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ABSTRACT

Autonomous systems are profoundly reshaping our societies, industries, and daily
lives, delivering unprecedented levels of efficiency, innovation, and adaptability.
From self-driving vehicles navigating dense urban traffic and coordinated swarms of
search-and-rescue robots operating in hazardous environments, to next-generation
intelligent power grids and high-precision industrial automation, these systems
are increasingly deployed in safety-critical and high-stakes settings where they are
routinely entrusted with split-second decisions that carry profound economic and
lethal consequences. In such contexts, the imperative for reliability, safety, and
robustness is paramount: a single unanticipated failure within a power distribution
network can trigger extensive blackouts, and a momentary lapse in decision-making
or perception by an autonomous vehicle can endanger lives.

Despite their remarkable capabilities, securing such reliability guarantees faces
formidable and multifaceted challenges. The environments in which these systems
operate are characterized by unprecedented complexity, vast scale, and pervasive
uncertainty as they frequently interact with numerous external entities such as
humans or other autonomous agents whose behaviors may be volatile, adversarial, or
fundamentally unknown. Explicitly and exhaustively modeling this complexity a
priori is practically infeasible, compelling systems to infer, adapt, and respond to the
novel environments by learning from data. Although contemporary machine-learning
models afford expressive representations, their assurances are limited by the scope
and fidelity of their training data. Consequently, such models remain vulnerable
to distribution shifts, rare events, or unmodeled edge cases, which can precipitate
catastrophic failure.

Further complicating matters, real-world applications frequently impose stringent
resource constraints, including limited computation, memory, communication, and
power. These constraints demand principled trade-offs between competing perfor-
mance objectives and operational constraints such as safety, stability, robustness, and
efficiency, especially in high-stakes and uncertainty-laden settings. This dissertation
addresses these challenges by contributing fundamental theoretical results and prac-
tical computational tools towards provably reliable, resource-efficient, and scalable
autonomy.

Operating safely in dynamic and a priori unknown environments poses a fundamental
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challenge for autonomous systems: balancing exploration, i.e., the pursuit of long-
term optimality by probing uncertain policy landscape at the risk of degraded
safety, against exploitation, i.e., leveraging current knowledge to ensure short-term
performance and stability at the expense of settling for a suboptimal policy. In
Part I, we study online reinforcement learning approaches for unknown linear
dynamical systems to address this challenge. We present computationally efficient
algorithms for online learning and control in both state-feedback and measurement-
feedback settings that operate safely without any prior knowledge of the system. We
rigorously establish their feasibility through finite-time guarantees on performance,
computational complexity, and stability, matching the fundamental theoretical bounds.

Statistical models underlie every layer of an autonomous system, serving as rep-
resentations of complex data-generating phenomena. Typically constructed from
empirical data through a blend of explicit modeling, machine learning, and simula-
tion, these models are vulnerable to distribution shift, i.e., discrepancies between
design and deployment conditions, which can jeopardize both performance and
safety. In Part II, we investigate distributionally robust optimization (DRO) meth-
ods for control, prediction, communication, and unsupervised learning to guard
against model misspecification and distribution shifts. DRO blends average-case
optimality with worst-case guarantees: by maximizing expected performance against
the least-favorable statistical model consistent with the available data, it strikes a
balanced trade-off between robustness and performance informed by data.

Autonomous control systems must often balance several performance goals, such
as cost efficiency, robustness, risk tolerance, and stability, while meeting practical
constraints such as suitability for real-time implementation and scalability. Because
these design problems are inherently infinite-dimensional, only a handful of special
cases admit exact, tractable solutions (e.g., Linear-Quadratic-Gaussian, H∞-optimal,
or regret-optimal control) while widely studied formulations like mixed H2/H∞

control remain unresolved. In Part III we present non-rational control, a unified
framework that makes many such problems both solvable and implementable. The
key is an optimize-then-approximate strategy that delivers provably near-optimal,
stabilizing, finite-order (rational) controllers even when the true optimum resides in
an infinite-dimensional (non-rational) policy space.
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√
T ) regret on LQR,

† = 1-dim LQRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Regret and Maximum State Norm After 200 Time Steps in Boeing

747 Flight Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Useful Notations for the Design of TSAC . . . . . . . . . . . . . . . 38
2.4 Useful Notations for the Analysis . . . . . . . . . . . . . . . . . . . 39
3.1 Comparison with prior works on adaptive control in partially observ-

able LQ control systems (CE = Certainty Equivalent, GD = Gradient
Descent). S.Convex stands for strongly convex cost, i.e., positive
definite Q,R in (3.2) . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 Relative difference in % (as in (4.57)) between the expected regret of
LQG/RO-MF and of DR-RO-MF controllers, under the worst-case
disturbance of LQG/RO-MF, respectively, as in (4.49) for different
values of r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1 The Missclassification Rate of DRKM and KM for different data
samples. We see that DRKM noticeably outperforms KM. . . . . . . 154

9.1 The worst-case expected regret of the non-rational W2-DR-RO con-
troller, compared to the rational controllers RA(1), RA(2), and RA(3),
obtained from degree 1, 2, and 3 rational approximations to N(ejω). . 199

9.2 Notation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.1 The worst-case expected MSE of the non-rational DRKF, compared

to the rational filters RA(1), RA(2), and RA(3), obtained from degree
1, 2, and 3 rational approximations to U(ejω), for the system in
Section 10.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

10.2 The running time (in seconds) of different filters for the system in
section 10.5. The DRMC is inefficient for T> 10, our DRKF (finite)
is inefficient for T> 50 while our∞ horizon DRKF can run for any
horizon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

11.1 The performance characteristics of the mixed H2/H∞ controller
obtained from degree 1, 2, and 3 rational approximations to N(eȷω). . 274

11.2 The performance characteristics of the mixed H2/H∞ controller
obtained from degree 1, 2, and 3 rational approximations to N(eȷω). . 276



1

C h a p t e r 1

INTRODUCTION

The progression of modern society is increasingly driven by the advancement
of autonomous systems, which are rapidly transforming technological, industrial,
and societal landscapes. These systems, characterized by their ability to perceive,
decide, and act with minimal human intervention, cohesively integrate computational
intelligence with physical components to execute complex tasks in real time. Their
growing adoption is driving unprecedented gains in efficiency, productivity, and
economic growth across sectors such as transportation, aerospace, manufacturing,
energy, and infrastructure.

Indeed, the scale of this transformation is staggering: the International Federation of
Robotics reports a record 4.28 million industrial robots on factory floors worldwide
in 2024 [110]. Mobility is undergoing a comparable transformation. McKinsey &
Company projects that by 2035, autonomous driving could generate $300 billion to
$400 billion in annual revenue [164]. Energy sector likewise relies increasingly on
autonomous and intelligent technologies. According to IoT Analytics counts, utilities
had installed about 1.06 billion smart electricity meters by late 2023, roughly 43%
of all global meters [112].

These trends underscore a profound transition: Increasingly, real-time decisions with
high-stakes physical, economic, and societal consequences are being delegated to
algorithms operating in complex, uncertain, and resource-constrained environments.
As the autonomy and influence of these systems grow, so too does the need for
rigorous frameworks that ensure their safe, reliable, and efficient operation.

• High Stakes and Safety Critical. Autonomous systems increasingly interact
with humans and critical infrastructure, or frequently function in environments
where safety is non-negotiable, and failures can be catastrophic. The U.S. Na-
tional Highway Traffic Safety Administration’s Standing General Order on crash
reporting has documented 1612 crashes involving Level-2 driver-assistance
("autopilot") systems across more than a dozen automakers between July 2021
and mid-2024, 40 of which resulted in fatalities [169]. A misconfigured state
estimator triggered a widespread power outage on August 14, 2003 that cut



2

electricity to nearly 55 million people in large swathes of United States and
Canada, causing an estimated $10 billion in losses [229]. These examples high-
light the critical necessity for assurances of safety, reliability and robustness to
prevent consequential outcomes.

• Complex and Pervasive Uncertainties. Delegating increasingly complex
and high-stakes tasks to autonomous systems exposes them to pervasive and
multifaceted uncertainties. Real-world operating conditions are typically
dynamic, volatile, and only partly observable. Consider urban traffic, where
self-driving vehicles must anticipate the intentions of human drivers and
pedestrians while coping with sudden adverse shifts in weather or road
conditions. At the very extreme, search-and-rescue robots navigating collapsed
structures or planetary rovers traversing uncharted Martian terrain encounter
environments that are entirely unknown and unstructured. Such complexity
stretches the limits of traditional, explicit model-based design and engineering.
Therefore, operating reliably under these circumstances demands the capacity
to learn from sparse interactions and available data to explore safely and adapt
the response in real time.

Learning-based models offer far greater expressive power for capturing rich
and complex uncertainties than hand-crafted, explicit mathematical models.
Yet that flexibility comes at a price: formal guarantees of reliability and
safety are far harder to establish. Since performance hinges on the quality
and representativeness of the training data, these models can be brittle under
variations in the development and deployment environments or when confronted
with rare, safety-critical edge cases absent from the dataset. Even a small
deviation in the model can propagate through downstream tasks and precipitate
catastrophic failures. A stark illustration is the 2018 fatal crash involving an
autonomous SUV operated by Uber in Tempe, Arizona, where the perception
network misclassified a jay-walking pedestrian at night as "vehicle" or "bicycle"
and withheld emergency braking until just 0.2 seconds before impact [170].

• Performance and Resource Constraints. Increasingly complex real-world
tasks rarely fit into a single performance metric. Instead, they often involve
multiple, distinct, and often conflicting performance criteria and operational
constraints that must be carefully balanced through informed trade-offs. A good
illustration is modern power-grid operation: grid operators must (i) ensure
power supply robustly meets highly fluctuating demand even under adverse
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weather events, (ii) minimize operating costs for generators and consumers,
and (iii) reduce CO2 emissions by integrating intermittent renewable sources
and routing power efficiently through the network.

These demands are further compounded in large-scale cyber-physical systems
(CPS) by structural and resource constraints that hinder real-time implementa-
tion. Limitations in computational power, memory, data availability, energy,
and communication bandwidth or latency must all be carefully managed. For
instance, drones in coordinated fleets for surveillance or disaster response must
balance coverage, tracking, and monitoring while trading off speed, accuracy,
and energy. Operating under limited battery, on-board computation, and
noisy sensing, they also face intermittent, bandwidth-limited communication,
requiring decentralized decisions based on local data.

In light of these omnipresent, inseparable challenges, this dissertation is guided by a
single, overarching aim:

To design provably reliable, resource-efficient, and scalable autonomous
systems that can learn and adapt to novel environments by leveraging
data-driven methods to balance robustness, performance, and competing
objectives through principled reasoning about uncertainty, risk, and
trade-offs.

Guided by this objective, the dissertation is organized into three interrelated parts,
each addressing a distinct but complementary facet of this overarching goal:

• Part I: Learning and Control. Operating safely in unknown and dynamic
environments requires autonomous systems to balance exploration and exploita-
tion. In Part I, we develop computationally efficient reinforcement learning
algorithms for controlling unknown linear systems, both with full and partial
observations. These methods achieve finite-time guarantees on performance,
stability, and complexity, enabling safe real-time operation without prior
system knowledge.

• Part II: Distributionally Robust Optimization. Statistical models, central
to autonomous systems, often face distribution shifts between training and
deployment, threatening performance and safety. In Part II, we develop
distributionally robust optimization (DRO) methods for control, prediction,
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communication, and learning, which hedge against model uncertainty by
optimizing expected performance under the worst-case distribution consistent
with the data, offering a principled and data-informed balance between worst-
case robustness and average-case performance.

• Part III: Non-rational Control. We introduce a unified framework for
stabilizing and scalable controller synthesis tailored to diverse infinite-horizon
control objectives, subsuming distributionally robust, risk-sensitive, mixed
criteria, etc. An "optimize-then-approximate" pipeline converts these infinite-
dimensional formulations into finite-dimensional controllers with quantifiable
sub-optimality, enabling scalable real-time implementation while preserving
the rigorous guarantees demanded in safety-critical autonomy.

The remainder of this chapter outlines the primary contributions of the thesis,
organized by each of its three main parts.

1.1 Outline and Scope of Part I: Learning and Control
In many real-world applications, the governing dynamics of the system are not
fully known in advance. This lack of prior knowledge fundamentally complicates
the real-time control task, as effective decision-making must proceed in tandem
with learning the system itself. In such scenarios, control and learning become
inherently coupled: the autonomous agent must actively gather information about the
environment through interaction while simultaneously striving to achieve its control
objectives.

This dual necessity gives rise to the classic exploration-exploitation dilemma. On one
hand, an autonomous agent must explore the unknown system to acquire information
about its dynamics and thereby adapt and improve its policy in the long run. However,
reckless exploration without regard for control objectives can compromise safety
and degrade performance before any gains are realized. Conversely, the agent must
also exploit its acquired knowledge to maintain safety and acceptable performance,
but over-reliance on exploitation risks becoming trapped in a suboptimal policy,
never discovering more effective policies. Ultimately, the agent’s challenge is to
strike the right balance between these competing objectives: gathering enough
information to drive future improvements while ensuring safe, reliable operation and
high performance at every step.
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Part III of this thesis is concerned with this dilemma in the context of controlling a
priori unknown linear dynamical systems in real time. In general, these systems can
be described as a state-space model as

xt+1 = A⋆xt +B⋆ut + wt, (1.1a)

yt = C⋆xt + vt, (1.1b)

where xt denotes the system state, ut the control input, yt the observation, and wt, vt
the process and observation noise, respectively. The system matrices (A⋆, B⋆, C⋆)

are unknown to the agent in advance. The overarching goal of the autonomous
agent is to execute control actions in closed-loop with an unknown system that (i)
optimize long-term performance, (ii) ensure system stability and safety, and (iii) do
so with minimal computational and sample complexity, all while contending with
model uncertainty and navigating the fundamental trade-off between exploration and
exploitation to meet these objectives.

A central question in this setting is to understand the fundamental performance limits
of learning-based control. A widely used metric for quantifying performance is
regret: the cumulative excess cost incurred by a learning agent relative to a baseline
policy, typically the optimal policy of an oracle agent with full knowledge of the
system dynamics. Regret thus captures the price of uncertainty, reflecting how much
suboptimality is suffered by learning on the fly. Ideally, one seeks regret that grows
sublinearly with the time horizon T , the number of agent-environment interactions,
so that the average per-step cost approaches optimality over time. For the case of
unknown linear dynamical systems, the minimax optimal regret rate has been shown
to scale as

√
T [210] for state-feedback control (i.e., xt observed). While several

algorithms have been proposed achieving this optimal performance, some of these
work under the assumption that a stabilizing controller is known a priori [159], [210],
a requirement often not met in real-world situations, circumventing the need for
balancing exploration and exploitation.

Alternatively, the Optimism in the Face of Uncertainty (OFU) principle has been
shown to achieve both optimal regret and system stabilization without relying on any
prior knowledge of the dynamics [2], [140]. Widely used in online decision-making
under uncertainty (e.g., in bandit problems), this approach constructs confidence
sets for the unknown system parameters based on observed data and then selects
the control policy corresponding to the most optimistic model, i.e., the one with
the lowest predicted control cost, within the confidence set. While OFU enjoys
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strong theoretical guarantees, including regret optimality and stability, it suffers
from significant computational intractability, as identifying the optimistic model
requires solving a non-convex, NP-hard optimization problem, making it impractical
for any real-time implementation. This leads to a fundamental question at the heart
of learning-based control [4]:

Can we design a computationally feasible (i.e., poly-time) state-feedback
control algorithm that provably stabilizes any a priori unknown linear
dynamical system while achieving the order-optimal

√
T regret rate?

In Chapter 2, we introduce Thompson Sampling-based Adaptive Control (TSAC), a
provably efficient (i.e., poly-time) and stabilizing state-feedback control algorithm
with optimal

√
T regret for any a priori unknown linear dynamical system, thereby

affirmatively answering this question. Rather than performing an expensive search
for the optimistic model, this algorithm executes the stabilizing optimal policy for
a randomly selected model from a confidence set, requiring only a constant time
compute. Similar to OFU, it balances exploration and exploitation by progressively
reducing uncertainty in the system estimates, thereby biasing the sampling distribution
toward models that yield lower control cost.

Although TSAC attains the order-optimal
√
T regret, it does so by trading computa-

tional efficiency for a multiplicative correction factor in the regret, which depends
inversely on the probability of sampling an optimistic model. Previous work demon-
strated a Thompson-sampling approach with similar guarantees [4], but only in
the special case of scalar systems. One of our key contributions is to show that
the additional regret incurred due to randomized sampling, rather than explicitly
searching for the most optimistic model, remains bounded in arbitrary multidimen-
sional systems. In particular, TSAC samples sufficiently optimistic models with
high enough frequency to match the optimal

√
T regret without compromising

performance.

In Chapter 3, we extend the setting from fully observed state-feedback systems to par-
tially observed, noise-corrupted systems by introducing Thompson Sampling under
Partial Observability (TSPO). This algorithm leverages a novel closed-loop system
identification procedure to iteratively refine both the parameter estimates and their
associated confidence intervals. TSPO then employs Thompson Sampling guided by
these intervals to design control policies for unknown Linear-Quadratic-Gaussian
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(LQG) systems. We show that this method is not only computationally efficient but
also achieves the optimal

√
T regret rate while ensuring system stabilization.

1.2 Outline and Scope of Part II: Distributionally Robust Optimization
Statistical models form the backbone of modern autonomous decision-making
systems by providing probabilistic representations of the external variables and
processes that influence a system’s behavior. In stochastic optimization, one uses
these models to choose decision rules that optimize average-case performance
with respect to the probability distribution implied by the model. This framework
underpins a wide range of tasks, including optimal control under stochastic noise and
uncertainty, predictive modeling and estimation in sensing and perception, learning
from data, and reliable data processing, compression, and transmission over noisy
communication channels.

Most downstream tasks, from stabilizing a drone in turbulence to filtering sensor
noise in autonomous vehicles, rely critically on how faithfully those representations
mirror reality. In practice, these models are typically constructed from empirical
data (e.g., via machine learning), from high-fidelity simulations (e.g., robotic
motion planning and climate modeling), from first-principles or hand-crafted models,
or some combination thereof. Yet the world encountered in deployment rarely
matches the conditions seen during design: discrepancies arise when the operational
data-generating processes differ from the one used during model construction, a
phenomenon known as distribution shift. If left unaddressed, such distribution
shifts and model misspecifications can have severe consequences in high-stakes and
safety-critical applications. For example, in autonomous driving systems, a model
trained predominantly on clear daytime driving scenarios may perform poorly under
nighttime or adverse weather conditions, potentially leading to unsafe decisions
[170].

To ensure safety and reliability, it is essential that autonomous systems account
for the risks posed by model misspecification and distribution shifts. Historically,
robustness in decision-making has been addressed through the lens of adversarially
robust optimization, which forgoes probabilistic models entirely and instead seeks to
optimize performance under the worst-case realization of uncertainty. While this
approach provides strong worst-case guarantees, it often proves overly conservative:
discarding prior statistical information sacrifices average-case performance in ex-
change for blanket robustness. Bridging the gap between epistemic optimism of
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stochastic optimization and caution of adversarially robust optimization remains a
central challenge in designing dependable data-driven decision systems.

Against this backdrop, distributionally robust optimization (DRO) has emerged as a
principled remedy. At its core, DRO retains an ambiguity set of plausible statistical
models consistent with the available data and optimizes expected performance under
the worst-case distribution in that set. Concretely, the canonical problem setup of
DRO can be formulated as a minimax optimization:

inf
θ∈Θ

sup
P∈Br(P◦)

Eξ∼P [ℓ(θ, ξ)] , (1.2)

where θ ∈ Θ is the decision variable, ξ ∈ Ξ is the uncertain variable, and ℓ :

Θ× Ξ→ R is the loss function. In practice, the decision-maker typically possesses
a nominal model P◦ for the uncertain variable, but lacks confidence in its accuracy in
capturing the true, unknown data-generating distribution. To account for this model
uncertainty, the decision maker constructs an ambiguity set as a "ball" of probability
distributions Br(P◦) centered at the nominal P◦ with a specified radius to contain all
distributions deemed plausibly close to the nominal, including the true distribution.
The precise form of this set depends on the chosen notion of distributional similarity,
which may be defined via a divergence (e.g., Kullback-Leibler) or a distance metric
(e.g., Wasserstein, total variation).

The choice of radius effectively reflects the decision-maker’s confidence in the fidelity
of the nominal model. As the radius approaches zero, DRO reduces to standard
stochastic optimization under the nominal distribution. Conversely, as the radius
increases, the formulation becomes increasingly conservative, eventually converging
to the adversarial robust optimization setting. This flexibility enables a data-driven
trade-off between robustness and performance, seamlessly bridging the gap between
stochastic and worst-case decision-making.

Part II of this thesis focuses on the safe and reliable mitigation of risks arising
from distribution shifts and model uncertainty in control, prediction, communication,
and unsupervised learning, through the lens of distributionally robust optimization
(DRO). A central emphasis is placed on ambiguity sets defined via Wasserstein
distances (also known as optimal transport metrics). In contrast to divergence-based
ambiguity sets, which are restricted to distributions supported on the same set as the
nominal model, Wasserstein ambiguity sets offer greater expressive power, respect
the underlying geometric structure of the data space, and lend themselves to tractable
convex reformulations [74], [134].
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A particularly challenging setting arises in the control and prediction of partially
observed dynamical systems subject to complex, temporally correlated, and poorly
understood disturbances. In real-world environments, such systems are continually
influenced by disturbances with rich temporal dependencies and structural complexi-
ties that are poorly captured by oversimplified probabilistic models, such as Gaussian
noise. As a result, standard tools like Linear-Quadratic-Gaussian (LQG) control and
the Kalman filter, which rely heavily on assumptions of Gaussianity and temporal
independence, can become both ineffective and unreliable. The challenge is further
compounded when system parameters are imperfectly known, as modeling errors
introduce additional structured disturbances, effectively amplifying uncertainty.

In Chapter 4 and Chapter 5, we develop distributionally robust control and
filtering frameworks for partially observed linear systems operating under correlated
disturbances. Departing from most prior work that assumes independence across
time [153], [203], [220], [248], our approach leverages the Wasserstein distance
to model uncertainty in the joint distribution of the entire disturbance trajectory
over a finite horizon, enabling reliable control and prediction under rich, temporally
correlated uncertainty.

Another critical capability for autonomous systems is the reliable real-time trans-
mission of high-dimensional data—such as images and videos—over long distances.
This is especially vital in networked cyber-physical systems with multiple intercon-
nected agents, such as search-and-rescue drones or robotic teams, where safe and
effective coordination depends on timely and accurate communication. However, the
unpredictability of both data sources and communication channels undermines the
reliability of classical methods rooted in Shannon theory [206], which presuppose
perfect knowledge of the source and channel distributions.

In Chapter 6, we characterize the fundamental limits of reliable communication
under distributional uncertainty, focusing on two key trade-offs: (i) data compression
rate and distortion error, and (ii) transmission rate and power allocation over a noisy
channel. Uncertainty in both the data source and channel noise distributions is mod-
eled using Wasserstein balls centered at nominal distributions. These problems mark
a significant departure from standard DRO formulations, as the objectives involve
information-theoretic quantities, such as mutual information and entropy, rather than
simple expected costs. Nonetheless, we derive tractable convex reformulations based
on linear matrix inequalities (LMIs), enabling efficient computation and robustness
in communication systems design.
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Perception and environmental understanding in autonomous systems often rely on
unsupervised learning and pattern recognition methods, such as segmentation and
clustering to transform large volumes of raw, unlabeled sensor data into discrete,
interpretable objects. However, classical clustering methods are often vulnerable to
outliers, distribution shifts, and limited sample sizes. In Chapter 7, we develop a
distributionally robust k-means clustering algorithm that minimizes the mean-squared
distortion error for quantizing the worst-case distribution within a Wasserstein-2
ball centered at the empirical data distribution. Our formulation naturally yields
a soft-clustering scheme during training, replacing rigid cluster boundaries with
smoothly weighted regions, resulting in significantly improved robustness to outliers
and generalization under distribution shifts.

1.3 Outline and Scope of Part III: Non-rational Control
Major advances in control theory have historically been driven by practical challenges
that existing methods failed to address, for example, Kalman’s state-space theory
[121] and Bellman’s dynamic programming [16], [17] emerged to handle stochastic
disturbances during the space race, while Zames’s H∞ control [255] addressed
model uncertainty overlooked by classical stochastic control. Today, with control
systems underpinning complex, high-stakes autonomous operations in uncertain and
resource-constrained environments, we face a similar shift. The growing reliance on
learning-based controllers demands new approaches that can manage the unreliability
of data-driven models while ensuring stability, robustness, safety, and real-time
performance under computational and communication constraints.

In response to these emerging demands, several new paradigms have been pro-
posed, including distributionally robust, risk-sensitive, and multi-criteria control.
While these frameworks offer elegant theoretical formulations, translating them
into practical, real-time deployable controllers remains a significant analytical and
computational challenge. For instance, finite-horizon formulations, such as the
Wasserstein distributionally robust controller studied in this thesis, typically result
in high-dimensional optimization problems that scale poorly with the time horizon,
rendering real-time implementation impractical. Receding horizon strategies, such
as model predictive control (MPC), partially alleviate this by solving a sequence of
short-horizon optimization problems rather than a single long-horizon one. However,
these approaches often lack formal stability guarantees and can exhibit non-smooth,
erratic, or myopic behavior, ultimately compromising long-term system performance.
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A more principled approach lies in infinite-horizon controller synthesis, which
provides provably stable policies with performance guarantees and enables efficient
real-time implementation. However, designing optimal infinite-horizon controllers for
emerging paradigms, often involving sophisticated, nonstandard objective functions,
remains fundamentally challenging, as it typically results in infinite-dimensional
optimization problems. These difficulties are further compounded by structural and
information constraints, such as causality, communication delays, and requirements
for distributed or decentralized implementation. To date, exact closed-form solutions
have been found only for a limited set of problems such as LQG/H2 [121], H∞ [51],
and regret-optimal control [191]. In contrast, for many other practically relevant
formulations, including mixed H2/H∞ control, no exact solution has yet been
discovered. This raises the following fundamental question:

How can we systematically and efficiently synthesize stabilizing, scalable
and exact optimal controllers for generalized, nonstandard performance
objectives beyond the classical formulations?

Another major challenge in this generalized setting is that optimal controllers for
nonstandard performance objectives are typically infinite-dimensional (i.e., non-
rational) which presents a fundamental barrier to practical, real-time, and scalable
implementation. In contrast to classical settings such as LQG/H2 and H∞, where
optimal controllers admit finite-dimensional state-space realizations, generalized
formulations often lack this property. This phenomenon arises even in well-studied
problems like mixed H2/H∞ control [165]. Indeed, in Chapter 9, we show that
the optimal infinite-horizon Wasserstein distributionally robust controller is itself
non-rational. While approximation strategies, such as restricting to finite impulse
response (FIR) controllers, can yield tractable formulations, they often fail to capture
long-range dependencies or incur significant suboptimality unless one adopts an
impractically large FIR length. This raises another fundamental question:

How can we practically implement infinite-dimensional (i.e., non-
rational) optimal controllers for general objectives?

These realities underscore the need for a new generation of practical controller-
synthesis techniques that

i. accommodate a wide array of performance metrics,
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ii. ensure closed-loop stability,

iii. impose minimal computational overhead during real-time implementation,

iv. scale efficiently to large-scale systems, and

v. achieve near-optimal performance with provably negligible suboptimality gaps.

In Part III, we address these challenges by proposing a unified framework: non-
rational control. Embracing the infinite-dimensional nature of control problems, this
unified framework offers new analytical and computational tools that render other-
wise intractable controller design tasks both solvable and practically implementable.
Crucially, it adopts an optimize-then-approximate paradigm, enabling synthesis
of provably near-optimal, stabilizing finite-dimensional (rational) state-space con-
trollers tailored to diverse objectives, even when the true optimum resides in an
infinite-dimensional (non-rational) policy class.

More concretely, the central object of our study is a generalized infinite-horizon
control problem posed as an infinite-dimensional optimization: find a causal and
admissible controller K that minimizes a performance objective specified by a
function f of the squared closed-loop transfer operator T ∗

KTK:

inf
causal K

f(T ∗
KTK) subject to K ∈ Kadmissible (1.3)

Here, the closed-loop transfer operator TK maps external disturbances to regulated
outputs, the objective function f encodes the desired performance criteria, and
Kadmissible encodes the subset of admissible controllers. This general formulation
encompasses a wide class of control problems, including the classical and emerging
examples discussed earlier. Our framework is built on the following key components:

1. Infinite-dimensional convex duality. By formulating the control objective at
the operator level and invoking convex duality, the original design problem
with generalized performance criteria is recast as a tractable dual optimization
problem.

2. Efficient numerical solution. Exploiting the Fourier-domain (transfer-function)
representation of the dual variable allows the use of standard, scalable
optimization algorithms (e.g., first-order methods) to compute the exact
infinite-dimensional optimum.
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3. Rational controller synthesis. A novel rational-approximation scheme
translates the infinite-dimensional solution into finite-dimensional controllers
that are guaranteed to be stabilizing and within a quantifiable performance gap,
enabling practical real-time deployment without sacrificing performance.

The non-rational control framework integrates and extends H2, H∞, distributionally
robust, risk-sensitive, regret-optimal, and multi-objective control paradigms into a
cohesive framework that enables scalable real-time implementation. The underlying
numerical optimization and rational controllers synthesis algorithms are highly
efficient in terms of computational complexity and horizon independent, as opposed
to finite-horizon formulations which scale with the time-horizon. Moreover, the
resulting near-optimal rational controllers significantly outperform those derived
from restrictive policy classes, such as those obtained from FIR approximation.

In Chapter 8, we provide a comprehensive background on optimization-based
methods for controller synthesis, introduce the necessary notation, and review key
concepts from linear systems theory. The chapter concludes with a summary of our
main contributions and an overview of the non-rational control framework developed
in the subsequent chapters.

In Chapter 9, Chapter 10, and Chapter 11, we present a range of infinite-horizon
control and filtering problems unified under our framework, spanning both classical
formulations and emerging paradigms such as distributionally robust, risk-sensitive,
and multi-objective control. In particular, we derive the infinite-horizon formulations
of the Wasserstein distributionally robust control and filtering problems, extending
the finite-horizon versions introduced in Part II, and discuss mixed H2/H∞ control
as a canonical example of the multi-objective setting.

In Chapter 12, we develop the duality theory for the generalized infinite-horizon
control problems introduced earlier. Our main tool is the Fenchel–Legendre conjugate
f ∗ of the objective function f , together with the strong duality framework established
by Fenchel and Rockafeller. A key advantage of working with the dual formulation
is that it enables a tractable reformulation of the original problem: the dual problem
becomes a max–min optimization, where the inner minimization is a weighted
H2 objective, and all structural and information constraints, such as causality and
decentralization, are absorbed into this simpler inner problem. The weighting factor
in this setting is precisely the dual optimization variable.

This reformulation admits a compelling interpretation as a minimax game between
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the controller and an adversarial disturbance process: the controller minimizes
its expected infinite-horizon quadratic cost under a colored (correlated) Gaussian
disturbance, whose auto-covariance kernel serves as the dual variable, while the
disturbance aims to maximize this cost but is penalized via the conjugate function
f ∗ evaluated on its auto-covariance kernel. In this sense, the dual problem can be
viewed as an infinite-horizon stochastic control problem under a generalized risk
measure induced by f . We conclude the chapter by applying this duality framework
to the specific control problems introduced in the preceding section.

In Chapter 13, we present the necessary and sufficient conditions for the existence
of a saddle-point solution. Our approach proceeds in two stages. First, we show
how the optimal controller can be derived by reducing the problem to a weighted
H2 optimization using the classical Wiener–Hopf technique [239], [250]. This step
highlights the strength of our framework: a complex and seemingly intractable control
problem is reformulated as a structured weighted H2 problem that is analytically and
computationally tractable. However, determining the optimal controller still requires
solving the dual problem to identify the optimal weighting, which is achieved by
deriving the Karush-Kuhn-Tucker (KKT) optimality conditions.

We apply this methodology to the examples introduced in the preceding chapters,
leading to explicit closed-form expressions for the optimal solutions in the infinite-
horizon Wasserstein distributionally robust control and filtering problems, as well
as for the mixed H2/H∞ control problem. These solutions reveal the inherent
non-rational structure of the resulting optimal controllers.

A key insight of our approach is that, although the optimal controllers may be non-
rational, they can often be fully characterized by a finite-dimensional parameterization,
i.e., the solution lies within a structured family of non-rational transfer functions.
This structure enables the development of efficient numerical algorithms that operate
in the Fourier domain using first-order gradient information. In Chapter 14, we
present adaptations of several well-known optimization methods, including proximal
gradient and Frank–Wolfe algorithms, where gradients are evaluated at a finite (but
sufficiently dense) set of frequency points, enough to accurately approximate the
underlying infinite-dimensional objects.

While the optimal non-rational controller may be theoretically well-defined, its infinite-
dimensional nature renders it impractical for real-time implementation as a finite-
dimensional state-space controller. In ??, we introduce a computationally efficient
rational approximation algorithm to synthesize finite-dimensional, stabilizing, near-
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optimal controllers with a guaranteed suboptimality gap and prescribed state order.
Rather than directly approximating the non-rational controller, which leads to a
non-convex and generally NP-hard problem, our method targets the optimal dual
variable, a positive-definite transfer function, and approximates it using rational
functions formed as ratios of positive polynomials in the H∞ norm. The positivity
of both the dual variable and its approximants enables a convex reformulation of
the approximation problem. Finally, by applying the Wiener–Hopf technique, we
construct a finite-dimensional, stabilizing state-space controller from the rational
approximation of the dual variable.



Part I

Learning and Control
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C h a p t e r 2

LEARNING TO CONTROL FULLY OBSERVED LINEAR
DYNAMICAL SYSTEMS

2.1 Introduction
There has been a significant development in data-driven methods for controlling
dynamical systems in recent years due to the development of novel reinforcement
learning approaches and techniques [108]. Adaptive control of unknown linear
dynamical systems has been the main focus due to its simplicity and its ability
to capture the crux of the problem and give insights on more challenging tasks
[187]. Among linear dynamical systems, Linear Quadratic Regulators (LQRs) are
the canonical settings with quadratic regulatory costs to design desirable controllers
and have been studied in an array of prior works [2], [4], [36], [62], [140], [159],
[210]. These works provide finite-time performance guarantees of adaptive control
algorithms in terms of regret, which is the difference between the attained cumulative
cost and the expected cost of the optimal controller. In particular, they show that
Õ(
√
T ) regret after T time steps is optimal in adaptive control of LQRs. They utilize

several different paradigms for algorithm design such as Certainty Equivalence,
Optimism or Thompson Sampling, yet, they suffer either from the inherent algorithmic
drawbacks or limited applicability in practice.

Certainty equivalent control and its challenges: Certainty equivalent control
(CEC) is one of the most straightforward paradigms for control design in adaptive
control of dynamical systems. In CEC, an agent obtains a nominal estimate of
the system, and executes the optimal control law for this estimated system. Even
though Mania, Tu, and Recht [159] and Simchowitz and Foster [210] show that
this simple approach attains optimal regret in LQRs, the proposed algorithms have
several drawbacks. First and foremost, CEC is sensitive to model mismatch and
requires significantly small model estimation error to a point that exploration of the
system dynamics is not required. Since this level of refinement is challenging to
obtain for an unknown system, these methods rely on access to an initial stabilizing
controller to enable a long exploration. In practice, such a priori known controllers
may not be available, which hinders the deployment of these algorithms.

Optimism-based control and its challenges: Optimism is one of the most prominent
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methods to effectively balance exploration and exploitation in adaptive control [21].
In optimism-based control, an agent executes the optimal policy for the model with
the lowest cost within a set of plausible models. In Abbasi-Yadkori and Szepesvári [2]
and Faradonbeh, Tewari, and Michailidis [62], the authors use optimism-based control
design to achieve Õ(

√
T ) regret with exponential dimension dependency. Both

algorithms solve a non-convex optimization problem to find the optimistic controllers,
which is an NP-hard problem in general [6]. Unfortunately, this computational
inefficiency severely limits their practicality. Recently, Abeille and Lazaric [5]
proposed a relaxation to the optimistic controller computation, which makes the
optimism-based controllers efficient. However, their algorithm also requires a
significantly well-refined model estimate and a given initial stabilizing policy, similar
to CEC.

Restricted LQR settings in the prior works: In our work, we study the stabilizable
multi-dimensional LQR setting. Stabilizability is necessary and sufficient condition
to have a well-posed LQR control problem [120]. On the contrary, prior works usually
consider the controllable LQR setting, which is a subclass of stabilizable LQRs
[36], [40]. While the controllability condition simplifies the learning and control
problem, it is also often violated in many real-world control systems [69]. Recently,
Lale, Azizzadenesheli, Hassibi, et al. [140] proposed an adaptive control algorithm
that does not need an initial stabilizing controller and achieves optimal regret in
stabilizable LQRs. However, their method relies on optimism, and unfortunately
inherits the aforementioned computational complexity of optimistic methods.

Thompson Sampling and its challenges: Thompson Sampling (TS) is one of the
oldest strategies to balance the exploration vs. exploitation trade-off [222]. In TS,
the agent samples a model from a distribution computed based on prior control
input and observation pairs, and then takes the optimal action for this sampled
model and updates the distribution based on its novel observation. Since it relies
solely on sampling, this approach provides polynomial-time algorithms for adaptive
control. Therefore, it is a promising alternative to overcome the computational
burden faced in optimismic control design. For this reason, Abeille and Lazaric
[3], [4] propose adaptive control algorithms using TS. In particular, Abeille and
Lazaric [4] provide the first TS-based adaptive control algorithm for LQRs that attains
optimal regret of Õ(

√
T ). However, their result only holds for scalar stabilizable

systems, since they were able to show that TS samples optimistic parameters with
constant probability in only scalar systems. Further, they conjecture that this is true



19

Table 2.1: Comparison with the prior works that attain Õ(
√
T ) regret on LQR, † =

1-dim LQRs

Work Setting Stabilizing Controller Computation
[4] Stabilizable† Not Required Feasible
[159] Controllable Required Feasible
[210] Stabilizable Required Feasible
[36] Controllable Not required Feasible
[140] Stabilizable Not required Infeasible
This work Stabilizable Not required Feasible

in multidimensional systems as well and TS-based adaptive control can provide
optimal regret in multidimensional LQRs, and provide a simple numerical example
to support their claims.

Contributions
In this work, we give an affirmative answer to the conjecture posed in Abeille and
Lazaric [4]:

• We propose an efficient adaptive control algorithm, Thompson Sampling-based
Adaptive Control (TSAC), that attains Õ(

√
T ) regret in multidimensional

stabilizable LQRs. This makes TSAC the first efficient adaptive control
algorithm to achieve order-optimal regret in all stabilizable LQRs without the
prior knowledge of a stabilizing policy (Table 2.1).

• We empirically demonstrate the performance of TSAC and compare to the
optimism (heuristic) and TS-based methods that do not require initial stabilizing
policy in flight control of Boeing 747 with linearized dynamics. We show that
TSAC effectively explores the system to find a stabilizing policy and achieves
the competitive regret performance, while being computationally feasible.

The design of TSAC and our regret guarantee hinge on three important pieces missing
in prior works: Fixed policy update rule, improved exploration in early stages
of adaptive control, and a novel lower bound that shows TS samples optimistic
parameters with non-zero probability in multidimensional LQRs. Unlike the frequent
policy update rule of Abeille and Lazaric [4] in scalar LQRs, TSAC updates its
policy with fixed time periods. This policy update rule prevents fast policy changes
that would cause state blow-ups in stabilizable LQRs. In the beginning of agent-
environment interaction, TSAC focuses on quickly finding a stabilizing controller
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to avoid state blow-ups due to lack of a known initial stabilizing policy. By using
isotropic exploration in the early stages along with the exploration of TS policy, we
show that TSAC achieves fast stabilization.

After stabilizing the unknown system dynamics, TSAC relies on the effective explo-
ration of the TS to find desirable controllers. In particular, we show that the TS
samples optimistic parameters with a constant probability in any LQR setting. This
novel lower bound shows that the TS is an efficient alternative to optimism in all
adaptive control problems in LQRs. Combining this lower bound with the fixed
policy update rule, we derive the optimal regret guarantee for TSAC.

2.2 Preliminaries
Notation: We denote the Euclidean norm of a vector x as ∥x∥2. For a matrix
A∈Rn×d, we denote ρ(A) as the spectral radius of A, ∥A∥F as its Frobenius norm
and ∥A∥ as its spectral norm. tr(A) denotes its trace, A⊺ is the transpose. For
any positive definite matrix V , ∥A∥V = ∥V 1/2A∥F . For matrices A,B ∈ Rn×d,
A •B=tr(AB⊺) denotes their Frobenius inner product. The j-th singular value of
a rank-n matrix A is σj(A), where σmax(A) :=σ1(A)≥ . . .≥σmin(A) :=σn(A). I
represents the identity matrix with the appropriate dimensions. Mn=Rn×n denotes
the set of n-dimensional square matrices. N (µ,Σ) denotes normal distribution
with mean µ and covariance Σ. Q(·) denotes the Gaussian Q-function. O(·) and
o(·) denote the standard asymptotic notation and f(T ) = ω(g(T )) is equivalent to
g(T ) = o(f(T )). Õ(·) presents the order up to logarithmic terms.

Setting
Suppose we are given a discrete time linear time-invariant system with the following
dynamics,

xt+1 = A∗xt +B∗ut + wt, (2.1)

where xt ∈ Rn is the state of the system, ut ∈ Rd is the control input, wt ∈ Rn is
i.i.d. process noise at time t. At each time step t, the system is at state xt where
the agent observes the state. Then, the agent applies a control input ut and the
system evolves to xt+1 at time t+ 1. The underlying system (2.1) can be represented
as xt+1 = Θ⊺

∗zt + wt, where Θ⊺
∗ = [A∗ B∗] and zt = [x⊺

t u⊺
t ]

⊺. In this work, we
consider stabilizable linear dynamical systems Θ∗, such that there exists a controller
K where ρ(A∗+B∗K) < 1. More precisely, the systems with the following property:

Assumption 2.2.1 (Bounded and (κ, γ)-stabilizable System). The unknown system
Θ∗ is a member of a setS such thatS ⊆

{
Θ′ = [A′, B′]

∣∣Θ′ is (κ, γ)-stabilizable, ∥Θ′∥F ≤
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S
}

for some κ ≥ 1 and 0 < γ ≤ 1. In particular, for the underlying sys-
tem Θ∗, we have ∥K(Θ∗)∥ ≤ κ and there exists L and H ≻ 0 such that
A∗ +B∗K(Θ∗) = HLH−1, with ∥L∥ ≤ 1− γ and ∥H∥∥H−1∥ ≤ κ.

Note that the stabilizability condition is necessary and sufficient condition to define
the optimal control problem [120] and it is weaker than the controllability assumption
considered in prior works [2], [36], [40]. In particular, the set of stabilizable systems
subsumes the set of controllable systems. Moreover, (κ, γ)-stabilizability is merely a
quantification of stabilizability for the finite-time analysis and it is adopted in recent
works [32], [39], [40]. One can show that any stabilizable system is also (κ, γ)-
stabilizable for some κ and γ, conversely, (κ, γ)-stabilizability implies stabilizability
(Lemma B.1 Cohen, Hassidim, Koren, et al. [39]). We have the following assumption
on wt.

Assumption 2.2.2 (Gaussian Process Noise). There exists a filtration Ft such that for
all t ≥ 0, xt, zt are Ft-measurable and wt|Ft = N (0, σ2

wI) for some known σw > 0.

Note that this assumption is standard in literature and adopted for simplicity of
exposure. The following results can be extended to sub-Gaussian process noise
setting using the techniques developed in Lale, Azizzadenesheli, Hassibi, et al. [140].
At each time step, the regulating cost is ct = x⊺

tQxt + u⊺
tRut, where Q ∈ Rn×n

and R ∈ Rd×d are known positive definite matrices such that ∥Q∥, ∥R∥ < ᾱ and
σmin(Q), σmin(R) > α > 0. The goal is to minimize the average expected cost

J(Θ∗) = lim
T→∞

min
u=[u1,...,uT ]

1

T
E
[∑T

t=1
x⊺
tQxt + u⊺

tRut

]
, (2.2)

by designing control inputs based on past observations. This problem is the canonical
infinite horizon linear quadratic regulator (LQR) problem. If the underlying system
Θ∗ is known, the solution of the optimal control problem is a linear feedback control
ut = K(Θ∗)xt with K(Θ∗) = −(R + B⊺

∗P (Θ∗)B∗)
−1B⊺

∗P (Θ∗)A∗, where P (Θ∗)

is the unique positive definite solution to

P (Θ∗) = A⊺
∗P (Θ∗)A∗+Q−A⊺

∗P (Θ∗)B∗(R+B⊺
∗P (Θ∗)B∗)

−1B⊺
∗P (Θ∗)A∗, (2.3)

i.e., the discrete algebraic Riccati equation (DARE), and J(Θ∗) = σ2
w Tr(P (Θ∗)).

Note that since the system is stabilizable, J(Θ∗) <∞. In fact, using Assumption
2.2.1, one can show that ∥P (Θ′)∥ ≤ D := ᾱγ−1κ2(1+ κ2) for all Θ′ ∈ S , including
Θ∗ (Lemma 2.1 of Lale, Azizzadenesheli, Hassibi, et al. [140]).
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Finite-Time Adaptive Control Problem
In this work, we consider the adaptive control setting, where Θ∗ is unknown. The
goal in the finite-time adaptive control problem is to minimize the cumulative cost
i.e.,

∑T
t=0 ct. In order to design a controller that achieves this goal, the controlling

agent needs to interact with the system to learn the Θ∗ that governs the dynamics.
However, due to a lack of knowledge of model dynamics, the agent takes sub-optimal
actions. In this work, we use regret, RT , as the metric to evaluate the finite-time
performance of the controlling agent. The regret quantifies the difference between
the performance of the agent and the expected performance of the optimal controller,
RT =

∑T
t=0(ct − J(Θ∗)).

Learning the System Dynamics
For any given input and state pairs up to time t, Θ∗ can be estimated using regularized
least squares (RLS) for some µ > 0: minΘ

∑t−1
s=0 tr ((xs+1−Θ⊺zs)(xs+1−Θ⊺zs)

⊺)+

µ∥Θ∥2F . The solution is given as Θ̂t = V −1
t

∑t−1
s=0 zsx

⊺
s+1 where Vt = µI +∑t−1

s=0 zsz
⊺
s . Using Theorem 1 of Abbasi-Yadkori and Szepesvári [2], for any

δ ∈ (0, 1), for all 0 ≤ t ≤ T , the underlying parameter Θ∗ lives in ERLS
t (δ)

with probability at least 1 − δ where ERLS
t (δ) = {Θ : ∥Θ − Θ̂t∥Vt

≤ βt(δ)} for

βt(δ) = σw

√
2n log((det(Vt)

1/2)/(δ det(µI)1/2)) +
√
µS.

2.3 TSAC Framework
In this section, we present TSAC, a sample efficient TS-based adaptive control
algorithm for the unknown stabilizable LQRs. The algorithm is summarized in
Algorithm 1. It has two phases: 1) TS with improved exploration and 2) Stabilizing
TS.

TS with Improved Exploration Due to lack of a priori known stabilizing controller,
TSAC focuses on rapidly learning stabilizing controllers in the early stages of
the algorithm. To achieve this, TSAC explores the system dynamics effectively
in this phase. At any time-step t, given the RLS estimate Θ̂t and the design
matrix Vt as described in Section 2.2, TSAC samples a perturbed model parameter
Θ̃t = RS(Θ̂t + βt(δ)V

−1/2
t ηt), where RS denotes the rejection sampling operator

associated with the set S given in Assumption 2.2.1 and ηt ∈ R(n+d)×n is a matrix
with independent standard normal entries. Here RS guarantees that Θ̃t ∈ S and
βt(δ)V

−1/2
t ηt randomizes the sampled parameter coherently with the RLS estimate

and the uncertainty associated with it. Using this sampled model parameter, TSAC
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constructs the optimal linear controller ūt = K(Θ̃t)xt for Θ̃t.

However, to obtain stabilizing controllers for an unknown linear dynamical sys-
tem, one needs to explore the state-space in all directions (Lemma 4.2 of [140]).
Unfortunately, due to lack of reliable estimates in the early stages, deploying the
policy achieved via TS, ūt, may not achieve such effective exploration. Therefore, in
the early stages of interactions with the underlying system, TSAC deploys isotropic
perturbations along with the sampled policy. In particular, for the first Tw time-steps,
TSAC uses ut = ūt + νt as the control input where νt ∼ N (0, 2κ2σ2

wI). This
improved exploration policy effectively excites and explores all dimensions of the
system to certify the design of stabilizing controllers. TSAC sets Tw such that all the
sampled controllers K(Θ̃t) are guaranteed to stabilize the underlying system Θ∗ for
all t > Tw (Appendix 2.B).

Unlike most of the popular RL strategies that follow lazy updates, TSAC updates
its sampled policy in every fixed τ0 steps, i.e., the same sampled policy K(Θ̃t) is
deployed for τ0 time-steps. This update rule is carefully chosen such that TSAC

samples enough optimistic policies to reduce the cumulative regret and avoids too
frequent policy changes which would cause state blow-ups.

Stabilizing TS After guaranteeing the design of stabilizing policies with improved
exploration in the first phase, TSAC starts the adaptive control with only TS. In
particular, for the remaining time-steps, TSAC deploys ut = K(Θ̃t)xt for Θ̃t =

RS(Θ̂t + βt(δ)V
−1/2
t ηt) and updates the sampled model parameter in every τ0

time-steps. Note that, even though all the policies during this phase are stabilizing,
frequent policy changes can still cause undesirable state growth. TSAC prevents this
possibility by applying the same control policy for τ0 time-steps in this phase as well.
During this phase, TSAC decays the possible state blow-ups in the first phase and
maintains stable dynamics.

2.4 Theoretical Analysis
In this section, we study the theoretical guarantees of TSAC. The following states the
first order-optimal frequentist regret bound for TS in multidimensional stabilizable
LQRs, our main result.

Theorem 2.4.1 (Regret of TSAC). Suppose Assumptions 2.2.1 and 2.2.2 hold and
set τ0 = 2γ−1 log(2κ

√
2) and T0 = poly(log(1/δ), σ−1

w , n, d, ᾱ, γ−1, κ). Then, for
long enough T , TSAC achieves the regret RT =Õ

(
(n+ d)(n+d)

√
T log(1/δ)

)
w.p.
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Algorithm 1 TSAC

1: Input: κ, γ, Q, R, σ2
w , V0 = µI , Θ̂0 = 0

2: for i = 0, 1, . . . do
3: Estimate Θ̂i & Sample Θ̃i = RS(Θ̂i + βtV

−1/2
t ηt)

4: for t = iτ0, . . . , (i+ 1)τ0 − 1 do
5: if t ≤ Tw then
6: Deploy ut=K(Θ̃i)xt+νt { TS with Improved Exploration}
7: else
8: Deploy ut=K(Θ̃i)xt {Stabilizing TS}
9: end if

10: end for
11: end for

at least 1 − 10δ, if Tw = max
(
T0, c1(

√
T log T )1+o(1)

)
for a constant c1 > 0.

Furthermore, if the closed loop matrix of the optimally controlled underlying system,
Ac,∗ := A∗ + B∗K∗, is non-singular, w.p. at least 1 − 10δ, TSAC achieves the
regret RT =Õ

(
poly(n, d)

√
T log(1/δ)

)
if Tw = max

(
T0, c2(log T )

1+o(1)
)

for a
constant c2 > 0.

This makes TSAC the first efficient adaptive control algorithm that achieves optimal
regret in adaptive control of all LQRs without an initial stabilizing policy. To prove
this result, we follow similar approach as the existing methods in literature, and
define the high probability joint event Et = Êt ∩ Ẽt ∩ Ēt, where Êt states that the
RLS estimate Θ̂ concentrates around Θ∗, Ẽt states that the sampled parameter Θ̃
concentrates around Θ̂, and Ēt states that the state remains bounded respectively
(Appendix 2.C). Conditioned on this event, we decompose the frequentist regret as,
RT 1ET

≤ Rexp
Tw

+ RRLS
T + Rmart

T + RTS
T + Rgap

T , where Rexp
Tw

accounts for the regret
attained due to improved exploration, RRLS

T represents the difference between the
value function of the true next state and the predicted next state, Rmart

T is a martingale
with bounded difference, RTS

T measures the difference in optimal average expected
cost between the true model Θ∗ and the sampled model Θ̃, and Rgap

T measures the
regret due to policy changes. The decomposition and expressions are given in
Appendix 2.E. In the analysis, we bound each term separately (Appendix 2.F). Before
discussing the details of the analysis, we first consider the prior works that use TS
for adaptive control of LQRs and discuss their shortcomings. Further, we highlight
the challenges in adaptive control of multidimensional stabilizable LQRs using TS
and present our approaches to overcome these.
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Prior Work on TS-based Adaptive Control and Challenges
For the frequentist regret minimization problem given in Section 2.2, the state-of-the-
art adaptive control algorithm that uses TS is Abeille and Lazaric [4]. They consider
the “contractible” LQR systems, i.e. |A∗ + B∗K(Θ∗)| < 1, and provide Õ(

√
T )

regret upper bound for scalar LQRs, i.e. n = d = 1. Notice that the set of contractible
systems is a small subset of the set S defined in Assumption 2.2.1 and they are only
equivalent for scalar systems since ρ(A∗ − B∗K(Θ∗)) = |A∗ − B∗K(Θ∗)|. This
simplified setting allow them to reduce the regret analysis into the trade-off between
RTS

T =
∑T

t=0{J(Θ̃t)− J(Θ∗)} and Rgap
T =

∑T
t=0 E[x

⊺
t1
(P (Θ̃t+1)−P (Θ̃t)xt+1

∣∣Ft].

These regret terms are central in the analysis of several adaptive control algorithms.
In the certainty equivalent control approaches, RTS

T is bounded by the quadratic
scaling of model estimation error after a significantly long exploration with a known
stabilizing controller [159], [210]. In the optimism-based algorithms, RTS

T is bounded
by 0 by design [2], [62]. Similarly, in Bayesian regret setting, [175] assume that
the underlying parameter Θ∗ comes from a known prior that the expected regret is
computed with respect to. This true prior yields E[RTS

T ] = 0 in certain restrictive
LQRs. The conventional approach in the analysis of Rgap

T is to have lazy policy
updates, i.e., O(log T ) policy changes, via doubling the determinant of Vt [3], [140]
or exponentially increasing epoch durations [32], [63].

On the other hand, Abeille and Lazaric [4] bound RTS
T by showing that TS samples

the optimistic parameters, Θ̃t such that J(Θ̃t) ≤ J(Θ∗), with a constant probability,
which reduces the regret of non-optimistic steps. Unlike the conventional policy
update approaches, the key idea in Abeille and Lazaric [4] is to update the control
policy every time-steps via TS, which increases the amount of optimistic policies
during the execution. They show that while this frequent update rule reduces RTS

T , it
only results with Rgap

T = Õ(
√
T ). However, they were only able to show that this

constant probability of optimistic sampling holds for scalar LQRs.

The difficulty of the analysis for the probability of optimistic parameter sampling lies
in the challenging characterization of the optimistic set. Since J(Θ̃)=σ2

w tr(P (Θ̃)),
one needs to consider the spectrum of P (Θ̃) to define optimistic models, which
makes the analysis difficult. In particular, decreasing the cost along one direction
may be result in an increase in other directions. However, for the scalar LQR setting
considered in Abeille and Lazaric [4], J(Θ̃)=P (Θ̃) and using standard perturbation
results on DARE suffices. As mentioned in Abeille and Lazaric [4], one can naively
consider the surrogate set of being optimistic in all directions, i.e. P (Θ̃) ≼ P (Θ∗).
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Nevertheless, this would result in probability that decays linear in time and does
not yield sub-linear regret. In this work, we propose new surrogate sets to derive a
lower bound on the probability of having optimistic samples, and show that TS in
fact samples optimistic model parameters with constant probability.

In designing TS-based adaptive control algorithms for multidimensional stabilizable
LQRs, one needs to maintain bounded state. In bounding the state, Abeille and Lazaric
[4] rely on the fact that the underlying system is contractive, ∥Ã + B̃K(Θ̃)∥ < 1.
However, under Assumption 2.2.1, even if the optimal policy of the underlying system
is chosen by the learning agent, the closed-loop system may not be contractive since
for any symmetric matrix M , ρ(M) ≤ ∥M∥. Thus, to avoid dire consequences of
unstable dynamics, TS-based adaptive control algorithms should focus on finite-time
stabilization of the system dynamics in the early stages.

Moreover, the lack of contractive closed-loop mappings in stabilizable LQRs, prevent
frequent policy changes used in Abeille and Lazaric [4]. From the definition of
(κ, γ)-stabilizability (Assumption 2.2.1), for any stabilizing controller K ′, we have
that A∗ +B∗K

′ = H ′LH ′−1, with ∥L∥ < 1 for some similarity transformation H ′.
Thus, even if all the policies are stabilizing, changing the policies at every time step
could cause couplings of these similarity transformations and result in linear growth
of state over time. Thus, TS-based adaptive control algorithms need to find the
balance in rate of policy updates, so that frequent policy switches are avoided, yet,
enough optimistic policies are sampled. In light of these observations, our results
hinge on the following:

• Improved exploration of TSAC, which allows fast stabilization of the system
dynamics,

• Fixed policy update rule of TSAC, which prevents state blow-up and reduces
Rgap

T and RTS
T ,

• A novel result that shows TS samples optimistic model parameters with a
constant probability for multidimensional LQRs and gives a novel bound on
RTS

T .

Details of the analysis
The improved exploration along with TS in the early stages allows TSAC to effectively
explore the state-space in all directions. The following shows that for a long
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enough improved exploration phase, TSAC achieves consistent model estimates and
guarantees the design of stabilizing policies.

Lemma 2.4.2 (Model Estimation Error and Stabilizing Policy Design). Suppose
Assumptions 2.2.1 and 2.2.2 hold. For t ≥ 200(n + d) log 12

δ
time-steps of TS

with improved exploration, with probability at least 1 − 2δ, TSAC obtains model
estimates such that ∥Θ̂t − Θ∗∥2 ≤ 7βt(δ)/(σw

√
t). Moreover, after Tw ≥ T0 :=

poly(log(1/δ), σ−1
w , n, d, ᾱ, γ−1, κ) length TS with improved exploration phase, with

probability at least 1−3δ, TSAC samples controllers K(Θ̃t) such that the closed-loop
dynamics on Θ∗ is (κ

√
2, γ/2) strongly stable for all t > Tw, i.e. there exists

L and H ≻ 0 such that A∗ + B∗K(Θ̃t) = HLH−1, with ∥L∥ ≤ 1 − γ/2 and
∥H∥∥H−1∥ ≤ κ

√
2.

The proof and the precise expression of Tw can be collected in Appendix 2.B. In the
proof, we show that the inputs ut = K(Θ̃i)xt + νt for νt∼N (0, 2κ2σ2

wI) guarantees
persistence of excitation with high probability, i.e., the smallest eigenvalue of the
design matrix Vt scales linearly over time. Combining this result, with the confidence
set construction given in Section 2.2, we derive the first result. Using the first result
and the fact that there exists a stabilizing neighborhood around the model parameter
Θ∗, such that all the optimal linear controllers of the models within this region stabilize
Θ∗, we derive the final result. Due to early improved exploration, TSAC stabilizes
the system dynamics after Tw samples and starts stabilizing adaptive control with
only TS. Using the stabilizing controllers for fixed τ0=2γ−1 log(2κ

√
2) time-steps,

TSAC decays the state magnitude and remedy possible state blow-ups in the first
phase. To study the boundedness of state, define Tr = Tw + (n+ d)τ0 log(n+ d).
The following shows that the state is bounded and well-controlled.

Lemma 2.4.3 (Bounded states). Suppose Assumptions 2.2.1 & 2.2.2 hold. For given
Tw and Tr, TSAC controls the state such that ∥xt∥ = O((n+ d)n+d) for t ≤ Tr, with
probability at least 1− 3δ and ∥xt∥≤ (12κ2+2κ

√
2)γ−1σw

√
2n log(n(t−Tw)/δ)

for T ≥ t>Tr, with probability at least 1− 4δ.

The proof is given in Appendix 2.C, but here we provide a proof sketch. To bound
the state for t ≤ Tr, we show that deploying the same policy for τ0 time-steps in the
first phase maintains a well-controlled state except n+ d time-steps, under the high
probability event of Êt∩Ẽt. Moreover, we show that this slow policy change prevents
further state blow-ups due to non-contractive system dynamics in stabilizable systems.
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To bound the state for t > Tr, we show that, with the given choice of τ0, all the
controllers during the stabilizing TS phase halves the magnitude of the state at the
end of their control period. Thus, we prove that after (n+d) log(n+d) policy updates
the state is well-controlled and brought to an equilibrium as shown in Lemma 2.4.3.
This result shows that the joint event Et = Êt ∩ Ẽt ∩ Ēt holds with probability at
least 1− 4δ for all t ≤ T .

Conditioned on this event, we individually analyze the regret terms individu-
ally (Appendix 2.F). We show that with probability at least 1 − δ, Rexp

Tw
yields

Õ((n + d)n+dTw) regret due to isotropic perturbations. RRLS
T and Rmart

T are
Õ((n + d)n+d√Tr + poly(n, d)

√
T − Tr) with probability at least 1 − δ due to

standard arguments based on the event ET . More importantly, conditioned on
the event ET , we prove that Rgap

T = Õ((n+d)n+d√Tr+poly(n, d)
√
T−Tr) with

probability at least 1− 2δ, and RTS
T = Õ(nTw+poly(n, d)

√
T−Tw) with probability

at least 1− 2δ, whose analyses require several novel fundamental results.

To bound onRgap
T , we extend the results in Abeille and Lazaric [4] to multidimensional

stabilizable LQRs and incorporate the slow update rule and the early improved
exploration. We show that while TSAC enjoys well-controlled state with polynomial
dimension dependency on regret due to slow policy updates, it also maintains
the desirable Õ(

√
T ) regret of frequent updates with only a constant τ0 scaling.

As discussed in Section 2.4, bounding RTS
T requires selecting optimistic models

with constant probability, which has been an open problem in the literature for
multidimensional systems. In this work, we provide a solution to this problem and
show that TS indeed selects optimistic model parameters with a constant probability
for multidimensional LQRs. The precise statement of this result and its proof outline
are given in Section 2.5. Leveraging this result, we derive the upper bound on RTS

T .
Combining all these terms yields the regret upper bound of TSAC given in Theorem
2.4.1.

2.5 Proof Outline of Sampling Optimistic Models with Constant Probability
In this section, we provide the precise statement that the probability of sampling
an optimistic parameter is lower bounded by a fixed constant with high probability.
Then we give the proof outline with the main steps. The complete proof with the
intermediate results are given in Appendix 2.D.

Theorem 2.5.1 (Optimistic probability). Let F cnt
t := σ(Ft−1, xt) be the infor-

mation available to the controller up to time t. Denote the optimistic set by
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Sopt :=
{
Θ∈R(n+d)×n

∣∣ J(Θ)≤J(Θ∗)
}

. If Tw = cn2(
√
T log T )1+o(1) for a

constant c > 0, then under the event ET for large enough T , we have that
poptt := P

{
Θ̃t ∈ Sopt | F cnt

t , Êt

}
≥ Q(1)

1+o(1)
for any Tr < t ≤ T . Furthermore,

if the closed-loop matrix, Ac,∗ = A∗ +B∗K∗, is non-singular, then the bound above
still holds when Tw = c(log T )1+o(1) for a constant c > 0.

Surrogate Set Definition
First, we define a surrogate subset Ssurr to the optimistic set Sopt. The construction
of Ssurr is important as the geometry of Sopt is complicated to study due to (2.3) that
controls the spectrum of P (Θ).

Lemma 2.5.2 (Surrogate set). Let J(Θ, K) := tr ((Q+K⊺RK)Σ(Θ, K)) be the
expected average cost of controlling a system Θ∈S by a fixed stabilizing control
policy K∈Rd×n where Σ(Θ, K) :=limt−→∞E [xtx

⊺
t ] is the covariance of the state.

The following surrogate set is a subset of Sopt:

Ssurr :=
{
Θ=(A, B)⊺∈R(n+d)×n

∣∣J(Θ, K(Θ∗))≤J(Θ∗, K(Θ∗))=J(Θ∗)
}
⊂ Sopt.

(2.4)

Note thatΣ(Θ, K) satisfies the Lyapunov equationΣ(Θ, K)−Θ⊺HKΣ(Θ, K)H⊺
KΘ=

σ2
wI , where H⊺

K := [I, K⊺], and Θ⊺HK = A + BK, given that K stabilizes the
system Θ. We can analytically express Σ(Θ, K) as a converging infinite sum
Σ(Θ, K)=σ2

w

∑∞
t=0(A+BK)t(A⊺+K⊺B⊺)t [120]. Using the properties of the trace

operator, one can write J(Θ, K(Θ∗))=L(Θ⊺H∗), where L(Ac) :=σ2
w

∑∞
t=0

∥∥At
c

∥∥2
Q∗

for any stable matrix Ac, Q∗ := Q+K(Θ∗)
⊺RK(Θ∗), and H⊺

∗ := [I,K(Θ∗)
⊺].

Therefore, we can lower bound the probability of being optimistic as

poptt ≥ P
{
Θ̃t ∈ Ssurr | F cnt

t , Êt

}
= P

{
L(Θ̃⊺

tH∗) ≤ L(Θ⊺
∗H∗) | F cnt

t , Êt

}
≥ min

Θ̂∈ERLS
t

Pt{L(Θ̂⊺H∗ + η⊺βtV
− 1

2
t H∗) ≤ L(Θ⊺

∗H∗)} (2.5)

= min
Θ̂∈ERLS

t

Pt{L(Θ̂⊺H∗ + Ξ
√
Ft) ≤ L(Θ⊺

∗H∗)} (2.6)

where Pt{·} :=P{· | F cnt
t }, Ft :=β2

tH
⊺
∗V

−1
t H∗ and Ξ is a matrix of size n×n with

iidN (0, 1) entries. Here (2.5) considers the worst possible estimate within ERLS
t and

(2.6) is the whitening transformation.

Reformulation in Terms of Closed-Loop Matrix
In the second step, we reformulate the probability of sampling optimistic parameters
in terms of closed-loop system matrix Ãc :=Θ̃⊺H∗= Ã+ B̃K(Θ∗) of the sampled
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system Θ̃=(Ã, B̃)⊺ driven by the policy K(Θ∗). Transitioning to the closed-loop
formulation allows tighter bounds on the optimistic probability. To complete this
reformulation, we need to construct an estimation confidence set for the closed-
loop system matrix Âc := Θ̂⊺H∗ = Â + B̂K(Θ∗) of the RLS-estimated system
Θ̂ = (Â, B̂)⊺ and show that the constructed confidence set is a super set to ERLS

t .

Lemma 2.5.3 (Closed-loop confidence). Let Ft(δ) := β2
t (δ)H

⊺
∗V

−1
t H∗. For any

t ≥ 0, define by

E cl
t (δ) :=

{
Θ̂ ∈ R(n+d)×n

∣∣ tr [(Θ̂⊺H∗ −Θ⊺
∗H∗)F

−1
t (δ)(Θ̂⊺H∗ −Θ⊺

∗H∗)
⊺
]
≤ 1
}
.

(2.7)

the closed-loop confidence set. Then, for all times t≥0 and δ∈(0, 1), we have that
ERLS
t (δ)⊆E cl

t (δ).

Note that the definition of E cl
t (δ) only involves closed-loop matrices Âc :=Θ̂⊺H∗ and

Ac,∗ :=Θ⊺
∗H∗. We can use the result of Lemma 2.5.3 to reformulate the probability

of sampling optimistic parameters, Θ̃ = (Ã, B̃), as sampling optimistic closed-loop
system matrices, Ãc. We bound poptt from below as

poptt ≥ min
Θ̂∈Ecl

t

Pt{L(Θ̂⊺H∗ + Ξ
√
Ft) ≤ L(Ac,∗)} (2.8)

= min
Âc : ∥Â

⊺
c−A

⊺
c,∗∥F−1

t
≤1
Pt{L(Âc + Ξ

√
Ft) ≤ L(Ac,∗)} (2.9)

= min
Υ̂ : ∥Υ̂∥F≤1

Pt{L(Ac,∗ + Υ̂
√

Ft + Ξ
√
Ft) ≤ L(Ac,∗)}, (2.10)

where (2.8) is due to Lemma 2.5.3 and (2.9) follows from the fact that H∗ has full
column rank. Observe that, in equation (2.10), Υ̂ is a unit Frobenius norm matrix
of size n × n and the term Ac,∗ + Υ̂

√
Ft accounts for the confidence ellipsoid for

the estimated closed-loop matrix, Âc. The event in (2.10) corresponds to finding the
closed-loop matrix, Ac,∗ + (Ξ + Υ̂)

√
Ft of the TS sampled system in the sublevel

manifoldM∗ :=
{
Ac ∈Mn | L(Ac) ≤ L(Ac,∗)

}
as illustrated in Figure 2.1.

Local Geometry of Optimistic Set under Perturbations
Next, we further simplify the form of the probability in (2.10) by exploiting the local
geometric structure of the function L : Ac 7→ σ2

w

∑∞
t=0

∥∥At
c

∥∥2
Q∗

defined over the set
of (Schur-)stable matrices,MSchur :={Ac∈Mn | ρ(Ac)<1}. The following lemma
characterizes perturbative properties of L.
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Lemma 2.5.4 (Perturbations). The function L :MSchur → R+ defined as L(Ac) =

σ2
w

∑∞
t=0

∥∥At
c

∥∥2
Q∗

is smooth in its domain. For any Ac ∈MSchur, there exists ϵ > 0

such that for any perturbation ∥G∥F ≤ ϵ, the function L admits a quadratic Taylor
expansion as

L(Ac +G) = L(Ac) +∇L(Ac) •G+
1

2
G • HAc+sG(G) (2.11)

for an s ∈ [0, 1] whereHAc
:Mn →Mn is the Hessian operator evaluated at a point

Ac ∈MSchur. In particular, we have that∇L(Ac∗
) = 2P (Θ∗)Ac,∗Σ∗. Furthermore,

there exists a constant r > 0 such that |G • HAc+sG(G)| ≤ r∥G∥2F for any s ∈ [0, 1]

and ∥G∥F ≤ ϵ.

Lemma 2.5.4 guarantees that if a perturbation is sufficiently small, the perturbed
function can be locally expressed as a quadratic function of the perturbation. Since
the set of stable matrices,MSchur, is globally non-convex and Taylor’s theorem only
holds in convex domains, we restrict the perturbations in a ball of radius ϵ > 0. The
fact that there is a neighborhood of stable matrices around a matrix Ac enables us
to apply Taylor’s theorem in this neighborhood.

Given the optimal closed-loop system matrix Ac,∗, let ϵ∗ > 0 be chosen such that
the expansion in (2.11) holds for perturbations ∥G∥F ≤ ϵ∗ around Ac,∗. Denote the
perturbation due to Thompson sampling and estimation error as Gt = (Ξ + Υ̂)

√
Ft

and let ∥Gt∥F ≤ ϵ∗. Then, we can write

L(Ac,∗ +Gt) = L(Ac,∗) +∇L(Ac,∗) •Gt +
1

2
Gt • HAc,∗+sGt

(Gt)

≤ L(Ac,∗) +∇L(Ac,∗) •Gt +
r∗
2
∥Gt∥2F (2.12)

where r∗>0 is a constant due to Lemma 2.5.4. Using (2.12), we have the following
lower bound on (2.10),

poptt ≥ min
Υ̂ : ∥Υ̂∥F≤1

Pt

{r∗
2
∥(Ξ+Υ̂)F

1
2
t ∥2F+∇L∗• (Ξ+Υ̂)F

1
2
t ≤ 0, and ∥(Ξ+Υ̂)F

1
2
t ∥F ≤ ϵ∗

}
,

(2.13)

where ∇L∗ :=∇L(Ac,∗). The event in (2.13) corresponds to finding Ac,∗ + (Ξ +

Υ̂)
√
Ft at the intersection of the stable ball B∗ :=

{
Ac ∈Mn | ∥Ac − Ac,∗∥F ≤ ϵ∗

}
and the sublevel manifoldMqd

∗ :=
{
Ac ∈Mn | ∥Ac − Ac,∗ + r−1

∗ ∇L∗∥F ≤ ∥r−1
∗ ∇L∗∥F

}
as illustrated in Figure 2.1.
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The intersectionMqd
∗ ∩ B∗ ⊂M∗ serves as another surrogate to sublevel manifold

M∗. Switching to the new surrogateMqd
∗ helps us overcome the issue of working

with intractable and complicated geometry ofM∗ due to infinite sum in L(Ac). We
can utilize techniques relating to Gaussian probabilities as the geometry ofMqd

∗ is
described by a quadratic form.

M∗

Mqd
∗

B∗

Ac,∗

∇L∗

−r
−1
∗ ∇L∗

TAc,∗M∗

Mqd
∗ ∩ B∗

O

Figure 2.1: A visual representation of sub-
level manifoldM∗. O is the origin and
Ac,∗ is the optimal closed-loop system
matrix. TAc,∗

M∗ is the tangent space to
the manifold M∗ at the point Ac,∗ and
∇L∗ is the Jacobian of the function L at
Ac,∗. Mqd

∗ is the sublevel manifold of the
quadratic approximation to L and B∗ is a
small ball of stable matrices around Ac,∗.
The intersectionMqd

∗ ∩ B∗ is a subset of
M∗.

Final Bound
Equipped with the preceding results, we can bound the optimism probability tractably
from below by the probability of a TS sampled closed-loop system matrix lying
inside the intersection of two ballsMqd

∗ ∩ B∗ as given in (2.13). By bounding the
weighted Frobenius norms in (2.13) from above by λmax,t, the maximum eigenvalue
of Ft, and normalizing the matrix ∇L∗

√
Ft, we can write

poptt ≥ min
∥Υ̂∥F≤1

Pt

{r∗
2
λmax,t∥Ξ+Υ̂∥2F+(∇L∗

√
Ft) • (Ξ+Υ̂) ≤ 0, and λmax,t∥Ξ+Υ̂∥2F ≤ ϵ2∗

}
= min

∥Υ̂∥F≤1
Pt

{
(∇L∗F

1/2
t )•(Ξ+Υ̂)

∥∇L∗F
1/2
t ∥F

≤−λmax,tr∗∥Ξ+Υ̂∥2F
2∥∇L∗F

1/2
t ∥F

, and ∥Ξ+Υ̂∥2F ≤
ϵ2∗

λmax,t

}
.

(2.14)

Observe that the inner product (∇L∗F
1/2
t ) • Υ̂ is maximized by Υ# :=

(∇L∗F
1/2
t )

∥∇L∗F
1/2
t ∥F

subject to ∥Υ̂∥F ≤ 1. Since the probability distribution of ∥Ξ+Υ̂∥2F is invariant
under orthogonal transformation of Ξ and Υ̂, (2.14) also attains its minimum at Υ#.



33

Thus, we can rewrite (2.14) as

poptt ≥ Pt

{
(∇L∗F

1/2
t )•Ξ

∥∇L∗F
1/2
t ∥F

+1≤ −λmax,tr∗

2∥∇L∗F
1/2
t ∥F

∥∥Ξ + Υ#

∥∥2
F
, and

∥∥Ξ + Υ#

∥∥2
F
≤ ϵ2∗

λmax,t

}

= Pt

{
ξ + 1 ≤ − λmax,tr∗

2∥∇L∗F
1/2
t ∥F

(
(ξ + 1)2 +X

)
, and (ξ + 1)2 +X ≤ ϵ2∗

λmax,t

}
,

(2.15)

where ξ∼N (0, 1) and X∼χ2

n
2−1

are independent standard normal and chi-squared
distributions, and (2.15) is derived by rotating Ξ so that its first element is along the
direction of∇L∗F

1/2
t . We use the following lemma to characterize the eigenvalues

of Ft and control the lower bound (2.15) on poptt .

Lemma 2.5.5 (Bounded eigenvalues). Suppose Tw =O((
√
T )1+o(1)). Denote the

minimum and maximum eigenvalues of Ft by λmin,t and λmax,t, respectively. Under
the event ET , for large enough T , we have that λmax,t ≤ C log T

Tw
and λmax,t

λmin,t
≤ C T log T

Tw

for any Tr < t ≤ T for a constant C = poly(n, d, log(1/δ)).

Lemma 2.5.5 states that maximum eigenvalue and the condition number of Ft are
controlled inversely by the length of initial exploration phase Tw and proportionally
by log T and T log T given that exploration time is bounded by a certain amount. The
length of initial exploration Tw relative to the horizon T is critical in guaranteeing
asymptotically constant optimistic probability poptt . Although more lengthy initial
exploration will lead to better convergence to constant optimistic probability, it also
incurs higher asymptotic regret due to linear scaling of exploration regret with Tw.

Using the relation ∥∇L∗F
1
2
t ∥F ≥max(σmin,∗∥F

1
2
t ∥F , λ

1
2
min,t∥∇L∗∥F ) where σmin,∗ is

the minimum singular value of∇L∗, we can further bound (2.15) from below. From
Lemma 2.5.4, we can write∇L∗=2P (Θ∗)Ac,∗Σ∗ where P (Θ∗)≻0 is the solution to
the DARE in (2.3) and Σ∗ = Σ(Θ∗, K∗) ≻ 0 is the stationary state covariance matrix.
Notice that the minimum singular value of ∇L∗ is positive (i.e.∇L∗ is full-rank) if
and only if the closed-loop system matrix, Ac,∗, is non-singular.

In general, Ac,∗ can be singular. Assuming that Tw=O((
√
T )1+o(1)), under the event

ET , we can use ∥∇L∗F
1
2
t ∥F ≥

√
λmin,t∥∇L∗∥F to obtain the following lower bound
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on poptt for Tr<t≤T :

poptt ≥ Pt

{
ξ + 1 ≤ −

√
λmax,t

2ρ∗

√
λmax,t

λmin,t

(
(ξ + 1)2 +X

)
, and (ξ + 1)2 +X ≤ ϵ2∗

λmax,t

}
,

≥ P
{
ξ + 1 ≤ − C

2ρ∗

√
T log T

Tw

(
(ξ + 1)2 +X

)
, and (ξ + 1)2 +X ≤ ϵ2∗Tw

C log T

}
,

where ρ∗ := ∥r−1
∗ ∇L∗∥F . Choosing the exploration time as Tw = ω(

√
T log T )

makes the coefficients
√
T log T
Tw

= o(1) to be very small and Tw

log T
to be very large,

leading to constant lower bound on limiting optimistic probability lim infT→∞ poptT ≥
P{ξ + 1 ≤ 0} =: Q(1).

On the other hand, if Ac,∗ is non-singular, then we can use the alternative bound
∥∇L∗

√
Ft∥F ≥σmin,∗∥

√
Ft∥F ≥σmin,∗

√
λmax,t to obtain the following lower bound

for Tr<t≤T :

poptt ≥ Pt

{
ξ + 1 ≤ −

√
λmax,t

2σmin,∗

(
(ξ + 1)2 +X

)
, and (ξ + 1)2 +X ≤ ϵ2∗

λmax,t

}
,

≥ P
{
ξ + 1 ≤ −

√
C

2σmin,∗

√
log T

Tw

(
(ξ + 1)2 +X

)
, and (ξ + 1)2 +X ≤ ϵ2∗Tw

C log T

}
.

Similarly, choosing the exploration time as Tw = ω(log T ) makes the coefficients√
log T
Tw

= o(1) to be very small and Tw

log T
= ω(1) to be very large, leading to constant

lower bound on limiting optimistic probability lim infT→∞ poptT ≥ Q(1).

In both cases, the optimistic probability achieves a constant lower bound for large
enough T as poptT ≥ Q(1)(1 + o(1))−1. This result can be interpreted in a geometric
way as follows. As the time passes, the estimates of the system become more
accurate in the sense that the confidence region of the estimate shrinks very quickly
as controlled by the eigenvalues of Ft. Similarly, the high-probability region of TS
samples also shrink very fast controlled by the covariance matrix Ft. Therefore, for
large enough T , the confidence region of the model estimate and the high-probability
region of TS samples get significantly smaller compared to the surrogate optimistic
setMqd

∗ ∩ B∗. This size difference effectively reduces the probability of finding a
sampled system inMqd

∗ ∩ B∗ to the probability of finding a sampled system in the
half-space separated by the tangent space TAc,∗

M∗.

2.6 Numerical Experiments
Finally, we evaluate the performance of TSAC in longitudinal flight control of Boeing
747 with linearized dynamics [113]. We compare TSAC with three adaptive control
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Table 2.2: Regret and Maximum State Norm After 200 Time Steps in Boeing 747
Flight Control

Algorithm
Average
Regret Top 95% Top 90%

Average
max ∥x∥2 Top 95% Top 90%

TSAC 4.58× 107 1.43× 105 9.49× 104 1.23× 103 1.07× 102 9.77× 101

StabL 1.34× 104 1.05× 103 9.60× 103 3.38× 101 3.14× 101 2.98× 101

OFULQ 1.47× 108 4.19× 106 9.89× 105 1.62× 103 5.21× 102 2.78× 102

TS-LQR 5.63× 1011 3.07× 107 5.33× 106 6.26× 104 1.08× 103 6.39× 102

algorithms in literature that do not require an initial stabilizing policy:

(i) OFULQ of Abbasi-Yadkori and Szepesvári [2];

(ii) TS-LQR of Abeille and Lazaric [4];

(iii) StabL of Lale, Azizzadenesheli, Hassibi, et al. [140].

We perform 200 independent runs for 200 time-steps for each algorithm and report
their average, top 95% and top 90% regret and maximum state norm performances.
Note that, since optimistic control design is computationally intractable, we use
projected gradient descent to heuristically find optimistic models in OFULQ and
StabL. For fair comparison, we also adopt slow policy updates in OFULQ and TS-
LQR and report the best results of each algorithm. Further details are in Appendix
2.H. The results are presented in Table 2.2. Notice that TSAC achieves the second best
performance after StabL. As expected, StabL outperforms TSAC since it performs
much heavier computations to find the optimistic controller in the confidence set,
whereas TSAC samples optimistic parameters only with some fixed probability.
However, TSAC compares favorably against both OFULQ and TS-LQR, making it
the best performing computationally efficient algorithm.

2.7 Conclusion and Future Directions
We present the first efficient adaptive control algorithm, TSAC, that attains optimal
regret of Õ(

√
T ) in stabilizable LQRs without an initial stabilizing policy. We design

TSAC to quickly stabilize the system and avoid state blow-ups via careful policy
updates. Building on these design choices, the main technical contribution of this
work is to show that TS samples optimistic parameters with constant probability in
all LQRs, thereby resolving the conjecture in Abeille and Lazaric [4].

This result highlights that a simple sampling strategy provides effective exploration to
recover low-cost achieving controllers in adaptive control of LQRs which yields order
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optimal regret. An important future direction is to investigate whether TS achieves
optimal regret in partially observable LTI systems, e.g. [136], [139]. Moreover, to
obtain constant probability of sampling optimistic parameters for general LQRs,
TSAC requires Tw = ω(

√
T log T ) time-steps of improved exploration (Theorem

2.5.1), which causes the regret to be dominated by this phase. This long exploration
is avoided in LQRs with non-singular optimal closed-loop matrix, which results in
regret that scales polynominally in system dimensions (Theorem 2.4.1). It remains
an open problem whether this polynomial dimension dependency in regret can be
achieved via TS in general LQRs.

2.A Organization and Notations
In Appendix 2.A, we provide the notation tables for the paper. In Appendix 2.B, we
provide the system identification and stabilization guarantees of TSAC. In particular,
we give the proof of Lemma 2.4.2 and give the precise duration of the TS with
improved exploration phase Tw. In Appendix 2.C, we show that under the joint
event of Êt ∩ Ẽt the state stays bounded as described in Lemma 2.4.3 with high
probability. In Appendix 2.E, we provide the precise regret decomposition and
discuss the individual terms in the regret upper bound. In Appendix 2.D, we provide
the complete proof of Theorem 2.5.1, as well as the intermediate results discussed in
the main text. Appendix 2.F comprises the analysis of individual terms in the regret
decomposition. In particular, Appendix 2.F studies Rexp

Tw
, Appendix 2.F studies RRLS

T ,
Appendix 2.F studies Rmart

T , Appendix 2.F considers RTS
T , Appendix 2.F bounds

Rgap
T , and finally we combine these results to prove the regret upper bound of TSAC

in Appendix 2.F. In Appendix 2.G, we give the technical theorems and lemmas
used in the proofs. Finally, in Appendix 2.H, we give the implementation details
of all algorithms. Before proceeding the next section, we define the following high
probability events which are standard in TS-based algorithms. First recall the RLS
confidence ellipsoid given in Section 2.2:

ERLS
t (δ) = {Θ : ∥Θ− Θ̂t∥Vt

≤ βt(δ)},

for βt(δ) = σw

√
2n log((T det(Vt)

1/2)/(δ det(µI)1/2)) +
√
µS. Further define

ETS
t (δ) = {Θ : ∥Θ− Θ̂t∥Vt

≤ υt(δ)},

for υt(δ) = βt(δ)n
√

(n+ d) log(n(n+ d)/δ). Define the events

Êt = {∀s ≤ t,Θ∗ ∈ ERLS
t (δ)} (2.16)

Ẽt = {∀s ≤ t, Θ̃s ∈ ETS
t (δ)}. (2.17)
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As described in Section 2.4, Êt defines the event that RLS estimates Θ̂t concentrate
around Θ∗ and Ẽt defines the event that the sampled model parameter concentrates
around Θ̂t. From standard Gaussian tail bound and the self-normalized estimation
error, we have that Ê∩ Ẽ for all t ≤ T , with probability at least 1−2δ. Here the time
dependency dropped since Ê := ÊT ⊂ . . . ⊂ Ê1 and Ẽ := ẼT ⊂ . . . ⊂ Ẽ1. These
events will be key in providing all the technical results starting from stabilization
guarantees to final regret upper bound.

This section contains two tables which list the notations used throughout the paper
for improving readability. In particular, Table 2.3 provides the system dependent
notations and the useful notations for presenting the design of TSAC. In Table 2.4, we
present the notation used in deriving theoretical results, namely, the regret analysis
and the lower bound on the probability of selecting optimistic parameters. Further
details are also referenced to the related parts of the paper.
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Table 2.3: Useful Notations for the Design of TSAC

System Not. Definition
Θ∗ Unknown discrete-time LTI system with dynamics of (2.1); [A∗ B∗]

⊺

xt State of the system ∈ Rn

ut Input to the system ∈ Rd

wt Process noise as defined in Assumption 2.2.2; N (0, σ2
wI)

zt Stack of current state and input; [x⊺
t u⊺

t ]
⊺

Q, R Known cost matrices; ∥Q∥, ∥R∥<ᾱ and σmin(Q), σmin(R)>α>0
ct Quadratic cost at time t; x⊺

tQxt + u⊺
tRut

S Set of (κ, γ)-stabilizable and bounded systems that Θ∗ belongs (Assumption 2.2.1)
P (Θ) Unique p.d. solution to DARE (2.3) for a stabilizable system Θ = [A B]⊺

K(Θ) Optimal controller for Θ; −(R +B⊺P (Θ)B)−1B⊺P (Θ)A

J(Θ) Average expected cost of system Θ; σ2
w Tr(P (Θ))

κ Bound over all possible optimal controllers in S; supΘ∈S K(Θ)

D Bound over all possible solutions to (2.3) in S; ᾱγ−1κ2(1 + κ2)

TSAC Not.

Θ̂ Least squares estimate of Θ∗ using the history of inputs and states; [Â B̂]⊺

µ Regularizer for least squares; set to (1 + κ2)X2
s

Vt Regularized design matrix; µI +
∑t−1

s=0 zsz
⊺
s

ηt Random matrix with iid standard normal entries used for sampling systems
RS(·) Rejection sampling to make sure that sampled system belongs to S
Θ̃ System obtained via TS;RS(Θ̂t + βt(δ)V

−1/2
t ηt)

νt Improved exploration; ut = K(Θ̃t)xt + νt for νt ∼ N (0, 2κ2σ2
wI)

Quantities
δ Fixed probability to define high probability events; (0, 1)
T Time horizon
Tw Duration of TS with improved exploration; defined in Theorem 2.4.1
Xs Upper bound on state after stabilization; ∥xt∥ ≤ Xs for t > Tr w.h.p.
S Upper bound on the Frobenius norm of Θ∗

βt(δ) Size of the RLS confidence ellipsoid at time t; σw

√
2n log

(
det(Vt)

1/2

δ det(µI)
1/2

)
+
√
µS

υt(δ) Size of the sampling ellipsoid at time t; βt(δ)n
√
(n+ d) log(n(n+ d)/δ)

τ0 Fixed duration for each sampled policy; 2γ−1 log(2κ
√
2)

T0 Number of samples required to identify a stabilizing controller; (2.19)
Tr Time required to control the state w.h.p.; Tw+(n+d)τ0 log(n+ d)
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Table 2.4: Useful Notations for the Analysis

Regret Analy.

RT Regret of TSAC at until time T ; RT =
∑T

t=0(ct − J(Θ∗))
Ft Filtration such that for all t ≥ 0, xt, zt are Ft-measurable
F cnt

t Information available to the controller up to time t; σ(Ft−1, xt)
Rexp

Tw
Regret attained due to improved exploration (Appendix 2.E)

RRLS
T Cost-to-go difference of the true and predicted next states (Appendix 2.E)

Rmart
T Martingale with bounded difference (Appendix 2.E)

RTS
T Difference in J(Θ∗) and J(Θ̃) (Appendix 2.E)

Rgap
T Regret due to policy changes (Appendix 2.E)
ERLS
t (δ) Regularized least squares confidence ellipsoid; {Θ : ∥Θ− Θ̂t∥Vt

≤ βt(δ)}
ETS
t (δ) Confidence ellipsoid for sampled system; {Θ : ∥Θ− Θ̂t∥Vt

≤ υt(δ)}
Êt Event of {∀s ≤ t,Θ∗ ∈ ERLS

t (δ)}
Ẽt Event of {∀s ≤ t, Θ̃s ∈ ETS

t (δ)}
Ēt Event of {∀t ≤ Tr, ∥xt∥≤c′(n+ d)n+d and ∀t > Tr, ∥xt∥≤Xs}
Et Et = Êt ∩ Ẽt ∩ Ēt

Optimism Analy.

Sopt Optimistic set;
{
Θ=(A, B)⊺∈R(n+d)×n

∣∣ J(Θ)≤J(Θ∗)
}

poptt Probability of selecting optimistic system; P
{
Θ̃t ∈ Sopt | F cnt

t , Êt

}
J(Θ, K) Average expected cost of controlling Θ with a stabilizing controller K
Σ(Θ, K) Covariance matrix of the state in system Θ under controller K
H⊺

∗ Concatenation of identity and optimal controller K(Θ∗); [I,K(Θ∗)
⊺]

Q∗ Q+K(Θ∗)
⊺RK(Θ∗)

L(Ac) Function that maps any stable matrix Ac to σ2
w

∑∞
t=0

∥∥At
c

∥∥2
Q∗

Ft Confidence interval for estimated closed-loop system; β2
tH

⊺
∗V

−1
t H∗

λmax,t Maximum eigenvalue of Ft

λmin,t Minimum eigenvalue of Ft

Ξ Random matrix of size n× n with iid N (0, 1) entries
Ac,∗ Closed-loop system matrix of the Θ∗ driven by K(Θ∗); Θ

⊺
∗H∗

Âc Closed-loop system matrix of the Θ̂ driven by K(Θ∗); Θ̂
⊺H∗

Ãc Closed-loop system matrix of the Θ̃ driven by K(Θ∗); Θ̃
⊺H∗

E cl
t (δ) Closed-loop confidence set that is super set to ERLS

t (δ); (2.7)
Υ̂ Unit Fro. norm matrix s.t. Υ̂

√
Ft is the h.p. confidence ellipsoid on Ac,∗

Mn Manifold of square matrices of dimension n; Rn×n

MSchur Manifold of (Schur-)stable matrices inMn; {Ac ∈Mn | ρ(Ac)<1}
M∗ Sublevel manifold inMSchur s.t.

{
Ac ∈MSchur | L(Ac) ≤ L(Ac,∗)

}
Gt Perturbation around Ac,∗; (Ξ + Υ̂)

√
Ft

∇L∗ Jacobian operator of L(·) evaluated at Ac ∈MSchur
σmin,∗ Minimum singular value of∇L∗
HAc

Hessian operator of L(·) evaluated at Ac ∈MSchur
B∗ Stable ball for some constant ϵ∗;

{
Ac ∈Mn | ∥Ac − Ac,∗∥F ≤ ϵ∗

}
Mqd

∗ Sublevel manifold;
{
Ac∈Mn | ∥Ac−Ac,∗+r−1

∗ ∇L∗∥F ≤∥r−1
∗ ∇L∗∥F

}
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2.B System Identification and Stabilization Guarantees
In this section, we show that improved exploration of TSAC provides persistently
exciting inputs, which will be used to enable reaching a stabilizing neighborhood
aroundΘ∗. From Assumption 2.2.2, we have thatE[xt+1x

⊺
t+1 | Ft] ≽ σ2

wI . Thus, with
the input ut = K(Θ̃t)xt+νt for νt ∼ N (0, 2κ2σ2

wI), we have that E[zt+1z
⊺
t+1 | Ft] ≽

σ
2
w

2
I . Using Lemma 2.G.5, we have that Vt ≽ tσ

2
w

40
I for t ≥ 200(n+ d) log 12

δ
with

probability at least 1− δ. Using the RLS estimate error bound given in Section 2.2,
i.e., under the event of Êt we have

∥Θ̂t −Θ∗∥2 ≤
βt√

λmin(Vt)
(2.18)

with probability at least 1− δ. Plugging in the λmin(Vt) in its place yields the first
result.

For the second result, we use Lemma 4.2 of Lale, Azizzadenesheli, Hassibi, et al.
[140]. Recall that D = αγ−1κ2(1 + κ2). Lemma 4.2 of Lale, Azizzadenesheli,
Hassibi, et al. [140] states that for any (κ, γ)-stabilizable system Θ∗ and for any

ε ≤ min{
√

(σ2
wn)/(142D

7), 1/(54D5}, such that ∥Θ′ −Θ∗∥ ≤ ε, K(Θ′) produces
(κ
√
2, γ/2)-stable closed-loop dynamics on Θ∗ such that there exists L and H ≻ 0

such thatA∗+B∗K(Θ′) = H ′LH ′−1, with ∥L∥ ≤ 1−γ/2 and ∥H ′∥∥H ′−1∥ ≤ κ
√
2.

Under the event of Ê ∩ Ẽ, we have ∥Θ̃t − Θ∗∥2 ≤ βt(δ)+υt(δ)√
λmin(VT )

. Under the event of

Ê ∩ Ẽ, this yields ∥Θ̃t −Θ∗∥2 ≤ 7(βt(δ)+υt(δ))

σw

√
t

with probability 1− δ. Combining
this result with the required ε for finding the stabilizing neighborhood, for TS with
exploration duration of

Tw ≥ T0 :=
49(βT (δ) + υT (δ))

2

σw min{(σ2
wn)/(142D

7), 1/(542D10}
, (2.19)

TSAC achieves (κ
√
2, γ/2)-stable closed-loop dynamics on Θ∗, with probability at

least 1− 3δ.

2.C Boundedness of State, Proof of Lemma 2.4.3
In this section, we show that under the joint event of Ê ∩ Ẽ and the stabilization
guarantee of the previous section, the state is bounded at all times during TSAC

and it is well-controlled during the stabilizing TS phase, i.e.provide the proof of
Lemma 2.4.3. We first consider the evolution of state for t ≤ Tw. To bound the
state for the first phase, we adapt the state bounding strategy given in Section 4.1
of Abbasi-Yadkori and Szepesvári [2] for contractible systems to the stabilizable



41

systems via the slow policy changes of TSAC. To this end, define the following

ᾱt =
18κ3

γ(8κ− 1)
η̄n+d

[
GZ

n+d
n+d+1

t βt(δ)
1

2(n+d+1) + (∥B∗∥σν + σw)

√
2n log

nt

δ

]
,

for

η̄ ≥ sup
Θ∈S
∥A∗ +B∗K(Θ)∥ , ZT = max

1≤t≤Tr

∥zt∥ , U =
U0

H

G = 2

(
2S(n+ d)n+d+1/2

√
U

)1/(n+d+1)

, U0 =
1

16n+d−2max
(
1, S2(n+d−2)

)
and where H is any number satisfying

H > max

(
16,

4S2M2

(n+ d)U0

)
, where M = sup

Y≥1

(
σw

√
n(n+ d) log

(
1+TY/λ

δ

)
+ λ1/2S

)
Y

.

Under the joint event of Êt ∩ Ẽt, Abbasi-Yadkori and Szepesvári [2] show that the
norm of the state is well-controlled except n + d times at most in any horizon Tr.
Denoting the set of time-steps that the state is not well-controlled by Tt, the following
lemma formalizes this argument:

Lemma 2.C.1 (Lemma 18 of Abbasi-Yadkori and Szepesvári [2]). We have that for
any 0 ≤ t ≤ T ,

max
s≤t,s/∈Tt

∥∥∥(Θ∗ − Θ̃s)
⊺zs

∥∥∥ ≤ GZ
n+d

n+d+1

t (βt(δ) + υ(δ))
1

2(n+d+1) .

Notice that this lemma is updated for TS. Moreover, it does not depend neither on the
contractibility of the underlying system on the standard basis nor on the stabilizability.
Equipped with this result, we write the closed loop system as

xt+1 = Γtxt + rt

where

Γt =

{
Ãt−1 + B̃t−1K(Θ̃t−1) t /∈ TTw

A∗ +B∗K(Θ̃t−1) t ∈ TTw

and rt =

{
(Θ∗ − Θ̃t−1)

⊺zt +B∗νt + wt t /∈ TTw

B∗νt + wt t ∈ TTw

(2.20)

Starting from x0 = 0, we obtain the following roll out for the state,
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xt = Γt−1xt−1 + rt−1 = Γt−1 (Γt−2xt−2 + rt−2) + rt

= Γt−1Γt−2Γt−3xt−3 + Γt−1Γt−2rt−2 + Γt−1rt−1 + rt

= Γt−1Γt−2 . . .Γt−(t−1)r1 + · · ·+ Γt−1Γt−2rt−2 + Γt−1rt−1 + rt

=
t∑

k=1

(
t−1∏
s=k

Γs

)
rk (2.21)

Recall that the sampled model is an element of S due to rejection sampling, thus, it
is (κ, γ)-stabilizable by its optimal controller (Assumption 2.2.1):

1− γ ≥ max
t≤T

ρ
(
Ãt + B̃tK(Θ̃t)

)
. (2.22)

Notice that multiplication of the closed-loop system matrices are not guaranteed to
be contractive without a similarity transformation. Therefore, unlike Abbasi-Yadkori
and Szepesvári [2] that bounds the rollout terms via contractive mappings due to their
assumption of contractive systems, we need to make sure that the policy changes does
not cause unexpected growth in the magnitude of the state. The slow policy update
schedule, i.e., using all the sampled controllers for fixed τ0 time-steps, allows us to
prevent such undesirable outcomes, In particular, by setting τ0 = 2γ−1 log(2κ

√
2),

we have that

∥xt∥ ≤
18κ3η̄n+d

γ(8κ− 1)

(
max
1≤k≤t

∥rk∥
)

(2.23)

Moreover, we have that ∥rk∥ ≤
∥∥∥(Θ∗ − Θ̃k−1)

⊺zk

∥∥∥+ ∥B∗νk + wk∥ when k /∈ TT ,
and ∥rk∥ = ∥B∗νk + wk∥ , otherwise. Hence,

max
k≤t
∥rk∥ ≤ max

k≤t,k/∈Tt

∥∥∥(Θ∗ − Θ̃k−1)
⊺zk

∥∥∥+max
k≤t
∥B∗νk + wk∥

The first term is bounded by the Lemma 2.C.1. The second term involves summation
of independent ∥B∗∥σν and σw Gaussian vectors. Using standard Gaussian tail
inequalities, for all k ≤ t, we have ∥B∗νk + wk∥ ≤ (∥B∗∥σν + σw)

√
2n log nt

δ
with

probability at least 1− δ. Therefore, on the joint event of Ê ∩ Ẽ,

∥xt∥ ≤
18κ3η̄n+d

γ(8κ− 1)

[
GZ

n+d
n+d+1

t (βt(δ) + υ(δ))
1

2(n+d+1) + (∥B∗∥σν + σw)

√
2n log

nt

δ

]
(2.24)
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for t ≤ Tw with probability 1− δ. Notice that this bound depends on Zt and βt(δ)

which in turn depends on xt. Using Lemma 5 of [2], one can obtain the following
bound

∥xt∥ ≤ c′(n+ d)n+d. (2.25)

for some constant c′ for all t ≤ Tw with probability 1 − 3δ, which gives the first
advertised result.

To bound the state for t > Tw, we show that, with the given choice of τ0, all the
controllers during the stabilizing TS phase halves the magnitude of the state at
the end of their control period. In particular, during the stabilizing TS phase, the
closed-loop system dynamics can be written as xt+1 = (A∗ +B∗K(Θ̃t))xt + wt =

Θ⊺
∗HK(Θ̃t)

+ wt. From the choice of Tw for the stabilizable systems, we have that
Θ⊺

∗HK(Θ̃t)
is (κ
√
2, γ/2)-strongly stable. Thus, we have ρ(Θ⊺

∗HK(Θ̃t)
) ≤ 1 − γ/2

for all t > Tw and ∥Ht∥∥H−1
t ∥ ≤ κ

√
2 for Ht ≻ 0, such that ∥Lt∥ ≤ 1 − γ/2 for

Θ⊺
∗HK(Θ̃t)

= HtLtH
−1
t . Then for T > t > Tw, if the same policy, Θ⊺

∗HK(Θ̃) is
applied starting from the state xTw

, we have the following state roll-out on the event
of Êt ∩ Ẽt

∥xt∥ =
∥∥∥∥ t∏

i=Tw+1

Θ⊺
∗HK(Θ̃)xTw

+
t∑

i=Tw+1

(
t−1∏
s=i

Θ⊺
∗HK(Θ̃)

)
wi

∥∥∥∥ (2.26)

≤ κ
√
2(1− γ/2)t−Tw∥xTw

∥+ max
Tw<i≤T

∥wi∥

 t∑
i=Tw+1

κ
√
2(1− γ/2)t−i+1


(2.27)

≤ κ
√
2(1− γ/2)t−Tw∥xTw

∥+ 2κσw

√
2

γ

√
2n log(n(t− Tw)/δ) (2.28)

with probability at least 1 − δ. Since τ0 = 2γ−1 log(2κ
√
2), we have κ

√
2(1 −

γ/2)τ0 ≤ 1/2. Therefore, at the end of each controller period the effect of previous
state is halved. Using this fact, at the ith policy change after Tw, we get

∥xti
∥ ≤ 2−i∥xTw

∥+
i−1∑
j=0

2−j 2κσw

√
2

γ

√
2n log(n(t− Tw)/δ)

≤ 2−i∥xTw
∥+ 4κσw

√
2

γ

√
2n log(n(t− Tw)/δ)

For all i > (n+d) log(n+d)− log(2κσw

√
2

γ

√
2n log(n(t− Tw)/δ)), at policy change

i, we get

∥xti
∥ ≤ 6κσw

√
2

γ

√
2n log(n(t− Tw)/δ).
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Finally, from (2.28), we have that

∥xt∥ ≤
(12κ2 + 2κ

√
2)σw

γ

√
2n log(n(t− Tw)/δ), (2.29)

with probability 1 − 4δ for all t > Tr := Tw + ((n+ d) log(n+ d)) τ0. Based on
this result, let Xs =

(12κ
2
+2κ

√
2)σw

γ

√
2n log(n(T − Tw)/δ). We define our final good

event,

Ēt = {∀t ≤ Tr, ∥xt∥ ≤ c′(n+ d)n+d and ∀t > Tr, ∥xt∥≤Xs}. (2.30)

Notice that the joint event Et = Êt ∩ Ẽt ∩ Ēt holds with probability at least 1− 4δ.
This event will be the key conditioning in the regret decomposition and the analysis.

2.D Constant Probability of Sampling Optimistic Models
In this section, we give the proof of the main technical contribution of this work,
showing that TS samples optimistic model parameters with constant probability
(Theorem 2.5.1). The proof follows the outline provided in Section 2.5. We first
provide the proofs of each lemma in Section 2.5. In particular Lemma 2.5.2 is
proven in Appendix 2.D, Lemma 2.5.3 is studied in Appendix 2.D, Lemma 2.5.4 in
Appendix 2.D, and Lemma 2.5.5 in 2.D. Finally, we combine these results to prove
Theorem 2.5.1 in Appendix 2.D.

Proof of Lemma 2.5.2
Given a stabilizable system Θ = (A,B)⊺, and a stabilizing linear feedback controller
K, we can find the LQR cost as follows

J(Θ, K) = lim
T→∞

1

T
E
[∑T

t=1
x⊺
tQxt + u⊺

tRut

]
, (2.31)

= lim
T→∞

1

T
E
[∑T

t=1
tr ((Q+K⊺RK)xtx

⊺
t )
]
, (2.32)

= lim
T→∞

tr

(
(Q+K⊺RK)

1

T

∑T

t=1
E [xtx

⊺
t ]

)
, (2.33)

= tr ((Q+K⊺RK)Σ(Θ, K)) (2.34)

where Σ(Θ, K) := limT−→∞
1
T

∑T
t=1E [xtx

⊺
t ] is the stationary state covariance of

the closed-loop system. In (2.32), we used the feedback control policy relation
ut = Kxt and trace trick for inner products of vectors. Note that the closed-loop
system evolves as

xt+1 = (A+BK)xt + wt. (2.35)
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The covariance of the state at time t can be written as a recursive relation

E
[
xt+1x

⊺
t+1

]
= E [((A+BK)xt + wt)((A+BK)xt + wt)

⊺] (2.36)

= (A+BK)E [xtx
⊺
t ] (A+BK)⊺ + E [wtw

⊺
t ] (2.37)

= (A+BK)E [xtx
⊺
t ] (A+BK)⊺ + σ2

wI (2.38)

where (2.37) is because E [wt] = 0 and wt and xt are independent. Since ρ(A +

BK) < 1, the above iteration converges to a finite fixed-point. Furthermore, we
have the following relation

1

T

∑T

t=1
E
[
xt+1x

⊺
t+1

]
= (A+BK)

1

T

∑T

t=1
E [xtx

⊺
t ] (A+BK)⊺ + σ2

wI

(2.39)

Denoting by ΣT (Θ, K) := 1
T

∑T
t=1E [xtx

⊺
t ] the finite averaged state covariance, we

have the following

ΣT (Θ, K) +
E
[
xT+1x

⊺
T+1

]
− E [x1x

⊺
1]

T
= (A+BK)ΣT (Θ, K)(A+BK)⊺ + σ2

wI

(2.40)

Taking the limit of both sides as T →∞ and noting that E
[
xT+1x

⊺
T+1

]
has a finite

value at the limit, we obtain the following Lyapunov equation

Σ(Θ, K) = (A+BK)Σ(Θ, K)(A+BK)⊺ + σ2
wI (2.41)

whose solution is given by the following convergent infinite sum

Σ(Θ, K) =
∞∑
t=0

(A+BK)tσ2
wI ((A+BK)⊺)t (2.42)

It is well known that the optimal control policy of infinite-horizon LQR systems can
be achieved by stationary linear feedback controllers [19]. Therefore, we can find the
optimal LQR cost of a stabilizable system by minimizing its closed-loop cost among
all stabilizing stationary linear feedback controllers.

Suppose Θ ∈ Ssurr, i.e., J(Θ, K(Θ∗)) ≤ J(Θ∗, K(Θ∗)). Then, the optimal LQR
cost of Θ is given as

J(Θ) = J(Θ, K(Θ)) = min
K∈Rd×n

J(Θ, K) (2.43)

≤ J(Θ, K(Θ∗))
(a)

≤ J(Θ∗, K(Θ∗)) = J(Θ∗) (2.44)

where (a) is due to Θ ∈ Ssurr. Thus, Θ ∈ Sopt. ■
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Proof of Lemma 2.5.3
The following lemma will be used as the backbone for Lemma 2.5.3.

Lemma 2.D.1. Let V1, V2 ∈ Rn×n be symmetric positive semi-definite matrices.
Define two ellipsoids as

E1 :=
{
Θ ∈ Rn×m

∣∣ tr (Θ⊺V1Θ) ≤ 1
}

and E2 :=
{
Θ ∈ Rn×m

∣∣ tr (Θ⊺V2Θ) ≤ 1
}

(2.45)

Then, E1 ⊆ E2 if and only if V1 ≽ V2.

Proof. For the forward direction, assume V1 − V2 has a negative eigenvalue, i.e.,
there exist λ < 0 and a unit vector θ ∈ Rn/{0} such that (V1−V2)θ = λθ. Construct
Θ = [θ, θ, . . . , θ] ∈ Rn×m. Observe that tr (Θ⊺V1Θ) = mθ⊺V1θ and tr (Θ⊺V2Θ) =

mθ⊺V2θ. Therefore, we have the relationship tr (Θ⊺V2Θ) = tr (Θ⊺V1Θ)−mλ.

If V1θ = 0, then tr(Θ⊺V1Θ) = 0 ≤ 1 and therefore for any scalar α > 0, αΘ ∈ E1.
On the other hand, tr (Θ⊺V2Θ) = −mλ > 0 and therefore, one can find a scalar
α > 0 such that tr ((αΘ)⊺V2(αΘ)) = −mλα2 > 1, i.e.αΘ /∈ E2. If V1θ ̸= 0, then
define Θ′ = 1√

mθ
⊺
V1θ

Θ and observe that tr
(
Θ′⊺V1Θ

′) = 1, i.e., Θ′ ∈ E1. On the

other hand, tr
(
Θ′⊺V2Θ

′) = 1− λ
θ
⊺
V1θ

> 1, i.e., Θ′ /∈ E2. Therefore, we have that if
E1 ⊆ E2 then V1 ≽ V2.

For the reverse direction, assume thatV1 ≽ V2 andΘ ∈ E1. Then, tr (Θ⊺(V1 − V2)Θ) ≥
0 and tr (Θ⊺V2Θ) ≤ tr (Θ⊺V1Θ) ≤ 1. Therefore, Θ ∈ E2. ■

Proof of Lemma 2.5.3. Let us rewrite the the ellipsoids. For the time being, we
will drop δ dependence for simplicity.

ERLS
t =

{
Θ̂ ∈ R(n+d)×n

∣∣ tr((Θ̂−Θ∗)
⊺β−1

t Vt(Θ̂−Θ∗)
)
≤ 1
}
, (2.46)

E cl
t =

{
Θ̂ ∈ R(n+d)×n

∣∣ tr((Θ̂−Θ∗)
⊺H∗F

−1
t H⊺

∗ (Θ̂−Θ∗)
)
≤ 1
}
. (2.47)

In order to prove the lemma, it is necessary and sufficient to show β−1
t Vt≽H∗F

−1
t H⊺

∗

by Lemma 2.D.1. Eliminating bt terms from both sides and multiplying by V
− 1

2
t

from left and right, we obtain the equivalent condition,

I ≽ V
− 1

2
t H∗(H

⊺
∗V

−1
t H∗)

−1H⊺
∗V

− 1
2

t = V
− 1

2
t H∗(H

⊺
∗V

−1
t H∗)

− 1
2 (H⊺

∗V
−1
t H∗)

− 1
2H⊺

∗V
− 1

2
t ,

(2.48)
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In other words, we have that ERLS
t ⊆ E cl

t if and only if ∥(H⊺
∗V

−1
t H∗)

− 1
2H⊺

∗V
− 1

2
t ∥2 ≤ 1.

Notice that

∥(H⊺
∗V

−1
t H∗)

− 1
2H⊺

∗V
− 1

2
t ∥22 = σ1

(
(H⊺

∗V
−1
t H∗)

− 1
2H⊺

∗V
− 1

2
t

)2
, (2.49)

= λmax

(
V

− 1
2

t H∗(H
⊺
∗V

−1
t H∗)

−1H⊺
∗V

− 1
2

t

)
, (2.50)

= λmax

(
(H⊺

∗V
−1
t H∗)

− 1
2H⊺

∗V
−1
t H∗(H

⊺
∗V

−1
t H∗)

− 1
2

)
,

(2.51)

= λmax (I) = 1, (2.52)

where we used the fact that σ1(A) =
√
λmax(A

⊺A) =
√

λmax(AA
⊺). This is true

for any time t and δ and therefore completes the proof. ■

Proof of Lemma 2.5.4
The following lemma guarantees existence of a stable neighborhood around any
stable matrix.

Lemma 2.D.2. Let Ac ∈ MSchur, i.e., ρ(Ac) < 1. Then, there exists ϵ > 0 such
that for any ∆ ∈ Mn with ∥∆∥F ≤ 1, we have that Ac + ϵ∆ ∈ MSchur, i.e.,
ρ(Ac + ϵ∆) < 1.

Proof. Per Gelfand’s formula, we have that for any δ > 0, there exists Nδ ∈ N such
that

ρ(Ac) ≤ ∥Ak
c∥1/kF < ρ(Ac) + δ (2.53)

for any k ≥ Nδ. Since the mapping Ac 7→ ∥Ak
c∥1/kF is smooth for any k ∈ N, we can

write the following expansion by Taylor’s theorem for any t ∈ R

∥(Ac + t∆)k∥1/kF = ∥Ak
c∥1/kF + t

d

dt
∥(Ac + t∆)k∥1/kF

∣∣∣
λt

(2.54)

where λ ∈ [0, 1]. For a given t ∈ R, there exists a constant Mk,t > 0 such that for any
∥∆∥F ≤ 1, we have that | d

dt
∥(Ac + t∆)k∥1/kF | ≤ Mk,t by Taylor’s theorem. Then,

we can write the following upper bound

∥(Ac + t∆)k∥1/kF ≤ ∥Ak
c∥1/kF + |t|Mt,k (2.55)

Using the relation (2.53) and the upper bound (2.55), we have that for any δ > 0,
t > 0, and ∥∆∥F ≤ 1, there exists Nδ ∈ N and Mt,Nδ

> 0 such that

ρ(Ac + t∆) ≤ ∥(Ac + t∆)Nδ∥1/Nδ

F ≤ ∥ANδ
c ∥1/Nδ

F + tMt,Nδ
(2.56)

< ρ(Ac) + δ + tMt,Nδ
(2.57)
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Fix a δ > 0 such that ρ(Ac) + δ < 1 and fix a t > 0. Then, we can find 0 < ϵ ≤ t

such that ρ(Ac) + δ + ϵMt,Nδ
< 1 and thus

ρ(Ac + ϵ∆) < ρ(Ac) + δ + ϵMt,Nδ
< 1 (2.58)

for any ∥∆∥F ≤ 1 by (2.57). ■

Proof of Lemma 2.5.4. For any Ac ∈ MSchur, there exists a constant ϵ > 0, such
that for any ∥∆∥F ≤ 1, we have that Ac + ϵ∆ ∈ MSchur by Lemma 2.D.2. To see
smoothness of L, we write At := Ac + t∆ and L(At) = tr(Q∗Σt) for any |t| ≤ ϵ

and ∥∆∥F ≤ 1 where Σt solves the following Lyapunov equation

Σt − AtΣtA
⊺
t = σ2

wI and Σ0 − AcΣ0A
⊺
c = σ2

wI (2.59)

Note that, ρ(At) < 1 for any |t| ≤ ϵ and therefore both equations in (2.59)
have unique solutions for any |t| ≤ ϵ. The Jacobian ∇L(Ac) ∈ Mn satisfies
∇L(Ac) • ∆ = d

dt
L(At)

∣∣
t=0

= tr(Q∗Σ̇0) for any ∥∆∥F ≤ 1 where Σ̇t is the
derivative of Σt and satisfies the following Lyapunov equation

Σ̇t − AtΣ̇tA
⊺
t = ∆ΣtA

⊺
t + AtΣt∆

⊺ and Σ̇0 − AcΣ̇0A
⊺
c = ∆Σ0A

⊺
c + AcΣ0∆

⊺

(2.60)

Similarly, both equations in (2.60) have unique solutions for any |t| ≤ ϵ and
therefore ∇L(Ac) exists for any Ac. To find the Jacobian, we have that Σ̇0 =∑∞

k=0A
k
c (∆Σ0A

⊺
c + AcΣ0∆

⊺) (A⊺
c)

k and

tr(Q∗Σ̇0) = tr

(
Q∗

∞∑
k=0

Ak
c (∆Σ0A

⊺
c + AcΣ0∆

⊺) (A⊺
c)

k

)
(2.61)

= 2 tr

(
∞∑
k=0

(A⊺
c)

kQ∗A
k
cAcΣ0∆

⊺

)
= 2

∞∑
k=0

(A⊺
c)

kQ∗A
k
cAcΣ0 •∆

(2.62)

Therefore, ∇L(Ac) = 2
∑∞

k=0(A
⊺
c)

kQ∗A
k
cAcΣ0. In particular, in the case of Ac,∗,

we have that
∑∞

k=0(A
⊺
c,∗)

kQ∗A
k
c,∗ = P∗, the solution to the Riccati equation, and

thus∇L(Ac,∗) = 2P∗Ac,∗Σ∗. Repeating the same process, one can see that L(At) is
infinitely differentiable and thus we conclude L is a smooth function.

Denote by Bϵ := {A ∈Mn | ∥A− Ac∥F ≤ ϵ} ⊂ MSchur the ball of radius ϵ > 0

around Ac ∈ MSchur. Consider the function L restricted to the domain Bϵ. Since
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Bϵ is a convex set, we can apply Taylor’s theorem to L around Ac in this domain to
obtain

L(Ac + ϵ∆) = L(Ac) +∇L(Ac) • ϵ∆+
1

2
ϵ∆ • HAc+s∆(ϵ∆) (2.63)

for ∥∆∥F ≤ 1 and for some s ∈ [0, ϵ]. Here, HAc
: Mn → Mn is the Hessian

operator evaluated at a point Ac ∈MSchur and satisfies the following relationship

∆ • HAc
(∆) =

d2

dt2
L(Ac + t∆)

∣∣∣
t=0

(2.64)

for any ∥∆∥F ≤ 1. Finally, there exists a constant r > 0, such that for any G ∈Mn,
we have that |G • HAc+s∆(G)| ≤ r∥G∥2F for any s ∈ [0, ϵ] and ∥∆∥F ≤ 1 by Taylor’s
theorem . ■

Proof of Lemma 2.5.5
In this section, we will assume that Assumptions 2.2.1 & 2.2.2 hold. First, we need
to show the boundedness of the stacked state and control input vector, zt.

Lemma 2.D.3. Define the terms

Z ′
Tw

:= (1 + κ)c′(n+ d)n+d + κσw

√
4d log(dTw/δ) (2.65)

Z ′′
T := (1 + κ)(12κ2+2κ

√
2)γ−1σw

√
2n log(n(T−Tw)/δ) (2.66)

Then, the following holds w.p. at least 1− 4δ,

∥zt∥ ≤

Z ′
Tw
, for t ≤ Tr

Z ′′
T , for Tr < t ≤ T

(2.67)

Proof. From Lemma 2.4.3, we know that ∥xt∥ ≤ c′(n + d)n+d with c′ > 0 a
constant for t ≤ Tr and ∥xt∥ ≤ (12κ2+2κ

√
2)γ−1σw

√
2n log(n(t−Tw)/δ) for all

Tr < s ≤ T w.p. at least 1 − 4δ. Furthermore, under the event of Et, we have
that ∥ut∥ ≤ κ∥xt∥ + ∥vt∥ ≤ κ∥xt∥ + κσw

√
4d log(dTw/δ) for all 0 ≤ t ≤ Tw.

Observing that ∥zt∥ =
√
∥xt∥2 + ∥ut∥2 ≤ ∥xt∥ + ∥ut∥, one can reach the desired

result by substituting the appropriate bounds on ∥xt∥ and ∥ut∥ and considering the
maximal case achieved when t = T . ■

The following lemma will be used to bound Vt.
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Lemma 2.D.4. Let Vt = µI +
∑t−1

s=0 zsz
⊺
s . On the event of ET = Ê ∩ Ẽ ∩ Ē, we

have

λmax(Vt) ≤

µ+ tZ ′2
Tw
, for t ≤ Tr

µ+ TrZ
′2
Tw

+ (t− Tr)Z
′′
T
2
, for Tr < t ≤ T

(2.68)

and λmin(Vt) ≥

µ+ tσ
2
w

40
, for 200(n+ d) log 12

δ
≤ t ≤ Tw

µ+ Tw
σ
2
w

40
, for Tw < t ≤ T

(2.69)

Proof. Recall that on the event ET , the RLS estimates, TS sampled systems are
concentrated and the state is bounded, i.e., Lemma 2.4.3. Conditioned on this event,
we will start with bounding λmax(Vt). For any time 0 ≤ t ≤ T , triangle inequality
gives λmax(Vt) = ∥µI +∑t−1

s=0 zsz
⊺
s∥2 ≤ µ +

∑t−1
s=0 ∥zs∥2. Using the bounds on

∥zt∥ given in Lemma 2.D.3, we can write λmax(Vt) ≤ µ + tZ ′2
Tw

for t ≤ Tr and
λmax(Vt) ≤ µ+ TrZ

′2
Tw

+ (t− Tr)Z
′′
T
2 for Tr < t ≤ T . For the lower bound, note

that we have that E[zt+1z
⊺
t+1 | Ft] ≽

σ
2
w

2
I . Using Lemma 2.G.5, on the event ET , we

have that Vt ≽ µI + tσ
2
w

40
I for 200(n+ d) log 12

δ
≤ t ≤ Tw. Since Vt+1 = Vt + ztz

⊺
t ,

we have that Vt ≽ VTw
≽ µI + Tw

σ
2
w

40
I for Tw < t ≤ T . ■

Finally, we will use the following lemma to boundβt(δ) = σw

√
2n log

(
det(Vt)

1/2

δ det(µI)
1/2

)
+

√
µS

Lemma 2.D.5. On the event of ET , we have the following upper bound on βT (δ):

βT (δ) ≤ 4σ2
wn log

(
1

δ

)
+ 2σ2

wn(n+ d) log

(
1 +

TrZ
′2
Tw

+ (T − Tr)Z
′′
T
2

(n+ d)µ

)
+ 2µS2

(2.70)

Proof. Following a similar approach pursued in Lemma 10 of [2], we can bound the
log-determinant of Vt as

log
det(VT )

det(µI)
≤ (n+ d) log

(
1 +

TrZ
′2
Tw

+ (T − Tr)Z
′′
T
2

(n+ d)µ

)
by Lemma 2.D.4. This leads to the following upper bound on βt(δ)

βT (δ)
2 ≤

σw

√√√√2n log

(
1

δ

)
+ n(n+ d) log

(
1 +

TrZ
′2
Tw

+ (T − Tr)Z
′′
T
2

(n+ d)µ

)
+
√
µS

2

≤ 4σ2
wn log

(
1

δ

)
+ 2σ2

wn(n+ d) log

(
1 +

TrZ
′2
Tw

+ (T − Tr)Z
′′
T
2

(n+ d)µ

)
+ 2µS2.

■
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Proof of Lemma 2.5.5. We will first show the desired bounds on λmin(Ft) and
λmax(Ft). Recall that the event ET holds with probability at least 1− 4δ. Noting that
H⊺

∗H∗ = I+K⊺
∗K∗, it is clear thatFt ≽ β2

t λmin(V
−1
t )H⊺

∗H∗ ≽
β
2
t

λmax(Vt)
I . Thus, from

Lemma 2.D.4, for Tr < t ≤ T , we have that λmin,t ≥ β
2
t

λmax(Vt)
≥ β

2
t

µ+TrZ
′2
Tw

+(t−Tr)Z
′′
T
2 .

On the other hand, Ft ≼ β2
t λmax(V

−1
t )H⊺

∗H∗ ≼ β
2
t (1+κ

2
)

λmin(Vt)
I . Again using Lemma

2.D.4, for Tr < t ≤ T , we have that λmax,t ≤ (1+κ
2
)β

2
t

λmin(Vt)
≤ (1+κ

2
)β

2
t

µ+Tw
σ
2
w
40

. Since

t 7→ βt is increasing, t 7→ λmax,t is increasing as well. The condition number

κt :=
λmax,t

λmin,t
≤ µ+TrZ

′2
Tw

+(t−Tr)Z
′′
T
2

(1+κ
2
)
−1

(µ+Tw
σ
2
w
40

)
is increasing for Tr < t ≤ T .

IfTw = O(
√
T

1+o(1)
), then we have thatλmax(VT ) ≤ O(poly(n, d, log(1/δ))T log T )

and βT (δ) ≤ O(poly(n, d, log(1/δ)) log T ). Thus, there are positive constants
C = poly(n, d, log(1/δ)) and c = poly(n, d, log(1/δ)) such that λmax,T ≤ C log T

Tw

and κt =
λmax,T

λmin,t
≤ cT log T

Tw
for Tr < t ≤ T for large enough T . Choosing the larger

between C and c yields the desired result. ■

Proof of Theorem 2.5.1
Defining by poptt := P

{
Θ̃t ∈ Sopt | F cnt

t , Êt

}
the optimistic probability, and by

Pt{·} := P{· | F cnt
t } conditional probability measure, we can write

poptt ≥ P
{
Θ̃t ∈ Ssurr | F cnt

t , Êt

}
(2.71)

= P
{
L(Θ̃⊺

tH∗) ≤ L(Θ⊺
∗H∗) | F cnt

t , Êt

}
(2.72)

≥ min
Θ̂∈ERLS

t

Pt{L(Θ̂⊺H∗ + η⊺βtV
− 1

2
t H∗) ≤ L(Θ⊺

∗H∗)} (2.73)

= min
Θ̂∈ERLS

t

Pt{L(Θ̂⊺H∗ + Ξ
√
Ft) ≤ L(Θ⊺

∗H∗)} (2.74)

where (2.71) is by Lemma 2.5.2, (2.73) is a worst-case estimation bound within
high-probability confidence region, and (2.74) is because η⊺βtV

− 1
2

t H∗ and Ξ
√
Ft

have the same distributions with η ∈ R(n+d)×n and Ξ ∈ Rn×n being i.i.d. standard
normal random matrices.

The bound in (2.74) can be further lower bounded by minimizing over a larger
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confidence set as

poptt ≥ min
Θ̂∈Ecl

t

Pt{L(Θ̂⊺H∗ + Ξ
√
Ft) ≤ L(Ac,∗)} (2.75)

= min
Υ̂ : ∥Υ̂∥F≤1

Pt{L(Ac,∗ + (Ξ + Υ̂)
√

Ft) ≤ L(Ac,∗)}, (2.76)

where (2.75) is by Lemma (2.5.3) and (2.76) is because H∗ is full column rank and
therefore we can minimize over closed-loop matrices instead of open-loop system
parameters.

Denoting by Gt = (Ξ + Υ̂)
√
Ft the perturbation due to estimation and sampling,

Lemma 2.5.4 suggests that there exists constants ϵ∗ > 0 and r∗ > 0 such that

L(Ac,∗ +Gt) = L(Ac,∗) +∇L∗ •Gt +
1

2
Gt • HAc,∗+sGt

(Gt) (2.77)

≤ L(Ac,∗) +∇L∗ •Gt +
r∗
2
∥Gt∥2F (2.78)

whenever ∥Gt∥F ≤ ϵ∗. Substituting (2.78) into (2.76) leads to the following lower
bound

poptt ≥ min
Υ̂ : ∥Υ̂∥F≤1

Pt{L(Ac,∗ +Gt) ≤ L(Ac,∗)} (2.79)

≥ min
Υ̂ : ∥Υ̂∥F≤1

Pt

{
L(Ac,∗) +∇L∗ •Gt +

r∗
2
∥Gt∥2F ≤ L(Ac,∗),

and ∥Gt∥F ≤ ϵ∗

}
(2.80)

= min
Υ̂ : ∥Υ̂∥F≤1

Pt

{
r∗
2
∥(Ξ + Υ̂)

√
Ft∥2F +∇L∗ • (Ξ + Υ̂)

√
Ft ≤ 0,

and ∥(Ξ + Υ̂)
√
Ft∥F ≤ ϵ∗

}
(2.81)

Noting that ∥(Ξ + Υ̂)
√
Ft∥F ≤

√
λmax,t∥Ξ + Υ̂∥F where λmax,t := λmax(Ft), we

can further relax the lower bound (2.81) as

poptt ≥ min
Υ̂ : ∥Υ̂∥F≤1

Pt

{
λmax,tr∗

2
∥Ξ + Υ̂∥2F + (∇L∗

√
Ft) • (Ξ + Υ̂) ≤ 0,

and
√

λmax,t∥Ξ + Υ̂∥F ≤ ϵ∗

}
(2.82)

= min
Υ̂ : ∥Υ̂∥F≤1

Pt


∥∥∥∥Ξ + Υ̂ +

∇L∗
√

Ft

λmax,tr∗

∥∥∥∥2
F

≤
∥∥∥∥∇L∗

√
Ft

λmax,tr∗

∥∥∥∥2
F

,

and ∥Ξ + Υ̂∥2F ≤ ϵ
2
∗

λmax,t

 (2.83)

where (2.83) is obtained by completion of squares. Let U : Mn → Mn be an

orthogonal transformation such that U
(
Υ̂ +

∇L∗
√

Ft

λmax,tr∗

)
=

∥∥∥∥Υ̂ +
∇L∗
√

Ft

λmax,tr∗

∥∥∥∥
F

E11

where E11 ∈ Mn has 1 in its (1, 1) entry and zeros elsewhere. Since Frobenius
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norm and the probability density of Ξ are invariant under orthogonal transformations,
(2.83) can be rewritten as

poptt ≥ min
Υ̂ : ∥Υ̂∥F≤1

Pt


∥∥∥∥U (Ξ + Υ̂ +

∇L∗
√

Ft

λmax,tr∗

)∥∥∥∥2
F

≤
∥∥∥∥∇L∗

√
Ft

λmax,tr∗

∥∥∥∥2
F

,

and ∥U(Ξ + Υ̂)∥2F ≤ ϵ
2
∗

λmax,t

 (2.84)

= min
Υ̂ : ∥Υ̂∥F≤1

Pt


∥∥∥∥Ξ +

∥∥∥∥Υ̂ +
∇L∗
√

Ft

λmax,tr∗

∥∥∥∥
F

E11

∥∥∥∥2
F

≤
∥∥∥∥∇L∗

√
Ft

λmax,tr∗

∥∥∥∥2
F

,

and ∥Ξ + U(Υ̂)∥2F ≤ ϵ
2
∗

λmax,t

 (2.85)

= min
Υ̂ : ∥Υ̂∥F≤1

Pt


(
Ξ11 +

∥∥∥∥Υ̂ +
∇L∗
√

Ft

λmax,tr∗

∥∥∥∥
F

)2

+
∑

i,j ̸=1,1 Ξ
2
ij ≤

∥∥∥∥∇L∗
√

Ft

λmax,tr∗

∥∥∥∥2
F

,

and ∥Ξ + U(Υ̂)∥2F ≤ ϵ
2
∗

λmax,t


(2.86)

Notice that the probability in (2.86) is described by the intersection of two balls

whose centers are far apart by ∥∇L∗
√

Ft∥F
λmax,tr∗

and hence the intersection has a fixed
shape. Choosing Υ̂ along the direction of ∥∇L∗

√
Ft∥F moves the center of the first

ball furthest possible from the origin which leads to the intersection of the balls
to move furthest away from the origin as well. Therefore, the probability in (2.86)

attains its minimum at Υ̂# :=
∇L∗
√

Ft

∥∇L∗
√

Ft∥F
and (2.86) can be equivalently expressed

by

poptt ≥ Pt


(
Ξ11 + 1 +

∥∇L∗
√

Ft∥F
λmax,tr∗

)2

+
∑

i,j ̸=1,1 Ξ
2
ij ≤

∥∇L∗
√

Ft∥
2
F

λ
2
max,tr

2
∗

,

and ∥Ξ + E11∥2F ≤ ϵ
2
∗

λmax,t

 (2.87)

= Pt


(
ξ + 1 +

∥∇L∗
√

Ft∥F
λmax,tr∗

)2

+X ≤ ∥∇L∗
√

Ft∥
2
F

λ
2
max,tr

2
∗

,

and (ξ + 1)2 +X ≤ ϵ
2
∗

λmax,t

 (2.88)

where ξ ∼ N (0, 1) and X ∼ χ2

n
2−1

are independent normal and chi-squared random

variables, respectively. Denoting by at :=
∥∇L∗
√

Ft∥F
λmax,tr∗

and bt =
ϵ∗√
λmax,t

the radii of
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the balls, we can rewrite (2.88) as

poptt ≥ Pt

{
(ξ + 1 + at)

2 +X ≤ a2t , and (ξ + 1)2 +X ≤ b2t
}

(2.89)

= Pt

{
|ξ + 1 + at| ≤

√
a2t −X, and |ξ + 1| ≤

√
b2t −X,

and X ≤ min(a2t , b
2
t )

}
(2.90)

=

∫ min(a
2
t ,b

2
t )

0

Pt

{
|ξ + 1 + at| ≤

√
a2t − x, and |ξ + 1| ≤

√
b2t − x

}
f
n
2−1

(x)dx

(2.91)

=

∫ min(a
2
t ,b

2
t )

0

Pt

{
1 + at −

√
a2t − x ≤ ξ ≤ 1 + at +

√
a2t − x,

and 1−
√

b2t − x ≤ ξ ≤ 1 +
√

b2t − x,

}
f
n
2−1

(x)dx

(2.92)

where fk(x) :=
(
2

k
2Γ(k

2
)
)−1

x
k
2
−1e−

x
2 is the probability density function of the

chi-squared distribution with k ∈ N degrees of freedom. (2.91) is derived from
law of total probability. Notice that the probability inside the integral in (2.92) is
determined by the intersection of two intervals. This probability will have a non-zero
value only for a fixed interval of x depending on the relation between at and bt. We
will investigate three cases:

i. 0 ≤ bt ≤
√
2at : There is a non-empty intersection if and only if 0 ≤ x ≤

b2t

(
1− b

2
t

4a
2
t

)
and the integral (2.92) becomes

poptt ≥
∫ b

2
t

(
1− b

2
t

4a
2
t

)
0

Pt

{
1 + at −

√
a2t − x ≤ ξ ≤ 1 +

√
b2t − x

}
f
n
2−1

(x)dx

(2.93)

=

∫ b
2
t

(
1− b

2
t

4a
2
t

)
0

[
Q

(
1 + at −

√
a2t − x

)
−Q

(
1 +

√
b2t − x

)]
f
n
2−1

(x)dx

(2.94)

where Q is the Gaussian Q-function. Notice that for fixed values of bt, (2.94) is
monotonically increasing with respect to at and vice versa.
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ii.
√
2at ≤ bt ≤ 2at : There is a non-empty intersection if and only if

0 ≤ x ≤ a2t and the integral (2.92) becomes

poptt ≥
∫ a

2
t

0

Pt

{
1 + at −

√
a2t − x ≤ ξ ≤ 1 +

√
b2t − x

}
f
n
2−1

(x)dx (2.95)

=

∫ a
2
t

0

[
Q

(
1 + at −

√
a2t − x

)
−Q

(
1 +

√
b2t − x

)]
f
n
2−1

(x)dx (2.96)

Notice that for fixed values of bt, (2.96) is monotonically increasing with respect to
at and vice versa.

iii. 2at ≤ bt : There is a non-empty intersection if and only if 0 ≤ x ≤ a2t and
the integral (2.92) becomes

poptt ≥
∫ a

2
t

0

Pt

{
1 + at −

√
a2t − x ≤ ξ ≤ 1 + at +

√
a2t − x

}
f
n
2−1

(x)dx

(2.97)

=

∫ a
2
t

0

[
Q

(
1 + at −

√
a2t − x

)
−Q

(
1 + at +

√
a2t − x

)]
f
n
2−1

(x)dx

(2.98)

Notice that for fixed values of bt, (2.98) is monotonically increasing with respect to
at and vice versa.

As seen from all three case, the integral in (2.92) is monotonically increasing
with respect to both at, and bt regardless of their relative relation. Therefore, we will

consider tight lower bounds of at =
∥∇L∗
√

Ft∥F
λmax,tr∗

so that the relation bt ≥ 2at holds
for large enough t ≥ 0. Noting that∇L∗ = 2P∗Ac,∗Σ∗ by Lemma 2.5.4 and P∗ ≻ 0,
Σ∗ ≻ 0, we will consider two cases.

1. Singular Ac,∗ : In this case, the Jacobian matrix ∇L∗ becomes singular as

well. Then, we can bound at from below as at =
∥∇L∗
√

Ft∥F
λmax,tr∗

≥
√
λmin,t

∥∇L∗∥F
λmax,tr∗

=√
λmin,t

λmax,t

∥r−1
∗ ∇L∗∥F√
λmax,t

. Furthermore, choosing Tw = O((
√
T )1+o(1)), we can use upper

bounds for λmax,t

λmin,t
and λmax,t from Lemma 2.5.5 to write down, at ≥ Tw√

T log T

∥∇L∗∥F
Cr∗

=:

a1,T and bt ≥
√

Tw

log T
ϵ∗√
C

=: b1,T for all Tr < t ≤ T under the event ET for large
enough T . Therefore, replacing at and bt with a1,T and b1,T in (2.92) gives a lower
bound to (2.92). Noting that the ratio b1,T

a1,T
=
√

T log T
Tw

ϵ∗r∗
√
C

∥∇L∗∥F
can be made to be
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greater than or equal to 2 by an appropriate choice of Tw leading to the case (iii)

bound

poptt ≥
∫ a

2
1,T

0

[
Q

(
1 + a1,T −

√
a21,T − x

)
−Q

(
1 + a1,T +

√
a21,T − x

)]
f
n
2−1

(x)dx

(2.99)

for all Tr < t ≤ T for large enough T .

2. Nonsingular Ac,∗ : In this case, the Jacobian matrix∇L∗ becomes nonsingular

as well. Then, we can bound at from below as at =
∥∇L∗
√

Ft∥F
λmax,tr∗

≥ σmin,∗
∥
√

Ft∥F
λmax,tr∗

≥
σmin,∗

r∗
√

λmax,t

. Choosing Tw = O((
√
T )1+o(1)), we can use the upper bound for λmax,t

from Lemma 2.5.5 to write the lower bound, at ≥
√

Tw

log T

min(σmin,∗, ϵ∗r∗/2)√
Cr∗

=: a2,T

and bt ≥
√

Tw

log T
ϵ∗√
C
=: b2,T for all Tr < t ≤ T under the event ET for large enough T .

Therefore, replacing at and bt with a2,T and b2,T in (2.92) gives a lower bound to (2.92)
forTr < t ≤ T . Noting that the ratio β2,T

a2,T
= ϵ∗r∗

min(σmin,∗, ϵ∗r∗/2)
= max

(
ϵ∗r∗
σmin,∗

, 2
)
≥ 2,

we can use the case (iii) bound

poptt ≥
∫ a

2
2,T

0

[
Q

(
1 + a2,T −

√
a22,T − x

)
−Q

(
1 + a2,T +

√
a22,T − x

)]
f
n
2−1

(x)dx

(2.100)

for all Tr < t ≤ T for large enough T .

In both cases, our focus will be on the following probability with a parameters
a > 0, and k ∈ N

pk(a) :=

∫ a
2

0

[
Q(1 + a−

√
a2 − x)−Q(1 + a+

√
a2 − x)

]
fk(x)dx (2.101)

The following lemma summarizes some of the important properties of the function
a 7→ pk(a).

Lemma 2.D.6. The non-negative real valued function a 7→ pk(a) is monotonically
increasing with respect to a ≥ 0. Furthermore, we have that 1

pk(a)
≤ 1

Q(1)

(
1 + Ck

a
1/2

)
for a ≥ ck for problem independent constants c, C > 0.

Proof. Notice that for a fixed value of 0 ≤ x ≤ a2, the functions a 7→ 1+a−
√
a2 − x

and a 7→ 1 + a +
√

a2 − x are monotonically decreasing and monotonically in-
creasing, respectively. As Q-function is monotonically decreasing, the function
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a 7→ Q(1 + a −
√

a2 − x) − Q(1 + a +
√

a2 − x) is monotonically increasing
for fixed 0 ≤ x ≤ a2. Therefore, the function a 7→ pk(a) is also monotonically
increasing.

In order to obtain the desired asymptotic bound, let ϵ ∈ (0, 1) and we can write

pk(a) =

∫ a
2

0

[
Q(1 + a−

√
a2 − x)−Q(1 + a+

√
a2 − x)

]
fk(x)dx

≥
∫ ϵa

2

0

[
Q(1 + a−

√
a2 − x)−Q(1 + a+

√
a2 − x)

]
fk(x)dx

≥
∫ ϵa

2

0

min
0≤x

′≤ϵa
2

[
Q(1 + a−

√
a2 − x′)−Q(1 + a+

√
a2 − x′)

]
fk(x)dx

=
[
Q(1 + a(1−

√
1− ϵ))−Q(1 + a(1 +

√
1− ϵ))

]
Fk(ϵa

2)

where Fk(x) := 1− Γ(k/2, x/2)
Γ(k/2)

is the cumulative distribution function of chi-square
distribution and (s, x) 7→ Γ(s, x) :=

∫∞
x

ts−1e−tdt and s 7→ Γ(s) :=
∫∞
o

ts−1e−tdt

are upper incomplete Gamma and ordinary Gamma functions respectively. Notice
that the functions (s, x) 7→ Γ(s, x) and x 7→ Q(x) are monotonically decreasing
with increasing x > 0. Therefore, for large enough ϵa2 ≫ 1 and large enough
a ≫ 1, we can claim that Γ(k/2, ϵa

2
/2) ≪ 1 and Q(1 + a) ≪ 1 are small enough.

Furthermore, for small enough ϵ ≪ 1, we can use Taylor expansion to see that
1−
√
1− ϵ = ϵ

2

∑∞
k=0

ϵ
k

2
k (2k− 1)! ≤ c1ϵ for a problem independent constant c1 > 0.

Then, for small enough ϵ≪ 1, we have that

pk(a) ≥
[
Q(1 + a(1−

√
1− ϵ))−Q(1 + a(1 +

√
1− ϵ))

](
1− Γ(k/2, ϵa2/2)

Γ(k/2)

)
≥ [Q(1 + c1ϵa)−Q(1 + a)]

(
1− Γ(k/2, ϵa2/2)

Γ(k/2)

)
Furthermore, for small enough ϵa≪ 1, we have that Q(1 + c1ϵa) ≥ Q(1)− c2ϵa by
Taylor’s theorem where c2 is a problem independent constant. Using these bounds,
we can bound the inverse of pk(a) from above for small enough ϵ≪ 1, small enough
ϵa≪ 1, large enough a≫ 1 and large enough ϵa2 ≫ 1 as

1

pk(a)
≤ 1

Q(1)− c2ϵa−Q(1 + a)

1

1− Γ(k/2, ϵa
2
/2)

Γ(k/2)

=
1

Q(1)

1

(1− c2ϵa−Q(1 + a))
(
1− Γ(k/2, ϵa

2
/2)

Γ(k/2)

)
≤ 1

Q(1)

[
1 + 2C

(
c2ϵa+Q(1 + a) +

Γ(k/2, ϵa2/2)

Γ(k/2)

)]
(2.102)
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where we used the Taylor expansion 1
1−x

=
∑∞

k=0 x
k ≤ 1 + Cx for small enough

x≪ 1 with C > 0 being a problem independent constant.

The assumption ϵa2 ≫ 1 can be used to write the asymptotic expansion of incom-
plete Gamma function Γ(k/2, ϵa2/2) = (ϵa2/2)k/2−1e−ϵa

2
/2
[
1 +O

(
(ϵa2/2)−1

)]
.

Noting that the Q function is always bounded as Q(1 + a) ≤ e
− (1+a)

2

2√
2π(1+a)

, we claim
that choosing ϵ = k

2ea
1+1/2 , for α ≥ c′′k with a constant c′′ > 0 guarantees that

ϵa = k
2e
a−1/2 ≪ 1 and ϵa2 = k

2e
a1−1/2 ≫ 1. Therefore, the upper bound (2.102) is

valid for α ≥ c′′k. Furthermore, the term ϵa decays slower than both Q(1 + a) and
Γ(k/2, ϵa

2
/2)

Γ(k/2)
and thus ϵa dominates as

1

pk(a)
≤ 1

Q(1)

(
1 +

Ck

2e
a−1/2

)
for a problem independent constant C > 0. ■

Based on Lemma 2.D.6, the integrals in (2.99) and (2.100) are asymptotically constant
if both a1,T and a2,T are asymptotically large enough. This can be achieved if a1,T =

Tw√
T log T

∥∇L∗∥F
Cr∗

= ω(1) for singular Ac,∗ and a2,T =
√

Tw

log T

min(σmin,∗, ϵ∗r∗/2)√
Cr∗

= ω(1)

for non-singular Ac,∗. In other words, choosing Tw = n2ω(
√
T log T ) for singular

Ac,∗ and Tw = n2ω(log T ) for non-singular Ac,∗ yields the desired bound

poptt ≥
Q(1)

1 + o(1)
.

for Tr < t ≤ T for large enough T . Combined with the upper Tw = O((
√
T )1+o(1)),

the proposed choices of Tw satisfy the asymptotic conditions.

2.E Regret Decomposition
Denote the optimal expected average cost of an LQR system Θ with process noise
covariance W by J∗(Θ,W ) = tr(P (Θ)W ). Note that during the initial exploration
period, we have that ut = ūt + νt for t ≤ Tw and after the initial exploration, we
have that ut = ūt for t > Tw where we denote by ūt := K(Θ̃t)xt the optimal control
action assuming the system Θ̃t. Since initial exploration period injects independent
random perturbations through the optimal control input, ūt, for sampled system, Θ̃t,
the state dynamics can be reformulated in order to take the external perturbations
into account by adding it to the process noise:

xt+1 = A∗xt +B∗ūt + ζt, (2.103)
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where ūt = K(Θ̃t)xt, ζt = B∗νt + wt for t ≤ Tw, and ζt = wt for t > Tw. We can
write the regret explicitly as

RT =
∑T

t=0

{
x⊺
tQxt + u⊺

tRut − J∗(Θ∗, σ
2
wI)
}
= Rexp

Tw
+Rnoexp

T , (2.104)

where

Rexp
Tw

:=
∑Tw

t=0
(2ū⊺

tRνt + ν⊺
t Rνt) , & Rnoexp

T :=
∑T

t=0

{
x⊺
tQxt + ū⊺

tRūt − J∗(Θ∗, σ
2
wI)
}

Since Es ⊂ Et for any 0 ≤ s ≤ t, we have that

Rnoexp
T 1ET

=
T∑
t=0

{
x⊺
tQxt+ū⊺

tRūt − J∗(Θ∗, σ
2
wI)
}
1ET

≤
T∑
t=0

{
x⊺
tQxt + ū⊺

tRūt − J∗(Θ∗, σ
2
wI)
}
1Et

, (2.105)

Rexp
Tw
1ET

=
∑Tw

t=0
(2ū⊺

tRνt + ν⊺
t Rνt)1ET

≤
∑Tw

t=0
(2ū⊺

tRνt + ν⊺
t Rνt)1Et

.

(2.106)

From Bellman optimality equations [19], we obtain

J∗(Θ̃t,Cov[ζt]) + x⊺
tP (Θ̃t)xt

= min
u

{
x⊺
tQxt + u⊺Ru+ E

[
(Ãtxt + B̃tu+ ζt)

⊺P (Θ̃t)(Ãtxt + B̃tu+ ζt)
∣∣Ft

]}
,

= x⊺
tQxt + ū⊺

tRūt + E
[
(Ãtxt + B̃tūt + ζt)

⊺P (Θ̃t)(Ãtxt + B̃tūt + ζt)
∣∣Ft

]
,

= x⊺
tQxt + ū⊺

tRūt + E
[
(Ãtxt + B̃tūt)

⊺P (Θ̃t)(Ãtxt + B̃tūt) | Ft

]
+ E

[
ζ⊺t P (Θ̃t)ζt

∣∣Ft

]
,

= x⊺
tQxt + ū⊺

tRūt + E
[
(Ãtxt + B̃tūt)

⊺P (Θ̃t)(Ãtxt + B̃tūt)
∣∣Ft

]
+ E

[
x⊺
t+1P (Θ̃t)xt+1 | Ft

]
− E

[
(A∗xt +B∗ūt)

⊺P (Θ̃t)(A∗xt +B∗ūt)
∣∣Ft

]
,

= x⊺
tQxt + ū⊺

tRūt + E
[
x⊺
t+1P (Θ̃t)xt+1

∣∣Ft

]
+ (Ãtxt + B̃tūt)

⊺P (Θ̃t)(Ãtxt + B̃tūt)− (A∗xt +B∗ūt)
⊺P (Θ̃t)(A∗xt +B∗ūt),

= x⊺
tQxt + ū⊺

tRūt + E
[
x⊺
t+1P (Θ̃t)xt+1

∣∣Ft

]
+ z̄⊺t Θ̃tP (Θ̃t)Θ̃

⊺
t z̄t − z̄⊺tΘ∗P (Θ̃t)Θ

⊺
∗z̄t,

where z̄⊺t = [x⊺
t , ū

⊺
t ]. Rearranging the terms and subtracting the optimal expected

average cost of the true system, we obtain the following for each term in (2.105),{
x⊺
tQxt + ū⊺

tRūt − J∗(Θ∗, σ
2
wI)
}
1Et

=
{
J∗(Θ̃t,Cov[ζt])− J∗(Θ∗, σ

2
wI)
}
1Et

+
{
z̄⊺tΘ∗P (Θ̃t)Θ

⊺
∗z̄t − z̄⊺t Θ̃tP (Θ̃t)Θ̃

⊺
t z̄t

}
1Et

,

+ x⊺
tP (Θ̃t)xt 1Et

−E
[
x⊺
t+1P (Θ̃t)xt+1 1Et

∣∣Ft

]
.
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Note that, 1Et
1Et+1

= 1Et+1
since Et+1 ⊂ Et. Since P (Θ̃t) ≻ 0, we obtain

E
[
x⊺
t+1P (Θ̃t)xt+1 1Et

∣∣Ft

]
= E

[
x⊺
t+1P (Θ̃t)xt+1 1Et

(
1Et+1

+1E
c
t+1

) ∣∣Ft

]
,

= E
[
x⊺
t+1P (Θ̃t)xt+1 1Et+1

∣∣Ft

]
+E

[
x⊺
t+1P (Θ̃t)xt+1 1Et

1E
c
t+1

∣∣Ft

]
,

≥ E
[
x⊺
t+1P (Θ̃t)xt+1 1Et+1

∣∣Ft

]
,

= E
[
x⊺
t+1

(
P (Θ̃t)− P (Θ̃t+1)

)
xt+1 1Et+1

∣∣Ft

]
+ E

[
x⊺
t+1P (Θ̃t+1)xt+1 1Et+1

∣∣Ft

]
.

Therefore,{
x⊺
tQxt + ū⊺

tRūt − J∗(Θ∗, σ
2
wI)
}
1Et
≤
{
J∗(Θ̃t,Cov[ζt])− J∗(Θ∗, σ

2
wI)
}
1Et

,

+
{
z̄⊺tΘ∗P (Θ̃t)Θ

⊺
∗z̄t − z̄⊺t Θ̃tP (Θ̃t)Θ̃

⊺
t z̄t

}
1Et

,

+
{
x⊺
tP (Θ̃t)xt 1Et

−E
[
x⊺
t+1P (Θ̃t+1)xt+1 1Et+1

∣∣Ft

]}
,

+ E
[
x⊺
t+1

(
P (Θ̃t+1)− P (Θ̃t)

)
xt+1 1Et+1

∣∣Ft

]
(2.107)

Notice that Cov[ζt] = σ2
νB∗B

⊺
∗ + σ2

wI for t ≤ Tw and Cov[ζt] = σ2
wI for t > Tw and

therefore

J∗(Θ̃t,Cov[ζt]) = Tr(P (Θ̃t) Cov[ζt]) =

σ2
ν Tr(P (Θ̃t)B∗B

⊺
∗) + σ2

w Tr(P (Θ̃t)) t ≤ Tw

σ2
w Tr(P (Θ̃t)) t > Tw

(2.108)

Summing the terms in (2.107) upto time T and adding the Rexp
Tw

term, we obtain

RT 1ET
= Rexp

Tw
1ET

+Rnoexp
T 1ET

≤ Rexp,1
Tw

+Rexp,2
Tw

+RTS
T +RRLS

T +Rmart
T +Rgap

T

(2.109)

where

Rexp,1
Tw

=
∑Tw

t=0
(2ū⊺

tRνt + ν⊺
t Rνt)1Et

, (2.110)

Rexp,2
Tw

=
∑Tw

t=0
σ2
ν Tr(P (Θ̃t)B∗B

⊺
∗)1Et

, (2.111)

RTS
T =

∑T

t=0

{
J∗(Θ̃t, σ

2
wI)− J∗(Θ∗, σ

2
wI)
}
1Et

, (2.112)

RRLS
T =

∑T

t=0

{
z̄⊺tΘ∗P (Θ̃t)Θ

⊺
∗z̄t − z̄⊺t Θ̃tP (Θ̃t)Θ̃

⊺
t z̄t

}
1Et

, (2.113)

Rmart
T =

∑T

t=0

{
x⊺
tP (Θ̃t)xt 1Et

−E
[
x⊺
t+1P (Θ̃t+1)xt+1 1Et+1

∣∣Ft

]}
, (2.114)

Rgap
T =

∑T

t=0
E
[
x⊺
t+1

(
P (Θ̃t+1)− P (Θ̃t)

)
xt+1 1Et+1

∣∣Ft

]
. (2.115)
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In the next section, we will give upper bounds to each term.

2.F Regret Analysis
In this section, we bound each term in regret decomposition individually. In
particular, Rexp

Tw
is studied in Appendix 2.F, RRLS

T is studied in Appendix 2.F, Rmart
T

in Appendix 2.F, RTS
T in Appendix 2.F, and Rgap

T in Appendix 2.F. Finally, in
Appendix 2.F, we combine these results to obtain the regret upper bound of TSAC as
stated in Theorem 2.4.1.

Bounding Rexp,1
Tw

and Rexp,2
Tw

The following gives an upper bound on the regret attained due to isotropic perturba-
tions in the TS with improved exploration phase of TSAC.

Lemma 2.F.1 (Direct Effect of Improved Exploration on Regret). The following
holds with probability at least 1− δ,

Rexp,1
Tw

=

Tw∑
t=0

{2ū⊺
tRνt + ν⊺

t Rνt}1Et
≤ dσν

√
Bδ+d∥R∥σ2

ν

(
Tw +

√
Tw log

4dTw

δ

√
log

4

δ

)
where

Bδ = 8
(
1 + Twκ

2∥R∥2(n+ d)2(n+d)
)
log

(
4d

δ

(
1 + Twκ

2∥R∥2(n+ d)2(n+d)
)1/2)

.

Furthermore, we have Rexp,2
Tw
≤ σ2

νD ∥B∗∥2FTw.

Proof. First we will study Rexp,1
Tw

. Let q⊺t = ū⊺
tR1Et

. The first term can be written as

2

Tw∑
t=0

d∑
i=1

qt,iνt,i = 2
d∑

i=1

Tw∑
t=0

qt,iνt,i

Let Mt,i =
∑t

k=0 qk,iνk,i. By Theorem 2.G.1 on some event Gδ,i that holds with
probability at least 1− δ/(2d), for any t ≥ 0,

M2
t,i ≤ 2σ2

ν

(
1 +

t∑
k=0

q2k,i

)
log

2d

δ

(
1 +

t∑
k=0

q2k,i

)1/2


Note that ∥qk∥ = ∥Rūt∥1Et
≤ κ∥R∥(n + d)n+d, thus qk,i ≤ κ∥R∥(n + d)n+d.

Using union bound we get, for probability at least 1− δ
2
,



62

Tw∑
t=0

2ν⊺
t Rūt 1Rt

≤

d

√
8σ2

ν

(
1 + Twκ

2∥R∥2(n+ d)2(n+d)
)
log

(
4d

δ

(
1 + Twκ

2∥R∥2(n+ d)2(n+d)
)1/2)

(2.116)

Let W = σν

√
2d log 4dTw

δ
. Define Ψt = ν⊺

t Rνt − E [ν⊺
t Rνt|Ft−1] and its truncated

version Ψ̃t = ΨtI{Ψt≤2DW
2}.

P

( Tw∑
t=1

Ψt > 2∥R∥W 2

√
2Tw log

4

δ

)
≤

P

(
max

1≤t≤Tw

Ψt > 2∥R∥W 2

)
+ P

(
Tw∑
t=1

Ψ̃t > 2∥R∥W 2

√
2Tw log

4

δ

)

Using Lemma 2.G.4 with union bound and Theorem 2.G.2, summation of terms on
the right hand side is bounded by δ/2. Thus, with probability at least 1− δ/2,

Tw∑
t=0

ν⊺
t Rνt ≤ dTwσ

2
ν∥R∥+ 2∥R∥W 2

√
2Tw log

4

δ
. (2.117)

Combining (2.116) and (2.117) gives the statement of lemma for the regret of external
exploration noise. Next, we consider Rexp,2

Tw
. Due to rejection samplingRS(·), a new

model sample is redrawn until it lies on the setS at every TS step, i.e., Θ̃t ∈ S for every
time step t ≥ 0. By Assumption 2.2.1, we have ∥P (Θ̃t)∥F ≤ D = ᾱγ−1κ2(1 + κ2).
Thus, we have

Rexp,2
Tw

=

Tw∑
t=0

σ2
ν Tr(P (Θ̃t)B∗B

⊺
∗)1Et

,

≤
Tw∑
t=0

σ2
ν∥P (Θ̃t)∥F∥B∗∥2F 1Et

,

≤ σ2
νD ∥B∗∥2F

Tw∑
t=0

1Et
≤ σ2

νD ∥B∗∥2FTw. (2.118)

■
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Bounding RRLS
T

Bounding this term is achieved by manipulating the similar bounds in Abbasi-Yadkori
and Szepesvári [2] and Abeille and Lazaric [3] to our setting and TS algorithm. We
first have the following result from regularized least squares estimate.

Lemma 2.F.2. On the event of ET , for Xs =
(12κ

2
+2κ

√
2)σw

γ

√
2n log(n(T − Tw)/δ),

we have,

T∑
t=0

∥(Θ∗ − Θ̃t)
⊺zt∥2 ≤2(βT (δ) + υT (δ))

2

((
1 +

(1 + κ2)(n+ d)2(n+d)

µ

)τ0+1

log
det(VTr

)

det(µI)

+

(
1 +

(1 + κ2)X2
s

µ

)τ0+1

log
det(VT )

det(VTr
)

)
.

Proof. Let τ ≤ t be the last time step before t, when the policy was updated. Using
Cauchy-Schwarz inequality, we have:

T∑
t=0

∥(Θ∗−Θ̃t)
⊺zt∥2 ≤

T∑
t=0

∥V
1
2
t (Θ̃t−Θ∗)∥2∥zt∥2V −1

t
≤

T∑
t=0

det(Vt)

det(Vτ )
∥V

1
2
τ (Θ̃τ−Θ∗)∥2∥zt∥2V −1

t
.

(2.119)
Note that t− τ ≤ τ0 due to policy update rule. Moreover, we have

det(Vt) = det(Vτ )
t−τ∏
i=0

(1 + ∥zt∥2V −1
t−i

) ≤ det(Vτ )

(
1 +
∥zt∥2
µ

)τ0

.

Combining this with (2.119), on the event of ET , for t ≤ Tr, we have:

Tr∑
t=0

∥(Θ∗ − Θ̃t)
⊺zt∥2 ≤

Tr∑
t=0

(
1 +

(1 + κ2)(n+ d)2(n+d)

µ

)τ0

∥V 1/2
τ (Θ̃τ −Θ∗)∥2∥zt∥2V −1

t

(2.120)

≤
Tr∑
t=0

(
1 +

(1 + κ2)(n+ d)2(n+d)

µ

)τ0

(βT (δ) + υT (δ))
2∥zt∥2V −1

t
,

(2.121)

≤ 2(1 + κ2)(n+ d)2(n+d)

µ

(
1 +

(1 + κ2)(n+ d)2(n+d)

µ

)τ0

(βT (δ) + υT (δ))
2 log

(
det(VTr

)

det(µI)

)
(2.122)

where in (2.121) we used the fact that on the event of ET , using triangle inequality, we
have ∥Θ̃τ−Θ∗∥Vτ

≤ ∥Θ̃τ−Θ̂τ∥Vτ
+∥Θ̂τ−Θ∗∥Vτ

≤ υτ (δ)+βτ (δ) ≤ υT (δ)+βT (δ)
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and in (2.122) we used used the upper bound of ∥zt∥V −1
t

to utilize Lemma 10 of
Abbasi-Yadkori and Szepesvári [2]. Similarly, on the even of Et, for t > Tr, we get:

T∑
t=Tr+1

∥(Θ∗ − Θ̃t)
⊺zt∥2 ≤

2(1 + κ2)X2
s

µ

(
1 +

(1 + κ2)X2
s

µ

)τ0

(βT (δ) + υT (δ))
2 log

(
det(VT )

det(VTr
)

)
■

Lemma 2.F.3 (Bounding RRLS
T for TSAC). Let RRLS

T be as defined by (2.113). Under
the event of ET , setting µ = (1 + κ2)X2

s , we have∣∣RRLS
T

∣∣ = Õ
(
(n+ d)(τ0+2)(n+d)+1.5√n

√
Tr + (n+ d)n

√
T − Tr

)
.

Proof.

∣∣RRLS
T

∣∣ ≤ T∑
t=0

∣∣∣∣∥∥∥P (Θ̃t)
1
2 Θ̃⊺

t zt

∥∥∥2 − ∥∥∥P (Θ̃t)
1
2Θ⊺

∗zt

∥∥∥2∣∣∣∣ (2.123)

=

Tr∑
t=0

∣∣∣∣∥∥∥P (Θ̃t)
1
2 Θ̃⊺

t zt

∥∥∥2 − ∥∥∥P (Θ̃t)
1
2Θ⊺

∗zt

∥∥∥2∣∣∣∣+ T∑
t=Tr

∣∣∣∣∥∥∥P (Θ̃t)
1
2 Θ̃⊺

t zt

∥∥∥2 − ∥∥∥P (Θ̃t)
1
2Θ⊺

∗zt

∥∥∥2∣∣∣∣
≤
( Tr∑

t=0

(∥∥∥P (Θ̃t)
1
2 Θ̃⊺

t zt

∥∥∥−∥∥∥P (Θ̃t)
1
2Θ⊺

∗zt

∥∥∥)2) 1
2
( Tr∑

t=0

(∥∥∥P (Θ̃t)
1
2 Θ̃⊺

t zt

∥∥∥+∥∥∥P (Θ̃t)
1
2Θ⊺

∗zt

∥∥∥)2) 1
2

+

( T∑
t=Tr

(∥∥∥P (Θ̃t)
1
2 Θ̃⊺

t zt

∥∥∥−∥∥∥P (Θ̃t)
1
2Θ⊺

∗zt

∥∥∥)2) 1
2
( T∑

t=Tr

(∥∥∥P (Θ̃t)
1
2 Θ̃⊺

t zt

∥∥∥+∥∥∥P (Θ̃t)
1
2Θ⊺

∗zt

∥∥∥)2) 1
2

(2.124)

≤
(

Tr∑
t=0

∥∥∥P (Θ̃t)
1
2

(
Θ̃t −Θ∗

)⊺
zt

∥∥∥2)
1
2
(

Tr∑
t=0

(∥∥∥P (Θ̃t)
1
2 Θ̃⊺

t zt

∥∥∥+ ∥∥∥P (Θ̃t)
1
2Θ⊺

∗zt

∥∥∥)2)
1
2

+

 T∑
t=Tr

∥∥∥P (Θ̃t)
1
2

(
Θ̃t −Θ∗

)⊺
zt

∥∥∥2
 1

2
 T∑

t=Tr

(∥∥∥P (Θ̃t)
1
2 Θ̃⊺

t zt

∥∥∥+ ∥∥∥P (Θ̃t)
1
2Θ⊺

∗zt

∥∥∥)2
 1

2

(2.125)

where (2.123) and (2.125) follow from triangle inequality, and (2.124) follows from
Cauchy Schwarz inequality. Note that for t ≤ Tr, we have ∥zt∥2 ≤ (1 + κ2)(n +

d)2(n+d) and for t > Tr we have ∥zt∥2 ≤ (1 + κ2)X2
s . Moreover, since Θ̃ belongs to
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S by construction of the rejection sampling, we get

∣∣RRLS
T

∣∣ ≤ (D Tr∑
t=0

∥∥∥(Θ̃t −Θ∗

)⊺
zt

∥∥∥2)
1
2 √

4TrD(1 + κ2)S2(n+ d)2(n+d)

+

D
T∑

t=Tr

∥∥∥(Θ̃t −Θ∗

)⊺
zt

∥∥∥2
 1

2 √
4(T − Tr)D(1 + κ2)S2X2

s

≤
√
8TrDS(1+κ2)(n+d)2(n+d)(βT (δ)+υT (δ))√

µ

(
1+

(1+κ2)(n+d)2(n+d)

µ

) τ0
2

√
log
(det(VTr

)

det(µI)

)
+

√
8(T−Tr)DS(1+ κ2)X2

s (βT (δ) + υT (δ))√
µ

(
1+

(1+κ2)X2
s

µ

)τ0
2

√
log

(
det(VT )

det(VTr
)

)
(2.126)

From Lemma 10 of Abbasi-Yadkori and Szepesvári [2], we have that log(
det(VTr

)

det(µI)
)≤

(n+d) log(1+Tr(1+κ
2
)(n+d)

2(n+d)

µ(n+d)
) and log( det(VT )

det(VTr
)
) ≤ (n+d) log(1+Tr(1+κ

2
)(n+d)

2(n+d)
+(T−Tr)X

2
s

µ(n+d)
).

After inserting these quantities into (2.126), we have the dimension dependency
of (n + d)2(n+d) ×

√
n(n+ d)× (n + d)(n+d)τ0 × (n + d) on the first term where√

n(n+ d) is due to βT (δ) + υT (δ). For the second term, for large enough T , we
have the dimension dependency of n ×

√
n(n+ d) × n(τ0/2) ×

√
n+ d, where n

comes from X2
s . Thus, we achieve the following bound for

∣∣RRLS
T

∣∣:∣∣RRLS
T

∣∣ = Õ
(
(n+ d)(τ0+2)(n+d)+1.5√n

√
Tr + (n+ d)n1.5+τ0/2

√
T − Tr

)
.

With the choice of µ = (1 + κ2)X2
s , the dependency of n(τ0/2) on the second term

can be converted to a scalar multiplier of
√
2
τ0 and reduces the dependency of X2

s to
Xs, which gives the advertised bound. ■

Bounding Rmart
T

Notice that this term is very similar to corresponding term in Abbasi-Yadkori and
Szepesvári [2] and Abeille and Lazaric [4], besides the difference of early improved
exploration. Following the same analysis, while including the effect of improved
exploration gives the upper bound on Rmart

T . A similar analysis is also conducted in
Lale, Azizzadenesheli, Hassibi, et al. [140], yet we provide it for completeness.

Lemma 2.F.4 (Bounding Rmart
T ). Let Rmart

T be as defined by (2.114). Under the event
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of ET , with probability at least 1− δ, for t > Tr, we have

Rmart
T ≤ ks,1(n+ d)n+d(σw + ∥B∗∥σν)n

√
Tr log((n+ d)Tr/δ)

+
ks,2(12κ

2 + 2κ
√
2)

γ
σ2
wn
√
n
√
T − Tw log(n(T − Tw)/δ)

+ ks,3nσ
2
w

√
T − Tw log(nT/δ) + ks,4n(σw + ∥B∗∥σν)

2
√
Tw log(nT/δ),

for some problem dependent coefficients ks,1, ks,2, ks,3, ks,4.

Proof. Let ft = A∗xt +B∗ut. One can decompose Rmart
T as

R1 = x⊺
0P (Θ̃0)x0 − x⊺

T+1P (Θ̃T+1)xT+1 +
T∑
t=1

x⊺
tP (Θ̃t)xt − E

[
x⊺
tP (Θ̃t)xt

∣∣Ft−2

]
Since P (Θ̃0) is positive semidefinite and x0 = 0, the first two terms are bounded
above by zero. Recall that ζt = B∗νt + wt for t ≤ Tw, and ζt = wt for t > Tw. The
second term is decomposed as follows

T∑
t=1

x⊺
tP (Θ̃t)xt − E

[
x⊺
tP (Θ̃t)xt

∣∣Ft−2

]
=

T∑
t=1

f⊺
t−1P (Θ̃t)ζt−1 +

T∑
t=1

(
ζ⊺t−1P (Θ̃t)ζt−1 − E

[
ζ⊺t−1P (Θ̃t)ζt−1

∣∣Ft−2

])

LetR1,1 =
∑T

t=1 f
⊺
t−1P (Θ̃t)ζt−1,R1,2 =

∑T
t=1

(
ζ⊺t−1P (Θ̃t)ζt−1 − E

[
ζ⊺t−1P (Θ̃t)ζt−1

∣∣Ft−2

])
,

and v⊺t−1 = f⊺
t−1P (Θ̃t). Then one can write R1,1. Let can be written as

R1,1 =
T∑
t=1

n∑
i=1

vt−1,iζt−1,i =
n∑

i=1

T∑
t=1

vt−1,iζt−1,i.

Let Mt,i =
∑t

k=1 vk−1,iζk−1,i. By Theorem 2.G.1 on some event Gδ,i that holds with
probability at least 1− δ/(2n), for any t ≥ 0,

M2
t,i ≤ 2(σ2

w + ∥B∗∥2σ2
ν)

(
1 +

Tr∑
k=1

v2k−1,i

)
log

2n

δ

(
1 +

Tr∑
k=1

v2k−1,i

)1/2


+ 2σ2
w

1 +
t∑

k=Tr+1

v2k−1,i

 log

2n

δ

1 +
t∑

k=Tr+1

v2k−1,i

1/2
 for t > Tr.

Notice that TSAC stops additional isotropic perturbation after t = Tw, and the
state starts decaying until t = Tr. For simplicity of presentation we treat the
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time between Tw and Tr as TS with improved exploration while sacrificing the
tightness of the result. On ET , ∥vk∥ ≤ DS(n + d)n+d

√
1 + κ2 for k ≤ Tr and

∥vk∥ ≤ (12κ
2
+2κ

√
2)DSσw

√
1+κ

2

γ

√
2n log(n(t− Tw)/δ) for k > Tr. Thus, vk,i ≤

DS(n + d)n+d
√
1 + κ2 and vk,i ≤ (12κ

2
+2κ

√
2)DSσw

√
1+κ

2

γ

√
2n log(n(t− Tw)/δ)

respectively for k ≤ Tr and k > Tr . Using union bound we get, for probability at
least 1− δ

2
, for t > Tr,

R1,1 ≤ n

√
2(σ2

w + ∥B∗∥2σ2
ν)
(
1 + TrD

2S2(n+ d)2(n+d)(1 + κ2)
)
×√

log

(
4n

δ

(
1 + TrD

2S2(n+ d)2(n+d)(1 + κ2)
)1/2)

+ n

√√√√2σ2
w

(
1 +

2(t− Tr)(12κ
2 + 2κ

√
2)2D2S2nσ2

w(1 + κ2)

γ2 log(n(T − Tw)/δ)

)
×

√√√√log

(
4n

δ

(
1 +

2(t− Tr)(12κ
2 + 2κ

√
2)2D2S2nσ2

w(1 + κ2)

γ2 log(n(T − Tw)/δ)

))
.

Let Wexp = (σw + ∥B∗∥σν)
√

2n log 4nT
δ

and Wnoexp = σw

√
2n log 4nT

δ
. Define

Ψt = ζ⊺t−1P (Θ̃t)ζt−1 − E
[
ζ⊺t−1P (Θ̃t)ζt−1|Ft−2

]
and its truncated version Ψ̃t =

ΨtI{Ψt≤2DW
2
exp} for t ≤ Tw and Ψ̃t = ΨtI{Ψt≤2DW

2
noexp} for t > Tw . Notice that

R1,2 =
∑T

t=1Ψt.

P

(
Tw∑
t=1

Ψt > 2DW 2
exp

√
2Tw log

4

δ

)
+ P

 T∑
t=Tw+1

Ψt > 2DW 2
noexp

√
2(T − Tw) log

4

δ


≤ P

(
max

1≤t≤Tw

Ψt > 2DW 2
exp

)
+ P

(
max

Tw+1≤t≤T
Ψt > 2DW 2

noexp

)

+ P

(
Tw∑
t=1

Ψ̃t > 2DW 2
exp

√
2Tw log

4

δ

)
+ P

 T∑
t=Tw+1

Ψ̃t > 2DW 2
noexp

√
2(T − Tw) log

4

δ


By Lemma 2.G.4 with union bound and Theorem 2.G.2, summation of terms on
the right hand side is bounded by δ/2. Thus, with probability at least 1− δ/2, for
t > Tw,

R1,2 ≤ 4nDσ2
w

√
2(t− Tw) log

4

δ
log

4nT

δ
+4nD(σw+∥B∗∥σν)

2

√
2Tw log

4

δ
log

4nT

δ
.

Combining R1,1 and R1,2 gives the statement. ■
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Bounding RTS
T

Lemma 2.F.5 (Bounding RTS
T for TSAC). Let RTS

T be as defined by (2.112). Under
the event of ET , we have that∣∣RTS

T

∣∣ ≤ Õ
(√

nTw + poly(n, d, log(1/δ))
√

T − Tw

)
.

with probability at least 1 − 2δ if Tw = ω(
√
T log T ) for singular Ac,∗ and Tw =

ω(log T ) for non-singular Ac,∗.

Proof. We decompose RTS
T into two pieces as

RTS
T =

Tw∑
t=0

{
J∗(Θ̃t, σ

2
wI)− J∗(Θ∗, σ

2
wI)
}
1Et︸ ︷︷ ︸

R
TS,exp
Tw

+
T∑

t=Tw+1

{
J∗(Θ̃t, σ

2
wI)− J∗(Θ∗, σ

2
wI)
}
1Et︸ ︷︷ ︸

R
TS,noexp
T

Since every sampled system is in set S, we have that ∥P (Θ̃t)∥F ≤ D and therefore

RTS,exp
Tw

≤
Tw∑
t=0

|J∗(Θ̃t, σ
2
wI)− J∗(Θ∗, σ

2
wI)|1Et

≤
Tw∑
t=0

(
|J∗(Θ̃t, σ

2
wI)|+ |J∗(Θ∗, σ

2
wI)|

)
(2.127)

≤ √nσ2
w

Tw∑
t=0

(
∥P (Θ̃t)∥F + ∥P (Θ∗)∥F

)
≤ 2
√
nσ2

wDTw (2.128)

where we used the relation tr(P ) ≤ √n∥P∥F in (2.127). Considering the number
of times a new TS sample is drawn, the second term in RTS

T can be written as

RTS,noexp
K =

K∑
k=0

τ0

{
J∗(Θ̃tk

, σ2
wI)− J∗(Θ∗, σ

2
wI)
}
1Etk

where tk = Tw + 1 + kτ0 and K =
⌈
T−Tw

τ0

⌉
. Denoting the information available

to the controller up to time t ≥ 0 via F cnt
t := σ (Ft−1, xt), R

TS,noexp
K can be further

decomposed into two pieces as

RTS,noexp
K =

K∑
k=0

τ0

{
J∗(Θ̃tk

, σ2
wI)− E

[
J∗(Θ̃tk

, σ2
wI)

∣∣F cnt
tk
, Etk

]}
1Et︸ ︷︷ ︸

R
TS,1
K

,

+
K∑
k=0

τ0

{
E
[
J∗(Θ̃tk

, σ2
wI)

∣∣F cnt
t , Etk

]
− J∗(Θ∗, σ

2
wI)
}
1Etk︸ ︷︷ ︸

R
TS,2
K
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We will investigate each term in order under the event of ET .
BoundingRTS,1

K . Notice that{RTS,1
K }K≥0 is a martingale sequence with |RTS,1

K −RTS,1
K−1| ≤

2τ0σ
2
w

√
nD. Therefore it can be bounded by Azuma’s inequality (Lemma 2.G.2)

w.p. at least 1− δ as

RTS,1
K ≤ σ2

wD

√
8nτ 20K log(2/δ) ≤ σ2

wD
√

8nτ0(T − Tw) log(2/δ) (2.129)

BoundingRTS,2
K . Denoting bySopt :=

{
Θ ∈ R(n+d)×n

∣∣ J∗(Θ, σ2
wI) ≤ J∗(Θ∗, σ

2
wI)
}

the set of optimistic parameters and definingRTS,2
k :=

{
E
[
J∗(Θ̃tk

, σ2
wI)

∣∣F cnt
tk
, Etk

]
− J∗(Θ∗, σ

2
wI)
}
1Etk

.
Notice that, for any Θ ∈ Sopt, we can write

RTS,2
k ≤

{
E
[
J∗(Θ̃tk

, σ2
wI)

∣∣F cnt
tk
, Etk

]
− J∗(Θ, σ2

wI)
}
1Etk

≤ |J∗(Θ, σ2
wI)− E

[
J∗(Θ̃tk

, σ2
wI)

∣∣F cnt
tk
, Etk

]
|1Etk

As the above bound holds for any Θ ∈ Sopt, we can replace the right hand side with
an expectation over the optimistic set Sopt. Specifically, we choose an i.i.d. copy of
Θ̃tk

, that is, we choose a random variable Θ̃′
tk

which has the same distribution as Θ̃tk

and independent from it. Then, we have that

RTS,2
k ≤ E

[
|J∗(Θ̃′

tk
, σ2

wI)− E
[
J∗(Θ̃tk

, σ2
wI)

∣∣F cnt
tk
, Etk

]
|1Etk

∣∣F cnt
tk
, Etk

, Θ̃′
tk
∈ Sopt

]
=
E
[
|J∗(Θ̃′

tk
, σ2

wI)− E
[
J∗(Θ̃tk

, σ2
wI)

∣∣F cnt
tk
, Etk

]
|1Etk

1Θ̃
′
tk
∈Sopt

∣∣F cnt
tk
, Etk

]
P
(
Θ̃′

tk
∈ Sopt ∣∣F cnt

tk
, Êtk

)
Denoting by poptt = P

(
Θ̃′

t ∈ Sopt ∣∣F cnt
t , Êt

)
the probability of drawing cost opti-

mistic TS samples, we can write further bounds on RTS,2
k as

RTS,2
k ≤ 1

popttk

E
[
|J∗(Θ̃′

tk
, σ2

wI)− E
[
J∗(Θ̃tk

, σ2
wI)

∣∣F cnt
tk
, Etk

]
|
∣∣F cnt

tk
, Etk

]
=

σ2
w

popttk

E
[
|Tr
(
P (Θ̃′

tk
)− E

[
P (Θ̃tk

)
∣∣F cnt

tk
, Etk

])
|
∣∣F cnt

tk
, Etk

]
≤ nσ2

w

popttk

E
[∥∥∥P (Θ̃′

tk
)− E

[
P (Θ̃tk

)
∣∣F cnt

tk
, Etk

]∥∥∥
2

∣∣F cnt
tk
, Etk

]
(2.130)

where we used the relation |tr(A)| ≤ n∥A∥2. DenotingPk := E
[
P (Θ̃tk

)
∣∣F cnt

tk
, Etk

]
,

the following definition will be used in the rest of the section to understand the
behavior of RTS,2

k

∆k := E
[
∥P (Θ̃tk

)− Pk∥2
∣∣F cnt

tk
, Etk

]
(2.131)

The following lemma will be used to bound ∆k from above.
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Lemma 2.F.6. For any Θ ∈ S, any positive definite matrix V ∈ R(n+d)×(n+d), and
for any i, j ∈ [n],

∥∇Pij(Θ)∥V ≤ Γ∥H(Θ)∥V ,

where Γ ≥ 0 is a problem dependent constant.

Proof. Let δP (Θ, δΘ) be the differential of P (Θ) in the direction δΘ. Then, we
have that

δP (Θ, δΘ) = Ac(Θ)⊺δP (Θ, δΘ)Ac(Θ) (2.132)

+ Ac(Θ)⊺P (Θ)δΘ⊺H(Θ) +H(Θ)⊺δΘP (Θ)Ac(Θ)

where Ac(Θ) = Θ⊺H(Θ) is the closed-loop matrix. We know that P (Θ) satisfies
the Riccati equation as

P − A⊺
cPAc = Q+K⊺RK ≻ 0 =⇒

(
P

1
2AcP

− 1
2

)⊺
P

1
2AcP

− 1
2 ≺ I

where we dropped Θ dependence for simplicity. Therefore, similarity transformation
of the closed-loop matrix Āc := P

1
2AcP

− 1
2 is a contraction, i.e., ∥P 1

2AcP
− 1

2∥2 =:
σΘ < 1. Multiplying both sides of (2.132) by P− 1

2 we obtain

δP̄ (δΘ) = Ā⊺
cδP̄ (δΘ)Āc + Ā⊺

cP
1
2 δΘ⊺HP− 1

2 + P− 1
2H⊺δΘP

1
2 Āc

where δP̄ (δΘ) = P− 1
2 δP (δΘ)P− 1

2 . Taking the spectral norm of both sides and
using sub-multiplicativity of spectral norm as well as equivalence of matrix norms,
we have that

∥δP̄ (δΘ)∥2 ≤ ∥Ac∥22∥δP̄ (δΘ)∥2 + 2∥Āc∥2∥P
1
2 δΘ⊺HP− 1

2∥2
≤ ∥Ac∥22∥δP̄ (δΘ)∥2 + 2∥Āc∥2∥P

1
2 δΘ⊺HP− 1

2∥F
= σ2

Θ∥δP̄ (δΘ)∥2 + 2σΘ∥δΘ⊺H∥F

By rearranging the inequality and using the property ∥δΘ⊺H∥F ≤ ∥δΘ∥V −1∥H∥V ,
we obtain

∥δP̄ (δΘ)∥2 ≤
2σΘ

1− σ2
Θ

∥δΘ∥
V

−1∥H∥V

Observing that ∥δP (δΘ)∥2 = ∥P
1
2 δP̄ (δΘ)P

1
2∥2 ≤ ∥P∥2∥δP̄ (δΘ)∥2 ≤ D∥δP̄ (δΘ)∥2

and noting that ∥∇Pij(Θ)∥V = sup∥δΘ∥
V
−1=1 |δPij(δΘ)| ≤ sup∥δΘ∥

V
−1=1 ∥δP (δΘ)∥2,

one can get

∥∇Pij(Θ)∥V ≤
2DσΘ

1− σ2
Θ

∥H(Θ)∥V
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Observing that the function σΘ : S → R+ is continuous on S and σ∗ :=

maxΘ∈S σΘ < 1 as S is compact, we can further bound the scalar from above
by Θ independent constant Γ = 2Dσ∗

1−σ
2
∗
> 0. ■

The following lemma gives a useful upper bound on ∆k.

Lemma 2.F.7. Let ∆k be defined as in (2.131). Then, for all k ≥ 0, we have that

∆k ≤ 2n2υtkΓE
[
∥H(Θ̃tk

)∥
V

−1
tk

∣∣F cnt
tk
, Etk

]
.

Proof. The proof follows directly from applying the bound in Lemma 2.F.6 to
Equation 11 in [4]. ■

Finally, we are ready to give a bound on the summation of ∆k terms

Lemma 2.F.8. Let ∆k be defined as in (2.131) for any k ≥ 0. Then, the following
bound holds with probability at least 1− δ

K∑
k=0

∆k ≤
16n2αυTΓ

1 + 1
βT

 T∑
t=Tw+1

∥zt∥V −1
t

+ 2α

√
2
T − Tw

τ0

1 + κ2

µ
log

(
2

δ

)
≤ Õ(poly(n, d, log(1/δ))

√
T − Tw)

where α = (1 + 1/β2
0)(
√

2n log(3n) + υT + (1 + κ)SXs).

Proof. Define Θ̄tk
= Θ̂tk

+ βtk
V

− 1
2

tk
ηtk . Using Proposition 9 in [4], we have that

∥H(Θ̄tk
)∥

V
−1
tk

≤ 8

1 + 1
βtk

∥∥∥H(Θ̄tk
)E
[
xtk

x⊺
tk
1∥xtk

∥≤α

∣∣Ftk−1, Etk−1, Θ̄tk

]∥∥∥
V

−1
tk

≤ 8

1 + 1
βtk

∥∥∥E [H(Θ̄tk
)xtk

x⊺
tk
1∥xtk

∥≤α

∣∣Ftk−1, Etk−1, Θ̄tk

]∥∥∥
V

−1
tk

≤ 8α

1 + 1
βtk

E
[∥∥H(Θ̄tk

)xtk

∥∥
V

−1
tk

1∥xtk
∥≤α

∣∣Ftk−1, Etk−1, Θ̄tk

]
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By Lemma 2.F.7 and the preceding bound, we can write

∆k ≤ 2n2υtkΓE
[
∥H(Θ̃tk

)∥
V

−1
tk

∣∣F cnt
tk
, Etk

]
= 2n2υtkΓ

E
[
∥H(Θ̄tk

)∥
V

−1
tk

1Θ̄tk
∈S
∣∣F cnt

tk
, Etk

]
P
{
Θ̄tk
∈ S

∣∣F cnt
tk
, Etk

}
≤ 16n2αυtkΓ

1 + 1
βtk

E
[
E
[
∥H(Θ̄tk

)xtk
∥
V

−1
tk

1∥xtk
∥≤α

∣∣Ftk−1, Etk−1, Θ̄tk

]
1Θ̄tk

∈S
∣∣F cnt

tk
, Etk

]
P
{
Θ̄tk
∈ S

∣∣F cnt
tk
, Etk

}
=

16n2αυtkΓ

1 + 1
βtk

E[E[∥H(Θ̃tk
)xtk︸ ︷︷ ︸

ztk

∥
V

−1
tk

1∥xtk
∥≤α

∣∣Ftk−1, Etk−1, Θ̃tk
]
∣∣F cnt

tk
, Etk

]

︸ ︷︷ ︸
=:Yk

Notice that E
[
Yk

∣∣Ftk−1

]
= E

[
∥ztk∥V −1

tk

1∥xtk
∥≤α

∣∣Ftk−1

]
by law of iterated expec-

tations and ∥ztk∥V −1
tk

1∥xtk
∥≤α ≤ 1√

µ
∥H(Θ̃tk

)xtk
∥ 1∥xtk

∥≤α ≤
√

1+κ
2

µ
α.

Therefore, the sequence
{
Yk − ∥ztk∥V −1

tk

1∥xtk
∥≤α

}
k≥0

is a bounded martingale
difference sequence. By Azuma’s inequality, we have that with probability at least
1− δ,

K∑
k=0

(
Yk − ∥ztk∥V −1

tk

1∥xtk
∥≤α

)
≤ 2α

√
2
T − Tw

τ0

1 + κ2

µ
log

(
2

δ

)
We can bound the sum of ∥ztk∥V −1

tk

terms using Lemma 10 of [1] and Hölder’s
inequality as

K∑
k=0

∥ztk∥V −1
tk

≤
K∑
k=0

∥ztk∥V −1
tk

+
K∑
k=0

tk+1−1∑
t=tk+1

∥zt∥V −1
t

=
T∑

t=Tw+1

∥zt∥V −1
t
≤
√

T − Tw log
det(VT )

det(VTw
)

Combining these results, we obtain the desired bound

K∑
k=0

∆k ≤
16n2αυTΓ

1 + 1
βT

 T∑
t=Tw+1

∥zt∥V −1
t

+ 2α

√
2
T − Tw

τ0

1 + κ2

µ
log

(
2

δ

)
■

Now, we are ready to bound RTS,2
K . Under the event ET Theorem 2.5.1 suggests

that 1/ptopt ≤ O(1) if Tw = ω(
√
T log T ) for singular Ac,∗ and Tw = ω(log T ) for
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non-singular Ac,∗. Using this result together with Lemma 2.F.8, we have that

RTS,2
K =

K∑
k=0

τ0R
TS,2
k ≤ nσ2

wτ0

K∑
k=0

∆k

ptoptk

≤ Õ(poly(n, d)
√
(T − Tw) log(1/δ))

(2.133)
with probability at least 1− δ. Combining the above with (2.128) and (2.129), we
obtain the desired bound. ■

Bounding Rgap
T

Lemma 2.F.9 (Bounding Rgap
T for TSAC). Let Rgap

T be as defined by (2.115). Under
the event of ET , we have that

|Rgap
T | = Õ

(
poly(n, d)

√
T log(1/δ)

)
.

with probability at least 1− 2δ for large enough T .

Proof.

Rgap
T =

T∑
t=0

E
[
x⊺
t+1

(
P (Θ̃t+1)− P (Θ̃t)

)
xt+1 1Et+1

∣∣Ft

]
(2.134)

=
K∑
t=0

E
[
x⊺
tk+1

(
P (Θ̃tk+1)− P (Θ̃tk

)
)
xtk+1 1Etk+1

∣∣Ftk

]
(2.135)

Separating the duration of TSAC into two parts at t = Tr, we obtain two same term
achieved in [4]. Note that in Abeille and Lazaric [4], the authors follow frequent
update rule and TSAC updates every τ0 time-steps. The proof of these terms similarly
follow Section 5.2 in [4] and using Lemma 2.F.8 we obtain Õ((n+d)n+d√Tr+

poly(n, d)
√
T−Tr). Note that there is an additional τ0 factor in these bounds, due

to “relatively slower” update of TSAC. For large enough T such that the second term
dominates the overall upper bound, we obtain the advertised guarantee. ■

Proof of Theorem 2.4.1
Collecting the regret terms derived in subsections of Appendix 2.F, for large enough
T , under the event ET , we have that

Rexp
Tw

= Õ
(
(n+ d)n+dTw

)
, w.p. 1− δ

RRLS
T = Õ

(
(n+ d)n+d

√
Tr + poly(n, d, log(1/δ))

√
T − Tr

)
,

Rmart
T = Õ

(
(n+ d)n+d

√
Tr + poly(n, d, log(1/δ))

√
T − Tw

)
, w.p. 1− δ

Rgap
T = Õ

(
(n+ d)n+d

√
Tr + poly(n, d, log(1/δ))

√
T − Tr

)
, w.p. 1− 2δ
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and choosing Tw = ω(
√
T log T ) for singular Ac,∗ and Tw = ω(log T ) for non-

singular Ac,∗ gives

RTS
T = Õ

(
poly(n, d)Tw + poly(n, d, log(1/δ))

√
T − Tr

)
, w.p. 1− 2δ.

Recall that the event ET is true with probability at least 1− 4δ. Combining all these
bounds, we have the overall regret bound as

RT = Õ
(
(n+ d)n+dTw + poly(n, d, log(1/δ))

√
T − Tw

)
, w.p. 1− 10δ.

(2.136)

Notice that RT is linear in the initial exploration time Tw with an exponential dimen-
sion dependency. Also note that Tw ≥ T0 := poly(log(1/δ), σ−1

w , n, d, ᾱ, γ−1, κ)

guarantees a stabilizing controller by Lemma 2.4.2. In order to control the growth
of RT by Õ(

√
T ), the initial exploration time can maximally be in the order

of (
√
T )1+o(1) where T o(1) hides all multiplicative sub-polynomial growths, i.e.,

Tw = O
(
(
√
T )1+o(1)

)
= Õ(

√
T ).

On the other hand, Theorem 2.5.1 puts strict lower bounds on the growth ofTw in order
to maintain asymptotically constant optimistic probability. In particular, for singular
Ac,∗, this condition is stated as Tw = ω(

√
T log T ). Combined with the required

upper bound O
(
(
√
T )1+o(1)

)
, it must be that Tw = max

(
T0, c(

√
T log T )1+o(1)

)
for a constant c > 0 for large enough T . Inserting this result in (2.136) gives us

RT = Õ
(
(n+ d)n+d

√
T
)
, w.p. 1− 10δ

for large enough T . Observe that exponential dimension dependence is unavoidable
in this case as the system is excited with isotropic noise in every direction long
enough to dominate with exponential dimension.

For non-singular Ac,∗, the lower bound is stated as Tw = ω(log T ). For large
enough T , choosing Tw = max

(
T0, c(log T )

1+o(1)
)

for a constant c > 0 is suf-
ficient to satisfy both the upper and lower bounds on Tw. Inserting this result in
(2.136) gives us

RT = Õ
(
poly(n, d, log(1/δ))

√
T
)
, w.p. 1− 10δ

for large enough T . Observe that the exponential dimension dependence is not domi-
nant anymore since logarithmically large Tw is sufficient to guarantee asymptotically
constant optimistic probability.
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2.G Technical Theorems
Theorem 2.G.1 (Theorem 1 of Abbasi-Yadkori, Pál, and Szepesvári [1]). Let
(Ft; k ≥ 0) be a filtration and (mk; k ≥ 0) be an Rd-valued stochastic process
adapted to (Fk) , (ηk; k ≥ 1) be a real-valued martingale difference process adapted
to (Fk) . Assume that ηk is conditionally sub-Gaussian with constant R. Consider
the martingale

St =
∑t

k=1
ηkmk−1

and the matrix-valued processes

Vt =
∑t

k=1
mk−1m

⊺
k−1, V t = V + Vt, t ≥ 0

Then for any 0 < δ < 1, with probability 1− δ

∀t ≥ 0, ∥St∥2V −1
t
≤ 2R2 log

(
det
(
V t

)1/2
det(V )−1/2

δ

)
Theorem 2.G.2 (Azuma’s inequality). Assume that Xs is a supermartingale and
|Xs −Xs−1| ≤ cs almost surely for s ≥ 0. Then for all t > 0 and all ϵ > 0,

P (|Xt −X0| ≥ ϵ) ≤ 2 exp

( −ϵ2
2
∑t

s=1 c
2
s

)
Lemma 2.G.3 (Lemma 10 of Abbasi-Yadkori and Szepesvári [2]). The following
holds for any t ≥ 1 :

t−1∑
k=0

(
∥zk∥2V −1

k
∧ 1
)
≤ 2 log

det (Vt)

det(λI)

Further, when the covariates satisfy ∥zt∥ ≤ cm, t ≥ 0 with some cm > 0 w.p. 1 then

log
det (Vt)

det(λI)
≤ (n+ d) log

(
λ(n+ d) + tc2m

λ(n+ d)

)
Lemma 2.G.4 (Norm of Subgaussian vector). Let v ∈ Rd be a entry-wise R-
subgaussian random variable. Then with probability 1− δ, ∥v∥ ≤ R

√
2d log(d/δ).

Lemma 2.G.5 (Theorem 20 of Cohen, Koren, and Mansour [40]). Let zt ∈ Rn+d for
t = 0, 1, . . . be a sequence random variables that is adapted to a filtration {Ft}∞t=0 .

Suppose that zt are conditionally Gaussian on Ft−1 and that E
[
ztz

T
t | Ft−1

]
⪰ σ2

zI

for some fixed σ2
z > 0. Then for t ≥ 200(n+ d) log 12

δ
we have that with probability

at least 1− δ
t∑

s=1

zsz
T
s ⪰

tσ2
z

40
I.
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2.H Implementation Details of Numerical Experiments
The LQR problem for the longitudinal flight control of Boeing 747 with linearized
dynamics [113] is given as

A∗ =


0.99 0.03 −0.02 −0.32
0.01 0.47 4.7 0

0.02 −0.06 0.4 0

0.01 −0.04 0.72 0.99

 , B∗ =


0.01 0.99

−3.44 1.66

−0.83 0.44

−0.47 0.25

 , Q = I, R = I, w ∼ N (0, I).

(2.137)

This system has been studied in [140], [191]. It corresponds to the dynamics for
level flight of Boeing 747 at the altitude of 40000ft with the speed of 774ft/sec, for a
discretization of 1 second. The first element of the state corresponds to the velocity
of aircraft along body axis, the second is the velocity of aircraft perpendicular to
body axis, the third is the angle between body axis and horizontal and the fourth is
the angular velocity of aircraft. The system takes two dimensional inputs, where the
first is the elevator angle and the second one is thrust.

For this task we deploy 4 different adaptive control algorithms that do not require
initial stabilizing controller: (i) TSAC, (ii) StabL of Lale, Azizzadenesheli, Hassibi, et
al. [140], (iii) TS-LQR of Abeille and Lazaric [4], and (iv) OFULQ of Abbasi-Yadkori
and Szepesvári [2]. Each algorithm has certain hyperparamters and we tune each
parameter in terms of its effect on refret and present the performance of the best
performing hyperparameter choices. We use the actual estimation errors in the
algorithm design. Note that this has been observed to have negligible effect on the
performance [44].

To have fair comparison in the regret performance in a stabilizable system like
(2.137), we follow fixed update rule in TS-LQR in parallel with TSAC, and add
an additional minimum policy duration constraint to the standard design matrix
determinant doubling of OFULQ. Moreover, in the implementation of optimistic
parameter search we deploy projected gradient descent (PGD). Even though this
approach works efficiently for the small dimensional problems such as (2.137), it
becomes computationally challenging as the dimensionality of the system grows.
Nevertheless, our results show that PGD is effective to find optimistic parameters
and as observed in Lale, Azizzadenesheli, Hassibi, et al. [140] yields the superior
performance of StabL with a small margin between TSAC. This difference is in
parallel with the predictions of theory. As we show in our analysis, TS samples an
optimistic model with a fixed probability. However, an effective way of solving the
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optimistic control design problem yields optimistic controllers at every time-step
and gives more effective control over exploration vs. exploitation trade-off.
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C h a p t e r 3

LEARNING TO CONTROL PARTIALLY OBSERVED LINEAR
DYNAMICAL SYSTEMS

3.1 Introduction
In this work, we study the adaptive control of an unknown partially observable
(measurement-feedback) linear dynamical system with quadratic cost and Gaussian
disturbances, i.e. the LQG control problem. This problem is central in control
theory and reinforcement learning (RL) since it captures the crux of the challenges
in policy design for real-world systems with unknown model dynamics [31]. In such
systems, the controlling agent does not have access to the latent state of the system
and observes the dynamics via noisy measurements. Since the state of the system is
not directly observable, the challenges in system identification, and balancing the
exploration vs. exploitation trade-off in policy design, are especially magnified.

In recent years, there have been several developments in algorithmic design and
statistical learning guarantees in adaptive control [136]–[138], [159], [176], [211],
[223], [261]. These studies primarily focus on improving the performance of the
adaptive control algorithms in terms of regret (the excess cost against the optimal
policy that knows the system dynamics) and on computational efficiency. The
prior works that consider the regret minimization problem in adaptive control of
unknown LQG control systems mainly adopt three different paradigms for policy
design: certainty equivalence [159], online learning [136], [211], and the optimism
principle [137], [138]. Even though these methods provide a variety of algorithms
with strong theoretical regret guarantees, they suffer either from limited applicability
in practice or inherent algorithmic drawbacks (see Section 3.7).

Among these methods, the optimism principle provides the most sophisticated strategy
to handle the exploration vs. exploitation trade-off via selecting the model with the
lowest cost within the set of possible models and executing the optimal policy for this
model [117]. This strategy encourages exploration of rarely visited regions of the state
space and can be shown to converge to the optimal policy asymptotically [21]. Thus,
the optimism principle has been the central policy design option in the prior works on
adaptive control in unknown LQG control systems [137], [138]. These works have
established that using optimism, the adaptive control algorithms can attain Õ(

√
T )
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regret after T time steps, which is the best-known performance guarantee.1 However,
finding the model with the lowest cost, i.e., the optimistic model, requires solving a
non-convex optimization problem and it is NP-hard in general [6]. This computational
intractability severely limits the efficiency and applicability of these algorithms.

Thompson Sampling (TS) is a promising alternative to overcome the computational
burden of finding the optimistic policy [218]. In TS, the agent samples at random
from the posterior distribution of models computed from a given prior distribution
and the observed data and executes the corresponding LQG-optimal policy for this
model [222]. This approach replaces the cumbersome optimization in optimism
with straightforward sampling and results in a polynomial-time method. It should be
noted that in RL there are several empirical studies that demonstrate the efficacy of
TS-based methods [12], [34], [173]. Motivated by these computational and empirical
advantages, [4] proposed TS-based adaptive control algorithms for fully observable
(state-feedback) linear quadratic (LQ) control systems, i.e., LQRs. Their algorithm
attains optimal performance only for scalar systems. More recently, [126] developed
a TS-based adaptive control algorithm that attains optimal Õ(

√
T ) regret for all

stabilizable LQRs with arbitrary input and state dimensions. However, until this,
there have been no theoretical or empirical studies of TS for the more challenging
problem of adaptive control in unknown partially observable LQG control systems.

Our contributions: In this work, we theoretically and empirically study TS in
adaptive control of unknown partially observable LQG control systems. In particular,
we propose an efficient TS-based adaptive control algorithm, Thompson Sampling
under Partial Observability, TSPO, for learning and controlling unknown LQG
control systems. We show that TSPO attains Õ(

√
T ) regret after T time steps,

which makes TSPO the first efficient adaptive control algorithm to achieve this
regret rate for adaptive control of partially observable LQ control systems with
convex cost (Table 3.1). Furthermore, we empirically study the performance of
TSPO in the measurement-feedback control of a 2nd−order SISO system. We show
that TSPO effectively explores the model dynamics and achieves competitive regret
performance in a computationally efficient way.

TSPO starts with a short warm-up period to gather data to generate an initial model
estimate. It then interacts with the system in epochs where it uses a fixed controller
throughout each epoch. At the beginning of each epoch, TSPO uses a closed-loop
system identification method (via a predictor-form state-space representation) and

1Here Õ(·) presents order up to logarithmic terms.
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Warm-up

Estimate Model
Parameters

Construct Posterior
& Sample A Model

Deploy Optimal Policy
for Sampled Model

End of
Epoch

During
Epoch

Figure 3.1: TSPO Framework

estimates the underlying model parameters along with confidence intervals. Using
these estimates and associated uncertainties, TSPO constructs a posterior distribution
on the model parameters and randomly samples a model from it. Throughout the
epoch, it uses the optimal policy LQG for this sampled model. TSPO uses epochs with
doubling length, and adaptively improves the model estimates and the controllers.
The outline of TSPO is given in Figure 3.1. Conceptually, the TSPO method may not
seem very surprising. What is surprising is that the simple TSPO achieves Õ(

√
T )

regret. The main technical challenge of this paper is to establish this fact. To do
so, we first show that the regret of a fixed TS policy scales linearly over time with
respect to the estimation error in the model parameters (Theorem 3.4.4). Further, we
prove that TS policies maintain stable system dynamics and bounded inputs/outputs
provided a long enough warm-up duration (Theorem 3.4.1). Finally, we show that
model the estimates and the TS samples jointly concentrate around the true model
parameters over time (Theorem 3.4.2). Combining these results with the logarithmic
policy updates of TSPO, we prove that the regret of TSPO is Õ(

√
T ).

Due to space constraints, some of the proofs are given as sketches in this manuscript.
The details and full proofs can be found in the extended version of this work online.

3.2 Problem Setting
Let Θ⋆ :=(A⋆, B⋆, C⋆) with A⋆∈Rn×n, B⋆∈Rn×d, C⋆∈Rm×n be model parameters
of an environment modelled as a linear time-invariant dynamical system in state-space
form

xt+1 = A⋆xt +B⋆ut + wt,

yt = C⋆xt + vt,
(3.1)

where wt∼N (0,W ) and vt∼N (0, V ) are independent process and measurement
noise sequences, respectively, each with i.i.d. normal distribution with positive
definite covariance matrices W ∈Rn×n and V ∈Rm×m.
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Table 3.1: Comparison with prior works on adaptive control in partially observable
LQ control systems (CE = Certainty Equivalent, GD = Gradient Descent). S.Convex
stands for strongly convex cost, i.e., positive definite Q,R in (3.2)

Work Method Regret Cost Complexity

[159] CE
√
T S.Convex Polynomial

[211] Online GD
√
T S. Convex Polynomial

[136] Online GD polylog(T ) S. Convex Polynomial

[137] Optimism T 2/3 Convex NP-hard
[138] Optimism

√
T Convex NP-hard

[211] Online GD T 2/3 Convex Poly
Our Work TS

√
T Convex Polynomial

At each time step t≥ 0, an agent observes the output yt ∈ Rm when the system
is at (hidden) state xt ∈Rn. Based on the knowledge of past output observations
and control inputs, the agent then exerts a control input ut ∈ Rd and suffers an
instantaneous cost

ct := y⊺tQyt + u⊺
tRut, (3.2)

where Q∈Rm×m and R∈Rd×d are positive semidefinite and positive definite matrices,
respectively. After taking the control input ut, the state evolves to xt+1.

The goal of the agent is to reduce the cumulative cost
∑T

t=0 ct by deploying control
actions after T ≥ 0 number of interactions with the environment. This can be
achieved by finding the best control policy that minimizes the average expected cost
subject to the dynamical constraints in (3.1) as

J⋆ := lim sup
T→∞

inf
u0,...,uT

1

T
E
[∑T

t=0
ct

]
s.t. (3.1), (3.3)

where J⋆ is the optimal average expected cost of the system Θ⋆. Note that the
control input ut at a time t ≥ 0 can be designed based on the past input-output pairs,
Ht :=σ(yt, ..., y0, ut−1, ..., u0). Any control policy that attains the cost of J⋆ in (3.3)
is called an optimal control policy.

In the adaptive control setting, the agent is assumed to be unacquainted with the
model parametersΘ⋆ and has to design control inputs without knowing the underlying
system. In this case, the agent can learn the model parameters of the underlying
system from past interactions with the environment and can design control inputs at
the same time accordingly based on past observations and inputs. Due to uncertainty
in the true system, the agent deploys a suboptimal control policy even after several
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interactions. We measure the finite-time performance of the agent by regret defined
as

R(T ) :=
∑T

t=0
(ct − J⋆) (3.4)

which is the difference between the cumulative cost the agent suffers after T

interactions and the optimal steady-state cost attained after T steps with the perfect
knowledge of Θ⋆.

In order to assure that J⋆ attains a finite value, we assume that the underlying system,
Θ⋆ is controllable and observable. The optimal control policy of the system Θ⋆ is
given by ut = −K⋆x̂t|t(Θ⋆) with optimal feedback matrix

K⋆ := (R +B⊺
⋆P⋆B⋆)

−1B⊺
⋆P⋆A⋆, (3.5)

where P⋆ is the unique positive semidefinite solution to the following discrete
algebraic Riccati equation (DARE):

P⋆=A
⊺
⋆P⋆A⋆ + C⊺

⋆QC⋆−A⊺
⋆P⋆B⋆(R +B⊺

⋆P⋆B⋆)
−1B⊺

⋆P⋆A⋆. (3.6)

The term x̂t|t(Θ⋆) is the minimum mean squared error (MMSE) estimate of the
underlying state xt assuming system parameters Θ⋆ and given the past information
defined as Ht := σ(yt, . . . , y0, ut−1, . . . , u0). The estimates can be computed
efficiently by Kalman filter recursions given as

x̂t|t(Θ⋆) = (I − L⋆C⋆)x̂t|t−1(Θ⋆) + L⋆yt,

x̂t|t−1(Θ⋆) = A⋆x̂t−1|t−1(Θ⋆) +B⋆ut−1,
(3.7)

with initial condition x̂0|−1(Θ⋆) = 0 where

L⋆ := Σ⋆C
⊺
⋆ (C⋆Σ⋆C

⊺
⋆ + V )−1, (3.8)

is the optimal Kalman gain and Σ⋆ is the unique positive semidefinite solution to the
following DARE:

Σ⋆=A⋆Σ⋆A
⊺
⋆+W−A⋆Σ⋆C

⊺
⋆ (C⋆Σ⋆C

⊺
⋆+V )−1C⋆Σ⋆A

⊺
⋆. (3.9)

The optimal average expected cost of controlling Θ⋆ takes a finite value and can be
computed as

J(Θ⋆) = tr(Q(C⋆Σ⋆C
⊺
⋆ + V )) + tr(P⋆(Σ⋆ − S⋆)) (3.10)
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where S⋆ := Σ⋆ − Σ⋆C
⊺
⋆ (C⋆Σ⋆C

⊺
⋆ + V )−1C⋆Σ⋆ is the covariance of the error

x̂t|t(Θ⋆)− xt. The dynamical system Θ⋆ depicted in the state-space formulation in
(3.1) can be equivalently represented as

x̂t+1 = Ā⋆x̂t +B⋆ut + F⋆yt

yt = C⋆x̂t + et
(3.11)

where F⋆ :=A⋆L⋆ is the predictor gain, Ā⋆ :=A⋆−F⋆C⋆, and {et} is the zero mean
and white innovation process. This equivalent representation is commonly known
as the predictor form [120], [121] and the state x̂t can considered to be equivalent
to x̂t|t−1(Θ⋆), the MMSE estimate of state xt given (yt−1, . . . , y0, ut−1, . . . , u0).
Since Kalman filter (3.7) converges to the steady state exponentially fast [172], the
innovations process in the predictor form (3.11) attains the steady-state distribution
et∼N (0, C⋆Σ⋆C

⊺
⋆+V ) and therefore the current output yt is described by the history

of inputs and outputs with an i.i.d. normal disturbance, et.

In our study, we will use the notion of strong stability introduced in [39] to quantify
the stability of a matrix.

Definition 3.2.1 (Strong stability [39]). A matrix A ∈ Rn×n is (κ, γ)-stable for
κ> 0 and γ ∈ (0, 1] if there exists a similarity transformation A = SΛS−1 such that
∥S∥∥S−1∥ ≤ κ and ∥Λ∥ ≤ 1− γ.

Before stating the assumptions on Θ⋆, we define the following metric to quan-
tify the mismatch between model parameters which is invariant under similarity
transformation as these transformations preserve the input-output dynamics.

Definition 3.2.2 (Model Mismatch Pseudometric). Given two model parameters
Θ1 = (A1, B1, C1), Θ2 = (A2, B2, C2), we define the following pseudo-metric

ρ(Θ1,Θ2) := min
T,S∈GLn

max


∥T−1A1T−S−1A2S∥,
∥T−1B1−S−1B2∥,
∥C1T−C2S∥


which is invariant under similarity transformations.

Assumption 3.2.3. The system Θ⋆ = (A⋆, B⋆, C⋆) lies in a set S such that

S ⊆


Θ = (A,B,C)

∣∣∣∣∣∣∣∣∣∣∣∣

A is (κ1, γ1)-stable,
(A,C) is observable,
(A,B) is controllable,

(A,F (Θ)) is controllable,
max(∥A∥, ∥B∥, ∥C∥) ≤ D


,
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Algorithm 2 TSPO

1: Input: (n,m, d), (Q,R), Tw, H , δ > 0, µ > 0, D > 0
—— Warm-Up ————————————————

2: for t = 0, 1, . . . , Tw do
3: Deploy ut∼N (0, σ2

uI) and store D0={yt, ut}Tw
t=1

4: end for
—— Adaptive Control ———————————–

5: for i = 0, 1, . . . do
6: Compute (M̂i, Vi)←RLS(Di = {yt, ut}2

i
Tw

t=0 , µ)

7: Sample M̃i ← RS(M̂i+βiV
−1

2
i Ξ), [Ξ]ij∼N (0, 1)

8: Θ̃i ← SysId (M̃i, H, n)
9: for t = 2iTw+1, . . . , 2i+1Tw do

10: Execute the optimal controller for Θ̃i

11: end for
12: end for

where D> 0, κ1 > 0, and γ1 ∈ (0, 1]. Furthermore, S consists of strongly stable
systems, i.e., there exist constants κ2, κ3>0 and γ2, γ3∈(0, 1] such that A−BK(Θ)

is (κ2, γ2)-stable and A−F (Θ)C is (κ3, γ3)-stable for all Θ∈S .

The above assumptions are standard in system identification settings in order to
ensure the possibility of accurate estimation of the system parameters [136]–[138],
[159], [176], [198], [211], [224], [261].

Remark 3.2.4. By assuming controllability and observability of the underlying system
with state dimension n, we implicitly assume the order of the underlying system is
also n, i.e., the system is in its minimal representation. We adopt this assumption
for ease of presentation. There are several efficient algorithms that find the order
of an unknown linear dynamical system [198]. Using these techniques, we can lift
the assumption on the order of the system without jeopardizing any performance
guarantees.

3.3 Thompson Sampling under Partial Observability (TSPO)
In this section, we present our proposed algorithm TSPO, the first computationally
efficient and regret optimal RL algorithm for partially observable linear-quadratic
control systems with convex instantaneous cost. TSPO is provided in Algorithm 2.
It consists of two phases: (i) Warm-up period for pure exploration, (ii) Adaptive
control using TS.

Warm-up: In the early stages, TSPO excites the system by injecting i.i.d.isotropic
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Gaussian noise ut ∼N (0, σ2
u) for a duration of Tw ≥ 0 and collects samples of

observed output and control input, D0 = {(yt, ut)}Tw
t=0. By exciting the system with

i.i.d.noise, TSPO explores the system effectively and generates a reliable initial
estimate of the underlying model using the data collected. The warm-up duration,
Tw, is set to meet a desired estimation accuracy so that any policy designed from the
confidence set is guaranteed to stabilize and persistently excite the underlying system.
We provide formal guarantees for stabilization in Theorem 3.4.1 and for estimation
accuracy in Theorem 3.4.2.

Adaptive Control: After guaranteeing the design of stabilizing and persistently
exciting policies during the warm-up phase, TSPO proceeds to the adaptive control
phase. In this phase, TSPO cycles through epochs of fixed-policy control with
doubling duration. At the beginning of each epoch, TSPO updates its policy based
on input-output data gathered up to that time. The policy design involves three steps.

In the first step, TSPO deploys subroutine RLS to perform a closed-loop model
estimation from the collected input-output data using regularized least squares.
Consider the predictor form of system Θ⋆ given in (3.11). Rolling back the state
evolution H > 0 time steps back, we can write the observation at time t ≥ H as
follows

yt=
∑H−1

s=0
C⋆Ā

s
⋆

[
F⋆ B⋆

] [yt−s−1

ut−s−1

]
+et+C⋆Ā

H
⋆ x̂t−H .

Since Ā⋆ is stable by Assumption 3.2.3, the last term decays exponentially fast and is
negligible for large enough H . Using this definition and following [136], the output
yt can be written compactly as follows

yt =M⋆ϕt + et + C⋆Ā
H
⋆ x̂t−H (3.12)

whereM⋆ ∈ Rm×(m+d)H is the H-truncated matrix of predictor Markov parameters
defined as

M⋆ :=
[
M (0)

⋆ . . . M (H−1)
⋆

]
, (3.13)

with M (s)
⋆ :=C⋆Ā

s
⋆[F⋆ B⋆]. The vector ϕt ∈R(m+d)H is the truncated history of

input-output data defined as

ϕt :=
[
y⊺t−1 . . . y⊺t−H u⊺

t−1 . . . u⊺
t−H

]⊺
(3.14)

Thus, any input-output trajectory D = {ys, us}ts=0 up to time t ≥ H can be
represented as

Yt = ΦtM⊺
⋆ + Et +Nt (3.15)
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for Yt=
[
yH yH+1 . . . yt

]⊺
, Φt=

[
ϕH ϕH+1 . . . ϕt

]⊺
, Et=

[
eH eH+1 . . . et

]⊺
,

Nt=C⋆Ā
H
⋆

[
x̂0 x̂1 . . . x̂t−H

]⊺
.

The subroutine RLS takes any input-output trajectory data D = {ys, us}ts=0 for
t ≥ H , and constructs the data matrices Yt and Φt. Provided with a regularization
parameter µ > 0, RLS obtains an estimate of the unknown truncated ARX model
M⋆ by solving the following regularized least square problem first introduced in
[136],

M̂t := argminM ∥Yt − ΦtM
⊺∥2F + µ∥M∥2F . (3.16)

Denoting the design matrix by Vt :=µI + Φ⊺
tΦt, the solution to (3.16) is given by

M̂t = YtΦtV
−1
t . In Lemma 3.3.1, we give a self-normalized finite-sample estimation

error for the closed-loop estimate M̂t following [136, Thm. 3].

Lemma 3.3.1 (Closed-Loop Estimation, [136]). Fix a horizon T ≥ H . For all
t∈ [H,T ] and δ∈(0, 1), true ARX modelM⋆ lies in the set Ĉt defined as

Ĉt :=
{
M | tr((M̂t −M)Vt(M̂t −M)⊺) ≤ β2

t

}
(3.17)

with probability at least 1− δ where

βt :=

√√√√mΣe log

(
det(Vt)

1/2

δ det(µI)1/2

)
+ ∥M⋆∥F

√
µ+

t
√
H

T 2

for Σe :=∥C⋆Σ⋆C
⊺
⋆+V ∥F , as long as H≥Hc :=Ω(log T ).

In the second step, TSPO calls subroutine TS to further explore the unknown system
by sampling a random model from a distribution incorporating the estimated model
and the associated uncertainty in the estimation. Given the estimate M̂t and the
design matrix Vt at time t ≥ Tw, TS samples a perturbed truncated ARX model M̃t

as follows
M̃t = RS(M̂t+βtV

−1
2

t Ξ) (3.18)

whereRS denotes the rejection sampling operator associated with the set S given
in Assumption 3.2.3, βt is the confidence ellipsoid bound in Lemma 3.3.1, and
Ξ ∈ Rm×(m+d)H is the random perturbation matrix with i.i.d.standard normal entries,
[Ξ]ij ∼ N (0, 1).

The perturbation βtV
− 1

2
t Ξ randomizes the RLS estimate coherently with the un-

certainty conveyed by the design matrix. The rejection sampling operator RS
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keeps sampling independent random perturbations Ξ until the perturbed model
M̂t+βtV

− 1
2

t Ξ lies in set S. The following lemma gives the confidence set for the
sampled M̃t.

Lemma 3.3.2 (TS confidence set). For all t≥H , the sampled ARX model M̃t lies in
the set C̃t defined as

C̃t :=
{
M | tr((M̂t −M)Vt(M̂t −M)⊺) ≤ ν2

t

}
(3.19)

with probability at least 1− δ where

νt := βtm
√

2(m+ d)H log
(
2m(m+ d)HTδ−1

)
(3.20)

Proof. We bound the probability of belonging to C̃t as

P(∀t ≤ T,M̃t ∈ C̃t) = 1− P(∃t ≤ T,M̃t /∈ C̃t) (3.21)

≥ 1−
∑T

i=0
P(M̃t /∈ C̃t) (3.22)

≥ 1−
∑T

i=0
P(∥Ξ∥F ≥ νt/βt) (3.23)

≥ 1− δ (3.24)

where (3.22) is due to union bound, (3.23) is due to rejection sampling and (3.24) is
due to Gaussian norm bound. ■

In the last step of policy design, TSPO deploys subroutine SysId to obtain a state-space
realization from the sampled truncated ARX matrix using a system identification
method introduced by [136]. SysId is a subspace identification algorithm and a
variation of well-known Ho-Kalman method [105]. By taking inM̃t, SysId constructs
corresponding block Hankel matrices using sampled Markov parameters M̃ (s)

t and
uses SVD and Assumption 3.2.3 to recover model parameters Θ̃t := (Ãt, B̃t, C̃t)

realizing the system governed by the truncated ARX model M̃t. A detailed
description of SysId can be found in [136]. In the following, we show that
propagation of error from truncated ARX model to the state-space realization
designed by SysId is linear.

Lemma 3.3.3 (Error propagation in SysId [136]). Suppose Assumption 3.2.3 holds.
Let Θ′

⋆=(A′
⋆, B

′
⋆, C

′
⋆) and Θ̃=(Ã, B̃, C̃) be the model realizations obtained from

M⋆ and M̃ using SysId, respectively. The error between Θ′
⋆ and Θ̃ as measured in ρ

can be bounded as follows

ρ(Θ̃,Θ′
⋆) ≤ ℓ∥M̃ −M⋆∥ (3.25)
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if∥M̃−M⋆∥≤ϵM , for positive problem dependent constants ℓ=poly(n,H,D, κ2, γ2)

and ϵM =poly(n,H,D, κ2, γ2).

In the rest of the epoch, TSPO deploys the optimal control policy of the sampled
model Θ̃t given as ut = −K̃tx̂t|t(Θ̃t) where K̃t is the optimal feedback matrix of
Θ̃t and x̂t|t(Θ̃t) is the MMSE estimate of the state assuming system Θ̃t. Repeating
this, TSPO keeps collecting samples during each epoch and uses the gathered data
for refined model estimation, uncertainty quantification, and uncertainty-informed
model sampling to further improve controller design in the next epoch. Due to
reliable model estimation from the warm-up period, the controller designed right
after the warm-up and all subsequently designed controllers stabilize and persistently
excite the underlying model (Theorem 3.4.2)

3.4 Algorithmic Guarantees
In this section, we derive the algorithmic guarantees promised in Section 3.3. In
particular, we formally state the guarantees pertaining to stability and persistence of
excitation of the system under TSPO. We eventually show that the model mismatch
error, i.e., error between the sampled model and the underlying model decays as
Õ(1/

√
t).

In the rest of this manuscript, we use asymptotic notation and hide problem-dependent
constants to streamline the exposition as we are mainly interested in the regret rate
with respect to the horizon, T . We also note that all the constants in this manuscript,
where some are omitted to ease the presentation, have polynomial dependence in the
problem-dependent constants.

As shown in [138, Lem. 3.1], the underlying system is persistently excited, i.e.,
σmin(VTw

) = Ω(Tw) during the warm-up period by injection of Gaussian input.
Using the concentration result for the closed-loop estimation in Lemma 3.3.1, the
estimation error at the end of warm-up period is bounded as

∥M̂Tw
−M⋆∥F ≤

βTw

σmin(VTw
)
≤ Õ

(
1√
Tw

)
(3.26)

Similarly, for the perturbation error in TS, we have ∥M̃Tw
−M̂Tw

∥F =Õ(1/
√
Tw).

This gives ∥M̃Tw
−M⋆∥F =Õ(1/

√
Tw). By Lemma 3.3.3, we obtain the final model

mismatch as ρ(Θ̃Tw
,Θ⋆)=Õ(1/

√
Tw) for Tw≥H+Ω̃(1/ϵ2M).

Our next objective is to find guarantees for stabilizing and persistently exciting policy
design right after the warm-up period. Our strategy is to set Tw so that model
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mismatch error after the warm-up ρ(Θ̃Tw
,Θ⋆) is small enough to yield the desired

policy. The following lemma shows that the underlying system can be stabilized by
the optimal controller of another model with small model mismatch error.

Lemma 3.4.1 (Stability and Persistence of Excitation). Suppose that system Θ⋆∈S
is controlled by the optimal policy of a model Θ̃∈S for a duration of τ ≥ 0. For all
t ≤ τ and δ ∈ (0, 1), with probability 1− δ, we have that

∥xt∥ ≤ X̄τ , ∥yt∥ ≤ Ȳτ ,

∥x̂t|t(Θ̃)∥ ≤ X̄τ , ∥ut∥ ≤ Ūτ ,
(3.27)

where X̄τ , Ȳτ , X̄τ , Ūτ = O(
√

log(τ/δ)) whenever the model mismatch error is
small as ρ(Θ̃,Θ⋆) ≤ ϵs for a problem dependent constant ϵs > 0. Moreover,
assuming the system Θ⋆ is persistently excited by its optimal controller, we have
the following σmin(Vt) ≥ tσ2

p min(σ2
min(W ), σ2

min(V ))/16, with probability 1 − δ

whenever ρ(Θ̃,Θ⋆) ≤ ϵp for problem dependent constants ϵp, σp > 0 [138].

Due to space constraints, we provide a proof sketch. Given the optimal control policy
of Θ̃, we construct a 2n-dimensional autonomous linear dynamical system of joint
evolution of the state xt and the Kalman filter x̂t|t(Θ̃). By showing that the joint
evolution is stable when the system Θ⋆ is controlled by its own optimal controller, we
can create a neighborhood (ρ-ball) around Θ⋆ such that any model in the proximity
yields a (κ′, γ′)-stable joint evolution with κ′, γ′ = poly(κ1, κ2, κ3, γ1, γ2, γ3, D).
Similar to prior work in finding a stabilizing neighborhood, e.g. [140], we deduce
the estimation error that we can tolerate such that the TS controllers for the systems
sampled within the confidence sets, stabilize the underlying system. The proof of
persistence of excitation also follows similarly by constructing a neighborhood of
Θ⋆ such that any controller from that neighborhood persistently excites as well. A
detailed version of this proof can be found in [138, Lem. 3.2].

Here we assume that there exists a σp > 0 such that the underlying system is
persistently excited with its own optimal controller. The necessary conditions for this
is given in [138]. Following Lemma 3.4.1, Tw≥H + Ω̃

(
max(1/ϵ2M , 1/ϵ2s, 1/ϵ

2
p)
)

guarantees that TSPO stabilizes and persistently excites the underlying system right
after the warm-up during the first epoch in adaptive control period. Noticing that
refining the model estimation by collecting more data in the subsequent epochs
does not decrease the design matrix, we can argue that the model mismatch error in
the next epochs does not increase. Therefore, all controllers designed by TSPO in
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the subsequent epochs stabilize and persistently excite the underlying system by
Lemma 3.4.1. This leads to the following end-to-end result guaranteeing improving
model mismatch error and stability throughout the adaptive control period.

Theorem 3.4.2 (End-to-End Guarantee). Fix a time horizon T ≥ Tw. Denote
by Θ̃i the model parameter obtained by TSPO at the beginning of the ith epoch
and by Ti := 2iTw the time passed until the beginning of the ith epoch. For all
i = 0, 1, . . . , ⌊log(T/Tw)⌋ and δ ∈ (0, 1), the model mismatch error decays with
probability at least 1− δ as

ρ(Θ̃i,Θ⋆) ≤ Õ(T
−1/2
i ) (3.28)

Moreover, (xt, yt, x̂t|t, ut) are bounded with high probability as in (3.27) throughout
the adaptive control phase.

Proof. Observing Vt ≽ VTw
for any t ≥ Tw, we can argue for the chosen Tw that

ρ(Θ̃1,Θ⋆) ≤ ρ(Θ̃0,Θ⋆). Therefore, the requirements of Lemma 3.4.1 are satisfied
and the system is stabilized and persistently excited in the next epoch as well. This
yields ρ(Θ̃1,Θ⋆) ≤ Õ(1/

√
2Tw). Following the same argument recursively, we

conclude that the desired results hold for all the subsequent epochs. ■

We end this section with regret bounds for fixed policies. The following meta-theorem
gives a regret upper bound for deploying a i.i.d.Gaussian excitation for a fixed period.

Theorem 3.4.3 (Regret of Gaussian Excitation, [137]). Suppose system Θ⋆∈S with
dynamics (3.1) is driven by an i.i.d.normal Gaussian input process, ut∼N (0, σ2

uI).
For δ∈(0, 1), the regret incurred after τ≥0 steps is bounded as

R(τ) ≤ poly(σu)τ + poly

(
σu, log

(
1

δ

))
Õ(
√
τ). (3.29)

with probability at least 1− δ.

The following meta-theorem provides an upper bound on the regret of controlling a
system Θ⋆ by deploying the optimal policy of another system Θ̃ for a fixed period of
time. This result shows that inaccuracies in due to model mismatch are propagated
linearly in regret with linear-time growth. By controlling the model mismatch error
in each fixed-policy epoch, we can reduce the regret to a desired level.
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Theorem 3.4.4 (Regret of Model Mismatch). Suppose that system Θ⋆ ∈ S is
controlled by the optimal policy of a model Θ̃ ∈ S for a duration of τ ≥ 0. For
δ ∈ (0, 1), with probability 1− δ, the regret incurred due to model mismatch after
τ≥0 steps is bounded as

RΘ̃(τ) ≤ Õ(ρ(Θ̃,Θ⋆)τ). (3.30)

with probability at least 1 − δ whenever the model mismatch error is small as
ρ(Θ̃,Θ⋆)≤min(ϵs, ϵr) for a problem dependent constant ϵs>0.

Proof. We split the regret as follows:

RΘ̃(τ) =
∑τ

t=0
(ct − J̃) + τ(J̃ − J⋆), (3.31)

where J̃ is the optimal average expected cost of Θ̃. Note that the dynamical variables
are all bounded by Lemma 3.4.1 as ρ(Θ̃,Θ⋆)≤ϵs. Therefore, following the analysis
of [137, Thm. 4.1], we can bound the first term as Õ(ρ(Θ̃,Θ⋆)τ). For the second
regret term, consider δΘ:=Θ̃−Θ⋆ the difference between models. Without loss of
generality, we can argue

ϵ := max(∥δA∥F , ∥δC∥F , ∥δC∥F ) = ρ(Θ̃,Θ⋆). (3.32)

Notice that the optimal average expected cost function, J(Θ) given in (3.10) is a
smooth function of its parameters, Θ within the highly non-convex domain S. In
order to obtain an error bound on the difference J̃ − J⋆, we can use linearized
Taylor expansion in the close vicinity of Θ⋆. In other words, there exists a problem
dependent constant ϵr > 0 such that for ϵ ≤ ϵr, we have that

J̃ − J⋆ = ∇ΘJ(Θ) • δΘ
≤ max(∥∇AJ(Θ)∥, ∥∇BJ(Θ)∥, ∥∇CJ(Θ)∥)ϵ

where Θ1 •Θ2 := tr(A1A
⊺
2) + tr(B1B

⊺
2) + tr(C1C

⊺
2 ) is the Euclidean inner product

and Θ = Θ⋆ + tδΘ for t ∈ [0, 1]. Taking the supremum of the last inequality over all
Θ ∈ S and noting that ∇ΘJ(Θ) is a continuous function over the compact set S , we
obtain the error bound J̃ − J⋆ ≤ ΓS ϵ where ΓS is the maximum norm of ∇ΘJ(Θ)

attained in S . Substituting this result into the regret decomposition yields the desired
regret bound. ■
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3.5 Regret Analysis
In this section, we formally state our main regret result for TSPO utilizing the
algorithmic guarantees and fixed-policy regret bounds developed in Section 3.3.
Theorem 3.4.3 shows that random exploration in the warm-up period incurs linear
regret, i.e., O(Tw). In order to analyze the regret incurred during the adaptive control
period, the system should be stabilized and the model mismatch error should decay.
For a fixed horizon T ≥ Tw, we define the following events

ĒT :=
{
∀i ∈ [0, iT ], ∥x̂t|t(Θ̃i)∥ ≤ X̄ , ∥yt∥ ≤ Ȳ

}
(3.33)

ẼT :=

{
∀i ∈ [0, iT ], ρ(Θ̃i,Θ⋆) ≤ Õ

(
1√
Ti

)}
(3.34)

where X̄ , Ȳ = O(
√
log T ), iT := ⌊log(T/Tw)⌋, and Ti := 2iTw is the total time

passed until the beginning of the ith epoch. It is clear from Theorem 3.4.2 that the
intersection ĒT ∩ ẼT holds with high probability under the Assumption 3.2.3 if
Tw≥H+Ω̃

(
1

min(ϵ
2
M ,ϵ

2
s,ϵ

2
p,ϵ

2
r)

)
. This result is critical for the regret analysis as it shows

that inaccuracies in the estimation, as well as the random perturbations from TS are
refining with the order of data collected in the past epochs and these errors, do not
cause explosions in the system. With these results in hand, we give an upper bound
on the overall regret of TSPO.

Theorem 3.5.1 (Regret of TSPO). Suppose Assumption 3.2.3 holds. Fixing a horizon
T >0, let H=max(2n+ 1,Ω(log T )) and Tw≥H+Ω

(
1

min(ϵ
2
M ,ϵ

2
s,ϵ

2
p,ϵ

2
r)

)
. The regret

incurred by TSPO up to horizon T is bounded with high probability as

RTSPO(T ) = Õ(
√
T ). (3.35)

Proof. We split the overall regret into individual regrets incurred during the warm-up
period and each of the epochs in the adaptive control period as

RTSPO(T ) = R(Tw) +
∑iT

i=0
Ri(Ti+1 − Ti) (3.36)

where Ri is the regret incurred during ith epoch. From Theorem 3.4.3, we have that
R(Tw) = Õ(Tw). From Theorem 3.4.4, we can bound each regret term as

Ri(Ti+1 − Ti) ≤ Õ(ρ(Θ̃i,Θ⋆)(Ti+1 − Ti)) (3.37)

Noting that ρ(Θ̃i,Θ⋆)≤Õ(1/
√
Ti) by Theorem 3.4.2, we have

Ri(Ti+1 − Ti) ≤ Õ
(Ti+1 − Ti√

Ti

)
= Õ

(√
2iTw

)
(3.38)
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Figure 3.2: Regret Performance

Summing all these terms for iT = ⌊log(T/Tw)⌋, we obtain
∑iT

i=0Ri(Ti+1 − Ti) =

Õ(
√
T ). ■

For the systems whose optimal policy is not a persistently exciting controller, we
provide the following regret bound.

Theorem 3.5.2 (Regret without PE). If the underlying system Θ⋆ is not persistently
excited with its optimal policy, TSPO incurs the following regret with high probability,

RTSPO(T ) = Õ
(
Tw +

T − Tw√
Tw

)
(3.39)

Thus, setting Tw=O(T 2/3) gives RTSPO(T )=Õ(T 2/3).

Proof. Similar to the proof of Theorem 3.5.1, TSPO incurs Õ(Tw) regret during
warm-up. Since the system is not guaranteed to be persistently excited, the best
error bound for model mismatch error is attained right after warm-up. In other
words, ρ(Θ̃i,Θ⋆) ≤ Õ(1/

√
Tw) for all epochs. By substituting this error result in

the regret decomposition by invoking Theorem 3.4.4, the desired bound is obtained.
Substituting Tw = O(T 2/3) yields the specified bound. ■

3.6 Numerical Simulations
In this section, we evaluate the performance of TSPO in a simulated adaptive
measurement-feedback control task. In the simulations, we used state-space parame-
ters given as

A⋆ =

[
0.9 0

0 0.7

]
, B⋆ =

[
1

2

]
, C⋆ =

[
2 1

]
(3.40)

with Q=R=I and isotropic Gaussian process and measurement noise with standard
deviations as σw=σv=0.05. We set the hyperparameters of TSPO as follows: ARX
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model truncation length H = 10, warm-up period Tw = 12, Gaussian excitation
covariance σu=0.01, RLS regularization parameter µ=0.01, and δ=0.05.

We perform 100 independent runs for 200 time-steps for TSPO and report their
average and 90% confidence interval. The results are presented in Figure 3.2. The
simulation results demonstrate that the regret over time almost stabilizes for the given
system and the growth is sub-quadratic, matching the theoretical findings.

3.7 Related Works
Our work mainly relates to the works at the intersection of statistical learning and
control. Recently, there have been considerable efforts to give finite-time regret
guarantees for adaptive control algorithms in linear dynamical systems. TSPO fits
into this line of work and overcomes some of the drawbacks of prior algorithms.

Fully Observable LQ Control (LQR): Due to their simplicity, state-feedback LQ
control problems have been the primary focus in prior work [4], [63], [64], [126],
[140], [174], [210]. These works have established that Õ(

√
T ) regret is optimal

in this setting. Some of these methods rely on certainty equivalent (CE) control
which is sensitive to model mismatch and requires a priori knowledge of a stabilizing
controller [210]. Some of them utilize optimism and avoid the need for a stabilizing
controller, yet suffer from the inefficient (generally NP-hard) algorithmic proce-
dure [64], [140]. TS-based methods overcome these drawbacks and have recently
been shown to provide the first efficient adaptive control algorithm to achieve optimal
regret in all stabilizable LQRs [126]. TS is also shown to be efficient in the control
of continuous-time systems [61].

Partially Observable LQ Control: The statistical learning literature on measurement-
feedback systems is more sparse due to the challenges of partial observability [136]–
[138], [159], [211]. Among these, CE-based method in [159] attains Õ(

√
T ) regret

if the quadratic cost is strongly convex (Q,R≻0), which is only a subset of systems
studied in this work. Similarly, under strongly convex cost condition, [211] show that
Õ(
√
T ) regret is attainable using online learning (gradient descent), and [136] further

prove that optimal polylogarithmic regret is achievable in this setting. However,
these results non-trivially rely on the strong convexity of the cost. Until now, the only
efficient algorithm that provides regret guarantees in the setting of convex cost is given
in [211], which also uses online learning but attains sub-optimal regret of Õ(T 2/3).
TSPO and its guarantees match this result in the most general setting (Theorem 3.5.2),
i.e. if the underlying system is not persistently excited by its optimal policy, and
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show that Õ(
√
T ) regret is also attainable efficiently (Theorem 3.5.1).

3.8 Conclusion
In this work, we provide the first efficient adaptive control algorithm, TSPO, that
attains Õ(

√
T ) regret in partially observable LQ control systems with quadratic

cost. We show that TSPO provides consistent estimates of the model parameters and
designs controllers that stabilize the underlying system. Moreover, we show that the
regret performance of controllers designed via TS improves linearly with respect
to model estimation error, which allows us to derive our regret guarantees. One of
the most important future directions is to further investigate the role of persistence
of excitation (PE). In LQR literature, [126] shows that without PE, one can attain
Õ(
√
T ) using a self-normalized construction in the analysis. It remains an open

problem if this result could be extended to the LQG control problem. Another
important direction is to see whether TSPO can achieve polylogarithmic regret under
strongly convex cost conditions.

3.A Proof of Lemma 3.4.1 (Stability and PE)
2. Proof of Lemma 3.3.1 (closed-loop estimation)

3. Proof of Lemma 3.3.2 (TS confidence set)

4. Proof of Lemma 3.3.3 (SysId error propagation)

5. Proof of Lemma 3.4.1 (Stability and PE)

6. Proof of Theorem 3.4.2 (End-to-End Guarantee)

7. Proof of Theorem 3.4.3 (Regret of Gaussian Excitation)

8. Proof of Theorem 3.4.4 (Regret of Model Mismatch)

9. Proof of Theorem 3.5.1 (Regret of TSPO)

10. Proof of Theorem 3.5.2 (Regret without PE)

Lemma 3.A.1 (Strong stability of perturbation [225, Prop. 4.0.1]). Suppose the
matrix A ∈ Rn×n is (κ, γ)-stable for κ ≥ 1 and γ ∈ [0, 1). For γ′ ∈ [γ, 1) and
perturbation ∆ ∈ Rn×n, the perturbed matrix A + ∆ is (κ, γ′)-stable whenever
∥∆∥ ≤ κ−1(γ′ − γ).
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Lemma 3.A.2 (Bounded state [32, Lem. 38]). Suppose the matrix A ∈ Rn×n is
(κ, γ)-stable for κ ≥ 1 and γ ∈ [0, 1) and the matrix B ∈ Rn×m has bounded norm,
∥B∥ ≤ D for D ≥ 0. Consider the linear dynamical system

xt+1 = Axt +Bwt, for all t ≥ 0. (3.41)

Given two time steps 0 ≤ t0 ≤ t1 <∞, we have that

∥xt∥ ≤ κγt−t0∥xt0
∥ + κD

1− γ
max

s∈[t0,t1]
∥ws∥, (3.42)

for all t ∈ [t0, t1].

Proof.

xt = At−t0xt0
+
∑t−1

s=t0
At−s−1Bws (3.43)

∥xt∥ ≤ ∥At−t0∥∥xt0
∥ +

∑t−1

s=t0
∥At−s−1∥∥B∥∥ws∥ (3.44)

≤ κγt−t0∥xt0
∥ + κD max

s∈[t0,t1]
∥ws∥

∑t−1

s=t0
γt−s−1 (3.45)

≤ κγt−t0∥xt0
∥ + (1− γ)−1κD max

s∈[t0,t1]
∥ws∥ (3.46)

■

Lemma 3.A.3 (Strong stability under model mismatch). Suppose that a system
Θ:=(A,B,C)∈S is controlled by the optimal policy of a model Θ̃ :=(Ã, B̃, C̃)∈S .
The closed-loop dynamics is (κ′, γ′)−stable if dist(Θ̃,Θ) ≤ ϵstab where

κ′ :=
4κc∨κo∥BK(I − LC)∥

1− γc∨γo
, γ′ :=

3 + γc∨γo
4

, (3.47)

ϵstab := ϵK,L ∧
(1− γc∨γo)2

16κc∨κo∥BK(I − LC)∥cΦ
, (3.48)

and cΦ > 0 is a problem-dependent polynomial constant.
ϵK,L is the maximum mismatch bound required to obtain first-order perturbation
bounds on K and L. Replace ∥BK(I − LC)∥ with a constant independent of
models but only on S

Proof. use lemma D1, lemma D3, and Theorem J3

xt+1 = Axt +But + wt

yt = Cxt + vt
(3.49)
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x̂t+1|t = (A−BK)(I − LC)x̂t|t−1 + (A−BK)Lyt (3.50)

ut = −K(I − LC)x̂t|t−1 −KLyt (3.51)

[
xt+1

x̂t+1|t

]
=

[
A−BKLC −BK(I−LC)

(A−BK)LC (A−BK)(I−LC)

]
︸ ︷︷ ︸

Φ

[
xt

x̂t|t−1

]
+

[
I −BKL

0 (A−BK)L

]
︸ ︷︷ ︸

Ξ

[
wt

vt

]

(3.52)

[
yt

ut

]
=

[
C 0

−KLC −K(I−LC)

]
︸ ︷︷ ︸

Ψ

[
xt

x̂t|t−1

]
+

[
0 I

0 −KL

]
︸ ︷︷ ︸

Υ

[
wt

vt

]
(3.53)

Defining st := xt − x̂t|t−1

[
xt

st

]
=

[
I 0

I −I

]
︸ ︷︷ ︸

T

[
xt

x̂t|t−1

]
,

[
xt

x̂t|t−1

]
=

[
I 0

I −I

]
︸ ︷︷ ︸

T
−1

[
xt

st

]
, (3.54)

[
xt+1

st+1

]
=

[
A−BK BK(I − LC)

0 A− FC

]
︸ ︷︷ ︸

TΦT
−1

[
xt

st

]
+

[
I −BKL

I −AL

]
︸ ︷︷ ︸

TΞ

[
wt

vt

]

[
yt

ut

]
=

[
C 0

−K K(I − LC)

]
︸ ︷︷ ︸

ΨT
−1

[
xt

st

]
+

[
0 I

0 −KL

]
︸ ︷︷ ︸

Υ

[
wt

vt

] (3.55)

TΦT−1 = (A−BK)⊕ (A− FC) +

[
0 BK(I − LC)

0 0

]
(3.56)

The direct sum (A − BK) ⊕ (A − FC) is (2max(κc, κo), max(γc, γo))-stable
by Lemma 3.C.4. The remaining block matrix on the right-hand side has all its
eigenvalues at zero and its powers are exactly the zero matrices. Therefore, we claim
it is

(
2∥BK(I−LC)∥
1−max(γc,γo)

, 1−max(γc,γo)
2

)
-stable.
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κ⋆ :=
4max(κc, κo)∥BK(I − LC)∥

1−max(γc, γo)
, γ⋆ :=

1 + max(γc, γo)

2
(3.57)

Therefore, the joint closed-loop dynamics of the underlying system together with its
optimal controller is (κ⋆, γ⋆)-stable.

x̂t+1|t(Θ̃) = (Ã− B̃K̃)(I − L̃C̃)x̂t|t−1(Θ̃) + (Ã− B̃K̃)Lyt (3.58)

ut = −K̃(I − L̃C̃)x̂t|t−1(Θ̃)− K̃L̃yt (3.59)

[
xt+1

x̂t+1|t(Θ̃)

]
=

[
A−BK̃L̃C −BK̃(I−L̃C̃)

(Ã−B̃K̃)L̃C (Ã−B̃K̃)(I−L̃C̃)

]
︸ ︷︷ ︸

Φ̃

[
xt

x̂t|t−1(Θ̃)

]
+

[
I −BK̃L̃

0 (Ã−B̃K̃)L̃

]
︸ ︷︷ ︸

Ξ̃

[
wt

vt

]

(3.60)

[
yt

ut

]
=

[
C 0

−K̃L̃C −K̃(I − L̃C̃)

]
︸ ︷︷ ︸

Ψ̃

[
xt

x̂t|t−1(Θ̃)

]
+

[
0 I

0 −K̃L̃

]
︸ ︷︷ ︸

Υ̃

[
wt

vt

]
(3.61)

Defining s̃t := xt − x̂t|t−1(Θ̃)

[
xt

s̃t

]
=

[
I 0

I −I

]
︸ ︷︷ ︸

T

[
xt

x̂t|t−1(Θ̃)

]
,

[
xt

x̂t|t−1(Θ̃)

]
=

[
I 0

I −I

]
︸ ︷︷ ︸

T

[
xt

s̃t

]
, (3.62)

[
xt+1

s̃t+1

]
= T Φ̃T−1

[
xt

s̃t

]
+ T Ξ̃

[
wt

vt

]
[
yt

ut

]
= Ψ̃T−1

[
xt

s̃t

]
+ Υ̃

[
wt

vt

] (3.63)

Φ̃−Φ = Φ
(1)
∆ +Φ

(2)
∆ +Φ

(3)
∆ +Φ

(4)
∆ (3.64)

Φ
(1)
∆ :=

[
−B(K∆−KLC∆) −(KLC∆ +KL∆C−K∆(I−LC))

−A∆+B∆K+ALC∆ (A∆−B∆K)(I−LC)−A(LC∆+L∆C)

]
(3.65)
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∥Φ(1)
∆ ∥ ≤ 2∥B(K∆−KLC∆)∥+2∥A∆−B∆K−ALC∆∥

+∥B(KL∆+K∆L)C∥+∥(A∆−B∆K)LC−AL∆C∥
≤ (2+∥LC∥)∥A∆∥+(2∥K∥+∥KLC∥)∥B∆∥+2(∥AL∥+∥BKL∥)∥C∆∥

+(2+∥LC∥)∥B∥∥K∆∥+(∥A∥+∥BK∥)∥C∥∥L∆∥
≤ c

(1)
Φ for ∆ ≤ ϵK,L

where

c
(1)
Φ := 2+∥LC∥+2∥K∥+∥KLC∥+2(∥AL∥+∥BKL∥)

+(2+∥LC∥)∥B∥cK+(∥A∥+∥BK∥)∥C∥cL

Φ
(2)
∆ :=

[
B(KL∆+K∆L)C∆ −B(KL∆C∆+K∆LC∆+K∆L∆C)

(A∆−B∆K)LC∆+AL∆C∆+B∆K∆ −(A∆−B∆K)(LC∆+L∆C)−AL∆C∆−B∆K∆(I−LC)

]
(3.66)

∥Φ(2)
∆ ∥ ≤ 2∥B(KL∆+K∆L)C∆∥+2∥(A∆−B∆K)LC∆+AL∆C∆+B∆K∆∥

+∥BK∆L∆C∥+∥(A∆−B∆K)L∆C−B∆K∆LC∥
≤ 2∥BK∥∥L∆C∆∥+2∥B∥∥L∥∥K∆∥∥C∆∥+2∥L∥∥A∆∥∥C∆∥

+2∥KL∥∥B∆∥∥C∆∥+2∥A∥∥L∆C∆∥+2∥B∆K∆∥+∥B∥∥C∥∥K∆L∆∥
+∥C∥∥A∆L∆∥+∥K∥∥C∥∥B∆∥∥L∆∥+∥LC∥∥B∆K∆∥

≤ c
(2)
Φ ∆2 for ∆ ≤ ϵK,L

where

c
(2)
Φ := 2∥BK∥cL+2∥B∥∥L∥cK+2∥L∥+2∥KL∥+2∥A∥cL

+2cK+∥B∥∥C∥cKcL+∥C∥cL + ∥K∥∥C∥cL+∥LC∥cK

Φ
(3)
∆ :=

[
BK∆L∆C∆ −BK∆L∆C∆

(A∆−B∆K)L∆C∆−B∆K∆LC∆ −(A∆−B∆K)L∆C∆+B∆K∆(LC∆+L∆C)

]
(3.67)
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∥Φ(3)
∆ ∥ ≤ 2∥BK∆L∆C∆∥+2∥(A∆−B∆K)L∆C∆−B∆K∆LC∆∥+∥B∆K∆L∆C∥
≤ 2∥B∥∥K∆L∆C∆∥+2∥A∆L∆C∆∥+2∥K∥∥B∆∥∥L∆C∆∥

+2∥L∥∥B∆K∆∥∥C∆∥+∥C∥∥B∆K∆L∆∥
≤ c

(3)
Φ ∆3 for ∆ ≤ ϵK,L

where

c
(3)
Φ := 2∥B∥cKcL+2cL+2∥K∥cL+2∥L∥cK+∥C∥cLcK

Φ
(4)
∆ :=

[
0 0

−B∆K∆L∆C∆ B∆K∆L∆C∆

]
(3.68)

∥Φ(4)
∆ ∥ ≤ 2∥B∆K∆L∆C∆∥ (3.69)

≤ 2cKcL∆
4 for ∆ ≤ ϵK,L (3.70)

≤ c
(4)
Φ ∆4 for ∆ ≤ ϵK,L (3.71)

∥Φ̃−Φ∥ ≤ ∥Φ(1)
∆ ∥ + ∥Φ

(2)
∆ ∥ + ∥Φ

(3)
∆ ∥ + ∥Φ

(4)
∆ ∥ (3.72)

≤ c
(1)
Φ ∆+ c

(2)
Φ ∆2 + c

(3)
Φ ∆3 + c

(4)
Φ ∆4 for ∆ ≤ ϵK,L (3.73)

≤ cΦ∆ for ∆ ≤ ϵK,L (3.74)

where

cΦ := c
(1)
Φ + c

(2)
Φ ϵK,L + c

(3)
Φ ϵ2K,L + c

(4)
Φ ϵ3K,L

For cΦ∆ ≤ 1−γ⋆
2κ⋆

, we have that Φ̃ is (κ⋆,
1+γ⋆
2

)−stable by Lemma 3.A.1. Therefore,

∆ ≤ ϵstab := min

(
ϵK,L,

1− γ⋆
2κ⋆cΦ

)
(3.75)

guarantees the desired result. ■
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Lemma 3.A.4 (Precise Stability Statement of Lemma 3.4.1). Suppose that a system
Θ⋆∈S is controlled by the optimal policy of a model Θ̃∈S for a duration of τ ≥ 0.
For δ ∈ (0, 1), the closed-loop dynamics is bounded for all t ≤ τ as

∥xt∥ ≤ X̄τ :=, (3.76)

∥yt∥ ≤ Ȳτ :=, (3.77)

∥x̂t|t(Θ̃)∥ ≤ X̄τ :=, (3.78)

∥ut∥ ≤ Ūτ := O(
√
log(τ/δ)) (3.79)

with probability 1− δ whenever the model mismatch error is small as dist(Θ̃,Θ⋆)≤
ϵbdd, where

ϵbdd := (3.80)

Proof. The closed-loop dynamics is given as[
xt+1

x̂t+1|t(Θ̃)

]
=

[
A⋆−B⋆K̃L̃C⋆ −B⋆K̃(I−L̃C̃)

(Ã−B̃K̃)L̃C⋆ (Ã−B̃K̃)(I−L̃C̃)

]
︸ ︷︷ ︸

Φ̃

[
xt

x̂t|t−1(Θ̃)

]
+

[
I −B⋆K̃L̃

0 (Ã−B̃K̃)L̃

]
︸ ︷︷ ︸

Ξ̃

[
wt

vt

]

[
yt

ut

]
=

[
C⋆ 0

−K̃L̃C⋆ −K̃(I−L̃C̃)

]
︸ ︷︷ ︸

Ψ̃

[
xt

x̂t|t−1(Θ̃)

]
+

[
0 I

0 −K̃L̃

]
︸ ︷︷ ︸

Υ̃

[
wt

vt

]

Observe that fordist(Θ̃,Θ⋆)≤ϵstab, the closed-loop evolution matrix Φ̃ is (κ′, γ′)−stable
by Lemma 3.A.3.

Denoting by A∆ := Ã−A⋆, B∆ :=B̃−B⋆, C∆ := C̃−C⋆, K∆ :=K̃−K⋆, L∆ := L̃−L⋆

the mismatch errors, we have the following perturbation results for closed-loop
dynamics.

■

3.B Proof of Theorem 3.4.2 (End-to-End Guarantee)
Lemma 3.B.1 (Bounded state in time-varying dynamics [32, Lem. 39]). Suppose
{Ai}I−1

i=0 ⊂ Rn×n are (κ, γ)-stable matrices for κ ≥ 1 and γ ∈ [0, 1), and {Bi}I−1
i=0 ⊂

Rn×m are bounded as max0≤i≤I−1 ∥Bi∥ ≤ D for D ≥ 0. For a fixed horizon T ≥ 0,
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let {ti}Ii=0 ⊂ N such that 0 ≤ t0 ≤ · · · ≤ tI ≤ T . Consider the following
time-varying linear dynamical system

∀i < I, ∀t ∈ [ti, ti+1), xt+1 = Aixt +Biwt. (3.81)

Suppose further that

τ := min
i<I
|ti+1 − ti| ≥

log(κ/ρ)

log(1/γ)
(3.82)

for ρ ∈ (0, 1). Then, we have that,

∥xt∥ ≤ (κ+ 1)max

(
∥xt0
∥, κDWT

(1− γ)(1− ρ)

)
, for all t ∈ [t0, tI ], (3.83)

where WT := maxt∈[0,T ]∥wt∥.

strong stability of the closed-loop system (value of κ) depends on the similarity
transformations. So this is not a well-defined property for a closed-loop system.
Consider defining an alternative strong stability constant for Markov parameters.

Theorem 3.B.2 (Precise End-to-End Guarantee of Theorem 3.4.2). Fix a time horizon
T ≥ Tw. Denote by Θ̃i the model parameter obtained by TSPO at the beginning of
the ith epoch and by Ti := 2iTw the time passed until the beginning of the ith epoch.
For all i = 0, 1, . . . , ⌊log(T/Tw)⌋ and δ∈ (0, 1), the model mismatch error decays
with probability at least 1− δ as

dist(Θ̃i,Θ⋆) ≤ Õ(T
−1/2
i ) (3.84)

Moreover, (xt, yt, x̂t|t, ut) are bounded with high probability as in (3.27) throughout
the adaptive control phase.

Proof. 1. Long enough warm-up period Tw to guarantee a small model mismatch
error (TS+RLS) at the end of the warm-up
2. Using the small model mismatch error by the end of the warm-up, guarantee
strong stability of the closed-loop, boundedness, and PE during the first epoch
3. By stability, boundedness, and PE during the first epoch, guarantee smaller model
mismatch error by the end of the first epoch.
4. Using the small model mismatch error by the end of the first epoch, guarantee
strong stability of the closed-loop, boundedness, and PE during the second epoch
5. Repeat the same argument for every epoch to obtain the strong stability of
closed-loop dynamics, boundedness, PE, and decaying model mismatch error rate

■
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3.C Technical Theorems
Theorem 3.C.1 (sub-Gaussian tail inequality). Let B ∈ Rn×m be a matrix and define
W := B⊺B. Suppose that w ∈ Rm is a zero-mean sub-Gaussian random vector with
parameter σ > 0, i.e.,

E [exp(λ⊺w)] ≤ exp(∥λ∥2σ2/2), for all λ ∈ Rm. (3.85)

For any δ ∈ (0, 1), we have that

∥Bw∥2 ≤ σ2

(
∥W∥1 + 2∥W∥2

√
log

(
1

δ

)
+ 2∥W∥∞ log

(
1

δ

))
(3.86)

with probability at least 1− δ.

Theorem 3.C.2 (sub-Gaussian tail inequality v2). Suppose that w ∈ Rn is a
zero-mean sub-Gaussian random vector with parameter σ > 0, i.e.,

E [exp(λ⊺w)] ≤ exp(∥λ∥2σ2/2), for all λ ∈ Rn. (3.87)

For any δ ∈ (0, 1), we have that

∥w∥ ≤ σ

√
2n log

(
2n

δ

)
(3.88)

with probability at least 1− δ.

Theorem 3.C.3 (independent sub-Gaussian vectors). Suppose that {wt}Tt=1 ⊂ Rn

is a collection of T > 0 independent and zero-mean sub-Gaussian random vectors
with parameter σ > 0. For any δ ∈ (0, 1), we have that

WT := max
0≤t≤T

∥wt∥ ≤ σ

√
2n log

(
2nT

δ

)
(3.89)

with probability at least 1− δ.

Proof.

P

{
max
0≤t≤T

∥wt∥ ≤ W

}
=
∏T

t=1
P {∥wt∥ ≤ W} (3.90)

= (1− P {∥w1∥ > W})T (3.91)

≥ 1− T P {∥w1∥ > W} (3.92)

■
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Lemma 3.C.4. Suppose thatA,B ∈ Rn×n are (κA, γA) and (κB, γB) stable matrices.
Then, we have that

i. A+B is (κAκB, γA + γB)-stable,

ii. A⊕B is (2max(κA, κB),max(γA, γB))-stable.

Proposition 3.C.5 (Proper Transfer Functions). Let G : Ĉ → Ĉm×d be a matrix-
valued complex function such that the (i, j)th entry is a rational function with real
coefficients, i.e., Gij ∈ R(z). G is proper if and only if G(z) = C(zI −A)−1B+D

for some A ∈ Rn×n, B ∈ Rn×d, C ∈ Rm×n, D ∈ Rm×d. Such a quadruple
(A,B,C,D) is called a realization of G with dimension n ∈ N

Definition 3.C.6 (Minimal realization). Suppose G(z) is a proper transfer matrix. A
realization (A,B,C,D) of G with A ∈ Rn×n is called a minimal realization if and
only if there is no other realization with dimension no less than n.

Proposition 3.C.7. Suppose G(z) is a proper transfer matrix. A realization
(A,B,C,D) of G is minimal if and only if (A,B) is controllable and (A,C)

is observable.

Proposition 3.C.8. Suppose G(z) is a proper transfer matrix. The following
statement hold.

i. If (A,B,C,D) is a realization of G, then (TAT−1, TB,CT−1, D) is also a
realization for any invertible matrix (of appropriate size) T .

ii. G(z) is strictly proper if and only if D = 0.
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C h a p t e r 4

FINITE-HORIZON DISTRIBUTIONALLY ROBUST CONTROL

4.1 Introduction
Regret-optimal control [48], [82], [161], [191], [219], is a new approach in control
theory that focuses on minimizing the regret associated with control actions in
uncertain systems. The regret measures the cumulative difference between the
performance achieved by a causal control policy and the performance achieved by an
optimal policy that could have been chosen in hindsight. In regret-optimal control,
the worst-case regret over all ℓ2-norm-bounded disturbance sequences is minimized.

Distributionally robust control [219], [220], [247], [258], on the other hand, addresses
uncertainty in system dynamics and disturbances by considering a set of plausible
probability distributions rather than relying on a single distribution as in LQG control,
or on a worst-case disturbance, such as in H∞ or RO control. This approach seeks
to find control policies that perform well across all possible distributions within
the uncertainty set, thereby providing robustness against model uncertainties and
ensuring system performance in various scenarios. The size of the uncertainty set
allows one to control the amount of desired robustness so that, unlike H∞ controllers,
say, the controller is not overly conservative. The uncertainty set is most often taken
to be the set of disturbances whose distributions are within a given Wasserstein-2
distance of the nominal disturbance distribution. The reason is that, for quadratic
costs, the supremum of the expected cost over a Wasserstein ball reduces to a tractable
semi-definite program (SDP).

The current paper considers and extends the framework introduced in [219] that
applied distributionally robust (DR) control to the regret-optimal (RO) setting. In
the full-information finite-horizon setting, the authors of [219] reduce the DR-RO
problem to a tractable SDP. In this paper, we extend the results of [219] to partially
observable systems where, unlike the full-information setting, the controller does
not have access to the system state. Instead, it only has access to partial information
obtained through noisy measurements. This is often called the measurement feedback
(MF) problem. Of course, the solution to the measurement feedback problem in
LQG and H∞ control is classical. The measurement-feedback setting for DR control
has been studied in [220], [93], and for RO control in [81].
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In the finite-horizon case, we reduce the DR-RO control problem with measurement
feedback to an SDP similar to the full-information case studied in [219]. Furthermore,
we validate the effectiveness and performance of our approach through simulations,
showcasing its applicability in real-world control systems.

The organization of the paper is as follows. In section 4.2, we review the LQG
and regret optimal control formulation in the measurement-feedback setting. In
section 4.3, we present the distributionally robust regret-optimal with measurement
feedback (DR-RO-MF) problem formulation, in section 4.4 we reformulate the
problem as a tractable SDP, and in section 4.5 we show numerical results for
controlling the flight of a Boeing 747 [114].

4.2 Preliminaries
Notations
R denotes the set of real numbers, N is the set of natural numbers, ∥ · ∥ is the 2-norm,
E(·) is the expectation over (·),M(·) is the set of probability distributions over (·)
and Tr denotes the trace.

A Linear Dynamical System
We consider the following state-space model of a discrete-time, linear time-invariant
(LTI) dynamical system:

xt+1 = Axt +But + wt,

yt = Cxt + vt.
(4.1)

Here, xt ∈ Rn represents the state of the system, ut ∈ Rm is the control input,
wt ∈ Rn is the process noise, while yt ∈ Rp represents the noisy state measurements
that the controller has access to, and vt ∈ Rp is the measurement noise. The
sequences {wi} and {vi} are considered to be randomly distributed according to an
unknown joint probability measure P which lies in a specified compact ambiguity
set, P . For simplicity, we take x0 to be zero.

In the rest of this paper, we adopt an operator form representation of the system
dynamics (4.1). To this end, assume a horizon of N ∈ N, and let us define

x :=


x0

x1

...
xN−1

 ∈ RNn , u :=


u0

u1

...
uN−1

 ∈ RNm
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and similarly for y ∈ RNp, w ∈ RNn, and v ∈ RNp. Using these definitions, we can
represent the system dynamics (4.1) equivalently in operator form as

x = Fu+Gw,

y = Ju+ Lw + v,
(4.2)

where F ∈ RNn×Nm, G ∈ RNn×Nn, J ∈ RNp×Nm, and L ∈ RNp×Nn are strictly
causal time-invariant operators (i.e, strictly lower triangular block Toeplitz matrices)
corresponding to the dynamics (4.1).

We consider the Linear-Quadratic Gaussian (LQG) cost given as

J(u,w, v) := xTQx+ uTRu (4.3)

where Q,R ≻ 0 are positive definite matrices of the appropriate dimensions. In
order to simplify the notation, we redefine x and u as x← Q

1
2x, and u← R

1
2u, so

that (4.3) becomes
J(u,w, v) = ∥x∥2 + ∥u∥2. (4.4)

Controller Design
We consider a linear controller that has only access to the measurements:

u = Ky, K ∈ K, (4.5)

where K ⊆ RNm×Np is the space of causal (i.e., lower triangular) matrices. Then,
the closed-loop state measurement becomes

y = (I − JK)−1(Lw + v). (4.6)

As in [81], let
E = K(I − JK)−1, (4.7)

be the Youla parametrization, so that

K = (I + EJ)−1E. (4.8)

The closed-loop LQG cost (4.4) can then be written as:

J(K,w, v) =
[
wT vT

]
T T
KTK

[
w

v

]
, (4.9)

where TK is the transfer operator associated with K that maps the disturbance

sequences

[
w

v

]
to the state and control sequences

[
x

u

]
:

TK :=

[
FEL+G FE

EL E

]
. (4.10)
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Regret-Optimal Control with Measurement-Feedback
Given a noncausal controller K0∈K, we define the regret as:

R(K,w, v) := J(K,w, v)− J(K0, w, v), (4.11)

=
[
wT vT

]
(T T

KTK − T T
K0
TK0

)

[
w

v

]
, (4.12)

which measures the excess cost that a causal controller suffers by not knowing the
future. In other terms, regret is the difference between the cost accumulated by a
causal controller and the cost accumulated by a benchmark noncausal controller that
knows the complete disturbance trajectory. The problem of minimizing regret in the
measurement-feedback setting is referred to as (RO-MF) and is formulated as:

inf
K∈K

sup
w,v

R(K,w, v)

∥w∥2 + ∥v∥2
, (4.13)

which is solved suboptimally by reducing it to a level-1 suboptimal Nehari problem
[81].

4.3 Distributionally Robust Regret-Optimal Control
In this section, we introduce the distributionally robust regret-optimal (DR-RO)
control problem with measurement feedback, which we refer to as DR-RO-MF.

In this setting, the objective is to find a controller K∈K that minimizes the maximum
expected regret among all joint probability distributions of the disturbances in an
ambiguity set P . This can be formulated formally as

inf
K∈K

sup
P∈P

EP [R(K,w, v)], (4.14)

where the disturbances

[
w

v

]
are distributed according to P ∈P .

To solve this problem, we first need to characterize the ambiguity set P and explicitly
determine a benchmark noncausal controller K0. As in [219], we choose P to be the
set of probability distributions that are at a distance of at most r > 0 to a nominal
probability distribution, P0∈M(RN(n+p)). Here, the distance is chosen to be the
type-2 Wasserstein distance defined as [197]:

W 2
2 (P1, P2) := inf

π∈Π(P1,P2)

∫
Rn×Rn

∥z1−z2∥2 π(dz1, dz2),



110

where the set Π(P1, P2) comprises all joint distributions that have marginal distribu-
tions P1 and P2. Then, P can be written as:

P := {P ∈M(RN(n+p)) |W2(P0, P ) ≤ r}. (4.15)

Unlike the full-information case, we know from Theorem 1 in [81] that in the
measurement feedback case, there is no optimal noncausal controller that dominates
every other controller for every disturbance. Therefore, we will choose K0 as the
optimal noncausal controller that minimizes the Frobenius norm of TK . Theorem 3
in [81] shows that such a controller can be found as:

K0 = (I + E0J)
−1E0, (4.16)

where the associated operator, TK0
is:

TK0
=

[
FE0L+G FE0

E0L E0

]
, (4.17)

with

E0 := −T−1F TGLTU−1, (4.18)

T := I + F TF, (4.19)

U := I + LLT . (4.20)

4.4 Tractable Formulation
In this section, we introduce a tractable reformulation of the DR-RO-MF control
problem (4.14).

DR-RO-MF Control Problem
Defining

CK := T T
KTK − T T

K0
TK0

, (4.21)

we can rewrite the DR-RO-MF control problem (4.14) as

inf
K∈K

sup
P∈P

EP

[[
wT vT

]
CK
[
w

v

]]
. (4.22)

The following theorem gives the dual problem of inner maximization and characterizes
the worst-case distribution.
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Theorem 4.4.1. [adapted from Theorems 2 and 3 in [219]]. Suppose P0 is absolutely

continuous with respect to the Lebesgue measure on RN and

[
w0

v0

]
∼ P0. The

optimization problem:

sup
P∈P

EP

[[
wT vT

]
CK
[
w

v

]]
(4.23)

where

[
w

v

]
∼ P and CK ∈ SN(n+p), with λmax(CK) ̸= 0, has a finite solution and is

equivalent to the convex optimization problem:

inf
γ≥0,

γI≻CK

γ(r2 − Tr(M0)) + γ2Tr(M0(γI − CK)−1), (4.24)

where M0 := EP0

[[
w

v

] [
wT vT

]]
. Furthermore, the disturbance that achieves

the worst-case regret is

[
w∗

v∗

]
∼ P ∗, where

[
w∗

v∗

]
= γ∗(γ∗I − CK)−1

[
w0

v0

]
, and γ∗

is the optimal solution of (4.24), which also satisfies the algebraic equation:

Tr((γ(γI − CK)−1 − I)2M0) = r2 (4.25)

Proof. The proof follows from Theorems 2 and 3 in [219] and is omitted for brevity
here. ■

We highlight two remarks pertaining to the presented theorem.

Remark 1: Notice that the supremum of the quadratic cost depends on P0 only though
its covariance matrix M0. Note further that as r → ∞, the optimal γ reaches its
smallest possible value (since r2 multiplies γ in (4.24)). The smallest possible value
that γ can take is simply the operator norm of CK , which means that the DR-RO-MF
controller approaches the regret-optimal controller as r →∞.

Remark 2: Notice that the worst-case disturbance takes on a Gaussian distribution
when the nominal disturbance is Gaussian. This is not immediately evident as the
ambiguity setP contains non-Gaussian distributions. Note further that the worst-case
disturbance is correlated even if the nominal distribution has white noise.

Assuming the covariance of the nominal distribution to be

M0 = EP0

[[
w

v

] [
wT vT

]]
= I. (4.26)
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so that Tr(M0) = N(n+p), the optimization problem (4.22) can be cast equivalently
using Theorem 4.4.1 as

inf
K∈K

inf
γ≥0

γ(r2 −N(n+ p)) + γ2Tr((γI − CK)−1)

s.t.

 γI ≻ CK
CK = T T

KTK − T T
K0
TK0

(4.27)

As in [81], define the unitary matrices Ψ and Θ:

Θ =

[
S− 1

2 0

0 T−T
2

][
I −F
F T I

]
(4.28)

Ψ =

[
I LT

−L I

][
V − 1

2 −0
0 U−T

2

]
(4.29)

where T and U are as in (4.19) and (4.20), and

S = I + FF T (4.30)

V = I + LTL. (4.31)

and S
1
2 , T

1
2 , U

1
2 , and V

1
2 are (block) lower triangular matrices, such that S = S

1
2S

T
2 ,

T = T
T
2 T

1
2 , U = U

1
2U

T
2 , V = V

T
2 V

1
2 . Then, the optimization problem (4.27) is

equivalent to:

inf
K∈K,
γ≥0,

γI≻C̄K

γ(r2 −N(n+ p)) + γ2Tr((γI − C̄K)−1)

s.t.
{
C̄K = (ΘTKΨ)TΘTKΨ− (ΘTK0

Ψ)TΘTK0
Ψ

(4.32)

which holds true since trace is invariant under unitary Θ and Ψ. By introducing
an auxiliary variable X ⪰ γ2(γI − C̄K)−1 and leveraging the Schur complement
theorem as in [219], the problem (4.32) can be recast as

inf
K∈K,
γ≥0,
X⪰0

γ(r2 −N(n+ p)) + Tr(X)

s.t.



X γI

γI γI − C̄K

 ⪰ 0

γI − C̄K ≻ 0

C̄K=(ΘTKΨ)TΘTKΨ− (ΘTK0
Ψ)TΘTK0

Ψ

(4.33)
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In the following lemma, we establish some of the important identities that are utilized
to convert problem (4.33) to a tractable convex program.

Lemma 4.4.2. [adapted from [81]]. The following statements hold:

1. .
γI − C̄K =

[
γI −PZ

−ZTP T γI − ZTZ

]
(4.34)

where

Z = T
1
2EU

1
2 −W (4.35)

W = −T−T
2 F TGLTU−T

2 (4.36)

P = V −T
2 GTFT− 1

2 (4.37)

and E, T , U and V are as defined in 4.7, 4.19, 4.20 and 4.31 respectively.

2. . γI − C̄K ≻ 0⇔ ∥Y −W−,γ∥2 ≤ 1 (4.38)

where

γ−1I + γ−2P TP = MT
γ Mγ (4.39)

Mγ =
(
γ−1I + γ−2P TP

) 1
2 (4.40)

Wγ = MγW (4.41)

Y = MγT
1
2EU

1
2 −W+,γ (4.42)

and W+,γ and W−,γ are the causal and strictly anticausal parts of Wγ . Here,
Mγ is lower triangular, and positive-definite.

3. Y is causal iff E is causal, where E can be found as follows:

E = T− 1
2M−1

γ (Y +W+,γ)U
− 1

2 (4.43)

4. The condition in (4.38) is recognized as a level-1 suboptimal Nehari problem
that approximates a strictly anticausal matrix W−,γ by a causal matrix Y .

Proof. The proof follows from Theorem 4 in [81] and is omitted for brevity here. ■
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Using Lemma 4.4.2, problem (4.33) can be reformulated as a tractable optimization
program:

inf
Z,Y ∈K,
γ≥0,
X⪰0

γ(r2 −N(n+ p)) + Tr(X)

s.t.




X11 X12 γI 0

XT
12 X22 0 γI

γI 0 γI −PZ

0 γI −ZTP T γI − ZTZ

 ⪰ 0

∥Y −W−,γ∥2 ≤ 1

(4.44)

= inf
Z,Y ∈K,
γ≥0,
X⪰0

γ(r2 −N(n+ p)) + Tr(X)

s.t.





X11 X12 γI 0 0

XT
12 X22 0 γI 0

γI 0 γI −PZ 0

0 γI −ZTP T γI ZT

0 0 0 Z I


⪰ 0

∥Y −W−,γ∥2 ≤ 1

(4.45)

where the last step follows from the Schur complement. Using (4.35), (4.43), and

Hγ = M−1
γ W+,γ −W (4.46)

we establish our main theorem.

Theorem 4.4.3 (Tractable Formulation of DR-RO-MF). The distributionally robust
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regret-optimal control problem in the measurement feedback setting (4.14) reads:

inf
Y ∈K,
γ≥0,
X⪰0

γ(r2 −N(n+ p)) + Tr(X)

s.t.





X11 X12 γI 0 0

XT
12 X22 0 γI 0

γI 0 γI −P (∗) 0

0 γI −(∗)TP T γI (∗)T

0 0 0 (∗) I


⪰0

(∗) = M−1
γ Y +Hγ I (Y −W−,γ)

T

Y −W−,γ I

 ≻ 0

(4.47)

The optimal controller K∗ is then obtained using (4.8) and (4.43).

Sub-Optimal Problem
For a given value of γ, problem (4.47) can be simplified into a tractable SDP. In
practical implementations, we can solve problem (4.47) by optimizing the objective
function with respect to the variables Y and X while fixing γ, thus transforming
the problem into an SDP, which can be solved using standard convex optimization
packages. We then iteratively refine the value of γ until it converges to the optimal
solution γ∗. This iterative process ensures that we obtain the best possible value for
γ that minimizes the objective function in problem (4.47).

LQG and RO-MF Control Problems as Special Cases
Interestingly, LQG and RO control in the measurement feedback setting can be
recovered from the DR-RO-MF control by varying the radius r which represents
the extent of uncertainty regarding the accuracy of the nominal distribution in
the ambiguity set. When r → 0, the ambiguity set transforms into a singular set
comprising solely the nominal distribution. Consequently, the problem simplifies
into a stochastic optimal control problem under partial observability:

inf
K∈K

EP0
[J(K,w, v)] (4.48)

As r →∞, the ambiguity set transforms into the set of any disturbance generated
adversarially and the optimal γ reaches its smallest possible value which is the
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operator norm of CK . This means that the problem reduces to the RO-MF control
problem which we discussed in section 4.2.

4.5 Simulations
Flight Control
We focus on the problem of controlling the longitudinal flight of a Boeing 747 which
pertains to the linearized dynamics of the aircraft, as presented in [114]. The linear
dynamical system provided describes the aircraft’s dynamics during level flight at an
altitude of 7.57 miles and a speed of 593 miles per hour, with a discretization interval
of 0.1 second. The state variables of the system encompass the aircraft’s velocity
along the body axis, velocity perpendicular to the body axis, angle between the body
axis and the horizontal plane, and angular velocity. The inputs to the system are
the elevator angle and thrust. The process noise accounts for variations caused by
external wind conditions. The discrete-time state space model is:

A =


0.9801 0.0003 −0.0980 0.0038

−0.3868 0.9071 0.0471 −0.0008
0.1591 −0.0015 0.9691 0.0003

−0.0198 0.0958 0.0021 1.000



B =


−0.0001 0.0058

0.0296 0.0153

0.0012 −0.0908
0.0015 0.0008

 , C =

[
1 0 0 0

0 0 0 1

]
.

We conduct all experiments using MATLAB, on a PC with an Intel Core i7-1065G7
processor and 16 GB of RAM. The optimization problems are solved using the CVX
package [84].

We limit the horizon to N = 10. We take the nominal distribution P0 to be Gaussian
with mean µ0 = 0 and covariance Σ0 = I , and we investigate various values for the
radius r, specifically:

r ∈ {0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 4, 8, 16, 32, 126}.

For each value of r, we solve the sub-optimal problem described in section 4.4,
iterating over γ until convergence to γ∗.

To assess the performance of the controller, we compute the worst-case disturbance,
which lies at a Wasserstein distance r from P0, as discussed in theorem 4.4.1. Finally,
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Figure 4.1: Controller costs for r ∈ 0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 4.
At r = 0, the top-performing controllers are DR-RO-MF and LQG, exhibiting regret
costs of 5.4. They are followed by H∞ with a regret cost of 5.9, and finally RO-MF
with a regret cost of 13.8. The ranking of the controllers based on regret costs is:
DR-RO-MF=LQG=5.34 < H∞=5.47 < RO-MF=13.8.
As r increases to 4, DR-RO-MF remains the best-performing controller with a regret
of 141. It is followed by RO-MF with a regret of 144, H∞ with a regret of 154, and
finally H2 with a regret of 156. The ranking of the controllers at r = 4 based on
regret costs is: DR-RO-MF=141 < RO-MF=144 < H∞=154 < LQG=156.

Figure 4.2: Controller costs for r ∈ 4, 8, 16, 32, 126.
At r = 8, the best-performing controller is DR-RO-MF with a regret of 437, which is
closely comparable to the regret of the RO-MF controller of 438. They are followed
by H∞ with a regret of 499, and finally H2 with a regret of 505. The ranking of
controllers based on regret costs is as follows: DR-RO-MF=437 ≲ RO-MF=438 <
H∞=499 < LQG=505.
When r increases to 126, which approximates the behavior of r approaching infinity,
the order of the best-performing controllers remains unchanged: DR-RO-MF=RO-
MF=8.33× 104 < H∞=9.50× 104 < LQG=9.57× 104. DR-RO-MF and RO-MF
controllers exhibit similar performance in this regime.

we compare the regret cost of the DR-RO-MF controller with that of the LQG,
H∞ [101], and RO-MF [81] controllers while considering the worst-case disturbance
corresponding to the DR-RO-MF controller. The results are shown in Figures 4.1
and 4.2.
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The DR-RO-MF controller achieves the minimum cost under worst-case disturbance
conditions for any given value of r. When r is sufficiently small (less than 0.2), the
cost of the DR-RO-MF controller closely approximates that of the LQG controller
(figure 4.1). Conversely, for sufficiently large values of r (greater than 8), the cost of
the DR-RO-MF controller closely matches that of the RO-MF controller (figure 4.2).
These observations align with theoretical findings as elaborated in section 4.4.

Furthermore, it is worth noting that for large values of r (figure 4.2), the LQG
controller yields the poorest results. Conversely, for small values of r (figure 4.1),
the LQG controller performs on par with the DR-RO-MF controller, emerging
as the best choice, as mentioned earlier. This discrepancy is expected since LQG
control accounts only for disturbances drawn from the nominal distribution, assuming
uncorrelated noise. On the other hand, RO-MF exhibits inferior performance when r

is small (figure 4.1), but gradually becomes the top-performing controller alongside
DR-RO-MF as r increases. This behavior arises from the fact that RO-MF is
specifically designed for sufficiently large r. Lastly, note that the H∞ cost lies
between the costs of the other controllers, interpolating their respective costs.

Performance Under Adversarially Chosen Distribution
For any given causal controllerKc, an adversary can choose the worst-case distribution
of disturbances for a fixed r as

argmax
P∈P

EPR(Kc, w, v) =: Pc, (4.49)

where R is the regret as in (4.11). Denoting by KDR-RO-MF the optimal DR-RO-MF
controller and by PDR-RO-MF the worst-case (adversarial) distribution corresponding
to KDR-RO-MF, we have that

EPc
R(Kc, w, v) = max

P∈P
EPR(Kc, w, v), (4.50)

≥ min
K∈K

max
P∈P

EPR(K,w, v), (4.51)

= EPDR-RO-MF
R(KDR-RO-MF, w, v), (4.52)

≥ EPc
R(KDR-RO-MF, w, v), (4.53)

where the first equality follows from (4.49) and the last inequality is due to the fact that
PDR-RO-MF is the worst-case distribution for KDR-RO-MF. In other words, DR-RO-MF
controller is robust to adversarial changes in distribution as it yields smaller expected
regret compared to any other causal controller Kc when the disturbances are sampled
from the worst-case distribution Pc corresponding to Kc.
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r 0.2 1 2 4 16 32
LQG(%) 0.860 8.17 14.8 21.9 28.5 29.3

RO-MF(%) 56.6 43.0 32.3 17.2 1.95 0.465

Table 4.1: Relative difference in % (as in (4.57)) between the expected regret of
LQG/RO-MF and of DR-RO-MF controllers, under the worst-case disturbance of
LQG/RO-MF, respectively, as in (4.49) for different values of r

The simulation results presented in Subsection 4.5 show that DR-RO-MF outperforms
RO-MF, H∞, and LQG (designed assuming disturbances are sampled from P0)
controllers under the worst-case distribution of the DR-RO-MF controller PDR-RO-MF,
i.e

EPDR-RO-MF
R(Kc, w, v) ≥ EPDR-RO-MF

R(KDR-RO-MF, w, v). (4.54)

This directly implies that the theoretically expected inequality

EPc
R(Kc, w, v) ≥ EPc

R(KDR-RO-MF, w, v) (4.55)

is validated and positively exceeded following the inequalities (4.53) and

EPc
R(Kc, w, v) ≥ EPDR-RO-MF

R(Kc, w, v). (4.56)

To further support our claims, we assess the performance of LQG and RO-MF
controllers by measuring the relative reduction in expected regret when DR-RO-MF
controller is utilized under the worst-case distributions corresponding to LQG and
RO-MF controllers, respectively:

EPc
R(Kc, w, v)− EPc

R(KDR-RO-MF, w, v)

EPc
R(Kc, w, v)

× 100, (4.57)

where Kc is either LQG or RO-MF controller and Pc is the corresponding worst-case
distribution. The results are shown in Table 4.1 for r ∈ {0.2, 1, 2, 4, 16, 32}.

Limitations
In our scenario with a relatively short planning horizon of N = 10, the cost reduction
achieved by employing DR-RO-MF control, in comparison to traditional controllers
such as LQG and H∞, is moderate. However, it is anticipated that this reduction
would become more pronounced with the utilization of a longer planning horizon.
Unfortunately, in our experimental setup, we were restricted to using N = 10 due to
computational limitations. Solving semi-definite programs involving large matrices
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is computationally inefficient, necessitating this constraint. In practice, this limitation
can be overcome by implementing the controller in a receding horizon fashion, where
the controller is updated every x time steps.

4.6 Conclusion
In conclusion, this paper extended the distributionally robust approach to regret-
optimal control by incorporating the Wasserstein-2 distance [219] to handle cases of
limited observability. The proposed DR-RO-MF controller demonstrated superior
performance compared to classical controllers such as LQG and H∞, as well as the
RO-MF controller, in simulations of flight control scenarios. The controller exhibits
a unique interpolation behavior between LQG and RO-MF, determined by the radius
r that quantifies the uncertainty in the accuracy of the nominal distribution. As the
time horizon increases, solving the tractable SDP to which the solution reduces,
becomes more challenging, highlighting the practical need for a model predictive
control approach. Overall, the extended distributionally robust approach presented
in this paper holds promise for robust and effective control in systems with limited
observability.



121

C h a p t e r 5

FINITE-HORIZON DISTRIBUTIONALLY ROBUST KALMAN
FILTERING

5.1 Problem Setup
In this section, we formulate the distributionally robust filtering problem for both
finite and infinite horizon settings. To this end, consider the following state-space
model:

xt+1 = Axt +Bwt,

yt = Cyxt + vt,

st = Csxt,

(5.1)

At time t ∈ N, let xt ∈ Rdx denote the unobserved latent state, yt ∈ Rdy the
measurement, st ∈ Rds the unobserved target signal to be estimated, wt ∈ Rdw

the process noise, and vt ∈ Rdv the measurement noise. The combined process-
measurement noise sequence constitutes the exogenous disturbance. The setup
presented above is quite general and widely adopted in the estimation and filtering
literature [101], [120]. The usual state estimation problem is a specific instance of
this setup with Cs=I . Moreover, we assume that (A,Cy) and (A,Cs) are detectable
and (A,B) is controllable.

We take a global view of the dynamics (5.1) by treating the entire signal trajectories
over a fixed time horizon T > 0 as large column vectors. Concretely, we define
the measurements vector yT := [y0; y1; . . . ; yT−1] ∈ RTdy , the target signal vector
sT := [s0; s1; . . . ; sT−1]∈RTds , the process noise vector wT := [x0;w0; . . . ;wT−2]∈
Rdx+(T−1)dw , and the measurement noise vector vT :=[v0; v1; . . . ; vT−1]∈RTdv . Notice
that the initial state x0 is considered unknown and included in the vector of process
noise, wT , for convenience. With the prevailing notation, the state-space dynamics
can be represented compactly as a causal linear measurement model:

yT = HTwT + vT ,

sT = LTwT ,
(5.2)

whereHT and LT are both block causal (i.e., block lower-triangular) matrices. These
matrices can be constructed easily from the state-space parameters (A,B,Cy, Cu)

(see ??). This representation is quite general and can be extended immediately for
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time-varying state-space models with appropriately constructed matrices HT and
LT .

Letting the stacked column vector ξT := [wT ;vT ] ∈ ΞT denote the combined
disturbances where ΞT := Rdx+(T−1)dw+Tdv , the disturbances ξT are distributed
according to an unknown distribution PT ∈P2(ΞT ). Note that the disturbances can
be arbitrarily correlated in general. Wlog, we will assume ξT to be zero-mean for
convenience. Our main assumption for PT is as follows:

Assumption 5.1.1. The true distribution PT of disturbances ξT resides in a W2-ball,

WT (P
◦
T , ρT ) :=

{
PT ∈P2(ΞT ) | W2(PT , P◦,T ) ≤ ρT

}
, (5.3)

where ρT >0 is a specified radius and P◦
T ∈P2(ΞT ) is a given nominal disturbance

distribution.

Remark 5.1.2. Although the state-space parameters (A,B,Cy, Cs) are assumed to
be known perfectly, uncertainty in them can be incorporated into the disturbances
without loss of generality.

The Finite-Horizon Distributionally Robust Filtering
A filtering policy πT := {πt | t=0, . . . , T−1} is a sequence of mappings that generate
estimates ŝt of st from the past and present measurement as ŝt = πt(yt, yt−1, . . . , y0).
In particular, we focus on linear filtering policiesKT : yT 7→ ŝT such that ŝT = KTyT

where ŝT := [ŝ0; ŝ1; . . . ; ŝT−1] is the the column vector of estimates. We denote the
class of all such policies by KT , defined as

KT ≜
{
KT ∈ RTds×Tdy | KT is block lower-triangular

}
. (5.4)

The restriction to linear filters is a common strategy in estimation literature, as
general nonlinear estimators can be challenging to compute [120]. Additionally,
linear filters are optimal for Gaussian processes. In Theorem 5.2.1, we establish the
optimality of linear filters when the nominal is Gaussian.

For a filtering policy KT , let eT (ξT ,KT ) ≜ ŝT − sT = T KTξT be the estimation
error where TKT

: ξT 7→ eT is the error transfer operator defined as

TKT
≜
[
KTHT − LT KT

]
. (5.5)

Given that the true distribution of disturbances is unknown, we focus on minimizing
the worst-case mean-squared error (MSE) across all distributions within the ambiguity
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set WT (P
◦
T , ρT ), namely,

ET (KT , ρT ) ≜ sup
PT∈WT (P

◦
T ,ρT )

EPT

[
∥eT (ξT ,KT )∥2

]
. (5.6)

where EPT
denotes the expectation under the distribution PT . We state the distribu-

tionally robust Kalman filtering problem for the finite-horizon setting as follows:

Problem 5.1.3 (W2-DR-KF over a finite-horizon). For a given time-horizon T >0

and a radius ρT > 0, find a casual filtering policy, KT ∈KT , that minimizes the
worst-case MSE defined in (5.6), i.e.,

inf
KT∈KT

ET (KT , ρT ) = inf
KT∈KT

sup
PT∈WT (P

◦
T ,ρT )

EPT

[
∥eT (ξT ,KT )∥2

]
. (5.7)

Remark 5.1.4. The causality constraint on the estimates ŝT is crucial for filtering.
Without causality enforced, Problem 5.1.3 essentially reduces to a standard estimation
problem as the nominal non-causal estimator is optimal for any ρT >0 (Lemma 5.2.3).

5.2 Tractable Convex Reormulation
In this section, we provide tractable formulations for the finite horizon W2-DR-KF
problem. In Theorem 5.2.4, we present an SDP formulation for the finite-horizon
problem 5.1.3. We also characterize the optimal estimator and the worst-case
distribution. The proofs of the theorems presented in this section are deferred to the
Appendix.

Before proceeding with the main theorems, we present a minimax theorem establish-
ing the optimality of linear filtering policies for Gaussian nominal distributions.

Theorem 5.2.1 (Minimax duality). Let T >0 be a fixed horizon and ΠT be the class
of non-linear causal estimators. Suppose that the nominal P◦

T is Gaussian. Then,
the following holds:

inf
πT∈ΠT

sup
PT∈WT (P

◦
T ,ρT )

EPT

[
∥eT (ξT , πT )∥2

]
= sup
PT∈WT (P

◦
T ,ρT )

inf
πT∈ΠT

EPT

[
∥eT (ξT , πT )∥2

]
,

(5.8)
Moreover, (5.8) admits a saddle point (π⋆

T ,P
⋆
T ) such that the worst-case distribution

P
⋆
T is Gaussian and the optimal causal filter π⋆

T is linear, i.e., π⋆
T ∈ KT .

For simplicity and clarity, we make the following assumption for the remainder of
this paper.

Assumption 5.2.2. The nominal disturbances are uncorrelated, i.e.,EP◦
T
[ξTξ

∗
T ] = IT

for any T >0.



124

An SDP for the Finite-Horizon Filtering
In this section, we state the SDP formulation of Problem 5.1.3 for a fixed horizon
T > 0. To this end, we first state the following lemma identifying the optimal
non-causal estimator.

Lemma 5.2.3. Under the Assumption 5.2.2, K◦
T ≜ LTH∗

T (IT +HTH∗
T )

−1 is the
unique, optimal, non-causal estimator minimizing the worst-case MSE in (5.6) for
any ρT ≥0.

This result highlights the triviality of non-causal estimation as opposed to causal
estimation. In Theorem 5.2.4, we demonstrate that the finite-horizon W2-DR-KF
problem 5.1.3 reduces to an SDP.

Theorem 5.2.4 (An SDP formulation for finite-horizon W2-DR-KF). Let the horizon
T >0 be fixed and denote TK◦

T
T ∗
K◦

T
:=LT (IT+H∗

THT )
−1L∗

T . Then, the Problem 5.1.3
reduces to the following SDP

inf
KT∈KT ,

γ≥0,XT∈STds
+

γ(ρ2T−Tr(IT ))+Tr(XT ) s.t.

XT γIT 0

γIT γIT−TK◦
T
T ∗
K◦

T
KT−K◦

T

0 (KT−K◦
T )

∗ (IT+HTH∗
T )

−1

≽0.

Moreover, the worst-case disturbance ξ⋆T can be identified from the nominal distur-
bances ξ◦T as

ξ⋆T = (IT − γ−1⋆ T ∗
K⋆

T
TK⋆

T
)−1ξ◦T , (5.9)

where γ⋆>0 and K⋆
T are the optimal solutions.

Remark 5.2.5. As ρT →∞, the ambiguity set covers all bounded energy disturbances,
and the optimal W2-DR-KF policy, K⋆

T , recovers the H∞-filter. Conversely, as
ρT → 0, the ambiguity set reduces to the singleton P◦

T , and K⋆
T recovers the Kalman

filter. Thus, adjusting ρT allows the DR filter to interpolate between the conservative
H∞-filter and the nominal Kalman filter.

Notice that the variable dimension of the SDP in Theorem 5.2.4 scales with the
horizon T , which can be prohibitive for practical implementation for longer horizons.

Corollary 5.2.6. The time complexity of interior-point method for solving the SDP
in Theorem 5.2.4 with accuracy ϵ > 0 is Õ(max(dy, ds)

6 T 6 log(1/ϵ)).
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C h a p t e r 6

DISTRIBUTIONALLY ROBUST APPROACH TO SHANNON
LIMITS

6.1 Introduction
Literature context
Rapid technological advancements in recent years have spurred a significant increase
in data production and usage. Major technological forces driving this data era
include 5G/6G, the Internet of Things, machine learning, and autonomous vehicles.
Core to these technologies are compression and reconstruction algorithms, which
provide essential means for data storage and transmission. For example, video
streaming services require efficient data compression, yet the source distribution
can vary greatly. Similarly, autonomous vehicles depend on sensor data, which
is prone to distributional shifts that can lead to critical errors if not adequately
addressed. In machine learning, models are often trained on a dataset that has
undergone compression and decompression. These applications underscore the need
for compression and error correction schemes that are resilient to distributional
changes.

Variable-length universal codes that adapt their encoding rate to the source / noise
distribution they observe have been a topic of longstanding interest in the information
theory community. Perhaps the most famous of these is the Lempel-Ziv family of
lossless codes [236], [262], [263] that learn the source distribution on the fly, while
asymptotically achieving the entropy rate of the source. Lempel-Ziv codes have also
been extended to apply to lossy compression [245], [246]. An approach to universal
lossy compression that utilizes Markov chain Monte Carlo with the reconstruction
alphabet changing over time is proposed in [13] (continuous sources),[118] (finite
alphabet sources). Variable-rate universal codes for channel coding are presented in
[27], [54], [155], [209], [221].

The idea that enables the aforementioned coding strategies [13], [27], [54], [118],
[155], [209], [221], [236], [245], [246], [262], [263] is that of variable-length coding,
i.e., the length of the codeword being transmitted is adapted to the data that is
being seen. However, many physical systems and much of coding theory require
all codewords to be of the same length. In that scenario, the relevant figure of
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merit is the worst-case performance over a family of source / noise distributions,
known as compound rate-distortion function / channel capacity-cost function, and
the corresponding asymptotic fundamental limits are given by minimax convex
optimization problems [195], [22]. In the context of compression, [194] considers the
distributional class of stationary random processes with bounded 4th order moment,
whereas [183] examines a class of sources determined by spectral capacities. In the
context of error correction, [23] extends the compound channel capacity formula of
[22] to random coding, to arbitrarily varying channels (AVCs), and to adversarial
channels, [190] shows the worst-case capacity of a class of arbitrarily varying
Gaussian channels, and [73] studies compound capacity of broadcast channels; see
[142] for a survey.

In this work, we employ Wasserstein-2 (W2) distance as the measure of distributional
shifts from a nominal distribution to define a distributional family. The W2-distance
between distributions P1, P2 on Rd is defined as [231]

W2(P1, P2) :=

(
inf

PXY ∈Π(P1,P2)

E
[
∥X − Y ∥2

])1
2

, (6.1)

where Π(P1, P2) denotes the set of all joint distributions with marginals P1 and P2.

In contrast to other commonly used statistical distances such as total-variation distance,
Kullback–Leibler divergence, Hellinger distance, the W2-distance incorporates
information from the geometric structure of the underlying domain, making it more
suitable for handling structured real-world data. Furthermore, the W2-distance
accounts for the cost of transporting mass from one probability distribution to another.
This makes the W2-distance a particularly suitable tool for quantifying robustness
in communication systems, as it reflects the potential impact of variations in signal
distributions on the fidelity of communication. For instance, in scenarios where small
perturbations in a signal could lead to disproportionately large errors, theW2-distance
provides a measure of how these perturbations affect system performance. This
makes it a natural choice for modeling scenarios where the goal is to maintain high
fidelity in the presence of uncertain or varying signal distributions, thereby enhancing
the reliability and efficiency of communication systems under distributionally robust
frameworks.

Owing to its geometric interpretability and tractable formulation, W2-distance has
recently gained popularity as a statistical distance in diverse fields such as control
[125], filtering [203], and machine learning [134]. In [219], a controller that
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minimizes the worst-case regret across all disturbance distributions within a W2-
ambiguity set is proposed. The controller’s parameters are obtained via a solution to
a semi-definite program (SDP), which is formulated leveraging the tractability of
W2-distance. Unlike prior robust control approaches, such as H∞ [101], where the
controller is designed to minimize worst-case cost against an adversarially generated
disturbance, and regret-optimal control [80], where the controller is designed to
minimize the regret with respect to a hypothetical optimal noncausal controller, the
controller in [219] is designed to attain the desired level of robustness via adjusting
the size of the ambiguity set. Additionally, [219] demonstrates that the worst-case
disturbance follows a Gaussian distribution if the nominal distribution is Gaussian.
Subsequent contributions [89] and [125] extend the framework in [219] to control
scenarios involving measurement noise and infinite horizon, respectively. In the
domain of lossy source coding, [144] trains a deep neural network compressor that
achieves distributional robustness by incorporating W2 transportation cost into the
optimization problem. The W2-distance has also been used to measure the perceptual
quality of the decompressed message [26] using what is called the Rate-Distortion-
Perception (RDP) function. The work [202] characterizes the analytical bounds for
the Gaussian RDP function.

Contributions
We investigate the minimax rate-distortion function (RDF) formulated in [195] and
the minimax capacity formulated in [22] for an unknown source / noise distribution
residing within a W2-ambiguity set centered at a given nominal distribution. In
the case of source compression, we assume that the source distributions in the
ambiguity set have a finite 2+ϵ-th moment for an arbitrarily small ϵ > 0. The
finiteness of (2+ϵ)-th moment is a common assumption on the source distributions
in rate-distortion theory to control the growth of the mean square error distortion
(see [182, Sec. 23.3]).

In the case of a Gaussian nominal source distribution, we show that the worst-case
source / noise distribution in the W2 ambiguity set is also Gaussian. To do so, we
leverage the Gelbrich bound [78, Thm. 2.1] on the W2 distance and the Gaussian
saddle point properties of mutual information [182, Thm. 5.11]. Our analysis
reveals an expression of the minimax rate-distortion function / channel capacity
solely in terms of the covariance matrices of distributions within the ambiguity
set and the radius of the W2-ball. Adjusting the radius of the W2-ball enables a
gradual interpolation from a known nominal source distribution (at a radius of 0)
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to an uncertain distribution as the radius increases. In the scalar case, we derive
closed-form expressions demonstrating the effect of the varying radius on those
fundamental limits.

Notation. The set of real numbers is denoted by R. For a real-valued function
f , we denote f+(·) := max{0, f(·)}. For a vector x ∈ Rd, we denote by ∥x∥,
the Euclidean norm of x. For a matrix A ∈ Rd×m, its transpose is denoted by
AT ∈ Rm×d. For square matrices, tr(·) and |·| are the trace and the determinant
operation. The notations Sd+ and Sd++ represent the sets of d× d symmetric, positive
semidefinite and positive definite matrices, respectively. For two positive semidefinite
matrices, ⪰ denotes the Löwner order. The set of all probability distributions over
Rn with bounded pth-moment is denoted by Pp(Rn). For a random variable X over
Rn, we denote its probability distribution by PX . The conditional distribution of a
random variable Y given X is denoted by PY |X . The expectation with respect to the
distribution PX is denoted by EPX

[·]. The Gaussian distribution with mean µ ∈ Rd

and covariance Σ ∈ Sd+ is denoted by N (µ,Σ). The mutual information between
random variables X and Y is denoted by I(X;Y ). The differential entropy of X is
denoted by h(X), and the conditional differential entropy of X given Y is given by
h(X|Y ).

6.2 Main results
In this section, we state our main results : Theorem 6.2.1 shows an SDP for the
worst-case RDF defined in (6.2), below, and Theorem 6.2.3 shows an SDP for the
worst-case capacity, defined in (6.14).

Source Compression
Fix ϵ > 0. Consider a source that generates i.i.d. symbols Xi ∈ Rd following an
unknown probability distribution PX ∈ S, where S ⊆P2+ϵ(Rd) is a distributional
family. An n-block of source symbols Xn = (X1, . . . , Xn) is mapped into one of
the exp(nR) distinct codewords X̂n = (X̂1, . . . , X̂n) while satisfying the average
distortion constraint 1

n

∑n
i=1E[∥Xi − X̂i∥2] ≤ D.

The minimum universally achievable coding rate RS,n(D) is defined as the minimum
R at which such a mapping exists, regardless of the PX ∈ S. The minimum
asymptotically achievable universal coding rate is the operational compound RDF
[195], RS(D) = lim supn→∞RS,n(D). Sakrison [195] established the following
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single-letter formula for the compound RDF:

RS(D) = inf
PX̂|X : Rd 7→Rd

E[∥X−X̂∥2]≤D

sup
PX∈S

I(X; X̂). (6.2)

The achievability result of the coding theorem in (6.2) assumes that the class
of distributions S is compact, a notion defined by [195] as follows: a class of
distributions S is compact if, for any ϵ > 0, there is a totally bounded set K ⊂ Rd

and a function f : Rd → Rd with range K such that,

sup
PX∈S

EPX

[
∥X − f(X)∥2

]
≤ ϵ. (6.3)

Any class of distributions with bounded 2 + ϵ order moments for ϵ > 0 satisfies the
compactness definition given in [195]. However, the distributions in the W2-ball do
not necessarily satisfy this condition. Therefore, to ensure that the function on the
right side of (6.2), whose computation constitutes one of our main results, has an
operational meaning, we consider only those distributions in the W2-ball that have
bounded 2 + ϵ order moments.

Our main result for source compression computes the compound rate-distortion func-
tion (6.2) for theW2-ambiguity set of distributionsS =

{
P ∈P2+ϵ(Rd) | W2(P, P◦) ≤ r

}
.

For brevity, we denote the compound rate-distortion function with such a choice of
the ambiguity set by

RP◦
(D, r) := RS(D). (6.4)

If r = 0, (6.4) reduces to the rate-distortion function of the known distribution P◦.
In our analysis, we assume a Gaussian nominal distribution.

To set the stage for our result, we denote the Bures-Wasserstein metric on the positive
semi-definite cone Sd+ [20] as,

BW(Σ,Σ◦) :=
(
tr(Σ)+tr(Σ◦)−2 tr(Σ

1
2Σ◦Σ

1
2 )
)1/2

. (6.5)

Moreover, note that the RDF of a d−dimensional multivariate Gaussian vector
X ∼ N (0,Σ) is given by [133, Eqn. (13)] :

RN (0,Σ)(D) = inf
A∈Rd×d

,ΣZ⪰0:

tr((A−I)Σ(A−I)T+ΣZ)≤D

1

2
log

∣∣∣AΣAT + ΣZ

∣∣∣
|ΣZ |

. (6.6)
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The reconstructed message X̂ follows the forward law X̂ = AX + Z, where
Z ∼ N (0,ΣZ) is independent of X . The solution to (6.6) is given by reverse-
waterfilling on the eigenvalues [41, Thm. 10.3.3]. If d = 1, the RDF in (6.6) takes
the form (6.9), below.

Theorem 6.2.1 (Compound RDF for W2 ambiguity set). The compound RDF (6.4)
with a Gaussian center P◦ = N (0,Σ◦) is given as,

RP◦
(D, r)= sup

Σ⪰0,
BW(Σ,Σ◦)≤r

RN (0,Σ)(D), (6.7)

where the function RP◦
(D, r) is achieved by a Gaussian PX .

Proof. We first refer to [195] to establish strong duality, see Lemma 6.2.2, below.
We then present an upper bound on the compound RDF and show that it is achieved
by a Gaussian source distribution in the W2-ball if the nominal source distribution P◦

is Gaussian. This extends the classical result [133, Eqn. (13)] showing that, among
all distributions with a fixed second-order moment, a Gaussian source achieves the
largest single source RDF (See Section 6.3 for details). ■

Lemma 6.2.2 (Strong duality of the compound RDF). The compound RDF (6.4)
admits a dual formulation given by

RP◦
(D, r)= sup

PX|X◦
: Rd 7→Rd

PX∈P2+ϵ(R
d
)

E[∥X−X◦∥
2]≤r

2

inf
PX̂|X : Rd 7→Rd

E[∥X−X̂∥2]≤D

I(X; X̂), (6.8)

where X◦ ∼ P◦.

Proof. The result follows via an application of [195, Thm. Source Encoding] to
mean square error and a W2 ambiguity set. ■

In (6.8), the nominal source X◦ ∼ P◦, the worst-case source X and the reconstructed
signal X̂ can be regarded as a Markov chain:

X◦
PX|X◦−−−→ X

PX̂|X−−−→ X̂.

We can interpret (6.8) as a Nash equilibrium of a zero-sum game between two com-
peting channels: while the channel PX|X◦

adversarially maximizes the compression
rate from X to X̂ under the transportation cost E∥X−X◦∥2 ≤ r2 from the nominal
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source to "deceive" the encoder-decoder channel PX̂|X , the channel PX̂|X minimizes
the compression rate from X to X̂ under the distortion constraint E∥X−X̂∥2 ≤ D

by assuming the worst-case source from PX|X◦
.

To elucidate the tradeoff exposed in Theorem 6.2.1, consider a scalar-source RDF
with an unknown distribution from a W2-ambiguity set centered at P◦ = N (0, σ2

◦).
First, recall the RDF of a scalar Gaussian source [41, Eqn. (10.36)]:

RN (0,σ
2
)
(D) =

1

2
log+

σ2

D
. (6.9)

Second, observe that the Bures-Wasserstein distance (6.5) between scalars is,

BW(σ2, σ2
◦) = |σ − σ◦|. (6.10)

We now apply Theorem 6.2.1. The compound RDF for the scalar case, using (6.7),
is given as,

RN (0,σ
2
◦)
(D, r) = sup

|σ−σ◦|≤r

RN (0,σ
2
)
(D) (6.11)

= sup
|σ−σ◦|≤r

1

2
log+

σ2

D
(6.12)

=
1

2
log+

(σ◦ + r)2

D
. (6.13)

The expression (6.13) is immediate due to the fact that the logarithm is monotonic.
Note that for r = 0, the compound RDF is the Shannon RDF for P◦, and for r > 0, it
is the Shannon RDF for PX = N (0, (σ◦ + r)2). Thus, as the radius of the ambiguity
set increases, the required number of bits to achieve the same distortion increases.

Channel Coding
Consider transmission of an equiprobable message W ∈ {1, . . . , exp(nR)} over an
i.i.d. additive noise channel, which, upon receiving Xi ∈ Rd, outputs Yi ∈ Rd, where
Yi = HXi+Zi, with Zi ∼ PZ independent of each other and of X i = (X1, . . . , Xi),
and H is fixed. Here, PZ ∈ S is fixed but unknown. The encoder injectively maps
W to a codeword Xn under the average power constraint 1

n

∑n
i=1 E∥Xi∥2 ≤ B. The

codeword is transmitted over the channel, and, upon receiving an n-block of channel
outputs Y n=(Y1, . . . , Yn), the decoder outputs Ŵ , an estimate of W .

The maximum universally achievable coding rate CS,n(B, ϵ) compatible with average
error probabilityP

[
W ̸= Ŵ

]
≤ ϵ is defined as the maximum rateR for which such an

encoder-decoder mapping exists, regardless ofPZ ∈ S . The maximum asymptotically
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Figure 6.1: The scalar compound capacity for P◦ = N (0, 1) for r = 0. The scalar
compound capacity for r = 0 is the Shannon capacity for P◦ and for r > 0 is the
Shannon capacity for PZ = N (0, (1 + r)2). As the radius of the ambiguity set
increases, the required input power B to achieve the same capacity increases.

achievable universal coding rate is the operational compound capacity-cost function
[22], CS,n(B) = limϵ→0 lim infn→∞CS,n(B, ϵ). Blackwell [22] established a single-
letter formula for the compound capacity-cost function of a discrete memoryless
channel, which was extended to continuous alphabet domain in [42], [154] :

CS(B) = sup
PX on Rd

:
tr(Σ)≤B

inf
PZ∈S

I(X;HX + Z), (6.14)

where Σ is the covariance of X ∼ PX . Our main result for channel coding computes
the compound capacity (6.14) for the W2-ambiguity set of additive channel noises

S =
{
P ∈P2(Rd) | W2(P, P◦) ≤ r

}
. (6.15)

Here, we assume that the nominal distribution P◦ ∈ P2(Rd) to ensure weak
compactness of S [253, Thm. 1]. This assumption entails P ∈P2(Rd) [253, Lem.
1] for all P in the W2 ball. For brevity, we denote the compound capacity-cost
function with such a choice of the ambiguity set by

CP◦
(B, r) := CS(B). (6.16)
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Our problem setting satisfies the regularity conditions [42, H1-H4] :

1. The input and output alphabets as well as the set of states (which correspond
to the probability measures in the W2 ball equipped with the W2 distance) are
separable metric spaces, and the output alphabet is complete.

2. The channel depends continuously on the input and states, i.e., for a sequence of
inputs Xn → X and states PZn

→ PZ , PY |X,PZ
(·|Xn, PZn

) converges weakly
toPY |X,PZ

(·|X,PZ). Here, PY |X,PZ
(·|X,PZ) represents a channel with a given

input X and a fixed noise distribution PZ in the W2 ball. This follows from
the fact that the W2-ball is weakly compact whenever the nominal distribution
has a finite 2-nd order moment [253, Thm. 1].

3. The constraint function ∥·∥2 on the input is Borel measurable.

4. There exists a sequence of input alphabets that satisfy the given power constraint.

The validity of the Blackwell formula (6.14) ensures that the function on the right side
of (6.14), whose computation constitutes one of our main results, has an operational
meaning.

Note that the capacity-cost function for a d-dimensional multivariate Gaussian noise
vectorZg ∼ N (0,ΣZ) is given by (See [57, Thm. 9.1] and Lemma 6.B.1 in Appendix
6.B below),

CN (0,ΣZ)(B) = sup
Σ⪰0:

tr(Σ)≤B

log
|ΣZ +HΣHT |

|ΣZ |
. (6.17)

Theorem 6.2.3 (Compound capacity-cost function for W2 ambiguity set). The
compound capacity (6.16) with a Gaussian center P◦ = N (0,Σ◦) is given as,

CP◦
(B, r) = inf

ΣZ⪰0
BW(ΣZ ,Σ◦)≤r

CN (0,ΣZ)(B). (6.18)

Proof. The proof of Theorem 6.2.3 is along the same lines as that of Theorem
6.2.1. We leverage the fact that Gaussian noise minimizes capacity for a given
noise covariance (See Lemma 6.B.2 in Appendix 6.B below). This helps us write
the compound capacity in terms of the second-order statistics of the distributions
in the W2 ball. The operational meaning of Gaussian being the worst-case noise
is discussed in [141]. See Appendix 6.B for details. Also note that a Gaussian
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nominal distribution ensures that distributions in the W2-ball have bounded 2-nd
order moments [253, Lem. 1]. ■

Lemma 6.2.4. The compound capacity in (6.14) admits a dual formulation given by

CP◦
(B, r)= inf

PZ|Z◦
: Rd 7→Rd

PZ∈P2(R
d
)

E[∥Z−Z◦∥
2]≤r

2

sup
PX on Rd

:

E[∥X∥2]≤B

I(X;HX + Z). (6.19)

where the inf is achieved by a Gaussian noise distribution.

Proof. The result follows from [42, Thm. 5], where the authors prove the above
result for the case of AVCs, which is a more general case of the setting that we
consider. ■

Consider the compound capacity of a scalar additive channel with an unknown additive
noise distribution drawn from a W2-ambiguity set centered at P◦ = N (0, σ2

◦). First,
recall the capacity of a scalar Gaussian channel [41, Eqn. (9.17)]:

CN (0,σ
2
◦)
(B) =

1

2
log

(
1 +

B

σ2

)
. (6.20)

We now apply Theorem 6.2.3. Plugging (6.10) and (6.20) into (6.18) and using the
fact that logarithm is monotonic, we write the worst case capacity for P◦ = N (0, σ2

◦)

as,

CN (0,σ
2
◦)
(B, r) = inf

|σ−σ◦|≤r

CN (0,σ
2
◦)
(B) (6.21)

= inf
|σ−σ◦|≤r

1

2
log

(
1 +

B

σ2

)
(6.22)

=
1

2
log

(
1 +

B

(σ + r)2

)
. (6.23)

Naturally, increasing the radius of ambiguity r diminishes the compound channel
capacity. This effect can be observed in Fig 6.1.

6.3 Proof of Theorem 6.2.1
Useful Results
If the source distribution X ∼ P◦ is known, (6.2) reduces to the standard RDF [41,
Eqn. (10.12)]

RP◦
(D) = RP◦

(D, 0) = inf
PX̂|X : Rd 7→Rd

E[∥X−X̂∥2]≤D

I(X; X̂). (6.24)
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The next lemma brings to light the significance of the Gaussian RDF in (6.6) as the
worst-case RDF among sources with the same covariance matrix.

Lemma 6.3.1 (Gaussian is the hardest to encode, [133, Eqn. (13)]). Assume that the
source distribution P◦ has a covariance Σ◦ ∈ Sd+. The RDF RP◦

(D) satisfies

RP◦
(D) ≤ RN (0,Σ◦)

(D), (6.25)

and the upper bound is attained by P◦ = N (0,Σ◦).

Proof. This result is due to Kolmogorov [133, Eqn. (13)]. We provide a short proof
in Appendix 6.A for completeness. ■

Noting that

W2(P, P◦)
2 ≤ r ⇐⇒ E[∥X −X◦∥2] ≤ r, (6.26)

we rewrite the dual formulation of the compound RDF in Lemma 6.2.2 as,

RP◦
(D, r)= sup

P∈P2+ϵ(R
d
) :

W2(P, P◦)≤r

RP (D). (6.27)

Proof of Theorem 6.2.1: upper bound
Consider two distributions P◦, P ∈ P2+ϵ(Rd) with means µ◦, µ ∈ Rd and covari-
ances Σ◦,Σ ∈ Sd+, respectively. The W2-distance between them satisfies the Gelbrich
bound [78, Thm. 2.1],

W2(P, P◦)
2 ≥ BW(Σ,Σ◦)

2+∥µ◦−µ∥2, (6.28)

where equality is attained if both P◦ and P are Gaussian distributions. It follows that
the W2-distance between distributions upper-bounds the Bures-Wasserstein distance
between their covariance matrices:

W2(P, P◦) ≥ BW(Σ, Σ◦). (6.29)

Applying (6.29) to (6.27), we obtain an upper bound on the worst-case RDF as:

RP◦
(D, r) ≤ sup

P∈P2+ϵ(R
d
) :

BW(Σ,Σ◦)≤r

RP (D) (6.30)

≤ sup
BW(Σ,Σ◦)≤r

RN (0,Σ)(D), (6.31)

where (6.31) is by Lemma 6.3.1. Plugging (6.6) into the right side of (6.31) yields
the ≤ direction of (6.7).



136

Proof of Theorem 6.2.1: lower bound
By Lemma 6.3.1, equality is achieved in (6.31) by P = N (0,Σ). Since both P◦ and
P are Gaussian, equality is achieved in (6.29), and, by extension, in (6.30) as well.

6.4 Conclusion
In this paper, we studied Sakrison’s [195] compound RDF and Blackwell’s compound
capacity [22], focusing on a scenario where the source / noise distribution belongs
to a Wasserstein-2 ambiguity set. Our key findings include the identification of
the Gaussian distribution as the worst-case scenario for encoding within this set
(Theorem 6.2.1, Theorem 6.2.3). The compound RDF (Theorem 6.2.1) and capacity
(Theorem 6.2.3) are expressed in terms of the covariance matrices of Gaussian
distributions. Future work could explore ambiguity sets defined using distances
beyond Wasserstein-2, tradeoffs between coding and learning the distribution to
decrease the size r of the ambiguity set, extensions to multiterminal settings, and to
causal source and channel coding.

6.A Proof of Lemma 6.3.1
Without loss of generality, assume that X is zero-mean. We first state the following
useful lemma, which extends [182, Thm. 5.11] to a vector channel.

Lemma 6.A.1 (Gaussian input maximizes the mutual information in an AWGN
channel). Let X be a random channel input in Rd with known covariance Σ ∈ Sd+
and let A ∈ Rd×d be a fixed channel matrix. Let Zg ∼ N (0,ΣZ) be the additive
Gaussian channel noise independent of X , with known covariance ΣZ ∈ Sd+. We
have that;

I(X, AX + Zg) ≤ I(Xg, AXg + Zg), (6.32)

where Xg ∼ N (0,Σ) is independent of Zg, and equality holds if X ∼ N (0,Σ).

Proof. The mutual information is given by,

I(X, AX + Zg) = h(AX + Zg)− h(AX + Zg|X), (6.33)

= h(AX + Zg)− h(Zg). (6.34)

The second term in the last equality does not depend on X , while the first term, by
the maximum entropy property of Gaussian random variables [41, Thm. 8.6.5], is
bounded above by

h(AX + Zg) ≤
1

2
log
∣∣∣2πe Σ̂∣∣∣ , (6.35)
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where Σ̂ := Cov(AX +Zg) = AΣAT +ΣZ is the covariance of matrix of AX +Zg.
This upper bound is achieved by a Gaussian input Xg ∼ N (0,Σ) independent of the
channel noise Zg. ■

Consider the RDF for a known source distribution PX given in (6.24). Restricting
the infimization to linear mappings of the form

X̂ = AX + Zg, (6.36)

where A ∈ Rd×d, and Zg ∼ N (0,ΣZ) is independent of X , we get an upper bound
on RPX

(D) as,

RPX
(D) ≤ inf

A∈Rd×d
,ΣZ⪰0:

E[∥X−X̂∥2]≤D

I(X;AX + Zg) (6.37)

≤ inf
A∈Rd×d

,ΣZ⪰0:

E[∥Xg−X̂g∥
2]≤D

I(Xg;AXg + Zg) (6.38)

= RN (0,Σ)(D), (6.39)

where Xg ∼ N (0,Σ) and X̂g := AXg + Zg. Inequality (6.38) is by Lemma 6.A.1.
Since the condition E

[
∥Xg − X̂g∥2

]
≤ D can be written as tr((A−I)Σ(A−I)T+

ΣZ) ≤ D, and the mutual information between two Gaussian random vectors can be
written as,

I(Xg;AXg + Zg) =
1

2
log

∣∣∣AΣAT + ΣZ

∣∣∣
|ΣZ |

, (6.40)

the right side of (6.38) is equal to the right side of (6.6). It remains to show (6.39).
Applying the argument in (6.37), (6.38) to PX = N (0,Σ) yields the ≥ in (6.39). To
show ≤, fix any PX̂|Xg

. Using standard arguments, [41, Proof of Th. 10.3.2], we
have,

I(Xg, X̂) = h(Xg)− h(Xg|X̂) (6.41)

=
1

2
log |2πeΣ| − h(Xg − X̂|Xg) (6.42)

≥ 1

2
log |2πeΣ| − h(Xg − X̂) (6.43)

≥ 1

2
log |2πeΣ| − 1

2
log
∣∣∣2πeΣXg−X̂

∣∣∣ , (6.44)

where ΣXg−X̂ is the covariance of Xg − X̂ . Here, (6.43) holds because conditioning
decreases entropy [41, Thm. 8.6.1 Cor. 2], and (6.44) is due to (6.35). The
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expression on the right-hand side of (6.44) is the mutual information between the
jointly Gaussian pair (Xg, X̂). It follows that RN (0,Σ)(D) is lower bounded by the
right side of (6.38).

6.B Proof of Theorem 6.2.3
We first state the following useful lemmas. In Lemma 6.B.1, we state the capacity of
a Gaussian vector channel. To get Lemma 6.B.1, we slightly modify [57, Thm. 9.1]
for our use case. In Lemma 6.B.2, we show that for an additive channel, Gaussian
noise, among all noises with the same covariance, minimizes the channel capacity.
A similar result in the setting of stochastic processes is established in [111].

Lemma 6.B.1 (Capacity of an AWGN channel). Consider the channel coding setting
defined in the first paragraph of Section 6.2. The capacity-cost function for a
d-dimensional multivariate Gaussian noise vector Zg ∼ N (0,ΣZ) is given by,

CN (0,ΣZ)(B) = sup
Σ⪰0:

tr(Σ)≤B

log
|ΣZ +HΣHT |

|ΣZ |
. (6.45)

Proof. The capacity for Zg ∼ N (0, I), is given by [57, Thm. 9.1],

CN (0,I)(B) = sup
Σ⪰0:

tr(Σ)≤B

log |I +HΣHT |. (6.46)

The capacity for Zg ∼ N (0,ΣZ) can be obtained by considering the channel matrix
H̃ = Σ

−1/2
Z H [57, Rem. 9.1].

CN (0,ΣZ)(B) = sup
Σ⪰0:

tr(Σ)≤B

log |I + Σ
−1/2
Z HΣHTΣ

−T/2
Z |. (6.47)

Multiplying I + Σ
−1/2
Z HQHTΣ

−T/2
Z by Σ

1/2
Z on the left and Σ

T/2
Z on the right, and

dividing the argument of log in (6.47) by |ΣZ |, we get (6.45). ■

Lemma 6.B.2 (Gaussian noise minimizes the channel capacity of an additive channel).
Let Z be a random channel noise in Rd with known covariance ΣZ ∈ Rd×d and let
H ∈ Rd×d be a fixed channel matrix. Let Zg ∼ N (0,ΣZ) be the additive Gaussian
channel noise, with the same covariance as Z, independent of the channel input X .
Then,

CN (0,ΣZ)(B) ≤ CP (B), (6.48)

and equality is achieved by P = N (0,ΣZ).
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Proof. Consider Xg ∼ N (0,Σ) where Σ is the covariance of X . Using (6.32) and
then [49, Lem. II.2], we have the following set of inequalities,

I(X, HX + Zg) ≤ I(Xg, HXg + Zg), (6.49)

≤ I(Xg, HXg + Z). (6.50)

Now note that,

sup
Σ⪰0:

E[∥Xg∥
2]≤B

I(Xg, HXg + Z) ≤ sup
P on Rd

:
E[∥X∥2]≤B

I(X,HX + Z). (6.51)

The expression on the right-hand side of (6.51) is CP (B). The expression on the
left-hand side of (6.51) is lower bounded by CN (0,ΣZ)(B). Indeed, After applying
inequalities (6.50) and then (6.49) to lower-bound the left side of (6.51) and taking
supremum over all input distributions leads to (6.45). ■

Proof of Theorem 6.2.3:

Converse

Consider the dual formulation of the compound capacity (6.19) and a noise distribution
in the W2 ball P with mean µ and covariance Σ. We re-write the dual formulation as,

CP◦
(B, r)= inf

P∈P2(R
d
) :

W2(P, P◦)≤r

CP (B). (6.52)

By the Gelbrich bound [78, Thm. 2.1] we have (6.29). Applying (6.29) to (6.52),
we obtain a lower bound on the compound capacity as :

CP◦
(B, r) ≥ inf

P∈P2(R
d
) :

BW(Σ,Σ◦)≤r

CP (B) (6.53)

≥ inf
P∈P2(R

d
) :

BW(Σ,Σ◦)≤r

CN (0,Σ)(B), (6.54)

where (6.54) is by Lemma 6.B.2. Plugging (6.45) into the right side of (6.54) yields
the ≥ direction of (6.18).

Achievability

Equality in (6.54) is achieved by Gaussian P (6.48). Since we assume that P◦ is
Gaussian, equality is achieved in (6.29), and, by extension, in (6.53) as well.
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C h a p t e r 7

DISTRIBUTIONALLY ROBUST CLUSTERING

7.1 Introduction
In recent years, the widespread availability of large-scale, high-dimensional datasets
has driven significant interest in clustering algorithms that are both computationally
efficient and robust to distributional shifts. The classical clustering method, k-means,
can be seen as an application of the Lloyd-Max quantization algorithm, where the
distribution which is being quantized is the empirical distribution of the points that
need to be clustered. This empirical distribution will be different from the true
underlying distribution, especially when the number of points to be clustered is small.
This leads to distributional shift, which can further occur in many real world settings,
such as image segmentation, biological data analysis, and sensor networks, due to
noise variations, sensor inaccuracies, or environmental changes. Distributional shifts
can severely impact the performance of clustering algorithms, leading to degraded
cluster assignments and unreliable downstream analysis.

The field of clustering has a rich history. One of the most popular algorithms in
this field is the k-means algorithm, introduced by [156]. The k-means algorithm
has various variants, such as k-means++ [10], which uses a special seeding method
to improve convergence characteristics. Robust clustering has also been explored
in the literature, with notable works including [79], [148], [50], [45], and [46].
Noise-robust clustering has also been studied, with [106] providing a comprehensive
survey. High-dimensional, low-data clustering is often encountered in biological
data. In this context, high-dimensional clustering has been studied separately in [256]
and [38]. [150] further explored the problem of high-dimensional clustering using
a minimax optimization criterion. For an extensive survey of clustering methods,
readers can refer to [75].

Fundamentally, the k-means algorithm can be seen as an application of the Lloyd-Max
algorithm [152], [163] when the distribution is the empirical distribution based on
the observed data points. Lloyd [152] introduced two iterative approaches to design a
locally optimal quantizer, referred to as Method I and Method II. Max [163] derived
equations for the necessary conditions for a quantizer to be locally optimal and
independently proposed Lloyd’s Method II. This is now recognized as the Lloyd-Max
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algorithm. It should be noted that the generalized clustering problem of finding the
optimal quantization points and regions for any given rate and dimensionality is
NP-hard [76]

Moreover, the k-means algorithm has many practical applications and several
variations of its original version are in use today. For example, [232] explores
the use of k-means in the field of image compression. [47] proposes a variant of
k-means for image segmentation. Moreover, k-means has extensively been used
to learn large-scale representation of images [37]. The wide ranging applications
of the classical k-means, makes it even more important to consider robustness to
distributional shifts in the original algorithm, especially in the low data regime when
the empirical distribution is not an accurate estimate of the underlying distribution.

In this work, we use the Wasserstein-2 (W2) distance as a measure of distributional
shifts to define a family of distributions. The W2-distance between distributions P1

and P2 on Rd is defined as [231]

W2(P1, P2) :=

(
inf

PXY ∈Π(P1,P2)

E
[
∥X − Y ∥2

])1
2

, (7.1)

where Π(P1, P2) denotes the set of all joint distributions with marginals P1 and
P2. Unlike other common statistical distances such as Total-Variation distance,
Kullback–Leibler (KL) divergence, or Hellinger distance, the W2-distance incorpo-
rates information about the geometric structure of the underlying domain, making it
particularly suitable for handling structured real-world data. Additionally, unlike KL
divergence, it can quantify distances between distributions with different support.
Due to its geometric interpretability and tractable formulation, W2-distance has
recently gained popularity as a statistical distance in diverse fields such as control
[125], filtering [203], machine learning [134], and data compression [157].

Contributions
In this paper, we propose a variant of the classic k-means algorithm that is robust to
distributional shifts. That is, the algorithm minimizes the worst-case error among the
W2 family of distributions. We show that the proposed algorithm is a descent method
and find the necessary conditions for the optimal placement of K cluster centers
that best represent the W2 family of distributions for a given nominal distribution P◦

and ambiguity radius r. Finally, we present numerical simulations to analyze the
performance of the algorithm. The organization of the paper is as follows. In Section
7.2, we define the notations used in the paper and formally define the optimization
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problem. In Section 7.3, we give the necessary conditions on the optimal solution to
the problem. In Section 7.4, we formalize the iterative method. In Section 7.5, we
provide numerical simulations of our algorithm on synthetic and real world datasets
and show that in the low data regime, our algorithm performs better than k-means++.
We measure our performance using the worst-case error in the W2 ball and the
misclassification rate for a certain dataset corrupted with outliers.

Notations: The letters N and R denote the set of natural and real numbers,
respectively. We denote the set of natural numbers uptoN ∈ N as [N ] := {1, . . . , N}.
The set of positive real numbers is denoted by R+. The set ∆K := {π ∈ RK

+ |∑
i∈[K] πi = 1} denotes the K−probability simplex for K ∈ N. Indicator function

of set Φ ⊆ Rd is represented as 1Φ : Rd → {0, 1} such that 1Φ(x) = 1 only if
x ∈ Φ and zero otherwise. We reserve the boldface capital letters (e.g., X,M,
etc.) for matrices. The expressions ∥x∥ and x⊺ denote the Euclidean norm and
the transpose of a vector x ∈ Rd. We use the letter P and Q to denote probability
distributions, and EP to denote expectation under a distribution P. The set of
probability distributions over a domain Rd is denoted by P(Rd) whereas Pp(Rd)

denotes the set of distributions with finite pth moment.

7.2 Problem Setup
Let X♯ ∼ P♯ be a random vector that encapsulates the true data population of interest,
drawn from an unknown probability distribution P♯ ∈P(Rd). Our objective is to
partition this population into K ∈ N distinct clusters. Formally, we seek a partition
of the domain Rd into K pairwise disjoint subsets, i.e., Φ1, . . . ,ΦK ⊆ Rd such that

Φk ∩ Φl = ∅, for k ̸= l, and ∪Kk=1 Φk = Rd. (7.2)

Additionally, each cluster is associated with a representative center, i.e., µk ∈ Φk

for k ∈ [K]. For any such pair of cluster centers and partitions (M,Φ) where
M :=

[
µ1 . . . µK

]
∈ Rd×K and Φ := {Φk}Kk=1, the associated clustering map

QM,Φ : Rd → Rd that maps a given data x ∈ Rd to the center representative of the
cluster it belongs to, namely,

QM,Φ(x) :=
∑K

k=1
µk 1Φk

(x). (7.3)

Standard K-Means Clustering as Empirical Risk Minimization
In order to assess the performance of a clustering scheme (M,Φ) for an arbitrary
random vector X ∼ P ∈ P(Rd), we consider the expected squared L2-distance



143

between the random vector X and its corresponding cluster centerQM,Φ(X), namely:

Definition 7.2.1 (Clustering Risk). The L2-risk of a clustering scheme (M,Φ) under
a distribution P ∈P2(Rd) is defined as

Risk(M,Φ,P) := EP
[
∥X −QM,Φ(X)∥2

]
. (7.4)

We seek to find a clustering scheme (M,Φ) that minimizes its population risk under
the true underlying distribution P♯, namely,

inf
(M,Φ)

{
Risk(M,Φ,P♯) = EP♯

[
∥X♯ −QM,Φ(X♯)∥2

]}
. (7.5)

In reality, we almost never have access to the true distribution to begin with. Instead,
usually a finite dataset DN := {xn}Nn=1 ⊂ Rd of N ∈ N points is given, presumably
drawn from the underlying but unknown distribution P♯. In this case, the empirical
distribution

P̂N := N−1
∑N

n=1
δxn

(7.6)

of the dataset DN can be used as a proxy to P♯, leading to the empirical clustering
risk minimization:

Problem 7.2.2 (Standard K-Means as Empirical Risk Minimization). Given a
dataset DN , find a pair of K cluster centroids and regions (M,Φ) that minimizes
the empirical clustering risk, i.e.,

inf
(M,Φ)

{
Risk(M,Φ, P̂N) = E

P̂N

[
∥X −QM,Φ(X)∥2

]
=

1

N

∑N

n=1
∥xn −QM,Φ(xn)∥2

}
.

(7.7)

This is the standard objective used in traditional K-means clustering. Although
this objective is convex in cluster centers M alone, the joint minimization over the
cluster regions Φ makes it highly non-convex in general. Nevertheless, the necessary
optimality conditions are obtained as follows:

Theorem 7.2.3 (Optimality of K-Means [152], [163]). Given a fixed set of centroids
M, the optimal partitioning Φ⋆ is the nearest-neighbor partition, i.e.,

Φ⋆
k =

{
x ∈ Rd | ∥x− µk∥ ≤ ∥x− µl∥ ∀l ̸= k

}
, k = 1, . . . , K. (7.8)

Furthermore, the optimal centroids M⋆ for a dataset DN satisfy the following
necessary conditions:

µ⋆
k =

∑N
n=1 xn 1Φ

⋆
k
(xn)∑N

n=1 1Φ
⋆
k
(xn)

= E
P̂N

[X | X ∈ Φ⋆
k] , k = 1, . . . , K. (7.9)
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The infamous Lloyd-Max algorithm is essentially developed as a fixed-point comput-
ing locally optimal centroids.

Φ
(t)
k ←

{
x ∈ Rd | ∥x− µ

(t)
k ∥ ≤ ∥x− µ

(t)
l ∥ ∀l ̸= k

}
(7.10)

µ
(t+1)
k ←

∑N
n=1 xn 1Φ

(t)
k
(xn)∑N

n=1 1Φ
(t)
k
(xn)

= E
P̂N

[
X | X ∈ Φ

(t)
k

]
(7.11)

The Lloyd-Max algorithm has per-iteration complexity O(dNK), and the empirical
risk is monotonically decreasing at each iteration, namely,

Risk(M(t+1),Φ(t+1), P̂N) ≤ Risk(M(t),Φ(t), P̂N),

converging to a local minimum. While this makes it an easy-to-implement algorithm,
the accuracy of the resulting clustering scheme on the true population highly depends
on the quality and representativeness of the dataset of the true underlying population.

Distributionally Robust K-Means Clustering
As discussed in the preceding section, the standard K-means clustering on a dataset
DN is an empirical proxy to clustering the underlying true population with distribution
P♯. When the dataset is generated directly from the population, say in i.i.d. fashion,
the representativeness of the empirical distribution P̂N as a proxy to the populationP♯

diminishes severely in high-dimensional data-starve settings, such that log(N)≪ d,
due to curse of dimensionality.

Moreover, distribution shifts in the data-generating process, i.e., deviations from
the underlying population due to reasons like corruption by noise, outliers, or
other unknown mechanisms, further degrade the accuracy of clusters obtained from
standard K-means on the underlying population. However, the standard K-means
does not have a priori performance guarantee for the underlying population when
the dataset is subject to distribution shifts, making it highly susceptible to cluster
misrepresentation under such phenomena.

To overcome these limitations, we propose a distributionally robust K-means
clustering method. In this setting, we explicitly incorporate our uncertainty about
the true population distribution P♯ into the design of K-means clusters through an
ambiguity set of plausible probability distributions consistent with the dataset DN ,
to which the true distribution P♯ belongs. We can describe this notion of plausibility
by a statistical distance on the space of probability measures P(Rd). Since the
clustering risk is assessed by the L2-distance, a natural statistical distance to use is
the Wasserstein-2 distance.
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Definition 7.2.4 (Wasserstein-2 Ambiguity Sets). The W2-ambiguity set of radius
r>0 around a nominal distribution P◦ ∈P(Rd) is defined as

Bw
r (P◦) :=

{
P ∈P(Rd) | W2(P, P◦) ≤ r

}
. (7.12)

In this paper, we take the empirical distribution P̂N as the nominal. Notably,
the Wasserstein-2 ambiguity set offers the significant advantage of encompassing
continuous, mixed, and discrete distributions. Accordingly, we impose the following
assumption for the remainder of our paper:

Assumption 7.2.5. Given DN and r>0, the true distribution P♯ of the underlying
population belongs to the ambiguity set Br(P̂N).

The radius r>0 essentially determines the level of uncertainty about and/or deviation
from the unknown populationP♯. When the dataset samples are drawn i.i.d. from the
population P♯, it is indeed possible to determine an upper bound on r that guarantees
that Assumption 7.2.5 holds with high probability.

Theorem 7.2.6 (High-Confidence Ambiguity Sets [66, Thm. 2]). Let d>4, ε ∈ (0, 1),
and EP♯

[exp(∥X∥α)] < +∞ for an α > 2. When DN is drawn i.i.d. from P♯, the
true density P♯ resides in the ambiguity set Br(N,ε)(P̂N) with probability at least
1− ε, i.e.,

P
⊗N
♯

{
W2(P♯, P̂N)≤r(N, ε)

}
≥ 1−ε where r(N, ε) :=


(

log(C/ε)
cN

) 2
d
, ifN≥ log(C/ε)

c
,(

log(C/ε)
cN

) 2
α
, ifN< log(C/ε)

c
,

(7.13)
where C, c > 0 are constants depending on α and d.

The above theorem simply provides a priori high-confidence upper bound on the W2

distance between the unknown true distribution P♯ and the empirical distribution
P̂N sampled from P♯. Similar a priori bounds can also be derived for distribution
shifts induced by feature noise, data corruption, or outlier injection.

Assumption 7.2.5 allows establishing performance bounds on the population risk
of any clustering scheme through the worst-case risk attained among all plausible
distributions in the ambiguity set, defined as follows:
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Definition 7.2.7 (Worst-Case Risk). Given a dataset DN and radius r > 0, the
worst-case risk of a quantization scheme (M,Φ) is defined as

wRiskN,r(M,Φ) := sup
P∈Br(P̂N )

{
Risk(M,Φ,P) = EP

[
∥X −QM,Φ(X)∥2

]}
.

(7.14)

Although the true distribution is not known, the worst-case risk provides an upper
bound on the population risk of a clustering scheme (M,Φ),

inf
M

′
,Φ

′
Risk(M′,Φ′,P♯) ≤ Risk(M,Φ,P♯) ≤ wRiskN,r(M,Φ). (7.15)

Thus, minimizing the worst-case clustering risk among all plausible distributions
in the ambiguity set instead of directly minimizing the empirical risk provides a
proxy with a guaranteed population in the face of uncertainties and distribution shifts
between empirical training data and the true population. This is formalized in the
following problem.

Problem 7.2.8 (Distributionally Robust K-Means). Given a dataset DN and a
ambiguity set radius r > 0, find a clustering scheme (M,Φ) that minimizes the
worst-case clustering risk, i.e.,

inf
(M,Φ)

sup
P∈Br(P̂N )

{
Risk(M,Φ,P) = EP

[
∥X −QM,Φ(X)∥2

]}
. (7.16)

7.3 Optimality Conditions for Distributionally Robust Clusters
In this section, we establish the necessary optimality conditions for distributionally
robust K-means clustering problem in 7.2.8. Our approach is grounded in the strong
duality result (Theorem 7.3.2) from the Wasserstein distributionally robust optimiza-
tion (DRO) literature and employs the Karush-Kuhn-Tucker (KKT) conditions to
characterize local optimality in Theorem 7.3.4.

We start by establishing the optimality of the nearest neighbor partition in (7.8) for
fixed centroids over any population distribution.

Lemma 7.3.1 (Optimality of Nearest-Neighbor Partition). For any fixed centroids
M =

[
µ1 . . . µK

]
∈ Rd×K , the nearest neighbor partition Φ⋆ in (7.8) universally

dominates clustering risk such that

Risk(M,Φ,P) ≥ Risk(M,Φ⋆,P) = EP

[
min
k∈[K]

∥X − µk∥2
]

︸ ︷︷ ︸
:=Risk(M,P)

, for all P ∈P(Rd).

(7.17)
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Proof. See Section 7.A. ■

This result implies that the distributionally robust clusters for fixed centroids will be
the nearest neighbor clusters as well, i.e.,

inf
(M,Φ)

sup
P∈Br(P̂N )

Risk(M,Φ,P) = inf
M∈Rd×K

sup
P∈Br(P̂N )

EP

[
min
k∈[K]

∥X − µk∥2
]

︸ ︷︷ ︸
:=wRiskN,r(M)

, (7.18)

where wRiskN,r(M) is the worst-case clustering risk of centroids M with nearest
neighbor clusters. In this formulation, evaluating wRiskN,r(M) entails solving an
infinite-dimensional optimization problem over the space of probability distributions.
By leveraging the strong duality property of distributionally robust optimization as
established in Gao and Kleywegt [74, Thm. 1], we derive a tractable reformulation in
Theorem 7.3.2 that effectively reduces the problem to a single-variable optimization
over the nominal empirical distribution.

Theorem 7.3.2 (Strong Dual). The worst-case clustering risk wRiskN,r(M) in-
curred by any given set of K centroids M ∈ Rd×K is equivalent to following dual
formulation:

wRiskN,r(M) = inf
γ>1

γr2 +
1

N

∑N

n=1
en(γ,M), (7.19)

where
en(γ,M) := sup

x∈Rd

min
k∈[K]

∥x− µk∥2 − γ∥x− xn∥2. (7.20)

Proof. See Section 7.B ■

While the primal problem in (7.18) is reduced to a tractable finite-dimensional dual
optimization in (7.19), it requires solving a non-convex max-min optimization for
each data point xn. The following lemma provides a convex-concave min-max
reformulation of the inner max-min problem and a tractable expression for the
worst-case source in terms of the nominal.

Lemma 7.3.3 (Inner Saddle Point and the Worst-Case). For γ > 1, the objec-
tive en(γ,M) in (7.20) is equivalent to the following convex-concave min-max
optimization:

en(γ,M) = min
π∈∆K

max
x∈Rd

∑K

k=1
∥x− µk∥2πk − γ∥x− xn∥2, (7.21)

= min
π∈∆K

∑K

k=1
∥xn − µk∥2πk +

1

γ − 1
∥xn −Mπ∥2. (7.22)
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Furthermore, this min-max optimization admits a saddle point (x⋆
n,π

⋆
n) ∈ Rd ×∆K

such that

x⋆
n := xn +

xn −Mπ⋆
n

γ − 1
, and π⋆

n ∈ argmin
π∈∆K

∑K

k=1
∥x⋆

n − µk∥2πk. (7.23)

Proof. See Section 7.C ■

Note that the optimal probability mass function (pmf) π⋆
n∈∆K is a function of the

data point xn. This pmf can be interpreted as a stochastic cluster assignment for xn

for the given set of centroids M, namely, π⋆
kn represents the conditional probability

of assigning the data point xn to kth cluster.

Observe that the term
∑K

k=1 ∥xn − µk∥2πkn in (7.22) represents the expected squared
distance between data point xn and the centroids M under the stochastic assignment
rule πn. In contrast, Mπ denotes the weighted average of the cluster centers, so
that ∥xn −Mπn∥2 quantifies the bias associated with the data point xn under the
stochastic cluster assignment scheme (M,Π), where

Π :=
[
π1 . . . πN

]
∈ RK×N .

Thus, the second term in the optimization problem (7.22) acts as a regularizer. This
regularization, governed by the parameter γ > 1, mediates the trade-off between the
expected squared distance of xn to the cluster centroids and the bias introduced by
the stochastic cluster assignment.

Furthermore, x⋆
n represents the worst-case data point associated with xn and given

centroids M, so that the worst-case distribution becomes P⋆ = N−1∑N
n=1 δx⋆

n
.

These worst-case data points are simply shifted away from the original data xn to the
direction of averaged cluster center Mπn, introducing a bias scaled by the inverse of
γ − 1. As the radius of the ambiguity set diminishes, i.e., r → 0, we have γ →∞.
In this limiting case, both the regularization and perturbation terms vanish, thereby
recovering the standard K-means over the dataset DN .

We conclude this section with Theorem 7.3.4, which formally states the main result
of this section, i.e., the local optimality conditions for the distributionally robust
centroids.

Theorem 7.3.4 (Conditions for Local Optimality). Given a fixed dataset DN and a
radius r > 0, globally optimal centroidsM⋆ solving the Wasserstein-2 distributionally
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robust K-means clustering problem 7.2.8 must satisfy

µ⋆
k =

∑N
n=1 x

⋆
nπ

⋆
kn∑N

n=1 π
⋆
kn

, k = 1, . . . , K. (7.24)

where X⋆ :=
[
x⋆
1 . . . x⋆

N

]
∈ Rd×N and Π⋆ ∈ RK×N are as in (7.23), and the

optimal γ⋆ satisfies

γ⋆ = 1 + r−1

√∑N

n=1
∥xn −M⋆π⋆

n∥2. (7.25)

These conditions are sufficient for local optimality.

Proof. See Section 7.D. ■

7.4 An Efficient Algorithm for Distributionally Robust Centroids
In this section, we present a practical algorithm inspired by the theoretical insights
developed in Section 7.3 to identify distributionally robust centroids. The core of
our approach lies in formulating an iterative method that computes locally optimal
centroidal regions through a fixed-point iteration à la Lloyd-Max. These fixed points
are characterized by the KKT conditions in Theorem 7.3.4.

Before presenting the algorithm, we derive a closed-form expression for the saddle
point (X⋆,Π⋆) under a fixed γ > 1 and M in the scalar setting (d = 1). This
derivation yields valuable insights into the structure of the stochastic assignment
rule.

Lemma 7.4.1 (Closed-form in Scalar Setting). Given µ0 < µ1 < µ2 < · · · < µn <

µn+1 where µ0 := −∞ and µn+1 := +∞ and γ > 1, define the disjoint intervals

Φγ,k :=µk+(1−γ−1)
]
µk−1−µk

2
,
µk+1−µk

2

[
, (7.26)

Φγ,k+ 1
2
:=µk+ 1

2
+γ−1

[
−µk+1−µk

2
,
µk+1−µk

2

]
, (7.27)

for k ∈ [K] with Φγ, 1
2
=Φγ,n+ 1

2
=∅, where µk+ 1

2
:=

µk+µk+1

2
. Defining the ratio,

qk+ 1
2
,n :=

xn − µk+ 1
2

(µk+1 − µk)/2
, ∀k ∈ [n− 1], (7.28)
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the closed-form expressions for the worst-case source and the corresponding stochas-
tic decoding rule given the nominal source are, respectively,

x⋆
n=

xn +
xn−µk

γ−1
, xn∈Φγ,k,

µk+ 1
2
, xn∈Φγ,k+ 1

2
,

and π⋆
kn=


1
2
(1+γqk− 1

2
,n), xn∈Φγ,k− 1

2
,

1, xn∈Φγ,k,

1
2
(1−γqk+ 1

2
,n), xn∈Φγ,k+ 1

2
.

(7.29)

Proof. See Section 7.E ■

This result demonstrates that any data point xn residing in the interval Φγ,k+ 1
2

around
the boundary point, µk+ 1

2
, between adjacent clusters invariably yields a worst-case

data point x⋆
n located precisely at the boundary point µk+ 1

2
. Consequently, the

construction of this worst-case data point necessitates a non-deterministic weighting
of the centroids.

Algorithm 3 Distributionally Robust K-Means Clustering

1: input: γ>1, dataset DN , initialization M(0), convergence tolerance ε>0,
2: repeat

3: π(t)
n ← argmin

πn∈∆K

∑K

k=1
∥xn − µ

(t)
k ∥2πkn +

1

γ − 1
∥xn −M(t)π(t)

n ∥2 for each

n = 1, . . . , N ,

4: M(t+1) ← argmin
M∈Rd×K

1

N

∑N

n=1

∑K

k=1
∥xn − µk∥2π(t)

kn +
1

γ − 1
∥xn −Mπ(t)

n ∥2,

5: Increment t← t+ 1

6: until maxk |µ(t+1)
k −µ(t)

k |
maxl |µ(t)

l |
≤ ε

7: return M(t)

We present Algorithm 3, a novel distributionally robustK-means clustering algorithm.
For clarity, the algorithm is introduced assuming a fixed parameter γ > 1. However,
it can be easily adapted to operate with a fixed radius r > 0 by computing the optimal
γ⋆ > 1 that satisfies the equation (7.25) using a straightforward bisection method.

Given a dataset DN and an initial set of centroids M(0) ∈ Rd×K , the algorithm
iteratively refines the centroids through a two-step process. First, it computes the
stochastic assignment probabilities Π(t) ∈ RK×N corresponding to the current
centroids M(t) by solving (7.22), a convex quadratic program. Next, the centroids
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are updated, with M(t+1) being the minimizer of the following objective for fixed
Π(t),

M(t+1) ← argmin
M∈Rd×K

1

N

∑N

n=1

∑K

k=1
∥xn − µk∥2π(t)

kn +
1

γ − 1
∥xn −Mπ(t)

n ∥2.

(7.30)

This is an unconstrained convex quadratic objective and admits closed form solution.
Notably, this algorithm generalizes the classical Lloyd-Max algorithm, which emerges
as a limiting case when γ → ∞. In this limit, the fuzzy midpoint regions Φ

(t)

k+ 1
2

vanish, and the stochastic decoder transitions to the deterministic nearest-neighbor
decoder, thereby eliminating ambiguity about the source distribution. We conclude
this section with the following theorem on the convergence of this algorithm.

Theorem 7.4.2 (Monotonic Convergence). The iterates {M(t)}∞t=0 generated by
Algorithm 3 monotonically decrease the worst-case clustering risk, i.e.,

wRiskN,r(M
(t+1)) ≤ wRiskN,r(M

(t)), for all t ≥ 0. (7.31)

Proof. See Section 7.F. ■

The observed monotonic decrease mirrors that of the classical Lloyd–Max algorithm
for standard K-means clustering. In particular, although it may not be immediately
apparent, the iterative updates that alternate between optimizing the centroids and
adjusting the stochastic assignments can be interpreted as a Expectation-Maximization
(EM) or coordinate descent procedure.

7.5 Numerical Experiments
In this section, we provide an empirical comparison of the Distributionally Robust
K-Means (DRKM) and K-Means++(KM). For better convergence, we initialize our
algorithm with the output of K-Means++. Since our algorithm is better suited for the
data starved regime, we study the worst-case performance and its dependence on
the number of data points (Experiments 1 and 3). We also show that the DRKM is
robust to outliers in terms of classification error (Experiment 2). In this section, we
utilize a mix of both synthetic and real-world datasets.
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Ambiguity Radius
In order to have a meaningful radius of the W2 ball across varying N , we set,

r = α

(
1

N

) 1
d

, (7.32)

where d is the dimension, N is the number of data points and α is a user-specified
parameter. The reasoning behind this choice of r is that as the number of data points
increases, our uncertainty in the true distribution decreases; hence the ambiguity
radius should adjust accordingly. We chose (7.32) to maintain a constant confidence
in our estimate of the true distribution with varying N . For details, see Theorem 2 in
[66].

Synthetic Datasets
In Experiment 1, we consider a Gaussian mixture model (GMM) with 3 components
with weights {0.2, 0.26, 0.53} and randomly chosen centers in d = 7 dimensions.
We chose α = 10 and K = 3, where each cluster center corresponds to a unique
Gaussian component. We observe in Figure 7.1 that as the number of data points
N increases from 5 to 50, the difference in the worst-case performance between
the DRKM and KM decreases. This is because a higher N better represents the
underlying data distribution, making it easier for KM to obtain a better estimate of
the underlying distribution.

In Experiment 2, we consider a dataset which is corrupted by an outlier cluster. The
original dataset, as represented in Figure 7.2, consists of two clusters (Cluster A and
Cluter B) which are normally distributed NA and NB points, with means (−2,−2)
and (2, 2) respectively. The outlier cluster is also a set of No normally distributed
points centered at (8, 8). The misclassification error of DRKM and KM for different
data points is given in Table 7.1. The values are averaged over 200 trial runs. We see
that the DRKM performs better than KM in the low data regime.

Real World Dataset
In Experiment 3, we consider the worst-case performance on the Shuttle dataset
of the UCI repository [160]. The original dataset consists of 43, 500 data points
with d = 9 features. We sparsify the dataset to study the worst-case performance of
DRKM and KM in the low-data regime. We set α = 100 in this experiment. The
results are shown in Figure 7.3. As observed in Figure 7.1, we see that as the number
of data points N increases from 5 to 50, the difference in the worst-case performance
between the DRKM and KM decreases.
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Figure 7.1: The trend of the worst-case error in Experiment 1, averaged over 30 trials
for each N . We see that as N increases, the difference in the performance of DRKM
and KM decreases, signifying the performance improvement of DRKM over KM in
the low data regime.
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Figure 7.2: A realization of the dataset in Experiment 2. The blue points are in
Cluster A and the green points are in Cluster B. We see that the cluster center of KM
is shifted to the outlier cluster whereas the cluster center of DRKM, is close to the
true cluster (Cluster B) even in the presence of an outlier class and even when we
initialize DRKM with the output of KM.

7.6 Conclusion
We have introduced a distributionally robust variant of the classical k-means algorithm
that explicitly accounts for distributional shifts by minimizing the worst-case error
over a W2 family of distributions. Our formulation leverages a Wasserstein-2
ambiguity set centered at the nominal distribution P◦ with a specified radius r,
ensuring that the resulting cluster placements are optimal under uncertainty. We have
established that the proposed algorithm operates as a descent method and derived
the necessary conditions for the optimal positioning of K clusters. Numerical
simulations confirm the efficacy of our approach, demonstrating its performance
in data starved regime where traditional k-means may falter due to distributional
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Figure 7.3: The trend of the worst-case error in Experiment 3, averaged over 30 trials
for each N . We randomly pick N data points from the dataset in our experiment.
We see that as N increases, the difference in the performance of DRKM and KM
decreases, signifying the performance improvement of DRKM over KM in the low
data regime.

NA NB No Misclassification Misclassification r
Rate (%) (DRKM) Rate (%) (KM)

20 20 5 13.6 21.9 2.25
10 10 2 7.8 20.4 2.5

Table 7.1: The Missclassification Rate of DRKM and KM for different data samples.
We see that DRKM noticeably outperforms KM.

deviations. Future directions include studying the convergence gaurantees of the
algorithm.

7.A Proof of Lemma 7.3.1
Since Φ is a partition, for any x ∈ Rd, there is exactly one k⋆ ∈ [K] for which
1Φ

⋆(x) = 1. Then, we have that:

∥x−QM,Φ(x)∥2 =
∥∥∥∑K

k=1
1Φk

(x)(x− µk)
∥∥∥2 , (7.33)

=
∑K

k=1
1Φk

(x)∥x− µk∥2, (7.34)

≥ min
k∈[K]

∥x− µk∥2. (7.35)

Since this holds for any x ∈ Rd, it also holds under the expectation operator over any
distribution P:

EP
[
∥x−QM,Φ(x)∥2

]
≥ EP

[
min
k∈[K]

∥x− µk∥2
]
. (7.36)

Finally, the nearest neighbor partition for the given centroids M achieve this lower
bound. ■
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7.B Proof of Theorem 7.3.2
Notice that the worst-case risk in (7.18) is in the form of standard Wasserstein DRO
problem as

sup
P∈Bw

r (P◦)

EX∼P [f(x |M)] (7.37)

where f(x |M) := mink∈[K] ∥x− µk∥2 is distance of a single point x ∈ Rd to the
nearest cluster centroid. Applying the strong duality of Wasserstein DRO in Gao and
Kleywegt [74, Thm. 1], we obtain

inf
γ≥0

γr2 + EX◦∼P̂N

[
sup
x∈Rd

f(x |M)− γ∥x−X0∥2
]
, (7.38)

= inf
γ≥0

γr2 +
1

N

∑N

n=1

[
sup
x∈Rd

min
k∈[K]

∥x− µk∥2 − γ∥x− xn∥2
]
, (7.39)

Notice that any choice of γ ≤ 1 would make the inner supremum over x ∈ Rd

infinity, thus restricting γ > 1. ■

7.C Proof of Lemma 7.3.3
Note that the minimization over the indices inside the expectation in the primal
problem (7.18) can be reexpressed as a minimization over the probability simplex:

min
i∈[N ]

(x− µi)
2 = min

π∈∆K

∑
i∈[N ]

(x− µi)
2πi (7.40)

= min
π∈∆K

EI∼π

[
(x− µI)

2
]
, (7.41)

where I is a random index in [N ] distributed according to the discrete probability
mass function π ∈ ∆K . Substituting this back to the definition in (7.20), we get

eγ(xn,M) = sup
x∈Rd

min
π∈∆K

EI∼π

[
(x−µI)

2
]
−γ(x−x◦)

2,

Note that the objective is strictly concave in x ∈ Rd for γ > 1, affine in π ∈ ∆K . As
the simplex ∆K ⊂ Rn is convex and compact, and assuming Rd ⊆ R is convex, the
sup and the min can be exchanged by Sion’s minimax theorem [212, Cor. 3.3] to
yield (7.21). Furthermore, for Rd = R, the inner min-max problem in (7.21) admits
a saddle point (x⋆, π⋆) ∈ Rd ×∆K such that

eγ = sup
x∈Rd

EI
⋆∼π

⋆

[
(x− µI

⋆)2
]
− γ(x− x◦)

2, (7.42)

= min
π∈∆K

EI∼π

[
(x⋆ − µI)

2
]
− γ(x⋆ − x◦)

2. (7.43)
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By strict concavity and smoothness of the objective (7.42) in x, the supremum is
achieved by the unique stationary point x⋆ ∈ Rd that vanishes the gradient wrt x.
Furthermore, any π⋆ ∈ ∆K that achieves the minimum in (7.43) is a saddle point.

The expression in (7.21) can be further simplified by explicitly taking the supremum
of the quadratic objective over x, resulting in the equivalent expression

min
π∈∆K

EI∼π

[
(xn − µI)

2
]
+

1

γ − 1
(x◦ − EI∼π [µI ])

2 (7.44)

■

7.D Proof of Theorem 7.3.4
Proof. Using (7.22), we rewrite the dual optimization problem as follows:

inf
µ1,...,µn∈R

d
,

π(·):Rd→∆K ,
γ>1

γr2+EX◦∼P◦,
I∼π(X◦)

[
(xn−µI)

2+
(xn−E [µI | X◦])

2

γ−1

]

Denoting the objective by Fγ(M, π), note that it is differentiable and convex with
respect to µ1, . . . , µn for fixed π(·) : Rd → ∆K and γ > 1. Therefore, the
minimum wrt µ1, . . . , µn is attained at the stationary points {µ⋆

i }ni=1 satisfying
∂kFγ({µ⋆

i }ni=1, π) = 0, which is equivalent to:

EX◦∼P◦

[
−2πk(X◦)

(
xn−µ⋆

k−
xn−E [µ⋆

I | X◦]

γ−1

)]
= 0.

Rearranging the terms, we get

µ⋆
k =

EX◦∼P◦
[x⋆(X◦)πk(X◦)]

EX◦∼P◦
[πk(X◦)]

= E xn∼P◦,
I∼π(X◦)

[x⋆(X◦) | I= i] .

The minimum wrt π for fixed M and γ > 1 is achieved by (??) according to
Lemma 7.3.3. Finally, the minimum wrt γ > 1 when the rest of the variables are
fixed is achieved by the stationary point ∂γFγ

⋆({µ⋆
i }ni=1, π

⋆) = 0 or equivalently:

r2 −
E X◦∼P◦,

I
⋆∼π

⋆
(X◦)

[
(xn−E [µ⋆

I | X◦])
2
]

(γ⋆−1)2
= 0. (7.45)

■
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7.E Proof of Lemma 7.4.1
Proof. It is clear that π⋆

γ(x◦) = δk if and only if x⋆
γ(x◦)=x◦+(γ − 1)−1 (x◦−x̂k)

and |x⋆
γ(x◦)−x̂k| < |x⋆

γ(x◦)−x̂l| for l ̸= k by Theorem 7.3.4. Rearranging the
last term, one can obtain the equivalence of the last condition to x◦ ∈ Φγ,k.
Note that since centroids are distinct, any given point can have, at most, two
closest points. This means that πγ(x◦) cannot be a mixture of more than two
centroids. In that case, π⋆

γ(x◦) = pδk+(1−p)δk+1 for p ∈ (0, 1) if and only if
x⋆
γ(x◦)=x◦+(γ−1)−1 (x◦−px̂k−(1−p)x̂k+1) and |x⋆

γ(x◦)−x̂k|= |x⋆
γ(x◦)−x̂k+1|<

|x⋆
γ(x◦)−x̂l| for l ̸= k, k+1 by Theorem 7.3.4. This is possible if and only if

x⋆
γ(x◦) = x̂k+ 1

2
, i.e., the midpoint between two consecutive centroids, and thus

x◦ = x̂k+ 1
2
+γ−1

(
px̂k+(1−p)x̂k+1−x̂k+ 1

2

)
. The range of p ∈ [0, 1] allows x◦ to

take values only in Φγ,k+ 1
2
. Rearranging this relationship between p ∈ [0, 1] and

x◦ ∈ Φγ,k+ 1
2

to express p in terms of x◦ yields p= 1
2
(1−γqk+ 1

2
(x◦)). ■

7.F Proof of Theorem 7.4.2
Proof. Denote by Fγ({x̂i}ni=1, π) the objective used in the proof of Theorem 7.3.4.
Then, given {x̂(t)

i }ni=1 at iteration t ∈ N, we have that

π(t) ∈ argmin
π(·):X→∆n

Fγ({x̂(t)
i }ni=1, π). (7.46)

Thus, we get
Fγ({x̂(t)

i }ni=1, π
(t)) = QEr({x̂(t)

k }k∈[N ]). (7.47)

Similarly, given π(t), the next iterate of centroids {x̂(t+1)
i }ni=1 are given by:

{x̂(t+1)
i }ni=1 = argmin

x̂1,...,x̂n

Fγ({x̂i}ni=1, π
(t)). (7.48)

Therefore, we get

QEr({x̂(t+1)
k }k∈[N ]) = inf

π
Fγ({x̂(t+1)

i }ni=1, π)

≤ Fγ({x̂(t+1)
i }ni=1, π

(t))

≤ Fγ({x̂(t)
i }ni=1, π

(t)) = QEr({x̂(t)
k }k∈[N ]).

■
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C h a p t e r 8

INTRODUCTION AND MOTIVATION

8.1 Introduction
Autonomous control systems now permeate across critical domains, from self-driving
cars and power grids to manufacturing and rescue robotics, where their decisions carry
major economic and safety implications. Reliability is essential: a failure in control
can lead to major blackouts or endanger lives. Yet, these systems face environments
of unprecedented complexity and uncertainty, including interacting subsystems,
adversarial disturbances, noisy sensors, and incomplete models. Simultaneously,
they must meet stringent performance demands under resource constraints, requiring
trade-offs between objectives like cost, robustness, and safety.

Traditional design methods fall short. Stochastic approaches (e.g., LQG,H2) optimize
average-case performance but fail under model mismatch. Robust control (e.g.,
H∞) guards against worst-case scenarios but at the cost of excessive conservatism,
ignoring useful statistical information. Recent data-driven methods enabled by
machine learning and reinforcement learning show strong empirical results but
remain brittle under distribution shifts and lack formal guarantees, risking unsafe
behavior in novel situations.

To address these limitations, a third paradigm has emerged: distributionally robust
control (DRC). DRC optimizes performance against worst-case distributions within
data-informed ambiguity sets, bridging the gap between stochastic and robust designs.
Complementary risk-aware methods (e.g., CVaR, entropic penalties) and multi-
criteria formulations (e.g., mixedH2/H∞, chance constraints) offer further tools to
explicitly manage uncertainty, tail risk, and competing performance objectives.

Challenges with Controller Synthesis
Despite their promise, turning these elegant formulations into practical, real-time
deployable controllers poses severe analytical and computational hurdles. Finite-
horizon formulations lead to high-dimensional and intractable optimization problems
that scale poorly with the time horizon, making real-time implementation infeasible.
While receding horizon strategies (e.g., model predictive control) offer a workaround,
they often lack rigorous stability guarantees and may result in non-smooth, erratic,



160

or myopic behaviors that hinder long-term performance.

A more principled solution lies in infinite-horizon controller synthesis, which offers
provably stable and performance-guaranteed policies with efficient online imple-
mentation. However, designing optimal infinite-horizon controllers for generalized
objectives remains a deeply challenging problem. To date, exact closed-form solu-
tions are known only for a few special cases, such as LQG,H∞, regret-optimal, and
entropic risk-sensitive control, while other widely studied formulations, including
mixedH2/H∞, has so far been unresolved.

Furthermore, unlike LQG and H∞ problems, many of these problems, including
the mixedH2/H∞ and Wasserstein DRC, generally admit only infinite-dimensional
(i.e., non-rational) optimal controllers without finite-state-space representations,
posing major barriers to practical real-time deployment. Although approximation
strategies—such as constraining to finite impulse response (FIR) controllers or
closed-loop responses—can reduce the problem to a tractable form, they introduce
new issues: they may fail to capture long-range dependencies or incur significant
suboptimality unless the memory length is taken prohibitively large.

Non-rational Control Framework
These realities underscore the need for a new generation of practical controller-
synthesis techniques that

• accommodate a wide array of performance metrics, including risk mitigation
and robustness under uncertainty, and other multi-objective criteria;

• ensure closed-loop stability,

• impose minimal computational overhead in real-time implementations,

• scale efficiently to high-dimensional, large-scale systems, and

• achieve near-optimal performance with provably negligible suboptimality gaps.

Recent breakthroughs including our own results on infinite-horizon Wasserstein
distributionally robust control [90], [124], [125], filtering [92], [122] and the exact
infinite-dimensional solution of the mixedH2/H∞ control [158] reveal a unifying
lens: non-rational control framework.

Embracing the infinite-dimensional nature of control problems, this unified framework
offers new analytical and computational tools that render otherwise intractable
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controller design tasks both solvable and practically implementable. Crucially,
it adopts an optimize-then-approximate paradigm, enabling synthesis of provably
near-optimal, stabilizing finite-dimensional (rational) state-space controllers, even
when the true optimum resides in an infinite-dimensional (non-rational) policy class.
The framework is built on the following key components:

1. Infinite-dimensional convex duality. By formulating the control objective at
the operator level and invoking convex duality, the original design problem
with generalized performance criteria is recast as a tractable optimization
program.

2. Efficient numerical solution. Exploiting the Fourier-domain (transfer-function)
representation of the dual variables allows the use of standard, scalable
optimization algorithms (e.g., first-order methods) to compute the exact
infinite-dimensional optimum.

3. Rational controller synthesis. A novel rational-approximation scheme
translates the infinite-dimensional solution into finite-order controllers that
are guaranteed to be stabilizing and within a quantifiable performance gap,
enabling practical real-time deployment without sacrificing performance.

The non-rational control framework integrates and extendsH2,H∞, distributionally
robust, risk-sensitive, regret-optimal, and multi-objective control paradigms into a
cohesive framework that enables scalable real-time implementation. The underlying
numerical optimization and rational controllers synthesis algorithms are highly
efficient in terms of computational complexity and horizon independent, as opposed
to finite-horizon formulations which scale with the time-horizon. Moreover, the
resulting near-optimal rational controllers significantly outperform those derived
from restrictive policy classes, such as those obtained from Finite Impulse Response
(FIR) approximation.

8.2 Infinite-Horizon Control via Closed-Loop System Responses
Consider a linear time-invariant (LTI) dynamical system in discrete-time:

xt+1 = Axt +Buut +Bwwt, (8.1)

where xt ∈ Rdx is the state, ut ∈ Rdu is the control input, and wt ∈ Rdw is the
disturbance at time t. Here, (A,Bu) is stabilizable and (A,Bw) is controllable,
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namely there exists a matrix K0 ∈ Rdu×dx such that A − BuK0 is stable and the
controllability matrix

[
Bw ABw . . . Adx−1Bw

]
is full-rank.

We restrict attention to strictly causal LTI controllers that observe past disturbances
to generate control inputs1. These controllers take the form:

ut =
∑
s≤t

Kt−sws, with K0 = 0 (8.2)

where (Kt)
∞
t=0 are the Markov parameters (or the impulse response) of the controller.

We are interested in the evolution of the state and control input trajectories as
functions of the control policy (Ks)

∞
s=0 and the disturbance process (wt). When

only a finite time horizon T > 0 is considered, and assuming x0 = 0 for simplicity,
the relationship between the state, control input, and disturbance trajectories can be
compactly expressed as:

xT = Pxu,TuT + Pxw,TwT , (8.3a)

uT = KTwT , (8.3b)

where the stacked trajectories are defined as:

xT :=


x0

x1

...
xT

 ,uT :=


u0

u1

...
uT

 ,wT :=


w0

w1

...
wT

 . (8.4)

For i ∈ {u,w}, the matrices Pxi,T and KT are strictly block lower-triangular and
defined by:

Pxi,T :=



0

Bi 0

ABi Bi 0
...

... . . . . . .
AT−1Bi AT−2Bi . . . Bi 0


, (8.5)

KT :=



0

K1 0

K2 K1 0
...

... . . . . . .
KT KT−1 . . . K1 0


. (8.6)

1This is closely related to the standard state-feedback policies, as one can recover wt−1 from
xt, xt−1, ut−1 when Bw is full column rank, via wt−1 = (BT

wBw)
−1BT

w(xt −Axt−1 −Buut−1).
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These block-Toeplitz matrices succinctly encode two convolutional operations: one
maps past inputs and disturbances to the state trajectory (via the system dynamics),
and the other maps past disturbances to the control inputs (via the strictly causal
controller).

As the horizon extends to infinity (i.e., T −→ ∞), the finite-length trajectories
xT ,uT ,wT become infinite-dimensional sequences x,u,w and the block-Toeplitz
matrices Pxu,T ,Pxw,T ,KT naturally extend to infinite-dimensional block-Toeplitz
operators Pxu,Pxw,K. In this limit, the relationship between state, control input,
and disturbance trajectories analogously satisfy:

x = Pxuu+ Pxww, (8.7a)

u = Kw, (8.7b)

Observe that (8.7) constitutes an infinite system of linear equations in which the
disturbance process w serves as the independent input. Eliminating u via substituting
the control law u = Kw into the state equation (8.7a) yields the closed-loop transfer
operator mapping disturbances to the resulting state and control trajectories:

TK : w 7→
[
x

u

]
, TK :=

[
PxuK + Pxw

K

]
(8.8)

The block-operator TK characterizes the closed-loop behavior induced by the con-
troller K, i.e., describing how disturbances propagate through both the plant and

the controller. We will similarly use the notation TKT
: wT 7→

[
xT

uT

]
to denote the

closed-loop transfer matrix over a finite horizon T > 0.

Many control problems can be cast as optimization tasks, where the goal is to
design a controller K, typically subject to constraints such as stability, sparsity, or
structural requirements, that optimizes a performance objective defined in terms of
the closed-loop transfer operator TK. More formally,

inf
s.causal K

f(TK) subject to K ∈ K . (8.9)

where f is the performance objective to be minimized and K is the set of admissible
control policies. The formulation naturally incorporates both constraints on the
controller K through the admissible set K and on the induced closed-loop behavior
captured by TK through f .
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At this level of generality, however, it is difficult to characterize or compute optimal
solutions, even when the objective function f and the admissible set K are both
convex, due to the infinite-dimensional nature of the problem. Consequently, much
of the research in control theory has historically focused on specific problem classes
of significant practical importance, most notably H2, H∞, and regret optimal control
[191].

In the following subsections, we review several standard control problems and
outline their corresponding solution strategies. We conclude with a discussion of
various other control problems, including mixed objective criteria and Wasserstein
distributionally robust control, highlighting the key challenges associated with their
implementation and tractable synthesis.

H2-Optimal Control via Wiener-Hopf Technique

Problem 8.2.1 (H2-Optimal Control). Find a strictly causal LTI control policy K
that minimizes the H2 norm of the closed-loop transfer operator TKT

, i.e.,

inf
s.causal K

∥TK∥22 = tr(T ∗
KTK), (H2)

Here, the trace of an infinite-dimensional block Toeplitz operator X is defined by the
Fourier integral

tr(X ) := 1

2π

∫ π

−π

Tr(X(ejω))dω (8.10)

where Tr is the usual trace of matrices and X(z) :=
∑∞

k=−∞Xkz
−k at z ∈ C is the

transfer function representation of the Toeplitz operator X .

The H2 objective naturally arises in various operational contexts, most notably in the
stochastic Linear-Quadratic Regulator (LQR) problem. Given positive-semidefinite
state and control weighting matrices Q ∈ Sn+ and R ∈ Sdu++, the controller seeks to
minimize the average expected cost:

lim
T−→∞

1

T
E

[
T∑
t=0

x⊤
t Qxt + u⊤

t Rut

]
(8.11)

Here, the disturbances are modeled as random variables drawn from a known
probability distribution, and the expectation is taken with respect to this distribution.
Specifically, suppose disturbances constitute a white Gaussian noise process, i.e.,
(wt)

i.i.d.∼ N (0,Σ) where Σ ≻ 0.
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For notational convenience, one can take the positive-definite matrices Q,R and Σ

to be identity matrices without loss of generality2 by reparameterizing the dynamical
variables as xt 7→ Q1/2xt, ut 7→ R1/2ut, wt 7→ Σ1/2wt and the state-space parameters
as A 7→ Q1/2AQ−1/2, Bu 7→ Q1/2BuR

−1/2 and Bw 7→ Q1/2BwΣ
−1/2.

The cumulative LQR cost upto time T can be simplified as

E

[
T∑
t=0

x⊤
t Qxt + u⊤

t Rut

]
= E

[
∥xT∥2 + ∥uT∥2

]
. (8.12)

Using the finite-horizon closed-loop mapping, we can write the cumulative cost in
terms of the controller K and the disturbances wT as

E
[
w∗

TT ∗
KT
TKT

wT

]
= E

[
Tr(T ∗

KT
TKT

wTw
∗
T )
]
,

= Tr(T ∗
KT
TKT

E[wTw
∗
T ]),

where we used the cyclical property of trace and the linearity of expectation and trace.
The expectation E[wTw

∗
T ] is simply the autocorrelation matrix of the disturbance

process, which is the identity matrix. Thus, the cumulative expected cost incurred
upto time T is the squared Frobenius norm of the finite-horizon closed-loop mapping:
∥TKT

∥2F = Tr(T ∗
KT
TKT

). Therefore, the squared H2-norm in the infinite-horizon
setting can be though of as the limit of horizon-normalized squared Frobenius norm:

∥TK∥22 = lim
T−→∞

1

T
∥TKT

∥2F = lim
T−→∞

1

T
Tr(T ∗

KT
TKT

). (8.13)

Before we outline the solution strategy for the H2 problem, it is worthwhile to
investigate the quadratic term T ∗

KTK. Expanding this term and completing the squares,
the controller term K can be isolated as follows:

T ∗
KTK = (PxuK + Pxw)

∗(PxuK + Pxw) +K∗K,
= (K −K◦)

∗(I + P∗
xuPxu)(K −K◦)

+ Pxw(I − Pxu(I + P∗
xuPxu)

−1P∗
xu)Pxw,

where K◦ is defined as3

K◦ := −(I + P∗
xuPxu)

−1P∗
xuPxw. (8.14)

2While this transformation requires Q ≻ 0, a similar reduction can be performed even when Q is
singular by defining a new output variable st = Q1/2xt and considering the closed-loop mapping to
s instead of the state.

3One must exercise particular caution when working with inverses or other analytic functions
of infinite-dimensional operators, as the resulting operators may not belong to the same space (e.g.,
trace class) unlike the finite-dimensional case, where such operations are typically well-behaved. We
set aside these technical considerations for now and focus on the core conceptual insights.
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Clearly, the last term in the expansion of T ∗
KTK does not depend onK and therefore is

an additive constant in after the taking the trace. When the strict causality constraint
is ignored, the squared H2 objective K 7→ tr(T ∗

KTK) admits its unique minimum
at K◦, which we call as the optimal non-causal controller, and the constant simply
becomes

T ∗
K◦
TK◦

= Pxw(I − Pxu(I + P∗
xuPxu)

−1P∗
xu)Pxw (8.15)

One approach to synthesizing the strictly causal H2-optimal controller is to explicitly
enforce the strict causality constraint via Lagrange multipliers and derive the
associated Karush–Kuhn–Tucker (KKT) conditions. However, we instead present a
significantly more elegant method, originally developed by Wiener and Hopf [239].

Theorem 8.2.2 (Solution of H2 Control via Wiener-Hopf Technique). The H2-
optimal control problem (H2) admits the following unique optimal solution:

K2 := ∆−1{∆K◦}+, (8.16)

where ∆ is causal with bounded and causal inverse ∆−1 and satisfies the canonical
spectral factorization ∆∗∆ = I + P∗

xuPxu.

Here, the notation {X}+ and {X}− refer to the strictly causal (i.e., strictly lower-
block-triangular) and anticausal (i.e., upper-block-triangular) components of the
block Toeplitz operator X , respectively. These projections take a particularly simple
form when X is expressed in its power series representation:

{X}+(z) =
∞∑
t=1

Xtz
−t, {X}−(z) =

0∑
t=−∞

Xtz
−t. (8.17)

Below, we provide a proof sketch of Theorem 8.2.2 in the infinite-horizon setting.
To keep the presentation streamlined, we suppress some of the finer technical
details related to spectral factorization, simply viewing it as the infinite-dimensional
analogue of Cholesky decomposition.

Proof. Since I + P∗
xuPxu∆

∗∆ is strictly positive-definite and bounded below by
the identity map I, it admits a canonical spectral factorization ∆∗∆ = I + P∗

xuPxu

where ∆ is causal and non-singular, and its inverse ∆−1 is causal and bounded. We
modify the expansion of T ∗

KTK by distributing the operators ∆ and ∆∗:

T ∗
KTK = (∆K −∆K◦)

∗(∆K −∆K◦) + T ∗
K◦
TK◦

(8.18)
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As the last term is independent of K, the optimal solution of Problem 8.2.1 is
equivalent to the solution of the following:

inf
s.causal K

∥∆K −∆K◦∥22. (8.19)

Notice that the multiplication ∆K is always causal whereas ∆K◦ is non-causal. The
squared H2 norm of any operator X can be decomposed4 as the sum of squared H2

norms of its s. causal {X}+ and anticausal projections {X}−, namely

∥X∥22 = ∥{X}+∥22 + ∥{X}−∥22. (8.20)

Therefore, we can decompose the objective as

inf
s.causal K

∥∆K − {∆K◦}+∥22 + ∥{∆K◦}−∥22. (8.21)

Setting ∆K = {∆K◦}+ and noting that the inverse ∆−1 of the causal spectral
factor is also causal, one gets the unique optimal controller by inverting K =

∆−1{∆K◦}+. ■

This procedure, often referred to as the Wiener–Hopf technique, amounts to or-
thogonally projecting the non-causal term ∆K◦ onto the subspace of strictly causal
operators, thereby yielding the H2-optimal controller.

H∞ and Regret Optimal Control via Nehari Problem
The H∞ norm of TK corresponds to its operator norm as a mapping from ℓ2(Z) to
ℓ2(Z), i.e.,

∥TK∥∞ := sup
w∈ℓ2/{0}

∥TKw∥
∥w∥ = max

ω∈[0,2π)
σ(TK(e

ȷω)) (8.22)

Generalized Control Objectives
In this section, we introduce a broad class of optimal control problems that can
be formulated as minimization of an objective function defined over the squared
closed-loop transfer operator, |TK|2 = T ∗

KTK. We show that various well-known
control problems fall into this class, including standard H2 and H∞ control as well
as risk-sensitive, Wasserstein distributionally robust, and mixed H2/H∞ control.

To be more concrete, consider the following general optimal control problem:
4For intuition, simply think of the H2 norm as the infinite-dimensional analogue of Frobenius

norm
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Problem 8.2.3 (General Control Problem). Given a convex function f : L∞ → R,
find a causal and stabilizing LTI controller K ∈ K , that minimizes the objective
K 7→ f(T ∗

KTK), i.e.,
p⋆ := inf

K∈K
f(T ∗

KTK), (P)

where p⋆ ∈ R is the optimal value.

It should be noted that (P) may not be convex program even though the function
C 7→ f(C) and the constraint K ∈ K are convex. A trivial counter example is
f(C) = − tr(C), in which case, (P) becomes concave and the optimal value is
p⋆ = −∞.

Therefore, we make the following assumption to ensure (P) is a well-posed convex
program.

Assumption 8.2.4. The convex function f : L∞(Sdw+ ) → R is monotonically
non-decreasing over the psd cone, i.e., f(C1) ≤ f(C2) for 0 ≼ C1 ≼ C2.

This sufficient condition on f implies the convexity of K 7→ f(T ∗
KTK) since the

quadratic mapping K 7→ T ∗
KTK is convex with respect to the positive-definite order

of operators, i.e., T ∗
λ Tλ ≼ λT ∗

0 T0 + (1− λ)T ∗
1 T1 where TKλ

= TK0
+ λ(TK1

− TK0
)

for any K0, K1 and λ ∈ [0, 1]

We first illustrate various control problems subsumed by this class of objectives.
Henceforth, we use the notation

⟨C,M⟩ := 1

2π

∫ π

−π

Tr(C(ejω)∗M(ejω))dω (8.23)

Example 8.2.5 (Mixed H2/H∞ control).

inf
s.causal K

∥TK∥22 subject to ∥TK∥∞ ≤ γ. (8.24)

with the associated objective function

fγ,H2/H∞
(C) := tr(C) +

0, ∥C∥∞ ≤ γ2,

+∞, o.w.
(8.25)

Unlike the pure H2 and pure H∞ controllers, it was proved by [165] that the optimal
mixed H2/H∞ controller is non-rational whenever the H∞ constraint is active.
Since non-rational functions do not admit finite-dimensional state-space realizations,
researchers mostly focused either on finite-dimensional approximations or more
tractable auxiliary objectives.
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Example 8.2.6 (H2p optimal control). For p ∈ [1,∞]

inf
s.causal K

∥TK∥22p = ∥T ∗
KTK∥p (8.26)

fH2p
(C) := ∥C∥p (8.27)

Example 8.2.7 (Risk-sensitive control). The risk-sensitive control objective aims to
minimize an exponential cost, formulated below

inf
s.causal K

γ log
(
Ew∼P◦

[
eγ

−1
w

∗T ∗
KTKw

])
, (8.28)

where γ > 0 is the risk parameter and P◦ is a nominal probability distribution
of the disturbances. The expectation above should be understood formally as the
time-averaged limit of finite-horizon risk-sensitive costs. The convex function
corresponding to this problem is given by

fγ,RS(C) := γ log
(
Ew∼P◦

[
eγ

−1
w

∗Cw
])

(8.29)

With the decreasing value of γ, The risk-sensitive objective resolves the gap between
smaller and larger cost values. It penalizes higher cost levels relatively more than the
smaller values as γ decreases. This essentially incentivizes the controller to be more
risk-averse to reduce the chances of yielding higher costs.

In the special case of the nominal distributionP◦ of disturbances forming a stationary
Gaussian process with auto-covariance operatorM◦ ≻ 0, the risk-sensitive objective
simplifies further to

inf
s.causal K

−γ

2
logdet(I − 2γ−1T ∗

KTKM◦), (8.30)

where logdet(·) should be understood as tr(log(·)).

The corresponding convex function then becomes

fγ,RS(C) := −
γ

2
logdet(I − 2γ−1CM◦) (8.31)

Example 8.2.8 (Wasserstein distributionally robust control). When the ambi-
guity set of plausible probability distributions of disturbances is constructed as a
Wasserstein-2 ball, the distributionally robust controller can be obtained by solving
the following primal optimization problem:

inf
s.causal K,

γ>∥T ∗
KTK∥∞

γr2 + γ tr
[(
(I − γ−1T ∗

KTK)−1 − I
)
M◦

]
, (8.32)
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whereM◦ ∈ L +
1 is the auto-covariance operator of the nominal disturbance process,

which is assumed to be weakly stationary, and γ is a Lagrange multiplier determined
by the desired radius of the Wasserstein-2 ball, r > 0. The corresponding convex
function for this optimization problem then becomes:

fW2
(C) := inf

γ>∥C∥∞
γr2 + γ tr

[(
(I − γ−1C)−1 − I

)
M◦

]
. (8.33)

The suboptimal problem is

inf
s.causal K

γ tr
[
(I − γ−1T ∗

KTK)−1
]

(8.34)

The corresponding objective function is

fγ,W2
(C) := γ tr

[
(I − γ−1C)−1

]
(8.35)

Remark 8.2.9 (Norm interpretation).

sup
M∈M

√
⟨T ∗

KTK,M⟩ (8.36)

is a norm for TK whenever M ∩ int(L1(S+)) ̸= ∅, that is, there exists a strictly
positive definite elementM≻ 0 of M .

Summary of Non-Rational Control Approach
Step 1: Derive the dual problem using Fenchel conjugate f ∗(M) := supC≽0 ⟨C,M⟩−
f(C) of the objective:

sup
M≽0

inf
K∈K

⟨T ∗
KTK,M⟩− f ∗(M) (8.37)

Step 2: Solve the inner minimization over K for a givenM≻ 0 using the Wiener-
Hopf technique:

K⋆ = ∆−1{∆K◦L}+L−1 (8.38)

where LL∗ =M is the canonical spectral factorization.

Step 3: Derive the expression for the subgradient ∂f ∗(M) of the conjugate function
f ∗ and solve for the saddle point (K⋆,M⋆) to get the optimal controller:

T ∗
K⋆
TK⋆
∈ ∂f ∗(M⋆) (8.39)

K⋆ = ∆−1{∆K◦L⋆}+L−1
⋆ (8.40)

where L⋆L∗
⋆ =M⋆ is the canonical spectral factorization.
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Step 4: To solve numerically, derive the gradient ∂f ∗(M) in the Fourier domain, and
simply implement a first-order gradient based method by propagating thee gradient
information for each individual frequency over a large number of frequency samples
on [0, 2π]

Step 5: Obtain a finite-dimensional approximation solution via rational approxima-
tion of the positive definite transfer function M⋆(e

jω) and then find the approximate
controller via Wiener-Hopf technique

Notations
The letters N, Z, R, and C denote the set of natural numbers, integers, real, and
complex numbers, respectively. T denotes the complex unit circle. For z∈C, |z| is
its magnitude, and z∗ is the conjugate. Sn+ denotes the set of positive semidefinite
(psd) matrices of size n×n. Bare calligraphic letters (K,M, etc.) are reserved for
operators. I is the identity operator with a suitable block size. For an operatorM,
its adjoint isM∗. For a matrix A, its transpose is A⊺, and its Hermitian conjugate
is A∗. For psd operators/matrices, ≽ denotes the Löwner order. For a psd operator
M, both

√
M andM

1
2 denote the PSD square-root. {M}+ and {M}− denote the

causal and strictly anti-causal parts of an operatorM. M(z) denotes the z-domain
transfer function of a Toeplitz operatorM. tr(·) denotes the trace of operators and
matrices. ∥·∥ is the usual Euclidean norm. ∥·∥∞ and ∥·∥2 are the H∞ operator)
and H2 (Frobenius) norms, respectively. Probability distributions are denoted by P.
Pp(Rd) denotes the set of distributions with finite pth moment over a Rd. E denotes
the expectation. The Wasserstein-2 distance between distributions P1,P2∈Rd is
denoted by W2(P1,P2) such that

W2(P1,P2) ≜
(
inf E

[
∥w1−w2∥2

])1/2
, (8.41)

where the infimum is over all joint distributions of (w1,w2) with marginals w1∼P1

and w2∼P2.

8.3 A Primer on Operator Theory and Functional Analysis
Throughout this thesis we fix p ∈ [1,∞] and two finite–dimensional real in-
ner–product spaces V ∼= Rd and W ∼= Rn, each endowed with their Euclidean
norm ∥ · ∥. Sequences indexed by Z,N := {0, 1, 2, . . . } taking values in V are
collected in the standard ℓp spaces,

ℓp(Z;V) and ℓp(N;V), 1 ≤ p ≤ ∞,
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all equipped with their usual norms. Boldface letters (e.g. v) denote sequences, while
capital calligraphic letters (e.g. L) denote linear operators acting on such sequences.
Given a Banach space X , we write BX for the space of bounded linear operators
on X and Hom(V,W) for the space of linear maps from V to W.

Fundamental shift and projection operators.

• (Szegő projection) Szegő: ℓp(Z;V)→ ℓp(N;V) denotes the causal projection
(Szegőv)n := vn 1{n≥0}. It is a bounded idempotent operator (Szegő2 =

Szegő) for every p ∈ (1,∞)[180].

• (Bilateral shift) The operatorZ : ℓp(Z;V)→ ℓp(Z;V) is defined by (Zv)n :=

vn+1. For p = 2, Z is a unitary isomorphism and hence an isometry on ℓ2.

• (Unilateral shift) The operator Z+ : ℓp(N;V)→ ℓp(N;V) acts as (Z+v)n :=

vn+1. Its adjoint on ℓ2 satisfies Z∗
+Z+ = I but Z+Z∗

+ ̸= I; hence Z+ is an
isometry, yet not unitary.

Fourier transforms. Let T := {z ∈ C : |z| = 1} be the unit circle equipped with
normalised Haar measure dω

2π
.

• F : ℓ2(Z;V)
∼−→ L2(T;V), (Fv)(eiω) :=∑n∈Z vne

−iωn.

• F+ : ℓ2(N;V)
∼−→ H2(T;V) is the restriction of F to non–negative indices,

where H2 denotes the Hardy space of square–integrable analytic functions
on T.

Both maps are unitary and extend to ℓp–Lp isomorphisms via the Hausdorff–Young
inequality.

Laurent operators and transfer matrices. An operatorL ∈ Bℓ2(Z;V), ℓ2(Z;W)

is Laurent (a.k.a. convolution or bi–infinite Toeplitz) if it commutes with the bilateral
shift: LZV = ZWL. Equivalently, there exists a bounded measurable function
L : T→ Hom(V,W)—the transfer matrix—such that

(FW LF∗
Vx)(z) = L(z)x(z), x ∈ L2(T;V).

We denote the corresponding Banach space by

Lp(V,W) :=
{
L Laurent : L ∈ Lp(T; Hom(V,W))

}
,
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endowed with ∥L∥Lp
:= ∥L∥Lp

. When V = W we abbreviate Lp(V) ≡ Lp, and in
the scalar case we write Lp(Rn×d) or, for self–adjoint operators, Lp(S

d).

Positivity and order. A self–adjoint M ∈ Lp is positive (written M ≽ 0) if
⟨w,Mw⟩ ≥ 0 for all w ∈ ℓ2(Z;V). Equivalently, its transfer matrix M(z) satisfies
M(z) ≽ 0 a.e. on T. The cone Lp(S

d
+) is closed and convex; the Loewner order is

given byM ≽ N ⇔ M−N ≽ 0.

Hardy sub–algebras. The causal Laurent operators are those with analytic transfer
matrix: L ∈ Hp(T); their collection is the sub–algebra Hp(V,W) ⊂ Lp(V,W).
The strictly anti–causal operators form H −

p (V,W).

Szegő and Cauchy projections. For L ∈ Lp we write {L}+ (resp. {L}−) for its
causal (resp. strictly anti–causal) part obtained by projecting the Fourier series of
L onto non–negative (resp. negative) indices. The Szegő projection {L}+ 1

2
further

splits the zeroth coefficient L̂0 symmetrically; its kernel is the classical Hilbert
transform operatorH. For 1 < p <∞ these projections are bounded on Lp by the
Marcinkiewicz–Pichorides theorem[180].

Orthogonal decomposition. In L2 the causal projection is orthogonal, yielding
the direct sum decomposition L2 = H2 ⊕H ⊥

2 .

Signal and system norms. For L ∈ Lp(T;V) we set

∥L∥p :=
(

1

2π

∫ π

−π

∥L(eiω)∥p dω
)1/p

, 1 ≤ p <∞, ∥L∥∞ := ess sup
z∈T

∥L(z)∥.

For L ∈ Lp(Rn×d) we define the (trace) Lp norm by

∥L∥p :=
(
tr |L|p

)1/p
=
( 1

2π

∫ π

−π

Tr |L(eiω)|p dω
)1/p

,

with the usual modification for p =∞. Duality is given by the bilinear form

⟨C,M⟩ := tr
(
C∗M

)
=

1

2π

∫ π

−π

Tr
(
C(eiω)∗M(eiω)

)
dω.

For 1 < p <∞ we have the Banach duality (Lp)
∗ ∼= Lq with 1/p+ 1/q = 1, while

L1 and L∞ are non–reflexive.
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Analytic and Wiener algebras. We write W (T) for the Wiener algebra of abso-
lutely summable Fourier series and A(D) (“disk algebra”) for functions analytic in
the open unit disk D and continuous on T. Inclusions W (T) ⊂ C(T) ⊂ L∞(T) are
standard.

Any causal G(z) =
∑∞

n=0 Ĝnz
−n ∈ Hn×m(Dc

−) has exponentially decaying Markov
parameters and admits an exponentially stable (possibly infinite–dimensional)
state–space realization; a constructive proof is included verbatim from the original
draft .

The sequel relies on a handful of classical facts from topological vector space theory;
we record them for completeness.

Definition 8.3.1 (Topological Vector Space). A topological vector space (tvs) is a
vector space X over R or C endowed with a Hausdorff topology τ making addition
(x, y) 7→ x+ y and scalar multiplication (λ, x) 7→ λx jointly continuous.

Definition 8.3.2 (Local convexity, Fréchet, Banach, Hilbert). A tvs is locally convex
if 0 admits a neighbourhood basis of convex sets. A Fréchet space is a complete,
metrizable, locally convex tvs. A Banach space is a complete normed space, and a
Hilbert space is a Banach space whose norm arises from an inner product.

Definition 8.3.3 (Weak and weak∗ topologies). Let X be a Banach space with
dual X ∗. The σ(X ,X ∗) topology—the coarsest making all elements of X ∗

continuous—is called the weak topology. On X ∗, the σ(X ∗,X ) topology is the
weak∗ topology.

Theorem 8.3.4 (Banach–Alaoglu). The closed unit ball of X ∗ is compact in the
weak∗ topology.

Theorem 8.3.5 (Sequential Banach–Alaoglu). For a Banach space X the following
are equivalent:

i. X is separable;

ii. the dual unit ball is weak∗–metrizable;

iii. the dual unit ball is sequentially compact in the weak∗ topology.

Theorem 8.3.6 (Mazur). If xn ⇀ x weakly in a Banach space, then there exists a
sequence of convex combinations yn ∈ conv{x1, . . . , xn} such that ∥yn − x∥ → 0.
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Theorem 8.3.7 (Krein–Smulian – weak∗ closed convex sets). Let X be Banach, B∗

the dual unit ball. A convex C ⊂X ∗ is weak∗ closed iff C ∩ rB∗ is weak∗ closed
for every r > 0.

Theorem 8.3.8 (Krein–Smulian – weak compact convex hulls). If C ⊂X is norm
(resp. weak) compact, then its norm (resp. weak) closed convex hull is norm (resp.
weak) compact.

Theorem 8.3.9 (Goldstine). In a Banach space X , the canonical embedding
X ↪→ X ∗∗ maps the unit ball densely (for the weak∗ topology) inside the bidual
unit ball.

Theorem 8.3.10 (Eberlein–Smulian). In a Banach space, relative compactness,
sequential compactness, and countable compactness coincide for subsets endowed
with the weak topology.

Theorem 8.3.11 (Bishop–Phelps). In a Banach space every continuous linear
functional can be approximated in norm by functionals attaining their norm on a
given closed, bounded, convex set. Consequently, support functionals are norm–dense
in the barrier cone and support points are dense on the boundary.

Theorem 8.3.12 (James reflexivity criterion). A Banach space X is reflexive iff
every x∗ ∈X ∗ attains its norm on the closed unit ball of X .

Theorem 8.3.13 (Brondsted–Rockafellar). For a proper, convex, lower–semicontinuous
f :X → Rext the points where the subdifferential ∂f(x) is non–empty are dense in
dom f .

Theorem 8.3.14 (Interior of the positive cone). For 1 ≤ p <∞ the conePos(Lp) :=

{X ∈ Lp : X = X ∗, X ≽ 0} has empty norm–interior, whereas Pos(L∞) has
non–empty interior.

Definition 8.3.15 (Non–commutative Lp). Let (M, τ) be a finite, faithful, normal,
tracial von Neumann algebra. For 1 ≤ p <∞ the non–commutative space Lp(M)

is the completion ofM under the norm ∥x∥p := τ(|x|p)1/p; we set L∞(M) ≡M.

The particular case M = L∞(T,Md(C)) is used implicitly when dealing with
matrix–valued Laurent operators.

Theorem 8.3.16 (Marcel Riesz). For 1 < p <∞ the Hilbert transformH : Lp(T)→
Lp(T) is bounded, and so is the Szegő projection {·}+ 1

2
.
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Theorem 8.3.17 (Paley–Wiener). A function f ∈ H2(T) extends analytically to
|z| > 1 if and only if its Laurent coefficients decay exponentially.

Theorem 8.3.18 (Douglas lemma). Given A,B ∈ BH between Hilbert spaces, the
operator equation AA∗ ⪰ BB∗ admits a contraction C with B = CA if and only if
ranB ⊆ ranA.

Theorem 8.3.19 (von Neumann bicommutant). A unital *–subalgebra N ⊂ BH is
a von Neumann algebra if and only if N = N ′′.

Theorem 8.3.20 (Non–commutative Jensen inequality). Let f : R → Rext be
convex,M ∈ L +

1 with trM = 1, and C ∈ L∞ such that spec C ⊂ dom f . Then
f(⟨C,M⟩) ≤ ⟨M, f(C)⟩.

8.4 A Primer on Linear Systems Theory
Consider the following discrete-time linear and time-invariant (LTI) state-space
model:

xt+1 = Axt +Buut +Bwwt,

yt = Cyxt +Dyuut +Dywwt,

zt = Czxt +Dzuut +Dzwwt.

(8.42)

Here, xt ∈ Rdx denotes the latent state, ut ∈ Rdu and wt ∈ Rdw are respectively
the control input and exogenous disturbance, and yt ∈ Rdy and zt ∈ Rdz are
respectively the observed output and the regulated output at time t ∈ Z. The matrices
(A,Bi, Co, Doi) are of appropriate dimensions for i ∈ {u,w}, o ∈ {y, z}.

Input-Output Representation

The state-space representation in (8.42) can be represented more succinctly as
linear operators from the space of input sequences to the space of output sequences.
Concretely, we introduce the sequences x := {xt}t∈Z for the states, u := {ut}t∈Z
for the control inputs, w := {wt}t∈Z for the exogenous disturbances, y := {yt}t∈Z
for the observed outputs, and z := {zt}t∈Z for the regulated outputs. We do not yet
impose the exact spaces where these sequences live other than RZ.

The relationship between the inputs (u,w) and the outputs (y, z) is captured by the
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open-loop plant transfer operator P as follows:

P :

[
u

w

]
7→
[
y

z

]
≜

[
Pyu Pyw

Pzu Pzw

][
u

w

]

where

[
Pyu Pyw

Pzu Pzw

]
=

 A Bu Bw

Cy Dyu Dyw

Cz Dzu Dzw

 (8.43)

Here, for each input i ∈ {u,w} and output o ∈ {y, z}, the notation Poi : i 7→ o

represents the transfer operator mapping the input i to the output o. As the underlying
system is causal and time-invariant, Poi is a causal (do × di)-block Laurent operator,
i.e., Poi ∈ Laurent for i ∈ {u,w}, o ∈ {y, s}. Moreover, the notation in the right-
hand side of (8.43) means that the z-domain transfer matrix function corresponding
to the transfer operator Poi is given as:

Poi(z) = Co(zI − A)−1Bi +Doi, for i ∈ {u,w}, o ∈ {y, s} (8.44)

Closed-Loop Control

We consider causal LTI controllers that map observed outputs up to time t ∈ Z to
the current control input ut via a convolution:

ut :=
∑
s≤t

K̂t−sys, ∀t ∈ Z, (8.45)

where {K̂}t≥0 ⊆ Rdu×dy are the Markov parameters (aka impulse response) of the
controller. Similar to the dynamics of the open-loop plant, this relationship can be
captured globally as

K : y 7→ u := Ky, (8.46)

where K is a causal (du × dy)-block Laurent operator, i.e., K ∈ Laurent.

Notice that, we avoid making assumptions regarding the internal structure of the
class of controllers as opposed to many prior works on controller synthesis. This
is rather intentional as several optimal controllers of interest do not possess such a
priori internal state-space structures. Therefore, we keep the class of controllers as
general as possible by considering causal LTI controllers.

For a feedback loop between the plant P and a controller K to be well defined, a
controller must ensure invertibility of I −DyuK̂0 ∈ Rdy×dy .
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Given a feedback systems (P ,K), the closed-loop transfer function TK : w 7→ z

from disturbances to regulated output is given by

TK := PzuK(I − PyuK)−1Pyw + Pzw. (8.47)

Note that, invertablity of I −DyuK̂0 ensures invertibility of I − PyuK.
<latexit sha1_base64="K4MYv77gxsbuKP+jNmlDbVKkZKc="></latexit>
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TK

P

u

w
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Figure 8.1: Closed-loop Plant-Controller System

Stability and Controller Parametrization
It is crucial that a synthesized controller "stabilizes" a plant in the closed-loop
feedback. The notion of stability in dynamical systems is usually understood to be
zero-input asymptotic stability of the internal state, also called as internal stability.
For a meaningful definition of internal stability, a meaningful notion of internal state
is needed. However, when an internal structure is not imposed a priori, and the system
in consideration is only known by its input-output mapping, then internal stability
may not be a well-defined notion. For instance, a stable system known only through
by its transfer function might have might have unstable poles which are canceled
by zeros. However, in many cases, either the underlying state-space structure is
known or a system known only by its transfer function is assumed to be realized by
its minimal degree state-space realization if it exists. Rational transfer function are
special in the sense that, they always admit a finite order state-space realization, and
therefore, one can still talk about internal stability of such input/output systems via
its minimal degree realizations.

However, when the transfer function of the input/output system is not a rational
function, then the underlying system cannot be realized by a finite degree state-space
model. Such systems may still posses an a priori notion of internal state-space
structure, although infinite dimensional one, such as PDEs or continuous time-delay
systems. If such an a priori notion of state-space is available, it is still possible to
talk about internal stability meaningfully, although there might be various notions of
internal stability due to various notions convergence in infinite dimensional spaces.
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However, unless such a state-space structure is given a priori, internal stability is not
a meaningful notion for input/output system with non-rational transfer function.

While we assumed the underlying plant is equipped with a priori state-space structure,
an arbitrary causal LTI controller with a non-rational transfer function does not admit
such a natural state-space structure, which makes the notion of internal stability an
ill-posed notion for the closed-loop system TK as no internal closed-loop state can be
identified.

Therefore, we shift our focus to external stability, which is a purely a property of
systems as input/outputs maps as opposed to internal stability. A system can b be
externally stable if inputs of certain type always lead to outputs of certain type. In
this paper, we will mostly be concerned with the bounded energy signals, therefore,
we define a system to be stable of ℓ2-norm bounded signals are always mapped to
ℓ2-norm bounded outputs. For causal LTI systems, ℓ2/ℓ2-external stability coincides
with bounded H∞-norm of the underlying transfer function of the system. We simply
call a causal Laurent operator T stable if ∥T ∥H∞

< +∞.

Assumption 8.4.1. The subsystem Pyu : u 7→ y is stabilizable and detectable, i.e.,
(A,Bu) is stabilizable and (A,Cy) is detectable.

Theorem 8.4.2 (Youla Parametrization [251, Lem. 3][213, Thm. 1][67, Ch. 4]).
Under Assumption 8.4.1, the following statements hold:

i. The causal rational transfer operator Pyu admits a doubly-coprime factoriza-
tion Pyu = NrD−1

r = D−1
l Nl such that[

Yl −Xl

−Nl Dl

][
Dr Xr

Nr Yr

]
=

[
Idu 0du×dy

0dy×du
Idy

]
, (8.48)

where Nr,Nl ∈ RH
dy×du
∞ , Xr,Xl ∈ RH

du×dy
∞ , Dr,Yl ∈ RH du×du

∞ ,
Dl,Yr ∈ RH

dy×dy
∞ are rational and stable transfer operators.

ii. A causal controller K is input/output (resp. internally) stabilizing the plant P
if and only if there exists a Youla parameter Q ∈H

du×dy
∞ (resp. RH

du×dy
∞ )

such that5

K = (Xr −DrQ)(Yr −NrQ)−1. (8.49)
5equivalently K = (Yl −QNl)

−1(Xl −QDl)
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iii. The closed-loop transfer operator (8.47) under an input/output (resp. inter-
nally) stabilizing controller can be re-expressed in terms of its Youla parameter
Q ∈H

du×dy
∞ (resp. RH

du×dy
∞ ) as

TQ = T1QT2 + T3 ∈H∞ ⇐⇒ Q ∈H∞ (8.50)

where T1 := −PzuDr ∈ RH dz×du
∞ , T2 := DlPyw ∈ RH

dy×dw
∞ , and T3 :=

Pzw + PzuXrDlPyw ∈ RH dz×dw
∞ are rational and stable transfer operators.

The theorem is true for any integral domains, including exponentially stable holo-
morphic functions, disk algebra, H∞, RH ∞
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C h a p t e r 9

INFINITE-HORIZON DISTRIBUTIONALLY ROBUST CONTROL

9.1 Introduction
Addressing uncertainty is a core challenge in decision-making. Control systems in-
herently encounter various uncertainties, such as external disturbances, measurement
errors, model disparities, and temporal variations in dynamics [53], [88]. Neglecting
these uncertainties in policy design can result in considerable performance decline
and may lead to unsafe and unintended behavior [196].

Traditionally, the challenge of uncertainty in control systems has been predominantly
approached through either stochastic or robust control frameworks [51], [121], [255].
Stochastic control (e.g., Linear–Quadratic–Gaussian (LQG) or H2-control) aims
to minimize an expected cost, assuming disturbances follow a known probability
distribution [101]. However, in practical scenarios, the true distribution is often
estimated from sampled data, introducing vulnerability to inaccurate models. On the
other hand, robust control minimizes the worst-case cost across potential disturbance
realizations, such as those with bounded energy or power (H∞ control) [260]. While
this ensures robustness, it can be overly conservative. Two recent approaches have
emerged to tackle this challenge.

Regret-Optimal (RO) Control. Introduced by [82], [191], this framework offers
a promising strategy to tackle both stochastic and adversarial uncertainties. It
defines regret as the performance difference between a causal control policy and a
clairvoyant, non-causal one with perfect knowledge of future disturbances. In the
full-information setting, RO controllers minimize the worst-case regret across all
bounded energy disturbances [82], [191]. The infinite-horizon RO controller also
takes on a state-space form, making it conducive to efficient real-time computation
[191].

Extensions of this framework have been investigated in various settings, including
measurement-feedback control [81], [91], dynamic environments [80], safety-critical
control [48], [161], filtering [82], [193], and distributed control [162]. While
these controllers effectively emulate the performance of non-causal controllers in
worst-case disturbance scenarios, they may exhibit excessive conservatism when
dealing with stochastic ones.
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Distributionally Robust (DR) Control. In contrast to traditional approaches such as
H2 or H∞ and RO control that focus on a single distribution or worst-case disturbance
realization, the DR framework addresses uncertainty in disturbances by considering
ambiguity sets – sets of plausible probability distributions [7], [8], [30], [93], [131],
[220], [247]. This methodology aims to design controllers with robust performance
across all probability distributions within a given ambiguity set. The size of the
ambiguity set provides control over the desired robustness against distributional
uncertainty, ensuring that the resulting controller is not excessively conservative.

The controller’s performance is highly sensitive to the chosen metric for quantifying
distributional shifts. Common choices include the total variation (TV) distance
[227], [228], the Kullback-Leibler (KL) divergence [60], [149], and the Wasserstein-2
(W2) distance [7], [30], [89], [123], [219], [220]. The controllers derived from
KL-ambiguity sets [60], [178] have been linked to the well-known risk-sensitive
controller [115], [216], [237], which minimizes an exponential cost (see [96] and the
references therein). However, distributions in a KL-ambiguity set are restricted to be
absolutely continuous with respect to the nominal distribution [109], significantly
limiting its expressiveness.

In contrast, W2-distance, which quantifies the minimal cost of transporting mass
between two probability distributions, induces a Riemannian structure on the space
of distributions [231] and allows for ambiguity sets containing distributions with both
discrete and continuous support. Thanks to this versatility and the rich geometric
framework, it has found widespread adoption across various fields, including machine
learning [9], computer vision [151], [177], estimation and filtering [153], [186],
[203], data compression [26], [144], [157], and robust optimization [24], [74], [134],
[257]. Moreover, the W2-distance has emerged as a theoretically appealing statistical
distance for DR linear-quadratic control problems [219] due to its compatibility
with quadratic objectives and the resulting tractability of the associated optimization
problems [74].

Contributions
This paper explores the framework of Wasserstein-2 distributionally robust regret-
optimal (W2-DR-RO) control of linear dynamical systems in the infinite-horizon
setting. Initially introduced by [219] for the full-information setting, W2-DR-
RO control was later adapted to the partially observable case by [89]. Similarly, [220]
derived a DR controller for the partially observed linear-quadratic-Gaussian (LQG)
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problem, assuming time-independent disturbances. These prior works, focusing on
the finite-horizon setting, are hampered by the requirement to solve a semi-definite
program (SDP) whose complexity scales with the time horizon, prohibiting their
applicability for large horizons.

Our work addresses this limitation by considering the infinite-horizon setting where
the probability distribution of the disturbances over the entire time horizon is assumed
to lie in a W2-ball of a specified radius centered at a given nominal distribution. We
seek a linear time-invariant (LTI) controller that minimizes the worst-case expected
regret for distributions adversarially chosen within the W2-ambiguity set. Our
contributions are summarized as follows.

1. Stabilizing time-invariant controller. As opposed to the finite-horizon controllers
derived in [8], [89], [93], [219], [220], the controllers obtained in the infinite-horizon
setting stabilize the underlying dynamics (Corollary 9.3.4)

2. Robustness against non-iid disturbances. In contrast to several prior works that
assume time-independence of disturbances [7], [8], [93], [131], [220], [247], [258],
our approach does not impose such assumptions, thereby ensuring that the resulting
controllers are robust against time-correlated disturbances.

3. Characterization of the optimal controller. We cast the W2-DR-RO control
problem as a max-min optimization and derive the worst-case distribution and the
optimal controller using KKT conditions (Theorem 9.3.2). While the resulting con-
troller is non-rational, lacking a finite-order state-space realization (Corollary 13.4.3),
we show it admits a finite-dimensional parametric form (Theorem 13.4.2).

4. Efficient computation of the optimal controller. Utilizing the finite-dimensional
parametrization, we propose an efficient algorithm based on the Frank-Wolfe method
to compute the optimal non-rational W2-DR-RO controller in the frequency-domain
with arbitrary fidelity (Algorithm 4).

5. Near-optimal state-space controller. We introduce a novel convex program that
finds the best rational approximation of any given order for the non-rational controller
in the H∞-norm (Theorem 9.5.5). Therefore, our approach enables efficient real-time
implementation using a near-optimal state-space controller (Lemma 9.5.7).

Notations: The letters N, Z, R, and C denote the set of natural numbers, integers,
real, and complex numbers, respectively. T denotes the complex unit circle. For
z∈C, |z| is its magnitude, and z∗ is the conjugate. Sn+ denotes the set of positive
semidefinite (psd) matrices of size n×n. Bare calligraphic letters (K,M, etc.) are
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reserved for operators. I is the identity operator with a suitable block size. For an
operatorM, its adjoint isM∗. For a matrix A, its transpose is A⊺, and its Hermitian
conjugate is A∗. For psd operators/matrices, ≽ denotes the Loewner order. For a psd
operatorM, both

√
M andM 1

2 denote the PSD square-root. {M}+ and {M}−
denote the causal and strictly anti-causal parts of an operatorM. M(z) denotes
the z-domain transfer function of a Toeplitz operatorM. tr(·) denotes the trace of
operators and matrices. ∥·∥ is the usual Euclidean norm. ∥·∥∞ and ∥·∥2 are the
H∞ operator) and H2 (Frobenius) norms, respectively. Probability distributions are
denoted by P. Pp(Rd) denotes the set of distributions with finite pth moment over a
Rd. E denotes the expectation. The Wasserstein-2 distance between distributions
P1,P2∈Rd is denoted by W2(P1,P2) such that

W2(P1,P2) ≜
(
inf E

[
∥w1−w2∥2

])1/2
, (9.1)

where the infimum is over all joint distributions of (w1,w2) with marginals w1∼P1

and w2∼P2.

9.2 Preliminaries
Linear-Quadratic Control
Consider a discrete-time, linear time-invariant (LTI) dynamical system expressed as
a state-space model given by:

xt+1 = Axt +Buut +Bwwt, st = Cxt. (9.2)

Here, xt ∈ Rdx is the state, st ∈ Rds is the regulated output, ut ∈ Rdu is the
control input, and wt ∈ Rdw is the exogenous disturbance at time t. The state-
space parameters (A,Bu, Bw, C) are known with stabilizable (A,Bu), controllable
(A,Bw), and observable (A,C). The disturbances are generated from an unknown
stochastic process.

We focus on the infinite-horizon setting, where the time index spans from the infinite
past to the infinite future, taking values in Z1. Defining the doubly-infinite column
vectors of regulated output s :=(st)t∈Z, control input u :=(ut)t∈Z, and disturbance
process w :=(wt)t∈Z trajectories, we can express the temporal interactions between
these variables globally by representing the dynamics (9.2) as a causal linear
input/output model, described by:

s = Fu+ Gw, (9.3)
1The doubly-infinite horizon is chosen for simplicity in derivations, but the results are extendable

to a semi-infinite horizon.
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where F and G are strictly causal (i.e., strictly lower-triangular) and doubly-infinite
ds×du and ds×dw-block Toeplitz operators, respectively. These operators describe
the influence of the control input and disturbances on the regulated output through
convolution with the impulse response of the dynamical system (9.2), which are
completely determined by the model parameters (A,Bu, Bw, C).

Control Policy. We restrict our attention to the full-information setting where the
control input ut at time t ∈ Z has access to the past disturbances (ws)

t
s=−∞. In

particular, we consider linear time-invariant (LTI) disturbance feedback control2

(DFC) policies that map the disturbances to the control input via a causal convolution
sum:

ut =
∑t

s=−∞
K̂t−sws, for all t ∈ Z. (9.4)

The sequence {K̂t}∞t=0 of du×dw matrices are known as the Markov parameters of
the controller. Similar to the causal linear model in (9.3), the controller equation
in (9.4) can be expressed globally by u = Kw, where K is a bounded, strictly
causal, du×dw-block Toeplitz operator with lower block-diagonal entries given by
the Markov parameters. The set of causal DFC policies is denoted by K .

Cost. At each time step, the control inputs and disturbances incur a quadratic
instantaneous cost s⊺t st+u⊺

tRut, where R≻0. Without loss of generality, we take
R = I by redefining BuR

−1
2 → Bu and R

1
2ut → ut. By defining the truncated

sequences sT := (st)
T−1
t=0 and uT := (ut)

T−1
t=0 the cumulative cost over a horizon of

T ∈N is simply given by

costT (u,w) := ∥sT∥2 + ∥uT∥2. (9.5)

The Regret-Optimal Control Framework
We aim to design controllers that reduce the regret against the best offline sequence
of control inputs selected in hindsight. For a horizon T , the cumulative regret is
given by

RegretT (u,w) :=costT (u,w)−min
u
′
T

costT (u
′,w). (9.6)

We highlight that the minimization on the right-hand side is among all control input
sequences, including non-causal (offline) ones. The regret-optimal (RO) control
framework, introduced by [191], aims to craft a causal and time-invariant controller

2Youla parametrization enables the conversion between a DFC controller and a state-feedback
controller [251].
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K∈K that minimizes the steady-state worst-case regret across all bounded energy
disturbances. This can be formally cast as

γRO := inf
K∈K

lim sup
T→∞

1

T
sup

∥wT ∥2≤1

RegretT (Kw,w). (9.7)

In the full-information setting, the best sequence of control inputs selected in hindsight
is given by u◦ = K◦w where

K◦ := −(I + F∗F)−1F∗G, (9.8)

is the optimal non-causal policy [101]. Since a non-causal controller lacks physical
realization, the optimal RO controller, KRO represents the "best" causal policy,
attaining performance levels akin to the optimal non-causal policy K◦, which enjoys
complete access to the disturbance trajectory in advance.

Exploiting the time-invariance of dynamics in (9.2) and the controller K ∈ K ,
Sabag, Goel, Lale, et al. [191] demonstrates the equivalence of (9.7) to the following:

inf
K∈K

sup
∥w∥2≤1

w∗RKw= inf
K∈K
∥RK∥∞, (9.9)

where ∥w∥ is the ℓ2-norm, andRK, which we call the regret operator, is given as

RK := (K −K◦)
∗(I + F∗F)(K −K◦). (9.10)

The resulting controller closely mirrors the non-causal controller’s performance
under the worst-case disturbance sequence but may be conservative for stochastic
disturbances.

Distributionally Robust Regret-Optimal Control
This paper investigates distributionally robust regret-optimal control, seeking to
devise a causal controller minimizing the worst-case expected regret within a
Wasserstein-2 (W2) ambiguity set of disturbance probability distributions. The
W2-ambiguity set WT (P◦, r) for horizon T is defined as a W2-ball of radius of rT >0

centered at a nominal distribution P◦,T ∈P(RTdw), namely:

WT (P◦, rT ) :=
{
P∈P(RTdw) |W2(P, P◦)≤rT

}
. (9.11)

In contrast to (9.7), which addresses the worst-case regret across all bounded energy
disturbances, our focus is on the worst-case expected regret across all distributions
within the W2-ambiguity set, as defined by Taha, Yan, and Bitar [219]

RegT (K, rT ) := sup
PT∈WT (P◦,T ,rT )

EPT
[RegretT (Kw,w)] ,
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where EPT
denotes the expectation such that wT ∼PT . In the infinite-horizon case,

this cumulative quantity diverges to infinity. Therefore, we focus on the steady-state
worst-case expected regret, as defined by [123]:

Definition 9.2.1. The steady-state worst-case expected regret suffered by a policy
K∈K is given by the ergodic limit of the cumulative worst-case expected regret,
i.e.,

Reg∞(K, r) := lim sup
T→∞

1

T
RegT (K, rT ). (9.12)

To ensure the limit in (9.12) is well-defined, the asymptotic behavior of the ambiguity
set must be specified. For this purpose, we make the following assumption.

Assumption 9.2.2. The nominal disturbance process w◦ :=(w◦,t)t∈Z forms a zero-
mean weakly stationary random process with an auto-covariance operatorM◦ :=

(M̂◦,t−s)t,s∈Z, i.e., EP◦
[w◦,tw

⊺
◦,s] = M̂◦,t−s. Moreover, the size of the ambiguity set

for horizon T scales as rT ∼ r
√
T for a r>0.

The choice of rT ∝
√
T aligns with the fact that the W2-distance between two

random vectors of length T , each sampled from two different iid processes, scales
proportionally to

√
T .

While the limit (9.12) is well-defined under Assumption 9.2.2, it can still be infinite
depending on the chosen controller K. Notably, a finite value for (9.12) implies
closed-loop stability. In Problem 9.2.3, we formally state the infinite-horizon
Wasserstein-2 W2-DR-RO problem.

Problem 9.2.3 (Distributionally Robust Regret-Optimal Control ). Find a causal
LTI controller, K ∈K , that minimizes the steady-state worst-case expected re-
gret (9.12), i.e.,

inf
K∈K

Reg∞(K, r)= inf
K∈K

lim sup
T→∞

1

T
RegT (K, rT ). (9.13)

In Section 9.3, we provide an equivalent max-min optimization formulation of
Problem 9.2.3.

9.3 A Saddle-Point Problem
This section presents a tractable convex reformulation of the infinite-horizon W2-
DR-RO problem. Concretely, Theorem 9.3.1 introduces an equivalent single-
variable variational characterization of the steady-state worst-case expected regret
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(9.12) incurred by a fixed time-invariant controller. Exploiting this, we show in
Theorem 9.3.2 that Problem 9.2.3 reduces to a convex program over positive-definite
operators via duality. Moreover, we characterize the optimal controller and the worst-
case distribution via KKT conditions. All the proofs of the subsequent theorems are
deferred to the Appendix.

Two major challenges are present in solving the Problem 9.2.3: ergodic limit in
(9.12) and causality constraint in (9.13). Firstly, the ergodic limit definition of the
worst-case expected regret for a fixed policy K∈K requires successively solving
optimization problems with ever-increasing dimensions. To address this challenge,
we leverage the asymptotic convergence properties of Toeplitz matrices and derive an
equivalent formulation of (9.12) as an optimization problem over a single decision
variable as in Kargin∗, Hajar∗, Malik∗, et al. [123]. Similar to the time-domain
derivations of H2 and risk-sensitive controllers in the infinite horizon, the resulting
formulations involve the Toeplitz operatorsRK. This result is presented formally in
the subsequent theorem.

Theorem 9.3.1 (A Variational Formula for Reg∞ [123, Thm.5]). Under Assump-
tion 9.2.2, the steady-state worst-case expected regret Reg∞(K, r) incurred by a
causal policy K∈K is equivalent to the following:

inf
γ≥0, γI≻RK

γ tr
[
((I − γ−1RK)

−1 − I)M◦
]
+ γr2. (9.14)

which takes a finite value whenever RK is bounded. Additionally, the worst-case
disturbance is obtained fromw⋆ := (I−γ−1⋆ RK)

−1w◦ where γ⋆ is the optimal solution
of (9.14) satisfying tr

[
((I − γ−1⋆ RK)

−1 − I)2M◦
]
= r2.

Notice that the optimization in (9.14) closely mirrors the finite-horizon version
presented by Taha, Yan, and Bitar [219, Thm. 2], with the key difference being the
substitution of finite-horizon matrices with Toeplitz operators.

The second challenge is addressing the causality constraint on the controller. When
the causality assumption on the controller is lifted, the non-causal policyK◦ achieves
zero worst-case expected regret since RK becomes zero and so the worst-case
regret by Theorem 9.3.1. While this example illustrates the triviality of non-causal
W2-DR-RO problem, the minimization of worst-case expected regret objective in
(9.14) over causal policies is, in general, not a tractable problem.

Leveraging Fenchel duality of the objective in (9.14), we address the causality
constraint by reformulating Problem 9.2.3 as a concave-convex saddle-point problem
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in Theorem 9.3.2 so that the well-known Wiener-Hopf technique [120], [239] can be
used to obtain the optimal W2-DR-RO controller (see Lemma 9.C.2 for details). To
this end, let ∆∗∆ = I+F∗F be the canonical spectral factorization3, where both ∆

and its inverse ∆−1 are causal operators. We also introduce the Bures-Wasserstein
(BW) distance for positive-definite (pd) operators defined as

BW(M1,M2)
2 :=tr

[
M1+M2−2(M

1
2
2M1M

1
2
2 )

1
2

]
.

whereM1,M2≻0 with finite trace [20].

Theorem 9.3.2 (A saddle-point problem for W2-DR-RO). Under Assumption 9.2.2,
Problem 9.2.3 reduces to a feasible concave-convex saddle-point problem given as

sup
M≻0

inf
K∈K

tr(RKM) s.t. BW(M,M◦) ≤ r. (9.15)

Letting KH2
:=∆−1{∆K◦}+ be the H2 controller, the unique saddle point (K⋆,M⋆)

of (9.15) satisfies:

K⋆ = KH2
+∆−1 {{∆K◦}−L⋆}+ L−1⋆ , (9.16a)

M⋆ = (I − γ−1⋆ RK⋆
)−1M◦(I − γ−1⋆ RK⋆

)−1, (9.16b)

where L⋆L∗
⋆=M⋆ is the canonical spectral factorization with causal and unique 4

L⋆ and L−1
⋆ , and γ⋆>0 uniquely satisfies tr

[
((I − γ−1⋆ RK⋆

)−1 − I)2M◦
]
= r2.

This result demonstrates that the optimal W2-DR-RO controller integrates the H2

controller with an additional correction term that accounts for the time correlations
in the worst-case disturbance, w⋆, which are encapsulated by the auto-covariance
operatorM⋆.

Remark 9.3.3. As r → ∞, the optimal γ⋆ approaches the lower bound γRO =

infK∈K ∥RK∥∞ and K⋆ recovers the regret-optimal (RO) controller. Conversely, as
r→0, the ambiguity set collapses to the nominal model as γ⋆→∞ andK⋆ recovers the
H2 controller whenM◦=I. Thus, adjusting r facilitates the W2-DR-RO controller
to interpolate between the RO and H2 controllers.

We conclude this section by asserting the closed-loop stability of (9.2) under the
optimal W2-DR-RO controller, K⋆. This stability directly results from the saddle-
point problem (9.15) achieving a finite optimal value.

Corollary 9.3.4. K⋆ stabilizes the closed-loop system.
3Analogues to Cholesky factorization of finite matrices.
4See the note in Section 9.B about the uniqueness of L
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9.4 An Efficient Algorithm
In this section, we introduce a numerical method to compute the saddle-point
(K⋆,M⋆) of the max-min problem in (9.15). While both (K⋆,M⋆) are non-rational,
i.e., do not admit a finite order state-space realization, Theorem 13.4.2 states thatM⋆

possesses a finite-dimensional parametric form in the frequency domain. Exploiting
this fact, we conceive Algorithm 4, a procedure based on the Frank-Wolfe method,
to compute the optimal M⋆ in the frequency domain. Furthermore, we devise
a novel approach to approximate the non-rational M⋆ in H∞-norm by positive
rational functions, from which a near-optimal state-space W2-DR-RO controller can
be computed using (9.16a). We leave the discussion on the rational approximation
method to Section 9.5.

To enhance the clarity of our approach, we assume for the remainder of this paper that
the nominal disturbances are uncorrelated, i.e.,M◦=I . Additionally, we utilize the
frequency-domain representation of Toeplitz operators as transfer functions, denoting
M as M(z), L as L(z), K as K(z), and similarly for other operators, where z∈C.

An Iterative Optimization in the Frequency Domain
Although the problem is concave, its infinite-dimensional nature complicates the
direct application of standard optimization tools. To address this challenge, we
employ frequency-domain analysis via transfer functions, allowing for the adaptation
of standard optimization techniques. Specifically, we utilize a variant of the Frank-
Wolfe method [68], [116]. Our approach is versatile and can be extended to other
methods, such as projected gradient descent [83] and the fixed-point method in [123].
Furthermore, the convergence of our method to the saddle point (K⋆,N⋆) can be
demonstrated using standard tools in optimization. Detailed pseudocode is provided
in Algorithm 4 in Section 9.E.

Frank-Wolfe: We define the following function and its (Gateaux) gradient [43]:

Φ(M) ≜ inf
K∈K

tr (RKM) (9.17)

∇Φ(M)=L−∗ {∆K◦L}∗− {∆K◦L}− L−1 . (9.18)

where LL∗ =M is the spectral factorization. Rather than directly solving the
optimization (9.15), the Frank-Wolfe method solves a linearized subproblem in
consecutive steps. Namely, given the kth iterate Mk, the next iterate Mk+1 is
obtained via

M̃k= argmax
M≽I, BW(M,I)≤r

tr (∇Φ(Mk)M) (9.19a)
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Mk+1 = (1− ηk)Mk + ηkM̃k, (9.19b)

where ηk ∈ [0, 1] is a step-size, commonly set to ηk =
2

k+2
[116]. Letting Rk :=

∇Φ(Mk) be the gradient as in (9.17), Frank-Wolfe updates can be expressed
equivalently using spectral densities as:

M̃k(z)=(I−γ−1k Rk(z))
−2 (9.20)

Mk+1(z)=(1−ηk)Mk(z)+ηkM̃k(z), ∀z ∈ T (9.21)

where γk>0 solves tr
[
((I−γ−1k Rk)

−1−I)2
]
=r2. See Section 9.E for a closed-form

Rk(z).

Discretization: Instead of the continuous unit circle T, we use its uniform discretiza-
tion with N points, TN := {ej2πn/N | n = 0, . . . , N − 1}. Updating Mk+1(z) at a
frequency z using the gradient Rk(z) at the same z requires Mk(z

′) at all frequencies
z′ ∈ T due to spectral factorization. Thus, Mk+1(z) depends on Mk(z

′) across the
entire circle. This can be addressed by finer discretization.

Spectral Factorization: For the non-rational spectral densities Mk(z), we can
only use an approximate factorization [199]. Consequently, we use the DFT-based
algorithm from Rino [188], which efficiently factorizes scalar densities (i.e., dw=1),
with errors diminishing rapidly as N increases. Matrix-valued spectral densities
can be factorized using various other algorithms [58], [243]. See Section 9.E for a
pseudocode.

Bisection: We use bisection method to find theγk>0 that solves tr
[
((I−γ−1k Rk)

−1−I)2
]
=

r2 in the Frank-Wolfe update (9.20). See Section 9.E for a pseudocode.

Remark 9.4.1. The gradient Rk(z) requires the computation of the finite-dimensional
parameter via (13.30), which can be performed using N -point trapezoidal integration.
See Section 9.E for details.

We conclude this section with the following convergence result due to [116], [135].

Theorem 9.4.2 (Convergence ofMk). There exists constants δN >0, depending on
discretization N , and κ>0, depending only on state-space parameters (9.2) and r,
such that, for a large enough N , the iterates in (9.19) satisfy

Φ(M⋆)− Φ(Mk) ≤
2κ

k + 2
(1 + δN). (9.22)
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9.5 Rational Approximation
The preceding section determined that the optimal solution, denoted as N⋆, is non-
rational and lacks a state-space representation. Nevertheless, Algorithm 4 introduced
in Section 9.4 can effectively approximate it in the frequency domain. Indeed, after
convergence, the algorithm returns the optimal finite parameter, Γ⋆, which can be
used to compute N⋆(z) at any arbitrary frequency using Theorem 13.4.2, and thus
K⋆(z) (see Algorithm 4 in Section 9.E). However, a state-space controller must be
devised for any practical real-time implementation.

This section introduces an efficient method to obtain state-space controllers approx-
imating the non-rational optimal controller. Instead of directly approximating the
controller itself, our method involves an initial step of approximating the power
spectrum N⋆(z) of the worst-case disturbance to minimize the H∞-norm of the
approximation error using positive rational functions. While problems involving
rational function approximation generally do not admit a convex formulation, we
show in Theorem 9.5.5 that approximating positive power spectra by a ratio of
positive fixed order polynomials can be cast as a convex feasibility problem. After
finding a rational approximation of N⋆(z), we compute a state-space controller
according to (9.16a). For the sake of simplicity, we focus on scalar disturbances, i.e.,
dw=1.

State-Space Models from Rational Power Spectra
As established in Theorem 9.3.2, the derivation of a optimal controller K⋆ is achieved
through the positive operator N⋆ = L∗

⋆L⋆ using the Wiener-Hopf technique. Specifi-
cally, we have K⋆ = KH2

+∆−1 {{∆K◦}−L⋆}+ L−1⋆ L−1⋆ . Since other controllers of
interest, including H2, H∞, and RO, can all be formulated this way, we focus on
obtaining approximations to positive power spectra.

It is worth noting that a positive and symmetric rational approximation N̂(z) of order
m ∈ N can be represented as a ratio N̂(z) = P (z)/Q(z) of two positive symmetric
polynomials P (z) = p0 +

∑m
k=1 pk(z

k + z−k), and Q(z) = q0 +
∑m

k=1 qk(z
k + z−k).

When such P (z), Q(z) exist, we can obtain a rational spectral factorization of N̂(z)

by obtaining spectral factorization for P (z), and Q(z).

Finally, we end this section by stating an exact characterization of positive trig.
polynomials. While verifying the positivity condition for general functions might
pose challenges, the convex cone of positive symmetric trigonometric polynomials,
Tm,+, possess a characterization through a linear matrix inequality (LMI), as outlined
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below:

Lemma 9.5.1 (Trace parametrization of Tm,+ [55, Thm. 2.3]). For k=[−m,m],
let Θk ∈ R(m+1)×(m+1) be the primitive Toeplitz matrix with ones on the kth diagonal
and zeros everywhere else. Then, P (z) = p0 +

∑m
k=1 pk(z

k + z−k) > 0 if and only
if there exists a real positive definite matrix P ∈ Sm+1

+ such that

pk = tr(PΘk), k = 0, . . . ,m. (9.23)

According to Lemma 9.5.1, any positive trig. polynomial of order at most m can
be expressed (non-uniquely) as P (z) =

∑r
k=−r tr(PΘk)z

−1 = tr (PΘ(z)). Here,
Θ(z) :=

∑r
k=−r Θkz

−1.

Rational Approximation using H∞-norm
In this context, we present a novel and efficient approach for deriving rational
approximations of non-rational power spectra. Our method bears similarities to
the flexible uniform rational approximation approach described in [207], which
approximates a function with a rational form while imposing the positivity of the
denominator of the rational form as a constraint. Our method uses H∞-norm as
criteria to address the approximation error effectively. First, consider the following
problem:

Problem 9.5.2 (Rational approximation via H∞-norm minimization). Given a
positive spectrum N , find the best rational approximation of order at most m ∈ N
with respect to H∞ norm, i.e.,

inf
P,Q∈Tm,+

∥P/Q−N∥∞ s.t. tr(Q) = 1 (9.24)

Note that the constraint tr(Q)=1, equivalent to q0=1, eliminates redundancy in the
problem since the fraction P/Q is scale invariant.

While the objective function in Equation (9.24) is convex with respect to P and Q
individually, it is not jointly convex in (P ,Q). In this form, Problem 9.5.2 is not
amenable to standard convex optimization tools.

To circumvent this issue, we instead consider the sublevel sets of the objective
function in Equation (9.24).

Definition 9.5.3. For a given ϵ > 0 approximation bound, the ϵ-sublevel set of
Problem 9.5.2 is defined as

Sϵ :={(P ,Q) | ∥P/Q−N∥∞≤ϵ, tr(Q)=1} .
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(a) The frequency domain representation ofN for r = 0.01, 1, 3 for system [AC15].
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(b) The worst-case expected regret of different controllers for the system [AC15].

Figure 9.1: Variation of N with r and the performance of the W2-DR-RO controller
versus the H2,H∞, and RO controller.

By applying the definition of H∞-norm, we have that

∥P/Q−N∥∞=max
z∈T
|P (z)/Q(z)−N(z)| ≤ ϵ

⇐⇒
{
P (z)−(N(z)+ϵ)Q(z)≤0,

P (z)−(N(z)−ϵ)Q(z)≥0,
(9.25)

where the last set of inequalities hold for all z ∈ T. Notice that the inequalities in
Equation (9.25) and the positivity constraints on P ,Q are jointly affine in (P ,Q).
Moreover, the equation tr(Q) = 1 is an affine equality constraint. Therefore, we
have the following claim.

Lemma 9.5.4. The set Sϵ is jointly convex in (P ,Q).
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Unlike its non-convex optimization counterpart in Problem 9.5.2, a membership
oracle for the convex set Sϵ offers a means to obtain accurate rational approximations
for non-rational functions. According to Lemma 9.5.1, the positive trig. polynomials
(P ,Q) ∈ Sϵ can be parameterized by psd matrices P and Q. This allows the equality
constraint tr(Q) and the affine inequalities in (9.25) to be expressed as Linear Matrix
Inequalities (LMIs) in terms of P and Q. The resulting theorem characterizes the
ϵ-sublevel sets.

Theorem 9.5.5 (Feasibility of Sϵ). Let ϵ>0 be a given accuracy level, and m ∈ N
is a fixed order. The trig. polynomials P and Q of order m belong to the ϵ-sublevel
set, (P ,Q) ∈ Sϵ if and only if there exists P,Q ∈ Sm+1

+ such that tr (Q) = 1 and
for all z ∈ T,

1) tr (PΘ(z))−(N(z)+ϵ) tr (QΘ(z))≤0, (9.26)

2) tr (PΘ(z))−(N(z)−ϵ) tr (QΘ(z))≥0. (9.27)

The sole limitation in this approach arises from the fact that for a non-rational N(z),
the set of infinitely many inequalities in (9.25) cannot be precisely characterized
by a finite number of constraints, as seen in the trace parametrization of positive
polynomials. To overcome this challenge, one can address the inequalities in (9.25)
solely for a finite set of frequencies, such as TN = {ej2πn/N | n = 0, . . . , N − 1}
for N ≫ m. While this introduces an approximation, the method’s accuracy
can be enhanced arbitrarily by increasing the frequency samples. By taking this
approach, the problem of rational function approximation can be reformulated as a
convex feasibility problem involving LMIs and a finite number of affine (in)equality
constraints.

It is crucial to note that our algorithm can be used in the following two operational
modes. These modes highlight the algorithm’s adaptability for the given two use
cases.

1. Best Precision for a given degree By adjusting the parameter ϵ, which signifies
our tolerance for deviations from M(ejw), we can refine the approximation’s
accuracy. This method is particularly valuable when finding the best possible
polynomial representation of M(ejw) for a given degree.

2. Lowest Degree for a given precision In contrast, we can ask for the lowest
degree polynomial, which achieves a certain precision level ϵ. This mode is
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Figure 9.2: The control costs of different DR controllers under (a) white noise and
(b) worst disturbance for W2-DR-RO in infinite horizon, for system [AC15]. The
finite-horizon controllers are re-applied every s = 30 steps. The infinite horizon
W2-DR-RO controller achieves the lowest average cost compared to the finite-horizon
controllers.

advantageous when the priority is to minimize computational overhead or when
we need a simpler polynomial approximation, as long as the approximation
remains within acceptable accuracy bounds

Obtaining State-Space Controllers
Note that given the polynomial z-spectra, we require its spectral factorization to
obtain the state-space controller that approximates the W2-DR-RO controller. The
following Lemma introduces a simple way to obtain such an approximation
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(a) Worst disturbance for W2-DR-RO, finite horizon
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Figure 9.3: The control costs of different DR controllers under (a) worst disturbances
for W2-DR-RO in finite horizon and (b) worst disturbances for DR-LQR in finite
horizon, for system [AC15]. The finite-horizon controllers are re-applied every
s = 30 steps. Despite being designed to minimize the cost under specific disturbances,
the finite horizon DR controllers are outperformed by the infinite horizon W2-DR-
RO controller.

Lemma 9.5.6 (Canonical factor of polynomial z-spectra [199, Lem. 1]). Consider a
Laurent polynomial of degree m, P (z) =

∑m
k=−m pkz

−k, with pk = p−k ∈ R, such
that P (z) > 0. Then, there exists a canonical factor L(z) =

∑m
k=0 ℓkz

−k such that
P (z) = |L(z)|2 and L(z) has all of its root in T.

Using Lemma 9.5.6, we can compute spectral factors by factorizing the symmetric
positive polynomials and multiplying all the factors with stable roots together.
Consequently, this rational spectral factor enables the derivation of a rational
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controller, denoted as K(z) (refer to Section 9.5).

Now we present the W2-DR-RO controller in state-space form.

Lemma 9.5.7. Let L̃(z) be the rational factor of the spectral factorization Ñ(z) =

L̃(z)∗L̃(z)=P (z)/Q(z) of a degree m rational approximation P (z)/Q(z). The con-
troller obtained from L̃(z) using (9.16), i.e.,K(z)=KH2

(z)+∆(z)−1
{
{∆(z)K◦(z)}−L̃(z)

}
+
L̃(z)−1

is rational and can be realized as a state-space controller as follows:

e(t+ 1) = F̃ e(t) + G̃w(t), u(t) = H̃e(t) + J̃w(t)) (9.28)

where et is the controller state, and (F̃ , G̃, H̃, J̃) are determined from (A,Bu, Bw)

and L̃(z).

9.6 Numerical Experiments
In this section, we present the performance of the W2-DR-RO controller, compared
to H2, H∞, regret-optimal and other finite-horizon DR controllers. We present
frequency domain and time-domain evaluations, and we showcase the performance of
the rational approximation method. We employ benchmark models such as [REA4],
[AC15], and [HE3] from [145]. In the frequency domain simulations, results for
[REA4] and [HE3] are presented. In the time domain simulations for the aircraft
model [AC15] are presented, with additional simulations provided in Appendix 9.H.
The [REA4] is a chemical reactor model and [HE3] is a helicopter model with 8 states
each. The [AC15] is an aircraft model with 4 states. We perform all experiments
using MATLAB, on an Apple M1 processor with 8 GB of RAM. We specify the
nominal distribution as a Gaussian, with zero mean and identity covariance.

Frequency Domain Evaluations
We investigate the behaviour of the W2-DR-RO controller and its rational approxima-
tion for various values of the radius r.

To show the behavior of the worst-case disturbance we plot its power spectrum
N(ejω) for three different values of the radius r for the [AC15] system in Figure 9.1a.
As can be seen for r = 0.01, the worst-case disturbance is almost white, since that
is the case for the nominal disturbance. As r increases, the time correlation of the
worst-case disturbance increases, and the power spectrum becomes peaky.

For the [AC15] system, the worst-case expected regret cost, as outlined in (9.2.1),
for W2-DR-RO, the H2, H∞, and RO controllers. are depicted in Figure 9.1b. We
observe that for smaller r, the W2-DR-RO performs close to the H2 controller.
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However, as r increases, the worst-case regret is close to the regret achieved by the
RO controller. Throughout the variation in r, the W2-DR-RO achieves the lowest
worst-case expected regret among all the other mentioned controllers.

To implement the W2-DR-RO controller in practice, we need a rational controller.
We find the rational approximation of N(eȷω) as P (e

ȷω
)

Q(e
ȷω

)
using the method of Section

9.5 for [AC15] and degrees m = 1, 2, 3. The performance of the resulting rational
controllers is compared to the non-rational W2-DR-RO in Table 9.1. As can be seen,
the rational approximation with an order greater than 2 achieves an expected regret
that well matches that of the non-rational for all values of r.

r=0.01 r=1 r=1.5 r=2 r=3
DRRO 59.16 302.08 488.57 718.20 1307.12
RA(1) 60.49 33394.74 4475.70 9351.89 2376.77
RA(2) 59.58 303.33 491.75 723.96 1318.98
RA(3) 59.57 302.41 489.49 719.72 1309.85

Table 9.1: The worst-case expected regret of the non-rational W2-DR-RO controller,
compared to the rational controllers RA(1), RA(2), and RA(3), obtained from degree
1, 2, and 3 rational approximations to N(ejω).

Time Domain Evaluations
We compare the time-domain performance of the infinite horizon W2-DR-RO con-
troller to its finite horizon counterparts, namelyW2-DR-RO and DR-LQR, as outlined
in [219]. The latter controllers are computed through an SDP whose dimension
scales with the time horizon. We plot the average LQR cost over 210 time steps,
aggregated over 1000 independent trials. Figure 9.2a illustrates the performance of
DR controllers under white Gaussian noise, while 9.2b, 9.3a, and 9.3b demonstrate
responses to worst-case noise scenarios dictated by each of the controllers, using
r = 1.5. For computational efficiency, the finite horizon controllers operate over
a horizon of only s = 30 steps and are re-applied every s steps. Their worst-case
disturbances in 9.3a and 9.3b are also generated every s steps, resulting in correlated
disturbances only within each s steps. Our findings highlight the infinite horizon
W2-DR-RO controller’s superior performance over all four scenarios. Note that
extending the horizon of the SDP for longer horizons to come closer to the infinite
horizon performance is extremely computationally inefficient. These underscore the
advantages of using the infnite horizon W2-DR-RO controller.
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9.7 Future Work
Our work presents a complete framework for solving the DR control problem in the
full-information setting. Future generalizations would address our limitations. One
is to extend the rational approximation method from single to multi input systems.
Another is to extend the results to partially observable systems where the state is
not directly accessible. Finally, it would be useful to incorporate adaptation as the
controller learns disturbance statistics through observations.

9.A Organization of the Appendix
This appendix is organized into several sections:

First, Section 9.B provides notations, definitions, and remarks about the problem
formulation and uniqueness of the spectral factorization.

Next, Section 9.C contain proofs of the duality and optimality theorems in Section 9.3.

Subsequently, Section 9.D is dedicated to proofs of lemmas and theorems related
to the efficient algorithm discussed in Section 9.4, and Section 9.E describes the
pseudo-code of the algorithm.

Further, Section 9.F contains the proof of the state-space representation of the
controller presented in Section 9.5.

Finally, additional simulation results are presented in Section 9.H.

9.B Notations, Definitions and Remarks
Notations
In the paper, we use the notations in Table 9.2 for brevity.

Explicit Form of Finite-Horizon State Space Model
Consider the restrictions of the infinite-horizon dynamics in (9.3) to the finite horizon
as

sT = FTuT + GTwT . (9.29)
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Symbol Description
xt State at time t
st Regulated output at time t
ut Control input at time t
wt Exogenous disturbance at time t
A State transition matrix
Bu Control input matrix
Bw Disturbance input matrix
C Regulated output matrix
R Control input cost matrix
FT Finite-horizon operator for control input
GT Finite-horizon operator for disturbance
F Infinite-horizon operator for control input
G Infinite-horizon operator for disturbance
∥ · ∥ Euclidean norm
∥ · ∥2 H2 (Frobenius) norm
∥ · ∥∞ H∞ (operator) norm
E Expectation
K Set of causal (online) and time-invariant DFC policies
KT Set of causal DFC policies over a horizon T
RK Regret operator
M Auto-covariance operator for disturbances
L Unique, causal and causally invertible spectral factor ofM = LL∗

N The unique positive definite operator equal to L∗L
W2 Wasserstein-2 metric
S Symmetric positive polynomial matrix

tr(·) Trace of a Toeplitz operator
{·}+ Causal part of an operator
{·}− Strictly anti-causal part of an operator√

M, orM 1
2 Symmetric positive square root of an operator or matrix

S
+
n The set of positive semidefinite matrices

Tm,+ The set of positive trigonometric polynomials of degree m

Table 9.2: Notation Table

The causal linear measurement model for the finite-horizon case in (9.29) can be
stated explicitly as follows:

s0

s1

s2
...
sT


︸ ︷︷ ︸

sT

=



0 0 0 . . . 0

Bu 0 0 . . . 0

ABu Bu 0 . . . 0
...

...
... . . . ...

AT−1Bu AT−2Bu AT−3Bu
. . . 0


︸ ︷︷ ︸

FT



u0

u1

u2

...
uT


︸ ︷︷ ︸

uT

+



0 0 0 . . . 0

Bw 0 0 . . . 0

ABw Bw 0 . . . 0
...

...
... . . . ...

AT−1Bw AT−2Bw AT−3Bw
. . . 0


︸ ︷︷ ︸

GT



w0

w1

w2

...
wT


︸ ︷︷ ︸

wT

(9.30)
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A Note about Robustness to Disturbances vs Robustness to Model Uncertainties
In our approach, we consider distributional robustness against disturbances, which pro-
vides flexibility, adaptability, and dynamic responses to unforeseen events. Although
we do not explicitly address model uncertainties, these uncertainties can be effectively
lumped together as disturbances—a technique known as uncertainty/disturbance
lumping. This approach is particularly effective when the model uncertainties are
relatively small. By treating parameter uncertainties as disturbances, we simplify
system analysis and ensure that the controller is robust not only to known uncertainties
but also to unexpected variations and modeling errors.

A note about the Uniqueness of the spectral factor L
In Theorem 9.3.2, given that L is the causal and causally invertible spectral factor of
M = LL∗, it is unique up to a unitary transformation of its block-elements from the
right. Fixing the choice of the unitary transformation in the spectral factorization
(eg. positive-definite factors at infinity [59]) results in a unique L.

9.C Proof of Optimality Theorems
Proof of Theorem 9.3.1
This result is proven in detail in Kargin∗, Hajar∗, Malik∗, et al. [123, Appendix A1].
Due to its length, we provide only a brief sketch here. Interested readers can refer to
Kargin∗, Hajar∗, Malik∗, et al. [123] for the complete proof. For completeness, we
provide the following proof sketch.

First, we provide a finite-horizon counterpart of the strong duality result from
[219]. Then, we reformulate the objective functions of both the finite-horizon and
infinite-horizon dual problems using normalized spectral measures. We demonstrate
the pointwise convergence of the finite-horizon dual objective function to the infinite-
horizon objective by analyzing the limiting behavior of the spectrum of Toeplitz
matrices. Finally, we show that the infinite-horizon dual problem attains a finite
value and that the limits of the optimal values (and solutions) of the finite-horizon
dual problem coincide with those of the infinite-horizon dual problem.

Proof of Theorem 9.3.2
The proof involves four main steps.

• Reformulation using Lemma 9.C.1: Using Lemma 9.C.1, we reformulate the
original optimization problem. This lemma allows the expression of the convex
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mapping X 7→ tr(X−1) using Fenchel duality, which transforms the objective
function into a form that involves the supremum over a positive semi-definite
matrixM and the only term depending on K remains tr(RKM).

• Application of Wiener-Hopf Technique: We then Lemma 9.C.2, which
provides a method to approximate a non-causal controller by a causal one,
minimizing the cost tr(RKM). The optimal causal controller K⋆ is derived
using the Weiner-Hopf Technique.

• Karush-Kuhn-Tucker (KKT) Conditions: We then find the conditions on
the optimalM. This involves simplifying the objective function and finding
the optimalMγ and Kγ for the level γ.

• Final Reformulation and Duality: We further simplify the problem and
apply strong duality to achieve the final form. The optimal K⋆ is then derived
from the Wiener-Hopf technique, with γ⋆ andM⋆ obtained through duality
arguments.

Before proceeding with the proof, we first state two useful lemmas

Lemma 9.C.1. The convex mapping X 7→ trX−1 for X ≻ 0 can be expressed via
Fenchel duality as

sup
M≻0
− tr(XM) + 2 tr(

√
M) =

tr(X−1), if X ≻ 0

+∞, o.w.
(9.31)

Proof. Observe that the objective − tr(XM) + 2 tr(
√
M) is concave inM, and

the expression on the right-hand side can be obtained by solving for M. When
X ̸⪰ 0, i.e., X may have negative eigenvalues, then the expression tr(XM) can be
made arbitrarily negative, and tr(

√
M) arbitrarily large, by chosing an appropriate

M. ■

The following lemma will be useful in the proof of Theorem 9.3.2.

Lemma 9.C.2 (Wiener-Hopf Technique [120]). Consider the problem of approxi-
mating a non causal controller K◦ by a causal controller K, such that K minimises
the cost tr(RKM), i.e.,

inf
K∈K

tr(RKM) (9.32)
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whereM≻ 0,RK = (K −K◦)
∗∆∗∆(K −K◦) andK◦ is the non-causal controller

that makes the objective defined above zero. Then, the solution to this problem is
given by

K⋆ = ∆−1 {∆K◦L}+ L−1, (9.33)

where L is the unique causal and causally invertible spectral factor of M such
thatM = LL∗ and {·}+ denotes the causal part of an operator. Alternatively, the
controller can be written as,

K⋆ = KH2
+∆−1 {{∆K◦}−L⋆}+ , (9.34)

where KH2
:=∆−1{∆K◦}+.

Proof. Let L be the unique causal and causally invertible spectral factor ofM, i.e.
M = LL∗. Then, using the cyclic property of tr, the objective can be written as,

inf
K∈K

tr(∆ (K −K◦)M (K −K◦)
∗∆∗) = inf

K∈K
tr((∆K −∆K◦)LL∗ (∆K −∆K◦)

∗)

(9.35)

= inf
K∈K

tr((∆KL−∆K◦L) (∆KL−∆K◦L)∗)

(9.36)

= inf
K∈K
∥∆KL−∆K◦L∥22 . (9.37)

Since ∆,K and L are causal, and ∆K◦L can be broken into causal and non-causal
parts, it is evident that the controller that minimizes the objective is the one that
makes the term ∆KL−∆K◦L strictly anti-causal, cancelling off the causal part of
∆K◦L. This means that the optimal controller satisfies,

∆K⋆L = {∆K◦L}+ . (9.38)

Also, since L−1 and ∆−1 are causal, the optimal causal controller is given by (9.33).
Finally, using the fact that ∆K◦ = {∆K◦}+ + {∆K◦}− and simplifying, we get
(9.34). ■

Proof of Theorem 9.3.2. We first simplify our optimization problem (9.13) using
Lemma 9.C.1. We then find the conditions on the optimal optimization variables
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using Karush-Kuhn-Tucker (KKT) conditions. Using Lemma 9.C.1, we can write,

inf
K∈K ,
γI≻RK

tr((I − γ−1RK)
−1M◦) = inf

K∈K
sup
M≻0
− tr((I − γ−1RK)M) + 2 tr

(√
M

1
2
◦MM

1
2
◦

)

= sup
M≻0
− tr(M) + 2 tr

(√
M

1
2
◦MM

1
2
◦

)
+ inf

K∈K
γ−1 tr(RKM)

Fixing γ ≥ 0, we focus on the reduced subproblem of (9.14),

sup
M≻0
−γ tr(M)− γ tr(M◦) + 2γ tr

(√
M

1
2
◦MM

1
2
◦

)
+ inf

K∈K
tr(RKM). (9.39)

Using the definition of the Bures-Wasserstein distance, we can reformulate (9.39) as

sup
M≻0

inf
K∈K

tr(RKM)−γ BW(M,M◦)
2 := sup

M≻0
Φ(M). (9.40)

Thus, the original formulation in (9.14) can be expressed as

inf
γ≥0

sup
M≻0

inf
K∈K

tr(RKM) + γ
(
r2 − BW(M,M◦)

2
)
. (9.41)

Note that the objective above is affine in γ ≥ 0 and strictly concave inM. Moreover,
primal and dual feasibility hold, enabling the exchange of infγ≥0 supM≻0 resulting in

sup
M≻0

inf
K∈K

inf
γ≥0

tr(RKM) + γ
(
r2 − BW(M,M◦)

2
)
, (9.42)

where the inner minimization over γ reduces the problem to its constrained version
in Equation (9.15).

Finally, the form of the optimal K⋆ follows from the Wiener-Hopf technique in
Lemma 9.C.2 and the optimal γ⋆ andM⋆ can be obtained using the strong duality
result in Section 9.C. To see the optimal form ofM⋆, consider the gradient of Φ(M)

in (9.40) with respect toM and setting it to 0. Using Danskin theorem [43], we
have,

∇Φ(M) =M
1
2
◦

(
M

1
2
◦M⋆M

1
2
◦

)− 1
2M

1
2
◦ − I + γ−1RK⋆

= 0. (9.43)

Taking inverse on both sides, we get,

M− 1
2

◦

(
M

1
2
◦M⋆M

1
2
◦

) 1
2M− 1

2
◦ =

(
I − γ−1RK⋆

)−1
. (9.44)

We can now obtain two equations. First, by right multiplying byM
1
2
◦ and second, by

left multiplying byM
1
2
◦ . On multiplying these two equations together and simplifying,

we get (9.16b).
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9.D Proofs related to the Efficient Algorithm in Section 9.4
Proof of Lemma 13.4.1
With T := {∆K◦}−, the optimality condition in (9.16) takes the equivalent form:

i.M⋆ =
(
I − γ−1⋆ RK⋆

)−2
, (9.45a)

ii. RK⋆
=L−∗⋆ {TL⋆}∗−{TL⋆}−L−1⋆ , (9.45b)

iii. tr
[(
(I − γ−1⋆ RK⋆

(z))−1 − I
)2]

= r2, (9.45c)

Using the spectral factorizationM⋆L⋆L∗
⋆, the conditions i. and ii. can be equivalently

re-expressed as

i. (L⋆L∗
⋆)

−1/2 = I − γ−1⋆ RK⋆
(9.46)

ii. RK⋆
=L−∗⋆ {TL⋆}∗−{TL⋆}−L−1⋆ (9.47)

By plugging ii. into i., we get

0 = I − (L⋆L∗
⋆)

−1/2 − γ−1⋆
(
L−∗⋆ {TL⋆}∗−{TL⋆}−L−1⋆

)
= 0, (9.48)

Multiplying by L∗
⋆ from the left and by L⋆ from the right, we get

0 = L∗
⋆L⋆−(L∗

⋆L⋆)
1/2−γ−1⋆ {TL⋆}∗−{TL⋆}− ,

where we used the identity L∗
⋆(L⋆L∗

⋆)
−1/2L⋆ = (L∗

⋆L⋆)
1/2. Letting N⋆ = L∗

⋆L⋆, this
expression can be solved for N⋆, yielding the following implicit equation,

N⋆ = L∗
⋆L⋆ =

1

4

(
I +

√
I + 4γ−1⋆ {TL⋆}∗−{TL⋆}−

)2

, (9.49)

implying thus (13.29), with γ⋆>0 satisfying tr
[
((I − γ−1⋆ RK⋆

)−1 − I)2
]
= r2 (or

equivalently, BW(L⋆L∗
⋆, I) = r). ■

Note on Frequency Domain Representation of Toeplitz Operators
We start this section of the appendix by justifying our choice of working out our
results in the frequency domain.

Let V = [Vij]
∞
i,j=−∞ be a doubly infinite block matrix, i.e.a Toeplitz operator, which

represents a discrete, linear, time-invariant system (i.e.Vij = Vi−j), and which maps
a sequence of inputs to a sequence of outputs.

In this case of a time-invariant system, the representation of the operator in the
z-domain (or the so-called bilateral z-transform) is

V (z) =
∞∑

i=−∞

Viz
−i, (9.50)
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defined for the regions of the complex plane where the above series converges
absolutely, known as the ROC: region of convergence. V (z) is also known as the
transfer matrix. The causality of V can be readily given in terms of V (z). Indeed, we
have the following: V is causal if and only if V (z) is analytic in the exterior of some
annulus, |z| > α > 0. Likewise, V is anticausal if and only if V (z) is analytic in the
interior of some annulus, |z| < α < 0. Moreover, V is strictly causal (anticausal) if
and only if it is causal (anticausal) and V (∞) = 0(V (0) = 0).

We also define the trace of a Toeplitz operatorM as follows

tr(M) =
1

2π

∫ 2π

0

Tr(M(eȷω))dω. (9.51)

In the coming sections, we use the frequency domain counterparts of our Toeplitz
operators (such as F ,G,M...) by setting z = ejω for ω ∈ [0, 2π).

Frequency-Domain Characterization of the Optimal Solution of Problem 9.2.3
We present the frequency-domain formulation of the saddle point (K⋆,M⋆) derived
in Theorem 9.3.2 to reveal the structure of the solution. We first introduce the
following useful results:

Denoting by M⋆(z) and RK⋆
(z) the transfer functions corresponding to the optimal

M⋆ andRK⋆
, respectively, the optimality conditions in (9.16) and (13.29) take the

equivalent forms:

i. M⋆(z) =
(
I − γ−1⋆ RK⋆

(z)
)−2

, (9.52a)

ii. RK⋆
(z)=L⋆(z)

−∗ {TL⋆}−(z)∗ {TL⋆}−(z)L⋆(z)
−1, (9.52b)

iii. tr
[(
(I − γ−1⋆ RK⋆

(z))−1 − I
)2]

= r2, , (9.52c)

iv. N⋆(z) = L⋆(z)
∗L⋆(z) =

1

4

(
I +

√
I + 4γ−1 {TL⋆}−(z)∗ {TL⋆}−(z)

)2

,

(9.52d)

where

L⋆(z) =
∞∑
t=0

L̂⋆,tz
−t (9.53)

is the transfer function corresponding to the causal canonical factor L⋆ and T =

{∆K◦}− is the strictly anticausal operator where its transfer function, T (z), is found
from the following:
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Lemma 9.D.1 (Adapted from lemma 4 in [191]). The transfer function ∆(z)K◦(z)

can be written as the sum of a causal and strictly anticausal transfer functions:

∆(z)K◦(z) = T (z) + U(z) (9.54)

T (z) = {∆K◦}−(z) = C(z−1I − A)
−1
B (9.55)

U(z) = {∆K◦}+(z) = ∆(z)KH2
(z) = CP (A(zI − A)−1 + I)Bw (9.56)

where KH2
(z) = ∆−1{∆K◦}+(z), and Klqr := (I+B∗

uPBu)
−1
B∗

uPA, with P ≻ 0 is
the unique stabilizing solution to the LQR Riccati equation P = Q + A∗PA −
A∗PBu(I +B∗

uPBu)
−1
B∗

uPA, Q = C⊺C, Ak = A−BuKlqr, and

A = A∗
k, B = A∗

kPBw, C = −(I +B∗
uPBu)

−∗/2B∗
u. (9.57)

Notice that given the causal L(z) and strictly anti-causal T (z), the strictly anti-causal
part {T (z)L(z)}− has a state space representation, shown in the following lemma.

Lemma 9.D.2. Let L be a causal operator. The strictly anti-causal operator {TL}−
possesses a state space representation as follows:

{TL}−(z) = C(z−1I − A)−1Γ, (9.58)

where
Γ =

1

2π

∫ 2π

0

(I − eȷωA)−1BL(eȷω)dω. (9.59)

Proof. Let L(z) =
∑∞

t=0 L̂tz
−t be the transfer function of L. Using equations (9.54)

and (9.55),(9.56), S(z) := {∆K◦L}−(z), can be written as:

S(z) = {TL}−(z) + {UL}−(z) (9.60)
(a)
=
{
C(zI − A)−1BL(z)

}
− (9.61)

(b)
=

{
C

∞∑
t=0

z(t+1)A
t
B

∞∑
m=0

L̂mz
−m

}
−

(9.62)

(c)
= C

(
∞∑
t=0

z(t+1)A
t

)(
∞∑

m=0

A
m
BL̂m

)
(9.63)

(d)
= C(z−1I − A)−1Γ (9.64)

Here, (a) holds because both U(z) and L(z) are causal, so the strictly anticausal part
of U(z)L(z) is zero. (b) holds as we do the Neumann series expansion of (zI − A)
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and replace L(z) by its equation (9.53). (c) holds as we take the anticausal part
of expression (9.62) to be the strictly positive exponents of z. (d) completes the
result by using the Neuman series again, defining Γ :=

∑∞
t=0A

t
BL̂t, and leveraging

Parseval’s theorem to conclude the equation of the finite parameter

Γ =
1

2π

∫ 2π

0

(I − eȷωA)−1BL(eȷω)dω. (9.65)

■

Proof of Theorem 13.4.2: Using Lemma 9.D.2, and plugging (9.58) into (9.52d),
the frequency-domain optimality equation (9.52d) can be reformulated explicitly as
follows

N⋆(z) = L⋆(z)
∗L⋆(z) =

1

4

(
I +

√
I + 4γ−1⋆ Γ∗

⋆(z
−1I − A)−∗C

∗
C(z−1I − A)−1Γ⋆

)2

(9.66)
where Γ⋆ as in (9.65), and γ⋆ > 0 satisfying tr

[
((I − γ−1⋆ RK⋆

)−1 − I)2
]
= r2 (or

equivalently, BW(L⋆L∗
⋆, I) = r), which gives the desired result. ■

Proof of Corollary 13.4.3: Notice that the rhs of (9.66) involves the positive definite
square-root of the rational term Γ∗

⋆(z
−1I − A)−∗C

∗
C(z−1I − A)−1Γ⋆. The square

root does not preserve rationality in general, implying the desired result. ■

Proof of Theorem 9.4.2
Before proceeding with the proof, we state the following useful lemma.

Lemma 9.D.3. For a positive-definite Toeplitz operatorM≻ 0 with tr(M) <∞
and tr(log(M)) > −∞, letM 7→ Φ(M) be a mapping defined as

Φ(M) ≜ inf
K∈K

tr (RKM) . (9.67)

Denote byM = LL∗ and ∆∆∗ = I + F∗F the canonical spectral factorizations
where L, ∆ as well as their inverses L−1, ∆−1 are causal operators. The following
statements hold:

i. The function Φ can be written in closed form as

Φ(M) = tr
[
{∆K◦L}∗− {∆K◦L}−

]
. (9.68)

ii. The gradient of Φ has the following closed form

∇Φ(M) = RK = L−∗ {∆K◦L}∗− {∆K◦L}− L−1. (9.69)
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iii. The function Φ is concave, positively homogeneous, and

Φ(M) = tr(M∇Φ(M)). (9.70)

Proof of Theorem 9.4.2. Our proof of convergence follows closely from the proof
technique used in [116]. In particular, since the unit circle is discretized and the
computation of the gradients are approximate, the linear suboptimal problem is
solved upto an approximation, δN which depends on the problem parameters and the
discretization level N . Namely, for a large enough N , we have

tr(∇Φ(Mk)M̃k+1) ≥ sup
M∈Ωr

tr(∇Φ(Mk)M)− δN (9.71)

where

Ωr := {M ≻ 0 | tr(M− 2
√
M+ I) ≤ r2}, (9.72)

Therefore, using Theorem 1 of [116], we obtain

Φ(M⋆)− Φ(Mk) ≤
2κ

k + 2
(1 + δN). (9.73)

where κ > 0 is the so-called curvature constant associated with the problem which
is defined as follows

κ := sup
M,M̃∈Ωr
η∈[0,1]

M′
=M+η(M̃−M)

2

η2
[
−Φ(M′) + Φ(M) + tr(∇Φ(M) (M′ −M))

]
, (9.74)

= sup
M,M̃∈Ωr
η∈[0,1]

M′
=M+η(M̃−M)

2

η2
(
tr(M′∇Φ(M))− Φ(M′)

)
, (9.75)

= sup
M,M̃∈Ωr
η∈[0,1]

M′
=M+η(M̃−M)

inf
K∈K

2

η2
tr
(
M′(∇Φ(M)−RK)

)
(9.76)

where the last two equalities follow from Lemma 9.D.3.

9.E Algorithms
Pseudocode for Frequency-domain Iterative Optimization Method Solving (9.15)
The pseudocode for Frequency-domain tterative optimization method is presented in
Algorithm 4.
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Algorithm 4 Frequency-domain iterative optimization method solving (9.15)
1: Input: Radius r>0, state-space model (A,Bu, Bw), discretizations N>0 and

N ′>0 tolerance ϵ>0

2: Compute (A,B,C) from (A,Bu, Bw) using (9.57)
3: Generate frequency samples TN := {ej2πn/N | n=0, . . . , N−1}
4: Initialize M0(z)← I for z ∈ TN , and k ← 0

5: repeat
6: Set the step size ηk ← 2

k+2

7: Compute the spectral factor Lk(z)← SpectralFactor(Mk) (see Sec-
tion 9.E)

8: Compute the parameter Γk ←
1

N

∑
z∈TN

(I − zA)−1BLk(z). (see Sec-
tion 9.E)

9: Compute the gradient for z ∈ TN (see Section 9.E)
Rk(z)← Lk(z)

−∗ {∆K◦Lk}− (z)∗ {∆K◦Lk}− (z)Lk(z)
−1

10: Solve the linear subproblem (9.19a) via bisection (see Section 9.E)
M̃k(z)← (I − γ−1

k Rk(z))
−2 for z ∈ TN and γk through Bisection

11: Set Mk+1(z)← (1− ηk)Mk(z) + ηkM̃k(z) for z ∈ TN .
12: Increment k ← k + 1

13: until ∥Mk+1 −Mk∥/∥Mk∥ ≤ ϵ

14: Compute Nk(z) =
1
4

(
I +

√
I + 4γ−1

k Γ∗
k(z

−1I − A)∗C
∗
C(z−1I − A)−1Γk

)2

for z ∈ TN
′ := {ej2πn/N

′
| n=0, . . . , N ′−1}

15: Compute K(z)← RationalApproximate(Nk(z)) (see Section 9.E)

Additional Discussion on the Computation of Gradients
By the Wiener-Hopf technique discussed in Lemma 9.C.2, the gradient Rk =

∇Φ(Mk) can be obtained as

Rk(z) = Lk(z)
−∗ {∆K◦Lk}− (z)∗ {∆K◦Lk}− (z)Lk(z)

−1, (9.77)

where LkL∗
k = Mk is the unique spectral factorization. Furthermore, using

(9.64),(9.65), we can reformulate the gradient Rk(z) more explicitly as

Rk(z) = Lk(z)
−∗Γ∗

k(I−zA)−∗C
∗
C(I−zA)−1ΓkLk(z)

−1, (9.78)

where Γk =
1
2π

∫ 2π

0
(I − ejωA)−1BLk(e

jω)dω as in (9.65). Here, the spectral factor
Lk(z) is obtained for z ∈ TN by Section 9.E. Similarly, the parameter Γk can be
computed numerically using trapezoid rule over the discrete domain TN , i.e.,

Γk ←
1

N

∑
z∈TN

(I − zA)−1BLk(z). (9.79)
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The gradient Rk(z) can thus be efficiently computed for z ∈ TN .

Implementation of Spectral Factorization
To perform the spectral factorization of an irrational function M(z), we use a spectral
factorization method via discrete Fourier transform, which returns samples of the
spectral factor on the unit circle. First, we compute Λ(z) for z ∈ TN , which is defined
to be the logarithm of M(z), then we take the inverse discrete Fourier transform λk

for k = 0, . . . , N − 1 of Λ(z) which we use to compute the spectral factorization as

L(zn)← exp

1

2
λ0 +

N/2−1∑
k=1

λkz
−k
n +

1

2
(−1)nλN/2


for k = 0, . . . , N − 1 where zn = ej2πn/N .

The method is efficient without requiring rational spectra, and the associated error
term, featuring a purely imaginary logarithm, rapidly diminishes with an increased
number of samples. It is worth noting that this method is explicitly designed for
scalar functions.

Algorithm 5 SpectralFactor: Spectral Factorization via DFT

1: Input: Scalar positive spectrum M(z) > 0 on TN := {ej2πn/N | n=0, . . . , N−
1}

2: Output: Causal spectral factor L(z) of M(z) > 0 on TN

3: Compute the cepstrum Λ(z)← log(M(z)) on z ∈ TN .
4: Compute the inverse DFT

λk ← IDFT(Λ(z)) for k = 0, . . . , N−1
5: Compute the spectral factor for zn = ej2πn/N

L(zn)← exp

1

2
λ0 +

N/2−1∑
k=1

λkz
−k
n +

1

2
(−1)nλN/2

, n = 0, . . . , N−1

Implementation of Bisection Method
To find the optimal parameter γk that solves tr

[
((I−γ−1k Rk)

−1−I)2
]
= r2 in the

Frank-Wolfe update (9.20), we use a bisection algorithm. The pseudo code for the
bisection algorithm can be found in Algorithm 6. We start off with two guesses of γ
i.e.(γleft, γright) with the assumption that the optimal γ lies between the two values
(without loss of generality).
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Algorithm 6 Bisection Algorithm

1: Input: h(γ), γright, γleft
2: Compute the gradient at γright: ∇h(γ)|γright
3: while | γright − γleft |> ϵ do
4: Calculate the midpoint γmid between γleft and γright
5: Compute the gradient at γmid: ∇h(γ)|γmid

6: if ∇h(γ)|γmid
= 0 then

7: return γmid

8: else if ∇h(γ)|γmid
> 0 then

9: Update γright to γmid

10: else
11: Update γleft to γmid

12: end if
13: end while
14: return the average of γleft and γright

Implementation of Rational Approximation
We present the pseudocode of RationalApproximation.

Algorithm 7 RationalApproximation

1: Input: Scalar positive spectrumN(z) > 0 onTN
′ := {ej2πn/N

′
| n=0, . . . , N ′−

1}, and a small positive scalar ϵ
2: Output: Causal controller K(z) on TN

′

3: Get P (z), Q(z) by solving the convex optimization in (9.24), for fixed ϵ, given
M(z), i.e.:

min
p0,...pm∈R,q0,...qm∈R,ε≥0

ε (9.80)

s.t. q0 = 1, P (z), Q(z) > 0, P (z) (N(z)+ϵ)Q(z)≤0, P (z) (N(z)ϵ)Q(z)≥0 ∀z ∈ TN
′

4: Get the rational spectral factors of P (z), Q(z), which are SP (z), SQ(z) using
the canonical Factorization method in [199]

5: Get Lr(z),the rational spectral factor ofN(z), as SP (z)/SQ(z)
6: Get K(z) from the formulation in (9.28),(9.99)

9.F Proof of the State-Space Representation of the Controller
Proof of Lemma 9.5.7
Let the spectral factor L̃(z) in rational form be given as

L̃(z) = (I + C̃(zI − Ã)−1B̃)D̃1/2, (9.81)
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with its inverse given by:

L̃−1(z) = D̃−1/2(I − C̃(zI − (Ã− B̃C̃))−1B̃), (9.82)

and its operator form denoted by L̃.

We write the DR-RO controller, K(z), as a sum of causal functions:

K(z) = ∆−1(z){∆K◦L̃}+(z)L̃−1(z) (9.83)

= ∆−1(z)
(
{∆K◦}+(z)L̃(z) + {{∆K◦}−L̃}+(z)

)
L̃−1(z) (9.84)

= ∆−1(z){∆K◦}+(z) + ∆−1{{∆K◦}−L̃}+(z)L̃−1(z). (9.85)

From Lemma 4 in [192], we have:

{∆K◦}−(z) = −R̄B∗
u(z

−1I − A∗
k)

−1A∗
kPBw (9.86)

where the LQR controller is defined as Klqr = (I + B∗
uPBu)

−1B∗
uPA and the

closed-loop matrix AK = A−BuKlqr with P ≻ 0 is the unique stabilizing solution
to the LQR Riccati equation P = Q + A∗PA − A∗PBu(I + B∗

uPBu)
−1B∗

uPA,
Q = C⊺C, and with R̄ = (I +B∗

uPBu)
−∗/2.

Multiplying equation (9.86) with L̃, and taking its causal part, we get:

{{∆K◦}−L̃}+(z) = {−R̄B∗
u(z

−1I − A∗
k)

−1A∗
kPBwC̃(zI − Ã)−1B̃D̃1/2 − R̄B∗

u(z
−1I − A∗

k)
−1A∗

kPBwD̃
1/2}+.

(9.87)

Given that the term R̄B∗
u(z

−1I − A∗
k)

−1A∗
kPBwD̃

1/2 is strictly anticausal, and
considering the matrix Ũ which solves the lyapunov equation: A∗

kPBwC̃+A∗
kŨA =

Ũ , we get {{∆K◦}−L̃}+(z) as:

{{∆K◦}−L̃}+(z) = {−R̄B∗
u((z

−1I − A∗
k)

−1A∗
kŨ + ŨÃ(zI − Ã)−1 + Ũ)B̃D̃1/2}+

(9.88)

= −R̄B∗
uŨ(Ã(zI − Ã)−1 + I)B̃D̃1/2 (9.89)

= −zR̄B∗
uŨ(zI − Ã)−1B̃D̃1/2 (9.90)
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Now, multiplying equation (9.90) by the inverse of L̃ (9.82), we get:

{{∆K◦}−L̃}+(z)L̃−1(z) = −zR̄B∗
uŨ(zI − Ã)−1B̃(I + C̃(zI − Ã)−1B̃)−1

(9.91)

= −zR̄B∗
uŨ(zI − Ã)−1(I + B̃C̃(zI − Ã)−1)−1B̃

(9.92)

= −zR̄B∗
uŨ(zI − Ãk)

−1B̃ (9.93)

= −R̄B∗
uŨ(I + (zI − Ãk)

−1Ãk)B̃ (9.94)

where Ãk = Ã− B̃C̃.

The inverse of ∆ is given by ∆−1(z) = (I −Klqr(zI − Ak)
−1Bu)R̄

∗, and we know
from lemma 4 in [192] that {∆K◦}+(z) = −R̄B∗

uPA(zI − A)−1Bw − R̄B∗
uPBw.

Then we can get the 2 terms of equation (9.85):

∆−1(z){∆K◦}+(z) = −Klqr(zI − Ak)
−1(Bw −BuR̄

∗R̄B∗
uPBw)− R̄∗R̄B∗

uPBw

(9.95)

and

∆−1(z){{∆K◦}−L̃}+(z)L̃−1(z) = −(I −Klqr(zI − Ak)
−1Bu)R̄

∗R̄B∗
uŨ(zI − Ãk)

−1ÃkB̃

(9.96)

+Klqr(zI − Ak)
−1BuR̄

∗R̄B∗
uŨB̃ (9.97)

− R̄∗R̄B∗
uŨB̃ (9.98)

Finally, summing equations (9.95) and (9.96), we get the controller K(z) in its
rational form:

K(z) = −
[
R̄∗R̄B∗

u −Klqr

]
︸ ︷︷ ︸

H̃

(zI −
[

ÃK 0

BuR̄
∗R̄B∗

u Ak

]
︸ ︷︷ ︸

F̃

)−1

[
ÃKB̃

−Bw +BuR̄
∗R̄B∗

u(PBw + U1B̃)

]
︸ ︷︷ ︸

G̃

−R̄∗R̄B∗
u(PBw + U1B̃)︸ ︷︷ ︸

J̃

(9.99)

which can be explicitly rewritten as in (9.28).



216

9.G SDP Formulation for the Finite Horizon from [219]
In this section, we state the SDP formulation of the finite-horizon DR-RO control
problem for a fixed horizon T >0 presented in [219], which is the main controller
we compare against, to showcase the value of the infinite-horizon setting. This result
highlights the triviality of non-causal estimation as opposed to causal estimation. In
Theorem 9.G.2, we demonstrate that the finite-horizon DR-RO problem reduces to
an SDP.

Problem 9.G.1 (Distributionally Robust Regret-Optimal (W2-DR-RO) Control
in the Finite Horizon ). Find a casual and time-invariant controller, KT ∈ KT , that
minimizes the worst-case expected regret in the finite horizon (9.2), i.e.,

inf
KT∈KT

R(KT , r) (9.100)

Theorem 9.G.2 (Adapted from [219]. An SDP formulation for finite-horizon
DR-RO). Let the horizon T > 0 be fixed and given the noncausal controller
K◦,T := −(IT + F∗

TFT )
−1F∗

TGT , the Problem 9.G.1 reduces to the following SDP

inf
KT∈KT ,

γ≥0,XT≻0

γ(r2T−tr(IT ))+tr(XT ) s.t.

XT γIT 0

γIT γIT (KT −K◦,T )
∗

0 KT −K◦,T (IT+F∗
TFT )

−1

≽0.

Moreover, the worst-case disturbance w⋆
T can be identified from the nominal dis-

turbances w◦,T as w⋆
T = (IT − γ−1⋆ T ∗

K◦,T
TK◦,T

)−1w◦,T where γ⋆>0 and K⋆
T are the

optimal solutions.

Note that the scaling of the SDP in Theorem 9.G.2 with the time horizon is prohibitive
for many time-critical real-world applications. Therefore, we compare our infinite-
horizon controller to the finite-horizon one in the simulation sections 9.6 and
9.H.

9.H Additional Simulations
Note on Comparison with Other Methods in the Literature:
As our work is the first to explore infinite-horizon distributionally robust control, our
comparative experiments are constrained by the existing literature on finite-horizon
distributionally robust control. Since the closest work to ours is that of [219], our
numerical experiments primarily compare with their finite-horizon version that
utilizes an SDP formulation.
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Unfortunately, the framework in [220] only allows for time-independent disturbances.
While this approach is valuable for partially observed systems, it is widely acknowl-
edged that the optimal distributionally robust controller for fully observed systems
remains the same as the standard LQR controller as long as the disturbances are
independent (though not necessarily identical) [101]. Therefore, in our setup, the
results from [220] simply reduce to the optimal LQR controller. This observation
has also been noted in [220].

While in the main text we simulated under the worst-case distributions corresponding
to each controller being compared, we include in this section of the appendix
other systems under the worst-case distributions, and also under other disturbance
realizations (namely sinusoidal and uniform distributions).

Additional Time Domain and Frequency Domain Simulations
Time domain simulations: We repeat the same experiment of section 9.6 for 2
more systems, [REA4] and [HE3] [145]. [REA4] is a SISO system with 8 states and
a stable A matrix, while [HE3] has 4 states and an unstable A matrix. The results are
shown in figures 9.4,9.5. Similarly to our previous discussion, the infinite horizon
DRRO controller achieves good performance across all systems, achieving the lowest
cost under all considered noise scenarios.

In figures 9.6 and 9.7, we show the performance of the different DR controllers: (I)
DR-RO in infinite horizon, (II) DR-RO in finite horizon and (III) DR-LQR in finite
horizon under uniform noise and sinusoidal noise, respectively, for different systems.
Note that the distributionally robust controller is guaranteed to perform better than
other controllers under its own worst-case distribution, but has no guarantee of
performance under other disturbances. Under uniform and sinusoidal noise, our
infinite horizon DR-RO controller performs better than the finite horizon DR-LQR
for systems [REA4] and [AC15], but worse than the finite horizon DR-LQR and on
par with the finite horizon DR-RO for system [HE3].

Frequency domain simulations We show in figure 9.8 the frequency domain
representation of the square of the norm of the DR-RO controller and its approximation
for [AC15] and [HE3], demonstrating that lower order approximations of m(ejω)

provide good estimates.
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Figure 9.4: The control costs of the different DR controllers: (I) DR-RO in infinite
horizon, (II) DR-RO in finite horizon and (III) DR-LQR in finite horizon under
different disturbances for system [REA4] [145]. (a) is white noise, while (b), (c)
and (d) are worst-case disturbances for each of the controllers, for r = 1.5. The
finite-horizon controllers are re-applied every s = 30 steps. For all disturbances, the
infinite horizon DRRO controller achieves lowest average cost, even in cases (c) and
(d) where the finite horizon DR controllers are designed to minimize the cost.



219

50 100 150 200
0

50

100

150

200

250

300

350

(a) White noise

50 100 150 200
0

500

1000

1500

2000

(b) Worst disturbance for (I)

50 100 150 200
0

500

1000

1500

2000

(c) Worst disturbance for (II)

50 100 150 200
0

500

1000

1500

2000

(d) Worst disturbance for (III)

Figure 9.5: The control costs of the different DR controllers: (I) DR-RO in infinite
horizon, (II) DR-RO in finite horizon and (III) DR-LQR in finite horizon under
different disturbances for system [HE3] [145]. (a) is white noise, while (b), (c)
and (d) are worst-case disturbances for each of the controllers, for r = 1.5. The
finite-horizon controllers are re-applied every s = 30 steps. For all disturbances, the
infinite horizon DRRO controller achieves lowest average cost, even in cases (c) and
(d) where the finite horizon DR controllers are designed to minimize the cost.

50 100 150 200
0

10

20

30

40

50

(a) System [REA4]

50 100 150 200
0

100

200

300

400

500

(b) System [HE3]

50 100 150 200
0

50

100

150

(c) System [AC15]

Figure 9.6: The control costs of the different DR controllers: DR-RO in infinite
horizon, DR-RO in finite horizon and DR-LQR in finite horizon under uniform noise
distributions (with amplitude=2) for different systems, for r = 1.5.
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Figure 9.7: The control costs of the different DR controllers: DR-RO in infinite
horizon, DR-RO in finite horizon and DR-LQR in finite horizon under sinusoidal
noise distributions (frequency=1, phase=π/4, amplitude=2) for different systems, for
r = 1.5.
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Figure 9.8: The frequency domain representation of the square of the norm of the
DR-RO controller K(ejw) and its approximation for [AC15] 9.8a and [HE3] 9.8b.
Figures 9.8a and 9.8b reaffirm our conclusions that lower order approximations of
m(ejw) still yield good estimates of the same. Figure 9.8c represents the worst case
expected regret ofH2,H∞ and the RO controller.
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C h a p t e r 10

INFINITE-HORIZON DISTRIBUTIONALLY ROBUST KALMAN
FILTERING

10.1 Introduction
The Kalman filter (KF), introduced by Rudolf Kalman in 1960 [121], is a fundamental
tool for estimating dynamic signals generated by state-space models from noisy
measurements. It has become indispensable across various fields, such as tracking
[33], [252], navigation [85], [107], robotics [35], [119], [189], autonomous vehicles
[65], [208], aerospace [11], [143], [181], earth sciences [15], [71], [98], [226],
biomedicine [72], [185], [214], economics and finance [129], [200], [235]. Its efficacy
hinges heavily on accurately modeling state-space parameters and noise statistics,
which often deviate from the actual model due to statistical and approximation
errors, inherent environmental uncertainties, and non-stationarities. These deviations
can severely degrade performance [77], [86], [215], posing severe risks in safety-
critical applications such as aircraft navigation and autonomous vehicles. Therefore,
enhancing the robustness of the Kalman filter against inaccuracies and uncertainties
is crucial for ensuring safe and reliable operation.

Traditionally, robustness in the Kalman filter has been addressed by treating uncer-
tainties as adversarial, deterministic perturbations. In this context, the H∞-filter
[70], [87], [99], [101], [168], [204], [244] has garnered extensive research, driven by
significant advances in robust control theory [14], [51], [101], [260]. The H∞-filter
enhances robustness by minimizing the worst-case mean-squared estimation error
(MSE) attainable among all bounded energy (or power) disturbances. Although
these uncertainties are presumed to arise from exogenous disturbances, the optimal
H∞-filter also ensures robustness against small modeling errors in state-space param-
eters [255]. More recently, regret-optimal filtering [82], [193] has been introduced
to balance performance and robustness. Unlike the H∞-filter, it minimizes the
worst-case regret, defined as the excess error a causal estimator suffers compared
to a clairvoyant estimator, among all bounded energy disturbances. While effective
against large uncertainties, these filters neglect distributional information and may
become overly conservative when faced with stochastic disturbances [179].

Distributionally robust (DR) estimation and filtering offers an alternative framework
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that addresses the limitations of traditional robust filtering. Pioneered by Kassam
and Poor [127], [128] in the context of Wiener filtering [242], this approach enhances
robustness against uncertainties through the use of ambiguity sets of plausible
statistical models. The behavior of the resulting robust filter is intricately tied to
the topology of the ambiguity set, which is often constructed as a ball induced by a
statistical distance or divergence. Examples include the total variation (TV) distance
[184], [230], the Kullback-Leibler (KL) divergence [146], [147], [264], [265], and the
Wasserstein-2 (W2) distance [29], [95], [153], [186], [203], [233], [234]. The filters
derived from KL-ambiguity sets have been linked [28], [97], [146], [147] to risk-
sensitive filters [99], [115], [216], [217], [237], which minimize the exponentiated
squared estimation error. A significant drawback of KL-ambiguity is its limited
expressivity, as it only includes distributions whose support matches the nominal
distribution [109]. Due to its geometric interpretability as the optimal transportation
metric [231], the W2-distance has recently seen widespread adoption across various
fields, including machine learning [9], computer vision [151], [177], control [7],
[30], [89], [125], [219], [220], data compression [26], [144], [157], and robust
optimization [24], [25], [74], [134], [166], [253], [257]. W2-ambiguity sets offer
richer expressivity, encompassing distributions with both discrete and continuous
support. The W2-distance also renders computationally tractable formulations for
problems involving quadratic objectives, such as least mean-squared estimation [171],
and linear-quadratic control [219].

Related Works
Recognizing these advantages, Shafieezadeh Abadeh, Nguyen, Kuhn, et al. [203] in-
troduced a distributionally robust Kalman filter based on W2-ambiguity sets confined
to Gaussian distributions only. They derive state estimates at local time instances by
minimizing the mean-squared error for the least favorable joint posterior distribution
of the state-measurement vector, given past measurements. This iterative procedure,
assuming iid Gaussian disturbances, incorporates the worst-case covariance of the
previous state estimate into the nominal model for the subsequent time step. However,
while this method inherently addresses state-space parameter mismatches, it lacks
a global robustness guarantee over the entire time horizon and against non-iid or
non-Gaussian disturbances. Similar temporally local approaches have also been
studied in [95], [233], [234]. More recently, Lotidis, Bambos, Blanchet, et al. [153]
took a different approach by imposing distributional uncertainty on the measurement
noise process over the entire time horizon, assuming known iid process noise with
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known covariance. While the resulting filter demonstrates global robustness over the
entire time horizon, the adversarial measurement noise is constrained by martingale
conditions to prevent clairvoyance and dependence on future process noise realiza-
tions. Moreover, the assumption of known iid process noise is restrictive and does
not provide robustness to modeling errors of the dynamics and the process noise.

Contributions
In this work, we consider the Wasserstein-2 distributionally robust Kalman filtering
(W2-DR-KF) of linear state-space models for both finite and infinite horizons. The
probability distribution of the disturbances over the entire time horizon is assumed
to lie in a W2-ball of a specified radius centered at a given nominal distribution.
We seek the optimal causal linear estimator of a target signal that minimizes the
worst-case MSE within the W2-ball. We cast this as a min-max optimization problem
(??, Problem 10.2.2). Our approach differs drastically from the prior works [95],
[153], [203], [233], [234] and possesses several advantages which can be listed as
follows:

1. Global robustness to non-iid disturbances: In contrast to focusing on the worst-
case MSE at local time instances under unknown iid disturbances [95], [203], [233],
[234], our approach minimizes the cumulative MSE under the worst-case disturbance
trajectory, thereby achieving global robustness for the entire horizon. Moreover,
unlike [153], we impose no restrictions on the dependencies of the disturbances,
accommodating arbitrarily correlated process and measurement noise sequences.

2. Bounded steady-state error: We derive the first infinite-horizon (aka steady-state)
W2-DR-KF, analogous to the steady-state Kalman and H∞-filters [101], [120]. We
show that the estimation error converges to a steady state (Corollary 10.3.5) with
bounded covariance.

3. Efficient real-time implementation: The finite-horizon W2-DR-KF requires
solving an ill-scaled SDP (??), rendering it impractical for real-time implementation
over long time horizons. However, our infinite-horizon W2-DR-KF can be imple-
mented efficiently, thanks to our novel rational approximation, thereby overcoming
the scalability issues of SDP formulation.

Our contributions are summarized as follows:

1. Tractable convex formulation: We derive an SDP (??) formulation for the
finite-horizon problem, and a concave-convex max-min optimization problem over
positive-definite Toeplitz operators (Theorem 10.3.4) for the infinite horizon one.
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2. Optimality of linear estimators for Gaussian nominal: We focus on linear
estimators while allowing the distributions in the ambiguity set to be non-Gaussian.
For Gaussian nominal distributions, we show the optimality of linear estimators
(Theorem 10.3.1).

3. Characterization of the infinite-horizon DR-KF: We derive the infinite-horizon
W2-DR-KF via KKT conditions (Theorem 10.3.4) and show that the transfer function
of the infinite-horizon W2-DR-KF is non-rational, and thereby lacks a finite-order
state-space realization. However, we also show that it can be uniquely characterized
through a nonlinear finite-dimensional parametrization (Lemma 10.4.1).

4. An efficient algorithm to compute the optimal filter: Using frequency-domain
techniques, we introduce an efficient algorithm, based on the Frank-Wolfe method,
to compute the optimal infinite-horizon W2-DR-KF (Algorithm 8). We construct
the best rational approximation, in the H∞-norm, of any given degree, for the
non-rational optimal W2-DR-KF via a novel convex program (Theorem 10.4.6).

Notations: Bare calligraphic letters (K,M, etc.) are reserved for operators, with the
subscripted ones (KT ,MT , etc.) being finite-dimensional. I is the identity operator
with a suitable block size. AsteriskM∗ denotes the adjoint ofM. ≻ is the usual
positive-definite ordering. tr(·) is the trace. ∥·∥ is the usual Euclidean norm. ∥·∥∞
and ∥·∥2 are the H∞ (operator) and H2 (Frobenius) norms, respectively. {M}+ and
{M}− denote the causal and strictly anti-causal parts.

√
M is the positive-definite

symmetric square root. Sn+ is the set of psd matrices. |z| is the magnitude and z∗

is the conjugate of a complex number z ∈C. The complex unit circle is denoted
by T. P denotes a probability distribution and Pp is the set of distributions with
finite pth moment. E denotes the expectation. The Wasserstein-2 distance between
distributions P1,P2∈Rn is denoted by W2(P1,P2) such that

W2(P1,P2) ≜
(
inf E

[
∥w1−w2∥2

])1/2
, (10.1)

where the infimum is over all joint distributions of (w1,w2) with marginals w1∼P1

and w2∼P2.
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10.2 Problem Setup
In this section, we formulate the distributionally robust filtering problem for infinite
horizon setting. To this end, consider the following state-space model:

xt+1 = Axt +Bwt,

yt = Cyxt + vt,

st = Csxt,

(10.2)

At time t ∈ N, let xt ∈ Rdx denote the unobserved latent state, yt ∈ Rdy the
measurement, st ∈ Rds the unobserved target signal to be estimated, wt ∈ Rdw

the process noise, and vt ∈ Rdv the measurement noise. The combined process-
measurement noise sequence constitutes the exogenous disturbance. The setup
presented above is quite general and widely adopted in the estimation and filtering
literature [101], [120]. The usual state estimation problem is a specific instance of
this setup with Cs=I . Moreover, we assume that (A,Cy) and (A,Cs) are detectable
and (A,B) is controllable.

The Infinite-Horizon Distributionally Robust Filtering
Designing optimal filters for extended horizons can generally be impractical extended
time horizons. To mitigate this, time-invariant steady-state filters are usually
deployed for practical purposes. These filters can be characterized by their Markov
parameters {K̂t}, allowing the estimates {ŝt} to be computed as a convolution sum:
ŝt =

∑t
s=0 K̂t−sys. This can be expressed compactly as ŝ = Ky, where K is a

bounded, causal, and doubly-infinite block Toeplitz operator constructed from the
Markov parameters K̂t. We denote the class of all such filtering policies by K .

Here, y and ŝ are the doubly infinite column vectors of measurements and estimates,
respectively. Furthermore, letting by ξ = [w;v], and s be doubly-infinite disturbance
and target signal vectors, respectively, the state-space dynamics (10.2) over an
infinite-horizon can then be described as follows:

y = Hw + v,

s = Lw,
(10.3)

where H and L are strictly causal, doubly-infinite, block Toeplitz operators, com-
pletely described by the state-space parameters (A,B,Cy, Cs). The error transfer
operator TK : ξ 7→ e := ŝ−s under a stationary causal filtering policy K ∈ K

is defined similarly as TK :=
[
KH−L K

]
. Note that these Toeplitz operators
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are equivalently identified by transfer function formalism. In particular, we have
H ↔ H(z) :=Cy(zI − A)−1B and L ↔ L(z) :=Cs(zI − A)−1B for z ∈ T.

Instead of focusing on a fixed horizon, we consider the time-averaged steady-state
worst-case MSE as the horizon approaches infinity, i.e.,

E(K, ρ) ≜ lim sup
T→∞

1

T
ET (K, ρT ) = lim sup

T→∞

1

T
sup

PT∈WT (P
◦
T ,ρT )

EPT

[
∥eT (ξT ,K)∥2

]
.

(10.4)
The limit above may generally be infinite without further specification of the
asymptotics of the ambiguity set. To ensure the finiteness of the steady-state MSE,
we make the following assumptions:

Assumption 10.2.1. The nominal disturbances {(w◦
t , v

◦
t )} form a zero-mean weakly

stationary random process, i.e., the cross covariance between (w◦
t , v

◦
t ) and (w◦

t , v
◦
t )

only depends on the difference t−s. Furthermore, the size of the ambiguity set for
horizon T >0 scales as ρT ∼ ρ

√
T for a ρ>0.

The assumption on the radius ρT for varying T is justified, as the total energy of
a random vector of length T from a weakly stationary process scales linearly with
T . We state the distributionally robust filtering problem for the infinite horizon as
follows:

Problem 10.2.2 (W2-DR-KF over infinite-horizon). Find a casual and time-invariant
filter, K∈K , that minimizes the steady-state worst-case MSE defined in (10.4), i.e.,

inf
K∈K

E(K, ρ) = inf
K∈K

lim sup
T→∞

1

T
sup

PT∈WT (P
◦
T ,ρT )

EPT

[
∥eT (ξT ,K)∥2

]
. (10.5)

10.3 Tractable Convex Formulations
In this section, we provide tractable formulations for the finite and infinite-horizon
W2-DR-KF problems. In ??, we present an SDP formulation for the finite-horizon
problem ??. In Theorem 10.3.4, we reduce the infinite-horizon problem 10.2.2 to a
tractable convex program via duality. We also characterize the optimal estimator and
the worst-case distribution for both settings. The proofs of the theorems presented in
this section are deferred to the Appendix.

Before proceeding with the main theorems, we present a minimax theorem establish-
ing the optimality of linear filtering policies for Gaussian nominal distributions.

Theorem 10.3.1 (Minimax duality). Let T > 0 be a fixed horizon and ΠT be the
class of non-linear causal estimators. Suppose that the nominal P◦

T is Gaussian.
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Then, the following holds:

inf
πT∈ΠT

sup
PT∈WT (P

◦
T ,ρT )

EPT

[
∥eT (ξT , πT )∥2

]
= sup
PT∈WT (P

◦
T ,ρT )

inf
πT∈ΠT

EPT

[
∥eT (ξT , πT )∥2

]
,

(10.6)
Moreover, (10.6) admits a saddle point (π⋆

T ,P
⋆
T ) such that the worst-case distribution

P
⋆
T is Gaussian and the optimal causal filter π⋆

T is linear, i.e., π⋆
T ∈ KT .

For simplicity and clarity, we make the following assumption for the remainder of
this paper.

Assumption 10.3.2. The nominal disturbances are uncorrelated, i.e., EP◦
T
[ξTξ

∗
T ] =

IT for any T >0.

A Concave-Convex Optimization for the Infinite-Horizon Filtering
The scaling of the SDP in ?? with the time horizon is prohibitive for many time-
critical real-world applications. Therefore, we shift our focus to the infinite-horizon
W2-DR-KF problem 10.2.2 to derive the optimal steady-state filtering policy.

Solving Problem 10.2.2 involves two major challenges. The first one is transforming
the steady-state worst-case MSE for a fixed filtering policy K∈K , as defined in
(10.4), to an equivalent convex optimization problem. We address this by leveraging
the asymptotic convergence properties of Toeplitz matrices [125]. The second
challenge is addressing the causality constraint on the estimator. To illustrate the
triviality of non-causal estimation in the infinite-horizon setting, we present an
analogous result as shown below:

Lemma 10.3.3. Under the Assumptions 10.2.1 and 10.3.2, K◦ := LH∗(I+HH∗)−1

is the unique, optimal, non-causal estimator minimizing the steady-state worst-case
MSE in (10.4) for any ρ > 0.

We address the causality constraint by reformulating Problem 10.2.2 as a max-min
optimization, where the inner minimization over the causal filtering policies is
performed using the Wiener-Hopf technique [120], [239] (see Lemma 10.C.2). To
this end, we introduce the canonical spectral factorization1

∆∆∗ = I+HH∗,

where both ∆ and its inverse ∆−1 are causal operators. We state the equivalent
formulation for the infinite-horizon W2-DR-KF as follows.

1Essentially Cholesky factorization for Toeplitz operators.
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Theorem 10.3.4 (Convex formulation of infinite-horizon W2-DR-KF). Under the
Assumptions 10.2.1 and 10.3.2, the Problem 10.2.2 is equivalent to the following
feasible max-min problem:

sup
M≻0

inf
K∈K

Tr(TKT ∗
KM) s.t. Tr(M− 2

√
M+ I) ≤ ρ2. (10.7)

Defining KH2
:= {K◦∆}+∆−1, the unique saddle point (K⋆,M⋆) of (10.7) satisfies

the following:
K⋆ = KH2

+ U−1
⋆ {U⋆{K◦∆}−}+∆−1, (10.8a)

M⋆ = (I − γ−1⋆ TK⋆
T ∗
K⋆
)−2, (10.8b)

where U∗
⋆U⋆ =M⋆ is the canonical spectral factorization with causal U⋆ and U−1

⋆ ,
and γ⋆ > 0 is the unique value satisfying the constraint with equality, i.e.,

Tr
[(
(I − γ−1⋆ TK⋆

T ∗
K⋆
)−1 − I

)2]
= ρ2. (10.9)

The optimal linear filter K⋆, comprises the nominal Kalman (aka H2) filter, KH2
and

an additive correction term that accounts for the correlations within the disturbance
process. The correction term is derived directly from the optimal solutionM⋆ of
(10.7) through spectral factorization.

As a result of devising infinite-horizon filters achieving finite optimal value in (10.7),
we can deduce the boundedness of the steady-state error covariance.

Corollary 10.3.5. The steady-state error has bounded covariance under the optimal
K⋆ in (10.8).

10.4 An Efficient Algorithm
While the standard Kalman and H∞-filters allow for finite-order spate-space realiza-
tions derived via algebraic methods, the optimal K⋆ lacks such a realization since
its transfer function K⋆(z) is non-rational (Corollary 10.4.2) despite admitting a
non-linear finite-dimensional parametrization (Lemma 10.4.1). Thus, we adopt a
novel twofold approach to develop practical DR filters:

1. We introduce an efficient algorithm to compute the optimal positive-definite
operator M⋆ from (10.7). To address the challanges posed by its infinite-
dimensional nature, we use the frequency-domain representation ofM⋆ as the
power spectral density M⋆(z)≻0.
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2. We develop a novel method to approximate the non-rational power spectral
density M⋆(z) in H∞-norm using positive rational functions through convex
optimization. This rational approximation is then used to derive an approximate
rational filter with state-space realization via (10.8).

To this end, we adopt the transfer-function formalism for the rest of this paper with the
correspondences: M↔M(z), U ↔ U(z),K ↔ K(z), and TK ↔ TK(z) for z ∈ T.
The following lemma characterizes the optimal M⋆(z), implying finite-dimensional
parametrization.

Lemma 10.4.1. Let f : (γ,Γ) 7→ M return the unique solution of the implicit
equation over M(z),

M(z) = γ2[γI−U(z)−1Γ(I−zA)−1BB
∗
(I−zA)−∗Γ∗U(z)−∗+TK◦

(z)TK◦
(z)∗]−2,∀z∈T

(10.10)
where U(z)∗U(z) =M(z) is the unique spectral factorization and (A,B,C) are
obtained from state-space parameters (see Section 10.D and (10.106)). We have that
M⋆=f(γ⋆,Γ⋆) where

Γ⋆ =
1

2π

∫ π

−π

U⋆(e
ȷω)C(I − eȷωA)−1dω, (10.11)

and γ⋆>0 is such that Tr(M⋆ − 2
√M⋆ + I) = ρ2,

As a consequence of Lemma 10.4.1, we deduce the non-rationally of the optimal
W2-DR-KF.

Corollary 10.4.2. The spectral density M⋆(z) and the transfer function K⋆(z) are
non-rational.

Iterative Optimization Methods in the Frequency-Domain
Despite being a concave program, the infinite-dimensional nature of (10.7) hinders
the direct application of standard optimization tools. To address this, we leverage
frequency-domain analysis via transfer functions, enabling the use of standard tools
with appropriate modifications. Specifically, we employ the modification of a
Frank-Wolfe method [68], [116]. Our framework is versatile and can be extended to
alternative approaches, including projected gradient descent [83], and the fixed-point
iteration method used in [125]. A detailed pseudocode Algorithm 8 is provided in
Section 10.D.
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Frank-Wolfe: We define the following function and its (Gateaux) gradient [43]:

Φ(M) ≜ inf
K∈K

Tr (TKT ∗
KM) , and ∇Φ(M)=U−1 {UK◦∆}− {UK◦∆}∗− U−∗+TK◦

T ∗
K◦
.

(10.12)
where U∗U =M is the spectral factorization. Rather than solving the optimization in
(10.7) directly, the Frank-Wolfe method solves a linearized subproblem in consecutive
steps. Namely, given the kth iterateMk, the next iterateMk+1 is obtained via

M̃k = argmax
M≽I

Tr (∇Φ(Mk)M) s.t. Tr(M− 2
√
M+ I) ≤ ρ2, (10.13a)

Mk+1 = (1− ηk)Mk + ηkM̃k, (10.13b)

where ηk ∈ [0, 1] is a step-size, commonly set as ηk =
2

k+2
[116]. Letting Gk :=

∇Φ(Mk) be the gradient as in (10.12), Frank-Wolfe updates can be expressed
equivalently using spectral densities as:

M̃k(z)=(I−γ−1k Gk(z))
−2 and Mk+1(z)=(1−ηk)Mk(z)+ηkM̃k(z), ∀z ∈ T

(10.14)
where γk>0 solves Tr

[
((I−γ−1k Gk)−1−I)2

]
=ρ2. See Section 10.D for a closed-

form Gk(z).

Discretization: Instead of the continuous domain unit circle T, we consider its
uniform discretization by N points, TN :={ej2πn/N | n=0,. . ., N−1}. While the
gradient update Gk(z) for frequency z is applied to the next iterate Mk+1(z) at that
frequency, calculating Gk(z) requires Mk(z

′) at all other frequencies z′ ∈ T due
to spectral factorization involved. Thus, the full update for Mk+1(z) needs Mk(z

′)

across the entire unit circle. This is overcome by finer discretization.

Spectral Factorization: Since the iterates Mk(z) are non-rational spectral densities,
the spectral factorization can only be performed approximately [199]. Specifically,
we employ the algorithm proposed in [188] that uses discrete Fourier transform
(DFT) and is based on Kolmogorov’s method of factorization [132]. This method,
tailored for scalar spectral densities (i.e., for scalar target signals ds = 1), proves
efficient as the associated error term, featuring a multiplicative phase factor, rapidly
diminishes with finer discretization N . Matrix-valued spectral densities can also be
tackled by various other algorithms [58], [243]. See Section 10.D for a pseudocode
and details.

Bisection: We use bisection method to find theγk>0 that solvesTr
[
((I−γ−1k Gk)−1−I)2

]
=

ρ2 in the Frank-Wolfe update (10.14). See Section 10.D for a pseudocode and further
details.
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Remark 10.4.3. The gradient Gk(z) requires computation of the finite-dimensional
parameter via (10.11), which can be performed using N -point trapezoidal integration.
See Section 10.D for details.

We conclude this section with the following convergence result due to [116], [135].

Theorem 10.4.4 (Convergence ofMk). There exists constants δN >0, depending on
discretization N , and κ>0, depending only on state-space parameters (10.2) and ρ,
such that the iterates in (10.13) satisfy

Φ(M⋆)− Φ(Mk) ≤
2κ

k + 2
(1 + δN). (10.15)

Rational Approximation using H∞-norm
In the preceding section, we introduced a method to compute the optimal M⋆(z)

approximately on the unit circle. However, the resulting filtering policy is non-rational
and cannot be realized as a state-space filter. In this section, we introduce a novel
technique for obtaining approximate rational filtering policies. Instead of directly
approximating the filter itself, our method involves an initial step of approximating
the power spectrum M⋆(z) by a ratio of positive fixed order polynomials, P (z)/Q(z),
to minimize the H∞-norm of the approximation error. After finding a rational
approximation P (z)/Q(z) of M⋆(z), we compute a state-space controller according
to Equation (10.8). For simplicity, we focus on scalar target signals, namely, ds=1.

Concretely, P (z) =
∑m

k=−m pkz
−k and Q(z) =

∑m
k=−m qkz

−k are Laurent polyno-
mials of degree m∈N with symmetric coefficients pk=p−k∈R and qk= q−k∈R.
In other words, the polynomials P (z) and Q(z) are uniquely identified by m + 1

real coefficients, (p0, . . . , pm) and (q0, . . . , qm). Given a positive spectral density
M(z)>0 for z∈T, we seek positive polynomials P (z), Q(z)>0 for z∈T of order
at most m∈N that minimize the H∞-norm of the rational approximation error, i.e.,

min
p0,...pm∈R,
q0,...qm∈R,

ε≥0

ε s.t.

i) P (z), Q(z) > 0 for all z ∈ T,

ii) q0 = 1,

iii) max
z∈T

∣∣∣∣P (z)

Q(z)
−M(z)

∣∣∣∣ ≤ ε,

(10.16)

where ε≥ 0 denotes an upper bound on the approximation error. The constraint
q0=1 eliminates redundancy in the problem since the fraction P (z)/Q(z) is scale
invariant. Unfortunately, the problem (10.16) is not convex in all the variables.
Instead, Lemma 10.4.5 shows convexity for fixed ε≥0.
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Lemma 10.4.5. For a fixed ε≥0, the constraints (i-iii) define a jointly convex set for
the coefficients.

Proof. The constraints (i-ii) are affine inequalities, hence convex. Constraint (iii) is
equivalent to

P (z)− (M(z) + ε)Q(z) ≤ 0, and P (z)− (M(z)− ε)Q(z) ≥ 0, for all z ∈ T,
(10.17)

which are jointly affine inequalities in (p0, . . . pm) and (q0, . . . qm), hence convex. ■

This result enables us to obtain mth-order rational approximations P (z)/Q(z) of
M(z) with a fixed approximation precision ε, signifying our tolerance for deviations
from M(z), by solving a convex feasibility problem. Notice that the constraints (i)
and (iii) (eqv. (10.17)) involve inequalities over the entire unit circle T. Since the
iterative method in Algorithm 8 only returns the values of M(z) on the discretized
unit circle TN , we can enforce these inequalities in the feasibility problem only for
TN . While being an inexact approximation for (iii), it is an exact characterization
for (i) as long as N > 2m by the Nyquist-Shannon sampling theorem [205]. See
Section 10.D for a pseudocode.

Utilizing a convex feasibility oracle, our method can be used in two operational
modes:

1. Fixed order, best precision: By iteratively reducing the precision ε we can
revise the ε-feasible polynomials P (z), Q(z), effectively solving the non-
convex problem (10.16) to obtain the best mth-order rational approximation.

2. Fixed precision, least order: In contrast, we can seek the lowest degree
rational approximation, which achieves a fixed precision ε.

Theorem 10.4.6. The spectral factorization U(z)∗U(z) = P (z)/Q(z) of a de-
gree m rational approximation P (z)/Q(z) admits a rational factor U(z). Fur-
thermore, the filter obtained from U(z) using (10.8), i.e., K(z) = KH2

(z) +

U(z)−1 {U(z){K◦(z)∆(z)}−}+∆(z)−1 is rational and can be realized as a state-
space filter as highlighted below:

ζt+1 = F̃ ζt + G̃yt,

ŝt = H̃ζt + L̃yt,
(10.18)

where ζt∈Rm+dx is the filter state, and (F̃ , G̃, H̃, L̃) are determined from (A,B,Cy, Cu)

and U(z).
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10.5 Numerical Experiments
In this section, we compare the performance of finite and infinite horizon DR-KF
filters with H2, H∞ filters, and other DRKFs [203], [153]. Our evaluation includes
both frequency-domain and time-domain analyses, highlighting the effectiveness
of the rational approximation method. The nominal distribution is assumed to
be Gaussian with zero mean and identity covariance. Our results demonstrate
that our DR-KF (in the finite and∞ horizon) provides significant advantages over
other DRKFs regarding stability, computational speed, and error reduction. The
experiments were performed on a M1 Macbook Air with 8 GB of RAM.

Frequency Domain Evaluations
We study a typical tracking problem whose state-space model is A =

[
1 ∆t

0 1

]
,

B =
[
0 ∆t

]T
,Cy =

[
1 0

]
, Cs = 1 where the state corresponds to the position

and velocity, the process noise is the exogenous acceleration, and ∆t is the sampling
time. We plot the frequency response of our DR-KF using the metric |TK(e

jω)|2 =
σ(T ∗

K(e
jω)TK(e

jω)), where σ is the maximal singular value. We compare it to
the classical H2 (KF) and H∞ (robust) filters. Figure 10.1a shows that the DR-
KF interpolates well between the H2 (KF) and H∞ (robust) filters. Figure 10.1b
illustrates the worst-case expected MSE. For smaller r, the DR-KF performs similarly
to theH2 (KF) filter, while for larger r, its worst-case MSE approaches that of the
robust filter. Overall, the DR-KF achieves the lowest worst-case expected MSE for
any r. We investigate the behavior of the rational approximation across various
values of the radius r. The results for degrees m = 1, 2, 3 are given in Table 10.1 .
Approximations of order greater than 2 achieve an expected MSE closely matching
the non-rational DR-KF for all values of r.
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(a) Frequency response for the tracking
problem.
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(b) Worst-case expected MSE.

Figure 10.1: DR-KF versus theH2,H∞ filters and the variation of the expected MSE
with r.
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r=0.01 r=1 r=3 r=5
DRKF 0.7870 3.4948 14.842 34.110
RA(1) 0.7871 3.5818 15.954 38.327
RA(2) 0.7870 3.4948 14.844 34.124
RA(3) 0.7870 3.4948 14.834 34.024

Table 10.1: The worst-case expected MSE
of the non-rational DRKF, compared to the
rational filters RA(1), RA(2), and RA(3),
obtained from degree 1, 2, and 3 rational
approximations to U(ejω), for the system
in Section 10.5.

T=10 T=50 T=100 T=1000
DRMC 32.9 s NAN NAN NAN

Our DRKF (finite) 0.65 s 7.3 s 194.9 s NAN
Our DRKF (infinite) 6.6 s 6.6 s 6.6 s 6.6 s

Table 10.2: The running time (in
seconds) of different filters for
the system in section 10.5. The
DRMC is inefficient for T> 10, our
DRKF (finite) is inefficient for T>
50 while our ∞ horizon DRKF
can run for any horizon.

Time Domain Evaluations
We assess the time-domain performance of both infinite and finite horizon DR-KF
filters, comparing them with H2 and H∞ counterparts on the tracking problem
introduced in Section 10.5. The average MSE over 50 time steps, aggregated across
1000 independent trials, is plotted. In Figure 10.2a, under white Gaussian noise, the
H2 (KF) filter outperforms others. Figures 10.2b and 10.2c correspond to correlated
Gaussian noise and the worst-case noise for the finite horizon DRKF, respectively. In
Figures 10.2b and 10.2c, the DRKF outperforms the classical filters, and the infinite
horizon DRKF matches the finite horizon one. As we increase the time horizon,
solving the finite horizon SDP becomes computationally infeasible, underscoring the
advantage of the infinite horizon DRKF.
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(c) Worst noise for DR-KF,
SDP

Figure 10.2: The average MSE of the different filters for the tracking problem, under
(a) white noise, (b) correlated Gaussian noise, and (c) worst-case noise for the finite
horizon DR KF for the system in Section 10.5. While the H2 filter (KF) performs
best in (a), it behaves poorly in (b), (c). The DRKF achieves the lowest error in (b)
and (c), and the finite and infinite horizon achieve similar average MSE at the end of
the horizon.

Comparison to the DRKF in [203]
We first compare against [203] which assumes the states and measurements to be
in a Wasserstein neighborhood around a nominal at each time step, robustifying
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immediately against model uncertainties. Authors in [203] don’t consider noise
correlations across time steps, their problem setup is in the finite-horizon, and
they use the Frank-Wolfe algorithm to efficiently solve the problem. The system

matrices that they consider is given by A =

[
0.9802 0.0196 + 0.099∆

0 0.9802

]
, Q =[

1.9608 0.0195

0.0195 1.9605

]
, B =

[√
Q 02×1

]
, Cy =

[
1 −1

]
, Cs = I , and ∆ repre-

sents a scalar uncertainty (taken to be 1 as in [203]). We compare the performance
of our infinite-horizon DRKF to [203] in Figure 10.3 under Gaussian noise. The plot
shows that our DRKF outperforms [203] and has a more stable performance, even
though we are disadvantaged in two ways: 1) our filter isn’t explicitely designed for
model uncertainties, 2) since we only consider estimations of linear combination
of the state (Cs is a row vector), we get the total MSE from 2 different runs with
Cs =

[
1 0

]
and Cs =

[
0 1

]
, which is suboptimal.

(a) Average MSE in dB under Gaussian
noise.

Figure 10.3: Average MSE for the KF, our DRKF, and the DRKF from [203], for
system in section 10.5.

Comparison to the DR estimator of [153]
We contrast our approach with that of [153], termed linear quadratic estimator under
martingale constraints (DRMC). Here are the key comparisons: 1) DRMC, akin to
our approach, considers noise within a Wasserstein neighborhood around a baseline,
allowing for correlations between process and measurement noise (achieved through
a martingale sequence constraint). 2) DRMC assumes the process noise is sampled
from the baseline and doesn’t lie in the Wasserstein ball, a more restrictive assumption
compared to ours. 3) DRMC’s problem formulation is in the finite-horizon, claiming
to have an efficient converging method to solve it. With a horizon of T = 10, they test
their approach on a simple 1D system (A = B = Cy = Cs = 1) , which we also use
for comparison. For r = 0.2

√
T and under the worst-case noise for our finite-horizon
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DRKF, the average MSE for DRMC is 0.86, closely matching our finite-horizon
DRKF at 0.86 and our infinite-horizon DRKF at 0.88 at T = 10. For the same r =

under the worst-case noise of DRMC, the average MSE for DRMC is 0.78, close to
our DRKF (0.81 for the finite-horizon and 0.83 for the infinite-horizon at T = 10).
This shows that using the infinite-horizon controller for short horizons does not
significantly compromise performance. Similar results are observed for other values
of r. While the performances in this simple example are comparable, our filter is
anticipated to excel for higher-diemsnional systems, due to its explicit consideration
of robustness over process noise. However, our DRKFs outshine DRMC in efficiency.
DRMC takes 32.9 seconds for T = 10, and becomes computationally infeasible
beyond that. Our finite-horizon DRKF is faster and efficient up to T = 50, and our
infinite-horizon DRKF remains unaffected by the time horizon. For details, see Table
10.2.

10.6 Conclusion
The main limitation in our work is that our H∞-rational approximation method is
limited to scalar target signals (i.e., Cs is a row vector). Future work will address
this limitation.

10.A Additional Discussion on the Problem Setup
Explicit Form of Finite-Horizon Model in (??)
The causal linear measurement model for the finite-horizon case in (??) can be stated
explicitly as follows:

y0

y1

y2
...
yT


︸ ︷︷ ︸

y

=



Cy 0 0 . . . 0

CyA CyB 0 . . . 0

CyA
2 CyAB CyB . . . 0

...
...

... . . . ...

CyA
T CyA

T−1B CyA
T−2B

. . . CyB


︸ ︷︷ ︸

HT



x0

w0

w1

...
wT−1


︸ ︷︷ ︸

w

+



v0

v0

v1
...
vT


︸ ︷︷ ︸

v

(10.19a)



s0

s1

s2
...
sT


︸ ︷︷ ︸

s

=



Cs 0 0 . . . 0

CsA CsB 0 . . . 0

CsA
2 CsAB CsB . . . 0

...
...

... . . . ...

CsA
T CsA

T−1B CsA
T−2B

. . . CsB


︸ ︷︷ ︸

LT



x0

w0

w1

...
wT−1


︸ ︷︷ ︸

w

(10.19b)
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A similar construction of HT and LT for time-varying systems can be performed
by replacing the causal block elements ofHT and LT with appropriate coefficients
derived from the time-varying dynamics.

10.B Proofs of Theorems Related to Finite-Horizon Filtering
Proof of Theorem 10.3.1
Before we proceed with the proof, we first state the following useful deifnitions and
results.

Definition 10.B.1 (Bures-Wasserstein distance [20]). For any two psd matrices
Σ1,Σ2 ∈ Sd+, the Bures-Wasserstein distance between them is defined as follows:

BW(Σ1,Σ2) ≜

√
Tr

[
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2]
. (10.20)

Definition 10.B.2 (Gelbrich distance [78]). For any two distributions P1,P2 ∈
P(Rd) with means µ1, µ2 ∈ Rd and covariances Σ1,Σ2 ∈ Sd+, respectively, the
Gelbrich distance between them is defined as follows:

G(P1,P2) ≜
√
∥µ1 − µ2∥2 + BW(Σ1,Σ2)

2. (10.21)

Lemma 10.B.3 (Gelbrich bound [78, Thm. 2.1]). Consider two distributions
P1,P2 ∈P(Rd)with meansµ1, µ2 ∈ Rd and covariancesΣ1,Σ2 ∈ Sd+, respectively.
The W2-distance between them satisfies

W2(P1,P2) ≥ G(P1,P2), (10.22)

where equality is attained if both P1 and P2 are Gaussian distributions.

Lemma 10.B.4 (Causal MMSE of Gaussian [120]). Suppose the disturbances are
distributed as Gaussian, i.e., ξT ∼ N (µT ,ΣT ) with mean µT ∈ ΞT and covariance
ΣT . Consider causal mean-square estimation of sT from yt, i.e.,

inf
πT∈ΠT

E
[
∥eT (ξT , πT )∥2

]
. (10.23)

Then, there exists a causal (block lower-diagonal) matrix K⋆
T and a vector b⋆

T , such
that the optimal causal estimator π⋆

T : yT 7→ ŝT is affine with the following form:

ŝT = K⋆
Tyt + b⋆

T . (10.24)
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Proof of Theorem 10.3.1: Clearly, we have the following weak duality,

sup
PT∈WT (P

◦
T ,ρT )

inf
πT∈ΠT

EPT

[
∥eT (ξT , πT )∥2

]
≤ inf

πT∈ΠT

sup
PT∈WT (P

◦
T ,ρT )

EPT

[
∥eT (ξT , πT )∥2

]
.

(10.25)
Let Σ◦

T ≻ 0 be the covariance of the nominal distribution P◦
T . We start by bounding

the lhs of (10.25) as follows:

sup
PT∈WT (P

◦
T ,ρT )

inf
πT∈ΠT

EPT

[
∥eT (ξT , πT )∥2

] (a)

≤ sup
G(PT ,P

◦
T )≤ρT

inf
πT∈ΠT

EPT

[
∥eT (ξT , πT )∥2

]
,

(10.26)
(b)

≤ sup
G(PT ,P

◦
T )≤ρT

inf
KT∈KT

EPT

[
∥eT (ξT ,KT )∥2

]
, (10.27)

= sup
G(PT ,P

◦
T )≤ρT

inf
KT∈KT

EPT

[
ξ∗TT ∗

KT
TKT

ξT
]
, (10.28)

(c)
= sup

G(PT ,P
◦
T )≤ρT

inf
KT∈KT

Tr
(
T ∗
KT
TKT

EPT
[ξTξ

∗
T ]
)
, (10.29)

(d)
= sup

BW(ΣT ,Σ
◦
T )≤ρT

inf
KT∈KT

Tr
(
T ∗
KT
TKT

ΣT

)
, (10.30)

where (a) follows from the Gelbrich bound (Lemma 10.B.3), (b) follows from
KT ⊂ ΠT , (c) follows from linearity of cyclic property of trace and the linearity of
trace and the expectation, (d) follows from the definition of the Gelbrich distance
(Definition 10.B.2). Note that, we can in general take the distributions involved to
be zero-mean since any non-zero mean can be incorporated as an additive constant
to the estimator, canceling the mean. Therefore, without loss of generality, we can
restrict ourselves to zero-mean disturbances and linear estimators (instead of affine).

Following a similar reasoning, we obtain the following upper bound on the rhs of
(10.25),

inf
πT∈ΠT

sup
PT∈WT (P

◦
T ,ρT )

EPT

[
∥eT (ξT , πT )∥2

]
≤ inf

KT∈KT

sup
BW(ΣT ,Σ

◦
T )≤ρT

Tr
(
T ∗
KT
TKT

ΣT

)
.

(10.31)

Notice that the objective in the right-hand side of (10.31) is affine in ΣT (hence
concave) and quadratic inKT (hence strictly convex wheneverΣT ≻ 0). Furthermore,
the constraint set KT is affine, and the constraint BW(ΣT ,Σ

◦
T ) is convex [20].

Therefore, we have the following minimax duality.

inf
KT∈KT

sup
BW(ΣT ,Σ

◦
T )≤ρT

Tr
(
T ∗
KT
TKT

ΣT

)
= sup

BW(ΣT ,Σ
◦
T )≤ρT

inf
KT∈KT

Tr
(
T ∗
KT
TKT

ΣT

)
.

(10.32)
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We denote the saddle point of (10.32) by (K⋆
T ,Σ

⋆
T ). Notice that, when the nominal

distribution is GaussianP◦
T := N (0,Σ◦

T ), the Gaussian distributionP⋆
T := N (0,Σ⋆

T )

and the causal estimator π⋆
T := K⋆

T achieve the upper bound (10.30) with equality.
Thus, from (10.25) and (10.31), we obtain the desired result. ■

Proof of ??
Before we proceed with the proof, we state the following result, which is the backbone
for both ?? and Theorem 10.3.4.

Theorem 10.B.5 (Strong Duality in the Finite Horizon). Let the horizon T >0 be
fixed and KT be a given estimator, which can be non-causal in general. Under the
Assumption 10.3.2, the finite-horizon worst-case MSE (??) suffered by KT , i.e.,

ET (KT , ρT ) = sup
PT∈WT (P

◦
T ,ρT )

EPT

[
ξ∗TT ∗

KT
TKT

ξT
]
, (10.33)

attains a finite value and is equivalent to the following dual problem:

ET (KT , ρT ) = inf
γ≥0

γρ2T+γ Tr
[
(IT − γ−1TKT

T ∗
KT

)−1 − IT
]

s.t. γIT ≻ TKT
T ∗
KT

.

(10.34)
Furthermore, the worst-case disturbance, ξ⋆T , can be identified from the nominal
disturbance, ξ◦T , as

ξ⋆T = (IT − γ−1⋆ T ∗
KT
TKT

)−1ξ◦T , (10.35)

where γ⋆ is the optimal solution of (10.34) and solves the following equation uniquely:

Tr
[
((IT − γ−1⋆ TKT

T ∗
KT

)−1 − IT )2
]
= ρ2T . (10.36)

Proof. The proof follows closely from [219, Thm. 2 & 3] (and also from [89, Thm.
IV.1]) by replacing the matrix C in Thm.2 of [219] with T ∗

KT
TKT

. In that case, we
get that

ET (KT , ρT ) = inf
γ≥0

γρ2T+γ Tr
[
(IT − γ−1T ∗

KT
TKT

)−1 − IT
]

s.t. γIT ≻ T ∗
KT
TKT

,

(10.37)
and the characterization of the optimal solution γ⋆ ≥ 0 as

Tr
[
((IT − γ−1⋆ T ∗

KT
TKT

)−1 − IT )2
]
= ρ2T . (10.38)

Notice that (10.37) and (10.38) involve the term T ∗
KT
TKT

whereas the desired
formulations in (10.34) and (10.36) involve the term TKT

T ∗
KT

. To obtain the desired
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formulations, we appeal to matrix inversion identity, i.e.,

(IT − γ−1T ∗
KT
TKT

)−1 = IT + T ∗
KT

(γIT − TKT
T ∗
KT

)−1TKT
, (10.39)

= IT + γ−1T ∗
KT

(IT − γ−1TKT
T ∗
KT

)−1TKT
, (10.40)

where the exact block dimensions of the identity operator IT differ depending on
where they appear and should be inferred from the context. We can evaluate the trace
in (10.37) involving T ∗

KT
TKT

as

Tr
[
(IT − γ−1T ∗

KT
TKT

)−1 − IT
]
= Tr

[
IT + γ−1T ∗

KT
(IT − γ−1TKT

T ∗
KT

)−1TKT
− IT

]
,

(10.41)

= Tr
[
γ−1T ∗

KT
(IT − γ−1TKT

T ∗
KT

)−1TKT

]
, (10.42)

= Tr
[
(IT − γ−1TKT

T ∗
KT

)−1γ−1TKT
T ∗
KT

]
, (10.43)

where (10.41) is by (10.40), and (10.43) is by the cyclic property of trace. Noting
that the condition γIT ≻ T ∗

KT
TKT

is equivalent to γIT ≻ TKT
T ∗
KT

, we expand
(IT − γ−1TKT

T ∗
KT

)−1 in (10.43) by the following Neumann series:

(IT − γ−1TKT
T ∗
KT

)−1 =
∞∑
k=0

(
γ−1TKT

T ∗
KT

)k
. (10.44)

Thus, the expression in (10.43) can be written equivalently as

Tr
[
(IT − γ−1TKT

T ∗
KT

)−1γ−1TKT
T ∗
KT

]
= Tr

[
∞∑
k=0

(
γ−1TKT

T ∗
KT

)k+1

]
, (10.45)

= Tr

[
∞∑
k=1

(
γ−1TKT

T ∗
KT

)k]
, (10.46)

= Tr
[
(IT − γ−1TKT

T ∗
KT

)−1 − IT
]
, (10.47)

giving the desired expression in (10.34). The desired expression in (10.36) can be
obtained easily following similar algebraic manipulations. ■

Proof of ??: Let KT be a given estimator, which can be non-causal. We have that

TKT
T ∗
KT

=
[
KTHT − LT KT

] [H∗
TK∗

T − L∗
T

K∗
T

]
, (10.48)

= (KTHT − LT )(KTHT − LT )
∗ +KTK∗

T , (10.49)

= KT (IT +HTH∗
T )K∗

T −KTHTL∗
T − LTH∗

TK∗
T + LTL∗

T , (10.50)
(a)
= (KT −K◦

T )(IT +HTH∗
T )(KT −K◦

T )
∗ + LTL∗

T −K◦
T (IT +HTH∗

T )(K◦
T )

∗,

(10.51)
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whereK◦
T := LTH∗

T (IT +HTH∗
T )

−1 and (a) is obtained from completion of squares.

Moreover, observe that

TK◦
T
T ∗
K◦

T
= LTL∗

T −K◦
T (IT +HTH∗

T )(K◦
T )

∗, (10.52)

= LTL∗
T − LTH∗

T (IT +HTH∗
T )

−1HTL∗
T , (10.53)

= LT (IT −H∗
T (IT +HTH∗

T )
−1HT )L∗

T , (10.54)
(b)
= LT (IT +H∗

THT )
−1L∗

T , (10.55)

where (b) follows from matrix inversion identity.

Thus, we have that

TKT
T ∗
KT

= (KT −K◦
T )(IT +HTH∗

T )(KT −K◦
T )

∗ + TK◦
T
T ∗
K◦

T
≽ TK◦

T
T ∗
K◦

T
(10.56)

Now, consider ?? without the causality constraint on the estimator. Using the strong
duality result in Theorem 10.B.5, we can express ?? equivalently as

inf
γ≥0

inf
KT

γρ2T + γ Tr
[
(IT − γ−1TKT

T ∗
KT

)−1 − IT
]

s.t. γIT ≻ TKT
T ∗
KT

. (10.57)

Fixing γ ≥ 0, we focus on the subproblem

inf
KT

γ Tr
[
(IT − γ−1TKT

T ∗
KT

)−1
]

s.t. γIT ≻ TKT
T ∗
KT

. (10.58)

Using the identity in (10.56), we can rewrite (10.58) in terms K◦
T as follows

inf
KT

γ2Tr
[
(γIT − (KT −K◦

T )(IT +HTH∗
T )(KT −K◦

T )
∗ − TK◦

T
T ∗
K◦

T
)−1
]

s.t. γIT ≻ TKT
T ∗
KT

.

Since the mapping X 7→ (IT −X )−1 is operator monotone, the minimum over KT is
attained by K◦

T and the optimal value is given by the following optimization:

inf
γ≥0

γρ2T + γ Tr
[
(IT − γ−1TK◦

T
T ∗
K◦

T
)−1 − IT

]
s.t. γIT ≻ TK◦

T
T ∗
K◦

T
. (10.59)

■

Proof of ??

Proof. Using the strong duality result in Theorem 10.B.5, we can express ??
equivalently as

inf
γ≥0

KT∈K

γ(ρ2T − Tr(IT )) + γ2Tr
[
(γIT − TKT

T ∗
KT

)−1
]

s.t. γIT ≻ TKT
T ∗
KT

.

(10.60)
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Notice that we can express the rhs as

γ2Tr
[
(γIT − TKT

T ∗
KT

)−1
]
= inf

XT≻0
Tr(XT ) s.t. XT ≽ γ2(γIT − TKT

T ∗
KT

)−1.

(10.61)
Using the Schur complement, we can rewrite the constraint XT ≽ γ2(γIT −
TKT
T ∗
KT

)−1 as [
XT γIT
γIT γIT − TKT

T ∗
KT

]
≽ 0, (10.62)

where we used the fact that γIT ≻ TKT
T ∗
KT

. Using the identity in (10.56), we can
rewrite the matrix inequality (10.62) as[
XT γIT
γIT γIT − TK◦

T
T ∗
K◦

T

]
−
[

0

(KT −K◦
T )

]
(IT +HTH∗

T )
[
0 (KT −K◦

T )
∗
]
≽ 0.

(10.63)
As (IT +HTH∗

T ) ≻ 0, by Schur complement theorem, we can reformulate the matrix
inequality above asXT γIT 0

γIT γIT−TK◦
T
T ∗
K◦

T
KT−K◦

T

0 (KT−K◦
T )

∗ (IT+HTH∗
T )

−1

 ≽ 0. (10.64)

■

10.C Proofs of Theorems Related to Infinite-Horizon Filtering
Proof of Lemma 10.3.3

Theorem 10.C.1 (Strong Duality in the Infinite-Horizon). Let K be a linear and
time-invariant estimator (which can be non-causal in general) with bounded H∞

norm. Under the Assumptions 10.2.1 and 10.3.2, the infinite-horizon worst-case
MSE (10.4) suffered by K, i.e.,

E(K, ρ) = lim sup
T→∞

1

T
sup

PT∈WT (P
◦
T ,ρT )

EPT

[
∥eT (ξT ,K)∥2

]
, (10.65)

attains a finite value and is equivalent to the following dual problem:

E(K, ρ) = inf
γ≥0

γρ2 + γ Tr
[
(I − γ−1TKT ∗

K)
−1 − I

]
s.t. γI ≻ TKT ∗

K . (10.66)

Furthermore, the worst-case disturbance, ξ⋆, can be identified from the nominal
disturbance, ξ◦, as

ξ⋆ = (I − γ−1⋆ T ∗
KTK)−1ξ◦, (10.67)
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where γ⋆ is the optimal solution of (10.66) and solves the following equation uniquely:

Tr
[
((I − γ−1⋆ TKT ∗

K)
−1 − I)2

]
= ρ2. (10.68)

Proof. The proof of this result closely tracks the proof of Thm. 5 in [125] By
replacing CK in the proof of Thm. 5 in [125] with TKT ∗

K . ■

Proof of Lemma 10.3.3 : The proof follows closely from the proof of ?? in
Section 10.B. Let K be linear time-invariant estimator, which can be non-causal,
with bounded H∞ norm. We have that

TKT ∗
K = (K −K◦)(I +HH∗)(K −K◦)

∗ + TK◦
T ∗
K◦

≽ TK◦
T ∗
K◦

(10.69)

where K◦ := LH∗(I +HH∗)−1 and TK◦
T
T ∗
K◦

T
= L(I +H∗H)−1L∗.

Now, consider Problem 10.2.2 without the causality constraint on the estimator.
Using the strong duality result in Theorem 10.C.1, we can express Equation (10.5)
equivalently as

inf
γ≥0

inf
K

γρ2 + γ Tr
[
(I − γ−1TKT ∗

K)
−1 − I

]
s.t. γI ≻ TKT ∗

K . (10.70)

Fixing γ ≥ 0, we focus on the subproblem

inf
K

γ Tr
[
(I − γ−1TKT ∗

K)
−1] s.t. γI ≻ TKT ∗

K . (10.71)

Using the identity in (10.69), we can rewrite (10.71) in terms K◦ as follows

inf
K

γ2Tr
[
(γI − (K −K◦)(I +HH∗)(K −K◦)

∗ − TK◦
T ∗
K◦
)−1
]

s.t. γI ≻ TKT ∗
K .

Since the mapping X 7→ (I − X )−1 is operator monotone, the minimum over K is
attained by K◦ and the optimal value is given by the following optimization:

inf
γ≥0

γρ2 + γ Tr
[
(I − γ−1TK◦

T ∗
K◦
)−1 − I

]
s.t. γI ≻ TK◦

T ∗
K◦
. (10.72)

■

Proofs of Theorem 10.3.4 and Corollary 10.3.5
Lemma 10.C.2 (Wiener-Hopf Method [120]). For a bounded and positive definite
Toeplitz operatorM≻ 0, letM 7→ Φ(M) be a mapping defined as

Φ(M) ≜ inf
K∈K

Tr (TKT ∗
KM) . (10.73)
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Denote byM = U∗U and ∆∆∗ = I +HH∗ the canonical spectral factorizations2

where U , ∆ as well as their inverses U−1, ∆−1 are causal operators. The following
statements hold:

i. The optimal causal solution to (10.12) is given by

K = U−1 {UK◦∆}+∆−1 = KH2
+ U−1 {U{K◦∆}−}+∆−1, (10.74)

where KH2
:= {K◦∆}+∆−1 is the Kalman filter.

ii. The function Φ can be written in closed form as

Φ(M) = Tr
[
{UK◦∆}− {UK◦∆}∗−

]
+ Tr

(
TK◦
T ∗
K◦
M
)
, (10.75)

where TK◦
T ∗
K◦

= L(I +H∗H)−1L∗.

iii. The gradient of Φ has the following closed form

∇Φ(M) = TKT ∗
K = U−1 {UK◦∆}− {UK◦∆}∗− U−∗ + TK◦

T ∗
K◦
. (10.76)

Proof. Using the identity (10.69) and the cyclic property of Tr, the objective can be
written as,

inf
K∈K

Tr [(K −K◦)∆∆∗(K −K◦)
∗M] = inf

K∈K
Tr [(K∆−K◦∆)(K∆−K◦∆)∗U∗U ]

(10.77)

= inf
K∈K

inf
K∈K

Tr [(UK∆− UK◦∆)(UK∆− UK◦∆)∗]

(10.78)

= inf
K∈K
∥UK∆− UK◦∆∥2H2

, (10.79)

where ∥ · ∥2 represents the H2 norm. Since ∆,K and U are causal, and UK◦∆

can be broken into causal and non-causal parts, it is evident that the (causal) filter
that minimises the objective is the one that makes the term UK∆− UK◦∆ strictly
anti-causal, cancelling off the causal part of ∆K◦L. This means that the optimal
filter satisfies,

UK∆ = {UK◦∆}+ . (10.80)

2The canonical spectral factorization is essentially the Toeplitz operator counterpart of Cholesky
decomposition of finite-dimensional matrices.
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Also, since U−1 and ∆−1 are causal, the optimal causal filter is given by

K = U−1 {UK◦∆}+∆−1. (10.81)

Furthermore, using the identity K◦∆ = {K◦∆}+ + {K◦∆}−, we get

K = U−1 {U{K◦∆}+}+∆−1 + U−1 {U{K◦∆}−}+ ∆−1, (10.82)

= U−1U{K◦∆}+∆−1 + U−1 {U{K◦∆}−}+∆−1, (10.83)

= {K◦∆}+∆−1 + U−1 {U{K◦∆}−}+ ∆−1. (10.84)

Plugging this solution to TKT ∗
K , we get

TKT ∗
K = U−1(UK∆− UK◦∆)(UK∆− UK◦∆)∗U−∗ + TK◦

T ∗
K◦
, (10.85)

= U−1({UK◦∆}+ − UK◦∆)({UK◦∆}+ − UK◦∆)∗U−∗ + TK◦
T ∗
K◦
, (10.86)

= U−1 {UK◦∆}− {UK◦∆}∗− U−∗ + TK◦
T ∗
K◦
. (10.87)

Then, the objective becomes

Tr(TKT ∗
KM) = Tr(U−1 {UK◦∆}− {UK◦∆}∗− U−∗M) + Tr(TK◦

T ∗
K◦
M), (10.88)

= Tr({UK◦∆}− {UK◦∆}∗−) + Tr(TK◦
T ∗
K◦
M). (10.89)

Finally, by Danskin theorem [43], the gradient of Φ is simply TKT ∗
K evaluated at the

optimal K as given in (10.87). ■

Lemma 10.C.3. Let γ > infK∈K ∥TK∥2∞ be fixed. Then, we have the following
duality

inf
K∈K ,

γI≻TKT ∗
K

γ Tr
[
(I−γ−1TKT ∗

K)
−1−I

]
= sup

M≻0
inf
K∈K

Tr(TKT ∗
KM)−γ Tr

(
M−2

√
M+I

)
.

(10.90)

Proof. The convex mapping X 7→TrX−1 for X ≻ 0 can be expressed via Fenchel
duality as

sup
M≻0
−Tr(XM) + 2Tr(

√
M) =

Tr(X−1), if X ≻ 0

+∞, o.w.
(10.91)

Using the identity (10.91), we rewrite the original problem as,

inf
K∈K

sup
M≻0

Tr(TKT ∗
KM)− γ Tr

(
M− 2

√
M+ I

)
. (10.92)

Notice that, the objective above is strictly convex in K and strictly concave inM.
Furthermore, the primal and dual problems are feasible since γ > infK∈K ∥TK∥2∞.
Thus, the proof follows from the minimax theorem. ■
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Proof of Theorem 10.3.4: Consider Problem 10.2.2. Using the strong duality result
in Theorem 10.C.1, we can express Equation (10.5) equivalently as

inf
γ≥0

inf
K∈K

γρ2 + γ Tr
[
(I − γ−1TKT ∗

K)
−1 − I

]
s.t. γI ≻ TKT ∗

K . (10.93)

Fixing γ ≥ 0, we focus on the subproblem

inf
K

γ Tr
[
(I − γ−1TKT ∗

K)
−1 − I

]
s.t. γI ≻ TKT ∗

K . (10.94)

Using Lemma 10.C.3, we can reformulate (10.94) as

sup
M≻0

inf
K∈K

Tr(TKT ∗
KM)−γ Tr

(
M−2

√
M+I

)
. (10.95)

Thus, the original formulation in (10.93) can be expressed as

inf
γ≥0

sup
M≻0

inf
K∈K

Tr(TKT ∗
KM) + γ

(
ρ2 − Tr(M− 2

√
M+ I)

)
. (10.96)

Note that the objective above is affine in γ ≥ 0 and strictly concave inM. Moreover,
primal and dual feasibility hold, enabling the exchange of infγ≥0 supM≻0 resulting in

sup
M≻0

inf
K∈K

inf
γ≥0

Tr(TKT ∗
KM) + γ

(
ρ2 − Tr(M− 2

√
M+ I)

)
, (10.97)

where the inner minimization over γ reduces the problem to its constrained version
in Equation (10.7).

Finally, the form of the optimal K⋆ follows from the Wiener-Hopf technique in
Lemma 10.C.2 and the optimal γ⋆ andM⋆ can be obtained using the strong duality
theorem in (10.C.1).

Proof of Corollary 10.3.5: This result follows immediately from the finiteness of
the time-averaged infinite-horizon MSE.

10.D Additional Discussion on Frequency-domain Optimization Method
Pseudocode for Frequency-domain Iterative Optimization Method Solving
Equation (10.7)

Frequency-Domain Characterization of the Optimal Solution of Equation (10.5)
We present the frequency-domain formulation of the saddle point (K⋆,M⋆) derived
in Theorem 10.3.4 to reveal the structure of the solution. We first introduce the
following useful results:
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Algorithm 8 Frequency-domain iterative optimization method solving Equa-
tion (10.7)

1: Input: Radius ρ> 0, state-space model (A,B,Cy, Cs), discretization N > 0,
tolerance ϵ>0

2: Compute (A,B,C) from (A,B,Cy, Cs) using (10.106)
3: Generate frequency samples TN := {ej2πn/N | n=0, . . . , N−1}
4: Initialize M0(z)← I for z ∈ TN , and k ← 0

5: repeat
6: Set the step size ηk ← 2

k+2

7: Compute the spectral factor Uk(z)← SpectralFactor(Mk) (see Sec-
tion 10.D)

8: Compute the parameter Γk ←
1

N

∑
z∈TN

Uk(z)C(I − zA)−1 (see Sec-
tion 10.D)

9: Compute the gradient for z ∈ TN (see Section 10.D)
Gk(z)← Uk(z)

−1Γk(I−zA)−1BB
∗
(I−zA)−∗Γ∗

kUk(z)
−∗+TK◦

(z)TK◦
(z)∗

10: Solve the linear subproblem (10.13a) via bisection (see Section 10.D)
M̃k(z)← Bisection(Gk, ρ, ϵ) for z ∈ TN .

11: Set Mk+1(z)← (1− ηk)Mk(z) + ηkM̃k(z) for z ∈ TN .
12: Increment k ← k + 1

13: until ∥Mk+1 −Mk∥/∥Mk∥ ≤ ϵ

14: Compute K(z)← RationalApproximate(Mk+1) (see Section 10.D)

Lemma 10.D.1 ([101, pg. 261]). Given H(z) := Cy(zI − A)−1B, consider the
canonical spectral factorization ∆(z)∆(z)∗I +H(z)H(z)∗ for z ∈ T. We have that

∆(z) = (I + Cy(zI − A)−1FP )R
1/2
e , (10.98)

∆(z)−1 = R−1/2
e (I − Cy(zI − AP )

−1FP ), (10.99)

where Re := I+CyPC∗
y , FP := (APC∗

y )R
−1
e , AP := A−FPCy, and P is the unique

positive semidefinite solution to the following discrete algebraic Riccati equation
(DARE)

P = APA∗ +BB∗ − FPReF
∗
P . (10.100)

Denoting by M⋆(z) and TK⋆
(z) the transfer functions corresponding to the optimal

M⋆ and TK⋆
, respectively, the optimality condition in (10.8) takes the equivalent
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form:

i. M⋆(z) =
(
I − γ−1⋆ TK⋆

(z)TK⋆
(z)∗

)−2
, (10.101a)

ii. TK⋆
(z)TK⋆

(z)∗=U⋆(z)
−1 {U⋆S}−(z) {U⋆S}−(z)∗U⋆(z)

−∗+TK◦
(z)TK◦

(z)∗,

(10.101b)

iii. Tr
[(
(I − γ−1⋆ TK⋆

(z)TK⋆
(z)∗)−1 − I

)2]
= ρ2, (10.101c)

where S := {K◦∆}− is a strictly anticausal operator andU⋆(z) is the transfer function
corresponding to the causal canonical factor U⋆
The transfer function corresponding to the operator S takes a rational form as

S(z) := C(z−1I − A)−1B, (10.102)

where (A,B,C) are determined by the original state-space parameters (A,B,Cy, Cs).
The following lemma explicitly states this result.

Lemma 10.D.2 ([101, pg. 261] and [193, Lem. 6]). We have that

K◦∆ = KH2
∆+ S, (10.103)

where KH2
is the nominal causal H2 (aka Kalman) filter and S := {K◦∆}− is

strictly anti-causal. Furthermore, the corresponding transfer functions take an
explicit form as highlighted below

KH2
(z) := CsPC⋆

yR
−1
e + Cs(I − PC∗

yR
−1
e Cy)(zI − AP )

−1FP , (10.104)

S(z) := CsPA∗
P (z

−1I − A∗
P )

−1C∗
yR

−1/2
e , (10.105)

where P , Re, FP , and AP are defined as in Lemma 10.D.1.

Thus, we have that

A ≜ A∗
P , B ≜ C⋆

yR
−1/2
e , C ≜ CsPA∗

P . (10.106)

Notice that for a causal U(z) and strictly anti-causal S(z), the strictly anti-causal part
{U(z)S(z)}− may not have any poles from U(z), and all of its poles must be from
the strictly anti-causal S(z). This observation is formally expressed in the following
lemma.
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Lemma 10.D.3. Let U be a causal and causally invertible operator, which can be
non-rational in general. Then, the strictly anti-causal operator {US}− admits a
rational transfer function, i.e.,

{US}−(z) = Γ(z−1I − A)−1B, (10.107)

where
Γ ≜

1

2π

∫ π

−π

U(eȷω)C(I − eȷωA)−1dω. (10.108)

Proof. Consider the z-transform expansions of U(z) and S(z):

U(z) =
∞∑
k=0

Ûkz
−k, and S(z) =

∞∑
l=0

C A
l
Bzl+1, (10.109)

where the time-domain coefficients Ûk can be derived from the Fourier series integrals
as

Ûk :=
1

2π

∫ π

−π

U(eȷω)ejωkdω. (10.110)

Multiplying U(z) and S(z) and taking the strictly anti-causal parts, i.e., terms with
positive powers of z, we get

{U(z)S(z)}− =

{(
∞∑
k=0

Ûkz
−k

)(
∞∑
l=0

C A
l
Bzl+1

)}
−

, (10.111)

=

(
∞∑
k=0

ÛkC A
k

)(
∞∑
l=0

A
l
Bzl+1

)
, (10.112)

= Γ(z−1I − A)−1B, (10.113)

where Γ =
∑∞

k=0 ÛkC A
k which can be expressed as an integral

Γ =
1

2π

∫ π

−π

U(eȷω)C(I − eȷωA)−1dω. (10.114)

using Parseval’s theorem. ■

Proofs of Lemma 10.4.1 and Corollary 10.4.2
Proof of Lemma 10.4.1: Using Lemma 10.D.3, the frequency-domain optimality
equations (10.101) can be reformulated explicitly as follows

i. M⋆(z) =
(
I − γ−1⋆ TK⋆

(z)TK⋆
(z)∗

)−2
, (10.115a)

ii. TK⋆
(z)TK⋆

(z)∗=U⋆(z)
−1Γ⋆(I−zA)−1BB

∗
(I−zA)−∗Γ∗

⋆U⋆(z)
−∗+TK◦

(z)TK◦
(z)∗,

(10.115b)

iii. Tr
[(
(I − γ−1⋆ TK⋆

(z)TK⋆
(z)∗)−1 − I

)2]
= ρ2, (10.115c)
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where
Γ⋆ ≜

1

2π

∫ π

−π

U⋆(e
ȷω)C(I − eȷωA)−1dω, (10.116)

and (A,B,C) are as in (10.106). This gives us the desired result. ■

Proof of Corollary 10.4.2: Define S⋆(z) := Γ⋆(I−zA)−1B for notational conve-
nience. We rewrite the optimality conditions in (10.115) as

i. (U⋆(z)
∗U⋆(z))

−1/2 = I − γ−1⋆ TK⋆
(z)TK⋆

(z)∗ (10.117)

ii. TK⋆
(z)TK⋆

(z)∗=U⋆(z)
−1S⋆(z)S⋆(z)

∗U⋆(z)
−∗+TK◦

(z)TK◦
(z)∗ (10.118)

By plugging ii. into i., we get

0 = I − (U⋆(z)
∗U⋆(z))

−1/2 − γ−1⋆
(
U⋆(z)

−1S⋆(z)S⋆(z)
∗U⋆(z)

−∗+TK◦
(z)TK◦

(z)∗
)
= 0,

(10.119)

Multiplying by U⋆(z) from the left and by U⋆(z)
∗ from the right, we get

0 = U⋆(z)U⋆(z)
∗−(U⋆(z)U⋆(z)

∗)1/2−γ−1⋆
(
S⋆(z)S⋆(z)

∗+U⋆(z)TK◦
(z)TK◦

(z)∗
)
U⋆(z)

∗,

which can be written further as

U⋆(z)U⋆(z)
∗ =

1

4

(
I +

√
I + 4γ−1

(
S⋆(z)S⋆(z)

∗+U⋆(z)TK◦
(z)TK◦

(z)∗
)
U⋆(z)

∗
)2

.

(10.120)

Notice that while S⋆(z)S⋆(z)
∗ is rational, the expression above involves its positive

definite square root, which does not generally preserve rationality, implying the
desired result. ■

Additional Discussion on the Computation of Gradients
By the Wiener-Hopf technique discussed in Lemma 10.C.2, the gradient Gk =

∇Φ(Mk) can be obtained as

Gk(z) = Uk(z)
−1 {UkK◦∆}− (z) {UkK◦∆}− (z)∗U−∗

k + TK◦
T ∗
K◦

, (10.121)

whereU∗
kUk =Mk is the unique spectral factorization. Furthermore, by Lemma 10.D.3,

we can reformulate the gradient Gk(z) more explicitly as

Gk(z) = Uk(z)
−1Γk(I−zA)−1BB

∗
(I−zA)−∗Γ∗

kU
−∗
k + TK◦

T ∗
K◦

, (10.122)

where
Γk ≜

1

2π

∫ π

−π

Uk(e
ȷω)C(I − eȷωA)−1dω. (10.123)
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Here, the spectral factor Uk(z) is obtained for z ∈ TN by Section 10.D. Similarly,
the parameter Γk can be computed numerically using the trapezoid rule over the
discrete domain TN , i.e.,

Γk ←
1

N

∑
z∈TN

Uk(z)C(I − zA)−1. (10.124)

Noting that TK◦
T ∗
K◦

is rational and depends only on the system, the gradient Gk(z)

can be efficiently computed for z ∈ TN .

Implementation of Spectral Factorization
To perform the spectral factorization of an irrational function M(z), we use a spectral
factorization method via discrete Fourier transform, which returns samples of the
spectral factor on the unit circle. First, we compute Λ(z) for z ∈ TN , which is defined
to be the logarithm of M(z), then we take the inverse discrete Fourier transform λk

for k = 0, . . . , N − 1 of Λ(z) which we use to compute the spectral factorization as

U(zn)← exp

1

2
λ0 +

N/2−1∑
k=1

λkz
−k
n +

1

2
(−1)nλN/2


for k = 0, . . . , N − 1 where zn = ej2πn/N .

The method is efficient without requiring rational spectra, and the associated error
term, featuring a purely imaginary logarithm, rapidly diminishes with an increased
number of samples. It is worth noting that this method is explicitly designed for
scalar functions.

Algorithm 9 SpectralFactor: Spectral Factorization via DFT

1: Input: Scalar positive spectrum M(z) > 0 on TN := {ej2πn/N | n=0, . . . , N−
1}

2: Output: Causal spectral factor U(z) of M(z) > 0 on TN

3: Compute the cepstrum Λ(z)← log(M(z)) on z ∈ TN .
4: Compute the inverse DFT

λk ← IDFT(Λ(z)) for k = 0, . . . , N−1
5: Compute the spectral factor for zn = ej2πn/N

U(zn)← exp

1

2
λ0 +

N/2−1∑
k=1

λkz
−k
n +

1

2
(−1)nλN/2

, n = 0, . . . , N−1
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Implementation of Bisection Method
To find the optimal parameter γk that solves Tr

[
((I−γ−1k Gk)−1−I)2

]
= ρ2 in the

Frank-Wolfe update (10.14), we use a bisection algorithm. The pseudo code for the
bisection algorithm can be found in Algorithm 10. We start off with two guesses of γ
i.e.(γleft, γright) with the assumption that the optimal γ lies between the two values
(without loss of generality).

Algorithm 10 Bisection Algorithm

1: Input: γright, γleft
2: Compute the gradient at γright: grad_γright
3: while | γright − γleft |> ϵ do
4: Calculate the midpoint γmid between γleft and γright
5: Compute the gradient at γmid

6: if the gradient at γmid is zero then
7: return γmid {Root found}
8: else if the gradient at γmid is positive then
9: Update γright to γmid

10: else
11: Update γleft to γmid

12: end if
13: end while
14: return the average of γleft and γright {Approximate root}

Proof of Theorem 10.4.4
Our proof of convergence follows closely from the proof technique used in [116]. In
particular, since the unit circle is discretized and the computation of the gradients
Gk(z) are approximate, the linear suboptimal problem is solved up to an approxima-
tion, δN , which depends on the problem parameters, and the discretization level N .
Namely,

Tr(∇Φ(Mk)M̃k+1) ≥ sup
M∈Ωρ

Tr(∇Φ(Mk)M)− δN (10.125)

where

Ωρ := {M ≻ 0 | Tr(M− 2
√
M+ I) ≤ ρ2}, (10.126)

Therefore, using Theorem 1 of [116], we obtain

Φ(M⋆)− Φ(Mk) ≤
2κ

k + 2
(1 + δN). (10.127)
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where

κ := sup
M,M̃∈Ωρ

η∈[0,1]
M′

=M+η(M̃−M)

2

η2
(
Tr(M′∇Φ(M))− Φ(M′)

)
. (10.128)

Implementation of Rational Approximation
We present the pseudocode of RationalApproximation.

Algorithm 11 RationalApproximation

1: Input: Scalar positive spectrum M(z) > 0 on TN := {ej2πn/N | n=0, . . . , N−
1}, and a small positive scalar ϵ

2: Output: Causal rational filter K(z) on TN

3: Get P (z), Q(z) by solving the convex optimization in (10.16), for fixed ϵ, given
M(z)

4: Get the rational spectral factors of P (z), Q(z), which are SP (z), SQ(z) using
the canonical Factorization method in [199]

5: Get U r(z),the rational spectral factor ofM(z), as SP (z)/SQ(z)
6: Get K(z) from the formulation in (10.18), (10.146)

Proof of Theorem 10.4.6
We write the DR estimator, K(ejω), as a sum of causal functions:

K(ejω) = U−1{UK0∆}+∆−1 (10.129)

= U−1(U{K0∆}+ + {U{K0∆}−}+)∆−1 (10.130)

= {K0∆}+∆−1 + U−1{U{K0∆}−}+∆−1 (10.131)

where we drop the dependence of ∆, K0 and U on ejω.

Given the spectral factor U(ejω) in rational form as U(eȷω) = D̃1/2(I + C̃(eȷωI −
Ã)−1B̃), its inverse is given by:

U−1(ejω) = (I − C̃(ejωI − (Ã− B̃C̃))−1B̃)D̃−1/2 (10.132)

From the above, we have:

{K0∆}− = T (z) = CsPA∗
P (z

−1I − A∗
P )

−1C∗
y (I + CyPC∗

y )
−∗/2 (10.133)

Multiplying the above equation with U , and taking its causal part, we get:

{U{∆K0}−}+ ={D̃1/2CsPA∗
P (z

−1I − A∗
P )

−1C∗
y (I + CyPC∗

y )
−∗/2+

D̃1/2C̃(eȷωI − Ã)−1B̃CsPA∗
P (z

−1I − A∗
P )

−1C∗
y (I + CyPC∗

y )
−∗/2}+

(10.134)
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Given that the term D̃1/2CsPA∗
P (z

−1I − A∗
P )

−1C∗
y (I + CyPC∗

y )
−∗/2 is strictly

anticausal, and considering the matrix Uly which solves the lyapunov equation:
ÃUlyA

∗
P + B̃CsPA∗

P = Uly, we get {U{K0∆}−}+ as:

{U{∆K0}−}+
= {D̃1/2C̃

(
(zI − Ã)−1ÃUly + UlyA

∗
P (z

−1I − A∗
P )

−1 + Uly

)
C∗

y (I + CyPC∗
y )

−∗/2}+
(10.135)

= D̃1/2C̃
(
(zI − Ã)−1Ã+ I

)
UlyC

∗
y (I + CyPC∗

y )
−∗/2 (10.136)

= zD̃1/2C̃(zI − Ã)−1UlyC
∗
y (I + CyPC∗

y )
−∗/2 (10.137)

Now, multiplying equation (10.137) by the inverse of U (10.132), we get:

U−1{U{K0∆}−}+ = z(I + C̃(eȷωI − Ã)−1B̃)−1C̃(zI − Ã)−1UlyC
∗
y (I + CyPC∗

y )
−∗/2

(10.138)

= zC̃(I + (zI − Ã)−1B̃C̃)−1(zI − Ã)−1UlyC
∗
y (I + CyPC∗

y )
−∗/2

(10.139)

= zC̃(zI − ÃP )
−1UlyC

∗
y (I + CyPC∗

y )
−∗/2 (10.140)

= C̃(I + ÃP (zI − ÃP )
−1)UlyC

∗
y (I + CyPC∗

y )
−∗/2 (10.141)

(10.142)

where ÃP = Ã− B̃C̃.

The inverse of ∆ is given by ∆−1(z) = (I +CyPC∗
y )

−1/2(I −Cy(zI −AP )
−1KP ),

and we already showed that {K0∆}+ = Cs(zI − A)−1APC∗
y (I + CyPC∗

y )
−∗/2 +

CsPC∗
y (I + CyPC∗

y )
−∗/2.

Then we can get the 2 terms of equation (10.131):

{K0∆}+∆−1 = CsPC∗
y (I+CyPC∗

y )
−1+Cs

(
I − PC∗

y (I + CyPC∗
y )

−1Cy

)
(zI−AP )

−1KP

(10.143)
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and

U−1{U{K0∆}−}+∆−1

=
(
C̃UlyC

∗
y (I + CyPC∗

y )
−∗/2 + C̃ÃP (zI − ÃP )

−1UlyC
∗
y (I + CyPC∗

y )
−∗/2

)
×
(
(I + CyPC∗

y )
−1/2 − (I + CyPC∗

y )
−1/2Cy(zI − AP )

−1KP

)
(10.144)

= C̃ÃP (zI − ÃP )
−1UlyC

∗
y (I + CyPC∗

y )
−1
(
I − Cy(zI − AP )

−1KP )
)

− C̃UlyC
∗
y (I + CyPC∗

y )
−1Cy(zI − AP )

−1KP

+ C̃UlyC
∗
y (I + CyPC∗

y )
−1 (10.145)

Finally, summing equations (10.143) and (10.144), we get the controller K(ejω) in
its rational form:

K(ejω) =
[
C̃ÃP −Cs + CsPC∗

y (I + CyPC∗
y )

−1Cy + C̃UlyC
∗
y (I + CyPC∗

y )
−1Cy

]
(10.146)

×
(
zI −

[
ÃP UlyC

∗
y (I + CyPC∗

y )
−1Cy

0 AP

])−1 [
UlyC

∗
y (I + CyPC∗

y )
−1

−KP

]
(10.147)

+ C̃UlyC
∗
y (I + CyPC∗

y )
−1 + CsPC∗

y (I + CyPC∗
y )

−1 (10.148)

which can be explicitly rewritten as in equation (10.18), where F̃ ,G̃,H̃ and L̃ are
defined accordingly.

10.E Simulation Results
Another tracking problem
We study another tracking problem, standard in the filtering community, whose
state-space model is

F =


1 0 0 0

∆t 1 0 0

0 0 1 0

0 0 ∆t 1

, G =


∆t 0

0.5(∆t)2 0

0 ∆t

0 0.5(∆t)2

,H =

[
0 1 0 0

0 0 0 1

]
, L =

[
0 0 0 1

]
,

with ∆t = 1. The results are shown in the plots below.
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Figure 10.4: The frequency response of different filters (H2,H∞ and DRKF) for the
tracking problem in section 10.E. The worst-case expected MSE is 3.99 for H∞ ,
3.77 for H2 and 3.47 (lowest) for DRKF.
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Figure 10.5: The average MSE of the different filters horizon under different
disturbances for the tracking problem in section 10.E. (a) is white noise, while (b) is
the worst-case noise for the finite horizon DR KF (SDP). While the KF performs best
under gaussian noise, the DRKF achieves the lowest error in most of other scenarios
(including the more realistic case of correlated noise), and the finite and infinite
horizon achieve similar avergae MSE at the end of the horizon.
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C h a p t e r 11

MIXED H2/H∞ CONTROL

11.1 Introduction
Performance and robustness are the two most desired characteristics of a controller.
Tackling uncertainty plays a pivotal role in the realm of control, especially within
control systems that are frequently exposed to a range of uncertainties including
external disruptions, inaccuracies in measurements, deviations in models, and time-
varying system dynamics. Ignoring such uncertainties during the development of
control policies can significantly undermine performance. The traditional H2 [121]
and H∞ [51] control are the two main approaches to address the dichotomy of
robustness and performance. While H2 control aims to achieve optimal average case
performance for stochastic white disturbances, H∞ control guarantees robustness
to worst-case deterministic disturbances with bounded energy. They both result in
rational controllers which can be efficiently synthesized by solving a set of algebraic
Riccati equations.

When it comes to designing a controller that is both robust to worst-case disturbances
and optimal in the average case performance, a natural idea is to find the best
H2-optimal controller among a family of suboptimal H∞ controllers. Also known
as the mixed H2/H∞ control, these controllers provide a trade-off between the
performance of H2 and the robustness of the H∞ controllers. Although both H2 and
central H∞ controllers are rational and admit finite-order state-space realizations
[51], Megretski [165] showed that the mixed H2/H∞ controller has infinite order
whenever the H∞-norm constraint is not redundant.

Prior Works
The mixed H2/H∞ control problem and its several variations have been extensively
studied in the past. [167] is one of the earliest works establishing a connection
between the maximum entropy H∞ solution and the H2 performance. [18] proposed
the first conceptualization and formulation of mixed H2 control with H∞ constraints,
and obtained a fixed order dynamic output feedback controller for an auxiliary
objective upper bounding the H2-norm. [130], [259] approached this problem
similarly by considering auxiliary systems or objectives to bound the desired mixed
H2/H∞ objective.
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Unlike the pure H2 and pure H∞ controllers, it was proved by [165] that the optimal
mixed H2/H∞ controller is non-rational whenever the H∞ constraint is active.
Since non-rational functions do not admit finite-dimensional state-space realizations,
future works focused either on finite-dimensional approximations or more tractable
auxiliary objectives.

Among these, [94] addressed this problem by converting it into a series of convex sub-
problems. [238] proposed a homotopy algorithm for fixed-order controller synthesis
whereas [201] considered a gradient-based method. [104] proposed an approximate
finite-dimensional parametrization by choosing a finite basis for the Youla parameter
to compute the suboptimal solutions. The performance characteristics of the mixed
H2/H∞ objective have also been studied in [100] where the authors provide a
relation between the H2-norms of the pure H2-optimal controller and the optimal
mixed H2/H∞ controller.

Contributions
In this work, we study the infinite-horizon mixed H2-optimal control with H∞-norm
constraints of finite-order, discrete-time, linear time-invariant (LTI) systems. While
several past works [52], [100] assumed separation of the disturbances into stochastic
and deterministic components, we make no such separation assumption. In particular,
we consider the full-information setting where the controller can access current and
past disturbances. Our major contributions are as follows:

i. The Exact Stabilizing Optimal Controller: Moving away from earlier ap-
proaches that utilized approximation strategies and auxiliary problems to
obtain a finite-dimensional optimization problem, we find the exact stabilizing
optimal controller in the frequency-domain for the infinite-horizon mixed
H2/H∞ problem.

ii. A Finite-Dimensional Characterization: While we confirm that the optimal
controller is irrational as shown in [165], we show that a finite-dimensional
parameter completely characterizes it.

iii. An Efficient Numerical Method: Exploiting the finite-dimensional character-
ization, we propose an iterative fixed point method to compute the optimal
mixed H2/H∞ controller in the frequency domain to arbitrary fidelity.

iv. Fixed-order Rational Approximations: Given a finite order, we find the best
rational approximation (in H∞ norm) to the optimal mixed H2/H∞ controller
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and obtain a state space structure for the approximate controller. We provide
numerical simulations to analyze the performance of the mixed H2/H∞

controller and its rational approximations for different orders.

11.2 Preliminaries
Notations: Calligraphic symbols (K, M, L, etc.) represent operators, with I
symbolizing the identity operator. Letters in boldface (x, u, w, etc.) refer to
infinite sequences. The notation M∗ indicates the adjoint of the operator M,
while ≽ signifies the Loewner order. tr denotes the normalized trace over block
Laurent operators, and Tr denotes the usual trace over finite dimensional matrices.
For p ∈ [1,∞], we denote by L n×m

p the Banach space of n × m-block Laurent
operators whose transfer matrix has finite Lp norm on the unit circle. Similarly,
H n×m

p is the Banach space of causal n×m-block Laurent operators whose transfer
matrix has finite Lp norm on the unit circle. Norms ∥·∥∞ and ∥·∥2 represent the
H∞/L∞ and H2/L∞ norms, respectively. ∥·∥ is reserved for Euclidean norm for
vectors and ℓ2 norm of sequences. The expressions {M}+ and {M}− delineate the
causal and strictly anti-causal portions of an operatorM. The absolute value of an
operator is defined as |M| :=

√
M∗M. T m

+ denotes the set of positive symmetric
trigonometric polynomials of degree m. Sm+ denotes the set of symmetric positive
semidefinite matrices of size m×m. σ(M) denotes the maximum singular value of
a matrix M .

Linear-Quadratic Control
We consider a discrete-time linear time-invariant (LTI) dynamical system described
by its state-space representation as:

xt+1 = Axt +Buut +Bwwt, (11.1)

Here, the vectors xt ∈ Rdx , ut ∈ Rdu , and wt ∈ Rdw denote the state, control input,
and exogenous disturbance at time t ∈ Z, respectively. At a given time instance
t ∈ Z, the controller suffers a per stage cost ct := x⊺

tQxt + u⊺
tRut, where Q,R ≻ 0.

We assume that (A,Bu) and (A,Bw) are stabilizable. For notational convenience,
we take Q = Idx and R = Idu without loss of generality by change of variables
xt 7→ Q

−1/2
t xt and ut 7→ R

−1/2
t ut so that ct = ∥xt∥2 + ∥ut∥2.

Input-Output Formalism Throughout this paper, we employ an operator-theoretic
framework to represent the state-space dynamics in Equation (11.1) as input-output
maps. We use x := {xt}t∈Z, u := {ut}t∈Z, and w := {wt}t∈Z to represent the state,
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control input, and disturbance sequences, respectively. The dynamical relations
among these variables dictated by the state-space structure in (11.1) can be captured
equivalently and succinctly using input/output transfer operators as:

x = Fu+ Gw, (11.2)

whereF and G symbolize strictly causal dx×du and dx×dw-block Laurent operators
mapping control inputs u and the disturbances w to the states x. The corresponding
transfer matrices are given by

F (z)=C(zI−A)−1Bu, G(z)=C(zI−A)−1Bw. (11.3)

Controller We consider the full-information setting where the control input ut at
any time t ∈ Z has causal access to past disturbances, {wτ}τ≤t. In particular, we
restrict our attention to causal LTI controllers such that ut =

∑
s≤t K̂t−sws where

{K̂t}t≥0 is the Markov parameters of the controller. We succinctly capture this
relationship via a linear mapping

K : w 7→ u := Kw

whereK is a causal du×dw-block Laurent operator. Furthermore, we seek controllers
that map ℓ2 disturbances to ℓ2 control inputs, which makes them bounded. Therefore,
K must be a member of H du×dw

∞ .

When the underlying system in (11.2) is in a feedback loop with a fixed controller
K, the states and the control inputs are determined completely by the disturbances
through the closed-loop transfer operator given by:

TK : w 7→
[
x

u

]
:=

[
FK + G
K

]
w. (11.4)

We use K(z) and TK(z) to represent the z-domain transfer matrices corresponding
to the operators K and TK, respectively.

In the remainder of this paper, our focus will primarily be on the quadratic expression
T ∗
KTK ≽ 0, which can be expressed in terms of K after a completion-of-squares as

T ∗
KTK = (K−Knc)

∗(I+F∗F)(K−Knc) + T ∗
Knc
TKnc

. (11.5)

Here, Knc := −(I+F∗F)−1F∗G denotes the unique non-causal controller such that
T ∗
Knc
TKnc

≼ T ∗
KTK for all K, [101].
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Mixed H2/H∞ Control
This paper explores the problem of mixed H2/H∞ control, aiming to design a causal
controller minimizing the H2 norm of the closed-loop transfer operator, TK, while
ensuring that its H∞ norm is bounded above by a fixed constant γ > 0. This can be
stated formally as a constrained optimization problem as follows:

Problem 11.2.1 (Mixed H2/H∞ Control). Given an achievable H∞ norm bound
γ > 0, find a causal and bounded controllerK ∈H du×dw

∞ that achieves the minimum
closed-loop H2 norm among all γ-suboptimal H∞ controllers, i.e.,

inf
K∈H

du×dw∞

∥TK∥22 s.t. ∥TK∥∞ ≤ γ. (11.6)

We will drop the superscript over L and H spaces whenever the block dimensions
are clear. Here, the H2 norm of TK is defined as

∥TK∥2 :=
√

tr(T ∗
KTK) =

√∫ 2π

0

dω

2π
Tr(TK(e

ȷω)∗TK(e
ȷω)) (11.7)

The H2 criterion can be derived from the infinite-horizon average expected cost
when the disturbances constitute a white random process with E[wsw

⊺
t ] = Idwδs−t,

namely,
lim sup
T→∞

1

2T+1
E
[∑T

t=−T
∥xt∥2 + ∥ut∥2

]
= ∥TK∥22. (11.8)

We denote by KH2
:= argmin{∥TK∥2 | K ∈H du×dw

∞ } the optimal H2 controller.

Similarly, the H∞ norm of TK corresponds to its operator norm as a mapping from
ℓ2(Z) to ℓ2(Z), i.e.,

∥TK∥∞ := sup
w∈ℓ2/{0}

∥TKw∥
∥w∥ = max

ω∈[0,2π)
σ(TK(e

ȷω)) (11.9)

Since TK consists of 2 × 1 block of causal Laurent operators, the corresponding
transfer matrix TK(z) is analytic outside the unit circle whenever it is bounded on the
unit circle. The H∞ criterion can be derived from the worst-case infinite-horizon
cost incurred by K among all bounded energy (or bounded power) disturbances,
namely,

sup
∥w∥≤1

∞∑
t=−∞

∥xt∥2+∥ut∥2 = sup
∥w∥≤1

∥x∥2+∥u∥2 = ∥TK∥2∞.

We denote byKH∞
:= argmin{∥TK∥∞ | K ∈H du×dw

∞ } the optimal H∞ controller.
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If it exists, the optimal mixed H2/H∞ controller achieves the minimum expected
cost for stochastic disturbances while guaranteeing a certain degree of robustness
against adversarial bounded energy (or bounded power) disturbances.

Let γ2 := ∥TKH2
∥∞ and γ∞ := ∥TKH∞

∥∞ be the H∞ norms of closed-loop transfer
operators under the optimal H2 and H∞ controllers, respectively. Note that for
γ ≥ γ2, the H∞-norm constraint in Problem 11.2.1 is redundant, and the optimal
solution coincides with KH2

. Moreover, for γ < γ∞, Problem 11.2.1 is not feasible
since no causal controller can achieve H∞ norm less than that of the H∞ controller,
KH∞

. For γ = γ∞, the solution coincides with KH∞
. Thus, we are interested in

non-trivial solutions for γ ∈ (γ∞, γ2), which interpolate between the optimal H2

and H∞ controllers.

11.3 Main Results
In this section, we present the main theoretical results of our paper. In Theorem
11.3.1, we formulate the Lagrange dual of Problem 11.2.1 and establish strong duality.
In Theorem 11.3.4, we state the optimal controller and argue that it is irrational.

First, we form the Lagrange dual of Problem 11.2.1 in the following theorem.

Theorem 11.3.1 (Strong Duality). Let γ ∈ (γ∞, γ2) be an admissible H∞ norm
bound. The infinite-horizon mixed H2/H∞ control problem (Problem 11.2.1) is
equivalent to the following max-min problem:

max
Λ∈L1,
Λ≽0

min
K∈H∞

tr(T ∗
KTK(I +Λ))− γ2 tr(Λ), (11.10)

where the dual variableΛ ∈ L dw×dw
1 is a positive definite, self-adjoint, dw×dw-block

Laurent operator.

Proof. The proof of this theorem relies on the Lagrange duality theory for infinite-
dimensional optimization on Banach spaces. Consider Problem 11.2.1. The H∞

norm constraint ∥TK∥∞ ≤ γ is equivalent to theL∞ norm constraint ∥T ∗
KTK∥∞ ≤ γ2,

which in turn is equivalent to the following operator inequality constraint:

T ∗
KTK − γ2I ≼ 0. (11.11)

Since T ∗
KTK ∈ L dw×dw

∞ is self-adjoint, this operator inequality constraint is, by
definition, equivalent to

tr(Λ(T ∗
KTK − γ2I)) ≤ 0, ∀Λ ≽ 0, (11.12)
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where Λ ∈ L dw×dw
1 is a positive-definite, self-adjoint, block Laurent operator with

bounded absolute trace, i.e., tr(|Λ|) < +∞. This constraint can be reincorporated
into the primal problem in (11.6) via Lagrangian, which yields an equivalent min-max
problem:

inf
K∈K

sup
Λ≽0

tr(T ∗
KTK) + tr(Λ(T ∗

KTK − γ2I)). (11.13)

Notice that the Lagrangian objective function is strictly convex (indeed quadratic)
in K, and affine in the dual variable Λ ≽ 0. Furthermore, Slater’s conditions are
satisfied since KH∞

∈H∞ and ∥TKH∞
∥∞=:γ∞<γ. Thus, by [254, Thm. 2.9.2],

strong duality holds, and the supremum is attained. Moreover, the inner infimum is
attained for a fixed Λ ≽ 0 due to strict convexity wrt K. Rearranging terms, we get
(11.10). ■

As opposed to the H∞-norm constrained primal problem in (11.6), the max-min
problem in (11.10) is more manageable as it is not norm constrained and strictly
convex in K. This comes at the expense of an additional maximization step.

Notice that the inner minimization over causal K in (11.10) is nothing but (I +Λ)-
weighted squared H2-norm objective. Therefore, the inner minimization can be
considered a stochastic optimal control problem under weakly stationary disturbances
with autocovariance operator I + Λ. This can be carried out tractably using the
Wiener-Hopf method [251] and canonical spectral factorization of I +Λ as stated in
Lemma 11.3.2.

Lemma 11.3.2 (Wiener-Hopf Method). Let Λ ∈ L1 be a positive-definite and
self-adjoint block Laurent operator. Consider the problem of finding an optimal
causal controller, K, minimizing (I +Λ)-weighted H2 norm, i.e.,

min
K∈H∞

tr(T ∗
KTK(I +Λ)) (11.14)

The unique solution to this problem is given by,

KΛ = KH2
+∆−1 {{∆Knc}−L}+ L−1, (11.15)

where ∆ and L are the unique causal and causally invertible canonical spectral
factors such that ∆∗∆ = I + F∗F and LL∗ = I +Λ.

Proof. Inserting the equation (11.5) in place of T ∗
KTK and replacing I + F∗F and

I +Λ by their corresponding canonical spectral factors, we rewrite (11.15) as

min
K∈H∞

∥∆KL−∆KncL∥22 + tr(T ∗
Knc
TKnc

(I +Λ)). (11.16)
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Notice that the term tr(T ∗
Knc
TKnc

(I +Λ)) does not depend on K and, therefore, can
be omitted. Inside the H2 norm, ∆KL is causal for any K whereas ∆KncL is
mixed (non-causal). Therefore, ∆KL can only minimize the objective by matching
itself to the causal part of ∆KncL, [101], [251]. The optimal solution satisfies
∆KΛL = {∆KncL}+ which yieldsKΛ = ∆−1 {∆KncL}+ L−1. By splitting∆Knc =

{∆Knc}+ + {∆Knc}− and noting that ∆−1{∆Knc}+ is the H2-controller [101], we
get the desired result. ■

Remark 11.3.3. Notice that Λ = 0 yields the H2-optimal solution since LL∗ = I
while any other choice of Λ ≽ 0 yields a controller which is a combination of the
H2-controller, KH2

, and a compensation term ∆−1 {{∆Knc}−L}+ L−1. This term
accounts for the correlations in the disturbance as dictated by the strictly positive
autocovariance operator I +Λ.

Given any Λ ≽ 0, the inner minimization solution of the Lagrange dual max-min
problem in (11.10) can be derived in closed form using (11.15). This allows us to
simplify the primal problem over causal operators K in (11.6), into a dual problem
over positive operators Λ ≽ 0. In Theorem 11.3.4, we state the optimality conditions
for the dual variable Λ ≽ 0.

Theorem 11.3.4 (Saddle Point). Let γ∈ (γ2, γ∞) be a fixed admissible H∞ norm
bound and (Kγ,Λγ) be a saddle point of the max-min problem in (11.10). Moreover,
let Lγ and ∆ be the unique causal and causally invertible spectral factors of
I+Λγ = LγL∗

γ and I+F∗F =∆∗∆, respectively. Then, (Kγ,Λγ) satisfies the
following necessary and sufficient conditions1:

Kγ = K2 +∆−1
{
{∆Knc}−Lγ

}
+
L−1

γ , and (11.17)

L∗
γLγ = max

{
γ−2

(
S∗S + L∗

γT ∗
Knc
TKnc
Lγ

)
, I
}
, (11.18)

where Sγ := {∆KncLγ}−.

Corollary 11.3.5. When the disturbances are scalar (dw=1), we have,

L∗
γLγ = max

{
{∆KncLγ}∗−{∆KncLγ}−

γ2 − T ∗
Knc
TKnc

, I
}
. (11.19)

Proof. Existence of a saddle point (Kγ,Λγ) is ensured by Theorem 11.3.1. We
can characterize the saddle point by a Banach space analog of Karush-Kuhn-Tucker
(KKT) conditions [254, Thm. 2.9.2]:

1max{X ,Y} ≜ 1
2 (X + Y + |X − Y|)
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i. Stationarity: Kγ ∈ argmin{tr(T ∗
KTK(I +Λγ)) | K ∈H∞},

ii. Primal feasibility: T ∗
Kγ
TKγ
− γ2I ≼ 0,

iii. Dual feasibility: Λγ ≽ 0,

iv. Complementary slackness: tr(Λγ(T ∗
Kγ
TKγ
− γ2I)) = 0.

By the Wiener-Hopf method in Lemma 11.3.2, the stationarity condition (i) immedi-
ately implies Eq. (11.17).

To characterize the dual variable Λγ , we note that the complementary slackness
condition (iv) can be equivalently expressed as

Λγ

(
T ∗
Kγ
TKγ
− γ2I

)
= 0. (11.20)

since T ∗
Kγ
TKγ
− γ2I ≼ 0 and Λγ ≽ 0 by primal (ii) and dual (iii) feasibility.

Furthermore, this condition can be written alternatively as (T ∗
Kγ
TKγ
− γ2I)Λγ = 0.

Therefore, the operators T ∗
Kγ
TKγ
− γ2I and Λγ commute. This implies that they

share the same eigenspace and can be simultaneously unitarily diagonalized, so do
the operators T ∗

Kγ
TKγ

and Λγ .

For the optimal controller Kγ in (11.17), we have

∆Kγ −∆Knc = {∆KncLγ}+L−1
γ −∆KncLγL−1

γ , (11.21)

= −{∆KncLγ}− =: −Sγ. (11.22)

Therefore, the quadratic expression T ∗
Kγ
TKγ

becomes

T ∗
Kγ
TKγ

= (∆Kγ −∆Knc)
∗(∆Kγ −∆Knc) + T ∗

Knc
TKnc

, (11.23)

= L−∗
γ S∗SL−1

γ + T ∗
Knc
TKnc

. (11.24)

Substituting the optimal value of T ∗
Kγ
TKγ

in (11.20), we get,

Λγ

(
L−∗

γ S∗SL−1
γ + T ∗

Knc
TKnc
− γ2I

)
= 0. (11.25)

Using the identity Λγ = LγL∗
γ − I, we get,

LγS∗SL−1
γ +

(
LγL∗

γ − I
) (
T ∗
Knc
TKnc
− γ2I

)
− L−∗

γ S∗SL−1
γ = 0.

Multiplying the identity above by Lγ on the right and by L∗
γ on the left, we get,

L∗
γLγS∗S + L∗

γ

(
LγL∗

γ − I
) (
T ∗
Knc
TKnc
− γ2I

)
Lγ − S∗S = 0.
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The identity above can be simplified further by factorizing L∗
γLγ − I as follows:

0 = (L∗
γLγ − I)S∗S +

(
L∗

γLγL∗
γ − L∗

γ

) (
T ∗
Knc
TKnc
− γ2I

)
Lγ,

= (L∗
γLγ − I)S∗S +

(
L∗

γLγ − I
)
L∗

γ

(
T ∗
Knc
TKnc
− γ2I

)
Lγ,

= (L∗
γLγ − I)

(
S∗S + L∗

γT ∗
Knc
TKnc
Lγ − γ2L∗

γLγ

)
. (11.26)

Starting with T ∗
Kγ
TKγ
− γ2I ≼ 0 instead, a similar identity can be derived:

0 =
(
S∗S + L∗

γT ∗
Knc
TKnc
Lγ − γ2L∗

γLγ

)
(L∗

γLγ − I). (11.27)

Therefore, by (11.26) and (11.27), we have that S∗S + L∗
γT ∗

Knc
TKnc
Lγ and L∗

γLγ

commute, and thus are simultaneously diagonalized.

Defining Xγ := γ−2(S∗S +L∗
γT ∗

Knc
TKnc
Lγ) andNγ := L∗

γLγ , we can rewrite (11.26)
and (11.27) as

(Nγ − I)(Nγ −Xγ) = 0, (11.28)

with Nγ − I ≽ 0 by dual feasibility, Nγ − Xγ ≽ 0 by primal feasibility, and
commuting operators Nγ and Xγ . Since these operators commute, we can solve the
quadratic equation (11.28) for Nγ in terms of Xγ . This essentially gives,

Nγ =
1

2

(
Xγ + I + |Xγ − I|

)
= max

{
Xγ, I

}
(11.29)

which is the only possible solution of (11.28) that satisfies the primal and dual
feasibility constraints. This expression is essentially an operator-theoretic analog of
taking the maximum between two elements. Thus, we get (11.18).

When the disturbances are scalar, i.e., dw = 1, all dw × dw-block Laurent operators
commute with each other. Thus, the expression (11.27) can be simplified further as

0 =
(
S∗S + L∗

γLγ(T ∗
Knc
TKnc
− γ2)

)
(L∗

γLγ − I). (11.30)

Upon solving it for L∗
γLγ in the same fashion, we immediately get (11.19)

■

11.4 A Fixed-Point Iteration Algorithm
Henceforth in this paper, we focus our analysis on the case when dw = 1, i.e.,
scalar disturbances. In subsection 11.4, we first demonstrate that the Karush-Kuhn-
Tucker (KKT) conditions outlined in equation (11.19) can be exclusively defined
by a finite-dimensional parameter, Bγ , within the frequency domain. However,
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the optimal controller lacks a rational nature, preventing it from being represented
through a finite-dimensional state-space model. Following this, in subsection 11.4,
we introduce a fixed-point iteration method for any given γ ∈ (γ∞, γ2). This method
is designed to determine Bγ , enabling the calculation of the optimal controller,
Kγ(e

ȷω) in the frequency domain.

Finite-Dimensional Parameterization of the Optimal Controller
In the following Theorem 11.4.1, we establish that the strictly anticausal transfer
function Sγ(e

ȷω) defined below can be expressed using a finite-dimensional state-
space model. This theorem indicates that the right-hand side of (11.34) for Nγ(e

ȷω),
involving the square root of the rational term Sγ(e

ȷω)∗Sγ(e
ȷω), is no longer rational

due to the square root operation. This observation leads us to Corollary 11.4.2.

Theorem 11.4.1 (Frequency-domain solution). Define Sγ(e
ȷω) := {∆K◦Lγ}−(eȷω).

Then,

Sγ(e
ȷω) = C(e−ȷωI − A)−1Bγ, (11.31)

with Bγ =
1

2π

∫ 2π

0

(I − eȷωA)−1DLγ(e
ȷω)dω. (11.32)

The optimal controller in the frequency domain is given by,

Kγ(e
ȷω) = Knc(e

ȷω)−∆−1(eȷω)Sγ(e
ȷω)L−1

γ (eȷω), (11.33)

Nγ(e
ȷω) = max

{
{∆KncLγ}∗−(eȷω){∆KncLγ}−(eȷω)

γ2 − TKnc
(eȷω)∗TKnc

(eȷω)
, 1

}
, (11.34)

where,

Klqr := (R +B⊤
u PBu)

−1
B⊤

u PA (11.35)

P = Q+ A⊤PA− A⊤PBu(R +B⊤
u PBu)

−1
B⊤

u PA (11.36)

A :=
(
A−BuKlqr

)⊤ (11.37)

C := −(R +B⊤
u PBu)

−⊤/2
B⊤

u (11.38)

D :=
(
A−BuKlqr

)⊤
PBw (11.39)

Nγ(e
ȷω) := Lγ(e

ȷω)∗Lγ(e
ȷω). (11.40)

Proof. Using the identity {X}+=X−{X}− , we restate the KKT equations (11.19)
in the frequency domain as in (11.33), (11.34).

We introduce the Linear Quadratic Regulator (LQR) controllerKlqr, the corresponding
closed-loop matrix A−BuKlqr, and the unique solution to the LQR Riccati equation
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that stabilizes the system, P ≻ 0 to write Sγ(e
ȷω) in (11.31). The Riccati equation

emerges from the spectral factorization of ∆∗∆ = I + F∗F . See [125, Lemma 11]
for example. ■

Corollary 11.4.2. For any given γ ∈ (γ∞, γ2), both Nγ(e
ȷω) and the optimal mixed

H2/H∞ controller Kγ(e
ȷω), are characterized as irrational. Consequently, Kγ(e

ȷω)

cannot be realized by a finite-dimensional state-space model.

AlthoughKγ(e
ȷω) cannot be modeled in a finite-dimensional state-space, Lemma 11.4.1

introduces a finite-dimensional parameterization for Nγ(e
ȷω) via Bγ . Theorem 11.4.3

further verifies that Bγ directly determines Nγ(e
ȷω), and by extension, the suboptimal

controller Kγ(e
ȷω).

Theorem 11.4.3 (Fixed-Point Solution). Assuming dw = 1, γ ∈ (γ∞, γ2), we
consider a sequence of mappings:

F1 : B 7→ S(eȷω) = C(e−ȷωI − A)−1B (11.41)

F2,γ : S(eȷω) 7→ Nγ(e
ȷω)

= max

{
S(eȷω)∗S(eȷω)

γ2 − TKnc
(eȷω)∗TKnc

(eȷω)
, 1

}
. (11.42)

F3 : N(eȷω) 7→ L(eȷω) (11.43)

F4 : L(e
ȷω) 7→ B =

1

2π

∫ 2π

0

(I − eȷωA)−1DL(eȷω)dω. (11.44)

where F3 produces a unique spectral factor of N(eȷω) > 0. The composite function
F4◦F3◦F2,γ◦F1 : B 7→ B has a unique fixed pointBγ , withNγ(e

ȷω) ≡ F2,γ◦F1(Bγ)

fulfilling the KKT conditions (11.19).

Proof. Consider the optimality condition (11.34). Note that for γ > γ∞, Nγ(e
ȷω) in

(11.34) is well-defined. Thus, the map F4 ◦ F3 ◦ F2γ
◦ F1 : B 7→ B described earlier

admits a fixed pointBγ for a fixed γ. Since (11.13) is concave inΛ (orLL∗ = Λ+I),
the optimal solution Nγ is unique. Given that Mγ(e

ȷω) = Lγ(e
ȷω)L∗

γ(e
ȷω), where

Lγ(e
ȷω) represents a spectral factor of Mγ(e

ȷω) that is both causal and causally
invertible, it follows that Lγ(e

ȷω) is uniquely determined apart from a unitary
transformation. By establishing a specific choice for the unitary transformation during
the spectral factorization process, for example, opting for positive-definite factors at
infinity as outlined by [59], we ensure the uniqueness of Lγ(e

ȷω). Consequently, with
A and D being constants, the expression for Bγ = 1

2π

∫ 2π

0
(I − eȷωA)−1DLγ(e

ȷω)dω

is also uniquely determined. ■
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Algorithm
Now that we know a fixed point solution exists to our problem, we can use Theorem
11.4.3 to obtain the following iterative fixed-point algorithm. Once we have an
optimal Nγ(e

jω), we can find the optimal mixed H2/H∞ controller Kγ(e
jω) using

(11.33).

Algorithm 12 FixedMHH: Dual Fixed-Point Iteration via Spectral Factorization

Input: γ>γH∞
, initialise B, system (A,D,C)

repeat
N (n)

γ (eȷω)← F2,γ◦F1(B
(n)

)

L(n+1)
γ (ejω)← SpectralFactor(N (n)

γ (ejω))

B
n+1

= F4(L
(n+1)
γ (ejω))

n← n+ 1
until convergence of N (n)

γ (ejω)

11.5 Convergence Analysis
In this section, we provide a proof of convergence of FixedMHH for the particular
case when dx = dw = 1. We first show the fixed point, that Algorithm 12 converges
to, is unique when γ > γ∞. Then, we show that the iterates produce a sequence of
monotonically increasing spectraN . Due to this, the algorithm must converge to the
unique fixed point. Formally, we state this in the following lemma.

Lemma 11.5.1 (Monotonicity). For dx = dw = 1, the composite mapping F2,γ ◦
F1 ◦ F4 ◦ F3 : N(eȷω) 7→ Nγ(e

ȷω) is monotonic, i.e., for any two positive power
spectral densities such that 0 < N1(e

jω) ≤ N2(e
jω) for all ω ∈ [0, 2π), the mapping

F2,γ ◦ F1 ◦ F4 ◦ F3 preserves their order.

Proof. Let γ > γ∞. Consider now two spectra 0 ≺ N1 ≼ N2 that are represented in
the frequency domain as N1(e

jω) ≤ N2(e
jω) for all ω ∈ [0, 2π). Now the spectra

N1,N2 are passed through one iteration of Algorithm 12, i.e., F3 ◦ F4 ◦ F1 ◦ F2γ
◦ :

N 7→ N to getN1,N2 respectively. We want to show that n1(e
jω) ≤ n2(e

jω)∀ω i.e.,
Algorithm 12 preserves the order of N1 ≼ N2. We have that

N1(e
jω) = max

{
1,
{∆KncL1}∗−(eȷω){∆KncL1}−(eȷω)

γ2 − TKnc
(eȷω)∗TKnc

(eȷω)

}
(11.45)

N2(e
jω) = max

{
1,
{∆KncL2}∗−(eȷω){∆KncL2}−(eȷω)

γ2 − TKnc
(eȷω)∗TKnc

(eȷω)

}
. (11.46)
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Moreover, denoting byN1 = L∗
1L2 andN2 = L∗

2L2 the unique spectral factorizations,
we have that

tr ({∆KncL1}∗−{∆KncL1}−)
(a)
= inf

K∈H∞

tr((T ∗
KTK − T ∗

Knc
TKnc

)N1)

(b)

≤ inf
K∈H∞

tr((T ∗
KTK − T ∗

Knc
TKnc

)N2) (11.47)

(c)
= tr ({∆KncL2}∗−{∆KncL2}−) ,

where the identities (a), (c) are due to Wiener-Hopf technique in Lemma 11.3.2 and
(b) is due to N1 ≼ N2.

Notice that, for dx = dw = 1, we have that

{∆KncL1}∗−{∆KncL1}− = |C|2|B1|2|e−jωI − A|−2, (11.48)

{∆KncL2}∗−{∆KncL2}− = |C|2|B2|2|e−jωI − A|−2, (11.49)

and therefore, their traces take the form

tr ({∆KncL1}∗−{∆KncL1}−)

= |C|2|B1|2
∫ 2π

0

|e−jωI − A|−2dω

2π
, (11.50)

tr ({∆KncL2}∗−{∆KncL2}−)

= |C|2|B2|2
∫ 2π

0

|e−jωI − A|−2dω

2π
. (11.51)

By this observation and using the inequality (11.47), we have that |B1|2 ≤ |B1|2 and
thus the monotonicity of the traces implies the monotonicity of the operators, i.e.,
for all ω ∈ [0, 2π), the following holds

{∆KncL1}∗−(eȷω){∆KncL1}−(eȷω)
= |C|2|B1|2|e−jωI − A|−2, (11.52)

≤ |C|2|B2|2|e−jωI − A|−2, (11.53)

= {∆KncL2}∗−(eȷω){∆KncL2}−(eȷω). (11.54)

Hence, we have that N1(e
jω) ≤ N2(e

jω) for all ω ∈ [0, 2π) using (11.45) and
(11.46). ■
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We can now initialise the algorithm with B
(0)

= 0 or N (0)
(ejω) = 1. Since after each

iteration, N (n)
(ejω) ≥ 1 for all ω ∈ [0, 2π), FixedMHH generates a monotonically

increasing sequence of {N (n)
(ejω)} for all ω ∈ [0, 2π), which converges to the

unique fixed point. We state this formally in the following theorem.

Theorem 11.5.2. For dx = dw = 1 and B
(0)

= 0, the sequence of iterates
{N (n)

(ejω)} generated by FixedMHH is monotonically increasing and converges to
the optimal solution in (11.19).

Proof. The proof follows directly from the repeated application of monotonicity
result on Lemma 11.5.1 and [249, Thm. 2] ■

Remark 11.5.3. Although we present a proof of convergence for the particular case
of scalar systems dx = 1, empirical evidence suggests (see Section 11.7) that the
algorithm is exponentially convergent with a faster rate of convergence for larger
γ > 0.

11.6 Rational Approximation
This section describes a practical approach to devising state-space controllers that
serve as approximations to our irrational γ-optimal controller (11.33). Rather than
attempting to approximate the controller directly, we approximate the power spectrum
N(eȷω), aiming to reduce the H∞-norm of the approximation error through the use
of positive rational functions. While the problem of approximating with rational
functions typically does not lead to convex formulations, we demonstrate in Theorem
11.6.3 that the process of approximating positive power spectra through the use of
ratios of positive fixed-order polynomials can indeed be framed as a convex feasibility
problem. The problem is stated as follows:

Problem 11.6.1 (Rational Approximation via H∞-norm). For a given positive
spectrum N , identify the optimal rational approximation utilizing the H∞ norm,
with an order not exceeding m ∈ N. Specifically,

inf
P,Q∈T

m
+

∥P/Q−N∥∞ subject to tr(Q) = 1, (11.55)

where Tm,+ is the set of positive symmetric polynomials of order less than or equal
to m and the constraint tr(Q) = 1 is to avoid redundancy in solutions.

Definition 11.6.2. Given an ϵ > 0 approximation bound, the ϵ-sublevel set of
Problem 11.6.1 is defined as

Sϵ :={(P ,Q) | ∥P/Q−N∥∞≤ϵ, tr(Q)=1}
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Theorem 11.6.3 (Feasibility of Sϵ, [124, Thm. 5.5]). Given an accuracy level ϵ>0

and m ∈ N is a fixed order, the polynomials P and Q of order m belong to the
ϵ-sub-level set, i.e.(P ,Q) ∈ Sϵ if and only if there exists P,Q ∈ Sm+1

+ such that
tr (Q) = 1 and for all ω ∈ [0, 2π), .

1) Tr (PΘ(eȷω))−(N(eȷω)+ϵ) Tr (QΘ(eȷω))≤0, (11.56)

2) Tr (PΘ(eȷω))−(N(eȷω)−ϵ) Tr (QΘ(eȷω))≥0, (11.57)

Although the above equations hold for all frequencies, practical implementation
necessitates focusing on a finite selection of frequency samples. To sidestep this
limitation, the analysis can be limited to a select set of frequencies, defined as
ΩN = {ω = 2πk/N |k = 1, . . . , N}, where N , chosen to be much larger than m,
provides a dense sampling of the frequency domain. While this approach inherently
approximates the full spectrum of frequencies, increasing the number of sampled
frequencies N allows for an arbitrary improvement in the approximation’s accuracy.
Consequently, this method facilitates the transformation of the rational function
approximation problem into a convex feasibility problem, addressable through the
application of Linear Matrix Inequalities (LMIs) alongside a finite collection of affine
(in)equality constraints. Upon achieving a rational approximation of N(eȷω), we then
derive a state-space controller as outlined in (11.17). Note that a canonical factor
of the rational approximation of N(eȷω) can always be found due to the following
lemma.

Lemma 11.6.4 (Canonical Factorization [199, Lem. 1]). Given a Laurent polynomial
of order m, P (z) =

∑m
k=−m pkz

−k, where pk = p−k ∈ R, and P (eȷω) > 0, it can be
shown that a canonical factor L(z) = ℓ0 + ℓ1z

−1 + . . .+ ℓmz
−m exists. This factor

satisfies P (eȷω) = |L(eȷω)|2, with all roots of L(z) lying inside the unit circle.

11.7 Numerical Results
In this section, we analyze the performance of the mixed H2/H∞ controller and
the rational approximation method for 2 systems. We use benchmark models from
[145]. In particular, we test the aircraft system [AC17] and a chemical reactor system
[REA4]. First, we present frequency domain plots for each system, highlighting
their performances. The plots show the performance of the mixed H2/H∞ and
the rational approximations. Additional data is presented in Tables 11.1 and 11.2.
Next, we provide numerical evidence supporting the exponential convergence of the
proposed algorithm Algorithm 12. Note that in this section, for brevity, a rational
approximation of order m is denoted RA(m).
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Figure 11.1: The spectral norm, σ(T ∗
K(e

ȷω)TK(e
ȷω)) of the mixed H2/H∞ controller

for γ ∈ {60, 68, 75} at different frequency values, for the system [AC17]. The cost
of the mixed H2/H∞ controller follows H2 and clips at the threshold γ for some
frequencies.

0 /2 3 /2 2
1000

2000

3000

4000

5000

6000

7000

Figure 11.2: The spectral norm, σ(T ∗
K(e

ȷω)TK(e
ȷω)) of the mixed H2/H∞ controller

(γ = 60) and a 6th order rational approximation at different frequency values, for the
system [AC17]. The cost of the rational controller closely follows the optimal mixed
H2/H∞ controller.

We first present the performance metrics for the [AC17] system. For this system,
γ∞ = 58.94 and γ2 = 81.309. Thus, the H∞ norm of the mixed H2/H∞ controller
γ ∈ (58.94, 81.309]. The system is a 4th order system. The system matrices are,

A =


−2.98 .93 0 −.034
−.99 −.21 .035 −.001
0 0 0 1

.39 −5.55 0 −1.89

Bu =


−.032

0

0

−1.6

 .

We present the frequency domain plots in Figures 11.1 and 11.2. Note that
∥TK∥2∞ = max0≤ω≤2π σ(T

∗
K(e

ȷω)TK(e
ȷω)). This metric is visualised in Figure 11.1

which highlights the mixed nature of the mixed H2/H∞ controller. For γ close to
γ∞, the mixed H2/H∞ controller closely follows the H∞ controller for most of the
frequencies but still has less area under the curve (∥TK∥2) and seems to follow the
H2 controller. As we increase γ, we see that the mixed H2/H∞ controller clips the
value of ∥TK∥∞ at γ for some frequencies, and for the other frequencies, it follows
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Figure 11.3: The spectral norm, σ(T ∗
K(e

ȷω)TK(e
ȷω)) of the mixed H2/H∞ controller

for γ ∈ {10, 11, 12} at different frequency values, for system [REA4]. The cost
of the mixed H2/H∞ controller follows H2 and clips at the threshold γ for some
frequencies.

the H2 controller which is to minimise ∥TK∥2. We now focus on the performance of
the rational approximations of the mixed H2/H∞ controller. Since we approximate
the spectrum N , the order of controller is given by the order of the system plus the
order of the rational approximation. Table 11.1 highlights the performance metrics
of the rational approximations. Moreover, Figure 11.2 showcases how a rational
approximation looks in the frequency domain. One can observe from Figure 11.2
that ∥TK∥∞ for the rational approximation can be slightly higher than that of the
actual mixed H2/H∞ controller. As can be seen from Table 11.1, a higher order
approximation results in a controller with performance metrics close the the optimal
mixed H2/H∞ controller. For the [AC17] system, a 6th order approximation of the
spectrum N provides seems to be a good choice for the controller.

γ = 60 γ = 68
∥TK∥2 ∥TK∥∞ ∥TK∥2 ∥TK∥∞

H∞ 58.94 58.94 58.94 58.94
Mixed H2/H∞ 57.92 60 54.94 68

RA(1) 58.14 60.36 54.94 69.46
RA(3) 58.04 60.42 54.95 68.31
RA(6) 57.92 60.07 54.94 68.07
H2 54.28 81.309 54.28 81.309

Table 11.1: The performance characteristics of the mixed H2/H∞ controller
obtained from degree 1, 2, and 3 rational approximations to N(eȷω).

We now present the numerical results for the system [REA4]. This is an 8th order
system which is a chemical reactor system. The system matrices can be found in
[145]. As in the case of [AC17], we see in Figure 11.3, that the mixed H2/H∞

controller closely follows the H∞ controller for most of the frequencies but still has
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Figure 11.4: The spectral norm, σ(T ∗
K(e

ȷω)TK(e
ȷω)) of the mixed H2/H∞ controller

(γ = 10) and a 4th order rational approximation at different frequency values, for
system [REA4]. The cost of the rational controller closely follows the optimal mixed
H2/H∞ controller.

Figure 11.5: The variation of rd(γ) (defined in (11.58)) with γ for the [REA4]
system. The plot indicates different N1,N2 in (11.58) chosen at random. Note that
the contraction ratio is always less than 1 and decreases with an increase in γ.

less area under the curve (∥TK∥2) and seems to follow the H2 controller for some
part of the frequencies. The performance of a controller obtained via a 4th order
rational approximation of the spectrum N is shown in Figure 11.4. As expected,
a higher order approximation results in a controller that better approximates the
optimal mixed H2/H∞ controller. For the [REA4] system, a controller obtained via
an 8th order approximation well approximates the optimal mixed H2/H∞ controller,
as shown in Table 11.2.

We now present numerical evidence that suggests an exponential convergence of our
iterative method Algorithm 12. In Figure 11.5, we consider the ratio,

rd(γ) =
d(N (1)

1 ,N (1)
2 )

d(N (0)
1 ,N (0)

2 )
. (11.58)

Here, N1(e
ȷω) and N2(e

ȷω) are the frequency domain representation of the power
spectra N1 and N2. N (1)(eȷω) is the spectrum obtained after one iteration of
Algorithm 12 initialized with N(eȷω), and d(·) is a distance metric. For our results,
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γ = 10 γ = 12
∥TK∥2 ∥TK∥∞ ∥TK∥2 ∥TK∥∞

H∞ 9.94 9.94 9.94 9.94
Mixed H2/H∞ 9.2 10 6.17 12

RA(2) 9.3 10.05 6.21 12.09
RA(4) 9.21 10.1 6.177 12.02
RA(8) 9.2 10.008 6.17 12.01
H2 6.06 14.01 6.06 14.01

Table 11.2: The performance characteristics of the mixed H2/H∞ controller
obtained from degree 1, 2, and 3 rational approximations to N(eȷω).

we consider the H∞ norm given by,

d(N1,N2) = max
ω∈[0,2π]

σ(N1(e
ȷω)−N2(e

ȷω)). (11.59)

We consider various random initializations of theN1 andN2. What we would like to
observe is rd(γ) < 1 for all γ > γ∞. Since this would mean that after each iteration,
the spectrum is close to the optimal solution. As can be seen in Figure 11.5, the
contraction ratio is indeed a decreasing function of γ and is always less than 1. This
suggests that Algorithm 12 is exponentially convergent.

11.8 Conclusion
In this paper, we studied the problem of mixed H2/H∞ control in the infinite-horizon
setting. We provide the exact closed-form solution to the infinite-horizon mixed
H2/H∞ control in the frequency domain. Despite being non-rational, we show
that the optimal controller admits a finite-dimensional parameterization. Leveraging
this fact, we introduce an efficient iterative algorithm that finds the optimal causal
controller in the frequency domain. We show that this algorithm is convergent when
the system is scalar and present numerical evidence for exponential convergence
of the proposed algorithm. To obtain a finite order controller, we use a rational
approximation method (based on the H∞ norm) and present its performance. In
future works, we will extend our results to cases when dw > 1. As mentioned in the
paper, numerical results hint that the algorithm is exponentially convergent. Future
works will involve analyzing the convergence properties of the proposed iterative
algorithm.
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C h a p t e r 12

STRONG DUALITY

Our primary goal in this section is to construct a dual problem for such a general class
of primal control problems by leveraging the Fenchel conjugate of convex functions.
The main advantage of duality is that the complicated optimization over causal
controllers of an arbitrary convex objective can be transformed into a minimization
over a simpler quadratic objective at the expense of an additional maximization over
a dual variable.

While Assumption 8.2.4 makes (P) a convex program, it is still an infinite-dimensional
problem. However, we are not yet concerned with infinite-dimensionality of (P)
and we will address effective numerical computation of the optimal solution in ??.
Until then, our primary focus is to derive a tractable set of necessary and sufficient
conditions for the optimal solution of the infinite-dimensional convex program (P).

In its current form, (P) is not amenable for deriving the optimality conditions for the
controller K. The major roadblock sitting to achieving this is the non-triviality of
the causality constraint on the controller, even for very simple objective functions.
In fact, in the full-information setting, there exists a universally optimal non-causal
controller minimizing any proper, convex, and monotonically decreasing function f :

Example 12.0.1 (Causality is non-trivial). Consider the full-information setting

where TK =

[
PxuK + Pxw

K

]
. Suppose f : L1 → R satisfy Assumption 8.2.4 and

there is at least one K′ ∈ L∞, which can be non-causal, such that f(T ∗
K′TK′) <∞.

By completion-of-squares, we get

T ∗
KTK = (∆K−∆Knc)

∗(∆K−∆Knc)+T ∗
Knc
TKnc

≽ T ∗
Knc
TKnc

, ∀K ∈ L∞ (12.1)

where Knc := −(I + P∗
xuPxu)

−1P∗
xuPxw is the unique H2-optimal non-causal

controller and ∆∗∆ = I + P∗
xuPxu is the canonical spectral factorization. Since

T ∗
KTK is dominated by T ∗

Knc
TKnc

, we have that f(T ∗
Knc
TKnc

) ≤ f(T ∗
KTK) for all

K ∈ L∞ and f(T ∗
Knc
TKnc

) is finite. Thus, Knc is the universally optimal non-causal
controller.

This example highlights the inherent complexity of addressing causality constraints.
Causality, combined with the infinite-dimensional nature of resulting optimization
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problems, is arguably what sets optimal control apart as significantly more challenging
than static optimization. Indeed, beyond classical problems like H2 and H∞ control,
and the more recent regret-optimal control framework, there remains a substantial
gap in our ability to systematically solve generalized control problems of the form
presented in Problem 8.2.3. This profound challenge is exemplified by the absence of
an analytic closed-form solution for the renowned mixed H2/H∞ control problem,
despite the fact that the pure H2 and H∞ problems have been solved and thoroughly
understood for decades.

The primary objective of this section is to systematically derive a tractable dual
reformulation of Problem 8.2.3, thereby addressing the challenges associated with
solving the causality-constrained primal problem (P). The cornerstone of this dual
reformulation is the Fenchel conjugate of the convex function f : L∞(Sdw) → R.
To facilitate this development, we begin by introducing the following technical
assumption on the convex function f .

Assumption 12.0.2. The convex function f : L∞(Sdw+ )→ R is

i. proper, i.e., its domain is non-empty, dom(f) ̸= ∅, and f > −∞,

ii. weak*-lower semicontinous (w*-l.s.c.), i.e., its epigraph epi(f) is convex and
closed in L∞ × R with respect to the weak* topology induced by its predual,
L1 × R.

Remark 12.0.3. The technical assumption that f is weak*-lower semicontinous
ensures that the supporting hyperplanes of the epigraph epi(f) correspond to
affine functions of the form L∞ ∋ C 7→ ⟨C,M⟩ + b where b ∈ R andM ∈ L1,
the predual of L∞. This is in contrast to a broader class of affine functions
induced by the dual space, whereM ∈ L ∗

∞. The distinction stems from the non-
reflexivity of the Banach spaces L1 and L∞, as reflected in the chain of inclusions
(L ∗

1 = L∞) ⊊ L1 ⊊ (L ∗∗
1 = L ∗

∞). While this assumption rules out certain edge
cases, it encompasses all the interesting examples considered in this paper.

Equipped with the Assumption 12.0.2, the Fenchel conjugate f ∗ : L1(S
dw)→ R of

the convex function f : L∞(Sdw)→ R is formally defined as

f ∗(M) := sup
C∈L∞

⟨C,M⟩− f(C), (12.2)

whereM∈ L1 is the dual variable. Moreover, Fenchel-Moreau theorem establishes
a duality pairing between f and its conjugate f ∗ as f ∗∗ := (f ∗)∗ = f [56, Prop. 4.1],
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namely,
f(C) = sup

M∈L1

⟨C,M⟩− f ∗(M). (12.3)

Moreover, it turns out that such a function f is monotonic if and only if the domain
of the conjugate functions f ∗ only contains positive operators.

Theorem 12.0.4. Let f : L∞ → R satisfy Assumption 12.0.2. Then, f is monotonic
if and only if dom(f ∗) ⊂ L +

1 .

Plugging in the identity (12.3), we rewrite the primal optimization problem (P) as a
minimax problem as follows:

p⋆ = inf
K∈K

sup
M∈L1

⟨T ∗
KTK,M⟩− f ∗(M). (P′)

The minimax problem (P′) naturally leads to a dual problem, which can be derived
by interchanging the inf and sup operations:

d⋆ := sup
M∈L1

inf
K∈K

⟨T ∗
KTK,M⟩− f ∗(M),

= sup
M≽0

inf
K∈K

⟨T ∗
KTK,M⟩− f ∗(M),

(12.4)

where d⋆ ∈ R is the dual value. The last equality follows from the fact that
inf{⟨T ∗

KTK,M⟩ | K ∈ K } = −∞ whenever M ∈ L1 has strictly negative
eigenvalues1.

Problem 12.0.5 (Dual Control Problem). Given a convex and monotonic function
f : L∞ → R satisfying Assumption 12.0.2 and its Fenchel conjugate f ∗ : L1 → R,
find a positive-definite operatorM∈ L1 that minimizes the following objective:

d⋆ = sup
M∈L1,
M≽0

inf
K∈K

⟨T ∗
KTK,M⟩− f ∗(M), (D)

where d⋆ ∈ R is the dual value.

It is evident from the minimax inequality that weak duality holds, i.e., d⋆ ≤ p⋆. The
main result of this section, as established in Theorem 12.0.6, demonstrates that strong
minimax duality also holds, i.e., d⋆ = p⋆.

1More precisely, whenever TywMT ∗
yw ⪰̸ 0.
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Theorem 12.0.6 (Strong Minimax Duality). Let Assumptions 8.2.4 and 12.0.2 hold.
If there exists a causal and stabilizing controller K0 ∈ K and a bounded operator
C0 ∈ L∞ such that C0 ≻ T ∗

K0
TK0

and f(C0) < +∞, then the primal problem (P)
admits strong duality in

inf
K∈K

f(T ∗
KTK) = max

M∈ba,
M≽0

inf
K∈K

⟨T ∗
KTK,M⟩− f ∗(M), (12.5)

and the maximum is attained at a positive definite pointM⋆ ∈ ba.

Theorem 12.0.7 (Strong duality in L1). Define the perturbation functions h : L∞ →
R and g : L1 → R as

h(∆) = inf
K∈K

f(T ∗
KTK +∆), (12.6)

g(∇) = sup
M∈L1

V (M)− f ∗(M+∇), (12.7)

where h is convex, whereas g is concave. The following statements are equivalent:

i. Strong duality between problems Equation (P) and Equation (D) hold.

ii. h is weak*-lower semicontinous at 0. Namely, for any uniformly norm
bounded sequence {∆n}n∈N ⊂ L∞ ∩ Br that weak* converges to 0, i.e.,
w∗-limn→∞ ∆n = 0, it holds that h(0) ≤ lim infn→∞ h(∆n).

iii. g is upper semicontinous at 0. Namely, for any sequence {∇n}n∈N ⊂ L1

that converges to 0 in norm, i.e., limn→∞ ∥∇n∥1=0, it holds that g(0) ≥
lim supn→∞ g(∇n).

Theorem 12.0.8 (Sufficient Conditions for Strong Duality). The following conditions
are sufficient for strong duality:

i. There exists K0 ∈ H∞ and C0 ∈ dom(f) such that C0 ≽ T ∗
K0
TK0

and f is
weak*-continuous at C0.

– Canonical example of weak*-continuous convex functions are simply
affine functionals ℓ(C) = ⟨C,M⟩ + b where M ∈ L +

1 and b ∈ R.
Suppose, there exists a finite number of positive-definite dual variables
M1, . . . ,Mk ∈ L +

1 , a vector b ∈ Rk, and a proper, convex, lower
semicontinuous function h : Rk → R such that f(C) = h(ℓ(C)) and
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ℓ(C0) ∈ ri(h) where ℓ : L∞ → Rk is a weak*-continuous affine
transformation defined as

ℓ(C) =
[
ℓ1(C) . . . ℓk(C)

]⊺
=
[
⟨C,M1⟩ . . . ⟨C,Mk⟩

]⊺
+ b

.

ii. cone(L +
1 − dom(f ∗)) is a closed linear subspace of L1 (in other words,

0 ∈ sqri(L +
1 − dom(f ∗)) ),

iii. dom(f) is weak*-compact.

iv. The function f norm coercive, i.e., f(C)→∞ as ∥C∥∞ →∞.

Remark 12.0.9. The condition on the existence of K0 ∈ K and C0 ∈ L∞ such that
C0 ≻ T ∗

K0
TK0

and f(C0) < +∞ is essentially a Slater’s condition requiring existence
of an interior feasible point.

A discerning reader might question the utility of transforming the primal problem (P)
into its dual formulation (D), given the introduction of an additional maximization
step. The principal advantage lies in the linearization of the objective function with
respect to the quadratic term T ∗

KTK through the inclusion of the dual variableM ≽ 0

and the Fenchel conjugate f ∗(M). This reformulation facilitates a more tractable
approach to the minimization problem over causally constrained controllers K ∈ K ,
as the inner minimization reduces to a quadratic objective in K. While the additional
maximization over the dual variableM ≽ 0 may still pose challenges, addressing the
positivity constraint onM turns out to be more manageable generally than enforcing
the causality constraint on K within the same framework.

Before proceeding to the proof of this result in Section 12.3, we first illustrate
its applicability across a range of control problems, encompassing both classical
examples and more contemporary cases of interest.

12.1 Examples: Norm-optimal Control

Example 12.1.1 (Standard H2 optimal control). The H2 optimal controller aims
to minimize the H2 norm of the closed-loop transfer function:

η2H2
:= inf

K∈K
∥TK∥22 = inf

K∈K
tr(T ∗

KTK), (12.8)

where ηH2
> 0 is the minimum H2 norm. The H2 optimal controller, whenever it

exists and is unique, is denoted by KH2
:= argmin{∥TK∥22 | K ∈ K }.
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It is clear to see that the H2 optimal control problem can be cast in the form of
Problem 8.2.3 by picking

fH2
(C) := tr(C) with dom(fH2

) = L1. (12.9)

The H2 norm of the closed-loop transfer operator TK has several operational
interpretations. The first interpretation establishes a connection to stochastic control.
Specifically, the H2 norm ∥TK∥22 is equal to the steady-state expected squared-norm
of the regulated output state-space model (8.42) driven by the feedback controller K
when the disturbance process {wt} is a white noise with E[wtw

⊺
s ] = δt−sIdw , i.e.,

∥TK∥22 = lim sup
T→∞

1

T
E
[∑T−1

t=0
∥zt∥2

]
. (12.10)

Furthermore, when the disturbances are white Gaussian noise, the H2 optimal
controller coincides with the optimal LQG controller .

The second operational interpretation established a connection as a system gain.
Namely, the ∥TK∥22 is the worst-case system gain of the closed-loop transfer operator
TK : w 7→ z from bounded energy disturbances w ∈ ℓ2 to bounded regulated output
TKw ∈ ℓ∞, i.e.,

∥TK∥2 = sup
w∈ℓ2,
w ̸=0

∥TKw∥ℓ∞
∥w∥ℓ2

= sup
∥w∥ℓ2≤1

∥TKw∥ℓ∞ . (12.11)

This is essentially the operator norm of T as a mapping from ℓ2 to ℓ∞ .

Example 12.1.2 (Weighted H2 optimal control). LetM ≽ 0 be a positive-definite
L1 operator. TheM-weighted H2 optimal control problem is formulated as

inf
K∈K

tr(T ∗
KTKM). (12.12)

The corresponding convex function here is simply

fM,H2
(C) := tr(CM) = ⟨C,M⟩ with dom(fM,H2

) = L∞. (12.13)

Clearly, the usual H2 optimal control corresponds to the special case M =

I. When the weight operator M is strictly positive definite and satisfies the
Paley-Wiener-Szegő condition, i.e., log(M) ∈ L1, , then M can be realized as
the auto-covariance operator of a weakly-stationary stochastic process {wt} such
that E[wtw

⊺
s ] = M̂t−s. In that case, the corresponding transfer function M(z) is
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the power spectral density of the process {wt} . Under these conditions, one can
interpret tr(T ∗

KTKM) as the steady-state expected squared-norm of the regulated
output zt as in (??) for a weakly-stationary and colored disturbance process {wt}
with auto-covariance operatorM.

Example 12.1.3 (H∞ optimal control). The standard H∞ control problem is
formulated as

γ2
H∞

:= inf
K∈K

∥TK∥2∞ = inf
K∈K

∥T ∗
KTK∥∞, (12.14)

where γH∞
> 0 is the minimum H∞ norm. The H∞ optimal controller, whenever

it exists and is unique, is denoted by KH∞
:= argmin{∥TK∥2∞ | K ∈ K }.

The corresponding convex function is

fH∞
(C) := ∥C∥∞ with dom(fH∞

) = L∞. (12.15)

The H∞ norm ∥TK∥∞ can be interpreted as the worst-case system gain of the
closed-loop transfer operator TK : w 7→ z as a mapping from ℓ2 to ℓ2, i.e.,

∥TK∥∞ = sup
w∈ℓ2,
w ̸=0

∥TKw∥ℓ2
∥w∥ℓ2

= sup
∥w∥ℓ2≤1

∥TKw∥ℓ2 . (12.16)

Example 12.1.4 (H2p optimal control). For p ∈ [1,∞]

inf
K∈K

∥TK∥22p = inf
K∈K

∥T ∗
KTK∥p (12.17)

fH2p
(C) := ∥C∥p with dom(fH2p

) = Lp. (12.18)

Example 12.1.5 (Mixed H2/H∞ control).

inf
K∈K

∥TK∥22,

s.t. ∥TK∥∞ ≤ γ,
= inf

K∈K
tr(T ∗

KTK) +

0, ∥T ∗
KTK∥∞ ≤ γ2,

+∞, o.w.
(12.19)

fγ,H2/H∞
(C) := tr(C) +

0, ∥C∥∞ ≤ γ2,

+∞, o.w.,
(12.20)

with dom(fγ,H2/H∞
) = {C ∈ L∞ | ∥C∥∞ ≤ γ2}
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12.2 Examples: Distributionally Robust Control

Example 12.2.1 (Risk-sensitive control). The risk-sensitive control objective aims
to minimize an exponential cost, formulated below

inf
K∈K

γ log
(
Ew∼P◦

[
eγ

−1
w

∗T ∗
KTKw

])
, (12.21)

where γ > 0 is the risk parameter and P◦ is a nominal probability distribution
of the disturbances. The expectation above should be understood formally as the
time-averaged limit of finite-horizon risk-sensitive costs. The convex function
corresponding to this problem is given by

fγ,RS(C) := γ log
(
Ew∼P◦

[
eγ

−1
w

∗Cw
])

with dom(fγ,RS) = L∞. (12.22)

With the decreasing value of γ, The risk-sensitive objective resolves the gap between
smaller and larger cost values. It penalizes higher cost levels relatively more than the
smaller values as γ decreases. This essentially incentivizes the controller to be more
risk-averse to reduce the chances of yielding higher costs.

In the special case of the nominal distributionP◦ of disturbances forming a stationary
Gaussian process with auto-covariance operatorM◦ ≻ 0, the risk-sensitive objective
simplifies further to

inf
K∈K

−γ

2
logdet(I − 2γ−1T ∗

KTKM◦), (12.23)

where logdet(·) should be understood as tr(log(·)).

The corresponding convex function then becomes

fγ,RS(C) := −
γ

2
logdet(I − 2γ−1CM◦), (12.24)

with dom(fγ,RS) =
{
C ∈ L∞ | C ≺ γ

2
M−1

◦
}

.

Example 12.2.2 (KL distributionally robust control).

inf
K∈K ,

γ>2∥T ∗
KTKM◦∥∞

γr − γ

2
logdet(I − 2γ−1T ∗

KTKM◦) (12.25)

fKL(C) := inf
γ>2∥CM◦∥∞

γr − γ

2
logdet(I − 2γ−1CM◦), (12.26)

with dom(fKL) = L∞.

inf
K∈K

−γ logdet(I − γ−1T ∗
KTK) (12.27)
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Example 12.2.3 (Wasserstein distributionally robust control). When the ambi-
guity set of plausible probability distributions of disturbances is constructed as a
Wasserstein-2 ball, the distributionally robust controller can be obtained by solving
the following primal optimization problem:

inf
K∈K ,

γ>∥T ∗
KTK∥∞

γr2 + γ tr
[(
(I − γ−1T ∗

KTK)−1 − I
)
M◦

]
, (12.28)

whereM◦ ∈ L +
1 is the auto-covariance operator of the nominal disturbance process,

which is assumed to be weakly stationary, and γ is a Lagrange multiplier determined
by the desired radius of the Wasserstein-2 ball, r > 0. The corresponding convex
function for this optimization problem then becomes:

fW2
(C) := inf

γ>∥C∥∞
γr2 + γ tr

[(
(I − γ−1C)−1 − I

)
M◦

]
, (12.29)

with dom(fW2
) = L +

∞ . The suboptimal problem

inf
K∈K

γ tr
[
(I − γ−1T ∗

KTK)−1
]

(12.30)

The corresponding convex function

fγ,W2
:= γ tr

[
(I − γ−1C)−1

]
with dom(fγ,W2

) = {C ∈ L∞ | C ≺ γI} . (12.31)

Remark 12.2.4. Distributionally robust interpretation of problems of the type

sup
M∈M

V (M) (12.32)

where M ⊆ L1(S+) is a convex subset. This is analogous to coherent risk measures.
In fact, one can view this problem as a non-commutative generalization of coherent
risk measures.

Furthermore, the general setting

sup
M≽0

V (M)− f∗(M) (12.33)

is related to convex risk measures.

Remark 12.2.5 (Norm interpretation).

sup
M∈M

√
⟨T ∗

KTK,M⟩ (12.34)

is a norm for TK whenever M ∩ int(L1(S+)) ̸= ∅, that is, there exists a strictly
positive definite elementM≻ 0 of M .
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12.3 Proof of Strong Duality in Theorem 12.0.6
We need some technical results in order to prove the strong duality.

Lemma 12.3.1. Let f : L∞ → R satisfy Assumption 8.2.4. Then, we have that

inf
K∈K

f(T ∗
KTK) = inf

C∈L∞

f(C) + inf
K∈K

sup
M∈L1,
M≽0

⟨M, T ∗
KTK − C⟩. (12.35)

Proof. First, we invoke the monotonicity of f to express f(T ∗
KTK) as

f(T ∗
KTK) = inf

C∈L∞

f(C) s.t. C ≽ T ∗
KTK, (12.36)

= inf
C∈L∞

f(C) + sup
M∈L1,
M≽0

⟨M, T ∗
KTK − C⟩, (12.37)

whereM ≽ 0 is the Lagrange multiplier for the constraint C ≽ T ∗
KTK. ■

Lemma 12.3.2 (LDU Decomposition of Block Operators). Let H1 and H2 be
Hilbert spaces and Aij : Hi → Hj for i, j ∈ {1, 2} be bounded linear operators.
Consider the block operator

A :=

[
A11 A12

A21 A22

]
: H1 ⊕H2 →H1 ⊕H2 (12.38)

i. A is a bounded operator.

ii. If A11 has a bounded inverse, then A decomposes into three bounded block
operators L, D, and U as[
A11 A12

A21 A22

]
=

[
I1 0

A21A−1
11 I2

]
︸ ︷︷ ︸

L

[
A11 0

0 A22 −A21A−1
11A12

]
︸ ︷︷ ︸

D

[
I1 A−1

11A12

0 I2

]
︸ ︷︷ ︸

U

.

(12.39)

iii. SupposeA21 = A∗
12,A11 andA22 are self-adjoint, andA11 ≻ 0 with bounded

inverse. Then, A ≽ 0 (resp. A ≻ 0) if and only if the Schur complement is
positive-definite, i.e., A22 −A∗

12A−1
11A12 ≽ 0 (resp. A22 −A∗

12A−1
11A12 ≻ 0.)

Lemma 12.3.3. Consider the mapping F : H∞ → L +
∞ defined as F (K) = T ∗

KTK.
We can define its epigraph using the partial order over the operator algebra as follows

epi(F ) := {(K, C) ∈H∞ ×L∞ | F (K) = T ∗
KTK ≼ C} (12.40)

We have the following properties:
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i. (K, C) ∈ epi(F ) if and only if K ∈H∞, C ∈ L∞ and

[
I TK
T ∗
K C

]
≽ 0.

ii. epi(F ) is convex in H∞ ×L∞.

iii. epi(F ) is closed in H∞×L∞ when endowed with the product weak*-topology
σ(L∞,L1)× σ(H∞,L1/H

0
1 ).

Proof. For closedness, first use the fact that epi(F ) is convex set. Then, by the
Krein-Smulian theorem, the closedness of epi(F ) is equivalent to the closedness
of epi(F ) intersected with bounded sets Br with r > 0. Then, by Banach-Alaoglu,
epi(F )∩Br is weak*-compact. Since its predual is separable, the weak*-compactness
of bounded sets is equivalent to weak*-sequential compactness. Then, show that
for any weak*-convergent sequence in epi(F ) ∩Br, the converged point remains in
epi(F ) ∩Br. ■

Definition 12.3.4. Let χ : L∞ → R and V : L1 → R be two functions defined as

χ(C) := inf
K∈K

sup
M∈L1,
M≽0

⟨M, T ∗
KTK − C⟩, and V (M) := inf

K∈K
⟨M, T ∗

KTK⟩. (12.41)

We call V as the value function.

The following lemma asserts that χ is an indicator function of a convex subset.

Lemma 12.3.5. The following statements hold:

i. χ : L∞ → R is the indicator function of a set CH∞
⊂ L∞ defined as

CH∞
:= {C ∈ L∞ | ∃K ∈H∞, C ≽ T ∗

KTK}, (12.42)

namely, dom(χ) = CH∞
and it is exactly zero on its domain.

ii. The set CH∞
⊂ L +

∞ is non-empty, convex, w*-closed. In other words, χ is
proper, convex, w*-lower-semicontinuous, and monotonically decreasing.

iii. The Fenchel conjugateχ∗ : L1 → R satisfiesχ∗(M) =

−V (−M), ifM ≼ 0,

+∞, o.w.
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Proof. i. By the definition of the positive definite order, for any C ∈ L∞ and
K ∈H∞, we have that

sup
M∈L1,
M≽0

⟨M, T ∗
KTK − C⟩ =

0, if C ≽ T ∗
KTK,

+∞, o.w.
(12.43)

Therefore, χ(C) = 0 if there exists a K ∈ K such that C ≽ T ∗
KTK and

χ(C) = +∞ if no such K ∈ K exists. This makes χ an indicator function of
its domain dom(χ) = {C ∈ L∞ | ∃K ∈H∞, C ≽ T ∗

KTK}.

ii. (Convexity of CH∞
) Non-emptiness follows trivially since T ∗

KTK ∈ CH∞
for

any K ∈ H∞. Let λ ∈ [0, 1] and C0, C1 ∈ CH∞
. This means there exists

two causal and stable controllers K0,K1 ∈ H∞ such that T ∗
K0
TK0

≼ C0 and
T ∗
K1
TK1

≼ C1. Now, define Kλ := λK0 + (1− λ)K1, then

λC0 + (1− λ)C1 ≽ λT ∗
K0
TK0

+ (1− λ)T ∗
K1
TK1

≽ T ∗
Kλ
TKλ

, (12.44)

where the last inequality follows from the operator convexity of the mapping
K 7→ T ∗

KTK as shown in (??) for the proof of ??. Thus, λC0+(1−λ)C1 ∈ CH∞
.

(w*-closedness ofCH∞
) Step 1: Restricting to norm bounded sets: SinceCH∞

⊂
L +

∞ is convex, it isσ(L∞,L1)-closed if and only if the intersection CH∞
∩{C ∈

L∞ | ∥C∥∞ ≤ γ} is σ(L∞,L1)-closed for each γ > 0 by Krein–Šmulian
Theorem (??).

Step 2: Sequential Closure of Bounded Sets: Fix any γ > 0. The ∥.∥∞-ball
of size γ > 0 is σ(L∞,L1)-compact by Banach-Alaoglu Theorem (??).
Moreover, since the predual L1 is a separable space, the norm bounded
ball is sequentially compact, meaning every sequence in it has a convergent
subsequence. Therefore, the intersection CH∞

∩ {C ∈ L∞ | ∥C∥∞ ≤ γ}
is σ(L∞,L1)-closed if and only if every σ(L∞,L1)-convergent sequence
in it converges to a point in it. Concretely, let {Cn}n∈N be a sequence in
CH∞

∩ {C ∈ L∞ | ∥C∥∞ ≤ γ}, converging to a point C⋆ ∈ L∞ with
∥C⋆∥∞ ≤ γ in the σ(L∞,L1) sense. This means there exists a sequence of
causal and bounded controllers {Kn}n∈N ⊂H∞ such that T ∗

Kn
TKn

≼ Cn ≼ γI
and limn−→∞⟨M, Cn⟩ = ⟨M, C⋆⟩ for allM∈ L1.

Step 3: Uniform Boundedness of the Controllers: Notice that one can decom-
pose the closed-loop transfer operator as TK = T1KT2 + T3 = U∆K∇V∗ + T3
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where T1 = U∆ and T2 = ∇V∗ are inner-outer factorizations such that
∆,∆−1,∇,∇−1 ∈ RH ∞ outer operators and U ,V∗ ∈ RH ∞ are inner
operators such that U∗U = I and V∗V = I. We can bound the H∞-norm of
K above by the H∞-norm of TK as follows:

∥K∥∞ = ∥∆−1U∗U∆K∇V∗V∇−1∥∞, (12.45)

≤ ∥∆−1U∗∥∞∥V∇−1∥∞∥U∆K∇V∗∥∞, (12.46)

= ∥∆−1∥∞∥∇−1∥∞∥TK − T3∥∞, (12.47)

≤ ∥∆−1∥∞∥∇−1∥∞(∥TK∥∞ + ∥T3∥∞) (12.48)

Since supn∈N ∥TKn
∥∞ ≤

√
γ, the sequence {Kn}n∈N ⊂ H∞ is uniformly

norm bounded.

Step 4: Existence of a Viable Controller: By the Banach-Alaoglu Theorem
(??), there exists a subsequence {Knk

}k∈N ⊂H∞ which converges to a point
K⋆ ∈ H∞ under the σ(H∞, L1/H

0
1 ) topology, i.e., limk→∞⟨Knk

, Λ⟩ =
⟨K⋆, Λ⟩ for all Λ ∈ L1.

The proof is completed if T ∗
K⋆
TK⋆

≼ C⋆. By the Schur complement lemma
(Lemma 12.3.2), the condition T ∗

KTK ≼ C is equivalent to the positive-
definiteness of the following block operator:[

I TK
T ∗
K C

]
≽ 0. (12.49)

Therefore, we have that

sup
Λ∈L1
Λ≽0

−
〈[
I TK
T ∗
K C

]
,

[
Λ11 Λ12

Λ∗
12 Λ22

]〉
=

0, if T ∗
KTK ≼ C,

+∞, o.w.
(12.50)
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Using this fact, we obtain that

sup
Λ∈L1
Λ≽0

−
〈[
I TK⋆

T ∗
K⋆

C⋆

]
,

[
Λ11 Λ12

Λ∗
12 Λ22

]〉
(12.51)

= sup
Λ∈L1
Λ≽0

− tr(Λ11)− 2ℜ
{
⟨TK⋆

, Λ12⟩
}
− ⟨C⋆, Λ22⟩, (12.52)

(a)
= sup

Λ∈L1
Λ≽0

lim
k→∞
− tr(Λ11)− 2ℜ

{
⟨TKnk

, Λ12⟩
}
− ⟨Cnk

, Λ22⟩, (12.53)

(b)

≤ lim inf
k→∞

sup
Λ∈L1
Λ≽0

− tr(Λ11)− 2ℜ
{
⟨TKnk

, Λ12⟩
}
− ⟨Cnk

, Λ22⟩,

(12.54)

(c)
= lim inf

k→∞
sup
Λ∈L1
Λ≽0

−
〈[

I TKnk

T ∗
Knk

Cnk

]
,

[
Λ11 Λ12

Λ∗
12 Λ22

]〉
, (12.55)

(d)
= 0, (12.56)

where equality (a) follows from the weak*-convergence of sequences {Knk
}k∈N

and {Cnk
}k∈N, inequality (b) follows from the lim/sup inequality, equality (c)

follows from the fact that T ∗
Knk
TKnk

≼ Cnk
, and the equality (d) follows from

(12.50).

Thus, we conclude that CH∞
is weak*-closed. Hence, the indicator function χ

is proper, convex, and weak* lower-semicontinuous.

iii. By the definition of Fenchel conjugate, we have

χ∗(M) = sup
C∈L∞

⟨M, C⟩ − χ(C), (12.57)

= sup
C∈L∞

⟨M, C⟩ s.t. ∃K ∈ K , C ≽ T ∗
KTK, (12.58)

= sup
C∈L∞,
K∈K

⟨M, C⟩ s.t. C ≽ T ∗
KTK. (12.59)

WhenM ≼ 0, we have

χ∗(M) = sup
C∈L∞,
K∈K

−⟨−M, C⟩ s.t. C ≽ T ∗
KTK, (12.60)

= − inf
C∈L∞,
K∈K

⟨−M, C⟩ s.t. C ≽ T ∗
KTK, (12.61)

= − inf
K∈K

⟨−M, T ∗
KTK⟩ = −V (−M). (12.62)
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When the spectrum ofM has otherwise strictly positive elements, then C can
get arbitrarily large, yielding χ(M) = +∞.

■

We are now ready to prove Theorem 12.0.6.

Proof of Strong Duality in Theorem 12.0.6: By Lemma 12.3.1 and Lemma 12.3.5,
we can write the primal objective (P) as a minimization of the sum of two convex
functions over the cone of positive definite operators in L∞:

inf
K∈K

f(T ∗
KTK) = inf

C∈L∞

f(C) + χ(C). (12.63)

Since there exists K0 ∈ K and C0 ∈ L∞ such that C0 ≻ T ∗
K0
TK0

, then χ(C0) = 0.
Moreover, there is a neighborhood N0 ⊂ L∞ around C0 such that χ(C) = 0 for all
C ∈ N0 , hence χ is continuous at C0. Since C0 is in the domains of both f and χ,
and χ is continuous at C0, Fenchel-Rockafeller duality theorem [56, Thm. 4.1], [254,
Cor. 2.8.5] implies that the following strong duality holds:

inf
K∈K

f(T ∗
KTK) = inf

C∈L∞

f(C) + χ(C) = max
M∈L1

−χ∗(M)− f ∗(−M), (12.64)

and the maximum is attained at a pointM⋆ ∈ L1. Plugging in the conjugate of χ
derived in Lemma 12.3.5, we get

inf
K∈K

f(T ∗
KTK) = max

M∈L1,
M≼0

V (−M)− f ∗(−M), (12.65)

= max
M∈L1,
M≽0

V (M)− f ∗(M), (12.66)

= max
M∈L1,
M≽0

inf
K∈K

⟨M, T ∗
KTK⟩ − f ∗(M). (12.67)

■
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C h a p t e r 13

PRIMAL-DUAL OPTIMALITY CONDITIONS

In the preceding section, we derived the dual reformulation (D) of the primal optimal
control problem (P) and showed in Theorem 12.0.6 that the strong duality holds
under some regularity conditions. We also presented various example control
problems, both historically well-known and more recently studied, deriving their
dual reformulations.

Towards the ultimate goal of devising a systematic and practical control synthesis
paradigm for generalized control objectives, we aim to establish necessary and
sufficient conditions for the optimality of a controller, if it exists, in the primal
program (P) in this section. The primary utility of deriving the dual program lies in
enabling explicit was to perform the optimization over the controller K by instead
solving a simple M-weighted H2 control problem at the expense of solving an
additional optimization problem over the positive-definite dual variableM ≽ 0. In
particular, viewing the dual program (D) as a concave-convex zero-sum game between
a positive-definite dual variableM ≽ 0 and a causal controller K ∈ K , we show in
Theorem 13.0.1 that the optimal solutions to the primal and dual control problems
can readily be characterized as the saddle point of this game. The derivations rely on
two main technical tools: (i) the Wiener-Hopf method to derive the optimal controller
K in terms of the dual variableM, and (ii) Karush-Kuhn-Tucker (KKT) conditions
to derive the optimality conditions for the dual variableM in terms of the controller
K.

We devote the rest of this section to a detailed discussion of our approach and
revisiting the previously introduced example control problems to derive the optimal
controllers. It is worthwhile to note that although some of these controllers are
already well-known and have been derived several times using various meticulously
involved and specific techniques, our approach not only brings forth a novel and
systematic methodology that collectively subsumes all these problems and the specific
techniques in a single, unified framework, but it also enables deriving explicit forms
of optimal controllers of previously open problems, such as the mixed H2/H∞, as
well as novel control objectives, such as Hp-optimal control.

Theorem 13.0.1 (Optimality and Saddle Point Conditions).
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13.1 From Value Function to Wiener-Hopf Technique
Recall the strong duality (12.5) derived in Theorem 12.0.6:

inf
K∈K

f(T ∗
KTK) = max

M∈L1,
M≽0

inf
K∈K

⟨T ∗
KTK,M⟩︸ ︷︷ ︸

=:V (M)

−f ∗(M), (13.1)

where V : L1 → R is called the value function as defined in Definition 12.3.4.
While a positive-definite solution M⋆ ∈ L1 to the dual objective is guaranteed
to exist under the assumptions of Theorem 12.0.6, the same theorem does not
explicitly provide such existential guarantees for an optimal causal and stabilizing
LTI controller K⋆ ∈ K solving the primal control problem (P). Furthermore, we
ultimately wish to obtain a computationally feasible set of necessary and sufficient
conditions for its optimality in order to synthesize and deploy such a controller for
real-time implementation.

As a first step towards characterizing the optimality conditions, we study the
inner minimization in the dual control problem (13.1), namely the value function,
V (M), defined in Definition 12.3.4. As pointed out in ??, this objective is simply
a weighted H2 problem where the positive-definite weighting M ≽ 0 shapes
the spectrum of the closed-loop transfer operator TK : w 7→ z. Moreover, the
weight M ≽ 0 can be interpreted as an auto-covariance operator of a weakly
(aka. wide-sense) stationary random process under a mild regularity condition (i.e.,
Paley-Wiener-Szegő criterion), hence, elucidating and reinforcing the distributionally
robust and risk-aversive interpretations of the dual control problem in Remark 12.2.4
as well as the game-theoretic view presented earlier.

In the rest of this subsection, we first state some useful properties of the value
function V (M) in Lemma 13.1.1. Then, in Theorem 13.3.5, we obtain a closed-form
expression for a minimizing controller K ∈ K in terms of dual variableM using
the infamous Wiener-Hopf technique.

Lemma 13.1.1 (Properties of V ). The following holds: the function V : L1 → R is

i. proper, concave, upper-semicontinuous with the domain

dom(V ) = {M ∈ L1 | T2MT ∗
2 ≽ 0}, (13.2)

ii. positively homogeneous, i.e., V (λM) = λV (M) for anyM∈ L1 and λ ≥ 0,
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iii. strictly monotonically increasing, i.e., V (M1) < V (M2) wheneverM1 ≺
M2,

iv. superadditive, i.e., V (M1+M2) ≥ V (M1)+V (M2) for anyM1,M2 ∈ L1.

v. bounded above asV (M) ≤ ∥M∥1 inf
K∈K
∥TK∥2∞ for anyM∈ L1, and bounded

below as V (M) ≥ ∥M−1∥−1
∞ inf

K∈H∞

∥TK∥22 wheneverM ≽ 0.

Lemma 13.1.2 (Superdifferential of V (M)). The following properties about the
superdifferential of V hold:

i. has non-empty, weak*-closed, and convex superdifferential ∂V (M) ⊂ L +
∞ at

every interior pointM∈ ri∥·∥1(dom(V )) (wrt. norm topology).

ii. A bounded and positive definite operator G0 ∈ L∞ is a supergradient G0 ∈
∂V (M0) atM0 ∈ dom(V ) if and only ifG0 ∈ CH∞

and ⟨G0,M0⟩ = V (M0)

(equivalently, ⟨G0,M⟩ ≥ V (M) for all positive definite M ∈ L1, with
equality atM0).

iii. IfM0 ∈ dom(V ), then ∂V (λM0) = ∂V (M0) for any λ > 0.

Lemma 13.1.3 (V (M) is monotonic under transformation). LetM ∈ L n×n
1 be

positive definite and not exactly zero. Suppose M admits a canonical spectral
factorizationM = LL∗ with L ∈ H n×n

2 with rank(L) ≤ n being left-outer and
Let G ∈ ∂V (M) be a supergradient. Define the transformation τ :M→ L∗GL.
Then,

V (τ(M))

tr(M)
≥
(
V (M)

tr(M)

)2

. (13.3)

13.2 Inner-Outer and Spectral Factorizations

Definition 13.2.1 (Inner and Outer Operators [67, Ch. 7]). A bounded, causal
operator U ∈H n×m

∞ (resp. anti-causal operator V ∈ ∗H n×m
∞ ) with n ≥ m is called

inner (resp. co-inner) if U∗U = Im (resp. V∗V = Im).

A causal operator L ∈H n×m
p with n ≥ m (resp. n ≤ m) is called left-outer (resp.

right-outer) if there exists a causal and (marginally) stable operator G ∈H m×n (not
necessarily in Hp) such that GL = Im (resp. LG = In). Such an operator G is called
the left-inverse (resp. right-inverse) of L and denoted as L† := G. L ∈ H n×m

p is
simply called outer if it is both left- and right-outer with the same inverse and the
inverse is denoted as L−1.
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Lemma 13.2.2. Given L ∈H n×m
p with n ≤ m, the following statements hold:

i. L is right-outer if and only if the set LT n×1
+ is dense in H n×1

p [103, Thm.
10].

ii. If n = m, L is outer if and only if there exists H ∈ H n×n
1 such that

L = exp(H).

Theorem 13.2.3 (Inner-Outer Factorization ). For p ∈ [1,∞], let T ∈H n×m
p be a

causal operator.

i. If the left-absolute value |T |l := (T ∗T )
1
2 ∈ L m×m

p is non-singular (i.e.,
T (z) ∈ Cn×m is full column rank a.e. on z ∈ T with n ≥ m), then there exists
an inner operator U ∈H n×m

∞ and an outer operator ∆ ∈H m×m
p such that

T = U∆.

ii. If the right-absolute value |T |r := (T T ∗)
1
2 ∈ L n×n

p is non-singular (i.e.,
T (z) ∈ Cn×m is full row rank a.e. on z ∈ T with n ≤ m), then there exists a
co-inner operator V ∈ ∗H m×n

∞ and an outer operator ∇ ∈H n×n
p such that

T = ∇V∗.

Definition 13.2.4 (Paley-Wiener-Szegő Criterion). A strictly positive-definite Lau-
rent operator M ≻ 0 in L n×n

1 with the transfer matrix M(eȷω) ≻ 0 a.s. is an
auto-covariance operator of a weakly stationary stochastic process if it satisfies the
Paley-Wiener-Szegő criterion: The logarithm log(M) is in L1, i.e.,

1

2π

∫ π

−π

logdet(M(eȷω)) dω > −∞. (13.4)

The transfer matrix M(eȷω) ∈ Sn++ of such an auto-covariance operatorM∈ L n×n
1,++

is called a power spectral density.

Theorem 13.2.5 (Spectral Factorization[240, Thm. 7.13], [102, Thm. 9]). A
positive-definite operatorM ≽ 0 in L n×n

1 is an auto-covariance operator if and
only if it admits a left (or right) spectral factorizationM = LL∗ (resp. M = G∗G)
where

i. L ∈ H n×n
2 (resp. G ∈ H n×n

2 ) is a causal left (resp. right) spectral factor
with stable transfer matrix L(eȷω) (resp. G(eȷω)), and
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ii. det(L(∞)) ̸= 0 (resp. det(G(∞)) ̸= 0) so that L (resp. G) is invertible in
H n×n

2 , i.e., L−1 ∈H n×n
2 (resp. G−1 ∈H n×n

2 ).

In that case, the Paley-Wiener-Szegő Criterion is equivalent to

1

2π

∫ π

−π

logdet(M(eȷω)) dω = 2 log |det(L(∞))| = 2 log |det(G(∞))| > −∞.

(13.5)
The unique left (resp. right) spectral factor L (resp. G) with symmetric and strictly
positive-definite L(∞) ≻ 0 (resp. G(∞) ≻ 0) is called the left (resp. right)
canonical spectral factor.

Notice that the Paley-Wiener-Szegő Criterion is trivially satisfied under the sufficient
condition thatM ≽ αI for a positive scalar α > 0.

M = LRL∗ (13.6)

where R(z) = R ∈ Sn×n
++ for all z ∈ C and L,L−1 ∈ H n×n

2 such that L(∞) =

L−1(∞) = In and

1

2π

∫ π

−π

logdet(M(eȷω)) dω = logdet(R). (13.7)

13.3 Weighted-L2 Spaces and Wiener-Hopf Projection

Definition 13.3.1 (Weighted L2 and H2 Spaces). LetM ∈ L1 andM ≽ 0. We
call T ∈ L2,M if and only if TMT ∗ ∈ L1. Furthermore, T ∈H2,M iff it is causal
and T ∈ L2,M.

Lemma 13.3.2 (Properties of L2,M and H2,M [241, Lem. 4.1-4.2]). LetM∈ L1

satisfy the Paley-Wiener-Szegő conditions and letM = LL∗ be its canonical spectral
factorization.

i. The space L2,M is a Hilbert space with the inner product and norms defined
as

⟨T1, T2⟩M := tr(T1MT ∗
2 ), ∥T ∥M :=

√
tr(TMT ∗). (13.8)

ii. The space H2,M ⊂ L2,M is a sub-Hilbert space with the same inner product
and norm.

iii. T ∈ L2,M (resp. T ∈H2,M) if and only if T
√
M ∈ L2 (resp. T L ∈H2).
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iv. L∞ ⊂ L2,M and H∞ ⊂H2,M.

v. Rational functions RL ∞ (resp. RH ∞) are dense in L2,M (resp. H2,M)
wrt the ∥·∥M norm topology.

vi. ∥T ∥M ≤ ∥T ∥∞ tr(M)

Lemma 13.3.3 (Hilbert Projection Theorem ). Let (H, ∥·∥) be a Hilbert space. For
any vector x ∈ H and a closed convex subset C ⊆ H , there exists a unique point
z⋆ ∈ C such that ∥x− z⋆∥ ≤ ∥x− z∥ for all z ∈ C. In other words, the mapping
PC : H → C defined as

PC(x) = argmin
z∈C

∥x− z∥, (13.9)

is well-defined and unique.

Lemma 13.3.4 (Projection). Let M ∈ L1 be an auto-covariance operator with
canonical spectral factorizationM = LL∗. Given a non-causal bounded operator
K◦ ∈ L∞, consider its best bounded and causal H∞ approximation inM-weighted
L2,M norm:

dist2L2,M
(K◦,H∞) := inf

K∈K

{
∥K − K◦∥2M = tr ((K −K◦)M(K −K◦)

∗)
}

(13.10)
The following statements hold:

i. dist2L2,M
(K◦,H∞) = dist2L2,M

(K◦,H2,M) := min
K∈H2,M

∥K − K◦∥2M.

ii. The optimal distance is equal to dist2L2,M
(K◦,H2,M) = ∥{K◦L}−∥22 , which

is achieved by K⋆ := {K◦L}+ L−1 ∈H2,M.

iii. There exists a sequence {Kn} ⊂ RH ∞ such that Kn

H2,M−−−→ K⋆, namely,
lim
n→∞

∥KnL −K⋆L∥2 = 0 and lim
n→∞

∥Kn −K◦∥2M = dist2L2,M
(K◦,H∞).

iv. If M ≻ 0 and K◦ ∈ RH ∞, then the optimal solution is bounded, i.e.,
K⋆ ∈H∞.

Proof.

∥K − K◦∥2M = ∥K − K⋆ +K⋆ −K◦∥2M (13.11)

= ∥K − K⋆∥2M + ∥K⋆ −K◦∥2M, (13.12)

= ∥KL − {K◦L}+∥22 + V (M) (13.13)
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Step 1: Density of H∞. Since L ∈ H2 is outer, and {K◦L} ∈ H2, there exists a
sequence {Kn}n∈N ⊂H∞ such that

∥KnL − {K◦L}+∥2 → 0. (13.14)

Convergence to optimal value. This implies

∥Kn −K◦∥2M = ∥KnL − {K◦L}+∥22 + V (M)→ V (M) (13.15)

Boundedness. AsM≻ 0, 0 ≼M−1 ∈ L∞ and L−1 ∈ L∞ is outer. Therefore, for
any K ∈H∞

∥K − K◦∥2∞ ≤ ∥K −K◦∥22 = ∥(KL−K◦L)L−1∥22, (13.16)

≤ ∥KL −K◦L∥22 ∥L−1∥2∞ = ∥K − K◦∥2M ∥M−1∥∞.

(13.17)

Thus,

lim sup
n→∞

∥Kn −K◦∥2∞ ≤ ∥M−1∥∞ lim sup
n→∞

∥Kn −K◦∥2M = ∥M−1∥∞ V (M)

(13.18)
Moreover, for any K ∈H∞, we have

∥K∥∞ = ∥K − K◦ +K◦∥∞ ≤ ∥K −K◦∥∞ + ∥K◦∥∞, (13.19)

by triangle inequality. Thus,

lim sup
n→∞

∥Kn∥∞ ≤
√
∥M−1∥∞ V (M) + ∥K◦∥∞. (13.20)

By definition of lim sup, for any small enough ϵ > 0, there exists Nϵ ∈ N such that

sup
n≥Nϵ

∥Kn∥∞ ≤
√
∥M−1∥∞ V (M) + ∥K◦∥∞ + ϵ. (13.21)

In other words, the sequence {Kn}n≥Nϵ
is uniformly bounded. Since closed and

bounded set in H∞ are weak*-compact by Banach-Alaoglu theorem, there exists a
uniformly bounded subsequence {Knk

}k∈N and K∞ ∈H∞ such that Knk

w
∗

−→ K∞.

■

Theorem 13.3.5 (Wiener-Hopf Technique [120], [250], [251]). Without loss of
generality, let dz ≥ du and dw ≥ dy. Suppose T2MT ∗

2 for M ∈ L +
1 satisfies

Paley-Wiener-Szegő criterion in Definition 13.2.4. The value function V : L1 → R
defined as

V (M) ≜ inf
K∈K

⟨T ∗
KTK,M⟩ = tr(T ∗

KTKM), (13.22)
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admits an optimal solution K⋆ ∈H
du×dy

2,T2MT ∗
2

given by

K⋆ := ∆−1 {∆Knc∇L}+ L−1∇−1, (13.23)

where Knc ∈ L
du×dy

2,T2MT ∗
2

is the optimal non-causal controller as

Knc := −(T ∗
1 T1)−1T ∗

1 T3MT ∗
2 (T2MT ∗

2 )
−1, (13.24)

T1 = U∆ (resp. T2 = ∇V∗) is inner (resp. co-inner) factorization such that
T ∗
1 T1 = ∆∗∆ (resp. T2T ∗

2 = ∇∇∗) is left (resp. right) canonical spectral
factorization with ∆,∆−1 ∈ RH du×du

∞ (resp. ∇,∇−1 ∈ RH
dy×dy
∞ ) outer and

U = T1∆−1 ∈ RH dz×du
∞ (resp. V∗ = ∇−1T2 ∈ RH

dy×dw
∞ ) is inner (resp. co-

inner) with U∗U = Idu (resp. V∗V = Idy), and LL∗ := U∗MU is right-canonical
spectral factorization with L ∈H

dy×dy
2 outer.

Moreover, if T2MT ∗
2 ≻ 0 strictly positive, then K⋆ ∈ H

du×dy
2 , and ifM ∈ L∞,

then K⋆ ∈ BMOA ⊊
⋂

p≥1 H
du×dy
2p .

Proof. We recast the problem with unitary extensions of the inner and co-inner
factors so that only one block of a 2 × 2 matrix depends on the controller. The
minimization then reduces to an orthogonal projection in H2.

1. Inner / co-inner completions. From the left-canonical factorization T1 = U∆
we already have U ∈ RH dz×du

∞ inner (U∗U = Idu). Because dz≥ du there exists an
inner complement

Ũ ∈ RH dz×(dz−du)
∞ with U :=

[
U Ũ

]
=⇒ U∗U = U U∗ = Idz .

Likewise, the right-canonical factorization T2 = ∇V∗ gives the co-inner V∗ ∈
RH

dy×dw
∞ (V∗V = Idy ). Because dw≥ dy we can choose a co-inner complement Ṽ∗

so that
V :=

[
V Ṽ

]
satisfies V∗V = V V∗ = Idw ,

hence both U and V are unitary transfer matrices.

2. Four-block lifting of the closed loop. For a causal controller K set Q=∆K∇.
The standard Youla parameterization gives

TK = V QU∗ + T3.
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Introduce the lifted map

SK := V∗ TK U =

Q+ V∗T3U V∗T3 Ũ
Ṽ∗T3U Ṽ∗T3Ũ

 .

Because V and U are unitary,

V (M) = tr(T ∗
KTKM) = tr

(
S∗
KSK U

∗MU
)
.

3. Block-dispensational of the weight. Let M = GG∗ be the canonical H2

spectral factorization and factor U∗MU = LL∗ with L,L−1∈ H2 outer. A direct
algebra (Schur complement) shows

U∗MU =

[
LL∗ 0

0 M⊥

]
, M⊥ ⪰ 0, M⊥ independent of Q.

Consequently

V (M) =
∥∥ (Q+ V∗T3U)L

∥∥2
H2

+ tr
(
Ṽ∗T3Ũ M⊥ Ũ∗T ∗

3 Ṽ
)
,

and the second term no longer depends on Q.

4. Orthogonal projection in H2. Define

X := V∗T3MUL−∗ ∈ L
du×dy
2 .

The same norm estimate as in the original proof yields X ∈ L2, whence the
orthogonal decomposition X = {X}+ + {X}− (with {·}+ the orthogonal projector
onto H2). Choosing

Q⋆ = −{X}+ L−1 ∈ H
du×dy
2

forces the analytic part of (Q+ V∗T3U)L to vanish and attains the global minimum
of V (M).

5. Optimal controller and regularity. Since K = ∆−1Q∇−1 we finally obtain

K⋆ = ∆−1 {∆Knc∇L}+ L−1∇−1 = ∆−1
{
V∗T3MUL−∗ }

+
L−1∇−1 ∈H

du×dy

2,T2MT∗
2
.

If T2MT ∗
2 ≻ 0 then every factor is analytic and square integrable, hence K⋆ ∈H2.

WhenM∈ L∞, X ∈ BMOA, so K⋆ ∈ BMOA ⊊
⋂

p≥1 H2p.



301

This completes the proof. The four-block formulation shows that the inner comple-
ments Ũ , Ṽ merely embed the problem into a unitary environment; only the upper-left
block is optimization-relevant.

■

Theorem 13.3.6 (Sub-Nehari Problem). Let K◦ ∈ L∞ and C ∈ L∞ be self-adjoint.
Then, there exists a bounded and causal operator K ∈H∞ such that

(K −K◦)
∗(K −K◦) ≺ C (13.25)

if and only if there exists a J-canonical factorization[
I −K◦

−K∗
◦ −C +K∗

◦K◦

]
=

[
L∗

11 L∗
21

L∗
12 L∗

22

][
I 0

0 −I

][
L11 L12

L21 L22

]
, (13.26)

where [
L11 L12

L21 L22

]
,

[
L11 L12

L21 L22

]−1

, and L−1
11 (13.27)

are causal and bounded, and L21 is strictly causal. All such causal and bounded
operators are parameterized asver

K = (L11 − SL21)
−1(SL22 − L12) (13.28)

for any causal and strictly contractive operator S.

13.4 Finite-Dimensional Parametrization ofM⋆

We first obtain an equivalent condition of optimality ofM⋆.

Lemma 13.4.1. Define the anti-causal operator T := {∆K◦}−. The optimality
condition in (9.16) takes the equivalent form:

L∗
⋆L⋆ =

1

4

(
I+
√
I+4γ−1⋆ {T L⋆}∗−{T L⋆}−

)2

(13.29)

where γ⋆>0 is such that BW(L⋆L∗
⋆, I) = r.

Denoting N⋆ := L∗
⋆L⋆, there exists a one-to-one mapping between M⋆ = L⋆L∗

⋆

and N⋆ due to the uniqueness of the spectral factorization. Consequently, we
interchangeably refer to both N⋆ andM⋆ as the optimal solution. The following
theorem characterizes the optimal N⋆ in the frequency domain, implying a finite-
dimensional parametrization.
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Theorem 13.4.2. Denoting by T (z)=C(z−1I−A)−1B the transfer function of the
anti-causal operator T = {∆K◦}−, let f : (γ,Γ)∈R×Rdx×dw 7→ N return a pd
operator with a transfer function z∈T 7→ N(z) taking the form

1

4

(
I+

√
I+4γ−1Γ∗(z−1I−A)−∗

C
∗
C(z−1I−A)−1Γ

)2

,

where (A,B,C) are obtained from the state-space parameters of the system in
(9.2) (see Section 9.D). Then, the optimal solution N⋆=L∗

⋆L⋆ in (13.29) satisfies
N⋆ = f(γ⋆,Γ⋆) where

Γ⋆ :=
1

2π

∫ 2π

0

(I − eȷωA)−1BL⋆(e
ȷω)dω, (13.30)

and γ⋆>0 is such that BW(L⋆L∗
⋆, I) = r.

Notice in Theorem 13.4.2 that N⋆(z) involves the square root of a rational term. In
general, the square root does not preserve rationality. We thus get Corollary 13.4.3.

Corollary 13.4.3. The optimal W2-DR-RO controller, K⋆(z), and N⋆(z) are non-
rational. Thus, K⋆(z) does not admit a finite-dimensional state-space form.

Given the non-rationality of the controller K⋆(z), Kargin∗, Hajar∗, Malik∗, et al.
[123] proposes a fixed-point algorithm exploiting the finite-parametrization of the
controller. In the next section, we propose an alternative efficient optimization
algorithm, which, in contrast to the fixed-point algorithm, has provable convergence
guarantee to the saddle point (K⋆,N⋆).
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C h a p t e r 14

FREQUENCY-DOMAIN OPTIMIZATION TECHNIQUES

State-space controllers form the backbone of modern control engineering. Their
compact structure, interpretability, and ease of implementation make them partic-
ularly well-suited for real-time and embedded applications. Moreover, state-space
realizations admit highly efficient and scalable implementations, allowing them to be
deployed reliably in high-dimensional systems. As such, it is a natural and desirable
goal to design finite-dimensional state-space controllers for any real-world setting.

Nonetheless, as demonstrated in the preceding chapter, the optimal controllers arising
from many advanced control problems—particularly those involving distributional
robustness or multi-objective criteria—are often non-rational. That is, they do not
admit realizations as finite-dimensional state-space systems and are fundamentally
non-implementable in exact form with finite-memory. Consequently, the most viable
alternative is to seek a suboptimal controller of finite degree that offers provable
performance guarantees.

Concretely, we seek to synthesize a causal, finite-dimensional state-space controller
K̂ ∈ K of finite McMillan degree deg(K̂) = dK ∈ N specified by the realization

st+1 = AK̂st +BK̂yt,

ut = CK̂st +DK̂yt,
(14.1)

where st ∈ RdK denotes the internal state of the controller, and (AK̂, BK̂, CK̂, DK̂)

are its state-space parameters. Let dP := max(dx, du, dw, dy, dz) denote the effective
dimension of the plant model and J⋆ := infK∈K J(K) be the optimal achievable
performance.

A controller is said to be practically implementable if it satisfies a prescribed
degree bound dK , achieves a specified relative performance loss ε > 0, and can be
synthesized efficiently. We formalize this synthesis problem as follows:

Problem 14.0.1 (Practical Controller Design). Given a degree bound dK ∈ N and
a target relative performance gap εP > 0, develop an efficient algorithm to synthesize
a controller

K̂ ≡
[

AK̂ BK̂

CK̂ DK̂

]
∈ K ∩RH ∞ (14.2)
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with deg(K̂) ≤ dK and computable in time O(poly(dP , dK , ε
−1)), such that the

primal relative suboptimality gap satisfies

gapP (K̂) :=
J(K̂)− J⋆

J⋆
≤ εP . (14.3)

This design problem inherently reflects a three-way trade-off between performance
accuracy, controller complexity (i.e., degree), and computational complexity. To
make this trade-off explicit, we distinguish between two complementary problem
formulations:

• Fixed-Degree Design with Optimal Accuracy: Given a prescribed maximum
degree dK ∈ N, develop an algorithm that synthesizes the best-performing
rational controller of degree at most dK , i.e., solve:

inf
K̂∈K ∩RH ∞

J(K̂) s.t. deg(K̂) ≤ dK . (14.4)

• Fixed-Accuracy Design with Minimal Degree: Given a prescribed perfor-
mance accuracy εP > 0, develop an algorithm that synthesizes a rational
controller of minimal degree achieving the desired accuracy, i.e., solve:

inf
K̂∈K ∩RH ∞

deg(K̂) s.t.
J(K̂)− J⋆

J⋆
≤ εP . (14.5)

While it is desirable to directly solve either of these finite-dimensional optimization
problems rather than confronting the original infinite-dimensional optimal control
problem, both formulations (14.4) and (14.5) are computationally intractable as the
set of causal systems with bounded McMillan degree is highly non-convex, thereby
rendering the resulting optimization problems non-convex and NP-hard1.

Dual Perspective
A promising alternative to synthesizing practically implementable finite-degree
controllers is to approach it from the perspective of the dual optimization problem, as
developed in detail in the preceding chapters. Within the Wiener–Hopf framework, it
is known that a finite-degree dual solution M̂ induces a corresponding finite-degree
controller K̂. This observation motivates the strategy of searching for a finite-degree
suboptimal solution M̂ to the dual control problem, which comes similarly in two
flavors:

1The same prohibitive complexity issue persist even if one seeks to synthesize the closed-loop
system directly, as in System Level Synthesis, rather than designing the controller explicitly.
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• Fixed-Degree Dual Optimization:

sup
M̂∈RL

+
1

V (M̂)− f ∗(M̂) s.t. deg(M̂) ≤ dM , (14.6)

• Fixed-Accuracy Dual Optimization:

inf
M̂∈RL

+
1

deg(M̂) s.t.
J⋆ − (V (M̂)− f ∗(M̂))

J⋆
≤ εD, (14.7)

where dM ∈ N is a prescribed upper bound on the McMillan degree of the rational
dual variable M̂ ∈ RL +

1 and εD > 0 is a target bound on the dual suboptimality
gap.

Despite their appeal, these formulations remain non-convex and computationally
intractable for the same fundamental reason: the inherent non-convexity of the degree
constraint. As a result, directly searching over finite-degree rational power spectral
densities in the dual domain is no more tractable than in the primal setting.

Moreover, even if a viable solution M̂ ∈ RL +
1 with dual suboptimality certificate

εD is successfully obtained, and a finite-degree controller K̂ ∈ K ∩ RH ∞ is
constructed from M̂ via the Wiener-Hopf technique, one must still establish a
corresponding primal performance guarantee. In other words, it is necessary to
convert the dual suboptimality certificate εD into a primal suboptimality bound
εP for the synthesized controller M̂. This conversion is generally nontrivial, and
no universal theory guarantees its validity for arbitrary convex problems. Explicit
bounds on the primal gap can be derived in certain structured problems.

This begs the question:

How can we construct feasible and practically implementable finite-
degree state-space controllers K̂, as in (14.1), that satisfy a prescribed
suboptimality gap and a maximum allowable McMillan degree, in a
computationally tractable manner, for a given convex infinite-horizon
control problem with generalized performance objectives?

Our Approach: Optimize-then-Approximate
Although the inherent non-convexity and computational intractability of finite-degree
controller synthesis may initially appear insurmountable, the central thesis of this
dissertation is that the underlying infinite-dimensional optimization problem can,
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in fact, be approached in a computationally tractable manner. This tractability
stems from the convexity of the formulation and the finite-dimensional structure of
the plant dynamics. As detailed in the preceding chapters, the optimal solutions
to both the primal and dual formulations of the control problem can often be
characterized as a saddle point (K⋆,M⋆) through the Karush–Kuhn–Tucker (KKT)
conditions. Moreover, in a broad class of relevant problems, the dual optimal solution
M⋆(z) admits a closed-form, non-rational transfer function representation that is
parametrized by a finite-dimensional object uniquely identifying the solution.

This observation motivates a two-stage approach:

i. Numerically solve the infinite-dimensional optimization: Rather than
attempting to solve the finite-dimensional but inherently non-convex and
computationally intractable formulations in (14.4),(14.5),(14.6), and (14.7),
we instead pursue the solution of the original infinite-dimensional dual control
problem directly. While both the primal and dual decision variables (K,M) are
intrinsically infinite-dimensional operators, we exploit their transfer function
representations in the Fourier domain to develop high-fidelity and scalable
numerical optimization algorithms.

ii. Approximate the solution with a rational controller: Upon obtaining
a high-fidelity solution to the infinite-dimensional control problem, direct
implementation may still not be viable if the associated transfer function is
non-rational. In such cases, we proceed to construct a rational controller of
bounded McMillan degree that approximates the optimal infinite-dimensional
solution. This approximation must be carried out in a manner that ensures
theoretical guarantees on the resulting suboptimality, thereby enabling reliable
implementation without significant degradation in performance.

In this chapter, we focus exclusively on the first stage of the proposed framework: the
efficient computation of approximate solutions to infinite-dimensional optimization
problems. The second stage, namely, the approximation and realization of these
solutions via finite-dimensional rational controllers, is deferred to the subsequent
chapter.

Transfer Function Representation and Computational Amenability
The primary mathematical objects considered in this study are infinite-dimensional
operators that either represent linear time-invariant (LTI) systems—such as the
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controllerK, the closed-loop operatorTK, and related constructs—or encode statistical
correlations, such as the autocovariance operatorM of stochastic disturbances. This
representation offers a compact and powerful means of describing the global behavior
of dynamical systems and stochastic processes across the entire time horizon. Their
algebraic manipulation follows rules closely resembling those of finite-dimensional
matrix algebra, making them analytically tractable and conceptually familiar.

Crucially, these operators admit several equivalent representations, among which the
most computationally tractable is the transfer function (or Fourier) representation.
Specifically, any Laurent operator X ∈ Lp(V,W) admits an associated transfer
matrix function X ∈ Lp(T,B(V,W)) defined by its Fourier series:

X(eȷω) =
∑
t∈Z

X̂te
−ȷωt, (14.8)

where ω ∈ [−π, π). This representation provides a concrete object—namely, a
function defined on the unit circle T—that is well-suited for digital computation and
numerical optimization.

Although the time-domain (via Markov parameters (X̂t)t∈N), operator-theoretic (via
X ), and frequency-domain (via X(z)) formulations are all mathematically equivalent,
the transfer function representation is especially advantageous from a computational
standpoint. Many systems of practical interest exhibit spectra composed of simple or
structured components, such as those arising from first-order IIR or AR(1) processes,
which allows for an effective finite-dimensional representation, such as rational
functions.

Even in instances where the optimal transfer functions are inherently non-rational,
as in Wasserstein distributionally robust control and mixed H2/H∞ formulations,
it is often possible to express these functions through structured parametric forms
defined over finite-dimensional parameter spaces. These representations, while not
rational in the classical sense, nonetheless permit tractable evaluation, manipulation,
and optimization. Moreover, even in the absence of an explicit finite-dimensional
parametrization, a transfer function can still be effectively approximated by discretiz-
ing the frequency domain and storing a finite (albeit potentially large) set of spectral
samples on the unit circle. This discretized spectral representation retains sufficient
fidelity for many practical purposes and facilitates algorithmic implementation. As
such, the transfer function framework offers a particularly suitable foundation for
digital computation. In what follows, we shall develop efficient numerical algorithms
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that exploit the structural advantages of the transfer function representation to enable
tractable optimization in infinite-dimensional controller synthesis problems.

Chapter Overview
Whereas the preceding chapters established duality and optimality results in a general
abstract framework and subsequently applied these foundational master theorems to
derive explicit solutions for specific problem instances, the present chapter adopts
a complementary, bottom-up approach. This reversal is motivated by the intrinsic
difficulty of designing a universal algorithm that simultaneously exhibits all desirable
properties, such as efficiency, scalability, and robustness, across a broad class of
problems. In contrast, leveraging structural features unique to particular problem
settings often enables the design of more specialized and computationally efficient
algorithms. Accordingly, we begin by examining algorithmic strategies tailored to
specific subclasses of problems and culminate with a general-purpose framework
that integrates insights from these specialized cases.

In particular, Section 14.1 focuses on problems for which the optimal dual solution
M⋆(z) admits a finite-dimensional parametric transfer function representation. The
most favorable and practically relevant scenario occurs when this parametrization
permits the reformulation of the original infinite-dimensional convex program into
an equivalent finite-dimensional convex problem. Such reformulations significantly
reduce computational burden and allow for the direct application of standard convex
optimization techniques. Even when an exact finite-dimensional convex reformulation
is unavailable, the underlying parametric structure of M⋆(z) can still be exploited to
construct efficient algorithms, such as those based on fixed-point iterations. These
approaches reduce the computation of M⋆(z) to a finite-dimensional parameter
search constrained by optimality conditions.

The most technically challenging regime arises when the dual solution lacks a tractable
closed-form or parametric representation. In such instances, the discretization of
the transfer function spectrum becomes indispensable for practical computation.
Section 14.2 and Section 14.3 address these cases in the context of constrained
and unconstrained dual formulations, respectively. Beyond the inherent difficulties
posed by spectral discretization, an additional obstacle is the inapplicability of
standard first-order methods. The underlying optimization problems are typically
posed over Banach spaces, often endowed with weak topologies that do not admit a
natural metric structure. Consequently, classical convergence analyses grounded in
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notions such as strong convexity or Lipschitz continuity defined with respect to a
metric fail to apply. To address this, we introduce a class of provably convergent
and computationally tractable algorithms based on Bregman divergences. These
divergences serve as a more appropriate surrogate for metric-based notions, thereby
facilitating the development of convergence theory in this more general setting.

14.1 Algorithms Utilizing Finite-Dimensional Parametrization
In this section, we develop provably efficient algorithms for computing the optimal
dual solutionM⋆, in instances where it admits a closed-form and tractable parametric
representation in the Fourier domain. As a starting point, we recall the dual formu-
lation of the full-information Wasserstein-2 regret-optimal distributionally robust
control problem. Specifically, consider the setting with the nominal autocovariance
M◦ = I and the regularized γ-suboptimal form of this problem for γ > γRO:

max
M∈L

+
1 ,

M≽I

V (M)− γ tr
(
(
√
M− I)2

)
. (14.9)

As established in the preceding chapter, the optimal solutionM⋆ admits a canonical
spectral factorizationM⋆ = L⋆L∗

⋆ ∈ L +
∞ with a canonical factor L⋆ ∈H∞ whose

Fourier-domain representation satisfies the parametric form:

L⋆(e
ȷω)∗L⋆(e

ȷω) =

I +
√
I + 4γ−1Γ⊺

⋆(e
ȷωI−Alqr)

−1C
⊺
C(e−ȷωI−A⊺

lqr)
−1Γ⋆

2

2

,

for ω ∈ [−π, π), where Alqr := A − BuKlqr denotes the closed-loop transi-
tion matrix associated with the linear-quadratic regulator (LQR), and Klqr :=

(R + B⊺
uPBu)

−1B⊺
uPA is the optimal LQR feedback gain. The matrix C :=

−(R + B⊺
uPBu)

−1/2B⊺
u depends solely on the plant’s state-space data, and P =

dare(A,Bu, Q,R) is the unique positive semidefinite solution of the discrete-time
algebraic Riccati equation (DARE) associated with the LQR problem.

The optimal finite-dimensional parameter Γ⋆ ∈ Rdx×dw , which completely character-
izes the dual solution, is determined via the following integral involving the canonical
factor L⋆(e

ȷω):

Γ⋆ :=
1

2π

∫ π

−π

(I − eȷωA⊺
lqr)

−1A⊺
lqrPBwL⋆(e

ȷω) dω. (14.10)

As the spectral factorization M⋆ = L⋆L∗
⋆ is unique up to a constant unitary

transformation on the right, i.e., any alternative spectral factor takes the form
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L⋆(e
ȷω) 7→ L⋆(e

ȷω)U for a constant unitary matrix U , the corresponding optimal
parameter Γ⋆ is likewise unique up to the same unitary transformation on the left,
i.e., Γ⋆ 7→ Γ⋆U .

Since the optimal solution necessarily admits the aforementioned parametric form,
it becomes viable to reformulate the dual control problem by restricting the dual
decision variableM ∈ L +

1 to the subclass of operators whose canonical spectral
factor L(eȷω) conforms to this structure. Specifically, we consider the reformulated
problem:

max
M=LL∗∈L

+
1 ,

M≽I,
Γ∈Rdx×dw

V (M)− γ tr
(
(
√
M− I)2

)
,

subject to,

L(eȷω)∗L(eȷω)=

I+
√

I+4γ−1Γ⊺Ψ(eȷω)∗Ψ(eȷω)Γ

2

2

, ∀ω ∈ [−π, π)

(14.11)

where the strictly anti-causal transfer matrix Ψ(eȷω) := C(e−ȷωI−A⊺
lqr)

−1 determined
entirely by the plant’s state-space matrices. Crucially, this reformulation renders
the infinite-dimensional problem effectively finite-dimensional, as the dual variable
M ∈ L +

1 is fully characterized, up to a constant unitary transformation, by the
finite-dimensional parameter Γ ∈ Rdx×dw . What remains to be determined is whether
this equivalent finite-dimensional reformulation can be solved efficiently.

14.2 Algorithms for Dual Problems in Constrained Form
14.3 Algorithms for General Unconstrained Setting
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C h a p t e r 15

FINITE-DIMENSIONAL REALIZATION

The preceding section determined that the optimal solution, denoted as N⋆, is non-
rational and lacks a state-space representation. Nevertheless, Algorithm 4 introduced
in Section 9.4 can effectively approximate it in the frequency domain. Indeed, after
convergence, the algorithm returns the optimal finite parameter, Γ⋆, which can be
used to compute N⋆(z) at any arbitrary frequency using Theorem 13.4.2, and thus
K⋆(z) (see Algorithm 4 in Section 9.E). However, a state-space controller must be
devised for any practical real-time implementation.

This section introduces an efficient method to obtain state-space controllers approx-
imating the non-rational optimal controller. Instead of directly approximating the
controller itself, our method involves an initial step of approximating the power
spectrum N⋆(z) of the worst-case disturbance to minimize the H∞-norm of the
approximation error using positive rational functions. While problems involving
rational function approximation generally do not admit a convex formulation, we
show in Theorem 15.2.4 that approximating positive power spectra by a ratio of
positive fixed order polynomials can be cast as a convex feasibility problem. After
finding a rational approximation of N⋆(z), we compute a state-space controller
according to (9.16a). For the sake of simplicity, we focus on scalar disturbances, i.e.,
dw=1.

15.1 State-Space Models from Rational Power Spectra
As established in Theorem 9.3.2, the derivation of a optimal controller K⋆ is achieved
through the positive operator N⋆ = L∗

⋆L⋆ using the Wiener-Hopf technique. Specifi-
cally, we have K⋆ = KH2

+∆−1 {{∆K◦}−L⋆}+ L−1⋆ L−1⋆ . Since other controllers of
interest, including H2, H∞, and RO, can all be formulated this way, we focus on
obtaining approximations to positive power spectra.

It is worth noting that a positive and symmetric rational approximation N̂(z) of order
m ∈ N can be represented as a ratio N̂(z) = P (z)/Q(z) of two positive symmetric
polynomials P (z) = p0 +

∑m
k=1 pk(z

k + z−k), and Q(z) = q0 +
∑m

k=1 qk(z
k + z−k).

When such P (z), Q(z) exist, we can obtain a rational spectral factorization of N̂(z)

by obtaining spectral factorization for P (z), and Q(z).
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Finally, we end this section by stating an exact characterization of positive trig.
polynomials. While verifying the positivity condition for general functions might
pose challenges, the convex cone of positive symmetric trigonometric polynomials,
Tm,+, possess a characterization through a linear matrix inequality (LMI), as outlined
below:

Lemma 15.1.1 (Trace parametrization of Tm,+ [55, Thm. 2.3]). For k=[−m,m],
let Θk ∈ R(m+1)×(m+1) be the primitive Toeplitz matrix with ones on the kth diagonal
and zeros everywhere else. Then, P (z) = p0 +

∑m
k=1 pk(z

k + z−k) > 0 if and only
if there exists a real positive definite matrix P ∈ Sm+1

+ such that

pk = tr(PΘk), k = 0, . . . ,m. (15.1)

According to Lemma 15.1.1, any positive trig. polynomial of order at most m can
be expressed (non-uniquely) as P (z) =

∑r
k=−r tr(PΘk)z

−1 = tr (PΘ(z)). Here,
Θ(z) :=

∑r
k=−r Θkz

−1.

15.2 Rational Approximation using H∞-norm
In this context, we present a novel and efficient approach for deriving rational
approximations of non-rational power spectra. Our method bears similarities to
the flexible uniform rational approximation approach described in [207], which
approximates a function with a rational form while imposing the positivity of the
denominator of the rational form as a constraint. Our method uses H∞-norm as
criteria to address the approximation error effectively. First, consider the following
problem:

Problem 15.2.1 (Rational approximation via H∞-norm minimization). Given a
positive spectrum N , find the best rational approximation of order at most m ∈ N
with respect to H∞ norm, i.e.,

inf
P,Q∈Tm,+

∥P/Q−N∥∞ s.t. tr(Q) = 1 (15.2)

Note that the constraint tr(Q)=1, equivalent to q0=1, eliminates redundancy in the
problem since the fraction P/Q is scale invariant.

While the objective function in Equation (15.2) is convex with respect to P and Q
individually, it is not jointly convex in (P ,Q). In this form, Problem 15.2.1 is not
amenable to standard convex optimization tools.
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(a) The frequency domain representation ofN for r = 0.01, 1, 3 for system [AC15].
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(b) The worst-case expected regret of different controllers for the system [AC15].

Figure 15.1: Variation ofN with r and the performance of the W2-DR-RO controller
versus the H2,H∞, and RO controller.

To circumvent this issue, we instead consider the sublevel sets of the objective
function in Equation (15.2).

Definition 15.2.2. For a given ϵ > 0 approximation bound, the ϵ-sublevel set of
Problem 15.2.1 is defined as

Sϵ :={(P ,Q) | ∥P/Q−N∥∞≤ϵ, tr(Q)=1} .

By applying the definition of H∞-norm, we have that

∥P/Q−N∥∞=max
z∈T
|P (z)/Q(z)−N(z)| ≤ ϵ

⇐⇒
{
P (z)−(N(z)+ϵ)Q(z)≤0,

P (z)−(N(z)−ϵ)Q(z)≥0,
(15.3)
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where the last set of inequalities hold for all z ∈ T. Notice that the inequalities in
Equation (15.3) and the positivity constraints on P ,Q are jointly affine in (P ,Q).
Moreover, the equation tr(Q) = 1 is an affine equality constraint. Therefore, we
have the following claim.

Lemma 15.2.3. The set Sϵ is jointly convex in (P ,Q).

Unlike its non-convex optimization counterpart in Problem 15.2.1, a membership
oracle for the convex set Sϵ offers a means to obtain accurate rational approximations
for non-rational functions. According to Lemma 15.1.1, the positive trig. polynomials
(P ,Q) ∈ Sϵ can be parameterized by psd matrices P and Q. This allows the equality
constraint tr(Q) and the affine inequalities in (15.3) to be expressed as Linear Matrix
Inequalities (LMIs) in terms of P and Q. The resulting theorem characterizes the
ϵ-sublevel sets.

Theorem 15.2.4 (Feasibility of Sϵ). Let ϵ>0 be a given accuracy level, and m ∈ N
is a fixed order. The trig. polynomials P and Q of order m belong to the ϵ-sublevel
set, (P ,Q) ∈ Sϵ if and only if there exists P,Q ∈ Sm+1

+ such that tr (Q) = 1 and
for all z ∈ T,

1) tr (PΘ(z))−(N(z)+ϵ) tr (QΘ(z))≤0, (15.4)

2) tr (PΘ(z))−(N(z)−ϵ) tr (QΘ(z))≥0. (15.5)

The sole limitation in this approach arises from the fact that for a non-rational N(z),
the set of infinitely many inequalities in (15.3) cannot be precisely characterized
by a finite number of constraints, as seen in the trace parametrization of positive
polynomials. To overcome this challenge, one can address the inequalities in (15.3)
solely for a finite set of frequencies, such as TN = {ej2πn/N | n = 0, . . . , N − 1}
for N ≫ m. While this introduces an approximation, the method’s accuracy
can be enhanced arbitrarily by increasing the frequency samples. By taking this
approach, the problem of rational function approximation can be reformulated as a
convex feasibility problem involving LMIs and a finite number of affine (in)equality
constraints.

It is crucial to note that our algorithm can be used in the following two operational
modes. These modes highlight the algorithm’s adaptability for the given two use
cases.
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Figure 15.2: The control costs of different DR controllers under (a) white noise and
(b) worst disturbance for W2-DR-RO in infinite horizon, for system [AC15]. The
finite-horizon controllers are re-applied every s = 30 steps. The infinite horizon
W2-DR-RO controller achieves the lowest average cost compared to the finite-horizon
controllers.

1. Best Precision for a given degree By adjusting the parameter ϵ, which signifies
our tolerance for deviations from M(ejw), we can refine the approximation’s
accuracy. This method is particularly valuable when finding the best possible
polynomial representation of M(ejw) for a given degree.

2. Lowest Degree for a given precision In contrast, we can ask for the lowest
degree polynomial, which achieves a certain precision level ϵ. This mode is
advantageous when the priority is to minimize computational overhead or when
we need a simpler polynomial approximation, as long as the approximation
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Figure 15.3: The control costs of different DR controllers under (a) worst disturbances
for W2-DR-RO in finite horizon and (b) worst disturbances for DR-LQR in finite
horizon, for system [AC15]. The finite-horizon controllers are re-applied every
s = 30 steps. Despite being designed to minimize the cost under specific disturbances,
the finite horizon DR controllers are outperformed by the infinite horizon W2-DR-
RO controller.

remains within acceptable accuracy bounds

15.3 Obtaining State-Space Controllers
Note that given the polynomial z-spectra, we require its spectral factorization to
obtain the state-space controller that approximates the W2-DR-RO controller. The
following Lemma introduces a simple way to obtain such an approximation

Lemma 15.3.1 (Canonical factor of polynomial z-spectra [199, Lem. 1]). Consider
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a Laurent polynomial of degree m, P (z) =
∑m

k=−m pkz
−k, with pk = p−k ∈ R, such

that P (z) > 0. Then, there exists a canonical factor L(z) =
∑m

k=0 ℓkz
−k such that

P (z) = |L(z)|2 and L(z) has all of its root in T.

Using Lemma 15.3.1, we can compute spectral factors by factorizing the symmetric
positive polynomials and multiplying all the factors with stable roots together.
Consequently, this rational spectral factor enables the derivation of a rational
controller, denoted as K(z) (refer to Section 15.3).

Now we present the W2-DR-RO controller in state-space form.

Lemma 15.3.2. Let L̃(z) be the rational factor of the spectral factorization Ñ(z) =

L̃(z)∗L̃(z)=P (z)/Q(z) of a degree m rational approximation P (z)/Q(z). The con-
troller obtained from L̃(z) using (9.16), i.e.,K(z)=KH2

(z)+∆(z)−1
{
{∆(z)K◦(z)}−L̃(z)

}
+
L̃(z)−1

is rational and can be realized as a state-space controller as follows:

e(t+ 1) = F̃ e(t) + G̃w(t),

u(t) = H̃e(t) + J̃w(t))
(15.6)

where et is the controller state, and (F̃ , G̃, H̃, J̃) are determined from (A,Bu, Bw)

and L̃(z).
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√
T ) regret in linear quadratic control,”

in Proceedings of Thirty Fifth Conference on Learning Theory, P.-L. Loh
and M. Raginsky, Eds., ser. Proceedings of Machine Learning Research,
vol. 178, PMLR, Jul. 2022, pp. 3235–3284. [Online]. Available: https:
//proceedings.mlr.press/v178/kargin22a.html,

[127] S. Kassam and H. Poor, “Robust techniques for signal processing: A survey,”
Proceedings of the IEEE, vol. 73, no. 3, pp. 433–481, 1985, issn: 0018-
9219. doi: 10.1109/PROC.1985.13167. [Online]. Available: http:
//ieeexplore.ieee.org/document/1457435/ (visited on
05/17/2024).

[128] S. A. Kassam and T. L. Lim, “Robust Wiener filters,” en, Journal of
the Franklin Institute, vol. 304, no. 4-5, pp. 171–185, Oct. 1977, issn:
00160032. doi: 10.1016/0016-0032(77)90011-4. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/
0016003277900114 (visited on 05/17/2024).

[129] B. P. Kellerhals, Financial Pricing Models in Continuous Time and Kalman
Filtering (Lecture Notes in Economics and Mathematical Systems), G. Fandel,
W. Trockel, C. D. Aliprantis, and D. Kovenock, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, vol. 506, isbn: 978-3-540-42364-5 978-
3-662-21901-0. doi: 10.1007/978- 3- 662- 21901- 0. [Online].
Available: http://link.springer.com/10.1007/978-3-662-
21901-0 (visited on 05/18/2024).

[130] P. P. Khargonekar and M. A. Rotea, “Mixed h/sub 2//h/sub infinity/control:
A convex optimization approach,” IEEE Transactions on Automatic Control,
vol. 36, no. 7, pp. 824–837, 1991.

[131] K. Kim and I. Yang, “Distributional robustness in minimax linear quadratic
control with wasserstein distance,” SIAM Journal on Control and Optimiza-
tion, vol. 61, no. 2, pp. 458–483, 2023. doi: 10.1137/22M1494105.

https://proceedings.mlr.press/v235/kargin24a.html
https://proceedings.mlr.press/v235/kargin24a.html
https://proceedings.mlr.press/v242/kargin24a.html
https://proceedings.mlr.press/v242/kargin24a.html
https://proceedings.mlr.press/v178/kargin22a.html
https://proceedings.mlr.press/v178/kargin22a.html
https://doi.org/10.1109/PROC.1985.13167
http://ieeexplore.ieee.org/document/1457435/
http://ieeexplore.ieee.org/document/1457435/
https://doi.org/10.1016/0016-0032(77)90011-4
https://linkinghub.elsevier.com/retrieve/pii/0016003277900114
https://linkinghub.elsevier.com/retrieve/pii/0016003277900114
https://doi.org/10.1007/978-3-662-21901-0
http://link.springer.com/10.1007/978-3-662-21901-0
http://link.springer.com/10.1007/978-3-662-21901-0
https://doi.org/10.1137/22M1494105


331

eprint: https://doi.org/10.1137/22M1494105. [Online]. Avail-
able: https://doi.org/10.1137/22M1494105.

[132] A. N. Kolmogorov, “Sur l’interpolation et extrapolation des suites station-
naires,” CR Acad. Sci, vol. 208, no. S 2043, 1939.

[133] A. Kolmogorov, “On the Shannon theory of information transmission in the
case of continuous signals,” IRE Transactions on Information Theory, vol. 2,
no. 4, pp. 102–108, Dec. 1956.

[134] D. Kuhn, P. M. Esfahani, V. A. Nguyen, and S. Shafieezadeh-Abadeh,
“Wasserstein distributionally robust optimization: Theory and applications in
machine learning,” in Operations research & management science in the age
of analytics, Informs, 2019, pp. 130–166.

[135] S. Lacoste-Julien and M. Jaggi, An Affine Invariant Linear Convergence
Analysis for Frank-Wolfe Algorithms, arXiv:1312.7864 [math], Jan. 2014.
[Online]. Available: http://arxiv.org/abs/1312.7864 (visited
on 05/05/2024).

[136] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar, “Logarithmic
regret bound in partially observable linear dynamical systems,” Advances in
Neural Information Processing Systems, vol. 33, pp. 20 876–20 888, 2020.

[137] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar, “Regret
minimization in partially observable linear quadratic control,” arXiv preprint
arXiv:2002.00082, 2020.

[138] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar, “Adaptive
control and regret minimization in linear quadratic gaussian (lqg) setting,” in
2021 American Control Conference (ACC), IEEE, 2021, pp. 2517–2522.

[139] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar, “Finite-
time system identification and adaptive control in autoregressive exogenous
systems,” in Learning for Dynamics and Control, PMLR, 2021, pp. 967–979.

[140] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar, “Reinforcement
learning with fast stabilization in linear dynamical systems,” in International
Conference on Artificial Intelligence and Statistics, PMLR, 2022, pp. 5354–
5390.

[141] A. Lapidoth, “Nearest neighbor decoding for additive non-gaussian noise
channels,” IEEE Transactions on Information Theory, vol. 42, no. 5, pp. 1520–
1529, 1996.

[142] A. Lapidoth and P. Narayan, “Reliable communication under channel uncer-
tainty,” IEEE transactions on Information Theory, vol. 44, no. 6, pp. 2148–
2177, 1998.

https://doi.org/10.1137/22M1494105
https://doi.org/10.1137/22M1494105
http://arxiv.org/abs/1312.7864


332

[143] E. Lefferts, F. Markley, and M. Shuster, “Kalman Filtering for Spacecraft
Attitude Estimation,” en, Journal of Guidance, Control, and Dynamics,
vol. 5, no. 5, pp. 417–429, Sep. 1982, issn: 0731-5090, 1533-3884. doi:
10.2514/3.56190. [Online]. Available: https://arc.aiaa.org/
doi/10.2514/3.56190 (visited on 05/18/2024).

[144] E. Lei, H. Hassani, and S. S. Bidokhti, “Out-of-distribution robustness in
deep learning compression,” arXiv preprint arXiv:2110.07007, 2021.

[145] F. Leibfritz and W. Lipinski, “Description of the benchmark examples in
compleib 1.0,” Dept. Math, Univ. Trier, Germany, vol. 32, 2003.

[146] B. Levy and R. Nikoukhah, “Robust Least-Squares Estimation With a Relative
Entropy Constraint,” en, IEEE Transactions on Information Theory, vol. 50,
no. 1, pp. 89–104, Jan. 2004, issn: 0018-9448. doi: 10.1109/TIT.2003.
821992. [Online]. Available: http://ieeexplore.ieee.org/
document/1262619/ (visited on 05/17/2024).

[147] B. C. Levy and R. Nikoukhah, “Robust State Space Filtering Under Incre-
mental Model Perturbations Subject to a Relative Entropy Tolerance,” IEEE
Transactions on Automatic Control, vol. 58, no. 3, pp. 682–695, Mar. 2013,
issn: 0018-9286, 1558-2523. doi: 10.1109/TAC.2012.2219952.
[Online]. Available: http://ieeexplore.ieee.org/document/
6308696/ (visited on 05/10/2024).

[148] H. LI, S. Sugasawa, and S. Katayama, “Adaptively robust and sparse $k$-
means clustering,” Transactions on Machine Learning Research, 2024, issn:
2835-8856. [Online]. Available: https://openreview.net/forum?
id=EhC84fT2yA.

[149] R. Liu, G. Shi, and P. Tokekar, “Data-driven distributionally robust optimal
control with state-dependent noise,” in 2023 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2023, pp. 9986–9991. doi:
10.1109/IROS55552.2023.10342392.

[150] T. Liu, Y. Lu, B. Zhu, and H. Zhao, “Clustering High-Dimensional Data
via Feature Selection,” en, Biometrics, vol. 79, no. 2, pp. 940–950, Jun.
2023, issn: 0006-341X, 1541-0420. doi: 10.1111/biom.13665. [On-
line]. Available: https://academic.oup.com/biometrics/
article/79/2/940-950/7513996 (visited on 02/06/2025).

[151] Y. Liu, L. Zhu, M. Yamada, and Y. Yang, “Semantic Correspondence as an
Optimal Transport Problem,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, Jun. 2020,
pp. 4462–4471, isbn: 978-1-72817-168-5. doi: 10.1109/CVPR42600.
2020.00452. [Online]. Available: https://ieeexplore.ieee.
org/document/9156442/ (visited on 05/19/2024).

[152] S. Lloyd, “Least squares quantization in PCM,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, Mar. 1982.

https://doi.org/10.2514/3.56190
https://arc.aiaa.org/doi/10.2514/3.56190
https://arc.aiaa.org/doi/10.2514/3.56190
https://doi.org/10.1109/TIT.2003.821992
https://doi.org/10.1109/TIT.2003.821992
http://ieeexplore.ieee.org/document/1262619/
http://ieeexplore.ieee.org/document/1262619/
https://doi.org/10.1109/TAC.2012.2219952
http://ieeexplore.ieee.org/document/6308696/
http://ieeexplore.ieee.org/document/6308696/
https://openreview.net/forum?id=EhC84fT2yA
https://openreview.net/forum?id=EhC84fT2yA
https://doi.org/10.1109/IROS55552.2023.10342392
https://doi.org/10.1111/biom.13665
https://academic.oup.com/biometrics/article/79/2/940-950/7513996
https://academic.oup.com/biometrics/article/79/2/940-950/7513996
https://doi.org/10.1109/CVPR42600.2020.00452
https://doi.org/10.1109/CVPR42600.2020.00452
https://ieeexplore.ieee.org/document/9156442/
https://ieeexplore.ieee.org/document/9156442/


333

[153] K. Lotidis, N. Bambos, J. Blanchet, and J. Li, “Wasserstein Distributionally
Robust Linear-Quadratic Estimation under Martingale Constraints,” in Pro-
ceedings of The 26th International Conference on Artificial Intelligence and
Statistics, F. Ruiz, J. Dy, and J.-W. van de Meent, Eds., ser. Proceedings of
Machine Learning Research, vol. 206, PMLR, Apr. 2023, pp. 8629–8644.
[Online]. Available: https://proceedings.mlr.press/v206/
lotidis23a.html.

[154] S. Loyka and C. D. Charalambous, “A general formula for compound channel
capacity,” IEEE Transactions on Information Theory, vol. 62, no. 7, pp. 3971–
3991, 2016.

[155] D. J. MacKay, “Fountain codes,” IEE Proceedings-Communications, vol. 152,
no. 6, pp. 1062–1068, 2005.

[156] J. MacQueen et al., “Some methods for classification and analysis of mul-
tivariate observations,” in Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Oakland, CA, USA, vol. 1-14, 1967,
pp. 281–297.

[157] V. Malik, T. Kargin, V. Kostina, and B. Hassibi, “A Distributionally Ro-
bust Approach to Shannon Limits using the Wasserstein Distance,” in
2024 IEEE International Symposium on Information Theory (ISIT), Athens,
Greece: IEEE, Jul. 2024, pp. 861–866, isbn: 9798350382846. doi: 10.
1109/ISIT57864.2024.10619597. [Online]. Available: https:
//ieeexplore.ieee.org/document/10619597/,

[158] V. Malik∗, T. Kargin∗, J. Hajar, and B. Hassibi, “Optimal infinite-horizon
mixed H2/H∞ control,” in 2024 60th Annual Allerton Conference on
Communication, Control, and Computing, 2024, pp. 1–8. doi: 10.1109/
Allerton63246.2024.10735276,

[159] H. Mania, S. Tu, and B. Recht, “Certainty equivalent control of lqr is efficient,”
arXiv preprint arXiv:1902.07826, 2019.

[160] K. N. Markelle Kelly Rachel Longjohn, The UCI machine learning repository.
[Online]. Available: https://archive.ics.uci.edu.

[161] A. Martin, L. Furieri, F. Dorfler, J. Lygeros, and G. Ferrari-Trecate, “Safe con-
trol with minimal regret,” in Learning for Dynamics and Control Conference,
PMLR, 2022, pp. 726–738.

[162] D. Martinelli, A. Martin, G. Ferrari-Trecate, and L. Furieri, Closing the
Gap to Quadratic Invariance: A Regret Minimization Approach to Optimal
Distributed Control, arXiv:2311.02068 [cs, eess], Nov. 2023. [Online].
Available: http://arxiv.org/abs/2311.02068 (visited on
11/15/2023).

[163] J. Max, “Quantizing for minimum distortion,” IRE Transactions on Informa-
tion Theory, vol. 6, no. 1, pp. 7–12, Mar. 1960.

https://proceedings.mlr.press/v206/lotidis23a.html
https://proceedings.mlr.press/v206/lotidis23a.html
https://doi.org/10.1109/ISIT57864.2024.10619597
https://doi.org/10.1109/ISIT57864.2024.10619597
https://ieeexplore.ieee.org/document/10619597/
https://ieeexplore.ieee.org/document/10619597/
https://doi.org/10.1109/Allerton63246.2024.10735276
https://doi.org/10.1109/Allerton63246.2024.10735276
https://archive.ics.uci.edu
http://arxiv.org/abs/2311.02068


334

[164] McKinsey Center for Future Mobility, “Autonomous driving’s future: Con-
venient and connected,” McKinsey & Company, Tech. Rep., Jan. 2023.
[Online]. Available: https://www.mckinsey.com/industries/
automotive-and-assembly/our-insights/autonomous-
drivings-future-convenient-and-connected.

[165] A. Megretski, “On the order of optimal controllers in the mixed H-2/H-
infinity control,” in Proceedings of 1994 33rd IEEE Conference on Decision
and Control, IEEE, vol. 4, 1994, pp. 3173–3174.

[166] P. Mohajerin Esfahani and D. Kuhn, “Data-driven distributionally robust opti-
mization using the Wasserstein metric: Performance guarantees and tractable
reformulations,” en, Mathematical Programming, vol. 171, no. 1-2, pp. 115–
166, Sep. 2018, issn: 0025-5610, 1436-4646. doi: 10.1007/s10107-
017-1172-1. [Online]. Available: http://link.springer.com/
10.1007/s10107-017-1172-1 (visited on 12/11/2023).

[167] D. Mustafa and K. Glover, “Controllers which satisfy a closed-loop h/sup
infinity /-norm bound and maximize an entropy integral,” in Proceedings of
the 27th IEEE Conference on Decision and Control, 1988, 959–964 vol.2.
doi: 10.1109/CDC.1988.194456.

[168] K. Nagpal and P. Khargonekar, “Filtering and smoothing in an H/sup infinity /
setting,” IEEE Transactions on Automatic Control, vol. 36, no. 2, pp. 152–166,
Feb. 1991, issn: 00189286. doi: 10.1109/9.67291. [Online]. Available:
http://ieeexplore.ieee.org/document/67291/ (visited on
05/17/2024).

[169] National Highway Traffic Safety Administration, “Incident Reporting for
Automated Driving Systems (ADS) and Level 2 Advanced Driver Assistance
Systems (ADAS),” United States Department of Transportation, Washington,
DC, Standing General Order, Jan. 2021. [Online]. Available: https://
www.nhtsa.gov/laws-regulations/standing-general-
order-crash-reporting.

[170] National Transportation Safety Board, “Collision Between Vehicle Con-
trolled by Developmental Automated Driving System and Pedestrian, Tempe,
Arizona, March 18, 2018,” Washington, DC, Highway Accident Report
NTSB/HAS-19/03, Nov. 2019. [Online]. Available: https://www.ntsb.
gov/investigations/Pages/HWY18MH010.aspx.

[171] V. A. Nguyen, S. Shafieezadeh-Abadeh, D. Kuhn, and P. M. Esfahani, Bridg-
ing Bayesian and Minimax Mean Square Error Estimation via Wasserstein
Distributionally Robust Optimization, arXiv:1911.03539 [cs, math, stat], Jan.
2021. [Online]. Available: http://arxiv.org/abs/1911.03539
(visited on 09/08/2023).

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-drivings-future-convenient-and-connected
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-drivings-future-convenient-and-connected
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/autonomous-drivings-future-convenient-and-connected
https://doi.org/10.1007/s10107-017-1172-1
https://doi.org/10.1007/s10107-017-1172-1
http://link.springer.com/10.1007/s10107-017-1172-1
http://link.springer.com/10.1007/s10107-017-1172-1
https://doi.org/10.1109/CDC.1988.194456
https://doi.org/10.1109/9.67291
http://ieeexplore.ieee.org/document/67291/
https://www.nhtsa.gov/laws-regulations/standing-general-order-crash-reporting
https://www.nhtsa.gov/laws-regulations/standing-general-order-crash-reporting
https://www.nhtsa.gov/laws-regulations/standing-general-order-crash-reporting
https://www.ntsb.gov/investigations/Pages/HWY18MH010.aspx
https://www.ntsb.gov/investigations/Pages/HWY18MH010.aspx
http://arxiv.org/abs/1911.03539


335

[172] S. Orfanidis, “An exact solution of the time-invariant discrete kalman filter,”
IEEE Transactions on Automatic Control, vol. 27, no. 1, pp. 240–242, 1982.
doi: 10.1109/TAC.1982.1102836.

[173] I. Osband and B. Van Roy, “Why is posterior sampling better than optimism for
reinforcement learning?” In Proceedings of the 34th International Conference
on Machine Learning, D. Precup and Y. W. Teh, Eds., ser. Proceedings of
Machine Learning Research, vol. 70, PMLR, Jun. 2017, pp. 2701–2710.
[Online]. Available: https://proceedings.mlr.press/v70/
osband17a.html.

[174] Y. Ouyang, M. Gagrani, and R. Jain, “Control of unknown linear systems
with thompson sampling,” in 2017 55th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), 2017, pp. 1198–1205.
doi: 10.1109/ALLERTON.2017.8262873.

[175] Y. Ouyang, M. Gagrani, and R. Jain, “Learning-based control of unknown
linear systems with thompson sampling,” arXiv preprint arXiv:1709.04047,
2017.

[176] S. Oymak and N. Ozay, “Non-asymptotic identification of lti systems from
a single trajectory,” in 2019 American Control Conference (ACC), 2019,
pp. 5655–5661. doi: 10.23919/ACC.2019.8814438.

[177] B. Ozaydin, T. Zhang, D. Bhattacharjee, S. Süsstrunk, and M. Salzmann,
OMH: Structured Sparsity via Optimally Matched Hierarchy for Unsuper-
vised Semantic Segmentation, arXiv:2403.06546 [cs], Apr. 2024. [Online].
Available: http://arxiv.org/abs/2403.06546 (visited on
05/19/2024).

[178] I. Petersen, M. James, and P. Dupuis, “Minimax optimal control of stochastic
uncertain systems with relative entropy constraints,” IEEE Transactions on Au-
tomatic Control, vol. 45, no. 3, pp. 398–412, Mar. 2000, issn: 00189286. doi:
10.1109/9.847720. [Online]. Available: http://ieeexplore.
ieee.org/document/847720/ (visited on 06/10/2024).

[179] I. R. Petersen and A. V. Savkin, Robust Kalman filtering for signals and
systems with large uncertainties (Control engineering). Boston: Birkhäuser,
1999, isbn: 978-0-8176-4089-7.

[180] S. Pichorides, “On the best values of the constants in the theorem of M.
Riesz, Zygmund and Kolmogorov,” eng, Studia Mathematica, vol. 44, no. 2,
pp. 165–179, 1972. doi: 10.4064/sm-44-2-165-179. [Online].
Available: http://eudml.org/doc/217677.

[181] M. E. Pittelkau, “Kalman Filtering for Spacecraft System Alignment Cali-
bration,” en, Journal of Guidance, Control, and Dynamics, vol. 24, no. 6,
pp. 1187–1195, Nov. 2001, issn: 0731-5090, 1533-3884. doi: 10.2514/
2.4834. [Online]. Available: https://arc.aiaa.org/doi/10.
2514/2.4834 (visited on 05/18/2024).

https://doi.org/10.1109/TAC.1982.1102836
https://proceedings.mlr.press/v70/osband17a.html
https://proceedings.mlr.press/v70/osband17a.html
https://doi.org/10.1109/ALLERTON.2017.8262873
https://doi.org/10.23919/ACC.2019.8814438
http://arxiv.org/abs/2403.06546
https://doi.org/10.1109/9.847720
http://ieeexplore.ieee.org/document/847720/
http://ieeexplore.ieee.org/document/847720/
https://doi.org/10.4064/sm-44-2-165-179
http://eudml.org/doc/217677
https://doi.org/10.2514/2.4834
https://doi.org/10.2514/2.4834
https://arc.aiaa.org/doi/10.2514/2.4834
https://arc.aiaa.org/doi/10.2514/2.4834


336

[182] Y. Polyanskiy and Y. Wu, “Information theory: From coding to learning,”
Book draft, 2022.

[183] H. Poor, “The rate-distortion function on classes of sources determined by
spectral capacities,” IEEE Transactions on Information Theory, vol. 28, no. 1,
pp. 19–26, 1982.

[184] H. Poor, “On robust wiener filtering,” en, IEEE Transactions on Auto-
matic Control, vol. 25, no. 3, pp. 531–536, Jun. 1980, issn: 0018-9286.
doi: 10.1109/TAC.1980.1102349. [Online]. Available: http:
//ieeexplore.ieee.org/document/1102349/ (visited on
05/17/2024).

[185] C. Poupon, A. Roche, J. Dubois, J.-F. Mangin, and F. Poupon, “Real-
time MR diffusion tensor and Q-ball imaging using Kalman filtering,” en,
Medical Image Analysis, vol. 12, no. 5, pp. 527–534, Oct. 2008, issn:
13618415. doi: 10.1016/j.media.2008.06.004. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/
S1361841508000571 (visited on 05/18/2024).

[186] H. Prabhat and R. Bhattacharya, Optimal State Estimation in the Pres-
ence of Non-Gaussian Uncertainty via Wasserstein Distance Minimization,
arXiv:2403.13828 [cs, eess, math, stat], Mar. 2024. [Online]. Available:
http://arxiv.org/abs/2403.13828 (visited on 05/11/2024).

[187] B. Recht, “A tour of reinforcement learning: The view from continuous
control,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 2, pp. 253–279, 2019.

[188] C. Rino, “Factorization of spectra by discrete Fourier transforms (Corresp.),”
en, IEEE Transactions on Information Theory, vol. 16, no. 4, pp. 484–
485, Jul. 1970, issn: 0018-9448. doi: 10.1109/TIT.1970.1054502.
[Online]. Available: http://ieeexplore.ieee.org/document/
1054502/ (visited on 11/15/2023).

[189] G. Rodriguez, “Kalman filtering, smoothing, and recursive robot arm forward
and inverse dynamics,” IEEE Journal on Robotics and Automation, vol. 3,
no. 6, pp. 624–639, Dec. 1987, issn: 0882-4967. doi: 10.1109/JRA.
1987.1087147. [Online]. Available: http://ieeexplore.ieee.
org/document/1087147/ (visited on 05/18/2024).

[190] W. Root and P. Varaiya, “Capacity of classes of gaussian channels,” SIAM
Journal on Applied Mathematics, vol. 16, no. 6, pp. 1350–1393, 1968.

[191] O. Sabag, G. Goel, S. Lale, and B. Hassibi, “Regret-optimal controller for
the full-information problem,” in 2021 American Control Conference (ACC),
IEEE, 2021, pp. 4777–4782.

[192] O. Sabag, G. Goel, S. Lale, and B. Hassibi, Regret-optimal lqr control, 2023.
arXiv: 2105.01244 [math.OC].

https://doi.org/10.1109/TAC.1980.1102349
http://ieeexplore.ieee.org/document/1102349/
http://ieeexplore.ieee.org/document/1102349/
https://doi.org/10.1016/j.media.2008.06.004
https://linkinghub.elsevier.com/retrieve/pii/S1361841508000571
https://linkinghub.elsevier.com/retrieve/pii/S1361841508000571
http://arxiv.org/abs/2403.13828
https://doi.org/10.1109/TIT.1970.1054502
http://ieeexplore.ieee.org/document/1054502/
http://ieeexplore.ieee.org/document/1054502/
https://doi.org/10.1109/JRA.1987.1087147
https://doi.org/10.1109/JRA.1987.1087147
http://ieeexplore.ieee.org/document/1087147/
http://ieeexplore.ieee.org/document/1087147/
https://arxiv.org/abs/2105.01244


337

[193] O. Sabag and B. Hassibi, “Regret-Optimal Filtering for Prediction and
Estimation,” IEEE Transactions on Signal Processing, vol. 70, pp. 5012–
5024, 2022, issn: 1053-587X, 1941-0476. doi: 10.1109/TSP.2022.
3212153. [Online]. Available: https://ieeexplore.ieee.org/
document/9911672/ (visited on 11/20/2023).

[194] D. Sakrison, “The rate of a class of random processes,” IEEE Transactions
on Information Theory, vol. 16, no. 1, pp. 10–16, 1970.

[195] D. J. Sakrison, “The rate distortion function for a class of sources,” Informa-
tion and Control, vol. 15, no. 2, pp. 165–195, 1969.

[196] S. Samuelson and I. Yang, “Data-driven distributionally robust control of
energy storage to manage wind power fluctuations,” in 2017 IEEE Conference
on Control Technology and Applications (CCTA), 2017, pp. 199–204. doi:
10.1109/CCTA.2017.8062463.

[197] F. Santambrogio, Optimal transport for applied mathematicians: calculus of
variations, PDEs, and modeling (Progress in nonlinear differential equations
and their applications 87), eng. Cham: Birkhauser, 2015, isbn: 978-3-319-
20827-5.

[198] T. Sarkar, A. Rakhlin, and M. A. Dahleh, “Finite time lti system identification,”
Journal of Machine Learning Research, vol. 22, no. 26, pp. 1–61, 2021.
[Online]. Available: http://jmlr.org/papers/v22/19-725.
html.

[199] A. H. Sayed and T. Kailath, “A survey of spectral factorization methods,”
en, Numerical Linear Algebra with Applications, vol. 8, no. 6-7, pp. 467–
496, Sep. 2001, issn: 1070-5325, 1099-1506. doi: 10.1002/nla.250.
[Online]. Available: https://onlinelibrary.wiley.com/doi/
10.1002/nla.250 (visited on 11/15/2023).

[200] W. Schneider, “Analytical uses of Kalman filtering in econometrics — A
survey,” en, Statistical Papers, vol. 29, no. 1, pp. 3–33, Dec. 1988, issn:
0932-5026, 1613-9798. doi: 10.1007/BF02924508. [Online]. Available:
http://link.springer.com/10.1007/BF02924508 (visited
on 05/18/2024).

[201] E. Schomig, M. Sznaier, and U.-L. Ly, “Mixed h2/h-infinity control of
multimodel plants,” Journal of Guidance, Control, and Dynamics, vol. 18,
no. 3, pp. 525–531, 1995.

[202] G. Serra, P. A. Stavrou, and M. Kountouris, “On the computation of the gaus-
sian rate-distortion-perception function,” arXiv preprint arXiv:2311.09190,
2023.

[203] S. Shafieezadeh Abadeh, V. A. Nguyen, D. Kuhn, and P. M. Mohajerin
Esfahani, “Wasserstein distributionally robust kalman filtering,” in Ad-
vances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,

https://doi.org/10.1109/TSP.2022.3212153
https://doi.org/10.1109/TSP.2022.3212153
https://ieeexplore.ieee.org/document/9911672/
https://ieeexplore.ieee.org/document/9911672/
https://doi.org/10.1109/CCTA.2017.8062463
http://jmlr.org/papers/v22/19-725.html
http://jmlr.org/papers/v22/19-725.html
https://doi.org/10.1002/nla.250
https://onlinelibrary.wiley.com/doi/10.1002/nla.250
https://onlinelibrary.wiley.com/doi/10.1002/nla.250
https://doi.org/10.1007/BF02924508
http://link.springer.com/10.1007/BF02924508


338

vol. 31, Curran Associates, Inc., 2018. [Online]. Available: https://
proceedings . neurips . cc / paper _ files / paper / 2018 /
file/15212f24321aa2c3dc8e9acf820f3c15-Paper.pdf.

[204] U. Shaked and Y. Theodor, “H/sub infinity /-optimal estimation: A tuto-
rial,” in [1992] Proceedings of the 31st IEEE Conference on Decision
and Control, Tucson, AZ, USA: IEEE, 1992, pp. 2278–2286, isbn: 978-0-
7803-0872-5. doi: 10.1109/CDC.1992.371384. [Online]. Available:
http://ieeexplore.ieee.org/document/371384/ (visited
on 05/17/2024).

[205] C. Shannon, “Communication in the presence of noise,” Proceedings of
the IRE, vol. 37, no. 1, pp. 10–21, 1949. doi: 10.1109/JRPROC.1949.
232969.

[206] C. E. Shannon, “A mathematical theory of communication,” The Bell system
technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[207] N. Sharon, V. Peiris, N. Sukhorukova, and J. Ugon, Flexible rational approxi-
mation and its application for matrix functions, 2025. arXiv: 2108.09357
[math.NA]. [Online]. Available: https://arxiv.org/abs/2108.
09357.

[208] S. Shoval, I. Zeitoun, and E. Lenz, “Implementation of a Kalman filter
in positioning for autonomous vehicles, and its sensitivity to the process
parameters,” en, The International Journal of Advanced Manufacturing
Technology, vol. 13, no. 10, pp. 738–746, Oct. 1997, issn: 0268-3768, 1433-
3015. doi:10.1007/BF01179074. [Online]. Available:http://link.
springer.com/10.1007/BF01179074 (visited on 05/18/2024).

[209] N. Shulman, “Communication over an unknown channel via common broad-
casting,” Ph.D. dissertation, Citeseer, 2003.

[210] M. Simchowitz and D. J. Foster, “Naive exploration is optimal for online lqr,”
arXiv preprint arXiv:2001.09576, 2020.

[211] M. Simchowitz, K. Singh, and E. Hazan, “Improper learning for non-
stochastic control,” in Proceedings of Thirty Third Conference on Learning
Theory, J. Abernethy and S. Agarwal, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 125, PMLR, Sep. 2020, pp. 3320–3436. [Online]. Available:
https://proceedings.mlr.press/v125/simchowitz20a.
html.

[212] M. Sion, “On general minimax theorems.,” Pacific Journal of Mathematics,
vol. 8, no. 1, pp. 171–176, 1958, Publisher: Pacific Journal of Mathematics,
A Non-profit Corporation. doi: 10.2140/pjm.1958.8.171.

[213] M. Smith, “On stabilization and the existence of coprime factorizations,”
IEEE Transactions on Automatic Control, vol. 34, no. 9, pp. 1005–1007,
Sep. 1989, issn: 00189286. doi: 10.1109/9.35819. [Online]. Available:

https://proceedings.neurips.cc/paper_files/paper/2018/file/15212f24321aa2c3dc8e9acf820f3c15-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/15212f24321aa2c3dc8e9acf820f3c15-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/15212f24321aa2c3dc8e9acf820f3c15-Paper.pdf
https://doi.org/10.1109/CDC.1992.371384
http://ieeexplore.ieee.org/document/371384/
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1109/JRPROC.1949.232969
https://arxiv.org/abs/2108.09357
https://arxiv.org/abs/2108.09357
https://arxiv.org/abs/2108.09357
https://arxiv.org/abs/2108.09357
https://doi.org/10.1007/BF01179074
http://link.springer.com/10.1007/BF01179074
http://link.springer.com/10.1007/BF01179074
https://proceedings.mlr.press/v125/simchowitz20a.html
https://proceedings.mlr.press/v125/simchowitz20a.html
https://doi.org/10.2140/pjm.1958.8.171
https://doi.org/10.1109/9.35819


339

http://ieeexplore.ieee.org/document/35819/ (visited on
09/26/2024).

[214] R. L. Smith, A. A. A. Rahni, J. Jones, and K. Wells, “A Kalman-Based
Approach With EM Optimization for Respiratory Motion Modeling in
Medical Imaging,” IEEE Transactions on Radiation and Plasma Medical
Sciences, vol. 3, no. 4, pp. 410–420, Jul. 2019, issn: 2469-7311, 2469-7303.
doi: 10.1109/TRPMS.2018.2879441. [Online]. Available: https:
//ieeexplore.ieee.org/document/8520867/ (visited on
05/18/2024).

[215] H. W. Sorenson and Institute of Electrical and Electronics Engineers, Eds.,
Kalman filtering, theory and application (IEEE Press selected reprint series),
eng. New York: IEEE Press, 1985, isbn: 978-0-7803-0421-5 978-0-87942-
191-5.

[216] J. Speyer, J. Deyst, and D. Jacobson, “Optimization of stochastic linear
systems with additive measurement and process noise using exponential
performance criteria,” en, IEEE Transactions on Automatic Control, vol. 19,
no. 4, pp. 358–366, Aug. 1974, issn: 0018-9286. doi: 10.1109/TAC.
1974.1100606. [Online]. Available: http://ieeexplore.ieee.
org/document/1100606/ (visited on 05/17/2024).

[217] J. Speyer, C.-H. Fan, and R. Banavar, “Optimal stochastic estimation with
exponential cost criteria,” in [1992] Proceedings of the 31st IEEE Conference
on Decision and Control, Tucson, AZ, USA: IEEE, 1992, pp. 2293–2299,
isbn: 978-0-7803-0872-5. doi: 10.1109/CDC.1992.371382. [Online].
Available: http://ieeexplore.ieee.org/document/371382/
(visited on 05/11/2024).

[218] M. J. A. Strens, “A bayesian framework for reinforcement learning,” in Pro-
ceedings of the Seventeenth International Conference on Machine Learning,
ser. ICML ’00, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2000, pp. 943–950, isbn: 1558607072.

[219] F. A. Taha, S. Yan, and E. Bitar, “A Distributionally Robust Approach to
Regret Optimal Control using the Wasserstein Distance,” in 2023 62nd
IEEE Conference on Decision and Control (CDC), Singapore, Singa-
pore: IEEE, Dec. 2023, pp. 2768–2775, isbn: 9798350301243. doi: 10.
1109/CDC49753.2023.10384311. [Online]. Available: https:
//ieeexplore.ieee.org/document/10384311/ (visited on
01/31/2024).

[220] B. Taskesen, D. Iancu, C. Kocyigit, and D. Kuhn, “Distributionally robust
linear quadratic control,” in Advances in Neural Information Processing Sys-
tems, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
Eds., vol. 36, Curran Associates, Inc., 2023, pp. 18 613–18 632. [Online].
Available: https://proceedings.neurips.cc/paper_files/

http://ieeexplore.ieee.org/document/35819/
https://doi.org/10.1109/TRPMS.2018.2879441
https://ieeexplore.ieee.org/document/8520867/
https://ieeexplore.ieee.org/document/8520867/
https://doi.org/10.1109/TAC.1974.1100606
https://doi.org/10.1109/TAC.1974.1100606
http://ieeexplore.ieee.org/document/1100606/
http://ieeexplore.ieee.org/document/1100606/
https://doi.org/10.1109/CDC.1992.371382
http://ieeexplore.ieee.org/document/371382/
https://doi.org/10.1109/CDC49753.2023.10384311
https://doi.org/10.1109/CDC49753.2023.10384311
https://ieeexplore.ieee.org/document/10384311/
https://ieeexplore.ieee.org/document/10384311/
https://proceedings.neurips.cc/paper_files/paper/2023/file/3b7a66b2d1258e892c89f485b8f896e0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3b7a66b2d1258e892c89f485b8f896e0-Paper-Conference.pdf


340

paper/2023/file/3b7a66b2d1258e892c89f485b8f896e0-
Paper-Conference.pdf.

[221] A. Tchamkerten and E. Telatar, “A feedback strategy for binary symmet-
ric channels,” in Proceedings of the IEEE International Symposium on
Information Theory, 2002, p. 362.

[222] W. R. Thompson, “On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples,” Biometrika, vol. 25, no. 3/4,
pp. 285–294, 1933.

[223] A. Tsiamis, N. Matni, and G. Pappas, “Sample complexity of kalman filtering
for unknown systems,” in Proceedings of the 2nd Conference on Learning
for Dynamics and Control, A. M. Bayen, A. Jadbabaie, G. Pappas, et al.,
Eds., ser. Proceedings of Machine Learning Research, vol. 120, PMLR, Oct.
2020, pp. 435–444. [Online]. Available: https://proceedings.mlr.
press/v120/tsiamis20a.html.

[224] A. Tsiamis and G. J. Pappas, “Finite sample analysis of stochastic system iden-
tification,” in 2019 IEEE 58th Conference on Decision and Control (CDC),
2019, pp. 3648–3654. doi: 10.1109/CDC40024.2019.9029499.

[225] S. Tu, “Sample Complexity Bounds for the Linear Quadratic Regulator,”
Issue: UCB/EECS-2019-42, PhD Thesis, EECS Department, University
of California, Berkeley, May 2019. [Online]. Available: http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-
42.html.

[226] D. Tuan Pham, J. Verron, and M. Christine Roubaud, “A singular evo-
lutive extended Kalman filter for data assimilation in oceanography,” en,
Journal of Marine Systems, vol. 16, no. 3-4, pp. 323–340, Oct. 1998, issn:
09247963. doi: 10.1016/S0924- 7963(97)00109- 7. [Online].
Available: https://linkinghub.elsevier.com/retrieve/
pii/S0924796397001097 (visited on 05/18/2024).

[227] I. Tzortzis, C. D. Charalambous, and T. Charalambous, “Dynamic program-
ming subject to total variation distance ambiguity,” SIAM Journal on Control
and Optimization, vol. 53, no. 4, pp. 2040–2075, 2015. doi: 10.1137/
140955707. eprint: https://doi.org/10.1137/140955707.
[Online]. Available: https://doi.org/10.1137/140955707.

[228] I. Tzortzis, C. D. Charalambous, T. Charalambous, C. K. Kourtellaris,
and C. N. Hadjicostis, “Robust Linear Quadratic Regulator for uncertain
systems,” in 2016 IEEE 55th Conference on Decision and Control (CDC),
Las Vegas, NV, USA: IEEE, Dec. 2016, pp. 1515–1520, isbn: 978-1-5090-
1837-6. doi: 10.1109/CDC.2016.7798481. [Online]. Available:
http://ieeexplore.ieee.org/document/7798481/ (visited
on 07/16/2023).

https://proceedings.neurips.cc/paper_files/paper/2023/file/3b7a66b2d1258e892c89f485b8f896e0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3b7a66b2d1258e892c89f485b8f896e0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3b7a66b2d1258e892c89f485b8f896e0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3b7a66b2d1258e892c89f485b8f896e0-Paper-Conference.pdf
https://proceedings.mlr.press/v120/tsiamis20a.html
https://proceedings.mlr.press/v120/tsiamis20a.html
https://doi.org/10.1109/CDC40024.2019.9029499
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-42.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-42.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-42.html
https://doi.org/10.1016/S0924-7963(97)00109-7
https://linkinghub.elsevier.com/retrieve/pii/S0924796397001097
https://linkinghub.elsevier.com/retrieve/pii/S0924796397001097
https://doi.org/10.1137/140955707
https://doi.org/10.1137/140955707
https://doi.org/10.1137/140955707
https://doi.org/10.1137/140955707
https://doi.org/10.1109/CDC.2016.7798481
http://ieeexplore.ieee.org/document/7798481/


341

[229] U.S.-Canada Power System Outage Task Force, “Final Report on the August
14, 2003 Blackout in the United States and Canada: Causes and Recom-
mendations,” Tech. Rep., Apr. 2004. [Online]. Available: https://www.
energy.gov/sites/prod/files/oeprod/DocumentsandMedia/
BlackoutFinal-Web.pdf.

[230] K. Vastola and H. Poor, “Robust Wiener- Kolmogorov theory,” en, IEEE
Transactions on Information Theory, vol. 30, no. 2, pp. 316–327, Mar. 1984,
issn: 0018-9448. doi: 10.1109/TIT.1984.1056875. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/1056875/
(visited on 05/17/2024).

[231] C. Villani, Optimal transport: old and new (Grundlehren der mathematischen
Wissenschaften 338). Berlin: Springer, 2009, isbn: 978-3-540-71049-3.

[232] X. Wan, “Application of k-means algorithm in image compression,” in IOP
Conference Series: Materials Science and Engineering, IOP Publishing,
vol. 563, 2019, p. 052 042.

[233] S. Wang, Z. Wu, and A. Lim, “Robust State Estimation for Linear Systems
Under Distributional Uncertainty,” IEEE Transactions on Signal Processing,
vol. 69, pp. 5963–5978, 2021, issn: 1053-587X, 1941-0476. doi: 10.1109/
TSP.2021.3118540. [Online]. Available: https://ieeexplore.
ieee.org/document/9563203/ (visited on 04/06/2024).

[234] S. Wang and Z.-S. Ye, “Distributionally Robust State Estimation for Linear
Systems Subject to Uncertainty and Outlier,” IEEE Transactions on Sig-
nal Processing, vol. 70, pp. 452–467, 2022, issn: 1053-587X, 1941-0476.
doi: 10.1109/TSP.2021.3136804. [Online]. Available: https:
//ieeexplore.ieee.org/document/9656678/ (visited on
04/06/2024).

[235] M. W. Watson, “Applications of Kalman Filter Models in Economet-
rics,” English, Ph.D. dissertation, University of California, San Deigo,
San Deigo, 1980. [Online]. Available: https://www.proquest.
com/openview/9e5eef36e1edebca2bf3225edf9538f4/1?
pq-origsite=gscholar&cbl=18750&diss=y.

[236] T. A. Welch, “A technique for high-performance data compression,” Com-
puter, vol. 17, no. 06, pp. 8–19, 1984.

[237] P. Whittle, “Risk-sensitive linear/quadratic/gaussian control,” en, Advances
in Applied Probability, vol. 13, no. 4, pp. 764–777, Dec. 1981, issn:
0001-8678, 1475-6064. doi: 10.2307/1426972. [Online]. Available:
https://www.cambridge.org/core/product/identifier/
S0001867800036508/type/journal_article (visited on 04/06/2024).

[238] M. Whorton, H. Buschek, and A. J. Calise, “Homotopy algorithm for
fixed order mixed h2/h-infinity design,” Journal of guidance, control, and
dynamics, vol. 19, no. 6, pp. 1262–1269, 1996.

https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/BlackoutFinal-Web.pdf
https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/BlackoutFinal-Web.pdf
https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/BlackoutFinal-Web.pdf
https://doi.org/10.1109/TIT.1984.1056875
http://ieeexplore.ieee.org/document/1056875/
https://doi.org/10.1109/TSP.2021.3118540
https://doi.org/10.1109/TSP.2021.3118540
https://ieeexplore.ieee.org/document/9563203/
https://ieeexplore.ieee.org/document/9563203/
https://doi.org/10.1109/TSP.2021.3136804
https://ieeexplore.ieee.org/document/9656678/
https://ieeexplore.ieee.org/document/9656678/
https://www.proquest.com/openview/9e5eef36e1edebca2bf3225edf9538f4/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/9e5eef36e1edebca2bf3225edf9538f4/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/9e5eef36e1edebca2bf3225edf9538f4/1?pq-origsite=gscholar&cbl=18750&diss=y
https://doi.org/10.2307/1426972
https://www.cambridge.org/core/product/identifier/S0001867800036508/type/journal_article
https://www.cambridge.org/core/product/identifier/S0001867800036508/type/journal_article


342

[239] N. Wiener and E. Hopf, Über eine Klasse singulärer Integralgleichun-
gen (Sitzungsberichte der Preussischen Akademie der Wissenschaften.
Physikalisch-mathematische Klasse). Akad. d. Wiss., 1931.

[240] N. Wiener and P. Masani, “The prediction theory of multivariate stochastic
processes: I. The regularity condition,” en, Acta Mathematica, vol. 98,
no. 0, pp. 111–150, 1957, issn: 0001-5962. doi: 10.1007/BF02404472.
[Online]. Available:http://projecteuclid.org/euclid.acta/
1485892246 (visited on 03/03/2025).

[241] N. Wiener and P. Masani, “The prediction theory of multivariate stochastic
processes, II: The linear predictor,” en, Acta Mathematica, vol. 99, no. 0,
pp. 93–137, 1958, issn: 0001-5962. doi: 10.1007/BF02392423. [On-
line]. Available: http://projecteuclid.org/euclid.acta/
1485892261 (visited on 03/03/2025).

[242] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time
Series: With Engineering Applications, en. The MIT Press, Aug. 1949, isbn:
978-0-262-25719-0. doi: 10.7551/mitpress/2946.001.0001.
[Online]. Available: https://direct.mit.edu/books/book/
4361/Extrapolation-Interpolation-and-Smoothing-of
(visited on 05/18/2024).

[243] G. T. Wilson, “The Factorization of Matricial Spectral Densities,” SIAM
Journal on Applied Mathematics, vol. 23, no. 4, pp. 420–426, 1972, Publisher:
Society for Industrial and Applied Mathematics, issn: 00361399. doi: 10.
1137/0123044. [Online]. Available: http://www.jstor.org/
stable/2100089 (visited on 11/20/2023).

[244] L. Xie, C. E. De Souza, and M. Fu, “H∞ estimation for discrete-time
linear uncertain systems,” en, International Journal of Robust and Non-
linear Control, vol. 1, no. 2, pp. 111–123, Apr. 1991, issn: 1049-8923,
1099-1239. doi: 10.1002/rnc.4590010206. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/rnc.
4590010206 (visited on 05/17/2024).

[245] E.-H. Yang and J. C. Kieffer, “Simple universal lossy data compression
schemes derived from the lempel-ziv algorithm,” IEEE Transactions on
Information Theory, vol. 42, no. 1, pp. 239–245, 1996.

[246] E.-h. Yang, Z. Zhang, and T. Berger, “Fixed-slope universal lossy data
compression,” IEEE Transactions on Information theory, vol. 43, no. 5,
pp. 1465–1476, 1997.

[247] I. Yang, “Wasserstein distributionally robust stochastic control: A data-driven
approach,” IEEE Transactions on Automatic Control, vol. 66, no. 8, pp. 3863–
3870, 2020.

https://doi.org/10.1007/BF02404472
http://projecteuclid.org/euclid.acta/1485892246
http://projecteuclid.org/euclid.acta/1485892246
https://doi.org/10.1007/BF02392423
http://projecteuclid.org/euclid.acta/1485892261
http://projecteuclid.org/euclid.acta/1485892261
https://doi.org/10.7551/mitpress/2946.001.0001
https://direct.mit.edu/books/book/4361/Extrapolation-Interpolation-and-Smoothing-of
https://direct.mit.edu/books/book/4361/Extrapolation-Interpolation-and-Smoothing-of
https://doi.org/10.1137/0123044
https://doi.org/10.1137/0123044
http://www.jstor.org/stable/2100089
http://www.jstor.org/stable/2100089
https://doi.org/10.1002/rnc.4590010206
https://onlinelibrary.wiley.com/doi/10.1002/rnc.4590010206
https://onlinelibrary.wiley.com/doi/10.1002/rnc.4590010206


343

[248] I. Yang, “Wasserstein distributionally robust stochastic control: A data-driven
approach,” IEEE Transactions on Automatic Control, vol. 66, no. 8, pp. 3863–
3870, 2021. doi: 10.1109/TAC.2020.3030884.

[249] R. Yates, “A framework for uplink power control in cellular radio systems,”
IEEE Journal on Selected Areas in Communications, vol. 13, no. 7, pp. 1341–
1347, Sep. 1995, issn: 07338716. doi: 10.1109/49.414651. [Online].
Available: http://ieeexplore.ieee.org/document/414651/
(visited on 03/20/2024).

[250] D. Youla, J. Bongiorno, and H. Jabr, “Modern Wiener–Hopf design of optimal
controllers Part I: The single-input-output case,” en, IEEE Transactions on
Automatic Control, vol. 21, no. 1, pp. 3–13, Feb. 1976, issn: 0018-9286.
doi: 10.1109/TAC.1976.1101139. [Online]. Available: http:
//ieeexplore.ieee.org/document/1101139/ (visited on
09/26/2024).

[251] D. Youla, H. Jabr, and J. Bongiorno, “Modern Wiener-Hopf design of
optimal controllers–Part II: The multivariable case,” en, IEEE Transactions
on Automatic Control, vol. 21, no. 3, pp. 319–338, Jun. 1976, issn: 0018-
9286. doi: 10.1109/TAC.1976.1101223. [Online]. Available: http:
//ieeexplore.ieee.org/document/1101223/ (visited on
12/09/2023).

[252] Youngrock Yoon, A. Kosaka, and A. Kak, “A New Kalman-Filter-Based
Framework for Fast and Accurate Visual Tracking of Rigid Objects,” IEEE
Transactions on Robotics, vol. 24, no. 5, pp. 1238–1251, Oct. 2008, issn: 1552-
3098, 1941-0468. doi: 10.1109/TRO.2008.2003281. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/4631506/
(visited on 05/18/2024).

[253] M.-C. Yue, D. Kuhn, and W. Wiesemann, “On linear optimization over Wasser-
stein balls,” en, Mathematical Programming, vol. 195, no. 1-2, pp. 1107–
1122, Sep. 2022, issn: 0025-5610, 1436-4646. doi: 10.1007/s10107-
021-01673-8. [Online]. Available: https://link.springer.
com/10.1007/s10107-021-01673-8 (visited on 05/18/2024).

[254] C. Zalinescu, Convex Analysis in General Vector Spaces, en. WORLD SCI-
ENTIFIC, Jul. 2002, isbn: 978-981-238-067-8 978-981-277-709-6. doi: 10.
1142/5021. [Online]. Available:https://www.worldscientific.
com/worldscibooks/10.1142/5021 (visited on 09/27/2024).

[255] G. Zames, “Feedback and optimal sensitivity: Model reference transfor-
mations, multiplicative seminorms, and approximate inverses,” en, IEEE
Transactions on Automatic Control, vol. 26, no. 2, pp. 301–320, Apr. 1981,
issn: 0018-9286. doi: 10.1109/TAC.1981.1102603. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/1102603/
(visited on 12/11/2023).

https://doi.org/10.1109/TAC.2020.3030884
https://doi.org/10.1109/49.414651
http://ieeexplore.ieee.org/document/414651/
https://doi.org/10.1109/TAC.1976.1101139
http://ieeexplore.ieee.org/document/1101139/
http://ieeexplore.ieee.org/document/1101139/
https://doi.org/10.1109/TAC.1976.1101223
http://ieeexplore.ieee.org/document/1101223/
http://ieeexplore.ieee.org/document/1101223/
https://doi.org/10.1109/TRO.2008.2003281
http://ieeexplore.ieee.org/document/4631506/
https://doi.org/10.1007/s10107-021-01673-8
https://doi.org/10.1007/s10107-021-01673-8
https://link.springer.com/10.1007/s10107-021-01673-8
https://link.springer.com/10.1007/s10107-021-01673-8
https://doi.org/10.1142/5021
https://doi.org/10.1142/5021
https://www.worldscientific.com/worldscibooks/10.1142/5021
https://www.worldscientific.com/worldscibooks/10.1142/5021
https://doi.org/10.1109/TAC.1981.1102603
http://ieeexplore.ieee.org/document/1102603/


344

[256] A. Zelig, H. Kariti, and N. Kaplan, “KMD clustering: Robust general-
purpose clustering of biological data,” en, Communications Biology, vol. 6,
no. 1, p. 1110, Nov. 2023, issn: 2399-3642. doi: 10.1038/s42003-
023-05480-z. [Online]. Available: https://www.nature.com/
articles/s42003-023-05480-z (visited on 02/06/2025).

[257] C. Zhao and Y. Guan, “Data-driven risk-averse stochastic optimization with
Wasserstein metric,” en, Operations Research Letters, vol. 46, no. 2, pp. 262–
267, Mar. 2018, issn: 01676377. doi: 10.1016/j.orl.2018.01.
011. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0167637718300506 (visited on 11/30/2023).

[258] Z. Zhong and J.-J. Zhu, “Nonlinear wasserstein distributionally robust optimal
control,” in ICML Workshop on New Frontiers in Learning, Control, and
Dynamical Systems, 2023. [Online]. Available: https://openreview.
net/forum?id=4ZhPzV5boz.

[259] K. Zhou, J. Doyle, K. Glover, and B. Bodenheimer, “Mixed H2 and H∞
control,” in 1990 American Control Conference, IEEE, 1990, pp. 2502–2507.

[260] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control. Upper
Saddle River, N.J: Prentice Hall, 1996, isbn: 978-0-13-456567-5.

[261] I. Ziemann and H. Sandberg, “Regret lower bounds for learning linear
quadratic gaussian systems,” IEEE Transactions on Automatic Control,
vol. 70, no. 1, pp. 159–173, 2025. doi: 10.1109/TAC.2024.3439132.

[262] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Transactions on information theory, vol. 23, no. 3, pp. 337–343, 1977.

[263] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate
coding,” IEEE transactions on Information Theory, vol. 24, no. 5, pp. 530–
536, 1978.

[264] M. Zorzi, On the Robustness of the Bayes and Wiener Estimators under
Model Uncertainty, arXiv:1508.01904 [math], May 2017. [Online]. Available:
http://arxiv.org/abs/1508.01904 (visited on 05/17/2024).

[265] M. Zorzi, “Robust Kalman Filtering Under Model Perturbations,” IEEE
Transactions on Automatic Control, vol. 62, no. 6, pp. 2902–2907, Jun. 2017,
issn: 0018-9286, 1558-2523. doi: 10.1109/TAC.2016.2601879.
[Online]. Available: http://ieeexplore.ieee.org/document/
7549014/ (visited on 05/11/2024).

https://doi.org/10.1038/s42003-023-05480-z
https://doi.org/10.1038/s42003-023-05480-z
https://www.nature.com/articles/s42003-023-05480-z
https://www.nature.com/articles/s42003-023-05480-z
https://doi.org/10.1016/j.orl.2018.01.011
https://doi.org/10.1016/j.orl.2018.01.011
https://linkinghub.elsevier.com/retrieve/pii/S0167637718300506
https://linkinghub.elsevier.com/retrieve/pii/S0167637718300506
https://openreview.net/forum?id=4ZhPzV5boz
https://openreview.net/forum?id=4ZhPzV5boz
https://doi.org/10.1109/TAC.2024.3439132
http://arxiv.org/abs/1508.01904
https://doi.org/10.1109/TAC.2016.2601879
http://ieeexplore.ieee.org/document/7549014/
http://ieeexplore.ieee.org/document/7549014/


345


	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Outline and Scope of part1: Learning and Control
	Outline and Scope of part2: Distributionally Robust Optimization
	Outline and Scope of part3: Non-rational Control

	Learning and Control
	Learning to Control Fully Observed Linear Dynamical Systems
	Introduction
	Preliminaries
	TSAC Framework
	Theoretical Analysis
	Proof Outline of Sampling Optimistic Models with Constant Probability
	Numerical Experiments
	Conclusion and Future Directions
	Organization and Notations
	System Identification and Stabilization Guarantees
	Boundedness of State, Proof of Lemma 2.4.3 
	Constant Probability of Sampling Optimistic Models
	Regret Decomposition
	Regret Analysis
	Technical Theorems
	Implementation Details of Numerical Experiments

	Learning to Control Partially Observed Linear Dynamical Systems
	Introduction
	Problem Setting
	Thompson Sampling under Partial Observability (TSPO)
	Algorithmic Guarantees
	Regret Analysis
	Numerical Simulations
	Related Works
	Conclusion
	Proof of Lemma 3.4.1 (Stability and PE)
	Proof of Theorem 3.4.2 (End-to-End Guarantee)
	Technical Theorems


	Distributionally Robust Optimization
	Finite-Horizon Distributionally Robust Control
	Introduction
	Preliminaries
	Distributionally Robust Regret-Optimal Control
	Tractable Formulation
	Simulations
	Conclusion

	Finite-Horizon Distributionally Robust Kalman Filtering
	Problem Setup 
	Tractable Convex Reormulation

	Distributionally Robust Approach to Shannon Limits
	Introduction
	Main results
	Proof of Theorem 6.2.1
	Conclusion
	Proof of Lemma 6.3.1
	Proof of Theorem 6.2.3

	Distributionally Robust Clustering
	Introduction
	Problem Setup
	Optimality Conditions for Distributionally Robust Clusters
	An Efficient Algorithm for Distributionally Robust Centroids
	Numerical Experiments
	Conclusion
	Proof of DR-cluster:lem:nn optimal
	Proof of DR-cluster:thm:strong dual
	Proof of DR-cluster:thm:inner saddle
	Proof of DR-cluster:thm:KKT
	Proof of DR-cluster:thm:opt pi
	Proof of DR-cluster:thm:convergence


	Non-rational Control
	Introduction and Motivation
	Introduction
	Infinite-Horizon Control via Closed-Loop System Responses
	A Primer on Operator Theory and Functional Analysis
	A Primer on Linear Systems Theory

	Infinite-Horizon Distributionally Robust Control
	Introduction 
	Preliminaries 
	A Saddle-Point Problem
	An Efficient Algorithm
	Rational Approximation
	Numerical Experiments
	Future Work
	Organization of the Appendix
	Notations, Definitions and Remarks
	Proof of Optimality Theorems
	Proofs related to the Efficient Algorithm in DRC-IH:sec:fixedpoint
	Algorithms
	Proof of the State-Space Representation of the Controller
	SDP Formulation for the Finite Horizon from tahadistributionally2024
	Additional Simulations

	Infinite-Horizon Distributionally Robust Kalman Filtering
	Introduction 
	Problem Setup 
	Tractable Convex Formulations
	An Efficient Algorithm
	Numerical Experiments
	Conclusion
	Additional Discussion on the Problem Setup
	Proofs of Theorems Related to Finite-Horizon Filtering
	Proofs of Theorems Related to Infinite-Horizon Filtering
	Additional Discussion on Frequency-domain Optimization Method
	Simulation Results

	Mixed H2/H Control
	Introduction
	Preliminaries
	Main Results
	A Fixed-Point Iteration Algorithm
	Convergence Analysis
	Rational Approximation
	Numerical Results
	Conclusion

	Strong Duality
	Examples: Norm-optimal Control
	Examples: Distributionally Robust Control
	Proof of Strong Duality in part3:thm:strong duality

	Primal-Dual Optimality Conditions
	From Value Function to Wiener-Hopf Technique
	Inner-Outer and Spectral Factorizations
	Weighted-L2 Spaces and Wiener-Hopf Projection
	Finite-Dimensional Parametrization of M

	Frequency-Domain Optimization Techniques
	Algorithms Utilizing Finite-Dimensional Parametrization
	Algorithms for Dual Problems in Constrained Form
	Algorithms for General Unconstrained Setting

	Finite-Dimensional Realization
	State-Space Models from Rational Power Spectra
	Rational Approximation using H-norm
	Obtaining State-Space Controllers

	Bibliography


