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Abstract 

A fractional version of the Discrete Fourier Transform or DFT, denoted by the Fractional Discrete Fourier 
Transform or FDFT for short, is discussed here. First , results of a fractional version of the continuous-time 
Fourier Transform or CTFT are explored and then parallels are made between the DFT and the CTFT. 
Using the method of spectral decomposition [1], an expression for the FDFT is then derived which satisfies 
properties analogous to the fractional CTFT. Afterwards , properties of the FDFT are discovered and proven, 
and an example of an FDFT pair is given. Finally, various applications of the FDFT in signal processing in 
areas such as allpass filter networks and the M-channel maximally decimated filter bank are discussed . 
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Introduction 

This thesis is organized into three chapters. In the first chapter, an expression for the FDFT is derived . 
In order to properly introduce the notion of a fractional DFT, the CTFT and its duality properties are 
discussed. At this point , a fractional version of the CTFT is mentioned. Then, analogies are made between 
the CTFT and the DFT, such as duality properties. This then serves as the basis upon which we derive an 
expression for the FDFT. Using the method of spectral decomposition, which itself is proven here, a closed 
form expression for the FDFT is derived. 

In the second chapter, properties of the newly derived FDFT are stated and proven . Tables of proper­
ties are included at the end of this section, as well as a very simple example of an FDFT pair. 

Applications of the FDFT in signal processing are discussed in the third chapter. First, we explore the 
computational complexity of the FDFT and then consider implementing it in a simple digital allpass filter 
network. Finally, the implementation of the FDFT in the M-channel maximally decimated filter bank is 
analyzed and the example of the classical 2-channel QMF bank is discussed. 
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Chapter 1 

Derivation of the Fractional Discrete 
Fourier Transform 

1. 1 The Continuous-Time Fourier Transform as a Rotational Op­
erator 

In many classical engineering publications, the Fourier Transform of a continuous-time signal x(t), called the 
CTFT for short, is defined as follows. 

X(w) = F{x(t)} ~ 1_: x(t)e-jwtdt 

One particular alternate definition of the integral transform from above is given below. 

X(w) = F{x(t)} ~ ~ /
00 

x(t)e-jwtdt 
y27r -oo 

(1.1) 

In addition to retaining all of the important properties from the transform introduced originally, this slightly 
modified transform has the following duality properties. 

F{F{x(t)}} 
F{F{F{x(t)}}} 

F{F{F{F{x(t)}}}} 

x(-t) 

X(-w) 

x(t) 

(1.2) 

(1.3) 

(1.4) 

As we can see from above, by applying the linear Fourier Transform operator F twice to the signal x(t) , 
we get a reversed version of x(t), namely x(-t). Applying F three times, we get the reversed version of 
X(w), namely X(-w), whereas by applying F four times, we get back our original signal x(t). With these 
particular properties satisfied, the version of the Fourier Transform in (1.1) came to be viewed as a rotational 
operator [2] in a ficticious time-frequency plane as is shown in Figure 1.1. 

Each application of the Fourier Transform would rotate the signal x(t) by 90° in this plane. Further appli­
cations of the Fourier Transform would result in a net angular measure equal to the sum of the number of 
rotations times the angular measure of each rotation. The question then arose as to how one could rotate 
by an arbitrary angle, say a, in this time-frequency plane. This question was resolved by first considering 
how to represent any point in the plane with coordinates (t, w) in terms of a new set of variables (u, v), (see 
Figure 1. 1). The new coordinates, ( u, v), are related to the old ones, ( t, w), through the following unitary 
transformation [3]. 

[ 
u ] [ cos a sin a ] [ t ] 
v - sin a cos a w 

With this, the question then arose as to how to transform a time-signal, x(t), into a signal as a function of 
u. This transformation would have the properties that when a= 0, we get x(u), whereas when a= ~' we 
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Figure 1.1: The Time-Frequency Plane 

get X(u). In addition, the transformation operator would act as a rotational operator in the sense that a 
rotation by an angle of a followed by another by an angle of (3 would result in the original signal rotated by 
a net angle of ( a + /3). One such operator, denoted by Fa, returns a signal X a ( u) given the signal x ( t) and 
is given by [2] as follows. 

X 0 (u) = .r0 {x(t)} = 1_: K 0 (t, u)x(t)dt (1.5) 

h K (t ) _ ✓l-jcota i('2 tu 2 cotcx.-utcsccx.) 
w ere O , u - 27!" e 

Here, K 0 (t, u) is called the kernel of the integral operator .r0 . Indeed as desired, the following properties 
hold. 

Xo(u) = 1_: x(t)o(t - u)dt = x(u) (1.6) 

Xt(u) l 100 

v'2i x(t)e-jutdt = X(u) 
27!" -oo 

(1.7) 

.r~{.r0 {x(t)}} = Fa+/3{x(t)} (1.8) 

Because of these properties, the transform operator Fa was christened the continuous-time fractional Fourier 
Transform, or FRFT for short. As we will soon see, this concept of viewing the CTFT as a rotational operator 
can be extended to the Discrete Fourier Transform, or DFT, as well. 

1.2 The Discrete Fourier Transform 

Classically, the DFT of a discrete-time sequence of length N, say x[n], defined over the interval O ::; n ::; N -1 
is given below by the following formula. 

N-1 

X[k] = DFT{x[n]}:@: L x[n]e-i( 2~;k), 0::; k::; N - l 
n=O 

As with the CTFT, an alternate definition of the DFT which will be important for reasons which will soon 
be evident, is given below. 

N-1 
6 1 "' ·(2~nk) X[k] = DFT{x[n]} = -JN ~ x[n]e-1 ~ , 0::; k::; N - l (1.9) 
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1.2.1 Duality 

Analogous to the duality properties of the CTFT given in (1.2) ,(1.3) , and (1.4) , we have the following. 

DFT{DFT{x[n]}} 
DFT{DFT{DFT{x[n]}}} 

DFT{DFT{DFT{DFT{x[n]}}}} 

x[-n] 
X[-k] 
x[n] 

(1.10) 

(1.11) 

(1.12) 

(It should be noted here that by x[-n], we really mean x[-n (mod N)] . For the remainder of this text , 
whenever we write, say y[m] as a discrete-time signal of length N, we will really mean y[m (mod N)].) 

So, the DFT can be regarded as a 90° rotational operator in a discrete [n, k] time-frequency plane. 

1.2.2 Matrix Form of the DFT 

One advantage of the DFT over the CTFT is that the input and output sequences of the DFT are of finite 
length (length N in fact) , while the input and output functions of the CTFT have infinite length (length 
2l-l 0 in fact) . As a result , we can use matrices to simplify our notation as well as analysis. If we define, 

~ [-1 -j( 2~;:k )] , W 17\Te , 
vN NxN 

then we have from (1.9), 
X=Wx 

So, the vector X is viewed as a linear transformation of the original vector x by the matrix transform W, 
where the linear transformation here is the DFT. For this reason, W is called the DFT matrix. Using this 
matrix notation, we can see that applying the DFT operator p times to the signal x[n] is equivalent to raising 
W to the p-th power. So from (1.12), we get, 

So, we conclude, 
W 4 =I, (1.13) 

where I is the N x N identity matrix. 

1.3 Desired Properties of a Fractional DFT 

In an analogous fashion to the continuous-time case, let DFT °' denote our fractional DFT operator, which 
we will call the FDFT operator for short. When this operator acts on a finite length-N sequence x[n], it 
returns a finite length-N sequence Xa[l] as follows . 

We wish to express this transformation in a form similar to that of the FRFT given in (1.5). This is done 
as follows. 

N-1 

Xa[l] = L Ka[l, n]x[n], 0 :S l :SN - I (1.14) 
n=O 

Here, Ka[l, n] is a two-dimensional, finite-length, discrete-time scalar field called the kernel of the FDFT. If 
we define the following vectors, then we can simplify notation here by writing (1.14) as a matrix product. 
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With these definitions , (1.14) becomes, 
X o: = A(o:)x (1.15) 

Because of its definition , the matrix A(o:) will be called the FDFT matrix. To satisfy the properties of a 
rotational operator in the [n, k] plane, we want the following properties satisfied. 

VFTo{x[n]} = x[l] 

VFTt{x[n]} = X[l] 

VFT~{VFTa{x[n]}} = VFTa{VFT~{x[n]}} = VFT a+dx[n]} 

Thus , we want the FDFT matrix A(o:) to satisfy the following properties. 

A(0) = I 

A(~)= W 
A(/3)A(o:) = A(o:)A(/3) = A(o: + /3) 

(1.16) 

( 1.17) 

( 1.18) 

1.4 The FDFT Matrix as a Fractional Power of the DFT Matrix 

One way of determining A(o:) is to express A(o:) as a fractional power of the DFT matrix W . This method 
was first considered by Santhanam and McClellan [3] . If we set, 

2o 
A(o:) = W7, 

then indeed the properties desired for our transform, notably (1.16), (1.17) , and (1.18), are satisfied, provided 
that exponents satisfy the same relations for matrices as they do for complex numbers. That is, we will 
assume for now that we have, 

wµ,wv = wµ,+v for some µ , V E C (1.19) 

(We will later show that for a special class of matrices, this property does indeed hold to be true. In fact, 
W belongs to this class.) 

To express a fractional power of the DFT matrix, Santhanam and McClellan considered diagonalizing the 
DFT matrix to obtain the fractional power they desired as follows. 

2o t A(o:) = TA 7T 

Here, T is a matrix of the eigenvectors of the DFT matrix, while A is a diagonal matrix of its eigenvalues. 
In this case, we can define A 

2
w

0 

to be the matrix formed by taking each diagonal element to the 2:-th power. 
Then indeed we have, 

Aµ, A" = Aµ,+v for some µ , v E C 

as desired. While this method works, I have opted to use a different method which appears to be less entropic 
than that which Santhanam and McClellan used. In order, though, to properly introduce my method, let us 
digress for a while before returning to the task at hand. 

1.5 The Method of Spectral Decomposition 

From Hsu [l], we have the following remarkable theorem. For this, recall that the minimal polynomial, 
denoted here as m(>.), of an N x N matrix C is the smallest degree polynomial such that m(C) = 0. By 
the Cayley-Hamilton Theorem, we know that such a polynomial always exists for every N x N matrix C. 
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Theorem 1 (Spectral Decomposition) If C is any N x N matrix with a minimal polynomial of the 
form, 

p 

m(A) = II (A - A;) where Ak =I- Az V k =I- l , 
i=l 

then, we can express C in the following way, called the spectral decomposition of C. 

p 

C = ~A;E;, 
i=l 

where the E; 's are called constituent matrices and are obtained by the formula, 

p 

II (C - Ami) 
m = 1 

E;= 
m#i 

(1.20) p 

II (A; - Am) 
m= 1 
m#i 

Furthermore, the constituent matrices satisfy the following properties. 

i=l 

2. Em Ek = 0 V m =/- k (Orthogonality) 

3. E% = Ek (Idempotency) 

4. cEk =Eke= AkEk 

Oddly enough, this incredible theorem is not in some of the more classical books on matrix theory, such as 
Horn and Johnson [4]. In addition to this, Hsu offers no proof of this theorem. So, we will take the time 
here to prove this theorem. First we will show that by defining E; as stated in the theorem, then indeed 
properties 1 and 2 hold. With this, we will show that the spectral decomposition of C is valid. Finally, we 
will prove that properties 3 and 4 are true. 

Proof of Theorem 1: Suppose C has a minimal polynomial, say m(A) , of the form stated in the the­
orem. (Recall that the minimal polynomial of C is the smallest degree polynomial such that m(C) = 0.) 
Then we have, 

1 
m(A) 

1 

Using a partial-fraction expansion, we get the following, since the A;'s are distinct. 

Here, we have, 
1 k; = __ P ____ _ 

II (A; - Am) 
m= 1 
m # i 



Adding up each term in the summation above yields, 

We have now, 

Here , we have, 

1 k1g1 (A)+ k2g2(A) + • • • + kpgp(A) 
m(A) (A - A1)(A - A2) ···(A - Ap) 

1 
m(A) 

p 

where 9i(A) = II (A - Am) 
m = I 
m#i 

k1g1 (A)+ k2g2(A) + • • • + kpgp(A) 
m(A) 

p 

L k;g;(A) = 1. 
i=l 

m= 1 
m # i 

k;g;(A) = __ P ___ _ 

II (A; - Am) 
m = 1 
m#i 

and so k;g;(A) is a polynomial in A offinite degree (p - 1) . Let us define f(A) as follows. 
p 

j(A):@: L k;g;(A) = 1 
i=l 

Since k;g;(A) is a finite degree polynomial for all i, it then follows that f (A) is also a finite degree polynomial. 
Since polynomials are well-defined functions for square matrices, we have, 

p 

f(C) = L k;g;(C) = I 
i=l 

So, let us now define E; as follows as suggested by the theorem. 
p 

Note that by (1.21), we have, 

II (C - Ami) 
m = 1 

e:, m # i E; = k;g;(C) = __ P ____ _ 

i=l 

II (A; - Am) 
m = 1 
m#i 

and so by construction, property 1 is valid. From (1.22), we have, for i ,f. j, 

m(C)=O ___.,._,_ 
p 

II (C - Ami) 
m=l 

m = 1 
m#i 

11 

m = 1 

m = 1 
m #j 

(1.21) 

(1.22) 



This result follows because the following factors necessarily commute for all k , l . 

This proves that property 2 is valid. With these two properties proven, we can show that we indeed have, 

From (1.22), we have, 

p 

C = L>.;E; 
i=l 

(C - >.;I)E; = _P_m_(_C_) __ = O 

II (A; - Am) 
m= 1 
m,;ei 

CE; ->.;E; = 0 

.•. CE;= >.;E;. 

Summing both sides over all i yields the following. 

p p 

LCE; = L>.;E; 
i=l i=l 

Thus, using the result of property 1, we have, 

as desired. We must finally prove that properties 3 and 4 are valid. From property 1, we have again, 

Premultiplying both sides by Ek, we get, 
p 

LEkEi =Ek 
i=l 

Applying the result from property 2, we have, 

p 

LEkEi =El= Ek , 
i=l 

which proves property 3. In a similar way, we can prove property 4. We showed that , 

p 

C= L>.;E; 

So, by postmultiplying both sides by Ek , we get, 

p 

i=l 

CEk = L >.;E;Ek = >.kE~ = >.kEk , 
i=l 
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where the last equality is a result of property 3. Similarly, by premultiplying, we get, 

p 

Eke= L >-iEkEi = >-"'E~ = >-kEk 
i=l 

.•. cEk =Eke= >-kEk. 

Thus, property 4 is valid. This completes the proof. 

As a result of this amazing theorem , we have the following important corollary. 

Corollary 1 Let C have a spectral decomposition as described in Theorem 1. Then we have, 

p 

en = L >.fEi \;/ n E Z+ 
i=l 

Proof: This result follows by induction. We already know that the corollary holds for n = 0 and n = 1. 
Assume now that it holds for n = k say. Then, we have, 

p 

ck= L>-7Ei 
i=l 

So, 

eke= ck+l = (t >-}Ei) c = t >-7(EiC) 

But, by property 4, we have, EiC = AiEi. So we get, 

So, if the proof is valid for n = k, then it is valid for n = k + l. Since it is valid for n = 0, we conclude that 
it is valid V n E Z+· 

This is where the extension into fractional powers comes into being. We can define the fractional power, say 
µ, of a matrix C with a spectral decomposition as follows. 

Definition 1 (Fractional Power of a Matrix) Let C be any N x N matrix with a spectral decomposition 
as above. Then, the µ-th power of C is defined as follows. 

p 

Cµ, ~ L >-t Ei for some µ E <C 
i=l 

It should be noted that the fractional power of a matrix as defined above is not unique in general. We will 
say more about this later when we apply this definition to the DFT matrix. From this definition and from 
Theorem 1, we have the following important property. 

Property 1 (Additivity of Exponents of Matrices) 

Proof: We have the following. 
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Applying properties 2 and 3, we get , 

p p 

cµcv = L ,\t(,\iE;) = L ,\\µ+v)E; 

i=l i=l 

.•. cµcv = cµ+ v . 

Thus, the extension of integral powers of matrices such as C to include fractional powers is well justified. 
We can now apply the mathematical tools derived here to address the problem at hand, namely obtaining a 
fractional power of the DFT matrix. 

1.6 Spectral Decomposition of the DFT Matrix 

From McClellan and Parks [5], we know that the DFT matrix W has four distinct eigenvalues , namely 
1, j, -1, and - j. Hence, the characteristic polynomial of W, denoted by c( ,\), has the following form. 

(1.23) 

Here, the µ;'s represent the multiplicities of the eigenvalues 1, j , -1 , and -j respectively. Also from [5], we 
know that the multiplicities are distributed as in Table 1.1 when W is N x N . 

N µ1 µ2 µ3 µ4 

4m m+l m-1 m m 
4m+ 1 m+l m m m 
4m+2 m+l m m+ 1 m 
4m+3 m+l m m+l m+l 

Table 1.1: Distribution of the Multiplicities of the Eigenvalues of the DFT Matrix 

Consider the polynomial defined as follows. 

m(,\) ~ (,\ - 1)(,\ - j)(,\ + 1)(,\ + j) = ,\4 - 1 ( 1.24) 

We can now show that m(,\) is indeed the minimal polynomial of W. To prove this, we need to use two 
properties of minimal polynomials in general which come from Cullen [6]. 

Property 2 If p(,\) is the minimal polynomial of a matrix A, then every eigenvalue of A is a zero of p(,\). 

Property 3 If p(,\) is the minimal polynomial of a matrix A with characteristic polynomial f(,\), then 
p(,\)lf(,\). That is, p(,\) divides f(,\). 

Given the form of (1.23), the polynomial with the smallest possible order which satisfies these necessary 
conditions for a minimal polynomial is that given in (1.24). Hence, it follows that if m(W) = 0, then m(,\) 
is indeed the minimal polynomial by virtue of its order. We have, 

m(W) = W 4 -I 

But recall from (1.13) that we have, 
W 4 =I 

Therefore, we conclude, 
m(W) = I - I = 0, 

and so m(,\) is indeed the minimal polynomial of W . 
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Now , m(,\) as defined here has the form required for spectral decomposition , since all of its factors are 
distinct . Without loss of generality, we can set ,\1 = 1, >-2 = j , ,\3 = -1 , and ,\4 = -j . Applying the method 
of spectral decomposition , we have, 

W = E1 + jE2 - E 3 - jE4 (1.25) 

The constituent matrices E; for i = 1, 2, 3, and 4 are given below as follows from (1.20). 

E1 ¼(I+W+W2 +W3 ) 

E2 ¼(I - jW - W 2 + jW3) 

E3 ¼ (I - w + w 2 - w 3 ) 

E4 ¼(I+jW-W2 -jW3) 

We can express this more compactly in matrix form as follows. 

1 1 1 1 
E1 2 2 2 2 

[ t: l E2 
1 _j_ 1 j_ 

1 2 2 - 2 2 
E3 

- 1 1 1 1 2 2 - 2 2 -2 
E4 1 j_ 1 _j_ 

2 2 - 2 2 

- 1 -or E = 2W 4W , where we have, (1.26) 

E1 

w~ [ t: l - "' E 2 
E= 

E 3 

E4 

Here, W 4 is the N = 4 point DFT matrix. We will now proceed to derive the matrix form of the FDFT by 
taking a fractional power of W . 

1. 7 Matrix Form of the FDFT 

From (1.25), we have, 

(1.27) 

So, we now have the following for the FDFT matrix, A(a) , by using the definition of a fractional power of 
a matrix considered in Section 1.5. 

(1.28) 

Since the E;'s are simply linear combinations of the first four powers of the DFT matrix starting from the 
zeroth power of W , we can express A(a) in terms of these matrices. This will be more convenient here, 
since we have more knowledge about the DFT matrix than we do of the constituent matrices. We have, 

3 

A(a) = L ai(a)Wi , where we have, 
i=O 

ao(a) = i (1 + ei°' + ei2°' + ei3°' ) 

! (1 - jei°' - ei2°' + j ei 3°' ) 
4 

! (1 - ei°' + ei2°' - ei3°') 
4 

i (1 + jei°' - ei2°' - jei3°') 

15 

(1.29) 

(1.30) 

(1.31) 

(1.32) 



We can also express this in terms of matrices in a form identical to the one we had previously for the E ;'s. 
This is shown below. 

1 1 1 1 
ao(n) 2 2 2 2 1 

a1 (n) 
1 _i 1 i 

eJo: 1 1 2 2 -2 2 

a2(n) 
- 1 1 1 1 e120: 2 2 -2 2 -2 

a3(a) 1 i 1 _i eJ3o: 
2 2 -2 2 

or ii(a) = ~ W 4e(n) , where we have, 

ao ( a) 1 

ii(a) ~ 
a1 (a) 

e(a) ~ 
ejo: 

a2 ( a) ej2o: 

a3 ( a) ej3o: 

It should be noted that the FDFT matrix obtained here is not unique. In fact, this version of the FDFT 
is slightly different from that obtained by Santhanam and McClellan [3] in that the coefficients ai (a) are 
different. They obtained the following results for these coefficients . 

ao(a) = ! (1 + ejo: + ej2o: + e-jo:) 
4 

! (1 - jejo: - ej2o: + je-j0 ) 
4 

! (1 - ejo: + ej2o: - e-jo:) 
4 

! (1 + jejo: - ej2o: - je- j 0 ) 
4 

The reason for this discrepancy is because the fractional power of a matrix defined in Definition 1 does not 
yield a unique matrix. To see this, let C be a matrix with a spectral decomposition as follows. 

p 

C = L,\iEi 
i=l 

In general, we can write Ai in polar form as A; = p ;eje,. So certainly, we have ,\; = p;ej(0,+2rrn) for any 
n E Z. Now, by definition, the µ-th power of C is given as, 

p 

cµ = L p;ej(µ0,+2rrµn)E; 

i=l 

Now suppose that µ is real. We can see now that for different choices of n, we will have different possible 
values for Cµ depending on the value ofµ. Ifµ is rational, we will have finitely many different possibilities 
for Cµ, whereas if µ is irrational, then there will be infinitely many ones. 

As we can see from (1.27), in my analysis of the DFT matrix, I chose arbitrarily all of the arguments 
of the eigenvalues of the D FT to be in the interval [O, 21r). In particular, since - j = ej 3,ff = e- j 1 , each of 
the factors of eJ30 in (1.30)-(1.32) could have been replaced by e-j o: , which seems to be what Santhanam 
and McClellan did. This is the reason for the discrepancy between the version of the FDFT matrix obtained 
by Santhanam and McClellan and the one which was derived here. 
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1.8 Kernel Form of the FDFT 

Recall that the kernel of the FDFT summation operator K c, [l , n] is simply the (l , n)-th element of A(a) . 
That is, 

A(a) = [Kc,[l, n]]NxN 

But, we now have the following for the (l, n)-th element of the matrices I , W , W 2 , and W 3 . 

I 

w 

w2 

w3 

[c5[l - nlJNxN 

[ _l_e(-i 2"i-)n )] 

.jN NxN 
1 

[c5[l + n]]N x N 

[_l e(i2"i-)n )] 

.jN NxN 

Therefore, we have the following expression for the kernel of the FDFT, where the a;(a)'s are given in 
(1.30)-(1.32). 

1.9 Summary of Results 

Through the method of spectral decomposition , we were able to derive a matrix form for the FDFT, which 
we denoted here by A(a) . From there, we were able to determine an expression for the kernel of the FDFT 
summation operator , which we denoted here by Kc,[l, n]. To recap, we present these results below. 

3 

A(a) = I: a;(a)Wi 
i =O 

The coefficients a;(a) are given below as follows. 

ao(a) ¼ (1 + eie> + ei2e> + ei3e>) 

a1(a) ¼ (1- jeie> - eJ2e> + jeJ3e>) 

a2(a) ¼ (1 - eJe> + eJ2e> - eJ3e>) 

a3(a) ¼ (1 + jejc, - ei2c, - jeJ3e>) 

1We actually have W 2 = [o[l +n (mod N)l]NxN· 

Here, o[l + n (mod N)] = { ~f ~~ (N _ n)], : : ~, 2, .. . , N _ 1 

Classically, W 2 is referred to as the circular flip matrix. 
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Chapter 2 

Properties of the FDFT 

In this chapter, we will explore the various properties of the FDFT. We will start by discussing the matrix 
form of the FDFT and then we will consider the kernel form. Finally, we will summarize the results and 
conclude with an example of an FDFT pair. 

2.1 Properties of the FDFT Matrix 

2.1.1 Angle Additivity 

By construction, A(a) satisfies the following properties. 

A(O) = I 

A(%) =W 
A(a)A(,B) = A(a + ,8) 

This last property is called the angle additivity property, since applying a rotation by an angle of a to a 
signal already rotated by an angle of ,B results in a signal rotated by a net angle of ( a + ,8). This property 
is the foundation upon which we regard the FDFT operator as a rotation operator . 

2.1.2 Periodicity and Multiple Rotations 

We have, 
A(a+27rn)=A(a) VnEZ 

Thus, A(a) is periodic with respect to the angular parameter a with period 271" . 

Proof: From (1.28), we have, 

So, we get, 
A(a + 27rn) = E1 + ej(a+2rrn)E2 + ej2(a+2rrn)E3 + ej3(a+2rrn)E4 

A(a + 27rn) = E1 + ei°'E2 + ei
2
°'E3 + ei

3
°'E4 = A(a) 

This completes the proof. 

We also have, 
Am(a) = A(ma) V m EN 

This is called the property of multiple rotations. From this property, we see that multiple applications of 
the FDFT operator result in the angular measure of the signal operated on to be multiplied. This property 
can be easily proven by induction using the angle additivity property. 
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2.1.3 Unitarity 

The FDFT matrix is unitary. That is , 
At(a)A(a) = I 

Proof: Recall from (1.26) that the constituent matrices , E;, for the FDFT matrix are related to the first 
four powers of the DFT matrix (starting from the zeroeth power) as follows . 

Here, E is a vector of the constituent matrices while W is a vector of the first four powers of the DFT 
matrix. So , we have, 

Thus, we get , 

EtE = ~wtw!W4W 
4 

Now, we know that the N x N DFT matrix W is unitary for any N. So, we have, 

wtw=I 

Substituting this into the equation above yields , 

But, we have, 

Now, we have, 

So, we conclude, 

4 3 

EtE = L E!Ei and wtw = L (Wi) t wi 
i=l i=O 

wtw = 1t1 + wtw + (W2) t W2 + (W3 ) t W3 

wtw = I+ I+ wtwtww + wtwtwtwww 

wtw = I + I + I + I = 41 

4 

.-. LE!E; = I . 
i=l 

Postmultiplying both sides by Ej for some j = 1, 2, 3, or 4, we get the following, by applying properties 2 
and 3 of Theorem 1 for the constituent matrices. 

4 

LE!E;Ej = Ei 
i=l 

4 

LE! (E;Ej) = E}E; = E}Ej = Ej 

i=l 

Taking the transpose conjugate of both sides yields, 

Ej = (EjEi f = EjEi = Ej 
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· Et - E " j- j· 

Thus, the constituent matrices for the FDFT matrix are Hermitian. With this , we can now easily prove that 
A(o:) is unitary. We have, from (1.28), 

By taking the transpose conjugate of both sides yields, 

At(o:) = Ei + e-jaEt + e-j2"E! + e-j3C>E1 

Since the constituent matrices are Hermitian, we get , 

Postmultiplying by A(o:), we get, by properties 2 and 3, 

4 

At(o:)A(o:) = Ei + E~ + E~ +Ei = E1 + E2 + E3 + E4 = LE; 
i=l 

But, by property 1, we have, 
4 

At(o:)A(o:) =LE;= I 
i=l 

This completes the proof. So, much like the DFT matrix and the identity matrix, the FDFT matrix is 
unitary for any angle o:. 

2.1.4 Symmetry 

The FDFT matrix is symmetric, that is, 

Proof: In Chapter 1, we found, 
3 

A(o:) = L a;(o:)Wi 
i=O 

Thus , we get, 

But, we know that the DFT matrix is symmetric, so that wr = W. Applying this , we get , 

3 

AT(o:) = La;(o:)Wi = A(o:) , 
i=O 

as desired. Thus, much like the DFT matrix, the FDFT matrix is symmetric for any angle o:. 

2.1.5 Inversion and Hermitian Symmetry 

The inverse of the FDFT matrix is given as follows. 
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Proof: From angle additivity, we have, by setting /3 = -a, 

A(o:)A(-o:) = A(o: - o:) = A(O) = I 
Since A(o:) is unitary, we know that I det(A(o:))I = l. Because we have, det(A(o:)) f. 0, we know that 
A- 1 (o:) exists. So, by premultiplying by A- 1 (o:), we get , 

A - 1 (o:) = A(-o:) 

Now, from the fact that A(o:) is unitary, we have, 

At(o:)A(o:) = I 
Postmultiplying by A- 1 (0:), we get, 

So , we conclude, 
A - 1 (o:) = A(-o:) = At (o:), 

as desired. Thus, the calculation of the inverse of the FDFT matrix is a trivial task. From above , we have, 

A(o:) = At(-o:) 

Hence, the FDFT is Hermitian symmetric with respect to the angular parameter o:. 

2.1.6 Parseval's Relation 

Recall from (1.15) that we have, 
X 0 = A(o:)x 

Here, X 0 is the vector form of the FDFT of the finite length sequence x[n] and xis the vector form of x[n]. 
We then have a Parseval's relation as follows. 

IIXall2 = llxll 2 

Proof: Taking the transpose conjugate of (1.15), we get, 

xt = (A(o:)x)t = xtAt(o:) 

So, since A(o:) is unitary, we get, 

XtX 0 = (xtAt(o:)) (A(o:)x) = xt (At(o:)A(o:)) x = xtlx = xtx 

So , we conclude, 
IIXall2 = llxll 2 

, 

as desired. Because of this property, we can view the FDFT as an isometric operator which preserves the 
energy of a signal. 

2.2 Properties of the FDFT Kernel 

2.2.1 Angle Additivity 

We have, 
N-1 

L K 0 [l, m]K11[m, n] = K 0 +11[l, n] 
m=O 

Proof: In Section 2.1.1, we showed that, 

A(o:)A(/3) = A(o: + /3) 

But since we have, A(o:) = [K0 [l, nlJNxN , we get , by equating corresponding elements of the matrices above, 

N-1 

L Ka[l , m]K11[m, n] = K 0 +11[l, n], 
m=O 

as desired. 
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2.2.2 Periodicity 

The kernel satisfies, 
Ka+21rm[l , n] = Ka[l, n] \:/ m E Z 

This follows directly from the periodicity of A(a). Thus, the kernel of the FDFT is periodic with respect to 
its angular argument a with period 21r . 

2.2.3 Symmetry of Discrete Arguments 

We have, 
Ka[l, n] = Ka[n , I] 

This follows directly from the fact that A(a) is symmetric. It can also be easily verified by considering the 
explicit form of K a[l , n] derived in Chapter l. 

2.2.4 Hermitian Symmetry of Angular Argument 

From the Hermitian symmetry of A(a), we immediately conclude, 

Ka[l, n] = K.:. °' [n, l] 

By using the symmetry property discussed in Section 2.2.3, we have, 

So , we conclude, 
Ka[l , n] = K.:. °' [1 , n] 

Thus, the kernel of the FDFT is Hermitian symmetric with respect to the angular parameter a. 

2.2.5 Orthonormality 

The FDFT kernel satisfies, 
N-1 

L Ka[m, n]K;[m, p] = o[n - p] 
m=O 

Proof: By angle additivity, we get, by setting /3 = -a, 

N-1 

L Ka[n,m]K-a[m,p] = Ko[n,p] 
m=O 

But since A(O) = I, we have K 0 [n ,p] = o[n - p]. Also, by Hermitian symmetry, K-a[m,p] = K;[m,p]. So , 
we get, 

N-1 

L Ka[n, m]K;[m,p] = o[n - p] 
m=O 

Now, by symmetry, we have, K a[n, m] = Ka[m, n]. So, we conclude, 

N-1 

L Ka[m,n]K;[m,p] = o[n - p] , 
m=O 

as desired. Thus, for a given angle a, the kernel is orthonormal with respect to its discrete arguments. 

2.2.6 Decomposition 

For a given angle a, the FDFT kernel is a weighted average of the following four kernels as is shown below. 

K a[l , n] = ao(a)Ko[l, n] + a1 (a)K t [l , n] + a2(a)K1r[l , n] + a3 (a)K \n [l, n] 

This follows directly from the form of A(a) derived in Chapter l. 
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2.3 Summary of the Properties of the FDFT 

A list of the properties of the FDFT matrix and kernel derived in this chapter is given in the tables below. 

Properties of A(a:) 

Name Expression 

Angle Additivity A(a:)A(,8) = A(a: + ,8) 

Periodicity A(a: + 21rn) = A(a:) 

Unitary At(a:)A(a:) = I 

Symmetry AT(a) = A(a:) 

Inverse A- 1 (0:) =A(-0:) =At(a) 

Parseval's Relation IIXal l2 = llxll 2 

Table 2.1: Properties of the Matrix Form of the FDFT 

Properties of Ka[l , n] 

Name Expression 

N-1 

Angle Additivity L Ka[l, m]K,e [m, n] = Ka+,e [l, n] 
m=0 

Periodicity Ka+2,rm[l, n] = Ka[l, n] 

Symmetry Ka[l, n] = Ka[n , l] 

Hermitian Symmetry Ka[l, n] = K.:_a[l, n] 
N-1 

Orthonormality L Ka[m, n]K~[m,p] = 5[n - p] 
m=0 

Decomposition Ka[l, n] = ao(a:)Ko[l, n] + a1 (a:)K ~ [l, n] 

+a2(0:)K,r[l, n] + a3(a)K h [l , n] 
2 

Table 2.2: Properties of the Kernel Form of the FDFT 

2.4 Example of an FDFT Pair 

Now, let x[n] denote a finite length sequence of length N. Also, let X[k] denote the DFT of x[n] and Xa[l] 
the FDFT of x[n] of angle a:. By the decomposition property, we have, 

Xa[l] = ao(a:)x[l] + a 1 (a)X[l] + a2(0:)x[-l] + a3(a)X[-l] 

Note that here, we have, x[-l] = x[-l (mod N)] and X[-l] = X[-l (mod N)]. 
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As a rudimentary example of the FDFT, consider the following finite length sequence x[n]. 

x[n] = u[n] - u[n - N] 

From our knowledge of the DFT, we know that, 

X[k] = ,/No[k] 

Indeed x[-n] = x[n] and X[-k] = X[k] here, so we get, 

Xa[l] = (ao(a) + a2(a)) (u[l] - u[l - N]) + (ai(a) + a3(a)) ( ,/Fi o[ll) 

On the following page, we have plotted the magnitude and phase of Xa[l] for N = 16 for various angles a 
as can be seen in Figure 2.1. From these plots, _we can see that as a-+ ~, we have Xa[l]-+ X[l]. 
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0 -1 
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Figure 2.1: Magnitude and phase plots of Xa[l] for various angles a. 
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Chapter 3 

Applications of the FDFT in Signal 
Processing 

In this chapter, we will explore some of the possible uses of the FDFT in digital signal processing. As we 
will soon see, the FDFT is not computationally efficient. However , it does offer an extra degree of freedom 
which we will try to exploit. 

3.1 The Not So Fast Fourier Transform 

The original goal after deriving an expression for the FDFT was to offer an improvement to the Fast Fourier 
Transform (FFT) algorithm brought about by Cooley and Tukey [7] . They derived an algorithm such that 
if the dimension of the DFT matrix, N, was of the form N = 2m, then the DFT of a given signal could 
be performed with a number of operations on the order of N log2 N, instead of N 2 , as would be the case 
for a general N x N linear transformation. This has been found to be useful in many applications in signal 
processing for the following reasons. In many cases, we wish to calculate the output y[n] of an LTI system 
with impulse response h[n] and input x[n]. We have the following linear convolution formula. 

y[n] = h[n] * x[n] = L x[k]h[n - k] 
k 

If the impulse response h[n] is of finite length N1 , i.e, it represents an FIR filter, and x[n] is a finite length 
input signal of length N2 , then the output y[n] has length N1 +N2 -l. So in this case, y[n] can be equivalently 
obtained by circular convolution, 

N-1 

y[n] = h[n] 0 x[n] = L h[i]x[n - i (mod N)] , (3 .1) 
i=O 

provided that N 2: N1 + N2 - 1. From the circular convolution theorem for the DFT, we have, by taking 
the N-point DFT of the equation above, 

Y[k] = vJVH[k]X[k] 

Here is where the advantage of the FFT can be seen. Since the DFT can be implemented with reduced 
complexity using the FFT, we can compute y[n] by first finding the DFT of h[n] and x[n], perform a point 
to point multiplication of H[k] and X[k] (with a scale factor of ffi included of course) , and then take the 
inverse DFT of the result, which can also be done with the FFT algorithm. This abstract method is actually 
less complex to implement than direct circular convolution . From Cochran et al. [8], the approximate number 
of multiplications required to implement y[n] directly by circular convolution is N 2 , whereas by using the 
FFT algorithm, only 3N log2 N such multiplications are required. So, for N large, we will obtain greater 
computational efficiency by using the FFT algorithm. As was mentioned earlier, the FDFT unfortunately 
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does not share the same computational efficiency as the DFT. If Ya [l] denotes the FDFT of y[n] with angle 
a , then we have by the decomposition property, 

Applying (3.1), we get, 

Ya [l] a0 (a) (h[l] 0 x[l]) + ai (a) ( JN H[l]X[l]) 

+ a2(a) (h[-l] 0 x[-l]) + a3(a) ( JNH[-l]X[-l]) 

As we can see from above, in order to calculate Ya[l] for some a in general, we must calculate the circular 
convolution h[l] 0 x [l], the DFTs H[l] and X [l] as well as their product. Then, we need to reverse these 
sequences modulo N, mult iply each sequence by a complex number, and then add everything up. Whereas 
the DFT offers an alternative to circular convolution, the FDFT does not in general. It is precisely for 
this reason that the FDFT should not be used for the processing of finite length signals through FIR LTI 
systems. However, the FDFT does have other uses as we shall soon see. 

3.2 Sum and Difference of Allpass Filters 

Whereas the FDFT is not in general computationally efficient, the presence of the parameter a does offer 
an extra degree of freedom in the design of digital filters . 

For example, in Vaidyanathan's work on allpass filters [9], the sum and difference of two allpass filters 
was considered. Using the matrix notation from this correspondence, we have the following structure shown 
below in Figure 3.1. 

x[n] Ao(z) Yo[n] 

w 
~ 

Ai (z) 

Figure 3.1: Implementation of two transfer functions using the sum and difference of two allpass filters 
(DFT) 

Here, Ao(z) and Ai(z) denote allpass filters. Indeed, if we denote H0 (z) and Hi(z) as the transfer function 
between Yo [n] and x[n] and between yi[n] and x[n], respectively, then we have the following. 

Yo(z) H ( ) = Yi(z) 
H0 (z) = X(z) and i z X(z) 

[ ; ~ ~; ~ ] = ~ [ ~ - ~ ] [ ~~ ~; ~ ] 
H ( ) _ Ao(z) + Ai (z) d H ( ) _ A0 (z) - Ai(z ) oz- 2 an iz- 2 . 

So, Ho( z ) and Hi(z) are respectively the sum and difference of two allpass filters (scaled by ½ of course). 
What is interesting about this structure is that the coefficients of the allpass filters can be chosen such 
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that the overall transfer functions H0 (z) and Hi (z) are respectively N-th order lowpass and highpass elliptic 
filters. If N is chosen to be odd so that A0 (z) and Ai (z) have real coefficients, then we have a computationally 
efficient structure. For example, a seventh order elliptic lowpass filter normally requires 11 multipliers if the 
direct form structure is implemented, as opposed to the structure from Figure 3.1, which requires only 7 
multipliers. In addition, since the allpass filters can be implemented by lattice structures, the filters H0(z) 
and Hi(z) are free from zero input limit cycles. Furthermore, the filter Hi(z) is the power complement of 
H0 (z), i.e., IHo(ejw)l 2 + IHi(ejw)l 2 = 1 \/ w, and comes as a bonus from this structure. So, we can get , for 
example, a seventh order elliptic lowpass and highpass filter with a total of only 7 multipliers. With all of 
these advantages, the question then arises as to what will happen if we replace the 2 x 2 DFT matrix in the 
structure above with the 2 x 2 FDFT matrix, which is a matter that we will now address. 

3.3 The FDFT as Applied to the Allpass Filter System 

By replacing W with A(o:) in Figure 3.1, we get the following structure shown in Figure 3.2. Note that to 
avoid confusion between the allpass filters A0(z) and Ai (z) and the FDFT matrix A(o:), we have renamed 
A0 (z) and Ai(z) by G0 (z) and Gi(z), respectively. 

x[n] Go(z) Yo[n] 

A(a) 
J2 

Gi (z) 

Figure 3.2: Implementation of two transfer functions by applying the FDFT to two allpass filters 

Define the following quantities. 

As before, we have, 

H ( ) = Yo( z ) and H ( ) = Yi (z) 
o z X(z) i z X(z) 

We have then, 

H(z) = ~A(o:)G(z) or also H(ejw) = ~A(o:)G(ejw) 

Here, A(o:) is the 2 x 2 FDFT matrix. We have, 

A(o:) = 

So, we get, 

[ (¥) + (¥) ej2a 

( 1) - ( 1) ej2" 
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So, from (3.2), we get, 

Ho(z) = [ ( v'2/ 1) + ( v'2
4
- l) eJ2a] Go(z) + [ (i) - (i) eJ2a] G1 (z) 

H1 (z) = [ (i)- (i) ej2a] Go(z) + [ ( v'24- l) + ( v'2/ 1) eJ2a] Gi(z) 

(3.3) 

(3.4) 

Indeed, when a= f, we obtain the same structure considered by Vaidyanathan. From (3.2), we can show 
that H 0 (z) and H 1 (z) form a power complementary pair. Taking the transpose conjugate of (3.2) yields, 

Hence, because A(a) is unitary, we have, 

Ht (eJw)H(eJw) = !at (eJw)A t (a)A(a)a(eJw) = !at (eJw)Ia(eJw) = 
2 2 

.·. Ht (eJw)H(eJw) = ~at (eJw)a(eJw). 

But, at(eJw)a(eJw) = IGo(eJw)l
2 + IG1(eJw)l

2 
= 1 + 1 = 2, since G0 (z) and Gi(z) are allpass filters. Thus, 

Ht(ejw)H(ejw) = IHo(eiw)l
2 + IH1(eiw)l

2 
= ~(2) = 1, 

and so H 0 (z) and H 1 (z) form a power complementary pair. 

Suppose that the coefficients of G0 (z) and G1 (z) are chosen such that H0 (z) and H1 (z) are respectively 
elliptic lowpass and highpass filters when a = f. From a heuristic viewpoint, it is interesting to see what 
will happen to Ho(z) and H1 (z) for different angles. In particular, we wish to consider what happens for a 
near f. 

One possible reason for this is to make the phase of the filters H0 (z) and H1 (z) more linear in the passband 
region because in many applications such as image processing, it is desirable to have linear phase in the 
passband region of a frequency selective filter. The problem is that while the elliptic filter offers the best 
desired magnitude performance for a given order, its phase response is highly nonlinear in the passband. 
From the McClellan-Parks algorithm [10], we know that we can design an equiripple FIR approximation 
to an elliptic filter that has the same magnitude respose performance as the elliptic filter, but with exactly 
linear phase. The problem here, however, is that the order of the resulting filter is typically much larger 
than the corresponding elliptic filter's order (sometimes as much as 10 to 15 times as large as the order of 
the elliptic filter). So, heuristically, it is worthwhile to see if we can possibly "linearize" the phase response 
of Ho(z) say, by varying the angle a near l If this can be done without significantly altering the magnitude 
response of the original elliptic filter, then we will have a better filter overall. To compensate for any digres­
sions from the desired magnitude response, we can then increase slightly the order of the original elliptic filter. 

If indeed varying a near f results in a linearization of the phase in the passband without significantly 
degrading the magnitude response of the new filter, we will have effectively found a tradeoff between the 
elliptic filter with a small order but highly nonlinear phase and the equiripple FIR filter with exactly linear 
phase but with a much higher order. Continuing with our analysis, we have, from (3.3) and (3.4), 

Ho ( z) = ~ ei a [ ( v'2 cos a - j sin a) Go ( z) - j sin a G 1 ( z)] 

Hi(z) = ~eja [ ( v'2 cos a+ j sin a) G1 (z) - j sin a G0 (z)] 
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For brevity, we will only consider H0 (z) from now on. On the unit circle, i.e., when z = ei'•', we have, 

since G0 (z) and G1 (z) are allpass fi lters . So, from (3.5), we get, 

After much laborious algebra, we conclude the following. 

I H O ( ej"' ) I = ½ [ 1 + sin Q ( sin Q cos ( <Po ( w) - ¢ 1 ( w)) - v'2 corn sin ( ¢0 ( w) - ¢ i( w))) ] 

/H ( jw) [ v'2cosQsin¢o(w) - sinQ (cos¢o(w) + cos¢1 (w)) ] "- o e = arctan --- ----'---'--'---- -'---'--'-_:._ __ ..;.._-'---''-'- + Q 

v'2 cos Q cos <Po(w) + sin Q (sin <Po(w) + sin ¢1 (w)) 

The following Matlab plots from Figure 3.3 show the effects of variations of a near f on the magnitude and 
phase of H0 (eiw) . To illust rate the phase nonlinearity, we have opted to plot the group delay of H0 (eiw), 
which is simply r(w) ~ - d';., (L.H0 (eiw)) . 
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Figure 3.3: Magnitude and group delay plots of H0 (z) as a varies near %-
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Unfortunately, as we can see, this heuristic argument doesn't hold much water, since as we can see, by 
varying a close to f, we get more degradation in our desired magnitude response and virtually no change 
in the nonlinearity of the phase in the passband. Furthermore, the filters H0 (z) and H 1 (z) are now complex 
and hence more difficult to implement than real filters. With these drawbacks, it is no wonder as to why an 
equiripple FIR filter designed with the McClellan-Parks algorithm is worth the cost of the increased order, 
since the phase of such filters is exactly linear. Thus, unfortunately, varying the parameter a does not appear 
to improve the phase response of the overall filters Ho(z) and H1(z). 

3.4 The FDFT as Applied to Filter Banks 

In the spirit of exploiting the degree of freedom offered by the FDFT, we can consider applying it to filter 
bank structures. Here, we will apply the FDFT matrix to the M-channel maximally decimated filter bank, 
also referred to as the M -channel QMF bank. This particular kind of filter bank is covered at length by 
Vaidyanathan [11]. In Figure 3.4, we have illustrated the M-channel QMF bank implemented with the 
FDFT matrix. 

x[n] 
Ho(z) Fo(z) 

H1(z) F1(z) 

A(a) 
• • • • • • • • • • • • 

'M-1[n) rM-1[n) 'M-1ln) x[n] 
HM-1 (z) FM-1 (z) 

Analysis Bank Decimators Expanders Synthesis Bank 

Figure 3.4: M-channel maximally decimated filter bank implemented with the FDFT 

In his book on multirate systems, Vaidyanathan considers the special case where a= 0, i.e. A(a) = I. We 
wish to express X ( z) in terms of X ( z). The Z-Transform of the sub band signal x k[ n] is given as, 

Xk(z) = Hk(z)X(z) 

Now, the outputs of the decimators, namely the rk[n]'s, have the following Z-Transform. 

M-1 

Rk(z) = ! L xk(z*w1) 
l=O 

M-1 

Rk(z) = ! L Hk ( z*W1) X ( z*W1) 
l=O 

Note that here , W denotes the M-th root of unity, that is W = WM :@: e-j ~ . The finite length sequence of 
Z-Transforms, Sk(z), is the FDFT of the sequence Rk(z). So, we have, 

M-1 

Sk(z) = L Kc,[k, m]Rm(z) 
m=O 

30 



Sk(z) = i: Ka[k,m] ( ! i 1 
Hm(ztrw1) x(ztrw1)) 

The outputs of the expanders, namely the uk[n]'s, have the following Z-Transform. 

Uk(z) = Sk (zM) 

Uk(z) = %:: Ka[k, m] ( ! i 1 
Hm (zW1) X (zW1)) 

Finally, the Z-Transform of the reconstructed signal x[n] is given as, 

M-1 

X(z) = L Fk(z)Uk(z) 
k=0 

X(z) = 11 
Fk(z) (1: Ka[k, m] ( ! i 1 

Hm (zW1) X (zW1))) 

X(z) = il [! 11 
Fk(z) i: Ka[k,m]Hm(zW1)] X(zW1) 

We can express this more compactly as follows. 

M-1 

X(z) = L A1(z)X(zW1) , 
1=0 

M-1 M-1 

where A1(z) ~ ! L Fk(z) L Ka[k,m]Hm(zW1) 
k=0 m=O 

Notice that because of the presence of the decimators and expanders, the M-channel QMF is a linear system, 
but not time-invariant. This is evidenced by the fact that the expression for X (z) above consists of linear 
combinations of alias terms X (zW1) for l -f:. 0. However, under certain conditions which will soon be 
discussed, these aliasing terms can be cancelled so that we have effectively an LTI system. In this case, we 
have, 

X(z) = T(z)X(z), 

where T(z) is the effective overall transfer function given by T(z) = A0 (z). To properly address the issue 
of alias cancellation, we must first simplify the structure of our M-channel QMF bank by introducing the 
polyphase representation of our anaysis bank filters Hk(z) and our synthesis bank filters Fk(z). 

3.4.1 Polyphase Representation of the M-Channel QMF Bank 

The anaysis bank filters Hk(z) can be expressed in the Type 1 polyphase form as follows. 

M-1 

Hk(z) = L z-1 Ek,I (zM) 
1=0 

Defining the following vectors and matrices, 

r 
Ho(z) l 

h(z) ~ : 

HM-1 (z) 

, e(z) ~ 

1 
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and E (z) ~ 

then we have in a more compact form , 

Eo ,o(z) 

E1 ,o(z) 

h (z) = E(zM) e(z) 

Eo ,M-1 (z) 

E1,M-1 (z) 

EM-1,M-l (z) 

Similarly, the synthesis bank filters Fk(z) can be expressed in the Type 2 polyphase form as follows. 

M-1 
Fk(z) = L z-(M-1-l)R1,k(zM) 

Defining the following vectors and matrices, 

f (z) ~ and R (z) ~ 

we then have in a more compact form, 

l=O 

Ro,o(z) 

R1,o(z) 

Ro,M-1 (z) 

R1 ,M-dz) 

RM- 1.M-1 (z) 

Note that here, we have, e(z) ~ et ( }. ) . With these definitions, we can now implement the M-channel QMF' 
bank as follows below from Figure 3.5. 

x [n] 
z-1 z-1 

z - 1 
E (zM) A (a) R (zM) 

z-1 

• • • • • • • • • • • • 
z-1 z-1 

x[n] 

Figure 3.5: Polyphase form of the M-channel maximally decimated fi lter bank implemented with the FDFT 

We can now apply the noble identities [11] to the matrices E(zM) and R (zM). This simplifies our system. 
Now, the matrix A(a) can be lumped together with E (z) to create a new effective polyphase matrix [( z), 
where we have, 

E(z) = A (a)E (z) 

With this new matrix , we have the following structure as shown in Figure 3.6, after applying the noble 
identities. 
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x[n] I +MI 
I I 

I tM I 
I I 

z-1 z -1 

I +MI 
I I 

I tM I 
I I 

z-1 
[( z) R(z) 

z-1 

• • • 
• • • 
• • • 

t z-1 t z-1 
I +MI I tM I 
I I I I x[n] 

Figure 3.6: Simplification of the polyphase form of the M-channel maximally decimated filter bank using 
the noble identities 

Finally, we can lump [( z) and R(z) together to create the matrix P(z), where we have, 

P(z) = R(z)[(z ) = R(z) A(a)E(z) 

With this final simplification, the M-channel QMF bank has the following canonical form as can be seen in 
Figure 3.7. 

x[n] +M tM 
z-1 z-1 

+M tM 
z-1 

P(z) 
z- 1 

• • 
• • 
• • 

z-1 z- 1 
+M tM x[n] 

Figure 3.7: Canonical structure of the polyphase form of the M-channel maximally decimated filter bank 

From Vaidyanathan [11], the M-channel maximally decimated filter bank is free from aliasing iff P(z) is 
pseudocirculant . Recall that a circulant matrix is a matrix of the form, 
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where each row of the matrix is a circular shifted version of the previous row. The shift here is by one 
element and to the right . A psuedocirculant matrix is a matrix of the following form. 

In other words, a pseudocirculant matrix is a circulant matrix with all elements below the main diagonal 
multiplied by z-1 . With the FDFT implemented here , we have an extra degree of freedom in our choices of 
the filters Hk(z) and Fk( z ). 

3.4.2 An Insightful Example: The Classical QMF Bank 

When M = 2, we have the classical QMF bank. In this case, the most general criteria for an alias-free 
system are as follows . 

[( v'2) (v'2) . l [(2-v'2) (2+v'2) . ·l Fo(z) = 4 - 4 e12
a Ho(-z)g(z) + -

4
- + -

4
- e12

a Hi(- z )g(z) 

[(2+v'2) (2-v'2) . l [(v'2) (v'2) . l Fi (z) = -
4 

+ -
4
- e12a Ho(- z)g(z) - 4 - 4 e120 H 1 (-z)g(z) 

Here, g(z) is an arbitrary function of z. With this , we now see that we have more freedom in the choice of 
the implementation of Fo(z) and Fi (z) given H0 (z) and H1 (z). Note that when a= 0 and g(z) = 1, we get , 

which is the same result derived by Vaidyanathan [11] . The corresponding overall transfer function, T( z ), is 
given below as follows. 

1 ·2 
T(z) = 2e1 0 [Ho(z)H1 (-z) - Ho(-z)H1 (z)]g(z) 

So, we can see that by varying a , the magnitude of T( z) remains unchanged, while the phase of T( z) has 
a constant offset of 2a for all w. Thus, varying a doesn't essentially change T( z), but it does change the 
synthesis filters F0 (z) and Fi(z) needed for alias cancellation. This could be useful in many applications , 
since it may be easier to implement these filters for some angle, say a = a 0 i- 0, than it may be to implement 
them when a= 0, which corresponds to the case analyzed by Vaidyanathan. 
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Conclusions 

Though the FDFT is an elegant generalization of the DFT from a mathematical point of view, it does not 
seem to be as useful for signal processing as the DFT. In general, it is much more complex to implement 
than the DFT, and, unfortunately, doesn 't appear to be very useful for the allpass filter network considered 
here. There is, however , what appears to be a glimpse of hope despite all of this. 

The extra degree of freedom offered to us by the FDFT could to be useful in its implementation in the 
M-channel maximally decimated filter bank. As we saw with the example of the classical QMF bank, the 
choice of a gives us more freedom to design synthesis filters to cancel aliasing given the analysis filters , 
without significantly altering the overall transfer function . Because of this, the FDFT may yet be useful in 
its implementation in filter banks. 
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