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Abstract 

Proton nuclear magnetic resonance (NMR) spectroscopy is employed  to 

characterize the kinetics of base-pair opening in a series of nine-mer duplexes containing 

different single base mismatches. The imino protons from the different mismatched as 

well as fully matched duplexes are assigned from the imino-imino region in the 

WATERGATE NOESY spectra. The exchange kinetics of the imino protons are 

measured from selective longitudinal relaxation times. In the limit of infinite exchange 

catalyst concentration, the exchange times of the mismatch imino protons extrapolate to 

much shorter lifetimes than commonly observed for an isolated GC base pair. Different 

mismatches exhibit different orders of base-pair lifetimes, e.g. a TT mismatch has a 

shorter base-pair lifetime than a GG mismatch. The effect of the mismatch was observed 

up to a distance of two neighboring base pairs. This indicates that disruption in the duplex 

caused by the mismatch is quite localized. The overall order of base-pair lifetimes in the 

selected sequence context of the base pair is GC > GG > AA > CC > AT > TT. 

Interestingly, the fully matched AT base-pair has a shorter base-pair lifetime relative to 

many of the mismatches. Thus, in any given base pair, the exchange lifetime can exhibit a 

strong dependence on sequence context. These findings may be relevant to the way 

mismatch recognition is accomplished by proteins and small molecules.      
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Introduction 

DNA mismatches, or non-complementary base-pairs, arise in vivo as a result of 

the misincorporation of bases during replication (1), heteroduplex formation during 

homologous recombination (2), mutagenic chemicals (3, 4), ionizing radiation (5), and 

spontaneous deamination (6). These errors are usually detected and eliminated by DNA 

polymerase and postreplicative mismatch repair system (7-9). How these DNA 

mismatches are detected by the repair machinery of the cell requires an understanding at 

the molecular level. Therefore, it is useful to characterize the structure, dynamics, and 

biochemistry of various mismatched base pairs in DNA and to determine how they affect 

the structure of the double helix both in terms of global and local perspective. 

The structures of several DNA duplexes containing mismatched base pairs have 

been characterized by x-ray crystallography (10-12) and NMR methods (13-16). In all of 

these structural studies, the mismatches are shown to have minimal effect on the global 

conformation of the DNA; the distortions produced are limited to the mismatched site 

and neighboring base pairs. 1H NMR studies show that the mismatches GG (17-19), AA 

(20-22), TT (20-22), CC (23, 24), GA (25-28) and GT (29), are well stacked in the helix 

and the bases remain in an intrahelix orientation. In fully base paired right-handed B-

form DNA duplexes, there are NOE’s evident between base protons (H8 or H6) and the 

5’-flanking sugar H1’ and H2’2” protons, allowing an NOE walk from the 5’ to the 3’-

end of the oligonucleotide. In the case of these mismatched duplexes, the NOE walk is 

conserved, again supporting the notion that the mismatches are inserted and stacked well 

between the flanking base-pairs and the oligonucleotides adopt the classical B form 

duplex with minimal local disruption. Additionally, 31P NMR studies support a B1 

conformation (17, 19, 20, 23).   

Much less is known about the dynamical properties of the mismatched bases in 

the DNA duplex and about any possible role of dynamics in mismatch recognition. The 

bases in DNA move rapidly within the double helix, undergoing thermally driven 
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structural fluctuations in solution. Since base motions occur within a multidimensional 

potential well, determined by a combination of base-stacking and base-pairing forces, it is 

reasonable to expect that the motions of a mismatched base pair in DNA should be 

different from that of the fully matched pair; this dynamical difference may influence the 

interactions of mismatched base pairs with repair enzymes. Furthermore, the dynamics of 

mismatches as well as fully matched base pairs may play a pivotal role in modulating 

charge transport through DNA, which is a topic of considerable current interest (30-38). 

The dynamics of mismatched duplexes has been the focus of spectroscopic 

studies by Millar et al (39). Time resolved fluorescence anisotropic decay measurements 

were obtained for a series of oligonucleotides containing intervening AP•X base-pairs, 

where AP is the fluorescent adenine analogue, 2-aminopurine, and X=A, T, G and C. 

This technique allowed the detection of base motions in DNA on the picosecond time 

scale. Motions such as helical twisting, propellar twisting, base tilting and base rolling 

could potentially alter the emission dipole of AP, thereby contributing to changes in the 

decay of the fluorescence anisotropy. AP pairs differently with each of the different bases 

and these differences in its relative pairing ability were reflected in the internal dynamics. 

A complementary method of probing base pair dynamics is through 1H NMR 

studies of imino proton exchange rates. Clearly, such studies probe base pair motions on 

a much slower time scale. The imino protons of the aromatic heterocyclic base exchange 

with the solvent protons when the hydrogen bond in the base pair is disrupted (41, 42). 

The chemical proton transfer step from the open state is usually rate limiting, and a 

proton acceptor, the base catalyst, must be added to solution in order to accelerate the 

exchange close to opening-limited conditions. Base pair lifetimes are then obtained by 

extrapolation of the exchange times to infinite catalyst concentration, where the 

dissociation constant of a base pair is estimated by comparing the exchange rates of the 

imino proton in the base pair and in the mononucleoside. The unknown factor in this 

comparison is the accessibility of the imino proton in the open base pair, which is related 
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to properties of the open state. Measurements of the NMR relaxation rates of the imino 

protons as a function of solvent exchange have yielded lifetimes in the range 1-40 ms for 

fully paired bases in B-DNA (43). In general, AT base-pair lifetimes have been found to 

be in the range 1-5 ms at 15 °C, except for AT tracts where lifetimes longer than 100 ms 

have been observed (44). For GC base pairs, lifetimes about 10 times longer than for AT 

base-pairs have been observed (43), as one might expect, given the presence of an 

additional hydrogen bond in the GC base pair. However, it is important to note that the 

sequence composition (44, 45), the charged state of the double helix (46), and drug 

interactions (47) all serve to modulate base-pair dynamics sensitively. 

 Here we report a systematic study of the dynamics of single base mismatches 

within DNA duplexes through the measurements of imino proton exchange. Using 1H 

NMR, we have determined the base pair lifetimes of different mismatches in a given 

sequence context and have compared the exchange times with those of fully matched 

base pairs. We observe strong sequence dependence of the base-pair opening times and 

that rates are increased at the mismatched site and in the directly neighboring site. These 

results underscore the importance of DNA sequence and of sequence context in 

governing base dynamics. 

 

Experimental 

Oligonucleotide Preparation.  Oligonucleotides were synthesized using standard 

phosphoramidite chemistry on an Applied Biosystems 392 DNA synthesizer with a 

dimethoxy trityl protecting group on the 5’end (48). Oligonucleotides were purified on a 

reversed-phase Rainin Dynamax C18 column on a Waters HPLC and then deprotected by 

incubation in 80% acetic acid for 15 minutes. After deprotection, the oligonucleotides 

were purified again by HPLC. Following purification, these oligonucleotides were 

desalted on a Waters C18 SepPak column and then converted to a sodium salt using CM 

Sephadex C-25 (Sigma) equilibrated in NaCl. The concentration of the oligonucleotides 
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was determined by UV-visible spectroscopy (Beckman DU 7400) using the extinction 

coefficients estimated for single-stranded DNA: ε(260 nm, M-1cm-1) adenine (A) = 

15,400; guanine (G) = 11,500; cytosine (C) = 7,400 and thymine (T) = 8,700. Single 

strands were mixed with equimolar amounts of complementary strand and annealed using 

a Perkin Elmer Cetus Thermal Cycler by gradual cooling from 90°C to ambient 

temperature in 90 minutes. The NMR samples were prepared by dissolving the 

oligonucleotides in a buffer solution (5 mM Na2HPO4, 15 mM NaCl, pH 7.0). The 

concentrations of the samples varied between 0.5-1.2 mM duplex. 

Melting Temperature Experiments.  The melting temperatures of the 

oligonucleotides were determined from absorbance versus temperature curves measured 

at 260 nm on a Beckman DU 7400 UV-visible spectrophotometer. 10 µM duplex was 

used in a buffer of 5 mM Na2HPO4, 15 mM NaCl, pH 7.0. The melting profile of the 

duplexes were obtained by slowly lowering the temperature (0.5 °C per minute) from 75 

°C to 10 °C and measuring the absorbance at 260 nm at each temperature. The Tm values 

represent the midpoint of the transition as obtained by fitting the melting profiles with a 

sigmoidal expression in Origin.  

NMR Spectroscopy.  One and two dimensional 1H NMR spectra were taken in 

both D2O and 90/10 H2O/D2O at 277 K on a Varian INOVA 600 MHz spectrometer. For 

the spectra taken in 90/10 H2O/D2O, WATERGATE gradient pulse water suppression 

(49) was used. The conditions of acquiring the spectra were: 600 MHz, 20 ppm sweep 

width, TPPI, 2048 complex points, hypercomplex mode, 256 t1 blocks, 64 scans per t1 

block, 1.3 s relaxation delay, 120 ms mixing time. ROESY spectra (50, 51) were obtained 

at variable mixing times of 80, 150 and 300 ms keeping the other parameters the same as 

for the WATERGATE NOESY experiments with the r.f. strength for the spin-lock field 

set at 3.5 kHz. Linear prediction was employed in the indirect dimension to increase 

resolution close to the diagonal. All two dimensional processing was carried out with 
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VNMR 6.1b software (Varian) on a SUN workstation. Chemical shifts were reported 

relative to the internal standard, sodium 3-trimethylsilyl-[2,2,3,3-D4] propionate (TMSP). 

Imino Proton Exchange Measurements.  Imino proton exchange within the 

DNA duplex occurs through the opening of the base pair followed by exchange from the 

open state. The conformational features of this state are not yet fully understood. To 

account for proton exchange data, it is generally assumed that, in the open state, the 

imino groups are fully accessible to solvent and the base-pairing hydrogen bonds are 

broken such that the imino proton becomes available for hydrogen bonding with water or 

catalyst molecules (41). The chemical proton transfer step from the open state is rate 

limiting, and a proton acceptor like OH- must be added to accelerate the exchange close 

to opening-limited conditions. The base-pair lifetimes are obtained by extrapolation of 

the exchange times to infinite base catalyst concentration. 

kex = Σn kn
op ki

tr[B]/ kn
cl/αn + ki

tr[B] 

For a base-pair with multiple open states, formed with rates  kn
op and closed with rates 

kn
cl, and provided that Σn kn

op« k1
cl, k2

cl, …., kn
cl, the total imino proton exchange rate kex 

equals the sum of the exchange rates from each mode (41). To simplify, where ki
tr is, as 

above, the intrinsic imino proton-transfer rate from the mononucleoside and αn is a 

parameter reflecting the different accessibility of the imino proton in the open states and 

in the mononucleoside and [B] denotes the concentration of the exchange catalyst, OH- in 

this case, then for a base pair with a single opening mode (n = 1) and with kop« kcl, this 

can be written as: 

τex= τop + 1/αKdktr
i[B]                         (1) 

where τex and τop are the inverse exchange and opening rate, respectively, and Kd = kop/kcl 

is the base-pair dissociation constant. A plot of τex versus 1/[B] yields a straight line 

where τop is obtained from the y-axis intercept and αKd from the slope. The limit where 

Equation 1 is valid is known as Linderstrøm-Lang kinetics (52).   
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In this work, the oligonucleotides were titrated using ammonia (4 M ammonia 

buffer, 1.25 M ammonium chloride, pH 10.0; Ricca Chemical Co.) as the exchange 

catalyst. The oligonucleotide concentrations of the samples varied between 0.5-1.2 mM 

duplex, and the oligo sample was buffered with 5 mM Na2HPO4, 15 mM NaCl, pH 7.0. 

The imino proton exchange times (τex) at different catalyst concentrations, were obtained 

from measurements of the inversion recovery times in the presence (Trec) and absence 

(Taac) of exchange catalyst according to the equation 

                 1/ τex=1/Trec - 1/Taac     (2) 

Except for longitudinal dipolar relaxation, direct exchange to water as well as exchange 

catalyzed by OH- ions and the acceptor nitrogen of the opposite base contributes to the 

recovery rate of the imino protons in the absence of added catalyst 1/Taac. However, these 

contributions remain constant when the catalyst is added and will be canceled in Equation 

2.  Consequently, the exchange time τex represents exchange only via the added catalyst.  

Thus, the NMR measurable in the whole series of the base-pair lifetimes experiments is 

T1, the longitudinal relaxation time.   Essentially, we are measuring the T1 values for 

various imino protons and of course, the effect of the exchange catalyst on T1. 

 The experiment was carried out by creating a designed pulse sequence comprised 

of a 3.2 ms 180˚ Gaussian pulse(g3) for selective inversion, a variable delay, and a 5 ms 

90˚ Gaussian observe pulse(g4). Right shift and linear prediction of the free induction 

decay are employed to correct for magnetization evolution during the observed pulse. 

The carrier frequency was centered on the imino proton region. The spectral width was 

7000 Hz and the experiments were carried out at 600 MHz. 

 

Results and Discussion 

Sequence Design.  The general nine-mer oligonucleotide sequence 

d(GACAXTGTC)2; where X= G, T, A, C, was employed to determine the base-pair 

lifetimes for DNA duplexes containing different central single base mismatches (Table 1) 
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Table 2.1. The Sequences and the Melting Temperatures (Tm) of the Duplexes 
Containing a Single Base Mismatch (XY) Used in the NMR Experiments. 
 

___________________________________ 
 

            Duplexesa                     Tm (°C)b               
___________________________________ 

 
                  5’GACAGTGTC3’       34.9 
                  3’CTGTGACAG5’ 
 
                  5’GACACTGTC3’       24.5 
                  3’CTGTCACAG5’ 
 
                  5’GACAATGTC3’       32.1             
                  3’CTGTAACAG5’ 
 
                  5’GACATTGTC3’       32.4                          
                  3’CTGTTACAG5’ 
 
                                           5’GACAGTGTC3’       47.8                           
                  3’CTGTCACAG5’ 
                                            
                                           5’GACAATGTC3’       44.1                           
                  3’CTGTTACAG5' 

_____________________________ 
 
aThese sequences represent the six oligonucleotides employed for the imino exchange 
experiments. The single base mismatched or matched base-pairs are highlighted in bold. 
bShown are the melting temperatures (Tm) of the duplexes determined as described in the 
Experimental section. Samples include 10 µM duplex in a buffer of 5 mM Na2HPO4, 15 
mM NaCl, pH 7.0. The order of the melting temperature varies as: GC > AT > GG > TT 
~ AA > CC 
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A palindromic sequence was utilized that is self-complementary except at the mismatch 

site (X). This simplifies the 1H NMR spectra and facilitates the assignment of the protons. 

Table 1 also shows the melting temperatures for the different duplexes and demonstrates 

that duplexes containing mismatches are thermodynamically destabilized as compared to 

the matched pairs.   

For the mismatched duplexes, only one strand was used resulting in a duplex with 

either AA, TT, CC or GG mismatch at the central site (X); to obtain a complementary 

base-pair at site X, however, two different strands had to be used. This fact led to the 

possibility of the formation of a mixture of matched and mismatched duplexes as two 

separate strands were added to form the fully matched GC and AT sequences. Given the 

melting temperatures, that possibility was minimized by slow cooling during 

hybridization of the duplexes and repeated annealing of the sample to allow nucleation. 

In the case of the AT-matched duplex, no resonances corresponding to the imino protons 

of mismatched base-pairs were observed. For the GC matched duplex only a small 

fraction was observed (vide infra), confirming the isolation of duplexes with primarily 

Watson-Crick base pairs. The nine-mer duplex was also chosen in part to preserve the 

sequence used in guanine oxidation studies reported elsewhere (38). The possibility of 

hairpin formation is negligible with 9-mer duplexes. Moreover, non-denaturing agarose 

gel electrophoresis with the mismatch-containing duplexes indicated no formation of 

hairpins in these duplexes (data not shown). 

Imino Proton Resonance Assignment.  The imino proton resonances of the 

different oligonucleotides were assigned primarily from the imino-imino crosspeaks in 

the WATERGATE NOESY spectra in 90:10 H2O/ D2O solution (Table 2). The B-form 

structure of the DNA duplex constrains the position of imino protons in the duplex to be 

3.4 Å above or below one another; in the fully matched duplex, each base pair contains 

one imino proton (N3H in thymine and N1H in guanine). These interactions between the 

imino protons lead to crosspeaks in the imino-imino region of the two dimensional  
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          1 2  3 4 5  6 7 8 9 
5’-GACAXTGTC-3’ where X / Y= A, T, G, C 
3’-CTGTYACAG-5’ 
 

Figure 2.1. One dimensional 1H NMR spectra of the exchangeable imino region (9-15 ppm) of the 
oligonucleotides with intervening GG, TT, AA ,CC mismatches and the fully matched AT and GC base 
pairs at 600 MHz. Samples contained 0.5-1.2 mM oligonucleotides, 5 mM Na2HPO4 and 15 mM NaCl 
buffer at pH 7.0 in 90:10 H2O/D2O at 277 K. The peaks are assigned from the respective imino-imino 
region of the two dimensional NOESY spectra. Chemical shifts are reported relative to TMSP (0.00 
ppm). The chemical shifts of the individual imino resonances in all the duplexes are given in Table 2.  
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Table 2.2. The Chemical Shiftsa (ppm) of the Iimino Proton Resonances in the 
Oligonucleotides Containing the Intervening Mismatches (XY).   

 
 

         1 2  3 4 5  6 7 8 9 
5’-GACAXTGTC-3’ where X, Y= A, T, G, C 
3’-CTGTYACAG-5’ 
 

 
 

 

 

 

 

 

 

 

 

  bBase pairs 
 

X/Y5NHc 

 (ppm) 

 
  T6NHd 

(ppm) 

 
G7NHd 

 (ppm) 

 
T8NHd 

 (ppm) 

 
G9NHd 

 (ppm) 

 
G•G 

 
 

T•T 
 

 
         C•C 

 
         A•A 

 
 

        G•C*e 

 
       A•T*e 

 
10.65 
10.22 

 
10.72 

10.41(sm) 
 

----- 
 
 

----- 
 
 

13.54 
 
 

13.72 
13.42 

 
13.76 
13.46 

 
14.25 

13.87(sm) 
 

14.20 
13.87(sm) 

 
13.55 

 
 

13.81 
 
 

14.01 
13.96 

 
12.70 
12.47 

 
12.44 

 
 

12.54 
 
 

12.46 
 
 

12.57 
 
 

12.47 
12.41 

 
13.92 
13.89 

 
14.03 

 
 

14.04 
 
 

13.92 
 
 

13.97 
 
 

13.85 

 
12.71 

 
 

12.79 
 
 

12.80 
 
 

12.76 
 
 

12.78 
 
 

12.79 

 
aSamples for NMR studies are prepared as described in the Experimental section and the proton chemical 
shifts are relative to TMSP (0.00 ppm). The samples were at a concentration of 0.5-1.2 mM duplex and 
taken in a buffer solution of 5 mM Na2HPO4, 15 mM NaCl, pH 7.0 in 90:10 H2O/D2O. bDesignation of 
XY as shown in assembly. cThe imino proton attached to the central mismatched base pair is denoted by 
X/Y5NH. The assignment of the imino protons was accomplished from the imino-imino cross peaks of 
the WATERGATE NOESY spectra of the oligonucleotides in 90:10 H2O/ D2O as described in the 
Results & Discussion section. dBecause of the symmetry of the duplexes and the fact that each base-pair 
can have only one imino proton (expect the mismatched pairs), imino protons at G1, T2, G3 and T4 sites 
are usually equivalent to that of G9, T8, G7 and T6 respectively. The presence of the two values of the 
chemical shift reflects the loss of this symmetry. eXY* corresponds to the Watson-Crick paired sequence.
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NOESY spectra of the DNA duplexes, which can be exploited for the assignments of 

these protons. 

Figure 1 shows the exchangeable imino region (9-15 ppm) of the one-dimensional 
1H NMR spectrum for sequences containing GG, AA, TT, CC mismatches and for the 

fully matched sequences containing AT and GC base pairs. For all of the oligonucleotides 

under study, one observes three main sets of imino protons: a) thymine imino protons in 

the range of 14.3-13.4 ppm, b) guanine imino protons mostly in the range of 12.8-12.4 

ppm and c) a set of imino protons from the mismatched sites (GG & TT) in the range of 

10.2-10.7 ppm. These shifted resonances at the mismatch site are more exposed and 

subject to exchange with solvent than those of the stacked base pairs. Nonetheless, most 

of the imino protons are quite well resolved. As is evident in Table 2, for all of the 

duplexes, the chemical shifts of the outer imino protons (G9N1H, T8N3H and G7N1H) 

remain quite close to each other. This similarity in chemical shift is consistent with 

previous observations that perturbations caused by the mismatches are localized, limited 

essentially to the flanking bases (10-12). 

The linewidths of the imino proton(s) for the different duplexes containing 

mismatches clearly differ depending upon the base composition of the mismatch. TT and 

CC mismatch-containing duplexes exhibit larger linewidths as compared to GG and AA 

duplexes. This variation in linewidth correlates with the relative stability of the duplexes; 

such broad linewidths for duplexes containing TT and CC mismatches have also been 

seen previously (24). 

A representative imino-imino region in the NOESY spectra of the duplex 

containing a GG mismatch is shown in Figure 2. Since the imino protons are stacked one 

above another, the interactions among them lead to a NOE walk of the imino-imino cross 

peaks along the length of the oligonucleotide. Furthermore, the two imino protons from 

the mismatched guanine (GG) base-pair are positioned at a close proximity to each other 

and exhibit a strong NOE build up between them (G5/G5’). The peak splitting for the G5  
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Figure 2.2. Expanded imino-imino region of the two dimensional NOESY contours in 90:10 
H2O/D2O for the duplex d(GACAGTGTC)2 containing an intervening GG mismatch. Solution 
is 1 mM in DNA duplex, 5 mM Na2HPO4 and 15 mM NaCl buffer at pH 7.0.  Spectrum is 
acquired with a mixing time of 120 ms and at 277 K and collected at 600 MHz.  The details of 
the NOESY experiment are outlined in the Experimental Section.  Chemical shifts are reported 
relative to TMSP (0.00 ppm).  The lines illustrate the NOE walk along the imino protons which 
are stacked above or below one another (at a distance of 3.4 Å) along the oligonucleotide. 
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imino proton reflects an asymmetry in conformation for the two G’s at the mismatch site. 

One G of the GG mismatch has been seen to adopt the syn conformation with the 

alternate G in the anti-form, with slow exchange on the NMR time scale (17-19). This 

asymmetry at the mismatch site extends out to other sites within the duplex; peak 

splitting is observed not only for G5, but also for T6 and G7 imino resonances. These 

peaks can easily be assigned from the NOESY spectra. 

The TT mismatch is known to be in intermediate exchange between two 

asymmetric wobble structures involving two imino to carbonyl hydrogen bonds (20-22), 

and we also observe two peaks for T5 with a faster rate of exchange. Note that one of the 

T5 peaks is much bigger than the other (T5’) indicating the one of the conformations 

exchange with water at a faster rate relative to the other. For the TT mismatch-containing 

duplex, the asymmetry can be seen to a small extent on T6. Interestingly, for the CC 

mismatch-containing duplex, a similar asymmetry is evident in the shifts for T6; since the 

CC-mismatch lacks imino protons, no asymmetry can be detected directly at the 

mismatch site. This has been further corroborated by the presence of a crosspeak for the 

T6N3H proton in the same phase as the diagonal peak in the two dimensional ROESY 

spectra of the TT and CC-duplexes (data not shown), which indicates chemical exchange 

involving that imino proton. A combination of NOESY and ROESY spectra can thus be 

used to distinguish between cross-relaxation and chemical exchange (50). Note that our 

assignments of the imino protons of the GG and TT pair are in close agreement with 

those observed for related nine-mers containing GG and TT mispairs (24). 

The one dimensional spectrum for the AA mismatch-containing duplex is 

relatively simple and is also easily assigned from the imino-imino NOESY spectra. Only 

four resonances from the four matched base pairs are evident. This observation must 

reflect a primarily symmetric positioning of the A’s within the mismatch site.  

Also shown are the one-dimensional spectra for the fully matched duplexes. For 

the GC-duplex, the G5 imino is now revealed at the expected shift for a matched base  
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Figure 2.3. The titration of 1mM d(GACAGTGTC)2 with 4 M ammonia buffer in 90:10 
H2O/D2O followed by 1H NMR. Shown is the imino proton region of the spectra taken at 
600 MHz and 277 K. Conditions are 1 mM in DNA duplex, 5 mM Na2HPO4 and 15mM 
NaCl buffer and 4 M in the titrant Ammonia buffer. Chemical shifts are reported relative to 
TMSP (0.00 ppm). [B] denotes the concentration of the ammonia buffer in the sample 
solution at different points of the titration.   
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pair. In the case of the GC duplex, there are also very small peaks evident at 13.46, 10.65 

and 10.22 ppm; we attribute these to the formation of a very small amount of GG 

mismatch-containing duplex during the hybridization process. Interestingly, sharper 

resonances are evident for the AT matched oligomer compared to the GC matched 

duplex. In addition, in the case of the AT matched duplex, peak doubling is evident for 

most of the resonances, consistent with the symmetry breaking by the TA base pair at the 

central site. Only one resonance at each position is apparent for the matched GC 

oligomer; perhaps this results from a more central positioning of the G5N1H within the 

duplex.  

Imino Proton Exchange.  The exchange times of the imino protons were 

obtained through the measurement of the inversion recovery times of the NMR 

resonances. The addition of an exchange catalyst, NH3, yields, in the limit of infinite 

catalyst concentration, the kinetic parameters for the base-pair opening (Equation 1). 

Upon titration with base, the general observation was broadening and the gradual 

disappearance of the imino proton resonances as the exchanges times became too fast to 

be observed on the NMR time scale. Figure 3 shows the variation in the one dimensional 

spectrum for the GG mismatch-containing duplex as a function of increased base 

concentration.  Different imino protons are seen to broaden out at differing levels of base 

concentration. For example, G7N1H and T6N3H broaden out at a much slower rate 

compared to the imino protons G9 and G5. This is consistent with the fact that the 

outermost protons (G9N1H and T8N3H) as well as the protons at the mismatch site 

(G5N1H) are undergoing exchange with solvent at a faster rate than the other internally 

positioned imino protons and hence the fast relaxation is observed. The linewidth of the 

G9N1H imino proton is relatively broad compared to the other imino protons even before 

the addition of the catalyst due to fraying of the end base positions; that the imino 

resonance for the end position is seen at all is somewhat surprising. 
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Figure 2.4. Exchange of the imino protons of the duplex d(GACAGTGTC)2 containing the 
intervening GG mismatch versus the inverse of the concentration of ammonia catalyst. The exchange 
times (τex) of (A) G7N1H, (B) G9N1H, (C) G5/G5'N1H, (D) T6N3H and (E) T8N3H imino protons are 
individually displayed as a function of inverse ammonia concentration (1/[B]). The data points used in 
the drawing of these lines are normalized based on at least three trials. The straight lines are obtained by 
fitting to Equation 2, with the exchange times weighted according to their errors. The corresponding 
base-pair lifetimes (τop) thereby obtained from extrapolation are displayed in Table 3. Two independent 
line fittings are accomplished for the imino proton at the mismatch site (G5/G5'N1H).   
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Figure 2.5. Exchange of the imino protons of the duplex d(GACAATGTC)2 containing the 
intervening AA mismatch versus the inverse of the concentration of ammonia catalyst. The exchange 
times (τex) of (A) G7NH, (B) G9NH, (C) T6NH and (D) T8NH imino protons are individually 
displayed as a function of inverse ammonia concentration (1/[B]). The data points used in the drawing 
of these lines are normalized based on at least three trials. The straight lines are obtained by fitting to 
Equation 2, with the exchange times weighted according to their errors. The corresponding base-pair 
lifetimes (τop) thereby obtained from extrapolation are displayed in Table 3.   
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Figure 2.6.  Exchange of the imino protons of the duplex d(GACACTGTC)2 containing the 
intervening CC mismatch versus the inverse of the concentration of ammonia catalyst. The exchange 
times (τex) of (A) G7NH, (B) G9NH, (C) T6NH and (D) T8NH imino protons are individually 
displayed as a function of inverse ammonia concentration (1/[B]). The data points used in the drawing 
of these lines are normalized based on at least three trials. The straight lines are obtained by fitting to 
Equation 2, with the exchange times weighted according to their errors. The corresponding base-pair 
lifetimes (τop) thereby obtained from extrapolation are displayed in Table 3.   
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Figure 2.7. Exchange of the imino protons of the duplex d(GACATTGTC)2 containing the 
intervening TT mismatch versus the inverse of the concentration of ammonia catalyst. The exchange 
times (τex) of (A) G7NH, (B) G9NH, (C) T5/T5'NH, (D) T6NH and (E) T8NH imino protons are 
individually displayed as a function of inverse ammonia concentration (1/[B]). The data points used 
in the drawing of these lines are normalized based on at least three trials. The straight lines are 
obtained by fitting to Equation 2, with the exchange times weighted according to their errors. The 
corresponding base-pair lifetimes (τop) thereby obtained from extrapolation are displayed in Table 3. 
In case of T6NH proton, two different lifetimes are obtained (Results & Discussion). 
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Figure 2.8.  Exchange of the imino protons of the fully matched duplex d(GACAGTGTC)2 versus 
the inverse of the concentration of ammonia catalyst. The exchange times (τex) of (A) G7NH, (B) 
G9NH, (C) G5NH, (D) T6NH and (E) T8NH imino protons are individually displayed as a function 
of inverse ammonia concentration (1/[B]). The data points used in the drawing of these lines are 
normalized based on at least three trials. The straight lines are obtained by fitting to Equation 2, with 
the exchange times weighted according to their errors. The corresponding base-pair lifetimes (τop) 
thereby obtained from extrapolation are displayed in Table 3.  
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Figure 2.9.  Exchange of the imino protons of the fully matched duplex d(GACAATGTC)2 
versus the inverse of the concentration of ammonia catalyst. The exchange times (τex) of (A) G7NH, 
(B) G9NH, (C) T5NH, (D) T6NH and (E) T8NH imino protons are individually displayed as a 
function of inverse ammonia concentration (1/[B]). The data points used in the drawing of these 
lines are normalized based on at least three trials. The straight lines are obtained by fitting to 
Equation 2, with the exchange times weighted according to their errors. The corresponding base-pair 
lifetimes (τop) thereby obtained from extrapolation are displayed in Table 3.  
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In Figure 4, the exchange times at 277 K of the imino protons of the base pairs of the 

oligonucleotide containing the GG mismatch are displayed as a function of the inverse 

ammonia concentration. The exchange times display the linear dependence on the inverse 

base concentration, as expected from Equation 1. Similar plots were drawn for the other 

mismatches (Supporting Information) and these plots were found to be linear in all cases.  

Therefore, imino proton exchange in these duplexes containing single base mismatches 

does follow Linderstrøm-Lang kinetics (52). The base-pair lifetimes τop obtained from the 

linear fits are given in Table 3.   

Base-pair Lifetimes.  Fast exchange rates and therefore short base-pair lifetimes 

are observed for the imino protons directly at the mismatch sites as compared to the 

Watson-Crick base-pair GC (τop of G5N1H = 18±4 ms). This observation does support 

the fact that the mismatches produce local destabilization in the helical structure of the 

duplex leading to dynamics for the mismatches that are different from the standard 

Watson Crick base pairs. Furthermore, the τop of the GG mismatch site is, appreciably 

longer than that of the TT mismatch, 2 ms for G5N1H in the GG pair, while 0.5 ms for 

T5N3H in the case of TT. The value of τop obtained for the GG mismatch is similar to 

values previously reported for a GT mismatch (54).  

The effect of the mismatches also propagates out to the base pairs adjacent to it, 

T6N3H and G7N1H, such that each duplex can be distinguished by its differential 

kinetics. As seen in the chemical shift changes, the dynamical effects of the mismatches 

are mostly localized in the vicinity of the mismatch site. This finding is consistent with 

the crystallographic studies, that show that the conformational differences between the 

normal B-form and the mismatched DNA are small and affect solely the local 

environment of the mismatched site (10-12). This observation is also consistent with 

previous 1H NMR studies of DNA mismatches (16, 28, 53, 54).  

In fact, in the case of the duplexes containing CC and AA mismatches, the base-

pair lifetime at the mismatch site clearly cannot be determined since there are no imino  
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Table 2.3. The Base-pair Lifetimesa (τop) of the Oligonucleotides Containing 
Intervening Mismatch (XY). 
 
     1  2 3 4 5 6 7 8 9 
5’-GACAXTGTC-3’ where X, Y= A, T, G, C 
3’-CTGTYACAG-5’ 

 
 

τop (ms)b 

Base pairc

 
 

T5NH 

 
 

G5NH 

 
 

T6NH 

 
 

G7NH 

 
 

T8NH 

 
 

G9NH 

 
       G•Ge 

 
X 

 
2+1 

2+0.9 

 
24+5 

 
15+4 

 
8+2 

 
7+3 

 
T•Tf 

 
0.5+0.3 

 
X 

 
6+4 

0.5+0.2 

 
2+1 

 
10+3 

 
14+4 

 
C•Cd 

 
X 

 
X 

 
10+3g 

 
4+2 

 
8+3 

 
12+4 

 
A•Ad 

 
X 

 
X 

 
15+3 

 
12+3 

 
10+2 

 
10+4 

       
 

G•C*h 
 

X 
 

18+4 
 

12+3 
 

18+5 
 

 
11+2 

 
15+5 

 
A•T*h 

 
1+0.4 

 
X 

 
8+2 

 
3+1 

 
12+3 

 
12+4 

 
aSamples for the determining the base-pair lifetime are prepared and the experiments based on 
imino proton exchange are performed as described in the Experimental section. The samples 
were at a concentration of 0.5-1.2 mM duplex and taken in a buffer solution of 5 mM Na2HPO4, 
15 mM NaCl, pH 7.0 in 90:10 H2O/D2O. bShown are the mean and standard deviation of the 
base-pair lifetime values (τop) of the mismatches/base-pairs (T5/G5NH) and their flanking base-
pairs based on at least three trials. cDesignation of XY as shown in assembly. dSince only 
guanine and thymine has imino protons, no base-pair lifetimes are obtained for CC and AA 
duplexes directly at the corresponding mismatch sites. eTwo independent values of the base-pair 
lifetimes at the mismatch site are obtained for the duplexes containing GG mismatch for each 
trial. fIn the case of TT mismatch, two different lifetimes are obtained for the T6NH proton 
(Results & Discussion). gThe base-pair lifetime corresponding to the T6’NH of the CC 
mismatch could not be determined because of very fast relaxation on the addition of base. hXY* 
corresponds to the Watson-Crick paired sequence. 
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protons at the mismatch site to measure the relaxation times. In those cases, to compare 

the lifetimes with the other mismatches, the neighboring imino protons (T6 N3H) to the 

mismatch site was considered. 

 The exchange times of T5’N3H of the TT mismatched duplex and T6’N3H of the 

CC duplex could not be determined due to very fast exchange and the rapid 

disappearance of the peaks on the first addition of the exchange catalyst. This observation 

is consistent with the very short lifetime of the TT mismatched base pair (τop = 0.5±0.3 

ms) obtained independently from the other imino proton (T5N3H) at the mismatch site. 

Unusually fast exchange is also observed at T6’N3H (τop = 0.5+0.2 ms) of TT duplex, 

providing evidence of fast exchange occurring around the vicinity of the mismatch.   

In terms of overall kinetics, the duplex containing the GG mismatch displays the 

longest base-pair lifetime, followed by AA, CC, and then TT with the shortest lifetime. 

We believe that the short base-pair lifetimes reflect an increased lateral motion of the 

base pair, leading to an increased disruption of the π stacked array. This disruption affects 

not only the imino protons at the mismatch site, but also the imino protons up to two 

neighboring base pairs away from the mismatch. In all of the sequences under study, the 

outermost GC and AT base-pairs exhibit similar values of base-pair lifetimes. 

Matched Sequence.  The base-pair lifetimes in the fully matched GC-containing 

oligonucleotide are comparable to the previously reported values for fully matched 

duplexes (43). However, quite contrary to our expectation, the base-pair lifetime for the 

AT base pair in the sequence context of  5’-AAT-3’ was found to be much shorter than 

AT base pairs in other sequence contexts (43, 44) and even shorter than many 

mismatches (τop of T5N3H = 1±0.4 ms). Interestingly, the flanking base pairs of the 

central AT base pair also show unusual rapid lifetimes as compared to the fully matched 

GC sequence. Note the very fast lifetime of the G7 base pair (τop of G7N1H = 3+1 ms) in 

this sequence. Also note that in this given AT-duplex, different AT base pairs show 

different lifetimes. The one flanked by GC base pairs on both sides exhibits the longest 
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lifetime (τop of T8N3H = 12±3 ms) which can be rationalized based on the fact the GC 

base pairs can provide better stacking for the AT base pair. It is apparent that the value of 

the base pair lifetimes depends upon the sequence context, as the sequence context 

imposes different local conformational flexibilities on the duplex DNA. These structural 

variations are reflected in the base pair opening dynamics.   

This observation is particularly interesting because it shows that the dynamics of a 

fully matched base pair in a given sequence context can be comparable to a mismatched 

site even though this may not be reflected in the melting temperatures. Thus, an 

individual Watson-Crick base pair within a DNA helix may not necessarily be the most 

stable and well-stacked. The AT base pair in general has a longer base pair lifetime 

(greater than 1 ms but less than 5-6 ms) under other sequence contexts (45). In contrast, 

long tracts of AT base pairs show very long base pair lifetimes (greater than 100ms) (44). 

The alternating sequence 5’-TATA-3’ is also known to be particularly flexible (40). Thus 

the base-pair lifetime for a given base pair depends sensitively upon the sequence context 

and composition.  A systematic study of this effect is in progress. It is interesting to note 

that we have also seen evidence of the local flexibility of this sequence in studies of long-

range DNA-mediated charge transport (38). 

Internal Dynamics of Mismatched and Matched Base Pairs.  One expects that 

the imino proton of a Watson-Crick base-pair (e.g., a GC pair) within a double helix 

cannot exchange on a rapid time scale, since neither solvent nor catalyst has access to the 

proton. Exchange, therefore, proceeds via three consecutive steps: base-pair opening (1), 

whose rate is 1/τop, followed by proton exchange from the open state (2) and closing the 

base-pair (3) (55): 

GH*C ↔ GH* + C ↔ GH# + C ↔ GH#C 

(1)                 (2)                 (3) 

The base-pair lifetimes of the mismatches are found in general to be shorter than the 

Watson-Crick base pairs. Indeed in many cases, no “opening” of the mismatched base 
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pair is required. This means that the lifetime of the mismatches in the closed state is 

greatly reduced relative to that of the normal Watson-Crick base pairs. It has been shown 

(54) that ~ 0.1% of the GT mismatches are in the open solvent-accessible state and GT is 

one of the more thermodynamically stable mismatches. The mismatches, in general, are 

more accessible to solvent and other extraneous molecules than the Watson-Crick bases. 

This may have relevance to how the mismatches are recognized by the mismatch 

repairing proteins and how the mismatches may act as “hot spots” in reactivity studies 

(56). 

The imino exchange experiments primarily measure the lateral motions of the 

base pairs. These opening motions may occur by different pathways and may be coupled 

to bending (57-60) which in turn affects the stacking of the base-pairs. Stacking is mostly 

a “vertical” effect along the axis of the duplex while the opening motions are “horizontal” 

effects. However, these two are clearly related, possibly one motion reinforcing the other. 

Molecular dynamics (MD) simulations have been performed on the lateral motion of 

duplexes containing mismatches (61). Consistent with the short lifetime of mismatches, 

opening fluctuations in MD runs are larger at mismatched base-pairs 5-7°, than fully 

matched CG, 4°. It should however be emphasized that by measuring the base-pair 

lifetime, we are essentially quantifying only one type of dynamical motion occurring in 

the DNA duplex. Mismatches can bring about changes in a variety of other internal 

motions in DNA like helical twisting, propeller twisting, base tilting, base rolling etc and 

these internal motions are not reflected in the study of base-pair lifetimes, although they 

may be related. 

  

Conclusions 

A systematic study of the base-pair dynamics of mismatch containing 

oligonucleotides has been carried out using imino exchange measurements. We have 

observed very fast base-pair opening rates in the mismatch site, indicative of the local 
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distortion generated around the mismatch. Some mismatches generate more distortion 

than others, and these differences are captured in the faster base-pair lifetimes. A relative 

ordering of the mismatches with respect to the base-pair lifetime has been achieved. In 

general, the mismatches are found to be kinetically destabilized relative to the Watson 

Crick base-pairs. However, certain Watson-Crick base-pairs under a given sequence 

context may behave very much like a mismatch in terms of base-pair opening dynamics. 

The faster dynamics associated with the mismatches and with some Watson- Crick base 

pairs requires consideration in how these sites may be recognized and repaired by 

proteins. 
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