Structural Dynamics of Complex Molecules
by Ultrafast Electron Diffraction:
Concepts, Methodology and Applications

Thesis by
Ramesh Srinivasan

In partial fulfillment of the requirements for the degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
2005
(Defended December 1, 2004)
Dedicated with love and gratitude
to
Bhagawan Sri Sathya Sai Baba
and to
my dearest parents
Aruna and N.V. Srinivasan
Acknowledgements

In my native land of India, every person is regarded as having two births—the first, birth into the physical world, and the other, birth into the world of knowledge. Indian tradition emphasizes that for the former birth, we are eternally indebted to our parents, and for the latter, we are ever beholden to our teacher. It is in that spirit of my ancestors that I write these words of gratitude to my teacher and mentor, Prof. Ahmed Zewail. The human language, while a wondrously marvelous gift, often fails at times such as these to adequately express the whole gamut of one’s emotions. Yet, standing as I am at the end of a long and arduous period of graduate school, it is but natural that I seek to acknowledge his profound influence on my growth as a scientist and as a human being. My entry into the Zewail group came about under very unusual circumstances, the details of which will have to wait for another day. Over the course of my studentship, I have been struck and inspired by his passion for science and his insatiable curiosity about the natural world. The award of the Nobel Prize in 1999 was certainly one of the high points of my tutelage under him. I am reminded of an anecdote that Isidor Isaac Rabi once shared, “My mother made me a scientist without ever intending to. Every other Jewish mother in Brooklyn would ask her child after school, ‘So? Did you learn anything today?’ But not my mother. ‘Izzy,’
she would say, ‘did you ask a good question today?’ That difference—asking good questions—made me become a scientist.” It has been my singular fortune to learn from Prof. Zewail the art of asking the right questions. I have enjoyed our numerous discussions on the history of science, on the role of science and technology in bridging the gap between the ‘haves’ and the ‘have-nots’, on the cultural mores of our respective ancient civilizations, and on the art of communicating science to non-scientists and especially to young, budding scientists. While he has been a wonderful teacher, I hope I have been a worthy disciple. I am also grateful to his wife, Dema, and his sons, Hani and Nabeel, for giving me a home away from home, for many wonderful evenings of joy and laughter.

I have had the privilege of working with a team of brilliant and superbly accomplished colleagues over the years, not only in the diffraction sub-group but also in the larger Zewail group. My earliest foray into femtochemistry, albeit for an all-too-brief period, was with Chaozhi Wan and Spencer Baskin. I was soon lured into the challenging world of ultrafast diffraction. It was here that Udo Gomez and Vladimir Lobastov, two remarkable postdoctoral scholars, took me under their wings and taught me all I know about diffraction and equipment design. Vladimir, in particular, has been a tremendous mentor and colleague, and I will always cherish the experience of working with and learning from him. Hyotcherl Ihee and Jim
Cao, both members of the UED-2 team, shared generously from their wealth of experience and honed my skills in the theoretical analysis of the molecular diffraction signatures. The UED-3 team has, over the years, benefited from many outstanding personnel, each of whom brought their unique perspective and expertise to bear upon this discipline. Chong-Yu Ruan, Boyd Goodson, Jon Feenstra, Sang Tae Park, and Shoujun Xu have all been an integral part of this exciting endeavor. Jon and I have worked particularly closely for nearly 4 years, and it has been a wonderful experience having him as a colleague and as a friend. All of the work that is discussed in this dissertation bears their unmistakable imprint, and to each one of them, I owe many thanks.

All present and former members of the Zewail group not only provided me with a stimulating intellectual ambience, but they have also been wonderful friends. I can never forget the amazing secretaries we have had over the years, who made life in the sub-basement far easier than it otherwise might have been. Mary Sexton, Sylvia Jacoby, Janet Davis, and De Ann Lewis have all been an inexhaustible source of cheer and comfort.

I also wish to thank all the faculty of the Chemistry and Chemical Engineering Division for their formal and informal guidance over the years. In particular, I wish to thank Prof. George Gavalas for his mentorship during my master’s thesis. Prof. Vince McKoy always evinced great personal interest
in my research, and his constant encouragement has been one of the abiding memories of my graduate career.

The National Science Foundation and the Air Office of Scientific Research are gratefully acknowledged for their generous financial support of this work.

To my parents, I owe all that I am and hope to be. Their unstinting support, words of comfort and wisdom, and their unshakable belief in me helped me push myself harder when I didn’t think I could do any better. This dissertation is more a testimony to their love than to my abilities. To Bhagawan Sri Sathya Sai Baba, my dearest friend and guide, I offer this labor of love in a spirit of humble dedication.

Ramesh Srinivasan
Pasadena, California
November 23, 2004
Abstract

The central theme in ultrafast electron diffraction (UED) is the elucidation of the structural dynamics of transient molecular entities. With properly timed sequences of ultrafast electron pulses, it is now possible to image complex molecular structures in the four dimensions of space and time with resolutions approaching 0.01 Å and 1 ps, respectively. Reaching this spatiotemporal resolution on the atomic scale has been the driving force behind the development and application of the third generation UED instrument—the subject of this dissertation. The current state-of-the-art in resolutions and sensitivity, together with theoretical advances, has made possible the direct determination of transient structures, leading to studies of diverse molecular phenomena hitherto not accessible to other techniques. By freezing structures on the ultrafast timescale, we are able to develop concepts that correlate structure with dynamics. Examples include structure-driven radiationless processes, dynamics-driven reaction stereochemistry, and non-equilibrium structures exhibiting negative temperature, bifurcation, or selective energy localization in bonds. These successes in the studies of complex molecular systems, even without heavy atoms, establish UED as a powerful method for mapping out temporally changing molecular structures in chemistry, and potentially, in biology.
Table of Contents

Acknowledgements ... iv
Abstract ... viii
List of Figures ... xiv
List of Schemes ... xxiii
List of Tables .. xxiv

1. Introduction ... 1
 Figures ... 10
 References ... 12

2. UED Theory .. 18
 2.1 Introduction ... 18
 2.2 The Diffraction-Difference Method: Transient Structures........... 22
 2.3 Ground-State Structures .. 27
 2.4 Structure Search and Refinement .. 28
 Figures ... 32
 References ... 35

3. Third Generation UED Instrumentation 36
 3.1 Introduction .. 36
 3.2 Femtosecond Laser System .. 37
 3.3 Vacuum Chambers and Molecular Beams 39
 3.4 Electron Gun .. 40
 3.5 CCD Camera System .. 41
 3.6 Time-of-Flight Mass Spectrometer 44
 References ... 45
 Figures ... 46
6. Dark Structures in Nonradiative Processes
 6.1 Introduction
 6.2 Ground-State Structures
 A. Pyridine
 B. 2-Picoline
 C. 2,6-Lutidine
 6.3 Transient Structures
 A. Pyridine
 B. 2-Picoline
 C. 2,6-Lutidine
 6.4 Photochemistry
 A. Pyridine
 B. 2-Picoline
 C. 2,6-Lutidine
 6.5 Photophysics
 6.6 Conclusions

7. Non-Equilibrium Structures
 7.1 Introduction
 7.2 Concepts of Equilibrium vs. Non-equilibrium Structures
 7.3 Experimental Methodology
 7.4 Data Processing and Analysis
 A. Background Subtraction
 B. Generation of “Product-Isolated” Curves from Diffraction
 Difference Signals
 C. Novel Aspects of the Product Structure Analysis Used for
 “Hot” HT Product

References
9. Hydrogen-Bonding in Acetylacetone
 9.1 Introduction
 9.2 Experimental
 9.3 Ground State
 9.4 Structural Dynamics
 9.5 Results and Discussion
 9.6 Conclusions

10. Conclusions and Future Directions
 Figures
 References
List of Figures

1-1 Example of diffraction with two scattering centers................................. 10

1-2 The UED experiment... 11

2-1 Concept of ultrafast electron diffraction... 32

2-2 The diffraction-difference method... 33

2-3 Isolation of transient species through choice of t_{ref}................................. 34

3-1 Third-generation UED-3 apparatus... 46

3-2 Layout of beam path for the femtosecond laser pulses 47

3-3a Schematic front view of the UED-3 apparatus.. 48

3-3b Schematic side view of UED-3 apparatus... 49

3-4 Schematic of UED-3 electron gun assembly... 50

3-5 Detailed view of the electron generation and acceleration
 assembly ... 51

3-6 Equipotential lines in extraction region of electron gun......................... 52

3-7 Detailed view of magnetic lens assembly .. 53
3-8 Detailed view of the electron streaking and deflection assembly 54
3-9 UED-3 detector assembly ... 55
3-10 Individual components of the custom-made detector assembly 56
3-11 Photographs of selected detector components 57
3-12 Schematic of time-of-flight mass spectrometry apparatus 58
3-13 The linear TOF-MS chamber ... 59
3-14 Acceleration and detector assembly for time-of-flight apparatus 60
3-15 Geometry of time-of-flight mass spectrometer 61
3-16 Arrangement and synchronization of electrical pulses in TOF-MS 62
3-17 Typical mass spectrum obtained in the TOF-MS apparatus 63
4-1 Calibration of electron gun via streaking experiments 92
4-2 Typical X-Y profile of the nearly circular electron beam 93
4-3 Results of in situ streaking experiment for electron pulse measurement .. 94
4-4 Calibration of electron pulse width .. 95
4-5 Improvement in electron gun performance .. 96
4-6 Pulse-to-pulse stability of the electron gun ... 97
4-7 Lensing experiment to determine in situ the zero-of-time 98
4-8 Photoionization-induced ‘lensing’ effect for measuring time-zero 99
4-9 Geometry of crossed-beam experiment .. 100
4-10 Angular dependence of temporal broadening due to velocity mismatch .. 101
4-11 Overall temporal resolution (including velocity mismatch) as a function of spatial and temporal width of the electron pulses 102
4-12 Calibration of pixel size on phosphor screen using Group 0, Element 1 of the USAF-1951 resolution target ... 103
4-13 Determination of mean pixel size on phosphor screen 104
4-14 Modulation Transfer Function for the ICCD camera 105
4-15 Calibration of single electron events on the detector 106
4-16 Inverse atomic ratio method ... 107
4-17 Processing procedure for 2-D diffraction images and ground-state data analysis .. 108
4-18 Diffraction-difference analysis for time-resolved experiments 109
LIST OF FIGURES

4-19 Divergence of electron beam.. 110

5-1 Ground-state molecular diffraction image of $\text{C}_2\text{F}_4\text{I}_2$ 135

5-2 Refined ground-state structure of $\text{C}_2\text{F}_4\text{I}_2$................................. 136

5-3 Time-resolved 2D diffraction-difference images of $\text{C}_2\text{F}_4\text{I}_2$ 137

5-4 Effect of Fourier filtering on raw diffraction-difference curves............. 138

5-5 Time-resolved structural changes in the elimination of iodine from $\text{C}_2\text{F}_4\text{I}_2$.. 139

5-6 Time-resolved structural changes involving only the $\text{C}_2\text{F}_4\text{I} \rightarrow \text{C}_2\text{F}_4 + \text{I}$ contribution to the diffraction-difference signal 140

5-7 Time dependence of the formation of C_2F_4 molecules from the decay of $\text{C}_2\text{F}_4\text{I}$ transient structures ... 141

5-8 Structural determination of the transient $\text{C}_2\text{F}_4\text{I}$ intermediate......... 142

5-9 Refinement of the $\text{C}_2\text{F}_4\text{I}$ radical structure.. 143

5-10 Complete structural determination of the $\text{C}_2\text{F}_4\text{I}_2$ elimination reaction .. 144

6-1 Ground-state molecular diffraction image of pyridine...................... 185

6-2 Comparison between experimental and refined theoretical $s\text{M}(s)$ and $f(r)$ curves for ground-state pyridine .. 186
6-3 Refined ground-state structural parameters of pyridine................. 187
6-4 Ground-state molecular diffraction image of picoline..................... 188
6-5 Refined ground-state structural parameters of picoline 189
6-6 Ground-state molecular diffraction image of 2,6-lutidine............... 190
6-7 Comparison of ground-state structures of the three azines 191
6-8 Refined ground-state structural parameters of lutidine 192
6-9 Time-resolved 2D diffraction-difference images of pyridine 193
6-10 Time-resolved 1D radial distribution curves for pyridine 194
6-11 Possible structures from reaction of pyridine 195
6-12 Comparisons of the experimental radial distribution curve with
 normalized theoretical curves for possible pyridine channels......... 196
6-13 Structural parameters of the pyridine ring-opened product 197
6-14 Refinement of ring-opened pyridine structure 198
6-15 Pyridine structure and population change with time 199
6-16 Temporal dependence of the pyridine product fraction 200
6-17 Possible structures from reaction of picoline 201
6-18 Structural parameters for the picoline ring-opened product 202
6-19 Temporal dependence of the picoline product fraction...................... 203
6-20 Time-resolved 1D radial distribution curves for lutidine 204
6-21 Possible structures from reaction of lutidine...................................... 205
6-22 Comparisons of the experimental radial distribution curve with normalized theoretical curves for possible lutidine channels 206
6-23 Lutidine structure and population change with time 207
6-24 Temporal dependence of the lutidine product fraction 208
6-25 Photochemistry of azines elucidated by UED.................................... 209
7-1 Calculated diffraction curves for a single bond in the equilibrium regime ... 261
7-2 Calculated diffraction curves for a single bond in the non-equilibrium regime ... 262
7-3 Observed ground-state diffraction image and corresponding f(r) curve for CHT .. 263
7-4 Observed ground-state diffraction image and corresponding f(r) curve for CHD .. 264
7-5 Refined structural parameters of ground-state CHT 265
7-6 Refined structural parameters of ground-state CHD 266

7-7 Non-equilibrium ‘negative temperature’ in CHT as reflected in the transient-only sM(s) curves ... 267

7-8 Non-equilibrium ‘negative temperature’ in CHT 268

7-9 Evolution of transient non-equilibrium structure in CHT.............. 269

7-10 Time-resolved 2D diffraction-difference images of CHD 270

7-11 Time-resolved formation of hot HT structures after CHD ring opening ... 271

7-12 Temporal evolution of hot HT structures following ring opening of CHD ... 272

7-13 Structural refinement of ring-opened HT structure 273

7-14 Evolution of transient far-from-equilibrium structure in CHD 274

7-15 Potential energy landscape relevant to the formation of HT 275

8-1 Diffraction of ground-state COT3 and BCO structures in thermal equilibrium .. 304

8-2 Ground-state molecular scattering curves for COT3 and BCO 305

8-3 Ground-state radial distribution curves for COT3 and BCO 306
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-4</td>
<td>Diffraction-difference images of light-mediated reaction of COT3</td>
<td>307</td>
</tr>
<tr>
<td>8-5</td>
<td>COT3 molecular scattering diffraction-difference curves</td>
<td>308</td>
</tr>
<tr>
<td>8-6</td>
<td>COT3 radial distribution diffraction-difference curves</td>
<td>309</td>
</tr>
<tr>
<td>8-7</td>
<td>Potential energy landscape for OT conformer structures</td>
<td>310</td>
</tr>
<tr>
<td>8-8</td>
<td>Refined transient-only OT structures</td>
<td>311</td>
</tr>
<tr>
<td>9-1</td>
<td>2D ground-state diffraction image of acetylacetone</td>
<td>332</td>
</tr>
<tr>
<td>9-2</td>
<td>Structural refinement of ground-state acetylacetone</td>
<td>333</td>
</tr>
<tr>
<td>9-3</td>
<td>Refined structural parameters of the AcAc enol tautomer</td>
<td>334</td>
</tr>
<tr>
<td>9-4</td>
<td>Observed structural dynamics of acetylacetone</td>
<td>335</td>
</tr>
<tr>
<td>9-5</td>
<td>Experimental and theoretical diffraction-difference data for different reaction pathways of acetylacetone</td>
<td>336</td>
</tr>
<tr>
<td>9-6</td>
<td>Refinement of “product only” data in acetylacetone</td>
<td>337</td>
</tr>
<tr>
<td>9-7</td>
<td>Refined structural parameters of the 2-penten-4-on-3-yl radical</td>
<td>338</td>
</tr>
<tr>
<td>9-8</td>
<td>Evolution of OH loss products for all experimental time slices</td>
<td>339</td>
</tr>
<tr>
<td>9-9</td>
<td>Difference-difference data to discriminate between singlet and triplet structures</td>
<td>340</td>
</tr>
</tbody>
</table>
9-10 Structures involved in the dynamics of the OH elimination reaction ... 341

9-11 Power-dependence studies of acetylacetone photochemistry 342

10-1 Phenomena and concepts elucidated by UED ... 351
List of Schemes

5-1 Non-concerted elimination reaction of \(\text{C}_2\text{F}_4\text{I}_2 \) with the hitherto unknown reaction intermediate.. 133

5-2 Dihalide elimination reactions involving \(\text{C}_2\text{R}_4\text{X} \) radical intermediates... 134

6-1 Pyridine reaction with multiple reaction pathways................................. 184

7-1 Nonradiative decay of excited 1,3,5-cycloheptatriene to ‘vibrationally hot’ ground state... 259

7-2 Ring opening of 1,3-cyclohexadiene to form 1,3,5-hexatriene.............. 260

8-1 Thermal Cope rearrangement of 1,3,5-cyclooctatriene to bicyclo[4.2.0]octa-2,4-diene ... 301

8-2 Light-mediated electrocyclic ring opening of 1,3,5-cyclooctatriene to 1,3,5,7-octatetraene... 302

8-3 Thermal equilibrium of 1,3,6-cyclooctatriene, 1,3,5-cyclooctatriene, and bicyclo[4.2.0]octa-2,4-diene ... 303

9-1 Structures of enolic acetylacetone... 330

9-2 Acetylacetone enol-keto tautomerization by hydrogen shift.................. 330

9-3 Possible reactions of acetylacetone following UV excitation............... 331
List of Tables

5-1 Experimental and theoretical values of structural parameters for the classical C₂F₄I radical intermediate.. 145

7-1 Refined structural parameters of the far-from-equilibrium HT structure ... 276

8-1 Structural coordinates of COT3 obtained from least-squares partial refinement of UED data... 312