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MEvery man should marry. If he marries a good
wife he will be very happy; if neot, he will
become a philosopher,™

Socrates

This thesis is dedicsted to my wife who has
proven thet the first antecedent does not pre-

clude the second conseguent,
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ABSTRACT

The prediction of stresses developed in structures sube
jected to dynamic loading constitutes a problem which is
receiving increased attention on ﬁhe part of engineers., The
use of models for this prediction offers an economical and
practical solution to this problem. In this paper the model-
ing parameters for vibrating beams are developed through an
anaslysis in which the equations ¢f motion are reduced to
dimensionless form. The validity of these modeling para-
meters has been tested experimentally. These expefiments
are reported herein., It is further shown that this method
of analysis can be extended to problems involving plates

ang frames.
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INTRODUCTION

The study of engineering problems through the use of
rodels is socund practice of long standing and is so widely
used in ihe various branches of fluid mechenics as to need
ne further introduction.

afforts have been made to atiack problems in the mech-
aniecs of structures by modelg. Thus, the field of photo=-
élastici&y has been deveioped, &8 have the soap film analogy
for torsional stress,{%) the electiric potentiél anzslogy for
gtress cancentratieﬁqz} and others(g) which are very useful
i the study of statlic stresses., For the study of dynamic
siresses, the few nmodeling methods which have been reported
ave hugd as their primary objective the determination through
tie use of a model of & structure iis modes of vibration and
thedir natural frequeﬁeiese{s) This informs tion whilé of ime
portence is not sufficient for the solution of many of the
problems which arise in practice.

Te rezligze thie shorteomings of modeling methods winich

-

reveul only the modes ef vibration of 2 strucfure and the
irvenuencies of these modes, consider the following situziion,.
for u simple cantilever beam the modes of vibration and their
freggemﬁies can easily be calculsted. Yet from this know-
iedge, it is not possibie to calculate the stresses develeoped

i e beam If its root is subjecied to z sudden gceceleration.

A approxima te solution for these stresses was offersed by

(') Humbers in ( ) refer to the Hibliography.



(é\ % = 3 3 3
Sezaws ), and the approxisation has been improved by Mind-
1in'"J), The fact remains that am experimental investigation

of these siresses

e

s essential for thelr accurate deternuinae
tion., If the struclture is large, the study of & model de=-
signed for dynemic stress similitude becomes iuperative.

THe question iomedintely zrises uas to what coastiitutes
modeling for dynamic stress similitude, The answer mey be
given broadly: 'k structure is correcily modeled for dynamie
stress similitude if from the measured stresses in wie model
e siresses in tne siructure under given dynamic load cun
be predicted within the limitis of engineering &ccuracye"

Various portions of this statemsnt reguire furiker cou-
sideration:

©

There is neﬁximg.in this criterion wiitich reguires geo-
metric similarity. Wnile there ig no ob jection o making
the model geometrically similar to the protlotype if this is
easlly accomplished, it would be desirable if possible to
have greater freedom in the constructiion of the model thian
is usually allowed by & reguirement of geometric similarity.
The omission of small details or the choice of & shape which
will easily carry strain gages are examples. Likewise a
change of ma%erials, €.g. using brass to model & steel proto-
type, will freguently lead to easier fabrication,

The stresses developed in protetype and model need noi
be the same; the ability to caslculate strains in the prototype

is all that is sought. It appears desirable becauge of tie



relicbility cnd availability of the eleciric resistuance sirain
gage to buse .the modeling on similitude of sirains. Dy means
of Young's modulus, stress similitude is thus attauined., In
fuct, throughout this paper stress similitude and sirain simle-
litude are taken as logically equivalent, i.e. either condi-
tion implies the other.

in gddition to tne conditions which must be satislied
by s model for dynamic stress similitude, there will be cone-
ditions wnich must be satisfied by the lead to whiichh the wodel
is sub jected,

Finaily, careful consideration must he given to the
limitations imposed by the desire that the siresses predicted
be witiuin the limits of engineering accuracy. The concept of
engineering accurscy ié admittedly nebulous. Under cerisin
circumstances a disagreenent between predicted und observed
results of ; say, 3 percent is inaucceptable while under other
circumstances errors of the order of nmamgnitude of 56U percent
or more are considered not too large. In spite of wiis wide
.ramge, it seems advantageous ito establisi limits of accuracy
to serve primarily s a criterion by wiich the success of {he
modeling method to be developed can be judged. To tnis end
vwe consider the ordinary procedure of stress analysis. For
as common ené carefully controlled a material as steel, ABME
Specification S-1, for example, the easily ueasured properiy
of ultimxte étrength is always given with & range oif 10,000

p3i, namely, the ultimate strength if specified eas 55,060 psi



to 65,000 psi. Moreover, ASTM standards do not regquire a
testing machine to have accurascy greater than § pefcent .
These two facts yield a range of 16,000 psi in the ultimate
strength of this material., This is an accuracy of 13.3 per-
cent of the mean value of this properfy. It appears, then,
that a structure can be considered to have been satisfactorily
modeled if the difference between the stresses as predicted
from the model amd the stresses developed in the prototype is
less thaen 10 percent to 12 percent of the latter, |

it is the object of this paper'to establish the para-
meters for the modeling of dynamic stiresses. The approach
used is as follows: In Chapter 1 the modeling parameters are
revealed through an analysis of the equation of motion of =a
prismatical bar. The results of this snalysis are then veri-
fied experiinentally. This experimentation is reported in
Chapter 1I, A éiscussibn of results is undertaken in Chapter
I}IL The method of analysis is then extended to other vibra-
ting systems in Chapter IV. In the Appendices are assembled
items of interest vhich developed in the course of this study
but wiich are somewhat irrelevant to Chapters I-iV, These
c«msiét of Appendix I: The eigenasfunctions, freguency egua-
tion, and the first five natural frequencies, all in dimen-
sionless form for the six types of beams; Appendix II: Demon-
stration of the normality of the dimensionless a‘fgen-f’unctions;
Appendix III: Speed of sound for variocus materials; Appendix

iV: Expension of the Statical Deflection Curve of a Cantilever



Beam with concenirated load at the free end in a series of

eigen-functions; spnendix V: The Freguency equation for a

frame,



CHAPTER 1

It has been pointed out many times that, althiough the
dynamic stresses depend on the amount of damping present,
an analysis based on the assumplion of ne damping is fre-
guently of considerable valueo(s) Accordingly, the follow-
ing analysis falls into two pag‘ts: In Part I an snelysis
is developed neglecting damping; in Psrt Il the snalysis ine-
cludes the effect of internal damping. The method of attack
is the same in both parts of the analysis., It consists of
reducing the equations of motions to dimensionless form
through the introduction of properly selected dimensionless
variables, The choice of dimensionless variables for lengths
offers no problem; each length variable is referred to some
characteristic length of the structure., It is also necess-
ary to introduce a dimensioniess time., This is accomplished
by referring time variables to the time reguired for a small
disturbance {(i.e. an elastic wave) to travel the charact-
eristic length. |

FREE VIBRATIONS WITHOUT DAMPING:

Consider & straight bar of lengi: L and of uniform cross
séction and density, free to vibrate in one of its principal
plunes of flexure. Let this plane coincide with an x-y plane
the origin of coordinates being teken at the left end of the
bar, the x-axis ceinciding with the equilidbrium position of

its centroidal axis. The eguation of motion is (15)

5 o %y
{1) El 355 * T 3tz



with the bhoundary conditions

Hinged=-tinged beonm:

y{0,t) = y"{0,t) = y(L,t) = y"™(L,t) = 03

Free-free beam: v
y'(G,t) = y"{0,t) = y"™L,t) = y"'(L,t) = 0;

Fixed-fixed beam:
Y(U‘,t) = y'(oyt’) = Y(L;t) = }"(L,t) = §;

Free-hinged beam:
y'o,t) = y™0,t) = y(L,t) = y'(L,t) = G;

Fixed-hinged beam:
y(0,t) = y'(0,t) = y(L,t) = y"(L,t) = 0;

Fixed=-free beam:
y(0,t) = y'(0,t) = y"(L,t) = y"'(L,t) = O;

o Nt e Nearn? N Mo e Noui e N Sz Nenoe? Qs N Wue? Vs N2z 7 Vst Nacs® Wt Nane 0 W™ s Cwes? Nuaet Vi’

where E = Young's Modulus
= gpecific weight of the material
A = cross-sectional are of the bar

I = poment of inertia of the seection about
neutral sxis

= gacceleration due to gravity

@a

y = displacement of the neutral axis

X = distance from left-end of bar

Py
i

time

(

)



It should be reculiled that a physical variabkle, for
exupie o length, x, is the product of a2 pure numefia and a
seule constant. Ve write x = 3 feet or x = 3 inches zs the
case might be., With more generality we write x = L¥where g
is & pure numeriec and L 1s the sczle constant. algebraie
. processes deal only with the pure numeric, and the physical
process is completely described ms themstically by equations
réluting the §-type variables, the L-type entering’only to
fix the scule. Therefore two different structures will be
undergoing the sume physieal process if their g-type variables
satisfy the same eguations., ¥With this in mind we proceed to
remove the scale constants from Eg. (1),

Define

a = velocity of propagation of small disturbe
ances in the magerial

k = radius of gyration of the section about
the neutral axis

x = Lg
y = Ln
kK = L,
t = 57
A = L7«

By differentiation, we find that

2"y E L—nn 9"1 (m=1,2,----) )
D> x" 2Z" i
and
(A)
Lkl a"L'"“_b:l (n=02,:---) )
at” P )
3
J



Substitution of the foregoing expressions in Egq. (1) and

Cond. (A) yields

4 2
2 2 ar' 9
( ) .\- g - 21t®
and 1((_7,‘7’) 2 1"(0,’7’): 1(1,7) = p‘"(L,Ti -0

(B)

Var” Nace? Ve Vs Vs N

n(e.7) = q' (0,7 - " (L, 7):n"(L.7) 0

where all the expressions are dimensionless,
BEguation (2) is solved in the usuzl way by assuming

Lat a solution exists in the form
(3) n: Z(g) TM

which leads teo

5

(4) Z(g) = ¢, sinpP& + c, cos p§ t ¢, sinh pE + < cosh p§
(5) T(T) = Acos wT ¢+ B 3in w1
where 2z, @

° .

{6}

The satisfaction of the boundary conditions by Eg. (4)
yields the values of ¢,, €, ¢z, and ¢4, and 1leads to the
frequency eguation together with an infinite sequence of val-
ues for p. This done, the solution of Eg. (2) can be shown

in the form

(7) ¥ = 5 e, Z(E) T (7)



where

(3) E‘-‘f) =" sin p; &+ & cos P&+ o, sinhp, € + Xy cosh p, &
and

{9) T (7YY= cos w;v + D, 5sine ¥

It is to be noted that the '=,(g) constitute, except for
the hinged-hinged beam, a normalized orthogonal set.* To
normalize the exceptional case it 1is only necessary to re-
‘place ¢y by’cif75 in Egq. (7)o

To evaluate Eg. (7) for the initial conditions, let it

be assumed that at time t = O, the beam is given a configura=

tion y = £(x,0) and is released with a velocity gf = v(x,0) .

ihese conditions are rendered dimensionless by writing

T 'fr(-Ls., o) = F(g, o)
and

(€)

21 . L v(Lg, 0): G(E,o0)
or 4

Ve Nt N N N e

The coefficients cy and Di are then evaluated in the ususl
me rier, keeping in mind the normality of the functions =, (<),

Thus, for example, the expression for cy is

(10) € < S F(£;0) Z.(8) d g

A consideration of Ig. (2) and Cond. (C) reveals that
for a prototype and model to have the same dimensionless
equation of motion, namely Eg. (7), the following counditions

will Limve to be satisfied (p refers to prototype, m to model):

*see Appendix Il



ke . Le )
K Ly )
)
#E(xla, . l:ﬁ_ -
£, (x,0) L (»’)
VE(X, o) a0 g
Vi (X,0) A yoq )
and the method of support must ve the same for each kbeam.
$ - a‘y
From the known formula 8 = E (g I , the stress

X=Xe
in the beam at the point (xg, dg), where dp is the distance

of the point under consideration {rom the neutral zxis, cun

te expressed dimensionlessly as

s L oa, 22

E ax* X=X, o
Since we can write dp dimensionlessly as ~50 = —I? and
2 2
-4 éli , we find
23* X

DL

(11) 5 . 4 a‘l\

& S leag

Whence it follows immedistely that for prototype and model
sztisfying Conditions (C) and (D)

(12) $E . Om
s E, Ewn

1e€,, that

{12a) . €p * €,

vhere € 13 vnit straine.



FORCED VIBRATIOHS WITHOUT DAMPING:

‘ In order to deal with forced vibrations, we take as
generalized coordinates g ; = ci'Ti(r). Then Lagrange's
eguations of motion can be put inta-dimensionless form,.

In ordinary form, these eguations are

d (2T 2T 2V .
(13) ;—;(32) ) 5; * 95. =4 (=42 ---)
where L " 5
YA .2 _ EI [ 9%
T = ‘-qu" LY d)’ and V- 2 L(DX") X

In these equations we make the substitutions (a) and also

the following

—Z— I x* —_T-" "'L
and Ad 70T d 2T
oT

This yields as the Lagrangian Eguation of Motion in dimen-
(2
sionless form:

2
(14) a9 + w‘cl‘- = -——2—‘ Q. (=r,2,---~)
dr® ,

The conditions which must be satisfied in order teo
model a beam subjected to a forcing function can be detere
mined from a consideration of the right-hand side of Zg.

{14). For exemple, suppose a force P = P.f(t) scts on tue

#The § does not appear because of the normality of the

=, functions,

—



beem at the point z = b, Now Qi is the work done by this

force under ihe variation Gy since q = % = ;; E;(E)g;
and Syf LR (&) S,
it follows that

Qs LPFe) Z () |, ti=nz )

Moreover, if we write A = L2« , Ego (14) assumes the form

i
2 =

(15) iﬁ-‘.f’/ -+ wl

,r‘:!i ¢ q,“ - "lda’"LL =

s P = (k) (), wanz )

A

To model satisfactorily a beam subjected to a concentrated

forcing function, we must satisfy not only Conditions (D)

but also
P g . P
. 9y <& F(LPT) = mgz ’.“F(L:?, (u‘)
Yo L, A" Lp e Yoy %, Qg L,y ~

The generality inherent in Cond. (E) is not often nec-
essary in a modeling investigation. More frequently will
it be desired to maint‘ain similarity. In this event Xy, = o,
Furthermore, if the forecing function be periodic, say

Pp fp(t) = Pp sin g t, then Cond. (E} becomes

r sin e = '“L Gy e
Vi @ T L/cL A Yooy Toay Lo Ains

For this to be an identity, it is sufficient that

A P Yo )

snd g {Eq)
e P )
Yo apv. LPZ Yo Anet Lo E %



TiE FREE VIBRATION OF A BEAM WHOSE BOUNDARY CONDITIOQNS ARE
FUNCTIONS OF Titks

d
tm—

¥hen using small models, the application of 2 foécing
function to the model is freguently difficult. This diffi-
culty ean be a;;ided by subjecting the beam to boundary con-
ditions which are functions of time., The foregoing method
of ahalysis csn be satisfacterily used for this type of vibrae
tion alse., By way of example, consider a prismatical canti-
lever beam having one of its principal planes of flexure co-
inciding with the x-y plane and free to vibrate inlthis plane.
Let its root move along the y-axis with the velocity v, and
let its centroidal axis remain parallel with the x-axis, At
time ¢ = 0 let the axis of the beam coincide with the x-axis
and let its root be given an acceleration f£{t). 7The mathens~
tieal complications resulting from the initial velocity v
can be obviated by referring the subsequenti motion Lo axes
with origin at the reot and parellel with the x-y asxes. To
do this, we write y = yo + w, where y is the displacenment
of any point of the beam referred to the x-y axes, yg is the
displacement of the beem referred to the x-y axes, and v is
the'displacement of any point of the beam referred to the
axes with origin at the root. With this substitution, Eg.

(1) becomes

EIg 2w | 2w 2" Yo

{14) TA axd teer T T yes



The appropriate boundary snd initial conditions on w

arxre
a8) wi{0,t) = 0, a) w(l,t) = 0,
D) w(0,t) = 0, e) w(x,0) = O,
¢) w(L,t) = 0, £) w(x,0) = 0,

while the conditions on yg are

O Yo

g) =0 if ¢t <0,
2¢t*

h) 'y = f£{t) if ¢t >0,
BT

Using the definitions on page 4 znd w = Lw, Eg. {18) and
its boundary and initial conditions can be put inteo dimen-

sionless form:

2 o D'w, _ _ I
(17) ’L agY B oTe oT*+
and wl(o,T) =0 —8—’*60(017') =< J
2g3 J
)
2 w(o,7) 0 w(g,0) =0 ;
z
L @
a—ai? w (1, 1) =0 2 wlser=o 5
” )
a Vla = O ;# T"._‘ o }
2T )
2%, _ F(ET) L Tore )
27T~

In order to model uynamically for stress similitude,
it is only necessary that Eg. (17) znd Condition (i) be

satisfied for both protoiype and model.



As an immediate espplication of Condition (F') consider

the case wherein £(t) is defined by

f{(t) =0 i t

7S
(==}

f(t) =bsinw t if O (18)

uh
(34
ud
BlR
Ve’ Sea” Neme” Neoss? g Naoc” Sours

r(t) =0 ‘ if

g1
TN
a3

Then, writing these conditions in dimensionless form, we

find . o _— )
aT* }
b_l 2 = L—_‘E sin gl F @ = :"‘6': ;
>+ at* s ) {187)
§
at'!o ) wa
and _2—’77: = © if :J—:' ¢ T )
)
From Condition (i8') it follows that modeling will be cor-
rect if
(45 - (:2) )
2 a
4! model protntype§~
@)
ané (ng) = Lew )
o A
model prototype%
/

Returning to Bg. (1) and mking the substitution y = ygo
+ w yields

Y9 ® ™
(1) d'w |, DA 9w 1A J 7%

— — = = e—




~1(7’-

Eqgo (1') is precisely the same as that for g cantilever beam

with 2 uniformly éistributed trznsverse load U(t) where

T

19 . _ YA 9%
(19) ue) = T et

To find the dimensionless expression inveolving the
load U(t) {whose units, incidentally, are F/L), we shall

multiply both sides of Lg. (19) by - g/Y A  and replace

x

X py 2727 | s

at; L o T

(20) Mo . _ D L. (2)
27> 1A at

Fur thermore, if we assume geometricfsimilarity, then A= L*«

and Eg. (20) becomes

', . _ g U

21+* 7 4L ar
Finally, if we put U(t) in the form

P
U(t) = C F(t)

where P is maximum totazl load on the beam, we reach

. e _gPFe)
\‘a1> 2r* N 70(LLGL

To model a uniformly loaded beam, the conditions o be

satisfied are

(Pf(é—}}) ( P F(Y) ) ©)
N = 2 1
1k 4 model Ll prototype

and the beams must be geometrically similar. It is to be
¥ o s -
observed that these conditions are precisely those for e

beam with a concentrated losd which were obtained by a



different metlind,

A8 has already been stated, it is possiblelto use a
model whose boundary conditions gre functions of time in-
stead of applying a forcing function to the model., fhe
conditions which must be satisfied for suech modeling can
now be investigated,

Let the forcing function be a uniformly distributed

load varying sinusoidally with time. Thus,

P

ut) = —'E- sin pot

As we have just seen, P must satisfy Condition (G), while

(ro‘n ,o:_LT ) = (sin ’o———-—-:LY )
model prototype
. L o L
i.e, ( E_—- ) = ( .E__.. )
e model < prototype

But this is precisely the condition for modeling under sinu-
soidal azcceleration of the roots If b is the meximum sccel-

eration, then by Egs. (21) and (18') b must be so chosen

. oL

‘tha t _ 9 P sin E-Z— . L—-_b- i w bl
Yarlt o = *

“that is, so that if we select w = pg

b - 3B
- 3

(22) # T & Le

where the subscript p refers teo the prototype. If Condition

() is satisfied, then, with subscript m referring to model



Feee _ I’p
- z
7," Lmld,‘." 7/0 Lplap
P 2
9 "m a L
whence b, = - + r_=
Vv K Loy ant Lo
or bplp b, Lo
2 B s
dp ey

which is precisely Condition (F'). If, therefore, b is
chosen so that Eg. (22) is satisfied, and if geometrical
gimilarity is maintsined, the observance of Condition (F')
will insure satisfactory modeling of the action of the beam"

under the forecing function
| —LF-’- Sin p.(t)

A case of especial interest cccurs when the time dura-

tion of the function £(t) is very small. Thus, in Fig. (1)

2% )
ot
d%
‘a—t'; = £(¢)
{h0 e
Fig. 1
iet h «« 1. Suppose nmoreover that

h



220=

The Laplsce treansform preoves useful in eveluating the eof -

Rhoy

feets of such an zcceleration en the systemo

Substi 4 -2 L oat 2Ty
Substituting ¢- 7 and He) = % - we find
ah
(24) j Mo gy A
dT* “

Now the Laplace transform of f(t) is p 4 if h is very
smali. Whence the Laplace transform of the right-hand side
of Bge. (17) for accelerations of very small duration is
p Afa. Writing the Laplace transform of each term of Eg.
{17), yields, if w o

L'y aw A

{(25) R S TP® TP

as the transformed eguation of motion to be solved with the

boundary conditions

a') B (o) = © e') o (o) =

(
0

1]
0

')y S'or:=o a') @ "(o0)
We conclude, then, that a prototype will be satisfuc-
h

h
("i Jp(f)dc)Modev - (if’c(”dr)rﬂ'“‘”r’fﬂ‘

© (-]

torily modeled if

~ix

- _‘S.)
) del (L protetrpe

mo

(1)

EE R e S e L S

and the duration of the accelerntiion is very short.* The

A b
* ho is small if [ePerdde T [ e
o o



-2i=

significanee of this conclusion lies in the fuet tict if
thie duration of an impulse is short in comparison with the
natural pericd of the gtructure, the same inpulse should

be epplied to prototype snd model,

MODELING BEAMS WITH INTERNAL DAMPING:

The literature on internal damping is extensive and,
to & large extent, contradictory.(e) In this investigation
interest lies in relastively high stiresses - those lying in
the range of engineering stresses. 48 a result the pertiine
ent facts which sppear to be reasonably established are:

i. Damping capacity was defined by Foppl as the ener-
gy dissipated per unit volume per cycle and specific damping
capacity as the retio of the energy dissipsted per unit vole
ume of material per cycle to the maximum strain energy per

(7
unit volume of material,: ) Thus in Fig. (2) which shows

4
N
115 8(7,7)
sl A7
2] e
A /|
/ |
0 |
7 . .
Shearmn Strainv
/ -
/ C
/

Fig. 2



the ordinery hysteresis lecp, the damping cepacity ¢ is the
area of the loop ABCD while the specific damping copacity
iz the ratio of the area of the loop ABCL to the arez of
the triengle CBE., These guantities appear to be displacing
otners that had been previously used. The damping capacity
.of a me terial depends on the mximum shear stress r , as
well as on several other variables. However, an analysis
can be carried out in terms .of normal stress instead of
shear stress because if we write

¢ = ¢(T
it kus been shown (%), (&) that

¢~ ¢(ko)
. where o is the maximum normal stress.

2. The damping capucity ¢ depends on the history of
the specimen., As a given specimen is subjected to repeated
cyclies of stress, the ares of the hysteresis loop decreases.
if the moximun stress 1s below the endurance limit, the damp-
ing capacity will become stabilized after approximutely one
million of stress reversals., If the meximum stress is above
the endurasnce limit, the area of the damping capacity, after
having decreased 28 in the previous c¢ase, increases markédly
shortiy before fetigue failure eccurs,(s)

3, Kimball showed(s) that damping capacity is indep-

endent of frequencyow From this it is concluded that internal

é&‘_.. Vi - L l 3
But see{l9) who report that st higher ‘emperatures {of the
order of 70CY ¥) gamping capacity varies with freguency.



demping is not viscous; i.e. that thie energy dissipated by
internzl damping is not due to the existence of a force which
is proportionzl to velocity, Rather, th_e concept of intere
nal dumping is one of energy shsorbed per cycle of vibration
by virtue of the neuncoincidence of the upward and downward
branchi of the load-deflection curve, Counsequently, ne damp;

(B) «

ing force should appecr in the eguations of motion. io

{

overcome this difficulty, Jacobsen ) has proposed a method
of introducing the effect of internal damping into the equa-
tions of motion thr;ough the use of a coefficient of eguiva-
lent viscous damping. This methiod has been further developed
by biykelstad(?a).

4., In the range of stress encountered in engineering
practice, damping capacity appears'to depend only on the
maximum stress., It is common practice to write the energy
disgipated, AW, as

AY =c7T”
wiiere ¢ and n are constants to be determined by experinent,
Various voalues of n have been offered: }iykelstad(m) states

14
(1¢) give

that n = 2.3 for steel, Hebertson and Yorgiedis
many curves of AW vs, ?Jmax far all of which n is 3, Kimball
(13) offers the values of 2 or 3 for n. A dimensionzl analy-
8is which is carried out below reveals that if we assume that
AW is a function of stress and strain only, tﬁen ¥ ean be
displayed in the form

AW = Z. C i



-

Various values of ¢;, €y, etec, will include all iue above
forms.

| in order to study the effect of size in interncl dawpe
ing, consider a priswstical bar freely vibrating. Choovse ihe
x-axis along the unsirained pesition of thie neutral axis, the
y-axis orthogonal and at the left end of ithe bur. Ighore
the weight of the bar. Then, if m is the mass of the bar
per unit length, & differential length, dx, of the bar not
at a support can be considered to be acted on by the reversed
inertia force - m§ dx. Moreover, if the bar is subjected to
2 viscous damping force, this force can be added to tlie reve
ersed inertia force. Let ¢ be the coefficient of viscous
damping per unit length of beam 80 that -c§ dx is the viscous
damping force per length, dx, of beam. We find thus for a
freely vibrating beam with: viscous demping the differenticl
equation of motion

q ‘l! .
{26) EI g——;’;:—-my—cy

It is known thet internal damping is not viscous, oSuch
damping will be assumed to have its smplitude proportional
toc some power of the amplitude of the bending moment. Undeé
this assumption, the energy dissipated per cycle per unit

length can be expressed in the form
{(27) Energy. dissipated = dl(w/*

- "
where p is a constasnt and X is proportional to the ample

itude of the bending moment. %Ye can now compute an eguivale

]



«25=

ent viscous damping coefficient; cegf on the assumption that
the energy dissipated by the viscous damping is the same as

the t dissipsted by the internal damping. Thus

' 2z
(28) o X" = e, X w
or
(20) « X7
29 C z
€7 T X°©
where w 1is the circuler frequency of the vibration

« 18 2 econstant depending on the magnitude of the
internal damping

Céiis the coefficient of eguivalent viscous damping
X is the amplitude of vibration

and X"is the amplitude of the curvature of the beam,

Substitution of Eqg. (18) in Eg. (26) yields the egquation
of motion for free vibration with intermal demping:

" A
2%y V- S

30 £ = - -
(30) T = rmy peppgar

The mass, m, per unit length of beam is z;i vhere vy is speg-

ific weight, A is cross sectionzl area, and g is gravitation-

al acceleration. With this substitution Eg. (30) becomes

aqy ') A o d ‘X "/L~ =

2 x¥ =-'E;-y - T X* Y

{31) EX



Define:
x = L2 where L is a characteristic length
y o= Ly
. T
¢ =
A' = Lfg
¥ = Lk, (k is the radius of gyration)
- af)
w L
4.1'0}‘ ) q
e X*
g =(E3

In any one cycle g can be considered to be constant,

1
ing only on the values of X and X at the begimning

eycle.

" 2" " o 2"
2 ] a™ won nd 2_1. L 7 A |
Since 3 X dZ a Py 3 e

can be put into dimensionless form:

, PX o _ 2 21
(32) K e T T L-Ew

where all the quanilties are dimensionless,

depend=-
of the

Eg. (31)

7o solve Eg. {32) assume a solution of the form

(33) ' =(E) T
Then 2 VE T 2 = 2T
WT ST — a1 T sa & T
whence
o £ o
(34) KT = &
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and

DLT z_@l T = O
(35) oyt | sa a7 °°

The solution of Hg. (34) is seen to be

=

(36) E(§)= Q, COShpE t ap stnh pf + a, cos prs + ay 5:'»"0:

where P —’é‘

The solution of Eg., (35) will be sssumed to be of the form

(37) T = A,e

where Ag = Ap e‘/‘. The real part of T will then give the de-

sired solution. Then '
~_f)_z + —Zs—" +» C = O
or

(38) N = Jer &

We observe, by considering Eq. (35) with the middle term
deleted, that

{39) e s £, f

where <(»,, 1is the dimensionless natm;al frequency.

hence, if wve set

2
40 £ & s
(40) —r
then
(41) L = N, (r+ u‘)é

or, 1f €<«

(42) N =, (r+ zec)
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This done we can rewrite Eq. (37) in the form

— = ca.(i+1cc)r

T = A < N
. --é é-ll.."r[ _ :
T = A, @ cos (N, T+8) + ¢ﬁ~(ﬂny*ﬂﬂ

and the solution which we seek becones

"
=z €L, Y

{43) T = A, e co s, T+R)

fhe exponent € (., can be rearranged through the use of Eg.

{(39). Thus

(44) en, - 4 n, - -2
; s N," 5 1

Whence, finally, we obtain as the expression for T

- B A
T= A, e Reslon Cos(ﬂ""l’-rﬂ)

&~
i
.o
g

The solution can now proceed in the usual fashiion.
bBguation (36), together with the boundsry conditions will
yield a frequency equation, thus determining a sequence of
values for €: ¢;, €g, €3, oceoeo mach value of ¢, willi yield
by Ege. (39) a corresponding value of o, @ N, N, eses

The gemeral selution of Eq. (32) then is

{46) T = L (o, coshp,§ + a, sinhp/§ + ag cos pi §+ ay sinpi§)-
-2
‘he 250, cos(_()_,,./r +R)
where S T a, = f{c;, and —Z—_ <<

,l’L > c J- z

PY‘.
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For any given mode, the ratio of two consecutive amplie-

tudes is

( ok
4 " S v
(47) =t = B
'I';l-fu
and the logarithmic decrement is
) s
(48) L.0 P

fReturning to the expression for ¢, we find thet

« X
Es X, fl,,:'

(49) L.D =

From Eg., (49) we conclude that the logarithmic decre-

' ]
ment decreases with time. The curvature, X , will approach

“m
zero with the amplitude, Xm. Since p is known from exper=
ience to be greater than 2, the ratio X',:“/X,: will become
arbitrarily small.

A further remark about the logarithmic decrement is
necessary because the presence of N, in the’aenominator
of fig. (49) conveys the impression that the higher Treguency
modes will not be damped out a3 rapidly as are the modes of
ilower frequency.

This is not a correct conclusion as can be shown by

writing Xm in dimensionless form. For the i-th mode

{50) X,=Ly - L = £(7)
since throughout the m - t cycle T (7) i8 a function of

T only., Consequently



" o=
—_— | —
= —::f'(‘P) 'o‘-l(o, coshp,& + -~ -- — ay sinp&)

—_———

Replacing piz by iy leads to
. ' K
AA
. « ;(,T)'“-z( a,cosh g &+ ----- - a, sin F’:’E)
(51) L. D. = Z 3 ﬂ_"
ILIMES L/‘* (a,COS"’l P{E"""‘ d" sin 'O‘E) <

u-Z,

Consider now the variation of « with gsize of beam,
« 1is defined by Eq. (27) in such a way that4d)(wuis thé
energy dissipated per cycle in length, dx, of the beam.

A brief consideration of the dimensions of the variables
involved in hysteresis damping reveals that if we assume the
energy thus disaipated, E.Do, to depend only on the maximum
stress, o , and on the maximum strain, € , then

ED. - ¢ o*e’)"

y
2
- == 2o
] A CT*= —— X
z v
Fig. 3

In particuiar suppose that the beam shown in Fig. 3 is
vibrating in the x-y plané and that the displacement of the

neutral axis is given by

oo
(52) y = Z X, g,(¢)



where X, is the eigen-function for the i-th mode of vibration

i
of the beam, Let tm and tm+1 be successive values of ¢ which
maximize gi(t)o - For the fiber AB of axial dimension dx and
depth dimension dh lying @ ditme k from the beam's neutral
axis, its maximum stress in the m-th cycle of the i-th mode

is EhX g (tm) and the corresponding maximum strzin is

hX. g, (tm).

(In the following we shall assume that cy is zero for
all i save 1 = 1. This is done only to simplify the nota-
tion, 'The extension of the conclusions to mére genersl
assumptions on ¢y is immediate.)

The energy dissipated Z.D.' by a transverse lamina of

thickness dx in one cycle is then
h:d

" ' "'-)
ED'- ZJ c, wdkx iEh Kt«"ﬂ‘.(t.,,)][hx‘. a‘.(t,,,)] dh
h:o0

or
+ i +\ oy
(53) ED'= ¢, Ewd”PX" Lg.ttm]” dx
Comparing Egs. (53) and (27) leads to
(54) & e, Ewd”"

or, since wd = A,

(65) x=c, EAd®

P4

where A is the c¢ross-sectionasl area of the beam and @ is its
h&].f depth.
Writing d = LS and A = L®s brings Eg. (51) inte the

form . w
/;—6) cs/‘;(’r)# Z(a' cosh Pl'{* """ — Oy sinp:§) -z
(G L.D = g

A{:“(anca"h/o({' """ v + A, s P"{)L ﬂq.

K




where all quantities are dimensionless. We would then expect
to be able to model internal“damping.

This conclusion can be supported, as well, on energy
considerations. Making the usual substitutions, namely,

" - r -

x= LT, w:L/i' d,:L§| X = L :"_‘:' £ I

~

leads to

Ot

‘ ) .
{(57) ep' = cEYPLIE [ g.¢tmV] d=

as the expressions for the energy dissipated by & lamina of
length é in the m-th cycle of the i-th mode. The total

energ& dissipated by the beam in this cycle of this mode is

[ , dbz 5 o l’:‘“-\in'l
(58) E.D. = j ED. dg = cES L [ g, (eml] LNJ Jg
The maximum potential energy of bending in the m-th cycle of

tlie i~ti: mode is
L “ 2 2 é ZE 2 :\4”1
- (59) RE. = %I[Xg 9,-(t~.\] dx = —%L'— L’ [g¢¢em)] ];L‘. dg

Fealizing that the maximum potential energy occurs wiaen the

kinetic energy is zero leads to the equation

! 'Z
(60) Ep SLZLE[ dzVgittn) g2t ]
Jd+ 1

" [ D+
=SV mD dglg )

o

which merely states that the difference in maximum potential
energy in two successive cycles equals the energy dissipated

during the cycle.



-G

The substitution of L% /a for ¢ in Bg. (60) reduces the
equation to dimensionless form except for the ¥ and L® which
sppear on both sides of the eguation., It immediately foliows
that for two beams which are geometrically similar and have
thhe same boundary snd initial conditiens, the effect of damp-

ing can be correctly modeled.

SUMMARY OF CONCLUSIQHS:S

The conclusions reached in the foregeing analysis can
be summarized for convenience.
{4) 1If damping be ignored, the free vibration of a beam
whose statical deflection curve is y/n £{x,0) and vhiech huas

an initial velocity y = v(x,0) cen be modeled if

e =
L Prototype L7 Model
( f(x,0) _ (EQ::_‘_’.). )
L Pr‘o‘fof:jpe y Mode\
( v ( X,0) (‘i_(dx-!—-o—)-)
- = a
“ Pr‘o'f'o"'moe MOde‘
where k = radius of gyration

L = length of beam

a = rate of propagation of small elastic waves,



{(B) 1In order to model 8 hesom acied on by g concentrated fore
cing function, P, of the type P = p sin 0 ¢t the cornditions in

zddition to those given in {A) above, which must be satisfied

o ( 0 L) _ (n. L)
A Botetype Model
(+25) - (257])
vya?l? Rrototype T a®L® /Model
(%) %)
L Pr’o‘fo‘l“npe L* I model

where a and L are z3 defined in {(4)
Y specific weight of the materigl

A = eross-sectional area of the beam.

€} In order to model a beam whose root is subjected to zn

acceleration £(t) given by

£(t) = © if T < 0
£(t) = b sin wt if G ¢ ¢ ¢ =
£(t) = © if AR

the conditions, in eddition to those given in (A) =zbove,
whnich must be satisfied are:

Lb
( Pro-f-o‘{'gjpe = (—Z_) Model
( Tw Pro*fo'l'«a?e = (’L‘:ﬁ )Mode(



where & and L are as defined in (&),

(b) 1In order to model 2 beam subjected to a unifermly dise-
tributed forcing function U(t) = %Esin wt by means of an

acceleration b sin wt applied to its8 root, b must satisfy
gqP

YA L
(4) and (C) must be observed.

the relationship b = = and the conditions given under

{(E) 1In order to model a beam whose root is given an sccel=

eration of short duration, k/L must be the same for both
: i Ise

prototype and model and the-&egggefa%iﬂﬂ-must also be the same

for each.

(F) The effect of internal damping can be satisfactorily
modeled through the use of geometricazlly similsr models of

ti:e same mgterizl.,



CHAPTER IX

The theory developed in Chapter I was subjected to ex-
perimental verification., Three tests were conducted:

(1) Bars of a veriety of sizes énd sliapes were mounted
as cantilever beams. Each was given an initial deflection.
The load producing the deflection éas suddenly removed and
the strain ig the beam as a function of time was observed.
The object of this test was to observe the effect of damping
on the free vibration of the beam,

{2 Three cantilever beams, modeled secording to the
conditions established by the theory had their roots simul-
taneously subjected to the same acceleration of shorit dura-
tion, The strains developed in the beams were recorded.
The object of this test was to observe the effect of damping
in this type of vibration and to deiermine the range over
wﬁich the duration of the acceleration can be considered to
be very short,

(3) Six cantilever beams had their roots subjected to
continuing sinuscidal aceceleration., The amplitude oi the
acceleraf&gy vas modeled in accordance with the theory. The
object of this test was to verify the theory and to show that
internal damping czn be modeled.

The apparatus snd procedures used for these testis are

described in detail in this chapter.



FREE VIBRATION TESTS:

Beams of the sizes and shapes shown in Fig. 4 were fab-

ricated. Electric resistance sirain gages (SH-4 Ty?e C=1)
2
i0

of its free length from its free end., A vise shown in Fig. §

were attached on opposite sides of each beam at a point

was fabricated and rigidly attached to a reinforced concrete
slab floor, 12 inches thick. The construciion detai}s of
tihe vise are shown in Fig. 6.

Test 1. (a) Each of the beams was clamped in the vise
as shown in Fig. 7 and the nuts were tightened with & torgue
wrench. The ree end of each beam was deflected by means
of a length of piano wire (B.5. gage No. 28) until the strain
under the gages was 300 micro inches per inch. This strain
vas measured by a Baldwin Southwark Type K Strain Indicator.

(v) The deflection of the free end was measﬁred by &
dial indicator as shown in Fig. 7. The deflection of the
~dial indicator stand due to the change in the spring load
of the dial indicator as its plunger moved outi with the de-
flection of the end of the beam was observed by means of a
trangit and was found to be eof the order of 0.,00010 inches.
This vas considered to be negligible iﬁ.suhsequemt Workoe
From the observed deflection and the geometry of each beasn,
the .strain under the gages was computed., This was found to
be in all cases 300 + B8 micro inches per inch. I{ was cone
cluded that the vise was sufficiently rigid so that g clamp-

ed end for the beam was effectively obtained.
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Fig. 5.
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(¢) The deflection of the free end of the beam by means
of the piano wire proved dnerous. Investigations were under-
taken seeking to simplify the procedure. The wire was sube
sequently replaced by a strut of maple, 1/2 inch in diameter
inserted between the stand shown at the left of Fig. 7 and
the free end of the beam, The end of thevstrut at the left
was cut off perpendicular to the axis of the strut and was
but ted against a screw in the stané for adjusting the de-
flection. The right end of the stirut was rounded so as to
give point contact against the beam. ¥When the piano wire
was used to produce the deflection of the free end of the
beam, the load was suddenly réleased by cutting the wire
When the deflection was produced by the.strut, a fast upward
swéep of the investigator's hand suddenly removed the strut
and released the load. Strain vs. time curves for the two
methods were indistinguishable.

(d) For Beams Nos. 1, 3, 4, 12, 13, and 21, with the -
beam deflected as in Part (c¢) the strain gages were comnecti-
ed to a Brush Type BL-310 strain analyzer. The strut pro-
ducing the deflection of the beam was removed and the beam was
allowed to vibrate freely. The variation of strain under the
gages with time was recordéd. This method could not be used
with Beams Nos, 11, 15, 16 and 18, because their natural
frequencies were beyond the range of response of the Brush
instrument. Their strain variation as a function of time

was recorded as outlined in Part (e) immediately following,



Y B¢

(e) To record the strain decay curves for Beams Nos.
11, 15, 16, and 17, a DulMont Oscilloscope Type 208-B, with
a Type P=11 tube and a Fairchila Hecording Camera were used.
Sastman Panatomic X or Plus X film was used. A signal of
164 cyeles per second and an amplitude on the oscilloscope
- screen of 2 inches either side of center was found to record
satisfactorily on Panatowic X with an aperture of fi2.8 and
a film speed up to 30 inches per second, Tank development
was in Epstman developed IX €0-2 for 12 minutes at a tempers
sture of 68° F, Higher film transport speeds were not invese
tigated. For Plus X film, correspondingly smaller apertures
were used. Beczuse the Fairchild camera provides only verti=-
csl film transport, the x- and y-axes of the oscilloscope
were interchanged for this work in order to gein the sdvan-
tages of the y-axis amplifier for a screen imnge with a hori-
zontal displadement enly. The interchange of axes is essily
accomplished by interchsnging leads on the back of the os-
cilloscope. In recording the sirains for these beams the
bridge circuit shown in Fig., 8 was used.

Tue oscilloscope provided insufficient gain in its y-axis
amplifier for this bridge circuit. Conséquently a pre-ampli-
fier was constructed. The circuit diagram of this pre-anmpli-
fier is shown in Fig. 9 and its response curves are shown in
Fig. 10, The frequency response curve of the oscilioscope
is shown in Fig. 11,

Beam 12 was installed in the vise and subjected to a

strain decay test as in Part (d) above, the curve of strain



e
0

w44

223 V.de.

Bridge Circuit., Gages Gl and G2 on test
struc ture. Gages G3 «nd G4 on unstrained
structure of sszme m2 terizl as test struct-
ure and subject to same ambient temperature,
£1) geges bHi-4, Type C-1.



=45 -

1" o./uF
||
AN 6SH 7
n MWWW—
= /Me%. %
JO#L /000 2. - \
] I f
\
J
. 5
180 v out



-4

cdotrJyridimy Jo osuodssyr Lousndauay]

000\ 00 002

0T 3914

o5 of

o€

Louanboa g
02 0l

02 Sl ol
ure9) 95%)10A

S2

og

sieqrosp



Y Sy

oo

2d00s0T1128y g-80%7 GUAl 2uoung Jo esuwvdsoes dousnbaag

:sdo Uy AsusnisJadg
[eeelo ]l 00001 Qo0

ovi

09

002




-48’

vSe. time being reecorded by the Brush equipment. The same
test was repeaﬁéd but this time the record was made with the
oscilloscope ¢ircuit., Beaks Nos., 11, 15, 16 and 17 were
then'subjected to strasin decay testis and their strain vs,.
tine curves were recorded by means of the oscilloscope camerm,
. {f) In order to evaluate the effect of external damp-
ing as contrasted to internal damping in the foregoing strain
decay tésts, additional investigations were undertaken., The
tests outlined in Part (d) above were repeated with Deams
30 and 31 with the vise as constructed, Malleable copper
Jaws were then inserted between the jaws of the vise and
the root of the beam. It was found thst this increased the
damping slightly, (i.e. the dynamic strains vere decreased by
about 10 percent.) The use of copp er jaws was sbandoned.
Next the entire vise was suspended by means of a fine wire
{pisno wire, B.3. gage No. 28) from an overhead support as
siiownn in the photogreph of Fig. 12. Strain decay curves
were again recorded. It was found that the curves differ-
- ed by Is percent from those obtained with the vise secured
to the floor.
(g) The frequency of each bheam was observed by means
of a General Radio Strobotac. Through the use of a variable
speed motor, the strobotac was calibrated before each test

by comparing 1t ageinst a revolution counter and stop watch.
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Figo 12.
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AMPULSE TESTS s

Beams of the size and shépe shown in Fig. 13 were fab-
ricateds 4 vise consiructed aé shown in Figo 14 was prepared
for attachment to & drop table. 3R-4 Strain Gages were then
applied on opposite sides of each beam at a position 9/i0 of
the free length of ithe beam from the free end. An accelero-
meter made by Statham Instrument Company was'attached to
the drop table. The drop table was allowed to fall freeﬁr
through a distance of 1 fi., and was suddenly brought te rest
by striking a round lead strut. The stresses developed in
the béams ahd the acceleration were recorded by means of Con-
solidated Hecording Oseillogruph Equipment. 3ince only the
relstive volues of the stresses were of importance, the maxi-
éum stress developed in each Lesm was not calibrated although
the relative values of the three maximum stresses were cali-
breted by interchanging the channels on whick the recordings
were made., Likewise, no attempt was made‘to calibrate the
magnitude of the acceleration since only its duration was

of dimportaznce.

FORCED VIBRATION TESTS:

Beams of the sizes and shapes shown in Fig. 15 were fab-
ricated, Beams Nos. 32, 33 and 34 were all cut from the
same piece of bar stock which was hot rolled SAE 1025 stesl,
1-1/4"x 6n X 34". These pieces were milled to 1/8n of size
in all dimensions and were simulteneously annealed, being

soaked at a temperature of 1450° F for two hours and allowed
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Deam Iio, L b h Material
32 30 % 1/ea 228 1000 SAE 1025  It., Tr."
33 22t 1/64 g g:;gg SAE 1025 ﬂi.‘Tr.*
s 1 f1foa Be00d 0.500 SAD 1025 Ht, Tr.®
- 30 * 1/64 ?:gggv é:ggg 545 1025 Colg Rolled
36 225 % 1/6a 1209 égggg.} ' SAE 1025 Cold Rolled
37 . 15 % 1/64 R s £4E 1025 Cold Rolled

* Tieams 32, 33, 34 to be cut from same niece of stock , SAE
1025 llot Rolled. inneal at 14500 F. Sosk for 2 hours.

Furnace cool 12 to 16 howurs,

Fig. 15.
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to furnace caoi for fourteen hours. Zach of the three beanms
~ showed a Brimnell hardness of 55.0 with a 10 mm. ball and
3000 Kg. load. Only Beém Ho. 33 showed any warp under this

treatment., It bowed in a direction perpendicular %o 1"
x 22-1/2"face, an amount of 3/32 of an inch, It was sube

sequently press straightened. AXl three beams were then sure
-face ground to the required dimension with s surface finish o
abpit 50 micro-inches RMS., ©SR-4 Type Strain Gages were then

mounted on opposite sides of the six heams (Beams Noz. 32-37)
et 2 position 9/10 of the free length from the free end of
the beams A vibrating stand zssembly ss shown in Fig. 18
was designed and fabricated. The stand cousists of & hesvy
base, a fixed-fixed beam which is used as a spring, and a
Lazan oscilla tor which constitntés a mass. The oscillator
is driven as shown by pulleys and a V-belt from o 1 H.F.
electric motor through a Graham variable speed drive. The
range of speed for the vibration stand is from ¢ to 3750
rep.m. The Lazan oscillator generates sz maximum Corecing funs
tion of plus or minus 1650 1bs. and an assortment of fixed
fixed beams ranging in thickness from 5/16 to 1/2 is nrovided
by interchangihg these fixed-fized beams. Amnlituses of
the vibration shaking table as great as plus or minus i/ﬁ'
are available. For heavy test structures the #arieus beams
can be used in combination to give greater spring constsnt,
The displacement of the shaking table is sinusoidszl sithough

it is essential that test structures be dynamiealiv balanced
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Fig. 16,



on elither side of the center 1line of the shoking %ublé.
Othervise the fixzxed-fixed beam is apt to begin vibra ing in
sn unsyrmeiric modc.

Beams XNos. 32 asnd 35, 33 and 36, and 54 and 3Y were
placed successively on the shakiﬁg table. The frequency
vas set ot 50 perceni of their computed resonant frequencies
and the oscillutor wes adjusted to give sufficient amplitude
to cause & strain af~3@ﬁ micro indies per inchk to be develope
gl in neam No. 32. The beams were vibrated at snplitudes
which were in the ratios of 1:3/4:1/2 resp. 'The strain under
tie gages wus recorded by weuns of the Brush Lirain Gage‘
 regorder unﬁ‘by means of the Fairehild oscilloscope recording
cemera. IThis was repeated for other frequeacies below reson-
LLC@ o

For beems Kos. 32 and 35 the frequency of the shaking
tabhle wes set at 78.6 percent of the no tural freguency of
these heams , #znd the oscills tor was asdjusted to give suffie
cient amplitude te czuse = strain of 200 miecro-inches ﬁer
inch in be developed in the annesled besn Neo‘aa. The syrain
unicer the gage of Beam Mo, 32 wes recorded by meaiis of the
srush ecuipment and the strgin under the gage of Beww Ea; 35
was vecorded by the bridge eircuit shown in Fig. 8 and ree
corded by meprns of the DuMont oscilloscope ond the Fairchild
recording camera. 3ince oculy relutive stroin wes of intere
est, the oscillloscope recording was Cslibrated by interchsnge-
ing the leads of beams 32 and 38, The amplituce of vibration

of the shaking table was observed by means of a dial indiecs-



tor mounted on the pest which sppears directly under the
oscillator in Fig. 18. The ' test wos continued without inters

-

ruption at this frequenecy and asmplitude until the beams bad
ﬁeen sub jected to 1,150,000 cycles of siress,

Beams Nos. 33 ond 36 were inserted in the test stand in
place of the previous beamz. The frequency was fet at 78
percent of the natursl frecuency of the beame on ihe shaking
table and the Lazan oscillator was adjusted until the smpli-
tude of vibration of the sheking teble was 3/4th of that
used for Beams Nos. 3Z and 35. The strains developed under
the geges were recorded s hefore. Thiz test was cliso cou-
tinued witheut interruption at this frequency and swplifude
until tﬁe beams had been subjected tec more thau 1,100,000
cycles of stress,

The foregoing test wes repected with Deame Nos., 34 end
3% being run at a freguency which was 78,8 percent of their

ng tural freguency and zn amplitude of vibrotion of the suneking

teble which was 1/2 that used for Beams Nos., 32 ¢nd 55, The

gtirains develoned under the gages were recorded ng Lofore and
agein the test was continued without interruptiorn zi this
frequency %nd amplitude until the besums hod bheen subjected
to more than 1,100,000 cycles of satress,

Beams Neg. 32 and 35 were replaced on the shcking tuble
and the frequency was adjusied to their resonnnt freguency.
The smplitude of the shaking table required to produce &

strain of 1000 y in,/in. under the gages of Dean o, Uz Wes
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observed. - The strain in Beam No. 35 was recorded on the
Brush equipment. These beams were replaced by Beams Nos. 33
and 36 and the operation wes repested producing & strain of
1600 p in./in. under the gages of Beam No. 33, The amplitude
of the shaking table in the latter case was 27.8 percent of

that reguired for Beams Nos. 32 and 35,



CEAPTER IIIX

DISCUSSION OF RESULTS,

THE FREE VIBRATICN TESTS:

Test 1, The dimensionless na tural freguency, (L , of
the first mode of vibration of each of the besms listed im
Teble I was computed by the formuls glven in Aprendix I .

Tie observed natural frequencies are alsc listed in Table I.

TABLE I
Col.l Col. 2 Col. 3 Col., 4 Cele O Col. 6
k Ko £ £ L1
Beam Rad.of Rad.of Gyr. (com- {Qbs.) {Cbs,)
No. Gyr.(in.) (di§:2:§on- puted) (Cys/see)
1 0.348 0.0116 0.0407 43,6  0,0409
3 0,288 0.0118 £.040% 325 0.0410
4 00348 C.0116 0.6407 27.5 0.0404
i1 G144 G,0116 0.0407 105.3 0.0410
iz 0216 2.0116 0.0407 43 .8 G.0404
13 0,107 0.0116 0.0407 88 .5 G.040%
15 G086 g.0116 004067 164,80 0.0403
16 0.144 0.0118 20407 103 o5 00,0404
21 G.348 G,0116 §.0407 432.7 03,0405

b
%=
o
=5
e
L.X ]

Chserved o computed from observed f by means
of the formula . = 2 & f L/a. The values of "a"
which were used are for steel: 2.00 x 10% in./sec.;
for brass: 1.27 x 105 in./sec,; for aluminum :

2001 x 1@5 ino/seco



For systems having viscous damping it can be shown that the
denmped notural fregquency 1s less than the undazmped natural
fvequencynils) A similar conclusion has not been demounstrated
rigorously for systems having internal'dsmping. This want
is due to the lack of an analytical solution for the latter
problem, A comparison of columns 4 snd 6 in Table I seems
to lezd to such s conclusion since the observed frequéney
is less than the predicted.frequency in most cases., kHowever,
thiis difference is as readily explained on the basis of a
variation in the physical properties of the material as by an
appeal to the effect of internsl dsmping. There is ne need
to attempt to use a finer determinstion of these ﬁroperties
for the model in an effbrt to distinguish petween their effect
end that of internal damping. The accuracy of prediction of
frequency on the basis of the beams listed in Table I is,
neoreever, well within the allowable limit set forth in the
Iatroauction. If Beam 15 be considered model and Beam 3 be
considered prototype, then the predicted frequency would be
93,5 percent of the observed frequency of the protatype;
ihis represents the greatest inaccuracy in the present test.
it should be recalled that Beam 15 is of cold rolled steel,
7.82 inches long and 0.750" X 0.312"in cross section whereas
Beam 3 is of aluminum, 24.8"1ong and 1.997"in cross section.
Other, more siriking, agreements appear. Again taking Beam
15 z8 model and Beam 4 28 prototype, we find the predicted

frequency is 99,6 percent of the observed frequency of the



 eBlie

proteotype. In thiis case the model is the ssme as before
b Bip yrotetrge 45 ¢ Grads B ascblok, 90 dmibes g
flange width of 1 inch, depth of 1 inch, and flange and web
thickness 1/4 inech. (See Fig. 4).

In order to present the strain decay curves witi elariily
it is necessary to define u dimensionless unit of time. Let

this be denominated as the disec (combination of the wordas

L] ]

diménsienless' and "secohd':) In this paper, the unit of
the disec is taken a8 the ratio of the duration of time for
z sound wave to travel the length of the beam to the duration
of & second. The dimensionless frequency is then expressed
as radians per disec or cycleslper disec. The dimensionless
period is expressed in disecs per cycles. If n is the dim-
ensionless frequency in radisns per space dise¢, 9 the dimen-
sionless frequeney in cycles per disec, and Y the dimensione

logs period in disecs/cycle, these three quantities satisfy

the relations '
LA

1}_-.21?4): E—(f—:'r-—

n, © , and T for the beams of Table I are shown in
Table I1, These numbers are easily interpreted. Beam I
vibrates through 0.0409 radisns or 0.00650 cycles in the
time.required for a sound wave to travel its length. Cone
versely, while the beam was vibrating through one cycle a

sound wave would travel its length 154 times.



TABLE II.
Beam No.
rad/disec cyeles/disee disec/cycle.
1 0.,0409 0.00850 154
3 0.0410 0.00653 153
4 0.0404 0.00644 155
i1 0.0410 0.00653 153
12 0.,0404 0.008644 155
13 0.0407 0.00649 i54
i% 0.0403 0.00642 156
16 0.0404 €.00644 155
21 00,0405 0.00645 155

The maximum strains developed in eech beam as measured in
Test I are plotted égainst dimensionless time in Pig. 17,
This plot discloses many points of interest.

In the first plzce the sgreement amongst the curves is
noteworthy. The agreement between strains as predicted from
any one beam as prototype is well within the 1o percent
predicted in the Introduction. In the first few disecs wlien
thie strain is highest the strain values vary only frow 315
b in/in. to 324 p in./in. - 2 variation of = 1.41 percent of
the mean value. For later times, the variation increases.
Thus at 5400 disecs (upproximately 35 cycles of stress) the

" variation is from 177 u in/in. to 215 p in/in. This amounts
to ~9.68 percent of the mesn value., 4t 10,000 disecs (appro-
xine tely 70 cycles of siress) the variation is from 139 p in/

in., to 165 p in/in., Tuis is % 8.57 percent of the mean value.
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In all the curves the strain at the end eof the first
cycle was greater than the staticzl strain by 5 percent to
8 percenfi of the statical strain. This apparent raradox can
be explained on the grounds that because of the larger number
of cyeles in unit time the higher mocdes Jomp out more repide
ly ﬁlen does the fundamental. This fact combined with the
fact that the ecurveture of the beam when it is vibrating
freely in its fundamentasl mode differs widely from itis curvae-
ture when it is subjected teo 2 statical deflection gives rise
to higher vibrating strains than the ststical strains fronm
wiiich they spring.

In order te illustrete this point, let us consider o
fixed-free beam, Let the bLeah be staticclly deflected by &
coicentrated lozd P spplied at the free end. Iet I be Young's
Hodulus for the mesterizls, I the cross-sectionnl moment of
inertia, gnd L the length. ZLet us assume that the deflectiion
is small enough that the curveture csn be tuken cqual to
dly '

dx*
o1 tie beam is proportional te tiie curvoture at that sectiion.

o We have then that the moximum siranin ot any seciion

i'or thie statical deflection the deflection curve is

Px™
¢CET

(61) y = — (3L=x)

angd the maximm curvsture is

(62) - dy
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If the load is suddenly relezsed, the beam will vibhrate
in an infinity of modes, each mode being one of the eigen-
functions., The higher modes will damp out ropidly, lecving
only the fundamental mode. By this time the beam no longer
has the cubiecal parabolic shape given hy Eg. (861) but has
the shape of the first eigen-function,

In an effort to appraise the curvature in this latter
event, let us determine the curvature st the reoot of the beam
for the first mode 2t time t = 0, To this end we write the

eigen-function expansion for the statical deflection curve

S

P
(63) —“___; (sL-x)= X,

vhere

. b o, L "
cos O Lt coshpo, (a’ihp,'X = Slhh/ﬂ("‘,

.I“ T Cos3po X = CO"'/”(" - Jin,c(é +sr‘n/v/0¢"

Whence
kd oo _ P

s x>l . £L i g LET

where the secnnd and third memberse are obhteined by &iffer-
entinting the LHS and RES of Er. (63) resp,

For the first mode, p = 1.875/L., Hence the first term
of the summs tion on the right has the value 1,137 ¥./%1.
Comparison of this value with Eg, (62) showg that the curva-
ture at the root in the first mode exceeds the sinticel cure
vature by 13.7 percent of the stotical curvature. The stroins
will be in the sgme ratio. This represents the moximum noss-
ible over-strain, actually, the higher modes will net necesse
arily be damped out during the first cycle but might possidbly

endure into the second cycle depending on the magnitude of
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the damping in the system. During this time there will be
some damping of the first mode, too. The result is that the
dynomic gtrain mmiy exceeds 110 percent of the statlic sirain
In similar fashiion Gthér types of beums can be investi-
gatad, For example, for the fixed-free beam witb uniform
load the dynamie strain at mid-span due to a sudden removal
af the lgad iz 121.0 ger@ént of the staticasl strain at this
noints In a beanm of uniform section the statical sirain at
mid-gpan i3 half the meaximum strsin so this overe-strain of
121 .0 percent is not serious. 7The results cannot, of course,
be aprlied directly to a beam of varying cross seoction, buil
in such a case similar investigatione should be carried oul.
Again, upon sudden removal of the load a hing@dohﬁngeﬂ

beanr with cencentrated load at mide-span will show et a point

1/10 the length of beam freom the end n over-strain of 1260

e
L@
by
bee]
Pds
o3
(=]
]

percent of the statiecsl strain. Should an overs-
tiis megnitude develop 2t & point in 2 beam of constant
strengi: the results could be disestrous., an investigation
along those lines shiould be underteken for oll suchk beams,

The dimensiong of the beans which were tested were care-
fully cheosen in such s fashion that the relative importance
of structursl demping and internal damping would be revealed.
Thus beams 1, 3,4, 11, 13, 16 and 21 2ll vere 1 in. in width,
They 21Y precsented the seme aren o the vise., 411 were tight-

ened to tho same bolting loasd. All were subjected {o the

same strain at the root,. Frow tie agreement of the curves



"

of Figo 17 1t follovs that the same percentage energy was
dissipated by eueh beam in corresponding cycles. Since all
teprs had different frequencies, and sinca‘internal damping
is independent of frequency, the conclusion is reached that
the structural demping is either independent of [requency or
ig sufficiently small that its 9ffects are overshadowed by

thogse of internal damping. 7o resolve this alternative beams
| 12 and 17 were included. Beam 12 wes 1-1/2 in. wide and was
proportioned according to the medeling parameters. Beam 17
was alse 1-1/2 in. wide but was not proportioned to satisfy
the reguirements for modeling of internal damping, In facg,
by being 1/2 in. wider than Beam 16 but of the same thickness
and length it was known to have greater intermal damping than
Deam 16. However, it presented the same area to the vise as
did Beam 12 and the same strain was developed at its root,
Thie strain decsy curves for these beams are shown in Fig. 18.
The only variable betwveen Beums 12 and 17 wkich mighﬁ ine-

fiuence the structural damping is the fregueney., bBut it

21 that the structurzl damping is independent of the fre-
gueney or else is smell enough that 1t8 effects are over-
shadowed by the internsl damping. Hence, the difference
between the two curves of Fig. 18 ean only be acecounted for
by the conclusion thét the effect of structural damping is

sn il in comparison with the effect of internzl dampinge.

o

in other werds, the sgreement amongst the curves of Fig. 17
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is due to a correct modeling of internal dsmping, not to a
constant percentage energy loss through structural damping.

The other tests, namely Test 1(f), seeking to evaluate
the effects of structursl damping, only served to strengthen
this conclusion., When the vise was supported by e long fine
wire the over-strazin at the end of the first cycle was de-
creased and subsequent strains were increased. For Beam
No. 31, the opposite situation was true., The two curves for

this latter beam are plotted in Fig. 19.
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THE DROP TESTS:

In Fig. 20 is shown & tracing of the acceleration and
strain vs. time curves for the series of drop tests outlined
in Chapter II., The uniformity of results was anticinated
from previous investigations of the accelerations undergone
by a drop table while being stopped by a short lead column.
The data as gathered show the strain as ordinate to different
scales., This i3 due to the different sensitivities of the
various gélvanometer elements. The magnitudes of these
strains can e readily compared however. For Irops LHos. i,
3, and 5, the acceleration was reasonably uniform. In trop
Hoo 1 the maximum strain indicated for Beam No. 22 by channel
il is the same as that indicated by this same channel for
Beam No. 23 in Drop No. 3. llence we conclude that for the
same acceleraticn, the maximum streins in Deams Nos. 22 and
23 are the same within satisfactory limits. In the same man-
ner, a comparison of the records of Chamel III of Drops Hos.
3 axd 5 allows us to conclude thatl the naxlapm strains devele
oped in Deams Nos. %3 and 24 are ressongbly thie sawe., The
curves for Drop Ho. € are plotted itoc correct dimensionless
scales in Fig. 21. These ecurves all shoy the same maximum
Strain. Actually the sensitivity of the instrumentation is
suchi that these three maximo might vary by as pueh as -5
percent. This is well within the limits of acceptability

set ford: in the Introduction,
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The agreement in shape of the strein vs, time curves
which appesrs in Figo 21 deserves further consgsideration,
The theory developed in Chapter II showed that the strzins
siiould be the same, bhut this theory wes based on the assump=
tion that there was no demping. It is generally believed
thet the demping dn such & case as this would play so impor-
tunt a role a8 to render valueless an snalysis ignoring dampe
ing. This belief cair be reconciled with these results through
tie resligation that the acceleration of the roots of these
beams was of very short duration se indicated in Table 11X,

The damping is en energy dissipation which doeg not
oceur until the rpterinl has resched maximum strain end the
strain is being reversed. Ag a result we would not amﬁiei—
pu te thie effect of dawping to make 1tself felt in any mode
until after the first cuarter cycle of that mode. For the
three beams under consideration the uccelerstion has cessed
before the first eighth of & cyele of the fundamental mode
end the three beums are then vibrating in essentially the
sakic faslilon ns the beams of Test I. The demping in the
ntialiy the same for all hesms in view
of the results of the sirain decsy tesis,

For thie higher modes thie acceleration hus lenger rela-

tive durstion =3 noted in Tahle IIi, The second mode vhose

3%

3

ricd 1s spproximately one-seventh thet of the first node

Pt

%R
5]

gensrated by en acceleration whose durstion is hetween
3G

i TP smaava e s, 1 o s 2 5
and 75 pereent {(aprromimaitely) of the pericd of ihe mode.



Some reduction due to domping of the sitrain in this node
shiould then be anticipated. This decrease in strain smplie-
tude becomes noticeable after the first cycle of this mode,
Likewise, for the three modes, whose periol is approxinsiely
one-twentieth of the periéd_of the fundamental mode, the
ascceleration endures for 1 to 2 complete eycles. Throughe-
out all of this the aceeleration ageinst time curve cun be
rezsonobly approximated by -an “nmﬂff. en, Conseguently,
we would not expect the damping to make itself felt in the
higuer mode until after its secound or third cycle. [oreover,
the contribution to the total strain of these higher modes
is small, Thus, though the damping may appreciably influence
the magnitude of strain due to each mode the net result is

that the stralins are adeguately modeled in the three beams,



Beanm
Noe

Beam
Hoe

Beam
Hooe

Duration
of Accel-
eration

(disecs)

N
a
[

Q0

Duration
of Accels
eration

gdisecS§
93 .5
BLeD
46 8

Turatvion
of Accel-
eration

{(disecs)

83 .5
825
46 .8

=TG=

Period
of
1st Mode

(disecs)

T44
744
T44

Period
of
2nd Mode

(disees)
119

119
119

Period
of
3rd Mode

{disecs)
42 .4
424
4dod

TABLE IIIX.

. puration

of accel=
eration

{ ;ff 1st Mode)

12.6
8040

6.29

Dura tion
of Accel-
eration

(_gof_=znd Mode)

78 .6
B2 o3
49 .4

Duration
of iLccels
eration

(_%Gf Jrd Mode)

220 63
147 .5

110.3
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TiE FORCED VIBEATICN TESTS:

In these tests, beams Nos. 32 to 37 were subjected tn
& scaled acceleration by being mounted on a shaking tablé.
The beams were vibrated z2t fregquencies between 50 percent
and‘QG percent of resonance. The theory developed in Chap-
ter I indicates that for adequate modeling of this type phe
amplitude of sinusoidal vibration of the shaking table must
be proportional to.the length of the beam.

In an effort to evaluate the effect of internal damping
on the strains deveioped two beams were used in each run, one
being a beam which was thoroughly and carefully annealed,
th? other being of cold rolled stock. Both the beams satis-
fied the SAE 1025 specification.

Merecover, to have an actual indication of the effeet of
change of internal damping on the amplitude, one of the tests
was made over a considerable period of time sc that the change
in internal damping of the annealed beam could make itself
felt.

It was observed that in a period covering some 1,100,000
cycles there was z change in the internal damping of the
ainnealed beams in that the strains developed in these beams
varied by approximately 10 pereent. The results of the test
however shovw that in this range of frequencies the effect
of & variation of internal damping is very smanll and the
strains developed in the beams were within the acceptable
limit of accuracy. The resulis are tabulated in Table 1V

for the long duration runs.



TABLE IV,

Beam Frequency Amplitude of S5train
No, (TPopomo) Vibration of (g in./
sﬁﬁiiggs%able in.)

32 1750 0.041 178-185
35 1750 C.041 185-200

| 33 2335 6.031 184-208
36 2335 6.031 190=2056
34 3500 | 0,020 186-208
37 3500 0.020 195=210

The conclusion to be drawn is thet for forced vibrutions
below resonance, the effect of internal dsmping csn be umodel-
ede

For forced vibrations at resonance, the situation is not
so clear cut. The strains in Beams Nos. 32 and 35 were resp--
ectively 1000 p in./in. and 980 p in./in., For Beams Nos. 33
and 36 the strains were 1000 p in./in., and 990 p ine/in.
Thus il appears that the difference in internal damping, if
any difference exists, between the annealed beams and the
¢0ld rolled beams has litile effect on the strains developed.
liowever, the smaller beams reguired an amplitude of vibration
of thieir roots of only 27.8 percent of that reguired by the
lurger beams to develop the some strain. VWere the amplitude
of strain atl resonance governed Ly internal damping ouly,

then the analysis of Chapter I would indicate that the re-
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cuired amplitude of vibration of the roots of Deams Nos. 33
and 36 would be three-fourths that required for Beams Hos.
'32 and 35. The coneclusion is then reached that at resonance
internal damping is not the contrelling fzctor. This agrees
with experience. For example, Hamstock and Murray(le) in
reporting tests of internal damping point out that in most
systems the magnitude of the strains developed at resonance
depends on the external damping rather than on the internal |

cdanping.

SUMMARY CF TEST RESULTS:

The results of these tests can be summarized as {follows:
The apalysis indicates that in tﬁose applications where in=-
ternal damping can be neglected, modeling for stress simili-
tuﬁe can be attained if the dimensionless radius of gyration
is the same for prototype and model, ' This conclusion was
substantiated by the free vibration test and by the drop
test. In each of these tests the stirain vs. dimensionless
time curves were essentially the same for prototype and medel,

For these applications wherein the internal damping is
of importance, the analysis shows that geometric similarity
between prototype and model 1is necessary for asdequate model=
ing. The free vibration test of Beam No. 17 and the forced
vibration tests of Deams Nos. 32-27 showed this {o be true.
lhoreover, the longe-time forced vibration test shiowed that

the eifect of 2 change in the internsl domping of the beam
&
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on the sirains developed is sowll, Thus, for example, even
though the mmgnitude of the internal damping for Jeam 32 in
the amnealed state was different from tkat for Deam 35, the
streins developed in the itwo when their roots were subjected

to the same scceleration were in acceptably close agreement.
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CHAPTIR IV,

in this chapter an extension of the analyses of Chape
ter I is made tc the guestion of vibration of piates and
frames. |
FLATES ¢

The equation of motion for a vibrating plate is well

(1'?) ’ .
known « It is

W "
(65) L vYw=Z -W
‘where - B is Young's Modulus

3 is the density of the me terial
h is the half thickness of the plate
w is the displacement of the middle surface

from its unstrained position whieh coine-
cides with the x-y plane

Z = Q[z¢h where § is the transverse foree nct-
ing on a surface element

The bvending momenhsmx and My in the x and y directions are

given by the expressions

3 T =
o . _ Eh tw W
(0")) MX = 3('_/“._, ( 3 x* /‘A 3)13—)
and
’ ' E‘ﬂx I'w .atu/
(67) MX - - 3(.__/“‘_)( 3 ,'&. ’./A axl. )
Finally the maximum stresses ¢,  awd o, , . in the x-

and y=- directions are given by

%\ ;

) v 0; - 3Mx
i z ht

{




and
_ 3My

(e9) o-7ma.1 Zh*
while the maximum shearing stress
(70) oy 3y -y)

mex Ah*
or
(7L) Thox = the larger of Eg.(68)or (69)

depending on whether the stresses of Egs. (68) and (69)
are of opposite or like sign.
Befine

'Lf where L is a characteristic length

]
B

zL.l
LS

5o#
fl

uLJ

a% = £/p
t = L7/a

b = Q)

With: the foregoing definitions, we essily find that

(72) - DT w27
Ix ™y " 201"
and
n S :)”(
D w =, " 1= n, o, = 1,3, !
(73) 5S¢0 <7t s ¢

Meking the substitutions (72) and (73) in Bg. (66) leads to

the dimensionless form of the eguiation of motion:,

g h’ér - ._é——— + él- = O
% 3(/~/u") M zo o7t




§
[£.
[ %
L]

S‘-
3(:-/4“)

v"\r

T ©

P b pe
v -— ——
< 23 *ar‘-

(74)
where ' bas been written to cell attention to the fact thet
.ﬁbese differentiations are with respect to s;ahﬁ 7 |

If we now define dimensionless giresses by the relations
ship: dimensionless siress, X , = ratio of actual sitress te
Young's Modulus, Hgs. (68) and (69), and in consequence igs .

(72} and@ (73), ecan be rendered in the dimensionless {orms

S 2°¢ I%¢
' (75) meax = = Py (a{t * s 27‘)
S o'e b
(70) Lym"‘ = - 3('_/“1) (a7‘L +/“ 2("

Thie boundary conditions when stated dimensionlessly
becone §

A) For a built-in edge psrallel‘with the x-axis and at y=c

P
(77) <\ = .0 .._c. zo
. _ ¢ a’] P
1% 172
B) For a simply supported edge parallel with the x-axis and
aty==¢
. ' a"
(78) < _:.0 5’7;:’ o
13 T %

{C) For a free edge parallel with the x-axis and zt v = ¢

} b!{ ) 33
{79 L2, - < : N
W ‘ o ‘ /“)a§%w )7= e
(8
1 3%¢
A I

21" ’:E
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Conditions on edges parallel with the y-axis can be
obtained from Egs. (77) - (78) by permuting & and T o
For plateé of shapes other than rectangular the more gener-
al boundary conditions given by Reyleigh, pg. 387 should be
useds.

From the foregoing discussion, we conclude tiat the
vibration of plates cén be successfully modeled in accord-

ance with the following principles:

I. If the prototype has simply gupported or rigidly built
in edges, the model may be of any materiasl so long as
the thickness and the applied load are selected in such
manner that é)/[3<t-,u‘f] and b/{28) are the same for

prototype and model,

IX. If the prototype has a free edge, the model must be of
a material having the same Poisspn's ratic as the pro-
totype. This conclusion follows from the presence of

p in the boundary conditions, Egs. (77) and (78).

Consider now a flat plate with no lead {Q=0) and choose
the x-y plane to coincide with its unstrained middle sur =
face, Let the x-y plane be subjected to an acceleration

uent

f{t) in the z direction. ¥e shall discuss the subseg
vibratory motion of the plate. Let X, ¥, and Z be a set of
stationary axes, the & and £ axes coineciding, and the x- and
y- axes remaining parallel to the X- gnd ¥- axes, Let &g =

Zo{t) be the coordinate of the moving origin, ¥, the dis-



placement of any point on the middle surface of the plate
referred to the staticnary axes and v the displacement of

the same point referred to the moving axes., . Then

(80) W s Z, rw

Gguation (65 ) E}ecomes,' upon substitution of Eg. (80)

ah?

3e (r-_ )

(81) Vi Z, ¢ W e

since Zg i8 independent of X and Y. The differentiations
involved iny ¢ can be ﬁakez1 either with respect to Xami ¥
or with respect to x and y s8ince X = z gnd ¥ = yo. C@mpari-
son of Bge (80) with Zg. (65) reveesls that a uniformly dis-
tributed arbitrary forcing function Q=G(t) acting on the
plate can be studied by subjecting the middle surface of the
plate to an arbitrary acceleration Zp= Zp(t), the relation-

ship being that

. ot
(82) Z. () = ek Q (¢)

Touation (82) ean be put into dimensionless form by using

our usual substitutions., Thus

]

(83) ZA=L) = -

Zpld
It appears then that the method of snalysis developed

and tested for beams can readily be extended to the model=-

ing of pletes.
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In order to investigate the possibility of using the
mode;ing parameters alresdy developed for beame and plates
as the modeling parameters for frames, let us consider the
differential equations of motion for the frame'shown in Fig,
22 which is hinged at points A and D snd has rigid right angle
joints at B and C, The vertical members of the frame have
‘area A; and sectional moment of inertia I,, while the horizon-

tal member has the values Ap and I, respectively, ie mo tere

ial of the three bars is the same and is of specifiec weightY,

[Z
c
BJ } T
I, A,
=1 A
I, A7 /
A o
£, O
A v v v & G G v v S B B (v A v v G v o i B A
Fig. 22

The differential ecquations of molion can Lest be estab-
lished by the application of Hamilion's Principle.
¢
In order to write the expressions for the sirain energy
and kinetic energy of the system choose x-y uxes with origin
at A sné g-axis glong AB. Choose u=v axes with origin at B

and u-axis along BC. If we consider only smsll vibrations,

thien the strain energy due to direct siress is negligible
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in comparison with the strain energy due to bending, and we

can write:

£,

_ EL. , A%y L‘EL(gj: 4
(84) U= 2) gl dne ) S5 gn)dx

(-]

In computing the kinetic energy we realize that the bars
AP and DC are undergoing bending vibrations only, whereas the
bar BC in addition to its bending vibration is possibly sube
jected to a translatory vibration in the direction BC. The

kinetic energy of this latter motion is not always negligible.

it can be expressed as 3 A*ﬂj“' ()}’ , )L where the nota=
X = .

tion yL ¢ Blgnifies the velocity of the upper end of the bar
AB, Other types of energy, e.g.stirain energy due to direct
stress, kinetic energy due to rotary inertia, will be ignored.

L3

ihe expression for the kinetic exiergy is

4 T

: A7 .= ALY o~ y A, L. . LN
8 T = o )AL,
(88) z S(, S +J; > Vdu+ 5 ; (yl‘:j.)

¥Ye have then

i dYy s d A’y £ yu
(88) SY - ZEI,?;—;JE{— T 57"j¢ :;%Syaxf

£
_ dtv Av _d’v [ 'f"_‘f_‘_/ o
cELLf2Y s - gxsus) Y Svded

g

where the terms free from the integral sign are to be taken

hetween the 1imits. we also find that

i ¢, . ra .
{87) 55Tdt=J {‘ﬁ‘] ?———Z(Sydx —A:jklj dv Svdu
to o

) g ) det P
2
- Halel 534 5?‘ dt.
j x:lu lfz..ln




ihe variastional equation of motion is then

'l' Ul ' e A
) a\ a'/ A,7 9w
(88) | czer, g+ 20X XY Sy +f e BE + 30 5D Svelu

f

Dx+ D% ox* u* da -

2, ,
¥ >, ‘v 0
"'ZEI,(_D_L 521 -_a_léy)\ -fEIl(—?—-‘I 5*3—‘-’ —E-.!J')'

LY

Ag-jz7 az
ot~

- (SYI ~o.

X:l.

+

x-4,

From En. (88) we conclude that the differential equa=

tlions of motion for the frame are

o e D Ay DYy
(89) El:l D xY £ 3 Y4 S
and
(90) I: 5.+ "5 2¢

while the boundary conditions are those imposed by the evane
escence of the integrated terms in Bg. (88).

The implications of Egs. (88), (88), and (80) are many
and important:

i, The method by which these équa{ions vere obtained
is general and can be extended readily to more complicated
frames., It follows that modeling metheds based on this anal-
ysis will have the same generality--thot such modeling methods

will s8l80 be readily extended to more complicated frames,
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Z2¢ It is possible to predict the netural freqguency of
frames without damping by z methemntical method analogous to
that used for bars.

3. As stated in (2) above, it is possible to predict
the natural frequency of frames without damping. The numeri-
¢al work involved in this determination follows the spme
pettern as that for bars but is considerably niore onerous,
"It would be desirable to reduce this work to tabulated form
for the benefit of the profession. For illustration, the
determinétion of the frequencies of the symmetrical modes
of vibration of the frame shown in Fig. 22 is outlined in
Appendix V.

4. 1In spite of the greater numerical complexities,
the theoretical treatment of the vibration of frames is now
‘placed on as sound a logical basis ag underlies the treat-
ment of the vibration of bars.. Moreover, the implication
of ts. (88) and (89) that each member of a vibrating frame
executes its transverse vibrations in modes having the same
shape a8 the modes in which it vibrates as a beam allows
us to deduce that the conclugions already reached in the
question of modeling of beams for dynamic stress similitude

can be applied immediately to the modeling of frames.
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APPENDIX I.

It became ovident early in the course of this investi-
gation that & uniform choice of form of solution of the dim-
ensionless eguation of motion for a freely vibrating beam
was desirable. The usual reference works (1%), (17)(18)
(%), all give the eigen-functions in different fom, The
forms which are listed below seem to be the most useful.
In appendix II it is shown that these functions are normale
ized,

The dimensionless equation of motion for a freely vibra=-

ting beam is

Vl 2 { 2‘62)(/\ cos L, T+ B.sin.().‘-‘r')

For convenience of reference the functions = (5), the
dimensionless freguency equation, its first five roots and

the first five dimensionless natural freguencies, Jli are

listed for each type of beam, h, is the dimensionless radius
of gyration., To obtain the actual natural frequency, Wy

of a beam it is only necessary to multiply its dimensionless
natural frequency, n,, by the ratio of the speed of sound,

2, in the material to the length, L, of the bar, thus

For the hinged-hinged beam:

E'f‘(g) = [Z ".”p/'f

3in o, = O



Pl

P1 Pe Pz Pg Ps
* 24 3% 45 Bx
Qi ag ag g Qg
9.870K  39.478 ) 88,826 157.01x 246,75 &

For the free-~free beam:

TP IR (0 8w winh o )

r~t
;:‘i[{) = cosp,'f +cos/4p,‘§' + coRg = gz byt

cCos o, cosh o =

P2 Psg Pa Pa Ps

0 4.730 7.853 10,996 14,137
N g Qg g iy

0 23,373 &, 61.671n_ 120,81k, 199,57

For the fided-fixed beam:

S P+ Sl‘ﬂh,oc'

’E,‘.({) - Cos/o“f —coshp,' § « (simn po. 8 — :/‘nh/o,'{)

cosp; ~cosh oo

\
~

cos3s S o '
Vot ?"h/’é

B Pz Ps3 Pe Ps
4,730 7.8563 10,956 14.13% 17299
Q0 Qg Lz 24 L5

23,3731, 61.6714, 120,91 I 199.57 29857 K,
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For the fixed-free bheam?

STk g0 = Sinh o,

~ - - sy :
k':'—'o‘(i ) = C"’p{{ - coyh/p‘-{ * cos o + coshpy (""/O(' 3 5'”hp¢ i)

cos Py cosh Py = - 1

By Pg P3 Ps Ps
1.8 4,694 7 .855 10.996 14,137
£ Qg Ng g L5
3518y 22,084 1 61,7011 120,81 190 .57,

For the fixedehinged beam:

cospol # coshpy (i po
(4

- 5/‘*1/7 .
Sinp, + stnh P 5 a g-)

7, (g) = cosp; g - coshpi§ -

tan p, = tanh Py

B3 Ps ) 3 Pg P% :

SO‘C};STI— 70%9 10 o-‘h;lg 13 03‘52 160 2
{13 oz Lt 8 4 L 5

1Dedlr,  43.8V1Y, 10420k, 178 .21, Y PIERTE

oy Wie free-hiinged bLeam:

cos, '-rco-f}'/oc‘

E:'(i) = cosp & +cosh o0 § - gy (simjo0 § +simhior £)

tan p, = tanh Py
Pi Pg Pa B Pp
4] 3027 7000 : w%w 18,355

x Nz ..n.g Nelyy {1lg
[ 15431 40071, 1025 T78 27w,
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APPADIX IX
A8 noted on page 10, the funcilons Ei(g) constitute
e normalized orthogonal set, It hons long been known (18)
(17), that these functions are orthogonal., Thaet they are
normsl is most easily shown by directi evaluation. Teo this
end we recall the identities:

' 2 i d=, d° =
L ; WX = -E(d(,q.%) ' a(p‘-s)’)l

17

E=i
if the right end of the beam is hinged;

! Y

| Eodx = L( :’JH

1if the right end of the besm 1s free; and

LZrag= 20 2]

e §)° T=1

if the right end of the beam is fixad.

Substitution of the apbroprizte expression for Z . in

V—'t
the ehove identities and appesl to the ideniity emhodied in

tlie frequency equation leads to the value of 1 for the lnte-

grel. Thus®

io For the hinged-hinged hean:

dz (Z cox 9’.:.’2‘ =~ [z cospi
S, o oyp 2
Ad(p3) ds)

% "‘”"”‘nghout the remeinder @f’ this Appendix the subseript 4
ig omitted for econony of writing,.



% [o E.—:Ldg = —;'_ (r= cosp)(-fZCosp)

= ¢c08° p =1 since sin p =0,

%“e For the free-free heam:

)

o ! sinpotsinhp . ik po k-
2, ol = L cos p+cosh - (3rnp+s
L ~ g q[ F’ &= CoOs p —ce:hP ]

a
' cos o _cosh‘p* Jiw‘p 1-25‘1"111/3 sl rsinh Vo
zl cosp- coshp

3in z/o sinh L,k?

(cosp —coshP’L

(1= cos Il coshp-1)

to&‘p - 2 cosﬁ c¢slyp fCcos h"p

COSI'ZIQ - costpcosh P+ costp -

cos o - 2 +Cosh'p

= 1 since cos p cosh Pp=1

3s For the fixed-fixed beam?

s/ p-(-s‘l‘n"/v '
d° = = —cospi-coshpfr ; (~3v’uﬁ§~$lhhp§)
I o3~ ceshm

—— d(a T .
fEus s s [ZET
< d(F‘) {__,

b

)
Bt o

§ comparison with the evaluztion for the free-free be
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=00 =

The fixed=free beam:

The fixed-higﬁed beamn s

The free-hinged beamn:

These demonstraotions are carried out in the sape manner

tice foregoing andé will not be shown here.
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APPEXDIX 11X

Speed of Sound in Solids st Room Temperatures

ke tal 8 % 10"5 inches/sec,

Aluminuem 1;980 e 2,070
Drass ’ 1.265 = 1,423
Lopper 1.401 = 1,567
Gold 0,686 - 0.819
iron | 1,933 = 2.018
Hagnesium 1.811

nickel 1.956

+la tinum 1,088 = 1,085
=ilver 4 1,042 - 1,054
sieel 1.901 = 2,003
Line 1.449 =~ 1,400
wNGTE a decreased with increasing temperature.

& increases with hardness,

presy

Thiis teble compiled from the International Critiecal
Tables, Alcos IHendbook, Trode publications of Z. I, du Pout

Lo., ~Lllegheny Tudlum Steel Corp. and others,
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APPENDIX IV

Expension of the LZtoticsl Deflection curve of a Cantilever

Beam with a Concentrated Lond =zt the Free End in sn Infinite

Series of Eigen-functions.

The ststical deflection curve for ¢ cantilever Leam whose
roct is st (U,0) and whose free end before deflection is at

(£,0) referred to a pair of x-y axes is

(91) y = ——— (34-x)
Iy 9

In diwmensionless form this becemes if we write ©°-
91.
2) v —= FRE )

For such o heam the eigen-function expansion (See Appendix I)
_ = ok
/

sir oy = sinh g,

cos o, tcash o, (simpee - S!'nh/p(.{{)

in srder to evuluete ile iy, the right-iand side of Eg. (92)
is substituted for the left hend-side of Zg. (93). The equa-
= —~

ticin i3 then multiplied through by . and tie result inte-
& C’L L1 l r

K

o

rated terwm-wise from O te 1. All lerms in the righi-hand

e

ide seve thet conteining Sy venish becsuse of the orthegonal-
ity of the Eli end the coefficient of the a2, is 1 becauseof

thelir ncraality .



Hence

[l pow
(95) | a; ] 7(: E3-5) 2. (5) &

The integration which is eusily corried out, though somewhat

- tedious yields

(98) Ay s ——
P By

The expression {or the sistical deflection of the beam is thien

(97) . D) - 5 22 = (x)
7 ‘(,' 2 =¥ /D"Vtz ‘

In order to compare the stress.at the root of the beam
when ii{ is vibrating in its first mode only with the corres-
ponding stutical stress it is only to compare thevseccnﬁ deri-
vatives of the third and second members, resp., of Zg. (97)

for 1 = 1. Thils yields

dat [ 1z ©° H(};)] ] 21/(9L
(98) 45 LA ae
and
£ 2 69‘
(99) e ]
; c#i X

The retio, k, of the stresses under counsideration is

\
(10@ J R = ——= = 1./37 since p, = L. 875
Iience, an over-stress of s mueh os 114 perceni of the stat-
icel stress epn he anticipes ted 2t the root of the beam if

tire lond is suddenly removed,
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APPENDIX V.
The Freguency ELguation for Frames.
in Eg. (38}, if we postulate vibration in symuetrieal
mofes, the iast term will vanish. The differential egquations

of motion sre .

(101_) El.a)d + —5—- et 20
e S % ALY DV
{102 ) EI, a_-—“l + ...__.3 =8

The boundury condiiions to e scotisfied are:

. ) } » -y .
(103) At A gyLzo-o and Sx* \,‘._o o.
(104 At B: Syl o and 5\/‘ 5 O
K:l, [V X
Becrnuse of symnetry:
(105 ). g 2v " S _9_!‘
B2 Uze Bu‘ u—l:.
(166) 3“’\ ] a"t\
dur |, dw wed,
ks "
e v gav _ IV sy . 2 :7,:_521] aerd
mend e ( 5;:_ S > = Ju® ‘S ) o Sa* D -
(107 2ETX, i_lx‘ 5 2}2 t 2E1, %—:—:—‘ S 3—!-‘ must = O
) x=4, wzo

Because of the rigidity of the joints

: dy v
(108) 37',._1. oo,
and
: Iy dtv
14 00 il =
(Lbﬂ.-} EIl ax'l_ '_l' E-Lzau‘}u"o



so thet Eg. (107) is seotisfied. The varistion egustion, Eg.

2

(88, is tien sziisfied and Sos. (102 - (100) are the bound-

ary conditions,

We cun proceed in the usual fesiiicn gnd cssume that y

can be expressed o8

(110) oy = XooT(e)
while v can Ze expressed us

(111) v o= U Tee)

Tie T{t) will be the same function in both expressions., Upon

seperoting variables we higve

{112) 7 T= A cos pt + B sin pt

{(113) X = a, sin kyx+ b, cos kixt+ ¢, sivh k,x + d, cosh kix
G

(114) U = a, sin kyu + b, coskix + co 3inl k,w ¢ ol cosh ko
where

T
A 1p
EI. g

{114) in the Toundsry con-

dpen substi

diticns we {ind the freguency eguation in the form

kL <
1;- 2 { _— (Cot k;lt- +Coflﬂ Elg:)(cof Kl, —cafh k"(.}.’q} )

(116) cos zp

. PR . . . T, 2
where — hus heen written Tor ._i\/flﬂ . The roots of the
P 21, T
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first foctor ave easily enough obtained. To obtain the roots

4 <, -’
of’ the second fuctor we tet L /Ay <y and £,1/AY =b,
2 EI:.j [A,j'

The factor cssumes Wie forn

(117) CoTa{F + coth afF = iy 5 where c= 3ﬁ
cot bf]; - coth blp »

vhich 1s reedily sclved numerically in sny given cuse. Once
the frequency eguation Lus bheen solved, the deflections,
stresses, etec., ot any point of the siructure are obtained

from Eqs. (110) - (115) in the ordinasry way.





