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Abstract 

In the wake of a two-dimensional bluff body placed in a uniform stream, for 

sufficiently large but not too large flow velocity a distinctive pattern of vorticity is 

observed. The pattern consists of ''vortices" of high vorticity surrounded by nearly 

irrotational fluid. These vortices are organized in two nearly parallel staggered 

rows of vortices of opposite direction of rotation. This pattern is called the von 

Karman vortex street. 

This thesis is a report on th.e analysis of a model for the von Karman vortex 

street. The model is inviscid, incompressible, two-dimensional, and consists of vor­

tices of finite area and uniform vorticity. The first part of this thesis contains a 

brief survey of the work on this problem, and an explanation of the approach used 

in the present work: the second. part describes calculations of steady solutions of 

the Euler equations of this kind,. and the third part describes an. analysis of the sta­

bility of these steady solutions to two-dimensional disturbances. 

The calculations indicate that the vortex wake can be stabilized by sufficiently 

large area of the vortices. Data are given which (to some approximation) will permit 

relating the street to the flow past a body; this is proposed as a suitable study for 

further work. 
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I. Historical Overview and General Introduction 

The Karman vortex street is a complex fluid mechanical phenomenon which occurs 

in a remarkable variety of circumstances. The "singing" of power lines or kite 

strings in the wind is an every-day observable event. The sound is produced by a 

mechanism involving the alternating periodic shedding of vortices of opposite direc­

tion of rotation from.opposite sides of the generating filament. Vortex streets a..re 

also· observed in atmospheric flow about mountains. and islands, in ocean flows 

about structural members and pipes, as well as in hydraulic and aeronautical sys­

tems. 

The more general problem of the wakes in flow past bluff bodies has been the 

subject of experimental and theoretical work for more than a century. ,The 

phenomenon of periodic vortex shedding was apparently first studied experimen­

tally by Strauhal (1878) in his work on "aeolian tones" produced by wires moving 

through air, and by Lord Rayleigh (1879). In 1911, van Karman published the first 

theoretical study of vortex streets, at which time the subject became of widespread 

interest. Since then, roughly twenty relevant papers have appeared annually in the 

literature; a total of well over one thousand. It is not intended in this introduction 

to describe every aspect of every problem of this type which. has been studied; 

rather, a brief overview of the field will be given. 

Since the early work, interest has expanded to include very many facets of the 

phenomenon, as well as extensions to different but similar flow problems. Areas of 

research reported in the literature include: 

1. Study of the unsteady street formation process; discharge of vorticity from the 

generating body. 

2. Quantitative theoretical analysis giving characteristics of the street: 

a. shedding frequency 
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b. width 

c. streamwise spacing 

d. vortex strength 

e. downstream evolution 

3. Average forces on the body (eg. drag}. 

4. Oscillatory forces and interaction with aeroelastic bodies. 

5. Non-uniqueness of the street as a function of the flow parameters. 

6. Transitions between various fiow regimes of fundamentally differing character. 

7. Effects of accelerating (vibrating) bodies. 

8. Effects of compressibility. 

9. Effects of acceleration/ deceleration of the background fiow. 

10. Effects of shear. 

11. Effects of density stratification. 

12. Effects of walls in the flow channel. 

13. Effects of lift and unsymmetricality of the body. 

14.-. Effects of changing two-dimensional body shape. 

15. Effects of three-dimensional body orientation and shape: 

a. taper 

b. steps 

c. perpendicular barrier plates 

d. ends 

16. Sound generation. and absorption. 

17. Interaction with shock waves. 

18. Multiple-body configurations; 

19. Fully three-dimensional wakes. 

Papers reviewing much of the most fundamental work include Goldstein (1938), 

Rosenhead (1953), Krzywoblocki. (1953), Wille (1960), Morkovin (1964), Berger and 
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Wille (1972), Ehrhardt (1979), Bearman and Graham (1980). 

Some of the interest in the field ha~ undoubtedly arisen due to the controversy 

over inconsistent experimental results obtained by different. researchers. The 

experiments are difficult and are influenced by residual turbulence of the flow tun­

nel, roughness and shape of the body, wall effects {blocking of the channel), and 

measurement technique. The usual measurements performed do not. measure the 

vorticity distribution or streamlines which would be best for theoretical analysis, 

but rather the velocity. To this day, the fundamental question of whether the spac­

ing between vortex rows at first grows or decays has not been conclusively settled. 

Similarly, there is controversy over the many theoretical attempts to study the 

problem. The exact problem is so intractable that quite severe approximations are 

generally made before analytical or computational methods are applied. The great 

variety of approximations which have been made, and the grea.t variety of aspects 

of the problem which have been emphasized by different researchers, have resulted 

in much disagreement of results; 

Viscosity of necessity is involved with the generation of the vortex layers by the 

body. A number of papers have appeared, describing attempts to simulate this 

shedding process by computer. For example, Gerrard (1963), Gerrard (1967), Sarp­

kaya (1968), Laird (1971), Chaplin (1973), Clements (1973), Takao (1973), Jain and 

Goel (1976), Kiya and Arie (1977a,b), Stansby (1977), Kuwahara (1978), Sarpkaya 

and Shoaff (1979) have used two-dimensional inviscid line vortex models with simu­

lated vortex shedding; ~nd Payne (1958), Jordan and Fromm (1972), Swanson and 

Spaulding (1978), and Hurlbut, Spaulding, and White (1978) have solved the two- or 

three-dimensional unsteady vis.cous flow equations for moderately low Reynolds 

number flow past a circular cylinder. However, it is apparent that viscosity is not 

essential to the formation of the vortex street once the vortex layers have been 

· created; the first group of cited researchers were able to simulate the complete 
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process from shedding to street formation with purely inviscid models. Also, it has 

long been observed experimentally that there are considerable ranges of Reynolds 

number over which the Strauhal number (dimensionless shedding frequency) and 

drag coefficient remain essentially constant (eg. Roshko, (1961)). Also, Strauhal 

numbers have been formed using t.he distance between layers, the vortex shedding 

frequency, and the street velocity which are essentially independent of the (two­

dimensional) body shape. Hence, it would appear that viscosity does not neces­

sarily play a crucial role in the vortex wake development, and (except for the gen­

eration of the vortex layers) the body is not very important in the formation and 

evolution of the vortex street. 

To test this hypothesis further, a number of authors have studied in the absence 

of viscosity the evolution of infinite parallel vortex layers with small periodic initial 

disturbances (Abernathy and Kronauer (1962), Christiansen (1973), Boldman, Brin­

ich, and Goldstein (1976), Aref and Siggia (1981)). Despite the serious approxima­

tion involved with the line vortex method these researchers used, the Karman vor­

tex street seems to have been the generic result. 

For this reason, it seems reasonable to. restrict attention to the street proper, 

and to treat the body flow region as a ''black box" which does not enter into the 

analysis in. a fundamental way. This approach does not explain the initial vortex 

layer formation process. However, it seems reasonable that to good approximation, 

the latter problem could be studied separately. Areas of research interest for the 

street proper include:· 

1. Steady configurations for inviscid flow. 

2. Stability of the steady configurations to two-dimensional disturbances.· 

3. Stability to three-dimensional disturbances. 

4. Effects of viscosity which result in gradual evolution of the street and the pair­

ing process whereby pairs of vortices amalgamate and produce a new street of 
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larger, more widely spaced, vortices. 

5. The fully unsteady problem including a. correct treatment of viscosity. 

Most of the earlier analytical studies of the inviscid problem have dealt with the 

point vortex street. First studied by von Karman (1911), this model has reappeared 

repeatedly since, despite its serious limitations (namely, its stability properties do 

not correlate with experimental.observations and because of its unphysical infinite 

kinetic energy, it may not be connected with the body flow except through ad hoc 

assumptions). Two efforts to improve von Karman's model are due to Domm (1955) 

and Ehrhardt (1979). Both researchers have produced stability diagrams similar in 

general character to the one discussed later in this thesis. However, this. is prob­

ably fortuitous, as approximations of a very serious nature have been made in each 

case. Damm considered the stability to two-dimensional disturbances of Oseen­

Hamel vortices (viscously diffusing line vortices) placed at positions specified by von 

Karman's model. However, this configuration is not a solution of the equations of 

motion, and Domm's assumption that all vortices are of the same age is not reason­

able. Ehrhardt considered the inviscid case, but with a particular cyclindrically 

symmetric vorticity distribution. Again, however, the assumed configuration 

(steady) is not a solution of the equations of motion. Furthermore, Ehrhardt con­

siders the stability of motion of one vortex when all the others are held fixed; obvi­

ously irrelevant to the real problem. Rosenhead (1930) attempted to analyze the 

stability of viscous streets to three-dimensional disturbances, but, lacking quantita­

tive information about the street itself, this work is not very s~tisfactory. These 

two serious errors: 1) considering via the equations of motion the "stability" of 

artificial configurations which are not solutions of the equations of motions; and 

2) studying stability to perturbations which are irrelevant to the physical problem, 

have reappeared many times in the literature since von Karman (1911). Stability of 

the street is a rather delicate question, and approximations of this severity have 

consistently resulted. in conclusions which are either not useful or else highly 
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questionable. 

Some recent researchers have attempted to study t.he question of stability of the 

fully developed vortex street by "solving" the initial value problem using the discrete 

vortex or cloud-in-cell method (Christiansen and Zabusky (1973), Aref and Siggia 

(1981)). Although there are computational difficulties associated with these 

methods (for example, artificiaL viscosity and anisotropy of interactions using the 

second), and the models become physically unreasonable after sufficiently long evo­

lution time, the results are probably largely accurate for small times. However, the 

high cost of these methods prohibits a complete study of the problem, and 

interpretation of the results is sometimes difficult. 

To avoid the limitation of low Reynolds number, and to avoid the difficulties out­

lined above, the present work deals only with the simplest case: a symmetrical 

(non-lifting), bluff, two-dimensional body in a uniform stream of a homogeneous, 

incompressible, perfect fluid: As von Karman (1911) pointed out, it is sufficient to 

consider a parallel array of vortices extending to infinity in both upstream and 

downstream directions. A model is proposed wherein each vortex has finite area 

and uniform vorticity; this is probably the simplest possible extension of von 

Karman's point vortex model. The model cannot be made to predict viscous effects 

accurately. It does have one advantage over most of the published viscous work 

(except the unsteady Navier-Stokes solutions) which is that it is a consistent model 

for which essentially exact (numerical) solutions may be obtained. Furthermore, it 

applies to the high Reynolds number case which cannot be studied (yet) by direct 

Navier-Stokes calculations. The fact that for large Reynolds number the wake 

rapidly becomes turbulent diminishes the importance of this model. However, it is 

believed that it is of value to have precise calculations for a mathematically con­

sistent (although perhaps somewhat unphysical) model. 

This thesis contains a study of the steady solutions of the flow equations of the 
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above-outlined type, and an analysis of stability to two-dimensional disturbances. 

Relating this highly idealized model to the flow past a body is a necessary task, and 

is proposed as a suitable study for further work. 
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II. Steady States 

1. Introduction 

For a certain range of~Reynolds number. a regular pattern of vortices is observed in 

the wake of a two-dimensional blunt body placed in a uniform stream. In his classi­

cal work, von Karman modeled the problem with an infinite street of point vortices 

(see v. Karman, (1911) and (1912): v. Karman and Rubach, (1912)). This approxi­

mate approach has several limitations, among which are the infinite kinetic energy 

and difficulty in fitting the model to flow past a body. 

To improve the model, the vortices are herein allowed to be of finite area, but 

uniform vorticity. An integro-ditrerential equation is then solved to obtain the 

steady shapes of the vortices. This part of the thesis constitutes the first part of a 

study of the wake flow problem; and describes only properties of the steady solu­

tions for the infinite vortex array. 

2. Formulation 

Consider an infinite array of uniform two-dimensional vortices, consisting of one 

row of identical vortices of area A and strength -r with centroids at positions x=O, 

± l, ± 2l, ± 3l, ... , y=O, and of a second row of identical vortices of area A and 

strength +r with centroids at x=d, d± l, d± 2l, d± 3l, ...• y=-h. The frame of refer­

ence is chosen with a. uniform flow U5 in the x direction at infinity as in figure 1 so 

that the vortices are stationary. It is assumed that the fl.ow is inviscid, incompressi­

ble, two-dimensional, and, outside the vortices, irrotational. This part of the thesis 

deals with the steady flows of this kind, principally with d/l=O and 0.5 (for values 

other than 0 and 0.5 translating solutions exist but the street does not move paral­

lel to itself; see Rosenhead, (1929)). 

The complex potential outside the vortices can be written (with the notati.on 

z =x +iy, z' =x' +iy'): 
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w(z) = 2i:A {~flog sin~ (z-z') dx' dy' - ~flog sin~ (z-z') dx' dy' } + Usz. (2.1) 
1 2 

where Et. E2 refer to the cross-sections of one vortex in the upper and lower rows, 

respectively. By applying a Green's theorem, the complex velocity can be written as 

a line integral around the boundaries of the vortices: 

u+iv = 2;A ·{£log sin 7 (z-z') dz' - [tog sin 7 (z-z') dz'}+ U,. (2.2) 

The requirement that the velocity field be tangent to the boundary of the vortices 

then determines the steady shapes of the vortices, apart from the scaling, as a 

function of the three dimensionless parameters d/l = µ, h/l = te, and A/l 2= ex. 

To simplify the calculations, the vortices in the two rows are assumed· to have 

identical shapes, differing only in position and orientation. There are two reason­

able choices of symmetry; invariance to reflection about the line y=-h/2 (the 

streamwise axis centered between the two rows) and a suitable x translation, and 

similarly with an additional reflection about x=O (the vertical axis of one of the vor-

tices). In both cases, it is sufficient to satisfy (2.2) along the boundary of a vortex 

in either row. For vortices of streamwise symmetry, these two cases are equivalent. 

The second choice was picked, giving in place of (2.2): 

2rrA 
[log sin 7 (z -z') sin~ (z +z' -µl +itcl -2Z) dz' + Us, (2.3) u+iv r =--

where zdenotes the centroid of E1 and is for now assumed to be arbitrary. The first 

symmetry could also have been considered, but since only strearnwise symmetric 

solutions were found using (2.3),.this was not attempted. 
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Three quantities of interest are the propagation velocity Us of the array, the kin-

tetic energy of the fluid, and the momentum transport. They are needed to relate 

this model. to the wake flow problem. Specifically, the following quantities are 

defined: 

1 +m v2 
T = -J J (u' 2+v 2

) dx dy, 
2l _.., -l/2 

l +ioo 
D' = --Im J (u' -iv )2 dz. 

2 -ioo 
(2.4) 

where the contour integral in the expression for D' is along any contour from y =-oo 
to y =+co which does not pass through a vortex. Here T is the kinetic energy of the 

fluid per unit length (streamwise), D' is essentially the momentum fimc of the flui<;l:. 

in the streamwise direction with the contribution from the vortices themselves 

omitted, and u' =u-Us is the x velocity relative to the free stream. Dimensionless 

values of these quantities are defined as follows: 

- ( l T a, IC) = - 2 T, 
r 

3. Circular Vortex Approximation 

fJ '(a, 1e) = _l D'. r2 (2.5) 

The vortices of small. area for the exact problem are nearly circular, and for pre-

cisely circular vortices, the propagation velocity, momentum transport, and energy 

calculations can be done analytically. The former two calculations lead to the same 

result as for point vortices (Goldstein,(1938)) since the flow field outside a uniform 

circular vortex is identical to that of a point vortex of the same circulation. For 

d=l/2, µ=;f, 

r rrh 
Us = 2ltanh-l-. 

r 2 rh 
D, u : 27Tl - -l- Sr (3.1) 

and the energy can be evaluated exactly by integration of the kinetic energy den-

sity: 
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r2 z2 2 iih 1 I 1 l T = 2,,1 log[~,,AJ cosh-z-] + 4 . (3.2) 

For µ=O, coth replaces tanh in (3.1) and sinh replaces cosh in (3.2). Note that the 

circular vortex model loses physical validity when the vortices overlap, namely for 

4. Asymptotic Analysis for Small Ar:eas 

Perturbation expansions can be' developed for small area A. A solution may be cal_-

culated with an expansion for the vortex shape of the form 

( 4-.1) 

where 19 is the polar angle {~O corresponds to the positive x direction) and where 

a 2, a 3, ••• are homogeneous. polynomials in a 0• Substitution into the equations 

yields: 

1 

J ~A~ 2 ·~ [ rrA 2 2) 1 
z = - ei 1+-(tanh m~-- cos219 + · · · µ=-

rr z2 s 2 

1 

] 
( 4-.2) 

z = (AJ 2 ei~ G+ r.4._(coth2rr11;-_g_ )cos21J+ · · · µ=O 
rr z2 s 

In principle, large numbers of terms may be calculated by computerized symbol 

manipulation and by using accelerated convergence techniques to approximate the 

solution for reasonably large areas. This was not attempted. 

5. Numerical Method 

Two successful numerical schemes were employed to calculate the steady vortex 

shapes; one using Newton's method in a straightforward manner and the other 

·using an ad hoc iterative scheme {Pierrehumbert and Widnall, (1979)). Only solu-

tions for vortices symmetric in the streamwise direction were computed. The first 
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numerical scheme allowed solutions lacking this symmetry, but none were found 

(although an exhaustive search was not conducted). For purposes of the calcula-

tions, E1 was taken to ·be the vortex with centroid at the origin. 

The condition that the vortex boundary be a streamline may be written: 

Im{ a:.• (u+iv) }= O (5.1) 

where the derivative is taken along the boundary. The.boundary of :E1 is parameter-

ized using polar coordinates: 

z = R (-19 )ei~) 
19( 19 ) = 'l9o + 19 - osin219 

"" " N "" R ('19) = f.ta 0 + :E (ajcosj'19 
j=1 

+ bisinj-19 ) 

o~ 19 ~ 27r 
o~ o< 12 (5.2) 

Here ~. o are parameters which permit limited adjustment of the scaling of 1'J in 

regions of high curvature of the boundary, so as to improve the rate of convergence 

of the Fourier series for R. 

Equation (5.1) is evaluated 'at uniformly spaced values of 19 : 

2rrj 
2N+l 

(j=O, 1, 2, ... , 2N). (5.3) 

This gives 2N + 1 equations for the 2N +2 unknowns a 0 , ••• , aN, b 1, .•• , bN, U5 , and an 

additional equation comes from fixing the size of the vortex, eg.: 

R (It') =fixed, (5.4) 

where rp is some fixed angle. However, the resulting system is singular, because 

(5.1) is invariant to a translation of z. The specification is completed by fixing the 

centroid of the vortex at the origin, ie.: 
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x+iy= ~[R3e;."'d1'J= 0. 
1 

(5.5) 

The resulting 2N +4 real equations for the 2N +2 unknowns are not independent and 

the problem is handled by using the trick {Chen and Safiman. {1980)) of solving 

(5.4) combined with the 2N +1 equations which arise from the discretization of: 

(5.6) 

where f 1 and f 2 are more or less arbitrary non-trivial functions chosen to ensure 

that the Jacobian of the system is non-zero for the solutions that satisfy (5.5). The 

choice of -i9 and -i9 2 respectively for f 1 and f 2 was found to be satisfactory. Also, 

the zappearing in (2.3) was dropped to simplify the equations slightly. 

If o=O, then as the limiting case of touching vortices (in each row) is approached 

for the µ=0.5 case, the curvature of R with respect to 1'J becomes large near 1'J=O and 

1'J=n, and hence convergence of the series for R becomes slow. For large IC, 1Yo=O, 

o=0.4999 were used, which concentrates mesh points in these regions of large cur-

vature, and hence smooths out R as a function of 19. This procedure works well for 

roughly 1C> 0.36; below this point, large curvature appears for large area vortices 

away from 1'J=O and 1'J=n, and the simple transformation to 19 described by (5.2) is 

not useful. Probably, more complicated transformations could be found which 

would alleviate this difficulty, but this was not attempted. To speed up some com-

putations, '!Yo=-;, o=O were used, and the vortices were assumed to be streamwise 

symmetric. In this case, the Fourier series for R contains only the cosine terms, 

and hence the number of unknowns is reduced. Specifically, {5.6) is evaluateci at 

the mesh points {5.3) for j=1,2, .. .,N, and the unknowns are a 0, ai ..... aN-1• U5 ; the 

remaining Fourier coefficients are taken to be zero. 

Integrals for velocity, centroid, and area were evaluated using the trapezoidal 
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rule, with care taken, in the former case, to preserve formal infinite order accuracy 

(see appendix A). Initial guesses for Newton's method were provided by using one 

Euler step to advance·from the previous converged solution, starting with small vor­

tices and gradually increasing the size by continuation in the parameter (5.4). 

However, convergence was observed to be insensitive to the initial guess. Accuracy 

was ensured by requiring that the highest order Fourier coefficients were 

sufficiently small, and by checking that increasing N had sufficiently small effect on 

the results; Values of. N from 50 to 400 were found to be adequate for 5 digit preci-

sion in the final results. Each iteration required roughly from 1 to 25 seconds using 

a CDC Cyber 203 computer (64 bit floating point). 

The second numerical scheme is essentially a scalar approximation to Newton's 

method. Consider the variation of the stream-function 1f; along the boundary of the 

vortex at some intermediary stage in the calculation. It is assumed that most of 

the change in 1f; on the boundary due to a perturbation of the boundary comes from 

the fact that it is computed at a different point, rather than the fact that the flow 

field is changed. Again, a polar coordinate representation for the boundary is 

employed: 

N 1T N """' 

19{19 ) = --+19 -osin219 
2 

(5.7) 

but here streamwise symmetry of each vortex is assumed ab initio and the unk-

nowns are taken to be U5 and the values of R at: 

!!.i 
N 

The iteration performed can be written: 

(j=O, 1, 2, ... ,N) 

,,1.{n)_,,,,<n) 

R {n+1)=R·(n)_ 'f':; 'YO. (" 12 N) 
3 3 p 1/Jk~) J= ' , ... , 

(5.8) 
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(5.9) 

The numerator of the. quotient is obtained by integration of the velocity using the 

trapezoidal rule: 

(5.10) 

~~ l i.E:!L) (n) (a~) (n) + ('.EJ!...\ (n) (a'!~ (n) + (:EJ!..) (n) (a~) (n) + (:E3f!..) (n) (a'!) (n) l 
N \aR 1 a'l'J :J a19J i a'l'J J 1 aR 1-1 a'l'J J-1 a'l'J J-1 a'l'J 1-1 

and 'if!R = a'l{l/aR is of course a velocity component. The relaxation factor p is· 

adjusted empirically for optimum convergence (typically 0.5;:;1; p;:;i; 2). Cycles of this 

iteration alternate with an update of U5 : 

(5.11) 

where V 'if;(n) is obtained by integrating d'if; around the half revolution from ~ to 

19N • The velocity was calculated essentially as before (but see appendix A). As the 

final step of the iteration, the vortex is shifted in they direction to put the centroid 

at the origin, new values of R1 being computed via interpolation. 

This method has apparent advantages over Newton's method; namely, its sirnpli-

city and its speed per iteration (the cost is O(N 2) per iteration versus O(N3) for 

Newton's method). However, highly unpredictable dependence on the initial guess 

and poor convergence rate in. some cases are the penalties. Convergence is 

geometric with observed convergence factor ranging from about .15 for very small 

vortices to about .85 for large vortices. The method failed entirely to converge for 

very large vortices with small tc. Furthermore, more points are required for the 

same accuracy as compared with the previous method. Instability is controlled by 

limiting the maximum value of p and was not a difficulty. Values of N ranging from 

· 50 to 400 were found. to be adequate. These calculations were performed using a 
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DEC VA.Xll/780 computer (64 bit floating point). 

The energy can be: obtained by a single. contour integral over the vortex boun­

dary requiring O(N) operations (see appendix B). The momentum integral was com­

puted by applying th.e trapezoidal rule over a finite contour passing between two 

neighboring vortices, and extending to regions where the flow is essentially a uni­

form stream (the perturbation decays exponentially with y). Romberg integration 

was used to obtain sufficient accuracy for this calculation. 

6. Results of the Calculations 

Figures 2 to 5 show the calculated values of Us , 'l', and f)' for the case µ=0.5 for -

the exact problem, accompanied by the corresponding results for the circular vor­

tex approximation. The curves were traced by using as continuation parameter the 

quantity a which is the ratio of the x semi-axis of the vortices to l. As is evident in 

figure 5, a solution of simultaneous maximum area and minimum energy exists for 

each tc in accordance with Kelvin's variational principle for the steady states 

(Saffman and Szeto, (1981)). This limit is a contour in the (re,a) plane, as depicted 

by curve 1 in figure• 6. For roughly tc> 0 .. 36, further increase in a results in a 

decrease in area and increase in energy, up to the point a=0.5, where the vortices in 

each row touch. This limiting case is depicted by curve 2 in figure 6. Thus, between 

curves 1 and 2, there are two different configurations for a given (tc,a). Presumably, 

the solution curves could be continued beyond a=0.5 by considering two adjacent 

distorted vortex layers in place of discrete vortices, but this was not done. Similar 

behavior has been observed for the linear vortex array, which in fact corresponds 

to the limit IC_,,. co (Saffman and Szeto, (1981)). Quite different behavior wa.s 

observed for re smaller than about 0.36. In this case, the calculations indicate that 

the parameter a approaches a. limiting value less than 0.5. To check that this 

phenomenon was not dependent on the choice of the horizontal semi-axis for con·· 

· tinuation, the vertical semi-axes were also used as continuation parameters. In all 
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cases, the numerical evidence indicates that as the vortex size increases, vortices in 

each row protrude between vortices in the other row, and the solutions branches 

terminate when vortices in opposite rows approach and finally meet. Here there is 

no turn-around in area or energy, but maximum area and minimum energy occur 

at the limiting point of the solution branch. This behavior is similar to t.hat 

observed for a pair of counter-rotating vortices as studied by Pierrehumbert 

(1980). The calculations for 1e< 0.36 and for large area were costly, and an accurate 

calculation of the limiting case was not attempted. For this region, the correspond­

ing segment of curve 1 in figure 6 should be regarded as a lower bound. 

Presumably, there exists a critical value of IC which divides the regions of the two 

types of limiting behavior. Due to cost limitations, it was not possible to determine 

accurately this critical value. However, it is believed to lie within the range from 

0.35 to 0.365. 

A geometric observation Of relevance is. that for small areas and for JC>. 36485, 

the vortices are longer in the streamwise direction than in the transverse, and the 

converse for IC less than this critical value. The exact dividing value for infinitesimal 

area is the solution to cosh2rrte=3, which is obvious from (4.2) and which may also 

be demonstrated using an elliptical vortex approximation (as has been applied to 

the linear vortex array; see Safiman and Szeto, (1981)). This is in good agreement 

with the numerically estimated large area critical value of tc as discussed above, but 

there is no evidence to suggest that the large area critical value is precisely the 

infinitesimal area critical value. 

Figures 7 to 43 are plots showing the vortex shapes and the velocity fields. The 

apparent good qualitative agreement with experimental observations (for example, 

Davies, ( 1976)) seems, to provide some justification for the assumptions implicit in 

the proposed application of this. model to the wake behind bluff bodies and its ~ta­

bility. However, this "apparent qualitative agreement" is not very sig~ificant, and 
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more meaningful comparison with experiment must wait for research beyond the 

scope of this thesis. 

Figures 44 and 45 show the calculated values of U5 and T for the case µ=O as 

well as the corresponding results for the circular vortex approximation. The energy 

calculations are used in the next part of this thesis. The momentum flux was not 

calculated for these steady states. 
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III. ST ABILlTY 

7. Introduction 

The Karman vortex street is a regular pattern of vortices consisting of two parallel 

staggered rows, which, for a certain range 'Of Reynolds number; is observed in the 

wake of two-dimensional blunt bodies placed in a uniform stream. In the previous 

part of this thesis, an inviscid model for the wake flow was described which consists 

of two rows of staggered vortices of finite size, extending to infinity in both direc-

tions. Steady solutions (which propagate relative to the free stream) were found _ 

numerically, and their. properties were calculated. 

This part of the thesis discusses the stability of these steady solutions to two-

dimensional disturbances. A normal mode analysis is carried out and the growth 

rates and frequencies, of the modes are calculated for a range of values of the vor-

tex size and separation/spading ratio of the street. It is found that finite size can 

stabilize the street to infinitesimal disturbances. The results for super.harmonic 

disturbances are in accord with those predicted by energy arguments based on 

Kelvin's variational principle. It will be pointed out that an attempt to use these 

energy arguments for subharmonic disturbances leads to fallacious conclusions. 

8. Subharmonic Instabilities of the Point Vortex Array 

The limiting case of point vortices (a=O) was studied by von Karman (1912); see also 

Lamb (1932, §156). It was shown that infinitesimal two-dimensional disturbances of 

wavelength l/p grow like eat, where 

(8.1) 

and 
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A = 2p (1-p )-sech27ilC; 

B = i[2p sinhrrrc(1-2p) + sinh2mcp]
1 

[ cosh7itc cosh2rrtc J 

C = cosh2mcp 
cosh27ite 

Zp coshmc(1-2p) 
coshrrlC 

(8.2) 

(8.3) 

(8.4) 

Note that p need not be an integer or rational. Since the steady flow has 

wavelength l, it follows from Floquet or Bloch wave theory that the normal modes of 

the system (for finite as well as point vortices) are of the form 

(8.5) 

where P (x +l, y )= P (x, y ). Disturbances with p equal to an integer or zero will be 

called superharmonic; they always have wavelength l. If p is not equal to an.integer, 

there is clearly no loss of generality in supposing that O< p < 1, and such distur-

bances will in general have components with wavelengths greater than l and will be 

called subharmonic. 

Figure 46 shows the regions of stable (Re u=O) and unstable (Re u> 0) eigenfunc-

tions in the (1C,p) plane for point vortices. It should be noted that not all eigenfunc-

tions are linearly unstable but for IC°F- ICc there always exist unstable disturbances. 

For IC=tec (where cosh27itcc=2) all the disturbances are linearly stable, and this case 

was identified by von Rarman as. the stable configuration of the street. However, it 

was discovered by Kochin ( 1939) that this "stable" configuration is in fact unstable 

at second order approximation in the disturbance amplitude (for an. elegant 

demonstration, see Domm (1956).) These higher order studies have dealt only with 

the case p=0.5, and it is not known whether approximation of the evolution equa-

tions to order higher than first would lead to growing disturbances for other values 

of p. The disturbances for the p=0.5, tc=tec case grow in time as e 8 t where e> 0 is 

proportional to the initial disturbance, as opposed to the e'"Rt behavior (aR 
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independent of initial conditions) which occurs in the unstable region away from 

the stability /instability boundary. 

Initially, it was hoped that an energy criterion could be used to answer this ques-

tion of finite amplitude stability away from the stability boundary. The Kirchhoff-

Routh path function W(Xi.Yi.X2,y2. · · ·) (which is a measure of the 'interaction 

energy", see Lin (1943)) determines the motion of the vortices (xi.Yi) through the 

relations: 

(8.6) 

By a trivial change of variables,. say xi-. -xi for vortices with ri=-r, this becomes a 

Hamiltonian system with Hamiltonian W. The right-hand sides of the (Hamilton's) 

equations may be expanded in Taylor series about the steady solutions Xi, Yi· The 

linearized equations reproduce figure 46. The second and higher order terms are, 

for sufficiently small .deviation from the steady state, a small correction to the 

linear (and integrable) system. There exists a body of theory. for such ''nearly 

integrable" Hamiltonian systems in the literature (see, for example, Chirikov 

(1979)). In general, such systems exhibit the slow instability phenomenon known as 

"Arnol'd diffusion". Fairly general bounds exist for the average growth rate of this 

instability {eg. Nekhoroshev (1971)) but these do not appear to provide useful con-

clusions for the present problem. 

The stability boundaries of figure 46 will obviously be perturbed by the effect of 

finite size of the vortices, and the degenerate saddle will separate into one of the 

possibilities marked by the dashed lines in the figure. If case 1 is the situation, 

then there will be stability to infinitesimal disturbances for a finite range of IC in the 

. vicinity of tc=tc0 • If case 2 obtains, then finite vortex size makes the array unstable 

"for all IC. 
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In principle, the problem of deciding between case 1 and case 2 can be treated by 

perturbation theory by expanding in powers of the area of the vortices, i.e. a. How-

ever, for reasons to be given below, it appears that the algebraic complexity is 

great, and direct numerical methods were employed instead. These, of course, have 

the advantage that they give results for finite areas not accessible to perturbation 

methods. It clearly suffices to consider only the subharmonic (pairing) dist.ur-

bances with p=0.5, and we therefore restrict attention henceforth to disturbances 

which are periodic with period 2l in the x-direction. Note that the superharmonic 

disturbances are then. automatically included, as these are trivially of period 2l. 

9. Analysis of the Stability 

It is appropriate for disturbances with period 2l to consider four independent per-

turbed vortex shapes {and positions), corresponding to the four vortices in one 

period 2l, and extended periodically to infinity along the street, as in figure.47. The 

approach is to calculate the first variation of the velocity field due to a perturba-

tion in vortex shape and position, and then to require that the linearized kinematic 

condition be satisfied. on the boundaries of the vortices.' In particular, solutions are 

looked for that are normal modes proportional to eut; an eigenvalue problem is the 

result. 

A convenient parameterization for the vortex boundaries is a polar coordinate 

representation: 

:z (19) = :z 0{19) + z '(19) 
N 

:z'(19) = [12ao + L: (ancosn19+ bn.sinn19)]ei'IJ 
n=1 

l (9.1) 

Here z 0 (19) describes the steady boundary in question and z '(19) describes the added 

disturbances. 

As was shown in the previous part of the thesis, the complex velocity field pro-

duced by a single row of vortices {of spacing 2l) can be calculated by integration 
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around the boundary· of a single vortex in the row as follows: 

u+iv = 2;A J log I sin 7 (z-Z) I dZ (9.2) 

where z = x+iy is the complex coordinate, lower case variables refer to the point of 

evaluation of the flow field and upper case variables refer to the path of integration. 

When evaluated on a vortex boundary, this will give the velocity contribution on the 

vortex boundaries of each vortex in the corresponding 2l-periodic row due to dis-

turbances of the other three 2l-periodic vortex rows, added to the unperturbed 

value. Substituting z=z 0 + z', Z=Zo + Z', and assuming constant area A, the·-

corresponding first variation of the velocity contribution is: 

As was remarked in the preyious part of the thesis, the "self-induced" velocity for 

one row of vortices may be written: 

sin~(z-Z) 
u '+iv = J log --2-l __ _ 

2!...(z-Z) 
2l 

- i[arg(z-Z)-1,2®] dZ + 1S,iZ d® - irrz 
d® 

(9.4) 

where the arg function is taken so as to make the integrand periodic. The 

corresponding first variation is then: 

Note that all singularities of the integrand have been removed. To calculate the 

.change in flow field due to the complete disturbance, three terms of the form (9.3) 
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anci one of the form (9.5) are summed with appropriate choice for the sign_of rand 

the vortex coordinate parameters in each case. 

The kinematic condition that the vortex boundaries move with the fluid may be 

written: 

D 
Dt [r-R (~t )] = O (9.6) 

Here: 

R ( 11. t ) = R 0( 19) + R ' ( '!?, t) 

.!2_= a a 1 a 
Dt - at +Ur ar + -:;:u,, 819 

(9. 7) 

where, as before, the subscript nought refers to the unperturbed quantity and the 

superscript prime refers to added perturbations. Also, Ur and u~ are the polar velo-

city components. The solutions. of interest are normal modes with perturbations 

proportional to eut, so that: 

R'('l9.t) =eat R'(f)) 
u (r, ~ t) = u 0(r, 19) + eutu '(r, 19) (9.8) 

where the latter holds for each velocity component. To leading order. 

(9.9} 

for en.ch velocity component. Equations (9.7), (9.8), and (9.9) may be substituted 

into (9.6} and terms of second and higher order in the perturbation omitted, giving: 

Ur'+ au.ro RI - _1_ dR 0 u,j + au-oo R, = 
ar R 0 d19 ar (9.10) 

1 dR u dR' 
R , o R' + ~r.i (]' - ---u-oo ----

R ~ d'l'J Ro d'l'J 

where now all quantities are evaluated on r=R 0(19), and l!se has been ·made of the 
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fact that: 

1 dRo 
U,.o - ---u'!Xl = 0 on r=R o. Ro d'13 (9.11) 

The left hand side of (9.10) is the perturbation in normal velocity component 6Un 

divided by the geometric factor: 

[ 
1 dRo 2J-{-cos7J = 1 +(---) 

Ro d1J 
(9.12) 

where the effect of the change in normal direction due to the perturbation has been. 

omitted. Also, u-oo and the unperturbed tangential velocity component Uto are 

related by: 

(9.13) 

so that (9.10) may be:written·: 

, 2 1 dRo , 2 uto dR' 
6Un = acos71 R - cos 1J R 8 d'l3 UtoR + cos 1J R 

0 
d1J • (9.14) 

This may be equated to the corresponding quantity calculated by the integration 

above (ie. by (9.3) and (9.5)) and using: 

' 1 dRo ' au 71 = COS7] U,. - ---U,j 
Ro d19 

u.,.' = u'cos'l3+ v'sin'l3 
uJ = -u 'sin1J + v 'cos'(} 

After substituting (9.1) and evaluating at the 2N +1 points 

21Tj 19 = '131 = 2N + 1 (j=O, 1, ... , 2N) 

. the result is a generalized eigenvalue problem of the form: 

(9.15) 

(9.16) 
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Aw= uBw (9.17) 

where A and B are 8N+4 by 8N+4 matrices and w is a vector containing the four 

sets. of 2N+l Fourier coefficients from (9.1). The real parts of the eigenvalues of 

this system then give the growthrates of the corresponding normal modes .. Inspec-

tion leads to the conclusion that if a is an .eigenvalue, then so are -u, a•, and -a". 

Thus, it is evident that at best, a steady state may have only normal modes with 

zero linear growth rate, and otherwise, the state is linearly unstable. 

For numerical purposes, the system (9.17) may be simplified somewhat, by 

recognizing the symmetry of the problem. It is sufficient to consider disturbances 

where the vortex shape perturbations z' are neg~tives for vortices of rows 1 and 2 

above, and similarly for rows 3 and 4. This simplification reduces the size of the 

system to 4N+2 equations in two sets of Fourier coefficients. Values of N from 10 to 

25 were used, depending on the size of the vortices. 

Computations of the eigensystem were performed with standard library routines 

using an IBM 3033 computer (64 bit floating point). Some computational difficulties 

were encountered; an explanation follows: Note that for isolated circular vortices 

of area A and circulation r, normal mode perturbations exist of the form (see 

Lamb, (1932,pp.230-1)): 

R' = e cosm19 e"'t 

a = 1$-r-(m-1) 
2rrA 

(m=2, 3, 4, ... ). 

(9.18) 

Since the corresponding flow field perturbations fall off in distance r as r-m-1, and 

since small area vortices for the street are nearly circular, it is evident that for 

small A and large m, there will exist such solutions for the street.. These in fact are 

the superharmonic disturbances. For small area A, these eigenvalues are much 

. larger in modulus than the subharmonic (p=0.5) modes which. are bounded as A 
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decreases. In fact, although this behavior is most severe for small areas, for all 

states that were computed, thes.e "nearly isolated" modes had eigenvalues with dom­

inating moduli. This characteristic showed itself in a great sensitivity of the calcu­

lated small eigenvalues to errors in the steady calculations (hence the matrices A 

and B). Typically, an error of roughly 0.1% in radius or tangential velocity com­

pletely destroyed the small eigenvalue computation. A second computational prob­

lem was failure of convergence of the iterative procedure for eigenvalue and eigen­

vector computation. This difficulty usually manifested itself near the 

stability/instability interface, and the explanation is not clear. 

The results of the stability calculations are plotted in figures 48 to 68 and sum­

marized in figure 69. As described in Chapter 6, curve 1 denotes the approximate 

maximum area for a given spacing ratio, and between curYes 1 and 2 there are two 

solutions for a given (tc,cx) pair. Outside of the nearly enclosed central v-shaped 

region indicated in the (te,cx) plane, there are modes with positive growth rates, and 

hence these outlying states are linearly unstable. Inside this region, there are no 

such modes (with x period 2l). With the exception of the smaller energy state in the 

non-unique region (between curves 1 and 2 in figure 69), all eigenvalues correspond­

ing to superharmonic disturbances were found to be purely imaginary. The excep­

tional cases were found to be difficult to calculate, but the growing superharmonic 

modes appear to have real eigenvalues (see figure 68). Aside from the trivial modes 

(uniform displacements) the non-growing modes were found to be approximately 

given by (9.18), at least form greater than 3 or 4, with best matching for large m. 

There is agreement with the unsteady initial-value calculations of Christiansen and 

Zabusky (1973}, as indicated in figure 69. 

The observed change of subharmonic stability as ex crosses some critical value cx0 

occurs when an imaginary eigenvalue splits to become a growing/ decaying pair. 

This may be explained as follows. Since the eigenvalues u are given (to arbitrary 

· approximation) by the roots of a polynomial whose coefficients presumably are 
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smooth functions of ex, non-analytic behavior of C1(a) is limited to the existence of 

branch points (Bender and Orszag, (1978, pp.350)). Thus, the observed splitting as a 

is decreased below CXc (say}, may be described locally by 

CJ' ::1: R:i ± .J'exc -ex + i c.J (9.19) 

Hence, transition from stable to unstable conditions is accompanied by the degen-

eration of two imaginary eigenvalues. This phenomenon was clearly observed both 

for the stabilization at smaller area and the subsequent destabilization at larger 

area, and is apparent in many of figures 49 to 65. The superharmonic instabilities_ 

seem to have more complicated behavior, and due to the difficulty of these calcula-

tions, this matter remains obscure. 

For small areas, the width in re of the stability region decreases and a plot of cal-

culations in the vicinity (figure 70) indicates that the critical value of area ex at 

which stabilization occurs, asymptotically for small area, is approximately: 

1 

aR:i 1.31(tec-tc) 2 

j._ 

ai::::i 0. 78(te-tcc) 2 

(9.20) 

This approximate result indicates for the following reason that its exact calculation 

by perturbation analysis may be. a laborious task: When ex=O and p=0.5, the eigen-

values are the roots of the quartic 

(9.21) 

It is expected that the coefficients of the equation for the eigenvalues are analytic 

functions of IC and ex. Hence, for ex<< 1, the perturbed eigenvalues are roots of the 

quartic 
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(9.22) 

(Invariance .to changes in the sign of the vorticity requires the coefficients to be 

even functions of O!). The roots will, as functions of O!, have branch point singulari­

ties, corresponding to a change.· in stability of the system, where the roots of the 

quartic are not distinct, i.e. when 

(9.23) 

The results shown in figure 70 indicate that when expanded in (1C-te0 ) as well as ex, 

this equation takes the approximate form 

(9.24) 

The principal point, however, is. that it is necessary to go to fourth order in ex in 

order to determine the behavior of the eigenvalues for small area. 

10. The Energy Criterion for Stability 

It was pointed out by Kelvin (1910,pp.116) (see also Arnol'd (1980,pp.335)} that for 

given vorticity and momentum, steady states correspond .to stationary points of the 

kinetic energy with respect to kinematically allowable isovorticial perturbations. 

The steady state is then stable ifit is a local maximum or miminum in energy. 

For this problem, assuming perturbations periodic in the streamwise direction 

(say with period Nl, Nan integer), it is sufficient to apply the above criterion to one 

period of the flow field. Holding the vorticity constant, and assuming that vortices 

of opposite sense do not amalgamate, the requirement of kinematically alloweble 

perturbations forces the total area of the vortices of each sense to remain 

unchanged. The condition of momentum invariance requires that the components 

of hydrodynamic impulse per unit length, 
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1 Nl +oo fh 
l:r = -Nl ff r..JY dx dy = - , 

0 -oo l 
(10.1) 

l Nl +oo 

I y = - Nl j f r..JX dx dy = 0, 
0 -oo 

(10.2) 

stay constant. This is ensured by keeping the distance between the centroids of the 

two rows constant. In the following discussion it shall be assumed that N=2. 

Now consider a system with period 2lo and consider the following four 

configurations {see figure 71): 

(1) l=2lo. d=lo. h=h0, A =2Ao (10.3) 

(2) l=2l 0, d=O, h=h 0, A =2A 0 

(3) l=lo. d='l/,,lo. h=ho, A =Ao 

(4) l=l 0, d=O, h=h 0, A=A0 

These states are apparently unique for small values of ex (below curve 2 in figure 69 

for states (1) and (3)). It is clear that these four states satisfy the above conditions 

(10.1) and (10.2). Presumaply, there are other steady states that do so, such as 

finer splittings and multiple vortex layers, but the existence of such configurations 

is not crucial to this argument, as their energy is (believed to be) less than that of 

configuration (4). We are concerned with the stability of configuration (3) to 

superharmonic disturbances of period lo in which all vortices in a row are disturbed 

in the same way, and to subharmonic disturbances of period 2l 0 • 

Calculations based on the circular vortex approximation (see Chapter 3) indicate 

that the energies of the four steady states can be ranked as follows when a=A o/l8 is 

small: 

(10.4) 
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Since Eis clearly bounded above, E 1 is an absolute maximum and configuration (1) 

is stable; it follows from the similarity of (1) and (3) that configuration (3) is stable 

to all superharmonic disturbances, and this will remain true for all oc below curve 2 

in figure 69. (When there are two states, the one with less energy will be unstable.) 

This confirms our calculations of superharmonic instability but state (3) is not 

stable to subharmonic disturbances for IC outside the range shown in figure 69 and 

will therefore be in this range a minimax of energy. 

Now it can be shown from calculations of the system with d=O that when a is 

large it is possible for E 2< E 3 to occur. When this problem was first studied, it was 

speculated that a mechanism for the stabilization of configuration (3) against 

subharmonic infinitesimal and finite amplitude disturbances is that the drop in E 2 

below E 3 for sufficiently large area results in a change in the topology of the energy 

surface in the infinite dimensional configuration space (for this configuration) so 

that it becomes a local maximum in energy. Non-dimensionalization leads to 

T = 1~
2 

T (a, tc, µ) for the energy per unit length of a given steady state (assuming it 

exists). The condition that E 2=E 3 then leads to: 

2 T (1;2oc, 1;21e, 0) = T ( oc, IC, %) (10.5) 

where oc and IC are the parameters associated with configuration three. The result 

of applying.this criterion is shown by curve 3 of figure 69. It was observed that for 

the µ=O cases {configurations (2) and (4)), solutions exist only for vortices up lo a 

limiting area. As the vortex area approaches this limit adjacent vortices in opposite 

rows near each other. It is believed that this behavior is qualitatively similar to 

that observed for a pair of counter-rotating vortices by Pierrehumbert (1980). For 

small tc, the limit occurs at small area, and since interactions betwaen neighboring 

pairs are then small, the counter-rotating vortex pair should indeed be a good 

. approximation. Curve 4 of figure 69 represents this approximation. Some calcula-
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tions for the exact problem were attempted and are in reasonable agreement with 

curve 4 (the approximate caloulated limiting areas were always less than. curve 4 

and within about 25%). However; accurate calculation of the limiting area is prohi­

bitively expensive, and was not undertaken. According to this argument, the region 

of stability lies between curves 3 and 4 in figure 69 and is moreover a region of sta­

bility to finite amplitude disturbances which are not too large. The results of the 

linear stability analysis shows that this argument is fallacious. Incidentally, there 

is no evidence to suggest that the symmetrical configuration ( d=O) can be stabilized 

by finite size, but Taneda (1965) reported that oscillation of the body produced 

streets of symmetrical vortices. At present no explanation of this phenomenon can 

be offered. 

11. Conclusion 

Von Karman's analysis of the linear stability of the point vortex street has been 

generalized to vortices of finite size and it has been demonstrated that finite size 

can stabiliz.e the array. 'rhe boundary of the linear stability region for subharmonic 

disturbances of period twice the separation is shown in figure 69. The open ques­

tions deal with non-linear stability and with stability to more general disturbances. 

At present, there seems to be no way to study the former question other than by 

direct numerical calculation of an initial value problem. This was carried out to 

some approximation by Christiansen and Zabusky (1973), as commented earlier, 

and their results indicate that linear stability implies non-linear stability, or at 

least, very slow growth. The possibility of unstable disturbances of more general 

character than those considered here could also be investigated in this way; 

For point vortices, the equations of motion amount to a Hamiltonian system of a 

finite number of degrees of freedom (depending on the assumed periodicity) and 

the theory of nearly integrable systems (eg. see Chirikov (1979)) suggests that this 

. system is subject to slow instability ("Arnol'd diffusion"). However, it may be that the 
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instability is so slow that streets of physical interest are in a practical sense stable. 

This question has not been resolved. Intuitively, one can perhaps expect this 

behavior to persist to the finite area case, but it would be worthwhile to investigate 

this matter further. 
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IV. Directions for Future Research 

As was pointed out previously, there are unresolved questions pertaining to the sta­

bility of the inviscid model described herein. A conclusive resolution of the ques­

tions of neutral versus true stability and stability to three-dimensional distur­

bances would be highly desirable in order to complete the theoretical understand­

ing of this idealized model. These are rather subtle but generic problems, and a 

solution might provide some general understanding of the class of inviscid but rota­

tional flows. However, it is possibly true that these questions are of more theoreti­

cal than practical interest. Another unresolved question is whether or not there 

are two-dimensional disturbances of more general character than considered here 

which result in greater instability. In principle, disturbances of longer wavel,ength 

could by studied by allowing more than the four independent vortex perturbations 

allowed in the present work. This approach would not resolve the possibility of the 

existence of a continuous spectrum. 

An interesting and useful extension of this work would deal with the cases of vor­

tex streets with rows of vortices· of unequal strength (and/or area and shape) and 

uncentered stagger, which might be produced in the w·ake of lifting and vibrating 

bodies or bodies with unequal free-stream velocities above and below. These exten­

sions require only minor modifications to the methods used for the model problem 

considered here. A more difficult extension of the model would deal with nonuni­

form vorticity, although still in the context of inviscid flow. If the vorticity is taken 

to be piecewise constant with each vortex consisting of several concentric "layers", 

each of uniform vorticity, the present numerical schemes could also be used with 

minor changes. A more general distribution of vorticity probably would require a 

different approach. It is not known what effect on the results a nonuniform distri­

bution of vorticity would have, but it is conjectured that the changes would be of an 

·unessential nature. 
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From the point of view of the .experimentalist and applied fluid dynamicist, prob­

ably the most unsatisfactory aspect of the present work is the neglect of viscosity. 

While it is of interest to observe how well the physically observed phenomena may 

be predicted by an inviscid model (the author plans to investigate this matter 

further), it is probably true that comparison with experiment must remain doubt­

ful. Viscous effects are fundamentally important in real physical systems produc­

ing Karman vortex streets, but their presence greatly complicates the theoretical 

analysis, and a fully satisfactory treatment of the viscous problem has not yet been 

achieved. 
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Appendix A - Calculation of the Velocity 

To evaluate the integrals in (2.2) it is useful to write: 

271' ~ 
[log sin~ (z-z') dz'= ~log sin~ (z-Z) d® d®, (A.1) 

where Z=s z 1-r=e and ~/d® can be determined from (5.2) as finite Fourier series 

in e. Hence, the integrand is 211'-periodic, and the trapezoidal rule gives formally 

infinite order accuracy - provided that the integrand has infinitely many deriva-

tives, ie. that z is not on the boundary of the vortex. Unfortunately, z is on the 

boundary for one of the integrals when (5.6) is solved to obtain the vortex shapes. 

To preserve accuracy in this case, the following trick is used (suggested by Dr. B. 

Fornberg): 

sinE-(z -z') 
flog sin 7 (z-z') dz'= flog __ l __ _ 

.I!..(z -z') 
i 

dz' +flog 7 (z-z') dz' (A.2} 

The first integral presents no difficulties, and the second can be calculated as fol-

lows: 

flog 7 (z -z') dz' = flog 7 (z-z') dz' - flog I:=:: I ·dz' (A.3) 

=-if arg (z-z') dz' 

,.., 
19+271' ~ 

= -i [ arg(z-Z) - d® 
;; dGl 

,.., ,.., 
19 +2n z oj +271' dZ 

= -i 1 rarg(z-Z)-1,iel .!!:_ d® -16i 1 Gl - d® 
~L j de - ~ de 

W+271' Z ~ l l = -i ,,(;, [arg(z-Z)-1.i®] :e - %,z d® - i1Tz(19) 
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where the arg function is taken so that the integrand is 21T-periodic. 

For the second numerical scheme, R'IJ was approximated by a fourth order cen­

tered finite difference' formula, and Z'IJ then obtained from this. Hence, the integrals 

were approximated to third order. 
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Appendix B - Energy Calculation 

The calculation of the kinetic energy for the infinite vortex street proceeds nearly 

identically as for the infinite linear array (Saffman and Szeto, (1981)). The result 

(with unit density) may be written: 

1 r 01/J r 01/J 1 r 2 2n 
T = -- fR 2- ds - - [x- ds - -- rR 4 d'fl. 

4 A f. - on 2rr an 16 A 2 JoJ 
1 1 

(B.1) 

where (R,'fl.) are polar: coordinates with origin at the centroid of the prime vortex, 

and xis the integrand in (2.1) that gives the value of the stream function at the ori-

gin, after combining the integrals. le.: 

1/1(0, 0) = 2~A f / X dA 
1 

(B.2) 

The functional form of x depends on the symmetry presumed to exist between the 

two rows of the street. Corresponding to (2.3), the actual function that was used in 

these calculations is: 

• 7r sm-z 
x(z) =log ____ l __ _ 

sin 7 ( z -d +ih ) 
(B.3) 
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Figure 2. Values of the street propagation speed Us for the staggered 

vortex array (µ::::12). Solid lines denote the calculated values for the 

exact problem and dashed lines denote the circular vortex approximation. 
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Figure 3. Values of the momentum flux D' for the staggered vortex 

array (µ=~). Solid lines denote the calculated values for the exact 

problem and dashed lines denote the circular vortex approximation. 
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Figure 4. Values of the kinetic energy T for the staggered vortex 

array (µ=~). Solid lines denote the calculated values for the exact 

problem and dashed lines denote the circular vortex approximation. 
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Figure 5. Expanded plot of kinetic energy T versus area a, showing 

the non-uniqueness, maximum area, and minimum energy. 
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Figure 7. Plot of the vortex shapes and the velocity field for 

K=. l Ci.=.07948 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 8. Plot of the vortex shapes and the velocity field for 

K=.2 a=.03391 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 9. Plot of the vortex shapes and the velocity field for 

K=.2 a=.06963 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 10. Plot of the vortex shapes and the velocity field for 

K=, 2 a=.1019 

Arrow length is proportional to the speed of the fluid at midpoint. 



- 54 -

- - - ~ - - , - - - - - - - - -

\\I•• ••II//// ,,,\\It• 11///// ,,'\ 

\ I,·'\ I //~/---'~\\ I I,•' I It//~/---,~\ 
\ I , - ' ' \ f I ~ / ~ - ' ' \ \ \ I I , - ' ' \ t f I ~ / ~ - ' ' \ \ 
' ' I I , - ' ' \ ' t l f I , - ' \ \ l l I \ ' t l f I , - ' \ \ I J///,;;--....:~\\t ff1·1~l J///,;;---...:~\\t ff1-1\l 
I I / v /' - ' ~ \ \ ' t t I I ' ' I I / v /' - ' ~ \ \ ' \ t I . ' I ' 
' I I / - ' ' \ \ ~ ' ' \ - I I I l ' I I / - ' \ \ \ ' \ \ \ - I I I l I. I I ~ - ' \ \ \ ~ K \ ' - ~ I ~ I. I. I I ~ - ' \ ~ \ ~ ~ \ ' - ~ I I. 
I I. I I I - \ \ \ ' \ \ ' ' - / I I I. l. I I I - ' \ \ ~ \ \ \ ' - / I I 
J ! l I I . I , ' l \ \ \ ~ ' -/ h / I I ! ' I I . , \ ' l ' \ ' ~ ' -/ h / I J l\ 1 - 1 tf \\\":-...-....-:1'/IJ ll 1 -1tf \\\":-...-....:1'/I l \\,_,,, t,,,,_,,,,l \\, _ _,,, f\\ '' 
\ \ ~ '' - ~//,I f t ' ' - , I I l \ \ ~' ' - ~//,I t t'\ '' - , I l 
\\~~---/~// t I I'·, I I~\\~~---/.~// f I\'., I I\ 
\,,, __ "' . .-'//I' I I • • • I\\'''·~--'.//./ I', I. 1 I \ 

' ' ~ - -- - - ~ , , , 

Figure 11. Plot of the vortex shapes and the velocity field for 

K=, 2 a=.1566 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 12. Plot of the vortex shapes and the velocity field for 

K=.2 a=. 2102 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 13. Plot of the vortex shapes and the velocity field for 

K=.28055 a=.0007063 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 14. Plot of the vortex shapes and the velocity field for 

K=.28055 a=. 03011 

Arrow length is proportional to the speed of the fluid at midpoint. 



- 58 -

------~-------------------------------------------------------------------------
------------------------------------~---

----------------------------------------
----------------------------------------
------------~---~-~---------------------
~~-------~~~~-----~~~--------~~~~----~~~ 

~~~~~---~~~~--------~~~------~~--------~ 

----------------------------------------

----------------------------------------

Figure 15. Plot of the vortex shapes and the velocity field for 

K=.28055 a=.09382 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 16. Plot of the vortex shapes and the velocity field for 

K=,28055 a=. 1485 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 17. Plot of the vortex shapes and the velocity field for 

K=.28055 a=.2047 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 18. Plot of the vortex shapes and the velricity field for 

K=.28055 a=.3247 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 19. Plot of the vortex shapes and the velocity field for 

K=. 3 a=.07484 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 20. Plot of the vortex shapes and the velocity field for 

K=. 3 a=.1409 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 21. Plot of the vortex shapes and the velocity field for 

K=. 3 a=.2541 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 22. Plot of the vortex shapes and the velocity field for 

I(=. 35 a=.07613 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 23. Plot of the vortex shapes and the velocity field for 

K=. 35 a=. 1543 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 24. Plot of the vortex shapes and the velocity field for 

K=. 35 a=.2090 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 25. Plot of the vortex shapes and the velocity field for 

K=. 35 a=.2358 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 26. Plot of the vortex shapes and the velocity field for 

K=.35 a=.2551 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 27. Plot of the vortex shapes and the velocity field for 

K=.35 a=.2653 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 28. Plot of the vortex shapes and the velocity field for 

K=. 35 a=. 3100 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 29. Plot of the vortex shapes and the velocity field for 

K=.4 a=. 0310 5 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 30. Plot of the vortex shapes and the velocity field for 

K=.4 a=.06869 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 31. Plot of the vortex shapes and the velocity field for 

K=,4 a=.1188 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 32. Plot of the vort.ex shapes and the velocity field for 

K=.4 a=. 1777 

Arrow length is. proportional to the speed of the fluid at midpoint. 
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Figure 33. Plot of the vortex shapes and the velocity field for 

K=.4 a=.2388 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 34. Plot of the vortex shapes and the velocity field for 

K=.4 a=.2888 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 35. Plot of 

K=.4 

the vortex shapes and the veiocity 

a=. 3080 

field for 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 36. Plot of the vortex shapes and the velocity field for 

K=.4 a=.2933 (smaller energy case) 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 37. Plot of the vortex shapes and the veiocity field for 

K=.5 a=.06549 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 38. Plot of the vortex shapes and the velocity field for 

K=. 5 a=.1096 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 39. Plot of the vortex shapes and the velocity field for 

K=. 5 Ci"". 1578 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 40. Plot of the vortex shapes and the velocity field for 

K=.5 a=.2037 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 41. Plot of the vortex shapes and the velocity field for 

K=. 5 a=.2609 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 42. Plot of the vortex shapes and the velocity field for 

K=. 5 a=.2613 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 43. Plot of the vortex shapes and the velocity field for 

K=.5 a=.2562 (smaller energy case) 

Arrow length is proportional to the speed of the fluid at midpoint. 
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Figure 44. Values of the propagation speed Us for the aligned vortex 

array (µ=O). Solid lines denote the calculated values for the exact 

problem and dashed lines denote the circular vortex approximation. 
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Figure 45. Values of the kinetic energy T for the aligned vortex array 

(µ=O). Solid lines denote the calculated values for the exact problem 

and dashed lines denote the circular vortex approximation. 
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Figure 48. Calculated non-dimensional eigenvalues (0•12/r) from the 

linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
¢ denotes neutral eigenvalue of lowest frequency 
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linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
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linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
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Figure 52. Calculated non-dimensional eigenvalues (0·12/r) from the 

linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
¢ denotes neutral eigenvalue of lowest frequency, showing 

degeneracy at change of stability 
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Figure 53. Calculated non-dimensional real part (growth rate) of the 

eigenvalues (cr•l2 /r) from the linear stability analysis. 
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Figure 54. Calculated non-dimensional real part (growth rate) of the 

eigenvalues (0°12 /r) from the linear stability analysis. 
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Figure 55. Calculated non-dimensional real part (growth rate) of the 

eigenvalues (0•12/r) from the linear stability analysis. 



- 99 -

1. 75 

Kappa=0.28055 

1.5 

1.25 

s 0 

I 1 0 
0 

G 0 

M 
0 0 0 

00 0 ~ g 0 0 0 0 

A 0.75 ~~~ 0 
~ 

~ 0 

~ ~ 
0.5 ~ 

~ 
~ 

¢ + + 
+ 

0.25 ~ 
+ 

0 0 . 0.05 0. t 0. 15 0.2 0.25 0.3 

ALPHA 

Figure 56. Calculated non-dimensional eigenvalues (0•12/r) from the 

linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
~ denotes neutral eigenvalue of lowest frequency, showing 

degeneracy at change of stability 

0.35 



s 
I 

5.0E-6 

~ 2.SE-6 

A 

0 

0 

- 100 -

Kappo=0.28055t 

* 

* 

* 

1.0E-3 0.002 0.003 

ALPHA 

Figure 57. Calculated non-dimensional real part (growth rate) of the 

eigenvalues (0•12 /r) from the linear stability analysis. 
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Figure 58. Calculated non-dimensional real part (growth rate) of the 

eigenvalues (0°12 /f) from the linear stability analysis. 
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Figure 59. Calculated non-dimensional real part (growth rate) of the 

eigenvalues (cr•l2/r) from the linear stability analysis. 
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Figure 60. Calculated non-dimensional eigenvalues (0•12/r) from the 

linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
~ denotes neutral eigenvalue of lowest frequency, showing 

degeneracy at change of stability 
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Figure 61. Calculated non-dimensional eigenvalues (0°12/r) from the 

linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
~ denotes neutral eigenvalue of lowest frequency, showing 

degeneracy at change of stability 
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Figure 62. Calculated non-dimensional eigenvalues (0•12/r) from the 

linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
~ denotes neutral eigenvalue of lowest frequency, showing 

degeneracy at change of stability 
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Figure 63. Calculated non-dimensional eigenvalues (cr•l2/r) from the 

linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
¢ denotes neutral eigenvalue of lowest frequency, showing 

degeneracy at change of stability 
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Figure 64. Calculated non-dimensional eigenvalues (0• l 2 /r) from the 

linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
~ denotes neutral eigenvalue of lowest frequency, showing 

degeneracy at change of stability 
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Figure 65. Calculated non-dimensional eigenvalues (0°12/r) from the 

linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
¢ denotes neutral eigenvalue of lowest frequency, showing 

degeneracy at change of stability 
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Figure 66. Calculated non-dimensional eigenvalues (0°12 /r) from the 

linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
~ denotes neutral eigenvalue of lowest frequency 
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Figure 67. Calculated non-dimensional eigenvalues (0•12/f) from the 

linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
~ denotes neutral eigenvalue of lowest frequency 
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Figure 68. Calculated non-dimensional eigenvalues (cr•l2 /r) from the 

linear stability analysis. 

+ denotes real part (growth rate) 
o denotes corresponding imaginary part (frequency) 
* denotes the real eigenvalues for the smaller energy state 

in the non-unique region (see text) 
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Figure 71. The four vortex configurations for the energy criterion 

for stability. 


