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Abstract 

Identification for a model for robust control design is more complicated than for the standard 

linear system transfer function model-the structure of the uncertainty as well as bounds on 

its size must be determined. It is especially unclear as to which parts of the system should be 

better modeled to improve robust performance. This paper addresses this question through 

some new tools, the µ-sensitivities. 
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1 Introduction 

1.1 Robust Performance 

The goal of any controller design is that the overall system is stable and satisfies some 

minimum performance requirements. These requirements should be satisfied at least when 

the controller is applied to the nominal plant, that is, we require nominal stability and 

nominal performance. 

In practice the real plant Gp is not equal to the model G. The term "robust" is 

used to indicate that some property holds for a set II of possible plants Gp as defined by the 

uncertainty description. In particular, by robust performance we mean that the performance 

requirements are satisfied for all Gp E II. Performance is commonly defined in robust control 

theory using the H 00 -norm. 

Definition 1.1 The closed loop system exhibits nominal performance if 

Definition 1.2 The closed loop system exhibits robust performance if 

(2) 

For example, a simple choice for ~ could be the weighted sensitivity 

s =(I+ GCt 1 

(3) 

The input weight W2 is often equal to the disturbance model. The output weight W1 is used 
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to specify the frequency range over which the sensitivity function should be small and to 

weight each output according to its importance. C is the transfer function of the controller. 

Doyle [3] derived the structured singular value, µ, to test for robust performance. To 

use µ we must model the uncertainty (the set II of possible plants Gp) as norm bounded 

perturbations (6i) on the nominal system. Through weights each perturbation is normalized 

to be of size one: 

a(6i) :s; 1, Vw. (4) 

The perturbations, which may occur at different locations in the system, are collected in the 

diagonal matrix 6u ( the U denotes uncertainty) 

(5) 

and the system is arranged to match the structure in Figure 1. The interconnection matrix M 

in Figure 1 is determined by the nominal model ( G), the size and nature of the uncertainty, 

the performance specifications, and the controller ( C). The definition ofµ is: 

Definition 1.3 Let lvl be a square complex matrix. µ(M) is defined such that µ- 1 (M) zs 

equal to the smallest a ( 6) needed to make ( I + 6M) singular, i.e. 

µ- 1 (M) = min{ 8: det(I + 6M) = 0 for some 6, a (6) < 8}. 
8 

For Figure 1, the robust performance condition (2.2) becomes [3]: 

(6) 

Theorem 1.4 The closed loop system exhibits robust performance if and only if the closed 

loop system is nominally stable and 

µRp(M) - sup µ(M) < l. (7) 
w 

µ(M) depends on both the elements in the matrix M and the structure of the perturbation 
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Figure 1: Robust Performance and the M - .6. block structure 

M 

Figure 2: The M - .6. block structure 

matrix .6. = diag{ .6.u, .6.p} . .6.p is a full square matrix with dimension equal to the number 

of outputs (the subscript P denotes performance). Note that the issue of robust stability is 

simply a special case of robust performance. It is also a key idea that µ is a general analysis 

tool for determining robust performance. Any system with uncertainty adequately modeled 

as in (2.4) can be put into M - .6. form, and robust performance can be tested using (2.6). 

Standard programs calculate the M and .6. [l], given the transfer functions describing the 

system components and the location of the uncertainty blocks .6.i. Besides meeting some 

specified performance requirements, often the controller is constrained as well. What this 

means is that the control designer may want to use PID controllers only, or a decentralized 

controller, or to use a controller of limited order. The controller design procedure described 

below allows constrained controllers. 
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1.2 Designing for Robust Performance 

A controller design method using µ-analysis looks like this: 

1. Determine model of plant (including uncertainty model). 

2. Design controller using whatever method you choose ( e.g. µ-synthesis [4), decentralized 

controller design using independent designs [17), µ-optimal single-loop PID controller 

design [11)). 

3. Test for robust performance using µ 

• If µRP < 1, then the controller meets robust performance and the design is com­

plete. 

• If µRP > 1 then the controller does not meet robust performance. 

If µRP > 1, then either the performance specifications must be weakened or the model must 

be improved. If the performance specifications are set, then a more accurate model must be 

determined. It is currently not clear to the control designer to what part of the model should 

attention be focused for improving the model. This is important because we would like to 

meet the performance requirements with a minimum amount of modeling effort. After all, 

modeling is the most time-consuming, expensive, and difficult step in controller design. We 

do not want the control engineer wasting effort improving the model where the performance 

is only marginally improved. 

In robust control language, the above question is: where should uncertainty be de­

creased to have the largest effect in improving robust performance? This paper addresses 

this question through some new functions, the µ-sensitivities. The µ-sensitivities aid the 

control designer in deciding which uncertainties should be focused on for meeting robust 

performance requirements. 
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2 Definition of µ-Sensitivities 

2 .1 Definition 

Let us look once again at Figure 1. Partition 

(8) 

to be compatible with 6. = diag{6.u, 6.p } . We want to measure the sensitivity of the robust 

performance measure µRp(M) with respect to the size of the individual uncertainties 6.i. 

To study this problem, multiply each 6.i E 6.u by O'.i, where each O'.i is real and 

nominally 1. Then 

(9) 

where 

and ri is the dimension of the ith uncertainty 6.i. 

Absorb the o:112 's into M to give 

[ 

o:M11 o:
1

1
2 

M 12 l · M(a) = 
a 112

M21 M22 

(11) 

Define M(ai) to be equal to M(a) for a such that O'.j 

definition of the ith µ-sensitivity. 

1, V j =/- i. The following is the 

oµi = [ lim µRp(M(ai )) - µRp(M(ai - 6.ai)) 
~ a ;-+O+ 6.0'.i 

(12) 
a=l 
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Recall that each O'.i is nominally one. 

Remark 2.1 Because the ,6.i are normalized to have maximum norm 1, the µ-sensitivities 

are defined on a "relative basis". In other words, each µ-sensitivity is measured based as 

percentage reduction of the associated uncertainty block, not in the absolute reduction in the 

size of each uncertainty in the system. 

Remark 2.2 Any perturbation ,6.i E ,6.u can be of any form (i.e. real or complex, repeated 

scalar or full-block, or repeated blocks). With01tt loss of generality, we can consider only 

square ,6.i [14}. 

Remark 2.3 We could have defined the matrix M(a) to have the form 

(13) 

or, 

(14) 

since 

(15) 

The form in (3.1 OJ was chosen for computational reasons as discussed in Appendix B. 

Remark 2.4 It is easy to show that µRp(M(ai)) is a nondecreasing function of O'.i, This 

implies that µ-sensitivities are always non-negative. 
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2.2 Existence 

µRp(M(a)) is continuous in a (this follows directly from (15] and that we have a complex 

performance block). Although the slope of µRp(M(ai)) as a function of CY.i can be discon­

tinuous, the one-sided derivatives defining the µ-sensitivities will exist and be finite except 

for a set of measure zero. We will use the following lemma from [9] to prove that not only 

is the one-sided derivative well-defined, the full derivative is well-defined ( and equal to the 

one-sided derivative) almost everywhere. 

Lemma 2.5 A monotonic function defined on an interval has a finite derivative almost 

everywhere on the interval. 

The next theorem then directly follows. 

Theorem 2.6 The µ-sensitivities are well-defined, and equal to the corresponding full deriva­

tives, almost everywhere on any interval. 

3 Computational Issues 

The exact calculation of µ for general real and complex ~i is not currently available. 

Two main approaches are taken to computing µ. The first approach calculates µ 

exactly, but involves an exponential growth in computation as a function of the parameters. 

The best of these methods are rapid when the number of ~i blocks is small ( < ~10) [16]. 

The second approach is more computationally attractive, but can be inexact. Com­

putationally inexpensive upper and lower bounds are calculated (see Appendix A for more 

details); if the bounds are equal, then an exact value for µ has been found. For strictly 

complex ~, the upper and lower bounds are almost always within a percent or so for real 
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problems [14], thus for engineering purposes,µ never has to be exactly calculated. The upper 

and lower bounds also appear to be tight for the mixed uncertainty case [20, 19, 7]. 

Tight upper and lower bounds allow us to analyze the performance ( and stability) 

using only the upper, or lower bound, instead of the exact value for µ. The efficient com­

putation of the derivatives will be discussed with respect to a;, using the upper and lower 

bounds in place of the exact value for µ. This possibly could give values different from the 

exact µ-sensitivities, but as long as our analysis is with respect to the given upper or lower 

bound, this is not important. 

Inexact-µ calculation procedures are iterative [3, 6, 14, 7, 20]. To numerically compute 

the derivative, just use the last iteration from the inexact-µ calculation for M( a;) ( = M) as 

the first iteration for the inexact-µ calculation for M( a;-6.a;). The inexact-µ calculation for 

M( a; - 6.a;) then converges in only a couple of iterations. Since inexact-µ has already been 

calculated for M(a;) (with a; = 1), each numerical calculation of a µ-sensitivity requires 

only a couple of iterations. 

One difficulty that can arise when using the lower bound iterative algorithms [14, 

6, 20], though unlikely for 6.ai small, is that the procedure can converge to different local 

extrema (maxima). To avoid this, it is recommended to use the upper bound calculation 

procedures. The computation of the upper bound is convex, so the only extremum ( a 

minimum) is global [3, 14]. 

We see that the µ-sensitivities can be approximated easily. The calculation requires 

little more computational effort than that needed to approximate µ(M). 

Remark 3.1 The frequency domain calculation to find f-lRP can be transformed to a f-l cal­

culation involving larger .M and 6. matrices {5}. 1 A bilinear transformation converts the 

continuous-time µRP problem to a discrete-time µRP problem) where the frequency variable 

is treated as another 6. block to give a larger µ problem. 

1The largerµ problem is called skewed-µ, and is calculated by the same methods asµ (18]. 
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This conversion should be done for the calculation of the µ-sensitivities for two rea­

sons. First, the transformation will allow a faster and simpler calculation for µRP, since one 

(though larger) µ calculation replaces the numerous µ calculations required in an accurate 

frequency search needed for derivative calculation. Second, problems which have two or more 

similarly sized peaks in the µ versus frequency plot give difficulties in numerically calculating 

the derivative defining the µ-sensitivities. Two similarly sized peaks often occur, for example, 

when the IMC design method is used. 

4 Generalized Design Procedure Using µ-Sensitivities 

We will now focus on a general procedure for robust controller design. We will define the 

plant as the system to be controlled. Components of the plant refer to actuators, sensors, 

and the physical processes making up the plant. We begin our identification procedure 

with a nominal model and a broad uncertainty description-such a broad description takes 

much less effort to generate than a nominal model with a tight uncertainty description. We 

then design a controller and check robust performance. If robust performance is satisfied 

then the design is complete. If robust performance is not satisfied, our design procedure 

must then point out which components of the plant should be better identified-this step 

becomes particularly important for multivariable plants with a large number of components 

with associated uncertainties. We should not re-identify all components of the plant more 

accurately, because the uncertainty of some components of the plant may have little effect 

on robust performance. 

The ft-sensitivities measure the sensitivities of the robust performance measureµ with 

respect to the magnitude of the individual uncertainties. When the µ-sensitivity correspond­

ing to a particular uncertainty is large, then it is important to diminish that uncertainty for 

improved robust performance. The control designer should then consider re-identifying ( to 

decrease the size of the uncertainty) the component of the plant corresponding to this un­

certainty. When a µ-sensitivity is small, then the corresponding uncertainty is unimportant. 
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However, re-identifying plant components based strictly on which µ-sensitivities are 

the largest is naive. Some plant components are inherently harder to identify than others. 

Some uncertainties are inherently more difficult to model or identify-this is especially true of 

uncertainties resulting from the ad hoc covering of slowly time-varying parameter variations 

with linear time-invariant uncertainty, or when no "true" model parameters exist because 

of simplifying assumptions on the structure of the plant. The control designer must weigh 

the importance of the uncertainties as suggested by the µ-sensitivities with the difficulty in 

re-identifying each uncertainty. 

Keeping these ideas m mind, we have the following new robust controller design 

method: 

1. Determine model of plant , including a broad uncertainty description 

2. Design controller using whatever method you choose (i.e. µ-synthesis, decentralized 

controller using independent designs, PID controllers) 

3. Test for robust performance using µ 

• If µRP < 1, then the controller meets robust performance and the design is com­

plete. 

• If µRP > 1, then the controller does not meet robust performance. Calculate 

the µ-sensitivities. Re-identify components of the plant corresponding to large 

µ-sensitivities and low identification effort. Repeat steps 2 and 3 until design is 

completed. 

Remark 4.1 The ith µ-sensitivity is the derivative of the robust performance measure µRP 

with respect to the magnitude of the i th uncertainty block. In some situations1 it makes sense 

to take the derivative of µRP with respect to the magnitude of several uncertainty blocks. 

This would happen when the plant has several components that have the same uncertainty 

description1 though the uncertainties are independent of each other. This would arise1 for 
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example, for uncertainty associated with equivalent, independent actuators. Modifying the 

definition of the µ-sensitivities is simple. 

Remark 4.2 If, at an iteration in the design procedure, the uncertainty is modeled to be of 

a different form (for example, if a plant component that was originally modeled as parameter 

uncertainty is modeled as nonparametric uncertainty), then the M and ,6,. will change, and 

the design procedure continues. 

5 Example: Cross-Directional Control in Paper Man­

ufacturing 

5.1 Description of System 

The description of the problem can be found in [10]. 

The cross-directional (CD) control problem in paper manufacturing is aimed at main­

tenance of flat profiles of paper sheet properties across the paper machine. One important 

sheet property, for example, is the paper weight per unit area. Variations in CD paper weight 

per unit area can result in paper that will not lie flat. Successful control of CD paper sheet 

properties can mean significant reductions in raw material consumption. Minimal variation 

in CD sheet properties enables the production of thinner paper closer to the target caliper. 

The process model used to describe the system includes three factors always present in CD 

control problems: actuator dynamics, interactions, and time-delay. All of these components 

of the system have significant uncertainty associated with them. 

Pa( s) will represent the model for the actuator, Pd( s) will represent the time delay, 

and Pen is a full transfer function matrix describing the interactions. A model for a 20 x 

20 plant, assuming symmetric responding actuators and interactions involving only nearest 
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two sensors, is Pcv(s) = Pa(s)pd(s)Pcv = 

PI P2 p3 0 0 

P2 PI P2 

kae-0s p3 P2 0 

TaS + 1 
(16) 

0 P2 p3 

P2 PI P2 

0 0 p3 P2 PI 

20 x 20 

We will describe the uncertainty as parametric uncertainty in ka, Ta, 0, P2, and p3, 

i.e. each parameter is allowed to vary between upper and lower bounds independent of the 

other real parameters. 

Nominal values for p1 , p2 , and p3 are taken from actual process data from [2]. The 

following ranges represent a fairly broad uncertainty description: 

P1 = 1.0; P2 E (0.1, 0.3); p3 E (-0.15, 0.0). (17) 

Actuator dynamics and time-delay vary substantially from machine to machine; we will start 

our design procedure with the following broad ranges for ka, Ta, and 0: 

ka E (0.5, 1.5); 0 E (0.5, 1.5); Ta E (0.5, 1.5). (18) 

It is hoped that it is fairly simple to guess the time constant, steady-state gain, and time 

delay by a factor of two. A tighter uncertainty description would require some identification 

effort. 
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5.2 Choice of Performance Weight 

Our performance objective is to achieve a bandwidth of at least ¼ radian per second, under 

model uncertainty. A performance weight w( s) that assures this is given by: 

w(s) = 4s + 1 
8s 

5.3 Controller Design Procedure 

(19) 

A decentralized controller is designed for flexibility in operation, simplicity of design, and 

operator acceptance. Since the plant is almost diagonal, it is reasonable to use a single 

loop Internal Model Control (IMC) [13] controller multiplied by the identity matrix. The 

IMC controller is q(s) = ij(s)f(s), where ij(s) is H 2 optimal for step disturbances for :::~
0
; 

detuned somewhat to take into account the effect of interactions (the design procedure is 

discussed in detail in [10]), and f(s) is a robustness filter with time constant A. Varying 

A gives a transparent tradeoff between performance and robustness. For our problem, A is 

chosen to minimize µRP· 

For our system, 
~ s + 1 
q(s) = 0.85 

1 
f(s)= As+l 

The standard feedback controller c(s) (a Smith Predictor) is given by: 

1 s + 1 
c(s)-----­

- 0.85 AS + 1 - e-s 
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µ = 6.0 

A= 2.34 Range 8µ; 8µ1( 

0 0.5-1.5 0 2 

k 0.5-1.5 12 14 

Ta 0.5-1.5 0 2 

P2 0.1-0.3 76 94 

p3 -0.15-0.0 75 92 

Table l: First Iteration in Design Procedure 

5.4 General Robust Design Procedure 

The first step is done-we have a model with a broad uncertainty description. A controller 

is designed according to (6.21). The A minimizing µRP was 2.34 and the minimized µRP was 

6.0. Table 1 gives the µ-sensitivities (8µ;) and the corresponding parameter ranges. Also 

given are the controller-varying µ-sensitivities &µ1(-these are defined by 

[ lim A 

1 
(min p RP ( M (a;))-

t.a-; --+O+ ua; >-

m_in µRp( M( a; - ~a;))) I 
>- o=l 

The 8µ1( are more time-consuming to calculate (requiring an additional controller design for 

each derivative calculation), but can be argued to be a closer measure of the design-relevant 

sensitivity of the robust performance to the uncertainties. We see that by far the most 

important uncertainties are associated with the interactions p2 and p3 . 

For the CD response system, the interactions can be identified independent of the 

other plant parameters (k, 0, and Ta)- A re-identification was "simulated" by decreasing the 

allowable ranges for p2 and p3 to (0.1, 0.2) and (-0.1, -0.05), respectively. A controller was 

designed, with the relevant results in Table 2. We see that the most important uncertainties 

are still associated with the interactions. For this example, we will assume that better 

identifying p2 and p3 would require a large amount of effort, at least much more effort than 
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µ = 1.8 

>. = 2.50 Range 8µi 8µ'( 

0 0.5-1.5 0 0.5 

k 0.5-1.5 2.9 3.3 

Ta 0.5-1.5 0 0.4 

Pz 0.1-0.2 6.7 8.0 

p3 -0.1- -0.05 6.5 7.8 

Table 2: Second Iteration in Design Procedure 

identifying the actuator gain k better. We can see that the uncertainty in k is almost as 

important as interaction uncertainty (within a factor of two), so we will identify k more 

accurately. This is "simulated" by decreasing the range of k to ( 0. 9, 1. 1). 

A controller was designed and it was found that µRP = 1.0 for >. = 2.64. The design 

procedure is complete. 

5.5 Discussion 

The example problem shows the utility of the proposed robust design procedure. For the 

chosen controller design method, the µ-sensitivities implied that robust performance does 

not depend strongly on uncertainty in time delay and time constant. Also implied was that 

interaction uncertainties are by far the most important uncertainties. This agrees with real 

CD control; McFarlin (12] cites ignorance of interaction uncertainty as a probable cause of 

instability in CD response control systems. 

We see, for this example, that the extra effort in calculating the controller-varying 

µ-sensitivities is wasted. Though oµi =/- oµ'(, the trends are still the same. The design 

procedure uses the oµi qualitatively instead of quantitatively, so the design procedure is 

unaffected by which values are used. 
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6 Conclusions and Further Research 

For identification of a robust control model, the structure of the uncertainty as well as bounds 

on its size must be determined. It was pointed out that it was especially unclear as to which 

parts of the system should be better modeled to improve robust performance. A new tool, 

the µ-sensitivity, was defined in an attempt to address this problem. Computational issues 

were addressed, and an extensive example showed the utility of µ-sensitivities as an aid in 

the identification of models required for robust control. 

The limitation of µ-sensitivities as an analysis tool is the same as for other (local) 

sensitivity analyses: no guarantees are available. However, since the µ-sensitivities are used 

only to focus attention to what parts of the system are important-robust performance is 

still guaranteed when the design procedure ends with µRP< 1-no guarantees are necessary. 

The µ-sensitivities complement the information obtained by the structured singular value, 

with minimal added computation. 

This paper can be interpreted as an extension of [8]. The above paragraph applied 

to the work in [8] also, and is lifted from that paper. 

The µ-sensitivity is a specialized one-sided derivative of µ. The derivative of µ can 

also be applied to plant design and the design of robust controllers. Application of the 

cheap derivative calculation to the design of µ-optimal PID controllers is currently being 

investigated. 
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7 Appendices 

7.1 Appendix A: Review of Upper and Lower Bounds onµ 

Let us give the well-known upper and lower bounds for µ with complex uncertainty. First 

define two subsets of cnxn 

(23) 

and 

(24) 

then it is well-known that 

max p( QM) :S= µa (M) :S inf a (DM n-1 ). 
QEQ DED 

(25) 

A result of Doyle [3] is that the lower bound, maxp ( QM), is always equal to µt:;. (M). 
QEQ 

Unfortunately, the maximization is not convex, and computing the global maximum of such 

functions is, in general, difficult. The lower bound calculation procedure may converge to 

local maxima. In contrast, the computation of the upper bound is convex. In general 

though, the upper bound is not equal to µ, though for certain block structures ~, equality 

does always hold. 

7.2 Appendix B: Comments regarding Remark 3.3 

Q and D discussed below are defined in Appendix A, which reviews the well-known upper 

and lower bounds on µ. 

We defined M(a) by (3.10) instead of (3.12) or (3.13) so that a perturbation in a 

would result in a near-symmetric perturbation on M(a). Since Q and Dare symmetric, it 

is suspected that using (3 .10) for the perturbed M(o:) will cause a smaller perturbation in 
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the optimizing Q and D [19]. 
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