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Abstract 

Let Ilq be the Desarguesian projective plane of order q = 2m. We define an incidence 

structure as follows. Let O be a regular oval in IIq and let P be the set of exterior 

points of O. For each p E P define BP to be the sum ( mod 2) of the exterior blocks 

through p. Then the BP are the blocks of a ( q2 - 1, q2 /2 , q2 / 4) cyclic difference set 

which we denote M(q2). It was conjectured by Assmus and Key in [ass3] and [assl] 

that rank2 ( C2 ( M ( q2))) = m2m-l. The goal of this paper is to give a proof of that 

conjecture as well as to discuss certain related results which are suggested by it or 

by its proof. 

There are three central theorems in this paper. The first is theorem 2.2.3: 

rank2 (C2 (M(q2 ))) = m2m- 1 , resolving the conjecture of Assmus and Key. Al­

though the proof of this theorem does not directly involve the cyclic nature of 

M(q2), we do utilize some results and a construction of .Jackson [jac] on designs 

with PS L2 ( q) acting transitively. Thus, it is of interest to us to undertake a fur­

ther study of .Jackson's construction and its relation to cyclic difference sets. This 

gives rise to our second major result , that .Jackson's construction is equivalent to a 

classical construction of Gordon, Mills, and Welch [gor]. This is the primary result 



IV 

of chapter 1 and an immediate consequence is theorem 1.3.5, that PSL2 (q) acts 

transitively on a Hadamard design D if and only if D arises from the Gordon, Mills, 

Welch construction. Another particularly interesting consequence of the equivalence 

of the two constructions is that although the designs M ( q2) and a certain family 

of the Gordon, Mills, Welch designs are isomorphic, this has apparently not been 

noticed until now even though both families have been widely studied. The third 

major theorem of this paper is theorem 3.1.1 which characterizes the generator 

polynomial of the binary code of M(q2) by explicitly giving its roots. The proof 

of this theorem comprises the bulk of chapter 3. The most important application 

of this theorem is that it allows us to study the code C2 (M( q2))) as a cyclic code. 

That is, we may immediately determine, from the roots, exactly which cyclic codes 

are subcodes of C2(M(q2))). In particular, we address the question of whether it 

contains a cyclic punctured first-order Reed Muller code in theorem 3.2.1. This 

question was also posed by Assmus and Key in [assl], and [ass3]. 

Finally, in chapter 4, we discuss a generalization of the results of the earlier 

chapters. Specifically, let C.,·ep ( v) be the subcode of F~ generated by repetition 

vectors (i.e. vectors of the form (c, c, ... , c)). If v = 2m - 1, a cyclic code is a 

subcode of C.,.ep ( v) if and only if it does not contain a cyclic punctured first-order 

Reed Muller code. For this reason, we propose that the question of containment in 

C.,.ep( v) is of interest for the code of any cyclic difference set, not just those with 

v = 2m - 1. In chapter 4, we address this question in the case of all known cyclic 
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Hadamard difference sets , as well as the Singer difference sets. In the latter case, 

the codes are given by generalized Reed Muller codes, so we determine the relation 

of these codes to Crep ( v). 
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0 Introduction 

We begin with some basic definitions and concepts from design and coding theory. 

This section is included mainly for the purpose of standardizing notation and re­

viewing the relevant topics. For the reader who is unfamiliar with these areas, see 

[lin] , [mac], or [assl]. 

0.1 Symmetric Designs and Cyclic Difference Sets 

Let P , B be finite sets. The elements of P will be called points the elements of B 

will be called blocks. An incidence structure is determined by a subset :F of P x B 

called the flags. If (p, B) E :F we say p and B are incident. Let D be an incidence 

structure which satisfies: 

(1) IPI = V. 

(2) rt B E B, then Bis incident with exactly k points. 

(3) rt S ~ P with JSJ = t, then there are exactly >. blocks incident with every 

element of S. 

We then say Dis at - (v, k , >.) design. it is easy to see that the number of blocks 

incident with a given point is a constant, say r. We will also write JBJ = b. 
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In case v = b ( and hence k = r) we will say that D is a Symmetric Design. It can 

be shown that this implies that t = 2, and we will use the notation ( v, k, >-) design 

to refer to a symmetric design. One construction for Symmetric Designs is by using 

a Dffference Set. Let G be a (finite) group with !GI = v and let D be a subset of G 

which satisfies: 

(1) IDI = k 

(2) Each nonidentity element of G occurs exactly>- times in the list [gh- 1 : g, h E 

D] 

We then say D is a (v, k, >-) difference set in G. In this case, the structure with 

P = G and B given by the translates of D is a (v, k, >-) symmetric design. Our 

primary concern will be in the case when G is cyclic in which case we will call D a 

Cyclic Difference Set. 

Let D be a subset of the cyclic group Z ,u = { 0, 1, 2, ... , v -1}. We will associate 

with D a polynomial 0 E Z[x) mod (xv - 1) called the Hall Polynomial of D. 0 is 

given by: 

v-l 

0( x) = I: aixi where 
i=O 

By definition, D is a difference set if and only if 

0.2 Cyclic Codes 

{ 
1 if i ED 

a,i = 0 else 
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A code of length n is a subspace of the vector space F~ endowed with the Hamming 

Metric: d(x,y) is the number of coordinates in which x and y differ. The vectors 

are called codewords. The weight of a codeword xis d(O, x). A matrix whose rows 

generate C is called a generator matrix for C. Two codes are said to be isomorphic 

if one can be obtained from the other by a permutation of the coordinates. The 

automorphism group of C is that group of permutations of the coordinates which 

fix C as a set (i.e. which map codewords to codewords). We define C..L = {y : 

y • x = 0 for all x EC}. Notice dim(C) + dim(C..L) = n. A generator matrix for 

C..L is called a parity check matrix for C. We define the weight enumerator of C 

by 

Wc(x,y) = L xn-wt(c)ywt(c) 

cEC 

Suppose C has M codewords and that C is a vector space over F q. We then have 

the following formula called the Mac Williams Relations: 

1 
Wc_i_(x,y)= MWc(x+(q-l)y,x-y) 

If C = C..L we will say C is se~f dual. Otherwise, we will call C..L the orthogonal of 

C. 

A cyclic code may be broadly defined as a code of length v whose automorphism 

group contains a cycle of length v. However, we will be more specific and say that 

a code is cyclic if and only if it satisfies: 
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Now, to each codeword (co, C1 , ... , Cv-1) we associate the polynomial :rt~~l) CkXk. 

Notice that the cyclic shift above corresponds to multiplication by x ( mod xv -1). If 

we then let Rv( q) be the ring of polynomials with coefficients in F q modulo xv -1, 

cyclic codes over F q are in one to one correspondence with ideals in Rv ( q). As such 

each cyclic code is generated by a single polynomial. Given a cyclic code C, there 

is a unique monic polynomial of least degree among all polynomials which generate 

C called the generator polynomial of C. If .9i ( x) is the generator polynomial of 

Ci (i = 1, 2), we have 

(1) .9i(x) divides xv - 1 

(2) dim(Ci) = v - deg(gi(x)) 

Now, let C be a cyclic code of length v and suppose v and q are relatively prime (in 

our case, v will usually be qn -1 for some n). The roots of xv -1 over some extension 

field are precisely the v th roots of unity in that field. Thus, each monic divisor g( x) 

of xv - 1 (i.e. each generator polynomial of a cyclic code) may be associated with 

a set S ~ { 0, 1, . . . , v - 1} such that if a is a primitive vth root of unity, then 

g(x) = IT (x - a 'i) 
iES 

One advantage of giving a cyclic code in terms of roots is the BCH Bound: 

Let the cyclic code C be given. Assume that a is a primitive element of F q2 

where q = 2m. Assume also that there is some a so that the distinct elements 

aa, aa+I, ... , aa+<>-2 are all roots of the generator polynomial of C. Then the 
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minimum distance of C is at least c5. See [oor] or [mac] for a proof. 

Let D be a ( v, k, ,\) design. Form the matrix A whose rows are indexed by the 

blocks of D and whose columns are indexed by the points of D, and with 

{ 
1 if p and B are incident (p -=j:. B) 

AB ,p = O else 

The p-ary code of D, Cp(D) is defined to be the span of the rows of A. We will 

almost always assume that 2 divides k - ,\ and consider only the binary code C2 ( D). 

Notice that if D is a cyclic difference set, then C2 (D) is a cyclic binary code. 

Assume further that v is odd. Then we may find the generator polynomial of 

C2 (D) as follows. First, take 0(x) the Hall polynomial of D and let 0(x) be the 

same polynomial but with the coefficients now taken to be in F 2 rather than Zand 

taken modulo xv - 1. Now, 0(x) generates the cyclic code C2 (D) but may not be 

the generator polynomial. Let g(x) be the generator polynomial. g(x)IB(x) since 0 

is in the ideal generated by g. Moreover, the code must be the smallest cyclic code 

which contains 0. Then applying (1) and (3) above, we see that g(x) = gcd(rJ,xv-1) 

which is given by the formula: 

g(x) = IJ (x - o/) where S = {i: ci is a root of 0 over F 2 m} 
-iES 

0.3 Reed Muller Codes 

There are several ways to define the Reed Muller Codes and study their properties. 

We will give some simple constructions that will be useful in the sequel. For more 
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on Reed Muller Codes or the equivalence of these constructions, see [mac], [lin], or 

Consider them x 2m matrix A whose columns consist of every vector in F 2 m . 

Now form the matrix 
1 1 

(1) 
A 

We define the .first-order Reed Muller Code R(l, m) to be the F 2 span of the rows 

of R. Clearly, the dimension of this code is m + 1. R( 1, m) may also be defined in 

the following way. Let the coordinates of the code be labelled by the elements of 

F q where q = 2m. Define a code L as the set of all linear functionals from F q to 

F 2 . Then R(l , m) is the code generated by L together with the all ones vector j. 

In turn , this is equivalent to the code generated by the point-hyperplane incidence 

vectors in m-dimensional affine geometry over F 2 . 

Finally, notice that the weight enumerator of R(l , m) is given by: 

we will later need to use the fact that R(l , m) is determined by its weight enumer-

a tor. Here is an easy proof: 

PROPOSITION 0.3.1: Let C be a code with the same weight enumerator as 

R(l , m), then C is isomorphic to R(l,m). 

PROOF: Since C contains the all ones vector, assume C is generated by the rows 
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of the matrix 

C 
1 1 

s 
For some m x 2"n matrix S. Now, by the MacWilliams relations, 

1 [ +1 2m 2m 4 4 ] Wc.L(x,y) = 2m+l 2m X + A4 X - y + ... 

that is, C..L contains no vectors of weight 2. Suppose now that S had 2 identical 

columns. The vector with ones in these coordinates and O elsewhere would then be 

in C..L, so that C..L would contain vectors of weight 2. Thus, we conclude that every 

column of S is different and therefore , S differs from the matrix A of equation ( 1) 

only by a permutation of the coordinates □ 

Now, define the punctured.first-order R eed Muller code, R *( I , m) to be the code 

obtained by removing the coordinate position corresponding to O from R(l , m). We 

may now prove the following: 

PROPOSITION 0.3.2: Let q = 2m. Let a be a primitive element of F q. Let 

R be the cyclic code of length q - I whose generator polynomial is the polynomial 

whose roots are every element of F q except 1, a- 1 , a-2 , a-4 , ... , a-q/2 (i.e., except 

for I and the conjugates of a-1 ). Then R ~ R*(I , m). 

PROOF: R has roots a, a 2 , a3, . .. , aq/2 - 2 and thus , by the BCH bound, R must 

have minimum weight at least q/2 - 1. Consider now the code R e obtained by 

adding an overall parity bit to R. Then R e has minimum weight at least q/2. Now, 
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smce 1 is not a root, R contains the code whose generator polynomial has every 

element except 1 as a root. This code contains only two codewords, the zero vector, 

and j, the vector of all ones. Thus, R contains j and it follows that every codeword 

of Re has weight 0,q/2, or q. Since R has exactly m + 1 non-roots, the dimension 

of Re ism+ 1. Then by proposition 0.3.1, we have Re ~ R(l, m) and we have the 

desired result. □ 
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1 The Family M ( q2) 

In the three parts of this section, we will discuss a family of difference sets called 

M ( q2 ) from three different perspectives. First , we give the simple geometric defini­

tion of the family using a regular oval in a Desarguesian projective plane. Second, 

we review some results of Jackson [jac] which allow us to construct M( q2 ) in an 

alternative manner. Finally, we show that the construction of Jackson is essentially 

identical to an earlier construction of Gordon, Mills , and Welch [gor] which allows 

us to compute the Hall polynomial of M(q2 ). 

1.1 Hadamard Designs, Geometry, D(q2 ), and M(q2 ). 

A Hadamard design D is a symmetric ( 4n - 1, 2n, n) design. The complementary 

design .D has parameters ( 4n-1, 2n-1, n-1). Moreover, .D extends to a design with 

parameters 3 - ( 4n, 2n, n - l) which we will denote .D. The Hadamard designs with 

these parameters will be said to have order n. If n is even, the binary codes of these 

designs will be related as follows. The code of D denoted C2 ( D) is self orthogonal 

and hence does not contain the all ones vector j. The code of D has codimension 

1 in C2 (.D) the difference being that j E C2 (.D). C2 (.D) may be extended by an 
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overall parity bit to obtain the code C2(D). If Dis given as a cyclic difference set, 

the codes may be given by the roots of the generator polynomial. In this case, the 

difference between C2 (D) and C2 (.D) is the root 1. 

From now on, we will write n = q/4 = 2m-2 . To define the family D(q) of 

Hadamard designs , we first let the points be the nonzero elements of F q. The blocks 

are associated with the linear functionals L : F q -+ F 2 so that I E BL if and only 

if L(,) = 1. The code of D(q) is the code of linear functionals and thus, we have 

C2(D(q)) ~ R*(l , m). 

A family of designs of order q2 = 22 m which we will call M(q2 ) may be defined 

by the following simple geometric construction. Let II be a Desarguesian projective 

plane of order q. That is II is the symmetric ( q2 + q + 1, q + 1, 1) design of one­

and two-dimensional subspaces of Fr Let O consist of the points { ( 1, t, t2) : t E 

Fq} LJ{(O , 1, 0)} LJ{(O, O, 1)}. 0 is an oval in II , that is, a set of q + 2 points such 

that no 3 are collinear. Blocks of II meet O in O or 2 points and are called exterior 

or secant respectively. Points not on O are called exterior points. The points of 

M(q2 ) are the exterior points. For each exterior point p, we define a block BP by 

BP = { q # p : the block through p and q is an exterior block } . It is easily seen that 

M(q2 ) is a symmetric (q2 -1,q2 /2 , q2 /4) symmetric design, i.e. it has the same 

parameters as D ( q2 ). The family M ( q2 ) has been extensively studied by geometers, 

see especially the recent work of Maschietti [masl], [mas2],[mas3], and [mas4). In 

[masl] it is shown using only this definition that M(q2
) ~ D(q2 ) if and only if q = 4. 
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We will not give such a proof here, but the result will follow from several of the 

results in the sequel. 

1.2 The Results of Jackson 

We will state some of the results in [jac] without proof. The reader may consult 

this paper for details. Let M be the matrix whose rows and columns are indexed 

by the elements of F~ \ (0, 0). The entry Mxy = xyT = x • y . Let .f: F q-+ {O, 1 }. 

Define .f(M) to be the matrix with(f(M)ty = .f(xyT). We then have 

CONSTRUCTION 1.2.1 (Jackson [jac]): Let D be a cyclic Hadamard d(fference 

set in F~. Define f: Fq-+ {O, 1} by f( x ) = 1 fl and only fl x ED. Then f(M) is 

the incidence matrix of a (q2 - 1, q2 /2, q2 /4) symrnetric design. fl two such designs 

are constructed from D 1 and D2 they are isomorphic if and only if D 1 is a translate 

The main result of Jackson 's paper is 

THEOREM 1.2.2 (Jackson [jac]): D is a (q2 - 1, q2 /2, q2 /4) design on which 

PS L2 ( q) acts transitively fl and only fl D arises from construction 1.2.1. 

Notice that as a corollary of theorem 1.2.2, we have that all the designs constructed 

by .Jackson are, in fact , cyclic difference sets. Also, since PS L2 ( q) acts as a subgroup 

of the automorphism group of the projective plane II which fixes the oval O (see 

[die]) , M(q2 ) must arise from .Jackson's construction. In fact , we have the following 



12 

PROPOSITION 1.2.3 ( Jackson (jac}): D( q2
) arises from Jackson's construction 

with D = D(q). Moreover, M(q2 ) arises from Jackson 's construction with D = 

1/D(q)={l/x: xED(q)}. 

1.3 The Hall Polynomial of M(q2 ) 

We will adopt the following notational conventions throughout the rest of the paper: 

NOTATION 1.3.1: q = 2m. {3 is a primitive element of F q· a is a primitive 

element of F q2 such that {3 = aq+I. 0(x) is the Hall polynomial of D(q2 ). 3 0 (x) is 

the Hall polynomial of M(q2 ). 00 (y) is the Hall polynomial of D(q). We will also 

Now, any element of F q2 may be written uniquely in the form t 1 + t2a where 

Now, let the columns of M be ordered 1, a, a 2 , ... , aq-2. The rows of M may then 

be ordered so that M is circulant. Let r be the row corresponding to (1,0) (i.e. r 

is the row associated with L0 ). Let x be the vector of the first q + l entries in r. 

Then r = (x,{3x,{32 x, ... ,{3q-2x). Let f: Fq---+ {0, 1} with f(0) = 0. To find the 

Hall polynomial of any difference set whose incidence matrix is of the form f (M) 

(for example 3 0 (x) or 0(x)) , we must simply find the polynomial associated with 

f(r) . To this end, we define: 

q-2 

cp(y) = L a.iyi where 
i=O 
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l!J(x) = L b.ix·i 

q2-2 

no(x) = L CiXi 

·i=O 

We then have the following 
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where 

where 

bi = { 1 if .f ( Lo ( o/)) = 1 
0 else 

C-i = { 1 if L 0 (di) = 1 
0 else 

PROOF: It suffices to prove the result in the case where c/> is monomial, so assume 

that c/>(y) = yk. Then 

q2-2 q2-2 

no(x)cp(y) = L C-iYkXi = L C-iXk(q+l)+i 

q2-2 

no(x)cp(y) = L d.ix ·i 
·i=O 

The result follows 

where { 
1 if Lo(o/) = (3k di= 

• 0 else 

D 

We may now establish the following corollary which is an immediate consequence 

of theorem 1.3.2 and proposition 1.2.3. 

COROLLARY 1.3.3: 0(x) = n0 (x)00 (y). 3 0 (x) = n 0 (x)00 (y- 1). 

The family D(q2
) was first discovered by Singer in 1939 ([sin) see also [hall] and 

[hal2]), and for quite some time it was unknown whether there was another infinite 
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family of cyclic difference sets with the same parameters as D( q2 ) but not isomorphic 

to it. This question was eventually answered in the affirmative by Gordon, Mills, 

and Welch [gor] who observed that 0(x) = r2o(x)0o(Y) and gave the following 

construction. 

CONSTRUCTION 1.3.4: (Gordon, Mills, W elch {qor}) Let D be a cyclic Hada­

mard di.fference set in F~ and let 0(y) be its Hall polynomial. Then r2o(x)0(y) is the 

Hall polynomial of a (q2 -1 , q2 /2, q2 /4) cyclic d~fference set. ff two such designs are 

constructed from D 1 and D 2 , they are isomorphic ~f and only ~f D 1 is a translate 

Thus, Jackson 's theorem may be restated 

THEOREM 1.3.5: Dis a (q2 - 1, q2 /2 , q2 /4) design on which PSL2 (q) acts 

transitively if and only ~fit is of Gordon, Mills , Welch type. 

The construction given in [gor] is actually much more general than that given above, 

but we are only interested in this special case for the purpose of this discussion. 

It was noted in that paper that the difference set G(q2 ) whose Hall polynomial is 

B0 (x) is never isomorphic to D(q2 ) provided q > 4. Thus, G(q2 ) became the first 

infinite family known with the same parameters as D(q2 ) but not isomorphic to 

D(q2 ). Since both G(q2 ) and M(q2 ) are classically known designs known to have 

this property, it is perhaps surprising that , until now, it has not been noticed that 
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2 The Code of M{q2) 

In this section we will mainly be concerned with computing the rank of C2 (M(q2 )), 

thus solving a conjecture of Assmus and Key ([assl],[ass3]). Also, we will investigate 

the existence of subcodes of C2 (M(q2 )) isomorphic to R*(l, 2m). 

2.1 Preliminary Lemmas 

We will first prove some technical lemmas which will be needed in the sequel. It 

may be, however , that some of these results are interesting in their own right. Our 

first lemma was communicated to the author by A. Brouwer via R.M. Wilson. It 

has evidently been known in the folklore for some time. (The earliest published 

use of this technique known to this author is [smi] where it is used to compute the 

rank of the point-hyperplane incidence matrix of PG(n, q) , where q = pm.) In some 

sense, it is a generalization of the fact that a circulant matrix can be diagonalized 

by a Vandermonde matrix. 

LEMMA 2 .1.1: Let a be a primitive element of F q ( q = 2m-), and let .f : 

(F~,F~)---+ Fq be given by f(x , y) = I:,;,-;:0 ai_ix·iy.i. Let the matrix A be defined 
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(A) -i.i = ai.i and define the matrix F by (F)ij 

Rank(F). 

PROOF: Let V be the Vandermonde matrix 

1 
1 

V = 1 

1 

f(ci,a.i). Then Rank(A) 

a(q-2)( q-2) 

Then direct computation shows that VA yT = F. Since V is nonsingular, we have 

the result Rank(A) = Rank(F) □ 

LEMMA 2.1.2: Let Fq = {a1 , ... ,aq}- Let B be the matrix with B.i,.i = (ai + 

a.i )q-2 then, 
1 1 

B 

PROOF: First note that 

q 

(B 2 )-i.i = I)a-i + ak)q- 2 (ak + a_i)q- 2 

k=l 
q 

= L [a~ + (ai + a.i)ak + aia_7]q- 2 

k=l 

This last sum is O if i = ,i since it then runs through all elements of F q. If i #- ,i : the 

sum is O since the function ak H µak is 2-1 on F q· Thus, B 2 = 0 and we conclude 

that Rank(B) ::; q/2. Now, let B' be the principal submatrix of B obtained by 

deleting the row and column corresponding to 0. We may apply lemma 2.1.1 to this 



17 

matrix with .f ( x, y) = ( x + y) q-2 = xq-2 + xq-4 y2 + xq-5 y4 + • • • + yq-2 . Clearly, 

then, the matrix of coefficients has rank q/2 and by lemma 2.1.1 , Rank(B') = q/2. 

Hence, Rank(B) = q/2. Now, since B 2 = 0 and B is symmetric, the rows of B 

span a self orthogonal code. Since Rank(B) = q/2, this code is in fact self dual. 

Since (1, 1, 1, ... , 1) is orthogonal to every row of B, it is in this code and we have 

the desired result. □ 

Recall that the trace map Tr( x) = x + x 2 + x4 + · · · + xq/2 is a linear functional 

mapping F q ➔ F 2 , and has the property that every linear functional L : F q ➔ F 2 

is of the form L( x) = Tr(J-tX) for some µ E F q · Let M be the matrix of section 1.2. 

except now appended with a row and column corresponding to (0 , 0) with every new 

entry equal to 0. Let .f(x) = Tr(xq-2 ), so that .f(M) is an "extended'' incidence 

matrix of M ( q2 ). Clearly, this matrix has the same rank as the ordinary incidence 

matrix. Let R= be the set of rows of M indexed by multiples of (0,1). For a E F q 

let Ro: be the set of rows indexed by multiples of (1, a). Note that the R,i partition 

the rows of M except that O E R.i for each i. Finally, define .f (R.i) in the obvious 

way, so that if z is an entry of R.i, then .f ( z) is the corresponding entry of .f ( R.i) 

LEMMA 2.1.3: The code generated by .f(R.i) U {j} , where j is the all ones vector , 

is equivalent to {(c,c, ... , c) : c E R(l,m)}. The rows of .f(R.i) are equivalent to 

{ ( c, c, ... , c) : c is a linear functional } . 

PROOF: It suffices to prove the latter assertion. Consider R,. Let a generate F~ . 
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Permute the columns of M so that row (L 1 ) is 

( 
2 q-2 () 1 q-2) 0, 1,a,a , ... ,a , , ,a, ... ,a 

Now, label the columns of R, by (0, 1, aq-
2

, aq-3 , ... , a, 0, 1, aq-2 , ... , a) (note that 

this labelling does not correspond to that of M) and label row µ(1, ,y) withµ. Then 

the entry in row µ column CY is Tr(1-w). As p runs through all elements of F q , this 

lists all linear functionals. The case of R= is identical. D 

It is conjectured in [assl] and [ass3] that rank(C2(M(q2))) = m2m-l where q = 2m 

as usual. We can now prove this by using the lemmas in section 2.1 to exhibit a basis 

for C2 (M(q2 )). Let B be as in lemma 2.1.2, and let H ~ Fq with IHI= q/2 such 

that the rows and columns of B indexed by the elements of H form a nonsingular 

principal submatrix of B. Now, by lemma 2.1.3 , rank(.f(R,i)) = m for each i. For 

each (3 E H , let B f3 be a set of m vectors in f ( Rµ) such that B f3 is a basis for 

f(Rµ). Let B = u (3EH Bµ. Notice that IBI = m2m-l _ We claim that B is a basis 

for C2(M(q2)). To show this, we will first show that B is linearly independent. 

{ a,d;~\m-i (in this case, of course, a scalar is an element of F 2 ). Then, if we write 

H = {(31, ... JJq;d we may rewrite this expression as 
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which, in turn , may be rewritten as c1x1 + c2x2 + · · · + cq;2xq;2 where c,; E F 2 

and Xi E span(.f (Rp;)) = f (R(3;). If Ci = 0, let Yi = 0 E f (Rf3J · Otherwise, let 

Yi = Xi. The above sum now becomes Y1 + Y2 + · · · + Yq/2 = 0 where Yi E f (Rµ;). 

It therefore suffices to prove 

PROPOSITION 2.2.1: Let H = {,61, ... , ,6q;2} be as above. For each i with 

1 :S: i :S: q/2, pick Yi E f (Rf3i). Then I:;~; Yi = 0 fl and only fl Yi = 0 for all i 

PROOF: Assume I:;~; Yi = 0. Suppose Yi is the row of f (M) associated with 

a,; ( 1, ,6.i) (possibly a,; = 0). The entries in the corresponding row of M are those 

elements of the form (a .i,a,;,6,;)(x1,x2)T where (x 1,x2) runs through every element 

of F~. Thus, we conclude that the columns of M restricted to the rows corre­

sponding to Yi form the subspace of Ft2 
generated by ( a1, a2, ... , aq;2 ) T and 

space. Then 
q/2 q/2 

0 = LTr[(cr.iF- 2] = Tr[I)cri)q-2
] 

i=l 

since this sum is just the entry in one coordinate position of I:;~; Yi· Notice that 

the above equation must also hold for every scalar multiple of ( cr1 , cr2, . .. , er q/2) and 

so it must be the case that I:;~; ( cr.i)q-2 = 0. More specifically, we have shown that 

q/2 q/2 
'"""( ·)q-2 _ '"""( (-, )q-2 _ 0 L a-i - L ,ai+aivi -

for every, E F q· Thus, ( ay-2
, ag-2

, ... , cx~
12

2
) is orthogonal to ( ( 1 + ,61 )q-2 , ( 1 + 

,62)q-2, ... , (, + ,6q;2)q-2) for every, E F q· It then follows from lemma 2.1.2 and 
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th d fi • • t· H h ( q-2 q-2 q-2) • h · 1 1 t· e e mt10n o t at a 1 , a 2 , ... , aq/2 1s ort ogona to every e ement o 

Ff 
2

, so that ai = 0 for all i. Which is equivalent to saying that Yi = 0 for all i, as 

desired. □ 

Proposition 2.2.1 shows that the set Bis linearly independent. It remains to show 

PROPOSITION 2.2.2: span(B) = C2 (M(q2 )) 

PROOF: We will show this by showing that each f (R;) is in the span of B. Clearly, 

f(R(3) ~ span(B) if (3 EH. Now, suppose that f3o E F q \Hand let y E f(Rf3o ). Say 

y is the is the row indexed by a 0 (1 , [30 ), note a 0 =/=- 0. Let B 2 be the submatrix of 

B with columns indexed by {f3o} U {,B : (3 E H} and with rows indexed by F q· By 

lemma 2.1.2 , there exists a nonzero vector, (&o,a1 , ... ,aq;2) which is orthogonal 

to every row of the matrix 

C 
1 1 

But clearly we have &o =/=- 0, so we may assume a 0 = &0 . Thus, 

q/2 q/2 
L)ai)q-2 = L(ai)q-2(, + /Ji)q- 2 = 0 

for all I E Fq and {3,; E {.Bo} U {[3 : (3 EH}. Multiplying the latter sum by an 

appropriate scalar , we have that 

q/2 q/2 
L(a,;)q-2(,1 + ,2f3,i)q-2 = L[(,1,,2) · (a.;,ai,B.i)F-2 = 0 
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For any ( 11 , ,2) E F~. Hence, 

q/2 

L Tr ( [ (,1, ,2) • ( a .i, ai/J·i) F-2
) = 0 

·i=O 

But this is exactly the entry in the column labelled ( 11, ,2) in the sum y + y 1 + 

· · · + Yq/2 where Yi is the row of .f (M) associated with a.i(l , ,6.i). So y = Li~; Yi 

but since for 1 :::; i :::; q/2 , Yi E span(B) we have that y E span(B). 

This leaves only the case of .f (Rx,) to consider. Because of the above,we may 

show that f(R=) E span(B) by showing that it is in the span of the other f (R.i)­

In fact, it is not difficult to show that any of the f (R.i) is in the span of the rest 

using the transitive action of GL2 (q) on M(q2 ). Let y E f(R=), as above pick 

zo, z1 , ... , Zq/2 such that Zi E f(Ra ;) and Li~~ Zi = 0. Then take some element 

of GL2(q) which maps z0 toy and let Yi be the image of Zi under this map. Then 

clearly, since G L2 ( q) maps linearly independent vectors to linearly independent 

vectors, we have that Yi (j_ f(Roc) for 1 :::; i :::; q/2. In other words, y = Li~; Yi 

where each Yi E span(B). We conclude that F(Rxo) ~ span(B) and we are done . □ 

An immediate consequence of Propositions 2. 2 .1 and 2. 2. 2 is that we have proved the 

conjecture of Assmus and Key stated as conjecture 7.12.1 in [assl] and as conjecture 

1 on page 288 of [ass3]. We record this in the following 

THEOREM 2.2.3: Rank(C2 (M(q2 ))) = m2m-l 

We will see some applications of theorem 2.2.3 in chapter 3. 
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2.3 Some Reed Muller Codes in C 2 (M(q2
)) 

In addition to allowing us to exhibit a basis for C2(M(q2)) , lemma 2.1.3 will allow us 

to determine whether the code C2(M(q2)) contains a copy of R *(l , 2m) in the coding 

theoretic sense. Of course, it cannot, since it does not contain j , but we will abuse 

notation and say that R*(l , 2m) ~ C2(M(q2)) ifjUC2(M(q2)) contains R*(l , 2m). 

Note, however , that if the code of a (q2 -1, q2/2,q2/4) design contains R*(l,2m) 

in the above sense, then the code of the complementary (q2 - 1, q2 /2 -1, q2 /4 - 1) 

design actually contains R*(l , 2m). 

We will pause briefly to explain why this question may be of interest. There are 

three reasons. First, it was conjectured in [assl] that the code of every ( q2 -1 , q2 /2-

1, q2 /4-1) design contains a copy of R*(l, 2m) although this conjecture was shown 

using an exhaustive computer search to be false (see [ass4]) , several weaker versions 

of the conjecture remain open. Thus, it is still important to examine C2(M(q2)) 

with respect to this property. Second, in the general theory of codes of designs , it 

is obviously preferable if no two nonisomorphic designs with the same parameters 

have isomorphic codes. In fact , we would even like to avoid the situation where 

two nonisomorphic designs with the same parameters generate codes one of which 

is a subcode of the other. This is , in fact the situation with projective planes which 

is why most of the applications of the theory occur there. The result below will 

show that in contrast to this situation, C2(M(q2)) contains the codes of many other 

designs with the same parameters as M(q2) (although the ones that we will find are 
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all isomorphic to R* ( 1, 2m)). Finally, we will see that a cyclic difference set whose 

code contains no cyclic copies of R * ( 1, 2m) will have some very interesting combi­

natorial properties. We will discuss this situation further in chapter 4. With this 

in mind, let us show 

PROPOSITION 2.3.1: C2(M(q2)) contains a copy of R *(l , 2m) as a subcode. 

PROOF: Reorder the columns of M so that they are labelled in the order 

(0 , 0) , (0 , 1) , (0, a), .. . (0, aq-

2 ), (1 , 0) , (1 , 1) , (1 , a), ... 

( q-2 0) ( q-2 1) ( q-2 q-2) ... , a , , a , , ... , a ,a 

Now, consider the subcodes .f(R00 ) and .f(R0 ). Let Q be the code of linear func­

tionals so that < Q,j >= R(l , m) . In this form, it is easy to see that f(R00 ) = 

{ ( c , c , ... , c) : c E Q}. We also see that the vectors in .f (Ro) are precisely those 

of the following type. Let ( x1, ... , Xq ) be any element of Q. Define vectors Yi 

(1 ::; i ::; q) by the rule 

if X -i = l 
if X -i = 0 

then every vector in .f(Ro) is of the form (y1 , y 2 , ... , yq) for some (x 1 , x2 , ... , xq ) E 

Q. This leads us to observe that every element of (f (R00 ) , f(Ro)) has weight 0 or 

q2 /2. Moreover, it shows that f(R00 ) n .f(R0 ) = {O} and that j (/_ (f(R00 ), f(Ro)). 

This means that (f (Roo), .f(Ro) ,j) has dimension 2m + 1 and that every vector it 

contains has weight 0, q2 /2 , or q2 . It therefore follows from proposition 0.3.1 that 
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(.f (R00 ), .f(R0 ),j) ~ R(l, 2m). Omitting the extra column of M corresponding to 

(0 , 0) gives the desired result □ 

There are two things worth noting about proposition 2.3.1. First , since the au­

tomorphism group of M ( q2) acts twofold transitively on the .f ( Ri), the result is 

true for any two of the .f(Ri)- Thus, C2(M(q2)) may contain as many as (q!1) 

copies of R*(l, 2m). However, none of them is cyclic. This follows easily from 

the proof since each of these copies of R* ( 1, 2m) must contain vectors in common 

with C2(M(q2)). Thus, if any of them were cyclic, it would necessarily imply that 

C2(M(q2)) ~ R*(l, 2m) , an impossibility. Since we are mainly interested in cyclic 

codes for the purpose of this paper, we have still not fully answered the question 
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3 The Code of M { q2) as a Cyclic Code 

In the previous section, we determined that C2(M(q2)) contains copies of R*(l, 2m) , 

but none of these codes was cyclic. This motivates the question whether C2(M(q2)) 

contains such subcodes. To answer this question (in the affirmative) we will first 

determine the roots of the generating polynomial for C2(M(q2)). In addition, this 

determination will allow us to estimate the minimum distance of the code using the 

BCH bound. 

3.1 The Roots of S(x) 

We know that C2 (M( q2)) has dimension m2m-l. This means that its generator 

polynomial has exactly m2m-l non-roots. Since the orbit of a primitive element of 

F q2 contains 2m elements, this may lead us to suspect that the non-roots consist 

of q/ 4 orbits of primitive elements. This, as we shall see, is not entirely true. In 

fact , the non-roots do comprise exactly q/ 4 orbits , but they are not all primitive. 

We will show this in this section along with giving a simple way to determine which 

non-roots are primitive. Before we begin, though, we will need to clarify some 
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preliminary notation. 

We will use notation 1.3.1. In chapters O and 1, we characterized the non-roots 

of (-:>( x ) as being a-1 and its conjugates where a is any primitive element of F q2. 

Notice that for any element I E F q2 , ,q + 1 E F q where we are viewing F q as a 

subfield of F q2. For our particular a as above, we will write aq + a = c E F q \ { 0}. 

THEOREM 3.1.1: The non-roots ofSo(x) are the elements of the form a£(q-l)+l 

with O < f_ :S q and f_ even, and their conjugates. 

Before proving the theorem, we will illustrate it by examining the examples M(16) 

and M(64). Let I be of the form 1 = a£(q-l)+l. The conjugates of I are 

1 , 1
2 , 1

4 , ... , ,q
2
12 . These 2m elements are not necessarily distinct , but the first 

m of them are clearly distinct. We therefore define the ha~f"--orbit of I to be 

{ 1 , 1
2 , ... , ,q/2 }. The non-roots can then be given as a£(q-l)+l, , 0 < f_ :S q, to­

gether with their half-orbits. In this way, each non-root is counted exactly once. 

In the case of M(16) , we have q = 4 and the corresponding half-orbits of non-roots 

are { a7, a 14 } and { a 13 , a 11 }. Thus, the code of M(16) has non-roots exactly a - 1 

and its conjugates, as we expected since M(16) '.::::'. D(16). The case of M(64) is 

more interesting. Here, q = 8 and the half-orbits of non-roots are { a 15 , a 30 , a 60 }, 

{ a 29 , a 58 , a 53 }, { a 43 , a
23

, a
46 

}, and { a 57 , a 51 , a 39 }. Notice that the first and fourth 

of these form an orbit as do the second and third. But notice also that a 15 is not 

primitive. Thus, the code of M(64) contains exactly one cyclic copy of R *(l , 6). 

These examples show that using the half-orbits gives an easy way to use the the-
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orem to write down the half-orbits of non-roots of the generating polynomial of 

C2(M(q2). The reader may use this method to verify that every non-root of the 

generator polynomial of C2(M(256)) is primitive. Thus, C2(M(256)) contains ex­

actly 4 cyclic copies of R*(l, 8). In section 3.2, we will see how to easily determine 

exactly how many cyclic copies of R* ( 1, 2m) are contained in C2 ( M ( q2 )). We will 

also see that this number is at least one. 

We need to make one more notational change before beginning the proof of the­

orem 3.1.1. 3 0 (x) may be replaced with any of its translates: x.i30 (x) mod(xq2-i _ 

1) and the resulting polynomial will still be a Hall polynomial of M(q2 ) and will 

have the same roots as 3 0 ( x) over F q2 ( except possibly for O roots, which we ignore). 

It is shown in [gor] that 2 is a multiplier of M ( q2 ) and hence, there is a translate 

3(x) of 30 (x) which is fixed by this multiplier. Thus, 3(x) has the property that 

3( x) E { 0, 1} for every x E F q2. We will therefore replace So ( x) with 3( x). Simi­

larly, there is a translate 0(x) = x ·ie0 (y-1) of 00 (y-1) which is fixed by the multiplier 

2 of D(q) , so that 0(y-1) always takes the value O or 1. Now, let n(x) = x.i-·in0 (x). 

We then have 3(x) = x.i30 (x) = (x.i- ·in 0 (x))(x 'i 0(y- 1 ) = n(x)0(y-1). If 3(x) -1- 0, 

then 1 = 3(x) = n(x )0(y-1) = n(x ). So that n(x) always takes the value O or 1 

provided 0(y-1) -1- 0. We will also define L(x) = L0 (a-i-ix). Note L(x) is a linear 

functional mapping F q2 to F q· We may easily verify that theorem 1.3.2 remains 

valid with !10 ( x) replaced by n ( x) and with Lo ( x) replaced by L ( x). With these 

preliminaries, we are able to give the 
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PROOF OF THEOREM 3.1.1: We have 3(x) = D(x )0(y-1) in the above 

notation. So the non-roots of 3( x) are precisely those elements which are non-roots 

of both n(x) and 0(y- 1 ). By proposition 0.3.2, the non-roots of 0(y-1) over F q are 

(3 and its conjugates. Thus, over F q2 , the non-roots of 0(y-1) are those elements 

a/ such that (ci)q+I = (3 or a conjugate of (3. These are precisely those elements of 

the form cl'(q-l)+l where O::::; .e ::::; q and their conjugates. 

Each element of the form c/(q-l)+l corresponds to a half-orbit so by our above 

discussion, we only need to determine those £ for which c/(q-l)+l is a non-root of 

D(x) and then extend to the half-orbits. Now, consider the cases where .e = 0 or 

.e = 1. These correspond to the cases where c/(q-l)+l = a or ae(q-l)+l = aq . We 

claim that these elements must be roots of D(x). Since they are conjugates, it will 

suffice to show that a is a root of n. 

For the rest of this proof, we will assume that L( x) has the following form. 

Express an element I E F q2 as , = t1 + t 2 a where t1, t2 E F q· Then there are 

a 2 -=/- 0, but the case where a2 = 0 can be treated in a virtually identical manner . 

Now, 

q2-2 

n ( a.i) = L Ci ( a -1 )'i 
·i=O 

where . _ { 1 if L(a-i) = 1 c., -
• 0 else 
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We then let 

And we have o/ = t(l + aa) + ba. Thus, 

n(a·j) = L [t(l + aa) + bap 
tEFq 

We now haven( a) = I:tEF )t(l + aa) + ba] = 0, and it follows that a (and aq) are 

roots of n(x) as claimed. 

There are m(q - 1) possibilities left for the non-roots of B(x). By theorem 

2.2.3, we know that exactly m2m-l = m( q/2) of them are actually non-roots, and 

by the above, we know that these non-roots are either elements of the form a.e(q-l)+l 

(2 ::; £::; q) or in a half-orbit of such an element. Also, it will suffice to exhibit those 

£, (2 ::; £::; q) for which a.e(q-l)+l is not a root. There are q/2 such£. Suppose we 

can show that for any£ with 2 ::; £::; q- l that a.e(q-l)+l and a(.e+l)(q-l)+l cannot 

hot.h he non-roots. Then the theorem would follow by the pigeonhole principle. 

Therefore, assume for the sake of a contradiction, that for some £ in the range 

2 ::; £::; q- l we haven( a.e(q-l)+i) = D( a(.e+l)(q-l)+l) = 1 . Replacing£ with£- 1 

if necessary, we may assume that D(a(.e-l)(q-l)+l) = 0. This gives the equations: 

L [t(l + aa) + ba](.e-l)(q-l)[t(l + aa) + ba] = 0 (1) 
tEFq 

L [t(l + aa) + barq-l)[t(l + aa) + ba] = l (2) 
tEFq 

L [t(l + aa) + baf-l)(q-l)[t(l + ac + aa) + b(c +a)]= 1 (3) 
tEFq 



30 

L [t(l + aa) + baf+l)(q-l)[t(l + aa) + ba] = 1 (4) 
tEFq 

L [t(l + aa) + bat(q-l) [t(l + ac + aa) + b(c + a)] = 1 (5) 
tEFq 

where equations (3) and (5) follow directly from equations (2) and (4) by noting 

that 

[t(l + aa) + ba]q = [t(l + ac + aa) + b( c + a)] (6) 

equation ( 6) also allows us to write 

[ (1 ) b l.i(q-l) = [t(l + ac + aa) + b(c + a)l .1 
t + aa + a t ( 1 + aa) + ba 

For .i = f_ - 1, f, f_ + 1. Thus, (1), (2), (3), and (5) may be viewed as four equations 

in the unknowns 

So,·=~ (t(l+ac+aa)+b(c+a)).1 
.1 ~ t(l + aa) + ba 

tEFq 

Si,·= L t(t(l+ac+aa) +b(c+a)).1 
.1 t ( 1 + aa) + ba 

tEFq 

where _j = f_ - 1, f. In particular, we rewrite 

(ba)S0(£-l) + (1 + aa)Si(£-l) = 0 

(b(c + a))S0(£-l) + (1 + ac + aa)Si(£-l) = 1 

(ba)Soe + (1 + aa)S11: = 1 

(b(c + a))Soe + (1 + ac + aa)S1e = 1 

which we solve to obtain 

S0(£-l) = (1 + aa)/bc 
Soe = a/b 

S1(£-l) = a/ c 
S11: = 1 

(1) 

(3) 

(2) 

(5) 

(7) 
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We now turn to a different method for computing the same sums. Notice that 

a-£(q-l)-l is a root of 0(x) but is not a root of 0(y) . So we have 

)£( 0 
_ t(l + aa) + ba 1 
- L (t(l+ac+aa)+b(c+a) t(l+aa)+ba) 

tEFq 

)£( ) t(l + ac + aa) + b( c + a) 1 
= L ( t(l + aa) + ba t(l + ac + aa) + b(c + a) 

tEFq 

(8) 

where the latter equality follows by raising the first to the power q. We compute: 

0 
= t(l + aa) + ba ba ( )£( ) 

L t(l + ac + aa) + b(c + a) t(l + aa) + ba 
tEFq 

( )£( ) t(l + aa) + ba 
1 

t(l + aa) 
= LF t(l + ac + aa) + b(c + a) + t(l + aa) + ba 

tE q 

= (:z= (t(l+ac+aa)+b(c+a))e)q 
t(l + aa) + ba 

tEFq 

( ) L ( t(l + aa) + ba ) e ( t ) 
+ 

1 
+ aa t(l + ac + aa) + b( c + a) t(l + aa) + ba 

tEFq 

lb ( ) ~ ( t(l + aa) + ba ) e ( t ) = a + 1 + aa L.., 
tEFq t(l + ac + aa) + b(c + a) t(l + aa) + ba 

where the last equation follows by (7). Thus, we have 

~ ( t ( 1 + aa) + ba ) e ( t ) a 
L... t(l + ac + aa) + b(c + a) t(l + aa) + ba - b(l + aa) 

tEFq 

(9) 



32 

Now, putting this all together, starting from equation (1) , we have 

0 = L ( t(l + aa) + ba )e-\t(l + aa) + ba) 
tEFq t(l + ac + aa) + b(c + a) 

= (1 + aa)Si(t-l) 

+ ba ~ (t(l + ac + aa) + b( c +a)) e ( t(l + aa) + ba ) 
~ t(l+aa)+ba t(l+ac+aa)+b(c+a) 

tEFq 

1 t(l+ac+aa)+b(c+a) t [ )e( )j = a l+aa -+b 
( ) c ,r;"( t(l+aa)+ba t(l+ac+aa)+b(c+a) 

b 2 ~ (t(l+ac+aa)+b(c+a))e( 1 ) 
+ ( a) ~ t(l + aa) + ba t(l + ac + aa) + b( c + a) 

tEFq 

1 t(l + aa) + ba t 
[ ( 

e ) ql 
=a(l+aa) -;:+b ,r;" C(l+ac+a<>)+b(c+a)) C(l+aa)+ba) 

= t + b ( b(l ~ aa)) q 

1 + aa 
c(l +a+ aa) 

where the last three lines follow from (8), (9), and since a(l + aa) -=I- 0. We conclude 

that 1 + aa = 0, a contradiction. □ 

3.2 Consequences of the Theorem 

Theorem 3.1.1 is important in its own right since it is always better to give a cyclic 

code in terms of its generator polynomial. For example, this makes C2 ( M ( q2)) 1-

somewhat easier to compute than it would be given the characterization of the code 

in chapter 2. In this section, we will determine two properties of C2 ( M ( q2)) which 
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could probably not be found using the methods of section 2. However , we will see 

that the second has a simple geometric proof based on the definitions of section 1. 

First , recall that we have shown that C2(M(q2)) contains many codes isomor­

phic to R*(l , 2m) , but we haven 't found any that are cyclic. To determine whether 

C2(M(q2)) contains a cyclic copy of R*(l.2m) we must simply determine whether 

any non-roots of S(x) are primitive and apply proposition 0.3.2. We will first ob­

serve that the non-roots of S(x ) do , in fact, comprise exactly q/4 orbits. Actually, 

this is easy, since c/(q-l)+l and o/q+2-e)(q-l)+l are conjugate, so that their cor-

responding half-orbits together form an orbit. The only way this could fail is if 

f = q + 2 - e, i.e. f = q/2 + 1, but o/q/2-l)(q-l)+l is not a root by the theorem. 

We may now give a method for counting the number of cyclic copies of R* ( 1, 2m) 

contained in C2 ( M ( q2)). 

THEOREM 3.2.1: Let N be the number of k E N satisfying 

( 1) 0 ::::; k ::; 2q 

( 2) k = 3 ( mod 4) 

(3) k is relatively prime to q + 1. 

Then C2 ( M ( q2)) contains exactly N /2 distinct cyclic copies of R * ( 1, 2m). More­

over, C2 ( M ( q2)) always contains at least one cyclic copy of R * ( 1, 2m). 

PROOF: By theorem 3.1.1 and the above discussion, the number of cyclic copies 

of R*( l , 2m) in C2(M(q2)) is half the number of /l, with /l, even, 2 ::::; /l, ::::; q, and 

gcd(f (q-1)+1 , q2-1) = 1. Noticegcd(f (q-1)+1 , q2-1) = gcd(f(q-1)+1 , q+l). 
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Now, assume al ( q + l) , then alf(q- l) + 1 if and only if al(U-1). So gcd(f(q- l) + 

1, q2 
- 1) = gcd(2f- l , q+ 1) and the number off with gcd(f(q- l) + 1, q2 - 1) = 1 is 

equal to the number of elements of the set {3, 7, 11 , ... , 2q - 1} which are relatively 

prime to q + l , as desired. As for the second assertion, take k = q + 3. Then k 

satisfies all three conditions of the theorem. □ 

As an easy consequence of the theorem, we see that if q + l is prime, then every 

non-root of 3(x) is primitive. So, for example, C2 (M(256)) contains exactly four 

cyclic copies of R* ( 1, 2m). 

Finally, we would like to determine the minimum weight of C2 ( M ( q2 )). Given 

the theorem, the obvious way to do this is to use the BCH bound. We then have 

PROPOSITION 3.2.2: The minimum weight of C2(M(q2)) is at least 2q. 

PROOF: The set of elements of the form cl(q-I)+I , with 2 ::; f :::; q, f even, 

contains the gap a , a 2 , .. . , a 2(q-l) of 2q - 2 elements. To apply the BCH bound, 

we must show that none of these elements is in the half-orbit of a non-root of the 

form a£(q-l)+l_ But f(q - 1) + 1 = 2k(q - 1) + 1 for some k and so 2·i(2k(q -

1) + 1) = 2·i (mod 2(q - 1)). So that if (a£(q-l)+l f E { a, a 2 , ... , a 2(q-l )}, then 

aU'(q-l)+l) 2; E { a, a 2 , a 4 ... , a 2q} which is impossible. Thus , the result follows by 

the BCH bound. □ 

We wish to emphasize at this point that we do not conjecture that the minimum 

distance of C2 (M( q2)) is 2q. In fact , it is probably significantly greater. To show 
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why we suspect this , we will give another proof of proposition 3.2.2 based on the 

geometric definitions in section 1 and some well known facts about the codes of 

Desarguesian projective planes which may be found in [assl] . 

ALTERNATE PROOF OF PROPOSITION 3.2.2: Recall that the incidence 

vectors of M(q2) are associated with exterior points p E IIq , the Desarguesian 

projective plane of order q. In particular, the block Bp E M ( q2) is the sum of 

all exterior blocks through p in IIq ( we ignore the q + 2 coordinates corresponding 

to the oval since they are always 0) . Since there are q/2 such exterior blocks, and 

every block of IIq meets each once, Bp E C2 (IIq) ..1_. Thus, C2 ( M ( q2)) ::; Hull (IIq) = 

C2 (IIq) n C2 (IIq) ..1_. It is shown in [ assl] that the minimum weight of Hull (IIq) is 

2q. □ 

In fact , if C2(M(q2)) contains any vectors of weight 2q, they must necessarily cor­

respond to the sum of two exterior blocks of IIq. We therefore conclude that, in 

all probability, the minimum weight of C2(M(q2)) is greater than q/2 in order of 

magnitude. However, the determination of the exact minimum weight seems to be 

a very difficult problem. 
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4 From Algebra to Combinatorics 

We show in this section that for a cyclic code of length 2m - 1, there is a simple 

combinatorial condition which is equivalent to the statement that the code does not 

contain a cyclic copy of R*(l , m). This condition can be defined for codes of any 

length , and for any prime field F p · Thus, this condition generalizes the concept 

of "containing a cyclic R*(l , mf. We finish by giving a short example where we 

analyze the cyclic code of a cyclic difference set arising from a Singer cycle in a 

projective geometry. 

4.1 Repetition Vectors and Crep(v) 

Let v E N and let k divide v , k ¥- v and let f. = v / k. We define a repetition vector 

in F2 to be a vector of the form ( c, c, ... , c) where c E F~ is repeated f. times. Note 

that F2 contains at least 2 repetition vectors: 0 and j. We define the code C,.ep ( v) 

to be (x E F2 : xis a repetition vector). If C = {(c,c, ... ,c) : c E F~} :S C.,.ep(v) , 

we call C the k-repetition subcode of C,.cp ( v ), and the vectors in C will be called k­

repetition vectors. We record some facts about C.,.ep ( v) in the following proposition 

whose proof is obvious. 
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PROPOSITION 4.1.1: Crep(v) satis.fies the following: 

(1) C,.ep(v) is a cyclic code 

(2) For each prime divisor p of v, let GP be the v/p-repetition subcode of C,.cp(v). 

Then ff x is any repetition vector in C,·ep ( v) besides O and j , then x E GP for 

some p dividing v. 

(3) C,.cp( v) = { O,j} if and only ff' v is prime. 

( 4) C,.ep ( v) consists entirely of repetition vectors ff' and only ff v is a prime power. 

Since C.,·ep( v) is cyclic, it may be given in the form of its generator polynomial. If 

v is odd, the polynomial can be given in terms of its roots. We then have 

THEOREM 4.1.2: Let g(x) be the generator polynomial of C,.cp(v), where vis 

odd. Then 

g(x) = II (x - a) 
aES 

where S={ a: a is a primitive v th root of 1}. 

PROOF: Let k divide v,k # v, let I!, = v/k , and let C be the cyclic code whose 

generator polynomial is 

hk(x) = II (x - /3) 
/J : /Jk'::/-1 

The non-roots of hk(x) are those elements which satisfy (xk - 1) = 0. So we have 
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Then hk(x) is the generator polynomial of the k-repetition subcode of C,.ep(v). By 

definition, g( x) is the gcd of all the hk( x) as k runs through all divisors of v. Thus, 

g( x) has the desired form. □ 

COROLLARY 4.1.2: let v = 2m -1, then a code C of length v contains R*(l , m) 

fl and only fl C is not a sub code of C,.ep ( v) 

It would clearly be of interest to find a cyclic Hadamard difference set whose code 

is contained entirely in C,.ep( v) or to show that no such difference set can exist. We 

will state this formally as 

QUESTION 4.1.3: ls there a (4n - 1, 2n, n) difference set D, such that C2(d) '.S 

Crcp(4n - 1) ? 

We cannot give a full answer to question 4.1.3 at this time, but we may put some 

restrictions on D. In particular, we have 

PROPOSITION 4.1.4: Let D be a ( 4n - 1, 2n, n) cyclic difference set such that 

C2 (D) :S C.,. ep(4n - 1). Then 4n - 1 is divisible by at least 3 distinct primes. 

PROOF: Note that no repetition vector can have weight 2n. But the weight of any 

incidence vector or the sum of any two incidence vectors of blocks in D is 2n. Thus, 

the incidence vector of a block in D must be the sum of at least three repetition 

vectors from different repetition subcodes. The result then follows by proposition 

4.1.1 (2). □ 
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Although proposition 4.1.4 is very easy to prove, it has some interesting conse­

quences. The following is a list of every cyclic Hadamard difference set known to 

the author: 

(1) Quadratic residues in Fp , where v = p a prime. 

(2) D~fference sets with v = p, a prime of the form p = 4x2 + 27 

(3) If p and p + 2 are primes, a cyclic Hadamard difference set with v = p(p + 2) . 

(4) D(q). 

(5) M(q2). 

(6) Other recursive applications of the Gordon, Mills , Welch construction. 

(7) Two sporadic examples with v = 255. 

For a discussion of (1) , (2) and (3), see [hall]. We remark that the code of (1) is 

the well known quadratic residue code (see [ass l]) . By (6) , we mean using difference 

sets isomorphic to those obtained from ( 4) , (5) , or (6) in construction 1.3.3. 

Now, suppose D is a difference set which satisfies the condition of question 

4.1.3. D cannot be of type (1) , (2) or (3) by proposition 4.1.4. Obviously, D is not 

of type ( 4) . That D is not of type ( 5) is one of the results proved in chapter 3 of 

this paper. We have verified using the computer that D cannot be one of the two 

difference sets of type (7). This leaves only (6). To show that question 4.1.3 has no 

affirmative answer for these difference sets, it would suffice to show that n0 ( x )00 (y'i) 

always has a primitive non-root whenever gcd( i, 2m - 1) = 1. 

Finally, we note that if there exists a cyclic Hadamard difference set with 



40 

parameters (2m - 1, 2m-1, 2m-2), which satisfies the condition of question 4.1.3, 

having Hall polynomial 01 ( x) , then 02 ( x) = no ( x )01 (y) is the Hall polynomial of 

another difference set which satisfies question 4.1.3 as is 03 (x) = f2 0 (x)02 (y), and 

so on. Thus, we conclude that if there is a cyclic difference set with parameters 

(2'n -1, 2m-1, 2m-2) which answers question 4.1.3 in the affirmative, then there is a 

cyclic difference set E 1 with parameters (22m - 1, 22m-l, 22m-2 ) which also satisfies 

question 4.1.3 and also having the property that r L2 (2m) acts transitively on E 1 . 

Moreover , E 1 is just the first member of a family E 1 , E2 , E3 , .. . of cyclic Hadamard 

difference sets with semilinear automorphism groups each of which satisfies question 

4.1.3. Although we consider the existence of such a family to be unlikely, we remark 

that their nonexistence would answer question 4.1.3 only in the case where v = 

2m - 1 leaving the general question open. 

4.2 A Generalization of Question 4.1.3 

Although the code of a cyclic Hadamard difference set provides the most interesting 

case, we may extend the observations of section 4.1 to apply to any cyclic difference 

set . We first define the p-ary analogue Cfep(v) ::; F~ in the obvious manner and 

note that the result of theorem 4.1.2 holds for Cfep(v) provided gcd(v ,p) = 1. We 

may thus restate some of the results of section 4.1 in the following theorem. 

THEOREM 4.2.1 Let D be a cyclic (v,k , >..) di.fference set. Letpl(k->..) and let 

g(x) be the generator polynomial of Cp(D). Then 
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(1) ff'p = 2 and v = 2rn -1 , then C2 (D) contains a cyclic copy of R*(l ,m) if and 

( 2) fl gcd(p, v) = 1, then there exists a primitive v th root of 1 which is not a root 

of g(x) if and only if C2(D) 1:. Cf.ep(v) 

Notice that the question of whether a cyclic code C of length v is contained in 

Cf.ep(v ) makes sense even when neither hypothesis of theorem 4.2.1 holds. We 

therefore will view non-containment in Cf.cp ( v) as the appropriate combinatorial 

generalization of the concept of containing a cyclic copy of R* ( 1, m). The remainder 

of this section will be devoted to justifying this view. First, however, we formally 

state the following which generalizes question 4.1. 3 and ( for cyclic difference sets), 

generalizes the question of p.270 of [assl]. 

QUESTION 4.2.2: Is there a cyclic ( v, k, >-) difference set D and a prime p such 

Note that if question 4.2.2 has an affirmative answer, then necessarily Pl(k - >.). 

In light of our view that non-containment in Cf.ep ( v) is the appropriate com­

binatorial generalization of containing a cyclic R* ( 1, m), we must mention that for 

some values of v which are not of the form rn - 1, there are already cyclic codes of 

.v+ 1 
length v which generalize the family R* ( 1, m). In this case, v = %=r for q = pm and 

the codes are known as non-primitive, sub.field subcodes of the punctured, .first-order 

generalized Reed-Muller code over F q· The theory of these codes may be found 
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in [ass2] or in chapter 5 of [assl] . Rather than go through the rather complicated 

details, we will simply define the codes as codes of certain cyclic difference sets and 

state some results that can be found in these references. 

Let D be the design of 1 and N dimensional subspaces of F q where q = pm . 

Then D is a cyclic difference set with parameters 

In this case, D will be called a Singer dffference set. We are interested in determining 

Cp(D) , which is the aforementioned generalization of R*(l , m). Note that if q = 2, 

then D is the complement of a cyclic Hadamard difference set. Then since the 

codes Cp(D) are a generalization of the R*(l, m), we will denote them by Cp(D) = 

R:(1 , N + 1). Ideally, we would like the analogue of theorem 4.2.1 to hold for 

R:(1 , N +1) , however, it does not . For example, if I is a primitive 21 st root of 1 over 

F 2 , the non-roots of R4(1 , 3) (which is the code of the Desarguesian projective plane 

of order 4), are 1, 1
5 , 1

9 , 1
10 , 1

13 , , 15 , 1
17 , 1

18 , 1
19 , 1

20 . So that the cyclic code of 

length 21 whose generator polynomial has non-roots exactly 1
5 , 1

10 , 1
13 , 1

17 , 1
19 , 1

20 

is not contained in C.;ep(21) but it also does not contain R4(1, 3). 

Even though this shows that the exact analogue of theorem 4.2.1 does not hold 

for R: ( 1, N + 1), we may still show that if a cyclic code C contains R: ( 1, N + 1), 

then C is not contained in C.f.ep ( q;~+1

1 
) . This will partially justify our view that 

question 4.2.2 is the appropriate generalization of the theory in the Hadamard 

case. Of course, it will suffice to show that R~ ( 1, N + 1) 1:: Cf.ep ( q;~+/ ) . We first 
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make a preliminary definition. If i = I: a_iq-i is the q-ary expansion of i, we define 

wtq(i) = I: a.i· The main theorem we will need may now be stated. Its proof may 

be found in [assl) or [ass2) (see also [kas], [ber), or [cha]) . 

THEOREM 4.2.3: R;(l , N + 1) is cyclic with generator polynomial 

g(x) = IT (x - 'l) 
·i(q-l)ES 

where I is a primitive ( q.v/.:._; 1
) 

st 
root of 1 in F qN+1 and S = { u : 0 < u < 

qN+I - 1, (q - l)lu, and wtq(up-i) < N(q - 1) fo r .i = 0, 1, ... m - 1 and up·i is 

reduced mod qN + 1 - 1}. 

Notice that theorem 4.2.3 is a direct generalization of proposition 0.3.2. We may 

now prove 

THEOREM 4.2.4: Let g(x) be the generator polynomial of R;(l , N + 1) , and let 

v be the length of R; ( 1, N + 1) . Then there is a primitive v th root of 1 over F P 

which is not a root of g( x). 

PROOF: Let t = q - 1. Then if 0 :::; .i < m , we have tp-1 = p·i (pm - 1) = 

(p-i - l)pm + (pm - p-i). So wtq(tp-i) = q - 1. Now, let u = (qN+I - 1) - (q - 1). 

Note wtq(u) + wtq(t) = (N + l)(q-1) so wtq(u) = N(q-1). Thus, u ES and ,-1 

is a non-root of g(x) (where I is as in theorem 4.2 .3) . D 

Note that the above theorem may be used to verify our previous example where we 
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used the generator polynomial of R!(l , 3). We have now shown what we intended, 

namely 

COROLLARY 4.2.5: Assume C is a cyclic code which contains R;(l , N + 1). 

( 

JV+! 1) 
Then C is not contained in C.f.ep q q-l-

Thus, in general, non-containment in C.f.ep ( v) is a slightly weaker condition than 

containing R;(l , N + 1). For this reason, we would be extremely interested in 

obtaining the answer to question 4.2.2. 
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