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ABSTRACT

Mud builds coastal landscapes and governs the long-term evolution of river deltas,
floodplains, and estuaries, yet predicting its transport remains difficult because mud
aggregates into flocs with complex, fractal structures that deviate from simple parti-
cle behavior. The three-dimensional (3D) fractal dimension of these flocs sets their
settling and sediment transport characteristics, but reliably determining this param-
eter across diverse environments is a persistent challenge. Conventional aggregation
of floc data often obscures real structural diversity and can yield misleading fractal
dimensions due to Simpson’s Paradox. This study tests the hypothesis that stratify-
ing settling data by image-derived two-dimensional (2D) fractal dimension enables
more accurate inference of the hydrodynamically relevant 3D fractal dimension.
Controlled experiments with freshwater flocs, formed under varied shear and par-
ticulate organic matter (POM) conditions, were conducted using in-situ imaging,
PIV-corrected tracking, and box-counting analysis to resolve structural differences.
Results demonstrate that aggregation overestimates the 3D fractal dimension, while
stratification reveals clear trends: the inferred 3D fractal dimension increases with
shear stress and decreases with particulate organic matter content. These findings
provide a basis for more realistic floc modeling and improve predictions of fine
sediment transport.
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NOMENCLATURE

𝜇. Dynamic viscosity [Pa·s].

𝜈. Kinematic viscosity [m2/s].

𝜌 𝑓 . Fluid density [kg/m3].

𝜌𝑝. Particle density [kg/m3].

𝐴. Area [m2].

𝑏1. Shape (drag) factor [–].

𝑑. Particle diameter [m].

𝑑 𝑓 . Floc diameter [m].

𝑑𝑝. Primary particle diameter [m].

𝑔. Gravitational acceleration [m/s2].

𝑁 . Number of primary particles in a floc [–].

𝑛 𝑓 . Fractal dimension (2D or 3D, context-dependent) [–].

𝑃. Perimeter [m].

𝑅 𝑓 . Floc submerged specific gravity [–].

𝑅𝑠. Primary particle submerged specific gravity [–].

𝑢∗. Shear velocity [m/s].

𝑤𝑠. Settling velocity [m/s].
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C h a p t e r 1

INTRODUCTION

Mud, characterized by particles smaller than 62.5 microns, constitutes over 80%
of the sediment load in most rivers and is the primary component of deposition
in lowland and deltaic environments (Kranenburg, 1994; Lamb et al., 2020; T.
Healy, Y. Wang, and J.-A. Healy, 2002). Understanding the transport and fate of
fine-grained sediment is thus crucial for modeling the long-term evolution of deltas,
floodplains, and estuaries (Winterwerp, 2002; Kranenburg, 1994; Nghiem et al.,
2022; Lamb et al., 2020). Accurate predictions of fine sediment dynamics are also
critical for water quality management (Droppo et al., 1997), contaminant transport
(Liss et al., 1996), and for the design of effective river and coastal restoration
strategies (Esposito et al., 2017; Kemp et al., 2016). Furthermore, mud plays a
central role in the global carbon cycle, with fine-grained mineral surfaces offering
reactive sites for the adsorption and preservation of organic carbon (Bianchi et al.,
2024).

The settling dynamics of suspended particles fundamentally control the processes
of mud deposition in rivers and estuaries. Many predictive approaches for sediment
transport begin with Stokes’ law, which describes the terminal settling velocity (𝑤𝑠)
of smooth, impermeable spheres at low Reynolds numbers (Stokes et al., 1851; Bird,
2006):

𝑤𝑠 =
𝑔(𝜌𝑝 − 𝜌 𝑓 )𝑑2

18𝜇
(1.1)

where 𝑔 is gravitational acceleration, 𝜌𝑝 and 𝜌 𝑓 are the densities of the particle
and fluid, 𝑑 is particle diameter, and 𝜇 is dynamic viscosity. Stokes’ law reliably
describes the settling of isolated spheres; however, applying it to fine-grained sedi-
ment produces predictions that conflict with field observations. For instance, using
the law for a single 1 𝜇m mud particle in a 5 m-deep river flowing at 1 m, s−1

yields a settling velocity of only 9×10−8 m, s−1, implying a deposition time of more
than 600 days. During that time, the particle would be transported over 55,000 km
downstream. However, this theoretical calculation stands in contrast to several field
observations. For example, lowland rivers are often bordered by levees actively built
by overbank flows, with many of these levees composed of mud, some containing
high clay content (e.g., 50%) (Aalto, Lauer, and Dietrich, 2008). Additionally,
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deposition rates on alluvial ridges decline exponentially away from the channel, im-
plying transport lengths of tens to hundreds of meters, rather than tens of kilometers
(Hajek and Wolinsky, 2012).

These observed transport and deposition patterns indicate that mud in rivers settles
much faster than predicted for individual, isolated particles. This deviation arises
because suspended mud particles do not remain isolated but rapidly undergo floc-
culation to form larger, composite aggregates that settle more quickly than their
individual constituents (Kranenburg, 1994; Johnson, X. Li, and Logan, 1996; I. G.
Droppo, 2001). However, these aggregates are not the dense, impermeable spheres
assumed by Stokes’ law. Instead, they are highly porous, open structures whose ef-
fective density decreases as their size increases (Meakin, 1992; Kranenburg, 1994).
It is well established that such aggregates tend to be self-similar and fractal in
structure (Family and Landau, 2012; Jullien, 1987). The hierarchical organization
of flocs is effectively captured by a simple scaling law derived from fractal theory
(Meakin, 1992). Specifically, the relationship between floc mass and size follows:

𝑁 ∼
(
𝑑 𝑓

𝑑𝑝

)𝑛 𝑓

(1.2)

where 𝑁 is the number of primary particles, 𝑑 𝑓 is the floc diameter, 𝑑𝑝 is the primary
particle diameter, and 𝑛 𝑓 is the fractal dimension. Building on this, Kranenburg
(1994) showed that the solid volume fraction, and thus the excess density, of a floc
decreases as a power law with increasing floc size:

𝑅 𝑓 = 𝑅𝑠

(
𝑑 𝑓

𝑑𝑝

)𝑛 𝑓−3
(1.3)

where 𝑅 𝑓 is the floc’s submerged specific gravity, 𝑅𝑠 is that of the primary particles,
𝑑 𝑓 is floc diameter, 𝑑𝑝 is primary particle diameter, and 𝑛 𝑓 is the three-dimensional
fractal dimension. Submerged specific gravity is defined generally as (𝜌 − 𝜌 𝑓 )/𝜌 𝑓 ,
where 𝜌 is the density of the particle and 𝜌 𝑓 is the fluid density.

Substituting this fractal scaling of excess density into Stokes’ law for a floc, and
expressing viscosity in terms of the kinematic viscosity (𝜈 = 𝜇/𝜌), yields the explicit
fractal floc settling velocity equation (Strom and Keyvani, 2011):

𝑤𝑠 =
𝑔𝑅𝑠

𝑏1𝜈𝑑
𝑛 𝑓−3
𝑝

𝑑
𝑛 𝑓−1
𝑓

(1.4)

where 𝑏1 is a shape factor that generalizes the original Stokes constant of 18 for
spheres. For natural sediments, which are irregular, porous, and often non-spherical,
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𝑏1 serves as an empirical correction factor to account for deviations from idealized
behavior (Ferguson and Church, 2004). This implies that the exponent in the
velocity–diameter relation is directly set by the fractal dimension, with 𝑤𝑠 ∝ 𝑑

𝑛 𝑓−1
𝑓

for a fixed 𝑑𝑝 (Johnson, X. Li, and Logan, 1996; D. H. Li and Ganczarczyk, 1989).
Consequently, the slope of a log–log plot of settling velocity versus floc diameter
provides a direct estimate of the aggregate fractal dimension.

However, this application rests on the implicit assumption that all flocs in the
population share a single, well-defined fractal dimension. In reality, floc populations
are heterogeneous: aggregate growth and breakup are influenced by factors such
as organic matter content, turbulence, and hydrodynamic conditions, leading to a
broad spectrum of floc structures and fractal dimensions (Nghiem et al., 2022).
This heterogeneity presents a fundamental challenge for settling theory. In a mixed
population containing flocs with diverse fractal dimensions, a single power-law fit
to bulk measurements may obscure the underlying structural variability.

To illustrate how structural heterogeneity influences settling behavior, consider a
mixed population of flocs composed of three subgroups with distinct true fractal
dimensions: 𝑛 𝑓 = 1.5, 2.0, and 2.5. Each group is assumed to have the same
primary particle diameter, 𝑑𝑝 = 10−5 m, which is indicated by the arrow in Fig. 1.1.
According to Eq. (1.4), the slope of the log–log relationship between settling velocity
and floc diameter for each group is given by 𝑛 𝑓 − 1. Therefore, when each 𝑛 𝑓

subgroup is analyzed separately, their respective log–log slopes are 0.5, 1.0, and
1.5, as illustrated in Fig. 1.1.

A paradoxical situation can arise, however, if these distinct 𝑛 𝑓 subgroups are aggre-
gated and analyzed as a single dataset. If, within this pooled dataset, floc diameter
(𝑑 𝑓 ) exhibits a positive correlation with the 3D fractal dimension (𝑛 𝑓 ), then fitting a
single power-law relationship to the aggregated data can yield a substantially skewed
and misleading exponent. In the toy scenario in Fig. 1.1, an aggregated log–log
slope of 2 (implying an effective 𝑛 𝑓 = 3) is observed, equal to the settling behavior
of a smooth, impermeable sphere.

This outcome exemplifies Simpson’s Paradox (Simpson, 1951), a statistical phe-
nomenon in which trends or relationships observed within individual subgroups
are reversed, masked, or distorted when those subgroups are aggregated. In the
context of floc settling, this means that combining data from structurally diverse
floc populations can yield misleading global relationships that do not reflect the true
behavior of any subgroup. In our context, the aggregated slope fails to accurately
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nf = 1.0

log(df)
log(ws)

log(df)
log(ws) ∝ nf - 1

slope = 0

dp = 10-5 m

Figure 1.1: Toy model illustrating Simpson’s Paradox: Three floc groups (𝑛 𝑓 =

1.5, 2.0, 2.5) with the same 𝑑𝑝 yield distinct slopes when fit separately, but their
aggregated data converge to a slope of 2, matching an impermeable sphere and
masking subgroup variability.

reflect the settling behavior of any single fractal dimension class (all of which have
𝑛 𝑓 ≤ 2.5), because 𝑛 𝑓 functions as a confounding variable. When larger diameters
systematically coincide with higher fractal dimensions, the global regression cap-
tures a spurious trend that does not represent the true behavior of any constituent
group. As a result, the distinct physical behaviors of each 𝑛 𝑓 subgroup are lost, and
any interpretation of the aggregate slope as a universal settling law for these flocs
becomes statistically and physically misleading.

To estimate fractal dimension independently of settling dynamics, many studies
have employed image-based techniques that analyze in situ two-dimensional (2D)
projections of flocs (Jarvis, Jefferson, and Parsons, 2005). These methods typically
calculate a 2D fractal dimension from high-resolution images and then infer the
corresponding three-dimensional (3D) structure using empirical or simulation-based
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relationships. A common strategy involves relating the perimeter–area scaling of
projected flocs to a 2D fractal dimension, and then using synthetic or computationally
generated aggregates to derive a functional relationship between the 2D and 3D
fractal dimensions (Maggi and J. Winterwerp, 2004; Lee and Kramer, 2004; Tang
and Federico Maggi, 2015). However, the physical relevance of such projection-
based approaches for experimental flocs is inherently limited. The relationship
between 2D and 3D fractal dimensions is established using synthetic aggregates,
which may not fully replicate the aggregation dynamics or structural variability of
natural or experimental flocs. As a result, image-based techniques can introduce
systematic structural biases and may not yield accurate estimates of the true 3D
fractal dimension in real-world floc populations.

To overcome these limitations, we introduce a hybrid approach that links image-
based structure with settling dynamics by stratifying the floc population into groups
based on their 2D box-counting fractal dimension. For each group, we perform a
separate regression of settling velocity against floc diameter, enabling inference of a
hydrodynamically relevant 3D fractal dimension for each structural subgroup. This
stratification preserves internal variability and reduces Simpson-type aggregation
bias, ultimately yielding more accurate estimates of parameters for floc transport
modeling.

We evaluated the approach in controlled laboratory experiments that systematically
varied shear velocity and organic-matter concentration. High-resolution in-situ
imaging captured detailed floc morphologies and settling trajectories. The work
pursued three objectives: (1) demonstrate structurally distinct subgroups within
the floc population, each exhibiting a unique fractal dimension; (2) relate 2-D
image–derived fractal dimensions to settling-inferred 3-D dimensions and validate
that relationship against theoretical models; and (3) estimate the effective primary
particle size (𝑑𝑝) and quantify how the shape factor (𝑏1) varies with the 3-D fractal
dimension (𝑛 𝑓 ).

This paper first describes the experimental design and measurement techniques for
quantifying floc size, shape, and settling behavior. Next, we outline the image-
processing procedures used to extract structural descriptors from 2D projections.
Finally, we present an analytical framework that links these descriptors to settling
dynamics, refining our understanding of floc structure–function relationships in
natural and engineered systems.
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C h a p t e r 2

METHODOLOGY

This chapter outlines the experimental design, data acquisition, and analytical pro-
cedures used to quantify the structure and settling behaviour of suspended flocs
under controlled laboratory conditions. First, the flocculation tank and imag-
ing system—designed to measure floc size, shape, and velocity under adjustable
shear—are described. The experimental protocols, including mineral composition,
shear-velocity settings, and organic-matter additions, are then detailed. Subsequent
sections present the image-processing workflow that extracts floc properties from
high-resolution video, along with the corrections applied to isolate gravitational
settling and compute equivalent diameters.

To interpret the settling data, the system is calibrated with reference materials,
and fractal-scaling models are applied to obtain floc fractal dimensions. Several
complementary methods are introduced for estimating two-dimensional (2-D) and
three-dimensional (3-D) fractal dimensions, including box-counting analysis and
slope-based inference from power-law regressions. Finally, a procedure for esti-
mating the primary-particle diameter (𝑑𝑝) is presented, based on the intersection of
log–log regressions obtained for floc subpopulations that differ in fractal structure.
Together, these methods provide the basis for analysing how structural heterogeneity
governs floc settling dynamics.

2.1 Experimental Setup
We performed flocculation experiments in a custom mixing tank designed to main-
tain controlled laboratory conditions (Fig. 2.1a). The tank comprises a cylindrical
PVC pipe, 20 cm in diameter and 60 cm tall, filled with water to a depth of 40 cm.
A motor-driven paddle, mounted above the open top and submerged just below the
free surface, sets the desired shear. Shear velocity, 𝑢∗, was empirically calibrated
for each run by converting motor revolutions per minute to 𝑢∗ using a relationship
derived from previous sediment-entrainment trials in Douglas, Miller, and Lamb
(2025).

Suspended flocs were imaged through a 3 mm-thick flow-through slit built into the
tank wall at the observation level. A DSLR fitted with a 5× microscope objective
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was aligned with the slit to record flocs as they crossed the narrow optical path,
reducing intervening particles and improving clarity. This arrangement permits
simultaneous control of mixing and imaging without interference from the drive
assembly or external lighting.

Fnet gravity

Fdrag

Camera

Slit

(a)

60
 c

m
40

 c
m

20 cm

3 mm

*drawing not to scale
Motor

Paddle

(b)

Figure 2.1: (a) Experimental apparatus. (b) Cumulative grain-size distributions of
silica, montmorillonite, and flocs.

2.2 Experimental Runs
We conducted eight runs. Two calibration runs used lab spheres and silica grains
to assess how particle shape influences settling and flocculation. The remaining
six runs systematically varied shear velocity and particulate organic matter (POM)
content to isolate their effects on floc formation and settling. Turbulent shear limits
floc size by promoting breakup, whereas organic matter enhances aggregation by
binding particles; controlling these variables therefore tests their respective roles in
freshwater floc dynamics (Nghiem et al., 2022).

Each run used 10 g of solids: 5 g silica (SiO2) and 5 g montmorillonite clay,
a composition representative of natural aquatic sediments. Organic content was
varied in three runs by adding guar gum—a plant-derived polysaccharide that mimics
natural riverine organic matter—at 0, 1, or 2 wt %. For example, 1 wt % organic
matter corresponds to 0.1 g guar gum per 10 g of solids. Shear velocity was adjusted
in three additional runs to probe its effect on floc properties. Full experimental
conditions, including organic-matter fraction and imposed 𝑢∗, are listed in Table 2.1.

Grain-size distributions for the silica and montmorillonite end-members were mea-
sured with a Camsizer and a Mastersizer, respectively (Fig. 2.1b). Together they span
almost three orders of magnitude, with primary-particle diameters from 1 × 10−7
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Table 2.1: Summary of experimental conditions.

Exp Num Experiment Type POM (%) Shear (m/s)
1 Lab Sphere NA NA
2 Silica NA NA
3 Floc Shear 1 2 0.02
4 Floc Shear 2 2 0.03
5 Floc Shear 3 2 0.04
6 Floc POM 1 1 0.04
7 Floc POM 2 2 0.04
8 Floc POM 3 3 0.04

m to 1 × 10−4 m (percent finer by mass). For the mixed-floc runs, we computed
a composite distribution as the 50:50 mass-weighted average of the two mineral
curves.

2.3 Image Processing Methods for Floc Velocity and Diameter
Analysis began with every frame of the recorded video sequence. Each frame was
converted to grayscale, and a time-averaged image built from multiple frames was
subtracted to remove the background (Fig. 2.2a). Particle boundaries were then
detected from intensity gradients. To exclude poorly resolved images, we required
that candidates exceed thresholds in both Laplacian variance and intensity standard
deviation; accepted particles are highlighted in red in Fig. 2.2b (after S. J. Smith
and Friedrichs, 2015).

We tracked in-focus particles frame-to-frame to obtain settling velocities. For a
particle in frame 𝑖, a radius search located matches in frame 𝑖 + 1. Potential matches
were scored on diameter consistency and Laplacian variance, weighted equally;
tracking terminated if no candidate satisfied both thresholds (Fig. 2.2b).

Frame-to-frame displacements give raw velocities, but these include background
flow. To isolate the gravitational component, we applied particle-image velocimetry
(PIV) to a digitally filtered sequence that retained only tracers smaller than 10 𝜇m,
which faithfully follow the local flow (Fig. 2.2c). Subtracting this PIV-derived field
from each tracked velocity yielded the true settling velocity (Fig. 2.2d; gray arrow
= raw, white arrow = corrected).

After velocity correction, we derived diameters from projected areas. Binary masks
isolated each particle, boundaries were traced, and a concave-hull algorithm ac-
commodated irregular floc shapes. The enclosed area was then converted to an
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(a) (b)

(c) (d)

500 µm

Contoured Particle

Velocity

PIV-Corrected Velocity
Velocity

Figure 2.2: (a) Background-subtracted image, (b) contoured particle with raw ve-
locity, (c) PIV, (d) contoured particle with gravitational settling velocity.

equivalent-circle diameter, which we used for subsequent log–log analyses.

2.4 Calibration and Settling Behavior Analysis
System calibration began with Experiments 1 and 2, which measured the settling of
laboratory spheres (50 𝜇m) and natural silica grains (Fig. 2.3a). Settling velocities
were fitted with Stokes’ law (Eq. (1.1)), treating the shape factor 𝑏1 as a free
parameter. For the spheres, the best-fit 𝑏1 = 17.7 agrees closely with the theoretical
value of 18 (Fig. 2.3b). Silica grains settled more slowly, giving 𝑏1 = 29.2, a drag
increase attributable to their angular, non-spherical shapes; Ferguson and Church
(2004) reported a comparable 𝑏1 ≈ 24 for natural sediments of similar morphology.

Flocs settled even more slowly than silica and displayed far greater velocity scatter
at any given diameter (Fig. 2.3b). Their reduced velocities reflect lower effective
density and highly porous, irregular structures. Consequently, the velocity–diameter
relation for flocs cannot be captured by a single shape factor. Instead, Eq. (1.4)
combines Stokes’ law with fractal scaling, introducing the floc fractal dimension 𝑛 𝑓

and the primary-particle diameter 𝑑𝑝 to describe their behavior.
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Figure 2.3: (a) Images of laboratory sphere, silica, and flocs. (b) Settling velocity
fits for spheres, silica, and flocs. (c) Effect of varying primary particle diameter
(𝑑𝑝) on inferred fractal dimension.

Directly fitting Eq. (1.4) to the floc data is problematic because the primary-particle
diameter, 𝑑𝑝, is unknown in natural samples and may vary by several orders of
magnitude. Its assumed value exerts a strong influence on the inferred fractal
dimension 𝑛 𝑓 (Fig. 2.3c): 𝑑𝑝 = 1× 10−6 m yields 𝑛 𝑓 = 2.77; 𝑑𝑝 = 1× 10−5 m gives
𝑛 𝑓 = 2.10; and 𝑑𝑝 = 1 × 10−4 m produces 𝑛 𝑓 = 3.00.

To avoid this sensitivity, 𝑛 𝑓 is instead estimated from the log–log slope of settling
velocity versus diameter, a measure that is independent of 𝑑𝑝. The bulk slope
for the entire floc population is 1.9 (Fig. 2.3b). Bulk regression, however, can be
biased by Simpson’s paradox when the population is structurally heterogeneous, so
flocs are first stratified by their in-situ image-based fractal dimension and slopes are
computed for each subgroup separately.

2.5 Estimating Fractal Dimension of Flocs from 2D Projections
Accurately determining the three-dimensional (3D) fractal dimension from two-
dimensional (2D) projections is fundamentally challenging, as the projection process
(R3 → R2) distorts essential geometric information about the aggregate. Addition-
ally, our experimental setup employs a 3 mm-wide slit flow cell to minimize wall
drag effects; however, this configuration introduces optical variability, since flocs
are dispersed throughout the depth of the cell rather than constrained to a single
focal plane. As a result, the captured images include particles at varying degrees of
focus. Any method used to estimate the fractal dimension must therefore account
for the geometric distortion introduced by projection and remain robust to image
degradation and optical variability.
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In principle, fractal theory (Eq. (1.2)) allows the fractal dimension to be inferred
from the primary particle diameter (𝑑𝑝) and the number of primary particles (𝑁)
comprising a floc. However, in natural settings, neither 𝑑𝑝 nor 𝑁 is constant or
directly measurable in situ. As a result, a variety of in situ methods have been
proposed to estimate floc fractal dimensions from observable image properties.

The perimeter–area method has previously been used to estimate the two-dimensional
fractal dimension of flocs (Maggi and J. Winterwerp, 2004; Tang and Federico
Maggi, 2015; Lee and Kramer, 2004). This method relies on the empirical scaling
relation:

𝑛
(2𝐷)
𝑓 perimeter = 2

log 𝑃

log 𝐴
(2.1)

where 𝑃 is the measured perimeter and 𝐴 is the projected area of the particle in
the 2D image. This expression is derived by analogy to the Euclidean relation
𝑃 = 𝑘𝐴𝑑/2, which holds for smooth (non-fractal) boundaries with 𝑑 = 1. The
underlying assumption is that, for a fractal boundary, the exponent in this scaling
law approximates the true fractal dimension. However, both mathematical analysis
and geometric constructions (e.g., the Koch curve) demonstrate that this assumption
breaks down for truly fractal sets (Frame, Mandelbrot, and Neger, 2025; Cheng,
1995). For such boundaries, the perimeter may diverge while the enclosed area
remains finite, making the relation 𝑃 = 𝑘𝐴𝑑/2 mathematically inconsistent. As
a result, the exponent 𝑛(2𝐷)

𝑓 perimeter does not reliably represent the true boundary
fractal dimension unless the area dimension 𝐷𝐴 = 2.

Box-counting, in contrast, provides a mathematically rigorous and more gen-
eral means of estimating the fractal dimension for both boundaries and interiors
(Foroutan-pour, Dutilleul, and D. L. Smith, 1999). A key advantage of box-counting
is that it does not require knowledge of the primary particle size (𝑑𝑝) or the number
of constituent particles (𝑁), making it particularly well-suited for natural flocs where
these values are unknown or variable (Spencer et al., 2022; Bellouti et al., 1997).
The box-counting dimension 𝑛

(2𝐷)
𝑓 box-counting is determined by measuring how the

number of occupied boxes 𝑁 (𝜖) at a given scale 𝜖 varies with scale (Mandelbrot,
1967):

𝑛
(2𝐷)
𝑓 box-counting =

log 𝑁 (𝜖)
log(1/𝜖) . (2.2)

However, when analyzing objects with finite extent (in situ imaging), finite-size
effects and image pixelation introduce sensitivity to the scaling range. For a digital
image of 𝑁 × 𝑁 pixels, the practical range of box sizes (𝜖) spans from 1 pixel up to
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𝑁 pixels. Reliable estimation of 𝑛(2𝐷)
𝑓 box-counting requires a sufficiently broad range

of box sizes to establish a stable linear trend on a log–log plot of 𝑁 (𝜖) versus 1/𝜖 . If
the image is too small, the limited scaling range can yield unstable or underestimated
values of 𝑛(2𝐷)

𝑓 box-counting. For example, a 20 × 20 pixel image offers only about 1.3
orders of magnitude in scale, which is insufficient for robust fitting and does not
recover the expected 𝑛

(2𝐷)
𝑓 box-counting = 2 for a smooth circle (Fig. 2.4a). In contrast,

a 100×100 pixel image spans two full orders of magnitude, generally providing 6–7
usable data points for regression and a more reliable estimate of 𝑛(2𝐷)

𝑓 box-counting.
Panel (b) of Fig. 2.4 shows examples for two experimental flocs at high image
resolution, illustrating the application of the box-counting method to real data.
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Figure 2.4: (a) Illustration of resolution dependency in box-counting dimension
estimation using a perfect circle embedded in grids of 20× 20 and 200× 200 pixels,
demonstrating that coarse grids systematically underestimate the fractal dimension.
(b) Example box-counting dimension estimates for two experimental flocs imaged
at > 100 × 100 pixel resolution.

2.6 Estimating Primary Particle Diameter (𝑑𝑝) from Settling Data
A key parameter in fractal settling models is the primary particle diameter (𝑑𝑝),
which sets the scale for both aggregate growth and density. Accurate estimation
of 𝑑𝑝 is essential for quantifying floc structure, interpreting settling data, and con-
straining physical models. However, 𝑑𝑝 is rarely measured directly in natural or
experimental settings, necessitating indirect inference from observable trends in the
settling behavior of floc populations.

Using Eq. (1.4), the settling velocity of a floc is expressed as a power-law function of
floc diameter, fractal dimension, and a drag/shape factor. When the floc population
contains subgroups with distinct fractal dimensions, each group yields a separate
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log–log trend between settling velocity (𝑤𝑠) and floc diameter (𝑑 𝑓 ). The intersection
of these trends provides a means to estimate the effective primary particle diameter,
𝑑𝑝.

For two groups, 𝑗 and 𝑘 , with fractal dimensions 𝑛 𝑓 , 𝑗 and 𝑛 𝑓 ,𝑘 and drag/shape
factors 𝑏1, 𝑗 and 𝑏1,𝑘 , the intersection diameter 𝑑 𝑓 ,int is the floc diameter at which
both groups predict the same settling velocity. This is given by

𝑑 𝑓 ,int = 𝑑𝑝

(
𝑏1, 𝑗

𝑏1,𝑘

)1/(𝑛 𝑓 , 𝑗−𝑛 𝑓 ,𝑘)
(2.3)

which accounts for possible differences in drag/shape factor.

In the special case where 𝑏1, 𝑗 = 𝑏1,𝑘 , this reduces to

𝑑 𝑓 ,int = 𝑑𝑝 (2.4)

indicating that, for constant drag, all fitted lines intersect at the primary particle
diameter.

In practice, we identify intersection points of the log–log settling velocity fits across
floc subgroups and use the central tendency (such as the median) of these intersection
diameters to estimate 𝑑𝑝 for the sample. Systematic deviations of 𝑑 𝑓 ,int from the
known or expected primary particle size may indicate variation in the drag/shape
factor or violations of model assumptions. The full algebraic derivation is provided
in the appendix.
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C h a p t e r 3

RESULTS

This chapter presents our analysis of floc structure and settling dynamics. We first
stratify the data by the two-dimensional box-counting fractal dimension, 𝑛(2D)

𝑓
, and

infer the corresponding three-dimensional fractal dimension, 𝑛(3D)
𝑓

, from settling
behaviour. We then extend this approach to the full floc data set to test the robustness
of the 2-D–3-D relationship. Next, we compare the empirical conversion between
𝑛
(2D)
𝑓

and 𝑛
(3D)
𝑓

with theoretical and simulation-based models from the literature.
Finally, we evaluate whether the primary-particle diameter, 𝑑𝑝, can be inferred from
the fitted settling relations and discuss the physical assumptions and constraints that
govern this method.

3.1 Stratifying 2D box-counting to infer 3d fractal dimension
We computed the two-dimensional box-counting fractal dimension, 𝑛(2D)

𝑓
, for Ex-

periment 3; values span 1.3–1.6. To test the impact of stratification, the data were
divided into 3, 6, and 12 bins of 𝑛(2D)

𝑓
. Within each bin we fitted a power-law relation

between settling velocity, 𝑤𝑠, and floc diameter, 𝑑 𝑓 , in log–log space (Figs. 3.1a,
d, g). The model log10(𝑤𝑠) = 𝑚 log10(𝑑 𝑓 ) + 𝑏 was calibrated with an ensemble
Markov-chain Monte-Carlo sampler. After burn-in and thinning, the posterior me-
dians of the slope, 𝑚, and intercept, 𝑏, were retained for further analysis. The slope
𝑚 rises systematically as the binning becomes finer (Figs. 3.1b, e, h; red points).
Because 𝑤𝑠 ∝ 𝑑

𝑛 𝑓−1
𝑓

, each slope yields a three-dimensional fractal dimension of
𝑛
(3𝐷)
𝑓

= 𝑚 + 1.

Plotting the inferred three-dimensional fractal dimensions, 𝑛(3D)
𝑓

, against the cor-
responding group-mean two-dimensional values, 𝑛(2D)

𝑓
, reveals a clear linear rela-

tionship in the 3- and 6-bin cases (𝑅2 = 0.99 and 𝑅2 = 0.97, respectively) and a
weaker—though still positive—trend for the 12-bin case (𝑅2 = 0.63; Fig. 3.1c, f, i).
These patterns show that finer stratification can expose internal structure, but once
bin populations drop below about 50 particles the increased sampling noise de-
grades the fit. On this basis we adopt a bin width of 0.1, which balances structural
resolution with statistical robustness and yields reliable estimates of 𝑛(3D)

𝑓
.
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(a) 3 Bins (b) 3 Bins Stratified Data (c) 3 Bins Conversion

(d) 6 Bins

(e) 6 Bins Stratified Data

(f) 6 Bins Conversion

(g) 12 Bins

(h) 12 Bins Stratified Data

(i) 12 Bins Conversion

1.3~1.4 1.3~1.4 1.3~1.4

1.3~1.35 1.35~1.4 1.4~1.45

1.45~1.5 1.5~1.55 1.55~1.6

1.3~1.325 1.325~1.35 1.35~1.375

1.375~1.4 1.4~1.425 1.425~1.45

1.45~1.475 1.475~1.5 1.5~1.525

1.525~1.55 1.55~1.575 1.575~1.6

Figure 3.1: Stratification of floc data by 2D box-counting fractal dimension (𝑛(2𝐷)
𝑓

).
(a–c) Results using 3 bins: (a) log–log settling velocity vs. diameter with color-
coded bins, (b) slope 𝑚 for each bin, and (c) derived 3D fractal dimension (𝑛(3𝐷)

𝑓
=

𝑚 + 1) plotted against bin-averaged 𝑛
(2𝐷)
𝑓

. (d–f) Same as above for 6 bins. (g–i)
Same as above for 12 bins.

3.2 Inferring Fractal Dimension on All Floc Data
Using a bin width of 0.1, we analysed all floc data sets (Experiments 3–8), compris-
ing three runs that varied shear velocity and three that varied particulate-organic-
matter (POM) content. Only bins containing at least 50 particles were retained,
restricting the usable range of 𝑛(2D)

𝑓
to 1.0–2.0 and yielding five to nine bins per

experiment.

For each bin we fitted a power-law relation between settling velocity, 𝑤𝑠, and floc
diameter, 𝑑 𝑓 , with an MCMC sampler and took the posterior-median slope, 𝑚. The
corresponding three-dimensional fractal dimension is 𝑛(3𝐷)

𝑓
= 𝑚 + 1. Inset panels

in Fig. 3.2 plot 𝑛(3D)
𝑓

against the bin-averaged 𝑛
(2D)
𝑓

. Across all six experiments the
stratified analysis yields a strong positive correlation, with high 𝑅2.
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Figure 3.2: Comparison of stratified and aggregated fits for all floc datasets. (a–c)
Varying shear velocity: 0.02, 0.03, and 0.04 m/s. (d–f) Varying POM content: 1%,
2%, and 3%. Inset plots show the relationship between 𝑛

(2𝐷)
𝑓

and slope-inferred
𝑛
(3𝐷)
𝑓

for each experiment.

We also examined the variability in inferred 𝑛
(3𝐷)
𝑓

across bins using the interquartile
range (IQR), summarized in Table 3.1. The IQR values vary substantially across
experiments, ranging from 0.083 to 0.248. Some datasets show tightly clustered
values of 𝑛(3𝐷)

𝑓
, indicating high internal consistency (e.g., shear 0.03 m/s), while

others exhibit wider spreads (e.g., shear 0.04 m/s and POM 3%), suggesting greater
natural variability or sensitivity in slope estimates used to infer 𝑛(3𝐷)

𝑓
.

Table 3.1: Summary statistics of inferred 3D fractal dimension (𝑛(3𝐷)
𝑓

) under differ-
ent shear velocities and POM concentrations.

Condition Median IQR Q1 – Q3
Shear 0.02 m/s 1.599 0.191 1.500 – 1.691
Shear 0.03 m/s 1.801 0.083 1.801 – 1.884
Shear 0.04 m/s 2.074 0.242 1.953 – 2.194
POM 1% 1.756 0.164 1.592 – 1.756
POM 2% 1.658 0.099 1.559 – 1.658
POM 3% 1.551 0.248 1.427 – 1.675
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Next, we compare the stratified and bulk-fit estimates of the three-dimensional fractal
dimension. The bulk fit corresponds to a single best-fit line applied to all data
without using any 𝑛

(2𝐷)
𝑓

stratification—equivalent to fitting the model log10(𝑤𝑠) =
𝑚 log10(𝑑 𝑓 ) + 𝑏 across the full dataset. The comparison between stratified and bulk
approaches is shown in Fig. 3.3.

When comparing fractal dimensions across experimental conditions, the stratified
fits reveal an increasing trend in 𝑛(3𝐷)

𝑓
with rising shear velocity, whereas the bulk fits

do not exhibit a comparable pattern (Fig. 3.3a). As particulate organic matter (POM)
content increases, both approaches show decreasing fractal dimensions. However,
the stratified method consistently yields lower 𝑛(3𝐷)

𝑓
values, typically 0.1 to 0.2 lower

than the bulk fit (Fig. 3.3b).

Aggregate Fit
Stratified Fit

Aggregate Fit
Stratified Fit

3D = 2D + 1
2D BC to 3D BC
2D BC to 3D PL
Floc Data

(a) (b) (c)

Figure 3.3: (a) Median inferred 𝑛
(3𝐷)
𝑓

versus shear velocity. (b) Median 𝑛
(3𝐷)
𝑓

versus
POM content. (c) Relationship between 𝑛

(2𝐷)
𝑓

and slope-inferred 𝑛
(3𝐷)
𝑓

across all six
datasets. The blue dashed line shows the idealized linear model (𝑛(3𝐷)

𝑓
= 𝑛

(2𝐷)
𝑓

+ 1);
the red solid and dashed lines show the empirical box-counting (BC) and power-law
(PL) conversions from R. Wang et al. (2022).

3.3 Comparing 2D and 3D Fractal Dimension Relationships
Figure 3.3c shows the relationship between the two-dimensional box-counting fractal
dimension (𝑛(2𝐷)

𝑓
) and the inferred three-dimensional fractal dimension (𝑛(3𝐷)

𝑓
) for

all six floc datasets analyzed in this study. Three reference curves are plotted
for comparison. The blue dashed line indicates the idealized linear relationship
for a filled structure, 𝑛

(3𝐷)
𝑓

= 𝑛
(2𝐷)
𝑓

+ 1. The solid orange line represents the
empirical 2D-to-3D box-counting conversion proposed by R. Wang et al. (2022),

𝑛
(3𝐷)
𝑓 ,𝐵𝐶

= 0.8118
(
𝑛
(2𝐷)
𝑓

)1.8054
. The dashed orange line shows the empirical power-

law (mass–size scaling) conversion, 𝑛(3𝐷)
𝑓 ,𝑃𝐿

= 0.2015
(
𝑛
(2𝐷)
𝑓

)4.079
, also from R. Wang



18

et al. (2022).

The experimental floc data fall between the empirical box-counting and power-law
model curves, with most points aligning more closely with the 2D-to-3D box-
counting conversion. Across the observed range of 𝑛

(2𝐷)
𝑓

, the idealized linear
relationship systematically overestimates 𝑛(3𝐷)

𝑓
. Both empirical models capture the

observed increase in 𝑛
(3𝐷)
𝑓

with increasing 𝑛
(2𝐷)
𝑓

, but the box-counting conversion
provides the closest fit to the measured data.

3.4 Inferring Primary Particle Diameter (𝑑𝑝)
To estimate the primary particle diameter (𝑑𝑝), we used a Bayesian approach to
quantify uncertainty in the intersection method. For each stratified floc group, we
drew samples from the posterior distribution of the log–log settling velocity fits,
and computed all pairwise intersections between fits from different groups using
Eq. (2.4) (assuming a constant shape factor, 𝑏1).

KS Stat: 0.32 KS Stat: 0.29 KS Stat: 0.31

(a) Shear: 0.02 m/s (b) Shear: 0.03 m/s (c) Shear: 0.04 m/s

(d) POM: 1% (e) POM: 2% (f) POM: 3%

KS Stat: 0.41 KS Stat: 0.32 KS Stat: 0.36

Input dp 
Inferred dp

Figure 3.4: Cumulative percent finer by weight distributions comparing known input
and inferred primary particle diameters (𝑑𝑝) for all experiments. Panels show (a–c)
varying shear velocity and (d–f) varying POM content. The Kolmogorov-Smirnov
(KS) statistic quantifies the agreement between the two distributions in each panel.

Figure 3.4 compares the cumulative percent finer by weight distributions for both the
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known input particle sizes and the inferred 𝑑𝑝 from the intersection approach. The
Kolmogorov-Smirnov (KS) statistic, reported in each panel, provides a quantitative
measure of agreement between the input and inferred distributions, with lower values
indicating better fit. Across all six experimental conditions, the KS statistic ranges
from 0.29 to 0.41. This indicates moderate agreement in the central tendency
(e.g., the medians align well), but notable discrepancies in the tails and overall
spread—particularly in experiments with higher POM content.

To address variability in the shape factor among fractal groups, we apply Eq. (2.3) so
that the intersection diameter becomes a function of the primary particle diameter
(𝑑𝑝), shape factor (𝑏1), and fractal dimension (𝑛 𝑓 ). Previous studies, including
those by Strom and Keyvani (2011), suggest that 𝑏1 increases as 𝑛 𝑓 increases.
For example, if 𝑏1 rises from 10 to 100 across fractal dimensions, the resulting
intersection diameter 𝑑intersect can be an order of magnitude larger than the true 𝑑𝑝

for a fixed 𝑛 𝑓 . Conversely, if 𝑏1 decreases with 𝑛 𝑓 , 𝑑intersect may be an order of
magnitude smaller than 𝑑𝑝.

To illustrate the effect of the shape factor, we plot settling velocity versus diameter
for two fractal groups (𝑛 𝑓 = 1.5 and 𝑛 𝑓 = 2.0), both with a common primary
particle diameter of 10 𝜇m, using Eq. (1.4) (Fig. 3.5a). For 𝑛 𝑓 = 1.5, we fix
𝑏1 = 50, and for 𝑛 𝑓 = 2.0, we vary 𝑏1 from 10 to 100. As the shape factor increases
with fractal dimension, the intersection diameter 𝑑intersect between the two groups
becomes greater than the true primary particle diameter. The opposite holds if 𝑏1

decreases with 𝑛 𝑓 .

(b) Dp = Dintersect (c) Dp = Dintersect/5(a)
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nf = 1.5, 
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Figure 3.5: (a) Illustration of how varying 𝑏1 with fractal dimension affects the
intersection diameter 𝑑intersect for two fractal groups. (b) Data plotted with the
intersection diameter found using previous methods, showing most measurements
lie to the right of 𝑑intersect. (c) Example where 𝑑𝑝 = 𝑑intersect/5.

We plot our data with the intersection diameter found using previous methods in
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Fig. 3.5b and find that most of the measured diameters lie to the right of 𝑑intersect.
Based on theory, since the primary particle diameter represents the smallest con-
stituent in the system, the intersection must logically occur to the left of all measured
particle diameters. Therefore, only scenarios where 𝑑𝑝 < 𝑑intersect are physically
plausible.

This constraint implies a necessary relationship between 𝑏1 and 𝑛 𝑓 : to maintain
𝑑𝑝 < 𝑑intersect as 𝑛 𝑓 increases, 𝑏1 must also increase. This requirement ensures that
the primary particle remains the smallest size class in the system. Such a trend is
consistent with both theoretical expectations and experimental observations, which
suggest that denser, less permeable flocs (i.e., those with higher 𝑛 𝑓 ) experience
greater drag, corresponding to higher values of 𝑏1.
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C h a p t e r 4

DISCUSSION

A central finding of this research is the discrepancy between fractal dimensions
derived from aggregated datasets versus those derived from datasets stratified by 2D
fractal dimension. As illustrated by our conceptual model (Fig. 1.1) and confirmed
by experimental results (Figs. 3.2, 3.3), aggregating data from a floc population
with inherent structural variability (i.e., a range of true 𝑛 𝑓 values) can lead to a
bulk-fitted 𝑛 𝑓 that does not accurately represent any constituent subgroup. This is
best described using Simpson’s Paradox, where a trend apparent in different groups
of data disappears when these groups are combined. In the context of floc settling, if
larger flocs also tend to have higher fractal dimensions (due to different aggregation
mechanisms or resilience to shear), an aggregated analysis can yield higher 𝑛 𝑓 . The
stratified approach, by binning flocs based on their measured 2D box-counting fractal
dimension, mitigates this issue, revealing more accurate relationships between floc
structure and settling velocity.

4.1 Effect of Shear Velocity and Particulate Organic Matter (POM)
We observed an increasing trend in the inferred 𝑛 𝑓 with increasing shear velocity
(Fig. 3.3), particularly when using the stratified analysis. This suggests that higher
shear conditions may preferentially break up more tenuous, lower-𝑛 𝑓 flocs, or lead
to the formation of more compact, restructured aggregates that are more resistant
to shear. This agrees with the literature as Winterwerp (1998) found 𝑛 𝑓 of 1.4 for
very fragile floes, like marine snow, and about 2.2 for strong estuarine floes. The
aggregated data, in contrast, showed little systematic trend, highlighting the potential
risk of aggregating heterogeneous flocs to discern underlying physical processes.

Increasing POM content led to a decrease in the inferred 𝑛 𝑓 for both aggregated
and stratified approaches, though stratified values were consistently lower (Fig. 8).
This aligns with the understanding that organic matter, particularly extracellular
polymeric substances (EPS), can act as a “glue,” binding particles into larger, more
open, and potentially more voluminous structures with lower fractal dimensions
(Nghiem et al., 2022). These lower-𝑛 𝑓 flocs, while potentially larger, would have a
lower excess density for a given size, influencing their settling dynamics.
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We describe these trends qualitatively, as numerous factors influence the observed
relationships, including the specific experimental setup, the magnitude and duration
of applied shear, and the composition and properties of the sediment.

4.2 2D to 3D Conversion of Fractal Dimension
The observed relationship between the 2D box-counting fractal dimension (𝑛(2𝐷)

𝑓 BC)
and the inferred 3D fractal dimension (𝑛(3𝐷)

𝑓
) is broadly consistent with recent em-

pirical models developed for synthetic aggregates, but departs from the predictions
of classical fractal theory. The empirical 2D-to-3D box-counting mapping (R. Wang
et al., 2022) best describes the experimental floc data, while the power-law scaling
model is not fundamentally excluded, as most data points fall between these two
curves. The idealized linear conversion (𝑛(3𝐷)

𝑓
= 𝑛

(2𝐷)
𝑓

+ 1) consistently overesti-
mates the 3D dimension across the measured range.

The modest deviation from the power-law scaling is likely a result of the variability
in primary particle size in natural floc populations, which violates the constant 𝑑𝑝
assumption required by classical theory. In both laboratory and field environments,
𝑑𝑝 is not fixed but spans several orders of magnitude. In addition, natural flocs
exhibit greater structural heterogeneity and porosity than synthetic aggregates, and
the limitations of image resolution and sample size introduce further uncertainty.

Despite these challenges, the 2D box-counting dimension remains a practical and
robust parameter for analyzing floc structure. It enables reproducible grouping of
flocs and supports inference of the hydrodynamically relevant 3D dimension. Using
𝑛
(2𝐷)
𝑓 BC as a stratification parameter helps preserve structural variability, reduces

aggregation bias in regression analysis, and improves the reliability of parameter
estimates. This approach is therefore well suited for environments where sediment
size and floc structure are highly variable, and enables quantitative linkage between
image-based measurements and sediment transport modeling.

4.3 Constraining Primary Particle Diameter (𝑑𝑝) and Shape Factor (𝑏1)
The primary particle diameter (𝑑𝑝) and the drag or shape factor (𝑏1) are key param-
eters in fractal settling theory, yet they are rarely measured directly in experimental
or field studies. In this analysis, we estimate 𝑑𝑝 by identifying the intersection of
log–log settling velocity trends corresponding to each 𝑛 𝑓 bin (Fig. 3.4). In principle,
as 𝑑 𝑓 approaches 𝑑𝑝, all floc populations should converge to the settling velocity
characteristic of a single primary particle, regardless of fractal dimension. Thus,
the intersection diameter, 𝑑int, serves as a practical proxy for 𝑑𝑝 in these models.
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The intersection analysis yields a median 𝑑int that agrees well with the median of
the input sediment sizes, yet the inferred distribution is much narrower: about two
orders of magnitude wide compared with nearly four orders in the feed material.
Two explanations are possible. Either (i) the imaging system fails to capture the
very smallest grains, biasing the estimate upward, or (ii) only a subset of the source
material (coarse silt to fine sand) actually participates in forming the larger flocs
that dominate our observations. The present data cannot fully distinguish between
these scenarios.

The method also rests on an implicit assumption that 𝑏1 is constant across all 𝑛 𝑓

classes (Eq. (2.4)). If 𝑏1 varies with structure, Eq. (2.3) shows that 𝑑int will deviate
from 𝑑𝑝. Our analysis (Fig. 3.5) indicates that physically plausible intersections
(𝑑𝑝 ≤ 𝑑int) require 𝑏1 to increase, or at least remain unchanged, as 𝑛 𝑓 increases.
This trend is consistent with theory and experiments: denser, less permeable flocs
(higher 𝑛 𝑓 ) experience greater form drag and therefore larger 𝑏1 values (Strom and
Keyvani, 2011).

Uncertainty in 𝑑𝑝 propagates directly into floc settling models. Figure 2.3b demon-
strates that the value of 𝑛 𝑓 inferred from Eq. (1.4) is highly sensitive to the choice
of 𝑑𝑝. Although the slope-based estimate of 𝑛 𝑓 (𝑛 𝑓 = 𝑚 + 1) avoids assuming a
particular 𝑑𝑝, predictive modeling ultimately requires specification of both param-
eters. Assigning a single representative 𝑑𝑝, such as the median grain size, may not
capture the full variability of natural systems. In practice, the effective 𝑑𝑝 relevant
for flocculation can be both narrower in range and offset in value relative to the bulk
sediment size distribution.

4.4 Implications
Many sediment transport models use a single representative value for the floc fractal
dimension, often 𝑛 𝑓 ≃ 2, to simplify parameterization (Winterwerp, 1998; Win-
terwerp, 2002; Kranenburg, 1994). However, our results indicate that even in
controlled laboratory settings, the interquartile range of 𝑛

(3𝐷)
𝑓

is 0.08–0.25, and
broadens further with increased variability in shear stress and particulate organic
matter (POM) (Fig. 3.3). Aggregating heterogeneous data into a single 𝑛 𝑓 value
can produce statistically misleading results that fail to represent the behavior of any
specific subgroup within the population.

The consequences of using an inaccurate value for 𝑛 𝑓 in sediment transport models
are significant. For example, if the true 𝑛 𝑓 is 1.9 but a model assumes 𝑛 𝑓 = 2.0, the
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settling velocity for a floc with a diameter 50 to 200 times greater than its primary
particle can be overestimated by 35% to 58%. Such discrepancies can substantially
affect predictions of sediment deposition, accumulation rates, and contaminant
transport.

Furthermore, our results show that 𝑛 𝑓 often increases systematically with floc size
(𝑑 𝑓 ). As a result, applying a single, constant value of 𝑛 𝑓 across a heterogeneous
floc population will misrepresent the actual size dependence of settling velocity
and the underlying structural variability. This leads to systematic errors in model
predictions. These findings highlight the need to resolve 𝑛 𝑓 as a function of floc
size or environmental conditions, or at minimum, to use stratified analysis methods
that better represent the diversity of floc structures observed in natural systems.

These results show that representing a heterogeneous floc population with a single,
universal fractal dimension (𝑛 𝑓 ) can introduce systematic bias and lead to inaccurate
predictions of sediment transport dynamics. To address this, we recommend that
models of flocculation and fine sediment transport account explicitly for structural
variability within the floc population.

First, practitioners should employ high-resolution in-situ imaging or other structure-
sensitive methods to quantify floc heterogeneity. Characterizing individual floc
structure enables direct measurement of descriptors such as the two-dimensional
box-counting fractal dimension (𝑛(2𝐷)

𝑓 BC). Using such descriptors, the floc popula-
tion can then be stratified into subgroups that share similar structural properties.

Within each subgroup, the relationship between settling velocity and floc diameter
should be analyzed independently to infer the hydrodynamically relevant three-
dimensional fractal dimension (𝑛(3𝐷)

𝑓
). Incorporating the resulting distribution of

𝑛
(3𝐷)
𝑓

values—rather than a single mean value—into transport models can better
represent the range of floc behaviors present under varying environmental condi-
tions. Alternatively, parameterizing 𝑛 𝑓 as a function of floc size, shear, or particulate
organic matter may also improve model accuracy.

As measurement techniques advance and new data become available, practitioners
are encouraged to revisit and, if appropriate, revise the choice of stratification param-
eter or structural descriptor. Incorporating these approaches into sediment transport
modeling will better capture natural variability in floc structure and improve the
reliability of model predictions.
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C h a p t e r 5

CONCLUSIONS

This study demonstrates that accounting for heterogeneity within floc populations
is essential for accurate sediment transport modeling. Aggregating settling data
across flocs with varying fractal dimensions often produces misleading results due
to Simpson’s Paradox: trends present within structural subgroups can be lost or
distorted when data are pooled. By stratifying flocs based on 2D box-counting
fractal dimensions, we resolve these structural differences, enabling more physically
meaningful inference of transport parameters.

The stratified approach introduced here consistently reveals underlying physical
trends that are obscured by aggregation. We find that the hydrodynamically inferred
three-dimensional fractal dimension (𝑛 𝑓 ) increases with shear stress—indicative
of more compact, resilient aggregates—and decreases with increasing particulate
organic matter (POM) content, which favors the formation of larger, more open
structures. Our work establishes a robust empirical relationship between 2D and 3D
fractal dimensions that is more consistent with experimental data than theoretical
conversions based on synthetic aggregates. In addition, we present a method to
constrain the effective primary particle diameter (𝑑𝑝) and show that the drag or shape
factor (𝑏1) must increase with fractal dimension for models to remain physically
consistent.

The key implication is that the widespread practice of using a single, representative
fractal dimension (e.g., 𝑛 𝑓 ≈ 2.0) in sediment transport models is a critical over-
simplification. Even modest structural variability can result in significant predictive
errors. As demonstrated here, a 0.1 difference in 𝑛 𝑓 can alter settling velocity
estimates by 35–58% for realistic floc size ranges, with substantial impacts on
predictions of sediment deposition and contaminant transport.

Based on these findings, we recommend that practitioners move beyond single-value
parameterizations of floc fractal dimension in sediment transport models. Instead,
models should incorporate a distribution of 𝑛 𝑓 values that reflect both environmental
conditions and the structural diversity of flocs. The hybrid, stratified method out-
lined in this study—using in-situ imaging to group flocs and infer hydrodynamically
relevant three-dimensional fractal dimensions within each group—provides a prac-
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tical approach for capturing this variability. At a minimum, models should include
uncertainty quantification that reflects the sensitivity of the floc settling equation
to 𝑛 𝑓 . Adopting structure-resolved or uncertainty-aware methods is crucial for im-
proving predictions of sediment transport, delta evolution, and coastal response to
environmental change.
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A p p e n d i x A

DERIVATION OF 𝑑𝑝 FROM SETTLING VELOCITY
INTERSECTIONS

We begin with the general settling velocity law for a floc with primary particle diam-
eter 𝑑𝑝, floc diameter 𝑑 𝑓 , three-dimensional fractal dimension 𝑛 𝑓 , and drag/shape
factor 𝑏1:

𝑤𝑠 =
𝑔𝑅𝑠

𝑏1𝜈𝑑
𝑛 𝑓−3
𝑝

𝑑
𝑛 𝑓−1
𝑓

(A.1)

Consider two subgroups, 𝑗 and 𝑘 , each characterized by different fractal dimensions
𝑛 𝑓 , 𝑗 and 𝑛 𝑓 ,𝑘 , and potentially different drag factors 𝑏1, 𝑗 and 𝑏1,𝑘 . Their settling
velocity laws are:

𝑤𝑠, 𝑗 =
𝑔𝑅𝑠

𝑏1, 𝑗𝜈 𝑑
𝑛 𝑓 , 𝑗−3
𝑝

𝑑
𝑛 𝑓 , 𝑗−1
𝑓

(A.2)

𝑤𝑠,𝑘 =
𝑔𝑅𝑠

𝑏1,𝑘𝜈 𝑑
𝑛 𝑓 ,𝑘−3
𝑝

𝑑
𝑛 𝑓 ,𝑘−1
𝑓

(A.3)

The intersection of these two relationships is given by the value 𝑑 𝑓 ,int where 𝑤𝑠, 𝑗 =

𝑤𝑠,𝑘 . Setting the two equations equal:

𝑔𝑅𝑠

𝑏1, 𝑗𝜈 𝑑
𝑛 𝑓 , 𝑗−3
𝑝

𝑑
𝑛 𝑓 , 𝑗−1
𝑓 ,int =

𝑔𝑅𝑠

𝑏1,𝑘𝜈 𝑑
𝑛 𝑓 ,𝑘−3
𝑝

𝑑
𝑛 𝑓 ,𝑘−1
𝑓 ,int (A.4)

Cancelling common factors (𝑔𝑅𝑠 and 𝜈):

1

𝑏1, 𝑗𝑑
𝑛 𝑓 , 𝑗−3
𝑝

𝑑
𝑛 𝑓 , 𝑗−1
𝑓 ,int =

1

𝑏1,𝑘𝑑
𝑛 𝑓 ,𝑘−3
𝑝

𝑑
𝑛 𝑓 ,𝑘−1
𝑓 ,int (A.5)

Rearranging:

𝑑
𝑛 𝑓 , 𝑗−1
𝑓 ,int · 𝑏1,𝑘𝑑

𝑛 𝑓 ,𝑘−3
𝑝 = 𝑑

𝑛 𝑓 ,𝑘−1
𝑓 ,int · 𝑏1, 𝑗𝑑

𝑛 𝑓 , 𝑗−3
𝑝 (A.6)

𝑑
𝑛 𝑓 , 𝑗−𝑛 𝑓 ,𝑘

𝑓 ,int =
𝑏1, 𝑗

𝑏1,𝑘
𝑑
𝑛 𝑓 , 𝑗−𝑛 𝑓 ,𝑘

𝑝 (A.7)

(
𝑑 𝑓 ,int

𝑑𝑝

)𝑛 𝑓 , 𝑗−𝑛 𝑓 ,𝑘

=
𝑏1, 𝑗

𝑏1,𝑘
(A.8)
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Taking both sides to the power 1/(𝑛 𝑓 , 𝑗 − 𝑛 𝑓 ,𝑘 ) gives:

𝑑 𝑓 ,int

𝑑𝑝
=

(
𝑏1, 𝑗

𝑏1,𝑘

)1/(𝑛 𝑓 , 𝑗−𝑛 𝑓 ,𝑘)
(A.9)

𝑑 𝑓 ,int = 𝑑𝑝

(
𝑏1, 𝑗

𝑏1,𝑘

)1/(𝑛 𝑓 , 𝑗−𝑛 𝑓 ,𝑘)
(A.10)

Special Case: Constant Drag/Shape Factor If 𝑏1, 𝑗 = 𝑏1,𝑘 , the intersection
reduces to:

𝑑 𝑓 ,int = 𝑑𝑝 (A.11)

That is, when the shape factor is identical, all theoretical curves intersect at the
primary particle diameter, independent of fractal dimension.

General Case: Variable Drag/Shape Factor If the drag/shape factor varies be-
tween groups, the intersection diameter is shifted by a factor depending on the ratio
of drag coefficients and the difference in fractal dimensions:

𝑑 𝑓 ,int = 𝑑𝑝

(
𝑏1,𝑘

𝑏1, 𝑗

)1/(𝑛 𝑓 ,𝑘−𝑛 𝑓 , 𝑗 )
(A.12)

Here, the conventional ordering (𝑘 > 𝑗) ensures a positive exponent. This ex-
pression provides the basis for estimating the effective primary particle diameter or
diagnosing variability in the drag factor when comparing floc groups with distinct
fractal structure.
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