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ABSTRACT

Solutions are given for two distinct types of vibration problems
of importance in the field of applied mechenics, These solutions
are of themselves useful, and in eddition they represent the develop-
ment of besic electric analog computer techniques which mey be applied
to the solution of a vast number of hitherto unsolved engineering
problems.

Part One treats the problem of a linear system excited by one
or more forces of varying frequency. An enalytical solution is
given for the case in which the exciting force is of constent ampli=-
tude and of & frequency which varies linearly with time. A device
which generates electric forces of varying frequency is discussed,
end the results of its epplication to the solution of time-varying
frequency problems are shown. A deteiled study is made of a low
loss two degree of freedom system excited by a force of constant
amplitude end a frequency varying lineerly with time. This study
demonstrates the tremendous seving in time which may be effected by
electric analog computation methods. It is demonstrsted how forces
of time-varying frequency may be used to rapidly obtein a qualitative
measure of a system's steady stete frequency response.

The transient draft gear forces existing during the braking of
a long train are trested in Part Two. An amalytical solution and an
Electric Anslog Computer solution are given for a train of identical
cars and draft gears assumed to behave as perfect springse. The
electric anslog for a nonlinear draft gear is developed. A computer
solution is presented for a train containing nonlinear draft geers
and, in addition, for certain distributions of cars of unequal weights.
This problem, involving a system of fifty nonlinear elements and
fifty separste excitation forces would be completely impracticeble

by even the best available digitel computetion methods.
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PART ONE
Response of Linear Physical Systems to Forces

of Time-Varying Frequency

Mechanical vibration problems may be described as those prob-
lems wherein a mechenical system suffers the action of arbitrary
forces. This is a broad definition end encompasses many types of
systems; linear end nonlinear, lumped and distributed; end many
varieties of forces. A great deal of mathematics has been developed
to treat such problems. Since no one mathematical technique can
adequately handle all mechanicel vibration problems, these problems
have been divided into various subclasses. For exeample, one very
important type of vibration problem has to do with the behavior
of lumped linear mechanical systems excited by a finite number
of steady state sinusoidel forces of constant amplitude. Thus
we have, in making such a distinction, limited both the type of
system end the force used. And, for this particular type of prob-
lem we have available e highly developed system of mathematical
analysis.

Another field of problems, with its associated mathematical
techniques, deals with lumped lineer mechenical systems excited
by a finite number of erbitrary transient forces. The methods for
hendling such problems, or their electrical equivalents, have probably
been sdvenced more by electrical engineers than by any other group,
simply because electrical engineers have felt a greater need for
such methods to cope with electrical problems of a corresponding
nature. The operational methods of Heeviside and Laplace have
received wide use in this field.

The operational method is not particularly useful for the
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solution of transient problems, nor is any methematicel technique
useful for the solution of a problem which it describes, unless the
mathematical result lends itself to convenient interpretation and
calculation. An analyticel result is not perticularly useful in
e given problem if an inordinate amount of time is involwved in
expressing this result in understendsble terms, numerical or other-
wise.

Some of the problems in the material to be presented are of
this nature. The enalyticel solutions are extremely lengthy when
reduced to numerical calculation. Nevertheless, the asmalytical
solutions help to gain an understending of the genmeral nature of
the problems. It will be shown how the electric analog method of

computation lends itself nicely to more exact numericel work,

I. NATURE OF THE PROBLEM

To make the results worthwhile it is necessary to restrict the
present study to the behavior of linear lumped systems excited
by oscillatory forces of constent amplitude whose frequencies vary
with time. The primary emphasis will be on mechanicel systems, since
they are the most common practical exemples. The limitations of
lumped linear systems and of constant amplitude forces are not
necessary for solution by the electric analog computer; they meke
the presentation of concrete results more meaningful.

One type of problem involving time-varying frequencies is that
occurring in frequency modulation brosdcastinge. Here the primary
interest is in a frequency which is varying periodically end whose
instantaneous deviation is small compared to the mesn value. The
treatment of this phenomenon has been accorded considersble dis-
cussion in engineering literature, and its treatment here will be

brief.
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The second type of problem, which is the more importent mecha-
nically, deals with a force whose frequency varies in a trensient
menners ouch forces are common in elmost all types of reciprocating
engines. As such machines are accelerated or decelerated the pul=
sating components of the forces involved change in frequency. ror
example, as a diesel engine is accelerated the oscillating forces
of the pistons transmitted to the connecting rods and thence to the
crenksheft inerease in frequemcy. It is well known that if en oscil-
latory force is applied to a system containing inertia snd elastic
recovery, snd with little demping, large stresses may be set up
for particular velues of frequency. One would expect, then, that
if the frequency of the applied force(s) should pass through these
critical system frequencies similar large stresses might be expected.
This is indeed the case, and it is the exact nature of these phe-
nomens which will be discussedi. Since, in the case of machinery,
the frequencies of the pulsating components of the forces are directly
related to machine speed the critical frequencies may be referred

to as "eritical speeds".

II, SURVEY OF WATERIAL APPEARING IN LITERATURE

Steady State Frequency liodulation. Before proceeding farther

it is perheps advisable to define exectly what is meant by the term

frequency. Given an osecillatory function of constent amplitude,

4 cos [g()] , (1)
the instentaneous frequency, f, is defined by
£2 2 gt(t) . (2)
2%

This is the accepted definition appearing in all the literature
which has come to the attention of the author. It will become

apparent later that this definition is consistent with steady state



notions of frequency.

In steady state frequency‘modulation an electrical signal, or
perhaps a mechenical force, is made to vary such thet its frequency
is of the form

£f2f,+ 2 sin 2wpyt . (3)

In broadcasting work fo is the carrier frequency, and p; is the
frequency of the sinusoidal intelligence to be transmitted. Of
course the intelligence usually consists of meny frequencies, as
for example in the transmission of speech or music. Rether compli-
cated expressions heve been developed (1) to express the exciting
foree in such cases as made up of each of a number of signals or
"sidebends", each sideband being of a different frequency, amplitude,
and phase. The complication of such expressions increases as the
nunber of modulation frequencies, py , Pp s Pg s o o o o, increasese.
if the modulation should be a square wave, the frequency would be
given by

f=f +a[sin2npt - sinémpt + - - -

a-i
+(:_"‘Es‘m2nnp.t+ “ 3 ] nodd, (4)

which represents an infinite number of modulation frequencies.

In such cases the expressions mentioned sbove become useless, and

a different method must be employed. The special cases of rectangular
and triangular modulation weveshepes have been considered by others.
(2) Beyond these special cases of periodic steady state frequency

variation little has been treated in the literature.

Acceleration Through Resonance. Two noteworthy contributions

have been made in treating the problem of a system excited by an

oscillating force of constant emplitude whose frequency varies
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linearly with time. The first of these, a mechenical engineering
paper, treats in a fairly thorough manner the response of a single
degree of freedom system excited by such a force. (3) The case
of greatest interest is of course the one in which the exciting
force's frequency passes through the system's resonsnce frequency,
since it is in this case that large mechenical stresses occur,.
Hence the term acceleration through resonance. The second paper,
(4) while it refers to systems of more then one degree of freedom,
does not specifically treat these cases. The second paper, insofar
as results are concerned, is largely a duplication of the first,

However, it conteins some worthwhile mathematical datas

III. ANALYTICAL EXPRESSIONS FOR SYSTENM RESPONSE
Further attention to the analytical treatment of steady state

frequency modulation will not be given here, since this has elready
been cerried as far as is deemed practical for the present. The
response of a linear system to each of the sideband frequencies can

be computed separately, and these results can then be combined

into a final result. Further discussion of steedy state frequency
modulation will be postponed until after presentation of en applicable

electric analog technique.

To consider accelerstion through resonance and related phenomensa
the response of linear lumped systems to an excitation force
cos (Wot + a%t?)
which is applied at time t = O will be discussed. By the definition
of equation (2) this represents en angular frequency of
W = Wo4 202t (5)

which begins at en itiel velue W, end varies linearly with time.

There is no loss of generality in making the emplitude of the exciting
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force unity. The frequency may be either increesing or decreasing
with time. In the latter case a of equation (5) is imaginary.
The direct Laplace transform method is not particularly useful
since it leads to cumbersome expressions. For exasmple the L trans-

form of cos tz mey be shown by direct integretion to be *

4 2
L(eos ) =1E [s(eos§ ~sing) = cos T 5(5)

peinsC(%)] ©)

where s is the complex variable of the Laplace transform, and C

and S are Fresnel's integrals for a complex variable, defined by

C(Z) = ~;—;r- C;;u du (7)

o

and
2

S(Z) = %Sg ws—i{'[}u du (8)

Thus the Laplace transform method leads to expressions for which
the direct inverse trensforms are not known.

A more direct approach is to use the method of real convolution.
It is kmown that the response of a system having a transfer function

Fl(s), to an exciting force fz(t), is given by (5)

t
R = S{,(t-—r) f.(Tt)dT (9)

where

L{£(6)] = 5y(s) o

* The Laplace tremnsform notation used throughout is theat of
reference (5).
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This method may be used to obtain the resvonse corresponding %o

different system transfer functions,

1
Response of =g . The response to cos (Wet + a2t%) of

a system whose transfer function is given by

\
F.(s) = s+6 § veal,

is obtained as follows.

= e'j(“-’ot + &z'hz)

Lot £,(t) = cos (wot + a?t?) Real Part.

From a table of transform pairs

O LA

Then, from equation (9), the response is given by

§lt-v) -jl@er vaz?)
R= Se e dt Real Par{,
o

’ (wer +a 2) 48T
e—St S\eﬂ ° dr Real Fart,

"

(o}

Completing the square of the exvonent,

( visY § |2
, (Woty o ¥4
T e —jlaTt ‘—"——%’g'(-—)
R=e e dT Real fart,
[o]
(10)
Now, let §
+
av+ L2 =y,

and equation (10) becomes



t+“’°—-—-———-+"’8
_(tu°+.j5) 2 2o
e mjul®
R=e e g du Real Part, 1)
<y
W, +j8
2a
But,
Wot 4 : )
at+ =255 £+-°392—;i§- W +38
2a
u,;_;‘ o~jm o~ o
-
Thus,
wo+36
. (Wet ) 2
b o B
R—% e - du
0-j®
m,+j5
20

— | e du Real Pact . (12)
0~

At this point there is introduced a new type of function which

is given the nsme "Fresnel function" or "fresneloid" by Hok (4),

beceuse of its resemblance to Fresnel's integrals. This function

is related to the error integral, but, as will be demonstrated

later, the latter is not as convenient for use here. The fresneloid

is denoted by Fr(z), where z is in general complex, end it is defined

z

2 2
- W

Fr@=-j¢ e daw . @2

o—j®
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Using this definition equation (12) becomes

. ~ilwt +a’t?) Wot+i8
R= i€ Fr (ot + 2355
r*,e-& Wotjd
~i=5 Fr(%4%) Real Part. (14)

The response may also be expressed in terms of the error integral,
z

2
&(z) = %Xe_wdw ,

(o]

defined by
(15)

For, comparing this with equation (15) there is obtained

Fr(z) = T &* [l 3% ], (e

and equation (14) now becomes
Swo . 4 _(2-8%
-§t -7t 4a"(w° )

=% G {eli*ebe )]

- Q(‘j'h'(“"’z?s)] Real Part. (7

1 o
(s + )2 +82

convolution end a similar integration process the response of & system

Response of
Again using the method of real

having a transfer function

= -—-..-—-—— oC ed,‘
Fi(s) = (s+)? + g2 ) p ¥ .
can be shown to be
e-_j (Uot ‘l’qu,z) __5,(_@ mo
- - EK—P' F ( d.t)
-«t +ipt : o [ (Wot +at?)
e ~J&K~ 9-%
4 2ap ( ) Ll Fr (

:t thF (_Jﬂ,@ w,
P
Real Part. (18)

=EHBoble  ab) —
2a 2
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Response of

Z. 82
(s + )48 Applying the same method as

before one obtains the response

. 2 l .
4y 62)" {'“ e S W)Fv o e at)

R= 23@ 2a
~attiBt-¥) [ ia-g-w, i (st + &)
ve R B e P
- —tf-’t—s t-¥) /. "
"Lf":z%& ab) - ¢ Fe ( S‘H@ - )} Real Part
where Vv = ten ™t _S_c_ . (o)

The system responses given by equations (14), (18), and (19)
are all that ere needed for eny linear systemes The transfer function
of any system can, by a partial fraction expansion, be considered

as made up of terms of the type

\ ! 1
s+ 8 | stx+if ’ St& —3p

since for any realizable system the complex poles occur in complex
conjugate pairs. Then the last two terms above can be combined

into terms of the form

\ S
(s+&) 485 (py rpe

Thus all the pertial fraction expansions may be considered as made

up of terms of the form

\ \ S
s+8 (@)@ Gre) e

for which equations (14), (18), end (19) give the corresponding

responses.
The convenience of the Fresnel function as contrasted with

the more classicel error integrel may be demonstreted as follows.
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Consider the response of & system exhibiting simple exponentisal
dempinge. This system has a transfer function of the form

1
s 4§

(Of course a constant term mey be added, depending upon the par-
ticular problem.) Suppose the excitation freguency begins at zero
and increases linearly thereafter. Then, from equation (14) the

response is

. -jaztz g . -8t ‘8
R= :'.%_ Fr(ati'%;) - ‘-’5—- Fr("‘z;) Real Part.. (20)

This is, in form, very similer to the response of the same system
to a sinusoidal excitation applied at t = 0. The first term of
equation (20) is exactly like the steady state response in the cese
of the sinusoidal force, except thet it is modified by the factor
Fr(et & %%) o The second, an exponential demping term multiplied
by a constent, is analogous to the exponentially decaying term for
sinusoidal excitation. However, expressing equation (20) in terms

of the error integral

2
- —ET e.st -Jr?;i 3 [.'h(dt+§£ )] _ ‘i'(_;_lzﬁ]
2a) ? J 2a 2a
Real Part
gives something which does not lend itself to such anslogous inter-
pretation.
Response of ng%sjz_ to cos at2. Whsn & system has o

damping, as indicated by a transfer function of the type

1 0 P real,
g2 482
P

the response mey be more conveniently expressed in terms of Fresnel's
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integrals. In the case Weo ® O the response is shown by the method

of real convolution to be

z 2.
R: ﬁ—E {cos(Ptff';z)E—S[(ati' _Ze&)z] +S[(Gt" .S'"a) ]]

46
2 PZ
-\—Sir\(€t+ f——a,_) CC[(ontf g’;)z] s B C (;;’i)

+c:[(at—%.ﬂ]} , @)

where S end C are given by equations (7) snd (8) respectively.
Fresnel's integrals are tsbulated in & number of references. (6)
The enalytical form of a system's response may be considered
for a force whose frequency is verying as an arbitrary function of
time, i.e. other than linear, but the resulting expressions are

of & form which is of little walue here.

Computetion of Fr and & . Unfortunately tabulated values

of Fr or & for complex arguments are not readily availeble. Refe-
rence (4) gives a limited number of values of Fr in graphical form.
Functions of this type have been used in other varieties of work,

notebly in the theory of probebility end statisties, the theory of
opties, the theory of heat transfer, the theory of electro-chemical

diffusion, and in the mechanies of rocket flight. In connection

with the latter a number of methods of computation heve been developed.

(7)

Series expansions for the error integrel, ® , are given as

follows. (6)

A
FARQ Q(z\:z—v_r_?(z—ﬁ»f—z—l—g_. .. )

Zi.’

e |
|ZI> 1 "—f—[\—ﬁz)] =37 (- 33

@)} (2z2)?

2+ "3 |'3'§ ,t_,

..)
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Particular values are given by

& (-z) = - ¢ (2)
¢(0)=0
(04 jo)=1 .

For the fresneloid, Fr, useful expensions are

0. B .

lzI<t  Frz)=¢ [ -z - |113 AEFTAE Y ]
. 3.5 3-5:7 , . .

z\>V Fe@@)= 33 "'5 ez5 o' " 3

Or, if the argument is expressed in polasr form,

10
z = reJ N

there results

.2
JZ- . 3 5
lzikL Fe@)=e {%4%+Yﬁﬂ9‘;.*-3°°53°“5‘rssi"5°+

3
. ( ~|— E—"' '—l- i 3
+JL 5 Y cosB i3 sin 30

¥® 50
-\-—2—-§'COS L ]

‘ L sin36~ 2
1z} > Fr(z)= Zcose+&-§sm39 8r5c°556

_ 35
sin TO + - » « ¥i ---sme+ cos 39
ler’ 2 F

4 . 35

— 5 — C TB - s s @

+ v sin 56 ort oS ]
Also,

2
Fr(-27) = eﬂﬁ — Fe(2)

A2 .
Fr(jb) = -Jﬁl & [—j'h-jc(bz) +3(bz)]

b veal 70

Fr(q) ..~J'{‘e [-5 +C(c\) _\S(G)]

a veal >0

Fy (o) = ji:i
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Complete System Response. The following outline is a summary

of the steps necessary to obtain the response of a complete lumped
linear system to an excitation by cos (Wet + &2t2),
l. Write the differential equetions for the system and express
them in transform form, including initial conditions as neces-
sarye

2 Express the desired response in transform form as

F
R(S) = a‘é—:-)l )

3. Calculate the roots of Q(s).

4, Corresponding to the roots in step 3 evaluate the response

by use of equations (14), (18), end (19), and then edd the

contribution due to each root.
Step 3 alone may be extremely laborious for a practical problem
if there are a number of roots (e.g. Q(s) is & polynomial of high
order) end it is desired to study the effect of a great many para-
meters each of which affects Q(s)e Even if complete tables of the
Fr or & functions for complex arguments were available step 4
would be tedious, as exemination of equations (14), (18), and (19)
showse In this connection it is well to emphasize that the single
degree of freedom solutions aveilable (3)(4) are solutions giving
the envelope of the magnitude of the response; they do not, as such,
give the phase angle. And, it is necessary to teke the phase angles
into consideration when performing the addition in step 4 above.
This fect will be illustrated later by means of experimental results.

For these reasons it is desirable to resort to mechine methods
of computation, end the Electric Analog Computer fits well the needs

of such computetion.
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IV. CONSIDERATION OF ELECTRIC ANALOG METHOD

Forcing Function Generatore. Application of the electric

enalog method to this type of problem necessitates tirst a device
which will supply electricelly the forcing function or exciting
force, end such a device will be described first. Following a
brief description of its operation, snalytical justification for
this operation will be given.

(Fig. 1) shows a block diagram of the electronic device used.

Iwo oscillators are used; one is fixed in frequency, f

o * and the

other has a frequency which is made to very from fos due to the
reactance tube in its plate circuit, by en smount A f. The frequency
difference, Af , is proportional to the input voltage to the reac-
tance tube. The output of the verisble frequency oscillator is
passed through a high pass filter to eliminate any of the low frequency
voltage components due to the modulating signal applied to the reac-
tence tube. This output is then mixed in a multigrid tube with the
fixed oscillator's signal, and the output, after suiteble filtering,
is & signal of constent amplitude and of frequency Af. Thus the
device produces an output signal of constant emplitude whose frequency
is linearly proportional to the input voltage. The limitations of
such a scheme will become epparent through the discussion to followe

(Fig. 2) shows two views of the equipment used. The circuit
techniques are standard. A type 6AC7 tube serves as the reactence
tube since its tresnsconductance is proportional to first grid voltage
over a wide range.

Consider an oscillating tank circuit consisting of a fixed
induetence, L , and a capecitance, C , which chenges such that the
capacitive reectance varies lineerly with time. Thus,

" Co
C=T7% 66
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FIG.2 FORCING FUNCTION GENERATOR
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If q is the instantaneous charge on the ceapscitor,

La + -?;(wbt) =0

describes the oscillationes This may be written

q+ w?(Hbt)c\ =0, (22)
where 2 _
W e,

It has been shown by L. Knopoff that the general solution

of equation (22) is

g ot [2set) ] e oy, "“’“‘“"“’%]}, (22

where A and B are arbitrary constants and Jl/% and Y1/3 are Bessel
functions of one-third order and of the first and second kinds
respectivelye.

The case of present interest is one in which the freguency
deviation is small and the rate of percentage change of capacitive
reactence is much less then W, « Thus,

bt 1
b W, 3

and using the asymptotic Bessel function relationships for large

t
argumen Jl(x)zﬁcos( -%23') (24)
Y‘(x) ‘{: sin(x - —‘ , (25)

equation (23) may be expressed

-V, 3,
3_:"._“" (1+bt) 4{Ao:os, 2“"(\+bt\ B 2

+8 smtz")'ﬂi-bt)/l 5:']}
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or, choosing new arbitrary constants A' and ¢ ,
1

But, since
3/1 2 q 3
(1+bt) =1+ 36t + F(6t) — = (bt) +-|—2fg(bt) — -

A‘ 2w 3
q= —~—————- CO0S '[I{- 3 -— bt) . o o }
o = bt + 5 btV = Gt 4o o <]+ @)
As far as the frequency of oscillation is concerned there is

no loss of gemerality in letting

2w,

=T

in which case equation (26) becomes

q-= u+€t\"‘ cos{%‘:'[%bt-}%(bt)z- ,—{%(bt)ﬂ e ]} (em)

This represents an oscillation of slowly demped amplitude end a

frequency, referring to equation (2), of

_A 2w bty 3 (ptPe 2.0E) " ¢ «
f= - S S [gbt 3 (bt)*~ 2 (ut)’+ + 26" ]

- g lietpt-Fetfe L6y — - ] (eo)

Now consider the steady state frequency of oscillation of the

same tank circuit for a static setting of the capacitence which is

equal in value to
Co
1+ Dbt

This is given by

f.

1+bt

n

2

e (PR R COR T T CO RPN IR CL)
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Comparison of equation (29) with equation (28) shows that f; end
fz are exactly equale Of course the same would be true if the
inductive reactence variede This leads to the following interesting
conclusions
For en LC oscillating tank circuit whose capacitive or

inductive reactance varies linearly with time over a narrow

range and at a fractional rate considerably less in value

than the initial resonant frequency, the instantaneous frequency

of oscillation is given by
\

2nLC

where L end C are the instantaneous values of inductance and

capacitence respectively.

Furthermore, intuition suggests that if the variation of reac-
tence with time is other than linear, e.g. parsbolic, the instentaneous
frequency of oscillation is still given by the sbove expression as
long as the totel frequency deviation and rate of change are kept
low.

Of course a prectical tenk eircuit has associsted with it
certain losses in the inductive end capacitive elements., However,
when such a circuit is employed in a vacuum tube oscillator the
effect is very nearly that of the tube compensating for these losses.

Numerical considerations show how nearly linear the output fre-
quency of an oscillator of this type mey be expected to be. The
value of w, used in the forcing function gemerator corresponds
to & frequency of (see Fige 1) 175 kilocycles. The greatest excur-
sion of frequency used in the computing work to be described later
was 1 kece And the grestest rate of change of capeacitive reactance

was that corresponding to varying the oscillator frequency 1 kc.
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in 0.05 sec. Thus,
. bt = _2_ 30
= 175 (30)

W, ~ 4,8 x10° ,

b
end equations (24) and (25) are therefore justified. Hence, the

frequency is correctly given by equations (28) end (29)s An idea
of the meximum departure of the frequency from linear is given by
the ratio of the third to second terms in equetion (28), evalusted
when bt is a maximum. This gives
1 p2¢2
g

1
= bt
2

= 0.28% ,

which is acceptable for this worke

Attention will next be given to the mixer problem. A signal

Gy

T is applied to one grid of a multigrid mixer

of fixed frequency
tube, and to the other grid is epplied & signal given by equation
(27). Thus the two signals are

e, = cos w, b

€, =
(1+bt)4

cos {?;3%' [%b‘w %(bt,)z__ 741’:.§(b1‘.)3 - ] }
1

L

Assuming squere lew mixer action, the mixer output is given
2
e = (K€ + K. €;)

& 2
= Kf coszw‘b § —Ka C°3{ }1

(1+ ety
N aK\Kz‘ cos @, b cos{ } : (a1
(1+ bt )+ 1

Meking use of the relationships

COS X Cosy = ‘E(cos(m—y) + Cos(x—y)]
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end

cos x = g (1tcos2x)

equation (31) becomes

2 2
- X 2wt K2
e= S [ircos 2ot + __-z(nbt)‘h[H cos 2{ }11

KiKe 2w, b (kY o o .
v oo cos 2o (bt + & (o)~ f5 (6t) + ]}

Ki K2 2w 2 3 4
+ /=% __cos) ¥l 1 - - " — o
(+ot)% {, b 4= G506t + gl (et ]}
(32)

If the stages following the mixer will pass neither the D. C.
terms, (the amplifier of Fige. 1 meets this qualification), nor the
terms of frequency 2w, end higher, (see Lo Pass Filter of Fig. 1),
the only term remeining in the output is

3 4
——‘———(\f—bi?)—"t cos,{ih‘jﬂ[-;;(lut)2~ 2oty + gget) — - ]} .

/4

This is a voltage whose amplitude decays as (lva-b't:).-l end whose
frequency is

%r['z" A RS C P ,
which is the desired result. The small decay in amplitude is not
troublesome and can be equalized without affecting the frequency.

With the foregoing considerations in mind the forecing function
generator of (Fig. 2) was constructed. A plot of its static frequency
output vse. Do Co input voltege is shown in (Fig. 3)e The linearity
for frequencies below 1000 cycles per sec., the maximum frequency
used, is acceptable.

(Fig. 4) shows the forcing function generator output as a

function of time when the input voltege varies linearly with time.
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The input voltege is the voltage across a capacitor being charged

by a constant current generator. Thus, the waveshape in (Fig. 4),

2

since the frequency begins at zero, is cos a tz. The instantaneous

frequency at the right hend end of the trace is 1000 c.p.s.

Meesurement of Instantaneous Frequency. In using fhe forcing

function generator it is desirable to have some fairly direct method
for measuring the instantaneous value of the time-varying frequency
of the generator output.

One method of frequency measurement stems from the original
definition of frequency. From equations (1) end (2) it is seen
that a function cos‘ig(t)] hes the same instanteneous frequency
as e sine wave sin mt (m constant) et the instent

g'(t) =mm .
This means that on a graph of cos [g(t)] and sin mt, plotted about
the same zero line, the slope of cos [g(t)]will equal the slope
of sin mt , (when sin mt is shifted in time to have corresponding
phase), at points on cos [g(t)] which have instantsneous angular
frequency me Thus the two curves are tengent at these points. If
cos ‘g(t)] is now considered to be the output of the forcing function
generator it may be presented on en oscilloscope screen, and sin mt
may be superimposed on the same screen, (by using two beams or a
repid switching technique)s A value of m may be chosen, and by
matching the two patterms the instantaneous frequency of any por tion
of cos {g(t)] is determined.

Resonant circuits, though useful for steady state frequency
measurements, are not practical for measuring a time-verying frequency.
For exemple it has been shown by Lewis (3) that if e linearly varying
frequency is applied to & simple tuned resonant circuit the peak

response, (or null for some circuits), of the circuit occurs later
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than the instent at which the instentaneous excitation frequency
is equal to the circuit's resonant frequency. And the delay depends
upon the rate of change of excitation frequency.

The most convenient method of'frequency measurement found,
and one giving sufficient accuracy, was that employing a Wien bridge.
Such a bridge contains only resistances and cepacitances and is not
affected by the considerations of the previous paragreaph.

(Fig. 5a) shows o Wien bridge of the type usede For steady
state frequency meassurements the supplied voltage is applied to

the upper and lower diagonal points of the bridge, and at a frequency

= 1
21 RC

the voltage between the other pair of diegonal points is zero.
By continuously varying R the bridge may be used to measure a range
of frequencies.

Consider the right hend side of the bridge shown in (Fig. 5b).

The source voltage is epplied between a and de In transform form

E‘db _ _\__ Ay + a2
Ega RE| s+ —§§ s+-§—é ! (33)

where

2
3 .
5\‘?
81*31‘* .
If ey, = cos a2t2, (& frequency of zgi? ), the response of

this circuit is given by epplying equetion (14) to equation (33),

wherein there results
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(o)) COMPLETE BRIDGE

(b) RIGHT SIDE OF BRIDGE

FIG. 5 WIEN BRIDGE. FOR INSTANTANEOUS

FREQUENCY MEASUREMENT
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cunmi e (vrlabrigio) el i)

Real Part, (34)

(The exponentielly demped terms are omitted, as it may easily be
shown that they are negligible for the values of time to be con-

sidered).

Let f;, be the frequency of cos 8242 at time t, « Then

?_aztm
tm= 2w -
Define F
h= 4 (35)
on

as the frequency rate of change.
Now let one attempt to measure a frequency f; which occurs

at a time tl e To do this the bridge is adjusted such that
{;_._‘._
1~ 2xRC
Then, at time ti the amplitude of the bridge response ey, is given

by equation (34) to be

M=i % a B [F TS (1438, +q,n[f.w(?.;(n+j&)]} (38

As a check, letting h approach zero, corresponding to a frequency

which changes infinitely slowly, should give the steady state velue

of response. From the series expansions for Ff(z),

Frlz) — - .
e 2t

Thus equation (36) becomes

M =] '—r{ =L . 37)
h~0 J{: ﬁ(“‘i\sz\ ﬁ(lﬂ&)} . t

Substituting the values of &3, a2 , 5‘ ’ Sz into equation (37)
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yields

V) (24 RELENN G

\
-_— T )
h~—>O +JT-W 3

which is exactly the steady state result, since the left side of
the bridge (Fig. 5a) is simply a 1 to 3 voltage divider.
At time tl the bridge does not give a mull output but gives

a voltage
-Ja‘b

te Real Cart — a.Fr[F {- (1t 5}\]

-{a’t?
+quY‘.‘F|F':‘\ (l"'\‘sﬂl} eJa . Real Part : (38)

Since the difference of the real parts is the real part of
the difference, equation (38) describes an oscillating voltage

whose amplitude envelope has, at time %] , a magnitude
\3 - il’%{a.FrU.{fE(n+j8;)] +uzFr[FJf.E('+i&\]}\ - (39)

The nature of the envelope is shown by the bridge response of (Fige 6)e
The velue given by expression (39), which determines the error

of the bridge, is & function of f3/h . For frequencies messured

which are greater than 500 cep.s. and rates of frequency chenge

less than 20,000 cepes. per sec., which are the limits within which

the bridge was used, ceslculations using series expansions for the

Fr function show that the value of expression (39) is less than

1 per cent of the magnitude of the envelope at t ®= 0 » The answer

to the questions At what time does the envelope become zero?,

involves finding the roots of expression (39), which is an extremely

tedious calculation. However, it cen be seen from (Fig. 6) that

the envelope magnitude is varying fairly linearly with time. Con-

sequently, one may conclude that the error in time, (or, since



2448

o
g
J
Q 1
> IS TR -
u" " + VT L L . { ::fi" ‘ ?‘
9o + bt 44

8 T[:' + { {.
mJ .‘ ~~~~~~~~~ :
m J—ii
m ——--—J—.A}

-+ -
Esisns:
S o) 0 I

T

""" f + 2-6

-———3 TIME

FI.6 RESPONSE OF WIEN BRIDGE TO A FREQUENCY
VARYING LINEARLY WITH TIME



25

frequency is verying linearly with time, the error in instantsneous
frequency measured), is elso indiceted quite accurately by expression
(39)e Thus, for the frequency measurements made the error, based
upon theoreticel linits, is less than one per cent. Of course the
above reasoning does not indicate whether the error is plus or minus,
but that is not iwportant here.

Now that the foreing function has been developed it may be
epplied to various electric circuits which are the snalogs of the
physical systems to be studied. The basic concepts of the electric

enalog method of computation are treated in a number of referencese.

(8)(9)

V. RESFONSE OF SIMPLE SYSTEMS TO
LINEAR TIME-VARYING FREQUENCY

Single Degree of Freedom. The single degree of freedom

case has been adequately described by Lewis (3) and Hok (4). However,
as a prelude to the more difficult material to follow it is felt that
to displey here some electric anelog computer results for the simple
cases is perhaps wise.

In (Fig. 7e) is shown an electric circuit with a single degree
of freedom. A voltage cos aztz, when applied to this circuit, gives
a response voltage shown a&s the upper trace in each photograph of
(Fige 8)e The lower trace is the output of a null bridge circuit
to which the seme excitation is eppliede The bridge is set such
that the null frequency is the steady state resonent frequency of
the circuit of (Fig. 7a)e The three photographs are for three
different rates of chenge of excitation frequency, the top photo-
graph being for the slowest rate. It is noted that the peak response
occurs later than the time at which the instanteneous frequency is

equeal to the steady state resonant frequency, the delay, measured
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in terms of frequency, being greater for higher restes of frequency
change. In each photograph the total frequency range is the seme.
Since the vertical scale in each photograph is the seme it is also
noted that the magnitude of the response is higher for lower rstes
of change of frequency, approaching the steady state resonance curve
form as the frequency is varied more end more slowly. The wvalue
of R (Fig. 7a) is adjusted to one-tenth the value for criticel
demping.

A single degree of freedom system having zero demping is obtained
by using en smplifier (Fige Tb), with positive gain, which just
compensates for the loss in the resistence R end for the losses in
the inductence L and capacitance Ce A typical response for this

system is shown in (Fig. 9).

More Than One Degree of Freedom. It will now be demonstrated

that single degree of freedom solutions camot be added together
in amplitude only to get the solution for systems heving more then
one degree of freedom.

(Fig. 10) shows a circuit used to add two single degree of
freedom solutions. The voltage’el is the response of a system

function 1

(s4%,)2 %p,2
to cos at? » and e, is the response of

1
(swecp)? 2g,”

to the seame excitetion. These volteges are shown in (Fig. 1lla)
and (Fig. 11b) respectively. In (Fig. llc) is shown the sum, e; + e, o
The envelope of the latter curve is clearly not the sum of the

envelopes of e] and ep separately.
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VI. COMPLETE SOLUTIONS FOR TWO DEGREE
OF FREEDOM SYSTEM
The results of a detailed study of a two degree of freedom

system made with the Cal Tech Electric Analog Computer will now

be given

System Studied. The basic mechanicel vibratory system

considered is illustrated in (Fig. 12), together with the electric
analog used on the computer. The differential equations for the
mechenicel and electrical systems are shown also, (in operstional
form where p = d/dt)e The numerical relationships between the
mechanical and electrical quentities are given in Table l. This
analogy end the general computer techniques are discussed in detail

by Criner, McCenn, end Warren (8).

Teble 1 Electriecal-lMechenicel Analogy
a 1 a
L*zh ;7% R34

where
a = arbitrary impedance base factor

n = computer time base change

T
b, =aq, _Eo:’
Shaft stress = K,(8,-62) = ;%Tza(q.-qz) 2

= 3————.~qz E— = 'E"! To
C\z EO E—O
where E; is the capacitor voltage across Clz o

Dimensionless torque

T| = K\z(e‘.—ez‘\ - E—‘—
% gs Eo




27a

TORQUE EQUATIONS

(la) To = [‘pza. t+ G| p9| t+ G|2 p(9|‘92) t+ Klz(erez)

(20) 0 = ,p%g, + Gop8, 1 G op(8-8)) t Goap (8,63 +K\,(656,) +K;y4(6,-64

(3@ O - [3983 + 630931‘ Gasp(93'9?_) + K23(83'92)

Ra

f?)% .

ELECTRIC CIRCUIT EQUATIONS

o—

(Ib) Eo =L p q, +Rypq; +Rpl(qald ol s (q, qz)

3b) 0 =Lap?qs + Rapqa

+ Rz3p(q37ald +

C23(q3q2)

Pic, 12 Tlectrieel !nrlocy for Linersr Rotriins &

voto
with Two Degrees of

Freedon
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The electric circuit of (Fig. 12) hes also en anslogous trans-
lational mechanicel system in which the asnalog of electric charge
is translational rather than rotationel displacement. However, in
attempting to meke a somewhat general analysis of a two degree of
freedom system it was felt thet the most importent type of mechanical
system is the rotating system which hes inherently low damping.

This is representative of a great many machines. Of importance also
is the effect of acceleration through resonance upon the mountings
of such machines. Although demping may vary widely in transletionsal
vibratory systems, most rotating-equipment mountings can be snalyzed
as single degree of freedom systems.

As shown in (Fig. 12), two types of demping mey be present,
namely bearing frictions which are functions of absolute wvelocities,
and internal shaft materiel frictions which are functions of relative
velocities. However, it has been shown previously (8) that so long
as the dsmping is low, (corresponding to only 10 or 20 per cent per
cycle), it can be represented accurately by single demping factors
acting upon the absolute motions of the respective inertia constantss.
Thus, in the analogy of (Fig. 12) only the resistors Ry, Ry, and
Rz were actually used.

The verisble-frequency exciting torque, as shown in (Fig. 12),
is simlated by the voltage Eo’ If the excitation torque is applied
to an end inertia constant, the location of the driving voltage
for the enalog is as shown. If it should be on the center inertia
constent the voltege would be inserted in series in the central
circuit loop.

The forcing function was restricted to a single frequency verying
linearly with time, since this is most representative of acceleration

through resonance. To consider the effects of varistions in the
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rate of chenge of forcing function frequency or emplitude would
result in too many parameters for a general study. Thus the excitation

woltage is given by 5
E, = B cos (w,t Twht®) . (40)

Certain types of systems, such as those driven by induction motors,
produce sustained unidirectionel torques upon which the verisble-
frequency oscillating torque is superimposed. These two components
may be separated in the analysis of linear systems. In the solutions
presented here no unidirectional component was present. For the
cases of increasing frequency, W, of equation (40) was zero, end
for the cases of decreasing frequency , was made sufficiently
high compared to the natural frequencies of the system to eliminate
the effect of the starting frequency, W, .

The same basic principle as that of Lewis (3) was also used
here for expressing the forcing function and the basic system para-

meters in dimensionless form. (See Table 2).

Typical Solutions. Typical solutions as obtained with the

computer are shown in (Fige 13) emd (Fig. 14). The top oscillogrem
in (Fig. 13) shows the driving torque or voltage E, of linearly
increasing frequency. The lower oscillograms show the resulting
torque or motion of the shaft K12 for two ratios of shaft spring
constentse In the electrical analogy the shaft torques are obtained
by measuring the capacitor voltages, and the solutions are expressed
in the dimensionless form TI/TO, as obtained by recording the ratio
EI/EO, or the ratio of the capacitor voltage to the applied voltage
(see Teble 1).

The solutions of (Fig. 14) apply to & system with natural fre=
quencies which are rather far gpart. Thus if the rate of change

of frequency is relatively low two distinct resonant peaks are present.
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Teble 2 Definition of Dimensionless Parsmeters

Used in Figse 12=17 Inclusive

(N
Ny = E;f—- natural frequency of inertia I1 end spring

constant Ky o with I, locked in position
w,=| Kz
1

h = rate of change of frequency of driving torque To
in cycles per sec. per sec.
.M
173

If Glz ® Gyg = 0, demping ratios can be defined as follows

_ & =._.G.E.— - G
’Y'-wi[\ ' Ya w3l, ’ ‘Ys

where W3 is the steady state engular frequency at which
maximum torque occurse

System and foreing function are completely defined in
dimensionless form by specifying the following constants:

2
2, I, R, .

This condition corresponds to high values of the parameter q (see
Table 2)s When q is sufficiently low the system may oscillate
simulteneously at more then omne frequencye. This condition is illus-
trated by the top oscillogrem in (Fig. 14) and the two solutions

in (Fige 13). Under this condition, cancellation or addition effects
may teke place in the period when the second resonant peek would
normelly be expectede Thus the ratios of the two pesks mey vary
appreciebly as q is varied. It might be expected, therefore, that
wide fluctuations in the crest torque would result as the system
parameters are changed. This was not found to be the case however.

As Lewis (3) also observed for the single degree of freedom
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system, a delay elways occurs in the instantaneous frequency of the
forcing function at which the resonent peaks are reached, which
becomes greater frequencywise as q is decreased.
To correlate with the Lewls data, some ten spot check measure-
ments were made of a single degree of freedom system with the com~

puter. These all check the Lewis date within 3 per cent.

Generalized Analysise It is obvious that the complete

transient solutions are of too complex a character to permit presen-
tation in a generalized form. It was considered practical to plot
only the maxirum crest torcue which results from a given solution

as & function of the various system parsmeters. To further reduce
the required date, a detailed study wes mede of the effect of damping
expressed as the damping factor ¥ (see Teble 2). For almost all
prectical rotating systems 7 will be between 0,005 end 0.02.
Solutions showing the effect of demping are shown in (Figs. 15 end
16). (Fig. 16) epplies to the cese where the driving torque is epplied
to an end inertie constant. (Fig. 15) epplies to a special case with
the driving torque on the center inertis constant, end with such
symmetry that the system has only one mode of oscilletion. The
dotted curves forY = O were taken from the Lewis data. (3) The
correlation between this system and & single mass-spring system

is discussed in the eppendix.

The curves in (Figs. 15 end 16) show a rather narrow spread
between ¥ = 0 and Y = 0.02 for all solutions resulting in shaft
torques below sbout 10 times the driving torque, which is the prac-
tical range of interest. Thus it was considered sufficient to plot
solutions for the single most typical velue of ¥ of 0.01l.

Another factor which is eliminated from the generealized analysis

is the difference between the crest torque developed during accelereation
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L~ 0.25

0o 20 40 60 80 100

q

Fige 15 MNaxirurm Crest Shaft Torgues for a Boalenced Systenm
Havine One Degree of Freedom and Driving Toraue at the
Center
(%=%=Y3=7. See Table 2 for definition of varsreters.
* Taken fror reference 3. See sopendixe)
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and deceleration of frequency. Solutions were obtained over a wide
renge of system paremeters for both conditions, and it was found that
the crest torque is alweys higher for the decelerating case. This
was also found by Lewis to be true for the single degree of freedom
system. The renge of veriation was found to be from 5 to 20 per cent
higher then for accelerating frequency. However, in the vast majority
of cases the difference lay between 10 and 15 per cent. Therefore
it was considered sufficient to plot the generalized curves for only
one of these two conditions. The accelerating case was chosen.

The generalized solutions are presented in (Fige 15 and 17).
(Fige. 17) applies to the case wherein the excitation torque is
applied to en end inertia constant. In these curves the maximum
crest shaft torques on both shafts are plotted in dimensionless
form as a function of the parameter g In all cases I, = Iz .

Each set of curves applies to a different retio of 12/11 s end on
esch set are curves for a range of ratios of K25/K12 « The curves
are so chosen end enough vealues of the ratios given that satisfactory
interpolation cen be made. The crossing over of the curves at lower
values of q results from the multifrequency interaction discussed
previously.

The data for the cese in which the driving torque is applied
to the center inertia constant ere presented in (Fige. 15). This
represents practically as general a trestment as is given in (Fig. 17)
for the driving force on the end of the system, since in most prac-
tical cases the two shafts would have the seme spring consteant.

Space does not permit presenting a complete coverage for cases
where all the inertis constents are different. However, it is a

relatively simple matter to obtain such deta with the electric enalog

computere.
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A hint et the time that would be involved in obtaining these
solutions by snalytical calculation may be hed by noting that the
system studied has a cheracteristic equation of 7th order, containing
3 real roots and 2 pairs of conjugate complex roots corresponding

to the two natural freguencies.

Application of Curves, As an illustration of the use of

the curves of (Figse 15 and 17) for a specific problem, consider
e 1200 rpm induction motor driving two generators. The induection
motor rotor inertie constent is 3.3 slug ft., and each generastor
has an inertia constant of 6.6 slug ft. The shaft constants are
Kys = Kpz = 0.5 x 108 1b. ft./redian. The velue of ¥ for each
machine is 0.0l.

Consider first the case when the motor has the position Ij,

(Fig. 12); thus

I; = 3.3 slug ft.
I, = Iz = 6.6 slug ft.
Ky, ® Kpg = 0.5 x 10° 1b, ft./redien

The motor starting characteristic is such that it sccelerates
the system to 1200 rpm in 8 sec. During this period there exists,
superimposed upon the unidirectional torque, an oscillating slip
frequency torque which veries in frequency from 60 cycles per sec.
to zero in the 8 seconds. It will be assumed thet the accelerstion
is constant at least until the variable frequency‘has pessed through
the system natural frequencies, and that the rate of change of
frequency during this time is given by the averege value (see Table 1)

h = 60/8 = 7,5 oycles/sece?

The crest magnitude of the pulsating torque is

I, = 263 1b. ft.
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6
W, = M = \J95x10 = \23
‘ I, 3.3

_ Wz 23 _ !
N, = S = o = 9.5 ¢4

Now,

N?z.._ (\9.'5)2 = 5\

=7 = 1.5
L _ L
T°T°°
L(é:\

K\?_

Referring to (Fige. 17d) it is seen that for a T, having an
increasing frequency, T1/T, = 13.2, T,/T, = 11.8. Since, however,
the forcing function in this case is one of decreasing frequency,
values of crest torque 15 per cent higher should be used. Thus
T1/To = 15.2, end T,/T, = 13.6.

The maximum pulsating components of sheft torques to be expected

are therefore
265 X 15.2 = 4000 lbo fto

;
263 x 13.6 = 3580 1b. f'te

Next, consider the motor in the position I, in (Fig. 15), with

one generator symmetrically placed on each side. If the seme shafts

are used,
I1 = 6.6 slug ft.
I, = 3.3 slug ft.
K = 0.5 x 10° 1b. ft./redien.
Now,
4K = .‘lcxsxlo6 =
W,=1 2 = . = 81
¢ 1 1, 6.6
1
N,.= %—:‘;- = %r_r_ = (3.8 c.p.S.
Nz _ 3.8l
= = = 25,
4 h .5 i
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Referring to (Fig. 15), for en increesing frequemcy, I;/I, = 2,
Y = 0.01, g = 25.5, T/T, is found to be 11.5. Again adding 15
per cent (for decressing frequency), T/T, = 13.2. Hence the meximum
pulsating component of shaft torque to be expected in this case is
T = 263 x 13.2 = 3470 lb. ft.

The stresses produced by the unidirectional component of the

driving torgque of the motor can be found by conventional methods

of analysis.

VII. FURTHER CONSIDERATION OF ELECTRIC
ANALOG METEOD

The foregoing type of treatment may be extended to more compli-
cated systems and to one or more forcing functions of a general
frequency vs. time charecteristice. The present Cal Tech Electric
Analog Computer is capable of representing systems with up to 100
degrees of freedom. In addition many nonlinesr systems; and dis-
tributed systems, such as vibrating beams; may be handled by employing
electrical anslogies already developed.

If the emplifier in (Fig. 1) is made to have a gain proportionel
to en suxiliery input voltage, (e.ge by varying the screen potential),
some degree of amplitude modulation may be added to the frequency
modulation of the outpute

For treatment of periodic variation of frequency, i.e. steady
state frecuency modulation, applying the proper periodic voltage
waveshape to the device of (Fige 2) will result in the desired
excitation function. This excitation may then be applied to the
appropriaste electric snslog circuit. Waveshapes obtained in this
menner for sinusoidal and square wave frequency modulations are

shown in (Figs. 18e end 18b) respectivelye.
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VIII. VARIABLE FREQUENCY TECHNIQUE USED
TO OBTAIN STEADY STATE FREQUENCY RESPONSE

In meny types of electrical work it has become fairly common
practice to employ a time-varying frequency excitetion in obtaining
a meesure of a system's steady state frequency response. For example,
if a voltage which varies in frequency from zero to 20 ke. in periodic
fashion is applied to en sudio amplifier, the output of the amplifier,
when viewed with an oscilioscope, will show a plot of the amplifier's
frequency response in the audio rsnge. This same method has been
epplied in obtaining repidly the frequency response charecteristics
of amplifiers operating et higher frequencies, of loudspeekers,
for aligning radio receivers, end in e number of other meesurements.
Such a technique gives a result which is of increasing accuracy as
the rete of chenge of frequency is made less and less. From previous
considerations it is seen that the accuracy is governed by the dimen-
sionless quantities ng/h » where Wp represents the various resonant
frequencies end reciprocel time constants of the system, end h is
the rate of change of frecguency. Unless the wvalues of uog/h are
sufficiently large, which means that for a given system h must be
sufficiently small, this technique is only a rough qualitative
method.

(Fig. 19) shows the response of a low pass filter to a frequency
verying linearly from zero to 1000 cycles per sec. for two different
rates of change of frequency. The slow frequency sweep, (Fig. 19a),
gives a fairly accurate measure of the filter's frequency response.
The faster sweep, (Fig. 19b), shows considerable error.

In (Fig. 20) ere shown the response cherscteristics of two
other filters. The upper photogreph, (Fig. ZOa), is for a high

pess filter, end the lower photograph is for a band pass filter.
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APPENDIX

The zero demping curves in (Fig. 15) are obtained from the
paper by Lewis. (3) Using operational notetion, the equations

satisfying the system in (Fig. 15) ere
T,0%0, +2K(8-82) = To

1,002 +K(B2-0)=0 .

Multiplying the first equation by 1, end the second by 12, and

subtracting,

LI.p (81-6,) + K(2IL,+ 1,)(8,-02) = ToI, .

Solving for the shaft torque, K (®,-©2),

_w ko Tl ' .
K(el 62) = aI""Iz I T2 zf ,
K(ZIF" IL\P

Similarly, for a torque To applied to a single inertia-spring

configuration (I,, K,), the shaft torque is

{
° L
L 24y
Ka ©
Thus the response of the system in (Fige. 15) may be found in

terms of thet of the sinple system provided that

Ka = K

- I.‘Iz
Ia - 21‘+12

In addition, the amplitude of response must be decreased by

mltiplying it by the factor

S

2L+1,
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It remeins to connect the paremeter q of the Lewis paper,

which will here be termed Qg » With the g defined in Table 2.

_ _Ka _ KEL+T.)
2= Tohl.  4n’hLl.

_ _kK
q 4'|'Tth.|

Hence, 2Tt 1
1 2

d=aTL

Thus, to obtain the response of the balenced 3-body system

.
ZI‘ + I‘L

for = a, equal to

C2LrTe
1.

-

The foregoing derivetions may be made more general by including
the effect of demping, thus enabling one to treat with Lewis' results

a balenced system, such as that in (Fig. 15), which includes damping.



PART IWO

BRAKING OF A LONG TRAIN
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PART TWO
Breking of a Long Train

In the stopping of a long railroad train, and particularly
in the emergency breking of a long train, it is importent to consider
the longitudinal forces acting upon the cars end upon the coupling
apparatus used between cars. The forces on the cars may, in some
instances, be great enough to cause the cars to buckle lengthwise.
The forces on a car determine the resulting acceleration, and the
scceleration of the car in turn governs the forces to which the
dunnege and lading are subjected.

The essential part of the coupling device used between cars
is a spring, celled a "draft gear". This spring is constructed
such that it ebsorbs considersble energy during compression and
subsequent expension, & feesture obtained by meking the draft gear
a combination of an elastic spring and sliding friction. This
meens thet the draft gear exhibits a nonlinear characteristic.

For this reason analytical solution of the braking problem, consi-
dering the draft gears as nonlinear, is extremely difficult.

There is a delay in the application of brakes along the train
due to the acoustic delay of the air pressure wave used in applying
the brakes. Thus the head end of the train is braked first, end
the succeeding cars have their brekes applied sequentially.

An esnalysis of the long train breking problem for draft gears
treated as perfect springs hes been made by considering the train
as & uniform elestic bar. (10)(11)(12) Though the uniform elastic
bar does not accuretely represent the actual system of lumped cers,

it will be shown that for draft gears considered to be perfect springs
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the results are fairly accurate, particularly for longer trains.

I. ELECTRIC ANALOG OF TRAIN

If the train is considered to be composed of cars which act as
rigid lumped masses, snd if the only forces acting on each car are
the braeking force and the force of the draft gear(s), a section of
the mechanical configuration for longitudinal motion is shown in
(Fige 2le)s The enalogous electric circuit is given in (Fig. 21b),
together with a table of anaslogous electrical and mechenicel quan-
titiese This circuit is based upon the well kmown lMobility or
Force=current ansalogye

If each draft geer is considered to be a perfect spring with
a spring constant K, addition of the forces on the nth mass, (Fig. 2la),

yields

F’\ = M“ %‘\L‘" + Kj(v,\- Vn-|) dt + KJ\(Vn" Vnﬂ) dt. (4’”

The corresponding electricael equation, obtained by adding the
currents at the nth electrical node, is
dEn \ - L -
L,=C 52+ L) (BB )db + L \(EnmEnn)db. (42)

Compering equetions (42) end (41) shows that the mechanical
spring constant is analogous to the inductance of each of the electric
coils.

The detailed snalogy for the case where the nonlinear behavior
of the draft gears is considered will be giveﬁ later.

Sequential application of car brakes is simulated in the elec-

tric circuit by sequential application of the nodal currents Ip.
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II. ANALYTICAL SOLUTION FOR IDEALIZED
DRAFT GEARS

In considering application of the electric analog computer
to the solution of amny problem it is wise to first investigate the
possibility of obtaining an analytical solution to the problem.

If the time necessary to solve the problem by analyticel means is
less than would be required by using the analog computer the latter
is of course not justified. Then too, the nature of the enalytical
solution often lends insight to the analog computer attack.

The enalytical solution to be presented is for draft gears
which are assumed to be perfect springs. The cars are assumed to
be identicele In this case the electric circuit becomes repetitive
in construction, as shown in (Fig. 22a).

The analyticel solution will be given in terms of electricsal
quentities because of the possible electricel interest in this
ledder network problem, the solution to which has not been found

elsewhere in the literature.

Force at One End of Train. The first problem to be considered

is that of a sudden breking force of constent amplitude applied at
the front end of the trein, such as would be due to application of
the locomotive's brakes. In the electrical snalogy this corresponds
to & step current entering the front end of the eircuit of (Fig. 22b).
The treain is composed of N cars, and the designation of voltages

and currents is as shown in (Fig. 22b). The two end inductances,
each L/2 in velue, are added only to make the circuit end sections
the same as the typical T cell of each section. Since the network

is forced with a current, i(t,0), the addition of L/2 at the front

end of the circuit has no effect upon the solution of the problems
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The transient solution for a ladder network consisting of T
cells of this type has been treated by Gardner and Bernmes, (5)

and the general solution in Laplace transform form is

E(sn) = E(50) coshng — ZT1(s5,0) sinh np (43)
I(sn) = 1(5,0) cosh e - E%"Q- sinh ng. (44)

where E(s,n) = Lb‘_e(t,n)] and I(s,n) = Lt[i(t,ni'] are the Laplace
trensforms of voltege and current with respect to the time wvarisble,

and L
cosh = =3+ | =\ (45)

Z={e(csa) . (46)

Since, in this perticular problem, i(t,N) = 0, equation (44)

becomes, for n = N,

T(sN) = 165,01 cosh Np — B8 siah Ng =0

from which cosh N

Els0) = 2160 oy 6 (47)

Substituting this into equations (43) end (44),

E(s,n)= 21(59) E—E\%\% eosh ng - 21(s,0) sinhng

sinh(N-n)
= £ I(S}O) W&

1(s,n) = 1(5,0) cosh ng - T(s,0) %‘?\—f\'—:—%g— sinh np

= 1(s9) sv———‘é—"‘:;‘f{j‘hj‘e . (48)
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For a unit step current input,

\
1(S,0) =35

. _snh (IN-n)B A |
1sn) s sinh N(g, s B(Gs) )

A partial fraction expansion of equation (49) may be mede by
first finding the roots of the denominator. sinh N@ = O is satis-
fied by meking

. ki
Bzt kK=o, ..

The values of s corresponding to these values of pk may be
found by using equation (45),

'K—T!'.:. -\:S-s-z
COshtsN = + |

which gives the roots fa
etV [1meos K] =i, o)

k=0,1, 2, ¢ 66 N,
After k = N the terms repeat, and no new roots are added. The m‘:s
are the natural frequencies of the system.
Since s = O is & zero of both A(s) and B(s) in equation (49),
the function I(s,n) hes only a first order pole at the origin, and

the partial fraction expemsion becomes (see Reference 5, Chap. Vi)

N
I(s)n): A(°) Z( k'\' S+JQK(KK KK) (5-1)

sB©) 5 + u
k=) K

where
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and K indicates the conjugate complex of Ko

From equations (45), (49), end (50) it may be shown that

S ;
sin %% sin 2Kox

2N (cos ‘—‘ﬁ‘! - |) ) (52)

r(k:

Since p—>0 as S—>0 , and

s z?
smhz:z+§y+- <. s

then

~___=‘_

A (o)
B (o)

a
N L
As K is real, 1& = Ky , end equation (51) now becomes

Y\ 2KyS
Isn) = +(-8) + ) S

2 2
K=1 ST+ Wi

Taking the inverse Laplace transform with respect to time,

N
-\
() = Ly [sn] = 1- & + ) 2K coswd  (53)
k=)

where "
. K .. nkKir
sin g SWN TNy
2Ky = —D = N (54)
N (cos KX ~1)
and 1

o -fE [FesE]". )

Equetions (53), (54), and (55) constitute the solution to the

problem of a step current injected into the front end of the network.

Force Applied to an Intermediate Car. As the next step

toward the complete solution of the problem, consider a step braking

force applied to any one car along the train. This corresponds
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to a unit step current applied to one capacitor-inductor junction
in the electrical network, as shown in (Fig. 23a).

Let the total number of capacitors (cars) be M, end bresk the
circuit into three separate networks, as shown in (Fige 23b). It
will be recognized that each of the end sections of (Fige. 23b) is
identical to the circuit treated before. By inspection

M=N ¢+ Nygs 1. (56)
In joining the three networks together the following boundary

conditions must be satisfied (see Fig. 23b):

I,(50) +1,(s0) +sCE(S) = To(s) (sT)
E,\(5,0) + S-1,(5,0) = Eo(s) (s8)
E2(50) + 5 =1, (5,0 = E,(s) (59)

From equation (47) there are obteined the relationships
E,(50) = Z1,(50) coth Nip
£, (s,0) = Z12(5,0) coth Nzp

Substituting these into equations (58) and (59),

I,(s,0) + T5(5,0) + sCEo(s) = To(s) (57)
Z1,(s0)coth Mg + 31 (50) = E (s) (€0)
Z£1,(5,0) CGH\N;P + 5 1,60 =Bl . %1)

Simultaneous solution of the above three equations yields

Lo(s)Z coth NaB + ]

1,60=
{[stCoofk Nig + s—-‘&“i‘cdh Naﬁ*%] + ZeothNg « %}
i
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and

19(5)[2 cothN,B + %_—‘]

t)

Designating successive loop currents in the N, circuit by

IZ(S,O) =

n, , from right to left, end in the N2 cirocuit by ny, , from left

to right, end using equation (48),

I(s,n)= Io(s)[zw“‘ Na@+ 'SEL'] sinh (N;-n,)p
{ } sinh N‘@
1

L.(S)[lCO*k N+ E‘?\f"] sinh (N2~ l\z\#

{. }1 sinh Nap

By expanding the denominators of equetions (62) end (63) and

(62)

I.a (5) f\z) = (6 3)

meking repeated use of the relationship
sinh x cosh y 4 ocosh x sinh y = sinh (x+y)
there is obtained
Tols)[Zooth Nog + %1 sinh(Ni-n)g sinhNz@
Z sinh (N, + N2+ 1)

I (S,“\) = (64)

\ - Lo [Zcothng+ 5] sinh (Nz2=0p sinh N
2 Z sinh (N, +No +1)p

I:.(sn (65)

Referring to equation (48) it is observed that the sinh(Nl-\-Nz-\-l)
term is exactly what is to be expected, since there are Ny+Notl
cepacitors in the netw rk, end since the characteristic equation

of any linear system is independent of the locetion of the driving
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force.

For & unit step input current,

L
168 =5 »

- ‘_Zco{-thf{— > ] sinh (N~ l)(S sinh Nzﬁ (66)
s sinh (Nir Nat1) 8

1,.(sn,

12(5 )= (Zcoth Nipt z] sinh (Nz-nz)@ sinh N(S -
s Z sinh (N N+ B

The solution of equations (66) and (67) is carried out the
same as for equetion (49), and the details will not be repeated

here. The resulting solutions are

Nit Nati
_MNi-ny 68)
(6,0 ) = .+Nz+\ 2K Ccoswt  (
k=1
NerNg+
Np-ng
ltyna) = (EE x 2Kz COS Wb, (69)
K=\
where ‘%
=1, _ ke
W= \TE {\ cos Nﬁ*Nz“’\] (to)
kw(Natl) 5 kwN2 kn-(N.-n.)
K __(—\)“[S\ NNzt NH—NZ“‘:‘ N.+Nz+\ )
.
2 N ~coc — KT
(N'+ "H)( b .+Nz+|)

kw(N2-nz2)
K RulNitt) _ kILN: i
KZK: (_‘) [S‘\ Nyt Nati leN 1 ] N1+ Nzt (72_)

2(N+ N+ (- Ky )
( M )(\ o Ni+Nztl
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Next, let the loop currents and nodal points of the circuit
be numbered from left to right, beginning at the extreme left end,
as shown in (Fig. 24). Let the forcing current enter at nodel
point L, and let successive loop currents bear the designation m.
If all currents are considered positive clockwise,
iy (t,m) = -i;(t,m;) (73)
i(t,m) = ¥ip(t,np) . (74)

First, consider the currents to the left of point L. By inspec-

tion
Ni =L-1
N2 = M-1L
nl - L o TN - 1 °
Then,
M
Lmy=— - E 2K, ©0s Wit (s)
K=
kM- o kr(M-U G ki
LS 5“\———-—-—-—'5“\———" Syn
Ky= Q) M : M M (16)
- Aw,
2M (1-cos TH
2 X B )
w\Kt'\’E D—cos MX . QX
To the right of point L,
n, = m - L,
and the solution becomes
™M
Lltm)= 1= ¢ § ¢ Kax COS Wb (18)
K=\

where

o S 0 (5l ) By A -
ls“\-—bT - Sin ™ ] sin &ELM__’”—)

M
2M (1 - cos AT

_af

Kax G9)
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and Wik is given by equation (77).
There appears to be no one simple expression which will present

both i; and i, in the same equation. EKowever, this is to be expected

2
from the nature of the problem.

As a check on the correctness of the sbove solutions, letting
L=1,M= N, and m = n for the 12 solution; or letting L = M = N,

end m = N-n for the i; solution, gives the end drive case of the

preceeding section.

Force Applied Sequentially to All Cars, To extend the prob-

lem, let a breking force be applied to each car in succession. IThis
corresponds to step currents, (which will be assumed to be of unit
magnitude), being applied successively to the different nodsl points
of the electric circuit, from left to right. The current at point

1, (Fig. 24), is epplied at t = 0, and the time delay between appli-
cation of successive currents is T,. Extend the current notation

to il(t,m,L) and iz(t,m,L) to indicate by L the point at which current
enters. The solution then consists of the solution for L = 1, multi-
plied by u(t), ( u(x) is a function which is zero for x negative end
unity for x = 0); the solution for L = 2, mltiplied by u(t-To); the
solution for L = 3, multiplied by u(t-ZTo); end so on up to the L = M
solution (M totel cars)e Of course, care must be taken to change
from the i2 to the i1 solution et the proper point in the calculation.

Thus, for any particular value of m the calculation may be indicated

as followss
t,m) = talt,m ) al) i (Em2) ult-To) + talt,m3)ule-2To) t - =
ot mm)ufb-m-0T) +1,(t,mme1)u (t-mTo]
+Lmmi2)u [E- () To] + 0 ¢ v -

i EmMNut-M-2To] + { (E,m M) ut-M-1)T]  (80)
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where i; and i, are given by equations (75) and (78) respectively.

It should perheps be remerked in passing that if the tractive
effort of the locomotive should be pulsating with a frequency neer
one of the system resonant frequencies given by the mechanical
equivalent of equation (77), large spring forces could be expected.

It has been celculated that to use the foregoing equetions to
obtain a satisfactory transient solution for the force in only one
dreft gear and for one perticular value of T, would require over
250,000 separate calculations of moderate complexity and over 7000
tabulations, plus the addition and possible plotting associsated
with equation (80). Furthermore, these equations epply only to the
case in which all cars are identicel. These difficulties, plus the
desire to consider nonlinear draft geers, meke the electric analog

method attractive.

III. ELECTRIC ANALOG COMPUTER SOLUTION FOR 50 CAR
TRAIN WITH IDEALIZED DRAFT GEARS
Fifty cers was chosen as representative of a long trein.

Generation of Braking Currents. An electric circuit to

supply one of the forcing currents to the snalog network is shown

in (Fig. 25)s This circuit is essentially a high voltage source

(450 volts) in series with & high resistance (2x10° ohms), which
supplies a nearly constant current es long as the voltage of the
capacitor in the train circuit remains low. The beginning of the
current is controlled by the type 2D21 thyratron. The thyratron's
firing is actuated by closing switeh S, which reduces the grid voltage
to zero. Switch S is actually one section of a commutating switch.
Thus, when commutetor action closes S momenterily the thyratron
conducts and remains conductinge The commutator shorts the grid

of each of 50 thyratrons in turn, corresponding to each successive
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current input to the analog circuite The thyratrons!' continuing
to conduct corresponds to the mechanical brekes of each car remsining
on once they are actuated. After the solution is no longer of interest
the thyrstrons are mede nonconducting by opening the supply voltage
circuit. After removal of energy from the train eircuit the solution
is repeated. In the electric enalog this complete cycle requires
Oel sece Thus the solutions eppesar as stetionary patternms on a cathode
ray oscilloscope. The 006 uf condensers prevent firing of a thyra-
tron due to spurious pulses, such as those from adjacent circuit
elements, (Fig. 26) shows the 50 thyratron circuit chassis.

The breking force applied to each car is a step force of megni-
tude f, which is applied at a time T, later than the braking force
of the preceding car. (Fige 27) shows the total integrated braking
force applied to the train, integrated in the sense that it repre-
sents the sum of all the breking forces epplied to the train at any

particular instant of time. On the computer To was fixed at 0.,0005

sece fb was 1 milliempere.

Presentation of Solutions. It is known (12) thet the draft

gear forces vary according to the ratio of the natural velocity of
wave propagation along the treain to the velocity at which the braking
forces are propsgated along the train. Thus this dimensionless
varieble is chosen as a parameter in the presentation of solutionse
(See Table 3.)

The cars are numbered consecutively from the head end of the
trein, the first maess being car number one. Actually, since all
messes are assumed equal, the circuit represents a trein of 49 ecars
headed by o locomotive of equel mass and braking force. This was
done to keep the solution general and to afford a check against the

solution for a uniform bare. Draft gear number one is located between
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FIG. 26 50 THYRATRON FORCING FUNCTION UNIT
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Table 3 Definition of Parameters
For Treain With Idealized Draft Gesars

K Spring constant of each draft gear

M Mess of each car

v =\% Netural propasgation velocity along train

; Velocity of application of brekes along train

p= %; Ratio of natural velocity to breking veloecity

cars one eand two, and the remeining draft gears are numbered consecu-
tively.

Draft gear forces are expressed in units of braking force £, .

Results are presented in both photographic and graphicel form.
The horizontel time base is the same for ell photographs except
those of (Fig. 27)s The time required to apply 50 brakes is repre-
sented by 10 horizontal divisions on the photographs. The application
of the first brake, (car No. 1), occurs at the first heavy vertical
line in all photographs except that of (Fig. 27a)s On all photo-
grephs the vertical scale is arbitrarily edjusted for clearness
end definition.

The parsmeter p (see Teble 3) ranges from 0.5 to 2.0, the range
of practical interest in freight service. On the computer p was
varied by varying the value of the inductences in the trein circuit.

(Fig. 28) shows typical trensient solutions of force vs. time
for each of three different draft gears when p = 0.5. The delay
effect is illustrated by the fact thet the beginning of the force
build up occurs later for the draft gears farthest from the head of
the train. PFurthermore, it mey be observed that the time at which
force build up begins in each draft gear is exactly the time at which
the breking force is applied to the car adjacent. This is because

the netural propegation velocity is low compared to braking velocity.
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F16.28 TYPICAL SOLUTIONS FOR p = 0.5
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Thus, for dreft geer number 15 (Fig. 28a) the build up begins
%g-x 10 = 3 divisions to the right of the heavy wverticel line which
merks the application of brakes to car number 1. For draft gear
number 36 it is %%.x 10 = 7,2 divisions, and so on.

In (Fige 29) are similar solutions for p = 1.0756. This was the
value of p which gave the meximum crest force, this force occurring
in draft gear number 46.

(Fig. 30) presents solutions for p = 2.0. These solutions
demonstrate the effects of reflections from the rear end of the
trein, For p = 2.0 the natural velocity of propagetion along the
train is just twice the brake application velocity, end it is quen-
titatively observed thet the beginning of force build up occurs et
a time which is, in general, one half the time for the case in which
reflections did not affect the solution (p = 0.5, Fig. 28)s Thus
for draft gear number 25 (Fig. 30b) the force build up begins

%g»x 10 x-% = 25 divisions

after braking is begun. For draft gear number 33 it is

%% x 10 x 3 = 3.3 divisions.

For three different values of p the peek force in each draft
gear of the trein is plotted and compared to the theoretical force

in e uniform elastic bar. (12) These plots are arrenged as followss

Fig. 31 P= Oe 5
Fige 32 p = 1,075
Figo 33 P = 2.0

(Fig. 34) gives the mumber of the draft gear in which the maxi-
mum crest force occurs for a range of values of p from 0e5 to 2.0
These locations are compared with the locetion of the maximum longi-
tudinal stress in e uniform bar (12).

(Fig. 35) presents the values of maximum crest draft gear force
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b4
occurring in the train plotted against values of p, together with
theoretical results for a uniform bar,

Referring to (Figs. 34 and 35) it is apparent thet for a train
of 50 identical cars connected by ideal springs the magnitude and
location of maximum spring force for values of p between 0.5 and 2.0
agree fairly well with those for & uniform elastic bar. The agree-
ment for values of p from Oe5 to 0.9 is remarkebly close. However,
it is to be noted that where disagreement does exist between the
lumped mass and uniform bar results, the latter are optimistic,
(See for exsmple Fig. 32). That is, the forces scting are actually
larger then would be expected from the uniform bar results.

It would be expected that for a train of more than 50 cars the
results would resemble more closely those for e uniform bar, the
agreement improving as more cars are added. Correspondingly, since
significent differences between a 50 car trein and a uniform bar
are observed, the results for less than 50 cars could be expected

to be considerably different from the uniform bar solutions.

IV. ELECIRIC ANALOG FOR NONLINEAR
DRAFT GEAR

To extend the problem to include the effects of the nonlinearity
of actual draft gears as used in freight service it is first neces-
sary to develop an electric analog for the nonlinear dreaft gear.
A force-travel characteristic for a typical draft gear is given
by the solid curve of (Fige 36)s The upper curve is the olosure
curve of the draft gear, and the lower curve represents re-expansion,
Thus, during closure and subsequent re-expansion considersble energy
is dissipated by the draft gear, given quantitatively by the area
of the loop. This curve is taken from "Edgewater Ring Spring Dreft

Gears", Circular No. 12, published by the Edgewater Steel Companye.
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The loop nature of the draft gear force-travel curve suggests
magnetic hysterisis in en iron core coil as an electrical counter-
part. Electric current is analogous to mechenical force, (see
Fig. 21), end megnetic flux, (the time integral of coil voltage),
is analogous to mechenical displacement. Using this anslogy es a
basis, a special coil was developed which has electrical properties
sufficiently like the mechanical behavior of the draft gear. The
dashed curve of (Fige. 36) shows the characteristic of the special
coil in terms of the enalogous electrical quantities. The data
for the dashed curve of (Fig. 36) were taken from en oscillographiec
record of the type shown in (Fig. 37a), the coordinates of which
will perhaps be most readily recognized by referring to the corres-
ponding stesdy stete curve of (Fig. 37b). (Fig. 372) was obtained
by passing a transient curremnt through em initially demeagnetized
special coil and electrically integrating the coil voltage to obtain
a voltege proportional to coil fluxe. The trensient current wes one
which inereased to a meximum end then returned to zero.

It is impossible to match the draft gear curve over its entire
peth, but the match shown in (Fig. 36) is considered sufficiently
accurate for the following reasons. The close match on the upper
curve, (the closure curve), is importent because it is the closure
characteristic which determines the initial travelling force wave
which passes down the train. The total area inside the draft gear
loop and that inside the corresponding electrical loop are approxi=-
metely equale The area inside each loop represents the energy extracted
from the train during closure and subsequent re-expansion of the
draft gear. Thus, while the re-expansion curves do not match closely
the energy sbsorption per cycle is the same for the draft gear and

its analog.
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b STEADY STATE DYNAMIC B-H"
CURVE OF SPEGIAL COILS.

FIG 37 CHARACTERISTICS OF SPECIAL COILS USED
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It is noted that upon re-expansion the draft gear of (Fig. 36)
returns to its original length. This is due to the fact that the
sliding surfaces of the draft gear are graphite-lubricated. With
many other types of draft gears the re-expansion does not result in
complete recovery, and the draft gear reteins a permenent "set" or
deflection when force is removed. This effect corresponds more
nearly to the megnetic analog exhibited as residusl magnetism when
coil current is returned to gero, end the re-expension curwves of
such draft gears may be more nearly matched by a magnetic circuit.

The special coils used consisted of 950 turns of Noe. 28 wire
on the center leg of a shell type core of 10 laminabtions of 24 gsauge

Allegheny EI-75 dynemo (Grede D) steel.

Ve BRAKING OF A FIFTY CAR TRAIN CONTAINING
NONLINEAR DRAFT GEARS

Solutions will now be given for a 50 car train containing the
nonlinear draft gears described previously (Fig. 36). Since it is
known that for a train with idealized draft geers, which act as
perfect springs, the transient forces in the draft gears are directly
dependent upon the weights of the cars, it is desirable to study the
effect of different car weights in the trein with nonlinear draft
gears. The train studied is assumed to have no free slack. Results
will be presented for the case in which all cars are identical and
a few cases in which cars of unequal weights are distributed along
the train. Two different values of braking force are used.

Due to the nonlineer nature of the problem it is not possible
to express results in dimensionless form for a particular draft
gear characteristice For this particular study the following data

were chosen as being representative of a typical freight train:
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Length of cars 42 feet

Veloeity of brake

spplication along train 860 feet/sec.

Type of draft gear Edgewater Class B-32-KA
Weight of empty car 25 tons

Weight of fully loaded car 100 tomns

Braking force on each car (1; 10,000 1lbs.
(2) 20,000 1lbs.

Electricel-mechanical Analogz: The deteils of the electricel-

mechenical anslogy will be developed here.
Adding the forces on the nth mass of the mechenical configu-

ration, (Fig. 21a), there results
F= anzv,ﬁ\c(%‘; v"‘é‘?) +f %-“—’—“;—z‘) , @)
where
po = d/atz <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>