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.fiBSTRACT 

In a complex commutative normed ring the unit sphere at the 

origin has a Tertex at the unit element. If the ring is finite dimen­

sional, the radical translated to the unit element intersects this 

. sphere only at, the unit element. 

A finite dimensional ring containing an element of nilpotency 

degree equal to the dimension or the radical is a direct sum· of e. ring 

with a scalar product and a ring with a convolution product. Using 

this decomposition the conjugate space ie. made into e. normed ring, and 

a duality theory is obtained. 

General properties are given tor completely continuous and weakly 

completely continuous elements or various types of rings. 

In a star ring, it unifon convergence with respect to the 

maximal ideals implies weak con·urgenee, then the square or a weakly 

completely _continuous open.tor is completely continuous. Some of the 

consequenooa of thia result are: (a) . no 'infinite dimensional ring 

:or this type -is reflexive as a Banach spa,ce, (b} all weakly completely 

co,itinuoua elemen:ta or infinite dimensional indecomposable rings of 

thi.e type lie in the radical, (c) a new proor or Dunford 's _theorem 

that the square ot a weakly completely continuous operator from 

L into L is completely continuous is given. 
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This thesis cor1tains an investigation of three general problems 

in the theory of et,mplex commutative normed rings. Such riugs will be 

denotad by the letter A. 

The first prob~em dee.ls with the structure of the unit sphere of 

A. In a Banach space it ie well known that the unit spherl'J is a closed, 

convex, centrally symmetric body. !n the case of a nol"tlled ring an 

additional restriction is placed on tha r.io'f'm, and hence on the unit 

ephere, by the inequality • \\ xy II ~ fl x II II y II • · It is shown in 

·. Part II th.at this implies that the unit sphere centered at the origin 

has a vertex at the unit element u. (The term vertex is explained at 

the beginning of that Part.) This result is then intetpretad in terms 

of the derivative of the norm as used by Ascol!. (1;53) t 
The second problem considered is that of defining a not"lDed ring 

. . . * etl"tlcture in the space A conjugate to the ·Banach space of A. 1'he 

poaeibility of accomplishing this was strongly suggested by sev0ral 

facts. For example, thore exist numerous similarities between results 

in normed ring theory _and in the theory of normed linear lattices'[ e.g. 

eee (2)]. It E is such a lattice there is a natural way of defining 

a normed linear lattice in (2;3) As anoth8T' example consider the 

set of pairs of complex numbers (x,y). This can be made into a Banach 

space, say A, by defining II (x~y) II • Nax( I xi, I y I)• Ite con.jugate 

f 'I'he first number within .the parentheses refers to a numbered 
refer•nce work at the end of this paper, · and the second number refers 
to .the page number of that work. 
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space A*'!l { (u,v)} is also a Banach space if II (u,v) II : sup If ux1-vy H 
(l(x ,_y)ll=! 

: I u I + Iv! is taken a.s norm in A*• Now ii' products ore dafiued iu 

A and A* respectively as (x,y)(x•,y•) s (xx',yy') (scal a r product) 

and (u,v)(u•,v•): {uu•.uv'+u'v) (convolutior1 product), A and A* 

, .become normed rings. This shows a duality between scalar and convolu-

tion products. Furthermore A, of dimension n : 2, has k = 2 rnaximal 

' * ideals, whereas A , also of dimension n :: 2, has n-k+-1 maxiwal ideals. 

'. This problem is discussed in Part III, where a complete duality theory 

foi- n- dimensional normed rings gives a partial answer. 

Thil"dly, an analysis of certain classical Banach space operators 

defined over normed rings is given in Pa.rt IV. In particular completely 

continuous and weakly completely continuous operators of the type 

T~ ; Ti1. y : xy are studied. The elements x which generate Tx are 

called completely continuous and weakly completely continuous, respectively. 

Partial results on completely continuous elements have been obtained 

independently by M. Ft'eundlich (3); however, results presented here are 

. believed to be more complete. A general theorem on weakly completely 

continuous transformation• is proved, and completely continuous elements 

~re discussed as especial caea. 

For purposes of reference some definitions ana theorems from the 

theory of normed rings are given in Pa.rt I. 
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PART I 

INTR0DUC'TI0N 

1.1 Definition. A complex commutative normed ring A is a sot 

>f elements x, y, . .• • having the following properties a 

(1) A is a complex Banach space. 

(2) For each x, ye A, the 2roduqt xy is uniquely defined, lies 

in A, e.nd has tha properties: 

xy = yx 

x(yz) : (xy)a 

x(y+z) : xy+Xi 

x( f y) = f-KY• v.ihere ,-.. is a complex number. 

(3) A UDi t el emant u - exists in . A such that 

(4) The !!2!!! II II in A has the propertieei 

II xy II~ Uxll IIYII 

I\Ull:le 

ux: x for all 

1.2 Reniarks. The concept of complex comuutative normed ring 

was first introduced in 1932 by A. D. Michal and R. s. Martin, who also 

considered the ease where the scalar field is the real numbers. (4;69) 

. Henceforth complex commutative normed rings ae defined above will ba 

referred to simply as rings. Sate that are rings only in the al gebraic 

sense will be explicitly called algebraic rings. 

• The zero element of A ie denoted by ~--to distinguish it from 

the scalar o. 
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If, as a -Banach space, A is n-dimensional, the ring is culled an 

n~dimeneional ring and is denoted by An• 

A is a !ill ring if for every element x~A thara is an element 

x*e A such that x(M) : x'A'(M} for all. maximal ideals . r., ( see section 

1.4 below). 

1.3 Topologies!!! A. Two topologies will be used .in A, the 

stron15 (or !!2£!) t ·opoloa and the ~ topoloey. In the first topology 

a. neighborhood ot an element x0 is the set N(x
0
;f.,) of ull x such 

that II x-x
0 

II < c, where €, is an arbitrary positive number. A sequence 

{ x:11 } is conYergent, or more precisely at rongly convergent, if 

lim II xn • xinll exists. In this terminology condition ( 4) of Definition 
n,m•oo 

·1.1, II xy · 11 ~ II x II II y II , expresses the continuity in the strong 

topology ot xy with respect to (x, y). Unless specific mention is made 

to _the contrary, it is the strong topology which will be used in A. 

In the weak topology a neighborhood N(x
0 

J f, , ••• , fYt'I. ; f.. ) of 

X:
0 

ia the set of all x such that • \ f . (x-x ) I<. c, 
. 'I, 0 

i • 1, .•• , m, 

where t
1 

• •••, f m.. are m arbitrary coU1plex linear functionals ovet" 

A• and e is M arbitrary positive number. Since all functionals which 

will occur are complex linear functionals, they will be referred to 

ai111ply as functionals. A aequen_ce { x I\} is weakly convergent if lim f ( x.,.) 
'r, ➔ oO 

exists tor every functional f over A. 

1.4 Maxi-1 Ideale. A subset· I of A is called an ideal if 

( 1 ) I ,I {~ } ; A, and 

{2) x,ytI and x',y'fA imply xx'+yy•er. 

A maximal ideal is an ideal not contained in any other ideal. It has been 

ahoWD (5;8) that every ideal is contained in a maximal idenl. Ae e. 

consequence, the existence of the inverse :g-
1 of x is equivalent to 
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the st~ternent that x belongs to no maximal ide:w.l. If M is a maxiroo.l 

ideul, the quotient space A/M is isomorphic to the fiald of co~lex 

numbers. · This esta.bliehes a many-to-one mapping; of' A onto the complex 

numbersa to each. x is a.saocinted a complex number A : x( i,1 ) depending 

· only on M. Fol'" a fi:xed it , x( M) is a multiplicative functional over A. 

However, if x is fixed and M • varies over the set of maxirll-ll ideals of 

A, ~(~} describes the spectrum of x [ i.e., the set of all complex A's 

ro·i: whtch ( ri u.xf
1 

does not exist]• . The relation between functionals and 

.hyperplanes of A is as follows: the kernel K of f(x) [i.e. the set 

of zero•s of f(x}] ie a hypaT'])lane of A passing through ~, and every 

hyperplane K through ~ uniquely determines a functional f(x) over 

A such that· f(K) : O and f(u) :: l. In particular there is a one-to­

one correspondence between multiplicative functionals over A and 

maximal id ool s. 

1.5 Radical • . The radical R ·10 defined as the i -ntersection of all 

maxlmal ideal•• R is an ideal. It has been sho~ ( 5; 10) that R is 

the set of all generalized nilpotent elements or A, namely elements x 
l 

euch that 11m \Ix,.. II~ • ·o. 
\'\-C)Q 

Indeed, for all 
I 

x E. A, lim II x "'II n.' • sup Ix( M) I• 
l\-"<;1 M 

In particular, R contains all the nilpotent ele~nte. 

l~(i • Noma. ·A noi;m II 11• . is called 'admissible in A i 'f' 'A ia a 

.normed .ring .with reepeet to this norm, that is if 

(1) II h' makes A a Banach space, 

• ( 2) II xy. II • ~ II x 11• Uy u' , and 

(3) llull':1. 

An example of a non-admissible norm is tha pseudo--norm \Ix II = 
I 

~P. \ ~(M) I, since for example II x 11, • O does not imply x = ~. Two 

norms I! U• · and II II", defined over A, are called isomorphi~ if 
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positive constants a, b exist such that for all x EA, 

a Ux ll' ~ II x I(" ~ b II x II'• If a normed vector space is co mplete with 

respect to t wo norms II II • and II II " and if II x ll " ~ b II x U 1 

for all x, then II II' and II II" a re isomorphic. 

• The Gonjugate space A~ of A is the set of all functionals over 

A. The natural rn II f ,u • sup I f{ x) I makes A* 
ll l( U=l 

1.7 Isomonahism. Two rings are called: 

a Banach spa ce. 

(1) isomorphic if they are a.lgebraic~,lly isomorphic; 

(2) equivalent if they are isomorphic under a norm-preserving 

i somorphi am; 

(3) homeomorphic if they nre homeomorphic topological spaces. 

1.8 Decomposability. A is decomposable if it can be written as 

a direct sum of two of its ideals. 



PART II 

S'l'RUC'l'UH3 or Tl-[; UNIT SPH ::RJ 

2.1 Definition. A functional f{x) ie called a ~upoorting el ene 

91. ~ m.u.1 sgber1 .a u. ~ if II f II = 1 and f( u) :: l • 

2.2 Definition. 'f : [ f} is called a !!Utl family of functionals 

if f(x) : 0 for all f E 'f implies x ·• ····.g. (6;42) 

2.3 ilitam:ele. . Any set of n linearly independen~ functionals over 

the complex n-dimensional Buclideon space CY\ is a total family. 

2.4 Definition. Let S denote the unit sphere centered at the 

. origin. S ie said. to have u vertex at the point u if there exists a 

total family of functionals which are supporting planes of S at u. 

2.s Definition. Let g(x} be the real-valued function defined by 

g{x) : sup ..!.. log II a '->t II , A complex. The set G ,, { xi g{x) • 1 ) will 
>.=1co I 11\ 

be culled the G - sphere. 

2.G 'l'heorem. g(x) has the f'ollowing p-roparties1 

(1) g(.Q) • o, •• g(u) : l 

(2) g( 0( x): l°'I g(:x.} 

• (3) g(x+y) ~ g(x)+g(y) 

( 4) g(x) ~ II x ll 

(5) x I~ · implies g(x) > O 

(ti) II x II~· eg(x} 

(7) If x eG [i.e., g(x):: 1), there exists a complex number E. of 

absolute value 1 such that the line aagment from c.. u to 

x lies in G. (Flatness eroperty) 

5 
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E!2.2f. of ill 

By direct substit u~,i on g(~) : sup -
1
1
1
, 0 • o. Also, 

>+1 11 

g(u) = As;b l~I log II eAu.11 : A+b J~-i log j e >. I • 1 • 

Proof of ( 2 j --
If 0( i 0, g(O( x):: sup - 1-log II 0""'11.II• l0<I sup _!__ l og l\eiiO(X!I 

Mo I >-I >-to I 110<1 
• /cx\ g(x) • If X: o, g{O( x) • O by {l). 

~ 2! ill 
g(x+y) • sup 1 log II/'" e"'::tll 

A"+O Ir.I 
~ ~i~ fil log II e >-x I! !I e 'Ay II 

:r f;~ ¼t (log II e>.xll + log II e>. 1 I\) 

~ sup -
1
1

1 
log II e>.x II t' sup -

1
1- log II e>-.y !I 

>.-J.o ),,. ",t.o "I 
:: g{x) +g(y) 

~ 2! ill 00 

II a"l( II = u + [ impliea 
'r\.u l 

' g(x) ,~ sup - 1-ltil II x II • II x H. ii'rom this inequality it fo llows i n p;;.; r,­
"• o Ii\ I 

ticularthat g(x)<oo, for everyx. Too, by(3) and(4) 3x)is continuous. 

Proporty ( 5) follows from the lemma: 

~• If for every complex c of absolute value 1, x ha s the 

property II e f..l<. II ~ a, then ll x II ~ a. 

Proof of the lemma ,_.._........., _ ___,... 

By contour integration around the ci r-cla I 6 l : 1 • 

Ill: l 

Proof 2! ill 
From the definition of g(x), it follows thut for all complex 

numbers /\ i 0, g (x ) ~ _1_ log \I e ).)(I/. Hence for all A , 
I >i. I 



U e c ).x II 

!\AXIi: 

\)-..lgtx ) 
~ a , u!·:d t her efore by tho prec e::.l iric lom'!la 

\11lg("-) 
\).I Bx H ~ tci . • T,:. kin g x / ~, a r,d DS'.J Ut;1it1g 

this inequality gives 

which implies II x 11 ~ :J, end hence x : .;;, Cc contradict.ion.. Therefore 

• g(x) > o. Properties ( 4) ~ind ( 5) imply th~t g(x) is finite fot' all :-t. 

Proof of 16' --~ 
If x: ~ tha ine1uality is trivial. Assume therefore 

1 
Since g(x) > O, substituting A: g(x) in the inequality 

l I )ij llx \\ ~ e )).tg(x) , usacl in proving { 5) , gives ( -. \I x . r X) 

or n X II ~ eg(x}. 

f.!:22! £!ill 
Since g(x) : l, given ~ > :1 there exists e. numbGr A such that 

0 

II e ,..0 )( If ~ e I >io l (1 -
6

) • If e. AO : \ '\, \ , th an 

n e Ac, ( X + l u) II ~ e l i\o i ( l - s ) + \/IO I = a \). .. ! ( a. - 0) ' so 

g{x+c.u)~2-6, or g(x+
2

E.u_) ~1- f; i.e., to each S>oth:,,re 

~ 1 - ~ ,. 'I'ok e now corresponds an c, I e I : l, such that g (x ; c::u ) 

o. sequence S--+ o, and the corrospondinr €.'I'\.. By 
I'\ 

'-' 

ccmpactnoas of the 

circle \ f.. I : 1 , a subsequence E., • can be selec:ted that is con-
Str\C e g'(X) iz 1'0 1\[,r.,JJ;\:,1 

Yergent to c , say. Thus . a (x + lUJ' ~ 1. But, bec0.use G i s convex 
/\ e, 2 :;;,' 

[by property (3) above]. g(x+/u)~]. Hence g ( x ~ cu) :: 1. 

2.7 Remark. As defined e.bove the fur1ction g{x) is a ;:;,,nr;.ch 

nonn in A, and G ie its unit sphere. Hence g(x) induces Li H:iturd 

norm in A,,_, the f;lpaca of funct.ional s f ovt:iT' A. 

2.s Definition. The g-!2.2!,! of f el~ is defined by 

I\ f II : sup ff( x) I • 
g g(x.hl 

2.9 Theorem. Tho set of' funct1on!::i.ls 

f{u) • l} is 0. tot ,:l family. Hence the sphere S has a v,w--tex nt u. 
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!!2..2.!• Let x• be such that f(x') : 0 for all f E J+ und 

g(x') 111 l (this last requirement _ can always be met by nol"!ndizing x•) • 

. If . x• I 0, i.e.,-. if ''Jt is ·not a total f amily, then by property (7) 

of Thaoram 2.6, an E, ot absolute ~alue 1 exists such that 

g{u -t e.x') • 2. If x_: . t.x', then g(u1-x) • 2; and by property (2), 

g(x) : g( ex') : g(x•) : l • Consider t he two-dimensional complex space 

spanr.ed by u and x. By a theorem of Banach (6;55}, th~re exists a 

functional h defined over that apace such that II h I~ : 1 end 

h( u + x) : g( u + x) : 2. By the Hahn,,, Bana:ch Theorem ( 6; 55 l b has an 

exten$iOn f 1 to the full--space A. Therefore, II f1 llg : 1 , and 

f1 (u+x): 2. H~nce, fi(u)+f
1
(x): 2 and lfi(u) I~ /lr~llg· g(u) •l 

• \ f
1 

(x) I ~ II f 1 lk · g(x) :: l. Consequently fl. (u): 1 and f'i_ (x) : 1 , 

i.e., rl.. E: 1, and at the same tim• · fl(x),, 1, a contradiction. Hence 

x, and also • x •, must equal ~, so 'f is a total family. Therefore the 

G • sphere baa a vertex at u. But • S is contained in O . [Theorem · 2.'1, 

property ( 4)] and has u in common with G. It follows that S also 

has a vertex at u. 

2.10 Corollary. I\ u • x .II : II u + x II~ II u II i mplies . x : .Q. 

f!:22!• If f is an element of the total family J+ . of 

11 • f'(x) I : l f(u • x) \ ~ l 

\1 i" f(x) I:: f f(u+x) I~ 1. 

Together, these . rellltione imply f( x) : o. Hence x s ~. 

Theorem _2.9 mny be formulated e.nalytically by means of the 

derivative of the norm: --------~-
2.11 Definition. The ri ght e..nd left ;derivatives of t h~ "t1orm at 

x
0 

in the direction x a.re defined respectively as 
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If for u fixed x, <.p+ (x
0

, x) = t.p_ (x
0

, x), the derivative of the norm 

is said to be defined !:U, x.
0 

in ill! direction x; it is de::,o·t;ed by 

<f {x~, x). The derivative is defined .£i x
0 

if it is defined at x 0 

for every x. 

2.12 Theorem [t..scoli (1;53)]. cp_ {u, x) ~ Cf+(u, x). 

Proof. Whefl h ;;- o, the triangle ineoue.lity - • 

2 : II u - hx -t- u + hx II ~ II u .. hx II + II u + hx II yields 

\lu• hxll -1 
h + II u -t- hx II - 1 

h ? O. 

Hence, letting h ➔ O,;-, cp+ (u, - x) + <f- (u, x) ~ O 

or, • Cf'+ (u, - x) ~ Cf>+(u, x). But, clearly, - cp+ (u, - x ) : c.p_ (u, 

so, c.p_ {u, x) ~ <F+ (u, x). 

2.13 Theorem [ tiazur (7;75}]. If a. is a real number such that 

<.p_ (u, xl) ~ a ~ <.p..,. {u, xl.), where xl d8l'lotee a fixed element of' 

the space, there exists a functional F with the properties f!'(u) s l , 

F( x 4) a a, and F( x) ~ II x II • 

!:!22f• Consider the linear subspa ce A~ : { x = .su +txl. } of A, 

s und t being real numbers. 'l'he roa-1-valuad function defined over Ai 

by f(x) :: s t-t a is clearly diatributive '"nTid continuous and '-ttctl'ic c:J i s a 

functional. It has, for x&Al., the property f(x) ~ Cf>+ (u, x). 

Since tx 1 : x- su; if h ie positive ml<l small (l+sh)'O), i hon 

llu+~xll -1. 6 + l+:h [nu +lY:h-txlll - 1]. 
Letting h ➔ O+, this gives 'f + (u, x) • s + Cf+ (u, tx). But 

q\(u, tx.) ~ t a in all cases; for if t;> O, a~ 4>+ (u, x1) givos 

' X ); 



tu~ c.p + 
(u, i:.x ) ; 

l 
rind if 

'f- (u, tx
1

) ~ - t a or 

Cf>+ (u, x) ~ 6 + ta : f(x). But Banach has shown ( 6; 27} t hat there 

exists e. functiom,1 F(x) defined ov ,,r a ll of A, such that £,•(x) ~ ii x I! 

for x E: A, and F{x(.= f{x) for x & A1 • In particular, when x : u 

{s: 1, t = O), F(u) ~ l, und when x s x
1 

(s • 0, ts 1 ), :'( x
1
}: r::. . 

The conclusions of this theorem imply II F' II : 1 , and hence that F 

ie a plane of support of S at u. 

2.14 Theorem. A necessary and sufficient condition that S hava 

a vertex a.t u ia that <p (u, x) be defined only in the di rection 

x : 0( u, where Of. is any complex number. 

f!:2.2,! - (Necessity). Suppose c.p+ (u, x) = <p_ (u, x). 'I'hen for 

f E "f , and an arbitrary real number h, 

f{u + hx} ~ II f llgg{u ;- hx) ~ ll u+hx II. Hance, '&ihan h > O, 

f(x) ~ 
~ 

II u + hx II - l 
h 

and when h < 0, 11 u + hx 11 - l 
h 

f'(x) • 

Letting h tend to zero in these expressions gives f(x) ~ q>+ (u, x) 

and (p _ ( U, X) ~ f ( X) • But ({) + ( U, X) : <.p _ ( U, X) : cp ( U, X) • 

Therefore f{x) : cp (u, x) for all r € J+ . Let O< be the common 

value <.p (u, x). Then f(x} • O< or f(x - 0( u) = 0, for o.11 

f E J • But this implies x .. O< u : '1, or x = 0/ u, whi ch completes 

the proof of the necessity. 

(Sufficiency)• If ~- (u, x) / tp+ {u, x) for every x not 

of the form x:: o< u, Theorem 2.12 implies tp_ (u, x) < cp4-(u, x). 

So, if X
4 

I 0< u, there ie a number al such that 

tp_ (u, xl.) <. al. < <.p+-(u, x
1
). Then 'l"heorem 2.13 guarantees the 

existence of a functional F{x) of norm 1 such that F(u) :s l and 



11 

of these functionals is a total f amily ma y be proved a S follows. If 

x
0 

is such that F(x
0

) = 0 for all ~• in l F}, then x 0 cunnot be 

of the form X = 0( u, 
0( ' 

0 ::!. S thi a would imply f ( u} :: J.- / ( C>: u) 
0 0( 

But if X
0 

,/ 0( U9 a real a 
0 I 0 can bo found such that 

= 

q,_ (u, Xe,) < ao < (f)+.(u, xo) and hence ul so a functional i;;, € { F} 

for which F
0 

(x0 ) : a 0 I 0, again a contradiction. So x
0 

I ~, whi ch 

proves that S has a vertex at u. 

i) ., 



3.1 Theorem. The radical R of the n-climansional normed 

ring Afl. is the set of al l nilpotent elements of Ar.. 

Proof. R is an ideal and AY\. satisfies the descend inf chain 

condition. Hence (8;ti4) R is nilpotent, i,e. there exists a 

positive integer p for which Rt:> : l ~ }. In particular, x "F': ~ 

for every x 6 R. Conversely, if x is nilpotent Max I x( F) I 
M 

• lim II x n /I rt : 
l"l.-.00 

o, so x belongs to every mo.ximal ided 

• hence to R, 

3.2 Theorem. If n >1, then An. has at least one maximal ideal, 

f!:22!• If An had no maximal ideals, then by a Theorem of 

Gelfand (5;8) An would be isomorphic to the space of complex numbers. 

But any two isomorphic vector spaces have the same dimension, Hence 

n • lt a contradiction. 

3.3 Definition. A set of maximal ideals 1'I1, ••• , :le. is said 

to be linearly independent if the multiplicative functionals 

M:1 (x), •••, l\ (x) are linearly independent. 

If are linearly independent maxi:ml 

ideals of the ring A (which need not be finite dimensional) then 

there exists an element y 

1 = 2, 3, ••• e. 
Proof. - Consider 

such that 

Since each 

Ll .(y) • O, 
l. 

is a hyperplnne 

of A (i.e., a linear subspace of' dimension n - l.), any hyp ,"> rplane 

12 
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containing L 1 can be expreased as a linear combination of 

indepondant, the hyper'.)lane &I is not ex.prossible in that form, 

and therefore cannot contHin 1 1 • But intersects as they 

have the point .Q in common. Hence points y exist in L I which 

3.5 Theorem. In A, any finite set of maximal ideals is linear-

ly independent. 

Proof• In an arbitrary set of k ► 1 maximal ideals let 

M_1, •••, Mt.' be a maximal subset of' linearly independent I.i 's and 

suppose t < k. Then if H t+t denotes one of the M•s in the set 

-but not in this subset, there exist complex numbers 0(. 
\, 

~ 

aero such that Me = LC( 
,,, Say ~ I ' O; then 

+I i. .,: t. 
-i.::t 

ceding Lemma there is an element y for which M, (y) / 

... ' e . Hence, for any X not in 
e 

: Mt (xy) : [ O{. !\\ . (xy) 
+- I ~=1 " 't. 

• C<, ;-.;.{x) M. (y) 
"\. "\ 1. 

' .. I 
:r oc. 1 M

1
(x) rn

1
(y)/o. 

Therefore M,, (y) , 0, and, for an arbitn, ry x, 
\.+ I , 

MI (y} ~' ' ) 
V ( ) C( ( • ..i \X • '" t+- I X : ! rL t+- I y) I 

by 

0 

not all 

the pre--

and 

This statos that Ht+i and M1 aro the same mt-1.ximnl ideal, a contra-

diction. Thus e : k and the Theorera follows. 

Corollan. 

independent. 

The maximal ideals of A, are Uno~,rly 
n 

3.'7 ~• If A11 has k maximal ideals, then dim ':l • n - k~ 
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Since the '.•ii. 's .-: re l inot:~rly independet1t ~nd 
'-

dim ti;• IC n - 1, 
\. k 

dim R: dim 
/.,,,. .. ~ 
' I M. 
s.=l. 1. 

:r l/1 - l - (k - 1) = n • k 

3.8 Remark. Since II u+x 11<1 impliaa the existence of 
-! 

X 

(5;4), it follows that X E:R implies II Ut-X II ~ 1. \'his states that 

the subspace u -t-R obtained by translation of R to u carmot contain 

int~rior points of If A is finite dimensional, say A• A,._ 

then 5 and u +R have only the point u in common as shown by the 

following Theorem. 

3.9 Theorem. In A.,,,, if x6R, x/~, then II u+x H>l. 

f!:22!• Let i,=p(x)be the smalleet positive integar such that 

xP • ~ for each xe:R (see Theorem 3.1). Then, if x
1 
6 R, xii .;i, 

U u + x I Ii ~ 1, a na Pt -:: p (X) , 

l~ llu+x,llr.~ ll(u+x,>'111 

or, 

n : 

l 
... +--- u II . 
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As n ~ oo, the quantity in brackets tends to v.nd 
p 

n! 
tends to infinity. Hence, the rig:ht-hr nd side 

of the inequality tends to infinity, a contradiction. Therefore 

11 u + x 1 II > 1. 

3.10 Theorem. If An. has k ~ 1 maximal ideals, then An. con­

tains exactly • k _ non-trivial idempoten:ts. (Of course every ring 

contains the trivial idempotents ,€l and u.) 

f!:22!• By Corollary 3.6 and Lemma 3.4 elements Y1 , ••• , Yk may 

be found for which 

Y. ( M.;) ={ 0 when i I 1' 
,. l. . J . ) 

O(i. ;r O when i • i • 

·The complex numbers O<t. may be assumed all distinct (distinct values 

can always be obtained by multiplying the y. 's by a pp r op riata 
k ,. 

non-zero constants). 'l'he element y: [ y~ then has the property 
t.=-1 

y( Mi.): cc,, i.e., its spectrum consists of the k distinct points 

It follows from e. Theorem of Dunford and Hille (10;105) that A n 

contains exactly k idempotents j 1 , ••• , Jk with the properties 

k 

j. J:1 = 8. . , . j. ' 
,. V t.'- '\, L .1i. • u , 

i "' 

j. /e, u. 
\, 

3.11 First fundamental structure theorem. - Suppos€l tho radicd 

contuins an element z such that where 

r :i dim Re Then in t~rms of this z, every xE.An has o. uni qus 

representation 

k-1 
X: L 

i=l 

0(. z 
1, 

,. 



Hi 

potents of Theo-rem 3.10 1 and t he 0(-L •s e re complex numbers. 

If y is another element of Ah. with a r epr0sentat ion 

k-1 

y = L y( !/J JL + 
!.c I 

the sum x + y is given by 

k-l 

x+y = L [ x{ ~ii.) + yC.:d] ji. + 
i :. I 

and the product xy by 

k-1 

x.y • L x( :.\) y( ;s'. d j,:_ 
,; CI 

+ 

which is of the mixed scalar and convolution type. Namely, in the 

representation of xy, 

k-t 

xy = [ xy( U,:) j;. 

i. = I 
the components are riven by 

and 

Proof. -
where Ak , 

-I 

Consider the ring 
k-1 

: { ) x( Mi) j-t} f;, 

n-k 

+ [ Ii 
i. z ' 

i= 0 

(convolution product). 

d ecompo sit ion A s A E9 /' n k-1 n-k .. I 

dimension n - k T 1 since A k- I is of dimension k - 1.) The ring 

contains R, for if x e R, then x( Tu\) : 0 for 

1 ■ 1 , ... , k; and it also contains the aJ emetit wh ich is 

). complex. '.:'hor0fora, 

since the elements zo = \, z, za., 
0 •• ' 

n.- k z 
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independent, they constitute a b:-; sis in .l\. ri.-k-t-l , and every elr~ment 

of A"' has a unique representation as X : X 
1 $ X" where 

k-1 n.-k 

x': L x(;w.) j., and x" = L O(i. z 
i In this decomposition i. ,. • 

,. : I i:0 

the sum and the product or two elements x • x • 1$ x", y .. y • e y" 

take the forms: 

X + y : X t -t- 'J I El, x" ;-- y" 

k'-1 

x' + y•,, [ [x(Mi) + y(t\)] j" 

~=I 

where 

rt-k 
x" + y" : [ ( 0c {.. + (3i ) z,. 

l, =-0 

and X'/ = X 'y f e x"y" 

k-r 

x•y• • [ x{ M,} y{ M,) j. ,. ,. ,. 
i=t 

( scalar -oroduct) 
where 

x"y" • 

n-k 

L 
i:::O 

Yi 
• 't, z • 

11-k ;. 

~,; l:: C¥eA-t•' 
(convolution product) 

3.12 RemaY'k. The coefficients CXt , i : o, 1, •••, n - k 

associated with each x by the representation above define n • k + 1 

functionals over An. (i.i;lll), say r. {x) • °'-<.. These functioncls 
,. 1'1.-k -

are linearly independent for if' f •1 • 
'\, 

L f-i. rt, where i • is 
i. .. 0 
i,,/d.' 

between O and n - k and the M.i. 'e are constants, this would give 
1'1.-k / -

•> ~ ,I 

f i., (&,. ) : L...., f.;_ fi (z 1. ) : o, e contradiction, since by 
\ =O 
i -l:'i,J 
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"' ' i, I ) definition ! ii ( z : 1. 

It should also ba observed that in tho pre-
k-l 

ceding Theorem are normed rinps. ?heir unit el 0rnei1ts are )""" i ' L .," 
i:I 

a,nd jk respectively, and the norm in thase rings i s the rw.me as the 

norm in An• Indeed 9 o.ny norm admisai ble in An is nutomati ce.lly 

admissible in both A 
k-1 

and Conversely, if' II l\ ' 

II II" are admis~:d ble norms in A and k-1 A r, _ k,,. 
1 

rospocti vely, 

then II x II: II x'@x" II : ilax ( II x • II ' , 

an admissible norm in A~• In particular, one ~~y tak e the ~orms in 

and A to be 
l"\-k-+t 

. II X' II • : '.Jax I x ( M . ) I 
. . '\. I 

!~1.~k-1 

11 x" I! " : 

These will be referred to as tha natural !.1.£.! ~ of Ak-\ und 

At\_ k ,..
1

, and 

will be called the natural~~ of 

justified by the following Theorem. 

This terminolof!Y is 

3.13 Theorem. '"I'he natural fl ::.t norm of Ar,_ has the l1utnesa 

Property (7) of Theorem 2.ti. 

~. If . 11 x' II' : II<ax I x(li. ) I : 1, and the maximum 
I ' L ~ .~1.~,._-1 

occuts say for ~.i 1, then taking t: to be x('.: 1) r:ivas the desired 

property. Namely II x• + e u 11 = 2. Similarly, if II x" U If 

n.-k 
= L I 0(, I 1, then 6 :r 

O(" gives :: 
I O(_, I i.=o 



n.-k 

0-: ,_ .. ·' .... 1 -l-- [ 1 ( y ; ,. · .: ; "' "~ ~ 

·(:::: ! 

Thi3 Theorem follows im,uediately from these hm cases. 

3.14 Theorem. Any t wo l'lormec1 rinr: s A11 , f..n' bot h of di men­

sion n with radic E: lS of dimension r oatisfy i rip: the com1it ion of' 

Theorem 3.11 are isomorphic. 

Proof• According to Thoorem 3.11 t v.10 general el ernnnt£ x E A,....9 

may be repras ~nted as 

X: 

k-1 L x(;~; _J ji. 

(=I 

k-1 

x•: L 
t::./ 

i.. 
0(. I Z I • 

'!. 

The :isomorphism Ji. ~ A I 
i'\ I'\. 

now follows by defining 

arbitrhrily setting J{~ ..... j;_ '• So X«-+X' when ev er correspond ing 

J. -\. 
and 

1. 

z - components a r e equal. 'fhis isomorphism is obviously 

a homeomorphism. It is an equivalence if tho norms in Ah.. 1:1.nd ;in.' 

a.re replaced by the naturul flat norms. 

3.15 Second fundamental theoreme 

of * rr 1'heorem 3.11, and let A,-L = g, L 9 

space {as a. Banach space) of An• Thon 

normed ring by taking the function::,ls 

as a bnsis so that, for a given z, 

representation Ls 

Let 

••• )-
) 

~ 
j\, .. 

I > 

"" 
n- i,_ 
r----•"\' 

' 

An, sat:i. sfy the conditicm 

denot e the conjugate 

ce.11 be made il1to a 

has a unique 

L i f(j.) . , + L ! ( Z ;, ) f . = ~. j I • 1. 1. 
i.::.t i.:.: I 

'rhe product and norm of elements oi' 
r. - k 

i-) 
1--t 
i =I 



2.0 

k 

ll f U : Max { L 
i =- I 

a linearly independent sat; f'or if 

t L /',i f'L, 
• > 

fl . M• + thon l : f., (z1.) 
,. 1. '\. 

i = I ~-=I 
,ji.' · 

. ) I'\•· ~ ;~ ;\ . f 
. ) 

f- , M,(z'-) + ( z,. ) : o, and if ,. 'I. 'I. ........, 

is a basis for 

a representation 
k 

f = >-"' U, I!i · 
'--' ! l. .... 

i:. I 

To evaluate the f, 's form 

k 

so that every 

n-k 

+ >' ),, f. • L;--1 1, '\, 

1.,:J 

n-k 
r (je) = )--J' f-;_ Mi (je > + L 

i = r i=I 

Similarly, 

r- -- ( e) . r.1 . Z 
l. l. 

The-ref ore, 

k n-k 

f = L f(.1.) tI. + L f{ z 'I.) f. • 'l ~ 

i.= I i.:: I 

--

* f e. A ' n. 

... , 

has 



.the properties of a product in a normed ring ., Th ,:,, unit cl J:210nt i<J 

,1-k 

• ,{ •• + ) f. .. F'inally , the ;:iorm is t,d~.!1issibl0 s:i.nct) i-t 1s tho ~, ~ ~ 
L:: I 

natural norm correspondinr: to the mixed ·oroduct o 
~ 

3.Hi Theorem. In A r'I. the el emer1t s 1·\ , ••• , f f1.. _ k :,, re 

• idempotent s, and 
~ 

A V\ ha s n - k -+· l max5.:nal ideals. 

Proof. - The idempotancy of the follows directly from the 

definition of fc.g in Theorem 3.15. ~~xhibiting in each case the 

components of t.heir generic elements, tho n • k + 1 mt,xirrw.1 i dods 

are 

{ ( o, r(J:i)' •••t f(jk), f(z),r(z2 ), f(z 3 ), 0 •• , f(z "' -k))} 

{(f(j, ), f(ji}, ... , f{ji.-), O,f(z:.),f(z'3), 
•• 0' 

f(z"-~))} 

f(f(j,), f {j2.)' ... , f(jk), f(z), () 9 f(z~}, 
• 0.' 

f ( zn.-k) }t , 

Corollaa. ':'he normad ring defined in Thaorem 3.15 

is the dual of Ar~ taken with the nntur-0.l n~t norm, that is 

~ tt 
A'fl. : A"-, so An. is re:tlexive as a normed ring. 



PART IV 

UP~RATORS 

4.1 Definition. A set B is called {weakly) saqu 8ntially 

compact if every infinite sequence t "n.} in B contains a subse­

quence converging {weakly) to u point in 

4.2 Remark. The word operator wil l be used or1ly in t he sonse 

of linear operato~ (i.e., distributive and continuous). 

4.3 Def'inition. The operator T ls {weakly ) compl et ely con­

tinuous if it transforms bounded sets into (weakly ) se ,1u ::mtially 

compact sets. 

4.4 Definition. The element xEA is said t o be {weakl y) 

completely continuous if the opere:1.tor Tx definoc by 1: y : xy is 

(weakly) completely continuous. 

4.5 Remarks. The standard abbreviations c. c ~md w. c. c. 

will be used to designate completely continuous and wookly completely 

continuous operators and elements. as defined above. 

In A 'r'I. every x ie trivially c. c. e.nd w. c. c. As shown be­

low• thie is not true of infinite dimensional rings. Some of tho rings 

Used will ba indecomposable. It ia recnlled that such rings cannot 

contain idempotents other than ~ or u, for if A contains j s ~, u, 

then A has the Peirce decomposition A : (u - j) A EB jA. 

4.6 Thoorem. If A is i nfinit e climenaional and inda to ".'lposable, 

.and if x is Ce c., than xe r o 

Proof. In vi,;w of the preceding Remark, A eo?1t n ir1s 110 non-trivi al -
idempotents. Hance, by a 'r'h eorom of Lor ch (9; 416) the npecirum 

22 



. 6" (x) of x is cormec·ted.. Tirnrefor-e, if 

arbitrary poini in CS" (x) and 

is proved), connectedness implies th&.t a ssquence of points 

be found in v (x) which converges to A ~ A . 3ut as on. o 

is c. c., it follows from a Theorem of Riasz (11;90) thut t he values 
-1 /J.. for which ( U • r x) doen not exist tire discrete, i a 0 .. , 

omitting tha origin, () (x) : { ~ } is cliscrete•, a contndi etio:1. 

Hence () (x) reduces to the point (\ : o, and therefore z E. R. 

4.7 Theorem. If 

then 

(1) A is infinite dimensional and indecomposable, 

(2) f( /\) is a function which is 1rnalytic on ;:; rid innide tho 

circle I A I : r, 

(3) II x ll ~ r, 

( 4) the olamant f( x) is c. c., 

(1} there exists a unique Ao such that X - /\ 0 u E:. R 

{2) /\0 is a root of r( Ji). 

Proof. The hypothesis implioa that re A> has ar: expansion -
CXJ 

L valid fo1· Therefora, si~ee 
'r\.:: 0 

00 

f(x) -- L .. ('. 

""'tl X is un element of A. By the preceding Thoorom 
n:o 

f(x) E R. Hence, for every maximc.1 ideul M, f(x) { L~ ) :t o, that is 
00 oC 

L 
I'\. 

L f( x( M) ) • an[x( t )] - anxl"l( n ) -
1\:0 ,s.:::: o 

: f ( x) on = o. 

But ! x( LJ ) I ~ 11 x II~ r, £Hld f( A) has only rt finite number of' 
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zeros in I A I ~ r. Thus 0- (x) is finite and hence isolated, and 

that contradicts the fact that A ie indecomposable ( 9; 416) unless 

0-{x) consists of only one point: CS-(x) :: x( M) • A.0 for all ti. 

• It follows that i\
0 

is the only value of A for which 

(x .. . Au} (M): O for all 

more f ( /\0 ) .: o. 

that is for which x - /\ u E R. E'urther-

4.8 Corella!:%• If A is inrinit-e dimonaional end indecompo sable, 

and X n. ii e. e., then x E:R. 

Proot. - Since >. :: 0 is the only root of r( A> : Ar. , . this 

root is /\ 0 • H811ce., x • /\ 0 U • x ER. 

4.9 Remarks. • The converse of Theorem 4.6 is not true. There exist 

indecomposable infinite dimensional rings whose r e.dicu.ls contain elements 
• ' 

that are . not c. c. For example, consider the ring of convergent power 

series a :a a x n. for which 
I"\, lan./<OO. The sum and 

the product of two · elements in this ring a re defined as a+ b • 

Do¢ 00 ::>a oO 

L n. 
+ L bl'\xn: L (an.t- b,Jxn., and ab• L xn anx C n, 

n.:O 'I\ ::.o · YI= Ci I'\ ::co 
n. L where C • L a , b , • The norm is given by II a I) • I a l'I.\• 't\ \, l\,•'I. 

i:;:u n, ;::.O 

The only maxilllal ideal, hence R, consists of all a•s for ~hich 

oO :---, .. 

a0 • o, that is a • L an.:x
1
". The element a • 

t\: I 

which is in R io not e. c. For, consider in A the bounded aet 

00 

1 b (k) } where b Ck): [ C' , I"\ k- . 
C)h.k X ., X • The transformed set 

l'lal • 



is the sat of all elements I ' , 

00 

-k'I I ab ; 

r,_:o 

1 
X , a nd every 

sequence of these elemants diverges bec r: use, t aking k < e , 

II ab(k) - ab{!) II : r-~ :n+I + r.~ C, -:t-k•n ) 

- 2 --3- ~l... 
- 2f-lt ;,;, 2 

HoweveT, there are indecomposable infinite dimensional ringu whose 

radicnls are made up entirely of c. c. elements. For exmnple, the 
t 

ring of operators of the Volterra type Tf g: { f(t - s) g ( s) ds, 
0 

O ~ t ~ l, from the space of real continuous functions g( t) over 

.. the unit interval and into itself'• 'l'hi s ring has been discussed by 

.Michal and mconin. (12) Each continuous function f(t)t o ~ t ~ 1, 

.gives rise to an operator Tf. 
' t 

by · r
3

: 1 r,(t- s) f~(s) ds, 

'l'he product T.f :r Tf 
',! I 

and the norm of T, 

is defined 

is t aken to be 
' 0 

t 

thenonuof r, 11 Tf 11 : 11r11,: sup I f{t)f. 
o~t~ I 

This ring has no 

'.. unit element, but may be imbadded in the space of couples ( /\, Tt) 

with complex. Defining the product by ( \ , T+ )( \., T ,c ' ., ) . 
( A, \ ,~T{ +A?~~+ T+. T+,t) and the norm by II (i\, Tf) II= 

I A l + II T II the space becomes a normed ring with the unit element 

.(1,0). The radical is the only maximal ideal, Now 

consider the bounded sequence of clements 

• I Arel, II gn// ( K for all n. Then if {O, 'rf) is an ~{ rbit rat"'/ 

element of R, the elements (O, An Tt + Tt Tgn) :: ( 0 , Tf ){ /',,.,,, 'lg'r,.) 

form an equi-continuoue f 0mily. For, since the i nterval O ~ s ..$ 1 

is closed, f( s) is uniformly continuous and hence given E. > 0 
e 

, one can find 6 > O such that I f( e1 ) - f ( s~) I < 3K whenever 



I SI - s .t I < 8 • 

\ .. t:t < 8 = I 

--

26 

Therefore, taking 0 ~ t,2. < t , ~ 1, and 
c ' ~ 1, '.iin ( 3 II f l! K and writing "" for '"g~ 

rt . 
+ l f(t-s)~n.(s)dS 

, gives for all n 
·o ... I /In[ f(t,) - f(t,)] + 

... 
l..i_ • l f(t~ - s)gn.(s)ds 

0 

I;,\ • .[ f(t,) _ f(t,) J 
t4 

+ l [r(t 1 • s) - f(t, - s)] v ,,_( s)de 

Ot 

+ jr<t 1 - s) r.n(s)ds 

t. 

~ \r(t,) - f(t.z.) j K + lr(t 1 - s) - f(t:i. - s)j K 

c c 
~-+ 

3K 3K 

t ( t I - t ;_) /I f I! K 

+ 8, llrl/ K ~ E. • 

It follows by Ascoli 's Theorom that the swquence f\ .. _' contains a 

uniformly convergent subsequence gr'\. t 0 Hence converges, so 
I 

that Tf is c. c. 

4.10 Theorem. The set C of all c. c. elements of i, is 

a closed ideal. 

f!:22.!• Consider in A the bounded sequence { z n.} . 'rhen if 

xEC a subsequence { zn. } exists such that lim /1 xzrc - xz 11, II 
I "\/Y\ -+OQ I I 

Similarly if x• EC there is a subsequence { zn.a.} of 

{ z n,} such that 1 im II xzn -
. . "Iv_ > IT\2,. ➔ ()GI J. 

xzm fl • o. Combinir1g the two ,. 

• limits gives lim ti (x +x')zn 
na., h'I~ •♦00 2. 

- (x + x')zl"h II II o. Therefore 
t. 



t ., q c_ (' X ,., c::; v o Also, if y is un arbitrr1 r-y element of A9 

lim ii xyz 11 -
_, · m, ➔ 00 I 
·,) ' 

XJZ 111, I!' X2: 
n, 

t.e., x.y~C. Thus C is an ideal. To show that C is clos r,id 

consider a convergent sequence of' elements Xn in C9 xri_-+x say. 

The operators defined over A by f orm a 

convergent sequence. Hence the limit operator Tx is c. c. (G;9fi), 

that is x is c. c. 

4.11 Lemma. The limit of a convergent sequence of w. c. c. 

operators is a w. c. c. operator. 

The proof of this Lemma is entirely similar t o thut given by 

Banach ( 6; 96) in the corresponding ease of c. c. operators, and will 

be omitted. 

4.12 Theorem. The sat ~i of all w. e. c. elements in A is 

a. closed ideal. 

f.!2.2.!• Let 
r , 
i zn., t can be 

since { z", } 

{ z,..,} exists 

t z,,_} be boundoo. 

found such that xzn, 

is bounded, if x'E: W, 

such that 
f ~ 

l x'zl'\a. 1 

If x E: ~ , a subsequence 

converges weakly. Similarly 

a subsequence l z ~"- } of 

converges weakly• H follows that 

{x + x' )zn. converges weakly, i.e., x + x • v; . Again since { z Y'\. } 
t ~ 1 

is bounded, if yf:A, { YZn
1

} is also bounded. :Ient:e for xe W 

there exists a subsequence f Y'n:.. J for which y(xzr.J • x(yz.._J.) 

converges weakly. Thus W ie an ideal. 'l'hat ,, is stronrlY closed 

follo•ns from Lemma 4.11. For if xrtE W and lim ll xr. -
n. ➔ ;:)Q -

XII • o, th0n 

the w. c. c. operators T defined by TX y • Xn.Y converge to x,., f\. 

TX ' 80 that Tx. is w. c. c., i.e., xE VI . 



4.13 Definition. A ring t~st satisfies the t wo condit ions ; 

(1) The ring is a star ring 

(2) Uniform convergence of the sequence xn.(;'-'.) vJit ?l Y"G 3pHct to 

the maximal ideals implies weak convcrgonce of' V •• n. 

-will be denoted by A, and its cor1jugat e s pa ce as e Be.na ch spnca 

-'It' 
denoted by A • The space of maximal id,m.ls of A with the ~ 

topolog,v; of Gelfand and Silov (13;3 ')) \Yill be ca lled oo'e r· 
l. it is 

"" a compact Hausdorff space (13;31)J. C( oo"'C) will desigYw.te the 

space of complex valued functions over 1,""t(:; , ar,d ----- * 
C{ oY'C ) the 

conjugate space of C( o'(C, ) • 

-* 4.14 Theorem. i~'very element f E- A can be extended to an 

element of * C( ooG ) • 
E!:2.2.f• 3y a Theorem of Gelfand (13~34) every <__p (c.) EC{ o)"t;) 

/ 

is a uniform limit of functions xrf :) . Conditi::m Ci) of Definition 

4_.13 implies the weak convergence of x -1 a l im f fx) "X~'·ts :for n.' ~• ., n.➔ oo ' n '-'-" . 

every f E- C( o'tG ). Define f( <f ) : lim f{x,). '.i'he function 
fl- oc, 

f( cp ) is cl oarly independent of the cho: ce of the s equeYJCG 

It will now be verified that f is a contirmous function ovsr C( '{'ft.~ ) ~ 

Consider a fixed <-p
0 

E C( ofG ) , and u sequence 

i.e., lim H c.p - Cf
0 

II _ : o. Then for every n t:1 ere exists 
• l\.-.. l>Gl n. C( ooe) 

e. subsequence { x n, } such that 

I! X "'1 

!r(xn ) 

'I 1 
- rn h < -Tn n 

• I 
r( cpn > I < 1 

whenever n 1 ~ NI o It follows thot 

' 
-. ---- 'it" 

r E c( arc > , 

x ( :·r) converges uni f'ornily to n.. " 

q:>
0 

• Hence, usi ng Cond ition ( 2) of ~)e finition 4.13, 

um Ir< ro > - r( w" > I • o, l'\ ➔ oO Tn T , 
or 

every f E C( '()j'(; ) * o 



this property is unique. 

The followinf~ Lem% of' ['.akutuni 's {14;1012) is given ,;ithout pro of. 

4.16 Lo'oma. Any functional i' over C{ nY.'> ) crrn be r spre-

sent ed as a completely additive measure JJ,- { Z) with respect to 

the smallest Borel collection of sats ,- :, _., containing the opm1 subsets 

of m. 
4.1 '7 

-it' 
Lemma. A and 

-- * C( '.f'(G ) are isomorphic. 

Proof. Indeed, the mapping defined by the identity mrrpping of -
-~ -* 'A • is by Corollary 4.15 a 1:1 onto mi :pping of A to 

Moreover, as f(x( M)) :r f(x), it follows that 

II r 11-lf : sup I re x) l - sup I f(x( t'.)) I • -A ii~ II~ I II x II ~I 
But II X II~ 1 implies sup I x( E) l ; II X ii~ l i. e., t he sat ~ ' M 

II x II ~ 1 is included in the set where sup I x( E) \ ~ 1. Her:ee, 
.M. 

II f llx► .:f II f ''ccml • s~J.p I x{ M) I• \\ f !IC( mf .. 
- 'flt 

Whence, it follows from a result of Banach (6;41) that A is 
-,t-

isomorphie to C( YrG } • 

4.18 Corolla.a• Weak convergence in A is equivalent to 

C( ~ >*. weak convergence in ~ GU 

• 

4.19 Theorem. If T is a w. c. c. mapping of A into itself, 

then T 2. ie 

-* 2. Consider over A the functional f( T x). Using the 

notation (x, r) to denote f (x) gives in that case (T 
2 

x, f) :; 

( Tx, 'l',. f). Let l x n.} be a bounded sequence; then Tx I"~ is weakly 

convergent, 

2. 

'ti 
Tx"----+ x() say. To complete the proof it must b0 shown 

that T x converges uniformly with respect to all functionals f 
I'\. 

of 



norm II f II ~ 1. I f the contn:ry is assumed, then there 0xi sts o. 

sequence of r 's of norm 
I"~ I! rh. 11 ~ 1 such that 

where co > 0 has been preassigned arbitrarily. ?or convenience, 

suppose nv = n, n • 1, 2, ••• 0 As T* i a al so w. c. c. [ see 

(6; 100) where it is proved that Tc. c. implies 7* c. c.; the p·roof 

for T w. c. c. is similar J, a subsequence of { Tf~ } can 'be 

selected {which again ie supposed to be the full sequence { Tfn.}) 

which ia weakly convergent as elements, scy. Thus 

the proof of the ~'haorem will be complete if the followin ;:r L e :'l'ta t'urnish­

ing the desired condition can be established. 

(1) r ,)r each " xn.<i'Jj> converges to ,:-;; 9 

( 2} xn.( t:} is uniformly bounded, i.e., 

n and ovary M 

( 3) the functionals f n € C( ooC { 

elements to f? 

then (f n. , Xn) converges. 

X ( IA ) 0 , 

I xri.( M) l ~ K for every 

converge waakly as 

!:!:2.2.!• By Lemma 4.16 and the weak convergence of r r.. it follows 

that if f'-n. is the measure function associated with f n, , then 

f- n ( ~) converges to 

Now,· 

j(rl'\, x,) - (f0 , xJ/ :$ I {fl\, x0 ) - (f0 , x0 )/ + /(rn., x0 } - (±'0 , xn)/ 

:II,l+II2.l. 

Consider :r 
I 

first. By y; goroff•s Theorem (15; 18), ar1 ;~ exists for 

when n ~ n
0 

, such thnt 
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U ,, ( ?!c) _<. c , w•n ,., ... e "' c d 
1 

- c- "' • t, . (motes t he complement of :l in 

'ttt • The remark a bove shows t hat f-'f\. (:{) tends t o f o C/) 

as n ~ 00 , so fy,. ( ,/) ~ 2 c for n ~ nQ. Hence, as f r.. tends 

to f 0 weakly, II, I~ E., for n ~ n
1

• 

Secondly consider I1 • 

I2 : l_l xl\( M) - xo( M) J drn. 

m 
• S. [ xn.( b) • x 0 { I:;:)J dffl +-

e: 
I + -

• a.I .l.22. • ) J 

The weak convergence of f re. implies t hut II fr. II ~ Y •, 'oVher e l\ ' 

is a constant. Clearly, theref ore, 

~ £• (Total Var. of f-ri.> ~ E. II ffl. // ~ €, K'. 

Also, 

I I,_, t I ~ 4-C e for n sufficiently l a rge. The Lem:"'.la now f ollows 

by combining the inequalities for I Ii I , / I~,I / , and / I :i.~ / • 

4;.21 Theorem. If A is infinite dimensional, it ca r.not be 

reflexive. 

f.!:22.!• Assume A is reflexive. Then A is weakly complete 

(ltiJ 423 ). Hence the identity operator atld so by 

Theorem 4.19 (Tv..• T~) it is also c. c. Therefore the unit sphere 

is sequentially compact, and i t follows that A ie finite dimensional 

(6;84), a contradiction. 

4. 22 Corollary. If every el emer1t of A is c. c., t hen A is 

finite dimen sional. 

Proof. If Cs A, then A ie reflexive. (3) The Corollur y now 

follows from Theorem 4. 21. 

4.23 Theorem [Dunford and Pettis (17;385) arid Phillips (18;536 )] • 

. If T is a w. e. c. operator mapping L into L, then T2. is c. c. 
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!~ a fundamental result of Kakutani (14;1021) * is 

isomorphic to C( J1 ) , where J1 ~s u. comp1:,ct Hausdorff spa ce. 

But is w. c. c. [ soe (6;100); the proof il'i the w. c. Co Cit 00 

is similar], 0nd C( 11 ) is an A-ring. Hence, by 'I'heorem 4.19, 

is and, since is 

4.24 Theorem. Yf A is infinite dimensional and indecomposabl09 

and if X is w. c. c., then XE: R. 

Proof. - Theorem •l.19 implies that 2. 
X is Hence, by 

Corollary 4. '7, x E: R. 

4.25 Theorem. If 

(1) A is infinite dimensional arld indecomposable 

(2) f( ~} is a function which is analytic on and inside the 

ci \·cle 

(3) ll x II ~ r 

( 4) tho element f(x) is w. c. c. , 

then 

(1) there exists a unique /\ 0 such that x • /\
0 

u E. R 

~• The result follows immedia-c.aly frorn Theorem 4.7 upon 

observing that 
2. 

[ f{ /\ ) ] satisfies the conditions of that Theorem. 

4.2G Corollapr. If A is infinite dimensional nnd indecomposable, 

and n. 
x is w. e. c., then 



$everal problems related to topics in Part III nr e discussed in 
/ 

t,his ;Appendix. 

1. Proj ectio1;1 operators g"!fil:, Ao 

Definition. A projection P over A is an operator b .ki ng A 

into A such that 

(1) P(x + y) = PX+ '?y 

(2) Pxy • PxPy 

(3) P'-x:, P(Px) • Px • 

Remark. An i dempotent j of A generates over A t he pro-

Jection P defined by Px: jx. In this s ense ovary ring admits two 

trivial projection opera.tors: Px = x und Px a ~. Gver-y projection 

over A is not necessa:rily of the type Px • jx as the following 

example shows. This example, it should be observed, involves ~ot more-

- ly an algebraie ring, but a normed ring. Thus, aven in t~e presence of 

a norm the representation of P in the form Px ■ jx is not possi ble 

in general. 

:~xa:imle. Consider the ring A3 of elements x a { S lJ r"j , C ) 

(where s ' Y\ t ~ are complex) with product xx'• 

( ~ 5 • ~vi· + s·~ ( ?;" •), and norm II X ll -• ' -
Max( 15 I + I tr I i ?; I \ This Y'ir1g !·w s two non-trivi e.l i d empot ont s, 

' J• 

JI • (1, o, 0) and j = ( 1, 1, 1}. Their products with tho r onarul 
2. 

element Xa ( s , ~ , ~ ) are jl X: ( s ' ~ ' 
0) arid ~ X 

.J,._ 

• ( a, o, ~ ). Now the operator u defined by Ux • ( s ' o, 0) 

33 
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is clea rly a projection. However, for x a rbi t rary 

Indeed, t here i s no fixed element ........ 
.f'. -

( ~ '' ~ . , ~.) such that Ux • x'x for all X t • For this would 

• •. require f 5 ' :: f , I 1' + f'q = o, and ~ ~' = o, 

whence f·= 1, vi·=--1 s ' c; ' = 0 which mear1s that x' is 

not constant. 

If P ia of the form Px:, jx the following result may be stated. 

Theorem. If Px:: jx, then PA is a closed ideal of A. 

f.!:2.2!· The case j: ~ is trivial, so assume j ,/· ~. PA is 

obviously o.n ideal. In it consider a convergent sequence jxn. ➔ Y • 
e 

For n sufficiently large II jxn - y II ~ II _j II , so II jx,.. • jy II • 
II J4 X n - jy II • II J ( j x n • Y} II ~ II j I/ ill • i • Thus 

jxn. ~ jy : y, i.e., PA is eloaed. 

Remark. F.Nen when a projection P is of the form Px : jx, 

in general PA will not be a maximal ideal of A. For example, in 

the ring A"3 above P:t A~ • j2. A3 , { (o, o, ~ } } ie not a maximal 

.. ideal. The maximal ideals in that ease are { ( o, Y) , \ ) } and 

f ( S ' Y{ ' O) } • 

2. Homomorphisms. 

Theorem. If B is a normed ring with zero radical, and h is 

a homomorphism from A fil!12 B whose kernel is a closed sat, then 

h is continuous. 

f!:22!• The kernel of h is defined by K • 1 xeA / h(x) • .Q}. 

The mapping H ot A/K onto B that is induced by h is an 

algebraic isomorphism. Since K, which is an ideal of A, is closed, 

it follows trom a Theorem of Gelfand (5; 17) that H is a homeo­

morphism. Hence H is continuous. tJoreover, if X is the coset 
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of A/K ' whi ch corresponds to an arbitrary x'E A, then 

h{x) : H(X ), and so II h(x) I/= /I H{ X) II ~ l\ H II · H Xii• But , since 

X is an ideal of A, u X ii a inf II x' u ~ II ,c n. It follows 
x' EX 

that II f{x) Ii 6: II H II II x II, i.e., h is bounded ·and hence continuous. 
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