-

cessful attempts at the calculation of proton and fluorine chemical 

shifts employing variational procedures29 and the perturbed 
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Hartree-Fock method, 3o, 31 the evaluation of term (2. 6-25) still 

remains formidable. Therefore, where feasible, a direct experimental 

determination of either C(K)gg' or a(K)gg' is desirable. 

In this connection it is of great interest to relate a(K)gg' to 

C(K)gg' since an experimental determination of either 

c<J\K)gg' enables us to evaluate the other. 

From (2. 4-39) to (2. 6-24) we obtain 

p 
a(K)gg' 

a(K) , or gg 

(2. 6-26) 

Obviously, the relation (2. 6-26) enables us to evaluate C(J)(K)gg' 
p 

~r a(K)gg') if the molecular structure, internal rotational barrier, and 
p (J) 

a(K) gg' ( or C (K) gg' ) are known. 

When averaged over the internal rotation, Eq. (2. 6-26) may be 

written for diagonal elements 



p 
{ a(K) gg) int 

(2. 6-27) 

where ( ) 
1
. t indicates the average over internal angle and c(J),s are n gg 

defined by (2. 5-3). 

For molecules like cp-CF3 we can readily show that 

Therefore, for fluorine spins in cp-CF3 we may write 

(2. 6-28) 

Thus, experimental measurements of (a(K)gg\nt enables us to 

evaluate C~~ if all other relevant knowledge is available. 

In nuclear magnetic resonance of liquid or gaseous phase we 

are concerned only with the averaged value of _£,(K) defined as 

(2. 6-29) 
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since the anisotropy effect is largely smoothed out due to incessant 

molecular tumblings. 

Thus we obtain from (2. 6-23) and (2. 6-2'1) 

I e I ~ ig<c(J\K)gg\nt 
+ -- .._.g ______ _ 

6mc gK,BN 

(2 . 6-30) 

A relation similar to Eq. (2. 6-30) was first derived by 

Schwartz32 for the case of rigid molecules. Comparing Eq. (2. 6-20) 

with that derived by Schwartz, 

1 1 x- -3ZKmc2 {l - f3K rK . F K) int' 

we see that we have an extra term, 

which takes into account any internal 

rotational degree of freedom. This term is generally nonvanishing 

unless molecules are symmetric about their axes of internal rotation. 

In cases where the molecules are symmetric about its axis of internal 

rotation, as in <,0-CF3 and CF3NO2 , this term vanishes since the posi ­

tion vector rK is always perpendicular to the Hellmann-Feynman -force, FK, acting on the nucleus K. In this case Eq. (2. 6-30) is 

reduced to an equivalent form of the Schwartz relation if we remember 

that all the terms involved in this relation are to be averaged over the 

internal angle. 

It is needless to say that nuclear magnetic shielding and spin­

rotation constants provide an important probe for approximate 
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electronic wavefunctions obtained by the variational method. 

However, we are not going into further details of this problem, 

since they can be found elsewhere. 33 - 35 Finally, we would like to 

conclude this section by noting that the magnetic shielding tensor of a 

nucleus on the internal rotor is related to the spin-total-angular­

momentum coupling tensor rather than the spin-internal-rotation 

coupling tensor. 

2o 7 19F Spin-Lattice Relaxation in Benzotrifluoride 

Recently some people19, 36, 37, 38 have published their experi­

mental results on the V9 spin relaxation in benzotrifluoride. In the 

pure liquid36, 37 it was found that the F 
19 

spin-lattice relaxation time 

decreases slowly from 3. 2 seconds at -20° C to about 0. 5 second at 

300° C, just below the critical temperature. Green and Powles36 con­

cluded that the relaxation in the liquid arises mainly from the motion 

of the CF3 top. On the other hand Faulk and Eisner37 assumed that 

the internal rotation does not alter the correlation time very much 

and they interpreted their results in terms of the spin-overall­

rotation coupling. 

However, as pointed out in the first chapter of this thesis, such 

an assumption can be a serious mistake in the extreme case that the 

phenyl ring is stationary while the CF3 group is rotating. In solid 

benzotrifluoride19 second moment and T1 measurements indicate that 

while the phenyl ring is stationary the CF 3 group is freely rotating and, 

in fact, serves as a spin sink for the protons. Thus we infer that even 

in the liquid state the CF3 group is much more mobile than the phenyl 
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ring, since the temperature dependence of T1 for the ring protons is 

quite different from that for the protons on the CH3 top in toluene. The 

ring protons show us a typical example of the spin relaxation via the 

magnetic dipole-dipole interactionso 

Thus the entire thing seems to depend on whether the molecule 

or internal top on which spins under consideration are located main­

tains its rotational motion long enough to produce appreciable effects on 

the spin relaxation. If the rotational angular momentum of any mole­

cule quenches so fast that the spin-rotation interaction can last only for 

very short time (~ 10-15 sec), the spin-rotation interaction is rela­

tively ineffective as a spin relaxation mechanism compared with dipole­

dipole interactions whose correlation times are of the order of 10-
12 

sec 

in many liquids. 

Therefore, at low temperatures, where the angular momentum 

which a molecule can gain from other molecules in the collision 

processes is very small and the frictional force which can quench the 

thus obtained angular momentum is very large, the spin-rotation inter­

action is considered to have little effect on the spin relaxation process, 

thus leaving the dipole-dipole interaction as a dominant relaxation 

mechanism in these cases. However, as temperature rises, inter­

molecular collisions become more and more energetic and the 

frictional force which restricts the rotation of a molecule smaller and 

smaller. Consequently, the amount of angular momentum which a 

molecule obtains in the collision processes increases and the molecule 

can rotate more and more freely. Therefore, at high temperatures 

we may expect the importance of spin-rotation interaction as a 
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relaxation mechanism to be appreciable. This has, in particular, been 

. fl . d 36, 39, 40 proven m many uorme compoun s. 

Though we have no intention to discuss the details of molecular 

dynamics in this section, we will mention the problem of F 
19 

spin 

relaxation in benzotrifluoride to demonstrate the importance of spin­

internal-rotation interaction as a spin relaxation mechanism. 

Burke21 has estimated that the contribution of intramolecular 

dipole-dipole interaction to (1 / T1 )intra in cp-CF3 is approximately 10% 

at 240° Kand we expect that this contribution will become less appreci­

able as temperatures rise. Thus, we may safely assume that 

(l/T1\ntra in cp-CF3 is entirely due to the spin-rotation interaction. 

Imagine a nuclear spin (I=½) on the internal rotor, and let the 

Hamiltonian of the problem be written 

(2. 7-1) 

where 

(2.7-2) 

(2.7-3) 

with 

(2. 7-4) 

and 

(2.7-5) 
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Time-dependent perturbation theory gives us 41, 42, 43 

-i"'J:T 
e d-r (2. 7-6) 

for the spin-lattice relaxation time, Ti, where the solid line over the 

integrand means that we take the average over an equilibrium ensemble 

and la) , 113) are the spin states due to JC~ (the Zeeman levels). 

Similar formula may be obtained for T2 , the spin-spin relaxa­

tion time, 
43 

though not explicitly given here. It goes without saying 

that these perturbation formulas apply only if the local field is reason­

ably small, so that both relaxation times are long compared with the 

period of the spin precession (27T / uj). 

Now, rewrite Je; in the component form as 

(2. 7-7) 

and substitute this into Eq. (2. 7-6). Then we obtain 

(2. 7-8) 

where 

--+ --+ 

H = (HJ) + (H.) . q q J q 

Evaluation of the correlation functions 
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requires a detailed knowledge of molecular dynamics which is unavail­

able at present. 

Therefore, we assume as usual that 

(2. 7-10) 

and 

- IT I/T. 
( ) ( ) "' H . (t)2 J Hj t q Hj t+T q' = vqq' J q e , (2. 7-11) 

Burke21 has assumed that there is no cross correlation between - -HJ and Hj, that is, 

(2. 7-12) 

Then, from Eq. (2. 7-8) we have 

(2. 7-13) 

with 

(2. 7-14) 

and 

(2. 7-15) 

where we have assumed 

(2. 7-16) 

Noting that 
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IrJX= 
2 2 1 H2 HJY = HJZ = 3 J 

and 

2 
~y= 

-2- 1 H: HjX = Hjz = 3 
J ' 

Eq. (2. 7-13) may be written 

(2.7-17) 

Thus in the presence of internal rotation we see that unlike the 

case of usual spin-rotation relaxation we have an additional correlation 

time, Tj' which is not necessarily equal to T J" 

Since the effective coupling tensor C(J) is approximately dia-
'"' 

gonal, we may rewrite Eq. (2. 7-17) as 

(2 . 7- 18) 

where we have assumed that the cross terms like JxJy, etc. are negli­

gible. 

Substituting 

t = 
I kT 
X --

X ti2 
(2. 7-19) 

~ 
I kT 

= __;f__ 
ti2 

(2. 7-20) 
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- I kT 
~ = _z_ 

Z ti2 

I kT a 
ti2 

into Eq. (2. 7-18), we obtain 

(2.7-21) 

(2. 7-22) 

(2. 7-23) 

If we assume that the rotation of the C F3 top is inertial while 

the overall rotation of the entire molecule is diffusional, we expect that 

T J ex: (l/ 77) (2. 7-24) 

and 

1 

T · ex: T ex: (1/kT) 2 

, 

J C 
(2.7-25) 

where Tc is the mean collision time, and 77 is the viscosity of solution. 

In fact in accordance with (2. 7-23) through (2. 7-25) Burke found 

that experimental data for T1 of the F19 spin in cp-CF3 obtained by 

Greene and Powles can be excellently described by the relation 

1 11 
Ti = 5. 75 X 10 T ' J 

(2. 7-26) 
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where 

T t 
J =l/6kTT0 ' 

1 

T•' = (1. 48 x 10-38 / kT)2 
J ' 

I = 7. 44 X 10-38 

' 

T0 = 
477-{3. 01 X 10-8 }3 

11 
3 X 6.125 X 10-16T 

and 

-4; ( 967) 17 = p • (2o 155 x 10 1. 1772) exp T 

with the density of q>-CF3 , p, being given by 

p = 1. 1772 exp{ -107 x 10-
5 

(T - 298) 

- 0o 40 x 10-
5

[ (T
2 

- 298
2

) - 273 (T - 298)]} . 

Though Eq. (2. 7-18) gives more accurate description of the F19 

spin-lattice relaxation in <P -CF 3 , there is an alternative but simpler 

approach to the problem. 

For the convenience of discussion let us define 

D(j) = C (1 - I /I ) . a a a z 
(2. 7-27) 

Ca is what Dubin and Chan38 have named the spin-internal­

rotation coupling constant though D~) cculd more appropriately be 

given this name . 

In terms of Ca JCS-R may be rewritten as 
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JCs-R = - F · c<J) • J + c (I /1 )F J "' aaz zz 

---c F· j a a (2. 7-27) 

-where ja is the total rotational angular momentum of the internal top. 

To a good approximation the second term in Eq. (2. 7-27) 

cancels part of the first term, since C(J) :::::l (I /I )C . If we now 
2 2 

zz a z a 
assume that c: >> C~ :::::l c~1, which is a good approximation for 

cp-CF::i because \y « Ix :::::l )'' then the spin-lattice relaxation is domin-

--ated by fluctuations of the term -C aF • ja. 

According to Abragam 41 we can write for this case 

2C
2 

-a .2 
:::::l --J T-

31l a Ja 
(2. 7-28) 

where rja is the correlation time characteristic of the modulation of -ja. 

A more rigorous derivation of the relaxation time formulas will 

be given in Chapter III, and we will see that we obtain a formula 

slightly different from (2. 7-23). However so far as the temperature 

dependence of relaxation times is concerned, two formulas do not show 

any difference at all. 

2. 8 F19 Spin-Lattice Relaxation in Halogen Derivatives of Benzotri­

fluoride and Effect of Internal Barrier on Relaxation Time 

So far we have been emphasizing the fact that the spin-internal­

rotation interaction plays a crucial role in the F19 spin relaxation in 
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qrCF3 and it is expected that the importance of this spin-internal­

rotation interaction will diminish with increasing barrier height since 

the internal barrier more or less hinders the effective fluctuations of 

""f To substantiate this idea Dubin and Chan38 have measured the spin­

lattice relaxation times of F19 spin for ortho-, meta-, para-chloro-, 

bromo-, and iodobenzotrifluoride. 

We attribute the significant increase in the relaxation time with 

ortho-substitution to the alteration of the height and symmetry of the 

internal barrier. However, it is also observed that there is not much 

change in the relaxation time with meta- and para-substitutions. The 

small meta- and para- effects on the F19 spin relaxation time may be 

attributed to molecular inertial changes since T J is proportional to the 

mean moment of the molecule. 44 

In this connection we will discuss some relations between 

orientational and angular momentum correlation times. In the Debye 

limit Hubbard44 showed that for a spherical molecule T2 , the correla­

tion time for orientational modulations, and 1i, the correlation time for 

angular momentum modulations, satisfy the relation 

(2. 8-1) 

where I is the moment of inertia of the molecule. In fact a relation 

similar to this can be obtained from a more general consideration. 
45 

The correlation tin1e for the orieniational fluctuation due to jumping 

from one potential well over to another can be expressed by the rate 
46 processtheory as 
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(2. 8-2) 

where V0 is the height of internal barrier. Using the relations (2. 8-1) 

and (2. 8-2), we can take T1 as proportional to T~ (I/kT) exp(-V 0/kT). 

Although the temperature dependence of the factor T~(I/kT) is not 

known, previous discussions of F
19 

spin relaxation in qrCF3 allow us to 
1 

assume that this factor be proportional to (I/kT)2 . In fact in the studies 

of dielectric relaxation there have been similar reports. 47 

Since the effect of ortho-substitution is considered to be caused 

by the appreciable change of the correlation time Tj due to the internal 

barrier, the application of the formula 

Tl = Tl = A' kT r, -l + B' T(I /kT)½ exp(-Yc,/kT) 
1 2 Ci. 

(2. 8-3) 

is plausible, where A', B', and V0 are all adjustable parameters. In 

particular the value of VO will directly or indirectly reflect the height 

of internal barrier. Therefore it is desirable that Eq. (2. 8-3) be 

tested for several appropriate compounds in which the internal barrier 

is not too low and the spin-rotation interaction is the dominant relaxa­

tion mechanism. 

2. 9 Conclusion 

We have shown that for a nuclear spin on an internal rotor the 

conventional form of spin-rotation interaction should be modified so 

that the spin-internal-rotation interaction is included. In case the fast 

internal rotation is present, the resulting Hamiltonian of the spin­

rotation interaction is averaged over the internal angle. 
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The spin-internal-rotation interaction is shown to be an im­

portant (often dominating) spin relaxation mechanism and should not be 

ignored. 

In the case of benzotrifluoride it is supposed that between two 

successive intermolecular collisions the CF3 top rotates with relatively 

definite angular momentum with respect to the pheny 1 ring and the 

internal rotation can be treated in the inertial limit. On the other hand 

the end-over-end overall rotation of the molecule should be treated in 

the Debye limit because of the severe frictional forces which the q,-CF3 

molecule suffers when it rotates in liquid phases. 

In the inertial limit the correlation time of the angular momen-
1 

tum may be assumed to be proportional to (kTf 2 while in the Debye 

limit the correlation time is usually related to the bulk viscosity via 

the Debye-Stokes-Hubbard relation. 

A qualitative theory accounting for the effect of internal barrier 

on the spin relaxation time is discussed. 
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CHAPTER III 

NUCLEAR SPIN RELAXATION IN THE PRESENCE 

OF INTERNAL ROTATION 

3. 1 Introduction 

In the last two chapters we have presented a considerable 

amount of discussions about the spin-internal-rotation interaction and 

its important role in the process of nuclear spin relaxation. 

In this chapter in order to shed more light on this problem we 

are going to review the theory of nuclear spin relaxation and show how 

we have to take into account the spin-internal-rotation interaction in 

the derivation of formulas of the spin relaxation times. As we shall 

see later, discussions given here in this chapter will become an im­

portant prelude to the problems of molecular dynamics in liquids and 

gases which will be considered in the next chapter. 

In liquids and gases there exist a variety of molecular random 

motions and it is the time-dependent spin perturbations produced by 

these random motions which are responsible for nuclear spin relaxation. 

These motions include, for example, rotational reorientation of indi­

vidual molecules, relative translational motion of molecules, chemical 

exchange of atoms, and anisotropic chemical shift effects. Bloembergen, 

Purcell, and Pound1 proposed that these molecular motions produced 

fluctuating magnetic or electric fields at the site of a nuclear spin and 

that the Fourier spectrum of the fluctuating field contained nonvanishing 
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components at the precise frequencies required to induce transitions 

between states of the spin system. This brings the spin system into 

thermal equilibrium with other degrees of freedom in the system, 

namely, the 'lattice'. Therefore, it is quite natural to say that by 

studying the rate at which the spin system approaches to the equilibrium 

with the lattice a certain aspect of the molecular dynamics will be 

elucidated. 

In 1946 Bloch2 postulated the following phenomenological equa­

tions describing the nuclear magnetic relaxation of an ensemble of 

spins: 

-dM 
dt = 

(3.1-1) 

with 

(3. 1-2) 

- -- -where M is the magnetization of an ensemble of spins, i, j, and k are -the unit vectors of the laboratory frame of reference, and His the total 

externally applied magnetic fields which consist of a static magnetic - -field H0 along the k axis and a sinusoidally oscillating magnetic field - -H1 (t) which is perpendicular to H0 . 

Equation (3. 1-11 means that starting with arbitrary magnitude - -and direction, the z-component of M will, in the absence of Hi, reach 

the value of M0 exponentially with a time constant T 1 , the longitudinal 

(or spin-lattice) relaxation time and the x- and y- components will 
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decay exponentially with a time constant T2 , the transverse (or spin­

spin) relaxation time. The validity of this phenomenological equation 

has since been verified. 3, 4 

Since the pioneering work of Bloembergen, Purcell, and Pound 

several classic papers on the microdynamical theory of nuclear spin 

relaxation have appeared5- 11 and they are well summarized in books 

by Abragam12 and Slichter. 13 Hubbard14 has shown that both quantum 

mechanical and semi-classical forms of a density operator relaxation 

theory can be derived from a common formulation. 

In fact it is Hubbard's treatment which we describe in the next 

section on spin relaxation theory. 

Two of the most important relaxation mechanisms which con­

cern us here are the dipole-dipole interaction and the spin-rotation 

interaction. These magnetic interactions fluctuate as molecules rotate 

and translate relative to each other. When there are internal rotational 

degrees of freedom, we have another factor which modulates magnetic 

interactions. 

Nuclear magnetic dipole-dipole relaxation in molecules with 

internal rotation was considered by Woessner15 and will be reviewed 

later in this chapter. As for the spin-internal-rotation interaction we 

are not going to mention it here since fairly lengthy discussions have 

been given in Chapter II of this thesis. 

Now, let us review the theory of nuclear spin relaxation in the 

next section. 
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3. 2 Theory of Spin Relaxation14 

fu discussing the spin relaxation theory it is usually assumed 

that the interaction between the spin system and its surroundings is so 

small that the latter virtually remains undisturbed. Let the Hamiltonian 

of the spin system and their molecular surroundings be written as 

JC == ti[ E 0 (s, t) + F(q) + G0 (s, q)] (3. 2-1) 

where nE 0 (s, t) is the part of the Hamiltonian that depends only on the 

spin variables s, nF(q) is the energy of the molecular degrees of free­

dom q, and nG0 (s, q) is the energy of interaction of the spins and the 

molecular surroundings. 

Let us redefine the spin energy to include the average over an 

ensemble of baths in thermal equilibrium of the interaction G0(q, s): 

E(s, t) = E0 (s, t) + (G0 (q, s)) q (3. 2-2) 

and 

G(q, s) = G0 (q, s) - (G0 (q, s)) q ' 
(3. 2-3) 

where 

(G0 (q,s))q == Tr[pT(q)G0 (q,s)] 
' 

(3. 2-4) 

p T (q) = e -{3F /Tr[ e -,BF] (3. 2-5) 

and 

{3 = n/kT . (3.2-6) 
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On using Eqs. (3. 2-2) and (3. 2-1) we may rewrite Eq. (3. 2-1) 

as 

JC = n[ E(s, t) + F(q) + G(q, s)] . (3.2-7) 

All interactions of interest can be written in the form 

(3.2-8) 

where Uk(q) and vk(s) operate, respectively, on variables of the bath 

and variables of the spin system. Note that G(q, s) must be Hermitian 

even though uk(q) and vk(s) need not be. This can be accomplished by 

defining uk and vk so that 

(3. 2-9) 

the index k being summed over negative as well as positive integers in 

Eq. (3. 2-8). 

The density operator is a solution of the equation 

ili(dp/dt) = [JC, p] 

= [n(E+F+G),p] (3. 2-10) 

Now, unitary spin operators s± 1 (t) defined as solutions of 

dS/dt = iSE , S±1(0) = 1 , (3. 2-11) 

are now introduced. A unitary transformation of an operator Q by the 

S±l(t) produces an operator denoted by Q'(t): 
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(3. 2-12) 

A unitary transformation of Q by the bath operators exp(±iFt) 

results in an operator denoted by Q(t). 

Thus we may write 

(3. 2-13) 

Application of the transformation (3. 2-13) to Eq. (3. 2-10) gives 

us 

dp'/dt = -ifG'(t),p'(t)] . (3. 2-14) 

The solution of (3. 2-14) for r/ at time ti = t + At in terms of at 

time t can be obtained by successive approximations, with the result 

00 

p'(t1 ) = p'(t) + 6- An p'(t1 , t) 
n=l 

00 

= 6 An p-'(i:i, t) 
n=O 

(3. 2-15) 

where 

(3. 2-16) 

and, for n > 1, 

tl 

Anp'(ti,t)= -i ~ [G'(t'), An-1p'(t',t)]dt' (3.2-17) 
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Since the heat capacity of the bath is much greater than that of 

the spin system, that is, I F I » IE + GI , to a good approximation the 

bath can be considered to be independent of the spin system, and can be 

assumed to be in thermal equilibrium at all times. Thus, we may 

write 

T p(q, s, t) = a(s, t)p (q) , (3. 2-18) 

where pT (q) is the Boltzmann equilibrium density operator for the bath, 

given by (3. 2-5). The reduced density operator a(s, t) describes the 

spin system in the sense that the average value over the ensemble of a 

spin operator Q(s) is given by 

(Q(s)) = Tr[ a(s, t) Q(s)] (3. 2-19) 

where the trace may be evaluated using any complete set of spin func­

tions or vectors. 

Performing the transformation (3. 2-13) on Eq. (3. 2-18), we 

obtain 

(3. 2-20) 

Substituting (3. 2-20) in (3. 2-15), and taking the trace over the 

bath variables, the result can be written 

where 

00 

a(ti) = a'(t) + -6 -6.n a'(i:i, t) 
n=l 

(3. 2-21) 
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(3. 2-22) 

the ~n p'(t, t) for n > 1 being given by (3. 2-17) and 

(3. 2-23) 

If we take ~t - t - 4 sufficiently small, we can make the series 

in Eq. (3. 2-15) rapidly converge. In that case the first two terms in 

the series (3. 2-15) are important and all the higher order terms may be 

assumed to be negligible for values of ~t for which the first terms are 

themselves small compared with o-'(t). 

Then from (3. 2-17), (3. 2-22), and (3. 2-23), the first-order 

term is 

~ 1a'(4,t) = -i {½. Trq[G'(t'), a'(t)pT(q)]dt' 

Jtl T -
= -i t [Trq[ p (q)G'(t1], a'(t)] dt' 

= 0 ' (3. 2-24) 

since a' does not depend on the bath coordinates q, and, for any time t, 

(3. 2-25) 

The second-order term in (3. 2-21) is 
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(3. 2-26) 

Now, introduce the transformed operators defined as 

uk(t) = exp(iFt) Uk exp(-iFt) (3 . 2-27) 

and 

(3. 2-28) 

Then 

(3. 2-29) 

The operator uk(t) is the Heisenberg time-dependent operator 

for uk for a system whose Hamiltonian is nF(q), while vk(t) is the 

Heisenberg time-dependent operator for vk for a system whose 

Hamiltonian is nE(s, t). 

After substitution of (3. 2-29) into (3. 2-26) and a little rearrange­

ment we obtain 

x [0(t'), v!(t")a'(t)] 

+ Tri PT (q)ufuk(t' -t")][a' (t)v-'\t"), vk(t')]} , (3. 2-30) 
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where we have used the fact that a trace of a product of operators is 

unchanged by a cyclic permutation of the operators. 

It is assumed now that it is possible to expand the time-dependent 

spin operators vk(t) in a series or integral of periodic terms. We 

restrict ourselves here to the case of series only. Thus, let 

Vk(t) = ~ V~ exp(iw~) , (3. 2-31) 
r 

where~ is a time-independent spin operator and w~ is a number. The 

relation v-k = (vkt, which is required to maintain the Hermitian prop­

erty of G(q, s) [see Eq. (3. 2-9)], can be maintained by summing r in 

(3. 2-31) over negative as well as positive values, and requiring that 

and -k k w = -w -r r (3.2-32) 

Substituting (3. 2-21) in (3. 2-20), changing the variable of inte­

gration t" to T = t' -t", and rearranging the order of integration, we 

may write 

t+6.t 
x f dt' exp[i(wk + w1 )t'] • { Akn (T )[ vkr' v 1

5 a' (t)] 
t+T r S x. 

(3. 2-33) 

where 
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Akl(r) = Trq[PT(q)Uk(T)U1] 

= Trq[PT (q)eiFT uke -iFT uf] . (3. 2-34) 

After the integral over t' in (3. 2-33) is performed, we obtain 

(3. 2-35) 

The trace occurring in (3. 2-35) can be evaluated in any repre­

sentation, but the most convenient way is to use the representation in 

which F is diagonal with eigenvalues f. Degenerate states are dis­

tinguished by a parameter d: 

Akn ( T) = 6 6 P(f) exp(ifr) (fd l Uk I f'd' ) 
x. fd f'd' 

exp(-if'r)(f'd' luf lfd) (3. 2-36) 

where 

P(f) = exp( -/3f)/ 6 exp( -{3f") . 
f" d" 

It can be assumed that the energy levels of the bath are so 
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closely spaced that the sums over the eigenvalues in (3. 2-36) can be 

replaced by integrals: 

(3. 2-37) 

where 77d(f) is the density of the energy levels of F with degeneracy 

parameter d. Hence 

P(f) = exp(-[:Jf)/~ Jco df" 17d11(f11 ) exp(-[:Jf") , 
d" - oo 

(3. 2-38) 

and 

00 00 

AkQ (T) = pd' f_ 
00 

df' f_ 
00 

df 77d,(f') 77d(f) P(f) 

' 

(3. 2-39) 

If the variable of integration f' in (3. 2-39) is changed to w by 

the relation w = f' -f, we may write 

00 

AkQ (T) = J_ 
00 

Lke. (w) exp(-iwT) dw , (3.2-40) 

where 

00 

¼:,,(w) = 6 f df 77d,(f+w)77d(f)P(f) 
x. d d' - 00 

' 

(3.2-41) 
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Since P(f+w) = P(f) exp(-,Bw), it follows from (3. 2-41) that 

(3. 2-42) 

From (3. 2-40) we see that Akf (r) is the Fourier transform of 

~(w). Therefore 

(3. 2-43) 

Since ~£ (w) may be assumed to be a continuous function of w, 

I ~.f (w+ ~w) - ~.f (w) I 

can be arbitrarily small by choosing I ~wl sufficiently small. The rate 

of change of ~f (w) can be rather loosely characterized by a frequency 

w* such that 

if I ~wl « w* • (3. 2-44) 

The reciprocal of the characteristic frequency, 

-1 
TC = (w*) , (3. 2-45) 

is called the correlation time of the bath. 

Since Akf(T) and A.Qk(-T) are large only for Ir I ::::: Tc' the inte­

grand is large only for Ir I ::::: Tc· 

Terms in the sums over r, s, k, and 1 for which 

(3 . 2-46) 

have 
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I 
(wk+ w_Q_)T I « 1 , (3. 2-47) r S C 

so that in these terms exp[i{w~+w!)T] may be replaced by 1. Terms 

not satisfying (3. 2-46) are smaller than the terms that do satisfy this 

relation because of the factor 

occurring in (3. 2-34). Hence little error is introduced in ~a'(ti_, t) by 

replacing exp[i(w~ +w!)T] by 1 in all terms. Also, the limit of inte­

gration at can be extended to infinity without appreciably changing the 

value of the integral, since the integrand is large only for IT I « at. 

Thus (3. 2-34) becomes 

(3. 2-48) 

If the expression (3. 2-40) for Ak.Q.(T) is substituted into (3. 2-48) 

and the variable of integration w in Ak.Q. (T) is changed tow' = w+w!, we 

obtain 
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t+At 
A2a'(ti, t) = ~ {R'(a'(t), t') + iR"(a'(t), t' )} dt' , (3. 2-49) 

where 

(3. 2- 50) 

and 

R" ( a' ( t), t') 

(3. 2-51) 

In order to derive (3. 2-49) we have used the relation20 

00 • ' • J e -iw 
7 dT = 7T o ( w') - 6> A 

0 w 
(3. 2-52) 

where (P indicates the principal value is to be taken when (3. 2-52) 

occurs in an integrand. 

Expression (3. 2-51) can be further simplified in the following 

manner. Interchange of the summation indices k with Q and r with 

s in the second term in the integrand gives 
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R" (a'(t), t') 

(3. 2-53) 

As before, when R" is integrated with respect to t' over an 

interval ~t »Tc' the terms contributing appreciably to the sum 

(3. 2-53) are those for which l(wk+w_e_)I « w*. For these terms wk r s r 

and -w! differ from their mean value v~ = ½(w~ - w!) by a small 

amount compared to w*. Hence, in view of (3. 2-44), little error is 

introduced by replacing Lkf (w - w;) with Lkf (w + v~!) and ½u ( -w + w~) 

with ~ (-w + v~!). If the range of integration is next converted from 

(- oo, oo) to (0, oo) and the commutators are written out explicitly, it is 

found that half the terms in the integrand cancel, with the result that 

R"(a'(t), t') = [a'(t), N'(t')] (3. 2 - 54) 

where 

N'(t') 

(3. 2-55) 

If one combines (3. 2-54), (3. 2-49), and (3. 2-24), the expres­

sion (3. 2-21) for a'(t +~t) to second order in the interaction G becomes 
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t+at 
o-'(t+At) = a'(t) + J {R'(a'(t), t') + i[a'(t), N'(t')]} dt' . (3. 2-56) 

t 

We can show that the conditions for which (3. 2-56) gives 

a'(t+ti.t) to good approximation are 

(3. 2-57) 

where IR I and IN I denote the magnitudes of the operators multiplying 

a' in the integrand of (3. 2-56). 

It is now asserted that the time dependence of a' can be deter -

mined with good approximation from the differential equation 

da'(t)/dt = i[a'(t), N'(t)] + R' (a'(t), t) (3. 2-58) 

if -1 I ,-1 I , -1 Tc = (w*) « R , N , (3. 2-59) 

where N'(t) and R'(a'(t), t) are given by (3. 2-55) and (3. 2-50), respec­

tively. The approximate validity of Eq. (3. 2-58) can be demonstrated 

by showing that step-by-step integration of the equation over appro­

priate time intervals gives the same result predicted by the expression 

(3. 2-56). When the condition (3. 2-59) holds, we can choose a ti.t that 

satisfies the condition (3.2-57), so that a'(t+ti.t) is given accurately in 

terms of a'(t) by Eq. (3.2-56). 

In order to facilitate the derivation of the semiclassical theory 

we define 

(3. 2-60) 



and 

if 

and 

108 

From (3 . 2-42) and (3. 2-44) it follows that 

Jk!(w + ~w) ~ JkQ(w) 

1~w I « w* . 

Substitution of (3. 2-60) into (3. 2-50) and (3. 2-55) gives 

where [A, B] + is the anticommutator bracket defined by 

[ A, B] + = AB + BA . 

Returning to a(t) itself, we can rewrite Eq. (3. 2-58) as 

(3.2-61) 

(3 . 2-62) 

(3 . 2-63) 

(3. 2-64) 



where 

and 
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~f = - i{ E + N, a] + R( a) 

R(a) = S-1 R'(a', t)S 

= 6 exp(iw! t) JQk(w;) (ers-1v!s, a], vk] 
k.Q.s 

(3. 2-65) 

(3. 2-66) 

(3. 2-67) 

In semiclassical theory the correlation function Ck£ (r) of Uk 

and UQ is defined as the average over an ensemble of baths in thermal 

equilibrium of the symmetrized product of the Heisenberg operators 

Uk(t+r) and U.Q.(t): 

Ck.Q.(r) = ({Uk(t+r)U1(t)}) q 

= ({Uk(r)Uf(o)}) q 

where the braces denote the symmetrized product 

(3.2-68) 

(3. 2-69) 

Thus the correlation function can be written in terms of the 

function Ako (r) defined by (3. 2-34): 
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whence Ckf (T) = c1k(-T). 

Ck.f (T) and Jke.(w) of (3. 2-60) are related to each other via the 

Fourier transformations 

(3. 2-71) 

and 

00 

Jk.f (w) = ½ J_ 
00 

Ckf (T) exp(i(vT) dT . (3. 2 - 72) 

Equation (3. 2-65) is the starting point of deriving the relaxation 

time formulas. When the spin Hamiltonian nE does not depend explicitly 

on time 

s±1(t) = exp(± iEt) . (3 . 2- 73) 

Hence the expression for v1 (t) = exp(iEt) vl exp(-iEt) can be 

expanded in the form 

(3. 2-74) 

if the frequencies w! are chosen to be the differences between the 

eigenvalues of E, denoted by E , 
G' 

waa' (3. 2-75) 

and the operators v! are defined by the condition that 
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{

- 0 for a value of s for which w£ i= E - E , - s a a 

= (a I v1 
I a') for a value of s for which 

fl 
ws=Ea-Ea,. 

Noting that 

we obtain from (3. 2-66) and (3. 2-67) 

and 

N(t) = ~ 6 ykyf Joo{ Jkf(v~ -w) 
1T k.frs r s O 1 - exp[-{3(vkl - w )] 

rs 

(3.2-76) 

(3. 2-77) 

(3.2-78) 

If the temperature is high, that is, for all the frequencies w; 

(3. 2- 79) 
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where as before {3 = ti/kT, it can be shown that R(a) takes the form 

R(a) == R(a - aT) 

= 6 J1k(w;) [[ v!, a -aT], vk] 
k.fs 

where aT is given by 

aT = exp(-{3E)/Tr (exp(-{3E~ 

(3. 2- 80) 

(3. 2-81) 

Usually the nuclear magnetic resonance experiment is per­

formed in the presence of a strong static magnetic field. When this is 

the case, E is much larger in magnitude than the interaction G so that 

N is negligible in comparison with E. 

Therefore Eq. (3. 2-65) is reduced to 

da/dt = -i[E, a] +R(a) . (3. 2-82) 

If Eq. (3. 2-82) is multiplied on the right-hand side by the 

operator Iv, and the trace is taken, one obtains 

(3. 2- 83) 

Since E == -w0 I
0

, where the Larmor frequency of the spin under 

consideration is denoted by w0 , and 

iTr[E, a] Iv = iw 0 Tr[a, I0
] Iv 

== iw 0 Tra[I0
, Iv] 

Eq. (3. 2-83) may be rewritten as 
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at (I11
) = -iWo Tra[I0

' I11
] + TrR(a)I11 

• (3. 2-84) 

By making use of the commutation rule 

(3. 2-85) 

we finally obtain 

(3. 2-86) 

where the Iv's are defined as 

and 

Io = Iz . 

To express the term R(a)Iv as a function of (Iv) cannot be done 

without knowledge of the explicit form of the interaction G. Therefore 

it must be said that all the relevant information is contained in the 

interaction G. In the next two sections we discuss the spin relaxation 

processes via two important mechanisms, intramolecular dipole­

dipole interactions and spin-rotation interactions, in the presence of 

internal rotation. Even though the actual procedure of deriving the 

relaxation time formulas is rather complicated, the basic principle is 

fairly simple; first, we analyze the functional form of the interaction 

G, and then we use Eq. (3. 2-82) with the aid of (3. 2-76) to obtain the 

relaxation time formulas. 
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The above statement will be best justified by an actual derivation 

of the relaxation time formulas as we shall see in the next two sections. 

3. 3 Spin Relaxation Via Intramolecular Dipole-Dipole Interaction 

in the Presence of Internal Rotation 

Recently there have been some reports which state that when 

there is internal rotation the intramolecular dipole-dipole interactions 

are relatively ineffective in causing the relaxation of nuclear spins in 

the molecule compared to the intermolecular contribution. 16- 18 

Woessner15, 19 considered the case where the internal motion is that 

of independent jumping of each proton among its three occupation 

positions in a molecule like ethane which has a three-fold barrier. He 

concluded that the presence of internal rotation introduces an additional 

correlation time which makes the overall correlation time shorter. 

In view of the importance of spin-internal-rotation interaction 

we review here the problem of intramolecular dipole-dipole relaxation 

in the presence of internal rotation and rederive the relaxation time 

formulas. The intermolecular dipole-dipole relaxation is considered 

not to be influenced appreciably by the presence of internal rotation and 

will not be discussed here. 

For the case of intramolecular dipole-dipole relaxation the 

relaxation mechanism nG consists of intramolecular magnetic dipole­

dipole couplings between the spins. For convenience, suppose now 

among N spins in a molecule we have two different kinds of spins, Ni 

numbers of the i-type spins and Nj numbers of the j-type spins, where 

N = N. + N .. 
1 J 
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For this case G can be written in the form 

G = 

N. 2 

u~., v~., + :B 6 u~, 0., 
11 11 j>j' =1 k=-2 JJ JJ 

Ni ~ 2 
+ 6 2.:J I; u~.0. , 

i=l j=l k=-2 lJ lJ 

where ut and vt are given as follows: 

and 

k u .. 
lJ 

±1 ( 0 ±1 ±1 0) V .. = ± I. I. + I. I. , 
lJ 1 J 1 J 

with the spin operators Iµ being defined by 

I~ = I. ± iI. 
1 lX lY 

and 

(3. 3-1) 

(3.3-2) 

{3.3-3a) 

(3. 3-3b) 

(3.3-3c) 

(3.3-4a) 

(3. 3-4b) 

In (3. 3-2) y. and y. are the magnetogyric ratio of i-th and j-th 
1 J -spins, and r ij is the length of the vector r ij from the j-th to the i-th -spin. 0 ij and <Pij are the polar angles specifying the direction of r ij, 

and the ~'s are normalized spherical harmonics defined as 
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(3.3-5a) 

1 

Y;1 (0, <{)) = =F(15/&n-)2 cos 0 sin 0 exp(±icp) , (3. 3-5b) 

1 

~(0, <{)) = (15/ 321r)2 sin2 0 exp(±2i<fJ) , (3. 3-5c) 

which satisfy the relations 

(3.3-6) 

and 

(3.3-7) 

Since ({}.· . = m. . + 1T, 0 . . = 1T - 0 .. , and r .. = r.. , 
] I "f'i] ] I I] I] ] I 

0.(e .. , qJ; .) = y;\e .. , m . . ) ' 
• I] I] • ]I "f']I 

(3. 3-8a) 

and 

k k u .. = u.. . 
I] ]I 

(3. 3-8b) 

The first term on the right-hand side of (3. 3-1) represents the 

dipole-dipole interactions among the i-type spins only, the second term 

represents the similar interactions among the j-type spins only, and 

the third term expresses the dipole-dipole interactions between any 

pairs of spins of different type. The reason why we divide the inter­

action G into three parts is merely for mathematical convenience as we 

shall see immediately. 

For a further facilitation of discussion we define V~/m, n) as 



where 

and 

+2. 
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A±l = ± 1 
mn . ' 

Ak = 0 unless k = m +n . mn 

(3. 3-9) 

(3. 3-l0a) 

(3. 3-l0b) 

(3. 3-l0c) 

(3. 3-l0d) 

Integers m and n each run from -1 to + 1, and k runs from -2 to 

From the definitions (3. 3-3) and (3. 3-9) we can easily see that 

k '°' k v .. = LI v .. (m, n) . 
lJ m n lJ 

' 
(3. 3-11) 

The energy of the spin system for this case may be written as 

(3.3-12) 

in the magnetic field H0 , where 

(3. 3-13) 

and 

(3. 3-14) 
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If use is made of the relation 

(3. 3-15) 

from (3. 3-3) and (3. 3-11) we obtain 

exp(iEt)0. exp{-iEt) = 6 V~(m, n) exp[-i(mw0i +nw 0 J· )t] . (3. 3-16) 
lJ m, n lJ 

If the i-th and j-th spins are of the same kind, (3. 3-16) can be 

reduced to a simpler form. In this case w
0
i = woj' whence 

exp(iEt)Vk
1
.J. exp(-iEt) = 6 V~(m,n) exp[-i{m+n)w .t] 

m n 1J 01 

' 

= V~- exp{-ikw . t) , 
lJ ol 

(3.3-17) 

where we have used the relations (3. 3-lOd) and (3. 3-11). Thus 

(3.3-18) 

and 

exp{iEt) vh, exp(-iEt) = vt, exp(-ikw oj t) . (3. 3-19) 

Therefore, R(a) takes the form 

R(a) = R(a - aT) 

2 2 
= :B 6 E E JP.c~-'")( •. ') (-tw • ) 

i>i' k=-2 i">i'" P.=-2 l l 
11 01 
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2 2 
'°' '°' '°' '°' .Qk + LI LI LI LI J('" .'")(· .,) (-l.w • ) 
j>j' k=-2 j">j'" .Q=-2 J J JJ OJ 

X [[vf"j"'' a - aT], V~~ 

2 2 1 
+ 6 :B 6 6 6 Jf(·~-,)( .. ) (-mw . -nw . ) 

i,jk=-2i',j'l.=-2m,n=-1 lJ lJ o1 OJ 

(3. 3-20) 

where 

.Q k [ 
00 

[ l k ( ) iw T 
J(i'j')(ij/w) = ½ . o C(i'j')(ij) T e 

kl. ( ) -iWT] 
+ C (ij)(i'j') T e dr (3. 3-21) 

and 

.Qk .Q Tk 
C ( . , . , ) ( .. ) ( T) = ( U. , . , ( t +T) U .. ( t)) . 

1 J lJ 1 J lJ 
(3. 3-22) 

Suppose, now, we are interested in the relaxation of i-type 

spins, and let 

- "-I(') = LI I. 1 . 1 
1 

(3. 3-23) 

Then, from (3. 3-20) we have 
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2 2 

= ~ 6 6 6 J!(~-'")(""')(-Qw . ) 
i>i' k=-2 i">i"' !=-2 I I 

11 01 

2 2 
+ 6 6 6 6 Jf(~."')( .. ')(-lw .) 

j>j' k=-2 j">j'" l=-2 J J JJ OJ 

2 2 1 
+ 0 6 0 6 6 J1(.~.')(" .)(-mw . -nw . ) 

i,j k=-2 i',j' f=-2 m,n=-1 1 
J IJ 

01 
OJ 

where we have used the property 

Since 

we may write 

and 

Tr[A, B] C = TrA[B, C] . 

[I!-1, I~] = (-l)µ+v (µ- v)rfL+v o.. , 
I J I IJ 

k = -kV .. , 
11 

(3. 3-24) 

(3.3-25) 

(3. 3-26) 

(3. 3-27) 

(3.3-28) 
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(3. 3-29) 

It is usually assumed that in dipole-dipole relaxation only the 

pair correlation functions contribute significantly to the relaxation 

time. Therefore it may be written 

(3. 3-30) 

Substituting Eqs. (3. 3-27) through (3. 3-30) into (3. 3-24), we 

obtain 

Tr[ R(a)I(i)] 

2 2 
= 0 6 6 kJ1(.~')(· .,)(-!w . ) Tr x[V~-,, v~.,] 

i>i' k=-2 Q=-2 11 11 01 11 11 

2 2 
'"' '"' '"' "" '"' (-l)m' +1m' Jtk ( ) + LI LI LI LI LI ( .. )(. ·) -mw . -nw . 
. . k 2 2 / / lJ lJ 01 OJ 
1, J =- !=- m, nm , n 

where T 
X = a - <J 

(3.3-31) 

If the nuclei have spins of 1/2, so that the following relation is 

valid 

(3. 3-32) 

we can show that 
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[V~- (m, n), V~- (m', n ')] 
lJ lJ 

At Ak { 1 ~ ( ')( l}m+m' m+m' (2 2 ,2) = mn m'n' '8" un -n' m-m - 1i +n +n • 
' 

1 ' , 
+ o (n-n')(-l}n+n I~+n (2+m2 +m'2 ) ls m, -m' J 

+ fo' om,-m'on,-n'(l+m2) (l+n2) 

- ft om -m' on:-n' {l+m'
2
}(l+n'

2
)} • 

' ' 

Hence 

[0,, 0.] = 0 6 [V~(m, n), V~-(m', n')] 
IJ IJ m n m' n' lJ lJ 

' ' 

where Afts are defined by 

and 

(3. 3-33} 

(3. 3-34) 

(3. 3-35a} 

(3. 3-35b} 

Since the phenomenological equation is linear with respect to the 

½ 's, we have only to concern ourselves with terms in (3. 3-31) satisfy­

ing the conditions 

µ = 0, m + m' = 0, and n +n' = 0 . 

Then, substitution of (3. 3-33), (3. 3-34), and (3. 3-36) into 

(3. 3-31) gives us 
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Tr[R(a)I0(.)] = - 6 Tl {{I?+ T~,) - (!? + 1?,) T} 
l ;--...__., .. , l 7. l l 

.1./l 111 

where 

and 

2 
1 1 '°' ( )-Q 2 Q -Q ( ) -T = 2 LJ -1 l. J(?.,~ . . ,) -Qw • 

•• / II 2 11 Ill 01 
111 x.=-

-1 1 ) -2 2 ( 
= - J( .. ,, )( .. ,)(w . + 4 J(. '')(·. ') 2w • ) , 11 • 11 01 11 11 o l 

T~. = 6 {½ J 0(.,.0)( •• )(w . -w .) - J-(!!)
1
( •• )(w .) 

ll j lJ lJ 01 OJ lJ lJ Ol 

-2 2 } +2 J(.!)( .. )(w .+w .) , 
lJ lJ 01 OJ 

1 = 6 {2 J-:: 2 
.. (w . + w .) - .!. J 0

' 
0 (w . - w .)} 

T~j i (1J)(1J) 01 OJ 
3 (ij)(ij) 01 OJ 

Similarly, for 1~1* defined by 
l 

1~1 * = exp(-iEt) 1~1 exp(iEt) = exp(±iw 
1
.t) 1~

1 
, 

l l O l 

we obtain 

d (I±l*) = 
of (i) 

(3. 3-36) 

(3. 3-37) 

(3. 3-38) 

(3. 3-39) 

(3. 3-40) 

(3. 3-41) 
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where 

and 

1 
~ 

211 

= 3 Jo, o (0) 5 J-1, 1 ( ) J-2, 2 ( 2 ) 
2 (ii')(ii') - 2 (ii')(ii') woi + (ii')(ii') woi 

1 _ 6 {2Jo,o (0) lJo,o ( ) lJ-1,1 ( ) 
T~i - j 3 (ij)(ij) + 6 (ij)(ij) woi - woj - 2 (ij)(ij) woi 

(3. 3-42) 

(3. 3-43) 

From (3. 3-36) through (3. 3-43) we can see that when there are 

several different kinds of nuclear spins on a molecule the relaxation of 

these different kinds of spins is coupled to each other in a complicated 

manner, and therefore the relaxation of any spin cannot be described by 

a single parameter T1 • For example, for a molecule which contains 

only two spins of different kinds, as in HF, Eq. (3. 3-36) takes the form 

(3. 3-44) 

and 

(3.3-45) 

with 

(3. 3-46) 
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(3. 3-47) 

and similar equations for T~S and T~1 are obtained by interchanging the 

indices I and S. 

However, when all the spins on a molecule are equivalent, as 

protons in C2 1\,, the cross relaxation terms disappear and the longi­

tudinal relaxation process can be well described by a single parameter 

T1 • 
21 

In a molecule like toluene, however , the CH3 protons and ring 

protons will have different relaxation times and in this case we have to 

use the coupled relaxation equations. Here for the convenience of dis­

cussion we treat the ethane molecule. In the absence of internal 

rotation the internuclear distances, r ij' and polar angles, e ij and <Pij' 

do not change with time in the body-fixed coordinates. Thus in this 

case we have only to study the rotation of the body-fixed frame with 

respect to the space-fixed frame. 22 , 23 However, in the presence of 

internal rotation internuclear distances and polar angles do not neces ­

sarily remain constant even in the body-fixed frame, thus the situation 

becomes more complicated than in the case of no internal rotation. 

Since the correlation functions (3. 3-22) can be more readily 

evaluated in the body-fixed coordinates, we have to transform ut so 

that they can be expressed in terms of polar angles of rij with respect 

to the body-fixed coordinates. Vie take the body-fixed frame (x, y, z) 

in such a way that the z-axis coincides with the molecular symmetry 

axis and the other two axes are perpendicular to the symmetry axis. 

Let the radii of circles traced by the protons when two CHs groups 
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undergo internal rotation with respect to the body-fixed frame be a 

and let the distance between two circles be b. 

Since all the protons in an ethane molecule are equivalent, we 

may write from (3. 3-36) through (3. 3-43) 

and 

where 

and 

1 2 3 
T=r+T"" 

1 1 1 

1 _ J-1,1 (w ) + 4J-1,1 ( 2w ) 
Tf = c12>u2> 0 <12)(12> 0 

(3. 3-48) 

(3. 3-49) 

(3. 3-50) 

(3 . 3-51) 

(3.3-53) 

(3. 3-53) 

Let us denote the three Euler angles, which determine the 

orientation of body-fixed frame with respect to the space-fixed frame, 

by 0, 4>, and '11, and let 0 and cp be the polar angles of a point on a unit 

sphere in terms of the laboratory coordinate system and 0' and cp' be 

the coordinates in terms of the body-fixed coordinate system. Then it 

may be shown that24 

(3. 3-54) 
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where J:'.5!m (n) are elements of the Wigner rotation matrix and are also 

functions of the rotation n = (<f!, E>, '11). Therefore 

u~.(0 .. , <p--) = ~ »<2k>*(n) ul:1.(0~., qf..) , 
I] I] I] n n I] I] I] 

(3. 3-55) 

where 

k ) I 1.. -~ )k -k u .. (0 .. , (/J.·· = (61T 5) 2 Y·Y· tir .. (-1 Y2 (0 .. ,<p,,) 
lJ IJ lJ I J lJ lJ IJ 

(3. 3-56) 

and 

n , , .!. - 3 n -n , , 
U .. (0 .. , rn .. ) = (61r/5)2 

Y·Y· tir .. (-1) Y2 (0 .. , <P--) . 
lJ IJ 'I' lJ 1 J lJ IJ IJ 

(3.3-57) 

From (3. 3-55) we have 

k' k ([u .. (0 .. ,rn .. )]t t [u .. (0 .. ,m .. )]t) 
IJ lJ "t'lJ + 0 IJ IJ "t'l] 0 

= ~ ~ ([JJ<;k> ,*(n) vl:.
1

(0~-,<P~-)t t [JJ<2k>*(n) ul:1.(0~.,ql.)]t >. (3.3-58) 
n n' Il IJ IJ IJ + 0 n lJ lJ lJ O 

If we may assume that molecular chaos in gaseous or liquid 

state is such that the overall rotational motion is uncorrelated with the 

internal rotation, (3. 3-58) may be written 

k' k ([u .. (0 .. , cp .. )]t t [u .. (0 .. , rn .. )]t) 
IJ IJ IJ + 0 IJ lJ 't'IJ 0 

I 

X ( [ ul:. ( 0 ~ . , rn ~ • ) ] t t [ ul:. ( 0 ~ ·, <fJ ~ ·)] t ) 
lJ lJ 'I' lJ + 0 lJ lJ lJ o 

(3. 3-59) 

In the next chapter it will be shown that if the rotational motion 
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of the body-fixed frame with respect to the space-fixed frame can be 

described by the diffusion model we have 

where 

r<2> (t) = 
n' -n 

' 

(3. 3-60) 

J,,!J<2> (n') P(n' 0- t) d'n' 
n' -n ' ' 

' 
(3. 3-61) 

--and P(n', O; t) is the probability density that there is a rotation through --Euler angles n' in time t. Since P(n', O; t) is an even function of n', 

I~/ -n(t) vanishes unless n' -n is an even number (see Chapter IV). 
• ' 

Evaluation of a correlation function of the type 

I 

{[u?. {0~., m~.)]t t [u?.(e~., m(.)]t) lJ lJ Y lJ + 0 lJ lJ y lJ 0 
(3. 3-62) 

depends on the details of internal rotational motion in a molecule as we 

shall see in what follows. 

and cp~ 3 in terms of a, b , <A., and ~ as follows (see Fig. 6 ): 

1 

r 12 = {2a2[1-cos(<f>2 -<f>1 )] +b2
} 2 , 

(3.3-63) 
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and 

0' 1T 13 = 2°, (3. 3-64) 

Let us define 

P1 (<t>f) = probability that the first methyl group is found to be rotated 

away from the origin by an angle <t>~ at t = O, 

P2 ( <t>i) = probability that the second me thy 1 group is found to be 

rotated away from the origin by an angle <t>i at t = O, 

P1 (cp1 ; t) = probability that the angle cp of the first methyl group takes 

the value cp1 at time t when we know that it takes the value 0 

at t = O, 

P2 (cp2 ; t) = probability that the angle cp of the second methyl group takes 

the value cp2 at time t when we know that it takes the value 0 

at t = O, 

P1 (<t>~, cp{; t) = probability that the angle cp of the first methyl group 

takes the value cp~ at t = 0 and <t>f at time t, 

P2 (cp~, cp~; t) = probability that the angle cp of the second methyl group 

takes the value <t>i at t = 0 and cp~ at time t, 

and 

P(cp~, <t>{, <t>i, cp;; t) = probability that the first and second methyl groups 

are found at <t>f and cpg at t = 0 and at <t>f and cp; after time t, 

respectively. 

Here we have tacitly assumed that the process of molecular 

reorientation is stationary (see Chapter IV). According to the 

definition of the correlation function we may write 
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when ¢ 1 and ¢ 2 vary continuously from O to 21r, and 

(3. 3-66) 

when ¢ 1 and ¢ 2 can take only some discrete values between O and 21r . 

If the internal rotation of one methyl group with respect to the 

body-fixed frame may be assumed to be independent of that of the other 

me thy 1 group, we may write 

(3. 3-67) 

Moreover, from the definitions of P1 (cpf, cp;; t) and P2 (cpg, ¢~; t) 

it follows that 

Substitution of (3. 3-67) through (3. 3-69) in (3. 3-65) and 

(3. 3-66) gives us 

when ¢ 1 and ¢ 2 vary continuously, and 

(3. 3-68) 

(3. 3-70) 
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(3. 3-71) 

when ¢ 1 and <f>2 can take some discrete values only. 

P1 (</>f - cpf; t) and P2 (¢~ - <f>g; t) depend on the dynamics of inter ­

nal rotation and thus on the inter- and intramolecular forces. Since we 

do not have much knowledge available about the effect of intermolecular 

forces on the dynamics of intramolecular reorientation, a general 

approach to this problem cannot be given in the present time. There­

fore, we shall be satisfied by considering only a few limiting cases. 

If the internal reorientation process can be described by a diffusion 

model, ¢ 1 and </>2 can be considered to vary continuously. Therefore, 

in this case correlation functions like ([r;2
3 

Y~ (0{2, <1{2 )] t x 

[r;: ~ (0f2 , cp{2 )] 0 ) involve integrals which approach the complete 

elliptic integr al at long correlation times. The complexity of integrals 

appearing in (3 . 3- 70) prevents us from obtaining an explicit expression 

for the corr elation functions when ¢ 1 and </> 2 vary continuously. 

However, the evaluation of correlation functions is relatively 

easy if the internal reorientation process is such that </>1 and </> 2 can 

take some discrete values only. If the internal motion is that of inde ­

pendent jumping of each proton among its three occupation positions as 

it is in ethane, the occupation probabilities for the proton 1 in its three 

possible positions are 
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for (3. 3-73) 

and 

for ±.?;- .(3.3-74) 

The independent motion of proton 2 is similarly described by 

probabilities in terms of <f>~ and Ti. 

By making use of (3. 3-5), (3. 3-64), (3. 3-71), (3. 3-73), and 

(3. 3-74) we can show that for this model 

(3. 3-75a) 

15 1 1 / = ~ 27a5 "3" exp(-t Ti) , (3. 3-75b) 

(3. 3-75c) 

(3. 3-75d) 

and 

(3.3 -75e) 

where 



134 

Q~ = [r;\a2 -2b?.) - 2r_e:5(2a
2
-b

2
)]

2 
, 

Q0 = 2[r;
5 

(a
2
-2b

2
) + r.e:5(2a

2 
-b

2
)]

2 
, 

Q ,, _ 2a2b2[ -10 _ 4 -5 -5 2 -10] 
1 - rs r.Q. rs + r£ 

Q{ = 8a2 b2 (r ;
5 

+ r -;_5)2 

and 

(3. 3-76) 

with 

2 2 b2 r = a + 
s 

and 2 2 
4a + b . 

Also we can see that 

(3. 3-77a) 

and 

(3. 3-77b) 

unless m = -m'. 

Let three principal values of the diffusion tensor of the molecule 

be Dx, Dy, Dz, and also define (see Chapter IV) 

+ a = 2~ + 3(Dz - D) 

a = 2~ - 3(Dz - D) 
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and 

1 = 
T1 

1 = 
T+ 

D = 
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1 
(D2 

- D?. + D?. - D D - D D - D D )2 
X y Z X y y Z X X ' 

½ (Dx + Dy + Dz) , 

3(D+Dx), 1 3(D+Dy), 1 3(D+Dz) , = = 
T2 T3 

6D + 2~ 1 6D - 2~ - = . 
' T 

(3.3-78) 

Furthermore, we introduce new correlation times defined by 

-1- = _!_ + _l_ 1 _l_ + _l_ 1 1 1 
-::::r= -::::r = -+-

T 1 Ti T1 ' T2 T- T2 ' T3 T. T3 1 1 

1 1 1 1 1 1 (3. 3-79) =r=-+-, -:::r= -+-
T+ Ti T+ T T- T 

1 

1 1- + _l_ 1 1- + _!_ 1 1-_ + _l_ -=rr = -:::rr= -:::,r= 
' T1 Ti T1 ' T2 T- T2 ' T3 T· T3 1 1 

1 2 1 1 1-_ + l_ (3. 3-80) -:::::rr = -+- -:::rr-= 
T+ Ti T + ' T T- T 

1 

Then from (3. 3-59), (3. 3-60), (3. 3-75), (3. 3-78), (3. 3-79), 

and (3. 3-80) we obtain 
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= - c+ exp(-t/T +) - c_ exp(-t/T_) - c~ exp(-t/T~) 

- c: exp(-t/T:) - C~ exp(-t/T~) 

([u;2
1

(012, <A.2)] t+t [U{2(812, </h)] t ) 
0 0 

= - ([Uf2(012, <112)] t+t [U~2(012, <A.2)] t ) 
0 0 

= - ([U~\012, </12)] t+t fU~2(812, <A.2)] t ) 
0 0 

= - Di exp(-t/T1) - ~ exp(-t/T2) - D+ exp(-t/T +) 

- D_ exp(-t/T _) - Df exp(-t/Tf) - n;, exp(-t/T~) 

- IX' exp(-t/Tf) - n; exp(-t/T;) - n; exp(-t/T~) 

- D11 exp(-t/T") - D" exp(-t/T") 
+ + - -

where 

C ~ a, - C ..L!L_ a,+ C' _Y.J!_ a,+ 
+ = 3 60a2 4X , - = 3 6 oa2 IT , + = 36 Oa2 EX ' 

C' ~
(ll-

c~ = &, Di 
- Ql D2 

Ql 
= EX"' - 2TI' = w, 

Qoa, - Qoa+ Qf D' - Qf Q~ 
D = D Df = D' -

~' 
= ~' 20' 2 - 20' 3 - 80' + 

QI/ 

DI/ - 1 
1 - 20' 

Q I/ Q" 
D" - 1 D" - rl 

2 - 2Q, 3 - 1:5V ' 

(3. 3-81) 

(3. 3-82) 

(3. 3-83) 

From the definitions of J(i~)(ij/w 0 ) and Eqs. (3 . 3-50) through 
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(3. 3-53) we can easily obtain (1/TD, (1/Tn, (1/T~), and (1/T; ). In 

the limit that wi T2 « 1 for all the correlation times involved in 

(3. 3-81) and (3. 3-82) we may write 

and 

1 1 
T7 = ,y;r = 5C T + 5C T + 5C' T 1 + 5C' T 1 + 5C'T' 

1 2 ++ -- ++ -- 33 

+ 5D'T' + 5D' T 1 + 5D' T' + 5D"T" + 5D"T" 
3~ ++ -- 11 22 

+ 5n"7" + 5D"T" + 5D"T" . 
~ 3 + + - -

(3. 3-84) 

(3. 3-85) 

Since the internal motion decreases the values of T' 's and r" 's 

in (3. 3-84) and (3. 3-85), the overall relaxation times due to the dipole­

dipole interaction increase for all rates of internal motion. Conse­

quently, internal molecular motion causes the intramolecular dipole­

dipole relaxation in liquid to decrease in relative importance compared 

to the intermolecular contribution. Actually, the intramolecular 

relaxation time in ethane is longer than we expect. 25 This prediction 

is also coincident with results observed by Richards. 16, 17 

However, the above statement is not valid when it comes to the 

spin-rotational relaxation. As we have already seen in the previous 

chapters, an additional term called the spin-internal-rotation inter­

action appears in the spin-rotation Hamiltonian in the presence of 

internal rotation, and this spin-internal-rotation interaction contri­

butes appreciably to the overall relaxation rate. In the next section 

we discuss the contribution of spin-internal-rotation interaction to the 
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relaxation rate of spins on an internal rotor. 

3. 4 Spin Relaxation via Spin-Rotation Interaction in the Presence 

of Internal Rotation 

In Chapter IT we have shown that for three equivalent fluorine 

spins in <p-CF3 the spin-rotation interaction can then be expressed as 

- ( J) - (J·)- ·-+ JC == -F·C' ·J-D F·j S-R .,.._ a ' (3. 4-1) 

where ~(J) and D~) are the spin-overall-rotation interaction tensor 

and spin-internal-rotation interaction constant, respectively, properly 

averaged over the internal angle. For this case the relaxation mech­

anism can be expressed as 

li G(q, s) = JCS-R 

(3. 4-2) 

in the molecular frame in which c(J) is diagonal, where .,.._ 

Aoo = - c(J) Au = A-1-1 = - .! (C(J) - C (J)) 
zz' 2 xx yy 

A1-1 = A = .! (C(J) + C (J)) Bo = - D(j) 
-11 2 XX yy , a 

and (3. 4-3) 

with AKK' vanishing unless I KI = I K' I . 
JK, jK, and F Kare components of first-rank spherical tensors 

J, j, and F, respectively, defined by 
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Jo = Jz ' J±l = '.:f .1... (J ± iJ ) ..J2 X y ' 
(3. 4-4a) 

jo = jz ' j±l = '.:f ! (jx± ijy) (3. 4-4b) 
' 

and 

(3. 4-4c) 

In the expression (3. 4-2) both the nuclear spin vectors and the 

rotational angular momenta are expressed in the body-fixed frame where 

C(J) is diagonal. However, the resonance experiment is performed in 
"' 
a space-fixed frame that is determined by the direction of the exter­

nally applied magnetic field. The two frames are related by a rotation 

which can be defined by the set of Euler angles n = (a, {3, y ). It is nec­

essary, therefore, to relate the Hamiltonian to the space-fixed frame 

at least inasmuch as the components of the spins are concerned, and it 

may also prove convenient to refer the components of the molecular 

rotation similarly. 26, 27 These transformations may be effected if the 

Wigner rotation matrices, oB'(n)cn), are employed28 as in Eq. (3. 3-54), 
"' 

and following Atkins27 we will henceforth refer to the Hamiltonian in 

which only the spin has been transformed as the K-representation 

Hamiltonian and to the doubly transformed Hamiltonian as being in the 

M-representation. This nomenclature has been adopted by Atkins 

because in the K-representation we shall be concerned with the cor-
- ·-+ relation of the components of J and j in the molecular frame, the z--component of J then being expressed in terms of the quantum number 

K for symmetric top molecules, and because in the M-representation 
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-the letter M normally denotes the Z-component of J in the space-fixed 

frame. 

Since F K' JK, and jK transform according to28 

1 
T = ~ Jj<i> *(n) T 

K q=-l qK q ' 

we may rewrite (3. 4-2) as 

in the K-representation, and 

+ 6 
Kqq' 

B ffCl) *(n)Ji(l) *(Q) J. F 
K q'K 11

" qK q' q 

(3. 4-5) 

(3. 4-6) 

(3. 4-7) 

-in the M-representation, where "J.' is a vector whose component is 

represented by F q' and 

(3.4 -8) 

and 
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,o(M) = 6 A ,fJ(l) *(n) P<'(l) *(n)J 
ITT,q KK'q' KK' q'K' 1Hi JJ qK u, q' 

+ 6 B J1<1,> *(n) J1<1 > *(n)j , 
K, q' K q K qK q 

(3. 4-9) 

Now, for a moment let us digress to derive the relaxation time 

formulas for the case of spin-rotational relaxation. Noting the relation 

we can write from (3. 2-76) 

where T 
X = a - a 

(3. 4-10) 

and w0 is the Larmor frequency of nuclear spins under consideration. 

After a little rearrangement similar to those used to obtain 

1 

Eq. (3. 3-24) we obtain 

1 
Tr[R(x)F ] = 6 11 k=-1 

6 Jfk(-Qw 0 ) A11(1,k) Trx[F1, Fk+v] , (3.4-12) 
Q=-1 

where we have used the relation 

(3. 4-13) 

with A 11 (1, k) being given by 

A 0 (K, k) = k (3. 4-14a) 

and 
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1 

A±1 (K,k) = [(K=Fk)(K±k+1)] 2 . (3. 4-14b) 

If we assume that the macroscopic relaxation equation can be 

replaced by the corresponding microscopic one, we arrive at the 

equation 

a\ (F V) + i(-lt VW 0(F V) 

1 1 
= 6 6 J_e_k(-Qw 0 )Av(1,k)•{([F_q_,Fk+v]) 

k=-1 Q=-1 

For v = 0, Eq. (3.3-15) may be written 

Assume the phenomenological equation takes the form 

(3. 4-15) 

(3. 4-16) 

(3. 4-17) 

Then, in order that Eq. (3. 4-16) coincide with (3. 4-17) we require that 

(3. 4-18) 

unless k = -!. Therefore, 

(3. 4-19) 
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In a similar manner we can derive the formula for T 2 , the 

spin-spin relaxation time. The result is 

(3. 4-20) 

Now, let us return to Eqs. (3. 4-8) and (3. 4-9). Edmonds29 

gives us two relations which are very useful for our purpose. They are 

and 

(3. 4-22) 

(
jl j2 mj) where is a Wigner 3-j symbol. 
ml ~ 

For a further convenience 

we introduce new constants defined by 

C = ½ Tr C(J) , .,._ 

.6.C = c(J) - .1 (c(J) + c(J)) 
zz 2 XX yy ' and 

BC = c(J) - c(J) xx yy • (3. 4-23) 

In terms of these constants <R~K) of (3. 4-8) can be rewritten as 

tn~K) = f [ (-l)K+l c - ¾ .6.C (½) I KI] ..Ei~~*(n) J -K 

- ~ BC 6 I KI g(l)*(n) J - oO) .B(1¼(n) J. 2 K qK K a qO 0 
(3. 4-24) 
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Also, substitution of (3. 4-22) and (3. 4-23) into (3. 4-9) gives us 

(1) 

(2) 

x 6 (2t+l) .e~lm *(O) (
1 1 l) (1 1 I.) 

lmm' 0 0 m' -q' -q m 

+ (-l)q+l ½ /iC 6 (-l)q J , 6 6 (U+l) 
, 1 ( 1 

q' q q"=-1 tm'm -q" 

x .&(~) *(O) ( l l l \ + (-l)q+l D(j) 6 (-l)q' j , 
m m -q' -q m} a q' q 

x 6 (2t+l) (l l R.) e(ti *(O) ( l 
tm'm O O m' m m -q' 

1 R.) 
-q m 

1 1, 

-q" m) 

(3. 4-25) 

Now, we note that the 3-j symbols satisfy the following relations: 

for (k, .Q, m), an even permutation of (1, 2, 3), and 

(
h j2 j3 ) • • • ( jk j _Q 

jm) = (-l)Ji+h+h 
ml m2 m3 mk m.Q mm 

for (k, .Q, m), an odd permutation of (1, 2, 3): 

(
jl j2 

j3) • • • (h j2 j3 ) = (-l)h +J~+h 
ml m?. m3 -ml -m2 -m3 
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= (1, 2, 3) in any order, we can simplify (3. 4-24) to 

1 2 f 
(R(M) = (-l)q+l (C(J) _AC) J - (AC - ½ 6C) E J, E E (2£+1) 

q zz -q q'=-1 q t =O q"=-1. 

X (1 1 I.) 1)'.(1. ),,(n) (1 1 I. \ 
0 0 0 Oq lq q' q" j 

1 2 I. 1 (1 1 I. ) (f) (1 1 I.) - ½ 6C 0 J , E E E (21.+l) .ff -2p q"(O) , " 
q' =-1 q l.=0 q" =-£ pc=-1 p p -2p ' q q q 

1 2 £ (1 1 £) (1 1 f ) - D(j) E j , E E (21.+l) n§.J,,(n) , • 
et q'=-1 q t=O q" =-£ 0 0 0 q q q" 

(3. 4-26) 

By making use of the values of the 3-j symbols tabulated by Rotenberg 

et al. 30 (3. 4-26) can be further simplified to 

1 1 2 (2) (1 1 2 J 
- (10/3)2 AC "B J , 6 »0q,,(n) 

q'=-1 q q"=-2 q q' q" 

1 2 (2) (1 1 2 \ 
- (5)½/2 oc "E J , 6 {o&~~,,(n) + .!J _2q,,(n)} q' q") 

q'=-1 q q"=-2 q 

1 (.) i (1 1 o
0
J + (1/3)2 DJ u j , 

Ct q'=-1 q q q' 

1 2 (1 1 2) 
- (10/3)½ D(j) 6 j , 6 .!J~,,(n) 

et q'=-1 q q"=-2 q q' q" (3. 4-27) 

Since 

(3. 4-28) 
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we finally obtain 

~q = (-1) C J _q - (10/3)2 .6.C 6 J , 6 ,ll'(2),,(Q) '"' (M) q+l 1 l 
2 

(1 1 ')) 

q'=-1 q q"=-2 Oq q q' q" 

- (5/4)2 oc p J , ,"P {~2),,(n) + li~J ,,(n)} 1 
1 

2 (1 1 2) 
q = -1 q q = -2 q ~q q q' q,, 

+ (1/3)(-l)q+l om j_ - (l0/3l oW t j , 't 1712),,(n) (
1 1 2

) 
Cl q Cl q'=-1 q q"=-2 0q q q' q" 

(3. 4-29) 

Since the inverses of relaxation times can be expressed in terms 

of the Fourier transforms of correlation functions of either fRiK) or 

<fi~M), we concern ourselves here with a correlation matrix of the form 

(3. 4-30) 

In evaluating the matrix elements of G(T) either <R(K) or <R(M) may be 
~ q q 

used. However, in the body-fixed frame it is easier to treat <Rf), 

and therefore we consider (R~K) first. 

Using the expression (3. 4-24), we may write 

( <ft~lf\t + T) '5{t)(t}) 

= 6 6 {(-1f'+l C - (2/3) AC (1/2)1K'I} {(-1f+l C - (2/3) AC (1 / 2)1KI} 
K K' 

X <r.b~~k,*(n) J_K,]t+T [.,B~~*(n) J_K]t> 

- ½ oc 6 6 IKI {(-l)K'+l c - (2 /3) AC (1/2)IK'I} 
K' K 

x ([d?~~~(, *(n) J_K,lt-n- [lf~\i*(n) JKlt> 
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-½oC66 !K'I {(-1f+1 c-(2/3).1c(1/2)IKI} 
I{' K 

X < [.6~~k,*(U) JK,] t+T [..e~~*(U) J -K] t> 

+ ¼ (oc)
2 ~ ~, IK'I • JKI ([..d~;k,*(n) JK,1t+T [..d~~*(n) JK]t> 

- D(j) 6 {(-1f'+l C - (2/3) D.C (1/2) IK' I} 
a K' 

x < [.b~\k,*(n) J -K' 1 t+T [.LJ~1~(n) jo] t> 

- D(j) 6 {(-1f+l C - (2/3) D.C (1/2)1KI} 
a K 

X ([L;~\6*(U) jO]t+T [.»~~*(U) J_K]t) 

+ ½ D~) oc ~ JK' I < [.b~;k, *(n) JK, 1 t+T [o8'~1~(n) joJ t> 

+ 1- D(j) oC 6 JKI < r..e-(V*(U) j 1 rg(l)*(U) J 1 > 2 a K q O O t+T qK K t 

+D(j)2([.,D(l)*(U)j] [jj(l),tc(U)j~l) 
a q'O O t+r qO OJ t • (3. 4-31) 

We assume that molecular motions in liquids are such that the 

fallowing separability approximations are valid: 

<[Llg,>k,*(n) 3K' J t+r [ff~\~*(n) 3K] t> 

~ <[ffg,>K,*(n)Jt+r [ff~k*(n)Jt> ([JK,]t+r [JK]t> ' 

([J1 g,>K,*(n) JK'] t+r [.,8 qo *(n) jo] t) 

~ ([b~1,>K,*(n\+T [ol1qo*(n)]t> ([JK,1t+T [j 0 ]t> , 

([ffqd*(n) jo] t+T r»g,>K' *(n) JK'] t> 

~ ([B~ic?*(n)] t+T rgg,>K, * (n)] t> ((jo I t+T [JK,] t> 

and 
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([offg,>K,*(n) jK'] t+T [lfg-k_*(n) jK] t> 

~ <[ffg,>K,*(n)]t+T Wgk*(n)]t> • ([jK,1t+T[jK]t> (3. 4-32) 

Then, with the aid of these separability approximations and the 

fact that ([Ji~)K,*(n)] t+T [D~i*(n)] t> vanishes unless K' = -K, 

Eq. (3 . 4-31) can be simplified to 

( (Rt)(t + T) lft~K)(t)) 

= 6 {(-1)1';:+l C -(2/ 3) -6.C (1 / 2)JK J}
2 

K 

x <[.0~~~ -K* (n)]t+r [11~\hn)Jt> <[ JKlt+r [J_Klt> 

- ½ oc LJ JK[ {(-1f+1 c - (2 / 3) -6.C (1 / 2)IKJ} 
K 

x <[.O~~\K* (n )lt+r [11~\i* (n)Jt> ([JKlt+r [JK)t + [J_Klt+r[J_Klt> 

+ ¼ (oci2 f JK
2

1 <[.ti~;~K* (n)lt+r [~~*(n)]t> ({J_Klt+r[JK)t> 

+ n~l (c + t .6.C)([.D~~6*(n)]t+r [J1~~*(n)]t> ([Jolt+r (joJt + [iolt+r[Jolt> 

+ n~l
2 

< [.DW* (n)] t+r [.O~~*(n)] t> < [ iol t+r [ joJ t> 

For convenience let us define 

and 

From (3. 4-33) , (3. 4-34), and the relation 

(3. 4-33) 

(3. 4-34) 
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([fl~U(n)]t+T [b2~(n)]t> = (-1)-k-f o-k, m 2J+l r~~)-f(T) , (3.4-35) 

where 

(3. 4-36) 

(3.4-37) 

In addition we introduce a new component of angular momentum 

defined by 

(3. 4-38) 

in terms of which we may obtain 

( (R~~\t+T) (R~K)(t)) 

= ½ (-l)q I~;~ -q(T) {cgf (Jx(t+T) Jx(t)) 

+ c~J2 

(Jit+T) JY(t)) + c~12 

~z(t+T) ~z(t))} , (3. 4-39) 

where we have assumed that the cross correlations among three dif­

ferent components, J , J , and G.. are negligible. Thus, in the 
X y (!z 



150 

extreme narrowing limit we have 

(3. 4-40) 

and 

1 
6
1 C(J)2 {J: ) ( 27<1) + T(l) + T (l) ) T = XX X o, JX 1, Jx -1, Jx 2 

+ 1 c(J)2 {J2 > (
2 T(l) + T (l) + T (l) ) 

6 yy y 0 ' Jy 1, Jy -1 J 
' y, 

+ 1 c(J)2 <~2> 
(

2T(l) + T(l) + T(l) ) 6 zz z o 'r;f z 1, <Jz -1 9 ' z 
(3. 4-41) 

where T J , r J , and TQ are the correlation times for the autocor-
x y tfz 

relation functions of Jx, Jy, and Jz, respectively, and 

-1 
Dx + Dz, 

-1 D + D , 
-1 = D +D 7 1 1 = 7 1 -1 = 7 1 o ' ' ' y z 
' 

X y 

7
(1) -1 -1 -1 (1) -1 -1 -1 = T n +T J , T = T +TJ n,Jx 1, X n,Jy 1, n y 

(1) -1 -1 -1 etc. rn,~z = T +T9-: 1, n z 

Since (3. 4-40) and (3. 4-41) have been derived in the limit that 

the separability approximations (3. 4-32) arc valid, we can further 
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approximate (3. 4-40) and (3. 4-41) to 

T
l ~ Tl ~ _g_ c(J)2 (J: > T + _g_ c(J)2 ( t > TJ 
1 2 3 XX X J X 3 yy y y 

(3. 4-42) 

In Chapter IV we will show how we obtain T J , T J , T J , and 
X y Z 

other relevant correlation times in terms of macroscopic quantities 

like the viscosity of medium using the theory of rotational Brownian 

motion. 3i-34 

Using the definition of Ca previously introduced by Dubin and 

Chan35 and noting that for a molecule like benzotrifluoride 

Ca~ (Iz/Ia)C~~' we may write 

(3. 4-43) 

Substitution of the relation (3. 4-43) into (3. 4-42) gives us 

(3 . 4-44) 

Considering the fact that in benzotrifluoride c: » c~/, c~J2, 
the formula (3. 4-44) coincides with the formula (2. 7-28) originally 

derived by Dubin and Chan. Though the formula (3. 4-44) is formally 

correct, it may not be the best form for practical purposes since Tja 
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depends not only on the end-over-end molecular rotation but also on the 

rotation of internal rotor itself. Only when the internal rotational 

barrier is completely (or almost completely) zero and thus the rotation 

of internal rotor is not influenced by end-over-end molecular rotation 

about the z -axis, this formula is a useful form. In such a situation the 

relaxation rates are determined by the behavior of internal top alone. 

From now on let us express this extreme case using the terminology 

'\l'-limit". In the \l'-limit if the internal top rotates almost freely 

between two successive intermolecular collisions which change ja in a 

random manner, then we can take T- as proportional to Tc' the char-
Ja 

acteristic time for intermolecular collisions which deprive dynamical 
1 

coherences of jct which in turn is known to be proportional to (Ia/kT)2 . 

If the change of ja occurs mainly because of frictional forces due to 

neighboring molecules, we may take Tja as inversely proportional to 

the viscosity of medium. 

However, it is supposed that in actual molecular systems such 

a situation is very rare since the internal barrier is seldom zero 

(though low in some molecules) and thus the rotational motion of inter­

nal top is more or less related to the rotation of remaining parts of 

the molecule. In this situation we have to transform Eq. (3. 4-44) into 

a new form in which correlation times have more or less direct physical 

meanings. In one extreme case in which the variation of j is completely 

controlled by the internal torque -v V(a) between two successive a 
random changes due to the external torque and the end-over-end molec-

ular rotation about the z -axis is diffusional, Jz and j are considered to 

te uncorrelated to each other and (3. 4-42) becomes 
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(" j -limit") 

(3. 4-45) 

In the j-limit T., instead of Tj , is considered to be proportional to 
1 J a 

(Ia/kT)2 , thus giving us the formula used by Burke. 

Though it is not necessary here, for reference we derive 

( ~"¥\t+T) • <R~M)(t)) in the M-representation. From (3. 4-29) it follows 

that 

+(5/4)(oc)2 I; I; , , , ([Jn' {.02p'(n)+.u_2p'(n)}lt+T 1 2 G 1 1)(2 1 1) ,-,A'2) ,:,((2) 

n, n'=-1 p,p'=-2 p q n p q n 

(3. 4-46) 

We assume that the separability approximations similar to (3. 4-32) are 

also valid in the M-representation and that at any instant the orientation 

of a molecule is independent of its angular momentum. From these 

assumptions it follows that 
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~ ([J_q,1t+r [Jq1t> ([.Lf~;<n)]t> = o 

since ([ff riJ(n)] t> = 0. 

(3. 4-47) 

Because of (3. 4-47) and relations similar to this some cross terms in 

(3. 4-46) are vanishing. Taking all these facts into consideration, we 

obtain 

( (R(~\t+T) (R(M)(t)} 
q q 

= (-l)q+q' c 2 g~l), (T) + (-l)q+q' (1/9) n<n2 g<4>, (T) 
q,-q er -q,-q 

+ (2/3)(AC)2 1&2)0(T) t t (- lt (2 1 1) ( 2 1 1) ~v (T) 
' n, n'=-1 p --=-2 p q n - p q' n' , n 

+ (2/3) D(j)2 1(2) (T) t t (-l)P (2 1 1) ( 2 1 1\ (4) 
ex 0,0 n,n'=-1 p-=-2 p q n -p q' n'l ~',n(T) 

+ (l/2)(oC)
2 

{1~%(T) + 1~~)_2(T)} 

x n,L k, (-l)P C : J: :, :) ~\:n(T) 

+ (1/3)(-l)q+q' C • D(j) {i2), (T) + g(3) (T)} 
er -q '-q -q', -q 

°t (-l)p (2 1 1)( 2 1 1\ (l) 
p·= -2 p q n -p q' n~ gn', n(T) 

+ (2/3) AC • nO> 1<2> (T) 'fj 
ex O, O n, n'=-1 

t p (2 1 1) ( 2 1 1) 
P =-2 (-l) p q n -p q' n' 

+ (8/3)½ oC • D(j) 1(2) (T) t 
er 2, 0 , 

1 n, n =-
t p (2 1 1) ( 2 1 1 \ 

P =-2 (-l) p q n -p q' n') 

X {gn(~)n(T) + i~) (T)} 
, n, n ' (:L4-48) 
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where we have used the relation (3. 4-35) and g(n) (r)'s have been p,q 
defined as 

g<l) (T) = (Jp(t+T) Jq(t}) p,q g<2
> (T) = (Jp(t+T) jq(t}) p,q 

g<3 > (T) = (jp(t+r) Jq(t)) and p,q 

in the M-representation. 

(3. 4-49) 

When the angular momentum correlation functions are more easily 

obtainable in the M-representation than in the K-representation, 

Eq. (3. 4-48) will serve better than Eq. (3. 4-37) in obtaining the relax­

ation time formulas. Hubbard26 has used M-representation for deriva­

tion of the relaxation time formula for spherical molecules. In fact if 

we let C = ½ (C // + 2C _1), ..!lC = C/;- C .L' BC = 0, and D~) = 0, Eq. 

(3. 4-49) reduces to the case which Hubbard has already treated. How­

ever, when a molecule is not spherical, the angular momentum correla­

tion functions can be more conveniently evaluated in the K-representation 

and therefore in this situation (3. 4-37) is more desirable for our pur­

pose than (3. 4-49). 

3. 5 Cone lusion 

We have discussed the spin relaxation phenomenon both via 

dipole-dipole and spin-rotation interaction in the presence of internal 

rotation. In the presence of internal rotation we see that the relative 

importance of intramolecular dipole-dipole relaxation decreases com­

pared to that of intermolecular dipole-dipole rd:Lxation. On th<' other 
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hand, when it comes to the spin-rotational relaxation, the presence of 

internal rotation gives an additional contribution through the spin­

internal-rotation interaction. We have derived the formulas for spin­

rotational relaxation times in the presence of internal rotation in the 

K-representation, and confirmed that these formulas are reduced to 

those derived by Hubbard in case the entire molecule is spherical and 

there is no internal rotation. In order to obtain an explicit form of T 1 

we have considered two extreme cases, \~ -limit and j-limit. In the 

ja -limit the fluctuation of \r is supposed to depend only on the motion 

of internal top and thus relaxation times are determined by the rota­

tional motion of internal top alone--independent of the motion of other 

parts of the molecule. On the other hand, in the j-limit the relative 

motion of internal top with respect to the molecule fixed frame is 

completely controlled by internal rotational barrier and thus the 

relaxation time depends on the correlation time of j rather than ja. 

For reference we have also given the derivation of T1 and T 2 in the 

M-representation. 
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CHAPTER IV 

DYNAMICS OF MOLECULAR ROTATIONS 

IN CONDENSED PHASES 

4. 1 Introduction 

In order to elucidate molecular motions in a wide variety of 

physical systems several experimental methods have been applied. The 

absorption of radio frequency, microwave, infrared, and ultrasonic 

waves, Raman scattering and fluorescent scattering of light, magnetic 

and microwave resonance, and double resonance experiments are all 

yielding new and more detailed information on the dynamics of molecular 

collisions. 1 When information of this sort has been fully interpreted, 

we will under stand a great deal about the shape or angle dependence of 

intermolecular forces. The traditional sources of information about 

intermolecular forces, such as viscosity and virial coefficients, are 

largely insensitive to the angle dependence of intermolecular forces. 

In contrast to this, many of the spectroscopic effects, such as pressure 

broadening and narrowing of rotational lines, occur because of inter­

molecular torques, and would vanish for spherical intermolecular 

forces. Therefore, spectroscopic methods are most valuable in 

probing the nonspherical shape of intermolecular forces--especially 

for dilute gases. 

The interpretation of these experiments requires us to express 

the basic macroscopic quantity being measured as an explicit function 

of the microscopic molecular motion. Time-dependent correlation 
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functions provide the most convenient mathematical form in which to 

express these relations. Then these correlation functions should be 

calculated for the molecular motion. Unfortunately, no exact method 

of evaluating these correlation functions is known, since we have not 

yet been able to find exact solutions to the quantum equations of motion 

for an N-particle system. Therefore, numerous approximate methods 

have been used2' 3, 4 to evaluate correlation functions of some molecular 

properties. Recently the correlation functions of permanent electric 

dipole in carbon monoxide molecules1 and the correlation functions of 

anisotropy of polarizability tensor of N2 and liquid CH4 
5 have been 

evaluated from the vibration-rotation bands of infrared spectra and the 

Raman spectra, respectively. The observed time dependence differs 

substantially from the simple exponential form usually assumed in 

nuclear resonance problems. Usually the phenomenological inter­

pretation of several experiments for the molecular rotational study has 

been based almost universally on a diffusion equation. When the 

molecular reorientation takes place through small angular steps, a 

rotational diffusion equation should be a reasonable basis for the dis­

cussion of such experiments. Solutions to rotational diffusion equations 

were given by Debye 6 and Furry 7 for spherical molecules and by 

Perrin8 and Favro9 for nonspherical molecules. Gordon1' lO has 

argued that while the rotational diffusion model appears plausible when 

applied to large molecules in liquids, the assumption of small angular 

steps is not obviously applicable to small molecules. He has eliminated 

the assumption of small-angle diffusion and has proposed a generalized 

model of rotational diffusion process. His model has given a reasonable 
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interpretation of the correlation function of electric dipole moment in 

CO experimentally determined from infrared spectra. Independently of 

this Shimizu11 has approached the problem of molecular reorientation 

from two limiting cases--the Debye limit and the inertial limit. In the 

Debye limit molecules are assumed to be immersed in a continuous 

homogeneous medium which gives a negative torque to the rotation of 

the molecules through a contact friction between the medium and the 

surface of molecules. Because of this torque molecules are supposed 

to rotate by very small angle at one time. On the other hand, in the 

inertial limit all molecules are supposed to rotate with relatively 

definite angular momenta between intermolecular collisions. There­

fore, in the Debye limit, molecular states are well characterized in 

terms of the molecular orientations with respect to a space fixed 

coordinate system, while the angular momenta must be used in the 

inertial limit. Shimizu has discussed the molecular reorientational 

process in both limits and expressed the correlation functions for 

intermediate cases as a linear combination of correlation functions for 

two limiting cases. However, time-dependence of coefficients in this 

linear combination should be studied and theorized in a more detailed 

and systematic manner. As for large molecules like benzotrifluoride 

we simply presume that the assumption of small-angle diffusion is 

valid in their liquid state so that the Perrin-Favro rotational diffusion 

equation is applicable. Correlation functions involving the molecular 

orientation alone can be calculated by making use of this equation as we 

shall see later. Now, what about the correlation functions involving 

angular momenta or both angular momenta and molecular orientation? 
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An intuitive idea that comes into our attention is that we may be able to 

apply a Langevin-type equation12 , 13 to the molecular reorientation 

process. However, there are some troubles we encounter if we try to 

apply the translational Brownian motion theory to the rotational case. 

In the translational case the velocity v of a particle is the derivative 

with respect to time of its position. However, the angular velocity (or 

momentum) of a molecule, w (or J ), is not the derivative of a vector 

that can be used to specify the orientation of the molecule, as is well 

known. 14' For the convenience of discussion let us define conditional 

probability densities as follows: 

and 

W(v, r, t; Vo' ro' to) = probability density that a particle 

has velocity v and position r at time t if it has 

velocity Vo and position ro at time to ' 

-- •➔ -W(J, n, t; J 0 , n0 , t 0 ) = probability that a particle has - -angular momentum J and orientation n at time t - -if it has angular momentum J 0 and orientation n0 

at time t0 • 

(4.1-1) 

(4. 1-2) 

In the case of translational Brownian motion it has been shown 

that W(v, ·r, t; v0 , r0 , t 0 ) can be obtained from the Fokker-Planck 

equation with the aid of the Langevin equation. 12, 13 However, in the 
_,_ - -

rotational case it is not possible to obtain W( J, n, t; J 0 , n0 , t 0 ) in a -similar manner, since as we have already mentioned n is not related 
~ - -4 - ~ 

to J as r does to v. As we have seen in Chapter III, by adopting the 
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separability approximation which requires 

(4. 1-3) 

~ -+ --+ -+ 
we can get out of dilemma, where W(J, t; J 0 , t 0 ) and W(fi, t; n0 , t 0 ) -are the conditional probabilities corresponding to the change of Jand 

n, respectively. In fact, Hubbard14 and Atkins15 have used the 

separability approximation to evaluate terms like (3. 4-42). The validity 

of this approximation is assured if the correlation time for the change 

of angular momentum is much different from that for the orientational 

change, that is, T J « T n or T J » T n· In the limit of small-angle 

diffusion (Debye limit) T J is much shorter than T n· In many molecules 

it is known that T J is of the order of 10-14 sec while T n is of the order 

of 10-
12 

sec in their liquid states far below critical temperature. As 

temperature rises, molecules rotate more and more freely so that T J 

increases. On the other hand if the angular momentum is maintained 

for a longer time, then the molecular orientation changes in a shorter 

time, i.e . , T n decreases. Hubbard14 showed that T J and TQ are 

related to each other by the relation 

(4. 1-4) 

for a spherical molecule, where I is the moment of inertia of the 

molecule. The relation (4. 1-4) is valid only under the condition 

T J « T ~V and its validity is doubtful if the condition T J « T n fails . 

Actually as the critical temperature is approached, T J and T n become 

comparable so that the relation (4.1-4) is no longer valid. In this 
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situation molecular reorientation processes deviate appreciably from 

the character of Brownian motion, and the Langevin-type equation no 

longer works. For the case of dilute hydrogen gas Bloom and 

Oppenheim16- 19 has developed a detailed theory and expressed T J and 

T n in terms of intermolecular forces. No theory so far has been pro­

posed to evaluate the correlation functions involving angular momentum 

or molecular orientation or both in the region where the condition 

T J « T n or T J » T n fails, and this question will still remain formid­

able even in the future. In this chapter we restrict ourselves to the 

case where the condition T J « T n is valid so that the Brownian motion 

theory can be applied to the molecular reorientational process in the 

liquid state. One more important thing we have to note here is that for 

molecules like cp-CF3 molecular reorientational process is no longer 

isotropic. In this case we cannot use the isotropic Langevin equation 

to evaluate the angular momentum correlation functions since a mole­

cule suffers anisotropic frictional torque when it rotates. In this 

chapter we generalize and extend the Langevin equation of motion so 

that we can take into account not only the anisotropy of overall rotation 

but also the internal rotation. Recently experimental evidences of 

anisotropic molecular reorientational process in liquid phase have been 

accumulated, 20 -23 and their interpretations are all based on the 

anisotropic rotational diffusion equation. For this reason we will 

review and discuss the Perrin-Favro anisotropic rotational diffusion 

equation of Brownian motion. Before going into further detail we 

review and introduce some stochastic concepts for better understanding 

of the problem of molecular dynamics. 
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4. 2 Markov Process and Fokker-Planck Equation13 

(a) Markov process. 

A random process, y(t), defines a variable y which does not 

depend in a completely definite way on the independent argument, t. 

The representation of the process is the set of states available to the 

process for each value of the independent variable (argument). Thus, 

the process is said to be discrete if the set of states can be put into one 

to one correspondence with the positive integers, and continuous if it 

cannot. The independent variable may also assume discrete, or con­

tinuous values. The order of a random process is a measure of its 

complexity. In general, the random process is completely specified by 

set of probability distributions: P1(y14) dy1 is the probability that y is 

found in the range (Yi, y1 +dy1) at time ti, where y n = y(tn), P2(Yi, ti; Y2, t2) 

dy1 dy2 is the joint probability that y is found in the range (y1, y1 +dy1) at 

4 and in the range (y2, y2 +dy2 ) at ~' P3 (Yi, t1; y2 ~; y3t3 ) dy1 dy2dy3 is the 

joint probability that y is found in the range (y1, y1 +dy1) at 4, in 

(Y2, Y2+dy2 ) at t2, and in (y3 , y3 +dy3 ) at t3 , and so on. 

These probability distributions must satisfy the following con­

ditions: 

(a) P n ~ 0 , 

(b) P (y1t1; ... ; y t ) is a symmetric function of the set of n n n 

variables Yu ... , y n' and 

(c) Pk(y1t1; ... ;yktk) = J. .. J Pn(Y1, 4; ... yntn)dyk+i ... dyn, 

since each function P must imply all the reduced functions n 
(4. 2-1) 
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The process may be called a pure random, or completely ran­

dom process if P2(y1ti;y24) = P1(y1ti)P1(y24), because the successive 

values of y are not correlated. Thus, in the case of a pure random 

process all the information about the process is contained in P2. If all 

the information is contained in P2, the process is called a Markov 

process. For a Markov process it is convenient to introduce the con­

ditional probability K1 (y1 ti I y24)dy?. that y is found in the range 

(y2, y2+dy2) at 4, if y had the value y1 at ti. Accordingly one has 

(4. 2-2) 

K1 must obviously fulfill the relations 

K1(Y1ti IY24) > 0 ' 

f Ki (Y1 t1 \ Y24)dy2 = 1, and 

J pl (yl ti) Kl (Y1 ti I Y24)dyl = pl (Y24) (4.2-3) 

If the statistical character of the process is invariant to a change 

of the origin of the time or to a translation in time, that is, for example 

pl (Y1 ti) = pl (yl) , 

P?.(Y1ti;Y24) = P2(Yi,Y2;4.-ti) , (4. 2-4) 

etc., the process may be called a stationary process. 

The first moments of a Markov process are defined by 

and 

(4. 2-5) 
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If the process is stationary then by Eq. (4. 2-4) {y1) = {y2) . 

The second moments are 
/ 

• k 
= ff (Y1 -{y1) )J (y2 -{y2)) P2(Y1t1;Y24)dy1dY2 

(j+k = 2) (4. 2-6) 

There are three second moments. The moments µJ~> and µ~2
2> are the 

mean-square deviations, and are equal if the process is stationary. 

The moment µn> is related to the autocorrelation function of y, 

If the process is stationary, Eq. (4. 2-7) simplifies to 

11<2) 
f-"'11 

µ (2) 
20 

= 
µ (2) 

11 

// (2) 
f-"'02 

(4. 2-7) 

(4. 2-8) 

Consider a special case of Eq. (4. 2-1) for which n= 3, that is, 

If y is a Markov process, then by definition we have 

P3(Y1 tl; Y24; y3t3) = pl (Y14) Kl (Y141 Y2½) ~(Y14; Y2½ I y3t3) 

= p 1 (y 1 4) Kl (y 1 tl I y 2 ½) Ki (y 2 ½ I y 3 t3) 

(4. 2-9) 

(4. 2-10) 

and substitution of this in Eq. (4. 2-10), followed by cancellation of 

P1(y1t1 ) from both sides, yields 
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(4. 2-11) 

Equation (4. 2-11) is Markov's integral equation, sometimes referred 

to as the Chapman-Kolmogorov equation. If the process is stationary, 

Eq. (4. 2-11) may then be simplified to 

(4. 2-12) 

Equation (4. 2-12) expresses the fact that the probability that the 

variable is in the state y at time t is the sum of the probabilities that 

it was in state y O at some time t 0 (< t) and underwent a transition from 

y O to y in the interval (t-t0 ). Such a statement is, of course, true of 

any random process. The Markovian nature of the process is expressed 

in the assumed form of Ki- Then, let us consider the passage of 

(4. 2-12) to a differential equation which governs the time variation of 

distribution functions. 

(b) Fokker-Planck equation. 

Continuous Markov processes occurring in physical systems 

often fall into one of two limiting cases. They may be subjected to 

frequent small changes or to large discontinuous changes. In the 

small change case a differential equation for the distribution function 

is obtained in the following way. We suppose that the changes in the 

variable occur at intervals of the order of Tc' while the distribution 

function changes in times of the order of Tr· If the changes of the 

variables are very small compared to typical values of the variable, 

and if the changes are very rapid, then we may assume that these two 
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time scales to be widely separated; in other words we may expect that 

a time T exists which satisfies the inequalities 

T « T << T 
C r (4. 2-13) 

With these restrictions in mind, we may write Markov integral 

equation for a stationary process as 

(4. 2-14) 

The assumption of small changes in the variable during T may be 

exploited by writing y -y O == t:..y and changing the variable of integration 

in Eq. (4. 2-14) to Ay. The negative sign arising in the relation between 

the differentials dy0 == - dt:..y is included in an inversion of the limits, 

and we obtain 

(4. 2-15) 

where we have introduced the notation 

(4. 2-16) 

w(y-t:..y I t:..y; T) can be regarded as the probability that y will 

undergo a transition t:..y in an interval T starting from y - t:..y. 

Ki(y1 !Y; t+'T) is now expanded in a Taylor series in powers of T 

about Ki (y 1 I y; t); by virtue of the right-hand inequality ( 4. 2 -13) the 

expansion may be truncated after the second term. VJe also expand 

Ki(y1 !y-t:..y;t)w(y-t:..y !t:..y;T) in powers of 6.y about Ki(y1 !y;t) 

'11 (y I Ay; T) == Ki w, and we obtain 
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2 

= J [ K:t'1r - 6-y at (K:tw) + ½ (6.y)2 a:2 (K1w) + ... ] d~y 

(4. 2-17) 

where we have used 

J w(y I 6-y; T)dAy = 1 , (4. 2-18) 

and (···) 1 is the average of the enclosed variable conditional upon the 

given initial value of y: 

(4. 2-19) 

In order that Eq. (4. 2-17) be of use, T cannot appear explicitly. The 

time T will not appear in the equation when the first n moments are 

proportional to T, while all other moments are proportional to r or 

some higher power of T; the constant of proportionality in the pre­

ceding is of order T ;1, so that high-order moments are at least of 

order (T /Tr) « 1 in relation to the first n terms. Writing, 

lim 
(~y)l 

a(l> (y) = 
r-0 T 

(T»T ) 
C 

and 

lim 
((~y/)1 

a< 2 >(y), etc. (4. 2-20) = 
T-0 T 

(T»T ) 
C 



171 

Eq. (4. 2-17) becomes 

(4.2-21) 

If y has more than one component, Eq. (4. 2-21) takes the form 

(4. 2-22) 

where ~ is the gradient operator in y space, and a<1 >, and *<2
> are 

the first and second moments of '1t, respectively. Equations (4. 2-21) 

and (4. 2-22) are known as the Fokker-Planck equations; their solutions 

are the transition probabilities K1 , but they may also be written in -terms of the absolute probability P1 ( y; t), by using the relation 

(4. 2-23) 

for then 

(4. 2-24) 

with the initial condition P1 ( y; O) = o(y -y;_). 

If the system is not subject to external forces (or other con­

straints), the first moment may be assumed to vanish in many cases. 

For example, if !).y indicates the displacement of a Brownian particle, 

(!).y)11 the average displacement, vanishes without any external forces. 

Moreover, if ( (!).y !).y ))1 is proportional to T over a range of T suf­

ficiently large that the quotient 
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D= .,... 
T 

(4. 2-25) 

can be said to be sensibly independent of T, we see that Eq. (4. 2-44) 

becomes a diffusion equation 

(4. 2-26) 

All the diffusion equations (translational or rotational) are 

nothing but a special form of Eq. (4. 2-26). For example, the Perrin­

Favro rotational diffusion equation which is going to be discussed in 

the next section can be derived from Eq. (4. 2-26) by replacing y by -n (= e, cp, 1/J) where e, cp, and 1/J are the Euler angles which specify a 

body-fixed frame with respect to the stationary (or laboratory) frame. 

Thus we have seen that in the small change case the differential 

equation (4. 2-22) determines the distribution function. The opposite 

limiting case, in which large discontinuous changes in the variable take 

place, can sometimes be included in the Fokker-Planck scheme if the 

moments behave suitably. This is not usually the case, however. If 

we assume that a time interval T exists, which is the time between the C . 

transitions undergone by the variable, but during which the change in 

K:i_ (y1 I y; t) is small, then we can immediately write down a master 

equation. Since K:i_ (y I y O ; T) is normalized in y O , we have upon expanding 

K1 (y1 IY; t+r) in a Taylor series about K1 (y1 ly; t) to first order in T, 

(4. 2-27) 
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lim ; K1 (y0 !Y; T) 
T-0 

(T»T C) 

(4. 2-28) 

is the number of transitions from y O - y in unit time. The normaliza­

tion of :Ki(y0 ly; r) now requires 

f 4> (y O I y )dy = lim } = / , 
T-T C 

C 

so that the total transition rate out of y O is simply the inverse of the 

time between transitions Tc· Multiplication of equation (4. 2-27) by 

P1 (y1 ; t1 ) and use of Eq. (4. 2-23) leads to 

(4.2-29) 

In developing Eqs. (4~ 2-23) and (4. 2-29) the conjectured char­

acteristics of the two processe imposed conditions on the transition 

probabilityw(yl.6.y;r) and transition rate <Ii(y 0 IY), respectively. Thus, 

w(y I .6.y; r) is assumed to be sharply peaked about 6.y = O, and to be 
l 

negligibly small for values of 6.y comparable with (y) (or with (y2
) 2 if 

(y) = O), while «I>(y O I y) is not sharply peaked but is approximately 
l 

uniform over a range of (y-y O) comparable to (y2) 2 . The treatment 

for the two limiting cases may be easily extended to include processes 

which exhibit both types of behavior, provided that the underlying 

mechanisms of the two types of transition occur on the same or similar, 

time scales. In fact we can show that 
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2 

- _Q_ (a<1 >p ) + 1.. _a_ (a c2>p1) 
ay i 2 ay2 

(4. 2-30) 

We must emphasize that Eq. (4. 2-30) is only applicable to a process in 

which P1 changes by only negligible amounts during a transition. The 

three special cases discussed here exclude a large class of processes 

of interest; namely, those in which P1 changes sufficiently fast so that, 

for instance, T c(a2 P1/at2) cannot be neglected in comparison with 

(aP1/at). In the next section we restrict our attention to the case in 

which Eq. (4. 2-26) is valid. 

4. 3 Rotational Brownian Motion of an Asymmetric Rotor 

As in the case of translational Brownian motion13 we adopt two 

different approaches to the problem of rotational Brownian motion. 

One approach is to obtain the probability distribution function from 

Eq. (4. 2-26) and evaluate the displacement of particle orientation; the 

other is to start from an equation of rotational motion similar to that 

of the Langevin equation for translational cases. The fir st approach is 

very convenient for evaluation of the correlation functions involving 

only the orientation of a particle while the second method is more 

adequate for evaluation of the correlation functions involving angular 

momenta only. As we have mentioned earlier, the separability approx­

imation is helpful to evaluate the correlation functions involving both 

orientation and angular momenta of the particle under consideration. 

In the final stage two approaches are made connected to each other via 
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Stokes-Debye-Einstein relations. The relation (4. 1-4) is nothing but a 

result from this connection between these two different approaches. In 

this section we shall discuss both approaches and show how to evaluate - --the correlation functions involving n, or J, j, or both. 

(a) Perrin-Favro rotational diffusion equation and orientation 

correlation functions. 

The dynamics of rotational Brownian motion of a sphere around 

a given axis has been discussed briefly by Einstein in one of his early 

papers. 24 As we have previously mentioned, solutions to rotational 

diffusion equations were given by De bye 6 and Furry 7 for spherical 

molecules and by Perrin8 and Favro9 for nonspherical molecules. 

Here we will reconsider the anisotropic rotational Brownian motion 

which Perrin and Favro treated; however, we will not duplicate the 

derivation of rotational diffusion equation for nonspherical molecules, 

but directly start from Perrin 's diffusion equation for a nonspherical 

rigid rotor 

(4. 3-1) 

where q(q1 , Cb, q3 ) is the coordinate which describes the rotation, P 

is the probability density of the diffusion, a~ is the transformation 

coefficient from the infinitesimal rotation ½ b.. ~i around the principal 
1 

axis xi to qA, g2 is the volume element of the coordinates, i.e. , 
1 

[det(gAµ)] 2, where the symbol gAµ is the line element defined by 
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(4. 3-2) 

and Di is the diffusion constant for the rotational Brownian motion about 

the principal axis xi and is related to fi' the friction coefficient about 

x, via 

D. = kT/f. . 
1 1 

(4. 3-3) 

We have to note here that Eq. (4. 3- 1) has been derived under the 

assumption of small-angle jump and is nothing but a special form of 

Eq. (4 . 2-26). 

In terms of the Euler angles (0, cf>, If;), which specify the body­

fixed frame in which the diffusion tensor D takes a diagonal form with 
"' 

respect to a space-fixed frame (Eq. (4. 3-1) may be rewritten as 

(4. 3-4) 

where the operators, P1 , P2 , and P'.-l, are defined as* 

(4.3-5a) 

(4. 3-5b) 

and 

(4. 3-5c) 

* Note: Definiti~n of the Euler angles which we adopt here is 
that listed in Tinkham, :::, thus differing from that described by 
Goldstein. 
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with 

P . a 
0 = -l a0 ' and Pc/J = -i~ (4. 3-6) 

Favro has expressed Eq. (4. 3-4) in terms of the Cayley-Klein 

parameters21 rather than the Euler angles. Coincidence of the Euler 

angle expression with that of the Cayley-Klein parameters can be seen 

if we note that (Appendix IT) 

r = cos 0 cos 1P + <P 2" 2 

nx = sin e sin 1/J ... <P 
2 2 

n -y - sin e cos 1/J - <P 2" 2 ' 
and 

Q -z - cos; sin Y ' 
(4. 3-7) 

where r, nx, Sly, and nz are the Cayley-Klein parameters associated 

with the given rotation. 

Comparison of Eq. (4. 3-4) with the time-dependent Schrodinger 

equation for the rotational motion of an asymmetric rotor (without any 

internal rotational degree of freedom) 

(4. 3-8) 

-enables us to understand that P(n; t) takes the form 

P(n; t) = :E an<Pn(n} exp(-Wnt) , 
n 

(4.3-9) 

where <P
11
(n) and W

11 
arc, respectively, the eigenfunction and 
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corresponding eigenvalue of the operator 

,.. 

1J = D1 J>i + D2P: + D3 ~ • (4. 3-10) 

- ,,.._ Let us assume that all the eigenfunctions q,n(n) of .f:f have already been 

orthonormalized, and let the initial condition be 

- -P(Q;t=0) = o(Q) . (4. 3-11) 

Then, we have 

P(?to; t) = ~ <p *(o) <p (n) exp(-Wn It I) n n n 
(4. 3-12) 

- - -where we have inserted 0 in P(n; t) to indicate that at t= 0 n takes -the orientation 0(= 0, <!>, 1/J = 0). P1 , P-i, and P3 can be seen to play 

the same role as the angular momentum operators in the rotational 

Hamiltonian for an asymmetric rotor. Let us introduce a new operator 

defined by 

(4.3-13) 

and a new notation given by 

(4.3-14) 

Then, iJ may be rewritten as 

A 

.1J = n+p2 + (D3 - n+)~ + n-(Pi - ~) . (4. 3-15) 

As in the case of asymmetric rotor problems, we introduce an 

additional angular momentum operator Pz defined by 

(4. 3-16) 
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The operator set (I>2, P::i, Pz) will provide the complete description of 

the system, and the eigenvalues associated with the set are given by 

p2 - j(j+l) ' j = o, 1, 2, 3, . .. ' 00 

P3 ~ m m = -j, -j+l, ... , j-1, j 

Pz- n n=-j,-j+l, ... ,j-1,j , (4 . 3-17) 

and the eigenfunctions corresponding to the set of eigenvalues are com­

plete and nondegenerate. 

Now, let us introduce a new set of variables defined as 

and 

in terms of which we obtain 

2 1 2 1 2 
p2 = - ¾ [(1 -p2) _a_+ - (1 -3p2) _Q_ + (1 - p2) _a_ + - _a_] 

arr P ap a02 rr a<I> 2 
' 

and 

and 

P 3 - Pz - i ___L - ae 

The raising and lowering operators defined as 

(4 . 3-18) 

(4. 3-19) 

(4. 3-20) 

(4. 3-21) 

(4 . 3-22) 

(4. 3-23) 
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are now introduced, where PX and Py are the components of the vector 
-> 
P(P1 , P2 , P3 ) along the X and Y axes in the space-fixed coordinates 

system, respectively, and let the eigenvalues of the operators P3 + Pz 

and P3 - Pz be given as 

µ = m + n 

and 

v = m - n . (4 . 3-24) 

Operators p± and P'±, when applied to an eigenfunction 1/Jj;n of (4. 3-17), 

produce the following results: 

(4. 3-25) 

and 

(4. 3-26) 

Now, putting 1/Jj;n = '1;v, we obtain from (4. 3-17), (4. 3-19), 

(4.3 -20), and (4. 3-21) 

wfl ;v = gfL;v (p) exp(-iv0) exp(iµq,) , 
J J • 

(4. 3-27) 

where gf-v (p) is the solution of 

+ 4j(j +1)]. gp.;v = 0 . 
J 

(4. 3-28) 

Equation (4. 3-28) can be converted into a more easily recognized form 

by making the substitution 
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(4.3-29) 

Substitution of (4. 3-29) in (4. 3-28) gives us 

(4. 3-30) 

where 

a=[(\µ\+ \vl)/2+j+ l] , b = [(\µ\ + \11\)/2 - j) , 

and c = ( \ µ \ + 1) . 

Equation (4. 3-30) is the well-known hypergeometric equation 

satisfied by the hypergeometric function 

F(a b c· t:) _ i3 (a+k-1)! (b+k-1)! (c-lp ~k 
' ' '"., - k=o (a-1)! (h-1)! (c+k- )! kf 

Thus, the function gfl; 11 may be rewritten as 
] 

gf;v = Af;11(1-p2)½l11IP lµIF([½(\µ\ + \11\)+j+l]; 

[½(\µ\ + \11\)-j] ;( \µ\ + l);p2) • 

(4 . 3-31) 

(4. 3-32) 

The nonvanishing constants Ap.;v may be determined by normalizing one 
] 

function, say gjj; 0
, and then using (4. 3-25) and (4. 3-26) to determine 

the ratios of the various constants by direct application of p± and P'± to 

(4. 3-32). The result has been given by Favro as 

1 

AP- ;11 = (_:_g_) µ eill7T /2 (21 + F2 
J 1µ1 1rµ! 

( r j + ½ ( I µ I + I II I ) J ! (j + ½ ( µ - v I ) J ! ) ½ 
X [ j - ½ ( µ + ll ) ] ! (j - ½ ( µ - II ) ] ! • 

(4. 3-33) 
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Therefore, when D1 = D~,., we can write 

(4. 3-34) 

The expression (4. 3-34) is exact since wf ;vis available in ana­

lytical form when D1 = D2 . What if D1 ;z!: D2 ? In this case P3 does not 

commute with iJ, and therefore 1/!j;n is no \onger an eigenfunction of D. 
In fact, a complete set of eigenfunctions of J3 is not available in any 

analytical form if D1 ;z!: D2 • However, in many cases one needs only 

those eigenfunctions with low values of j. Those eigenfunctions and -
corresponding eigenvalues may be obtained by diagonalizing Jj directly 

with 1/!j;n as the unperturbed basic set of fW1ctions. In the 1/!j;n repre­

sentation the matrix elements of iJ take the form 

(4. 3- 35) 

and 

1 

x [j(j+l) - (m±l)(m±2)]}2 . (4.3-36) 

"' 
Expressions (4. 3-35) and (4. 3-36) show that JJ never mixes 

even and odd values of m so that the secular equation may be factored 

into an even and odd part by separating these values in the secular 

determinant. A further factorization may be effected by introducing a 

new set of basis functions defined as 
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m>O 

m < 0 

and 

(4. 3-37) 

It is then observed that there are no matrix elements connecting 

positive values of m with negative values of m in the wf ;n repre­

sentation. This, combined with the even-odd factorization, produces 

a four-fold factorization of the secular equation. For even j there are 

three factors of degree j/2 and one of (j/2 + 1) while for odd j there 

are three factors of degree (j + 1)/2 and one of degree (j - 1)/2. This 

factorization makes the solution of the secular equation relatively easy 

for low values of j . The eigenfunctions and eigenvalues thus obtained 

can then be substituted into the expression (4. 3-12) to obtain an 

approximate expression for P(Q,~O; t). Functions wj ;n, eigenfunctions 

and eigenvalues of the operator J), and P(n, O; t) up to j=3 are tabulated 

in Table V, VI, and VII, respectively. Wigner matrix elements 

oC>~k(n) can be expanded in terms of wf ;n and this is also tabulated 

in Table VIII. The expanded form of 15 ~k does not involve any term 

of-+f ;n in which j > J. Therefore, we need terms up to j=2 to expand 

!5 ~N in terms of wf ;n_ 

Now, we consider how to evaluate the correlation function of 

the form 
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Consider a reference frame S' fixed on the molecule containing the 

spin (or spins) under consideration, and let the orientation of S' with 

respect to the laboratory coordinate system S be specified by the -Euler angles n0 (= ¢0 , 00 , 1/) 0 ) at t= 0 and by another set of Euler angles -Q(= cp, 0, 1/J) at a later time t. The Euler angles specifying S' at time 

t with respect to S' at t= 0 are !2'(= ¢', 0', 1/J'). Then it follows from 

properties of fl (n) matrix27 that .,.._ 

so that 

Pl' (J) ~ " P<(J) , Lf (J) ) 
rfJ M'N(O) = ~II .,u M'M" (Q ) M" N(n° ' 

<[lf~iN,<n)J t [.11~k<mJ o > 

= ~ { J JJ~}L(O') P(Q'' O;t)d
30'} 

L 

(4. 3-38) 

(4. 3-39) 

- -where p(00 ) is the probability density that S' has the orientation n0 

at time t = 0. If all the orientations are assumed to be equally probable -at a given time, p(Q 0 ) may be written as 

(4.3-40) 

Substitution of (4. 3-40) in (4. 3-39) and use of two relations 

and 
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TABLE V. Expressions for v~;n 
J 

j = 0 \J,o;o 
0 = (7Tfl 

j = 1 'Vl ;±1 
1 = (1Tf1(3/2)½[p2 e±2i'1> - (1-p2) e±2i0] 

l•O -(1Tf1(3)½ ip(l ... pz)½[ei(cl>-0) _ e-i(<I>-0)] V1' = 

0·±1 (7T f\::i:1)(6)½ ip (1-p2)½ e±i(<I> +0) '111' = 

o• o 1 

'¥1' = (7Tf
1 (3)2 (1-2p2) 

-1 '±1 (7Tf1(±1)(3/2)½ [ p2 e±zi<I> + (1-p2) e±2 i8J '¥ ' = 1 

w--1;0 
1 = -(1Tf1(3)½ ip(l-p2)½[ei(<I>-0) + e-i(<I>-0)] 

j=2 w!;±2 = (1r f1(5/2)½ [p4 e±4i<I> + (1-p2)2 e±4i8 ] 

'¥2±1 
2 = (7rf1(5/2)½ i(l-p2)½ p((l-p2) e=i=i(<I>-30) _ P2 e±i(3<I>-0)] 

w!;o = -(1Tf\l 5)½ (l-p2) p2[e2i(<I>-e) + e-2i(4>-0)] 

'¥1;±2 
2 = (1r f1(5/2)½ i(l-p2)½ p [/ e±i(3 cI,+0) - (l-p2) e±i(<I>+30)] 

¥ 1;±1 
2 = (1Tf1(5/2)½ [(3-4p2) p2 e±zi<I>_ (1-4p2)(1-p2

) e±zie] 

w;;o = -(1Tf1(15)½ i(l-p2)½ p(l-2p2)[ei(<I>-e) + e-i(<I>-e)] 

'¥i ;±2 = -(1rf1(30)½ (1-p2) l e±2i(<I>+0) 

WO ;±1 
2 = (7Tf1(30)½ i(l-/)½ p(l-2p2) e±i(4>+e) 

'Vo ;o 1 

= (7Tf
1 (5)2 (1-6p2 +6/) 2 

v;1;±2 = (7Tf1(±1){5/2)½ i(l-p2 )½ p[/ e±i(3<I>+e) + (1-p2) e±i(<I>+:38 )] 

w;1;±1 = (7Tf1(±1)(5/2)½ [(3-4p2) p2 e±zi<I> + (l-p2 )(1-4p2) e±zie] 

w;1;0 -- -(7Tf1(15)½ i(l-p2)½ p(l-2p2)[ei(<I>-e) - e-i(<I>-e)] 
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TABLE V. (Continued) 

'11-2 ;±2 
2 = (1rf1(±1)(5/2)½ [p4 e±4i'P - (1-p2)2 e±4i0] 

'11-2;±1 
2 = (1Tf\+1)(5/2)½ i(l-p2)½ p[p2 e±i(3<p-0) + (l-p2) e=Fi(<p-30)] 

w-2;O 
2 = -(1rf\15)½ (1-p2) p2[e2i(<P-0) _ e-2i(<p-e)] 

j=3 '113;±3 
3 = (1Tf1(7/2)½ [p6 e±6i4>_(1-p2)3 e±aie] 

'113;±2 
3 = -(rr f\21)½ i(l-p2)½ p[p4 e±i(5<I>-0) + (l-p2)2 e +i(<P -50 )] 

'113 ;±1 
3 = -(7T r\105/2)½ (1-p2) p2[ p2 e±2i(2<I>-0) - (1-p2) e +2i(<P -20)] 

'113;0 
3 

= ('1rf\7o)½ i(1-p2l p3[e3i(<P-0) + e-3i(<I>-0)] 

'112;±3 
3 = (1Tf1(21)½ i(l-p2)½ P [p4 e±i(5<p+0) + (l-p2)2 e±i(<l>+50)] 

'1?;±2 
3 = (7Tf1(7/2)½ [p4(5-6p2) e±4i4> + (1-l)2 (1-6p2) e±4ie] 

w2;±1 
3 = -(1r f 1(35)½ i(l-p2)½ p [/(2-3p2) e±i(3<P-e) 

- (l-p2)(1-3p2) e+i(<I>-30)] 

2·0 -(1r )-1(105 )½ (1-p2) p2 (1-2p2)[ e2i( 4> -e) + e -2i( <I> -0 )] '11' = 3 

+1;±::1 
3 = -(1Tf\105/ 2)½ (1-p2) p2[p2 e±2i(2<P+0) - (1-p2) e±2i(<P-t-20)] 

'\_[,1;±2 
3 = (1Tf1(35)½ i(l-p2)½ p(p2(2-3p2) e±i(~<P+e) 

- (1-p2)(1-3p2) e±i(<I>+s0)i 

'111 ;±1 1 1 4 "<I> 
3 = (1rf (7/2)2 [p2{6-20p2+15p) e±21 

-(1-p2)(1-10p2 +15/) e±
2
i8 ] 

1·0 -(1rf\42)½ i(l-p2)½ p(l-5p2+5/)(ei(<I>-e) +e-i(<I>-0)] '1.i'' = 3 

WO ;±3 
3 = -(1Tf12(35)½ i(l-p2)i p3 e±3i(<I>+0) 

'¥0 ;±?. 
3 = -(1rf1(210)½ (1-p2) p2(1-2p2) e±2i(<I>+e) 
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TABLE V. (Continued) 

'¥0 ;±1 
3 

o ;o 
'¥ 3 

'¥-1;±2 
3 

'Y -1;0 
3 

w-2;±3 
3 

'1i' -2;±2 
3 

'Y-s;±2 
3 

= 

= 

= 

(77f12(21)½ i(l-p2)½ (1-5p2+5p4
) p e±i(<I>+e) 

1 

(77f\7)2 (1-12p2+3op4-2op
6
) 

(77 f\F1)(105/2)½ (1-p2) l[ p2 e±2 i(2<I>+0) 

+ (l-p2) e±2i(<I>+20)] 

= (77 f\±1)(35)½ i(l-p2)½ p(l(2-3p2) e±i(3 4>+0) 

+ (1-p2)(1-3p2) e±i(cI,H6j 

1 1 .<I> 
= (77f (±1)(7/2)2 [p2(6-2Op2 +15/) e±?.l 

= 

= 

= 

+ (1-p2)(1-10/+15p4) e±
2
i8 ] 

-(77f\42)½ i(l-p2)½ p(l-5/ +5/) [ei(<I>-e) _ e -i(<I>-0)] 

(77 f 1(±1)(21)½ i(l-p2)½ p[p4 e±i(5<I>+e) - (1-p?.)2 e±i(<I>+50)] 

(77f\±1)(7/2)½[p4 (5-6p2) e±4i<I> - (1-p2)2 (1-6p2
) e±4iG] 

= (77f1(=F1)(35)½ i(l-p2)½ p[p2(2-3p2) e±i(3<I>-0) 

+ (1-p2) (1-3p2) e=Fi(<I>-s0)] 

= -(77f1(105)½(1-p'2) p2(1-2p2)[ e2i(<I>-0) _ e-2i(<I>-0)] 

= (77f1(±1)(7/2)½ [p6 e±6 i<I> + (1-lt e±BiG] 

= (77 f\F1)(21)½ i(l-l)½ p[p4 e±i(5<I>-0) _ (l-p2)2 e =Fi(<l>-50)] 

w;3 ;±1 = (1rf\:Fl)(l05/2)½ (l-p2) p2[p2 e±2i(2<I>-e) 

+ (l-p2) e=F2i(<I>-?.0)] 

w;3;o = (77fl(7o)½ i(l-p2)½ p3[e3i(<I>-0) - e-3i(<I>-0)] 

*Note the following property of 'Jij;n: 

,r,~;n* = ~ (-l)m-n ,r,~n;-n 
J I 111 I J 
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TABLE VI. Eigenfunctions and Eigenvalues oflJ up to j = 3 

j = 0 

j=l 

j=2 

j=3 

T, o;o 
'i- 0 

Eigenfunctions 

w1;±n 
1 

T, -2;±n 
\_i_,2 

'111 ;±n 
2 

Eigenvalues 

0 

6D + 26. 

6D - 26. 

3(D + I\) 

12D 

D' + 2D.' 

D" + 2ti' 

D" - 2~' 

D"' + 2D!" 

D"' - 2ti" 

*In the above table the following notations are adopted: 
1 

D =½(Di_ +D2+DJ, a= (D~+n;+n;-D1 D2 -D3D3 -D1D3 )°2 , a± = 2a ± 3(n~-D), 
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TABLE VI. (Continued) 

± =i= .! ± ± .! 
ai = (a /4a)2, ~ = ±(a /4a)2, D' = 3(5D-D2), D" = 3(5D-D1), 

1 

D'" = 3(5D-D3), a'= (4n:+n!+4D~-D1D2-D1D3-7D2nJ2, t{' = (D~+4D~ 
1 1 

+4n:-n1D2-D2D3 -71\D3f2, tf.'' = (4~+4D~+D~-I\D2-J\D3-7J\D?.)2 , 

[3'± = [(3D++9D3)-(D'±2a')]/v15 D-, {3 11 ± = [(11n++D3-6D-)-(D"±2tf.')]/ 

,/15 D-, /l'"± = [12D+ -(D'"±28'")]/2,f15 D-, b,'.± = C+;,±,) ½, 

b'± = ± [3 2 ~ ± = ___ 2 h-''± = ± • 2 
( 

,±?.) .! ( 1 )!. ( /3"±?. ).! 
?. 1+{3'±?. ' 1+{3 11 ±?. ' 

2 
1+{3"±2 

' 

( 
1 

) 
!. ( /3'"±2 ) ½ b{'± = --- 2 b",± = ± ___,__ . 

1+,8'"±2 ' 1+,8"'±2 
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TABLE VII. Terms Appearing in P(n, O; t) Up to j = 3 

j = Q (7T rl '1J ~ ;o 

j = 1 - (1rf\3/2)½ ('11~;1 +'1t~;-1)e -(D2+D3)t 

(1rf1(3/2)½ (w;1;1 -'¥1 ...,_;-1)e-(D1+D3)t 

(1rf1(3)½ 'l>'~;o e-(D1+D2)t 

j = 2 (41r .6.f\5)½ a,=F ~ i ;o e -(6D±2.6.)t 

(41r .6.f1(5/2)½ cl (w:? + \JJ!;-2) e -(6D±2~t 

1 
=F (47T .6.f1(15)2 (D:i.-D2) '1t~;o e -(6D±2.6.)t 

1 
- (1T rl (5 /2 )2 ('11 ;2 ;2 - \JI ;2 ;-2) e -3(D+ D3)t 

1 
- (1r f 1(5/2)2 ('1'!,;1 +'1';;-1) e -3(D+DJt 

j=3 
1 

(1rf1(7/2)2 b{±2 ('1';~;3 -+;1;-3) e -(D'±2A')t 

(7T rl (7 /2)½ b{± b~± ('¥ ;1 ;1 - 'Y ;1 ;-3) e -(D' ±2A' )t 

1 
(1rf1 (7/2)2 b{±b~±(w;3;1 -'1>';1;-1) e-(D'±2D.')t 

(1rf\7/2)½ b~±2 ('11;1;1 -'1';1;-1) e-(D'±2A')t 

- (1rf\7/2)½ b[±?- (ir;;1++~;-1) e-(D"±26.'')t 

- (7Tf\7/2)½ b{'±b;± (w:;1 +'¥:;·1) e-(D"±26.'')t 

- (1rf1(7/2)½ b{'±b;± (w~? +w:;-3) e-(D"±26.'')t 

- (1Tf1(7/2)½ h;±2 (ti,;?+ tJ,:;-1) e-(D"±26.'')t 
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TABLE VII. (Continued) 

1 
(7T )-1 (7 /2)2 b" ,± b" ,± (w O ;2 + ,T,o ;-?. ,/2 2 ;o) -(D'" ±2 t{" )t 

1 ?. :-i 'i"'.-l + '11':-i e 

_ (7T f\5; 2)½ w ;2;2 e -12Dt 

(1rf\5; 2)½ w;2·;-2 e-12Dt 
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TABLE VIII. lJ ~~(Q)'s in Terms of vj;n* 

j=l )j (1) 1T (w!;1* -w;1;1*) 
11 = 

..f6 

JJ (1) 1T . (w~ ;o * _ '¥;1 ;o *) = -- 1 10 ..f6 

[) (1) 1T 
( 

1·-1* -1·-1*) 
= +' -w' 

1-1 ..f6 
1 1 

J) (l) 1T • 0 ·1* 
= -1 w' 01 

.,fJ 
1 

lJ (1) 1T o ·o* 
= '11' 00 {3 1 

lJ (1) 1T • 0 ·-1* 
= -1 '111' 

8-1 {3 

1J (1) 1T (W ~ ;1 * + W ;l ;1 * ) = 
-11 ..f6 

J5 (1) 1T • (w!;o* +w;1;0*) = -1 
-10 ..f6 

J:J (1) 1T 
( 

l•-1* -1·-1*) 
= '¥ ' +'¥ ' -1-1 ..f6 1 1 

j = 2 If (2) 1T 
( 

2•2* -2·2*) 
= '112' -'¥2 ' ?.2 

vl0 

J) (2) 
21 = 21r i (w 2 ;i * _ >l1 -2 ;1 *) 

-[10 2 2 

/J (2) 1T 
( 

2·0 * -2·0 *) 
20 = - -- '112' -'112 ' 

-[10 

J)<?.) 21T • 
( 

2·-1* -2·-1*) 
= - - -1 w' -w ' 2-1 

vl0 
?. 2 

11 (?.) 1T 
(~;--2*' - w;2;-2*) = 2-2 vl0 

?. 

ff (2) 21T. ('1,1 ;'2 * _ \¥ -1 ;2 *) = --1 12 
vl0 

?. 2. 

JJ (?.) 1T 
(
w1;1 * -'1'-1;1 *) 

11 = 
vl0 

?. 2 
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TABLE VIII. (Continued) 

JJ (2) 
10 = _ _I!._ i (-wi; o * - -w -1 ;o *) 

-[10 2 2 

JJ (2) 1T 
( 

1 • -1 * -1 • -1 *) 7T 
( 

1 ' -1 * -1 • -1 *) 
= '¥ ' --w ' +- '¥ ' --w ' 1-1 -[10 2 2 ../6 1 1 

)1(2) = - 27T . (-w 1 ; -2 * - '¥ -1 ; -2 *) 
1-2 -[10 1 2 2 

)1(2) _ _!!_ 0 ·2* 
= '¥ ' 02 

../5 
2 

~
2) 1T * = i -Wo; 1 

01 ./5 2 

JJ(2) 1T o ·o * 
= '¥ ' 00 

../5 
2 

Jf.{2) 1T . '¥0 ;-1* 
= 1 2 

0 -1 ,/5 

JJ(2) - _!I_ 
0 ·-2* 

= '¥ ' 0 -2 
../5 

2 

Jt.2) = 27T i (-w 1 ;2 * + '¥ -1 ? * ) 
-12 -[10 2 2 

Jf:(2) 1T 
('¥1 ;1 * +-W -1 ;1 *) .JI_ ( 

1 ·1 * -1 ·1 *) 
= '¥ ' +'¥ ' 

-11 -[10 
2 2 + j6 1 1 

JJC2) = _I!._ i ('¥1;0* +-W-1;0*) 
-10 -[10 2 2 

ff(2) - _I!._ ( 
1 • -1 * -1 • -1 *) 

= v ' +'1' , 
-1-1 -[10 

2 2 

ff. 2) 21r . ( 1 • -2 * - 1 • -2 * '· 
= - --1 '11 ' +'¥ ' ) 

-1-2 -[10 
2 2 

JJ.2) 
= 1T 

('¥2;2* +'11-2 ;2*) 
-22 -[10 

2 2 

JJ(2) 
= - 21r i ('¥2;1* +"1¥-2;1*) 

-21 -[10 
2 2 



TABLE VIII. (Continued) 

JJ(2) 

-20 
= 

11(2) -
-2-2 -

1T' 

v10 

1T 

v10 

194 
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1 
= 6M'M' 6M M o J J • 2J.+1 

1 2 1 2 12 1 

yield 

<[fl~iN,(m1 t [.D~k(n)] 0 > 

= ( .-lf M-N' o -N' N 2i+1 • I~~ -M(t) 
' ' 

(4. 3-41) 

where 

(4. 3-42) 

In molecules without any element of symmetry it is possible 

that the principal axes of the diffusion tensor ff may not be equivalent .,..,_ 

to those of the momentum ellipsoid of the molecule. In order to take 

this case into consideration let us define for convenience 

S' = frame in which the inertia tensor takes a diagonal form, 

S" = frame in which the diffusion tensor takes a diagonal form, -Qo = orientation of S' with respect to S, the space-fixed frame, 

at time 0, -Q = orientation of S' with respect to S at time t, -Ql - orientation of S' at time t with respect to S' at time 0, 
--➔, 

orientation of S" with respect to S at time O, no = -Q' = orientation of S" with respect to S at time t, 

and 

-, 
orientation of S" at time t with respect to S" at time 0. Ql = 
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-Also we assume that S" is rotated away from S' by 6-n, that is, 

-, -Obviously, n1 = n1. Therefore, from the relation (4. 3-38) we may 

write 

(4. 3-43) 

Substituting (4. 3-43) in (4. 3-41) and making use of the properties of 

D(n) matrix, it may be shown that 

<[.o(J') (n)] [.a(J) (n)] > 
M'N' t MN ° 

= 6 (-l)M-L' o l JjJ) (6.n).If (J) (L\QJ /J) (t) . (4. 3-44) 
L' J' J 2J+I -L'N L'N' M', -M 

---> 
Note that when S' and S" coincide, that is, an== 0, Eq. (4. 3-44) is 

reduced to (4. 3-41). Integrals /J) (t) can be readily evaluated if we 
M' M 

' use the results tabulated in Table VII and VIII and note the orthonor-

malization condition 

.f ,T,J!11,' ;n' *(-;::) ,T,J!11;n(--;:::)d3n ,i,; ,i,; ,i,; 
':I:' Ill, ':I:' Ill, Ill, = Vjj'Vmm'Vnn' 

Thus we find the integrals r~k(t) are given as follows: 

rg > ( t) = ½ { e -( D1 + D~J I t I + e -( D?. + D3) I t I } ' 
1<1> (t)= ½ {e-(D1+D3)ltl - e-(~+D3)itl} ' 
1, -1 

I~1d(t) = e -(D,_ +~)It I 

(4. 3-45) 

y(?.?.._>(t) _ 1 { + -(6D+26.)ltl - -(6D-26.) ltl} !. -3(D+D~)lt l 
-'?, -ax ae +a e +2e , 
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~~>(t) = 

• 1 

-dk (!)2 (Di -D?.) {e-(6D+2a)!tl _ e(6D-2a)!tl} 

1<2
) (t) = 

2-2 
_!_ {c/ e-(6D+2a) ltl + a- e-(6D-2a)ltl} _ .!. e-3(D+D~)ltl 
8A 2 

I1i > (t) = ½ {e-3(D+D1)jtj + e-3(D+D2 )!t l} 

1<2 >(t) = 
1-1 

½ {e-3(D+D1 )1tl _ e-3(D+D2) !tl} 

+ ½ {e-(D1 +D3)jt! _ e-(D2+D~)ltl} , 

and 

Io(2o)(t) - 1 { - -(6D+2A)lt l + -(6D-2a) l tl} -rrae +ae 

All the other Ifr and 11r 's are obtained from the relation 

r~?\t) = l?\t) = 1(~) . . 
lJ Jl -1-J 

In case Di = I\, 1\1\t) is zero unless i = j. 

(b) Langevin equation and angular momentum correlation functions. 

The use of a Langevin-type equation for evaluating angular 

momentum correlation functions was first suggested by Hubbard, 
28 

and 

actually he has used the equation14 

(4. 3-46) 

-to evaluate the correlation functions of angular velocity w for a spher-

ical particle, where I is the moment of inertia of the particle and 

- --{3 w and A are the frictional and fluctuating part of the torque suffered 

by the particle, respectively . However, in a molecule like c/>-CF:1 we 
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• are confronted by two tough tasks which have not been considered by 

Hubbard. First problem is 'how can we extend Eq. (4. 3-46) so that 

the anisotropy in rotational Brownian motions can be taken into 

account?', and the second question is 'how can we include the internal 

rotation in this Langevin formalism? ' In order to find the equations 

which can give answers to these questions we go back to the classical 

equations of motion 

-dJ -dt = N(t) and (4. 3-47) 

- -where J and ja are the total rotational angular momentum of the -entire molecule and of the internal top only, respectively, and N(t) and 

n(t) are the corresponding torques. In a body-fixed frame rotating with 

an angular velocity w, which is the angular velocity of end-over-end 

molecular rotation, with respect to the laboratory coordinate system, 

Eq. (4. 3-47) may be written in the component form as 

and 

(4.3-48) 

It is well known that it is not possible to solve Eq. (4. 3-48) 

analytically if the nonlinear term (-;x ·J) does not vanish. Therefore 
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-we assume that w is so small that the nonlinear term may be ignored. 

This assumption is well compatible with the assumption of small-angle 

rotation for end-over-end molecular rotation. If the end-over-end 

rotation of entire molecule can be described by the rotational diffusion --process, the term (wxJ) may well be ignored. As in the traditional 

Langevin formalism, Nx(t) and Ny(t) may be assumed to take the form 

N = - f w + A (t) 
X X X X 

and 

N = - f w + A (t) , y y y y (4.3-49} 

where fx and fy are friction coefficients about x- and y-axes, respec­

tively, and Ax(t) and Ay(t) are the corresponding randomly fluctuating 

torques. 

In the presence of internal rotation it is not easy to assume 

appropriate forms of N and n . In the j -limit j is supposed to z z QI a 

fluctuate independently of Jx and Jy and moreover jQI is not considered -to be correlated to the z-component of w . 

formally write 

Thus, in the j -limit we 
Cl' 

(4. 3-50} 

where az (t) is the fluctuating torque exerted on the internal top and g 

is the damping factor which eliminates the dynamical coherence of jQI . 

If the change of j is due to frictional forces from neighboring molecules, 
QI 

we may assume that g is proportional to the viscosity of medium. On 

the other hand, if the random change of \v mainly arises from inter­

molecular collisions, we will assume that g is inversely proportional 
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to Tc' the mean collision time. 

On the other hand, in the j-limit the fluctuation of j is con­

trolled by the internal torque between two successive intermolecular 

collisions which randomly change j. Therefore, in this case j is 

supposed to be uncorrelated to Jz, while Jz is changed by the external 

torque alone. Thus, in the j-limit it is convenient if we assume 

(4. 3-51) 

where 

/n = w + (I /I ) iY. . 
't' z a z (4.3-52) 

As for the autocorrelation function of j (or j ) we may use a method a 
similar to that described by Rice. 38 Suppose a sequence of events, in 

which j loses its dynamical coherence with previous values, occurs at 

random, separated by an average time Tj; if the probability P that n 

events occur in a time interval of length T is given by the Poisson dis­

tribution 

(4 . 3-53) 

then we have 

(j(t+T) j(t)) = (j2) P(O, T) 

= (j2) exp(-\T \/Tj) (4. 3-54) 

The same procedure can be applied for evaluating the autocor­

relation function of j in the j -limit. a a 
In the j-limit we obtain from (4. 3-49) 
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t 
Jy(t) = JyC0) exp(-f~t) + exp(-f?) ~ exp(f~~) AyCOd~ . (4.3-55) 

In the j-limit we need (Jz(t+T) Jz(t)), too. Therefore, we also 

obwin from (4. 3-51) 

In (4. 3-55) and (4. 3-56) f', f', and f' are defined by 
X y Z 

(4. 3-57) 

In order to evaluate the various correlation functions we make 
---> 

the following assumptions for the components of torques A (t) as in the 

theory of translational Brownian motion: 

(1) The average values of A/t) at a given time over an ensemble of 

particles are zero, that is, 

(A/t)) = 0 (4. 3-58) 

(2) Ai(t) fluctuates so fast that all the relevant components of rotational 

angular momentum at a given time are not correlated with A/t) at a 

later time, that is, 

(i,j=x,y,z) (4. 3-59) 

for all time t < t'. 

V✓ith the aid of these assumptions we obtain from (4. 3-55) and 

(4.3-56) 
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(Jx(t) Jx(0)) = ('½c) exp(-f~ It I) 

(JY (t) Ji0)) = (~) exp(-f~ It I) , and 

(Jz(t) Jz(0)) = (~) exp(-f; It I) , 

where the third expression is valid only in the j-limit. 

(4. 3-60) 

Use of the Stokes hydrodynamic approach yields the friction 

coefficients in a medium of viscosity 77, S, 9 as 

fx = l61T77(b2 + c2)/(3(b?.Q + c2 R)] 

fy = Hnr77(c2 +a2 )/[3(c2 R +a2P)] 

fz = 167T77(a2 +b2)/[3(a2P+b?.Q)] 

where P, Q, and Rare the elliptical integrals 

and 

00 

Q = f (b2+rf3/2 (c2+rf1/2 (a2+rf1/2 dr ' and 
0 

(4. 3-61) 

(4. 3-62) 

Therefore, if the viscosity data of the medium are available, we 

can calculate the correlation times TJ and TJ in the j -limit and the 
X y a 

correlation times T J , T J , and T J in the j-limit. 
X y Z 

4. 4 Some Criticisms about the Application of Theory of Rotational 

Brownian Motion to the Actual Molecular Reorientation Processes 

So far we have been emphasizing the application of rotational 

Brownian motion model to the actual molecular reorientation processes. 
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However, as we have pointed out in the introductory section of this 

chapter, there are many questions about the applicability of Brownian 

motion theory to the molecular reorientation processes in condensed 

phases. As is well known, the theory of Brownian motion was proposed 

to explain the motion of a Brownian particle which is much larger in 

magnitude than molecules of the medium in which it is suspended. 

Therefore, a Brownian particle supposedly suffers a tremendous num­

ber of collisions (10~1 collisions per second) with molecules of the 

medium, whence it travels infinitesimal distance between two successive 

collisions so that the diffusion equation can be valid. The same thing 

can be said for the rotational Brownian motion. We know that in many 

solutionr, solute molecules have about the same size as solvent mole­

cules. Now, we question ourselves 'Can the rotational Brownian 

motion be applied to the reorientation of solute molecules surrounded by 

solvent molecules or to the reorientation of molecules in pure liquids?' 

Obviously, we shall hesitate to answer 'Yes'. Long time ago 

Kauzmann30 has questioned the validity of the concept of a rotational 

friction coefficient based on a diffusion model of infinitesimal reorienta­

tions. He has contended that the temperature dependence observed in 

dielectric relaxation indicates that reorientation most likely proceeds 

by discrete jumps between stable orientations separated by a potential 

barrier. One of the points of recent arguments about the applicability 

of rotational Brownian motion is the relative magnitudes of dielectric 

and NMR (dipolar) correlation times. Since the electric dipole moment 

vector is a first-rank tensor and magnetic dipolar coupling tensor is 

second-rank, dielectric correlation time, r , and NMR correlation µ 
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time T 2 , are given by 

and (4. 4-1) 

for the case of isotropic diffusion (see Sec. 4. 3(a)), where Dis the 

isotropic diffusion coefficient. Therefore, if molecular reorientation 

proceeds by the isotropic diffusion, the condition T 2 = ½ T µ should be 

satisfied. When molecular reorientation proceeds by large -angle 

jumps, the relation T 2 = ½ T µ is not valid;31 instead we expect that 

T µ:::::: T 2 • Powles32 has pointed out that many liquids, including highly 

associated liquids such as water, reorient by small-angle jumps and 

the relation Tµ/T 2 :::::: 3 is satisfied. However, this conclusion can 

hardly be said to be universally acceptable, since the interpretation of 

infrared band shape due to Gordon, l, lO as we have previously mentioned, 

indicates that the assumption of small-angle jumps is hardly acceptable 

for small molecules even in liquid phases. Waugh33 has also suggested 

that a water molecule might jump through a large angle, breaking one 

set of hydrogen bonds and making another while there might be co­

operative motions of molecular aggregates that might involve smaller 

angles. This question has arisen not only in the distribution function 

approach to the rotational Brownian motion but also in the Langevin 

approach. Mori34 and Kubo35 have contended that if the particle under 

consideration is not necessarily heavier than neighboring particles with 

which it interacts the classical Langevin equation should be modified to 

dv / 
elf = - Jt y(t-t') v(t')dt' + R(t)/m , 

0 
(4. 4-2) 

where the function y(t) represents a retarded effect of the frictional 
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force and R(t) is the random force. Likewise for the rotational motion 

we can say that if the moment of inertia of the particle is not neces­

sarily larger than that of neighboring particles Eq. (4. 3-46) may be 

generalized to 

-I dw 
dt 

/ - -= - Jt /3(t-t') w (t')dt' + A(t) 
0 

(4. 4-3) 

Application of Eq. (4. 4-2) for obtaining the velocity correlation function 

has been given by Kubo36 and the same method was employed by Rigny 

and Virlet37 to obtain the angular momentum correlation function for 

spherical molecules. However, because of mathematical difficulty we 

could not be successful to extend the application of an equation similar 

to (4. 4-3) to the case of anisotropic rotational diffusion. For the 

present there will be many questions unanswered about the molecular 

reorientation process. It is needless to say that a more complete 

answer should come from the solution of quantum equations of motion 

for an N-particle system. 
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APPENDIX I 

Let Pi, P 2 , and P 3 be probabilities that we find a particular 

proton at three distinguishable sites 1, 2, and 3, respectively, and 

also let W be the transition rate per unit time between sites. Then, 

the following master equations will hold: 

dP1 
-2WP1 + W(P2 + P3 ) = 

dt 
(AI-1) 

dP2 

= -2WP2 + W(P1 + P3 ) 
dt 

(AI-2) 

and 

dP3 
-2WP3 + W(P1 + P2 ) = 

dt 
(AI-3) 

Suppose at t = 0 we know that P1 = 1 and P2 = P~ = 0. Since the 

sites 2 and 3 are equivalent, the symmetry condition P2 = P~ will be 

maintained even after the elapse of an arbitrary amount of time, say T. 

Thus, with the aid of this condition we obtain from (AI-1) and (AI-2) 

and 

of which the second relation indicates nothing but the fact that the total 

probability P1 + P2 + P3 should be conserved. Therefore we obtain 

and 

(AI-4) 
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APPENDIX II 

-In the Cayley-Klein representation any vector A is replaced by -- -a 2 x 2 matrix a• A, where a indicates the three Pauli spin matrices, 

that is, 

and az = ( 1 0) . 
0 -1 

-The components of A in one coordinate system are then obtained 

from the components in the other by performing a unitary transformation --on a • A. Thus 

The transformation matrix Q is given by 

where 

and 

sin° ) 

cos I 

(AII-1) 

(AII-2) 

On the other hand if the body-fixed coordinate system is rotated 

away from the laboratory coordinates through an angle a about the axis 

specified by the unit vector fi, then 

(AII-3) 
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where r = cos(a/2), fi = ii sin(a/2), and 1 is a unit matrix . .,.,_ 

Equating two different expressions for Q, we obtain .,.,_ 

r = cos(a/2) = cos~ cos~ , 

nx = nx sin(a/2) = s~n; sin Y , 
0 - • ( /2) • 0 ip - cp 
,l{JY - ny sm a = sm 2 cos 2 , 

Oz = nz sin(a/2) = cos ; sin Y . 
and 
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PROPOSITIONS 
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PROPOSITION I 

It is proposed that the intermolecular potential function of the 

exp- 6 type had better be used than that of the Lennard-Jones type in 

order to interpret the proton T1 data in gaseous molecular hydrogen on 

the basis of Bloom-Oppenheim theory. 

Recently Bloom and Oppenheim l-3 have developed a theory in 

which the correlation time for molecular rotation can be expressed in 

terms of the intermolecular force. To demonstrate the usefulness of 

their theory Bloom, Oppenheim, and their co-workers 4 have evaluated 

the proton spin-lattice relaxation time in gaseous molecular hydrogen 

assuming that the r-dependent part of intermolecular force can be 

represented by the Lennard-Jones type potential function and obtained 

seemingly excellent results. In the meantime Christensen 5 has 

measured the spin-lattice relaxation time of proton in g-aseous HD and 

found that the proton T1 in HD is much longer than that in~- A crude 

evaluation due to Christensen indicates that the potential function of the 

Lennard-Jones type may not adequately represent the isotropic part of 

intermolecular force in gaseous molecular hydrogen and therefore its 

contribution to the anisotropic part of intermolecular force in HD gas 

may be too small. 

Thus, it is proposed that we have to test the exp-6 type inter­

molecular force to interpret the proton T1 data in both H2 and HD. The 

observed relaxation rate can be written as 

(I-1) 
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where P J is the probability at thermal equilibrium that the J-state is 

occupied and (1/T1)J represents the spin relaxation rate within a given 

J-manifold. Abragam 6 shows that 

(I-2) 

J J 
where r 1 and T 2 are, respectively, angular momentum and orientational 

correlation times within a given J-manifold, and H'(= 26. 752 ± 0. 007 

gauss) and H"(= 33. 862± 0. 015 gauss) are the spin-rotation and dipole­

dipole coupling constants in a H2 molecule. 

An explicit form of the intermolecular force between two inter­

acting hydrogen molecules is given by Nakamura 7 and Moriya and 

Motizuki. 8 Using this intermolecular potential function we can obtain 

from the Bloom -Oppenheim theory 

and 

where 

1 ~ 1 (1r,BM)2 {!_ [I 00 2 J 00 

7 
J = (2J-1)(2J+3)1i2 

0 
F(u) du+ I5 ~ 

0 
K(u) du 

1 

1 3(4.f +4J-7) 1 
J = (2J-1)(2J+3) J 
T?. T 1 

F(u) = '.!g- ((' [ g(r)]½ r½ f(r) J¾ (ur) ctr}' 

K(u) = ri5' ( 7 ~ 00 

(g(r)] ½ r½ X(r) J½ (ur) d~' 

+ 10 [~ 
00 

(g(r)] ½ /a Y(r) J¾ (ur) d~' 

(I-3) 

(I-4) 

(I-5) 
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+ 2 [(fg(r)J½r½ Z(r) J~(ur)da 
2
} 

along with 

f(r) = A exp(-r/r0 ) + (2Q-4R/3)/r6 

X(r) = A' exp(-r/r0 ) - R/r6 

Y(r) = A' exp(-r/r 0 ) + R/r6 and 

(I-6) 

g(r) is the radial distribution function, Jn(x) represents the n-th order 

Bessel function, µQ is the quadrupole moment of H2 molecule, and A, 

A', Q, R, P, and r O are all known (or at least empirically determined) 

parameters. 

~ is the ensemble average of {J(J+l}/(2J-1)(2J+3)} and p is the 

density of gas. 

In order to determine the radial distribution function g(r) we use 

the exp-6 potential function 

V(r) = B exp(-r/r0 ) - (2P/3)/r6 (I-8) 

However, this isotropic potential function is not adequate for deter­

mining g(r ), since it does not behave properly about r = 0. Since con­

tributions from this very short distance to integrals in Eq. (I-5) and 

(I-6) are completely negligible, we can replace the lower limit of 

integrals by a small number E for which we may assume 

V(r) = +oo for r < E 

and 

V(r) - B exp(-r/r 0 ) - (2P/3)/r0 for r ?- E (I-9) 
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The radial distribution function for dilute gases can be written as 

where 

g(r) = exp[ -,BV(r)] 

1 
,B = kT 

(I-10) 

If the density of the gas is not too low, we have to add the 

density correction to g(r ). The first density correction to the radial 

distribution function is given by Oppenheim and Mazur9 as 

g(r) = exp[-,BV(r)] {1 +py(r)} , (I-11} 

where 

(I-12) 

It is desirable that after evaluating integrals (I-5) and (I-6) 

results should be applied to the case of HD. 
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PROPOSITION II 

Recently, H. Eyring, T. Ree, and their collaborators1 pro­

posed the so-called "Significant Structure Theory" of liquid, applied 

their theory to many examples and have successfully explained many 

thermodynamic properties of such liquids that expand in volume by 

ca. 12% on melting. Such liquids will be referred to as normal liquids 

from now on. 

The Significant Structure Theory is based on the assumption 

that many holes ("vacant sites") are introduced when solid melts into 

liquid, and in liquid phase each molecule can have both the solid-like 

and gas -like degrees of freedom. Even though the mathematical 

approach due to Mayer, Kirkwood and many other people is logically 

beautiful, at present it cannot give us much result because of mathe­

matical difficulties involved in it. On the other hand, starting from 

somewhat intuitive and daring assumptions, the Significant Structure 

Theory has so far provided simple ways of explanation and calculation 

of thermodynamic properties of many liquids. 2- 6 

Application of the SST to the molten state of metals have been 

attempted by Carlson, Ree, and Eyring. 5 They have assumed that in 

the molten state of metals the solid-like behaving molecule has the 

same frequency of oscillation both in the most stable position and in a 

neighboring vacancy. With this assumption, the partition function can 

be written as 
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v-v 
--==--s N 

!(21rmkT)v
2 

eV] V 

L Nh3 
(II-1) 

where nh is the number of holes surrounding the given molecule, E is 

the strain energy which is required to shift the given molecule from its 

most favored position to its neighboring vacancy, Es and 0, though not 

having such clear meanings as in the solid, are the heat of sublimation 

and the oscillation frequency of the assumed harmonic oscillator, 

respectively, and Vs and V are, respectively, molar volumes of solid 

and liquid. For normal liquids it has been usually assumed that 

v-v 
nh = 12 • s 

V 
(II-2) 

and the solid-like and the gas-like properties are distributed by factors 

Vs/Vand (V-Vs)/V. However, it was found that Eq. (II-2) works 

poorly for the molten state of metals. Thus Carlson et al. have 

assumed 

v-v s (II-3) 
V 

where n is a parameter to be determined. There are many things in 

Carlson's work which must be pointed out. First, the meaning of the 

parameter n is not clear, which was originally interpreted as the 

maximum number of available sites for a given molecule. Second, to 
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obtain the calculated value which are coincident with experimental data 

n has to assume values of 25 to 45 which varies from one kind of metal 

to another. Third, even with those assumed values of n good results 

could not be obtained for the vapor pressure which is very sensitive to 

the partition functional form. Therefore, it is natural to look for a 

more general partition function which include those for normal liquids 

as special cases. 

To begin with, a glance at the partition function (II-1) leads us 

to the question why a solid-like molecule must have the same frequency 

both in the most favored site and in its neighboring sites. This is the 

starting point of new formulation. If we assume that the oscillation 

frequency in the most favored site is different from those in the 

neighboring sites, we can write our partition function as 

(II-4) 

Carlson has assumed (II-3), but we may assume with our new partition 

function that (II-2) will be all right. 

According to the method of fixing parameters and calculating 

thermodynamical properties developed by Eyring et al. we can calcu­

late easily the molar volume, vapor pressure and some other 

equilibrium properties. For example, for the molten state of potassium 

we obtain the following results: 
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Molar Volume (cc) 

Temp (°K) V calc. Vobs. 

373.15 47.565 47.736 
523.15 48.534 49.931 
673.15 49.549 52.337 
823.15 50.656 54.987 
973.15 52.133 57.834 

Va2or Pressure (atm. ) 

Temp (°K) Peal. 
p 

obs. 

373.15 -8 -8 2. 650 X 10 2. 681 X 10 
523.15 6. 257 X 10-5 -5 7. 111 X 10_

1 
673.15 4 188 10-~ 5. 446 X 10 
823.15 

• X -2 
8. 423 X 10-2 6. 871 X 10 

873.15 -1 5. 509 X 10-1 3. 269 X 10 

Both calculated values of the molar volume and the vapor pressure are 

smaller than experimental ones. In order to correct this deviation we 

note the fact that the ionic size is about one-third of the atomic size. 

Therefore, in this case better results may be obtained by assuming 

(II-5) 

More generally we may assume 

(II-6) 

where m is the parameter which varies from one kind of metal to 

another. 
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PROPOSITION Ill 

The use of nuclear quadrupole relaxation effect for the study of 

dynamics of internal rotation in a molecule in liquid is proposed. 

It is well-known that a nucleus of I> 1/2 has nonvanishing 

electric quadrupole moment due to nonspherical distribution of nuclear 

charge and this quadrupole moment can interact with the electric field 

gradient at the site of nucleus. This quadrupole interaction energy 

fluctuates as the molecule undergoes random rotational motions due to 

intermolecular collisions in gases and liquids, thus causing the electric 

quadrupole to relax. 

Assuming the axial symmetry of electric field gradient, the 

quadrupole relaxation time, T11 for a nucleus of I= 1 is given by1' 2 

(111-1) 

where (e2 qQ/n) = 21r times the quadrupole coupling constant, w0 = the 

Larmor frequency, and 

00 

Jn(nw 0 ) = f_ 
00 

(F n *(t+T) F n(t)) exp(inw 0 T) dT n = 1 2 
' 

(Ill-2) 

with 

F1 (t) = sin 0(t) cos 0(t) exp(icp(t)) 

and 

F2 (t) = sin2 0(t) exp(2i¢(t)) . (111- 3) 

0 and ¢ are, respectively, polar and azimuthal angles of the 

symmetry axis of electric field gradient with respect to a molecule­

fixed frame. 
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For the study of molecular reorientation process in liquids the 

application of quadrupole relaxation phenomena has in general several 

advantages over that of nuclear magnetic relaxation phenomenon. In 

the nuclear relaxation processes which take place in an ensemble of 

nuclei which have no electric quadrupole moment the magnetic relaxa­

tion will be induced mainly via the dipolar interactions among nuclei. 

Unfortunately, we cannot separate the relaxation induced via the intra­

molecular interactions from the whole phenomena. The contribution 

from the intermolecular interactions has, in general, comparable mag­

nitude with that from the intramolecular interactions, and, moreover, 

estimation of the former contribution is so difficult that we cannot 

treat it with reasonable rigor. 3 However, if we use the nuclei of 

I> 1/2, this difficulty can be avoided. The magnitude of the magnetic 

field produced by a point dipole moment of the order of a nuclear mag­

neton, being apart of the order of angstrom, is a few gauss, and the 

energy of the interaction of a 14N magnetic moment with this field is of 

the order of 10-4 Mc/sec. On the other hand, the interaction of the 

quadrupole moment of this nucleus with the electric field gradient there 

yields a potential energy of the order of Mc/sec. 4 Thus, we can safely 

neglect all the contributions from the dipolar interactions compared 

with that from the quadrupole interaction, whose randomness depends 

only on the rotational motion of the molecule under consideration. 

When the nucleus under consideration is located on an internal 

top in the molecule, the quadrupole interaction is modulated not only 

by end-over-end molecular rotation but also on internal rotation. For 

an example we take a nucleus of I = 1 located on an internal top in the 
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molecule whose shape can be approximated to an ellipsoid, and let us 

assume that end-over-end molecular rotation in liquid can be 

described by the anisotropic diffusion equation. 5- 8 Then, it can be 

shown that9 

(III-4) 

where K1 = 2/15, ~ = 8/15, 1/T A = 6R2 , 1/T B = R1 + 5~, 1/r e = 4R1 

+ 21¼; R1 is the rotational-diffusion constant of the ellipsoid about its 

major axis, Ri is the rotational-diffusion constant of the ellipsoid about 

its minor axis, and 

BA= }([1-3cos,.0(t+r)] ·[1-3cos-i0(t)] ) 

BB = ! (sin2 e(t+r) exp[-i¢(t+,)] sin 0(t) exp[i¢(t)]) 

Be = ! (sin2 e(t+r) exp[ -2i¢(t+r)] sin2 e(t) exp[2i¢(t)]) (III-5) 

The correlation functions BA' BB, and Be depend only on the internal 

reorientation process, and therefore they cannot be evaluated without 

any knowledge of the dynamics of internal rotation. However, BA, BB, 

and Be can be reduced to more feasible forms as follows. Let us 

choose another body-fixed frame (x', y', z') so that the z'-axis coin­

cides with the axis of notation of the internal top, and let the polar and 

azimuthal angle of the symmetry axis of electric field gradient at the 

site of nuclear spin with respect to this frame be t::.. and ¢'(t). Also let 

the polar angle of z' -axis with respect to the symmetry axes of 
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ellipsoid be a. Then, it may be shown that2 

BA = BA
1 

+ BAi(cos </f'(t}) + BA/cos 2q/'(T)) 

BB = BB:i. + B:Bi (cos ¢"(T)) + BB3(cos 2¢"(T) ) and 

with 

<j)"(T) = </)1 (t+T) - </)1 (t) 
' 

BA = (1/8)(1 - 3 cos2 a)2 (1 - 3 cos2 
Af 

1 

Bi¾ = (9/ 16) sin2 2a sin2 2D., Bi¾ = (9/16) sin4 A sin4 a 

B13i = (3/ 8) sin2 2a (3 cos2 D.-1)2 

B:Bi = (3/4)(cos2 2a +cos2 a) sin2 2D. 

BB:i_ = (3/ 4)(sin2 a+¼ sin2 2a) sin4 A 

Be = (3/8) sin4 a (3 cos2 D. -1)2 

1 

Be2 = (3/4)(sin2 a+ ¼ sin2 2a) sin2 2D. 

and 

Be = (3/16)[(1 +cos2 af + 4 cos2 a] sin4 D. . 
3 

{III-6) 

' 

(III-7) 

In order to evaluate (cos ¢"(T)) and(cos 2¢"(T)) we must 

assume a model for the time dependence of ¢"(T). If the internal 

reorientation is such that the nucleus jumps among three equivalent 

sites, as a deuterated terminal methyl group in an n-paraffin molecule 

probably does, then both (cos </f'(T)) and (cos 2¢"(T) ) become 

exp(-R IT I), where R is (3/2) times the total rate of jumping of a 
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deuterated methyl group from any of its three equivalent orientations. 

In this case we have from (III-6) 

BA = B Ai + (B Ai + BA:) exp( - R I T I ) , 
BB = BBi + (B~ + BB) exp(-R \r I) , and 

B = Be + (Be +Be) exp(-R\Tl) 
1 2 3 

(III-8) 

If the functional group does not reorient by random jumps between 

three equivalent positions, but instead can assume any orientation with 

equal probability, the time dependence of <f>"(T) must be redefined. If 

we now can assume a stochastic diffusion process in which the time 

dependence of <f>" ( T) is defined, so that the probability of finding the 

internuclear vector at <f>"(T) at time t+T is given by the Gaussian dis­

tribution 

(III-9) 

where D is the rotational-diffusion constant of the functional group with 

respect to the axis of the ellipsoid, then BA' BB, and Be take the form 

BA= BA
1 

+ BAi exp(-D\TI) + BAs exp(-4DIT\) , 

BB = BBi + B~ exp( -DI T I) + BB:s exp( -4D IT I ) , and 

Be = Bel + Be2 exp(-D IT I) + Be3 exp(-4D IT l) . (III-10) 

The end-over-end molecular rotations can be described fairly 

well by the rotational Brownian motion when the molecule is not too 

small, 5-B and in such a situation the diffusion constants, R11 ~' and 

R3 , can be taken to be proportional to (T / r,), where T and 1J are the 
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temperature and macroscopic viscosity of medium. Therefore, if the 

temperature dependence of T1 , molecular structure, and viscosity of 

medium as a function of temperature are known, we can sort out the 

internal rotational contribution to the total relaxation rate (1/T 1) and 

consequently can investigate the temperature dependence of either R or 

D in Eq. (III -8) or (III -10). 

Recently, there have been some publications9- 12 which report 

that in the presence of internal rotation the intramolecular magnetic 

dipole-dipole interaction is relatively ineffective as a spin relaxation 

mechanism compared to the intermolecular dipole-dipole interaction. 

Woessner13 interprets that the presence of internal rotation shortens 

the effective correlation time for the modulation of intramolecular 

dipole-dipole interaction, thus making the intramolecular dipole-dipole 

relaxation relatively unimportant. However, the study of internal 

rotation using the magnetic dipole relaxation effect encounters two 

major difficulties; first, as we have already mentioned, we cannot 

exactly separate the intramolecular contribution to (I/T,1.) from the 

whole phenomena, and secondly, in the presence of internal rotation 

even the estimation of intramolecular contribution is not easy. The use 

of quadrupole relaxation method in this case can eliminate both troubles 

and thus can give us fairly accurate knowledge about the process of 

internal reorientation in a molecule in liquid. 
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PROPOSITION IV 

H. J. Lucas1 has reported 2-chloro-1-propanol(2ClP) has an 

anomalously large optical rotatory power compared with other com­

pounds structurally similar to 2C1P. Mizushima2 has indicated from 

the study of Raman spectra that it is quite possible to form a hydrogen 

bond in halogen-containing alcohols. So far many examples for the 

intramolecular hydrogen bond have been known. 3 

If the prediction of Mizushima is applied to the case of 2ClP, it 

provides us a means which can determine the intramol~cular potential 

function due to hydrogen bonds in halogen-containing alcohols to 

measure the specific rotation of those compounds as a function of 

temperature. Experimentally measured values of the specific rotation 

are the average values over all rotation and can be expressed as 

27T 
f a(0) exp{-v(e)/kT}d0 

0 

f 
1T 

exP{ -V(0)/kT}d0 

(IV-1) 

0 

where a(0) is the value of specific rotation for a certain configuration 

which is characterized by the internal angle e. Since a(0) can be 

evaluated by making use of the Kirkwood polarizability theory 4 of optical 

rotatory power, Eq. (IV-1) can give us a means of determining the 

intramolecular potential function due to the hydrogen bond in halogen -

containing alcohols. However, in order to apply the Kirkwood theory 

to our problem the accurate knowledge of molecular structure is 

required. Unfortunately, not much of the knowledge about the exact 

structures and spatial configurations of halogen-containing alcohols 
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have been obtained yet, but we can check our proposal using a rather 

simple, though approximate, model of 2ClP. 

Since V(0) is obviously a periodic function of 0 with period 27T, 

we can expand V(0) into Fourier series as 

V(0) = VO + V1 cos 0 + V2 cos 20 + • • • 

+ U1 sin 0 + U2 sin 20 + • • • (IV-2) 

where it is empirically known that only first few terms are important. 

If experimental values of [a] at several different temperatures 

are available, we can determine a few coefficients in (IV-2). 

According to Born5 the specific rotation for an optically active 

molecule in a solution state is given by the relation 

[a] D = 4. 930 X 105 (n
2 

+2) g/3M ' (IV-3) 

where n is the refractive index of the solution and M is the molecular 

weight of the optically active molecule. g is the factor of determining 

the rotatory power which is characteristic of the given molecule. 

Kirkwood approximates g as 

(IV- 4) 

where 

(IV-5) 
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ai = mean polarizability of the constituents, 

/3. = anisotropy ratio of each constituent, 
1 -Ri = position vector of the center of mass of i-th constituent, - -and bi and ~ are unit vectors in the directions of optically symmetric 

axes of the i-th and k-th constituents. 

If we use the above formula and the simple structure for 2ClP, 

we can calculate [a] D at an arbitrary angle. To obtain the coefficients 

Vi and Ui we have to pursue the following procedure: 

(1) By using a simple molecular model we calculate [a] D according to 

Kirkwood polarizability theory. If we select one conformation 

which will give the dominant effect on [a] D' the calculated value 

must show the approximate value for [a] 0 . If the calculated value 

for one or two dominant conformations agrees approximately with 

the observed value, we shall proceed to the next step; 

(2) We have to obtain the general formula which shows the 8-dependence 

of [a] 0 . 

(3) Finally, we introduce the Fourier expansion of this formula to cal­

culate v. 'sand u. 's. 
1 1 

Obviously if n numbers of experimental values of [a] D at different 

temperatures are available, we can calculate n constants, Vi and Ui. 

Now, we are going to show how we can use this method for 

2C1P. Since the exact spatial structure has not been known well, we 

may use a simple model shown in Fig. 1 and Fig. 2. -We can express b/s as functions of e, using this model. 

Especially when e = 1T /3, we have 
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- 1 - - -bi = 3 (_!2i+v'6j+k) 

- 1 ( -2-12 T - k) b?. = 3 

- 1 - --4 - -
b::i = 3 (_.12 i - v'6 j + k) 

and - - -b4 = ½ (2../2 i - k) 
' 

(IV-6) 

where we have assumed the tetrahedral structure of carbon sp3 bonds. -For an arbitrary angle e, each bi can be expressed as 

-, b. = 
1 

cos(e-1r/3) - sin(0-1r/3) O 

sin(8-1r /3) 

0 

cos(e-1r/3) 

0 

0 

1 

where b/s are unit vectors at e = 1r/3. 

-b-
1 

(IV- 7) 

ai and (3i are discussed in the original paper of Kirkwood and 

are calculated and tabulated. 

Generally in ethane derivatives it is known that there are three 

potential minima, one of which corresponds to the trans form and the 

other two to two different gauche forms. In order to check whether the 

polarizability theory is useful for this problem we have to calculate the 

theoretical values of [ a] D and to do this we must first know the 

potential function V(0) because the relative population of each spatial 

configuration will be proportional to the Boltzmann factor exp{ -v(e)/kT} . 

However, in order to check the theory crudely we may simply assume 

that the contribution from trans form can be ignored and only two 

gauche configurations contribute significantly. 

Under these assumptions we may write 
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(IV-8) 

and 

(IV-9) 

where subscripts I and II stand for gauche-1 and gauche-2 configuration, 

respectively. 

If we pick the origin at the asymmetric carbon atom, it follows 

that 

giO) = K34. F 34 + Kl 4. F 14 (IV-1O) 

and 

g(0) 
II = K14. F14 + K24. F24 (IV-11) 

where 

1 
Kik = o a i a k ,Bi ,Bk (IV-12) 

and 
-➔ -➔ -➔ -➔ 

1 (-➔ --+ 
3(bi. Rik)(~. Rik)) -➔ -➔ -➔ 

F.k = - b. • h. - ------ Rik· (b. x bk) 
l R~ l -k R2 l 

ik ik 

(IV-13) 

In order to derive (IV-1O) and (IV-11) we have considered the fact that 
-➔ -➔ -➔ 

if Rik' bi, and ~ are all on the same plane, F ik = 0. If the bond 

lengths for C-CH3 , C-H, C-Cl, C-C~OH, and C-OH are all known for 

2ClP, we can easily determine [a] D by making use of Eqs. (IV-1) 

through (IV-13). If theoretical values show reasonable agTeements with 

experimental data, we can proceed to calculate [a] D at arbitrary angles 

and temperatures to obtain V(O) as mentioned earlier. 
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PROPOSITION V 

It is proposed that the measurement of the spin-lattice relaxation 

time, T1 , for 13C spin in cp-C*F::i or cp-C*H::i may provide an indirect 

evidence of the presence of spin-internal-rotation interaction. 

The only stable isotope of carbon with a nuclear magnetic mo­

ment is 13C (I= 1/2), which has a natural abundance of 1. 1 per cent, 

and the spin-lattice relaxation time, T 1 , of 13C spin is known to be long 

(several minutes in most carbon compounds). This fact and the small 

magnetogyric ratio of 1::iC spin indicate that the contribution of magnetic 

dipole-dipole interaction to the relaxation rate may be very small and 

if the spin-rotation constant for 1::iC spin is of moderate magnitude the 

spin-rotation interaction may well be the dominant relaxation 

mechanism. 

The spin-rotation Hamiltonian for the 1::iC spin in q,-C*H::i or 

q,-C*F::i may be written as1 

- - --'.'{{'_ = -I•C.J-D I·j 
v'1:>-R .,..._ a ' 

where D and the matrix elements of C are given by a .,..._ 

~' ZK' I el 
Cgg' = - g (3N LJ 

C K' :'l c rCK' 

6 1 
Re( 0 I 7T g l n) ( n I Lg' l O) 

n~0 w< 0 > - w<o) n o 

(V-1) 

(V- 2) 
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and 

(V-3) 

In (V-2) and (V-3) several signs are defined as follows: 

gc = nuclear g-factor for 13C spin, 

/3N = nuclear magneton, 

lg = g-th principal moment of inertia of the entire molecule, 

\ 11 = moment of inertia of the internal top about its symmetry axis, 

~ = position vector of the 11C spin with respect to the origin 0 

identified as the center of mass of the entire molecule, 

rK = position vector of the nucleus K with respect to the origin 0, 

rk = position vector of the electron k with respect to the origin 0, 

r CK' = distance between the 11C spin and the nucleus K', 

r Ck = distance between the 1 ~c spin and the electron k, 

and 

- -Also, L and e are, respectively, the total orbital angular momentum 
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of electrons of the entire molecule and of those electrons localized in 

the internal top, and the summations ~' and ~" run over· all the nuclei 
K' K' 

in the molecule and on the internal top, respectively, except the 13C 

spin in the -CH3 or -CF3 group. 

Evaluation of the average spin-rotation constant at the site of 
13C spin can be performed with the aid of the Schwartz relation 

(V-4) 

where Mp and h are the mass of proton and the Planck constant, 

respectively. Typically, each term in the curly bracket on the right­

hand side of the expression (V-4) is anisotropic, but Chan and Dubin2 

have indicated that the sum of two terms in the curly bracket is nearly 

independent of chemical environments of the nucleus under consideration 

and thus, to a good approximation, is isotropic. Therefore, if the 

components of magnetic shielding and spin-rotation tensor for 1::iC spin 

are known in a 13C containing compound are known, we can evaluate the 

components of spin-rotation tensor for 13C spin in <P-CH3 or <P-CF3 

provided the components of magnetic shielding tensor for 13C in this 

compound are available. Even if not all the components of magnetic 

shielding tensor is known, we can gain some knowledge about several 

components of spin-rotation tensor. For example, the chemical shift 

of 
13

C in benzene is 195. 8 ppm with respect to 13CS2 and the chemical 
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shift of 13C in H2CO is 40 ppm with respect to benzene. Therefore, the 

chemical shift of 13C in ~CO is 235. 8 ppm with respect to 13CS?.. If we 

use the calculated values for ap and ad in ~C*O by Flygare et al. 3 

and Dunning et al. , 4 respectively, we obtain 

= - 215 ppm + 338. 1 ppm = 123. 1 ppm . (V-5) 

From the structural data for ~CO measured by Oka5' 6 we have calcu­

lated three principal moments of inertia. The results are as follows: 

and 

IC = 3. 014 X 10-40 g cm2 

where we have taken the c-axis along the C-0 bond and the other two 

axes perpendicular to this axis. 

Flygare 3 has estimated that 

C ~ -135 kHz cc 
and 

By making use of the above data for 13C in HiCO we find that the sum of 

the first two terms on the right-hand side of the expression (V-4) is 

315. 82 x 10-6
• Therefore, we obtain from (V-4) 

(V-6) 
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where C and I are expressed in units of kHz and 10-40 g cm2, gg g 

respectively. 

If we can assume that the spin-internal-rotation coupling con­

stant C in cp-C*H3 is equal to the spin-rotation constant C in C*H.i, we a 
can estimate Czz and Da as we show in what follows. The chemical 

shift of 13C in C*H.i is known to be 130. 8 ppm with respect to benzene 

and we know that the chemical shift of 13C in }4CO is 40 ppm with 

respect to benzene. Using the value of absolute chemical shift for 

I½.C*O, we see that 

13c 
a (C*H.i) = 213. 9 ppm . 

Since Ia= 4. 482 x 10-40 g cm2
, we obtain from (V-6) 

C ~ - 9. 593 kHz a 

Assuming that Czzlz ~ C ala in toluene, we also obtain 

Czz ~ - 0. 283 kHz 

Following Dubin and Chan 5 we write 

where Ca is expressed in units of cycle per second. Since Tja 
1 ~ (Ia/kT)2 , at 20° C we obtain 

1 ~ 0. 0097 sec -i 
T1 

(V-7) 
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1 

If we let Tja ~ 3. 0 x (Ia/kT)2, we have 

1 = 0. 029 sec -i 
Tl 

which is comparable to the dipole -dipole contribution for the case of 

proton relaxation in toluene. 7 In view of the fact that the magnetogyric 

ratio of 1~C is almost one-fourth of proton magnetogyric ratio we may 

conclude that the dominant contribution to the relaxation rate of 1 ~C spin 

in cp-CH3 comes from the spin-internal-rotation coupling. 
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