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ABSTRACT 

A new method of constructing periodic solutions for piecewise 

linear dynamic systems with time delays is investigated. Although the 

existence and the uniqueness of the periodic solution are guaranteed by 

well-known theorems, existing schemes for actually constructing the 

periodic solution are either purely formal or approximate. 

The idea of constructing the exact solution is first pursued with 

the linear delay systems. The formal representation of the solution to 

the linear problem is viewed as a system of Fredhohn integral equations 

of the second kind. Since the matrix kernel for this system of integral 

equations is separable, the integral equation can be reduced to a system 

of algebraic equations involving certain integral moments of the initial 

function. These observations lead to a transfer relationship between 

two state vectors in the form of a matrix equation. Then the problem 

can be posed as either an initial value problem (if one is seeking the 

transient solution), or a periodic solution problem (if one is seeking the 

unknown initial data). 

This Fredhohn Integral Equation Method is used effectively to 

construct periodic solutions to piecewise linear differential-difference 

equations. The periodic solutions are constructed from a cascaded 

product of matrix equations derived for each linear region. The 

stability of the periodic solution is determined by solving an associated 

eigenvalue problem. The periodic solution and its stability analysis 

are exact in the sense that the error induced by the truncation piroces s 
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in the Fredholm Integral Equation Method can be made exponentially • 

small as the size of the transfer matrix is increased. 
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Chapter I 

IN"TRODUCTION 

The exact science of describing and predicting physical 

phenomena has. always been a challenging area of research. Solutions 

to differential equations play a central role in describing phenomena 

in the present state, and also determining the subsequent behavior. 

Investigation of dynamic systems with time delays is an attempt 

to describe physical phenomena more accurately, whenever the state 

of the system depends not only on the present, but also on the past. 

This constitutes a class of history dependent systems, and is known in 

the literature as 'delay systems', 'time lag systems', 'oscillations 

caused by retarded actions', or 'equations with deviating arg"ll.ITients'. 

The subject introduces a new field of mathematics, namely, functional­

differential equation of the form 

( 1. 1) 

The functional-differential equation becomes a differential-difference 

equation when the delays in the arguments, T 
1 

(t), T
2

(t}, • • •, are all 

constants. The differential equation ( 1.1) is categorized into three 

types. Equation ( 1.1) is called a retarded type, if the highest-order 

derivative of the unknown function appears for just one value of the 

argument, and this argument is not less than all other arguments. 

Equation ( 1.1) is called an advanced type if the highest-order derivative 

of the unknown function appears for just one value of the argument, and 
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this argument is not larger than the remaining arguments. All other 

differential equations (1.1} with deviating arguments are called neutral 

types. 

Historically, the eighteenth-century mathematicians, Euler, 

Laplace, and Bernoulli( l} first formulated the differential-difference 

equations. These equations arose when they tried to extend the knowl­

edge of the discrete particle mechanics to the continuum mechanics, 

which later came to be studied in terms of partial differential equations. 

Practically nothing was done in the field throughout the nineteenth­

century, and only after the First World War did the study of these . 

equations gain momentum principally due to problems which arose in 

the field of automatic controls. It is observed that whenever a servo­

mechanism is constructed in a closed loop form, the feedback signal 

is always delayed by a finite amount of time. This time lag is due to 

the transmission period, as well as the observation and guidance period 

of the signal. 

In the last twenty years the area of application of the delay 

equations has greatly expanded, and now it encompasses not only many 

questions of physics and engineering, but also certain areas of econo­

metrics and biological science. There exist nu:merous examples of 

time delay phenomena in practice, primarily in the area of feedback 

control systems. To name a few, the time lag in a control system was 

first formulated by Callender, Hartree and Porter(Z} in 1936. Tsien 

and Crocco( 3} considered the time delay occurring in the problem of 

rocket fuel combustion, and the associated stability problems. They 
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found the system is governed by a first-order linear differential­

difference equation of retarded type. Minorsky(4 ) described the 

problem of antirolling stabilization of ship motion by a second-order 

linear differential-difference equation. Continuously stirred tank 

reactors in chemical engineering are known to be describable in terms 

of coupled nonlinear differential-difference equations, and these were 

solved numerically by Seinfeld, Gavalas and Hwang{S). 

The delays occurring in differential equations do not need to be 

limited to physical time lags. Corngold and Yan( 6) considered the 

problem of inelastic scattering of neutrons in neutron slowing down 

theory, and found the governing equation to be a first-order linear 

partial differential-difference equation. The delays of the argument 

represent the finite energy levels associated with a nucleus. Also, 

there are many complicated physical problems described by partial 

differential equations posed as initial-boundary value problems. These 

equations can occasionally be transformed to much simpler coupled 

differential-difference equations posed as initial value problems. 

In the past twenty years, mathematical theories have grown 

significantly in connection with the growth of physical applications. The 

first systematic investigation of differential-difference equations started 

in the early 1950 1 s, resulting in the first series of comprehensive books 

by Pinney{?), Bellman and Cooke( 8), El'sgol'ts( 9) and Rubanik(lO}_ 

The fundamental theorems of existence and uniqueness for 

nonlinear differential-difference equations of retarded type were proved 

by extending analogous theorems from the theory of ordinary differential 
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equations. Using topological methods, Hale(ll>, Halanay(lZ), 

Driver( l 3) and others extended these theorems to the more general 

class of hereditary dynamic systems, functional-differential equations. 

Jones(l 4 ) showed the existence of the periodic solution for a class of 

functional-differential equations using the fixed point theorems. Al­

though most of the delay problems arising in practice are describable 

by functional-differential equations of retarded type, recent theoretical 

contributions for the neutral type are made by Cruz and Hale(lS), 

Cooke(lb) and others. Stability of solutions for linear differential­

difference equation of retarded type was first discussed by Ansofl l 7) 

in 1949 using the Nyquist diagrams, and later extended by Hsu and 

Bhatt( lS). Approximate solutions for quasi-linear dynamic systems 

are constructed by Rubanik( 19>, and other Russian authors, using the 

method of averaging and the general asymptotic method. 

Among the classes of hereditary systems, we shall restrict our 

attention to nonlinear differential-difference equations of retarded type. 

There exist a number of basic theorems for the existence, uniqueness, 

and asymptotic behavior of the solutions. The existing schemes for 

constructing solutions are: 

1) Step-by-step marching procedure, or a numerical 

integration process. This approach does not exhibit 

the qualitative aspects of the solution, and stability 

criteria cannot be obtained. 

2) General asymptotic method, which yields the 

approximate steady state solutions, as well as 
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their stability. However, the validity of this 

method is crucially depended on the small para­

meters assunlption. 

Thus the present scope of this investigation is to develop a new method 

of constructing the exact solution to an important class of nonlinear 

differential-difference equations with constant parameters, namely, 

piecewise linear delay systems. The piecewise linear system is 

chosen not only for the mathematical simplicity, but also for the fact 

that many nonlinearities can be closely approximated by piecewise 

linear models. This study is designed to provide the bridge between 

mathematical theories and practical applications. The aim is to supply 

an analytical tool to construct solutions and establish stability criteria, 

such that a parameter study may be performed. 

The principal difficulty of analyzing differential-difference 

equations arises in the linear problem itself. As will be shown in 

Chapter III, the characteristic equation is of a special transcendental 

character. The linear problem always leads to an infinite spectrunl of 

frequencies with which a dynamic system can oscillate. The deter­

mination of this spectrunl requires a corresponding determination of 

the roots of certain analytic functions. In order to find the exact 

solution, one must deal with an infinite series of residue contributions. 

A new method of constructing the exact solution is derived in this 

investigation using the knowledge of Fredholm integral equations. 
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Structure of the Thesis 

Chapter II begins with the mathematical preliminaries for 

general retarded differential-difference equations. The basic issues 

of existence and unicity of solution, and the stability in the sense of 

Liapunov-Poincari, are briefly discussed. 

Starting with Chapter III, we restrict the attention to delay 

systems with constant coefficients and constant delays. Formulation 

of the problem is done in vector-matrix form such that higher-order 

systems and multidegree systems may be treated similarly. 

Chapter III contains a discussion of the roots of characteristic expo­

nential polynomials, which determine the solution to homogeneous 

linear differential-difference equations. Asymptotic root distributions 

as well as exact locations of the roots are discussed, and the stability 

criteria are established for the linear system. 

Knowing the nature of the root distributions, Chapter IV 

forr.nulates the exact periodic solution for forced linear delay systems. 

A new method of constructing the solution is derived using a Fredholm 

integral equation theory. This method is subsequently called the 

Fredholm Integral Equation Method. The crucial step of truncating 

the kernel in this method is rigorously justified by an error bound 

analysis. 

Knowledge of Chapter IV becomes the basic element of the 

discussions in Chapter V, when forced piecewise linear delay systems 

are considered. Periodic solutions of piecewise linear differential­

difference equations are constructed by the Fredholm Integral Equation 
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Method, and the stability of the solutions is determined. For the case 

of a doubly bilinear delay system, triple solutions are found for a 

certain range of the frequency parameter, and their stability charac­

teristics are obtained. It is observed that the results of this delay 

system closely resemble the solutions of a damped Duffing' s oscillator. 

A comparison study between the solutions given by the Fredholm 

Integral Equation Method and the conventional approximate scheme 

{the method of slowly varying parameters) is presented. 
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Chapter II 

GENERAL DISCUSSION OF RETARDED 

DIFFERENTIAL-DIFFERENCE EQUATIONS 

This chapter is intended to serve as mathematical preliminaries 

of well-posed differential-difference equations of retarded type which 

will be discussed in the subsequent chapters. The basic issues of 

existence and uniqueness of solution as well as stability are briefly 

discussed here. 

2.1 Existence and Uniqueness of Initial Value Problem Solutions 

History dependent time delay dynamic systems are in general 

governed by retarded type differential-difference equation 

(2.1) 

with initial function 

x(t) =_g_(t) for O:,;; t ~ T 

where the delay term T is assu:med to be positive constant. We have 

posed Equation (2. 1) with single delay term, but the effect of multiple 

delays brings no essential difficulty. 

The basic question of existence and uniqueness of solution for 

the nonlinear delay system (2.1) can be answered in a similar way as 

for a nonlinear ordinary differential equation. In fact, Equation (2.1) 

is reduced to an ordinary differential equation if one wishes to solve it 

by the method of steps (marching), that is 
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x( t) = _g_(t) 

x(t) =f(t, x(t), _g_(t)) , 'f::::; t ::::; 2'f 

with initial condition 

and this process can be repeated for every interval of 'f, 

,,, 

Theorem 2,1 (Existence and uniqueness proof)''' 

Suppose that _g_(t) is continuous and bounded for O::::: t :5: 'f, 

l!g(t}ll :5: mg' and f(t, x(t}, x(t-'f)} satisfies a Lipschitz condition 

Jif(t, u 1, v
1
)-i{t, u 2, v 2}!1 :5:m(t} (!lu 1-u2II +llv1 -v211} 

for the solutions (u
1

, v 
1 

}, (u2, v 2} in a Region R 

(2.2} 

Let c 2 denote the maximUITl of the continuous function II f(t, u, :::)II for 

{u, v) in the Region R. Then if 2mg < c 1, there exists a unique solution 

~(t) of Equation (2.1} for 0:5:t:::::'f+ c3' where c 3 <{c 1-2mg}/2c 2. 

Theorem 2.1 is in essence a local existence and uniqueness 

theorem. That is, it guarantees a unique solution only over a small 

interval in the neighborhood of the initial interval due to general non­

linearity assUITlption. However, for a special class of nonlinearity, 

*Proof of this theorem is given in Bellman and Cooke( 8 ), p. 341. 
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namely, f(t, x(t), x(t-T)) is piecewise linear in x, then the above Theorem - - - -
2.1 reduces to a global existence and uniqueness theorem since the 

Lipschitz condition (2. 2) is satisfied everywhere in (u, v) space. 

2. 2 Stability of Solutions 

In the construction of a differential equation which describes 

some physical phenomenon it is always necessary to simplify or 

idealize the phenomenon. In real process, the initial data are usually 

the result of direct measurements, and therefore, are unavoidably 

defined with some degree of inexactness. 

Under these conditions, in order for the differential equation to 

describe even approximately the phenomenon under investigation, it is 

necessary that a small change in the initial function produce only a 

small change in the solution. Stability theory investigates the condi­

tions under which small changes in the differential equation itself and 

small changes in the initial function lead to also small changes in the 

solution. 

First we shall state the definitions of stability for the solutions 

of differential-difference equation, which are the exact analogy of 

ordinary differential equation cases. 

Definition 2.1 (Stability) 

A solution ~(t} of Equation (2.1) is said to be stable if for every 

e:>O there exists a 6(e:) >Osuch that the inequality Jl_g_1(t)-_g_2(t)JI < 6(e) 

on the initial function implies that 11~
1 
(t)- ~ 2(t)JI < E: fort;;;:: T, where 

x .(t) is the solution corresponding to _g_ .(t) for i = I, 2. 
-1 1 
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Definition 2. 2 (Asymptotic Stability} 

A stable solution x(t) of Equation (2. I) is called asymptotically 

stable if lim \I x 1(t)- x 2(t)\\ =0 for any continuous initial function o-(t) 
t->oo - - ~ 

satisfying l\_g_1 (t)- _g_2(t)\\ < o for sufficiently small o. 

Definition 2.3 (Exponential Asymptotic Stability) 

A solution x(t) of Equation (2. 1) is called exponentially asympto­

tically stable if there exist positive constants o, a, and B such that the 

inequality ll_g_l(t)-_g_2(t)II< o implies ll~1(t)-x2(t)ll<Bo~~x'f \lgl(t) -

_g_
2

(t)II e -a(t-'f) for t > 'f. 

With above definitions, we shall construct the Liapunov-Poincarl 

stability theorem which extends to differential-difference equations . 

Theorem 2. 2 ( Liapunov - Poincard Stability Theorem) 

Suppose that 

(i) every continuous solution of linear differential-difference 

equation · 

d~~t)=Ay_(t) + B y_(t - 'f) 

y_(t)=_g_(t) for Osts'f 

(2 . 3) 

with A, B constant square matrices and 'f positive constant, 

approaches zero as t-> oo, i. e . , all characteristic roots of 

- 'f z 
det(zI-A-Be ) =0 possess negative real parts; 

.,, 

(ii) l"(t, y_(t), y_(t-'f)) is a . continuous function of y_(t) and _y(t-'f) in 

a neighborhood of the origin \\y_(t) JI + \Jy_(t-'f)I ! s c
1

; and 

(iii) l satisfies the nonlinearity condition, i. e,, 
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11 l(t, y(t>, y(t-'f)) II 
lim ------- = O. 

lly(t)I! + ! l y(t-T)ll➔o \ly(t) \l + \\y(t-'f)ll 

(2.4) 

Then any solution of the nonlinear differential-difference equation 

d~it) =Ay(t) + B y(t-'f) + l\t, y(t), y(t-'f)) (2.5) 

with initial function 

y(t) =_g_(t) 

is also asymptotically stable, 

JJ_g_(t)\I is sufficiently small. 

i. e. lim l!y(t)\I = 0, provided m = max 
t-->oo g O ~t ~ 'f 

Proof 

Let the solution of Equation (2.3) be denoted as _y0(t), then from 

the formal solution representation developed in Chapter IV, 

with 

'f 

.Yo(t) =K(t-'f)_g_('f) + J K(t-'f-!;)B _g_(s) d~ , t > 'f 
0 

from the hypothesis (i) and 

where 

( 2. 6) • 
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cr1 (t-T) 
11.Yo(t-T)il S:m2e . (2.7) 

And the solution to the full nonlinear equation (2.5) can be written as 

t 

y(t> =_y0(t) + J K(t-~>l\s, y(~>, y(s-T))ds 
T 

but from the hypothesis (iii), 

and 

Add the above two inequalities, 

and applying the Gronwall's lemma to the inequality (2.8), 

(2.8) 
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(2. 9) 

with 
-CJIT -ml m3 ,-

m4= (l+ e )m2e < oo. 

Thus the solution to the nonlinear delay system (2.5) is asymptotically 

stable, i. e. , 

lim lly(t)II =0 
t-too 

provided 

and this is guaranteed form sufficiently small. 
g 

This stability theorem will be used extensively later in 

Chapter V when we discuss the stability of the periodic solutions of a 

nonlinear differential-difference equation (2.1): i.e., let 

and consider the stability of the solution x in the neighborhood of the 

known periodic solution x~:~, 

(2. 10) 

and substitute Equation (2.10) to (2.1), then r,(t) satisfies 

(2.11) 
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where J1, J2 are the Jacobian matrices 

,:~ ,r~ 
u=~ , ~=~ 

and 

w ... , ... 

('(t, 'T1(t), r,(t-'f)) = t; 

with 

u=u 

v=v 

u=u 

v=v 

u=u 

v=v 

• ri/t) r,k(t--r) 

-·­,,-

where the repeated index notation for higher order tensor is adopted 

here. 
J, 

Then {'' is guaranteed to satisfy the nonlinearity condition (2.4), 

~i: 

thus the stability of x (t) is completely determined by the linearized 

variational equation 

d'n(t) = J T'(t) +J r,(t--r). err- 1- 2- (2.12) 
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Using the Theorem 2.2, if every solution of Equation (2.12) 

approaches zero as t- oo, then the periodic solution x'\t) is asympto­

tically stable in the sense of Liapunov-Poincare~ 

There exists a series of stability theorems which yield sufficient 

conditions for asymptotic stability of solutions of linear differential­

difference equations (constant or variable coefficients), and when non­

delayed term is governed by periodic coefficients, we have the 

following theorem. 

Theorem 2. 3 Given a linear differential-difference· equation with 

periodic coefficients 

dx(t} =P(t)x(t) + B x(t-T) at - - (2.13) 

with initial function 

suppose 

and 

x(t) =_g_(t} for O :s:: t :s:: 'T, 

(i) P(t) =P(t + T), periodic matrix, 

(ii} B constant matrix, T positive constant, 

(iii} g(t) is continuous and bounded, i. e., max \\_g_(t)\! =m 
- 0 :S::t:S:: T g 

(iv) all solutions of d!(t)=P(t)X(t), t > T are asymptotically 

stable, 

then also are the solutions of Equation (2.13), provided T is sufficiently 

small, 

Proof 

First, convert Equation (2.13} into an integral equation 
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t 

J -1 
x(t) =X(t)_g_('f) + X(t)X (s)B x(s-'f) ds , t > 'f 

'f 

and take norms of both sides, 

t 

11x(t)II s 1!X(t)\1· ll_g_('f)!1+ J l!X(t)!!- l!x-
1

(s)l1• llBjl. !lx(l;-'f)\lds (2.14) 
'f 

from hypothesis (iv), 

II X(t)ll:::;; m
1 

e -a.t , m
1

, a. positive constants 

and 

t 

I X(t) I= exp{ J Tr P(s)d~} -1- 0, 
'f 

Then Equation (2.14) becomes 

t 

llx(t)II s mlmge -a.t+m3e-a.t J ea.s\\x(s-'f)II d~ 
'f . 

Let T1 = l;-'f, then 

t 

ea.t llx(t)jl s m
1 
mg +m

3
ea.'f J ea.r,llx(r,) jl dri. 

0 

Apply the Gron wall's lemma to the inequality ( 2. I 5), 

( 2.15) 

( 2. I 6) 
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Thus 

lim Jjx(t) 11=0 
t ➔OO 

provided 

or 

(2.17) 

and since 'f must be positive, 

then the solutions of Equation (2.13) are asymptotically stable. 
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Chapter III 

FREE LINEAR DYNAMIC SYSTEMS WITH TIME DELAYS 

3.1 Problem Formulation 

As an opening chapter to constructive discussions of dynamic 

systems with time delays, this chapter is devoted to a homogeneous 

retarded type linear differential-difference equation with constant 

coefficients and constant delays. 

This system can in general be written as 

(3.la) 

(3.lb) 

with initial £unction 

x(t)=_g_(t) for (3.lc) 

Equation ( 3.1) represents a system of first order differential­

difference equations in vector-matrix form with the following assmnp­

tions: 

Assmnption 1 (Al): 

Assumption 2 (A2): 

Square matrices A. 1 s are real constant matrices. 
1 

Delays 'T. 1 s are real, distinct, positive constants. 
1 

Assumption 3 (A3): Initial £unction _g_(t) is continuous and bounded. 

Then it imrnediately follows that the retarded type linear 

differential-difference equation ( 3.1) coupled with the As smnptions Al, 

A2, and A3 must possess unique solution, since it satisfies all the 
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requirements for existence and uniqueness of solution as discussed in 

Chapter II. 

The linear equation (3.1) admits solutions of the forrn 

zt 
x(t) =e ~ 

where z is complex constant. 

Substituting (3.2) to ( 3.1) immediately yields 

and thus in order to have non-trivial solutions, we must have 

m -'f z 
G(z) =det [zr- I A.e j ]=o. 

·=0 J J-

This is n-th order exponential polynomial in z, where n 

corresponds to the size of matrix A .. 
J 

(3.2) 

( 3. 3) 

( 3.4) 

Equation (3.4) possesses infinite number of roots z., and each 
z.t 1 

root z. corresponds to a solution, e 1 
. Thus general solution to the 

1 

original differential-difference equation ( 3.1) will be 

00 z.t 
x(t) =le 1 ~i 

i=l 

( 3.5) 

where the infinite set of constant vectors c. can be chosen to satisfy 
--i 

the initial function _g_(t). This implies the general solution of any linear 

differential-difference equation with constant coefficients spans infinite 

dimensional vector space E , regardless of the order of the highest 
00 

derivative term. This can be shown immediately since all base solutions 
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are mutually linearly independent. The fact that solution spans infinite 

dimensional vector space is a unique characteristic of differential­

difference equations while the solution of ordinary differential equations 

spans finite n-dimensional vector space where n corresponds to the size 

of the matrix A.. This presents an inherent difficulty of obtaining an 
1 

exact solution in practice, but it will be shown later how this can be 

overcome by knowing the distribution of the characteristic roots. 

Since the existence and uniqueness of solution for Equation (3.1) 

is established, it is clear that the infinite series (3.5) must converge 

and term by term differentiation is possible. 

3. 2 Characteristic Exponential Polynomials 

Although the infinite series formulation of (3.5) offers valid 

representation for the solution, it lacks information about qualitative 

behavior of the solution. The main part of this chapter is devoted to 

discussions of the characteristic exponential polynomial as shown in 

Equation ( 3.4), since distribution of the roots will determine the sta­

bility of the solution and also quantitative measure of error bounds by 

truncating the infinite number of roots. In fact, the roots of the 

characteristic polynomial completely characterize the solution of a 

homogeneous linear differential-difference equation with constant 

parameters. 

Various authors have investigated the roots of characteristic 

exponential polynomials. Bellman and Cooke(ZO), El'sgol'ts(Zl), and 
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Pinney( 22) each devotes a chapter in their books to the asyniptotic 

location of the roots of the exponential polynomials. Chow( 23) tabulated 

digital roots for specific cases of exponential polynomials. More 

recently, Hsu and Lee( 24) used T-decomposition method to determine 

the stability criteria as a function of the delay terrn T. 

A characteristic exponential polynomial G(z} in Equation (3.4) 

is an entire analytic function of z. From the analytic function theory, 

it is clear that G(z) must possess countably infinite munber of roots 

whose unique accumulation point occurs at the infinity. Since the 

original differential-difference equation (3.1) is of retarded type, all 

the roots z. of G(z) must lie in a left half-plane, DX- e z. '.5: c/ for all i. 
l l 

This also implies the unique accumulation point must be at the negative 

infinity. 

This chapter will first discuss general distribution of the roots 

for several specific cases of retarded dynamic systems, which will 

give exact location of the roots as well as allowed and forbidden zones 

for the roots. This is motivated as a checking process for the roots 

which are computed by the Newton1 s method. Once exact locations of 

the roots are tabulated, it is desirable to find the exact number of roots 

that are lying in the Region D which lies left next to z = r/. 
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Jmz 

0 0 0 

0 0 
0 0 

Region D 

Figure 3.1 Typical Root Distribution of Retarded 
Type Characteristic Exponential Polynomial 

!Rez 

Typical case of root distribution for a retarded type differential­

difference equation is shown in Figure 3.1; the roots must occur as 

conjugate pairs for real coefficient systems. A great deal of attention 

is given to the N pair of rightmost roots lying in the Region D. For 

instance, in Figure 3.1, N = 5. The size of the Region D, or the number 

of roots under consideration ZN is oriented towards particular solution 

methods for piecewise linear differential-difference systems,namely, the 
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Fredhohn Integral Equation Method which will be discussed in detail in 

Chapters IV and V. 

Thus, it is not the purpose of this chapter to consider the most 

general aspects of characteristic exponential polynomials, but to 

consider the exact distribution of the roots in a finite region, which 

will be used exclusively in the subsequent chapters. Several specific 

examples of linear dynamic systems with time delays are discussed 

here, along with the stability criteria which is governed by the negativity 

of the real part of the leading root 01. 

3.2A Distribution of the Roots 

As an illustration, we consider a typical linear dynamic system 

with time delays. 

(3.6) 

with 

Without loss of generality, Equation (3.6) represents a linear 

retarded type differential-difference equation with multiple delays. 

The characteristic exponential polynomial for Equation (3.6) is 

( 3. 7) 

Now define dimensionless parameters 



and let 

we get 
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,.. 
z z=--, 

~ 

(3.8) 

(3.9) 

(3.10} 

Here yl' Yz, and y3 represent non-dimensionalized delay para­

meters; (:1' Cz represent damping factors, a~d a, f3 represent non­

dimensionalized stiffness coefficients. In order to investigate 

Equation ( 3.10) in further detail, we make the following case studies. 

Case I (a= C2 =0} 

This is the case of a single lag term occurring as a retarded 

spring force term. Suppressing the subscripts for sirn.plicity, we have 

( 3.11) 

Let 

z=cr+tw {3.12) 

then Equation (3.11) yields 

2 2 ycr 
(cr -UJ + 2(:cr + f3)e = - cos yw ( 3.13} 

Z(cr +Qwe ycr=sin yw. ( 3.14) 
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Combine {3.13) and (3.14), 

2(CY + Qw 
2 2 

w - CY -2(CY - /3 
tan yw (3.15) 

( 3. 16) 

with 

2 2 
b = CY + 2(CY + 2( - /3. ( 3.17) 

Thus, the exact set of roots z.= CY. + i w. are such that they satisfy 
l l l 

Equations {3.15) and {3.16) identically. Since the roots must occur as 

conjugate pairs, we shall only consider when w :2: O. Actual calculation 

of the roots is carried out by using the Newton's method to solve 

Equations {3.15) and {3.16) simultaneously for two unknowns CY and w. 

In order to supplement actual tabulation of the roots for this 

case, it is possible to construct allowed zones and forbidden zones in 

complex z-plane where the roots may or may not occur. Consider 

Equation ( 3.14), 

for CY> - C , sin y W > 0 

2mr <UJ< (2n+l)1r O 1 2 y y , n= , , , ••• ( 3.18) 

for 

CY= - C , sin yw =0 

UJ = n,r O 1 2 , n= , , , .•• 
y (3.19) 
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for 

cr < - s , sin y w < 0 

(2n+l)-rr < w < 2(n+l}-rr , n=O, l, 2, ... 
y y 

(3.20} 

Now reconsider Equation ( 3.14} for w > 0 

{ 3. 21) 

or 

{ 3. 22) 

and 

{3.23) 

Thus summarizing the results of Equations {3.18), {3.19}, (3.20), {3.22}, 

and {3.23) it is clear that the roots must occur within the double cross­

hatched area, thus constructing the allowed zones and the forbidden 

zones as in Figure 3.2. 

1 
- C - -y 

w/2rr 

0 

Figure 3.2 Allowed zones (double crof s-hatched area} and 
forbidden zones ( elsewhere} for z + 2Cz + e-Y z+ 13=0. •• 
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In the following pages, Figures 3. 3 and 3.4, numerical tabulation 

of the roots are shown as examples. We note all the roots do lie within 

the allowed zones as predicted. 

Also, note that the roots form a single straight line chain 

formation on cr vs. in tu plot, and in fact this can be predicted by 

studying the asymptotic nature of the roots as cr ➔ - oo. From Equation 

( 3. 16) 

- Y. (J 

1
. 2 1m W ➔e or 

(J ➔-oo 

Case II (13= C2=0) 

lim in W->- i cr. 
(J➔-oo 

( 3. 24) 

If we let 13 = C2= 0 from Equation ( 3. 10), this is the case of two 

lag terms occurring as retarded spring force terms. This case will 

eventually lead to the study of multiple lag linear delay systems which 

will be discussed in the following Chapter IV. Equation ( 3.10) becomes 

(3.25) 

with 

a, -f: o. 

Let z = cr + tw, we have 

( 3. 26) 

(3.27} 
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CT') 
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~ 

x"-
~ 

~ X 

~ X 

~ X 
N X N 
C) ~ C) ..... X -~ 

~ X 
X 

X 
X 

~ 
X 

~ X 
X 

r-... 
N 

X 
X 

'-/ X -a -ecc X. 
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X 

0 ZETA= 0.0707 0 
C) y C) - BETA= 1 .0000 -

D D 0.0225 X 2rr 

X X 0. 3376 X 2rr 

~ 0.6752 X 2rr 

.... .... 
I 

0~ -1.000 -2.000 -3.000 -ll.000 -5.000 -6.0QO 
REAL( Z) 

Figure 3.4 _Root Locations of z 2+ 2Cz + e-yz + 13 =0. 
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Exact roots can be computed from Equations (3.26) and (3.27) 

numerically. 

As cr->-oo, the last two terms of Equation ( 3. 25} dominate, and 

( 3. 28) 

( 3. 29) 

(3.30} 

Thus, asymptotically as CY->-oo, Equations (3.26) and (3.27} 

yields 

( 3. 31) 

with 

using 

.. . 2 -Yi CY -Y3CY 
hm w ->e ±ae (3.32) 

(;➔-00 

Y1 (yl- Y3}CY 
liminW=-ycr+O(e ). 

(Y➔ -00 

(3.33) 
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( 3. 34) 

Thus, slope of the root chain in CY vs. P.n w plot is dominated by 

the largest lag term. In some cases of parameter combinations, it is 

observed that double trajectory of straight chains of roots occur. 

Figure 3. 5 shows double trajectory and single trajectories for a case 

when two lag terms occur as restoring force terms. 

Case III (a.= f3 = 0) 

In this case, we let a.= 13= 0 from the general equation (3.10}, 

and we have 

(3.35) 

with 

This case represents a delay linear differential-difference 

equation with one lag in the zeroth order term and the second lag in 

the first order term. 

Let z = cr+ iw, Equation (3.35) yields 



+ 

Y1 

~ (!} o. 

(!) (!) 0 . 1688X Z;r 

A .& 0 . 3376 X 2;r 

N 
0 + - + 0.5064 X Zrr 
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+ 

+ 
+ 

+ .. 
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1'1-J + .. 
'--/ 

.. 
-(_!) 
~a: 

L 
.. 

+ 
t-4 + .. (!') l!I 
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• 
l!I 
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i, .... 

-
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+ 
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+ 
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+ 

(!l!J 

C!l!) 

+ 
+ 

+ 
+ 

c.91!1 

' l!1 
l!I 

(!')l!I 

(!')l!I 
(!') 

(!') 

(11JrIP 

l!I 
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(!') 
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-0 .... 

0 
0 -

-i-.. ___ ___._ ____ .._ ___ __._ ____ ....._ ___ __. ____ _. I 
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2 -ylz -y3z 
Figure 3. 5 Ro ot L o cations of z + 2C 1 z + e + a e = O. 

(Double Trajecto ry O ccurs for y
1 

= 0. 1688 X Zrr) 
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and the exact roots are tabulated from above. 

If we consider the second lag Yz term as Taylor series, 

(3.38) 

• Equation (3.35) becomes 

(3.39) 

Thus for Yz sufficiently small, effect of the second lag in the first · 

derivative term does not alter the nature of the root distribution, and 

qualitative behaviors of the roots are extremely similar to the Case I 

when a single lag in the zeroth order term alone was considered. 

3. ZB Correct Number of Roots by Nyquist Diagram 

Once the exact roots are tabulated by Newton's method, it is 

necessary to know that there are no mis sing roots within the finite 

Region D (refer to Figure 3.1). Since numerical procedure by Newton's 

method is based on the convergence to an exact root from an initial 

guess while there exist infinite number of roots, it is possible that the 

numerical procedure may have left out roots within D. Since the con­

vergence of periodic solutions in forced linear systems with time delays 

by the Fredholm Integral Equation Method is entirely depended on the 

accuracy of the roots within D, it is extremely important that the 

tabulation is complete without a single missing root. 

For this purpose it is most convenient to apply the Nyquist 

diagram in order to count the exact number of roots in the right 
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half-plane. Construct the closed semi-circle countour as in Figure 3.6, 

Ar-----
w 

0 

0 
0 

(J 

E (J 

0 
0 

0 

Figure 3.6 A Bromwich contour in z-plane 

then the Cauchy's principle of argument states that, for a Bromwich 

contour r followed by z (as E ABC E in Figure 3.6), 

where 

Variation of argument [G(z)]=21r(Z-P) 

Z = Number of zeroes within I' 

P = Number of poles within r. 

( 3.40) 

Since the function G(z) under consideration is the characteristic 

exponential polynomial G(z), 

m -'T.Z 

G(z) =det [zI- l A.e J ] =0 
. J 
J=O 

it is clear G(z) has no poles, thus P =0. 

( 3.41} 
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As an illustrative purpose, we shall take a simple single lag 

case (this is considered in Section 3.2A, Case I with 13=0) 

with the tabulation of the roots as given in Table 3. 1. Although the 

example of Equation (3.42) represents a special simple case of 

characteristic exponential polynomial, it will be clear that the following 

method will go through even though G(z) takes a most general form as 

in Equation ( 3.41). 

Now construct the Nyquist Diagram in G(z)-plane as the contour 

r in z-plane is mapped into G(z}-plane by the transformation (3.42). 

As z traverses on EA of the contour r, 

+ • 0 z=a +1.-w , ~W<oo 

with a+ fixed constant. 

Then 

G(z} =x(w) + ty(w) 

+2 2 + + 
x(w)=cr - w +zca +e-Y0 cos yw 

+ 
y(w) = Z(C +a+) w -e -ya sin yw 

and as z traverses on ABC of the contour r, 

te 
z =Re , R -+ oo , 0 ~ 8 ::;; -rr 

thus 

2 2 • e . e te 
G(z)=R e 1., +2CRe1., +e-yRe 

(3.43) 

( 3.44) 

( 3.45) 

( 3.46) 

( 3.4 7) 

( 3.48) 
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and as R .... ro, the first term dominates. Thus, the Nyquist contour is 

constructed by plotting Equations ( 3.44} and ( 3.48}. 

For a numerical example, roots of Equation (3. 42} are 

tabulated for C =0.0707 and Y =2-rr X 0.1688. 

Right-most five roots z .= cr. + t w. are: 
J J J 

er. w. Number of roots to the right of z = cr. 
J J J 

zl 

z2 

z3 

Z4 

Z5 

o. 2795 0. 7858 2 

-3. 314 4.804 4 

-4.690 11.10 6 
: 

-5.452 17.20 8 

-5. 990 23. 22 10 

Table 3.1 First five roots of z 2+2Cz +e-yz=O 
with C=0.0707, y=2-rr X 0.1688. 

Thus by choosing z = er+ appropriately, we can count the number of roots 

within r by counting the number of net rotations of the angle cp in the 

Nyquist diagram. The next four pages (Figures 3. 7 - 3.10} show for 

each case of er+, and the number of net rotations do coincide with the 

number of roots within r by the Newton's method. 

This graphical method by Nyquist diagram will eliminate any 

possibilities of missing roots to the right of arbitrary z = er+, provided 

the number of net rotations coincides with the tabulation. 
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3. 2C Stability Criteria by Satche Diagram 

S6 far attention was restricted to the distribution of roots of the 

characteristic exponential polynomials. Most frequently, however, the 

question of stability of solution for a linear differential-difference 

equation is of prime importance, and this can be answered directly by 

analyzing the roots of the characteristic exponential polynomial. 

It is a particularly simple matter to investigate the stability of 

solutions of linear equations with constant coefficients and constant 

delays of retarded type as in Equation (3.1). Any solution x(t) may be 

expanded in a uniformly and absolutely converging series of basic 

solutions 

00 z.t 
x(t) =le 

1 
~/t) 

i=l 

{ 3.49) 

where c .(t) are polynomials of degree not less than a.-1, where a. is 
-1 1 1 

the multiplicity of the root z. of the characteristic exponential poly-
1 

nomial 

m -T Z 

G{z} =<let [zl- L A.e j ] =0 
·=0 J J-

( 3.50) 

and order the roots as 

( 3. 51) 

If all the roots z. have negative real parts, it is clear that the 
1 

solution ( 3.49) must be asymptotically stable. Therefore, for R ez 
1 

< 0, 

all solutions of Equation ( 3.1) are exponentially asymptotically stable: 



-43-

~e z t 
llx{t)!! ::;;Me 

1 ( 3. 5 2) 

where Mis a constant. 

Thus it is necessary to know the conditions between parameters 

such that all the roots of G(z) satisfy ~e z. < 0 for all i. 
1 

Although there exist many schemes to deduce stability criteria 

in parameter spaces, the idea of Satche diagram is found to be most 

useful for the class of equations considered here. The Satche diagram, 

in essence, is a modified version of the Nyquist diagram, where it is 

most ideally suited for a dynamic system with single delay. Let 

with 

where 

G(z) =f(z)-g(z) {3.53) 

f{z) = rational function in z 

Applying the Cauchy's principle of argmnent, we have 

Variation of argmnent [f(z)-g(z)]=2;r(Z-P) 

Z = Nmnber of zeroes within r 

P = Nmnber of poles within r 

(3.54) 

(3.55) 

(3.56) 

with the Bromwich contour r is chosen on z-plane, as in Figure 3.11. 
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f(z) 

Figure 3.11 Bromwich contour and typical case of 
Satche diagram. 

If we draw the diagrams of f(z), g(z) separately as z traces the 

Bromwich contour r, the argmnent of [f(z)-g(z)] is the angle 8 traced 

by the corresponding points M
1

, M
2

. 

As z = i w, - oo < w < oo on COA, g(i w) forms a unit circle centered 

at the origin, and f(i w) may form a straight line, circle, or parabola 

depending on the function f(z). This double trajectory of f(z), g(z) is 

called Satche diagram (ZS), and, of course, the ordinary Nyquist dia­

gram is a special case of Satche diagram when g(z) reduces to a 

simple point at the origin. We will show how this idea is used by 

means of an example. 
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Example 

Consider a second order dynamic system with single del'.3.-Y term 

occurring in the zeroth order term, thus Equation (3.50) becomes 

2 -yz 
G( z) = z + 2 (; z + e + f3 = O (3.57) 

with 

-co< f3 < oo. 

In order to find conditions on the parameters (;, y, and f3 such 

that all the roots of Equation (3.57) possess negative real parts, we 

proceed to construct the Satche diagram. Let 

G(z) =f(z)-g(z) ( 3.58) 

with 

2 
f(z)=z +2(;z+f3 ( 3.59) 

( 3. 60} 

OnOA, z=iw, Q:;;; _w<oo, 

f(i w} = -u.l + f3 + i 2(; w (3.61) 

g(iw) =- cos yw + i sin yw~ ( 3.62} 

Thus for 1 f3 \ s 1, the Satche diagram becomes Figure 3.12. 
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f(z) 

B' 

c' ____ ..;.;,---

Figure 3.12 Satche diagram for lf31 ::=;; 1. 

In order to have zero net rotation of the argument 0, we must 

I 
have M

1 
left of M

2 
as M 2 travels between O and P. That is, 

bte f(i w) > br;e g(i w) ( 3. 6 3} 

2 cos yw > w - f3 for stability. ( 3. 64) 

Solve for the critical value of w at P from Equations (3.61) and 

( 3.62), 

2 2 /( 2 2 2' w = -(2C - f3)± (2C - f3) + l-f3 . (3.65) 

Choose the + sign, 

( 3. 66) 

then 
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2 2 ✓ 4 2 I w -f3=-2C + 4C -4f3C +1 < 1. ( 3.67) 

Thus Equations (3.66), (3.67) and (3.64) give the stability criteria 

for I f3 I ~ 1. ( 3.68) 

For /3 > 1, we can have two cases. First, 0 1 A' of f(z) intersects twice 

with the unit circle as shown in Figure 3.13. 

A' 
1 

Ml 
-1 B' 

c' 

Figure 3.13 Satche diagram for f3 > 1. 

Condition for stability is that M
1 

must lie left of M 2 as M
2 

travels between 0 1 and P. That is, 

2 
cos yw > w - f3 (3.69) 
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with 

2 2 J 2 2 2' w = (13-2C )- (13-2C ) + 1-13 

w2 
>0 if 13 > 2,:,

2 
, 13 > I 

Thus, real w exists only for 13 > 2,;,
2

, 13 > 1 

provided 

y~_c_os_-_
1
~[~-_2c~

2_-~J_4~~---4~~~'~2_+~1] 

J(13-2r;,
2

)-J4r;,
4 

- 4!3C
2+ 1

1 1 

(3.70) 

{ 3. 71) 

{3.72) 

I£ 0 1A 1 has no intersections with the unit circle as shown in 

Figure 3. 14, 

A' f(z) 

B' 

g{z) 

c' 

Figure 3.14 Satche diagram for 13 > I. 
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it becomes clear that the net rotation of the argum.ent 8 is zero for all 

values of y. This implies the unconditional stability on y provided 

(3.73) 

or 

For /3 < -1, we have Figure 3.15. 

f(z) 

I 
C 

Figure 3.15 Satche diagram for /3 < -1. 

Since M 2 is always to the left of M
1

, it implies one net rotation 

of the argument 8, thus we have unconditional instability for all values 

of C, y. 

Summarizing the above results in C, /3 space, we have the 

stability regions of Figure 3.16. 
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Reg on 1 

1 
j2 

0 1 

/ Unconditional 

Stability Region 

---
~ f3= 2,2 

Figure 3.16 Region of stabilities for G(z)=z 2+2Cz+e-yz+f3. 

In Region 1, solution is stable if 

( 3. 74) 

In Region 2, solution is stable if 

( 3.7 5) 

Plotting y vs. C parametric in (3, from Equations (3.74) and (3.75), we 

have Figure 3.17. 
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Figure 3. 17 Stability Boundary Curves for z 2+2Cz+e-Y 2 +/3=0, 

Parametric with /3. 
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Chapter IV 

FORCED LINEAR DYNAMIC SYSTEMS WITH TIME DELAYS 

4.1 Problem Formulation 

Knowing the mathematical preliminaries of free linear systems, 

it is logical to extend the analyses to forced linear systems with time 

delays. Again, knowledge of the forced linear system will be a 

preliminary foundation for the forced piecewise linear systems which 

will be discussed in Chapter V. 

Consider 

with initial function 

and 

m 
dx(t)= \ A. x (t-'f.) + F(t) 
dt L. 1- l -

i=O 

for O ~ t ~ 'f m 

(4. 1) 

Here Equation (4.1) carries the same Asswnptions Al, AZ, and 

A3 as in the free linear system. In addition to that, 

Assmnption 4 (A4): Characteristic exponential polynomial of the 

[ 
m -'f.z 7 

homogeneous part det zI - .~ A . e 1 j =0 possesses roots with 
1=0 1 

6Y-e z. < 0 for all i. 
l 
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Assum.ption 5 (AS): The forcing function F(t) is bounded and continuous. 

4. IA Formal Solution 

Under the five Assumptions Al-A5, the existence and unique­

ness of solution of Equation (4.1) is guaranteed, and the formal solution 

is constructed as follows: 

Definition. Let K(t) be the unique matrix function which satisfies 

a)K(t)=O for t<O ( 4.2) 

b) K(O)=I 

m 

c) L(K) = d~~t) - l AiK(t-'ri) = 0 (4.4) 
i=O • 

for t>O. 

Again the existence and uniqueness of K(t) is guaranteed, and 

actual construction of the matrix function K(t) will be discussed later 

in this Chapter. 

Note the solutions of Equation (4.4) may possess jumps in the 

derivative, and denote S to be the set of all points of the form 

m 
t= \ J.'r. L 11 

i=O 

where Ji are integers. Let S+ denote the intersection of S with the half­

line [O, oo). Then, in general, the solution K(t) may possess jump 

discontinuities in the derivative at the points in S +· 
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Theorem 4.1. If K{t) satisfies the conditions (4.2), (4.3) and (4.4), 

then the following is true. 

where 

Proof. 

then 

,. 

J ts -1 K{t)= e H {s)ds , t>O 

Br 

'f 'f 
m m J K'{t-s)_g_{!;)ds= J etsH- 1{s)s J e-ss_g_(!;)ds ds 

0 • Br 0 

m -'f.S 

H(s) = sr- I Ai e l. • 

i=O 

Let K(s) be the Laplace transform of K(t), 

00 

K{s) = J K(t)e - stdt= £:[K{t)] 

0 

J
oo -s'f. 

st 1. " £:[K(t-'f.)]= K(t-'f.)e- dt=e K{s) 
l. l. 

0 

00 

{4.5) 

{4.6) 

(4.7) 

{4.8) 

{4.9) 

£[K1(t)]= J K'(t)e -S
t dt=sK(s)-I. ( 4.10) 

0 ' 
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Substitute (4.9) and (4.10) to Laplace transform of Equation (4.4), 

thus 

oo m -'T. s ,., I -st r. \ 1 J K(s) = K(t)e dt= L9I- L Af 
0 i=O 

-1 :;:H (s) for ~es >b 

-1 

-1 so K(t) and H (s) form. a transform. pair, thus K(t) can be recovered by 

inverse Laplace transform. 

K(t) = J etsH- 1(s)ds , t > 0 

Br 

where the integration is taken along a suitable Bromwich contour. Thus, 

K1(t)=J etssH- 1(s)ds, t>O. (4. 11) 

Br 

Now using the convolution theorem in a vector-matrix sense, 

:t 
K1,:~_g_= J K'(t-!;)tz('Tm-!;)_g_(l;)d~ 

0 

:m 
= I K'(t-l;)_g_(l;)dl; 

0 

where fl (t) denotes the Heaviside function, 

( 4. 12} 
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n(t)=l for t >O 

=0 for t < 0 

then 

00 

-1 I -ss = sH (s) e n ('fm~s)_g_(s)ds 
0 

'fm 
-1 I -ss = sH (s) e _g_(!;}d!;. 

0 

Thus 
'f. 

-1 Jm -ss sH (s) e _g_(!;)d!; and form a 
0 

transform pair, i.e., 

'fm 'fm 

I K'(t-s)_g_(s)ds=,S:-
1 

[sH-\s) I e-ss_g_(s)ds] ( 4.13) 
0 O 

and similarly, it can be shown that 

( 4.14) 

Thus we complete the proof for Equations (4.6) and (4.7). Then the 

formal solution to Equation (4.1) becomes as follows: 

Theorem 4.2. (Verification of the formal solution). Suppose 

Equation (4.1) satisfies the Assumptions Al, A2, A3 and AS. Let x(t) 

be the continuous solution of Equation (4.1) with the initial function 
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• x(t) = o-(t) for Ost s 'f . Then, for t > 'f , 
- .c2. m m 

m 'fm t 

x(t) =K(t-Tm)_g_(Tm) + l J K(t-\-s)Ai_g_(s)ds + J K(t-s)F(s)ds. ( 4. I 5) 
i=O 'f -T. T m 1 m 

Proof. First we will see the solution (4.15) indeed satisfies the 

original differential equation (4.1) fort> T • Differentiate Equation 
m 

(4.15) and use (4.3) and (4.4), 

( 4. I 6) 

thus satisfies the original differential equation for t > T • However, m 

the solution x(t) becomes zero for Ost s T ( since K(t) obeys 
- m 

expression (4.2)), thus does not satisfy the initial function _g_(t). In fact, 

the solution ( 4.15) is only defined for t > T • m 

In order to see the solution satisfies the initial function _g_(t), we 

look for an alternate formulation of the solution which covers the 

interval Ost s T • That is, for t > 0, 
m 
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Tm ~ Tm-Ti t 

x(t) =K(t)_g_(O)+ s K(t-s)_g_'(s)ds- l J K(t-\-s.lAi_g_(s)ds + J K(t-s)F(s)ds 
0 i=O O Tm 

( 4.17) 

provided 
I 

_g_(t) EC [O, T ]. 
m 

Solution ( 4.17) can also be verified immediately as in Equation ( 4. 16 ). 

Thus, solutions (4.15) and (4.17) are equivalent except for 0:S:t :S: T • m 

This can be also shown by using integration by parts on the second term 

of the right hand side of Equation ( 4. 17). Equation ( 4. 17) reduces 

identically to Equation (4.15). 

For O ~ t :S: T , using the condition ( 4. 2), Equation ( 4.17) becomes 
m 

Tm m :ni_-Ti 

x(t) =K(t)g(O) + I K(t-s)_i©ds- \ I K(t-T. -s)A._g_©ds 
0 tbO l l 

(4.18) _ 

thus the solution for O :S: t :::; 'f is independent of the forcing function F(t). m . -

In order to see Equation ( 4.18) is identical to _g_(t), it is 

necessary to reformulate the solution by Laplace transform. Expand 

the second term of Equation (4.18) by integration by parts, 

Tm Tm 

I K(t-s)_g_'(s)ds=K(t-'fm)_g_('fm)-K(t)_g_(O) + I K(t-s)_g_(s)ds 
0 0 

and for o:::;t:::; T , 
m 

( 4.19) 
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Tm 

J K(t-T.-s)A.g_(s)ds=o 
T -T. 1 1 
m 1 

since 

K(t) =0 for t < 0. 

Thus the last term of Equation ( 4.18) becomes 

Thus substitute Equations ( 4.19), ( 4. 20) to ( 4. I 8), 

Tm m 

x(t) =K(t-T )_g(T )+ J fi<1(t-s)- \' K(t-T. -s)A.]g_(!;)ds 
- m m l: L 1 1 

0 i=0 

but the first term vanishes for O:::: t:;:; T , and using the results of m 

Theorem 4.1, Equations (4.6) and (4. 7), we have · 

m -Ts Tm Tm 

I ts -1 [ \
1 

A i 7 f -sE: (!=\ J ts 1 -sE: x(t) = e H (s) t3I - L ie J e -g_\':::,ds ds = e j e -g_(s)ds ds. 
fu ~ 0 fu 0 

( 4. 21) 

Interchange the order of integration, 

(4. 22) 

=g_(t) for 
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since we define the Dirac delta function o(t) as 

00 

[ J J -st -Sc'. 
S'., o(t-!;) = e o(t-!;)dt=e • 

0 

s.,-l[e-SSJ = J e(t-s)sds = o(t-!;). 

Br 

This completes the proof of Theorem 4. 2, and establishes the verifica­

tion of the solution ( 4.15) for the differential-difference equation (4.1). 

From now on, K(t) is called a 'matrix kernel' K(t) for the 

differential-difference equation. We note the matrix kernel K(t) as it 

appears :in the solution scheme of Theorem 4. 2 is exactly analogous to 

the principal matrix solution X(t) for an ordinary differential equation 

then 

where X(t) satisfies 

dx -==Ax+F(t) 
dt - -

t 
x(t) =X(t).£ + J X(t-s)F(s) d!; 

0 

dX 
crr=AX , X(O) =I. 

(4.23) 

Note also the solution (4. 15) is made of homogeneous solution 

and particular solution analogous to the ordinary differential equation 

solution ( 4. 23). However, the basic difficulty in differential-difference 
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equation is that the matrix kernel K(t) is made of the residue 

contributions from an infinite number of poles, where the principal 

matrix solution X(t) is made of the residue contributions from a finite 

number of poles. We shall see how the difficulty can be overcome by 

understanding the nature of the kernel K(t) later in this Chapter. 

Boundedness of the Formal Solution 

Theorem 4. 3. Suppose the system of differential-difference equation 

(4.1) satisfies 

(i) Initial function g_(t) is continuous and bounded. 

for O ~ t ~ 'l" • 
m 

(ii) Forcing function F(t) is continuous and bounded. 

i. e. , II F(t)II ~ m 2 for all t > O. 

(iii) Characteristic exponential polynomial 

with Re z. < 0 for all i. 
1 

i. e.' 

then the solution (4.15) is bounded. 

Proof. Take norms both sides of solution ( 4.15), 

(4.24) 

( 4. 25) 

(4.26) 
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m Tm 

\\x(t)II ~ II K(t-Tm)II • 11£(Tm)II + l f \! K(t-\-slll • II Aili· ll_g_(s)II d!; 
i=O Tm-Ti 

+ f II K(t~!;)II • II F(s>II ds. 
Tm 

Using (4.24), (4.25) and (4.26), let 

Knowing cr
1 

< 0, llx(t)II is bounded for all time t> 0, and further, 

lim llx(t)II 
t-.oo -

< oo. (4.27) 

This result is expected since for a stable system (i. e., ~e z 1 < 0) all the 

transient solution will die out eventually and we are left only with the steady 

state solution which is bounded. 

4. IB Structure of the Matrix Kernel K(t) 

Earlier in Theorem 4.1, it was shown that the matrix kernel 
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with 
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S ts -1 K(t) = e H (s) ds 
Br 

m -'T".S 

H(s) = sI - \ A. e 1 

L l 
i=O 

At this point, it is convenient to show how K(t) can be computed 

for a simple class of dynamic equation with single lag. 

Consider 

x(t) + cx(t) + kx(t-T) = 0 . (4.28) 

with 

x(t)=g(t) for 0~t ~ T. 

Write (4.28) in vector-matrix form, 

~(t)=A x(t) + A x(t-T) 
dt 0- 1- (4.29) 

then 

[ 

s -1] -Ts 
H(s)=sI-A

0
-A1e = 

-Ts 
ke s+c 

( 4. 30) 
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H- 1(s)= ~ 
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[

s+c 

-'Ts 
ke 

2 -'TS 
..6.=s + cs +ke . 

b+ioo 
1 J ts -1 K(t) = 2,ri e H (s)ds 

b-ioo 

b+ioo ts J (s+~e ds 

1 b-ioo 
= 2,ri 

b+i oo (t-'T) s 
J -ke ..6. ds 

b-ioo 

b+ioo ts J ~ds 
. ..6. 

b-voo 

b+ioo 

J 
ts 

~ds 
..6. 

b-ioo 

(4.31) 

(4. 32) 

Each element of the matrix ( 4. 32) can be computed by sum.ming 

the infinite munber of residue contributions. From the investigation of 

Chapter III, we recognize ..6.(z) as a characteristic exponential polyno­

mial, thus possesses infinite chain of roots. For each simple zero 

2 -'Tz 
z. of ..6.(z)=z +cz+ke =0, 

l 

ts f [ ( s-zi)( s+c)e ] 
= 2,r t L lim ..6. . 

i=l s->zi 



Using the l'Hopital' s rule to evaluate the residue, 

where · 

Similarly, 

-'T"z. 
L~.1(z.)=2z.+c-k'T"e 1 

1 1 

b+ioo ts J _e_ ds 
b 

. !:::.. 
-uoo 

00 tz. 
1 

= Z1ri l l1 (z.) 
1=1 1 

b+ioo (t-rr}s 00 c (t-rr}zi 

I -ke • k-ke 
. . !:::.. ds=21ru t:::..'(z.) 

b-uoo 1= 1 

b+ioo ts 

J s ~ ds = 
b-ioo 

(4.33} 

( 4. 34) 

(4.35) 

( 4. 36) 

Thus the matrix kernel K(t) can be computed from Equations (4. 33), 

(4.34), (4.35) and (4.36), 

00 z.t 
K(t) = le 

1 Ri for t > 0 
i=l 

where R. is the 2 X 2 matrix 
1 

z. +c 1 
1 

z. 
1 

( 4. 3 7) 
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At this point, the infinite series representation of the kernel 

(4.37) is partitioned into two parts for pragm.atic computational reasons. 

Let 

( 4. 38} 

where ~(t) represents the finite-summed kernel which is the residue 

contributions of N-pair of rightmost roots, and K
8
(t} is the error kernel 

with the remaining residue contributions. 

In the process of developing the periodic solution scheme, we 

shall use the truncated N-kernel KN(t) exclusively, and the error 

induced by neglecting the error kernel K
8
(t) will be rigorously analyzed 

in Section 4. 3 of Error Analyses. It will be shown that the error is not 

only bounded, but also can be made arbitrarily small by increasing N 

for the N-kernel. Also, due to the exponential nature of the kernel, 

we recognize KN(t-s) to be of a separable kernel type, i. e., 

4.2 

-z. s 
e 1 R .. 

1 
( 4. 39) 

Construction of Exact Periodic Solution by Fredholm Integral 

Equation Method 

With the knowledge of the formal solution (4. 15) and the 

properties of the kernel as in Equations ( 4. 38) and ( 4. 39), we proceed 

to construct the exact periodic solution of a forced linear differential­

difference equation. The word "exact" is used here in a sense that the 
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error caused by using the truncated N-kernel KN(t) can be made 

arbitrarily small by taking N sufficiently large. 

The new method, which will be called Fredhohn Integral 

Equation Method, is derived here to provide a constructive algorithm 

for general solutions of linear differential-difference equations. 

Examples will be given for the most interesting type of solutions, 

namely, periodic solutions; however, transient solutions can also be 

obtained by the same method. 

In ord.er to illustrate how the method is precisely derived, it 

is appropriate to introduce a basic theory of Fredhohn integral equations 

at this point. 

4. 2A A Theory of Fredhohn Integral Equations 

Consider a Fredhohn integral equation of second type in vector­

matrix form of dimension n, 

a 
cp(x) =f(x) +~(x, O)_sp(a) + A J KN(x, y)_sp(y)dy , a> 0 (4.40) 

0 

where _sp(x) is the unknown vector function and KN(x, y) is the given 

matrix kernel. Then from the classical theory of integral equations, 

the solution of Equation ( 4.40) is given as infinite Neumann series in 

general whose convergence is only guaranteed for A sufficiently small. 

However, when the matrix kernel KN(x, y) is of separable type, i. e,, 

N _ 

KN(x, y) = I Xi(x)Yi(y) (4.41) 

i=l 
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then the Fredholm integral equation (4.40) reduces identically to (nN+n) 

system of algebraic equations. This separable class of kernel is 

called a Pincherle-Goursat kernel or, briefly, a PG-kernel. It is 

evident that the matrix kernel in the form.al solution (4.15) is ·always 

a PG-kernel as in Equation (4. 39). 

Since the process of reducing a Fredholm integral equation with 

PG-kernel to a system of algebraic equations is the most important 

step of the entire solution scheme, we shall treat it in some detail here. 

First, substitute Equation (4.41) to (4.40), 

N N a 
_se(x) =f(x) + \ X.(x)Y.(O)rn(a) +A\ X.(x)J Y.(y)rn(y)dy 

- Li i ..:i:: Li i ..:t: 
( 4.42) 

i=l i=l 0 

and let us seek the solution _se(x) over the fixed interval x 0 ~ x ~ x 0 + a, 

x
0 

> a, and let 

(4.43) 

Then at x=a +x
0

, Equation (4.42) becomes 

N N 

~ 2(a) =f(a +x0) + l Xi(a +x0 )Yi(O)c.o1 (a)+ Al Xi(a +x0)mli (4.44) 
i=l i=l 

if we define the integral moments of the unknowns ~l (x), _spz(x) as 

a 

~li= J Yi(y)_sel (y)dy 
0 

a i,j=l,2,·· •,N. 

m 2( J Y/x)~(x)dx 
0 

{ 4.45) 
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Also from Equations (4.42) and (4.43), 

(4.46) 

and premultiply both sides of Equation (4.46} by Y.(x} and integrate 
J 

from O to a, we have 

~ N 
m 2 .=h. +l Q .. Y.(0)~1(a) +A\' Q .. m 1. , j = 1, 2, •··, N 
- J -.J Jl 1 L Jl- l 

i=l i=l 

(4.47) 

with 

,a . 
h. = J Y.(x)f(x+x

0
)dx 

-J J -
0 

, n-size vector 

a 
Q .. = J Y.(x}X.(x+x0)dx , n X n matrix. 

Jl Q J 1 

Now combine Equations (4.44) and (4.47) and construct the (nN +n) 

system of algebraic equations 

(4.48) 

with (nN +n) size vectors 

~1 (a) ~2(a) f(a +xo) 

mll m21 hl 

{.5el} = , {5.ez} = , {h}= ( 4.49) 
m12 m22 h2 
. . . 

~ mlN m2N 
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and (nN +n) X (nN +n) matrix 

[M]= •• ·A.Q 
IN . (4.50) 

•• ·A. Q 
NN 

Thus we have established the transfer relationship between two 

state vectors t-9:!
1

} and [~2} which are exactly x
0 

apart, and the matrix 

[M] is called the transfer matrix. 

The matrix equation (4.48) can be posed in two ways. First, 

given the initial vector [~
1

} at one point, then the state vector at any 

other point [~2} can be computed by Equation (4.48) since [M] and [h} 

are solclydepended on x 0 . Second, when a periodic solution is sought 

with known period T, then the periodicity requirement is 

( 4.51) 

The first case implies the transient solution of the integral equation 

(4.40) can be constructed by Equation (4.48), and the second case is 

for the steady state periodic solutions. This will eventually lead to 

the construction of periodic solutions for linear and piecewise linear 

differential-difference equations. 
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It is to be emphasized that the equivalence between the Fredholm 

integral equation (4.40) and the matrix equation (4.48) is mathematically 

exact, thus yielding the exact solution in terms of the integral moments. 

Once the integral moments are known, the solution 3!(x) itself is imme­

diate from the relationship ( 4.42). 

We note the formal solution ( 4. 15) of a linear differential­

difference equation can be transformed into a Fredholm integral 

equation ( 4.40) as one seeks the periodic solution such that x(t + T) = 

x(t) =_g(t) for O::;; t ::;; 'T • Then the periodic solution is obtained as 
m 

Equation (4.51), and this is how the name Fredholm Integral Equation 

Method for the periodic solution is derived. We will see later in 

Chapter V that the method is ideally suited for piecewise linear systems 

with time delays where the closed form periodic solution is not known 

otherwise. 

4.2B Single Delay Case 

In order to illustrate the constructive solution scheme by the 

Fredholm Integral Equation Method, a simple case of dynamic system 

with single delay is chosen. We note the method is well suited for a 

more general class of Equation (4.1). 

Consider the following problem 

x(t) + cx(t) + kx(t-'T) = p cos (Wt+ ~) ( 4. 52) 

with initial function 

x(t) =g(t) for O ~ t ~ 'T. 
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Assmnptions are: 

Al) _g_(t) is continuous and bounded, but unknown. 

A2) Homogeneous solution of Equation (4.52) is stable, 

2 -Tz 
i.e., roots ofz +cz+ke =0 have 6r-ez.<0 for alli. 

1 

A3) System parameters, c, k, T, p, w are given. 

A4) The phase angle ,jl between forcing function and the 

solution is unknown. 

Then find the steady state periodic solution subject to the symmetry 

condition as shown in Figure 4.1. 

'Tl' where T = w , half period of the forcing function. 

x(t) 

-g(t) 

Figure 4.1 Formulation of the problem (4.52) 
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Since the homogeneous solution is as su:xned to be stable, the steady 

state periodic solution must possess the same period 2T= z,,. as the 
w 

forcing function. 

We note the periodic solution of the forced linear differential­

difference equation (4.52) can be obtained imm.ediately by the method 

of harmonic balance, and this is given in Section 4.4. Although the 

harmonic balance method is shnple and exact for the linear delay 

systems, it can only be extended for piecewise linear delay systems 

to yield approximate solutions. Since the Fredhohn Integral Equation 

Method is ultimately for the piecewise linear delay systems to give 

exact periodic solutions, we shall see how the method is applied to a 

linear delay system. 

Rewrite Equation (4.52) in vector-matrix form, 

(4.54) 

with initial function 

for 0 s: t s: 'f. 

Then the formal solution can be written as in Equation (4.15), 
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'f . t 
x(t} =K(t-'f).£1 ('f} + I K(t-'f-!;}Bg_l (s}ds+ I K(t-s)F(S}ds for t > 'f. 

0 'f 
(4.55) 

At this point we shall replace the matrix kernel K(t} with the 

finite N-kernel KN(t), and denote the corresponding unknown initial 

function and solution as g_1N(t), ~(t) respectively. Then Equation 

(4.55} becomes 

'f t . 
~(t} =KN(t-'f}g1N('f) + J KN(t-'f-s)Bg1N©ds+ J KN(t-s)F@ds (4.56} 

0 'f 

where the matrix kernel is given as in Equation ( 4. 38) 

2N z.t 
~(t) = l e 

1 
Ri for t > 0 

i=l 

with z. being the roots of 
1 . 

and 

for t = 0 

=0 for t < 0 

2 -'fz 
z +cz +ke =0 

1 
R.=" 

z.+ C 1 
1 

1 ~-
1 -'fz. 

1 -ke z. 
1 

-'f z. 
1 t::.. = 2z.+ c - 'fk e 

1 1 

( 4.57) 
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as in Equation (4.37). Substitute Equation (4.57) to (4.56), fort >'f 

2~ z.(t-2'f) Z.'f J'f z.er-s) l 2N . 
~(t) =Le 

1 
Ri ~ 1 

.S:.1N('f) + e 
1 

- B .S:.1N(s)dsj + l Ri.fjt) ( 4.58) 
i=l O i=l 

with the integrated forcing term f .(t) being 
-i 

f.(t) =p 
-1 

[C.(t, t)-C.(t, 'f)} cos W- [S.(t, t)-S.(t, 'f)} sin 1V 
l l l l 

where the new symbols C. and S. are defined as 
l l 

Now we define the integral moments of the initial functions 

i = 1, 2, • • • , N 

where 

(4.59a) 

(4.59b) 

( 4.60) 

Thus £zt/~ has become the new initial function for the second half period 

of the solution. 
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Examining Equation (4.58), the solution is composed of the 

integral moments of the initial function and the forcing terms. Since 

the solution is completely determined in terms of the integral moments 

of the initial function, which are constant vectors dependent only on the 

root z., then it becomes logical to treat the integral moments as if 
1 

they are initial condition vectors in ordinary differential equations. 

Thus we can treat the solution in a finite (2N + 2) dimensional 

vector space where the solution is completely determined by (2N + 2) 

size initial vectors 

_g_lN(rr) _g_2N(rr) 

mll m21 

fg_l }= {_g_2} = ( 4. 61) 

m12 m22 
. 
. . 

!E-1N m2N 

Then we proceed to construct {_g_2} in terms of {_g_
1

} as they are related 

by Equations ( 4. 60) and ( 4.58). 

for i=l,2,···,N 

r z.(T-2rr) [ z.rr ] 
= e J q .. B R. e J g

1
N(rr) +m

1
. + h. 

J1 J - - J -1 
j=l 

(4.63) 
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-77-

z.'T z.'T 
e J - e 1 

qji= z . - z. 
J 1 

= 'Te 
z. 'T 

1 

i :;l j 

i =j 

h. = \ J e 
1 

B R.f.(s+T)ds= . 
2N .,. z.('T-S) ( O ) 

-1 L J-J 
j=l O hi 

Integral moment of the forcing term h. is integrated out to be 
1 

2N 
h. =kp cos'¥\ } rS.(T, T) [S.('T, T)-S.('T, O)} 

1 L .u.. ~ J 1 1 
j=l J 

• -C .(T, T) [C.(T, T)-C.('T, O)}+C.(T, T)q .. ] 
J_ 1 1 J J1 

2N 

+kp sin'l! L } [s.(T, T) [C.(T, T)-C.('T, O)} 
.u.. J 1 1 

j=l J 

( 4.64) 

+C.(T, T) [S.(T, T)-S.('T, O)}-S.(T, T)q .. ]. 
J 1 1 J J1 

The Transfer Matrix [M] 

Combine the results (4.62) and (4.63) in the form of (4.48) and 

the resulting vector-matrix equation becomes 

(4.65a) 



where 

and 

~ z .T 
Le J R . 
. 1 • J 
J= 

N z.(T-T) 
le J q.NBR . 
. 1 J J 
J= 
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(2N + 2) X (2N + 2) matrix 

2N 

LR.f .(T + T) 
. 1 J--.J 
J= 

(2N + 2) size vector 

( 4.65b) 

(4.65c) 
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Reduction of the problem to Equation (4.65) form is an important 

step for the solution method of Fredhohn Integral Equation. The initial 

vector at one point t =t
1 

can be related to the initial vector at another 

point t =t2, t 2 > t 1 ~ T, by the linear relationship ( 4. 65), and this is 

exactly analogous to Equation (4.48) of the integral equation theory. 

From this relationship the matrix is called the "transfer matrix" which 

is the sole function of the transfer time T =t2- t
1 

and the homogeneous 

part of the original differential equation (4.52). 

If we let T =0, Equations (4.59a), (4.59b) and (4.63) yield 

m 1.=m2.=0 
-1 -1 

q .. =0 for i,j=l,2,··•,N 
Jl 

thus the (2N + 2) X (2N + 2) matrix equation, (4.65a), reduces to a simple 

2 X 2 relationship, 

( 4. 66) 

And this is indeed the case of a second order ordinary differential 

equation with forcing term, since Equation (4.66) is equivalent to 

T 
x(T) =X(T) ~(O) + I X(T-s)F©ds 

0 

where X(t) is the principal matrix solution for the homogeneous ordinary 

differential equation. 

As it was seen in the general discussion of Chapter II, a general 

solution of a constant coefficient differential-difference equation spans 

infinite dimensional space E However, the constructive solution 
00 



-80-

method presented here is to reduce the solution into (2N + 2) finite 

dimensional space E 2N + 2, which is not only manageable from the 

viewpoint of practical computations, but also mathematically rigorous 

about being able to bound the error induced by truncating the kernel. 

Closure Condition (Periodicity Requirement) 

In order to have a periodic solution, it is required that the 

identical initial vector is reproduced after every full period 2T, or 

that the initial vectors are skew-symmetric at the half period T 

interval. That is, 

(4.67) 

This is in essence the closure condition which states the periodicity 

requirement for the solution. Combine Equations (4.65) and (4.67) 

and we can solve for [g 1} 

where [I] being (2N + 2) X (2N + 2) identity matrix. Construction of the 

periodic solution from the formal solution kernel-integral form of 

Equation (4.56) to the matrix equation (4.68), is conceived by recog­

nizing Equation (4.56) as a Fredholm integral equation under the 

closure condition 

(4.69) 

Then the formal solution (4.56) becomes 
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T T+t 
-_g1N(t> =KN(t+T-T)g 1Ntr> + J KN(t+T-T-s)B _g_1N©ds+ J · KN(t+T-s)F(s)ds. 

0 '1" 

{ 4. 70) 

We recognize Equation (4. 70) as a Fredholm integral equation of the 

second type in vector-matrix equation {4.40) with the close analogy 

between Equations ( 4.40) and ( 4. 70), 

~(x) ⇒ _glN(t) 

T+t • · 
J:(x) ⇒ -J 1N{t+T-s)F( s)ds 

T 

KN{x, y) ⇒ - ~(t+T-T-s)B { 4. 71) 

A ⇒ -1 

a ⇒ T. 

Then the solution process follows precisely as described in Section4.2A. 

Calculation of the Unknown Phase $ 

Construction of the periodic solution by Equation ( 4. 68) is not 

yet complete since the integral moments of forcing term [h} possess 

the unknown phase angle ,jl between the forcing function and the solution. 

[h} can be written as 

[h}=[h} cost+ [h} sint. - -c -s (4.72) 
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Then the solution (4.68) becomes 

-1 
[o-

1
}=-[M+I] ([h }cos¢+[h }sin*). 

:.Q. '-C -s 

Thus the initial vector [_g_
1

} is given in terms of two unknowns cos¢ and 

sin¢. Knowing [_g
1 

}, the time domain solution ~(t) immediately follows 

from Equation (4.58) in terms of cos¢ and sin¢. Now apply the sym­

metry condition (4.53) which yields a scalar equation 

{4.73) 

c
1

, c
2 

are known constants. 

Solve Equation (4. 73) simultaneously with cos
2$ + sin

2
¢= 1, 

(4.74) 

Now the periodic solution to the differential-difference equation is 

complete, which satisfies the governing equation as well as the 

symmetry condition. 

4.ZC Multiple Delay Case 

It is to be pointed out that the solution scheme of the Fredhohn 

Integral Equation Method is completely adaptable to the general multiple 

delay differential-difference equation ( 4.1) with a slight increase in 

algebra in the process of forming the transfer matrix [M]. To illustrate 

this, consider a forced linear dynamic system with two delay terms, 
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with initial function 

As surnptions are 

Al) _g_
1 

(t) is continuous and bounded, but unknown. 

A2) F(t) is continuous, bounded and periodic. 

F(t + 2T) = F(t) 

(4. 75) 

A3) Homogeneous solution of Equation (4. 75) is stable, i.e., 

[ -'Tf -T2Z] 
roots of det ~I-A-Be - Ce =0 possesses 

fR-e z. < 0 for all i. 
1 

Then the problem is to find the steady state periodic solution which 

possesses the same period as the forcing function. 

The formal solution can be written from Equation ( 4. I 5) with the 

truncated N -kernel, 

Tz 

~(t) =KN(t-T2)g_1N(T2) + J ~N(t-T1 -~) fl ~-T2 +T 1 )B + KN(t-T2-s)c ]_g_1N(s)ds 
0 

t 
+ I KN(t-~)F(;)dl; 

Tz 

(4.76) 

for 

Here fl (t) implies the Heaviside function, and the matrix kernel KN(t) 

is given as 
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2N z.t 
KN(t) = l e 

1 
Ri for t > 0 

i=l 

= I for • t = 0 

= 0 for t < O. 

Define the integral moments of initial functions 

where 

Construct (2N + 2) size initial vectors 

m11 

( 4. 77a) 

(4. 77b) 

( 4. 78) 

then following the identical steps of formulating the transfer matrix [M] 

as in the single delay case, we get 

(4. 79a) 
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with the (2N + 2) X (2N + 2) transfer matrix 

Nl .z.T 
e J R. 

J 
j=l 

with (2 X 2) matrix Q .. given as 
Jl 

i, j = 1, 2, .•• , N 

for i#j 

for i =j 

and the integral moments of forcing vector {h} is 

(4. 79b) 



with 

2N 

l Ri4('f2+ T) 
i=l 

~ 
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(2N + 2) size vector 

i=l,2, ... ,N 

while f .(t) is obtained similarly as in the single delay case. 
-J 

(4.79c) 

Thus it is shown that the formal solution for the multiple deiay 

case, Equation (4. 76) is reduced to (2N + 2) system of algebraic equations 

(4. 79) by the Fredholm Integral Equation Method. From here on, the 

periodic solution is found precisely the same way as the single delay 

case. 

4.3 Error Analyses of the Periodic Solution 

It is mentioned several times earlier that the entire justification 

of the Fredholm Integral Equation Method is based on the fact that we 

can bound the error caused by truncating the matrix kernel K(t). In 

fact, the arbitrary smallness of the error enables us to call the 

periodic solution "exact". With this in mind, we shall show the error 
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bound for the periodic solution of linear differential-difference 

equations. 

Reconsider Equation (4.1) 

with initial function 

~(t} = _g_( t} for 0:::;; t :::;; 'T 
m 

with the same as sum.ptions Al ~ A5. Recall the formal solution to 

(4.1) is given as an integral form of Equation (4.15) 

m 

x(t) =K(t-'T )o-('T }+ \ - m.Q.m L 
i=O 

t 

+ J K(t-s}F(!;}ds 
'Tm 

'Tm 

I K(t-'T.-s}A._g_(s)ds 
1 1 

'Tm -'Ti 

for t > 'T 
m 

where the matrix kernel K(t) is given as an infinite series 

00 z.t 
K(t) = l e 

1 
Ri. 

i=l 

Suppose the characteristic roots z. are ordered as follows: 
1 

and define 
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Rewrite the kernel of (4.37) in two parts, 

ZN z.t en z.t 
K(t) =KN(t) +K8 (t)= le 1 

Ri+ l e 
1 

Ri. ( 4.80) 

i=l i=ZN+l 

Here KN(t) represents the finite su:mrned N-kernel used in the Fredhohn 

Integral Equation Method and Kit) represents the error kernel which is 

truncated. 

Since the kernels are composed of exponential terms, .we 

recognize the kernels as uniforrnly converging series, and the norms 

of the matrix kernels can be bounded as 

IIK(t)II 

t >O 

form, m
8 

positive constants. 

Error Bound Formulation 

Then 

Let us denote 

x(t)• •. exact solution 

~(t}•, • solution calculated by Fredhohn Integral 

Equation Method with N-pair of terms in KN(t) 

~ (t}•. , error in the solution by truncating the 

matrix kernel. 

( 4.81) 

(4.82) 
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Adopting the supremum norm notation, let 

where CiN is bounded. 

Ci= sup ll_g_(t)II 
0 :s:t:s: 'Tm 

(4.83) 

Substitute Equations (4.80}, (4.82} and (4.83) into the formal 

solution (4.15) 

x(t) = ~(t) + x
8
(t} = ~N(t-'Tm)+ K8(t-'Tm)] {_g_N('Tm)+ _g8{'fm}} 

m 'Tm · 

+ l J [ KN(t-'Ti-s>+ K8(t-\-s>]Ai {_g_N(s)+ _g_ 8( s>} ds 
i=O 'Tm-'fi 

± 
+ J [ KN{t-s> + K

8
{t-s)] F (s)ds 

'Tm 

(4.84) 

and the solution by the Fredholm Integral Equation Method satisfies 

m 

~(t) =KN{t-'Tm)_g_N('Tm) + l 
i=O 

t 

+ J KN(t-s>F(s)ds. 
Tm 

Subtract Equation {4.85) from (4.84), 

Tm 

J KN{t-'Ti-s)Ai_g_N(s)ds 
Tm-Ti 

{4.85) 



m 
x (t) =K (t-T )_gN(T )+ \ -e: e: m m L 

i=O 
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t m 
+ J K (t-s>F(s)ds + K(t-T )g_ (T )+ \' e: - m e:m L 

(4.86) 
'Tm 

m i~ 
J K(t-Tcs>Ai_g_e:(s)ds. 

'Tm-'Ti 

Since the kernel K
8
(t) and the initial function _g_N(t) by the Fredhohn 

Integral Equation Method is known, 

is known. 

t 
+ J K

8
(t-s}F(s)ds 

'Tm 

'Tm 

J Kit-\-s)Ai_g_N(s)ds 
'Tm-'Ti 

• (4.87) 

Now we observe the closure condition 

for T being half-period of the forcing function F(t). Then for O::::: t ::::: 'T , · m 

x (t+T)=-x (t)=-0' (t). -e: -e: .c!.e; 
( 4.88) 

Thus let t= 17 +T, 0::::;'1'1::::; 'Tm in Equation (4.86) and apply the closure 

condition (4.88), 

m 

-g_ (Tl) =O'~\r,+T) +K(r,+T-T )g_ ('T )+ \ e: .c!. m e:m L 
i~ 

'Tm 

J K(n+T-'Ti-s)Aig_ 8(s)ds 
'Tm-'Ti 

for O ::::; r] ::::; 'Tm· ( 4. 8 9) 
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This represents the error in the initial function Ke ('!i) in an integral 

equation form, and the upper bound for Jlg_e ('n)!J is to be pursued here 

since it represents the error bound for the periodic _solution computed 

by the Fredhohn Integral Equation Method. 

First, let '17='T in Equation (4.89), m 

m 

_g_ e{rm) = - [I+ K( T)r l {g_~\'Tm +T)+ l 
i=O 

'Tm 

J K(Tm +T-'Ti-s)Ai;Se(s)ds}(4.90) 
Tm-'Ti 

Define an n X n matrix 

-1 
W(17) =K(n+T-'T ) [I +K(T)] , m 

then Equations (4.90), (4.91) and (4.89) yield 

with 

'Tm 

g_/n) =h(n) + J K('f\, s)g_e(s)ds , 
0 

m 

( 4. 91) 

(4.92a) 

K('11, s) = \ [W('n)K('T +T-'T.-S)-K(ri+T-'T.-!;)] fi(C:-'T +'T.)A.. (4.92c) 
L m 1 1 - m 1 1 

i=O 

Thus Equation ( 4. 92) represents the error in the initial function Ke ('11) 

in the form of a Fredhohn integral equation of the second type. In order 

to seek the solution, we search for a converging Neumann's sequence 

suggested by the recurrence relationship 



with 

then 

Now define 
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'T"m 

llg~(ri>-K~(-ri>II ~ J I\K(-r,. s>ll· ll1i<s>llds. 
0 

A= 'T" sup II K(-n. s)II m . 

µ= sup llfi<s>II < oo 

(4.93) 

(4. 94a) 

(4.94b) 

and the supremu:rn is taken over the variables O ~fl~ 'T" , 0 ~ s ~ 'T" , 
m m 

unless otherwise specified, then 

Similarly, 

1"m 1"m 

ll_g~('n)-g~(ri>II ~ J J IIK<ri, s2>II- IIK<s2' s1>II-II1i<s1>llds1ds 2 
0 0 

sup llg_!(11)-g~('n}il ~ A
2

µ 

Constructing a telescopic series 



-93-

• • • + II _g_~ -_g ~II+ \\_g_ ~ -_g_ ~II+ II _g_~ II 

supl!_g_~('l1)11 :s: (Ak+Ak-l+. • ,+l+\+l)µ 

k 

sup llg_/n)II :s:( lim j \i) µ 
~co ·=0 1-

and knowing µ < oo, the series can be sunrmed as 

(4.95) 

( 4. 96) 

provided I\ I< 1. Thus it becomes crucial to show I\ I< 1, since the 

series ( 4. 95) converges if and only if I\ I < 1 holds true. 

So far it is shown that the error in the solution is bounded as 

in Equation (4.96) provided certain conditions are met. At this point, 

it is appropriate to show the following asymptotic properties of the 

error bound, 

Asymptotic Properties of the Error Bound Gs 

Consider Equation (4.94a) with (4.92c) and (4.91), and let T 
m 

approach zero, 

• lim A= lim T • sup II K('lj, s>II 
'f. -->O 1: -->O m m m 

and 

lim sup \IK(ri, s>\\ :s:I {\IK(T)\I. \\[I+K(T)f 1\l • l!K(T)I! + l!K(T)\~- !IA. II (4. 97) 
'fm-->O • -0 1 • 

1- . 
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Since the matrix kernel K(t) is continuous and bounded for finite t=T, 

and [I+K(T)] is non-singular for T>O, the expression (4.97) is clearly 

bounded, say ~ k 1. Therefore, 

Similarly, consider Equations ( 4. 94b) with ( 4. 92b) and ( 4.87), 

-1 ,., 
~(ll11l+IIK(T)\l· l\[I+K(T)] ll}·lim ]l_g_"'(T) II 

'[ --+O m 

but from the nature of the characteristic root distribution, 

lim IIK (t)ll=O ⇒ 
'T -+O e m 

lim µ = 0 = µo. 
'T --+O m 

Thus Equations ( 4. 98) and ( 4. 99) yield 

ll·m ~ ~ 11·m ___g_ - 0 
'T --+O ue 'T --+O I - A - • 
m m 

(4.98) 

( 4. 99) 

(4,100) 

This implies that as the delay terms approach zero, in other words as 

the given linear differential-difference equation system approaches 

ordinary differential equation status, the solution er.ror due to trunca­

tion of the kernel also approaches asymptotically to zero. This result 

is quite expected, since the distribution of the characteristic roots 

from Chapter III shows that infinite chain of roots vanishes to the 
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negative infinity except the leading n roots where n is the order of the 

differential equation. This implies II Ke:(t) II _. 0 since N > n, thus µ _. 0, 

and eventually the error bound G, approaches asymptotically to zero. 
e: 

Now consider the case when 'T > 0, sufficiently small but 
m 

bounded away from zero. The error bound for this case is established 

by invoking the local implicit function theorem. It is necessary to show 

that in order to have 0< \< 1, there must exist some value of 'Tm='T*>o 

so that the error bound (4.96) be valid. First consider an implicit 

function of 'T 

with 

At 'T = 0, . 

r=O 

since µ 0= \ 0= ue:=0 at 'T= 'To= O. At this point it is appropriate to quote 

the general implicit function theorem proved for n-dimensional vector 

space. 

,t, 

Theorem 4.4 (Implicit Function Theorem)''' 

Let£= (f
1

, f 2, ... , fn) be a vector-valued function defined on an 

open set Sin En+k, (n+k) dimensional Euclidean space, with values in 

,:~See Apostol (Z 6), p. 147 for the complete proof. 
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I 

En. Suppose i_ EC on S. Let (1 0 ;_2 0 ) be a point in S for which 

£(1 0 ;.!.o) =0 and for which then X n determinant Jacobian det[I~//1o;.1o)]:fO. 

Then there exists a k-dimensional vector space neighborhood T
0 

of _2
0 

and a unique vector-valued function 1._ defined on T
0 

and having values 

in E , 3 
n 

iii) i_(\(!_);!_)=0 for all !_in T
0 

Applying the theorem to our case, n=k = 1, there must exist 

* I 
'fm='f in the neighborhood of 'T"m= 'fo=O, 3 \('T0) =°A.o=O, and \('Tm) EC, 

thus there must exist A 3 0 <A< 1, and thus convergence of the error 

bound is established. 

Furthermore, we shall show that the error bound G,
8 

can be 

made arbitrarily small by taking more terms in the truncated kernel 

KN(t). This is the case when 'Tm> 0 but 'Tm ET O and N approaches 

infinity. 

Reconsider Equation ( 4. 94a) and by inspection A is independent 

of the number of terms in the truncated kernel N, and from the implicit 
,,, 

function theorem, we know O <A< 1 for 1" = i'' > O. Reconsider Equation m 

(4.94b), 

But from Equation (4.87), 

lim ll_g_*(ri)\l=O 
N->oo 

since lim 
N->oo 
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and knowing W(ri) is bounded, 

and thus 

lim µ= 0 
N-+oo 

lim a~ 
N -+oo e 

1. _g__o 
im l-11. - • 

N-+oo 
(4.101) 

This implies the error bound decreases exponentially as N increases, 

and approaches asymptotically to zero as N-+ oo. 

Computation of the Error Bound 

Since the qualitative error bound has been proved with its 

existence and asymptotic nature, it is desired to investigate the quan­

titative aspects of the error bound. Without loss of generality, we 

consider a simple case of second order dynamic system with single 

delay occurring in the zeroth-order terms, 

x(t) + 2Cx(t) +x(t-y) =p cos (wt +t) (4.102) 

with initial function 

x( t) = g ( t) for O ~ t ::;; y. 

Rewrite in vector-matrix form, 

(4.103) 

~ 1] [O OJ A= , B= 

• -2C -1 o 
, 
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and it is desired to investigate the error bound in the periodic solution 

by the Fredhohn .Integral Equation Method, namely, Q
8 
~ n. 

Recall from Equation ( 4. 94) that µ, A are functions of the 

supremu:m norms of the matrix kernels K
8
(t), and K(t). It becomes 

crucial to estimate I\K
8
(t) I\ as well as II K(t}II. 

Consider the error kernel of the system (4.103) 

00 z.t 
K (t) = \ e JR. 

e L J 
j=2N+l 

with 2 X 2 matrix as given in Equation (4.37), 

1 R.=-------

z.+2C 
J 

J -yz. -yz. 
2z.+2C-ye J -e J 

J 

l 

z. 
J 

Since the characteristic roots z. must occur as conjugate pairs, 
J 

or 

z.t 

r z.t 
K ( t) = 2 6Y,e [ e J R.] 

€ J 
j=N+l 

00 

IIKit)II ~ l m/t) 
j=N+l 

with m.(t) = 2JJ6Y,e [e J R.] II. J J ,, 

If we choose the norm of a matrix to be 

(4.104) 
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then 

CJ.t 
2 J r, -yCJ.] 

m.(t,CJ.)::; e L1+2lcr.+c+w.!+J2e J 
J J Ja? + R,?' J J 

J J 

(4.105) 

with 

z.=CJ.+iw. 
J J J 

-yCJ. 
a.. = 2 CJ.+ 2c - ye J cos y w. 

J J ( J 

-YCJ-
f,. = 2w. + ye J sin yw. 

J J J 

and 
-(y/2) CJ. 

w. = e J as CJ_. -co. 
J 

Inspecting Equation (4.105), m.(t, CJ.) is a monotone decreasing 
J J 

function of CJ. since cr. < 0 for all j, and graphically this is shown in 
J J 

Figure 4. 2. 
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m.(t, cr.) 
J J 

I I I 

- 00 0 

Figure 4. 2 Monotone Decreasing Function of m.{t, cr.) 
. . J J 

Now the idea is to convert the infinite sununation of Equation (4.104) 

into a Riemann integration process such that the cr dependence is 

integrated out. 

Rewrite Equation (4.104) with the knowledge of Figure 4.2, 

co 
II K,,.{t)I I ~ \ m.(t, cr.) "' L J J 

j=N+l 

00 

~ \ 1 
L CJ. 1- (J. 

j=N+l J- J 

(J. 1 J-I m{t, cr)dcr . 
(J. 
J 

If it is possible to find the expression u{cr) such that 

cr. 1- cr. ::::-: u(cr) 
J- J 

for all j =N+l, • • • 

then the infinite summation can be written as 

(4.106) 

(4.107) 
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~ 
II K (t)II :S: J m(t, a) dcr 

e u(cr) • (4.108) 
-oo 

In order to find a suitable expression for u(cr), it is necessary to know 

the characteristic root distribution study of Chapter III. In particular, 

combine Equations ( 3.15) and ( 3. 24), 

tan (Ye 

y - y O' 
-- O' 2 

2 ) = 2(cr+Qe =0 
-ya 2 

e - a - 2{:cr 
as (J'➔ -(X) 

-10'-
ye J =j,r j=0,±1,±2,··· (4.109) 

and 

2/y 
( .) 2 ( 1\ 

O'. 1 - a. = £ n ~I = - -in 1- -;-) 
J- J J- y J 

but j:?: N + 1, 0 < ! < 1, thus expand £.n( 1-t) in power series, 
J J • 

(4.110) 

A suitable choice of u(cr) is made by combining Equations ( 4.110) 

and (4.109), 

y 
2 2TI 2 O' 

u(cr) = -. = 2 e as (J'➔ -oo 
YJ y 

(4.111) 

and finally the norm of K/t) is integrated out to be, from Equation · 

(4.108), 
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(4.112) 

Also, the asymptotic behavior of the norm becomes clear by inspection, 

lim IIK (t}ll=O since <JN-+-oo 
y-+0 

E; . 

lim IIK€(t}l \=0 since crN-+-oo. 
N-+oo 

Once the error kernel norm II K
8
(t)\\ is specified, the whole kernel norm 

IIK(t} II is given immediately, 

(4.113) 

with 

where m.(t) is given in Equation (4.105). J . 

Knowing the upper bounds of the kernels for this particular case 

of single delay, then the error bound for the periodic solution C\: can be 

computed. From Equations ( 4. 94b), ( 4. 92b), ( 4.87) and simplify 

with 

µ =sup 1l1i( s >ll 

:s:(1-G )G 
w g 

a = inf \\W(-n)\1= IIK{T) ll < I 
w O:s:17:S:'f 1\I\\+1\K(T)l\ 

a = sup l\ g_~\ri+T)\ I g 

(4.114) 



and 
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Similarly from Equations (4.94a), (4.92c), (4.91) and simplify 

A= y sup I\K('!'), s)ll 

:;;y(l-G }IIK(T-y)]I w 

(4.115) . 

and for y sufficiently small, 0 < 11. < 1. Combine the results of Equations 

(4.114} and (4.115), 

or 

(1-G ) G 
w g 

:;; 1-y(l-G >IIK(T-y)li w 

[(l+y)GN+(T-y)p]• IIKE;(T-y)II 
Ci :;; -------------

€ I+ ~IIK(T)il-YIIK(T-y)\\ 
(4.116) 

This represents a constructive algorithm for computing the error bound 

of the periodic solution of Equation (4.102) by the Fredholm Integral 

Equation Method. The representation also verifies the asymptotic 

properties of the error bound, namely Equations (4.100) and (4.101) 

immediately. 

4.4 Conventional Solution Method by Harmonic Balance 

As the last part of this chapter, the conventional method of 
' 

harmonic balance is studied to show the exact correlation with the 
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solution by the Fredholm Integral Equation Method. Note the harmonic 

balance solution is exact only for the linear differential-difference 

system. 

Consider a single delay dynamic equation 

x(t) +ex+ kx(t-'T) =p cos 'wt ( 4.117) 

with initial function 

x( t) = g ( t) for O :;;; t :;;; 'T. 

Assuming the homogeneous solution is stable, the linear system ( 4. 11 7) 

must possess a unique periodic solution with the same period as the 

forcing function. 

Assume a solution of the form 

x(t) = c
1 

cos Ult+ c
2 

sin wt 
(4.118) 

_ x(t-'T) = ( c 1 cos UJ'T - c 2 sin Ul'T) cos" wt+\ c 1 sin WT+ c 2 cos WT) sin wt. 
. .. . ,. . '-t -'/ 

Substitute ( 4.118) to ( 4.117), we have 

(-w
2 

+ k cos W'T)c l + ( cw - k sin UJ'T)c
2

=p 

( - cw + k sin W'T) c 
1 

+ ( - w2 + k cos W'T) c 
2 

= 0. 

And c
1

, c 2 are solved to give amplitude and phase of the solution 

X=Jc~+c~=~===~~k=====~ 

J w2 2 cw 2 
( cos W'T- -) + (- - sin W'T) 

k k 

,I, t -1 Cz cUJ-ksinWT 
't' = an c= 2 • 

I -w +kcos W'T 
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Define the non-dimensional parameters 

OJ D = - (frequency ratio) 
UJn 

with 

(JJ =1k x-£ n v K , o- k, 

then the magnification factor X/X
0 

is 

X I 

XO= J[cos (yO)- o
2]

2 + [2(O-sin (yO)]~ 
( 4.119) 

and the phase angle 

,1, -t -1 [ 2( 0 - sin (YO)Jl 
'!'- an 2 . 

cos (yO)- 0 
(4.120) 

Plotting the Equations ( 4.119) and ( 4.120) for the frequency 

response curves of amplitude and phase angle, we get Figures 4. 3 and 

4.4. Note the difference from the ordinary differential equation case, 

that is the presence of an unstable solution as the case of (= 0 in the 

figures. This is clear from the phase angle plot since : < 0 for (=0, 

and this is predicted from the stability criteria by the Satche diagram of 

Figure 3.17. 
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Figure 4.3 Amplitude Response Curves for x(t)+ cx(t)+kx(t-r)=p cos wt. 
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Chapter V 

FORCED PIECEWISE LINEAR DYNAMIC SYSTEMS 

WITH TIME DELAYS 

5.1 Problem Formulation 

With the knowledge of forced linear delay systems discussed in 

Chapter IV, we will see how the same idea can be logically extended to 

a class of nonlinear delay systems, namely, piecewise linear delay 

systems. It is to be noted that for the linear delay system, the exact 

solution was readily obtained by the harmonic balance method, thus the 

real merit of the Fredholm Integral Equation Method is that the solution 

scheme for the linear delay system will serve as a building block for 

the piecewise linear delay system, since the harmonic balance method 

fails to provide an exact solution for this class of nonlinear delay 

systems. 

Analyzing a nonlinear system in general, one is forced to con­

sider the problem in a restricted sense: i.e., often time~ the existence 

and unicity of the solution is guaranteed for only local regions, and the 

closed form solution is in general not obtainable, thus forcing analysis 

by approximate methods which may fail to give validity of solutions in 

some interesting cases since the approximation error cannot be bounded. 

For the sake of algebraic simplicity, we shall assume the 

problem to possess a single delay term for a typical piecewise linear 

dynamic system, 

x(t) + cx(t} + f(x(t-T)) = F(t) (5.1) 
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with initial function 

x(t)=g(t) for O~t ~ 1" 

where the nonlinear restoring force term f(x) is piecewise linear in x 

and further we as su:rne 

df 
dx < oo for all x. (5.2) 

5.2 Existence of a Unique Periodic Solution 

Theorem 5.1 Suppose in Equation (5.1), the forcing function F(t) is 

piecewise continuous and bounded, and the initial function g(t) is con­

tinuous and bounded, then the problem (5.1) Bossesses a unique solution. 

Proof 

with 

Rewrite Equation (5.1) in vector-matrix form, 

dx(t) 
cit 

{

x<t> 

-cx(t)-f(x(t-1")) + F(t 

C
(t) (g(t)) x(t) = = 

(t) g(t) 

for 

Define u =x(t), v =x(t-1"), then since F(t) is bounded, 

( 5. 3) 

(5.4) 
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Moreover, any pair of vectors u 
1

, u 2; v 1, v 2 lying in the phase plane 

satisfies 

(5.5) 

since the first derivative of the nonlinear function f(x) is bounded. 

Thus, the conditions of the Cauchy-Lipschitz theorem for a non­

autonomous delay system (see Bellman and Cooke(S), page 341) are 

satisfied, and thus a unique solution to Equation (5.1) must exist. It is 

to be noted that for the class of piecewise linear delay systems where 

Equation (5. 2) is satisfied, the Lipschitz condition is satisfied every­

where in the phase plane, thus the unique solution exists globally. Also, 

it follows immediately from the Lipschitz condition that the solution is 

continuously depended on the initial function g(t). 

Theorem 5.2 Suppose the Eguation (5.1) satisfies the same hypotheses 

as Theorem 5. 1. In addition to that, assu:me 

Al} F(t) = F(t + T), 

A2) All characteristic roots of each linear region of f(x) 

possess negative real parts; i.e., solution of each 

linear region is stable, 

then there exists at least one periodic solution of Equation (5.1), with 

the period T. 

Proof 

It was shown in Theorem 5.1 that the system (5.1) must possess 

a unique solution which may be written as 
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x( t) = g_(t) for 

t 
= g_('T") + J h(l;, x(l;), ~(l;--r))dl; for t > 'f . 

'f 

(5.6) 

Hence there exists a continuous mapping M(T) which maps the solution 

x(t) in a finite set O into x(t + T), which is also in 0. This follows from 

the fact that the solution is ultimately bounded in O by the Assumption 

AZ. Then, by the Brouwer' s fixed point theorem ( see Saaty(Z7), page 42), 

there must exist at least one fixed point x 
O 

in O such that 

(5.7) 

Extending this result, 

~(t + 2T} = M(T) ~(t + T) = M{T) ~(t) =~(t) 

~(t +nT) = M(T) ~(t + (n-l)T) = •• • = ~ 0(t) 

and this holds true for n--+ ro, thus establishing the existence of at least 

one periodic solution of ( 5.1) with the period T. 

5. 3 Construction of Exact Periodic Solution by Fredholm Integral 

Equation Method 

For a class of nonlinear delay systems, namely piecewise linear 

systems, it was shown that there must exist a unique periodic solution 

for the problem as posed in Equation (5.1). As mentioned earlier, the 

process of Fredholm Integral Equation Method developed for the linear 

delay system will be used here to construct a periodic solution for a 
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piecewise linear delay system. 

Without loss of generality, we shall consider a trilinear delay 

system with single lag, with the implication that the same process will 

apply to a general n-piecewise linear delay system. In order to further 

simplify the algebra, trilinear delay terms are assumed to be doubly 

bilinear which is symmetric about the origin. 

Graphical representation of the trilinear system i_s shown on 

Figure 5.1 along with typical representation of a periodic solution 

(shown for the half period). 

Consider 

with 

and 

x(t) + cx(t) + f(x(t-t)) =p cos (wt+ w) 

x(t) = g(t) for 

f(x)=x-l+k for 

= kx for 

= x+l-k for 

x>l 

Ix\~ 1 

X < -1 

(5.8) 

where the restoring force term f(x) is doubly bilinear, and the system 

parameters, c, k, p, w, T are given. 

Then the problem is posed in the following manner. Find the 

periodic solution(s) to Equation (5.8) which possesses the same period 

as the forcing function and the /x(t) / crosses +l only once in the 

quarter period as shown in Figure 5. 1. Unknowns of the problem 

are: 
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t 

k • • • nonlinearity parameter 
normalized with respect 
to 1. 

A• • • maximUin amplitude of 
solution normalized with 
respect to I. (unknown} 

x(t-T) 

Region I 

Region II 

Region m 

Region IV 

{2N + 2) size 

Initial Vectors 

Figure 5.1 Trilinear Restoring Force f(x) and Corresponding 
Periodic Solution with the Constraints (5. 9). 
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1) the initial function g(t) for Os: t :::: T, 

2) the phase angle ~ between the forcing function and 

the solution x(t), 

3) the switch-over time T
1 

between two linear regions 

I and II. 

And thus the problem is to find the correct initial function g(t) such 

that the periodic solution as specified is obtained, as well as the 

unknowns ~ and T1 which are found using the following constraints, 

(5.9a) 

(5. 9b) 

with 

(5.10} 

Steady State Solution 

In order to construct a periodic solution to Equation (5.8), we 

shall consider the problem as three separate regions where each region 

is governed by a linear differential-difference equation. Thus, for each 

region the solution process of the Fredhohn Integral Equation Method 

applies by constructing the linear relationship of transfer matrix as 

described in Chapter IV. 

1) Region! {TS:t::;T
1
+2T) 

Equation (5.8) becomes a linear differential-difference equation 

(5.11) 
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with 

Rewrite in vector-matrix form, 

(5.12) 

Di} l 
ll-k 

with initial function 

for O ~ t ~ 'f. 

And the formal solution is given as Equation (4.15) for this region, in 

particular, 

'f 

x 1 (t) =Kl (t-T)_g_1 {'f) + J K 1 (t-T-s)B 1_g_1 (s)ds 
0 

t 

+ J K 1<t-s>{F1<s>+n1}ds. 
'f 

(5.13a} 

At this point we recognize the matrix kernel K
1 

(t} is in the form 

of an infinite series, and the kernel is partitioned into two parts, 

(5.13b) 
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and the entire solution method is based on the finite N-kernel K
1

N(t) 

with corresponding solution and initial function x 1N(t), _g_1N(t) 

respectively. This process will be rigorously justified in the error 

bound analysis where the error induced by truncating the error kernel 

K
1
/t) is closely examined. 

Similar truncation process is used for the Region II and Region 

m, where the kernels, solutions, and initial functions are denoted by 

K2N(t), ~ZN(t), S.zN(t); K 3N(t) = K 1N(t), x 3N(t), _g_3N(t) respectively. 

Rewrite Equation (5. 13a) with the finite N-kernel, for t = ½ + 'n, 

( 5. 14a) 

where the matrix kernel K 1N(t) is given as Equation (4.57), 

(5.14b) 

[I. +c 
1 1 

R --
Ii- ,6li -Tzli 

-e 

and z Ii are the characteristic roots of 
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Substitute Equation (5.14b) to (5.14a) and simplify the forcing terms, 

2N . 

+ l RH {iu('!'l+T{) + dli(ri+T{)} 

(5.15) 

i=l 

where the integral moment of the unknown initial function is defined as 

(5.16) 

and the integral moments of the forcing terms are 

(5.17a) 

. zli(T-t) 2 , 2 
Cli(T,t)= (Wsinwt-zlicos wt)e /(w +zli) ( 5. 17b) 

. zli(T-t) 2 2 
Sli(T,t)=-(Wcoswt+zlisinwt)e /(w +zli) 

and 

From the continuity of the solution, the initial function of the Region II 

is the solution (5. I 5 ), i. e. , 

(5.18) 
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Now we construct the finite (2N + 2) dimensional initial vectors 

(5.19) 

with 

integral moment of the initial function of Region II. 

Then from Equations (5.18) and (5. 15) 

... 
(5.20a) 

and 

(5. 20b) 

with 
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2N ' -I k(k-1) { z1/T1-'I") 1 z2i'I"} 
h 1.- ,6. e q .. +-(1-e ) 

1 1 .z 1 . Jl z 2 . 
j=l J J i 

(5.21) 

2N · • 

+kp cost? .6.
1

1 
_ [s 1/T{, T{) {s2i(1", 1")-S2/1", o)} 

. J=l • J 

-C 1/T{, T{>{ c2i (1", 1")-C2i(1",0)} + C 1/'½• 'l")qji] 

2N • 

+ kp sin t I .6.
1

1 
_ [s 1/T{, T{) { C 2/1", 1")-C 2i (1", o)} 

j=l J . 

+ C 1/ T~, T~) {s2i (1", 1")-S2i (1", 0) }-s 1/ T~, 'l")qji] 

with 

and Cli' Sli are given in Equation (5.17b). 

Combine the expressions (5.20a) and (5.20b), we obtain the 

desired transfer matrix relationship between the Region I and Region II 

. initial vectors, 

(5.22) 

where the (2N + 2) X (2N + 2) transfer matrix is formed as 



and 

{h }= -1 
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ZN 

l Rlj {£1/T~ + '1")+ d1/~ +'I")} 
j=l 

... 

hll 

(5.23) 

(ZN+ 2) size vector. 

(5.24) 

Governing differential-difference equation for this region is, 

from Equation (5.8), 

(5.25) 

and 
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Rewrite Equation (5.25) in vector-matrix form, 

( 0 ~ F 
2

(t) = 
- pcos{wt+~) 

{5.26} 

initial function 

Formal solution to Equation {5.26) is given with the finite N-kernel, 

T t 
x 2N{t} =K2N(t-T)_g_2N(T)+ J K 2N(t-T-s)B 2_g_2N(s)ds+ J K2N(t-s)F 2(s+T~)ds 

0 'f 

{5.27} 
with the matrix kernel 

1 

-Tz2i 
~Zi = 2z 2i + c-Tke 

and z
2

i are the characteristic roots of 

(5.28} 

Now we proceed to construct the initialvector of Region III in 

terms of the initial vector of Region II, with the continuity condition 
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_g_3N(t) = x 2N(t + 2T 2) , Q::;;;t::;;;'T (5.29} 

and 

_g_2N('T) _g_3N('T) 

m21 ~31 

{g2}= m22 t_g_3}= ~32 (5.30) 
. . 

~2N ~3N 

where the integral moments of the initial function of the Region III are 

i=l,2,··•,N. 

Then following the identical procedures of the Region I, we 

obtain the transfer matrix relationship for the Region II and III, 

(5.31) 

with 

(5.32) 
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2N 

l R 2 .~.('r+2T2) 
j=l J J 

thz}= h21 

2N 

h2i=p cos~ l 6 ~. [s2/T3, T3) {sli{T, T)-Sli{T, o)} 
j=l J 

-C2/T3, T3){cli,.(T, T)-Cli(T, o)}+c2/T3, T4)qjJ 

2N 

+p sin~ l 6
1
2· [s2/T3, T3) { C li(T, T)-C li{T, o)} 

j=l J 

+ Cz/T3, T3) {s1/T, T)-Sli(T, o)}-s2/T3, T4)qjJ 

{5.33) 
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Governing differential-difference equation for this linear region 

is, from Equation (5.8), 

(5. 34) 

or in vector-matrix form, 

(5.35) 

initial function 

with A 1, B 1, Fl' D 1 given in Equation (5.12). 

Construct the initial vectors of Region III and Region IV with the 

continuity condition 

II 

~N(t) = x3N(t +Tl) 0::::: t ::::: 'f (5.36) 

and 
II 

Tl =Tl - 'f 

.K3N('f) ~N{'f) 

m31 m11 

[_g_3} = m32 , [~}= m42 (5.37) 

m3N 

where the integral moments of the initial function of Region IV are 

i=l, 2, • • • ,N. 
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Then the transfe_r matrix relationship is established as before, 

(5.38) 

with 

(5.39} 

i=lj 

i=j 

and 
2N l R 1j {r3/T+ T;)+ d 3/T+ T;>} 
J=l 

h31 
(5.40) 
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k-1 ~O j ( 0 ) d .(t)=- , h .= 
-3J z 1 . z 1 .(t-'T} -31 h 3i 

J e J -1 

2N 

+p sint l l::..1
1 

· [s1/Ts, Ts){Cli('T, 'T)-Cli('T, o}} 
j=l J 

+ C1/T5, T5) {sli('T, 'T}-Sli('T, o)}-s1/T5, T6)qji] 

Thus, construction of the transfer matrix relationship for any n-piece­

wise linear delay system in general can be formulated as 

{o-.+1}=[M.J{_g.}+ {h.} , i=l, 2, ... ,n. 
~l 1 1 -1 

(5.41) 
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4) Closure (Periodicity) Condition 

In order to satisfy the requirements of periodic solution with 

san1e period as the forcing function, we require 

(5.42) 

Combine Equations (5.22), (5.31) and (5.38), and eliminate the inter­

mediate initial vectors [_g_2} and [_g_
3
}, 

where 

[M]=[M3][M2][Ml] 

[h}=[M
3

] [M
2

] [h
1

} + [:rvI) [h
2

} + [h
3

} 

and combine Equations (5.42) and (5.43) and solve for [_g_
1
}, 

-1 
[_g_1}= -[ M + I j [h}. 

(5.43) 

(5.44} 

We recognize the periodic solution [_g_
1

} is identical in form to 

the linear delay system case of Equation (4.68). We have thus extended 

the Fredholm Integral Equation Method solution scheme to piecewise 

linear delay systems. 

As it was in the linear delay system of Chapter IV, the force 

vector [h} possesses two unknowns sint and cost, and they are solved 

by the constraint condition (5.9b) and sin
2
~+cos 2t=l as in the linear 

case. 



-128-

There exists an additional difficulty, that of computing the 

switch-over time T
1

, which did not exist in the linear case. Since the 

transfer matrices [M
1
], [M

2
], [M

3
] are implicit functions of T

1
, the 

method of solution is to as surne values of T
1

, calculate [M
1 
J, [M

2
] 

and [M
3
], solve for [_g:

1
} from Equation (5.44) and hence obtain x(T1 +T), 

then the correct value of T1 is obtained when the condition (5. 9a) is 

satisfied. 

Thus we have obtained the periodic solution to a special example 

of trilinear dynamic system with delay as in Equation (5.8), constructing 

all the unknowns g(t), ijr, and T
1 

by requiring the periodicity condition 

and the constraints to the solution as in Equation (5. 9). 

It is to be noted here that the solution scheme of the Fredhohn 

Integral Equation Method which was developed originally for the linear 

delay system applies logically to piecewise linear delay systems to 

produce exact solutions, while all other existing solution schemes (for 

instance, slowly varying parameters method) fail to give the exact 

solutions. We note also the accuracy of the periodic solution by the 

Fredholm Integral Equation Method depends only on the number of 

characteristic roots N and is completely free from the small para­

meters requirements which are strictly necessary for the other existing 

approximate schemes, 

5.4 Stability of the Periodic Solution 

Once the periodic solutions are obtained by the Fredhohn 

Integral Equation Method (F. I.E. M . ), the question of stability of the 
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solution can be answered immediately. As it was defined in Chapter II, 

we shall consider the stability in the sense of Liapunov-Poincar~. 

First, perturb the solution of Equation (5. 8), 

>!~ 
x(t) =x (t) + 17(t) 

where x'\t)---exact periodic solution by F. I.E. M. 
~~ 

T'I (t) ---perturbation variable in the neighborhood of x (t) 

then we obtain the first variational equation of Equation (5.8), 

or 

where 

ri<t) + C'Tl(t) + ~~I :::~ ri<t-1") =O 
x=x 

i; ( t) + C r) ( t) + [o:, + (3 q ( t- 'J")} 'fl ( t - f) = 0 

l+k 
o:,:-2-

and q(t) is the rectangular pulse as shown in Figure 5.2. 

q (t) 

1 
I 

I 

T I 

4 I 

0 Tl I T 
I 2 

t 

I 
-1 ----- I 

Figure 5.2 Rectangular Pulse q(t) for Equati_a11 (5.46). 

(5.46) 
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Thus the original nonlinear differential-difference equation (5.8) has 

produced its variational equation (5.46) in the f~>rm of a linear 

differential-difference equation with variable coefficients. We 

recognize the Equation (5.46) as the Hill-Meisner equation with time 

delay, and stability criteria is established by posing an eigenvalue 

problem as it is done in the case of Hill-Meisner equation with no delay. 

Solution of Equation (5.46) is obtained by constructing the 

transfer matrix relationship between the initial vectors in the perturbed 

'11 variable, that is, perturb the initial vectors 

(5.47} 

where [%tis the exact initial vector by F. I.E. M., then substitute 

Equation (5.47) to Equations (5.22}, (5.31}, (5.38} and cancel out 

i=l,2,3 . 

we have 

tT12}=[M1 J fr, 1} for Region I 

fri3}=[M2J t'11z1 for Region II (5.48} 

f!4}=[M3] l!J..3} for Region III. 

Combine Equation (5.48}, 

(5.49) 

Now we pose an eigenvalue problem for stability, 

fT141= Al'nl }=[M] l!J..1} (5.50) 
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then the necessary and sufficient condition for the periodic solution 

[_g_
1 
t to be stable is that all the eigenvalues of the cascaded transfer 

matrix [M] must lie within the unit circle; i. e., 

[g_1 t is stable if and only if I 11.i I ~ 1 for all i = 1, 2, • • • (2N + 2), 

and 

Thus far we have shown the algorithm for constructing the 

periodic solutions by Equation (5.44) and determining their stability by 

Equation (5.50), using the same transfer matrix [M]. So the stability 

and the periodic solution of a nonlinear delay system are answered 

entirely by the system of algebraic equations which can be readily 

solved, and this task is particularly attractive with the aid of digital 

computers. 

At the end of this chapter, a series of numerical examples are 

shown. The maximUTI1 amplitude of the periodic solution [_g_
1 
t is 

plotted versus the forcing frequency w by taking a finite number of 

characteristic roots ZN for various sets of parameters. Stability is 

determined for each solution and comparison is made with an approxi­

mate method, 

5,5 Error Analyses of the Periodic Solution 

It was mentioned earlier that the ff exactness'' of the periodic 

solution by the Fredholm Integral Equation Method is crucially dependent 

on the fact that the error induced by truncating the matrix kernel K(t) 
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is made exponentially smaller by increasing the number of charac­

teristic root-pairs N. Thus, in essence, the solution can be made as 

accurate as one wishes by increasing the size of the transfer matrix, 

and this was shown for the linear delay systems in Chapter IV. 

We shall see in this section that the idea of bounding the error 

of solutions for piecewise linear delay system follows closely to that of 

linear delay system case. 

As an example, consider the trilinear delay system (5.8) and 

its periodic solution £&
1

} of Equation (5.44). The formal solution for 

each region (refer to Figure 5.1) is given as 

T t 
x.(t) =K.(t-T)e:.(T) + Jr K.(t-T-s)B._g_.(s)ds+ JI K.(t-s}F.(s)d; 
-'l. 1 """-1. Q 1 1 1 T 1 -1 • 

i=l, 2, 3 

and for this particular case of doubly bilinear system, 

and the kernels are in infinite series form 

rol z •• t 
K.(t) = e lJ R .. 

1 • lJ 
j=l 

i = 1, 2 

(5.51) 

(5 . 52) 

where the first 2N terms are used in the Fredholm Integral· Equation 

Method. At this point, we consider the entire kernel as in Equation 

{5.52) and see the effect of the truncated terms. 
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Let 

ZN z .. t 00 z .. t 
K.(t)=K.N(t)+K. (t)=\ e 13 R .. + \ e lJR .. 

l l 1€ L lJ L lJ 
j=l j=2N+l 

i=l,2 (5.53) 

and accordingly the initial functions and the solutions are split into two 

parts, 

x.(t) = x.N(t) +x. (t) 
-:J. -:J. --i.E: 

(5.54) 

i=l, 2, 3. 

_g,.(t) = g.N(t) + g. (t) 
l -1 -=-:LE: 

(5.55) 

Properties of the Kernels 

Let the infinite chain of characteristic roots be ordered as 

and define 

then the kernels form uniformly converging series, and 

CJ. t 
l\K. (t)II :5:m. e 

18 

18 ' 18 

with m., m. being positive constants. 
l 18 

, i = 1, 2 

Also, asymptotic properties of the kernels are 

lim l!K.(t)l\ :5: k. < en 
'f~O l l 

lim JI Ki
8
(t)II = 0 provided N > 1 

-r~o 

(5.56) 

(5.57) 
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lim II K. (t)ll = 0 
N-+oo 18 

for i = 1, 2. 

'T>O 

Error Bound Formulation 

The error in the solution is formulated in a similar way to the 

periodic solution itself by considering each region where it is governed 

by a linear differential-difference equation. 

Substitute Equations (5.53), (5.54) and (5.55} to (5.51} for the 

Region I and cancel out x 1N(t) terms, 

'T . t 

~ 18(t> =K 18(t-'T)_g_1N('T)+ J K 18(t-'T-s)B 1_g_1N(s)ds+ J K 18(t-s>F1 (s)ds 
0 'T 

'T 

+Kl (t-'T)glE:('T)+ s Kl (t-'T-s)Bl_g_lE:(s)ds. 
0 

(5.58) 

From the continuity condition, error of the Region II initial function is 

given as, for O::;; rt::;; 'T 

'T 

&.z/n) =x1e<ri+T1) = &.1(ri+Tl) + Kl (r,+Tl-'T)_g_lE:('T)+ I Kl ('n+Tl -'T-!;)B 1&.1e( s)ds. 
0 

Similarly for Region III, 0:,;; T1 ~ 'T 

T 

+ J K 2(ri+ 2T2 -'T-s}B 2_g_28(s}ds 
0 

(5.59} 

(5.60) 



-135-

and for Region IV, 0 ~'!1 ~ 1" 

.J, 

~Etn) = x3/ri+Tl) = _g_;('F)+Tl) + Kl (r,+Tl --r)_g_3e:(-r) 

1" 

+ J K 1 (r,+T1 --r-s)B 1 g 38
(s)ds 

0 

while the known terms are 

(5.61) 

_g_;(ri) =K2e:(r,--r)g2N(T)+ J~2/n-T-s)B 2g 2N< s)ds + j K 2/n-s)F 2(s)ds (5.62) 
0 T 

~~ r'1" n 
.s)ri) =K1e:('f1-T)g3N(T)+ J K1/n-T-s)B I g3N( s)ds + J Kle:(r1-s)F 3(s)ds 

0 T 

since the ~N(S), i = 1, 2, 3 are known from the Fredholm Integral 

Equation Method. 

Substituting Equation (5.59) to (5.60), and then (5.60) to (5.61), 

thus eliminating the intermediate initial functions _g_2 /M) and _g_
38

(n), and 

applying the closure (periodicity) condition on the error of the initial 

function, 

(5.63) 

then finally we obtain the error in a Fredholm integral equation form, 

']" 

with 

.&1e:('11)=h(ri)+ I K(ri, p)_g_le:(p)dp , 0~'!7~1" 
0 

(5.64) 

(5. 65a) 
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T T · 

K('l'1, P)= J J [W('\1)K>:o\T, S, Y, p)-K>:~>:~('1'1, S, Y, p)] BI dyds 
0 0 • 

T T T T -1 
W(-n) = J fK>:~>\r,, S, y,O)dy ds ~+ J J K>!<>\T, S, y,O)dy ds] 

0 0 0 0 

T 

h ;•o:~('11) = g_;('r')+T
1
) + K

1 
('!'l+T

1 
-T)h>\T)+ J ~ ('\1+TcT-s)B 

1
h>:~(s)ds 

0 

T 

(5.65b) 

h>!~(s) =g_;(s + 2Tz)+ Kz(s+ 2Tz-T)g_~(T+Tl )+ J Kz(s + 2Tz-T-y)Bz_g~ (y+Tl )dy. 
0 

It will be noted that Equation (5.64) which determines the error 

in the initial function for the trilinear case has exactly the same form 

as that for the error in the initial function for the linear problem of 

Equation ( 4. 92). 

It is important to note that although the algebra of constructing 

the error for the trilinear delay system has increased many fold, the 

basic structure of the error remains unchanged from the linear delay 

system. Furthermore, one can generalize that even for any 

n-piecewise linear delay system, the error will have the form of a 

Fredholm integral equation of second type like Equation (5.64). 
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Thus the solution of the integral equation (5.64) is given in the 

form of a Neumann series, and the error is bounded if the series is 

convergent. Construct a recurrence relationship, 

T 
k " I" k-1 g1/n}=h(n}+ K(ri, p}glE: (p)dp 

0 
(5.66} 

k = 1, 2, 3, •• • 

with 

then following the same process of linear delay system case of Equation 

(4.93), we get 

with 

provided O <A< I. 

A= T • sup JJK(fl, p)JJ 
Q:s;:17, p:s;;T/4 

µ = sup lih(r,)II 
Q:;;;'!7:s;;T/4 -

" " 

(5.67) 

(5.68a} 

(5.68b} 

Note the supremum norms of K('li, p) and h(Tl) are taken over the larger 

interval O :s;; n :s;; T / 4, 0 :s;; p:;;; T / 4, rather than the linear delay system case of 

0 :s;; '11 :s;; T. Here T / 4, a quarter of the period, is assumed to be larger 

than the delay time T. The reason for taking the supremums over a 

larger interval is that the original nonlinear delay problem (5.8) 

possesses the unknown switch-over time T
1 

and this was computed by 

the Fredholm Integral Equation Method of using only the finite kernels 
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KiN(t). Thus, true switch-over time T1 may be of the form T1 + ,6. T, 

where the amount of error -6.T is not known. However, from the phy­

sics of the trilinear problem, we must have 

thus the supremu:rn norms are taken over the interval O to T / 4 in order 

to give more conservative estimates for µ and A, and eliminate the 

error effect of ,6. T . 

It can be shown that the asymptotic properties of ),_ and µ are; 

lim \ = lim µ = 0 
'T"->0 'T"->0 

lim µ =0 
N->oo 
'!">0 

lim \> 0 
N->oo 

'1">0 

since ),_ depends only on the norm of entire kernels 

µ ultimately depends on the norm of error kernels 

(5.69a) 

(5 . 69b) 

!! K . (t)I!, i = 1, 2, and • 1 

I! Kiit)I!, i = 1, 2, and 

thus Equation (5.57) implies Equation (5.69). Therefore, the norm of 

error in the periodic solution G
18

,:,;; TI becomes asymptotically 

lim Q =0 
'T"->0 I€ 

, lim G
18 

=0 . 
N->oo 
'1">0 

(5.70) 

It is pointed out again that since Equation (5. 69a) holds true, 
,,, 

there must exist A such that 0<\< I for 'T"='T"""> 0 by invoking the local 

implicit function theorem, thus the convergence of the Neu:rnann series 

is guaranteed to give Equation (5.67). 
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Computation of the Error Bound 

In order to comput(;! the error bound of the periodic solution 

G18 , it is nec;:essary to establish the upper bounds for the norm of 

matrix kernels, II K.(t)II and II K. (t)II, i = 1, 2. This is done in Chapter IV, 
1 1E: 

Equation (4.112), 

T 

[ 
r,, --o: ] 0: t 

IIK. (t)II ~ 2T .!.+_/\/_2 t:... e 2 iN e iN 
• 18 'Tr t 2t-'T" (5. 71) 

i = 1, 2 

and 

l!K.{t)II ~ IIK.N{t)II +l!K. {t)II 
1 1 1E: 

{5.72) 

where llKiN(t)!I is kno"W11. for i=l, 2. From Equations {5.68b) and (5.65a), 

where 

with 

and 

G = inf II W(f1)1I 
w 0~'lj~T/4 

'T"2°J.a.2 
- 2 

2+T a.la.2 
< 1 

a.1 =; llK1(Tl-T)ll+llK1(Tl-2'T")ll· !IB1ll 

a.2 =; 11 K2(2T2)ll-11 K 1 ( T1 >II+ l!K2(2T2 -'T")ll • ll B 2ll • ll K 1 {T1 >II 

(5. 73) 

(5.74) 

(5. 75) 
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=a;+ {llK1(TcT}1\+TIIK1(Tl-ZT}ll· 1\Bll~ (5. 75) 
cont. 

x {a;+IIK2(ZT2}11 a~;+TllK2(ZT2-T}\l· llB2 I1 a~} 

with 

.J, 

ai = llK1iT1 -T}l1G1N+ T I\KlE:(Tc2T)II • l\B 111 GIN+ (Tl-T)II KlE:(T)ll • 11 Fl II 

a;= llK2i2T2 T)I\G2N+TI\K28(ZT2-2T)il· liB21\ UzN+{2T2-T)llK28(T)ll· 11E21! 

where 

G.N = sup ll~N(t)II , known frpm F. I.E. M. for · i = I, 2, 3. 
1 0:S:t S:T 

From Equations (5.68a} and (5.65b), 

where 

A= T. sup llK(n, P)ll 
0:5:"f'l, p:5:T/4 

3 
= T (1-Gw)Gk 

(5. 76) 

o::;;ir,, !;, Y, p s: T/4 

= {~ IIK1 (T1 -T)ll + ll K 1 (Tc2T)I\ • II B 11~-{~ IIK2{2T2>ll • llK1 (T1-T>l! 

+ ll K 2{ZT2-T)ll • ll B 2]l • 11 K 1 (T1-T)ll}. 

Thus finally combine Equations (5. 73) and (5. 76), 

(5. 77) 
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and the error in the periodic solution of the trilinear delay system of 

Equation (5 . 8) is bounded by the expression (5. 77). From this 

expression, the asymptotic nature of the error as shown in Equation 

(5. 70) is verified immediately since G,w and Gk are bounded away from 

zero for 'f >0 and independent of N, and from Equation (5. 75), 

lim G =0 
T-0 g 

lim G, =0. 
N-oo g 
-r>O 

Furthermore, due to the nature of the error kernels, G, decreases 
g 

exponentially as the number of terms N increases. 

Therefore, the periodic solution obtained by the Fredhohn 

Integral Equation Method is indeed exact in the sense that the error 

induced by truncating the kernel is made arbitrarily small by increasing 

N. 

5.6 Approximate Periodic Solution by the Method of Slowly Varying 

Parameters 

For the sake of comparison study, we shall consider an 

approximate solution method on the given nonlinear delay system 

Equation (5.8). Particular method chosen is based on the work of 

Krylov and Bogoliubov 

varying parameters . 

,,, 
'I' 

and this is also known as the method of slowly 

Although this method is applicable to more general class of 

nonlinear differential equations, the system must satisfy the small 

parameters requirement, namely, small nonlinearity, small forcing 

;~ 
Good discussion of this subject is in Nonlinear Mechanics, 
N. Minorsky, p. 186. 
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coefficient, or small damping in order for the slowly varying para­

meters as su:mption to be valid. 

Reposing the problem (5.8), 

with 

x(t) + cx(t) +f(x(t-'f)) = p cos wt 

f(x)=x-l+k forx>l 

=kx for lxl s: 1 

= x+ 1- k for x < -1 

and the harmonic response of Equation (5. 78) is sought, i. e., 

Assu:me the main harmonic solution to be of the form 

x{t) =A(t) cos (wt-q:(t)) =A{t) cos 8 

8=tut -cp(t) 

where A(t) and cp(t} are assumed to be slowly varying, therefore, 

Then 

and by setting 

A(t-'f) = A(t) cp(t-'f) =cp(t) for 'f < < 1. 

x(t-'f)=A(t) [cos UYf. cos 8+sinW'f• sin 8} 

x(t) = -A(t) w sin 8 

• • A(t) cos 8+Acp(t) sin 8=0 

''( ) A• • 8 A 2 " x t =- w sin - w cos 8+Aw cpcos e. 

(5.78) 

(5.79} 

(5.80) 
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Substitute the above in Equation (5. 78) 

-Aw sin 8-Aw
2

cos 8 +Awcpcos 8 - cAW sine +f(A cos @-W'T")) =p cos wt. 

(5.81) 

Combine Equations (5.80) and (5.81), and integrate over a cycle, we 

obtain the first • variational equations 

where 

• 2 
2Awcp-Aw + C(A, w) ·=p cos cp 

• 2.AW + cAW - S(A, w) =p sin cp 

2'fl' 

C(A, w) = .!_ J f(A cos ( 8-W'T"))cos 8 d8 
'fl' 0 

.• 2'fl' 

S(A, W)=.!_ J f(Acos (8-W'T"))sin8d8. 
,r 0 

(5.82a) 

( 5. 82b) 

(5.83a) 

(5.83b) 

If we let e''f.= cos -l l, e~<-J(. =-rr~e'\ then evaluation of Equation 

(5.83) becomes 

I
e* Je*~< . 

C(A, w) = I [ [A cos (8-W 'T")-1 + k} cos 8 d8 + ,,, k A cos (8-W'T")cos 8 d8 
'fl' 0 8''' 

'fl' 

+ I.,_..,_ [A cos (8-W'T") +1- k} cos 8de]. 
8''"" 

Simplifying the result, 

~ 
2 -1 1 ,JA--1 4 1-k 2 

C(A,w) =cos W'T" {kA+ 'fl' (1-k)(A cos A+ A )}- ; A ) Mi 

=kAcos W'T" 

(5.84a) 
for A> 1 

for A~ 1 
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S(A,w)= sinwT{kA+ !(l-k)(Acos-
1 l-~)} 

for A> 1 

= kA sin WT 

for A~ 1. 

Steady State Solution 

From Equation (5.82), we let A= cp = 0, 

2 
-AW + C(A,w) = p cos cp 

cAW - S(A, w) = p sin cp 

and eliminating cp terms, 

(5.84b) 

(5.85) 

A 
2

w
4

- (2AC(A,w)-c
2 

A 
2

)w
2 

-2cAS(A,w) w+C
2

(A,w)+S
2

(A,w)-p
2

=0 

(5.86) 

and the .steady state amplitude A versus the forcing frequency W relation-
•. ' 

ship is established. 

Steady state phase angles are given by 

t -1 ( cAw -S(A, w) ) cp=an 2 . 
-Aw + C(A,w) 

(5.87) 

Stability 

Stability of the approximate solution is derived by perturbing 

the solution about its known amplitude A,:~ and phase c/, let 

(5.88) 



-145-

Substitute Equation (5.88) to the first variational equation (5.82), and 

neglecting the higher order terms of 'l1 and !;, we obtain two coupled 

• 
linear first order ordinary differential equations in s and '11, 

2wA*ri+ ( cwA~~-S(A~:~,W))'t')+ (~~ -w2)s=0 
A=A~:~ 

(5.89) 

and we let 

, 

,.. ,.. 
thus for non-trivial solution of '11, !;, the determinant must vanish, i. e., 

(5. 90) 

where 

For stability, the complex roots A 1 2 of Equation (5. 90) must possess , 
negative real parts, and this holds if and only if 

(5.91) 

(5. 92) 

and the stability boundaries are given by setting b
1 
= 0, b

2 
= 0; and using 

Equation (5.84), 
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{ 2 -1 1 } b
1
=0= cw- sinW'f k+-(1-k)cos -::,, 

,r p;_·-

= cw - k sin w 'f 

and 

2 2 2 ,:< 
= (cw-ksinw'f) +(w -kcos W'f) , A ::;; 1 

Also, Equation (5. 94) coincides with the locus of vertical 

tangency obtained by taking partials of Equation (5.86) and setting 

aw 
8A =O. 

(5.93) 

(5.94) 

Thus the approximate steady state frequency response A versus 

W can be plotted from Equation (5.86) and their stability determined by 

Equations (5.93) and (5.94). 

5. 7 Numerical Examples 

Numerical examples of the periodic solution (maximum ampli­

tude A versus forcing frequency w) for the trilinear delay system ( 5. 8) 

are given in the following Figures 5. 3 through 5. 6. First the exact 

solution by the Fredholm Integral Equation Method (F. I.E. M.) is given 

by solving the matrix equation (5.44), and its stability is determined by 

the eigenvalue study of Equation (5.50), and shown on the Figures as 

circles. 

For reference, characteristic roots for the Region I 
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periodic solution by the method of slowly varying parameters are also 

plotted using Equation (5.86) and its stability determined by Equations 

(5.93) and (5.94) for the same set of parameters. 

Figure 5.3 shows the case when the system possesses very small 

nonlinearity (k = 0. 98), small damping ( c = 0. 02), and small delay (T is 

about one hundredth of the linear natural period). This is the case when 

the slowly varying parameters method is expected to yield good approxi­

mations, and this is verified here. 

Figure 5.4 shows the case with large nonlinearity and large 

damping term present. Delay term (T =0.1) is increased, but each 

linear region is kept stable. 

Figure 5.5 is the case when delay term exceeds the damping 

coefficient (T = 0. 3, c = 0. 2), thus the enHre nonlinear solution (A> 1) is 

unstable. 
. ' 

Figure 5.6 is the ordinary differential equation case (T =0) with 

still large nonlinearity (k = 0. 5). 

Although general shape of a hardening system solution is similar 

between the two methods as shown in Figures 5.4 through 5. 6, the 

amplitudes obtained by slowly varying parameters show large deviations 

from the exact solution whenever the large nonlinearity terms are 

present, while the stability criteria matched precisely in all cases. 

Also we note in actual process of the Fredholm. Integral Equation 

Method, it was sufficient to take the fir st three pairs of roots (N = 3) in 

both regions for the accuracy desired. This resulted in the transfer 
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matrices of at the most 8 X 8 in size and further enlargement of the 

matrices did not improve the accuracy of the solution significantly. 
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Chapter VI 

CONCLUSIONS 

Summary of the Thesis 

The main portion of this thesis is devoted to a new method 

of constructing periodic solutions for piecewise linear delay dynamic 

systems using the Fredholm Integral Equation Method. The method 

is developed for a linear delay system, and its most important use 

is made for piecewise linear delay systems. The key element during 

the process of developing the method is that as the formal solution 

is posed under the periodicity requirements, the solution takes the 

form of a Fredholm integral equation of the second kind, whose solu­

tion in general is not obtainable in a closed form. However, for the 

differential-difference equatio~s arising from dynamic systems , it is 

observed that the matrix kernel K(t) is always in the exponential form; 

thus K(t- !;) is guaranteed to be a separable kernel (Pincherle-Goursat 

kernel). Then from the well-established theory of integral equations, 

the Fredholm integral equation with separable kernel is reduced to a 

system of linear algebraic equations, thus the desired solution is 

obtained by a simple matrix equation. In other words, each linear 

region is represented by a transfer matrix [Mi], such that the entire 

piecewise linear system is represented by a single transfer matrix 

[M] which is a cascaded product of individual transfer matrices . 

Furthermore, the question of stability of the periodic solutions is 
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answered immediately by calculating the eigenvalues of the transfer 

matrix [Ml. A trilinear delay system with doubly bilinear case 

is examined as a numerical example to demonstrate the Fredholm 

Integral Equation Method, and the result is compared with an existing 

conventional approximate scheme. 

One advantage of this method is that it is entirely free from 

the small parameter requirements which are strictly necessary for 

the conventional approximate schemes on nonlinear differential equa­

tions. Furthermore, the solution obtained by the Fredholm Integral 

Equation Method can be made as accurate as one wishes by enlarging 

the size of the transfer matrix [MJ, thus the, solution is claimed to 

be exact. 

The main limitation of this method is that it is applicable to 

only piecewise linear delay systems, and not applicable to a more 

general class of nonlinearity. However one may argue that there exist 

many classes of nonlinearities which can be closely approximated by 

an n-piecewise linear system, and thus the solution can be obtained 

by the same method. Thus whenever a physical nonlinearity can be 

mathematically modeled as an n-piecewise linear system, we have 

the exact solution method for the model. 

Suggestions for Further Study 

The Fredholm Integral Equation Method developed for a 

piecewise linear delay system of single degree of freedom case may 

be extended beyond the present scope of this thesis. First, one may 

look for the harmonic response of a multidegree of freedom delay 
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system, i. e. , we have 

(6. I) 

where M, C, and Kare nXn matrices. If the system (6. 1) possesses 

classical normal modes such that M, C and K are simultaneously 

diagonalizable, then Equation (6. 1) reduces ton scalar delay equa­

tions, thus a multidegree piecewise linear delay system can be 

analyzed in a similar manner to the single degree case presented in 

this thesis. Another area of future interest is the case when a delay 

system is subjected to a random excitation. For example, 

x(t) + cx(t) + kx(t--r) = N(t) (6. 2) 

where N(t) is a Gaussian distributed white noise. In addition, the sub­

harmonic and ultra-harmonic responses of a nonlinear delay system, 

which may in itself possess interesting features, are left untouched in 

this thesis. Finally, delay mechanisms occurring in continuous media, 

or mathematically in the area of partial differential-difference equa­

tions, brings entirely new area of research about which very little is 

known at the present time except for the very simple cases. 
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