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Abstract

The eqguations considered in this pager are lianear
differeatial equations in one and two indegendent variables.
The problem at hand is To study solutions of voundary value
problems for these eguations in their dependence on & small
rarameter € , Srecifically, the equatioas are of the form
(&) € N + Néd = 0
where M, N are linear differential exyressions, and €> O
is a small rarameter; the order n of N is greater
than the order m of M.

It is found, in certain cases, that the solution of =
boundary value problem for (&) , say & (P,€ ) tends non
uniformly to a function u(P) satisfying the "reduced
equation® M $ = 0 , and even assumes the original bounaary
values on certain portions of the boundary of the region in
question. “

When the regions of non uniform convergence are located,
an asymprtotic exransion in terms of specific functions of e ,
for e small, is obtalned. |

Section two deals with a class of ordinary aifferential
equations, while sections’three and four deal with prartial
differential equations. In rarticular, it arrears from tae
results of section four, that methods used in This rparer snould
carry over to the non-linear Navier-Stokes eguations of
which the Oseen equations of the last section are a linesrized

arrroximation. This is being investigated at present.
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SECTION

=
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Certain of the boundary value problems for differential
equations occurring in mathematical physics are customerily
¥simplified® by neglecting some of the higher order deriva-
tives aprearing in the equations. (One of the foremost ék—
amples is Prandtl's "boundary layer® theoryo) In those cases
in which any justification of this procedure is attempted,
physical arguments are frequently used. One of the mein
difficulties involved in surplying any rigorous proofs of
convergence, or uniformity of approximation of the solutions
of these simplified problems to those of the full prroblem,
lies in the present lack\of a representatioh of these
solutions, even granting their existence. We shall endeavor
to throw a little more light on certain of these rroblems by
using firstly a heuristic argument, and then proving the
validity of the‘results of these arguments in certain cases,

Thus we consider a special class of boundary value
problems for equations of the form
1.1) € NG +Md =0,
with suitable boundary conditions, where N , Md , are linear
differential expressions involving one or more inderendent
variables. N is in general taken to be of a higher order
than M., We shall 1limit ourselves to the case of constant
coefficients, althpugh this restriction is for coavenience
only, the method being general., In this way we try to minimize

the difficulties involved in dealing with the actual equation



1.1) and attempt to isolate those prorerties of the
solution to 1.1l), namely q)(P, € ), which cause difficulty
as €» 0, Several of these difficulties are apgarent
immediately.

a.) M is of lower order than N, and hence the solu-
tion of the equation l¢= O cannot, in general, satisfy as
many boundary conditions as can that of the full eguation.
Thus we expect to obtain a region of non-uniform convergence
of dD(P, € ) toa limit as €= 0,P— the boundary, pro-
vided such a limit exists. Such regions have been called
¥boundary layers® and we adoprt This terminology.

b.)} Let us call the equation MCb = 0, the reduced
equation. In the case of particl differential eqguations it
may happen that the reduced equation has no rroperly posed
boundary value problem for the region given for the full
equation, In other words, "what is the prorer boundary value
problem to pose for Mcﬁ = 0 in order to expect convergence
of %;&?,e ) to the solution of this problem?®

We could add considerably to this list, but can only
give an answer to such questions in certeain simple cases.
As a first step, we consider the boundary layer terms. By
using existence theorems, or physical arguments, we must first
decide which boundary conditions we must drop to pose a prorer
problem for the reducedequation. This is fairly simple for
equations of lower orders. Then following Prandtl's ideas,
we "blow up" the region R in which the solution to Ladd

. A
is desired, by making a change of variable such as x =€ €,



let €= 0, and by suitably choosing N , we obtain a new
equation, in general simpler than the original. Again for
low order equations, this "simple® equation suggests the
form of the non-uniformly converging terms in the soliution
of 1.1). In the cases considered, this procedure gives
rise to an asymptopié expansion for ¢>(P,é—), for suffic-
iently small €

With no cleim to originality, we call problems of tThe
afore mentioned type "singular perturbation prroblems™ for
differential equations. It is to be noted, however, that
the singular nature of the problem deprends not only on the
~loss of certain highest derivatives, but on the given region
in which the solution is to be obtained. Thus, for examrple,
the solution of the first boundary value problem for

d)xx +€43yy - 2ad>y = 0 in the upper half plane tends
uniformly, as €—=> O, to the solution of the first boundary
value problem for dhxx - 2ad 7 = 0 with the same boundary
values and region.

Another term which has apreared in the literature re-
iating to singular perturbation rroblems 1s "sub-character-
istics"™, or the characteristics of the reduced equation.

As will be shown, these sub-characteristics prlay & major role
in obtaining an asymptotic development of the solutions of
our singular equations.

In conclusion, we refer to (2] , (2] , (3] , for

other results in singular perturbation problems,



In Section Two, we shall consider a problem in ordinary
differential equétions, but, for simplicity, shall restrict
ourselves to illustrating the method by means of an examrle.
The object of this section will be to develor & technicgue

~

which can be generalized to linear partial differentizl
equations of the same form. The results obtained, for the
most part, have already been obtained by Wasow [l] by
other methods.
Section Three deals with the first boundary value
problem for the equation
142) d;xx*ecpyy—:aacpy:o |
€ , and a > O, and are constant. This changes form from
elliptic to parabolic as~€+0. The methods used in Section
Two enable us to obtain én asymptotic expansion for the
solution of 1.2), exhibiting the boundary layer terms.
Finally, in Section Four, we consider a system of
partial differential eguations, and find that in this
case also, the heuristic apprroach gives the essential terms

of the solution with no difficulty.



Section 2. The eguation € V(n) + X V(n—l) T eee t dAn v =

We consider now the equation

in the interval (0,1) with boundary conditions of the form

2.2) v M) (o) = Ly 12 1y weey Ts B2RaP N 5P La
y.(?:l-) (l):mi l:r+l’ S n, n>Ci>...
y‘m stands for 4% .
€

€> 0 is a small constant, for simplicity we assume the .
«¢ to be constant, & 1 + O, Assume also that the solution
to  «, y<n'l) ¥ ane ¥ o, y=0 y@ba (©) =4,
i=2, ;..,r ygfzgy éi) =m; 1=r+1l,...n
is unigque.

The reduced equation, 0(1y(n“l) + oo +%y = 0 will
be referred to as My = O in the sequel.

This, and similar problems have been solved by Wasow (1]
under fairly general conditions, and he gives sufficient con-
ditions for the existence of a limit as €> 0, and at tThe same
time derives a representation formula which exhibits the form
of the boundary layer terms. Unfortunately, his formulae
are not quite suitable for cazlculation purposes, and do not
suggest any method for obtaining a complete asymrtotic ex-
pansion of the solution to such equations as £.1).

As a preliminary to the equation discussed in Sec. 3,
we investigate the solution to £.1) by a heuristic argument,
and then establish the validity of the results of this

argument, In this way, we arrive at the complete asymrtotic



exransion, &and also obtain a method which lends itself to a

natural generalization to partisl differential eqguations.

In the following, the heuristic results will be proven

by an example, and the general results stated.

2.,3) €y
2.4) y(0) =

1) =X
proy =g T

+ay’ +by +cy=

0 in (0,1)

We may as well assume a> O since x1 = 1 - X changes the

sign of the second term of 2.,3).

In lemma £.1) we shall

<

prove that the solution to £.1) satisfying £.2) tends to

a finite limit as ¢—» O.provided r =2 1 ifd 4 > 0, or

r<n-113if«1 < 0, A4ssume that the solution of 2.3), 2.4),

tends to a bounded solution as €—> 0, Then if y(x, ¢ ) is

the desired solution, we would like to know where to

expect the region of non-uniform convergence, since the

reduced equation can only satisfy two arbitrary boundery

x
conditions. Let us put x = € t in 2.3). We get

N

2,8) € y +ae ¥ +be? vy +ccy=0

where the dot stands for differentiation with resrect to t,

and N> O.

If now we let €—> O, we must distinguish several cases,

a) 0 <M < 1 in which case 2.5) tends formally

2.51) toay = 0

b). A> 1, and we get y

¢y A=1, giving y +a ¥y =

This gives us a certain amount of

0
0]

information about y(x, € );



putting x =€™ t we exrect

at) lim y( ékt, € )

€>0

1l

L1 + Bt 1if 0 ¢ X< 1

2.511) \
bty lim y(e"t, € )
€20

Az + Bat + Cet?® if N> 1

ct) %i% v(et, € ) = As + Bat + £ g
Alternsately, let us consider the-indicial eguation relative
to 2.3). This is
2.8) ez +azf+bz+c=0
Whence” we infer that fér € sufficiently small, there are
no multiprle roots , and that one of the roots, say zs, tends
toew as €—>0 in such a way that € zz— -a as €~ 0, while
z1, 2z tend to finite 1imits.

Comparing this with c!') zbove we find that substit-
uting x =€ t in £.%), and letting €- 0 gives us the
exponentiel term which must be associated with the non-
uniform convergence, In fact this substitution is directly
related to the Pulseaux polygon coanstruction for determining
a system of linearly independent solutions of such an equetion
as 2.3). (5]

Again, from c!'), if the limit on the left exists, then

N

we.expect Bz = 0, and y(x, € ) = Az(x, € ) + Ca(x, € )
e 2

for € small,

i

where Lim As( € t,e )

Az
lim Cs( ¢ t, ¢ ) = Cs.
€20
If we further assume As(x, € ), Cs(x,e ) to have a series

develorment in powers of € , then we are led to consider

* See Apperdix 1.



an expression such as

o7} v (x,€)

<
Moreover, if 2.7) is correct,

-

= Uy (X} +cu1(x) + ve. t 6 € {no(X) +€ hy (%) +“@
(and we do not make any prrecise
statements about the eguality), we see that the non-uniformity
occurs near x = O, This, in fact, is the case. If, on the
other hand a<0, we would find the boundary layer near x = 1,

Since we are not certain that our series £.7) is
convergent, let us take a finite series, and add a correction
term

2-8) Y(X:E)

— .‘

= Uo(x) *eua(x) + oon +€Muy(x) ¥ e {ho(x)
Temﬂx)+ ".+2h(xn + v(x,e).

Substitute this into 2.3) and collect terms.
—ax

Formally

equating each coefficient ofe” e © , and ofe”, to zero,
we get
2) Lh, = ahe! - bh, = 0
“ b
b) Lh]_ 2 ho -~ ’é‘ hé == —:.- ho
¢) The =2hi -2n1 -%nm -k
- _ b / -9 _ il
2.9) | dy Lh, =2 hq_l W L
eb
e) Mu, = aus” + buo + cu, =0
£} Muk=—ul£;l k=1, 2 vee , P
) ev” + Miv = Py qe-ﬂzx (bh' + ch
8 i vy e q 7 g T
dahq thy g tehy )

The boundary conditions become
a) y(0) =%= u,(0) +€u1(0) + ... +€F u,(0) + ho(0)
A +éhl<0) + eee +€:qhq(0) +V<O,é)



2.10) b) y1(0) =f =us(0) +€uy (0) + ... +¢ ¥ up’(O)
| +ho' (0) +ehy (0) + vus +&F hGI (0)
+v (0, € ) - alho(0) +em (o)
+ ... ¥ eqhq(o))
) vA) =¥ =u() + €ur(l) + oo+ €Fu (1)
e ¥ (h,(1) +ehi(1) + ... +e % (1)
+v(l, € )
Now in order that Z£.8) be an asymptotic exypansion, we reguire
lv(x, ¢ )} =0 (€ pfl) and g > ¢ + 1. Then for a bounded
solution as ¢~ 0, from 2,10b) we infer h,(0) = 0. But
then £.9a) gives ho(x) = O. 1In the general case of ecuation

2.1), by the same procedure, we find that for p, g

-

we must have hy = hy = ... = hy., (x) = 0.

Next the terms in 2.10) which are inderendent of € give

2,11) U, (0) = o
"u, ' (0) - am(0) =8
B (1) = ¥

Using 2.9) we see that 2.11) determine uo(x) and hi(x)
uniquely.(;) Namely
2.18) Mu, = O

W (0) =« , uo (1) =¥
which is the reduced equation, and we héve had to drop the
highest order derivative at x = 0 in order to get the
boundary condition for 2.1%£). If a « 0, the oprosite end
roint relays the same role. This is general; for eguation

2.1), we obtain the boundary conditions for the reduced

(1) We assume the solution to 2.182) to be unigue.
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egquation by drorring yo\‘)(O) = 1, from the set £.%2) .
(nence the condition r =z 1 for di > 0)
£.13) Lhi= O
2h1 (0) = ul(0) =P
The coefficients of € in £.10) yield

k(o) + hk(o) =0
2.14) u/(0) + 1/ (0) = k+l (0)

k = l, By wwe P

uk,(l) = 0
since we require ui(x), hi(x) to be independent of €
Furthermore, to have a solvable system of equations Z2.9),
we must take q = p+l . Then from £.14) and £.9) using
£.12) and £.13) Wé see that wu,, hy are determined; this
determines w3, which in turn .gives hz and so on.

Py Az = Uz > Nz ,ne ~ u, —> hp+l =q .

The correction term satisfies
-ax

ver - o p+l “”t
2.15) € v + Nv € iupi— é(thl+Chp+l
- 2&hp+l - hp * hr+l )}
2.16)  v(0,¢) = -eF n ()
v'(0,6) = =P nl(0)

v(1,€) = e P { expCr)e TP ((n, (1) +e ma(@)
taeet e P o))

ptl vi(x, e ) and we shall

Thus we have v(x,e ) = €
show, in general, that (Vl(x,é J| ¢ My inderendent of € ,
where M, is a constant. Thus y(X,¢ )— u.(x) uniformly

in 0<J=<x =1, and we may take $ =0 if A1 + 0.
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This gives us the desired asymptotic exransion since
r is arbitrary, although, derending on the orders of the
derivatives giVen in the boundary conditions, there is an
integer r,, O<p,<« n, so that the expansion £.8) remeins
finite only for p 2 po.

Summarizing, we take the indicial equation relative to
£2.5'c) which is z°® + az® = 0; the non trivial root is
z = =-a, 1f a > 0, the boundary layer term is at x = O,
a < 0, the boundary layer term is at x = 1.

Taking a >0, for example, we then let
217 (6 ) = uo(x) +eur(x) + oo+ Pu ()

+ €M B (no(x) +eni(x) + ... +€php(x)
$ i PP vix,e )

where Al is the highest order Qerivative aprearing in the
boundary conditions at x = 0. (We have relesbelled the
h,'s for convenience), Then we must show [v(x,¢ )| ¢ Hi,
independent of ¢ , and take p 2 n to ensure the validity of
2.175 (n = 3 in our example, and we need only ¢ > 1). The
same statements hold for equation 2.1).

For the equation

Eyaﬂ +N1y0w +oees t ¥ =0 in (0,1)

2.18) sMD) o) =1 |

pi

(8 @ = my

6 e o e . i m
the indicial equation becomes z5 +d 1 z0 = 0 and the

exponents carrying the boundary layer terms are the n - n



values of (- 1)™™ . For those with negative real part,
there is a boundary layer term at the origin, and for those
with real part prositive the boundary layer terms are at
x = 1., For convergence as €-> 0, we must have at least

as many boundary conditions at each end point as there are
values of (- 1)#% with positive, (negative) real rparts.
Then we use equation £.17) with extra terms added, one set
for each boundary layer term, and powers of’e#ﬁ instead

of € ./ A special case arises whnenn - m = 2k. It is

then possible to have two values of (- 1)#% which are
pure imaginary, An investigation of sufficient conditions
for the existence of a limit as €~ 0O yields the same
results as given by Wasow and hence we refer to [1] .<l)

Note that no where in the above have we reguired the

X 5 to be constant. In fact we need only the condition

od 4 (x) # 0 in (0,1), and &, (x) ¢ ¢ (x) in (0,1) to
obtain the complete asymptotic expansion for £.1). In those:
cases in which & 3(x) has a zero in (0,1), we have & so-
called turning point, and very little work seems to have
been done in general for this tyre of eguation. TWasow [4J
and others have treated srecial cases in which the coeffic-
ients are analytic functions. At rresent, we leave this

rroblem aside, although in srecial cases the above method

(1) It is not our purpose to rerroduce Wasow's results
but merely to give the method, illustrating by examrles.
For completeness, we give the independent proof of the bounded-
ness of the correction term is £2.8).



]
(@)

yields the correct exransions.

Finally, we turn to our Lemma, and prove the existence
of a bounded solution to 2.1) as €- 0O, which, in con- |
junction with £.8) - %.18) estsblishes the existence of a
limit.

< [

Theorem Z£.%

Let y(x, € ) denote the solution to

evy® 1oy ¥y 4 ey y=txe )

£.19) y<%‘)(0) =1, (e) 121y sae T TS couss
v € (1) = m; (e¢) 1= Pl ean & BYTP sswey
Where a) My =<K1y(n'l) + ses + o af & 0
N )
yMy (o) = 1,(¢) L= ,2 ...t
y(tt) (1) = mi(é ) i = P+ly ses D

= vy(x.,e) unigue
b) f (x,€¢) & c(0) (x) in (0,1), and bounded
inderendent of € ,
c) !li(e )\ N [mi(é )l are bounded inderendent
of ¢
d) r 211, oz > O
Then |y(x, ¢ )| is bounded, inderendent of ¢ , for all €
sufficiently small, and the solution to 2,18) with £ = 1, =
my = 0 is zero uniguely.
Proof:
Let us form a system of eguations from £.19)
y= ¥§1,y'= 32, 0u ¥ (n-1) 3

_ n
Then £.19) becomes

2.20) & = (£4B)Y  +7(x, ¢ )
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where § , T are column vectors, and t<l < m,, a constant,
inderendent of € , In fact, the following results are vealid
for an arbitrary metrix A whose charecteristic roots have
negative real psrts, or zero real rart with no elementary
divisors.

Now define P-= %im eAt. We can interrret A, P

«

geometrically in the following way.

Let Ji be the vector srace sranned by ( Pay sew g-n)
and consider A as a transformation of L into L .
(vl v =anj
{94 % =0 |

Then if AL

i

N

ut

we have: P is the projection of L onto N ﬁhrough AL, and
it is a simple matter to verify that N and AL are complementary.

By direct calculation we find

2.21) P =1 +°—fﬁ‘

and the reduced equation is

2.22) S+ =By where 7€ L.

Then we shall prove

(A+B)x _ _PBx
-} = e

£.23) lim e P for 0 < x=< 1.

€50
The characteristic roots of % + B are given by

]AI_(%+B)[ =0
or
e/\n+o(1,\n'l+...fa(n=o

211 the roots of this equation are distinet , unleSS<xn = 0,

in which case é + B has no elementary divisors., Hence é + B

is equivalent to a diagonal matrix’
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0 h xrl} wheme g = Ky (€1
- c o _ 4
For definiteness, let \ = - ——=+T (€ )
Ai=°—i(é) i::l, ooon"l

Then U‘i( €) tend to finite limits as €¢-> 0.
Thus e (é f B)x is equivalent to

Ax

e 0

= 2 A p¥ ok _—
0 e which tends to a finite

limit as €~ O;¥and so the solution to the initial value
rroblem
o = (zAfB)E ,  3(0) = ¥ , is given by
% o, where |

5ot < 1 e TRIE [y 1 ¢ Mo 1f U is
bounded.

On the other hand, let us solve this same initial value
rroblem by obtaining its asymptotic exransion ur to terms of
order € ®, Then the correction term v(x, € ) satisfies
2.24) € v®) 4y = ¢ 0L k(ui“’ , b, e, )

v(\l)(o) =g D¥l m,
Where k is a linear function of its arguments whicn is
bounded in X and € , and m are bounded as ¢- 0. Form-

ing a system from £.24) we get

o,

—il = (é + B)e + € J(x,e )

[eh

o (0) =€¢, where (T ( < Mz

(g = Mg

o+
Arpendix Two
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The solution is given by

A+ B _~ A+ o T .
gi{x} =& e%g )Xv-o + 5o € (g B) (x u)J(u, € )du
and hence

I o (x)I s € M since || e(% ¥ B)Xl]is beunted

independent of € and x for bounded x 2 O.

Thus from the fact that the initial values are P3 ,,

we have established
lim e Qé f b)xr;o = ¢fBX - for x > O.

€0
Since this is true for every bounded § ,, We have

2.25) 1im e (% + B)x _ e PBX
&0 '
Returning to 2,19), we note that

ya(x, € ) =~5Xe (4 +B) (x-u

T (u, € ) du solves the
inhomogeneous equation with zero initial conditions.
Then let y(x, € ) = ya(x, € ) + ya(x, € )
and we have € yg(n) + Myz = O

y=(*) (0) = 1, (e)

y2{%) 1) =m.(e), fm(e) bounded.
4lso | y1(x, ¢ JI is bounded in (0,1) for all € , and we
show (yz2(x, ¢ )| Dbounded as e- O,

The problem for yz(x, € ) cah be stated as follows:

%j?- = (% + B)Y  where at x = 0, ¥lies in a lineer

manifold S, of dimension 4 oy and at x = 1 lies in Sz of

dimension A 1, so that 4 ot A1 =n,

( ePB

By hypothesis, PS,) N Si1 consists of one point,

and hence, using 2.25), for all 0 ¢ ¢ < € , we have
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(4 + B)
(e € So) N Si1 consists of one point i.e., it tends
to a unigue limit as¢—> 0 . Thus for ¢ <c, , W ¥(x,e )
< M, for x>0 , and since r 2> 1 there is at leust
one component Ek s K2 O, which 1s given at x = 0 .
Then E.k is bounded uniformly ian (0,1) and hence so is
El = y(x,¢) . Thus y(x,e ) tends uniformly to a

3 £

limit in (0< 8sx = 1) , and we may let S = 0 if

Ne F 0.



cec, & The First Boundary Value Problem for the

Equation ¢ ., +c_c(>yy - 2ad ;= O

In the following section, R will denote a finitely
connected (l), bounded bjen region in the x, y rlane, whose
boundary S has a parametric rerresentation of class CQ%M.
The term "characteristics" will be reserved for the cheracter-
istics of the reduced equation<$ _—_ 2a4>y = O, namely,
the lines y = constant. S is that rortion of S which has
a characteristic tangent, s* is the Subset of S from which
we enter R as y decreases, We assume, further, that any
straight line passing through R cuts S in a finite number
of points only, or coincides with a portion of S with a
finite number of extra, isolated crossings. Thus §i will
denote‘that rortion of S Which coincides with the character-
istic y = Vi while S« will denote a segment of S between
two successive arcs (points) S.

We wish to study the solution to the equation
3.1y ¢ - €¢’yy - 2a ¢ 5 = 0 in R
3.2} $(p) =db, on s

where ¢ o, (4 ), 4 = arc length on S, is of class
A 4(A ) on each of the arcs of 8, §i. ¢ , and "am" are
rositive constants,

We shall prove

Theorem 3,13

The solution to 3.1) with boundary conditions 3.2)
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has an asymptotic expansion of the form
3.3) P (P,e) = u(P) +§.——“?’"P_“l'§'(%i'@i h; (P) we v (P, € ),
8> 0 arbitrary, for € sufficiently small, where |e®v (P, ¢ )\

is bounded uniformly in R + S independent of ¢ for every
d>0, and u(P) satisfies the reduced equetion in R and
tends tod , on S - S* . The terms expiﬁ%ﬁ vy - y)hi(P)
are the boundary layer terms, which tend to zero in K as

€- 0, but remain finite on certain arcs of S.

Before giving the proof of this theorem, let us arrly
our heuristic argument, and show how the boundary layer
terms are obtained, As a first step, we consider the
reduced equation
3.4) ¢H-2a¢yinnR
3.5) P (P) =¢p,ons -8,

Let us denote this solution by u(P). This is a well
determined function in R, but is determined on S¥*, and
hence it is near S™ that we expect to locate the boundary
layer terms. Consider a neighborhood of one of the arcs
of S, say S« given by y = v, .

Let y, - ¥y =¢€7, substitute in 3.1) and we get
3.6) C.qsxxfcpnnf:ZaCé,?:O
Defining

]éi_r)no ¢ (x,69 , € ) = o*(x, 7 ), we have
%y + 2a d>;‘) = 0, or
®*(x, M ) = A(x) + B(x) exp(-2a7)

Hence we expect, for small &« ,



3.7) (P, e ) = Alx,y, € ) + B(x,y, € ) exp(-&ﬁ?) near
S« where %Eﬁ ggxzéﬁz =Zan .

In fact, to obtain the first terms in an asymptotic
exransion for small € , we are led to try an expression of
the form
3.8) b(p,e ) =ul®) +eoBE nE) + oz, ).

It aprrears that this procedure should give the boundery
layer terms, and hence the asymprtotic exransion for the
solutions of linear differential equations of the form

€ Neb+ MO = 0, provided the order of N is at most one
higher than that of M in any one variable.

The procedure to be followed is very simple. We obtain

d(P,e Y=u@) + (P, € ) +ev(P,e ) where u(P) is the
solution of the reduced equation, W (P,e ) embodies the
boundary layer terms, and €v is. the correction term. If we
can obtain a bound for tuv| , inderendent of ¢ for ¢ small,
then we have the desired exransion. Note that if N¢, Ke,
have constant coefficients, then under the above conditions,
the boundary layer terms turn out to be exponentials in
general.

Lemma 3.1 (Principle of the Maximum)
Let u(P) be of class (*(P) in R, and u, + u__ + hu_+

XX IF
Buy + Cu =D in R, where A, B, C are continuous in R.
Then if Cs -& < O, |DI €™ in R, we have
[ul € ma 2 in R + S provided u is continuous in K + S,

and |u| is bounded on S [3.]



Z1

(Wote: Here, and in the sequel, m, will denote a
rositive constant, independent of ¢ . If a bound is a
function of € , we denote it by =:(e).)

In particular, if D = O, then u(P) caanot have a
rositive pagximum or a negative minimum in R,

Thus for 3.1), setting ¢ = v(K - e ¥*) where B

are constants, we have
® X

ter, - gMUOxe uz e M* v
Tk YWY T g ems T T REoem -0

and since R is bounded, we can choose K, w so that
=g ®*s 4 > O in R + S
Fa e “X > 38 (X - eHX)
Hence we infer that for 3.1) we have

\e@® = m

Lemua 3.&
Let G4 (P,Q) denote the classical Green's function
for 3.1) in R. Then we have

a) OSG«UP’Q)

b) Ri1 € Rz = GRl =< GRg 7
c) P & R = %GQ(P,Q> exists and is
continuous on S, where 5%.5- the inner

normal derivative. (6]
d) The Green's function for the upper half plane
is 1 K°< gg) = By <g§> where
2xle fe fe
Ko( 2 ) is Bessel's function of the second kind
with imaginary argument, and
*= (x-F)*+1 (y-q)°
(v +79 )7

T? = (x -5 )% +

Al m



Lemma 8.5
Let Auy - f;u;, =0 (1 =1, ) in®d , a bounded oren

domain in the X - y plane, where 0 <d 3 € £; <« £z £8;<=

ind; u; =P, on S, the boundary of & , and ¢ , > OF
then u; 2 0 in & and w1 2 vz in & .
= 2
( A’S' a + o )o
x> 24+
Proof:
u;, z 0 from lemma B.1)s
Q(ul - uz) & fl(ul = ua) = (fl - fz) uz in B
and a1 - uz = 0 on S.
Hence'

Up = uz = _2'93' Gg (P,Q) (fz2 - £1) uz(Q)dg =z 0 in
A+ 8 since £z > fi.
G o (P,Q) is the Green's function for sau - fiu=01ins .
Lémma S.4:
Let Ki, Kz be the Green's functions for au - fiu =0,
oy - fpu = O respectively, in & , using the notation of
lemma 3.3). Then
Ky = log % + ‘o"i, _and

- - L
A‘Fi fi‘(i—fi log %

o (Y1 =Yz) - £2(¥ 1 =-X2) = (£1 - £2) ('\"2 + log %)

in® , Y1 -¥,=0o0n8s

and hence, since the same integral eguation used in lemma 3.5
is valid [6] we have | |

Y, =¥, =2 0in D
or

0 € Kz < Ky in &,
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We obtain here a bound on the Green's function for
equation 3.1) for points in R near S,

First we transform %.1) into Au - A?u = 0 ia R,
by means of the classical change of independent and depend-
end variables, where Ri is the new region corresronding to
R. Next, select any roint P1 on Si, and construct a circle,
exterior to Ry, but tangent to Si at Pi. Now we map the
interior of this circle into the lower half plane in such
a way that Py goes into the origin, and the centre of the
circle goes into the point at o0, Let J be the Jacobian
of this transformation, which maps R; into Rz, a bounded
domain in the upprer half plane, whose boundary S; is tan-
gent to the real axisat the origin., Then a u -A% Ju =0
in Rz. By construction, there exist con§tants 51,<§2, such
that

0 <& 1= J =J8z<e in Ry + Sz,

Hence by lemma 3.4), there exists a constant p such that

0 = (A min J, so that the Green's functions
Rz+Sz2
Ky forau - A? Ju =0 )
K forau -u2u =0 in Rg

have the property
0 ¢ K1 £ Koz,
Then from lemma 3.2), we have
e l 7 < ==y
Ke s -.gﬁpo(m-ﬂ) - ) =K plz-T1) ,
where the right hand side is the Green's function for the

uprer half plane for the eguationau - qu = 0. Finally,
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transforuing back to the original varisbles, we obtain The
desired bound, which tends to a limit as € 0,

We now proceed in & purely formal manner to examine
equation ¥.8) . Let us put

9) @ (P,e) =u(P) +e BB 1B + e v(p,e)

o

where € arrears only where explicitly exhibited, and sub-

stitute into 3.1) . This yields

= -a s8%‘3') 2 —'§' ~1 ¢ 5 P 2
3.10) €7 e - h(P)gX (P) + e € {thX - 8h g+ bg., + 2a hoy
6 - = & o € m
+ e (hXX + hgyy 2hygy 4ahy) +~uXx Rau
+ € + € - & % + ¢ h = 1),
(g + €0 gy —Ba0y T Uy, + e vy)

If this equation 1s to remain valid for all € , sufficlently
small, then since we are requiring h, g, u, to be inderendent
of &€ , we must have

a) hgx2 = 0

b) hg . - 2hg + hgy2 + 2a hgy = g

¢) h.o. + hgy -2hg -2ah =0

XX Y Yoy N
d) u .- 2auy =0 B
= _f? »
&) Lu Yyy Py

If we can rose proper boundary value problems for this
system a)...e) in such a way that (vl ¢ ™€) in R + 8,
then we have the desired result.
Equations a), b) give
g, (g, + 2a) = a5 g, = O.
The condition gy = 0= g= 0 essentially, which leads to

the reduced eguation, so we take

3.11) g =2a(y; -v)
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which is precisely the form suggested by 3.6). The remain-

ing equations become

e) ng. + xa hy = 0
d) u,_ —-«<au,_ =20
I i
= - €
e) Lv U, - e hyy.

In order to investigate the boundary value rroblems
associated with ¢), d) and e), let us first construct one
boundary layer term, and the corresronding solutioa to Bak)
associated with it., Thus we consider
3.12) yy teP,, -2P =0inR

¢ (p) ={4> oon —S—k

oon S - §k where S, is one of the arcs

of S. Setting @ (P,€ ) =e € h(P) + ¢o~(P, € ), we get
from 3.10)

3.13) h + 2 h_ =0

In order that

~£(P) —
e ¢ n(P) =¢0(P) on Sk’

independent of € , we must take

° z
& o (P) ok

Hence 3.11) gives ¥; = ¥y, where y =y, is the equation

3.14) | g (P)

H

n(P)

ofigk. Then taking h(P) = O on the remainder of § - (§ - s%),
we find h(P) = 0 for ¥ >y, and n(P) is uniquely determined
in R, and is of class £ *(P) in R + S excert at a finite

number of points of 8 [7] . The boundary conditions of

3,12) being satisfied for y = Vis we take U (P, ¢ ) = 0 for



Y 2 ¥y, and v (P, e ) =—% efg%El h(P) on S for y <« Ve
Now g(P) = 2a(yk - y), and so on S for y « Yy, We have
g(Pp) =2 & > oy Hence on S, lvl = 0(1) for & small.
Writing ¢ = o1 + U;z where
Lo ; =0in R
Uy, = f% e 2nons
Lu 2 = —e‘g%Bl hyy in R
Uz2=0on3S
we have Uy | € mi by lemma 3.1).
In order to establish the boundedness of Uz, we
rroceed as follows,
loz2(P,e )| € m(€) in R + 8.

Proof: From 3.12) and lemma 3.1)

[6(P, ¢ )| ¢ mi in R + S.

|h(P)| « m, inR+ 8 71
Hence

levrf<|eB BB | + [¢(®,¢ ) ¢ m +me = ua
Take P in R, § in R close to S, so that the minimum

distance from @ to the boundary, P(Q,S)<d . Then Gy (P,Q)
being the Green's function for 3,1) in R, we have ggfé%égl‘ my
for & sufficiently small. This follows from lemma 3.%2).
Now the only possible discontinuities of h(P) in R + S occuf
on S, and these at a junctioh of one of the arcs Sy with one

of the arcs of'gi {r] . Since there are but a finite

number of such roints, we may as well assume only one, since



we can write h(P) &s & sum of such functions. In order to
examine this discontinuity, we assume the point in guestion
to be at the origim, and let N, be a neighborhood of the
origin contained in R . Then we can construct z local rep-
resentation of h(P) in N, exhibiting the discontinuity
explicitly. Thus let h(P) = hi + hp, where
ho(P) is of class -CZ(P) in R+ 8
hi1(P) is of class C?*(P) in R + S - N,
hi + R8a hi =0 in K, |
h1=d on 33;=0,—5sx<0=tl1(x) on
y=0, 0<x=38
where ¢ (0)+0, and ¥ (x) -is of class
g lx) , Dzxed ,
Then ] a(“_}]z
ni(P) = Ai § ¢ (x)e &Y a3 in W,

where Xl, %2, «se are constants. By explicit counstruction,

R1 38 1
we see that is Lebesque integrable in N,, ¥ 3y is
dR 1
continuous in the closure of N,, and 35 (v :;ﬁ ) is
y b g
Lebesqgue integrable in N, . Hence ¥ d2 p,  is Lebesque
Sy.?.
integrable in N, , and thus we have G=(P,Q) . $(G,S) h
£(q,S id

is Lebesque integrable in R,

We now show that

=£(Q)
Va2 (P, € ) = SRbGR(PsQ) € 6‘, hyy(Q>dQ
Consider any subregion R' , comrletely contained in R ,

with GR,(P,Q) as the corresponding G;een's function.

Then the solution to Lv =- e € hyy in RY 4

v=0 on 8!



28

is given by
0 -2 (Q 3 \
"= gy 565, (P,0) & B n(¢)ag (6]
Thus for the sequence R'< R''¢c ... < R, we have

0 =& < Gy 2 e 26

Rt = YRt = R
Eence each G n)(P Q) e fgé—l hyy(Q) is bounded by the
integrable function GR(D,Q) e ELth (Q) and hence
Gpe (2,0) e B n (q) — GR(P,Q) e B8 1 (q)
a.e, as R( )—> R, and wore over '
. ~ - -
lim ) GRm\e -‘ghyy:f,‘GRe ?nyy'
To show €50 ; bounded independent of ¢ , We set
U2 = U3 + U 4 Wwhere U3z = ‘SR—NO‘)’ Us = §NOS
Then |(Usl< m; by lemma 3,1).
Finally
b - 4
[cfoaee ) =€ gy 5 BN (@) cp(P,0)a0 < ma

by the discussion following lemma 3.4).
Thus(e‘?o'(}?, € )( is bounded inderendent of € in R + S,
and we have constructed one boundary layer term. In an

obvious way, the solution to

L= 0 in R
¢ =¢, ons®
Oongs - 8*

is a finite sum of such boundary layer terms plus a similar
correction term, namely

o (e ) =T eEB p (p) +er (2, € ).
where

\es o (P,e )| =



V]
w

The proof of the main theorem now follows immediately;

we have
5,15) L =0 in R
@ =¢, on S.
Then @ (2, € )=u() +T e ElBl n (2) + ex(p,e )
where
3.16) (,(XX—2auy=OinR
u=¢, ons ~-5s*
. + C\a = .‘.
3.17) g+ hiy 0 in i
hy =<qb o — u(P) on 5, c g
Oons - (S - for Y+
3.18) Lo =-u_ -7 e&< h. inR
LI tyy
U o= oo} —u-Ze &n on S
€

and by construction, ( ol € mi on S and by an enalogous
procedure, we find (eé‘ o (smy in R + S.

To obtain more terms of the asymprtotic exransion, we

take
P(P,e ) =ufP) +cui(P) + ..o + €" u, (P)
‘ o a
*_’?e € {hio * €hy ... Fe hir(P){
+eft 1 (P,e )

and we find, as above, that {e $o(p, e M» 0 as € 0 for
every &6 > O and every P€R,

It is probably true that we may take d = 0 in this
example, although computational difficulties have led us to
the weaker result.- It is, however, a fairly simple matter

to prove lim esv(P, € ) =0 for all P in R, and every J> O,
g Evo



3.19)

This

3.20)

(W}

(@]

E el AR B Echohts o R Rt o= L e e tad
by v el Ui ollctwdd WL LS DL J.O.;_.A_Ow.._-.':.

i SR ) =
c ar\ -
lcrcp,e)(sfw fo ,};,Le g {K(—o:;\ ("o(‘LU'_—:)g dndy

can be transformed into

£ %0
[0, ] ¢ «Je X e"f ’a”"% f(, (;lg € x ry) +y3tlz)’ A3
¢

0 ? <€K1_‘a'\.‘—f-_—1;)'/»

and using the asymptotic expansion of the Bessel function

in the integrand, the right hand side is O (¢f)for every

&> o,

We have so far been unable to prove the boundedness

of the right hand side of 3.,20) as ¢-> 0, although it

certainly arrears to be so.
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Sec, 4 QOSeen Flow Past & Semi-infinite Flat Plate at Zero

Angle of Attack, for a Viscous Incompressible Fluid.

In this section, we study the boundary layer terms
associated with a system of eguations, and obtein an
asymptotic expansion of the solution to & fluid flow problem;
it turns out that the exransion terminates, so we zctually
obtain The exact solution to the equations,

It has been shown [8] that there is a decomrosition
of certain flow fields into longitudinal and transverse waves.
These concepts are assumed known here, and we merely give
the equations for, and study, the mathematical problem &t
hand. : F%

{=o=0
Qi o

Urso
U.:u°

Let the plate coincide with the x-axis, 0 ¢ X < w and let
u, U be the perturbation velocities of the flow field, where

o . . -
we have u = U= 0 at upstream infinity. Then we have q = (u,v),

-2 - .
4=¢ +dr , a longitudinal plus a transverse wave where
4,1) Uu, =vbq
X »
Uv, =vavy for the transversal waves
+ =

u, vy 0

Q)
4.2) T. = grad ¢

sd =0 for the longitudinal waves



V = coefficlent of viscosity, assumed small;

U= free stream velocity = constant.
) v . .
We set 4~ =€ . The boundary conditions are the

following:

H

4,85 T = W, on the plate
v =0
u =v = 0 at upstream infinity.

It turns out to be simpler to make & transformetion of
coordinates before rroceeding with the investigetion of
the boundary layer.<l) The plate is actually & limiting
case of a body of finite thickness, and the boundary con-
dition u = u, on the plate actually means u = u, ony = O+,
y = 0, or both sides of the rlate.

Let us map the x-y plane, cut along the positive
x-axis, into the upper half of the w-prlane, by the trans-
formation % =x + éy'% we = (3 +¢y )2; This "unfolds" the
rlate into a siﬁgle boundary, ﬁamely, the real exis of the
w-plane.

Then equations 4,1), 4.2) become

4,4) €Sau-&Iup+ anu,= 0
€ov - 273 v, t &7 v, =0 for the transverse waves

Eu}- - 7 U +‘§v,) + v, =0
4.5) i = grad$
D= Q for the longitudinal waves
with the boundary conditions

(1) Proceeding in rectangular co-ordinates, we are led to
rarabolic co-ordinates in a natural way.
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4.8) u = U, oa n = 0
v =20 on 7 = 0
u = v = 0 when B
Note: we take = 32 0.
(As greviously A= 0% 4+ 22y
°% 2 o 2

An examination of 4.4) shows that in letting &¢>o O
we lose one derivative with resgect to N, and one in ¥ .
The boundary conditions in 3} are the same for the reduced
equation as for the system 4.4), 4.5) and hence there is
no boundary layer term at I = -eoas - 0, On the
other hand, if € = 0 we have potential flow, and the
solution is merely u =v = 0 . Hence we exrect to find
the boundary layer terms for small values of M . Setting

W =les , substituting in 4.4) , 4.5) and expanding sbout

€= 0 , we obtain

4.7) Upe =— 2% Ug + 28T U= 0

Veer — 2% vy + LT v. = 0 for the transverse
wave

Ve = 0

4.8) ®.= O for the longitudinal wave.

Denoting -%})Elf(g,ﬁq~ , &) = ?’*(?’c-)
we have, Then
vl = 0,= v} = 0 and thus v* = 0.
u* 1is clearly indepeandent of § , and aence
uy +28vue = 0 u* = u, when o = 0 or

4.9) u* Uy erfe o



This is the "classical vouadary layer® solution.
(note: we use (€ instead of ¢ since the co-
efficients are variaple, and vanish on
the boundary of the region).
Proceeding as in Sec. & , we try, instead of 4.¢) ,
the function u_‘,.l\ (¥ ,1) er{»c{ &égP)l{'

ayer term, where

L)
iy

or tie boundary

lim 3 (3,0 ) = ¢* .
€20 €

The solution of the reduced eguation here is identicelly

zero. Hence we try

4.10) u(P,e) =u® (P) + ullerscff  + u® e £ Je

+de u@ +Jeu? + e (U_+T)

~

v(P,€) =v @ (P) + { v_r(_z)e ~5 s v_‘_(3
+ v @ } Je v € (Vg + V)

where u ©O(P), v © (P) are included merely for completeness
of argument, since they are both identically zero (thne
solution to the reduced eguation). We include the exronential
terms since we intend to equate terms of like order of mag-
nitude, for € small, and look for an exransion in terms of
J& rather than € . |

Substituting 4.10) ianto 4.4), 4.5) and equating to’

zero, terms of the same magnitude, we arrive at the following

system.
a) g, te,"*+2fg -z2ng, = 0
b) I u® + nu,f_z) - ?vf;j‘) = D

k11



(1) () _
u 0
a 1 u@ + 9 u® L3 @ 4@ = ¢
) Aud emul syl G
(2 &) )
e) ’]V'!‘) T}VT_? +v.® = 0
£) EUT(;) - u.,g;‘) + 3V f)”" + v,f’ = @
@ Ly u® = 9
g) ¥ Uy " Ur,
n) - % v_ﬁf’ + 9 vf_f’ = @
1) Fuf) -mufd srvd) ewv® o= 0
4 = (4) -
i) sy (8 A 0 5
k) €oU; - 215Un + &7 Ur" = —auWep 1 -aul e F
3
autd
-t . .
1) €aV - 2¥ Vg + 27V = -Jee*©sdd - av®
m) }'UT,—‘\Ur.‘ + TV +'qv,‘.] = 0
n) &T_ = avV, = 0.
where we have already used the solution to a) with tThe
condyition g = 0 on y = O

g 2 O inn 2 0, g ; O &
This turns out to be gz(P) = Y] 2
~ Next, we can solve for v_l_@ and obtain o) v,ff') = constant
Then, solving for v_r(a) , ul® ) we obtain

) V.Ifz’ = u, ¢ (—%) where ¢ is an arbitrary function

of class £ 2% in ( -« , =) ., Then



The solution to  c¢) is werely -u§9 = ¢z (1)
subject to the condition that $.{0) = u, = consbant., It

argrears that there is ao uanicity of solution To tThi

l,,l
v
H
o)
24
C
()
E\
\a

but we snall show later tnat if we use symmetry arguwents,
we still obtain the same asymptotic exransion what ever rfunc-

tion of class { ? we take. TFor tne moment, let us be guided

imprlifies

by simrlicity, and choose ¢ 2(30 ) = u, , &s this sim

3}
]
3

equation k) . *
Now the boundary conditions on the clate, from 4.8) are
Uo = Uy + Je (U@ o+ ul® 4 uy o+ e, + U )

4.,11) 0 = Je (v @ +v_,_‘3 +v@y + e, +V)

& L
and at Y = e we have u=v =0, or
4.18) 0 = @@ +ull) + Je(U_  +7U )
- 3 , 4
0 (Vf) +v@®) o+ Je (v, + V)

5

Taking vi@ = K , a constant, we have then

(4 — - —
v, = .= & ab N =

o Vg‘l = 0
(4) — T 2 s
v = =~ K —'wf\ on n= 0
= -K -u, ¢(0)
NETR
= - (4) _ - RS §
Hence v = - K -u, 310 + \ ) where A is
k B an erbitrery

Na (249 %) $%+n ®  constant.

(1) If we use dimensional arguments, we find thet u * |
must be homogeneous of degree zero, aund hence a constant,
Accepting the validity of this argument, many of the
subsegueant computations are simplifiled.



"If we require v to be finite in &« neighooriood of the

origin, both.as ¥ ,n tead to zero, and for € sucll, we

must take N\ = 0, K =0 and hence
§) vff) - u, 39(0)
NP S S
PFrom Y ) we get u_(ra) = U {45(0) §a -1
Wil §% +n %

and zgain boundedness at the origin gives ¢(0) =1 . Thus

Lid

we have so far

v@ = _v ¢ = qy,
T L
Nu (32 4y ®)
u® = -y
Nu(3® +y 2)

Now ul® = @.(¥)
auf =0

Thus using the boundary conditions on u , we nave

u_‘fz\ +u® +u® = 0 on y = 0

and as above we obtain
uﬁ‘*‘ = U ) + A where A\ is a constant
l\/[:lf (;2 +’) 2)
& _ '
ul A

Since we are only interested in the sum of these terms,

the ambiguity is only suyerficial, and we may as well take

AN = 0 . Hence
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u:‘” = -uf\ = u, 7 - uw® = g
Na (% +9 %)

Ve now have the equations k), «e. ) with zero ri:nt hand
sides, and homogeneous boundary conditions.
Hence U = UL =, =V = 0
The arprearance of non unique solutions to these eqguetions is
courpled with the vanishing of the coefficients of the reduced
equation on the boundary of the region. But for this comp-
lication, we should have & yarticular case of Leviason's [3]
equation. However, this shows that the boundary plays a
major role in the determination of the form of the boundery
layer terms, and instead of continuous dependence on the
boundary curves, we get & discontinuous Jjump comparedle To
the transition from & non-characteristic to & characteristic
boundary for rfirst order linear partial differeantial ecuations.
In our case, the boundary coincides with one of the char—
acteristics of the reduced ecguation, and this comylicates the
rroblem considerably. It also necessitates the introduction
of W€ instead of powers of € zlone, which suffices in
Levinson's case.

Collecting our results, we nave

4.13) U = Ugerfe 7 +é§;yﬁ{ 1 = 7—-i Uo
:/.é.— % ;z _1_72
9=
¥ B W § e € -1

VES ?2 +? 2



Lel us coasider now tne alternate cnoices for u§}>

instead of U, . We nave x 31

'uﬁn = @ ,(y) , and from symmetry, this must be an even

Yy , S0 That

function of Yy .« We have also required the solutioas of
a), .. D) to be of class C® , so that using ugﬁ (0} = wy »
we have uiﬁ = U, + y*Ps(y)
= U, + 377 ¢.(37)
Eence the difference between ahy other admissible
function ufﬁ and u, is of the form § *9*¢4(¥n) .

This leads to f 2pn 2wk 1 ¢ .(3n) = 0(e) , and hence
NE3

can be put into the correction terms ¢ (U, + U_) . Thus
we are led To & unigue asymptotic expansion,

One further remark should be made., It is mere coincildence
that the first ferm in the exransion for wu 1is irecisely the
"classical boundary layer solution® . Thus for the finite
flet rlate, we can no longer conclude that the bouandeary layer
terms are independent of § (4.7) . On the strength of the

'
above, we offer the following conjecvure: Prandtl's coundary
layer solution is not necessarily the irst term ol auy
asymptotic exyansion, but in general 1s only an arrroximation
to the first term of such an exgransion.

This is borne out in investigations now under way on the

Oseen flow past a finite flat rlate.



Aprendaix I

If o, %+ 0, the matrix “a = L + Bé€

has no elementary caivisors for o s ¢ <¢,, for €
sufficiently small 3 moreover, for O <e <€, 5 the
characteristic roots are all distinct.
Proofs~- The first statement follows by direct comrutation.

Surrose next that there is a double root of

[}

\ A+ B - hI\ 0, say N= Ai , for some particular
€

value of € in ( 0,€ ) .
1.1) Then since € N\ +df AT Hd AT+ L+ d, = 0,

the resultant of 1.1) and its derivative must vanish.

mne -, ... " S wza o
1.2) o
R = ME  (ne-i)el, oo ne = 0
edl °1.‘ & .. o
o % 5 "
€, . e
Assume moreover, that ofw = O.

Subtracting n times row n + i from i

i=1, &, ... n-1 , we obtain



'né- (’ﬂ~l)°‘) d*-\ (@) -
e Y
R = ‘e th-1) « .
O =y s ~nd,
A
N
N
o -«

The determinant of order n

in the lower right haand

. . . n _n n
corner is non vanishing, and equals (-1)" n q‘

for ¢ - # 0 , and hence the leading coefficient of €

given by R = 0 is (-no(n)n Fn-1

If R =0 for more than a finite number of values of <
as € —> 0 , it must vanish identically, since R 1is a
polynomial of degree n-1 in € . Hence if N = N is
a double root for arbitrarily swall € , it must be so for
all O0<e <& 4, .

On the other hand, AN , satisfies
1.3) €N" + L\ + .+ d_= 0

ne~!
n eN

1.4)

+oo‘+dl

n
= 0

M¥ultiply 1.3) by n , 1.4) by A

This gives

1.5)

G (N) = T BN

end subtract.

ﬂa independent of €

so that every double root 1s fixed inderendent of € .,

1.1)
Pe (N) Qoo

Thus

1.6)

(N)

can be written

= 0



4z
where PK(A ) conteins &ll the multirle roots, anc is thus

independent of € . This implies O B (N) = 0
2 €

. n ;
or @M = 0 , whence from 1.1) , A% = 0 aia A= 0.
D¢
But o, ¥ O so that there are no roots independent of €
and hence no multirle roots for 0< &€ <Ke .,
For the case d 5 = o, o/ e # 0 , similar results
hold, namely, there are k roots AN = 0, and no others

are independent of € or multirle,

Aprendix £

A + B€ has no elementary divisors, and neither has A . Thus
we can find non singular matrices C (¢) , C =t (€ ) soeh

that €N, 5
A+Be = c-1 (e) T c(e) where

~

o e\,

the AN¢ are the roots of 1.1) . Noreover, C (&) can

be chosen so that 1lim C (&) exists, is finite, and non

(2 7~
zero,
Proof -
consider
&N
L + Be 1 = .
e - ‘= (&) . c(e)



I
o)
n
]
cjl
}._l
o

For S

- s0 that | D is finite &and non zero.
Hence we may choose C(€ ) so that C(é€) - D as ¢=» 0,

and thus for 0< e < € ,o<lC(e)[<eo.
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