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ABSTRACT

A complete expression for the probability distribu-
fion of the gzero crossing periods of filtered random noise
is given., The first term of .this expression is evaluated
and extended to include narrow, symmetrical spectra. The
behavior of the frequency function about the second and
further half-periods is investigated.

Apparatus has been designed and constructed which
gives directly the distribution function of the zeros of
filtered réndom noise, Distribution functions correspond-
ing to several filters are shown. OCorrelation between

theoretical and. experimental distributions is good,



I. INTRODUCTION

In the last twenty-five years noise theory has risen
from comparative insignificance to become an essential ele-~
ment in communications and control systems. ¥arly workers
in the field investigated nolse sources; Schottky<l) reported
the shot effect in 1918, and in 1928 Nyquisﬁ(g} predicted
and’Johnson(z) verified the presence of thermal noise in re-
sistors. Later work was concerned with the relationship be-
tween noise voltage and bandwidth<4}, with determinations of
limitations in sensitivity due to noise(5)»(6), ang witn
estimates and measurements of the crest factor.#(7)  However
advancesAmade in the last decade have been the most signifi-
cant. The effects of noise in linear and in many non-~linear
systems have been calculated by Rice(S), Middleton(9}’<lo>9<ll>,
and others(lg). Also the noise-minimization problem has been

(18) and his associates(14),

given detalled treatment by Wiener
The essential basis for these enormous contributions %o

noise study has been the application of statistics and proba-
bility theory.

Although early workers were aware of the statistical
nature of noise, and some preliminary studies were made<7),
it was principally through the work of Rice(l5), Franz(lG)p
and‘wiener(13)9(17) that a more nearly complete statistical
description of nolse was made, and a firmer foundation for

noise theory laid. Mathematical analyses were made of noise

%*This term has now largely been dropoed from the literature.
It is used to describe the ratio of the highest peaks of a
noise voltage to its RMS value,



originating in various sources, notably shot effect in
vacuum tubes and the thermal agitation of electrons in re-
sistors. ©Studies were made of the nolse obtained by pass-—
ing random nolse through physical devices. Powerful meth-
ods for determining the behavior of noise in non-linear
systems were obtained. Relationships between spectra and
.correlétion functions were deduced.

It was during a study, by Stephen 0. Rice, of certain
properties of nolse having a specifiled spectral distribution,
including topics such as the characteristics of the maxima
and minima, energy distribution, etc., that the problem of
the distributioﬁ of the gzeros was proposed.(l5) The problem
is as followss We are given random noise with a specified
spectrun, Denote by The random variable 7 the distance be-
tween successive zero crossings of the noise, such as could
be measured directly on an oscillograph. What is the dis-
tribution of the random variable T?

If the noise 1s truly random, having a Ilat spectrum
out to infinite Irequency, the solution is quite easy, being
related to the Polsson distribution., For any other spectral
distribution a solution-has not been obtained. If we choose
a spectrun which excludes all frequencies but those in a nar-
row band about f,, a partial solution can be obtained. The
solution to the narrow band-pass problem is indicated briefly
by Rice(l5}; treatment, in extended form, is gilven in the
following sections. For such a spectrum we would intuitively

expect a peak in the frequency function of T at the value



Cxgh s the sharpness of the peak depending on the width of
o

the band about fg. This result, as will be illustrated,

has been verified experimentally.
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II. THEORETICAL DISCUSSION OF THE DISTRIBUTION OF THE ZEROS

1. The Solution for Comnlete Randonness,

We shall say that noise is completely random 1f know-
ledge of its magnitude at a certain time yields no informs-
tion, statistical or otherwise, about its value at any other
time; this is equivalent to saying that its (auto)correlation
function is zerd for all values of the argunent other than

zero., For such noise we may write

2T

P (n)_ ("D‘T‘)“ e-‘
RN w!

where Pp(n) is the probability of obtaining n zeros in time
T, and VvV 1s the expected number of zeros per unit time,

Pr(n) will be recognized as an ordinary Poisson distribution.
Now if we let T equal the fime interval between successive
zeros, and Po(7)AdT the probability of obtaining a zero in
(7}?%&? if there 1s one at 7-0 and none between 0 and T, then

Po(7)AT = (Probability of a zero in 7, 7+4¢)X
(Probability that there 1s none between)

= Y dT % Pt’tO).

Thus Do (7)dT =ve ' . (1)

The characteristic function of Po(T) is given by

0y = _ 3
d-ct !



and its mean and standard deviation are

Completely random noise 1is precisely characterized by a
'spectrum flat vo infinity. In practice we can obtaiq-nearly
completely random noise from a spectrum flat to a large fre-
quency fo and zero beyond f,. The correlation function ¥ (%)

for such spectra is given as

Yir) = L. sinzwh T,
2w¥

For increasing fo, W(¢) becomes more sharply peaked about
T¥=0. Also, the expected nuuber of zeros can easily be cal-
culated for the above spectrum; it will later be shown that

D) :fo,



2. The Solution for the General Case.

Ih.this section we shall treat random noise having a
specified but arbitrary spectrum. For this spectrum con-
sider C, the class of all curves having zeros at zero and
in (%, t+d*). If, in n random samples, we have r curves
which do not cross the axis between zero and T , then we
are interested in finding lim »r - Po(v)d.

N> w

We next define the following probabilities:

po(¥)de=the probability of a zero in (%, ¥+dt) if
there is one at O;

D, (Kthh 4¢ = the probabllity of a zero in (¥, t+dt)

and one in (x., x,+dx) if there is one
at Og echy

P PP OO0 0P DY OO0 C P OGO D VOO PO ETPOD EPO OO PECE CO OO

pn(ﬂ., X,'--Ku,?>¢la.dx.- daw d?,

Now po(x)dt corresponds to all curves having zeros at 0 and
in (¥, v+4t}; therefore we must subtract from it probabili-
ties corresponding to curves crossing between 0 and ¢ . The
integral AT§$JK”ﬂgK, is the expected number of curves

()
through 0 and (X, v+dt} which cross the axis between 0 and

¥, counting each crossing as a curve, Thus if we take
¢
poctdat - dt§  pix,,7) dx,

we will have accounted for Cj, the sub-class of curves
crossing the axis precisely once between O and ¥v. To ac-
count for Cg, the sub-class having two crossings between O

T .
and ¥ , we must add %;fjrgix~&xz: since members of Cs are
o]
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counted twice in the pj integral and twice in the pg inte-

gral,

BExtending this process, noting that members of Cp

are counted w!
~wa) !

times by the pp integral, and also that

v\-v\! 4 e (-.\\“V\‘- f

A
wm-2t 2! 1 =7 *

we obtain

Pul) a4

P. AT = A?-S:‘fhdln +éL§ S:'S:(UP; AX\ A"L— v

i P.(e)d®

o er 2
P KU A NE

This may easily be checked for random events. In this

case we have Po=v, P1=v ..., and

P (%)

it

N RN
L

»T

=2t @)

It now remains to obtain the pg, »1, ***.

Expected Number of Zeros. We must first evaluate P(Y)d?j'
which is defined to be the probability of obtaining a gzero in
(T;f¥d?}. This result was first obtained by Rice(l5), and
is presented here in order that the method may later be

used. Let F(x) represent our noise function. Denote

f: Fx) ,

o



It has been fairly well established, through application of
the Central Limit Theorem, that ¢ and ©® are normaily dis-
tributed., (Strictly speaking we should use §= F(a,,---a@u,x),
where the ats are random variables which are fixed for =
given F. We refer the reader to Rice.) ©Next consider the

e

set 8 of all ¥ and 1 such that

elther - W, dx, <% <o

or —"A.A‘&:)?.>o

If, in ¥4 space, the point (F,n) is in the set S, then
we will have an axis crossing in (x,, x+d%). Thus if #(§ %)=
p(¥,71 3 x ) is the joint frequency function of € andy , we

have

P (x! dx =5p(aﬁ;uAaAf=j”j°pam45+J°5“§3wdf_
S o

° Mdx Zoo

Since dx is presumed small, it follows that

Pix) dx = dx jTl/)top(O,‘V(;x)&‘Vl - A\‘S?ﬁ P(o,‘ﬂ,‘){)c&?‘\ {

2]
or P(x) = § ywipio,;x) 41

-
If we assume that F(xX)=0, we may compute the second-

order central moments as followsse

L.:E@ﬂ=¥t?ffmh:¢w
daze € (UY) 2 biw E O ) o (i Vi ;‘_-srs"ht*?)F"m)cﬁf- :

5o Toe To®



/\11 B - \L_”(o)
Mo = E(FM) o b 2§ TR Fm dy
= 4'e) = o
Thus S (AT Asan?)
(g, ", ) 2 ___‘»-——- 4t
F A% i ¥ 2re E
and
A N ()\n A :1) i {’¢(o) 0 )
)\"-‘ Azz 8 —-'¢"(O)
Further,
{o,4;x)= L —— € 25
P. L 27 (Lo t") ®
Thus  P(x) - _L.(:ggj'% (&)
w %o >

P(x) also represents the expected number of zeros per second,

Determination of pn{x, x:-r ¥u,¥), We wish to find

pn(%., %2 .-+ xu, ¥}, the probability of having zeros in (., ¥=dg..
eo o (¥, 4d?) when'it is known there is a zero at 0. Let By,
denote the event of é zero at x; with positive slope, Ey.

a zero at xj with negative slope, etec. Then the probability
we want is

P(EY Exi -~ Esn| ES)

Clearly %

POES - EQ LET) = PlEg o B D)

which is easier to evaluate, TFurther,
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0“’)

PlEZ -~ ES 1ES) = PlEx - E&F
pE?) '

Consider next the set S having subsets

(1) (2) ()
“Nodkac Fo e O - No o < S < © « NMediual 28
-hdn < <o =N e, > & >0 -V dg > £ 5o
M Ak < Eo <0 W2 dx. < Ta <o

-Wa dvz > €, 30

—'ﬂ“...qu.,u-l K?"'“ <D g "-nuﬂ AI‘I\-H < ?“-&9 *u B o ’ﬂ'l-u OQ"Ki\ <gn-n < O

To construct the subsets we keep the Oth inequality fixed
and vary the remaining ones in all possible ways. This re-
sﬁlts in 2" subsets in‘ S. Hach of the subsets represents
one of the mutually exclusive ways in which P(Ex, --- Exi E1)

can happen. If the frequency function is given by
£ (%o, %0 - Fuwr, Koy oo Mawr)

thel’l + & wuet
PEC B BI) = 545 . 5 §¢4s
s .

The first term of the summation is

[fonfie oot fas s

“Huer jxcul

Remembering that dxg, dxj,e«-+dx,, are small, we may write

PiEY .. =N - 5 -\" §:°§ . Sy\_, Thy v 5 Wiy Bl oox 8, Wane o Jdha o dh ot

d¥o e - d¥ua
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where the second n integrals in each term of the sum are the
2" possible arrangements of &j and\)l taken ntl at a time,
and r is the total number of integrals having lower limits

of (~)infinity in any term.

We may evaluate the elements o the moment matrix as
indicated in the preceding section. Carrying out these op-
erations leads to the momentvmatrix,A, shovn in Fig. 1.

The matrix is of order (2n+4)(2n+4),
Once the moment matrix 1s determined we can find the

frequency functlon as followss

L A .
{-(So,...iﬁ,lfy\o ...‘ﬂ““) & i e- 2A §< v X K

EESTY 4

- T A Ak
:n e =8 jx ’ (é)
Y

f(o +- o, Ve, Nue] =

Note that A, is the cofactor of A injp, and J and k in
the latter summation run from n+3 to 2nt4. (N - oues ).
<+ o K &
Also P(Eg)= &+ P(ES) = & (-7;%_}‘. This completes the

formal determination of Py{%).

Reduction of po(r). It is possible to simplify fur-

ther the expression for pgy(¥). Using (3) and (4) we obtain
+ [+ {43 o o
PO(E: E- = .Vl Mo ngl =% 5“’40 “3"11
Sl g S

where

‘; & w‘:(o, o, Mo 'W, s \ e o z* . .
T \) @w)ip K_P 24 (Aum ZA e, .k.,.,}q,)
and .\!_‘ 11“( o \4‘71
A - '\L’t ‘\!‘b ""\4"1-’ (3
o - o % —'\}'r"

SN e ~Yo
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It can easlly be shown that N,y = f\q

Next let ,
Y— = .A33 5:
(~——2 x ) n
s - A)Z :‘l'
. )M

Substituting yields

+ g @ o ~xigloz Aszg P
P(E, Ev ) o .A33 ( J j"ﬁe E Assz ,x dhﬁ’g ‘_f/xge‘* 7+Z/1/1;/’xzjxjy).

Using % 2 .
-&~9—?-"ond
i Joxge_ ‘dedy = 7 w0 (i- e wio) |
we have
, ) 5
PIE,ES) = _A® -
’ e —— {l+ k&
2 (hy; - D3y) A
where £ = A sy
(‘[\3;' A;:)%'
Also, by Jacobifs Theorem(la),
far s Yo
“M'& {\q'«l B "("\' 1{"’ A g
and thus
3 3
N (A

(& - )T
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Using  P(ES) R ( :f_t) * , we have
o+ (G G ety O
"\L:. (V:‘ 1@71)1:.



15

2. Solution for Narrow Band-pass Filter,

“e

In this section we shall compute approximately the
distribution of the zeros for a narrow band-pass filter.
TWe shall assume that the first term of Eq. (1) adequately
represents the fregquency function, which is equivalent to
saying that the probability of more than one axis crossing
in the interval is negligible,

Our spectrum w (f) will be given by

= &, elsewhere.

It is easily shown that Py is independent of any constant

multiplier of the spectrum; therefore we may take we=1,

Now ®
Vl= [Cww) ws 2 f 1 ds

If we let «=w?f and q:= _*%o we ‘ge‘t
'F“‘"fq,

Ve SWM o a5 2o
Q
(=4

k( :
s & (o5 2 — 277 :
20 Q £ 0. smg_ Stw 2o qz{ "SI)T

- Yr = [f7r? 2 ' 2 .
&5“””}Vv* 4L Y + UM s o 510,

&= Q
Also
’(/A = L
Q
V’Al s
¢oll T - L.’TI7‘{ 3 % [}
e ia+)
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Note further that

|

Ay =% -4, Yo'+ YU ;

1

-A?»‘{ "Az'u-r”'/' 7/7 1&‘;2__ "LT —%r” -

Investigation of A,,and A;y reveals that both quanti-
ties are very ciose to zero. Therefore in their evaluation
it is more practical to use approximate methods, To do this
we use the series expansions for the trigonometric terms in
the correlation function and its derivatives, assume that
% .. 7 5, and retain only the first few terms, Carrying

Q
out this procedure ylelds

~ 2 . .
_A;z = < (SIMde + llo(z... qd SIK 2ol caS‘Za()

.qu A (—-sfm"z,( Wo 2 — Yt P8 2w + 4«3134294).

1Y
4

Substitution into (5}, using fe(«)= putz) in order that we shall
T

still have a distribution, gives us

fola) = o | Stn 20 (51447 22 = 4 2?)] -
¢md* (Sl'\AIZ otk L2 2 o Lbdiny &) )
o+ 22 uestout)
3qQ*

Forcznearg%:the above expression reduces to

£ (o) = o (T~ o) . 8
3Q1[§Q‘1 +4(d—ﬂ%f_)lj% ( )

Note that 4 (I) - wie(urm)
In Fig. 2 BEq. {8) is plotted for n=l and several
values of Q. Tt is seen that £ () = 273 4

T
Properties of fo(x). (n=l), Let us next determine cer-
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tain of the statistical properties of our approximation to
fo(«} given in Eq. (8). The mean, of course, is = . The
A

standard deviation o is given by

ot - E{a—g)‘= é%:{,4,@qg.+zﬁ10). (7)

A plot of & versus Q is given in Fig. 3.
For a given value of |«-Z| there will be a certain Q
giving a maximum value of fo(x). Using the following approx-—

imation to Eq. (B):

fo () Lok
o (X = x 8

we find by differentiation that
By, 8 ——Te e
i ula—%lﬁ,‘
Qmax, is indicated in Fig. 2 by the dotted curve.
The m"Q" of the frequency function is defined as for a

resonance curve, It is without obvious statistical signifi-

cance, but has been useful in the experimental work., We

wish to find «,, then, such that L £ (T} = £y ().
7 . =
Solving gives
0(1—'.':'. = __’I_T’- Zé‘_( i
2 za¥e ( z )

Thus

Ax = Z(o(._—_u.)
and

Q': = . 3 . 2239 @
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Expected Number of Zeros. From Eq. (3) we may calculate

the expected number of zeros for the narrow band-pass filter,

?%('%%j)% =2 & [1+ L )i

129

For @ tending to infinity we obtain 2f,, as expected,

The expected number of zeros for noise flat to fo, men-
tioned at the close of section II-1, can now be found, For
this spectrun

Y(£) = jorn(ﬁwSZn-f’?‘ df = W smam?,

27
Now ‘
1!’0 = w.-f-o .
and
' 7” - 2‘3
?éo = — Y -Fo We
Thus

#{_%ﬂ)% “"Fo

Non-rectangular Filter Characteristic. In obtaining

Bgq. (8) for fo(«) we could have used

‘go(a(): L
S rry)E (@)

To get Eq. (9) from Eqg. (5) note that A,, and A, are approxi-

mately equal, and that faw'ez w for o« near w . Now if
2 2

Ve = Q) ws 2

then $¥_ 4 g“w;&Tﬂk+ m_}%(d~§r1
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and -A3'l = mwY Cpoz lpn”.

Substituting yields

o ()2 2 (4 :
" (_‘p"") [Hi;‘;gi’i"—(a—n')j%

—h M 2
S

For the narrow rectangular filter we have

0z} = L st

-3 Pa) '
&Ql. -
'S

Substituting this value in Eq. (8) gives Eq. (9). But sup-

pose we have

.St AL
Ra) = Z‘_&Tsngi

then Q% . 8% "Iy

o & e

In this way we can get the frequency function corresponding
to any spectrunm which can be represented as the sum of a
finite number of rectangular spectra of arbitrary amplitudes
and widths, all having the sawme mid-band frequency. To a
fair approximation this includes all symmetrical spectra.
The assumption that the frequency is near fy and that all

of the Q4i's are large is still in force.

An equivalent Q can be defined as follows:

Qe = X Ml

ZA{/QE‘; (lO)
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A filter having this @ would produce precisely the same dis~
tribution of zeros as would the filter indicated by the sum-
mation,

For n=2 we have

ch = @\Z(\— -H)

where
Ia = (.— 3;22) Qi
$'1.3 + Qi
nd
a Az = Az g1z Qs
A ! )

Fig. 4 shows r as a function of ajs and qjs.

The diff'erence of two spectra represents a double band-

pass filter. For example, if

0 = Lsmst _ L seasw
o Qo ol By,
then : =+, fi-at.f $i4 aF

= 1, f-aF <f o fa4 af
= z

o elsewhere ,

il

where Qa = "'0 y Qy = £o ,
S§+at &5-o5
and ';" = "s.x '("gl ”
2.
Then Qel - Ql
3 -&@- + ! .
where Q@ = 5o
A
a’n'd‘ § ' = "*D
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ITI. THE MEASUREMENT SYSTEM

In the preceding sectlon we saw that the first term
of the series which presumably represents the frequency func-
tion for the distributlion of the zeros could be approximated,
although with some difficulty, for the special case of a
narrow rectangular band-pass filter. It appears that with
methods now available the remaining terms of the series can-
not be evaluated, although possibly the second could be de-
termined with a large-scale computer. In order to check the
validity of the first term as an approximation to the series
(for the narrow band-pass filter), and also to obtain an ac-
tual distribution of zeros for noise of a certain known spec-
trum, an electronic system has been designed and construéted
which gives directly the distribution function of the zero-
crossing periods corresponding to noise of arbitrary, known
spectra.

In the measurement system flat random noise is fed
through a narrow band-pass filter. The filter output is
clipped and differentiated, giving positive pulses for zeros
of positive slope, and negative pulses for zeros of negative
slope. These pulses are then inverted, clipped, and recon-
bined to give a positive pulse for each zero. The positive
pulses are used to generate a sawtooth timing waveform; this
timing waﬁeform has constant slope and is triggered by each,
successive pulse. Next the sawtooth wave 1s clipped at e

specified voltage level corresponding to a certain rise time,
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and all surviving peaks of the sawtooth wave are differen-
tiated., The resultant pulses are then shaped and counted,
In this way we obtain a measure of a2ll zero-crossing periods
greater than a given value; the distribution function 1is
given as an output. The central feature of this system is
the sawtooth timing waveform which essentially changes a
time measurement to an amplitude measurement,

A block diagram of the system is given in ¥ig. 5, to-
gether with typlcal waveforms illustrating the operations.
The apparatus has been sub-divided into three units, each
of which occuples a separate chassis.

Discussion of Circuits. The complete circuit diagrams

corresponding to the block diagram of Fig. 5 are given on
the following pages. Fig. 6 shows the noise source and the
preliminary filter and amplifiers. The nolse source is a
thyratron operating in the conducting state. Its spectrum
is flat from near zero frequency to 200 KC. The RiMS noise
voltage output is .05 volts to .20 volts, depending on
the grid voltage. The next stage is a cathode follower
which feeds a band-pass filter combination made up of a low-
pass and a high-pass filter separated by a second cathode
follower, The filter passes from 15 KC to 25 KC; its pur-
pose is to remove the very high and the very low freguencies,
A triode eamplifier with gain control completes this portion
of the circuit.

In Fig. 7 we have the spectrum-shaping filter and the

output smplifiers. The filters are three cascode bridged-T
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filters19) which may be used individually or in series.
The bridged-T has a null frequency characteristic, and when
placed in a negative feedback loop results in high selectiv-
ity. The resultant Q is given by Q=2QuG, where QI is the Q
of the inductance and G is the loop gain. We may adjust Oy,
by adding resistance in the inductance branch, and the mid-
band frequency is varied by changing the condenser values.
A parallel-T circuit was also considered, but its Q 1s less
by a factor of Qr/4. The value of loop gain at which oscil-
lation occurs is about the same for both circuits.
Unfortunately the frequency characteristic of a cas-—
code bridged-T reseumbles more an inverted V than a narrow
rectangle, However if three cascode bridged-T's sre cas-
caded to foru a “flat—staggered-triple"(19), a much closer
approximation to a rectangular spectrum can be obtained,
The flat-staggered-triple has the three mid-band freqguen-
cles displaced slightly, resulting in a characteristic having
a reasonably flst top and sharply sloping sides. (See Fig. 22)
The output circuit provides about 50 volts for input
to Unit II. It was found necessary to load the final cas-
code bridged-T with a cathode follower; Miller-effect capa-
citance in the 6SL7 triode caused oscillation in the bridged-
T ¢ireuit,
Fig. 8 shows the clippers, the phase inverter, and a
noise-voltage meter. The signal is clipped five times and
airplified twice; the diodes clip three times, and the input

circuit to each pentode acts as a clipper by effectively
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shortening the grid base to about one volt, Actually fewer
stages could have been used, since the rise time is limited by
the integrating action of the line resistor and the diode
capacitance, For this reason a pair of 1N34 crystal diodes

1s the final clipper; their capacitance is less than that of

a B6H6 by a factor of four.

The variable biasing arrangement on the first pair of
diodes is included to ensure that the zero spacings are not
distorted; the pentodes give different slopes to the posi-
tive and negative rises of the square wave, because the trans-
conductance varies with grid voltage. This adjustment was
found to be guite critical in affecting the final output.

The phase inverter is orthodox. The plate half of the
circult reacted viclently to noise and ripple in the plate
supply, and a well regulated power supply was absolutely
necessary. A-higher total gain would have lessened the
effect of noise and ripple, although at the expense of rise
time,

In Fig. 9 we have the differentiators, clippers, mixer,
and Unit II output circuit. The two-tube mixer was thought
necessary for isolation purposes., Matching in the outbtput
coaxial-cable circult was not critical, although an attempt
wa.s méde to match at both ends of the line,

The next figure, Fig. 10, shows the input circuit and
first multivibrator of Unit ILI. The function of the nulti-
vibrator is to shape the incoming pulses. The first ampli-

fier inverts the positive pulses from Unit II to give the
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negative pulses required to trigger the multivibrator. About
(-}5 volts is required for triggering, and output pulses are
(=}30 volts. Pulse width is approximetely one micro-second,

The sawtooth timing waveform generator, the clipper,
and the differentiator are illustrated in Fig. 11l. The saw-
tooth generator operates by charging a resistance-capacitance
combination; each successive pulse discharges the condenser
through.the parallel triodes. A diode ¥restorer" assures
that each segment of the sawtocth starts at the same voltage.
Several other sawtooth generators were tested; the next best
was the Miller Integrator.(lg) This circuit enmploys capaci-
tive feedback around a DC amplifier, and was found to have
superior linearity; however persistent overshoots at the
beginning of each segment made it less satisfactory. The
linearity deviation of the circuit shown, expressed as devia-
tion of the curve from a straight line, was less than 0.5%.

The sawtooth generator is coupled through a cathode
follower to the clipper. The clipping voltage level is de-
termined by the 10K potentiometer setting, while the voltage
difference between the extréme settings is a function of the
resistance paralleled with the potentiometer. The voltage
range is adjusted by means of the 30K potentiometers; ganging
them makes the voltage difference between clipping limits
independent of their setting, which makes for simplified
calibration,

The clipper feeds a differentiator and pulse ampli-
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fiers, The diode between amplifier stages removes the un-
wanted transients generated during the slaenting portion of
the sawtooth wave,

Fig. 12 gives the second multivibrator and the final
output circuit. The second multivibrator is identical with
the first, except that the pulse length is greater.

The output circuit has some features of interest. Its
funetion is to obtain a number proportional to the number
of pulses delivered to it. This is done by integrating the
pulses through the charging of a condenser-resistor corn-
bination. To measure the condenser voltage a triode and
two voltage-regulator tubes are used. The 20K potentio-
meter is set such that when no pulses are delivered the
- meter current is zero. But when the condenser is charged,
its voltage appears at the grid of the triode, and a current
unbalance results; thus we obtain a meter reading which is
a function of the number of pulses applied to the pentode.

Four power supplies were used in conjunction with
the equipment described above. Three were plate supplies
capeble of delivering 200 milliamperes at 300 volts, and the
fourth supplied the -105 volt bias for the multivibrstors.

T ey - - T~ 2 - - 2.9, . P-ad - -— 1 P
Two of the plate supplies, those for units II znd ZII, were

especially heavy filtering, The -105 volt bias weas taken
from a VR-105 voltage-regulator tube., Power-supply ripple
and noise affected markedly the performance of the systen

by appearing in the output-meter reading.
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In order to illustrate the operation of the apparatus,
photographs of several oscilloscope traces have been in-
cluded, For these traces a 20 KC signal was used, In Fig.
13 we have the clipped signal at the 1N34 diodes., TFig. 14
gives the first multivibrator output, and Fig. 15 shows the
sawtooth timing waveform, Fig. 16 shows the second multi-
vibrator output. A trace of heavily filtered random noise
is shown in Fig. 17. The noise is obtalned by passing noise
from the thyratron thréugh the flat-staggered~triple filter,
Note its resemblance to a sinusoid.

Calibration. To interpret the output meter reading pro~

perly we must know two things: first, the number of zeros

per second that the meter reading represents, and second, the
smallest zero-crossing period being counted by the meter.

To determine the first quantity we may by-pass the sawtooth
wave clipping circuit and record the output meter reading as
a function of the input frequency, using a sinusoidal in-
put. Then twice the frequency gives the number of zeros per
second. This curve is given in Fig., 18; the values of the
number of zeros per second have been expressed as a fraction
of 50,000, which is the number of zeros per second corre-
sponding to full-scale meter deflection., This quantity is
later used as the distribution function. The linear charac-
ter of this curve was useful since, with reasonable accuracy,
the meter reading can be plotted directly on the distribu-~
tion function curve,

To determine the clipping level of the sawtooth timing
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waveform in time units we may set the 10K potentiometer in
the clipper at a given value and find at what input frequency
the meter deflects. The time clipping level is then one-
half the period, or 1/2f, Curves obtained in this way are
shown in Fig. 19 and Fig. 20. The abscissae are units on the
10K potentiometer dial (0-100), and the R-numbers indicate
the resistance being parallelsd with the potentioumeter.,

Figures 21, 22, and 23 show the frequency response of
several combinations of the bridged-T filters. In Fig. 23
resistance has been added in several steps to the inducteance
of the bridged-T. To obtain the ohmic resistence from the
figures shown, multiply by 100. Since the range of freguen-
cies in the pass-band of these filters is small, a2 hetero-
dyning unit was counstructed which compared the unknown fre-
guency with a fixed stendard.

Photographs of Eguipment. Figures 24-28 inclusive

show the experimental system. TFig. 24 shows all of the coii~
ponents; in the foreground we see Units I, II, and III, and
in the rear left and right the power supplies are shown,

The swmall chassis on top of the large power supply is the
-105 volt multivibrator supply.

Frrors and Limitations. It is difficult to assign a

figure of accuracy to the measurements made by this systen,

An educated guess would place the figure near five per cent.
The principal source of error was extraneous noise origina-

ting in the power supplies. To eliminate this noise it

rould have been necessary to replace two power supplies, and
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also to use batteries for plate and filament in the noise

generator and the early amplifier stages.
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IV. EXPERIMENTAL RESULTS

To obtain the distribution function corresponding to
a given filter it is necessary only to record the output
meter current as a function of the clipping potentiometer
setting; entering the calibration curves with these values
gives the distribution function directly. The frequency
function can be obtained from the distribution function by
graphical differentiation. Each curve of meter current
versus potentiometer setting was taken several times, and a
mean used, since noise. caused some fluctuation in the read-
ings. -

It is more realistic and convenient to present the
experimental data on a micro-second {time base than to use
the dimensionless « of Section II. We need, therefore, the
theoretical distributions on a micro-second base. For a

mid-band frequency of 20 KC we have

‘ " .93 Q
i (1" % 192 q570) 3 ! (11}

where ST = | v-25|

and the prime indicates that the time base is in micro-se-
conds. The distribution function is found by integrating

the above expression. It is given by

DS(¢)= &+ =+ .98 (057?) . (12)
z Lo+ 192 (@se)*] 2
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Note that the distribution functions given by Eq..lz differ,
for various Q's, only by a scale coﬁstant on the time base.
Flg. ‘29 shows the distribution function obtained ex-
perlmentally from the flat-staggered-triple (FST) filter of
Fig. 28, together with a theoretical distribution function
which approximates 1t. The accompanyilng freqguency functions
are shown in Fig. 20. The asymnmetry of the measured curves
is probably due tb the asymmetry in the frequency response of
the filter, notably that caused by the difference in the
slopes of the sides of the characteristic. To correlate the
distribution function with the spectrum we compare the eguiv-
alent Q of the filter, given by Eq. 10, with the Q correspond-
ing to the measured distribution function. Proceeding ac-

" cording to Eq. 10 for the case of n=2 we have, approximately,

Q= 34§ ({~260< a§ <320)
Q. = 2o ( —uso6 < sf% <s00)
A\I = 1
Az' T
ho= 113

(Note that the spectrum is propoftional to the square of the
amplitude of the frequency response.) Thus for the FST

filter an examination of the freqguency response gives us
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an equivalent @ of 32.4, while the distribution function
indicates a @ of about 30, This degree of correspondence
between Q's, as well as between the shapes of measured
and predicted probability functions, is considered good
by the author.

The expression analogous to Eq., 8 for any n is

“l-rrl

Tgr T ,3_
\2&‘[%&% -+ u(«—qu]z

fo (0‘) =

Thus the frequency function about two half-periods (n=2) be-
haves as 1f 1ts Q were halved. To check this experimentally
a run was made with one of the inverting channels dead; this
meant that only alternate zeros were considered., The results
are shown in Fig. 31. The ratio of the Q's for the curves
shown is very nearly two.

The next sequence of curves, Figures 32-35 inclusive,
shows distribution functions from a single'bridged-T (BT)
filter. The numbers in parentheses indicate the resistance
adfed to the inductance arm of the bridged-T. The Q indi-
cated 1is that of the theoretical curve éccompanying the
measured one, (See Fig., 23 for the filter characteristics.)
The frequency range of these filters violates the assuwmp-
tions of our theory; we no longer have Q>>1 and |«-T)c<l,
Some agreement between theory and experiment can be obtained
from BT(0}, the sharpest characteristic. Proceeding ac-

cording to Eq. 10 we have, roughly,
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Q\ = 100
Qz = O
Al": l

A'L' = 2
R = (708
Qe = 17 .

This agrees fairly well with the value Q.=1l4 given by the
distribution function.

To illustrate mofe clearly that broad spectra give
broad frequency functions we can plot values of Q determined
from the distribution functions against Q's estimated from
‘the filter characferistics. This is shown is Fig. 38 for

the bridged-T sequence,

Conclusions, In retrospect it is eagy to suggest inm-

proved means of procedure, particularly with regard to the
equipment, Some of the components could be eliminated, and
others improved. The use of blocking oscillators might
combine several of the operations. The weakest parts of the
system were the power supplies and the final clipping circuit,
It remains to be seen whether the use of batteries for fils-
ment and plate in the early stages and noise source would
remove some of the low frequency extraneous noise,

However the agreement between theory and experiment,

in the regions where the theory was thought'valid, was
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satisfactory. The first term of the series for the fre-
guency function, Eq. 2, appears to represent closely the
frequency function, for narrow spectra.

Further research along these lines would include
broad spectra, and perhaps evaluation of the second term
of Eq. 2. The case of noise flat to a frequency fg could
be considered. Also there is the interesting problem of
widely separated band-pass filters. Our results indicate.

et two closely spaced band-pass filters act as a single

band-pass filter,
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