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ABSTRACT 

A geometric lattice is a semimodular point lattice L. The ith 

Whitney number of Lis the number of elements of rank i in L. The 

logarithmic concavity conjecture states that 

for any finite geometric lattice L. 

In a finite nondirected graph without loops or double edges, a 

set of edges is closed if whenever it contains all but one edge of a 

cycle, it contains the whole cycle. With set containment as the order 

relation, the closed sets of such a graph form a geometric lattice. It 

is shown that any such lattice satisfies the first nontrivial case of the 

logarithmic concavity conjecture. In fact, 

This is a best possible result since equality holds for graphs without 

cycles. 

The cut-contraction of a geometric lattice L with respect to a 

modular cut Q of L is the geometric lattice L - T where 

T = {x E L : x f. Q, 3:q E Q 3 x -< q} . It is shown that any geometric 

lattice L can be obtained from the Boolean algebra with W 1 (L) points 

by means of a sequence of k = W 1 (L) - dim(L) cut-contractions. 
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INTRODUCTION 

Many combinatorial problems can be formulated in the frame­

work of a collection (] of subsets of a finite set S, where this collection 

contains the whole set and is closed under intersections. With set con­

tainment as the partial ordering, e is a lattice. For two subsets 

A, B e e , the meet A /\ B is set intersection, and the join A v Bis the 

intersection of all subsets in e which contain both A and B. The sys­

tems considered in this thesis are of this type with two restrictions: 

(i) each subset in e can be expressed as the set union of minimal sub­

sets of e , and (ii) for A, P E (;, if P 1 A and Pis minimal in e., then 

there is no subset B E e properly between A and A v P. The lattice 

theoretic analog of such a system is called a geometric lattice. It is 

from the lattice perspective that we shall study some combinatorial 

problems. 

Projective planes have been the source of many combinatorial 

problems. They also provide examples of geometric lattices. The 

elements of the geometric lattice associated with a projective plane are 

the null set, the points and lines, and the plane itself. The order 

relation is set containment. Similarly, the subspaces of a projective 

geometry form a geometric lattice. In fact, any abstract finite 

geometry can be represented as a geometric lattice, and vice-versa. 

Geometric lattices arise naturally in other areas of mathematics. 

For example, the collection of partitions of a finite set S form a geo­

metric lattice under the partial ordering 111 ~ rr2 if 1r1 is a refinement of ~. 
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This thesis will be concerned primarily with geometric lattices 

which arise from finite, nondirected graphs. A set S of edges is said 

to be closed if whenever S contains all but one edge of a cycle, it con­

tains the whole cycle. The collection of closed sets of edges of a graph 

G forms a geometric lattice which will be denoted by L( G) and will be 

called the edge lattice of the graph G. 

A set of numerical invariants of particular combinatorial inter­

est are the Whitney numbers Wi of L. Wi is defined as the number of 

elements of rank i in L. Rota has proposed two important conjectures 

regarding these Whitney numbers. The first is that they are unimodal, 

i.e., for i ~ j ~ k, Wj ~ min (Wi' Wk) [7]. The second is that they 

are logarithmically concave, i.e., 

w. 
1 

w. 1 1-
or 

w.2 
1 

W. lW. 1 1- l+ 

~ 1 [ 5) . 

These two conjectures are related. In fact, lattices which are 

logarithmically concave are unimodal. For suppose L is not unimodal; 

then there exist i < j < k such that Wj < min (Wi, Wk). Let 

W = min (W ) , 
i<m<k m 

and let n = max (m) 
W =W m 
i<m<k 

w2 
Then Wn+l > Wn ~ Wn-l' and W ~ < 1. Hence Lis not 

n-1 n+l 
logarithmically concave. 

If the geometric lattice is a Boolean algebra, then Wi is the 

binomial coefficient (~1) . The logarithmic concavity conjecture holds 



in this case since 

w.2 
l 

W. 1W· 1 1- l+ 

3 

i+l 

i 

If the geometric lattice is derived from a finite projective plane, 

then w0 = 1, w1 =W2 and w3 = 1. These numbers are clearly log­

arithmically concave. 

The Whitney numbers of the lattice of subspaces of a projective 

geometry of dimension three or greater are the Gaussian coefficients: 

where n is the dimension of the lattice, and q is the order of the field 

used to coordinatize the geometry [ 7] . Hence 

(qn_ 1)2 ... (qn-9.i-1)2 

wi
2 

= ____ _._(q_i __ 1~}~2~·-·-·(~q-i __ 9_1_-1_}_2 ___ --r---
w. 1w. l ( n l) ( n i-2) ( n l) ( n i) 1- 1+9 - ... q -_g .9 - ... q -_g 

( i-1_ 1) ( i-f_ i-2) ( i+f _1) ( i+f_ i) q ... q q q ... q q 

= 
(qn_ 9i-1) (qi+l -l) 

q 
(qn -qi) (qi-1) 

= 
(9.n-i+ 1 _ l) 

I 

(qi+l -l) 
I 

(qn-1 _ l) (ql- 1) 

>1 . 
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Finally, the Whitney numbers of a partition lattice are the 

Stirling numbers of the second kind. This sequence of numbers has 

also been shown to be logarithmically concave [ 6] . 

The following theorem, whose proof is given in the appendix, 

shows that logarithmic concavity is preserved under direct products . 

Theorem A.1: Let L1 and L2 be logarithmically concave geo­

metric lattices. Then L = L1 x L2 is logarithmically concave . 

Since Birkhoff [1] has proved that any modular geometric lattice 

is the direct product of projective geometries and a Boolean algebra, 

the results above show that any modular geometric lattice is logarith­

mically concave. 

There are two further results which support these conjectures. 

A theorem of Greene [4] states that for a geometric lattice L, w1 ~Wm 

for m * 0, n where n = dim (L). A generalization due to Dowling and 

Wilson [ 3] asserts that 

k k 
I wi ~ ~ 
i=l i=l 

w . 
m-1 

for 

For an arbitrary geometric lattice, only two cases of the log­

arithmic concavity conjecture have been proved. These cases are i=l 

and i=n-1 where n is the dimension of the lattice. To prove that this is 

true for i=l, we observe that each element of rank 2 can be represented 

as the join of two points. Since the join operation is unique, it follows 

that w2 ~ r:1
) . Hence 



w2 
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The proof for i=n-1 is the dual of this proof. 

The main theorem of Chapter I treats the next case of logarithmic 

concavity, namely i =2. 

Theorem 1. 7: For any finite graph G, 

W2(G) 2 
3 (W1 (G)-1) 

w1(G)W3(G) ~ ~. (W1(G)-2) ' 

where W/ G) is the ith Whitney number of L( G). 

This is a best possible result since equality holds for all graphs 

without cycles. 
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CHAPTER 1 

EDGE LATTICES OF GRAPHS 

We begin with some definitions. A graph G consists of a set V 

of vertices and a set E of unordered pairs of vertices called edges. 

The vertices determining an edge are its endpoints. An edge will be 

denoted by e or by (v1, v2) where v1 and v2 are the endpoints of the edge. 

All graphs will be finite and without loops or double edges, i.e., there 

is no edge ( v, v) for any v E V, and there is at most one edge of the 

form (v1, v2) for v1, v2 E V. 

A subgraph G' of a graph G is a graph whose vertices are 

vertices of G and whose edges are edges of G such that if (v1, v2) is an 

edge of G', then v1 and v2 are vertices of G' . There is a natural cor­

respondence between sets of edges and subgraphs of a graph G. With a 

set of edges, associate the subgraph whose edges are the edges of the 

set and whose vertices are the endpoints of the edges in the set. When 

no confusion exists, a subgraph will be designated by the corresponding 

set of edges. 

A path is an ordered set of edges such that any edge of this set 

has one endpoint in common with the preceding edge and the other 

endpoint in common with the following edge. Paths will be denoted by 

either the edges or the vertices. Note that a path P from v1 to v2 may 

be shortened to a path P' from v1 to v2 such that P' ::: P and P' has no 

repeated edges. A cycle is a closed path with no repeated edges. 

Finally, a set S of edges is said to be closed if whenever S contains all 

but one edge of a cycle, S contains the whole cycle. 
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Let 81 and 82 be closed sets. If 81 n 82 contains all but one 

edge of a cycle, then each of 81 and 82 contains the whole cycle, and so 

81 n 82 contains the whole cycle. Thus the intersection of two closed 

sets is closed. Now, for an arbitrary set R of edges define the closure 

of Ras the intersection of all closed sets containing R. This is the 

smallest closed set containing R, and it will be denoted by cf(R). The 

following lemma gives an alternate characterization of the closure of 

a set. 

Lemma 1.1: Let G be a graph, and let R be a set of edges in G. 

Let R be the set of edges e such that there is a path Pe~ R from one 

endpoint of e to the other. Then R = cf.(R). 

Proof: If e ER, then {e} is a suitable choice for Pe, and hence 

R ~ R. By the definition of closure, it is clear that R <::_ cf (R). There­

fore it is sufficient to prove that R is closed. Let {(v0, v1), (v1, v 2), .. 

. . , (vn, v0)} be a cycle such that {(v0 , v1), ... , (vn-l' v n)} ~ R. Then 

there exist paths P0 , P1, ... , Pn-l such that Pi is a path from vi to 

vi+l and Pi c;_ R. Now the ordered sequence P0, P1, ... , Pn-l is a path 

from v0 to vn, and it is a path in R. Hence (vn, v0) ER, and R is 

closed. Thus R = c.Q (R). 

Lemma 1. 2: Let G be a graph, and let 8 be a closed set of edges 

in G. Given an edge e0 f. 8, let e E cf (8 U {eJ) - 8. Then there exist 

paths P1 , P2 c 8 such that the ordered sequence e, P1, e0 , P2 is a cycle 

in G. 
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Proof: Since e E c.Q(S U {ec)), by Lemma 1. 1 there exists a 

path P ~ S U {eJ from one endpoint of e to the other with no repeated 

edges. Since e ,JS, Pct:_ S; this implies e0 E P . Denote by P1 that part 

of P preceding e0, and by P2' that part of P following e0 . This choice 

for P1 and P2 satisfies the lemma. 

Theorem 1. 3: Let G be a graph. Then L( G), the collection of 

closed sets of edges of G, is a semimodular point lattice. 

Proof: With the order relation defined by S ~ T if and only if 

S ::: T, it is clear that L( G) is a partially ordered set. Also ¢, the 

empty set, and E, the set of all edges, are both closed. It has been 

shown that if S and T are closed, then so is S n T. Thus S n T is the 

greatest lower bound of Sand Tin L(G), i.e., S n T = S /\ T. This is 

sufficient to show that L(G) is a lattice and hence has a join operation. 

The smallest closed set containing Sand T has already been denoted by 

c.Q(S UT). Hence S VT= c.Q(S UT). 

Sets which consist of a single edge are closed; these are 

exactly the points of L(G). Since each closed set Sis a set of edges, S 

is the join of the set of points contained in S. Hence L(G) is a point 

lattice. 

To prove semimodularity, first consider the case where S is a 

closed set and P = {eJ where e0 i S. If there exists a closed set S' 

such that S < S' ~ S V P, let e ES' - S. Then e E S v P. By Lemma 

1. 2, there is a cycle through e and e0 with all other edges in S. Using 

the same cycle, we see that e0 E S v {e} ~ S'. Hence S v P ~ S', and 

S-<SVP. 
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Now let S and T be any two closed sets such that S /\ T -< T. Let 

p be a point in L(G) such that p ~ T but p Is. Then p Is/\ T, and 

hence (S /\ T) v P = T. We thus have 

S V T = S V ( (S /\ T) v P) = (S v (S /\ T) ) V P = S V P > S 

Hence L( G) is semimodular. 

Since L( G) is a finite semimodular point lattice, it has a well 

defined rank function which can be characterized in terms of independent 

sets of edges. 

Definition: A set A of edges is independent if e ¢. cf (A-{e}) for 

all e EA. 

Lemma 1. 4: A is an independent set of edges if and only if A 

contains no cycles. 

Proof: If A contains a cycle, let e be an edge of that cycle. 

Then e E cf (A-{e}), and A is not independent. 

If A is not independent, let e E A be such that e E cl(A-{e}). 

By Lemma 1. 1, there is a path P from one endpoint of e to the other 

such that P ~ A - {e} and P has no repeated edges. Then P U {e} is a 

cycle in A. 

Lemma 1. 5: If A is an independent set of edges, then 

r(cf(A)) = /A /. 

Proof: Let A = {e1, e2 , ... , en} . By semimodularity 

<f, -< {el} -< {el} v {e2} -< .•. -< {el} v {e2} v ... v {eJ 

= cf({e1, e2, ... , en})= cf(A) 
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This chain has length n, so r(c.f (A)) = n = IA I. 

Corollary 1. 6: If A is a maximal independent subset of S, a 

closed set, then S = c.f(A) and r(S) = IA I• 

Now let W/G) represent the i th Whitney number of L(G); that is, 

W/G) = l{x E L(G) :r(x) =i} j. The main result can be stated as follows. 

Theorem 1. 7: For any graph G, 

w2(G) 2 
3 (W1 (G)-1) 

\V 1 (G)W 3(G) ~ 2"" • (W 1 (G)-2) 

It will be shown in the proof that equality holds if G has discon­

nected edges, i.e., if no two edges of G have a common endpoint. 

Hence this theorem is a best possible result. 

Proof: Throughout the proof, G will be some fixed graph. The 

proof is inductive and is based upon a method for constructing G from 

a graph G0 with the same number of edges as G, but with disconnected 

edges. 

Pick any vertex of G of degree greater than 1. One by one, 

separate the edges at this vertex. Continue this process until all vertices 

are of degree 1. This is G0 . Reversing the procedure provides a method 

for constructing G from G0 . In each step of the reverse process, two 

vertices of G0 are identified. Any order of the identifications will pro­

duce G, but the proof will require a special order. Let v be a vertex in 

G of maximal degree. From among all vertices in G0 which are eventually 

to be identified to give v, select one and labe 1 it v. One by one, identify 

the other appropriate vertices with v. When the vertex v is completed, 
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continue this procedure at the vertex in G of next highest degree. 

Continue in this manner until the graph G is obtained. 

The following lemma is obvious from this construction, but it 

is of special importance. 

Lemma 1. 8: Let H and H' be consecutive graphs in this con­

struction of G. If H' is obtained from H by identifying a vertex v* of 

degree 1 with the vertex v of degree n, then all other vertices in H 

are of degree 1 or of degree larger than n. 

Now let H and H' be any two consecutive graphs in a construction 

of G from G0 . If we can show 

and 

(W1 (G0)-l) 

(W1 (G0)-2) 

then by repeated application of the second formula, we have 

W2(G)2 W2(G0)2 

W1(G)W3(G) ~ W1(Go)W3(Go) = 

and the theorem follows. 

3 (W1 (G0)-1) 3 (W1 (G)-1) 
2" (W 1 (G0)-2) = 2" (W 1 (G)-2) 

In order to establish the first formula, consider any set S of 

edges in G0 . S is trivially closed in G0 since there are no cycles in 

G0 . Therefore, all sets of edges are closed in G0, and L(G0) is a 

Boolean algebra. Hence 
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W2(GO) = c~(Gol) 
W l (Go)(Wl (Go)-1) 

= 
2 

and 

W 3(Go) (w ~(G0)) 
W l (Go)(Wl (Go)-l)(Wl (Go)-2) 

= = 
6 

But then 

W2(Go) 
2 

3 (W 1 ( Go)-1) 

W1 (Go)W3(Go) = 2 (W1 (Go)-2) 

In establishing the second formula for the graphs H and H', it 

will be convenient to set Wi = W/H) and W {_ = Wi (H'). Since W 1 = W 1, 
it will suffice to show, that 

In order to relate w2 and w3 to w2 and w3, it is necessary to 

examine closely the relationship of the closed sets in H to the closed 

sets in H'. Note first that any set S which is closed in H' is also closed 

in H. For any two edges with a common vertex in H also have this 

vertex in common in H', and hence any cycle in H is also a cycle in H'. 

On the other hand, there may be sets which are closed in H but 

not closed in H' . These sets will be characterized in the next lemma. 

Let v* denote the vertex of degree 1 in H which is identified with the 

vertex v in H to give the graph H'. Also let v' be the vertex which, in 

H, has an edge in common with v*, and let this edge be denoted by e* 

in both H and H' . 
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Lemma 1. 9: Let S be closed in H. Then Sis not closed in H' 

if and only if (i) S is covered in L(H) by a set S' which contains a path 

Pin H from v* to v such that P has no repeated edges and (ii) S does 

not contain a path in H from v* to v. 

Proof: Let S be closed in H but not closed in H' . Then there 

exist an edge e and a cycle C in H' containing e such that e ¢ S and 

C - { e} c.::_ S. C is not a cycle in H since Sis closed in H and e ¢ S. 

It follows that e* EC. Hence, in H, C forms a path P from v* to v 

with no repeated edges. Condition (i) follows by semimodularity since 

S -< c.fH (S U {e}) in L(H) and P = C c c£H (S U {e}). Assume that S 

contains a path P' in H from v* to v. Then e * e* and (P-{e}) UP' 

is a path in H, contained in S, from one endpoint of e to the other. 

Hence e E c..e.H(S) = S, a contradiction. Thus S does not contain a path 

in H from v* to v; this is condition (ii). 

Let S be a closed set in H which satisfies (i) and (ii). Let S' 

and P be the sets guaranteed by (i). P is a path in H from v* to v with 

no repeated edges, and S' is a closed set in H such that P <.::_ S' and 

S -< S'. Assume S is also closed in H'. Since by (ii) P 1-:._ S, and P is a 

cycle in H', there must be at least two edges of P which are not in S. 

Let the path P be described by its vertices 

let (xi' xi+l) be the first edge which is not in S, and let (xj, xj +l) be the 

last edge which is not in S. Since there are at least two edges of P not 

in S, (xi,xi+l) -:t (xj,xj+l). Then S'= clH(S U {(xj,xj+l)}) because S-< S' 
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and (xj, xj+l) E S' - S. If (xi' xi+l) = (v*, v'), then (v*, v') t/. S, and 

(xi,xi+l) = (v*,v') t/. cfH(S U {(xj,xj+l)}) = S' because (v*,v') is not on 

any cycle in H. This contradicts (x., x. 1) E S', so (x., x. 1) =1= ( v*, v'). 
1 l+ 1 l+ 

Now since (xi'~+l) E ciH(S U {(xj,xj+l)}), Lemma 1.2 guarantees that 

there exist paths P1, P2 ~ S such that the ordered sequence 

(xi' xi+l), P1, (xj, xj+l), P2 is a cycle in H. If xi is connected to xj by 

P1, then the ordered sequence (:xa,x1), ... , (~_ 1,xi), P1, (xj,xj+l), .. 

. . ,(~_1,xn), when appropriately shortened, is a cycle in H' with all 

but one edge, namely (xj,xj+l), in S. This contradicts the assumption 

that S is closed in H'. If, on the other hand, xi is connected to xj+l' by 

P1 , then the ordered sequence (x0 , x1), ... , (xi-l, xi), P1, (xj+l, xj+2), .. 

. . , (~_ 1, xn) is a path in S from v* to v. This contradicts (ii). Like­

wise the assumption that P1 is a path from xi+l to xj or xj+l leads to a 

similar contradiction. Hence S is not closed in H'. 

If S" is another set which satisfies (i), then by this lemma, both 

S' and S" are closed in H'. Therefore S, which is the meet of S' and S" 

in L(H) and also the set intersection of S' and S", is closed in H'. Since 

this is not true, S' must be unique. It also follows that c.£H' (S) = S'. 

Lemma 1.10: Let S be a set of edges which is closed in both H 

and H'. Let r(S) and r' (S) denote the ranks of S in L(H) and L(H'), 

respectively. Then r' (S) = r(S) or r' (S) = r(S) - 1. Furthermore 

r(S) = r' (S) if and only if S does not contain a path in H from v* to v. 

Proof: Let A be a maximal independent subset of S in H. Then 

IA I = r(S). If S does not contain a path in H from v* to v, then A does 
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not contain a cycle in H' through e*. Since these are the only cycles in 

H' which are not cycles in H, A does not contain any cycles in H'. 

Hence A is independent in H'. Since cf H,(A) is clearly S, 

r' (S) = IA I = r(S). 

If S does contain a path in H from v* to v, we may choose A such 

that e* E A. Again, since all cycles in H' either are cycles in H or 

contain e*, the set A - {e*} does not contain any cycles in H'. Hence 

A - {e*} is independent in H'. To prove that r' (S) = IA-{e*} I = IA I - 1 

= r(S) - 1, it is sufficient to show that cfH,(A - {e*}) = S. 

Since A - {e*} is independent in H, r(cfH(A-{e*})) = IA-{e*} I= 

r(S) - 1. S - {e*} is closed in H since no cycle in H contains e*. But 

A - {e*} ~ S - {e*} and r(S - {e*}) = r(S) - 1 = r(cfH(A - {e*})), so that 

cfH(A - {e*}) = S - {e*}. Hence 

since S contains a path in H' from one endpoint of e* to the other, i . e. , 
I 

from v to v. 

The following factors contribute to the relationship of the Wi to 

the W i. Some closed sets in H of rank i may remain closed and of 

rank i. Some of these sets may drop to rank i - 1 in L(H'), or they 

may not be closed in H'. Finally, some closed sets of rank i+ 1 in 

L(H) may drop to rank i in L(H'). In view of the foregoing discussion, 

each set of rank i in L(H) which is not closed in H' must be covered, in 

L(H), by a unique set of rank i + 1 which drops to rank i in L(H'). Con­

versely, if a set of rank i + 1 in L(H) drops to rank i in L(H'), then any 
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closed set covered by this set in L(H) either is not closed in H' or drops 

to rank i - 1 in L(H' ) . , 

Since W 1 and W 1' each represent the number of edges in G, 

W 1 = W 1 and no closed set of rank 2 in L(H) drops to rank 1 in L(H'). 

Thus there are only two ways to change the number of sets of rank 2: 

closed sets of rank 3 in L(H) may drop to rank 2 in L(H'), and closed 

sets of rank 2 in L(H) may be deleted because they are not closed in H'. 

Let k denote the number of sets of rank 3 in L(H) which drop to rank 2 

in L(H'). Now, since subgraphs corresponding to closed sets of rank 2 

can only take the forms 

// /\ and 

Figure 1 

each of the k subgraphs corresponding to these k sets of rank 3 in 

L(H) must have been isomorphic to 

Figure 2 

in H. Note that each of these k subgraphs contains three subgraphs 

which correspond to sets of rank 2 in L(H), and none of these sets is 

closed in H'. Thus 
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Since for each new triangle formed, the number of closed sets of rank 2 

decreases by two, w2 = (~ 1 ) - 2t where t is the number of triangles 

in H. 

We also need to know how the number of sets of rank 3 is changed. 

The number of sets of rank 3 in L(H) which drop to rank 2 in L(H') has 

already been denoted by k. Closed sets of rank 3 in L(H') must cor­

respond to subgraphs which are isomorphic to one of the following graphs: 

Ill /V, 0, 

[> l [>-' <1> 
Figure 3 

The first three graphs can not be derived from closed sets of rank 4 in 

L(H) since they have only three edges. However, the five remaining 

graphs can be derived from closed sets of rank 4 in L(H). There the 

corresponding subgraphs would have been isomorphic to one of the 

following: 
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type 1 

V 

v*r~ 

v'~ 

type 3 

Figure 4 

type 2 

type 4 

v* 

I 
V 

type 5 

V 

Any set which is deleted must be covered by exactly one set cor­

responding to one of these subgraphs, and the corresponding subgraph 

must not contain a path from v* to v. The numbers of such sets are 

4; 3,3,3,3; 4,4; 5; 5, respectively. 

As an example, consider the graph of type 3 

v*CSZv u 

Vl 
I 

V 

Figure 5 

The four subgraphs of this graph which do not contain a path from v* to 

v and also correspond to closed sets of rank 3 are 

~u 

v*I ~1 
v' and 

Figure 6. 
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Since each of the k subsets which drop from rank 3 in L(H) to 

rank 2 in L(H') must correspond to a graph which contains the edge 

(v*,v') and some edge with v as an endpoint, the k subgraphs form the 

following configuration: 
V 

v* 

v' 
Figure 7 

Let ai be the number of edges connecting vi to the other vj 's. Let 

this is the number of edges of the form (vi, vj). Let u1, u2 , ... , um be 

vertices which have edges in common with some vi and also either v 

or v' but not both. (If a vertex has edges in common with both v and 

v', then that vertex is some vi.) Let bi be the number of edges from 

vi to the u 's, and let 

k 

b = ~ b. L, 1 

i=l 

Let c be the number of edges which do not occur in Figure 7 and are 

not counted in a or b. Since c does include the edges (v, ui) and 

( v', ui), it follows that kc ;,,. b since ui can have at most k edges which 

contribute to b. Applying Lemma 1. 8 to each vi and summing over i 

gives 2a + b + c ;,,. k2 - k. 
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Now let d be the number of sets of type 1. There are b of 
k 

type 3, a of type 5 and ( 2 ) - a of type 4. There must be 

k 

L (W l -2k-1-ac2bi) = kW l - 2k
2 

- k-2a - 2b 

i=l 

of type 2. Thus the total number of sets of rank 4 in L(H) which drop 

to rank 3 in L(H') is 

and the total number of sets of rank 3 in L(H) which are not closed in 

H' is 

4(d) + 3(kW 1-2k
2

-k-2a-2b) + 4(b) + 5 ( ( ~) - a) + 5(a) 

Finally, 

w3 = W3 - k+( (d) + (kW1-2k
2
-k-2a-2b) + (b) + (<~) - a)+ (a)) 

- (4(d) + 3(kW1-2k
2

-k-2a-2b) + 4(b) + 5((~) - a)+ 5(a)) 

2 
= W 3 - 2kW l + 2k + 3k + 4a + b - 3d 

Some upper bounds for W 3 will be needed. The induction 

hypothesis 

W2 2 3 (W1-l) 
w1w3 

~ 2 (W1-2) 

implies 



(1) 

(2) 

(3) 

= 
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(W 1-2) 

(W 1 -I) 

w1 w2 2W2 4 w2 (W1-2) 

3 - ---r - 3 W l (W l -1) t • 

With these estimates, 

2 (2 2 1 8 k(W i-2) ~ 
= W 2 3" kW l - 2k - 3 k- 4a - b + 3" W l (W l -l) (2t + kJ 

2 (2 • 2 1 8 k(2riJ? ~ ~ W 2 3" kW l - 2k - 3" k - 4a - b + 3 W l (2t + k)j 

- w 2 (2 kW 2k2 l k 4 b 4 (2k-l) (2t k~ - 2 3 1- -3 - a- +3 W + 
1 

= w
2
2 (~ k(2k+l+a+b+c) - 2k2 - i k- 4a- b + 4 2k-l 2t+k \ 

(~ v + +a+ +c ij 

2 ( 2 2 1 2 2 2 (8k-4)(2t+k) ) 
= w2 -3"k +3"k+(3"k-4)a+(3"k-l)b+3"kc+ 3(2k+l+a+b+c) 

> W 2 ( 2 k2 1 k ( 2 k 4) ( 2 k l)b 2 k (8k-4 4a+2b+k) 
- 2 - 3" + :r + 3" - a+ 3" - + 3" c + + +a+ +c 
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2 

( 4) = ~~ l ( (-2k
2 
+ k+ (2k-12) a+(2k- 3) b+ 2kc )(2k+ 1 +a +b+c )+( 8k-4) ( 4a+2b+ k)) 

From here, the proof must be broken into cases: k ~ 6, k = 0, k = 1 

and 2 ~ k ~ 5. 

Let k ~ 6: If also b+c ~ k+l, then c ~ 1 and by (3), 

2 2 2 1 2 · > w2 (- 3 k + 3 k+( 3 k-l)(b+c)+c) 

2 2 2 1 2 
~ W2 (- 3 k + 3 k+( 3 k-l)(k+l)+l) 

= 0 

If b+c ~ k, then by Lemma 1. 8, the only vertices of degree 

greater than k are v, v', v1, v2 , ... , vk, and all others are of degree_ 1. 

Since any u. must have degree at least 2, there are no u . 's. Hence 
1 1 

b = 0. Therefore, b+c ~ k and 2a+b+c ~ k
2
-k reduce to c ~ k and 

2a+c ~ k2-k. These imply 2a ~ k
2
-k-c ~ k2

-2k. Using these 
2 

inequalities, t ~ 2a and a ~ k 
2
-k , (2) becomes 

2 2 . 2(2 2 1 2 2 2 W 2 W 3 - W 2 W 3 ~ W 2 - 3 k + 3 k + ( 3 k - 4) a + ( 3 k - 1) b + 3 kc 

8k-4 2t+k ) 
+ k+ +a+ +c 

>- W 2 ( 2 k2 1 k ( 2 k 4)( k
2
-2k) (8k-4)(2(k

2
-2k)+k)) 

--- 2 -3 +3 + 3 - 2 + 2 
3(2k+l+ y + k) 

w2 
= 

2 (k5 - 5k4 - 3k3 - 19k2 + 50k) 
3(k2 +5k+2) 

> 0 for k ~ 6. 
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Let k = 0: Here 

and 

W 3 = W 3 - 2kW l + 2k2 + 3k + 4a + b - 3d = W 3 - 3d 

So 

Let k = 1: Here a= 0, and by (4) 

2 

W i 2w 3 - W 2
2

W i :, 3~~ ( ( -2k
2 

+ k+ (2k- l 2 )a +(2k- 3) b+2kc )(2k+ 1 +a+ b+c) 

+(8k-4)( 4a+2b+k)) 

w2 
= 3.J1 

((-2+1-b+2c)(3+b+c)+4(2b+l~ 

w2 
= 3W2

1 
(1+4b+5c-b

2 
+bc+2c2) 

> 0 

since c = kc :;?:. bas showed earlier. 

Let 2 ~ k ~ 5: For these k, use (4) and minimize the factor 

2 (-2k +k+(2k-12)a+(2k-3)b+2kc)(2k+l+a+b+c) + (8k-4)(4a+2b+k) 

with respect to the variable b. 
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in ( (-2k2 +k+(2k-12)a+(2k-3)b+2kc)(2k+l+a+b+c) + (8k-4)(4a+2b+k)) 

= (-2k2 +k+(2k-12)a+(2k-3)b+2kc) + (2k-3)(2k+l+a+b+c) + (16k-8) 

= 2k2 + 13k- ll + (4k-15)a+ (4k-6)b+ (4k-3)c 

? 2k2 + 13k - 11 + ( 4k- l 5)a 

> 0 for k = 4, 5. 

Fork= 2, 3, 

2k2 + 13k- ll + (4k-15)a 

2 
? 2k2 + 13k- ll + (4k-15) (k 

2
-k) 

1 3 2 = 2 (4k -15k +41k-22) 

1 2 2 = i(4k(k-2) +k +25k-22) 

> 0 

Thus this factor is minimized at b = 0. Now minimize 

2 (-2k +k+(2k-12)a+2kc)(2k+l+a+c) + (8k-4)(4a+k) 

with respect to the variable c. 

a~ ((-2k
2 
+k+(2k-12)a+2kc)(2k+l+a+c) + (8k-4)(4a+k)) 

= (-2k2 +k+(2k-12)a+2kc) + 2k(2k+l+a+c) 

= 2k2 + 3k+ (4k-12)a+ 4kc 

? 0 for k ~ 3. 

For k = 2 , a = 0 or 1, and 

2 2k + 3k + (4k-12)a + 4kc 

~ 10 + 8c 

> 0 . 
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2 
Since 2a+b+c ~ k2-k and kc ~ b, it follows that c ~ k k.!f 2a . Sub-

2 
stituting b = 0 and c = k k~f2a into (4) gives 

2 
2 2 w2 ( 2 W 2 W 3 - W2 W 3 ;?,: 3w l (-2k +k+(2k-12)a+(2k-3)b+2kc)(2k+l+a+b+c) 

+ (Bk-4) (4a+2b+k)) 

w2 
2 

~ 3W:-
1 

t-2k
2 
+ k+ (2k-12 )a+2k k

2
Ji:12

a) ( 2k+ l+a+ k
2 
k: 12a ) 

= 

= 

= 

+ (8k-4)(4a+k)) 

w 2 LJ --2 ..... 2 - ( (-2k2 +k+(2k-12)a)(k+l) 
3(k+l) W l 

w2 
2 
2 

3(k+l) W l 

w2 
2 
2 

3(k+l) W l 

+ (2k
3
-2k

2
-4ka~ ((2k+l+a)(k+l) 

+ (k
2 
-k-2a)) + (8k-4)(4a+k)(k+1)

2
] 

(((2k2-14k-12)a-3k2 +k)( (k-l)a+3k2 +2k+l) 

+ ( (32k-16)a+8k
2

-4k)(k
2 
+2k+l~ 

((2k3-16k2 +2k+12)a2 +(6k 4-9k3-10k2-39k-28)a 

+ (-k
4

+9k
3
-k

2
-3k)) 

. 3 2 4 3 2 Smee 2k - 16k + 2k + 12 < 0 and -k + 9k - 9k - 3k > 0 for 2 ~ k ~ 5, 

this function of a is a parabola opening downward which is positive at 

a = 0. Now we choose maximal values of a such that this quadratic is 
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positive. Then it will be positive for all smaller positive values of a. 

For k = 5, let a = 10. Then 

w2 
w2

2
w 3 -w2

2
w3 "' 

3
(
5
+l)~(w

1
) ((2 -125-16. 25+ 2. 5+ 12) .100 

+(6·625-9·125-10·25-39·5-28)·10 

+ (-62 5+9 • 12 5-25-3 • 5)) 

w2 
2 

= l08(W1) (7180) > 0 

For k = 4, let a = 6. Then 

w2 
w22w3 -w2

2w3 ~ ~ ((2 • 54-16 • 16+2 •4+ 12) • 36 
3(4+1) (W1) 

+(6·256-9·64-10·16-39·4-28) ·6 

+(-256+9·64-16-3·4~ 

w2 
2 

= 7o(W1) (100) > o 

For k = 3, let a = 1. Then 

2 
2 2 W2 ( W 2 W 3 - W 2 W 3 ~ 2 (2 • 27- 16 • 9 + 2. 3 + 12) 

3(3+1) (W 1) 

+(6·81-9·27-10-9-39·3-28)+(-81+9·27-9-3·3~ 

w2 
2 

= 48(W1) (80) > 0. 

There are still three cases remaining: k = 3, a = 3; k = 3, a = 2; 

and k = 2, a = 1. For k = 3 and a = 3, t ~ 7. By (2) 
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~ w; (-6+1-6+b+2c + ~1~6~3:~/) 
w2 

2 2 2 
= 3(lO+b+c) (10+37b+27c+3b +9bc+6c ) 

> 0 . 

Fork= 3, a= 2, by (4) 

w2 
w ,2w w 2w ' ~ 3W21 2 3- 2 3 ( (-2k

2 
+k+(2k-12)a+ (2k-3)b+ 2kc) (2k+l+a+b+c) 

+ (8k-4)(4a+2b+k)) 

w2 
2 = 3W1 

( (-18+3-12+3b+6c) (9+b+c) + (20)(11+2b)) 

w2 
2 = 3W1 

2 2 (-23+40b+27c+3b +9bc+6c) 

> 0 since c ~ 1 . 

For k = 2, a = 1, by ( 4) 

2 
w2 ( 2 
3w l (-2k +k+(2k-12)a + (2k-3)b + 2kc) (2k+l+a+b+c) 

+ (8k-4)( 4a+2b+k)) 

w2 
= 3~l ((-8+2-8+b+4c)(6+b+c) + (12)(6+2b)) 

> 0 if b ~ 1 or c ~ 1 . 
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The case k = 2, a = 1, b = 0, c = 0 is 
V 

v*1~V2 

v'~ 

Figure 8 

Here W 2 = 11, W 3 = 7, W 2 = 7, W 3 = 1, so 

This completes the proof of Theorem 1. 7. 
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CHAPTER II 

CUT-CONTRACTIONS 

The previous chapter gave a characterization of the closed sets of 

H' in terms of closed sets in H. The effect was that of deleting certain 

elements from L(H) to produce L(H'). In this chapter it will be shown 

that a generalization of this procedure can be carried out for arbitrary 

geometric lattices, and that any geometric lattice can be constructed 

from a Boolean algebra in this way. 

Some preliminary definitions and a lemma will be needed. 

Definition: Let x, y be elements of a geometric lattice. Then 

(x, y) is a modular pair if r(x) + r(y) = r(x v y) + r(x /\ y) [8]. 

Definition: A modular cut Q of a geometric lattice L is a subset 

of L such that (i) if x E Q and y ~ x, then y E Q and (ii) if x, y E Q and 

x >- x A y, then x A y E Q [2]. 

Lemma 2. 1: If (x, y) is a modular pair in a modular cut Q of a 

geometric lattice L, then x A y E Q. 

Proof: Letx AY =:xo-c:: x1 -< ... -< ~ =x, and let yi =~ v y. 

By semimodularity, y =Yo-< y1 ~ ... ~ Yn =xv y, but since 

n = r(x) - r(x /\ y) = r(x v y) - r(y), we must have 

y = Yo-< y1 -< ... -< Yn =xv y. Hence r(yj) - r(yi) = j - i = r(xj) - r(~). 

From xi ~ ~+l A yi and 
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r(~+l /\ yi) ~ r(xi+l) + r(yi) - r(~+l v yi) 

= r(xi+l) + r(yi) - r(yi+l) + (r(yi+l) - r(yn)) - (r(xi+l) - r(~)) 

= r(yi) - r(yn) + r(~) 

it follows that ~ = xi+l /\ yi for all i. Let xj be maximal such that 

xj i Q. Then j -:1- n, and xj+l E Q. Since Q is a modular cut, yj E Q and 

xj = xj+l /\ yj E Q which is a contradiction. Thus~ E Q for all i, and in 

particular, x /\ y = Xo E Q. 

Theorem 2. 2: Let L be a geometric lattice, let Q be a modular 

cut of L and let T = {x E L : x i Q, 3 q E Q 3 x -< q} . Then L - T is a 

geometric lattice. 

Before proving the theorem, we shall show that this construction 

is indeed a generalization of the basic reduction process used in 

Chapter I for geometric lattices associated with a graph. Let the graph 

H' be derived from the graph H by identifying two vertices v* and v in H. 

Let Q = {s E L(H) : 3 a path Pin H from v* to v, Pc;_ s}. Clearly if 

s1, s2 E L(H) are such that s1 E Q and s1 ~ s2, then s2 E Q. Now let 

s1, s2 E Q be such that s1 > s1 /\ s2 in L(H). Then s1 /\ s2 E L(H') since 

s1, s2 E Q ~ L(H'). But then by Lemma 1. 9, s1 /\ s2 must contain a path 

in H from v* to v, i.e., s1 A s2 E Q. Thus Q is a modular cut. By 

Lemma 1. 9 again, the set T corresponding to Q is exactly the collection 

of closed sets of H which are not closed in H'. Hence L(H) - T is iso­

morphic to L(H') . 
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The following three lemmas will be useful in proving the theorem. 

Lemma 2. 3: If x E T and y ~ x, then y e: T U Q . 

Let q e: Q be such that q > x. If y ~ q, then y e: Q. If y --f- q, then 

y I\ q = x <: q, and y v q · >y. But y v q e: Q since y v q ~ q. Hence if 

y i Q, then y E T. 

Lemma 2. 4: Let x > y > z in L with x E Q, z E L - Q - T. Then 

y E T, and hence x > z in L - T. 

Since x > y in L and x E Q, either y E Q or y E T. If y E Q, then 

z e: Q or z ET. That contradicts z EL - Q - T, soy ET. Since 

y i L - T for all y such that x > y > z in L, it follows that x >- z in L - T . 

Lemma 2. 5: If x > z in L - T, then either x > z in L, or there 

exists y E T such that x >Y > z in L. 

Let x > z in L - T. If x 'i- z in L, then there exists y E T such that 

x > y > z in L. Since y € T, x E (L - T) 0 (Q U T) = Q. If y 'i- z in L, 

then there exists t E T such that x > y >- t > z in L. Let q E Q be such 

such that q > t. Now q le x since otherwise x > q > z in L - T. 

Hence t = x /\ q <: q, and t E Q which is impossible. Thus y >- z in L. 

The proof of Theorem 2. 2 has three steps. It must be shown 

that L - Tis a lattice, that it is a point lattice, and that it is semi­

modular. 

Proof: In order to show that L - T is a lattice, we show that 

L - T is closed with respect to meet. Let x, y E L - T, and assume that 



32 

x/\yET. ByLemma2.3, x,yET UQ. Butx,yEL-T, sox,yEQ. 

Let q E Q be such that x /\ y -< q; such a q exists since x /\ y E T. Either 

x -:;/ q or y -:;/ q, so without loss of generality, it may be assumed that 

x /-- q. Then x /\ q = x /\ y <: q. Since Q is a modular cut, x /\ q E Q, 

and so x /\ y E Q. This contradicts x /\ y E T. 

An immediate consequence of L - T being closed with respect to 

meet is that for t E T, there is a unique q E Q such that q >- t. For 

assume this is not so, and let t ET and q1, q2 E Q be such that q1 =1= q2, 

q1 >- t and q2 >- t in L. Then t = q1 /\ q2 <: q1; so t E Q, a contradiction. 

Since L - T contains the unit element of L and is closed with 

respect to meet, it follows that L - T is a lattice. Let v' denote the 

join operation in L - T. Let x, y E L - T. If x v y E L - T, then it is 

clear that x v y = x v y. If x v y i L - T, i.e. , x v y E T, then there 

exists a unique q E Q such that x v y <:: q in L. Let z E L - T be such 

that z >-: x, y. Then q >-: q /\ z >-: x V y. Since q /\ z E L - T and 

xv y E T, it follows that q = q v z ~ z. Thus q = x v' y. 

In order to show that L - T is a point lattice, let x E L - T, and 

let P = { p E L: x >-: p >- O}. Then VP = x since L is a point lattice. 

There are two cases to consider. First, if O E T, let q E Q be such 

that q > 0. Then q is the O element of L - T. Since q v x EQ, 

q v x > x and xi T, it follows that x E Q. But now x >-: q or else 

0 = x /\ q <: q E Q and O E Q, a contradiction. Thus x = q v VP 

=V{p v q: p E P} =V'{p v q :p E P} which is a representation of x as a 

join of points in L - T. 

If O E L - T, let P' = {p' E L - T : x >-: p' >- 0 in L - T} . For 

p E P, if p EL - T, then p E P' and VP'>-: p. If p ET, then there exists 
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q E Q such that q > p in L. By Lemma 2. 4, q > 0 in L - T. By the 

argument of the preceding paragraph, x? q. Hence q E P' and 

VP' ? q > p. Since VP' ? p for all p E P, it follows that Vp' ? VP. 

Thus 

V"'P' ? VP' ? VP = X? V'P' 

and hence x =V' P' . 

Finally it must be shown that L - T is semimodular. Let 

x ► x I\ y in L - T. Then x > x /\ y in L or there exists t E T such that 

x ► t ► x I\ y in L by Lemma 2. 5. If x ► x /\ y in L, then x v y > y in L. 

If in addition xv y E L - T, then xv' y =xv y ► y. Thus we may assume 

that x v y E T. Then x v' y E Q, and x v' y ► x v y. Since y must be in 

L - Q - T, Lemma 2. 4 implies that x v' y > y in L - T. 

On the other hand, if there exists t E T such that x > t > xv yin 

L, then x E Q, x /\ y f/ Q, xv y E Q and xv' y =xv y. Clearly if 

x v y ► yin L, then x v' y = x v y > y in L - T. Otherwise, if xv y i- y 

in L, then there exists z such that x v y > z > y in L, and (x, y) is a 

modular pair. Since x E Q and x /\ y ¢ Q, it follows that y ¢ Q, i.e., 

y E L - Q - T. Then by Lemma 2. 4, x v' y > y in L - T. This com­

pletes the proof of Theorem 2. 2. 

Since L - T is a geometric lattice, it has a well defined rank 

function r'. The following lemma will be useful in characterizing r' 

in terms of the rank function r on L. 

Lemma 2.6: Let x,y EL - T be such that x? y. If x,y E Q 

or x, y E L - Q - T, then x ? z ? y implies z i T. 
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Proof: Assume that there exists z E T such that x ~ z ~ y. 

Then x > z > y since x,y EL - T. By Lemma 2.3, x E Q and 

y E L - Q - T. Thus the contrapositive of Lemma 2. 6 is established. 

Theorem 2. 7: For x EL - T, 

{

r(x) 

r' (x) = 
r(x) - 1 

if X f- Q 

if XE Q 

Proof: If x f. Q, i. e . , x E L - Q - T, then O E L - Q - T and 

z EL - T for all z EL such that z ~ x by Lemma 2. 6. Hence any max­

imal chain in L - T from O to x is a maximal chain in L from O to x. 

Thus r' (x) = r(x). 

If x E Q, then let O = x0, x1, ... , xk = x be a maximal chain in 

L - T from O to x such that x0 , ... , xi-l E L - Q - T, and 

~' ... ,xk E Q. By Lemma 2.6, x0 , ... ,xi-land xi' ... ,xk are maxi­

mal chains in L. Since x. E Q and x. 1 ¢ T, there must exist t E T 
1 1-

such that~> t > xi-l in L. Lemma 2. 5 then implies that~> t > xi-l 

in L. Hence O = Xo, ... ,xi-l' t,~, ... ,xk = x is a maximal chain in L 

from O to x, and r' (x) = r(x) - 1. 

The geometric lattice L - T will be called the cut-contraction of 

L with respect to Q. A cut-contraction L - T of L will be called a 

trivial cut-contraction of L if T is empty; this occurs if and only if Q 

is empty or Q = L. The next corollary is an immediate consequence of 

Theorem 2. 7. 
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Corollary 2. 8: If L' is a nontrivial cut-contraction of L, then 

dim (L') = dim (L) - 1. 

Thus by forming cut-contractions, we can produce new, smaller 

geometric lattices from other geometric lattices. In fact, it will be 

shown that any geometric lattice can be obtained by means of a sequence 

of cut-contractions, starting from a suitable Boolean algebra. 

Every geometric lattice L has a canonical representation in 

terms of closed subsets of the set of points of L. In this representation, 

each element x E L is associated with the closed set Sx = {p EL: x ~ p >- O}. 

The element x /\ y is associated with SXAY = Sx n SY, and the element 

x v y is associated with Sxv Y = n {sz : Sz ::: Sx and Sz .:?8) . The next 

theorem will be formulated in terms of this canonical representation. 

Theorem 2. 9: Let Land L' be geometric lattices. If there 

exists a one-to-one map from the points of L' onto the points of L such 

that closed sets in L' correspond to closed sets in L, then L' can be 

obtained from L by a sequence of k = dim (L) - dim (L') cut­

contractions. 

The hypothesis of Theorem 2. 9 is equivalent to the assumption 

that there exists a meet preserving embedding of L' into L which maps 

the points of L' onto the points of L. 

Proof: First note that for any pair x, y E L' with y ~ x that 

r(y) - r(x) ~ r' (y) - r' (x). For let x = Xo -< x1 -< ... -< xm = y be a 

maximal chain in L'. Then each ~ is closed in L, and they are distinct. 

Hence x = x0 < x1 < ... < xm =yin L, and r(y) - r(x) ~ m = r'(y) - r'(x). 
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Let Q = {x E L' :dim (L) - r(x) = dim(L') - r' (x)}. It will be shown 

that Q is a modular cut of Land that L' is contained in the cut­

contraction of L with respect to Q. 

In order to show that Q is a modular cut of L, let x E Q, and let 

y E L be minimal such that y > x and y </ Q. If y E L', then 

dim(L) - r(y) ~ dim(L') - r' (y) 

= (dim(L') - r' (x)) - (r' (y) - r' (x)) 

~ (dim(L) - r(x)) - (r(y) - r(x)) 

= dim(L) - r(y). 

Hence dim(L) - r(y) = dim(L') - r' (y), and y E Q. If y i L', then let 

y >- z ~ x in L. By the minimality of y, z E Q. Let p be a point in L 

(and in L') such that y = z v p. Butz v' pis a closed set in L', and 

hence z v' p is closed in L such that z v' p ~ z v p = y. By semi­

modularity in L', r' (z v' p) = r' (z) + 1. Then 

r(z v' p) = dim(L) - dim(L') + r'(z v' p) 

= dim(L) - (dim(L') - r'(z)) + 1 

= dim(L) - (dim(L) - r(z)) + 1 

= r(z) + 1 

= r(y) 

Hence y = z v' p, and y E L', a contradiction. Thus x E Q, y E L and 

y ~ X imply y E Q. 

Since x /\ y corresponds to the intersection of the sets oJ points 

contained in x and y, x /\ y = X/\ 1 y. Let x,y E Q be such that 
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x >- x /\yin L. Then since 1 = r(x) - r(x /\ y) ? r'(x) - r'(x /\ y) ? 1, 

it follows that r(x) - r(x /\ y) = r'(x) - r' (x /\ y) and 

dim(L) - r(x /\ y) = (dim(L) - r(x) ) + (r(x) - r(x /\ y)) 

= (dim(L') - r'(x)) + (r'(x) - r'(x /\ y)) 

= dim(L') - r' (x /\ y) 

Hence x /\ y E Q, and Q is a modular cut. 

If dim(L) = dim(L'), then O E Q, and L - T is a trivial cut­

contraction of L. All closed sets of L are in Q, and hence they are 

closed in L'. Thus L and L' have the same closed sets. Since L and 

L' have the same order relation, they are isomorphic. If dim(L) > dim(L'), 

then O i Q. However, the unit element of L is in Q, so L - T is a non­

trivial cut-contraction of L. Then by Corollary 2. 8, dim(L) = 

dim(L - T) + 1. 

Let L1 = L - T denote the cut-contraction of L with respect to 

Q. By Theorem 2. 2, L1 is a geometric lattice. There is an induced 

map of points of L to the points of L1 . In order to see that all closed 

sets in L' are closed in L1, let t E L, q E Q be such that t i. Q and 

t -< q in L. If t were closed in L', then t -< q in L' and dim(L) - r(t) 

= dim(L) - r(q) - 1 = dim(L') - r'(q) - 1 = dim(L') - r'(t). Hence t E Q, 

a contradiction. Thus closed sets in L' are closed in L1; in particular, 

each point in L' is a point in L1. 

To see that the induced map from the points of L' to the points 

of L1 is onto, let q be a point of L which does not correspond to a 
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point in L'. Then q does not correspond to a point in L. By Lemma 

2. 5, with x = q and z = 0, there exists an element y E T such that 

q > y > 0 in L. But y is a point in L, and hence is a point in L1 . This 

contradicts y E T. Thus all points in L1 correspond to points in L', 

i.e. , the induced map from points of L' to points of L1 is onto. The 

previous paragraph showed that it is one-to-one. Hence L1 and L' 

satisfy the conditions of the theorem. 

Repeating this construction k times, where k = dim(L) - dim(L'), 

gives the sequence of cut-contractions 

As shown above, the lattices Lk and L' satisfy the conditions of the 

theorem, and dim(Lk) = dim(L) - k = dim(L'). It follows that Lk and 

L' are isomorphic. This completes the proof of Theorem 2. 9. 

If L' is an arbitrary geometric lattice, let L be the Boolean 

algebra of all subsets of the set of points of L'. Then L and L' satisfy 

the conditions of Theorem 2. 9. Thus we get the following corollary. 

Corollary 2.10: Let L be a geometric lattice with w1 points, 

and let B be the Boolean algebra having W 1 points. Then L can be 

obtained from B by a sequence of k = w1 - dim(L) cut-contractions. 
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APPENDIX 

Theorem A. l: Let L1 and L2 be logarithmically concave geo­

metric lattices. Then L = L1 x L2 is logarithmically concave also. 

Proof : Let Ui, Vi and Wi be the Whitney numbers of L1 , L2 

and L, respectively. Then 

i 
w. = l u.v .. 

1 J 1-J 
j =() 

and 

2 
W. -W. 1w. l 

1 1- 1+ 

i i i-1 i+l 

= \"' \"' U. ukv. . V. k - \"' \"' U. ukv. l . V. l k Li L , J 1- J 1- L , L i J 1- - J 1+ -

j =0 k =O j =0 k =0 

i i-1 i 

= " u.ukv0v. k + " " u.ukv •• v. k Li 1 1- L, L J 1-J 1-
k=O j=O k=O 

i-1 i-1 i 

- " u.u. 1v. 1 .v0 - " " u.ukv. 1 .v. 1 k L J 1+ 1- -J Li Li J 1- -J 1+ -
j=O j=O k=O 

i i-1 

= u. UoVoV· + \' u . UkVoV· k + \' U-UoV· .v. 1 1 L , 1 1- L· J 1-J 1 
k=l j =O 
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i-1 i-1 j 

+ I uj uj+l v i-j vi-j-1 + I I uj uk vi-j vi-k 
j =O j =1 k=l 

i-2 i 

+ ~ I: u.ukv .. v. k J 1-J 1-
j =0 k =j+2 

i-1 i-1 

- '°' u.u. 1V- l -Vo - '°' U-UoV- l .v. l Li ] 1+ 1- -J Li ] 1- -J 1+ 
j=O j=O 

i-1 - '°' U.U. 1v. l .v . . 
L 1 J J+ 1- - J 1- J 

j=O 

i-1 j i-2 i 

- " " u . ukv. 1 • V. 1 k - " " u. ukv. 1 . V. 1 k L, Li J 1- -J 1+ - L , L J 1- -J 1+ -

j =1 k=l j =0 k =j+2 

(

i-1 i-1 ) 
+ " u.u0v . . v. - " u.u0v. 1 .v. 1 L J 1-J 1 L J 1- -J 1+ 

j=O j =O 

+ u .u . v . . v. . - u .u. v. .v . . 
(

·-1 i-1 ) 

-~ J J+l 1-J 1-J-l j~O J J+l 1-l-J 1-J . 
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i 

= L (ukuCuk-lui+l)vOvi-k 
k=l 

i-1 

+ '\'. u 0U.(V .. V.-V .. 1v. 
1
) + 0 

l., J 1-J 1 1-J- l+ 
j=O 

i-1 j 

+ \' '\' U.Uk(V . . V. k-V .. 1v. k 1) Li Li J 1-J 1- 1-J- 1- + 
j=l k=l 

i-1 i-1 

i-2 

+ I: 
i 

\' u .uk(V .. v. k-v .. 1V- k 1) L J 1-J 1- 1-J- 1- + 
j =O k=j+2 

~ \ \' U U (V. V. -V. 1v. 1) lJ Li n m 1-n 1-m 1-n- 1-m+ 
m=l n=m 

i-1 i-1 

+ '\', '\' U 1u 1(V. 1v. 1- V. V. ) 
D Li m- n+ 1-m+ 1-n- 1-m 1-n 

m=l n=m 

i-1 i-1 

= L; L (Um Un-Um-1 un+l)(Vi-n Vi-m-Vi-n-1 Vi-m+l) 
m=l n=m 

since ukuj - uk-l uj+l ~ o fork ~ j,and vk vj - vk-l vj+l ~ o for 

k ~ j. 
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