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'i'he prediction of stresses rlevel oped in structures sub

jected to dynamic loading constitutes a problem which is 

receiving increased attention on the part of engineerso 'l'he 

use of models for this prediction offers an economical and 

practical solution to this problem. In this paper the model= 

ing parameters for . vibrating beams are developed througy1 sn 

analysis in which the equations of motion are reduced to 

dimensionless form. The validity of these modeling para

meters hus been tested experimentally. These experiments 

are reported herein. It is further shown that this method 

of ruaalys•is can be extended to ·problems involving plates 

and frames. 
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INTRODUC'l'I ON 

The study of engineering problems through the use of 

models is sound practice of long standing and is so ridely 

used in the v~rious branch es of flu.id mechanics as to need. 

no :further introductiono 

Efforts huve been made to attack problems in the meoo

anics of structures by models. Thus, the field of photo-
• 
elasticity has been developed.P as have the soap film analogy 

, l) 
for torsional stress,\ • the electric potential analogy foir 

12\ (3) 
stress concentration" J and others which are v~ry usefu.l 

in the study of stotic stresses. For the study of' dym.tmic 

s t!Z'esses, the few modeling methods which have been reported 

h,,ve hud &S their primairy objective fue determin.:"l tion through 

the use of a mod el of Q structure its modes of vibration ~nd 
• ✓ a 

their natural frequencieso \ ) This information waile of im-

portance is not sufficient for the solution of many of the 

pir-oblems wh ich arise in prrictice. 

Tc rerd ize tlle shortcomings of modeling methods ief,ai<eh 

fr•equencieB of tllese modes, <Consider the follot-Jing situ.2tior10 

i.'o>r ri simple cantilever be~m the modes of vibra ticm and ft.heir 

fr•equencies can e asi ly be c a lcu l a tedo Yet from this kno'l;l

ledge, it is not possible to calculate the stresses developed 

in ti1e b emn if its root is subjected to a sudden ~ccelerBtiono 

approxirnn te solution for these stresses was offered by 



t (":- \ 
;::; ezaw.s. I\. ; P and the ~pp ll"o ;tima tion .ba.s been impr-oved by l·:!ind= 

I 5) 
l in \ o The f act rema in& t ho t an experimental investiga ticm 

of these stresses is essential for their accurate tle"i.~errruina = 

• tiono If th e structure is large , the isturly of u ~uvdel de

signed for dynamic stress similitucle becomes i mpei·.: .. t iveo 

THe question imneiliD tely ;8.i"ises a s to what consti tutes 

modeling for dyna mic stress si mi litude. 'fh°e answ€H' m.;.y b e 
H 

g iven b roadly: A structu:r-e is correctly modeled for dynamic 

stress sirnili tu.de if from the men&.J.red stiresses in the model 

the stresses in tne structure under given dynamic load c an 
ft 

b e predic'ie cl ,,i t h in the limits of engineering a ccuracy o 

Various portions of this statement require f urthe r con

siclera tion: 

T'oere is nothing in this crd terion "'i:lich requires geo-

1,iet:ric simila rity., Wh ile tb ere is no objection to making 

tlc.e model geome tr-icall y similar to the pro to type if' this i s 

easily accomplished, it would be desirab le if possible to 

have greater freedom in the co nstruction of the model th a.n 

is u sually allowed by a require.men i of geometric similar-i ty. 

'I'he omission of small details or the choice of i!. sha pe which 

will easily carry strain gages Ere exampleso Likewise a 

• change of mu terials , e ogo using brass to model a steel proto-

type, will frequently lead to easier fabri~ation~ 

The stresses developed in proto type and model need not 

b e the s2rne; the ability to calcult1te strains i n the prototype 

is all t ha t is sought., 1 t a ppears desir.:.ble because of the 



rel.i.::.bility and availr.bility of the electric reaist:.tnce stra in 

gage to b2se .the mocaeling on similitude of strains. By means 

of Young's modulus, stress similitude is thus attainedo In 

fact, throughout this paper stress similitude and strain simi

li tu.de are taken as logically equivalent, i.e. either condi

tion implies the otller. 

In atldi tion to tile conditions which must be satisfied 

by a model for clynamic stress similitude, there will be con

<li tions "41ich must be SEtisfied by the load to which the iiiodel 

is subjected. 
' 

Finally, careful consideration .must be given to the 

limitations imposed by the desire tba t the stresses predicted 

be wi t.l1in the limits of engineering accuracy. The concept of 

engineering accuracy is admittedly nebulous. Under cer t ain 

circumstances a clisagreemen t be tween predicted and observed 

rcesults of., say, 3 percent is inacceptable while under other 

circumstances errors of the order of ni£~gnitude of 50 percen t 

oi~ more are c onside.red not too la r-ge o In spite of tids wid~ 

range., it seems advuntageous to establish limits of aceUTacy 

to serve primarily as a criterion by whic..l-i the success of the 

modeling nBthod to be developed can be judged. To t.his end 

we consider the ordinary procedure of stress analysiso For 

.=.s common anrl carefully controlled a material as steel, ASHE 

Specification S-1., for example, the easily measured property 

of ultimate strength is always given with a range of 10,000 

psi, namely, tlie ultimate strength if' specified es 5 5,0uO psi 



to 65,000 psi. Moreover, ASTM standards do not require a 

testing machine to have accuracy greater than 5 percent • 

These two fE'lcts yield a range of 16,000 psi in the ultimate 

strength of this material. This is an accuracy of 13.3 per

cent of the mean value of this property. It appears, then, 

tllat a structure can be considered to have been satisfactorily 

modeled if the difference between the stresses as predicted 

from the model am the stresses developed in the prototype is 

less than 10 percent to 12 percent of the latter. 

It is the object of this paper to establish the para

meters for the modeling of dynamic stresses. The approach 

used is as follows: In Chapter I the modeling parameters are 

revealed through an analysis of the equation of motion of a 

prisma tical bar. The results of this analysis are then veri

fied experimentally. This experimentation is reported in 

Chapter II. A discussion of results is undertaken in ~hapter 

III. The metl1od of analysis is then extended to other vibra

ting systems in Chapter IV. In the Appendices ore assembled 

i terns of interest which developed :i.n the course of this study 

but which are somewhat irrelevant to Chapters I-IV. 1hese 

consist of Appendix I: The eigen•functions, frequency equa

tion, and the first five natural frequencies, all in dimen

sionless form for the six types of beams; Appendix II: Demon

stration of the normality of the dimensionless eigen-functions; 

Appendix III: Speed of sound for various materials; Appendix 

IV: Expansion of tl1e Statical Deflection Curve of a Cantilever 



Bea.m witl1 concentrated load v.t the free end in a series of 

eigen-functions ; Appendix V: The frequency equation for a 

frarae. 



CHAPTER l 

It has been pointed out many times t hat, al tJ:i.ough the 

dynamic stresses depend on the amount of damping present, 

an analysis based on the assumption of no damping is fr-e

quently of considerable value o (
5

) Accordingly, the follow

ing analysis falls into two parts: In Part I an analysis 

is developed neglecting damping; in Pnrt II the analysis in

cludes the effect of internal damping. The metJ.1od of attack 

is the same in both parts of the analysis. It consists of 

reducing the equa~ions of motions to dimensionless f'orm 

through the introduction of' properly selected dimensionless 

variables. The choice of dimensionless voriables for lengths 

offers no problem; each length variable is referred to some 

characteristic length of the structure. It is also necess

ary to introduce a dimensionless ti.rue.. This is accomplished 

by referring time variables to tr.te time required for a small 

disturbance (i.e. an elastic wave) to travel the cbaract

eris tic length o 

FREE VIB PJi. TI O}lli \:I THO U'l' DlJ1P I NG : 

Consider a stroigb.t bar of length L and of uniform cross 

section and density, free to vibrate in one of its pr i ncipal 

p_lane s of flexure. Let this plane coi.ooide with an x-y plane 

the origin of coordinates being taken at fue left end of the 

bar, the x-axis coinciding with the equilibrium position of 

its centroidal axis. The equation of motion is (15) 

{1) 



with "the bounan ry co n.d i tions 

y ( 0 , t) = y " ( 0 , t) = y ( L, t) = y "( L, t) = 0 ; 

Free-free beam: 

y"(O,t) = y"'(O,t) = y"(L,t) = y'''(L,t) = O; 

Fixed-fixed beam: 

y(O,t) = y'(O,t) = y(L,t) = y 1 (L,t) = O; 

~-hinged ~: 

y 11(0,t) = y"(O,t) = y{L,t) = y"{L,t) = O; 

Fixed-hinged~: 

y(O,t) = y'(O,t) = y(L,t) = y"(L,t) = O; 

Fixed-free beam: 
y(O,t) = y'(O,t) = y"(L,t) • y"'(L,t) = O; 

where E • Young's Modulus 

= specific weight of the material 

A == cross-sectional u1rcn of the bar 

I = moment of inertio of the section about 
neutral axis 

g = acceleration due to gravity 

y = displacement of the neutral axis 

x = distance from left-end of bar 

t = time 

(A ) 
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It s hou lcl b e :rcc~ll etl that a physical variab le., for 

ext;rnplc r.1 1.er:.;;th I x.., ls the product of a pure numeric a nd a 

scule constant. We write x = 3 feet or x = 3 inches as the 

case might be. With more generality we write x = L~ where ~ 

is a pure numeric and Lis the scale _constant. Algebraic 

processes deal only with the pure numeric, and the physical 

process is completely described mathematically by equations 

rela ting the ~-type variables, the L-type entering only to 

fix the scale. Therefore two different structures will be 

undergoing the same physical process if their ~-type vcriabl es 

satisfy the same equations. 1ii th this in mind we proceed to 

remove tbe scal e c(msta.nts from Eq. (1)., 

By 

and 

Define 

a = velocity of propagation of small disturb.,. 
ances in the ma•erial 

k - radius of gyration of the section about 
the neutral axis 

X = L E. 

y = L1 

k = L~ 

t = !::. "l"' 
0 

A = L2 ol 

differentiation, lf8 find that 

·,l'1 
=-

L-n ., c).,,1 (n: l,Z,-•··J ) 
2J x" J (" 

~ (A) <)"y "L_" .. , c:>'"'1 (n: 1, Z, ··· ·-) ) 
0 - , 

.3 t" c) "l' .. ) 
) 



Substitution of the foregoing expressions in Eqo (1) and 

Cond. (A) yields 

(2) 

and 1<~ . .,-): 1"(0,,-)-= 1 (1,--rl" 1"(L,-rl = o 

(B) 

where all the expressions are dimensionless. 

Equation (2) is solved in the usual way by assuming 

th:;.t a solution exists in the form 

(3) 

which leads to 

(4) 
\, 
El~)= c, sit1 p~ + cz c;os I"~~ c, s,'n~ I"!;-+ C., co.sl.pff. 

(5) 

where z -I" • 
'c. 

(6) 

The sntis.faction of the boundary conditions by Eq. (4) 

yields the values of c 1 , c2 , c 3 , and c~, and leads to the 

frequency equatJ.on together with an infinite sequence of val

ues for p. This done, the solution of Eq. (2) can be shown 

in the form 

(7) 
'1 



where 

( 8) z:,. ( ~ ) = ,. .) i YI f', f; + o( , Co S p, ~ -+ el Z. ;J i rl J. p, t;° -+ II(:, c o s I-, fD; ~ 

and 

{9) 

It is to be noted that the s,.(~) constitute, except for 

* the hinged-hinged beam, a normalized orthogonal set. To 

normalize the exceptional case it is only necessary to re

· place c
1 

by c
1

( 2 in Eq. '( 7). 

l'o evnluate Eq. (7) for the initial conditions, let it 

be assumed that at time t = O, the beam is given a configura

tion y = f {x,O) and is released with a velocity ;; = v(x,O) . 

'X'hese conditions are rendered dimensionless by writing 

-
1 

f(Lf:, ol = F(E;, o) 
) 

1 : ) 
L ) and ) (C) 

~ I v(Lf,O) : G(~.o) ~ = -
~T of 

The coefficients c 1 and Di are then evaluated in the usual 

mP rn1er, keeping in mind the normality of the functions SJ{). 

Thus, for example, the expression for c 1 is 

(10) c, ~ rF((;ol £,. (~) cl~ 
0 

A consideration of Eq . (2) and Cond. (C) reveals that 

for a prototype and model to have the sam dimensionless 

equation of motion, namely Eqe (7), tl1e following conditions 

will have to be sr.tis.fied (prefers to prototype, m to model) : 

$See App enoix I l 



=llca 

~p 
:. =.e. ) 

K.,., L.., ) 

;e. (ic,o) 
) 

= Lp l (D) f.., (,c,o) L., 

Ve(,(• o) 
) 

:: .!::.1!?.. ) 
V.., (IC,o> '1,.. ) 

and the method of support must be the same for each beam o 

• 'e>'y I From the known formulas= E do ~x& , the stress 
1(-.. x. 

in the beam a t the point (x0 , d0 ), where do is the distance 

of the point under consideration from the neutral a xis, cun 

be expressed dirnensionlessly as 

~ = a. ';) ... , I 
E. a .... J~ .. .x. 

Since we can write do dimensionlessly as 

, we find 

s 
E 

=-

and 

Whence it follows immediately that for prototype and model 

sstisfying Conditions (C) and (D) 

(12) SI" :0 
s,..,, 

EP £...., 

.{ 

.A.oeo, thut 

( 1~~:;.,) f:"' 6"-

where - is u.nit straino 



FO-flCED VIBHATI ONS lHTH OUT DAMPIXG: 

In order to deal with forced vibrations, we take as 

generalized coordinates q
1 

= c 1• T1 { l'). Then Lagrange's 

equations of motion can be put into dimensionless form. 

In ord.i.na ry form, these equations are 

(13) 

-where L 

,A 1 . 2 I T = - yoy 
2 '} 0 

In these equations we make the substitutions (a) and also 

the fo 11 owing 

T = ~J~
2
dt 

2 q C, 

and d ( J T ) 
~ r cl { c) f• ) 

c>-r 
'l'his yields as the Lagranghm Equ.~.tion of Motion in dimen-

' sionless form: 

2 

(14) 
d q . .. 

-+ wq, 
d 'l' 2. " 

::. q 
' 

The conditions which must be satisfied in order to 

model a beam subjected to a forcing function can be deter- ' 

mined from a consideration of the right-hand side of Eq . 

(14)o For example, suppose a force P = P,.f(t) nets on the 

~The '4 does not appear because of the normality of the 
~ · functions o ,........ . 



beam at the poin t x = bo 

force under the variation 

Now Q. is the work done by this 
l. 

1 =-

and S ~ = L ~ , l t ) St,· 

it follows that 

Q = L P·f{t) :::=,{ ~) , l,-~ 1.z. - · ···- 1 

Moreove_r, if we write A = L 2ot. , Eqo (~7) assumes the form 
// 

(15) c:J z a ; / "t. Pa b ) L ,.. ) 
~ / -4- W - a -=- __ ::l_.,.___ ~ · { - f- ( - u: ~ I Z ·· · · · ) d't'/ · • ,,, ')o(o,'-l'-- ......,, I.. d , • , 

' 

To model satisfactorily a beam sub jected to a concentrated 

forcing function, we must satisfy not only Conditions (D) 

but also 

= (E) 

The generality inherent in Condo (E) is not often nee-

essary in a modeling investigation. More frequently will 

In this event °' ""- ti. p 1'\ 
it be desired to maintain similarity. 

Furthermore, if the forcing function be periodic, say 

p f ' t) = p 
p p i. p sin .L)_ p t, then Condo ( E) becomes 

p 11. 10 L/0,.. p_ fl.,.. L,.,,. 1' ,,, 
5,'n sin -= 

'I.. L1c 
L °'p 1- L & 61 ..... 

-YI° a'° ..,_ Cl,,., -

F oir this to be an identity, i t is sufficient that 

.fl.."" LP n_ L-
) 
\ 

~ ; 
0,.,., a_ ) 

s ncl 
) 

(E1) ) r,.., P- ) 
~ ) .,I° a. F 

'l. L z "Y.., a""'-1 ._ L ""'L I° ) 



THE FREE VIBRATION OF A BEAM WHOSE BOUNDARY CONDITIONS ARE 
FU°NcTfo'Ns OF TIHE: - - -

When using small models, the application of a forcing 

function to the model is frequently difficulto 1'his diffi-

cul ty can be avoided by subjecting the beam to boundary con

ditions which are functions of time. The foregoing method 

of analysis can be sa tisfa.ctorily used for this type of vibra

tion also. By way of example, consider a prismatical canti

lever beam having one of its principal planes of flexure co

inciding w.i.th the x-y plane and free to vibrate in this plane. 

Let its root move along the y-axis with the velocity v, and 

let its centroidal axis remilin parallel with the x-axis. At 

time t = 0 let the e.xis of the beam coincide with the x-axis 

and let its root be given an acceleration f{t). '£he mathema

tical complications resulting from tbe initial velocity v 

can be obviated by referring the subsequent motion to fi .X8S 

with origin at the root and parallel with the x-y axes., To 

do this, we write y .,, Yo + w, where y is the displacement 

of any point of the beam weferred to the x-y axes, Yo is the 

d~splacement of the beam referred to the x-y axes, and YI is 

the displacement of any point of the beam referred to the 

axes with origin at the root. With this substitution, Eq. 

( 1 ) become s 

(16) 



The appropriate boundary and initial conditions on w 

arc 

a) w(O,t) = o., d) v(L,t) = OP 

b) • w(O,,t) - o, e) w(x,O) = o, 

• 
c) w(L,t) = o, f) w{x,O) = o, 

while the conditions on Yo are 

g) 
~ ... lo = 0 if t ~ OJ> 
o CL 

h) G>' fo = f(t) if t > Oe 
a .-ta.. 

I 
Using the definitions on page 4 and w c I.w, Eq,. (16) and 

its boundary and initial conditions can be put into dimen

sionless form: 

(17) 

and ~co,,)=o 

j f 
o, ... 
d ~1 .. -:;; L ,_ f ( La...., ) i I 'T' > 0 

Z>T'- "' 

~ 
) 

l 
) 
) 
) 
) 
) 
) 

(F) 

In order to model dynamically for stress simi l itude, 

it is only necessary th a t Eq o (17) an d Condition (F) be 

s atisfied for both prototype and modelc 



As an imnedia te application of Condition (F) consider 

t he case wherein f{t) is defined by 

f(t) = 0 if t ~ 0 } 
) 

f(t) = b sin w t if 0 ~ t ";: 
11" ~ (18) ~ 

) 
) 

f(t) == 0 if fr.(. t: ) w :: 

Then "' writing these conditions in dimensionless f or m, we 

f'i nd "Zl.._Y)o ;f ~o ) -r 
•0 ~, .. ) 

,,...c,,... 

~ ~,,L.lo si11 '21..! ;f 0 f r ~ = L. 
z,-,.... a .. .,... 

) (18 I) 
) 

and J'"10 
if 

'il"c.. ) 
~"'a ~ -r ) cJT' .... 

(.JL 

) 

1?1•om Condition (18 1) it follows that modeling will be co:r-

rect if' 

(~~} model 

and 

( L;) ) 
pro to type)· 

~ 
) 

(La~) ) 
prototype~ 

{FI) 

Re tu.r?ling to Eq o ( 1) and making the subs ti tuti on y = y 0 

+ w yields 

( 1 I) 



Eq • ( 1 ' ) is precisely the sair.e as that for a can ti lever be rim 

wj_th a uniformly distributed transverse load U(t) where 

(19) Ult l =-

'fo find the dimensionless expression involvi ng th e 

load U(t) (whose units, incidentally , are F/L), we shall 

multiply both sides of Eq. (19) by - g/~ A and replace 

~~!'.'!: '- ;) .._ 1o 
by ~ Thus - • ;;t: ... L. a r'-

(20) ~ = ..:L. ..h. U(t) 
c) -r .. 'l A a .. 

Furthermore, if we assume geometric ,similarity, then A= ('·" 

and Eq. (20) becomes 

Finally, if we put U(t) in the form 

Ult) = _.f._ f(t) 
L 

where P is maximum total load on the beam, we reach 

(21) 

To model a uniformly loaded beam, the conditions to be 

satisfied are 

( 
p f(¥J) 
)L ~a" 

model 

= (G) 

prototype 

and the beams must be geometrically similar. It i s to be 
.) 

observed tbat these conditi ons are precisely t h ose for- a 

be:am with a concentrated load which were obtained by a 
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different meth od~ 

J 

As bas already been stated, it is possible to use a 

model whose boundary conditions are functions of time i n

stead of applying a forcing function to the model. rhe 

conditions which must be satisfied for such modeling c ~u1 

now be investigated. 

Let the forcing function be a uniformly distributed 

load varying sinusoidally with time. Thus, 
p 

- cS i¥1 pot 
L 

U(t > = 

As we have just seen, P must satisf'y Condition (G), while 

model prototype 

ioeo ( P• L ) = 
-;- model prototype 

But this is precisely the comition for modeling under sinu 

soidal acceleration of the root. If b is the imximuru accel 0 

eration, then by Eqs. (21) and (18') b must be so chosen 
j p Si.., P: l "?' L' 1.-- uJ L-.-' that ________ :, ~ S' i YI 

Gt. ,""'"L'-o<. a._ 

• that is, so that if we select w = Po 

lop 
8 Pp 

(22) =- L ..r "r,o <:A. '° 
where the subscript p refers to the prototype. I f Condition 

(G) is satisfied, then, with subscript m referring to model 



-whence 
9 P,.. 

, "' 0( L,..s 

or b ... L,.,. 
t. 

Cl.p 

which is precisely Condition (F')o If, therefore 9 bis 

chosen so that Eq. (22) is satisfied6 and if geometrical 

similarity is naintained, the observance of Condition (F') 

will insure satisfactory modeling of the action of the beam 

under the forcing function 

.E. s ; .., ,O• l t ) 
L 

A case of especial interest occurs when the time dura~ 

tion of the ftmction f(t) is very small. Thus, in Fig. (1) 

Figo 1 

let h. ~< 1 e Suppose moreover th.at 
h 

(23) f flt-) dt- = A 
0 



fccts of such an &. ccelerntion on the system o 

Subs tituting h L .... ...,, and we find 

(24) 1 
Now the Laplace transform of f ( t) is p A if h is very 

sma 11. Whence the Laplace transform of the right-hand side 

of Eq o ( 17) for accelerations of very small duration is 

p A/a o Writing the Laplace transform of each term of Eq_ . 

( 17), yields, if '"' ;::, ~ 

as the transformed equation of motion to be solved ,~ith the 

boundary concU tiom, 

C t) w "(o)-=- o 

b ' ) w'Co) = O d') w '"(o} -= o 

We c onclude, then., that a prototype will be SP.tisf~.c

t orily modeled if 

,, 
( -!- J fc-t)cJc) 

- 1,-J-Joolel 

(H) 

0 

ona the du r Btion of the ,1ccolerntion is very short. .. * The 

* h is small if i ~-Pef(t)dt- ? f ;(d dr 
0 0 



sign ifier, nee of t h is conclusion l i e s in t h e fnct tlw t if 

the duratton of nn impulse Js short in comparison with the 

naturnl period of the str ucture, the same i nip u lse sh ou ld 

b e a pplied to prototype nnd modelo 

MODELING BEAriS H I'I'H IN1'ERNAL DAM-PI NG: 

The literature on internal damping is extensive ana., 

to a large extent, contradictory.(
6

) In this investigation 

interest lies in relatively high stresses - those lying in 

the range of engineering stresseso As a result the pertin~ 

ent f acts whic h appear to be reasonably established are: 

1. Damping capacity was defined by F'opp l as the ener

gy dissipated per unit volume per eye le and specific damping 

c npe city as the ratio of the energy dissipated per unit vol

ume of material per cycle to the maximum strain energy per 

unit volume of material.(') Thus in Fig., ( 2) which shol>rn 

D 

Fig. 2 



the ordirm ry bys teresis loop, th e d ;:,mpin& cap~ci ty ~, ls the 

area of the loop ABCD while the specific damping cop~eity 

i s t h e r~tio of the area of the loop ABCD to the area of' 

the triangle OBE. These q1.umtities appear to be displacing 

others that bao . been previously used. The damping capacl ey 

of a m terial depends on the rmximum shear stress r , as 

well as on seversl other variables. However, an analysis 

can be carried out in terms -of norma 1 stress instead of 

shear stress because if we write 

it t:AhS been ShQWn (5), (6) that 

'i "" ~ ( k er) 

where o- is the maximum normal stress. 

2. The damping capttcity cp depends on the history of: 

the specimeno As a given specimen is subjected to repeated 

cycles of stress, the ~re~ of the hysteresis loop decrea~es. 

If the ma.xi.mum stress is below the en<luru11ee limit, the damp

ing capacity will become stabilized after approxi.m.a tely on e 

million of stress reversals. If the maximum stress is above 

the endurance limit, the area of the damping capacity, after 

h~ving decreased as in the previous case, increases markedly 
(a· 

shortly before fstigue failure occurs o ) 

3o Kimball showed(
9

) that damping capacity is indep-

* endent of frequencyo From this it is concluded th.at internal 

*But see{1°) wino report that r.t higher ·(emperatu res (of ·f'::} e 
order of 70C° F) dampiP.g capacity varies with frequency. 



dump i ng .i s not vis c.'ous ; i.e .. tirn t -U:i. e en ergy dissipa ted by 

i n terna l d amping is not c1 ue to t h e existence of a force which 

i s pr oportiom,l to velocity. R;:;. ther, the concept of i nter

na l dRmping is on e of energy a b s orbed per cycle of vibration 

by virtue o.f the noncoinci.dence of the upwcj r d and downward 

1n·anch of the loa d-deflection curve. Consequently, no damp

i ng force should a ppe a r in the equations of motiono (
9

) To 

overcome this difficulty, J.:.cobsen(ll) has proposed a meth od 

of introducing the effect of internal damping into the equa• 

tions of' motion through the use of a coefficient of equiva

lent viscous damping. This metlwd has been further developed 

( 12 \ 
by Mykelstad 1 • 

4o In the range of stress encountered· in engineering 

practice, damping capacity appea rs to depend only on the 

ma xinn.un stress. It is common practic0 to write t h e energy 

tli.iiisipated, A.W, as 

where c and n are constants to be determined by experiment. 
r 12) 

Va rious vc:i lues of n have been offered: Mykelstad\ sta tes 

that n = 2.3 for steelo Robertson and Yorgiadis <
14

) give 

:rrany curves of t1 W vs. ?-'_ far a ll of which n is 3 o Kimball max 
n 3 ) offe""s , ~ the values of 2 or 3 for n. A dimensional analy-

s is wh ich is carried out below reveals that if we assume t ha t 

ii 11 is a function of stress and strain only, then 'ii ca n be 

displayed in t..'"le :form 



fo:n:as., 

ln order -to study t h e effect of' size in inter:ru, .. l daicp

ing., consi<ler a prisruatical bar f reely vibrtiting. Choose tl1e 

x-axis along the unstrained position of fu e neutr--"11 axis 9 . the 

y-axis orthogonal and a t the left end of the bar., Ignore 

the weight of the baro Then, if m is the mass of' the bar 

per unit lengtl1., a differential lengt.h., dx., or the bur not 

at a support can be considered to_ be acted on by the revers ed 

inertia forc e - mJ dx o Moreover., if the bar is subJ,ec ted to 

a viscous damping force., this force can be added to the rev

ersed inertia force. Let c be the coefficient of viscous 

damping per unit length of beam so that ... ct dx is the viscous 

damping force per length, •1x, of beam. We find thus for a 

freely vibrating beam with viscous damping the differentiul 

equa tion of motion 

(26) 

It is known tbs t internal aampil".g is no t viscous o ::,uch 

damping will be a ssumed to hsve its amplitude proportiona l 

to some power of the amplitude of the bending 111omento Und er 

this assumption, the energy dissipated per cycle per unit 

length can be expi.-essed in the form 

(27) Energy_ dissipatetl = c,(r ·~ 

wh ere µ is a constant and X" is proportional to the c,mpl 

i tude of the bending moment o We can now compute an equival ... 
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ent viscous tiamnjn,r coefficient. c . on the assumption that ,. -- , ea.~ 
the energy dissipated by the viscous damping i s the same as 

tl i;,_..: t dissipr-. ted "by the i.nternal damping . Thus 

(28) 

or 

where 

a nd 

(){ X "/'" "'" 1l" Ce .X \o 
i 

w is the circular frequency of the vibration 

<( is a constant dep ending on the magnitude of the 
interna l damping 

C is e'J the coefficient of equivalent viscous damping 

.X. • is the amplitude of •vibration 

x·· is the amplitude of the curvature of the benm o 

Substitution of' Eqc (19) in F.q., (26) yields the equ ation 

of motion for free vibration with internal damping: 

(30) E"I 
2)'4y . .. a( X ,.,,.,... 

= - rny - y 
c),r.<I fiw XL. 

'!L e mass, m., per unit length of beam is "'t A where ""1 is sf!ee
- 9 

ific weight, A is cross sections! area, and g is gravitation-

al accelerationo With this substitution Eqo (30) becomes 

{31) 
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Define: 
x = L t where L is a characteristic length 

t ·= 

k = L \. (k is the radius or gyration) 

a,,.{J_ 
Cl) = -L 

-.i''.,.,... = q 
'R'E X-._ 

a = ~ ~~ 

In any one cycle q can be considered to b~ constant, depend

" ing only on the values of X and X at the begimling o.f the 

cycle. 

S ince "., 1 
<) "" 

and 

can be put into dimensionless form: 

(32) 

where all the quanti. ties are dimensionl~ss . 

To solve Eq . (32) assume a solution of the form 

(33) 

Then \. ~T 
a"Z ,,........., o LT ~ ,..._. oT - - -
0 \. 

~ ,.__. a, - 2),.. S..f"l. 

whence 

(34) t t. 
~"2 ,....... -- C. ...:'...... 
c) ~ ¥ 



and 

(35) 

The solution of Eqe (34) is seen to be 

where ,P ::. 

The solution of Eqo (35) will be assumed to be of the form 

- i./l7 
(37) T -= A 0 e 

1,J 
where Ao = Ao e • The real part of T will then give the de• 

sired solution. Then 

or 

(38) 

z £__ 
-.fl.+ s +c.-=.o 

.fl. = 'i' 
I- -s 

Ve observe, by considering Eqo (35) with the middle term 

deleted, that 

(39) 
z 

C:: .fl., 

where .n....., is the dimensionless ns tural frequency. 

Hence, if we set 

(40) 

then 

(41) 

or, if e <<, 

€. = 

.fl. ~ 

z 
.s ..f'2".,_ 

' 
.11....,(1+ . J z ~, 

( 42 ) .n. " ...fl.., ( t + E t:: <' ) 



This done we can rewrite Eq. (37) in the f .orm 
- - i.Q..,,.(l+-LJ 1ri)1' 
T-= Ao e 

and the solution which we seek becomes 

_(43) 
- i ~.("l .. ,-

r ~ A 0 e cc s(.fl..,'l'tft> 

The ex1,onent € .11. .. can be rearranged through the use of Eq_ . 
I 

(39). Thus 

(44) --- ..fl.,. : 
S' ...11... .. 'L s J'l. .. 

·iihence, f'inally, we obtain as the expression for T 

- _L 
(45) T :. "" .z. s..n,. 

cos c.n.,.,,,-,.(1J 

The solution can now proceed in the usual fash ion. 

Equation (36), together with the boundary condi tione will 

yield a frequency equation, thus determining a sequence of 

by Bqo (39) a corresponding value of ..il.~ 

'£h e gem ral solution of Eq. (32) then. is 

00 

....(1..n .fl...., • o • • 
t J 'Z.. I 

(46) 7 ::. ,·~ ( Cl, cod, Pi\ + O. z.. :.inh p,· E, -i- a 5 cos p,· s + a., s,.,, p,· f )• 

where 

• .A e 

..fl.,. . 
(., 

.2 .f .a..,,. 

< < I • 



For any given mode, the ratio of two consecutive ampli

tudes is 

{47) e 

und the logarithmic decrement is 

(48) L.0. -= i. s -'1.., _ 

' 
Returning to the expression for q, we find that 

"/ o< x_ 
(49) L.D. = 

From Eq. (49) we conclude that the logarithmic decre-

" ment decreases with time. The curvature, Xm , will approach 

zero with the amplitude,~• Sinceµ is known from exper

ience to be greater than 2, the ratio X"; / X.,,.. .... ~ill become 

a rbitrarily small. 

A further remark about the logarithmic decrement is 

necessary because the presence of .fl.... . in the denominator .. 
of Bq. (49) conveys the impression that the higher frequency 

ruodes will not be damped out as ropidly as are the motles of 

lower frequency. 

This is not a correct conclusion as can be shown by 

writing Xm in dimensionless formo For the 1-th mode 

( 50 ) K ~ = L 1. "" L S f ( r) , ... 
since throughout the m - th eye le T ( 1"') is a function of 

1" onlyo Consequently 



(51) 

-" X= ... 

-30-

= ~ f<1.,Jp/(a, coshf'iC..,. - - -- - crq sinp.-~) 

L.D. = 

.fl.. YI . 
--!. lea ds to 

o( 

Consider now the variation of o<. with s ize of beam. 

is defined by Eq. (27) in such a way that oc X ·!f" is the 

energy dissipated per cycle in length, dx; of the beam. 

A brief consideration of the dimeneions of the v_ariables 

involved in hysteresis damping reveals that if we assume the 

energy thus dissipated., E.D., to depend only -on the maximum 

stress, o- , and on the n.t.ximum strain, e , then 

E. .O . .. ~ c'° <J"<= .J,· 
' 

y 

B 

i! 

Fig. 3 

In particular suppose that the beam shown in Fig. 3 is 

vibrating in the x-y plane ano that t he displacement of the 

neutral axis is given by 

(52) 



'h1here x1 is the eigen-function for the i-th mode of vibration 

of the beam. Let t and t +l be successive values of t which m m 
maximize g1 ( t) o For the fiber AD of axial dimension dx and 

depth dimension d1 lying a di.stance h from the beam's neutral 

axis .P its nllximum stress in the m-th cycle of tbe 1-th mode 

and the corresponding maximum str~in is 

h X ." Cl . ( t ... l. 
' -J• 

(In the following we shall assume that c 1 is zero for 

all i save i • 1. This is done only to simplify the nota

tion. 'I'he extension of the conclusions to more genersl 

assumptions on e 1 is irmnedia te.) 

T'.ne energy dissipated E.D.' by a transverse lamina. of 

th:i.ckness dx in one cycle is then 

or 

( 53) 

(54) 

h:c,I 

E.D.' • zf,oc, vvd"(E>i.X:/1.-<t..,JllhX,"~~-(t,.,l].Jdh 

_ I -.)~2 ,,...)+I .J+I 

t:.D. = c, £ w ol X. [ qJt ..... 1] dx 

Comparing Eqs. (53) and (27) leads to 

o( -:: E d
t,)+1 

c2. vv 

or, since wd • A, 

(65) 

where A is the cross-sectional area of the beam and d is its 

half depth• 

Writing d 1111 L~ and Ac L2 s brings Eq. (51) into the 

form 
c S-"' fcr>.,4,-(+2. (a, cosh p;{ ♦ • •• • • • - 0111 si01 p,;~V""-

L. D. = 
<Co., c.o.) h f?, { + • • • • • • - +- a• f;,·..., r, {) z. 
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where all quantities are dimensionless. 'We would then expect 

to be able to model internal '·damping. 

This conclusion can be supported, as well, on energy 

considerations. Making the usual sub sti tu tions I namely, 

leads to 

(57) 

as the expressions for the energy dissipated by a lamina of 

length d in the m- th eye le of the 1-th mode. The total 

energy dissipated by the beam in this cycle of this mode is 

The maxinrum potential energy of bendi.ng in tl1e m-th cycle of 

t he i-th . mode is 

(59) 
L 

EI f " 2 P. £ . = z ( K. (j, ( 'C ... ~ d 'I( -:: 

0 

Realizing that the maximum potential energy occurs whe n the 

kine tic energy is zero leads to t h e equation 

(60) 

which merely states that the difference in maximum potential 

energy in two successive cycles equals the energy dissipated 

during the cycleo 



The subs ti. V.ttion of L 't' /a f'or t in Eq o (60) reduces the 

equation to dimensionless form except for the E and L3 which 

appear on both sides of' the equa tiono It i.mmedia tely follows 

tha. t for two beams which are geometrically simila.r and have 

the same boLmdary snd irdtial conditions , the effect of' dam.p

ing can be correctly ruooeled. 

SUl'-frlARY OF CONCLUSIONS : ---- - ------
The conclusions reached. in the foregoing analysis can 

be su.rmiarizec1 for conve!"lience • . 

(A) If clamping be ignored, the free vibration of a ·te~m 
( 

whose statical deflection curve · is y = f(x , O) and ·whieh has 

an initial velocity y = v(x,O) can b~ modeled if 

where k 

L 

a 

( ~ ) Proto+:Jpe. 
= 

( i()(,o}) 
L 'Pro-fot~pe 

= 

(
v(x,o}) 

:::: 

a Protot::,pe 

-
= 

radius of gyration 

length of beam 

·, 

(~)Model 

e(~o)) 

• Mode\ 

(
ll(X, ol) 

a Model 

rate of propagation of small elastic waveso 



(R) In order to .model a b~)~.m acted on by IP. concentrntec: for-

cing funetion.11 P, of the type P = p sin .n. t the con.di tim1.s in 

addition to those given in (A) nl)ove, ·which must be :satigf'ied 

are 

where 

( :,. ) Model 

a and L are as defined in (A) 

..., = 

A • 

specific weight of the material 

cross-sectional area of the beam. 

(C) In order to model a beam whose root is subjec ted to 2,n 

acceleration f(t) given by 

f(t) = 0 if 

f(t) = b ain wt if 

f(t) D 0 if 

the conditions, in addition to tho se given in (A) above , 

which must be satisfied are: 

(Lb) 
a

2 
Pro+o+~re 

( L"w) Proto+t,re, 

= (\~~)Model 

(L~)Mode{ 
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where a and L are as defined in {A). 

(D) In order to model n beam subjected to a uniformly dis

tributed rorcing function U(t) = ~ sin wt by means of an 

acceleration b sin wt applied to its root, b must sa tisfy 
9P 

the relotiommip b = -
..,AL 

and the conditions giver1 w1der 

(A) and (C) must be observed. 

(E) In order to model a beam whose root is given an &ccel

eration ·of short duration, k/L must be the s~me for b oth 
impulse 

prototype a11d model am the e.eeoleration must also be t he ssne 

for each. 

(F) The eff'ect of internal damping can be satisfactor•ily 

modeled through the use of geometrically similar models of 

the same ma teria 1 . 



CHAPTER II 

The theory developed in Chapter I was subjected to ex

perin~ntal verification. Three tests were conducted: 

(1) Bars of a variety of sizes and shapes were mounted 

as cantilever beams. Each was given an initial deflection. 

The load producing the deflection was suddenly removed and 

the strain in the beam as a . function of time was observed. 

The object of this test was to observe the . effect of damping 

on the free vibration of the beam., 

(2) Three cantilever beams, modeled according to the 

cor:ldi tions established by the theory had the.ir roots simul

taneously subjected to th~ same acceleration of short dura

tion. 'l'he strains developed in the beams were recorded., 

The object of this test was to observe the ef'fect of dumping 

in this type of vibration and to determine the range over 

which the duration of the acceleration can be considered to 

be very short. 

(3) Six cantilever beams- had their roots subjected to 

continuing sinusoidal acceleration o The ampli tu.{(~-- <?1 ' the 

acceleration was modeled in accordance with the theory o The 
. 

object ot this test was to verify the theory and to show that 

internal damping con be modeled. 

The apparatus and procedures used for these tests are 

described in detail in this chapter. 



FREE VIBRATION TESTS: 

Beams of the sizes and shapes shown in Figo 4 were fab

ricated. Electric resistance strain gages (SR-4 Type C-1) 
9 were attached on opposite sides of each beam at a point 10 

or its rree length from its tree end. A vise shown in Fig. 5 

wa s t'abricated and rigidly attached to a reinforced concrete 

slab floor, 12 inches thick. The construction details of 

the vise are shown in Fig. 6. 

Test 1 0 (a) Each of the beams was clamped in the vj_se 

as shmm in :Fig. 7 and the nuts were tightened with B torque 

wrertch. '!'he free end of each beam was deflected by means 

of a length of piano wire (D .s. gage No. 28) until the s train 

under the gages was 300 micro inches per inch. This strain 

ua s measured by a Ba ldwi n Southwark Type K Strain Indicator. 

(b) The deflection of the free end was measured by a 

d ial indicator as shown in Fig. 7. The deflection of the 

diu 1 i nc1ica tor s ta.nd due to the change i n the spring load 

of the dial indicator as its plunger movecl out with t he de

flection of the end of the beam was observed by means of a 

transit and was found to be of the order of 0.00010 i nch es. 

Th.is was considered to be negligible in subsequent work . 

From the observed deflection and the geometry of each beam , 

t b.e .strain under the gages was computedo This was found to 

be in a ll csses 300 + 8 micro inches per incho It was con

clµded tba t the vise was sui'ficiently rig:td so tha t .a clamp

ed end foir the beem was effectively obtaine d . 
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21 
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15 

16 

17 

30 

31 

i,· ,. ; 0 . 
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30 in. 
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n 
( . ) ,in. 
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1. 000 
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1. 000 
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for clrmping. 
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(c) The deflection of the free end of the beam by means 

of the piano wire proved onerous. Investigations wei:-e uncler

taken seeking to simplify the procedure. The wire was sub

sequently replaced by a strut of mapl e, 1/2 inch in diameter 

inserted between the stand show.n at the left of Fig. 7 and 

the free end of the beam. The end of the strut at the left 

was cut off P,erpendicular to the axis of the strut ~nd was 

butted against a screw in the stand for adjusting the de

flection. The right end of the strut was rounded so as to 

give point contact against the beam. When the piano wire 

was used to produce the deflection of the free end of the 

beam, the load was suddenly relea·sed by cutting the wire. 

When the deflection was produced by the strut, a fast upward 

sweep of the investigator's hand suddenly removed the strut 

and released the load. Strain vs. time curves for the two 

methods were indistinguishable. 

(d) For Beams Nos. 1, 3, 4, 12, 13, and 21, with U1e 

beam deflected as in Part (c) the strain gages were connect

ed to a Brush Type BL-310 strain analyzer. The strut pro

ducing ·the deflection of the beam was removed and the beam llBS 

allowed to vibrate freely. 'lile variation of strain under the 

gages with time was recorded. This method could not be used 

with Beams Nos. 11, 15, 16 and 18, because their_natural 

frequeneie s were beyond the range of response of the Brush 

instrumento Their strain variation as a function of time 

was recorded as outlined in Part (e) immedia tely following. 



(e) To record the strain decay curves for Beams Nos. 

11, 15, 16, and 17, a DuMont Oscilloscope Type 208-B, with 

a 'l'ype P•ll tube and a Fairchild Recording Ca.mera were used. 

Eastman Panatomic X or Plus X film was used. A signal of 

164 cycles per second and an amplitude on the oscilloscope 

screen of 2 inches either side of center was found to record 

satisfactorily on Pa.natoroic X with an aperture of f :2.8 and 

a film speed up to 30 inches per secondo Tank development 

W&S in Eastman developed DK 60•a for 12 minutes at a temper• 

s, ture of 68° F. liigher film transport speeds were uo t inves• 

tigated. For Plus X film, correspondingly smaller apertures 

were used. Because the Fairchild camera provides only verti

csl film transport, the x- and y-sxes or the oscilloscope 

were interchanged for this ,1ork in order to gain the advan

iages or the y-axis amplirier for a screen imnge with a hori

zontal displacement only. The interchange of axes is e~sily 

accomplished by interchanging leads on the back 0£ the os

cil~oscope. In recording the strains for these beams the 

'bridge circuit · shown in Pig. 8 was used. 

The oscilloscope provided insufficientga.:ln in its y-axis 

amplifier for this bridge circuit. Consequently a pre-a.mpli• 

fier was constructed. The circuit diagram c£ this pre-ampli• 

fier is shown in Fig. 9 and its response curves ore shown in 

Fig. 10. The frequency response curve of the oscilloscope 

is shown in Fig. 11. 

Beam 12 was installed in the vise and subjected to a 

strain decay test as in Part (d) above, the curve of strain 



Fig .. 8. Bridge Circu::i..t. Gages Gl and G2 on test 
structure. G,,ges G3 u1d G4 on unstrained 
structure of srme 1,12 torir,l as test struct
ure and subject to some urnbient temperature. 
All gege s 5R-4. Type C-1. 
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,·s. time being recorded by the Brush e quipment. The same 

test -was repeated but this time the record was ?Sde with the 

oscilloscope circuit. Beams Nos. 11, 15, 16 and 17 were 

then subjected to stra in d.ecay tests and their stra in vs. 

time curves were recorded by n~ans of the oscilloscope camera. 

(f) In order to evaluate tlle ef'fect of exte1"nal damp

ing as contrasted to internal damping in the foregoing strain 

decay tests, additional investigations were undertaken. The 

tests outlined in Pa rt (d) above were repeated with Beams 

30 and 31 with the vise ns constructed. Malleable copper 

j a ws were then inserted between the jaws of the vise and 

t he root of the beam. It was found that this increased the 

damping slightly, (i.e. the dynamic strains ~ere decreased by 

about 10 percent.) 'the use of copper ja ws was abandoned. 

Next the entire vise was suspended by means of a t'ine wire 

(pia.no wire, B.s. gage No. 28) from an overhead ~upport as 

sh own in the• photograph of Fig. 12. Strain decay curves 

were uga in recordedo It was found tha t the curves differ-

"' + I:: t ed oy - .J percen fr om those obtained with t he vise secured 

t o t h e floor. 

(g) The frequency of each beam was observed by means 

of a General Radio Strobotae. Through the use of a varinb1e 

speed motor, the strobotac was calibrated before each test 

by cC" .. mpari:ng it against a revolu tion counter and stop -wateho 





. I MPULS E TES TS : 

Be~ur.s of the size and sh.ape shown in F'ig. 13 were fab

ricated., A vise constructed as shown in Fig .. 14 was prepared 

for at tacJ1ment to a drop table. SR-4 Strain Gages -were then 

applied on opposite sicles of each beam at a position 9/10 of 

the free length of the beam from the free end. An accelero

meter made by Statham Ins tru~en t Company was attached to 

the drop table. The drop table was allowed to fall free]y 

through a distnnce of 1 rt. and was suddenly brought to »."est 

by striking a round lead strut. The stresses developed in 
b 

the beams and U1e acceleration were recorded by means of Con.:. 

solida ted Recording Oscill ogrnph Equipment., Since only the 

relative values of the stresses were of iniportru1ce, the maxi

mum stress developed in eac.h beam was not calibrated al though 

the rela tiYe values of the three marlmuru stresses were cali• 

bruted by interchanging the ch.am1els on which the recordings 

were rmde. Likewise., no attempt ,ms made to calibrgite the 

mugnitude of the acceleration since only its duration ·was 

of importanc e. 

FORCED VIBRATION TESTS: 

Beams of the sizes and shapes shown in Fig. 15 were fab

ricated. Beams Nos. 32, 33 and 34 were all cut from the 

same piece of bar stock which was hot rolled SAE 1025 steel, 

" a ft " 1-1/4 x 6 x 34 • These pieces were milled to 1/8 of size 

in all dimensions and were simultaneously annealed, being 

soo ked at a temperature of 1450 ° F for two hours and all o i;ed 
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Beam No. L b h Nnterinl 

+ 
1/64 2.000 1.000 

S.1'i.E * 32 30 - 1. 8(i0 O.909 1025 Ht, Tr. 

,..,.,1 t. 1/64 1.500 00750 
SAE 

)~ 33 ~~;r- 1.499 0.748 10.25 Ht. Tr. 

* + 
1/64 1.000 O.5OO ;j}.'8 1025 Ht. Tr. 34 15 - 0.999 o .4~)9 

35 30 + 
1/64 

2.000 1.000 ~;11..r: 10~.m Cold Rolled - 1.9~7 0.997 

36 2 .-.>1 + 1/64 1.500 O .750 
SAE 1025 Cold Rolled ,.,2 - I.497 0.747 

37 15 
+ 

1/64 1.000 O.5OO 
~·:~-.A.E 1025 Colf1 Holled - 0.997 0 .. 497 

* Deams 32, 33, 34 to be cut from same piece of stock, SAE 

1025 Hot Rolled. Lnneal tit 1450° F. So[:k for ;2 hours. 

Furnace cool 12 to 16 hours. 

Fig. 15. 
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to furnace cool for fourteen hours. Each of the three beams 

showed a Brinnell hardness of 55.0 with a 10 mm~ ba ll and 

3000 Kg. load. Only Beam No. 33 showed any warp under this 

" treatment. It bowed in a direction perpendicular to l 

" x 22-1/2 face, an amount of 3/32 of an inch. It was sub-

s.equently press straightened. AU three beoms were then sur

face ground to the required dimension with a surf'ace finish d' 

abpi t 50 micro-inches RMS. SR-4 Type Strain Gages were then 

mounted on opposite sides of the six beams (Beams No!!!!., 32 -37) 

at a position 9/10 of the free length from the free end of 

the beam. A vibrating stand assembly as shown in Fig e 16 

was designed and fabricated. The stand consists of B heavy 

base, a fixed-fixed beam which is used as a spring, and a 

Lazan oscillator which constitutes a mass. The oscillator 

;is driven as shown by pulleys and a V-belt from a . 1 H.P. 

electric motor through a Graham variable speed driveo T'he 

range of speed for the vibration stand is from O to 3750 

r.p.m. The Lazan oscillator generates a maximum for-cing funo

tion of plus or m~nus 1650 lbs. and an assortment of fi ::red

fixed beams ranging in thickness from 5/16 to 1/2 is provi ded 

by interchanging these fixed-fixed beams o Arupli tufie s of 
n 

the vibration shaking table e.s grest as plus or minus t/r.:, 

are available. For heavy test structures the vari ,::ms beams 

can be used in combination to give greater spring cmlst~-,nto 

The displacement of the shaking table is sinusoic!al z l tl.-.ou£h 

it is essential that test structures be dynamicall y 'balanced 





on either side of' the canter line of the sb.n.king tu'ble. 

Otherwise the fixed-fixed beam is apt to begin vibrating in 

c.n unsymmetric mode. 

Be~ms Nos. 3r".! and 35, 33 u:nd 36, and 34 and 37 were 

placed successively on U1e shaking tnble. The frequency 

-we,s set ut 50 percent of their computed resommt frequencies 

and the oscillu tor wes adjusted to give sufficient ampli tu.de 

to cause n strain of :zoo micro incl..1es per inch to be develop

ed in }}ea m Z~o ., 3 2 . 'fhe beams were vibrated n t umpli t u.des 

t,1hicb. were in the ratios of 1 :3/4;1/;'i resp. The strain t.U'.Hler 

t he gages was recorded by rrJeun s of the Brush ~Jtr-ain Gage 
.. 

recorder and b~' 1neans Qf the Fnircllild oscilloscope recm~ding 

c,unera . This was repeated for other frequencies below :ceson-

For beams Nos., 32 8.nd 35 the freque ncy of' the shaking 

tt, l ile was set at 78 .6 percent of the r.i::;, turnl frequen c;v of 

these bee.ms/) fi nd the oscillnto:r ,,·ss udjusted t o give s-uffi

c:tent nmp litude to c~.use c strain of :wo iri icro-ind;.e;::J per 

inch to be <l eveloped i n the nnnehled ·beEm No .. 32 . T.he strain 

untler the gage of Beam No o 32 --;,;.:, s recorae,1. b ,r mew ~s of the 

I\i•ush equipment and the strv in ul'Ider the g age of Reun ;,; o . :J5 

was recorded by the bridge circuit shown in Fi.g. 8 anti re

corded by rne~r..s of the nu.~ont oscilloscope 0nd thrl Fa irchi ld 

recording cnmera o Since. on ly reh1 tive strv in Wlo(S of inter ... 

est, the oscilloscope recording was c a librate d by j_nterckwng-

i ng the le~HJS of beams 32 and 350 The nmplj_fud e of ~:ib r ation 

of tbe shaki ng table was observed by means of a r1ial indica= 



tor mounted on the post which .£, ppears directly tmder the 

oscillator in Fig .. 18. The test was continued without inter

r-uption at t.his frequency ::-, nc1 amplitude until the beams h.~d 

been subjected to lpl50,000 cycles of stresso 

Beams Nos o 33 r:nd 36 were inserted in the test fitc1nd in 

place of the previous bee.ms. The frequenc y was set at 78 .6 

percent of the oo rural fre~uency of the be.::IT'iB on t he shak ing 

tu'ble and the Lazun oscillator was adjusted u:ntil the umpli

tude of vibration of the shcking tnble was 3/4th of thut 

used for Beams Nos. 32 ancl 350 'the strains developed under· 

the g~ges were recorded as before. This test wr:.s a lso con

tinued with out interruption at this frequency and nmpli tuc!e 

until the beams had been subjected to more than 1,100,000 

cycles of stresso 

The foregoing test w2 s r-epes tea wi tl1 ne2ms Nos .. :Yi pnd 

3', being run at a frequency which was 78.6 percent of their 

m~ tural frequency rmd an nmpliwde of ·vibretlon of the srw.king 

tf.1ble wb ich was 1/4 thn t used for Beams Nos o 32 ;:,n cl ::-;5 o 'l'he 

strains developed under the gages -were recorr'. ed gs l'-e f'ore :::.nc1 

ug::dn tlrn test was continue c1 without into r·ru.p ti on 8 t t.h:ls 

frequency tnd amplitude until the begms :tf; d been subj ected 

to more than 1,100,000 cycles of stress. 

Benms Noe .. 32 and 35 were replaced on the shr:k ing t t, ble 

r; n d tlie frequency wus c:djusted to trieir resorn~nt freq t.wncy o 

TLe amplitude of the shaking table 1'eq_u iree to r,rnCuc E: r:. 

str~in of 1000 µ ino/in. under the g ages of f>e a1:1 ;~io o ~1 ;.,.:; 1.Jc,S 



observedo Tbe stl'ain in Beam Noo 35 was recorded on the 

Brush equipment. These beams were replaced by Beams Nos. 33 

and 36 and the operation was repeated producing a strain of 

1000 µ in./in. under the gages of Beam No. 330 T'ne amplitude 

of the shaking table in the la tterr case · was 27 .8 percent of 

that required for Beams Nos. 32 imd 35 o 



CHAPTER III 

DISCUSS ION OF HESlJLTS . 

THE FREE VIHRP .. TION TES TS : 

Test 1. '!'he dimensionless na ttu"al frequency, ...n.. , of 

.the first mode of vibration of each of the beams listed in 

Table I wa s computed by the form u l c given in Aprendi:x l • 

'!'he observed natural frequeneies are also listed in Table I. 

TABLE I 

Col . 1 Col. 2 Col . 3 Col o 4 Col . 5 Col. 6 

k ~ fL f fL 

Dea~i Had . of Rad.of Gyro (com- • (Obs . ) (Obs.) 
No. Gyr.(in .. ) (dimension- puted) (Cys/sec) 

less) 
1 0 . 348 0.0116 0 . 0407 43 . 6 0.0409 

3 0 . 288 0.0116 0 . 0407 52 . 5 0 . 0410 

4 "° o . 348 0 . 0116 0 . 0407 27.5 0.0404 

11 0 . 144 0 . 0116 0 . 0407 105 . 3 0 . 0410 
i '"~ ..,_ ;,:; 0 . 216 0.0116 0 . 0407 43 . 8 0.0404 

13 0 . 107 0 . 0116 0 . 04-07 88 . 5 0 .04.-07 

15 0 . 090 0 . 0116 0.0,007 164.0 0 .0403 

16 0 0144 0 . 0116 0 . 0407 103 .5 0 . 0404 

21 0 ~348 0 . 0116 0 . 04D7 42o7 0 . 04.05 

NO'I'E : Obs erved ..n. computed f:rorn obser v ed f by means 
of the f onuula 1L = 2 ~ f L/a o Toe values of "a" 
which were used are for steel: 2 o00 x 106 in./sec . ; 
for brass : 1 .27 :x H,5 in .. /sec o; for aluminum : . 
2 . 01 X 105 ino/sec . 
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For sys terns having viscous damp:i.ng it can be shown that the 

damped nr:: tura l frequency is less t.han the undamped nn tural 
r 16) 

frequency.\ A similar conclusion has not been demonstrated 

rigorously ·for systems having internal damping. This wnnt 

is due to the lack of an analyticul solution for the ln tter 

problem.. A comparison of columns 4 and 6 in Table I seenm 

to lead to such a conclusion since the observed frequency 

is less than the predicted frequency in most cases. However, 

this difference is as readily explained on the basis of a 

variDtion in the physical properties of the material as by an 

appeal to the effect of interns 1 domping. There is no need 

to attempt to ·use ti finer determination of these properties 

for the model in an effort to dist:il'guisb petween their eff~ct 

and that of internal dampingo The accuracy of prediction of 

frequency on the basis of the beams listed in Table I is, 

moreover, well within the allowable limit set forth in the 

Introduction. If Beam 16 be considered model u.nd Beam 3 be 

considered pro to type, then the pi."'edic ted frequency would. be 

9 8 o5 percent of the observed frequency of the prototypee 

Tnis :cepresents the greatest inaccurocy in the present testo 

It should be recalled that Beam 15 is of cold rolled steel, 

n " 7 .82 inches long and 0.750 x 00312 in cross section whereas 

" " Beam 3 is of aluminum, 24.8 long and 1.997 in cross section. 

Other, more s triking., agreements appear. Again taking Beam 

15 as model and Beam 4 as pro to type, we find the predicted 

frequency is 99.6 percent of the observed frequency of the 



prototype~ In th j_s case the model is the same as before 

but the prototype is a brass E section, 30 inches long, 

flange width of l inch, c.1epth of 1 inch, and flange and web 

thick:ne ss 1/4 inch. (See Fig. 4). 

In order to present the strain decay curves with clarity 

it is necessary to define ~ dimensionless unit of time., Let 

this be denominated as the disec (combination of the worcls 

" It " • " dimensionless and second.) ln this paper, U1e unit of 

the disec is token as the ratio of the aura tion of time for 

a sound wove to tra.vel the length of the beam -to the clura tion 

of a second. The dimensionless frequency is then, expressed 

as radians per disec or cycles per disec. The dimensionless 

period is expressed in disecs per cycles. If ..n... is the dim= 

ensio.nless frequency in radians per space. disec, q> the dimen

sionless fre~uency in cycles per disec, and T the dimension

less per·iod in disecs/cycle, these three quantities flatisfy 

the relations 
I 

T 

.n.. 

..a, cp , and T for the beams of Table I are shm,m in 

Table II. These numbers are ensily i.nterpreted., Beam I 

vibrates through 0.0409 radi.i:ms or 0.00650 cycles in the 

t;lme required .for a sound wave to travel its length. Con

versely., while the beam was vibrating through. one cycle a 

sound wave would travel its length 154 times. 
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'fABLE II. 

Beam No. 
rad/disec cycle s/c1isec disec/cycle. 

1 0.,0409 0000650 154 

3 0.0410 0.00653 153 

4 0.0404 0.00644 155 

11 0.0410 0.00653 153 

12 0.0404 0.00644 156 

13 0.0407 0.00049 154 

15 0.0403 0.00642 156 

16 0.0404 0.00644 155 

21 0.0405 0.00645 155 

The m.:-ixinmm strains developed i.n each l,eEim as measured in 

Test I are plotted against dimensionless time in Fig. 17. 

This plot discloses many points of interest. 

In the first place the E:igreement amongst the curves is 

noteworthy. The agreerrent between strains as predicted from 

+ any one beam HS prototype is well within the ... 10 percent 

predicted in the Introduction. In the first. t'm..r disecs uhen 

the strain is highest the strain vnlues vnry only from 315 

µ in/in. to 324 \-1 ino/in. - a variation of ! 1.41 percent of 

the mean value,. For later times, the variation increases. 

Thu6 at 5400 disecs (npproxima tely 35 eye les of stress) the 

variation is from 177 µ in/ino to 215 µ i .1v'in. This amour1ts 

+ ' to -9 .68 percent of the mean value. At 10,000 disecs . (nppro-

xitm tely 70 cycles of stress) the vnriation is froru 13U µ in/ 

in .. to 165 µ in/in . Tlils i!:i :J: 8.57 percent of ·the r.ma:n value,. 
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In all the curves the stra in at the enu of t he first 

cycle was greater t.ha n the statica l strain by 5 percent to 

8 percent of the statical strain. This apparent paradox can 

be exp lai.ned on the grounds that been use of the l a rger number 

of cycles in unit time the higher modes da mp out more rc:pid

ly than does the fundamental. This fact c ombj_ned wi th the 

f~.wt that the curve ture of the beam -when it is vibr a ting 

freely in i .ts fundamental mode differs widely from its c u rva

ture when it is subjected to a sti1 tic2l t1eflection gi ·ve s rise 

to higher vibrating strains than the statical stra :i.ns from 

which they spring. 

I n order to illustrate this point, let us com:d.f1er n 

fixed-free beam. Let the beam b e stoticrlly deflected by a 

concentrri ted load P applied nt the free end. L£ t E be Young's 

Horlulus for the umterigls, I the cross-section:::l moment of 

inertia, and L the length.. Let us assume tlrn t tho deflection 

is small enough tlrn t the c u r-vu ture c ::; . .n be t r.k en or; ua l to ' -d1.y 
d x1. • 'i e hnve then that Uie w.:.1 xirmw1 strnin D t r;ny section 

of t h e berun is proportional to t li e curv;:;ture ut tha t sec t iono 

For t h e st.a tical deflection t he deflection curve i s 

(61) 

and the maximum curvature is 

(62) :: 
PL 

EI 



If the load is suddenly released, the beam wi 11 vibrate 

in an infinity of modes, each mode being one of the eigen

functions. The higher modes wi 11 tfanip out rapidly, lor1v:i.ng 

only the fundamental moc'leo By fuj_s time t..½e beam no longer 

ha.e the cubical paraboltc shape given by Eq. (61) 'bu t hns 

the shape of the first eigen-function. 

In an erfort to appraise the .curvature in this latter 

event., let us determine the curvature at the root of tLe beam 

for the first mode at time t = O., To this end we wri tc the 

eigen-funetion expansion for the statical de:flecti011 curve 

(63) 

where 

'rihence 

(64) 

where the second B nd third members are obtatned hy lti:ffc:r

entir, ting the LHS and RH::l of Er; e ( 63) resp. 

For the first mode., p = le875/Lo Bence the fir s t torm 

of the summa tion on the righ t has the v n luc 1,137 i)L/ EI., 

Comparison of this v~lue with Eq. (6~J ) sh ows that t he ci.:.rva

ture at tJ.10 root in the first mode exceeas the s t ri ticn 1 cur

vature b_y 13 .7 percent of' the st~ticnl curvf!.turc. The struii."1S 

will be in the smne ratio., This represen ts t Le n'.;,d.n:um :ro~1 s -

ible over-strain,, a.ctu.a lly, the higl'H:~2" rr.odes lli 11 not T)GC C :'H:1-

nri ly be dampec!. out c1uring the firs t cycle but mi.ght possibly 

endure into t.b. e second cycle depending on the magnituf.e of 



tbe tlaznp i ng :tn the sys tam. D1.u:•ing this time there wil l be 

some tlrunping of t h e first mode.o t oo. 'flrn reS".J..lt is that the 

In simila r fashion other t;rpes of b eams can be investi-

lood the dyn'fsmic strain at mi.d-span due to a sudden removal 

<:1f t.he load is 12100 percent of the statical strain at t.his 

point, ,, Inc. beam of uniform secti on the statical stra in a t 

121 . u peircent is n.oi serious. The results cannot, of course.11 

be iipf lied directly to a beam of vary ing cross section, but 

ii!:. such a case i¾! i mi la r in,,es tiga tions should be carried out ., 

Again, upon su.dc1 en removal of the load a hingE,d- hinged 

h 0t1,m with concen trated load at mid-spa..n w:tll sh.aw e t a point 

Th ey al l pr esente d the se,me eret:. to the vise • .ill W()re tight

ened to tho same b ol ting loatl. All were subj ec ted to the 

BHmG strs:'Ln a t t.he root o Fro01 the agree ment of the curves 



of Figo 17 it follo-w s that the sa.me percentage energy Wt}S 

disstpa ted by each beam in corresponding cycles.. Since all 

benrr s h ~;d different frequencies, a.nd since internal damping 

is independent of frequency, the conclusion is reached that 

the structural damping is either independent of frequency or 

is sufficiently small that its effects are overshadowed by 

those of internal damping. To resolve this altemative beams 

12 and 17 were included. Beam 12 was 1-1/2 'in. wide and was 

piroportioned according to the modeling parameters. Beam · 17 

·w.,1s also 1-1/2 in .. wide but was not proportioned to satisfy 

t.ue requirements for modeling of internal damping. In fact., 

by being 1/2 in. wider than Beam 16 but of the same thickness 

and length it was known to have greater internal damping than 

Beam 16. However., it presented the same area to the vise as 

did Beam 12 and the same strain was developed et its root. 

The strain decay curves for these beams are shown in Fig. 18 .. 

The only variable betveen Beams 12 and 17 tthich might in

fluen.ce the stru.ctu.ral damping is the frequency. But it 

hus .1lready been concluded from Beruns 1., 3., 4, 11., 13, 16 and 

;~1 '.t.hat· the structural damping is independent of the fre

qt:ienoy or else is smt.,11 enough that its effects are over

shadowed by the internal damping., Bence., the difference 

between the two curves of Fig. 18 cnn only be a.cc<,tmted :for 

1)y the conclusion that the effect of' structural damping i$ 

smnll in comparison with the effect of internal dampingo 

I n other words, the agreement amongst the curves of Fig,, 1'7 
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is due to a correct modeling of internal damping, not to a 

constant percentage energy loss throum.1 s truetural dampingo 

The other tests, namely Test l(f), seeking to evaluate 

the effects of structural damping, only served to strengthen 

this conclusion. When the vise was supported by a long f'ine 

wire tlie over-strain at the end of the first cycle was de

creased and subsequent strains were increased. For Beam 

No. 31, the opposite situation was true. The two curves for 

this latter beam are plotted in Fig. 19. 
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'l'HE DHOP TES TS : 

In Fig., 20 is fhown a tracing of the acceleration and 

strain vs. time curves for the series of arop tests outlined 

in Chapter II. The uniformity of results was anticipu ted 

. from previous investigations of the accelerations Ui.'1dergone 

by a drop table while being stopped by a short lead column. 

'The data as gatl1ered show the strain as ordinate to dif'ferent 

scales. This i~ due to the different sensitivities of the 

various galvanometer elements. The magnitudes of these 

strains can be readily compared however o For Drops Nos. 1, 

J, and 5, the acceleration was reasonably uniform. In Hrop 

No o 1 the maximum strain indicated for Beam No. 22 by channel 

II is the same as that indicated by this same channel for 

Beam No. 23 in Drop No. 3. Hence we conclude that for the 

same acceleira tion, the maximum strains in Beams Noe ., 22 and 

23 are the same id thin satisfactory limits. In the same man

ner" a comparison of the records of Channel III of Drops Nos . 

3 aJ;d 5 allows us to conc.lude that. the r.ny.J.arum strains devel-

cur-w·es for Drop No., 6 are plotted to correct dimensionless 

scales in Fig. 21. These curves all show the sm::-ie rnrudmurn 

strain. Actually fue sensitivity of the instrumentation is 

percent o This is well within the limits of acceptability 

t~et f ortl.i i n the Inti."'oduc tion . 



Drop No . 1 
,,, __ ~ / .. cc:leri:, tton 
vU. e l f-- I ~ 

- ::sec. . 
20 
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Deum ?l o. 22 

Drop ?;o. 3 

Lcc ele rn tion 

B am No.22 

Beam No.23 

Noe24 

Tracing of the 

original strain-time 

curves for the impulse 

(or arop) tests. 
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The agrc➔ ement in sha :pe of the strain vs o • time curves 

whid·1 npp ears in Fi.g o 21 de serve s further cons i.de:ration . 

T'ae theory develope d in Chapter II showed that t h e strr; ins 

sh. (!it!ld b e the saruei> 'but t bis theory was based on t he g ssu.mp

t.i.on that th.ere was no c1ernping . It is generally believed 

tb.r-. t t h e damptng tn such a case as this would play so impor>-

tant a rolt~ a.s to render valueles s an analysis ignoring da1mp-

ing o This belief mm b e reconciled with these results through 

the 1'."enliZf.!.tion that the acceleration of the roots of these 

"beams was of ·vel'y short duration as indicated in Table III., 

T.ue damping is an ener gy dissipation whi c h does not 

s train is being reversed o As a res...11 t we would not antici

pa. te the effect of damping t o mak e its elf felt in a ny mode 

unti l after the flr:st quarter c ycle of that mo de o Por the 

three beams t:mde1" coo.a icler>a ti on the acceleration has c ee1 sed 

before the f i rs t. eighth of fi cycle of the fu."ld nment&.l mocle 

Test 

Por th e higher modes t h e v.iVcel er a tion h r, s longer rela 

tive duration n9 nr;ted i n TB1:i le IIIo 'I'he aeco::-1d mode whose 
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Some re ti uc tion due to damping of the strain in th.i f3 moue 

should then be anticipated. This decrease i n stra in ar1.1pli 

tuue becomes noticeable a f ter the first cycle of t hi s r:wde. 

Likewise, for t h e three modes, wh ose peri0t1 is a pprox in¼< t.e ly 

one-twentieth of the period. of' the f unda menta l mode, the 

acceleration endures for 1 to 2 complete cycles.. 'ft.1.:rough 

out all of' this the acceleration a gainst t i ~: c u :a:"Ve C ~Hi b e 
an Impulse. 

reasonably approximated by a step f:.L"1Gti.on. Consequen tly , 

we would no't expect the dai:uping to make its elf f'el t i n ilie 

h igiter mode until after its second or third cycle. t-~oreover, 

the contribution to the total strain of these higher modes 

is small. Thus, though the damping imy appreciably influence 

the mgnitude of strain due to each mode the net result i s 

that the strains are adequately modeled in the three beams. 



Beam Duration Period Duration 
No . of Ac cel- of or nccel-

e:ra tion 1st Mode eration 
(di sees) (disecs} ( ,,f 1st Mode) 

22 93 .6 744 12 . 6 

23 62 . 5 744 8 040 

24 46 . 8 744 6 . 29 

Beam Duration Period Duration 
No . of Accel- of of Accel-

eration 2nd Mode er ation 
(disec s) (clisecs) ( ~of 2nd Mocle) - ; 

22 93 .5 119 78 . 6 

23 6r.:: . 5 119 52.3 

24 46 .8 11 9 49 04 

Beam Duration Period Dtu:·•t't t i on 
No . of Accel= of of Ac eel ... 

erra tion 3rd Mode eration 
(disecs) ( di secs) ( %of 3rd Mod~) 

22 93 o5 42 . 4 220 . 3 

23 62 .5 42.4 147.5 

24 46 08 42 . 4 110 . a 

TABLE III . 



THE FOB.CED VlBl-tA TlOX TES TS : 

In these tests, beams Nos. 32 to 37 were subjected to 

a scaled acceleration by being moun ted on a shaking tableo 

The beams were vibrated at frequencies between 50 percent 

and 90 percent of resonance. The theory developed in Chap

ter I indic~tes thot for adequate modeling of this type ~he 

amplitude of sinusoidal vibration of the shaking table must 
' 

be proportional to the length of the beam. 

In an effort to evaluate the effect of internal damping 

on the strains developed two beams were used in each run, one 

being a beam which was thoroughly and carefully annealed., 

the other being of cold rolled stock. Both the beams sat.is-
~ 

fied the SAE 1025 specification. 

Moreover, to have an actual indication of the effect or 

cha nge of internal damping on the amplitude.,oneof' the tests 

was made over a considerable period of time so that the change 

i n internal damping of the annealed beam could make itself' 

felt. 

It was observed that in a period covering some 1,100.9000 

cycle s there 'Wa~ a change in the internal damping of the 

annealed bean~ in that the straina developed in these b eams 

varied by approximately 10 percent. The results of the test 

however show that in this range of frequencies the effect 

of a variation of internal damping is very small and the 

str·ains developed in the beams were within the acceptable 

lirni t of accuracy. The results are t abulated in Table IV 

for the long dura tio:n runs o 
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TABLE !Vo 

Beam Frequency Amplitude of Strain 
No. (r . pomo) Vibr~. tion of (µ in,./ 

shaking table in. ) - (inches) 

32 17 50 0.041 178-185 

35 1750 0.041 185-200 

33 2335 0 . 031 184- 208 

36 2335 0 . 031 190-205 

34 3500 0 . 020 186-208 

37 3 500 0 . 020 195-210 

'fhe conclusion to be drawn is that for forced vibru tions 

below resonance , the erfeet of internal damping can be model

ed. 

For forced vibrations at resonance, the situation is not 

so clear cut. Tbe strains in Beams Nos . 32 and 35 were resp-· 

ectively 1000 µ in./in . and 980 µ in .. /in. For Beams Nos., 33 

and 36 the strains were 1000 µ in . /in. a nd 990 µ ins/in. 

Thus it appears that the difference in internal dumping., il' 

any difference exi s ts, between the annealed beam.a and t h e 

cold rolled beams has little effect on the strains <leveloped o 

however., the smaller beams required an al'!lpli tude of vihr·n tion 

of their roots of only 27 . s parce:n t of that required by the 

larger be&ims to develop t he same strain o '.{a:rre the amplitude 

of strain at resonance govercned by interna l damping only ., 

t11en the ana lysis of Chapterr 1 would inoicate that the re-
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q_u.ired amplitude of vibra tion of the roots of Hearns Noso 33 

anc1 36 would be three-fourths th.at required for Beams Nos. 

32 and 35. The conclusion is then reached that at resonance 

internal damping is not the controlling f~ctor. This agrees 
,16) 

with experience. For exnmple, Ifomstock und Murray\ in 

reporting tests of internal damping point out that in most 

systems the magnitude of the strains developed ut resonance 

depends on the external damping rather than on the internal 

damping • 

. SUMM}t..HY .Q!: TEST HESUL'I'S: 

The results of these tests can be swnmarized as follows: 

The analysis indicates that in those applications where in

ternal <lamping can be f.leglected, .modeling for stress simili

tude can be attained if the dimensionless radius of gyration 

is the same for prototype end model. This conclusion was 

substantit1. ted by the free vi.bra tion test Hnd by the clrop 

test. In each of these tests the strain vs. dimensionless 

time curves were essentially the same for prototype a nd model. 

For those applicn tions wherein the internal df.lmping is 

of importance, the analysis shows t.hat geometric sin~ilarity 

between prototype and model is necessary for adequate model

ing o The free vil,ration test of Beam No. 17 ~nd the forced 

• vib ration tests of Beams Nos. 32-27 showed this to be truee 

horeover.,, the long-time forced vibration test showed that 

the effect of a change in the interna l damping of the b eam 



on t11e strains developed i s s rrn.i. llo Thus, for exa mple" oven 

though the nt.tgni tude of t he interna 1 damping for Beam 3 ;z in 

the annealed state was different from that for Beam 35, the 

strains developed in the two when their roots were subjected 

to the same a cceleration were in accepfa.bly close o.gree r:1erit. 



CHA.P'IBR IY o 

In this chapter an extension of the analyses of Chap

ter I i s made to the question of' vibration of' plates and 

frames o 

The equation of motion for a vibrating plate is well 
17 • 

knmm ( ) • It is 

(65) 

where 

-w 

E is Young' s · Modulus 

f is the density of the material 

h is the half' thickness of the plate 

w is the displacement of the middle surface 
from 1 ts unstrained position which coin
cides with tbe x-y ·plane 

z -:. a/ze i.. 'Whtn'e Q is the trnnsverse force nc t
ing on a surface element 

The b ending moments M and M in the x and y directions are 
X • f 

given by the expressions 

(66) 

and 

Eh 3 v'-w el"w) 
Mx:::. - --- ( ~x .. +_,,)-Acy ... 

J(lfa&.} c., 

E "1 J ,:) ... w c)\.J 
( 67 ) Mt = - 3 (, ::,P..,) ( a y .._ r ,,-'A ~ ) 

Finally the rraximum stresses u: and -... ~" 
and y - directions are given by 

(68) 3Mx 

z J, 1,, 

in the x-



and 

while the maximum 

(70) 

or 

= 
~1+1"-" ZJ.,'2... 

shearing s--tress 

3(/V'/x -Nly) 
.-...... " ;- 4hz. 

(71) ,.,.,,,_x = the larger of Eq.(68)or (69} 

depending on whether the stresses of Eqs. (6.8) and {69) 

are of opposite or like sign. 

Define 

x • Lt where L is a characteristic length 

y • L7 

w. • L(; 

h Ill LJ 

b D Q/E 

With; the foregoing definitions, we easily find that 

(72) 

and 

(73) 

Making the substitutions (72) and (73) in Eq. (66) leads. to 

the dimensionless form of the equiation of motion: 

b :: 0 

1-1here v' has been written. te eall attention ta the faei that. 



(74) 

where v' has been written to call attention to : tl1e fH.ct ·t .. h.~t 
.. •• 

these di.fferentiatior.JS are w~th respect to E:. and 7 
If' we now oef'ine dimensionless stresses by the relation

ship: dimensionless stress., z. , = ratio of actual stress to 

Yotmg•s Modulus, Eqs. (_68) and (69), and in consequence Bqs. 

(72) a~d ( 73)., can be rendered in tl1e dimensionless forms 

('15) 

(76) 

The boundary conditions when stated dimensionlessly 

become: 

A) ~'or a built-in edge parallel with the x-axis and at y='c 

(77) 

B) For a simply supported edge parallel with the x-axis ~nd 

at y = C 

(78) 

(C) For a free edge parallel with the x•nxis and at y =i c 

(79) 
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Conditions on edges para 11 el with the y-axis can be 

obtained from Eqso (77) - (79) by permuting ~ and 7 • 

For plates of sh;.:ipes other than rectangular the more gener-· 

al boundary conditions given by Rayleigh, pg. 357 should be 

From the foregoing discussion, we conclude that the 

vibration of' plates can be successfully modeled in accord

ance with the following principles: 

I. If the prototype has simply ~upported or rigidly built 

in edges, the model may be of any material so long ns 

the thickness and the applied load are selected in such 

manner that ~1/ [3(1 _.-?f..Jl and b/(2~) are the same for 

prototype' and model. 

II. If the prototype has a free edge, the model must be of' 

a material having the same Poisson's ratio as tbe pro

totype. This conclusion follows from the presence of 

µ in the boundary conditions, Eqso (77) and (78). 

Consider now a flat plate -with no load (QmO) a nol. choose 

the x-y plane to coincide vli th its unstrained middle sur -

face. Let the x-y plnne be subjected to an accelera tion 

f(t) in the z direction. we shall discuss the subsequent 

vibratory motion of the plate. Let X,, Y, B.nil Z be a set of 

stationary axes, the Zand z axes coinciding,, and the x- and 

y- axes remaining parallel to the X- and Y- axeso Let Zo = 

z0 (t) be the coordinate of the moving origin,, W, t h e dis= 
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plaeerr-.ent of any point on the middle surface of t.be plate 

referred to the stationary axes and w the displacement of 

-U1e same point referred to the moving axes. Then 

Equa tion (65) becomes, upon s ubs titution of Eq .. (80) 

since z0 is i n.de pendent of X and Yo The differentiations 

involved in v 4 can be taken either with respect to X a1"li Y 

or with respect to x ancl y s:1.nce X = x nnd Y = y., CompE1.ri

son of Eq .. (80) vith Eq . (65) revea ls that e. uniformly dis

t:rihu i ed s rbi tra.ry forcing functio n Q = Q. {t) acting on the 

plate can be studied by subjecting the middle surface of the 

plate to an arbitrary acceleration Zom Zo(t), the relation

sidp being that 

(82) Q(t') 

"Q:;qu.at:ton (82) c an b e put into dimera.sionless form by using 

our. usual s ubs ti tuti ons. 'Thus 

(83) 

It appenrs then that the method of B.nalysis developed 

and tested for b e ams c an readily be extenc1ed to the model • 

ing of pln tes. 
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Ii'RAMES: 

In order to investigate the pcis si bi li ty of' using the 

modeliu.g parHmeters a lr-eP.dy developed for beams and plates 

as the modeling parameters for frames., l e t us consider the 

differential equations of motion for the frame shown in Fig. 

22 which is hinged at points A and D P.nd. has rigid right ang le 

joints at B and C. The vertical members of the frame have 

• area A; and secti onal moment of inertia 1 1 ., wile the horizon

tal member has the values A2 and I 2 respectively. The !I'.nter

ial of the thre e bars is the same and is of specific 1,etght .., • 

1- Rz ~, 
8 7 Iz. A2 I 

--Z-f A, ,, 

I,J A, " J 
Fig . 22 

The differentio l equations of motion c an b est be est.ab ... 

ltshed by t h e application of Hamil ton's Principle. 

In order to write the expressions Tor the st.rain energy 

a ncl kinetic energy of the system choose x-y :ures with origin 

at A and x-a xis a l ong AB o Choose u-v axes with origin at B 

and u - axis u long BC o If we c ons ider onl y snw.11 vibru-tions 11 

then the s tr::i i n energy due to direct stress i s ne g ligibl e 
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in comparison with the strain energy due to bending.,, and we 

ca.n ·write: 

(84) 

In computing the kinetic energy we realize that the b a rs 

AB and DC are undergoing bending vibrations only, whereas the 

bar BC in addi•Uon to its bending vibration is possibly sub

jected to a transla tory vibration in the direction BC. The 

kinetic energy of this latter motion is not always negligi.bleo 

It can be expressed as ± A-i 11 
"') ( y I ) :i... -where . the nota-

j J(~,,/, 

tion y Ix"...(. signifies the velocity of the upper end of the bar 

AB. Other types of energy, e.g.str&in energy due to direct 

stress, kinetic energy due to rotary inertia, will be ignored. 

'fhe expression for the kine tic energy is 

(85") 

We have then 

(86) 

where the terms free from the integral sign are to be taken 

between the limits. We also find that 

( 87) 



(88) 

n~e varia tional equation of motion is then 

A .. .Ji ..., 
-t 

From Eq . (88) we conclude that the differential equa

tions of motion for the frame are 

(89) 

and 

(90) "0. 

while the boundary conditions a.re those imposed by the evan

escence of the integra tea. terms in Eq. (88). 

The implications of Eqs. (88), (89), end (90) are many 

and important: 

1. 'the methoa by which these equations were obtained 

is general and can be extended readily to more complicated 

frames. It follows tbs t modeling methods based on this anal

y s is will have the same generality-that such modeling meth.om 

will also be readily extended to more complicated frames. 



2-o It is pos sible to preflict tl1e 1·in tural frer1t1er1cy of 

frames without damping by s ma tl1emn tic al method analogous to 

t i .1.a t used for bnrs. 

3. As stated in (2) above, it is possible to predict 

the natural frequency of fram.es without <lamping. The numeri

cal work involved in this determination follows the snme 

pet tern as that for bars but is c 011s id.era bly more onerous. 

1 t would be desirable to reduce this work to tabulated form 

for the benefit of the profession. For illustration, the 

determination of the frequencies of the symmetrical modes 

of vibration of the frame shown in Fig. 22 is outline~ in 

Appendix v. 
4. In spite of the greater nurnericEtl eomplexttiea, 

the theoretical treatment of the vibration of frames is now 

·placed on as sound a logical basis as underlies the treat

ment of the vibration of bars. Moreover, the implication 

of Eqs. (88) nud (89) that each member of a vibrating frame 

executes its transverse vibrations in modes having the same 

shape as the modes tn which 1 t vibrates as a beam a llows 

us to deduce tba. t the conclusions already reached i n the 

question of modeling of beams for dynamic stress similitude 

can be applied immediately to the modeling of rrames. 
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APPEl'JDll I ., 

lt became evident early in the course of this investi

gation that a uniform choice of form of solution of the dim

ensionless equation of motion for a freely vibrating beam 

was desirable., The usual reference works (15 ), (17)(18) 

( 19 ), all give the eigen-functions in different foxm. The 

forms. which are listed below seem to be the most useful. 

In Appendix II it is shown that these functions are Qormal

ized. 

The dimensionless equation of' motion for a freely vibra

ting beam is 

L ;:_ . ( ~ ) ( A C.~5 fl., ?' + B S j.., .f1.., ··r) 

' 1 
::: 

L :.t 

For convenience of reference the functions £.- (~)., the 

dimensionless frequency equation 6 its first five roots and 

the first five dimensionless natural frequencies, ..t2.. 1 are 

listed for each type of beam,, I\_ is the dimensionless radius 

of gyration. To obtain the actual na tura.l f'requency., w1 ., 

of' a beam it is only necessary to multiply its dimensionless 

natural frequency, _n_,, by the ratio of the speed of sound., 

a., in the materi~l to the length, L, of the bar., thus 

.Q, CL 

~,· = --
L 

For the hinged-hinged beam: 

Z:({)-: 1z 6i19p,-f . 
.,,· )'I P1. · :: o 
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P1 P2 Ps P4 Ps 
;1' 

2~ 3.U 4;, 5U 

-'1.l ..n.2 ..Q.3 -11-4 as 
9 .870 't 39 .478 t 88 .826t 157.011' 246.75 I(. 

For the free-free beam: 

s-lr1,.C,· -1- :S/nhp,· ( s/11 t=1,· f: ~ 6/>?h Pi<) 

,:o.J 17~· - ea.,>-, r, 

cosp,· c,,,.,h P£· = -/ 

p3 P4 Ps 

0 4.730 7.853 10.996 14.137 

!13 ...n, -°is 

0 61.671t\., 120.91~ 199.57~ 

For the filled-fixed beam: 

Prs 

4.730 7.853 10.996 14.137 17.279 

23 .373 '\. 61. 671 ~ 199. 57 '(, 298.571\, 



:For the fixed-free beam: 

P1 P2 Ps P4 

1.875 4.694 7.855 10.996 140137 

-'l.1 O.t,i .n. ~ n. " 

3 .516tt_. 2}.!e034 ll_. 61 .'701 'l\, 1200911-<.,, 

For the fixed- hinged beam: 

tanh 

p~ p3 PA p~ ,, .""0-5,..,9----1~0--..... 2..,1'""'0 .... ; ----13;;,.· ....... 3'"'52"'"9 _____ ..,..16..,,....ollj,...,9-.3> 

..Cl. 3 
104 . 25 1(,, 178 .. 27t\, 

..rt. fj 

../?o:r the free-hir.w,ed beam: 

p~ P2 p3 Pi Pei u 3.927 1.000 ·10.210 13 0351:;; 

L1- l .fl_ 2 .fl 3 _Q 4 .n. ~ 
ij i5.421 'l, 49.tnl ~ 104.25 \, 1 '18 • 27 t\.o 



As noted on page 10 1 the functions Z . ( ~) constitute 
< 

& :nor•malized orthogonal set, o It µas long been known (1 5 )., 

(l'l Jp tl1 r,; t these functions are orthogonal . That they are 

:norma l is most easily shown by cUrect e".raluation .. To t.h:is 

end we recall the identities: 

if the rigj:1t end of the beam is hinged; 

if tb,e right end of the bee.m is f :ree; and 

if the r-1ght E:nd of the beam is fixed. 

Suhsti tu tion of the ci n tironrin te oxnression for 2-.. i n 
.2. r t. . :. ,----(, 

the nbove identities an d u ppen l to tl1. e identity em'h od iec1 in 

t h e frequency equation lenc1s to the -v·alue of 1 for the inte-

1 o F'or the hinged-hinged b eam: 

= - (z cc>s-p{ 

~:: 1'liroughout the remainder of t his Appendix t.he sut,scirip t i 
i s omitted for economy of writingo 
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p Ill 1 si nce 

2 . For the ~ree - free beam : 

-.:: 

:. 

= 

.!.. [ c .. s'-p -co.shp"'- ~,-.,,'p +-2.St'nt.;o ~,-.,e r:s1..,J.f: 1 
A co,p- co.sh,=, 

( I - C! .. .s .._ p ){ C d ~ 1-, > JO - I) 

cost. p - c.c>.s "-e cosh e +cos~ - , 

<!Os .. P - l., + cosh •p 

1 since cos p cosh p = 1 

36 For the f'ixed- fixed beam: 

d .,_ 2 = _ cc:, ,. p 1 _ c .,, s J. p r ~ 
d~,_ 

~.-.,"° + s , ·..,J.~ 
------- (-,,· .. p'i, -sr ... hrt) 
Co:sp - Cesh,-

:: 

by comparison with the evaluation for the free-free bes.m o 



4o The fixe~1-.free beam: 

5. ·The fixed-hinged beam: 

6 o The free-hinged beHm : 

These demonstrntions are carried out in the same mnnner 

as the foregoing UEhi will not be shown here. 



APPENDIX III 

Speetl of Sound in Solids at Room Temperatures 

Aluadm.w 

Brass 

Copper 

Gola 

i-'fa.gnesium 

h ickel 

:-.::. ilver 

.15 . I u x 10 inches.1.se,.,£0 

1.265 - 1.4t:3 

10811 

1.068 - 1.099 

10042 - 10054 

1.449 

deer-eased with increas:i.ng temperature. 

a increases with hardness. 

I'his t c ble compiled from t h e-Inter-national Critical 

1'at~les, Alcoa Handbook, Trade publications of E. Io du Pont 

Co .,, ./.llegheny Lucnum Steel Corp., and others. 
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APP}:NDIX IV 

Expansion of the St._1ticnl Deflection curve of fl C,intileYor 

Beam with a CorLcent:rated Lond ~;t the Free Encl in an Infinite 

Series of Eigen-func tions. 

The statical deflection curve for n c~ntilever l;eam whose 

root is at (O,o) ana whose free end before tleflcction is at 

(£,o) referred td a pair of x-y axes is 

(91) Px
2 

-- ("5.../-x) 
6EI 

In dimensionless form this 'becomes if we write 
p 

G, EA 

(92) 

F • ' ti • f t • • ' c• ' ~ i I ) or suet; n 1)cmn ·:e ci gen- unc ·1.on exp2:ns1.on t;:,ee P..ppeno x 

is 

(93) 

(94) 

:ts s:..;."hstitu ted for the left hencl-side of Eqo (93)o The 8(lUa

tion is then mul ti plled tl1rou,gh by 2. ( ~) ancl tLe result inte-• l. . 

grated terrn-wi s ,?. frm:J O to 1. A 11 terms in the r:tgh t-hnnd 

side scve thf?. t conL.,ining •' i v;:ni.sll beC8USE! of the orthogonnl

t.he cocfficie;1t. of the ai ts 1 because of 



Hence 

(95) 

The integrn tion whic h is eu si ly co rriec1 out, though somewhn t 

tedious yields 

(96) 

The expression for ·Ute s t s tic~1l deflection of the 1)eam is then 

(97) 

In order to cor:ip..;re the stress at the root of the beam 

when i.t j_s vitru.ting in its first mode only wi ti1 the corres

ponding st.:J tiC{{l stress it is only to compare the second deri

vatives of the third and second members, resp., of Sq. (97) 

for i = 1. This y ields 

(98) 

(99) 

TJ1e r .::, tio, h, of th e. stress e s m1< i. er cons:Wer::.ition ts 

-= I. 13 7 -s i~ce 

Ilenes, an over-stress of' as mucl: ::is 114 percent of the stat-

icvl stress C i) n be "';_ nticipnted at the root of the bemn if 

t.Le lm:d is suddenly re1::oved. 



APPENDIX V. 

The Frequency Equation r·or Frames. 

pos tu.lri te vibration in symmetrical 

mod es., the la st ten,, wi 11 v~mish. Tlie differentifil equations 

of rnoti on .:; re 

(101) 

( 102) 

The houndbry conditions to 1Je st: tj_sfi.ed nre: 

{ 103) At A: and 

(104) At B: ~ 1 ) • -:: o -Dnd 
'IC-:..l, 

Bec.-.iuse of symn,e try : 

( 105 ). :. 

= 

( 107') 

Bec~it.:se of the rig:hHty of the joints 

( 108) 

lU'l.d 



· -li.)1,.. 

( 88)., is ti.ie n S8 tisf ied rmd Er:S. the l)Olmd-

ary conditionso 

We cti:n proceed in the usual f'i:i shicn tind c ssume thB t y 

can be expressed &S 

(110) y:: Xl:,c)T(t> 

wbtle v ca n be expressec as 

(111) v "" l)(u) TctJ 

Tlie T( t) will be the same f :n1ctio11 in ·:ioth expressions. Upon 

( 112) 

(113) X = Cf, siY1 k,x + lo, cos k,x -t c, s1V1h k.,lt' + d, co:s'1 k;x 

( 114) u 
1.rb ere 

(115) k =-1 

A, "I JO ... 

Er, CJ 

~Jpon sni::st.:i. tu.ting fa~s. 

aHc::/ 

( 1' • ' \ 1 ':c) in 

dition s we fi n d the frequency equation in the form 

( 11G) 

The roots of the 



first f.:.ctor are easily enough obtained.. To o"'ot.:iin the roots 

of the seconrl fncto:r we let -' ... 141
~ = . . ,. v~ 

Tbe fnctor f,ssur:ies the form 

(117) cot o.(i, -+ eoth o.('i =. - c J 

cot blp - eoth b{fo 

which is rec:dily solved nu1;1f:ricHlly in .::,ny given cnse. Once 

the fro~1uency eq1rn ti on ln s been solved, the deflections, 

stresses, etc., at any point of the structure are obtained 

froir. Et1s. (110) - {115) in the ordinary way. 




