TRANSITION METAL-CATALYZED METHODOLOGIES FOR THE SYNTHESIS OF COMPLEX AMIDE BUILDING BLOCKS

Thesis by

Jay Park Barbor

In Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2026

(Defended June 10, 2025)

Jay Park Barbor ORCID: 0000-0003-2787-4923 For Jessie

ACKNOWLEDGEMENTS

The research presented in this thesis would not have been possible without the support of many brilliant, kind, and generous people. First and foremost, I need to thank my advisor, Professor Brian Stoltz, for his steadfast support and encouragement over the last four and a half years. Brian is an incredible scientist, and his love of chemistry is infectious. I am incredibly fortunate to have studied under someone so knowledgeable, grounded, and wholeheartedly dedicated to his students, and I am forever grateful to have had the opportunity to learn from him. Brian is truly the best mentor I've ever had.

I also need to thank Professor Sarah Reisman for being a great committee chair and somewhat of a second advisor for our group. I am grateful to have been able to work in a collaboration with her, which turned out to be some of the most fulfilling research of my career. Her scientific creativity and brilliance helped to drive both the project and my own development as a scientist. I've learned a lot from her, and I am grateful for her support and guidance during my time at Caltech.

I am also grateful to committee members Professor Linda Hsieh-Wilson and Professor Hosea Nelson for their support and feedback. Their encouragement was much appreciated during some of the harder times, and I am thankful for their thoughtful questions during meetings and examinations.

I would not be where I am today without the previous mentorship of my high school teachers and undergraduate advisor. Mr. Palko and Dr. Wilhelmy instilled in me an early fascination with chemistry. Growing up in a relatively small community, I recognize that I am lucky to have had such great instructors. I am also grateful to Professor Kevin Shea, who took me into his research lab later at Smith College. Both in the lab and in the classroom, he

gave me my first real exposure to synthetic organic chemistry, and the early training I received in his lab gave me the courage to pursue this discipline as a career.

I must also thank my industrial colleagues—Dr. Zach Aron, Dr. Samanthi Waidyarachchi, Matthew Torhan, Dr. Naren G-Dayanandan, Dr. Yongzhao Yan, and others. Their belief in my potential and their encouragement to return to graduate school meant more than they probably realize. I'm thankful for their generosity in sharing both technical knowledge and professional wisdom—lessons that have stayed with me throughout graduate school. I need to especially thank Dr. Zach Aron, who has continued to help me establish my career and has provided much needed advice over nearly the last decade of my life.

At Caltech, we are privileged to have such talented and dedicated staff members. I need to thank Dr. Scott Virgil for expertly maintaining the catalysis center, as well as nearly every other instrument in CCE. His knowledge and selflessness have made him an indispensable resource, and I'm grateful for all of the technical advice he has given me. I must also thank both Scott and Silva for welcoming us into their home for their annual holiday party. I need to also thank Dr. Mona Shahgoli, who generously shared not only her mass spectrometry expertise but also her kindness and humor—I fondly remember our early mornings fixing instruments and swapping cat photos, and I wish her a joyful retirement. Thanks also to Dr. David VanderVelde for his NMR expertise and snarky emails, and to Dr. Mike Takase for consistently solving challenging crystal structures. I also appreciate Beth Marshall, Tomomi Kano, and Joe Drew for keeping our facilities running smoothly.

Starting graduate school in the middle of a global pandemic was not something I anticipated doing in my lifetime. Despite the physical barriers to meeting new people, I was lucky to be welcomed into the Stoltz lab by some really talented and "festive" researchers. I

am grateful to Dr. Nick Hafeman and Dr. Tyler Fulton for regularly inviting us out to lunches and making graduate school feel like a more normal experience during a time of great uncertainty and fear. I have a lot of admiration for their work ethic and expertise, and their sarcastic humor was much appreciated in the office. To all of the fantastic postdocs I had the pleasure of overlapping with—thank you for answering all of my questions, for leading the lab by example, and for training me to be a better scientist. I especially need to thank Dr. Trevor Lohrey and Dr. Vaishnavi Nair, who were incredible project partners that taught me a lot.

I am also grateful to Dr. Alexia Kim, Dr. Zach Sercel, Dr. Alex Cusumano, and Dr. Tyler Casselman for bringing so much laughter into the group and sharing all of their wisdom. I am especially grateful to Alexia Kim, who trained me on all of my group jobs and helped me a lot during the beginning of my PhD. Thank you for reading my proposals, giving me great advice, and going out to concerts with me. I'd also like to thank Zach Sercel—I'm sorry I could never hear you over the droning of the lab, but working next to you was such a joy. To Alex Cusumano, I feel honored to have overlapped with you in the Stoltz group, and thank you for always answering my questions with such grace and patience.

I also need to thank the cohort above me, Dr. Melinda Chan and Dr. Ally Stanko. I recognize that the pandemic impacted your PhDs much more profoundly than it did mine, and I am so impressed with how you both stuck it out and made it to the finish line. Thanks for always playing fun music in the lab, and for being the laughter most heard in the office; you made the lab a fun place to be. I am especially grateful to Melinda Chan, who agreed to be my project partner not once, but twice! Thanks for being such a fun and thoughtful person to work with.

To my cohort—Kali Flesch, Elliot Hicks, Samir Rezgui, Kevin Gonzalez, Farbod Moghadam, and Adrian Samkian—I am so grateful to have joined Caltech alongside you all. We began graduate school under the isolating conditions of the pandemic, and yet, in a beautiful and unexpected way, that distance brought us closer. I've learned so much from each of you, and I am honored to be part of such an extraordinary group of scientists and friends. To Kali: thank you for being a great project partner and friend, and for toughing out such a strange project with me. To Elliot: thanks for always answering my stupid questions, and for putting up with my constant muttering. To Samir: thank you for being such a kind and solid person, and a fantastic cook in the lab. To Kevin: you are one of the nicest people I've met in graduate school, and I know you'll make a great PI. To Farbod: thank you for being a great project partner, and for your constant humor and dancing. To Adrian: thank you for building blast shields in the yard with me.

To the next fantastic class of seven—Kim Sharp, Cami Suarez, Christian Strong, Ruby Chen, Hao Yu, Ben Gross, and Marva Tariq—I'm so excited to see what comes next for you. I need to especially thank Kim Sharp, for being an outstanding project partner and for dealing with my antics nearly every day of the week for four years. We laughed, we cried, we talked about quitting, we persevered; what a ride. Thanks for being an incredible hoodmate. To Cami: thanks for joking around, talking about THIQs, and going to concerts with me. To Christian: you are one of the funniest people I've ever met, and I am so impressed with how thorough of a chemist you are.

To the students who joined us in the years to follow—Choe Cerione, Adrian de Almenara, Jonathan Farhi, Bryce Gaskins, Sara Siddiqui, and Eli Gonzalez—I know you'll all go on to do great things. It's been such a pleasure getting to know each of you, and it's

been really cool to watch you all grow as chemists. I need to also thank my mentee, Rakel Ang, for being such a hard worker. I cannot believe how much you drove just to show up and run a column, and I know you'll do great things in graduate school.

I must also thank my longtime friends who supported me along this journey, especially John, Suz, Rosie, Amiee, Ashley, and many others: I love you, I'm sorry I didn't visit as much as I should have, and I'm looking forward to seeing you all more frequently now that I'm done. To the good friends I made here, especially Sina, Andrew, Sid, Tara, Rebecca, and Leah: I'm so happy we met, and I know we will be friends for years to come. Thanks for reminding me that there is life outside of graduate school. Especially to Sina and Andrew—becoming friends was one of the highlights of living here, and I'm looking forward to all of our future adventures together.

I wouldn't be here without the support of my family, especially my mom, dad, and brother Peter: thank you for always rooting for me. I'm looking forward to being home more often now that I'm returning to the east coast. I need to also thank my partner's mom, Barb, for supporting me so much through these years. I also need to thank my cats, Tuna and Maeby, for being my rocks throughout this time. They both nursed me through many failed experiments, and I couldn't have written parts of this thesis without one of them purring on my lap.

And finally, the most important person I need to thank is my partner, Jessie, who has made so many compromises to be here with me. I never planned on doing this with anyone because I knew it wouldn't be fair. And it has not been fair. But that isn't how life or love ever works, and I am so grateful to be your partner. I asked you to move with me only if you wanted to do this *for you*: for your life, your career, and your future. I am so impressed

by everything that *you* have accomplished since we've been out here, every new skill you've honed and every new job you've mastered. This beautiful life we've made—amidst a pandemic, amidst our community turning to ashes—is more than I could have ever dreamed, and I am so excited for our next chapter together.

ABSTRACT

Amides are ubiquitous functional groups that play a critical role in the composition and function of many biologically active molecules. Herein, this thesis presents three novel methodologies toward the construction of small molecules bearing amide functionality. In the first chapter, a convergent Ni-catalyzed N–N cross-coupling for the synthesis of hydrazides is described. This reaction constitutes the first example of a transition metalcatalyzed N–N bond forming reaction compatible with a wide array of aliphatic amine nucleophiles. In the second chapter, an enantioselective α -vinylation of γ -lactams is presented. In the third chapter, a novel, enantioselective spirocyclization of Pd-enolates intercepted under decarboxylative allylic alkylation conditions is disclosed. Finally, in the last appendices, we present a revised and expedient route toward the bis-THIQ natural product scaffold and describe the synthesis of some non-natural analogs.

PUBLISHED CONTENT AND CONTRIBUTIONS

 Barbor, J. P.; Nair, V. N.; Sharp, K. S.; Lohrey, T. D.; Dibrell, S. E.; Shah, T. K.; Walsh, M. J.; Reisman, S. E.; Stoltz, B. M. J. Am. Chem. Soc. 2023, 145, 15071–15077, https://doi.org/10.1021/jacs.3c04834.

J.B. participated in reaction development, experimental work, data analysis, and manuscript preparation.

Moghadam, F.A.; Barbor, J.P.; Chan, M.; Jette, C.I.; Sakurai, S.; Stoltz, B.M. Org. Lett.
 2024, 26, 7551–7554, https://doi.org/10.1021/acs.orglett.4c02551.

J.B. participated in experimental work, data analysis, and manuscript preparation.

Barbor, J.P.; Flesch, K.N.; Chan, M.; Ang, H.R.; Stoltz, B.M. Angew. Chem. Int. Ed.
 2025, 64, e202502583, https://doi.org/10.1002/anie.202502583.

J.B. participated in reaction development, experimental work, data analysis, and manuscript preparation.

TABLE OF CONTENTS

Dedication	iii
Acknowledgements	iv
Abstract	x
Published Content and Contributions	xi
Table of Contents	xii
List of Figures	xvi
List of Schemes	xl
List of Tables	xlii
List of Abbreviations	xlvi

CHAPTER 1

Development of a Ni-Catalyzed N–N Cross-Coupling for the Synthesis of Hydrazides

1.1	Introd	uction	. 1
1.2	N–N I	Bond Forming Strategies	. 2
	1.2.1	Oxidative N–N Cross-Couplings	. 2
	1.2.2	Reductive N–N Cross-Couplings	. 4
	1.2.3	Electrophilic N–N Cross-Couplings	. 5
1.3	React	on Optimization	.7
	1.3.1	Initial Reaction Discovery	.7
	1.3.2	Revised Catalyst Framework	. 9
	1.3.3	Aliphatic Amine Nucleophiles	. 9
1.4	Substr	ate Scope	11
1.5	React	on Mechanism	15
1.6	Concl	usions	16

1

1.7	Exper	imental Section	xiii 17
	1.7.1	Materials and Methods	17
		1.7.1.1 Preparation of Known Compounds	18
	1.7.2	Experimental Procedures and Spectroscopic Data	19
		1.7.2.1 Synthesis of Hydroxamate Starting Materials	19
		1.7.2.2 Synthesis of Hydrazide Products	35
		1.7.2.3 Synthesis of Ni Half-Sandwich Catalyst	72
	1.7.3	Additional Optimization Data	73
1.8	Refere	ences and Notes	76
APPI Spec	E NDIX tra Rei	1 levant to Chapter 1	82

APPENDIX 2	248
X-Ray Crystallography Reports Relevant to Chapter 1	

CHAPTER 2				293
Formation of All-Carbon Quaternary	Centers	via	Enantioselective	Pd-
Catalyzed α -Vinylation of γ -Lactams				

2.1	Introd	uction	. 293
2.2	Reacti	ion Optimization	. 294
2.3	Substr	ate Scope	. 295
2.4	Prelim	ninary Mechanistic Insights	. 296
2.5	Produ	ct Derivatizations	. 297
2.6	Concl	usions	. 298
2.7	Experi	imental Section	. 299
	2.7.1	Materials and Methods	. 299
		2.7.1.1 Preparation of Known Compounds	. 300
	2.7.2	Additional Optimization Data	. 301

			xiv
	2.7.3	Experimental Procedures and Spectroscopic Data	. 301
		2.7.3.1 Pd-Catalyzed Vinylation Reactions	301
		2.7.3.2 Preparation of Vinyl Chloride Starting Materials	312
		2.7.3.3 Preparation of New Lactam Starting Materials	317
		2.7.3.4 Derivatization of Lactam Products	321
2.8	Refere	ences and Notes	328

APPENDIX 3

Spectra Re	elevant to (Chapter 2
------------	--------------	-----------

APPENDIX 4393X-Ray Crystallography Reports Relevant to Chapter 2

331

CHAPTER 3409An Enantioselective Spirocyclization of Pd-Enolates and Isocyanates

3.1	Introd	uction
3.2	Reacti	on Design and Optimization 412
3.3	Substr	ate Scope 414
3.4	Produ	ct Derivatizations
3.5	Mecha	anistic Studies
3.6	Concl	usions
3.7	Experi	mental Section 421
	3.7.1	Materials and Methods 421
	3.7.2	Additional Optimization Data 423
	3.7.3	Experimental Procedures and Spectroscopic Data
		3.7.3.1 Pd-Catalyzed Decarboxylative Spirocyclization
		3.7.3.2 Preparation of Acyl Azide Starting Materials 439
		3.7.3.3 Preparation of <i>tert</i> -Butyl Ester Intermediates
		3.7.3.4 Preparation of β-Keto Ester Intermediates

XV
3.7.3.5 Mechanistic Experiments
3.7.3.6 Product Derivatizations 479
3.8 References and Notes
APPENDIX 5489Spectra Relevant to Chapter 3
APPENDIX 6610X-Ray Crystallography Reports Relevant to Chapter 3
APPENDIX 7 624 Revised Route Toward bis-THIQ Natural Products and Synthesis of Non- Natural Analogs
APPENDIX 8668Synthetic Summary of Appendix 7
APPENDIX 9671Spectra Relevant to Appendix 7
APPENDIX 10727Notebook Cross-Reference for New Compounds
ABOUT THE AUTHOR 733

LIST OF FIGURES

CHAPTER 1

Development of a Ni-Catalyzed N–N Cross-Coupling for the Synthesis of Hydrazides

Figure 1.1	Compounds featuring N–N bonds2
Figure 1.2	Cu-catalyzed and electrochemical N–N homodimerizations 3
Figure 1.3	Cross-selective oxidative N–N couplings
Figure 1.4	Reductive N–N cross-coupling5
Figure 1.5	Acyl nitrene-mediated N–N bond formation
Figure 1.6	Initial reaction discovery7
Figure 1.7	Revised catalyst9
Figure 1.8	Scope of aniline nucleophiles with various hydroxamates 12
Figure 1.9	Scope of aliphatic amine nucleophiles and mixed aliphatic
	substrates14
Figure 1.10	Large-scale reactions15
Figure 1.11	Mechanistic experiments15
Figure 1.12	Potential catalytic cycle16

APPENDIX 1

Spectra Relevant to Chapter 1

Figure A1.1	¹ H NMR (400 MHz, CDCl ₃) of compound 19	83
Figure A1.2	¹ H NMR (400 MHz, CDCl ₃) of compound 90	84
Figure A1.3	Infrared spectrum (Thin Film) of compound 90	85
Figure A1.4	^{13}C NMR (100 MHz, CDCl ₃) of compound 90	85
Figure A1.5	¹ H NMR (400 MHz, CDCl ₃) of compound 91	86
Figure A1.6	Infrared spectrum (Thin Film) of compound 91	87

	xvii
Figure A1.7	¹³ C NMR (100 MHz, CDCl ₃) of compound 91 87
Figure A1.8	¹ H NMR (400 MHz, CDCl ₃) of compound 92 88
Figure A1.9	Infrared spectrum (Thin Film) of compound 92 89
Figure A1.10	¹³ C NMR (100 MHz, CDCl ₃) of compound 92 89
Figure A1.11	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 92
Figure A1.12	¹ H NMR (400 MHz, CDCl ₃) of compound 93 91
Figure A1.13	Infrared spectrum (Thin Film) of compound 93
Figure A1.14	¹³ C NMR (100 MHz, CDCl ₃) of compound 93
Figure A1.15	¹ H NMR (400 MHz, CDCl ₃) of compound 94
Figure A1.16	Infrared spectrum (Thin Film) of compound 94
Figure A1.17	¹³ C NMR (100 MHz, CDCl ₃) of compound 94
Figure A1.18	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 94
Figure A1.19	¹ H NMR (400 MHz, CDCl ₃) of compound 95
Figure A1.20	Infrared spectrum (Thin Film) of compound 95
Figure A1.21	^{13}C NMR (100 MHz, CDCl ₃) of compound 95 97
Figure A1.22	¹ H NMR (400 MHz, CDCl ₃) of compound 96
Figure A1.23	Infrared spectrum (Thin Film) of compound 96
Figure A1.24	¹³ C NMR (100 MHz, CDCl ₃) of compound 96
Figure A1.25	¹ H NMR (400 MHz, CDCl ₃) of compound 97 100
Figure A1.26	¹ H NMR (400 MHz, CDCl ₃) of compound 98 101
Figure A1.27	Infrared spectrum (Thin Film) of compound 98 102
Figure A1.28	¹³ C NMR (100 MHz, CDCl ₃) of compound 98 102
Figure A1.29	¹ H NMR (400 MHz, CDCl ₃) of compound 99 103
Figure A1.30	Infrared spectrum (Thin Film) of compound 99 104
Figure A1.31	¹³ C NMR (100 MHz, CDCl ₃) of compound 99 104
Figure A1.32	¹ H NMR (400 MHz, CDCl ₃) of compound 100 105
Figure A1.33	¹ H NMR (400 MHz, CDCl ₃) of compound 101 106
Figure A1.34	Infrared spectrum (Thin Film) of compound 101

		XV111
Figure A1.35	¹³ C NMR (100 MHz, CDCl ₃) of compound 101	107
Figure A1.36	¹ H NMR (400 MHz, CDCl ₃) of compound 102	108
Figure A1.37	Infrared spectrum (Thin Film) of compound 102	109
Figure A1.38	¹³ C NMR (100 MHz, CDCl ₃) of compound 102	109
Figure A1.39	¹ H NMR (400 MHz, CDCl ₃) of compound 103	110
Figure A1.40	Infrared spectrum (Thin Film) of compound 103	111
Figure A1.41	¹³ C NMR (100 MHz, CDCl ₃) of compound 103	111
Figure A1.42	¹ H NMR (400 MHz, CDCl ₃) of compound 104	112
Figure A1.43	Infrared spectrum (Thin Film) of compound 104	113
Figure A1.44	¹³ C NMR (100 MHz, CDCl ₃) of compound 104	113
Figure A1.45	¹ H NMR (400 MHz, CDCl ₃) of compound 105	114
Figure A1.46	Infrared spectrum (Thin Film) of compound 105	115
Figure A1.47	¹³ C NMR (100 MHz, CDCl ₃) of compound 105	115
Figure A1.48	¹ H NMR (400 MHz, CDCl ₃) of compound 106	116
Figure A1.49	Infrared spectrum (Thin Film) of compound 106	117
Figure A1.50	¹³ C NMR (100 MHz, CDCl ₃) of compound 106	117
Figure A1.51	¹ H NMR (400 MHz, CDCl ₃) of compound 107	118
Figure A1.52	Infrared spectrum (Thin Film) of compound 107	119
Figure A1.53	¹³ C NMR (100 MHz, CDCl ₃) of compound 107	119
Figure A1.54	¹ H NMR (400 MHz, CDCl ₃) of compound 108	120
Figure A1.55	Infrared spectrum (Thin Film) of compound 108	
Figure A1.56	¹³ C NMR (100 MHz, CDCl ₃) of compound 108	121
Figure A1.57	¹ H NMR (400 MHz, CDCl ₃) of compound 110	122
Figure A1.58	Infrared spectrum (Thin Film) of compound 110	123
Figure A1.59	¹³ C NMR (100 MHz, CDCl ₃) of compound 110	123
Figure A1.60	¹ H NMR (400 MHz, CDCl ₃) of compound 111	124
Figure A1.61	Infrared spectrum (Thin Film) of compound 111	125
Figure A1.62	¹³ C NMR (100 MHz, CDCl ₃) of compound 111	125

Figure A1.63	¹ H NMR (400 MHz, CDCl ₃) of compound 21 12
Figure A1.64	Infrared spectrum (Thin Film) of compound 21
Figure A1.65	¹³ C NMR (100 MHz, CDCl ₃) of compound 21 12
Figure A1.66	¹ H NMR (400 MHz, CDCl ₃) of compound 30 12
Figure A1.67	Infrared spectrum (Thin Film) of compound 30
Figure A1.68	¹³ C NMR (100 MHz, CDCl ₃) of compound 30 12
Figure A1.69	¹ H NMR (400 MHz, CDCl ₃) of compound 31 13
Figure A1.70	Infrared spectrum (Thin Film) of compound 31 13
Figure A1.71	¹³ C NMR (100 MHz, CDCl ₃) of compound 31 13
Figure A1.72	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 31 13
Figure A1.73	¹ H NMR (400 MHz, CDCl ₃) of compound 32 13
Figure A1.74	Infrared spectrum (Thin Film) of compound 32
Figure A1.75	¹³ C NMR (100 MHz, CDCl ₃) of compound 32 13
Figure A1.76	¹ H NMR (400 MHz, CDCl ₃) of compound 33 13
Figure A1.77	Infrared spectrum (Thin Film) of compound 33 13
Figure A1.78	¹³ C NMR (100 MHz, CDCl ₃) of compound 33 13
Figure A1.79	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 33 13
Figure A1.80	¹ H NMR (400 MHz, CDCl ₃) of compound 34 13
Figure A1.81	Infrared spectrum (Thin Film) of compound 34
Figure A1.82	¹³ C NMR (100 MHz, CDCl ₃) of compound 34 13
Figure A1.83	¹ H NMR (400 MHz, CDCl ₃) of compound 35 14
Figure A1.84	Infrared spectrum (Thin Film) of compound 35 14
Figure A1.85	^{13}C NMR (100 MHz, CDCl ₃) of compound 35 14
Figure A1.86	¹ H NMR (400 MHz, CDCl ₃) of compound 36 14
Figure A1.87	Infrared spectrum (Thin Film) of compound 36 14
Figure A1.88	¹³ C NMR (100 MHz, CDCl ₃) of compound 36 14
Figure A1.89	¹ H NMR (400 MHz, CDCl ₃) of compound 37 14

		XX
Figure A1.90	Infrared spectrum (Thin Film) of compound 37	145
Figure A1.91	13 C NMR (100 MHz, CDCl ₃) of compound 37	145
Figure A1.92	¹¹ B NMR (128 MHz, CDCl ₃) of compound 37	146
Figure A1.93	¹ H NMR (400 MHz, CDCl ₃) of compound 38	147
Figure A1.94	Infrared spectrum (Thin Film) of compound 38	
Figure A1.95	¹³ C NMR (100 MHz, CDCl ₃) of compound 38	148
Figure A1.96	¹ H NMR (400 MHz, CDCl ₃) of compound 39	149
Figure A1.97	Infrared spectrum (Thin Film) of compound 39	150
Figure A1.98	¹³ C NMR (100 MHz, CDCl ₃) of compound 39	150
Figure A1.99	¹ H NMR (400 MHz, CDCl ₃) of compound 40	151
Figure A1.100	Infrared spectrum (Thin Film) of compound 40	152
Figure A1.101	¹³ C NMR (100 MHz, CDCl ₃) of compound 40	152
Figure A1.102	¹ H NMR (400 MHz, CDCl ₃) of compound 41	153
Figure A1.103	Infrared spectrum (Thin Film) of compound 41	154
Figure A1.104	¹³ C NMR (100 MHz, CDCl ₃) of compound 41	154
Figure A1.105	¹ H NMR (400 MHz, CDCl ₃) of compound 42	155
Figure A1.106	Infrared spectrum (Thin Film) of compound 42	156
Figure A1.107	¹³ C NMR (100 MHz, CDCl ₃) of compound 42	156
Figure A1.108	¹ H NMR (400 MHz, CD ₃ OD) of compound 43	157
Figure A1.109	Infrared spectrum (Thin Film) of compound 43	158
Figure A1.110	¹³ C NMR (100 MHz, CD ₃ OD) of compound 43	158
Figure A1.111	¹ H NMR (400 MHz, CDCl ₃) of compound 45	159
Figure A1.112	¹ H NMR (400 MHz, CDCl ₃) of compound 46	
Figure A1.113	Infrared spectrum (Thin Film) of compound 46	
Figure A1.114	¹³ C NMR (100 MHz, CDCl ₃) of compound 46	
Figure A1.115	¹ H NMR (400 MHz, CDCl ₃) of compound 47	
Figure A1.116	Infrared spectrum (Thin Film) of compound 47	
Figure A1.117	¹³ C NMR (100 MHz, CDCl ₃) of compound 47	

Figure A1.118	¹ H NMR (400 MHz, CDCl ₃) of compound 48 164
Figure A1.119	Infrared spectrum (Thin Film) of compound 48 165
Figure A1.120	¹³ C NMR (100 MHz, (CD ₃) ₂ CO) of compound 48 165
Figure A1.121	¹⁹ F NMR (282 MHz, (CD ₃) ₂ CO) of compound 48 166
Figure A1.122	¹ H NMR (400 MHz, CDCl ₃) of compound 49 167
Figure A1.123	Infrared spectrum (Thin Film) of compound 49 168
Figure A1.124	¹³ C NMR (100 MHz, CDCl ₃) of compound 49 168
Figure A1.125	¹ H NMR (400 MHz, CDCl ₃) of compound 50 169
Figure A1.126	Infrared spectrum (Thin Film) of compound 50 170
Figure A1.127	¹³ C NMR (100 MHz, CDCl ₃) of compound 50 170
Figure A1.128	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 50 171
Figure A1.129	¹ H NMR (400 MHz, CDCl ₃) of compound 51 172
Figure A1.130	Infrared spectrum (Thin Film) of compound 51 173
Figure A1.131	¹³ C NMR (100 MHz, CDCl ₃) of compound 51 173
Figure A1.132	¹ H NMR (400 MHz, CDCl ₃) of compound 52 174
Figure A1.133	Infrared spectrum (Thin Film) of compound 52 175
Figure A1.134	^{13}C NMR (100 MHz, CDCl ₃) of compound 52 175
Figure A1.135	¹ H NMR (400 MHz, CDCl ₃) of compound 53 176
Figure A1.136	Infrared spectrum (Thin Film) of compound 53 177
Figure A1.137	^{13}C NMR (100 MHz, CDCl ₃) of compound 53 177
Figure A1.138	¹ H NMR (400 MHz, CDCl ₃) of compound 54 178
Figure A1.139	Infrared spectrum (Thin Film) of compound 54 179
Figure A1.140	¹³ C NMR (100 MHz, CDCl ₃) of compound 54 179
Figure A1.141	¹ H NMR (400 MHz, CDCl ₃) of compound 55 180
Figure A1.142	Infrared spectrum (Thin Film) of compound 55 181
Figure A1.143	¹³ C NMR (100 MHz, CDCl ₃) of compound 55
Figure A1.144	¹ H NMR (400 MHz, CDCl ₃) of compound 56

		xxii
Figure A1.145	Infrared spectrum (Thin Film) of compound 56	183
Figure A1.146	¹³ C NMR (100 MHz, CDCl ₃) of compound 56	
Figure A1.147	¹ H NMR (400 MHz, CDCl ₃) of compound 57	
Figure A1.148	Infrared spectrum (Thin Film) of compound 57	
Figure A1.149	^{13}C NMR (100 MHz, CDCl ₃) of compound 57	185
Figure A1.150	¹ H NMR (400 MHz, CDCl ₃) of compound 58	
Figure A1.151	Infrared spectrum (Thin Film) of compound 58	
Figure A1.152	^{13}C NMR (100 MHz, CDCl ₃) of compound 58	
Figure A1.153	¹ H NMR (400 MHz, CDCl ₃) of compound 59	
Figure A1.154	Infrared spectrum (Thin Film) of compound 59	
Figure A1.155	^{13}C NMR (100 MHz, CDCl ₃) of compound 59	
Figure A1.156	¹ H NMR (400 MHz, CDCl ₃) of compound 60	190
Figure A1.157	Infrared spectrum (Thin Film) of compound 60	
Figure A1.158	¹³ C NMR (100 MHz, CDCl ₃) of compound 60	191
Figure A1.159	¹ H NMR (400 MHz, CDCl ₃) of compound 61	
Figure A1.160	Infrared spectrum (Thin Film) of compound 61	
Figure A1.161	13 C NMR (100 MHz, CDCl ₃) of compound 61	
Figure A1.162	¹ H NMR (400 MHz, CD ₃ OD) of compound 62	
Figure A1.163	Infrared spectrum (Thin Film) of compound 62	195
Figure A1.164	¹³ C NMR (100 MHz, CD ₃ OD) of compound 62	195
Figure A1.165	¹ H NMR (400 MHz, CDCl ₃) of compound 63	196
Figure A1.166	Infrared spectrum (Thin Film) of compound 63	197
Figure A1.167	¹³ C NMR (100 MHz, CDCl ₃) of compound 63	197
Figure A1.168	¹ H NMR (400 MHz, CDCl ₃) of compound 64	198
Figure A1.169	Infrared spectrum (Thin Film) of compound 64	199
Figure A1.170	13 C NMR (100 MHz, CDCl ₃) of compound 64	199
Figure A1.171	¹ H NMR (400 MHz, CDCl ₃) of compound 27	200
Figure A1.172	Infrared spectrum (Thin Film) of compound 27	

		XX111
Figure A1.173	¹³ C NMR (100 MHz, CDCl ₃) of compound 27	201
Figure A1.174	¹ H NMR (400 MHz, CDCl ₃) of compound 65	202
Figure A1.175	Infrared spectrum (Thin Film) of compound 65	203
Figure A1.176	¹³ C NMR (100 MHz, CDCl ₃) of compound 65	203
Figure A1.177	¹ H NMR (400 MHz, CDCl ₃) of compound 66	204
Figure A1.178	Infrared spectrum (Thin Film) of compound 66	205
Figure A1.179	¹³ C NMR (100 MHz, CDCl ₃) of compound 66	205
Figure A1.180	¹ H NMR (400 MHz, CDCl ₃) of compound 67	206
Figure A1.181	Infrared spectrum (Thin Film) of compound 67	207
Figure A1.182	¹³ C NMR (100 MHz, CDCl ₃) of compound 67	207
Figure A1.183	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 67	208
Figure A1.184	¹ H NMR (400 MHz, CDCl ₃) of compound 68	209
Figure A1.185	Infrared spectrum (Thin Film) of compound 68	
Figure A1.186	¹³ C NMR (100 MHz, CDCl ₃) of compound 68	
Figure A1.187	¹ H NMR (400 MHz, CDCl ₃) of compound 69	
Figure A1.188	Infrared spectrum (Thin Film) of compound 69	
Figure A1.189	¹³ C NMR (100 MHz, CDCl ₃) of compound 69	
Figure A1.190	¹ H NMR (400 MHz, CDCl ₃) of compound 70	
Figure A1.191	Infrared spectrum (Thin Film) of compound 70	
Figure A1.192	¹³ C NMR (100 MHz, CDCl ₃) of compound 70	
Figure A1.193	¹ H NMR (400 MHz, CDCl ₃) of compound 71	215
Figure A1.194	Infrared spectrum (Thin Film) of compound 71	
Figure A1.195	¹³ C NMR (100 MHz, CDCl ₃) of compound 71	
Figure A1.196	¹ H NMR (400 MHz, CDCl ₃) of compound 72	
Figure A1.197	Infrared spectrum (Thin Film) of compound 72	
Figure A1.198	¹³ C NMR (100 MHz, CDCl ₃) of compound 72	
Figure A1.199	¹ H NMR (400 MHz, CDCl ₃) of compound 74	
Figure A1.200	Infrared spectrum (Thin Film) of compound 74	220

	XXIV
Figure A1.201	¹³ C NMR (100 MHz, CDCl ₃) of compound 74 220
Figure A1.202	¹ H NMR (400 MHz, CDCl ₃) of compound 75 221
Figure A1.203	Infrared spectrum (Thin Film) of compound 75
Figure A1.204	^{13}C NMR (100 MHz, CDCl ₃) of compound 75 222
Figure A1.205	¹ H NMR (400 MHz, CDCl ₃) of compound 76 223
Figure A1.206	Infrared spectrum (Thin Film) of compound 76
Figure A1.207	¹³ C NMR (100 MHz, CDCl ₃) of compound 76 224
Figure A1.208	¹ H NMR (400 MHz, CD ₃ OD) of compound 77
Figure A1.209	Infrared spectrum (Thin Film) of compound 77 226
Figure A1.210	¹³ C NMR (100 MHz, CD ₃ OD) of compound 77 226
Figure A1.211	¹ H NMR (400 MHz, CDCl ₃) of compound 78 227
Figure A1.212	Infrared spectrum (Thin Film) of compound 78
Figure A1.213	¹³ C NMR (100 MHz, CDCl ₃) of compound 78 228
Figure A1.214	¹ H NMR (400 MHz, CDCl ₃) of compound 79 229
Figure A1.215	Infrared spectrum (Thin Film) of compound 79
Figure A1.216	¹³ C NMR (100 MHz, CDCl ₃) of compound 79
Figure A1.217	¹ H NMR (400 MHz, CDCl ₃) of compound 80 231
Figure A1.218	Infrared spectrum (Thin Film) of compound 80
Figure A1.219	^{13}C NMR (100 MHz, CDCl ₃) of compound 80
Figure A1.220	¹ H NMR (400 MHz, CDCl ₃) of compound 81 233
Figure A1.221	Infrared spectrum (Thin Film) of compound 81
Figure A1.222	¹³ C NMR (100 MHz, CDCl ₃) of compound 81
Figure A1.223	¹ H NMR (400 MHz, CDCl ₃) of compound 82 235
Figure A1.224	Infrared spectrum (Thin Film) of compound 82
Figure A1.225	¹³ C NMR (100 MHz, CDCl ₃) of compound 82
Figure A1.226	¹ H NMR (400 MHz, CDCl ₃) of compound 83 237
Figure A1.227	Infrared spectrum (Thin Film) of compound 83
Figure A1.228	13 C NMR (100 MHz, CDCl ₃) of compound 83

	XXV
¹ H NMR (400 MHz, CDCl ₃) of compound 84 23	9
Infrared spectrum (Thin Film) of compound 84	. 240
¹³ C NMR (100 MHz, CDCl ₃) of compound 84	. 240
¹ H NMR (400 MHz, CDCl ₃) of compound 85	. 241
Infrared spectrum (Thin Film) of compound 85	. 242
¹³ C NMR (100 MHz, CDCl ₃) of compound 85	. 242
¹ H NMR (400 MHz, CD ₃ OD) of compound 89	. 243
Infrared spectrum (Thin Film) of compound 89	. 244
¹³ C NMR (100 MHz, CD ₃ OD) of compound 89	. 244
¹ H NMR (400 MHz, CDCl ₃) of compound 24	. 245
Infrared spectrum (Thin Film) of compound 24	. 246
¹³ C NMR (100 MHz, CDCl ₃) of compound 24	. 246
¹ H NMR (400 MHz, CDCl ₃) of compound 22	. 247
	¹ H NMR (400 MHz, CDCl ₃) of compound 84 23 Infrared spectrum (Thin Film) of compound 84

APPENDIX 2

X-Ray Crystallographic Reports Relevant to Chapter 1

Figure A2.1	X-ray crystal structure of Ni-catalyst 24	249
Figure A2.2	X-ray crystal structure of N–N product 27	266
Figure A2.3	X-ray crystal structure of N–N product 70	280

CHAPTER 2

Formation of All-Carbon Quaternary Centers via Enantioselective Pd-Catalyzed α -Vinylation of γ -Lactams

Figure 2.1	Selected examples of γ -lactams of pharmaceutical relevance and
natural pro	ducts

APPENDIX 3

Spectra Relevant to Chapter 2

Figure A3.1	¹ H NMR (400 MHz, CDCl ₃) of compound 127 332
Figure A3.2	¹ H NMR (400 MHz, CDCl ₃) of compound 155
Figure A3.3	Infrared spectrum (Thin Film, NaCl) of compound 155 334
Figure A3.4	¹³ C NMR (100 MHz, CDCl ₃) of compound 155
Figure A3.5	¹ H NMR (400 MHz, CDCl ₃) of compound 156
Figure A3.6	Infrared spectrum (Thin Film, NaCl) of compound 156
Figure A3.7	¹³ C NMR (100 MHz, CDCl ₃) of compound 156
Figure A3.8	¹ H NMR (400 MHz, CDCl ₃) of compound 157
Figure A3.9	Infrared spectrum (Thin Film, NaCl) of compound 157 338
Figure A3.10	¹³ C NMR (100 MHz, CDCl ₃) of compound 157
Figure A3.11	¹ H NMR (400 MHz, CDCl ₃) of compound 158
Figure A3.12	Infrared spectrum (Thin Film, NaCl) of compound 158 340
Figure A3.13	¹³ C NMR (100 MHz, CDCl ₃) of compound 158
Figure A3.14	¹ H NMR (400 MHz, CDCl ₃) of compound 159
Figure A3.15	Infrared spectrum (Thin Film, NaCl) of compound 159 342
Figure A3.16	¹³ C NMR (100 MHz, CDCl ₃) of compound 159
Figure A3.17	¹ H NMR (400 MHz, CDCl ₃) of compound 160
Figure A3.18	Infrared spectrum (Thin Film, NaCl) of compound 160
Figure A3.19	¹³ C NMR (100 MHz, CDCl ₃) of compound 160
Figure A3.20	¹ H NMR (400 MHz, CDCl ₃) of compound 161
Figure A3.21	Infrared spectrum (Thin Film, NaCl) of compound 161 346
Figure A3.22	¹³ C NMR (100 MHz, CDCl ₃) of compound 161
Figure A3.23	¹ H NMR (400 MHz, CDCl ₃) of compound 162
Figure A3.24	Infrared spectrum (Thin Film, NaCl) of compound 162

	xxvii
Figure A3.	25 ¹³ C NMR (100 MHz, CDCl ₃) of compound 162 348
Figure A3.	¹ H NMR (400 MHz, CDCl ₃) of compound 144
Figure A3.	¹ H NMR (400 MHz, CDCl ₃) of compound 130
Figure A3.	28 Infrared spectrum (Thin Film, NaCl) of compound 130 351
Figure A3.	29 ¹³ C NMR (100 MHz, CDCl ₃) of compound 130
Figure A3.	30 ¹ H NMR (400 MHz, CDCl ₃) of compound 133 352
Figure A3.	Infrared spectrum (Thin Film, NaCl) of compound 133 353
Figure A3.	32 ¹³ C NMR (100 MHz, CDCl ₃) of compound 133
Figure A3.	¹ H NMR (400 MHz, CDCl ₃) of compound 134
Figure A3.	Infrared spectrum (Thin Film, NaCl) of compound 134 355
Figure A3.	35 ¹³ C NMR (100 MHz, CDCl ₃) of compound 134
Figure A3.	36 ¹ H NMR (400 MHz, CDCl ₃) of compound 135
Figure A3.	Infrared spectrum (Thin Film, NaCl) of compound 135
Figure A3.	38 ¹³ C NMR (100 MHz, CDCl ₃) of compound 135
Figure A3.	¹ H NMR (400 MHz, CDCl ₃) of compound 136
Figure A3.	40 Infrared spectrum (Thin Film, NaCl) of compound 136 359
Figure A3.	41 ¹³ C NMR (100 MHz, CDCl ₃) of compound 136
Figure A3.	¹ H NMR (400 MHz, CDCl ₃) of compound 137
Figure A3.	43 Infrared spectrum (Thin Film, NaCl) of compound 137 361
Figure A3.	¹³ C NMR (100 MHz, CDCl ₃) of compound 137
Figure A3.	45 ¹ H NMR (400 MHz, CDCl ₃) of compound 138
Figure A3.	46 Infrared spectrum (Thin Film, NaCl) of compound 138
Figure A3.	¹³ C NMR (100 MHz, CDCl ₃) of compound 138
Figure A3.	48 ¹ H NMR (400 MHz, CDCl ₃) of compound 139
Figure A3.	49 Infrared spectrum (Thin Film, NaCl) of compound 139 365
Figure A3.	50 ¹³ C NMR (100 MHz, CDCl ₃) of compound 139
Figure A3.	¹ H NMR (400 MHz, CDCl ₃) of compound 140
Figure A3.	52 Infrared spectrum (Thin Film, NaCl) of compound 140 367

xxviii Figure A3.53 Figure A3.54 Figure A3.55 Infrared spectrum (Thin Film, NaCl) of compound 143...... 369 Figure A3.56 Figure A3.57 Figure A3.58 Infrared spectrum (Thin Film, NaCl) of compound 145....... 371 Figure A3.59 Figure A3.60 Figure A3.61 Infrared spectrum (Thin Film, NaCl) of compound 141 373 Figure A3.62 Figure A3.63 Figure A3.64 Infrared spectrum (Thin Film, NaCl) of compound 146...... 375 Figure A3.65 Figure A3.66 Figure A3.67 Infrared spectrum (Thin Film, NaCl) of compound 147 377 Figure A3.68 Figure A3.69 Figure A3.70 Infrared spectrum (Thin Film, NaCl) of compound 148....... 379 Figure A3.71 Figure A3.72 Figure A3.73 Infrared spectrum (Thin Film, NaCl) of compound 149...... 381 Figure A3.74 Figure A3.75 Figure A3.76 Infrared spectrum (Thin Film, NaCl) of compound 150....... 383 Figure A3.77 Figure A3.78 Figure A3.79 Infrared spectrum (Thin Film, NaCl) of compound 151...... 385 Figure A3.80

		xxix
Figure A3.81	¹ H NMR (400 MHz, CDCl ₃) of compound 152	36
Figure A3.82	Infrared spectrum (Thin Film, NaCl) of compound 152	387
Figure A3.83	¹³ C NMR (100 MHz, CDCl ₃) of compound 152	387
Figure A3.84	¹ H NMR (400 MHz, CDCl ₃) of compound 163	388
Figure A3.85	¹ H NMR (400 MHz, CDCl ₃) of compound 165	389
Figure A3.86	Infrared spectrum (Thin Film, NaCl) of compound 165	390
Figure A3.87	¹³ C NMR (100 MHz, CDCl ₃) of compound 165	390
Figure A3.88	¹ H NMR (400 MHz, CDCl ₃) of compound 167	391
Figure A3.90	Infrared spectrum (Thin Film, NaCl) of compound 167	392
Figure A3.91	¹³ C NMR (100 MHz, CDCl ₃) of compound 167	392

APPENDIX 4

X-Ray Crystallographic Reports Relevant to Chapter 2

Figure A4.1	X-ray crystal structure of lactam 130	394
-------------	--	-----

CHAPTER 3

An Enantioselective Spirocyclization of Pd-Enolates and Isocyanates

Figure 3.1	Natural	products	and	pharmaceutical	compounds	bearing a
spirocyclic lactam	•••••					410

APPENDIX 5

Spectra Relevant to Chapter 3

Figure A5.1	¹ H NMR (400 MHz, CDCl ₃) of compound 167 490
Figure A5.2	Infrared spectrum (Thin Film, NaCl) of compound 167 491
Figure A5.3	^{13}C NMR (100 MHz, CDCl ₃) of compound 167 491
Figure A5.4	¹ H NMR (400 MHz, CDCl ₃) of compound 175 492
Figure A5.5	Infrared spectrum (Thin Film, NaCl) of compound 175 493
Figure A5.6	^{13}C NMR (100 MHz, CDCl ₃) of compound 175 493

XXX Figure A5.7 Figure A5.8 Infrared spectrum (Thin Film, NaCl) of compound 176...... 495 Figure A5.9 Figure A5.10 ¹H NMR (400 MHz, CDCl₃) of compound **177** 496 Figure A5.11 Infrared spectrum (Thin Film, NaCl) of compound 177 497 Figure A5.12 Figure A5.13 ¹H NMR (400 MHz, CDCl₃) of compound **178** 498 Figure A5.14 Infrared spectrum (Thin Film, NaCl) of compound 178...... 499 Figure A5.15 ¹H NMR (400 MHz, CDCl₃) of compound **179** 500 Figure A5.16 Figure A5.17 Infrared spectrum (Thin Film, NaCl) of compound 179...... 501 Figure A5.18 Figure A5.19 Figure A5.20 Infrared spectrum (Thin Film, NaCl) of compound 180...... 503 Figure A5.21 Figure A5.22 Figure A5.23 ¹H NMR (400 MHz, CDCl₃) of compound **181** 505 Figure A5.24 Infrared spectrum (Thin Film, NaCl) of compound 181 505 Figure A5.25 Figure A5.26 ¹H NMR (400 MHz, CDCl₃) of compound **182** 507 Infrared spectrum (Thin Film, NaCl) of compound 182...... 508 Figure A5.27 Figure A5.28 Figure A5.29 ¹H NMR (400 MHz, CDCl₃) of compound **183** 509 Figure A5.30 Infrared spectrum (Thin Film, NaCl) of compound 183...... 510 Figure A5.31 Figure A5.32 Figure A5.33 Infrared spectrum (Thin Film, NaCl) of compound 184...... 512 Figure A5.34

	XXXI
Figure A5.35	¹ H NMR (400 MHz, CDCl ₃) of compound 185 513
Figure A5.36	Infrared spectrum (Thin Film, NaCl) of compound 185 514
Figure A5.37	^{13}C NMR (100 MHz, CDCl ₃) of compound 185
Figure A5.38	¹ H NMR (400 MHz, CDCl ₃) of compound 186 515
Figure A5.39	Infrared spectrum (Thin Film, NaCl) of compound 186 516
Figure A5.40	¹³ C NMR (100 MHz, CDCl ₃) of compound 186 516
Figure A5.41	¹ H NMR (400 MHz, CDCl ₃) of compound 186 517
Figure A5.42	Infrared spectrum (Thin Film, NaCl) of compound 186 518
Figure A5.43	¹³ C NMR (100 MHz, CDCl ₃) of compound 186 518
Figure A5.44	¹ H NMR (400 MHz, CDCl ₃) of compound 168 519
Figure A5.45	Infrared spectrum (Thin Film, NaCl) of compound 168 520
Figure A5.46	^{13}C NMR (100 MHz, CDCl ₃) of compound 168
Figure A5.47	¹ H NMR (400 MHz, CDCl ₃) of compound 173 521
Figure A5.48	Infrared spectrum (Thin Film, NaCl) of compound 173 522
Figure A5.49	^{13}C NMR (100 MHz, CDCl ₃) of compound 173 522
Figure A5.50	¹ H NMR (400 MHz, CDCl ₃) of compound 172 523
Figure A5.51	Infrared spectrum (Thin Film, NaCl) of compound 172 524
Figure A5.52	^{13}C NMR (100 MHz, CDCl ₃) of compound 172
Figure A5.53	¹ H NMR (400 MHz, CDCl ₃) of compound 212 525
Figure A5.54	Infrared spectrum (Thin Film, NaCl) of compound 212 526
Figure A5.55	^{13}C NMR (100 MHz, CDCl ₃) of compound 212
Figure A5.56	¹ H NMR (400 MHz, CDCl ₃) of compound 213 527
Figure A5.57	Infrared spectrum (Thin Film, NaCl) of compound 213 528
Figure A5.58	^{13}C NMR (100 MHz, CDCl ₃) of compound 213 528
Figure A5.59	¹ H NMR (400 MHz, CDCl ₃) of compound 214 529
Figure A5.60	Infrared spectrum (Thin Film, NaCl) of compound 214 530
Figure A5.61	¹³ C NMR (100 MHz, CDCl ₃) of compound 214
Figure A5.62	¹ H NMR (400 MHz, CDCl ₃) of compound 216 531

xxxii

Figure A5.63	Infrared spectrum (Thin Film, NaCl) of compound 216 532
Figure A5.64	¹³ C NMR (100 MHz, CDCl ₃) of compound 216
Figure A5.65	¹ H NMR (400 MHz, CDCl ₃) of compound 217 533
Figure A5.66	Infrared spectrum (Thin Film, NaCl) of compound 217 534
Figure A5.67	^{13}C NMR (100 MHz, CDCl_3) of compound 217
Figure A5.68	¹ H NMR (400 MHz, CDCl ₃) of compound 218 535
Figure A5.69	Infrared spectrum (Thin Film, NaCl) of compound 218 536
Figure A5.70	^{13}C NMR (100 MHz, CDCl ₃) of compound 218
Figure A5.71	^{19}F NMR (282 MHz, CDCl_3) of compound $\textbf{218}$
Figure A5.72	¹ H NMR (400 MHz, CDCl ₃) of compound 219 538
Figure A5.73	Infrared spectrum (Thin Film, NaCl) of compound 219 539
Figure A5.74	^{13}C NMR (100 MHz, CDCl ₃) of compound 219
Figure A5.75	¹ H NMR (400 MHz, CDCl ₃) of compound 220
Figure A5.76	Infrared spectrum (Thin Film, NaCl) of compound 220 541
Figure A5.77	^{13}C NMR (100 MHz, CDCl ₃) of compound 220
Figure A5.78	¹ H NMR (400 MHz, CDCl ₃) of compound 221 542
Figure A5.79	Infrared spectrum (Thin Film, NaCl) of compound 221 543
Figure A5.80	^{13}C NMR (100 MHz, CDCl ₃) of compound 221
Figure A5.81	¹ H NMR (400 MHz, CDCl ₃) of compound 222
Figure A5.82	Infrared spectrum (Thin Film, NaCl) of compound 222 545
Figure A5.83	^{13}C NMR (100 MHz, CDCl ₃) of compound 222
Figure A5.84	¹ H NMR (400 MHz, CDCl ₃) of compound 223
Figure A5.85	Infrared spectrum (Thin Film, NaCl) of compound 223 547
Figure A5.86	^{13}C NMR (100 MHz, CDCl ₃) of compound 223
Figure A5.87	¹ H NMR (400 MHz, CDCl ₃) of compound 224
Figure A5.88	Infrared spectrum (Thin Film, NaCl) of compound 224 549
Figure A5.89	^{13}C NMR (100 MHz, CDCl ₃) of compound 224
Figure A5.90	^1H NMR (400 MHz, CDCl ₃) of compound 225

xxxiii

Figure A5.91	Infrared spectrum (Thin Film, NaCl) of compound 225 .551
Figure A5.92	^{13}C NMR (100 MHz, CDCl ₃) of compound 225
Figure A5.93	¹ H NMR (400 MHz, CDCl ₃) of compound 226 552
Figure A5.94	Infrared spectrum (Thin Film, NaCl) of compound 226 553
Figure A5.95	^{13}C NMR (100 MHz, CDCl ₃) of compound 226
Figure A5.96	¹ H NMR (400 MHz, CDCl ₃) of compound 227 554
Figure A5.97	Infrared spectrum (Thin Film, NaCl) of compound 227 555
Figure A5.98	^{13}C NMR (100 MHz, CDCl_3) of compound 227 555
Figure A5.99	¹ H NMR (400 MHz, CDCl ₃) of compound 228 556
Figure A5.100	Infrared spectrum (Thin Film, NaCl) of compound 228 557
Figure A5.101	^{13}C NMR (100 MHz, CDCl ₃) of compound 228
Figure A5.102	¹ H NMR (400 MHz, CDCl ₃) of compound 229 558
Figure A5.103	Infrared spectrum (Thin Film, NaCl) of compound 229 559
Figure A5.104	^{13}C NMR (100 MHz, CDCl ₃) of compound 229
Figure A5.105	¹ H NMR (400 MHz, CDCl ₃) of compound 230 560
Figure A5.106	Infrared spectrum (Thin Film, NaCl) of compound 230 561
Figure A5.107	^{13}C NMR (100 MHz, CDCl ₃) of compound 230
Figure A5.108	¹ H NMR (400 MHz, CDCl ₃) of compound 231 562
Figure A5.109	Infrared spectrum (Thin Film, NaCl) of compound 231 563
Figure A5.110	^{13}C NMR (100 MHz, CDCl ₃) of compound 231
Figure A5.111	
•	¹ H NMR (400 MHz, CDCl ₃) of compound 232
Figure A5.112	^1H NMR (400 MHz, CDCl ₃) of compound 232
Figure A5.112 Figure A5.113	¹ H NMR (400 MHz, CDCl ₃) of compound 232
Figure A5.112 Figure A5.113 Figure A5.114	 ¹H NMR (400 MHz, CDCl₃) of compound 232
Figure A5.112 Figure A5.113 Figure A5.114 Figure A5.115	¹ H NMR (400 MHz, CDCl ₃) of compound 232
Figure A5.112 Figure A5.113 Figure A5.114 Figure A5.115 Figure A5.116	¹ H NMR (400 MHz, CDCl ₃) of compound 232
Figure A5.112 Figure A5.113 Figure A5.114 Figure A5.115 Figure A5.116 Figure A5.117	 ¹H NMR (400 MHz, CDCl₃) of compound 232

xxxiv

Figure A5.119	¹³ C NMR (100 MHz, CDCl ₃) of compound 234
Figure A5.120	¹ H NMR (400 MHz, CDCl ₃) of compound 235 570
Figure A5.121	Infrared spectrum (Thin Film, NaCl) of compound 235 571
Figure A5.122	^{13}C NMR (100 MHz, CDCl ₃) of compound 235
Figure A5.123	¹ H NMR (400 MHz, CDCl ₃) of compound 236 572
Figure A5.124	Infrared spectrum (Thin Film, NaCl) of compound 236 573
Figure A5.125	¹³ C NMR (100 MHz, CDCl ₃) of compound 236 573
Figure A5.126	¹ H NMR (400 MHz, CDCl ₃) of compound 237 574
Figure A5.127	Infrared spectrum (Thin Film, NaCl) of compound 237 575
Figure A5.128	^{13}C NMR (100 MHz, CDCl ₃) of compound 237 575
Figure A5.129	¹ H NMR (400 MHz, CDCl ₃) of compound 238 576
Figure A5.130	Infrared spectrum (Thin Film, NaCl) of compound 238 577
Figure A5.131	^{13}C NMR (100 MHz, CDCl ₃) of compound $\textbf{238}$
Figure A5.132	¹ H NMR (400 MHz, CDCl ₃) of compound 239 578
Figure A5.133	Infrared spectrum (Thin Film, NaCl) of compound 239 579
Figure A5.134	^{13}C NMR (100 MHz, CDCl ₃) of compound 239
Figure A5.135	¹ H NMR (400 MHz, CDCl ₃) of compound 215 580
Figure A5.136	Infrared spectrum (Thin Film, NaCl) of compound 215 581
Figure A5.137	^{13}C NMR (100 MHz, CDCl ₃) of compound 215
Figure A5.138	¹ H NMR (400 MHz, CDCl ₃) of compound 241 582
Figure A5.139	Infrared spectrum (Thin Film, NaCl) of compound 241 583
Figure A5.140	^{13}C NMR (100 MHz, CDCl ₃) of compound 241 583
Figure A5.141	¹ H NMR (400 MHz, CDCl ₃) of compound 245 584
Figure A5.142	Infrared spectrum (Thin Film, NaCl) of compound 245 585
Figure A5.143	^{13}C NMR (100 MHz, CDCl_3) of compound $\textbf{245}$
Figure A5.144	¹ H NMR (400 MHz, CDCl ₃) of compound 246 586
Figure A5.145	Infrared spectrum (Thin Film, NaCl) of compound 246 587
Figure A5.146	^{13}C NMR (100 MHz, CDCl_3) of compound $\textbf{246}$

XXXV

Figure A5.147	¹ H NMR (400 MHz, CDCl ₃) of compound 247 588
Figure A5.148	Infrared spectrum (Thin Film, NaCl) of compound 247 589
Figure A5.149	¹³ C NMR (100 MHz, CDCl ₃) of compound 247 589
Figure A5.150	¹ H NMR (400 MHz, CDCl ₃) of compound 248 590
Figure A5.151	Infrared spectrum (Thin Film, NaCl) of compound 248 591
Figure A5.152	¹³ C NMR (100 MHz, CDCl ₃) of compound 248 591
Figure A5.153	¹ H NMR (400 MHz, CDCl ₃) of compound 250 592
Figure A5.154	Infrared spectrum (Thin Film, NaCl) of compound 250 593
Figure A5.155	¹³ C NMR (100 MHz, CDCl ₃) of compound 250 593
Figure A5.156	¹ H NMR (400 MHz, CDCl ₃) of compound 251 594
Figure A5.157	Infrared spectrum (Thin Film, NaCl) of compound 251 595
Figure A5.158	^{13}C NMR (100 MHz, CDCl ₃) of compound 251 595
Figure A5.159	¹ H NMR (400 MHz, CDCl ₃) of compound 252 596
Figure A5.160	Infrared spectrum (Thin Film, NaCl) of compound 252 597
Figure A5.161	^{13}C NMR (100 MHz, CDCl ₃) of compound 252
Figure A5.162	¹ H NMR (400 MHz, CDCl ₃) of compound 253 598
Figure A5.163	Infrared spectrum (Thin Film, NaCl) of compound 253 599
Figure A5.164	¹³ C NMR (100 MHz, CDCl ₃) of compound 253 599
Figure A5.165	¹ H NMR (400 MHz, CDCl ₃) of compound 250 600
Figure A5.166	Infrared spectrum (Thin Film, NaCl) of compound 250 601
Figure A5.167	^{13}C NMR (100 MHz, CDCl ₃) of compound 250 601
Figure A5.168	¹ H NMR (400 MHz, CDCl ₃) of compound 188 602
Figure A5.169	Infrared spectrum (Thin Film, NaCl) of compound 188 603
Figure A5.170	^{13}C NMR (100 MHz, CDCl ₃) of compound $\textbf{188}$ 603
Figure A5.171	¹ H NMR (400 MHz, CDCl ₃) of compound 189 604
Figure A5.172	Infrared spectrum (Thin Film, NaCl) of compound 189 605
Figure A5.173	¹³ C NMR (100 MHz, CDCl ₃) of compound 189 605
Figure A5.174	¹ H NMR (400 MHz, CDCl ₃) of compound 190

	XXXV1
Figure A5.175	Infrared spectrum (Thin Film, NaCl) of compound 190 .607
Figure A5.176	¹³ C NMR (100 MHz, CDCl ₃) of compound 190 607
Figure A5.177	¹ H NMR (400 MHz, CDCl ₃) of compound 191 608
Figure A5.178	Infrared spectrum (Thin Film, NaCl) of compound 191 609
Figure A5.179	¹³ C NMR (100 MHz, CDCl ₃) of compound 191

APPENDIX 6

X-Ray Crystallographic Reports Relevant to Chapter 3
--

Figure A6.1X-ray crystal structure of spirocycle 167
--

APPENDIX 7

Revised Route Toward the bis-THIQ Natural Products and Synthesis of Non-Natural Analogs

Figure A7.1	THIQ natural products
Figure A7.2	Key synthetic steps toward (-)-jorumycin and (-)-jorunnamycin
A	
Figure A7.3	Non-natural analogs of (–)-jorumycin and (–)-jorunnamycin A.
Figure A7.4	Comparison of metabolic stability and targeted fluorinated
analogs	

APPENDIX 9

Spectra Relevant to Appendix 7

Figure A9.1	¹ H NMR (400 MHz, CDCl ₃) of compound 297	672
Figure A9.2	Infrared spectrum (Thin Film, NaCl) of compound 297	673
Figure A9.3	¹³ C NMR (100 MHz, CDCl ₃) of compound 297	673
Figure A9.4	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 297	674
Figure A9.5	¹ H NMR (400 MHz, CDCl ₃) of compound 298	675

xxxvii

Figure A9.6	Infrared spectrum (Thin Film, NaCl) of compound 298 676
Figure A9.7	¹³ C NMR (100 MHz, CDCl ₃) of compound 298
Figure A9.8	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 298
Figure A9.9	¹ H NMR (400 MHz, CDCl ₃) of compound 300
Figure A9.10	Infrared spectrum (Thin Film, NaCl) of compound 300 679
Figure A9.11	¹³ C NMR (100 MHz, CDCl ₃) of compound 300 679
Figure A9.12	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 300 680
Figure A9.13	¹ H NMR (400 MHz, CDCl ₃) of compound 301
Figure A9.14	Infrared spectrum (Thin Film, NaCl) of compound 301 682
Figure A9.15	¹³ C NMR (100 MHz, CDCl ₃) of compound 301
Figure A9.16	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 301 683
Figure A9.17	¹ H NMR (400 MHz, CDCl ₃) of compound 290
Figure A9.18	Infrared spectrum (Thin Film, NaCl) of compound 290 685
Figure A9.19	¹³ C NMR (100 MHz, CDCl ₃) of compound 290 685
Figure A9.20	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 290 686
Figure A9.21	¹ H NMR (400 MHz, CDCl ₃) of compound 303
Figure A9.22	Infrared spectrum (Thin Film, NaCl) of compound 303 688
Figure A9.23	¹³ C NMR (100 MHz, CDCl ₃) of compound 303
Figure A9.24	¹ H NMR (400 MHz, CDCl ₃) of compound 305
Figure A9.25	Infrared spectrum (Thin Film, NaCl) of compound 305 690
Figure A9.26	¹³ C NMR (100 MHz, CDCl ₃) of compound 305 690
Figure A9.27	¹ H NMR (400 MHz, CDCl ₃) of compound 306
Figure A9.28	Infrared spectrum (Thin Film, NaCl) of compound 306 692
Figure A9.29	¹³ C NMR (100 MHz, CDCl ₃) of compound 306 692
Figure A9.30	¹ H NMR (400 MHz, CDCl ₃) of compound 307 693
Figure A9.31	Infrared spectrum (Thin Film, NaCl) of compound 307 694
Figure A9.32	¹³ C NMR (100 MHz, CDCl ₃) of compound 307 694
Figure A9.33	¹ H NMR (400 MHz, CDCl ₃) of compound 310

xxxviii

Figure A9.34	Infrared spectrum (Thin Film, NaCl) of compound 310.
Figure A9.35	¹³ C NMR (100 MHz, CDCl ₃) of compound 310 696
Figure A9.36	¹ H NMR (400 MHz, CDCl ₃) of compound 311 697
Figure A9.37	Infrared spectrum (Thin Film, NaCl) of compound 311 698
Figure A9.38	¹³ C NMR (100 MHz, CDCl ₃) of compound 311 698
Figure A9.39	¹ H NMR (400 MHz, CDCl ₃) of compound 313 699
Figure A9.40	Infrared spectrum (Thin Film, NaCl) of compound 313 700
Figure A9.41	^{13}C NMR (100 MHz, CDCl ₃) of compound 313 700
Figure A9.42	¹ H NMR (400 MHz, CDCl ₃) of compound 291 701
Figure A9.43	Infrared spectrum (Thin Film, NaCl) of compound 291 702
Figure A9.44	¹³ C NMR (100 MHz, CDCl ₃) of compound 291 702
Figure A9.45	¹ H NMR (400 MHz, CDCl ₃) of compound 314 703
Figure A9.46	Infrared spectrum (Thin Film, NaCl) of compound 314 704
Figure A9.47	¹³ C NMR (100 MHz, CDCl ₃) of compound 314 704
Figure A9.48	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 314 705
Figure A9.49	¹ H NMR (400 MHz, CDCl ₃) of compound 286 706
Figure A9.50	Infrared spectrum (Thin Film, NaCl) of compound 286 707
Figure A9.51	¹³ C NMR (100 MHz, CDCl ₃) of compound 286 707
Figure A9.52	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 286 708
Figure A9.53	¹ H NMR (400 MHz, CDCl ₃) of compound 315 709
Figure A9.54	Infrared spectrum (Thin Film, NaCl) of compound 315 710
Figure A9.55	¹³ C NMR (100 MHz, CDCl ₃) of compound 315 710
Figure A9.56	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 315 711
Figure A9.57	¹ H NMR (400 MHz, CDCl ₃) of compound 316 712
Figure A9.58	¹³ C NMR (100 MHz, CDCl ₃) of compound 316 713
Figure A9.59	¹ H NMR (400 MHz, CDCl ₃) of compound 319 (THIQ19) 714
Figure A9.60	¹³ C NMR (100 MHz, CDCl ₃) of compound 319 (THIQ19) 715

Figure A9.61	¹ H NMR (400 MHz, CDCl ₃) of compound 320 (THIQ20) 716
Figure A9.62	¹³ C NMR (100 MHz, CDCl ₃) of compound 320 (THIQ20) 717
Figure A9.63	¹ H NMR (400 MHz, CDCl ₃) of compound 321 718
Figure A9.64	Infrared spectrum (Thin Film, NaCl) of compound 321 719
Figure A9.65	¹³ C NMR (100 MHz, CDCl ₃) of compound 321 719
Figure A9.66	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 321 720
Figure A9.67	¹ H NMR (400 MHz, CDCl ₃) of compound 322 721
Figure A9.68	Infrared spectrum (Thin Film, NaCl) of compound 322 722
Figure A9.69	¹³ C NMR (100 MHz, CDCl ₃) of compound 322
Figure A9.70	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 322 723
Figure A9.71	¹ H NMR (400 MHz, CDCl ₃) of compound 323 (THIQ21) 724
Figure A9.72	Infrared spectrum (Thin Film, NaCl) of compound 323 (THIQ21)
Figure A9.73	¹³ C NMR (100 MHz, CDCl ₃) of compound 323 (THIQ21) 725
Figure A9.74	¹⁹ F NMR (282 MHz, CDCl ₃) of compound 323 (THIQ21) 726

LIST OF SCHEMES

CHAPTER 2

Formation of All-Carbon Quaternary Centers via Enantioselective Pd-Catalyzed α -Vinylation of γ -Lactams

Scheme 2.1	Reaction with 1,1- and 1,2-disubstituted electrophiles 2	297
Scheme 2.2	Product derivatizations 2	298

CHAPTER 3

An Enantioselective Spirocyclization of Pd-Enolates and Isocyanates

Scheme 3.1	Construction of spiranes via enolate addition	411
Scheme 3.2	Attempted additive-free spirocyclization	412
Scheme 3.3	Isolation of reaction byproduct	414
Scheme 3.4	Product derivatizations	416
Scheme 3.5	Control reactions	424
Scheme 3.6	Failed substrates	425
Scheme 3.7	Failed δ-lactam synthesis	425

APPENDIX 7

Revised Route Toward the bis-THIQ Natural Products and Synthesis of Non-Natural Analogs

Scheme A7.1	Initial attempts toward fluorinated analogs	629
Scheme A7.2	Retrosynthetic analysis.	630
Scheme A7.3	Failed aryne annulation	631
Scheme A7.4	Desymmetrizing strategy toward isoquinoline 290	631
Scheme A7.5	Heck annulation strategy to access isoquinolinone 305	633
Scheme A7.6	Optimized route toward sulfone 291.	634
Scheme A7.7	Endgame toward chlorinated difluorinated analogs THIQ19	and
THIQ20		636

		xli
Scheme A7.8	Endgame toward aminated difluorinated analog THIQ	21 . 637
Scheme A7.9	Planned derivatization of THIQ21.	638
Scheme A7.10	Planned synthesis of quinone derivatives	639

APPENDIX 8

Synthetic Summary of Appendix 7

Scheme A8.1	Synthesis of isoquinoline triflate 290 6	69
Scheme A8.2	Synthesis of isoquinoline sulfone 291 6	69
Scheme A8.3	Synthesis of analogs THIQ19 (319) and THIQ20 (320) 6	570
Scheme A8.4	Synthesis of analogs THIQ21 (323)	70

LIST OF TABLES

CHAPTER 1

Development of a Nickel-Catalyzed N–N Cross-Coupling for the Synthesis of Hydrazides

Table 1.1	Initial reaction optimization	8
Table 1.2	Optimization of aliphatic amine nucleophiles	10
Table 1.3	Initial evaluation of alternative electrophiles	73
Table 1.4	Initial evaluation of NHC ligands	73
Table 1.5	Evaluation of additives	74
Table 1.6	Evaluation of half-sandwich complexes with aryl amines	74
Table 1.7	Evaluation of half-sandwich complexes with aliphatic amines	75
Table 1.8	Control studies	75
Table 1.9	Examination of reduced silane loadings	75

APPENDIX 2

X-Ray Crystallographic Reports Relevant to Chapter 1

Table A2.1	Crystal data and structure refinement for Ni-catalyst 24 250
Table A2.2	Atomic coordinates (x10 ⁴) and equivalent isotropic displacement
	parameters ($Å^2x10^3$) for 24. U(eq) is defined as one third of the trace of
	the orthogonalized U ^{ij} tensor
Table A2.3	Bond lengths [Å] and angles [°] for 24
Table A2.4	Anisotropic displacement parameters $(Å^2 \times 10^3)$ for 24 . The
	anisotropic displacement factor exponent takes the form: -
	$2p^{2}[h^{2}a^{*2}U^{11}++2hka^{*}b^{*}U^{12}]260$
Table A2.5	Hydrogen coordinates (x10 ⁴) and isotropic displacement
	parameters (Å ² x10 ³) for 24

	xliii
Table A2.6	Torsion angles [°] for 24
Table A2.7	Crystal data and structure refinement for N–N product 27 267
Table A2.8	Atomic coordinates (x10 ⁴) and equivalent isotropic displacement
	parameters $(Å^2 x 10^3)$ for 27. U(eq) is defined as one third of the trace of
	the orthogonalized U ^{ij} tensor
Table A2.9	Bond lengths [Å] and angles [°] for 27
Table A2.10	Anisotropic displacement parameters $(Å^2 \times 10^3)$ for 27 . The
	anisotropic displacement factor exponent takes the form: -
	$2p^{2}[h^{2}a^{*2}U^{11}++2hka^{*}b^{*}U^{12}]275$
Table A2.11	Hydrogen coordinates (x10 ⁴) and isotropic displacement
	parameters (Å ² x10 ³) for 27
Table A2.12	Torsion angles [°] for 27 277
Table A2.13	Hydrogen bonds for 27 [Å and °]
Table A2.14	Crystal data and structure refinement for N–N product 70 281
Table A2.15	Atomic coordinates $(x10^4)$ and equivalent isotropic displacement
	parameters ($Å^2x10^3$) for 70 . U(eq) is defined as one third of the trace of
	the orthogonalized U ^{ij} tensor
Table A2.16	Bond lengths [Å] and angles [°] for 70
Table A2.17	Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for 70 . The
	anisotropic displacement factor exponent takes the form: -
	$2p^{2}[h^{2}a^{*2}U^{11}++2hka^{*}b^{*}U^{12}]$
Table A2.18	Hydrogen coordinates (x10 ⁴) and isotropic displacement
	parameters ($Å^2 x 10^3$) for 70
Table A2.19	Torsion angles [°] for 70
Table A2.20	Hydrogen bonds for 70 [Å and °]

CHAPTER 2

Formation of All-Carbon Quaternary Centers via Enantioselective Pd-Catalyzed α -Vinylation of γ -Lactams

Table 2.1	Reaction optimization	295
Table 2.2	Substrate scope	296
Table 2.3	Ligand evaluation	301

APPENDIX 4

X-Ray Crystallographic Reports Relevant to Chapter 2

Table A4.1	Crystal data and structure refinement for lactam 130	
Table A4.2	Atomic coordinates (x10 ⁴) and equivalent isotropic displacement	
	parameters ($Å^2 x 10^3$) for 130 . U(eq) is defined as one third of the trace of	
	the orthogonalized U ^{ij} tensor	
Table A4.3	Bond lengths [Å] and angles [°] for 130	
Table A4.4	Anisotropic displacement parameters $(Å^2 \times 10^3)$ for 130 . The	
	anisotropic displacement factor exponent takes the form: -	
	$2p^{2}[h^{2}a^{*2}U^{11}++2hka^{*}b^{*}U^{12}]404$	
Table A4.5	Hydrogen coordinates (x10 ⁴) and isotropic displacement	
	parameters (Å ² x10 ³) for 130 405	
Table A4.6	Torsion angles [°] for 130 407	

CHAPTER 3

An Enantioselective Spirocyclization of Pd-Enolates and Isocyanates

Table 3.1	Reaction optimization	413
Table 3.2	Substrate scope	415
Table 3.3	Investigation of reaction dependence of Pd-precatalyst	417
Table 3.4	Exploration of mixed precatalysts	419
Table 3.5	Assessment of alternative carbamate electrophiles	423

xlv

APPENDIX 6

X-Ray Crystallographic Reports Relevant to Chapter 3

Table A6.1	Crystal data and structure refinement for lactam 167
Table A6.2	Atomic coordinates (x10 ⁴) and equivalent isotropic displacement
	parameters ($Å^2x10^3$) for 167 . U(eq) is defined as one third of the trace of
	the orthogonalized U ^{ij} tensor
Table A6.3	Bond lengths [Å] and angles [°] for 167
Table A6.4	Anisotropic displacement parameters $(Å^2 \times 10^3)$ for 167 . The
	anisotropic displacement factor exponent takes the form: -
	$2p^{2}[h^{2}a^{*2}U^{11}++2hka^{*}b^{*}U^{12}]$
Table A6.5	Hydrogen coordinates (x10 ⁴) and isotropic displacement
	parameters (Å ² x10 ³) for 167
Table A6.6	Torsion angles [°] for 167 621
Table A6.7	Hydrogen bonds for 167 [Å and °]623

APPENDIX 7

Revised Route Toward the bis-THIQ Natural Products and Synthesis of Non-Natural Analogs

Table A7.1	Assay data for THIQ1 (263) through THIQ18 (280)	627
Table A7.2	Optimization of desulfinative cross-coupling	634
Table A7.3	Biological activity of fluorinated derivatives	637

APPENDIX 10

Notebook Cross-Reference for New Compounds

Table A10.1	Notebook cross-reference for Chapter 1	728
Table A10.2	Notebook cross-reference for Chapter 2	730
Table A10.3	Notebook cross-reference for Chapter 3	731

xlvi

LIST OF ABBREVIATIONS

$[\alpha]_{D}$	specific rotation at wavelength of sodium D line
°C	degrees Celsius
Å	Angstrom
Aq	aqueous
Ar	aryl
atm	atmosphere
Bn	benzyl
Boc	<i>tert</i> -butyloxycarbonyl
bp	boiling point
br	broad
Bz	benzoyl
С	concentration for specific rotation measurements
calc'd	calculated
cm^{-1}	wavenumer(s)
d	doublet
D	deuterium
dba	dibenzylideneacetone
DMF	N,N-dimethylformamide
dr	diastereomeric ratio
ee	enantiomeric excess
equiv	equivalent(s)

		xlviii
ESI	electrospray ionization	211 (111
Et	ethyl	
EtOAc	ethyl acetate	
G	grams	
GC	gas chromatography	
h	hours	
HPLC	high-performance liquid chromatography	
HRMS	high-resolution mass spectrometry	
Hz	hertz	
IPA	isopropanol	
IR	infrared (spectroscopy)	
J	coupling constant (NMR), exchange coupling constant (diradicals)	
kcal	kilocalorie	
KHMDS	potassium hexamethyldisilazide	
L	liter; ligand	
LDA	lithium diisopropylamide	
m/z	mass to charge ratio	
Me	methyl	
mg	milligram(s)	
MHz	megahertz	
min	minutes	
mol	mole(s)	
<i>n</i> -Bu	<i>n</i> -butyl	

NHC	<i>N</i> -heterocyclic carbene
NMR	nuclear magnetic resonance
Pd/C	palladium on carbon
Ph	phenyl
PHOX	phosphinooxazoline
ppm	parts per million
R	generic for any atom or functional groups
SCF	self-consistent field
SFC	supercritical fluid chromatography
THIQ	tetrahydroisoquinoline