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ABSTRACT

Autonomous robots are widely recognized as highly valuable and are expected to
become increasingly prevalent. They will play a critical role across a wide range of
terrestrial applications in complex, unstructured environments, as well as in space,
supporting infrastructure and exploration on various bodies throughout the solar
system and beyond. Looking ahead, autonomous robots will play a crucial role in
the search for extraterrestrial life by enabling exploration of remote and extreme
environments beyond Earth. As robots need to approach more complex tasks,
the ability to rapidly perceive, understand, make real-time decisions, and operate
at speed requires advances in perception-driven controls, improved predictability,
and robustness to disturbances. To enable these capabilities, the first part of this
thesis proposes an innovative approach to enhancing ground vehicle mobility by
integrating a vision-based control algorithm that adapts to changes in real-time. Our
approach improves the vehicle’s ability to assess and respond to complex terrains
in real-time by leveraging visual information through visual foundation models and
meta-learning. Our controller has provable guarantees of exponential stability and
was validated on board two ground vehicles. Next, an extension of the previously
mentioned method applied to detecting objects in space using a visual foundation
model is presented. Our method was successfully demonstrated in space in early
2025 aboard the EdgeNode Lite spacecraft. Efficient operation comes from the
synergy of suitable autonomy and control with a suitable robot body. Following
this consideration, the second part of the thesis presents the design and control of
multi-degrees of freedom robots designed for mobility in complex environments.
It presents a nonlinear tracking controller with adaptation to improve the walking
performance of walking-flying robots. This is illustrated by our implementation on
Leonardo, the first robot to combine walking with flying to create a new type of
locomotion, which we showcase in complex acrobatic movements such as slacklining
and skateboarding. In a second case study, we aim to further understand and improve
biped walking by introducing a bipedal robot designed to be lightweight, easily
manufactured, and easily repaired, serving as a platform for testing learning-based
controllers. We introduce and demonstrate the performance of two controllers: a
model-based and a learning-based control. This work highlights the importance
of tightly integrated perception, control, and electromechanical design in achieving
robust autonomy: on Earth, in orbit, and beyond.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Autonomous robots are widely recognized as highly valuable and are expected to
become increasingly pervasive in the near future. They will play a critical role across
a wide range of terrestrial applications in complex, unstructured environments,
as well as in space, supporting infrastructure and exploration on various bodies
throughout the solar system and beyond. Looking ahead, autonomous robots will
one day play a crucial role in the search for extraterrestrial life by enabling exploration
of remote and extreme environments beyond Earth.

Vision-based Autonomy and Real-time Adaptation

25 deg attack angle

Right rear wheel maximum extent

Recovery drive tracks

Front wheel track

Figure 1.1: Image on-board the Opportunity rover on Mars: “Navcam image ac-
quired on sol 2226 of the sol 2220 high slippage and sinkage location on the western
side of a ripple.” [1]
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Planetary exploration presents unique challenges for robotic mobility due to the
diverse and often treacherous terrain that can pose serious risks to robot safety. Such
an example is the Opportunity rover, which experienced mobility issues caused by
excessive wheel sinkage while crossing sand dunes. This incident highlights the
limitations of current mobility systems on other planets that rely on pre-defined
terrain models and and lack the ability to adapt to real-time environmental changes.
In addition, the communication delay between Earth and Mars makes real-time
teleoperation infeasible. While Mars is currently within reach with different rovers,
we must explore further into the Solar Systems, to icy moons like Europa, Titan,
and Enceladus [2], as well as asteroids and comets.

To enable autonomous operation in such unstructured settings, two key technologies
are essential: vision-based autonomy and real-time adaptation. Vision-based
autonomy provides robots with the ability to perceive and interpret their environ-
ment, while real-time adaptation allows them to dynamically adjust their behavior in
response to terrain variations, hazards, and other environmental changes. Together,
these capabilities are critical and essential for achieving robust, intelligent mobility
in the next generation of space exploration missions.

Learning-based Control for Multi Degrees of Freedom Robots

A. B.

C.

Figure 1.2: Animals with outstanding mobility capabilities. A. Ibex climbing a
dam. B. Ostrich, the fastest bipedal animal on Earth, reaching speeds of 48 kmph
(30 mph) C. A cheetah is capable of moving at more than 104 kmph (64 mph).

Efficient operation comes from the synergy of suitable autonomy and control with
the suitable robot body. A straightforward way to enhance the mobility of a robot is
through bio-mimicry. Animals have evolved to have different forms that are adapted
to their environment. Many of them have outstanding mobility capabilities that
allow them to navigate through complex terrains with ease, as shown in Figure 1.2.
In particular, legs give animals the ability to traverse rough terrains, climb obstacles,
and navigate through confined spaces. Legs are not the only form of mobility that
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animals have evolved. Recent studies show a close ontogenetic1 and evolutionary
relationships between legs and wings, such as of Drosophila [3]. The ability to
fly gave insects and birds a three dimensional mobility that is unmatched by any
other form of navigation. Learning from those evolutionary traits, robots can be
designed to be capable of traversing through complex terrains with the same agility
as animals.

1.2 Objectives and Scope
The first objective of this research is to explore the synergy between vision and
control to enhance the autonomy of vehicles driving on unknown terrains. We focus
on real-time adaptability and on methods that have theoretical guarantees. This
study is driven by the hypothesis that a robot should not operate only on a small set
of states such as position and velocity, but also on a high-dimensional representation
of the environment. On that aspect, there is a gap in the literature on how to leverage
vision information with control theory methods, while guaranteeing exponential
stability.

The second objective is driven by the understanding that, while autonomy algorithms
are key to enable robots to navigate through complex terrains, the physical form of
the robot is also critical. This study explores how to design robots with multiple
degrees of freedom—and develop corresponding control and learning algorithms
that enable agile locomotion in complex environments, comparable to that observed
in nature.

The third objective is to explore the deployment of learning-based algorithms on-
board spacecraft. This study is driven by the hypothesis that such methods can
significantly enhance autonomy, yet they remain largely unvalidated in space ap-
plications due to limitations in onboard computation, power, and communication.
There is a clear gap in the literature on how to effectively adapt and implement these
algorithms within the stringent constraints of space environments.

1.3 Contributions
The first part of the thesis (Chapters 2-4 and Figure 1.3A) proposes an innovative
approach to enhance ground vehicle mobility by integrating a vision-based control
algorithm with real time adaptability. By leveraging visual information through
visual foundation models (VFMs) and meta-learning, our approach aims to improve

1of or relating to the origin and development of individual organisms
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Figure 1.3: Outline of the main contributions of the thesis. A. MAGIC-VFM algo-
rithm for ground vehicles. B. Visual foundation models-based detection algorithm
for spacecraft applications. C. Leonardo robot capable of walking and flying. D.
Biped robot for learning-based control.

the vehicle’s ability to assess and respond to complex terrains in real time. Compared
to the state-of-the-art, our algorithm is the first to propose a method that combines
vision with adaptive control and has provable safety guarantees of exponential sta-
bility. We validated our method extensively on-board two different ground vehicles
in various terrains. The results show that our approach outperforms state-of-the-art
methods in terms of adaptability to different terrains. We have extended the VFM
framework for a segmentation task using knowledge distillation and implemented it
on board a spacecraft flying in space, as shown in Chapter 6 and Figure 1.3B Based
on publicly available data, our algorithm is the first to demonstrate both training
and testing of a deep neural network on-board an NVIDIA Jetson GPU in space,
as shown in Section 6.5. The second part of the thesis (Chapters 7–8) explores the
design and control of robots with multiple degrees of freedom. We first introduce
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Figure 1.4: Three questions that are investigated by this thesis and thesis organization
(chapters and appendices that address these questions).

Leonardo (Figure 1.3C), the first robot to integrate walking and flying, enabling a
novel form of locomotion. Thanks to its high control authority provided by pro-
pellers, Leonardo can perform agile and previously unachievable maneuvers, like
slacklining and skateboarding. We then present an open-source custom-designed
bipedal robot (Figure 1.3D), developed to be lightweight and easily manufacturable.
This platform serves as a testbed for advancing learning-based control strategies for
robots with high degrees of freedom. Preliminary results on learning-based control
for this biped are included in Appendix C. In summary, the three contributions
outlined above aim to address the questions illustrated in Figure 1.4.

1.4 Thesis Outline
As shown in Figure 1.4, the thesis is outlined as follows:

• Chapters 2-4 introduce the MAGICVFM Meta-learning Adaptation for Ground
Interaction Control with Visual Foundation Models algorithm [4], with two
extensions of using visual foundation models and adaptive control for motion
planning (Chapter 5).

• Chapter 6 presents a learning-based algorithm for detecting spacecraft parts
using visual foundation models and knowledge distillation [5]. This work
is extended in Appendix B where we show the improvements made to the
algorithm to be able to fly it in space on-board the EdgeNode Lite spacecraft.
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For the space environment, the algorithm processes thermal images rather
than red-green-blue (RGB) images.

• In Chapter 7, we introduce Leonardo [6], a robot capable of both walking
and flying. We show the design, control and experimental results of the robot
performing complex maneuvers such as slacklining and skateboarding.

• In Chapter 8, we present the design, motion planning and control of a
lightweight and easy to manufacture biped with deformation compensation.
This work is extended in Appendix C where some preliminary results on the
learning-based control of this biped are outlined.

• In Appendix A, we extend some of the control formulations in Chapters 2-4 to a
racing car for the Indy Autonomous Challenge and present some experimental
results of the Gradient-based Adaptive Policy Selection (GAPS) [7] algorithm
on-board an RC vehicle with front-wheels steering.

• In Appendix D, we introduce a model-based reinforcement learning frame-
work that uses Bayesian Neural Networks to quantify uncertainty in the dy-
namics of a system and use it in planning.

• Appendix E provides an overview of the main concepts in control and robotics
kinematics used throughout the thesis.
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C h a p t e r 2

META-LEARNING ADAPTATION FOR GROUND
INTERACTION CONTROL WITH VISUAL FOUNDATION

MODELS (MAGIC-VFM)

—————————————————————————————-

“The study of vision must include not only the study of how to extract from
images the various aspects of the world that are useful to us, but also an
inquiry into the nature of the internal representations by which we capture
this information and thus make it available as a basis for decision about our
thoughts and actions.” (D. Marr, Vision: A computation Investigation into
the Human Representation and Processing of Visual Information)

—————————————————————————————-

This chapter is based on the publication:

Elena-Sorina Lupu*, Fengze Shi*, James Preiss, Jedidiah Alindogan,
Matthew Anderson, and Soon-Jo Chung. “MAGIC-VFM: Meta-learning
Adaptation for Ground Interaction Control with Visual Foundation Models”.
In: IEEE Transactions on Robotics (2024)

Acknowledgments: I would like to acknowledge the co-authors of the paper for
their contributions to this work, as follows: Fengze Shi for his help on the theoretical
work, especially the proofs of Theorems 1 and 3 in Chapter 3, Prof. James Preiss for
his help with the simulation results and manuscript writing, Jedidiah Alindogan and
Matt Anderson for their help with the hardware experiments and manuscript writing,
and Prof. Soon-Jo Chung for theoretical proofs, guidance, manuscript writing, and
suggestions.

2.1 Motivation
Control of off-road vehicles is challenging due to the complex dynamic interactions
with the terrain. Accurate modeling of these interactions is important to optimize
driving performance, but the relevant physical phenomena, such as slip, are too
complex to model from first principles. Therefore, we present an offline meta-
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learning algorithm to construct a rapidly-tunable model of residual dynamics and
disturbances. Our model processes terrain images into features using a visual
foundation model (VFM), then maps these features and the vehicle state to an
estimate of the current actuation matrix using a deep neural network (DNN). We
then combine this model with composite adaptive control to modify the last layer
of the DNN in real time, accounting for the remaining terrain interactions not
captured during offline training. We provide mathematical guarantees of stability
and robustness for our controller in Chapter 3 and demonstrate the effectiveness of
our method through simulations and hardware experiments with a tracked vehicle
and a car-like robot in Chapter 4. We evaluate our method outdoors on different
slopes with varying slippage and actuator degradation disturbances, and compare
against an adaptive controller that does not use the VFM terrain features. We show
significant improvement over the baseline in both hardware experimentation and
simulation.

2.2 Introduction
Autonomous Ground Vehicles (AGVs) are gaining popularity across numerous do-
mains including agriculture applications [1–3], wilderness search and rescue mis-
sions [4–7], and planetary exploration [8]. In many of these scenarios, the AGVs
operate on rugged surfaces where the ability to follow a desired trajectory degrades.
To reliably operate in these environments with minimal human intervention, AGVs
must understand the environment and adapt to it in real time. Slippage is one of the
primary challenges encountered by ground vehicles while operating on loose terrain.
For rovers exploring other planets, slippage can slow down their progress and even
halt their scientific objectives. For instance, the Opportunity rover recorded signifi-
cant slippage and sinking of its wheels during the Mars Day 2220 [9] while traversing
sand ripples. During its climb, the slip, calculated based on visual odometry [10],
was high, and thus the drive was halted and rerouted by the ground operators.

To better understand the effects of terradynamics, researchers have designed so-
phisticated models [11] that inform the design, simulation, and control of ground
vehicles. However, these models have numerous assumptions and are often limited
when the vehicles are operated at their performance boundaries (e.g., steering at high
speeds and instances of non-uniform resistive forces like stumps and stones). In ad-
dition, designing controllers that consider these complex models is challenging. For
control, kinematic models, such as Dubins, are often employed due to their simplic-
ity and intuitive understanding. However, these models are not able to capture the
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Figure 2.1: MAGICVFM: An offline meta-learning algorithm to build a residual
dynamics and disturbance model using both Visual Foundation Models (VFM) and
vehicle states. This model is integrated with composite adaptive control to adapt
to changes in both the terrain and vehicle dynamics conditions in real time. See
https://youtu.be/sxM73ryweRA

complicated dynamics between the vehicle and the ground, nor other disturbances
such as internal motor dynamics or wheel or track degradation. To increase the
performance of ground vehicles, more comprehensive models are necessary.

Controllers that stabilize a ground vehicle and track desired trajectories amidst a
variety of disturbances are crucial for achieving optimal vehicle performance. Of-
tentimes, the bottleneck is not in the controller design per se, but rather in the
choice and complexity of the model utilized by the controller. Recently, reinforce-
ment learning (RL) has shown significant promise in facilitating the development
of efficient controllers through experiential learning [12–14]. The combination of
meta-learning [15–22] and adaptive control [23–31] demonstrates considerable po-
tential in accurately estimating unmodeled dynamics, efficiently addressing domain
shift challenges and real-time adaptation to new environments [18, 22, 32, 33].
Despite this progress, incorporating a suitable model into a controller/policy is still
an active area of research, especially when combined with theoretical and safety
guarantees.

Learning sophisticated unmodeled dynamics based only on a limited set of vehicle
states is ill-posed given that the operating environment is infinite dimensional. To
accurately represent a complete dynamics model, including learned residual terms

https://youtu.be/sxM73ryweRA
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for control, it is imperative to leverage as much information about the environment
as possible. For instance, visual information can inform the model about the type
of terrain in which the vehicle is operating. Previous work includes segmentation-
based models that assign a discrete terrain type to each area in the image. This
information is further employed in planning and control [34]. However, in off-road
applications, categorizing terrains into a limited number of classes such as snow,
mud, sand, etc. is not sufficient. There are infinite subcategories within each terrain
type, each presenting distinct effects on the vehicle. In addition, two terrains can
appear similar yet induce different dynamic behaviors on the robot (e.g., deep and
shallow sand). Therefore, finding the most accurate and robust representation of the
environment is indispensable for vehicle control over complex terrain.

Contributions
To address these limitations, we present MAGICVFM (Meta-learning Adaptation for
Ground Interaction Control with Visual Foundation Models), an approach that inte-
grates a VFM with meta-learning and composite adaptive control, thereby enabling
ground vehicles to navigate and adapt to complex terrains in real time. Our method
is well-suited for any ground vehicle equipped with the following: 1) sensors to
measure the internal robot state, 2) exteroceptive sensors that can capture the terrain
such as cameras, 3) the availability of a pre-trained VFM, and 4) the necessary
computation hardware to evaluate the VFM in real-time. Our contributions are:

• the first stable learning-based adaptive controller that incorporates visual foun-
dation models for terrain adaptation in real time;

• an offline meta-learning algorithm that uses continuous trajectory data to train
and learn the terrain disturbance as a function of visual terrain information and
vehicle states;

• mathematical guarantees of exponential stability and robustness against model
errors for adaptive control with visual and state input that works in conjunction
with our meta-learning offline training algorithm;

• the development of a position, attitude, and velocity tracking control formulation
with the control influence matrix adaptation that can handle a variety of other per-
turbations in real-time such as unknown time-varying track or motor degradation
and arbitrary time-varying disturbances.
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We validate the effectiveness of our method both through simulation and in hardware
on two heterogeneous robotic platforms, demonstrating its performance outdoors,
on slopes with different slippage, as well as under track degradation disturbances.

Notation
Unless otherwise noted, all vector norms are Euclidean and all matrix norms are the
Euclidean operator norm. We denote the floor operator by ⌊·⌋. Given A ∈ R𝑛×𝑚×𝑝

and b ∈ R𝑝, the notation (Ab) is defined as
∑𝑝

𝑖=1 A𝑖𝑏𝑖. The notation ∥x∥P for
positive semi-definite matrix P defines the weighted inner product

√
x⊤Px. For a

function 𝑓 : 𝑋 ↦→ 𝑌 where 𝑋 and 𝑌 are metric spaces with metrics 𝑑𝑋 and 𝑑𝑌 , we
define ∥ 𝑓 ∥Lip = max𝑥,𝑥′∈𝑋 𝑑𝑌 ( 𝑓 (𝑥), 𝑓 (𝑥′))/𝑑𝑋 (𝑥, 𝑥′). For a measurable set 𝑋 , we
denote the set of probability measures on 𝑋 by △𝑋 , and if a uniform distribution on
𝑋 exists, we denote it by U𝑋 . When clear from context, we overload the notation
[𝑖, 𝑗] to denote the integer sequence 𝑖, . . . , 𝑗 . All matrices and vectors are written
in bold.

2.3 Related Work
The term meta-learning, first coined in [35], most often refers to learning protocols
in which there is an underlying set of related learning tasks/environments, and the
learner leverages data from previously seen tasks to adapt rapidly to a new task [16,
17, 36, 37]. The goal is to adapt more rapidly than would be possible for a standard
learning algorithm presented with the new task in isolation. In robotics, meta-
learning has been used to accurately adapt to highly dynamic environments [18,
22, 32, 33]. Online meta-learning [27, 38–40] includes two phases: offline meta-
training and online adaptation. In the offline phase, the goal is to learn a model
that performs well across all environments using a meta-objective. Given limited
real-world data, the online adaptation phase aims to use online learning, such as
adaptive control [23], to adapt the offline-learned model to a new environment in
real time.

Some examples of meta-learning algorithms from the literature are Model-Agnostic
Meta-Learning (MAML) [17] with its online extension [40], Meta-learning via
Online Changepoint Analysis (MOCA) [41], and Domain Adversarially Invari-
ant Meta-Learning (DAIML) used in Neural-Fly [27]. For task-centered datasets,
MAML [17] trains the parameters of a model to achieve optimal performance on
a new task with minimal data, by updating these parameters through one or more
gradient steps based on that task’s dataset. In continuous problems, tasks often lack
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clear segmentation, resulting in the agent being unaware of task transitions. There-
fore, MOCA [42] proposes task unsegmented meta-learning via online changepoint
analysis. DAIML [27] proposes an online meta-learning-based approach where
a shared representation is learned offline (for example, using data from different
wind conditions for a quadrotor), with a linear, low-dimensional part updated online
through adaptive control.

Our method builds on the previous work [27] on the integration of adaptive control
and offline meta-learning to build a comprehensive model for ground vehicles. We
develop a meta-learning algorithm that uses continuous trajectories from a robot
driving on different terrains to learn a representation of the dynamics residual
common across these terrains. This representation is a DNN that encodes the
terrain information through vision, together with a set of linear parameters that
adapt online at runtime. These linear parameters can be interpreted as the last
layer of the DNN [27] and are terrain independent but encapsulate the remaining
disturbances not captured during training.

Embedding Visual Information in Classical Control and Reinforcement Learn-
ing
One of the early works on including visual information for control is visual servo-
ing [43], a technique mainly used for robot manipulation. Recently, vision-based
reinforcement learning (VRL) has demonstrated the capability to control agents in
simulated environments[44], as well as robots in real environments, with applica-
tions to ground robots [45–47] and robot manipulation [48–50]. This capability is
achieved by leveraging high-fidelity models in robotics simulators [51, 52], imitation
learning from human demonstrations or techniques to bridge the sim-to-real gap of
the learned policy [14]. Nevertheless, a limitation of VRL is that the generated pol-
icy remains uninterpretable and does not have safety and robustness guarantees. To
address the uninterpretability aspect, recent advancements in Inverse Reinforcement
Learning (IRL) offer promising algorithms for interpreting terrain traversability as a
reward map, thus enhancing the understanding of the environments [53, 54]. Despite
progress in combining vision with Reinforcement Learning (RL), incorporating a
suitable terrain model into a policy is still an open area of research, especially when
combined with theoretical guarantees and safety properties.

To this end, we derive a nonlinear adaptive tracking controller for AGVs that uses
a learned ground model with vision information incorporated in the control influ-
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ence matrix. Our method processes camera images that are then passed through a
VFM to synthesize the relevant features. These features, together with the robot’s
state, are incorporated into the ground-robot interaction model learned offline using
meta-learning. For this adaptive controller, we prove exponential convergence to a
bounded error ball.

Visual Foundation Models in Robotics
A foundation model is a large-scale machine learning model trained on a broad
dataset that can be adapted, fine-tuned, or built upon for a variety of applications.
Self-supervised learned VFMs, such as Dino and DINOv2 [55], are foundation
models that are based on visual transformers [56, 57]. These models are trained to
perform well on several downstream tasks, including image classification, seman-
tic segmentation, and depth estimation. In robotics, these foundation models are
starting to gain popularity in tasks such as image semantic segmentation [58, 59],
traversability estimation [54], and robot manipulation [60, 61]. One of their key
advantages lies in the robustness against variations in lighting and occlusions [62],
as well as their ability to generalize well across different images of the same con-
text. By consuming raw images as inputs, these self-supervised learning foundation
models possess the potential to learn all-purpose visual features if pre-trained on a
large quantity of data.

Adaptation to Ground Disturbances
Adaptive control [23–31, 63] is a control method with provable convergence guar-
antees in which a set of linear parameters is adapted online to compensate for
disturbances at runtime. Typically, these linear parameters are multiplied by a basis
function, which can be constant (as in the case of integral control), derived from
physics [64], or represented using Radial Basis Functions (RBFs) [65] or DNNs [27].
First introduced in [23, 66], composite adaptation combines online parameter esti-
mation and tracking-error adaptive control. A rigorous robustness/stability analysis
for composite adaptation with a connection to deep meta-learning was first derived
in [27] for flight control applications.

Ground vehicles (including cars, tracked vehicles, and legged robots) should be
adaptive to changes in the terrain conditions. This adaptability is essential for
optimal performance and safety in diverse environments [67–72]. In [73], an adap-
tive energy-aware prediction and planning framework for vehicles navigating over
terrains with varying and unknown properties was proposed and demonstrated in



15

Algorithm 2

Trained Terrain Aware 
Basis Fcn. and 

Adaptation Params.

Da
ta

 C
ol

le
ct

io
n 

& 
O
ffl

in
e 

Tr
ai

ni
ng

Terrain Aware Basis Fcn. 
and Adaptation Params.

Dynamics 
Residual

Composite 
Adaptation 

Law

desired trajectory

control input

state

Features

Features

Algorithm 1

state

20 Hz
20 Hz

control input

Averaging 
Flattening

O
nl

in
e 

Ad
ap

ta
tio

n

Visual 
Foundation 

Model 

Patch 
Extraction
from the 

VFM image

Patch 
Extraction

<latexit sha1_base64="DuXq14R4fsn+3dtPeM8OivGDgW0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9oHtUDJppg1NMkOSEYahf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu4JYs60cd1vp7Syura+Ud6sbG3v7O5V9w/aOkoUoS0S8Uh1A6wpZ5K2DDOcdmNFsQg47QST29zvPFGlWSQfTBpTX+CRZCEj2FjpsS+wGQdhlk4H1Zpbd2dAy8QrSA0KNAfVr/4wIomg0hCOte55bmz8DCvDCKfTSj/RNMZkgke0Z6nEgmo/myWeohOrDFEYKfukQTP190aGhdapCOxknlAvern4n9dLTHjtZ0zGiaGSzD8KE45MhPLz0ZApSgxPLcFEMZsVkTFWmBhbUsWW4C2evEzaZ3Xvsn5xf15r3BR1lOEIjuEUPLiCBtxBE1pAQMIzvMKbo50X5935mI+WnGLnEP7A+fwBAg2RJw==</latexit>y

<latexit sha1_base64="AJQvJf4bN7chdiAbvfnc+vQtrqA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9oFtKZn0ThuayQxJRihD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695Nzjx4Jr47rfTmFldW19o7hZ2tre2d0r7x80dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++zfzWEyrNI/lgJjH2QjqUPOCMGis9dkNqRn6QJtN+ueJW3RnIMvFyUoEc9X75qzuIWBKiNExQrTueG5teSpXhTOC01E00xpSN6RA7lkoaou6ls8RTcmKVAQkiZZ80ZKb+3khpqPUk9O1kllAvepn4n9dJTHDdS7mME4OSzT8KEkFMRLLzyYArZEZMLKFMcZuVsBFVlBlbUsmW4C2evEyaZ1Xvsnpxf16p3eR1FOEIjuEUPLiCGtxBHRrAQMIzvMKbo50X5935mI8WnHznEP7A+fwB++qRIw==</latexit>u

<latexit sha1_base64="pqP4sv+wgj8jU1ICdVRIlgBIshw=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9oFtKZn0ThuayQxJplCG/oUbF4q49W/c+Tdm2llo9UDgcM695Nzjx4Jr47pfTmFldW19o7hZ2tre2d0r7x80dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++zfzWBJXmkXww0xh7IR1KHnBGjZUeuyE1Iz9IJ7N+ueJW3TnIX+LlpAI56v3yZ3cQsSREaZigWnc8Nza9lCrDmcBZqZtojCkb0yF2LJU0RN1L54ln5MQqAxJEyj5pyFz9uZHSUOtp6NvJLKFe9jLxP6+TmOC6l3IZJwYlW3wUJIKYiGTnkwFXyIyYWkKZ4jYrYSOqKDO2pJItwVs++S9pnlW9y+rF/XmldpPXUYQjOIZT8OAKanAHdWgAAwlP8AKvjnaenTfnfTFacPKdQ/gF5+Mb/W+RJA==</latexit>v

<latexit sha1_base64="VuteH8TISnfkvnNzMvNR9nUEJrM=">AAACIHicbVDLSsNAFJ3UV62vqEs3g0WoICURtS6LIrisYB/QhDKZTtqhk0yYmRRKyKe48VfcuFBEd/o1TtosbOuFYQ7n3Ms993gRo1JZ1rdRWFldW98obpa2tnd298z9g5bkscCkiTnjouMhSRgNSVNRxUgnEgQFHiNtb3Sb6e0xEZLy8FFNIuIGaBBSn2KkNNUza47HWV9OAv0lTmNI04oTIDX0/GScnsE5NeMxYsldmp72zLJVtaYFl4GdgzLIq9Ezv5w+x3FAQoUZkrJrW5FyEyQUxYykJSeWJEJ4hAakq2GIAiLdZHpgCk8004c+F/qFCk7ZvxMJCmTmUndmJuWilpH/ad1Y+dduQsMoViTEs0V+zKDiMEsL9qkgWLGJBggLqr1CPEQCYaUzLekQ7MWTl0HrvGpfVS8fLsr1mzyOIjgCx6ACbFADdXAPGqAJMHgCL+ANvBvPxqvxYXzOWgtGPnMI5sr4+QX8+aS6</latexit>

�(v, E)

<latexit sha1_base64="XEDxk99TPwCm92k47fHhhESzeIU=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCq5KIr2VRBJcV7AOaUCaTSTt0MhNmJkIJceOvuHGhiFv/wp1/46TNQlsvDHM4517uuSdIGFXacb6thcWl5ZXVylp1fWNza9ve2W0rkUpMWlgwIbsBUoRRTlqaaka6iSQoDhjpBKPrQu88EKmo4Pd6nBA/RgNOI4qRNlTf3vcCwUI1js2XeTHSQ4xYdpPnfbvm1J1JwXnglqAGymr27S8vFDiNCdeYIaV6rpNoP0NSU8xIXvVSRRKER2hAegZyFBPlZ5MLcnhkmBBGQprHNZywvycyFKvCpOksPKpZrSD/03qpji79jPIk1YTj6aIoZVALWMQBQyoJ1mxsAMKSGq8QD5FEWJvQqiYEd/bkedA+qbvn9bO701rjqoyjAg7AITgGLrgADXALmqAFMHgEz+AVvFlP1ov1bn1MWxescmYP/Cnr8weXDJej</latexit>E

<latexit sha1_base64="XEDxk99TPwCm92k47fHhhESzeIU=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCq5KIr2VRBJcV7AOaUCaTSTt0MhNmJkIJceOvuHGhiFv/wp1/46TNQlsvDHM4517uuSdIGFXacb6thcWl5ZXVylp1fWNza9ve2W0rkUpMWlgwIbsBUoRRTlqaaka6iSQoDhjpBKPrQu88EKmo4Pd6nBA/RgNOI4qRNlTf3vcCwUI1js2XeTHSQ4xYdpPnfbvm1J1JwXnglqAGymr27S8vFDiNCdeYIaV6rpNoP0NSU8xIXvVSRRKER2hAegZyFBPlZ5MLcnhkmBBGQprHNZywvycyFKvCpOksPKpZrSD/03qpji79jPIk1YTj6aIoZVALWMQBQyoJ1mxsAMKSGq8QD5FEWJvQqiYEd/bkedA+qbvn9bO701rjqoyjAg7AITgGLrgADXALmqAFMHgEz+AVvFlP1ov1bn1MWxescmYP/Cnr8weXDJej</latexit>E
<latexit sha1_base64="VuteH8TISnfkvnNzMvNR9nUEJrM=">AAACIHicbVDLSsNAFJ3UV62vqEs3g0WoICURtS6LIrisYB/QhDKZTtqhk0yYmRRKyKe48VfcuFBEd/o1TtosbOuFYQ7n3Ms993gRo1JZ1rdRWFldW98obpa2tnd298z9g5bkscCkiTnjouMhSRgNSVNRxUgnEgQFHiNtb3Sb6e0xEZLy8FFNIuIGaBBSn2KkNNUza47HWV9OAv0lTmNI04oTIDX0/GScnsE5NeMxYsldmp72zLJVtaYFl4GdgzLIq9Ezv5w+x3FAQoUZkrJrW5FyEyQUxYykJSeWJEJ4hAakq2GIAiLdZHpgCk8004c+F/qFCk7ZvxMJCmTmUndmJuWilpH/ad1Y+dduQsMoViTEs0V+zKDiMEsL9qkgWLGJBggLqr1CPEQCYaUzLekQ7MWTl0HrvGpfVS8fLsr1mzyOIjgCx6ACbFADdXAPGqAJMHgCL+ANvBvPxqvxYXzOWgtGPnMI5sr4+QX8+aS6</latexit>

�(v, E)

<latexit sha1_base64="pqP4sv+wgj8jU1ICdVRIlgBIshw=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9oFtKZn0ThuayQxJplCG/oUbF4q49W/c+Tdm2llo9UDgcM695Nzjx4Jr47pfTmFldW19o7hZ2tre2d0r7x80dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++zfzWBJXmkXww0xh7IR1KHnBGjZUeuyE1Iz9IJ7N+ueJW3TnIX+LlpAI56v3yZ3cQsSREaZigWnc8Nza9lCrDmcBZqZtojCkb0yF2LJU0RN1L54ln5MQqAxJEyj5pyFz9uZHSUOtp6NvJLKFe9jLxP6+TmOC6l3IZJwYlW3wUJIKYiGTnkwFXyIyYWkKZ4jYrYSOqKDO2pJItwVs++S9pnlW9y+rF/XmldpPXUYQjOIZT8OAKanAHdWgAAwlP8AKvjnaenTfnfTFacPKdQ/gF5+Mb/W+RJA==</latexit>v

<latexit sha1_base64="AJQvJf4bN7chdiAbvfnc+vQtrqA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9oFtKZn0ThuayQxJRihD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695Nzjx4Jr47rfTmFldW19o7hZ2tre2d0r7x80dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++zfzWEyrNI/lgJjH2QjqUPOCMGis9dkNqRn6QJtN+ueJW3RnIMvFyUoEc9X75qzuIWBKiNExQrTueG5teSpXhTOC01E00xpSN6RA7lkoaou6ls8RTcmKVAQkiZZ80ZKb+3khpqPUk9O1kllAvepn4n9dJTHDdS7mME4OSzT8KEkFMRLLzyYArZEZMLKFMcZuVsBFVlBlbUsmW4C2evEyaZ1Xvsnpxf16p3eR1FOEIjuEUPLiCGtxBHRrAQMIzvMKbo50X5935mI8WnHznEP7A+fwB++qRIw==</latexit>u
<latexit sha1_base64="IkWRohEIwSl2FCv+fj7Gryfkxw0=">AAAB/HicbVC7TsMwFHV4lvIKdGSJqJCYqgTxGitYGItEH1ITVY7jtFYdO7JvkKqo/AoLAwix8iFs/A1OmwFajmT56Jx75eMTppxpcN1va2V1bX1js7JV3d7Z3du3Dw47WmaK0DaRXKpeiDXlTNA2MOC0lyqKk5DTbji+LfzuI1WaSfEAk5QGCR4KFjOCwUgDu+aHkkd6kpgr92FEAU8Hdt1tuDM4y8QrSR2VaA3sLz+SJEuoAMKx1n3PTSHIsQJGOJ1W/UzTFJMxHtK+oQInVAf5LPzUOTFK5MRSmSPAmam/N3Kc6CKfmUwwjPSiV4j/ef0M4usgZyLNgAoyfyjOuAPSKZpwIqYoAT4xBBPFTFaHjLDCBExfVVOCt/jlZdI5a3iXjYv783rzpqyjgo7QMTpFHrpCTXSHWqiNCJqgZ/SK3qwn68V6tz7moytWuVNDf2B9/gCoPZVw</latexit>

✓
<latexit sha1_base64="IkWRohEIwSl2FCv+fj7Gryfkxw0=">AAAB/HicbVC7TsMwFHV4lvIKdGSJqJCYqgTxGitYGItEH1ITVY7jtFYdO7JvkKqo/AoLAwix8iFs/A1OmwFajmT56Jx75eMTppxpcN1va2V1bX1js7JV3d7Z3du3Dw47WmaK0DaRXKpeiDXlTNA2MOC0lyqKk5DTbji+LfzuI1WaSfEAk5QGCR4KFjOCwUgDu+aHkkd6kpgr92FEAU8Hdt1tuDM4y8QrSR2VaA3sLz+SJEuoAMKx1n3PTSHIsQJGOJ1W/UzTFJMxHtK+oQInVAf5LPzUOTFK5MRSmSPAmam/N3Kc6CKfmUwwjPSiV4j/ef0M4usgZyLNgAoyfyjOuAPSKZpwIqYoAT4xBBPFTFaHjLDCBExfVVOCt/jlZdI5a3iXjYv783rzpqyjgo7QMTpFHrpCTXSHWqiNCJqgZ/SK3qwn68V6tz7moytWuVNDf2B9/gCoPZVw</latexit>

✓

Figure 2.2: Terrain-aware Architecture: offline data collection and training (Algo-
rithm 1), followed by real-time adaptive control (Algorithm 2) running onboard the
robot.

simulation. [74] proposes a deep meta-learning framework for learning a global ter-
rain traversability prediction network that is integrated with a sampling-based model
predictive controller, while [75] develops a probabilistic traction model with uncer-
tainty quantification using both semantic and geometric terrain features. In [76], a
meta-learning-based approach to adapt probabilistic predictions of rover dynamics
with Bayesian regression is used. While these approaches succeeded in developing
different models for control and planning, incorporating a suitable model that fits
the adaptive control framework is an open area of research.

In this paper, we establish an adaptive controller that can handle a broad range of
real-time perturbations, such as unknown time-varying track or motor degradation,
under controllability assumptions, arbitrary time-varying disturbances, and model
uncertainties. This work can be viewed as a generalization and improvement of [27]
with a new control matrix adaptation method using visual information and improved
stability results. Our adaptive capability acts as an enhancement to the offline
trained basis function, further improving tracking performance under challenging
conditions.

2.4 Methods
Residual Dynamics Representation using VFM
We consider an uncertain dynamical system model

¤x = f (x, u, 𝑡) + d, (2.1)

where x ∈ R𝑛 denotes the state, u ∈ R𝑚 denotes the control input, f : R𝑛+𝑚+1 ↦→
R𝑛 denotes the nominal dynamics model, and d is an unknown disturbance that
is possibly time-varying and state- and environment-dependent. Our algorithm
approximates d by

d = 𝚽(x, u, E)𝜽 (𝑡) + 𝜹, (2.2)
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where 𝜽 (𝑡) =
[
𝜃1 . . . 𝜃𝑛𝜃

]⊤ ∈ R𝑛𝜃 denotes a time-varying vector of linear parameters
that are adapted online by our algorithm, 𝜹 ∈ R𝑛 is a representation error, and E ∈ R𝑝

is a feature vector representation of the terrain surrounding the robot computed by a
VFM. From the perspective of the adaptive control part of our method, the precise
form of E is not required in our work. We can think of E as computed by some
arbitrary Lipschitz function from the robot’s sensors to R𝑝. We provide details on
the particular form of E used in our empirical sections (Sec. 4.2-4.4). The feature
mapping 𝚽(x, u, E) : R𝑛+𝑚+𝑝 ↦→ R𝑛×𝑛𝜃 is learned in the offline training phase of
our algorithm. Our method supports arbitrary parameterized families of continuous
functions, but in practice we focus on the case where 𝚽 is a DNN. In this case, 𝜽 can
be regarded as the weights of the last layer of the DNN (2.2), which continuously
adapt in real-time. The online adaptation is necessary in real scenarios, because
two environments (i.e., terrains) might have the same representation E, but induce
different dynamic behaviors onto the robot, as well as for other types of disturbances
not captured in the feature mapping 𝚽.

Further, we assume that the disturbance d is affine in the control input u, taking the
form

d ≈ 𝚽w(x, E)𝜽u =

𝑛𝜃∑︁
𝑖=1

𝜃𝑖𝚽
w
𝑖 (x, E)u, (2.3)

where the dependence on a parameter vector w (the DNN weights) is made explicit,
and the basis function has the form 𝚽w(x, E) : R𝑛+𝑝 ↦→ R𝑛×𝑚×𝑛𝜃 with the individ-
ual matrix-valued components denoted by 𝚽w

𝑖 (x, E) : R𝑛+𝑝 ↦→ R𝑛×𝑚. The control
affine assumption is motivated by two factors. First, in our main application of
ground vehicles with desired-velocity inputs, input-affine disturbances more accu-
rately capture terrain interactions such as slippage (Sec. 3.3), internal dynamics,
and wheel or track degradations. Second, this assumption simplifies the exponential
convergence proof for our adaptive controller given in Theorem 1. However, we
emphasize that Theorem 1 can be extended to more general forms of disturbances by
input-output stability combined with contraction theory [77, 78]. Lastly, we define
the dynamics residual that is used in both the online and offline phase of our method
as y = ¤x − f (x, u, 𝑡).

Offline Meta-Learning Phase
In Fig. 2.2, we illustrate the structure of our proposed solution to learn offline the
basis function 𝚽w(x, E) in (2.3) and to make real-time adjustments using composite
adaptive control (Sec. 2.4). Our method is divided into two steps. First, the
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Figure 2.3: The structure of the DNN used for the basis function𝚽w in the controller
synthesis from (3.14), (3.15) applied to a tracked vehicle.

robot captures relevant ground information during offline data collection, followed
by training a DNN with terrain and state information to approximate the residual
dynamics y. Second, the trained model is deployed onboard the robot and updated
online to compensate for the residual dynamics not captured in offline training.

Dataset

To learn the basis function 𝚽w in (2.3), we collect a dataset of the robot operating
on a diverse set of terrains. The dataset includes paired ground images from the
onboard camera and state information measured using onboard sensors. The images
are processed through a VFM, resulting in the representation E, as discussed in
Sec. 2.4.

This dataset contains 𝑁 ∈ N trajectories. Each trajectory is an uninterrupted driving
session on the order of a few minutes. Therefore, a single trajectory may contain
significant dynamics-altering terrain transitions, such as between grass and concrete,
but it will not contain dramatic transitions such as from a desert to a forest, or from
midday to night. For notational simplicity only, we assume all trajectories have
equal length ℓ ∈ N. Let x𝑛𝑡 , u𝑛𝑡 , E

𝑛
𝑡 , y𝑛𝑡 , respectively, denote the 𝑡th state, input, VFM

representation, and residual dynamics derivative of the 𝑛th trajectory.

Model Architecture

In designing the parameterized function class for the basis function𝚽w, we prioritize
simplicity and efficiency to enable fast inference for real-time control. Therefore,
we select a fully connected DNN with two hidden layers (Fig. 2.3), which takes as
input both the robot’s state and visual features from the VFM. We employ layer-wise
spectral normalization to constrain the Lipschitz constant of the DNN. Spectral nor-
malization is crucial for ensuring smooth control outputs and limiting pathological
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Algorithm 1 Offline Meta-Learning with Continuous Trajectories
1: Input
2: Dataset of 𝑁 trajectories of length ℓ, window length distribution 𝐿, regular-

ization target 𝜽r and weight 𝜆r, minibatch size 𝐾 , initial DNN weights w.
3: Output: Final optimized DNN weights w of 𝚽.
4: while not converged do
5: Sample (with replacement) size-𝐾 minibatches of:
6: - trajectory indices {𝑛𝑘 }𝐾𝑘=1,
7: - window lengths {ℓ̂𝑘 }𝐾𝑘=1,
8: - start times {𝑠𝑘 }𝐾𝑘=1.
9: Solve (2.4) for each 𝜃★

𝑛𝑘 ,ℓ̂𝑘 ,𝑠𝑘
in the minibatch

10: (in closed form, allowing 𝐽𝑛𝑘 ,ℓ̂𝑘 ,𝑠𝑘 gradient flow1).
11: Take optimizer step on w w.r.t minibatch cost (2.4)∑𝐾

𝑘=1 𝐽𝑛𝑘 ,ℓ̂𝑘 ,𝑠𝑘 (w).

12: Spectral Normalizaton: W𝑖 ← W𝑖

∥W𝑖 ∥ for all 𝑖 ∈ [𝑑].
13: end while

behavior outside the training domain [79]. Details of spectral normalization are
given in Sec. 2.4.

Optimization

Our method is built around the assumption that two terrains with similar visual
features E will usually, but not always, induce similar dynamics. We account for
this observation with a meta-learning method that allows the linear part 𝜽 to vary over
the training data while the feature mapping weights w remain fixed. In particular,
we assume that the linear part 𝜽 is slowly time-varying within a single trajectory in
the training data but 𝜽 may change arbitrarily much between two trajectories. The
slowly time-varying assumption implies that within a sufficiently short window into
a full trajectory, 𝜽 is approximately constant. Therefore, we optimize the weights
w of the basis function for data-fitting accuracy when the best-fit constant 𝜽 is
computed for random short windows into the trajectories.
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Due to our linear adaptation model structure, we observe that for a particular tra-
jectory index 𝑛 ∈ [1 . . . 𝑁], window length ℓ̂ ∈ [1 . . . ℓ], and starting timestep
𝑠 ∈ [1 . . . ℓ − ℓ̂ + 1], the best-fit value

𝜽★
𝑛,ℓ̂,𝑠
(w) =: arg min

𝜽

𝑠+ℓ̂−1∑︁
𝑡=𝑠

y𝑛𝑡 − (𝚽w𝜽)u𝑛𝑡
2

2 + 𝜆𝑟 ∥𝜽 − 𝜽𝑟 ∥
2
2,

=

𝑠+ℓ̂−1∑︁
𝑡=𝑠

(
(𝚽w𝜽)⊤(𝚽w𝜽) + 𝜆𝑟I𝑛𝜃

)−1 (
(𝚽w𝜽)⊤y𝑛𝑡 + 𝜆𝑟𝜽𝑟

)
is the solution to an 𝐿2-regularized linear least-squares problem and is a closed-form,
continuous function of the feature mapping parameter w, where 𝚽w is shorthand
for 𝚽w(x𝑛𝑡 , E𝑛𝑡 ), 𝜆𝑟 ∈ R is the regularization parameter, and 𝜽𝑟 ∈ R𝑛𝜃 is the regu-
larization target, chosen arbitrary. The ∥𝜽 − 𝜽𝑟 ∥22 regularization term ensures that
the closed-form solution is unique. We can now define our overall optimization
objective. Let 𝐿 denote a distribution over trajectory window lengths: 𝐿 ∈ △[1, ℓ].
We minimize the meta-objective

𝐽 (w) = E
𝑛,ℓ̂,𝑠


𝑠+ℓ̂−1∑︁
𝑡=𝑠

y𝑛𝑡 −
(
𝚽w(x𝑛𝑡 , E𝑛𝑡 )𝜽★𝑛,ℓ̂,𝑠 (w)

)
u𝑛𝑡

2

2

 := E
𝑛,ℓ̂,𝑠

[
𝐽𝑛,ℓ̂,𝑠 (w)

]
,

where the expectation is shorthand for 𝑛 ∼ U[1, 𝑁], ℓ̂ ∼ 𝐿, and 𝑠 ∼ U[1, ℓ− ℓ̂ +1].
We incorporate the closed-form computation of the best-fit linear component 𝜽★

𝑛,ℓ̂,𝑠

in the computational graph of our optimization (meaning we take gradients through
the least squares solution in Line 9), as opposed to treating the trajectories of 𝜽 as
optimization variables. Given this, we obtain a simpler algorithm.

Our offline training procedure is given in Algorithm 1. It consists of stochastic
first-order optimization on the objective 𝐽 (w) and spectral normalization to enforce
the Lipschitz constraint on 𝚽. In particular, let w = (W1, . . . ,W𝑑 ,w), with 𝑑 being
the number of layers, where W1, . . . ,W𝑑 are the dimensionally compatible weight
matrices of the DNN, such that the product W1 · · ·W𝑑 exists, and w are the remaining
bias parameters. It holds that ∥𝚽w∥Lip ≤ ∥W1 · · ·W𝑑 ∥ for neural networks with 1-
Lipschitz nonlinearities. Therefore, we can enforce that ∥𝚽w∥Lip ≤ 1, by enforcing
that ∥W𝑖∥ ≤ 1 for all 𝑖 ∈ [1 . . . 𝑑]. This is implemented in Algorithm 1 of
Algorithm 1. Note that finding less conservative ways to enforce ∥𝚽w∥Lip ≤ 1 for
DNN is an active area of research.
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Algorithm 2 Rapid Terrain-Informed Online Adaptation for Model Mismatch and
Tracking Error

1: Input
2: Optimized feature mapping 𝚽 from Algorithm 1, importance weight for

prediction R, damping constant 𝜆, initial adaptive gain 𝚪0, reference trajectory
x𝑟 .

3: Initialize 𝜽 with an user-defined regularization target 𝜽r.
4: while running do
5: Evaluate the VFM on the input image and get the features E.
6: Get state x and evaluate the DNN 𝚽(x, E).
7: Compute the tracking error vector s (e.g., using (3.13)).
8: Compute the control input u (e.g., using (3.14)).
9: Compute the dynamics residual y (e.g., using (3.16))

10: Compute the adaptation parameter derivative ¤̂𝜽 ¤̂𝜽 = −𝜆𝜽 −
predict(𝚪, y,𝚽, 𝜽 , u) + track(𝚪, s,𝚽, 𝜽 , u).

11: Compute the adaptation gain derivative ¤𝚪 (e.g., using (3.15) or (3.22)).
12: Integrate with system timestep Δ𝑡

𝜽 ← 𝜽 + Δ𝑡 ¤̂𝜽 , 𝚪← 𝚪 + Δ𝑡 ¤𝚪.

13: end while

For the remaining sections, the parameters w of the basis function 𝚽 are fixed.
Therefore, we drop the superscript and refer to 𝚽w as 𝚽, for simplicity of notation.

Online 𝜽 Adaptation and Tracking Control
This section introduces the online adaptation running onboard the robot to adapt the
linear part 𝜽 of the dynamics model. The algorithm uses composite adaptation [80]
and is given in Algorithm 2. The parameter vector 𝜽 is initialized with a user-defined
regularization target 𝜽r (Line 3). Then, in each cycle of the main loop, the robot
processes the data from its visual sensor through the VFM to generate the feature
vector E (Line 5). The feature mapping𝚽 is then evaluated using the robot’s current
state x and the feature vector E (Line 6). We compute the error vector s between
the reference trajectory x𝑟 and the actual state x, for example, using (3.13), as well
as the control input u (Line 8).

These previously computed variables are passed to the composite adaptive con-
troller. In this way, model mismatches and other disturbances not captured during
training (Algorithm 1) can be adapted in real-time. For each sampled measurement

1We use the machine learning framework PyTorch that implements the linear least squares
solution with gradient flow.
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(interaction with the environment), the adaptation parameter vector 𝜽 is updated
using the composite adaptation rule in Line (10), which is designed to decrease both
the tracking error and the prediction error.

Each term of Line (10) provides a specific functionality: the first term in Line (10)
implements the so-called “exponential forgetting” to allow 𝜽 to change more rapidly
when the best-fit parameters are time-varying. The second term is gradient descent
on the R−1-weighted squared prediction error with respect to 𝜽 , where R is a positive
definite matrix. The third term minimizes the trajectory tracking error. In Line 11,
we introduce 𝚪, which is our adaptation gain, and its derivative ¤𝚪 can be defined
from least-squares with exponential forgetting [64, 80] or reminiscent of a Kalman
Filter like in [27]. Thus, this composite adaptation is used to ensure both small
tracking errors and low model mismatch. The functions ‘predict’ and ‘track’ are
defined in Sec. 3.3. The stability and robustness properties of Algorithm 2 are
presented in Sec. 3.3.
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C h a p t e r 3

ANALYSIS AND PROOFS OF MAGICVFM FOR GROUND
ROBOTS

3.1 Chapter Overview
In this chapter, we apply the methods from Algorithm 1 and 2 to a skid-steering
tracked vehicle (Fig. 3.1) (Sec. 3.2 through 3.3) and to an Ackermann-steering vehi-
cle (Sec. 3.4 through 3.5). The tracked vehicle uses skid-steering to maneuver over
the ground, with its tracks moving at different speeds depending on the sprocket’s
angular velocity. Due to the slip between the sprocket and the tracks and between
the tracks and the ground, modeling the full dynamics becomes very complex. We
therefore derive its 3 DOF dynamics model (3.6) with its corresponding simplified
model of the form (3.7). To this simplified model, we apply an adaptive controller
with learned ground information of the form (3.14) and (3.15). The car-like vehicle
uses the Ackermann steering geometry, which ensures that all wheels turn around
the same center, thus minimizing wheel wear. For this vehicle type, we derive a
3-DOF dynamics model (3.24) using the bicycle model and an adaptive controller
using Algorithm 2.

3.2 Tracked Vehicle Dynamics Model
We define a fixed reference frame I and a moving reference frame B attached to
the body of the tracked vehicle, as seen in Fig. 3.1.

Consider the 3-DOF dynamics model with the generalized coordinates q := [𝑝I𝑥 , 𝑝I𝑦 , 𝜓] ∈
R3, where 𝑝I𝑥 and 𝑝I𝑦 are the inertial positions and 𝜓 is the yaw angle from I to B,
as follows

M(q) ¥q + C(q, ¤q) ¤q = B(q)𝝉𝑢 + F𝑟 (q, ¤q), (3.1)

where M ∈ R3×3 is the inertia matrix, C(q, ¤q) ∈ R3×3 is the Coriolis and centripetal
matrix, B(q) ∈ R3×2 is the control actuation matrix, F𝑟 (q, ¤q) ∈ R3 are the dissipative
track forces due to surface-to-soil interaction, and 𝝉𝑢 ∈ R2 is the control torque.

Developing a tracking controller for the system modeled using (3.1) is difficult due
to underactuation. To address this complexity, previous work [1, 2] introduced a
nonholonomic constraint for (3.1), which reduces the number of state variables.
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Figure 3.1: The frames of reference for the tracked vehicle, its corresponding
velocities, and the main driving components (left), a velocity vector diagram used
for the proof of Theorem 2 (middle), and the car model notations (right). For both
vehicles, we assume the center of mass and the body frame are at the same location.

The following constrains the ratio of the lateral body velocity ¤𝑝B𝑦 to the angular
velocity 𝜔

¤𝑝B𝑦 + 𝑥ICR𝜔 = 0, (3.2)

where 𝑥ICR is the ICR and 𝜔 = ¤𝜓. We embed this constraint into (3.1), as follows

M(q) ¥q + C(q, ¤q) ¤q = B(q)𝝉𝑢 + F𝑟 (q, q) + A(q)⊤𝜆𝑐, (3.3)

with 𝜆𝑐 being the Lagrange multiplier corresponding to the equality constraint in
(3.2). By assuming 𝑥ICR as constant, A(q) ∈ R1×3 is defined as follows, in which p
from (3.2) is expressed in the I frame[

− sin𝜓 cos𝜓 𝑥ICR

]
·
[
¤𝑝I𝑥 ¤𝑝I𝑦 𝜔

]
= A(q) ¤q = 0. (3.4)

To remove the constraint force from (3.3), an orthogonal projection operator S(q) ∈
R3×2 is defined, whose columns are in the nullspace of A⊤(q), and thus S(q)⊤A(q)⊤ =

0 [3, 4].

S(q) =

cos(𝜓) 𝑥ICR sin(𝜓)
sin(𝜓) −𝑥ICR cos(𝜓)

0 1

 . (3.5)

We select this projection operator conveniently to transform the velocities in the I
frame to v = [𝑣B𝑥 , 𝜔]⊤, with 𝑣B𝑥 being the projection of the inertial velocity onto the
body x-forward axis. The reduced form can be written as [5]

¤q(𝑡) = S(q)v(𝑡),
¤v(𝑡) = M̃−1(B̃(q)𝝉𝑢 − C̃(q, ¤q)v(𝑡) + F̃𝑟 (q, ¤q)),

(3.6)
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with the reduced matrices

M̃ = S⊤(q)MS(q) =
[
𝑚 0
0 𝐼𝑧 + 𝑚𝑥2

ICR

]
,

F̃𝑟 = S⊤(q)F𝑟 , B̃(q) = S⊤(q)B(q),

C̃(q, ¤q) = S⊤M ¤S =

[
0 𝑚𝑥ICR𝜔

−𝑚𝑥ICR𝜔 0

]
,

where𝑚 is the mass of the robot and 𝐼𝑧 is the inertia of the robot about the rotational
degree of freedom.

Simplified Vehicle Dynamics Model with Velocity Input
Due to the limited access to the robot’s internal control software, specifically the
absence of direct torque command capabilities, we are only able to utilize velocity
inputs. Consequently, we have chosen to simplify the system in (3.6) with the
velocity modeled as a first-order time delay

¤q(𝑡) = S(q)v(𝑡), ¤v(𝑡) = Anv(𝑡) + Bnu(𝑡), (3.7)

where u = [𝑢𝑣, 𝑢𝜔] are velocity inputs and

An =

[
− 1
𝜏𝑣

0
0 − 1

𝜏𝜔

]
, Bn =

[
𝑘1
𝜏𝑣

0
0 𝑘2

𝜏𝜔

]
. (3.8)

The simplified system is dynamically equivalent to (3.6). We identify the process
gains 𝑘1, 𝑘2 and the process time constants 𝜏𝑣, 𝜏𝜔 using system identification on
hardware. The robot is symmetric and rotates around the origin, therefore 𝑥ICR is
assumed 0.

3.3 Adaptive Tracking Controller for a Tracked Vehicle
First, we explain why using a control matrix adaptation is suitable for adapting
to longitudinal and rotational slips, as well as the internal dynamics of a tracked
vehicle. Next, we design a composite adaptive controller for the system in (3.7) and
prove its exponential convergence to a bounded error ball. Note that our adaptive
controller can be applied to any system of the form (3.1).

Motivation for Control Matrix Adaptation
The longitudinal slip 𝜅 is defined [6] as

𝜅 = −
𝑣B𝑥 −Ωtr𝑟tr

𝑣B𝑥
, (3.9)
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where Ωtr is the angular velocity of the tracks, 𝑟tr is the track wheel radius, and 𝑣B𝑥
is the projection of the inertial velocity onto the body x-forward axis. Let Ωtr𝑟tr be
our velocity control input 𝑢𝑣. Then (3.9) can be written as 𝑣B𝑥 = 1

1+𝜅𝑢𝑣. Analyzing
the extreme cases, we notice that if 𝜅 = 0 (no longitudinal slip), the velocity of the
vehicle will match the velocity input into the tracks. In comparison, if 𝜅 → ∞,
the forward velocity of the vehicle will tend toward zero. Similar reasoning can be
applied to the rotational slip. Therefore, adapting for a coefficient that multiplies the
control input (the track speeds) ensures tracking of the body’s forward and angular
velocity.

In addition, adapting the control matrix also contributes to compensating for the
unknown internal dynamics of the robot, because the velocity control input is the
setpoint to an internal proportional-derivative-integral controller, which outputs
motor torques to the tracked vehicle. Lastly, adapting the control matrix effectively
compensates for track degradation, manifested as a slowdown in the sprocket’s
angular velocity.

Reference Trajectories
We define a 2 dimensional feasible trajectory characterized by the desired position
and velocity pI

𝑑
(𝑡), vI

𝑑
(𝑡) in the inertial frame I. The position error is p̃I =

pI − pI
𝑑
(𝑡), where pI = [𝑝I𝑥 , 𝑝I𝑦 ], and 𝜓d is the desired yaw angle. Let the

following reference velocities be

vIref = vI
𝑑
−K𝑝p̃I , 𝑣ref,x =

[
cos(𝜓)
sin(𝜓)

]
· vIref , (3.10)

𝜔ref = ¤𝜓ref − 𝑘𝜓 (𝜓 − 𝜓ref), (3.11)

where the reference angle is given as

𝜓ref =


arctan

(
vIref,y

vIref,x

)
, if ∥vIref ∥

2
2 > 𝑣𝜖

𝜓d, otherwise.
(3.12)

Note that the reference trajectory is not fully pre-planned; it includes feedback
terms that are only defined during the execution of the trajectory. Both K𝑝 ∈ R2×2

and 𝑘𝜓 ∈ R are positive gains, with K𝑝 = diag(𝑘 𝑝𝑥 , 𝑘 𝑝𝑦), and 𝑣𝜖 is a small velocity
constant used to ensure the robot can track time-varying position trajectories, as well
as turn in place. We define vref = [𝑣ref,x, 𝜔ref]⊤, which is our reference trajectory
further used in the control synthesis.
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Controller Synthesis
We design a composite adaptive controller u(𝑡) and show that this composite tracking
and adaptation error exponentially converges to a bounded error ball. First, we start
by defining the tracking error variable s as

s = v − vref =
[
𝑣B𝑥 − 𝑣ref,x, 𝜔 − 𝜔ref

]⊤
. (3.13)

We then derive the tracking controller for the system in (3.7)

u = −(Bn +𝚽𝜽)−1 [Ks + Anvref − ¤vref], (3.14)

where K ∈ R2×2 is a positive gain matrix, with K = diag(𝑘𝑑𝑥 , 𝑘𝑑𝑤), 𝚽 ∈ R2×2×𝑛𝜃 is
the output of the DNN basis function (Fig. 2.3) evaluated with the feature vector E
and state v, and 𝜽 ∈ R𝑛𝜃 is the estimated parameter vector of the true parameter vector
𝜽 . Recall from Sec. 2.4 that the learned basis function 𝚽 and the true adaptation
parameters 𝜽 were introduced to model the disturbance d ≈ (𝚽𝜽)u =

∑𝑛𝜃
𝑖=1 𝜃𝑖𝚽u.

For our model of the skid-steer vehicle, we chose 𝑛𝜃 = 4, matching the number
of terms in our control matrix Bn. Choosing 𝑛𝜃 too large can introduce redundant
parameters and choosing 𝑛𝜃 too small could make the function class insufficiently
expressive.

Theorem 1 By applying the controller in (3.14) to the dynamics that evolve accord-
ing to (3.7), with the composite adaptation law, for each 𝑖 ∈ [1, 𝑛𝜃]

¤̂𝜃𝑖 = −𝜆𝜃𝑖 − 𝛾𝑖u⊤𝚽⊤𝑖 R−1

(
𝑛𝜃∑︁
𝑖=1

𝚽𝑖u𝜃𝑖 − y

)
︸                                ︷︷                                ︸

predict

+ 𝛾𝑖s⊤𝚽𝑖u︸   ︷︷   ︸
track

,

¤𝛾𝑖 = −2𝜆𝛾𝑖 + 𝑞𝑖 + 𝛾𝑖u⊤𝚽⊤𝑖 R−1𝚽𝑖u𝛾𝑖, (3.15)

where 𝛾𝑖 > 0, 𝑞𝑖 > 0, for each 𝑖 ∈ [1, 𝑛𝜃], then the tracking errors s and the
parameter error 𝜽 will exponentially converge to a bounded error ball.
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Proof 1 Defining the true control matrix as B := Bn +𝚽𝜽 , we obtain the following
closed loop system using (3.7)

¤v = Anv − (Bn +𝚽𝜽) (Bn +𝚽𝜽)−1 [Ks + Anvref − ¤vref] + 𝜹,

where 𝜹 is a representation error, previously introduced in (2.2). Let 𝜽 = 𝜽 − 𝜽 be
the error adaptation vector. Further, using the composite variable s in (3.13), the
closed-loop system becomes

s = Ans −Ks − (𝚽𝜽)u + 𝜹 = Ans −Ks −
𝑛𝜃∑︁
𝑖=1

𝚽𝑖u𝜃𝑖 + 𝜹.

For the prediction term in (3.15), we compute the dynamics residual derivative y
determined for the bounded and adversarial noise 𝝐 as

y = LPF(s) ¤v − f (v, u, 𝑡) = (𝚽𝜽)u + 𝝐 , (3.16)

where premultiplying the noisy measurement ¤v by LPF(𝑠) with the Laplace transform
variable 𝑠 indicates low-pass filtering. Using the Lyapunov function

V = s⊤s +
𝑛𝜃∑︁
𝑖=1

𝜃𝑖𝛾
−1
𝑖 𝜃𝑖,

we compute its derivative as follows

¤V = 2s⊤¤s + 2
𝑛𝜃∑︁
𝑖=1

𝜃𝑖𝛾
−1
𝑖
¤̃𝜃𝑖 +

𝑛𝜃∑︁
𝑖=1

𝜃𝑖
𝑑

𝑑𝑡

(
𝛾−1
𝑖

)
𝜃𝑖

= −2s⊤
[
(K − An)s +

𝑛𝜃∑︁
𝑖=1

𝚽𝑖u𝜃𝑖
]

+ 2
𝑛𝜃∑︁
𝑖=1

𝛾−1
𝑖 𝜃𝑖 (𝛾𝑖s⊤𝚽𝑖u − 𝛾𝑖u⊤𝚽⊤𝑖 R−1

𝑛𝜃∑︁
𝑗=1

𝚽 𝑗u𝜃 𝑗 − 𝜆𝜃𝑖)

+
𝑛𝜃∑︁
𝑖=1

𝜃𝑖 (2𝛾−1
𝑖 𝜆 − 𝛾−1

𝑖 𝑞𝑖𝛾
−1
𝑖 − u⊤𝚽⊤𝑖 R−1𝚽𝑖u)𝜃𝑖

+ 2

(
s⊤𝜹 +

𝑛𝜃∑︁
𝑖=1

𝜃𝑖

(
u⊤𝚽⊤𝑖 R−1𝜖 − 𝛾−1

𝑖 𝜆𝜃𝑖 − 𝛾−1
𝑖
¤𝜃𝑖
))

︸                                                        ︷︷                                                        ︸
error terms

.

After further manipulation, the time derivative of the Lyapunov function becomes

¤V = −2s⊤(K − An)s −
𝑛𝜃∑︁
𝑖=1

𝜃𝑖 (𝑞𝑖𝛾−2
𝑖 + u⊤𝚽⊤𝑖 R−1𝚽𝑖u)𝜃𝑖

− 2

(
𝑛𝜃∑︁
𝑖=1

𝜃𝑖u⊤𝚽⊤𝑖

)
R−1 ©«

𝑛𝜃∑︁
𝑗=1

𝚽 𝑗u𝜃 𝑗
ª®¬ + error terms.

(3.17)
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Next, we will bound the terms in (3.17) as follows. There exists 𝛼 ∈ R+ such that

−2(K − An) ⪯ −2𝛼I,

−
(
𝑞𝑖𝛾
−2
𝑖 + u⊤𝚽⊤𝑖 R−1𝚽𝑖u

)
≤ −2𝛼𝛾−1

𝑖 , ∀𝑖 ∈ [1, 𝑛𝜃] .
(3.18)

We assume that ∥𝜹∥, ∥𝝐 ∥, and ¤𝜃𝑖 are small and bounded, and that the true value 𝜃𝑖 is
bounded. Furthermore, the DNN 𝚽𝑖 is bounded since we use spectral normalization
and the input domain is bounded. We then define an upper bound for the error terms
as

𝑑 = sup
𝑡

(
|𝜹 | +

����� 𝑛𝜃∑︁
𝑖=1

(
u⊤𝚽⊤𝑖 R−1𝝐 − 𝛾−1

𝑖 𝜆𝜃𝑖 − 𝛾−1
𝑖
¤𝜃𝑖
)�����
)
, (3.19)

Note that this is a conservative estimate (the worst-case disturbance of all future
time 𝑡), and hence can be made smaller using a shorter time range. Furthermore,
even for a relatively large value of 𝚽, 𝑑 can be made small using a larger value of
R and a smaller value of 𝝐 . We define the matrixM, for 𝑖 ∈ [1, 𝑛𝜃]

M =

[
I 0
0 diag(𝛾−1

𝑖
)

]
. (3.20)

By applying the Comparison Lemma [7] and using a contraction theory like argu-
ment [8, 9], we can then prove the tracking error and adaptation parameters error
exponentially converge to the bounded error ball

lim
𝑡→∞
∥
[

s
𝜃𝑖

]
∥ ≤ 𝑑

𝛼𝜆min(M)
:= �̄�, (3.21)

where 𝜆min is the minimum eigenvalue of a square matrix.

It follows from [7, 10] that the input-to-state stability (ISS) and bounded input and
bounded output (BIBO) stability in the sense of finite-gain L𝑝 [7] is proven for
�̄� ∈ L𝑝𝑒, resulting in its bounded output s, 𝜽 ∈ L𝑝𝑒, where the L𝑝 norm in the
extended space L𝑝𝑒, 𝑝 ∈ [1,∞] is

∥(u)𝜏∥L𝑝 =
(∫ 𝜏

0
∥u(𝑡)∥𝑝𝑑𝑡

)1/𝑝
< ∞, 𝑝 ∈ [1,∞)

∥(u)𝜏∥L∞ = sup
𝑡≥0
∥(u(𝑡))𝜏∥ < ∞

and (u(𝑡))𝜏 is a truncation of u(𝑡), i.e., (u(𝑡))𝜏 = 0 for 𝑡 ≥ 𝜏, 𝜏 ∈ [0,∞) while
(u(𝑡))𝜏 = u(𝑡) for 0 ≤ 𝑡 ≤ 𝜏.
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The exponential convergence proof in Theorem 1 shows that the online algorithm
(Algorithm 2) will drive 𝜽 to a value within a bounded error ball of the offline least-
squares solution used in the meta-learning algorithm (Algorithm 1) for a sufficiently
long window of data. In contrast with [11, 12], (3.14) and (3.15) admits adaptation
through the B control influence matrix. For stability purposes, under the assumption
of a diagonal 𝚪, the adaptation law equation resembles the Riccati equation of the
H∞ filtering [13]. This tends to increase the adaptation gain, making it more
responsive to measurements.

The parameters of the adaptation law (3.15) are 𝚪 = diag(𝛾1, . . . , 𝛾𝑛𝜃 ), R, 𝜆, and
Q = diag(𝑞𝑖). 𝚪 is a positive definite matrix that influences the convergence rate of
the estimator, and a sufficiently large initial 𝚪0 should be chosen to obtain a suitable
convergence rate. Q is a positive definite gain added to the gain update law, 𝜆 is a
damping factor, and R is a gain added to the prediction component of the adaptation
law. Without this gain, the prediction term and the tracking error-based term could
not be tuned separately.

Next, we assume the adaptation gain Γ in (3.15) has cross terms. Under this more
general setting, we prove the exponential convergence of both 𝜽 and s to a bounded
error ball.

Proposition 1 By applying the controller in (3.14) to the dynamics in (3.7), with
the composite adaptation law

¤̂𝜽 = −𝜆𝜽 − 𝚪H⊤R−1(H𝜽 − y)︸                 ︷︷                 ︸
predict

+𝚪H⊤s︸︷︷︸
track

, (3.22a)

¤𝚪 = −2𝜆𝚪 +Q − 𝚪H⊤R−1H𝚪, (3.22b)

where 𝜆 > 0, 𝚪 ∈ R𝑛𝜃×𝑛𝜃 , Q𝑛𝜃×𝑛𝜃 and R ∈ R2×2 are positive definite matrices and
H ∈ R𝑛×𝑛𝜃 , the tracking errors s and the parameter error 𝜽 exponentially converge
to a bounded error ball defined in [12].

Proof 2 We define the matrix H =
[
h1 . . . h𝑛𝜃

]
∈ R𝑛×𝑛𝜃 , where the columns h𝑖 =

𝚽𝑖u, for each 𝑖 ∈ [1, 𝑛𝜃]. By observing that the disturbance in (2.3) can be
defined as d ≈∑𝑛𝜃

𝑖=1 𝚽𝑖𝜃𝑖u := H𝜽 , the proof of exponential convergence for additive
disturbance adaptation from [12] can be directly applicable for the multiplicative
disturbance adaptation.
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Note that the exponential convergence proof for Proposition 1 using Lyapunov theory
holds for both when the last term of the gain adaptation law (3.22b) is positive and
when the last term is negative. A negative sign makes the update law (3.22b)
resemble the covariance update law of the Kalman filter. However, using a positive
sign will make the closed-loop system converge faster for the same constants. Our
controller in Theorem 1 behaves similar to the second case with the assumption that
𝚪 is diagonal.

Lastly, for completeness, we show exponential convergence to a bounded error ball
for the position and the attitude error.

Theorem 2 By Theorem 1, s converges to a bounded error ball (3.21) defined as �̄�.
Therefore, we hierarchically show that 𝜓 → 𝜓ref and p→ p𝑑 exponentially fast to
a bounded error ball for bounded reference velocity.

Proof 3 We define the error �̃� = 𝜓−𝜓ref . Using (3.11), we obtain ¤̃𝜓+ 𝑘𝜓�̃� ≤ �̄�, and
with the Comparison Lemma, we prove that the error �̃� converges to the bounded
error ball �̄�

𝑘𝜓
. To give intuition about the following position tracking error proof,

we use Fig. 3.1. We define v = vref + v𝑒 in vector form, where v𝑒 is the velocity
error. We further express these quantities in the reference frame D and note that,
by Theorem 1, we have proved the convergence 𝑣B𝑥 = 𝑣ref,x + �̄� as 𝑡 →∞. Therefore,
we obtain

vD𝑒 = −
[
𝑣Dref,x

0

]
+

[
cos(�̃�)
sin(�̃�)

] ([
cos(�̃�)
sin(�̃�)

]
·
[
𝑣Dref,x

0

]
+ �̄�

)
= 𝑣Dref,x

[
cos2(�̃�) − 1

sin(�̃�) cos(�̃�)

]
+ �̄�

[
cos(�̃�)
sin(�̃�)

]
.

We compute and bound the norm, as follows

∥vD𝑒 ∥2 ≤ 𝑣max

����sin
(
�̄�

𝑘𝜓

)����√2 + �̄�, (3.23)

where 𝑣max is our assumption for the existence of an upper bound for the reference
velocity. From (3.10) and (3.23), it is straightforward to see that the position error
is also bounded using the Comparison Lemma.
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3.4 Ackermann Steering Vehicle Dynamics Model
We define a fixed reference frame I, a moving reference frame B attached to
the center of mass of the car, and a desired frame D attached to the desired tra-
jectory as seen in Fig. 3.1. Similar to (3.4), a non-holonomic constraint holds:[
sin𝜓 − cos𝜓 0

]
·
[
¤𝑝I𝑥 ¤𝑝I𝑦 0

]
, where ¤𝑝I𝑥 and ¤𝑝I𝑦 are the velocities in the iner-

tial frame I and 𝜓 is the yaw angle from B to I. For the tracked vehicle discussed
in Sec. 3.2, the instantaneous center of rotation 𝑥ICR is assumed to be 0 with ¤𝑝B𝑦 = 0
in (3.2) because the tracked vehicle is not designed for highly aggressive maneuvers.

A car, on the other hand, can be drifting, and thus the side velocity plays a much
more important role, which is considered in our control design. Let 𝑣B𝑥 and 𝑣B𝑦 be
the linear velocities in the body frame and 𝜔 the angular velocity around the vertical
z-axis of the B frame. The dynamic model can be expressed as [14]

𝑚( ¤𝑣B𝑥 − 𝜔𝑣B𝑦 ) = 𝐹𝑥𝑟 + 𝐹𝑥 𝑓 cos(𝑢𝛿) − 𝐹𝑦 𝑓 sin(𝑢𝛿),
𝑚( ¤𝑣B𝑦 + 𝜔𝑣B𝑥 ) = 𝐹𝑦𝑟 + 𝐹𝑥 𝑓 sin(𝑢𝛿) + 𝐹𝑦 𝑓 cos(𝑢𝛿),

𝐼𝑧 ¤𝜔 =
𝐿

2
𝐹𝑥 𝑓 sin(𝑢𝛿) +

𝐿

2
𝐹𝑦 𝑓 cos(𝑢𝛿) −

𝐿

2
𝐹𝑦𝑟 ,

(3.24)

where 𝐿 is the wheelbase length, 𝐹𝑥 𝑓 and 𝐹𝑥𝑟 are the front and rear tire forward forces,
𝑚 is the vehicle mass, 𝐼𝑧 is the vehicle inertia about the vertical axis intersecting
the center of mass, and the lateral forces are 𝐹𝑦 𝑓 ≈ 𝐶𝑦𝛼 𝑓 , 𝐹𝑦𝑟 ≈ 𝐶𝑦𝛼𝑟 , where 𝐶𝑦
is the tire cornering stiffness [15], and 𝛼𝑟 and 𝛼 𝑓 are two tire slip angles, defined
as in [14]. The tire cornering stiffness coefficient is terrain- and wheel-dependent.
Either an accurate estimate or online adaptation is necessary when designing a
tracking controller. Note that a more slippery ground has a lower 𝐶𝑦.

We decouple the controller for the longitudinal velocity from the controller for the
lateral and angular velocity and apply our MAGICVFM algorithm to the lateral and
angular motion. Note that the forward velocity dynamics is nonlinear. Therefore,
for simplicity, similar to the tracked vehicle, we model the forward velocity as a first-
order time delay system ¤𝑣B𝑥 = −𝜏−1

𝑣 (𝑣B𝑥 − 𝑢𝑣), with the time constant 𝜏𝑣 identified
through system identification. We then design an exponentially stabilizing PD
tracking controller for this linear system. For the lateral and angular motion, we
linearize (3.24) around a zero steering angle and assume a small tire slip angle. The
resulting linear time-varying system dynamics in the B frame is written by using
x := [𝑣B𝑦 , 𝜔] and the disturbance model (2.3)

¤x = An(𝑣B𝑥 (𝑡))x + Bn𝑢𝛿 + (𝚽(x, E)𝜽) 𝑢𝛿, (3.25)
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where

An(𝑣B𝑥 (𝑡)) =

− 2𝐶𝑦
𝑚𝑣B𝑥

−𝑣B𝑥
0 − 𝐿2𝐶𝑦

2𝑣B𝑥 𝐼𝑧

 ,Bn =

[
𝐶𝑦
𝑚
𝐿𝐶𝑦
2𝐼𝑧

]
,

and 𝚽(x, E) =
[
𝝓1 𝝓2

]⊤
, with the estimated component 𝜽 adapted online. The

definition of 𝚽(x, E) ∈ R2×𝑛𝜃 and 𝜽 ∈ R𝑛𝜃 are the same as their definitions for the
tracked vehicle. The adaptation component accounts for model mismatches as well
as for the linearization errors in (3.24).

3.5 Adaptive Tracking Controller for Ackermann Steering
We apply MAGICVFM to compensate for the sideslip when the robot is performing
fast turning maneuvers. Thus, our adaptive control algorithm is applied only to the
lateral and angular controller, although it can be applied for the linear velocity, as
well. We define the path error e = [𝑒∥ , 𝑒⊥] with the longitudinal and lateral error
components, as seen in Fig. 3.1

e := pD − pD
𝑑
= RDI (p

I −OID) (3.26)

where OID is the origin of the desired frame D expressed in I, p = [𝑝𝑥 , 𝑝𝑦] is the
position of the robot, p𝑑 = [𝑝𝑥,𝑑 , 𝑝𝑦,𝑑] is the desired position from the trajectory,
and RDI is the rotation from the inertial frame I to the desired frame D. Next, we
compute the time derivative of the path error (3.26) as follows[

¤𝑒∥

¤𝑒⊥

]
= RDI RIBvB − vD

𝑑
+ ¤RDI (R

I
DpD), (3.27)

where RIB is the rotation from the body frame B to the inertial frame I, vD
𝑑

=

[𝑣D
𝑑,𝑥
, 0] is the derivative of the desired position taken in I, and expressed in D,

and vB = [𝑣B𝑥 , 𝑣B𝑦 ] is the velocity of the robot in the B frame. From (3.27), the
perpendicular error derivative becomes

¤𝑒⊥ =

[
sin(𝜓𝑒)
cos(𝜓𝑒)

]
· vB − ¤𝜓𝑑𝑒∥ , (3.28)

where 𝜓𝑒 = 𝜓 − 𝜓𝑑 is the angle error between the actual orientation and the desired
orientation. In addition, each component in (3.26) is

𝑒⊥ =

[
sin(𝜓𝑒)
cos(𝜓𝑒)

]
· p̃B , 𝑒∥ =

[
cos(𝜓𝑒)
− sin(𝜓𝑒)

]
· p̃B , (3.29)
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where p̃B = pB − pB
𝑑

is the position error expressed in B. Because we model the
dynamics decoupled and linearized, from (3.28), we obtain

¤𝑒⊥ = 𝑣B𝑦 + 𝑣B𝑥 𝜓𝑒 . (3.30)

Further, we differentiate (3.30) and substitute (3.25), as follows

¥𝑒⊥ = −
2𝐶𝑦
𝑚𝑣B𝑥

𝑣B𝑦 − 𝑣B𝑥 𝜔+
𝐶𝑦

𝑚
𝑢𝛿+ (𝝓1𝜽) 𝑢𝛿 + ¤𝑣B𝑥 𝜓𝑒 + 𝑣B𝑥 𝜔𝑒 . (3.31)

Now we design a tracking controller for the lateral motion of the vehicle. Let
𝑠⊥ = ¤𝑒⊥ + 𝑘 𝑝𝑒⊥, with 𝑘 𝑝 ∈ R+ a positive constant. Then, using (3.31), ¤𝑠⊥ is

¤𝑠⊥ = −
2𝐶𝑦
𝑚𝑣B𝑥

𝑣B𝑦 − 𝑣B𝑥 𝜔+
𝐶𝑦

𝑚
𝑢𝛿+ (𝝓1𝜽) 𝑢𝛿 + ¤𝑣B𝑥 𝜓𝑒 + 𝑣B𝑥 𝜔𝑒 + 𝑘 𝑝 ¤𝑒⊥.

We then design the following adaptive controller

𝑢𝛿 = −�̂�−1
𝑛

(
𝑘𝑣𝑠
⊥ −

2𝐶𝑦
𝑚𝑣B𝑥

𝑣B𝑦 + ¤𝑣B𝑥 𝜓𝑒 − 𝑣B𝑥 𝜔𝑑 + 𝑘 𝑝 ¤𝑒⊥
)
, (3.32)

where �̂�𝑛 =
𝐶𝑦
𝑚
+ 𝝓1𝜽 . Letting 𝜽 = 𝜽 − 𝜽 , the closed-loop system of 𝑠⊥ becomes

¤𝑠⊥ + 𝑘𝑣𝑠⊥ =
(
𝝓1𝜽

)
𝑢𝛿 . (3.33)

Note that the controller in (3.32) resembles (3.14), which was derived for the tracked
vehicle. Using the same proof as in Sec. 3.3, we show that the tracking error 𝑠⊥ and
𝜽 exponentially converge to a bounded error ball. Next, we analyze the stability of
the internal states 𝑣B𝑦 (𝑡) and 𝜓𝑒 (𝑡) under the exact error definitions (3.28)-(3.29).

Theorem 3 If |𝑠⊥(𝑡) | ≤ 𝑒−𝛾𝑡 |𝑠⊥0 | +
𝜖
𝛾
, for positive constants 𝛾 and 𝜖 , and 𝑠0 being

the initial value, under the local assumption of − 𝜋2 < 𝜓𝑒 <
𝜋
2 and a positive 𝑣B𝑥 ,

then 𝑝B𝑦 , 𝑣B𝑦 , and 𝜓𝑒 exponentially tend to bounds.

Proof 4 Our forward velocity controller ensures 𝑣B𝑥 converges to the desired forward
velocity, as shown in Theorem 1 for the tracked vehicle. Thus, we can approximate
𝑝B𝑥 ≈ 0 in (3.29). Hence, (3.28) and (3.29) are simplified as

𝑒⊥ ≈ cos𝜓𝑒𝑝B𝑦 , ¤𝑒⊥ ≈ sin𝜓𝑒 (𝑣B𝑥 + ¤𝜓𝑑 𝑝B𝑦 ) + cos𝜓𝑒𝑣B𝑦 . (3.34)

Note that under no disturbance (𝜖 ≈ 0) and since 𝑠⊥ = ¤𝑒⊥ + 𝑘 𝑝𝑒⊥, 𝑒⊥ and ¤𝑒⊥

exponentially converge to 0. Assuming a feasible reference trajectory (nonzero
desired side velocity, 𝑣B

𝑦,𝑑
), since cos𝜓𝑒 and 𝑣B𝑥 are nonzero values, we have 𝑝B𝑦 ,
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�̃�B𝑦 , and 𝜓𝑒 converge to 0. If 𝜖 is a small nonzero value, assuming inf𝑡 (cos𝜓𝑒) = �̄�,
we can show that |𝑝B𝑦 | exponentially converges to a small error bound, as follows

lim
𝑡→∞
|𝑝B𝑦 | ≤

𝜖

�̄�𝑘 𝑝𝛾
. (3.35)

We further assume that |𝑝B𝑦 (𝑡) | ≈ 𝑒−𝛾𝑝𝑡 |𝑝B𝑦 (0) |+
|𝑑 (𝑡) |
𝑘 𝑝𝛾

, where 𝛾𝑝 is a positive constant
and 𝑑 (𝑡) is a function with a small Lipschitz constant 𝜖𝑦. With this assumption, we
can show 𝑣B𝑦 exponentially converges to the bound 𝜖𝑦

𝑘 𝑝𝛾
. Then, assuming inf𝑡 𝑣B𝑥 = �̄�,

with positive �̄�, we apply the triangle inequality for ¤𝑒⊥ as follows

| sin𝜓𝑒 (𝑣B𝑥 + ¤𝜓𝑑 𝑝B𝑦 ) | ≤ | ¤𝑒⊥ | + | cos𝜓𝑒𝑣B𝑦 |. (3.36)

Taking the limit and denoting �̄� − 𝜖 sup𝑡 | ¤𝜓𝑑 |
�̄�𝑘 𝑝𝛾

as 𝑣, we show that 𝜓𝑒 exponentially
converges to a bounded error as

lim
𝑡→∞
|𝜓𝑒 | ≤ arcsin

(
2𝜖
𝑣𝛾
+
�̄�𝜖𝑦

𝑣𝑘 𝑝𝛾

)
. (3.37)

Note that 𝛾 and 𝑘 𝑝 can be chosen to make the error bounds sufficiently small. The
proof above is based on (3.28). Using the simplified version of (3.30), the bound
simplifies to lim𝑡→∞ |𝜓𝑒 | ≤ 2𝜖

𝑣𝛾 +
𝜖𝑦
𝑣𝑘 𝑝𝛾

.
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C h a p t e r 4

IMPLEMENTATION AND RESULTS OF MAGICVFM

4.1 Chapter Overview
In this chapter, we present the simulation and experimental results of our proposed
MAGICVFM framework. We first start by analyzing the features extracted by the
Visual Foundation Model (VFM) to understand the suitability of the model for
our application. We then present the simulation results in Section 4.3 to validate
the learning and control strategy. We then discuss the hardware experiments in
Section 4.4 to demonstrate the effectiveness of our adaptive controller on a tracked
vehicle and a car-like vehicle. Moreover, we present the results of the experiments
conducted on slopes in JPL’s Mars Yard in Section 4.6 to validate the performance
of our adaptive controller on different terrains. Lastly, we show the performance of
our algorithm for the DARPA Learning Introspective Control (LINC) competition.

4.2 Empirical Results: Analysis of VFM Suitability
For our empirical work, we selected DINO V1 [1] as the VFM. DINO maps a high-
resolution red-green-blue (RGB) image to a lower-resolution image where each pixel
is a high-dimensional feature vector that depends on the entire input image, not just
the corresponding input patch. More precisely, let 𝜉 ∈ N be the patch dimension and
𝜉 𝑓 ∈ N the feature vector dimension. Given an RGB image IRGB, the transformation
is

IRGB : ℎ × 𝑤 × 3→ IVFM :
⌊
ℎ

𝜉

⌋
×

⌊
𝑤

𝜉

⌋
× 𝜉 𝑓 , (4.1)

where ℎ and 𝑤 are the image height and width. We then extract prominent patches
from IVFM to form the terrain representation E, which will be further used in the 𝚽
from (2.3). For our experiments, we select a set of patches on right and left of the
tracks/wheels of the vehicle, as emphasized in Fig. 2.1.

DINO is optimized for a self-supervised learning objective and was shown to yield
feature mappings useful for a variety of downstream tasks. This VFM is trained on
the ImageNet dataset, which also includes diverse ground terrains but mainly in the
context of buildings, plants or landscapes, instead of terrain-only images. Therefore,
in this section, we verify that DINO is able to clearly discriminate between different
terrain types in terrain-only images before deploying it in our control setting.
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Figure 4.1: DINO VFM discriminative ability for different terrains. We show the
histograms of the projection values onto the separating hyperplane normal computed
using Support Vector Classifier for 3 sets of classes with 5 images each (each row
presents the separation margin between one class type and the other 2 classes). Note
that the spikes at -1 and 1 are an artifact of the high dimensionality and the small
dataset we used.

We first measure DINO’s discriminative ability by examining the margins of linear
classifiers between terrain classes in the high-dimensional feature space R𝜉 𝑓 . We
consider three terrain types: grass, sand, and snow. We collect five example images
for each class and convert each image to a set of feature vectors using DINO. Then,
using the known class labels, we fit a multi-class linear classifier for the feature
vectors using the One-vs-Rest Support Vector Classifier (OVR-SVC) method [2]. We
then project the feature vectors onto the one-vs-rest separating hyperplane normals.
Let the separating hyperplane have the equation wℎ · x + 𝑏ℎ = 0, where wℎ ∈ R𝜉 𝑓 is
the vector normal to hyperplane and bℎ ∈ R is the bias term. Let E be represented
by just one patch, and thus have size 𝜉 𝑓 . The projected patch E onto the separating
hyperplane normal is defined as 𝑝ℎ = wℎ · E. The histogram of these projected
values for each patch in the image is shown in Fig. 4.1. By comparing the SVC
margin (the separation between -1 and 1) to the width of the histograms, we confirm
that the classes are highly separable.

We next examine the distribution of the features across a sequence of images, taken
while navigating from flagstones (irregular-shaped flat rocks) to gravel in the Mars
Yard [3] at NASA Jet Propulsion Laboratory (JPL). The top row of Fig. 4.2 displays
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Figure 4.2: Projection of sequential flagstones and gravel features onto an OVR-
SVC separating hyperplane normal. The middle plot shows the projection of all the
patch features from the top 8 figures, while the bottom plot shows the projection of
a central patch taken from 45 sequential images of flagstones and gravel.

8 out of a total of 45 images extracted from a video. Each image is processed
through the DINO VFM, yielding 1200 patches of dimension 𝜉 𝑓 = 384 per image
(computed using (4.2)). We apply OVR-SVC on the patches from one flagstone and
one gravel image and project all patches from our chosen 8 images onto the SVC
separating hyperplane normal. This projection reveals a bimodal distribution in the
3rd and 4th images due to the presence of both flagstones and gravel. In the bottom
subplot of Fig. 4.2, we simulate a scenario where the robot traverses the area covered
in all 45 images sequentially. For each image, we focus on a central patch of size 𝜉 𝑓
and project these features onto the separating hyperplane normal. This projection
shows a consistent and continuous trend as the robot transitions from flagstone to
gravel surfaces. This observation ensures the continuity of the VFM with respect to
the camera motion.

Overall, these results provide positive empirical evidence that the DINO VFM is
suitable for fine-grained discrimination of terrain types in images containing only
terrain, and thus suitable for use in our setting.
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Figure 4.3: Simulation Environment (a) Environment with 3 different types of
terrain (sand, grass, and ice), which represent areas of differing slip coefficients (b)
Generated trajectories for training.

Table 4.1: Control and adaptation coefficients for the 𝚽 constant and 𝚽 DNN
controllers for the simulation environment.

Ctrl. Type 𝑘𝑑𝑥 𝑘𝑑𝜔 𝚪0 diag R diag Q diag 𝜆

𝚽 = ct. 0.05 0.1 0.01 0.1 1.0 0.01
𝚽 = NN 0.05 0.1 0.01 0.1 1.0 0.01

4.3 Simulation Results
Simulation Study Settings
To validate our learning and control strategy, we developed a simulation environment
(Fig. 4.3) that enables detailed visualizations of the algorithm behavior. This envi-
ronment is designed to incorporate a variety of terrains, thereby allowing us to test
the adaptability of our model across diverse conditions without requiring extensive
real world data collection. The dynamics for the simulator were modeled via (3.7),
and the controller of (3.14) and (3.15) with the coefficients in Table 4.1 was used to
track user-defined velocity trajectories vref generated at random. The environment
contains three distinct terrain types (Fig. 4.3a). Each terrain type induces a different
level of slip, modeled as a scaling of the nominal control matrix Bn∈ R2×2 in (3.7)
such that Bn is replaced by 𝜂Bn and the dynamics matrix An ∈ R2×2 is kept the same
as in (3.7). The particular values of 𝜂 are illustrated in Fig. 4.4a.

To construct a dataset, we simulate 𝑁 = 1 long trajectory of 150 000 discrete time
steps, with randomized piecewise-constant velocity inputs. For acquiring these
features, we utilize the DINO VFM on images of the terrains from Fig. 4.3a. As
explained in Sec. 4.2, this model processes high-resolution terrain images into a
more compact, lower resolution embedding. This reduced resolution representation
is overlaid across the entire map. Specifically, let𝑚𝑠×𝑛𝑠 be the size of the simulated
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Figure 4.4: Simulation (a) Perturbed control matrix (𝜂) on the different types of
terrains. (b) Convergence of the adaptation coefficients for the simulation dataset.

map, which is 120 × 240 in our case. Let each DINO feature image have the size
computed as in (4.2), for a background image of size 480 × 640, a patch size of
𝜉 = 16, and the feature size 𝜉 𝑓 = 384.

IVFM :
⌊
480
16

⌋
×

⌊
640
16

⌋
× 384 = 30 × 40 × 384. (4.2)

Then, we tile each of the DINO feature images across the entire map vertically 4
times

( ⌊ 120
30

⌋ )
and horizontally 6 times

( ⌊ 240
40

⌋ )
and extract and record the relevant

terrain features underneath the robot. For training, we collect random trajectories,
generated by sampling control inputs u from a uniform distribution, and integrate
forward the dynamics in (3.7) in order to cover a large portion of the simulated
map, as seen in Fig. 4.3b. The dataset contains the DINO features extracted from
underneath the robot and the robot’s velocities, and as labels the residual dynamics
derivative y, computed as in (3.16). Using this dataset, we then train the basis
function 𝚽, whose architecture can be seen in Fig. 2.3, using Algorithm 1. The
convergence of the adaptation coefficients to 𝜽𝑟 is presented in Fig. 4.4b, taken as
an average over the last training minibatch 𝐾 . This compact representation of the
terrain is then integrated with online adaptive control (Algorithm 2).

Simulation Study Objectives
In exploring the capabilities of our model, we investigate how prior knowledge of
the terrain contributes to improved tracking accuracy for an adaptive controller. We
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thus test our algorithm across 3 scenarios: a) We assess the model performance in an
environment identical to the one used during training to understand its effectiveness
with in-distribution data (Fig. 4.5). b) We test the algorithm under simulated
nighttime conditions to gauge performance when the ground is identical, but the
lighting conditions are different (Fig. 4.6). c) We challenge the model by presenting
it with two environments that have similar visual features to those in the training data
set, but exhibit different dynamic behaviors. Furthermore, we adopt an adversarial
approach by exposing the robot to completely novel environments that are not
encountered during training (Fig. 4.8).

In-distribution Performance
To quantify if prior knowledge of the terrain improves tracking accuracy, the robot
is tested in-distribution using the same environment as in the training dataset. The
first row of Fig. 4.5 shows 39 random trials (black) and the single exemplar path
(shades of purple, colored by the L2 error between the actual and desired states).
These random trials are used to compute error statistics in row 6. The second row
displays the robot’s adaptation coefficients for the purple trajectory as it navigates
through this environment. When the basis function lacks terrain awareness and is
set as constant matrices (4.3),

𝚽 =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
, (4.3)

there is significant fluctuation in the adaptation coefficients during the transition
between different terrains. Conversely, when the DNN basis function is used, the
adaptation coefficients remain relatively stable, while the DNN output itself varies
with each terrain type, as shown in the third row of Fig. 4.5. The fourth row
showcases the components of the product between the DNN basis function 𝚽 and
the adaptation vector 𝜽 . Though the output of our controller is slightly noisier,
the adaptation of the product 𝚽𝜽 is significantly faster. The fifth row shows the
normalized error between the robot’s actual and desired states. For the constant
basis function, most of the tracking error occurs at terrain transitions. When the
basis function is terrain-informed, the error is negligible, even at terrain transitions.
Finally, the last row shows the spread of the cumulative error across 40 distinct
experimental runs, each initiated at a random starting point and orientation, but of
the same duration (the black and the purple trajectories in Row 1). The results of the
simulation show that our terrain-informed DNN-based tracking controller reduces
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Figure 4.5: Results for in-distribution data from the simulation model. Each ex-
periment was run 40 times on the terrains from row 1. The left column contains
the performance for the baseline controller, while the right column contains the
performance for our method. The second row contains the adaptation coefficients
𝜃𝑖, while the third row emphasizes the basis function 𝚽𝑖. For the baseline, 𝚽𝑖 is
constant, while in our method, 𝚽𝑖 varies as a function of the terrain and state. The
last row presents the cumulative error, where the thick colored line represents the
median, and the shaded region encompasses the range from the 25th to the 75th

percentile.

the cumulative error by approximately 90.1% when compared to the constant 𝚽,
defined as in (4.3).



510 100 200
x [m]

0

100

y
[m

]

© = Identity

0 100 200
x [m]

0

100

y
[m

]

© = NN (ours)

0 250 500

-0.25
0.00µ i

0 250 500

0.95
1.00

0 250 500
0.00

1.00

©
i

0 250 500
-2.00
0.00
2.00

0 250 500

-0.25
0.00

(©
µ)

i

0 250 500

-0.25
0.00
0.25

0 250 500
0.00

0.50

E
rr

or

0 250 500
0.00

0.50

0 250 500
Time [s]

0.00

0.50

C
u
m

.
E

rr
.

median

0 250 500
Time [s]

0.00

0.50
median

0.0

0.5

ke
k2

0 100 200
x [m]

0

100

y
[m

]

© = Identity

0 100 200
x [m]

0

100

y
[m

]

© = NN (ours)

0 250 500

-0.25
0.00µ i

0 250 500

0.95
1.00

0 250 500
0.00

1.00

©
i

0 250 500
-2.00
0.00
2.00

0 250 500

-0.25
0.00

(©
µ)

i

0 250 500

-0.25
0.00
0.25

0 250 500
0.00

0.50

E
rr

or

0 250 500
0.00

0.50

0 250 500
Time [s]

0.00

0.50

C
u
m

.
E

rr
.

median

0 250 500
Time [s]

0.00

0.50
median

0.0

0.5

ke
k2

.

Figure 4.6: Simulation results in the simulated nighttime environment. Despite
different lighting conditions, the cumulative error is kept small by the terrain-
informed DNN.

Nighttime Out-of-distribution Performance
To test the robustness of our framework to varying lighting conditions, we extend
our simulated experiments with a nighttime environment by uniformly darkening
(changing the brightness) of each image representing the environment (Fig. 4.6).
While the adaptation coefficients exhibit more variation compared to those in the
standard, in-distribution scenario, the DNN still demonstrates good accuracy in
predicting the environment from the darkened images. This outcome emphasizes the
robustness of VFM, underscoring its ability to adapt effectively to varying lighting
conditions. Importantly, even in these altered night conditions, the cumulative error
remains low.

We highlight the importance of adaptation by comparing the tracking error under
two scenarios: with adaptation and without adaptation, as shown in Fig. 4.7. In the
“no adaptation case,” we maintain 𝜽 as a constant, initialized to 𝜽𝑟 . This comparison
effectively demonstrates the benefits of adaptation, emphasizing its value even in
situations where the basis function accurately predicts the terrain.
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Figure 4.7: Comparison of the cumulative error between adaptation and “no adap-
tation” for the simulated nighttime experiment. In both cases, the DNN version of
𝚽 is used. This figure emphasizes the benefit of doing online adaptation.

Adversarial Environment Performance
In our final test (Fig. 4.8), we introduced two adversarial environments for the
robot, manipulating two visually similar environments by altering their respective
𝜂 coefficient of the B matrix. This emulates the real world where pits of deep sand
appear very similar to shallow sand, but have a significantly different effect on the
dynamics of the robot. Additionally, we modified the appearance of the simulated
ice environment to create a distinct visual difference, while also slightly changing
the effect of ice on the dynamics.

In the adversarial environment, the adaptation coefficients exhibit greater changes
than for the in-distribution and night-time simulations. In addition, we observe that
the DNN basis function demonstrates good performance, validating its effectiveness
in handling out-of-distribution data. This effectiveness is likely attributed to the zero-
shot capability inherent in the VFM. Lastly, it is important to note that the overall
cumulative error remained lower compared to scenarios where the basis function
lacked terrain information, further demonstrating the benefit and robustness of our
approach in varied and challenging conditions, even for out-of-distribution data.

4.4 Overview Hardware Experiments
We focus on the hardware implementation and experimental validation of our
MAGICVFM adaptive controller discussed in Sec. 2.4-4.2 on a tracked vehicle
whose dynamics are modeled in (3.7) and a car with Ackermann steering with the
dynamics modeled as in (3.25). We present how our adaptive controller effectively
addresses various perturbations such as terrain changes, severe track degradation,
and unknown internal robot dynamics.
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Figure 4.8: Simulation results with adversarial environment (different structures that
look like ice) and different 𝜂 scaling coefficient for the control matrix for identical
terrain.

4.5 Robot Hardware and Software Stack
Experiments were carried out using a GVR-Bot [4] and a modified Traxxas X-
Maxx, both shown in Fig. 4.9. Both vehicles are equipped with an NVIDIA Jetson
Orin, RealSense D457 cameras (GVR-Bot: two forward facing and one rear facing,
Traxxas: single forward facing) and a VectorNav VN100 IMU.

State estimation is provided onboard using OpenVINS [5], which fuses the cam-
era data with an IMU to estimate the platform’s position, attitude, and velocity.
Our MAGICVFM controller, as presented in (3.14), (3.15) for the tracked vehicle and
in (3.32) for the car-like vehicle, and Theorem 1, runs at 20 Hz. It is implemented in
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Figure 4.9: Setup for hardware experiments (a) The GVR-Bot traversing two slopes
with different textures and terrain-induced dynamic behaviors at the JPL Mars Yard.
(b) The GVR-Bot with the sensing and compute units highlighted. Note that the
forward facing camera is used for state estimation, while the top camera is used
for taking terrain images for MAGICVFM. The rear camera is not used in this
work. (c) The Traxxas robot traversing two different terrains that induce different
dynamic behaviors. (d) The Traxxas robot with its main sensing and compute units
highlighted.

Python using the Robot Operating System (ROS) as the middleware to communicate
with the robot’s internal computer.

4.6 Experiments on Slopes in JPL’s Mars Yard
The GVR-Bot only accepts velocity commands as the track velocities are regulated
using an internal PID controller, which is inaccessible to the user. While this justifies
our first-order modelling (3.7) using velocities, these experimental results validate
that MAGICVFM successfully learns the unknown internal dynamics. To verify the
performance of our MAGICVFM controller (Sec. 2.4 and 3.1) on different terrains,
the GVR-Bot was driven on the slopes of the Mars Yard [3] at the Jet Propulsion
Laboratory (JPL). Fig. 4.9 shows the two selected slopes, both chosen for their
appropriate angle and visually different terrain type that induce different dynamic
terrain-based behaviors.

Offline Training

Training data was collected by driving the GVR-Bot via direct tele-operation for a
total of 20 minutes on the slopes. This trajectory was designed to include segments
of transition between different slopes as well as periods of single slope operation.
We utilize this dataset for training our terrain-dependent basis function as outlined
in Algorithm 1. By leveraging the strengths of a pre-trained VFM, we develop the
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Table 4.2: Training hyperparameters for Algorithm 1 for the tracked vehicle. 𝛽 is the
learning rate for the optimization in Line 11 of Algorithm 1, 𝜽𝑟 is the regularization
target, ℓmin and ℓmax are the bounds for the distribution over trajectory window
lengths, 𝜆r is the regularization term for (2.4), 𝐾 is the minibatch size, and 𝑛𝜃 is the
size of the adaptation vector.

𝛽 𝜽𝑟 ℓmin ℓmax 𝜆r 𝐾 𝑛𝜃

0.001 14 1.2 [s] 30 [s] 0.1 70 4

lightweight DNN basis function head used in the adaptive controller of (3.14), (3.15).
This function processes inputs comprising of the mean of two visual feature patches
from the GVR-Bot’s right and left tracks and the robot’s velocity taken from the
onboard state estimator. The VFM-based DNN (𝚽) structure incorporates two
hidden layers, each consisting of 200 neurons, as seen in Fig. 2.3. The output has
size 16, which is then reconfigured into dimensions 𝑛 × 𝑚 × 𝑛𝜃 , where 𝑛 = 2 is the
state size, 𝑚 = 2 is the control input size, and 𝑛𝜃 = 4 is the size of the adaptation
vector that matches the number of terms in the control matrix. The hyperparameters
for the training algorithm are shown in Table 4.2.

Online Adaptation

At runtime, the downward-facing camera1 is used to capture images of the terrain
at 20 Hz. These images are then processed by the VFM explained in Sec. 4.2 to
extract the features. The extracted features are then concatenated with the robot’s
velocity and are then fed into the DNN basis function 𝚽. This function, together
with an online-adapting vector, is then employed to dynamically adjust the residual
B matrix (3.14), (3.15) in real time to account for the different terrains.

The benefits of the terrain-informed basis function can been seen by comparing the
performance of a constant and non-constant basis function controller as the robot
traverses slopes. Both controllers are based on (3.14) and the adaptation law in
(3.15). The first controller uses a constant basis function, defined in (4.3). We
choose this structure for the constant 𝚽 to capture both the direct and cross-term
effects on the robot’s velocity. The second controller uses a terrain-dependent DNN
basis function trained as explained in Sec. 4.6. The control coefficients for both
controllers are presented in Table 4.3. The initial adaptation vector 𝜽0 = 𝜽 (0) for

1To mitigate the purple tint in the RGB images (a common issue for Intel Realsense cameras),
the RGB cameras were outfitted with neutral density filters to maintain the integrity of the VFM
features.
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Table 4.3: Control coefficients for both controllers (𝚽 is constant and 𝚽 is a DNN)
for the tracked vehicle.

𝑘 𝑝𝑥 𝑘 𝑝𝑦 𝑘𝑑𝑥 𝑘𝑑𝜔 𝑘𝜓 𝚪0 diag Q diag R diag 𝜆

0.8 0.8 0.5 1.6 2.3 0.2 0.1 5.0 0.01

Table 4.4: Statistics for the tracked vehicle on Mars Yard slopes.

Controller Tracking error (RMS [m])
𝚽 constant 0.130 ± 0.038

𝚽 DNN (ours) 0.061 ± 0.022

the constant basis function is 0𝑛𝜃 , while 𝜽 (0) for the terrain-dependent basis function
is the converged value from Algorithm 1.

Each experiment was carried out five times, with the results detailed in Fig. 4.10.
For repeatability, we used a rake to re-distribute the gravel on the slopes between
runs and alternated back and forth between running the two controllers. For this
experiment, the desired trajectory is a straight line that spans the entire length of the
two slopes (see Fig. 4.9).

Fig. 4.10 shows that when the robot traverses the first slope (flagstone resulting in
minimal slippage), both controllers have comparable tracking errors. However, a
notable change in performance appears when the robot transitions to the second
slope, which has an increased tendency for the soil to slump down the hill, causing
slippage. In Table 4.4, we present the RMSE between the actual position and the
desired position computed as

√︃
1
𝐿

∑𝐿
𝑖=1 | |pI𝑖 − pI

𝑑𝑖
| |22, where 𝐿 is the length of the

trajectory. The results demonstrate that the integration of a VFM in an adaptive
control framework enhances tracking performance, yielding an average improvement
of 53%.

Computational Load

A significant bottleneck in deploying VFMs onboard robots is the computational
requirements of the inference stage of the models, especially as typical controllers
need to run at 10s-100s Hz. To minimize the inference time and allow high controller
rates, we employ the smallest visual transformer architecture of the DINO V1,
consisting of 21 million network parameters. This architecture allows us to run the
controller at 20 Hz on the Graphics Processing Unit (GPU) on-board an NVIDIA
Jetson Orin.
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Figure 4.10: Tracking error for the two controllers (constant basis function and
terrain-dependent basis function) on the slopes for a tracked vehicle. The error
is computed as the Euclidean distance between actual and desired positions in the
I frame. For both colors, the thick line outlines the mean of the 5 experiments,
the shaded area represents 1 standard deviation, and the thin and transparent lines
denote the 5 experiments.

4.7 Experiments On-board an Ackermann Steering Vehicle
We performed similar experiments to those described in Sec. 4.6 using an Ackermann
steering vehicle. Here, the robot traverses two different terrains, as seen in Fig. 4.9,
which induce different dynamic behaviors onto the robot (grass is more slippery
than concrete). Our experiments on both vehicles showed that, on flat ground, the
car experiences more significant slippage and terrain disturbances compared to the
tracked vehicle. Therefore, for this experiment, we validated MAGICVFM on flat
ground.

In Fig. 4.11, we show the product 𝚽𝜽 for the constant basis function of the nonlinear
tracking controller in (3.32). As the robot transitions between the two terrains, we
see that the robot effectively adapts to each terrain during this transition. This
behavior mirrors that observed in the simulation plots (Fig. 4.5). Note that we
maintained 𝑛𝜃 = 4, to be consistent with the DNN model of the basis function, even
though all four parameters are identical in this instance.

In Fig. 4.12, we emphasize the adaptation coefficients (left) and the DNN basis
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robot. Different terrains induce convergence to different adaptation coefficients.
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Figure 4.12: Adaptation coefficients 𝜽 and terrain-dependent DNN basis function
for a car-like robot. Approximate under-vehicle terrain is denoted with the white
(concrete) and gray (grass) bars.

function output (right) for the nonlinear tracking controller in (3.32) as the robot
transitions between the two terrains (grass and concrete) several times. The DNN
basis function switches depending on the type of environment it operates in, while
the corresponding adaptation coefficients 𝜽 remain mostly constant. This behavior
also mirrors that observed in the simulation plots (Fig. 4.5) when a DNN with VFM
is employed. Lastly, in Fig. 4.13, we present the lateral position error (𝑒⊥) and lateral
velocity (𝑣B𝑦 ) for the 3 controllers (a) nonlinear PD ((3.32) without the adaptation),
(b) MAGIC with constant 𝚽 in (3.32) and(3.15), (c) MAGICVFM with DNN 𝚽

in (3.32) and (3.15). Our method shows superior performance compared to the
baseline nonlinear PD controller. The control coefficients for the three controllers
are outlined in Table 4.5.
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Figure 4.13: Convergence of the lateral error 𝑒⊥ and lateral velocity 𝑣B𝑦 for a circular
trajectory traversing two terrains like the one seen in Fig. 4.9 with 𝑣B𝑥 = 1.5 𝑚/𝑠.
The velocity of the desired trajectory is limited by the performance of the VIO at
higher speeds.

Table 4.5: Control coefficients for the lateral control of the Ackermann steering
vehicle.

Controller 𝑘 𝑝 𝑘𝑑 𝚪 diag. Q diag. R diag. 𝜆

(a) nonlinear PD 1.0 1.0 - - - -
(b) 𝚽 constant 1.0 1.0 1.5 1.0 0.01 0.05

(c) 𝚽 DNN 1.0 1.0 1.5 1.0 0.01 0.05

Indoor Track Degradation Experiments
Indoor experiments were conducted at Caltech’s Center for Autonomous Systems
and Technologies (CAST) (Fig. 4.14). The primary objective of these experiments
was to evaluate the robustness and performance of our proposed controller under
artificially-induced track degradation. Specifically, the experiments quantify the
extent of degradation that our controller can effectively manage and demonstrate its
advantage over baseline controllers in similar scenarios. We compare three con-
trollers: (a) nonlinear PD ((3.14) without the adaptation), (b) MAGIC with constant
𝚽 in (3.14) and (3.15), and (c) MAGICVFM with DNN 𝚽 in (3.14) and (3.15).
The DNN is not retrained on the new ground type, but the previously trained DNN
from Sec. 4.6 is employed.

To simulate track degradation, a scalar factor is applied to one track that reduces
its commanded rotation speed downstream of (and opaquely to) the controller. In
this case, we apply a 70% reduction in speed to the right track using a step function
with a period of 3 seconds, while keeping the left track operating ‘nominally.’ The
GVR-Bot is commanded to follow a figure 8 trajectory, and the results are shown in
Fig. 4.14, with the RMSE in position tabulated in Table 4.6. The results show that
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Figure 4.14: Tracking error for the three controllers during track degradation. (left)
the performance for the nonlinear PD (the baseline). (middle and right) performance
for the constant basis function and the terrain-informed basis function. On the right,
we show the figure 8s trajectories for evaluating track degradation performance
conducted indoors at CAST. The consistent floor of CAST ensures any slippage is
consistent both within the figure 8 and between tests.

Table 4.6: Position tracking error statistics for the tracked vehicle experiencing track
degradation.

Controller Tracking RMSE [m] Improvement
(a) nonlinear PD 0.102 -
(b) 𝚽 = constant 0.079 23%

(c) 𝚽 = DNN 0.070 31%

Figure 4.15: Combined Circuit for the DARPA LINC runs showing the full course
with break outs of each of the elements. Track credit: Sandia National Laboratories
team.

both constant 𝚽 and DNN 𝚽 controllers outperform the tracking of the baseline
PD controller by 23% and 31%, proving the robustness to model mismatch of both
DNN and non-DNN controllers.
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Figure 4.16: Architecture for our DARPA LINC software stack, with the MAGIC
controller showcased in blue.

4.8 Performance at DARPA’s Learning Introspection Control
The DARPA LINC program [6] develops machine learning-based introspection
technologies that enable systems to respond to changes not predicted at design time.
LINC took place throughout 2023 at Sandia National Laboratories.

The main exercise, Combined Circuit (Fig. 4.15), evaluated conditions such as track
degradation, collisions, tip-over, and reduced cognitive load on the driver across a
variety of test elements. Importantly, these exercises were completed with a human
driver as the global planner in order to introduce additional challenges such as
adversarial driving and driver intent inference.

For this exercise, we implemented the MAGIC controller from (3.14), (3.15) in which
the basis function (4.3) was constant. Trajectories (both position and velocity) were
generated using a sampling-based motion planner based on MCTS, with the desired
goal locations generated using a ‘driver intent’ module that generated a desired path
based on operator joystick inputs. The main modules of the software stack and their
interfaces are shown in Fig. 4.16, with our MAGIC controller highlighted in blue.

To evaluate the performance of our MAGIC controller, we compare the estimated
state (linear and angular velocities) from the VIO with the reference trajectory vref

computed from the desired trajectories generated by the MCTS planner, as explained
in Sec. 3.3. For the baseline, we compare the desired command from the joystick
with the actual state from the VIO.

The following subsections discuss each of the components of the Combined Circuit
and the performance of our controller. In Table 4.7-4.8, we present the performance
metrics for the four exercises of the LINC project. Each exercise was traversed 4
times and the RMSE of the linear and angular velocity was computed.
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Table 4.7: Performance metrics for the two of the four exercises of the DARPA
LINC project.

Chicane Carpet Ramp
𝑣 error
[m/s]

𝜔 error
[rad/s]

Time [s] 𝑣 error
[m/s]

𝜔 error
[rad/s]

Time [s]

LINC off 0.28 0.45 16.36 0.96 0.59 19.96
LINC on 0.16 0.36 44.36 0.36 0.32 39.22
Improvement 42% 19% 62% 46%

Table 4.8: Performance metrics for the two of the four exercises of the DARPA
LINC project.

Wedges Narrow Corridor
𝑣 error
[m/s]

𝜔 error
[rad/s]

Time [s] 𝑣 error
[m/s]

𝜔 error
[rad/s]

Time [s]

LINC off 0.37 0.58 34.95 0.52 1.452 17.95
LINC on 0.25 0.34 39.72 0.19 0.44 23.73
Improvement 33% 41% 64% 39%

Chicane Track

The Chicane Track highlighted the rejection of artificially induced track degradation,
which was applied dynamically and opaquely as the GVR-Bot traversed the course.
Due to the narrow track (the width is 0.9 m on average, 0.25 m wider than the
GVR-Bot on both sides), track degradation leads to an increase in collisions with
the chicane walls if not quickly adapted to. Our MAGIC controller was able to
successfully adapt to these challenges, thus making this artificially induced track
degradation almost imperceptible to the driver after a very short initial adaptation
transient.

The effectiveness of the trajectory tracking on the Chicane Track is shown in Fig. 4.17
for both the baseline and the MAGIC controller. In the first two rows, the tracking
of the velocities is emphasized. The third row shows the amount of degradation
applied to the system. The bottom plot shows the estimated adaptation parameters 𝜽
changing in real time to compensate for the track degradation. Table 4.7-4.8 shows
the improved performance of the MAGIC controller on this exercise. Our controller
improved linear velocity tracking by 42%, and angular velocity tracking by 19%.
Because the track degradation information, B𝑛 +𝚽𝜽 of (3.14), is estimated by the
MAGIC controller in real-time, the MCTS can successfully generate trajectories that
use this corrected control matrix, thereby successfully avoiding collisions with the
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Figure 4.17: (Chicane Track) The left and right columns display tracking perfor-
mance without and with our MAGIC controller, respectively.

chicane walls. When MAGIC was activated, the robot navigated the chicane track
more cautiously, moving approximately 2.5 times slower than with the baseline
controller. This reduction in pace was a result of the software stack prioritizing
safety.

Carpet Ramp

The goal of the Carpet Ramp exercise is to restore and maintain control under track
degradation and variable slippage, all whilst mitigating the risk of tipping over.
The ramp had a slippery wooden surface with several patches of carpet to alter the
ground friction coefficient, causing the tracks to slip asymmetrically. Additionally,
as the roll angle of the robot increases over the incline, the traction of one of its tracks
is reduced as more of the weight falls over one of the tracks due to the high vertical
center of gravity. This imbalance in traction causes the dynamics of the GVR-Bot to
change significantly, especially affecting the ability to turn. This restricted turning
behavior is shown in Fig. 4.18. The plot in the first column, second row shows that
although the operator attempts to turn the GVR-Bot, very little control authority
in angular velocity is achieved. By comparison, when operated with our MAGIC
controller, the robot adapts to the terrain, tracking safer turn commands that reduce
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Figure 4.18: (Carpet Ramp) The left and right columns display tracking performance
without and with our MAGIC controller.

the risk of tipping (second column, second row). As seen in the bottom row of
Fig. 4.18, the adaptation coefficients, especially the one for the angular velocity,
greatly increase to compensate for slip. This particular exercise demonstrates the
greatest improvement in performance relative to the baseline, as seen in Table 4.7-
4.8.

Narrowing Corridor

The aim of the Narrowing Corridor mirrored that of the Chicane Track, assesing
the robot’s ability to consistently navigate through a tight corridor despite track
degradation. For the robot’s performance, see Table 4.7-4.8.

MAGIC and Human-in-the-Loop

The LINC program was different from many robotics projects in that the global
planner was human-driven rather than autonomous. This presents a challenge as
MAGIC must not degrade the user driving experience but instead must augment it
without the forward-planning and control input smoothness assumptions of typical
robotic projects. The success of MAGIC in augmenting a human driver was twofold:
firstly, MAGIC consistently ran fast enough such that there was no perceptible
increase between joystick input and robot, and secondly, much of the adaptation to
the changing terrain and vehicle were significantly reduced by MAGIC.
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4.9 Conclusion
We introduced a novel learning-based composite adaptive controller that incorpo-
rates visual foundation models for terrain understanding and adaptation. The basis
function of this adaptive controller, which is both state and terrain dependent, is
learned offline using our proposed meta-learning algorithm. We prove the expo-
nential convergence to a bounded tracking error ball of our adaptive controller and
demonstrate that incorporating a pre-trained VFM into our learned representation
enhances our controller’s tracking performance compared to an equivalent controller
without the learned representation. Our method showed a 53% decrease in position
tracking error when deployed on a tracked vehicle traversing two different sloped
terrains. We further demonstrated our algorithm on-board a car-like vehicle and
showed that the learnt DNN basis function captures the residual dynamics generated
by the two different terrains.

To gain insight into the inner workings of our full method, we empirically analyzed
the features of the pre-trained VFM in terms of separability and continuity using
support vector classifiers. This analysis showed positive empirical evidence that the
DINO VFM is suitable for fine-grained discrimination of terrain types in images
containing only terrain, and thus suitable for our control method.

We further tested our method under other perturbations, such as artificially induced
track degradation. We demonstrated the effectiveness of our algorithm without
terrain-aware basis function in human-in-the-loop driving scenarios. Our controller
improved tracking of real-time human generated trajectories both in nominal and
degraded vehicle states without introducing noticeable system delay as part of the
DARPA’s LINC project.
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C h a p t e r 5

EXTENSION OF THE MAGIC-VFM METHOD TO MOTION
PLANNING

In this section, we present several extensions of the MAGIC-VFM algorithm. The
first extension (Sec. 5.1) incorporates visual information into an elevation map,
demonstrating the advantages of adding terrain data for planning. The second
extension (Sec. 5.2) involves integrating our approach with bi-level motion planning
to update the dynamics model utilized in planning We used this strategy for the
DARPA Learning Introspective Control competition and show that planning with a
online-learned dynamics model can improve the performance of the system [1].

5.1 Terrain-informed Planning with Visual Foundation Models
Introduction
Our method, MAGIC-VFM, detailed in Chapter 2 is designed to dynamically adapt
to terrain variations in real time via adaptive control. However, the challenge often
extends beyond immediate control responses. Specifically, it is crucial for the robot
to preemptively avoid certain areas. This requirement underscores a fundamental
need for trajectory planning, rather than solely relying on reactive control strategies.

This subsection aims to address the question: “How can vision be integrated into
a terrain-informed planning framework for autonomous robots?” To address this
question, we propose to use a dynamics model that embeds terrain information
through a Visual Foundation Model (VFM), and present simulation results utilizing
a sampling based methodology for trajectory planning. We benchmark our solution
when planning happens with a dynamics model that is not informed by the terrain
and when the dynamics model is informed by the terrain, and show that the latter
leads to safer trajectories, which avoids hazardous terrain.

Methods
We consider a robotic system with state x ∈ R𝑛 and control input u ∈ R𝑚 following
the continuous-time dynamics

x = f (x, u, 𝑡), (5.1)
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where f : R𝑛+𝑚+1 → R𝑛 is the nominal dynamics model. Next, we augment the
system in (5.1) with an additive disturbance d modelled in a similar fashion as
in Chapter 2, i.e., d = 𝚽(x, u, E)𝜽 (𝑡), with 𝜽 (𝑡) denotes the time-varying vector
of linear parameters and 𝚽(x, u, E) is a basis functions that depend on the state,
control input, and the terrain map E. As in Chapter 2, E is the output of a Visual
Foundation Model (VFM) that processes the raw sensor data to provide a terrain
map.

Given the dynamics with disturbance we solve the following planning problem:
Given an initial position x0, the goal is to find a sequence of control inputs u[1:𝑇]

that minimizes the cost function

x∗[1:𝑇] , u
∗
[1:𝑇] = arg min

x[1:𝑇 ] , u[1:𝑇 ]

𝑇∑︁
𝑘=0

𝑐(x𝑘 , u𝑘 )

subject to x𝑘+1 = x𝑘 + (f (x𝑘 , u𝑘 ) +𝚽(x, u, E)𝑘𝜽𝑘 )Δ𝑡, ∀𝑘 ∈ [0, 𝑇−1],
x𝑘 ∈ X, ∀𝑘 ∈ [0, 𝑇],
u𝑘 ∈ U, ∀𝑘 ∈ [0, 𝑇],

(5.2)

where we specify the dynamics in discrete form, with Δ𝑡 being the discretization
step, 𝑇 is the final time, X is a compact state space,U is the set of allowable inputs,
and 𝑐 : R𝑛+𝑚 → R is a cost function.

Sampling-based Planning

To solve the motion planning problem in (5.2), we use a sampling-based planner,
which is well-suited for handling non-convex cost functions and nonlinear dynamics.
Specifically, we adopt the Cross Entropy Method (CEM) [2] in Algorithm 3 due
to its simplicity. The algorithm is initialized with a Gaussian distribution on the
action space, and the parameters of the distribution, 𝜇 and 𝜎, are updated in each
iteration to improve the quality of the samples (Line 13). The algorithm terminates
when the number of iterations exceeds the maximum number of iterations 𝐾max or
the cost function is minimized. Solving (5.2) also requires integrating the dynamics
forward in time, which assumes access to an environment map that encodes the
VFM features.

Simulation results
We simulate a two dimensional double integrator system with damping, where the
state is x = [𝑥, 𝑦, ¤𝑥, ¤𝑦] and the control input is u = [𝑢𝑥 , 𝑢𝑦]. The dynamics are given
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Algorithm 3 Cross Entropy Method [2]
1: Input
2: 𝐾max - maximum number of iterations.
3: 𝑁 - number of samples in each iteration.
4: 𝑇 - time horizon
5: 𝜌 - elite fraction (i.e., top percentile of samples).
6: 𝜎 - initial standard deviation, 𝜇 - initial mean.
7: Output: Best actions found.
8: while not converged or 𝑘 < 𝐾max do
9: Generate 𝑁 samples of action sequences from N(𝜇, 𝜎) on time horizon 𝑇 .

10: Evaluate the cost function for each sample sequence.
11: Sort the samples based on the cost function.
12: Select the top 𝜌 samples (elite samples).
13: Update the parameters of the distribution, 𝜇 and 𝜎, based on the elite

samples.
14: end while
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Figure 5.1: Simulation environment (a) Environment with sand and grass with the
starting position and the end position. (b) The values of the damping coefficients
for grass (b=1.0) and sand (b=5.0).

by
¥𝑥 = 𝑢𝑥 − 𝑏1 ¤𝑥,
¥𝑦 = 𝑢𝑦 − 𝑏2 ¤𝑦,

(5.3)

where 𝑏1 and 𝑏2 are the damping coefficients, dependent on the terrain. The
nominal system has no damping, thus 𝑏1 = 𝑏2 = 0. In Fig. 5.1, we present the
environment with sand and grass, and the values of the damping coefficients for the
two environments.
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Model with Terrain InformationNominal Model

Figure 5.2: Qualitative results of the CEM planner when the dynamics model is
informed by the terrain map (left) and when it is not (right). The robot is able to
avoid the sand and reach the goal faster when the dynamics model is informed by
the terrain map.

Similar to Chapter 2, we learn the basis function 𝚽 in (5.2) using a DNN that takes
as input the output of a VFM as well as the state. We invite the reader to refer
to Chapter 2 for more details on the training of the DNN and the environment setup
in Chapter 4. We compare the performance of the CEM planner when the dynamics
model contains terrain information and when it does not (i.e., the optimization
problem in (5.2) is solved with and without the term 𝚽(x, u, E)𝜽𝑘 ). Note that
compared to Chapter 2, we keep 𝜽 constant, with their values computed from the
training algorithm (Algorithm 1). The qualitative results are presented in Fig. 5.2.
We show that when the planner uses the terrain-informed dynamics model, the robot
avoids the sand, which adds a slow-down to the robot, and reaches the goal faster
than when the planner uses the dynamics model without terrain information.

5.2 Improved Motion Planning with Rapidly Learned Dynamics from Adap-
tive Control: MCTS-MAGIC

Joint work with J. Lathrop, J. A. Preiss, F. Xie, M. Anderson, and S.-J. Chung

In this work, we combine the adaptive controller from Chapters 2-4 with a bi-
level motion planner that contains both search (using Monte-Carlo Tree Search)
and optimization components (using Sequential Convex Optimization) [3]. In this
manner, the low-level controller learns the disturbances using composite adaptation
with both prediction and tracking errors, which are then passed to the motion planner
for improved predictions. Note that in the previous subsection (Section 5.1), the
adaptation coefficients 𝜽 were kept constant.
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Figure 5.3: Component diagram of our autonomy stack. Notable is the highlighted
arrow carrying an online-adapted estimate of the dynamics f̂ to the prediction and
planning modules (Figure created by J. Lathrop).

Methods
Consider a robotic system with state x ∈ R𝑛 and input u ∈ R𝑚. We study systems
with control-affine dynamics

¤x = f (x, u) = f𝑛 (x) + B𝑛 (x)u + d(x, u), (5.4)

where f𝑛 : R𝑛 → R𝑛 and B𝑛 : R𝑛 → R𝑛×𝑚 are nominal dynamics and input
matrices, respectively, and d : R𝑛 × R𝑚 → R𝑛 is an unknown, potentially time-
varying, modeling error.

Similar to Chapter 2, we model the disturbance entering the system as a control
matrix perturbation d(x, u) ≈

(∑𝑝

𝑖=1 𝜃𝑖𝚽𝑖

)
u, for a vector of adaptation parameters

𝜽 = [𝜃1, 𝜃2, . . . , 𝜃𝑝] and a set of basis matrices 𝚽 = {𝚽1,𝚽2, . . . ,𝚽𝑝}. This model
is intended to capture both actuator degradation and terrain slippage. For notational
simplicity, we denote the tensor multiplication as [𝚽𝜃] = ∑𝑝

𝑖=1 𝜽𝑖𝚽𝑖.

Using our adaptation parameter update laws, we form estimates 𝜽 of the unknown
true values 𝜽 . The adaptation parameter estimates lead to an estimate of the distur-
bance term in (5.4), d̂(x, u) = [𝚽𝜽]u, which is then provided to the motion planning
modules. We use the following control:

u = (B𝑛 + [𝚽𝜽])†( ¤xref − f (xref) −K𝑑s) (5.5)
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where s = x − xref is the composite tracking error, with xref = xdes + K𝑝 (x −
xdes), K𝑝,K𝑑 positive definite gains, and B𝑛 is the nominal control matrix. Our
corresponding parameter update laws are similar to those in [4]:

¤̂𝜃𝑖 = −𝜆𝜃𝑖︸︷︷︸
exp. forgetting

− 𝛾𝑖u⊤𝚽⊤𝑖 W−1( [𝚽𝜽]u − y)︸                           ︷︷                           ︸
online parameter estimation

+ 𝛾𝑖s⊤𝚽𝑖u︸   ︷︷   ︸
tracking error

¤𝛾𝑖 = −2𝜆𝛾𝑖 + 𝑞𝑖 + 𝛾𝑖u⊤𝚽⊤𝑖 W−1𝚽𝑖u𝛾𝑖, ∀𝑖 ∈ 1 . . . 𝑝. (5.6)

This composite adaptation can be interpreted in an H∞ filtering framework [5, 6]
combined with tracking error adaptation, in which the variable a is the state to be
estimated and 𝚪 = [𝛾1, ..., 𝛾𝑝] is a variance matrix. In the same context, we define
the process noise as q = [𝑞1, ..., 𝑞𝑝], and the measurement noise as W ∈ R𝑛. Here,
𝜆 is used for exponential forgetting to account for time-varying dynamics. The
measurement signal is y = ¤x − f𝑛 (x) − B𝑛 (x)u, the observed error in the nominal
dynamics. As shown in Chapter 3, the prediction term adds a gradient-descent
correction that drives the parameter estimates toward their true values, while the
tracking error term finds the update direction to minimize tracking error.

While a tracking error only-based update can lead to convergence to the desired tra-
jectory, tracking error-based adaptive laws cause adaptation parameters to converge
to non-physical values. We use a composite adaptation law that combines tracking
error and prediction error terms to guarantee convergence of both tracking error and
adaptation parameters (see Theorem 1), thereby permitting simultaneous feedback
control and parameter estimation.

Given an initial position x0, we seek a trajectory that optimizes the sum of a known
reward function R : R𝑛 × R𝑚 → R≥0 plus a terminal value function V : R𝑛 → R≥0:

x∗[1:𝐾] , u
∗
[1:𝐾] = arg max

x[1:𝐾 ] , u[1:𝐾 ]

𝐾−1∑︁
𝑘=0

R(x𝑘 , u𝑘+1) + V(x𝐾)

subject to x𝑘+1 = x𝑘 + f (x𝑘 , u𝑘+1)Δ𝑡, ∀𝑘 ∈ [0, 𝐾−1],
x𝑘 ∈ X\O, ∀𝑘 ∈ [0, 𝐾],
u𝑘 ∈ U, ∀𝑘 ∈ [1, 𝐾],

where X is a compact state space and O is a set of obstacles. We denote the set
of allowable inputs U. Even with a fully known dynamics model, this problem is
in general nonconvex and NP-hard. We, however, assume we only have access to
the nominal dynamics model f𝑛 (x) +B𝑛 (x)u and not the full dynamics f (x, u). Our
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Algorithm 4 Adaptive Motion Planning
Inputs: state estimate x̂, nominal model f𝑛,B𝑛
Parameters: planning horizon 𝐻, replanning horizon 𝑇

1: 𝜽 ← 0 ⊲ Initialize adaptation parameters
2: x[1:𝑇] , u[1:𝑇] ← {0}, {0} ⊲ Initialize first plan
3: while not terminated do

⊲ Update dynamics model
4: f̂ (x, u) ← f𝑛 (x) + B𝑛 (x)u + d̂(x, u, 𝜽)

⊲ Predict future initial position
5: x0 ← Predict(x̂, x[1:𝑇] , u[1:𝑇] , f̂)

⊲ Make coarse plan
6: x̄[1:𝐻] , ū[1:𝐻] ←MCTS(x0, f̂)

⊲ Generate smooth plan
7: x[1:𝐻] , u[1:𝐻] ← SCP(x̄[1:𝐻] , ū[1:𝐻] , x̄[1:𝐻] , f̂)

⊲ Follow refined plan with a tracking controller
8: 𝜽 ← Adaptive Controller(x̂, x[1:𝑇] , u[1:𝑇] , 𝜽)
9: end while

method forms an estimate d̂(x, u) of the disturbance via adaptive control and solves
an approximate form of (5.7) with the estimated dynamics model and a shorter
horizon 𝐻 < 𝐾 .

For real-time deployment, our algorithm operates in receding-horizon fashion.
When a desired trajectory with horizon 𝐻 is generated, only the initial section
up to a shorter horizon 𝑇 < 𝐻 is tracked by the controller, after which a new plan is
available. This continues until the full horizon 𝐾 of (5.7) is reached (see Algorithm
4 and Fig. 5.3).

Results
This framework was the main algorithm running during at the DARPA Learning
Introspective Control competition, where it was able to successfully avoid obstacles
(Fig. 5.4) and pass through narrow corridors even when actuator degradations were
present. The quantitative performance metrics of this algorithm can be seen in Ta-
ble 4.7-4.8. The algorithm was able to adapt to the changing dynamics of the robot
and provide a safe trajectory to the robot.

In Fig. 5.5, we show the behaviour of the robot during the MCTS-MAGIC planning
process. First, in (a), we show the expected path of the robot around a rock. If there
is no path forward, the robot will backtrack slowly until it can turn around the rock.
In (b), the actual path of the robot around a cone is presented. The robot experienced
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Figure 5.4: The 5 elements of the Combined Circuit at DARPA Learning Introspec-
tive Control. Our MCTS-MAGIC algorithm actively replans trajectories to avoids
collisions and accurately tracks desired paths even under heavy track degradation.

avoid rock 
by planning

a path around

the planned path 
is to stop and

move slowly back

critical area

Figure 5.5: Behaviour of the robot during the MCTS-MAGIC planning process. (a)
Example of a trajectory behaviour around a rock. (b) Top figure: RVIZ visualization
of the robot’s path around a cone. Bottom figure: The odometry path of the robot
around the cone during the MCTS-MAGIC planning process. The robot experienced
track degradation but planning with learned dynamics enabled it to avoid the cone.
(Bottom plot credit: J. Lathrop and J. Alindogan)

track degradation but planning with learned dynamics enabled it to avoid the cone.
In black, we emphasize the points where the safety controller (not described in this
thesis) is active.
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C h a p t e r 6

DETECTION OF UNCOOPERATIVE TARGETS AND
COMPONENTS ON SMALL SATELLITES USING VISUAL

FOUNDATION MODELS

This chapter is based on the publications:

Hannah Grauer∗, Elena Sorina Lupu∗, Connor Lee, Darren Rowen, Benja-
men Bycroft, Phaedrus Leeds, John Brader, and Soon-Jo Chung. “Vision-
Based Detection of Uncooperative Targets and Components on Small Satel-
lites”. In: 38th Annual Small Satellite Conference (2024), pp. 5321–5327

Hannah Grauer∗, Elena Sorina Lupu∗, Connor Lee, Cailyn Smith, Sulekha
Kishore, Darren Rowen, Benjamen Bycroft, Phaedrus Leeds, John Brader,
and Soon-Jo Chung. “Vision-Based Detection of Uncooperative Targets and
Components on Small Satellites”. In: ICRA Workshop on Thermal Infrared
In Robotics (2025), pp. 5321–5327

6.1 Chapter Overview
As shown in Chapters 2-4, using Visual Foundation Models (VFMs) for robotic
control tasks can significantly improve performance for ground vehicles. In this
chapter, we extend the use of VFMs to the domain of spacecraft parts segmentation.
We propose a method for spacecraft segmentation that leverages the performance of
a VFM distilled into a lightweight fast semantic network to increase segmentation
accuracy while keeping inference and training time low. Our method is designed to
align with Aerospace Corporation’s Edge Node Lite mission. We have successfully
implemented our algorithm on the Edge Node, which launched on-board a Falcon
rocket in March 2025. This milestone allows us to demonstrate more advanced,
machine learning-based algorithms directly in space and build flight heritage for
future missions.

6.2 Introduction
On-orbit services (OOS) [3] is a growing sector of the space industry that involve
various activities aimed at extending the life, enhancing the capabilities, or re-
purposing spacecraft and other objects in space. Some examples of OOS are
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in-space servicing and inspection [4], rendezvous and docking [5, 6], or debris
removal. [7–10] To make these services viable for small satellites (SmallSats), we
must develop advanced autonomous capabilities that reduce costs and minimize the
need for human intervention. As an example, in-space servicing and inspection
enable the repair and upgrade of satellites while in orbit. One of the key benefits
of these technologies is cost reduction. By repairing defunct spacecraft in orbit, the
high costs associated with launching new spacecraft can be reduced.

The procedure for in-space servicing involves a sequence of steps such as intercept-
ing with the spacecraft, close-proximity operations and eventually rendezvous and
docking. Oftentimes, the servicing vehicle deployed in-orbit does not need to be
a large spacecraft. Instead, a SmallSat equipped with necessary sensors, compute,
and autonomy is more advantageous from a cost and weight standpoint. However,
as their size is further decreased (i.e., nanosatellites and cubesats) the sensors and
compute tend to be limited [11].

To achieve autonomous OOS, it is important to first detect and continuously track
the target spacecraft from afar. As the servicing spacecraft approaches the target,
it must be equipped to accurately identify specific components for maintenance or
find suitable attachment points to facilitate the de-orbiting of the spacecraft using
on-board cameras. On the ground, computer vision models using machine learning
have made significant progress in object detection [12] and segmentation [13, 14].
However, these achievements have yet to be fully applied in space. Like field
robotic perception development in terrestrial applications [15–17], this shortfall is
primarily due to the limited availability and small sizes of publicly-available datasets
available for training, resulting in less robust model performance. Additionally, the
computational resources required for both training and inference in space pose a
significant challenge in terms of on-board compute, on-board storage, and Earth-to-
satellite latency.

Contributions
To address these limitations we present a long and short range methodology that
is able to track a spacecraft from afar and identify spacecraft components using
segmentation, as demonstrated by Figure 6.1. Our contributions are as follows:

• A novel method to generate long-range images for training using thermal cameras,
which are more robust to varied lighting conditions in space.
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• A long range detection algorithm operating on thermal images of a spacecraft
using the YOLOv8 (You Only Look Once) model [18].

• A novel method for spacecraft part segmentation at a shorter range that leverages
the performance of a visual foundation model (VFM) distilled into a lightweight
fast semantic network to increase segmentation accuracy while keeping inference
and training time low.

Our methodology is designed to align with Aerospace Corporation’s Edge Node
and risk-reduction Edge Node Lite missions for formation flight and rendezvous
and proximity operations. These missions use multiple small satellites equipped
with miniature sensor and computing hardware. We use the Edge Node spacecraft
as the target. We additionally use from the missions the FLIR Boson+ Long-wave
infrared (LWIR) camera in our custom dataset creation and the Jetson TX2 NX to
test performance. [19]

Step 1. Long range 
spacecraft detection

Step 2. Short range spacecraft 
part segmentation

0.1 - 1 km

20 - 50 m

FLIR Boson LWIR

FLIR Black�y S (RGB)

Figure 6.1: Overview of the long-short detection architecture proposed for the Edge
Node mission or other OOS tasks. [19] We propose a long distance detection model
on thermal images for detection at larger ranges into a segmentation model that
identifies spacecraft parts for OOS on RGB images.

6.3 Related Work
Long Range Object Detection
In the domain of spacecraft pose estimation, recent works have adopted various
computer vision models, particularly focusing on the use of object detectors based
on convolutional neural networks (CNNs). While current state-of-the-art computer
vision benchmarks, including object detection, are dominated by transformer-based
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architectures [20–22], CNNs exhibit higher computational efficiency on embedded
devices and are more suited for real-time, low-compute robotic applications. In field
robotic applications where publicly-available curated datasets are rare or limited,
CNNs are also more favorable due to their built-in spatial inductive bias (via 2D
convolutions) that makes them less prone to overfitting when training with smaller
datasets [15–17, 20, 23].

Current CNN-based object detectors fall into one of two categories: two-stage and
one-stage detectors. Two-stage detectors include models like Faster-RCNN [24]
which perform initial region proposal steps before moving forward to bounding
box refinement and classification. On the other hand, single-stage detectors like
SSD [25], YOLOv3 [26], RetinaNet [27], and EfficientDet [28] perform bound-
ing box refinement and classification in one shot. Single-stage detectors gener-
ally exhibit faster inference times and lower computational overhead compared to
larger, two-stage detectors, and are more suited for real-time robotic applications in
space [29].

Although the use of object detectors in spaceborne autonomy stacks is not new,
current spacecraft-related works only leverage object detectors to detect objects
of interest, such as uncooperative spacecraft and debris, at shorter ranges within
75 meters [29, 30]. However, for spacecraft seeking to maneuver closer to an
uncooperative spacecraft to perform OOS, the initial ranges to the target can easily
exceed such distances and require long-range detection capabilities that current
work do not provide. This is exacerbated by the fact that prior works only perform
object detection within the visible spectrum. This means that target objects will
appear small at long distances and be photometrically imperceptible due to low-
light conditions in space.

In our work, we develop long-range spacecraft detection capabilities that leverage
thermal imaging which can easily highlight the spacecraft, even at long ranges,
due to their extreme thermal signatures from onboard computers juxtaposed against
the vacuum of space. We build upon existing work that leverage YOLO object
detector variants for thermal object detection from airborne platforms [31], while
also exploring new directions for spacecraft detection using zero-shot segmentation
models similar to Segment Anything [32].
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Short Range Spacecraft Parts Segmentation
Spacecraft parts identification and localization is required for OOS tasks, since they
enable precise manipulation of the parts. Current methods for spacecraft parts lo-
calization operate at short range and localize parts either through object detection
or segmentation. Object detection-based methods typically utilize aforementioned
single-stage detectors like YOLO to predict bounding boxes encompassing particu-
lar spacecraft parts. [33–35] Segmentation-based methods typically utilize popular
CNN-based semantic segmentation models to perform per-pixel classification of
incoming imagery. Like in object detection, large transformer-based models dom-
inate current semantic segmentation benchmarks but are generally not suitable for
real-time use. In this work, we develop a robust, real-time semantic segmentation
model for spacecraft part segmentation by transferring knowledge from a large vision
transformer model, Dino [36], to a real-time capable FastSCNN [37] network.

Aside from model selection, one notable challenge in spacecraft part localization,
and field robotics in general, is the scarcity of publicly-available datasets for model
training and development [15–17, 33, 34, 38]. Some works address this issue by
developing RGB spacecraft part datasets using real images, commonly scraped off
the web, and synthetic images, typically rendered via Blender. [34, 38] However,
such works typically do not release their curated dataset to the public, which is
especially common in the spacecraft industry due to the confidential nature of most
projects. As such, most methods rely on techniques like transfer learning [33] to
finetune pretrained CNNs on small datasets.

In this work, we propose a method for spacecraft part segmentation that is both
storage- and computationally-efficient, enabling low-latency scene perception for
OOS tasks. In contrast with prior work, we use knowledge distillation to transfer
learned features from a large visual-foundation model to a lightweight CNN that can
run in real-time on low-compute hardware. Like other works, we develop a custom
RGB dataset using our spacecraft simulator hardware [39] for model training and
benchmarking. We also validate our method on a publicly-available spacecraft parts
dataset.

Knowledge Distillation
Knowledge distillation (KD) [40, 41] seeks to transfer the learned behavior of a
larger model (teacher network) to a smaller, lightweight model (student network).
KD is a promising technique for spacecraft applications because the deployment
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of models in space necessitates model compression that decreases the size of the
model in order to increase inference speeds, while maintaining strong predictive
performance [42].

In general, KD from a single teacher can be generalized into two categories: knowl-
edge from logits and knowledge from intermediate features. When distilling knowl-
edge from logits, the student network is trained to match the output distribution of
the teacher network, usually through the cross entropy loss [40, 43, 44]. In the
latter case, knowledge is distilled by driving the features of the student to match the
intermediate features of the teacher [44–46], using some distance metric like the 𝐿2

norm along with more sophisticated methods like an adversarial loss [46].

In our work, we utilize a simple KD method that drives the penultimate features
of a FastSCNN network to match that of a large pretrained vision transformer [20]
using the 𝐿2 distance metric. We use KD to pretrain our FastSCNN segmentation
network before finetuning on our small spacecraft part dataset.

6.4 Short Range Spacecraft Parts Segmentation
In this section, we present our method to autonomously detect spacecraft parts at
a short range of 20-50 m from an observing spacecraft. We presume that, once
identified via long range tracking [1], the spacecraft has the capability to follow and
track the uncooperative target.

For this scenario, we assume the spacecraft is equipped with a high resolution
RGB camera, and switches use from the thermal camera. This change potentially
sacrifices reliability under variable lighting conditions, a factor critical in space
environments where lighting can be highly dynamic. However, we gain the RGB
cameras’ ability to capture detailed visual information in three color channels,
enhancing image detail and feature recognition.

Subsequently, the collected frames are downlinked to Earth for annotating the seg-
mentation masks and classifications of different parts of the spacecraft, such as solar
panels, body, and antenna. Once annotated, these annotations can be uplinked back
to the spacecraft1, where they are utilized to train onboard machine learning models.
Alternatively, training can also be done on the ground with weights uploaded back
to the spacecraft. Models trained on the ground, however, are subject to bandwidth
uploading constraints.

1a requirement of the Edge Node mission is to do training on-board
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Additionally, we leverage lightweight models in order to enable future possibilities
of onboard training with the goal of one day using unsupervised or self-supervised
models for fully autonomous learning onboard. The intention is to enable these
models to autonomously segment and classify spacecraft components in real-time
using minimal images to limit the reliance on ground operations.

Spacecraft Parts Dataset Creation
Custom RGB Spacecraft Parts Dataset

To create a semantic segmentation dataset for spacecraft parts at a shorter range,
we took RGB photos of the Edge Node spacecraft in our spacecraft robotic simula-
tor [39] at different orientations and distances. To streamline the labeling process,
we use AnyLabeling, an AI-assisted data labeling program that uses SAM with key
point prompts to generate the segmentation mask of an object. [47] We manually re-
view the generated labels and perform minor corrections. Our final dataset consists
of 301 annotated images. Examples of such images from the dataset can be seen in
the top row of Fig. 6.2. For training, we split the dataset into train, validation, and
test sets at a 75-20-5 ratio.

Adelaide Spacecraft Parts Dataset

To evaluate the generalizability of the segmentation models, we utilized a publicly-
available dataset [38] consisting of 3117 images of various satellites and space
stations. This dataset includes both synthetic and real images and videos, providing
a diverse range of spacecraft types. Unlike our custom dataset, which contains
multiple images of the same spacecraft captured in a controlled lab environment,
the Adelaide dataset features a wide array of spacecraft, often with only one or a
few images per spacecraft. Additionally, the backgrounds in the Adelaide dataset
are more realistic, depicting space or Earth, as opposed to the controlled lab settings
in our images. [38] Examples of such images from the dataset can be seen in the
bottom row of Fig. 6.2. As before, we also split this dataset into train, validation,
and test sets at a 75-20-5 ratio.
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Figure 6.2: Example images from the spacecraft parts dataset generated in the
spacecraft robotic simulator (top row) and the Adelaide dataset (bottom row).

Algorithm 5 VFM distillation into a real-time CNN
1: Input: Networks Fvfm, Fcnn, training dataset D
2: Number of epochs N, learning rate 𝜂
3: Output: Distilled CNN weights b ∗ 𝜃cnn
4:
5: for 𝑛 = 1 : 𝑁 do
6: Sample image batch b ∗ 𝑥𝑛 from D
7:
8: b ∗ 𝑧vfm := Fvfm(b ∗ 𝑥𝑛; b ∗ 𝜃vfm), ⊲ Get VFM features
9: b ∗ 𝑧cnn := Fcnn(b ∗ 𝑥𝑛; b ∗ 𝜃cnn). ⊲ Get CNN features

10:
11: L := ∥b ∗ 𝑧cnn − 𝑓bicubic(b ∗ 𝑧vfm)∥22.
12: b ∗ 𝜃cnn := b ∗ 𝜃cnn − 𝜂∇b∗𝜃cnnL.
13: end for

Spacecraft Parts Segmentation
We outline our proposed semantic segmentation method for spacecraft parts before
describing the baseline methods we compare against in our experiments.

Distilled Fast-SCNN

Our proposed method for spacecraft segmentation utilizes the Fast-SCNN [37]
convolutional neural network due to its low compute overhead and fast inference
times on edge-compute devices [15]. Because real-world spacecraft datasets are
limited in size and quantity, we take an additional step to pretrain the Fast-SCNN
in order to prevent overfitting. Specifically, we do this by distilling the features
of a VFM (in this case, we choose Dino [36]) into our Fast-SCNN segmentation



84

network features by performing student-teacher training using the ImageNet-21k
dataset [48], which contains approximately 14 million images of different objects,
including space-related ones. After the distillation process is complete, we finetune
the Fast-SCNN segmentation network on the spacecraft dataset (Sec. 6.4).

The knowledge distillation process (Algorithm 5) is as follows. Given an input image
I ∈ R𝐻×𝑊×3, we first perform a forward pass using Dino2, our teacher network, and
extract an intermediate feature map b ∗ 𝑧vfm ∈ R384×⌊ 𝐻𝑊16·16 ⌋ before reshaping it such
that

b ∗ 𝑧vfm ∈ R⌊
𝐻
16⌋×⌊𝑊16 ⌋×384, (6.1)

where ⌊·⌋ denotes the floor operator.

We then extract the intermediate feature map from the student network, Fast-SCNN3,
by performing another forward pass to get

b ∗ 𝑧cnn ∈ R⌊
𝐻
8 ⌋×⌊𝑊8 ⌋×384. (6.2)

To train the Fast-SCNN, we regress its feature map to that of Dino using the mean
squared error loss function, updating only the weights of the Fast-SCNN via stochas-
tic gradient descent. Note that we only backpropagate with respect to Fast-SCNN’s
encoder weights, since the segmentation head is not involved in the computation of
the loss. During computation of the loss, we also bilinearly upsample the feature
maps such that they have the same shape.

Lastly, we train the Dino-distilled Fast-SCNN on the segmentation task. The training
parameters (momentum, optimizer, learning rate) are kept consistent with the initial
Fast-SCNN architecture [37].

Baselines

YOLOv8 YOLOv8 is a multitask CNN capable of performing both object de-
tection and semantic segmentation. To create a YOLOv8 baseline for spacecraft
part segmentation, we finetune the YOLOv8n-seg model variant on our custom
spacecraft parts dataset, presented in Sec. 6.4, by starting from publicly-available
pretrained weights to facilitate transfer learning to our space domain. We used the

2Dino [36] is based on a vision transformer architecture, which operates on a sequence of 16×16
or 8 × 8 patches from the input image.

3For Fast-SCNN, we update the relevant convolution kernel to have an output channel dimension
of 384 in order to produce feature maps that match the channel dimension of Dino’s corresponding
feature map.
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Table 6.1: Short-range spacecraft part segmentation model performance (mIoU) on
our custom dataset.

Model All Body Solar Panel Background

YOLOv8 0.967 0.960 0.950 0.990
Fast-SCNN 0.971 0.968 0.958 0.986
Dino + Fast-SCNN
(ours)

0.972 0.969 0.961 0.987

default YOLOv8 parameters with an image size of 832 × 832 and trained with a
batch size of 16.

Fast-SCNN Fast Segmentation Convolutional Neural Network (Fast-SCNN) is a
real-time semantic segmentation model built on high resolution image data (i.e.,
1024 x 2048 px) [37]. This network is designed for low power devices. The main
components of the network are a learning-to-downsample module, a coarse global
feature extractor, a feature fusion module, and a standard classifier. The global
feature extractor module captures the global context for image segmentation. Then,
the feature fusion merges these features using addition.

Short Range Results
We report the results of our short-range spacecraft part segmentation algorithms.
Specifically, we report the mean Intersection over Union (mIoU) on our test set. The
mIoU metric is defined as the overlap between the predicted segmentation and the
ground truth mask, normalized by the total area covered by the union of the two.
As such, an mIoU score of 1.0 indicates a perfect prediction, while a score of 0.0
indicates a complete mismatch.

We train all models on an NVIDIA Titan RTX GPU. We train for a minimum of 100
epochs and select the best performing epoch based on the mIoU of the validation
dataset. We use the Adam optimizer with a learning rate of 1e-3 and a batch size
of 32. The results for training the models on the 75%-20%-5% train, test, validation
dataset splits are presented in Table 6.1, while in Fig. 6.3, we present the qualitative
results from this dataset.

Spacecraft Custom Dataset Results

On our custom spacecraft part segmentation dataset, we see that all models exhibit
similar performance and nearly reach 1.0 (Table 6.1). Interestingly, we found no



86

Image Ground Truth YOLOv8 Fast SCNN Fast SCNN + Dino (ours)

Figure 6.3: Results of short range spacecraft component detection using RGB
imaging.

benefit of model distillation in this dataset setting. This observation as well as the
general high level of performance likely results from the smaller domain of our
custom dataset.

Adelaide Dataset Results

We evaluate our models on the Adelaide dataset in order to quantify performance
on a more difficult dataset (Table 6.2). In this setting, YoloV8 performs the best
by a margin of 0.02. We can also see the benefits of model distillation when faced
with a more difficult learning task as the distilled FastSCNN model outperforms the
model trained from scratch by 0.06 mIoU. In Fig. 6.4, we present the qualitative
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Image Ground Truth YOLOv8 Fast SCNN Fast SCNN + Dino (ours)

Figure 6.4: Results of short range spacecraft component detection using RGB
imaging on the Adelaide dataset.

results from this dataset.

Model Distillation Ablation Study

In order to quantify the effect of our model distillation efforts for Fast-SCNN, we
examine how segmentation performance is affected when fewer images are available
for model training. Specifically, we examine the results when using only 75%, 50%,
and 12.5% of the total training set, with 5% of the total data as validation set and
20% as testing set. We first perform this ablation study on our custom spacecraft
parts dataset, as well as on the Adelaide dataset. Table 6.3 shows that the Fast-SCNN
and Dino + Fast-SCNN model perform better with larger training datasets while the
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Table 6.2: Short-range spacecraft part segmentation performance (mIoU) on the
Adelaide dataset.

Model All Body Solar Panel Antenna Background

YOLOv8 0.781 0.766 0.792 0.586 0.980
Fast-SCNN 0.683 0.705 0.707 0.347 0.974
Dino + Fast-SCNN
(ours)

0.756 0.764 0.768 0.480 0.982

Table 6.3: Effect of training set size (% of overall training set) on short-range
spacecraft part segmentation (mIoU) for the custom dataset.

Model % of Training Data Used

75% 50% 12%

YOLOv8 0.967 0.967 0.958
Fast-SCNN 0.971 0.966 0.933
Dino + Fast-SCNN (ours) 0.972 0.969 0.947

Table 6.4: Effect of training set size (% of overall training set) on short-range
spacecraft part segmentation (mIoU) for the Adelaide dataset.

Model % of Training Data Used

75% 50% 12%

YOLOv8 0.781 0.709 0.635
Fast-SCNN 0.683 0.598 0.537
Dino + Fast-SCNN
(ours)

0.756 0.722 0.636

YOLOv8 model performs consistently well despite the size of the training dataset.
We hypothesize that the consistent performance of YOLOv8 is due to its extensive
use of data augmentation compared to our Fast-SCNN variants.

In addition to our own dataset, we perform the same study on a more difficult dataset
(Sec. 6.4) with added class complexity. [38] We show these results in Table 6.4
and Fig. 6.5. Because of the higher complexity of the dataset, all models performance
tends to decrease with the decrease of the training dataset. In addition, our results
(top plot of Fig. 6.5) on this dataset show that distillation noticeably increases
training convergence speed and overall model performance, which could be a useful
behavior for compute-limited onboard training. As such, the more complicated a
dataset becomes, the more we can see benefits of distillation versus training from
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Figure 6.5: (Top) mIoU comparison between Fast-SCNN and our method (Fast-
SCNN + Dino) for the 75-20-5 splits. We show that pretraining with Dino features
improves performance. (Bottom) Best mIoU performance for different splits of the
training dataset.

In Fig. 6.6, we investigate whether KD with Dino features increases the performance,
compared to only using pre-trained weights (i.e., Cityscapes weights [49]). The
results show that employing KD with Dino slightly increases the overall mIoU
performance.
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Fast SCNN + Dino (ours)
Fast SCNN (cityscape weights)

Figure 6.6: Comparison between our method and pre-training Fast-SCNN with
other available weights.
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Table 6.5: Compute Results. † YOLOv8 outputs binary masks per detected instance
and requires an additional postprocessing step to create semantic segmentation
masks.

Model Task Inference Time (ms) Params
(M)TX2 Titan RTX

YOLOv8 Instance
Segm.

78.70 6.41 3.40

YOLOv8 Semantic
Segm.†

363.02 31.29 3.40

Fast-SCNN Semantic
Segm.

49.39 3.54 1.13

Dino + Fast-SCNN
(ours)

Semantic
Segm.

92.56 4.29 1.55

Computational Benchmarks

We benchmark the inference time of the short range detection models in Table 6.5.
We report results on the Nvidia Jetson TX2 (256 CUDA cores) since its size and
power usage is ideal for low-compute robotic operations. We also provide bench-
marks on an NVIDIA Titan RTX (4608 CUDA cores) for comparison to a worksta-
tion GPU.

Overall, all models, besides Yolov8 (semantic segmentation), can provide predic-
tions at a 10 Hz minimum (Table 6.5). We find that these results are suitable for
real-time use onboard the Edge Node Lite mission. Fast-SCNN variants notably
require less than half the storage requirements compared to YoloV8. While storage
is less of a concern in terrestrial field robotics, it is vital to keep in check for when
developing perception algorithms for spacecraft due to the limited bandwidth if
performing model updates from Earth to space.

6.5 Flight Demonstration
The algorithm presented in Algorithm 5 was launched onboard the Edge Node Lite
spacecraft. This section begins by situating our flight demonstration in the context of
previous missions, then outlines the modifications required to adapt the algorithms
for flight.
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Context

While common in robotic ground applications, the use of deep learning on-board
satellites is still in its infancy. Integrating advanced learning-based techniques
directly into spacecraft offers significant advantages. For example, the ability to
detect and track objects in real-time can enable autonomous collision avoidance.
Similarly, on-board image segmentation can pinpoint regions of interest, reducing
the volume of data transmitted back to Earth. These learning-based methods also
extend to guidance, navigation, and control tasks.

However, deploying these technologies in space presents unique challenges. Satel-
lites typically have limited computational capabilities and lack radiation-hardened
components. Moreover, the space industry’s cautious approach towards machine
learning methods, adds another layer of complexity. In collaboration with the
Aerospace Corporation, our project aims to overcome these obstacles and build a
reliable track record for deep learning algorithms in space. An initial milestone
involves deploying our algorithms capable of object segmentation using thermal
imagery directly on-board a spacecraft.

As part of this broader strategy, the Aerospace Corporation is developing the Edge
Node project, a multi-satellite, free-flying testbed designed to explore formation
flight, rendezvous and proximity operations (RPO) [19]. The spacecraft is scheduled
to launch in 2026-2027. Edge Node Lite is a precursor mission to Edge Node to
demonstrate the key technologies that will be used in Edge Node. Edge Node Lite
leverages advance compute and sensing such as an NVIDIA Jetson TX2 NX and a
thermal camera, among others.

Related Work: Launched Missions with Deep Learning Demonstrations

One of the first experiments running machine learning methods on-board a spacecraft
was NASA’s Earth Observing-1 mission [50]. For this, a semantic texton forest (STF)
which uses a random decision forest (RDF), and a Bayesian thresholding were used
to classify pixels as “clear” or “cloudy”. The on-board operations of the RDF and
BT occurred from November 2016 through March 2017 [50].

Another mission was Intelligent Payload Experiment (IPEX), a 1U Cubesat aim-
ing to validate technologies for onboard instrument processing and autonomous
operations [52]. IPEX demonstrates the use of more complex image processing
techniques such as support vector machine learning techniques, spectral unmixing,
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Name Type Launch Hardware for AI

NASA’s Earth
Observing-1 [50]

SmallSat 2000 Mongoose M5

CNES DEMETER [51] SmallSat 2004 ADSP 21020 DSP
Intelligent Payload Ex-
periment [52]

1U Cubesat 2013 Gumstix Earth Storm

OPS-SAT [53] 3U Cubesat 2019 Altera Cyclone V SX SoC
(FPGA)

Phi-Sat-1 [54] 6U Cubesat 2020 Intel Movidius board with a
Myriad II chip (VPU)

Spiral Blue’s SE-Z [55] 0.25U
Cubesat

2021 NVIDIA Jetson Nano

D-Orbit’s ION Satellite
Carrier [56]

SmallSat 2023 Intel Myriad X processor

Spiral Blue’s SE-1 [57] 0.25U
Cubesat

2023 NVIDIA Xavier NX

ESA’s MANTIS [58] 12U Cube-
sat

2023 Intel Movidius Myriad 2
VPU

Ubotica’s CogniSAT-
6 [59]

Cubesat 2024 Intel Myriad X processor

Planet Labs Pelican-
2 [60]

SmallSat 2025 NVIDIA Jetson

Table 6.6: Flown missions with deep learning demonstrations on-board the space-
craft (includes only publicly available data)

and random decision forest classification techniques. Notably, the IPEX random
forest classified was able to achieve impressive results, despite being trained prior
to launch using just four hand-labelled images from a high altitude balloon test.

Launched in 2004, CNES DEMETER investigated the ionospheric disturbances
due to seismic and volcanic activities [51]. It used Time Delay Neural Network
(TDNN) [61] for the automatic and systematic detection and characterization of all
whistle-like signals. The inference was done on the ADSP 21020 digital signal
processor (DSP) hardware.

OPS-SAT is the first mission to train machine learning (ML) models on-board
a flying spacecraft. The mission tests 3 ML applications: (1) image classification
with Convolutional Neural Network (CNN) model inferences using TensorFlow Lite,
(2) image clustering with unsupervised learning using k-means, and (3) supervised
learning to train a Fault Detection, Isolation, and Recovery (FDIR) [53].
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Two other missions, Phi-sat-1 and D-Orbit’s ION Satellite Carrier, are also using ML
methods for science applications. Phi-sat-1 enabled the mission to automatically
discard cloudy images and send only useful data down to Earth [54], while D-Orbit’s
ION Satellite Carrier is using DNN models for detection of flooding [56].

In 2024, Ubotica’s CogniSAT-6 launched a spacecraft to test several deep learning
applications, including cloud screening, surface water extent, algal bloom/ocean
color, and land use. The spacecraft is equipped with an Intel Myriad X processor
for AI applications [59].

Just one month before our flight, Planet Labs launched their Pelican-2 satellite,
equipped with a NVIDIA Jetson platform [60]. Planet Labs plans to use the on-
board computing to run AI algorithms, including for land cover classification and
object detection. The company has not publicly stated whether algorithm training,
as well as inference, will be performed on orbit. Additionally, it is currently unclear
whether Planet Labs will be detecting and classifying other space objects or only
ground objects.

Methods
Extension to Thermal Data

The spacecraft parts segmentation algorithm presented in Sec. 6.3 was designed
for RGB images, not thermal imagery. However, the Edge Node Lite spacecraft is
equipped with a thermal camera, which captures images in the long-wave infrared
spectrum (LWIR). The LWIR range is particularly useful because it captures thermal
emissions day and night, unlike visible or near-infrared sensors that require sunlight.
Thus, the changes performed to the algorithm and architecture as are follows: (1)
The feature-based knowledge distillation from the DINO VFM into the FastSCNN
network is kept the same as in Algorithm 1. (2) The input image is now a single-
channel image, as opposed to the three-channel RGB image. The FastSCNN network
architecture is modified to accommodate the single-channel input by adding a CNN
layer before the initial first layer, as seen in Fig. 6.7. (3) The FastSCNN network is
retrained on a dataset of thermal images to adapt to the new domain.

Operations for On-orbit Demonstration
After a couple of weeks of commissioning, the spacecraft will be ready for the
demonstration of the detection algorithms. The demonstration will be conducted in
two phases: (1) Phase 1a (Offline Data from Ground): To ensure our algorithms
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Figure 6.7: Fast SCNN architecture for training with thermal data.

are working nominally, we will run inference and training on-board the spacecraft
using data already uploaded to the spacecraft’s memory before launch. We will test
both Dino+FastSCNN and YoloV8. The results will be stored on the spacecraft’s
memory and downloaded to the ground station for analysis. (2) Phase 1b (Offline
Data from Space): The spacecraft will capture thermal images of other spacecrafts
and objects in its field of view. The images will be processed on-board using the
both Dino+FastSCNN and YoloV8 networks to segment the spacecraft. The results
will be stored on the spacecraft’s memory and downloaded to the ground station for
analysis. (3) Phase 2 (Online Data): The spacecraft will capture thermal images.
The images will be processed on-board using the both Dino+FastSCNN and YoloV8
networks for segmentation. The results will be transmitted to the ground station for
analysis. (4) Phase 3 (Online Data with Model Update): The captured images will
be sent to the ground station where the models will be retrained. The new models
will be uploaded to the spacecraft and retested in the online mode.

Results
Flight Hardware

The Edge Node lite computing contains a single NVIDIA Jetson TX2 NX, ”which
is built on a foundation of three prior qualification missions in low Earth orbit
in addition to proton 50 MeV radiation testing of the target hardware“ [19]. The
spacecraft is also equipped with a rad-hard Flash storage and a single LWIR camera,
Teledyne FLIR BOSON+ model 22640A012-6IAAX with a 12deg Horizontal Field
of View (HFOV)[19].
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Figure 6.8: A. Segmentation of spacecraft using Dino+FastSCNN algorithm on
synthetic dataset. B. Detection of spacecraft using YoloV8 algorithm on synthetic
dataset.

Implementation on-board Flight Hardware

Our software is integrated into the Edge Node Lite spacecraft’s NVIDIA Jetson
TX2 computer. Robot Operating System (ROS2) Foxy is used as the middleware
between the satellites as well as for the intra-satellite communication. We developed
a ROS2 wrapper around our code, which is responsible for the following tasks: (1)
Depending on the modes of operation (Sec. 6.5), the ROS2 code either reads the
images from the memory or accesses the thermal camera, which publishes images.
(2) The ROS2 code then processes the images using the Dino+FastSCNN and
YoloV8 networks. (3) ROS2 queries the NVIDIA Jetson TX2 computer’s health
and status and saves it in the ROS2 bags. The inference and/or training data will be
stored in ROS2 bags and transmitted to the ground station.

Preliminary Results for Hardware in the Loop (HIL) Testing

The inference and training algorithms were extensively tested on-board the Engi-
neering Model of the Edge Node Lite spacecraft and resource usage was monitored
constantly (see Appendix B). In Fig. 6.8, we show the qualitative results of the
segmentation output using FastSCNN+Dino and detection output using YoloV8 on
the synthetic dataset. The results show that the algorithms are able to detect and
segment the spacecraft in the thermal images. Similar images as the ones shown
in Fig. 6.8 were uploaded to the spacecraft’s memory before launch for the Phase 1a
testing (Section 6.5).
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Table 6.7: Parameter sizes of the YoloV8 and DINO+FastSCNN networks that need
to be uplinked and downlinked.

Model Name Size Uplink Time Downlink Time

YoloV8 6.5 MB 520 s 0.26 s
FastSCNN 6.2 MB 496 s 0.25 s

Discussions and Lessons Learned

In this section, we discuss the challenges experienced during the integration of the
algorithms into the Edge Node Lite spacecraft along with key lessons learned.

Model Size. The network can be trained either on the spacecraft or on the ground.
If the training occurs on the ground, it is necessary to upload the updated weights
and biases to the spacecraft for inference. To accommodate this requirement, we
employ two lightweight networks, DINO+FastSCNN and YoloV8, which have a low
number of parameters. In Table B.1, we show the size of the YoloV8 weights and
biases and the FastSCNN weights and biases, and the duration it takes to uplink and
downlink the data between the spacecraft and the ground station.

Domain shift. One challenge in training models for space applications is man-
aging the domain shift between synthetic and real datasets. Moreover, accurately
replicating space conditions on Earth to generate representative datasets poses dif-
ficulties. To address this, we employ knowledge distillation from the DINO VFM
to the FastSCNN network, which helps mitigate the domain shift to some extent.
Additionally, during the commissioning phase, we will gather data directly from the
spacecraft to fine-tune the models, further enhancing their performance in actual
space conditions.

On-board Data Recording. Data is recorded on-board a dual terabyte NVMe
drives running a ZFS filesystem on top of radiation screened industrial NAND Flash
storage drives [19]. However, this storage is shared with other experiments on-board
the spacecraft. To optimize resource usage, we have implemented several measures:
(1) We reduced the camera’s publishing rate from 60 Hz to 1 Hz, and we only record
down-sampled images. (2) We save the segmentation and detection images on a
ROS2 bag, as well as the health and status of the NVIDIA Jetson TX2 computer.
(3) We do not save the raw segmented masks on-board the spacecraft.

Operations. We have encapsulated the experiment within a Docker Compose
container, allowing the flight computer to send commands to the Jetson TX2 to
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start and stop the container. We have also significantly streamlined the onboard
codebase for Dino + FastSCNN and ROS2, minimizing the volume of code de-
ployed to the spacecraft, which allows for better testing. Among the YoloV8 and
Dino+FastSCNN algorithms, the open-source YoloV8 has the most extensive code
base (see Appendix B). The ROS2 code base is also minimal, as it is responsible for
interfacing with the NVIDIA Jetson TX2 computer and the spacecraft’s hardware.

Radiation. The Aerospace Corporation has performed radiation testing on the
NVIDIA Jetson TX2 computer to ensure its reliability in space. In addition, the
computer was flown on three prior qualification missions in Low Earth Orbit [19].

6.6 Chapter Summary
We present a long range detection methodology of uncooperative targets in space uti-
lizing zero-shot detection and domain specific, single-shot detection with YOLOv8.
Additionally, we present a short range detection methodology to segment the com-
ponents of the uncooperative spacecraft potentially utilizing onboard training. We
propose using long range detection to identify uncooperative targets, such as space
debris and inactive satellites, and segmentation at shorter ranges to learn more
detailed features of the targets to increase space situational awareness.

For the short range, we proposed a method for spacecraft part segmentation that
leverages visual foundation models distilled into a lightweight fast semantic segmen-
tation network (Fast-SCNN) to increase segmentation performance while keeping
inference time and onboard storage requirements low to meet potential onboard
training requirements. An additional benefit to distilling the Fast-SCNN from a
visual foundation model such as Dino is less storage overhead, making it easier to
deploy and update on an edge device in space compared to the larger YOLOv8. We
are currently in the process of testing the long range detection and onboard training
and segmentation on the Aerospace Corporation Edge Node Lite mission launched
in 2025. [19]
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C h a p t e r 7

LEONARDO - A WALKING, FLYING ROBOT. MODELING,
CONTROL, AND MOTION PLANNING

This chapter is based on the publication:

Kyunam Kim∗, Patrick Spieler∗, Elena-Sorina Lupu, Alireza Ramezani, and
Soon-Jo Chung. “A Bipedal Walking Robot that can Fly, Slackline, and
Skateboard”. In: Science Robotics 6.59 (2021), eabf8136

Acknowledgments: I would like to acknowledge the co-authors of the paper for
their contributions to this work, as follows: Patrick Spieler and Kyunam Kim for
the development of the hardware, the hybrid walking-flying controller, manuscript
writing, and the simulation results, and Prof. Soon-Jo Chung for the concept of the
robot, guidance with the proofs and mathematical formulation, as well as manuscript
writing.

7.1 Chapter Overview
Abstract

Numerous mobile robots in various forms specialize in either ground or aerial
locomotion, while very few robots can perform complex locomotion tasks beyond
simple walking and flying. We present the design and control of a multi-modal
locomotion robotic platform called LEONARDO, which bridges the gap between
two different locomotion regimes of flying and walking using synchronized control
of distributed electric thrusters and a pair of multi-joint legs. By combining two
distinct locomotion mechanisms, LEONARDO achieves complex maneuvers that
require delicate balancing, such as walking on a slackline and skateboarding, which
are challenging for existing biped robots. LEONARDO also demonstrates agile
walking motions, interlaced with flying maneuvers to overcome obstacles using
synchronized control of propellers and leg joints. The mechanical design and
synchronized control strategy achieves a unique multi-modal locomotion capability
that could potentially enable robotic missions and operations that would be difficult
for single-modal locomotion robots.
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Figure 7.1: LEO robot performing a variety of locomotion maneuvers. (A) Synchro-
nized walking and flying maneuver to traverse stairs. (B) Balancing and walking on
a slack rope stretched between two trees. (C) Remote-controlled riding on a skate-
board around a series of obstacles. (D) Balancing on a skateboard. (E) Walking in
a semi-circle to show yawing movement capabilities.

7.2 Introduction
Many of existing mobile robots use either ground locomotion or aerial locomotion,
but not many of them are capable of both. Furthermore, only a few of these robots
can perform complex locomotion tasks beyond simple walking and flying. In an
effort to develop such a hybrid locomotion robot, this paper presents a multi-modal
locomotion robot called LEONARDO, or LEO for short, which is an acronym
of LEgs ONboARD drOne (Fig. 7.1). As the name suggests, the robot has two
different locomotion mechanisms: multi-joint legs and propeller-based thrusters,
thereby achieving both terrestrial and aerial locomotion as well as the transition
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between walking and flying. The goal of LEO is two-fold: 1) to enable robotic
locomotion capabilities by leveraging its multi-modality of flying and walking, and
2) to study the underlying robot design, dynamics, and control challenges of such a
hybrid robotic platform, especially at the interface between walking, take-off, and
landing by using synchronous control of propellers and articulated joints.

Advantages and limitations of terrestrial robots
Numerous ground robots in various forms have been studied and developed over the
past several decades, which may be categorized by their main locomotion methods:
legged [1–4], wheeled [5–7], rolling [8–10], or crawling [11–13]. Bipedal robots in
particular have attracted great attention not only because of their human-like body
shapes, but also because they can perform versatile and robust walking, running,
and jumping actions on uneven terrains [14, 15]. Some advanced humanoids can
even execute high-level tasks like object manipulation, ladder climbing, or driving
a vehicle [16–19]. However, the ultimate goal of bipedal robotics is to achieve
human-like stability and robustness in its walking and running maneuvers over a
challenging terrain or in a complex indoor environment. A great deal of research on
bipedal robots exists in the literature, and interested readers are referred to a survey
work on this topic such as [3].

The safe mobility of ground robots is hindered by unfavorable ground conditions
and the existence of obstacles of various sizes. This limits their practical applica-
tions to be within well-structured environments such as indoor service robots [20,
21] or vacuum cleaners [22]. Such limitations tend to necessitate that they are a
highly-engineered system with high development costs, as it can be seen from some
examples of space exploration rovers [23] or advanced humanoid robots [24]. In
addition, the applications of ground robots are restricted to movements that occur
on or near the ground, as it can be challenging for them to gain access to an elevated
location.

Advantages and limitations of aerial robots
The aforementioned difficulties can be overcome with aerial robots that fly over ob-
stacles of any sizes or grounds of any conditions, and such robots have been another
mainstream area of research in the robotics community. Both fixed-wing [25–27]
and rotary-wing aircraft [28–30] as well as their hybrid types [31, 32] have been stud-
ied extensively and are proposed for real-world applications such as remote sensing,
delivery, search and rescue, surveillance, and real-time monitoring [33]. How-
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ever, these robots come with their drawbacks, including large energy consumption,
short flight and operation time, and limited on-board resources and payload weight.
Furthermore, aerial robots have more difficulty than ground robots in physically
interacting with their environment or other robots because they need to stabilize
themselves in mid-air. Therefore, aerial robots have been mainly envisioned for
applications that do not or minimally involve physical interactions such as visual
inspections, although aerial manipulation has recently become a popular research
topic [34–37].

Multi-modal locomotion and hybrid terrestrial and aerial robots
Robots with a multi-modal locomotion ability possess advantages over robots that
have only a single mode of locomotion, such as moving through challenging envi-
ronments by appropriately switching between available locomotion modes or having
flexibility with the execution of their missions. However, the realization of such
multi-modal locomotion robots in practice has been a challenge. Further studies
are needed to resolve the wide range of research issues, such as mechanical design,
modeling and analysis, control system design, manufacturing, and experimental
validation.

While some previous works have presented terrestrial and aquatic locomotion abili-
ties [38, 39], others have attempted to develop hybrid ground and aerial locomotion
robots. Some of these robots adopt a fixed-wing to take advantage of its endurance
and efficiency combined with wheel-legs [40] or whegs [41] to enable ground lo-
comotion. Arguably, a challenge for these robots is to successfully transition from
ground locomotion to flight by accelerating their forward speed to make their wing-
borne lift force large enough for take-off. Several approaches have been proposed
to address this issue, including rooftop take-off [42], gliding after jumping with
spring-loaded legs [43], or adding propellers to enable vertical take-off [44], at the
expense of increased mechanical complexity.

To overcome the difficulty of ground-to-air transitions, hybrid locomotion robots
using rotary wings for aerial locomotion have been developed. Although there has
been an effort to invent a transformable robot that folds/unfolds a tail mechanism
and rotor blades to fly similar to a helicopter [45], many prior works in this direction
adopt a multi-rotor actuation mechanism. For example, the rolling cage [46] and
the dynamic flying-walker [47] achieve ground locomotion with propeller thrust.
However, the proposed designs exhibit limited versatility and adaptability on rough
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terrains. Others utilize actuated wheels [48, 49], as they are mechanically simple,
but they too have limited adaptability on complex terrains.

Some hybrid robot designs enable impressive locomotion maneuvers. For example,
a quadrotor equipped with a climbing mechanism achieves the ability to perch on a
wall from flying, climb of the wall, and take off from the wall to return to flying [50].
In [51], a four-wheeled ground robot with two tiltable propellers demonstrates
ground locomotion and wall-climbing as well as the transitioning between the two.
An interesting concept of a lighter-than-air flying robot with legs was proposed with
the goal of improving bipedal walking stability using a helium filled balloon, but its
buoyancy was not sufficient for flying, and the robot was susceptible to wind [52].

Biological motivation for bi-modal locomotion
While bio-inspired aerial robots [53–55] have been focused only on controlled flying
maneuvers, terrestrial and aerial bi-modal locomotion is a form of locomotion that
is commonly found in animals such as insects, bats, and birds. Birds, in particular,
fly to move a long distance to forage, to flee from predators, or to migrate for a better
climate. Still, their multi-purpose legs are what drove their evolutionary success
as they enable multiple movement modalities on the ground that are essential for
terrestrial foraging like walking, running, jumping, resting, and perching [56].

A complex yet intriguing behavior happens at the transitional interface of the birds’
two locomotion modes. Several robot designs have attempted to adopt the ideas
and mechanisms from nature for their air-surface transitions [57]. Furthermore, it is
recognized in the literature that some birds use legs to provide a substantial amount
of thrust for take-off [58], which motivated and were applied to the development of
the airplane [59]. As such, one direction of studying bi-modal locomotion robots
is to take bio-inspired approaches to facilitate their development based on scientific
observations of birds. Moreover, bi-modal locomotion robots have also been used to
investigate the potential evolutionary process of bird locomotion [57]. For instance,
a hexapedal robot was appended with flapping wings not only to improve its running
speed on the ground but also to provide an insight into the origin of bird flight [60].

Filling the gap between ground and aerial robots
LEO aims to bridge the gap between the two disparate domains of aerial and bipedal
locomotion that are not typically intertwined in existing robotic systems. LEO
targets versatile tasks that need to be accomplished in places that are difficult to
reach by ground robots. Compared to a ground robot, LEO can overcome any
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Figure 7.2: Main electronics and mechanical components of LEO.

obstacle using the transition between its ground and flying modes or easily reach an
elevated location using propellers. In addition, while an aerial robot can hover over
targets, LEO can use its ground locomotion to approach them for closer inspection.
When LEO is in ground contact or walking, it can also reject large disturbances and
prevent falling even on extremely slippery surfaces by using synchronized control
of its distributed propellers and leg joints, thereby allowing for more robust and
precise walking motion.

By leveraging its unique design and control concepts, LEO successfully demon-
strates walking and standing on a loosely-tensioned rope (Fig. 7.1B), a feature which
is often seen in nature, as exhibited by birds walking on high voltage or telephone
lines. Furthermore, we demonstrate that LEO is capable of riding a passive wheeled
skateboard, which is a nontrivial maneuver requiring a mastery of balancing even
for humans, not to mention biped robots (Fig. 7.1C).

7.3 Results
Robot system overview
LEO has a weight of 2.58 kg and an overall height of 75 cm when walking. LEO is
comprised of three main subsystems, namely, a torso, a propeller propulsion system,
and two legs with point feet, as depicted in Fig. 7.2. LEO can operate completely
autonomously with its on-board computers and sensor suite. The nominal walking
speed of LEO is 20 cm/s, while its overall ground speed can substantially increase
by using intermittent flying while close to the ground.

Legs and feet
The LEO legs are designed and built to be lightweight with a low moment of inertia,
enabling agile walking and reducing the required propeller thrust to carry the legs
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Figure 7.3: The dynamical model of LEO. (A) Leg geometry with controlled joint
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the virtual leg and the vertical axis, 𝛽𝑖 is the torso angle with respect to the virtual
leg, and ℓ𝑖 is the length of the virtual leg. 𝑓 𝑖

ℓ
is the leg extension force and 𝜏𝑖𝛼 is the

moment about the pivot point generated by the lumped propeller thrusts 𝑓 𝑖+ and 𝑓 𝑖−.
(C) The body frame B is fixed to the torso with the origin at the nominal CoM. Its
location and orientation with respect to the inertial frame I are given by 𝒑 and 𝑹,
respectively. Their time derivative in the inertial frame are the linear and angular
velocities 𝒗 and 𝝎. The four controllable thrust forces 𝑓1, ..., 𝑓4 are at a fixed tilt
angle 𝛿 = 25◦ with respect to the torso vertical axis. This tilt of the four thrust axes
is directed inwards at a 45◦ angle in the horizontal plane with respect to the forward
direction. A vector description of the thrust axes is given in the Supplementary Text.

as a payload during flight. To achieve this, the leg structures are constructed with
carbon fiber tubes and 3D printed carbon fiber reinforced nylon joints holding ball
bearings. The leg geometry is designed to have two closed kinematic loops. This
parallel mechanism allows the leg actuators to be placed close to the torso, resulting
in a compact form with reduced leg inertia.

Both legs are symmetric, and each leg has three servo motors for actuation. The
first one is located at the pelvis and moves the leg structure within the frontal plane
of LEO. The other two servo actuators are located at the front and back of the hip
and drive the parallel leg mechanism (see Fig. 7.3A). In combination, these two
actuators drive the leg length and swing in a forward direction. The servo actuators
driving the legs of LEO are integrated brushless DC (BLDC) motors with high
reduction gearboxes and embedded position control. The use of these integrated
servo actuators minimizes the system size and weight, which are critical aspects
for a flying robot. In addition, the embedded position controller is precise and
fast enough for LEO’s leg control due to the low inertia of the legs and the high
bandwidth of the propeller controller that stabilizes the walking gait.
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Regarding the design of the feet, there is a half-sphere of polyurethane rubber at the
end of each leg, serving as a point foot with a high friction coefficient to prevent
slipping during standing or walking. The half-sphere rubber foot sits on top of an
on/off switch, which allows LEO to determine when ground contact is made during
normal walking or when LEO switches its locomotion mode between walking and
flying. Lastly, heels are installed such that LEO can rest on them without requiring
active balancing, thereby allowing LEO to power down the propellers. When
initiating normal walking, LEO raises itself from the lowered resting position on the
heels. This motion lifts the heels to allow them to clear the ground during normal
walking on a flat terrain.

Distributed propellers and motors
LEO has four symmetrically placed propellers at its shoulders, which are used for
stabilizing and controlling both the walking and flying maneuvers. The propeller
axes of rotation are selected to enable the generation of roll, pitch, and yaw moments
in both positive and negative directions about the CoM for flying and about the
current stance foot location for walking. Specifically, the propeller axes are tilted
by the angle of 𝛿 = 25◦ inwards from a vertical axis (see Fig. 7.3C). Tilting the
propeller thrust forces inwards increases the moment the propellers can produce
about the ground contact point, which improves the controllability for balancing and
walking motions. However, there is a trade-off to be made, since higher tilt angles
also reduce the net vertical thrust and flight efficiency. A further analysis of this
trade-off can be found in the Supplementary Text. It is also possible to vary the tilt
angles of the propellers with additional actuators while LEO is walking or flying in
order to improve its performance. However, this is not done for LEO, as this feature
will add extra weight and complexity. Each 6-inch diameter unidirectional 3-blade
propeller has a fixed pitch, and its thrust is controlled via its rotation speed. The
propellers are directly driven by small BLDC motors, which are mounted on the
arms fixed to the torso.

Torso design and electronics components
LEO’s torso not only connects the arms and legs into one assembly but also houses
on-board computers, sensors, and two lithium polymer (LiPo) batteries for powering
the system (Fig. 7.2). LEO is equipped with two on-board computers. The first
computer, a NanoPC-T4, has higher computational power and runs Robot Operating
System 2 to interface with sensors, to receive commands, to estimate states based
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on sensor readings, and to compute the desired trajectories. The second computer,
a microcontroller with a Real-Time Operating System, runs our nonlinear walking
controller and the attitude flight controller at an update rate of 200 Hz. It interfaces
directly with the leg actuators and the propeller motor controller as well as an inertial
measurement unit (IMU) for low latency attitude information. The on/off switches
embedded into the feet are used to detect foot-ground contact and are wired to the
microcontroller.

Mass integration metric
The level of integration of a system having multiple modes of operation is quanti-
tatively measured as the mass integration metric, denoted as 𝐼mass, which is defined
as the ratio of the summation of masses required to realize the modes without
integration to the total integrated robot mass [61]. It is defined for LEO as

𝐼mass :=
𝑚fly + 𝑚walk

𝑚
,

where𝑚 is the mass of LEO, and𝑚fly and𝑚walk are the masses of components of LEO
associated with flying and walking, respectively. The metric 𝐼mass ∈ [1, 2], where 1
means no integration and 2 means complete integration between the two modes. For
LEO, the metric is computed as 𝐼mass = 1.39, which shows that a moderate amount
of LEO’s components are shared for the two modes of locomotion.

Synchronized leg and propeller control
LEO’s locomotion modes can be grouped into two main categories, ground and
aerial locomotion, and each mode runs a dedicated feedback controller. The ground
and aerial locomotion controllers are switched depending on the measured contact
state of the two feet. LEO runs a state machine that ensures that these deliberate
transitions occur reliably without switching back to the previous state even when
the contact sensing is noisy (e.g., during landing). The walking controller further
distinguishes between single and double stance phases, again based on the foot
contact sensors.

All ground locomotion types (i.e., walking on the ground, skateboarding, walking
on a slack rope, and balancing) make use of the same walking controller but with
different input trajectories. In all these cases, the legs carry the majority of LEO’s
weight and control LEO’s position by commanding the leg servo motors to follow
joint angle trajectories derived from a walking gait trajectory. The propellers sta-
bilize the walking gait by taking into account the foot positions as well as the foot
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contact states. This creates a synchronized control action between the legs and the
propellers. Since the servo motors do not provide any feedback, the foot position
estimates are taken from the reference trajectory.

For the flight mode, LEO is controlled as a standard quadrotor using only the four
tilted propellers. An overview of the proposed controller architecture for LEO is
shown in Fig. 7.9. In the Materials and Methods section, each component of this
control architecture is elucidated in detail.

7.4 Experimental Validation
We performed extensive testing of LEO in various scenarios to best show its versatile
locomotion capabilities (see Fig. 7.1). Because of its on-board stereo camera for
localization, the robot can be tested both outdoors and indoors. These scenarios
included walking on a flat terrain, synchronized flying and walking, and walking
and balancing on a slack rope. In addition, we performed several experiments to
showcase its high degree of maneuverability. For example, LEO was able to ride a
skateboard around traffic cones by using the thrust of its propellers.

Thruster-aided ground locomotion
In this experiment, we demonstrated LEO’s ground locomotion capability. The
robot started from a resting position on its heels, with the propellers in an idle mode
(Fig. 7.4A, i). In this mode, the propellers could also be turned off. LEO then stood
up using its leg servo motors and, at the same time, used its propellers to balance
(Fig. 7.4A, ii). Afterward, the robot started walking (Fig. 7.4A, ii→ iv) and entered
a periodic walking gait over the flat ground (Fig. 7.4A, v→ viii).

The same experiment was repeated multiple times within a motion capture area to
analyze the robot’s motion. Note that the motion capture system was not used for
feedback control; rather, it was used only to record the torso poses and the positions
and orientations of both feet. The tracking data of 11 runs over a sequence of
multiple steps is presented in Fig. 7.5A,B. In Fig. 7.5C, the trajectory of one of these
runs is visualized in 3D.

The six plots in Fig. 7.5A show the left and right feet locations with respect to the
Center of Mass (CoM) in the body axes. The dashed line marks the desired foot
location. In all axes, we notice some delay between the commanded and actual leg
positions caused primarily by the limited tracking performance of the lightweight
servo motors. We also observe that, particularly for the 𝑥-axis, the delay increased
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Figure 7.4: Walking sequences. (A) LEO standing up from its resting position
on the heels and starting a periodic walking gait. (B) LEO traversing a flexible
rope. Dashed arrows indicate the movement from the current to the next snapshot in
sequence and solid arrows show the executed movement since the previous snapshot.

slightly as soon as the leg touched the ground because the servo motors experienced
more load.

Another aspect captured across the data in all axes is the leg deformation of the robot.
In the 𝑦-axis, the error increases whenever the robot is standing on the leg, especially
for the left one. This error stems from the bending deformation of the leg structure
in the frontal plane. In the 𝑧-axis, there is an oscillation visible whenever the leg
impacted the ground due to the overall elasticity of the leg structure. To reduce
such leg deformation during walking, we commanded the propellers to generate a
minimum thrust of 40% of the body weight to lessen the loads on the legs.

Figure 7.5B shows the walking trajectory tracking errors of the nonlinear controller
in the sagittal and frontal planes. The details of the controller are presented in the
subsection below titled “Nonlinear tracking controller for walking using propellers.”
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positions tracked by a motion capture system for 11 runs. The coordinates are
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the reference foot trajectories. In the 𝑧-axis plot, the ground level of the reference
trajectory is shown as a dotted line. The deviations of the foot trajectories from
the reference ground level during stance phases are caused by compression of the
leg, which manifests as an offset since the foot position is plotted relative to the
CoM. (B) Tracking errors of our nonlinear controller in sagittal and frontal planes,
�̃�(s) and �̃�(f) , for the same runs (see Fig. 7.3 for a free-body diagram of LEO). (C)
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position at regular time intervals. The transparent line segments indicate that the
foot sensor detects no contact. Figure generated by Patrick Spieler and Kyunam
Kim.

The frontal tracking has a root mean square (RMS) error of 2.6◦ median across all
the runs. In contrast, the sagittal tracking error is lower, with a median RMS error of
1.6◦. This difference occurs because the frontal plane controller has lower feedback
gains than the sagittal one, since the legs were more flexible in that direction, which
induced unwanted oscillations for higher gains.

Another experiment was performed to demonstrate the yawing movement capability
of LEO as depicted in Fig. 7.1E and Video 1 in [62], where LEO was tracking a
semi-circle trajectory and the yaw control was achieved using propellers.
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Robustness to external disturbances on the ground
To further demonstrate LEO’s strong robustness to external disturbances, additional
experiments were performed. In the first experiment, LEO used the nonlinear
tracking controller with a constant attitude setpoint standing upright on one leg, and
it was pushed with a stick multiple times in the sagittal and frontal planes, as seen in
Fig. 7.6B. The robot successfully rejected the disturbances, as presented in the top
plot of Fig. 7.6A by applying the thrusts shown in the bottom plot. Video 2 in [62]
shows this experiment as well as the same experiment repeated on a slippery surface
(a whiteboard with oil), where LEO starts sliding when disturbances are applied,
but it does not lose balance.

The ground locomotion experiments were mainly focused on flat terrain conditions.
The main limitation with walking on a highly rough terrain comes from the limited
range of motion of the legs, not the stability of the controller. The current leg
kinematics design of LEO allows for about 4 cm of ground clearance, thus traversing
rough terrain cannot be achieved safely with this leg geometry. An improved leg
design that allows a more extensive range of leg motions and more ground clearance
should allow LEO to walk over a rough terrain by leveraging the stabilization
capability of propellers. With the current design, however, LEO can still overcome
the rough terrain by flying over it.

To compare LEO’s disturbance rejection capability against a flying vehicle, we
placed both LEO balancing on one leg on a rigid table and a standard commercial
drone in front of a wind tunnel. We then switched on the wind tunnel to a speed
of 3.8 m/s. While the drone was immediately blown back at this wind speed, LEO
could withstand this disturbance thanks to the frictional ground contact (see Video 3
in [62]), which demonstrates that LEO is more resistant to wind when it is in contact
with a rigid surface.

Synchronized walking and flying
In this experiment, we showcase LEO’s capability to combine walking and flying
to overcome obstacles. We performed the experiment in an indoor laboratory
environment with the robot tethered for safety precautions (Fig. 7.6D and Video 4
in [62]). Two tables were placed about 1 m apart, and LEO traversed them by flying
over the gap. LEO followed a pre-defined trajectory since the stereo camera was not
used to detect the gap or the tables, but only provided navigation information to the
robot. We present the actual and desired positions and velocities of LEO together
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with the propeller thrusts in Fig. 7.6C. LEO transitioned from walking to flying by
increasing its collective propeller thrust until both feet lost ground contact (around
𝑡 = 8𝑠). At that point, an upward velocity was initiated and LEO climbed away from
the ground. Then, the robot followed a smooth flying trajectory up to the landing
point. The forward landing velocity was matched to the pre-determined walking
speed, and the walking phase was again triggered when one foot touched the ground.
After the touchdown, the robot continued to walk on the second table. In addition,
a similar experiment was performed without the safety tether, flying down from a
single table, as shown in Video 5 in [62].

We also validated the synchronized walking and flying control by performing out-
door experiments where LEO flew down a set of stairs, as seen in Video 6 in [62]. A
sequence of images overlaid to form a single image showing this motion is illustrated
in Fig. 7.1A. This experiment demonstrates that LEO can execute controlled ma-
neuvers that combine walking, take-off, flying, and landing with smooth transitions
between flying and walking gaits.

Thruster-aided balancing and walking on a slackline
Inspired by the fact that birds can walk and balance on a loosely-tensioned rope, we
designed several experiments to show LEO’s balancing and walking capabilities on
an elastic rope stretched between two trees (Fig. 7.1B). The rope was placed along
the arch of LEO’s feet. LEO was able to balance and walk sideways successfully
using the same nonlinear balancing controller employed for walking on the ground.
However, in this configuration, the feet contact sensors cannot detect when the robot
was standing on the rope. Therefore, we overrode the feet contact sensors and feet
position information in the controller with a fixed virtual foot contact centered just
underneath the robot. The controller was robust enough to perform well even though
the actual foot location and contact states are different from the controller estimates.

A sequence of images showing LEO walking sideways on the rope is displayed in
Fig. 7.4B. The walking trajectory is a periodic sequence, which alternates between
shifting the CoM from one leg to another (Fig. 7.4B, ii→ iii, iv→ v) and advancing
a leg (Fig. 7.4B, i→ ii, iii→ iv). In this trajectory, the CoM is always kept above the
stance foot or line connecting the two feet in a double stance phase. The position
of the robot, tracking error, and the generated thrust from the propellers are plotted
in Fig. 7.7 in the Supplementary Text. A movie of the experiment can be found in
Video 6 in [62].
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Figure 7.7 presents the experimental data for walking on a loosely-tensioned rope.
The top plot shows the CoM 𝑥 position (horizontally away from the rope) and 𝑧
position (upward), each plotted against the 𝑦 position (along the rope). The rope is
deflected downward under the weight of the robot, which makes the mean 𝑧 position
increase as the robot moves from the center of the rope toward the higher attachment
point. A back-and-forth movement is seen in the 𝑦 direction as the robot takes
each step, shifting its CoM from one foot to the other and back, as described in the
trajectory of Fig. 7.4. The middle plot shows the evolution in time of the tracking
error in the sagittal and frontal planes. We notice periodic disturbances in the frontal
plane caused by the foot advancing to a point on the pulled-down rope, which is at
a higher position relative to where the robot stands. The sagittal plane has a small
tracking error compared to the frontal plane because there is no disturbance, since
the steps are made in the frontal plane. The bottom plot shows the commanded
propeller thrust signals with respect to time.

Riding a passive skateboard
In this experiment, LEO was riding on a passive skateboard. The skateboard
controller used the same nonlinear walking controller as in the previously mentioned
experiments, since this controller can track arbitrary body and leg orientations using
control of distributed propellers. Riding the skateboard was decoupled into two
control problems: controlling the steering angle and controlling the skateboard’s
forward acceleration/deceleration. On a skateboard, steering is achieved by tilting
the board around its longitudinal axis. This, in turn, rotates the skateboard’s wheel-
axis, which is mounted on an angled, spring-loaded joint. We placed LEO on the
skateboard with its feet spaced apart in the lateral direction. An extension of its legs
tilted the skateboard and allowed steering.

The forward acceleration was achieved by moving the CoM of the robot backward
while simultaneously pitching the body forward. When in a steady state, the con-
troller applied a moment that canceled the gravitational moment of the off-centered
CoM to maintain balance in this state. This moment was realized with the rear pro-
pellers generating more thrust, which resulted in the robot and the skateboard being
pushed forward. Deceleration is achieved in an opposite fashion by leaning forward
and pitching its body backward. This method ignores the transients of moving the
body into the leaning positions during which reverse forces would be produced,
thereby limiting the control bandwidth. However, this controller was adequate for
direct manual control.
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One result of experimentation is shown in Fig. 7.1C and in Video 8 in [62], where
LEO rode on the skateboard and slalomed around a series of traffic cones. LEO was
driven manually via a remote control by directly controlling the desired acceleration
and steering angle. In this composite image (Fig. 7.1C), a snapshot is taken at every
1.5 seconds. The figure shows the acceleration phase in the beginning, deceleration
in the end, and the tilted skateboard for steering.

Control input signals during walking and flying
As a hybrid walking-flying robot, it is important for LEO to have a sufficient amount
of control authority both on the ground and in the air. Specifically, LEO’s propellers
must be able to provide sufficient moments in all three axes for balancing when
walking and for attitude control when flying, while guaranteeing that a desired range
of thrust is attainable as the moment and thrust capabilities are coupled together. If
the desired thrust and moments computed from the controller require the propellers
to generate thrusts exceeding their limit, saturation will occur, which could lead to
control system failure. In addition, if friction or normal force constraints during
ground locomotion are not met, the robot could start sliding or take off. In order
to verify that our choice of LEO’s design parameters provides sufficient control
capability, we investigate control input signals from our experiments and compare
them with LEO’s control capability. This analysis can be seen in [62].

7.5 Discussion
LEO’s position as a multi-modal locomotion robot
Recently, robots using both propellers and legs, similar to LEO, have been proposed
in the literature. For instance, the monopedal robot in [63] was initially built
as an agile vertical jumping robot, but later, two thrusters were added [64, 65]
to control its attitude in mid-air to enable multiple high precision jumps in series.
Another robot with four propellers and two legs has been introduced with the goal of
demonstrating a walking appearance, which was referred to as pseudo-locomotion,
for entertainment purposes [66]. While the configuration of the proposed robot is
similar to that of LEO, this robot mainly uses propellers, not legs, for its movement,
and its multi-modal locomotion ability has not been demonstrated. In [67], a pair of
coaxial propellers are added to a biped robot to assist its stable walking, and hence,
the work is not focused on investigating multi-modal locomotion aspects, especially
for take-off and landing maneuvers.

It might appear as if the designs of the aforementioned robots shared a robot concept
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similar to LEO; however, we note that the design philosophies that these robots are
based on are fundamentally different from each other due to their clearly different
objectives. Specifically, the robot in [66] is not designed for dynamic walking,
and its design and control do not consider the robot’s interaction with the ground.
In addition, the robot in [65] focuses only on precision robotic hopping whereas
the robot in [67] is designed only for biped walking, and hence, their propellers
are not intended for flight maneuvers. On the other hand, LEO’s design enables
dynamic biped walking with complex ground interaction, while preserving the flight
performance of a multi-rotor vehicle. Therefore, we believe LEO truly integrates
bipedal locomotion with flying. LEO demonstrated that synchronized propeller
control greatly improves the stability of inherently unstable bipedal walking even
within extreme scenarios in which other bipedal robots usually fail, such as walking
on a rope. Furthermore, successfully riding a wheeled skateboard can be regarded
as LEO’s achieving of an additional type of locomotion modality.

Energy efficiency and Cost of Transportation of LEO
The extreme balancing ability of LEO comes at the cost of continuously running
propellers, which leads to higher energy consumption than legs-only ground robots.
However, this stabilization with propellers allowed the use of low-power leg servo
motors and lightweight legs with flexibility, which was a design choice to minimize
the overall weight of LEO to improve its flying performance.

We note that the optimization of LEO’s energy consumption was not a priority in this
work. However, we investigated its Cost of Transportation (CoT), a dimensionless
quantity characterizing the energy efficiency of locomotion, defined as CoT := 𝑃

𝑚𝑔𝑣
,

where 𝑃 is the power consumption of the robot whose mass is 𝑚 while moving
with a constant velocity 𝑣 measured at the standard gravitational acceleration 𝑔.
For LEO, the measured CoT was 108 when walking at a speed of 20 cm/s. When
flying at 1 m/s, the CoT was 48, and it decreased to 15.5 at the flight speed of
3 m/s. Further information on the energy consumption and a comparison with other
biological systems and robots are provided in the Supplementary Text.

There are possible ways to improve the energy efficiency by making different design
trade-offs. For instance, LEO with more rigid legs would require less thrust for
preventing excessive leg deformation. Furthermore, LEO could walk with the
reduced support from the propellers by adopting finite feet for better stability or
higher power motors with torque control for joint actuation that would allow for fast
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and accurate enough foot position tracking to stabilize the walking gait. In such a
case, propellers may need to turn on only when the legs fail to maintain stability
on the ground without having to run continuously. These solutions would cause a
weight increase and lead to a higher energy consumption during flight maneuvers,
but they would lower energy consumption during walking. In the case of LEO, we
aimed to achieve balanced aerial and ground locomotion capabilities, and we opted
for lightweight legs. Achieving efficient walking with lightweight legs similar to
LEO’s is still an open challenge in the field of bipedal robots, and it remains to be
investigated in future work.

Although energy efficiency is not the focus of the LEO design, the Cost of Trans-
portation (CoT) was analyzed to present the current limitations of such a hybrid
locomotion system and to inform future researchers interested in this direction
about potential challenges that have to be addressed.

While hovering, LEO consumes an average of 992 W, out of which 933 W are
powering the propellers and 59 W are powering the on-board electronics and leg
actuators. This power consumption is almost cut in half when LEO is walking
on the ground, drawing an average of 544 W, which is split between 445 W for
propellers and 99 W for electronics and legs. These power measurements were
made by measuring the energy required to recharge LEO’s battery after performing
a walking or flying maneuver. Therefore, they include the overall power consumption
as well as the battery charge/discharge losses. With the relatively small batteries
used on LEO, the resulting flight endurance is about 100 seconds and the walking
endurance is about 3.5 minutes. The limiting factor is the 29 Wh capacity of the
battery powering the propellers.

In Fig. 7.8, the CoT for different animals, insects, and robotic systems as well as
LEO during its two main locomotion modes are plotted. When walking at a speed
of 20 cm/s, the measured CoT for LEO was 108. When flying at 1 m/s, the CoT
was 48, and it decreased to 15.5 at the flight speed of 3 m/s. The robots used for
comparison have CoT values that are lower than LEO’s, but they are lacking LEO’s
multi-modal capabilities. The data used for the plot is summarized in Table 7.2 and
in [68].
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Component Reference Specifications

Leg motors (swing &
extension)

MKS HBL599 73.1 g, 4.1 Nm, 2.1 RPS
(0.08 s/60◦)

Leg motors (ad/ab-
duction)

Hitec HSB-9381TH 78 g, 3.3 Nm, 1.2 RPS
(0.14 s/60◦)

Propeller motors Garila X2508 2200kv
Propellers HQ prop 6x4.5x3
Propeller motor con-
troller

Holybro Tekko32 35A 4-in-1 3-6S ESC

Microcontroller STM32F722RE 216 MHz ARM Cortex-M7,
256kB SRAM, 512KB Flash

IMU ICM-20602 range: ±2000◦/s, ±16 g, noise:
0.004◦/𝑠/

√
Hz, 100 𝜇𝑔/

√
Hz

VIO camera Intel Realsense T265 55 g, 163◦ FoV, on-board VIO
processing

Embedded computer NanoPC-T4 2x2GHz + 4x1.5GHz, 4GB
RAM, PCIe SSD, USB 3.0,
802.11ac WiFi, 63 g

Battery for pro-
pellers

Tattu R-line 6S 1300 mAh (29 Wh), 155 g, 95C
discharge

Battery for legs &
electronics

HRB 2S 2700 mAh (20 Wh), 110 g, 10C
discharge

Remote control re-
ceiver

Graupner GR-12L 2.4 GHz digital RC receiver

Table 7.1: LEO’s components specifications.

Robots Mass
[kg]

Speed
[m/s] CoT Flyer Mass

[g]
Speed
[m/s] CoT

1. Stanford
Dogoo

4.8 0.9 3.20 Fruit Fly 0.002 2.06 5.88

2. Minitaur 5 1.5 2.30 Black-fly 0.0025 1.19 6.32
3. Salto-1P 0.1 3.6 6.60 Mosquito 0.0032 2.28 7.89
4. Jerboa 2.5 1.52 2.50 Honey Bee 0.1 8.33 6.27
5. MIT Chee-
tah 2

33 6.0 0.51 Hummingbird 3 13.61 1.68

6. MIT Chee-
tah 3

45 N/A 0.45 Budgerigar 35 9.72 1.21

7. StarIETH 23 0.7 2.57 Laughing Gull 310 8.61 0.60
8. ANYMAL 30 0.8 1.23 Pigeon 384 16.11 0.39
9. Cheetah
Cub

1 1.4 9.80

10. XRL 23 1.54 2.57
11. DURUS 79.5 0.6 1.02

Table 7.2: Mass, speed, and Cost of Transportation for different walking/jumping
robots and flyers adapted from [68–70].
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Walker/Runner Mass
[kg]

Speed
[m/s] CoT Walker/Runner Mass

[kg]
Speed
[m/s] CoT

Mouse Species

0.018 0.15 39.28 Lizard 0.900 0.10 2.60
0.018 0.10 30.64 Rabbit 2.540 0.58 1.99
0.023 0.30 14.64 Dog 10.70 1.63 0.57
0.024 0.16 20.47 Sheep 30 0.80 0.42
0.027 0.19 17.86 Human 70 1.56 0.31

Lemming 0.061 0.43 17.12 Pony 270 0.10 2.62
Kangaroo Rat 0.100 0.58 3.85 Colt 477 0.98 0.29
Ground Squir-
rel

0.198 0.78 2.27 Cattle 656 0.98 0.34

Rat Species 0.397 0.58 3.59 Horse 707 1.39 0.22
0.250 0.30 6.28

Table 7.3: Cost of Transportation for different walkers/runners adapted from [68].

Potential applications
By leveraging LEO’s hybrid locomotion capability, it is anticipated that LEO will
enable a wide range of robotic missions that are hard to accomplish by the sole use of
ground or aerial robots. Perhaps the most well-suited applications for LEO would be
the ones that involve physical interactions with structures at a high altitude, which
are usually dangerous for human workers and call for a substitution by robotic
workers. In such applications, conventional biped robots have difficulties with
reaching the site, and standard multi-rotor drones have an issue with stabilization in
high disturbance environments. LEO uses the ground contact to its advantage and,
compared to a standard multi-rotor, is more resistant to external disturbances such
as wind (Video 3 in [62]), which would improve the safety of the robot operation in
an outdoor environment where LEO can maintain contact with a rigid surface.

Specifically, multi-point inspection, repair, or replacement tasks at locations that
are difficult to reach by humans could be one primary application domain for
LEO. For example, high voltage line inspection is currently done by highly skilled
professionals who not only inspect the lines from a distance but also walk on the
lines to inspect and repair them. If the lines are in hard-to-reach places, helicopters
bring workers close to the lines. Instead of sending humans, LEO could fly up to
the high voltage lines and walk on them for close-by inspection and repair, which
could potentially reduce fatalities and cost of the task. Another good application
for LEO would be painting of tall bridges. Currently, workers walk on slippery
and sometimes round trusses for painting, and their risk of slipping is high. We
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believe LEO is a good substitution of human workers for this task because LEO can
maintain balance on slippery terrain (Video 2 in [62]) and because it can choose
to fly to a safe location in case it falls. Similarly, LEO can be envisioned for other
tasks such as inspection of a building roof or pipes of an oil refinery.

On the other hand, the technology developed for LEO’s transition between ground
and aerial locomotion modes could foster the development of adaptive landing gear
systems comprised of controlled leg joints for aerial robots and other types of flying
vehicles [71, 72]. Such legged landing gear systems would be especially useful
for maintaining body balance of aerial robots while landing on sloped or uneven
terrains, thereby reducing the risk of failure under harsh landing conditions.

7.6 Material and Methods
In this section, the individual components of the control architecture of LEO from
Fig. 7.9 are detailed. We emphasize the kinematics and dynamics models used
for generating walking trajectories and discuss our control strategy for walking and
flying as well as the transition between the two. An in-depth analysis of the control
authority of LEO’s actuation mechanism is also provided.

Inverted Pendulum model for the walking phase of LEO
A controller based on an Inverted Pendulum (IP) model is chosen for LEO’s walking
because it captures the robot’s fundamental dynamics (see Fig. 7.3B). This model
assumes the following: all the masses are concentrated at a single point mass inside
the torso, the legs are massless, and the stance foot acts as a pivot with the ground.
These are reasonable assumptions since LEO’s legs are lightweight, with all the
actuators and electronics located in the torso. The model is further simplified by
considering the frontal and sagittal planes separately, hence the dynamics prescribing
LEO’s ground locomotion are represented in two 2D planes instead of one 3D space.
In addition to a conventional IP model, we add propellers that are used to stabilize
the dynamics. These thrust forces serve as the only control input in this model.

Walking trajectory generation with Linear Inverted Pendulum model
If the height of the CoM is kept constant by controlling the leg extension force, the
dynamic model of IP becomes linear in a Cartesian coordinate parameterization.
This model is called Linear Inverted Pendulum (LIP) [73] and was used for LEO’s
walking trajectory generation. Because we constrain the CoM to be at a constant
height, this reference trajectory has no discontinuity in the vertical velocity from
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the impulsive ground reaction force due to impacts from leg exchange, which also
leads to no discontinuities in the horizontal velocity. This model and the reference
trajectory simplify the controller design, as explained further in the below section
“Nonlinear tracking controller for walking using propellers.”

Our approach of designing the walking trajectory closely follows [73], which exploits
the linearity of the model to find closed-form solutions for foot placements and CoM
trajectories. While simple in formulation, versatile walking patterns are possible
with this method by modifying walking characteristics through different choices of
a step period, a step length, or a desired CoM height. Because of the simplicity of
this approach, the trajectories can be easily computed online.

We modify the LIP model with the addition of a constant uniform thrust from
all four propellers to reduce the weight on the legs. By setting the torso attitude
level (𝛽𝑖 = 𝛼𝑖), with 𝑖 ∈ {(s), (f)} corresponding to the sagittal and frontal planes,
respectively, we find that the constant propeller thrust 𝑓𝑧 enters the dynamics as a
reduced gravitational acceleration:

¥𝑥 = 𝑔 − 𝑓𝑧/𝑚
𝑧

𝑥. (7.1)

Here, the 𝑥 and 𝑧 coordinates are the forward and vertical positions of the CoM with
respect to the stance foot location, and 𝑔 is the gravitational acceleration. This planar
model is also valid in the frontal plane with 𝑦 instead of 𝑥. The resulting trajectory
looks natural, with the CoM swinging side-to-side as the robot makes steps. These
trajectories require only the chosen constant thrust to be followed, minimizing the
control action needed. The swing leg trajectory is parameterized such that it lifts
and sets the foot down vertically and moves in between stance locations in a straight
line.

Leg joint trajectory generation
Once the feet and CoM trajectories are designed, the relative foot trajectories are
transformed into the associated joint angle trajectories to be tracked by a set of
servo motors. This requires solving the inverse kinematics problem of the leg chain.
Within the workspace of the legs, there is a unique feasible joint configuration for
any foot position which makes the inverse kinematics a well-posed problem.

We solve the inverse kinematics by first finding 𝜃3 (Fig. 7.3) in the frontal plane
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analytically and then numerically solving for 𝜃1 and 𝜃2 by finding the solution of:[
p𝑑foot − pfoot(𝜃1, 𝜃2, 𝜑1, 𝜑2)

ploop1 (𝜃1, 𝜑1) − ploop2 (𝜃2, 𝜑2)

]
= 0,

where p𝑑foot is the desired foot position in the plane of the parallel leg mechanism. We
over-parameterize the kinematics problem with the additional angles 𝜑1 and 𝜑2, and
we add a constraint that the point ploop is the same from both sides of the kinematic
chain, i.e., ploop1 = ploop2 . This results in much simpler expressions compared to an
analytic solution of ploop based on 𝜃1 and 𝜃2 only, which speeds up the computation.
Note that the second kinematic loop is a parallelogram, which makes the computation
of pfoot as a function of ploop and the angles 𝜃1, 𝜃2, 𝜑1, and 𝜑2 straightforward.
Assuming feasibility, the angles are found using the Levenberg-Marquardt (LM)
algorithm. We use the LM implementation in the nonlinear optimization module of
Eigen library [74], which runs fast enough to be used online. Even though the LM is
a local method, it converges to the correct solution using a neutral leg configuration
as an initial guess.

Modeling of Inverted Pendulum for propeller control during stance phase
A diagram of the considered model is shown in Fig. 7.3B. Conceptually, as previously
mentioned, this model can be seen as a projection of a full 3D model onto the frontal
or sagittal plane. In this model, LEO’s configuration is parameterized by the link
length ℓ and the angle 𝛼 between the virtual leg (the line segment connecting the
CoM to the stance foot) and the inertial vertical axis on each plane. Thus, we define
the vector of generalized coordinates as q𝑖 := [ℓ𝑖, 𝛼𝑖]⊤ (i.e., q𝑖 = q(s) or q𝑖 = q(f)).
Using the Lagrangian method, the equations of motion for this model can be put in
the following Euler-Lagrange form:

M𝑖 (q𝑖) ¥q𝑖 + C𝑖 (q𝑖, ¤q𝑖) ¤q𝑖 +G𝑖 (q𝑖) =
[
𝑓 𝑖
ℓ

𝜏𝑖𝛼

]
, (7.2)

where

M𝑖 =

[
𝑚 0
0 𝑚

(
ℓ𝑖
)2

]
, C𝑖 =

[
0 −𝑚ℓ𝑖 ¤𝛼𝑖

𝑚ℓ𝑖 ¤𝛼𝑖 𝑚ℓ𝑖 ¤ℓ𝑖

]
, G𝑖 =

[
𝑚𝑔 cos

(
𝛼𝑖

)
−𝑚𝑔ℓ𝑖 sin

(
𝛼𝑖

) ] ,
and 𝑓 𝑖

ℓ
is the leg extension force along the virtual leg and 𝜏𝑖𝛼 is the moment generated

by the propeller thrusts 𝑓 𝑖+ and 𝑓 𝑖− about the pivot point. Note that 𝛽𝑖 does not
contribute to the model, although in reality, this angle is controlled by the leg servo
motors, which have a limited bandwidth. Therefore, we do not assume control of 𝛽𝑖

for stabilization.
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Nonlinear tracking controller for walking using propellers
We present a nonlinear integral controller for walking using propellers, which guar-
antees exponential convergence of the angle 𝛼𝑖 to a desired trajectory 𝛼𝑖

𝑑
obtained

from Eq. 7.1. We use the IP model presented in the previous section restricted to
one coordinate (𝛼𝑖) because we assume that the servo motors embedded in the legs
are tracking the leg angle (𝛽𝑖) and length (ℓ𝑖). Unlike in the ideal case of the planned
LIP trajectory, impacts can occur in our IP model when the foot exchange did not
happen at the planned time because of tracking errors or uneven terrains. However,
these impacts can be regarded as a disturbance in the controller’s nonlinear stability
analysis. LEO’s nonlinear tracking controller with a sufficiently high gain achieves
exponential convergence of tracking errors to the bounded balls around the impact-
less desired trajectory before the next leg exchanges. Note that since this controller
stabilizes the planar model, two instantiations are run to control the sagittal and
frontal plane individually.

Several factors can potentially yield modeling errors such as the CoM offset, in-
accurate thruster models, structural deformation, or gearbox backlash. We noticed
that the largest error arises from the CoM offset, which we model as a bounded ex-
ternal torque 𝜏ext. To compensate for this torque, we implement a nonlinear integral
tracking controller with feedforward cancellation [75, 76] for each angle 𝛼𝑖 = 𝛼(f)

or 𝛼𝑖 = 𝛼(s) as:

𝜏𝑖𝛼 = 𝑚
(
ℓ𝑖
)2 ¥𝛼𝑖𝑟 +2𝑚ℓ𝑖 ¤ℓ𝑖 ¤𝛼𝑖−𝑚𝑔ℓ𝑖 sin(𝛼𝑖) − 𝑘 𝑖 ( ¤𝛼𝑖− ¤𝛼𝑖𝑟) − 𝑘 𝑖𝐼

∫ 𝑡

𝑡0

(
¤𝛼𝑖 (𝜉) − ¤𝛼𝑖𝑟 (𝜉)

)
𝑑𝜉,

(7.3)
where ¤𝛼𝑖𝑟 is the reference angular velocity defined as ¤𝛼𝑖𝑟 = ¤𝛼𝑖𝑑 − 𝑘

𝑖
𝛼�̃�

𝑖, with an error
angle �̃�𝑖 = 𝛼𝑖 − 𝛼𝑖

𝑑
. The parameters 𝑘 𝑖𝛼, 𝑘 𝑖, and 𝑘 𝑖

𝐼
are positive scalar gains, and

𝑡0 and 𝑡 are the initial and current time steps, respectively. The adaptive term (i.e.,
integral term in Eq. 7.3) ensures exponential convergence to the desired trajectory
with the following error ball in the presence of an external disturbance term with
the bounded time derivative ¤𝜏𝑖ext(𝑡):

lim
𝑡→∞

∫ �̃�𝑖

0
∥𝛿�̃�𝑖∥2 ≤ 𝜂(𝑚, ℓ𝑖 (𝑡), 𝑘 𝑖𝐼 , 𝑘

𝑖, 𝑘 𝑖𝛼) sup
𝑡

∥ ¤𝜏𝑖ext(𝑡)∥2, (7.4)

which indicates that the size of the error ball only depends on sup𝑡 ∥ ¤𝜏𝑖ext∥2, not
∥𝜏𝑖ext∥2. Also note that this error bound is valid only in the regime between impacts
since they are not explicitly modeled.
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Proof 5 The construction of the proof follows [77]. The closed-loop dynamics is
given by

𝑚ℓ2 ¤𝜔𝑒 + 𝑘𝜔𝑒 + 𝑘 𝐼
∫ 𝑡

𝑡0

𝜔𝑒 𝑑𝑡
′ = 𝜏ext, (7.5)

where 𝜔𝑒 = ¤𝛼 − ¤𝛼𝑟 is the composite error term that includes both the angular
position and rate errors and 𝑘 𝐼 , 𝑘 > 0 are positive constants. By introducing the
term ¤𝑦 = 𝑘 𝐼𝜔𝑒, we can write (7.5) without external torque as a linear system with a
state-dependent coefficient matrix 𝑨(𝑡)[

¤𝜔𝑒
¤𝑦

]
=

[
−𝑘𝑚−1ℓ(𝑡)−2 −𝑚−1ℓ(𝑡)−2

𝑘 𝐼 0

] [
𝜔𝑒

𝑦

]
=: A(𝑡)

[
𝜔𝑒

𝑦

]
, (7.6)

where the leg extension ℓ(𝑡) is regarded as an external time-varying term for (7.5).

We show that the system in (7.6) is contracting (i.e., exponentially converging to a
single trajectory globally from any initial condition [78]) by constructing a positive

definite matrix P =

[
𝑚 𝑏

𝑏 1

]
, with a parameter 𝑏 ∈

(
0,
√
𝑚

)
. The symmetric matrix

(PA)sym = 1
2 ((PA) + (PA)⊤) is given by:

(PA)sym =

[
𝑘 𝐼𝑏 − 𝑘ℓ−2 1

2 𝑘 𝐼 −
1
2 𝑘𝑏𝑚

−1ℓ−2 − 1
2ℓ
−2

1
2 𝑘 𝐼 −

1
2 𝑘𝑏𝑚

−1ℓ−2 − 1
2ℓ
−2 −𝑏𝑚−1ℓ−2

]
.

Note that (PA)sym is negative definite uniformly in time if the following conditions
hold:

𝑏 < 𝑘𝑘−1
𝐼 ℓ
−2 and 𝑏 ∈ (𝑏1, 𝑏2), (7.7)

with 𝑏1 and 𝑏2 being the roots of det
(
(PA)sym

)
= 0. Combining these conditions

with the condition for positive definiteness of matrix P, 𝑏 needs to be chosen in the
interval:

𝑏 ∈
(
max(0, 𝑏1),min

(
𝑏2,

𝑘

𝑘 𝐼ℓ
2 ,
√
𝑚

))
.

We define the generalized virtual displacement vector as 𝛿z = [𝛿𝜔𝑒, 𝛿𝑦]⊤, where
𝛿𝜔𝑒 and 𝛿𝑦 are infinitesimal displacements at fixed time. We compute the rate of
change as follows:

𝑑

𝑑𝑡

(
𝛿z⊤P𝛿z

)
= 𝛿¤z⊤P𝛿z + 𝛿z⊤P𝛿¤z

= 𝛿z⊤
(
(PA) + (PA)⊤

)
𝛿z

≤ 2𝜆max
(
(PA)sym

)
∥𝛿z∥22

≤
2𝜆max((PA)sym)

𝜆max(P)
(
𝛿z⊤P𝛿z

)
,

(7.8)
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where 𝜆max is the maximum eigenvalue of the argument matrix. Note that in (7.8), we
used the eigenvalue bounds for quadratic forms property 𝜆min(P)∥𝛿z∥22 ≤ 𝛿z⊤P𝛿z ≤
𝜆max(P)∥𝛿z∥22.

Considering the bounded external torque 𝜏ext, we construct the following system
from (7.5):[

¤𝜔𝑒
¤𝑦

]
=

[
−𝑘𝑚−1ℓ(𝑡)−2 −𝑚−1ℓ(𝑡)−2

𝑘 𝐼 0

] [
𝜔𝑒

𝑦

]
− 𝝉 = 𝑨(𝑡)

[
𝜔𝑒

𝑦

]
− 𝝉, (7.9)

where 𝝉 =

[
0 ¤𝜏ext

]⊤
. Using the virtual displacement 𝛿z, we obtain:

𝛿¤z = 𝑨(𝑡)𝛿z − 𝝉,

with its transpose 𝛿¤z⊤ = 𝛿z⊤𝑨(𝑡)⊤ − 𝝉⊤. Computing the rate of change of 𝛿z⊤P𝛿z
for the case with external torque, we obtain:

𝑑

𝑑𝑡

(
𝛿z⊤P𝛿z

)
=

(
𝛿z⊤𝑨(𝑡)⊤ − 𝝉⊤

)
P𝛿z + 𝛿z⊤P (𝑨(𝑡)𝛿z − 𝝉)

= 𝛿z⊤
(
(PA) + (PA)⊤

)
𝛿z − 𝝉⊤P𝛿z − 𝛿z⊤P𝝉

≤ 2𝜆max
(
(PA)sym

)
∥𝛿z∥22 − 𝝉

⊤P𝛿z − 𝛿z⊤P𝝉

≤ 2𝜆max
(
(PA)sym

)
∥𝛿z∥22 − 2𝛿z⊤

[
𝑏

1

]
¤𝜏ext

≤ 2𝜆max
(
(PA)sym

)
∥𝛿z∥22 + 2𝛿z⊤

[
𝑏

1

]
∥ ¤𝜏ext∥2,

(7.10)

where the last term in (7.10) is derived by substituting P =

[
𝑚 𝑏

𝑏 1

]
. Next, by

combining (7.8) and (7.10), we get:

𝑑

𝑑𝑡

(
𝛿z⊤P𝛿z

)
≤

2𝜆max((PA)sym)
𝜆max(P)

(
𝛿z⊤P𝛿z

)
+ 2𝛿z⊤

[
𝑏

1

]
∥ ¤𝜏ext∥2. (7.11)

Similar to the proof techniques in Contraction theory [78][79], we simplify (7.11)
by finding a change of coordinates such that P = 𝚯⊤𝚯. Letting 𝛿𝝃 = 𝚯𝛿z, and thus
𝛿z = 𝚯−1𝛿𝝃, (7.11) becomes:

𝑑

𝑑𝑡

(
𝛿𝝃⊤𝛿𝝃

)
≤

2𝜆max((PA)sym)
𝜆max(P)

𝛿𝝃⊤𝛿𝝃 + 2𝛿𝝃⊤𝚯−1

[
𝑏

1

]
∥ ¤𝜏ext∥2. (7.12)
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Further, we obtain:

2∥𝛿𝝃∥2
𝑑

𝑑𝑡
∥𝛿𝝃∥2 ≤

2𝜆max((PA)sym)
𝜆max(P)

∥𝛿𝝃∥22 + 2𝛿𝝃⊤𝚯−1

[
𝑏

1

]
∥ ¤𝜏ext∥2

≤
2𝜆max((PA)sym)

𝜆max(P)
∥𝛿𝝃∥22 + ∥2𝛿𝝃

⊤𝚯−1

[
𝑏

1

]
∥ ¤𝜏ext∥2∥2

≤
2𝜆max((PA)sym)

𝜆max(P)
∥𝛿𝝃∥22 + 2

√︁
𝑏2 + 1∥𝛿𝝃⊤∥2∥𝚯−1∥2∥ ¤𝜏ext∥2.

(7.13)
As ∥𝛿𝝃∥2 is positive, we further simplify (7.13) to obtain:

𝑑

𝑑𝑡
∥𝛿𝝃∥2 ≤

𝜆max((PA)sym)
𝜆max(P)

∥𝛿𝝃∥2 +
√︁
𝑏2 + 1∥𝚯−1∥2∥ ¤𝜏ext∥2. (7.14)

Recall that the matrix norm induced by a vector norm for a matrix A is ∥A∥2 =

sup𝑥≠0
∥Ax∥2
∥x∥2 = 𝜆max(A). Applying this property to 𝚯−1 and considering the

Cholesky Decomposition theorem which states that for a positive definite matrix
(real or complex), there exists one positive definite matrix B such that A = B∗B,
where B∗ is the conjugate transpose, we obtain:

𝑑

𝑑𝑡
∥𝛿𝝃∥2 ≤

𝜆max((PA)sym)
𝜆max(P)

∥𝛿𝝃∥2 +
1√︁

𝜆min(P)

√︁
𝑏2 + 1∥ ¤𝜏ext∥2. (7.15)

We further apply the path integral
∫ ¤𝛼
¤𝛼𝑟 ∥𝛿𝝃∥2 = 𝑅(𝑡) to (7.15) and obtain:

¤𝑅(𝑡) ≤
𝜆max((PA)sym)

𝜆max(P)
𝑅(𝑡) + 1√︁

𝜆min(P)

√︁
𝑏2 + 1∥ ¤𝜏ext∥2. (7.16)

Using the Comparison Lemma [80], we get:

𝑅(𝑡) ≤ 𝑒
𝜆max ( (PA)sym )

𝜆max (P) 𝑅(0) + 1√︁
𝜆min(P)

√︁
𝑏2 + 1

∫ 𝑡

0
𝑒
𝜆max ( (PA)sym )

𝜆max (P) (𝑡−𝜏) ∥ ¤𝜏ext∥2𝑑𝜏.

(7.17)
Recall the following:

𝑅(0) =
∫ ¤𝛼

¤𝛼𝑟
∥𝛿𝝃 (0)∥2 =

∫ ¤𝛼

¤𝛼𝑟
∥𝚯𝛿z(0)∥2 =

√︁
𝜆max(P)

∫ ¤𝛼

¤𝛼𝑟
∥𝛿z(0)∥2.

𝑅(𝑡) =
∫ ¤𝛼

¤𝛼𝑟
∥𝛿𝝃 (𝑡)∥2 =

∫ ¤𝛼

¤𝛼𝑟
∥𝚯𝛿z(𝑡)∥2 ≥

√︁
𝜆min(P)

∫ ¤𝛼

¤𝛼𝑟
∥𝛿z(𝑡)∥2.

(7.18)

Using the properties in (7.18), we obtain:∫ ¤𝛼

¤𝛼𝑟
∥𝛿z(𝑡)∥2 ≤

√︁
𝜆max(P)√︁
𝜆min(P)

𝑒
𝜆max ( (PA)sym )

𝜆max (P) 𝑡

∫ ¤𝛼

¤𝛼𝑟
∥𝛿z(0)∥2

+ 1
𝜆min(P)

√︁
𝑏2 + 1

∫ 𝑡

0
𝑒
𝜆max ( (PA)sym )

𝜆max (P) (𝑡−𝜏) ∥ ¤𝜏ext∥2𝑑𝜏.
(7.19)
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Recall the definition of condition number

𝜅(A) = 𝜎max(A)
𝜎min(A)

,

where 𝜎max(A) and 𝜎min(A) are the maximal and minimal singular values of A
respectively. Using this definition, (7.19) becomes:∫ ¤𝛼

¤𝛼𝑟
∥𝛿z∥2 ≤

√︁
𝜅(P)𝑒

𝜆max ( (PA)sym )
𝜆max (P) 𝑡

∫ ¤𝛼

¤𝛼𝑟
∥𝛿z(0)∥2

−
√
𝑏2 + 1

𝜆max((PA)sym)
𝜅(P)

(
1 − 𝑒

𝜆max ( (PA)sym )
𝜆max (P) 𝑡

)
sup
𝑡

∥ ¤𝜏ext∥2.
(7.20)

In limit as 𝑡 →∞:

lim
𝑡→∞

∫ ¤𝛼

¤𝛼𝑟
∥𝛿z∥2 ≤

√︁
𝑏2 + 1

𝜅(P)
−𝜆max((PA)sym)

sup
𝑡

∥ ¤𝜏ext∥2. (7.21)

We further use the fact that ∥𝛿𝜔𝑒∥2 ≤ ∥𝛿z∥2 to obtain the final inequality:

lim
𝑡→∞

∫ ¤𝛼

¤𝛼𝑟
∥𝛿𝜔𝑒∥2 ≤

√︁
𝑏2 + 1

𝜅(P)
−𝜆max((PA)sym)

sup
𝑡

∥ ¤𝜏ext∥2. (7.22)

Note that this is the worst-case bound for the error in the angular rate. By hierar-
chical combination of the dynamics of 𝜔𝑒 and �̃� = 𝛼 − 𝛼𝑟 , we can also prove the
convergence of �̃�, which is the angle error of the robot.

Heading controller for walking
LEO’s heading is controlled using propellers. Since LEO’s feet form point contacts
with the ground, the robot is free to rotate in all three axes, including yaw, when
only one foot is in ground contact. In this case, the propellers can be used to control
the heading of the robot using a Proportional-Integral-Derivative (PID) controller.
The controller outputs a yaw moment that is mixed with the desired pitch and roll
moments from the walking tracking controllers.

Optimized control allocation for walking
Once the desired control moments are computed, they are mixed to get propeller
motor signals. Let 𝜏𝑑 = [𝜏(f)𝛼 , 𝜏

(s)
𝛼 , 𝜏yaw]⊤, where the first two elements of the

torque vector are computed from Eq. 7.3 and the last element from the previously
mentioned heading controller, and let f𝑖 be the thrust force from the 𝑖-th propeller
and denote its magnitude as 𝑓𝑖 (i.e., 𝑓𝑖 = ∥f𝑖∥2). The control effectiveness matrix
Bwalk ∈ R3×4 maps individual propeller thrusts to the moments about the stance
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foot. To compute the propeller thrusts that yield the desired control moments, we
solve the following optimization problem for u = [ 𝑓1, . . . , 𝑓4]⊤:

arg min
u

∥u∥1

subject to Bwalku = 𝝉𝑑

0 ≤ 𝑓min ≤ 𝑓𝑖, 𝑖 = 1, . . . , 4

𝑓 𝑑𝑧 /cos(𝛿) ≤ ∥u∥1.

(7.23)

Each propeller thrust 𝑓𝑖 is constrained to be greater than the idle thrust 𝑓min, which is
based on the minimum rotation speed at which the sensorless BLDC controllers can
run the motors. The last inequality enforces a minimum desired collective upward
thrust 𝑓 𝑑𝑧 , which is used to reduce weight on the legs. Note that Eq. 7.23 always
has a solution since the rows of Bwalk are linearly independent and there exists
a u+ strictly positive element-wise such that Bwalku+ = 0, which is given by the
geometry of our tilted propeller axes. The optimization problem is solved using a
closed-form solution given in the Supplementary Text. In case the allocation results
in thrust forces 𝑓𝑖 that exceed the maximum thrust, they are truncated. However,
such a situation was not observed in our experiments. This allocation scheme does
not consider friction or normal force constraints. However, our experiments and
analysis show that these constraints are usually met in practice.

Flight controller
In a flight mode, LEO uses a position and attitude controller similar to [31]. Specifi-
cally, the desired angular rate is computed from the attitude error between the current
and desired body orientation. Then, the desired control moments are computed in
roll, pitch, and yaw directions from the angular rate error. Finally, the control mo-
ments and the desired thrust are mixed to compute propeller motor signals, where
the desired thrust is computed from position and velocity errors. Note that in this
case the propeller moments are computed with respect to the CoM, not about the
stance foot as it no longer serves as a pivot point.

Transition between walking and flying
As explained earlier, the selection of the active controller (flying or walking) depends
on whether the foot contact sensors detect the ground or not (see Fig. 7.9). Take-off
and landing are achieved by generating suitable walking and flying trajectories and
monitoring the foot contact state to switch between them. During take-off, the
collective propeller thrust 𝑓 𝑑𝑧 from Eq. 7.23 is increased while LEO is walking until
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the ground contact is lost. Then, a flight trajectory with an initial upward velocity
is initiated, which allows LEO to quickly lift away from the ground. LEO executes
its desired flight trajectory thereafter.

For landing, LEO enters a constant velocity descent until one of the foot contact
sensors detects the ground. During this descent, the legs are in a configuration
that allows the robot to switch to walking immediately. Once the ground contact is
detected, the flying trajectory is aborted, and the flight attitude controller is given
a zero thrust and a level attitude setpoint. Further, the walking gait with the same
speed as the forward velocity of the descent is initiated. This allows for a seamless
transition from flying to walking.
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Figure 7.6: Disturbance rejection and synchronized walking and flying experiments
for LEO. (A) Perturbation rejection experiment. The top plot shows the tracking
error in both the sagittal and frontal planes during a series of 14 applied perturbations.
The bottom plot presents the commanded thrust force of each of the four propellers.
(B) Picture of LEO being pushed externally with a stick. (C) Trajectory plots of
LEO performing a synchronized walking and flying maneuver to traverse two tables.
The first two plots show the robot’s actual position and velocity, together with the
desired position and velocity (dashed line) for the flight phase. The third plot shows
the commanded propeller thrust. (D) Overlaid snapshots of LEO performing the
synchronized walking and flying experiment, tethered for safety.
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C h a p t e r 8

DESIGN, MOTION PLANNING, AND CONTROL OF A BIPED
WITH DEFORMATION COMPENSATION

Acknowledgments: I would like to extend my gratitude to Patrick Spieler for his
invaluable contributions to the design and implementation of the robot, to Leo Zhang
for his assistance with software and hardware development, and to Jedi Alindogan
and Mathieu Dekker for help with the hardware manufacturing and design.

Abstract

This paper presents the design, development, and control of an open-source bipedal
robot intended as a platform for research. We introduce two distinct walking control
strategies implemented on the same hardware platform. The first approach follows
a model-based pipeline incorporating capture point for foot selection, trajectory
optimization, and nonlinear tracking control to generate stable walking motions.
The second approach employs reinforcement learning, specifically Proximal Policy
Optimization (PPO), to learn control policies from the robot interacting with a
simulator. For both approaches, we model the mechanical compliance (deformation)
and evaluate the robot’s performance under both control schemes, demonstrating
successful locomotion tasks on hardware.

8.1 Introduction
Autonomous robots have the potential to be effectively used in a wide range of
applications, such as agricultural applications [1, 2], wilderness and fire search
and rescue missions [3–6], and planetary exploration [7]. However, successful
execution of these applications requires that robots have advanced agility while
traversing unstructured environments. Legged robots are better suited for such tasks
compared to wheeled-only or tracked-only vehicles because they can traverse more
diverse environments (i.e., complex terrains, stairs, ladders, etc).

Both academia and industry have been progressively redirecting their resources
towards the research and development of legged robots, but mostly with a focus
towards factory automation. This shift is evident in the successful demonstrations
of robots such as Cassie [8–11], Digit [12], ANYmal [13], Spot, Atlas or Unitree
H1 [14], with recent applications like inspection of offshore power plants [15], cave
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Figure 8.1: Showcase of different capabilities such as walking, traversing obstacles,
and slopes. Video https://youtu.be/wBJqv6rsT_k?si=M7TZU-XICmYf211Z

mapping [16], or package delivery.

Despite recent improvements, most commercially available humanoid robots remain
poorly suited for research and development. Many are closed-source, require multi-
ple operators and a gantry to prevent falls, and must be returned to the manufacturer
for repairs. When support is discontinued, researchers are left without spare parts or
technical help. Lastly, the lack of open-source hardware and software further limits
rapid iterations.

Contributions
To make rapid iteration and development of learning-based controllers more ac-
cessible, we introduce a cost-effective and agile bipedal robot (Fig. 8.1) designed
to be manufactured only with 3D-printed materials and waterjet aluminum and
carbon fiber plates. We propose two control strategies: (1) a model-based con-
troller combined with a foot placement scheme based on reduced order models that
compensates for the structural compliance of the 3D-printed design and (2) a rein-
forcement learning-based controller that learns locomotion policies in simulation.
Both the robot’s hardware design and the control algorithms will be released as
open-source to support the research in the broader robotics community.

Notations
Unless otherwise noted, all vector norms are Euclidean. All matrices and vectors
are written in bold. Joints abbreviations: HFE: Hip Flexion/Extension, HAA: Hip
Abduction/Adduction, KFE: Knee Flexion/Extension

https://youtu.be/wBJqv6rsT_k?si=M7TZU-XICmYf211Z
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8.2 Related Work
Mid-size Bipeds and Humanoid Robots

A mid-size bipeds or humanoid robots, as defined in [17], refers to a robot that has
the size of a child. Examples of such robots are the MIT Humanoid [18], HEC-
TOR [19], Bruce [20], Adam [21], Leonardo [22], and the Berkeley Humanoid [17],
as well as a slightly taller version, the Unitree G1. These mid-size bipeds have the
advantage of providing a balance between mechanical simplicity and the ability to
perform dynamic behaviors, such as walking, jumping, or recovering from perturba-
tions, while being safer, easier to prototype, and more cost-effective than full-scale
humanoids.

One of the most closely related efforts is the Berkeley Humanoid, which shares
a similar vision of serving as a research platform for learning-based control [17].
However, unlike our approach, the Berkeley Humanoid is not open-source and
incorporates many custom-machined parts, which increase both the complexity of
fabrication and the overall cost.

Compliant Robot Control

To the best of our knowledge, all high performance humanoid and bipedal robots are
constructed with rigid metal components. When elasticity is present, it is typically
confined to specific areas that can be precisely modeled, such as the knee and heel
springs in Cassie [23]. However, the control problem becomes significantly more
complex when compliance arises in unanticipated areas, as is often the case when
3D printed materials are used.

To compensate for this intrinsic deformation, we incorporate a deformation com-
pensation block in both the model-based and the learning-based controller. This
block adjusts the placement of the joints accordingly, ensuring the robot is stable
while walking.

8.3 Methods: Model-based Control and Planning
In this section, we introduce the methods for the model-based framework consisting
of capture point for foot placement, nonlinear tracking control (Sec. 8.3), inverse
dynamics, inverse kinematics (Sec. 8.3), and trajectory optimization for the feet
(Sec. 8.3). The overall architecture is shown in Fig. 8.2.
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Figure 8.2: a) Control, estimation architecture, and motion planning. q is the
actual joint angle, xI

𝑏
, xI
𝑏

are the position and velocity of the body expressed in the
inertial frame, uST is the foot placement expressed in stance foot frame, uff is the
feedforward torque applied to the motors, as computed by the nonlinear tracking
controller, while 𝝃ST

𝑑𝑒𝑠
and 𝝃ST are the desired and the actual divergence component

of motion. b) Frames of reference for the biped.

Modeling
Frames of Reference

We define the following frames of reference, as shown in Fig. 8.2. Let the inertial
frame, I, be a fixed reference frame and the body frame B a moving reference
frame attached to the robot’s main body. We assume the center of mass of the robot
coincides with the origin ofB. We denoteBL as the body level frame, which has the
origin at the body frame, the vertical 𝑧-component aligned with the 𝑧-component of
the inertial frame, and the 𝑥− and 𝑦− components rotated by the yaw orientation of
the body. Let ST be the stance foot (foot in contact) frame, which has the origin at
the stance foot location and is aligned with the BL frame. Note that this frame will
change with every impact, depending on which foot is in contact with the ground.

Dynamics

The dynamics of the bipedal robot in contact with the ground (8.1) is modeled
as a set of equations: one modeling the multi-body dynamics in the Lagrangian
form, and another one modeling the contacts with the ground [24, 25]. A common
assumption is that the foot-ground contact point, denoted as x𝐶 , does not change at
impact (often called the no-slip condition).

M(q) ¥q + C(q, ¤q) ¤q +G(q) = Bu + J⊤𝐶𝝀,

x𝐶 = J𝐶 ¤q = 0,

x𝐶 = J𝐶 ¥q + ¤J𝐶 ¤q = 0,

(8.1)
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where, q is the combined set of coordinates
(
x𝑏, 𝑹𝑏, q 𝑗

)⊤ ∈ Q = R3 × 𝑆𝑂 (3) × Q 𝑗 ,
where x𝑏 is the position of the floating base of the robot with respect to I, 𝑹𝑏 is the
rotation matrix from B to I, and q 𝑗 are the joint angles. M(q) ∈ R(𝑛+6)×(𝑛+6) is the
inertia matrix, C(q, ¤q) ∈ R(𝑛+6)×(𝑛+6) contains the centripetal and Coriolis torques,
G ∈ R𝑛+6 is the vector of gravitational torques, B ∈ R(𝑛+6)×𝑛 is the actuation matrix,
and u ∈ R𝑛 is the control input. J𝐶 (q) =

[
𝜕xC
𝜕x𝑏

𝜕xC
𝜕q 𝑗

]
∈ R𝑘×(𝑛+6) is the Jacobian

of 𝑘 linearly independent constraints and 𝝀 ∈ R𝑘 is the constraint wrench vector
(vector of forces and moments) [24, 25]. The value of 𝑘 corresponds to the number
of independent contact constraints enforced at the foot-ground or feet-ground contact
points.

Foot Placement and Nonlinear Joint Tracking Control
Linear Inverted Pendulum Model

For foot placement, we model the robot using the Linear Inverted Pendulum (LIP)
simplified model, which assumes a constant Center of Mass (CoM) height, massless
legs, and all mass concentrated at the base. These assumptions align well with our
robot’s physical design. This simplified model is applied in both the sagittal (side
view) and frontal planes.

Let xST𝑐 = [𝑥𝑐, 𝑦𝑐]⊤ be the planar CoM position relative to the stance foot frame.
We then derive the following continuous time second-order linear dynamics

¥xST𝑐 (𝑡) = 𝜔2xST𝑐 (𝑡), (8.2)

where 𝜔 is the natural frequency of the inverted pendulum, defined as
√︁
𝑔/𝑧𝑐, with

𝑧𝑐 the constant height relative to the stance foot and 𝑔 the gravitational acceleration.
The foot stepping strategy is achieved by computing the divergence component of
motion (DCM), which is a point on the ground where the robot should step to
in order to bring itself to a complete stop [26]. This point can be calculated by
imposing xST𝑐 (𝑡) → 0 as 𝑡 → ∞ in the solution of the differential equation (8.2).
Letting the DCM be 𝝃ST = [𝜉𝑥 , 𝜉𝑦]⊤ with

𝝃ST = xST𝑐 + 1
𝜔
¤xST𝑐 , (8.3)

then (8.2) becomes
¤𝝃ST (𝑡) = 𝜔𝝃ST (𝑡). (8.4)

To use (8.4) for planning footsteps, we need to discretize it with the discretization
being the stepping time 𝑇𝑠, assumed constant, as follows

𝝃ST
𝑚+1 = 𝑒𝜔𝑇𝑠𝝃ST𝑚 − uST𝑚 , (8.5)
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where 𝑚 is an integer, counting foot steps, and uST𝑚 is the foot position in the stance
foot frame. The position and velocity transitions between the steps (i.e., velocities
shortly after and before contact) are assumed smooth. Designing a foot planning
strategy for the system in (8.5) summarizes to modifying the swing foot location in
the current footstep, such that the end-of-step DCM follows a desired DCM

uST𝑚 = −𝝃STd,𝑚+1 + 𝝃
ST
𝑚 𝑒𝜔𝑇𝑠 . (8.6)

Interstep Foot Trajectories

To achieve continuous walking, a smooth trajectory for the swing foot should be
generated that starts at its current position and ends at the desired DCM location such
that 𝝃ST → 𝝃STd in (8.5). For this, we solve the following quadratic program (8.7)
in a model predictive control (MPC) fashion

min
p,v,a

{𝑥,𝑦,𝑧}∑
𝑖

(
𝑁∑
𝑛=0
∥a𝑖𝑛∥2 + ∥p𝑖𝑁 − p𝑖,d∥2 + ∥v𝑖

𝑁
− v𝑖,d∥2

)
s.t. p𝑛+1 = p𝑛 + v𝑛Δt

v𝑛+1 = v𝑛 + a𝑛Δt
p0 = pd

0; v0 = vd
0

p𝑛 ∈ P; v𝑛 ∈ V; a𝑛 ∈ A
𝑝𝑧𝑛𝑘 :𝑛𝑘+𝜉 = 𝑝height (trapezoidal profile),

(8.7)

where p = [𝑝𝑥 , 𝑝𝑦, 𝑝𝑧], v = [𝑣𝑥 , 𝑣𝑦, 𝑣𝑧], a = [𝑎𝑥 , 𝑎𝑦, 𝑎𝑧] are the Cartesian position,
velocity, and acceleration of the swing foot in the ST frame, 𝑁 is the number of
discretization steps, Δ𝑡 is the timestep, pd

0 is the initial positions and v0 = vd
0 is

the initial velocity of the swing foot, and p𝑖,d, with 𝑖 = {𝑥, 𝑦} is the desired DCM
location from (8.6). The desired z-component of p𝑖,d is 0, signifying foot contact.

The sets P, V and A are the safe sets for the position, velocity, and acceleration.
P is chosen such that the feet do not cross and intersect, while V and A are
chosen based on the desired velocity and acceleration limits. As the foot position is
expressed in the stance foot frame (ST ), the safe set for the position P will change
with each impact depending on which foot is touching the ground. The position
and velocity are also following kinematic constraints (the 3rd and 4th constraints).
in (8.7). The last constraint in (8.7) ensures the swing foot follows a trapezoidal
profile (lift, keep constant, descent).

In case the optimization problem in (8.7) fails or becomes infeasible, we add several
safety and robustness measures. Specifically, if the optimization problem in (8.7)
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becomes infeasible, the robot’s foot keeps its previous position computed before the
problem became infeasible. The robot might still fall in that situation, but will not
generate aggressive maneuvers. In addition, in case the current time step 𝑛 exceeds
the planned step duration 𝑁 (i.e., 𝑛 > 𝑁 , meaning that impact did not happen in the
prescribed time), the foot will hold its planar position, but keep lowering the vertical
z-component with constant velocity until impact. In this way, we ensure robustness
by accounting for steps with slightly different durations 𝑇𝑠.

Once (8.7) solves, these optimized position, velocity, and acceleration of the swing
foot are used to compute the desired joint motion primitives q𝑑 , q𝑑 , q𝑑 using inverse
kinematics and inverse dynamics, as explained in the next section (Sec. 8.3).

Inverse Kinematics (IK) and Inverse Dynamics (ID)
Inverse Kinematics (IK) For computing the inverse kinematics, we use the iter-
ative Levenberg-Marquardt (LM) damped least squares method with clamped error
per solving step. Algorithm 6 operates concurrently on three bodies: the base
link, the swing foot and the stance foot. In Line 2, we input the homogeneous
transforms Td ∈ SE(3), which represent the desired configuration (position and
orientation) of these bodies expressed in the ST frame. The base link maintains a
level orientation, positioned planarly above the stance foot at a constant height 𝑧𝑐.
The desired position of the swing foot is computed from (8.7). In each iteration 𝑖,
we compute the local Jacobian (Line 8) for each body and its transform T𝑏 ∈ SE(3)
using forward kinematics (Line 9). Next, we then compute the error twist e ∈ 𝔰𝔢

using the pseudo-inverse of the exponential map and clamp it using (8.8). By con-
catenating the individual Jacobians and error vectors of all bodies, we construct a
large Jacobian matrix and a unified error vector (Line 12). These are utilized to solve
for the evolution of the configuration 𝛿q𝑖 via the damped least squares approach in
Line 14.

This method is suitable when the robot follows smooth trajectories, and thus the
computed q does not deviate substantially from its previous value. Therefore, for
this numerical method to converge quickly, the initial guess in Line 3 is chosen to
be the measured q. For repeatability purposes, we choose to run Algorithm 6 with
a fixed number of iterations ITmax. The clamping operator, defined as

clamp(w, 𝐷) =


w if ∥w∥ ≤ 𝐷

𝐷 w
∥w∥ otherwise

, (8.8)

with 𝐷 ∈ R a positive threshold and w ∈ R3 the input vector, reduces oscillations in
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case the target positions are beyond reach and allows the use of a smaller damping
constant 𝜆, which in turn ensures faster convergence.

Next, we compute the desired joint velocities. Let the twist of the base link and
the two feet expressed in the stance foot frame be 𝝂𝑘

𝑏
, with 𝑘 = {0, 1, 2} and the

corresponding Jacobians be J𝑘
𝑏
(q). We compute the desired joint velocities ¤q𝑑 by

solving the following damped least-squares

min
¤q𝑑
∥J(q) ¤q𝑑 − 𝝂∥2 + 𝜆𝑣 ∥ ¤q𝑑 ∥2, (8.9)

where J(q) and 𝝂 are the concatenated Jacobians and twist vectors of the three
bodies, similar to Line 12 in Algorithm 6 and 𝜆𝑣 is the damping coefficient. Note
that to compute the Jacobian in (8.9), we use the measured joint angles q, not the
one computed in Algorithm 6.

Similarly, we compute the desired joint acceleration given the acceleration of the
base link and the two feet expressed in the stance foot frame, a𝑘

𝑏
, with 𝑘 = {0, 1, 2}.

For each body, the acceleration is

a𝑘𝑏 = J𝑘𝑏 ¥q𝑑 + ¤J
𝑘
𝑏
¤q𝑑 , ∀𝑘 = {0, 1, 2}, (8.10)

and as before, we compute the concatenated Jacobians J, the concatenated Jacobian
derivative J and the concatenated acceleration vector of the three bodies a. Lastly,
we solve for ¥q𝑑 in a = J(q) ¥q𝑑 + ¤J(q) ¤q. Note that again we use the measured velocity
of the joints ¤q from the encoders, and not the one computed from (8.9).

Inverse Dynamics (ID) We input the measured joint angles and velocities q, ¤q, the
desired accelerations ¥q𝑑 from Sec. 8.3, the robot model, and output the feedforward
torque uff . We derive this feedforward torque for the case of one contact point
(the stance foot). First, we compute the projection operator P, which is introduced
in (8.13), as well as the inertial matrix M using the composite rigid body algorithm
(CRBA), the gravity term G, and the Coriolis term C. Using these terms and (8.14),
we compute the feedforward torque.

Deformation Compensator Block
For the robot to walk accurately, it needs to precisely place its feet at the precise
DCM location computed in (8.6). However, if there are slight deformations in the
leg, the contact will happen at different locations than predicted. Therefore, we
propose the following strategy to offset the joint angles based on the deformation

qcorr.
𝑗 = q 𝑗 + K̄𝑝f𝑑𝑏 (�̄�𝑗 ), qcorr.

𝑑, 𝑗 = q𝑑, 𝑗 − K̄𝑝f𝑑𝑏 (�̄�𝑗 ), (8.11)
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Algorithm 6 Inverse Kinematics
1: Input
2: Desired T𝑑 for the two feet and the baselink.
3: Initial guess q0, empty Jacobian J.
4: Constants ITmax: number of iterations, 𝜆: damping constant, emag: clamping

error, Δ𝑡: integration step
5: Output Joint angles q𝑑
6: for 𝑖 < ITmax do
7: for 𝑘 < 3 do
8: Compute the Jacobian J𝑘

𝑏
.

9: Compute the transform T𝑘
𝑏
.

10: Compute error e = log((T𝑘
𝑏
(q𝑖))−1T𝑘

𝑑
(q𝑖)).

11: Clamp the translation component of e𝑘 with emag.
12: J = concat(J, J𝑘

𝑏
), e = concat(e, ek).

13: end for
14: 𝛿q𝑖 = −J⊤(JJ⊤ + 𝜆I)e.
15: q𝑖+1 = q𝑖 + 𝛿q𝑖Δ𝑡.
16: end for

where 𝑗 = {KFE,HFE,HAA} for both the right and left legs (see Sec. 8.1 for the
joints abbreviations), q is the measured joint angle from the encoder, q𝑑 denotes
the desired joint angles computed through inverse kinematics, as in Sec. 8.3, �̄� is
the torque from the motors to which we applied a low-pass filter, f𝑑𝑏 is a deadband
function necessary to protect for the noise at low torques, and K̄𝑝 is the corrective
linear map. The deadband is necessary because lower torque levels indicate minimal
load on the robot, resulting in negligible deformation, which should not be com-
pensated for. We learn the K̄𝑝 map by comparing the actual deformation with the
predicted one. The integration of this correction strategy within the robot’s control
architecture is illustrated in Fig. 8.2.

Nonlinear Joint Tracking Controller
Given the set of desired joint motion primitives q𝑑 , q𝑑 , and q𝑑 , we design a feedback
controller u to track these desired motions. Designing u directly from (8.1) is
not possible because the contact wrench is unknown. Therefore, we employ the
method of projected inverse dynamics by projecting (8.1) into the null space of the
constraints, and thus annihilating the unknown contact wrenches 𝝀 [27]. Let P be
the orthogonal projection operator such that PJ⊤

𝐶
= 0. Because the robot is walking

dynamically, we apply the projection operator only in the case of one single contact
(one foot on the ground). For this particular case, the projection operator eliminates
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5 equations from the system in (8.1). The dynamics in (8.1) using the projection
operator become

PM(q) ¥q + PC(q, ¤q) ¤q + PG(q) = PBu+
0

���PJ⊤𝐶𝝀 . (8.12)

It is straightforward to compute the projection operator as

P = I − J+𝐶J𝐶 , (8.13)

where + is the Moore-Penrose right pseudoinverse of the contact Jacobian J𝐶 . Using
this operator, we design the following nonlinear tracking controller

u = uff −K𝑑 ( ¤q 𝑗 − ¤q𝑑, 𝑗 ) −Kp(q 𝑗 − q𝑑, 𝑗 ), (8.14)

with feedforward torque uff = [PB]+P (M¥q + C ¤q +G) where K𝑝 and K𝑑 are posi-
tive gain matrices and q 𝑗 are the joint angles, with 𝑗 = {YAW,HAA,HFE,KFE},
¤q 𝑗 are the joint angles derivative.

Walking Strategy
Next, we introduce the walking strategy (Algorithm 7). The objective of this
controller is to compute the desired transforms, twists, and accelerations T𝑑 , v𝑑 , a𝑑 of
the base link and the two feet. These are then transformed into joint angles, velocities,
and feedforward torques by the IK and ID algorithms, as shown in Algorithm 6
and Sec. 8.3.

First, we initialize the walking parameters in Lines 2-6: 𝑇s, which is the step size,
𝑇buffer, which is a time buffer used to avoid rapid contact switching at impact,
𝑡since last step as the time since the previous impact, and 𝑧c, the desired height of
the robot, selected as in Sec. 8.5. We initialize the robot in a starting-to-walk
configuration (i.e., base link is level, stance foot is on the ground such that the
robot’s height is the desired walking height, and the swing foot raised).

The desired position and velocity from either a joystick or a desired trajectory is
used to compute the desired DCM 𝜉ST

𝑑
. Next, the contact switches mounted onto

the feet are read to detect impacts. The logic for foot switching is in Lines 12-18.
At each timestamp, we compute the desired safe footstep, as shown in Lines 22-24
and solve the optimization problem in (8.7) to compute the swing foot trajectory.
Using the swing foot states, the stance foot states and the baselink states, we solve
the IK and the ID in Line 28.
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Algorithm 7 Walking Controller
1: Input
2: Step size 𝑇𝑠, time to ignore contact 𝑇buffer.
3: Desired height 𝑧𝑐.
4: Set 𝑡since last step = 𝑇𝑠/2.
5: Starting walk configuration T𝑑 , v𝑑 , a𝑑 for the baselink
6: and the two feet.
7: Output
8: Motor inputs: q 𝑗 ,d, q 𝑗 ,d uff .
9: while walking do

10: Get desired DCM 𝝃STd from joystick/desired traj.
11: Read contact states 𝑐swing-foot and 𝑐stance-foot.
12: if 𝑡since last step > 𝑇buffer and 𝑐swing-foot is True then
13: Swap swing foot←→ stance foot.
14: Set initial position of the swing foot p𝑑0 with the
15: previous stance foot position.
16: Set p𝑑0 and v𝑑0 in the optimization problem (8.7).
17: Reset 𝑡since last step := 0.
18: end if
19: Compute baselink position and velocity xST

𝑏
and vST

𝑏

20: from Sec. 8.3.
21: Compute DCM 𝝃ST using (8.3) and set 𝝃ST𝑧 := 0.
22: Compute remaining time 𝑡 := 𝑇step − 𝑡since last step.
23: Compute desired footstep

uST := −𝝃STdes + 𝝃
ST 𝑒𝜔𝑡 .

24: Project uST into a safe radius (Fig. 8.7).
25: Set final p𝑁 with uST in optimization problem (8.7).
26: Get optimal pST , vST , and aST from solving (8.7).
27: Set T𝑑 , v𝑑 , a𝑑 for the baselink and the two feet.
28: Solve IK (Algorithm 6) and ID (Sec. 8.3).
29: end while
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State Estimation
To estimate the velocity of the body in the inertial frame xI

𝑏
:= vI

𝑏
, the quaternion

associated with the rotation matrix 𝑹𝑏, 𝒒𝑏, and the angular velocity of the body, 𝝎𝑏,
we use an error-state Kalman Filter [28] using the proprioceptive sensors such as
the IMU and the joint encoders. We define the errors between the true state and the
nominal state as

xI
𝑏,𝑡

= xI
𝑏
+ 𝛿v, q𝑏,𝑡 = q𝑏 ⊗ 𝛿q.

We also estimate the accelerometer and gyroscope biases, and thus, we define their
errors as

abias,𝑡 = abias + 𝛿abias, 𝝎bias,𝑡 = 𝝎bias + 𝛿𝝎bias.

The kinematics equations for the error-state Kalman filter are

¤𝛿v = −R𝑏 [a𝑚 − abias]× 𝛿𝜽 − R𝑏𝛿abias − R𝑏a𝑛,
¤𝛿𝜽 = − [𝝎𝑚 − 𝝎bias]× 𝛿𝜽 − 𝛿𝝎bias − 𝝎𝑛,

𝛿 ¤abias = a𝑤,

𝛿 ¤𝝎bias = 𝝎𝑤,

where 𝛿𝜽 is the angle vector error, defined such that 𝛿q = 𝑒𝛿𝜽/2, 𝝎𝑚, 𝝎𝑤 and 𝝎𝑛 are
the gyroscope measurements, bias noise and angular rate noise, respectively, 𝒂𝑚,
𝒂𝑤 and 𝒂𝑛 are the accelerometer measurements, bias noise, and acceleration noise,
respectively, and the notation [r]× is the cross products with the vector r with itself.

The measurement equations depend on the foot contact. We assume that the mea-
surement of the velocity of the foot in contact (vI𝑐 ) with the ground is zero, and use
it in the design of the error-state Kalman Filter as follows

vI𝑐 = R𝑏

[
vB𝑐 + (𝝎𝑚 + 𝝎bias) × pB𝑐

]
+ vI

𝑏
= 0.

The position of the foot link in the base link frame is computed using forward
kinematics. The orientation of the foot link frame cannot be measured because the
joint is passive. Lastly, the joint angles q 𝑗 and their velocities are estimated using
encoders.

8.4 Methods: Reinforcement Learning-based Control
In this section, we introduce our approach to controlling the biped using rein-
forcement learning (RL). We first present the problem formulation and the main
algorithm in Sec. 8.4, followed by a discussion of the modifications required to
adapt the algorithm for successful deployment on the biped. These include adding
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input-output histories, modelling time-delay and deformations, and domain random-
ization. Where appropriate, we also draw connections to the model-based control
framework from Sec. 8.3.

Problem Formulation
We formulate the locomotion problem as a Markov Decision Progress (MDP). The
underlying state at time 𝑡 is defined as s𝑡 = {q𝑡 , q𝑡}, with a corresponding observation
o𝑡 . The policy, parametrized by 𝜽 , is defined as

𝜋𝜽 (a𝑡 | h𝑡) where h𝑡 = (o𝑡−ℎ, a𝑡−ℎ, . . . , o𝑡) ,

and maps a history of past observations and actions to the next action a𝑡 . The
learning objective is to find the policy that maximizes the expected cumulative
return

𝜋∗ = arg max
𝜋

E𝜋

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅𝑡 (s𝑡 , a𝑡)
]
,

where 𝛾 is the discount factor and 𝑅𝑡 (s𝑡 , a𝑡) is the reward function. Although the
true state s𝑡 is not fully observed, the policy is trained based on the observed rewards.
To optimize the policy, we use the Policy Proximal Optimization (PPO) [29, 30]
algorithm. PPO is an on-policy actor-critic method that leverages the temporal
difference (TD) error [31] from the critic to estimate the advantage function, which
in turn guides the actor’s policy updates. In our setup, we use an asymmetric actor-
critic variant of PPO, where the critic has access to privileged information (e.g.,
full simulator state) during training to improve the value estimation, while the actor
relies solely on onboard observations available at test time.

Observations and Actions
In contrast to the model-based approach presented in Sec. 8.3, where the control
inputs include desired joint positions, velocities, and feedforward torques, our RL
framework outputs residuals on the target joint angles. These residuals are defined
relative to a static bent-knee configuration in which the robot stands. The residuals
are added to this nominal configuration to form the final joint angle targets, which
are then tracked by the motors’ internal PD controllers to regulate the actual joint
motion. Learning to output full desired trajectories (joint positions, velocities, and
feedforward torques) can make the policy space unnecessarily large. Residual joint
angles reduce this to a compact, interpretable action space.

The observation vector includes a history of the following measurements: linear
velocity in the body frame, estimated as in Sec. 8.3, angular velocity given by the
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gyroscope, the upward direction vector expressed in the body frame, joystick com-
mands, joint angular velocities, and a foot phase signal that encourages sinusoidal
foot motion. During training, noise is added to these measurements to improve
robustness. The privileged observation vector extends this by including the same
measurements without noise, along with additional information: contact states, ac-
tuator forces, foot velocities in the inertial frame, and the duration each foot has
been in the air.

Modeling Time Delay
Time delay is an inherent characteristic in many real-world robotic systems, includ-
ing our biped, due to sensor latency and actuator response time. If not properly
accounted for, it causes instabilities. In this work, we account for time delay during
training by modeling it. We consider a discrete-time delay of 𝑑 timesteps between
the execution of an action and the corresponding observation of its effect. To incor-
porate this delay into our learning framework, we modify the history used by the
policy to include a delayed action-observation pair

h𝑡 = (o𝑡−ℎ, a𝑡−ℎ, . . . , o𝑡−𝑑 , a𝑡−𝑑) ,

where 𝑑 is the time delay. Empirically, we found that a time delay of one step
(𝑑 = 1) is sufficient to mitigate instabilities (jitter in the motors) when the policy
was deployed on hardware. For the model-based approach presented in Sec. 8.3, we
have not found necessary to incorporate any time delay in the planning or control
architecture.

Modeling Deformations
We model the deformation by adding two critically damped springs in series with
the hip actuator. We use the same K̄𝑝 as the one learned in the model-based control
and planning case (Sec. 8.3) and compute K̄𝑣 from the critically damped solution in
the standard damped harmonic oscillator equation. The robot is then trained with
this deformation.

Domain Randomization
For sim-to-real transfer, we apply domain randomization during training. Specifi-
cally, we randomize the floor friction coefficient to simulate varying terrain condi-
tions and slip dynamics. We perturb the mass of individual robot links, including the
torso, to account for manufacturing variability and changes in payload distribution.
To encourage generalization to slight pose estimation or initialization errors, we also
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randomize the initial joint positions at the start of each episode. Additionally, we
vary the actuator gain parameters (K𝑝 and K𝑑). Finally, we perturb the stiffness and
damping parameters of the added joints used to model structural deformations, as
described in Sec. 8.4.

Rewards
The reward function consists of multiple terms designed to encourage stable, energy-
efficient, and task-relevant locomotion. The reward function is formulated as

𝑅𝑡 = clip

(
𝑛r∑︁
𝑖=1

𝑤𝑖𝑟𝑖Δ𝑡, 𝑅𝑚𝑎𝑥

)
,

where 𝑤𝑖 and 𝑟𝑖 are the weight and the reward for each component, and Δ𝑡 is the
discretizations step. The final reward is clipped to remain within reasonable bounds
specified by 𝑅𝑚𝑎𝑥 .

Rewards for tracking We include tracking rewards that incentivize the robot to
follow the commanded linear and angular velocities: a reward for tracking the linear
velocity in the horizontal plane and a reward for tracking the yaw angular velocity,
both shaped as exponential of the squared error.

Rewards for smoothing To promote energy efficiency and smoothness, we pe-
nalize the actuator torques and the rate of change of actions across consecutive time
steps.

Rewards for the feet In terms of feet-related behaviors, we include several reward
components: a reward for longer feet air time, which encourages proper swing
phases; a feet phase reward that encourages sinusoidal foot trajectories aligned with
the current gait phase; and a penalty for feet slipping when in contact with the
ground, discouraging lateral movement during stance.

Rewards for the posture We penalize deviations of the hip and knee joints from
nominal joint angles during walking.

8.5 Hardware Design
The robot has a weight of 7.5 kg and a height of 100 cm. It is composed of two
main subsystems: a torso and two legs with elongated feet, as shown in Fig. 8.1.
Each leg contains 4 motors, 3 of which are used for the hip and knee actuation,
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while the fourth motor is used for the yaw actuation. The robot operates completely
autonomously using its onboard computers, sensors, and battery.

When sizing the robot, two primary design criteria must be considered: (1) selecting
actuators capable of generating sufficient torque to support the robot’s weight and
enable locomotion, and (2) ensuring the actuators can achieve the necessary joint
velocities to facilitate rapid stepping. The latter is particularly critical given the
robot’s low center of mass, which necessitates frequent stepping to maintain dynamic
stability. These design considerations are discussed in this section.

Legs and Feet Sizing

The legs are designed and built to be lightweight with a low moment of inertia,
enabling agile walking. Therefore, the KFE motor is connected at the top, as seen
in Fig. 8.3, and transmits the movement to the knee via a belt mechanism. The lower
leg connects to the foot through a passive spring-loaded hinge, as the ankles are not
actuated. An overview of the leg and its main components can be seen in Fig. 8.3.

A crucial design aspect of the leg lies in the torque produced at the knee joint 𝜏knee,
shown in Fig. 8.3. This torque is a function of the mass of the robot 𝑚, the leg
length 𝐿, and the desired knee flexion/extension angle 𝜃. A trade-off against all these
parameters was performed to find the optimal torque requirement for the motor. Let
𝑚 be the total mass of the robot, 𝜃 the knee flexion/extension half angle, 𝑙 the half
length of the leg, and 𝑔 the gravitational acceleration, as shown in Fig. 8.3. The
torque at the knee can thus be computed as

𝜏knee = 𝑚𝑔𝑙 cos 𝜃.

Considering this torque requirement for different operating points and the differ-
ent COTS motors available, MJBots QDD100 quasi-direct drive brushless motor,
equipped with a planetary gear as the transmission reducer, was identified as the
best option. The torque at the motor 𝜏motor is increased to match the requirements
of the 𝜏knee. For this, we use a belt drive connecting the driver pulley and the driven
pulley, mounted at the knee. The driven pulley is 1.5 larger than driver pulley, which
increases the torque by a 1.5 factor. In Fig. 8.7, we describe the different operating
points for the chosen motor as a function of the leg length and the knee angle.
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Hip Actuation

Apart from the knee motor, each leg contains two additional motors: one control-
ling the abduction/adduction movement and the other regulating flexion/extension
movement. A key requirement for the hip actuation is to ensure the motor is fast
enough to enable fast walking and even running. The required speed of the motor 𝑟
is computed as

𝑟motor =
𝜃swing

𝑇𝑠
,

where 𝜃swing is the maximum swing leg angle. For simplicity, we used the same
motor as for the knee, but without the belt drive transmission system.

Yaw Actuation

At the base of the torso, there are two TMotor 6040V motors, which enables each
leg to rotate in yaw. Unlike the QDD100 motors used for the other parts, these
motors are more lightweight and lack integrated electronics and gears, necessitating
the attachment of an external belt-driven gear to yield the desired reduction rate.
The chosen reduction rate for these actuators is 1/5. These hip motors are interfaced
with an MjBots motor controller, and an external encoder is attached above the
motor’s shaft.

Lower Leg and Foot

The shin consists of a lightweight carbon fibre tube, which connects to the foot
through a hinge. The foot is not actuated, but kept level using a spring. The foot is
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Figure 8.4: Foot Design. Left: Main components of the foot. Right: Close-up of the
contact trigger button used to detect impacts. Note: This trigger is used exclusively
in the model-based planning and control approach, and not in the reinforcement
learning method.

equipped with a button, which allows the robot to detect the impact. An important
design aspect was the material of the foot. After testing several options, we decided
to use mountain bike tires, as shown in Fig. 8.4, due to their high friction coefficient.

Torso Design and Electronics Components

The torso is build out of several plates of waterjet aluminum connected with 3D
printed corners. The torso contains all of the electronics and sensors such as 3
stereo vision cameras, 2 on-board computers, an IMU, power management, and
a battery, as well as the yaw motors. In front of the yaw motors, we mounted
the 3 cameras, configured to approximate the human field of view—close to 180
degrees. These cameras interface with a Jetson Orin computer equipped with 2048
NVIDIA CUDA cores. This setup enables the execution of lightweight, on-board
machine learning algorithms. Additionally, the robot can be tethered via Ethernet
to a more powerful external computer for more computationally intensive tasks.
The secondary on-board computer is a Raspberry Pi, augmented with a CANFd
hat. All motors are daisy-chained, communicating with the Raspberry Pi via the
CANFd protocol. The Raspberry Pi has also the role to hardware-synchronize the
IMU and the three cameras. Power is generated on-board using a Lithium Ion
battery. A power distribution board from MJBots is used to transfer power to all the
components. The entire electronics architecture of the robot can be seen in Fig. 8.5.
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8.6 Empirical Results
Software Architecture
The robot runs ROS 2 on both the Jetson Orin and the Raspberry Pi. For the
model-based planning and control approach described in Sec. 8.3, the Jetson Orin
handles the execution of the walking controller, including inverse kinematics and
dynamics computations. In the reinforcement learning-based approach presented
in Sec. 8.4, the PPO policy is also deployed on the Jetson Orin. The Raspberry Pi
is responsible for low-level motor control in both cases. Communication between
the Jetson Orin and the Raspberry Pi is established via Ethernet. To control the
robot in both simulation and hardware, we use an Xbox controller to provide joystick
commands.

Simulation Environment
We develop a high-fidelity simulation in MuJoCo [32] based on a URDF model
exported from the CAD design of the robot. Accurate mass properties were incor-
porated into the CAD model by inputting the true weights of most components. As
a result, the simulated mass closely matches the physical robot: the CAD-estimated
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Table 8.1: Inverse Kinematics Coefficients used in Algorithm 6 and robot parameters

ITmax 𝜆 𝜆𝑣 emag Δ𝑡 𝑇𝑠 [s] 𝑧𝑐 [m]

400 1e-5 1e-5 0.002 0.1 0.25 0.55

weight is 7.354 kg, compared to the actual robot’s weight of 7.412 kg. To further
align simulation with reality, we modeled the actuators to reflect the hardware, al-
lowing us to use the same control gains in both simulation and hardware. Finally,
we incorporated structural deformations observed in the hardware, as described in
Sections 8.3–8.4.

Implementation Details for the Model-based Planning and Control
Interstep Foot Trajectories

The problem in (8.7) is put in the form of a Quadratic Program (QP) required by the
OSQP package [33], and is solved at a rate of 𝑓 = 100 Hz. The number of steps 𝑁
in (8.7) is computed as the fraction between the step time and the period 𝑇𝑠

1/ 𝑓 .

Inverse Kinematics and Dynamics

The robot’s inverse kinematics and dynamics are computed using the open-source
software package, Pinocchio, which is a fast implementation of Rigid Body Dy-
namics algorithms and their analytical derivatives [34, 35]). The parameters used
in Algorithm 6 are shown in Table 8.1. One key challenges in selecting these pa-
rameters is ensuring the iterative algorithm runs at a consistent rate of 100 Hz and
has no delay.

Walking Algorithm

The walking algorithm presented in Algorithm 7 runs at 100 Hz on-board the Jetson
Orin.

Implementation Details for the Reinforcement Learning Controller
We implement the training pipeline using JAX [36], leveraging Brax [37], MuJoCo
Playground [38], and MuJoCo MJX as frameworks. We simulate 8192 biped envi-
ronments in parallel, using a batch size of 256. The policy and value function are
both modeled as multi-layer perceptrons with hidden layers of sizes [512, 256, 128].
Training is conducted for a total of 200 million steps, although performance tends to
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Figure 8.6: Testing setup. a) FLIR camera view of the robot while walking for
debugging purposes. b) Visualization of the robot in RViz with markers.

plateau after approximately 15 million steps. To improve stability and learning effi-
ciency, we normalize the observations, privileged inputs, and estimated advantages.
At deployment, the policy runs at 100 Hz.

Hardware Experiments
Walking Experiments for the Model-based Planning and Control

We evaluate the performance of the model-based planning and control algorithm
(Sec. 8.3) through hardware walking experiments on flat ground and we show
qualitative results. As shown in Fig. 8.7, the controller accurately tracks both the
position and velocity trajectories of the knee and hip joints for the left and right
legs. In Fig. 8.8, we analyze the footstep timing during walking. The top plot shows
that the timing of actual foot impacts closely follows the planned contact sequence,
computed in (8.6). The middle and bottom plots further illustrate that the DCM
remains aligned with its desired DCM.

Walking Experiments with Reinforcement Learning

We also evaluate the reinforcement learning-based controller through hardware
walking experiments on flat terrain. As shown in Fig. 8.9, the learned policy
successfully enables walking, with the top two plots demonstrating consistent joint
position trajectories for the knee and hip joints of both legs. The bottom two plots
show the corresponding joint velocities, indicating smooth periodic motion with
minimal oscillations.
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Figure 8.7: Performance of the model-based planning and control algorithm. Posi-
tion and velocity tracking of the knee and hip joints while walking on flat ground
for the left and right leg.

Limitations
We present several limitations of our platform, as follows.

1. Lack of ankle actuators: The robot currently lacks ankle actuators, requiring
frequent stepping to maintain balance. This choice was made to simplify the
initial design. In future iterations, we plan to incorporate ankle actuators to
enhance stability and performance.

2. The “no slip” assumption at the contact point, as shown in equation (8.1),
presents a significant limitation. This assumption does not hold on slippery
surfaces, where the robot often experiences slips leading to balance loss and
falls. This issue highlights the need for revising this assumption to better
accommodate real-world conditions.

3. Walking with bent knees: The robot adopts a gait where the knees are bent
due to the LIP model assumption. This behaviour is present in the RL
framework due to the design of the reward function. This walking style
is energy inefficient. Addressing this inefficiency in future designs could
improve the robot’s energy consumption.
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4. For detecting foot impact in the model-based framework, we utilize con-
tact switches, which incorporate springs to register contact. However, these
switches pose challenges due to the high acceleration at impact, which can
damage the springs. This necessitates considering more durable alternatives
in future designs to enhance the robustness of our impact detection system or
eliminate the use of buttons altogether.

8.7 Conclusion
We present the design, control, and hardware implementation of a bipedal robot
capable of dynamic walking. To address structural deformations, we introduced
a compensator block that adjusts joint angles based on estimated deflections in
the robot’s frame. The hardware design was detailed, with a focus on the leg
architecture, hip and yaw actuation, as well as the lower leg and foot components.
We implemented two distinct walking control strategies on the same platform:
a model-based controller and a reinforcement learning-based controller. Finally,
we demonstrated the robot’s walking capabilities through hardware experiments
conducted on flat terrain.
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Figure 8.9: Performance of the RL controller. (top two plots) Position tracking
of the knee and hip joints while walking on flat ground for the left and right leg.
(bottom two plots) Measured velocity for the knee and hip joints.

Lessons Learned
Selecting Motors and their Drivers

Understanding how the specifications of a motor were measured under various
operating conditions is crucial for selecting the right component. For instance,
when a vendor claims that a motor delivers a specific torque, they must specify the
conditions under which this measurement was made. This was a key factor in our
decision to choose the MJBots QDD100. The vendor provided detailed operating
conditions, as summarized in Table 8.2. These specifications include measurements
taken at zero speed in a controlled environment (ambient temperature of 20°C, 24V
input, no airflow or heatsink) until thermal limiting occurs. If this information is
not clearly provided by the vendor, then bench tests are required.

Another essential criterion was the integration of a motor controller, preferably
with a controller area network (CAN) interface, along with open-source firmware
and hardware. The availability of open-source hardware was particularly beneficial
during testing; if components were damaged, we could quickly replace them using
a soldering gun instead of purchasing a new board. This not only saved costs but
also enhanced our flexibility in managing hardware issues.
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Table 8.2: Torque specifications of the QDD100 motor.

Indefinite 400 [s] 60 [s] < 1 [s]

3.3 [Nm] 6 [Nm] 10 [Nm] 16 [Nm]

Trajectory Optimization

Initially, we opted for an easier solution to solve the problem presented in (8.7).
Specifically, we used a third-order polynomial

𝑠(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3,

where 𝑡 is the time and 𝑎0, 𝑎1, 𝑎2 and 𝑎3 are the coefficients. For the planar
motion, we compute the polynomial coefficients in closed form solution based on
the following initial and final conditions: 𝑠(0) = 𝑝0, ¤𝑠(0) = 𝑣0, 𝑠(𝑇𝑠) = 𝑝 𝑓 and
¤𝑠(𝑇𝑠) = 0, where 𝑝0 and 𝑝 𝑓 are the initial and final positions and 𝑣0 is the initial
velocity of the swing foot. Note that 𝑝 𝑓 will be the DCM location. For the vertical
motion of the foot, we use a trapezoidal motion profile [39]. For the final condition,
we do not impose ¤𝑠(𝑇𝑠) = 0, but ¥𝑠(𝑇𝑠) = 0, such that the foot would continue to
penetrate into the ground until the impact is detected. While being much simpler
in practice, this method posed issues as velocity and position limits could not have
been imposed.

Monitoring Motor Sensors

It is important to monitor the temperature and voltage of the motors during operation.
The temperature of the motors is a crucial parameter to monitor, as it can indicate
when the motor is close to overheating. Fig. 8.10 shows the temperature and voltage
of the motors during walking. We can thus conclude that the motors keep an overall
low temperature during operations and there are no spikes in the voltage, which
would indicate a malfunctioning motor.
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C h a p t e r 9

CONCLUSIONS

9.1 Summary of Contributions
To enable autonomous operation in unstructured and dynamic settings, two key tech-
nologies are essential: vision-based autonomy and real-time adaptation. There-
fore, a core belief I developed during my PhD was that control theory methods, like
adaptive control or nonlinear control, should integrate perception. To address this
issue, we developed MAGIC-VFM, published in IEEE Transactions of Robotics [1].
To model and adapt to ground disturbances, this work introduces a meta-learning
algorithm with a visual foundation model [2], which is integrated with composite
adaptive control at runtime to: (1) adapt to unseen terrain changes and (2) adjust to
internal robot dynamics, such as faults. For this method, we also prove exponential
stability and robustness against model errors using Lyapunov theory. We are able
to achieve these mathematical guarantees by enforcing the Lipschitz continuity [3]
of the deep neural network used as the basis function of the adaptive controller. A
key finding is that a learned environment model significantly reduces the tracking
error (the error between the desired trajectory and the actual trajectory), and incor-
porating a visual foundation model enhances performance by enabling the robot to
better understand the terrain it operates on.

A key motivation driving this work, one I personally prioritized, was to demonstrate
that methods with strong empirical validation in robotics can be adapted for space
applications. My goal was to bridge the gap between the traditionally conservative
space domain and the rapid, iterative development practices of the robotics commu-
nity. Therefore, the second part of the thesis focuses on the problem of detecting
spacecraft parts in space using thermal and RGB cameras. We propose a method
for knowledge distillation of a Visual Foundation Model, which is a technique to
transfer knowledge from a large teacher network to a smaller student network. We
show that the student network is able to achieve very good performance on the task
of detecting spacecraft parts in space using both thermal data and RGB data. We
launched our algorithms in space on-board a Jetson TX2 inside the Edgenode Lite
cubesat.

Enabling rapid space exploration requires careful consideration of the robot’s form
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factor, particularly for systems with multiple degrees of freedom. The third part
of this thesis focuses on the design and control of two such platforms: Leonardo
and a custom-designed biped. For Leonardo, my primary contributions include
the development of a nonlinear tracking controller with adaptation to enhance its
walking performance, a slacklining foot planner, and the execution of the hardware
experiments. For the biped, the thesis presents both the hardware design and the
planning and control pipeline using two methods: model-based and RL, developed
to support agile locomotion.

9.2 Open Questions
Based on the research presented in this thesis, we have identified several open
questions that could be addressed in the near-future work. These questions are
related to the limitations of the current work presented in this thesis. In Sec. 9.3, we
present a series of future directions that could be pursued to address these limitations
and further advance the state-of-the-art in the field of robotics. These directions are
on a larger timescale and are not limited to the specific research presented in this
thesis.

MAGIC-VFM

• Investigate the performance of the MAGIC-VFM controller for more diverse
sets of terrains and environments. Extend the experiments to planning on
real-world robots.

• Extend the framework to legged robots by learning the residual contact force
model based on the terrain features. Some preliminary work addressing this
can be seen in Appendix C.

• Embed uncertainty quantification into the MAGIC-VFM framework to ac-
count for the uncertainty in the terrain model. Use this to generate safe
trajectories in a planning framework. Some preliminary work addressing this
can be seen in Appendix D.

• Investigate a suitable way to merge the features from a VFM into an elevation
map as the robot is traversing the environment and investigate an efficient way
to store the VFM features in the elevation map.

• Develop a better controller for the car with front steering that does not decouple
the longitudinal and lateral dynamics.
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Vision-based Detection of Spacecraft Parts

• Investigate other methods of doing knowledge distillation to improve the
performance of the student network.

• Investigate the robustness of distilling with DINO, which is trained on RGB
data, when the student network is further trained on thermal data.

• Extend the detection algorithms to other areas of interest, such as graspable
areas for manipulation tasks in space.

Leonardo

• Currently the robot supports about 50% of its weight with its legs. The
remaining weight is supported by the propellers, which makes the robot be
energy inefficient. The robot should be able to support its weight with its legs
and use the propellers only for stabilization or flying.

• Development of a more robust foot design.
• Development of a high level hybrid planner that is able to plan trajectories

for the robot and switch between different modes of locomotion based on the
environment.

Biped

• Currently, the legs have some elasticity caused by the 3D printed materials.
This elasticity is modeled in the controller and compensated for. A better
solution would be to use more rigid materials for the legs, but they come at
the price of being harder to manufacture.

• Adding ankle actuators to the robot would allow it not have to constantly step
in place to maintain balance.

• Development of better, more lightweight feet that are able to adapt to different
terrains.

9.3 Future Directions
Algorithms for Learning-based Control and Planning

Problem 1: Understanding the Reward Process for Agents that can Learn Continu-
ously

The reward function plays an important role in planning, as it impacts the gradients
that guide the policy learning. Reinforcement Learning (RL) agents often discover
unintended strategies to maximize this reward [4], which makes understanding the
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impact of reward choices complex. Moreover, sparse rewards pose a significant
challenge in RL. For instance, when training a humanoid robot, a sparse reward
like accomplishing a goal, for example “opened door”, is unlikely to succeed. The
robot’s initial actions are likely to result in falling, providing little useful feedback.
Humans often experiment with different reward functions until the desired behavior
is achieved. Sparse rewards are frequently replaced with dense, intermediary rewards
to provide better guidance; for example, a robot might use a gait library [5]. Rewards
are also commonly adjusted during training as learning progresses.

Problem 2: “A major goal of artificial intelligence (AI) is to understand how an AI
agent can obtain and reason with a high-level model of the world.” [6]. Oftentimes,
the agent needs to execute multiple tasks at different time scales [7]. For instance,
a walking robot may need to walk or run (which is a low-level task), open the
door (higher level task), and then eventually, recharge itself once other goals are
completed. The design and practical implementation of algorithms capable of
coordinating such diverse tasks remain not fully understood.

Problem 3: Distributional Reinforcement Learning

The models used for planning are often inaccurate. This is caused by insufficient data
or the use of function approximators that generalize imperfectly [4]. The reliance
on a single point estimate for the model during planning can pose problems because
planning algorithms are designed to optimize performance within the constraints
of the given model, making them particularly effective at exploiting even small
inaccuracies in the dynamics [8]. As a result, these errors propagate and significantly
impact the resulting policy.

Problem 4: Novel Hardware Designs

Advanced algorithms alone are not sufficient for enabling robots to perform complex
tasks; equally critical is the development of hardware capable of supporting these
algorithms. This highlights the need for research in robotics hardware, spanning
novel materials, actuation systems, and overall mechanical design. In the context
of bipedal locomotion, one persistent challenge is the design of adaptive feet. The
human foot integrates muscles, tendons, and bones to provide both stability and
adaptability across diverse terrains. With the same hardware, humans can transition
between various locomotion modes, such as walking and running, while leverag-
ing highly developed tactile sensing in the feet to perceive surface properties. In
contrast, robotic feet are often rigid and lack sensing capabilities. While promis-
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ing innovations have emerged, such as biologically inspired foot mechanisms [9],
they remain far from replicating the functionality of the human foot and are not yet
widely adopted. Similarly, motor design offers substantial room for improvement,
particularly through the integration of compliant elements like springs.

Another underexplored area is distributed tactile sensing. Human skin provides
continuous, high-resolution feedback that enables precise manipulation and inter-
action with the environment. Replicating such distributed sensing in robots could
significantly enhance their dexterity and adaptability.

Finally, incorporating additional sensory modalities, such as auditory perception,
could expand robotic capabilities. Humans rely on sound cues for tasks ranging
from spatial awareness to social interaction. Enabling robots to process and act
upon auditory information could open new avenues for perception and control in
unstructured environments.
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A p p e n d i x A

EXTENSIONS OF CHAPTERS II-V: MAGIC-VFM

Note: This chapter is based on unpublished work.

In this section, we present several extensions of the MAGIC-VFM algorithm. The
first extension (Appendix A.1) adapted specific components of the MAGIC-VFM
controller for a high-speed racing car, as part of the Indy Autonomous Challenge.
The second extension presents the hardware experiments conducted for the Gradient-
based Adaptive Policy Selection (GAPS) algorithm applied to a small-scale RC
racing car [1].

A.1 Model-Based Control for Autonomous Racing Cars

Figure A.1: The Caltech Indy Autonomous Challenge car.

I was briefly involved in the Indy Autonomous Challenge where I implemented the
tracking controller for a full-scale high-speed racing car, as well as improved the
motion planner by integrating a KD-tree for efficient nearest-neighbor search of the
next waypoint. In this subsection, I present results from preliminary tests conducted
at the Kentucky Motor Speedway in November 2024. Note that the system was
further improved and robustified for the actual competition in the Las Vegas track
in January 2025 where the car achieved a speed of 145 mph.
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Motivation
Autonomous vehicles deployed in urban environments, such as Waymo, are designed
to navigate safely and efficiently, focusing on low-speed maneuvers and complex
interactions with pedestrians and other traffic elements. In contrast, Tesla’s autopilot
technology presents advancements in autonomous highway driving, though it still
needs the presence of a human driver ready to intervene when needed. On the
other end of the spectrum, race cars are designed to maximize performance, often
pushing the limits of their sensors and control systems. Racing offers a testing
ground for autonomy algorithms to operate under extreme conditions. The Indy
Autonomous Challenge exemplifies this, providing a platform for university teams
globally to compete and advance technologies that will lead to the commercialization
of fully autonomous vehicles and enhance the deployment of advanced driver-
assistance systems (ADAS) for improved safety and performance. Caltech joined
this competition in late 2024 with our vehicle illustrated in Fig. A.1.

Modelling
We model the dynamics of the car as in (3.24)-(3.25). Compared to a Traxxas RC
electric car used in the MAGIC-VFM article, the Indy car’s transmission system is
much more complex, with the control inputs being not only the steering angle, but
also throttle, brake, and gear.

Steering Controller

We define the tracking errors with respect to the desired trajectory as in (3.26)-(3.28).
Using these error definitions, we can write the dynamics as

¤e =


0 1 0 0
0 − 𝐶𝑦

𝑚𝑣B𝑥

𝐶𝑦
𝑚

0

0 0 0 1
0 0 0 − 𝐿2𝐶𝑦

2𝐼𝑧𝑣B𝑥


e +


0
𝐶𝑦
𝑚

0
𝐶𝑦𝐿

2𝐼𝑧


𝑢𝛿 +


0
−𝑣B𝑥

0
− 𝐿2𝐶𝑦

2𝐼𝑧𝑣B𝑥


𝜔𝑑 ,

:= A(𝑣B𝑥 (𝑡))e + B1𝑢𝛿 + B2𝜔𝑑 ,

(A.1)

where e := [𝑒⊥, ¤𝑒⊥, 𝑒2, ¤𝑒2] is the error vector and 𝜔𝑑 is the desired angular velocity
of the trajectory. Recall from Sec. 3.5 that 𝑒⊥ the distance of the center of gravity
of the vehicle from the desired trajectory, 𝑒2 is the orientation error as a difference
between the actual orientation 𝜓 and the desired orientation 𝜓𝑑 , 𝐶𝑦 is the cornering
stiffness coefficient, 𝐿 is the car length, 𝑚 is the mass of the vehicle, 𝐼𝑧 is the
moment of inertia about the vertical axis, 𝑣B𝑥 is the longitudinal velocity of the
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vehicle, and 𝑢𝛿 is the steering angle input. First, we perform the reachability test for
the system (A.1) to ensure that the system is controllable. For this, we show that the
reachability matrix is full rank

rank
[

B1 AB1 A2B1 A3B
]
= 4,

which is a necessary condition for the system to be controllable. We then design a
controller for the system (A.1) using the following control law

𝑢𝛿 = −Ke + 𝛿ff , (A.2)

with K ∈ R4, a diagonal matrix with positive values 𝑘1, 𝑘2, 𝑘3, 𝑘4 and 𝛿ff , a feed-
forward term. This term is designed to compensate for the effect of the disturbance
term B2𝜔𝑑 in the dynamics (A.1). Note that the effect cannot be fully canceled, as
shown next. We will follow a similar technique as in [2]. The steady state of the
system is computed as

ess = −(A − B1K)−1(B1𝛿ff + B2𝜔𝑑),

where we ensure K is selected such that the matrix is invertible. After further
manipulation, we obtain the following steady state error 𝜓𝑒

𝜓𝑒,𝑠𝑠 =
𝐿

𝑅
−
𝑚(𝑣B𝑥 )2
𝐶𝑦𝑅

,

where we used the fact that 𝜔𝑑 =
𝑣B𝑥
𝑅

, with 𝑅 being the radius of the trajectory. We
notice that 𝛿ff cannot fully cancel the effect of the affine term in (A.1), as the steady
state error 𝜓𝑒,𝑠𝑠 is independent of 𝛿ff . We will therefore select 𝛿ff such that 𝑒⊥ → 0
as 𝑡 →∞.

Theorem 4 By applying the controller in (A.2) to the dynamics that evolve accord-
ing to (A.1) using the feedforward term

𝛿ff =
𝐿

𝑅
(1 − 𝑘3) + 𝑘3

𝑚(𝑣B𝑥 )2
𝐶𝑦𝑅

, (A.3)

the tracking error converges to a bounded error ball given by

lim
𝑡→∞
∥e∥2 ≤

1
𝜆max(A − B1K)

√︄
4
����𝜉 (𝑘3 − 1.0)

𝑚𝑅

����2 + ����𝐿𝑘3𝜉

𝐼𝑧𝑅

����2, (A.4)

where 𝜉 := 𝐶𝑦𝐿 − 𝑚(𝑣B𝑥 )2 is defined for ease of notation.
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Proof 6 The closed-loop system is

¤e = (A − B1K)e + B1𝛿ff + B2𝜔𝑑 .

Using a Lyapunov function as V = e⊤e, and computing its time derivative, we
obtain

¤V = e⊤(A − B1K)e + e⊤B1𝛿ff + e⊤B2𝜔𝑑 ,

where we select K such that A − B1K is Hurwitz. We then bound the terms as
follows:

¤V ≤ 𝜆max(A − B1K)∥e∥22 + |e
⊤ (B1𝛿ff + B2𝜔𝑑) |,

≤ 𝜆max(A − B1K)∥e∥22 + ∥e∥2∥B1𝛿ff + B2𝜔𝑑 ∥2.
(A.5)

Given that ¤V = 𝑑
𝑑𝑡
(∥e∥22), we can further simplify (A.5) as

𝑑

𝑑𝑡
∥e∥2 ≤ 𝜆max(A − B1K)∥e∥2 + ∥B1𝛿ff + B2𝜔𝑑 ∥2.

Using Comparison Lemma [3], we conclude that the tracking error norm converges
to a bounded error ball defined by (A.4).

Forward Velocity Controller Design

We model the forward velocity component by considering the aerodynamic forces
and the rolling friction acting on the vehicle. The dynamics thus becomes:

𝑚 ¤𝑣𝑥 = 𝑢 − 𝑚𝑔𝐶r sgn(𝑣𝑥) −
1
2
𝜌𝐶d𝐴𝑣𝑥 |𝑣𝑥 |, (A.6)

where for ease of notation, we omit the frame notation B for the forward velocity.
Here, 𝑢 is a virtual input, 𝑚 is the vehicle’s mass, 𝑔 is the gravitational acceleration,
𝐶r is the rolling resistance coefficient, 𝜌 is the air density, 𝐶d is the drag coefficient,
and 𝐴 is the frontal area of the vehicle. Note that sgn(𝑣𝑥) is replaced by tanh(𝑣𝑥)
to avoid stiffness issues during numerical integration. We can thus write the true
system dynamics in (A.6) as

𝑚 ¤𝑣𝑥 = 𝑢 − 𝝓(𝑣𝑥)a,

where the basis function is 𝝓(𝑣𝑥) =
[
𝑚𝑔 tanh(𝑣𝑥) 1

2𝑣𝑥 |𝑣𝑥 |
]⊤

and a = [𝐶𝑟 , 𝜌𝐶𝑑𝐴]
are the true parameters. Let the estimated value of a be â and define the error
function 𝑠𝑣 = 𝑣𝑥 − 𝑣𝑥,ref , with 𝑣𝑥,ref the reference velocity. We design an adaptive
controller such that 𝑠𝑣 → 0, as follows

𝑢 = 𝑚 ¤𝑣𝑥,ref − 𝝓(𝑣𝑥)â − 𝑘𝑣𝑠𝑣, (A.7)
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Table A.1: Racing vehicle parameters and control parameters

𝐶𝑦 𝑚 𝐼𝑧 𝜏 𝐿 𝑘1 𝑘2 𝑘3 𝑘4 𝑘 𝐼

70000 815.11 800.0 0.1 2.97 0.97 0.72 4.33 0.0 0.8

where 𝑘𝑣 is a positive constant. We then design a tracking-based adaptive law for â
as ¤̂a = −𝚪𝚽𝑠𝑣, where 𝚪 is a positive definite matrix. To convert A.7 into a throttle
and brake command, we use a mapping function that converts the control input 𝑢
into throttle and brake commands, as follows

𝑢 =


𝑘𝑇𝑢𝑇 if 𝑢 ≥ 0,

𝑘𝐵𝑢𝐵 if 𝑢 < 0,
(A.8)

where 𝑘𝑇 and 𝑘𝐵 are positive constants, derived from system identification, and 𝑢𝑇
and 𝑢𝐵 are the throttle and brake commands, respectively.

Motion Planning

The race lines and pits are computed offline using [4]. The output from the trajectory
are a list of waypoints that the vehicle should follow, a heading angle, a forward
velocity profile, and a curvature profile. We use a KD-tree to efficiently search
for the nearest point in the trajectory to the vehicle’s current position. The desired
forward velocity is 𝑣𝑥,ref in (A.7), and the desired heading angle from the trajectory
is used to compute the orientation error 𝑒2 in (A.1).

Empirical Results
Simulation Results We setup a simulation environment using (3.24)-(3.25) to
validate the steering controller in (A.2) and ensure the feedforward term performs
as intended. The parameters of the vehicle are presented in Table A.1. The for-
ward velocity is modeled as a first order time delay system and the corresponding
controller resembles (3.14) without adaptation. The input trajectory is a circle with
desired radius and velocity of 40 m/s. We present the results in Fig. A.2, and show
that without the feedforward term, the vehicle’s perpendicular error 𝑒⊥ does not
converge to 0. Using feedforward and adaptation, 𝑒⊥ → 0, the convergence rate is
higher.

Hardware Results We present the results of the steering controller in (A.2) with-
out the feedforward term and the forward velocity controller in (A.7) with constant
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Figure A.2: Comparison between the controller in (A.2) with and without feedfor-
ward and with adaptation of 𝑒⊥.

basis function 𝝓 on-board Dallara vehicle (Fig. A.1). For the throttle and brake
commands we use (A.8).

The vehicle was tested at the Kentucky Motor Speedway to follow a pre-defined
race line, computed offline using [4]. The performance of the system is shown in
Fig. A.3, which presents the actual path of the vehicle compared to the planned
trajectory. In Fig. A.4, we present the tracking of the forward velocity as well as the
errors terms from (A.1). Note that the maximum speed that the vehicle was tested
on was 35 m/s, which corresponds to 80 mph.

Acknowledgements Dr. Matt Anderson for the hardware and software interfaces,
Deemo Chen and Prof. Xingxing Zuo for the state estimation, John Lathrop for the
trajectory planning, Joshua Cho for the help on the controller and testing, as well as
the Caltech Racing Team for the support and collaboration.

A.2 Experiments for the Gradient-based Adaptive Policy Selection (M-GAPS)
Algorithm

Introduction
Gradient-based Adaptive Policy Selection (M-GAPS) [5] is a non-episodic model-
based reinforcement learning algorithm that studies the problem of online adaptive
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policy selection for nonlinear time-varying dynamical systems. The algorithm
requires the knowledge of 4 components: (1) a dynamics model x𝑡+1 = f (x𝑡 , u𝑡), (2)
a policy class 𝜋(x𝑡 , 𝜽𝑡), (3) a cost function 𝐶𝑡 (x𝑡 , u𝑡) and (4) access to the partial
derivatives of the dynamics and cost along the visited trajectories. The end goal is
to minimize the total cost over a finite time horizon 𝑇 :

∑𝑇
𝑡=0𝐶𝑡 (x𝑡 , u𝑡). The online

policy selection algorithm optimizes this total cost by selecting the parameters 𝜽

sequentially.

Results
We demonstrate the effectiveness of the M-GAPS algorithm on-board a vehicle with
Ackermann steering. The model used is described in (3.24)-(3.25) and the steering
and velocity controllers (policies) in (A.2) and (A.7), respectively. The parameters
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Figure A.5: Planar trajectory color-coded by time to illustrate trajectory tracking
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𝜽 of the policy are 𝑘1, 𝑘2, 𝑘3, 𝑘4, which parametrize the steering controller and 𝑘𝑣,
which parametrizes the velocity controller, as explained in Appendix A.1. During
the experiment run, conducted at CAST, M-GAPS performs real-time adjustments
of the controller parameters to minimize a certain quadratic cost function defined as

cost = x⊤Qx + u⊤Ru, (A.9)

where x is the state of the robot and u is the control input (the steering angle and
the forward acceleration). See Chapter 3 for more details on the definitions of x and
u. In this experiment, the algorithm adjusted the controller parameters, effectively
performing gain tuning as described in control theory. However, the approach is
more general and can be applied to optimize any parameters of a policy, not just
gains. Initially, the robot started driving in a circular trajectory using manually
optimized gains. After a short period, the M-GAPS algorithm was activated to
dynamically adjust the gains 𝑘1, 𝑘2, 𝑘3, 𝑘4, and 𝑘𝑣 to further reduce the tracking
error. Fig. A.5 illustrates the planar position over time, with the trajectory color-
coded by time to visualize the improvement in trajectory tracking under the influence
of the M-GAPS algorithm. In Fig. A.6, we outline the cost decrease under the M-
GAPS algorithm and the dynamic adjustments of the parameters of the policy. For
another experiment, in Fig. A.7, we emphasize the tracking error decrease when M-
GAPS is enabled. The M-GAPS code was implemented using Symforce, which is a
fast symbolic computation and code generation library for robotics applications [6].
This implementation choice is driven by the need for gradients of the dynamics and
cost functions, which are needed for the algorithm’s functionality.
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Figure A.6: Performance for M-GAPS. (left plot) Cost decrease with the M-GAPS
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A p p e n d i x B

EXTENSION OF CHAPTER VI: ON-ORBIT DEMONSTRATION

Note: This chapter is based on unpublished work.

B.1 Chapter Summary
Flight Hardware
The Edge Node spacecraft, which is a successor of the Edge Node Lite spacecraft
flown in space, is presented in Fig. B.1.
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Figure B.1: Edge Node spacecraft [1]

Implementation on-board Flight Hardware
Our experiment is wrapped into a Docker compose, which is a tool that simplifies the
process of defining and managing multi-container Docker applications. The Docker
file is responsible for the following tasks: (1) Starting the ROS2 nodes. (2) Starting
the ROS2 bags. (3) Stopping the ROS2 nodes and bags. The flight computer, a
32-bit ARM Cortex-M7, is in change of scheduling the commands to start and stop
the Docker containers.

Power Modes. Each Jetson TX2 module offers several predefined power modes for
specific power budgets. These modes also adjust the frequencies of the GPU and
CPU. Initially, our experiments led to a brownout on the Jetson TX2 due to its power
consumption exceeding the spacecraft’s allocated power budget. We resolved this
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Figure B.2: Performance of the NVIDIA Jetson TX2 computer during inference of
the Dino+FastSCNN algorithm.
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Figure B.3: Performance of the NVIDIA Jetson TX2 computer during inference of
the YoloV8 algorithm.
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Figure B.4: Performance of the NVIDIA Jetson TX2 computer during training of
the YoloV8 and Dino+FastSCNN algorithms.

issue by setting the Jetson TX2 to Power Mode 2 (MAX-P).



191

Figure B.5: Number of lines of code for the YoloV8, Dino+FastSCNN, and ROS2
code bases.

Table B.1: Different modes for the NVIDIA Jetson TX2. In orange, we outline the
mode used for computer on-board the Edge Node Lite spacecraft.

Property MAX-N
(Mode 0)

MAX-Q
(Mode 1)

MAX-P
(Mode 2)

MAX-P*
(Mode 3)

MAX-P
(Mode 4)

Power Budget N/A 7.5 W 15 W 15 W 15 W
Online A57
CPU

4 4 4 4 1

Online D15
CPU

2 0 2 0 1

A57 CPU max
freq (MHz)

2000 1200 1400 2000 345

D15 CPU max
freq (MHz)

2000 N/A 1400 N/A 2000

GPU max freq
(MHz)

1300 850 1122 1122 1122

Memory max
freq (MHz)

1866 1331 1600 1600 1600
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A p p e n d i x C

EXTENSION OF CHAPTER VII: LEARNING-BASED CONTROL
FOR BIPEDAL LOCOMOTION

C.1 Chapter Overview
Note: This chapter is based on unpublished work.

In this chapter, we present preliminary work on learning-based control algorithms
that incorporate vision information for bipedal locomotion. The experiments and
methods are developed using the bipedal robot introduced in Chapter 8. We recom-
mend that readers first review that chapter to familiarize themselves with the robot
model, control architecture, and notation used throughout this appendix.

C.2 Motivation
Model-Free Reinforcement Learning Algorithms
Successfully applying Proximal Policy Optimization (PPO) to bipedal robots typi-
cally requires two components:

• Reward shaping, often involving hand-crafted reward functions or references
to precomputed gait libraries.

• Domain randomization, to address the sim-to-real gap by exposing the policy
to varied dynamics during training.

However, even when these components are in place, existing approaches exhibit key
limitations. Policies trained in simulation are frozen at deployment time, meaning
the bipedal robot does not adapt or learn new behaviors on the fly. Recent work
shows that vanilla RL algorithms such as PPO and DDPG tend to lose adaptability
in continual learning settings [1].

To illustrate the sensitivity of RL algorithms to reward shaping, we consider a
simple case study: the swing-up control of an inverted pendulum using four popular
RL algorithms (PPO [2], TD3 [3], SAC [4], and DDPG [5]). We compare their
performance under two types of reward signals, a sparse one and a dense one:

𝑐1 = 1.0𝜃2 + 0.1 ¤𝜃2,

𝑐2 = 10.0 tanh(10𝜃2) + 0.1 ¤𝜃2,
(C.1)
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and plot of the rewards from (C.1).

where 𝜃 is the angle of the pendulum and ¤𝜃 is the angular velocity. In Fig. C.1A,
we show the performance of the algorithms with the two reward functions and in
Fig. C.1B, we plot the rewards from (C.1). We observe that the dense reward enables
the learning algorithm to learn to swing up the pendulum while the sparse reward
does not provide enough feedback for the PPO algorithm to converge. Interestingly,
the DDPG algorithm performs better than PPO with the sparse reward. The code
for this experiment is available at https://github.com/lupusorina/reward_
analysis_ddpg_vs_ppo.

Vision-based Learning
A key ingredient for enabling more adaptive and intelligent locomotion is vision.
Unlike feedback from proprioception alone, vision provides rich information about
the terrain. This is especially important for bipedal robots, where stability and
foot placement are tightly coupled with the structure of the environment. For
example, detecting obstacles, slopes, or uneven surfaces in advance allows the
controller to make informed decisions about where and how to step. Incorporating
vision information into the control pipeline enables the robot not only to react to the
current state but also to plan, a capability essential for traversing complex real-world
environments. As such, our work investigates how visual inputs can be effectively
leveraged in both learning-based and model-based control strategies.

C.3 Methods: Residual Foot Stepping for Bipedal Locomotion with Terrain
Information

Context: We propose a method for learning residual footsteps for bipedal loco-
motion that leverages terrain information to improve the walking capability. This
approach utilizes a learning-based controller with vision information to adjust the

https://github.com/lupusorina/reward_analysis_ddpg_vs_ppo
https://github.com/lupusorina/reward_analysis_ddpg_vs_ppo
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Figure C.2: Top: Learning strategy for residual footsteps and height. Middle:
Learning architecture in green, added on top of the existing control architecture
in Fig. 8.2. Bottom: Autoencoder Network used for learning a lower dimensional
representation of the terrain.

footsteps of the bipedal robot in response to varying terrain conditions. Additionally,
this research serves as foundational work for the broader MAGIC-VFM algorithm
presented in Chapter 2. Insights gained from this study have significantly informed
the development of the MAGIC-VFM framework.

Overview

Our method is inspired by the adaptability of human locomotion across diverse
terrains. On flat ground, humans generally maintain a periodic gait characterized
by consistent step length and frequency. In contrast, when encountering rough or
uneven terrain, they dynamically adjust their stepping patterns based on sensory
feedback to preserve balance and ensure stability. Additionally, humans often lower
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learned residual terms
computed using classical methods
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Figure C.3: Illustration of the vision-based control framework for bipedal locomo-
tion. The center of mass height and the foot placement are initially computed using
model-based methods (red). Learned residual terms (green) are then added to refine
these estimates, resulting in improved foot placement and corrected center of mass
trajectory. The right panel visualizes this correction over slopes.

their center of mass to increase reachability and enhance stability in challenging
environments.

Method

The learning architecture, illustrated in Fig. 8.2, extends the model-based control
and planning framework for walking. A more in-depth description of the control ar-
chitecture where both a model-based and a learning-based framework are employed
is presented in Chapter 8. The learning-based method does not include vision in-
formation. The learning component uses policy gradient to learn both a residual
footstep Δu and a residual height adjustment Δz𝑐. Using the residual footstep, we
adjust (8.6) as follows

u′𝑚 = u𝑚 + Δu,

= −𝝃d,𝑚+1 + 𝝃𝑚𝑒𝜔𝑇𝑠 + Δu,
(C.2)

where 𝑇𝑠 is the step time, 𝝃𝑚 is the divergence component of motion (DCM), and 𝝃d

is the desired DCM, with 𝑚 counting steps. This is shown in Fig. C.3A. Next, we
intuitively explain why we need to learn a residual height adjustment Δz𝑐 in addition
to the residual footstep. When the robot needs to extend its footstep further forward
than the nominal position, lowering the center of mass may be required. This
adjustment enables the robot to achieve a longer stride while maintaining balance
and stability.

Network and Learning Strategy
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We use the Proximal Policy Optimization (PPO) to optimize the residual policy
network. For a description of the PPO algorithm, see [2]. The policy and value
function networks architecture are two multi layer perceptron. The policy takes as
input a large tensor containing the following

• Remaining time in the footstep cycle 𝑇𝑠.
• Planar base link velocity in the body frame vB .
• Positions of the links in the body frame.
• Latent vector from the terrain autoencoder network (see Fig. C.3B and Ap-

pendix C.3).

and outputs the residual footstep vector Δu and height adjustment Δ𝑧𝑐.

The reward for PPO is defined as follows

𝑟 = 1 − 𝜔1𝑒dcm,y − 𝜔2∥u∥2 − 𝑐falling + 𝜔3(1 − ∥pI − pIgoal∥
2),

where 𝜔1, 𝜔2 and 𝜔3 are weights, 𝑒dcm,y is the error in the DCM in the y direction,
u is the joints control input, 𝑐falling is a penalty for falling, pIgoal is the goal position
in the inertial frame, and pI is the position of the base link in the inertial frame, as
well. The penalty for falling is applied when the roll or pitch angles exceed a certain
threshold.

Terrain Learning

The robot builds a robot-centric terrain grid map around its center of mass. Let
G be this grid map of size [𝑊, 𝐻], where 𝑊 and 𝐻 are the width and height of
the robot-centric map, respectively. Each cell 𝑔𝑖, 𝑗 contains the elevation 𝑒𝑖, 𝑗 . This
3D tensor should not be directly fed into the policy network because of the input
dimensionality and variability. Therefore, it is often recommended to use a lower
representation of the main features of the terrain. Therefore, we choose to design an
autoencoder network to learn a lower-dimensional representation (latent vector) of
the terrain, as seen in Fig. C.3. The network consists of two primary components:
an encoder and a decoder. The encoder contains 2 convolutional networks with
ReLU as activation functions and max pooling layers. The decoder reconstructs the
original input from this compressed encoding using deconvolutions, which increase
the spatial resolution of the tensor. The layers include 2 convolutional layers with
ReLU activation functions.
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a) b)

Example of robot-centric
 elevation map

Robot Position

Figure C.4: Terrain representation (a) Heatmap showing a simulated terrain with
hills. The blue square is the robot-centric elevation map. (b) Examples of other
types of terrains generated: uneven stairs and slopes.

C.4 Results: Residual Foot Stepping for Bipedal Locomotion with Terrain
Information

Implementation Details

The architecture is implemented in simulation using MuJoCo [6]. The learning
component uses the Stable Baselines 3 framework with allows the interface between
a Gym environment in MuJoCo and the PPO reinforcement learning algorithm. The
terrain is generated in MuJoCo as a heightfield map and a patch around the robot is
extracted, as seen in heat map from Fig. C.4a where a simulated terrain with hills
is shown. We have also generated other types of terrains such as uneven stairs and
slopes of different inclinations. To train the autoencoder presented in Fig. C.3, we
extract a dataset of patches from these terrain types: hills, slopes, and uneven stairs.

Ablation Study: Learning Experiments without Terrain Information

First, we evaluate the performance of our proposed algorithm (Appendix C.3) with-
out terrain information, in which the robot is walking blindly on a slope of certain
inclination. The results of this experiment can be seen in Fig. C.5. In the forward
direction, Δ𝑢 is larger than in the sideways direction. This is caused by the fact
that the center of mass offset in the forward direction is larger and harder to model
apriori than in the sideways stepping. The y-offset for the center of mass is not large
as the robot is symmetric right left. Despite a small adjustment in Δu, the impact
on the DCM correct is significant, as seen in Fig.C.5.

Ablation Study: Learning Experiments with Terrain Information

We train our RL algorithm with the latent vector from the autoencoder and compare
the 3 cases: no learning (controller presented in Chapter 8), learning with no terrain
information (presented in Appendix C.4), and learning with terrain information.
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Table C.1: Performance of the bipedal robot with and without learning on inclined
terrain. The experiment was repeated 10 times.

No learning RL (no terrain
input)

RL (with ter-
rain input)

Mean number of falls
for fixed duration

4.79 0.72 0.27
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Figure C.5: (Left) Δu distribution (Right) Forward DCM for the two cases: no
learning, learning, but no terrain information.

Figure C.6: Performance of the 3 controllers: blue: no learning, green RL (no
terrain information) and red: RL with terrain information, on an inclined surface
for 8 trials.

We train the robot on a variety of different grounds, such as slopes, hills and stairs
and evaluate its performance on slopes of 7 degrees inclination. We perform both
a qualitative analysis and a quantitative analysis. For the quantitative analysis, we
let the robot walk on an inclined surface for a fixed duration of 10 minutes and 11
trials, and record how many times it fell in each trial. After each fall, the robot
restarts its walk from the bottom of the slope. In Table C.1, we compute the mean
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number of falls for this fixed duration across the trials. When no learning is used,
the robot falls considerably more often than when learning is used. This can be
seen qualitatively in Fig. C.6, where we show the trajectories for 8 of the 11 trials
as the robot is going up the slope. The blue trajectory (no learning)is considerably
shorter than the other 2 trajectories which use learning. When learning is employed,
but with no terrain information, the robot already greatly improves its resilience to
falls, but exploits a certain walking strategy of going side-ways up the slope. This
is common in learning-based algorithms like PPO, where the agent often exploits
certain behaviors to maximize its reward. Lastly, the best performance is achieved
when terrain information is used, leading to only 0.28 falls over the 11 trials, which
translates to 3 falls over the 11 trials.

Limitations
This strategy has several limitations, as follows

1. Training only on elevation information is not representative enough, as the
friction coefficient of the terrains plays a large role in whether the robot will
fall or not.

2. Training the robot in simulation and deploying it on hardware, even with
heavy domain-randomization, is not a robust solution, as the elevation map
that is created on hardware is difficult to simulate.

3. There are infinite number of terrains and terrain structures so creating a
comprehensive dataset is difficult.

4. The learning algorithm does not adapt in real time: once the PPO is trained,
it is fixed at deploy time.

5. Learning just a Δu and Δ𝑧 is not representative enough, as often times, if there
is an obstacle, the robot should learn to lift its foot more.

Based on the aforementioned issues, we developed a more comprehensive solution,
as shown in Chapter 2-3 where we use Visual Foundation Models to encode terrain
information, which is more general. In addition, we use composite adaptation to
adapt the pre-trained neural network of terrain residual at run time. In this way,
we adjust to data not captured at training time, as well as other disturbances that
can appear on the robot. This framework was demonstrated on-board two robots: a
tracked vehicle and a vehicle with Ackermann steering.
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A p p e n d i x D

UNCERTAINTY QUANTIFICATION FOR LEARNING-BASED
PLANNING AND CONTROL WITH MODEL LEARNING

D.1 Chapter Overview
Note: This chapter is based on unpublished work and the results are preliminary.

In this chapter, we start by giving an overview of different uncertainty quantification
(UQ) methods for dynamics learning, with a focus on Bayesian Neural Networks as
a method for UQ. We then present a model-based reinforcement learning framework
that uses Bayesian Neural Networks to quantify uncertainty in the dynamics of a
system and use it in planning.

D.2 Introduction
Reliable model learning is important for model-based planning and control, particu-
larly in safety-critical applications such as autonomous driving, where inaccuracies
in the learned dynamics can lead to catastrophic failures [1]. Models are typically
learned using either parametric approaches, like deep neural networks (DNNs), or
non-parametric methods, such as kernel-based techniques. For instance, several
recent works [2, 3] employ neural networks to capture the residual dynamics of
complex systems. However, the performance of these models is highly dependent
on the quality and diversity of the training data. In practice, models are often
deployed in conditions that deviate from the training distribution, leading to poor
generalization and unreliable predictions. To address this, planning algorithms must
incorporate mechanisms for quantifying and accounting for model uncertainty dur-
ing decision-making, thereby improving robustness in out-of-distribution scenarios.

We exemplify this limitation in a model prediction in Fig. D.1, where we show an
example of a regression problem using a Multi-Layer Perceptron (MLP) with data
generated from the true function with noise 𝑦 = 𝑓 (𝑥) = 𝑥2 + cos(5𝑥), where 𝑥 ∈ R.
The network is not able to capture the symmetry of the function, and thus predicts
wrongly in the “unseen” region. Planning with such a model can lead to unwanted
behaviors.
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Figure D.1: Performance of a multilayer perceptron (MLP) on a nonlinear regres-
sion task. The blue dots represent noisy training data sampled from the true function
(green). The red curve shows the MLP’s prediction, which closely fits the training
data in the observed region but fails to generalize in extrapolation regions, high-
lighting a common limitation of standard neural networks in out-of-distribution
scenarios.

D.3 Related Work
Methods for Uncertainty Quantification in Dynamics Learning for Planning
and Control
Model-based methods are more data-efficient than model-free RL methods like
DDPG [4] or PPO [5], as they can leverage the model to simulate the environment
and generate data for training the policy. However, model-based methods suffer from
model bias (the error that arises when the learned model does not accurately reflect
the true dynamics of the environment). This bias can compound over multiple pre-
diction steps, leading to poor planning decisions and ultimately suboptimal policies
that fail in deployment [6] To address this issue, several methods have been proposed
to quantify the uncertainty in the model predictions and take this uncertainty into
account when planning. For example, in [7, 8], the dynamics residual is modeled as
a multivariate Gaussian distribution, which is further used in a chance-constrained
planning framework.

Gaussian Processes in Model-based Reinforcement Learning (MBRL)

A Gaussian Process (GP) is a collection of random variables, any finite number
of which have a joint Gaussian distribution [9]. The process is specified by its
mean function and covariance function (also sometimes referred as kernel). The
generalization property of a GP is controlled by the choice of the kernel function.
For example, in [10], a DNN is used to transform the inputs into the GP kernel.
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Several works propose using GPs in a model-based RL framework by learning a
probabilistic dynamics model and explicitly incorporating model uncertainty into
planning. For instance, in the PILCO framework, a probabilistic dynamics model
is constructed using GPs [6]. Due to the properties of GPs, analytical solutions are
integrated into the policy improvement by computing analytical gradients.

Deep Ensembles

The idea behind deep ensembles is to train several distinct models (for example
DNNs initialized with different weights) on the same data and then combine their
outputs. The mean and variance in the predictions of the ensemble items are then
used to quantify the uncertainty in the model predictions. Several methods use
Deep Ensemble in a MBRL framework. For example, Probabilistic Ensembles with
Trajectory Sampling (PETS) combines ensemble-based deep network dynamics
models with sampling-based control [11].

D.4 Methods
System Model
Consider a system with state x ∈ R𝑛 and input u ∈ R𝑚 that evolves according to the
following dynamics

¤x = f (x, u, 𝑡), (D.1)

where f : R𝑛+𝑚+1 → R𝑛 is the true dynamics. For generality, let f̂𝜽 (x, u) be the
learned dynamics model, parameterized by some weights 𝜽 , but the same framework
can be applied to residual dynamics learning (i.e., known model derived from physics
and a learned residual dynamics model). In this case, 𝜽 are the weights of a neural
network that approximates the true dynamics with a model that contains a form of
uncertainty quantification. The goal is to design a controller that uses this uncertainty
in the model predictions to optimize a cost function. We use the following form of
the controller for the system in (D.1)

u = uff +K(x − xd), (D.2)

where uff is the feedforward term, K is the feedback gain matrix, and xd is the
desired state. This form of the controller is standard in classical control theory [12].

Algorithm Description
In Algorithm 8, we propose a model-based learning framework that uses Bayesian
Neural Networks (BNNs) to quantify uncertainty in the dynamics of a system and use
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Algorithm 8 Model-based Reinforcement Learning with Uncertainty Quantification
using Bayesian Neural Networks (BNNs)

1: Input
2: D - empty dataset of trajectories.
3: f̂BNN

𝜽 , with 𝜽0 ∼ N(0,𝚺) - initial model of the world.
4: 𝑁 - number of rollouts.
5: 𝑇 - rollout length.
6: Trajectory of random actions uff

[0:𝑇] and a gain matrix K = 0.

7: Output: Optimized trajectory uff
[0:𝑇] , optimized K

8: while not done do
9: Run the controller on the system

u[0:𝑇] = uff
[0:𝑇] +K(x[0:𝑇] − x[0:𝑇],nom).

10: Collect data D = D ∪ {(x𝑡 , u𝑡 , x𝑡+1)}𝑇−1
𝑡=0 .

11: Retrain the model f̂BNN
𝜽 on the new dataset D.

12: Optimize a new trajectory

min
uff
[0:𝑇 ] ,K

𝑁∑︁
𝑖=0

x𝑖𝑇 − x𝑑
2

2 +
𝑁∑︁
𝑖=0

𝑇∑︁
𝑘=0

u𝑖𝑘
2

2

subject to x𝑘+1, nom = E𝜽∼𝑝(𝜽 |D)
[
f̂BNN,𝑖
𝜽

(
x𝑘, nom , uff

𝑘

)]
, for 𝑘 = 0, 𝑇

x𝑖𝑘+1 = f̂𝑖BNN
(
x𝑖𝑘 , u𝑘

)
, for 𝑘 = 0, 𝑇, for 𝑖 = 0, 𝑁

(D.3)

13: end while

this uncertainty in planning. Note that we employ BNNs to model the dynamics of
the system, but the same framework can be applied to other methods for uncertainty
quantification in dynamics learning, like the ones mentioned in Appendix D.3.

Our algorithm takes as input an empty dataset D of trajectories and initial model
of the world f̂BNN

𝜽 , where the weights 𝜽 are sampled from a Gaussian distribution,
as presented in Lines 2-3. We specify the problem in discrete time, where 𝑇 is
the rollout length with 𝑘 denoting the time step. 𝑁 is the number of rollouts (i.e,
the number of sampled trajectories from the system). The algorithm outputs a
trajectory of feedforward actions uff

[0:𝑇] and an optimized feedback gain matrix K,
which are used to control the system using (D.2). Here, the initial trajectory is
initialized at random, but in practice, it can be a safe trajectory. Next, we run the
controller in Line 9 on the real system, where both the feedforward trajectory and
the gain matrix K are the optimized ones from Line 12. We then add the collected
data to the dataset D and retrain the BNN model on this dataset. Lastly, we solve
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the optimization problem using Stochastic Gradient Descent (SGD) in Line 12 by
optimizing a quadratic cost subject to dynamics. The nominal trajectory x[0:𝑇],nom

is computed as an expectation over the BNN weights sampled from the posterior
distribution.

The intuition of the algorithm is as follows: because the dynamics has uncertainty,
sampling different weights for the BNN will result in different predictions for the
same input, which can be used to quantify the uncertainty in the model predictions.
Note that the uncertainty is higher in regions of the state space that were not explored
yet, as the model was not trained on data from these regions. This fact helps the
planner to explore the state space more efficiently, as it can focus on the regions
where the model is uncertain.

D.5 Results
We validate Algorithm 8 on a simple model: a swing-up pendulum task with the
dynamics

¥𝛼 = −𝑔
𝑙

sin(𝛼), (D.4)

where 𝛼 is the pendulum angle, measured from the vertical downward axis (i.e.,
𝛼 = 0 when the pendulum is down), 𝑔 is the gravitational acceleration, 𝑙 is the
length of the rod. The states of the system are 𝛼 and ¤𝛼 := 𝜔, and the control input
is the torque applied to the pendulum 𝑢. We approximate the dynamics in (D.4)
using a BNN. The input into the BNN is the state in discrete form: 𝛼𝑘 , 𝜔𝑘 and the
control input 𝑢𝑘 at time step 𝑘 , and the output is the state difference as follows:
1
Δ𝑡
𝛼𝑘+1 − 𝛼𝑘 , 1

Δ𝑡
𝜔𝑘+1 − 𝜔𝑘 , where Δ𝑡 is the time step. The objective is 𝛼𝑇 = 𝜋

and 𝜔𝑇 = 0. During the implementation, we use the trigonometric functions cos
and sin to model the dynamics in (D.4) to avoid the angle discontinuities. We
run Algorithm 8 for several epochs and record the performance of the angle and
angular velocity during 3 intermediary epochs, as shown Appendix D.5. We note
that during the earlier epochs, the uncertainty in the model prediction is higher, as
the model was not trained on data from these regions. However, this exploration
helps the planner to find a better trajectory that optimizes the cost function even
after very few episodes.

Future steps
There are several directions for future work to complete this study, as follows.
First, Algorithm 8 should be benchmarked against other model-based planning meth-
ods that use uncertainty quantification in the dynamics learning, such as PILCO [6],
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Figure D.2: Trajectories during training in episode 2 and episode 4.

which uses Gaussian Processes. In addition, a study on the computational complex-
ity of the proposed method should be conducted, as Bayesian Neural Networks are
known to be computationally expensive due to the sampling process during infer-
ence and training. Moreover, an analysis should be conducted to assess the best UQ
method for the proposed planning framework, as the choice of the UQ method can
significantly impact the performance of the method. Finally, the proposed method
should be tested on more complex systems, especially on hardware, to evaluate its
performance in real-world scenarios. As extensions, the algorithm can be extended
to use a latent space representation rather than the full state x. If a latent space is
used, a controller of the form presented in (D.2) might not be appropriate.

D.6 Conclusions
We propose a model-based planning framework with dynamics learning, where the
dynamics is learned using BNNs to quantify the uncertainty in the model predictions.
We show that the proposed method can be used to optimize a trajectory in a swing-up
pendulum task, where the uncertainty in the model predictions is used to inform the
planner about the regions where the model is uncertain.
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A p p e n d i x E

BACKGROUND

E.1 Chapter Overview
In this section, we briefly revisit several control theory and robotics kinematics
concepts that are shared across the chapters and appendices. For each subsection,
we outline several nuances and details that were used to the development of the
algorithms and methods presented in this thesis. It assumes that the reader has a
basic understanding of key concepts in linear algebra, analysis, as well as linear
control theory and basic Lyapunov theory.

E.2 Advanced Stability Theory
We present several concepts in advanced stability theory that were used in proofs
from Chapter 3. This section is based on [1].

Comparison Functions
Autonomous systems are systems whose dynamics are independent of time explicitly.
Non-autonomous systems, in contrast, have dynamics that explicitly depend on time.
Proving stability for non-autonomous systems uses special functions, such as class
K functions, class KL functions and class K∞ functions defined as follows.

Definition 1 (from Khalil, Chapter 4 [1]) A continuous function 𝛼 : [0, 𝑎) →
[0,∞) is said to belong to classK if it is strictly increasing and 𝛼(0) = 0. It is said
to belong to class K∞ if 𝑎 = ∞ and 𝛼(𝑟) → ∞ as 𝑟 →∞.

Example: 𝛼(𝑟) = 𝑡𝑎𝑛−1(𝑟) is a classK function. 𝛼(𝑟) = 𝑟2 is a classK∞ function.

Definition 2 (from Khalil, Chapter 4 [1]) A continuous function 𝛽 : [0, 𝑎) ×
[0,∞) → [0,∞) is said to belong to class KL if, for each fixed s, the map-
ping 𝛽(𝑟, 𝑠) belongs to class K with respect to 𝑟 and, for each fixed 𝑟, the mapping
𝛽(𝑟, 𝑠) is decreasing with respect to 𝑠 and 𝛽(𝑟, 𝑠) → 0 as 𝑠→∞.

Example: 𝛽(𝑟, 𝑠) = 𝑟2𝑒−𝑠 is a class KL function.

Next, we will show how these functions are used to prove stability Appendix E.2.
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Input-to-State Stability (ISS)
ISS answers the question “What can we say about the behavior of a system in the
presence of bounded inputs?” and provides a framework to study how robust a
system is to external disturbances. We give the next definition of input-to-state
stability.

Definition 3 (from Khalil, Chapter 4 [1]) The system ¤x = 𝑓 (𝑡, x, u) is said to be
input-to-state (ISS) stable if there exist a classKL function 𝛽 and a classK function
𝛾 such that for any initial state 𝑥 (𝑡0) and any bounded input 𝑢(𝑡), the solution 𝑥(𝑡)
exists for all 𝑡 ≥ 𝑡0 and satisfies

∥x(𝑡)∥ ≤ 𝛽 (∥x (𝑡0)∥ , 𝑡 − 𝑡0) + 𝛾
(

sup
𝑡0≤𝜏≤𝑡

∥u(𝜏)∥
)
.

Note that the definition in Definition 3 is difficult to use in practice because it
requires knowledge of the solution x(𝑡), which is not always available. Therefore,
there exists a sufficient Lyapunov-like theorem, which can be used (Theorem 4.19
in [1]), as follows

Theorem 5 (from Khalil, Chapter 4 [1]) Let𝑉 : [0,∞)×𝑅𝑛 → 𝑅 be a continuously
differentiable function such that

𝛼1(∥x∥) ≤ 𝑉 (𝑡, x) ≤ 𝛼2(∥x∥),
𝜕𝑉

𝜕𝑡
+ 𝜕𝑉
𝜕x

𝑓 (𝑡, x, u) ≤ −𝑊3(x), ∀∥x∥ ≥ 𝜌(∥u∥) > 0,

∀(𝑡, x, u) ∈ [0,∞) × R𝑛 × R𝑚, where 𝛼1, 𝛼2 are class K∞ functions, 𝜌 is a class
K function, and 𝑊3(x) is a continuous positive definite function on R𝑛. Then, the
system ¤x = 𝑓 (𝑡, x, u) is input-to-state stable with 𝛾 = 𝛼−1

1 ◦ 𝛼2 ◦ 𝜌.

Input-Output Stability. L stability.
We can model the nonlinear dynamics as an input-output system, and not in the
state-space, like in Appendix E.2. The system is viewed as a black box with inputs
and outputs. In this case, we define the L stability. We consider an input-output
relationship as y = Hu, where y is the output, u : [0,∞] → R𝑚 is the input, and H
is a mapping. For the space of piecewise continuous, bounded functions, the norm
is defined as

∥u∥L∞ = sup
𝑡≥0
∥u(𝑡)∥ < ∞,
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and the space is denoted by L𝑚∞, where 𝑚 is the dimension of the input. Similarly,
we can define the more general L𝑝 norm.

I/O Stability refers to the following question: “If u ∈ L𝑚 is a “well-behaved” input,
what can we say about the output y ∈ L𝑞?” A system is said to be L stable if
the output is bounded for bounded inputs. It is important to note that H cannot be
defined as a mapping fromL𝑚 toL𝑝 because we can have systems that are unstable.
Therefore H is defined as a mapping from an extended space L𝑚𝑒 to an extended
space L𝑞𝑒 , where L𝑚𝑒 is defined as

L𝑚𝑒 = {u | u𝜏 ∈ L𝑚,∀𝜏 ∈ [0,∞)} ,

and u𝜏 is a truncation of 𝑢 defined by

u𝜏 (𝑡) =
{

u(𝑡), 0 ≤ 𝑡 ≤ 𝜏
0, 𝑡 > 𝜏.

The definition of the stability of H is again using K special functions and can be
seen in Definition 5.1 in [1]. The next question to ask if: Can we employ Lyapunov
stability methods to establish theL stability of a nonlinear system, like in the case of
ISS. The answer is yes, and the result is given in Theorem 5.1 in [1]. This theorem
resembles Theorem 5, but with the addition of two more conditions for the dynamics
and output of the system.

E.3 Adaptive Control
The content of this subsection is based on the following references [2, 3] and from
Prof. Soon-Jo Chung’s Data-driven Control (CDS245) lecture notes.

A model is a representation of a physical system that can be used for control
design or estimation. Oftentimes, that model will have unknown or incorrectly
modeled parameters of the real system. In addition, the model can have idealized
assumptions and simplifications, such as linearizations, that do not hold in practice.
These disturbances tend to negatively impact the performance of the control system,
by leading to tracking errors or even instability.

The main idea of adaptive control is to estimate the uncertain parameters of a model
in real time and use this information for controls. Examples of applications from
this thesis where adaptive control were used are: (1) in adapting to disturbances in
the terrain (Chapter 2-4) and in internal robot dynamics, as well as in (2) adapting
to the center of mass offsets in the bipedal robot project (Chapter 8) and Leonardo
(Chapter 7).
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The adaption mechanism should guarantee that the control system remains stable
and that the tracking error converges to zero. In some cases, like in composite
adaptation, we can also prove that the estimated parameter vector converges to the
true parameter vector. Many formalisms can be used to prove stability, such as the
Lyapunov theory or Contraction theory [4, 5].

There are several types of adaptive control, as follows:

1. Model Reference Adaptive Control (MRAC) In MRAC, the adaptation law
tries to ensure the response of the plant is the same as a reference model
by using the tracking error between the two. We show this method using a
first-order system [6]

¤𝑥(𝑡) = −𝑎𝑥(𝑡) + 𝑏(𝑢(𝑡) + 𝜃𝑥(𝑡)), 𝑥(0) = 𝑥0

where 𝑥(𝑡) ∈ R is the state of the system, 𝑢(𝑡) ∈ R is the control input,
𝑎 ∈ (0,∞) is the state scalar, 𝑏 ∈ (0,∞) is the input scalar, and 𝜃 ∈ R is
a constant matched uncertainty with the known bound |𝜃 | ≤ 𝜃max [6]. The
reference model is given as

¤𝑥𝑚 (𝑡) = −𝑎𝑥𝑚 (𝑡) + 𝑎𝑟 (𝑡), 𝑥𝑚 (0) = 𝑥0

with state 𝑥𝑚 (𝑡) ∈ R and 𝑟 (𝑡) ∈ R a reference input. The MRAC controller is
thus

𝑢(𝑡) = −𝜃 (𝑡)𝑥(𝑡) + 𝑘𝑔𝑟 (𝑡) (E.1)

where 𝜃 (𝑡) ∈ R is an estimate of 𝜃 and 𝑘𝑔 is a positive constant. The update
law is given by

¤̂𝜃 (𝑡) = −Γ𝑥(𝑡)𝑒(𝑡), 𝜃 (0) = 𝜃0

where Γ ∈ (0,∞) is the adaptation gain and the tracking error signal 𝑒(𝑡) =
𝑥𝑚 (𝑡) − 𝑥(𝑡).

Example 8.1 in [2] provides a good illustration of MRAC with the control of
a mass on a frictionless surface by a motor force 𝑢 for the plant dynamics

𝑚 ¥𝑥 = 𝑢,

with 𝑚 being the mass and 𝑥 the position. For unknown, estimated mass �̂�,
the objective is to track the reference model ¥𝑥𝑚 +𝜆1 ¤𝑥𝑚 +𝜆2𝑥𝑚 = 𝜆2𝑟 (𝑡) where
𝜆1 and 𝜆2 are positive constants and 𝑟 (𝑡) is the reference signal. Several notes
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regarding this example, as follows: (1) Even if the dynamics is linear, the
adaptation law will end up not being linear, thus the reason why we need
to use Lyapunov theory or Contraction theory to prove convergence, (2) the
reference model acts as a second-order filter on 𝑟 (𝑡), thus 𝑟 (𝑡) can be not
smooth, (3) there is no guarantee that �̂� will converge to the true 𝑚, and how
close it gets to the true value depends on the choice of the 𝑟 (𝑡) signal, (4)
In this example, using Lyapunov theory, we can show that 𝑥 − 𝑥𝑚 → 0 and
¤𝑥 − ¤𝑥𝑚 → 0 as 𝑡 →∞.

2. L1 Adaptive Control TheL1 adaptive controller is obtained from the predictor-
based MRAC by letting the control be given by

𝑢(𝑠) = 𝐶 (𝑠)𝜂(𝑠)

where 𝐶 (𝑠) is an exponentially stable, strictly proper low-pass filter, while
𝜂(𝑠) is the Laplace transform of the controller in (E.1). The purpose of
implementing this filter at the input is to allow for an increase in the adaptation
gain, thereby enabling the reduction of tracking errors.

3. Self-tuning Control (STC) If the plant parameters are not known, we replace
them with their estimates. A controller coupled with an online parameter
estimator is called a self-tuning controller. In this case, the objective of STC
is to perform simultaneous identification of the unknown plant. STC is also
known as Adaptive Pole Placement Control (APPC).

4. Composite Adaptation Different sources of parameter information can be
combined for adaptation. Therefore, composite adaptation combines online
parameter estimation and tracking-error adaptive control to achieve better
performance [2, 7]. This approach offers two key advantages: rapid adaptation
and guaranteed exponential convergence of both the tracking error and the
parameter estimation error.

E.4 Policy Gradient Methods. Proximal Policy Optimization
The content of this subsection is based on insights drawn from the following refer-
ences [8–10].

Policy Gradient methods are a class of reinforcement learning algorithms that di-
rectly learn a policy without explicitly learning the value function. If both a value
function and a policy are learned, the method is called actor-critic. Examples of
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policy gradient methods include REINFORCE and Trust Region Policy Optimiza-
tion (TRPO). PPO is oftentimes called a policy gradient method and extends the
idea of REINFORCE with “techniques to limit the large changes in the policy action
distribution in a single step” [9, 10]. Specifically, it uses a clipped version of the
probability ratio between the new and old policies. Policy Gradient tries to solve the
following problem: given a policy 𝜋(𝑎 | 𝑠, 𝜽), with 𝑎 being the action, 𝑠 the state,
and 𝜽 the policy parameters

𝜽𝑡+1 = 𝜽𝑡 + 𝛼∇̂𝐽 (𝜽𝑡),

where ∇̂𝐽 (𝜽𝑡) ∈ R𝑑
′ is a stochastic estimate whose expectation approximates the

gradient of the performance measure with respect to its argument 𝜽𝑡 .

In off-policy RL methods, there are two policies: a behavior policy and a target
policy. Exploration happens at the behavior policy. In policy gradient methods,
there is only one policy, typically stochastic to ensure exploration.

For continuous actions, it is common to use a Gaussian policy as follows

𝜋(𝑎 | 𝑠, 𝜽) � 1
𝜎(𝑠, 𝜽)

√
2𝜋

exp
(
− (𝑎 − 𝜇(𝑠, 𝜽))

2

2𝜎(𝑠, 𝜽)2

)
, (E.2)

where the mean and standard deviation are learned, with 𝜇 : S × R𝑑
′ → R and

𝜎 : S × R𝑑
′ → R+ being two parameterized function approximators. At runtime,

the action is then sampled from the Gaussian distribution, although in practice, the
mean is used.

E.5 Robot Kinematics. Lie Groups and Algebra
There are many libraries for rigid body kinematics and dynamics that rely heav-
ily on Lie groups and Lie algebras to handle motions and rotations, for example
Pinocchio [11, 12]. Therefore, understanding these concepts is crucial for anyone
working with these tools. We provide a short summary of the important concepts
in this section that were used in Chapter 8. Many of these concepts are summarized
and adapted from [13, 14] and from Prof. Joel Burdick’s Introduction to Kinematics
course at Caltech.

Common Lie Groups and Algebra

A rotation matrix R is defined as a 3 × 3 matrix formed by stacking the coordinates
of the principal axes of the body frame B relative to an inertial frame A. A
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rotation matrix has two key properties: the columns are mutually orthogonal and its
determinant is 1. The set of all 3 × 3 matrices with these properties are called the
Special Orthogonal Group SO(3). It is called special because the determinant of
the matrix is 1. The group SO(3) is a Lie group of dimension 3.

Another common group is the Special Euclidean Group SE(3), which is the group
of all rigid body transformations in 3D space. The group is defined as the set of
mappings T : R3 → R3 of the form T(x) = Rx + p, where R ∈ SO(3) and p ∈ R3.
An element of SE(3) is written as (p,R) ∈ SE(3). SE(3) can be identified with the
space of 4 × 4 matrices of the form

T =

[
R p
0 1

]
,

where R ∈ SO(3) and p ∈ R3. SE(3) is a Lie group of dimension 6.

By studying the Lie algebra associated with a Lie group, we can analyze group prop-
erties in terms of linear algebra, simplifying many complex problems in robotics.
The Lie algebra of SO(3) is denoted as 𝔰𝔬(3), and it is the set of all 3 × 3 skew-
symmetric matrices of the form

�̂� =


0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0

 . (E.3)

The Lie algebra of SE(3) is denoted as 𝔰𝔢(3), and it is the set of all 4 × 4 matrices
of the form

𝜉 =

[
�̂� v
0 0

]
𝝎, v ∈ R3, (E.4)

where �̂� is the skew-symmetric matrix of 𝝎. An element of 𝔰𝔢(3) is referred to
as a twist, or a (infinitesimal) generator of the Euclidean group. We define the ∨
(vee) operator to extract the 6-dimensional vector, which parameterizes a twist,[

�̂� v
0 0

]∨
=

[
v
𝝎

]
,

and call 𝜉 := (v,𝝎) the twist coordinates of 𝜉. The inverse operator, ∧ (wedge),
forms a matrix in 𝔰𝔢(3) out of a given vector in R6 :[

𝑣

𝜔

]∧
=

[
�̂� v
0 0

]
.
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Thus, 𝜉 ∈ R6 represents the twist coordinates for the twist 𝜉 ∈ 𝔰𝔢(3);

The Exponential map on SO(3) corresponds to a rotation about the vector 𝝎 ∈ R3

by an angle ∥𝜔∥. It is defined as:

𝑒�̂� = I + �̂�

∥𝜔∥ sin ∥𝜔∥ + �̂�2

∥𝜔∥2
(1 − cos ∥𝜔∥).

The exponential map on SE(3) is defined as

exp 𝜉 =

[
I v
0 1

]
, 𝜔 = 0 and exp 𝜉 =

[
𝑒�̂� Av
0 1

]
, 𝜔 ≠ 0 (E.5)

where
A = I + �̂�

∥𝝎∥2
(1 − cos ∥𝝎∥) + �̂�2

∥𝝎∥3
(∥𝝎∥ − sin ∥𝝎∥).

The Logarithm map is the inverse of the exponential map.

The structure of Lie groups and their corresponding algebras provides powerful
tools for analysis and control. For example, exponential and logarithm maps help
the handling of state transitions and error analysis in multi degrees of freedom
robotic systems.

Manipulator Jacobian
The Jacobian gives the relationship between the joint angles and the end-effector
velocities. There are two types of Jacobians that are typically computed: the spatial
Jacobian and the body Jacobian. For a general open-chain robot with 𝑛 joints, both
Jacobians are 6 by n. The space Jacobian related the velocity of the end effector in
the Spatial frame to the joint velocities, while the body Jacobian relates the velocity
of the end effector in the body frame to the joint velocities, as follows:

𝝂𝑠 = J𝑠 (q) ¤q

where J𝑠 (q) =
[

J𝑠1(q) J𝑠2(q) · · · J𝑠𝑛 (q)
]
∈ R6×𝑛,

where q is the joint angles, 𝝂𝑠 is the end-effector twist in the spatial frame, and J𝑠 is
the spatial Jacobian.

The manipulator Jacobian can also be used to describe the relationship between
wrenches applied at the end-effector and joint torques. [13].

Singuralities
The rank of the Jacobian can be no greater than the minimum of 6 and n. We say
a Jacobian is singular at a configuration q∗ if the rank of the Jacobian is less the
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maximum rank at some configuration. At the singular configuration, the robot loses
the ability to move in certain directions.

Singuralities posed some challenges in the development of the bipedal robot con-
troller, which you can read about in Chapter 8. Specifically, when running Inverse
Kinematics for the feet, singularities caused the Jacobian to become non-invertible.
In these situations, the robot exhibited aggressive foot shaking behavior, which led
to motors failures. In Chapter 8, Sec. 8.3 we present how we handled singularities
in the bipedal robot controller.
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