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ABSTRACT

In a complex commutative normed ring the Qnit sphers at the
origin has a vertex at the unit element, If the ring is finite dimen-
sional, the radical translated to the unit‘elemsnt intersects this
sphere only at the unit element,

A finite dimensional ring containing an Fluest of nilpotency
degree equal to the éimensien of the radical is a direct sum of & ring
with a'scalar product and a ring with a convolution product. Using
this decomposition the conjugate space is made into e normed ring, and
a duality theory is obtained, |

Generzl properties are given for combletaly continuous and weakly
coﬁpletaly continuous elements of various types of rings,

In a star ring, if uniform convergence with respect to the
maximal 1de§15 1up1iss'weak convorgence,'then the square of a weakly
campleiny,continﬁqus operator is completely continuous, Some of the
conaequenceﬁ of this result are: (a) no infinite dimensional ring
.othhia'typo is reflexive as & Banach space, (b) =all weakly cgﬁpletely
continuous elements of infinita dimensional indecomposable rings of
this type 1ie in the radical, (c) a new proof of Dunford's theorenm
that tha‘sqﬁare of a weakly completely continuous operator from

L into L is completely continuous is given.
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PRIFACS

" This thesis conteins an investigution of three general problems
in ths theory of cqmplex commutative norﬁed rings. Such riunpgs will be
denotoed by the letter A.

: Thé first problem deals with the structure of the unit sphore of
‘As In a Banach space it ig well known that the unit sphere is a closed,
convex, centrally symmetric body,. In the case of & normed ring(an
'édditicnal restriction is placed on the norm, aud hence on the unit
’epher‘e,lby the inequality )| xy | < Ilx W I ¥ e« It is shown in
Part II that this imﬁiiea that the unitisphere centered nt the origin
has a vertex at the unit element u, (The term veftex is explained at
the hggiﬁning of thut Part.) This result is then interpreted in terms
of the derivative of the norm us used by Ascoli.(l;SS)*

The second problem considered is that of defininé a normed ring
structure in the space n¥ conjugaté to the Banach spece of A, The
.possibility of accomplishing this was strongly suggested by several
facts, For exemple, there exist numerous similarities betwesn results
in normed ring thedry,and in the theory of normed lineur latticesr[e.g.
gee (2)]. If 5 49 such a lattice there is a natursl way of defining

a normed lineor lattice in E*i (233) As another ex#mple consider the
set of pairs éf complex numbers (x,y). This cen be made into & Banach

space, say A, by defining | (x.v) | = sex(Ixl,)y]|)e Its conjugate.

* . The first number within the parentheses refers to a numbered
roference work at the end of this paper, and the gecond number refers
to the page number of that work,
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space A*g {(u,v)} ig also & Banach space 1f I (usv)ll = sup Il ux+tvy ||
= |uf +ivl is taken as norm in A*, Now if products ure di‘e(;’;:::d in

A -and A% respectively as (x,¥)(x'yy*) = (xx*,yy*) (sca,ér product )
and (usv)(u*yv?') = {uu'yuv'+u'v) (convolution product), A and A*b
become normed rings, This shows a duality between seular and convolue
tion prodgcts. Furthermore Ay of dimension n = 2, hes k = 2 maximal
ideals, vhereas' &, also of dimension n = 2, has nek+l maximel ideals,
‘This problen is discussed in Part III, where a complets duslity theory
for n- dimensional normed rings gives a pariial answer,

Thirdly. an snalysis of certain élassical Banach space operstors
defined over normed rings is given in Part IVe 1In particular completely
continuous and weakly completely continuous operators of the type
Ti : T;y‘: xy are studied, The elements x which generaté T, are
.éalled cbmplatsly econtinuous and waakly‘complotely continucus, réspectively.
Partial results on completely continuoug elements havg besn obtained
vindepon@ently by ¥. Freundlich (3); howévar, resulte presented here are
‘béliGVed to be mors complete, A general theorem on woakly completely
ﬁontinuous transformations is proved, and completely continuous elements
'ére discusaed as & special case,

For purposes of reference some definitions and theorems from the

theory of normed rings are given in Part I.
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FART I

o

INTRODUCTICH

1.1 Definition, A complex commtative normed ring A 1is a set
if elements Xy ¥ ..o having the following properties:
(1) A 4is a complex Benach space,
(2) ¥or each x, y€ A, the product xy is uniquely defined, lies
in A, and has the properties:
XYy = ¥yX
x(yz) = (xy)s
x{y+2) = xy+xs
x(}xy) z XY, where W is a complex number,
(3) A unit element u oxists in A such that ux s x for all
X€E€ A,
(4) The gggg. I Il in A has the properties:
Wxy b glixpiyll
Wuji=1.
1,2 Remarks. The concept of complex commtative normed ring
was first introduced in 1932 by A, D, Michal and R. S, Hartin, who also
considered the case where the scalar field is the real numbers.. {43;69)
Henceforth complex commutative normed rings ae defined sbove will be
referred to simply as vings, ©Sots that are vrings only in the algebraie
sense will be explicitiy'called algebraic rings.
The zero element of A {8 denoted by & to distinguish it from

the sezlar O,
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Ify as & Banach space, A is n-dimensional, the ring is culled an
n—dimensionﬁl ring and is denoted by A .

A isa Eﬁ&i ring if for every element xeA there is an element
_x*e'A such th;at x(M) = m for all maximal ideals i (see section
1.4 below), ‘

‘ 1.3 Topologies in A. Two topologiés will be used in A, the
strong (or norm) topology and the weak topology. In the first topology
a naighbor_héod of .bah element x  is the set N(x,3E) of all x such
‘t'hat i x-,'x; <€, Whére g is an arbitrary positive numbe}'. A sequence
'{‘x“}» is convergent, or more precisély str.'ong'ly: convergan:b, if
'nil).ixfmllx“- x|  exists, In this 'terminoiogy condition (4) of Definition
lely Wxyll ¢ Nx 0 WHylly, expresses the continuity in the strong
tppology of xy with respect to {xy ¥)s Unless‘specific mention is made
to the contrary, it is the strong topology which will be used in A.

o In the weak topology a neighborhood NK(x,3 f 5 seey £, 3 &) of

X 'jis the set of all x such that \f.%(x-xp)'){é',' 1w 3y weny %y

o
.whsre' £5 eeey i‘m_ are m arbitrary complex linear functionals ofer
Ay and & is an arbitrary positive number, Since all functiorals which
\_lill occur are complex linear functionels, they will be referred to
siiply as functionals, A sequence {x,} is weakly convergent if hl_za f(x,)
_exists for eveﬁ functional f over A,

1.4 Maximal Idealg. A subset I of A 1is called an ideal if

(1) 14{6}; 4, end

('2) i,yeI and x',y'eA imply =xx°+yy'el.
4 maximal ideal is an ideal not contained in any other ideal, It hes been

-ahqvn (538) that every ideal is contzined in a maximal ide:zl, As e

congequence, the existence of the invetsé x~' of x is equivalent to



the stutoment that x belongs to no maximel idesl, If i is a meximel
~ideul, the quotiemt space A/l is isomorphic to the field of complex
numbers, This establishes u many-to-one mapping of A onto the complex
numbers: to each x is associated e couplex nu&bar A = x{i) depending
only on Me For a fixed I, x(¥) isa multiplicative functional over A,
- Howsver, if x is fixed and ¥ varies over the set of maximal ideals of
Ky #(ﬁ) describes the speétrum of i [i.e., the set of =211 compiex A's
'fo; which ( Aubxf_l does not exist]. ‘The relation between functiomals and
hyperplanes of A 1is as follows: the kernel X of f£(x) [i.a. the set
of zeros of f(x)] is a>hy§erp1ane of A passing through &, and every
hyperplane ﬁ through @ wuniquely determines a functional f{x) over
A such that £(X) 2 0 and f(u) =1. In particuiar there is a one-to-
one correspondsnce botween mﬁltiplicative,functionals over 4 and
meximal ideals,

1.5 Radical, The radical R is defined as the intersection of =all
maximal ideals, R is an ideal, It has besm shown (5;10) that R is

the set of all generalized nilpotent eloments of A, namely slements x
e 2 l

such that 1im | x"ll « 0. Indeed, for all xeA, lim | x")|" = sup |x(i)].
n—e 50 M

n—> o0 ,
In particular, R contains all the nilpotent elements,

1.6 Norms. A morm Il I' is called gdmissible in A if 4 isa
.horged ring with respect to this norm, that is if

(1) i* makes A 2 Banach space,

(2) li xy I' < uxu'uy'u', and
(3 wuantz1. |
An eﬁamplo of a non-édmissible norm is the pseudo-norm ||x m =

.sﬁgp’v[x(u)l, since for example lx Il » O does not imply x= 3. Two

norms I W' and || (", defined over A, are culled igomorphic if



positive constants =&, b exist such that for all xeA4,
ellx ' £ ix 1" ¢ blxHi's If a normed vector space is complete with
respect to two norme I W' and | 0" and if W x U" & b jix i
for 211 x, then || ||* and || |I" =&re isomorphic,
The conjugate spacs A" of A is the sot of all funciionals over

A. The matural norm (£l = mxp1 | £{x) | wmakes a* 4 Banach Spaces.
Wxil=

1,7 Isguworphism. Two rings are called:

(1) isomorphic if they are algebraics1ly isomorphics

(2) equivelent if they are isomorphic under a norm-preserving
isomorphismg

(3) homeomorphic if they nre homeomorphic topological spacess

1.8 Decomposability, A is decomposable if it can be writtenm zs

g direct sum of two of its idesls,



PART II
STRUCTURS OF Tz UNIT SPH.RE

2.1 Definition., A functionazl f{x)} is called a supporting plzne

of the unit sphere § at & if [Ifl =1 end f(w) s l.
2.2 Definition. F =z {f} is called & total family of funectionals

if f(x) = 0 forsll f e ?F'implies x ¥, (6342)
2.3 Dxample. Auny set of n linearly independent functionels over
the complex n~dimensional Zuclidean space C, is a total family.
| 2,4 Definition, Let S denote the unit sphere centered at the
origin. S is said to have u yertex at the peint u if there existis a
.iofal family of functionuls which are supporting planes of S at wu,
2.5 Definition. Let g(x) be the real-valued fumction defined by
gl(x) = As:% I%\-! log || ehu » A complex, The set G = {x(g(x) . 1} will
be culled the G - sphere,
2.6 Theorems g(x) has the following properties:
(1) e(®) » 0, glu) =1
(2) glax) =z |«|e(x)
{(3) slx+y) ¢ glx)+ely)
(4) glx) € Nx i
(5) x# 9 implies g(x)>0
(6) nx U € eg(x) ,
(7) If =xé€¢ [i.e., g{x) = 1], thore oxists a complex number & of
ébsoiute velue 1 such that the line segment from &u to

x 1lies in G, (Flatness property)
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roof of (1)

By direct substitution g(3) = Suf

-

|

1 Au
y su — log e -
t—.(u) = >\¢§ ‘!/\s & “ H
Proof of (2)
; % 1
If XX £ Oy glo{x) = sup —log || &
£ 0, ¢ / A#g By g N
s Jale(x) « If x=9, glxx)=0 by (1),

Proof of (3)

Aecn 1 Adx
& |sup —— log
“ o A:g ™ og |l e {

g(x+y) = i Tl%_l tog | & o]
$gup 5T tos Iyl ™l
= pup —’—1;7- (log || ™ + 1og o™ )
¢ pup i dog o™ e oup o dog | 0™
= g(x) +ely)
Proof of (4) ., "
I o "% | = u + Z i\;;n 1 + -’—%D‘.Tiﬁ implies
nel =1
glx) & f:% Ti—-'-—lM Hxlle | x)le From this inequality it Tollows in pure

ticular that g{x)< 00, for every x. 700, by (3)and @ gx) is continuocus.
Property (5) follows from the lemma:
Lerma, If for every complex € of absolute valus 1, x has ths

property || e " || & a, them | x || < a.

Proof of the lemme

By contour integration around the circle [&| =z 1 .
o]
1 £ x" dé
W=l = |5 - § (w+ ) L3 4z
&= 1 =l
1 X dE
- S — . <
e I kL
YD
Proof of (5)
Frow the definition of gi{x), it follows that for all complex
numbers )\ £ 0, g(x) 3 a log || g | Herce for all A 5
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Ax Mg . o
Ehch g e s and thereiore by the preceding lowa

e
,_‘Xig("} . N . .
hAax s IAtux i &e _ o Tuking x # 8, and ssouming gix) &
this inequality gives X[ Jlx g 1 for 211 A [since }Mii‘(:{)<{)],
which implies li xll = 3, ¢nd hence x = <; = contradiciion, Thersfore
g{x) > 0. Properties (4) ond (5) iwmply thut g(x) is finite for all x.
Broof of (6)
If x =2 & the ineguality is trivirl, iAssume thorefore x § 9.
since g(x) > 0, substituting A = ‘é‘(%{‘y“ in the inequality
Daxug e e
<

or Ix |}

s used in proving {5), gives

Ef,(x; LEREL

Since g(x) =1, piven 8> 7 thers exists & nuumbor >‘o such that

Al (L~ 8
n;"»x I 2 et e . If £>\° = \}O},thcm

"ez,fneu) I > o 1Al (1 =8) + 1Rl ST NECE D

-
g(x + eu) 2 2= 0, or g(l‘._“‘.’_z.iﬁ.) >1- %—; 1.8,y to sach S?omwe
corresponds an &, l€] = 1, such that g (v’-c-‘-;-'—-é—‘l—) >1- ':"‘o Tako now

o
&

@ sequence 8 —» 0, and the corresponding £ By ecempactncss of the

“_.
circle |&| =], @ subsequence E£' can be selected that is core
since g(x) is continalleg
vorgent to & , suy, Thus, g (x +E,u) > 1. But, beczuse C is convex
[bY property (3) above ), g(&;@i)g 1. Hemce g (i‘-;ﬁ}:.) = 1.
2.7 Remork. As defined sbove the funetion g(x) ie & Sunech

norm in A, end € ie its unit sphers, IHence g{x) induces « neturcl
norm in A%, the spuce of functionals ¢ over A.

2.8 Definition. The genorm of f£&A is defined by
“fﬂ sup (f(x)i

2 9 Theorem. Tho set of functionuls J =z {f\ 183 ”g‘ =

flu) = 1} is a totzl family, Hence ths sphere 5 has a vortex at U,



Proof. Let x' be such that £(x') = O for all fe F ond
g(x?) =1 (this last requirement can 91Ways be met by nowmlwzmg ¥,
If x' £ 0, ie04 lf | ’}" “is not a totel family, them by property (7)
of Thoorem 2,6, an £ of absolute value 1 exists such that
glu + ax')_ = 2, If x gz Ex', them g{u+x) = 23 and by property (2),
g{x) = glex') = g(x*) = 1 . Consider the two-dimensional complex space
spenned by u and x. By a theorem of Banach (6555), there eoxists a
f‘unctidna]_. ih defined over that space such that || h lfg = 1 eand

h{u+x) 2 glu+x) 2 2, By the Hahn-Benach Theorem (6;55) h has an

extension f, to the full-space A, Therefore, | f‘,” s 1, and
£ (u +:x) z 2. Hence, f’l(u)+f (x) = 2 and [f’ (u) | ¢ it H g(u) =1
: \f (x) | € e | | cg(x) = 1. Consequeutly £ (u) = 1 and f‘ (%) =

leesy f & :F ’ and at the same time fl(x) =1l ,2 contradictmn. Hence
X, and aléo C Y must equal &, s0 T is a total family, Therefore the
G.-' sphere hes & vertex at u, But S is contuined in G [Th-reo.r'em 2eby
property (4)] and has u in common with G, It follows that S also
has & vertex at u,
2.10"_00!'011&3‘_2. lue xll s Hu+xflzs Huj implies x = O.
2;_9_9_:. If f is an cloment of the total family F.oof
Theorem 2,9, then
11 - £(x) |
|1+ £(x) |

Together, these relations imply f£(x) = 0., Hence x = 9.

| Plu-x))| g1

| £{u+x) | él.

H

 Theorem 2,9 may be formulated enalyticelly by meuns of the
derivativé of the norm:
2,11 Definition., The right end left ‘derivatives of thu uorm at

X, in the direction x =&are defined respectively as

o



Rgo %) = lim lx v hxll - x|l
P (xo0 %) h=»0% ’h el

P (%, %) ’ﬁ_’l_"fg,bA*' hx | 2 Hxo .

If for a fixed x, (.Q+_(x9, x) = @_(x_ s x}, the derivative of the norm

is suid to be defined at =x_ in the dirsction =x; it is denoted by

¢ {(x,9» %)e The derivativa is defined st x, if it is defined at x,
for every X,
2,12 Theorem [Ascoli (1;53)]. ¢ (uy x) g CP+(u, %Ya
Proof. Vhen h >0, the triangle ineguality
22 lu=hx+u+hx |l € Hu=-hxil +ju+rhxl yields

\lu-}l:xll -1 + Huﬂ'gxn -1 > 0.

Honce, letting h—» 07, P, (uy = x) + P (uy x) 20
ory = O, (uy - x) & @ (u, x). But, clearly, - @ (us = xj = ¢ (u, x);
80, (D {u, x) ©, (u, x),

2413 Theorou [?iazur (‘7;75)]. If & is a real number sucﬁ that
(P_ (u, xl) £ a( (P+ (u, xl), where x, denctes a fixed element of
" the space, there exists a functional F with the properties Fu) = 1,
F‘(xl) =z a, and F(x) & || x|l.

Proof, Consider the linear subspace A, z {x = ourtx Jof A,
s und ¢ being real numbers, The reul-valued function defined over A,
by f{x) = s+te is clearly distributive wzd continuous and "-?z*éifice iz a
functional, It has, for xeh , the proporty flx) & @, (u, x)e

Since tx, =z x - suy; if h is positive und smell {1+8h»0), then

Huthxl] -1 & o , lish _h__ \
- el e fix Il - e

Letiing h—=»0T, this gives Ppluy, x) = s+ @, (u, txl). But

P, (u, tx) 2 ta in 211 cases; for if >0, = £ P, (u, x,) gives



ta £ LP+ {(u, i‘xl}; and if <93, ©_ {u, xl} L o gives
"P" {u, - txl) £ - ta or @, (u, txl) > ta. Hence,
(P_*‘l(u, x) 2 & +te z £{x), 3But Banach hus showm {6327) thut there
exists & functionsl F(x) defined over all of 4, such thet #{x) & J| x I
for X €A, and F(X-?-.»: f{z) for X&Aq. In particular, when x s u
(s=z1ly t=0)y, F{u) =1, ond when =x = X, (s 2 0, t 2l), :"-\x‘) = G
The conclusions of this theovem imply U F |l =1, and hence that F
is a plene of support of S et u,
2.14 Theorem, 4 necessary and sufficient condition that 3 havs
a vertex at u is that (P (uy x) be defined only in the direction
x = X uy, Where o i's any complex number,
M,(Necessity). Suppose (P, (uy x) = ©. {uy %)e Then for

fe ?‘ s and an arbitrary real number h,

f(u +hx) £ || f”g g{u +hx) & |\ u+hx Il , Hence, whan h > 0,

f’(x)s llu-kix}j-l and when h < 9, |\u+1;x||-1 < £{x).

Letting h tend to zero in these expressions gives f{x) q)+ (u, x)
and @_ (u, x) & f(x)s But P (up x) = P_{u, %) = P Lty 2}
Therefores f(x) = ¢ (u, x) for all fe F . Let X be the common
value (D (uy x)e Then f£{x) s X or f{x- Xu)s D, for all

f e ? o But this implies x - Xusz &, or x = O u, which completes
the proof of the necessity.

(sufficiency)s If (Q_ (u, x) £ LP+(u, x) for every x not
of the form x = & u, Theorecm 2,12 implies (D (u, x) < (P+(u, %)
So, if X # o u, there is a number a, such that
P (u, xl) < oy < (p+(u, x,)s Then Theorem 2413 guarentess the
existencs of a functional F(x) of norm 1 such that F(u) s | end

F(X’.) = O

,+ For emch x, 4 Xu there is such an ¥ That the set { I}
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of these functionals is & total fumily wmey be proved as follows, If

x, is such that F(x ) = 0 forall ¥ in {F}, then x, cunnot be

of the form X =z Xu, & £ 0 as this would imply #{u) = _O%.. f{xu) = O
But if x,f X u, a real & § O can bo found such that

Q. {u, xo) < a, < Lp_’._(u, x,) and hence slso s functionsl F € {F}
for which F (x,) = a, # 0, again a contradiction, So x, ¢ &, which

proves that S5 has a vertex at u,



PART III
STRUCTURE OF FINITs DIKUNSIONAL NORLGD RIKGS

3.1 Theorem, The radicel R of the n-dimensioral norwed
ring A[ is the set of all nilpotent elements of 4 .

Proof. R is an ideal and L, satisfies the descending chain
condition, Hence (8;64) R 4is nilpotent, i,e. thers exists a
positive integer p for which R - {¢}e 1In purticuler, "z 8
for every x€&R, Conversely, if =x is nilpotent Qﬁf ]x(m)}

s lim | x”II* = 0y, 80 x belongs to every maximel ideel ! und
n=» 0o
hence to R,

3,2 Theoreu, If n>1, then A, has at least one maximal idesl,

Proofe If A_ head no maximal ideals, then by a Theorem of

n
" Gelfand (5;8) Ag would be isomorphic to the space of cowplex numbers,
‘But eny two isomorphic vector spaces have the same dimemsion, Hence
nzl, a contradiction.

3.3 Definition. A set of maximel ideals i , seey ¥, is said
Ato be linearly independent if the multiplicative functionala
K (x)s sees FL {x) are linearly independent,

3.4 Lomma, If M\, vesy M& are linsarly independent maximal
ideals of the ring A (which needrnot be finite dimensional} then
. there oxists an eleoment vy such that m‘(y) £ 0 and Ei(y) s O

i: 2‘ 3’ --aau

¢
Proof. Consider L = fAL By e Since each 1, 1is a hyperplene
=

of A (i.0.y @ linear subspace of dimension n -1), any hyperplane

12
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containing Ll can be expressed as a linezy combinstion of

,Ma’ gy eeey ﬁe. However, since i, 5 eses Me are linearly
inﬁependent, the hypernlane E‘ is not expressible in that form,
and therefore csnuot contuin L 6. But L, intersects i, as they
have the point & in cowmon, Hence points y exist in L, ‘which
‘are vot in i .

3.5 Theorem, In 4, any finite set of maximel ideals is lincure
1y independent,

Proof. In an arbitrary set of k>»1 wmaximal ideals let
gj, esey ﬁb, be a maximal subset of linearly indepsndent [i's and

sup{)ose <k, Then if M denotes one of the 1i's in the set

L+
but not in this subset, thera exist complex numbers & . not all
'bzero such thet u Z Xy Say X, # 03 then by the pre-
ceding Lemma there is an element y for which ﬁl(y) ¥ 0 end
Aﬁi(y) 2 Oy 12 2y 35 eoey Lo Hence, for any x mot im U,

y,, (X) My, ()= ¥, (20) = 2: o, ¥, (%)

_Ze: i, (x) ¥ (y)
= & (x) U (y) 4 0.

Therefore HQ4‘!(Y) £ 0, and, for an arbitrary X,

4
W1(Y) /
8 o Bt e (2} s
mt+‘(x)- ! we+‘(y; i
This states that ¥ and 3, ave the same maximal idsal, a contrse

B4 =)
diction, Thus e » k and the Theorem follows,

3,6 Corollary, The maximal ideazls of A, ware lincorly
independent,

3.7 Lemma, If A, has k maximel ideals, then Aim R e n - ke
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Proof. Since the 4, 's are lineurly independent ~nd
dim ¥, =2 1n-1,

k
dim R e dim [} 1,
=1

zne-1-=« (k__-l)s'n-k

3.8 Remark., Since [l u+x <1 implies the existence of x °
(554)y it follows that x &R implies |fu+x |l 2 1, This states that
the subspsce u+R obtained by translastion of R to u cannot contain
interior poiﬁts of % If A dis finite dimensionsl, say A = i,
then S and u+R have only the point u in common as shown by the
following Theorem,

3.9 Theorem. In Apy if x6R, x £ 9, then || u+x l>1,

Proof. Letp=px)be the smellest positive in.teger such that
xP2 @ for each xe&R (see Theorem 3.1). Then, if x €F, x’,/ 3,

<1, and p = px),

Nuex, il

13 Husx 1" 2 N (uex) '

. “ M(:;) ® P ok (f ‘)x,"'"+ {:} o

n n (Pil 2) -z - 1
2( )"".P‘H "( )‘le'-!i- A le' B sen b ull,
" SR CHEY .2 2)
: o~ 1 p-1
or, '
n
. n g N s (5o 2) e,
(n=p) ! {p=-21)2| p n-p+l n )
p~-1
NP |

(5,-1)
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‘ Nx B
4s n=>50, the quantity in brackets tends to —10—— ond
v
nl

tends to infinity,. Iisnce, the right-hond side
(o= p) ¢ (p=1) !

of the inequelity tends to infinity, a contradiction, Therefore
hu+ x I > 1.
3.10 Theorem, If A, has k > 1 maximsl idesls, them A, con-
tains exactly ‘ k non-trivial idempotenis. (Of course every ring
~ gontains the trivial idempotents © and wu,)
| Proofe By Corollary 3,6 and Lemma 3,4 elements Y9 eees ¥, maY
be found for which
0 when i 4 &’
y. (2., ) =
{ o # 0. when 1a 4/,
The complex numbers &; may be assumed all distinet (distinct values
can always be obtained by multiplying thek yt’s by app r opriats
non-zero comstants), The element y = Z; y, ‘then hes the property
y(i;) = & » L,64, its spectrum consists: of the k distinct points

A It follows from a Theorem of Dunford end Hille (10§105) that Al

‘contains exactly k idempotents o eees jK with the propertiss

k
ji.j{}=51'.i’.ii.’ ;jtsu, J;’Jgauo
3011 First fundamentsl structure theorem. Suppose the radicel R
of A contains en element 2z such that 2" ¢ &, 2z°*' 2 &, where

r =z dim Res Then in terms of this 2z, every xe€ 4, has a unigue

ropresentation

k-1 n-k

X = Z x(%.) 5.+ Z o(i;i

i=1 1=0
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where 2z° is defined to mean Jo» end 35 eeey J, aro the idem
b

potents of Theorem 3,10, and the X, 's are complex numbers.

If y is mnother element of 4, with « roeprosentation

k-1 ok
Yy = z Y(Eéi) Jo Z: ﬂi ZL’
i=1 1=0
the sum x +y is given by
k-1 n -k
X+Y¥ = E [x(}ii) + y(?ii)] j, T ? (o + (31: )z
and the product xy by ‘
k—( YL—k ".-
Xy = Z x(x,) y(i) 5 + ; é , X /37;-(2?‘1
rel 1=0 =0 -

which is of the mixed scalar and convolution type., lausly, in the

representation of xy,

k-1 n-k
Xy = Z xy(ty) 4, Z X 2,
1= i=0

the components are given by

xy(i;) = x(;) y(8;) (scalar »roduct),

and y
1

)’i = ()(Z Pt-ﬁ (convolution product),
_ Zso

Proof. Consisialr the ring decomposition A = B B 24 ki

where Ak-\ = {Z' x(i’ﬁi) j,\} and A _ ., = I An. (jk A, is of
dimension n - k+1 since A, _, is of dimension k - 1,) Yhe ving

A containe R, for if xeR, thon x(¥;) z 0 for

LN

121, eesy k; and it also conteins tre slement j, u= j  which is

not in R. Thus 8, ket & {Ajk} + R, >\ complex, Thorafore,

since the elements 2° = § g By wows 2T are obviously linearly

-

k!
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independent, they constitute o bausis in Anokey v and every elomant

of A, hes a unique represenietion as x =z x'@x" where

k- n-k
x' = E x(:zéi) Ji» end x" = E ; z'e In this decomposition
Y i=0 )

the sum and the product of two elements x = x'®x", ys y'® y"

. take the forms:

x+yz X"f" y'rgx"*_ yn
k-1

'+ y's Z: [X(?ﬁ,;) + Y(?f’r,;)] 3i

=

where
n~k
"+ y" - (O({'ﬁ-pi)zw.
1=0 '
and Xy = x'y'@ xuyn
' k=1 k-1
x'y' 2 ? xy(ify) Ji = ? x(8,) v(i) 5
0 4 L
Ll =0 (sealar product)
where

n-lk
o Ewse B e
1z0 =0

{convolution product)

3.12 Remark. The coefficients O(:L P is= 0, 1' ssey 0 = k
associated with each x by the representation above define n - k+1
functionals over A, (63111), say £, {x) = ko‘{' o These functionols

are linearly independent for if fi' = E /u_ f. s where 1‘ is
1=0

i1/
between 0 and nk- k and the /Mi'a are constants, this would give
n-
') v
£.,(2% ) = 2 . /\A,z"-(z" Y= 0, & contradiction, since by
i e 11 . _
1 o=

1)



= ;i
definition I, (z¥) = 1.
It should &lso be observed that A and A in the pro=
k-1 n-k+t k-]
ceding Theorem are normed rings, Their unit olements are 3

rei
and jk respectively, rnd the norm in thsse rings is the sams as the
norm in A e Indeed, any norm sdmissibls in A is automaticelly

edmissible irn both A . end A Conversely, if || |' ard

K - -kt *

i |" are admisgible norms in A and B o i ragspectively,

k=1

then Il x Ul =2 || 2*@® x" | = dax( | x* |'s || x* ||") dafines

an sdmissible norm in A, In particulazar, one may tzke the norms in

Ak—l and An_k‘H t0 be
)ox* O§ = Yax ‘x (%ﬁt‘)!
te gkt
n-k
I gme | e
=6
These will be veferred to as the natursl flat novms of Ak-—l and
Ah-— ot 9 and
n-k
b x {l = axi Uax ‘x{";‘)! s ZJ L oxs | }
i§‘\$k‘§ i:o
will be called the natural flut norm of Age This terminology is

Justified by the following Theorem,

| 3¢13 Theorems The natural flat norm of A, has the rlutness

- Property (7) of Theorem 2,6,

Proof, If, I =x* I = 3:743,): |x(i£i)l = 1, =and the maximum
1el gk

occuts sey for %, then taking £ to be x{) gives the desirad

property. Namely || x* + €u ]| =z 2, Similerly, if || x" |

n~-k

l O(.l =1, then £ = 2o gives
\ [D(:,

=0
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The Thoeorem follows immediately from theose 1vo cases.

3,14 Theorem. Any two normed rings Ays A" both of dimen-

gion n with radicels of dimension r wsetisfying the condition of

)

Theorem 3.11 are isomorphic,
pProof. According to Theorem 3,11 two peneval =lomonts xe€ i,

‘x'eA,’ may bo represmied as

k-1 n-k
Xz dg * ; g 2"
1=0
k-1 n—’m_
< . o L
x' = E - TR IF AL ?.._: X, 'z .
FEY] LR f

3 2

d . a ] . L -
The isomorphism unfﬁ A now follows by defining 2z enz' , and

]
n
carbitrurily setting jiﬁﬁ»ji'. S0 x<«»x' whensver corresvonding
i - ¥ s
'ji- and z -~ couponents are equal. This isomorphism is obviously
& homeomorphism, It is an equivelence if the morms in 4 wund 4.’

are roplaced by the naturzl flat norms,

3,15 Second fundamentsl theorem. iet A, salisfy the condition

* »:
of Theorom 3411, and let A_ = {fg Ey vae | denote the conjugate
. " ; ¥ -
space (as a Bunach space) of A, Then 4. can be made into a

normed ring by taking the fumction:ls 'js esees iigs Fis sees £\ 1o

*
-as a vasis so that, for a givem =z, euch fez‘.vm has o unigus

representation us

k n-
v._..‘ ey .

fe /) R5) o+ R EY
L=} i

bl 3 o < *
The product and norm of elements of A, eve plven by

\ N

A Y 1 P ] %
fog = ; £03,) g(jtueﬁ,‘i}fﬂ + ) e el
i

<= =1 1 =



Ny
&

k N
H i 2 2
£ Il = %ax { E H'(J;}z s llax i f(z')‘ (’
Py 1¢ tgn-k /

. form

Proofe The n functionzls Zw’}{!, voo 9 k’ fl' ecoy fﬂ-‘"‘&

a linearly indepondent set; for if

k ne
M . = Sy .
£, = E /M‘i M. > >‘ifi’ then 1z £, (2" ) =z
] =
k '( i" '
il *) n‘AS ')
/uiaax(a‘ ) e 7 A £ (2¥) = 0, andif
t=l! ;‘:{J
k tel.k
Ml" = ?J /A'i 'I. + >\ifi’ then 1 s Rii’ ('j\.') =
1= 1=y
k 14t) H—"‘k
50 B
E ) /\4,; :;-ai(jv) 4 ‘Li....: >\i ft("i’) = 0. Hencey the set |5 seey
= =
ig7!
. *
’aék, t“ b esesy fn-k is g basis for A, so that every feA_  has
a roepresentation
Y Mot g A By o
v L=l
To eveluate the /A's form
k n-k
3 DA >\ .
= 1=
Similarly,
k n -
¢ . ( 5 1of
£ (ah) - 2 pEEh - ) INEACH RIS
=1 i=
Therefore,
k n-k
£ = Z £(§.) ¥, + S £{z") £,
J " N
=

i= ;l



A8 defined in the statement of the Theorowm, feog obviously sutisiive

)

the properties of a product in a normed ring., Ths unit ol oment io
nelg
v+ fi e firally, the norm is udmissible since it is the
; :

-1
ﬁatural norm corresponding to ths mixed oroduct,
*

3,16 Theoreme In A, the olements [ 4 eees T _, ave
. ' " .
‘§dempotents, and A =~ hes n = k+1 maxiual idsals,

Proof, The idempotency of the £, ‘s f{ollows divectiy {rom the

S Y
definition of fog in Theorem 3,15, Ixhibiting in eeuch case the

_.éomponents of their generic slemsntsg, tho n - k + 1 weximel idocls
are
1oy F(1s sews 03,0 P00y 200% Ty enen 22™9}}
: {(f(j,)a £3,)s seey £{i.)s 0,£(2%),£(2%), «.., f(zn_k)>}

{(f(j,)’ f(jz)y tosy f(jk)a f(Z)Q wa(zs)9 LA f(znVK))}
1808000V VEDO IR V0B POGERGOIPOONOLIRIVOCO0BDO0DPOeROESODVOO0CES

: {(f(j‘)v f(jz), veos f(jk)s £(2)y£(2*)5£(2%), cuey g}}
3,17 Corollary. The normed ring g&: defined in Theovem 3.15

i3 the dusl of A, taken with the natursl flzt norm, that is

L3

AL = A,y 80 A, is reifloxive as a normed ring,



PART IV
UPaRATORS

4,1 Definition, A4 sel 3 is ealled (weakly) sequentielly
icompact if every infinite sequence {xrt} in B containg a subge-
éuence converging {weakly) to a point in B,

4,2 Roemark., The word operator will be used only in the sonse
of linear operator {i,e., distributive and continuous),

4,3 Definition., The operator T is (wsakly) completely cone
tinuous if 1t transforms bounded sets into (woukly) ssquaontially
compact sots,

4,4 Definition., The element =xgci is said.to be {waakly)
completely continuous if the operator T, definod by Ty = xy is
(weakly) completely continuous,

4,5 Remaurks. The standard abbrevistions c¢. ¢ and w. c. Ce
ﬁill be used to designate compietely continuous and weakly completely
‘continuous operators and olementse as defined above,

In A, every x is trivially c¢. c. and W, co € As shown be-

n
iow. this is not true of infinite dimensional r@ngs. Some of the rings
uged will be indecompossbles It is recnlled that such rings cannot
céntain idempotents othoer than & or u, for if A contains j =z 8, U,
then A has the Peirce decomposition Az {(u - §) & @ jhe

4.6 Thoorems If A 1is infinite dimensional and indecomposable,
and if x 48 ¢. co, then xet,

Proof., In view of the preceding Remark, A contaius no non-triviel
idempotents, Hence, by a Theorem of Lorch (93;416) the spectrum

22



ol (x) of =x is comnected. Therefore, if 7\03 3:(;'0) ig on

5 the vosult

i

erbitrery voint in G (x) and %o £ 0 (if >\a
js proved), comnectedress implies thet a ssquencs of points ?)-‘,)m cun
be found in C (x) which converges to :‘\o s >\on""> )\o'. Jut as
’Tx i8 €e Coy it follows from a Theorem of Riesz {11390} thut the values
/“‘ for which (u - /,L x}_‘l does not exist sre discrete, i.2.,
.émttirxg the origin, G (x) = {ﬁ"} is discrete,\ a controediction,
Hence G~ (x) reduces to the point ?\ = 0, and therefors =&R.

4,7 Theorem. If

(1) A is infinite dimensionzl and indecomposable,

(2) £(A) is u function which is snalytic om =nd inside the

circle |[Al= v,

3) I=1§ <

(4) the olement f£(x] is Ce Cey
then

(1) there exists a uniquse >\° such that x = >\o ue R

(2) A, 1is a root of £(A)e

Proof, The hypothesis implies that f(?\,) has ar expension

o0
f(A) 2 E an>\n valid for l')\’ & r. Therefore, since {l x i| £ v,
n=G
2
£(x) » B x" 48 an element of 4. By the preceding Thoorem
n=oQ '

f(x) € R. Hence, for overy maximel ideul 3, f£{x) (V) = 0, thet is

?{ x(¥) )= f an{x(?f)]ng i a x (%)
nN=0 (A=t s}

= £(x) (¥) = 0.

But !x(i:){ L Ulxll&ry, and £{A) has only & finite number of



zavos in |\ | { re Thus O (x) 4s finite and hence isolated, and
thet contradicts the fact that A 1is indecomposable (93416) unless
O (x) consists of only one point: G (x) z x(¥) = >\° for all i,
It foliOWB that ;\o is.the only value of }\ for which
(x= Au) (M) z O for all i, that is for which x - Au€R. Ffurther-
more £( }\o) z O,

4.8 Corollary. If A is infinite dimensionel end indecomposable,
and x™ is e, ey them xER,

r,

Proof. Simce A = 0 is the only root of f{A) = A

D b ]

this
root is )\o. Heﬁﬁe, X - ?\ou 2 X €R,

4,9 Remarks. The converse of Theorem 4.6 is ﬁot true, Theré exist
indecomp'osable infinit‘a dimensional rings whose radiculs contain elements

that are.not ¢. ¢, For example, consider the ring of convergent power

00 00
sories a3 E a,x" for which E | a, |< @O+ The sum and
- n=0 n=0

the product of two elements in this ring are defined as a+b =

| oo ) 20 ao‘
E _ anx"L + E 3 b“x"’ - E (a,+b, )x", and abe 2 cnx"L
n=0 Nza XS J " =0
. o0
where ¢ Z &b,y » The norm is given by |l a |} = 20 | anle '
' im0 . ns

The only maximel ideal, hence R, consists of 2all a's for which

. ’ oo 20
3 | | 1
a # 0, that is ae 2 » anx". The element 2 o E - X
: . n=i

n=|

which is in R 48 not €., cs For, comnsider in A the bounded set

. ()
(k) (k) N ' ' k
{b } whers b = L gn.k x" w xk. The transformed set T, {b( )}

nui



, (%) 1 n+i
ijs the set of all elements ab ' — X y and svery
n=0
gsequonce of these elements diverges beccuse, tsking k <E ’
0 <k~ o0

“ ab(k) - ab(E) " >

1
fav
3
W )
l ws
lay] [l
el
i
+
s |
i
TN
tev] | o
3
]
) L
ik
X
4
3
N

1]
3
ro
]

x
\'2
bw ] I [
[ ]

However, there are indecomposable infinite dimensionaz) rings whose

f_édicals are made up omtirely of c¢. ¢. elouments, For example, the

: ' €

ring of operators of the Volterra type T§ £ = g £f(t - 8) ¢ (s) ds,
(¢}

0 £t £ 1, from the space of real continuous functions g(t) over

-the unit intervel and into itself, This ring has been discussed by
‘Hichal and Zleconin., (12) Zach continuous funetion f{t), 0 £ t £ 1,
gives rise _’é‘.o an operator T\C. The product 'I‘\cs z Tﬁ Tﬁ, is defined
_r.by 1’5 ® J £, (t - s8) fz(s) ds, and the norm of T1: is taken to be
_the norm o: £, |l Ty o= llf].= sftzp | #(t)| « This ring has no
‘unit element, but may be imbedded in the space of couples (A, ‘I‘\C)
with A complexe Defining the product by (A , Ty MW, T Y

( 7\‘ }\z ,){T{‘ +)\T& + Tgl T&) and the norm by || (A, T-F) I =

I A | + IT |l the space becomes a normed ring with the unii element
(1,0)s The radical is the only muximsl idesl, Re { (0, T)}. Wow
consider the bounded sequence of clements ( A“, ‘1‘8,“), say

' >\nf. ” gnH < X for all n, Then if (0, ‘I‘_F} is en arbitravry
"4 -gn) z (0, -;)\ >‘,\9 'lén}

form an equi-continuoue femily, For, since the interval 0 & 8 £ 1

element of R, the elements (O, AnT +

is closed, f£(s) is uniformly continuous end hence given < > O

‘ &
one can find 8} 0 such thet l £(s,) - f(sz') | < 3% vhenever
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§ szl < 5 o Therefore, taking 0 < t, < %, $ 1, and

‘ & g
t‘ - t:. < 5, = ?..iin(3 rilx » 3§’ and writing T_, for
Y £ gﬂ

TesF T, T T i £
>\n £ $ 8 = 2 F gives for all =n

*
+ T8t =s) g (sodls ’

J, t
lgn.'(t’) - gn'(ta)l‘z l Ar‘[f(t‘) - f(tz)] o j f(‘t‘ - s)g,(s)ds
+ ¢}
- S;‘(tz - 8)g,(s)ds
0
= A6 - pey) ]
ta

+S [f(t‘ - 8) - £(t, - s)] g (s)ds
Ot‘
-+ ji’(tl - 8) sn(s)ds l
r‘
Slee) - ) | x + ot - 9) - £t, - 8] K

+ (t| - tz)“f”K

€ £ "
S5+t 5 * ollellx < £

3K 3K

It follows by Ascoli's Theorem that the sequonce g ' contains a

uniformly convergent subssquence gn' o Henece T_.» converges, so
1

&n

1

that T{ is ce co

4,10 Thoorems The set C of gll c, c, elements of . is
a closed ideal,

Proof, Consider in A the bounded sequence {_zn} o Then if

A . .

X€C a subsequence {zn'}' exists such that r\!):I.hlz‘zx_lwo i Xz, - Xi Il
& O, Similarly if x'€C there is a subsequence {znz}_ of
| {zn‘ } sueh thet 1im |lxz, = xz, || « 0. Conbining the two

o, 1Ty = 00

Muits gives 1im || (x+x")z, =~ (x +x")z,_ || = 0. Therofore
n,_)m,_«;q; 2 L



x +x'€C0s Alsoy if y 1is en arbitrary slemeal of 4,

vy 5 il % 3t '
1im | xy2,, = xyz, I &L iiyy lim fhxz_ = xz_ || =0,
ny 1™y > 0 : ¢ iy, =% 00 ‘ T

j,0e9 Xy&Ce Thus C is an ideal, To show 'i?hat C is closed
consider a convergeni saequence of clements x, in Xy "> X sa¥e
The Ce Ce oOperators T,\n defined over A by Txhy = X,y forma
convergent sequence, Hence the limit operator T, is ¢. ce {(396),
that is x is c¢. co |

4,11 Leuma, The limit of a convergent sequence of w. €, Ce
operators is a w, ¢, ¢, operator,

The proof of this Lemme is entirely similar to thot given by
Banach {63;96) in the corresponding case of ¢, c. oOperators, and will
be omitted,

4,12 Theorem, The set & of all w, ¢c. ¢, elements in A 1is
e closed ideal,

Proof. Let { z,} be boundeds If x€&u, o subsequence
{zn.} can be found such that Xz,  converges weakly, Similarly
since { z, } is bounded, if x'€¥, a subsequence {zmgr of
{an‘} exists such {that {x'znz} converges weukly., It follows that
(x + x')z,,Lz converges woskly, 1,8y, x + x' U. Again since izm}
is bounded, if y€4A, { yz, } 1is aleo bounded. Hente for x€W
there exists & subsequence {ysnl} for which y(xz. ) = x(yznl)
converges wenkly, Thus V¥ 1is an ideal, That & is stron;ly closed
follows from Lemma 4,11, For if x €W =and nl}amaoi}x,_- x|| = 0y thon
the w, c. c, opsrators T, defined by T, y e« x,y converge to

n

Tx s+ 80 that T)( is Wo Co Coy 1leBey XEW,



4e13 Definition., &4 ving that saticfies the two conditions:

(1} The ring is a star ving

(2) Uniform convergence of the sequencs x (¥} with respect to
the maximal ideuls iwplies weak convergsunce of - 39

will be denoted by 4, and its conjugate space as a Bunach gpace

denoted by K*. The space of maximal ideals of A with the star

topology of Celfand and Silov (13:37) will be celled ﬁ% fj it is

a compact Hausdorff space (13;31)}. o T¥C ) will desipnete the

S S—
gpace of complex velued functions over ¥4%5 , and C{ JYG ) the

conjugate space of C{ Y Y0 ).

— %
4414 Theorem, ivery slement fecA can be extended to an
»?

eloment of C( TU G ) o

Proof. 3y a Theorem of Gelfand {13334) every (P {()e oG )
is e uniform 1imit of functions xn(il‘). Condition (Z) of Definition
' 4.13 implies the weak convergence of x, s 1.0., 1im f{x_ ) cxists for

n—» oo L

every f & C( T¥G ). Define £ (P J 2 lim f£(x. ). The function
n—» OC

f((F ) is clearly independent of the choice of the sequerce ixﬂ} .

It will now be verified thet £ is a continuous function aver ¢{ 00 ),

Consider a fixed (0 € c( ¥¥G ), and o sequence P, =

i.e lim - ' = 0s Then for svery n thoere exists
o 2tm K@= Il s 0 man for ver

& subsequence {xn‘ } such that
‘ 1
o=, - an I < -+
whensver n, 2 N, . It follows thut x () converges uniformly to
P, . Hence, using Condition (?) of Mefinition 4.13,
MUa [2(@ ) - 2@ )] = 0, or £((p )= Mm () for
o \
every f € C(YYC ) .
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4,15 Covollary. f(x{.}) = £i{x) und the extension preserving
this property is unique,
Tho following Lewwx of Vakutani's {1451012) is given wiithout proof,

4,16 Lewma, Any functiomsl  over C{ ¥¥0> ) can be repro-

gented as a completely additive moasure ),{ (2) with respect to
the smallest Borel collection of sets 1 containing the opon subscts
of m .

— v
4,17 Lemmm, A and C( V¥0 ) are isomorphic.

Proof., Indeed, the mepping defined by the identity mspping of

- - *
A ¥ s by Corollary 4.15 a 1:1 onto mupping of AT to o WG ) .

Moreover, as f(x{i)) = £(x), it follows that
“ £ ke su f{x = 8u f{x{) ¥
A" suxilgi RACHIE uxnz&l (x|

But Il x || & 1 dmplies sup l2(3)] & I xi&l, dees, the set
I x| & 1 is included in the set where sup | x(i) | € 1. Horce,

N r Ilg.é he Il .

¢ (TN v srt/xlp gx().f)‘- 1B llc(%\r

: —_
Whence, it follows from a result of Banach (6341) thet &4 is
*-
®

fsomorphic to C( WVG )

4,18 Corollarye Wezk convergence in A is equivelent to
*
)

weck convergence in C(-m .
4,19 Theorem. If T is & Ww. ¢, co mapping of A into itself,
then T° is co c.
Proof, Consider over 3" tue functional £(7*x)s Using the
notation (x, f) to denote f(x) gives in that case (1% %, £) =
(1x,2% £)s Lot {xn} be a bounded sequence; then Tx, is weakly

ol oy
convergent, Tx, —> X, s®aye To complete the proof it must be cshown

2 ;
thet T x, converges uniformly with respect to all functionals f of
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T

porz | £l & 1. If the contrary is assumed, then there exisis o
goquence of £ 's of norm | f || £ 1 such that

il
L

| (T % £, 1~ ¥ xmy,T*f‘mv)l 2 &,

n,
where ﬁo > 0 has been preassigned zrbitrarily., For convenience,
guppose N, = Ny N w 1, 25 eoe o 48 7% s also w. co c. [sae
(5;100) where it is proved that 7T c. ¢c. implies T*c. Cey ithe proof
‘for T W, Ce Co is similar], a subsequencs of {_Tfh} curn Lo
gelected (which eguin is supposed to be the full sequence {"E’fn})
which is weakly convergent as elements, Tf _."’;~>g° e & ¥ scye Thus
the proof of the Thoorem will be complete if the following iLewmm furnishe
| ing the desired condition cun be established,
4,20 Lemma, If
(1) ior each I, kn‘(i“é) converges to x,(#)
(2) x, () is uniformly bounded, i.e., |x.(i)| & ¥ for every
n ond overy N
(3) the functionals f € C(Tﬁf-)* converge weakly as
elements to i'p
~then (f, 4 %, ) converges,

Proof, By Lomma 4,16 and the weak convergence of I _ it follows

n
that if /“'n is the measure function associuted with £, then
/L(n(.-i) converges to Iu.o(:i) for any measurable set 3 C G,
(£, x0 = (50 x| € | (Be x) = (£ x)] + [(£00 %) = (2,5 )]
=l )+,
?

Consider I, first. By Jgoroff's Theorem (15:18), an & exists for

vhich, for every i, |x,(¥) - xa(if)l L £ waen n2n, , such thot



6 ) & , .
/A.,,('ﬁ)s E , where 7 denotes the complement of 3 imn

W . The remark sbove shows that /U.h("ic) tbnds to /LLO { ;‘C)
as n—> 00, 80 /u.ﬂ(T;c) S 2€& for n > n e Hence, as £, tends
to f, weakly, |I |& £ for u 2 n,

Secondly consider I,,

i, = J [_xn(%;z) - xo(?;})] d/x.n
714
@ f [xn(&;) - KQ(E'«{)] d/‘*n Ey jc[ x, (¥) - xn(;?}) d/un

E E
o L7 "By N

The weak convergence of f, iwplies thet || £, | € ¥, whove 1*
is a constant, Clearly, thereiore,

|7, € & (rotal varsof p, ) & E g, )l € €0

| Ia,zl S 4CE€ for n sufficiently large. The Lemne now follows
by coubining the inequalities for |I. |, | I,,| , and | I,,|.

4,21 Theorem, If 7\. ig infinite dimensional, it cannot be
reflexive,

Proof. Assume : is reflexive, Then K is weakly complete
(1v5423), Hence the identity operator T, is w, c. c.y and so by
Theorem 4,19 (Tu; Tf) it is 2ls0 ¢, ¢c. Therefors the unit sphers
is sequentially compact; and it follows that X is finite dimensional
(6384), & contradiction,

4422 Corollarye If every element of A is c. Cey then % is
finite dimensional,

Proofs If Cs2 4, then A is reflexive. (3) The Corollury now
follows from Theorem 4.21.

4,23 Theorem [Dunford and Pettis (175385) =nd Phillips (183536)].

-

If T isa W, co Co oOporator mapping L into L, then T2 is co Co



*
Proofe Yy a fundamental result of ¥akutani (1431021) I ig

ygomorphic to O LU ), where () is a compact Hausdorif space.

But

* 2 " A
2 is w, ¢s C. [sae {6;100); the proof in the w, ¢, c. ©uSe

is similar], and LA ) is an X——ring. Henece, by Theovrsm 4,19,

(T*)2 is c¢. cop, and, sinece (77 )

2

- K .
T 13 Ce Co

(3 w23
S(l ) 9

4,24 Theorems If A 1is infinite dimensional &nd indecomposable,

and if x 1is w, ¢. Cey them x &R,

- p 2 ., =
Proofs Thoovem 4,19 implies that x iBs Co Co [Hence, by

Corollary 4.7, x & R,

“then

4,25 Theorem, If

(1) & 4is infinite dimensional ond indecomposable

{2) & )\ } is a function which is anslytic on and inside the
civcle | A } =T

() Nxllgr

(4) tho element f(x) 1is Wwe Co Co o

(1) there exists a unique >\0 such that x = >\° u &R
(2) ;\o is & root of £ )} Je

Proofs The result follows immediately from Theorem 4,7 upon

5 2
observing thzt {f( A )] satisfies thse conditions of that Theorem.

and

4.26 Corollary, If % is infinite dimensionel and indoecomposable,

n
X is W, e Coy thom X & H,



Several problems related to toplcs iu Part IIT ure discussed in

7

ghis/gppendix.

l. Projection operators aver Ao

Definition. A projection 2 over A is an operator tuking 4
inte 4 such that

(1) P(x+y)= Px+ Py

(2) Pxy s PxPy

(3) Px a2 P(Px) = Px .

Remark, An idempotent j of A generztes over A the pro-
jection P defined by Px = jx. In this scnse every ring admits two
‘trivial projection operators: Px é x end Px s 8, UHvery projection
over A 1is not necessérily of the type FPx = jx as the following
exauple shows, This example, it should bs observed, involves not more-
ly en algebraie ring, but a normed ring. Thus, even in the presence of
& norm the represemtation of P in the form Px = jx 1is not possible
in general,

ixample, Consider the ring A, of olements xs {8 , 1] CH
(where € , Y] s+ G are complex) with product xx' =
( €, gq- + %'Ns TT'), =ndnorm =) =
dex( | § ' + ‘V?’ g 15 !). This ring hes two nom-triviel idempotontis,
J, = (1, 0y 0) and 3y = (7 75 1)s Their products with the gonerul
element x = ( § » rl 5 Cﬁ ) =are jlx = { § ’ Yl s 0O} and 5 %

# (95 0y € )u Now the operator U defined by Ux= ( §, 0, 0)

33



(%]
e

is clearly az projection. Howevef, for x arbiirary
Ux f 9y Xy §, % j,Xe Indead, there ic no fixed element =x' =
{ ‘§', Y] L t’) such that Ux # x'x for 8ll x'. For this would
rejuire £ §'=z [, TN+ E'N =0 emd §T'=20
whence ?‘ z 1, Y}' z - _ﬂ. . g * = 0 which means thet x' is
not constant, §

If P 48 of the form Px » jx the following result may be stated,

Theorem, If Px = jx, then PA is a closed ideal of A,

Proof. The cese J z # is trivisl, so assume j ¢ -9, PA is
obviously an ideals In it comsider a convergent sequence jxr;-—> Ve
‘For n sufficiently large || x, -y Il < ﬂ%’” y so || dx, - vl =
|5 %= 39 = §3Gx = 91 € Wil i & Thus
jx, —> Jy = ¥, di.0.y PA is closed,

" Remark. Ffven when = projection P is of the form ?x = jx,

in general PA will not be a maximal idesl of A. For example, in
the ring A, above R A, s 5153 = {(0, G. C )} is not a maximal
ideal. The maximel ideals in that case are {(0, N s ¢ ) } and
{( §9 n, o) }0

2 Homomorphisms, ‘

Theorem., If 3 1is a normed ring with zefo radicaly, and h is

a homomorphism from A onto B whose kernel is a closed aset, then

h is continuous.

| Proofe The kernel of h is defined by K s { xEA’ h{x) = 9}.
The mapping H of A/K onto B that is induced by h 1is an
élgobraic isomorphisme Since K, which is an ideal of A4, 4is closed,
it follows from a Theorem of Gelfend (5317 ) that H is a homeo-

morphisme Henee H is continuous, Ilioreovar, if X is the coset



35

of 4/¥ which corresponds to an arbitrary x'€ 4, then
n(x) = 84(x)y snd so [l n(x)l= {00 € NH}I-lixlie But, since

X 4is an ideal of &, [[X i = dnf lIx* Y £ fix|l. It follows
x'e :

that || £(x) || &l ix#ls if.esy, h is bounded and hence continuous.
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