
Aspects of Topology and Measurement in Quantum

Lattice Systems

Thesis by

Adam Artymowicz

In Partial Fulfillment of the Requirements for the

Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2025

Defended May 15, 2025



ii

© 2025

Adam Artymowicz
ORCID: 0000-0002-5461-3991

All rights reserved except where otherwise noted



iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Anton Kapustin for his patient mentorship

throughout my PhD, and for being a constant source of inspiration. His phys-

ical intuition and mathematical style were instrumental in shaping me as a

student.

I am grateful also to my collaborators Nikita Sopenko, Bowen Yang, Samuel

Scalet, Omar Fawzi, and Hamza Fawzi for our lively discussions and for their

tireless work in our collaborations.

Finally, to my friends and family who supported me over the years: thank

you, I couldn’t have done it without you.



iv

ABSTRACT

In the first part of this thesis, topological invariants of gapped phases on the

lattice are studied. These include the Berry curvature, Thouless pump, the

Hall conductance, and their higher-dimensional analogs. These invariants are

proven to obstruct the promotion of a global symmetry to a gauge symmetry.

Two of these invariants, the 1d higher Berry curvature and the 2d higher

Thouless pump, are studied in detail. First, it is shown that they are related

by a relation involving flux insertion, which can be interpreted physically as

identifying the higher Thouless pump invariant with the excess Berry curvature

of a fluxon. Second, it is proven that these two invariants take on quantized

values in an invertible state.

In the second part of this thesis, an algorithm is presented for learning Hamil-

tonian parameters from local expectation values of its Gibbs state via a local

free-energy variational principle. The algorithm is benchmarked on the prob-

lem of black-box learning of a nearest-neighbour Hamiltonian in a 100-qubit

spin chain, giving evidence of favourable scaling with system size. The the-

oretical analysis is then extended to incorporate measurement noise, as well

as equipping the algorithm with certified a posteriori lower and upper error

bounds on the inferred parameters. For commuting Hamiltonians, a priori

convergence guarantees are also established.
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C h a p t e r 1

INTRODUCTION

1.1 Background for Chapters 2 and 3: topological invariants

Phases of matter

Consider a physical system parametrized by a set of variables. In practice one

often considers thermodynamic variables such as pressure and temperature,

but they may in principle be any parameters whatsoever, macroscopic or oth-

erwise. At certain points in the parameter space it may happen that some

property of the system ceases to be a continuous function of the parameter.

At these points the system is said to undergo a phase transition. Two points

in the parameter space will be said to be in the same phase of matter if there

is a path between them that does not pass through any phase transition.

As an example, consider the phase diagram of water. At a pressure of 1

atmosphere, the system undergoes a phase transition at 100◦ C between a

liquid and a gas. However, this does not mean that liquid water and water

vapor belong to different phases of matter. Indeed, one can construct a path

between these two that does not pass through any phase transition, by going

around the critical point. Thus, liquid water and water vapor form one phase

of matter.

On the other hand, ice forms a distinct phase of matter from the liquid/gas

phase. This remains true no matter what extra parameters are added to the

system, so long as we don’t explicitly break spatial symmetry. This surpris-

ingly strong result is a result of Landau theory, one of the cornerstones of

modern statistical physics. One begins by looking at the symmetries present

in the two phases: the liquid/gas phase is homogeneous and isotropic, while

the solid phase is not, because the ice crystal lattice breaks translation and

rotation symmetry. This is the phenomenon of spontaneous symmetry break-

ing, and Landau theory shows it must be accompanied by a phase transition.

Thus, there is no path in any admissible parameter space from liquid water to

ice that does not cross a phase transition.

The Landau approach of studying the phase diagram of a physical system

using symmetries alone has been tremendously successful in modern physics.
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However, one may ask if it gives a complete classification. Are there distinct

phases of matter which cannot be told apart by their pattern of symmetry-

breaking?

Topological phases

In the second half of the 20th century it became apparent that phases of mat-

ter beyond the Landau paradigm do indeed exist. It began with the study of

the quantum Hall effect, where free electrons confined to a 2d plane are sub-

jected to a strong magnetic field perpendicular to the plane. In such systems,

an applied electric field Vx produces a transverse current Jy. The associated

conductance σxy := Jy/Vx is called the Hall conductance, and classical elec-

trodynamics predicts that the Hall conductance is directly proportional to the

applied magnetic field. However, experiments [KDP80] show that under suit-

able conditions the Hall conductance is in fact quantized: it takes on a discrete

set of values σxy = νe2/h where ν = 1, 2, ... . It was soon recognized that ma-

terials with distinct values of ν are in distinct phases of matter, and that these

phases cannot be distinguished by their pattern of symmetry breaking.

The integer quantum Hall phases have several important features:

1. They are zero-temperature phenomena.

2. They involve no spontaneous symmetry breaking.

3. They have no local bulk excitations at low energies.

At a first pass, these may be taken as the defining criteria of a topological

phase1.

Field-theoretic description of topological phases

It is believed that topological phases are described in the IR limit by topolog-

ical quantum field theories or TQFTs. For instance, the integer quantum Hall

phase is captured by a theory with no dynamical fields but whose response to a

background U(1) gauge field is given by a Chern-Simons Lagrangian [Wen07].

A number of the properties of integer quantum Hall phases can be read off

1While it is accepted that these criteria are necessary, it is common to include additional
physical assumptions, e.g. that ψ is a spin liquid as in [Wen07]. In this thesis, such additional
assumptions will not play a role and it will only be important that topological phases satisfy
the criteria 1 - 3 above.
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from this Lagrangian, including quantization of Hall conductance, and the

presence of chiral edge modes.

Despite the success of TQFT in describing the phenomenology of the quantum

Hall effect and other topological phases, on a theoretical level it leaves much

to be desired. One problem is that it doesn’t give a microscopic explanation

of the emergence of these properties. Another difficulty is that TQFTs are

hard to classify beyond 2+1 dimensions. Perhaps the most serious problem is

that it is not known in general whether all topological phases are described by

TQFTs.

Microscopic description of topological phases via lattice models

In order to address these questions one must move beyond field theory, and

study microscopic models of topological phases. Quantum lattice systems in

infinite volume are the microscopic models of choice in this thesis. One begins

by specifying a lattice system with an onsite2 action of a symmetry group G

(which can be the trivial group in the case that we do not wish to impose

any symmetry). The objects of study are local Hamiltonians H , which we

require to be G-invariant. The requirements 1 - 3 are expressed in the lattice

formalism as follows:

1. Zero temperature ↔ We are interested in the groundstate ψ of H.

2. No spontaneous symmetry breaking ↔ ψ is invariant under all relevant

symmetries.

3. No local low-energy excitations in the bulk ↔ ψ is gapped.

Zero-temperature phase transitions occur when the gap closes, so two Hamil-

tonians are in the same phase if one can be smoothly deformed to the other

such that each intermediate Hamiltonian is gapped. A key fact is that two

gapped Hamiltonians are in the same phase if and only if their groundstates

are related by a locally-generated automorphism or LGA. This implies that one

may study topological phases of matter in terms of the state ψ alone, without

reference to a particular parent Hamiltonian H. This fact has the physical

interpretation that topological phases are patterns of entanglement in a state

2One can also include non-onsite symmetries such as lattice translations, but we do not
consider this in the present work.
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ψ, since it is known that LGAs cannot change the long-distance entanglement

structure of the state.

Topological invariants

To study topological phases of states on the lattice, one looks for invariants:

functions of the state which take on a single value within a phase of matter. An

example is the Hall conductance, which labels the distinct integer quantum

Hall phases. By the discussion above, any function which can be defined

for gapped states and remains unchanged under the action of an LGA is an

invariant of the topological phase, i.e. a topological invariant.

The first two Chapters of this thesis concern a family of such invariants which

can be explicitly constructed in the lattice setting. These invariants general-

ize the Hall conductance in that they correspond to topological terms in the

effective action for background gauge fields. Like the Hall conductance, they

can be defined in terms of response functions, and can be related to properties

of gapless edge excitations.

In Chapter 2, we focus on two particular invariants: the higher Berry curvature

and the higher Thouless pump. We prove that they satisfy two properties

that are expected from field theory. First, they take on quantized values

for an appropriate class of states. Second, a physical process involving flux

insertion relates the higher Thouless pump to the Berry curvature. In Chapter

3, we consider the general class of invariants to which the previous invariants

belong. We show that they can be interpreted in terms of a lattice version of

the t’Hooft anomaly, which again confirms, in the context of lattice models,

an expectation from field theory.

1.2 Background for Chapters 4 and 5: Hamiltonian learning from

Gibbs states

The second half of this thesis concerns systems in thermal equilibrium at finite

temperature. Specifically, we will be concerned with the problem of Hamilto-

nian learning : let H be an unknown Hamiltonian on a lattice of n qubits, i.e.

H =
∑m

i=1 λiEi where E1, . . . , Em is a suitable set of local Hermitian operators

and λ1 . . . λm ∈ R is a set of unknown coefficients. The problem is to estimate

the coefficients λ1, . . . , λm using projective measurements on a Gibbs state of

H. More precisely, we have:
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Problem (Hamiltonian learning). Given access to N independent copies of

ρ = e−βH/Tr
(
e−βH

)
, estimate λ1, . . . , λm to accuracy better than ε with prob-

ability greater than 0.99, for a given ε > 0.

There are three important complexity measures to characterize the complexity

of a given Hamiltonian learning algorithm as a function of the system size n

and the parameters ε and δ. The sample complexity is the number N of copies

of ρ required, and the classical (resp. quantum) computational complexity is

the number of classical (resp. quantum) operations required. In order to be

practically useful, one requires all three complexities to be polynomial in n

and ε−1.

In Chapter 4 we introduce an algorithm for the Hamiltonian learning problem.

It is based on a set of correlation inequalities known as the energy-entropy

balance or EEB inequalities. We give numerical evidence that the complexity

is polynomial in n and ε−1, with modest constants, so that the algorithm scales

well enough for near-term applications.

In Chapter 5 we equip the above algorithm with rigorous a posteriori bounds

on the coefficients λ1, . . . , λm. Furthermore, for commuting Hamiltonians, we

prove a priori convergence, establishing rigorously that for this class of Hamil-

tonians the algorithm has polynomial complexity.
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C h a p t e r 2

QUANTIZATION OF THE HIGHER BERRY CURVATURE
AND THE HIGHER THOULESS PUMP

The following Chapter is published as

[AKS24] Adam Artymowicz, Anton Kapustin, and Nikita Sopenko. “Quan-
tization of the Higher Berry Curvature and the Higher Thouless
Pump”. In: Communications in Mathematical Physics 405.8 (July
2024). issn: 1432-0916. doi: 10.1007/s00220- 024- 05026- 2.
url: http://dx.doi.org/10.1007/s00220-024-05026-2.

2.1 Introduction

A smooth family of gapped Hamiltonians on a finite-dimensional Hilbert space

defines a smooth vector bundle on the parameter space: the bundle of ground

states [Sim83]. Its Chern classes are topological invariants of the family tak-

ing values in the integral cohomology of the parameter space. Their de Rham

representatives are closed differential forms which are polynomials in the cur-

vature of the celebrated Berry connection [Ber84]. The simplest of them is

the trace of the Berry curvature divided by 2π, which is a closed 2-form with

integral periods. It is the de Rham representative of the first Chern class of

the bundle of ground states.

It is of considerable interest to generalize the Berry connection and the as-

sociated topological invariants to families of gapped infinite-volume systems

in d spatial dimensions. From the field theory viewpoint, such topological

invariants should describe topological terms in the effective action for (d+1)-

dimensional σ-model obtained by integrating out the gapped degrees of free-

dom. If a continuous symmetry G is present for all values of the parameters,

these terms may also depend on the gauge field for G. Such topological terms

are known as (equivariant) Wess-Zumino-Witten terms (see [DF99] for a brief

review), and the Berry connection can be viewed as a special case correspond-

ing to d = 0 and trivial symmetry group. Non-trivial Wess-Zumino-Witten

terms signal the presence of gapless loci in the parameter space [HKT20]. They

also probe the topology of the space of gapped systems and thus can be used
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to test the Kitaev conjecture which posits that spaces of “invertible” gapped

systems in all dimensions fit into a loop spectrum in the sense of homotopy

theory [Kit].

Recent works [KS20b; KS20c; KS22] constructed some topological invariants

of smooth families of infinite-volume gapped lattice systems. They showed

how to assign a de Rham class [ω(d+2)] ∈ Hd+2(M,R) to a smooth family

of lattice systems on Rd parameterized by M . Since for d = 0 this class

reduces to the cohomology class of the curvature of the Berry connection, the

generalization to d > 0 is called the higher Berry class. By the usual Chern-

Weil theory, the cohomology class of the Berry curvature is an obstruction for

the existence of a global trivialization of the bundle of ground states. Similarly,

the higher Berry class is an obstruction for the existence of a smooth family of

automorphisms which maps the family of ground states to a constant family

[KS22]. For G-equivariant families, where G is a compact connected Lie group,

there is an equivariant refinement of higher Berry classes taking values in the

equivariant cohomology Hd+2
G (M,R) [KS22]. The higher Berry classes, as well

as the equivariant higher Berry classes for G = U(1), are reviewed in Section

2.2 below.

By analogy with the d = 0 case, one may ask if higher Berry classes are

“quantized”, or more precisely, if they can be refined to integral cohomology

classes. A simple argument shows that this is not possible for arbitrary families

of gapped systems. Let d = 2, M = {pt} and G = U(1). In this case the

higher Berry class takes values in H4
U(1)(pt,R) ≃ R and is proportional to the

Hall conductance [KS22]. It is well known that the Hall conductance of 2d

gapped systems is not quantized, in general [Lau83]. Nevertheless, it can be

shown to be quantized for short-range entangled systems, or more generally,

for systems in an invertible phase [HM14; BBR24; Bac+19; KS20a]. One

might hope that for such systems all higher Berry classes can be refined to

integral cohomology classes. The only other case where this was shown to be

true is d = 1, G a compact topological group, and M = S1 (with G acting

trivially on S1), where the equivariant higher Berry class measures the net

charge pumped across a section of a 1d system under a periodic variation of

parameters [BBR24; Bac+22; KS20a]. This quantity is known as the Thouless

pump [Tho83].1

1Quantization of the Thouless pump holds for arbitrary gapped 1d families. This is not
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In this paper, we show how to construct integral refinements of higher Berry

classes in two other interesting situations. The first one (Theorem 2.4.1) is

d = 1, G trivial, M arbitrary. In this case the higher Berry class takes values

in H3(M,R) and we show how to refine it to a class in H3(M,Z) for families of

invertible 1d systems. At least for M = S3, the integrality of the higher Berry

class is very natural since it measures the flow of ordinary Berry curvature in a

cyclic process [Wen+23]. The second case (Theorem 2.5.2) is d = 2, G = U(1),

M arbitrary with a trivial U(1) action. In this case the equivariant higher

Berry class takes values in H4
U(1)(M,R) = H4(M,R)⊕H2(M,R)⊕H0(M,R),

where the three components correspond to the non-equivariant higher Berry

class, the 2d generalization of the Thouless pump, and the Hall conductance,

respectively. We show that for invertible 2d systems the H2(M,R) component

can be refined to a class in H2(M,Z).

Our proof of Theorem 2.5.2 is based on a new physical interpretation of the 2d

Thouless pump as the Berry curvature of a fluxon2. Given any U(1)-invariant

state, one can obtain a new U(1)-invariant state by inserting a 2π flux. We

will always choose the gauge transformation producing the flux insertion to be

concentrated on a line in physical space terminating at the flux insertion point,

which we will call the Dirac string. Given a family ψM of gapped U(1)-invariant

systems (with a fixed U(1) action) parameterized by M , one may form a new

family ψfluxon over M by performing a flux insertion on each state in the

family ψM . Since ψM and ψfluxon are families of 2d states, their (ordinary)

Berry curvatures are divergent, but because the flux insertion is a point-like

object, the excess Berry curvature of ψfluxon should be a well-defined 2-form

on M . We obtain an expression for it as follows. Performing the flux insertion

continuously, we have a family ψ of states onM×I, I = [0, 2π], which restricts

to ψM and ψfluxon on ∂(M×I) =M⊔M (see Figure 2.2 in Section 2.5). Let D

be a large disc in physical space containing the point where the flux insertion

occurs. If ν ∈ Ω3(M × I) is a 3-form which measures the current of ordinary

Berry curvature flowing into the disc D then the excess Berry curvature of

ψfluxon is given by the fiber integral
∫
I
ν ∈ H2(M,R). Since we are taking a

fiber integral of ν, we are only interested in its vertical component3, which we

surprising, since all gapped 1d systems are believed to be short-range entangled.
2This should be compared to Laughlin’s interpretation of the Hall conductance as the

charge of a fluxon — see [Lau81] for the original argument and [KS20a] for a version Laugh-
lin’s argument in the formalism used in this work.

3The space of vertical forms on M × I is the quotient of Ω•(M × I) by those ω for which
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will call νvert. This component contains contributions only from the point at

which the Dirac string intersects the boundary of D, and is thus O(1) in the

size of D. By contrast, the other components of ν will contain contributions

from the whole boundary of D.

In this work, we perform the flux insertion “at infinity”. This involves moving

the flux insertion point off to infinity so that the Dirac string goes along the

y-axis without terminating (see Figure 2.1 in Section 2.5). ψ is now a family

of states on M ×S1 such that for x ∈M and θ ∈ S1, ψ(x,θ) equals (ψM)x with

a θ-domain wall inserted on the y-axis, and ν measures the Berry curvature

pumped along the domain wall. As discussed in [Wen+23], the pumping of

Berry curvature is given by the higher Berry form ω(3), and so ν = ω(3). Only

the vertical component νvert of this form is well-defined, and in Section 2.5 we

extract this component and show that it equals µ ∧ dθ, where µ ∈ Ω2(M) is

a representative of the 2d Thouless pump invariant. In Section 2.5 we show

that if the states in question are invertible then the proof of ordinary 1d Berry

curvature quantization can be adapted to show that νvert, and thus the 2d

Thouless invariant, is quantized.

Note that the relation νvert = µ∧ dθ holds regardless of whether the family of

systems in question is in an invertible phase or not. In particular, for topo-

logically ordered 2d systems it may happen that the excess Berry curvature

associated with a flux insertion has periods which are fractions of 2π. This is

similar to how the charge of a flux insertion can be a fraction if the system is

topologically ordered [Lau83].

A construction of the integral refinement of the higher Berry class for 1d sys-

tems was announced in [KS22]. A similar integral invariant was also introduced

in the thesis [D23], but the connection to the higher Berry curvature was not

proven there. We were informed by Y. Ogata about a different approach to the

integral higher Berry class for continuous families of 1d and 2d spin systems

[OK]. While this paper was in preparation, there appeared two papers which

discuss the integral higher Berry class in the context of Matrix Product States

[OTS23; OR23].

ιXω = 0 for X = ∂
∂θ .
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2.2 Framework

A recent work [KS22] by the last two authors (TODO: go through and remove

such references) introduced a framework for studying smoothly varying families

of ground states of infinite-volume quantum statistical mechanical systems,

and showed how this framework produces certain cohomological invariants,

the (equivariant) higher Berry invariants. Since these are the subject of this

paper, we begin by recalling this machinery. The reader is referred to [KS22]

for all proofs.

Observables and derivations

We will be working with quantum lattice systems on the lattice Zd for d > 0

(we will only need d = 1, 2 in what follows)4. We endow the lattice Zd with

the L∞ metric5 which we denote d(·, ·), and for a site j and an integer r we

denote by Bj(r) the ball of radius r around j. For a subset Λ ⊂ Zd we define

Λ(r) := {j ∈ Zd : d(j,Λ) ≤ r}.

Fix D > 0 and associate to each site j ∈ Zd the C∗-algebra Aj := B(CD)

of linear operators on CD. To any finite subset X of Zd we associate the

algebra AX :=
⊗

j∈X Aj. For X ⊂ X ′ we have the norm-preserving inclusion

AX ⊂ AX′ taking A 7→ A⊗ 1 and the union of the resulting net Aℓ = ∪XAX

is the algebra of local observables. It is a normed ∗-algebra which can be

completed to form the C∗-algebra A := Aℓ
∥·∥

which we call the algebra of

quasilocal observables. For an infinite subset X ⊂ Zd we write AX for the

norm closure of ∪AY⊂X , where Y ranges over all finite subsets of X.

We denote by tr(A) the state which is defined on local observables A ∈ AX

by 1
D|X| tr(A), where |X| denotes the cardinality of X. We also have, for any

(possibly infinite) subset X ⊂ Zd the conditional expectation trX onto AXc ,

which is defined by the condition trX(A ⊗ B) := tr(A)B whenever A ∈ AY

and B ∈ AZ with Y ⊂ X and Z ⊂ Xc.

Given two algebras of quasilocal observables A and A ′ with on-site dimensions

D and D′ we define A ⊗A ′ to be the norm closure of ⊗j(Aj ⊗A ′
j ). It is also

a quasilocal algebra, with on-site dimension DD′. Physically, it corresponds

4All results can be easily generalized to lattice systems whose sites are an arbitrary
Delone subset of Rd.

5This is done purely for convenience. In [KS22] Euclidean metric is used, but since each
of the two metrics on Rd is upper-bounded by a multiple of the other, all the results in
[KS22] remain true for the L∞ metric.
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to the “stacking” of two lattice systems described by algebras A and A ′.

In what follows we will rarely refer to the quasilocal algebra. Instead, we will

mostly work with a subalgebra of A obtained by imposing a stricter notion of

locality. For each j ∈ Zd and α ∈ Z≥0 we may define a seminorm on Aℓ by

∥A∥j,α := ∥A∥+ sup
r
(1 + r)α inf

B∈ABj(r)

∥A−B∥. (2.1)

Fixing any j ∈ Zd and allowing α ∈ Z≥0 to vary we obtain a family of semi-

norms. The completion Aal := A
∥·∥j,·

with respect to this family of seminorms,

which we term the algebra of almost-local observables, is a Fréchet space.

The seminorms ∥ · ∥j,α and ∥ · ∥k,α are equivalent for any j, k ∈ Zd so the re-

sulting space and its topology do not depend on the choice of j.

For any f : R≥0 → R≥0 we say a quasilocal observable A ∈ A is f -confined

at a site j ∈ Zd if infB∈ABj(r)
∥A − B∥ ≤ f(r) for all r ∈ Z≥0. A function

f : R≥0 → R≥0 has superpolynomial decay if f(r)rα → 0 for all α ∈ Z≥0,

and Aal can alternatively be characterized as the set of quasilocal observables

that are f -confined on a site j for some function f with superpolynomial decay.

In the most common approach to lattice systems in infinite volume, time-

evolution is implemented by a strongly-continuous one-parameter family of

automorphisms of A . The generator of these automorphisms is a densely-

defined derivation of A . The appearance of densely-defined derivations is un-

avoidable because A has no nonzero globally defined outer derivations [Sak67],

and the generator of time-evolution is typically outer. From this perspective

the subalgebra Aal acts as a minimal domain of definition for physically rel-

evant derivations6. In contrast to A , the algebra Aal has many interesting

globally-defined outer derivations, some of which we describe here. Below, all

derivations are taken to satisfy D(A∗) = D(A)∗.

We call a brick in Zd any subset of the form X = Zd ∩
∏d

k=1[ai, bi] for some

ai, bi ∈ Z with −∞ < ai < bi <∞. Let F be a derivation of Aal. Given a brick

X, trXc ◦ F|AX
is a derivation of AX which is necessarily equal to conjugation

by a unique traceless skew-adjoint element of AX which we call FX . Each AX

has an inner product given by (A,B) := tr(A∗B), and we define FX as the

projection of FX onto the orthogonal complement of
⊕

Y AY , where Y ranges

6An analogy can be made with C∞(R), which embeds into larger function spaces like
C(R) (the C∗ algebra of continuous functions on R) as the minimal domain of definition for
all differential operators.
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over all bricks strictly contained in X. This way we have FX =
∑

Y⊂X FY , and

the brick decomposition of F is the formal sum

F =
∑
X

FX (2.2)

with X ranging over all bricks in Zd. Using brick decompositions one can

define a family of seminorms, indexed by α ∈ Z≥0, on the space of derivations:

∥F∥α := sup
X

(1 + diam(X))α∥FX∥, (2.3)

and we call a derivation uniformly almost-local (UAL) if ∥F∥α < ∞ for

all α ∈ Z≥0. We denote the space of UAL derivations by Dal — it is a

Fréchet space with respect to the locally convex topology generated by these

seminorms. Furthermore, for any F ∈ Dal and any A ∈ Aal, the sum F(A) =∑
X FX(A) is absolutely convergent in the Fréchet topology on Aal, and in

particular in the uniform topology. It follows that tr(F(A)) = 0 for any F ∈ Dal

and any A ∈ Aal.

The space of UAL derivations admits a certain kind of resolution by (higher)

currents which we now describe. For n > 0 we define an n-chain f to be a

collection fj1,...,jn of almost-local observables indexed by (Zd)n that are

i) Traceless:

tr(fj1,...,jn) = 0 (2.4)

ii) Skew-adjoint:

f∗j1,...,jn = −fj1,...,jn (2.5)

iii) Skew-symmetric:

fj1,...,jn = (−1)|σ|fjσ(1),...,jσ(n)
(2.6)

for any permutation σ of {1, . . . , n},

iv) Uniformly localized: for any α ∈ Z≥0 we have

sup
j1,...,jn∈Zd

sup
1≤i≤n

∥fj1,...,jn∥ji,α <∞. (2.7)
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Remark 2.2.1. Our grading convention is shifted by 1 compared to Ref.

[KS22].

For n > 0 we define C−n as the Fréchet space of n-chains with seminorms

given by (2.7) for all α ≥ 0. We extend this n = 0 by letting C0 = Dal.

These form a (non-positively graded) cochain complex with the differential

∂ : C−n−1 → C−n is defined for n > 0 by

(∂f)j1,...,jn =
∑
j0∈Zd

fj0,...,jn . (2.8)

For n = 0 it is defined by

∂f(A) =
∑
j∈Zd

[fj, A], (2.9)

for any A ∈ Aal. What’s more, there is a graded Lie bracket C−m × C−n →
C−m−n which is defined for m,n > 0 as

{f, g}j1,...,jm+n :=
∑
σ

sgn(σ)

m!n!
[fjσ(1),...,jσ(m)

, gjσ(m+1),...,jσ(m+n)
], (2.10)

where the sum is taken over all permutations on m + n symbols. For m = 0

and n > 0 we let

{F, f}j1,...,jn = [F, fj1,...,jn ], (2.11)

while for m = n = 0 we let {F,G} = [F,G]. The differential ∂ and the

graded bracket {·, ·} make C• = ⊕∞
n=0C

−n into a (non-positively graded) dg-

Lie algebra.

We conclude this section with a description of the class of automorphisms of

Aal obtained by integrating paths of UAL derivations. Let F : R → Dal be a

smooth path of derivations, denoted t 7→ Ft. By Prop. E.1 of [KS22], for every

A ∈ Aal there is a unique smooth path t 7→ At ∈ Aal of observables satisfying

A0 = A and dAt

dt
= Ft(At). For each t ∈ R this gives a map A 7→ At which is a

∗-automorphism of Aal that extends to a ∗-automorphism of A . We denote it

τ exp

(∫ t

0

Ftdt

)
. (2.12)

We call automorphisms obtained in this way locally generated automor-

phisms or LGAs for short. These have an action on Dal by conjugation which

we write as

α(F) := α ◦ F ◦ α−1. (2.13)
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This action can be promoted to an action on the entire complex C• which

commutes with the differential by allowing an LGA to act on an n-chain ele-

mentwise: α(f)j1,...,jn := α(fj1,...,jn).

States

If ψ is a state on A and α is an LGA, we write ψα := ψ ◦ α. The fixed points

of this action will play an important role in what follows. We say α preserves

ψ if ψα = ψ. A derivation F ∈ Dal is said to preserve ψ if ψ(F(A)) = 0 for

all A ∈ Aal. An observable A ∈ Aal is said to preserve ψ if ψ(F(A)) = 0

for all F ∈ Dal. We write Dψ
al and A ψ

al for the derivations and observables

that preserve ψ; these are closed subspaces of Dal and Aal in their respective

Fréchet topologies. Unitary elements of A ψ
al satisfy the following properties:

Lemma 2.2.1. If V ∈ U(Aal) preserves ψ then ψ(V ) ∈ U(1), and ψ(V A) =

ψ(V )ψ(A) for any A ∈ Aal.

Proof. Since Aal is norm-dense in A , we have ψ(V B) = ψ(BV ) for any B ∈
A . Let A ∈ Aal and let (H, π, Ω) be the GNS triple of ψ. Since ψ is pure,

π is irreducible. In particular π(A ) is weakly dense in the bounded operators

on Hψ, so there is a sequence {Pk}k∈Z≥0
of elements of A such that π(Pk)

converges weakly to P = |Ω⟩⟨Ω|, and we have

ψ(V A) = lim
k→∞

ψ(V APk)

= lim
k→∞

ψ(APkV )

= ψ(A)ψ(V ), (2.14)

which proves the second statement. The first follows from ψ(V )ψ(V ) =

ψ(V ∗V ) = 1.

The space Dψ
al ⊂ Dal is a Lie subalgebra which can be resolved to a dg-Lie

subalgebra C•
ψ ⊂ C•. We put C0

ψ := Dψ
al ⊂ Dal, while for k > 0 we define

C−k
ψ to be the (closed) subspace of k-chains f for which fj1,...,jk ∈ A ψ

al for all

j1, . . . , jk ∈ Zd. It is easy to see that C•
ψ is preserved by the differential ∂ and

is closed with respect to the bracket { , }.

We will be interested in several special classes of pure states. For states ψ,ψ′

on quasilocal algebras A and A ′, we write ψ ⊗ ψ′ for the resulting state on

the quasilocal algebra A ⊗ A ′.
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Definition 2.2.1. Let ψ be a pure state of A . We say ψ is

i) factorized if for each j ∈ Zd there is a pure state ψj on Aj such that

ψ|Aj
= ψj,

ii) short-range entangled (SRE for short) if there exists an LGA α such

that ψ ◦ α is a factorized pure state,

iii) invertible if there is another state ψ′ such that ψ ⊗ ψ′ is SRE,

iv) gapped if there is a H ∈ Dal such that ψ is a gapped ground state of

H. That is, there exists ∆ > 0 such that −iψ(A∗H(A)) ≥ ∆(ψ(A∗A) −
|ψ(A)|2) for all A ∈ Aaℓ.

Factorized states model trivial systems. Short-range entangled states model

systems in a trivial topological phase as they can be prepared from factorized

states by a local Hamiltonian evolution [Zen+19]. Invertible states model

systems in invertible topological phases as introduced by A.Kitaev [Kit]. These

are phases that have inverses, i.e., it is possible to stack the system with

another system, such that the composite is in a trivial phase.

Proposition 2.2.1. Every invertible state is gapped.

Proof. Given a state ψ ⊗ ψ′ and an observable A ∈ A ⊗A ′, one can define a

partial average ψ′(A) ∈ A that on observables of the form O⊗O′ ∈ A ⊗ A ′

is given by ψ′(O ⊗ O′) := ψ′(O′)O. The value on general observables is

obtained by linear extension, and it is a standard fact that the resulting map

is a conditional expectation; in particular, we have ∥ψ′(A)∥ ≤ ∥A∥. For any

A ∈ Aaℓ and r ≥ 0, we have

inf
B∈ABj(r)

∥B − ψ′(A)∥ ≤ inf
B∈(A ⊗A ′)Bj(r)

∥ψ′(B − A)∥ ≤ inf
B∈(A ⊗A ′)Bj(r)

∥B − A∥,

(2.15)

and so partial averaging takes almost-local observables to almost-local observ-

ables. We also define partial averaging of a derivation F ∈ Dal by ψ
′(F)(A) =

ψ′(F(A ⊗ 1)) for any A ∈ Aaℓ, which is again a derivation because ψ′ is a

conditional expectation.

Let (ψ′,A ′) be an inverse of (ψ,A ), and let α be an LGA on the composite

system A ⊗ A ′ such that Ψ0 := (ψ ⊗ ψ′) ◦ α is factorized. Let us choose a
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UAL derivation F for the composite system such that Ψ0 is a gapped ground

state for F with a gap greater than ∆ > 0 (we can choose F to be ∂f for an

on-site f ∈ C1). Then (ψ ⊗ ψ′) is a gapped ground state for α(F). Let H be a

UAL derivation of A obtained from α(F) by partial averaging over ψ′. Then

for any A ∈ Aaℓ we have

− iψ(A∗H(A)) = −i(ψ ⊗ ψ′)(α(B∗)α(F(B))) = −iΨ0(B
∗F(B)) ≥

≥ ∆
(
Ψ0(B

∗B)− |Ψ0(B)|2
)
= ∆

(
ψ(A∗A)− |ψ(A)|2

)
, (2.16)

where B = α−1(A ⊗ 1). Thus, ψ is a gapped ground state for H with a gap

greater than ∆ > 0.

It is believed that every 1d gapped state is invertible. For d > 1 there are many

examples of gapped states which are not invertible (for example, topologically

ordered states).

We now turn to the situation when the state is a smooth function of some pa-

rameter spaceM , which we take to be a smooth manifold. The set C∞(M,C•)

of smooth functions7 M → C• is a cochain complex valued in C∞(M)-modules.

Suppose that {ψx}x∈M is a family of states parametrized by points ofM . Then

the set

C∞(M,C•
ψ) := {f ∈ C∞(M,C•) : f(x) ∈ C•

ψx
∀x ∈M} (2.17)

is another cochain complex valued in C∞(M)-modules. For any k > 0,

we set Ωk(M,C•) := HomC∞(M)(∧kTM,C∞(M,C•)). Similarly, we define

Ωk(M,C•
ψ) := HomC∞(M)(∧kTM ,C∞(M,C•

ψ)).

Definition 2.2.2. Let ψ = {ψx}x∈M be family of states indexed by points of

a smooth manifold M . We say ψ is smooth if for every A ∈ Aal the function

x 7→ ψx(A) is a smooth function on M , and there is a G ∈ Ω1(M,Dal) such

that

dψ(A) = ψ(G(A)) ∀A ∈ Aal. (2.18)

We say ψ is parallel with respect to G if (2.18) holds. We will sometimes

write (ψ,G) for a smooth family when we want to specify a particular G with

respect to which it is parallel.

7That is, functions fk : M → Ck for each k ≤ 0 such that in any set of smooth
coordinates on M all partial derivatives of fk exist and are continuous.
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We say a smooth family of states is factorized, SRE, or invertible if it is so

pointwise. If M is connected, then a smooth family ψ is SRE or invertible if

it is so for any one x0 ∈ M . This happens because two states connected by a

smooth path γ : [0, 1] →M are related by the LGA obtained by exponentiating

(as in (2.12)) G along γ.

We say a smooth family ψ is gapped if there is a H ∈ C∞(M,Dal) such that

ψx is a gapped groundstate of H(x) for each x ∈M . IfM is connected, then ψ

is gapped iff it is gapped for any one x0 ∈M (this follows from a partition of

unity argument, but we do not prove this here since we will not need this fact).

Conversely, if ψ is a family of states such that ψx(A) is a smooth function of

x ∈ M for every A ∈ Aal, and if there is a H ∈ C∞(M,Dal) such that ψx is a

gapped groundstate of H(x) for each x ∈M , then under some extra technical

assumptions8 ψ can be shown to be smooth [KS22; MO20].

We conclude this section with a discussion of smooth families of LGAs.

Definition 2.2.3. A family of LGAs α = {αx}x∈M is smooth if for every

A ∈ Aal the map M → Aal taking x 7→ αx(A) is smooth, and there is a

G ∈ Ω1(M,Dal) such that

dα(A) = α(G(A)) ∀A ∈ Aal. (2.19)

If such a G exists, it is unique, and we denote it by α−1dα.

The most natural way to produce an LGA is to integrate a Dal-valued 1-form

along a path, as in (2.12). As we will see below, this can be extended coherently

to the setting of smooth families of LGAs. Let M be a manifold and I = [0, r]

an interval. Define the vertical complex Ω•(M × I, C•)vert as the quotient of

Ω•(M × I, C•) by the set of elements a for which ι ∂
∂θ
a = 0, and we write avert

for the image of a under the projection to Ω•(M × I, C•)vert, followed by the

obvious inclusion back into Ω•(M × I, C•). Write js : M → M × I for the

inclusion as M × {s}.

Proposition 2.2.2. Let M be a manifold and let G ∈ Ω1(M × I,Dal). Then

there is a unique smooth family of LGAs α on M × I satisfying α ◦ j0 = 1 and

d

ds
α(A) = α(ι ∂

∂s
G(A)) ∀A ∈ Aal, (2.20)

where s is the coordinate on I.
8See Assumption 1.2 in [MO20].
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Proof. Let γx : I → M be the function taking s 7→ (x, s). By [KS22] Prop.

E.1, for each x ∈M there is a unique solution to (2.20) with α ◦ j0 = 1 which

we denote by α(x,s) By [KS22] Proposition E.2 we have

(α−1dα)(x,t) = −
∫ t

0

α−1
(x,t) ◦ α(x,s)(ι ∂

∂s
d(Gvert)(x,s))ds+ Gvert ∈ Ω1(M × I,Dal).

(2.21)

Definition 2.2.4. Given G ∈ Ω1(M × I,Dal) and α as in Proposition 2.2.2,

we denote τ exp
(∫

0
G
)
:= α, while for s ∈ I we write τ exp

(∫ s
0
G
)
:= α ◦ js.

Notice that τ exp
∫
0
G depends only on the vertical component Gvert of G. We

close this section with a description of a gauge action of smooth families of LGA

on on smooth families of states (the proof is straightforward and is omitted):

Proposition 2.2.3. If (ψ,G) is a smooth family of states on M and α is a

smooth family of LGAs on M , then ψα = ψ ◦ α is parallel with respect to

Gα := α−1(G) + α−1dα. (2.22)

Higher Berry curvatures and classes

We can now state the main result of [KS22], which allows for the construction

of the invariants which are the subject of this paper. Recall that a cochain

complex (K•, ∂) is nullhomotopic if there is a map h : K• → K•−1 (which we

call a contracting homotopy) satisfying h ◦ ∂ + ∂ ◦ h = 1.

Theorem 2.2.1. Let M be a smooth manifold.

i) The cochain complex C• is nullhomotopic via a contracting homotopy h :

C• → C•−1. For any k ≥ 0 the unique C∞(M)-linear extension h :

Ωk(M,C•) → Ωk(M,C•−1) is also a contracting homotopy.

ii) Suppose ψ is a smooth gapped family of states. Then for every k ≥ 0

the complex Ωk(M,C•
ψ) is nullhomotopic via a C∞(M)-linear contracting

homotopy hψ : Ωk(M,C•
ψ) → Ωk(M,C•−1

ψ ).
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We can extend the graded bracket on C• to Ω•(M,C•) by defining the bracket

between a ∈ Ωp(M,Ck) and b ∈ Ωq(M,Cℓ) as

{a, b}(X1, . . . , Xp+q) = (−1)kq
∑
σ

sgnσ

p!q!
{a(Xσ(1), . . . Xσ(p)), b(Xσ(p+1), . . . Xσ(p+q))}

(2.23)

for any vector fields X1, . . . , Xp+q. The differentials d and ∂ on Ω•(M) and C•

extend naturally to Ω•(M,C•), and we get a total differential which acts on

a ∈ Ωp(M,Ck) by

d(a) := d(a) + (−1)p∂(a). (2.24)

This graded bracket and total differential make Tot(Ω•(M,C•)) into a dg-Lie

algebra over C∞(M), with Tot(Ω•(M,C•
ψ)) as a dg-Lie subalgebra.

Note that our sign conventions differ from those in [KS22] — in particular

our ∂ and d commute instead of anticommuting9. This choice will make the

explicit calculations in Section 2.5 easier. The price we pay is that although d

is a graded derivation of Tot(Ω•(M,C•)), ∂ is not. Instead, (−1)p∂ : Ωp(Cq) →
Ωp(Cq+1) is.

The element G ∈ Ω1(M,Dal) can be interpreted as a connection 1-form on the

trivial graded bundleM×C•. Its covariant derivative is the graded derivation

D of Tot(Ω•(M,C•)) given by d+{G, ·}. Its curvature F ∈ Ω2(M,Dψ
al) satisfies

D ◦D(A) = {F, A} ∀A ∈ Ω•(M,C•) (2.25)

and is given by the usual formula F = dG+ 1
2
{G,G}.

The higher Berry invariants are constructed by solving the following Maurer-

Cartan equation. Recall that d is the total differential on Tot(Ω•(M,C•)),

given by (2.24).

Proposition 2.2.4. Suppose that (ψ,G) is a gapped smooth family. Then there

exists an element g• ∈ Tot1(Ω•(M,C•)), whose component in Ωn+1(M,C−n)

we denote10 g(n), that satisfies g(0) = G and

dg• +
1

2
{g•, g•} = 0. (2.26)

Furthermore we have g(n) ∈ Ωn+1(M,C−n
ψ ) for all n > 0.

9Explicitly, what we call Cq is called N q in [KS22], and what we call ∂ : Cq → Cq+1 is
(−1)q∂ : N q → N q+1 in the notation of [KS22].

10What we call g(n) was called g(n−1) in [KS22].
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We call (2.26) the Maurer-Cartan equation or alternatively the descent equa-

tion. The proof of Prop. 2.2.4 in [KS22] involves writing out eq. (2.26) as a

system of equations for g(n)

dg(n−1) + (−1)n∂g(n) +
1

2

n−1∑
k=0

{g(k), g(n−k−1)} = 0. (2.27)

and solving (2.27) successively for n = 1, 2, . . . , using the exactness of the

bi-complex Ω•(M,C−•
ψ ) with respect to ∂ in positive degrees. For this reason,

g(n+1) will be called the descendant of g(n). Notice that (2.27), together with

the fact that g(n) ∈ Ωn+1(M,C−n
ψ ) for n > 0, imply that dψ(g(n)) = ψ(∂g(n+1)).

In Section 2.3 we introduce an operation we call “evaluating against the origin”

(equation (2.38)). The evaluation of g(d+1) at the origin is an element of

Ωd+2(M,Aal) denoted by ⟨g(d+1), [∗]⟩. Evaluating g(d+1) against the origin and

applying the family of states ψ to this observable-valued form we obtain a

(d+ 2)-form on M :

ω(d+2) := ψ(⟨g(d+1), [∗]⟩) ∈ Ωd+2(M,C) (2.28)

which is closed because

−dω(d+2) = (−1)d+2ψ(⟨∂g(d+2), [∗]⟩) + 1

2

d∑
k=1

ψ
(
⟨{g(k), g(d−k+1)}, [∗]⟩

)
.

The first term above vanishes because ⟨h, [∗]⟩ = 0 wheneverif h is ∂-exact and

the second term vanishes because ψ(⟨h, [∗]⟩) = 0 if ψ(hj1,...,jd+1
) = 0 for all

j1, . . . , jd+1 ∈ Zd.

Definition 2.2.5. Suppose (ψ,G) is a smooth family of states such that a

solution G• of the MC equation (2.26) exists. Then the cohomology class

[ω(d+2)] ∈ Hd+2
dR (M, iR) is independent of the choice of G and G•. It is called

the higher Berry class of the smooth family ψ.

By Proposition 2.2.4 all gapped smooth families (and thus all SRE and in-

vertible smooth families) have a solution to (2.26) and thus a higher Berry

class.

For d = 0, this is just the usual Berry curvature (Chern number) of a line

bundle. For d = 1 the higher Berry curvature is a closed 3-form ω(3) whose
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cohomology class measures the flow of Berry curvature from the right half of

the spin chain to the left half [Wen+23].

When the system under consideration is equipped with an on-site action of

a compact Lie group G we can consider equivariant smooth families (ψ,G)

parametrized by a G-manifold11 and there is an equivariant version of the

above descent procedure. We describe it here in the case that G = U(1) and

the U(1)-action on the parameter space M is trivial — in other words, (ψ,G)

is a smooth family of states on M that is U(1)-invariant for each x ∈M , and

G is a U(1)-invariant element of Ω1(M,Dal).

The generators of the on-site U(1) actions form a 1-chain q(1) such that the

derivation Q := ∂q(1) preserves ψx for every x ∈ M . Consider the Cartan

complex Ω•,•(M,C•)U(1) := Ω•(M)⊗S•R ⊗̂(C•)U(1), where S
•R is the algebra

of polynomials R[t] on one generator t, which we assign degree 2, and (C•)U(1)

are the U(1)-invariant chains. If ψ is a U(1)-invariant smooth family of states,

we define Ω•,•(M,C•
ψ)U(1) similarly.

The equivariant descent equation reads

dg• +
1

2
{g•, g•}+ Q⊗ t = 0, (2.29)

where g• ∈ Tot1(Ω•,•(M,C•)U(1)) and the component of g in Ω1,0(M,C0) is G.

As before, the components of g• in Ω•,•(M,Cd+1)U(1) can be evaluated against

the origin (as in (2.38)) to produce closed forms on M which altogether form

a class in the equivariant cohomology Hd+2
U(1)(M), and it can be shown that this

cohomology class is independent of the choice of solution g• of the equivariant

Maurer-Cartan equation.

The components of g in various degrees encode various cohomology invariants

one can assign to a U(1)-invariant smooth family of states. Letting g(n,k) be

the component of Ωn+1−2k,2k(M,C−n)U(1), the first few components of g• can

be arranged in the following table:

g(0,0)

g(1,0) g(1,1)

g(2,0) g(2,1)

g(3,0) g(3,1) g(3,2)

(2.30)

11The 1-form G is assumed to be G-equivariant too.
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Each component g(n,k) associates a closed n+ 1− 2k-form to a smooth family

of U(1)-invariant states in n − 1 dimensions. For instance, for a family of 1-

dimensional U(1)-invariant states ψ(⟨g(2,0), [∗]⟩) = ω(3) ∈ Ω3(M) is the higher

Berry curvature discussed above. For a family of 0-dimensional U(1)-invariant

states ψ(⟨g(1,0), [∗]⟩) ∈ Ω2(M) is the ordinary Berry curvature. In general, the

invariant corresponding to g(n+1,k) is the descendant of the one corresponding

to g(n,k).

The rest of the terms in (2.30) represent the following invariants. As we

just described, the first column contains the Berry curvature g(1,0) and its

descendants12. At the top of the second column is the U(1) charge g(1,1)

(which can be thought of as giving a locally constant function on a family of

0d systems). The descendant g(2,1) of charge gives the usual Thouless pump

for 1d systems, while g(n,1) for n > 2 give the higher Thouless pump invariants.

Finally g(3,2) is the Hall conductance (whose descendants g(n,2) for n ≥ 4 are

not pictured).

The main results of this work deal with the entries g(2,0) (1d Berry curvature)

and g(3,1) (2d Thouless pump) in the above table. The proof of quantization of

the 2d Thouless invariant will hinge on showing that these two are related by

the process of inserting a flux at infinity. We remark that this pattern holds

more generally. We will not treat these rigorously in this work, but let us

simply state a few other instances of this “diagonal” relationship. Beginning

with a single 2d U(1)-invariant state we obtain an S1-family by inserting a

θ-domain wall at the x-axis for every θ ∈ U(1), and the charge pumped along

the domain wall as one cycles θ ∈ S1 from 0 to 2π, which can be interpreted

as the charge of a fluxon, can be shown to equal the Hall conductance. This is

the original Laughlin argument and relates g(3,2) (Hall conductance) to g(2,1)

(1d Thouless pump). By inserting another domain wall, along the y-axis this

time, we obtain a S1 × S1-family of states whose ordinary Berry curvature

(given by g(1,0)) is again the Hall conductance: this is the basis of the proof of

the Hall conductance quantization [HM14].

This paper is only concerned with the first two columns of (2.30), so we will

use a simplified notation for their entries. Instead of g(n,0) we will simply write

g(n), while g(n,1) will be denoted t(n). Then g(n) satisfy the ordinary descent

12One might wonder if g(0,0) corresponds to some invariant. It should associate a 1-form
to a family of (-1)-dimensional states. If one interprets a (-1)-dimensional state as a phase,
then g(0,0) is nothing but the pullback of the form dθ on U(1).
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equations (2.27), of which we will need only the first two:

∂g(1) = F

∂g(2) = −Dg(1). (2.31)

Meanwhile the first three descent equations for t(n) are

∂t(1) = Q

∂t(2) = −Dt(1)

∂t(3) = Dt(2) + {t(1), g(1)}. (2.32)

2.3 Localization properties

In this section we introduce a few tools to deal with localization properties of

chains, derivations, and automorphisms. We begin in Section 2.3 by defining

the notion of a derivation, chain, or automorphism that is confined on a given

region in Zd, then in Section 2.3 we discuss some ways to produce derivations

confined on a given region.

Confined maps

Definition 2.3.1. A linear map F : Aal → Aal is h-confined on a region

X ⊂ Zd if for every finite Y ⊂ Zd it satisfies

∥F (B)∥ ≤
∑
z∈X

h(d(z, Y ))∥B∥ (2.33)

for all B localized on Y . If we omit h and say F is confined on X, we mean

that it is h-confined on X for some function h with superpolynomial decay.

Definition 2.3.2. For n > 0, an n-chain f is h-confined on a region X ⊂ Λ

if

∥fj1,...,jn∥ ≤ min
k=1,...,n

h(d(X, jk)). (2.34)

As before we say f is confined on X if it is h-confined on X for some super-

polynomially decreasing h.

For f ∈ Ω•(M,C•), being pointwise confined on a region X ⊂ Zd is rarely a

sufficiently strong condition — one must impose some kind of uniformity on

the decay function h: we say f ∈ C∞(Rn, C•) is smoothly confined on X if

for any multi-index µ ≥ 0 and any x ∈ Rn, there is a neighbourhood V ∋ x
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and a superpolynomially decaying function h such that ∂µf(x) is h-confined

on X for all x ∈ V . Since this is a local property we extend this definition

to f ∈ Ω•(M,C•) for a manifold M by requiring f to be smoothly confined on

X in any chart. Finally, a chain-valued form f ∈ Ωk(M,C•) is defined to be

smoothly confined on X if f(σ) is smoothly confined on X for any multivector

field σ. Lastly, if f, g, h ∈ Ω•(M,C•) we say f smoothly interpolates between

g on X and h on Xc if f − g is smoothly confined on Xc and f − h is smoothly

confined on X.

The notion of confinement is compatible with many operations typically ap-

plied to chains, as summarized in Proposition 2.3.1 below, whose proof appears

in Section 2.7.

For X,X ′ ⊂ Λ, we say Y is a stable intersection of X and X ′ if there exist

a c > 0 such that X(r) ∩ X ′(r) ⊂ Y (cr) for all r ≥ 0 [note: this is not the

only definition, and maybe there is a better one]. Note in particular that the

origin is a stable intersection of the set {x ≥ 0} ⊂ Z and its complement, and

the positive y-axis is a stable intersection of the upper half-space in Z2 with

the y-axis.

Proposition 2.3.1. Let a, b ∈ Ω•(M,C•). Let X,X ′ be any subsets of Zd and
let Y be a stable intersection of X and X ′.

i) If a is smoothly confined on X then ∂a is smoothly confined on X.

ii) If a is smoothly confined on both X and X ′ then it is smoothly confined

on Y .

iii) If a and b are smoothly confined on X and X ′, respectively, then {a, b} is

smoothly confined on Y .

LGAs also have some desirable localization properties if they are produced by

integrating a confined derivation:

Proposition 2.3.2. Let G ∈ Ω1(M × [0, 1],Dal) and suppose Gvert is smoothly

confined on X ⊂ Zd. Let α := τ exp
∫
0
G. Then α−1dα is smoothly confined

on X, and α(F)− F is smoothly confined on X for any F ∈ Ω•(M,Dal).

We call an element of G ∈ Dal inner if it is inner as a derivation of Aal, in other

words there is some A ∈ Aal such that G(B) = [A,B] for all B ∈ Aal (we say
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A is associated to G). Since Aal has trivial center, any two elements of Aal

associated to the same G are related by a multiple of 1. The notion of confined

derivations allows an explicit description of the set of inner UAL derivations:

a derivation G ∈ Dal is inner iff it is confined on a bounded X ⊂ Zd. This is

a consequence of the more general statement:

Proposition 2.3.3. LetM be a smooth manifold and suppose F ∈ Ω•(M,Dal).

Then F is of the form F = adA for some antiselfadjoint A ∈ Ω•(M,Aal) iff it

is confined on a bounded region of Zd.

Let ψ be a state on A . If F ∈ Dal is inner we may unambiguously define ψ(F)

as ψ(A)− tr(A) for any A ∈ Aal associated to F. This procedure is covariant

with respect to automorphisms of A . Indeed, since tr is the unique tracial

state on A 13, we have tr
α
= tr for any automorphism of A . Thus

ψα(F) = ψα(A)− tr(A) = ψ(α(A))− tr(α(A)) = ψ(α(F)) (2.35)

for any A ∈ Aal associated to F.

Restricting and evaluating chains

Given a subset X ⊂ Zd and an n-chain f define the restriction of f to X as

the n-chain resX(f) given by

resX(f)j1,...,jn =

{
fj1,...,jn if ji ∈ X for every i = 1, . . . , n

0 otherwise.
(2.36)

It is easy to see that resX commutes with F for any F ∈ Dal, and that for

k > 0 and a smooth manifold M the obvious extension of resX to Ω•(M,Ck)

commutes with the exterior derivative d. Notice also that resX(f) is confined

on X, and if f is confined on Y ⊂ Zd then resX(f) is also.

Suppose h is an n-chain and let X ⊂ Zd. We may form the (n − 1)-chain

∂ resX h−resX ∂h, or [∂, resX ]h for short. This chain measures the current of the

quantity h across the boundary of the region X. Since [∂, resX ] = −[∂, resXc ],

it is clear that this (n− 1)-chain is confined on both X and Xc (and thus, by

Proposition 2.3.1, on any stable intersection of X and Xc). In what follows,

we will most often set X to be one of the half-spaces Hi := {(x1, . . . , xn) : xi ≤
0} ⊂ Zd.

13Indeed any finite-dimensional matrix algebra has a unique tracial state, and A is a
norm-limit of these.
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We end this section by establishing some notation which will be useful through-

out the rest of this work. If h(2) is a 2-chain that is confined on a region which

has bounded stable intersection with ∂Hi = {(x1, . . . , xn) : xi = 0} ⊂ Zd, then
we define

⟨h(2), [∂Hi]⟩ :=
∑
j∈Zd

([∂, resHi
]h(2))j ∈ Aal, (2.37)

the sum on the right-hand side being absolutely convergent in Aal.

Now suppose h(d+1) is any d + 1-chain. Then [∂, resHd
]...[∂, resH1 ]h

(d+1) is a

1-chain that measures the d-dimensional circulation of h around the origin14,

and we define

⟨h(d+1), [∗]⟩ :=
∑
j∈Zd

([∂, resHd
]...[∂, resH1 ]h

(d+1))j ∈ Aal, (2.38)

where the sum is again absolutely convergent. Notice that the observable

⟨h, [∗]⟩ is traceless and associated to the inner derivation ∂[∂, resHd
]...[∂, resH1 ]h.

Since ∂ commutes with [∂, resX ] for any X, it follows that ⟨h, [∗]⟩ = 0 if h is

∂-closed.

2.4 1d higher Berry quantization

We are now ready to prove our first main result: that for invertible families

the higher Berry class has an integral refinement. Recall that the exponential

exact sequence 0 → 2πiZ → iR → U(1) → 0 gives rise to an isomorphism

H2(M,U(1)
M
) ∼= H3(M, 2πiZ), where U(1)

M
is the sheaf of continuous U(1)-

valued functions on M [DF99; Bry08]. Let ι : H2(M,U(1)
M
) ↪→ H3(M, iR)

denote the composition of this isomorphism with the usual Čech-de Rhammap.

For a gapped smooth family ψ of 1d states, let ω(3) = ψ(⟨g(2), [∗]⟩) ∈ Ω3(M, iR)
denote its higher Berry curvature.

Theorem 2.4.1. To any smooth family (ψ,G) of invertible 1d states on M

we can associate a class [h] ∈ H2(M,U(1)
M
) such that ι([h]) = [ω(3)]. In

particular, the class [ω(3)/2πi] ∈ H3(M,R) is integral.

We will first prove the result when ψ is SRE, then extend the result to the case

when ψ is invertible. Let {Ua}a∈J be an open cover of M such that for any

14In the language of [KS22] this is the same as contracting with the conical partition
{Xk}d+1

k=1 with Xk = Hk\(H1 ∪ . . . ∪Hk−1) for 1 ≤ k ≤ d and Xd+1 = Hc
1 ∩ ... ∩Hc

d.
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a1, . . . , an ∈ J the intersection Ua1 ∩ . . . ∩ Uan is either empty or contractible.

Write Uab := Ua ∩ Ub and Uabc := Ua ∩ Ub ∩ Uc.

The proof will proceed by constructing a Deligne-Beilinson cocycle whose cur-

vature is ω(3). Recall [DF99; Bry08] that a Deligne-Beilinson 2-cocycle is a

triple (habc ∈ C∞(Uabc, U(1)), aab ∈ Ω1(Uab, iR), ba ∈ Ω2(Ua, iR)) such that

habchacd = habdhbcd (2.39)

h−1
abcdhabc = aab − aac + abc (2.40)

daab = ba − bb. (2.41)

In the physics literature, such 2-cocycles are called 2-form gauge fields and

define a connection on a line bundle gerbe over M [Mur07]. The existence

of such a cocycle with dba = ω(3)|Ua implies quantization of [ω(3)/2πi] [DF99;

Bry08].

Pick a basepoint x0 ∈M . For each a ∈ J let Ha : Ua× [0, 1] →M be a smooth

homotopy from the constant map Ua → {x0} to the identity map Ua → Ua.

Let L = Z≤0 ⊂ Z and R = Lc.

For a ∈ J , define α̃−1
a := τ exp

(∫ 1

0
H∗
aG
)
15. This is a smooth family of

automorphisms on Ua that provides a local trivialization of ψ in the sense

that for every x ∈ Ua we have ψx = ψx0 ◦ (α̃a)
−1
x . Next, define α−1

a :=

τ exp
(∫ 1

0
H∗
a∂ resL hG

)
(where h is the contracting homotopy from Theorem

2.2.1 i)), which can be thought of as a restriction of α̃−1
a to the left half-line.

Define αab := αa ◦ α−1
b .

The family of states ψ ◦ α−1
ab differs from ψ appreciably only near the ori-

gin. In fact, there exists a smooth family of unitaries Vab ∈ C∞(Uab,Aal)

satisfying ψ ◦ α−1
ab = ψ ◦ AdV −1

ab
and tr(V −1

ab dVab) = 0. To see this, note first

that we have ψ ◦ α−1
ab = ψ ◦ α̃a ◦ α̃−1

b ◦ α−1
ab . It is clear that α

−1
ab is of the form

τ exp
(∫ 1

0
H
)
for some H confined on L. On the other hand, we have α̃−1

a ◦αa =
τ exp(α−1

a (∂ resR h(G))) and α̃a ◦ α̃−1
b ◦αb ◦ α̃−1

a = τ exp
(
α̃a ◦ α−1

b (∂ resR h(G))
)
.

Since both of these are of the form τ exp
(∫ 1

0
H
)
for a H confined on R their

product is also of this form. Thus we may use Lemma 2.6.2 to guarantee that

such a Vab exists.

Define Wabc := V −1
ac αab(Vbc)Vab, which is a smooth U(Aal)-valued function

satisfying tr(W−1
abcdWabc) = 0. We also define LGAs βab := AdV −1

ab
◦αab and the

15Here and below, for a map f : M → N between smooth manifolds M,N and a differ-
ential form A ∈ Ω•(N) we write f∗A ∈ Ω•(M) for the pullback of differential forms.
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derivation-valued forms Bab := β−1
ab dβab. It is easy to check that βab and Bab

preserve ψ, and that βab and Wabc satisfy the following two relations:

βab ◦ βbc ◦ β−1
ac = Ad−1

Wabc
, (2.42)

W−1
abdWacdWabc = βab(Wbcd). (2.43)

From the first equation above it follows that Wabc preserves ψ, so habc :=

ψ(Wabc) is a smooth U(1)-valued function on Uabc. From the second it follows

that habchacd = habdhbcd, i.e., habc is a cocycle (both this and the previous

statements use Lemma 2.2.1, which we will continue to use throughout).

Suppose V ′
ab is another smooth choice of unitaries satisfying ψ ◦ α−1

ab := ψ ◦
AdV ′

ab
−1 . Then Yab := V −1

ab V
′
ab preserves ψ, so gab := ψ(Yab) is a smooth U(1)-

valued function on Uab. Writing W ′
abc := V ′

ac
−1αab(V

′
bc)V

′
ab, we have

W ′
abc = Y −1

ac Wabcβab(Ybc)Yab, (2.44)

and so ψ(W ′
abc) = gabgbcg

−1
ac ψ(Wabc). Thus the 2-cocycle constructed from

Yab differs from the 2-cocycle habc constructed from Vab by a 2-coboundary,

and so habc defines an element [habc] ∈ Ȟ2(M,U(1)
M
) ∼= H3(M,Z) which is

independent of the choice of Vab’s.

Differentiating (2.42) gives

adW−1
abcdWabc

= Ad−1
Wabc

dAdWabc
= Bac − Bbc − β−1

bc (Bab). (2.45)

Since W−1
abcdWabc is traceless, this implies that

h−1
abcdhabc = ψ

(
Bac − Bbc − β−1

bc (Bab)
)
, (2.46)

where on the right-hand side we are evaluating a state on an inner derivation

as in Section 2.3.

Below we write FH := dH+ 1
2
{H,H} for any H ∈ Ω1(M,Dal). Since ψ = ψ0◦α̃−1

a ,

the family ψ is parallel with respect to α̃adα̃
−1
a . By Lemma 2.7.7 there is a

Ca ∈ Ω1(Ua,Dal) such that ψ is parallel with respect to Ca, Ca smoothly

interpolates between α̃adα̃
−1
a on L and G on R, and FCa smoothly interpolates

between 0 and F. Now define

aab := ψ(Bab − Cb + βab
−1(Ca)), (2.47)

ba := ψ(dCa +
1

2
{Ca,Ca} − ∂ resR g(1)). (2.48)
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Using Proposition 2.3.2 one can check that Bab − Cb + βab
−1(Ca) is smoothly

confined on both L and R, ensuring that aab is well-defined and smooth. A

similar argument shows this for ba as well.

Lemma 2.4.1. We have

h−1
abcdhabc = aab − aac + abc. (2.49)

Proof. Using the fact that ψ ◦ β−1
bc = ψ we have

aab − aac + abc = ψ(β−1
bc (Bab)− Bac + Bbc)) + ψ(β−1

bc (β
−1
ab (Ca))− β−1

ac (Ca)).

(2.50)

The second term equals ψ(AdWabc
(Ca)−Ca) = 0, and so (2.50) agrees with the

expression (2.46).

Lemma 2.4.2. We have

daab = ba − bb. (2.51)

Proof. On an overlap Uab, ψ is parallel with respect to both Ca and Cb. by

Proposition 2.2.3 it is parallel with respect to (Cb)
βab . Thus it is parallel with

respect to 1
2
((Ca)

βab + Cb) =
1
2
(β−1

ab (Ca) + Bab + Cb). Using this we get

daab = ψ(Bab +
1

2
{Bab,Bab} − dCb −

1

2
{Cb,Cb}+ βab

−1(dCa +
1

2
{Ca,Ca}))

= ψ(−FCb
+ βab

−1(FCa)), (2.52)

where as before we write FCa := dCa +
1
2
{Ca,Ca}, and we used the fact that

FBab
= 0. To split the last line into two terms, we regularize −FCb

+βab
−1(FCa)

by adding ∂ resR g(1) − βab
−1(∂ resR g(1)). Since resR g(1) − βab

−1(resR g(1)) is a

1-chain confined at the origin, each of whose terms is traceless and has zero

expectation under ψ, we have ψ(∂ resR g(1) − βab
−1(∂ resR g(1))) = 0. Thus,

daab = ψ(−FCb
+ βab

−1(FCa)− ∂ resR g(1) + βab
−1(∂ resR g(1)))

= ba − bb. (2.53)

Lemma 2.4.3. dba = −ψ(⟨g(2), [∗]⟩)
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Proof.

dba = ψ(DCaFCa + {G− Ca,FCa}+DG∂g
(1)
R )

= ψ({G− Ca,FCa}) + ψ(∂[∂, resR]g
(2)). (2.54)

The first term in (2.54) is zero since {G−Ca,FCa} is associated to the absolutely

convergent
∑

j∈Zd FCa(h(G−Ca)j)) and FCa preserves ψ. The result then follows

from the fact that ⟨g(2), [∗]⟩ is associated to ∂[∂, resL]g
(2) = −∂[∂, resR]g(2).

This concludes the proof of Theorem 2.4.1 in the case that the family ψ is

SRE.

Although so far we defined the refined higher Berry class [habc] ∈ H3(M, 2πiZ)
only for SRE families, it is easy to extend the definition as well as the proof

of Theorem 2.4.1 to arbitrary smooth invertible families. Let ψ be such a

family. Pick x0 ∈ M , let ψ′
x0

be an inverse for ψx0 , and consider the family

ψ ⊗ ψ′
x0

= {ψx ⊗ ψ′
x0
}x∈M . This family is SRE at the point x0 ∈ M and thus

it is SRE on the whole M . Define the refined higher Berry class [habc] of ψ as

that of ψ ⊗ ψ′
x0
. It is independent of the choice of ψ′

x0
. Indeed, suppose ψ′′

x0

is another inverse for ψx0 . Since the SRE families ψx0 ⊗ ψ′
x0

and ψx0 ⊗ ψ′′
x0

are constant, their refined higher Berry class vanish. Further, it is easy to see

that for any two smooth SRE families ψ, ψ′ the refined higher Berry class of

ψ ⊗ ψ′ is the sum of the refined higher Berry classes of ψ and ψ′. Therefore

the refined higher Berry class of the SRE family ψ ⊗ ψ′
x0

⊗ ψ′′
x0

⊗ ψx0 is equal

to both the refined higher Berry class of ψ⊗ ψ′
x0

and the refined higher Berry

class of ψ ⊗ ψ′′
x0
.

Example: Let us describe an example of the family of SRE states for which

the class [ω(3)/2πi] ∈ H3(M,R) is non-trivial. It is essentially the example

from [Wen+23] adapted for our setting. Let (χ ∈ [0, π], θ ∈ [0, π], ϕ ∈ [0, 2π))

be spherical coordinates on S3 with (θ, ϕ) being spherical coordinates on S2

at fixed 0 < χ < π. The equatorial S2 is located at χ = π/2. The regions χ ≤
π/2 and χ ≥ π/2 correspond to the upper S3

+ and the lower hemisphere S3
−,

respectively. Let B : S2 → B(C2) defined by B(θ, ϕ) = n⃗(θ, ϕ) · σ⃗ with n⃗ being

a unit vector in R3 pointed in the direction (θ, ϕ) ∈ S2 and σ⃗ = (σx, σy, σz)

being Pauli matrices, and let p± = (1±B)/2. Let us choose ϵ ∈ (0, π/4). Let

us choose a smooth family of rank one projections P (+) : S3
+ → B(C2)⊗B(C2)

such that in the neighbourhood 0 ≤ χ ≤ ϵ it is some constant rank one
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projection, while in the neighbourhood (π/2− ϵ) ≤ χ ≤ π/2 it is given by

P (+)(θ, ϕ, χ) = p+(θ, ϕ)⊗ p−(θ, ϕ).

Similarly, we define a smooth family of rank one projections P (−) : S3
− →

B(C2)⊗B(C2) such in the neighbourhood (π− ϵ) ≤ χ ≤ π it is some constant

rank one projection, while in the neighbourhood π/2 ≤ χ ≤ (π/2 + ϵ) it is

given by

P (−)(θ, ϕ, χ) = p−(θ, ϕ)⊗ p+(θ, ϕ).

Let us consider a one-dimensional lattice system with Aj
∼= B(C2). For k ∈ Z,

we let P
(+)
k ∈ Aaℓ be a smooth family of local observables on S3

+ corresponding

to P (+) under the isomorphism A2k ⊗ A2k+1
∼= B(C2) ⊗ B(C2). Similarly, let

P
(−)
k ∈ Aaℓ be a smooth family of observables on S3

− corresponding to P (−) via

the isomorphism A2k−1 ⊗A2k
∼= B(C2)⊗B(C2). We let {ψx}x∈S3

+
be a family

of pure states of A uniquely defined by the requirement that when restricted

to A2k⊗A2k+1 it is given by A 7→ TrP
(+)
k A. This is a smooth family of states

on S3
+ which is parallel with respect to G′(+) ∈ Ω1(S3

+,Dal) given by

G′(+) =
∑
k∈Z

[P
(+)
k , dP

(+)
k ]. (2.55)

Similarly, we consider a family of pure states {ψx}x∈S3
−
of A defined by the

requirement that when restricted to A2k−1⊗A2k it is given by A 7→ TrP (−)A.

This is a smooth family of states on S3
− which is parallel with respect to

G′(−) ∈ Ω1(S3
+,Dal) given by

G′(−) =
∑
k∈Z

[P
(−)
k , dP

(−)
k ]. (2.56)

It is easy to see that the two families of states agree on the equatorial S2.

Moreover, the resulting family of states on the whole S3 is smooth. To see this,

consider an open neighbourhood E of the equatorial S2 given by π/2− ϵ/2 <

χ < π/2+ϵ/2. ψ|E is a family of product states whose restriction to A2k (resp.

A2k+1) is given by A 7→ Trp+A (resp. A 7→ Trp−A ). Therefore ψ|E is parallel

with respect to a derivation-valued 1-form A ∈ Ω2(E,Dal) given by the sum

of on-site terms [p+, dp+] on A2k and [p−, dp−] on A2k+1 for k ∈ Z. Since

S3
+, S

3
−, and E form an open cover of S3, there exists a partition of unity 1 =

ρ+ + ρ− + ρE, where ρ+, ρ−, ρE are smooth functions supported on S3
+, S

3
−, E,

respectively. We get a globally-defined 1-form G ∈ Ω1(S3,Dal) such that ψ is

parallel with respect to D = d+ G by letting G = ρ+G
′(+) + ρ−G

′(−) + ρEA.
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For such G, we can choose g(1) ∈ Ω2(S3, C−1
ψ ) such that 1) g

(1)
2k , g

(1)
2k+1 ∈ A2k ⊗

A2k+1 on S3
+; 2) g

(1)
2k , g

(1)
2k−1 ∈ A2k−1 ⊗ A2k on S3

−; 3) on E, g
(1)
2k and g

(1)
2k+1 are

given by 1
2
[dp+, dp+] ∈ A2k and 1

2
[dp−, dp−] ∈ A2k+1, respectively. Note that

for any k, D(g
(1)
2k +g

(1)
2k+1) = 0 on S3

+ and D(g
(1)
2k−1+g

(1)
2k ) = 0 on S3

−. Therefore

⟨g(2), [∗]⟩ vanishes on S3
− and coincides with Dg

(1)
0 on S3

+. The integral of the

higher Berry curvature over S3 is∫
S3

ψ(⟨g(2), [∗]⟩) =
∫
S3
+

ψ(Dg
(1)
0 ) =

∫
S2=∂S3

+

ψ(g
(1)
0 ) =

∫
S2

1

2
Tr (p+[dp+, dp+]) = 2πi.

(2.57)

2.5 2d Thouless pump

Let ψM be a smooth gapped family of 2d U(1)-invariant states over a compact

manifold M . The 2d Thouless pump invariant ⟨t(3), [∗]⟩ associates to it a class

in de Rham cohomology H2(M, iR). In this section we show, using a proof

analogous to Laughlin’s flux insertion argument, that this class can be refined

to a class in integral cohomology. Here is a roadmap of the argument.

We extend ψM to a family of states ψ on M ×S1 by performing a U(1) gauge

transformation on the right half-plane, which we interpret as implementing a

2π-flux insertion at a point at infinity on the y-axis ∂H1. Although the 3-form

ψ(⟨g(1), [∂H2]⟩) which measures the Berry curvature flux across the x-axis is

divergent, its vertical component ψ(⟨g(1)vert, [∂H2]⟩) is finite because varying the

S1-parameter θ ∈ [0, 2π) changes ψ appreciably only near the y-axis in Z2. In

Section 2.5 below we compute this form and show that it equals dθ∧⟨t(3), [∗]⟩.
Thus in particular the total Berry curvature pumped across the x-axis during

the flux insertion is equal to 2π times the 2d Thouless invariant. This result

is true for any gapped U(1)-invariant smooth family ψM .

Then, in Section 2.5 we use an argument analogous to the proof of Berry flux

quantization in Section 2.4 to show that if ψM is invertible then the total

Berry curvature transported across the x-axis along the flux insertion, which

is given by the fiber integral
∫
S1 ψ(⟨g(1)vert, [∂H2]⟩) and thus equals 2π⟨t(3), [∗]⟩,

is integral.
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2d Thouless pump as a higher Berry curvature

Throughout this section we will use the following action of the de Rham com-

plex Ω•(M) on Ω•(M,C•): for η ∈ Ωp(M) and a ∈ Ωq(M,Ck) we put

η ∧ a(X1, . . . , Xp+q) :=
∑
σ

sgn(σ)

p!q!
η(Xσ(1), . . . Xσ(p))a(Xσ(p+1), . . . Xσ(p+q)),

(2.58)

for any vector fields X1, . . . , Xp+q. It is easy to check that d(η ∧ a) = dη ∧ a+

(−1)pη ∧ da and if b ∈ Ωr(M,Cℓ) then {b, η ∧ a} = (−1)p(r+ℓ)η ∧ {b, a}.

Let (ψM ,GM) be a gapped U(1)-invariant smooth family of 2d states on M .

View it as a family of states on M × S1 that is constant in the S1 direction,

which we will also call (ψM ,GM). We will often refer to a (chain-valued)

differential form onM and its pullback by the projectionM ×S1 →M by the

same symbol; it should be clear by context which is meant.

Define ρ = τ exp
(∫

0
∂ resH1 q

(1)dθ
)
, where q(1) is the 1-chain consisting of the

generators of the onsite U(1) action, and θ is the coordinate on S1. This is a

smooth family of automorphisms on M × S1. Define ψ := ψM ◦ ρ−1. This is a

U(1)-invariant family of gapped states which represents the threading of a flux

“at infinity” into the original family ψM (see Figure 2.1 below). By Proposition

Figure 2.1: A schematic depiction of ψ := ψM ◦ ρ−1. The shaded areas on the
right side indicate regions in Z2 where ψ differs from ψM . For x ∈ M and
0 ≤ θ ≤ 2π, the state ψ(x,θ) is the state (ψM)x with a θ-domain wall on the
y-axis. Cycling θ from 0 to 2π performs a flux insertion at infinity.

2.2.3 ψ is parallel with respect to the U(1)-invariant connection Gρ
−1

M = ρ(GM−
∂ resH1 q

(1)dθ). However, we will use a slightly different connection. Define

G ∈ Ω1(M × S1,Dal) by

G := ρ(GM − ∂ resH1(q
(1) − t(1))dθ), (2.59)
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where t(1) := hψM (Q), with hψM the contracting homotopy from Theorem

2.2.1 ii). This differs from Gρ
−1

M by the term ρ(∂ resH1 t
(1))dθ which preserves

ψ and is U(1)-invariant, so ψ is still parallel with respect to G, and G is still

U(1)-invariant. The reason we choose G instead of Gρ
−1

M is that its vertical

component is confined on the y-axis ∂H1. In what follows, we will need to

choose all our derivation-valued forms to satisfy this constraint.

Theorem 2.5.1. The smooth gapped family (ψ,G) admits a solution to the

MC equation (2.26) such that g•vert is smoothly confined on the y-axis ∂H, and

ψ(⟨g(2)vert, [∂H2]⟩) = dθ ∧ ψM(⟨t(3)⟩, [∗]) (2.60)

where t(3) is a solution to the equivariant Maurer-Cartan equation (2.29) for

(ψM ,GM).

Proof. We proceed as though we were computing the 1d Berry invariant for

the family ψ by solving the MC equation for G. At each step this will require

adding a counterterm to ensure that the vertical component of g(k) is confined

on ∂H1. As it turns out, choosing these counterterms will precisely involve

solving the equivariant descent equations (2.32). Indeed, the first counterterm

dθ ∧ ρ(∂ resH1 t
(1)), which was required to regularize the vertical component of

G, already involved solving ∂t(1) = Q.

Let g•M be a solution of the Maurer-Cartan equation (2.26) for (ψM ,GM).

Below we write DM = d + {GM , ·} and FM = dGM + 1
2
{GM ,GM}. We begin

by computing the curvature of G:

F = ρ(FM +DM(dθ ∧ ∂ resH1 t
(1))). (2.61)

The first step in the descent equation is to find a g(1) ∈ Ω2(M ×S1, C−1
ψ ) with

∂g(1) = F. We will choose a g(1) of the form

g(1) = ρ(g
(1)
M + dθ ∧ f(1)), (2.62)

where ∂f(1) = −DM(∂ resH1 t
(1)). Since −DM(∂ resH1 t

(1)) = −∂DM resH1 t
(1),

we could use the naive expression

f
(1)
naive := −DM(resH1 t

(1)). (2.63)

However, since f
(1)
naive isn’t confined on ∂H1, it needs to be regularized. To do

this, let t(2) ∈ Ω1(M,C−2
ψM

) be a U(1)-invariant chain with ∂t(2) = −DM t(1),
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and set

f(1) := −[∂, resH1 ]t
(2). (2.64)

For the next step in the descent procedure, we seek g(2) ∈ Ω3(M × S1, C−2
ψ )

which satisfies ∂g(2) = −Dg(1). Calculating Dg(1) gives

Dg(1) = ρ

(
DMg

(1)
M + dθ ∧

(
{∂ resH1 t

(1), g
(1)
M } −DM(f(1))

))
, (2.65)

so we choose the following ansatz for g(2):

g(2) = ρ(g
(2)
M + dθ ∧ f(2)), (2.66)

where f(2) ∈ Ω2(M × S1, C−2
ψ ) must satisfy

∂f(2) = −{∂ resH1 t
(1), g

(1)
M }+DM(f(1))

= −∂
(
{resH1 t

(1), g
(1)
M }+ resH1 DM t(2)

)
. (2.67)

This gives an unregularized expression for f(2):

f
(2)
naive = −{resH1 t

(1), g
(1)
M } − resH1 DM t(2)

= −{resH1 t
(1), resHc

1
g
(1)
M } − resH1

(
{t(1), g(1)M }+DM t(2)

)
. (2.68)

Only the second term in (2.68) needs regularization, giving

f(2) = −{resH1 t
(1), resHc

1
g
(1)
M }+ [∂, resH1 ]t

(3), (2.69)

where t(3) ∈ Ω2(M,C−3
ψM

) is chosen such that

∂t(3) = {t(1), g(1)M }+DM t(2). (2.70)

Clearly dθ ∧ ρ(f(2)) is the vertical component of g(2) and we have

ψ(⟨dθ ∧ ρ(f(2)), [∂H2]⟩) = dθ ∧ ψM(∂[∂, resH2 ]f
(2))

= dθ ∧ ψM(∂[∂, resH2 ][∂, resH1 ]t
(3)))

= dθ ∧ ψM(⟨t(3), [∗]⟩). (2.71)

The first equality holds because ψM = ψ◦ρ and the second because ψM(⟨{resH1 t
(1), resHc

1
g
(1)
M }, [∂H2]⟩) =

0, since both t(1) and g
(1)
M preserve ψM .
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2d Thouless pump quantization

Having expressed the 2d Thouless invariant as the Berry curvature transport

during flux insertion, we proceed to proving that this invariant is quantized if

ψM is SRE. The proof is along the lines of the proof of ordinary Berry curvature

quantization in Section 2.4, but some modifications must be made because ψ

is not a family of 1d states — instead it is only 1d in the θ direction. Let

η(2) := ψM(⟨t(3), [∗]⟩) be the 2d Thouless invariant of a family of states ψM on

M , and recall that we write ι : H2(M,U(1)
M
) ∼= H2(M, 2πiZ) ↪→ H3(M, iR)

for the Čech-de Rham map.

Theorem 2.5.2. To any smooth family (ψM ,GM) of invertible U(1)-invariant

2d states on M we can associate a class [hab] ∈ H1(M,U(1)
M
) such that

ι([hab]) = 2π[η(2)]. In particular, the class −i[η(2)] ∈ H2(M,R) is integral.

Before we begin, we will need the following Lemma:

Lemma 2.5.1. Let G and GM be as in Section 2.5. Then G−GM is smoothly

confined on ∂H1. In particular, Gvert is smoothly confined on ∂H1.

Proof. We have

G− GM = ρ(G)− GM + dθ ∧ ρ(∂ resH1(q
(1))− t(1)). (2.72)

By U(1)-invariance of GM we have

G− GM = τ exp

(∫ 2π

0

∂ resH1 q
(1)

)
(GM)− GM = τ exp

(∫ 2π

0

−∂ resHc
1
q(1)
)
(GM)− GM ,

(2.73)

so by Proposition 2.3.2, G − GM is smoothly confined on both H1 and Hc
1,

and thus it’s confined on ∂H1. Next, since ∂q(1) = Q = ∂t(1), there is a k(2)

satisfying ∂k(2) = q(1) − t(1), and we have

dθ ∧ ρ(∂ resH1(q
(1) − t(1))) = −dθ ∧ ρ(∂[∂, resH1 ]k

(2)) (2.74)

which is confined on ∂H1 by the results of Section 2.3.

Let us introduce a key ingredient of the proof of Theorem 2.5.2. Define the

following smooth families of LGAs on M × [0, 2π]:

γ̃ := τ exp

(∫
0

G

)
, (2.75)

γ := τ exp

(∫
0

∂ resH2 hG

)
, (2.76)
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where h is the contracting homotopy from Theorem 2.2.1 i). Notice that we

have

ψM ◦ γ̃ ◦ ρ = ψM (2.77)

since γ̃◦ρ = τ exp
(∫

0
∂ resH1 t

(1)
)
and t(1) preserves ψM . This means that ψM◦γ̃

is nothing but the family of states ψ := ψM ◦ ρ−1 on M × [0, 2π] describing

a flux-insertion at infinity which was used in Section 2.5. On the other hand,

ψM ◦ γ inserts a flux at the origin in Z2 (see Figure 2.2). We are now ready to

Figure 2.2: ψM ◦ γ performs a flux insertion at the origin.

begin the proof of Theorem 2.5.2:

Proof. As before let {Ua}a∈J be an open cover of M such all Ua and all

nonempty intersections Uab := Ua ∩ Ub are contractible. Let α̃ and α be

the families of LGAs on M given by α̃ := γ̃ ◦ j2π and α := γ ◦ j2π, where
jθ :M →M × [0, 2π] is the embedding x 7→ (x, θ).

The family of states ψM ◦ α differs from ψM only near the origin. In fact, on

each neighbourhood in M the family ψM ◦ α can be produced from ψM by

the action of an almost-local unitary, as we now show. Notice that we have

ψM ◦ α−1 = ψM ◦ α̃ ◦ α−1, and that α̃ ◦ α−1 = τ exp
(∫ 2π

0
α−1(∂ resHc

2
hG)

)
.

Since Gvert is confined on ∂H1 (Lemma 2.5.1), by Lemma 2.6.2 on each Ua we

can find a smooth map Va : Ua → U(Aal) such that ψM ◦ α−1 = ψM ◦ AdV −1
a

and tr(V −1
a dVa) = 0.

On an overlap Uab we have the smooth unitary V −1
a Vb which preserves ψM ,

and we define

hab := ψM(V −1
a Vb) ∈ C∞(Uab, U(1)) (2.78)
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which satisfies the cocycle condition habhbc = hac. As in Section 2.4 define

βa := AdV −1
a

◦α and Ba := β−1
a dβa, both of which preserve ψM . Since βaβ

−1
b =

AdV −1
a Vb

, a straightforward calculation shows

h−1
ab dhab = ψM(Ba − Bb). (2.79)

By Lemma 2.7.7, ψM is parallel with respect to a C ∈ Ω1(M,Dal) that

smoothly interpolates between GM on Hc
2 and Gα̃M on H2. Defining

aa := −ψM(C− GβaM ), (2.80)

we obtain, from (2.79),

h−1
ab dhab = ψM(Ba − Bb) + ψM((β−1

a (GM)− β−1
b (GM))

= aa − ab, (2.81)

where the second line is because ψM((β−1
a (GM) − β−1

b (GM)) = ψM((GM −
AdV −1

a Vb
(GM)) = 0. Since ψM is parallel with respect to 1

2
(GβaM + C) we have

daa = −ψM(d(C− GβaM ) +
1

2
{GβaM + C,C− GβaM})

= −ψM(FC − β−1
a (FM)). (2.82)

This collection of closed 2-forms is a Čech 0-cocycle in Ω2(M, iR) and thus

defines a closed 2-form on M . This can be seen in two different ways. First,

one can compute the Čech coboundary using the expressions on the r.h.s.:

ψM
(
β−1
a (FM)− β−1

b (FM)
)
= ψ(FM−βa(β−1

b (FM))) = ψ(FM−AdV −1
a Vb

(FM)) = 0,

(2.83)

where we used the fact that the automorphisms β−1
a , β−1

b and AdV −1
a Vb

preserve

ψM . Second, from the definition of aa we have daa − dab = d(h−1
ab dhab) = 0.

Thus daa is a restriction of a globally defined closed 2-form ω. In addition, the

second argument shows that the cohomology class of ω/2πi is integral (it is

the de Rham representative of the first Chern class of the line bundle defined

by the Čech 2-cocycle hab).

Finally, let us show that −ω is cohomologous to 2πψM(⟨t(3), [∗]⟩). The strategy
will be to define a form b ∈ Ω2(M × [0, 1],C) with j∗0b − j∗2πb = −ω and
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db = ψM(⟨t(3), [∗]⟩)∧dθ. Then the result will follow from the following formula:

−ω = j∗2πb− j∗0b

= d

∫ 2π

0

b−
∫ 2π

0

db

= d

∫ 2π

0

b+ 2πψM(⟨t(3), [∗]⟩). (2.84)

Begin by defining

Ĉ := G− ∂ resH2(h
ψ(G− Gγ̃M)) ∈ Ω1(M × [0, 2π],Dal), (2.85)

E := ∂ resHc
2
g(1) + ∂ resH2 γ̃

−1(g
(1)
M ) ∈ Ω2(M × [0, 2π],Dal), (2.86)

where g(1), g
(1)
M are as in Section 2.5. These definitions have been chosen so

that Ĉ and E satisfy the following properties:

i) ψ is parallel with respect to Ĉ.

ii) Ĉ smoothly interpolates between G on Hc
2 and Gγ̃M on H2.

iii) FĈ smoothly interpolates between F on Hc
2 and γ̃−1(FM) on H2.

iv) j∗0 Ĉ = GM and j∗2πĈ = C.

v) ψM(j∗2πE− β−1
a (j∗0E)) = 0 for any a ∈ J .

vi) FĈ − E is smoothly confined at the origin in Z2.

The first three follow from Lemma 2.7.7, and the fourth is easy to verify.

Property v) follows from the identity

ψM(j∗2πE− β−1
a (j∗0E)) = ψM(∂ resH2(β

−1
a (g

(1)
M )− α̃−1(g

(1)
M ))). (2.87)

The right-hand side of the above expression is well-defined since β−1
a (g

(1)
M ) −

α̃−1(g
(1)
M ) is smoothly confined on Hc

1 ∩H2, and it is zero because both βa and

α̃a preserve ψM . Finally, property vi) is proved in the following:

Lemma 2.5.2. FĈ − E is smoothly confined at the origin in Z2.

Proof. Since both FĈ and E interpolate between F on Hc
2 and γ̃−1(FM) on

Hc, it follows that FĈ − E is smoothly confined on ∂H2. Next, using the fact

that both G− GM and Gγ̃M − GM are is smoothly confined on the vertical line
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∂H1, one can show that FĈ − FM is too. Similarly, since both g(1) − g
(1)
M and

γ̃−1(g
(1)
M )− g

(1)
M and are smoothly confined on ∂H1, one can show that E− FM

is too. Thus FĈ −E = (FĈ − FM)− (E− FM) smoothly confined on ∂H1. Thus

it is smoothly confined on the origin.

Property vi) allows us to define

b := ψ(FĈ − E) ∈ Ω2(M × [0, 2π]). (2.88)

Lemma 2.5.3. With b defined as above, we have

j∗0b− j∗2πb = −ω (2.89)

and

db = ψ(⟨g(2) − ρ(g
(2)
M ), [∂H2]⟩). (2.90)

Proof. First, from property v) above we have

−ω|Ua = ψM(FC − j∗2πE− β−1
a (FM − j∗0E))

= j∗2πb|Ua − j∗0b|Ua , (2.91)

and so (2.89) is established. Next, we have

db = ψ (DĈFĈ + (D −DĈ)FĈ −DE)

= ψ
(
{G− Ĉ,FĈ} −DE

)
, (2.92)

where the second line is due to the Bianchi identity DĈFĈ = 0. Inserting the

definitions of Ĉ and E into the above, and adding and subtracting the term

γ̃−1
(
DM∂ resH2 g

(1)
M

)
, we get

db = ψ
(
{G− Ĉ,FĈ}+D∂ resH2 g

(1) −D∂ resH2 γ̃
−1
(
g
(1)
M

))
= ψ

(
D∂ resH2 g

(1) − γ̃−1
(
DM∂ resH2 g

(1)
M

))
+ ψ

(
{G− Ĉ,FĈ}+ γ̃−1

(
DM∂ resH2 g

(1)
M

)
−D∂ resH2 γ̃

−1
(
g
(1)
M

))
.

(2.93)

The first term in (2.93) is

−ψ
(
∂ resH2 ∂(g

(2) − γ̃−1(g
(2)
M ))

)
= ψ(⟨g(2) − γ̃−1(g

(2)
M ), [∂H2]⟩), (2.94)
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while the second one is

ψ
(
{G− Ĉ,FĈ}+ (γ̃−1 ◦DM ◦ γ̃ −D)∂ resH2 γ̃

−1
(
g
(1)
M

))
=ψ

(
{G− Ĉ,FĈ}+

{
Gγ̃M − G, ∂ resH2 γ̃

−1
(
g
(1)
M

)})
.

Splitting Gγ̃M − G in the above into ∂ resH2 h
ψ(Gγ̃M − G) + ∂ resHc

2
hψ(Gγ̃M − G)

gives

ψ
({
∂ resH2(h

ψ(G− Gγ̃M)),FĈ − ∂ resH2 γ̃
−1
(
g
(1)
M

)})
− ψ

({
∂ resHc

2
(hψ(G− Gγ̃M)), ∂ resH2 γ̃

−1
(
g
(1)
M

)})
.

Both terms above are of the form ψ({A,B}) where A and B preserve ψ and

are smoothly confined on regions with bounded stable intersection. Thus it is

well-defined and zero, and so we have

db = ψ(⟨g(2) − γ̃−1(g
(2)
M ), [∂H2]⟩). (2.95)

Finally, (2.90) follows from the following claim:

ψ(⟨ρ(g(2)M )− γ̃−1(g
(2)
M ), [∂H1]⟩) = ψM(⟨g(2)M − ρ−1 ◦ γ̃−1(g

(2)
M , [∂H1]⟩)) = 0.

(2.96)

(The terms in the above equation are well-defined because ρ ◦ γ̃−1(g
(2)
M )− g

(2)
M

is smoothly confined on ∂H1 by U(1)-invariance of g
(2)
M ). The first equality in

(2.96) is by definition of ψ, and the second follows from (2.77).

We are now ready to conclude the proof of Theorem 2.5.2. Looking at (2.66)

it is clear that g(2) − ρ(g(2)) = g
(2)
vert, and so by Theorem 2.5.1 we have db =

ψM(⟨t(3), [∗]⟩) ∧ dθ. By (2.84) this concludes the proof that the 2D Thouless

form is quantized when ψ is a smooth family of U(1)-invariant SRE states. To

extend this to smooth families of U(1)-invariant invertible states is a matter

of applying the same argument as the one appearing at the end of Section

2.4.

Remark 2.5.1. One can construct an example of a family of 2d states with

a non-trivial 2d Thouless pump invariant in a way similar to the example

from Section 2.4. The family is parameterized by S2. At the north pole, it

is a product state with vanishing ground-state U(1) charges on each site. At

the south pole, it is a product state with the ground-state charge (−1)x+y on
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a site (x, y) ∈ Z2. There are four different pairings of neighbouring sites

that correspond to four different directions 0, π/2, π and 3π/2: 1) (2k, l) with

(2k+1, l); 2) (2k−1, l) with (2k, l); 3) (k, 2l) with (k, 2l+1); 4) (k, 2l−1) with

(k, 2l). There are also four different ways to form quadruples of neighbouring

sites: {(2k, 2l), (2k + 1, 2l), (2k, 2l + 1), (2k + 1, 2l + 1)}, and its shifts. The

meridians of S2 at 0, π/2, π, and 3π/2 correspond to the families of states

between the poles such that at each point the state is a product of pure states

on pairs of sites for the corresponding pairing. Four different quarters of the

sphere between the meridians correspond to the families of states such that at

each point the state is a product of pure states on quadruples of sites. The

family can be made smooth by choosing partitions of unity and has a unit 2d

Thouless pump invariant. We omit the precise formulas.

2.6 Asymptotically equal states

It is a standard result in the theory of spin systems that two pure states

on A unitarily equivalent if they are “equal at infinity” (see for instance

Corollary 2.6.11 in [BR87]). Below we prove two versions of this theorem that

are adapted to our needs. Namely, first we show that if one of the states is

SRE and the states rapidly approach each other at infinity, then the two states

are related by the action of an almost-local unitary. Then we show that for

certain smooth families of SRE states this almost-local unitary can be chosen

to be a smooth function of parameters on any contractible neighbourhood in

the parameter space. The first of these statements was proved in [KSY21],

but we include its proof here for completeness.

Lemma 2.6.1. Let |χ1⟩ and |χ2⟩ be two vectors in a Hilbert space H such that

⟨χi|χi⟩ = 1, i = 1, 2, and ⟨χ1|χ2⟩ > 0. Then there exists a unitary U ∈ U(H)

such that U |χ1⟩ = |χ2⟩ and ∥U − 1∥ = ∥|χ1⟩ − |χ2⟩∥.

We omit the proof of this elementary lemma.

Proposition 2.6.1. Suppose ψ is an SRE state and ϕ is another pure state

such that there exists a superpolynomially decreasing function f for which

|ψ(A)− ϕ(A)| ≤ f(R)∥A∥ (2.97)

holds for any A localized outside of BR(0). Then there is a unitary V ∈ Aal

such that ϕ = ψ ◦ AdV .
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Proof. Since ψ is SRE, we have ψ = ψfact ◦ α−1 for a factorized pure state

ψfact and some LGA α. Then |ψfact(A)− ϕ ◦ α| decays superpolynomially, as

in (2.97), and if we find a unitary V ∈ Aal with ϕ ◦α = ψfact ◦AdV −1 then we

would have ϕ = ψα(V −1). So we may assume without loss of generality that ψ

is a factorized state.

Let (H, π, |0⟩) be the GNS triple of ψ. From (2.97) and Corollary 2.6.11 in

[BR87] it follows that ϕ is given by a vector state |ϕ⟩⟨ϕ| inH. For each positive

integer R let BR be the ball of radius R around zero, |0⟩BR
and |0⟩Bc

R
the (pure)

restrictions of |0⟩ to BR and Bc
R, respectively. Since ψ is factorized we have

H = HBR
⊗ HBc

R
, where HBR

and HBc
R
are the GNS Hilbert spaces of ψ|BR

and ψ|Bc
R
.

Pick an R0 > 0 with f(R0) < 1 and let R ≥ R0. Notice that the purifications

of |0⟩Bc
R
in H are precisely the unit-norm vectors in HBR

⊗|0⟩Bc
R
, and that |ϕ⟩

is a purification of ϕ|Bc
R
in H. By Uhlmann’s theorem [Uhl76] we have

max

{
|⟨ψ|χ⟩|

∣∣∣∣ |χ⟩ ∈ HBR
⊗ |0⟩Bc

R
and ⟨χ|χ⟩ = 1

}
= F (ϕ|Bc

R
, ψ|Bc

R
). (2.98)

Let |χR⟩ be a maximizer with ⟨ϕ|χRx ⟩ ≥ 0. It satisfies

⟨ϕ|χR⟩ = F (ϕ|Bc
R
, ψ|Bc

R
)

≥ 1− f(R)/2, (2.99)

where the second line is due to the Fuchs-Van de Graaf inequality. Since

f(R) < 1, |ϕ⟩ and |χn⟩ aren’t orthogonal, and since |χR⟩ maximizes (2.98) it

follows that |χR⟩ is the normalized projection of |ϕ⟩ onto HBR
⊗ |0⟩Bc

R
.

By Lemma 2.6.1 there is a unitary UR0 localized on BR0 such that UR0 |0⟩BR0
=

|χR0⟩. Next, by (2.99) we have

∥|χR−1⟩ − |χR⟩∥ ≤ ∥|χR−1⟩ − |ϕ⟩∥+ ∥|χR⟩ − |ϕ⟩∥

≤ 2
√
f(R− 1), (2.100)

so for any R ≥ R0, Lemma 2.6.1 guarantees unitary UR localized on BR with

UR|χR−1⟩ = |χR⟩, and

∥UR − 1∥ = 2
√
f(R− 1). (2.101)

Then

V := lim
R→∞

UR . . . UR0 =
∞∑

R=R0+1

(UR−1 − 1)UR−1 . . . UR0 (2.102)
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is unitary and satisfies V |0⟩ = |ϕ⟩, and for any S ≥ R0 we have ∥V −∑S
R=R0+1(U

R−1 − 1)UR−1 . . . UR0∥ ≤
∑

r≥S 2
√
f(r), so V ∈ Aal.

For the following Lemma, let Γ1,Γ2 ⊂ Zd be two regions such that Γ1 ⊂ Hd,

Γ2 ⊂ Hc
d, and Γ1 ∪ Γ2 has bounded stable intersection with ∂Hd.

Lemma 2.6.2. Let K be a contractible open subset of Rn for some n ≥ 0, and

let γ1 and γ2 be families of automorphisms on K such that each γi is obtained

as the path-ordered integral of a derivation-valued 1-form on K × [0, 1] that is

smoothly confined on Γi. Suppose that (ψ,G) a smooth family of SRE states

on K such that ψ ◦ γ1 = ψ ◦ γ2. Then there is a smooth family of unitary

observables V ∈ C∞(K,Aal) with ψ ◦ γi = ψ ◦ AdV and tr(V −1dV ) = 0.

Remark 2.6.1. This lemma is used twice in the text: once in Section 2.4

with Γ1 = L ⊂ Z1 and Γ2 = R ⊂ Z1, and once in Section 2.5 with Γ1 =

(∂H1) ∩H2 ⊂ Z2 and Γ2 = (∂H1) ∩Hc
2 ⊂ Z2.

Proof. Choose an arbitrary basepoint x∗ ∈ K and let F : K × [0, 1] → K be

a smoooth nullhomotopy to the point x∗. Then β := τ exp
(∫ 1

0
F ∗G

)
satisfies

ψx = ψx∗ ◦ βx for any x ∈ K. Define γ̃i := β ◦ γi ◦ β−1. Since γi is of the form

τ exp
(∫ 1

0
G
)
for a G ∈ Ω1(K × [0, 1],Dal) that is smoothly confined on Γi, the

LGA β ◦ γi ◦ β−1 = τ exp
(∫ 1

0
β(G)

)
is of that form too. By Proposition 2.3.2,

γ̃−1
i dγ̃i is smoothly confined on Γi.

Let χ := ψ ◦γi ◦β−1. Then χ is parallel with respect to γ̃−1
i dγ̃i for i = 1, 2. By

Lemma 2.7.7, χ is parallel with respect to a H ∈ Ω1(K,Dal) that is confined

on Γ1∪Γ2 and smoothly interpolates between γ̃−1
2 dγ̃2 on H2 and γ̃

−1
1 dγ̃1 on Hc

2.

It follows that H is smoothly confined on a bounded region, so by Proposition

2.3.3 it has a lift to Ω1(K,Aal), which by abuse of notation we will also call

H. Then the path-ordered integral of H along F is an almost-local unitary

W := τ exp
(∫ 1

0
F ∗H

)
and we have χx = χx∗ ◦ AdWx for any x ∈ K.

By the definition of χ it is apparent that it asymptotically equals ψx∗ away

from a stable intersection of Γ1 and Γ2, as in (2.97). Thus by Proposition 2.6.1

there is a unitary V∗ ∈ Aal with χx∗ = ψx∗ ◦ AdV∗ . Letting Vx := β−1
x (V∗Wx)
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we have

ψx ◦ (γi)x = χx ◦ βx
= χx∗ ◦ AdWx ◦βx
= ψx∗ ◦ AdV∗Wx ◦βx
= ψx ◦ AdVx . (2.103)

Finally, since tr(V −1dV ) is a closed 1-form and K is contractible, there is a

smooth function g : K → U(1) with g−1dg = tr(V −1dV ), and multiplying V

by g−1 ensures that tr(V −1dV ) = 0.

2.7 Confined chains

The goals of this section is to prove Propositions 2.3.1, 2.3.2, and 2.3.3, as well

as to introduce Lemma

Lemma 2.7.1. A 1-chain f is confined on X ⊂ Zd iff there is another 1-chain

g whose entries gj vanish outside X such that ∂g = ∂f.

Proof. For each j ∈ X define Sj := {k ∈ Xc : d(k,X) = d(k, j)}. Choose any

total order on Zd and define S̃j := Sj\
⋃
k<j Sk. Then the S̃j are disjoint and⊔

j∈X S̃j = Xc. Define the 1-chain g by

gj :=

{
fj +

∑
k∈S̃j

fk if j ∈ X

0 otherwise.
(2.104)

Then ∂g = ∂f = F and it remains only to show that g is a 1-chain. Since f

is confined on X we have a superpolynomially decaying h such that ∥fk∥ ≤
h(d(k,X)). Thus for k ∈ S̃j we have ∥fk∥ ≤ h(d(k, j)) and it follows that∑

k∈S̃j
fk is absolutely convergent and the gj’s have uniformly bounded norm.

Finally let us show that
∑

k∈S̃j
fk is f -confined on j for a function f which is the

same for all j. Since f is a 1-chain there is a superpolynomially decaying g1 such

that every fk is g1-confined at k. Let r > 0 be even. For each k ∈ S̃j ∩Bj(r/2)

pick Ak ∈ ABk(r/2) with ∥Ak − fk∥ ≤ g1(r/2), and let B :=
∑

k∈S̃j∩Bj(r/2)
Ak ∈

ABj(r). Then we have

∥
∑
k∈S̃j

fk −B∥ ≤
∑

k∈S̃j∩Bj(r/2)

∥fk − Ak∥+
∑

k∈S̃j∩Bj(r/2)c

∥fk∥

≤ rdg1(r) +
∑
R≥r/2

(2R)dh(R) := g2(r). (2.105)

Thus gj is (g1 + g2)-confined on j.
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Below we will often use the following family of seminorms on traceless almost-

local observables:

Lemma 2.7.2 ([KS22] Proposition D.1). Let V ⊂ Aal be the subspace of

traceless observables. Then for any j ∈ Zd the family of seminorms {∥·∥j,α}α∈N
on V is equivalent to the family {∥ · ∥brj,α}α∈N given by

∥A∥brj,α := sup
X

∥AX∥(1 + diam({j} ∪X))α, (2.106)

where the supremum is taken over all bricks in Zd and
∑

Z A
Z is the brick

decomposition of the inner derivation corresponding to A ∈ Aal.

The following lemma shows that if an observable is h-confined on two faraway

points j, k ∈ Zd then its norm decays superpolynomially with d(j, k).

Lemma 2.7.3. For any traceless A ∈ Aal and any positive integer α we have

∥A∥ ≤ 22d+1(∥A∥brj,α+2d+1 + ∥A∥brk,α+2d+1)

(
d(j, k)

2

)−α

(2.107)

Proof. Let R := d(j, k).

∥A∥ ≤
∑
X ̸=∅

∥AX∥

≤
∑
X ̸=∅

min

(
(1 + diam(X ∪ {j}))−α−2d−1∥A∥brj,α+2d+1, (1 + diam(X ∪ {k}))−α−2d−1∥A∥brk,α+2d+1

)

≤ (∥A∥brj,α+2d+1 + ∥A∥brk,α+2d+1)

 ∑
diam(X∪{j})≥R/2

(1 + diam(X ∪ {j}))−α−2d−1

+
∑

diam(X∪{k})≥R/2

(1 + diam(X ∪ {k}))−α−2d−1

 .

(2.108)

Since there are at most (2r)2d bricks X with diam(X ∪{j}) = r for any r > 0,



47

we get ∑
diam(X∪{j})≥R/2

(1 + diam(X ∪ {j}))−α−2d−1 ≤
∑
r≥R/2

(2r)2d(1 + r)−α−2d−1

≤ 4d
∑
r≥R/2

(1 + r)−α−1

≤ 4d
∫ ∞

r≥R/2
r−α−1dr

= 4dα−1(R/2)−α

≤ 4d(R/2)−α. (2.109)

The following lemma shows that the definitions of confinement for derivations

and chains are compatible.

Lemma 2.7.4. Let F ∈ Dal and X ⊂ Zd. The following are equivalent:

i) F is confined on X.

ii) For every α ∈ Z>0 there is a Cα such that

∥FZ∥(1 + diam(Z))α(1 + d(Z,X))α ≤ Cα (2.110)

for every brick Z.

iii) The 1-chain fj :=
∑

X∋j
1

|X|F
X is confined on X.

Proof. i) =⇒ ii). Let F =
∑

Z F
Z be the brick decomposition of F. Fix a brick

Z. There is an operator A supported in Z with ∥A∥ = 1 and ∥FZ(A)∥ = ∥FZ∥.
From this it follows that

∥FZ∥ = ∥FZ(A)∥

= ∥trZcF(A)∥

≤ ∥F(A)∥. (2.111)

Since F is confined on X we have

∥FZ∥ ≤ ∥F(A)∥ ≤
∑
j∈X

h1(d(j, Z)) (2.112)
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for some superpolynomially decaying function h1. By Proposition C.1 in

[KS22] we have

∥FZ∥ ≤ 4d∥FZ∥ ≤ 4d
∑
j∈X

h1(d(j, Z)). (2.113)

Letting h2(R) :=
∑

r≥R 2drdh1(r), we have∑
j∈X

h(d(j, Z)) ≤
∑
j∈X
k∈Z

h1(d(j, k))

≤
∑
k∈Z

h2(d(k,X))

≤ diam(Z)dh2(d(Z,X)), (2.114)

and so

∥FZ∥ ≤ 4d diam(Z)dh2(d(Z,X)). (2.115)

If diam(Z)dh2(d(Z,X)) ≤ (1 + d(X,Z))−α(1 + diam(Z))−α then we have

∥FZ∥(1 + d(X,Z))α(1 + diam(Z))α ≤ 4d. (2.116)

Otherwise if diam(Z)dh2(d(Z,X)) > (1+ d(X,Z))−α(1+diam(Z))−α we have

∥FZ∥(1 + d(Z,X))α(1 + diam(Z))α ≤ ∥F∥2α+d(1 + diam(Z))−α−d(1 + d(Z,X))α

≤ ∥F∥2α+dh2(d(Z,X))(1 + d(Z,X))2α

≤ ∥F∥2α+d sup
r
(1 + r)2αh2(r). (2.117)

ii) =⇒ iii). First, f is a 1-chain because

∥fj∥brj,α = sup
Z∋j

1

|Z|
∥FZ∥(1 + diam(Z))α ≤ ∥F∥α. (2.118)

To show f is confined on X we use the bound

∥fj∥ ≤
∑
r>0

∑
Z∋j

diam(Z)=r

r−1∥FZ∥. (2.119)

Consider an arbitrary term in the above sum. When r ≤ d(j,X)/2 we have

∥FZ∥ ≤ Cα(1 + r)−α(1 + d(j,X)/2)−α (2.120)
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since d(Z,X) + r ≥ d(j,X). On the other hand when r ≥ d(j,X)/2 we will

use the bound

∥FZ∥ ≤ Cα(1 + r)−α. (2.121)

Putting these together and using the fact that there are at most d(r + 1)d+1

bricks of diameter r containing j, we have

∥fj∥ ≤ Cα(1 + d(j,X)/2)−α
∑

0<r≤d(j,X)/2

d(1 + r)−α+d + Cα
∑

r>d(j,X)/2

d(1 + r)−α+d.

(2.122)

When α ≥ d+ 2 we obtain

∥fj∥ ≤ dCα(1 + c)(1 + d(j,X)/2)−α+d+1, (2.123)

where c is a constant with
∑

r>R(1 + r)−α+d ≤ cR−α+d+1. Thus supj ∥fj∥
decays superpolynomially with d(j,X).

iii) =⇒ ii). Suppose F = ∂f for some 1-chain f confined on X. By Lemma

2.7.1 above, we may assume that the entries of f vanish outside X. Let Y ⊂ Zd

be a finite region and let A ∈ AY be arbitrary. Since f is a chain we have

∥[fj, A]∥ ≤ ∥A∥h(d(j, A)) for some superpolynomially decaying h. Summing

these over all j ∈ X we find that F is h-confined on X.

Recall that every F ∈ Dal has ∥FX∥ ≤ h(diam(X)) for some superpolynomially

decreasing h. For such a derivation we have

∥F(A)∥ ≤ C| supp(A)|∥A∥ (2.124)

for any strictly local observable A, where C = d
∑

R>0R
dh(R). By integrating

this bound one can see that it continues to hold when F is replaced by an LGA

α.

Lemma 2.7.5. Let F : Aal → Aal be a linear map that satisfies the bound

(2.124). Suppose F is h2-confined on a region X. If A is an observable that

is h1-confined at a site j then ∥F (A)∥ is bounded by a superpolynomially de-

creasing function of d(j,X) that depends only on h1, h2, and ∥A∥.

Remark 2.7.1. If F is trace-preserving then this implies that for any p-chain

f, F (f) is a p-chain that is confined on X if F is.
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Proof. For any site ℓ and any R > 0 we have∑
k∈Bℓ(r)c

h2(d(ℓ, k)) ≤
∑
R>r

(2R)dh2(R) := h3(r), (2.125)

where evidently h3 decays superpolynomially if h2 does. It follows that for any

bounded set Y ⊂ Zd we have∑
k∈X

h2(d(k, Y )) ≤ |Y |h3(d(X, Y )). (2.126)

Since A is h1-confined at j we have ∥A− trBj(r)cA∥ ≤ 2h1(r). Defining Ar :=

trBj(r)cA− trBj(r−1)cA for r ≥ 1 and A0 := tr{j}cA− tr(A)1 we have

∥Ar∥ = ∥trBj(r)c(A− trBj(r−1)cA)∥

≤ 2h1(r − 1), (2.127)

for r ≥ 1 while ∥A0∥ ≤ 2∥A∥. Writing R := d(j,X), we have

∥F(A)∥ ≤
∑
r≥0

∥F(Ar)∥

≤ ∥F(A0)∥+
∑

1≤r<R

∥F(Ar)∥+
∑
r≥R

∥F(Ar)∥

≤ h2(R)∥A∥+
∑

1≤r<R

∑
k∈A

h3(d(k,Bj(r)))∥Ar∥+
∑
r≥R

C(2r)dh1(r − 1)

≤ h2(R)∥A∥+
∑

1≤r<R

(2r)dh1(r − 1)h3(R− r) +
∑
r≥R

C(2r)dh1(r − 1),

(2.128)

where we used (2.126) in the last line.

Proof of Proposition 2.3.1. The proofs involving a ∈ Cp for some p ≥ 0 will

need to be split into cases according to whether p = 0 or p > 0, i.e. whether

a is a derivation or a chain.

i): When a ∈ C1 this follows from Lemma 2.7.1. When a ∈ Cp for p > 1 it

follows from Lemma 2.7.3.

ii): Consider first the case p > 0 and let f be a p-chain that is h1-confined on

X and h2-confined on X ′. Since Y is a stable intersection of X and X ′ there

is a c > 0 such that d(j, Y ) ≤ cmax(d(j,X), d(j,X ′)). For any j1 . . . , jk ∈ Zd
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and any 1 ≤ ℓ ≤ k we have

∥fj1,...,jk∥ ≤ min(h1(d(jℓ, X)), h2(d(jℓ, X
′)))

≤ g(max(d(jℓ, X), d(jℓ, X
′)))

≤ g(c−1d(j, Y )) (2.129)

where g = max(h1, h2). Next, if p = 0 (i.e. a is a derivation) the result follows

from Lemma 2.7.5 and the p = 1 case.

iii): Suppose first that a ∈ Cp and b ∈ Cq for p, q > 0. Then the bound

∥[aj1,...,jp , bjp+1,...,jp+q ]∥ ≤ 2∥aj1,...,jp∥∥bjp+1,...,jp+q∥ shows that ∥{a, b}j1,...,jp+q∥ de-
cays superpolynomially with both d(ji, X) and d(ji, X

′)) for any 1 ≤ i ≤ p+q,

and so by part i) it decays polynomially with d(ji, Y ).

Next, suppose p = 0 and q > 0. Then by Lemma 2.7.5 and Proposition

D.4 in [KS22], ∥{a, b}j1...,jq∥ decays superpolynomially with both d(ji, X) and

d(ji, X
′)) for any 1 ≤ i ≤ q, so again by part i) we are done.

Finally if p = q = 0 then the result follows from the p = 0, q = 1 case together

with Lemma 2.7.4.

Proposition 2.3.2 now follows easily from Proposition 2.3.1.

Proof of Proposition 2.3.2. The fact that α−1dα is smoothly confined on X

follows from the explicit expression (2.21). The second fact follows from the

expression

α(F)− F =

∫ 1

0

αs(ι ∂
∂s
G(F))ds. (2.130)

By Proposition 2.3.1 the integrand is confined on X, so α(F) − F is confined

there too. Differentiating the equation (2.130) and using the fact that α−1dα

and G are confined on X, together with Proposition 2.3.1, shows that the

partial derivatives of α(F)− F are also confined on X.

We now move on to proving Proposition 2.3.3.

Lemma 2.7.6. Suppose F ∈ Dal is h-confined on a bounded set X ⊂ Zd. Then
the sum A :=

∑
Z F

Z is absolutely convergent in Aal and for any j ∈ X we

have ∥A∥brj,α ≤ (1 + diam(X))α(4d + Cα∥F∥2α+d) for some constants Cα that

depend only on α and h.
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Proof. From the proof of Lemma 2.7.4 we have constants C ′
α depending only

on h and F such that

∥FZ∥ ≤ C ′
α(1 + diam(Z))−α(1 + d(X,Z))−α. (2.131)

In fact, from the proof of Lemma 2.7.4, we see that these constants are of the

form C ′
α = 4d + Cα∥F∥2α+d for some constants Cα depending only on h.

For any j ∈ X we have an inclusion X ⊂ Bj(R), where we denoted R =

diam(X) for brevity. Therefore

∥FZ∥ ≤ C ′
α(1 + diam(Z))−α(1 + d(Z,X))−α

≤ C ′
α(1 + diam(Z) + d(Z,X))−α

≤ C ′
α(1 + diam(Z) + max(0, d(j, Z)−R))−α

≤ (1 +R)αC ′
α(1 + diam(Z) + d(j, Z))−α. (2.132)

From this bound, and the fact that for sufficiently large α we have
∑

X(1 +

diam(X∪{j})−α <∞ (the sum being over all bricks X) it follows that
∑

Z F
Z

is absolutely convergent in Aal. Furthermore,

∥AZ∥(1 + diam({j} ∪ Z))α = ∥FZ∥(1 + diam({j} ∪ Z))α ≤ C ′
α(1 + diam(X))α.

(2.133)

We are now ready to prove Proposition 2.3.3.

Proof of Proposition 2.3.3. Suppose F = adA for an antiselfadjointA ∈ Ω•(M,Aal),

and let X = {0} ⊂ Zd. Regarding A as a 1-chain f with fj equal to A if j = 0

and 0 otherwise and applying Proposition 2.3.1 i) we find that F is smoothly

confined on X.

Conversely, suppose F is smoothly confined on F. Since this is a local statement

we may assume without loss that M = Rn. By Lemma 2.7.6, for each x ∈ Rn

and each multi-index µ the sum Aµ(x) :=
∑

Z ∂
µFZ ∈ Aal is well-defined and

for any µ, α, j the seminorm ∥Aµ(x)∥j,α is a continuous function of x.

To show that A ∈ C∞(U,Aal) it suffices to show that for any µ and any

0 ≤ i ≤ n the equation ∂iAµ = Aµ+i holds in C∞(U,Aal). For any brick Z
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and any µ the expression (∂µF)Z = ∂µ(FZ) is a smooth function Rn → AZ ,

and so for any x ∈ Rn, 1 ≤ i ≤ n, and h > 0 we have∥∥∥∥∂µFZ(x+ hei)− ∂µFZ(x)

h
− ∂µ+iFZ(x)

∥∥∥∥ ≤ 1

h

∫ h

h0=0

dh0∥∂µ+iFZ(x+ h0ei)− ∂µ+iFZ(x)∥

≤ sup
0≤h0≤h

∥∂µ+iFZ(x+ h0ei)− ∂µ+iFZ(x)∥

≤ h sup
0≤h0≤h

∥∂µ+2iFZ(x+ h0ei)∥,

(2.134)

and so for any j ∈ Zd we have∥∥∥∥Aµ(x+ hei)− Aµ(x)

h
− Aµ+i

∥∥∥∥br
j,α

≤ h sup
0≤h0≤h

∥Aµ+2i(x+ h0ei)∥brj,α , (2.135)

which approaches 0 as h→ 0.

We conclude this section with a lemma which we will often use to create

derivations that interpolate on the lattice between one derivation and another.

Lemma 2.7.7. Suppose ψ is a gapped family of states on M that is parallel

with respect to both G1 ∈ Ω1(M,Dal) and G2 ∈ Ω1(M,Dal). Then for any

X ⊂ Zd there exists G3 ∈ Ω1(M,Dal) such that ψ is parallel with respect to

G3, and G3 (resp. FG3) smoothly interpolates between G1 (resp. FG1) on X and

G2 (resp. FG2)on X
c. If in addition G1 and G2 are both smoothly confined on

some Y ⊂ Zd, then G3 and FG3 are smoothly confined there too.

Proof. Since ψ is parallel with respect to both G1 and G2, their difference lies

in Ω1(M,Dψ
al). Define

G3 := G1 − ∂ resXc(hψ(G1 − G2)) (2.136)

= G2 − ∂ resX(h
ψ(G2 − G1)). (2.137)

Since resXc(hψ(G1 − G2)) (resp. resX(h
ψ(G2 − G1))) is smoothly confined on

X (resp. Xc), by Proposition 2.3.1 i) and ii), G3 interpolates between G1 on

X and G2 on Xc.

Next, we have

FG3 = FG1 − ∂ resXc DG(h
ψ(G1 − G2)) (2.138)

= FG2 − ∂ resX DG(h
ψ(G2 − G1)). (2.139)

By the same reasoning as above FG3−FG1 (resp. FG3−FG2) is smoothly confined

on Xc (resp. X).
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C h a p t e r 3

A MATHEMATICAL THEORY OF TOPOLOGICAL
INVARIANTS OF QUANTUM SPIN SYSTEMS

This Chapter is available as a preprint at

[AKY24] Adam Artymowicz, Anton Kapustin, and Bowen Yang. “A mathe-
matical theory of topological invariants of quantum spin systems”.
In: arXiv e-prints, arXiv:2410.19287 (Oct. 2024), arXiv:2410.19287.
doi: 10.48550/arXiv.2410.19287. arXiv: 2410.19287 [math-ph].

3.1 Introduction

The study of gapped phases of quantum matter at zero temperature is an

important area of theoretical physics. Much conceptual progress has been

made by assuming that gapped phases can be described by topological quan-

tum field theory (TQFT). For example, the celebrated Quantum Hall Effect

is captured by Chern-Simons field theory. However, the precise relation be-

tween gapped phases of matter and TQFTs is not understood. Recently, new

mathematically rigorous approaches to classifying gapped phases of matter

have been developed (see [Oga19b; Oga19a; BO20; KSY21] for the case of

one-dimensional systems, [Oga21; Sop21; KS20; AKS24; BBR24; Bac+24]

for the case of two-dimensional systems, and [KS22] for systems in an arbi-

trary number of dimensions). They enable one to assign indices to gapped

states of infinite-volume quantum systems invariant under symmetries. The

main property of these indices, also referred to as topological invariants, is

that they do not vary along suitably-defined continuous paths in the space of

states. In some cases, the indices can be related to physical quantities, such

as the zero-temperature Hall conductance, thereby explaining the robustness

of the latter.

The methods of [KS20; KS22; AKS24; BBR24] apply to arbitrary gapped

states of infinite-volume quantum spin systems with rapidly decaying inter-

actions and employ C∗-algebraic techniques, some well-established and some

relatively new. The construction of topological invariants in [KS22; AKS24]

also uses some algebraic and geometric ingredients . The algebraic ingredi-
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ent is a pointed (or curved) Differential Graded Lie Algebra (DGLA) and an

associated Maurer-Cartan equation. The geometric ingredient is a collection

of conical subsets of the Euclidean space triangulating the sphere at infinity.

The appearance of these ingredients in the context of quantum statistical me-

chanics has not been motivated, and consequently the mathematical meaning

of the invariants remains obscure.

The primary goal of this paper is provide a proper mathematical framework

for the constructions of [KS22; AKS24] and to interpret topological invariants

of gapped states as lattice analogs of ’t Hooft anomalies in Quantum Field

Theory. The secondary goal is to generalize the construction in various direc-

tions. In particular, we show how to define topological invariants of lattice

spin systems confined to well-behaved subsets of the lattice. This generaliza-

tion makes explicit that the invariants take values in a vector space which is

determined by the asymptotic geometry of the subset.

While our work concerns quantum lattice systems, we take inspiration from

Quantum Field Theory (QFT). These two subjects are connected via the bulk-

boundary correspondence. One aspect of this conjectural correspondence is

that topological invariants of gapped states with symmetries are related to ’t

Hooft anomalies of symmetries of the boundary field theory.1 It is usually said

that ’t Hooft anomalies are obstructions to gauging a global symmetry of a

QFT [t H80]. A possible mathematical interpretation of this statement is that

an ’t Hooft anomaly is an obstruction to defining a local action of the group of

gauge transformations on the algebra of local observables of a QFT. Assuming

this interpretation, the presence of an ’t Hooft anomaly is a purely kinematic

statement which involves neither the Hamiltonian nor the vacuum state of the

field theory. It is not clear if conventional markers of ’t Hooft anomalies, such

as anomalous Ward identities for vacuum correlators of currents, are implied

by a kinematic statement. Proving or disproving this is currently out of reach

because of gaps in the mathematical foundations of QFT. The mathematical

theory of quantum lattice systems, on the other hand, is sufficiently mature

and enables us to address the problem of ’t Hooft anomalies from the bulk side

of the bulk-boundary correspondence. In this paper we show that topological

invariants of gapped states of lattice systems, such as the zero-temperature

Hall conductance, can be interpreted as obstructions to promoting a symmetry

1This assumes, of course, that a field-theoretic description of boundary degrees of free-
dom exists, which is far from obvious.
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of a gapped state to a gauge symmetry. Dynamics enters this statement only

though the state.

The main novelty of the paper is a new formulation of locality on a lattice.

Building on ideas introduced in [KS20; KS22; AKS24], we define for any (pos-

sibly unbounded) region of the lattice a space of derivations that are approxi-

mately localized on that region. For sufficiently regular regions, we show that

these spaces behave as expected under natural operations like the commuta-

tor. To combine them into a single geometric object we show that they form

a cosheaf on a certain site, i.e. a category with a Grothendieck topology. The

utility of Grothendieck topologies in describing spaces of functions with a pre-

scribed asymptotic behavior is well-known to analysts, see e.g. [KS01; GS16],

and here we apply the same idea in a non-commutative context. We call the

resulting global geometric object a local Lie algebra. An on-site action of a

Lie group on a lattice system yields a representation of a certain local Lie

algebra by derivations, and we show that the invariants defined in [KS22] can

be phrased as purely algebraic invariants of this representation. Namely, an

obstruction exists to defining a representation which acts by state-preserving

derivations, and this obstruction takes value in the homology of a certain

DGLA associated naturally to the local Lie algebra of state-preserving deriva-

tions. The invariants defined in [KS22] then arise from a natural pairing of this

homology with the Čech cohomology of the sphere at infinity. Aside from clar-

ifying their mathematical meaning, this also shows that the invariants defined

in [KS22] do not depend on certain choices present in their construction.

The content of the paper is as follows. In Section 3.2 we axiomatize the notion

of an infinitesimal local symmetry by defining local Lie algebras abstractly

in terms of cosheaves on a site. We also introduce the Čech functor which

assigns a DGLAs to a local Lie algebra, and will serve as the main link between

lattice geometry and algebraic topology. In Section 3.3 we turn to infinitesimal

symmetries on the lattice, introducing the space of derivations approximately

localized on a region, and prove the main properties of these spaces, some

of which hold only for sufficiently regular regions. In Section 3.4 we identify

a suitable category of such regular regions in Rn, the category CSn of fuzzy

semilinear sets which comes with a natural Grothendieck topology. In Section

3.5 we show that infinitesimal symmetries of any gapped state ψ of a quantum

lattice system on Rn can be described by a local Lie algebra Dψ
al over CSn.
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We also study gapped states invariant under an action of a compact Lie group

G and define a G-equivariant analog of Dψ
al. In Section 3.6 we construct

invariants of G-invariant gapped states. The construction is along the lines of

[KS22; AKS24] and uses an inhomogeneous Maurer-Cartan equation. We show

that these invariants are obstructions for promoting the symmetry G to a local

symmetry of the state ψ. We also explain how to generalize the construction

of invariants to lattice systems defined on sufficiently nice (asymptotically

conical) subsets of Rn and show that their invariants take values in a space

which depends on the asymptotic geometry of the subset. This goes beyond

what one can access using the TQFT heuristics. In Section 3.7 we isolate some

proofs necessary for Section 3.3, and Section 3.8 develops some properties of

the inhomogeneous Maurer-Cartan equation.

We are grateful to Owen Gwilliam, Ezra Getzler, and Bas Janssens for discus-

sions. The work of A. A. and A. K. was supported by the Simons Investigator

Award. B. Y. would like to thank Yu-An Chen and Peking University for

hospitality during the final stages of this work. A. K. would like to thank Yau

Mathematical Sciences Center, Tsinghua University, for the same.

3.2 Local Lie algebras

Locality and (pre-)cosheaves

Let M be a (compact) manifold and Open(M) be the category whose objects

are open subsets of M , and the set of morphisms from an open U to an open

V is the singleton or the empty set depending on whether U ⊆ V or U ⊈ V .

Composition of morphisms is uniquely defined. A pre-cosheaf F on M with

values in a category C is a functor F : Open(M) → C. Thus for every inclusion

of opens U ⊆ V one is given a co-restriction morphism eV U : F(U) → F(V )

such that for any three opens U ⊆ V ⊆ W one has eWV ◦ eV U = eWU .

Pre-cosheaves (as well as pre-sheaves, which are functors from the opposite

category of Open(M) to C) can be used to describe local data onM . This form

of locality is rather weak, since it does not require F(U ∪ V ) to be expressible

through F(U) and F(V ).

As an example, consider the Lie algebra of gauge transformations, i.e. the

Lie algebra G(M) := C∞(M, g) of smooth functions on M with values in a

finite-dimensional Lie algebra g. It is a global object attached to M . To

“localize” it, for any open U ⊆ M we define the Lie algebra G(U) to be the
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space of smooth g-valued functions on M whose closed support is contained

in U . In particular, G(∅) = 0. For any inclusion of opens U ⊆ V we have a

homomorphism of Lie algebras ιV U : G(U) → G(V ) such that the Lie algebras

G(U) assemble into a pre-cosheaf G of Lie algebras on M . This is a coflasque

pre-cosheaf, i.e. all its structure maps ιV U are injective.2

Continuing with the example, for any two opens U, V the following sequence

is exact:

G(U ∩ V ) → G(U)⊕G(V ) → G(U ∪ V ) → 0. (3.1)

Here the first arrow is ιU,U∩V ⊕ (−ιV,U∩V ) and the second arrow is ιU∪V,U ⊕
ιU∪V,V . Exactness follows from the existence of a partition of unity for the

cover U = {U, V } of U ∪ V . In words, the exactness of the sequence (3.1)

means that any element of G(U ∪V ) can be decomposed as a sum of elements

of sub-algebras attached to U and V modulo ambiguities which take values in

the sub-algebra attached to U ∩ V .

More generally, for a compact M the existence of a partition of unity implies

that for any collection of opens Ui, i ∈ I, the following sequence is exact:

⊕i<jG(Ui ∩ Uj) → ⊕iG(Ui) → G(∪iUi) → 0. (3.2)

By definition, this means that the pre-cosheaf of vector spaces G is a cosheaf

of vector spaces. The cosheaf property is a compatibility of the pre-cosheaf

with the notions of intersection and union of opens and expresses a stronger

form of locality.

Note that the maps in the above exact sequences are not Lie algebra ho-

momorphisms. Hence G is not a cosheaf of Lie algebras. Nevertheless, the

following additional property of G can be regarded as a form of locality of

the Lie bracket: for any U, V, [G(U),G(V )] ⊆ G(U ∩ V ). We will call this

“Property I”, where “I” stands for “intersection”. In particular, elements of

G(M) which are supported on non-intersecting opens U and V commute.

Symmetries of gapped states of quantum lattice spin systems are typically

local only approximately. To phrase locality of symmetries in lattice systems

in a similar language, one needs to replace the set Open(M) of open subsets

2The terminology comes from sheaf theory, where a pre-sheaf F : Open(M)opp → C is
called flasque if for any U ⊆ V the restriction morphism F(V ) → F(U) is a surjection.
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of M with a more general structure which admits the notions of intersection,

union, and cover.

The first thing to note is that the category Open(M) is rather special: its

objects form a pre-ordered set (i.e. the set of objects carries a relation ⊆ which

is reflexive and transitive), and the category structure is determined by the

pre-order. The relation ⊆ is also anti-symmetric: U ⊆ V and V ⊆ U implies

U = V . In other words, Open(M) is a poset. In general, we will not require the

pre-order to be anti-symmetric. From the categorical viewpoint, U ⊆ V and

V ⊆ U means that U and V are isomorphic objects of the category Open(M),

and as a general rule, it is not advisable to identify isomorphic objects.

For any pre-ordered set (X,≤) there is a natural notion of intersection and

union. The intersection of U, V ∈ X can be defined as the greatest lower bound

(or meet) of both U and V , i.e. a W ∈ X such that W ≤ U , W ≤ V , and for

any W ′ ≤ U, V we have W ′ ≤ W . The meet of U and V is denoted U ∧ V .

Similarly, the union of U and V can be defined as the smallest upper bound

(or join) of both U and V . It is denoted U ∨ V . For a general pre-ordered

set, the meet and join may not exist for all pairs of objects. If they exist,

they are unique up to isomorphism. We will assume that (X,≤) is such that

U ∧ V and U ∨ V exist for all U, V ∈ X.3 The existence of all pairwise meets

and joins implies the existence of all finite meets and joins. In the case of

the pre-ordered set Open(M) arbitrary (i.e. not necessarily finite) joins make

sense.

Finally, to define covers of elements of X, let us assume that U ∧ (V ∨W ) ≤
(U ∧ V ) ∨ (U ∧W ) for all U, V,W ∈ X.4 We will say that X is a distributive

pre-ordered set. This condition is certainly satisfied for Open(M). We say

that a collection U = {Ui}i∈I of elements of X covers A ∈ X iff Ui ≤ A for

all i ∈ I and A ≤
∨
i∈I Ui. This definition ensures that if U covers A, then for

any B ≤ A the collection U ∧B = {Ui ∧B}i∈I covers B.

In the case of the pre-ordered set Open(M), the standard topological definition

of a cover allows I to be infinite. In general, if X admits only finite joins, I

needs to be finite. Also, we may or may not allow I to be empty. This

3If we turn X into a poset by identifying isomorphic objects, then this means that the
poset is a lattice in the sense of order theory.

4The opposite relation is automatic, so this condition ensures that U ∧ (V ∨W ) ≃ (U ∧
V )∨ (U ∧W ) for all U, V,W ∈ X. This is equivalent to saying that the poset corresponding
to X is a distributive lattice.
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possibility only arises when A is the smallest element of X, i.e. A ≤ U for any

U ∈ X. In the case of the pre-ordered set Open(M), the smallest element is

the empty set ∅, and the standard choice is to allow the empty cover of the

empty set. For a general pre-ordered set, it is up to us whether to allow I to

be empty.

From a categorical perspective, this notion of a cover equips any distributive

pre-ordered set (X,≤) admitting pairwise meets and joins with a Grothendieck

topology, thus making it into a s ite [MM94]. Apart from the option of allowing

the labeling set I to be empty, this Grothendieck topology is canonical.

For any W ∈ X we may consider the subset XW = {U ∈ X | U ≤ W} with

the pre-order inherited from (X,≤). It is a distributive pre-ordered set in its

own right. When equipped with its canonical Grothendieck topology, it can

be regarded as a sub-site of the site associated to (X,≤).

Given any distributive pre-ordered set (X,≤), we can define the notion of a

pre-cosheaf of vector spaces, a pre-cosheaf of Lie algebras, a cosheaf of vector

spaces, and a coflasque pre-cosheaf of Lie algebras with Property I exactly as

before, i.e. by mechanically replacing ∪ with ∨ and ∩ with ∧. Motivated by

the above example, we introduce the following definition.

Definition 3.2.1. A local Lie algebra over (X,≤) is a coflasque pre-cosheaf

of Lie algebras with Property I which is also a cosheaf of vector spaces over

the corresponding site. A morphism of local Lie algebras is a morphism of the

underlying pre-cosheaves of Lie algebras.

Remark 3.2.1. Let F be a local Lie algebra. Then for any U ≤ V the Lie

algebra F(U) is an ideal in F(V ). One can equivalently define a local Lie algebra

as a pre-cosheaf of Lie algebras over (X,≤) which is a cosheaf of vector spaces

and such that all co-restriction maps are inclusions of Lie ideals.

Remark 3.2.2. In this paper all Lie algebras will be Fréchet-Lie algebras and

all morphisms will be continuous. We define a local Fréchet-Lie algebra over

(X,≤) to be a coflasque pre-cosheaf of Fréchet-Lie algebras with Property I

which is also a cosheaf of vector spaces.

The following Lemma will be useful in future sections to check the cosheaf

property:
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Lemma 3.2.1. Let F be a pre-cosheaf of vector spaces on a distributive lattice

X, with co-restriction maps ιU,V : U → V . Then F is a cosheaf on X (with the

topology of finite covers) iff for any U, V ∈ X the following sequence is exact:

F(U ∧ V )
α−→ F(U)⊕ F(V )

β−→ F(U ∨ V ) → 0, (3.3)

where α = ιU∧V,U − ιU∧V,V and β = ιU,U∨V + ιV,U∨V .

The following proof is essentially a restatement of the proof of Proposition 1.3

in [Bre68], adapted to the site L:

Proof. We must show that for any U ∈ X and every covering U1∨. . .∨Un = U ,

the sequence of vector spaces⊕
i<j

F(Ui ∧ Uj)
α−→
⊕
i

F(Ui)
β−→ F(∨iUi) → 0 (3.4)

is exact, where α =
∑

i<j ιUi∧Uj ,Ui
− ιUi∧Uj ,Uj

and β =
∑

i ιUi,U . Exactness of

the last three terms follows from an easy induction and the associativity of the

join operation. For exactness of the first three terms of the sequence, we also

proceed by induction: suppose the result holds for all covers of cardinality n−1,

and let U1, . . . , Un ∈ L be a cover of U . Suppose (s1, . . . , sn) ∈
⊕n

i=1 F(Ui) lies

in the kernel of β. Let V :=
∨n−1
i=1 Ui. An application of (3.3) with Un and V

shows that sn = ιUn∩V,U(t) for some t ∈ V ∧Un = (U1 ∧Un)∨ ...∨ (Un−1 ∨Un),
and by right-exactness of (3.4) this shows that sn =

∑n−1
i=1 ιUi∩Un,Un(vi) for

some vi ∈ F(Ui). Finally we write

(s1, . . . , sn) = (s1 + w1, . . . , sn−1 + wn−1, 0) + (−w1, . . . ,−wn−1, sn),

where wi := ιUi∩Un,Un(vi). Both terms above the first term lies in the image of α

by the inductive hypothesis, while the second term equals
∑n−1

i=1 ιUi∧Un,Un(vi)−
ιUi∧Un,Ui

(vi), which evidently is also in the image of α.

DGLA attached to a cover

Let X be a distributive pre-ordered set. Let W ∈ X and U = {Ui}i∈I be a

cover of W . Let F be a pre-cosheaf of vector spaces over X. The Čech chain

complex C•(U,W ;F) is defined by

Cn(U,W ;F) = ⊕i0<...<inF(Ui0 ∧ . . . ∧ Uin), n ≥ 0,
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where some linear order on I has been chosen. The differential is the Čech dif-

ferential ∂ : Cn+1 → Cn given by ∂ =
∑n

j=0(−1)jλj, where λj is the canonical

map

F(Ui0 ∧ . . . ∧ Uin) → F(Ui0 ∧ . . . Ûij . . . ∧ Uin).

Lemma 3.2.2. If F is a coflasque cosheaf of vector spaces over X, the homol-

ogy of the Čech complex is 0 for n > 0 and F(W ) for n = 0.

Proof. See [Bre68], Corollary 4.3. Note that [Bre68] uses the term “flabby”

instead of “coflasque”.

Let Caug(U,W ;F) = {C•(U,W ;F) → F(W )} be the augmented Čech complex.

Proposition 3.2.1. Let F be a local Lie algebra over X. Then for any W ∈ X

and any cover U of W the 1-shifted augmented Čech complex Caug
•+1(U,W ;F)

has a natural structure of a non-negatively graded acyclic DGLA.

Proof. Let U be a cover of W indexed by I. Let V be a vector space with

a basis ei, i ∈ I and let f i, i ∈ I, be the dual basis of V ∗. The 1-shifted

augmented Čech complex of F with respect to U is naturally identified with a

sub-complex of the DGLA (F(W )⊗Λ•V, ∂), where ∂ is contraction with
∑

i f
i.

It is easy to check that this sub-complex is closed with respect to the graded

Lie bracket thanks to Property I. By Lemma 3.2.2, the resulting DGLA is

acyclic.

Covers of W ∈ X form a category whose morphisms are refinements. A

refinement of a cover U = {Ui}i∈I to a cover V = {Vj}j∈J is a map ϕ : J → I

such that Vj ≤ Uϕ(j). Refinements are composed in an obvious way.

Proposition 3.2.2. For a fixed W ∈ X, the map which sends a local Lie

algebra F and a cover U of W to the DGLA Caug
•+1(U,W ;F) is functorial in both

F and U.

Proof. Functoriality in F is clear. Functoriality in U is written Čech component-

wise for pV ∈ Ck(V,W ;F):

(ϕ∗p
V
k )i0,...,ik :=

∑
j0∈ϕ−1(i0)

· · ·
∑

jk∈ϕ−1(ik)

(pVk )j0,...,jk ,

for i0 < i2 < · · · < ik.
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We will call Caug
•+1(−,W ;−) the Čech functor. We will need some variants

of the Čech functor. First, we can define a graded local Lie algebra over a

distributive pre-ordered set (X,≤) in an obvious manner. The construction

of the acyclic DGLA Caug
•+1(U,W ;F) works in this case as well, except that it

may have components in negative degrees.

Second, we define a pointed DGLA as a DGLA equipped with a distinguished

central cycle of degree −2 (which we call the curvature). A morphism of

pointed DGLAs is a DGLAmorphism which preserves the distinguished central

cycle.5 We say that a graded local Lie algebra F over (X,≤) with a terminal

object T ∈ X is pointed if it is equipped with a distinguished central element

B ∈ F(T ) of degree −2. Morphisms in the category of pointed graded local Lie

algebras are required to preserve the distinguished element. Then the DGLA

Caug
•+1(U, T ;F) is an acyclic pointed DGLA, the distinguished central cycle being

B ∈ Caug
−1 (U, T ;F). Of course, since the DGLA is acyclic, this central cycle is

exact. The construction of a pointed DGLA from a pointed graded local Lie

algebra and a cover of T is functorial in both arguments.

3.3 Quantum lattice systems

Observables and derivations

We use the ℓ∞ metric on Rn, i. e. d(x, y) := maxi=1,...,n |xi−yi|. For any U, V ⊂
Rn we write diam(U) := supx,y∈U d(x, y) and d(U, V ) := infx∈U,y∈V d(x, y).

They take values in extended non-negative reals [0,∞]. Thus diam(∅) = 0

and d(U,∅) = ∞ for any U ⊂ Rn. For a nonempty set U and r ≥ 0 we define

U r := {x ∈ Rn : d(x, U) ≤ r} while we set ∅r = ∅.

A quantum lattice system consists of a countable subset Λ ⊂ Rn (“the lattice”)

and a finite-dimensional complex Hilbert space Vj for every j ∈ Λ. We make

the following assumption on the lattice system6: there is a CΛ > 0 such that

the number of points of Λ in any hypercube of diameter d is bounded by

CΛ(d+ 1)n.

For any bounded nonempty X ⊂ Rn let A (X) :=
⊗

j∈X∩ΛHomC(Vj, Vj). For

5The category of pointed DGLAs as defined here is a full subcategory of the category
of curved DGLAs as defined in [CLM14]. There, for a curved DGLA with curvature B, B is
not required to be central and the derivation ∂ satisfies ∂2 = adB.

6In [KS22] Λ was assumed to be a Delone set, i.e. it was required to be uniformly filling
and uniformly discrete. These assumptions were imposed on physical grounds. All the
results proved in [KS22] hold under weaker assumptions adopted in this paper. In [AKS24]
Λ was taken to be Zn for simplicity.
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any X ⊂ Y there is an inclusion A (X) ↪→ A (Y ) and the algebras A (X)

form a direct system with respect to these inclusions. We extend this direct

system to include the empty set by setting A (∅) = C and letting the inclusion

A (∅) ↪→ A (X) take α 7→ α1. Each A (X) is a finite-dimensional C∗-algebra

with the operator norm, and the inclusions A (X) ↪→ A (Y ) preserve this

norm. The normed *-algebra of local observables is

Aℓ = lim−→
X

A (X).

The algebra of quasi-local observables A is the norm-completion of Aℓ; it is a

C∗-algebra.

For any bounded X ⊂ Rn, define the normalized trace tr : A (X) → C as

tr(A) = tr(A)/
√
dim(A (X)). For any bounded X ⊂ Y the partial trace

trXc : A (Y ) → A (X) is uniquely specified by the condition trXc(A ⊗ B) =
tr(A)B for any A ∈ A (Y \X) and B ∈ A (X). Besides forming a direct

system with respect to inclusions, the spaces A (X) are also an inverse system

with respect to the partial trace. tr extends to a normalized positive linear

functional on A , i.e. a state. We say that A ∈ A is traceless if tr(A) = 0.

The space of traceless anti-hermitian elements of A (X) will be denoted dl(X).

dl(X) is a real Lie algebra with respect to the commutator. The Lie algebras

dl(X) form a direct system over the directed set of bounded subsets of Rn,

and its limit will be denoted dl. Equivalently, dl is the Lie algebra of traceless

anti-hermitian elements of Aℓ. Note that Aℓ = C1⊕ (dl ⊗ C).

Definition 3.3.1. A brick in Rn is a non-empty subset of the form

Y = {(x1, . . . , xn) | ℓi ≤ xi ≤ mi, i = 1, . . . , n}, (3.5)

where (k1, . . . , kn), (ℓ1, . . . , ℓn), and (m1, . . . ,mn) are n-tuples of integers. We

write Bn for the set of all bricks in Rn.

The set of bricks exhausts the collection of bounded subsets of Rn in the sense

that any bounded subset is contained in a brick. In addition, the set of bricks

satisfies the following regularity property:

Lemma 3.3.1. For any j ∈ Rn we have∑
Y ∈Bn

(1 + diam(Y ) + d(Y, j))−2n−2 ≤ π44n(n+ 1)2

36
.
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Proof. Any pair of points x, y ∈ Zn specifies a brick with x and y on opposing

corners, and any brick can be specified this way (not uniquely). With X the

brick corresponding to x and y it is easy to see that max(d(x, j), d(y, j)) ≤
diam(X)+d(X, j), and so (1+d(x, j))(1+d(y, j)) ≤ (1+diam(X)+d(X, j))2.

Thus we have∑
Y ∈Bn

(1 + diam(Y ) + d(Y, j))−2n−2 ≤
∑
x,y∈Zn

(1 + d(x, j))−n−1(1 + d(y, j))−n−1

=

(∑
x∈Zn

(1 + d(x, j))−n−1

)2

,

and it remains only to bound the above sum. Let f(k) := (1 + k)−n−1 and

g(k) := #(Zn ∩Bk(j)) ≤ (1 + 2k)n. Using summation by parts we have∑
j∈Λ

(1 + d(x, j))−n−1 ≤
∑
k≥0

f(k)(g(k + 1)− g(k))

= lim
k→∞

f(k)g(k)−
∑
k≥0

g(k)(f(k + 1)− f(k)).

It is easy to check that f(k)g(k) → 0 and that −(f(k + 1) − f(k)) ≤ (n +

1)(1 + k)−n−2, and so∑
j∈Λ

(1 + d(x, j))−n−1 ≤ 2n(n+ 1)
∑
k≥0

(1 + k)−2

≤ π22n(n+ 1)

6

which proves the Lemma.

For any brick Y we define the following subspace of dl(Y ):

dl
Y := {A ∈ dl(Y ) | trXc(A) = 0 for any brick X ⊊ Y }.

Each dl(Y ) decomposes as a direct sum dl(Y ) =
⊕

X⊆Y dl
X over bricks con-

tained in Y , and for any brick X ⊆ Y the partial trace trY \Xc is the projection

onto
⊕

Z⊆X dl
Z ⊆ dl(Y ). Intuitively, dl

Y consists of elements of dl(Y ) which

are not localized on any brick properly contained in Y .

Derivations of A which appear in the physical context are typically only

densely defined and have the form

F : A 7→
∑
Y ∈Bn

[FY ,A],
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where FY ∈ dl
Y . We are now going to define for every U ⊂ Rn a real Lie

algebra Dal(U) which consists of derivations approximately localized on U

and such that all Dal(U) have a common dense domain. Moreover, they form

a pre-cosheaf of Lie algebras over a certain category of subsets of Rn.

Definition 3.3.2. For any element F = {FY }Y ∈Bn of
∏

Y ∈Bn
dl
Y and every

U ⊂ Rn we let

∥F∥U,k := sup
Y ∈Bn

∥FY ∥(1 + diam(Y ) + d(U, Y ))k (3.6)

and define Dal(U) ⊂
∏

Y ∈Bn
dl
Y as the set of elements F with ∥F∥U,k < ∞ for

all k ≥ 0.

If U is empty, then for k > 0 ∥F∥U,k <∞ if and only if FY = 0 for all Y ∈ Bn.
Thus Dal(∅) = 0. We also denote Dal(Rn) = Dal.

It is easy to see that (3.6) is a norm on Dal(U) for each k ≥ 0. We endow

Dal(U) with the locally convex topology given by the norms (3.6) ranging over

all k ≥ 0. Recall that a topological vector space is called a Fréchet space if

it is Hausdorff, and if its topology can be generated by a countable family of

seminorms with respect to which it is complete.

Proposition 3.3.1. Dal(U) is a Fréchet space.

Proof. The Hausdorff property follows from the fact that if ∥F∥U,k = 0 for

any k ≥ 0 then F = 0. To show completeness, suppose {Fm}m∈N ⊂ Dal(U) is

Cauchy, i.e. that for any k ≥ 0 and any ϵ > 0 there is an N ∈ N such that

m,m′ ≥ N =⇒ ∥Fm − Fm′∥U,k < ϵ. For any fixed Y ∈ Bn this implies that

{FYn } is Cauchy in dl
Y (with the operator norm) and thus converges to a limit

FY . Let F := {FY }Y ∈Bn .

Fix k ∈ N and ϵ > 0. For every ℓ = 0, 1, 2, ..., choose Nℓ ∈ N so that

m,m′ ≥ Nℓ =⇒ ∥Fm − Fm′∥U,k < 2−ℓ−1ϵ. For any Y ∈ Bn, any m ≥ N1, and

any M > 1, we have

∥FYm − FY ∥ ≤ ∥FYm − FYN1
∥+

M−1∑
i=1

∥FYNi
− FYNi+1

∥+ ∥FYNM
− FY ∥

≤ ϵ(1 + diam(Y ) + d(U, Y ))−k + ∥FYNM
− FY ∥.
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Taking M → ∞ shows that ∥FYm− FY ∥(1 + diam(Y ) + d(U, Y ))k < ϵ. Since Y

was arbitrary, we have ∥Fm−F∥U,k < ϵ. Since k was arbitrary, {Fm} converges

to F in the topology of Dal(U).

Recall that for a nonempty U ⊂ Rn we write U r := {x ∈ Rn : d(x, U) ≤ r}.
The norms ∥ · ∥U,k obey the following dominance relation.

Lemma 3.3.2. Let U, V be subsets of the lattice and suppose that U ⊆ V r.

Then for any F ∈ Dal(U) we have

∥F∥V,k ≤ (r + 1)k∥F∥U,k. (3.7)

In particular, Dal(U) ⊆ Dal(V ) and the inclusion is continuous.

Proof. Let Y be any subset of the lattice. Then (3.7) follows from

1 + diam(Y ) + d(Y, V ) ≤ 1 + diam(Y ) + d(Y, V r) + r

≤ 1 + diam(Y ) + d(Y, U) + r

≤ (r + 1)(1 + diam(Y ) + d(Y, U)),

where in the second line we used the triangle inequality and in the third we

used U ⊆ V r.

The above Lemma shows that the space Dal(U) only depends on the asymp-

totic geometry of the region U in the following sense: if U ⊆ V r and V ⊆ U r

for some r ≥ 0 then Dal(U) = Dal(V ) (as subsets of
∏

Y dl
Y ) and are isomor-

phic as Fréchet spaces. In particular, for any non-empty bounded U ⊂ Rn,

the space Dal(U) coincides with Dal({0}).

To relate the spaces Dal(U) to the traditional C∗-algebraic picture we prove

the following:

Proposition 3.3.2. Suppose U ⊂ Rn is non-empty and bounded and let

F ∈ Dal(U). Then the sum
∑

X∈Bn
FX is absolutely convergent and defines

a continuous dense embedding of Dal(U) into the subspace of traceless anti-

hermitian elements of the algebra A .

Proof. We can assume without loss of generality that U = {0}. We have∑
Y ∈Bn

∥FY ∥ ≤ ∥F∥{0},2n+2

∑
Y ∈Bn

(1 + diam(Y ) + d(Y, 0))−2n−2,
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and by Lemma 3.3.1 the above sum is finite. This shows that the map

Dal({0}) → A is well-defined and continuous. Its image is dense in the space

of traceless anti-hermitian elements of A because it contains the dense sub-

space dl. Finally, to show that it is injective, writing A :=
∑

Y ∈Bn
FY we

have

FY = trY c(A)−
∑
X⊊Y

trXc(A)

and so A = 0 =⇒ FY = 0 for all Y ∈ Bn.

Definition 3.3.3. We let dal ⊂ A be the image of Dal({0}) under the embed-

ding of Prop. 3.3.2, with the Fréchet topology of Dal({0}).

In [KS22], the algebra Aaℓ of almost-local operators was defined as a subspace

of A where a countable family of norms similar to (3.6) takes finite values.

Here we equivalently define Aaℓ as the set of elements of A whose traceless

hermitian and anti-hermitian parts live in dal, topologized as Aaℓ = C1⊕(dal⊗
C).

Proposition 3.3.3. Aaℓ is a dense sub-algebra of A .

Proof. Aaℓ contains all local observables and these are dense in A . The fact

that Aaℓ is closed under multiplication is proven in [KS22].

In view of Prop. 3.3.2 it is natural to make the following definition.

Definition 3.3.4. An element F ∈ Dal is inner iff it is contained in Dal(U)

for some bounded U .

For any two bounded sets U, V , a local observable is strictly localized on both U

and V iff it is localized on their intersection, i.e. A (U)∩A (V ) = A (U ∩ V ).

An analogous relation for the spaces Dal(U) does not hold in general7, but

it does hold if we assume that U and V satisfy the following transversality

condition:

7Indeed, for any two bounded U, V the spaces Dal(U) and Dal(V ) coincide and are
nontrivial but if U and V are disjoint then Dal(U ∩ V ) = 0.
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Definition 3.3.5. Let U, V ⊆ Rn and C > 0. We say U and V are C-

transverse if

d(x, U ∩ V ) ≤ Cmax(d(x, U), d(x, V ))

for all x ∈ Rn.

We will say U and V are transverse if they are C-transverse for some C > 0.

Proposition 3.3.4. If U, V ⊆ Rn are C-transverse then

max(∥F∥U,k, ∥F∥V,k) ≤ ∥F∥U∩V,k ≤ (C + 1)kmax(∥F∥U,k, ∥F∥V,k) (3.8)

for all k > 0. In particular, Dal(U ∩ V ) is a topological pullback: it is the set

Dal(U)∩Dal(V ) with the topology of simultaneous convergence in Dal(U) and

Dal(V ).

Proof. The first inequality is true even without assuming transversality — it

follows from Lemma 3.3.2. For the second, let Z ∈ Bn and choose x∗, y∗ ∈ Z

so that d(x∗, U) = d(Z,U) and d(y∗, V ) = d(Z, V ). Then we have

d(Z,U ∩ V ) = inf
z∈Z

d(z, U ∩ V )

≤ C inf
z∈Z

max(d(z, U), d(z, V ))

≤ C inf
z∈Z

max(d(z, x∗) + d(x∗, U), d(z, y∗) + d(y∗, V ))

≤ C(diam(Z) + max(d(Z,U), d(Z, V )),

and thus

1 + diam(Z) + d(Z,U ∩ V ) ≤

≤ (C + 1)(1 + diam(Z) + max(d(Z,U), d(Z, V ))), (3.9)

which proves (3.8).

The next proposition relates Dal(U ∪ V ) with Dal(U) and Dal(V ) for any

U, V ⊆ Rn.

Proposition 3.3.5. For any U, V ⊂ Rn consider the sequence of vector spaces

Dal(U ∩ V )
α−→ Dal(U)⊕Dal(V )

β−→ Dal(U ∪ V ) → 0, (3.10)

where α(F) = (F,−F) and β(F,G) = F+ G.
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i) The sequence (3.10) admits a right splitting, i.e. a map γ : Dal(U ∪V ) →
Dal(U)⊕Dal(V ) with β ◦ γ = id. In particular, it is exact on the right.

ii) If U and V are transverse, then (3.10) is exact on the left.

Proof. i). For any Y ∈ Bn, define

χ(Y ) :=


1 if d(Y, U) < d(Y, V )

1/2 if d(Y, U) = d(Y, V )

0 if d(Y, U) > d(Y, V )

.

For any F ∈ Dal(U∪V ) define γ1(F) :=
∑

Y ∈Bn
χ(Y )FY , and γ2(F) = F−γ1(F).

Then it is not hard to show that ∥γ1(F)∥U,k ≤ ∥F∥U∪V,k and ∥γ2(F)∥V,k ≤
∥F∥U∪V,k and that γ = (γ1, γ2) is a right splitting of (3.10).

ii). Follows immediately from Proposition 3.3.4.

Next we will show how to endow Dal(U) with the Lie algebra structure.

Proposition 3.3.6. Let U, V ⊂ Rn. For any F ∈ Dal(U) and G ∈ Dal(V ) the

sum

[F,G]Z :=
∑

X,Y ∈Bn

[FX ,GY ]Z (3.11)

is absolutely convergent for every Z ∈ Bn. The resulting bracket [·, ·] satisfies
the Jacobi identity and

∥[F,G]∥U,k ≤ C3k∥F∥U,k+4n+4∥G∥V,k+4n+4 (3.12)

for some constant C > 0 that depends only on n.

To prove Proposition 3.3.6 we will need several lemmas. For any X, Y ∈ Bn,
define8 the join X ∨ Y ∈ Bn as the smallest brick that contains X and Y .

Lemma 3.3.3. For any X, Y ∈ Bn with X ∩ Y ̸= ∅ we have

diam(X ∨ Y ) ≤ diam(X) + diam(Y ) (3.13)

and for any z ∈ X ∨ Y we have

d(z,X) ≤ diam(Y ).

8This is well-defined since the intersection of an arbitrary number of bricks is either
empty or a brick, so X ∨ Y is the intersection of all bricks containing X and Y .
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Proof. Let πi : Rn → R be the projection onto the ith coordinate. The

following identites hold for any bricks X, Y ∈ Bn:

πi(X ∨ Y ) = πi(X) ∨ πi(Y ),

diam(X) = max
i=1,...n

diam(πi(X)),

d(X, Y ) = max
i=1,...n

d(πi(X), πi(Y )).

When n = 1 the results are clear. When n > 1 they follow from the n = 1

case via the above identities.

Lemma 3.3.4. Let X, Y, Z ∈ Bn and let F ∈ dl(X) and G ∈ dl(Y ). Then

[FX ,GY ]Z = 0 unless X ∩ Y ̸= ∅ and Z ⊆ X ∨ Y .

Proof. The requirement that X ∩ Y ̸= ∅ is clear, since FX and GY would

commute otherwise. Suppose Z ⊈ X ∨ Y . Then Z ′ := (X ∨ Y ) ∩ Z is a brick

that is strictly contained in Z, so [FX ,GY ]Z ∈ dl
Z ∩ dl(Z

′) = {0}.

We make the following definitions for the next lemma. For any U ⊂ Rn and

any brickX write d̃(X,U) := 1+diam(X)+d(X,U) and d̃(X) := 1+diam(X).

Lemma 3.3.5. For any U ⊂ Rn, Z ∈ Bn, and k ≥ 0 we have∑
X,Y ∈Bn
X∩Y ̸=∅
Z⊂X∨Y

d̃(X,U)−k−4n−4d̃(Y )−k−4n−4 ≤ π816n(n+ 1)43k

1296
d̃(Z,U)−k.

Proof. Let X, Y ∈ Bn with X ∩ Y ̸= ∅ and let Z ⊂ X ∨ Y be a brick. Pick

an arbitrary point w ∈ X ∩ Y . We have

d(Z,U) ≤ d(Z,w) + d(w,U)

≤ d(Z,w) + diam(X) + d(X,U)

≤ diam(X ∨ Y ) + diam(X) + d(X,U)

≤ 2 diam(X) + diam(Y ) + d(X,U),

and so, since by Lemma 3.3.3 diam(Z) ≤ diam(X∨Y ) ≤ diam(X)+diam(Y ),

we have

d̃(Z,U) ≤ 1 + 3 diam(X) + 2 diam(Y ) + d(X,U)

≤ 3(1 + diam(X) + d(X,U) + diam(Y ))

≤ 3(1 + diam(X) + d(X,U))(1 + diam(Y ))

= 3d̃(X,U)d̃(Y ). (3.14)
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It follows that for any k > 0 we have

d̃(Z,U)kd̃(X,U)−kd̃(Y )−k ≤ 3k

and so ∑
X,Y ∈Bn
X∩Y ̸=∅
Z⊂X∨Y

d̃(X,U)−k−4n−4d̃(Y )−k−4n−4 ≤

≤ 3kd̃(Z,U)−k
∑

X,Y ∈Bn
X∩Y ̸=∅
Z⊂X∨Y

d̃(X,U)−4n−4d̃(Y )−4n−4. (3.15)

It remains to bound the sum on the right-hand side. Fix an arbitrary z ∈ Z

and let X, Y ∈ Bn with X ∩ Y ̸= ∅ and Z ⊂ X ∨ Y . Then by the second

statement in Lemma 3.3.3 and the inequality 1 + a + b ≤ (1 + a)(1 + b) for

a, b ≥ 0 we have

(1 + d(z,X) + diam(X))(1 + d(z, Y ) + diam(Y )) ≤

≤ (1 + diam(X))2(1 + diam(Y ))2. (3.16)

Using (3.16) we can bound the sum (3.15) as follows:∑
X,Y ∈Bn
X∩Y ̸=∅
Z⊂X∨Y

d̃(X,U)−4n−4d̃(Y )−4n−4 ≤
∑

X,Y ∈Bn
X∩Y ̸=∅
Z⊂X∨Y

(1+diam(X))−4n−4(1+diam(Y ))−4n−4

≤
∑

X,Y ∈Bn

(1 + diam(X) + d(X, z))−2n−2(1 + diam(Y ) + d(Y, z))−2n−2

≤

(∑
X∈Bn

(1 + diam(X) + d(X, z))−2n−2

)2

≤ π816n(n+ 1)4

1296
. (3.17)

Now we are ready to prove Proposition 3.3.6.

Proof of Proposition 3.3.6. Notice that by Lemma 3.3.2 we have ∥G∥V,k+2n+2 ≤
∥G∥Rn,k+2n+2 so without loss of generality we set V = Rn.
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Let Z ∈ Bn. By Lemmas 3.3.4 and 3.3.5 we have∑
X,Y ∈Bn

∥[FX ,GY ]Z∥ =
∑

X,Y ∈Bn
X∩Y ̸=∅
Z⊂X∨Y

∥[FX ,GY ]Z∥

≤ 2∥F∥U,k+4n+4∥G∥Rn,k+4n+4

∑
X,Y ∈Bn
X∩Y ̸=∅
Z⊂X∨Y

d̃(X,U)−k−4n−4d̃(Y )−k−4n−4

≤ C3k∥F∥U,k+4n+4∥G∥Rn,k+4n+4d̃(Z,U)
−k,

with C = π816n(n+1)4

648
. This proves that (3.11) is absolutely convergent and

establishes the bound (3.12).

Next, let us prove the Jacobi identity. Let F,G,H ∈ Dal(Rn). We have

[F, [G,H]]W =
∑

X,Y ∈Bn

∑
X′,Y ′∈Bn

[
FX ,

[
GX

′
,HY

′
]Y ]W

. (3.18)

To show that this sum is absolutely convergent, we bound∑
X,Y ∈Bn

∑
X′,Y ′∈Bn

∥∥∥∥∥
[
FX ,

[
GX

′
,HY

′
]Y ]W∥∥∥∥∥

≤4
∑

X,Y ∈Bn
X∩Y ̸=∅
W⊂X∨Y

∥FX∥
∑

X′,Y ′∈Bn
X∩Y ̸=∅
Y⊂X′∨Y ′

∥GX′∥∥HY ′∥

≤C4∥G∥Rn,8n+8∥H∥Rn,8n+8

∑
X,Y ∈Bn
X∩Y ̸=∅
W⊂X∨Y

∥FX∥d̃(Y )−4n−4

≤C4∥F∥Rn,4n+4∥G∥Rn,8n+8∥H∥Rn,8n+8

∑
X,Y ∈Bn
X∩Y ̸=∅
W⊂X∨Y

d̃(X)−4n−4d̃(Y )−4n−4

<∞.

Here we used Lemma 3.3.5 in the second and fourth lines and C is a constant

depending only on n. Thus the sum (3.18) is absolutely convergent. In partic-

ular, using the fact that
∑

Y ∈Bn
[GX

′
,HY

′
]Y = [GX

′
,HY

′
] we have the following

absolutely convergent expression

[F, [G,H]]W =
∑

X,Y,Z∈Bn

[FX , [GY ,HZ ]]W .

It is then easy to check that the Jacobi identity for the sum follows from the

Jacobi identity for each term.
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From Propositions 3.3.4 and 3.3.6 we immediately get

Corollary 3.3.1. Suppose U, V ∈ Rn.

i) (F,G) 7→ [F,G] is a jointly continuous bilinear map from Dal(U)×Dal(V )

to Dal(U) ∩Dal(V ).

ii) If U and V are transverse, then this is jointly continuous bilinear map

from Dal(U)×Dal(V ) to Dal(U ∩ V ).

In particular since {0} and Rn are transverse, Dal(Rn) acts continuously on

Dal({0}) and this action is easily seen to extend to a continuous action of

Dal(Rn) on the space Aaℓ. We denote the action of F ∈ Dal(Rn) on A ∈ Aaℓ

by A 7→ F(A). By Prop. 3.3.6, it is given by

F(A) =
∑
Y ∈Bn

[FY ,A]. (3.19)

It is not hard to check that for any X ∈ Bn and any A ∈ A (X) we have

trXc (F(A)) = [FX ,A] and so the action of Dal(Rn) on Aaℓ is faithful. Thus,

elements of Dal(U) for any U ⊂ Rn may be identified with a subset of the

Fréchet-continuous derivations of Aaℓ. By Proposition 3.3.2, the Fréchet-Lie

algebra Dal({0}) is identified with the Fréchet-Lie algebra dal of traceless anti-

hermitian elements of Aaℓ acting by inner derivations.

Automorphisms

In this section we recall certain automorphisms obtained by exponentiating

elements of Dal(Rn) following [KS22]. One can develop the theory of such

automorphisms that are almost-localized on regions in Rn in a similar spirit

to the above, but since we do not have much occasion to use them in this

work, we opt instead for a more minimal development. Let F : R → Dal(Rn)

be a smooth map. It is shown in [KS22] that for any A ∈ Aaℓ the differential

equation

d

dt
A(t) = F(t)(A(t))

with the initial condition A(0) = A has a unique solution A(t) ∈ Aaℓ for

all t ∈ R. Denote by αF
t the map taking A to A(t). It is a continuous

automorphism of the Lie algebra Aaℓ that preserves the ∗-operation.
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Definition 3.3.6. We call any automorphism of the form αF
t for some smooth

map F : R → Dal(Rn) a locally-generated automorphism, or LGA for short.

It is shown in [KS22] that every LGA extends to a continuous ∗-automorphism

of the quasilocal algebra A , and that the set of LGAs forms a group under

composition.

States

By a state ψ we will mean a state on the quasilocal algebra A . If F is an

inner derivation (see Def. 3.3.4), we define its ψ-average as the evaluation of

ψ on the corresponding element of dal ⊂ Aaℓ. The group of LGAs acts on

states by pre-composition, which we denote ψα := ψ ◦ α. We say an LGA α

preserves a state ψ if ψα = ψ. We say an element F ∈ Dal(Rn) preserves ψ if

ψ(F(A)) = 0 for any A ∈ Aaℓ, which is equivalent to the one-parameter group

of automorphisms t 7→ αF
t corresponding to a constant map t 7→ F preserving

ψ.

Definition 3.3.7. For any U ⊂ Rn define Dψ
al(U) as the set of all elements

of Dal(U) that preserve ψ.

It is easy to check that Dψ
al(U) is a closed subset of Dal(U), and that if F and

G preserve ψ, then [F,G] preserves ψ. Thus the analog of Propositions 3.3.4

and 3.3.6 and Corollary 3.3.1 hold for the spaces Dψ
al(U). Proposition 3.3.5

on the other hand, does not hold for the spaces Dψ
al(U) for a general state

ψ. To circumvent this, we will restrict to gapped states, where quasiadiabatic

evolution [Has04; Kit06; Osb07] can be used to prove the analog of Proposition

3.3.5.

Definition 3.3.8. A state ψ is gapped if there exists H ∈ Dal(Rn) and ∆ > 0

such that for any A ∈ Aaℓ one has

−iψ(A∗H(A)) ≥ ∆(ψ(A∗A)− ψ(A∗)ψ(A)) . (3.20)

Remark 3.3.1. The meaning of this condition becomes more transparent if

one recalls that any H ∈ Dal is a generator of a one-parameter group of ∗-
automorphisms of A [KS22]. The condition (3.20) implies that ψ is invariant

under this one-parameter group of automorphisms [BR87], and that the corre-

sponding one-parameter group of unitaries in the GNS representation of A has
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a generator whose spectrum in the orthogonal complement to the GNS vacuum

vector is contained in [∆,+∞). The condition (3.20) also implies that ψ is

pure [KS24].

Remark 3.3.2. If ψ is a gapped state of A and α is an LGA, then ψα is also

a gapped state. In [KS22] it was proposed to define a gapped phase as an orbit

of gapped state under the action of the group of LGAs.

In Section 3.7 we prove the following.

Proposition 3.3.7. Suppose ψ is gapped, the corresponding Hamiltonian is

H. Then there are linear functions

J : Dal(Rn) → Dψ
al(R

n)

K : Dal(Rn) → Dal(Rn)

such that

i) If F preserves ψ then K(F) preserves ψ.

ii) For every k > 0, U ⊂ Rn, and F ∈ Dal(U) we have

∥J (F)∥U,k ≤ Ck∥F∥U,k+4n+3

∥K(F)∥U,k ≤ C ′
k∥F∥U,k+4n+3

for some constants Ck, C
′
k depending only on k, n,H, and ∆.

iii) For every F ∈ Dal(Rn) we have

F = J (F)−K([H,F]).

Using the above Lemma we will prove the analog of Proposition 3.3.5 for the

spaces Dψ
al(U).

Proposition 3.3.8. For any U, V ⊂ Rn consider the sequence

Dψ
al(U ∩ V )

α−→ Dψ
al(U)⊕Dψ

al(V )
β−→ Dψ

al(U ∪ V ) → 0, (3.21)

where α(A) = (A,−A) and β(A,B) = A+ B.

i) If ψ is gapped then the sequence (3.10) admits a right splitting, and in

particular it is exact on the right
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ii) If U and V are transverse, then (3.10) is exact on the left.

To prove Proposition 3.3.8 we will need the following geometric result

Lemma 3.3.6. Let U, V ⊂ Rn and define U ′ := {x ∈ Rn : d(x, U) ≤ d(x, V )}.
Then U ′ and U ∪ V are transverse and their intersection is U .

Proof. It is easy to check that U ′ ∩ (U ∪ V ) = U . To prove transversality we

will show

d(x, U) ≤ 4max(d(x, U ′), d(x, U ∪ V )) (3.22)

for every x ∈ Rn. Suppose first that d(x, U) ≤ 2d(x, V ). Then

d(x, U) ≤ 2min(d(x, U), d(x, V ))

= 2d(x, U ∪ V )

which implies (3.22). Suppose instead that d(x, U) > 2d(x, V ), and let y ∈ U ′

satisfy d(x, y) = d(x, U ′). Notice x /∈ U ′ and so y lies in the boundary of U ′,

which implies d(y, U) = d(y, V ). Thus we have

d(x, U) ≤ d(x, y) + d(y, U)

= d(x, y) + d(y, V )

≤ 2d(x, y) + d(x, V ),

where in the first and third lines we used the triangle inequality. Using

d(x, y) = d(x, U ′) and d(x, V ) < d(x, U)/2, this gives d(x, U) < 4d(x, U ′),

which implies (3.22).

Proof of Proposition 3.3.8. The proof of Proposition 3.3.5 goes through un-

modified except for the definition of γ, which needs to be changed to ensure

that the image of γ consists of derivations that preserve ψ. Suppose U, V ⊆ Rn

and F ∈ Dψ
al(U ∪ V ). Define

U ′ := {x ∈ Rn : d(x, U) ≤ d(x, V )},

V ′ := {x ∈ Rn : d(x, V ) ≤ d(x, U)}.

Let γU,V (resp. γU
′,V ′

) be the splitting from Proposition 3.3.5 with the sets U

and V (resp. U ′ and V ′). Define γ̃ = (γ̃1, γ̃2) as

γ̃i(F) := J (γU,Vi (F))−K([J (γU
′,V ′

i (H)),F])
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for i = 1, 2. Using Prop. 3.3.7 and Lemma 3.3.6 and the fact that the commu-

tator of two derivations that preserve ψ preserves ψ, one checks that γ̃ takes

Dψ
al(U ∪ V ) to Dψ

al(U) ⊕ Dψ
al(V ). Using Prop. 3.3.7 iii) and the fact that

γU,V1 (F)+γU,V2 (F) = F and γU
′,V ′

1 (H)+γU
′,V ′

2 (H) = H, we get γ̃1(F)+ γ̃2(F) = F,

as desired.

We showed that one can attach Fréchet-Lie algebras Dal(U) and Dψ
al(U) to any

U ⊂ Rn. These form a pre-cosheaf over the pre-ordered set of subsets of Rn.

Moreover, Proposition 3.3.5, Corollary 3.3.1, and (when ψ is gapped) Proposi-

tion 3.3.8 show that these spaces satisfy the cosheaf condition and Property I

for transverse pairs U, V ⊂ Rn. What prevents the functors Dal and Dψ
al from

forming local Lie algebras is the fact that pairs of subsets U, V ⊂ Rn generally

do not intersect transversely. This problem can be resolved by restricting to a

suitable set of subsets of Rn that have well-behaved intersections. In the next

section we identify one such set (the set of semilinear subsets) prove that they

form a Grothendieck site, and discuss some properties of this site.

3.4 The site of fuzzy semilinear sets

Semilinear sets and their thickenings

A semilinear set in Rn is a subset of Rn which can be defined by means of a

finite number of linear equalities and strict linear inequalities. More precisely,

a basic semilinear set in Rn is an intersection of a finite number of hyperplanes

and open half-spaces, and a semilinear set is a finite union of basic semilinear

sets. The set of semilinear subsets of Rn will be denoted Sn. Projections

Rm×Rn → Rm map Sm+n to Sm [Dri98]. A map Rn → Rm is called semilinear

iff its graph is a semilinear subset of Rm+n. The composition of two semilinear

maps is a semilinear map [Dri98].

Recall that we use the ℓ∞ metric on Rn.

Lemma 3.4.1. The distance function d : Rn × Rn → R is semilinear.

Proof. The function (x, y) 7→ xi − yi is semilinear for any i. The function

| · | : R → R is semilinear. If f, g : Rn → R are semilinear, then h = max(f, g) :

Rn → R is semilinear. Since the set of semilinear functions is closed under

composition, this proves the lemma.
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Recall that for any set U ⊂ Rn, we write U r := {x ∈ Rn : ∃y ∈ U s.t d(x, y) ≤
r} and call this the r-thickening of U . It is easy to see that if U is closed, then

U r is also closed for any r ≥ 0.

Lemma 3.4.2. If U is semilinear, U r is semilinear for any r.

Proof. Consider the set

∆r = {(x, y) ∈ R2n|d(x, y) ≤ r}.

By the previous lemma, ∆r is semilinear. On the other hand, U r is the pro-

jection to the first Rn of ∆r ∩ (Rn × U) ⊂ Rn × Rn. Since intersection and

projection preserve the set of semilinear sets, the lemma is proved.

Lemma 3.4.3. If U is convex, then U r is convex, for any r ≥ 0.

Proof. Suppose x, y ∈ U r, and suppose x′, y′ ∈ U satisfy d(x, x′) ≤ r and

d(y, y′) ≤ r. Then for any t ∈ [0, 1] we have d(tx+ (1− t)y, tx′ + (1− t)x′) ≤
t2d(x, x′) + (1− t)2d(y, y′) ≤ r.

A polyhedron in Rn is an intersection of a finite number of closed half-spaces.

A polyhedron is closed, but not necessarily compact. A closed semilinear set

is the same as a finite union of polyhedra. Conversely, according to Theorem

19.6 from [Roc70], a polyhedron can be described as a closed convex semilinear

set. Combining this with the above lemmas, we get

Corollary 3.4.1. If U is a polyhedron, then U r is a polyhedron, for any r ≥ 0.

A category of fuzzy semilinear sets

Clearly, if for X, Y ∈ Sn we have X ⊆ Y , then for any r ≥ 0 we have Xr ⊆ Y r.

Also, for any r, s ≥ 0 and any U ∈ Sn we have (U r)s ⊆ U r+s. Thus we can

define a pre-order ≤ on Sn by saying that U ≤ V iff there exists r ≥ 0 such that

U ⊆ V r. We will call this pre-order relation f uzzy inclusion. Equivalently,

Sn can be made into a category, with a single morphism from U to V iff

U ≤ V . One can turn the pre-ordered set (Sn,≤) into a poset by identifying

isomorphic objects of the corresponding category, but for our purposes it is

more convenient not to do so. On the other hand, every semilinear set is

isomorphic to its closure, and we find it convenient to work with an equivalent

category (or pre-ordered set) which contains only closed semilinear subsets.
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We will denote it CSn and call it the category (or pre-ordered set) of fuzzy

semilinear sets.

Proposition 3.4.1. CSn has all pairwise joins: for any U, V ∈ CSn the join

is given by U ∪ V .

Proof. If U ⊆ W r and V ⊆ W s for some r, s ≥ 0, then U ⊆ Wmax(r,s) and

V ⊆ Wmax(r,s), and thus U ∪ V ⊆ Wmax(r,s).

Let us show that CSn has all pairwise meets, using the notion of transverse

intersection from the previous section. Recall (Definition 3.3.5) that we say

two sets U, V ⊂ Rn are transverse if for some C > 0 we have d(x, U ∩ V ) ≤
Cmax(d(x, U), d(x, V )) for all x ∈ Rn.

We need the following geometric result [Pet]9:

Lemma 3.4.4. Let P and Q be polyhedra Rn. If P ∩ Q ̸= ∅ then P and Q

are transverse.

Proposition 3.4.2. For every U, V ∈ CSn there is an r > 0 such that U r and

V r are transverse.

Proof. Let U = ∪iPi and V = ∪jPj be a decomposition of U and V into finite

unions of polyhedra and choose r > 0 so that P r
i ∪ Qr

j is nonempty for each

pair i, j. By Corollary 3.4.1 and Lemma 3.4.4 there are constants CPiQj
> 0

such that

d(x, U r ∩ V r) ≤ Cmax(d(x, U r), d(x, V r))

for each pair i, j. Since U r = ∪iP r
i and V r = ∪iQr

i , for any x ∈ R there are

indices i∗ and j∗ such that d(x, U r) = d(x, P r
i∗) and d(x, V

r) = d(x,Qr
j∗). Then

we have

d(x, U r ∩ V r) = d(x,∪ij(P r
i ∩Qr

j))

≤ d(x, P r
i∗ ∩Qr

j∗))

≤ CPi∗Qj∗ max(d(x, Pi∗), d(x,Qj∗))

= CPi∗Qj∗ max(d(x, U), d(x, V )),

and so U r, V r are C-transverse for C := maxi,j CPiQj
.

9The proof in [Pet] is for the Euclidean distance, but since the Euclidean distance
function and d(x, y) = ∥x − y∥∞ are equivalent (each one is upper-bounded by a multiple
of the other), the result applies to d(x, y) as well.
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Corollary 3.4.2. With U, V, r as above, U r ∩ V r is a meet of U and V . In

particular, CSn has all pairwise meets.

Proof. Since U and U r (resp. V and V r) are isomorphic in CSn, it suffices to

show that U r ∩ V r is a meet of U r and V r. It’s clear that U r ∩ V r ≤ U r and

U r ∩ V r ≤ V r. Now suppose W ∈ CSn satisfies W ≤ U r and W ≤ V r. Then

there is an s > 0 such that every x ∈ W satisfies max(d(x, U r), d(x, V r)) ≤ s.

Since d(x, U r ∩ V r) ≤ Cmax(d(x, U r), d(x, V r)) for some C > 0 we have

W ⊂ (U r ∩ V r)Cs.

Proposition 3.4.3. The pre-ordered set CSn is distributive.

Proof. We need to show that for any U, V,W ∈ CSn we have U ∧ (V ∨W ) ≤
(U ∧ V )∨ (U ∧W ). According to Corollary 3.4.2, there exists r ≥ 0 such that

U ∧ (V ∨W ) ≃ U r ∩ (V ∪W )r. Since (V ∪W )r = V r ∪W r, we also have

U ∧ (V ∨W ) ≃ (U r∩V r)∪ (U r∩W r). On the other hand, U ∧V ≃ U r∧V r ≃
(U r)s ∩ (V r)s for some s ≥ 0, and U ∧W ≃ U r ∧W r ≃ (U r)t ∩ (W r)t for

some t ≥ 0. Thus (U ∧ V ) ∨ (U ∧ W ) ≃ ((U r)s ∩ (V r)s) ∪ ((U r)t ∩ (W r)t)

for some s, t ≥ 0. Since we have inclusions U r ∩ V r ⊆ (U r)s ∩ (V r)s and

U r ∩W r ⊆ (U r)t ∩ (W r)t, the lemma is proved.

We can now equip CSn with a Grothendieck topology of Section 3.2. There

are two versions of it which differ in whether we allow empty covers of an

initial object or not. In the case of the pre-ordered set CSn, every bounded

closed semilinear set is an initial object (they are all isomorphic objects of the

category CSn). Since such sets are not empty, we will disallow empty covers.

This choice is also forced on us if we want certain pre-cosheaves to be cosheaves

(see below). Note that we only consider non-empty closed semilinear sets.

More generally, for any W ∈ CSn we may consider a full sub-category CSn/W
whose objects are U ∈ CSn such that U ≤ W . This is a distributive pre-

ordered set, and we will also have occasion to consider local Lie algebras on

the associated site.

Spherical CS sets

Every two bounded elements of CSn are isomorphic objects of the correspond-

ing category. More generally, any two elements of CSn which coincide outside

some ball in Rn are isomorphic objects. Thus CSn encodes the large-scale
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structure of Rn. To make this explicit, we will show that the pre-ordered set

CSn is equivalent as a category to a certain poset of subsets of the “sphere at

infinity” Sn−1.

A cone in Rn is a non-empty subset of Rn which is invariant under x 7→ λx,

where λ ≥ 0. Every cone contains the origin 0. Cones in Rn are in bijection

with subsets of Sn−1 = (Rn\{0})/R∗
+ where R∗

+ is the group of positive real

numbers under multiplication. If A ⊂ Sn−1, we denote the corresponding cone

c(A). In particular, c(∅) = {0} ∈ Rn. If K is a cone in Rn, we will denote the

corresponding subset of Sn−1 by K̂.

Definition 3.4.1. A ⊂ Sn−1 is a spherical polyhedron iff c(A) is a polyhedron

and A is contained in some open hemisphere of Sn−1. A ⊆ Sn−1 is a spherical

CS set iff it is a union of a finite number of spherical polyhedra. The set of

spherical CS sets in Sn−1 is denoted SCSn.

Every polyhedron is convex and thus contractible. This implies:

Proposition 3.4.4. Any spherical polyhedron is contractible.

Proof. Without loss of generality, we may assume that the spherical polyhe-

dron is contained in the hemisphere Sn−1
+ = Sn−1∩{xn > 0}. The map Rn−1 →

Sn−1
+ which sends (x1, . . . , xn−1) to the equivalence class of (x1, . . . , xn−1, 1) is

a homeomorphism which establishes a bijection between bounded polyhedra

in Rn−1 and spherical polyhedra contained in Sn−1
+ .

Proposition 3.4.5. The intersection of two spherical polyhedra is a spherical

polyhedron. The union and intersection of two spherical CS sets is a spherical

CS set.

Proof. Clear from definitions.

Spherical CS sets form a poset SCSn under inclusion. This poset has pairwise

joins and meets given by unions and intersections, respectively.

Proposition 3.4.6. The category SCSn is equivalent to the category CSn.

Proof. We proceed first by defining a functor from CSn to SCSn. Notice, it

is sufficient to define a functor on isomorphism classes of polyhedrons, then
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extend by joins. Every closed polyhedron is a finite intersection of closed half

spaces
⋂k
i=1{ni · x ≤ bi}, where for each i = 1, . . . k, ni ∈ Rn is the unit

normal vector of the ith supporting hyperplane and bi ∈ R. By definition,⋂k
i=1{ni · x ≤ bi} is isomorphic to

⋂k
i=1{ni · x ≤ 0} in CSn. In other words,

every polyhedron is isomorphic to a cone {Nx ⪯ 0}, where N is the matrix

with ni as rows and we write y ⪯ 0 for y ∈ Rn when yi ≤ 0 for all i = 1, . . . n.

If {ni}ki=1 spans Rn, the set {Nx ⪯ 0}, which contains no antipodal points,

is mapped to its corresponding spherical polyhedron. Otherwise, complete

{ni}ki=1 into a spanning set {n1, . . . , nk,m1, . . . ,ml} and decompose {Nx ⪯ 0}
into a union of cones {Nx ⪯ 0}∩

⋂
j{±mj ·x ≤ 0}. By the universal property

of the join, an arbitrary closed semilinear set is isomorphic to a union of conical

polyhedra. For functoriality, it is sufficient to note that for any pair of closed

cones U, V a fuzzy inclusion U ⊆ V r for some r ≥ 0 implies U ⊆ V . It is easy

to check that this functor is fully faithful and (essentially) surjective.

Note that under this equivalence all bounded elements of CSn correspond to

∅ ∈ SCSn. The canonical Grothendieck topology on CSn corresponds to a

slightly unusual Grothendieck topology on the poset of spherical CS subsets

of Sn−1: the one where empty covers of ∅ are not allowed. Consequently, a

cosheaf of vector spaces on SCSn equipped with this topology need not map

∅ to the zero vector space.

Spherical CS cohomology

Let U be a spherical CS cover of a spherical CS set A. Spherical CS cohomology

Ȟ•
CS(U, A;R) is defined to be the simplicial cohomology of the Čech nerve

N(U).

Definition 3.4.2. Let A be a spherical CS set. The spherical CS cohomology

Ȟ•
CS(A,R) is defined as lim−→ Ȟ•

CS(U, A;R), where the colimit is taken over the

directed set of all spherical CS covers.

The following proposition connects spherical CS cohomology with singular

cohomology using a functorial version of nerve theorems [Bor48; Ler45].

Proposition 3.4.7. For any spherical CS set A the graded vector space Ȟ•
CS(A,R)

is isomorphic to the singular cohomology H•(A,R).
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Proof. Every spherical CS cover can be refined to a cover by spherical polyhe-

dra, so in the computation of lim−→ Ȟ•
CS(U, A;R) it suffices to take colimit over

such covers. All intersections of elements of a spherical polyhedral cover U are

contractible. Also, since every polyhedron is a geometric realization of a sim-

plicial complex, U is a cover of a simplicial complex by subcomplexes. By The-

orem C of [Bau+23] for such U the direct system of groups U 7→ Ȟ•
CS(U, A;R)

is constant and its limit is H•(A,R).

3.5 Local Lie algebras over fuzzy semilinear sets

Basic examples

Let ψ be a state of a quantum lattice system on Rn. By Lemma 3.3.2 the maps

sending U ∈ CSn to Dal(U) and Dψ
al(U) are pre-cosheaves of Fréchet spaces on

CSn. We denote these pre-cosheaves by Dal and Dψ
al. Putting together Lemma

3.2.1, Proposition 3.3.5, Corollary 3.3.1, and Proposition 3.3.8, we have:

Theorem 3.5.1. Dal is a local Lie algebra over CSn. If ψ is gapped, then Dψ
al

is a local Lie algebra over CSn.

Our main object of study is the local Lie algebra Dψ
al attached to a gapped

state ψ of a lattice system (Λ, {Vj}j∈Λ).

A much simpler example of a local Lie algebra arises from a finite-dimensional

Lie algebra g and any subset Λ ⊂ Rn. For any U ∈ CSn let gal(U) be the space
of bounded functions U ∩ Λ → g which decay superpolynomially away from

U . The subscript “al” stands for “almost localized”. More precisely, gal(Rn)

is the space of bounded functions Λ → g, while gal(U) is defined as a subspace

of gal(Rn) consisting of functions f : Λ → g such that the following seminorms

are finite:

pk,U(f) = sup
j∈Λ

|f(j)|(1 + d(U, j))k, k ∈ N.

Proposition 3.5.1. The assignment U 7→ gal(U) is a local Lie algebra.

Proof. It is easy to check that the assignment U 7→ gal(U) it is a coflasque

pre-cosheaf of Fréchet-Lie algebras satisfying Property I. The only thing left

to check is that it is a cosheaf of vector spaces. By Lemma 3.2.1, it is sufficient

to show that for any U, V ∈ CSn the sequence

gal(U ∧ V ) → gal(U)⊕ gal(V ) → gal(U ∨ V ) → 0
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is exact. To show exactness at gal(U ∨ V ) = gal(U ∪ V ), we note that every

f ∈ gal(U ∪ V ) can be written as a sum fU + fV , where

fU(x) =


f(x), d(x, U) < d(x, V ),

1
2
f(x), d(x, U) = d(x, V ),

0, d(x, U) > d(x, V ),

and fV (x) is defined by a similar expression with U and V exchanged. Us-

ing d(x, U ∪ V ) = min(d(x, U), d(x, V )) it is easy to check that pk,U(fU) ≤
pk,U∪V (f) and pk,V (fV ) ≤ pk,U∪V (f) for all k, and thus fU ∈ gal(U) and

fV ∈ gal(V ).

To show exactness at gal(U)⊕ gal(V ), suppose f ∈ gal(U) ∩ gal(V ). From the

proof of Prop. 3.4.2, there exist r ≥ 0, CUV > 0 such that d(x, U r ∩ V r) ≤
CUV max(d(x, U), d(x, V )). We may assume that CUV ≥ 1, in which case for

any x ∈ Rn and any k ∈ N

(1 + d(x, U r ∩ V r))k ≤ Ck
UV (1 + max(d(x, U), d(x, V ))k.

Therefore for any f ∈ gal(U) ∩ gal(V ) we have

pk,Ur∩V r(f) ≤ Ck
UV max(pk,U(f), pk,V (f)).

Since by Corollary 3.4.2 one can take U ∧ V = U r ∩ V r, we conclude that

f ∈ gal(U ∧ V ).

Symmetries of lattice systems

If Λ ⊂ Rn is countable, it can be viewed as a lattice in the physical sense, and

the local Lie algebra gal over CSn models infinitesimal gauge transformations

of a lattice system on Rn.

Definition 3.5.1. A local action of a compact Lie group on a lattice system

(Λ, {Vj}j∈Λ) is a collection of homomorphisms ρj : G → U(Vj) such that

the norms of the corresponding Lie algebra homomorphisms g → B(Vj) are

bounded uniformly in j.

A local action of G on (Λ, {Vj}j∈Λ) gives rise to a homomorphism from G to

the automorphism group of A via g 7→ ⊗j∈ΛAdρj(g) which is smooth on Aaℓ.

The corresponding generator Q is a homomorphism from g to the Lie algebra
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of derivations of Aaℓ defined by

Q : (a,A) 7→
∑
j∈Λ

[qj(a),A], a ∈ g, A ∈ Aaℓ,

where qj is the traceless part of the generator of ρj. The image of Q lands in

Dal(Rn), with Q(a)Y =
∑

j∈Λ qj(a)
Y . We will regard Q as a homomorphism

of Fréchet-Lie algebras g → Dal(Rn).

This morphism of Fréchet-Lie algebras can be lifted to a morphism of local Lie

algebras gal → Dal over CSn. Indeed, for any U ∈ CSn and any f ∈ gal(U) we

let Q(f) be a derivation of Aaℓ given by

Q(f)(A) =
∑
j∈Λ

[qj(f(j)),A], A ∈ Aaℓ.

It is easy to check that this derivation belongs to Dal(U) and that the above

map is a continuous homomorphism gal(U) → Dal(U). The physical inter-

pretation is that a local action of a compact Lie group on a quantum lattice

system can be gauged on the infinitesimal level.

Definition 3.5.2. A state ψ of A is said to be invariant under a local action

of a compact Lie group G if it is invariant under the corresponding automor-

phisms of A .

Let ψ be a gapped state of A invariant under a local action of a Lie group

G. In that case the image of Q : g → Dal(Rn) lands in Dψ
al(Rn). One may ask

if this morphism of Fréchet-Lie algebras can be lifted to a morphism of local

Lie algebras gal → Dψ
al. If this is the case, then the symmetry G of ψ can be

gauged on the infinitesimal level. In the next section we construct obstructions

for the existence of such a morphism of local Lie algebras and show that zero-

temperature Hall conductance is an example of such an obstruction.

Equivariantization

As a preliminary step, for any G-invariant gapped state ψ we are going to

define a graded local Lie algebra over CSn which is a G-equivariant version of

the local Lie algebra Dψ
al. Recall that a graded local Lie algebra is a cosheaf

of graded vector spaces that is a pre-cosheaf of graded Lie algebras satisfying

the graded analogue of Property I. For example, if F is a local Lie algebra

and A =
∏

k∈ZAk is a locally finite supercommutative graded algebra with

finite-dimensional graded factors Ak,
10 then U 7→ F(U) ⊗ A is a graded local

10A graded vector space is locally finite iff its graded components are finite-dimensional.
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Lie algebra. We denote it F⊗ A.

Fix a compact Lie group G and a distributive pre-ordered set X and consider

the category of graded local Lie algebras over X equipped with a G-action.

An object of this category is a graded local Lie algebra F on which G acts by

automorphisms; morphisms are defined in an obvious manner. The first step is

to define a functor F 7→ FG from this category to the category of graded local

Lie algebras over X such that FG(U) is the Lie algebra of G-invariant elements

of F(U). It is clear how to define such a functor for coflasque pre-cosheaves of

Lie algebras with Property I, but the pre-cosheaf FG will not be a cosheaf of

vector spaces without further assumptions about F and the G-action.

Definition 3.5.3. An action of G on a pre-cosheaf of Fréchet spaces F is

smooth if for each U ∈ X the seminorms defining the topology of F(U) can be

chosen to be G-invariant and the map G × F(U) → F(U) defining the action

is smooth. An action of G on a pre-cosheaf of graded Fréchet spaces is smooth

if the G-action on every graded component is smooth.

Proposition 3.5.2. Let F be a pre-cosheaf of graded Fréchet spaces over X

equipped with a smooth action of a compact Lie group G. The assignment

U 7→ FG(U) = (F(U))G is a cosheaf of graded Fréchet spaces.

Proof. It is sufficient to prove this in the ungraded case. We need to show

that for any U, V ∈ X the sequence

FG(U ∧ V )
α−→ FG(U)⊕ FG(V )

β−→ FG(U ∨ V ) → 0,

is exact. To show exactness at the rightmost term, let F be a G-invariant ele-

ment of F(U ∨ V ) and let FU ∈ F(U) and FV ∈ F(V ) be such that ιU∪V,UFU +

ιU∪V,V FV = F. Averaging the action map G × F(U) over G with the Haar

measure gives a linear map hU : F(U) 7→ FG(U) which is identity when re-

stricted to FG(U). The co-restriction morphisms intertwine these maps. Thus

ιU∪V,U ◦ hU(FU) + ιU∪V,V ◦ hV (FV ) = F which proves that β is surjective. Ex-

actness in the middle term is proved similarly.

Remark 3.5.1. For the proof to go through, it suffices to require the map

G×F(U) → F(U) to be continuous. However, if it is smooth, F(U) becomes a

g-module and all elements in FG(U) ⊂ F(U) are annihilated by the g-action.

We will use this later on.
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Example 3.5.1. If G acts locally on a lattice system, the action of G on the

local Lie algebra Dal is smooth. If ψ is a G-invariant gapped state of such a

lattice system, the action of G on Dψ
al is smooth.

Example 3.5.2. Consider the local Lie algebra gal over CSn associated to a

finite-dimensional Lie algebra g (see Section 3.4). Assume that g is the Lie

algebra of a compact Lie group G, then there is an obvious G-action on gal:

(g · f)(j) = Adgf(j), g ∈ G, j ∈ Λ.

This G-action is smooth.

Example 3.5.3. If F is a local Fréchet-Lie algebra with a smooth G-action

and A =
∏

k∈ZAk is a locally-finite supercommutative graded algebra on which

G acts by automorphisms, then the G-action on F⊗ A is smooth.

Corollary 3.5.1. Let F be a graded local Fréchet-Lie algebra over X with a

smooth G-action. The functor of G-invariant elements maps F to a graded

local FréchetLie algebra FG over X.

Definition 3.5.4. Let F be a local Fréchet-Lie algebra over X with a smooth

G-action. The G-equivariantization functor sends F to the negatively-graded

local Fréchet-Lie algebra FG defined by

U 7→

(
F(U)⊗

∞∏
k=1

Symk(g∗[−2])

)G

.

In the cases of interest to us, the G-action on a local Lie algebra over CSn is

infinitesimally inner, in the sense that the g-module structure mentioned in

Remark 3.5.1 arises from a homomorphism ρ : g → F(Rn). In such a case, the

graded local Lie algebra FG has an extra bit of structure: a central element in

FG(Rn) of degree −2. This element is simply ρ re-interpreted as an element of

F(Rn)⊗g∗[−2]. In the terminology of Section 3.2, FG is a pointed graded local

Fréchet-Lie algebra over CSn. It is easy to see that the G-equivariantization

functor respects this extra structure. That is, if f : F → F′ is a morphism

of local Fréchet-Lie algebras over CSn commuting with infinitesimally inner

smoothG-actions on F and F′, then fG maps the central element ρ ∈ FG(Rn)−2

to the central element ρ′ ∈ F′G(Rn)−2.



92

Example 3.5.4. Let ψ be a G-invariant gapped state of a quantum lattice

system with a local G-action which on the infinitesimal level is described by

Q : g → Dψ
al(Rn). Consider the graded local Lie algebra Dψ

al with its smooth G-

action (Example 3.5.1) and its G-equivariantization Dψ,G
al . The distinguished

central element of Dψ,G
al (Rn) is Q regarded as an element of Dψ

al(Rn)⊗ g∗[−2].

Example 3.5.5. Consider the graded local Lie algebra gGal of Example 3.5.2.

The degree −2 component of gGal(Rn) is the space of G-invariant bounded func-

tions on Λ with values in g ⊗ g∗. The distinguished central element is the

constant function on Λ which takes the value idg.

Armed with the equivariantization functor, we can now explain our strategy

for constructing obstructions for the existence of a local Lie algebra morphism

gal → Dψ
al which lifts the Fréchet-Lie algebra morphism Q : g → Dψ

al(Rn).

Suppose such a morphism ρ exists. Applying the G-equivariantization functor,

we get a morphism of pointed negatively-graded local Fréchet-Lie algebras

ρG : gGal → Dψ,G
al . For any CS cover U of Rn an application of the Čech functor

gives a morphism of acyclic pointed DGLAs

Caug
•+1(U,Rn; gGal) → Caug

•+1(U,Rn;Dψ,G
al ).

Consequently, a obstruction for the existence of such a pointed DGLA mor-

phism is an obstruction for the existence of ρ. In the next section we use

the twisted Maurer-Cartan equation for pointed DGLAs to construct such ob-

structions and identify them as topological invariants of gapped states defined

in [KS22].

3.6 Topological invariants of G-invariant gapped states

The commutator class

Let (M,B) be a pointed DGLA, i.e. a DGLA with a distinguished central

cycle B ∈ M−2. Assume it is a limit of an inverse system of nilpotent pointed

DGLAs (MN ,BN), N ∈ N.

Definition 3.6.1. The commutator DGLA, denoted by [M,M], is defined to

be the closure of the commutator subalgebra of M. Namely, q ∈ [M,M] if

and only if for any N its projection to MN is a finite linear combination of

commutators in MN .
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Even if M is acyclic, the DGLA [M,M] is not necessarily acyclic. We would

like to construct an obstruction to finding an element p ∈ M−1 which satisfies

∂p = B and [p, p] = 0.

Definition 3.6.2. Let (M,B) be a pointed DGLA. A B-twisted Maurer-Cartan

element in M is p ∈ M−1 which satisfies

∂p+
1

2
[p, p] = B.

We will denote the set of B-twisted MC elements of M by MC(M,B). The

map (M,B) 7→ MC(M,B) can be upgraded to a functor from the category of

pointed DGLAs to the category of sets in an obvious way.

Let (M,B) be pronilpotent pointed DGLA and p ∈ MC(M,B). Then [p, p] is

a cycle of the DGLA [M,M].

Proposition 3.6.1. Let (M,B) be an acyclic pointed DGLA which is a limit

of an inverse system of nilpotent acyclic pointed DGLAs (MN ,BN), N ∈ N.
Assume further that the structure morphisms rN,N−1 : MN → MN−1 are sur-

jective and jN = ker rN,N−1 is central in MN . Finally, assume [M1,M1] = 0.

Then MC(M,B) is non-empty. Furthermore, the homology class of [p, p] in

[M,M] for p ∈ MC(M,B) is independent of the choice of p.

A proof of this result can be found in Section 3.8. It uses some results from

deformation theory. We will call the homology class of [p, p] the commutator

class of the acyclic pointed DGLA (M,B), for lack of a better name, and

denote it com(M,B). The assignment (M,B) 7→ (H•([M,M]), com(M,B)) is

a functor from the full sub-category of the category of acyclic pointed DGLAs

satisfying the conditions of Proposition 3.6.1, to the category pVectZ of pointed

graded vector spaces.

The conditions of Prop. 3.6.1 apply to any pointed DGLA which is the value

of the Čech functor on a graded local Lie algebra FG over some (X,≤),

where F is a local Lie algebra equipped with a smooth infinitesimally in-

ner G-action. Indeed, along with the graded algebra A =
∏∞

k=1 Sym
kg∗[−2]

used in the construction of FG one can consider its quotient by the ideal

JN =
∏∞

k=N+1 Sym
kg∗[−2]. Replacing A with the nilpotent graded algebra

A/JN throughout, for any cover U of the terminal object T one gets a sequence

of nilpotent acyclic pointed DGLAs labeled by N ∈ N. They assemble into an
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inverse system in an obvious manner, and its limit is the acyclic pointed DGLA

Caug
•+1(U, T ;F

G). It is easy to see that the remaining conditions of Prop. 3.6.1

are also satisfied. In particular, Prop. 3.6.1 applies to the pointed DGLAs

associated the graded local Lie algebras Dψ,G
al and gGal and any CS cover of Rn.

Proposition 3.6.2. For any pointed DGLA (M(U),B) obtained, as above,

from the Čech functor with respect to a cover U, MC is functorial in U.

Proof. Let V = {Vj}j∈J be a refinement of U. By definition, there exists a

map ϕ : J → I with Vj ⊂ Uϕ(j). According to Prop. 3.2.2, there is a map from

M(V) to M(U). As B is unaffected by ϕ∗, we deduce from pV ∈ MC(M(V),B)

that ϕ∗p
V ∈ MC(M(U),B).

Example 3.6.1. Let G be a compact Lie group, g be its Lie algebra, and gal

be the pointed local Lie algebra over CSn of Examples (3.5.2) and (3.5.5). The

distinguished central cycle in Caug
•+1(U,Rn, gGal) is the constant function on Λ with

value idg . Here idg is regarded as a G-invariant element of gal(Rn)⊗ g∗[−2].

For any cover U = {Ui}i∈I one can construct a twisted MC element q as

follows. Pick r > 0 large enough so that the interiors of U r
i , i ∈ I, cover Rn in

the usual sense and pick a partition of unity χi, i ∈ I, subordinate to this open

cover. For any j ∈ Λ and any i ∈ I let qi(j) = χi(j)idg. It is easy to verify

that this is a twisted MC element satisfying [q, q] = 0. Thus the commutator

class vanishes in this case.

Let G be a compact Lie group, ψ be a gapped G-invariant state of a lattice

system on Rn, and U ∈ CSn. The commutator class of the acyclic pointed

DGLA (Caug
•+1(U,Rn;Dψ,G

al ),Q) is an obstruction for the existence of a morphism

of local Lie algebras ρ : gal → Dψ
al which is a lift of the Lie algebra morphism

Q : g → Dψ
al(Rn). Indeed, as explained in Section 3.5, if ρ exists, it induces

a morphism of pointed DGLAs Caug
• (U,Rn; gal) → Caug

• (U,Rn;Dψ,G
al ) which in

turn induces a morphism in the category pVectZ which maps the commutator

class of gal to the commutator class of Dψ,G
al . Since the former class vanishes

(see Example 3.6.1), so must the latter.

Construction of topological invariants

The commutator class defined in the previous section is not a useful invariant

of a gapped G-invariant state ψ because it takes values in a set which itself

depends on ψ. It is also not invariant under LGAs (defined in Section 3.3) and
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thus is not an invariant of a gapped phase (see Remark 3.3.2). In this section

we define a pairing between the commutator classes of Dψ,G
al and spherical

CS cohomology classes of the sphere at infinity Sn−1, which takes values in

the algebra of G-invariant symmetric polynomials on g. This gives a useful

invariant of a gapped phase which is also an obstruction to promoting the

global symmetry G of the state to a local symmetry. Additionally, we will

show that the invariant does not depends on the choice of the cover U and

thus is essentially unique.

Keeping in view further generalizations, we work over a sub-site CSn/W 11

which depends on an arbitray W ∈ CSn. Let Ŵ ∈ SCSn be the image of W

under the equivalence between CSn and SCSn. We continue to denote by Dal

the local Fréchet-Lie algebra which maps U ∈ CSn/W to Dal. For any cover

U of W we denote by Û the corresponding cover of Ŵ .

Definition 3.6.3. For any U = {Ui}i∈I coveringW ∈ CSn, any f ∈ Cp(U,W ;Dal),

and any β ∈ Čp(Û, Ŵ ;R) define an evaluation

⟨f, β⟩ =
∑
s∈Ip

βsfs ∈ Dal(W ),

where Ik := {i0 < i1 < · · · < ik ∈ Ik+1}. We adopt the convention that

βs = 0 for
∧
j∈s Uj bounded. The definition implicitly uses co-restriction of the

coflasque cosheaf.

Lemma 3.6.1. For any U covering W ∈ CSn, any cycle f ∈ Cp(U,W ;Dal),

and any cocycle β ∈ Čp(Û, Ŵ ;R) the derivation ⟨f, β⟩ ∈ Dal(W ) is inner.

Proof. The chain complex

. . .→
⊕
i<j

Dal(Ui ∧ Uj) →
⊕
i

Dal(Ui) → Dal(W ) → 0 (3.23)

11This is the so-called overcategory whose objects are equipped with a morphism to W .
Due to coflasqueness, this amounts to a restriction to objects fuzzily included in W .
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is acyclic. Since f is a cycle, f = ∂g for some g ∈
⊕

s∈Ip+1
Dal(

∧
j∈s Uj). Thus

⟨f, β⟩ =⟨∂g, β⟩

=⟨g, ∂∗β⟩

=
∑
s∈Ip+1

gs(∂
∗β)s

=
∑

s∈Ip+1, with∧
j∈s Uj bounded

gs(∂
∗β)s,

where ∂∗ is the adjoint of ∂ defined by

(∂∗β)i0...ip =

p∑
k=0

(−1)kβi0...îk...ip .

The last expression is clearly inner because each gs is almost localized near

some bounded region. The last equality depends on vanishing of∑
s∈Ip+1, with∧

j∈s Uj unbounded

gs(∂
∗β)s,

because when
∧
j∈s Uj is unbounded (∂∗β)s = (δ̌β)s = 0 where δ̌ is the

coboundary of Čp(Û, Ŵ ;R).

Remark 3.6.1. The above lemma remains true if one replaces Dal with Dal⊗A
where A is any locally-finite graded vector space. Then the pairing ⟨f, β⟩ takes
values in the space of inner derivations dal (Definition 3.3.3) tensored with A.

Remark 3.6.2. The relation between ∂∗ and δ̌ is as follows. They are equal

for s ∈ Ip+1 with
∧
j∈s Uj unbounded. For s with

∧
j∈s Uj bounded,

⋂
j∈s Ûj = ∅

and (∂∗β)s is in general nonzero whereas (δ̌β)s = 0. This discrepancy arises

because the Grothendieck topology on the poset of spherical CS sets induced by

the coherent topology on CSn does not allow the empty cover of the empty set.

It is this discrepancy that makes the evaluation of DGLA cycles on spherical

CS cocycles non-trivial.

If U, V are closed semilinear sets with a bounded meet then any derivation in

[Dal(U),Dal(V )] is inner and thus has a well-defined average in any state on

A . More generally, if A is a locally-finite supercommutative graded algebra

and F = Dal⊗A or some sub-algebra thereof, any element of [F(U),F(V )] for

U ∧ V bounded has a well-defined average in any state of A . The average

takes values in A. We will need the following more refined result:



97

Lemma 3.6.2. Let U and V be closed semilinear sets such that U ∧ V is

bounded. Let A be a locally-finite supercommutative graded algebra and ψ be a

state. Then ψ([Dψ
al(U)⊗ A,Dal(V )⊗ A]) = 0.

Proof. It suffices to consider the case A = R. Let F ∈ Dψ
al(U) and G ∈ Dal(V ).

Propositions 3.3.2 and 3.3.6 give

ψ([F,G]) =
∑

X∩Y ̸=∅

ψ([FX ,GY ]) =
∑
Y

ψ(F(GY )) = 0,

where the last equality is because F preserves ψ.

In what follows we will apply Lemma 3.6.1 to the graded local Lie algebra

Dψ
al ⊗ A (see Remark 3.6.1). The evaluation of cycles of Caug

• (U,W ;Dψ
al ⊗ A)

on spherical CS cocycles has especially nice properties when DGLA cycles

belong to the commutator DGLA[
Caug

•+1

(
U,W ;Dψ

al ⊗ A
)
, Caug

•+1

(
U,W,Dψ

al ⊗ A
)]
. (3.24)

Proposition 3.6.3. If a cycle f lies in the commutator DGLA (3.24), then

ψ(⟨f, β⟩) depends only on the cohomology class of β and the homology class of

f in the DGLA (3.24).

Proof. Suppose f ∈ Caug
p (U,W ;Dψ

al ⊗ A) and f = ∂g for some g in the com-

mutator DGLA. Then the vanishing of ψ(⟨f, β⟩) ∈ A follows from the proof of

Lemma 3.6.1 and Lemma 3.6.2. Thus it remains to show that ψ(⟨f, δ̌b⟩) = 0

for any b ∈ Cp−1(U, Ŵ ) if f is a cycle of the commutator DGLA. Indeed, since

⟨f, ∂∗b⟩ = ⟨∂f, b⟩ = 0, we have

⟨f, δ̌b⟩ =
∑

s∈Ip, with∧
j∈s Uj unbounded

fs(∂
∗b)s = −

∑
s∈Ip, with∧

j∈s Uj bounded

fs(∂
∗b)s,

and the ψ-average of each term in the latter sum vanishes by Lemma 3.6.2.

The evaluations of cycles of the commutator DGLA on spherical CS cocy-

cles can be used to construct topological invariants of G-invariant gapped

states on Rn. We set W = Rn. The cycle we use as an input is the com-

mutator class of C•(U,Rn;Dψ,G
al ) defined using the inhomogeneous Maurer-

Cartan equation (Section 3.6). Since Dψ,G
al is a sub-algebra of Dψ

al ⊗ A with

A =
∏∞

k=1 Sym
kg∗[−2], Prop. 3.6.3 applies to such cycles.
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Let U be a CS cover of Rn, and β be a spherical CS cocycle of Ŵ = Sn−1

of degree l with respect to the cover Û. Let p be a Q-twisted MC element

of Caug
•+1(U,Rn;Dψ,G

al ). Evaluating [p, p] on β and taking into account that the

grading is shifted by 1 relative to the Čech grading, we get a G-invariant

element of dψal ⊗ Symk(g∗[−2]) where 2k − 3 = l. Since ψ is G-invariant,

ψ(⟨[p, p], β⟩) is a G-invariant element of Symk(g∗[−2]). Equivalently, it is the

value of a degree 3 linear function on cocycles of Č•(Û,R) valued in Sym•g∗[2].

Theorem 3.6.1. The function β 7→ ψ(⟨[p, p], β⟩) depends only on ψ and the

class of (U, β) in the CS cohomology of Sn−1.

Proof. For a fixed covering U, Prop. 3.6.1 and 3.6.3 implies ψ(⟨[p, p], β⟩) is

independent of p. It depends on β solely through its cohomology class. It

remains to show invariance under refinement of cover.

Let (V, ϕ) be a refinement of U with Vj ⊂ Uϕ(j). Cocycles (U, β) and (V, ϕ∗β),

where (ϕ∗β)j0,...,jk = βϕ(j0),...,ϕ(jk), are in the same CS cohomology class. From

Prop.3.6.1 there exists Q-twisted MC element p for the cover V. Prop.3.6.2

then implies that ϕ∗p is a Q-twisted MC element p for the cover U. An easy

expansion shows

⟨[ϕ∗p, ϕ∗p], β⟩ = ⟨[p, p], ϕ∗β⟩.

Since any Q-twisted MC element gives the same answer, we have shown that

this contraction of interest depends only on the CS cohomology class of (U, β).

By Proposition 3.4.7, the cohomology group H l
CS(S

n−1,R) is one-dimensioal

for l = n − 1 and vanishes otherwise. It is natural to take the class of (U, β)

to be a generator of Hn−1
CS (Sn−1,Z). This generator is uniquely defined once

an orientation of Rn−1 has been chosen. Thus for any even n we obtain an

invariant of gapped G-invariant states on Rn taking values in G-invariant poly-

nomials on g of degree (n + 2)/2, and this invariant changes sign when the

orientation of Rn is changed. This is in agreement with Chern-Simons field

theory.

The Hall conductance

For physics applications, the most important case is G = U(1) and n = 2. Let

us specialize the construction of topological invariants to this case.
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Let ψ be a U(1)-invariant gapped state of a lattice system on Rn. The gen-

erator of the U(1) action is Q ∈ Dψ
al(Rn). Let Dψ,Q

al be the sub-algebra of

U(1)-invariant elements of Dψ
al. Since U(1) is connected, this the same as the

sub-algebra of elements of Dal which commute with Q. More generally, for

any U ∈ CSn Dψ,Q
al (U) = Dal(U) ∩Dψ,Q

al . This is a local Lie algebra over CSn.
The graded local Lie algebra Dψ,G

al reduces in this case to Dψ,Q
al ⊗R[[t]] where

t is a variable of degree −2.

Pick a cover U = {Ui}i∈I of Rn. To find a solution p of the inhomogenenous

Maurer-Cartan equation with B = Q ⊗ t, we write p =
∑∞

k=1 pk ⊗ tk, where

pk ∈ Ck−1(U,Rn;Dψ,Q
al ). To compute the topological invariant of a state on R2

it is sufficient to solve for p1.

p1 is a solution of ∂p1 = Q. Explicitly, p1 = {Qi ∈ Dψ,Q
al (Ui)}i∈I such that∑

i∈I Qi = Q. Such Qi exist because Dψ,Q
al is a cosheaf. Then the component

of the commutator class in C1(U,Rn;Dψ,Q
al ) is {[Qi,Qj]}i<j. The topological

invariant of the state ψ is obtained by evaluating it on a Čech 1-cocycle β

on S1 corresponding to the cover Û and then averaging the resulting inner

derivation:

σ(β) = ψ

(∑
i<j

βij[Qi,Qj]

)
.

Note that averaging over ψ must be performed after the summation over i, j

because [Qi,Qj] is not an inner derivation, in general.

The simplest CS cover of R2 which can represent a nontrivial class inH1
CS(S

1,R)
is made of three cones with a common vertex. In this case the construction

of the invariant reduces to that in [KS20; KS22]. It was shown there that the

resulting invariant is proportional to the zero-temperature Hall conductance

as determined by the Kubo formula.

Topological invariants of gapped states on subsets of Rn

So far we assumed that Λ is an arbitrary countable subset of Rn with a uniform

O(rn) bound on the number of points in a ball of radius r. Suppose Λ ⊂ W ϵ

for some CS set W and some ϵ > 0. If this is the case, we will say the

pair (Λ, {Vj}j∈Λ) describes a quantum lattice system on W . Then for any

F ∈ Dal the component FX vanishes for any brick X which does not intersect

W ϵ ∩ Λ, and thus for any U ∈ CSn we have Dal(U) = Dal(U ∧ W ) and



100

Dψ
al(U) = Dψ

al(U ∧W ). Thus the assignment U 7→ Dψ
al(U) can be regarded as

a local Lie algebra over the site CSn/W .

In particular, if a compact Lie group G acts locally on the quantum lattice

system on W and preserves a gapped state ψ, the generator of the action

Q : g → Dψ
al takes values in the sub-algebra Dψ

al(W ). Consequently Dψ,G
al is

a graded local Fréchet-Lie algebra over CSn/W pointed by Q ∈ Dψ,G
al (W ).

Picking a cover U ofW and applying the Čech functor gives an acyclic pointed

DGLA whose commutator class can be evaluated on any CS cocycle β of Ŵ

to give an inner derivation. Its ψ-average is a G-invariant polynomial on g

which depends only on the class of (U, β) in H•(Ŵ ,R). Thus a quantum

lattice system on W has a topological invariant which is a linear function of

H•(Ŵ ,R) → Sym•g∗[2]. It is easy to check that this linear function has degree

3.

For example, consider a U(1)-invariant gapped state of a quantum lattice

system on W = R2 affinely embedded in R3. The topological invariant defined

in Section 3.6 is obtained by contracting with a 2-cocycle of S2 (the sphere

at infinity) and vanishes for dimensional reasons. On the other hand, by

contracting with the 1-cocycle of Ŵ = S1 one obtains the Hall conductance

of this system.

For a more non-trivial example, for any n > 2 consider a finite graph Γ ⊂ Sn−1

whose edges are geodesics and take W to be the cone with base Γ and apex

at an arbitrary point of Rn. The invariants of U(1)-invariant gapped states

of quantum lattice systems on W ⊂ Rn are labeled by generators of the free

abelian group H1(Γ,Z). This example goes beyond TQFT since W need not

be smooth or even locally Euclidean.

3.7 0-chains

In this section we use the results of [KS22] to derive the properties of LGAs

which we used in Section 3.3.

0-chains on Zn

First let us characterize Dal(U) in terms of 0-chains. A 0-chain on Zn is an

element a = {aj}j∈Zn ∈
∏

j∈Zn Dal({j}) such that

∥a∥k := sup
j∈Zn

∥aj∥{j},k <∞. (3.25)
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We say a 0-chain a is supported on U if ai = 0 whenever i /∈ U , and write

C0(U) for the set of U -supported 0-chains, endowed with the norms (3.25) for

k ≥ 0.

Proposition 3.7.1. Let U ⊂ Rn be nonempty and let U1 := {x ∈ Rn :

d(x, U) ≤ 1} be its 1-thickening.

i) If F ∈ Dal(U) then F = ∂f for a U1-supported 0-chain f with ∥f∥k ≤
2k∥F∥U,k

ii) If f ∈ C0(U), then for any Y ∈ Bn the sum

(∂f)Y :=
∑

j∈Zn∩U

fYj

is absolutely convergent and defines a map ∂ : C0(U) → Dal(U) with

∥∂f∥U,k ≤ C∥f∥k+2n+1, where the constant C > 0 depends only on n.

Lemma 3.7.1. For any nonempty U, Y ⊂ Rn we have

1 + d(Y, U1 ∩ Zn) + diam(Y ) ≤ 2(1 + d(Y, U) + diam(Y )).

Proof. Choose y ∈ Y and u ∈ U with d(y, u) = d(Y, U), and choose z ∈ Zn

with d(u, z) ≤ 1. Then since z ∈ U1 ∩ Zn we have

d(Y, U1 ∩ Zn) ≤ diam(Y ) + d(y, z)

≤ diam(Y ) + d(y, u) + d(u, z)

≤ diam(Y ) + d(Y, U) + 1,

and the Lemma follows.

Proof of Proposition 3.7.1. i). Suppose F ∈ Dal(U). Choose any total order

on U1∩Zn and for every Y ∈ Bn let j∗(Y ) be the closest point to Y in U1∩Zn,
using the total order as a tiebreaker. For every i ∈ Λ, define

fi :=
∑
Y ∈Bn
j∗(Y )=i

FY . (3.26)

Then either fYi = 0 or d(Y, U1 ∩ Zn) = d(Y, j) and ∥fYi ∥ = ∥FY ∥, and so

∥fi∥k = sup
Y ∈Bn\{∅}

(1 + diam(Y ) + d(Y, {i})k∥fYi ∥

= sup
Y ∈Bn\{∅}

(1 + diam(Y ) + d(Y, U1 ∩ Z1))k∥FY ∥,
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which by Lemma 3.7.1 is bounded by 2k∥F∥U,k.

ii). Suppose that f is a U -supported 0-chain. For any k ≥ 0 we have

∥∂fY ∥ ≤
∑

j∈Zn∩U

∥fYj ∥

≤ ∥f∥k+2n+1

∑
j∈Zn∩U

(1 + diam(Y ) + d(j, Y ))−k−2n−1

≤ ∥f∥k+2n+1(1 + diam(Y ) + d(U, Y ))−k
∑

j∈Zn∩U

(1 + diam(Y ) + d(j, Y ))−2n−1

≤ ∥f∥k+2n+1(1 + diam(Y ) + d(U, Y ))−k(1 + diam(Y ))−n
∑
j∈Zn

(1 + d(j, Y ))−n−1

≤ ∥f∥k+2n+1(1 + diam(Y ) + d(U, Y ))−k(1 + diam(Y ))−n
∑
j∈Zn

(1 + d(j, Y ))−n−1.

It is not hard to show that for any brick Y the quantity (1+diam(Y ))−n
∑

j∈Zn(1+

d(j, Y ))−n−1 is bounded by a constant C depending only on n, which shows

∥∂fY ∥ ≤ C∥f∥k+2n+1.

Proposition 3.7.1 will allow us to apply the results of [KS22] on 0-chains. The

results in [KS22] are phrased in terms of the norms

∥a∥KSx,k := sup
r>0

(1 + r)k inf
b∈d(Br(x))

∥a− b∥,

where d(Br(x)) is the set of traceless anti-hermitian operators strictly localized

on the ball of radius r around x ∈ Rn. To apply their results we prove the

equivalence of these norms:

Lemma 3.7.2. For any x ∈ Zn and k > 0, the norms ∥ · ∥KSx,k and ∥ · ∥{x},k
obey

∥a∥KSx,k ≤ C∥a∥{x},k+2n+2 (3.27)

∥a∥{x},k ≤ 8kC ′∥a∥KSx,k (3.28)

where C,C ′ are constants depending only on k.

Proof. Suppose ∥a∥{x},k+2n+1 < ∞ and let r > 0. Define b :=
∑

X⊂Br(x)
aX .

Then

∥b− a∥ ≤ ∥a∥{x},k+2n+2

∑
X⊈Br(x)

(1 + diam(X) + d(x,X))−k−2n−2.
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Since X ⊈ Br(x) means diam(X) + d(x,X) ≥ r, we continue this as follows:

≤ (1 + r)−k∥a∥{x},k+2n+2

∑
X⊈Br(x)

(1 + diam(X) + d(x,X))−2n−2

≤ C(1 + r)−k∥a∥{x},k+2n+2,

where in the last line we used Lemma 3.3.1. This proves (3.27). To prove (3.28)

suppose ∥a∥KSx,k <∞ and letX be any brick. Set r := ⌊(diam(X)+d(x,X))/4⌋.
Then X ⊈ Br(x). Indeed, if X ⊆ Br(x) then d(x,X) ≤ r and diam(X) ≤ 2r,

implying diam(X) + d(x,X) ≤ 3r, which is impossible. Choose b ∈ d(Br(x))

with ∥a− b∥ ≤ (1 + r)−k∥a∥KSx,k . Since X ⊈ Br(x) we have bX = 0, and so

∥aX∥ = ∥(a− b)X∥

≤ 4n∥a− b∥

≤ 4n∥a∥KSx,k (1 + r)−k

≤ 4n+2k∥a∥KSx,k (1 + diam(X) + d(x,X))−k,

where in the second line we used [KS22, Proposition C.1].

Proof of Lemma 3.3.7

We begin by describing the construction of J and K. Suppose ψ is gapped

with Hamiltonian H and gap ∆, and write τt for the one-parameter family of

LGAs obtained by exponentiating H. There exists12 a function w∆ : R → R
such that w∆(t) = O(|t|−∞), and the Fourier transform13 ŵ∆ is supported in

the interval [−∆/2,∆/2] and satisfies ŵ∆(0) = 1. Let W∆ be the odd function

which on the positive real line is given by W∆(|t|) = −
∫∞
|t| w∆(u)du. Then we

define F and G as the following integral transforms:

J (F) :=

∫
w∆(t)τt(F)dt,

K(F) :=

∫
W∆(t)τt(F)dt.

Proof of Lemma 3.3.7. J and K correspond to JH,w∆
and JH,W∆

in Section

4.1 of [KS22]. Part i) follows from the definition of K and the fact that H

preserves ψ. Part ii) follows from Proposition 3.7.1 and Lemma 3.7.2, together

with [KS22, Lemma F.1] (specifically line (177) therein). Part iii) is [KS22,

line (72)].

12See for instance Lemma 2.3 in [BBR24].
13We use the convention f̂(ξ) =

∫
f(t)e−iωtdt.
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3.8 Inhomogeneous Maurer-Cartan equation

Let (M,B) be a pointed pronilpotent DLGA which is a limit of an inverse

system of nilpotent pointed DGLAs (MN ,BN), N ∈ N. The set MC(M,B) of

B-twisted MC elements has an additional equivalence relation. This section

revolves around this additional structure leading eventually to a proof of Prop.

3.6.1.

We have morphisms rN,K : MN → MK for all N > K and the DGLA M is

the inverse limit of the corresponding system of DGLAs. For any N ∈ N let

rN : M → MN be the natural projection. Let jN = ker rN,N−1. The sets of

BN -twisted MC elements of MN will be denoted MC(MN ,BN).

A B-twisted MC element p gives rise to a degree −1 derivation ∂p = ∂ + adp

of M which squares to zero (twisted differential).

Lemma 3.8.1. If p ∈ MC(MN ,BN), then rN,K(p) ∈ MC(MK ,BK) for all

K < N . Further, p ∈ MC(M,B) iff pN = rN(p) ∈ MC(MN ,BN) ∀N ∈ N.

Proof. Straightforward.

Thus MC(M,B) is the inverse limit of the system of sets MC(MN ,BN), N ∈ N.

We are going to define an equivalence relations on MC(M,B) and MC(MN ,BN)

for all N . This is done in the same way as for the ordinary (homogeneous)

Maurer-Cartan equation [GM88; Man22].

First, MN,0 is a nilpotent Lie algebra, so there is a well-defined nilpotent Lie

group exp(MN,0) with the group law given by the Campbell-Baker-Hausdorff

formula. Similarly, M0 is pronilpotent (i.e. is an inverse limit of a system of

nilpotent Lie algebras), so the CBH formula defines a group exp(M0).

Second, there are Lie algebra homomorphisms from M0 (resp. MN,0) to the

Lie algebras of affine-linear vector fields on M−1 (resp. MN,−1). This homo-

morphism maps a ∈ M0 or MN,0 to the affine-linear vector field

ξa(p) = [a, p]− ∂a,

where p ∈ M−1 or MN,−1. Here we used the identification of the space of

affine-linear vector fields on a vector space V with the space of affine-linear

maps V → V . These homomorphisms exponentiate to actions of the groups



105

exp(M0) and exp(MN,0) on M−1 and MN,−1 by affine-linear transformations.

Explicitly, the actions are given by [GM88; Man22]:

p 7→ exp(a) ∗ p = exp(ada)(p) +
1− exp(ada)

ada
(∂a). (3.29)

Lemma 3.8.2. The actions of exp(M0) on M−1 (resp. exp(MN,0) on MN,−1)

preserve the sets MC(M,B) (resp. MC(MN ,BN)).

Proof. The proof in [GM88], Section 1.3, applies just as well in the inhomoge-

neous case.

We say that elements p1, p2 of MC(M,B) or MC(MN ,BN) are equivalent if

they belong to the same orbit of these actions.

Remark 3.8.1. By analogy with the homogeneous case, one can define a

B-twisted Deligne groupoid as the transformation groupoid for the action of

exp(M0) on MC(M,B). Similarly, one can define “reduced” Deligne groupoids

for every N ∈ N.

We observe an easy but useful lemma.

Lemma 3.8.3. If pi ∈ MC(MN ,BN), i = 1, 2, are equivalent, then rN,K(p1)

is equivalent to rN,K(p2) for all K < N .

Now come the interesting statements. Assume from now on that the DGLAs

MN and M are acyclic, that jN ⊂ MN is central for all N > 1, and that the

morphisms rN,N−1 are surjective for all N > 1.

Lemma 3.8.4. With the above assumptions, the set MC(M,B) is non-empty

if and only if MC(M1,B1) is non-empty.

Proof. The only if statement follows from Lemma 3.8.1. To prove the if di-

rection, we use induction on N . Assume MC(MN−1,BN−1) is non-empty. Let

pN−1 ∈ MC(MN−1,BN−1). Pick p̃N ∈ r−1
N,N−1(pN−1). Since pN−1 is a BN−1-

twisted MC element and rN,N−1(BN) = BN−1, we must have

∂p̃N +
1

2
[p̃N , p̃N ] = BN + qN

for some qN ∈ jN . We look for a solution of the BN -twisted MC equation

of the form pN = p̃N + bN where bN ∈ jN . Taking into account that jN is
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central, the inhomogeneous MC equation reduces to ∂bN = −qN . Since by

assumption jN ,MN , and MN−1 form a short exact sequence and the latter two

are acyclic, so is jN . Hence such a bN exists. This completes the inductive

step proving that MC(MN ,BN) ̸= ∅ for all N . Moreover, we also proved that

the morphisms MC(MN ,BN) → MC(MN−1,BN−1) are surjective. Therefore

by Lemma 3.8.1 MC(M,B) is non-empty.

The above lemma proves the first part of Prop. 3.6.1. Indeed when [M1,M1] =

0, MC(M1,B1) ̸= ∅ is implied by acyclicity. Next we show that with the above

assumption on MN and M all B-twisted MC elements are equivalent.

Lemma 3.8.5. Suppose a, b ∈ MN,0 and a ∈ jN . Then for any p ∈ MN,−1

one has

exp(b+ a)(p) = exp(b)(p)− ∂a.

Proof. See [GM88], Lemma 2.8.

Lemma 3.8.6. Let pi ∈ MC(MN ,BN), i = 1, 2 such that rN,N−1(p1) =

rN,N−1(p2). Then p1 and p2 are equivalent.

Proof. Let q = p2 − p1 ∈ MN,−1. By assumption, q ∈ jN . Moreover, ∂q = 0.

Indeed,

∂q =
1

2
[p2, p2]−

1

2
[p1, p1] = [q, p1] +

1

2
[q, q] = 0.

By acyclicity of jN , we have q = ∂a for some a ∈ jN,0. Then Lemma 3.8.5

implies that exp(a) ∈ exp(MN,0) maps p2 to p1.

Lemma 3.8.7. Let p̃i ∈ MC(MN ,BN), i = 1, 2, be such that p1 = rN,N−1(p̃1)

and p2 = rN,N−1(p̃2) are equivalent. Then p̃1 and p̃2 are equivalent.

Proof. Let a ∈ MN−1,0 be an equivalence between p1 and p2, i.e. exp(a) ∗ p2 =
p1. Let ã ∈ MN,0 be any lift of a. Then rN,N−1(exp(ã) ∗ p̃2) = rN,N−1(p̃1).

By Lemma 3.8.6, exp(ã) ∗ p̃2 is equivalent to p̃1, therefore p̃2 is equivalent to

p̃1.

Proposition 3.8.1. For any N ∈ N all elements of MC(MN ,BN) are equiv-

alent. All elements of MC(M,B) are equivalent.
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The first statement is proved by induction on N , where the inductive step is

Lemma 3.8.7. The second statement follows by passing to the inverse limit in

N .

Theorem 3.8.1. Let p ∈ MC(M,B). Then the homology class of [p, p] in

H•([M,M]) is independent of the choice of p.

Proof. Let p, p′ ∈ MC(M,B) and let a ∈ M0 be an equivalence between p and

p′. Since p, p′ satisfy the inhomogeneous Maurer-Cartan equation and B is a

cycle, [p, p] and [p′, p′] are cycles as well. From (3.29) we have

p′ − p = −∂a+
∞∑
k=1

adka(p)

k!
−

∞∑
k=1

adka(∂a)

(k + 1)!
,

where

f :=
∞∑
k=1

adka(p)

k!
−

∞∑
k=1

adka(∂a)

(k + 1)!
∈ [M,M].

Thus [p, p]− [p′, p′] = 2∂(p′ − p) = 2∂f is ∂-exact in [M,M].
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C h a p t e r 4

EFFICIENT HAMILTONIAN LEARNING FROM GIBBS
STATES

This Chapter is available as a preprint at

[Art24] Adam Artymowicz. “Efficient Hamiltonian learning from Gibbs
states”. In: arXiv e-prints, arXiv:2403.18061 (Mar. 2024), arXiv:2403.18061.
doi: 10.48550/arXiv.2403.18061. arXiv: 2403.18061 [quant-ph].

4.1 Introduction

In this work we consider the problem of learning a quantum Hamiltonian from

its Gibbs state. Gibbs states are ubiquitous in quantum physics and represent

systems in thermal equilibrium. They can be defined by a variational principle:

they are the minimizers of free energy. This fact can in principle be used for

Hamiltonian learning [SK14; Ans+21], but a naive implementation of this idea

is impractical because the free energy is known to be classically exponentially

difficult to compute [Mon15]. However, this does not preclude use of the

variational principle in an efficient algorithm. Indeed, since the free energy

is convex, the global variational principle is equivalent to a local one, which

requires only knowledge of the derivatives of the free energy with respect to

perturbations of the state. Linear response theory relates derivatives of free

energy to locally measurable quantities, suggesting that they can be estimated

without knowledge of the free energy itself. If such estimates can be made

efficient, then the variational principle can be efficiently implemented.

The current work contains two main contributions. The first is a new lower

bound on the entropy change due to a local perturbation of a quantum state

(Theorem 4.2.1). We relate this to a hierarchy of semidefinite constraints

known as the matrix EEB inequality [FFS] by showing that it is a relaxation

of the free energy variational principle which can be enforced using polynomial

classical resources.

Second, we use this to formulate a semidefinite algorithm for Hamiltonian

learning. The algorithm either finds a local Hamiltonian respecting the matrix

EEB inequality, or else it gives a proof that the given state is not a Gibbs state
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of any local Hamiltonian. We benchmark the algorithm by performing black-

box learning of a nearest-neighbour Hamiltonian on 100 qubits from local

expectation values with realistic levels of measurement noise.

These contributions are significant for several reasons. Hamiltonian learn-

ing is relevant in experimental settings [AA23]: near-term applications in-

clude studying frustrated systems by learning effective Hamiltonians [Sch+23]

and probing entanglement properties of many-body states via their entangle-

ment Hamiltonians [Dal+22]. For such applications, the problem of learning

a Hamiltonian from local expectation values currently presents a practical

bottleneck limiting the system sizes under consideration. Indeed, local ex-

pectation values of systems of ∼100 qubits can in many cases be obtained

either numerically or using current NISQ technology. Meanwhile, practical

algorithms for Hamiltonian learning that do not assume prior information or

additional control over the state have so far achieved reliable learning only for

systems of 10 or fewer qubits. The algorithm we propose in this work has the

potential to remove this bottleneck.

The entropy lower bound in Theorem 4.2.1 is also of independent interest be-

yond Hamiltonian learning. For instance, efficient preparation of Gibbs states

on a quantum computer remains an important open problem. A common

approach is to thermalize an initial state using Lindbladian dynamics. The

convergence speed can be related to the rate of change of free energy, which

can be estimated using Theorem 4.2.1.

We begin in Section 4.2 by introducing the main entropy lower bound (The-

orem 4.2.1) and the matrix EEB inequality (Corollary 4.2.1). Section 4.3

describes the semidefinite algorithm. In Section 4.4 we describe the results of

numerical simulations on a 100-qubit spin chain. We conclude in Section 4.5

with a discussion of the results, and some future directions for research. This

work additionally includes three appendices. In Section 4.6 we compare our

algorithm to some existing approaches, with a focus on practical performance.

In Section 4.7 we prove in detail the main theoretical results introduced in

Section 4.2. Finally, Section 4.8 contains extra details about the numerical

implementation described in Section 4.4.

The implementation of the learning algorithm used in this work is available

for use at
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https://github.com/artymowicz/hamiltonian-learning

Aside from the learning algorithm itself, this repository also contains all rou-

tines used for performing the numerical tests in Section 4.4.

4.2 The lower bound on dS

In this section we begin by introducing Theorem 4.2.1 and derive the matrix

EEB inequality as a consequence. We defer all proofs in this section to Sec-

tion 4.7. Let H be the Hilbert space of a quantum system, and assume that

dimH < ∞. Let A be the set of all operators on A. As a rule, we will use

lowercase letters to denote elements of A. We will denote the adjoint of an

operator a by a∗. We say a mixed state represented by a density matrix ρ is

faithful if the matrix ρ is invertible. Let ρ be such a state.

We are interested in perturbations of ρ due to interactions with its environ-

ment. In the Lindblad formalism [Lin76; AL07] the evolution of the state ρ

under open-system dynamics is given for t ≥ 0 by

ρt = etL[ρ], (4.1)

where L is the Lindbladian superoperator. Under the assumption that the

environment is Markovian and interacts weakly with the system, L can be

written in the form

L[ρ] :=
r∑

i,j=1

{
1

2
M ij[a

∗
jai, ρ] +Λij(aiρa

∗
j −

1

2
(a∗jaiρ+ ρa∗jai))

}
, (4.2)

where M anti-Hermitian, Λ is positive-semidefinite, and a1, . . . , ar is a set of

operators satisfying tr(ρa∗i aj) = δij and tr(ρai) = 0 for all i = 1, . . . r.

A straightforward calculation using the cyclic property of the trace yields the

following expression for the first-order change in the expectation value of an

observable under the evolution generated by the Lindbladian (4.2):

Lemma 4.2.1. Let h ∈ A be selfadjoint and define the r × r matrix H ij :=

tr(ρa∗i [h, aj]). Then we have

d

dt

∣∣∣∣
t=0

tr(ρth) = tr(MH−) + tr(ΛH+), (4.3)

where H± := (H ±H†)/2.
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Notice that if a1, . . . , ar and h are operators of bounded locality, then the ex-

pression (4.3) uses only expectation values of operators of bounded locality.

One may ask if a similar expression exists for the first-order change in the von

Neumann entropy S(ρ) = − tr(ρ log ρ). In general, this cannot be expected,

since entropy is not a local property of the state. However, instead of an ex-

act expression, the following proposition bounds first-order change in entropy

using only the correlations of the hopping operators:

Theorem 4.2.1. We have

d

dt

∣∣∣∣
t=0

S(ρt) ≥ − tr(Λ log∆), (4.4)

where the matrix ∆ is defined as ∆ij := tr(ρaja
∗
i ).

Let us remark on some ambiguities in the expression (4.2) and their effect on

the above inequality. For a given Lindbladian L, the operators a1, . . . , ar and

the matrices M and Λ in (4.2) are not uniquely defined. Indeed, there are

two ambiguities in their definition1:

1. Applying a change of basis a′i =
∑

ij Qijaj that preserves the condition

tr(ρa∗i aj) = δij and applying the inverse change of basis to the matrices

M and Λ.

2. Appending additional operators ar+1, . . . , ar+q to the list and setting all

new matrix elements in M and Λ to zero.

While the first ambiguity does not change the right-hand side of (4.4), it

turns out that the second ambiguity does. Indeed, adding operators to the

list a1, . . . , ar increases the right-hand side of (4.4). This can be seen as the

result of the nonlinearity of the matrix logarithm log(∆). We summarize the

above discussion as follows. Let P = span{a1, . . . , ar} ⊂ A. Then the bound

(4.4) depends only on L and P . Growing P improves the bound, but requires

knowledge of a larger number of correlations.

In the remainder of this section we describe one of the consequences of the

bound (4.4). The free energy of a state ρ with respect to a Hamiltonian h and

a temperature T is

F (ρ) := −TS(ρ) + tr(ρh). (4.5)

1It is shown in Section 4.7 that these are the only ambiguities in the definition of Λ.
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Lemma 4.2.1 and Theorem 4.2.1 give an upper bound on the first-order change

of free energy under the Lindbladian evolution generated by (4.2):

d

dt

∣∣∣∣
t=0

F (ρt) ≤ tr(MH−) + tr(Λ(T log∆+H+)). (4.6)

Given a Hamiltonian h and a temperature T , the Gibbs state ρ := e−h/T/ tr
(
e−h/T

)
is the unique minimizer of the free energy. Let us call a Lindbladian L P-

supported if the operators a1, . . . , ar in the expression (4.2) can be chosen to

lie in P .

Corollary 4.2.1. If ρ is the Gibbs state of a Hamiltonian h then

T log∆+H ⪰ 0. (4.7)

Moreover, if (4.7) fails, then there is a P-supported Lindbladian that decreases

the free energy of ρ with respect to h.

The inequality (4.7) is known as the matrix EEB inequality [FFS]. It is a

hierarchy (depending on P) of convex constraints that converges to the Hamil-

tonian of a Gibbs state.

4.3 Algorithm

In this section we apply the EEB inequality to the problem of learning the

Hamiltonian of a Gibbs state. Given a set of selfadjoint traceless operators

h1, . . . , hs, we give an efficient algorithm that either finds a Hamiltonian in the

span of h1, . . . , hs that satisfies the matrix EEB inequality, or else returns a

Lindbladian that simultaneously rules out every h in the span of h1, . . . , hs by

decreasing the free energy.

By adding a regularization parameter to the matrix EEB inequality and setting

T = 1 we get the following linear semidefinite program:

minimize
h∈span{h1,...,hs}

µ∈R

µ (4.8)

subject to log(∆) +H + µI ⪰ 0, (4.9)

As before, ∆ and H are defined as

∆ij := tr(ρaja
∗
i ), (4.10)

H ij := tr(ρa∗i [h, aj]), (4.11)



115

where a1, . . . , ar satisfy tr(ρa∗i aj) = δij and tr(ρai) = 0. The convex dual of

the above program reads:

maximize
Λ⪰0

M†=−M

− tr(Λ log(∆)) (4.12)

subject to tr(MH−) + tr(ΛH+) = 0, (4.13)

tr(Λ) = 1. (4.14)

In light of Lemma 4.2.1 and Theorem 4.2.1, the dual program seeks a P-

supported Lindbladian that maximizes dS/dt while preserving (to first order)

the expectation values of the operators h1, . . . , hs. Thus the dual program

can be thought of as seeking the direction of steepest ascent for preparing the

maximum-entropy state with prescribed expectation values of the operators

h1, . . . , hs.

A primal-dual pair is said to satisfy Slater’s condition if the primal program

has a strictly feasible point. Such a point can be found for (4.8) by setting

h = 0 and taking µ sufficiently large. As a consequence, a standard result

in convex optimization states that the optimal values of the primal and dual

program coincide [BV04]. Thus we have:

Proposition 4.3.1. Let µ, h be the optmizers of the primal program (4.8),

and M ,Λ the optimizers of the dual program (4.12).

1. If µ ≤ 0, then h satisfies the matrix EEB inequality (4.7).

2. If µ > 0 then the Lindbladian L corresponding to M and Λ increases the

entropy of ρ while preserving tr(ρhα) to first order for every α = 1, . . . , s.

Thus, by running the primal-dual pair, we are guaranteed to get either a

Hamiltonian h that satisfies the EEB inequality, or else get a P-supported

Lindbladian that a) acts as an interpretable guarantee that ρ is not the Gibbs

state of any Hamiltonian in the search space, and b) is a heuristic for the best

available Lindbladian for thermalizing the state ρ.

We conclude this section by discussing the computational complexity of the

primal-dual pair. Interior-point methods produce solutions to the primal and

dual problem whose objectives are within ϵ of the true optimum in poly(r) log(1/ϵ)

time, where r is the dimension of P [NN94]. In the remainder of the paper
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we will restrict our attention to a system of n spins on a lattice, where it is

natural to choose an integer k > 0 and let P be the span of all k-local Pauli

operators, and the variational Hamiltonian terms h1, . . . , hs to be the set of

all k′-local Pauli operators. Here we mean k-local in the sense that the oper-

ator acts trivially outside a set of k contiguous qubits. With these choices we

have r = O(4kn) and the algorithm requires O(4k
′+2kn2) expectation values of

Paulis of weight at most k + 2k.

4.4 Numerical results

In this section, we describe a numerical implementation of the algorithm from

Section 4.3, applied to the problem of learning a nearest-neighbour 100-qubit

Hamiltonian from local expectation values of its Gibbs state. A variable

amount of noise was added to the input of the algorithm. At zero noise, this

acts as a test to how tightly the matrix EEB inequality constrains the set of

possible Hamiltonians. At nonzero noise levels, this acts as a test of the num-

ber of independent samples of the state ρ required to accurately reconstruct

the Hamiltonian.

Learning an XXZ Hamiltonian

The MPS purification technique [FW05] was used to prepare thermal states

of the following anisotropic Heisenberg ferromagnet:

hXXZ = −
n−1∑
i=1

(σxi σ
x
i+1 + σyi σ

y
i+1 +

1

2
σyi σ

y
i+1), (4.15)

with n = 100. Both the set of perturbing operators b1, . . . , br and the set of

variational Hamiltonian terms h1, . . . , hs were chosen to be the 1192 geomet-

rically 2-local Pauli operators. Measurement error was simulated by adding

Gaussian noise with variance σnoise to the expectation value of each Pauli op-

erator. The learning algorithm itself was implemented in Python, using the

MOSEK solver [AA00] for the semidefinite optimization2.

Hamiltonian recovery error was quantified using the overlap as in [QR19]:

let y ∈ Rs be the vector of recovered Hamiltonian coefficients and z ∈ Rs the

vector of true Hamiltonian coefficients. The Hamiltonian recovery error is then

defined as the relative angle of the two, which for small angles approximately

2The convex modeling language CVXPy [DB16] and the open source solver SCS
[ODo+16] were used in prototyping but not in the final code.
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Figure 4.1: Numerical results for the 100-qubit anisotropic Heisenberg model
(4.15) at several temperatures. Left: Recovery error θ as a function of noise
amplitude σnoise, averaged over 10 runs. Dotted line is (mean) + (standard
deviation). Right: Ratio of recovered temperature to actual temperature, aver-
aged over 10 runs. Shaded region is (mean) ± (standard deviation).

equals the reciprocal of the signal-to-noise ratio:

θ = arccos

(
|⟨y|z⟩|
∥y∥∥z∥

)
≈ ∥y − z∥

∥z∥
. (4.16)

Note that this metric is not sensitive to the overall scaling of the Hamiltonian.

This degree of freedom is effectively the inverse temperature 1/T . Interest-

ingly, the algorithm reconstructed the “projective” degrees of freedom of the

Hamiltonian terms much more accurately than it did its overall scale (or equiv-

alently, the temperature).

The Hamiltonian recovery error θ and the recovered temperature T are plotted

against σnoise in Figure 4.1. A temperature-dependent noise threshold is found

between σnoise ≈ 10−5 and σnoise ≈ 10−3 above which the matrix ∆ ceases to

be positive definite — these are the right endpoints of the plots in Figure 4.1.

The algorithm could possibly be emended to work for higher noise values by

projecting onto the positive eigenspace of ∆, but we leave this to future work.

As one shrinks the noise amplitude, the recovery error first decreases (for

high temperatures, this decrease is linear to a good approximation). This

persists up until, at some temperature-dependent critical value of the noise

amplitude, the recovery error plateaus. We interpret this two-stage behaviour

as follows. In the limit of zero measurement error, perfect recovery is not

guaranteed because the matrix EEB inequality (4.7) is weaker than the Gibbs

condition. Instead, it defines a convex set of candidate Hamiltonians, and the

algorithm picks one of these by maximizing the regularization parameter µ.
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The recovery error is then on the order of the diameter of this convex set. Thus

for low enough levels of measurement noise the recovery error is approximately

noise-independent.

The only way to lower the levels of these plateaux is to enlarge P , which

tightens the matrix EEB constraint. This is relevant if one wants to prove

asymptotic bounds on the number of copies of the state and the computational

resources needed to specify the Hamiltonian up to an arbitrarily low error.

Such results, however, do not necessarily have practical implications. Indeed,

for the particular Hamiltonian under consideration, the plateaux start at noise

amplitudes σnoise of around 10−9 to 10−8. Assuming that expectation values

are estimated from independent copies of the state, this would require on

the order of 1016 to 1018 samples, far beyond what is experimentally feasible

anyway. So for practical applications it may be more important to understand

the high-noise regime rather than the locations of the plateaux.

4.5 Outlook

Let us conclude by describing some directions for future research. While

Proposition 4.7.3 establishes the correctness of the algorithm, it suffers from

two important limitations which must be overcome if one is to prove sample

complexity and computational complexity bounds. First, neither the feasi-

bility nor the recoverability statements of Proposition 4.7.3 take into account

measurement noise in the expectation values of the state, which is unavoidable

whenever these are estimated using finitely many copies of the state. Second,

the recoverability statement only holds when the set of perturbing operators is

grown to a complete set of operators. The utility of this algorithm depends on

approximate recoverability when the set of perturbing operators is far smaller

than a complete set. Section 4.4 gives numerical evidence that this is indeed

the case, but a proof is still lacking.
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4.6 Comparison to other work

In this section we compare the Hamiltonian learning algorithm discussed in

sections 4.3 and 4.4 to a few existing approaches, focusing on practical per-
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formance. We include only algorithms that learn from independent copies of

an identical state ρ without assuming any other control over ρ. On the theo-

retical side, the recent series of works [Ans+21; HKT22; Bak+23] culminated

with a proof by Bakshi et al. that this problem can be solved using polyno-

mial classical resources [Bak+23]. However, their result is asymptotic and no

implementation yet exists by which to assess its practical performance. Algo-

rithms which have so far seen practical implementation either use exponential

classical resources [Ans+21; Kok+21; Lif+21], or solve the more general prob-

lem of learning a Hamiltonian from a stationary state, which we show below

is ill-posed in the setting of Gibbs states. Thus, so far a demonstration that

the problem of learning a Hamiltonian from local expectations can reliably be

solved in the noisy 100-qubit regime has been missing.

Local equilibrium criteria

On a theoretical level, the current work bears closest resemblance to the algo-

rithm given by Bakshi et al in [Bak+23]. The KMS condition [BR97, Section

5.3] states that ρ is the Gibbs state of a Hamiltonian h at temperature T = 1/β

if and only if

tr
(
ρe−βHaeβHb

)
= tr(ρba) (4.17)

for all a, b ∈ A. Another is the EEB condition [BR97, Theorem 5.3.15]: ρ is

the Gibbs state of h at temperature T = 1/β if and only if

tr(ρa∗a) log

(
tr(ρaa∗)

tr(ρa∗a)

)
+ β tr(a∗[h, a]) ≥ 0 (4.18)

for all a ∈ A. Both of these are local conditions in the sense that they can be

checked for a subset of operators, yielding relaxations of the Gibbs condition.

While the matrix EEB inequality used in the current work is a semidefinite

relaxation of the EEB condition[FFS], the algorithm in [Bak+23] uses a sum-

of-squares relaxation of the KMS condition.

Learning from steady states

The algorithms [BAL19] and [EHF19] learn a Hamiltonian from local expec-

tation values of a steady state. This can be applied to a Gibbs state, since

a Gibbs state is necessarily a steady state. Both these algorithms work by
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approximately enforcing the linear constraints

tr(ρ[h, bi]) = 0, i = 1, . . . ,m (4.19)

for some choice of operators b1, . . . , bm.

A constraint of this form can be seen to be implicit in the constraint used in

the current algorithm. Indeed, by breaking the regularized EEB constraint

log(∆) +H + µ1 ⪰ 0 (4.20)

into its hermitean and anti-hermitean parts, (4.20) can be see to be equivalent

to the pair of constraints

H− = 0 (4.21)

log(∆) +H+ + µ1 ⪰ 0, (4.22)

where H± = (H ±H†)/2. It is not hard to check that H− = 0 if and only if

tr(ρ[h, a∗i aj]) = 0 for all 1 ≤ i, j ≤ r. (4.23)

Let us remark on why the additional positive-semidefinite constraint is neces-

sary. The linear constraint alone cannot recover h if the state ρ has any local

symmetries other than the Hamiltonian. This happens, for instance, for Gibbs

states of the XXZ model (4.15) considered in Section 4.4. A Gibbs state of

hXXZ at any temperature will commute with the generator q :=
∑

i σ
z
i of onsite

z-rotations. This means that the linear constraint alone, and in general any

algorithm that does not discriminate steady states from Gibbs states, cannot

distinguish the Hamiltonians hXXZ + λq for different values of the parameter

λ.

Algorithms using loss functions

Several algorithms [Ans+21; Kok+21; Lif+21] work by minimizing a loss func-

tion which is intended to measure the discrepancy between the input state and

the Gibbs state of a trial Hamiltonian. In [Ans+21] the loss function can be

shown to equivalent to the relative entropy and requires computing the parti-

tion function of the trial Hamiltonian. In both [Kok+21] and [Lif+21], the loss

function is a χ2 statistic based on a random measurement scheme. In all three

cases, the loss function requires exponential classical resources to compute,

preventing these algorithms from being scaled beyond the ∼ 10 qubit regime.
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4.7 Proofs

In this section we prove the claims made in Section 4.2. First we prove a

standard form for Markovian Lindbladians analogous to the GKSL standard

form [GKS76; Lin76]. In what follows ρ will always refer to a faithful state.

Proposition 4.7.1 (Standard form for Lindbladians). Every Markovian Lind-

bladian can be written in the form

L[σ] =
r∑

i,j=1

{
1

2
M ij[a

∗
jai, σ] +Λij(aiσa

∗
j −

1

2
(a∗jaiσ + σa∗jai))

}
, (4.24)

where M is anti-Hermitian, Λ is positive-semidefinite, and a1, . . . , ar satisfy

tr(ρa∗i aj) = δij and tr(ρai) = 0. For a given L, the matrix Λ is uniquely

determined by the choice of a1, . . . , ar.

Next we prove a detailed version of the entropy bound in Theorem 4.2.1:

Proposition 4.7.2 (Entropy bound). Let L be a Lindbladian of the form given

by Proposition 4.7.1 and define

S := − tr(Λ log∆), (4.25)

where ∆ij := tr(ρaja
∗
i ). Then

i) S depends only on ρ, L, and P = span{a1, . . . , ar}.

ii) If P ⊂ P ′ then S(ρ, L,P) ≤ S(ρ, L,P ′).

iii) If P = {a ∈ A : tr(ρa) = 0} then

S =
d

dt

∣∣∣∣
t=0

S(ρt) (4.26)

for ρt = etL[ρ].

Finally, we state in detail the matrix EEB inequality.

Proposition 4.7.3 (Matrix EEB inequality). Let a1, . . . , ar be operators sat-

isfying tr(ρa∗i aj) = δij and tr(ρai). For a given T ≥ 0 define K to be the

convex set of all traceless selfadjoint operators h ∈ A such that

T log(∆) +H ⪰ 0, (4.27)

where ∆ij := tr(ρaja
∗
i ) and H = tr(ρa∗i [h, aj]). Then
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i) K depends only on ρ, T , and P := span{a1, . . . , ar}.

ii) If P ⊂ P ′ then K(ρ, T,P ′) ⊂ K(ρ, T,P).

iii) If P = {a ∈ A : tr(ρa) = 0} then K(ρ, T,P) is a singleton containing the

unique traceless operator h such that ρ = e−h/T/ tr
(
e−h/T

)
.

Parts iii) of the above two propositions can be seen as convergence results.

We remark however that when P = {a ∈ A : tr(ρa) = 0}, the expressions

(4.25) and (4.27) use the expectation values of all operators, and thus requires

full tomography of the state ρ. As such, this result does not give a practical

convergence proof for the Hamiltonian learning algorithm considered in Section

4.3. Instead it acts as a sanity check that the algorithm performs no worse

than the naive algorithm using full state tomography.

The proofs of these three propositions will use the Gelfand-Naimark-Segal

(GNS) construction, which we introduce briefly now. Although our introduc-

tion is entirely self-contained, readers wanting more details are referred to

the standard references [BR87; Tak79], or to the lecture notes [Wit18] which

contain an introduction aimed at physicists.

Let A be the space of all operators on the physical Hilbert space H, and let

ρ be a faithful state. The bilinear form (a, b) 7→ tr(ρa∗b) endows A with the

structure of a Hilbert space. For an operator a ∈ A we write |a⟩ when we view

a as a vector in this Hilbert space3. The GNS vector |1⟩ corresponding to the

identity operator is usually denoted |Ω⟩.

The modular operator ∆ : A → A is defined by the equation

⟨a|∆|b⟩ = tr(ρba∗). (4.28)

It is easy to check that ∆ is self-adjoint with respect to the GNS inner product.

As the following calculation shows, an equivalent characterization of ∆ is that

it takes a GNS vector |b⟩ to |ρbρ−1⟩:

⟨a|∆|b⟩ = tr(ρba∗) (4.29)

= tr
(
(ρbρ−1)ρa∗

)
(4.30)

= tr
(
ρa∗(ρbρ−1)

)
(4.31)

= ⟨a|ρbρ−1⟩. (4.32)

3There is a close analogy between this notation and the state-operator correspondence
in CFT.
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We will use the following conventions: operators on the physical Hilbert space

will be denoted by lowercase letters, operators on the GNS Hilbert space will

be denoted by capital letters like ∆ and Λ, and numerical matrices will be

denoted by boldface captial letters like ∆ and Λ.

Proof of Proposition 4.7.1

First let us show that every Markovian Lindbladian has a parametrization of

the form (4.24). The GKSL theorem [GKS76; Lin76] says that every Marko-

vian Lindbladian has an expression of the form (4.24) but where a1, . . . , ar

don’t necessarily satisfy tr(ρa∗i aj) = δij and tr(ρai) = 0. Notice that the

right-hand side of (4.24) is invariant under the following two operations,

1. Applying a coordinate transformation ai 7→
∑

j Qijaj while taking Λ 7→
(Q−1)†ΛQ−1 and M 7→ (Q−1)†MQ−1.

2. Adding new operators ar+1, . . . , ar+q to the list and setting all new matrix

elements of M and Λ to zero.

Using the above operations we can ensure that r = N2 (where N is the di-

mension of the physical Hilbert space H), aN2 = 1H, and tr(ρa∗i aj) = δij for

1 ≤ i, j ≤ N2. Notice now that for every term in (4.24) where i = N2, the

dissipative part can be absorbed into the unitary part:

1

2
MN2,j[a

∗
j , σ] +ΛN2,j(σa

∗
j −

1

2
(a∗jσ + σa∗j)) =

1

2
(MN2,j −ΛN2,j)[a

∗
j , σ].

(4.33)

Together with an analogous calculation for terms where j = N2, we have

L[σ] = [h, σ] +
N2−1∑
i,j=1

Λij(aiσa
∗
j −

1

2
(a∗jaiσ + σa∗jai)), (4.34)

where

h =
1

2

N2∑
i,j=1

(M ij + (δi,N2 − δj,N2)Λij). (4.35)

To conclude the existence proof, we need to replace h with
∑N2−1

i,j=1 M ′
ija

∗
i aj

for some antiselfadjoint matrix M ′
ij. We will use the following lemma:
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Lemma 4.7.1. Every a ∈ A can be written as a =
∑m

i=1 b
∗
i ci + γ1H where

tr(ρbi) = tr(ρci) = 0 and γ ∈ C.

Proof. For N = 1 this is immediate with m = 0 and γ = a. Suppose that

N > 1. Let ρ =
∑N

i=1 ρi|i⟩⟨i|. It suffices to prove the claim for a = |i⟩⟨j| for
any 1 ≤ i, j ≤ N . Choose any k ̸= j. Then we have a = b∗c where b = |j⟩⟨i|
and c = |j⟩⟨j| − ρj

ρk
|k⟩⟨k|.

Since a1, . . . , aN2−1 form a basis for {a ∈ A : tr(ρa) = 0}, by the above Lemma

we can write

h =
N2−1∑
i,j=1

cija
∗
i aj + γ1H (4.36)

=
1

2

N2−1∑
i,j=1

(cij − cji)a
∗
i aj + Im(γ)1H (4.37)

for some {cij}N
2−1

i,j=1 , where the second line is because h is anti-Hermitian. Thus

finally we have

L[σ] =
1

2

N2−1∑
i,j=1

(cij − cji)[a
∗
i aj, σ] +

N2−1∑
i,j=1

Λij(aiσa
∗
j −

1

2
(a∗jaiσ + σa∗jai)) (4.38)

which establishes the existence statement of Proposition 4.7.1.

The uniqueness statement will follow from the following result, which we will

also use in the proof of Theorem 4.2.1. Let Λ : A → A be the positive-

semidefinite operator

Λ :=
r∑

i,j=1

Λij|ai⟩⟨aj|. (4.39)

Lemma 4.7.2. Suppose a Lindbladian L is expressed in the form (4.24) where

the operators a1, . . . , ar are unrestricted. Let Q = 1− |Ω⟩⟨Ω|.

i) The operator QΛQ is independent of parametrization, i.e. for a given L

it does not depend on (a1, . . . , ar, M , Λ).

ii) If a1, . . . , ar are required to satisfy tr(ρai) = 0, then Λ = QΛQ and thus

Λ is parametrization-independent.
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Proof. To prove part i), suppose (a1, . . . , ar, M , Λ) and (a′1, . . . , a
′
r′ , M

′, Λ′)

are two parametrizations of L of the form (4.24). Notice that Λ is invariant

under the operations 1 and 2 above. As a result we can assume without loss

of generality that r = r′ = N2 and a1, . . . , aN2 = a′1, . . . , a
′
N2 is a basis of A

with aN2 = 1H/2
N−1 and tr(a∗i aj) = δij for 1 ≤ 1, j ≤ N2. Then the trick used

to obtain (4.34) shows that there are self-adjoint operators h and h′ such that

L[σ] = −i[h, σ] +
N2−1∑
i,j=1

Λij(aiσa
∗
j −

1

2
(a∗jaiσ + σa∗jai)) (4.40)

= −i[h′, σ] +
N2−1∑
i,j=1

Λ′
ij(aiσa

∗
j −

1

2
(a∗jaiσ + σa∗jai)), (4.41)

for every σ. By adding a multiple of the identity, h and h′ can be made

traceless and so the uniqueness statement of Theorem 2.2 in [GKS76] shows

that Λij = Λ′
ij for all 1 ≤ i, j ≤ N2 − 1. Thus we have

Λ′ − Λ =
∑

i=N2 or j=N2

(Λ′
ij −Λij)|ai⟩⟨aj| (4.42)

= |Ω⟩⟨a|+ |a⟩⟨Ω|, (4.43)

for some a ∈ A. The result then follows from the fact that Q(|Ω⟩⟨a| +
|a⟩⟨Ω|)Q = 0.

Part ii) then follows immediately from part i) and the fact that tr(ρai) =

⟨Ω|ai⟩.

The above lemma proves the uniqueness statement of Proposition 4.7.1, since

the additional condition tr(ρa∗i aj) = δij implies that Λij = ⟨ai|Λ|aj⟩.

Proof of Proposition 4.7.2

Part i).

Let Q : A → A be the orthogonal projection onto P := span{a1, . . . , ar}.
Since ∆ is the coordinate expression for Q∆Q in the basis a1, . . . , ar and since

⟨ai|aj⟩ = tr(ρa∗i aj) = δij it is easy to check that

− tr(Λ log(∆)) = − tr(ΛQ log(Q∆Q)Q). (4.44)

By part ii) of Lemma 4.7.2, this expression depends only on L, ρ, and P .
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Part ii).

We will use the operator version of Jensen’s inequality applied to the matrix

logarithm, which follows from the main theorem in [Dav57] and the fact that

log is operator convex [Cha15]:

Lemma 4.7.3 (Operator Jensen’s inequality for log). Let K be a Hilbert space

and let Q and Q′ be projections in K such that the image of Q is contained in

the image of Q′. Then for any positive operator M on K we have

Q log(QMQ)Q ⪰ Q log(Q′MQ′)Q. (4.45)

Let (a1, . . . , ar,M ,Λ) and (a′1, . . . , a
′
r,M

′,Λ′) be two parametrizations of L,

and suppose P ⊂ P ’. Letting Q and Q′ be the orthogonal projections onto P
and P ′, we have

− tr(Λ log(∆)) = − tr(ΛQ log(Q∆Q)Q) (4.46)

≤ − tr(ΛQ log(Q′∆Q′)Q) (4.47)

= − tr(ΛQ′ log(Q′∆Q′)Q′) (4.48)

= − tr(Λ′ log(∆′)), (4.49)

where in the third line we used the fact that Λ = QΛQ = Q′ΛQ′.

Part iii).

We begin by computing a general expression for the derivative of the entropy:

Lemma 4.7.4. Let σt, t ≥ 0 be a smooth path of density matrices and suppose

that σ0 is faithful. Write St = − tr(σt log σt). Then using a prime to denote a

time-derivative at t = 0, we have

S ′ = − tr(σ′ log(σ)). (4.50)

Proof. We have

− tr(σ log(σ))′ = − tr(σ′ log(σ))− tr
(
σ log(σ)′

)
. (4.51)

Using the power series of log about the identity operator and the cyclicity of

the trace, the second term can be seen to equal − tr(ρ′) = 0.

Now we apply the above lemma to the time-evolution of our state ρ generated

by the Lindbladian (4.24):
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Lemma 4.7.5. With ρt = etL[ρ], we have

d

dt

∣∣∣∣
t=0

S(ρt) = − tr(Λ log(∆)), (4.52)

where Λ :=
∑

ij Λij|aj⟩⟨ai|

Proof. Since the first term of (4.24) generates a unitary evolution it does not

contribute to the entropy and so we may set M = 0 without loss of generality.

Since ∆|a⟩ = |ρaρ−1⟩, we have log(∆)|a⟩ = |[log(ρ), a]⟩. Thus we can expand

the right-hand of (4.52) as

− tr(Λ log(∆)) = −
∑
ij

Λij⟨aj| log(∆)|ai⟩ (4.53)

= −
∑
ij

Λij⟨aj|[log(ρ), ai]⟩ (4.54)

= −
∑
ij

Λij tr
(
ρa∗j [log(ρ), ai]

)
(4.55)

= −
∑
ij

Λij

[
tr
(
aiρa

∗
j log(ρ)

)
− tr

(
ρ log(ρ)a∗jai

)]
(4.56)

= −
∑
ij

Λij

[
tr
(
aiρa

∗
j log(ρ)

)
− 1

2
tr
(
a∗jaiρ log(ρ)

)
− 1

2
tr
(
ρa∗jai log(ρ)

)]
(4.57)

= − tr(L[ρ] log(ρ)), (4.58)

which equals d
dt

∣∣
t=0
S(ρt) by Lemma 4.7.4.

Finally, we need the following lemma:

Lemma 4.7.6. Let Q = 1−|Ω⟩⟨Ω| be the orthogonal projection onto {a ∈ A :

tr(ρa) = 0}. We have

Q log(Q∆Q)Q = log(∆). (4.59)

Proof. Since ∆|Ω⟩ = |Ω⟩, we have log(∆)|Ω⟩ = 0, which proves the lemma.

We are now ready to prove part iii). Suppose P = {a ∈ A : tr(ρa) = 0}. Then

− tr(Λ log(∆)) = − tr(ΛQ log(Q∆Q)Q) (4.60)

= − tr(Λ log(∆)) (4.61)

=
d

dt

∣∣∣∣
t=0

S(ρt). (4.62)
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Proof of Proposition 4.7.3

Parts i) and ii) follow from the corresponding parts of Proposition 4.7.2.

Part iii).

Suppose first that ρ = e−h/T/ tr
(
e−h/T

)
. Define H : A → A as H : |a⟩ →

|[h, a]⟩. Since T log(∆)+H = 0, Lemma 4.7.6 gives TQ log(Q∆Q)Q+H = 0,

and sandwiching this expression between ⟨ai| and |aj⟩ for all 1 ≤ i, j ≤ N2−1

gives T log(∆) +H = 0.

Conversely, suppose h satisfies the matrix EEB inequality for P = {a ∈ A :

tr(ρa) = 0}. This implies in particular that H is self-adjoint, and the calcu-

lation

0 = H ij −Hji (4.63)

= tr([ρ, h]a∗i aj) (4.64)

together with Lemma 4.7.1 shows that [h, ρ] = 0. From this it is easy to show

that QHQ = H, and so the matrix EEB inequality gives

T log(∆) +H ⪰ 0. (4.65)

Let J be the modular involution, which is the complex-antilnear operator de-

fined as

J |a⟩ := |ρ1/2a∗ρ−1/2⟩. (4.66)

For any a ∈ A we have

⟨Ja|H|Ja⟩ = tr
(
ρ ρ−1/2aρ1/2[h, ρ1/2a∗ρ−1/2]

)
(4.67)

= tr
(
aρ1/2hρ1/2a∗

)
− tr

(
ρ1/2aρa∗ρ−1/2h

)
(4.68)

= − tr(ρa∗[h, a]) (4.69)

= −⟨a|H|a⟩, (4.70)

where in the third line we used the fact that [ρ, h] = 0. Thus J†HJ = −H. The

same calculation with log(ρ) replacing h shows that J† log(∆)J = − log(∆). It

follows that −(T log∆+H) = J†(T log(∆)+H)J ⪰ 0 and thus T log(∆)+H =

0. From this we see that log(ρ) − h/T commutes with every operator in A,

which means it is a multiple of the identity, and so ρ = e−h/T/ tr
(
e−h/T

)
.
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4.8 Corrections to ideal algorithm

In this section we describe several modifications that were made to the ideal-

ized algorithm (4.8) for the numerical work in Section 4.4.

1. For any matrix M , a semidefnite constraint M ⪰ 0 can be broken down

to the constraints M− = 0 and M+ ⪰ 0, where M± := (M ±M †)/2.

Doing so with the semidefinite constraint (4.9) yields

H− = 0 (4.71)

log(∆) +H+ ⪰ 0. (4.72)

Instead of imposing these constraints simultaneously, we impose the lin-

ear constraint H− = 0 first. This greatly reduces the number of degrees

of freedom in the semidefinite program, leading to a more computation-

ally efficient algorithm.

2. In the presence of noise in the expectation values of ρ, it is not appro-

priate to impose the linear constraint H− = 0 exactly. Instead, the

following matrix was computed

Wαβ := tr
(
(Hα −H†

α)(Hβ −H†
β)

†
)
, (4.73)

where (Hα)ij := tr(ρa∗i [hα, aj]) for α = 1, . . . s, and the search space of

Hamiltonians was restricted to the span of the eigenvectors of W with

eigenvalue below a threshold ϵW > 0. This is equivalent to the matrix

K used in [BAL19]. For sufficiently small values of σnoise, the spectrum

of W was found to have several near-zero eigenvalues and a spectral gap

to the rest of the eigenvalues, and ϵW was chosen to lie in this gap. An

empirical formula that was found to produce an ϵW lying in the spectral

gap of W was

ϵW = 400max(σ2
noise

√
m, 10−11), (4.74)

where m denotes the number of terms a∗i [hα, aj] such that [hα, aj] ̸= 0.

This formula is not expected to be universal across different values of

n and choices of perturbing operators. We note that in practice, while

choosing ϵW to be too low caused the output to be inaccurate, choosing

ϵW to lie above the gap did not significantly affect the accuracy of the

result.
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3. Although the temperature can be thought of as the same degree of free-

dom as the overall scale of the Hamiltonian, we chose to explicitly isolate

it by adding a variable T ≥ 0 to the the semidefinite program and re-

placing the constraint

log(∆) +H+ − µI ⪰ 0 (4.75)

with

T log(∆) +H+ − µI ⪰ 0, (4.76)

tr(ρh) = −1. (4.77)

Here the extra normalization (4.77) is necessary to eliminate the degree

of freedom associated with simultaneously scaling T, h, and µ.

4. Although the MOSEK interior-point solver [AA00] solves the primal and

dual programs simultaneously, it was found that the algorithm ran signif-

icantly faster when it was called explicitly with the dual program instead

of the primal.
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C h a p t e r 5

CERTIFIED ALGORITHMS FOR QUANTUM
HAMILTONIAN LEARNING VIA ENERGY-ENTROPY

INEQUALITIES

This Chapter is available as a preprint at

[Art+24] Adam Artymowicz et al. “Certified algorithms for quantum Hamil-
tonian learning via energy-entropy inequalities”. In: arXiv e-prints,
arXiv:2410.23284 (Oct. 2024), arXiv:2410.23284. doi: 10.48550/
arXiv.2410.23284. arXiv: 2410.23284 [quant-ph].

5.1 Introduction

In this work we consider the problem of Hamiltonian learning from a thermal

state. Given the form of the Hamiltonian

h =
m∑
α=1

λαEα, (5.1)

where local Hamiltonian terms Eα are known but their coefficients λα are not,

we seek estimates of the λα’s using measurements from the Gibbs state

ρ =
e−βh

Tr[e−βh]
.

Hamiltonian learning is fundamental to validate our models of quantum phys-

ical systems [Wie+14; Wan+17], and plays an important role in certifying

quantum devices. In addition, with the recent progress in quantum algo-

rithms for Gibbs state preparation [Tem+11; Che+23], Hamiltonian learning

is likely to be crucial to benchmark the future realizations of such algorithms.

Aside from these applications, it can also directly be used to give physical

insights about many-body quantum systems in both experimental and numer-

ical contexts. For instance, Hamiltonian learning has already been applied to

the study of entanglement Hamiltonians [Dal+22], which are sensitive probes

of entanglement and have for instance been used to test CFT predictions in

thermalizing systems [WRL18; Kok+21]. Applications like these demand a

Hamiltonian learning algorithm that is efficient, reliable, and can provide rig-

orous bounds on the uncertainty.
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Overview of the algorithm and results We propose an efficient Hamilto-

nian learning algorithm that provides rigorous error bounds. Our algorithm is

based on a semidefinite constraint that generalizes a set of inequalities known

as the energy-entropy balance or EEB inequalities [AS77]. These constraints

were first applied to the forward problem in [FFS23] by three of us and to

the inverse problem in [Art24] by one of us. In the latter work, it was bench-

marked numerically, where it was found to scale well and to give accurate

results when reconstructing a known Hamiltonian. However, this work did

not include a theoretical analysis of the case with measurement noise, or any

practically useful convergence guarantees. As such its output did not come

with any guarantees of accuracy, which would be necessary for use in experi-

ments. Here we solve this problem in two ways, with a posteriori and a priori

guarantees.

Our algorithm computes rigorous lower and upper bounds on any linear func-

tional v·λ of the unknown coefficients λ ∈ Rm. By varying over different choices

of v a convex relaxation of the Hamiltonian parameters can be obtained, i.e.,

a convex set including λ itself. In particular, by running the algorithm for all

basis vectors in Rm, we obtain intervals such that λα ∈ [aα, bα]. Other inter-

esting choices exist, however: if
∑

α vαEα is a symmetry of ρ, the quantity v ·λ
has the interpretation of a generalized chemical potential for this symmetry

[Ara+77], an important physical quantity. This example includes the usual

chemical potential when
∑

α vαEα is the number operator corresponding to a

given particle type.

The algorithm is parametrized by a hierarchy level ℓ ∈ N+ which governs the

strength of the semidefinite constraint used. It is summarized in Figure 5.1.

The details of the setup of the algorithm are described in Section 5.2 and the

theorem is proved in Sections 5.3 and 5.4.

Theorem 5.1.1 (Informal version of Theorem 5.2.5). Consider a k-local Hamil-

tonian h =
∑m

α=1 λαEα with unknown coefficients λ ∈ Rm. Let β = maxα |λα|
and let d be the degree of the dual interaction graph (see Section 5.2 for the

definition). Assume we have access to an oracle ω̃ such that for the evaluated

observables O, |ω̃(O)− tr[ρO]| ≤ ε0∥O∥, where ρ = e−h/Tr
[
e−h
]
is the Gibbs

state of h. Let v ∈ Rm with ∥v∥1 = 1 and consider the problem of estimating

the inner product v · λ given access to ω̃.

For each ℓ ∈ N+, let a
(ℓ) and b(ℓ) be the output of algorithm in Figure 5.1.
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i) The pair of numbers a(ℓ) and b(ℓ) satisfy

a(ℓ) ≤ v · λ ≤ b(ℓ). (5.5)

ii) If h is commuting and ℓ = max(3, 1 + (1 + d)2), then we have

b(ℓ) − a(ℓ) ≤ ε0/σ (5.6)

provided ε0 ≤ σ for some error threshold σ = e−Ok,d(β)m−6.

Point (i) above shows that our algorithm returns certified a posteriori bounds,

i.e., it returns an estimate of the parameter v · λ together with strict bounds

on the error of these estimates, namely b(ℓ) − a(ℓ). This type of algorithm is

particularly beneficial for situations where no convergence guarantees can be

proven or when a priori guarantees lead to overly pessimistic bounds. More-

over, if the program is infeasible, the dual program gives a certificate that ρ

is not a Gibbs state of any Hamiltonian with the given structure. Point (ii)

gives an a priori guarantee: for a constant value of ℓ and provided the noise

ε0 of the expectation values is below a certain threshold, the estimates of v · λ
returned by the algorithm are proportional to ε0. In particular, estimates can

be obtained in polynomial time and using polynomially many samples in the

system size and inverse error of the estimates.

Related work The version of the Hamiltonian learning problem we study

has attracted wide interest over the past years, with several approaches being

proposed. On the practical front, reliable algorithms which have been used in

numerics and experiments have been limited to small system sizes [Ans+21;

Kok+21; Lif+21]. More scalable approaches exist, including algorithms that

only use the property that the Gibbs state is a steady state [BAL19; EHF19].

Even though such algorithms are efficient and can work for some instances,

one can easily construct instances where such conditions are not enough to

single out the Hamiltonian, even when the Hamiltonian is commuting and

the expectation values are known perfectly [Art24]. We mention also the

Hamiltonian learning algorithm [GCC22] (see also [Sti+24]) which has both

a theoretical analysis of performance and has been implemented. However, it

solves a different problem where Gibbs states with different temperatures can

be queried.
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From a theoretical perspective, the polynomial complexity of the commuting

case follows from the simple approach in [Ans+]. Other polynomial complexity

bounds have been proven in this and other contexts [HKT24; Kuw24; Bak+23;

Nar24]. The best asymptotic computational and sample complexity bounds

for the general problem are achieved in [Bak+23; Nar24], which give an al-

gorithm with polynomial classical and sample complexity. It is interesting to

compare their algorithm with ours. They use a convex hierarchy that is based

on relaxations of the KMS condition [HHW67], which is physically related to

the EEB condition used in this work. Both the KMS and the EEB conditions

are interpretable in terms of local thermodynamic stability [CW87; AS77],

and their ideal versions (i.e., taking all the possible conditions) have been

shown to be equivalent [AS77; Sew77]. However, in order to obtain an effi-

cient algorithm, only a subset of the conditions are imposed and this manifests

differently for the KMS versus EEB conditions. Since the KMS conditions are

non-linear in the Hamiltonian parameters, in [Bak+23], polynomial approxi-

mations are used to implement these constraints entailing an intricate error

analysis already in the feasibility part. Furthermore, to deal with the resulting

polynomial constraint systems, an additional hierarchy, the sum-of-squares re-

laxation, is introduced. In comparison, our constraints, which are linear in the

parameters of the Hamiltonian, are much easier to implement.

5.2 Algorithmic framework and main results

Let H be a finite-dimensional Hilbert space. We write B(H) for the algebra

of all linear operators on H. The adjoint of an operator a will be denoted a∗.

Let m > 0 and let E1, . . . , Em ∈ B(H) be a collection of selfadjoint operators

with ∥Eα∥ = 1 for all 1 ≤ α ≤ m. Let

h =
m∑
α=1

λαEα (5.7)

for some unknown coefficients λ1, . . . , λm, and set β := maxα=1,...m |λα|. Let ρ
be the thermal state

ρ =
e−h

Tr[e−h]
.

We will write thermal expectation values of observables as

ω(A) := Tr[ρA].

Here and below, we use Tr to denote the usual trace and tr to denote the

normalized trace tr(a) = Tr(a)/ dim(H).
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The matrix EEB constraint

We start by introducing the semidefinite constraint that forms the backbone

of this work. It begins with a choice of selfadjoint operators P1, . . . , Pr ∈ B(H)

satisfying ∥Pi∥ = 1 which we call the perturbing operators. The constraint will

depend on this choice, and adding operators to the list will yield a tighter con-

straint — in this sense we will say the constraints form a hierarchy depending

on the choice of P1, . . . , Pr
1. Later, in sections 5.2 and 5.2 we will restrict to

lattice models, where the perturbing operators will be chosen to be all the

Pauli operators of a given locality, but in this section and the next we keep

the choice of perturbing operators unrestricted.

Define the following r × r matrix C and r × r matrices B1, . . . , Bm:

Cij := ω(PiPj) 1 ≤ i, j ≤ r (5.8)

(Bα)ij := ω(Pi[Eα, Pj]) 1 ≤ i, j ≤ r and 1 ≤ α ≤ m. (5.9)

Since (PiPj)
∗ = PjPi, the matrix C is automatically hermitian, and in fact it

is guaranteed to be positive-definite because ρ ≻ 0. This allows us to define

the following matrices:

∆ := C−1/2CTC−1/2, (5.10)

Hα := C−1/2BαC
−1/2 1 ≤ α ≤ m. (5.11)

We remark that although the operators Eα are hermitian, the matrices Bα

and Hα are not hermitian in general.

The conceptual starting point for this work is the following matrix inequality

[FFS23]:

Theorem 5.2.1 (Matrix EEB inequality).

log(∆) +
m∑
α=1

λαHα ⪰ 0. (5.12)

Notice that since positive semidefinite matrices are by definition hermitian, the

matrix EEB inequality subsumes the linear constraint
∑m

α=1 λα
(
Hα−H†

α

)
=

0, which is nontrivial because the matrices Hα are (in general) not hermitian.

1The fact that adding perturbing operators strengthens the constraint was shown in a
slightly different setting in [Art24, Proposition 4]. There, it was also shown that the con-
straint depends only on the span of the perturbing operators, and thus we have a hierarchy
indexed by the poset of linear subspaces of B(H). We do not need either of these facts here.
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Varying the choice of perturbing operators P1, . . . , Pr, the matrix EEB in-

equality yields a hierarchy of semidefinite contraints that are satisfied for the

true Hamiltonian coefficients λ = (λ1, . . . , λm). This is an idealized constraint

using the quantities ∆ and Hα built out of noise-free expectation values,

which are not accessible to experiment. This is more than a practical concern,

since shot noise is unavoidable given access to only finitely many copies of the

state ρ, even in the absence of other sources of error like state preparation and

measurement noise. Thus, in order to make practically useful statements we

will need to consider an appropriate relaxation of this constraint, which we do

below.

Relaxing the constraint

We assume access to an estimate of ω(A), which we call ω̃(A), for every ob-

servable A of the form

PiPj 1 ≤ i, j ≤ r, (5.13)

Pi[Eα, Pj] 1 ≤ i, j ≤ r and 1 ≤ α ≤ m. (5.14)

We assume the following control over the errors in the estimates ω̃: for some

ϵ0 ≥ 0 we have

|ω̃(A)− ω(A)| ≤ ϵ0 for any operator A of the form (5.13) or (5.14).

(5.15)

We further assume that the estimates obey the following restrictions, which

may be enforced without loss of generality:

ω̃(1) = 1, (5.16)

|ω̃(PiPj)| ≤ 1 for all 1 ≤ i, j ≤ r (5.17)

|ω̃(Pi[Eα, Pj])| ≤ 2 for all 1 ≤ i, j ≤ r and 1 ≤ α ≤ m. (5.18)

Define the quantities C̃, B̃α, ∆̃, H̃α analogously to C,Bα,∆,Hα, but using

the noisy estimates ω̃ in place of ω. In order to do this, one needs C̃ to be

positive-definite. We assume this for now, but as we will show in Theorem

5.2.3 below, this is guaranteed for sufficiently low noise levels. We relax the
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matrix EEB inequality as follows:

log
(
∆̃
)
+

m∑
α=1

λ′α(H̃α+ H̃
†
α)/2 ⪰ −µ1, (5.19)

±i
m∑
α=1

λ′α(H̃α− H̃
†
α)/2 ⪯ µ2, (5.20)

for µ1, µ2 ≥ 0. To show that this relaxation is useful, we need to find some

relaxation parameters µ1, µ2 for which the true Hamiltonian coefficients are

feasible. The following theorem is proved in Section 5.3:

Theorem 5.2.2 (A posteriori feasibility). Suppose C̃ ≻ 0 and let K :=

2r∥C̃−1∥. If ε0 ≤ 1/K then the true Hamiltonian coefficients λ′ = λ are a

feasible point for the relaxed matrix EEB constraints (5.19) and (5.20) with

µ1 :=
(
2K3 + 3mβK2

)
ε0 (5.21)

µ2 := 3mβK2ε0. (5.22)

We call this an a posteriori feasibility guarantee because it depends on the

estimates ω̃, which enter through the constant K. Thanks to this result, the

inequalities (5.19) and (5.20) with µ1 and µ2 given by (5.21) and (5.22) place

rigorous constraints on the set of potential Hamiltonian parameters λ′. If, for

a given ansatz, the condition ε0 ≤ 1/K is fulfilled, but the constraints are

infeasible, this guarantees that the given state is not the Gibbs state in the

family of Hamiltonians.

However, this guarantee only holds when ε0 ≤ 1/K and it is not a priori clear

that this condition can be satisfied by ensuring ε0 is small enough because

K depends on the measured data. The following Lemma shows that this is

indeed the case if we assume that the perturbing operators are chosen to be

Hilbert-Schmidt orthogonal:

Lemma 5.2.1. Suppose the P1, . . . , Pr satisfy tr(PiPj) = δij and let σ =

e−mβd/3r, where d = dim(H). Then if ε0 ≤ σ then K ≤ 1/σ and in particular,

Theorem 5.2.2 holds.

Proof. Since ρ ⪰ e−∥h∥ ⪰ e−mβ we have w†Cw ≥ e−mβd∥w∥2 for any w ∈ Cr,

and so C ⪰ e−mβd = 3rσ. An elementary bound gives ∥C − C̃∥ ≤ rε0, so if

ε0 ≤ σ then ∥C − C̃∥ ≤ rσ. It follows that C̃ ≥ 2rσ, and so K = 2r∥C̃∥ ≤
1/σ.
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The exponential dependence onm is unavoidable in the general case. However,

as we show in the next section, if we restrict to the setting of local Hamiltonians

on a lattice, we can prove the analogous statement with an error threshold σ

that does not depend on m or the Hilbert space dimension d at all.

The lattice setting

So far, we have made almost no assumptions on the structure of the problem

and were able to give the a posteriori guarantee in Theorem 5.2.2 and the a

priori guarantee in Lemma 5.2.1. In this section, we restrict to the setting

of a quantum lattice system, where locality allows us to give much stronger a

priori guarantees.

Suppose our Hilbert space is that of a collection of n qubits H = (C2)⊗n.

We say an operator E is k-supported if | supp(E)| ≤ k, and k-local if it is a

sum of k-supported terms. Suppose the Hamiltonian terms {Eα}ma=1 are k-

supported for some k > 0, and define their dual interaction graph G to have

the vertex set [m] and an edge between every pair of vertices 1 ≤ α, α′ ≤ m

with supp(Eα) ∩ supp(Eb) ̸= ∅. We say {E1, . . . , Em} are k-d-low-intersection

if the degree of the graph G is bounded by d. Call an operator F k-ℓ-G-

supported if supp(F ) ⊂
⋃
S supp(Eα) for a set S ⊂ G which satisfies |S| ≤ ℓ

and is connected in G. Note that a k-ℓ-G-supported operator is kℓ-supported.

Definition 5.2.1. We define Pk,ℓ to be the set of all k-ℓ-G-supported Paulis.

In what follows, we will treat k and d as constants that does not depend on

the system size m. This scenario includes familiar examples of geometrically

local Hamiltonians defined on a lattice.

The following theorem gives an a priori feasibility guarantee, by proving that

Theorem 5.2.2 holds for sufficiently low error rate ε0 without the need to incor-

porate measurement outcomes (which previously entered through the constant

K) into the error threshold. The proof appears in Section 5.3.

Theorem 5.2.3 (A priori bound onK). Suppose that Eα are k-d-low-intersection

for some constants k, d, and suppose that the operators P1, . . . , Pr are all k-ℓ-

G-supported for some ℓ > 0. Then there is an error threshold

σ = r−2e−Ok,d,ℓ(β) (5.23)

such that ϵ0 ≤ σ implies K ≤ 1/σ. In particular, Theorem 5.2.2 holds.
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Next, we give an a priori convergence result, i.e. a proof that our algorithm

outputs estimates of the Hamiltonian parameters that are close to the true

Hamiltonian parameters, in the case when the true Hamiltonian is commuting.

The class of commuting Hamiltonians contains many interesting examples,

including topologically ordered Hamiltonians.

Definition 5.2.2. We say a Hamiltonian h =
∑

α λαEα is commuting if there

are selfadjoint operators {Fα}mα=1 with ∥Fα∥ = 1 and real constants {να}mα=1

such that

i) h =
∑m

α=1 ναFα.

ii) [Fα, Fα′ ] = 0 for any 1 ≤ α, α′ ≤ m.

iii) suppFα ⊂ suppEα for all 1 ≤ α ≤ m.

iv) maxα=1,...m |να| ≤ Cmaxα=1,...m |λα| for some constant C > 0.

Note that for the purpose of our algorithm it is not necessary to know the

decomposition in Definition 5.2.2. A general ansatz of Pauli operators is used

for the {Eα}mα=1, and Theorem 5.2.4 holds as long as a commuting decompo-

sition exists. In order to prove a convergence guarantee, it is also necessary

to ensure that the set P1, . . . Pr is large enough, which we have not done so

far. We require them to include all Pauli operators satisfying a k-ℓ-G-support

assumption for a constant ℓ. The following Theorem is proven in Section 5.4

Theorem 5.2.4 (A priori convergence in the commuting case). Suppose Eα

are Pauli operators with k-d-low-intersection and h is commuting. Set {P1, . . . , Pr} =

Pk,ℓ for ℓ = max(3, 1 + (d+ 1)2). There is an error threshold

τ = m−6e−Ok,d,C(β) (5.24)

such that if ϵ0 ≤ τ then for any λ′ ∈ Rm satisfying the constraints (5.19) and

(5.20), we have

sup
α=1,...m

|λ′α − λα| ≤ eOk,d,C(β)
(
µ1 +m1/2µ2

)
+ ε0/τ. (5.25)
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Algorithms

Let us now describe how the above constraints lead to two algorithms for

Hamiltonian learning. The first algorithm takes as input the set of perturbing

operators P1, . . . , Pr, a choice of direction in the parameter space v ∈ Rm,

choices of nonnegative numbers µ1, µ2, and the estimates ω̃. Assumptions on

the errors in the estimates will enter through the choice of µ1 and µ2.

Algorithm A

Compute K := 2r∥C̃−1∥. If C̃ is not positive definite or K > 1/ε0, return

the interval [−∞,+∞]. Otherwise, let

µ1 :=
(
2K3 + 3mβK2

)
ε0 (5.26)

µ2 := 3mβK2ε0, (5.27)

and return the interval [a, b] where a, b are minimum/maximum of the

following SDP:

minimize/maximize
λ′∈Rm

v · λ′ (5.28)

subject to log
(
∆̃
)
+

m∑
α=1

λ′α(H̃α+ H̃
†
α)/2 ⪰ −µ1, (5.29)

± i
m∑
α=1

λ′α(H̃α− H̃
†
α)/2 ⪯ µ2. (5.30)

Theorems 5.2.2, 5.2.3, and 5.2.4 give the following guarantees:

Theorem 5.2.5 (Guarantees for Algorithm A). Suppose the input state ρ is

the Gibbs state of h =
∑

α λαEα for some unknown coefficients λ ∈ Rm with

maxα=1,...,m |λα| ≤ β, and Pauli operators Eα and consider Algorithm A for

some v ∈ Rm with ∥v∥1 = 1. Then:

i) The algorithm is feasible and its output [a, b] satisfies

a ≤ v · λ ≤ b. (5.31)

If furthermore P1, . . . , Pr = Pk,ℓ, then:
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ii) If h is commuting and ℓ = max(3, 1 + (1 + d)2) then there is an error

threshold

σ = e−Ok,d,C(β)m−6 (5.32)

such that ε0 ≤ σ implies b− a ≤ ε0/σ.

Let us remark that in the above, increasing the error bound ε0 can never

violate the assumptions of the algorithm, but it does relax the constraints,

producing worse bounds. As such, the practicality of the algorithm depends

on access to error bounds that are not too conservative, and in some settings,

such tight error bounds may be hard to obtain. In these settings, one of course

cannot expect tight bounds on the λα, but one may be more interested in the

qualitative structure of the Hamiltonian rather than in exact error bounds.

For such settings, we introduce a variant of the above algorithm, which does

not assume any prior knowledge of the measurement error. It requires only a

choice of hierarchy level ℓ ∈ N+ and the estimates ω̃.
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Algorithm A (overview)

• Input:

– v ∈ Rm — coefficients of the linear functional v · λ
– ω̃ — (noisy) oracle to Gibbs state observables

– ε0 — upper bound on the estimate of the noise

– ℓ ∈ N+ — level of the hierarchy

• Output: Pair of numbers a(ℓ), b(ℓ)

1. Evaluate ω̃ on all operators of the form PQ and P [Eα, Q] for all
P,Q ∈ Pk,ℓ (Pk,ℓ is a set of local Pauli operators defined in Defini-
tion 5.2.1) and α = 1, . . . ,m and collect the results in the matrices
∆̃ and H̃α according to Equations (5.11). Compute µ1 and µ2 ac-
cording to Theorem 5.2.2.

2. Solve the semidefinite programs:

minimize/maximize
λ′∈Rm

v · λ′ (5.2)

subject to log
(
∆̃
)
+

m∑
α=1

λ′α(H̃α + H̃
†
α)/2 ⪰ −µ1,

(5.3)

± i
m∑
α=1

λ′α(H̃α − H̃
†
α)/2 ⪯ µ2. (5.4)

3. Return a(ℓ) and b(ℓ), the minimum and maximum values of the pro-
gram respectively.

Figure 5.1: Algorithm to estimate parameters of local Hamiltonians from noisy
observables of Gibbs states. We note that our presentation is slightly different
from other works in Hamiltonian learning: instead of giving access to the copies
of the state ρ, we have access to a noisy oracle computing expectation values
of ρ. It is clear that having access to O( 1

ε20
) copies of ρ, we can obtain an

estimate of expectation values within ε0 with high probability. We chose this
presentation to avoid having probabilistic statements.
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Algorithm B

Assume C̃ ≻ 0. Return the optimal parameters µ ∈ R≥0, λ
′ ∈ Rm of the

following program:

minimize
λ′∈Rm

µ∈R

µ (5.33)

subject to log
(
∆̃
)
+

m∑
α=1

λ′α(H̃α+ H̃
†
α)/2 ⪰ −µ, (5.34)

± i

m∑
α=1

λ′α(H̃α− H̃
†
α)/2 ⪯ µ. (5.35)

The algorithm returns the putative Hamiltonian parameters λ′ ∈ Rm and the

parameter µ ≥ 0, which can be interpreted as a confidence parameter. A zero

or near-zero value of µ indicates confidence that λ′ are the true Hamiltonian

parameters (a positive result) while a large value of µ indicates confidence

that ρ is not the Gibbs state of any Hamiltonian in the span of E1, . . . , Em

(a negative result). Using Theorems 5.2.2, 5.2.3, and 5.2.4, we equip this

algorithm with the following guarantees:

Theorem 5.2.6 (Guarantees for Algorithm B). Suppose the input state ρ is

the Gibbs state of h =
∑

α λαEα for some unknown coefficients λ ∈ Rm with

maxα=1,...,m |λα| ≤ β, and let µ ∈ R≥0 and λ′ ∈ Rm be the output of Algorithm

B. As before, let K := 2r∥C̃−1∥.

i) The algorithm is feasible and if K ≤ 1/ε0 returns µ ≤ (2K3 + 3mβK2) ε0.

ii) If furthermore P1, . . . , Pr = Pk,ℓ, with ℓ = max(3, 1 + (1 + d)2) and h is

commuting then there is an error threshold

σ = e−Ok,d,C(β)m−6 (5.36)

such that ε0 ≤ σ implies supα=1,...,m |λ′α − λα| ≤ ε0/σ.

Part i) is an a posteriori guarantee against false negatives : if K ≤ 1/ε0 then

the program will never terminate with a value µ > (2K3 + 3mβK2) ε0 if the

true Hamiltonian is in the span of E1, . . . , Em
2. Part ii) and iii) show that

2Furthermore, a negative result is interpretable in terms of thermodynamic stability:
the dual program produces Lindbladian that increases the entropy of ρ while keeping the
expectation values of Eα fixed for all α = 1, . . .m. This was shown in the noise-free case in
[Art24].
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the algorithm converges in the case of small systems (i.e. m constant) and

commuting Hamiltonians, and that the convergence rate matches theoretical

complexity bounds up to poly(m) factors.

5.3 Feasibility proofs

Now that we are finished stating the main results, we move on to the proofs.

In this section we prove the main feasibility statements: Theorem 5.2.2 (a pos-

teriori feasibility) and Theorem 5.2.3 (a priori feasibility). We will first prove

a continuity bound for the matrix EEB inequality in terms of the condition

number of the estimated correlation matrix C̃, and Theorem 5.2.2 will follow

from the continuity bound and the matrix EEB inequality. Then Theorem

5.2.3 will follow from an a priori bound on the condition number of C̃.

Continuity of the matrix EEB constraint We begin with some elemen-

tary lemmas. A standard equivalence between finite-dimensional matrix norms

goes as follows:

Lemma 5.3.1. For an n× n-matrix A

∥A∥ ≤ nmax
i,j

|ai,j|. (5.37)

We will make use of the following continuity bounds for matrix functions.

Lemma 5.3.2. Let A,B, Ã, B̃ be matrices. Then

i) If A and Ã are positive definite then∥∥∥√A−
√
Ã
∥∥∥ ≤ ∥A− Ã∥

∥A−1/2∥−1 + ∥Ã−1/2∥−1
(5.38)

and

∥ log(A)− log(B)∥ ≤ max{∥A−1∥, ∥B−1∥}∥A−B∥. (5.39)

ii) if A and B are invertible then

∥A−1 −B−1∥ ≤ ∥A−1∥∥B−1∥∥A−B∥. (5.40)

iii)

∥AB − ÃB̃∥ ≤ ∥A∥∥B − B̃∥+ ∥B̃∥∥A− Ã∥. (5.41)
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Proof. Inequality (5.38) is proven in [Sch92, Lemma 2.2]. Inequality (5.39) fol-

lows from [Bha97, Theorem X.3.8]. The remaining inequalities are elementary

from submultiplicativity and triangle inequality.

Using the above lemmas, we will prove the main continuity bound:

Proposition 5.3.1 (Continuity bound for matrix EEB inequality). Let K :=

2r∥C̃−1∥ and suppose ε0 ≤ 1/K. Then we have

∥ log∆− log ∆̃ ∥ ≤ 2K3ε0 (5.42)

∥Hα− H̃α ∥ ≤ 3K2ε0. (5.43)

Proof. By Lemma 5.3.1, the uniform bounds on measurement errors translate

to the following error bounds on C and Bα:

∥C − C̃∥ ≤ rε0 (5.44)

∥Bα − B̃α∥ ≤ rε0. (5.45)

Since ϵ0 ≤ 1/K, Lemma 5.3.1 gives

C ⪰ C̃ − ∥C − C̃∥ ⪰ 2r

K
− rε0 ⪰

r

K
(5.46)

and so max(∥C−1∥, ∥C̃−1∥) ≤ K/r. We also have ∥C∥, ∥C̃∥ ≤ r and ∥Bα∥, ∥B̃α∥ ≤
2r (using the assumptions (5.16) and (5.18) for the bounds on ∥C̃∥ and ∥B̃α∥).
Using Lemma 5.3.2, we have

∥∆− ∆̃∥ ≤ ∥C−1/2 − C̃−1/2∥(∥C∥∥C−1/2∥+ ∥C̃∥∥C̃−1/2∥) + ∥C − C̃∥∥C−1/2∥∥C̃−1/2∥

(5.47)

≤ ∥C − C̃∥

(
∥C∥∥C−1∥∥C̃−1/2∥+ ∥C̃∥∥C̃−1∥∥C−1/2∥

∥C−1/2∥−1 + ∥C̃−1/2∥−1
+ ∥C−1/2∥∥C̃−1/2∥

)
(5.48)

≤
(
K2 +K

)
ε0 (5.49)

≤ 2K2ε0, (5.50)

where in the last line we used the fact that K ≥ 2rTr
(
C̃−1

)
≥ 2r/Tr

(
C̃
)
=

2 ≥ 1. The bounds r/K ⪯ C ⪯ r (resp. r/K ⪯ C̃ ⪯ r) imply that ∥∆−1∥ ≤ K
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(resp. ∥ ∆̃−1 ∥ ≤ K), which gives (5.42). Finally, a similar calculation gives

(5.43):

∥Hα−H̃α∥ ≤ ∥C − C̃∥∥Bα∥∥C−1∥∥C̃−1/2∥+ ∥B̃α∥∥C̃−1∥∥C−1/2∥
∥C−1/2∥−1 + ∥C̃−1/2∥−1

+ ∥Bα − B̃α∥∥C−1/2∥∥C̃−1/2∥

(5.51)

≤ (2K2 +K)ε0 (5.52)

≤ 3K2ε0. (5.53)

Theorem 5.2.2 then follows immediately from Proposition 5.3.1 and the matrix

EEB inequality (Theorem 5.2.1).

Proof of Theorem 5.2.3 This will follow from a lower bound on the local

marginals of Gibbs states that was first proven in [Ans+21]. We use a form of

this bound that was given in [Bak+23]:

Lemma 5.3.3 ([Bak+23, Corollary 2.14]). Let Eα be k-local Paulis such that

the Hamiltonian is k-d-low intersection and let P1, . . . , Pr be distinct operators

in Pk,ℓ. There exist constants Ck,d,ℓ,Dk,d,ℓ depending only k, d ℓ such that

C ⪰ exp(−Ck,d,ℓβ −Dk,d,ℓ)/r. (5.54)

With this ingredient at hand we proceed to prove Theorem 5.2.3.

Set σ := exp(−Ck,d,ℓβ −Dk,d,ℓ)/4r
2 and suppose ε0 ≤ σ. Then by Lemma 5.3.1

we have

∥C̃ − C∥ ≤ rε0 (5.55)

≤ exp(−Ck,d,ℓβ −Dk,d,ℓ)/2r. (5.56)

By Lemma 5.3.3 we get C̃ ⪰ exp(−Ck,d,ℓβ −Dk,d,ℓ)/2r = 2rσ, and so K =

2r∥C̃−1∥ ≤ 1/σ.

5.4 Convergence proofs

In this section we take on the proof of the main convergence guarantee, The-

orem 5.2.4. The proof will crucially use some basic concepts from modular

theory, which we recall now.
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Modular theory

Consider a quantum system described by a finite-dimensional Hilbert space

H. In this section we will, as a rule, use lowercase letters for elements of

B(H) and uppercase letters for operators B(H) → B(H) (sometimes called

superoperators). Define a state as a complex-linear map ω : B(H) → C
satisfying ω(1) = 1 and ω(a∗a) ≥ 0 for every a ∈ B(H). These are in one-to-

one correspondence with density matrices, i.e., positive-semidefinite trace-one

operators ρ, via ω(a) = Tr(ρa) for any a ∈ B(H). A state ω is called faithful

if ω(a∗a) > 0 for every nonzero a, or equivalently, if its density matrix is

positive-definite. This is the case for Gibbs states. For a faithful state ω, the

inner product ⟨a|b⟩ := ω(a∗b) is known as the Gelfand-Naimark-Segal (GNS)

inner product, and endows B(H) with the structure of a Hilbert space [BR87].

We refer to an operator a ∈ B(H) as |a⟩ when thought of a vector in this

Hilbert space.

The ∗-operation S : |a⟩ → |a∗⟩ is an antilinear involution on B(H). Consider

its polar decomposition3:

S = J∆1/2 = ∆−1/2J, (5.57)

where ∆ := S†S is positive-definite and J := S∆−1/2 is anti-unitary. It is

simple to check4 that ⟨a|∆|b⟩ = ω(ba∗) for every a, b ∈ B(H) and that ∆ acts

on any |a⟩ ∈ B(H) by

∆|a⟩ = |ρaρ−1⟩ (5.58)

log(∆)|a⟩ = |[log(ρ), h]⟩. (5.59)

By Lemma 5.5.1 in Section 5.5, the operators ∆ and J satisfy

J log(∆)J = − log(∆). (5.60)

If h ∈ B(H) is self-adjoint we denote by H ∈ B(Hω) the operator H : |a⟩ 7→
|[h, a]⟩. We call it the GNS Hamiltonian corresponding to h. Note that even

though h is hermitian, H in general is not. In fact, H is hermitian iff h is a

symmetry of ω:

3Polar decomposition of antilinear operators is discussed in Section 5.5
4Recall the adjoint of an antilinear operator T is defined by the relation ⟨u|T †v⟩ :=

⟨Tu|v⟩ for all vectors u and v.
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Lemma 5.4.1. Let h ∈ B(H) be hermitian and let H : B(H) → B(H) be its

GNS Hamiltonian. The following are equivalent:

i) H is hermitian.

ii) JHJ = −H.

iii) [h, ρ] = 0.

Proof. i) ⇐⇒ iii). It is easy to check that ⟨a|H−H†|a⟩ = ω([h, a∗a]) for any

a ∈ B(H). Thus H† = H iff Tr(ρ[h, a∗a]) = Tr(a∗a[ρ, h]) = 0 for all a ∈ B(H),

which is equivalent to [ρ, h] = 0.

ii) ⇐⇒ iii). It is easy to check that SHS = −H. By (5.58) we have

H + JHJ = H −∆1/2H∆−1/2 which takes |a⟩ ∈ B(H) to |[h− ρ1/2hρ−1/2, a]⟩.
Thus H + JHJ = 0 iff h − ρ1/2hρ−1/2 is a multiple of the identity. But

Tr
(
h− ρ1/2hρ−1/2

)
= 0 and so this can only happen when [h, ρ1/2] = 0, which

is equivalent to [h, ρ] = 0.

The next lemma bounds the norm of the GNS Hamiltonian of a symmetry:

Lemma 5.4.2. If [ρ, h] = 0 then the GNS Hamiltonian H of h satisfies

∥H∥gns ≤ 2∥h∥. (5.61)

In the above, we write ∥H∥gns to indicate that this refers to the norm of H,

which is an operator on the GNS Hilbert space B(H), while ∥h∥ refers to the

norm of h, which is an operator on the physical Hilbert space H.

Proof. Denote the eigenbasis of h (in H) by hψi = eiψi. Then, an eigenbasis of

H can be written as |aij⟩ = |ψiψ∗
j ⟩, i.e., H|aij⟩ = (ei−ej)|aij⟩. Since [ρ, h] = 0,

H is hermitian, and so its operator norm can be bounded from its eigenvalues

as ∥H∥ ≤ maxi,j |ei − ej| ≤ 2∥h∥.

A fundamental result in modular theory relates the modular operator ∆ to

the GNS Hamiltonian H:

Lemma 5.4.3. Let h ∈ B(H) be hermitian. Then the following are equivalent:

i) log(∆) +H ⪰ 0.
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ii) log(∆) +H = 0.

iii) ρ = e−h/Tr
(
e−h
)
.

Proof. i) ⇐⇒ ii). Since log(∆) is automatically Hermitian, i) implies H† =

H, and so JHJ = −H, and so

0 ⪯ J(log(∆) +H)J (5.62)

= − log(∆)−H (5.63)

which implies ii). The inverse implication is obvious.

ii) ⇐⇒ iii). By (5.59), ii) holds if and only if log(ρ)− h is a multiple of the

identity, which is equivalent to iii).

Restricted GNS space

As we will show, our choice of perturbing operators selects a subspace of the

GNS space, and the matrices appearing in the matrix EEB inequality are

naturally interpreted as operators acting on this subspace. Let P1 . . . , Pr ∈
B(H) be a set of selfadjoint operators and let h′ ∈ B(H) be hermitian. Define

the r × r matrices

∆ := C−1/2CTC−1/2 (5.64)

H ′ := C−1/2B′C−1/2, (5.65)

where Cij := ω(PiPj) andB
′
ij := ω(Pi[h

′, Pj]). Define |ai⟩ :=
∑r

i=1(C
−1/2)ij|Pj⟩

for i = 1, . . . r. It is easy to check that the vectors |ai⟩ form a basis of

P := span{P1, . . . , Pr} that is orthonormal in the GNS inner product, and

that we have

∆ij := ⟨ai|∆|aj⟩ (5.66)

H ′
ij := ⟨ai|H ′|aj⟩, (5.67)

where H ′ is the GNS Hamiltonian of h′. Thus, with some abuse of notation

we may write

∆ = Q∆Q (5.68)

H ′ = QH ′Q, (5.69)
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where Q : B(H) → B(H) is the orthogonal projection onto P . We also define

the restricted ∗-operation S as

S := QSQ, (5.70)

which can equivalently be defined in terms of the correlation matrix C as

S = C−1/2
(
C
)−1/2

, where C is the complex conjugate of C. Finally, we will

use an operator J , which is defined as

J := S∆−1/2. (5.71)

It is important to stress that unlike ∆, H , and S, it turns out that the

operator J is not simply the restriction of J to the span of P1, . . . , Pr, i.e.

J ̸= QJQ. Instead, one can check that ∆ = S† S and it follows that J is

the anti-unitary part in the polar decomposition of S. Since S is an antilinear

involution just like S, Lemma 5.5.1 gives

J2 = 1, J † = J (5.72)

J ∆J = ∆−1, J ∆1/2 J = ∆−1/2 (5.73)

J log(∆)J = − log(∆). (5.74)

Proof of Theorem 5.2.4

In this section, we prove our main convergence theorem for commuting Hamil-

tonians. Fix k, d > 0 and suppose E1, . . . Em are k-supported Paulis with

d-low-intersection. Fix ℓ > 0, and let P1, . . . Pr := Pk,ℓ. Suppose ρ is the

Gibbs state of a Hamiltonian h =
∑

α λαEα for some parameters λ ∈ Rm

with maxα=1,...,m |λα| ≤ β. We do not assume that h is commuting through-

out. Instead, we will state explicitly in the statement of each Lemma/Propo-

sition/Theorem if we assume that h is commuting. Throughout this sec-

tion λ′ ∈ Rm will refer to an arbitray vector of parameters. We will write

h′ =
∑

α λ
′
αEα and H ′ for its GNS Hamiltonian. Finally, we will use the

shorthand notations

H ′ =
m∑
α=1

λ′αHα and H =
m∑
α=1

λαHα,

where Hα are the r × r matrices defined in (5.11).

Let us now give an overview of the proof. The bulk of the proof will boil

down to establishing convergence of the relaxed EEB constraints, for the exact
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expectation values, i.e. with no measurement noise. For each Hamiltonian pa-

rameter, the proof first identifies local witnesses of deviations: local operators

a such that ⟨a|H ′−H |a⟩ detects the difference in Hamiltonian parameters

|λα − λ′α| for a given α = 1, . . . ,m. While Lemma 5.4.1 above shows that

H ′† = H ′ is equivalent to JH ′J = −H ′, we only enforce H† = H up to some

error, and in Lemma 5.4.7 and Corollary 5.4.1 we show that this gives an

approximate version of J H ′ J = −H ′. A crucial ingredient is the fact that

the time-evolution, and thereby the J operation, for commuting Hamiltonians

maps local operators to exactly local operators, preventing them from leaving

the restricted GNS space, see Lemma 5.4.9. Using an antisymmetry argument

based on the one in Lemma 5.4.3 find the desired bound on matrix elements

of H −H ′ (Proposition 5.4.1), which conclude the proof for the noiseless case.

Finally, we prove Theorem 5.2.4 from the noiseless case via the continuity

bounds proved in Section 5.3.

We begin with a bound on r, the number of perturbing operators, which has

been shown in [Bak+23].

Lemma 5.4.4 ([Bak+23, Corollary 2.20]). The size of the set Pk,ℓ is bounded

by m dℓ 10kℓ.

Since our constraints work with the GNS-Hamiltonian we need to relate its

matrix elements to the coefficients of its parent Hamiltonian to witness large

errors in the output parameters. The following Lemma achieves this and

furthermore singles out one coefficient, which is needed to achieve bounds

uniformly.

Lemma 5.4.5 (Local identifiability of Hamiltonian terms). Suppose ℓ ≥ 1+d.

For each Hamiltonian coefficient λα, there are k-(1+d)-G-supported operators

a1, a2, a3, a4 with ∥ai∥ ≤ eOk,d(β) and

|λα − λ′α| =

∣∣∣∣∣
4∑
i=1

⟨ai|H −H ′ |ai⟩

∣∣∣∣∣ .
Proof. Recall from [Bak+23, Lemma 9.8] that there are a′, b such that ∥a∥ =

∥b∥ = 1, supp(a′) = supp(b) = supp(Eα)
5 and∣∣∣∣12 tr([h− h′, b]a′)

∣∣∣∣ = |λα − λ′α|
5The statement of the Lemma in the reference is slightly weaker, but the argument of

the proof directly yields this stronger constraint on the supports.
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by denoting by ρ the marginal of the Gibbs state ω on the union of supports

of [h − h′, b] and a′, by Dρ the dimension of this support, and defining a =

a′(ρDρ)
−1 we have

|λα − λ′a| =
∣∣∣∣12 tr([h− h′, b]aρDρ)

∣∣∣∣ (5.75)

=
1

2
|ω([h− h′, b]a)| (5.76)

=
1

2
|⟨a|H −H ′|b⟩| (5.77)

=
1

2
|⟨a|H −H ′ |b⟩|, (5.78)

where the last line is because ℓ ≥ 1+d. Then by the “no small local marginals”

result [Bak+23, Corollary 2.14] or concretely the formulation in terms of den-

sity matrices [FFS23, Lemma 3.8], we have ∥a∥ ≤ exp(Ok,d(β)). Note that

a and b are both supported on the union of supp(Eα) and all supp(Eα′) in-

tersecting with supp(Eα). In particular, any linear combination of a and b is

k-(d+1)-G-supported.

Applying the polarization identity to (5.78) gives

|λα − λ′α| =
1

2
|⟨a|H −H ′ |b⟩| (5.79)

=

∣∣∣∣∣18
4∑

n=1

⟨a+ inb|H −H ′ |a+ inb⟩

∣∣∣∣∣ . (5.80)

The hermiticity of the GNS-Hamiltonian is equivalent to a stationary condition

of the state (see Lemma 5.4.1). As part of our constraint system we enforce

approximate hermiticity for its measured version. The following Lemma lever-

ages this constraint to prove that h′ approximately commutes with h and with

ρ1/2.

Lemma 5.4.6. Suppose ℓ ≥ 3 and suppose h′ =
∑m

α=1 λ
′
αEα satisfies ∥H ′ −(H ′)†∥ ≤

µ. Then we have

∥H|h′⟩∥gns ≤ mβµ (5.81)

∥∆1/2|h′⟩ − |h′⟩∥gns ≤
1

2
(mβ)1/2µ. (5.82)
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Proof. It is easy to check that for k-ℓ-G-local operators a, b we have

|⟨a|H ′ −H ′†|b⟩| = |⟨a|H ′ −(H ′)†|b⟩| (5.83)

≤ µ∥|a⟩∥gns∥|b⟩∥gns. (5.84)

Since ℓ ≥ 3, setting |a⟩ = |1⟩ and |b⟩ = |[h, h′]⟩ = H|h′⟩ we have

|⟨1|H ′H|h′⟩| = |⟨1|(H ′ −H ′†)H|h′⟩| (5.85)

≤ µ∥H|h′⟩∥gns (5.86)

since H ′|1⟩ = 0. An elementary calculation using the fact that ω([h, a]) = 0

for all a ∈ B(H) shows that ⟨1|H ′H|h′⟩ = 2⟨h′|H|h′⟩ and so

⟨h′|H|h′⟩ ≤ 1

2
µ∥H|h′⟩∥gns. (5.87)

Using the above inequality with Lemma 5.4.2 and using the fact that ∥h∥ ≤
mβ, we have

∥H|h′⟩∥2gns = ⟨h′|H2|h′⟩ (5.88)

≤ 2mβ⟨h′|H|h′⟩ (5.89)

≤ mβµ∥H|h′⟩∥gns, (5.90)

which proves (5.81). For (5.82), using ∆ = e−H we write

∥∆1/2|h′⟩ − |h′⟩∥2gns = ⟨h′|(e−H/2 − 1)2|h′⟩. (5.91)

For any x ∈ R we have

(ex/2 − 1)2 =

(
tanh(x/4)

x

)
x(ex − 1) ≤ x(ex − 1)

4
(5.92)

replacing x with −H using the functional calculus we may continue (5.91) as

follows:

∥∆1/2|h′⟩ − |h′⟩∥2gns ≤
1

4
⟨h′|H(1− e−H)|h′⟩ (5.93)

=
1

4
(⟨h′|H|h′⟩ − ⟨h′|H∆|h′⟩) (5.94)

=
1

4
(⟨h′|H|h′⟩ − ⟨h′|[h, h′]∗⟩) (5.95)

=
1

2
⟨h′|H|h′⟩ (5.96)

≤ 1

4
mβµ2. (5.97)
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Lemma 5.4.7. Suppose ℓ ≥ 3, and let h′ be a Hamiltonian with ∥H ′ −(H ′)†∥ ≤
µ for some µ > 0. Suppose a is an operator such that ∥ρaρ−1∥ ≤ D ∥a∥ for

some D > 0. Then

| ⟨a| JH ′J +H ′ |a⟩ | ≤ 1

2
∥a∥2(D+1)(mβ)1/2µ. (5.98)

Proof. It is easy to check that SH ′S = −H ′. Indeed, for any a ∈ B(H) we

have

SHS|a⟩ = |[h, a∗]∗⟩ = −|[h, a]⟩. (5.99)

Therefore,

⟨a| JH ′J |a⟩ = ⟨a|∆1/2SH ′S∆−1/2 |a⟩

= −⟨a|∆1/2H ′∆−1/2 |a⟩

and so it suffices to bound the magnitude of ⟨a|∆1/2H ′∆−1/2 −H ′|a⟩. Writing

this quantity in terms of operators on the physical Hilbert space and using

the identities ∆1/2|a⟩ = |ρ1/2aρ−1/2⟩, ω(ab) = ω(b(ρaρ−1)) = ω((ρ−1bρ)a), and

ω(ρ−1/2aρ1/2) = ω(a), we have

⟨a|∆1/2H ′∆−1/2 −H ′|a⟩ = ω((ρ1/2aρ−1/2)∗[h′, ρ−1/2aρ1/2])− ω(a∗[h′, a])

(5.100)

= ω(ρ−1/2a∗ρ1/2h′ρ−1/2aρ1/2)− ω(ρ−1/2a∗aρ1/2h′)− ω(a∗[h′, a])

(5.101)

= ω(ρ−1aρa∗ρ1/2h′ρ−1/2)− ω(ρ−1/2a∗aρ1/2h′)− ω(ρ−1aρa∗h′) + ω(a∗ah′)

(5.102)

= ω((ρ−1aρa∗ − a∗a)(ρ1/2h′ρ−1/2 − h′)) (5.103)

= ⟨aρa∗ρ−1 − a∗a|ρ1/2h′ρ−1/2 − h′⟩. (5.104)

By the Cauchy-Schwartz inequality and Lemma 5.4.6 we get

|⟨a|∆1/2H ′∆−1/2 −H ′|a⟩| ≤ 1

2
(mβ)1/2µ∥|aρa∗ρ−1 − a∗a⟩∥gns (5.105)

≤ 1

2
(mβ)1/2µ

(
∥aρa∗ρ−1∥+ ∥a∗a∥∥

)
(5.106)

≤ 1

2
∥a∥2(D+1)(mβ)1/2µ. (5.107)
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Lemma 5.4.8. Suppose h is commuting as in Definition 5.2.2. Then for any

k-ℓ′-G-supported operator a we have

∥ρaρ−1∥ ≤ e2Cβ(1+d)ℓ′∥a∥. (5.108)

Proof. Since a is k-ℓ′-G-supported there is a set L ⊂ {1, . . . ,m} with |L| = ℓ′

such that supp(a) ⊂
⋃
α∈L supp(Eα). Let L̃ be the set of α ∈ {1, . . . ,m} for

which there is an α′ ∈ L with supp(Eα)∩supp(Eα′) ̸= ∅}. Then |L̃| ≤ (1+d)ℓ′.

Let h̃ =
∑

α∈L̃ ναFα. Then ∥h̃∥ ≤ Cβ(d+1)ℓ′ and so

∥ρaρ−1∥ = ∥e−h̃aeh̃∥ (5.109)

≤ ∥a∥e2Cβ(d+1)ℓ′ . (5.110)

The following Lemma relates ∆ and J to their local counterparts in a strong

way. It is based on the commuting Hamiltonian assumption, exploiting the fact

that the complex time-evolution operator of commuting Hamiltonians maps

local observables to strictly local observables.

Lemma 5.4.9. Suppose h is commuting.

1. For any ℓ′ > 0, any k-ℓ′-G-supported operator a, and any nonnegative

integer p, the operator ∆p |a⟩ is k-(1 + d)ℓ′-G-supported.

2. For any ℓ′ ≤ ℓ/(1 + d), any k-ℓ′-G-supported a, and any nonnegative

integer p we have

∆p|a⟩ = ∆p|a⟩. (5.111)

3. For any ℓ′ ≤ ℓ/(1 + d) and any k-ℓ′-G-supported a we have

∆1/2|a⟩ = ∆1/2|a⟩ (5.112)

J |a⟩ = J |a⟩. (5.113)

Proof. 1.

We have to consider the operator

e−phaeph.
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We can define the set A of indices such that [Fα, a] = 0 for all α ∈ A such that

e−phaeph = e−p
∑

α∈Ac ναFαae−p
∑

α∈A ναFαep
∑

α∈A ναFαep
∑

α∈Ac ναFα

= e−p
∑

α∈Ac ναFαaep
∑

α∈Ac ναFα .

By the definition of k-ℓ′-G-locality, the operator a is supported on
⋃
α∈S Eα

for some connected S with |S| ≤ ℓ′. Since all terms Fα for α ∈ Ac have

overlapping support with supp(a), all terms in the above equation have support

in
⋃
{supp(Eα)|∃α′ s.t. supp(Eα) ∩ supp(Eα′) ̸= ∅}, which is the union of at

most (1 + d) · ℓ′ connected supports and thereby k-(1 + d)ℓ′-G-local.

2.

The case p = 0 is trivial and we prove the cases p > 0 by induction. Write

Q : B(H) → B(H) for the orthogonal (in the GNS inner product) projection

onto span{P1, . . . , Pr} ⊂ B(H). Notice that for any ℓ-supported operator

b ∈ B(H) we have Q|b⟩ = |b⟩. The induction then follows from

∆p+1|a⟩ = Q∆Q∆p|a⟩ (5.114)

= Q∆Q∆p|a⟩ (5.115)

= Q∆p+1|a⟩ (5.116)

= ∆p+1|a⟩. (5.117)

The second line is by the inductive hypothesis, and the third and fourth lines

are by part 1.

3.

Let x0 = max{∥∆∥, ∥∆∥} and x1/2 =
∑∞

k=0 ak(x0 − x)k be the Taylor series

for the square root. By part 2, we have

∆1/2|a⟩ =
∞∑
k=0

ak(x0 −∆)k|a⟩ (5.118)

=
∞∑
k=0

ak(x0 −∆)k|a⟩ (5.119)

= ∆1/2|a⟩. (5.120)

The second statement then follows from J = ∆1/2 S.

Corollary 5.4.1. Suppose ℓ ≥ 3 and that h is commuting. Let h′ be a Hamil-

tonian with ∥H ′ −H ′† ∥ ≤ µ for some µ ≥ 0. Let a be k-ℓ′-G-supported for

some ℓ′ ≤ (ℓ− 1)/(1 + d). Then,

| ⟨a|J H ′ J +H ′ |a⟩ | ≤ 1

2
∥a∥2(e2Cβ(d+1)ℓ′ + 1)(mβ)1/2µ. (5.121)
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Proof. Note that by Lemma 5.4.9, J |a⟩ is k-ℓ′(1+d)-G-supported. Using that

H increases the locality by one and Lemmas 5.4.7 and 5.4.8, we have

|⟨a|J H ′ J +H ′|a⟩ = |⟨a|J H ′ J +H ′|a⟩ (5.122)

= |⟨a|JH ′J +H ′|a⟩ (5.123)

≤ 1

2
∥a∥2(e2Cβ(d+1)ℓ′ + 1)(mβ)1/2µ. (5.124)

Proposition 5.4.1. Suppose for some µ1, µ2 ≥ 0 that h′ satisfies

log(∆) +
∑
α

λ′α(Hα +H†
α)/2 ≥ −µ1 (5.125)

±i
∑
α

λ′α(Hα−H†
α)/2 ≤ µ2 (5.126)

and let a ∈ B(H) be an operator with

⟨a|H +J H J |a⟩ = 0 (5.127)

Re (⟨a|H ′ +J H ′ J |a⟩) ≤ δ∥a∥2 (5.128)

for some δ ≥ 0. Then

|⟨a|H ′ −H |a⟩| ≤ (µ1 + µ2 + δ)∥a∥2. (5.129)

Proof. Let H ′
± := (H ′ ±H ′†)/2, H± := (H ±H†)/2. Applying antisym-

metry of log∆ under conjugation by J , J = J †, and J2 = 1 to (5.125) we

get

log∆+H ′
+ ≥ −µ1 (5.130)

− log∆+ J H ′
+ J ≥ −µ1. (5.131)

At the same time, by Theorem 5.2.1, we have H+ = H and

log∆+H ≥ 0 (5.132)

− log∆+ J H J ≥ 0. (5.133)

Using (5.131) and (5.132) we have

H ′
+−H ≤ H ′

++ log∆ (5.134)

= H ′
++J H ′

+ J −J H ′
+ J + log∆ (5.135)

≤ H ′
++J H ′

+ J +µ1. (5.136)



161

On the other hand, using (5.130) and (5.133) we have

H ′
+−H ≥ − log∆− µ−H (5.137)

= − log∆− µ1 −H −J H J +J H J (5.138)

≥ −µ1 − (H +J H J). (5.139)

Thus, for any operator a we have

−µ1⟨a|a⟩ − ⟨a|H +J H J |a⟩ ≤ ⟨a|H ′
+−H |a⟩ ≤ ⟨a|H ′

++J H ′
+ J |a⟩+ µ1⟨a|a⟩.

(5.140)

Since ⟨a|H ′
++J H ′

+ J |a⟩ = Re(⟨a|H ′ +J H ′ J |a⟩), if a further satisfies

(5.127) and (5.128) then we get

|Re(⟨a|H ′−H |a⟩)| = |⟨a|H ′
+−H |a⟩| (5.141)

≤ µ1⟨a|a⟩+ δ|a∥2 (5.142)

≤ (µ1 + δ)∥a∥2. (5.143)

On the other hand

| Im(⟨a|H ′−H |a⟩)| = |⟨a|H ′
− |a⟩| ≤ ∥a∥2µ2, (5.144)

and putting this bound together with the previous one proves the Proposition.

We are now ready to prove Theorem 5.2.4, which we restate for convenience:

Theorem (A priori convergence in the commuting case). Suppose h is com-

muting and that {P1, . . . , Pr} = Pk,ℓ for ℓ = max(3, 1 + (1 + d)2). There is an

error threshold

τ = m−6e−Ok,d,C(β) (5.145)

(where C is the constant from Definition 5.2.2) such that if ϵ0 ≤ τ then for

any λ′ ∈ Rm satisfying

log
(
∆̃
)
+

m∑
α=1

λ′α(H̃α+ H̃
†
α)/2 ⪰ −µ1, (5.146)

±i
m∑
α=1

λ′α(H̃α− H̃
†
α)/2 ⪯ µ2, (5.147)

we have

sup
α=1,...m

|λ′α − λα| ≤ eOk,d,C(β)
(
µ1 +m1/2µ2

)
+ ε0/τ. (5.148)
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Proof. Suppose λ′ ∈ Rm satisfies (5.146) and (5.147). By Theorem 5.2.3, there

are constants D, E ≥ 0 depending only on k and d such that setting

σ := m−2e−Dβ−E (5.149)

and assuming ε0 ≤ σ, we have K ≤ 1/σ = eOk,d(β). Applying the continuity

bounds in Proposition 5.3.1 to (5.146) gives

log(∆) +
∑
α

λ′α(Hα +H†
α)/2 ⪰ −µ1 − (2K3 + 3mβ′K2)ε0 (5.150)

⪰ −µ1 − e3Dβ+3E (2m6 + 3m5β′) ε0, (5.151)

where β′ = maxα=1,...m |λ′α|. Doing so to (5.147) gives

±i
∑
α

λ′α(Hα−H†
α)/2 ⪯ µ2 + 3mβ′K2ε0 (5.152)

⪯ µ2 + 3m5β′e2Dβ+2Eε0. (5.153)

Let a be any (k, 1+d)-G-local operator. By Lemma 5.4.9 we have ⟨a|H +J H J |a⟩ =
⟨a|J + JHJ |a⟩ = 0. Applying this fact, together with the bound from Corol-

lary 5.4.1 and the inequalities (5.151) and (5.153), to Proposition 5.4.1, we

have

|⟨a|H −H ′ |a⟩| ≤ eOk,d,C(β)(µ1 +m1/2µ2 + (m6 +m5.5β′)ε0), (5.154)

and so by Lemma 5.4.5 we get

max
α=1,...,m

|λ′α − λα| ≤ eOk,d,C(β)(µ1 +m1/2µ2 + (m6 +m5.5β′)ε0). (5.155)

The locality constraint ℓ = 1 + (1 + d)2 follows from combining the choices in

Lemma 5.4.5, Lemma 5.4.9, and Corollary 5.4.1, which are ℓ ≥ 3, d+1 = ℓ′ ≤
ℓ/(1 + d) and d+1 = ℓ′ ≤ (ℓ− 1)/(1 + d), respectively. This is essentially the

result we need but contains a parameter β′. While it is possible to simply set

explicit bounds on the parameter domain during the optimization to bound

β′, we show in the following that this is not needed. The previous expression

can be summarized as

max
α=1,...,m

|λ′α − λα| ≤ γ + ε0/τ + δβ′ε0 (5.156)

by defining constants that can be chosen to satisfy

γ ≤ eOk,d,C(β)(µ1 +m1/2µ2) (5.157)

1/τ ≤ eOk,d,C(β)m6 (5.158)

δ ≤ eOk,d,C(β)m5.5. (5.159)
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We can upper bound β′ as

β′ ≤ β + max
α=1,...,m

|λ′α − λα| ≤ β + γ + ε0/τ + δβ′ε0 (5.160)

so by requiring ε0 ≤ 1/2δ we have

β′ ≤ 2(β + γ + ε0/τ). (5.161)

Plugging the bound for β′ back into the error estimates we obtain

max
α=1,...,m

|λ′α − λα| ≤ 2γ + 2ε0/τ + δβε0. (5.162)

The proof follows from recalling the conditions ε0 ≤ σ and ε0 ≤ 1/2δ and

collecting the worst case estimates of all constants above.

5.5 Antilinear operators

Let K be a finite-dimensional complex Hilbert space. A map T : K → K
is called antilinear if it is linear over R and satisfies T (λv) = λTv for every

v ∈ K and λ ∈ C. Equivalently, K can be viewed as a real vector space (of

double the dimension) and T is a R-linear operator on this real vector space

that anticommutes with the R-linear operator v 7→
√
−1v. The composition

of a linear operator with an antilinear operator (in either order) is antilinear,

and the composition of two antilinear operators is linear. If T is antilinear

then its adjoint is defined by the relation:

⟨u|T †v⟩ = ⟨Tu|v⟩ for all u, v ∈ K. (5.163)

Note the complex conjugation, which is absent from the definition for complex-

linear operators. An antilinear operator U is called anti-unitary if U †U = 1.

One defines the polar decomposition of an antilinear operator T in a way anal-

ogous to linear operators: the operators U and P form a polar decomposition

of T iff U is anti-unitary, P ⪰ 0 is linear, and T = UP . If T is invertible then

U and P are uniquely defined as P :=
√
T †T and U = TP−1.

We call an operator T an involution if T 2 = 1. The following is a structure

theorem for the the polar decomposition of an antilinear involution:

Lemma 5.5.1. Let S : K → K be an antilinear involution on K. Define

∆ := S†S and J := S∆−1/2 so that S = J∆1/2 is the polar decomposition of

S. Then we have
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1. S log∆S = − log∆ and S∆pS = ∆−p for any p ∈ R.

2. J = ∆1/2S and J† = J and J2 = 1.

3. J log∆J = − log∆ and J∆pJ = ∆−p for any p ∈ R.

Proof. 1. Since S2 = (S†)2 = 1, we have S∆S∆ = SS†SSS†S = 1, and so

S∆S = ∆−1. From here we can write

e− log∆ = ∆−1

= S∆S

= S
∑
k≥0

log∆k

k!
S

=
∑
k≥0

(S log∆S)k

k!

= eS log∆S,

and so S log∆S = − log∆. Finally, we have

S∆pS = S
∑
k≥0

(p log∆)k

k!
S

=
∑
k≥0

(−p log∆)k

k!

= ∆−p.

2. The first two statements follow from

J† = ∆−1/2S†

= ∆−1/2S†SS

= ∆1/2S

= S∆−1/2

= J,

where the second-last line follows from part 1 with p = 1/2. The third state-

ment follows from

J2 = (S∆−1/2)(∆1/2S) = 1.

3. The first statement follows from J log∆J = S∆−1/2 log∆∆1/2S = S log∆S =

− log∆ and the second follows from a similar argument.
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