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ABSTRACT

le thesisc is an investigation of the analogien betweon lumped
or continuous mechanical systems and electric circuits. lothods are
developed for cobtaining elsctric circuit anaslogs of linearized mechani-
cal gystems. Eesentlal features of the development are the use of co-
ordinate transformations and the transformation properties of certain
fundamental matrices. These make possible a gmeral treatment of the
problem of obtaining efficlent an&logs.

The gérnera.l theory i dovelopad in part IT and it is shown that an .
electric circuit using lineayr pasgsaive, bi-latoral elements and ideal
tranaformers may be constructed for any of the linear mechenical systems
considered . ’

In part IIT a new approach to the problem of circuit analogies for
beams is developed end the methods of part II are applisd to obtain new
! and more accurate analogies for the dynamic behavio.f of beams with up
to six degrees of Treedom. A discussion of analogies for frames is
given and the offacts of the so-called shear deflection and of combined
lateral and axial loads in Deams is investigated.

In part IV the errors due to lumping of Aistributed mass and dis-
tributed oiteml force are investigated for some simple systems.

A discussion and swmary of the thesis is given on pages 1l to 14,
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PART I
IFTROIUCTION

1.1 A Swxrvey of the Coumputational Problem

‘I‘he dynamic behavior of elastic systems undergoing small displace-
ments from a position of oquilibrium form an importent class of groblm’
in engineering. Vibrations of machinery, flutter of airplane wings and
earthquake response of buimnge are typical examples. Such problems
are solved in #arious ways moot of which may be classified under three

One approach mskes simplifying assumptions, then writes differen-
tial equétions and solves these by the methods of mathmticg.l malgaie.
In practice this mothod is limited to eystems involving relatively few
simltanwua, linear, differential equations with constant coefficients.
An exasmple is the free-vibration solution for bsams witli varioué end
conditions. ?«ﬁany treatisos and pepers have been written on such prob-
lems and some of the important ones are listed im the appended bidlio-
graphy. |

Another method of solution solves the pertinent equations, whether
or not they are explicitly iritten , by numerical methods., Those numeri-
cal mothods can be used on a wider class of problems than can be solved
amﬂytica.liy , but ﬁhe answers obtained are less gemeral in nature. For
exsmple, they can be used to obtain numericel solutioms to linear equa-
tions with non-ccnstant cosfficionﬁa; Among thé best known examples are
the Holzer method for finding the nmml modes and frequemcies of tor-
sional vibration of a shaft and the corresponding method for beams
developed by Myklested (1), Prohl (2), and others. Southwell (3), and
fiardy Cross (&), have developed well known iterative numerical methods
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to celeulate deflections of elastic systems under static loads.

The third type of approach and the one used in this thesis con-
structs o phyeical model, and the problem i solved not by digital
calculation but Ey making physical measurements on the model., The
modol may or may not be of the same physical form as the prototypo.
Exsmples ir which it is the came are thse study of stresses by the
photo-elastic technique and the ctudy of suspemsion bridgs behavior
by the testing of a dynamically oimilar model. [odele of a physical
form different from the prototype areo called analogn. They arc models
_ beecause the mathematical equations which degeribe their behavicr are
tho same as, or approximato those, which describe the prototype
bshavior. The analog .method of solution i most often usoed on problems
which are too ccmp;.ex to be solved by the other methods described. An

example of such an analog io the use of a two-dimemsional, electric
conductor to solve ume'e equation. Vo= o

Blectric circuit analogies for mochenicel systems form & particu-
larly important class of such methods of solution, and it is with such
analogies for the amall displacement bohkaevior of slastic gystews thau
this thesis ig primarily concerned. Sieedy state and transient beba-
vior of complex elastic systems have been studisd by this method. in
example, ﬁhich will be discussed in this thesis, ie the detormination
: of the Pirst seventeen normal modes anl frogquencies of a comploto air-

Plane. lany types of lincar and non-linsar control gystemz have also
been investignted. Electric snalogs Por lumpsd mechenical olementc and
- for simple mechanical systemw have beon described by meny suthors,
‘among which Cardner and a.m,w {7) @give an excellent treatment. 7he
literature on electric circuit analogies for comtinuous mechanical

gystens and for lumped systems with more than cme degree of freedom
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iz not extemsive. It will be discussed throughout this thesis. Of
particular importance 1s the work of cCaun and Macleal (8), MacKeal (9)
end Eron (10).

In the presemt part of the thesie some gensral discussion of methods
| of formation of analogieé and of the errors involved iz first dilscussed.
Restrictions on the mechanical systeme to be studied are then developed
and some notation is introduced. In secction 1.7 a discussion and sum-
mary of the material presented in parts II, III and IV 1s given.

1.2 Two lethods of Obtaining Iumped Equations

The analogles which will be considered are formed by using a
finite number of dlscrete electrical elements. If they are to regi-e-
sent comtinuous mechanical gystems with an infinite mumber of degrees
of froedem, an approximation or lwaping muet be msde in cbtaining the
analog from the prototype. There are two genmeral mothods by which
this is done. In omns mothod the differential eguations of motiomn feor
the continuous system are written in terms of some particular coordi-
 pate system. The lumping is then accm}lmhed by converting the differ-
ential equations 'bo difference equations. This meothod was used byi
MoCarm and MacKeal (8) and by XKron (11) in his analogy fou the elastic
£1014.( The other method lumps the distributed mess of segnents of the
gystem into rigid body equivalents and the distributed external forces

into statically equivalent concentrated forces and applies these to a
- gne-dtmensional continuous elastic petwork. The resulting lumped, or

finite degree of freedom system 1s then mathematically described in
torms of a set of coordinate systems, and the circuit amalog for
these equations is comstructed. 'i.‘hia was the method used by Eron {10)

in his analogy for beems and by Myklestad (1) and Probl (2) in their
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nuﬁaric&l mothods. One of the main contributions of this thesis stems
from application of this mothod of lumping. E‘l‘h@ two mothods, which
will hereaftcr be called the Pinite differance method asd the lumped
mothod, yiold the same result when appliod to gystems, such as a ghaft
in torsion, which are doscribed by tho wave equatim;] They give dif-
forent results and the lumped mothod mors clossely approximates tho
continuous uystem when thoy are applied to higher order systems such
as beaxs. The two motheds will be coupared and the analogs cbiained

by teCamn and laciieal end by Kron will be descrided in parts IIX.

1.3 Steps in Solving a Problem by Electric Cireuit Anslogy

The procese of ’eolving e problem by electric circuit anslogy
may be outlined in four stepe. These are:

l. The system must be defined and any necessary assumptions-
and approximations such az that of linearity made, It must then be
rejslace& , if necoseary, by an oquivalent lumpod system.

2. The lumped system must be described methematically in terms -
of a coordinats system or sot of coordinate gystoms.
| 3. An oloctric circult is devised whose bohavior corresponds
to the mathematicel description of step 2.

‘ L, ' The physical electric circuit is constructed and the soluticm
of the problem 1a obtained by making measurements upen it.

These steps are interrelated, for any one of the four depends
upon what 1s required of the other three. The lumping used; coordinate
systems chosen, and clrcuits devised depend upon the accuracy desired,

the cost involved, snd.. flaxibility required im the resulting circuit.



1.k Xature of the Errors Involved ‘

The value of a solution to any problem comcerning the phyeical
world depends upon how closely the solution approximt@é the corre-
goonding real vhyesical behavior. The difference botween the solution
of & problem and the sorresponding real b@haviof will be called the
total error. The total error involved in the molution of thysical
problems by lumped analogies is the sum of nartial errors which arise
in the following way:

L.  ZError ic caused by initial definition and simplification of
the system. Thies ervor is common to all methods of solution of prob-
lems and it will be discnesed no further in this thesic. Examples are
the aseumptioms of linearity, pure mass, coacontrated loeds, pure
impulee, conservative systams, and so forth.

2. Error is caused by lwmping of coutinuvous systems. This is
1liuvstrated by the quostiong how closely deoss the dynemic behavior
. of a massless beam with n equally spaced massoes corvespond to that of
the some beam with the same totsl mass distributed over its length?

5. Bome circulte may be considerably oluplified by cmitting
elemente which have a small effect, and this introduces error. TFor
instance, the finite difference besm analogy reprvocents e simplifica-
tion of one form of the lumped amalogy in which ane negative inductance
per cell is omitted.

4, Error is caused by mperfectione in the c¢ircuit elememts.
This error might bo clacsified upder two hesdings: Firet, es biased
error, that due to known effects such as resistance of inductances and
loakage and magnetizing imductance of tramsformers; second, as random

error such 28 that due to imperfect calibration of elements.



All of these errors are important and wafortunatoly all are
rather &ifficult to analyze. More will be saild about thom and some

quantitative information on lumping error will be givem in part IV,

15 Katurs of the Lumped System Equations

The bebavior of a lumped elastic system mey be aygeéifiau by a
finite set of gomeralized coordinates (x,---x,). For tho amall dis-
piacemants of the lumped syotem about a positiom of equilibrium, a set
of lLagrange's squablions in the form of eq.{l) may be writtea. The
theory of such small oscillations is pressnted by Karman and Bilot (12),

cuhapters III, V and VI, in the form used in thle thesis.

5T Y oD i {1=1---n) whero n

(1) "’0{ — et oot w iy the mumber of degrees
DX OXL  OX{ = .

' 1 LR 2 A of fresiom of the system

In thie equatiom U, U, I, ave positive dGefinite quadratic forms
which are vespectively the firsi xmuzem or guaivabtic terms in
Taylor's series expencicns of the kinetic enorgy, tus potentiel energy
md a dissipation function about the positlon of equilibrium. The X;

are the goueralized cooxrdinates end tho ¥, are the corresponding
external vgenemlizeé; forces. The meaning of the tecimical term, omanll-
| ‘dioplacement, ic that the higuer order texms of the Taylor's series
aro small compared with the quadratic terms,

| ‘Bouatioms (1) may be mttai; in the forms

(25' . s "3 + b/"é- X, + K A Ky = F; g]-,/l' = (1--m)
P J . :

. where the repeated infox summation convention 1z uced and where the

mass coefficients m; i the viscous dumng cooificients b; é A axxx the

spring coerficients kij are real comstante.
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Bquations (1) may also be written in the matrix form (3).

(3) ] [3] +« ] & + %] @ = (4

The matrices [m], [b], end (k] are matrices of positive definite
guedratic formec and as such they are symmstric, have positivs diagonal
torms, and positive discriminants.” Furthermore they are non-singular.
In what follows these matrices with the time derivative operator in-
cluded will be referrsd to as & group by the t?m physical coefficlient
matrix with the sywbol [d] or d;;. Thue [m] j*;z s [b]% end [k] are
) [&] ‘s. The reason for using matrix notation and come discussion of
éq.(}) will be given in section 1.7. Circuit analegles for thesa physi-
cal cosfficiant matrices are the maln subject of part II.
| Equations (2) and (3) may be interpreted as equations for an
n loop or n node-pair elsctric network with linear, passive, bl-latoral
elements. For the loop network the ¥, are voltags sources and the ¥
are loop currents while for the node network the F; are current souxﬁea
and the X; are node-pair voltages. If D'Alembert's principle is used,
eq.(3) states that the oum of the ferces acting at a point is zero.

In the loop analogy this corresponds to Kirchhoff's voltage law and in
the node analogy it corresponds to Kirchhoff's current law. This |
coz?respcmﬁ.ence forms the basis for electric circuit analogy aolutim’
of mechanical systems. In rractice the electric elements available
a.relinear and it is this fact which restricts consideration to amall .

displacements and to systems with viscous damping.

* For good treatments of matrix algebra in a form psyrtinent to this
thesis see: .
Le Corbeiller, ?. (13), Matrix Analysis of Electric letworks
Frazer, Duncan and Collar (1b), Elementary Hatrices



1.6 Coordinata Transformations

The Torm of the electric cirvcult @nélogoaa to a piysical
cosf?icient matrix [ d] depends upon the ve.lﬁeg of the compenents &, .
These in turn depend upon the coordinates chosen to Aescribe the mechan-
ical gystem. For a given problem 1t may be that Newton's m’eq.{ﬁ), is
not expreszed in a coordinats syotem suitable for the comstruction of
. an electric circult, or it mey be that Guo distinct coordinate systems
have ‘b‘eexz ueed_. and theose mugt be related slectrically. In either casse
a transformation of cooxrdinstes must be mede. Such transformations will
now be studied.

Suppose a set of generallzed coordinates x < is given as functions

of another set X; by:

(&) | X; = Xi(Ry---- Xa) iz (i--m)

{3) dx; =

Ir diaplacmi;a of points are msasured from ths origin of coordiﬁatsa
then they ars the same gquantities ay the coordinates of the poiizts, and
ths same symbol, x; may be used for both. The pariial derivatives

ma;} bo expended in a Taylor's series about the origin. If displacsments
are small only the constent term naed be retained for a firet order
approximation‘an& the differential notation in ey.(%) may Le dropped.

Thus eq.{(5) may be written:
(6) : X" 85y ig’ or . =] :(P][i]

where the a ij are real comstants which mey be poaitive, nogative 62' gero.



The techuical term, gonsralliged coordinate, includes the apecification
of independent coordinatss and this implies that [a.] is non-singular
and bas an inverse, [a]..' The terms on the diagomal of [a) represent
physically a changs of scals or unit of measurement along the same axes.
The off-diagonal terms reprssgsent a change of cocrdinate axes. A set of
n quantities which trausform in the same manuner as do the coordinates
of a point in an n spece is defined as a contravariant vector {see
le Corb@iller {(13)). It follows that the X; form a contrevariant
vector,[x]. Since the transformation is independent of time, the
generalized velocities X;, accelerations X;, and in fact all time
derivatives of [x], form centravariant vectors.

The generalized forcse ¥; are defined as quantities which, when
multiplied by the corresponding generalized displacements md‘ then
sumod, give the invariant, work. This relation is used to find the

| ranner of ‘trms:i‘omation' of genoralized forces as follows:
=] [sx] - sw
I B3] - sw = (FI[s%]
- (7]
)= (T

A g3t of quantities which transform as the inverss trangpossd

(7

matrix of the coordinate transformation e defined as a covariant
vector {see Le Corbeiller (13)). Hence the set éf’ gencralized forces
and the sets of all time derivatives of these forces form covariant
vectora.

‘fime, which ie the independent variable, may be transformed by

a scale chanuge or changs in the unit of time. Such a transformation
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will be specified by:

c*
"
3
ctl

(5)

The menner in which the physical coefficient matrices, introducsed
on page 7, trangform when the coordinste system is transformed by
[x] = [a)[X]and ¢ = § %, will now be determined. It will be recalled
that a physical cosfficient matrix relates a set of forces to a set of
displacements or time derivatives of displacements. In the notation
introduced on page 7 the derivative operator was included in 4. but im

all but the laat equation below, the darivative operator will be

n n n
explicitly written as F”: j-{;,, or p-= 5—{7.;.-,2 . The behavior eguation

for a system is:
pT] = (]

Woen the coordinate tremsformations, [x] = [a] (x], [F] = [a'] [27”] and

t = ¥ %, are made, this squation beccmes:
=0 - ; e
@ﬂw@=@b}
Tpon premultiplying both sides by [a'] this becomea:
- ) _
) Bl -

How [ 5] relates [}5’] and {i] by {a][i] = [f’:] end therefore by ccmparison

with the equation above "

(9 [5] - [¢] [ﬁ%} [e]

which is the required transformation law.



1.7 Discussion of the Thesis

The quadratic forms which appear in oq.{l) sre invariant to co-
ordinate system change; they have a dofinite value no matiter what
coovdinate system is chosen to gpeocify the behavior of the system. The
net of equations (2) are derived from eq.(1l) and the values of the
physical coefficients M, b,-g- , and kig’ in this set do depsnd on the
rerticular coordinate system. The form of the electric circuit anslog
and the type of electrical elements used also depend on the particular
get of valuss of the physical coefficients. Therefore there are at
least as many circuit analogs for a physical system as tb@ré ars CoO-
ordinate systems in which the p‘sgyaicai gystem may bo described. The
usefulness, flexibility end cost of construction of the circult analogs
for one vhysicel systom may vary widely, and usually thero will be an
ontimum circuit for the civen computational protlem. Onse of the contri-
butions of this thesis is tho development of methods for choosing a
coordinate system for a given phyeical problem which will yield an
optimum electric circuit analog. An important tool which is used both
in choosing coordinate systems and in dovising circuit analogies for a
given cot of behavior equations is the transformation of coordinates.
Depending upon the cenditions in a specific problem, thias tranasformation
may bo made mathematically, before the circuit is devised, or electric-
ally and in the circuit.

The set of squations (2) taken as & group have a meaning apart from
any particular coordinate system. This 1s comveniently eXprecased mathe-
matically by writing the set in matrix. form as eq.{?), and by providing a
vule for the transformation of the matrices when the coordinates are

trensformed. The physical coefficient matrices of eg.(3) may be called
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reogpectively a generalizsd mass, a genaralized vigscous damper and a
generalized spring. These genara.lized guantities relate the gt of
generalized forces, called the vectoxr force, a.ct:‘mg on a systam to the
corresponding set of generalized displacemenis which as a growp ars
called the vector displscement. While an analogous electric cireunit
.is. in principle:alw&ys conctructed for & ast of bekavior sguations,
still, with tizoae concopts in mind, one may say that the gassive cir-
cuit analog itself 1s comstructed not for the behevior equations (2),
but for the physical coefficlent matrices of ag.(3). Currents and
voltages ars applied to the circuit enslog in the same way that forces
and displacements are applied vto the corresponding vhysical system.

In part II some required ncmenclature is developed and the aenalogy

" . for a coordinate transformation is given. A general investigation i3

then made of circult analogles for physical cosfficient matrices, that
is, Tor the gemeralized massss, viscous dempers and springs which make
up @ physicel system. This investigation uzsss coordinate transforma-
tions and has as an cbject the diecovery of useful circuits for certain
clagses of matrices and the development of metkeds by which ’szsaf’ul Give
cuite may be devised. Une meaning of useful cireuit in this sense is a
circuit which requires no negative slements, ani in order to oliminate
such elementas, idoal transformers are usually roquired. The object of
‘part II may thus be stated as the lnvestigation of analogies for physical
systems which require a minimum number of ideal transformers, no negative
elements and which give meximum accuyracy.
In part III analogles for a restricted class of geﬁaralized béama

~are develépgsd. by using the concepts and analogies of part ‘II and cns new

concept. This concept is that the displacement of ome end of a one-
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dimonalonal elastic systom iz the sum of a rigid lbod,y displacement
caused by the digplacement of the other cund and an slastic displace-
rment caused by the applied force acrogs the e2lastic system. The nomen-
clature and pertinent equations are firat worked out for a ons-coordi-
rate aystem such as & shaft in torsion. The two-coordinate case of a
beam tending in a principal plane is then discusged and this iz followsd
by a thres-coordinnte sxample of the genersl six-coordinate case. Part
111 alzo discusses soms importent subsidiary tovies,

In part IV the error causzed by lumping of distributed mass is dis-
cussed {or scme particular systems. The error cavsed Ly lumping of a
distriduted external force on e cantilever besm ic investigated and some
results of errors dus to ciz-éuit imperfections are gilven.

The thesis may be summarized as follows:

A. The essential developments and now comtributioms to electric
analog computation are:

1. An elsctric circuit analog for a gemeralized coordinate
gyotem transformation is given.

2. Coordinate system transformstions and the circuit analogs
for thom are used to obtain analogs for any linear mechanical
system whose behavior is described by a finite set of gane_ralized
coordinates. These analogs use only ideal transformers ani passive,
bilateral electric elememts.

%, Methods are dovelored for obtaining efficient cireuit
anslogs; that is, anslogs which use & minimum number of transformers.
| 4, A circuit analog for the mmall displacements of a massless

rigid bhody ‘and. for the forces acting on the body ifs given.,

5. The comcept thal the displacemert of ono end of a e ~
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dimensional clastic syctem ig the sum of a rigld vody sart and an

clastic deformaticn is used to obtain an eificlient eircuit emalog

for suchk o aystem. “his enalog is comsbructed uclag circuits
obtzined under items 2 and % ubovs.

e  The comeceptsc and anslogs outliced in A permit the construe-
tlon of analogous circulic Tor boams which have the following important
Poatures.

1. Z“hey are significaatly more accurate and not a@grociably
wore complex than the finite differcnce analows hithserio usud.
fumerical comparisons of the two analoges with corrwsponding con-
tinuosus syelems are given im part IV,

2. They are much mors flexiblo and efficiont than the
énalcga using negative electrlc elements wiich are glven by
“rom (10) and others.

3. <The @ifferential equation for the boams concidsred need
not Le explicitly sztated; only the spocliication of strailn uwergy
15 needed. This fmct permits the comstruction of amslogs for
generalizod six-coordinate sycienms such as curvod beaus.

C. Bxamplos % the theory and analogs developed are given through-
out the theeis and varioua subsidiary toplcs relating (o boams and

frames avre Giscucced.
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X

PANT II

AGALGGIES 30n EUEEXTARY SYSTES

The purpose of part II is to lavestigate and develop useful cimceunit
analc;giesa for physical coefficient matrices and thelr inverses. Thio
is ‘&oae with the ald of coordinate system transformatiomns. ZExcept for
somo eoxamples, the matrices considered ars genoral in mature. In nurt
III the matrices for some particular systoms will be given.

In section 2.1 éoma slectiro-mechanical analogous quantities are
discussed and the gystom used in this thesis is explained. Section 2.2
considers the analogy for a coordinate system transformation and seciion
2.3 that for a massless rigld boly. Two-ccordinats physical coefficient
matrices are discussed in section 2.4a and their inverses in sectiom
2.4b, In 2.4c some oxemples are given. The general multi-coordinate
physical cocfiicient matrix is congidered in section 2.%a. Its inverse

.18 the subject of 2.%h and sxamples are gilvem in 2.5%c.

2.1 ZBlectro-mechenical Analogous Quantities

In section 1.5 mention was made of the fact that Isuton's law
could beo made emalogous to either Hirchhoff's curront law or to his
voltage law. Hach gives rise to a whole faslly of analogous guantitisy,
only a few of which are usuzlly useful. I or the sake of simpliclty in
exposition only the. current lew anslogy will be developed in this
thesis; the voliags law analogy can bo developed in procigely the sane
. marmer. Doth are used in actual camputatiomal work, although the cur-

rent law analogy 1s the more common for continuous mochanical systems.

* The circuits cobtained from the current law analogy are topologically
similar to the corrseponding mechenical systems. {Carduer aud Dernes chap.
II). Yor example, if a spring connscts two points mechenically then
correspondingly an inductance coumecis two nodes olectrically. This
faet ig a great aid in visualising and in comstriacting circuit analogs.
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Kirchhoff's current lay states that the st of currents flowing
inte a circuid neds or jmcetion must be gero. The ssme is true Tor all
tine derivatives and time integrels of curront., locwten'e law with
2 Alegbert's principle makes an equivalent statement for forces acting
on a rigid body. Iiquq_;"g;{'ﬁgh@ﬁ}g@_m@g_’@a%logousum_mmpms or exny
of ite time derivatives or time_n,inte@alafm&-»,--'dapending, upon the physl.
al coefricients used, displacement will be analogous t0 voliage or to
some_ btime derivative or. integral of .voltegag. Three of the most useful
set® of auslogous guantities are given in table I. 34 complets table
of both families is given in Cardner and Barnes (7) page 6h.

Table T

Electro-mechanical Analogous Guantities

Fachanical Symbol | Analogy Analogy Anelogy 3 {for
quantity 1 2 gtatic probs.)
S
| 7
force | current é(dx‘ current) current
displacement x / {voltage) AU |voltage voltage
' : d ; 4, ;
velocity x voltage - 2 {voltago) — {voliage)
1 - At dc’
RASH n capacity - . noNe
gpring S inverase induct. gseme | conductance
as
coapliance & inductance analogy resigtance
1
viacous damper| b condnctance none
inverse damper| b resistance none

Tor convenience and simplicity only avalogy 1 will be used in
the remainder of the thssis.

The elementary circuit avalogs in Fig, 1 specify the slgn conven-
tiona and illustrate the method which will be used. The external force '

acting on a point 1a positive whem in the samre direction as the
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corrseponding displacement. Such a force is reprosented by a current
flowing inte the corrvesponding node. Hoth currents and forces ere
indicatod by closed arrows —>. ’?oltage positive abOV6 a refeorence
ground is indicated by X placed at the nods. Other potential differ-
euces syre indicated by + and - and by opon arvows —>. Wﬁﬁb Qack
Pigure tho behavior aquaticn i glven in the notation uwaed in thig

thesis ansd 1u conventional clectrical notation.

5 - f , ,K
e ,

1 X
F;b)‘( ,{_:'Ge or e‘—"kR
Fig. 1b
k F
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2.2 Uircult Amslogy for Coordinate Trensformation
The electric circult asalog f'or s coordinais transformation Is
an ideal transformer network. To show thls, consider the transformation

specified by eqs.(10a) which are given in expanded form as e3s.{10b).

(100) (] = (]3] (2] ] (=]
] [T (7= [&]7]

P X b —’ - s 7 W

X za, X +a,% ...8,%, Fo=a,f +e8, - ---1a,%,

X,z 8, % + 8, X, ——-+8,,X, Fy = anl + ey t8nT)
(10b) ! | e ' | ! } !
4 | ~ : 1 : ! ! ~ !
| . s N b - ' ! st

X, -&a X +8a,X,---+8, X, Pp T @l 48y i+ 8,

Thege equations can roprsgent relations between voliayes and:
between curremnts by meking the coefflciemts the turns ratios of ideal
tranefqmpra. The windings of the transformers are cocnnacted &0 thét
the voltages and cuzfremta add in the proper mazmer Bithor o aultiple -

winding or n® two-winding transformers may be uged. The network uzing
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rizltinle-winding trencform:ers i given in Tig. 2. The aunbers, a; 4
lodicated are the rotios of turns on the colle repreuenting the unbarred
coordlnate ayatf 1 Lo the tuymeg on the colls represcunting the barred

coordinate syate
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e 5
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Fig. 2.

When izolation is not raquiracx, that is, when all voltages are mcasured
from a common nod.e e line of each circuit may be grounded, and the ‘
‘circuit may be indicated as shown in Fig. 3. The set of currents flowing
intc ene ai&e of the coord,imte systam transformation {C.8.7.) a.re'
analogous to a generalized vector force. The set flowing out ofb the

other side represent the same genemlized force but in a d.iff’erem;



Fi — S el — F,
= 71 >I(L
& 1 o
: 3 C.s.T | :
« -t
" 3 |
Fn *—+ 45—_—.'_—— ‘V ;,; F“
, Xn
Fig. 3.

coordinate system. The same statement is true Por the set of voltages
or gemeralized velocity vector.

A marticularly important circult for the applications is that for
two coordinates with no scale change and with a common reference node.

This is illugtrated in Fig. 4. Zq.{11l) 1e the corresponding transfor-

mation.
_F-' .-).-(l b Xl F‘
— e 12 it
_ . N RSO
[x,) I+l +a, i,] _ _L' }
{11) P = L o -
x 0 +l |l=x - . %
L ZJ = 4 . 3(—2 l X2 Fa
oy & P ._.__P.
Tig. 4.

2.’3 Circuit Anelogy for a Massless Rigid Body
o An important mchanical eleament whoase elec'c.z-:.c cireuit ana.lo&r
for small displacements will now be developed {5 the maseless rigid

body. To specify. the position of & rigid body 2ix independent coordi-

nates are required. The gpecification of a gemeral displacement
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requires nine quantities but 17 dwplawmeqt“ axre small & 90t of rix
. independent coordimates sw’llces. DLy vhe same arguments usel in ses-
tion l.Gv, oo can say thau if the origin oi coordiustes i laken ub
the initial poaiticm_ fron which the mwall displacemeunts taks npluce,
then the positiocn t‘eemimwz, and the displacesnsnt couponnts aro
idontical. The small displacemeni compononts tranaform as wie coordi-
nates 80 and thorefore they form a combravariant vector.

As an example, concider the displacements of & rigld plane Loly
in its oun plane (Fig. %). The numbor of degyoss of lreedom in thls
- case 1s throe. Lel the digplacemonis lu the X coordinate syatan be

i3

the cartesian displaceaments X, , X,, OF polnt A measurod frow the fixed

origin, O, and the suall rotatiom ,X 5,08 the body about O.

beforo displacement siter digplecement

/ / ‘
In Pilg. 5 the lines OP, 0Q, O ¥, 0 8, ere coordlnate aXes fixed in
apace, while the limes AT and AC are reference lines :E‘i‘md. in the body.
é is t,gm nomal digtance Irom O w the lins Lbrcue,h C pwallel to 0 8.

Conelder another coordinate systam in which the vector displacement is Lx_)
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This coordiumste gystem ig non-orthogomal and may heve sepurate origlns
and separate length scalos for each coordimate, et X, be one compo-
nent of this vscier definsd as the dlsplacement of point ¢ in the

’ . , . , . ,
direction O S. Eg.{1l2) relatos the Aisplacament compongnts ia the two

coordinate systema.
{12) X, = xo00 8+ x08ln6 - 4x,

Two sinilar independent relalions can be weitten for two othor points
and the Llrse equations &z a gyouy would transfowk [x] 11360 {_&] . In
eg.{12}, € 1s a comstant, d,, plus a function, §&, of x,, z,, X3. If
dloplacements ave small enough o0 that in the tem, :i;-%— sa, sd<<do ’
ther the transiorzations of the type of og.{12) ere linsar and the
eoordinste tranaformation cas: be m‘itieﬁ:
_ {{a] will Yo used hersalter t©

{13) Ex] = [@]{x] dosignate a magssless rigid body)
Thig relotion can be looksd upon as a change of cooxidinats system used
‘te exvrose the small dlevlacement [x], or it ean be looked upon as a
rigid body relation mﬁ:;.:‘.'c}a. gives the displacements of o set of points X
when the body 13 displaced by [x]. ¥rom the latter viewpoint there is
no rengon tO restrict the X, to an independent set, and sccordingly [«]
may be & rectangular matrix with an infinite nmﬁar of rows. inlsss
the coordinates are indspendent, [«] iz singular and the equatioms
cennot be inverted. |

The exanple was givem for a planar system because it was simple
to illustrate. For the general case the relations are similar but six

coordinatos are involved.

Forces acting on the rigid body cap be treated in the féllciuing
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mexner. Assume that the forces act along the various coordinate axes.
Since the rigid bpody can store no energy, the total work done in a small

digplecement must be zero. lencs:

(16 (F[z]
(1) ) - Flw |
[F] - '[o@{ﬂ {{o] may e rectangular)

Physically thic means that il the set of u forces and couples, I, ia
glven, them the six ilndependent compenents, Iy, needed to specily the
vector force are obtained by aq.{l4).

Lxcept for the fact that [o] may be singular, that is, have no
inverse, o98.{13) and {1%) are idontical to eqs.(6) and (7). Accord-
ingly, the analog for a masaless rigid body 1s the transformer nstwork
of Fig. 2 with any necoosary oxtvs transformer windings. It can be
concluded that a massless rigid body, which is a goenoralized lever, is
a mechanical analog of a mathematical coordinate wransformation or of
an electric circnit trausiormer notwork., Ono of the most useful ways to
use the coucepts of this sectlon is %o comsifer eqs. (13) and (1) as
relating the forces and displacements at o ends of a rigid bar. From
this point of view am with [«] wen-singular, &f [F] and [x] are the
vector external force actisg uyon one end, and the vector displacement
of the sume end of the ber, then [X) = [a](x] and 7] = -[a.']-’[_;*?] aro the
external force acting uvron, and the &i:;q;.lacmnt of, the other end of
the bar: The minus slgn erises beceuze both [«] and[g‘] represent the total
vector force acting on the body, and for the body to be in equilibrium,

the total vector force must be zero.

As an example of this concept cousider the analog for s spring-
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mounted engine at the end of a stiff nacelle on an airp

system is idealized as shown in Fig. 6.

T_AJ A

P

The relatlon between the displucements at ends A and

ye‘l _ +1 —’Q yA
esj 0 +1] |8,
The anelog for this equation is given in Fig. &.

gpring-macs system is given in Mig. le.

to form the complete axnalog which 1s glven inh ¥ig. 7.

Yo ¢, A

Figo ?o

lane wing. The

~—— pacelle

o

2 of the bar ig:

The annlog Ifor the

The two analogs are connected
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2.4 Circuit Anslogies for Two-coordinate Physical Cmf’ficiant Matrices

and thely Inverses

In section 2.1 some elementary circuit anslogies for one-coordinats
Bystems were glven. Analogies for two-coordinate generalized meszes,
viscous dampers and ovrings and thelir inverses will aocw be investigated.
In secticn 2.9 a similar investigation for the multiple-coordinate case
will be made. Sectiom 2.ha dlscusses the equation (7] - [81(x] whilo in
2.4% the inverse, [ﬂ = [dj‘[l%'] , s considered. Two simple examples of

the theory are givem in 2.k4c.

2,4a, Comsider equations {19) which mecharically relate a vector force
to a vector displacement while sloctrically they are equations for a

four terminal network with two self-aidmititances and one muitual admittance.

{13)

7 - )
;_’2_— (3.,7_1\-9- u«.zzxz

A four-tesminal, sutual, ianverse imnductancs is not a practical single
élement $0 u3s iu eleciric analog computation. Practical comsiderations
thus require the mutual term to be a two terminal elsment commen to two
nodes. In order to construct a circuit for eqs.{l5) using only two
terminal elementa, quantities are added and subtracted to the right

- sides of the equations so that they becomo egs.(16). If the reference
nodes for x, end X, are the same, Flg. O may be constructed from these
squations by imspection. This circuit is a simplo. % network.

i Po= x(d,+4,,)-8 (x-x;)

Fyo=-do(x,- x,)+x,(d,,+4 ;)



“here are three situations in which the = network of Fig. £ loses
its simplicity. These are:

1. I the reference nodes for eqs.{15) are not the same, icolation
iz reguired. 7To sccomplich this either a transformer or the ecircuit of
fig. Y may be uwsed., This circult always requires two negative admit-

4 o3
vANGosE «

ig. 9.

2, If¢, in 2qe.{15) is a positive quantity then Tig. 8 requires
a nogative admittance. For steady state, fixed Iregquency, generelized

gpring or mass problems, where & negative inverse inductence is & capa-
city end vice versa, a negative admittance may easily be used. In all

other types of provleams, negative admittances require active slements

guch a8 feedback amplifiers.
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3. If dnz is negative, it is posuible that 4 + 4,,< 0 or
d,,+4,,< 0, a condition which would require negative admittances.

It will now be shown that no matier what the values of the ﬂ;é',
circults for [d.] may be dramm which use no more than one transformer,

have no negative admittences, and which glve isolaticn (permit two

reference nodes). These circuits are deviged by using concepts of

coordinate syctem transformation. A scale chaage transformation will
Tirst be investigated and then a coordinate aXxes change will be cone-
aldered. XNote that if the three conditicns below ere mebt, no trans-
Former or negptive edmittaunce is required.

1. d , ie negative

2. 4, >la] . an>la ]

L The reference nodes ere coamon (no isolation needed).

The scale change transformstion, oq.{17), s introduced and vsed to

transform [d] of eq.{15) so that in the new coordinate system eqs.(lﬁ).
ere obtained. a, or a, mey be posltive or ne@ts.ve\, end each a; with_

value other than +1 will require one transformer.

_ x, e, O]z,
a7 . = ‘

X, 0 a, 2_}

t

5 2z =,
. : d a ' x + da8,%,
(12)

_ 2
, = &,883% + d,axX,

‘Quantitiocs are added and subtracted from the right sides of egs(lf)
end oqs.(lé) are obtained.
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(d,,alz_‘ﬁa,azd,zo—)-(_, + ‘@a,azd,z\<)?,+

(19 - X, 18] = 2 Vdaa@\s
) F,= ]d,l({,ﬁlK% + ry x,) -+ <¢(22“2‘ _) C’.,.E_ELDXZ

wkere B is a pure number whoss sign 1o the same as that of & a.d,.

Egs.(19) are equivalent to the cirouit of Fig. 1C..

', Ba.a, C{IZ‘
DANANAN— R,
& id ? b e o SE——
ﬁ ﬁ 'e)(“‘“l+%-7~ ' g Fz

Fe
* w 1 +L + L
; P g Tk
X, | 2 1 a X
% C 3 af abE e

[

. +1
A adp

=
<6{:/ alz"lﬁa.azdm‘ /

Pig. 10.

I 2q5.{19) and the amalogous circuit, Fig., 10, the quantity B is
a vurng retio and polarity on an internal transformer in the circuit
which accomplishes igolation, invertis voliags end cwrrenit and sffectively
cnanroes scale. Transformers such as this,in what herealter will be
ealled the B position, are vory important and are used repeatedly in the
rost of the thesis. |

An ingpection of the circult shows that any ome of ths thres trans-
formers serves to isolate the currente and to remove the restriction on

the sign of 4 ,. The requirement that no negative admittance be used
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imrones the iunequalitisc {20).

| sa,
d'Il 2 a_l G’IZ
(20) |
@, -
dzz >/ ﬁazdlz

IY the second inequality is inverted and substituted into the irst, the

Ba. ,
cordition is obtalnmed for an =  to exist which simultanecously satisfies
13

the inequalities. This conditlon is that d, d,,%d,,. The dlscriminant
of {d] 18 @, d,,— 4., which 15 greater than zero bocauso (8] 18 the
matrix of a quadratic form. Thsrefors, izﬁaqmliﬁiea (20) are always
gatisfied and an %a'_z can slweys be chosen which will yield only positive

adnittapces., Hurthermore any one of the three transformmers can be ussd

BARy =y aa,
elone to obtain a sultable velue of —— . tThe texm -~ may be chosen

so that elther insquality, but mot both togetasr, is an equality and
henee that the correspoiing admittance 1l gero. '

If the trancformers were perfect any one of o three positlons
would be equally good. lLowever they kave, among ovier imperfections,
leakage and magnetizing inductance. These can oasily bs combined with
' the eircuit mductofa wher (4] 16 a genoralized spring. Ior this parti-
cular case ths B pooition would be best.

The elamentary coordinats axes transCommation (7ig., 4 page 20)
applied to eq.{1%) la important enoug: o dessrve mvesti@ticn.

Conzider the treansformations:

'x l- 1+ a,; X,

(21) = -
| X o] | o 1 RIES)

_ x] 1 oz,

{22) , =] . -
: X, | fa“ +l_ _x'zd



These tramsformations applied to ogs.{15) yisld eqs.(23) and {(2h4)

regpectively.

F: = o, X T (5'("' a, tdiy) Xy

—f-:z = (c(,, a2 +c(12) X, (6(11((,'; +Zﬁ(.2¢{:2 *f"(?Z) Xz

.F.':& = <s.'{.|i '*25‘(1,[{)2 +6{Zzai‘zl) >—(.; +(0l12 az, 'f'd/l.) 522
{2h) = oo 2 <
F2 = \:’,'(22 Ay, +dl2_) X/ < (/22. Xz

The eorrespoundlng circuit does nmot izolate and i1s not particularly

. C( -‘J(:;_ s
Lmpoviant wless a,,= - ;’—5‘— or a; =- 7— . These particular values
“iyy A2

reduce [d] to & diagonal matrix. Hqs.(23) and {24) then becoms aqs.(25)

and {25) with corregponding circuits, Pigs. 11 and 12.

= dis Fs
— = —_— —F——
F| = (” ¥ k"f', - | At A‘
P e 1.116—‘ ¥ e <
(25) ?z 6((,0{?; ~: 2 X, X —;((”—[}EIK(Z Ko
ety L l
2z
K dud‘z d‘z
f__'y_’ // - dll
E . G(ZZ Fz
=y z - - AN <3—
F = dudiands g [ Ekr! ey
& " _dn .
(25) N Xl *'! ‘ {‘ Ae | X2
F:z = elyy Ra '/ [ |
7— -
L d;tﬂ(zz" d.:
A2z

Fli' 12,

The circuits of Tigs, 11 and 12 are identical to that of Fig. 10 when

‘ ' d,
&= 5‘_z=+1 ead 8 = 3—’11 ; B o= Oé rogpectively.
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2.4 Circuit analogies for two-coordinate physical coefficient
matrices wore discussed in seciion 2.ha. Analogies for their laverses
will now be comsildered.

The behavior of a system may be specified by an equation |7 -{a]x)
or, since |d] is non-singular, by en inverse equation [x]- {3][&’] , where

1 ~1 .
[3] {d} , and time derivative operators are replaced by time integral

operators. The inverse of egs.(1%) can them be written as eqs.(27)

x = a F
(27) A
’ X% 4

&

WEFo+ a4, T

w

2L &

B>

12 s+

~

The corraesponding circuit for a common reference node is a simple T.

It is drasm in Fig. 13.

A N A ~ ”
F %, du'5:z Apy =iz X s
—— A MAMAN gy e
£ .
i Ay
Tig. 15.

The d i 3 are now impedances and the conditlbn for no negative impedances

‘1e that @,, be positive and that d > d,, and d,.>¢,, . Tho relation

botween &‘;j and d"é is:
foL A da N
4.7 A €7 A a,, - A

-~ where: 4 &, - d.:_ = A
These relations and Fig. 1% show that if a transformer is or is not
required for the circuit for [d] then corrospendingly it is or ie not

required in the circult for [&] . The same transformations and
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2 el o " e e enive N o & . o 7 ,
dovelopaent can b2 made for ©a5.{27) az waz done for 299.{1%). ¥

e
o
@

rosulting circult for a transformer in the B position ls showa in

fMe. s,

4
A \1\
A 7 dis= 1 5
F d,y - #de] i .
i Z
— AN e AAAAA G
| + 4
!;(I N fL% 1] )‘<?_

LR AR

v
e = o

wey,

(351\1

B is a pure mumber whoge cign is that of 4,

Fie. 1h.

Either the physical coefficlent equatlon, eq.(1%), or its inverss,
23.{27), can be used with the sams coordinato system to relats the vector
force to the vector displacement and correspondingly oither tho circuit
of Fig., 10 or of Fig. 13 may be used aa the olectric analog for the

' piyelcal system.

2.he Two aimple examples of circuit analogs For a two.conrdinate

p'ffsice.l cogfficient matrices will now be glven,

| Coneldor o rigid body mass constrainsd by forces appliad at a polnt

a distance Q fron the center of mass. In Fig. 15 these forces are shown

as spring forcea. A rigid body mass such as 1‘;}21:‘3 ie 8 useful idealiza-

tion of a lumped mass in a non-symmetricel beam such as an elrplane wing.
4 X,

e

P [@/_jﬁ

=4
2

5 R
¥

Pig. 15



“he inertia propertiss of the rigld body mass expressed in the y,0

coordinate system are given by eq.(20).

| F, m o] |y
{22) ' R ..
F,] 0 1I]|6

If a transformaticn to the X, x, coordivnate system is mads by eg.(29),

thon the inertia propertiss are expressed by oq.(30).

\ vyl r -t [x)]
(29) .| = .
0] 0 +1] [x,]
: i tm -mQ ] —;:l
{30) = ..
Fl -mg m{*+I] |x,

The analogous circuit is that of Fig. 8 where the admittances ere now

capacities. The circuit is drawm in Fig. 16.

Fig. 16.

1r £>1 then one capacity would be negative unless one of the methods
discuesed in this section were used to eliminate it. v

As a second example consider & narrow cantilever veam loaded with
a f;orc'e and moment e.ppi.ied at the end (Fig. 17). If the clamped end is
restrained from warping, then céetiglimo'a thoorem may be used to ob-
 tain the Bpring Rntrix (eq.51).”
~.#® . Bee Timoshenke, Theory of Elasticity, {1%) page 144,
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Bquation {31) iz in the ianverss vhysical coefficient matrix form, for
which the gemeral circuit analog is drawn In Flg. 13. The lmpedances

are now inductances and the circult ig given 1a Pig. 10,

2 ra
LF L2 et A L _ £
F 38T 5 G 2¢L ET 2zEL F
y » i M o
= * — LR LG < _QQ_Q..«———-——-———-'Q— G
Aé }ll‘ ©
Z2EL

Any negative inductances may bo eliminated by the methods developed in

~ this saection. |
2.% Electric Circult Analogies for Multi-coordinate Physical

Coefficient Matrices.

Multi-coordinate rhysical coefficient matricss will now be analyged

‘Fy mothods gimilar to those ussd for the two-coordinats case. Jircuit
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2%

FA- 5
anzlogies for f_d] and LdJ ‘-[_d] will be obtalned in sections 2.% end
2.%b, and some general remsrks about the number of transformers reguired
for an arbitrary || will be made. A3 oxamplss, the analogs for &

gensralized maes and a generalized spring are givern in section 2.5¢.

2.%a Consider ea.{32) which correspondas te sqe.{l%) for the two-co-

ordinate cass.

!‘F\j i-'d“ dzz‘_“ - &m-]l !l’x:
. .
(32) R
i g i ! et
;' by i \\ 1 i
1 ; ' ) !
LFY,_ ;dm q o~ dnnJ X,

If quantities arc added end subtracted from the right sides of the

constituent equations of eq.(32), then the set of eqs.{33) are obtained.
(33) Foo(d,+4, - -+a; )x,-8; (x;-x,)-----& (x,-x) 1=(1--n)

I the referencs nodss for the n diszglacemmta, X;, are common, the
.equivalent circuit for eqs.{33) is the genoralized =. It is illustrated

forn =k in Fig. 19.

WA 'W\—-{h

Aszg +clig +elzg +dsq A

2 +6(;3"'d231’ 24

-g 2 2
F4_ 5(4I -6/34 ;(3 : "3
— AAAAAA- {3 ——
™.
b
£ \\\ ;
"‘/isr- L -5{13 ..d24 4 —dZB
F; . xl - ;(Z 1 F:_
) - "6'//2 ‘J; ‘
dy +diz +d,3 + A4 j— 2 dy, tdiy tdyy+dzg

fig. 19.
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If all the off-dilagonal 4 '3 are :zéggati’m, and 12 every diagonal 4 i ic
greater than the sum of the absolute values of ihe off-dlagonal 4. in
the eeme row, then no negative admittances ars required. I negative
admittences are to be alimiznated , or if isolsticm is necessary, thken
traneformera must be used. These transformors mey be used in any of
three positions which correspond to a scale change, an lutermal chungoe
in the B position, or a coordinate axes change. We proceed in thoe seme
mannex: as in the two-dimensional cace and study the firot two positions
pimiltaneously and after that ths coordinate aXes changs.

| The scale change transformation, eg.{?%), 13 used to traneform [d:(
so that in the new coordinate system 24.{37) is obteimod. Quantities
arg added and aﬁbtre.cted from the right sides of the conatitusal equa-

vtions of 2q.{3%) and eqs.(35) are obtained.

] [e, 0----07 [5
(34) x| 10  a~—>0] |,
| = [N ! |
l ! [ b l |
i ' ) - | .L
Lx " _0 0—-—--=- &, —xm_
7| [dual 4 1]
E.' \lal \Za\q-) ‘*‘Olma‘a“ xl-
(55) - §2 d\zalq2 dz:ai - =~ dan,a,| iz
g I B P | |
| | | Y | |
| | S ,
-'.. 1 I SO | 2 '
LFM_ dma.an ’ dzndlan ——-dnn(fad L_i'\r\,
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4= A-l _ d=d-
R - éZq j-d;jp(é;\ i) +(disal Zﬁ Zl@d MD
im ] e
+>:( @i A aédia’><x + —%)
474+

where Big is a pure nurmber whose eign is the came as that of a.a; d.4J
(The summation convention is not used). Decause the terms of eq.{?6) are
ewkward to write, a shorthend notation will be introduced. This nota-

tion will be used throughout the remainder of the thesis., Define:

Sas = dizal X\“L‘i]{

- drin

ﬁ;a‘a;aa'ahj

SM«'»j = a; a»l /\/4 41{
When this notation is used for the case of three coordinates, eqs.{30)

become eqs.{37).

_ _ R %
F, = D41 XJ -+ Ssz(Xn g Z;"ZT) -+ én\,“:;(x.'f‘ 'é"?>
== - SM'Q Xz ’ﬁl"’ = = - X -
= P, T + =K B Bon W X3

} ()7) < Iﬁ.z' (‘l“\‘a‘ {311. I) ¥ ez x‘ 3 %M23 (Xz * 1(52__:)
T, - Sz ( X \/3»11 v ) SMzz( % L&) -) "3
w \3 ®
7 - ol g} 4 Sl % Wig) , 5,5,

et gl B |62a) \6as] B

The equivalent circuit for eqo.(37) i1s drawn in Fig. 20.

N Smiz ‘ M2y
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a; changs all the terms in the corregponding row and column while the B} 5
trancformers change only individual terms. The two positiocms ave not
equivalent as they are in the two dimensional case.

The exictence of a set of ﬁg{_“_ﬂ_ which satisfios inegualities (30)
will now be investigated. For these inequalities to be satisfied the
left hand terms must certainly be hrgsi than the individusl torms on
the right hend sides. This condition gives a set of inequalitiss of
thoe type:

C{, » idcz, o o l__a, !0’1%
ﬂ,z_az d!l /’3,”.6(,.\ /i;:_/-
Fiatra 0‘;2. A= | 0/”“
a, alz T foman” \dus
J !
I |
ﬁlﬂ'\ a’v1 k 62rnam > lizq\. J
d”"" ’ az_ |é(m~\

If these inequalities are subatituted imto inequalities {33) the ine.
ogualities (39) are obtained.

2 . 2
dym
a 2 C d___\}, + 0{,3 SRS - - 2
e Ed d’zl 7 0] * * d»\uw
(159) d.. > d I—'i d:3 A y
o T = —~— 4 - asi P . am
“r d"' ! ? ¥ 0( 33 # Amm
) ! |
i !
2 2 2 . !
[44% dhq M )
d.n> + —j—‘-— fi_zm L . o) L O
dz Ass Hne fomn

Inequalities (39) are mecessary but not sufficient coaditicms Por the

14
exigtence of a zet of e L whick will make all the %4 positive. This

.A

means that unless they are satisfied no cet of Pey 89 existe and even if

A

they are satisfied a set of ﬁ&._ai may not oxist.
24
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The fact that Y_cﬂ is the matrix of a poszitive definite quedratic
form meens that all the discriminants of (4] are positive. This fact
yields the inequalities (40) which will always be satisfied by physical

coePficlient matrices.

2
4, 4o ds A
(40) a, > Lol d,,éd:; or in genem.l‘for any Jx i, 4. )/(,(1'1‘

A cdmparison of inequa.litieé {39) and (40) shows that physical coef-
ficient matrices may oxist for which no electric circuit can be con-
structed with positive admittances and using transformers in the a; or
5,«‘3' positions. For the two-coorclinate case inequalitiss {39) and (40)
are identical and inequalities (39) are both necessary and sufficient.

The coordinate axes transfoxrmation will now be investipgated. An
lmportant theoram pertaining to this transformetion states that an
analogous circuit for any (4] can always be constructed using at most
’-“—(-—"fé-‘-'—)— traneformers. The proof is that successive elementary trans-
formations of the tyve, eg.(kl),can be performed whers each transforma-
tion mekes tlio corresponding off -8is;omal term zero. Since there are
m(”;") off-dimgonal terms, this 1o the number of transformers required
to reduce [(ﬂ to a diagonal matrix.

’xJ 1 -*a’;?i 0 0~1 —_i,—
(b1) BN E T N I TR S o| |x,
x| Lo o o «1] X,

A three coordinate Y_d] transformed by eq.(4l) is given in eq.(l42).
d'll : G B St Qs d.,3
(k) - la, a,+d,,  a,a +2d,8,+d,  &,a,+d,;

d‘? d‘sa\j"’&zg. d33



For isolation to be obtalned with & coordinate aXes transformation
the off-dlagonal torms must be made zero. Thie requires a definite turns
ratlio oen the 8. transformers, for ingtence, Iin the example «,, = - 5—
If isolation is not roquired the values of a ij may be Aa.rb.‘..tm.ry within
certalin limits and still yield positive S.. and sign inversion for posi-
tive .. The minimus number of elementary coordinate axes transforma-
tions required for any T_c.ﬂ dependa om the relative numerical values of
the compenents of (&) .

In practical computation with an electric anslog camputer, trang-
formers are tho most expomsive and the moat troubloscme elements used.
Therefore 1t is always desirable to choose coordinats gysteoms so that &
minimum agumber avre required. iUnfortunately no general formula can be
given which will explicitly detecrmine this optimum coordinate system.

In gensral ,8 ccordinate aXxes, a scale change and an internal }3;3' position

transformation will be rogquired simultaneously.

2.5, Clrcult analogieos Tor the inverse physical cosfficient mairix,
-1
[a] = [ﬁ],mn now be investigzated. They can be treated in mmch the same

nonner as that used for the matrix Y_dfj . Consgider eq.{i2)

o b n A FA
X, d, d-—--4d,, F
A = e
(k2) x4, G ) |E
: | ~ |
A A S A
x| 8w 8, - @u| | B

This equation may be traunsformed by a scals changs and by adding and
subtracting quantities in exactly the same way as its laverse wes ilrans-

formed. Thls means that eqs.{3%), (35), (36) and (37) can be applied to
A

eq.(42) 1f in these equations d ;; is replaced by dij, 2, by ¥, emd T,
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ol
by x;. The cirecuit for o three coordinats [:G.] le shown in Fig, 21 where,

for simplic ity tue scele change transiformers ere not shown.

W e AR s WAL
Sm oMz §M|3
Bz
E}“h' I—‘-&Q,&;.-— -+
0 # i S C ¥ oy
\ T S < x
g:iz S Mo
F3 ﬁ"’ Ba3
S L ceew 14+ +
Gada — ——RR L0088
e Lo A
$a3
Pig. 21,

The condition that the ,S\w‘ be positive imposes the inequalities (33), and
. & neceasary condition that any combinstion of a and 3;,,3' trausiormers
exists which satisfy these inequalities is given by inequalities (39).
(In these inequalities d;; s to be replaced by d;;). If no set of a
and a,;a' exist, then a coordinate axes change must be made. In the same
manner ag in the circuit for [d] , transformers may be used in the a ; or a,;é
poeitions to invert voltage and current if any ome of the é\ A4 ie negative.
If the three conditioms on page *C are catisfied, then the circuit
for [d.] mquirés no transformers. This 1s not true in the oircuit for
[&]+ For ny3, transfomers in &t least soms of the Bi; positions will
always be ::'e;q_m.:reni.ﬂ’P ¥o 5_;% traxwfémers are required for n=3 but for
all physical problems likely to be encountered cne scale change trans-
'fomer is needed f‘oi isolation if the reference nodes are comuon and two

are needed if they are not. The circult for the thres-coordinate case

* This can be proved 'by topological arguments.
See Gardner and Daxnes {7) page 49.
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when the reference nodes are common is drawm in Fig. 22,

A l 5
a3 0 + Ian‘«wr
dyy ”\n*du? L [
A A £y \‘} ~ N n
dn"“n’.' & P FB ;"'4?‘21*5(12_'*'5413
...__.% ) AA -} \ "?\MAA —e- -6..___._
F %, f:,\\ ~27_ Xy Fy
\ 173 3 —
Fl«ﬂ:; - A{f\;}
.|z +d
/?\k?v ‘Ll &
Fig. 22.

Another coordinate circuit may be coupled to that of Fig, 22 to yleld

the cireuit for n =4, only by using three By transformers. Furthermore,
three is a minimum number obtained only when the S.. are all positive.
The minimm number of. transformers for any circuit can be obtained by
combining circuits such as Fig. 21 and Pig. 22 with those obtalned by
coordinate axes change.

For two coordinates it was found that if a transformer was or was
not required for [d] then correspondingly one was or was no‘c required
for [2] This 1s no longer true in the multi-ccordinate case. | &) may
have no zerc terms and require msny transformers while [3] may have meny
zero terms ard requirs few transfomm, or the converse may be true.
Decause of this fact the search for a circuit with minimm number of
transformers which is amalogous to any multi-coordinate physical systea
should include investigation of both [d) and |4d].

2.he. Two simple examples of multi-coordinate physical coefficient

matrices will now be given.



An alrplane engine isg suspondsd by epripss so that it can yaw, roll
and move pavallel to the axis of the wing. These motions corregpond to
the antisymmetric vibrations of the ailrplane a3 a whole. The circuit
analog for the three-degroa-of-fresdom rigid mass mounted on the springs
is required. To deseribe the muss s coordinate gystem will be used whose
three components are the amall dieplacements sloang the gpring axes of the
three pointe in the mass at which the springs ore attached. g, 23
illﬁstra.tss the situation. The behavior of the rigid body nmass expressed
in a cartezlan coordinate systom with origin at the center of mass 1s

given by oq.{L3).

(B3)




The linear transformation from tho y, 9., 8, 1o the goneralized coordi-

nates x,, X,, X, is given by:

x! - J _'S‘GX 451 e?
‘xz = y e Szex+ %2 6.3
15 = 9){

When these equations are inverted they become oq.(hl).

i

gz | gzgg_gl gz'!

!

~u

[y |
]
| £gl 0 O ¥

l
(bk) {l:
ol s

0,

PR

2]

3

The components of the mass matrix obtained when eq.{:3) is transformed

»by eq.{hk4) are:

2
m“ — las) ‘:2. TIZE
(gz-é‘:/)z
£ B v Thg
B, = - J?_Z?Ejggzz' 5
m - 4 ,,,/,?2(5; L Szgl)"fzg (31_\{:"1} - _IXE
P (6.-&)° P,
(43)
2
m,zz g +. Mg/ +—“;z:fz
(gzw“»/"
m = 4 mg,(\gz.%‘ ﬁ;%;)i-f-zé (fz"gl) . _Z’f..ii
N (,-£)° b4
- 2
B, o= + -_Vlle 33'52_3& j;I 2 (§7 52) + T, + ZIzz fz-j',
<§1-§I> gl-gl

For the specific problem considered the numerical values are:



E=-1%.2 in.

57+ 10.2 in.

m - 1.1
I, 3560
I,,7 34000
In:=:0

£, = +55.¢ 1in
32 =z - 25-8 in,
lb~sec™
=
1b-in-gec’
1b-in-sec”

These numerical values substituted into egs.(45) together with a scale

changok of X~ §,5 —;3 yield eq.{k6). Ho transformer is required for this

scale change because the gpring to which the mass is attached ia also

transformed. The problem is now to find a circuit analog for eq.(46)

which has no negative admittances. Isclation is not }z-eqnired. because

t.ho. reference nodes, which correspond to the equilibrium pesition of the

mags, are comuon.

F?,T +14.0  -5.1%
(86) Fz! = -3k +7.k0
' F, L+ 9.47  ~8.23

+ g.hT—i x

1

M

2

= \.".23 l
+1h.4 J

M-

3

Since for each row the sum of the absolute values of the off-dlagonal

terms 1o greater than the diagonal term and since 4 ; is positive, it |

is Qppareat that soms sort of transformation is required. KNelther the

mags matrix of eq.(46) nor iis inverse satisfy the inequalities (39),

therefore a coordinate mé transformation met be made.

An inspection

of the three poseidle elementary trandormations shows that the 8,5

position is preferable. This transformation gives the matrix (47)

m,, m
(hT) o= m,, m,;
a.m, + o, @, m, +ti,;

&,3 m‘2+ m23.

2 ’ :
a.m, + 2a ,m ,t My,




When numerical values are eubsiituted iato matrix {(47) the roquire-
meut vhat all the S0l e positive and that the transformed d,; be nega-
tive imposes the conditiom that +1.31 >7 4 ;> +1.16. As a convenient
value teke &, = 1.25 which gives a transformer turns ratio of .0 to 1.
The resulting circuit is drewn in Fig. 26, The single transformer has
not only made all the S¢. positive but has also inverted the sign of the
Wy

A a sscond exemple consider a uniferm cantilever shaft twisted by
couples squally spaced along ite length. This is the same prob.'_l.ea as
that of e bar loaded with pure temsile forces, Fig. 24, or that of a

‘beam loaded with bepding moments,

& = spring constant

le‘ Fa Xe, F-f X3, E'X? 96
i ‘ﬂ ‘” wyl = X for the ghaft
> Q0 QOO0 Q00 C ol O Gl alReane
+ I H : i - E
G e T R A - =  for the bar

for the beam

Al

Fig. 24,

In the fomm =] -iﬁJ [F], which yields the impedanco analogy, the bebavior
‘of the system is described by tho influence coefficient matrix eq.(48).
This 1s the fom in which mayy complicatod mochanical systems are des-

oribed and is that which is obtained from Castigliano's thoorem.

= (~

%, 101 1

X, ., 11 2 2
{48) = [‘

x, 1 2__ 3

x I - 2%



we

It is apparent that the asalog for this matrix requires many transformers.
If the equation 1s inverted to the admittaunce enulogy form, (F| = [_d] [x],
eq.(k9) is obtained.

[F," +2 -1 0 0] |x,
i
(49) =k
F3 0 ""l +2 "l 13
LFLL 00 -1 <1 x|

In this form all the S., except S0y are zerc, all the Sw.; are negative
and no igolation is required. The cirecult, Fig, 2895, is a generalized =
with many zero admittances. The admittances are inverse inductances.

F\ Fl F, Fq'
| - L l l
L
nll——azmxu—i——\mgm,—im@sm,- : ucq,»._'i?
;<| >‘<?. XZ Xe
Fig. 25,

8,0'/ > lise
\ X2 Fa
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Si\4
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PART IXI

APPLICATIONS TO CONPINUOUS SYSTHAS

The amalogies for elememtsry systems doveloped in part II mey be
considered as tools which will be applied in part III to coatinuous gys-
tems. Section 5.1 considers the shaft loadsd by concentrated torques
from a different viewpoint than was done in sectiom 2.5, Nomsunclature
end ideas which normally would not be used ou ©o0 simple & osystem are
introduced in order that a parallelism may be made with the case of the
gimple beam, section 5.2, and with the generalized case. The uwethods
and nomenclature developed in ssctions 3.1 and 7.2 ave generalized and
applied to a more complex gystem in section 5.3, In the remaining sec-
tions of part III various topies pertaining to beams and frames are
discugsed.

3.1 Hotation and Concents used in the Analysis of RBeams.

The Shaft in Torsion

In section 2.5¢ the behavior of a unlform mazelesg shalt load.ad:
by equally spaced comcentrated couples was gpscifisd by an influence
coefficlent matrix, or vy its lnverse, the spriug matrix. The slectrie
circult analogies for votli matrices are givau in pgart II. The influence
matrix method of approach glven in gection 2.9¢ ic not convenient for
more complicated systems nor Tor boundary condlitions which are a function
of time. We now conaider a much more powerful msthod of deseribing the
mechanical system end of obtaining circuit analogies.

Imagine that the shaft {or bar in temsion) is divided into n eec-
tions which have no mass. Between any two sectlons is a point upon which
the external forces act and whici; has a lumped point me.gy equal to that
of the shaft in the neighborhood of the point. For the present D'Alemberti's
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yrinciple will be used end this mass will be accounted for by an extornally
applied inertie force, Zach of the sections hags a spring constaat, k,
equal to that of the corresponding section of the contimuous oha®t. The
gections need not be egqual in length nor the shaft uniform but for con-
venlence in the discussion that follows the k's are ssswmed equal. The

pltuation and the nomenclature used is illustrated in Pig. 27.

e P — oF o
ot S Lo
% PRI Fall o ¢ S s . PR Y ol o VR OENEE R Vo] o/, JRUPY
Pig. 27

Bach section may teo considersd as aa elemeniary system whose be-
havior may bo described by Fx k x or x = g 7. The nomonclature ugsed to
describe this elanontary system and more complicated cnaes to follow will
now be developsd. For a reason which will be apparcant later this will
be done uesing matrix notation, although in the case of the shaft the
.matricea have only one component and the square brackets may be ignored.
The two ends of the spring ave denoted by a and b. || »[514'] are the
external forcee acting on the ¢nds, and {:xm-] and [xba are the displace-
mente of the ends. These gquantities are positive in the direction shown
in Fig. 25. An i post-subscript denotes the ith component of the matrix

while an i pre-subscript indlcates the ith section in the comjlete syctem.

]

B % [“13
___>[Xa,] - [X\,,;]
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A very important concept which forms the basis for much that fol-
lows end which will now be explained is that [x,] cen be considered as
the sum of a rigld body displacement, |X,] , and an elastic displacement,
[xe). Suppose that the spring is rigidly clamped and that |F.;] 1s then
applied to end & end that 1t is displaced by [X,|. The theory of rigid

body displacemente developed in section 2.3 is applied to obtain:

RGeS

l:? b] = - {Gl]- ‘[:?q]

(for the shaft section, o =+1)

The clamp oen the spring is then removed, end a is not moved and emd b
displaces elastically, [Xx¢], under the loed ‘[’z‘ .|+ Using these comcepts
the behavior of the syctem may be specified by eqs.(50). This section of
the thesls and the two that follow are concerned with the investigation

of these very important equations.

(50.1) v = K
(50.2) [xb] = [xA+ (x4
- (50.3) (xr] = [e](=d]
(50.4) RN
(50.5) (xe] = (ell®y)

For the case of the shalt section these equations bacome egs.(3l1)

?\o = kxe_
(51) ‘ . X, = X, tXe
| B o= P

If the a end of the spring were fixed or grounded, [xa] would be zero,
(x¢] would equal [x] and egs.(51) would reduce to the form 7] = [x[x]
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to whieh the theory of part II could be applied dirsctly. In gereral,
both ends of the spring move and both displacements must be represented
by node palr voltages in the elsctric circuit. There are two general
methods of obtaining a circuit analogy for eq.(%0) and these correspond
to the anslogles for (4] end [a]“{ studled in part II.

The admittance method proceedes by refucing end rearranging ogs.(50)
in the following manner. Bq.(%0.3) iz substituted into eq.(50.2). The
rosult is then substituted into eq.(50.1) to give eq.{52.1l). Eq.{50.4)
is then substituted into eq.{%2.1l) to give eq.(%2.2). These two equa-
lticne are combined into one matrix equation, eq.(52.3) and this equation

is then another statement of the relations contained in eqs.(50).

(52.1) [Fb] : [#] [@A‘[@]Bﬂ
(52.2) ENEEANENEE]
(52.3) !  fPen Bl [

[F;,]_ he, byl fx,]

Por the shaft these equations becoms:

Foo+ k(X0 x)

Fa~-k( x,-%,)
The matrix (h| in eq.(52.3) is eymmetricel and singilar. That it is so
follows from the reciprocity theorem and the fect that only the relative
displacement of the two end points depends on the force applied across
the spring. The circuit analogy for oq.{52.3) is the generaliged =«.
Isolation is not required because \x,| and (x| are measured from the
at rest or gzero position. In the circuit for the shalt ssction, Fig. 29,

both the 5«; are zero.
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Fig. 29.

The impedancs method proceeds by comstructing circuits for the rigid
body tremsformation eq.{50.3) and either the spring or inverss spring
A the
two circulte are placed in soeries. The resultling circult for the shalft

matrices, 6q.(50.1) or eq.(50.5). Then in order to add [x.] to {x

gaction, 6qa.{51) is glven i Fig. 30.

| >.(€ ;

- Fa | | B
G ——OReLRC o G
X, Xn ¥
Pig. 30.

A compariscn of Fig. 29 end Fig. 30 shows that for the ghaft section the
two clrculte are the same. 330‘;“.@ that positive ¥ corresponds to tenslon
in the spring and that both displacements (voltages) ard tanﬂiéna (cur-
rents) mey be measured in the analog.

Circuit anslogies for the individual sections of the ghaft have now
been obtained. The next step is to combilae these clrcuita toc obtain the
circuit for the complete shaft. To do this Newton's law is applied to
the points between the sections. As e notation convention let each sec-

tion assume the number of the Junction point on its right end let the
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forces, dloplacements or paramelors of the ith section be denoted by a
pre-subecrint. The extorunel forcesc arplied to tho junction noints end
the displacements of the points have no letter subscripts. A typlical

Junction point with all the forces and displacements labellsd is showm

in Flg. 31.
: [F]
EBA @ﬂ b el a0k
o [——) (———)—
-—-—>‘-—"‘~U‘“’—-—~'-‘-—P' G0 G —H-e—0R2U——> =
;( EF‘;} ;Yj{] A[F.b] /-\*I{FQ‘] A+ I‘.k] )\* ! [ b]

Fig. 31.

In all such systems tho onds of the ssctions have the same displacements

as the points to which they ars attached. BHence:

(53) BEDNEREINMEN

(%) RUENLAPREN 1o Q-

For the case of the chaft with n=3 eqe.(5%) are obtained.

Tz 2kx,-kx,

(55) F,= ~kx+2kx,-k X,
Fz = -k x, +k x

Bquatione (5k) and (55) are also Kirchhoff's law for currents flowing
into a node. Together with eq.({53) they show thet the individual ecir-
culte representing the separate sections should be placed in series to
form the complete gnalog, Fig. 32. Eqs.(rﬁi) and Fig. 32' are identical

to those obtained in section 2.5¢ by inverting the influence coefficient



matrix, {oq.(49) and Fig. 26).

 F L F F
21 OCCCQ0 ‘%' IR gy-xﬁﬂﬁijw - = Gmam»:%
| X 5% X

- Fig. 3e.

So far in the discussion the ;¥ have been comsidered as applied
external forces of any nature whatsoever. If the points each have a
point mase ; (m| and no external applied forces then the ,[F] ave given

by eq.(96).
(56) ;7= -] &)

The analog for a one-coordinate mass is a condemser, therefore when the

circuit anslogs for the masses are substituted for the external forces

the cirecuit becomes that of Fig. 33.

Tig. 33.

- Pig. 35 ie the well known ladder network which ig the finite difference
analog for continuous systems described Ly the cne dimensional wave

equation.



s
¢

3.2 Anelogiez for « Deam Nending in a Frincipal flane

In this section analogies will be obtained for a beam bemding in
& principal plene by precisely the same methed av was uged for the
shaft in section 3.1. The matrix equations will be the same except that
nere they will have two coordinates instsad of one, It will be assumed
for tfxa time being that the beam bLehavior follows the technical theory
of beams, that is, that cross sections plane in the unloaded beam remain
plene in the loaded bheam. The bsam 12 loadsd with concentrated trans-
verge forces (P and bending couples ; i whose positive directions are

shown in Fig. 3%,

Imagine that the beam is divided into n massless sections and that
between any two sections iz a rigid plans uwpon which the external force
and couple act. The nomenclature used and the positive dirsctions of

quantitios are shown for & typical beam section in Piyu., 35,

SQT “da A ?TSL

ngeak/ =4 WL 565 7"/'\,-




The concephe which wore devolopsd in section 3.1 and which are
emvodied in eqs.(50) will now be applicd to the boam section of Fig. 35.
Bga.(50) for the beam sectlion become ogz.{57). {Eqgs.{50) are written

at the side for reference)

2 'z _ &
1 [s, v /*."1 [r’jcj‘ e "
(57.1) :EI‘ L Fof e [E]lx]
& ‘ . _— -
(57.2) g %“} & F‘ | | %] = ["n—] + [ %e]
L_Bb_J __Gf\, 9% -
st = [T T ERERCIEN
‘ o, | ¢ +illta L A
_Sb-‘ r—_‘ 6 Sa I._\
A = r)= -l 7
e P1-[) SN e
EA E /‘}Z[ > ;
(57.5) EERA x| = el ’E’J
l_ee_ el £Y _/lz 4 Sl Mb [ J
5 3

The camponents of [w] are oblalned from the gecmetry of ths boam secticn.
The compcments of [glmay be obtained by using Castigliano's thoorem in
.the following mammer. Irom the theory of strength of materials we obtain

the expression for strain ensrgy in the beanm:
S

Z

=

z -~
II:—'—/EM]:_*AE ( &£ = distance measured from end b toward end a)

‘.,‘;Ix_z the case considered here M= S, f+ Hy. If EI is a function of r 1t
should be taken into account in the integratlion. Here, for definlteness

in the example, EI has been assumed constant. Thus:
' 2
ke

oi? 2= 28 (
b = 2T 3

3 Z . _
N - M'b A Sbe /Ll>



Eq.{57.5%) iz obtalned by:

by’ = Yo = + ‘/}’3‘ S T ",‘L‘L
Sy € " T 3g1 * ZEI
BU A A
e M B P B L=
DMy T Oe 2e1 % ¥ Er

The two general methods of approech discussed in section 3.1 will

now be applied to obtain analogies for eqs.{57).

It will be found

that the circuita {imally obtalned by the two methods will be identical

although the circults obtained in imtevmediste steps evre quite different.

The admittance analogy is obtained by the seme method that was used

in gection 3.1.

obtained a3 a resultb.

Eqe.(57) ere substitulod into eqs.!52) and eqs.(59) are

\ 2 \
5y +id =& | Ay = (Aot 70a)
i _ L 401
"k e + /L_J L Gu~ Ba
- 2 AT _
SQ—! i l O—! E_; htd 14‘} '“;Ip(»;l&vr/x@“)
(59'2) = EI { l
. 6 4 .
Aa = "'\—J —71 + 1JI‘EI\Q‘ e B
g oz b ‘2 e 1]
Ba Yo Y T3 tYan||de
( ‘ L < _k =
(59.3) M tR o tn v TRy O
;- I e T PR |
b A3 A nd A ab
M e L2 b Al
2 2
B b_ LN r n /b_) s

The cireuif. for oq.(59.3) is the generalized «.

negative admittances in Fig. 36.

It 18 shown with
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) <'f/‘=t indicatel valoes aire of
Fige 0. tnverse 1ndictance)
Bq.(%59.3) and Fig., 36 are the same a3 those given by Kron (10).%

To obtain tho cirvcunit for the camplste bieam, Newton's law s gpplisd
to the rigid planes betwesn the beam soctioms, The convention for &sslg-
nating the sectioms and rigld planes betw2en the sections which was ox-
plained at the bottom of page 53 will be ussd. 2qs.{53) and (5&) for

the beam becomss

= - =
Ead o) in1%a
. P| 5. - s
(61) - ( i T
M . .18

Upon substituting the valuea for EE‘,;E and [’*’q] obtained from equ.{59.1)

%  FKron obtalus Fig. 36 by a different approech than {v used here and he
uses his own "temsorial” methods. See his book (15).



and (59.2) in e¢.(€1l), and by making use of e¢q3.{60), 2q.{f2) is obtained.
The terms of ©q.(02) are addad 1o give ¢q.{63). When oq.(63) is written
for a beam with a particular number of cells and the boundary conditions
are considered, it is an equation of the form  ¥) = f a] [x] for which
enalogies were studied in part II. The inverse of ¢q.{63) for any given
beam becomes the influsnce coefficient equation xf- [g]l#]. In part IV

this equation is given for a cantilover beam,

[ .l za, ML N 7 ] —
("? +/13 nx 1'J—£~|AJ—,L—|6/1[ —lj—ﬁ +_(—_T~L ,ul”j .‘i,:f-/\. G
(&%) | S ol |+ EX ;
35 & = - ‘._ o i y 5
u;q __ o At LJE_‘C =t 6’ —! [ e +TL<1 —H/\-J-I& A 6'
—b .24 P | A
(65) ¢ el e
3
' 8
R o +%‘ "(;07. 4+ = =
ra L pos ey
PR
e
Aeid
i8]

Eqs.(50) to (64) show that the circuit for a complete beam is obtained
by placing the secticn circuits of Fig. 36 in series. Wuen this is dons
scme of the admittamces which are im parsllel cancel. Tho circuit for
& cantilever beam with n=3: is ghown in Pig. 37. The boundary condition
at the clemped end ie imposed by grounding ©, and y, . This shorta scme
of the adinitta.ncee and places others in parallel making possibls scme
eimplifications not shewn in the figure. The circnlt is the seme a8

that obtained from [k | of eq.(63).
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Eq.(59.3), the equation which describec the behavior of the bean
gection in the admittance method, ylelds negative admittances in 1ts
equivalmt circuit and provides for no scale change in passing from the
mechanical to the electrical system., To oliminate these effects the
methods of part II will be used and in particular the scale change’
eq.(éh)jami coordinate axes transformatiom, eq.{65),will be applied.

i

ya: a?& S, =

i
a To
60\ = b a 5«.& 14 - “L, Ea
(6%) toee
‘ yb - 8 yb : Sb = a'sb
6,- baf, | My, = 1M,
?Q.‘ : l +8 \2 o . o ] —ia ",
] .l _|0 +1 ) 0 S
(65) -
?b 0 0 +1 8., Xy,
8, |0 0 0 +1 | X,

If a, and a,, are taken as 3‘2:—%4, 8,," +%~and oqs.(64) and (65)

are used to transform eq.{59.3), then the very much simplified eq.(66)
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as eq3.{67).

5q.{65) with the valuesz

Y]

i
f\‘.

of a , and a,, substituted are glven

Tia, 3,

12’ [ 2™ P ~ .
qu, { T n ; Q —/-7—‘—} o xg \
‘Q’_‘-az e
P B — [£3
o 0 i O = £ a
{66) = EI
oy _ 248 ~ + IZ.(JL: -~ s
by -~ 7 A ’ Fie
P
S 42
g, Fi
T, o ka5 ko x,,
P2 L s v L P
-4
- brn = §
Jo = Fu ~ £ G2 3a = H¥a,
a T _ LA =
Ba 2 o i, B fay ¥ Jgg
67) _ -
7 - x, +%2x B, = 2
p T b b2 ~b Y
= = A 5
8, = x,, 4y, = R, v R,
The analogous circuit for 8q.{66) i3 given 1f Tig. %7, In this figure
" the currents and volteges ave given by eus.(67).
_ . EIlLa )
Ma Ea Xaz e ;<b2. &, f‘—;]b
B N syt N T er= y—e L
SO
|
|
— g TR ta o /ZETIal T | .
S - T i Xa B2 X,, ‘feedto ] s
a - - lj;,z1¢ R ki , 1.1 + Je b
ik A
@ . 2
F
bt

The circuit analeg for a beem of more than one soction is obitalned by

rlecing n circuits like ¥Fig. 58 in sexries.

This circuit will‘ be discussed
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- after the impedance method of approack hes been investigated.

Analogies obtained by the impedance method will now be studied.
A circuit which can take soveral forms will be obtained which, upon a
coordinate axses transformaticn, becomes the circuit of Pig. 30, Im
t!/ua method the circuit for elther the gpring equation eq.(57.1), or
the inverse spring equation oq.(%7.%9), is placed in series with the
circuit for the rigid body transformaticn, ©q.{57.3). All of these
eirouits were studied in detail in part II. The reference nodes for
J. and O are y, and O, , and since these are not the ssme, isolation
is required. Turthermors, |k, |>k,, so that a tranatorner 13 required
to eliminate a nogative 5.: . Since we are dealing with two-dimemaionsl,
physical coefficlient matrices clther the 7 or the % circuit (zee section
2.4) may be used and the single transformer may be placed ir the B. the
a;, or the a_ position. In order to comestruct a practical electric cir-
cuit the scale changes utsed. in the admittancse anslogy ave mtroduoed and
uged to transform all the ©a4s.{57). When this is done 6¢a.{57.1) and

(57.3) become eqe.(68.1) and {65.3).

.é bj ~+ (l—z‘ *% "ai«lr._.é.i % ?(3
(68:1) - BT i

— 2 ' 5 4 _—

My — QA 4ab w7 _J Qe

(68.3)

‘The combined circuit using the x network (see Fig. 10) with the trans-
former in the B position is givem in Fig. 39. This circuit has the ad-
vantage that the bending moments, i,  and shear forces S, ,are currents

which may be measured in the circuit.
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Fig. 39.

Eqe.(68) and the corresponding circuit of Fig. 39 will aow be
gimplified by means of a coordinate sxss transformetion. The elementary
coordinate axes transformation of eq.(69) is applied to the bean section
gpring equation, eq.(68.1). Ifa _ = - ﬁf.f . and , the spring equation

12 /{Q 2 =
becomes ogq.{T70).

(69) —f {1 M';J [xe'l
Qe G +1 Xez

E +arlzel o ||x
b! &\
(70) - N3 _
R ET
n - S il <o
Fos c n Xeo

If the rigid body displacements are transformed in the same manner ase
the elastic displacements, thet is, by the matrix of eq.(69), and if the
right side of q.{568.3) is substituted for the rigid body displacements

then eq.(71) is obtained.
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Thig equation is rearranged to obtaln:

B—'a 1 —"Zﬁ xo\; Xai= ® py
(71b) I & ; whem)by definition:
CARE |

+1 o S

If the scale change of oq.(64) and the transformation matrix of eq.(69)

are applied to ©q.{57.2), sqs3.(72) ars obtainsd.

s 1 nlk I s
o +1 R xb b4 b‘x x&h X el
(72) ( ‘ L ’ o= +

(€
0 +1] |x,: Xy, : S . .

‘The equivalent circult for eqs.(70), {71) and (72) is the same as that
obtained by the sdmittance method. The circult is given in Fig. 38 and
the equations which define the voltagss and currents in this circuit ave
eqs.(67).

Plgs. 38 and %9 are two useful circuits for e 8ingle beam ssction.
A eironit for a boam composed of soveral soctions 1 obtained by placing
geveral of these section circuits in series. Wien thiz ia done, at each
~section junction two transformers are in series with the rigid-nlane dis-
placement node ; y between them. The two tmfomers mey be revlaced by
one with ‘the node point ; v at the center tap. The resulting circuit is
shown in Fig. 40. Note that the values of r and ZI may differ from sec-
tion to section.

The center-tapped transformers may be climinated if the external
force vector E:ﬂ is transformed inteo the coordinats system used in the
1+ 1 beam section. This transformation of the external vector force

will in gemeral require a transformer which for some important special
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cages may be eliminated. The apng"opriate trangformation equations are .
P
eqe.(67), and these applied to [,‘MJ give equ.(73).
- A

IR e ,(r(/(“n,}
L¥r = AP R A PT T ,_ﬂ,é,w._
{73) : )
2 /(." A |n' .
e T

The circuit for the transformation ie given in Fig. bla.

ixz= £+\Xa2 }e /'\—[\;] . . 1 e M
~ . - - -
AFZ
- | -
‘ 520 0 -
dO§.P

AX' “ﬁ(a, + [5‘ 4& + 1,.‘!,’“.,“

AF| b(/\r\/&) »L'ré

Fig. Wla. ; Fig. 41b.
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If ;P is an externel force generator or if it is proportional to; y or

to a time derivative or integral of ,y, and 17 b :A;%L ; then the circuit
becomes that of Fig. 41b end 1t is apparent that the transformer may be
cmitted.

As an example suppose that ;P and ; il are imertis forces glvem by

eq.(7k).

?‘A'P _m O L;]
(74) - 1= .
LU'E 0 I8

When the scale change transformation (75) is made this equation becomes

eq.{76).

(75) t= Nt y= a7y 9 babd
il . r
P I:Z"__ 0 i
A : | Nl ‘l A./d s dz}-g—
(76) - = | . where y =
- | i Iﬁ-_c’: e d /—t—a
,«M_l L@ N2 5 .

The circuit analog for each of the mass coofficlents is a condenser.

In Pig. 42 these condensers ave shown in the circuit for a cantilever
beam which hes beam sectiohs of equal length. The boundary conditioms
at the clamped end ave 1mpoae¢/1 by grounding the displacement nodes while
those at the free end ars imposed by applying no shear force or bemding

couple currents.
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3.3 The (emeral One-dimencional Flastic Structure
The methods and matrix squations developed in soctions 3.1 and 3.2

may be applied to a bveam with 3ix degrees of fresdam. In the same manney

as Defore, the beam is divided into messless coctions which ave seperated

by rigid planes upon which the external forces act. In the general case

the displacement vectors havs six components which specifly translation
and rotation and the Porce vectors correspondingly have six componente

which spocify force and couple. The elastic behavior of a beam section

is usually specified by an influence matrix which is obtained from the

gtrain energy by using Castigliano's theorem. For the systems considered

in this and previous sectionz no non-linear forces such as thoss involved
in buékling are allowed. Such forces will be discussed in section 3.5.
As befors, the principal idea used is that the displacement of end b of a

beam section is the sum of an elastic part caused by the applied forces



a
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and & rigid body sexrt couvsed by the displacsment of ond a. The circult
for the section le obtalined b;,«'\placmgg; circuits for the two parts in
seriey,

Ag an examplo of a more general beam, the circult asmalogy for the
bending of a curved beam out of its plane will Le obtained in this secticm.
ther systems such as the bending of a beam with a product of inertia or

the bending ond twisting of & beam aboul an exls other than the center

of twist can be obtained in a simlilar mamner. It will be assumed that the
beam has e circular croos section, that 1ts center line is a circular are
and thet the radine of the croas section is swmell comparsd to the redius
of the conter line. These assumptions are mede Poy simplicity in exposi-
tion and in order thal a comperison of natural Irequencics of vibration

may be made with a known soluticn of the continuous csse; they are not a

reogtriction on the method used.

Pig. &3,
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In torms of the notaticn for a typical beam section shown in Fig.

L3, the strain emergy in the beam section is given by
¢

(17) L~/ 251 Tige R AN
[o)

where: My = F, Rein\+ ¥ cos» - T ein A

1

T\ = F, R{l-cos\) * M sin N + T, cos A

The elastic behavior of the beem can be sgpecified by

=] =[] [7]

Je g, 8, 3|; Fbﬁ
{78) Bel= |8, €&, 8,

Ly
13 323 & L\?

The influence coefficients in equation {7C¢) may bo calculated from eq.(77)

by using Castiglieno's liﬁheorm. The result of this calculstion is:

[Zéf“wmzcb + = (écéwmzcb 8m¢)]

B, = Z%i["mz‘wt +3~(15(3— con § ot 2w 0] ]
R i e g =24 + EL(damb -2¢-ainzg)]
Bie= o 240 ezt EL(2¢- o 24)]

85 = ;,E—If—(l—mchwaﬁ(:—uqzcﬂ;)]

8,3 = 4%1-:_2‘?—"‘_‘"“24’* .P:.I.\/ Z‘.q’? +M2¢ﬂ
The rigid body relation, eq.(%0.2), is given by:

A 1 +R eing +R(1-cosm i—yq_

o ono iEEd
Ya L0 -sin ¢ + cos ¢ | LL_V""J ' '

(80) .= |0 ¥cosét) +oind




When $-> 0 and R —> oo In such a manner that ¥ ¢ = constant =r, these
equatlons become those for a simpls boam In bending, seetion 3.2, and a

shaft in torsiom, section %.1.

In accordance with egs.(50.3) and {50.L4), the analog for the beam
section is obtained by rlacing the inverse spring circuit from eq.{78),
in sories with the »igid body cireuit from eq.{{C). Doth of these cir-
cuits were studied in part II although the speclific values of the elec-
Fical olements depsnd upon the particular provblem consldersd. To yieldb

a practical electric circuit, the scale changes, €48.(01l) are introduced.

Y= 8 F S, r &84

(81) 83' = ab, 53- {J=8a,b,s,r) Pig e /;—%:EA {i=a,b)
-8l Y P = L :.;-
Wﬂ 2 ¥ T oal,t

When these scale changes are iluntroduced into the iuverse gpring sequation

(78) anfl the rigld body relatiom {80), they beccuwe eqe,.{82) and (83)

reépactively.
— ] —,\ Gra g_/_;? T RN
Je €, I )’z b
(8 bol = 132 9u Zullgm 2 {— 5 |
% ,_.2) e‘\? b| b‘:' b‘ bz 3 b Y‘_—xa - 8][‘.— b_)
p 93 G I |%
Vel by b6, bi |l bl
e . - ) -—-‘ F—~
Y. 11 4B R eind +bZR(l-cos¢)I {lya
(83) |8 =] © voos¢  + fretn, B, {’i,}[aj[ia]
. t &
Wr o - f sin ¢ + cos 4>J l_\(':;\i
- ) '

| EY: g
A circult for the beam ssctlen when &= 22.5 end — = (T #)= I3

will now be developed. For this value of $ end

EL

e the velues of 813' are:
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g, = 4%1 (+ 0.020681) g, = 4%‘%:“1.0592&28&)

(84) e . & (ro.3079%0) g = D 0.087578)
12~ 471 i 23 7 4€T ‘
i 53 _ X s

g, = 4FI( 0.040003) £;, = qEL(-y‘Z.Olu‘jh&)
To simplify the rigid body relation, teke;
(85) b= -'-’-'L*“"" B, = "”“"“

' Rew d ¥ Raty

The rigid body relation then becomes:

yn'l +1 41 +.s20) [5
(56) Bl 0 +.928 +1 | |8,
_'r\:_l - Y] - k6 +, 92& \:Poil

The inverse gpring equation becomes

Y, + 0,08068 4 0,1178%5  —0.00506 ,Té !

& 8| = B 4 0,107 0.233428 su,00h02] |H
(&..*7) ) 4ET C(I }e [Ea3) +0.23348  +L.0048 ; £ gy
Ye. - 0.00556 +0.00492 + 3.0&529_1 Ty

To accomplish isoletion at least two tranaformers are requived in the
analog for eq.{CT). In additon the negative impedance resulting from
g, > g, must be removed. A practical way to do this is to meke a
local scale change in the y, component and to isolate tho B, component.
A circuit for a beam section in which thie ie done is given in Fig. bk.
Although the general values of og8.(82) and (83) are givem om the circuit
diagram, it is valid as drawmn only for a [g:} which has components with
the same signs and nearly the same values as that of eq.(87). Other
valuss of components might require traneformers in the B positioms or

1

a coordinate axes change.
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A lumped circuit amalogy for the out of plane {ree vibrations of a
uniform full ring will now be given. The shape of the fundamental mode
of such & ring is indicated in Fig. k5. The + and — indicate move-
ments out of and into the plame of the figure. The boundary conditions

on the octant which are shown in the fipurc are obtained by symmetry.

Fig. 45,

Becauso of symmetry, to model the full ring when it vibrates in the
fundamental or higheor modos with an integral number of Quarter wave
lengthe in an octant, it is only necessary to model theo octant., %o
model the octant in the ozample consideored here, two of the beam sec-
tiong studied above will be placed in zeries. The bLoundary condltioms
make it possible to sliminate scme of the rigld body transformers, and
to take advantege of thie, the b ends of the sections are Jjolned to-
gother instead of end a to~ega~b a8 has been done previously. The co-
ordinate systems used on the beam sections are shown in Fig, 46. An
ingpection of the figure shows that the same equations deacribe both
beam sectiomns and therefore the amalogs for the two sections are identl-

cel, However at the section junction a tranaformer is needed to relate



.9, to 6, because their positive directious are opposite 10 sach other.
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A lumped mass equel to the mass of the center nlf of the octant is
placed at the section juncticn and a lumped mass equal Lo one-gquarier
of the maes of the octant 1s placed at the a end of seetion 1. The
mess which would normally be at end & of section 2 is grounded. In the
analog the rotafy inertias, which are condensers connscied to the slope
and twiast ne_des , have been neglected. If w = mags of the beam per unit

length, then the mass of one-half an octant is:
s

’ T
n = ﬂR dq = /u?; 3
¢]
When the scale changes, y - a y, and t = & f, are made the mags becomes:

a“'..

(88) m= pR3on

ol

<

The complete circuit with the parsmoter values of eqs.(06), (87) and
(88) 18 given if Pig. &7.

The expression for the natural freguencies for the distributed
mass ring, for ihich Me. 47 1s the lumped mass analog, is givem by

Timoshenko (22), pege 410. This expression is:
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{P9) W = \/[I —-———~————»A (2=~ 1 ={2-- o0)
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Tor the fundamental mode and for 77 0.3 this exprescion becomes:

SRR - S S

The lumped mass frequency obtained fran the circuit frequency,

—_—

f = 21 ., can be put into this dimensionless form by subetituting the

N\
values of the circuit elements obtained from Fig. 47 into the term ;‘f—,;‘—rq :

The circuit element values are:
Irat / R -

(91) C = MR3 L s o

Making the substitution one obtalins:

oy
155 Fr_ a1 1
4 PR T NTE e
Thus since o . i’/&-e: 3"7_5 the frequency parenmeter bscomoss
Y
N 2 § pp—
{ e ey 7//0 L%“E “(
L J _C:._ (7, (c((r) ML 7"1“1: (2:6ct) '
V NS 29T

{the Le subscript indicates the lumped beam frequency calculated by
the electric circult)., The ratio of the contiuuous boam freguency to the
lumped-mass beam frsguency ac calculated by the analogous electric cir-

cult ie obtained by dividing eq.{90) by eq.{93). The result is:

(%) A Y NS
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5.5 ' The Finite Difference Beam Analogy
In the first part of this ssctiom tho finite Aifferemce avalosy
ﬁevélopad by HoCann and Maclieal for tho 4th order differential equaticn
doscribing the behavior of a straight beem will bo given. This analogy
will then bo comparel with the luwmped enalogy developed in soctica 3.2.
To déacriba the beam the coordinate system of Fig. &I will Lo used.

"
s - i
ity MHWHW’”L e

S+As

Tig. 43,

Trom the theery of the strength of materials the differemtial sguation
for the deflectiom of the neutral axis is:

2 /. o\
{95) :b—;l ET g AN

This equation could be converted to a finite difference sguation iwmedl- -

ately, but it is more instructive to comsider the four first ordsr equa-

tions used to derive it.

i The equilibrium conditions em the boam element ars:
Zfbmms?OA | S +wéx = § +48

or

s
XN
!
g

(96.1)



(i)
. T e
~ moment = O “+ S ax+ P éxs = U +au

retaining only first order terms, the following is obbaimod:

(96.2) A e
_T&ooke's law gives:s

(96.3) EI i( £ o3
wheres

(96.k) ;% - +8

Differentials are roplaced by differencos and oge.{97) are obtained.
In thess eguations the post-subscript indicatey tho section or cell

numEbeyr in the beam.

{97.1) 5.

iy 8 y ¥ % {w ax),
{97.2) 3”%:2 - M, =« 'Sg.sz,f’*‘zmi
(97.2) ’ e/;“z - 9{;\_; = ¥ ﬂ;_:}é-ﬁ"
(97.%) : V., - ¥ - Q«'*—; = YR

Electrically these oquatioms have the fellowing woening:
Bq{97.1) is Kirchhoff's current law.
2g{97.2) 18 a ratio of currents.
2¢{97.3) 18 & relation between voltage and current. | {chmes law)
Eg{97.%) 1o & ratic of voltmé. , |
The analogous circuit for eqs.(97), which 1o the finite difference

analog for a eimple beaum, ie given in Fig. LY.
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Por dynemic problamc tho oxtornal lumpod leads, {w 4x); will include

: :?,.33?%"& Porecs and thege will bo Chitained by ecmiocting confensorg o

the digplacoment *:q',;cf;) The analow hasg the advantugse that displaccaonts,

slones, bending woronts and ashesr fovreces are sasily mesiurod quantltl 23,
The mechanical aniley for ¥ig. 39 13 shown in Fig. %0. Ths avalogy

ig true for anll displacorents omly. The messes and the Tulcruay of

tha T a?.mjsa& levers are constrained to move vertically. 4ny oxternal

forces can be &yi‘li’)@. %0 the Suncticon points. The bowdary corditions

ahomm '3,:’; the figure are for o centilavoer Leax.
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To compere the finite differemce analogy of Fig. 49 with the lumped
analogy developed in sectiom 3.2 wo traneform the latter into a form simi-
lar to the former. To do this the inverse spring equatiem, (57.5), for
the simple beam is written with @Q:&A—Y_@}[:A substituted for [x |.
Bqs.{98) are obtained as a result.

3O Z

; &=

(98.1) yb-<ya+ r Ga\): BEISE = 2?—1“}’
X - - _.C‘.:.i N ¥

(9&.2) BL ea = ZET 38 b ) E*:j‘_. ot b

Both sides of eq.{98.1l) are divided by r and both S terms are divided

and mltiplied by r to give e9s.{99).

A= #a . n ' N
g = — (r 8+ u
e = BEI( ZFy 2
(99) ) )
- = = { R "

The rigid body relation of forces iz also required. This is obtained
from eq.{57.k).
(100) = —Mbﬁ—r Sx

‘ 8, = -8,
In eqs.{99) the reference nodes for the two relative displecements on the
left hand sides are common, namely 5.. The analogous circuit for these
equations is the simple T network but since 2—%_-1 > 5?:"-1 , one inductance
- will be negative. The circuit for one section i3 given in Fig. 51, This
circuit is the same as that for cne coell of the finite difference analogy,
Fig. 49, except for the negative inductance which is not present in the
latter. The effect on errors of omitting this inductance will be investi-
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3.5 Shear Teflection in Deame

In sectionz 3.1 to 3.5 the technical theory of heems was assumed in
which plans ssections remain pleane. This essuwsption makes the protvlem
truly one-dimensionsl, that is, the relative displacements of two ends‘
of a beam section can be specified by not more than six quantities
which are proportiomnel to the same number of generalized force components.
In sctuality a beam section is a thrse-dimensional elastic region and the
displacements of the ends can only we specified by three displacement
functions of two space variables each. Plane sections remain plane only
for the case of pure bending; for lateral loads dsllsctlons are greater
than that predicted by the techmical theory. In texts on strength of
materials in which the technical theory is used to obtain the bending
stiffness of beems,it is shown that the shear stress is a function of
the lateral shear force and the shape of the beem cross sectiom. The
shear gtross causes a‘ shear strain, which means a distortion of cross

soctions, and the shear strain produces a deflection additional to that



n=

&3

- obtained froas bending, There are vavious approximate ways in which this
additiconal deflection may Lo calculated. The most common” L9 to asgume a

glope caused by shear alone of magnitude:

A4, Py} 41= 6 < S of ¢*

- = ' ‘j J Y o= =

{101) A x = T AG T 6 S :
y, = shear deflection

a = factor which multiplico the average shear stress
to obtain the shear stress at the cemtzrold of a
cross gection, = 3/2 for rectangnlar cross ssctions

¢ = one half the depth of o symueitrical beem

In the beam secticns comsidered in this thesis the shear force is
congtant over the section length, and the shear deflection of a beam

gection 18 thuss

(102) <yb - yﬁ)s“ss’qr: /;”:3; £ = > MT’ &

This additional deflection iz a cne-dimensional offect, that 1s, it
deperds only on the ghear force in the beam ssction. This simpls shear

deflection term can be included in the beam equations of section 3.2 by

: R
simply edding ,Z("c',“ to the g, tem of eq.{57.5). This term then becomes
3 o
§%I+ ;,“% which in the electric circult means a correspondingly larger

inductance. In Mg. 51, which is the circuit for one section of the lumped

anslogy in the finite difference form, the negative inductance arisss from

LA b
3Fr 281 T "Ly -+ Vhen shear effects are included, the corresponding

oot 7

inductance 1s:

Ty

Vi 4 I TS S i o
— o e — T sasyasaidhin
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# TFor example see Timoshenko (17), Stremgth of :aterials, 2nd od. page 170



Henco when the shear texm is large enough, noe negative iuvductaace is

required and the circult of Fig. 51 becomss a very uselful and practical
circuit. Vor a solid rectangular beam with Polisson's ratio of 0.3 the
ratio of beam depth, h, to length, r, at which the inductance l1s either

zero or positive can be found by

a = 3f2 A=bh
3 ; P th’
—— =z 2{l+7) = 2.& I = —
G (1) v 1Z
substitute these values in o = .-, &nd cbtein tie condition:
el 4 >~
(10b) 2 £14%
N

The shear deflsction term cf’ aq.{102) doss not depond on the bound-
ary conditions on the boam seciion as it should to be covrect for all
situationajand it is for this reason that its valldity ic open 4o gquege-
tion. In the plene strese or two-dimemsional approximation to a beam
the shear teym of sq.(102) for o = 3/2 iz obtained omly for the cass of
a rectangular cantilsver beam in which the duilt in end is free to warp.
For all other boundayy conditions the term of eg.{102) is not correct
although the correct term ig lkmown for only a few casss. For instance ,**
the strain energy in chear may be calculated and Castligliano's theorem
uged t0 obtain the shoar term for an end-loaded céntilever with tho built

in end restrained from warping. In this case:

~

L2 .8
6T

(105) | -

qu’\)

In svmnery weo mey ssy that if the megnitude of the shear torm can

& Timoshenko, Theory of Zlasticity (18), page 37
B " - rage 1k9



be cbtained, it can be incorporated into the circuit analogy easily.
However, in all but the most elementary cases a correct shear term is

not known.

3.6 Combined Axial and Trangverse loads.

When an axial force acte on a beam that undergoes lateral deflec-
tion, the effect of the force dsepends on the latersl deflection and 1n
this sense the system is non-linear. Comsider a beam in bending with
an axial load T. (Fig. 52a).

, T

T“@ ,

T T X ' 1
~— ]-—3 T //‘_7 4

1

Lo

Fig. 52a. fig. 5ab.

The axial load may be thought of as applying a distributed external
bending couple, -T :‘;ﬁ , to the beam. This is shown in Fig. 52b where
T dy ie the moment applied to the beam elsment of length dx. In the
electric circuit analogy fer the beam this distributed moment must be
lumped into equivalent concentrated moments which are applied at the ;©
nodes of the beam. (Fig. 38 or 40). If T is a variable, elsctromic
multipliers are required in which the inputs are the volteges . © and T
and the output is the current ., Whemn T is a comstant, the current
;_M:(-T 10 q>ma,v be obtained by connecting inductances between ground end
the ;0 nodes. In this equation q is the length of beam over which the
distributed momenta ere lumped; in most cases it will equal the beam
section length, r. If T 13 negative, that is, if the boam is in com-

pressien, either electronic negative inductances must be used or, in



the steady state case al a knowm freguency, condensers may be used as
na@a.tbive inductances. In the static case where the beam masses are
zero, buckling loads correspond to resonant frequencies of the circuit.
When the scale changes of oq.(6lh) are made, the value of the T inverse
inductors become L =T q bz a-‘. When condensers are used for negative

b

inductances their value is;

b7 S
o ke = LBEE

In Fig. 42 these condensers would be in parallsl with the rotary inertia

condensers. In the figure, b = %and for q = r, the axisl load condenser

= 2.
T—C‘.

values would be —, .

nw

3.7 Lumping of Distributed Forces.

Within the stated assumptions of one-dlmemnsional theory, the elec-
tric circult anslogies developed in sections 3.1 to 3.3 are exact for
the case of concentrated loads. When distribuited loads act on & continu-
ous system they must be replaced by equivalent lumped loads in the analogy.
The word, equivalent, in this case can have many meanings. TFor instance,
the lumped loads may be statically equivalent to the distributed loads
which they replace, or they may be concentrated lcads which produce
deflections at the points of application equal to the deflections of the
same points under the distributed loads.” The method used in this tI sis
of replacing distributed loads by statical eguivalents dces not require
any knowledge whatsoever of the solution in order to make the lumping,

and 1t is thus probably the most genmeral and best to use on complicated

* Another method of treating systems with dilstributed loads 1s to change
the effective spring comstants so that upon spplication of lumped loads,
deflectiens nearly equal to those caused by equivelsnt distributed loeds
are obtained. This method is discussed by Horvay and Ormondroyd (19).



ey

dynemical systems.

Distributed loads caused by the motion of the system itself foram
an important class of such loads. Examples are inertia forces due to
distributed mass, transverge forces caused by an elastic fourdatiom or
a viscous i’luid., and &istributed mononts csused by axial forces. In
this cd.aa the distributed forces ars effectively combined by lumping tho
distributed mass, spring or viscous damper and applying the reosultant
lumped element at the node points of the elestic system or circult
analogy. Thus the total inertie force on & ssction of a simple bHeam
with mass per unit length p 15/3,»« y 6x. In the lumped analogy this
fma is replaced by &';'r / j» dx ;hara .y should be at or near the center
of mass of the mass, ij‘:mtx . In the gomeral case, ¥ and ( are func-
tions of x ,a.nd the integral of the distributed inertia {orces is not |

exactly equivalent to the lwaped inertis force. That is:

% 7

(in general) /f* yax % A'I!//’[/"v dx
i o
If y and M are expanded in a Taylor's series about their value at ome
end of the beam section it can be shown that for y and M- congtant or
linear functions of x the equality is true.

The errors involved in some particular types of lumping on some
specific syétems will be investigated in part IV. An analysis of the
‘problem in gensral would be interesting but difficult. It should be
pointed ocut that these lumping errors are not peculiar to electric
analogy methods but occur in most numerical methods of selving eontinu-

oug mechanical systems.



3.8  Tromes

The monner in which ‘beam sections are vplaced in series to form
beams has been discussed. In the same manner, beams may be combined to
form frames. If a frame is a structure such as a building in which the
dynamic bshavior of the building as a whole is of interest, then only
one or two sections are required for each beam and the masses of the
‘beams may be lumped at tho beam junctions, On the other hand, if the
frame is a structure such as an airplane in which the mode shape of
each wing is important, then emnough sections must be used in the beam to
adequately represent the number of modes desired.

In & frame each memboer can be described in a coordinate system
which yields the best circuit analog for that member. The wvarious mem-
bers, each in an optimm coordinate system, are thon connected by trans-
former networks. In a frame with cnly mutually perpendicular members the
coordinate systems will differ normslly by scale change factors emly,
but in a fmé with oblique members, coordinate axes changes will usually
be required.

An example of a simple plane frame with cblique members is givem in
Mg, 52a. The coordinate aXcs chosen tO represent oach beamare shown in
Tig. 52b and the resulting civcuit dlagrem in Fig. 53. The methods of
the preceeding section may be uéed to take account of the combined axial
and lateral loads. If the extermal force had besn other than along one
of the six coordinate directione at the beam junction, it would have to
be transformed into components along these directicms. The coordinate
~ axes transformation at the Junction may be eliminated if the same coordi-
nate system »15 used for both beams. This usually complicates one of the
beam circuits so that more tmafomra are required in it., The vbest

method to use depends upon the specific probleam.
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Pig. 52a. Fig. 5.

The coordinate systexm translormetion 1u:

- - i
‘B.b\ = zxkz 008¢ -+ beiﬁ.x.ﬁ.:#
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'

X, 8ind - x cos @

lxb‘s N be’s

4z ancther oxemplo of e frame, Figs. 5% and %5 show analogous
civeuits fov wn alrplane whoes wing, fusolage and Lall surfaces are
boume which bend in s principsl plens end twist .. The provlem represeats
en actual alrplane end Lo ope that was solved on the Electric inalog
Conputer of the Analysis Laboratory at the Californis Institute of
Technology. The alvplene is symmetrical, and therefore symuetrical
and satisymmetrical wodes of vibration cxist and mey be studied sepa-
rately. In the symastrical modes the wing end horizontal stabilizer

tipe move together and the Dusclage bends in a verticel plane but does
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(The four two-winding transformere in the circuil may be
replaced by two three-winding transforumers)

Tig. 53.

not twist. The verticel fin is consiéered rigld in these medes., In the
antisymmetrical modes the wing and horizontal stabllizer tips move oOppo-
sitely, the fuselags bends sidewise and twists and the vertical fin bends
and twists. The wings and horizontal stebilizer bend and twist in both
cases. DBecause of the symmetry of the airplane it is only necessary to
model the half airplane lying on one side of the longitudinal axis. The
finite d1fference beam analog 18 shown in the figures,
The conters of mass of the beem sections are in general not om the
centér'of twist of the beams, yet the coordinateo system used to describe
‘the behavior of the maases isg the deflection of, and rotatica about, the

center of twist. Thorefore, the situation 1is exactly that of the example



oL
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in pection 2.4 and the rigid body mass enalog is the oircuit of Fig. 16.
The centers of mass are not all ocn the same side of the center of wwist
and therefore f position transformere arve used in some of the mass net-
works to change the sign of the R,

The masses and stiffnesses of the fuselage are much largaf than
those of the wing ard tail members, and to keep the electrical elements
within an optimum sige for computer uge, different sceles were used for
the different bsams. The scale change trensformers shown in the figure
wore therefors required. Tote, for example, that twist in the wing is
coupled to slope in the fuselage.

In the enalogy for the aymmetrical modea the engine can move verti-
cally and cen pitch. The coordinate system used to describe its beha-
vior has z8 components the displacements of the pointe of attachment of
the mounting springs. The circult analog 1s the = network shewn. The
engine in the antisymmetrical case ig the same as that given as am
example in gection 2.%¢. The circnit analog iz the gonerslized s with

a coordinate axes transformation. In Fig. 5%, the engine analog has

three transformers instead of the ome reguired im Fig. 24. The reason
for the difference is that at the time the airplane problem was solved
the methods developed in this thesis ware not known and the coordinate
system used to describe the engins behavior was not optimum.

Rotary inertis of the besw ssctions was neglected in all cases but
those such as the fuselage sectiomns carrying the wing in yaw or the verti-
cal fin in pitch.

The various sub-circuits mentioned sbove are labelled on the circuit

diagrams.
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3’;.9' Anelogiss Tor Two and Thres-Dimensionul Systome

An elsctrie circult 1s topologiczlly a syster of lines and this

means that o obtaln anclegles for two or three-dimenplonal comtinuous
pystems they muot be replaced by & grid or mesh of ono-dimensionel sys-
tems. Acother way to state the situvatlon is thot, excluding the time
varlable, two end threc-dimernsional continuous systems aro described by
partial éifforcatial equations while electric networks are always dese
eribed by sets of ordinary differsntial squations. After the two or
throo-dimensional systen is replaced by an eguivalent ono-dimensiocnal
mesh, the methods developed in this thesls can bs izaed, with no parti-
cular cmz;licamm, to obtain a circult analogy.

Tre equivalencs of ome-Gimemsional meshes to two-dimeneicnal prob-
lems has bteen quits widely studied although much remaing to be dome. -
The mesh anelogy for a membrane is well known.% The elsctric circuit
anslog is a network of induvctors topologically the szamé as the mesh of
gprings. A mesh of bars which have axial and shear springs can be used
to ayproxizmate the problem of planc strese and plane strain. Coupling
between bars in perpemdicular divectione is caused by Foisson's ratib_.

. Kron (11) hae given an analogy for this mesh and liaciiesl in an unpub-
lished note has used a finite difference approximation to the differen-
tial equations to cbtain the same result in a somewhat more gemeral
fashion. The amalogy can also be constructed using the impedance method
discussed in section 3.1 and 3.2, »’ Grinter (5), page 13, hae given an
equivalent mesh for plane stress and plane simin problems m which
beams in axial strein and berding replace the shear members of the
other mesh analogy. e shows that the effect of Poiszon's ratio w

#  Marcus (20) haz written a book on the subject of msh approxima-
ticns for two dimensicnal elastic systams,
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often be neglected in this woesh and whon this can be dons the circult
fér the mesh 18 sinpler than that for the {inite differenmce oquaticms of
elasticity.

| in elastic plate may also be approximeted by an Orthogonel mesh of
"bems whiéh bend and twist. imcNeal (9) has obtained a finite difforensce
azmlog for a plate by conveorting the differentisl equations for a plate
{see Timoshenko {21)) into {inite differemce form. Newmsrk (%), page 136,
: has briefly dlscussed the correeponding mochanical modol. The analogy
coneists of an orthogomal net of the fintts difference beaws discussed
in section 5.4 which twist and bend and are intercemnected by springs
which correspond to Poissom's ratio. If the beams developed in sectiocn
3.2 of this thesls were used in place of the finlte differonce beams,
coneiderable improvement in accuracy should result.

Three dimensicnal problems can be handled in the samfa way as two
dimensional ones but an almost prohibitively large aumbser of electric
elaments would be required for all but the simplest provlems.



PART IV

ERRORS

The nature of the errors invelved in the solution of probleme of
continuous mechanical syotems by electric clrcult analogies was outlined
in section 1.4, A complete study of thess errors would include an in-
vestigation of the offect of circuit element imperfections and of lumping
of persmeters on the transient and steady state response of systems.
Unfortunately these orror studies are difficult and require long and
tedions numerical calculations. In the present part of this thesis an
error study of some simple uniform systems will be made. It seems
reasonable that the results may be applied qualitatively to systems
which are not too mreatly non.uniform.

In gection k.1 the deflections of a uniform cantilever beam under
a wniform distributed leosd will be obtalned and compared with the deflec-
tion of the same beam under equivalent lumped loads and with the dis-
pla.cwent‘of the equivalent finite difference beam. Explicit expressions
for deflection error for the general case of n concentrated (lumped)
loads will be obtained.

In section L,2 the matural frequencies and mode shapes of a uniform
cantilever beam will be comparsd with those for the lumped mass analogy,
the finite difference beam, and with the results ovtained from an enalo-
goué electric circuit for the lumpod mess beam. The comparison is made
for n=1ton=4& aections' in the beam. BSince the Tinite ¢ifference beam
may be considered as a simplification of the lumped mess beam, this com-
parizon evaluates for this particular system the three types of error
mentioned in sectiom 1.h.

In section &.3 the contimuous beanm, the lumped mass boam and the
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finite difference beam are campared for the case of ‘pmned-pixmed ends

with n= 3,

The methods used in part IV may be applied to boams with other
boundary conditions and with a greater number of sections than are
”s’f:udiod here. When and if the errors due to clrcult olements are kuowm
and hnderstood, an electric analog computer could be used to study the
errors due to lumping axw. this would obviate the discouraging amount of
nﬁmerical calculation otherwise necessary.,

k,1 Comparison of the Deflection of a Cantilever Beam unier a Uniform
Distrivuted Iload with that of the same Deam under a Set of Egquiva-
lent Concentrated loads and with the Deflectiom of the Eguivalent
Finite Difference Deam.

In this section the deflectiom of a uniform cantilever beam under
o uniform distributed traneverse losd will be obtained by the theory of
strength of mteiie.le. The distributed forces will then be revlaced by
a sat of statically equivalent coucentrated forces and the influence
coefficlent matrix for this gystem obtained. The terme of this matrix
will then be summed in such a manner that the deflections of the points
at which the forces are applied are obtainad. These deflections will
then be compared with those of the sams points under the distributed
load. #Finally the finite difference equation for a beam under uniform
distributed load is written and the solution given. This soluticm is
then campared with the other two. The results are expressed as deflec-
tion errors which ars functions of position in the boam and number of
sectiong into which the beam 1s divided. This error study of e static
system is important because it is cne of the few that can be solved for
a goneral number of beem sections. Qualitatively, the results can

probably be applisd to gystems with come non~-unifommity.



Consider the beam of fig. %0a.
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The differentisl equation for this beam is A ( ET {;}i): - @nd
' Ax?® AX*]
ite solution is:

s sz( ] . <
_ , o s { o s 44 x+ X
(107) y 24 ET )
The lumped load approximation to Fig. SCa is given in Fig. 56b.

To develep the deflection equation for this lusped load beam we next
consider the end loaded cantilever of Mig. 7.

AN \\_\ ,} _zi
pS

Pig. 57.
Trom strength of materials theory ome obtains for this beenm,

: Fx?
108 = —{3a-x
(108) y eEI(”’ x)

and 1f the substitutions a = jr and X =ir are made, eq.(109) ia obtained.

(1 and § are positive integers which indicate position).



%
(109) v = a’?;;; [4‘"‘(33"5‘8 J,d = (1=

This equation gives the beam deolflectiom at the polnt 1 dus to a force

at point J when § 2 1. TFrom it an influence cosfflicient matrix can be

congtructed. That is;

{110) ¥; = ESAJ‘ ¥
5 4=
n ; ,
where 8i4 = E‘i[iz(?ﬁj-i)] for $=1 (4,3= 1~~—n}
and Bif® €44 by the reciprocity theorem.

A few values of this matrix are given in eg.{111l). Kote that the g;j
terme ave unique and do not depend on n. This means that the matrix for
n sections ic obtained by taking only the first n rows and colummns from

the general matrix.

EA 2 5 5 1 W] [7]
¥, 5 16 28 ko 52 F,
. ( m) b3 = " E-'I L2 2-.,: 5.2{ —> k/l 2"108 F3 <
A 1 N f1 128 176 E,
Ve W s2 108 176 250 | f’s_

The summation of eq.{110) will now be psrformed explicitly. Since
the value of g;\é given in eq.{110) is trve enly for § = i, the symmetyy
properties of the matrix will be used and the sumsation will be made in
two parts. The path of sumation ls shown by errows in eq.(111). First
the texms in the ith columm are summed down to, bul not including, the

dlagonal term. This sum is:
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The second sum is formed by starting at the ith columm and summing along

the ith row. This sum 1o
/"(.’-/Y‘v

——

> 1% (k- 1)

P
{The reader should remember that i, j, and k are dumy indoxes standing
for integers. Whother they speciiy a row or column in the matrix depends
on their position in the various temms). Since all the ¥; ars equal,

0q.(110) with the method of summation indicated iz given by:

_ | ke ’ de
(112) ¥ = l;E:VL >_)<“(3i~f—k) +2~11‘(3k—;\{)v

Lde = k= A
~ The firgt sunm is the sum of two finlte power series while the second is
the gum of an arithmetic progression. The result of the sumation is:
(113) 4, = f._:a 'ﬁk o (arSmlhr(2 Hizoee 'M‘)]
45EL

where the I subscript imdicates the lumped load aystem.

The deflectiaons of the equslly spaced points, x =ir, (i=1---n),
will now be obtained for the continuously loaded cantilever, eq.(107).

When the substitutions:
L= asilr z= 1% rwz ¥

are made in eq.(107) it becomes:

: | ’ g - e 2
(llh) /.(j’c;\ = 2‘—‘;{/:;—; ,I:L 17;(&2'-—(4 +g/y\,>)\_ + (3 F A2 e L AN ):—}

where the ¢ subseript indicates the distributed load or contimuous system.
Ths differencs in deflection of the point x =1 r under the continuous

and the lumped loads is given by the difference of eq.(llh) and eq.(113).
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This difference is the remariadly simple relatiom:

F/L?
(115) y, - ¥): =—3%a

2

(Nete that y.,; is elways greater than y . )
In terms of w, X and ( the orror becomes:

. Foorf© 5%° ;
{116) (y.- ¥ ) e {2 18 a discrete variable)

*7 45ET (mvi)”

The error ratio in dimensionless form is:

(117) <~—-———~%Md“) " |
/(6/(’. X Z(”‘"‘"> [:@'-4:? s Z_)l]

The two equations ebove show that the meximm error magnitude and the

maximum percent error eccur at é = 'ﬁ}'. v

ST
£

The deflection of the equivalent i’mite difference beam will now be
obtained. The differential equation for the beam with distributed load
c'an’ba_convertod to a finlte differencs equation by replecing differen-
tials with differences. When this is dome the finite difference equation
that is obtained 119:

4

' AN AX) AR = r
(118) v - by +téy — by +y,. .= -_____:(:__,,

W, S, R, ET k= (mr

The gensral soluticn to this inhomogenous difference equation i1s:
q

2 3 AT 4
{119) V= Aot AL+ AL+ A+ T

Tho boundary conditions on the beam are expressed by:

¥, = 0 T V= - T
y = y y ] = y/*.v-T y’/"\/
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These boundaery conditions are substituted into eg.{119) and after con-
giderable algebrailc work the arbitrary constante are evaluated and the
solution, eq.(120) is obtained.

(120) »é{-=-g§§; 244-(aMm®4?+AFOzm?+mnw—ﬂ+4(%mﬁﬁﬂ

where the f subscript indicates the finite difference boam.

The difference in deflection at the point 4 between the comtinuous

. and Pinite difference beams is given by eq.{lik) minue og.(120).. This is:

(121) (¥, — 7). = f‘/‘i “_S‘,Lz—gm/'\“‘*/‘k]
' ST Y

Since n> 1, eq.(121) states that T & T The error ratio in dimension-

less form for the finite difference beem is:

] 5 X)’"- L <E§m t4) >'(
(122) Aéfij.i) - . 2] T L - 0
e X 2(%3 (/ﬂh(i)L L _4% N }ZZ

4m+2

Eq.(121) shows that the meximum ervor occurs at i = = and eq.(122)
shows that the maximmm percent error occurs .at X - mlnimm = r.

-In teble II are givem wvalues ¢of the percent exror for the lumped
beem, eq.{117), and the finite difference beam oq.{122), for velues of
n from 1 to 6.
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Table II

VYalues of error ratle in percent for the lumped end finite difference

spproximations to a waiformly loaded cantilever beam.

o=l omzz =3
— i fé%:i“ul “3:;5% - A;[jd—j o di{j{»wo ‘:y_;g:g_ 4 l%’ﬁi..o‘p
X, 5.89 1.1 1.75 w2545 .86 -19.0
X, e.52 -11.6 1.01 - 9.09
X5 1.27 - 5.35
o, . Y
x, 478 | -14.8 312 | -12.1 218 | -10.3
X, 559 | - 7.83 o353 | - 6.00 2h8 | - 5.11
x, 65 | - 158 BoL | -z || .27l | - 3.3
X, WT62 | - 5,05 A56 | - 2.7k 502 | - 2.h2
x. 518 | - 1.97 || 337 | - 1.82
x, 375 | = L35 J
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L.2 Comparison of Formal Modos and Freguencies of a Continuous
Cantilever Deam with those of the Lumped lass Deam, the Finite
Uirference Dear, and an Anslogous Zlectrie Circult.

In this section the naturel freguemciss and normsl modes of a canti-
lovor boam carrying lumped masses will be obtained and comparsd with
those of a continuous cantilever. The matural frequenciss will also be
calculated for the finite dAifference beam and in addition the results of
an electric circult solution on the CIT Electric Analog Computer will
be given. The results arsc summarized in the orror informaticn givem in
tables IV and V.
b.2a The first four normal modes and frequencies for the continuous
beem will first be obtained. Congider the beam of Fig. 56a in which the
distributed load is ap inertia losding. The differential egquatiom in

this cese is;
EI& \7_ 4
(123) j}(ffl T ) T B MY

where /M=mass per unit length. The soluticn to thls equation for
clamped -free boundaries ig: (Timoshemko (22), page 3kk, or Royleigh (23),
page 276.)

cecal +ewdhal /|, ,
{124) 4 = A[/ooc ox - coafh ax + PP PPN C—(i(w ax -xwv\o\xj}

where:

TTr 2 )
2. bl ({the ¢ subscript indicates
(125) a - e \f ET the continuous mass beam)

and the firet four valuca of a are givem bLy:
af
a,l = kL.6okORL

1.87510h

b}

oyl = 7.23757
&, (= 10.9955%1
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The correspording values of the froguency p&r&ﬁ@ﬁB?’CA%ZQZ é}l: k.
ere given in table IV, columa 3.

The mode shepes of the lumped mass analogy are oxpressed by deflsc-
tioms of points along the beam. To make & comparison of mode shapes, the
deflections of the same points in the continuous mass beam must be cal-
culated. In both cases the deflection at any polnt X is made dimension-
less by dividing by the deflectiomn at point x ., The calculation is made
using the function of eq.(l24). This function and its doerivative have
boen calculated by Fung in Air Force Tecimical Report Xo. $761, pait II1,
(2h). Using theuo tables tho deflectiom ratios given in table ¥V, column
% are obtained.
h.2b The natural fraquencies and mole shapes of the continuous boam
having been obtained, the next step is a similar calculation for the
lumped mase beam. The lumped approximation to Fig. 50a is Fig. 56b

whore the concentrated forces are now inertia forces of magnitude;

2
(126) F, = oury, whers ML = lumped mass
£ = (a+i)r
These values of the forces substituted into the inverse spring equation

for the beam, eq.({1ll), give the frequency equation (128). In this

equation:
GET CEL (e +)_4
A 2= = —=p—*L  (the L subsecript indicates
{127) T patew? PR the lumped mass beem)
2-A 5 8§ 1

5  16-)\ @8 Lo
& 28 sh-A 81
{122) | 1 ko 81 128-)
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' Zxpansion of the determinant of eq.{125) for n = 1 to & gives the

following fregquency equations x

n-1 —~ N+ 2 =0
n=2 +N =18 N+ 7=0

et n:3 N4 12N =13\ + 26 = 0
nxh N 200N 41085 5 - 722 A+ 97 = 0

The root of these freguency eguations are glver below, and in table IV,

mal
columm 4, are given the values of the frequency parameter, wL,Q z\/Vg = \%4—;—71\)

R | A= 2
, n= 2 N = 17.602325 , 0.397675
(130)
n=3 A= T70.1375 , 1.6357 , 0.2067
n=k N= 19h.sub7h , h.68662 , 0.58757 , 0.18106

The normal mode shapes for the lumped mass boasm are calculated from
the equations of motion. {The elements of the determinant of eg.{128)
are the coofficients of these equaticms.) Thus, for n = 2 the equations
of motien give tho displacement ratio by:

Ny, = 2y, % 5y,

'FOV'
(131a) eoa J1. M2 (noz2)
ANy, = 53+, 4 - 8

]

The digplacement ratios for other values of n are obtained lv the same
way. The rosults are:

&O\’
(131p) M n7>\;—q; (n 2 3

“ INTD

dp . 4(7A-4)
A 5')\*"46




Mo _(40x-25)( Az x+3st) +(2)(32-5 N)

4 (2)@BA-34A) 1 @A+ N AT 132N +35)
, , : for™
A3 (40n-25) (s A =3449) = (23- SN 1) +24) ( - )
{131e) A0 N ez iz s N +z4)+(12) (28 h ~344) ek

a - AOATIOSY RS A= 16) + FA+ 1) (1) + 54
i QA+ 12)(+ A=(s2 X +381) -(4oh +iF2X12)

The values of these ratios for the values ¢f /\, :md./\Z glven in eqs.(130)
are tabulated in teble V, column 4.
&.2¢ The next system considered isg the finite difference beam. The
finite difference equation for a vibrating beam can be solved without
dif’ficulty but for clamped-free boundary conditions the frequency equa-
tion which i obteined is a vory complicated transcendental equation
.whose roots are very difficult to determine. Ingtead of uging this
gemral solution for the finite difference cantilover teoam, the same
mothod which was used for the lumped mass boam ill bo uosed.

The deflection at a point = ir on the finlte difference beam due

to 8 load at a point X = % 1s given by

¥ J; .
(132) ¥, = ; g%y 1= {1--a)
- \ d =
‘The value o{’ e. ) can conveniently be determinsd from the eircuit analogy
for the finite difforence beam. Ito value la:

\ e %(35i~/a“+i)j for 24

€= 2Ff1
€ij= €4

The inverse spring equation, {132), when wriitten in matrix form with

numerical values of g ; é obtained from eq {133} 183



5] 1 2 3 4] [n7

. 2 6 10 1 F

(134) LA :
¥ T O2FEIlZ 10 19 28 ¥,

) b 7

%) bW 28 Bk | |7

The frequency equation for the system is cbtained from eq.(134) whem thse

F; are inertia forces givem by eq.(126). The frequency equation is:

l"k; 2 5 ié'

‘ 2 6")\4 10 1 _ O
(135) -
3 10 19-h. 28
L1k 28 hh-)
where B ,
Son 2 gl . (the £ subscript indicates
(136) YT the finite difference boam)

Zxpansion of the determinant of eq.(135) for n = 1 to 4 glves the follow-

ing fregquency equatlons.

n=1 ~Xi+L = O
n-=2 +>\§—7/\{+2:0
(137) . &
n -3 W 4N — 2N 4 b =0
3 a
n= b AT 70 AL AL Ne - TR +8 = 0

The roots of these equations are given below, end the values of the

P 2—'71—' \E"mf—)l T 7
equency paramoeter W Q\/ﬁ_ = g ere given in table IV, col. 5.

Vhe
n=1l I )
n=2 N = 6.70186 , 0.208kk
{138)
n=3 A= 2h.96ho6 , 0.84555 , 0.180k9

=4 A= 674368, 2.0406 , 0.36261 , 0.16033
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The mode ghape lor tho Finite difforoncs bean nay be calculated in
sxactly the same mamner as that for tho lumpoel msss beam, although 1t
will ot be dome here.

L.28 To make a limlted investigation of ervors due to computer
elements, the lusped-mass boeam analog was tested on the CIT Electric
Anslog Computer. The results when compared with the lumped-mess beam
caleulated values glive the orror due to circuilit imzerfections.

The elsctric circuit calculstions were mnds on the clreult of Fig.
58, Thiz ig the same cireuit as that of Tig. 42 but with the rotary
inertia ueglected. In the physicel civcuit used, the loakage 1§ductance
of the translormers wes included in the valuss of the clrcuit inductences
and the magnetiszsing inductanco was made uneglipibly gmall by opemtix;g

at high enough froguencies.

L L L L B,
||} QC_Q,QQ ; RO OO Soafta s ] SO0 '
1
x |
J ;:J‘L-:‘ C = ¢ —T‘ =G ) g = Ci.
LTk co Lk - el lal |
e = ) o T e 3
‘ll'—cﬂ@@.-— rn' L:___.___..:m.f’.:»_n,___ra' l N T Y- el T i ' I = > ao_J-m b 1

T L8]
Ly 1{:’,. 5§i o

The relationship betwsen the circuit element valuss, the circuit frequen-
cles, and the correaponding beam frequemciss in obtaimed in the following
mANNer .

The lumped beem fregquency is given by eqs.{127) which are:

o PR o el
v R (Vo lmd) ok
(121 o =55 5 0N SE T L

ot
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From Tie. L2 the valueo of the circult elements In Mig. 52 are found to be:

n Vaca g~y ks

L= AETa? L N

These values substituted into eq.{1l27) give:

(130) N e £ = ,,(-.Yrg- L {the ¢ subgeript indicates
an € QmVAN VL the electric circuit)

Whera T =2 EL & 2 27w, 16 the cauputer frequency.

Uhen the value of \[)\ from the second of ege.(127) is substituted into

{139), the desirsd relation ‘s obtained.

M

{140) 2% gf-\/'“; - £ LT (/y'\'\ -i\)a(4 )

In the circult the exciting voliange was adjusted co that in each case

¥y, wes equal to 1. The values of the circult elements used and the eir-
cuit frequencies obtained are glven in teble III. The corresponding
values of tho frequency parameter, «wW e /’szg , are givem in table IV,
colwmn 6. The mode shape data from t}'fc;;iz}; given in table V, columm S.
A comparison of the dats oblained from the electric circuit with the
calculated valuos for the lumped-mass beam yields the errors due to

circuit imperfeotions alone. These dats for natural frequencies are

given in table IV, column 9.



Circuit Values for Fig. 58
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Table

b9 d

o) T e | med | ot
< - N r 141
. N A el | b7
2 e 1 ! —
. N .| 1 3
3 . L N 155.5
3 ; L 3 409.5
A " 1 .1 1%0.5
. . 3 3 | 30k
b 3 . ' i
b b ! ! *°




Table IV

Frequency Parameters and Frequency Zxrors
for Free Vibratioms of a Cantilever Beam

8

2] 3 4 s | o« | 7 q
freguency paramelers Fercent error

1| 3.516015 35.8977 | 3.18197 | 3.26 || -10.66 |+9.50 | -2
1] 3.516015 3.6490 | 3.41438 ‘_3'.3;6 - 3.783 |+2.89 |+ 2
2 | 22.034490 24,277 |16.1797 |16.2 | - 1.018 +26.57 | - .3
1| 3.516015 3.5829 | 3.4673 | 3.47 | - 1.902 |+ 1.385 | O

2 || 22.03kh90| 23,463 |18.8399 |19.2 | - €.43% |+1k.50 | -2

3 || 61.697208]63.025 |329.7980 | 39.8 || - 2.152 |+35.49 0
10 3.%16015 3.55684 3,4873 | 3.50 | - L.143 |+ 816 - .7
2 || 22.03kh90! 22,9124 | 20,047k 20.3 | - 3.985 |+9.018 | 1
3 | 61.697208|64.708 |47.5575 |47.9 | - %.88 22,01 | - b
4 | 120.90192|116.571 |TL.5201 | TL.5 || + 3.582 [+40.Ch 0




Mode Shape Data for Vibrating Cantilever Beam

i1l3

Table

v

ma| (e | (B | (B |5F%
1 +3.1558 |+3.1205 |+3.07 “_45__%
2 - .1025 |- .3205 |~ .33 ‘f:%
1 [+3.4208 |+3.3987 [+3.36 [y
2 |+1.2915 [+1.1879 |+1.19 _{& j
5 |- 4670 |- 1008 - 1 |
1 +3.5077 [+ 3.5457 ¥ 3.50
2 |re.o [+1.om9h |+1.98 | 57 %
3 |+ 4303 4+ .2ho fj%:%
b |- 7790 - .96
. positions

Bl 6By
1 [+6.Mh2T |+6.3928 [+6.30 | 4
g |- .6530 |- .7880 |- .82 /j:_“ ;
3 |- .0927 |+ .2181 |+ .232| & 7
1 |+6.0895 |+6.9919 |+6.92 o
2 |[+1.1977 [tl.o768 |+1a2 | L3
5 |- -9660 = Tk %‘-g
b |+ o511 + .60

(4 (ﬁf:> (:ij e

Gile cm Ailel 4,
1 k10,7630 #10.807% {10.70
2 |- 1,335 |-1.4383 |-1.k2 A‘ff%
3 |+ .2204 + 3 |Uxoz
h |+ 2061 -1.62
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bo3 Comparicon of Normal Modes and Frequencies of a DMstriduted
}aps Pinned-pinned Beam with those of the ILumped Mass and
M™Mnite Differencse Hquivalents.

In this sectiom the normal modes and fregquencies of a distributed
mags; unlform, pinned-pinned beem will be given. The frequencies and
mode shapee for the equivalent lumped mase beam with n = 3 will then be
found. The general solution of the finite &ifference equation for
piméd—pimod ends will be given. Finally the frequencies and mode
shapes for the three cases will be compared.

The solution of the beam equaticm, eq.{123), with distributed mass

loading for pinned-pimmed boundaries 1s: {Timoshenko (22), page 330)

(lh'l) /‘? = A /G/.vvx A”‘g‘-')‘ .AL:V«\ e X-
where:
(v C o JE o i

-n 2.
The natural frequencies and mode shapes for a lumped mass bLeam may
be determined by the same methode as were used for the cantilever beam.

For the pinmed-pinned beam with n = 3 the frequency equation is:

18N\ @22 14
(1k3) 2 3.\ 22 | =0
1k 22 18-\

where:

— 4
_ 24ET _  24ET (~+1)
(1hk) N= FAT wr | aAT

2q.(143) reduces to:
(145) 4-N(A =64 X +56) =0

The roots of this equatien are:

(16) N= 32 ty968', & ; or A= 630127 , & , 0.8873
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The corresponding velues of the frequency parameter ave:

< e |

L { gk
(W7) e “-\ET T 0.999%695 , 3.97096 , 8.430919
The mode shapes of the beam are obtained from the egquations of

motion. They are specified by:
\ 8'3

4 7N+ 1%
Y tEN~44

(1k8)

L2
[
(+

The value, \ = 4 , eubstituted inte this last equation gives a singulerity
which indicetes the second mode, in which by symmetry, the point, f;ir 3
does not move. When the quadratic roote are substituted into the second
of equ.(14l) and the expreseion ie simplified, the following value is
obtained.

(12"9) J‘jz‘ /j-ﬁ--l— R
e

2
A comparisom of these values with the corresponding values from eq.(lhl)
shows that theres 1s no mode shape error for the lumped mass beam for n =3.
The finlte difference equation for inertia loading is:
’ % 4
w n )
(150) R L R E TR e
The gemeral solution for this homogeneous equationm is obtained by assum-
ing that 4, = ¢ . This velue is substituted into eq.(150) and the solu-
tion found to be: |

(131) Moo= AWOJ*AKMG\J\-fA;m&a,{ -qux«vwé\a,'(

Where: | ~ r:‘;{;;j‘if’ B e
EL - o\ =2 g
(152) SE g hT T EL z
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The boundery condltions ares

: .= -7 ym:"y/h+.,_
(153)
Yy, = © ¥ . =0©

When these boundary conditions are substituted into eq.(}’jl) the solution
below ie obtained: |

] - y \ 225 Loarn *
£ . v & A - SRR o P A
/‘j/\ =4 A k&/\,y\ a,t\ PLEVEN w{ ,T - A AAA Q {
{15h) o
o a ,: : .i:.,TI = .'_‘_.,LL.:'." S ( [ - /Y\)
rt i ./Q

When this value of a is substituted into eq.(152), the Prequency para-
meter for the £inite difference beam is found to be;

<
. /QL /:E; '1 - Fand.AN o R L .
(1‘55) "‘T"r‘:‘ uo{'\/EI T b (/r\‘?’
. The nuvmerical values of this parameter for n = 3 are:
,Q‘ r-v;w ;
(156) Y%\ ET = o099, 1.8006 ,  2.3526

A eaaperim of egs.(15h) and eq.(14%1l) shows that t.hare is no modo chape
oa'mr for the finite differsence pimned-pinned beem for any value of n.
‘I’he frequencies for the three boams may be compared by giving the

frequency errors. These are given in teble VI.

Tadle VI
mod& wchw"'loo Qc’w{‘-bloo
e e
1 031 % 5.04 %

e | 726 % 18.94 %
3 | 6.32 % 38.%5 %
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13,
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