APPENDIX 4

X-Ray Crystallographic Reports Relevant to Chapter 2: Formation of All-Carbon Quaternary Centers via Enantioselective Pd-Catalyzed α-Vinylation of γ-Lactams

A4.1 GENERAL EXPERIMENTAL

X-ray crystallographic analysis was obtained from the Caltech X-Ray Crystallography Facility using a Bruker D8 Venture Kappa Duo Photon 100 CMOS diffractometer.

A4.2 X-RAY CRYSTAL STRUCTURE ANALYSIS OF PRODUCT 130

Vinylated lactam **130** was recrystallized from slow evaporation in hexanes at 23 °C to provide crystals suitable for X-ray analysis.

Table A4.1. Crystal data and structure refinement for lactam 130.

Identification code	V24190	
Empirical formula	C16 H21 N O2	
Formula weight	259.34	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 7.3874(10) Å	a= 90°.
	b = 9.1155(13) Å	b= 90°.
	c = 20.860(3) Å	g = 90°.
Volume	1404.7(3) Å3	
Z	4	
Density (calculated)	1.226 Mg/m3	
Absorption coefficient	0.636 mm-1	
F(000)	560	
Crystal size	0.150 x 0.100 x 0.005	5 mm3
Theta range for data collection	4.239 to 74.536°.	
Index ranges	-9<=h<=9, -11<=k<=	=10, - 26<=1<=26
Reflections collected	21524	
Independent reflections	2879 [R(int) = 0.1102	2]
Completeness to theta = 67.679°	99.9 %	
Absorption correction	Semi-empirical from	equivalents
Max. and min. transmission	0.7538 and 0.6287	

Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	2879 / 0 / 176
Goodness-of-fit on F2	1.062
Final R indices [I>2sigma(I)]	R1 = 0.0436, wR2 = 0.0947
R indices (all data)	R1 = 0.0574, wR2 = 0.1004
Absolute structure parameter	0.0(3)
Extinction coefficient	n/a
Largest diff. peak and hole	0.173 and -0.182 e.Å-3

Table A4.2 Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (\mathring{A}^2 x 10³) for **130**. U(eq) is defined as one third of the trace of the orthogonalized U^{*ij*} tensor.

	Х	у	Z	U(eq)
C(1)	4790(4)	5751(3)	3452(1)	21(1)
O(1)	4177(3)	6906(2)	3656(1)	26(1)
C(2)	6222(4)	4815(3)	3796(1)	21(1)
C(5)	5146(4)	3885(3)	4282(1)	28(1)
C(6)	7569(4)	5786(3)	4137(1)	22(1)
C(7)	9203(4)	5434(3)	4356(1)	24(1)
C(8)	10344(4)	6545(3)	4705(1)	27(1)
C(9)	10082(4)	3964(3)	4275(2)	32(1)
C(3)	6944(4)	3841(3)	3251(1)	24(1)
C(4)	5384(4)	3742(3)	2771(1)	25(1)
N(1)	4290(3)	5050(2)	2897(1)	21(1)
C(10)	2709(4)	5361(3)	2530(1)	21(1)
C(11)	2486(4)	4690(3)	1933(1)	24(1)
C(12)	900(4)	4883(3)	1582(1)	25(1)
C(13)	-480(4)	5762(3)	1821(1)	23(1)
O(2)	-2108(3)	6022(2)	1528(1)	28(1)
C(16)	-2465(5)	5246(3)	947(1)	31(1)
C(14)	-238(4)	6463(3)	2410(1)	25(1)
C(15)	1327(4)	6257(3)	2761(1)	24(1)

C(1)-O(1)	1.222(3)
C(1)-N(1)	1.373(3)
C(1)-C(2)	1.538(4)
C(2)-C(6)	1.509(4)
C(2)-C(3)	1.538(4)
C(2)-C(5)	1.542(4)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1.329(4)
C(6)-H(6)	0.9500
C(7)-C(9)	1.499(4)
C(7)-C(8)	1.506(4)
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(3)-C(4)	1.529(4)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900

Table A4.3 Bond lengths [Å] and angles [°] for 130.

C(4)-N(1)	1.464(4)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
N(1)-C(10)	1.425(4)
C(10)-C(15)	1.394(4)
C(10)-C(11)	1.396(4)
C(11)-C(12)	1.393(4)
С(11)-Н(11)	0.9500
C(12)-C(13)	1.389(4)
С(12)-Н(12)	0.9500
C(13)-O(2)	1.370(4)
C(13)-C(14)	1.397(4)
O(2)-C(16)	1.427(3)
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
С(16)-Н(16С)	0.9800
C(14)-C(15)	1.381(4)
C(14)-H(14)	0.9500
C(15)-H(15)	0.9500
O(1)-C(1)-N(1)	126.5(3)
O(1)-C(1)-C(2)	124.8(2)
N(1)-C(1)-C(2)	108.7(2)
C(6)-C(2)-C(1)	110.3(2)

C(6)-C(2)-C(3)	117.3(2)
C(1)-C(2)-C(3)	102.3(2)
C(6)-C(2)-C(5)	110.6(2)
C(1)-C(2)-C(5)	104.9(2)
C(3)-C(2)-C(5)	110.3(2)
C(2)-C(5)-H(5A)	109.5
C(2)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(2)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(7)-C(6)-C(2)	128.2(2)
C(7)-C(6)-H(6)	115.9
C(2)-C(6)-H(6)	115.9
C(6)-C(7)-C(9)	124.8(3)
C(6)-C(7)-C(8)	120.8(3)
C(9)-C(7)-C(8)	114.4(3)
C(7)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5

109.5

9.5
9.5
9.5

Н(9А)-С(9)-Н(9С) 109.5

C(7)-C(9)-H(9C)

- Н(9В)-С(9)-Н(9С) 109.5
- C(4)-C(3)-C(2) 104.8(2)
- C(4)-C(3)-H(3A) 110.8
- C(2)-C(3)-H(3A) 110.8
- C(4)-C(3)-H(3B) 110.8
- C(2)-C(3)-H(3B) 110.8
- H(3A)-C(3)-H(3B) 108.9
- N(1)-C(4)-C(3) 104.5(2)
- N(1)-C(4)-H(4A) 110.8
- C(3)-C(4)-H(4A) 110.8
- N(1)-C(4)-H(4B) 110.8
- C(3)-C(4)-H(4B) 110.8
- H(4A)-C(4)-H(4B) 108.9
- C(1)-N(1)-C(10) 125.6(2)
- C(1)-N(1)-C(4) 112.4(2)
- C(10)-N(1)-C(4) 121.2(2)
- C(15)-C(10)-C(11) 118.6(3)
- C(15)-C(10)-N(1) 122.1(2)

C(11)-C(10)-N(1)	119.3(2)
C(12)-C(11)-C(10)	120.9(3)
C(12)-C(11)-H(11)	119.6
С(10)-С(11)-Н(11)	119.6
C(13)-C(12)-C(11)	120.1(3)
С(13)-С(12)-Н(12)	120.0
С(11)-С(12)-Н(12)	120.0
O(2)-C(13)-C(12)	125.7(2)
O(2)-C(13)-C(14)	115.2(2)
C(12)-C(13)-C(14)	119.1(3)
C(13)-O(2)-C(16)	117.1(2)
O(2)-C(16)-H(16A)	109.5
O(2)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
O(2)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(15)-C(14)-C(13)	120.7(3)
С(15)-С(14)-Н(14)	119.7
С(13)-С(14)-Н(14)	119.7
C(14)-C(15)-C(10)	120.7(3)
С(14)-С(15)-Н(15)	119.6
C(10)-C(15)-H(15)	119.6

Symmetry transformations used to generate equivalent atoms:

Table A4.4 Anisotropic displacement parameters $(\mathring{A}^2 \times 10^3)$ for **130**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$.

	U11	U22	U33	U23	U13	U12
C(1)	25(1)	17(1)	22(1)	1(1)	2(1)	-4(1)
O(1)	30(1)	19(1)	27(1)	-4(1)	-3(1)	4(1)
C(2)	23(1)	18(1)	24(1)	1(1)	-1(1)	-1(1)
C(5)	27(2)	28(1)	28(1)	6(1)	-2(1)	-4(1)
C(6)	26(1)	16(1)	24(1)	-1(1)	2(1)	-2(1)
C(7)	27(2)	22(1)	23(1)	1(1)	2(1)	-5(1)
C(8)	29(1)	25(1)	28(1)	-2(1)	-2(1)	-5(1)
C(9)	30(2)	25(1)	40(2)	0(1)	-8(1)	3(1)
C(3)	25(1)	18(1)	28(1)	-2(1)	-2(1)	3(1)
C(4)	26(1)	18(1)	30(1)	-3(1)	-1(1)	4(1)
N(1)	24(1)	16(1)	23(1)	0(1)	-1(1)	2(1)
C(10)	25(1)	15(1)	23(1)	3(1)	0(1)	-1(1)
C(11)	29(1)	17(1)	25(1)	-1(1)	0(1)	2(1)
C(12)	33(2)	18(1)	24(1)	-1(1)	-2(1)	-1(1)
C(13)	24(1)	17(1)	27(1)	3(1)	-3(1)	-1(1)
O(2)	29(1)	26(1)	29(1)	-3(1)	-6(1)	2(1)
C(16)	37(2)	24(1)	31(1)	-2(1)	-10(1)	-2(1)
C(14)	28(2)	20(1)	26(1)	-1(1)	3(1)	1(1)
C(15)	29(2)	18(1)	24(1)	-1(1)	0(1)	-1(1)

	Х	у	Z	U(eq)	
H(5A)	5974	3226	4510	42	
H(5B)	4233	3304	4055	42	
H(5C)	4546	4534	4591	42	
H(6)	7202	6773	4203	27	
H(8A)	9672	7468	4744	41	
H(8B)	11465	6717	4466	41	
H(8C)	10637	6174	5134	41	
H(9A)	9147	3206	4240	47	
H(9B)	10851	3759	4648	47	
H(9C)	10824	3966	3886	47	
H(3A)	8025	4289	3050	28	
H(3B)	7271	2855	3414	28	
H(4A)	5844	3745	2326	29	
H(4B)	4667	2839	2841	29	
H(11)	3427	4093	1765	29	
H(12)	761	4413	1179	30	
H(16A)	-1567	5522	623	46	
H(16B)	-3679	5496	793	46	
H(16C)	-2394	4189	1027	46	

Table A4.5 Hydrogen coordinates (x 10^4) and isotropic displacement parameters ($Å^2 x 10^3$) for **130**.

H(14)	-1161	7088	2572	30
H(15)	1463	6731	3163	29

Table A4.6 Torsion angles [°] for 130.

O(1)-C(1)-C(2)-C(6)	-36.0(4)
N(1)-C(1)-C(2)-C(6)	146.0(2)
O(1)-C(1)-C(2)-C(3)	-161.5(3)
N(1)-C(1)-C(2)-C(3)	20.4(3)
O(1)-C(1)-C(2)-C(5)	83.2(3)
N(1)-C(1)-C(2)-C(5)	-94.8(3)
C(1)-C(2)-C(6)-C(7)	-162.8(3)
C(3)-C(2)-C(6)-C(7)	-46.2(4)
C(5)-C(2)-C(6)-C(7)	81.6(4)
C(2)-C(6)-C(7)-C(9)	3.0(5)
C(2)-C(6)-C(7)-C(8)	-178.0(3)
C(6)-C(2)-C(3)-C(4)	-147.2(2)
C(1)-C(2)-C(3)-C(4)	-26.3(3)
C(5)-C(2)-C(3)-C(4)	84.9(3)
C(2)-C(3)-C(4)-N(1)	23.5(3)
O(1)-C(1)-N(1)-C(10)	-14.5(4)
C(2)-C(1)-N(1)-C(10)	163.5(2)
O(1)-C(1)-N(1)-C(4)	175.9(3)
C(2)-C(1)-N(1)-C(4)	-6.1(3)
C(3)-C(4)-N(1)-C(1)	-11.2(3)
C(3)-C(4)-N(1)-C(10)	178.7(2)
C(1)-N(1)-C(10)-C(15)	-11.4(4)

C(4)-N(1)-C(10)-C(15)	157.3(2)
C(1)-N(1)-C(10)-C(11)	172.0(2)
C(4)-N(1)-C(10)-C(11)	-19.3(4)
C(15)-C(10)-C(11)-C(12)	-1.4(4)
N(1)-C(10)-C(11)-C(12)	175.3(3)
C(10)-C(11)-C(12)-C(13)	0.5(4)
C(11)-C(12)-C(13)-O(2)	-179.0(3)
C(11)-C(12)-C(13)-C(14)	1.0(4)
C(12)-C(13)-O(2)-C(16)	4.4(4)
C(14)-C(13)-O(2)-C(16)	-175.7(2)
O(2)-C(13)-C(14)-C(15)	178.3(3)
C(12)-C(13)-C(14)-C(15)	-1.7(4)
C(13)-C(14)-C(15)-C(10)	0.9(4)
C(11)-C(10)-C(15)-C(14)	0.7(4)
N(1)-C(10)-C(15)-C(14)	-175.9(3)

Symmetry transformations used to generate equivalent atoms: