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ABSTRACT -...........---- .,,...,,,,,,,. 

A detailed molecular theory of the coefficients 

of shear and bu1k viscosity of monatomic liquids is developed. 

on the basis of the general theory of transport processes 

proposed by Kirkwood. The coefficients are expressed 

explicitly in terms of the potential of intermolecular force 

and the perturbations in the pair number density produced by 

viscous fluid flow. These perturbations are obtc1.ined from 

the steady state solutions of an equation of forced diffusion, 

derived from the generalized Chandrasekhar eqµations determin-­

ing the distribution functions of sets of one and two molecule~. 

This procedure leads to a set of ordinary diff'erentifLl 

equations, which a.re solved in terms of the Whittaker con-­

fluent hypergeometric function by means of a reasonable 

analytic approximation to the experimental radial distribu-

tion function. 

l 'i th the use of the Lennard-Jones potential and 

the approximate radial distribution function, calculations 

of the coefficients of shear and bulk viscosity of liquid 

argon at 89°K and 1 .. 2 atm. have been carried out. The 

theory leads explicitly to ratios of the coefficients to 

the friction constant of the theory of Brmtmian motion. 

With an estimate of the friction constant, a value of the 

shear viscosity of liquid argon in moderately good agree-­

ment with experiment is obtained. 
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1. 

I. 

INTRODUCTIQN 

The macroscopic behavior of a system of 

molecules may be described in two ways. The first is the 

phenomenological description, and the other is the more 

fundamental approach in terms of the molecul&r structure 

of the system. A s~~ll number of molar variables, such 

as the temperature , composition and para.meters of external 

force specify the macroscopic state. 

It is to be noted that a complete phenomenologi­

cal description, without reference to the molecular 

structure , is possible. When the system is in eqµilibrium, 

its behavior is described by thermodynamics. Furthermore, 

when the state of the system is inconsistent with the 

conditions of thermodynamic equilibrium, transport process.es 

occur, such as fluid flow, diffusion and heat transfer. 

These transport processes may then be described in terms 

of tre macroscopic equations of b.ydrodynamics, which are 

supplemented by empirical relc.tions cor1necting the stress 

tensor and heat and mass currents with functions of the 

local macroscopic state of the system. The para.meters 

entering into these supplementary expres sions a.re the 

various transport coefficients . The solutions of the 

transport eq~ations, subject to specified initial and 

boundary conditions, then determine the macroscopic state 
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of the system as a function of position and time. On 

the other hand, if a description in molecular terms is 

desired, the macroscopic behavior of the sys~em requires 

interpretation from the standpoint of statistical mechanics 

since its dynamical state is incompletely defined by the 

molar variables. The main objectiv ,es of thi-s approach are 

the derivation of the equations of hydrodynamic.s from 
. . 

molecular dynamics, the investigation of the validity of 

the supplementary empirical .relations, the determination 

of the transport coefficients in terms of the forces acting 

between the molecules of which the system is composed, and 

the molecular interpretation of the relaxation time spectrum 

produced by time dependent external forces. 
· I 

In the following treatment a detailed molecular 

theory of viscous fluid flow will be presented. At the 

outset we will limit our discussion to monatomic liquids 

which may be adequately treated by means of classical 

statistical mechanics. It is hoped that our theory will 

help in the elucidation of the properties of fluids such 

as liquid helium, even though a qµantum mechanical approach 

is necessary in these problems. 

The natural development of the theory came from 

the investigations of the viscosity coefficients in dilute 

monatomic gases. In 1867, Maxwell (l) published the first 

accurate theoretical discussion of the coefficient of shear 

viscosity and his prediction, since experimentally verified, 
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that the coefficient is independent of pressure at a 

given temperature was one of the early triumphs of the 

kinetic theory of gases. The probl·em received its rigorous 

formulat:ton in 1872, when Boltzmann(2r first derived the 

integro-differential equation appropriate ·when the behavior 

of the molecules is amenable to binary collision an.alysi,s. 

Due to the mathematical difficulties ·involved in solving 

this eq:Uation, it was not until 1911-1916 that D. Enskog(.3) 

ands. ChapmanC4) independently succeeded in obtaining 

genei-al solutions valid for any type of spherically sym­

metric molecule possessing only translational degrees of 

freedom. Both men were guided by the investigations of 

D . .Hilbert(5Y, who first called this equation, the Maxvrnll­

Boltzmann integro-differential equation. 

These, as well as l ater treatments, calculated 

the coefficient of viscosity by considering the momentum 

transmitted across an arbitrary surface in the fluid. How- · 

ever, as early as 1885, Graetz(6) suggested that in the case 

of liquids the mechanism of viscous flow also involves the . 

resistance against deformation due to the intermolecular 

forces. In order to substantiate his argument, he cited · 

the decrease of viscosity due to an increase of tempera~ 

ture, a relation which was later found to follow an expo­

nential law. 

An importa.~t extension of the general theory was 

made by Enskog( 7) in 1922,who indicated a development valid 



for dense gases. Despite the partial success of this 

work, it could not be readily· applied to liquids. In 

view of these complexities, various models were po_stulated 

to account for the experimental results. With use of the 

Graetz mechanism, J. Frenke1(8) developed a model theory 

which qualitat.ively led to the exponential temperature 

dependence. This approach was later formulated more 

elaborately by .Andlrade, Furth and Eyring(9). In particu-

la~ Eyring and his coworkers discovered some useful semi­

empirical relationships by applying the transition state 

method to the free volume theory of liquids. These expres­

sions have recently been critically reexamined by Brunner(lO). 

In 1946, Kirk-wood(ll) and Born and Green<12) formu­

lated alternative approaches to molecular theories of trans­

port processes. While the two theories duplicate many of 

the general results , they differ in the manner in which 

dissi_pative terms are introduced into the equations satis­

fied by the distribution functions. Although Born and 

Green have presented interesting qualitative discussions, 

they have not yet succeeded in constructing solutions of 

their equations for the distribution f"Q~ctions in suffi­

ciently explicit form to yield concrete resul t .s. 

The detailed molecular theory of _vi.scous flov; 

to be presented is based on Kirkwood's theory of irrevers­

ible -processes, which combines many features of the kinetic 
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theory of gases and the theory of Brownian motion. A 

starting point is provided by the differential eq~ations 

of the ClLA.n.drasekhar type for the probability distribu­

tion functions in the phas·e space of sets of one, two and 

three molecules, which were derived by him from the 

molecular standpoint. 

The coefficients of viscosity are defined by 

the empirical Newtonian law relating the stre.ss tensor 

entering into the hydrodynamical eqµatio n of motion to 

the rate of strain. On the· other hand, the stress tensor 

is determined by molecular distribution functions and 

intermolecular forces in the manner to be described in 

Part III. There are two types of terms, one arising from 

momentum tr&nsport and one from the direct transmission 

of intermolecular forces, the latter being determined by 

the average density of molecular pairs for the monatomic 

liquids to be treated. In thermodynamic equilibrium the 

stress reduces to a uniform normal pressure, the first 

term of which is the ideal ga.s contribution. The second 

term arising from intermolecular forces, has no shear , 
components, since the pair density, proportional to the 

r~:~di al di s tribution function of the theory of liquids, 

possesses spherict .. l symmetry. Departure from equilibrium 

resu1ting from hydrodynamic flow leads to perturbations in 

the molecular distribution functions proportj.onal to the 

components of the rate of strcdn. In liquid~. the momentum 



transport contribution to thes-e terms is very small rela­

tive to the contribution from intermolecular forces. The 

l atter contribution consists of two parts, one spherically 

symmetric, which determines the bulk viscosity, and one hav­

ing the symmetry of a surface harmonic of order two which 

determines the shear viscosi ty. 

By means of the Chandrasekhar tJrpe of eq·µations 

the perturbations in the pertinent molecular distribution 

functions have been constructed and the ratios of the t wo 

coefficients of vif,cosi ty to the Brownian motion frictj_on 

constant have been expressed in terms of definite integrals 

involving the potential of intermolecular force a.nd the 

equilibrium radial distribution function. Calcu.lations 

he.Ve been carried out for liquid argon at 89°K with use of 

the Lemn.ard-Jones potentic1.l and a rea Eona,ble analytic 

approximation to the radial distribution function. It has 

not yet been po s sible to calculate the friction constant 

accurHtely, but & prelimj.nary estimate leads to a shear 

viscosity of 1.27 x 10-.3 poise, in moderately good agree­

ment with the experimental value, 2.39 x 10-3 poise. The 

results of these calculations are summarized in 'fable III. 
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II. 

DEFINITION OF MOLECULAR DISjfil]UTION FUNCTIONS 

In the fleld of classical statistical mechanics 

the dynamical states of a system of N- molecules consti tu.te 

a phase space a.nd the ensemble representing a distribution 

in ini ti c).l conditions is characterized by a probabiii ty 
(.,) ' 

density f ( ~ Q ~ t ) in phase space. For molecules 

possessing only translational degrees of freedom, the 

momentum vector is then defined in 3N- dimensional 

momentmn space and is composed of N vectors p7 .. ,. pl\/ , its 

projections on the 3- momentum spaces of the indi viclual 

molecules. 
~ 

Similarly, the configuration vector Q" is a 

vector in the 3N- dimensional configuration space with 

components c.y, . . . q"' specifying the positions of the centers 

of ·gravity in the 3- configurc= .. tion spaces of the several 

molecules . 

From operational considerations Kirkwood conclooes 

that the appropriate distribution function involved in the 

non-equilibrium stati~~tical expectatlon value of a macro­

scopic observ&.ble is to be smoothed over a microscopically 

short time interval· of sufficient duration to average out 

certain fluctuations. .Thus the macroscopic observc::.bles of 

a system of N molecules are put into correspondence with 

average values determined by the probability density 

T' {,J) :-? ➔ 
fM(~ ~jt) ".L ff (:J{? ·>t+s) o/s { I) 

'r 0 
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where is the probability density in the 

phase &pace of an example of the appropriate statistical 

ens emble from which a system is sampled in the process of 

preparation at time t ·with specified values _of the molar 

variables determining its macroscopic sta.te. The interval 

'I i s determined by the time resolution of the instruments 

employed in the measurement of the macro.scopic observables. 

If the shortest :period macroscopicalry resolved i .s long 

relative to the Brownian motion correlation time, it is 

·rea sonable- that in liquids, the macroscopic description 

wi l l not sensibly depend upon the smoothing time r , pro­

vided rr is long relative to the correlation time. 

For the process of obtaining average values of 

a property \(' (P., J if~) , depending not on all coo~dina.te s in 

phase s pace, but only on those of a subset of n molecules, 

we may employ a distribution function of lower order. Denot­

ing the coordina.tf;S of the subset by p" and cf~ and letting 

-,p and ci denote thos e of the set of N-n molecules Al-._.. I Al-lo\ 

comprising the remainder of the system, the distribution 

function of order n is defined by 

For the repre sentation of average values of 

functions of the confi guration coordinates of small sets of 

n molecules it is convenient to def1 ne number densities 
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by the relation 

:: N.' [ f"'J(p~ 'c; ·t ) ofp~ 
~-~) ! '1) , .. J ., 

{3) 

The probability density in the configuration spac e of 

the subset is related to the number density by the 

expressi on. 

....,. 
]TT e vdll denote by Xl the external force acting 

on a molecule i of the system, dependent only on the 

coordinates of that molecule. The intermoleculE.r force 

exerted on a specified molecule i by the other molecules 

of the system will be denoted by • We will assume 
~ 

that for the type of systems to be treated, the force Fi 

may be derived from a potential of intermolecular force 

V
(~J 

of the form 

N z 
where V,.e. LR ~e ) is a function, say of the 1·enn&rd-Jones 

type, of:· t he distance R i t between the pair of molecules 

(il) • 
..... 

For t:h.is potential, Fi is given explicitly by 
/J N _::, 

L. \I-. v~II.. z_ -a, 

F- ::. - -= Ri~ o/ v~ \, 

e-= , ~i e-=- 1 Ra. d R~L ~6) 'f i, ti. 

~ -- _., 
R ; 12 ;: Re. - R. 

\. 
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The potential (5) suggests the definition of a pair 
• ll.\ _.. 

correlati.on function ~ ( R. J R.'l; t) by the relation 

In the course of our treatment we will frequent­

ly deal with distributions representing statistical 

equilibrium to be represented by the Gibbs canonical. 

ensemble. For a one component system the equilibrium 

probability density in the phase space of the ensemble 

is given by 

(8) 

"'> where 13 - ..L and H i~: the Hamil toni&.n of the system. 
I kT 

For a potential of intermolecul&r force v'"'' of the form (5), 

the probability density in the configuration space of a ... 

sub$,et .of n molecules reduces to 

The expression 
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where v is the volume of the system. w''" ( cj: ) • is the 

potential of the equilibrium average force acting on the 

molecules of the set n, for the force, l"' ( f~ )0 

acting 

on a specified molecule i of the set n, keeping the 

members of the set fixed, is· 

For a liquid in the absence of external forces, 

(1.,) {-> -- ) the equilibrium pair correlation function, ~ 
0 

LR,, R,~ 
i i • • • • • b t • f t • t-aJ 1 '" ) s den tic al -with the radial distri u ion unc ion ':Jo L ~ ,~ 

It is also accessible to experimental measurement, since 

it determines the intensity of X-rays scattered by a 

liq·¢d as a function of the scattering angle. 
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III. 

GENERAL TEEORX 

After tbis necessary preliminary discussion, 

we may proceed with the formulation of our inv estigation. 

The macroscopic hydrodynamics of viscous fluids is des­

cribed by the equations of continuity and motion, supple­

mented by the. Ne~~onian expression. The hydrodynamical 

equa.tion of continuity embodies the conservation of mass, 

... --where f i s the mass density- of the fluid and l.l..lR ) 
➔ 

is the fluid velocity at the point R. Furthermore the 

hydrodynamical equation of motion is obtained by equating 

the volume and surface forces acting on a fixed but 

arbitrary volume to the sum of the rate of change of 

momentum inside the volume and the rate of transfer of 

momentum out throug,h the surface, 

➔ 
where Xis the external force per unit volume and a- is 

the stress tensor. For example, c;;y is the x component 

of the . force transmitted per unit area. acros s a surface 

whose nor•aal is in the y direction. .An empirical expression 

of rather general applicability for the stress of a homo­

geneous isotropic fluid is the Newtonian law, 
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where pis the eqµilibrium pressure of the fluid, 9 and 

~ are the coefficients of shear and bulk viscosity, 1 
. 

is the unit tensor and _f is the rate of strain tensor, 

whose nine components are symmetrical, 

Substitution of (15) into (14) leads to the Navier-Stokes 

equation of motion, ( 17) 

It might be noted that the coefficient of bulk viscosity, 

related to the non-steady state behavior of the fluid, is 

ordin&rily omitted, since Stokes in bis early writings in 

11.ydrodynamics omitted this term, although la.ter in his 

life he admitted its existence. Recently Tis.za(l3)' has 

reemphasized the importance of a · phenomenologicar bulk 

viscosity. The sign of trds coefficient is determined by 

the requirement that the dissipation function tf be 

positive.. Since ~ • <L""": v.Z -+ p Q-~ the bulk viscosity 

contribution is ~ (~7-11) 1. when the Newtonian law is in 

the form (15). 

The derivation of the hydrodynamical equation 

of continuity and motion from statistical mechanics will 

now be briefly outlined, since this procedure will enable 



us to express the stress tensor in terms of molecular 

. vari ables, a necess&ry step for a molecular theory of 

viscous flow. In the spirit of Kirkwood's operational 
-a:> 

considerations, the mass density p at a point R in the 

fluid and the particle velocity ti are then determined by 

the relations 

: m ~c•, Cii.'.; t ) 

N sf f 't;;;R .;t) c1p " 

where m is the mass of a molecule. 

By Liouville•s theorem, embodying the equation 

of continuity in phase space and the laws of mechanics, 
wJ ---9-

the probability distribution function f ( ~ ~ ~ t ) 

satisfies the parti~l differential equation 

5 [ kr; /,-> -0 W)} d f(4, ) 

~ ~·\JR,; f + 0 i" i:-~ ) ·'vp7 f + 'ot- = 0 
' :t I 

• ...JI) ➔ 

Since P and Q' are fixed during the time averaging proce~rn, 

the eq~ation .for fw'(~c.V~t) is identical with (19). 

By means of the Dirac· delta function, the number of particles 
• ~ ~ (~ ~ 

at the point H in the fluid may be expressed by L [ Ric' - R) , 
k•1 

Upon multiplication of Liou ville' s equation by this expres-

sion, folloured by integration over the complete phase space 

and restricting our analysis to distributions for 

which the surface integrals vanish on the boundary of the 

phase space accessible to the system, we obtain with use · 

of Green's theorem 
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After multiplication of the last equation by the mass 

of a. molecille, m, we recover the hydrodynamical equation 

of continuity (13). 

Sindlarly, the momentum of the system at the 
_.,, ~ ... 7!\""" 

point R is given by 'Z,. i( R" - R} p~ . In the following 
le .. , 

ane,lysis we r es trict ourselves to central forces of the 

type (6r and we note that by Green's theorem 

Thus, after multiplicat_ion of eqµation (20) by the momentum 

and integration over phase space, we find, using relation 
.... 

(21) and noting that the external force X"• depends only on 

the coordinates of molecule :·i that 
) 

"-: ➔ "~-f·< ,,Pt = x + tr R , ur:-R) t'c1if 

t<PPl - N r Ff f'
1

( ~if~ t) 01f 



16. 

The l ast s um may be appreciably s i mplified, 

~ (...... ~ ~ IN) ~ 
i.';; } Fi J(_R~ -R) 'f cl~ = 

11,J AJ 

LL 
,~, .(:.I == 

~i.. 

... --Upon changing the _ vari able of integration R, to R •-i. , 

with transformation Jacobia.n unity, this expression 

reduces to 

In view of the short r ange of intermolecular forces, by 
➔ 

means of a Taylor expansion about R, we finally obtain 

41 (l.~) 
~ (~ 1((-R) ta"'d,f:: ~ .... .L fp'l.'1( R ... ~t)R R o/V{R ) dh .: ~, J T R ~ \ l 1 

-> n.. ~ _ •.\ "t , ~ 
R ' l. dR ''2.. 

Substitution of equation (24} into equation (22), addition 

~~ N . 
of the term QA. f \(.'4.. = V(. t, < pJ (°p) to both sides 

of equation (2.2) and comparison with the hydrodynamical 

equation of motion, (14), l eads to the follo~~ng rela-
(11) (12) tions·· ' _, for the stress tensor in terms of molecular 

variables, 

h) /°"'~ 
sr = - , rm, 
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is the number density of pairs, 

b t . ~ one mem er of which is situated a point Rand the other 
-II 

a.t the point R , 1. rel&ti ve to the ppsi tion of the first. 

The integrati.on in the second term of equation (2.5), the 

contribution of intermolecular forces to the stress tensor, 

extends over the relative configuration space R,~ of the 

representative pair. The first term represents the momentum 

transfer contribution, important in gases, but almost 
--. 

negligible in liquids. The vector TT is the familiar 

peculiar moment'Ll..Ill of the kinetic theory of gases. 

It is seen from equation (25) that the development 

of a molecular theory of viscous flow requires the determina­

tion of the perturbation from equilibrium resulting from 

hydrodynamic flow of the number density of pairs and the 

singlet distribution function. The detailed calculation 

of these perturbations will be based on the pertinent solu­

tions of the general Chandrasekhar type equati-ons · determin­

ing the molecular distribution functions of smal_l sets of 

molecules, first derived by Kirkwood(ll) from the molecular 

standpoint. At this point it is de.sirable to briefly review 

these equations and to consider the fundamental assumptions 

necessary for their derivation. 
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Following Kirkwood we will find it convenient 

to use the concepts of the theory of Bro~nian motion to 

describe the dissipative mechanisms in liquids. Thi.s 

theory, which describes transport processes in dilute 

solutions, is based upon the 1·angevin: equation describing 

the motion of a Brownian particle in an environment in 

statistical equilibrium. The Langevin equation has the 

form 

where P. is the momentum of a specified molecule i, m 
~ ...,,. 

its mass, X.: the external force acting on it and G i is 

a fluctuating intermolecular force, the time average of 

which vanishes over a macroscopic.ally short interval r , 

end which is .-~1,ncorrelated in succesE-i ve intervals of 

magnitude T . The friction constant 'f;. 
0 

appearing in the 

dissipative term 'r/-§ is a phenomenological constant, 

determined by intermolecular fo .rces, which has heretofore 

been estimated only for macromolecules dispersed in solvents 

of low molecular weight, where macroscopic hydrodynamics 

may reasonably be expected to apply. Thus for a spherical 

molecule of radius ct., in a sol.vent of viscosity coefficient 

') , _., stokes law yields the estimate 6 rr? C\ for the friction 

constant:!~ . ... 



Kirkwood succeeded in deriving the Langevin equa­

tion from statistical mechanics by the assumptions, also 

implicit in the phenomenological theory, that the environ­

ment of molecule i is in eqµilibrium and that the momentum 

change of the specified molecule is very small during the 
C) 

smoothing · time ""~) 'r, << rr . By this analysis he was able 

to explicitly express the Brownian motion friction constant 

!/ in terms of the intermolecular forces characteristic 

of the system of molecules under consideration, 

For the determination of the sequence of distri--
-f(..,> 

bution functions , from which the average values 

characterizing macroscopic transport processes in liquid.s 

are to be evaluated, methods closely related to those of 

the theory of Brownian motion are utilized. The starting 

point of the analysis is provided by the integration of 

the Liouville equation (19) ~ver the partial phase space 

of _ the remainder of the molecules not 
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belonging to set n, followed by a time smoothing of 

the distribution functions. For central forces of t.he 

form (6), the resulting sequence of integro-differential 

equations, independently derived by Kirkwood and Born and 
I 

Green, is given by 

~ f{I,\) -t -, - k) ~ - c.., 
Ot £- • Qf f ~ X • "';;- f 

➔ C""> n _. - '9,J 

.fl = - ~ Fk.:f 
sk'• I ,,,,.. 

➔ 
where X denotes the total external force regarded as 

vectors in the 
--, 

n-configuration space of set n, -fL. 
""' 

represents a. vector in then- momentum space with pro--
-It ... 

jections ~ ... f" on the 3- spaces <:! the several 

molecules of the set and the vectors Fe~ are to be 

treated as vectors in the 3- configuration space of 

molecule i of the set n. The dissipative mechanism 
-(~) 

affecting the behavior of the distribution functions f 

is concealed in the time averaged function of ~ighest 
- ,~) 

order, f • In order to obtain useful results , the 
--t lf\> 

terms in Jl: have to be transformed with the a.id 
-wJ 

of solutions of the Liouville equation for f . Kirkwood 

performed tbis transformation by means of the plausible 

hypothesis of local equilibrium, i.e., the assumption 

that the environment of the set of n molecules is in 
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statistical equilibrium, and the additional assumption 

that the change of momentum of the individual molecules 

of the set is small during the Bro"Wnian motion correlation 

time 'T • The latter hypothesis appears reasonable in 

view of the quasi-localized nature of the molecules in a 

liquid. 

As a result of these Bro%nian motion approxima­

tions, the dissipative terms concealed in the mean currents 
_.,. ('1) 

due to intermolecular forces, fl , appear as integrals 

related to the friction constant previously obtained in 

the derivc:i.tion of the Langevin equation. It is of particu­

l ar importance t o note that this procedure closes the 

sequence of integro-differ ential equations and leads to 
• r("J 

parti,d differential equations in r alone. These equa-

tions in the phase space of a subset of n molecules are 

generali2;ations of a singlet distribution function equation 

first derived by Chandrasekhar(l4) froim the standpoint of 

the phenomenological theory of BroEiia.n motion,and will be 

called the generali·zed Chandrasekhar e µations. 

For the development of our theory of viscosity 

we will require the singlet and pair equations. In order 

to evaluate the momentum contribution to the stress tensor 
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_. 

where X-
_. l•>-t­

is the external force acting_ on molecule 1, F, 

is the average force due to the departure from equilib-­

riu.~ _of the environment of the set of 1 molecule,and 

is the average in the eqµilibriurn ensemble 

of the total intermolecular fcrce acti ng on a molecule 

situated at point a1 , varying only over distances of 

macroscopic magnitude. The singlet friction constant 
¥ la ) 
J is determined from intermolecular forces by 

eqµation (27) of the theory of the Langevin equation. 

For the determination of the pair density 
(t.) 

f , from 

which the intermolecular for -ce ·contribution to the stress 

tensor is to be calculated, we employ the equa.tion 

f- (2) ("" - ~ -4:) 

appropria te to p, ) R, > p'l. J R~ l t ) in the phase space 

·of molecular pairs, 

.... {t). ➔ 1 t1.} -t- l t.) F :: X-r - ~~w 
"" 1 

\?o) 
'j\7.) 4 r. ... 

= -' L.... [ , i \ ?"__'(t} .... , 
-- kl o1- ~, ~ (!+s)/

0 

as 
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·nhere, for example, p represents a vector in the 2-

momentum space with projections Pl and P2 on the 3-
.. , l1.) 

spaces of the molecules of the pair, - 'v~ ,v 
Rot.. 

is 

the mean force acting on molecule ct.... of the pair in 

the u.11.perturbed equilibrium ensemble, --subject to the 

condi tion that the configuration ( R, > R2. ) of the 

pair is fixed, and F (.i) +- is the perturbation arising 

from the departure of 
( 3 ) f' , the density in triplet con-

figuration space, from equilibrium. The friction tensor 
'f:'('\.I 
J is a second rank tensor in the six dimensional 

.. ➔ 

configuration space of the pair and the vectors u1 and u2, 
... ~ l 

the prgjections of u , are the particle velocities of 

three . dimensional hydrodynamics, defined by eqmttion (18) 

respective 
➔ ➔ at the positions R1 and R2 of the pair. 

At this point we may anticipEtte certain results 

to be obtained subsequently. In a liquid in a state of 

stationary viscous flow, the distribution functions are 

disturbed in such a manner that the stress tensor takes 

on the extended Newtonian form. It will be sho~n that 

the momentum contribution may be directly evaluated from 

equation (29). With neglect of nonlinear terms in the 

rate of strain, f, 



r 

The pair density 
l1.l f is obtained from an equation of 

forceddiffusion resul-ting from the six dimensional 

hydrodynamics of the pair. we will find that the pair 
l1.) ( ...... 

correlation functi ·on <] R) R,\, ) , efine by equation 

(7), can be expanded in the components of the rate of 

ti,) 

where ~ 0 (R,~) is the r adi a l distribution f unction of 

the fluid in thermodynamic equilibrium and lf
0 

(R ,~) and 

satisfy certain ordinary differential equations. 

Substitution of the momentum contribution of 

equo.tion (31) and the perturbed pair density of equations 

( 7) and (32) into equation (25) yields the stres s tensor 

where 

given 

equal 

NkT 
V 

p is 

00 

"\ l. f 3 ti.) -~rrN R qJl. q (R)c:JR 
~v1.. 

0 
clR ~0 

the eqµilibrium pressure of the liquid 

a:o.d uniform numbe r density 
,., 

temperature Po 
to the ratio of Avogadro ' s .number N and the 

at the 

, 
molal 
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volume v. The coeffi,cients of shear viscosity ? and 

bulk viscosity 1 are then given by the expressions, 

(3 5) 

where, as subsequent calculations will show, the initial 

terms arising from momentum transport ar e of minor 

importance in liquids .. 
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IV. 

MOMENTUM CONTRIBUTION TO STRESS TENSOR 
-~---- -~------------ ~--------=-'-- -

For the evaluation of the momentum contribu-­

tion to the stress tensor by means of the singlet 

Chandrasekhar equation (29), the ass.umption is made 

that the friction constant 'f is momentum independent. 

T.his approximation is analogous to the one common to the 

Langevin equation of Brownian motion. The procedure of 
.... 

multiplying equation (.29) by the respective tensor.s 1, TT) 

➔ --TT IT and rr rrrr , integration over the momentum 

space and sum.mation over all the molecules permits the 
(.I) _.;?.. 

direct calculation of - ~ < IT II / 
n"'I 

• Denoting by the 

operator nsymn the symmetrization of the tensor follow-

ing it, we find at the point R, at time t, with use of 

Green's theorem, 

0 <•l l•> / "'o) 
<)t + 'v. f ~ ::: 0 

t [ ~?I + ~ -v(pt} + v-{ <ITir? = t •)Y. { 

~ t<ffff/ + V·{ (ififit) + 'v ·l (P?(frff} + 
vt ll'\ ffl \~q) 

2 i' Sym ((ff• 1v(n)ff) =- - ~ t[<irfr) ~ mkTJ J 
1\ (•) 1--"'~ 
~ f , rrrrrr1 
at 

+ ~ t Sym (ff fi(fr-'v<S>7)7 -t V· i (7>/("ff ffff)-i- • 

+ ~ii' Sr\~rf({{,) ·U<rJ)'J t \+o~ 
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It will be noted that equation (37) is the eq~ation of 

· continuity, equation (38) is the equivalent of the hydro­

dynamic equation of motion and equation (39) is independent 
J 

~(')* 
of ,- . Substitution of (.38) into (40) sho'Mrs 

that n_ . _l., < rt--rr-11 l v h, will not contribimte to a linear 

theory .of viscosity so that with use of the equation of 

continuity (37), with neglect of nonlinear terms in all 

~oerturbations from eqµilibrium, equation (39) simplifies 

to 

=- -- ~ [ ( 1Tff) -t1U: ~ (IT-Qu: ff 1 + 
l~ 

· ... .:: . ~ <frff'J 4 2 <rrn)J 
Ji 

For the stationary case, the solution of this equation 

is obtained by substituting the first approximation 

<rffi)::.mkTt into the terms on the right-hand side, 

! -aa syrn "a. 
This resu]. t reduces to - e •J kT l_ in . the absence of fluid 

flow. In terms of the coefficient of self diffusion D:. kT 
·t 
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and the mass density f, the momentum contribution to 

the stress . tensor becomes, 

(43) 

The analogous expression for rigid spheres derived in 
(15) ithe kinetic theory of gases is given by 

er -= -e kT 1 "'"'o -
I n, -

-ts- pD(i-.LfJ-il 1 ) 
3 \ - '3 -

Despite the different approach employed in our theory, 

it is surprising that similar results are obtained. The 

main difference is that the Brownian motion approximation 

does not lead to a divergenceless viscous flow contribu­

tion and thus gives rise to a bulk viscosity. 
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V. · 

INTEBMOLECUL.AR FORCE CONTRI~UTION TO STRESS TENSOR 
( ~) 

The calculation of the pair number density (' , 
• 

required for the intermolecular fo rce contribution, will 

be undertaken with .the simplifications that the pair 

friction tensor is momentum independent, independent 

of the relative configuration of the pair and is further-
) . 

more assum.ed to be numerically eq:µal to the singlet fric-

tion constant :r' , . 

1.11/i th this approximation the pair Chandrasekhar equation (30) 

reduces to 

For the purpose of evaluating the pair correlation function 

from this .equation it is convenient to utilize 

the previously defined notation for the six dimensional 

hydrodynamics of the pair and to introduce the nwnber 
... fl.) 

current densitv of the pair J. 
" - ) ) 

N (N-•J r r r f~1(fl J r:) R.J -it :it) d p, dF 
m 

C 

Upon multiplication of eq\1,ation (46) by i., p and pp, followed 

by integration over the momentum space of both molecule.s 
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and summation over the particles, the following set of 

equations is obtained, 

It follows from eque.tion (50) tha t the neglect of non--
..,t,, y 

linear te~ms in ll and of terms of the order of ' 1 
< ~n)<-1.) in the departure of the non-diagonal terms in \.LLl from 

"-) fl') tt> - b.l hJ 
their vanishing equilibrium values leads to~ (pr, = k J f ,± 
Substitution of this estimate into equation (.49) leads to 

(s,) 

Similar equations are obtained by the same procedure from 

equ ation (29), 

J <•>c;; ) - P J.. 
ot J 
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-~part from nonlinear terms and with introduction of the • 

pair correlation function a.tu(· R R -. t) 
J • .) ·~.) 

, equation (52) 

may be written in the form 

Combination of equations (51) and ( 53) and use of the 

definitions of 
-OF(~) • 

and 
-0( 1) -i( 

F yields 

--an expression independent of the external force X. The 
... (\) 

term ~fj will be neglected since its coefficient, 

1IL is of the order of magnitude of the Brownian motion 
l ' 

correlation time. The equilibrium radial distribution 
l'I) 

fu:nct.ion ':I " is related to the potentials of mean force 

w(2) and w(l) by eqµations (2) and (10), 

ll.) LWl'-l \a I l ' ) \ a) ) / 

~ o l R.~ ~ e - -- vv , - w.., Y l(r Css) 

so that 
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Wi t h u s e of equation (56) and introduction of the pertur-­

ba.tlon in the correlation function p roduced by viscous 
l"l) 

flow, '3 , , defined by the relation 

equ&tion (54) simplifies to 

• l'l.) - l•>( i? ) ( 1J / n' \ f-1s:T ('l.) t'"7 (l.) l'l) ( '-;. l'\J -t- ~ (lJ +-) 
. <} J - f "' I f \._I~'- ) ~ 0 "f ~ I + _s_ ,- - r-

'f 'f l._s 8) 
(l.) 

For the evaluation of '], we note that by the eqµations 

of continui ty (37) and (.48), 

Thus by taking the divergence of equation (58), the 

t . d t . . l~ equa. 1.on e ermining '3 1 becomes for a linear theory, 

l'U 
Furtramore, for a linear theory ~ depends only on the 

...3) ~ -4 

relati ve coordinates R R-i. - R1 , so that ~~: -v~ =- VR 

when operating on the correlation function. In view of 

the short range of i ntermolecular forces, it is adequate 
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to retain the first term in the Taylor expansion of 
-9 _I;> _s, 

the velocity of molecule 2, \.L (R~) about R, > 
:J 

The treatment to follow will be based upon the neglect 

f Fl-a.) t ,=tF ,, -t- • th f . . f o - , i.e., e average orce arising rom 

the departure from equilibrium of the environment of sets 

of three molecules. With these approximations we finally 

obtain the equation<:£ forc·ed diffusi on determining the 

perturbation 

The complete solution of this equation leads to 

the molecular interpretation of the relaxation time 

spectrum due to viscous fluid flow. For the determination 

of the coefficients of viscosity it suffices to consider 

the steady state solutions. For this purpose we not e that 
_.., . ---

the term R • f: ~ may be expressed in terms of surface 
R~ 

harmonics of order two and zero, 
...tO -.JI> 
R·~·R • l. • I R .._ : ~ f "Y P ~ (c.6.5~) '; n 2 'f +; f ,z. Pa. (cose) c.os 'f + 

-it (r -2. P,. I ( 4,s e) Sir, 'f t ( i,.'t. -t v-k.) p2 0 ( Los 6) ) ( E,3) 

+ ~ ( < ,- E Yy ) P._\ cos&) cos 2. 'f + f v-it P: ( c.o s e ) 



In vie1iv of th.is relationship, •. the perturbation 

is given by 

In coordinate representation ipi.·(~) is the coefficient 

of surface harmonics of order two, arising from the shear 

components of the rate of strain, and ~
0
(R) is the 

coefficient of the surface harmonic of order zero, arising 

from the dilatational component. Introduct1on of equation 

(64) into equation (62) and linearization with respect to 
, 

the components of the rate of s:train, !: , leads, in the 

stationary case, to the follo wing ordinary differential 

equ.2.tions for the functions 'f'1.(R) and lj'o ( R ) J 

(66) 

The boundary conditions subject to which these 

eq~ations are to be solved are derived from the conditions 

imposed on the excess probability current density in rel&.­
~ ll-l 

ti ve pair space, J ,~ . This vector is the difference of 
'""?l~J the projection of AJ on the configuration spaces of 

molecules 2 and 1, respectively, 
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By means of equations (58) and (64) the excess probability 

density in the relative pair space may be expressed in 

terms of ~ z. lR) and ~ 11 (R) > 
..., . 

• ll) '" [ ~ 
J .,. = - ~. 'il,: r ~R -* 'i7-~1'; ... LR) + t Q-it 'I'· LR) 1 

~1.. 
-4(" 

The relative current j •1. vani.shes at R ➔ oo by definition 

and is conditioned by the absence of partial sources or sinks 

in pair space. These requirements lead to the boundary 

conditions, 

=- 0 

I im ~ UL ~ =0 
R. ... "° cl R. 

In addition, in order to ensure continuity of the pair 

current at any point q 1 ) 0 'q , ~ oo , 

I irn 
(1-) 

('l) ( j O l q,- t) '"h- l q,- e) = l,'m J• q, .. E)'f'i.(q, +( ) 
f--,o 

( ➔ o 

I; rn 
('l) ~ 

Cj o ( q, - t) ~i.-( 4' , -E: ) -= /:rt\ ~ " ( q • + £) '!$, ( q ,-, E ) 

f-9 0 cl~ E➔o o/1{ 

t10) 

(,3) 
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The stress tensor is derived by substitution 

of equations ( 64) and ( 5 7) in to the expression for the 

intermolecular force contri~ution, eqy.ation (25), and 

the result, equation (42), 

l14) 

Equations (.311-), (.35) and (36), giving the equation of 

state and the coefficients of viscosity, follow directly 

by comparison of the stress tensor (74) with the empirical 

Newtonian law and use of the. equilibrium value for the 
{ I) N ~-. 

s ·inglet number density ~ :::. - . Since the tensor Rfl 
\ 0 \I 

may be expanded in terms of surface harmonics of order - -two and zero in the same manner as R · -'. ·A , the numerical 
I< 1. · 

coefficients resulting from the angular integration follow 

from the ortbngonality of surface harmonics and the rela­

tion· 

fa""' 1.1}-

f f [ p~m(tose)] >-
v _, 
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VI. 

_E_Q1JI_T __ ,I .... B ..... R,.;;;;,I.,;.;m;;;.;;;.[_,.R;._,A;;.;;;·:D;.,::I~PL=--D:.;:I::..;:e;..:;)TRIB_UT_I_O--.;oN_F __ t_JN_C,l'_ION 

In order to evaluate the integrals (35) and 

(36), a.s well as to solve the differential equations._ 

determining the perturbati.on functions:... lf'-i. (R) and f o ( ~ ) , 

it is necessary to know the equilibrium radial distribu­

tion function '3 :\ (R') and the potential of intermolecular 

force V(R). The potential V{R) is conveniently approxi­

mated by the Lennard-Jones expression, 

V(_R) = f 0" -~) 
)( ~ ll 

Qo 

The theory to be presented bas been applied numerically 

to liquid argon. This fluid satisfies the requirements 

that the individual molecules have spherically symmetric 

fields of force, and furthermore its properties may be 

calculated by means of clc1.sslcal statistical mechanics. 

In applications of the theory to be made to liquid argon, 

we will use parameters ~ ,n and a0 , determined by 

Rushbrooke(l6) and Corner(l 7Y. The values are: 

4 6 o - '4- A'C) n:: II. j f:: .o2. XIO e.rg s~ q 0 -::: 3.4-3 . 

It is to be emphasized that the Lem1.ard-Jones expres.sion 

is not a true representation of the potential, but i .s 

commonly used because of its analytical properties. 
(l.) 

The radial distribution function '3 _, (R) is 

determi.ned by the potential of intermole,cular force V(R) 
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and the thermodynamic variables. In Part II it was sho"Wn 

that for a liquid in the absence~· of external forces, 

For a potential of intermolecular force of the form (5), 
r~ . 

the dependence of ~ 
0 

on the thermodynamic varia bles may 

be easily determined by taking the gradient of both sides 

of equation ( 77) with respect to molecule 2 of the pair, 

By defining a correlation function for a set of three 

l ~ _ 3 13) ...a -> 7i ) 
molecules by the relation f- -~

3 
'j . ( ~.~, R,"' 1 "'~l , 

and using the potential V(R) "' 'E (~" - ~") = ~ f(?<.) 

th t . f ,~ b e equa ion or j 
O 

ecomes . 

, 
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It is thus seen that 
p} . 

~ 0 depends on the combinations 

o( :: ~ 
I ltT 

imposed on 

and c<. -a. ;; N Q.0 °' 
<a.> V ':lo (appendix) .has the same dependence on the 

• The normalization condition 

thermodynamic va.riables . 
(l.) 

All theoretical investigations of ~ 
0 

carried 

out thus far have been based on the "Kirkwood (18) super­

position approximation", which terminates the integro­

differential equation (79) by the approximation 
(~ • (1.) I (l.J ( <lJ ( q O l R,~) R ,3J Au) = 3 0 \..Rn.) ~ 0 R,~) 9 0 n,.i) . 

In view of the mathematical difficulties involved in solv-

ing this nonlinear integral equation, solutions have only 

been obtained for the hard sphere(l9) case up until now. 

Thus, at the present time, accurate theoretical distribu-• 

tion functions are not available. 

However, is also accesslble to experi-

mental measurement, since it determines the intensity 

of X-rays scattered by a liquid as a function of scatter­

ing angle. In applications to follow, we will make use 

of the radial distribution function data for liquid argon 

of Eisenstein and Gingrich .. <20). This function approaches. 

zero at an effective collision diameter and possesses a 

series of peaks with amplitude rapidly diminishing as R 

increases. For large R, the value of the function approaches 

unity. 
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The experimental results of Eisenstein and 

Gingric.h were checked by substituting their values into 

the equation of state (34). It was found that with use 

of their curves, the integral determining the cohesive 

pressure yields a negative value at a condition req_µir­

ing a positive result. Tbis clearly demonstrates a 

difficulty encountered in problems of trus type. The 

representative integrals are very sensitive to the rela­

tive variation of the first peak of the radial distribu-­

tion function to the position and value of the minimum 

of the potential of . intermolecular force, the latter being 

abvays somewhat arbitrarily chosen. One could partly cir-· 

ctunvent this difficulty by adjusting the experimental~~ 

so as to give correct results for the integrals determin­

ing the eqµation of state and the energy of vaporization, 
('t) 

likewise determined by ~ 0 -

The solution of eq_-µations (65) and (66) could be 
('U 

based on this improved ~o, but this procedure would entail 

a very extensive numerical program. We have selected a 

different line of attack on this problem. The analytical 

approximation to 

(l.) ( ) 
<3 o R :: 

.J 

(l.) (R) 
~ 0 ) 

J 

(ao) 

Q <R 
I 



41. 
represents the first peaks of the Eisenstein-Gingrich curve.s 

quite well, and has the important advantage of allowing 

integration of the differential equations satisfied by 

the perturbations \f "- and 

hypergeometric functions. 

w • in terms of confluent To 

Due to the sbort range of 

intermolecular forces , the subsidic~ry maxima and minima . 

in 
('\) • 

~ ~ will not contribute appreciably to the de:sired results. 

The tvm parameters a1 and t were determined from 

the Eisenstein-Gingrich data to be relatively insensitive 

to temperature. On the basis of their curves, the values 

a1== 4.5A
0 

and t=14 wer.e selected. For liqyj.d argon at 

89°K and. 1.2 atm~~,- the remaining parameters were determined 

with use of the Lennard-Jones potential, equation (76), the 

theoretical eCiuation of state, eq-µation (.34), and the 

energy of vaporization of the liquid into a perfect gas, 

Equation (81) may be easily derived from the result that 

the kinetic energy of a classical monatomic fluid is ~RT 
'2.. 

and from the statistical average of the potential energy. 

Thus the energy, E1, of the liquid is given by 

= l..RT +..1.. 
'2.. "2.. 

., 
=~RT-+ H~

1 f R'- V(~ ~t;'(R) olR 



42. 

Table I summarizes the best available data-. 

for liq-g.id argon in equilibrium with the vapor needed for 

the subsequent calculations of the thermodynamic variables. 

TABLE I 

T: p (atm) f ,.-1\ (~) Evap (cal/mol) 

84.0 .6·793 1.409 1,1+25 

86.0 .8520 1.397 1,1+11 

88.0 1.1099 1.385 1,396 

90.0 1.329 1.374 1,382 

95.0 2.120 1.343 1,.347 

100.0 3 ~210 1.309 1,311 

110.0 6.566 1.239 1,236 

The pressure was calculated from the equation given by 

F. BornC 21 ) (84° - 86°K), and from the equation in the 

International Critical Tables< 22) (88° - 110°K)~ Densities 

of the liquid we~~ taken f r om the c ompilations of Mathias, 

Kamerlingh Ormes and Crommelin ( 23). The energies of vapor­

ization were calculated from the heat of vaporization at 

87.29°K determined by Frank and ClusiusC 24), and the heat 

capacities of the liquid given by Clusius< 25} (86.0°-88.0°K) 

and Eucken and Ha!tck( 26) (90°- 110°K). Gas corrections 

we re made from the second virial coefficient obtained by 

Cath and Kamerlingh Onnes< 27). 
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For the determination of the parameters a ands ,,., 

of eq_uati.on (80) , it is convenient t o transform the 

theoretical expressions for the equation of state and 

energy of vaporization. Quite generally with use of 

the Lennard-Jones potential (76), 

LE-: f-RT-f"-f 
l.'fl'Q~>.J "- f . o -

y 

0() 

L .: RT- pv 
r = 

ill Q/ l!L l.f. 
'1, V 

f xl.(JL - lL) c,': dx 
o ><" x' J 

By means of some elementary algebraic operations we find 

that 

Substitution of the analytical approximation to 

equation (80), into eqµations (85) and (86), leads to 

the following transcendental equations : 

L 
3~n 

- .!. ~. ( - _!_ -'- ~ x'h z , t e . f' S+tl-~ . 2 , ) 1\ ,,_~ )C "-3 .> 
' t:-

(tn) 

L 
_). -~ 

'l., r - _J__ = }(,,., z, 1: 
e ( s-,. 3 i z , ) ' 'l x,~ t 
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etD 

r (o(i -z ,) ~ f e -2.2 .. 1.-1d2 

";t I 

The functional relation between a and s was derived ,,.. 
by solving the equation obtained from the division of 

equation (87) by eqµation (88). Resubsti tution of this 

relation into equation (S7) led to the values of the 

parameters. Table II summarizes the results of these 

calculations for liquid argon at 89°K and 1.2 atm. 

a I 

TABLE II 

0 
3.554 A: 

t s 

14 

With these parameters the maximum of the first 

pea1c occurs at 3. 73 A0 and the coordination number corres-­

ponding to nearest neighbors is 8.1, both in good agree­

ment with the Eisenstein--Gingrich experiments. It should 

be noted that the procedure adopt:ed, partly compensates 

for the arbitrariness of the constants in the potential 

V(H). 
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VII. 

~OLUTIO[_OF S~A8-_VISCOSITX-E.QPATION 

In tbis section we will derive the solution of 

the f~ equation (65) based on use of the approximate 

t t . (1.) ( d, ) re pre sen a ion of ~ 
0 

given in eq:uation oO ! • 

. (.) 1. since .!L 

is a particular solution, •Ne only have to investigate 

the homogeneous eqµation, 

~,. Q... + [2- + x q_,.,, 1~ f l( al_¼, _ Ger.._ = o 
q )( " ol X of ){ ( i~) 

)< :.- B_ 
0o 

For x, <. x, eqµation (89) reduces to Euler's equation, 

so that the solution satisfying the boundary condition 

at infinity, equation (69), is given by 

J 

2-

Substitution of the first .peak approximation into eqµation 

(89) leads to the following differential equation for o~ )( ~x,) 

-t- ('2.. k-z.) z. ~';_'- ~ ~~-+ '" ""' i) (k- m -,t) Y,-.. '"o 

~2.) 



Tre t~o linearly independent solutions of this equation 

are found to be e ~ z _ I( W (z ) and e ¾ z - '< W_ &-(~ 2.) 
k n, "'-> I 

where Wk,.J;i:.) is the w~ttaker< 28) confluent hyper-

geometric function. Thus, 

We note that the generalized hypergeometric function is 

given by 

co 

L r ( o(,t .. ) r (-<i+")-- ,, (.(;,+ n) r ( f' ,) I' (e .. J - . /7 (61_ z ., 

r ( .(,) r ( «~ •• r{_.<.r) r ( f, f") r(f._t .. ) . , P(f, ii•) "! 

By means of this abbreviated notation v1e cruL easily 

summarize the more important properties of the Whittaker 

funct:ion. 

1) The asymptotic expansion of 

for large value of l~I 



w (i.) :: 
1(-J,n 

l'1 (:z. ) 
~ :tm 
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and 2m is not an integer 

+ I' (lrn ) 

r(t+n.,-k) 

3) When I Qv~ -z} '- 3f and neither of the numbers ~ :1:- rn +t 
is a positive integer or zero, ma.y be represented 

by a contour integral of the Mellin-Barnes type, 

-+ 01)1, 

e-½ z ~ [ r lv) r (-v-k+ffl-t-½ ) fl (-v-k"-ll'H½_) Z ~olv' 

"l..rrl . r (--k•Hl\ "'"\) fl (-k-h-H,!. J 
- 00\. 2. 

4) Kummer's formula states that when 2m is not a negative 

integer 

It follows readily from the asymptotic expansion (95) that 

so that in view of the boundary condition at the origin 

( 70), y,. is not an admissj.ble solution. The constants Kj_ 

and K2 are det ermined by the requirement (73) that 'f''l... and 
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~ be continuous at x1 .. The derivative of y, (z) 

may be most conveniently calcula ted by means of relation 

(97J, 

ffi>< ) ~ --..t z ~ t~) 
~ Y x ol, 

.ic,oi, 

~ {,) .. .L J v fl v) fl ... v ... Jr ... m i -\_ ) ,, (-v-k+m +i ) z. ~-,o/v 
a7.. 2. Tl"i 

--'o i r (--k--rn .. ½_) fl (-k- -1- m-1{ ) 

{ 100) 

- t 

"'2~ i. r ~ V r (- v -lr -tl -m +\ I' -v-k-,.l+m +.t. z~v 

... ,., r (: k -"' _.i.) 1, (-k- .. ll\ 4 i.) 

, we finally obtain the result 

( 10 1) 

With use of the preceding expression, the constants K1 and 

K2 are found to be 
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Since in our numerical example 2 1 ia 3-b7·do-~ Wt~.) is 

"'''" 
easily computed by means of rela tion (96), only a few 

terms in t he power series being required. 

Substitution of f 1 given by eqµations (91) and 

(93) into equation (35) and use of the potential V(~), 

equation ( 76), leads to the following re sult for the 

coeff icient of srear viscosity, 

-t N rn kT 
1., V 'f 

"Z.. 

J 

:::: ... 

T (-,.) ::. f l -2. o<. + s I 
-- ..i.. ' y, 2.) e 2 t' - olz 

0 

lo 4) 

7 
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The value of I ,ioo) may be calculated with use of 

equation (97), 

.~" 
"'-t;i. f. r (11),., (-v-lc"- m~t_) r (-v- k-+11H1.) r ( v+£S ch/ 

-00 1. 

r (- k"- n, +-t_) r (- k-" m °' -\: ) 

-: r (~- i--m .. ~ f' (~-k'+ ni .. 1: ) 

r l~; s ~ , - 2 k") 

t 7 0 -1. 

(,os) 

The last step follo·~vs from Barnes' Lemma (ref. 28, p. 289)) 

which states that 

_, GO&. 

f. r l13,-t v) ,., l ,3._+ V) P( (33- V) r (13 .. - v ) a V " 
-oO &. 

r /3,+ Mr p ,+ F· }f' [P. .. + f .s) r (~ .. t p. ) 

,, (f3,,. /3-a. ,. /3:1 + 13,,_) 

when the poles. of r (_/3, +v) I' ( /3~-,. v) do not coincide with 

the poles of r (l'l~- v) i' ( /3i -\I) . 
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The correcti on term r "- (-z. ,) is readily evaluated 

from eq~ation (96) and Kummerts formula, equation (98), 

¾(4,) = ~ rn (z,) -1- r_;""(z,) 

where 
( I 01 ) 

I !(-z.,) r (-1-~ ~ - k -+-(: _.. r 
:: "Z t 

• ~ 

r l-rt -r -k) (°'f -k+½_ +/3 

only a fe·w terms in the power series bei ng required for 

the numerical computation. 
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VIII . 

.§QLUTION OF BULK VISCOSITY EQUATION 

The differential eq:µation (66) for the bulk 

viscosity perturbation ~o (R) . may be integrated directly~ 

The solution satisfying the boundary condition at the 

origin, equation (72), is given by 

I 

r cl 1 ~ V \ JV -+ lf'o («>) 
dv 

0 

for x large 

In order to evaluate 'l'o (eo) we must utilize the fact that 

the coefficient of bulk viscosity only enters into non­

steady state fluid flow. For the case of a periodic dila­

tion of frequency w, the equation of forced diffusion 

(62) reduces to the following differential equation for 

"f'o ( R) when x is large and thus ~ ~" I J 

1. • '° 'l X :: '- <u J q, , 

'l.. k,· 

The s ubstitution reduces this eqµation to the 

form 
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Hence the asymptotic solution of lJ'0 is readily seen to be 

+ [ \' @ lC(l-1i \) 
'2 l(T 

( , 10) 

The boundary condition at infinity, equation (71), requires 

that B(Lu)~ o and in the limiting case of zero 

frequency of dilation 

By comparison of (111) and (108), 'fo vanishes at infinity 

so that the coefficient of bulk viscosity is given by 

Nrn k-1 -t 

3" r 

·while we have succeeded in deriving tbis expres-­

sion without recourse to our an alytical approximation to 
,,., 

~ 1> , for the purpose of evalua ting (112) nwnerically 

it is convenient to introduce this simplication. Upon 

partial integration of (108) with ct~ (s,) :: 1>J 



In the region where 

x , 

\f' 0 ( )() = 3 q o 'l r X '( ~ '!-1) al X 
)( 'O 

\ ' 1+) 

Similarly for x < x, J 

The last term, wbich gives rise to the principal compu­

tationa l difficulties, ·simplifi es by means of the first 

peak approximation, equation (80), 
)( , f 2. 00 

H ( ) 
( 'l. ( ' , ~, ::, 'L J I ¥ - I f -JC s ... ~ _, 

2' .,, 3 J ~ ~ /1) J x 3 o d x = '3 'l<.._"' e l cl l e >< t cl x 
"f. f 1 • b t °Z , t 

(116) 

111:i th use of the relation <28) 

we find that 

(11 B) 
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Substitution of (114), (115) and (118) into the general 

relation (112) for the coefficient of bul k viscosity 

results in the approximation, 

where (29) 
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In the foregoing expressions, K . (z1) and J'< (2 ,) are 

evaluated by means of a few terms in the power series. 

The first term of Joe. (-o) is greatly simplified with 

use of the Gauss summation formula( 28) for the~ I=' , 

function of argument unity and the relation fl (z) r ( 1-2) = fl'"' l 
s ,·n rrz 

i.e. 

-i. F, ( ~ ~j c ~ 1) -= I' ( c) I' ( c- a - b) 

,, ( C-q ) . ,, ( c- b) 

with the result 

,-,(~) r C,.~)tr-

c. "'> a+b 

t 'l r (, + 3-~-s) s ,'n1t(~) 

(, 2.i ) 

Since the 1F2. function of argument unity cannot be 

summed in an analogous manner, the direct summation pro-­

cedure mus t be c a rried out. 
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IX. 

FRI~TION CONSTANT AND SUMMARY OF RESULT§ 

By means of our molecular theory of viscous 

flow, we have verified the extended Newtonian law and we 

have succeeded in expressing the coefficients of viscosity 

in terms of the potential of intermolecular force, V(B}, 

the equilibrium radial distribution function, 
(U 

'3 0 > and 

the friction constant, t • The friction constant appear·s 

as a factor in the formulas for the coefficients of 

viscosity and it remains to express this function in a 

form readily amenable to calculation in terms of molecular 

variables. JlJith the assumption that r i .s momentum in-

depend.ent, the diffusion friction constant was derived by 

Kirkwood, eqµation (27), 

~ 

-s .. < r.) =- t f < F._ (t) . F. (1-.. s))" c1 s 
0 ( l 'l..l) 

In view of the extreme generality of this formula for the 

dissipation, it has not yet been possible to evaluate ~ 

rigorously. We are thus forced to turn to a plausible 

approximation which is expected to yield results of the 

correct order of magnitude. If thestructure of the 

dynamical system is such that "'$ exists, then 1.re may define 
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a correlation time e such that 

For a potential of total intermolecular force, v'~ of 
) 

the form (5), 

< F/ U) r = J '7, V flt~ V.: v'"' e - fi vW~ ii 
J e - p v'NJ ciq 

where we have applied Green's theorem in the thi rd step. 

Upon performing the indicated integration, 

The estimate that the correlation time 0 is eq_µal to 

the relaxation time !!L enables one to express the 
y 

friction constant by the simple formula, 
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where ~ is the mass density. This result is to be 

considered a preliminary estimate. 

It will be convenient at this point to summarize 

the results of our theory as applied to liquid argon at 

89°K and 1.2 atm. With use of parameters f, n and a0 , 

given by Rushbrooke, arid :parameters a
1

, arw t and s , given in 

Table II, we obtain for the coefficient. of shea~ viscosity:, 

') , and the coefficient of bulk viscosity, cp , 

"'7 ' ,;-"' = l.q S-v. IO ~ -+ 4. '8 ~ ,o.. po,·se. ~~q) 
't 

The preliminary estimate for the friction constant~ lead.s 

to the value, 

-' sec. 

Reference to these results shows that the momentum contribu­

tion to the coefficients of viscosity is negligible in 

comparison with the contribution arising from intermolecular 

forces. 

By defining an effective radius by the relatton--

ship 'r = ,rr ? ReFF , suggested by the Stokes estimate 

for the friction constant, the evaluation of R ~ fF may 
0 

be carried out by equation (128). The result, ReH -=- 2 .oA 

at S~°KJ is strikingly similar to the actual radius, 1.9 A0 , 

taken to be one-half the distance between nearest neighbors. 
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A final test of our theory of shear viscosity is available 

vri th the estimate for 'r eqµation (130). The theoretical 
) 

0 - ?. • • value for liquid argon at 89 K, ') = 1.17 -,..1_0 • poise, i .s 

in moderately good agreement with the extrapolated experi­

mental determination (JO), i .iq ~,o- -s po'ise. 

The coefficient of bulk viscosity calculated 

similarly leads to the value cp == By divid-

ing eq~ation (129) by equation (128), thel friction constant 

cancels and we find for the ratio . ¢/9 " / .4- . From 

recent ultrasonic absorption me a0urements of Galt(Jl),
1
an 

upper bound to the ratio cf, f 1) is estimated to be 1/3 f or 

liquid a rgon at 85°K. However, in the absence of an 

experimental value of the heat conductivity, the calcula-

tion of the absolute value of ¢ is not possible.. Results 

of these calculations are summarized in Table III. · 

T_A..BLE III 

Viscosity Coefficients of Liquid Argon at 89°K 

and 1.2 atm. 

Jk_ 
! 

-1 
cm. 

Cale. 1~95tl0 7 

Exp. 

-1 
fl.. cm. 
'S 

2.6.3xl0
6 

5P_ 
') 

7.4 

<1 
3 

cf, poise ') poise 

~.3 
9 • .38xl0 

-3 
1. 2 7Y..10 

- 3 
2.J9xl0 . 
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In view of the approximate nature of our ~ ': 

and ! , these values are to be considered as preliminary 

estimates. At such a l ater time when a more satisfactory 
1~ • 1 b 

~o wil e available, it is expected that better agree-

ment 1.dll be obtained · by deriving the first peak parameters 
('1) 

from the theoretical <3 
0 

curves. The coefficient of bulk 

viscosity is particularly sensitive to the choice of 'j<! 

so that the ratio~/? may be smaller. This is apparent : 

by reference to equation (114), which indicates that the 

coefficient of bulk viscosity is strongly affected by the 

fluctuation integral (see appendix) 

The parameters selected by the procedure . given in Part VI 

do ·not satisfy this additional restriction and thus the 

unsatisfactory value for the coefficient of bulk viscosity 

is not unexpected. However, the fluctuation integral does 

not enter into the theory of the coefficient of shear 

viscosity. 

A qualitative investigation of the effect of the 

fluctuation integral on the results of the theory has been 

carried out. A starting point was provided by transform­

ing the differential equ,ation for the perturbation 'f~, 
subject to the appropriate boundary conditions, into a Fredholm 
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integral equation of the second kind. It was possible 

t ~ ~o) o solve this integral equation by representing J 

by the three parameter approximation 

0 
J 

o ~ A <. b., 

I'-) ,, bD ~ R ~ b, ( , 31..) ~-
':, h -, I i 

I • 
J 

b, < R, 

The details of this calculation will not be presented, 

since it was demonstrated that the constants b0 , b, and h 

could not be determined numerically from equations (85), 

(86) and (131). Physically this means that the step 

approximation to <3 ': , eqµation (132)) is inconsistent 

with a potential of intermolecular force of the Lennard­

Jones type. 

We thus conclude that better numerical agreement 

will only be possible on the basis of a reliable radial 

distribution function. _However, the results already 

obtained indicate the success of the molecular theory of 

viscous flow formulated in the preceding sections. 
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vve will conclude th.is pre s entation by investl-­

gating the important normalization condition imposed on 

the non--eq_uilibrium pair distribution function. The 

approach wbich h2.s been adopted is the generalizati.on 

of a method due to Yvon (_32) and is based on fluctuation 

t heory. · 

Consider a fluid composed of N identical molecu . .res 

contained in a volt.we v. The configuration probability 

distributj_on ftmction of the ensemble at time t will a.gain 
(A,) (-.111 ) be denoted by '{' q ~ t . we note that by deflni tion 

V ( 1'1,/ ) .... ~ . J '(' (~.;t) dQ :: I . Next we focus our attention on an 

arbi trary volume )) , wholly contained within v, and we 

define the quantity Pj by the relation 

p. = 
J 

P. ~o 
J 

if molecule j is in the volume v 
if molecule j is not in the volume~ 

Thus the number of molecules contained witr~n V at time t , 

N (1.J .; t) may be expressed in the form., 

The average number of molecules within lJJ is 

calculated from the statistical &verage of equation {134). 

In view of the identical nature of the molecules, 
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\I/ ' I ft/ " (II) --\ Al '-'1;t)) = •• • f N (u;t) '(' (q 1t)qq' 

:: r di: N f.. r 'f'"')(Q i { } rlq N-J 

The deviation from the mean ~,v, of molecules contained 

in the volume V at time t is defined by 

" Since ~ 4 N) = O , we consider the mean sq:t1are 

deviation J ~ l 4Nj1-) > 

The first term of equation (137) is readily evaluated, 
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Substitution of eq_u·ation (138) into equation (137) lead.s 

to the final result · of our analysis, 

P:n important expression is derived when the 

syst em is in thermodynamic equilibrium in the absence of 

external forces. 1-.Phen 11 < < v , the Einstein-Smoluchoirnlci 

th8ory of density fluctuations, based on the Gibbs canonical 

ensemble, leads to the result 

" ( ( 41\/n :: lrTv ~ iJ \ N) a. 

x=-- ..L (d") 
Y fp, r 

where ~ is the compressibility. 

The limiting process v ..... oo , keeping the ratio. of v 

to v constant, and use of equation (140), permits the 

calculation of the normalization integral 

c::io 

4ft f: f R \ ~'!(it)-1 ) dR ., 

Our analysis thus provides us with a restriction 
I 1.) 

to be imposed on a J 0 
, and furthermore yields an expression 
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for the fluctuations in the non--cq__uili bri um case. For 

vi .scous fluid flow it ha s been previously shovcin that for 

a llnear theory, · 

Since the shear viscosity perturbation involves surface 

harmonics of order t ·wo and the bulk viscosity perturba­

tion. involves surface harmonics of order zero, our general 

eqy.ation {1.39) leads to the interesting conclusion that 

the fluctuation is only affected by dilation.al viscous 

flow. This result is intimately related. to the previous 

observation that the value of the coefficient of bulk 

viscosity is affected by the value of the normaliza.tlon 

integral of the eqµilibrium radial distributi on function. 
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Propositions submitted by Frank P. Buff 

Ph.D. Oral Examination, May 5, 1949, 1:30 P.M., Crellin 

Conference Room 

Committee: Professors Kirkwood (Chairman), Epstein, Lucas, 

Pauling, Yost 

1) The thermodynamics of multi-component azeotropes, 

pseudo-azeotropes, etc. may be formul ated rigorously by 

Gibbsian methods. Among several interesting results it 

is found that for binary azeotropes the composition~ 

pressure diagram shows a maximum when 4Hi.~V,= c:>1-1, 4V.., 

where ~ H is the change in partial molal enthalpy and 

~ v is the ,change in partial molal volume. 

, 

2) The statistical mechanical theory of surface tension 

of Kirkwood and Buff maybe used to calculate the surface 

tension of binary solutions. With the usual assumptions 

for "regula r" solutions .ft ~ 'f, {f. t '('1. I~, 

where 2f is the surface tension of the mixture , ~. cane/ r~ 
are the surf.ace tensions of the pure components and V', 

and lf ...... are the volume fractions. 

J. G. Kirkwood and F. P. Buff, J. Chem. Phys., 17, 338 (1949) 



2. 

3) a) Mottts theory relating the change of resistance 

of a metal upon melting to the entropy of fusion cannot 

be directly extended to allotropic transitions. It is 

suggested that this is partly due to the resultant change 

in the number of "free"conduction electrons and hence 

the electron ratio may be calculated from experimental 

data. 

b) A survey of the physical properties of the l~quid 

alkali metals suggests that they may not be unambiguously 

classified as monatomic fluids. 

N.F. Mott, Proc. Roy. Soc., A, 146, 465 (1934) 

4) The temperature derivative of the equilibrium radial 

distribution function is of interest in investigation~of 

the liquid state. This derivative may be calculated by 

statistical mechanics, and for monatomic liquids is 

determined by the potential of intermolecular force and 

number densities of sets of 2, 3 and 4 molecules. 

5) a) It is suggested that a new titration curve with 

possibly sharper inflection points is obtained by subtract­

ing corresponding pH readings of two ti trat.ion curve,s 

obtained at different ionic strengths. 



3. 

5) b) The instability of some solutions containing 

cerium reagents should be investigated. 

6) A statistical mechanical theory of solutions may be 

based on: 

a) The Kirkwood expression for the chemical potential 

and his integro-differential equation for number densities, 

both being in terms of a coupling parameter. 

b) A direct transformation of the Gibbs phase integral. 

J. G. Kirkwood, J. Chem. Phys., 2, 300 (1935) 

7) a) By means of a Tolman-Stewart type arrangement with 

simultaneous cooling it should be possible to induce 

currents in a superconductor. 

b} The method devised by Yost and Johnston for the 

study of rapid gas phase reactions may be used to follow 

clock reactions. 

H. S. Johnston and D. M .. Yost, J. Chem. Phys., 1.7, 386 (1949) 

8) a) The approximate treatment of shear viscosity given 

by Born and Green has attracted considerable attention. 

The starting point of their unjustified peak integration 

may be actually shown equivalent to 9 cl.. fr- , where 9 
is the viscosity coefficient and , ~ is the surface tension$ 

• However, the modified expression, ?: T =- constant, appear& 
~ 

to reproduce experimental data satisfactorily. 



4. 
b) Kirkwoodts new theory of the friction constant 

leads to a certain o;rdinary differential eq~ation. Approxi­

mate solutions of this equation in terms of confluent hyper­

geometric functions may be obtained ·with use of the first 

peak approximation (this thesis) to the radial distribution 

f unction. 

M. Born and H. s. Green, Proc. Roy. Soc., A, 190, 455 (1947) 

9} It is suggested that a table of potential functions. 

permitting solution of the Schroedinger equation in terms 

of known functions may facilitate some quantum mechanical 

problems. By means of this method, a smooth symmetrical 

potential well problem may be treated with some success. 

10) I propose that the final or al examination be restricted 

to the defense of the thesis and a small number of propositions. 




