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SUMMARY

It is well known that a dependence relation defined between the ele-
ments and the subsets of an abstract set M can be used to construct a
complete lattice L', The elements of L' are the subsets of M which are
closed with respect to the dependence relation., The properties of L'
are determined by the set I and the dependence relation. If the set M
is taken to be a set of lattice elements, a partial ordering is defined
over M by the lattice ordering. In this thesis postulates are given
for a generalized dependence relation which takes into account any par-
tial ordering which is defined over M and which reduces to the classical
dependence relation if M is not ordered. In particular if M is taken to
be the set of join irreducible elements of a lattice L, then the complete
lattice L', which is induced by a generalized dependence relation, is
such that the set of completely join irreducible elements of 1' is iso-
morphic to M. As the dependence relation is varied, different lattices
are obtained, all of which have the same set of join irreducible ele-
ments,

Let L be any finite dimensional lattice over which an integral val-
ved semi-modular function o~ is defined. In Part II the theory of Part I
is applied to imbed L as a sublattice of a semi-modular lattice L' such
that if a-—)aﬁ, then the ordinary lattice rank of a' equals o(a).

In Part III the following imbedding problem is discussed. If a
given lattice L has the property that every quotient lattice u/a for
a# 2z in L is distributive (modular, semi-modular), is it always pos-
sible to extend L to a distributive (modular, semi-modular) lattice L'
by introducing new elements which contain no element of L except z?

It is shown that the process is always possible in the finite dimen-

sional distributive case and that the resulting lattice L' is unique



under an additional mild restriction. However, for the modular and
semi-modular cases, counter examples are given to prove that in gen-

eral the imbedding is impossible.
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NOTATION

In this thesis we shall consider lattice elements a,b and sets S,T
of lattice elements. Lattice inclusion, union, and intersection will be
denoted a 2 b, avb, and anb respectively. Set inclusion, union, and
intersection will be denoted S2 T, SVT and S A T. No confusion is
likely to arise from the use of the same symbol for lattice and set in-
clusion. Proper inclusion is denoted a2 o> b or SO T. Set difference
will be denoted S~T. The lattice union and intersection of all elements
of a set S will be denoted US and NS. The unit element of a lattice
will be denoted by u, the null element by z, and the null set by N.

The symbol Q will denote the set of all join irreducible elements
q (see definition 1) of a lattice. The null element z of a lattice is
trivially a join irreducible element and is explicitly excluded from Q.
If a is a lattice element, S, denotes the set of all q € Q such that
qeca.
Definitions.

(1) A lattice element q is join irreducible if and only if

g = avb implies either q = a or q = b,

(2) A lattice element q is completely join irreducible if and only

if q = U g, implies q = a, for some e.

(3) A lattice element x is meet irreducible if and only if X = anb

implies either x = a or x = b.

(4) A lattice element x is completely meet irreducible if and only

if x = r\aK implies x = g, for some o¢.
(5) A lattice element a covers the element b, written a » b, if

and only if a o ¢ 2 b implies ¢ = b,
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(6) A lattice element p is called a point if and only if p » z.

(7) A lattice L is upper semi-modular if and only if a » a a b

implies a v b » b for all a, b € L.

(8) A lattice L is lower semi-modular if and only if a wb % b

implies a » a nb for all a, b € L.
(9) Any subset L' of the set of elements of a lattice L is said

to form a lattice within L if and only if L' forms a lattice with re-

spect to the ordering of L.

(10) Any subset L' of the set of elements of a lattice L is said
to be a sublattice of L if and only if L' is a lattice within L,
a:,b = atb, and ac'b = aCb for every a, b in L',

(11) The guotient lattice a/b of L is the sublattice of all ele-

ments ¢ € L such that a 2 ¢ 2 b,

(12) L is a point lattice if and only if every element of L can

be expressed as the union of points of L.
(13) A lattice L is complete if and only if every set of lattice
elements has a least upper bound and a greatest lower bound in L.

(14) A lattice is said to satisfy the descending chain condition

if and only if every chain
842873%4 + 23D o &

is finite.
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PART I. DEPENDENCE RELATIONS IN A LATTIGE

Section 1.1, Introduction.

Let L be a lattice which satisfies the descending chain condition.
Every element a of L can be represented as the union of all join irre-
ducible elements contained in a, and therefore the join irreducible ele-
ments of L are the building stones of the lattice with respect to the
operation of lattice union. Obviously the set of join irreducible ele-
ments, which is partially ordered by the lattice inclusion, does not
completely determine the lattice structure.

Let M be any set of lattice elements, We define a relation A be-
tween the elements m and the subsets S of M as follows:

(A) mOSif and only if m € US,
where U S denotes the union in L of all elements of S. The notation
mA S is read "m depends on S", This relation has the following prop-
erties,

(A1) If m" € m, thenm' D S Vm for arbitrary S € M.

(A2) IfmAS and SA T(¥), then m A T.

(A3) Ifm'A m, then m' g m,

The relation A induces an algebraic closure operation on the subsets of
M, where the closure S of S is defined to be the set of all m € M such
that m A S. This definition of closure satisfies the following proper-

ties,

(*) We define SA T tomeanm AT for allm € S,



(CL1) S =2s.

(C2) IfS=2T, thenS 2T,

(c3) 5 = 5.

A set is called closed if and only if g & S implies g € S. Under any
closure operation satisfying Cl - C3, the closed subsets form a complete
lattice L' with respect to set inclusion (Birkhoff [1] ).

Now consider the set M' of all elements m' of L' such that m' = m
for m € ¥, and define m* A S' if and only if m'€ U S in L' . Then
the closed subsets of M' form a complete lattice L" which is isomorphic
to L' . Hence the structure of L' is determined by the set M and the de-
pendence relation 4.

Conversely, any relation A which is defined over M and satisfies Al
and A2 is called a dependence relation, and the closure operation induced
by O satisfies Cl - C3., Hence the closed sets under any dependence rela-
tion form a complete lattice.

If M is an abstract set, any relation D between the elements and sub-
sets of M is called a dependence relation if D satisfies

(D1) m D S Vm for arbitrary S € 1,

(D2) IfmDSand SDT, thenm D T.

The principal distinction between relations A which satisfy Al - 82
and the relations D which satisfy D1 - D2 is that 8 takes into account
the partial ordering of the set M. In the event that M is unordered,
Al and A2 clearly reduce to D1 and D2 respectively.
In this thesis we specialize M to be the set of join irreducible

elements of L. The dependence relation (A) then also satisfies
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(A4) IfmASand SAm, thenm € 3,

Conversely, consider any relation A which is defined over the set M of
join irreducible elements of a lattice and which satisfies Al - A L.
The closed subsets form a complete lattice L' since A1l and A2 are sat-
isfied. By A3 every irreducible element m € M induces a closed set

S, = {nﬂ € I I m' e Hl}. By 84 every S is a join irreducible ele-
ment of L' , and every join irreducible element of L* has the form Sp
for some m € M, Hence any such dependence relation can be used to con-
struct a lattice L' whose set of join irreducible elements is isomorphic
to the set of join irreducible elements of a given lattice L.

The structure of L' is governed by the particular dependence rela-
tion. We shall prove, for example, that L' is upper semi-modular if A
also satisfies

(A5) If m" ¢ m' implies m" O S, then m A S V m' implies either

mASormASVm,
If the set M is unordered then A5 reduces to

(D3) IfmD S Vm', then either mD S or m' D S Vm. This postu-
late is analogous to the Steinitz-Maclane exchange axiom which holds in
an upper semi-modular point lattice (Birkhoff, (1] ). It is well known
(MacLane [1) ) that if a relation satisfying D1 - D3 is defined over an
abstract set I, then the closed subsets form an upper semi-modular point
lattice, We shall show that if a relation satisfying Al - A5 is de-
fined over the set of join irreducible elements of a lattice L, ﬁhen the

- closed subsets form an upper semi-modular lattice L' which has the same
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number of points as L since the sets of join irreducible elements of L

and L' are isomorphic,

Section 1.2. General Properties of Irreducibles.

Before considering the theory of dependence relations we derive some
fundamental relationships between the lattice and its irreducibles. Let
L be a lattice, and let Q be the set of all join irreducible elements of

L. For every a € L define

S,={aeqlaca}.
Then, if L satisfies the descending chain condition, a = Us, (Birkhoff
(1] ). As a consequence we have a € b if and only if S, € Sy,, where
if equality holds in either relation, it holds in both.
Lemma 1l.l. In any lattice Sa A Sb = Sa,sb'

Proof: Let g € Sa A Sb‘ Then g € Sa and q € Sb’ which imply g € a and

g € b But then g €aab, and g € Sa“b. Thus Sa A Sb €S Since

amb®

each step of the argument reverses, we have S; A S, 2 S, 1 and hence

So AS, = Sznpe |

Lemma 1.,2. In a lattice in which the descending chain condition holds,

if a » b, there exist an element ¢ and a join irreducible element g such
that g € S, - 5., q >c, and c € b,

Proof: If a » b then g3, = S, is non-void. Let gq be minimal in Sa - 54
Such a minimal element exists because of the descending chain condition.

let c =qnb, and let g 2d »c, Clearly c ¢b, and 5,25;35,. Let

q

<1'€ Sq = Sge Then qf € Sq since Sq 2 Sd, and hence qf eq. Ifq'e Sy,

then qf € Sb A Sq = sz\q = Sc which is a contradiction. Hence
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q' € S, - Syand by the minimal property of q, q'¢ gq. Thus g' = g € Sg»
and hence q =d » c.
Lemma 1.3. Let L be a lattice in which the descending chain condition
holds. Let g and q' be join irreducible elements and b an arbitrary
element of L. If for all irreducibles q'' g q',

either q''e b or geq'tvb,
then for every element a € q',

either a€b or gea vhb,
Proof: Let a g q' and assume a ¢ b. Then there exists an irreducible
q'' € S, such that q'! ¢ S,. Hence we have q''€ a € q' but q'! $ b
By hypothesis q € q'' v b, and since q'' v beawvb, geawvb.

The hypothesis of lemma 1.3 is a generalized form of the exchange

property, and the lemma illustrates that this exchange property holds
in L if and only if the property holds for the join irreducible elements.

Section l.3. The Generalized Dependence Relation.

Throughout the remainder of Part I we shall assume that the lattice
L satisfies the descending chain condition, and that Q, the set of join
irreducible elements of L, is partially ordered by the containing rela-
tion of the lattice. We exclude from Q the null element of L.

In this thesis we consider dependence relations over Q which take
into account the partial ordering of Q and which satisfy the following
set of postulates:

(A1) Ifq'*teq', theng!'"A S Vq' for any S € Q.

(a2) IfqOS and S AT then g AT.
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(A3) Ifg''A q', theng''e q',

(A4) If g AS and S Dg, the g € 3.

(A5) Ifg''e q' implies q''A S, theng AS V g'

implies either q AS or q'A S Vq.
In the event that Q is unordered these postulates clearly reduce to
D1 - D3.

As before we define the closure S of a subset S of Q@ to be the set
of all g € Q such that g AS. S will be called closed if and only if
S = S. A series of lemmas will show that 81 and A 2 induce a closure
relation, A3 insures that SCl is closed for all q € Q, and A4 guaran-
tees that a closed set is join irreducible in the lattice of closed sets
if and only if S = Sq for some g € Q. Finally A5 is a form of the ex-
change property, and it makes the lattice of closed sets upper semi-modu-
lar.

Lemma l.4. If A satisfies Al and A2, then A induces a closure opera-
tion satisfying Cl - C3.

(Cl) Let qe€S. Thenby Al, A SVqg=3S, and q € S,

(c2) Let S 2T, and let q € T. 'Then g AT, and since q_reS
for every q €T, T AS. By A2, g AS and g €35. Thus S =2 T.

(C3) Ilet g €S. Then ¢ AS, and by definition of 3, S & S.

Then q & S and q € 5. Hence S € §, and using Cl we have S5 = S.
Corollary. The closed subsets induced by any dependence relation form

a complete lattice.
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Lemma 1.5. If S and T are closed sets, then S'A T is closed.

Proof: Let g A S AT, Since SATAS and SAT A T, we have by
A2, qgASand gQT. Theng € Sand g € T since S and T are closed.
Hence g € S AT,

Let L' denote the lattice of closed sets. According to lemma 1.5,
therefore, lattice intersection in L' coincides with set intersection.
However the set union of closed sets is not closed in general, and the
lattice union of closed sets is the smallest closed set containing the
set union,

Lemma 1.6, If A satisfies 81, A2, and A3, Sc1 is closed for all
q € Q.

Proof: 1Let q'A Sq. By AL, S‘l A g, and hence q' & q by A2, Thus
q' € gby A3 and q' € Sq.
With each a € L we associate the set S; and refer to this corre-

spondence as the '"natural" mapping. By lemma 1.6 this mapping takes

each irreducible q € Q into an element Sq of L', Since the descending
chain condition holds in L by hypothesis, Sq > Sq, if and only if q 2> q',
and Sq =] Sq. if and only if q = g'. Hence L' contains a partially ordered
set Q' which is isomorphic to Q.

Lemma 1,7. If A satisfies A1, A2, and A3, a closed set S is com-
pletely join irreducible in L' only if S = SCl for some q € Q.

Proof: Let S = {q“ be closed. Then S 2 Sq“ for all «, and so

s2V S‘l«' Trivially S € V Sg_ and we therefore have S = V S%‘= uUs

9 e

Q

since S is closed. But if S is completely join irreducible, S = Sq“ for

some X
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If the descending chain condition holds in a lattice then every
element can be expressed as the union of a finite number of join ir-
reducibles, and then complete irreducibility is eq_uivalenﬁ to ordin=~
ary irreducibility. Consider a lattice L of dimension two, consist-
ing of a denumerable set Q of points, a unit element, and a null
element. Define q &4 S if and only if g € S, making all subsets of
Q closed. Then Al - A5 are trivially satisfied, but neither chain
condition holds in L', Hence in general we must distinguish between
irreducibility and complete irreducibility in L',

An example considered in Section 1., shows that Sq is not neces-
sarily campletely join irreducible in L' for every q € Q, even if the
dependence relation satisfies A5 as well as Al, A2, and A3. The

next lemma gives the precise conditions under which S, is completely

q
Jjoin irreducible in L', Let S'q| denote the set of all g € Q which

are properly contained in q'. That is, S'y, = Sq, - q'.

Lemma 1.8. If A satisfies A1, A2, and A3, then Sq' is completely
join irreducible in L' if and only if S'q, is closed,

Necessity: Let Sq, be completely join irreducible, and let q A S'q| .
By Al S'q, iy Sq,, and q A Sq, by A2. Since Sq, is closed by lemma 1.6,

q€ S Hence either q € S'q, in which case we are through, or g = q',

qt®
Let S'gy = {qd} where q € q' for all e . Then

S' .1eVS e US €S

2 = Qe - 4

since Sq, is closed. If qu“: Sq, then Sq“ = Sq'

is completely irreducible in L', But then qo = q' which contradicts

for some e since Sq'

fl

%€ Ao Hence USq“c Sq,, which implies S'q, USq“, and S'q' is closed.
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Sufficiency: Let S'q, be closed, and suppose Sq‘ = USx where Sy Sq,

and S 1is closed for all ex, If g' e Sﬁ for some @ , then since Se is
closed, Sg = Sq: which is a contradiction. Hence S, € S'q, for all e<,

and US, € S'q, c S_, which also is a contradiction. Hence S(s =S, for

q

some @ , and Sq| is completely join irreducible.

ql

In Section 1.4 we give an example of a dependence relation which
satisfies A1, A2, A3, and A5 and for which S'q is not closed for a
particular q € Q. As the next lemma proves, the additional restriction
required to make all S'c1 closed is AL,
lemma 1.9. If A satisfies Al - A3, then S'q, is closed for all
q' € Q if and only if AL also is satisfied.

Necessity: Let S'q, be closed for all q' € Q. Let g AS and S A q.

Now S A q implies S A Sq, and so by lemma 1.6 S s Sq = S'q Va. If

q¢ S, then S&8'y. Then g A S and S A 8!y imply q A S'g, and hence

q € S‘q since S'q is closed by hypothesis. But this contradicts the

definition of S'q, and hence q € S.
Sufficiency: Let g A S'q,. Then g & Sq, since S’q, 11 Sq" By lemma

1.6 g € S_,;, and hence either q = q' or g € S! Suppose q = q'.

a'’
By 84, g =q'€ S'q,, contrary to the

q!
Then S'q, Agandgd S'q,.
definition of S'q;. Hence q € S'q, and the proof is complete.

Theorem 1.1. If A satisfies Al - A3, then the set Q' of completely
join irreducible elements of L' is isomorphic to Q under the natural

mepping if and only if AL is also satisfied,

Necessity: If AL is not satisfied, then S'q is not closed for some
g € Q. Then by lemma 1.8 Sq is not completely join irreducible, and
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by lemma 1.7, any set not of the form Sq, for some q' € Q must be join

reducible, Hence the mapping q =S takes some irreducible element of

Q
L into a reducible element of L', if AL is not satisfied.

Sufficiency: By lemma 1.9 S'qg is closed for all q'!' € Q whenever AL
also holds. Then by lemma 1.8, Sq: is completely join irreducible, and
any set not of this form is reducible. It was shown previously that the
ordering of Q is preserved in Q'.

Temma 1.10. If A satisfies Al, A2, A3, and A5, the lattice L' of
closed sets is upper semi-modular.

Proof: Let S »S a T, where S and T are closed sets. Assume for the
present that S is completely join irreducible in L', Then by lemma 1.7
S = Sql for some q' € Q. By lemma 1.8 S'q, is closed; hence Sq,> S'q,

in L'y and S a T = S! Then q" € q' implies q" € S'q,, which implies

q'*
g"e T and 9" A T. Iet R be any closed set such that SuT 2 R > T,

For any g such that ge R - T, g € SuT, and hence g 8 T V q' since by
definition S v T =T V q'. But then by A5 either q A T, which implies

q € T and contradicts ¢ € R - T, or g'A TVqg. Thenqg'€ TVqg R,

and hence SvT =T Vq! € R since R is closed. Thus R= SuT and
SuT » T,

Now consider the general case., Iet S »SaT in L', Then S - SAT
is not void. Let gq' € S - S AT be such that if g" ¢ q' then q" € T,

Such a q' exists since Q, as a subset of L, satisfies the descending

chain condition by hypothesis. S_.; is closed by lemma 1.6; we also

q!
have Sq1 € S, Sgi ¢ T, and 8'y1 € T. Therefore by lemma 1.5 8'n, = Sy AT
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is closed, and Sq! is join irreducible by lemma 1.8. Then Sq,> 81

q!
SE' nT. Hence by the first part of this proof T Vg! = T uSq,> T. But
g€ S implies g & [(SAT)V gl because qg' € S -=SATand S>S nT.

Trivially [(S AT)V q'JA(T Vq'), and we have g A T V q' which implies

geTVqg! =TuSq,. Hence S € T "Sq" which implies S wT €T v S

qt,
and therefore SvT » T, completing the proof of upper semi-modularity.
The results of lemmas 1.5, 1.6, and 1.10 are summarized in the fol-
lowing theorem.,
Theorem 1.2. The subsets of Q which are closed with respect to any de-
pendence relation satisfying A1, A2, A3, and A5 form a complete up-
per semi-modular lattice which contains a partially ordered set isomor-
phic to Q.
Combining theorems 1.1 and 1.2, we have
Theorem 1,3. Let Q be the partially ordered set of join irreducible
elements of a lattice L in which the descending chain condition holds,
Let O be a dependence relation over Q which satisfies Al - A5. Then
the closed subsets of Q form a complete upper semi-modular lattice whose
completely join irreducible elements form a partially ordered set iso-

morphic to Q.

Section l..4. Examples.

We now consider four examples of dependence relations. The first
two are of a general nature, and the last two prove the independence of
postulates AL and A3.

Let L be a lattice in which the descending chain condition holds,

and let Q be the set of join irreducible elements of L. Define



-14-

(&) q AS if and only if ¢ ¢ U 3,
where U S denotes the union in L of all elements of S. It is evident
that Al - A3 are satisfied. Let ¢ AS and SO qg. Theng € U S
and g5 € q for all g4 € S. Hence US € g, and g = US. But since g
is join irreducible and the descending chain condition holds, q is com-
pletely irreducible and q = gg for some g € S. Hence A4 is also sat-
isfied,
Lemma 1.11., Under the dependence relation (4) a set S is closed if
and only if S = S, for some a € L.
Necessity: Let S be closed and let a = US. If g€ S;, theng € U S
and g & S. Since S is closed, q € S. Hence S, ¢ S. But q ¢ S, im-
plies g ;é a =US, and therefore q £S. Hence S, = S.
Sufficiency: Let qAS,. Thengq € US = a, Hence q € 3,, and
Sy is closed.
Lemma 1.12. The natural mapping a €S, is a lattice isomorphism.
Proof: By lemma 1.1l the correspondence is one to one. Let a and b
be elements of L. By lemma 1.5, since Sy and S5y are closed, S, A Sy

is closed. Clearly q € S, AS implies g € a a b, and hence g € S

b an b’
The argument reverses, so S; o p = S3 A Sy = S5 0 Spe.

Let q € S, V Sp= S, uSp. Then g AS, V S, which implies
g€ U(S,;VS,) =US, vwUS;=avb. Thus g €5, 1. Again the ar-
gument reverses, so Sz v Spy= Sg y b

Thus we have proved

Theorem 1l.4. The dependence relation (A) induces an isomorphic mapping
of any lattice L onto itself, provided L satisfies the descending chain,

condition.
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From theorems 1,3 and 1.4 j.t is clear that if the dependence rela-
tion (A) satisfies A5, L must be upper semi-modular. We shall show
that the converse is true, after first proving a characterization of
upper semi-modularity which is stated in terms of irreducibles and hence
is more convenient to apply here than is definition 7.
Theorem 1.5. Let L be a lattice in which the descending chain condition
holds, and let Q be the set of join irreducible elements of L. Then L is
upper semi-modular if and only if q > g n b implies q v b » b for every
g e Qand b €L,
Proof: The necessity is obvious from definition 7. Hence let a » a n b,
If a is join irreducible, then a v b » b by hypothesis, and we are through.
If a is join reducible, then by lemma 1.2 there exists an irreducible
q € S, - Sy, such that g » c where c ¢ a nb, Thenc = g n b, and by hypo-
thesis g v b »b. Also a =g v (a nb), and hence we have

avub = qu(aab)ub = gub b,

Thus L is upper semi-modular.
The dual statement is an immediate
Corollary. Let L be a lattice in which the ascending chain condition
holds, and let X be the set of meet irreducible elements of L. Then L
is lower semi-modular if and only if a v x » x implies a » a o X for
every x € X and a € L.

Now let L be upper semi-modular; we prove that (A) satisfies AS5.
Let g" & S whenever gq" ¢ q', and let ¢ AS V gq'. Since by lemma 1.9

S'q, is closed, we have Sq' >S'q, in L', Then by the isomorphism a
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exists in L such that q' » a and a = U S'q,. Hence by hypothesis,
q"A S for all g" € S'qq. Then g" € U S for all gq" e S'q,, and

a = US! ;,eUS., Ifa= U S, thenU(SVgqg') =auvq'=aq!',

ql
‘Then q & (S V q') implies q € q', which implies either ¢ = Q' or g g a.
In the former case ' A (S V q) trivially, and in the latter case
q AS since q € US =-a, Therefore we need only consider a ¢ U S,
Ifq' € US, then (SV q') AS, and hence g A SV g' implies q A S.
Hence we have q' > a, a e US, and ' ¢ U §, and therefore
' v US= U(SVag)» US since L is upper semi-modular. Then
gaA(SVaq') implies g € U (S V q'), which implies
UsS e U(BYqg s U (BVa'), But since U (SV q') » U S,
either US = U (‘S Vg or U(SVqg) = U(SVaQqa'). Inthe first case
q € U S, and so g A S, while in the second case q' € U (8V q),
and hence g' A S V g which concludes the proof.
Our second example of a dependence relation satisfies Al - A5
when defined over the set Q of join irreducible elements of any lattice
L in which the descending chain condition holds. We define
(B) g AS if and only if q € q  for some q € S,
From this definition, A1 - A4 follow trivially. To verify 5 we assume
that ¢ A S V ' and that q" & S whenever q" ¢ q'. Then either q € qg for
some qg € S, or geq'y, or ¢ = q'. In the first two cases we have
g AS, and if g = q', the exchange property holds trivially. Hence the

dependence relation (B) satisfies Al - A5,
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Lemma 1.,13. For every a € L, S, is closed under the dependence relation
().
Proof: Let q AS;. Then q € qy for some q, € S, But g, € a, and
hence q € q4 € a. Thus q € S,

Hence the natural mapping imbeds L as a lattice within the lattice
L' of sets which are closed under (B).
Lemma 1.14. L' is completely distributive.
Proof': Let S and T be closed sets. By lemma 1.5S nT =S AT. Let
gAS VT, Then either q ¢ qg for some qg € S, or q € dy for some g€ T.
Since S and T are closed, either g € Sor qe T, Hence ge SV T, and
SV Tdis closed. Therefore, S vwT =S V T. Since the lattice operations
coincide with set operations, L' is completely distributive.

Consider the natural mapping a—S, of L into L!', An immediate con-
sequence of lemma 1,13, lemma 1.l4 and theorem 1.3 is
Theorem 1.,6. Under the dependence relation (B) the natural mapping im-
beds any lattice L, in which the descending chain condition holds, as a
lattice within a completely distributive lattice, L', Furthermore an
element of L' is completely join irreducible if and only if it is the
image of a join irreducible element of L,
Theorem 1.7. Let Ag be the dependence relation defined by (B), and let
A be any other dependence relation satisfying A1l and A2. Then q Ag S
implies q & S.
Proof: Let q AgS. Then q g€ qg for some qg € S, and hence by Al,

ahSVgg =3S.
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Therefore (B) is the strongest dependence relation which satisfies
Al - A5, in the sense that it induces the greatest number of closed
sets and hence the largest upper semi-modular lattice whose completely
join irreducible elements form a partially ordered set isomorphic to Q.
The following example shows that Sq is not necessarily join irre-
ducible in L' even though the dependence relation satisfies Al, A 2,
A 3, and A 5. Consider the three element set Q, ordered as indicated

in figure 1.
13

Figure 1.

To every subset S € Q there corresponds a unique minimal element
gg € Q such that qg 2 q for all q € S, and such that if gq'g 2 q for all
q € S then q'y 2 qg. Define g A S if and only if q € qg. This dependence
relation satisfies A1, A2, A3, and A5 as we now verify.

(Al). Letg"eq'. Then if q'g is the minimal element corre-
sponding to S Vq', q'g 2 q'. Hence q" e q'g, and q" A S Vals

(A2). Let g"A S. Then Q" € qg where gg is minimal such that
q € qg for allge S. S AT implies that for all q € S, q & At s where
qr 29! for all q' € T, By the minimal property dg & d. Hence
q" € qg € gy and 9" A T,

(A3)s Let g" A gq'. Then g' itself is the distinguished element

a:nd q" € q’.
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(A5). In the statement of A5 (page 8), if q = d5, then
Q' A S Vg for any choice of q' and S. The cases of g = q, and q = q,

are clearly symmetric, so let q = g Then if q, € S, g 4 S. Also if

T
ds € S, 9 &S, and so we need consider only S = dp e

(a.) Let g' = q,. Then q' = g, and the exchange property holds
trivially.

(b.) Letq'=q,. Thena=q, £S V q, =85, and the hypothe-
sis of A5 is not satisfied.

(c.) Let q' = qq, and consider q,. We have q, ¢ g5 but g 4 a, = S.
Hence the hypothesis of A5 is not satisfied.

Therefore, A satisfies Al, A2, A3, and A5, but qu{ql, qz} = S'qs
so that S'q3 is not closed. Then by lemma 1.8 qu is not irreducible in
L, Hence A4 is independent of the other four postulates.

We next consider the independence of A3. From Al, A2, AL, and A5
we can derive the following weak form of A3 which becomes equivalent to
A 3 if S'gs is closed for all gq' € Q.

(a3'.) If g OQ', then either q = q' or ¢ A S'qr. By A2, g AQ'
implies g A Sq, = s'q,v q'. Also g" c q!' implies q" A S'q,, and hence by
A 5 either q A S'qs or q' A S'q|Vq. Since I(S'qIVQ) A q', the latter
alternative implies q' € S'q1VQq by AL, from which it follows that q' = q
since q! ¢ S'q,. Hence either g = q' or q A S'q. which is the conclusion
of A3.

The following example shows that this result cannot be sharpened, be-

cause Al, A2, A3', A4, and A5 are satisfied but A3 is not. Consider



e

the lattice shown in figure 2 and the set Q of join irreducibles as in-

dicated.

==

Figure 2.

Let p be the usual rank function, defined as follows:

(). ¢(z) = 0.

(2). a¥bimplies p(a) = ¢(b) + 1.

For any subset S € Q, let q & S if and only if either q € S or
@ (@ ¢ p( U S). We show that 81, A2, AL, and A5 are satisfied;
consequently A3' also holds.

(Aal). Let q" € q'., Then either g" = q!' in which case Q"€ S V q!,
or " ¢ q' in which case p (q") < p(qa') < Q(U(S ' q')) . In either
case, q"A S V q'.

(62)., LetqgASandSAT., If ge Sor q€T, then g AT, Like-
wise if q, € S, then q, € T because p(a,) 2 p(U(Q - a, )) . But
q4eTimﬂquAT.Ibmewemwa%mmq¢i§VTmﬂq4¢SVT.

If q = q,, then either q, € S which implies q A T, or p (us)>1
which implies {qz . q5} € S, which implies q, A T and 95 A T, which im-
plies either '[q2 5 q_,,} € Tor p(UT) > 1. In either case, then,

e (UT)>1=p(q,)andq AT,

If g = q, or ¢ = dg, the argument is parallel to q = qy .
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If q = q, , then q4AS implies q, € S. Then S & T implies q, A T.
Hence A 2 holds for the lattice considered.

(AL4). In the statement of AL if q = q, then S A q implies

195}
L}

q, . Hence g € S. The cases for q = g, and q = q4 are similar. If

Q
]

Qg » @ A S implies g € S since q, 0 - a4 . Hence A4 holds.

( A5). Inthe statement of A5 if q = Q4 » then ' A S Vq for
any q' and any S, If q4€.S, g AS for any q € Q. If g' = Qg4 5 the hy-
pothesis of A5 reguires that q; A S for i=1, 2, 3. Hence g AS if
g # Ay and if g = Ay = qi the exchange property holds trivially.
Hence we may exclude all these possibilities in the remaining cases.
Let,q=q' o LE q'eS, then ¢ 4 S. If g! =4q, q' A S Vg.

If g!

92, then g8 S Vq' implies g4 € S, which implies q' A S V q.

If gt Q3 , then g AS V q' implies q, € S, which implies q' A S V q.
The cases for g = G, and g = qy are similar to q = Ay s and hence
A 5 holds.
However, q, 8 da but q, ¢q4 , and hence O3 does not hold. The

lattice of closed subsets is illustrated in figure 3.

Figure 3.
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PART IT. AN JMBEDDING THEOREM

Section 2.1. Introduction.

Let L be a finite dimensional lattice, and let Q be the set of join
irreducible elements of L., In part I we showed that any dependence rela-
tion A , defined over Q and satisfying Al - A5, can be used to construct
an upper semi-modular lattice L' whose set Q! of completely join irreduc-
ible elements is isomorphic to Q. In general S, is not a closed set under
the dependence relation for every a € L, and hence L is not imbedded in L',
However dependence relation (A) does imbed L as a lattice within L',

Wle now determine a necessary and sufficient condition that a finite
dimensional lattice L can be imbedded as a sublattice of an upper semi-
modular lattice L', where Q' is isomorphic to Q. Dilworth (Dilworth [11])
has shown that L can be imbedded as a sublattice of an upper semi-modular
point lattice M, where the usual lattice rank in M of the image of an ele-
ment of L is predetermined by an integral valued semi-modular function de-
fined over L. The imbedding lattice L' which we shall define is a sublat-
tice of M, and therefore is a refinement of Dilworth's imbedding process.
As we shall see, L' contains the same number of points as L.

Section 2.2, The Dependence Relation.

Let L be any finite dimensional lattice over which an integral valued
function ¢ is defined with the properties:

(1) ¢(2)=0.

(e 2) a2 b implies & (a) > o (b).

(e3) ea) +a(b) 2 o (avb) +¢ (anb).
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In the paper mentioned in the last section, Dilworth associated with each
join irreducible element g € L an abstract unordered set Sq of a(q) -a(a)
elements p, where g » a in L. Let P be the collection of all such sets,
it being understood that the sets associated with distinct irreducibles
are disjoint. With each element a € L associate the set Sy = qga Sq.

For any subset T of P let n(T) denote the number of elements in T.

Definition 2.1. A subset S & P is independent if and only if, for every

subset T € S and every element a € L such that T € S, n(T) € o (a).
Corollary. Any subset of an independent set is independent.

Definition 2.2. A subset S ¢ P which is not independent is said to be de-

pendent.,

Hence S is dependent if and only if there exist a subset T € S and an
element a € L such that T € S5 and n(T) > o (a).

The dependence relation which Dilworth used is defined between the
elements p and the subsets S of P as follows:

Definition 2.3, p D S if and only if

either (1) p€ES,
or (2) there exists an independent subset T € S such that TV p
is dependent.

In the paper mentioned it is proved that D satisfies DL - D3 of sec-
tion 1.1, and hence the closed subsets of P form an upper semi-modular
point lattice L'. Furthermore Dilworth proved that the natural mapping
a—S, imbeds L as a sublattice within L', and that if r is the usual

rank function in L', then o (a) = r(S,).
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The definitions of independent set and the dependence relation have
the desired property that if p € S and S is independent, p does not depend
on S - p. That is, no member of an independent set depends on the remain-
der of the set. We shall now modify this dependence relation to acquire a
smaller imbedding lattice.

First enlarge L to a lattice L as follows:
between every pair of elements g, b € L, such that g is join irreducible
and q » b, introduce a complete chain of ¢ (q) - ¢~ (b) - 1 new elements
g3 which are to be join and meet irreducible in L. Then we have

a>q  >.eee>q *b
where k = 0 (q) - ¢ (b). These chains we shall call construction chains.
Only the maximal and minimal elements of each chain are elements of L,
and if two chains are distinct they have distinct maximal elements but
possibly the same minimal element. The set L is the set sum of L and
the elements of the construction chains. With each element a € T we can
associate uniquely two elements a, and a, of L as follows. If a ¢ L,

let a, be the minimal element of the construction chain in which a appears,

]
and let a, be the maximal element of the same chain. If a € L, let
ap, =a=a;.

Define over L a partial ordering in the following manner. If a and b
are elements of L which are not in the same construction chain, a 2 b in
T if and only if a, 2 b, inL. If a and b are in the same construction

chain, a 2 b in L if and only if a » ... » b in that chain. It is tri-

vially true that a 2 a in T and that a 2 b and b 2 a implies a = b,
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Let a2 c=2Db. If a, ¢, and b are not all in the same construction chain,
we have a, 2 ¢, 2 ¢, 2 b,in L, and therefore a 2 b in T. If a and ¢ are
not in the same chain but b and ¢ are, then we have a,2 ¢, =Db,, and
a2binL. If aand c are in the same chain but b and ¢ are not, we have

a>..>c > .. > a =c2b,, and a2b in L. Finally if a, b,

and ¢ are in the same chaina » ... » ¢ » ... »banda=2binlL,
Hence transitivity holds and a partial ordering of T is defined.

We now show that for a, b € L there exist a unique minimal element
¢ and a unique maximal element d such that c 2a, c2b, a2d, and b =2 d.
If a2 b take ¢ = a and d = b, which are clearly the unique elements de-
sired. If a and b are unrelated let ¢ = a, t b, Suppose x 2 a and X 2b
in I. Since a and b are unrelated, they cannot appear in the same con-
struction chain. Hence a, # b, since otherwise a, would be the maximal
element of two distinct construction chains. But by construction the max-~
imal element of each chain is join irreducible in L and hence is maximal
in only one chain. Then x 2 a, and x 2 b, , which implies x, 2 a, and
X, 2 b, inL. Thenx 2x,2 a, t b,= ¢, and ¢ is minimal in L contain-
ing a and b, Let d = a, n b,. Suppose a 2 x and b 2 x in L. Since

a and b are unrelated, they are not in the same construction chain, and

hence a, 2 X

N and b. 2 X

in L. Then d = a, t b, 2 X, 2 X, and hence d

2 2 2

is maximal. Hence L is a lattice. Furthermore it is clear that the ele-
ments introduced by the construction are both join and meet irreducible

in I, and that if q is join irreducible in L, q is join irreducible in 5
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From the definitions it is clear that the set of all elements of L
except those introduced by the construction forms a sublattice of L which
is isomorphic to L, For simplicity we call this sublattice L and observe
that L and L have the same number of points,

Over L define the functional ¢ as follows:

(). p(a)

(2). p(a)

of the construction chain and k is the length of the complete chain from

]

¢(a) if a e L

c"(al) + k if a 9.5. L, where a, is the minimal element

a to a; . Clearly @ has the property (e 3) when a and b are elements of
Tee

Let Q be the set of join irreducible elements of -1-., excluding the
null element z of L, With every element a € L associate the set Sy of
all q € Q such that g€ ain T. The null set is associated with z. For
any subset S € Q let n(S) denote the number of elements in S,

Definition 2.4. A set S € Q will be called quasi-independent if and

only if for every subset T € S and every element a € L such that T € Sy,
n(T) < ¢ (a).

Definition 2.5. A set which is not quasi-independent will be called

quasi-dependent.
Let {S} denote the set of all q € Q such that q € qg in L for some
qs € So

Definition 2.6, q A S if and only if

either (1) q € {s},
or (2) there exists a quasi-independent subset T € {S} such

that T V q is quasi-dependent.
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From the definition it is clear that an element g of a quasi-inde-
pendent set S will depend upon S - q if g ¢ qg for some gqg€S. There-
fore we adopt the term quasi-independent to emphasize that "independence'
has a slightly different meaning here than in the previous definition,
Obviously D is a stronger definition of dependence than A in that there
will be fewer closed sets under the latter relation. This is a conse-
quence of the partial ordering imposed on Q by the construction of T
from L.

By referring to definition 2.3 we see that definition 2.6 could be
stated, equivalently, g A S if and only if q D { S] , since only the
terminology of the definitions differs, and not the actual conditions.
We now verify that D satisfies Al - A5.

(Al). If gqeq', thenqe€ {S Vq'} , and hence g AS V q'.

(A2). Let qAS and SAT. Let q'e { S} . Then by definition
Q' € qg for some qg € S, and by hypothesis gz A T. If ag € { T}, then
q'! € { T}, and q' A T. Otherwise there exists a quasi-independent sub-
set T' € {T}, such that T' V gqg is quasi-dependent, and hence there
exist a subset T" ¢ T'V gg and an element a € L such that T" € S, and
n(T") » ¢ (2). Then T" is quasi-dependent, and hence gg € T", since
otherwise T" is a subset of T' and hence would be quasi-independent.
Write T" = R V qg, where R as a subset of T' is quasi-independent. Then
we have

n(T") = n(R V qg) =n(R) + 1 >p(a).

Then n(R Vq') = n(R) + 1 > p (a), and since q' ¢ qg we have RV q' € Sy,
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Hence R V q' is quasi-dependent, and so q' A T for all q' € { S } o Thus
S AT implies {S} A T, which implies {s} D {T}.

But ¢ A S implies g D { S} , and since D satisfies D2 we have q D { T} .
and hence q 8 T. Hence the relation A is transitive.

(A3). Let g"A q'. Then Q" D {q'] = Sq,. If q" e Sq,, we have
q" € q' and are through. Otherwise there exists a quasi-independent sub-
set T € Sql such that T Vqg" is quasi—dependent. Then there exist a sub-
set T'¢ T V q" and an element a € L such that T'e Sy but n(T') > ¢ (a).
As before q" € T', since otherwise T' is quasi-independent which contra-
dicts n(T') > p (a). Write T' =R V q", where R is quasi-independent.
Then since R ¢ T g Sq., we have

n(R) < ¢ (q') and n(R) £ p (a).
Alson(RVg") =n(R) +1 > p(a), and hence
p(a) = n(®) g p (a").

Consider U R in L. Clearly a 2 U R, Let ¢ be minimal in L such
that UR e c. Then R & S;, and hence p(c) 2 n(R) = p(a). But since
¢ is minimal containing UR, ¢ e a, and we have p(c) < ¢ (a) which im-
plies c = a.

If c =UR, thenq'2 ¢ = a 29", and we are through. Otherwise
UR # L, and hence UR is both join and meet irreducible by construc-
tion. Let ¢ = UR. Then every element of I in the chain from q to a
must also be join and meet irreducible. But q €q v g" € a, and hence
either g v g" = g, in which case q' 2 g 2 g" and we are through, or

q vag" =q", in which case we have q € gq" < a.
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But also ge a nq'e a, and hence either a n g' = a, in wbich case
q"e a € q' and we are through, or a n g' = q' in which case q € q' ¢ a.
Hence either g" € g' or g" = q'. The first statement is the conclusion
of A3, and we show next that the second statement leads to a contradiction.
Let b € L be maximal such that b e q', and let p(a) = ¢ (b) + m.
Let p (') = p (b) + k, where m 2 k 2 O. Then e(b) # 9(q')-k<9(q")—st(a)—k.
Since R € Sq1s there are at most k elements in R which are not in S.
Hence n(R) - k = n(R A Sy,). Thus we have
n(RAS,) 2 n(R) -k= p(a) -k > p (b),
. But RA Sy e Sy and R N Sy, is quasi-independent as a subset of R. Hence
n(RA Sy) ¢ p (b), which is a contradiction. Thus A3 is satisfied.
(AL4). LetgASand SAg. By A3 S Ag implies S S.Sq, and
hence q 2 g for all g € S. Suppose q A S implies q € { S}. Then
qe dg for some qq € S and hence dg = 9 and we are through. We may
assume therefore that there exists a quasi-independent subset T € { S}
such that T V q is quasi-dependent. Then, as before, there exists a
quasi-independent set R € T such that n(R V q) > p (a) for some ae L
such that RV q e S,.
Let ¢ € L be minimal such that q € ¢, and let b € L be maximal such
that ¢ > b. Then S, € S, since g € ¢ € a, and we have n(RV q) > ) (a)2 Q(C)'
AMlsoT s {s} e Sq € S¢, and hence n(T)< p(c) since T is quasi-inde-
dependent. Therefore
p(c)s P (a) < nlRVags n(T) + 1< Q(c) + 1,

and hence n(T) = ¢ (c).
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Let Q(Q) = Q(b) + k and P(c) = P (b) + m where m 2 k 2 0. Then
p (b) = Q(c) -m € 9(0) - k. Since T e Sy, T contains at most k ele-
ments which are not in Sy. Hence n(T A Sb) 2 n(T) - k where the equality
holds only if g € T. But T A Sy is quasi-independent as a subset of T.
Hence we have
n(TAS) < p(b) & ple) =k=n(T) - k<n(TAS),

which implies n(T A Sp) = n(T) -k, and g€ T € {S} . Then q £ q4 for
some qg € S. Thus q = qg, and g € S.

(Aa5). Let g AS YV q' where q' is such that g" € q' implies g" A& S.
If g & S we are through, so we may assume g ¢ S. Then q ¢ q', and
q¢ qg for all g, € S. If q'e q, then q' A S V q and we are through.

Under the assumption that none of these cases occur, there exists a
quasi-independent subset T € {S \% q'} such that T V g is quasi-dependent.
If T< {S) then q A S, contrary to assumption. Hence there is an ele-
ment gq" € T such that g" e q',q"{ {,S}. Write T = S* V s-,"cq, where
S* g {5} and 8%y = T - §%  Sg1. If g ¢ S¥y1 then S%g1 & S by hypo-
thesis, and hence T A S. But since T is quasi-independent and T V q
is quasi-dependent, 9 8 T. Then by A2 g A S, again contrary to as-
sumption. Hence we may assume q' € T. Now write T = R V q' where
RA S and R is quasi-independent. If RV q is quasi-dependent, q A R
and hence q & S, a contradiction. Then since T Vg =R VqV q'is
quasi-dependent while R V g is quasi-independent, gq* A R V q. But

RVgASVg, and hence g' 8 S Vg.
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Therefore O satisfies 81 - A5, and by theorem 1.3 the closed sub-
sets of Q form a complete upper semi-modular‘lattice, L', whose completely
join irreducible elements form a partially ordered set isomorphic to Q.
Lemma 2.1, For every b € L, Spis closed.

Proof: If b is join irreducible then Sy is closed by lemma 1.6. Hence we
consider b € L and let ¢ 8 Sy, If g € (Sb} = Sp, we are through. Other-
wise there exists a quasi-independent subset T € Sp such that T V q is
quasi-dependent. Then T'€ T V q exists and a € L exists such that T' € Sy
but n(T') > P (a). We moy assume q € T!', since otherwise T' is quasi-
independent and n(T') £ p (a), which contradicts n(T') > p (a). Write

T' =R V q, where R is quasi-independent. Then we have

n(RVa) =n(R) +1 >p(a) or n(R) 2 p(a). But sinceR € S, andR ¢ By
R€ S, NS, =5,,ps and hence n(R) ¢ P (aab). Thus we have

p (a) = n(R) =g (aab), and therefore a = anb. But this implies a g b,
and since q € a we have g € b and q € 5.

Lemma 2.2. If a 2 b in L, then n(S,) - p (a) 2 n(Sp) - 9 ().

Proof: Let a, and b, be maximal elements of L such that a 2 a, and

YV S¥* where S¥* is the

b 2 b,. By the construction of L from L, S, = S,

set of all elements in the chain from a to a , excluding a,. Also by
definition e(a) = p (al) + n(S¥). Hence we have
n(8,) - ¢ (a) = n(S; Vv 5%) - g(a) = n(5, ) + n(s¥) - ¢ (a)

=n(8, ) + n(8%) - g (a;) - n(s%) =n(S, ) - ¢ (a).

Thus the lemma holds in L if it holds in L, and we may assume a, b € L,
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The conclusion is trivial for a = z, so assume it holds for all a
such that @ (a) < k. Let Q(a) = k., If a =b the lemma follows tri-
vially. Hence we may assume that in L a» a, 2 b. If a is join irre-
ducible then S, = Saw V S$* V a, where S* is the set of p(a) - p(a,) -1
irreducibles introduced by construction between a and a,. Then we have
n(s,) = n(Sa') + p(a) - P (a,)s By the induction hypothesis
n(Sai) - P(a|) > n(Sb) - p(b) and hence n(Sa) - p(a) > n(Sb) - p (b).

If a is join reducible, let a » a, # a,. Then we have
n(S,,) = nlS, a5 )2p(a) = p(agna) > g (agva)) - () = p(a) - pla).
If g ¢ a, but g $’azc\a|, then g € a but g $ a,. Hence

n(Sg) =08, )2 n(S, ) =08y na) 2 p(a) - g(a)).

Then n(S,) - p(a)2 n(Sa‘) -9 (a') 2 n(8y) - p (b), where the last in-
equality holds by the induction hypothesis. Since L is finite dimensional,
the lemma holds by induction.

Corollary. For any q € L, n(Sy) - ¢ (d) = o,

Proof: Choose b = z and apply lemma 2.2.

Lemma 2.3. For every a € L there exists a quasi-independent set T € S
such that n(T) = 0 (a).

Proof: First assume a € L and let R be a maximal quasi-independent sub-
set of Sa. Then n(R) € o (a), and we assume n(R) < p (a). Let B be
the set of all b € L such that n(Ry) = ¢ (b) for some Ry, € R A Sp, and
let d = UB. Then since Ry is quasi-independent and since

R, € S A S, =S3 o ps We have (b) = n(Ry) < p (anb). Hence

b =anband be a for all be B, Thus d = UB € a.
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Let b, and b, be elements of B, and let R, and sz be correspond-
]
ing quasi-independent subsets of R such that p(b,) = n(Rb') and
b,) = n(R . R Ry, €S .
¢ (o) = nRy ). Then Ry V Ry €5y o,

But Ry V Ry 1is quasi-independent as a subset of R, so
' 2 g

In

n(Ry VR, ) £ p (b vby).

However we have

n(Rb VR ) n(Rb ) + n(Rb ) - n(Rb N Ry )
| 2 | 2 ' 2
>0(0,) + ¢ (b,) = p(b,ab,)
>p (b, uby).
Hence if b, and b, are in B so i1s b, v b,, and therefore d € B, Let Ry
be a corresponding subset of R such that p(d) = n(Rd).
Suppose d = a, Then a is the union of a finite number of the b's
since T is finite dimensional, and hence a € B which contradicts n(R)'< o (a)e
Hence we may assume d € a. Then there exists a g, € a such that
qa¢ d, and hence qa#. Ry, for every b € B. Then we have n(R V q,) £ P(a).
Let ¢ be any element of L such that g, € ¢. Then ¢ ﬁB, since
e #. d = UB. Hence for any Rg € R A 5. we have n(R, ) < Q(c), and there-
fore n(Rg V q,) € 9(0). Hence R V g is quasi-independent, and the
maximal property of R implies that g, € R for every q, € a such that

qa¢ d. Hence we have 5, =R V S4. By lemma 2.2 we have

n(84) = p (A= n(s,) - ¢ (a),
and by assumption n(R) < p (a).
Then © n(8y) + n(R) - p(d) < n(8,) = n(RV sy)

n(R) + n(sq) - n(R A Sg),

which implies Q (d) > n(R A 5g).
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But we have Rg € R A Sgq, which implies

| ¢ () = n(Bg) £ n(R NSy,
which is a contradiction. Hence the assumption n(R) < @ (a) must be
false and R itself had the desired property n(R) = ¢ (a). Thus the
lemma holds in L,

If a ¢ L, let a, be the minimal element of the construction chain
in which a appears. Then there exists a quasi-independent set Ta' such
that n(Ta.) = ¢ (2,) and Ta| < Sa" Let T = T, V T¥ where T%* is the set
of all elements in the chain from a to a,, excluding a,. Then
n(T*) = p(a) - p(a,) € p(c) - g(a,) for any ¢ € L such that S con-
tains elements of T*¥., Hence T is quasi-independent, and

n(T) = n(Ty ) + a(1¥) = p(a,) + p(a) - p(a)) = ¢ (a).

Therefore the lemma holds in L.

Lemma 2.4. To each pair of elements a,b € L there corresponds a quasi-
independent set M such that M € S, V Sy, n(M) = ¢ (avb), and

n(M AS; ASy) = pland).

Proof': We have from lemma 2.2

n(S, V 5,) - p(aub)

n(Sa) + n(Sb)
n(S,) + n(Sy) = n(S, ) - p(a) = 9(b) + p(anb)
{ta(s,) - ¢ (1 =[n(s, ) - planD))

0.

n(Sa A Sb) - p(avb)

v

iy
4

n(s,) - ¢ (a)

v

n(Sy) - p(a)

v

Let M, be a maximal quasi-independent set of S By lemma 2.3

anb*
n(i,) = p(anb). Let C, be the set of all ¢ € L such that, for some
MI

, € S AN M, n(M!, ) = ¢ (¢). Then as in lemma 2.3, ¢ € anb for all

ce C‘, and the set Cl is algebraically closed under lattice union.
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Now adjoin to M, any element q, € S, - Sanb' Let T, = ¥,V q,, and con-
sider R€ S¢ A T, for any c € L. If q ¢ R, then n(R) ¢ ¢ (c) since R
is then a subset of the quasi-independent set M. WriteR = M' V Q.
Then ¢ ¢ anb, since q ¢ anb, and hence ¢ ¢ C. But then n(M',) < ¢ (c)
and n(R) = n(M* ) +1 ¢ p (c). Hence T, is quasi-independent. Let

aq

q,v(anb). Thena, ¢a, and T, €S, . Let C, be the set of all

az.
c € L such that p(c) = n(R;) for some corresponding subset R, € T, N Sce
Since R, is quasi-independent and R, € Sa,_A S¢, we have @(c) = n(R,) € ¢(a, nc)
and hence ¢ g'a, for all ¢ € C;. Extend T, to a maximal quasi-independent
set M, € Saz' Then n(l,) = ¢ (a,) ¢ Q (a).
If p(az) < p(a), we adjoin to I, an element q, € S5 - Saz , get-
ting a quasi-independent set Ty =M, Vq,. Let a3 = a,vq,. Then
ay € a, and we can extend Ty to My which is maximal quasi-independent in
S . Then n(Ms) = ¢ (aq) ¢ p(a). In a finite number of extensions we
as 3
thus construct a maximal quasi-independent set My = Sak = Sa' Then
‘n(Mk) = p(a) £ p(avb). Let C,_be the set of all ¢ € L such that
e (c)

fore ¢ €a, = a for all c € Ck'

k

n(Rk) for some corresponding subset R, € My A S,. Then as be-

Let qk be any element in Sb - Sanb’ and consider Tk+| = Mk \ qk.
By the same argument as before, Ty is quasi-independent, since q, ¢ ¢
implies ¢ éCk. Let 34, =2V Qe eavb, and 1f T} | is not maximal

in Sak+| s enlarge Ty to a maximal quasi-independent subset Mkﬂ c Sak-ﬂ .

Then n(Mk+|) = p(a.kH) < ¢ (avb).
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We thus continue, always adjoining to Mj an element of Sy - §, ,
J
until for some quasi-independent set M either n(l) = ¢ (avb) or
n(if A S,) = ¢ (b). In the first case we are through since M < S, V S,

by construction., Otherwise we have

n(M)

n(l AS,) + n(M ASy) - n(M NS, A Sy)

p(a) + g(b) = p(and) 2 ¢ (avwb).

Since M is quasi-independent and M € Sg 4, We have n(M) £ e (aub).
Hence n(l) = ¢ (avb), and the lemma holds.

Lemma 2.5. In the lattice L'of closed subsets of @ S w8y = S, 1,
for a,be L.

Proof: Sa v S, is defined to be Sa V S ., Clearly Sa vS €38

b b b awb’
Let q € S, ,p, and let M€ S, V S, be such that n(M) = p(au B)e
M exists by lemma 2.4. Then either n(M V q) = n(M) in which case
q el €S, VS, or n(M Vq) = n(M) +1 > p (avb), and hence q & M.
But then q & Sa \' Sb. Hence q € Saubimplies ql Sa V Sy, which implies
Q€5 VS =S, uS. Therefore S, v 8,2 S, and S, v Sy =S,y »
By lemma 2.1 the natural mapping a—S, imbeds T as a lattice within
L', Lemmas 1.5 and 2.5 then imply that the sublattice L of T is imbedded
as a sublattice of L'. Since L' is upper semi-modular, the chain law
holds in L', and the usual rank function r can be defined in L',
We now show that L' is an isometric sublattice of D', the lattice
of closed sets in Dilworth's imbedding. The abstract set over which the
relation D (definition 2.3) ig defined may be taken to be Q. We recall
from the definitions that ¢ & S if and only if g D {S } .

Let ¢ DS, ThengD {8}, since S {s}, and g A S. Hence q D S
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implies g & S. It follows that if S is A-closed then S is D-closed,
Hence L' is a lattice within D'. Let S and T be elements of L'. Since
lattice intersection in each case is set intersection, S E,T =S ;,T.
Let g ASVT. ThengD {svT} = {s} v{r} =svr. Hence
qASVTAif and only if ¢ D SV T, and therefore S t’T =S ;'T, which
proves that L' is a sublattice of D'.

Suppose S covers T in L', and let R be an element of D' such that
S2R > T. Let q'e R be minimal in @ such that q' ¢ T. Then for any
qg€S, gATVq' since S » T in L', Hence q D {T Vq'} =
{1} v {a'} =T Var, since q' is minimal not in T and T is closed.
But g D TV g!'! for all q € S implies that the D-closure of T V q' con-
tains S. Hence R 2 S since R is closed and R2 TV q', ThenR = S,
and whenever S » T in L', S > T in D'.

Now for any a € L, Sa is D-closed. Let T be a maximal independent
subset of S;. Then n(T) = o (a), and we write T = q,Va,V...Vgq

P(a)
Let Ty =49 V ... V¥V g4, and let C; be the D-closure of T;. Then for

}
3> i, q‘j € Ci implies there exists an independent subset Ri < Ti such
thet Ry V 9 is dependent, contradicting the independence of T;. Hence
if N is the null set, we have the complete chain
N " C‘ -< CZ -< 200 * Cv(a) = Sa.
If r is the ordinary rank function in D', then r(S,) =e(a). Since L!

is imbedded isometrically in D', r(S,) = ¢(a) in L', for every a € L.

Now let g € L but g ﬁ L, and let a be the maximal element of L such that
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q 2 a. Then corresponding to the construction chain
, q:quqk_|>...‘Pq'>'a,,
we have in L' the complete chain

where Sqi - Sqi—|v q;. Hence r(Sq) =@ (a) + k= p(a).

Hence for all a € L, r(s,) = q(a).

Combining the results of this section we have
Theorem 2.1. A finite dimensional lattice L can be inbedded as a sub-
lattice of an upper semi-modular lattice L', such that the set of com-
pletely join irreducible elements of L' is isomorphic to the set of
join irreducible elements of L, if and only if it is possible to define
over L an integral-valued function ¢ which satisfies

(¢1) a(z) = 0,

(e2) a o b implies ¢(a) » a(b),

(e¢3) ¢(a) + ¢(®) 2 o(avbd) + a(anb).
If such a function can be defined over L, then an imbedding into L!
exists such that if a —»a' then ¢ (a) = r(a') where r is the usual

rank function of L?,
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PART ITI. A GENERAL IMBEDDING PROBLEM

Section 3.1. Introduction.

Let T be any lattice property (such as distributivity, modularity,
upper or lower semi-modularity, etc.) which holds in L if and only if T

holds in every quotient lattice a/b of L,

Definition 3.1l. T is said to-hold weakly in L if and only if T holds
in every quotient lattice a/b where b # z in L.

Starting with a lattice L' in which T holds, we can easily construct
a lattice L in which W holds weakly such that a/b in L is isomorphic to
a'/b' in L' where b # z. To do so, select any set S of elements c' of L!,
and remove from L' all elements d' such that d'e ¢'. Then adjoin a null
element z, and in the resulting lattice W holds weakly.

We consider the converse problen of whether any lattice in which W
holds weakly can be constructed in this way from a lattice in which M
holds., Stated explicitly, if T holds weakly in L, can L be imbedded in
a lattice L' such that W holds in L' and such that every quotient lat-
tice a/b for b # z in L is isomorphic to a'/b' in L'2

Section 3.2. Distributivity.

We first consider a finite dimensional lattice L which is weakly
distributive., We shall prove that there exists a distributive lattice L!
such that for a # z in L every quotient lattice u/a in L is isomorphic to
a corresponding quotient lattice u'/a' in L', Furthermore L' is unique
if every completely meet irreducible element of L' is the image of a
meet irreducible element of L, and if every element of L' has a reduced

representation as an intersection of completely meet irreducible elements.
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Let D be the dual lattice of L. Then the descending chain condition
holds in D, and every element of D can be written as the union of a finite
number of join irreducible elements. The join irreducible elements of D
are simply the meet irreducible elements of L. IHvery quotient lattice a/z
for a # u in D is distributive. Let Q be the set of join irreducible ele-
ments of D, and define over Q the dependence relation (B) of page 16,

(B) 9 AS if and only if g € g for some qgq € S.

By theorem 1.6 the natural mapping induced by this dependence relation
imbeds D as a lattice within a completely distributive lattice D', and

an element of D' is completely join irreducible if and only if it is

the image of a join irreducible element of D,

Lemma 3.1. Let S, denote the set of all join irreducible elements con-
tained in a. In any distributive lattice S,y = S, V Sy

Proof: Let q€ Sy, Then g = a n (avub) = (ana) v (q n b), which
implies either g = gna or q = gnb, since q is join irreducible. Hence
either g € a, or q € b, and therefore Sa\;b (3 Sa v Sb' The opposite con-
taining relation is obvious, and the lemma is proved.

We now prove that every quotient lattice a/z, a # u in D, is isomor=-
phic to the quotient lattice Sa/N in D', Let a # u be in D, let
5,285 in D', and let b = US in D. Since the ascending chain condition

holds in D, we have b = ¢, V .es v s where all q; € S. Assume that

]
there exists a join irreducible element g such that g € Sy - S,
Then we have

qg=qgnb=qgn Ug =U(ang;),
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since a/z is distributive., But since q is join irreducible, q = qn Qg
for some qp € S, k € n. Hence q = qy and q A S, which implies q € S,
This contradicts q € Sy, = S, and hence S = Sy. Thus every element of D!
which is contained in S, is the image of an element b which is contained
in a. Within the quotient lattice Sa/N we have Sy, , . = Sp V S, by
lemma 3.1, and Sy = . = S, A S, by the properties of the dependence rela-
tion. Hence a/z is isomorphic to S,/N in D!,

Clearly the dual lattice L' of D' is distributive, an element of L!
is completely meet irreducible if and only if it is the image of a meet
irreducible element of L, and every quotient lattice u/a, a #3z in L,
is isomorphic to the quotient lattice u/a' in L'.

We next prove the uniqueness of L' which follows from the fact that
the reduced representation of an element of a completely distributive
lattice as an intersection of completely meet irreducible elements is
unique., Let a = ('\x“be any representation of a as an intersection of
completely meet irreducible elements. The representation is said to be
reduced if no x_, is superfluous.

Lemma 3.2. Any reduced representation of an element of a completely dis-
tributive lattice as an intersection of completely meet irreducible ele-
ments is unique. |

Proof: Leta = Nx_ =N X'ﬁ be two reduced representations

of a. Then we have for any X,

= = 1 - 1 - ) 1
3 —x“ua-x“uﬂx@ =N (x, v x@)-xd_u xly for some xlg
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since x, is meet irreducible. Hence x_ =2 x'g for some x'p . Likewise
for that x'p we have x'p 2 Xy for some Xy o But since the representa-
tions are reduced, x, = X, = x's « Thus each element of either repre-
sentation is in the other, and the two representations are identical.
Now suppose there are two distributive imbedding lattices L! and LM
of L which preserve quotient lattices of L, are such that the completely
meet irreducible elements of L' and L" are precisely the images of meet
irreducible elements of L, and are such that every element of L' and L"
has a reduced representation as an intersection of completely meet irre-
ducible elements., Let S' be the set of unique reduced representations
of elements of L' as intersections of completely meet irreducible ele-
ments x! , and let S" be the corresponding set of representations of

elements of L", The completely meet irreducible elements of L' and LU

are in a natural one-to-one correspondence since both are in one-to-one

correspondence with the meet irreducibles of L. Suppose that s" =l\3ﬂk
is a member of S" such that the corresponding representation s' = Nx'y
is not in S'. Then a' = Nx', is an element of L', and thus has a re-
duced representation a' = ﬂx'@ in S'. Then a' = nx'@ = (\x", which

is a contradiction since the representation is unique. Hence the set

of meet irreducible elements of L completely determine the imbedding
lattice, and any two imbedding lattices of the stated form are isomorphic.
We have therefore proved

Theorem 3.1l. Any finite dimensional weakly distributive lattice L can

be imbedded in a distributive lattice L' such that the following condi-

tions hold,.
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(1) An element of L' is completely meet irreducible if and only
if it is the image of a meet irreducible element of L.

(2) For any elements a and b # 2z in L, the quotient lattice a/b
is isomorphic to a!'/b! in L'.

(3) If every element of L' has a reduced representation as an in-
tersection of completely meet irreducible elements, the imbedding is
unique.

Section 3.3. Modularity.

In the construction of a counter example to the desired imbedding
when the property W is modularity we use the following theorem (Birkhoff [1] ).
Theorem. Any finite dimensional modular lattice is the direct product
of a finite number of projective geometries, and any projective geometry
is a complemented modular lattice.
Iet P and Q be two finite projective planes with coordinatizing
fields of characteristic p and q respectively, where p and g are dis-
tinct primes. Then consider the corresponding lattices L and LQ joined
as in figure 4 with one maximal element m in common and with a common

null element added.

Lines

Points

Figure 4.



Ly )y

This configuration forms a weakly modular lattice L if we define

(1) If a,b e Lp, avb=aub
Lp
anb=anb,
Lp
(2) If a,be LQ, avb=aub
Lq
anb=aanb,
Lq
(3) Ifae€el,, be LQ’ avb=(avumuvu (auvm

anb-= 2z,

(4) If a = gz, avb =b

anb-=az,

Assume that L can be imbedded in a modular lattice L' which preserves
the quotient lattices of L and is finite dimensional. Then every quo-
tient a'/b! where a' » b' in L' is projective to u'/m', and therefore
L' is simple, Thus L' is a projective geometry G! of dimension at least
three, and L' has a coordinatizing field of some characteristic k. Since
the original projective planes are subspaces of G', k must equal p; like-
wise, k must equal g, which contradicts the distinctness of p and g.
Hence the imbedding problem is not possible for weakly modular lattices,

This example suggests that-the imbedding problem for a weakly mod-
ular lattice is closely comnected with projective geometry and that pre-
cise conditions under which the imbedding is possible are quite complex.
Problems of this nature have been discussed by Hall and Dilworth (Hall
and Dilworth [11 ), and in this paper we do not pursue the guestion fur-

ther.
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Section 3.4. Semi-modularity.

As in the case of modularity, the desired imbedding is in general
impossible for weakly upper semi-modular and weakly lower semi-modular
lattices. We do not obtain precise criteria for determining when a
- given weakly semi-modular lattice L can be imbedded in a semi-modular
lattice so as to preserve quotient lattices., The counter examples we
shall consider show that such conditions are intricately related to the
entire structure of L.

We first consider a weakly upper semi-modular lattice L, every ele-
ment of which contains at least one point. Let P be the union of all
points in L,

Theorem 3.2. L can be imbedded in an upper semi-modular lattice L!

such that, for a # z in L, u/a is isomorphic to u'/a', if and only if

the quotient lattice P/z of L can be imbedded in the same way. Further-
more if Lp denotes an imbedding lattice for P/z, then the set union of L
and Lp is an imbedding lattice L' of L.,

Proof: The necessity is obvious. Hence we assume that P/z is imbedded
in Lp in such a way that all quotient lattices P/b, b # z, are preserved.
Suppose this imbedding tekes a € P/z into a' € Lp. Consider the set of
elements L' = L V Lp, where a and a' are identified for every a € P/z.

Define a partial ordering =2 over L' as follows:

(1) Ifaélandb L, then a2 b if and only if aab.
(2) IfaeLand bel, thena2b if and only ifafb.

(3) Ifaelandb L, then a 2b if and only if there exists an

element c€ L A Lp such that a 2 ¢ 2 b,
L Lp
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We verify that this definition produces a partial ordering. Trivially
a=2a, Assume a=2b and b=2a, If ae€ L, then b € L since otherwise
b= a is not defined., If a ¢ L, then b ¢ L since otherwise a=2b is not
defined. Hence a = b since either a = b or a zpb. To prove the transitiv-
ity we assume a 2 b and b 2 ¢ and consider three cases.

(1) If a €L, thenb € L since a=b, and similarly c ¢ L. Hence
a=2c by the transitivity of the partial ordering of Lp.

(2) If a€Landbe€ L then either c€ L or c ¢ L. But c e L im=
plies a=2c by the transitivity of the ordering in L. Also ¢ ¢ L implies
that d € Lp A L exists such that b 2 d =2 ¢, which implies a2 d 2 ¢,

L Ly L Lp
Hence a 2c.

(3 Ifae€Landb gL, thenc ¢ L since b=2c. Also d exists
such that a 2 d fpb 2 Eé’ and hence a =2 ¢. Therefore transitivity is es-
tablished, and L' is partially ordered.

Given any two elements a and b of L' we now exhibit a unique minimal
element ¢ containing a and b and a unique maximal element d contained in

a and b, Again there are three main cases.

(1) Ifa#LandbgfL,clearlyc=a:bandd=a|¢:b.
P 4

(2) IfaeLandbeL,thenc=atb. IfaCb;éz thend=arl:b.

If aab =32, consider d = (an P) n (b tP) Then we have
L

L P
a2(anP)2(anP)n (baP) =4,
L L Lp L Lp L
and b2(M®nP)2(a@nP)a(bnP)=4d.
L L Lp L LP L
Hence a2d and b2d.

Let x be any element such that a 2 x and b2 x. If x € L, then

z =a0b2x, and hence d2x =32. If x¢ L, we have a' and b' in LAL,
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We verify that this definition produces a partial ordering. Trivially
a=2a., Assume a=2b and b=2a. If ae€ L, then b € L since otherwise
b2 a is not defined. If a & L, then b # L since otherwise a2®b is not
defined. Hence a = b since either a = b or a fpb° To prove the transitiv-
ity we assume a 2 b and b 2 ¢ and consider three cases.

(1) Ifa€l, then b € L since a=2b, and similarly c € L. Hence
a=c by the transitivity of the partial ordering of Lp.

(2) If a€Landbe€ L then either c€ L or ¢c ¢ L. But c e L im=
plies a = ¢ by the transitivity of the ordering in L. Also ¢ € L implies
that d € Lp A L exists such that b 2 d =2 ¢, which implies a2 d 2 c,

L Lp L Llp
Hence a = c.

(3 IfaelLandb¢g L, thenc ¢ L since b=2c. Also d exists
such that a =2 d a’b 2 f; and hence a =2 c¢. Therefore transitivity is es-
tablished, and L' is partially ordered.

Given any two elements a and b of L' we now exhibit a unique minimal
element ¢ containing a and b and a unique maximal element d contained in
a and b, Again there are three main cases.

(1) Ifa¢ L andb ¢ L, clearly c = a tpb and d = a Cpb.

(2) IfaeLandbEL,thenc=atb. Ifa{:b;éz thend=at£b.

If aab =13z, consider d = (an P) n (b n P). Then we have
L L Lp L

a2(anP)2(anaP)n (baP) =d,
L L Lp L Lp L
and b2(dnP)2(anP)a(banP) =d.
L L L L Lp L
Hence a2d and b=24d.

Let x be any element such that a 2 x and b2 x. If x € L, then

z =aab2x, and hence d2x =2. If x¢ L, we have a' and b' in LAL,
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such that a 2 a'2 xand b 2 b' 2 x. Also P 2 a!' and P 2 b!, Hence
L L

(a n P) E a', which implies (a n P) E a' since both elements are common
L P
to L and Lp. Similarly (ba P)2 b', Then we have (a n P) a (b n P) =
L Lp L Lp L

d = a's b! 2 x, and thus d 2 x, which establishes d as the maximal ele-
P L P

ment contained in a and b.
(3) Ifaelandbé¢l, letc = [(atP)tb) v oa.
P

N P) el L d h P € A i i
ow (a?- ) N Lp, and hence (at )l\-apb L A Lp, since P/(a a P) in Ly

is precisely P/(a n P) in L by hypothesis. Then since c 2 a, we have

2

L

c=2a. Also c = [(a " P) v b] 2 b. Hence c=2 b. Let x be any ele-
Lp Ly

ment such that x =2 a and x=2b., Then X 2 a and b' exists such that
L

x 2b'2 b, Since a 2 (a n P), we have
L Lp L L

and xz2x' 2 [(a p'] 2 [(aaP)up],
L L Lp

for some x'e LAL

Hence x 2 [(aanP)uvb],
L Le

[(anp)ub] Vv a = C,
L Lp L

X

JUrw

and X JC,

which establishes ¢ as the minimal element.

Now let d = (a n P) n b, Then we have
L Lp
asa(anP)a(anP)an b,
L L Lp L Lp

and hence a 2d. Likewise b2d. Let x be any element such that

a2x and b2 x., Then x € Lp, since b # L. Also a' exists in L A Lp
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such that a 2 a' 2 x, Since P 2 a', (a o P) 2 a', which implies
L L

L Lp
(an P)2 a', and hence (a n P) 2 2' 2 x. Since b 2 x, we have
L L Lp Lp Lp
d=(anP)nb2x, and d 2x. Hence d is maximal.
L Lp Lp

Therefore L' = L V Lp is a lattice, and we have the following def-

initions for union U and intersection () in L'.

(1) If a,b¢ L, aUb=auvb
Lp
allb =anhb,
Lp
(2) Ifa,be Land anbgaz, an=atb
anb=aﬂb.
L
(3) If a,pe Land anb =z, an=a::b
aflb= [(@nP)n (baP)].
L Lp L
(4) If a€ Land b ¢ L, aUb= [(aaP)ub)lvua
L Lp L
aﬂb:(atP)nb.

Lp
Given any element a # z in L, consider the corresponding element

a' in L', If b' and c¢' are such that a' © b' and a' & c¢', then b' and c!
are images of elements b and ¢ in L, since neither the imbedding of P/z
nor the construction of L' introduces elements containing a' which are
not of this form. But then since b C c ‘=_- a#zwe have bUc =D t c
and bNec =Db rc c, and hence the quotient lattice u'/a' is isomorphic
to u/a for all a # z in L.

We now prove that L' is upper semi-modular. In L' let

b»a, cDaand ¢ id. There are four possibilities to consider.
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(1) If ael and a # 2z, then u/a in L' is upper semi-modular be-
cause of the weak upper semi-modularity of L and the preservation of
quotient lattices in L', Hence b Uc » c,

(2) ILetafgl,bel, andcel. Thenb > a implies b e Ly, be-
cause otherwise a is common to Lp and L. If ¢ f Lp this case reduces to
case 3, and if c € Lp it reduces to case 4.

(3) Leta#L,b¢L, and ce L, If ce€ pre have case 4, so

consider c # Lp. We have ¢ Da and P D a which imply ¢ VP 2 a, and

hence ¢ r': P E a, If cOP2b then ¢ 2 b which is a contradiction.
P
Hence (c n P) 2 b. Then (c n P) u b » ¢ n P by the upper semi-modularity
L Lp L Lp Lp L
of Lp, and therefore (c t P) l‘.' b { ¢ n P since the element on each side
P

of the relation i1s common to L and Lp. Now c =8 o P. But if

c 2 (¢ a P) v b, then ¢ D (¢ N P) Ub, which implies ¢ D b contradicting
4

c

. ru

b. Hence by the weak upper semi-modularity of L we have
{[(c aP)ubluc)se.
L Lp L L
But the left side is precisely ¢ Ub, and hence ¢ Ub ¥ c.

(4) 1If a, b, and ¢ are'all elements of Ly, then c :Pb tpc by the
upper semi-modularity of Lp, and therefore cU b » c,
Hence L' is upper semi-modular, and the proof of theorem 3.2 is

complete.,
We now consider an example which shows that the corresponding theo-
rems for lower semi-modularity, modularity, and distributivity are not

valid. The lattice of figure 5a is weakly lower semi-modular, weakly

modular, and weakly distributive. Figure 5b shows a possible imbedding
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of P/z which is distributive and hence modular and semi-modular. However,
L' which is shown in figure 5c is not lower semi-modular, and hence

neither modular nor distributive.

P P
S <]
L
2 Lp
Figure 5a. Figure 5b.

Figure 5c.

Next we prove that if the upper semi-modular imbedding can be made

such that the descending chain condition holds in the imbedding lattice,
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then it is not necessary to introduce new meet irreducible elements in
order to perform the imbedding.
Theorem 3.3. If a weakly upper semi-modular lattice L can be imbedded
in an upper semi-modular lattice L' such that L! satisfies the ascend-
ing chain condition and for a # z in L u/a is isomorphic to u'/a' in L',
then there exists an imbedding of L into an upper semi~-modular lattice
L" such that the quotient lattices are preserved and every meet irre-
ducible elemént of L" is the image of a meet irreducible element of L.
Proof: We assume that L is imbedded in L' with the properties stated
in the theorem. Then the image x' of a meet irreducible element x € L
is also meet irreducible since the quotient lattices of L and L' are
isomorphic., ZLet Q' be the set of all such irreducible images in L'h, and
let Q'V P! be the set of all meet irreducible elements of L', where P!
contains every meet irreducible element of L' which is not the image of
an irreducible of L.

For any a'e€ L' let S,y be the set of all q' € Q! such that q' =2 a.
Let L" be the lattice of all such sets, ordered by set inclusion. Since
L' is assumed to satisfy the ascending chain condition, if a' > b' then
Sg1€ Sy Clearly S,, € Sprimplies a' > b'.
Lemna 3.3. In L" Sa'n bt = S51v8p and Sgrypt = Sam Syt
Proof: By definition Sa,qu, is the smallest set in L" which contains
8,1V Sy Clearly S

asa, VS Let S, € L" be such that

a'n b! br®

Se12 5,V Sy. Then 8., 2 5,, and S,, 2 Sy, which imply c' e a' and
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cte b', Hence c'e a'a b' and Sc' 2 Sa," pre Hence Sa'n pt 1s the
smallest set containing 5,1V Sp1s which concludes the proof of the first
statement.

By definition S, ya Sy is the largest set in L" which is contained
in Sg1ASyr. But for g' € S;1A Syy we have q' 2 a' and q' 2 b', Hence
g'=2 a'v b'y, and q' € Sa' v bte Thus we have Sa,ASb,sSa,ub, , and
since the opposite inclusion is trivial, we have Sgy1A Sy = Syt pt =
Sa,n Sb" Hence the lemma holds, and in L" lattice intersection coin-
cides with set intersection.

By lemma 3.3 the mapping L' —> L" is a dual lattice homomorphism.

A set S € L" may be the image of more than one element of L', because
any element a' of L' can be expressed as the intersection of all meet
irreducibles containing a'. Hence if a', =N (T‘ V S,) and a', = N (T‘ V 3,)

where T, € Q', S, € P', and S, ¢ P!, then for S, # S, we have a' # a',.

Underthe mapping, T, is the image of both a', and a'z. However to each

T € L" we can associate the element t' = AT in L', Let T V Pt,be the

set of all meet irreducibles containing t', where Py, € P'. Then every

element t', whose image is T has the representation t', =N (T v Pt")

where Pt' EPt‘,’ and hence t' is the maximal element in L' whose image is T,

Clearly distinct elements in L" are associated with distinct elements of L',
We now show that L" is lower semi-modular. Let R, S, and T be ele-

ments of L" and let r', s', and t' be the associated elements of L'. Let

S»T,RecS, and R ¢ T. Then we have s' ¢ t', r' > s', and r'# t'.

Let t'=2 w! » s!' in L', Then the image of w' in L" is T since s' is the
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maximal element in L' whose image is S. If r' > w', then by the homo-
morphism R € T which contradicts R ¢ T. Hence by the upper semi-modu-
larity of L', rt v w! » r', By lemma 3.3 the image of ¥' v w' is
EAT=R aT, and since coverings in L' are either collapsed or inverted
by the mapping to L", we have either R =R n T or R¥»R n T. But
R =R a T implies R ¢ T which is a contradiction. Hence R » R o T, and
L" is lower semi-modular,

Next we prove that every join irreducible element S of L" is the

image of a meet irreducible element of L., Let S = T v R, Then in L',s' =

t'a r'. If S is join irreducible either S = T, which implies s' = t', or
S = R, which implies s' = r'. Hence s' is meet irreducible in L', But
Se Q' and s' = NS imply s' = q!' for some ' € Q'., Hence by the defi-

nition of Q', s' is the image of a meet irreducible element of L. But
then under the repeated mapping L — L'—>» L", S is the image of a meet
irreducible element of L.

Conversely, the image in L" of every meet irreducible element of L
is join irreducible, for if x € L is meet irreducible, then its image
x! in L' is meet irreducible by hypothesis. Then Sy1 1s the image in L"
of x', and x' is the unique element associated with S,,. Suppose

Sy =551 v Sb' . Then by lemma 3.3 Sy =8 2 Saﬂ vV S

a'vb!

have S, 2 S , and S, 2 Syt o This implies x' e a' and x' € b', and

, and we

x! Hi

hence x' € atab', But since x' is the unique element associated with

S

w1 o X2 aln b'. Hence x' = a'a b' which implies either x' = a' or

x' = b'. Then either Syy = Sy1 or Sy1 = Sy, and hence Sy is join ir-

reducible.
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Consider any quotient lattice u/a for a # z in L. By hypothesis
u/a is isomorphic to u'/a' in L', and for any b' in u'/a' the represen-
tation of b' as the intersection of all meet irreducibles in L' contain-
ing b' is in terms of elements of Q' and completely free from any ele-
ment of P'. Hence u'/a' is dually isomorphic to S,1/2z". But the dual
lattice of L" is upper semi-modular, its meet irreducible elements are
precisely the images of meet irreducible elements of L, and the quotient
lattices of L are preserved. Hence the proof of theorem 3.3 is complete.

The example shown in figure 6 proves that the imbedding problem
stated in section 3.1 is in general impossible for weakly upper semi-
modular lattices. By theorem 3.3 the imbedding can be made, if at all,
in terms of four meet irreducible elements of L. If the imbedding lat-
tice L' is upper semi-modular, the chain law must hold between z' and x'j.
Since the quotient lattice u/(xl n x,) is to be preserved, we must in-
troduce an element between z and x; n X,. But x,=2 X0 Xg2 X 0 XgN Xy
and Xy2X,0 X, 2X,0 X, O X, Therefore any element contained by x ,aXg

4

must be X NXpN Xy X, = 2, and the imbedding preserving quotient lat-

tices is impossible.

Figure 6.,
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The final example demonstrates a weakly lower semi-modular lattice
which cannot be imbedded to preserve quotient lattices without introduc—
ing new meet irreducible elements, and is shown in figure 7. Notice that
X, =X 0 X P X nX,nXg and X, 0 X, » X, N Xp 0 Xy Xgo
Thus in a lower semi-modular imbedding lattice which preserves quotients
we must have
X, 0 X, A Xg & (X, 0 Xy 0 Xy N Xy N (x, 0 X, 0 %) = 2,

But x, 2 X, n X, 2 2, and hence a = z. However

X, n X, nXg > a =2z is impossible since

X'anDXs>'X.‘anﬂX5r\.X.GDZ.

Figure 7.
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