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ABSTRACT

—e—

A detsiled molecular theory of the coefficients
of shear and bulk viscosity of monatomic liquids is developed
on the basis of the general theory of transport processes
proposed by Kirkwood. The coefficients are expressed
explicitly in terms of the potential of intermolecular force
and the perturbations in the pair number density produced by
viscous fluid flow. These perturbations are obteined from
the steady state solutions of an equation of forced diffusion,
derived from the generalized Chandrasekhar equationsg determin-
ing the distribution functions of sets of one znd two molecules.
This procedure leads to a set of ordinary differenticzl
equetions, which are solved in terms of the Whitteker con-
fluent hypergeometric function by means of a reasonable
analytic approximation to the experimental radial distribu-
tion function.

With the use of the Lennard-Jones potential and
the approximete radial distribution function, calculations
of the coefficients of shear and bulk viscosity of liquid
argon at 89°K and 1.2 atm. bhave been carried out. The
theory leads explicitly to ratios of the coefficients to
the friction constant of the theory of Brownian motion.
Tith an estimate of the friction constent, & value of the
shear viscosity of liquid argon in moderately good agree-

ment with experiment is obtained.
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1.
I.
INTRODUCTION

The meacroscopic behavior of a system of
molecules may be described in two ways. The first is the
phenomenological description, and the other is the more
fundamental approach in terms of the molecular structure
of the system. A small number of molar variables, such
as the temperature, composition and parameters of external
force specify the macroscopic state.

It is to be noted that z complete phenomenologi-
cal description, without reference to the molecular
structure, 1s possible. When the system is in equilibrium,
its behavior is described by thermodynamics. Furthermore,
when the state of the system is inconsistent with the
conditions of thermodynamic equilibrium, transport processes
occur, such as fluid flow, diffusion and heat transfer.
These transport processes may then be described in terns
of the macroscopic equations of hydrodynamics, which are
supplemented by empirical relctions connecting the stress
tensor and heat and mass currents with functions of the
locel macroscopic steate of the system. The parameters
entering into these supplementery expressions are the
various transport coefficients. The solutions of the
trensport equations, subject to specified initisl and

boundary conditions, then determine the macroscoplc state
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of the system as a function of position and time. On
the other hend, if a description in molecular terms is
desired, the macroscopic behavior of the system requires
interpretation from the standpoint of statistical mechanics
since its dynamical stste is incompletely defined by the
molar variables, The main objectives of this approach are
the derivation of the eguations of hydrodynamics from
molecular dynamics, the investigation of the validity of
the supplementary empirical relations, the determination
of the transport coefficients in terms of the forces acting
between the molecules of which the system is composed and
the molecular interpretation of the relaxation time spectrum
pro§uced by time dependent external forces.

| In the following treatment a detailed molecular
theory of viscous fluid flow will be presented. At the
outset we will 1limit our discussion to monatomic liquids
which may be adequately treated by means of classical
statistical mechanics. It is hoped thet our theory will
help in the elucidation of the properties of fluids such
as liguid helium, even though a quantum mechanical approach
is necessary in these problems.

The natural development of the theory came from
the investigations of the viscosity coefficients in dilute
monatomic gases. In 1867, Maxwell(l) published the first
accurate theoretical discussion of the coefficient of shear

viscosity and his prediction, since experimentally verified,

]
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that the coefficient is independent of pressure at a

given temperature was one of the early triumphs of the
kinetic theory of gases., The problem received its rigorous
formulation in 1872, when Boltzmann(2) first derived the
integro-differential equation appropriatelwhen the behavior
of the molecules is amenable to binary collision analysis.
Due to the mathematical difficulties involved in solving

this equation, it was not until 1911-1916 that D. EnSkog(B)
and S, Chapman(4) independently succeeded in obtaining

general solutions valid for any type of spherically sym-
metric molecule possessing only translational degrees of
freedom. Both men were guided by the investigations of

D, Hilbert(5), who first called this equation, the Maxwell-
Boltzmann integro-differential equation.

These, as well as later treatments, calculated
the coefficient of viscosity by considering the momentum
transmitted across an arbitrary surface in the fluid. How-
ever, as early as 18835, Graetz(é) suggested that in the case
of liquids the mechanism of viscous flow also involves the
resistance against deformation due to the intermolecular
forces. In order to substantiate his argument, he cited:
the decrease of viscosity due to an increzse of tempera-
ture, a relation which was later found to follow an expo-
nential law,

An 1lmportant extension of the general theory was

made by Enskog(7) in 1922,who indicated & development valid




o

for dense gases. Despite the partial success of this
work, it could not be readily applied to liquids. 1In
view of these complexities, various models were postulated
to account for the experimental results. With use of the
Graetz mechanism, J. Frenkel(s) developed a model theory
which qualitatively led to the exponential temperature
dependence. This approach was later formulated more
elaborately by Andrade, Furth and Eyring(9). In particu-
lar, Eyring and his coworkers discovered some useful semi-
empirical relationships by applying the transition state
method to the free volume theory of liquids. These expres-
sions have recently been critically reexamined by Brunner(lo).
In 1946, Kirkwood(11) and Born and creen(1?) formu-
lated alternative approaches to molecular theories of trans-
port processes, While the two theories duplicate many of
the general results, they differ in the manner in which
dissipative terms are introduced into the equations satis-
fied by the distribution functions. Although Born and
Green have presented interesting qualitative discussions,
they have not yet succeeded in constructing solutions of
their equations for the distribution functions in suffi-
ciently explicit form to yield concrete results.
The detailed molecular theory of viscous flow
to be presented is based on Kirkwood's theory of irrevers-

ible processes, which combines many features of the kinetile

o
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theory of gases and the theory of Brownian motion. A
starting point is provided by the differential equations
of the Chandrasekhar type for the probability distribu-
tion functions in the phase space of sets of one, two and
three molecules, which were derived by him from the
molecular standpoint.

The coefficients of viscosity are defined by
the empirical Newtonian law relating the stress tensor
entering into the hydrodynamical equation of motion to
the rate of strain. On the other hend, the stress ténsor
is determined by molecular distribution functions and
intermolecular forces in the manner to be described in
Part I1I. There are two types of terms, one arising from
momentum trensport and one from the direct transmission
of intermolecular forces, the latter being determined by
the average density of molecular peirs for the monatomic
liquides to be treazted. In thermodynamic equilibrium the
stress reduces to a uniform normal pressure, the first
term of which is the ideal ges contribution. The second
term arising from intermolecular forces, has no shear
components, since the pair density, proportional to the
radial distribution function of the theory of liquids,

possesses sphericel symmetry. UDeparture from equilibrium

wn

resulting from hydrodynemic flow leads to perturbations in
the molecular distribut ion functions proportional to the

components of the rate of strein. In liquids the momentum

o
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transport contribution to these terms is very small rela-
tive to the contribution from intermolecular forces. The
latter contribution consists of two parts, one spherically
symmetric, which determines the bulk viscosity,and one hav-
ing the symmetry of a surface harmonic of order two which
determines the shear viscosity.

By means of the Chandrasekhar type of equations
the perturbations in the pertinent molecular distribution
funetions have been constructed and the ratios of the two
coefficients of viscosity to the Brownlean motion friction
constant have been expressed in terms of cdefinite integrals
involving the potentizl of intermolecular force and the
equilibrium radial distribution function. Calculations
have been carried out for liquid argon at 89°K with use of
the Lenmard~Jones potential and & recsonsble analytic
approximetion to the redial distribution function., It has
not yet been possible to calculate the friction consteant
accurately, but & preliminary estimate leads to a shesr
viscosity of 1.27 x 10~32 poise, in moderastely good agree-
ment with the experimental velue, 2.39 x 10-3 poise. The

results of these calevlations are summerized in Table III.
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1L,
DEFINITION OF MOLECULAR DISTBIBUTiON FONCIIONS

In the field of classical statistical mechanics
the dynamical states of a system of N molecules constitute
& phase space and the ensemble representing a distribution
in initiel conditions is characterized by & probability
density fhv(frdssﬁ) in phase space. For molecules
possessing only translational degrees of freedom, the
momentum vector P is then defined in 3N- dimensional
momentum space and is composed of N vectors ﬁ:u- FL s its
projections on the 3- momentum spaces of the individual
molecuvles., Similarly, the configuration vectorﬂa'is a

vector in the 3N- dimensional configuration space with

components b", <,f

» specifying the positions of the centers

of gravity in the 3- configuration spaces of the several
molecules.

From operational considerations Kirkwood concludes
thet the appropriate distribution function involved in the
non-equilibrium statistical expectation value of a macro-
scopic observeble is to be smoothed over & microscopically
short time intervsl of sufficient duration to average out
certain fluectuations. Thus the meacroscopic observebles of

system of N molecules are put into correspondence with

I

average values determined by the probability density

e L W) 2 =D
MERY - F [ FIER e ds ¢
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where fm(’?ﬁsﬂ is the probability density in the
phase space of an example of the appropriate statistical
enserble from which a system is sampled in the process of
preparation at time t with specified values of the molar
variables determining its mecroscopic state. The interval
T 1is determined by the time resolution of the instruments
employed in the measurement of the macroscopic observables.
If the shortest period macroscopically resolved is long
relative to the Brownian motion correlation time, it is
reasonable that in liguids, the meacroscopic description
will not sensibly depend upon the smoothing time T, pro-
vided T 1is long relative to the correlation time.
For the process of obtaining average velues of

a property'xp(ﬁl)qi) , depending not on all coordinates in
phase space, but only on those of a subset of n molecules,
we may employ a distribution function of lower order. Denot-
ing the coordinates of the subset by 'ﬁh and q, and letting
Fn-» and EI’»-“ denote those of the set of N-n molecules
comprising the remainder of the system, the distribution

function of order n is defined by

?m(ﬁw qujt) B [[ f(”)(a)e": ) FAM\ ) E’b""":’t) dF""' dif"'" 2

For the representation of average values of
functions of the configuration coordinstes of small sets of

n  molecules it is convenient to define number densities
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b .
e qa;t) by the relstion

(n)
(9-» ‘ QV n)' { <P") g, it) dp, &

The probabllity density in the configuration space of
the subset is related to the number density by the

expression
AL - @) e (7t | (9

We will denote by i& the external force acting
on a molecule i of the s}stem, dependent only on the
coordinates of that molecule, The intermoleculer force
exerted on a specified molecule 1 by the other molecules
of the system will be denoted by 'FE . We will assume
that for the type of systems to be treated, the force Fl
may be derived from a potential of intermolecular force

(
Vv ~) of the form

lm Z V‘l(gw) (s)

;(2

where V:Q(R;Q) is a function, say of the Lennard-Jones
type, of the distance R;, between the pair of molecules

—p
(i1) . For this potential, Fj is given explicitly by

N
Z Ve Vie = Z Rie o Ve
e;l ) €=l K:e d R;, (6)

$e
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The potentiel (5) suggests the definition of & pair
X @), = .
correlation function 9 (R{)Rn;ﬁ)by the relation

®

Y, »

(R')R’—JQ (.R‘.\t> ("(Rz:\t)ﬂ (R') -ms) ()

In the course of our treatment we will frecguent-
ly deal with distributions representing statistical
equilibrium to be reprecented by the Gibbs canonical.
ensemble. For a one component system the equilibrium
probability density in the phase space of the ensemble
is given by

{w)(p 3) - e L
SANA / (8)
ffe g
vwhereP*;'; and HM is the Hemiltonien of the system.
For a potential of intermoleculer force Vm’of the form (5),
the probability density in the configuration space of a.

subset of n molecules reduces to

yw .
(n)y - C—P d-—; (q
e (9) | _A9u-. )
pub» s
fe dQ
SR L () I
The expression ¢ is defined by

_pwEh)
e F . \/u tf)v‘“((T,,) UO)
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where v is the volume of the system. W (q-3 is the
potentizl of the equilibrium average force scting on the
¥ 0
molecules of the setn, for the force, ""< F';? acting
on a specified molecule i of the set n, keeping the

members of the set fixed, is

b, 2G° (0 _pv™
<Fc7 T - V;LW = - ij‘.Vwe F 0"-7‘4:». (1)
fe"svmol{?.

For a liquld in the absence of externel forces,
" @ 57 -
the equilibrium psair correlation function, 30 (R,JR,I)

(
is identical with the radisl distribution function ch(I?.l)

D, 0 .» ) . - W")(R,L)
qo(R.)R.l) - 3':(9.1) - e F (12)

It is also zccessible to experimental measurement, since
it determines the intensity of X-rays scattered by a

liquid as & function of the scattering angle.
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III.
GENERAL THEORY

After this necessary preliminary discussion,

- we may proceed with the formulation of our investigation.
The mecroscopic hydrodynamics of viscous fluids is des-
cribed by the equations of continuity and motion, supple-
mented by the Newtonlan expression. The hydrodynamical

equation of continuity embodies the conservation of mass,
o .
Qf+ Vfu.=o (13)
M

where e is the mass density of the fluid and a(ﬁ\

is the fluid velocity at the point-ﬁ. Furthermore the
hydrodynamical equation of motion is obtained by equating
the volume and surface forces acting on a fixed but
arbitrary volume to the sum of the rate of chaenge of
momentum inside the volume and the rate of transfer of

momentum out through the surface,

AF: + th_lzz = 5(’ + V-E' \M-\

whereli is the external force per unit volume and T 1is

the stress tensor. For example, G;y is the x component

of the force transmitted per unit aree across a surface

‘ whose normal is in the y direction. An empirical expression

of rather general applicability for the stress of a homo-

geneous isotropic fluid is the Newtonian law,

g = - (P+§_?V-?\.~¢V-(Z)l. +2—?§_ 1s)
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where p is the equilibrium pressure of the fluid, Q and
¢ are the coefficients of shear and bulk viscosity, 1
is the unit tensor mmi_é is the rate of strain tensor

whose nine components are symmetrical,
£ E S\/m v::
(16)
€., =1 (du P
L B___é + LL{B)
Substitution of (15) into (14) leads to the Navier-Stokes

equation of motion, (17
DR+ 0pAL =-9p + [prd)u(d) -2 + X
207+ 0p P+ g+9)sC

It might be noted that the coefficient of bulk viscosity,
related to the non-steady state behavior of the fluid, is
ordinarily omitted, since Stokes in his early writings in
hydrodynamics omitted this term, although later in his
life he zdmitted its existence. Recently Tisza(lB) has
reemphasized the importance of a phenomenological bulk
viscosity. The sign of this coefficient is determined by
the reguirement that the dissipation function L( be
positive. Since \Q ol + PV u the bulk viscosity
contribution is (y u) when the Newtonian law is in
the form {15).

The derivation of the hydrodynamical equation
of continulty and motion from statistical mechanics will

now be briefly outlined, since this procedure will enable

.
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us to express the stress tensor in terms of molecular
~variables, & necessary step for & molecular theory of
viscous flow., In the spirit of Kirkwood!s operational
considerations, the mass density e et a point—§ in the

fluid &and the particle velocity U are then determined by

the relations
> 1y o
€ (Rit) = m (R, &)

- . (12)
ex = N (FFU(ERDIF - (R

where m is the mess of a molecule.

By Liouville's theorem, embodying the equatioﬁ
of continuity in phase space and the laws of mechanics,
the probability distribution function F“’(é"ast)
satisfies the partiel differenticl equation

N ~ , (n

7 {ew% ) (K)o FVF + 7 20 G
i
cince B and a!are fixed during the time averaging process,
the equation‘for f“”(;if3sf) is identical with (19).
By means of the Dirac delta function, the number of particles
at the point B in the fluid may be expressed by ZN: J(EZ-E) ]
Upon multiplication of Liouville's equation by tﬁ:é expres-
sion, followed by integration over the complete phase space
and restricting our analysis to distributions ﬁq”) for

which the surface integrals vanish on the boundary of the

phase space accessible to the system, we obtain with use

of Greents theoren




i.e. ko)

PRy « v "By

After multiplication of the last equation by the mass
of & moleciile, m, we recover the hydrodynamical eqguation
of continuity (13).
Similarly, the momentum of the system at the
point R is given by kZ f(Rk "> Px .+ In the following
~

anelysis we restrict ourselves to central forces of the

type (6) and we note that by Green's theorem

{( 2 x(/a B) B (Fioxs) Wz PG (21)

f (R ) F(RR) o (Git) oG

Thus, after multiplication of equation (20) by the momentum
and integration over phase space, we find, using relation
(21) and noting that the external force ib- depends only on
the coordinates of moleculei that

(n)

bbf: + Va %<Pﬁ> X + Z/Ff(,e“_ﬁ)flmd@
HR) - v [FE (BT op “@
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The last sum may be apprecisbly simplified,
ZM (F§(R-R)o"dq -
¢ :R) % ' (23)

z> HRM SR R)?(R.,RQ t) df of, =

e g=1

*i 1.2 dRQ

;e (R, Ry) R ol (FER)- JE-RV ST o,

Upon changing the varieble of integration R to R.z’
with transformation Jacobisn unity, this expression

reduces to

(23)

Rl:. - . QR ™ n — ‘ -
Ris 03\2'1 e (RRuit) - (R-Ra,R, ;t)] ok

In view of the short range of intermolecular forces, by

means of a Taylor expansion about'ﬁ, we finally obtain
2 (2 sl (29)
Z [RORR)$"OF « vt ("R R0 )R.,re.zolu(re,‘) dR;,

Ry
Substitution of equation (24) into equation (22), addition
of the term g (.aid_" = v;{--_%"’ (i,'} <§7 to both sides
of equation (22) and comparison with the hydrodynamical
equation of motion, (14), leads to the following rele-
tions(ll)’(lz) for the stress tensor in terms of molecular

variebles,

() 4 R R d W) (7Rt o8
R dR,
| (28)
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f%”:'? - 5
(), > =
where @ (R)wait) is the number density of pairs,

one member of which is situsted at point R and the other

at the point ﬁ:t reletive to the position of the first.

The integration in the seecond term of equation (25), the
contribution of intermolecular forces to the stress tensor,
extends over the relative configuration space—E,l of the
representative pair. The first term represents the momentum
trensfer contribution, importent in gases, but almost
negligible in ligulds. The vector f? is the familiear
peculiar momentum of the kinetic theory of gases,

It is seen from equation (25) that the development
of a molecular theory of viscous flow requires the determiné-
tion of the perturbation from equilibrium resulting from
hydrodynamic flow of the number density of pairs and the
singlet distribution function. The deteziled calculation
of these perturbations will be based on the pertinent solu-
tions of the general Chandrasekhar type equations determin-
ing the molecular distribution functions of small sets of
molecules, first derived by Kirkwood(ll) from the molecular
standpoint. At this point it is desirable to briefly review
these equations and to consider the fundenment 2l assumptions

necessary for their derivation.
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Following Kirkwood we will find it convenient
to use the concepts of the theory of Brownian motion to
describe the dissipative mechanisms in liquids. This
theory, which describes transport processes in dilute
solutions, is based upon the Langevin equation describing
the motion of a Brownian partiele in an environment in

statistical equilibrium. The Langevin equation has the

form
Cl T Y;. R < & —.. E |
a‘ig + -: P" XL + (4 (16) .

where EZ:is the momentum of a specified molecule i, m

its mass, —}Z; the external force acting on it and ()};‘- is

a2 fluctuating intermolecular force, the time average of
which vanishes over a macroscopically short intervel 7 ,

end which is uncorrelated in succescive intervals of
magnitude T~ , The friction constant \T:’appearing in the
dissipative term ?;{? is a phenomenological constant,
determined by intermolecular forces, which has heretofore
been estimated only for macromdlecules dispersed in solvents
of low moleculer weight, where macroscopic hydrodynamics

may reasonably be expected to apply. Thus for a spherical
molecule of radius @, In a solvent of viscosity coefficient

Q,,Stokes law yields the éstimate 6rr7E!for the friction

°
constant:fa.
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Kirkwood succeeded in deriving the Langevin equa-
tion from statistical mechanics by the assumptions, also
implicit in the phenomenological theory, thet the environ-
ment of molecule i is in equilibrium and that the momentum
chenge of the specified molecule is very small during the
smoothing time 7  T:<<T . By this analysis he was able
to explicitly express the Brownian motion friction constant

Y.’ in terms of the intermolecular forces characteristic

of the system of molecules under consideration,

\f:’: Y;, "'llmkﬂrq_?;_
d’);l
4 - SLk'r{ ‘ a(ﬁ-g(ﬁs)fds = ‘Sh (17>

o

P i = v < - )
Q:a (0-F: (#+ ) = ,(fF; (Y F, (#++s) £, (’—’;‘—?‘WFM-;N@(/
(7R
For the determination of the sequence of distri-

bution functions f“", from which the average values
characterizing macroscopic transport processes in liquids
are to be evaluated, methods closely related to those of
the theory of Brownien motion are utilized. The starting
point of the analysis is provided by the integration of
the Liouville equation (19) over the partiel phase space
(F:hu)al."-“) of the remainder of the molecules n.ot
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belonging to set n, followed by a time smoothing of
the distribution functions. For central forces of the
form (6), the resulting sequence of integro-differential
equations, indepehdently derived by Kirkwood and Born and

Green, is given by

Ty —- - .
b{ + E‘ v"’ -+ Xv-s(: , = v'é'ﬁh’ KZs)

-5 (n)

. n B Fh) nes)
= Z Fk..' Z Z {f e‘(Re. F( @’n;fﬁ J'f)chdR:

b =) (‘h"v'

where K denotes the totezl external force regarded as
vectors in the n-configuration space of set n,_E;

represents & vector in the n- momentum space with pro-

jections E& . %%. on the 3- spaces of the several
A -
molecules of the set and the vectors  F are to be

treated as vectors in the 3- configuration space of

molecule i of the set n. The dissipative mechanism

__(n)
affecting the behavior of the distribution functions f
is concealed in the time averaged function of highest

F(N)

order, o In order to obtain useful results, the

. Ay . .
terms in L have to be transformed with the aid

: ral ) )
of solutions of the Liouville equation for f . Kirkwood
performed this transformetion by meens of the plausible
hypothesis of local eguilibrium, i.e., the assumption

that the environment of the set of n molecules is in
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statistical equilibrium, and the additional asswmption
that the chenge of momentum of the individusl molecules
of the set is small during the Browniszn motion correlation
time T . The latter hypothesis appears reasonable in
view of the quasi-localized nature of the molecules in a
liguid.

As a result of these Brownian motion approxima-
tions, the dissipative terms c?Pcealed in the mean currents
due to intermolecular forces,~f1?’, appear as integrals
related to the friction constent previously obtained in
the deriveétion of the Langevin equaticn. It is of particu-
lar importance to note thet this procedure closes the
sequence of integro-differentizl equations and leads to
partisl differential equations in Fw alone, These equa-
tions in the phase space of a subset of n molecules are
generalizations of a singlet distribution function equation
first derived by Chandrasekhar(14) from the standpoint of
the phenomenological theory of Brownian motion,and will be
called the generalized Chandrasekhar equations.

For the development of our theory of viscosity
we will require the singlet and pair equations. In order

to evaluate the momentum contribution to +the stress tensor

we employ
ra r D == =
;))Xf—-) + % -Vk.{(‘} N V-P—' 'lﬂ - VF‘.I(){.’I. {U+ kTV-'{“

(29)
Mo F-KBys Ame-gW" %, BOT

]
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where i: is the external force acting on molecule 1,'?}”*
is the average force due to the departure from equilib-
rium of the environment of the set of 1 molecule and

"vii“fﬁ is the average in the egquilibrium ensemble
of the total intermoleecular force acting on a molecule
situated at point'ﬁl, varying only over distances of
macroseopic magnitude. The singlet frietion constant

‘Sb) is determined from intermolecular forces by

equation (27) of the theory of the Langevin equation.
For the determination of the pair density (;n s from
which the intermolecular force contribution to the stress
tensor is to be calculated, we employ the equetion
appropriate to £ (F.)E. y Pay El,’;t) in the phsse space

‘of molecular pairs,

0 F o, g B o ) Pt 1
I A = % L {R-2) Tt

a0t
Em*z' ->-<,T E®+~V-qwh)
. [ 30)
0
) T . \

N
3]
*Me

(ROE sy < TR OR 9 £7(BR)of 99

)y o - -
{‘o (PI)RI) P\)Rt)

]
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where, for example, p represents a vector in the 2-
momentum space with projections p; and Pz on the 3-
spaces of the molecules of the pair, 'VE:,_ w® is
the mean force acting on molecule o« of the pair in
the unperturbed equilibrium ensemble, subject to the
condition that the configuration (I-Q..)- k:) of the
pair is fixed, and ?“’* is the perturbation arising
from the departure of (c?) s the density in triplet con-
figuration space, from equilibrium. The friction tensor

:Sjm is a second rank tensor in the six dimensional
configuration space of the pair and the vectors ﬁl and 32,
the projections of ﬁm , are the particle velocities of
three dimensional hydrodynamics, defined by equation (18)
- at the respective positions E]_ and 32 of the pair.

At this point we may anticivpate certain results
to be obtained sﬁbsequently. In a liquid in a state of
stationary viscous flow, the distribution funections are
disturbed in such a manner that the stress tensor takes
on the extended Newtonian form. It will be shown that
the momentum contribution may be directly evaluated from

equation (29). With neglect of nonlinear terms in the

rate of strain, &€ ,

- Pm<f’rﬁz - - kTL prk T € (30
m X
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The pair density (:>m is obtained from an equation of
forced diffusion resulting from the six dimensional
hydrodynamics of the pair. We will find thet the pair
correlation function 3“’ (5, T?,.,,) » defined by equatlon
(7}, can be expanded in the components of the rate of

strain as,

(&3] Q)
= ,O(ng ""' _S_ -R’n,: .'_pa. ] .-.
3 | 3 ){ KT ;31 1~§-VQ]‘/JZ(RF&)
(39

+ r T o (Ruz
= ) ¢ (Ra)]

@
where q, (R.) is the radial distribution function of

the fluid in thermodynamic equilidrium and Y, (R,;) end
\Fl (B@) satisfy certain ordinary differential equations,
Substiktution of the momentum contribution of
equation (31) and the perturbed pair density of equations

(7) and (32) into equation (25) yields the stress tensor

9—=‘[P+(.%§r)—¢)v-(l];l_ +27§ (33)

[

p= N&T J:rN‘fR’g’_vﬁ 32’@) dR (34)

\" 3v"-

where p is the equilibrium pressure of the liquid at the

: "
given temperature and uniform number density €. 3

equal to the ratio of Avogadrots number N and the molal
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volume v. The coefficients of shear viscos sity 17 and

bulk viscosity'<¢ are then given by the expressions,

-
]

Iii-
—~

fo 4y, ¢,(R) 9. (R)AR  (35)

¢ = pkT +'rr N fRdV(f/(R) () (36)

where, as subsequent calculations will show, the initial
terms arising from momentum transport are of minor

importence in liquids.
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V.
MOMENTUM CONTRIBUTION TO STRESS TENSOR

For the evaluation of the momentum contribu-
tion to the stress tensor by means of the singlet
Chandrasekhar equation (29), the assumption is made
that the friction constant ¥ is momentum indépendent.
This approximation is analogous to the one common to the
Langevin equation of Brownian motion. The procedure of

=

multiplying equation (R9) by the respective tensors l,TT)
) 5 -»
TTIT . ana i , integration over the momentum
space and summation over all the molecules permits the
) -
direct caleculation of "Ef <foF7’ . Denoting by the
m
operator "Sym" the symmetrization of the tensor follow-

ing it, we find at the point R, at time t, with use of

Green's theoren,

a + V- F"’@ (37)
e {J<P7 + (:7 V<7} ' V_% < —v(n* U) (38)

Q_ ()w<ﬁﬁ:7 + V_%T(ﬁ'ﬁfl:) + V'_g(: <p7<ﬁﬁ7 J Kaq)
T T
2 oI *3 " Sym ST 9F) + -8 BT +

at
3 %:-) 57.,1 Q’?ﬁ'«ﬁ]ﬂ(??)} + |40)
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+V & (TITIT) = 30" Sym (B"'THF) - %:r(mm/ (40)

It will be noted that equation (37) is the equation of
~continuity, equation (38) is the equivalent of the hydro-
dynamic egquation of notlon and equation (39) is independent
of [ . Substitution of (38) into (40) shows
that W. é’ (ITT)  will not contribute to a linear
theory of viscosity so thet with use of the equation of
continuity (37), with neglect of nonlinear terms in all
perturbations from equilibrium, equation (39) simplifies
to

(Y- mKkTL = " {(ffﬁ)-va‘ L (9@ TT) 4
40

2w () +a_3¥<ff”7}
TJIL = F—mtt’

For the stationary case, the solution of this equation
is obtained by substituting the first approximation

{1} = mkT1 into the terms on the right-hend side,

(0

Lo Ti) = -pkTL + o mkT ¢
%( - @—:ST—" =

= Sym \VIT4

This result reduces to ~ew kT_:I._ in the absence of fluid

flow, In terms of the coefficient of self diffusion D=kT
X
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and the mess density e the momentum contribution to
the stress tensor becomes,

T = _pkT ' 43)
P e.l_h_:l +eDE (

The analogous expression for rigid spheres derived in

- (15)
the kinetic theory of gases is given by

ekl

wiv)

(:D(é--a'—v'al) (44)

Despite the different approach employed in our theory,

it is surprising that similar results are obtained. The
mein difference is that the Brownian motion approximation
does not 1lead to s divergenceless viscous flow contribu-

tion and thus gives rise to a bulk viscosity.
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V.
INTERMOLECULAR FORCE CONTRIBUTLON TO STRESS TENSOR

The calculation of the pair number density em ’
required for the intermolecular force contribution, will
be undertaken with the simplifications that the pair
friction tensor Em is momentum independent, independent
of the relative configuration of the pair) and is further-
more assumed to be numerically equel to the singlet fric-

tion constant 3’,

FIEEE N

A,

(2 k4.5‘>

1

With this approximetion the palr Chandrasekhar equation (30)
reduces to

)Eh) - _.-a) oo . > by 76 =)
(%_t_ + E\' U?'F +vl;,r f VFS’{(%‘ u.)f +kTva‘}

(4¢)

For the purpose of evalunating the pair correlation function
c}“)(ﬁ,)_ﬁ,ut) from this equation it is convenient to utilize
the previously defined notation for the six dimensional
hydrodynamics of the pair and to introduce the number

T
current density of the pair)J 5

~»a)

J oo N ([ g £5( ) R RO AR #7)

Upon multiplication of equation (46) by 1, P and P, followed

by integration over the momentum space of both molecules

;
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and summation over the particles, the following set of

equations is obtained,

"'(?.)

P =0 4¢)

malt * v‘l % <p|s - “’ oY T(J g I L)

b F < P? + V. % <PPP7 2 Sym mj_’@.) F_(z.)*
k‘S‘o}r

=22) 5y

-2y o (T # m T Sym [ £ LSKRT VL

2)

O ) =~ () (S FF PR e,

It follows from equetion (50) that the neglect of non-

> 0)

linear terms in and of terms of the order of /'y

-a D
in the departure of the non-diagonal terms in(E_E] from
their vanishing equilibrium values leads to% <T>’7 ka’h)l

Substitution of this estimate into equation (49) leads to

. () -
m Q_ = - kT 9. ) E.(n* © )
0 7¢ v P g - Yay 5
51
-0 ==y Y e -

43 =.| - e VS
Similar equations are obtained by the same proc_:edure from

equation (29),

1)/ = o o o
agte (RJ.\ +VR; f‘ (_R,‘)u.(ﬂ,‘\ =0 ; o= 12 (52)
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() o+ F w (D 0} (-)* (O \
mJp RO - -KTog ("(R) + FYTe(R) 6D

Apart from nonlinear terms and with introduction of the

pair correlation funection 3‘”([}’: ﬁ.”.ﬂ , equation (52)

may be written in the form

X2 .,U) (W2 W »* u) O} '
NI g PR 6

Combination of equations (51) and (53) and use of the

S . - . .»(')* .
definitions of F and [ yields

=)

aj + n; %f _ f LR)PM(EA b',,T Vi'jm ,

+SL (F“’* F°% - g;’v,(w -w- )b

an expression independent of the external force X" The
term Y o] will be neglected since its coefficient,

'?», is of the order of magnitude of the Brownian motlon
correlation time. The equilibrium radial distribution
function q‘: is related to the potentials of mean force
w(2)  ang w(l) by equations (2) and (10},

ORI i 59

so that

.
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FY) w N @
-~ V- (W - W, - Wl’) = kTw., log 9o (R..) se)
9
With use of equation (56) and introduction of the pertur-

betion in the correlation funetion produced by viscous

®
flow, 9> defined by the relation

Q) 2) W
q = qe(1+q7)

equetion (54) simplifies to

(57)

D W P+ 2

. ny » (1, ~ [k} (
A R Gy g 52)

For the evaluation of (3‘:) we note that by the equations

of continuity (37) and (48),
. "?(u  — 1), ~ (1) (X ] () &y
VT ) ==~ Pl (R.) PU('R.‘){%O %_‘?' + %o'v‘,ﬁ 3 f Sq)

Thus by taking the divergence of equation (58), the
linear theory,

-

: - @
equetion determining ca, becomes for a

V—-} tw + Vs M-Vs lo (9] _Y
3! ?jl ’ 390 ;(-}

1
+ l;._’l___a(:’ v‘i,_thﬂ_' ‘r_’-wf) ‘57

By (£9) ]
w-Vplogqg, + ¥ dq.
T A

\6o)

(% 1)
Furthemore, for a linear theory (3 depends only on the
-y o — ) _
relative coordinates R=R,- R, so that VE::—-VE‘>= Vg
when operating on the correlation function. In view of

the short range of intermolecular forces, it is adequate
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to retain the first term in the Teylor expansion of

L] 3 —9 —~g _s
the velocity of molecule 2, LL(R,)J about R,

_.U) () PRI - -~
& V.q. - u@l)_a@s,)}-mgb = R£R dd¥ (60)
1 R R da

The treatment to follow will be based upon the neglect

F={c] )
of FOT_ [—:'1,1- , i.2., the average force arising from
the departure from equilibrium of the environment of sets
of three molecules. With these approximations we finally
obtain the equation d forced diffusion determining the

. s @
perturbation <L ’

2

v ™
3,+_%dlo -5 ngad/oﬁ + X ‘)4. (62)
T X kT Ot
The complete solution of this eguation leads to

the molecular interpretation of the relaxation time
cpectrum due to viscous fluid flow. For the determination
of the coefficients of viscosity it suf fices to consider

the steady state solutions. For this purpose we note that

=) | B
the term R-g-k may be expressed in terms of surface
O

harmonics of order two and zero,

- -
R,é.R _ . b3 . . ]
51 ~L%€x Pl(cosg‘\ sin 24 *2 €42 P (cos6) Cosp +
426, P

3 (4086 Smcf + (Ezz"'l'v“"‘ P (4089) (63\

*t (Exx- EY)') Pzt(“,,g) Coszlp + -3L V-Z P: (Lo.se)




3o
In view of this relationship, the perturbation 3“?

is given by

Q) -, >
9, - E;T‘{ (&%5 -+ vZ) ¢ (R) + Lvidy, (R)} (64)

In coordinate representation ?Q(R) is the coefficient

of surface harmonics of order two, arising from the shear
components of the rate of strain, and ¢, (R) is the
coefficient of the surface harmonic of order zero, arising
from the dilatational component. Introduction of eQuation
(64) into equation (62) and linearization with respect to
the components of the rate of strain, i » leads, in the

stationary case, to the following ordinary differentiel

equations for the functions ¢,(R) end Wo(R)

d (R? “’d (1) Ry ol
dRK i) 3o Y= = R f}%" 65)

z lz) °Lz<) - h—) (66)

The boundary conditions subject to which these
equations are to be solved are derived from the conditions
imposed on the excess probability current density in rela-

-
tive pair space, an) e This vector is the difference of
the projection of ‘AJ on the configuration spaces of
molecules 2 and 1, respectively,

[[-ea]-[37-F2) (&)

> )

e’ ®) e"(R.)
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By means of equations (58) and (64) the excess probability
density in the relative pair space may be expressed in

terms of Y, (R)and y,(R),

7w Ry - '
= LN - ~>
9. VE{[L%{R VT ®) + Loy (R} (6D
. el
The relative current J,: vanishes at R —> oo by definition

and 1s conditioned by the absence of partial sources or sinks

in pair space. These requirements lead to the boundary

conditions,

him 4 @) = 6%
lim RqQ% dy, -0 70
R-=o 3 l )
lim Q_LS&, =0

lim R*QOdys =0

o Vg G2

In addition, in order to ensure continuity of the pair

current at any point q, y 0¢Q, ¢ oo

Ilm 3 (q £) ‘f’z(q. E) < !i:‘o 3(':’((;.45)&{’1(‘!.1'8)

(73)
iy Q,~ oly; ) im ij +E O’S& 3€
Cj ( ! e) b(q E) :_’o (2] (q' ) R (ql )

€90
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The stress tensor is derived by substitution
of equations (64) and (57) into the expression for the
intermolecular force contribution, equation (25), and

the result, equation (42),
q - (P(‘) Ul( R dV 3 QIR) (-74_)

1 1( -1V ul)( rnkT o

¢ 5m ¢"Rgy 4 ydR)

R3V q . w dR
gﬁso% )

tlvd mKT 4
(@“ & Qka =

Equations (24), (25) and (36), giving the equation of

state and the coefficients of viscdsity, follow directly
by comparison of the stress tensor (74) with the empirical
Newtonlen law and use of the eqguilibrium value for the
singlet number density (i”= Qé . GSince the tensor BR
may be expanded in terms of surface harmonics of order

two and zero in the same manner as %;f , the numerical
coefficients resulting from the angular integration follow

from the orthogonality of surface harmonics and the rele-

tion
- (75)
f f [ th((ose)]l cos’ m‘F d\‘) sine do = 2 (htm)!

Sln rn(f

Ln+l (n_",) ]
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VI,
ECUILIBRIUM RADIAL_DISTRIBUTION FUNCTION

e

In order to evaluate the integrals (35) and
(36), as well as to solve the differential equations
determining the perturbation functions ((109 and TQ(R):
it is necessary to know the equilibrium radial distribu-
tion function qt%ﬁ\and the potential of intermolecular
force V(R). The potential V(R) is conveniently approxi-

mated by the Lennard-Jones expression,

V® = € (% "7) (76)

x=R
Qo

The theory to be presented has been applied numerically
to liquid ergon. This fluid satisfies the requirements
that the individual molecules have spheriecally symmetric
fields of force, snd furthermore its properties may be
calculated by means of cleassical stetistical mechanics.
In applications of the theory to be made to liquid argon,
we will use parameters € ,n and &0 9 determined by

(16) and Corner(17). The values are:

Rushbrooke
- 149 o
n=1l.4; g£€= 6.82 xio ergs; q.= 3.43A.
It is to be emphasized that the Lemard-Jones expression
is not a true representation of the potential, but is
commonly used becazuse of its analytical properties.

' The radisl distribution function g (R)  is

determined by the potential of intermolecular force V(R)
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and the thermodynamic variables. In Part II it was shown

thet for a liquid in the absence of external forces,

()

2 Q)
€. - f‘} Yo Re) = N(V) f dq“ (77

(n)

[Py

For a potentlal of intermolecular force of the form (5),
the dependence of §: on the thermodynamic varisbles may
be easily determined by taking the gradient of both sides

of equation (77) with respect to molecule 2 of the pair,

Ve £ Ry = - olp U k=) - F”U’"')f% Vi V(R,, *fwd%a

t |
= - Pf? VﬂV(R,‘) - PIVR,V(R;;) ff)dl?: e

By defining a correletion function for a set of three

: (® 3 ) 5
molecules by the relation - ‘>
v F" '3"'3 ﬂo(R.;) Rn ) 23
and using the potentizl R) = | -
g the p V(R) = € (4 L) = f o

-

the equation for 3? becomes

@) (3) -
Ve 9 §e@) = % VIR - PN j U VRes) oo Ryy) o,
v

95 @a)
09
""j‘) - E V?F(xa) - € 'Vq. jv-f(xa) V‘B)(x,k)x,3)ng)01x~;

9% (x.)
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. (2. . .
It is thus seen that 3, depends on the combinations
S -Ké:l‘ and o, = "_(,91.,3
imposed on 3? (appendix) has the same dependence on the

« The normalization condition

thermodynamic variables.

All theoretical investigations of gfj carried
out thus far have been based on the "Kirkwood(lg) super-
position approximation", which terminates the integro-
differential equation (79) by the approximation

‘j(:) (R'l) Ras) Rjy) = ﬂ(:) (—Ru) 3(:) (ch) S](l: U?zs) .
In view of the mathematical difficulties involved in solv-
ing this nonlinear integral equation, solutions have only
been obtained for the hard sphere(19) case up until now.
Thus, at the present time, accurate theoretical distribu-
tion functions are not available,

However, qt’ is also accessible to experi-
mentel measurement, since it determines the intensity
of X-rays scattered by a liguid as a function of scatter-
ing angle. In applications to follow, we will meke use
of the radial distribution function data for liquid argon
of Eisenstein and Gingrich (20). This function approaches
zero at an effective collision diameter and possesses &
series of peaks with amplitude repidly diminishing as R
increases. TFor lerge R, the valuve of the function epproaches

unity.
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The experimental results of Eisensteln and
Gingrich were checked by substituting their values into
the equation of state (34). It was found that with use
of thelr curves, the integral determining the cohesive
pressure yields a negative value at a condition requir-
ing a poéitive result. This clearly demonstrates a
difficulty encountered in problems of this type. The
representative integrals are very sensitive to the relec-
tive variction of the first peak of the radiel distribu-
tion function to the position and ﬁalue of the minimum
of the potential of intermolecular force, the latter being
always somewhat arbitrarily chosen. One could partly cir-
cumvent this difficulty by adjusting the experimental it
so as to give correct results for the integrals determin-
ing the equation of state and the energy of vaporizeation,
likewice cetermined by 3tﬂ

The solution of equationé (65) and (66) could be
based on this improved 13? , but this procedure would entail
a very extensive numerical program. Ue have selected a

different line of attack on this problem. The analytical

approximation to 3‘? (R))

1}

q, (R)

e

s {%&-m*
(R) e ( ) GR)} ;5 0£Rgaq,

(80)
= a, <R
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represents the first peaks of the Eisenstein-~Cingrich curves
quite well, and has the important adventage of allowing
integration of the differentizl equations satisfied by
the perturbations ., and Y, in terms of confluent
hypergeometric functions. Due to the short range of
intermolecular forces, the subsidiary maxima and minima
in ét will not contribute apprecisbly to the desired results.
The two parameters &y and t were determined from
the Eisenstein-Gingrich data to be relatively insensitive
to temperature. On the basis of their curves, the values
a1=4.5AO and t=14 were selected. TFor liguid argon at
89°%K and 1.2 atme.s the remaining parameters were determined
with use of the Lennard-Jones potential, equation (76), the
theoretical equation of state, equation (34), and the

energy of vaporization of the liguid into a perfect gas,
b o %3]
- aE, - E, - 3RT - er_/\ﬁ//. fR‘ao(R) V(R) d R (81)

Equation (81) may be easily derived from the result that
the kinetic energy of & classical monatomic fluid is %:R7"
and from the statistical average of the pdtential energy .
Thus the energy, Ej, of the liquid is given by
y W | <o
Se = 2RT+L ZJ, Vi (Rs) ¢ R
~|.'*J'

(L) e ~D
= %—_RT 4'_‘7; gv(le)e O,R‘io.,R‘

(82)

; 2 P Y » O’R
=~ 3RT 427N jrz V(R) 97’ (R)

]
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Table 1 summarizes the best available data
for liguid argon in equilibrium with the vapor needed for

the subsequent calculations of the thermodynamic variables.

TABLE I
T P (atm) (om‘ (%mix) Eyap (cal/mol)
84.0 6793 1.409 1,425
86.0 8520 1.397 1,411
88.0 1.1099 1.385 1,396
99.0 1.329 1.37 1,382
95,0 2.120 1.343 1,347
100.0 3.210 1.309 1,311
110.0 6.566 1.239 1,236

The pressure was calculated from the equation given by

7. Born(@) (84° - 86°K), and from the equation in the
International Critical Tables(zz) (88° - 110°K). Densities
of the liquid were taken from the compilations of Mathisas,
Kamerlingh Onnes and Crommelin(23). The energies of vapor-
ization were caleculated from the heat of vaporization at
87.29°K determined by Frank and Clusius(24), and the heat
capacities of the liquid given by Clusius(25) (86.0°-88.0°)
and Eucken and Halck(zé) (909~ 1109K). Gas corrections

were made from the second virial coefficient obtained by

Ceth and Kamerlingh Onnes(27),

o
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For the determination of the parameters amand s
of equation (80), it is convenient to transform the
theoretical expressions for the equation of state and
energy of veporization., Quite generally with use of

the Lennard-Jones potential (76),

L = 3RT- 3RT-E,
€L - o (83)
UM Q3 /V'~f f ( c" X
L_: RT-pv =-f°xt_n_-6)ej"dx (84)
P L%rqosu_zi 4 xn X_" °©
v

By means of some elementery clgebraic operations we find
that

2° )
Ly ble-lp < (q% oy <)
n-6 vxn-l
L L 9% d (
¢=nle-Lp = [ 35 dx )
n-e

3
Substitution of the analytical approximation to 3: ,
equation (80), into equations (85) and (86), leads to

the following transcendental equations:

Lo- o ¥ -5 %
n_ —’:3 Y,ﬂ-a = xrh Z. t c [—' s+n-3 z) (8'7)
t
3 -~

L - 1 = x- t b

6 3y mzte I (”fs iz) (2%)
X, = G = = b

B I



bidy o

r‘(a(,‘z,) = fe"z'z d—ndz

<,

= [N () - ¥ (s 2)

The functional relation between a,and s was derived
by solving the equation obtained from the division of
equation (87) by equation (88). Resubstitution of this
relation into equation (87) led to the values of the
parameters., Table 11 summarizes the results of these

calculations for liguid argon at 899K and 1.2 atm.

TABLE II

a, & o t s

45 A° 3.554 A° 14 7.007

With these parazmeters the maximum of the first
peak occurs at 3.73 4% and the coordination number corres—
ponding to nearest neighbors is 8.1, both in good agree-
ment with the Eisenstein-Gingrich experiments. It should
be noted that the procedure adopted,partly compensates
for the arbitrariness of the constants in the potential

V(R).
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VII.
SOLUTION OF SHEAR VISCOSITY EQUATION

In this section we will derive the solution of
the Y, equation (65) based on use of the approximate
representation of 3‘: given in equation (80). gSince Bz_:"
is a particular solution, we only have to investigate
the homogeneous equation,

2 g /v
X gl-):t';_ + {24- xz_ll_‘l:gﬁ,fxaé‘_%i - 6y, =0

(#9)

X = R

——

Qo

For x,<x , equation (89) reduces to Euler's eguation,

XICLI‘E». + 2x d ~ by, =9
olxz d‘zg ‘f ' (%)

so that the solution satisfying the boundary condition
at infinity, equation (69),is given by
v = B ; X, L X D)
R
Substitution of the first pesk approximation into equation

(89) leads to the following differentizl equation for oévsx,)

21%: +(‘Lk-z)z%_tzh +Qf-fm—-_ci>(k-m—é>§b1=0

q2)

k=.7l.__+sl\~t'3 m=t'~‘/(s_§9‘+(, ; z:({%y
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The two 1linearly independent soluti ons of this equation

z .k
are found to be €2 z W (2)  zana e z W-k(;z)
kym

where Wk),,f 2)  is the Wnittaker(*8) confluent hyper-

geometric function. Thus,
z o
Y~ X 4 Kiy, (2 + Ksy,(2) (@3)
L _k
Y@ = e* 27 W (2)
. kJm
@-e 2" w2
\/1 ~k,m
We note that the generalized hypergeometric function is

given by

: F‘1 Q«-»“v"'»"pi @) @.wuf"qsz) - \a4)

2 T Pan) P (g0 P (1) -+ (pg) 2"
o V(&) P(d> P(,(r) P (e ) l‘(e,_m) r'(ﬁw)n

By means of this abbreviated notation we can easily
summarize the more important properties of the Whittaker
function.

1) The asymptotic expansion of W,,)m(.z) is

W, (@)~ € 52" F (gmok,gomak;-2”) 99)

for large value of {z| when |arqz| 4 3’3[_7
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2) When l‘“’ﬂz‘ < 3T and 2m is not an integer
2

Wk_’néz) = P“‘Z"ﬂ M (z) + r"lni) M (2)
r'(J- -m- k [_'( +m-—k o (q")

M (z - +tm . 3
thm) z e °‘|F, Srm-I; It 2m;2)

3) When ,qrg z) ¢ 3L{ and nelther of the numbers Kim+Li
is a positive integer or zero, VVk,n(‘Z) may be represented
P

by a contour integral of the Mellin-Barnes type,

Wi ) = )

-+ COL

Lt [ TONEekema) Moo 2
C(-kam+t) N(-k-m4r)

4) Kummer'!s formula states that when 2m is not a negative

Qs)

LTl .
~ 0L

integer

-2
e F' (.L tm ~k; 1+2m . z) = 'F' (.:l-z'fm-’-k)' 1+2m; -2)

It follows readily from the asymptotic expansion (95) that
. (£Y)
{im xzcl" dy, =0
X930 ol x

\39)
lim xlﬂ OI_L;_ = constant
x-%o

so that in view of the boundary condition at the origin

(70}, y, is not en admissible solution. The constants Ky

and K, are determined by the requirement (73) that ¥, end

o
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%%ﬂ- be continuous at xj.
may be most conveniently calculated by means of relation

The derivative of y,(2)

(97),
dy(x) = -t zdy,(z)
dy x 67\%.(.
4oL
VO < [ P (vbomag) P (-veram gy 2"y
~eoi P(~k~m +L) n ('-.k-l-m-i_;')
(loo)
= 1 T
e | P Py Homat) Nv-ketemag) 2oy
~eoL PQk_mﬁ» P(—k’-&m-xi,

= {(k.{)"_m‘t& e% Z-kd V\‘/(_

()
,m

, we finally obtain the result

d 3 -k
W) - 6 W, () €' 2 (1o0)

With use of the preceding expression, the constants Kj and

K2 are found to be

k3 LY o 2
k' 3 ‘QD X. k3 = = Qotxlz E Zlke ' 3
2
Lrox)

3 W,‘_Jm(z. )+ ,(Z qu,.(,;"')

=
[

i
Ko
°w
%

w
X
[}

[ 3 . - o
O ORI S

3 W (3 \
k:'gl\ N % qusfil)

o
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Since in our numerical example 2, = 3.67/0 , Wﬁ(:-} is
easily computed by means of relation (96), only a few
terms in the power series being required,

Substitution of ¢, given by equations (91) and
(93) into equation (35) and use of the potential V(x),
equation (76), leads to the following result for the

coeffieient of shear viscosity,

- TarN q.;[ L g'x "—1(:) (x) claV(") dx +
2 X

ISKkTy?

XTV(x) + kyex, e "{n L, - 6L,
t x,, 3+ LN }]
* NmkT
. v (lo4)

§F (@
x [}
! 3,(*)%\;@) dy < - gx,‘e‘[n M(stn-5 3,y
tme” “’\i—~‘

Xy 6

- 6!’"‘(51\1,2.)]

f)’ ) 2 gy,
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The value of I"(oo) may be calculated with use of
equation (97),

]:.L(GO) I e1 Z W (_2) (3 Z t Clz.
= ;l;-u f C&V—)m‘-l—'(v ’f TtL r'(v k“”“)P(V-&-d*S)c}\/

P(k‘m*—{: r’(-k_‘,m4_‘£)
- r'(ous ‘ (t0s)
LT TR ) P (4 heem )
r (—‘._Z:S +1 - 2k)
t7n-2

The last step follows from Barnes! Lemma (ref., 28, p. 289)

)

which states that

-I@L

f r'(ls Av) [ (‘3;+v) I"'(|3 -v) F'(P(v)du =

“°°|.

(106)
P (B ) P (Ber o) (B ) I (Bt P
'ﬁ(P'*PU‘ F; "'F‘l-)
when the poles of FLF,W) P(ng) do not coincide with
the poles of PUB;-V‘) ! (F,,-V) .
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The correction term I (z0) is readily evaluated

from equation (96) and Kummert's formula, equation (98),

L.(2) = IZLm(?{) +.I;;”kz,3
where (lo?)
If(z,) < (-1p) z'mg-k%qs )
FEPH) (o2 -kogap

*
Rk, g ey e s ks g2
l 1]

only a few terms in the power series being required for

the numerical computation.
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VIII.
SOLUTION OF BULK VISCOSITY EQUATION

The differential equation (66) for the bulk
viscosity perturbation Y, (R) may be integrated directly.
The solution satisfying the boundary condition at the

origin, equation (72), is given by

§
Yo = f;"fw _a_v v g ()
Eh (408)

*fo A~ _C_)_( + (,,,) for x large

In order to evaluate y, (o) we must utilize the fact that
the coefficient of bulk viscosity only enters into non-
steady state fluid flow, For the case of a periodic dila-
tion of freguency <« , the equation of forced diffusion
(62) reduces to the following differential equation for

Yo (R) when X is large and thus 3?_

x‘da%) - k‘x‘% s
.S
SR LY

2LkT
The substitution Y, = 2(’_ reduces this equation to the
X

(1)

form

X"~ X% =0
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Hence the asymptotic solution of ¢, is readily seen to be

-L2% ,/“'s x (i)l [ 9 Vet x(hil]
- A w} 8 (<) +LFVT
Yo ( e + .__ix._ e

(110)

The boundary condition at infinity, equation (71), requires
that B (w) =0  and in the limiting case of zero
frequency of dilation
{g__e VSQJ 4 ("'é)}
Y, ~ lim /-\§ ) e T S ()
CwWw»o X
By comparison of (111) and (108) , ¢, vanishes at infinity

so that the coefficient of bulk viscosity is given by

¢ = NmkT,
v o $
+ T %9 N [ x3dv dé_ vde® oy (1)
kT vt l ¥ 3 AN So ( d%_

While we have succeeded in deriving this expres-
sion without recourse to our analytical approximation to
‘]n: , for the purpose of evaluating (112) numerically
it is convenient to introduce this simplication. TUpon

partial integration of (108) with g, () =7,

§ i
I[ o - Sdf(f) S e ] )
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In the region where 3‘2::)

X

YO(X) & %_‘33‘ ( x‘(g".f-:) o x X, < X QI 14)
X o

Similarly for x ¢ X,

, f (15)

do () = (x) + @™ (xx}) + 30 a5 (xiq%
(X X ff‘ (1)(0[ % X

The last term, which gives rise to the principal compu-
tational difficulties, simplifies by means of the first

peak approyimation, eguation (80),

f fon eo
H(x) =3 JdE {x*%d 3*&-» CETS e % E ax
) If J('a S 3 ZJ. ! [
(1e)
7iith use of the relation(zg)
P() -1 (n) -5% (R ()

we find that

Hx = k(2)-K(z) |
(8

I T R -2 3
k(2) - 3’%[! (2) 2 °F F,(l;ijlu_-;iz),
U-s)t ' ¢ t

z_
-~ (-2 -3
+2° ,_F,_(l_, x5! _t_,l+sT3_Jz)

2(s-3)

|
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Substitution of (114), (115) and (118) into the general
relation (112) for the coefficient of bulk viscosity

results in the approximetion,

¢ - Na’z';' +3$%&{ [Jx(a l)dx][_fxlg,l%dk]ﬂ;

R O R LR ) W T2 B

%X

4-’% ‘dv3 dx —3e"'z] t[nJ,, _(,_(”

txy o 6

where(29)

[ -z aas_3
!e}zt k@)dz:](oo_ (z,)

! 3x,

(n.o)

L(z)= er
¢ e A —— O\ 327

\J i ‘)J " *‘f‘(wsg)u-%)

t(l s)
1(_5 3)
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In the foregoing expressions, X (2z1) and Jx (z,) eare
evaluated by means of a few terms in the power series,
The first term of J_ (eo) is greatly simplified with
use of the Gauss summation formula(zg) for the F,
function of argument unity and the relation [1(z)I(1-2) =s£-'"z>

i e
le€o

+F, (q) b 1) = ’Mﬁq- b) (r21)

M (c=a) M (c~b)

cYa+b
with the result
M(83) 1(e=x
t—ﬁ__) __,t_) IF;KE%)':‘:‘E‘S:) I+ '“?Sjl) =

t (-9
(122)
PG rss)m

" :
3~ -5 ' =)\
t P(-' + —-9‘E—)sm17'(¢~?1)

ince the 3F, function of argument unity cannot be

summed in an analogous mammer, the direct summation pro-

cedure must be carried out.
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IX.
FRICTION CONSTANT AND SUMMARY OF RESULTS

By means of our molecular theory of viscous
flow, we have verified the extended Newtonian law and we
heve succeeded in expressing the coefficients of viscosity
in terms of the potential of intermolecular force, V(R),
the equilibrium radial distribution function, gﬁ:) and
the friction constant, X . The friction constant appears
as a factor in the formulas for the coefficients of
viscosity and it remains to express this function in =
form readily amenable to calculation in terms of molecular
variables., With the assumption that ¥ is momentum in-
dependent, the dif fusion friction constant was derived by
Kirkwood, equation (27),

T -» = ©°
S (%) = £ (FRW-F(t9) cls

(123)

(R B = (Pl F (49 £YlP A

In view of the extreme generality of this formula for the
dissipation, it has not yet been possible to evaluate ¥
rigorously. We are thus forced to turn to a plausible
approximation which is expected to yield results of the
correct order of magnitude. If thestructure of the

dynamical system is such that ¥ exists, then we may define
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a correlation time © such that

(%7 - 8 (R'W) (124)

{
For a potential of total intermolecular force, Vj) of

the form (5),

<F (f)? ,(V V‘V)nv VW)e -B Vw:’ —~

= - ) = JN) S
- Fl; Sv‘v vw?“i'sdc\)‘ (28)
{ e P""yg

where we have applied Green's theorem in the third step,

Upon performing the indicated integration,

(126)

CRWY - “'lﬁf(.: [R*v*v(r) 3‘? (R) dR

The estimate that the correlation time @ is equal to
the relaxation time % enables one to express the

friction constant by the simple formula,

gt 417#‘ R (d ’r7'"ﬂz)‘]‘:f(."z)G“2 (127)

]
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where © 1s the mass density, This result is to be
considered a preliminary estimate.

It will be convenient at this point to summarize
the results of our theory as applied to 1liquid argon at
89%K and 1.2 atm. With use of parameters €, n and ao,
given by Rushbrooke, and parameters q,ahet and s, given in
Table II, we obtain for the coefficient of shear viscosity,

n,and the coefficient of bulk viscosity,<¢ 5

r - 263 xio®Y 4 8§ §32107" oise (123)
‘s

4; = ’.qS"%Io.'\S + 4w68 )‘,’_0-'s Porse (IIQ)
b g

The preliminary estimate for the friction constant ¥ leads

to the value,

T = 9.8¢ x107'° gm. sec (130)

Reference to these results shows that the momentum contribu-
tion to the coefficients of viscosity is negligible in
comparison with the contribution arising from intermolecular
forces,

By defining an effective radius by the relation-
ship § = CTT() ROFF , suggested by the Stokes estimate
for the friction constant, the evaluation of Regp may
be carried out by equation (128). The result, R =2.0A
at 89§K) is strikingly similar to the actual radius, 1.9 a°,

taken to be one-half the distance between nearest neighbors,

O
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A final test of our theory of shear viscosity is available
with the estimate for \f) equation (130). The theoretical
value for liquid argon at 89°K, N = .27 “40_3 poise, is
in moderately good agreement with the extrzpolated experi-
mental determination(39), 2.29 w0 > poise. |

The coefficient of bulk viscosity célculated
similarly leads to the value ¢ = ‘l.B?g;o'spois;e. By daivid-
ing equation (129) by equation (128), the®friction constant
cancels and we find for the ratio ¢/,7 - 7.9 . From
recent ultrasonic absorption mea:urements of Galt(Bl), an
upper bound to the ratio ¢/,) is estimated to be 1/3 for
liguid argon at 85°x. However, in the absence of an
experimental value of the heat conductivity, the calcula-
tion of the absolute value of ¢ is not possible. Results

of these caleulations are summarized in Teble III.

TABLE 111
Viscosity Coefficients of Liquid argon at 89°K
and 1.2 atm.

-1 -1

® cm. n cm. b c/; poise r) poise
b < n
" 6 i3 .3
Cale. 1.95x10 2.63x10 Ted) 9.38x10 1.27x10
-3
Exp. <l 2.39x10 .
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In view of the approximate nature of our c}’:’
and S » these values are to be considered as preliminary
estimates. At suchalater time when & more satisfactory

Q. will be avalleble, it is expected that better agree-
ment will be obtained by deriving the first peak parameters
from the theoretical g‘f curves. The coefficient of bulk
viscosity is particularly sensitive to the choice of 3(2
so that the ratio %47 may be smaller, This is apparent
by reference to equation (114), which indicates that the
coefficient of bulk viscosity is strongly affected by the

fluetuation integral (see appendix)
o 57 O ' (0
4 e, | R (ge0dR -1 + KT p!

<o,

The parameters selected by the procedure given in Part VI

(131)

do not satisfy this additional restriction and thus the
unsatisfactory value for the coefficient of bulk viscosity
is not unexpected. However, the fluctuation integral does
not enter into the theory of the coefficient of shear
viscosity.

A gqualitative investigation of the effect of the
fluctuation integral on the results of the theory has been
caerried out. A starting point was provided by transform-
ing the differential equation for the perturbation ¢, ,

subject to the appropriate boundary conditions, into a Fredholm
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integral equation of the second kind. It was possible
to solve this integral equation by representing ‘3t’

by the three parameter approximation

(@] .\ 05n<bo
v
G&', - h; b,sR<b, hY) (132)
‘l' bu<R

The details of this calculation will not be presented,

since it was demonstrated that the constants b,, b and h

)
could not be determined numerically from equations (85),
(86) and (131). Physically this means that the step
approximation to qt: , equation (132))is inconsistent
with a potential of intermolecular force of the Lennard-
Jones type.

e thus conclude that better numerical agreement
will only be possible on the basis of a reliable radial
distribution function. However, the results already

obtained indicate the success of the molecular theory of

viscous flow formulated in the preceding sections.
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APPENTIX

We will conclude this presentation by investi-
geting the important normalizetion condition imposed on
the non-equllibrium pair distribution function. The
approach which hes been adopted is the generalization
of a method due to Yvon(Bz) and is based on fluctuation
theory.’

Consider a fluld composed of N identical molecules
contained in a volume v, The configuration probability
distribution function of the ensemble at time t will &again
be denoted by ‘P“)(é?;tj . We note that by definition

fse‘w((s_;f‘)da = 1. Next we foeus our attention on an
arbitrary volume ¥ , wholly contained within v, and we

define the quantity Pj by the relation

P. = if molecule j is in the volume (g 33)

P. -0 if molecule j is not in the volume v

Thus the number of molecules contained within v at time t,
N (Vit) mey be expressed in the form,

Y N‘

N;t) = Z P G39)
i~
v :

The everage number of molecules within W, <'V(P3t)7 , is
caleulated from the statistical average of equation (134).

In view of the ldentical rature of the molecules,
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£ N ;0 (8 948

(Y, f---f/f‘“’(ést)dq‘,,_,
= gdﬁ, FWCE,‘.{-’)

N ;)Y

n

b3s)

"

<

The deviation from the mean oM, of molecules contained

in the volume V at time t ic defined by

v s
alN = N(v;t) - < N(v;t)) (13¢)
Since v<4N7 = 0 , we consider the mean square

24 )
deviation ) < (4 N),') ,

N < XNCst) - [ o

The first term of equation (137) is readily evaluated,

ZNt(v‘.t)‘] = ijNJ P. P (Q f)olQ

vV N T (>
= (2 P @R 4

jos L33)

+f2 PPtf(QJ )dq

4!
L’J

- Nty + (S @ T taRaR
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Substitution of eguation (138) into equation (137) leads

to the final result of our analysis,

SN = X+ (@@ R - (@t ¢ (a2 @Rz,
, v, | (139)
= <N7 + _(f Plo(r?.j't} é"(’i*i'lsﬂ{s“”(k:i&*)"fdzqﬁn

An important expression is derived when the
system is in thermodynamic equilibrium in the asbsence of
external forces. Vhen y <<y s the Einstein-fmoluchowski
theory of density fluctuations, based on the Gibbs canonical

ensemble, leads to the result

K (an)*7 = ',"ZK ‘KN}L

' (140)
- (v
X v (5—? ™
where X is the compressibility.

The limiting process v —» e , keeping the ratio of v
to v constant, and use of eguation (140), permits the

caleulation of the normelization integral
44r s ’sz w, )
V"! (§o®)-1)dR = kTxp, - (191)

Qur analysis thus provides us with a restriction

(5 . .
to be imposed on q o , and furthermore yields an expression




66.
for the fluctuetions in the non-cquilibrium case. For
viscous fluid flow it has been previously shown that for
& linear theory,
Yy v -, ,‘
o L1 (REGVR - L v 2@ £ Ru) +92@)8, (ko]

R 3 0 » ?
Since the shear viscosity perturbation involves surface
harmonicé of order two and the bulk viscosity perturba-
tion involves surface harmonics of order zero, our general
equation (129) leads to the interesting conclusion that
the fluctuetion is only affected by dilational viscous
flow., This result is intimately related to the previous
observation that the value of the coefficient of bulk
viscosity is affected by the value of the normalization

integral of the equilibrium radial distribution function.
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1) The thermodynamics of multi-component azeotropes,
pseudo-azeotropes, etec., may be formulated rigorously by
Gibbsian methods. Among several interesting results it
is found that for binary azeotropes the composition=-
vressure diagram shows & maximum when aﬁ;aﬁ,: oﬁ, A\71 3
where oﬁ is the change in partial molal enthalpy and

ayv 1is the change in partial molal volume.

2) The statistieal mechanical theory of surface tension
of Kirkwood and Buff may be used to calculate the surface
tension of binary solutions. With the usual assumptions
for "regular" solutions V¥ = @ V¥, + \oz{'}:

where ¥ is the surface tension of the mixture, ¥, anc ),
are the surface tensions of the pure components and ¢,

end - \p, are the volume fractions.,

J. G. Kirkwood and F. P. Buff, J. chem. Phys., 17, 338 (1949)
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3) a) Mott's theory relating the change of resistance
of a metal upon melting to the entropy of fusion cannot
be directly extended to allotropic transitions. It is
suggested that this is partly due to the resultant change
in the number of "free"conduction electrons snd hence
the electron ratio may be calculated from experimental
data.

b) A survey of the physical properties of the liquid
alkali metals suggests that they may not be unambiguously
classified as monatomic fluids.

N.F. Mott, Proc. Roy. £oc., A&, 146, 465 (1934)

4) The temperature derivative of the equllibrium radial
distribution function is of interest in investigationsof
the liquid state. This derivative may be calculated by
statistical mechanics, and for monatomic liquids is
determined by the potential of intermolecular forece and

number densities of sets of 2, 3 and 4 molecules,

5) a) It is suggested that a new titration curve with
possibly sharper inflection points is obtained by subtract-
ing corresponding pH readings of two titration curves

obtained at different ionic strengths.



3.
5) b) The instability of some solutions comt aining

cerium reagents should be investigated.

6) A statisticael mechanical theory of solutions may be
based on:

a) The Kirkwood expression for the chemical potential
and his integro-differential equatlion for number densities,
both being in terms of a coupling parameter.

b) A direct transformation of the Gibbs phase integral.

J. G. Kirkwood, J. Chem. Phys., 3, 300 (1935)

7) a) By means of a Tolmen-Stewart type arrangement with
simultaneous cooling it should be possible to induce
currents in a superconductor,

b) The method devised by Yost and Jomston for the
study of rapid geas phase reactions may be used to follow
clock reactions.

H. S. Jolnston and D. M. Yost, J. Chem. Phys., 17, 386 (1949)

8) a) The approximate treatment of shear viscosity given
by Born and Green has attracted considerable attention.

The starting point of their unjustified peak integration
may be actually shown equivalent to O‘x %%_ , where )
is the viscosity coefficient and § is the surface tension.

However, the modified cxpresaion,!}l\== constant, appears

to reproduce experimental data satisfactorily,
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b) Kirkwood!s new theory of the friction constant
leads to a certain ordinary differential equation. Approxi-
mate solutions of this equation in terms of confluent hyper-
geometric functions may be obtained with use of the first
peak approximetion (this thesis) to the ;adial distribution
function,

M. Born and H. ©, Green, Proc. Roy. Soc., A, 190, 455 (1947)

9) It is suggested that a table of potentizl functions
permitting solution of the Schroedinger equation in terms
of known functions may facilitate some quantum mechanical
problems, By means of this method, a smooth symmetrical

potentizl well problem may be treated with some success.

10) I propose that the final oral examination be restricted

to the defense of the thesis and a small number of propositions,





