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ABSTRACT

The properties of dark matter (DM) is one of the most exciting mysteries in astrophysics, and they
are important in understanding cosmological structure formation and could potentially reveal new
physics. Direct searches for DM necessitate using ultra-sensitive quantum sensors, one of which is
the kinetic inductance phonon-mediated detector (KIPM). Understanding KIPM response is vital
to understanding the device’s energy resolution. Here, we present a physically-motivated model
of KIPM response based on quasiparticle and phonon lifetimes. We examined its adherence to
experimental data in three formulations: either six (6𝜏), five (6𝜏), or four (4𝜏) time constants. We
examined the temperature-dependence of these time constants, comparing to previous pulse shape
models. All three models fit to the data at temperature below 75 mK, with successful fits up to
150 mK in some cases; the 5𝜏 model presented the closest match of temperature-dependence of
quasiparticle and phonon lifetimes to existing knowledge, while goodness of fit indicates that 6𝜏
model have the potential to fit high temperature data better. This paper detailed both the behaviors
of the physically-motivated models, as well as fitting considerations and the behavior of the fit.
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C h a p t e r 1

MOTIVATION AND BACKGROUND

1.1 Direct detection of dark matter
Astrophysical (Sofue and Rubin, 2001; Massey, Kitching, and Richard, 2010; Markevitch et al.,
2004) and cosmological (Primack, 2017; Aghanim et al., 2020) evidences strongly support the exis-
tence of dark matter (DM), a class of massive substances that interact weakly with ordinary matter
(see also (Bertone and Hooper, 2018; Strigari, 2013)). Observational evidences has confirmed
that DM interacts with ordinary matter via gravity, which was vital to larger structural and galaxy
formations. The lack of direct detection evidences, in dedicated searches or in colliders, implies
that DM couples very weakly with ordinary matter otherwise. The primary candidates of DM has
been Weakly Interacting Massive Particles (WIMPs) at masses around 100 GeV. In addition, there
are developments on searches for other non-Standard Model (SM) particles, as WIMPs and these
novel particles may reveal new and exciting physics, as well as potentially being able to explain
other cosmological mechanisms. In the past decade, the lack of evidence of WIMPs DM has
motivated searches for other DM particles. One class of such particles is dubbed light DM, where
5 keV/𝑐2 ≲ 𝑚𝐷𝑀 ≲ 500 MeV/𝑐2.

The couplings of DM to SM particles inform methods in which we can directly detect DM;
naturally, the specific couplings involved depend on the DM candidates considered, as detailed
in (Sunil R. Golwala and Figueroa-Feliciano, 2022). In particular, the scattering of fermionic
DM in the light DM mass range is between the fermionic thermal limit and the lower limit of
masses accessible by “nonquantum" techniques. Most of this energy range is below the keV energy
resolution in conventional WIMP detection, thus motivating the use of quantum sensors that can
detect meV-scale quanta, such as KIPM.

1.2 Kinetic inductance phonon-mediated detectors
Kinetic inductance detectors
A KIPM comprises of a series of kinetic inductance detectors (KIDs) accompanied by a substrate,
usually silicon. A KID is a superconducting thin film resonator. Energy depositions (in the form
of DM or any interacting particles) shift its resonant frequency and quality factor 𝑄, forming
a detectable signal. The advantage of using KIDs lies in the wide options of phonon readout
and frequency-multiplexability in the measurement (Temples et al., 2024). In a superconductor,
phonon-mediated electrons interactions allow electrons to forms Cooper pairs with 𝐸 = 2Δ ∼
meV binding energy. The Cooper pairs carry electrical current without scattering, resulting in
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perfect DC conductivity. In an oscillating field, the Cooper pair’s inertia causes a delay in their
response, thus giving rise to surface impedance on the film. An energy deposition with energy
𝐸 ≥ 2Δ will break a Cooper pair into a pair of quasiparticles. The decreased Cooper pair density
increases the inductive component of the surface impedance, caused by the remaining Cooper pairs
speeding up to maintain the same superconducting shielding current derived from the Meissner
effect. Meanwhile, the increased quasiparticle density increases the dissipative component of the
impedance, thus lowers 𝑄 (Sunil R. Golwala and Figueroa-Feliciano, 2022). Fig. 1.1 offers a
simple demonstration of how KIDs work, and Fig. 1.2 demonstrates the detected frequency shift.

Figure 1.1: On a KIPM, KIDs are maintained at temperature below its critical superconducting
temperature 𝑇𝑐 ∼ mK, which allows Cooper pairs to form at 𝐸 = 2Δ ∼ meV and give rise to surface
impedance in an oscillating field. Incident energy with 𝐸 ≥ 2Δ breaks a Cooper pair into a pair
of quasiparticle. The changes in Cooper pairs density and quasiparticle density shifts the resonant
frequency and lowers 𝑄, forming a detectable signal.

Quasiparticle and phonon dynamics in the substrate
In a KIPM, an initial particle - Cooper pair interaction produces a pair of quasiparticles, which then
thermalize by producing athermal phonons. On average, most of the excess quasiparticle energy
is converted to a single athermal phonon quanta with energy 𝐸𝑝ℎ (Hochberg et al., 2016). As the
phonon propagates and scatters in the substrate, it can break another Cooper pair and generate more
quasiparticles (thus phonons), and it continues to do so as along as 𝐸𝑝ℎ ≥ 2Δ. This becomes a
cascade in the substrate.

The produced quasiparticles also scatters inside the substrate against the crystal 𝑁𝑠𝑢𝑟 𝑓 times before
losing sufficient energy to recombine into Cooper pairs. The quasiparticle lifetime 𝜏𝑞𝑝 characterizes
this time difference between creation and recombination. We expect 𝜏𝑞𝑝 to decrease at high
temperature due to the increased thermal quasiparticle density, as 𝜏𝑞𝑝 ∼ (2Γ𝑛𝑞𝑝)−1, where Γ is the
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(a) (b)

Figure 1.2: The resonant frequency decreased from the quiescent resonant frequency as a result
of energy depositions. This manifest as a phase shift at the quiescent resonant frequency in (a),
and as a shift in the power spectrum absorption in (b), where the decreased amplitude of the power
absorption is due to the lowered 𝑄.

quasiparticle recombination constant and 𝑛𝑞𝑝 increases as temperature increases (Temples et al.,
2024).

We assume the sensor on the surface is only sensitive to phonons above 𝐸𝑝ℎ > 𝐸𝑚𝑖𝑛 ≈ 2Δ, as the lack
of electronic states in superconducting band gap prohibits elastic and inelastic scattering of phonon
with 𝐸𝑝ℎ < 2Δ. This distinguishes athermal from thermal phonons; we are primarily concerned
with the athermal population. Following their creations, phonons propagate across the crystal,
experiencing isotopic scattering, anharmonic decay, and surface down-conversion. In isotopic
scattering, phonons scatter off inhomogeneities in the ion mass; this process is elastic and preserves
the phonon spectrum. In anharmonic decay, one phonon decays into two phonons, with lifetime
on the scale of 1 s to decay to 𝐸 ≈ 0.1 meV (Sunil R. Golwala and Figueroa-Feliciano, 2022).
Surface down-conversion is less well understood, but it also limits phonon lifetime. The phonon
lifetime represents the characteristic time for phonons in the substrate due to the aforementioned
decay processes, as well as due to the loss of energy to sub-2Δ phonons from various absorption
mechanism with surrounding material (Temples et al., 2024). This lifetime yields 𝑁𝑠𝑢𝑟 𝑓 > 105,
which indicates that surface down-conversion is the dominant thermalization process that creates
phonons (Hochberg et al., 2016).

Kinetic inductance phonon-mediated detector
Comprises of the KID layers and the substrate, KIPM detects the incident energy deposition, along
with detecting the subsequent phonon and quasiparticles existing in the substrate, thus allowing
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for a finer energy resolution and an amplified signal. As phonon and quasiparticles recombine to
Cooper pairs, the resonant frequency shifts recovers to the quiescent value in ms timescale.

The Golwala Group at Caltech, and the larger KIPM Consortium, are interested in understanding
the behavior of, and developing KIPMs for DM search, which utilizes microwave-KIDs (MKIDs) to
detect phonon signals from the device substrate. Formulating an accurate model of KIPM response
is vital in understanding the device’s energy resolution and sensitivity, where the quasiparticle life-
times, thus the corresponding quasiparticle density, are necessary in the energy resolution analysis,
as further described in (Temples et al., 2024). This project aims to develop a physically-motivated
model of KIPM response parameterized by quasiparticle and phonon lifetimes in the substrate,
motivated by the current understanding of quasiparticle and phonon behaviors in superconducting
crystals.
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C h a p t e r 2

CHARACTERIZATION OF KIPM PULSE SHAPE

2.1 Empirical model
Following (Moore, 2012), the KIPM pulse shape has been well-characterized by an empirical
model comprises of a fast (prompt) and slow (delayed) component, each component carries two
exponential terms for a rise and fall time such that (Temples et al., 2024)

𝑠𝑝 (𝑡) = (1 − 𝑒−(𝑡−𝑡0)/𝜅𝑝 )𝑒−(𝑡−𝑡0)/𝜏𝑝

𝑠𝑑 (𝑡) = (1 − 𝑒−(𝑡−𝑡0)/𝜅𝑑 )𝑒−(𝑡−𝑡0)/𝜏𝑑
(2.1)

where 𝜅𝑝(𝑑) is the prompt (delayed) rise time and 𝜏𝑝(𝑑) is the prompt (delayed) fall time. The final
pulse shape is

𝑠(𝑡) = 𝐴(𝑠𝑝 (𝑡) + 𝑤𝑑𝑠𝑑 (𝑡)) (2.2)

where 𝐴 is the overall amplitude and 𝑤𝑠 is the relative weight of the delayed components.

This model fits to the data at all temperatures, as demonstrated in Fig. 2.1. The prompt and delayed
fall time constants decrease monotonically with temperature, as in (Temples et al., 2024) and
reproduced here. The maximal amplitude also rises with temperature. Recently, the temperature-
dependence of the fall and rise times in (Temples et al., 2024) motivated an interpretation which the
fall times in the empirical model represent a time constant that is weakly coupled to temperature
(corresponds to an athermal phonon population) and one with stronger dependence (corresponds
with the temperature-dependence of 𝑛𝑞𝑝), which "switches" role at around 175 mK, as demonstrated
in Fig. 2.2.

This model describes the data well, but the physical interpretation of the fall and rise times are not
immediately obvious. In addition, since the sensor is only sensitive to quasiparticle response, the
quasiparticle and phonon lifetime must be convolved and not trivially separable, as in (Temples
et al., 2024). This motivates the physically-motivated convolution models that are the primary
focus of this thesis.

2.2 Convolution model
From a phenomenological picture of phonon and quasiparticle dynamics in the substrate, previous
works have formulated a differential equation that describe the change in quasiparticle population
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(a) (b)

Figure 2.1: at (a) 125 mK, (b) 225 mK. The solid blue line is the overall empirical fit; the dashed
green line represented the delayed component and the blue dashed line to the prompt component.
The fall time of each component is noted in the legend. The lower panels display the residues of
the data, defined to be the difference between the data and the fit.

in time, allowing us to solve for the different time constants involved in forming the detected pulse
shape. The derivation is briefly summarized here.

Derivation
Neglecting rise times, assume we have a resonator that satisfies the usual quasiparticle conservation
equation

𝑑𝑁𝑞𝑝

𝑑𝑡
= 𝜂𝑝ℎ

𝑃(𝑡)
Δ

−
𝑁𝑞𝑝

𝑡𝑞𝑝

where 𝑑𝑁𝑞𝑝/𝑑𝑡 is the change in quasiparticle density, 𝑁𝑞𝑝 the quiescent quasiparticle density, 𝑡𝑞𝑝
the quasiparticle lifetime, 𝜂𝑝ℎ is the efficiency of converting absorbed phonons to quasiparticles
and 𝑃(𝑡) is the phonon pulse from the substrate:

𝑃(𝑡) = 𝐸

𝑁𝑟

𝜏𝑎𝑏𝑠𝑒
−𝑡/𝜏𝑎𝑏𝑠

where we assumed that the total phonon energy 𝐸 is split equally among 𝑁𝑟 resonators and absorbed
over time 𝜏𝑎𝑏𝑠. We solve the forced differential equation using Fourier transformations, to yield
𝑁𝑞𝑝 ( 𝑓 ) and its the inverse Fourier transform:
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Figure 2.2: This reproduced the results in (Temples et al., 2024). Looking at 150 mK and 175
mK, we can draw a straight line from the plateau of the of the delayed fall line (dashed orange)
starting from 175 mK to the prompt fall line (dashed blue) lower than 175 mK, corresponding to
a temperature-independent lifetime, as expected for an athermal phonon population. Connecting
the delayed fall time below 175 mK to the prompt fall higher than 175 mK, where the tail is still
gently decreasing, corresponds to a temperature-dependent lifetime, as expected of a quasiparticle
population.

𝑁𝑞𝑝 ( 𝑓 ) = 𝜂𝑝ℎ
𝐸

𝑁𝑟Δ

𝜏𝑞𝑝

1 + 𝑖𝜔𝜏𝑞𝑝

1
1 + 𝑖𝜔𝜏𝑎𝑏𝑠

(2.3)

𝑁𝑞𝑝 (𝑡) =
𝜂𝑝ℎ𝐸

𝑁𝑟Δ

𝜏𝑞𝑝

𝜏𝑎𝑏𝑠 − 𝜏𝑞𝑝
(𝑒−𝑡/𝜏𝑎𝑏𝑠 − 𝑒−𝑡/𝜏𝑞𝑝 ) (2.4)

We can generalize 2.3 to attach other time constants into 𝑁𝑞𝑝 ( 𝑓 ) in similar fashions, ultimately
yielding

𝑁𝑞𝑝 (𝑡) = 𝑁𝑟
𝑞𝑝𝜏𝑞𝑝

∫ ∞

−∞
𝑑𝑓 𝑒𝑖𝜔𝑡

1
1 + 𝑖𝜔𝜏𝑞𝑝

1
1 + 𝑖𝜔𝜏𝑟

∏
𝜏𝑘

1
1 + 𝑖𝜔𝜏𝑘

= 𝑁𝑟
𝑞𝑝𝜏𝑞𝑝

[
𝑒−𝑡/𝜏𝑞𝑝/𝜏𝑞𝑝

(𝜏𝑞𝑝 − 𝜏𝑙) (𝜏𝑞𝑝 − 𝜏𝑚) · · · (𝜏𝑘 − 𝜏𝑛)

+ 𝑒−𝑡/𝜏𝑟/𝜏𝑟
(𝜏𝑟 − 𝜏𝑙) (𝜏𝑟 − 𝜏𝑚) · · · (𝜏𝑟 − 𝜏𝑛)

+ · · ·
]

= 𝑁𝑟
𝑞𝑝𝜏𝑞𝑝

∑︁
𝜏𝑘

𝑒−𝑡/𝜏𝑘/𝜏𝑘
(𝜏𝑘 − 𝜏𝑙) (𝜏𝑘 − 𝜏𝑚) · · · (𝜏𝑘 − 𝜏𝑛)

(2.5)
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where 𝜏𝑙 , 𝜏𝑚, · · · , 𝜏𝑛 ≠ 𝜏𝑘

In general, we expect the phonon interactions to involve a fast (prompt) and slow (delayed) compo-
nent, each with a rise time (𝜏𝑟 𝑝 or 𝜏𝑟𝑑) and a fall time (𝜏 𝑓 𝑝 or 𝜏 𝑓 𝑑). This generality take into account
quasiparticles that are immediately absorbed by the sensor at their initial collision (prompt) and
other which may scatter around the substrates a few times before reaching the sensor, as well as
recombination. In the prompt and delayed component, the rise and fall time are convolved with the
quasiparticle lifetime 𝜏𝑞𝑝 and the resonator ring-down time 𝜏𝑟 , whose values is fixed.

We focuses on the full convolution models (6𝜏) and two simplified models, where one (5𝜏)
or both (4𝜏) rise times are assumed to be negligible. Similar to the empirical model, each
component has a separate amplitude 𝐴𝑝 or 𝐴𝑑 , which are symmetrically added to form 𝑁𝑞𝑝 (𝑡) =
𝐴𝑝𝑁𝑞𝑝,𝑝 (𝑡) + 𝐴𝑑𝑁𝑞𝑝,𝑑 (𝑡). The 5𝜏 model assumes that the prompt rise time can be ignored, while
the 4𝜏 model ignored both prompt and delayed rise time, fitting only for the fall times.

In these models, we bound the time constants to be

𝜏𝑞𝑝, 𝜏𝑟 𝑝 ≤ 10 𝜇𝑠 (2.6)

10 𝜇𝑠 ≤ 𝜏 𝑓 𝑝, 𝜏𝑟𝑑 ≤ 1000 𝜇𝑠 (2.7)

𝜏 𝑓 𝑑 ≥ 1000 𝜇𝑠 (2.8)
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C h a p t e r 3

DATA OVERVIEW

3.1 Data collection
The data used in this project was collected at the Northwestern EXperimental Underground Site
(NEXUS), a low-background cryogenic facility at Fermilab. This data is also used in Temples
et al., 2024. The KIPM detector was fabricated at the Jet Propulsion Laboratory and features eleven
resonators deposited on a silicon substrate. The primary phonon-absorbing resonator is made of
aluminum. The shift in the resonant frequency is measured via the complex transmission

𝑆21( 𝑓 , 𝑇) = 1 − 𝑄

𝑄𝑐

1

1 + 2𝑖𝑄 𝑓− 𝑓𝑟 (𝑇)
𝑓𝑟 (𝑇)

(3.1)

where 𝑓𝑟 (𝑇) is the resonant frequency as a function of temperature, 𝑄𝑐 the coupling quality factor,
𝑄 is the total quality factor. The shift in the on-resonance transmission 𝛿𝑆21 in response to change
in quasiparticle density 𝛿𝑛𝑞𝑝 is given by

𝛿𝑆21 = 𝛼
𝑄2

𝑟

𝑄𝑐

(𝜅1 + 𝑖𝜅2)𝛿𝑛𝑞𝑝 (𝑡) (3.2)

where 𝑡 is time, 𝛼 the kinetic inductance fraction, 𝜅1(2) the real (imaginary) component of the
fractional change in complex conductivity per unit change in quasiparticle density and has unit of
volume.

3.2 Quasiparticle lifetime measurement
The temperature of the mixing chamber (MC) was controlled with a PID-controlled heater, and
the MC temperature was swept from 25 mK to 325 mK in steps of 25 mK. We use the LED
pulse timestreams, cleaned of correlated noise, from this measurement for our analysis. Once the
temperature stabilized, an LED is set to bias at 𝑉𝐿𝐸𝐷 = 4.0 or 3.0, and timestreams were then
acquired. The collected data went through a cleaning process and the average pulse is calculated.
This average pulse is what is used to fit to a pulse shape model.

Due to the slow thermalization of the RF payloads to the MC, the device temperature is not the same
as the MC temperature. A map from MC to device temperature was developed via an auxiliary
thermometer installed to the RF payload. The discrepancy increases at higher MC temperature,
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leading to increased uncertainty in device temperature. More details are discussed in Temples et al.,
2024.

In later analysis, we refer to each dataset by their MC temperature (25 mK to 325 mK), whereas
the graphs presented labeled the data by their RF temperature.



11

C h a p t e r 4

PROCEDURE FOR FITTING PULSE SHAPE

4.1 General method
We perform the fits using the Python iminuit.py package. In this use case, iminuit is more
robust than the typically-used scipy.curve_fit package, as the latter tends to fail and return no
parameters for higher temperature data. The package requires the y-axis uncertainty, as well as
initial guesses of the fit parameters. In addition, we rely on the in-house KIPD_Analysis package
for several helpers functions, such as estimating the initial guesses and other graphic-related task.

Using the iminuit’s built-in least square cost function, we use the MIGRAD and HESSE functions
provided to minimize the cost function and to calculate uncertainty, respectively. References
for iminuit is available at Hans Dembinski, 2022. Each fit returns the fitted parameters, the
corresponding errors, and several indicators of goodness of fit. These include the reduced 𝜒2 value,
iminuit’s internal "estimate distance from minimum" (EDM) value, which it uses to judges the
validity of the fit (by being below a certain EDM threshold). We primarily use the reduced 𝜒2 value
to evaluate the goodness of fit. In addition, we rely on visually inspecting the fit when necessary.

To obtain the initial guesses required by iminuit, we estimated the pulse shape as a single
exponential line to obtain the location and value of the amplitude. Next, since the convolution form
is in the exponential form 𝑒−𝑡/𝜏𝑘 , we obtain estimates of fall time constants 𝜏𝑘 ’s from the different
segments of linear slopes in the logarithmic form of the pulse. Fig. 4.1 demonstrates the linear
slopes for two cases: one at low temperature with two fall times, the other at high temperature with
three. We assume the fastest timescale, i.e, that with the steepest slope, is 𝜏𝑞𝑝. The second- and
least-steep slopes are ascribed to 𝜏 𝑓 𝑑 and 𝜏 𝑓 𝑝 respectively. This step is not currently automated and
requires by-hand inspections.

To ensure proper fitting, we discard a portion of the beginning and of the end of the data. Initially,
we discarded and began the fit after the pulse has fallen to around 80% of its amplitude. We excluded
data points beyond 15 ms, after sufficient time that the pulse settled to about 0.0 𝜇𝑚−3. Pruning
the beginning and end in this manner also ensure uniformity between the quality of fits between
different temperature and guiding the fit to focus on the downward slope instead of the peak. We
observed that while starting at later time (at lower amplitude) may benefits fitting (see Sec. 4.3 and
Sec. 5.3), cutting more of the tail does not improve the fit. Excluding the earlier time in the pulse
may have an experimental motivation as well: these early time features non-linear behaviors, where
there are additional noise from readout probes and the reflection of sine waves from the readout.
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(a) (b)

Figure 4.1: The pulse shape at 100.0 mK (left) and 200.0 mK (right) plotted in log-y scale. In
this scale, we can see the different segments of linear slopes that corresponds to a different time
constant 𝜏𝑘 in 𝑒−𝑡/𝜏𝑘 . These slopes are used as the initial guesses for iminuit to perform the fit. The
brown lines on the y-axis (unfortunately no longer eraseable) assists in determining the y-value at
different points.

This ring-down period (corresponds to 𝜏𝑟 is also not well understood. We nonetheless included 𝜏𝑟

in the fit as a fixed values for accuracy. Experimentally, 𝜏𝑟 may be longer. Excluding the early time
thus simplifies the fitting process.

We provide the fits with bounds of the floating time constants, aforementioned in 2.6. We also
place the additional constraints that 𝐴𝑝 > 0 and 𝐴𝑑 > 0.

Inputting this information to iminuit will begin the fitting process. From the returned parameters
and reduced 𝜒2 value, we calculated also the ratio between the amplitude of the prompt and delayed
component, 𝛼𝑝𝑑 = 𝐴𝑑/𝐴𝑝. We graphed the fit on top of the pulse and saved the returned parameters
and goodness-of-fits information in a .txt file. The graph of each fit is accompanied by a graph
of its residue, defined as the difference between the data and the fit for the entire length of the data,
including points that are not included in the fit.

4.2 Uncertainty estimation
We estimated the uncertainty in the average pulse from the power spectral density (PSD) of the
signal. We assume that the frequency noise is white, where the power spectral density (PSD) 𝐽 ( 𝑓 ) is
constant. The integral of the noise PSD gives the noise variance in time. Obtaining the uncertainty
from frequency space also have the benefits that, for linear systems, the behaviors at each frequency
are independent of each other (Sunil R Golwala, 2000). Thus we get the time variance
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𝜎2 =
∑︁
𝑖

𝐽 ( 𝑓𝑖)𝑑𝑓

where 𝑑𝑓 is the frequency bin width of the PSD. We divide 𝜎2 by 𝑁 , the number of pulses used to
calculate the final average pulse. The final uncertainty is taken to be 𝛿 =

√︁
𝜎2/𝑁 .

4.3 Fitting behaviors and issues
The fitting process is refined over this thesis project as we experiment with different models and
ways to implement them. Below are some significant challenges to the fitting process and any
modifications that has been made, outside of the general fitting method.

Variables degeneracy
In writing the convolution models in the form of Eq. 2.5, we observed that the fitting programs
cannot effectively differentiate between the time constants, even with constraints, due to the sym-
metric roles they play in the equation (i.e., 𝜏𝑞𝑝 could easily be 𝜏 𝑓 𝑑 or any other time constants, in
the eyes of the fitting function). The empirical model avoided this issues since each exponential
term carries a unique combination of time constants. We follow that form and rewrite the prompt
component of the 6𝜏 model:

𝑁𝑞𝑝,𝑝 (𝑡) = 𝐴𝑝

𝑒−𝑡/𝜏𝑞𝑝

(𝜏𝑞𝑝 − 𝜏 𝑓 𝑝) (𝜏𝑞𝑝 − 𝜏𝑟) (𝜏𝑞𝑝 − 𝜏𝑟 𝑝)

×
[
1 − 𝑒−𝑡/𝜏𝑟′

𝜏𝑞𝑝

𝜏𝑟

(𝜏𝑞𝑝 − 𝜏𝑎𝑏𝑠) (𝜏𝑞𝑝 − 𝜏𝑟𝑠𝑒)
(𝜏𝑟 − 𝜏𝑎𝑏𝑠) (𝜏𝑟 − 𝜏𝑟𝑠𝑒)

×
[
1 − 𝑒−𝑡/𝜏𝑎𝑏𝑠′

𝜏𝑟

𝜏𝑎𝑏𝑠

(𝜏𝑟 − 𝜏𝑞𝑝) (𝜏𝑟 − 𝜏𝑟𝑠𝑒)
(𝜏𝑎𝑏𝑠 − 𝜏𝑞𝑝) (𝜏𝑎𝑏𝑠 − 𝜏𝑟𝑠𝑒)

×
(
1 − 𝑒−𝑡/𝜏𝑟𝑠𝑒′

𝜏𝑎𝑏𝑠

𝜏𝑟𝑠𝑒

(𝜏𝑎𝑏𝑠 − 𝜏𝑞𝑝) (𝜏𝑎𝑏𝑠 − 𝜏𝑟)
(𝜏𝑟𝑠𝑒 − 𝜏𝑞𝑝) (𝜏𝑟𝑠𝑒 − 𝜏𝑟)

) ] ]
(4.1)

where

1
𝜏𝑟𝑠𝑒′

≡ 1
𝜏𝑟𝑠𝑒

− 1
𝜏𝑎𝑏𝑠

1
𝜏𝑎𝑏𝑠′

≡ 1
𝜏𝑎𝑏𝑠

− 1
𝜏𝑟

1
𝜏𝑟 ′

≡ 1
𝜏𝑟

− 1
𝜏𝑞𝑝

The final model will be of the form



14

𝑁𝑞𝑝 (𝑡) = 𝐴𝑝𝑁𝑞𝑝,𝑝 + 𝐴𝑑𝑁𝑞𝑝,𝑑

The 5𝜏 and 4𝜏 models are similar constructed, with the modifications that each component in the
4𝜏 form will only have three time constants. The 5𝜏 form thus will have a three- and a four-time
constants term. We show here the form for a three- time constants term as appears in 4𝜏:

𝑁𝑞𝑝,3𝜏 = 𝐴
𝑒−𝑡/𝜏𝑞𝑝

(𝜏𝑞𝑝 − 𝜏𝑎𝑏𝑠) (𝜏𝑞𝑝 − 𝜏𝑟)

[
1 − 𝑒−𝑡/𝜏𝑟′

𝜏𝑞𝑝

𝜏𝑟

(𝜏𝑞𝑝 − 𝜏𝑎𝑏𝑠)
(𝜏𝑟 − 𝜏𝑎𝑏𝑠)

×
(
1 − 𝑒−𝑡/𝜏𝑎𝑏𝑠′

𝜏𝑟

𝜏𝑎𝑏𝑠

(𝜏𝑟 − 𝜏𝑞𝑝)
(𝜏𝑎𝑏𝑠 − 𝜏𝑞𝑝)

) ] (4.2)

where

1
𝜏𝑎𝑏𝑠′

≡ 1
𝜏𝑎𝑏𝑠

− 1
𝜏𝑟

1
𝜏𝑟 ′

≡ 1
𝜏𝑟

− 1
𝜏𝑞𝑝

High amplitude pulses
Fitting data on different 𝑉𝐿𝐸𝐷 setting reveals that at the same temperature, the width of the pulse is
largely the same, but there is a substantial difference in the pulse amplitude. The same temperature
in 4.0V data has an amplitude about two to three times higher than that of 3.0V. As the temperature
increases, the pulse amplitude increases as well, which may contribute to the difficulty in fitting
higher temperature curves. Figure 4.2 demonstrates the difference of a 6𝜏 fit at 125 mK with
𝑉𝐿𝐸𝐷 3.0V, 4.0V, and 5.0V. This widening of the fitted curve for higher amplitudes also warns that
data with high and narrow pulses, such as that at higher temperature, will be more difficult to fit
accurately, if at all.

If the fitting quality depends on the amplitude, given that we are primarily interested in the fall times
rather than rise times, we are motivated to prune more of the peak for a better fit. This change could
be physically motivated. The convolution models is derived assuming 𝛿𝑛𝑞𝑝 ≪ 𝑛𝑞𝑝,0, where 𝑛𝑞𝑝,0

is the quiescent quasiparticle density. We know that 𝑛𝑞𝑝,0 ≈ 20𝜇𝑚−3 at low temperature, though
it may be higher as temperature increases. Thus, we only need to care about the portion of the
pulse from such amplitude downwards. Through experimentation with starting the fit at different
amplitudes (parameterized as percentage of the true peak) we decided to fit up to 50% or 80% of
the pulse for lower temperature (25 mK to 125 mK) and 30% of the pulse for higher temperature
(125 mK to 350 mK) for the temperature-dependence analysis in Sec. 5.2. We discuss the results
of this variation in Sec. 5.3.
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(a) (b)

(c)

Figure 4.2: 6𝜏 fit at 125 mK at 𝑉𝐿𝐸𝐷 = (a) 3.0V , (b) 4.0V, and (c) 5.0V. The width of the
data pulses are approximately equal, but the fitting function failed at fitting the pulses with higher
amplitudes. In (b) the fit subtly overshoot the downward curve starting at 6 ms, whereas in (c) the
fit overestimated the width of the curve completely.
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C h a p t e r 5

FITTING RESULTS

We review the results of the three convolution models across temperature, intensity of the source
𝑉𝐿𝐸𝐷for the two datasets available, 0215 and 0216, commenting primarily on the quality of the
returned fits. We begin by discussing the variation of fit behaviors and qualities in Sec. 5.1 using
the 4𝜏 model as the simplest model, then comparing it to the 5𝜏 and 6𝜏 models. Sec. 5.3 discusses
the effect of pulse amplitude on fitting capabilities by examining data at different 𝑉𝐿𝐸𝐷s settings,
also starting with 4𝜏 fit. Sec. 5.2 compares the three models in greater details by examining the
temperature-dependence of the time constants as returned by the fit. In addition, as noted in Sec.
3, we refer to the temperature by the setpoint temperature MC, while in-graph labels reference the
RF temperature of the data.

5.1 Temperature-dependence of fits
In this analysis we focuses on the 0216,𝑉𝐿𝐸𝐷 = 3.0V dataset, with comparisons to any𝑉𝐿𝐸𝐷 = 4.0V
and 0215 data as necessary. We retained 80% of the amplitude for all temperature here for
uniformity.

General temperature-dependence behavior: 4𝜏
At all 𝑉𝐿𝐸𝐷 , the 4𝜏 model is a good fit at low temperature, with reduced 𝜒2 ≈ 1.0 at 75 mK and
below. At 𝑉𝐿𝐸𝐷 = 3.0V, as show in Fig. 5.1, reduced 𝜒2 may falls below 1.0, leading to risk
of overfitting. Nonetheless, the residuals indicate that 4𝜏 model returns random residuals that are
near zero, indicating that the fit matches to the data. At 125 mK, reduced 𝜒2 = 3.60, though as
shown in Fig. 5.1 the model still fits with low residuals. Possibly, the higher scaling of the data
"inflates" the reduced 𝜒2 value. The same can be seen when comparing the 125 mK of the two
datasets in Fig.5.2 (top). The amplitude of the pulse is the primary difference in the data and the
fit, since the width of the pulses does not varies with temperature. Here, the reduced 𝜒2 value of
the lower-amplitude data is also lower. At this amplitude, 𝛿𝑛𝑞𝑝 ≲ 𝑛𝑞𝑝,0, well within the constraint
assumption of the exponential models, thus the pulse fits well to the exponential shape and easily
matches the amplitude of the data given to the fit.

Starting from 150 mK, the fits begin to depart from the curve, beginning to become more pronounced
at 175 mK where the amplitude of fits fall below the starting amplitude. The differences in fit
qualities from 125 mK to 175 mK are more pronounced at higher voltage settings, as shown in
Fig. 5.3. In addition, at 150 mK, the tail starting at 7 ms subtly undershoots the real data. The



17

(a) (b)

(c) (d)

Figure 5.1: 4𝜏 fits at 3V, (a) 25 mK; (b) 50 mK; (c) 75 mK; (d) 125 mK. The 4𝜏 model fits well at
this regime of low temperature, with reduced 𝜒2 = 1.06 at 25 mK, reduced 𝜒2 = 0.89 at 50 mK,
reduced 𝜒2 = 0.76 at 75 mK, and reduced 𝜒2 = 3.60 at 125 mK. We noted that reduced 𝜒2 < 1.0
may indicates over-fitting. The bottom portion of both graphs display the residue of the fit. In both
all fits, starting from the fit begins at before 6 ms, the residue is approximately 0, indicating a good
match between the data and the fit.
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(a) (b)

(c) (d)

Figure 5.2: 4𝜏 fits of 125 mK at Top: 3V, (a) 0215 dataset, (b) 0216 dataset. The 0216 datasets
have higher amplitudes, which fits to a narrower pulse as seen in the residue around the pulse spike
(5 ms). Bottom: 4V, (c) 0215 dataset, (d) 0216 dataset. At higher voltage, we begin to see some
deviation from the curve at around 7 ms, where the fitted curve did not decay fast enough.
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undershoot in particular is unique to 125 mK and 150 mK, thus is likely to be an artifact of the fits
rather than anything physical. Most importantly, at around 6 ms (Fig. 5.3, (b)) we begin to see the
fitted pulse becoming wider than the data curvature. This is exacerbated in the 175 mK fits. It takes
increasingly longer for the fits to re-converge with the data at higher temperature. A wider curve
means the fitted fall times are overestimated here. The reduced 𝜒2 ≫ 1 here (Fig. 5.3 (d)) showed
that this is not a good fit. Starting at these temperature, the narrowing of the pulse in addition to the
steeper amplitude makes it more difficult for the fits to find the minimum. From 175 mK, reduced
𝜒2 ≳ 26.

The fit becomes highly unreliable and not well-explained starting from 225 mK. As shown in Fig.
5.4 (a), the width of the fit is much larger than that of the data. Notably, in (b), though the amplitude
of the data is much higher for the same width, the fit’s width is much narrower. Comparing the
125 mK to 175 mK fitted curve with the 225 mK curve in (a) shows that they have approximately
similar width; here, the fit failed to "narrow" itself in accordance to the actual curve, though (b)
demonstrates that it might be possible for the fit to adapt. As later shown in 5.3, shifting the fitting
range to lower amplitudes help with fitting the later-time curve, in some cases by forcing the fitted
curve to narrow.

At 300 mK and higher, the pulses narrow further in addition to having higher amplitudes. The value
of successive data points fluctuates more compare to lower temperature, which may reflects a more
complex and/or active quasiparticles propagation and recombination in the substrates. Reduced
𝜒2 ∼ 1.0 at 325 mK and 350 mK, though in general, the fits are very unpredictable in these
regimes and returns parameters with uncertainty much larger than the scale of the time constants.
In Fig. 5.5, comparing the fits in (a) and (b), the better fits start at a lower starting point and the
better fit only fits to the less-steep tail end of the pulse from approximately 5.1 ms onwards. On
the logarithmic scale, as in Fig. 4.1, this part of the curve corresponds to the phonon fall times
that dominates after the very rapid quasiparticle lifetime fall off. Though the residuals are better
compare to, say, 275 mK or 350 mK, the time constants returned does not make physical sense nor
match well with what is predicted by examining the graphs, and with very high error bars. Thus,
we still consider the fits to be unreliable at high temperature.

Later on, we noted, but has not extensively investigated, how starting the fit at lower amplitudes
improve the fits at higher temperature in Sec. 5.2.

Comparison to 5𝜏 and 6𝜏 models
Similar to the 4𝜏 fits, the 5𝜏 models fit the low temperature well, similarly with reduced 𝜒2 ∼ 1.0
below 75 mK and reduced 𝜒2 = 2.11 at 125 mK, jumping to reduced 𝜒2 ≫ 1 at higher temperatures,
starting at 150 mK. Notably, the width of the fit begins to deviate from the curve at 150 mK or
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(a) (b)

(c) (d)

Figure 5.3: 4𝜏 fits at Top: 150 mK fits at (a) 3.0V, (b) 4.0 V. Bottom: 175 mK fits at (c) 3.0V, (d)
4.0 V. Deviation from the width of the pulse begins to appear at these temperature. The narrower
pulse shape is more difficult to fit. At higher voltage, we begin to see some deviation from the
curve at around 7 ms, where the fitted curve did not decay fast enough.
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(a) (b)

Figure 5.4: 4𝜏 fits at 225 mK fits at 𝑉𝐿𝐸𝐷 (a) 3V; 4V. At 225 mK the fits begin to fail to narrow
up to the curve, with some exceptions. Note the restricted range of the displayed graph at these
temperature (up to 7.5 ms instead of 15.0 ms like before), such that the same pulse width, as in (a),
now looks wider compares to curves at lower temperatures.

175 mK occasionally, depending on the dataset used. This problem appears consistently from 200
mK, a little earlier than in 4𝜏 for the same datasets. Physically, this is reasonable to expect, since
the delayed rise time matter less at low temperature and this parameter is primarily associated with
recombination rate. Specifically, at higher temperature, phenomena like recombination become
more dominant due to higher energy phonons being emitted, where 𝐸𝑝ℎ > 𝐸𝑏𝑎𝑛𝑑 , the latter being
the band gap of the substrate. Higher recombination rates means phonon returns to the sensor at
sufficiently high energy, contributing to the delayed fall time 𝜏 𝑓 𝑑 and possibly the delayed rise time
𝜏𝑟𝑑 as well.

The same temperature-dependent is seen in the 6𝜏 fit. This may be a sign that the rise times are
negligible, particularly the prompt rise time. However, the fit at higher temperature, though still not
accurate, are more viable in the 6𝜏 models than other models, as demonstrated in Fig. 5.8. There
may be a complex interface between the importance of the rise time as temperature increases, as
the prompt rise times are still small in 6𝜏 even at higher amplitude.

At lower temperature, the delayed fall times returned by 5𝜏 are within 10% to 15% of what is returned
by 4𝜏, while the prompt fall times discrepancies are 30% or over 70%, as shown in Table. 5.1. The
large discrepancy in parameters is surprising consider the great fits in these temperatures; evidently,
the returned time constants depends strongly on the models being used. Due to the fit starting at a
later time, it is possible that the prompt fall time is not fully captured by the fit, thus resulting in
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(a) (b)

Figure 5.5: The 4𝜏 fit at (a) 300 mK; (b) 325 mK. At higher temperature, the fitting function cannot
fit up to the amplitude and instead focuses on the downward slope (which is, fortunately, of main
physics interest). The fits at these temperatures are highly unpredictable and sensitive to small
changes made to the fitting procedure. We often exclude data at these temperature in our discussion
due to their unpredictability.

(a) (b)

Figure 5.6: Fitting 75 mK pulses with the 5𝜏 and 6𝜏 model. At low temperatures, the 5𝜏 model (a)
matches well with the data pulse, with residues randomly fluctuate around 0 after the beginning of
the fit at 5 ms. In (b), the 6𝜏 curve generally fits well but with a slower decreasing slope from 6 ms
to 8 ms, with the fit slightly underestimate the curve before 6 ms and overestimate it after 6 ms.
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(a) (b)

Figure 5.7: Fitting 125 mK pulses with the 5𝜏 and 6𝜏 model. At this temperature, 6𝜏 in (b) fits the
curve well, with residues randomly fluctuate around 0 after the beginning of the fit at 5 ms. The 5𝜏
fit in (a) underestimated the curve slightly at around 7 ms.

(a) (b)

Figure 5.8: Fitting 220 mK pulses with the 5𝜏 and 6𝜏 model. Starting from this temperature, the
fits tend to fail, most commonly by overestimating the curve width as in (a). The 6𝜏 fit in (b), while
still not a good fit, is able to overcome that challenge and offers a better match to the curve.
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higher discrepancies between the models despite the good fit returned. The discrepancies also grows
as temperature grows, potentially reflecting the temperature-dependence of the time constants and
of phonon interactions, such as recombination. The quasiparticles lifetime 𝜏𝑞𝑝 have more dramatic,
but consistent, differences between the models, where the parameter returned by 5𝜏 and 6𝜏 matches
about two-times better than either matches to 4𝜏 (Table 5.2). Disagreements between 4𝜏 and 6𝜏
are especially dramatic, which is expected as they are the most different from one another. It is
thus surprising to see that the iminuit fitting (via the returned 𝜒2 value) "believes" that 4𝜏 and 6𝜏
matches the data best, and less so for 5𝜏. In our case, the reduced 𝜒2 might not have been the most
rigorous judge of fit-ability.

25 mK 50 mK 75 mK
𝜏 𝑓 𝑑 𝜏 𝑓 𝑝 𝜏 𝑓 𝑑 𝜏 𝑓 𝑝 𝜏 𝑓 𝑑 𝜏 𝑓 𝑝

4𝜏 6.4 ± 0.3 1.0 ± 0.7 5.1 ± 0.2 1.0 ± 0.03 3.1 ± 0.2 0.97 ± 0.05
5𝜏 6.7 ± 0.1 0.3 ± 0.02 4.2 ± 0.1 0.2 ± 0.1 2.8 ± 0.2 0.67 ± 0.07
6𝜏 5.7 ± 0.9 0.04 ± 0.03 1.0 ± 0.03 0.3 ± 0.02 1.0 ± 1.2 0.2 ± 0.02

𝛿4,5𝜏 (%) 4.1 70 17 77 11 31
𝛿4,6𝜏 (%) 11 96 78 69 68 78
𝛿5,6𝜏 (%) 16 689 282 25.8 175 213

Table 5.1: Comparison of prompt 𝑡 𝑓 𝑝 and delayed fall time 𝜏 𝑓 𝑑 returned from the convolution
models at low temperature. At 25 mK to 75 mK, the fits are most successful. We compare the
discrepancy between each model by its fractional difference, represented here as a percentage,
where 𝛿𝑚,𝑘 = |𝜏𝑚 − 𝜏𝑘 |/𝜏𝑘

𝜏𝑞𝑝
25 mK 50 mK 75 mK

4𝜏 0.4 ± 0.1 0.34 ± 0.03 0.3 ± 0.01
5𝜏 1.3 ± 0.02 0.72 ± 0.02 0.8 ± 0.07
6𝜏 1.9 ± 0.3 1.1 ± 0.03 1.5 ± 0.02

𝛿4,5𝜏 (%) 70 52 56
𝛿4,6𝜏 (%) 79 69 78
𝛿5,6𝜏 (%) 30 35 40

Table 5.2: Comparison of the quasiparticle lifetime 𝜏𝑞𝑝 returned from the convolution models at low
temperature. At 25 mK to 75 mK, the fits are most successful. We compare the discrepancy between
each model by its fractional difference, represented here as a percentage, where 𝛿𝑚,𝑘 = |𝜏𝑚 − 𝜏𝑘 |/𝜏𝑘

5.2 Temperature-dependence of time constants
Here we evaluate the temperature-dependence of the phonon and quasiparticle lifetime constants
in different models. For each temperature, we evaluate the low temperature regime (25 mK to 150
mK) and the high temperature regime (175 mK to 275 mK) separately first, then consider them
together. The 300 mK and up data is excluded due to the overall instability and high uncertainty of
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the fits. We compare the temperature dependence of these models to that of the empirical model in
Fig. 2.2, which has been shown to fit well to the data. In this section we use data from both 0215
and 0216, selecting the 𝑉𝐿𝐸𝐷 dataset that shows more insight into the fit’s behaviors.

We are motivated to choose a different starting amplitude for the low temperature (25 mK to 150
mK) and high temperature (150 mK to 275 mK) regime. The amplitude chosen is parameterized
as the percentage of the true amplitude of the data. Practically, we choose to start the fit at the data
point closest to this chosen amplitude value; at higher temperature, due to its very steep descend
at earlier time, the percentage may not accurate reflect where the fit begin. Further details and
motivation is discussed in Sec. 5.3.

• 4𝜏 (𝑉𝐿𝐸𝐷 = 3.0 V), low T: 80%

• 4𝜏 (𝑉𝐿𝐸𝐷 = 3.0 V), high T: 30%

• 5𝜏 (𝑉𝐿𝐸𝐷 = 3.0 V), low T: 50%

• 5𝜏 (𝑉𝐿𝐸𝐷 = 3.0 V), high T: 50%

• 6𝜏 (𝑉𝐿𝐸𝐷 = 4.0 V), low T: 50%

• 6𝜏 (𝑉𝐿𝐸𝐷 = 4.0 V), high T: 30%

From Fig. 2.2, we expect the prompt and delayed fall times to decrease with increasing temperature,
before the delayed fall time flats out at 175 mK, and the prompt fall time decreased more slowly
after 175 mK.

4𝜏 model
Using 𝑉𝐿𝐸𝐷 = 3.0V, the delayed fall time in the 4𝜏 model suggestively follows the trend observed
in the empirical model, excluding the outlier point at 150 mK (Fig. 5.9). The prompt fall time
stays constant from 25 mK to 75 mK, then falls steeply from 75 mK to 125 mK and fall more
gradually at 150 mK, suggesting a rougher, but still similar, trend in the empirical model (where
the steepness of the decrease is from 75 mK to 150 mK). The high temperature data from 175 mK
also shows the same stagnancy of the prompt fall time as in the empirical model, with a deviation
at 225 mK that is the outlier temperature of all fall time fits. However, all the delayed fall time
in the 0216 data has very high uncertainty. For the prompt time fall, after 175 mK they fall flats
instead of decreasing further. Following the empirical model’s interpretation of the "switch" in
roles of prompt and delayed fall time in Sec. 2.1 and in Temples et al., 2024, where the delayed fall
time corresponds to a thermal population below 125 mK and the prompt fall time corresponds to
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an athermal one at the same range, before switching at 125 mK, we observe that same transition at
75 mK. In Fig. 5.9 (a), we can draw a straight line connecting the prompt (light blue) line from 75
mK to the fall (orange) line, with both datasets 0215, 0216 agreeing. The temperature dependency
does not hold at higher temperature. In total, the 4𝜏 model at 𝑉𝐿𝐸𝐷 = 3.0V roughly replicate the
trend shown in the empirical model. The same result is not replicated 𝑉𝐿𝐸𝐷 = 4.0V, which is of
note because the latter is the voltage used to produce the empirical model’s time-dependence here.

The discrepancy from the overall trend at 225 mK is potentially due to the degeneracy between
the prompt and fall component. With the reformation of the model in Sec. 4.3, we resolved
the degeneracy between quasiparticle lifetime 𝜏𝑞𝑝, phonon fall time 𝜏 𝑓 𝑑 (𝑝) and rise time 𝜏𝑟𝑑 (𝑝)

(where applies). Since the prompt and delayed components are added symmetrically, there may be
unresolved degeneracy between 𝜏 𝑓 𝑑 and 𝜏 𝑓 𝑝. We can see this trend of the delayed and prompt fall
time complementing each other at 225 mK, 250 mK, and 275 mK in 0215 data (brown and dark
blue line). The jump in the delayed fall time of 0216 at 225 mK may suggest the same degeneracy,
though the prompt fall time for the same data set does not reflect this possibility.

(a) (b)

Figure 5.9: The 4𝜏 fit fall times at (a) 25 mK to 150 mK and (b) 175 mK to 275 mK. The
temperature dependence of the prompt and delayed fall time in (a) reflects the expected trend
coming from the empirical model. At higher temperature, degeneracies of the fall times might
arise, causing discrepancy to the expected trend. We see the transition of prompt and delayed fall
time being thermal and athermal, respectively, switched at 75 mK, as suggested in the empirical
model.

The quasiparticle lifetime 𝜏𝑞𝑝, as shown in Fig. 5.10, follows the same trend where it decreases with
temperature from 25 mK to 75 mK. As aforementioned, 𝜏𝑞𝑝 grows shorter at higher temperature
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(a) (b)

Figure 5.10: The 4𝜏 fit quasiparticle lifetime at (a) 25 mK to 150 mK and (b) 175 mK to 275 mK.
Quasiparticle lifetime falls with increasing temperature, as expected, only at the lower temperatures.
At high temperature the similarity between quasiparticle lifetime and delayed fall time suggested
that they now serve the same function in the fit.

due to the increased quasiparticle density 𝑛𝑞𝑝 which increases with temperature. Physically,
recombination of quasiparticle happens in higher density, leading to shorter lifetime. The data
below 100 mK reflected this trend. At higher temperature, the trend goes the opposite of what
current physics suggest, and the high uncertainty on the fall times invalidated the fit at the higher
temperature. From 125 mK, we note that the trend in 𝜏𝑞𝑝 and 𝜏 𝑓 𝑝 are reversed, one increasing as
the other decreases. Accordingly, 𝜏𝑞𝑝 behaves similarly with 𝜏 𝑓 𝑑 at high temperature (Fig. 5.9
(b), brown line; Fig. 5.10 (b), dark blue line). They functionally plays the same role. Potentially
this could be explained by the derivation of the model from convolution: as 𝜏𝑞𝑝 decreases, its
convolution term gets significantly higher than that of the 𝜏 𝑓 𝑑 term and dominates. The deviation
from trends at higher temperature may suggested that the 4𝜏 model is not adequate to describe
quasiparticle and phonon lifetimes at high temperature, but we cannot conclude definitively without
first exhausts potential improvements in the fitting procedure.

5𝜏 model
Fig. 5.11 (top) shows the fall times at low and high temperature for 5𝜏. The delayed fall time
behaved as expected, decreasing with temperature until 125 mK and stays constant after. The
prompt fall time’s temperature-dependence at 75 mK and below is reversed, where it began at a
magnitude lower than the empirical model and 4𝜏 predicts, then rise as temperature increases up
to 75 mK before flattening again. Though this is unusual, the same trend is not replicated in the
𝑉𝐿𝐸𝐷 = 4.0V dataset nor if we adjust the starting amplitudes of the fit. We note that in connecting
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the lower and higher temperature regime, the delayed fall time forms a straight line at close to 1
ms, where the prompt fall time drops from around 1 ms to ≲ 0.6 ms between 150 mK and 175 mK,
rising up from 175 mK to 200 mK and fall again from 250 mK to 275 mK. The delayed rise times
(bottom) is temperature-dependent from 25 mK to 100 mK, then fall from 1 ms to 0.01 ms at 125
mK. There is a spike in the delayed rise time at 175 mK; however, the high error bars suggested
that this is a fit error, and the delayed rise time is largely temperature-independent, with a sudden
drop between 100 mK and 125 mK.

The quasiparticle lifetime, as shown in Fig. 5.12, follows the expected temperature dependence. It
decreases rapidly at lower temperature before the decreases slow down at 125 mK, finally falling
to 0.0 at 200 mK and higher. In the reformatted equation as described in Sec. 4.3, where the
5𝜏 model is the sum of a 3𝜏 prompt and 4𝜏 delayed component, a small 𝜏𝑞𝑝 dominates the pulse
by bringing other exponential term ≪ 1.0, which may explains (or dominates) the unexpected
behavior of the prompt fall time from 200 mK. We also see a correspondence between the delayed
rise time behavior (Fig. 5.11 (b)) and the quasiparticle lifetime; since 𝜏𝑞𝑝 is approximately half of
𝜏𝑟𝑑 , the quasiparticle lifetime may dominate the delayed rise time at high temperature.

6𝜏 model
The 6𝜏 general temperature-dependence are, in general, much less insightful than the 4𝜏 and 5𝜏
case, in addition to having many more time constants with high error bars. Fig. 5.13 shows the fall
and rise times of the 6𝜏 model at 𝑉𝐿𝐸𝐷 = 4.0V data. Ignoring the data point at 225 mK and 275
mK (the delayed rise times there have high uncertainties), the delayed fall time follows the expected
temperature dependence, flattening out at 75 mK, which is earlier than what the empirical model
(150 mK), the 4𝜏 model (75 mK to 125 mK), the 5𝜏 (125 mK) predicted. At all temperature one
of the time constants involved have extremely large uncertainty, and we see the same degeneracy
behaviors between the prompt and delayed components that we saw in 4𝜏 at various points in Fig.
5.13: prompt and delayed rise time at 50 mK (bottom (a)), prompt and delayed fall time and rise
time at 225 mK ((b)), and complete degeneracy of prompt and delayed rise time at 200 mK (bottom
(b)). Particularly, at 200 mK, the prompt and fall rise time in 0216 is identical; the prompt rise
time in 0215 dataset is also the same, without the delayed rise time being affected. This makes the
6𝜏 results uninformative with regard to the temperature-dependence of phonon lifetimes.

The quasiparticle lifetime in this model follows the expected temperature-dependence, where 𝜏𝑞𝑝

decreases as temperature increases. Similar to 5𝜏, at high temperature, 𝜏𝑞𝑝 decreases more slowly.
The quality of quasiparticle and phonon lifetimes in the 6𝜏 model is the inverse of what is shown
in 4𝜏: Here, 𝜏𝑞𝑝 matches with known quasiparticle lifetime behaviors while phonon lifetimes fail;
4𝜏 model gives the expected phonon lifetimes behavior but not in the quasiparticle case. At high
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(a) (b)

Figure 5.11: The 5𝜏 fall times (top) and rise time (bottom) at (a) 25 mK to 150 mK, (b) 175 mK
to 275 mK. The delayed fall time at both high and low temperature matches the empirical model’s
prediction. The prompt fall times reversed the expected trend and plummeted at high temperature,
while the delayed fall time flattened as expected. The delayed rise time decrease from 75 mK to
125 mK then spiked at 175 mK. The high error bar there suggested that this is an outlier point, and
the delayed rise time is temperature-independent at high temperature. The fall times agree between
0215| and 0216| datasets.
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(a) (b)

Figure 5.12: The 5𝜏 quasiparticle lifetimes at (a) 25 mK to 150 mK and (b) 175 mK to 275 mK.
Quasiparticle lifetime decreases with temperature in (a) as expected, falling down to 0.0 ms at high
temperature.

temperature (175 mK and up), quasiparticle lifetime dominated the pulse; the phonon lifetimes is
lost in the convolution, particularly the flattened delayed rise at 1 ms.

Comparisons
All in all, the 4𝜏 model returned sensible phonon lifetimes temperature-dependence with inaccurate
quasiparticle lifetimes behaviors; the situation is reversed in the 6𝜏 model. The 5𝜏 model, naturally
as the compromise between the two models, has the expected quasiparticle lifetime behaviors and
sensible phonon lifetimes. At low temperature, the prompt fall time has the reversed temperature-
dependence compare to what is expected. However, this discrepancy is not reproduced by using
a different dataset or by adjusting the starting amplitude of the fit. This, along with the time-
dependence results, suggests that the 6𝜏 models may have too many variables as the time constants
become degenerate later on, and 𝜏𝑞𝑝 dominates over those degenerate variables. The quasiparticle
lifetimes in 4𝜏 model suggests that it is also less accurate.

5.3 Amplitude- and Pulse width-dependence of fits
The difference in fits at different𝑉𝐿𝐸𝐷 , as in Fig. 5.3, 5.2, 5.4 reveals that the fit quality is negatively
affected by the increased LED voltage, which could specifically be due to the overall higher scaling
of the data, resulting in higher amplitudes for a similar pulse width. We also observe this with fits
at increasingly temperature, which shows that narrower curves are harder to fit for. Thus, there is a
subtle amplitude-dependence and a stronger pulse width-dependence on the quality of the fit. This
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(a) (b)

Figure 5.13: The 6𝜏 fall times (top) and rise times (bottom) at (a) 25 mK to 150 mK, (b) 175 mK
and 275 mK. Both prompt and delayed fall times fall steeply with temperature, as expected, at 25
mK to 75 mK. Accounting for the high error bars (i.e., ignoring the spike in delayed fall time at
225 mK and 275 mK (orange line)), we see delayed fall flats out at 75 mK. At 125 mK and higher,
the prompt fall time follows the empirical model’s trend of decreasing slightly with temperature.
The rise times are affected by many fits degeneracy, thus are not informative.
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(a) (b)

Figure 5.14: The 6𝜏 quasiparticle lifetime at (a) 25 mK to 150 mK, (b) 175 mK to 275 mK.
The quasiparticle lifetime decreases with temperature as expected through both low and high
temperature regime. At high temperature, the quasiparticle lifetime decreases more slowly.

motivated the pruning of more early-time data at higher temperature for a better fit.

Comparison of different starting amplitude at high temperature
In Fig. 5.15, we plotted reduced 𝜒2 versus the starting amplitude, for the data at𝑉𝐿𝐸𝐷 = 4.0. As the
starting amplitude decreases for the same dataset, the reduced 𝜒2 also decreases, hinting at a better
fit. At high temperature, most fits are relatively reasonable only at very low starting percentage.
Notably, this is potentially a physically-relevant choice. We know that the quiescent quasiparticle
density 𝑛𝑞𝑝,0 ≈ 20 to 10𝜇𝑚−3 at lower temperatures. The convolution model, with the exponential
shape, assumes 𝛿𝑛𝑞𝑝 ≪ 𝑛𝑞𝑝,0 at some point in its derivation. The model is therefore most equipped
to fit data below 𝑛𝑞𝑝,0. However, 𝑛𝑞𝑝,0 is not definitively known at higher temperature and could be
much larger than 20𝜇𝑚−3. A lower reduced 𝜒2 does not always mean that the fit is better; due to
the curve width issue at higher temperature (Fig. 5.8), decreasing the amplitude means matching
the current fit to a wider part of the pulse. Particularly, at very high temperature where there are
three apparent fall time constants (Fig. 4.1), starting later means excluding the very steep earlier
time constants and focusing on the longer, later time constant, where the curve begins to widen as
in Fig. 5.5. The very narrow pulse is thus excluded. However, drastic transitions in the reduced 𝜒2

typically marks a transition to a new fitted shape, as shown in Fig. 5.16.

Similarly, starting at a lower amplitude does not guarantee a better fit because there seems to be
different regime where the fitted data either grossly overestimate the width of the pulse or not. As
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Figure 5.15: Plot of the reduced 𝜒2 (left, red) versus the starting amplitude (parameterized as the
percentage of the true amplitude of the dataset), with the starting amplitude itself marked (right,
blue). All three convolution models are plotted here. The dashed blue lines at 20𝜇𝑚−3 and 10𝜇𝑚−3

marked the expected range of the quiescent quasiparticle density at low temperature, though 𝑛𝑞𝑝,0
may be much higher at high temperature. At all temperature, reduced 𝜒2 decreases as the starting
amplitude chosen decreases. Top left: 125 mK. Top right: 150 mK. Bottom left: 225 mK. Bottom
right: 300 mK. The flat lines present area where the closest point for the chosen starting amplitude
is the same at different chosen percentage. This is especially common at higher temperature, where
pulse falls very rapidly at earlier times.
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referenced earlier by Fig. 5.4, occasionally, with appropriate starting condition, the fit can adapt to
the narrower pulse. We see this in relation to the starting amplitude in the 175 mK, 𝑉𝐿𝐸𝐷 = 3.0V
data in Fig. 5.16, where the 5𝜏 fit was able to return a reasonable fit at 80% starting amplitude, gets
wider at 60%, and recovers the narrower fit at 30%. It is still unclear what is the cause outside of
the starting amplitude. Further investigation is needed to determine if this is a reliable method of
improving the fit.

(a) (b)

(c)

Figure 5.16: The 5𝜏 fit at 175 mK and 𝑉𝐿𝐸𝐷 = 3.0𝑉 , at starting amplitude percentage (a) 80%,
(b) 60 %, (c) 50%. Starting at lower amplitude does not always mean the fit will be better. There
are different regime where the fitted pulse either grossly overestimate the width of the curve or not.
The best reduced 𝜒2 returned is at 50%, emphasizing the point that for similar fitted pulse width,
lower starting points simply improve 𝜒2 by excluding more data.
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We referenced back to the time-dependence of time constants results for 5𝜏, where the prompt fall
time temperature-dependence at 25 mK to 75 mK is seemingly reversed from what we expect, as
demonstrated in Fig. 5.11. This trend is not replicated in any other choice of starting amplitude.
Particularly, at 30% starting point, the original trend in this temperature range is restored, at the
cost of the delayed fall temperature-dependence (Fig.5.17). This suggest that cutting out earlier
rise and/or fall time, which 5𝜏 model might (not) include, have an effect on whether the true
temperature-dependence is revealed. Choosing the starting amplitudes, then, have a large effect on
the quasiparticle and phonon lifetime that we are interested in, and we need to understand how the
fits behave as we choose different time range for our data.

Figure 5.17: The 5𝜏 temperature-dependence of prompt and delayed fall time from 25 mK to 150
mK, at starting amplitude 30%. We note here that compare to the data presented in 5.11, the 25
mK to 75 mK temperature-dependence is not reversed, and more closely resembles what we expect
from the empirical fit.
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C h a p t e r 6

CONCLUSION

We are interested in formulating an accurate model for the pulse shape of the KIPM response,
which is vital to obtaining an accurate energy resolution for the device. To this end, we formulated
a physically-motivated model from quasiparticle and phonon lifetimes in the substrate, which
necessitate understanding the evolution of these lifetimes at different temperature. The convolution
models, with either six time constants (6𝜏), five (5𝜏), or four (4𝜏), are derived from the understood
changes in quasiparticle density in the substrate and its thermalization to athermal phonon. The
difference between each model is whether the delayed or prompt phonon rise time are included.

We obtained reasonably accurate fitting to all three models for low temperature data, from 25 mK
to up to 125 mK in some cases, with high potential for improvement at higher temperature. We
identified some challenges to the fitting procedure at high temperature, where higher amplitude and
narrower pulses are difficult to fit, and we can potentially overcome this problem by avoiding to fit
these portion of the curve, or, with further investigation, understand the condition that affect the
width-dependence of the fit. Further investigation will also need to confirm whether this is a valid
approach, though there is a potential physical motivation for this shifting of amplitude, particularly
to where 𝛿𝑛𝑞𝑝 ≪ 𝑛𝑞𝑝,0.

In terms of the goodness of fits between different models, all models fit approximately well at
low temperature, with fit worsening at higher than 125 mK, though the 6𝜏 model fits this higher
temperature regime better than the 4𝜏 or 5𝜏 model. Examining the temperature-dependence of
the lifetime constants reveal that 5𝜏 returns the most sensible temperature-dependence for both
quasiparticle and phonon lifetimes. This model predicted a similar temperature dependence to
what is produced in the empirical model. On the other hand, the 4𝜏 and 6𝜏 model either returns a
sensible phonon lifetimes or quasiparticle lifetime, respectively, as the other set of lifetime becomes
unreliable. This indicates that the 5𝜏 model is most suitable to fit the KIPM pulse shape, to be
confirmed by an improvement in fitting technique and results, while the 4𝜏 and 6𝜏 models lead
to a convoluted relation between quasiparticle and phonon lifetime by not having enough– or too
many– floating variables.

6.1 Future work
Future work in refining the fitting procedure as well as the models presented are still needed,
particularly in regard to higher temperature data. Proposed future directions, in regard to improving
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the fit, include

• Investigating the relationship between pulse amplitude- and width- and goodness of fit.

• Understanding the variables affecting whether narrow pulse could be well-fitted or overesti-
mated.

• Expand the analysis to more dataset, particularly at lower 𝑉𝐿𝐸𝐷 , to confirm the observations
made here.

More minor changes can also be make, particularly in finding a more definitive criterion for the
goodness of fit outside of the reduced 𝜒2 value. For example, the ratio between 𝜒2 (not reduced)
value and degree of freedoms could be utilized, such that the goodness of fit is characterized as
𝜒2 = 𝛼

√
𝑁𝐷𝑂𝐹 , where 𝑁𝐷𝑂𝐹 = 𝑁𝑝𝑜𝑖𝑛𝑡𝑠 − 𝑁𝑝𝑎𝑟𝑎𝑚𝑠 is the degree of freedom, and a good fit would

have 𝛼 ∼ 2 to 3.
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A p p e n d i x A

RATIO BETWEEN PROMPT AND DELAYED AMPLITUDE

Although not closely investigated in the duration of this project, we noticed an interesting effect
where the amplitude of the delayed component of the fit may go to zero, thus became irrelevant, at
low temperature, particularly in the case of 𝑉𝐿𝐸𝐷 = 4.0V, 6𝜏 fit. Here 𝑎𝑠 is the delayed (slow) fall
time and 𝑎 𝑓 is the prompt (fast) fall time
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