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ABSTRACT

Single-cell genomics assays, particularly single-cell RNA sequencing that enables
genome-wide profiling of gene expression, have been driven forward by a combina-
tion of technological and computational advances. While producing extraordinary
large amounts of data for biological discovery, methods for mining results currently
rely heavily on heuristics and lack of modeling has resulted in limited mechanistic
biological insight. This thesis presents two models for normalization and trajectory
inference in single-cell RNA sequencing analysis to demonstrate how biophysical
modeling, when combined with principled statistical inference, can yield inter-
pretable insights grounded in rigorous theoretical frameworks.

We begin by explaining the two cultures in single-cell RNA sequencing analysis.
Next, we present the chemical master equation, which forms the theoretical founda-
tion for biophysically informed stochastic models of gene expression, and explore
an existing gap in developing uniform approximations over time under the large-
volume limit. Returning to scRNA-seq data analysis, we introduce two mechanistic
models for normalization and trajectory inference, which are essential components
of scRNA-seq analysis.
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C h a p t e r 1

INTRODUCTION

In his seminal 2001 essay on statistical modeling, Leo Breiman identified two dis-
tinct modeling cultures: data models, which posit a stochastic mechanism for data
generation and emphasize interpretability, and algorithmic models, which priori-
tize predictive performance without necessarily modeling the underlying process
(Breiman, 2001). At the time, data models dominated the statistical modeling field,
and Breiman advocated for broader adoption of algorithmic approaches. A parallel
to this can be seen in early studies of (single) gene expression at single-cell resolu-
tion, where the focus was on the development of models for the data, with the goal
of providing mechanistic insight into transcriptional dynamics.

Two decades later, the landscape of single-cell biology has changed dramatically.
Rapid expansion of single-cell genomic data, driven by advances in sequencing
technologies, has led to a dominant reliance on algorithmic models . In this thesis,
we advocate for greater use of data models, which provide a more principled and
insightful framework for uncovering meaningful biological insights from single-cell
data. Rather than replacing algorithmic approaches, data models offer essential
complementary strengths, particularly in terms of interpretability and mechanistic
understanding (Gorin and Lior Pachter, 2024).

In this introduction, we begin by reviewing early stochastic models of gene ex-
pression, developed from the data model perspective, which lay the theoretical
foundation for interpreting single-cell sequencing data. We then introduce the de-
velopment and limitations of single-cell RNA sequencing (scRNA-seq), and current
practices for scRNA-seq analysis. Finally, we explain the two modeling cultures in
contemporary scRNA-seq analysis and argue for more mechanistic models in this
rapidly evolving field.

1.1 The study of stochastic gene expression
Gene expression, encompassing transcription (RNA synthesis) and translation (pro-
tein synthesis), is a central pillar of molecular biology research. As it inherently con-
sists of a series of biochemical reactions such as transcriptional activation, mRNA
synthesis, splicing, and degradation, one approach to studying gene expression is to
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quantitatively model gene expression processes as biochemical reaction networks
(or chemical reaction networks). Two major frameworks exist for such modeling:
1) deterministic models, based on the law of mass action, describe reactions using
continuous concentrations and ordinary differential equations (ODEs) and focus
on the graphical and algebraic structures of reaction networks (Feinberg, 2019);
2) stochastic models, grounded in the chemical master equation (CME), explicitly
account for randomness in molecular interactions and focus on the properties of
probability distributions of the systems (Van Kampen, 2007; C. Gardiner, 2009).

Since gene expression often involves molecules with low copy numbers (e.g., DNA
in transcription initiation), stochastic models are frequently necessary to accurately
describe gene expression dynamics. Stochastic fluctuations in gene expression
contribute substantially to cellular heterogeneity in genetically homogeneous popu-
lations (Ko, Nakauchi, and Takahashi, 1990; Elowitz et al., 2002). As a result, the
distribution of gene expression outcomes becomes critical, and stochastic chemi-
cal reaction networks, along with the chemical master equation, have become the
standard framework for gene expression models. It describes the time evolution of
the probability distribution over the discrete states of a biochemical system with a
transition rate matrix. Furthermore, as common biochemical reactions only depend
on the current states in a time-independent manner, biochemical reaction networks
are modeled as homogeneous continuous time discrete state Markov chains, which
have a time-independent transition rate matrix, i.e., homogeneous, and the time
derivative of the probability distribution only depends on the current probability
distribution, i.e., Markovian. A detailed discussion on the stochastic model, along
with their deterministic counterparts as the large-volume limit, will be presented in
Chapter 2.

The biochemical reactions incorporated in the gene expression models are based on
the mechanistic characterization of gene expression processes. Canonical messenger
RNA (mRNA) maturation involves an ordered sequence of regulated steps: (1)
transcription initiation and elongation, (2) co-transcriptional splicing, (3) nuclear
export, (4) cytoplasmic translation, and (5) active degradation. Among these steps,
transcription initiation has been the most widely characterized and typically serves
as the primary regulatory node in gene expression models. The subsequent steps
are predominantly modeled as single first-order reactions with constant rates.

Let us begin with the simplest case: a constitutive zero-order transcription combined
with first-order mRNA degradation. In this scenario, the stationary distribution of
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mRNA levels follows a Poisson distribution. This model, which we will refer to
as the constitutive model throughout this thesis, serves as the basic model for gene
expression. If we extend it to include models with constitutive production and first-
order degradation for mRNA which still lead to a Poisson distribution at steady states,
then despite its apparent simplicity, some recent experimental evidence supports its
applicability to cytoplasmic mRNA counts (Battich, Stoeger, and Pelkmans, 2015).
Notably, in such cases, nuclear export—rather than transcription—behaves as a
constitutive zero-order process.

Beyond the constitutive model, more sophisticated models have been inspired by
experimental advances. Early electron micrograph results revealed there were active
and inactive period of transcription (Miller and McKnight, 1979). Additional
evidence came from studies of inducible gene expression. In 1990, Ko et al.
performed single-cell quantification of a glucocorticoid-inducible reporter gene,
revealing heterogeneous expression that led to the formulation of the telegraph
model (Ko, Nakauchi, and Takahashi, 1990; Ko, 1991; Ko, 1992). This model
introduces two fundamental states of DNA: “on” state where active promoter permits
RNA polymerase binding and transcription initiation; “off” state where inactive
promoter halts RNA synthesis. The promoter switches between these two states with
defined activation and inactivation rates, and transcription occurs at a transcription
initiation rate only in the on state. The stationary distribution of the chemical master
equation of this telegraph model has been solved analytically using generating
function methods (Peccoud and Ycart, 1995), with a Fano factor (variance-to-mean
ratio) greater than one, in contrast to the Poissonian statistics (Fano factor = 1)
expected from constitutive model. The telegraph model has also been extended to
incorporate more promoter states (Ham et al., 2020), as well as to include other
modalities such as protein expression (Shahrezaei and Swain, 2008; Bokes, 2022).

Building on the telegraph model, further critical insights into transcriptional dynam-
ics have been gained through advanced imaging technologies that enable the direct
observation of mRNA production at the single-molecule level. Using an MS2-GFP
fusion protein to tag mRNA transcribed from inducible promoters, Golding et al.
demonstrated that transcription occurs in bursts in living E. coli cells (Golding et al.,
2005). This behavior reflects a limiting case of the telegraph model, characterized
by long "off" periods followed by brief, intense "on" periods during which multiple
mRNAs are produced in rapid succession, a regime we will refer to as the bursty
model. In this regime, mRNA counts follow a geometric distribution, with each
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burst corresponding to a stochastic event that generates a variable number of tran-
scripts. A similar bursting regime has been observed in mammalian cells when
fitting with the telegraph model, where the promoter activation rate is an order of
magnitude lower than the inactivation rate, and the transcription initiation rate is
two orders of magnitude higher than the inactivation rate (Raj et al., 2006). Under
these conditions, the telegraph model can be accurately approximated by the bursty
model, in which only the ratio of the transcription initiation rate to the inactivation
rate is identifiable. This ratio defines the size of the burst, effectively reducing the
number of model parameters by one and simplifying the description of the system.
Therefore, in conjunction with the telegraph model, the bursty model has since been
routinely employed in stochastic modeling of gene expression (Singh and Bokes,
2012), as it offers a reasonable approximation to the complex biological reality (Jiao
et al., 2024).

However, these studies have primarily focused on a limited number of genes. A
central question that remains is whether all genes follow the bursty model, or
more broadly, how gene expression patterns are distributed across different models.
To address this question, the bursty model has been applied to a broader set of
genes beyond the scope of previous studies, providing a genome-wide portrait of
transcriptional dynamics (Taniguchi et al., 2010; Suter et al., 2011; Dar et al., 2012).
For example, it has been fit to fluorescence data driven by the HIV-1 LTR promoter
integrated into more than 8,000 individual human genomic loci, and revealed that
the bursty model rather than the constitutive model is the predominant mode of gene
expression (Dar et al., 2012). However, in vivo mRNA and/or protein data across the
entire genome without relying on artificial integration of reporter constructs would
be valuable for gaining a more comprehensive understanding of transcriptional
kinetics.

The limited throughput and perturbation are related to the fluorescent imaging
technologies predominantly used in earlier studies on stochastic gene expression.
Excitingly, recent advances in single cell sequencing have enabled us to measure
high-throughput in vivo gene expression.

1.2 Single-cell RNA sequencing
Single-cell RNA sequencing (scRNA-seq) enables the isolation and high-throughput
sequencing of mRNA transcripts from individual cells, providing transcriptome-
wide resolution at the single-cell level. Compared to imaging-based approaches,
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sequencing technologies are more amenable to high-throughput analysis, allowing
researchers to measure gene expression across tens of thousands of genes in indi-
vidual cells. Since the first study of single cell RNA sequencing (scRNA-seq) was
published in 2009 (F. Tang et al., 2009), the field has rapidly evolved, with numerous
methodological innovations expanding its applications (Hashimshony et al., 2012;
Ramsköld, Luo, et al., 2012; Klein et al., 2015; Macosko et al., 2015; Zheng et al.,
2017). Initially focused solely on transcriptomic profiling, scRNA-seq technologies
now facilitate multimodal measurements, enabling simultaneous detection of RNA,
chromatin accessibility (ATAC-seq), and proteins in the same cell (Mimitou et al.,
2021).

Despite providing unprecedented single-cell resolution of gene expression, scRNA-
seq also presents significant challenges and limitations. First, these measurements
are notoriously noisy, presenting new challenges for model fitting. This noise arises
from factors such as low capture efficiency, dropout events, amplification bias,
and variability in transcript detection. Many studies have sought to characterize
the technical noise in scRNA-seq data (Brennecke et al., 2013; Grün, Kester, and
Oudenaarden, 2014; Kim, Kolodziejczyk, et al., 2015); nevertheless, there remains
ongoing debate about the most appropriate statistical models for handling unique
molecular identifier (UMI) counts (Svensson, 2020; Sarkar and Stephens, 2021).
These challenges underscore the necessity of incorporating a well-calibrated tech-
nical noise model to accurately infer transcription kinetics (Gorin and Lior Pachter,
2023). Currently, the most common measurement models for scRNA-seq are Pois-
son and Bernoulli sampling with cell-wise capture rates (Sarkar and Stephens, 2021;
W. Tang et al., 2023; Gorin and Lior Pachter, 2022b).

Another key limitation of scRNA-seq is that these methods provide only static
snapshots of gene expression, as they require cell lysis and therefore cannot directly
capture temporal dynamics. Metabolic labeling of newly synthesized mRNA can
provide partial insight into past transcriptional events; however, the measurement
still represents the distribution at a single time point (Erhard et al., 2022). However,
scRNA-seq data often capture cells at different stages along underlying biological
processes, which motivates the development of trajectory inference methods.

1.3 Current practices for scRNA-seq analysis
In summary, scRNA-seq and fluorescent imaging technologies represent two com-
plementary approaches: scRNA-seq captures the expression of thousands of genes
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at a single time point, while fluorescent imaging enables dynamic tracking of a lim-
ited number of genes over time. Perhaps not surprisingly, the analysis of scRNA-seq
data marks a clear departure from the mechanistic strategies that have traditionally
guided the study of gene expression. Contemporary approaches are largely rooted
in the algorithmic model culture, frequently relying on heuristics. To see this, let us
look at steps in common scRNA-seq analysis workflow.

Figure 1.1: Common scRNA-seq analysis workflow.

The direct output of scRNA-seq experiments is a collection of sequencing reads,
which are processed to generate count matrices. Then count matrices undergo an
analysis workflow (Figure 1.1). A standard workflow can be broadly divided into
two phases. The first phase involves data preprocessing, including quality control
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(e.g., cell filtering), normalization, variance stabilization, feature selection, and
dimensionality reduction. The second phase focuses on downstream analysis, such
as clustering, differential expression (DE) analysis, trajectory inference, and RNA
velocity.

At the beginning of analysis, cells are filtered based on their total transcript counts.
A knee plot is used to identify high-quality cells by ranking barcodes based on total
UMI or gene counts. The plot typically shows a sharp bend, i.e., knee, separating
barcodes likely to represent real cells (above the knee) from low-quality or empty
droplets (below). This helps determine a threshold for filtering valid cells during
quality control. Genes are also filtered by retaining those expressed in a minimum
number of cells.

Normalization in scRNA-seq aims to correct for technical variability (e.g., differ-
ences in sequencing depth, capture efficiency). Typically, a global-scaling normal-
ization method is used, which calculates a single normalization factor per cell (cell
size factor) using the sum of total counts. Then raw counts are scaled by cell size
factors.

In scRNA-seq data, genes often exhibit a strong mean–variance relationship, where
genes with higher mean expression levels also display greater variance. This het-
eroskedasticity poses challenges for downstream analyses such as clustering and dif-
ferential expression. A common approach to mitigate this issue is to apply a variance-
stabilizing transformation. One widely used method is the log-transformation, typi-
cally 𝑙𝑜𝑔(1+ 𝑥), which effectively reduces the dependence of variance on the mean.
Despite its simplicity, this transformation performs surprisingly well in practice
(Ahlmann-Eltze and Huber, 2023).

Both highly variable gene (HVG) selection and dimensionality reduction address the
high dimensionality of scRNA-seq data, which captures expression levels for tens
of thousands of genes in each cell. Typically, genes with high dispersion (variance-
to-mean ratio) are selected as HVGs. For dimensionality reduction, methods such
as PCA, t-SNE, and UMAP are commonly used, although they can introduce great
distortions of the data (Chari and Pachter, 2021).

Here, we provide only a brief summary of the preprocessing steps. There are
reviews offering more comprehensive discussions on scRNA-seq analysis (Luecken
and Theis, 2019), and articles providing thorough benchmark of certain steps in the
workflow (Booeshaghi and Lior Pachter, 2021; Booeshaghi, Hallgrímsdóttir, et al.,
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2022; Ahlmann-Eltze and Huber, 2023; Rich et al., 2024).

1.4 The two cultures in scRNA-seq analysis
We can clearly see the pattern that the methods in standard workflow do not have
underlying models but are defined by the algorithms.

The prominence of algorithmic models can be partially explained by both the
strengths and limitations of scRNA-seq technology. Although it allows high-
throughput profiling of thousands of genes across large numbers of individual cells,
it is also plagued by significant technical noise, reducing its reliability as a direct
quantitative readout. Furthermore, the high dimensionality of the data makes it
difficult to construct mechanistic models that fully capture the complexities of gene
regulation.

However, we argue that data models should not be ignored in analyzing scRNA-
seq data. A balanced approach to scRNA-seq analysis requires integrating the
strengths of both algorithmic and data modeling cultures. Algorithmic models excel
at extracting patterns from high-dimensional data and scaling to large datasets, en-
abling powerful exploratory analyses. However, they often lack interpretability and
mechanistic grounding. In contrast, data models, particularly mechanistic models
grounded in biophysical principles, offer interpretable parameters and insights into
the underlying biological processes. By combining the predictive power of algo-
rithmic approaches with the interpretability and rigor of mechanistic modeling, we
can gain a deeper and more principled understanding of single-cell gene expression.
Given the prevalence of algorithmic models, there is a strong case for renewed
investment in mechanistic modeling.

Several studies have successfully integrated traditional gene expression models with
scRNA-seq data. For example, the telegraph and bursty models have been applied
to scRNA-seq data to infer transcriptional bursting kinetics in various biological
contexts (Kim and Marioni, 2013; Ramsköld, Hendriks, et al., 2024; Larsson et al.,
2019; Gorin and Lior Pachter, 2022b; Tara Chari, Gorin, and Lior Pachter, 2024b).
These efforts reflect a mechanistic perspective that aims to explain the observed data
by explicitly modeling the underlying biological processes.

However, a mechanistic approach to scRNA-seq analysis goes beyond applying
bursting models, since scRNA-seq has been used in a variety of ways. What we
advocate for is a data model culture that emphasizes the formulation of biophysically
inspired models and rigorous inference.
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1.5 Outline
This thesis summarizes my work in advancing this approach. Chapter 2 provides
a review of the chemical master equation for stochastic chemical reaction systems,
along with a theoretical study of the large-volume limit for infinite time. Chapter 3
introduces an extrinsic noise model for normalization. Chapters 4 presents a process
time model for trajectory inference. The thesis concludes with a discussion of future
directions in Chapter 5.
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C h a p t e r 2

STOCHASTIC CHEMICAL REACTION SYSTEMS AND
APPROXIMATIONS

2.1 Introduction
As discussed in Chapter 1.1, the chemical master equation (CME) offers a proba-
bilistic framework for modeling the time evolution of a system’s state, capturing the
intrinsic stochastic fluctuations present in small, discrete systems. However, obtain-
ing analytical solutions to the CME is generally intractable (Schnoerr, Sanguinetti,
and Grima, 2017), and qualitative understanding is often achieved through various
approximations.

A natural direction is to consider the limit of large system volumes, with the ex-
pectation that as the number of molecules becomes sufficiently large, the system’s
stochastic behavior will converge to either deterministic dynamics or a simplified
form of stochastic dynamics. The convergence of the CME to the reaction rate equa-
tions and to the Chemical Langevin Equation (CLE) over finite time intervals has
been well established (Kurtz, 1972; Gillespie, 2000). By applying the system-size
expansion (also known as the linear noise approximation) and retaining the first two
orders, one obtains a Fokker–Planck equation that approximates the evolution of the
probability distribution (Van Kampen, 2007). A recent study has also established the
validity of the linear noise approximation for stationary distributions under certain
restricted conditions (Grunberg and Del Vecchio, 2023).

However, approximations that remain uniform in time in the large volume limit are
generally lacking. In fact, it is believed that the limits of large volume and infinite
time are not interchangeable (Hanggi et al., 1984; Baras, Mansour, and Pearson,
1996; Srivastava et al., 2002; Vellela and Qian, 2007; Vellela and Qian, 2009; Assaf
and Meerson, 2017). In this chapter, we review various approximations to the CME
and discuss when the large volume and infinite time limits can, or cannot, be inter-
changed. We argue that the (non)interchangeability of these limits arises from the
specific asymptotic approximation method employed. Notably, a time-uniform large
volume approximation may be attainable through the Wentzel–Kramers–Brillouin
(WKB) approximation and Poisson representation, which offers a different perspec-
tive on the system’s stochastic dynamics.
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Figure 2.1: Approximations to CME

CME
Generally, a master equation for the probability distribution function 𝑃(x, 𝑡) can be
expressed as follows:

𝜕𝑃(x, 𝑡)
𝜕𝑡

=
∑︁
x′≠x

[𝑊 (x′ → x)𝑃(x′, 𝑡) −𝑊 (x → x′)𝑃(x, 𝑡)] ,

where 𝑃(x, 𝑡) is the probability of being in state x at time 𝑡 and 𝑊 (x′ → x) is the
transition rate from state x′ to x.

Now consider specifically for chemically reacting system. Let a mixture of 𝑛molec-
ular species 𝑆1, ..., 𝑆𝑛 chemically interact through m chemical reactions 𝑅1, ..., 𝑅𝑚:

𝑛∑︁
𝑖=1

𝑠𝑖 𝑗𝑆𝑖
𝑘 𝑗−−→

𝑛∑︁
𝑖=1

𝑟𝑖 𝑗𝑆𝑖, 𝑗 = 1, ..., 𝑚, (2.1)

where 𝑠𝑖 𝑗 , 𝑟𝑖 𝑗 are stoichiometric constant and 𝑘 𝑗 is the reaction rate constant.
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Let 𝑋 (𝑡) = (𝑋1(𝑡), ..., 𝑋𝑛 (𝑡)) denote the numbers of molecules of species in the
system at time t and 𝑃 the probability. The chemical master equation assumes the
system is a continuous time Markov chain and the transition rate matrix is completely
determined by the reactions. Then we have that the probability distribution 𝑃(𝑥, 𝑡) :=
𝑃(𝑋 (𝑡) = 𝑥 |𝑋 (𝑡0) = 𝑥0) follows (Gillespie, 2000)

𝑑

𝑑𝑡
𝑃(𝑥, 𝑡) =

𝑚∑︁
𝑗=1

𝑘 𝑗

(
Π𝑛
𝑖=1

(𝑥𝑖 − (𝑟𝑖 𝑗 − 𝑠𝑖 𝑗 ))!
(𝑥𝑖 − 𝑟𝑖 𝑗 )!

𝑃(𝑥 − (𝑟· 𝑗 − 𝑠· 𝑗 ), 𝑡) − Π𝑛
𝑖=1

𝑥𝑖!
(𝑥𝑖 − 𝑠𝑖 𝑗 )!

𝑃(𝑥, 𝑡)
)
.

(2.2)

Let V be the volume of the system and 𝑧 be the concentration 𝑧𝑖 =
𝑥𝑖
𝑉

. The
corresponding reaction rate equation for Equation 2.1 is

𝑑𝑧𝑖

𝑑𝑡
=

∑︁
𝑗

(𝑟𝑖 𝑗 − 𝑠𝑖 𝑗 )𝜅 𝑗Π𝑙𝑧𝑙 𝑠𝑙 𝑗 , (2.3)

where 𝜅 𝑗 = 𝑘 𝑗𝑉
∑

𝑖 𝑠𝑖 𝑗−1 is the macroscopic reaction rate.

2.2 Large-volume approximations to the chemical master equation
Kramers–Moyal expansion/Chemical Langevin equation
The first type of approximation is the chemical Langevin equation:

𝜕𝑡𝑃(𝑦, 𝑡) = −
𝑚∑︁
𝑗=1

𝑘 𝑗

𝑛∑︁
𝑖=1

(
𝑟𝑖 𝑗 − 𝑠𝑖 𝑗

)
· 𝜕𝑦𝑖

(
𝑛∏
𝑙=1

𝑦𝑙!
(𝑦𝑙 − 𝑠𝑙 𝑗 )!

𝑃(𝑦, 𝑡)
)

+ 1
2

𝑚∑︁
𝑗=1

𝑘 𝑗

𝑛∑︁
𝑖1=1

𝑛∑︁
𝑖2=1

(
𝑟𝑖1 𝑗 − 𝑠𝑖1 𝑗

) (
𝑟𝑖2 𝑗 − 𝑠𝑖2 𝑗

)
𝜕𝑦𝑖1𝜕𝑦𝑖2

(
𝑛∏
𝑙=1

𝑦𝑙!
(𝑦𝑙 − 𝑠𝑙 𝑗 )!

𝑃(𝑦, 𝑡)
)
.

(2.4)

The first derivation to this form, which is straightforward but not mathematically
rigorous, is based on the Kramers–Moyal expansion. Kramers–Moyal expansion
refers to a Taylor series expansion of the chemical master equation (Equation 2.2):

𝑑

𝑑𝑡
𝑃(𝑥, 𝑡) =

𝑚∑︁
𝑗=1

𝑘 𝑗

∞∑︁
𝑘=1

(𝑠. 𝑗 − 𝑟. 𝑗 )𝑘

𝑘!
𝜕𝑘𝑥

(
Π𝑛
𝑖=1

𝑥𝑖!
(𝑥𝑖 − 𝑠𝑖 𝑗 )!

𝑃(𝑥, 𝑡)
)
. (2.5)

By only keeping only the first two terms of the series, we derive Equation 2.4.

However, this truncation is not rigorously justified and is primarily adopted for
analytical convenience. A rigorous foundation was established by Kurtz in the



13

1970s, albeit under strong assumptions on the reaction rate functions (Kurtz, 1978).
He proved a central limit theorem for the random variable governed by the chemical
master equation (CME). Later, Gillespie proposed a more intuitive derivation in
2000 (Gillespie, 2000). His approach relies on the existence of a macroscopically
infinitesimal time scale during which the propensity functions remain effectively
constant, while a large number of reactions occur. Both derivations follow the
underlying stochastic process directly, rather than analyzing the associated CME,
and are valid only over finite time intervals.

System size expansion/Linear noise approximation
A more rigorous approach to analyzing the CME than the Kramers–Moyal expansion
is the system size expansion developed by Van Kampen (Van Kampen, 2007). This
approach is analogous to the small noise approximation used in the analysis of the
Fokker–Planck equation (C. Gardiner, 2009), which employs boundary-layer theory
to handle regions near the solution of ODE (Bender and Orszag, 2010).

Let 𝑧(𝑡) be the solution to the rate equation (Equation 2.3). Then, the probability
distribution 𝑃(𝑥, 𝑡) can be approximated in terms of the rescaled deviation 𝑦 as

𝑃(𝑦, 𝑡) = 𝑃
(
𝑧(𝑡) + 𝑦

𝑉
, 𝑡

)
,

which describes fluctuations around the deterministic trajectory 𝑧(𝑡). The evolution
of 𝑃(𝑦, 𝑡) is governed by the following Fokker–Planck equation:

𝜕𝑡𝑃(𝑦, 𝑡) = −
𝑚∑︁
𝑗=1

𝜅 𝑗

𝑛∑︁
𝑖=1

(
𝑟𝑖 𝑗 − 𝑠𝑖 𝑗

)
𝜕𝑦𝑖

(
𝑛∏
𝑙=1

𝑦𝑙!
(𝑦𝑙 − 𝑠𝑙 𝑗 )!

)
𝜕𝑦𝑖 (𝑦𝑃(𝑦, 𝑡))

+ 1
2

𝑚∑︁
𝑗=1

𝜅 𝑗

𝑛∑︁
𝑖1=1

𝑛∑︁
𝑖2=1

(
𝑟𝑖1 𝑗 − 𝑠𝑖1 𝑗

) (
𝑟𝑖2 𝑗 − 𝑠𝑖2 𝑗

) (
𝑛∏
𝑙=1

𝑦𝑙!
(𝑦𝑙 − 𝑠𝑙 𝑗 )!

)
𝜕𝑦𝑖1𝜕𝑦𝑖2𝑃(𝑦, 𝑡).

(2.6)

WKB approximation
Although not commonly presented in the literature, one can also apply the WKB
(Wentzel–Kramers–Brillouin) approximation directly to Equation 2.2. Let 𝑃(𝑥, 𝑡) =
exp(𝑉𝜙(𝑥, 𝑡)) and plug it into Equation 2.5. Keeping only the 𝑂 (𝑉) terms gives

𝜕𝑡𝜙 =

𝑚∑︁
𝑗=1

𝑘 𝑗

∞∑︁
𝑘=1

(𝑠. 𝑗 − 𝑟. 𝑗 )𝑘

𝑘!
(𝜕𝑥𝜙)𝑘

(
Π𝑛
𝑖=1

𝑥𝑖!
(𝑥𝑖 − 𝑠𝑖 𝑗 )!

)
=

𝑚∑︁
𝑗=1

𝑘 𝑗Π
𝑛
𝑖=1

𝑥𝑖!
(𝑥𝑖 − 𝑠𝑖 𝑗 )!

exp
( (
𝑠. 𝑗 − 𝑟. 𝑗

)
· 𝜕𝑥𝜙

)
.
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This can be solved numerically but does not provide an intuitive understanding of
the dynamics of the systems.

Non-interchangeability of the limits of infinite system size and infinite time
It has been pointed out in several studies that the limits of infinite system size and
infinite time do not, in general, commute (Hanggi et al., 1984; Baras, Mansour, and
Pearson, 1996; Srivastava et al., 2002; Vellela and Qian, 2007; Vellela and Qian,
2009; Assaf and Meerson, 2017). The underlying argument can be summarized as
follows: (1) both the linear noise approximation and the deterministic rate equations
fail to capture multistability, and (2) the Fokker–Planck equation yields asymptot-
ically incorrect predictions for switching times and the relative stability of states
in the stationary distribution. These shortcomings arise because the linear noise
approximation is only valid in the vicinity of a fixed point, while the Fokker–Planck
approximation is formally justified only for finite time horizons.

Therefore, the issue is not strictly that the infinite-time and infinite-system-size limits
are fundamentally non-interchangeable, but rather that the system-size expansion
and Fokker–Planck approximation is not valid uniformly in time.

2.3 Large-volume approximations to the chemical master equation through
Poisson representation

Below we describe a preliminary and incomplete attempt to construct a large-volume
approximation to the chemical master equation that is uniform in time through
Poisson representation.

The chemical master equation for bimolecular reactions is translated into a Fokker-
Planck equation in the complex domain using the positive Poisson representation
developed by Drummond and Gardiner (Drummond and C. W. Gardiner, 1980).
We note that the large volume limit and the infinity time limit are interchangeable
for Fokker-Planck equation since it is a linear PDE, i.e., the WKB method provides
an uniform approximation in time. Graham and Tel has shown that the stationary
distribution of Fokker-Planck equation in the weak-noise limit is associated to the
ODE by the drift term (Graham and Tél, 1985). Therefore, the long-term behavior
of the chemical master equation in the large volume limit is determined by the fixed
points of the corresponding reaction rate equation in the complex domain. We show
that a stable fixed point cannot exist outside the real axis.

The Poisson representation of 𝑃(𝑥, 𝑡) is 𝑃(𝑥, 𝑡) =
∫
𝐷
𝜆𝑥

𝑥! 𝑒
−𝜆 𝑓 (𝜆, 𝑡)𝑑𝜆. Assume the
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surface terms of the domain of the integration vanish. Then

𝜕𝑡 𝑓 (𝜆, 𝑡) =
∑︁
𝑗

[ (
Π𝑖 (1 − 𝜕𝜆𝑖 )𝑟𝑖 𝑗 − Π𝑖 (1 − 𝜕𝜆𝑖 )𝑠𝑖 𝑗

)
𝑘 𝑗Π𝑖𝜆

𝑠𝑖 𝑗

𝑖

]
𝑓 (𝜆, 𝑡).

Let 𝛼 = 𝜆
𝑉

and 𝑔(𝛼, 𝑡) := 𝑉𝑛 𝑓 (𝛼𝑉, 𝑡). Recall that 𝜅 = 𝑘 𝑗𝑉
∑

𝑖 𝑠𝑖 𝑗−1. We have

𝜕𝑡𝑔(𝛼, 𝑡) =
∑︁
𝑗

[(
Π𝑖 (1 − 1

𝑉
𝜕𝛼𝑖 )𝑟𝑖 𝑗 − Π𝑖 (1 − 1

𝑉
𝜕𝛼𝑖 )𝑠𝑖 𝑗

)
𝑉𝜅 𝑗Π𝑖𝛼

𝑠𝑖 𝑗

𝑖

]
𝑔(𝛼, 𝑡).

We only consider bimolecular reactions where
∑
𝑖 𝑠𝑖 𝑗 ≤ 2 and

∑
𝑖 𝑟𝑖 𝑗 ≤ 2 for all 𝑗 ,

which includes the majority of elementary reactions.

Then

𝜕𝑡𝑔(𝛼, 𝑡) = −
∑︁
𝑖

𝜕𝛼𝑖 (𝐴𝑖 (𝛼)𝑔) +
𝜀

2

∑︁
𝑖1,𝑖2

𝜕𝛼𝑖1𝜕𝛼𝑖2

(
𝐵𝑖1,𝑖2 (𝛼)𝑔

)
,

where 𝜀 = 1
𝑉

, 𝐴𝑖 (𝛼) =
∑
𝑗 (𝑟𝑖 𝑗 − 𝑠𝑖 𝑗 )𝑘 𝑗Π𝑖𝛼

𝑠𝑖 𝑗

𝑖
and 𝐵𝑖1,𝑖2 (𝛼) =

∑
𝑗 (𝑟𝑖1 𝑗𝑟𝑖2 𝑗 − 𝑠𝑖1 𝑗 𝑠𝑖2 𝑗 −

𝛿𝑖1,𝑖2𝑟𝑖 𝑗 )𝑘 𝑗Π𝑖𝛼
𝑠𝑖 𝑗

𝑖
.

Note that the diffusion term is no longer positive semidefinite, and the corresponding
SDE can have imaginary noise. To resolve that, Gardiner proposed the positive
Poisson representation (C. Gardiner, 2009), where 𝛼 is a complex variable 𝛼 = 𝑥+𝑖𝑦
and 𝑑𝜇(𝛼) = 𝑑𝑥𝑑𝑦. Write the drift and diffusion terms also explicitly with real and
imaginary parts 𝐴(𝑥, 𝑦) = 𝐴𝑥 (𝑥, 𝑦)+𝑖𝐴𝑦 (𝑥, 𝑦) and 𝐵(𝑥, 𝑦) = 𝐶 (𝑥, 𝑦)𝐶 (𝑥, 𝑦)𝑇 where
𝐶 = 𝐶𝑥 (𝑥, 𝑦) + 𝑖𝐶𝑦 (𝑥, 𝑦). By doubling the dimension, it becomes a Fokker-Planck
equation with positive semidefinite:

𝜕𝑡ℎ(x, y, 𝑡) = −
∑︁
𝑖

𝜕𝑖 (A𝑖ℎ) +
𝜀

2

∑︁
𝑖1,𝑖2

𝜕𝑖1𝜕𝑖2
(
B𝑖1,𝑖2ℎ

)
, (2.7)

where A = [𝐴𝑥 (𝑥, 𝑦), 𝐴𝑦 (𝑥, 𝑦)]𝑇 and B =

[
𝐶𝑥𝐶

𝑇
𝑥 𝐶𝑥𝐶

𝑇
𝑦

𝐶𝑦𝐶
𝑇
𝑥 𝐶𝑦𝐶

𝑇
𝑦

]
.

Note that Poisson representation (Equation 2.7) is valid for both finite and infinite
time and for all volume.

Apply WKB approximation and assume ℎ(x, y, 𝑡) = exp(−
∑∞

𝑛=0 𝜀
𝑛𝜑𝑛 (x,y,𝑡)
𝜀

). To the
leading order in 𝜀, Equation 2.7 can be approximated as
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𝜕𝑡𝜑0 = −
∑︁
𝑖

A𝑖𝜕𝑖𝜑0 +
1
2

∑︁
𝑖1,𝑖2

B𝑖1,𝑖2𝜕𝑖1𝜕𝑖2𝜑0. (2.8)

Let 𝜙0 = 𝜑0(x, y,∞), then

0 = −
∑︁
𝑖

A𝑖𝜕𝑖𝜙0 +
1
2

∑︁
𝑖1,𝑖2

B𝑖1,𝑖2𝜕𝑖1𝜕𝑖2𝜙0. (2.9)

Graham and Tél has showed that 𝜙0, interpreted as the non-equilibrium potential,
is continuous, even though its derivatives may have infinitely many discontinuities
(Graham and Tél, 1985). Importantly, given that B is positive semidefinite, the
quasi-potential 𝜑0 inherits the asymptotic structure of the underlying deterministic
system: 𝜑0 attains local minima at the attractors, local maxima at the repellors, and
saddle points at the deterministic saddles, provided that B is nonzero at those fixed
points. If B is zero at a fixed point, then the point is absorbing and thus dynamically
stable, which explains the Keizer’s paradox discussed in (Vellela and Qian, 2007).

Therefore, the systems in the large volume limit is determined by the attractors of
the deterministic system expanded in the complex domain:

𝑑𝛼

𝑑𝑡
= A(𝛼). (2.10)

We focus on systems where attractors consist only of fixed points. As the ODE
(eq 2.10) is in the complex domain, all fixed points in the real domain remain fixed
points, and generally, additional fixed points exist outside the real domain. However,
we will show that the fixed points with non-zero imaginary parts cannot be stable.

Recall that we only consider bimolecular reactions. Therefore, we can write

𝐴𝑖 =

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1

𝑎𝑖 𝑗 𝑘𝛼 𝑗𝛼𝑘 +
𝑁∑︁
𝑗=1

𝑏 𝑗𝛼 𝑗 + 𝑐𝑖, (2.11)

where 𝑎𝑖 𝑗 𝑘 = 𝑎𝑖𝑘 𝑗 . Consequently,

𝐴𝑥;𝑖 =

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1

𝑎𝑖 𝑗 𝑘 (𝑥 𝑗𝑥𝑘 − 𝑦 𝑗 𝑦𝑘 ) +
𝑁∑︁
𝑗=1

𝑏 𝑗𝑥 𝑗 + 𝑐𝑖

𝐴𝑦;𝑖 =

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1

𝑎𝑖 𝑗 𝑘 (𝑥 𝑗 𝑦𝑘 + 𝑦 𝑗𝑥𝑘 ) +
𝑁∑︁
𝑗=1

𝑏 𝑗 𝑦 𝑗 .
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Then the Jacobi matrix is

𝐽 =

[
𝜕𝐴𝑥

𝜕𝑥
𝜕𝐴𝑥

𝜕𝑦
𝜕𝐴𝑦

𝜕𝑥

𝜕𝐴𝑦

𝜕𝑦

]
=

[
𝜕𝐴𝑥

𝜕𝑥
𝜕𝐴𝑥

𝜕𝑦

− 𝜕𝐴𝑥

𝜕𝑦
𝜕𝐴𝑥

𝜕𝑥

]
.

The second equality follows from Cauchy–Riemann equations and

𝜕𝐴𝑥;𝑖

𝜕𝑥 𝑗
=

𝑁∑︁
𝑘=1

2𝑎𝑖 𝑗 𝑘𝑥𝑘 +
𝑁∑︁
𝑗=1

𝑏 𝑗 .

Now suppose𝛼∗ = (𝑥∗, 𝑦∗)𝑇 is a fixed point satisfyingA(𝛼) = [𝐴𝑥 (𝑥, 𝑦), 𝐴𝑦 (𝑥, 𝑦)]𝑇 =

0 and denote the Jacobi matrix evaluated at 𝛼∗ by 𝐽∗. Then(
𝜕𝐴𝑥

𝜕𝑥
𝑦∗𝑇

)
𝑖

=

𝑁∑︁
𝑘=1

2𝑎𝑖 𝑗 𝑘𝑥∗𝑘 𝑦
∗
𝑗 +

𝑁∑︁
𝑗=1

𝑏 𝑗 𝑦
∗
𝑗 =

𝑁∑︁
𝑘=1

𝑎𝑖 𝑗 𝑘 (𝑥∗𝑘 𝑦
∗
𝑗 + 𝑥∗𝑗 𝑦∗𝑘 ) +

𝑁∑︁
𝑗=1

𝑏 𝑗 𝑦
∗
𝑗 = 0,

and

(𝑦∗, 𝑦∗)𝐽∗(𝑦∗, 𝑦∗)𝑇 = [𝑦∗, 𝑦∗]
[
𝜕𝐴𝑥

𝜕𝑥
𝜕𝐴𝑥

𝜕𝑦

− 𝜕𝐴𝑥

𝜕𝑦
𝜕𝐴𝑥

𝜕𝑥

] [
𝑦∗

𝑦∗

]
= 0.

Therefore, unless 𝑦∗ = 0, 𝐽∗ cannot be negative definite, which means that the fixed
points with non-zero imaginary parts cannot be stable.
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C h a p t e r 3

AN EXTRINSIC NOISE MODEL FOR NORMALIZATION

Fang, Meichen and Lior Pachter (2025). “Extrinsic biological stochasticity and
technical noise normalization of single-cell RNA sequencing data”. In: bioRxiv,
p. 2025.05.11.653373. doi: 10.1101/2025.05.11.653373.

3.1 Introduction
Single-cell RNA sequencing (scRNA-seq) enables genome-wide expression profil-
ing at unprecedented scale, but current data are notoriously noisy, partially due to
variability in sequencing depth per cell due to random sampling of libraries during
sequencing. This issue becomes particularly acute when the measurement rate is
low, and can cause biological signal to be overwhelmed by noise. Therefore, a
standard and critical step at the beginning of scRNA-seq analysis is normalization,
which is intended to mitigate the effects of technical noise before downstream analy-
sis (Luecken and Theis, 2019). Typically, a global-scaling normalization method is
used, which calculates a single normalization factor per cell (cell size factor) using
the sum of total counts to adjust for variability in sequencing depth and technical
artifacts. This approach is implemented in common packages for scRNA-seq analy-
sis (Wolf, Angerer, and Theis, 2018; Hao et al., 2024; Booeshaghi, Hallgrímsdóttir,
et al., 2022). Beyond this, more sophisticated approaches have been developed,
including some popular methods that calculate the cell size factor by pooling cells
(scran) (Lun, Bach, and Marioni, 2016) or using homogeneously expressed genes
(Linnorma) (Yip et al., 2017), introducing multiple cell size factors for different
groups of genes (SCnorm) (Bacher et al., 2017), and utilizing negative binomial
regression (sctransform) (Hafemeister and Satija, 2019). Regardless of the methods
used, the common goal of normalization techniques is to use one or more scaling
factors to account for technical variation and try to remove it through methods such
as scaling and regression.

We argue that common practices for normalization inadvertently remove extrinsic
noise. The concept of extrinsic noise emerged in the study of biological stochasticity
in gene expression, and refers to fluctuations in the cellular environment that affect
all genes (Elowitz et al., 2002). Applying this concept to scRNA-seq suggests
that normalization, particularly scaling, can eliminate biological variance present

https://doi.org/10.1101/2025.05.11.653373
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in extrinsic noise. This may be critical as extrinsic noise of biological origin may
carry meaningful signals relevant to specific biological questions. As a result,
current normalization procedure tend to diminish biological variation (Gorin and
Lior Pachter, 2022a).

To fully extend the concept of extrinsic noise to scRNA-seq, both biological and
technical sources of extrinsic noise must be modeled. In fact, both biological
and technical extrinsic noise are prominent and have been well characterized. In
the context of biological noise (i.e., stochasticity), gene expression variability has
been classified into extrinsic and intrinsic components based on their underlying
mechanisms (Elowitz et al., 2002). Since extrinsic noise affects all genes within
a single cell, the normalized covariance between genes has been identified as an
effective measure of extrinsic noise in dual-reporter studies (Swain, Elowitz, and
Siggia, 2002; Hilfinger and Paulsson, 2011; Fu and Lior Pachter, 2016). Further-
more, the impact of biological extrinsic noise on transcriptome-wide inference has
been explored using a telegraph model, highlighting the importance of accounting
for biological extrinsic noise itself, which can also be estimated using normalized
covariance (Grima and Esmenjaud, 2024).

On the other hand, technical noise in scRNA-seq experiments has been widely
studied since the development of scRNA-seq assays. For example, technical noise
has been assessed experimentally using ERCC spike-ins to assess technical variance
(Brennecke et al., 2013; Grün, Kester, and Oudenaarden, 2014; Kim, Kolodziejczyk,
et al., 2015). ERCC-derived technical noise has been linked to global tube-to-tube
variations in sequencing efficiency and a correspondence between technical noise
and the observed constant coefficient of variation (CV) for highly expressed tran-
scripts has been noted (Grün, Kester, and Oudenaarden, 2014). Currently, UMI
counts are typically modeled using binomial or Poisson distributions, correspond-
ing to Bernoulli or Poisson sampling, respectively, with cell-specific capture rates
incorporated to account for detection efficiency variability (Wang et al., 2018; Sarkar
and Stephens, 2021; W. Tang et al., 2023; Öcal, 2023). Notably, in the regime of
low capture rates, the Poisson distribution approximates the binomial distribution.

Currently, models for scRNA-seq that account for both biological and technical
extrinsic noise are typically based on specific gene expression frameworks and often
assume that biological extrinsic noise influences particular kinetic parameters (W.
Tang et al., 2023; Öcal, 2023). However, a more general model that accounts for
extrinsic noise without assuming a specific gene expression form could be valuable.
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Such a model would allow for flexible characterization and validation of biological
intrinsic noise, while generating specific and potentially insightful predictions.

We develop such an extrinsic noise model for scRNA-seq data that combines the re-
sults of previous studies to account for both biological and technical sources of noise.
We derive a general relationship between observed and intrinsic moments (covari-
ance/variance) under a Bernoulli technical noise model and a scaling assumption
for in vivo gene expression. In the specific case where genes are independent and
exhibit Poisson intrinsic noise, we show that the extrinsic noise is equal to both the
normalized covariance and overdispersion. This extends and unifies two previous
approaches: the estimation of extrinsic noise using normalized covariance (Elowitz
et al., 2002; Swain, Elowitz, and Siggia, 2002; Hilfinger and Paulsson, 2011; Fu and
Lior Pachter, 2016), originally applied to biological noise, and the interpretation
of technical variability as a baseline overdispersion observed in pseudocell data
(Grün, Kester, and Oudenaarden, 2014), generalizing both to total extrinsic noise in
scRNA-seq datasets. We test this equality on RNA solution datasets where counts
are intrinsically Poisson-distributed, thereby validating the technical model as well
as identifying any abnormalities. Second, when applied to single-cell datasets, this
equality enables us to quantify biological and technical extrinsic noise, predict the
overdispersion of intrinsically Poisson genes, and identify Poisson genes, whose total
expression provides a principled approach for estimating cell size factors. Overall,
we demonstrate how a mechanistic and detailed model of extrinsic noise clarifies the
normalization step in scRNA-seq analysis and offers new insights into the observed
variability in scRNA-seq data.

3.2 Results
A single-cell RNA-seq extrinsic noise model
Modeling extrinsic noise in scRNA-seq requires both a biological model of gene
expression and a technical model of scRNA-seq measurement so as to jointly account
for biological stochasticity and technical noise (Figure 3.1b). As genes can have
very different expression mechanisms and resultant distributions, we do not assume
any specific distribution for in vivo counts at first. Instead, we only assume that
the means of genes in each cell are proportional to a cellular random variable 𝑐𝑏𝑖𝑜,
which represents the cell-wise size factor that summarize the biological extrinsic
noise. The value of 𝑐𝑏𝑖𝑜 could be influenced by many factors such as the cell volume
and the cell cycle phase. As there could be many unknown sources of cell-to-cell
variability, 𝑐𝑏𝑖𝑜 is a phenomenological parameter that captures the combined effects



21

of various extrinsic factors. We denote the in vivo amount of gene 𝑗 in cell 𝑖 by
𝑌
𝑗

𝑖
and assume E

[
𝑐𝑏𝑖𝑜
𝑖

]
= 1 without loss of generality, this model for biological

extrinsic noise means

E
[
𝑌
𝑗

𝑖
|𝑐𝑏𝑖𝑜𝑖

]
= 𝑐𝑏𝑖𝑜𝑖 E

[
𝑌 𝑗

]
, (3.1)

where E
[
𝑌 𝑗

]
= E𝑐𝑏𝑖𝑜

𝑖

[
E

[
𝑌
𝑗

𝑖
|𝑐𝑏𝑖𝑜
𝑖

] ]
is the mean of gene 𝑗 across cells.

Figure 3.1: Modeling extrinsic noise in scRNA-seq data. a) Model-based closed-
loop paradigm. The process begins with the formulation of mechanistic models,
followed by rigorous mathematical analysis to generate testable predictions. These
predictions are then tested on data, allowing models to be refined or rejected.
The cycle repeats with updated models, creating an iterative loop of modeling. b)
Schematic of the extrinsic noise model. c) Predicted relationships among normalized
covariance, extrinsic noise, and overdispersion. d) Procedure for validating these
relationships.

For the technical measurement model, we make much stronger assumptions: we
assume a Bernoulli sampling of each transcript in single-cell experiment; this is
based on previous studies (Klein et al., 2015) and the assumptions leads to a binomial
distribution of observed counts given in vivo counts. This is also the low detection
approximation of Poisson sampling (Section 3.4). Similarly, we introduce a cellular
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random variable 𝑐𝑡𝑒𝑐ℎ to summarize the relative success probability in the binomial
distribution. This 𝑐𝑡𝑒𝑐ℎ can be interpreted as affecting relative read depth during
sequencing and is independent of the biological model and the in vivo counts. To
account for differences in capture efficiency between genes, we introduce a constant
capture rate, 𝜆, as an unknown constant for each molecular species, which cancels
out in normalized quantities. Finally, we denote the observed counts after single
cell sequencing by 𝑋 , this measurement model yields

𝑋
𝑗

𝑖
∼ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛 = 𝑌 𝑗

𝑖
, 𝑝 = 𝜆 𝑗𝑐𝑡𝑒𝑐ℎ𝑖 ). (3.2)

The two assumptions (Equation 3.1 and Equation 3.2) lead to simple expressions that
relate the intrinsic normalized (co)variance to the observed normalized (co)variance
(Section 3.4):
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(3.3)

where 𝑎, 𝑏 are gene indices and 𝑐 = 𝑐𝑡𝑒𝑐ℎ𝑐𝑏𝑖𝑜 is the overall size factor for each
cell. We denote Cov(𝑋𝑎 ,𝑋𝑏)

E[𝑋𝑎] E[𝑋𝑏] as normalized covariance following previous literature

(Hilfinger and Paulsson, 2011), and Var[𝑋𝑎]−E[𝑋𝑎]
E[𝑋𝑎]2 as normalized variance for conve-

nience, since it directly indicates the extent of over-dispersion. The first term on the
right hand side (Var[𝑐]

E[𝑐]2 ) represents the extrinsic noise, representing a combination of
both biological and technical extrinsic noise:
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𝑐𝑡𝑒𝑐ℎ
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𝑐𝑡𝑒𝑐ℎ

]2 . (3.4)

The second terms on the right hand side of Equation 3.3 represent the contribution
of intrinsic noise. For example, for two independent and intrinsically Poisson-
distributed genes, the intrinsic normalized covariance (E[Cov(𝑌 𝑎 ,𝑌𝑏 |𝑐𝑏𝑖𝑜)]

E[𝑌 𝑎] E[𝑌𝑏] ) and nor-

malized variance (E[Var[𝑌 𝑎 |𝑐𝑏𝑖𝑜]]−E[𝑌 𝑎]
E[𝑌 𝑎]2 ) would both be 0. Therefore, the second
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terms denote the effect of intrinsic normalized (co)variance convoluted with techni-
cal extrinsic noise.

The Equation 3.3 leads to two important observations. First, if we assume that genes
are intrinsically uncorrelated, the normalized covariance can be used to estimate the
extrinsic noise (Figure 3.1c), which is the canonical approach in previous studies on
biological extrinsic noise (Swain, Elowitz, and Siggia, 2002; Hilfinger and Paulsson,
2011; Grima and Esmenjaud, 2024; Fu and Lior Pachter, 2016). Although the exact
distribution of normalized covariance between uncorrelated gene pairs depends on
the distribution of 𝑐, it should nevertheless center around the value of extrinsic noise,
and we can use the mean/mode of the distribution to estimate the extrinsic noise. If
not all but most genes are uncorrelated, the normalized covariance can still provide
a reasonable estimate of the extrinsic noise using the mode of the distribution of
normalized covariance. The distance between the mode and the mean provides some
insight into the correlation between genes since the mode should coincide with the
mean if all genes are uncorrelated. Furthermore, if we have an empirical distribution
of 𝑐, we can verify whether the distribution of the normalized covariance aligns with
the model (Figure 3.1d).

Second, if the genes are intrinsically Poisson distributed, then the normalized vari-
ance also equals the extrinsic noise (Figure 3.1c). Therefore, after estimating
extrinsic noise using normalized covariance between genes, we can test whether
each gene is Poisson distributed using this expected equality (Figure 3.1d). Note
that the extrinsic noise term in normalized variance contributes to the observed
over-dispersion in scRNA-seq data, as it introduces a constant offset visible when
plotting the coefficient of variation (CV) against the mean. Therefore, genes are in-
trinsically less over-dispersed than observed counts might suggest, and it is possible
for some genes to not be over-dispersed after taking into account the extrinsic noise.

In summary, assuming genes 𝑎 and 𝑏 are intrinsically uncorrelated and the super-
script 𝑃𝑜𝑖𝑠 denotes intrinsically Poisson distributed genes, these two observations
can be expressed as follows:

𝑠 :=
Var [𝑐]
E [𝑐]2 =

Cov
(
𝑋𝑎, 𝑋𝑏

)
E [𝑋𝑎] E
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] =
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𝑋𝑃𝑜𝑖𝑠

]
− E

[
𝑋𝑃𝑜𝑖𝑠

]
E

[
𝑋𝑃𝑜𝑖𝑠

]2 . (3.5)

This moment relationship can be validated by estimating extrinsic noise and testing
Poisson distributed genes (Section 3.4). Notably, the Poisson distribution property
is particularly useful for cell size estimation, as the maximum likelihood estimate
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(MLE) of the cell size for Poisson genes is simply their sum (Section 3.4). In practice,
we filter genes based on a mean expression threshold (>0.1), as the normalized
(co)variance of low-expression counts tends to be noisy. We then calculate the
normalized covariance between the filtered genes to determine the mean and mode
(Section 3.4). To determine whether the normalized variance equals the extrinsic
noise (average normalized variance), we calculate its bootstrap confidence intervals
and the equality holds for a gene if its 95% confidence interval contains the estimated
value of extrinsic noise (Section 3.4). We call those genes "Poisson".

In the above derivation, we assume that 𝑐𝑏𝑖𝑜 and 𝑐𝑡𝑒𝑐ℎ are the same for all genes
or species within a single cell. However, this may not be the case and we need to
validate it on data. Nevertheless, the model can be extended to cases where multiple
𝑐𝑏𝑖𝑜 and 𝑐𝑡𝑒𝑐ℎ values exist for different groups of species and genes. In such cases,
we simply need to introduce different 𝑐𝑏𝑖𝑜 and 𝑐𝑡𝑒𝑐ℎ for each group and all equations
still hold.

Validating the technical noise model with homogeneous RNA solutions
We first validated our technical noise model and the covariance-variance relation-
ships (Equation 3.3) on scRNA-seq data of homogeneous RNA solution from K562
cells with ERCC using inDrop (Klein et al., 2015). As the RNA solution was
homogeneous, the in vivo count for each gene in every droplet followed the same
Poisson distribution and was mutually independent (Figure 3.2a). Therefore, there
was no biological extrinsic stochasticity, only technical extrinsic noise. The mode
of the normalized covariance was expected to be close to the mean and all genes
were expected to be Poisson.

We calculated the distribution of normalized covariance within ERCC, mature
mRNA and nascent mRNA respectively to see if they shared the same 𝑐𝑡𝑒𝑐ℎ and
extrinsic noise (Figure 3.3a). We found that ERCC and endogenous mRNA seemed
to have slightly different 𝑐𝑡𝑒𝑐ℎ, as the estimated extrinsic noise value of ERCC was
slightly smaller that that of mRNA. Within the endogenous mRNA, the extrinsic
noise appeared to be the same. This suggests that the capture mechanism of ERCC
in scRNA-seq might be different from endogenous mRNA, though the difference is
small.

Next, we tested whether the covariance-variance relationships held for the ERCC,
mature mRNA and nascent mRNA respectively. Given the genes are independent,
the covariance-variance relationship holds if the Bernoulli sampling model holds.
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Figure 3.2: Results for homogeneous RNA solution. a) Schematic of the exper-
iment and model predictions. b) Distribution of normalized covariance between
gene pairs with mean expression greater than 0.1, shown separately for ERCC, ma-
ture mRNA, and nascent mRNA counts. c) Overdispersion-mean relationship for
genes with mean expression greater than 0.1, for ERCC, mature mRNA, and nascent
mRNA counts, respectively. d) Cumulative distribution function of 𝑐tech. Gray dots
represent the empirical CDF of estimated 𝑐tech using selected Poisson mature mRNA
counts. The blue line shows a Gamma distribution fitted by matching the first two
moments (mean and variance), and the red line shows a Gaussian distribution with
the same mean and variance. e) Cumulative distribution function of normalized
covariance. Gray dots represent the empirical CDF of normalized covariance for
mature mRNA counts shown in b). Using the estimated 𝑐tech values and the mean
expression levels of the selected genes, 1,000 bootstrap samples were generated.
The purple line indicates the median empirical CDF across bootstrap replicates, and
the light purple band represents the 95% confidence interval.

We plotted the normalized variance against mean, and colored Poisson genes on
which the relationships held among all genes (Figure 3.2b). We also calculated
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Figure 3.3: Supplementary figures for homogeneous RNA solution a) Distri-
bution of normalized covariance between different species. b) Distribution of
normalized covariance between Poisson genes of different species. c) Comparison
of cell size estimators using the sum of total counts and Poisson mature counts. d)
Distribution of normalized covariance within Poisson mature counts across different
mean expression ranges.

the normalized covariance among selected Poisson genes and found that they were
consistent (Figure 3.3b). The Bernoulli sampling model seemed to work well for the
ERCC and mature mRNA but not for the nascent mRNA: the normalized variance
of almost half of the nascent counts was much noisier than predicted, while most
of the mature mRNA (90%) was within the 95% confidence intervals (Figure 3.2b).
This suggests that the nascent mRNA requires a different measurement model than
Bernoulli sampling.

We then sought to characterize 𝑐 (= 𝑐𝑡𝑒𝑐ℎ), which represents the cell size factors
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commonly used in scRNA-seq analysis (Luecken and Theis, 2019). We estimated
𝑐𝑡𝑒𝑐ℎ as the sum of Poisson-distributed mature RNA counts and found that it cor-
related well with the total count sum, which was expected since there were no
differentially expressed genes (Figure 3.3c). As the negative binomial distribution
is commonly used to model mRNA counts in both pseudo and real cells, which
implies that cell size follows a gamma distribution given a Poisson distribution of
in vivo counts, we asked whether 𝑐𝑡𝑒𝑐ℎ indeed followed a gamma distribution. We
plotted and compared the empirical cumulative distribution function (CDF) of es-
timated 𝑐𝑡𝑒𝑐ℎ, computed from the sum of Poisson-distributed mature RNA counts,
with the CDFs of gamma and Gaussian distributions that shared the same first two
moments as 𝑐𝑡𝑒𝑐ℎ. We found that the distribution of 𝑐𝑡𝑒𝑐ℎ followed a gamma dis-
tribution reasonably well, but also fit a Gaussian distribution equally well, if not
better (Figure 3.2d), which is consistent with the fact that the gamma distribution
approaches the Gaussian distribution when the shape parameter is large.

To assess whether a single 𝑐𝑡𝑒𝑐ℎ was shared across all genes, we compared the
empirical CDF of the normalized covariance of mature mRNAs with simulations
generated from a Poisson distribution coupled with the empirical distribution of
𝑐𝑡𝑒𝑐ℎ (Figure 3.2e). The empirical CDF was less sharp than the empirical CDF of
simulations, which suggested that a single 𝑐𝑡𝑒𝑐ℎ could not fully explain the variability,
even for mature mRNA. The single 𝑐𝑡𝑒𝑐ℎ per cell is the average of the distribution
of capture rates for different mature mRNAs in a cell. The capture rates did not
seem to relate to the expression levels (Figure 3.3d). Nevertheless, based on the
consistency between the mean and mode of the normalized covariance among all
genes and the selected Poisson genes, we concluded that a single 𝑐𝑡𝑒𝑐ℎ, while not
entirely accurate, provided a useful approximation.

In summary, homogeneous RNA solution data revealed that ERCCs, mature mR-
NAs, and nascent mRNAs are captured through distinct mechanisms, which leads to
varying levels of extrinsic noise within ERCCs and endogenous mRNAs and a sig-
nificantly higher variance in nascent mRNA than would be expected under a simple
Bernoulli sampling model. We therefore advocate for more control experiments of
this kind to validate technical noise models prior to large-scale data generation.

Validating the “biological” extrinsic noise of heterogeneous RNA solution
To validate our interpretation of extrinsic noise using a heterogeneous RNA solution
we examined CEL-seq2 data that contained ERCC spike-ins alongside varying
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amounts of endogenous RNA (Tian et al., 2019). The experiment comprised eight
distinct RNA mixtures extracted from three human lung cancer cell lines, each
present at four RNA amounts within different wells (Figure 3.4a). Here, the eight
RNA mixtures represented eight cell types and the four RNA amounts. Since cell
counts were derived from wells containing RNA in solution, we assumed that they
were independent and Poisson distributed. However, the different RNA amounts
could give rise to biological extrinsic noise and the cell type specific mean parameters
could lead to intrinsic variance and covariance. Assuming that the three human
lung cancer cell lines have similar concentrations for most genes, we expected
the biological extrinsic noise to arise mostly from the variation of RNA amounts.
Specifically, the biological extrinsic noise Var[𝑐𝑏𝑖𝑜]

E[𝑐𝑏𝑖𝑜]2 equals the CV2 of RNA amounts,
which could be calculated to be approximately or slightly above 0.33 based on the
experimental design (Section 3.4). Furthermore, those genes that did not vary
across the three human lung cancer cell lines were intrinsically Poisson, meaning
they had a normalized variance equal to the extrinsic noise, similar to a homogeneous
mRNA solution. In contrast, genes that did vary displayed greater dispersion than
intrinsically Poisson genes, resulting in a normalized variance that exceeded the
extrinsic noise (Prediction in Figure 3.4a).

We estimated the technical extrinsic noise using the ERCC spike-ins, and also esti-
mate the total extrinsic noise using mature mRNA and nascent mRNA respectively,
to see if they were the same. The total extrinsic noise differed within mature and
nascent mRNA: the estimated extrinsic noise was slightly higher for mature mRNA
(0.46) than nascent mRNA (0.42) (Figure 3.4b). The distribution of normalized co-
variance between mature and nascent mRNA had a similar mode to that of nascent
mRNA (Figure 3.5a), indicating that the extrinsic noise of mature mRNA included
both components shared with nascent mRNA and components unique to mature
mRNA. Most ERCC (92%) and mature mRNA (87%) fell within the 95% confi-
dence intervals and satisfied the Poisson criteria, whereas nascent mRNA counts had
a smaller percentage (78%) and were noisier with larger normalized variance (Figure
3.4b). As a consistency check, the normalized covariance between Poisson genes
showed similar values, with differences within 0.01 (Figure 3.5b). Based on these
observations, we speculate that the capture of mature and nascent mRNA shared
similar mechanisms as well as distinct differences, which led to the small difference
in extrinsic noise. Importantly, nascent mRNA is likely to require a slightly nosier
technical model than Bernoulli sampling.
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Figure 3.4: Results for heterogeneous RNA solution. a) Schematic of the exper-
iment and model predictions. b) Distribution of normalized covariance between
gene pairs with mean expression greater than 0.1, shown separately for ERCC, ma-
ture mRNA, and nascent mRNA counts. c) Overdispersion-mean relationship for
genes with mean expression greater than 0.1, for ERCC, mature mRNA, and nascent
mRNA counts, respectively.

Therefore, we used normalized covariance of mature mRNA for calculating the total
extrinsic noise and ERCC for the technical extrinsic noise to estimate the biological
extrinsic noise based on Equation 3.4. The estimated biological extrinsic noise was
0.35, which was reasonably closed to the expectation (0.33). Then we calculated
the total and technical cell size (𝑐𝑖 and 𝑐𝑡𝑒𝑐ℎ

𝑖
) using the sums of Poisson mature

mRNA and ERCC respectively, which were similar to those using total counts
(Figure 3.5c). We estimated biological cell size (𝑐𝑏𝑖𝑜

𝑖
) by taking the ratio of 𝑐𝑖 and

𝑐𝑡𝑒𝑐ℎ
𝑖

, and compared the distribution of 𝑐𝑏𝑖𝑜
𝑖

to the expected distribution from the
experimental design (Section 3.4). Cells were centered around the expected values
but the variance seemed to be large (Figure 3.5d and e).

Decomposing biological and technical extrinsic noise using species-mixing ex-
periments
Based on the results obtained with RNA in solution, we decided to focus on the
mature counts. However, in this context of experiments with individual cells, the
logic is reversed. Unlike in RNA solution, where genes can be assumed to follow
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Figure 3.5: Supplementary figures for heterogeneous RNA solution a) Dis-
tribution of normalized covariance between different species. b) Distribution of
normalized covariance between Poisson genes of different species. c) Comparison
of cell size estimators using the sum of total counts and Poisson mature counts.
d) Distribution of 𝑐tech and 𝑐bio. The values of 𝑐tech and 𝑐 are estimated from the
total Poisson ERCC counts and mature mRNA counts, respectively. Based on these
estimates, 𝑐bio is computed. The brown dots are the theoretical 𝑐bio.

a Poisson distribution in pseudocells, these assumptions do not inherently hold in
vivo. Instead, by testing the relationship between extrinsic noise and overdispersion
across genes, we identified those genes for which the assumptions of the Poisson
distribution hold, at least approximately. This enables genome-scale understanding
of gene expression noise and provided an additional piece of evidence in the context
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of previously inconsistent findings regarding biological variability (Dar et al., 2012;
Battich, Stoeger, and Pelkmans, 2015).

Therefore, we used an iterative approach to estimate extrinsic noise and to identify
“Poisson” genes (Figure 3.6). Starting with all genes, we calculated the normalized
covariance and estimated the extrinsic noise, which was then used to identify genes
whose normalized variances were close to the extrinsic noise. Next, we re-estimated
the extrinsic noise using the normalized covariance between selected genes and
compared it to the previous value. This process was repeated iteratively until the
extrinsic noise estimate stabilized (with differences within 10%), though typically, at
most one iteration was needed. Therefore, we assumed that these selected genes were
independent (on average) and had intrinsic variance similar to a Poisson distribution,
so we referred to them as "Poisson". Although their exact distributions may deviate
from a Poisson model, these genes were likely to exhibit low variability across cells,
rendering them appropriate for estimating cell size.

Figure 3.6: Procedure on single cell datasets.

We first sought to characterize the biological and technical contribution of extrinsic
noise. To measure technical extrinsic noise, we needed some control RNA in
the same cell. Usually, ERCC spike-ins are used as external controls to quantify
technical variance. However, here we utilized the ambient mRNA as the control
mRNA by leveraging species-mixing experiments, which are commonly used to
assess doublet rates. In these scRNA-seq experiments, human and mouse cells are
typically mixed, resulting in ambient mRNA from both species in droplets containing
cells from only one species. Then the ambient mRNA from the other species serves
as an external RNA control for technical extrinsic noise (Figure 3.7a).

In light of this, we calculated the biological and technical extrinsic noise of three
10x human-mouse mixture datasets. We used mature mRNA of the corresponding
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Figure 3.7: Extrinsic noise in species-mixing experiments. a) Schematic of the
species-mixing experiment. b) Overdispersion-mean relationships for human and
mouse genes in both human and mouse cells in the 20k Chromium X dataset. c)
Biological and technical extrinsic noise in three species-mixing experiments.

species to estimate total extrinsic noise, and total ambient mRNA from the other
species to estimate technical extrinsic noise. We did not distinguish between nascent
and mature and used the total counts when calculating normalized covariance be-
cause their counts are low. For example, in droplets containing only human cells,
the technical extrinsic noise estimated from mouse ambient mRNA is 0.15, and,
similar to RNA solution, the genes were expected to follow a Poisson distribution.
In contrast, the total extrinsic noise estimated from human mRNA is 0.24, with
fewer than 20% of human transcripts falling within the Poisson range (Figure 3.7b).
The differing percentages between ambient and cellular mRNA highlight that only
a small fraction of in vivo transcript counts potentially follow a Poisson distribution.
Based on the total and technical extrinsic noise, we estimate the biological extrinsic
noise based on Equation 3.4, which leads to 0.15 for human cells (Figure 3.7b). Both
the biological and technical contributions to extrinsic noise are substantial (Figure
3.7c). The estimated biological extrinsic noise are relatively robust across three
datasets, and the mouse cells (NIH3T3) seem to be slightly more homogeneous than
human cells (HEK293T).

Characterizing extrinsic noise and cell size factors on scRNA-seq data
Given the non-negligible contribution of biological extrinsic noise even in homo-
geneous cell lines, we argue that even when biological extrinsic noise cannot be
explicitly distinguished due to the absence of control mRNA, a substantial portion
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Figure 3.8: Supplementary figures for species-mixing experiments. a)
Overdispersion-mean relationships for human and mouse genes in both human and
mouse cells in the 10k Chromium X dataset. b) Overdispersion-mean relationships
for human and mouse genes in both human and mouse cells in the 10k Chromium
controller dataset. c) Venn diagram of selected Poisson genes across the three
datasets.

of the total extrinsic noise likely reflects underlying biological variation and should
not be disregarded. Therefore, we applied our procedure to several scRNA-seq
datasets and characterized both extrinsic noise and cell size factors.

We first investigated whether extrinsic noise is related to the average abundance of
genes, a topic that has been debated in previous studies (Hafemeister and Satija,
2019; Lause, Berens, and Kobak, 2021). For our analysis, we selected the 10x
Flex K562 datasets because the probes covering exon junctions yield more abundant
and accurate mature mRNA counts. We then plotted the distribution of normalized
covariance across genes with varying mean expression levels and found that the
modes of the distributions were identical (0.23), with comparable means (Figure
3.9a). The percentage of “Poisson” genes is also comparable to those observed in
the species-mixing data (Figure 3.9b). The distributions of normalized covariance



34

across “Poisson” genes with varying mean expression levels also show no difference
with the same modes (Figure 3.10a). We concluded that extrinsic noise and the
resulting baseline overdispersion are not related to the average abundance of genes.

Figure 3.9: Extrinsic noise in single cell datasets. a) Distribution of normalized
covariance within genes across different mean expression ranges for the K562 10x
Flex dataset. b) Overdispersion-mean relationship for the K562 10x Flex dataset. c)
Distribution of normalized covariance for the mESC inDrop dataset. d) Distribution
of normalized covariance for the mESC 10x 3’ v3 dataset. e) Overdispersion-mean
relationship for the mESC 10x 3’ v3 dataset. f) Cell size along cell cycle. Cell sizes
are estimated using Poisson genes from panel e). Cell cycle progression is denoted
by cell cycle theta, as reported by Riba et al. (2022). g) Distribution of normalized
covariance between gene pairs with mean expression greater than 0.1 for the PBMC
dataset. h) Distribution of normalized covariance between selected Poisson genes
for the PBMC dataset. i) Overdispersion-mean relationship for the PBMC dataset.
ii) Sum of total counts against sum of Poisson counts, colored by cell types.

We then investigated whether extrinsic noise is associated with cell cycle progres-
sion. To do this, we used mouse embryonic stem cells (mESC) data with inferred
cell cycle stages (Riba et al., 2022). We estimated the extrinsic noise (Figure 3.9c)
and also compared it to that of mESC inDrop data (Klein et al., 2015), finding
that the estimates were similar (Figure 3.9c). This indicates the robustness of the
extrinsic noise across different datasets. We selected Poisson genes (Figure 3.9e),
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Figure 3.10: Supplementary figures for K562 10x flex dataset. a) Distribution of
normalized covariance within Poisson mature counts across different mean expres-
sion ranges. b) Comparison of cell size estimators using the sum of total counts and
Poisson mature counts. r denotes the Pearson correlation coefficient.

Figure 3.11: Supplementary figures for mESC 10x dataset. a) Distribution of
normalized covariance within Poisson mature counts. b) Comparison of cell size
estimators using the sum of total counts and Poisson mature counts. r denotes the
Pearson correlation coefficient.

and estimate 𝑐 as the sum of “Poisson” mature RNA counts, which correlates well
with the total count sum (Figure 3.11c). We plotted the estimated cell size factors
(𝑐) along the inferred transcriptional phase (cell cycle 𝜃) from Riba et al. and ob-
served a clear pattern of cell size variation across the cell cycle (Figure 3.9f), which
confirms that the cell cycle contributes to extrinsic noise.

Up to this point, the sum of Poisson counts had shown a perfect correlation with the
total counts. However, this may not be the case for heterogeneous cells, i.e., datasets
consisting of different cell types. To investigate this, we applied our approach to
the peripheral blood mononuclear cells (PBMC) dataset generated using 10x flex
technology (10x Genomics, 2024). We found that the extrinsic noise in PBMCs is
significantly higher than that observed in homogeneous cell types such as mESC and
K562. The distribution of normalized covariance across all genes is right-skewed
(Figure 3.9g), suggesting that many genes exhibit positive correlations. On the other
hand, the distribution across Poisson genes is more symmetrical, with the mode and
mean closely aligned (Figure 3.9h). The percentage of “Poisson” genes remains
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Figure 3.12: Supplementary figures for PBMC dataset. a) Procedure for compar-
ing differential expression (DE) analysis results using different cell sizes. b) P-values
from the Mann–Whitney U test comparing gene expression between monocytes and
NK cells, computed after normalizing the data using different cell size estimates. c)
Correspondence between top 100 genes after two normalizations.

similar (Figure 3.9i). However, the estimated 𝑐 as the sum of “Poisson” mature
RNA counts no longer aligns well with the total count sum (Figure 3.9j). We used
the Leiden algorithm to cluster cells into T cells, Natural killer (NK) cells, B cells,
and Monocytes based on marker genes. Different cell types within PBMC appear
to have varying ratios of “Poisson” to total counts (Figure 3.9j), likely reflecting the
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Figure 3.13: Results for mouse forebrain dataset. a) Distribution of normalized
covariance between gene pairs with mean expression greater than 0.1 for the PBMC
dataset. b) Distribution of normalized covariance between selected Poisson genes
for the PBMC dataset. c) Overdispersion-mean relationship for the PBMC dataset.
d) Sum of total counts against sum of Poisson counts, colored by cell types.

presence of highly differentially expressed genes specific to monocytes. Therefore,
using “Poisson” counts or total counts will result in different cell size factors. To
demonstrate the impact on downstream analysis, we normalized the raw counts
using both the total UMI count and the sum of Poisson gene counts, respectively,
and performed a Mann–Whitney U test to identify differentially expressed genes
between monocytes and natural killer cells. We compared the resulting p-values
(Figure 3.12a), and listed the top 100 differentially expressed genes identified under
each normalization method for comparison (Figure 3.12b). We found that this
phenomenon is dataset-specific and depends on the underlying cellular composition,
as demonstrated by the 10x mouse forebrain data (10x Genomics, 2023), where the
sum of ’Poisson’ mature RNA counts aligns better with the total count sum (Figure
3.13d).

3.3 Discussion
In this work, we clarify the underlying assumptions of extrinsic noise in scRNA-seq
normalization and describe an extrinsic noise model that has only been implicitly
recognized in previous studies. This model establishes a direct relationship among
normalized covariance, extrinsic noise, and the overdispersion observed in intrinsi-
cally Poisson genes. This relationship enables us to validate the model using RNA
solution data and to identify genes whose expression variance is consistent with a
Poisson distribution. By providing a baseline for overdispersion, extrinsic noise
reveals that much of the observed overdispersion in scRNA-seq data can still be
explained by genes that are intrinsically Poisson.

Importantly, we have shown how a mechanistic model can lead to testable predic-
tions, and how validating these predictions can either support the model or prompt
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the development of alternative explanations (Phillips, 2015). Specifically, we found
that Bernoulli sampling is applicable only to mature RNA counts, likely due to differ-
ences in capture mechanisms between mature and nascent mRNA. Even for mature
counts, using a single cell size factor remains a coarse approximation. Furthermore,
we observed that the overdispersion in some datasets cannot be fully explained by
extrinsic noise, as seen in the case of STORM-seq datasets of K562 cells (Johnson
et al., 2022). Despite exhibiting similar levels of extrinsic noise to the 10x Flex
dataset in Figure 3.9a (Figure 3.14a), the mean-overdispersion relationship and the
behavior of Poisson genes suggest that our model does not apply in this case (Figure
3.14b). Given that the technical noise model may vary across species and tech-
nologies, we advocate for more careful assessment in future experimental designs,
recommending that the technical noise model be characterized prior to large-scale
data generation.

Figure 3.14: Results for K562 STORM-seq dataset. a) Distribution of normal-
ized covariance between gene pairs with mean expression greater than 0.1. b)
Overdispersion-mean relationship.

Beyond quantifying biological and technical extrinsic noise, a key motivation for
modeling extrinsic noise and cell size is to enhance the accuracy of downstream
data analysis. Rather than simply normalizing total counts by cell size, we advocate
for explicitly incorporating the cell size factor when modeling variable genes with
more complex gene expression models, such as those beyond constitutive expression
and Poisson distributions. The cell size estimators derived from Poisson genes can
be treated as constants and provided as inputs to the inference process, thereby
simplifying the modeling of other variable genes. Because these estimators are
based on two orthogonal groups of genes, namely those used for cell size estimation
and those being modeled, this approach effectively avoids the issue of "double-
dipping" and ensures a more robust and reliable analysis.

We have provided only preliminary insights into extrinsic noise, as our analysis is
based on modeling single genes and does not specify a detailed gene expression
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model. As a result, we cannot determine the exact forms of variance and covariance
beyond what is expected from a Poisson distribution. For genes that follow Poisson
statistics, all biological extrinsic noise arises from variation in their mean expression
levels. In such cases, it is sufficient to decompose extrinsic noise into biological
and technical components. However, for more variable genes that exhibit super-
Poissonian variance, more sophisticated models such as bursty transcription are
needed to accurately capture their expression dynamics (Golding et al., 2005). These
models introduce additional parameters, such as burst frequency and burst size, to
account for the excess variability. While most studies assume that only burst size
scales with cell size (Grima and Esmenjaud, 2024; W. Tang et al., 2023; Öcal, 2023),
we show that biological extrinsic noise can, in fact, be further decomposed. This
allows for a more detailed, quantitative dissection of how each parameter contributes
to extrinsic noise (see Section 3.4). We advocate for future studies to adopt more
comprehensive modeling approaches in order to deepen our understanding of the
sources and mechanisms underlying gene expression variability.

3.4 Methods
Extrinsic noise model
Extrinsic noise is global to a cell and contains both biological and technical com-
ponents. Therefore, we introduce two random variables to represent biological and
technical cell factors. Specifically, for the biological model, we assume that each
cell has a random variable 𝑐𝑏𝑖𝑜 and the mean of every gene is proportional to this
value. 𝑐𝑏𝑖𝑜 could result from the cell volume, cell cycle and factors that effect all
genes. Without loss of generality, we assume E [𝑐𝑏𝑖𝑜] = 1. Denote the in vivo
number of gene j in cell i by 𝑌 𝑗

𝑖
, and this model for biological extrinsic noise means

E
[
𝑌
𝑗

𝑖
|𝑐𝑏𝑖𝑜𝑖

]
= 𝑐𝑏𝑖𝑜𝑖 E

[
𝑌 𝑗

]
, (3.6)

where E
[
𝑌 𝑗

]
= E𝑐𝑏𝑖𝑜

𝑖

[
E

[
𝑌
𝑗

𝑖
|𝑐𝑏𝑖𝑜
𝑖

] ]
is the mean of gene j across cells.

As a consequence of law of total variance, for covariance and variance of gene a and
b across cells, we have
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Cov
(
𝑌 𝑎, 𝑌 𝑏

)
= E𝑐𝑏𝑖𝑜

𝑖

[
Cov

(
𝑌 𝑎𝑖 , 𝑌

𝑏
𝑖 |𝑐𝑏𝑖𝑜𝑖

) ]
+ Cov

(
E

[
𝑌 𝑎 |𝑐𝑏𝑖𝑜

]
,E

[
𝑌 𝑏 |𝑐𝑏𝑖𝑜

] )
= E𝑐𝑏𝑖𝑜

𝑖

[
Cov

(
𝑌 𝑎𝑖 , 𝑌

𝑏
𝑖 |𝑐𝑏𝑖𝑜

) ]
+ Var

[
𝑐𝑏𝑖𝑜

]
E [𝑌 𝑎] E

[
𝑌 𝑏

]
Var [𝑌 𝑎] = E𝑐𝑏𝑖𝑜

𝑖

[
Var

[
𝑌 𝑎𝑖 |𝑐𝑏𝑖𝑜

] ]
+ Var

[
E

[
𝑌 𝑎 |𝑐𝑏𝑖𝑜

] ]
= E𝑐𝑏𝑖𝑜

𝑖

[
Var

[
𝑌 𝑎𝑖 |𝑐𝑏𝑖𝑜

] ]
+ Var

[
𝑐𝑏𝑖𝑜

]
E [𝑌 𝑎]2

.

(3.7)

The first terms on the right-hand side of both equations describe the intrinsic covari-
ance and variance, which depend on and also reflect the gene expression mechanism.
The second terms describe the extrinsic noise introduced by 𝑐𝑏𝑖𝑜. This separation of
intrinsic and extrinsic terms has been addressed in previous studies (Elowitz et al.,
2002; Swain, Elowitz, and Siggia, 2002; Hilfinger and Paulsson, 2011).

For a technical noise model, we assume Bernoulli sampling of transcripts in single-
cell sequencing experiments, which leads to binomial distribution of observed counts
given in vivo counts. Similarly we assume each cell has a random variable 𝑐𝑡𝑒𝑐ℎ
and the success probability in binomial distribution is proportional to this value.
This 𝑐𝑡𝑒𝑐ℎ could be interpreted as relative read depth during sequencing and is
independent of the biological model and in vivo counts. We introduce a constant
capture rate 𝜆 for each species of molecule so that we can again assume E [𝑐𝑡𝑒𝑐ℎ] = 1.
Denote the observed counts after single cell sequencing by 𝑋 , this technical model
means

𝑋
𝑗

𝑖
∼ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛 = 𝑌 𝑗

𝑖
, 𝑝 = 𝜆 𝑗𝑐𝑡𝑒𝑐ℎ𝑖 ), (3.8)

E
[
𝑋
𝑗

𝑖
|𝑐𝑡𝑒𝑐ℎ𝑖 , 𝑌

𝑗

𝑖

]
= 𝑐𝑡𝑒𝑐ℎ𝑖 𝜆 𝑗 𝑌

𝑗

𝑖
, (3.9)

Var
[
𝑋
𝑗

𝑖
|𝑐𝑡𝑒𝑐ℎ𝑖 , 𝑌

𝑗

𝑖

]
= 𝑐𝑡𝑒𝑐ℎ𝑖 𝜆 𝑗 (1 − 𝑐𝑡𝑒𝑐ℎ𝑖 𝜆 𝑗 )𝑌 𝑗

𝑖
. (3.10)
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Using law of total variance (covariance) gives

Cov
(
𝑋𝑎, 𝑋𝑏

)
= E

[
Cov

(
𝑋𝑎𝑖 , 𝑋

𝑏
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𝑏
𝑖
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] )
= Cov

(
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(3.11)

Plugging in Equation 3.7, we arrive at the expression that connects intrinsic and
observed noise under our extrinsic noise model,
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E [𝑌 𝑎]2 ,

(3.12)

where 𝑐 = 𝑐𝑡𝑒𝑐ℎ𝑐𝑏𝑖𝑜 is the overall cell factor. This expression is rather general
and follows directly from Equation 3.1 and Equation 3.2. The shared constant
factors (𝑠 := Var[𝑐]

E[𝑐]2 ) denote the extrinsic noise, and potentially explain the constant
offset observed in the plot of the Fano factor against mean for genes. We denote
Cov(𝑌 𝑎 ,𝑌𝑏 |𝑐𝑏𝑖𝑜)

E[𝑌 𝑎] E[𝑌𝑏] and Var[𝑌 𝑎 |𝑐𝑏𝑖𝑜]−E[𝑌 𝑎]
E[𝑌 𝑎]2 by intrinsic covariance and variance.

Procedure for estimating extrinsic noise and selecting Poisson genes
To estimate the extrinsic noise, we calculated the normalized covariance among
genes with mean expression greater than 0.1, and used the mode of the resulting
distribution. This was computed using histogram bins of width 0.01. The center of
the bin with the highest frequency was taken as the estimated value, which was set
to exactly two decimal digits by construction of the bin edges.

To select Poisson genes, we calculated the 95% bootstrap interval of overdispersion
for each gene based on 1,000 bootstrap samples by default. Then we selected genes
whose 95% bootstrap intervals contain the estimated extrinsic noise.

Maximum likelihood estimation of cell size
Let 𝑋 𝑗

𝑖
∼ Poisson(𝑐𝑖𝜇 𝑗 ) be the observed expression count of gene 𝑗 in cell 𝑖, where

𝑐𝑖 is the cell size (scaling factor) for cell 𝑖 and 𝜇 𝑗 is the mean of gene 𝑗 .

The likelihood function for cell 𝑖 given its gene expression vector {𝑋 𝑗

𝑖
}𝐺
𝑗=1 is given

by

𝐿 (𝑐𝑖) =
𝐺∏
𝑗=1

(𝑐𝑖𝜇 𝑗 )𝑋
𝑗

𝑖 𝑒−𝑐𝑖𝜇 𝑗

𝑋
𝑗

𝑖
!

.

The log-likelihood is given by

log 𝐿 (𝑐𝑖) =
𝐺∑︁
𝑗=1

(
𝑋
𝑗

𝑖
log(𝑐𝑖𝜇 𝑗 ) − 𝑐𝑖𝜇 𝑗 − log(𝑋 𝑗

𝑖
!)
)
.
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To find the maximum likelihood estimator (MLE) of 𝑐𝑖, we differentiated the log-
likelihood with respect to 𝑐𝑖 and set the derivative to zero:

𝑑

𝑑𝑐𝑖
log 𝐿 (𝑐𝑖) =

𝐺∑︁
𝑗=1

(
𝑋
𝑗

𝑖

𝑐𝑖
− 𝜇 𝑗

)
= 0.

Solving for 𝑐𝑖 gives the MLE:

𝑐𝑖 =

∑𝐺
𝑗=1 𝑋

𝑗

𝑖∑𝐺
𝑗=1 𝜇 𝑗

.

The expected biological extrinsic noise of the CEL-seq2 data
The RNA mixture was prepared on a 384-well plate (Supplementary Figure 1a in
(Tian et al., 2019)). After processing the SRA files from GEO Series GSE117617
using kb-python (Sullivan, Min, et al., 2025) and filtering out two outlier cells,
we obtained a final dataset consisting of 357 cells. The exact biological extrinsic
noise is influenced by the RNA amounts of the remaining 357 cells, which remain
unknown. However, assuming that the 27 removed cells each had an RNA amount
of 3.75 𝜇g, we can estimate a lower bound for the biological extrinsic noise, which
is approximately 0.333.

Identifiability of parameter-specific extrinsic noise in bursty models
Here we consider the bursty model, and assume a random variable for the extrinsic
noise associated with each parameter. Studying the identifiability of parameter-
specific extrinsic noise is crucial, as it can help us understand how biological
extrinsic noise influences gene expression. By investigating this aspect, we aim to
gain insights into the mechanisms that drive variability in gene expression at the
single-cell level.

We consider the following bursty model of nascent and mature mRNA:

∅ 𝑘−→ 𝐵 × 𝑁, 𝑁
𝛽
−→ 𝑀, 𝑀

𝛾
−→ ∅, (3.13)

where in the first reaction the number of nascent mRNA molecules synthesized
in each burst (B) follows a geometric distribution on {0, 1, 2, ...} with a mean
of b, referred to as the burst size (Singh and Bokes, 2012). The distribution of
nascent is well known to be negative binomial, but the joint distribution of nascent
and mature counts is not analytically available. Here, following the framework in
(Gorin, Vastola, and Lior Pachter, 2023), we use the generating function method
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to investigate the identifiablity of extrinsic noise, which can be extended to general
gene expression models.

Denote the in vivo nascent and mature mRNA counts by 𝑦𝑢 and 𝑦𝑚. Let𝐺𝑌 (𝑧𝑛, 𝑧𝑚, 𝑡) =∑
𝑦𝑛

∑
𝑦𝑚
𝑧
𝑦𝑢
𝑛 𝑧

𝑦𝑚
𝑚 𝑃(𝑦𝑛, 𝑦𝑚, 𝑡) be the generating function. Assuming 𝛽 ≠ 𝛾, the facto-

rial generating function 𝜙𝑌 (𝑢𝑛, 𝑢𝑚,∞) := log𝐺𝑌 (𝑢𝑛 + 1, 𝑢𝑚 + 1,∞) is (Singh and
Bokes, 2012):

𝑢𝑛 (𝑠) =
𝑢𝑚𝛽

𝛽 − 𝛾 𝑒
−𝛾𝑠 + (𝑢𝑢 −

𝑢𝑚𝛽

𝛽 − 𝛾 )𝑒
−𝛽𝑠, (3.14)

𝜙𝑌 (𝑢𝑛, 𝑢𝑚,∞) = 𝑘
∫ ∞

0

𝑏𝑢𝑛 (𝑠)
1 − 𝑏𝑢𝑛 (𝑠)

𝑑𝑠. (3.15)

Adding Bernoulli sampling with rate 𝑐𝑡𝑒𝑐ℎ𝜆, where 𝜆 is the species-specific constant,
the generating function of observed counts 𝑥 is

𝐺𝑋 (z, 𝑡) =
∞∑︁

x=0
zx𝑃(x, 𝑡)

=

∞∑︁
x=0

∞∑︁
y=0

zx𝑃(x|y)𝑃(y, 𝑡)

=

∞∑︁
x=0

∞∑︁
y=0

(
𝑐𝑡𝑒𝑐ℎ𝜆z + 1 − 𝑐𝑡𝑒𝑐ℎ𝜆

)y
𝑃(y, 𝑡)

= 𝐺𝑌

(
𝑐𝑡𝑒𝑐ℎ𝜆 (z − 1) + 1, 𝑡

)
.

Then, adding parameter-specific extrinsic noise to each parameter, the factorial
generating function of observed counts 𝑋 𝜙𝑋 (𝑢𝑛, 𝑢𝑚,∞) := log𝐺𝑋 (𝑢𝑛+1, 𝑢𝑚+1,∞)
is

𝑣𝑛 (𝑠) =
𝜆𝑚

𝜆𝑛

𝑣𝑚𝑐
𝛽𝛽

𝑐𝛽𝛽 − 𝑐𝛾𝛾
𝑒−𝑐

𝛾𝛾𝑠 + (𝑣𝑢 −
𝜆𝑚

𝜆𝑛

𝑣𝑚𝑐
𝛽𝛽

𝑐𝛽𝛽 − 𝑐𝛾𝛾
)𝑒−𝑐𝛽𝛽𝑠, (3.16)

𝜙𝑋 (𝑣𝑛, 𝑣𝑚,∞) = 𝑐𝑘 𝑘
∫ ∞

0

𝑐𝑏𝑏𝑐𝑡𝑒𝑐ℎ𝜆𝑛𝑣𝑛 (𝑠)
1 − 𝑐𝑏𝑏𝑐𝑡𝑒𝑐ℎ𝜆𝑛𝑣𝑛 (𝑠)

𝑑𝑠. (3.17)

Note that all 𝑐 values are shared across genes within the same cell. Given the
identifiable parameters of Equation 3.14 for in vivo counts 𝑌 are 𝑏, 𝛽

𝑘
, 𝛾
𝑘

(Singh and
Bokes, 2012), the identifiable parameters in Equation 3.16 from observed counts 𝑋
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include 𝑏𝜆𝑛, 𝛽𝑘 , 𝛾
𝑘
, and 𝜆𝑚

𝜆𝑛
, as well as the relative values of 𝑐𝛽

𝑐𝑘
, 𝑐𝛾
𝑐𝑘

, and 𝑐𝑏𝑐tech, under
the assumption that

E
[
𝑐𝛽

𝑐𝑘

]
= E

[
𝑐𝛾

𝑐𝑘

]
= E

[
𝑐𝑏𝑐tech] = 1.

With the use of external RNA controls, it becomes possible to further disentangle
𝑐𝑏 from 𝑐tech.

Data and code availability
All datasets used in this study are publicly available. Raw FASTQ files were
downloaded for each dataset and processed using kb-python version 0.29.1 (Bray
et al., 2016; Melsted et al., 2021; Sullivan, Min, et al., 2025), with the nac workflow
(Sullivan, Hjörleifsson, et al., 2025). The links to FASTQ files are in Supplementary
Table 3.1.

All code used to generate the results and figures in the paper is available at https:
//github.com/pachterlab/FP_2025.

https://github.com/pachterlab/FP_2025
https://github.com/pachterlab/FP_2025
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Dataset FASTQs Reference
Homogeneous RNA so-
lution (Indrops v1)

GSM1599501 Klein et al., 2015

Heterogeneous RNA
solution (CEL-seq2)

GSM3305230 Tian et al., 2019

Species-mixing, 20k
Chromium X (10x 3’
v3)

https://s3-us-west-2.amazonaws.
com/10x.files/samples/cell-exp/
6.1.0/20k_hgmm_3p_HT_nextgem_
Chromium_X/20k_hgmm_3p_HT_
nextgem_Chromium_X_fastqs.tar

10x Genomics, 2021c

Species-mixing, 10k
Chromium X (10x 3’
v3)

https://s3-us-west-2.amazonaws.
com/10x.files/samples/cell-
exp/6.1.0/10k_hgmm_3p_nextgem_
Chromium_X/10k_hgmm_3p_nextgem_
Chromium_X_fastqs.tar

10x Genomics, 2021b

Species-mixing, 10k
Chromium controller
(10x 3’ v3)

https://s3-us-west-2.amazonaws.
com/10x.files/samples/cell-
exp/6.1.0/10k_hgmm_3p_nextgem_
Chromium_Controller/10k_hgmm_
3p_nextgem_Chromium_Controller_
fastqs.tar

10x Genomics, 2021a

K562 (10x flex) https://s3-us-west-2.amazonaws.
com/10x.files/samples/cell-
exp/7.0.0/10k_K562_singleplex_
Multiplex/10k_K562_singleplex_
Multiplex_fastqs.tar

10x Genomics, 2022

mESC (10x 3’ v3) GSM5111566 Riba et al., 2022
mESC (Indrops v1) GSM1599494 Klein et al., 2015
PBMC (10x flex) https://s3-us-west-2.amazonaws.

com/10x.files/samples/cell-
exp/8.0.0/10k_Human_PBMC_
TotalSeqB_singleplex_Multiplex/
10k_Human_PBMC_TotalSeqB_
singleplex_Multiplex_fastqs.tar

10x Genomics, 2024

Mouse forebrain (10x
flex)

https://cf.10xgenomics.com/
samples/cell-exp/7.1.0/
10k_mouse_forebrain_scFFPE_
singleplex_Multiplex/10k_mouse_
forebrain_scFFPE_singleplex_
Multiplex_fastqs.tar

10x Genomics, 2023

K562 (STORM-seq) GSE181544 Johnson et al., 2022

Table 3.1: Datasets metadata. Datasets used for all analyses, with their technology
in parentheses, FASTQ files accession links, and references.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1599501
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3305230
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/20k_hgmm_3p_HT_nextgem_Chromium_X/20k_hgmm_3p_HT_nextgem_Chromium_X_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/20k_hgmm_3p_HT_nextgem_Chromium_X/20k_hgmm_3p_HT_nextgem_Chromium_X_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/20k_hgmm_3p_HT_nextgem_Chromium_X/20k_hgmm_3p_HT_nextgem_Chromium_X_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/20k_hgmm_3p_HT_nextgem_Chromium_X/20k_hgmm_3p_HT_nextgem_Chromium_X_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/20k_hgmm_3p_HT_nextgem_Chromium_X/20k_hgmm_3p_HT_nextgem_Chromium_X_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/10k_hgmm_3p_nextgem_Chromium_X/10k_hgmm_3p_nextgem_Chromium_X_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/10k_hgmm_3p_nextgem_Chromium_X/10k_hgmm_3p_nextgem_Chromium_X_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/10k_hgmm_3p_nextgem_Chromium_X/10k_hgmm_3p_nextgem_Chromium_X_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/10k_hgmm_3p_nextgem_Chromium_X/10k_hgmm_3p_nextgem_Chromium_X_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/10k_hgmm_3p_nextgem_Chromium_X/10k_hgmm_3p_nextgem_Chromium_X_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/10k_hgmm_3p_nextgem_Chromium_Controller/10k_hgmm_3p_nextgem_Chromium_Controller_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/10k_hgmm_3p_nextgem_Chromium_Controller/10k_hgmm_3p_nextgem_Chromium_Controller_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/10k_hgmm_3p_nextgem_Chromium_Controller/10k_hgmm_3p_nextgem_Chromium_Controller_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/10k_hgmm_3p_nextgem_Chromium_Controller/10k_hgmm_3p_nextgem_Chromium_Controller_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/10k_hgmm_3p_nextgem_Chromium_Controller/10k_hgmm_3p_nextgem_Chromium_Controller_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/6.1.0/10k_hgmm_3p_nextgem_Chromium_Controller/10k_hgmm_3p_nextgem_Chromium_Controller_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/7.0.0/10k_K562_singleplex_Multiplex/10k_K562_singleplex_Multiplex_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/7.0.0/10k_K562_singleplex_Multiplex/10k_K562_singleplex_Multiplex_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/7.0.0/10k_K562_singleplex_Multiplex/10k_K562_singleplex_Multiplex_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/7.0.0/10k_K562_singleplex_Multiplex/10k_K562_singleplex_Multiplex_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/7.0.0/10k_K562_singleplex_Multiplex/10k_K562_singleplex_Multiplex_fastqs.tar
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5111566
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1599494
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/8.0.0/10k_Human_PBMC_TotalSeqB_singleplex_Multiplex/10k_Human_PBMC_TotalSeqB_singleplex_Multiplex_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/8.0.0/10k_Human_PBMC_TotalSeqB_singleplex_Multiplex/10k_Human_PBMC_TotalSeqB_singleplex_Multiplex_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/8.0.0/10k_Human_PBMC_TotalSeqB_singleplex_Multiplex/10k_Human_PBMC_TotalSeqB_singleplex_Multiplex_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/8.0.0/10k_Human_PBMC_TotalSeqB_singleplex_Multiplex/10k_Human_PBMC_TotalSeqB_singleplex_Multiplex_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/8.0.0/10k_Human_PBMC_TotalSeqB_singleplex_Multiplex/10k_Human_PBMC_TotalSeqB_singleplex_Multiplex_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-exp/8.0.0/10k_Human_PBMC_TotalSeqB_singleplex_Multiplex/10k_Human_PBMC_TotalSeqB_singleplex_Multiplex_fastqs.tar
https://cf.10xgenomics.com/samples/cell-exp/7.1.0/10k_mouse_forebrain_scFFPE_singleplex_Multiplex/10k_mouse_forebrain_scFFPE_singleplex_Multiplex_fastqs.tar
https://cf.10xgenomics.com/samples/cell-exp/7.1.0/10k_mouse_forebrain_scFFPE_singleplex_Multiplex/10k_mouse_forebrain_scFFPE_singleplex_Multiplex_fastqs.tar
https://cf.10xgenomics.com/samples/cell-exp/7.1.0/10k_mouse_forebrain_scFFPE_singleplex_Multiplex/10k_mouse_forebrain_scFFPE_singleplex_Multiplex_fastqs.tar
https://cf.10xgenomics.com/samples/cell-exp/7.1.0/10k_mouse_forebrain_scFFPE_singleplex_Multiplex/10k_mouse_forebrain_scFFPE_singleplex_Multiplex_fastqs.tar
https://cf.10xgenomics.com/samples/cell-exp/7.1.0/10k_mouse_forebrain_scFFPE_singleplex_Multiplex/10k_mouse_forebrain_scFFPE_singleplex_Multiplex_fastqs.tar
https://cf.10xgenomics.com/samples/cell-exp/7.1.0/10k_mouse_forebrain_scFFPE_singleplex_Multiplex/10k_mouse_forebrain_scFFPE_singleplex_Multiplex_fastqs.tar
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181544
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C h a p t e r 4

A PROCESS TIME MODEL FOR TRAJECTORY INFERENCE
AND RNA VELOCITY

Fang, Meichen, Gennady Gorin, and Lior Pachter (2025). “Trajectory inference from
single-cell genomics data with a process time model”. In: PLoS Comput. Biol.
21.1, e1012752. doi: 10.1371/journal.pcbi.1012752.

4.1 Introduction
Single-cell RNA sequencing (scRNA-seq) has provided unprecedented insights into
biological dynamical processes in which cells display a continuous spectrum of states
that go beyond the confines of discrete cell types (Griffiths, Scialdone, and Marioni,
2018). Cells appear to be inherently desynchronized in cellular processes and
scRNA-seq can potentially capture cells at different positions over the process even
if samples are collected at only one time point. The concept of pseudotime has been
developed to describe the position of a cell along the underlying process (Trapnell
et al., 2014), and trajectory inference (or pseudotemporal ordering) methods aim to
solve the inverse problem of inferring the latent pseudotime variable from scRNA-
seq data. In light of this this concept, hundreds of methods have been developed
(Cannoodt, Saelens, and Saeys, 2016; Saelens et al., 2019; Deconinck et al., 2021;
Cao et al., 2019; X. Qiu et al., 2017; Wolf, Hamey, et al., 2019; Street et al.,
2018; Campbell and Yau, 2016; C. Lin and Bar-Joseph, 2019; Campbell and Yau,
2019; Du et al., 2024). However, with a few exceptions that explicitly model gene
expression dynamics (C. Lin and Bar-Joseph, 2019; Campbell and Yau, 2019; Du
et al., 2024), trajectory inference methods mostly treat pseudotime as a descriptive
concept relying on more or less arbitrary distance metrics in gene expression space.
Specifically, there is no well-defined, agreed-upon meaning underlying the notion
of pseudotime, and its interpretation is primarily accomplished through qualitative
visuals and low dimensional embeddings.

While a descriptive approach can be powerful in exploratory data analysis, the
absence of a well-posed definition for a trajectory renders model interpretation
and assessment challenging, even conceptually. Firstly, assessing the credibility of
results is hard, as fitting can be performed on any dataset and we have limited metrics
and ground truth available to gauge the fit quality. Secondly, the interpretation of

https://doi.org/10.1371/journal.pcbi.1012752
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the inferred trajectory is not straightforward, and downstream analysis based on
pseudotime is employed to understand the underlying gene dynamics. However,
this need for following analysis to interpret results gives rise to the problem of
circularity (Section 2), which becomes evident in the context of an inflated false
positive rate in the problem of detecting differentially expressed (DE) genes along
pseudotime. The problem of circularity is conceptually challenging and can only
be effectively remedied under restrictive assumptions (Neufeld et al., 2023). To
illustrate these two points, we applied the procedure of trajectory inference and
DE analysis on simulations generated from four clusters and were able to “discover”
superficially plausible dynamics (Figure 4.1). As naive an example as it is, it reflects
the fact that we do not have a reliable way to determine the validity of trajectory
inference results. Though both are false positives, there is a subtle difference
between the falsely inferred trajectory (Figure 4.1b) and the inflated false positive
rate in DE analysis resulting from circularity (Figure 4.1c): the first one arises when
a trajectory model is inferred from cluster data without proper assessment, while
circularity stems from the double use of data for fitting and testing (double dipping)
(Kriegeskorte et al., 2009). Conversely, adopting a model-based approach has the
potential to mitigate this problem. With a clearly defined model of gene expression
along a trajectory, the interpretation of parameters and the characterization of errors
becomes more straightforward. First of all, model assessment can be conducted in
a more principled manner. We can effectively address the first kind of false positive
using conceptually simpler approaches, such as comparing our model to cluster
models to identify the correct model. In addition, the specific question of interest
like finding DE genes can be incorporated directly into the formulation of the model,
rendering ad hoc analysis unnecessary. For example, if we have an probabilistic
model of trajectories with transcription kinetics parameters, we can directly select
DE genes using inferred parameters, without the need to go through the circular
process of fitting trajectories and performing DE analysis to find interesting genes.
However, we emphasize that the exact p-values still cannot be easily calculated, and
circularity persists if we fit trajectories and perform DE test based on the inferred
time, which still falls under the issue of double dipping.

Recently, equipped with a kinetic model of RNA dynamics, RNA velocity has
emerged as another powerful concept to provide complementary information about
dynamic processes (La Manno et al., 2018). By distinguishing unspliced and
spliced mRNA counts as derived from unique molecular identifiers (UMIs) and
fitting gene-wise parameters under an on-off model of transcription, it is able to
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Figure 4.1: False positive on clusters data. a) Negative control data are simulated
from 4 Poisson mixtures with read depth noise. b) As an example of false positive,
specious trajectory in lower dimensional space was constructed with Slingshot
(Street et al., 2018). c) Differential genes along pseudotime were selected with
tradeSeq (Van den Berge et al., 2020), with the first gene plotted along the blue
lineage.

predict the direction of future spliced counts changes. Although a time-dependent
gene expression model was explicitly defined in RNA velocity, the time did not
have any associated interpretation. Moreover, earlier methods often modeled genes
separately with gene-wise times and fit these models after applying a series of ad hoc
transformations to count data, which added excessive flexibility and hindered a clear
interpretation of the time. As the velocities of different genes had non-comparable
scales, they needed to be combined heuristically in a lower-dimensional space to
calculate a velocity for a cell (Gorin, Fang, et al., 2022). A natural extension is
to integrate the cell-wise time of trajectory inference with the mRNA dynamical
model of RNA velocity, which a few methods have successfully implemented with
different underlying transcription models (Aivazidis et al., 2023; Gu, Blaauw, and
Welch, 2022; Li et al., 2022). Moreover, the recent VeloCycle developed an RNA
velocity model for the cell cycle that models unspliced and spliced counts dynamics
directly with harmonic functions (Lederer et al., 2024).

However, despite the implicit pseudotime modeling performed by some of the RNA
velocity methods, there remain many challenges in attaching a physical meaning to
pseudotime. Do the parameters of the trajectory model have underlying biophysical
interpretations? How can we guarantee that our inferences align with our intended
objectives? Are the assumptions of trajectory models satisfied to maintain the
consistency of our inference? For instance, the application of trajectory inference
or RNA velocity methods relies on the assumption of continuous dynamics in
the data, which is not examined retrospectively. Though some heuristic scores
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purport to distinguish between cluster-like data and trajectory-like data (Lim and
P. Qiu, 2024), there is no principled approach to determine whether the data is
sufficiently dynamical and whether a cluster or trajectory model is more appropriate,
and the decision of applying trajectory analysis often hinges on prior knowledge and
assumptions about the data.

In summary, to attach real meaning to “pseudotime” requires more than just a def-
inition of cell-wise pseudotime. It necessitates a principled approach to statistics
to ensure a meaningful inference, which is still lacking in the field of trajectory
inference. Meticulous model assessment is required to ensure its relevance to the
underlying biological processes and the reliability of results, which includes exam-
ining the identifiability of the model, characterizing performance to identify both
ideal and failure scenarios, and establishing proper metrics for result falsification.
Then pseudotime starts to have a physical meaning, which we suggest defining as
“process time” to underscore its interpretation with respect to a specific cellular
process.

The physical interpretation of process time is related to, but not necessarily equiva-
lent to, physical time. Specifically, assuming that all cells share the same dynamic
process, we can select a specific point along this process to serve as the starting
point for all cells. At the physical sampling time, the process time denotes the
relative time to that starting point, indicating how long ago in physical time the cells
were at the starting point. Therefore, if the experiments establish a known starting
time for when the cells enter the process, the process time should correspond to the
relative physical time. On the other hand, if we could follow one cell over time,
the process time would evolve in sync with physical time. In reality, where only
different cells can be sampled at multiple time points, the distribution of process
time should ideally evolve in parallel with physical time, provided enough cells are
sampled from the same population.

Here, we build such a model and infer “process time” in a principled way with
Chronocell. To strike a balance between expressiveness and identifiability, we pro-
posed a trajectory model built on cell states (Gorin, Fang, et al., 2022). On the one
hand, we incorporated different cell states so that our trajectory model is expres-
sive enough to capture the observation that cells are generally assumed to transition
through various states during development. On the other hand, we assume a constant
transcription rate for each state to keep the model as simple as possible. By intro-
ducing simplifying assumptions in transcription and sequencing model, we ensure
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model identifiability. We consider the influence of technical aspects and directly
incorporate them into the distribution of counts, which eliminates the necessity for
unjustified heuristic preprocessing steps that lead to unclear interpretation and bi-
ased results even in the large data and no noise limit (Gorin, Fang, et al., 2022). We
undertook simulations to characterize estimation accuracy in the different parameter
regimes to identify ideal and failure scenarios. Using simulations for which ground
truth is known allowed us to characterize how large uncertainty and inconsistent pa-
rameter values serve as good indicators of potential unreliability in failure scenarios,
which can be assessed even when ground truth is unavailable. Finally, we applied
Chronocell to biological datasets. We assessed its appropriateness on different
datasets and identified unsuitable ones. For suitable datasets, Chronocell revealed
distinct cellular distributions over process time and yielded mRNA degradation rate
estimates congruous with those obtained from mRNA metabolic labeling.

4.2 Challenges with the pseudotime concept
Trajectory methods overview
Single-cell genomics trajectory inference methods have mostly relied on similarity
metrics: distance based methods reconstruct the trajectory based on some distance
metrics in gene expression space under the assumption that cells that are more similar
in gene expression space are also closer in pseudotime (Haghverdi et al., 2016;
Wolf, Hamey, et al., 2019; Trapnell et al., 2014). Manifold-learning based methods
draw the trajectories in a reduced dimension space based on connectivity, i.e.,
similarity (Campbell and Yau, 2016; Street et al., 2018). Probability/Markov chain
based methods also calculate transition probabilities based on distances (Setty et al.,
2019). However, pseudotime based on similarity/distance is inherently descriptive
and unable to be extended to reflect physical meaning, because state spaces of
dynamical processes are not isotropic. There are a few exceptions that implicitly
define generative models of single-cell RNA-seq (scRNA-seq) data with pseudotime,
modeling dynamics of gene expression along differentiation processes in a way that
can be reformulated as driven by cell states switching models (C. Lin and Bar-Joseph,
2019). These ideas have motivated our model.

One important observation is that the usage of Markov Chain model in trajectory
inference, as well as other single cell analysis, can be fundamentally flawed. This
is because frequently cells are samples drawn from different chains, instead of a
sequence of observations of one single chain. The Markov chain formalism is
therefore not applicable to single cell studies without making further assumptions.
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Circularity in pseudotime-based analysis
Due to the exploratory nature of trajectory inference, all variables are used to fit
the model, but not all variables are informative. Specifically, it is natural to assume
sparsity and focus on a few "marker genes" in downstream analysis. At present, a
multi-stage method is commonly employed for pseudotime-based analysis. In the
initial stage, trajectory and pseudotime are fitted, followed by the second stage, where
hypothesis testing is utilized to select genes that are variable along trajectories.

Ideally, with a predefined and well-parameterized model, we can construct confi-
dence intervals for parameters using Bayesian methods or the bootstrap. However,
interpretation can be difficult even for PCA loadings (Cadima and Jolliffe, 1995). As
heuristic methods become more popular, the variable selection problem is highly en-
tangled with model construction, and the question of how to perform valid inference
is not straightforward. Current methods usually first perform trajectory inference,
and then test whether genes expression have dependency with pseudotime using the
same dataset. It is well-known that such tests are not valid and can lead to inflated
false positive rates (Campbell and Yau, 2016; Lähnemann et al., 2020; Z. Ji and
H. Ji, 2016; Tritschler et al., 2019). The same issue for clustering has also been well
discussed in several recent studies (Zhang, Kamath, and Tse, 2019; Gao, Bien, and
D. Witten, 2020; Chen and D. M. Witten, 2022). Here we briefly summarize the
issue in the context of trajectory inference.

First, fitting and testing using the same dataset means that one has cherry-picked
the most significant association and results are consequently biased upward, which
is known as post-selection inference (Taylor and Tibshirani, 2015; Kuchibhotla,
Kolassa, and Kuffner, 2022). Furthermore, even if one uses separate datasets
for fitting and testing, there is an inherent circularity in the hypothesis testing.
Specifically, during trajectory inference, one selects a transformation (that defines a
trajectory) 𝑓 that maps a cell to a pseudotime based on its gene expression. Then, by
testing whether genes expression associates with pseudotime, one is asking whether
𝑥 associates with 𝑓 (𝑥), which just echoes the model fitted and does not perform the
hypothesis testing validly.

PCA as an example
To see this circularity, consider a single component model where trajectory is replace
by the first component of PCA. Denote the data by 𝑋 , and let Y be the normalized
data matrix, i.e. 𝑌𝑖 𝑗 = 𝑋𝑖 𝑗 − 𝑋 𝑗 for covariance PCA and 𝑌𝑖 𝑗 =

𝑋𝑖 𝑗−𝑋 𝑗√∑
𝑖 (𝑋𝑖 𝑗−𝑋 𝑗 )2

for
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correlation PCA. Write 𝑆 = 1
𝑛
𝑌𝑇𝑌 = 𝑉Λ𝑉𝑇 and denote the first eigenvector in

PCA by 𝑣 (first column of V) and first eigenvalue by 𝜆. Then for first principal
component scores, which are the latent variable 𝑧 we want, we have 𝑧 = 𝑌𝑣 and
1
𝑛
𝑦𝑇
𝑗
𝑧 = 1

𝑛
𝑦𝑇
𝑗
𝑌𝑣 = 1

𝑛
(𝑌𝑇𝑌𝑣) 𝑗 = 𝜆𝑣 𝑗 . If we directly perform linear regression of 𝑧 on

the expression of mean-centered gene 𝑦 𝑗 , the slope is 𝑣 𝑗 .

Even after data splitting, if we follow the normal linear regression procedure and
test the null hypothesis that 𝛽 = 0, we will derive a t-statistic that is still biased. The
correct way is to account for the projection 𝑧 = 𝑌𝑣 and test 𝛽 = 𝑣 𝑗 .

Current solutions
In practice, there are only a few papers that have taken this circularity into ac-
count. One possible solution is count splitting if counts number are high enough
(Neufeld2023-lh). Another possible solution is data splitting, where we split the
dataset into two parts, select our model using the first part and do the inference
using the second. Specifically, to perform rigorous hypothesis testing and get some
valid p-value, we can perform permutation test. However, it means that we need
to generate sets of permuted data and perform the whole procedure of trajectory
inference and DE analysis on each set. This approach does not seem to have been
explored or adopted in any currently used tools.

More crucially, this kind of pseudotime-based analysis only answers data analytic
questions, i.e., data summary and analysis. They are typically not concerned with
goodness of fit/model selection, thus providing no information about the correctness
of the fitted model.

4.3 Results
A trajectory model generalizing cellular states
We begin by defining the trajectory as a dynamical process underlying all cells, with
potentially different lineages/branches within this process. Cells are then assumed
to be sampled from various, unobserved, time points along this process. Thus,
the latent variable 𝑧 = (𝑡, 𝑙) is introduced to account for such heterogeneity due to
process time (𝑡) and lineage (𝑙), and 𝑧 follows a sampling distribution determined
by the specific biological system and experimental conditions. Consequently, the
probability distribution of the data we obtain is a mixture of cells over time and
lineage,

𝑃(x|𝜃) =
∫

z
𝑃(x|z, 𝜃)𝑃(z)𝑑z, (4.1)
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where x is the data and 𝜃 is the set of parameters that define the trajectory. This is
the common framework of trajectory inference, and developing a trajectory model
requires defining the gene dynamics along the lineage and the process time 𝑃(x|z, 𝜃),
as well as the sampling distribution of cells over the process 𝑃(z).
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Figure 4.2: Chronocell overview. The input of Chronocell comprises three com-
ponents: 1) the trajectory structure, which outlines the states each lineage traverses
as paths on a directed graph; 2) the sampling assumption, which defines the prior
distribution of latent variables, namely lineages and process time, with a default
uniform distribution over both; and 3) the scRNA-seq data, consisting of unspliced
and spliced count matrices. The Chronocell model consists of a expression model
with piecewise-constant transcription rates, and a Bernoulli measurement model.
Each state 𝑠 is associated with a transcription rate 𝛼𝑠 for each gene, as well as an exit
time 𝜏𝑘 denoting the switching time to the next state, where k is the index for the
time segment. The EM algorithm is used for inference, with each iteration alternat-
ing between E-steps and M-steps. The results of Chronocell primarily include the
estimated parameters and posterior distributions over latent variables for each cell.

To define the dynamical process, we first state our transcription model. We consider
only transcription, splicing, and degradation reactions in cells, and assume only
transcription rates are time-dependent (Figure 4.2 Gene expression):

∅
𝐴𝑙 (𝑡)−−−−→ 𝑈, 𝑈

𝛽
−→ 𝑆, 𝑆

𝛾
−→ ∅, (4.2)

where 𝐴𝑙 (𝑡) is the transcription rate function for lineage 𝑙 at time t, and 𝛽 and 𝛾 are
the splicing, and degradation rates. The chemical master equation describing the
evolving distribution of the above biochemical reaction network has an analytical
solution (Jahnke and Huisinga, 2007). If we assume the initial distribution to be
Poisson, the solution remains Poisson with the means (𝜆𝑢 and𝜆𝑠) of𝑈 and 𝑆 evolving
according to the following ordinary differential equations (ODEs) of RNA velocity:
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𝑑𝜆𝑢 (𝑡)
𝑑𝑡

= 𝐴𝑙 (𝑡) − 𝛽𝜆𝑢 (𝑡),
𝑑𝜆𝑠 (𝑡)
𝑑𝑡

= 𝛽𝜆𝑢 (𝑡) − 𝛾𝜆𝑠 (𝑡).
(4.3)

The modeling of transcription rate 𝐴𝑙 (𝑡) is motivated by the common abstraction
of cellular differentiation as cell state transitions: each lineage is abstracted as a
series of switches in cellular states over time. The series of switches are specified by
the given trajectory structure, which includes a directed graph of cell states where
each lineage corresponds to a path (Figure 4.2 Input Structure). We introduce one
transcription rate per gene for each cellular state (𝛼). Switching is assumed to be
instantaneous and occurs at an unknown but fixed time (𝜏) with the first switch
leaving initial state 0 to occur at 𝜏0. Without loss of generality, we consider the
entire process to start at time 0 (𝜏0=0) and have a time length of 1 (e.g. 𝜏2=1
in Figure 4.2). Consequently, the transcription rate function 𝐴𝑙 (𝑡) of lineage l is
simplified as piecewise constant functions of the process time over [0, 1] (Figure 4.2
Model). This piecewise constant function is defined in the limiting regime where
transcriptional state switching (such as expression of master regulatory factors and
changes of chromatin state) precedes gene expression and has a much faster time
scale. Thus, the piecewise constant function serves as a reasonable approximation
when the time scale of transcription rate changes is comparable to or larger than the
mRNA half-life. It also directly reduces to discrete cell clusters in the fast dynamic
limit, i.e., when dynamical timescale ( 1

𝛽
and 1

𝛾
) is much smaller than sampling

intervals, for example, the total time length divided by cell number, 𝑛, under a
uniform sampling distribution. This connection to cluster models enables us to
interpolate between discrete cell states and continuous dynamics.

The simple form of the transcription rate function lead to a tractable model and facil-
itates inference and analysis. In fact, it affords explicit solutions for the distribution
and for its derivatives with respect to parameters. Ideally, gene regulatory networks
involved in cell differentiation would be modeled, but with current (transcriptomic)
data types it is difficult to include gene interactions and to model transcription rates
as (protein-mediated) functions of other genes with accuracy. Thus, we assume
that the dynamics of different genes are independent and that all correlations are
absorbed into the shared latent process time. Additionally, for simplicity, we can
assume all genes are fully synchronized, as in the synchronized model, where 𝜏
is the same for all genes. However, the desynchronized model, which allows for
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different 𝜏 values for each gene, is also available. In summary, our trajectory model
is suitable for capturing the coordinated global gene expression changes instead of
the detailed gene dynamics.

After deriving an explicit distribution of in vivo counts, we turn to the measurement
model. We assume simple binomial sampling of each molecule, and that the average
binomial sampling probability, i.e., read depth, varies between cells but remains the
same for all molecules in one cell. Then, in vitro counts remain Poisson but with
means adjusted by read depth. Instead of using normalized data, we estimated read
depth using the total UMI counts of near-Poissonian genes that are not used for the
inference, and incorporated it into the count distribution. Therefore, we arrive at an
analytical form of the conditional probabilistic distributions 𝑃(x|z, 𝜃) of counts from
a dynamic process by specifying the trajectory structure, gene expression model,
transcription rate functions, and scRNA-seq measurement model.

The remaining part of specifying the sampling distribution 𝑃(z) is crucial, because it
breaks the scale invariance of parameters and ensures the identifiability of the model:
multiplying the transcription, splicing and degradation rates by the same constant
leads to the same marginal likelihood if the sampling distribution can be changed.
Ideally, the specification of the sampling distribution depends on our knowledge of
the studied biological system and the experimental design. For example, for stem
cells that constantly divide and differentiate, we may assume a uniform sampling
distribution over (0, 1] with a point mass on time 0, where the point mass represents
the fraction of time that cells spend in the initial proliferative state. On the other hand,
for time series data, we may assume the sampling distribution of cells were centered
around their captured time points with some variances. However, in practice, since
there is no obvious principled way to determine such distributions, we just assume a
uniform sampling distribution over process times (𝑡 > 0) by default, but the weight
on time point 0 and different lineages can be identifiable and be updated in the
inference.

A trajectory is thus defined with the above dynamical process and sampling distri-
butions. With the parameterized form of the probabilistic distribution of counts,
we can employ the Expectation-Maximization (EM) algorithm to estimate model
parameters and posterior distributions of process times and cell lineages by maximiz-
ing Evidence Lower Bound (ELBO) with either warm start or random initialization
(Section Inference). The synchronized model was used by default, where all genes
share the same 𝜏. Since fitting the desynchronized model from scratch is more
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challenging, it is recommended to begin the fitting process using the results from
the synchronized model. For desynchronized models, we also introduce a penalty
term proportional to the squared difference between gene-wise 𝜏𝑘 and the global 𝜏𝑘
to encourage synchronization, and the coefficient for this penalty term is set as a
parameter, with a default value of 0. We tested the EM algorithm and inference on
simulations generated from our trajectory model (Section Simulations). Both the
synchronized and desynchronized models are identifiable, and the parameters can
be recovered accurately under reasonable conditions (Figures 4.3 and 4.4). We will
elaborate on these conditions in Section 3.4 “Identifying failure scenarios reveals
the fragility of inference.”
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Figure 4.3: Inference accuracy of synchronized model. a) The two trajectory
structures used in simulations. b) Estimation errors of different parameter sets. For
time, error is root mean square error. For 𝛼, 𝛽, 𝛾, error is mean normalized error
as described in Section 4.4. c) Absolute errors with respect to the true values of
parameters.

By having an explicitly parameterized distribution of raw counts, we can easily
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interpret results and systematically assess the model under a more principled frame-
work. Since parameters all have biophysical meanings, we cannot only directly
interpret them but also validate their accuracy by comparing them to orthogonal
experiments that measure the same parameters. Furthermore, we can directly select
DE genes by fold changes in transcription rates across states, after filtering genes
by goodness of fit ((see Section 4.5 “Gene selection”). The performance can be
quantified through parameter errors, aiding in the identification of both confident
and uncertain scenarios.

Not only are the parameters and results more interpretable, but we can also compare
different models systematically. Regarding false positives from clustered data, we
can evaluate when a trajectory model is no longer appropriate by comparing it
to a cluster model using standard model selection methods like AIC (Figure 4.5).
Importantly, the posterior distributions and multiple minima of AIC scores can hint
at the lack of continuity (Figure 4.5), serving as a retrospective metric when model
selection methods are compromised by unaccounted noise. We also demonstrate
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model selection on a disconnected trajectory, which includes both a single cluster
and a bifurcation (Figure 4.6). Our representation of the trajectory structure as paths
on a directed graph naturally includes this scenario. We compare the results of the
true model with those of a cluster model and a connected structure. AIC and BIC
can correctly identify the true structure when compared to the two incorrect models
(Figure 4.6).
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compared on 20 simulations with different random parameter sets. Dots below y=x
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Demonstrating performance of Chronocell on ground-truth simulations
Since the true trajectory structure may differ from both our prior knowledge and the
initial structure used, we first demonstrate the inference pipeline under a slightly
incorrect trajectory. The inferred parameters provide insights into the true structure,
and we then apply model selection to identify the correct model. Additionally, we
include non-variable genes to assess the performance of the differential expression
(DE) procedure.

We used a two-lineage trajectory and uniformly sampled 10,000 cells over lineages
and process times with biological plausible parameters extracted from literature
(Rabani et al., 2011) (Section Simulations). 100 out of 200 genes are variable
(Figure 4.7a). We fit under a slightly wrong assumption of the trajectory structures
and assumed all genes are variable (Figure 4.7b). For random initialization, we
initialized randomly 100 times and picked the one with highest ELBO score (Figure
4.7c). We also fit with warm start by initiating the fitting process from correct cell
clusters grouped by true time and lineages. Both types of initialization were able
to converge to the ELBO with true parameters, and random initialization yielded a
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Figure 4.6: Inference and model selection on disconnected data. a) The ground
truth trajectory structure. A subset of cells is from a bifurcation trajectory and the
other cells are from a disjoint cluster. For the bifurcation trajectory, cells start from
the state 0 and jump to the state 1 at 𝜏0 = 0, and then bifurcate into two lineages
with different ending states (2 and 3) at 𝜏1 = 0.5. The process ends at 𝜏2 = 1. b)
Heatmaps of the inferred posterior distributions for cells from both the bifurcation
and the cluster. x-axis is time grids, and y-axis is cells aligned by their true times
and grouped by their true lineages. The intensity of color indicates the weights of
posterior distributions of cells on the grids. Heatmap of cells from 𝜏0 to 𝜏1 use a
purple color palette. Heatmap of cells from 𝜏1 to 𝜏2 of first lineage use blue, and
those of second lineage use red. Heatmap of cells from cluster use an orange color
palette. RMSE stands for root mean square errors. c) Inferred parameters values
compared to true values. Error is mean normalized error across genes as described
in Section 4.4. d) AIC and BIC of the true model and two wrong models.

slightly higher ELBO compared to warm start, with a negligible difference (Figure
4.7d). For the following analysis, we used the fitting results of random initialization.
The posterior distributions correctly recapitulate the time and lineages of cells, with
a root mean squared error (RMSE) around 0.05 for the posterior mean of process
time in comparison to the true time (Figure 4.7e). This means that the error in time
of a cell is around 5% of the total time length of the trajectory in average. However,
the error is not completely uniform: as cells in the second interval are closer to
the steady state, they have more spread posteriors and larger errors. Since the
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posteriors of each cell are accurate, the posteriors averaged over cells also resemble
the empirical distribution of the true time (Figure 4.7f).

The parameters are also recovered accurately (Figure 4.7g). For variable genes, all
parameters are identifiable, while for non-variable genes, only 𝛼 and the ratio of 𝛽
to 𝛾 are identifiable. We noticed a trend that the absolute errors of 𝛼 scale with
the square root of true values, while for 𝛽 and 𝛾, they scale with the true values
(Figure 4.8a). This trend also appeared in other simulations (Figure 4.3b and 4.3c).
Therefore, to calculate the errors of parameters, we divide the absolute error of 𝛼
by the square root of true values and 𝛽, 𝛾 by true values, so that errors of different
genes are more comparable. We refer to them as normalized errors in the text. The
parameter 𝛼 tends to be estimated with higher accuracy compared to 𝛽 and 𝛾 (Figure
4.7g). This aligns with intuition because, although parameters are identifiable in our
trajectory model, the Evidence Lower Bound (ELBO) is nevertheless insensitive to
proportional changes in 𝛽 and 𝛾, which have minimal impact on the phase portrait
in the unspliced and spliced space of each gene. To confirm this, we used the
true model to calculate the Fisher information matrix and the smallest eigenvalues
of each gene (Figure 4.8b). The corresponding eigenvectors describe the flattest
direction of the ELBO. To validate that the flattest direction primarily lies in the
𝛽 and 𝛾 parameters, we add the corresponding eigenvectors to the true parameters
after normalizing it by the square root of eigenvalues, and calculate the new ELBO
with the modified parameters. Indeed the resultant changes in ELBO are indeed
small and 𝛽 and 𝛾 values were mainly varied (Figure 4.8c), which confirms that the
𝛽 and 𝛾 are harder to estimate accurately (Figure 4.7g).

To select genes whose dynamics are well-fit by the model, we evaluate their good-
ness of fit by comparing the gene-wise likelihood with that of clustering models
(Section Gene selection). We adopt this relative likelihood criterion because abso-
lute likelihoods of different genes are not directly comparable and clusters model
serves as a natural reference point for comparison to filter genes without continuous
dynamics. All 91 genes selected belong to the variable class (Figure 4.7h). The
similar transcription rates of states 1 and 2 of selected genes would also suggest us
that those two states could be merged into a single one, if we didn’t know the true
structure (Figure 4.7i). Therefore, we applied model selection methods to compare
the ground truth model and the assumed model. We generate another 20 parameter
sets, fit under both models, and compute in-sample ELBO scores (ELBO), AIC,
BIC, and out-of-sample ELBO scores (test ELBO). The ELBO is always better in
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Figure 4.7: Demonstration of inference on simulation. a) The ground truth
trajectory structure. Cells jump to the next state (2) from starting state (1) at 𝜏0 = 0,
and then bifurcate into two lineages with different ending states (3 and 4) at 𝜏1. The
process ends at 𝜏2 = 1. Out of 200 total genes, 100 genes are non variable with
the same distributions along time. b) The falsely assumed structure that does not
know the first two states are supposed to be merged into one. All genes are assumed
to vary along time. c) The ELBO scores of 100 random initializations (blue dots)
compared to those of warm start (red line). The x-axis is the Pearson’s correlation
between the mean process time of each random initialization and the true time. d)
ELBO scores over fitting iterations of both warm start (red line) and the best random
initialization (blue line), with the ELBO calculated with true parameters (gray line)
as reference. e) Heatmaps of inferred posterior distributions. x-axis is time grids,
and y-axis is cells aligned by their true times with true transcription states on the left.
The intensity of color indicates the weights of posterior distributions of cells on the
grids. Heatmap of cells from 𝜏0 to 𝜏1 use a gray color palette. Heatmap of cells from
𝜏1 to 𝜏2 use purple color palette. Heatmap of cells from 𝜏2 to 𝜏3 of first lineage use
blue, and those of second lineage use red. RMSE stands for root mean square errors.
f) The averaged posterior distributions across cells (dark blue) and true empirical
distribution (gray) of process time. g) Inferred parameters values compared to true
values. For non variable genes, only 𝛽

𝛾
are identifiable and compared. Error is mean

normalized error as described in the text, and the mean is computed across genes.
h) The confusion matrix for gene selection. i) 𝛼 values of selected genes over states.
j) Two models and the distribution of the chosen one by (train) ELBO, AIC, BIC,
and test ELBO, calculated on 20 samples each with a different set of parameter.
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Figure 4.8: Supplementary figures for demonstration of inference on simulation.
a) Absolute errors with respect to the true values of parameters. b) Distribution
of the smallest eigenvalues of the Fisher information matrix of each gene. c)
Marginal likelihood (ELBO) and varied parameters compared to true parameters.
The difference between varied parameters and true parameters are the eigenvectors
corresponding to the smallest eigenvalues of the Fisher information matrix, divided
by the square root of the respective eigenvalues, specific to variable genes.

model B due to overfitting. All of the last three metrics (AIC, BIC, and test ELBO)
favor the true model most of the time (90%) (Figure 4.7j). However, we want to
emphasize that model selection worked because simulations were strictly gener-
ated under our trajectory model. In reality, if true transcription rates are far away
from piece-wise constant functions, the resulting deterministic noise can introduce
bias in AIC/BIC and cross-validation, leading them to prefer more complex models
(Abu-Mostafa, Magdon-Ismail, and H.-T. Lin, 2012).
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Identifying failure scenarios reveals the fragility of inference
Given the accuracy on perfect data, we sought to characterize the impact of different
factors on inference accuracy and identify potential failure scenarios that could lead
to unreliable results. We first study the requirements on some obvious factors like
the number of cells, the number of genes, and the means of counts. Relatively small
numbers of cells and genes appear to be sufficient (Figures 4.9 and 4.10). As the
number of cells increases, parameter errors decrease, while time errors remain the
same. On the other hand, time errors decrease with an increasing number of genes
while parameter errors remain the same. Additionally, counts means must be suf-
ficiently high to enable accurate inference, which necessitates adequate sequencing
depth (Figure 4.11). We notice that when the trajectory structure becomes more
complex, the requirement for count means also increases: Chronocell needs higher
means for similar accuracy (Figure 4.12). Furthermore, when count means are low,
increasing the number of cells can actually compromise the accuracy, underscoring
the critical importance of obtaining sufficient counts.
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Figure 4.9: Impact of cell numbers on inference accuracy and running time. a)
Estimation errors for datasets with varying cell numbers. The trajectory structures
are the same as in Figure 4.3a. For time, error is root mean square error. For 𝛼, 𝛽, 𝛾,
error is mean normalized error as described in the Section 4.4. Estimation errors of
different cell numbers. b) Running time of 100 epochs on a single core on datasets
with varying cell numbers.
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Figure 4.11: Impact of mean counts on inference accuracy. Simulations of
different counts mean are generated by scaling the transcription rates while keeping
other parameters the same. The trajectory structures are the same as in Figure 4.3a.
For time, error is root mean square error. For 𝛼, 𝛽, 𝛾, error is mean normalized error
as described in the Section 4.4. a) Results for trajectory structure 1. b) Results for
trajectory structure 2.

As we use piecewise-constant functions to approximate transcription rates, we also
test how this simplification impacts results when transcription rates are, in fact, not
piecewise-constant. We generate simulations using piecewise-exponential functions
for transcription rates, which ranges from almost linear to almost piecewise as the
rate constants increase. We fit the model with Chronocell under the piecewise-
constant assumption, and the inference accuracy remains satisfactory when the rate
constants are comparable to or larger than the mRNA half-life (Figure 4.13).
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Figure 4.12: Impact of trajectory structure complexity on inference accuracy. a)
The trajectory structure used in this figure. b) Impact of counts means on inference
accuracy. Datasets with increasing counts means are generated by increasing the
mean parameters 𝜇 in log-normal distributions for 𝛼. c) Results on 10 random
parameter sets with different distributions for 𝛼. d) Impact of cell numbers on
inference accuracy on simulations with different distributions for 𝛼.

As unaccounted noise is prevalent in scRNA-seq datasets, we then characterize the
effects of noise on inference. The first type of noise is cell-wise read depth (or cell
size) that influences all genes similarly. The inference is sensitive to such noise:
when read depth variance is not correctly accounted for in the fitting, inference results
may be highly inaccurate when its squared coefficient of variation (CV2) exceeds 0.1
(Figure 4.14a). As the CV2 typically observed in real datasets exceeds 0.1 (Figure
4.19), an accurate estimate of cellwise read depth is critical. Considering this fact,
instead of simply using total counts as normalization factors, we use normalized
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Figure 4.13: Impact of non piecewise-constant transcription rate functions
on inference accuracy. Simulations are generated using piecewise-exponential
functions for transcription rates and fitted under Chronocell’s piecewise-constant
assumption. The three trajectory structures have been defined in Figure 4.3a and
Figure 4.12a. For time, error is root mean square error. For 𝛼, 𝛽, 𝛾, error is mean
normalized error as described in the Section 4.4. a) One piece of the piecewise-
exponential functions used for transcription rates. Different rate constants are used
in the simulation to span the range from an almost linear transition to an almost step
function. b) Results for trajectory structure 1. c) Results for trajectory structure 2.
d) Results for trajectory structure 3.

covariance between genes to decompose extrinsic noise (influencing all genes) and
intrinsic noise (gene specific). We estimate the read depth CV2 across cells from the
normalized covariance between genes. Subsequently based on the read depth CV2,
we subtract the extrinsic variance caused by the read depth from total variance and
identify Poissonian genes whose remaining variances (intrinsic variances) are close
to their means (variance < 1.2 mean). We then estimate cell-wise read depth using
the sum of those Poissonian genes. Different sets of genes are used for estimating
the CV2 of read depth and fitting trajectories. In reality, these read depth estimates
correlate well with total counts number for most datasets, with one interesting
exception (Figure 4.19).

On the other hand, gene specific noise seems to have less impact on inference.
We added gene-wise gamma noise in simulation which generates negative binomial
distributions in steady states and approximates bursting noise. Parameter errors
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Figure 4.14: Impact of noise on inference accuracy and model selection. The
trajectory structures are the same as in Figure 4.3a. For time, error is root mean
square error. For 𝛼, 𝛽, 𝛾, error is mean normalized error as described in the Section
4.4. a) Estimation errors as read depth noise increases. b) Estimation errors as
gene-wise Gamma noise increases. c) Impact of gene-wise Gamma noise on model
selection on clusters data. Same as in Figure 2 except Gamma noise with CV2 1 was
added to Poisson mixtures to generate simulation data (Figure tion 4.4). d) Impact
of gene-wise Gamma noise on model selection of trajectory structure. Same as in
Figure 3j except Gamma noise with CV 1 was added in simulation.

gradually increase as CV2 of Gamma noise increases but remain reasonably small
even with a CV2 of 1 (Figure 4.14b). However, while it may not completely
undermine the fitting process, it can lead to failures in model selection. When
repeating the model selection procedures in Figs 4.5 and 4.7 after introducing
Gamma noise, the AIC/BIC and cross-validation metrics favor the wrong models
that were more complex than the true one (Figure 4.14c and 4.14d). This highlights
the importance of providing reasonable trajectory structure to the fitting based on
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prior knowledge, and exploring alternative methods for quality control against false
positives caused by clusters.

Another probable factor in real datasets that can lead to suboptimal results is in-
sufficient dynamics. Intuitively, for a dynamical model to be appropriately fitted,
the data must capture a significant amount of transient dynamics to recapitulate
the evolving processes over time, without which the data start to resemble discrete
clusters. Such cases can occur in at least two possible scenarios: fast timescales and
concentrated sampling distributions, both of which result in clusters in the extreme.
Therefore, false positives caused by clusters are naturally included as a component
of identifying unreliable results.

The first situation, fast timescales, arises when mRNA half-lives are significantly
shorter than the timescale of biological processes, and thus cells are mostly near
steady state and provide little information about the intermediate dynamics. By
setting the length of the time interval to unity and increasing 𝛽 and 𝛾, which is
equivalent to increasing processes timescale with unchanged mRNA half-lives, we
found that ideally, the mean value of 𝛾 should not fall out of the range of 1 to 10, and
the mean ratio of 𝛾 to 𝛽 over genes should not be too small (Figure 4.15). Hence, if
the average half-life of spliced mRNA is approximately 30 minutes (Rabani et al.,
2011), snapshot data sampled from processes involving steps exceeding 10 hours
are no longer suitable.

Furthermore, given an appropriate timescale, the sampling distribution still has to
cover the region where the transient dynamics occur. Imagine, for example, that all
cells are from one unknown time point; there is no way for a trajectory to be inferred.
Instead, a cluster should be used to fit the data. Thus, it is crucial to determine
the minimum level of uniformity required in the sampling distribution and verify
whether this requirement is met. By gradually changing sampling distributions
from a uniform distribution to a Gaussian with a random mean, we generate datasets
with sampling distributions that exhibit decreasing levels of uniformity, which was
quantified using entropy (Figure 4.16a). As the sampling distribution deviates from
uniformity, the errors of process time and parameters quickly increase as expected
(Figure 4.16b). In fact, even when the sampling distribution is not far away from a
uniform one with entropy 4, the errors are big enough that the results are completely
wrong (Figure 4.16b). Further, even using the true sampling distribution as a prior
for a warm start with correct initialized time cannot mitigate the lack of dynamics:
the errors in parameter estimations remained substantial (Figure 4.16c). Therefore,
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Figure 4.15: Impact of dynamic timescale on inference accuracy. The trajectory
structures are the same as in Figure 4.3a. For time, error is root mean square error.
For 𝛼, 𝛽, 𝛾, error is mean normalized error as described in the Section 4.4. a) i
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scale increases. b) i Schematics of phase plots with the ratio of 𝛾 to 𝛽 increasing
while keeping their product constant. ii Estimation errors as 𝛾

𝛽
increases.

sufficiently transient dynamics is an inherent requirement for trajectory inference
even when perfect prior information is provided.
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square error. For 𝛼, 𝛽, 𝛾, error is mean normalized error as described in Section
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distributions. b) Estimation errors as uniformity decreases under uniform prior. c)
Estimation errors as uniformity decreases warm started with correct position under
true prior. Fitting was initialized with posteriors calculated under true parameters,
and empirical distribution of process time of samples were provided as prior for the
sampling distribution.

In summary, a suitable dataset for fitting process time needs to contain enough
dynamic information as well as limited noise. This stringent requirement for a
successful trajectory inference highlights the need for suitable datasets and careful
model assessment. Straightforwardly, we could make a consistency check by verify-
ing if the remaining noise, parameter values, and uniformity of the average posterior
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distribution fall into the appropriate range determined in simulations. However,
when a result is incorrect, it may not necessarily exhibit large unexplained noise,
high splicing/degradation rates, or a concentrated cellular distribution over process
time, as it could inadvertently fit undesired patterns and output plausible results.
Thus, inconsistency is a sufficient but not necessary indicator of unreliable results.

It turns out that the large uncertainty of results can be a better indicator. As both
noise and limited dynamics tend to diminish or obscure the difference of scores like
ELBO between correct and incorrect outcomes, they introduce multiple comparable
maxima and make the fitting results unstable. The resultant large uncertainty can be
measured by two different approaches. First, as each random initialization outputs
a different ELBO/AIC score and cell ordering, we can inspect the distribution of
scores with respect to a summary parameter of cell orderings, which describes
the global landscape of the score function. Ideal scenarios usually give one distinct
maximum of ELBO (or minimum of AIC) at the correct ordering of cells (correlation
around one), while failure scenarios usually lead to multiple comparable maxima
of ELBO (or minima of AIC) at different cell orderings beside the correct one
(Figure 4.17b). We use average precision (AP) of the 100 random initializations to
quantify the distinctiveness of the correct outcomes and summarize the uncertainty.
One random initialization is considered correct if its resultant mean process time
correlates well with that of the best one, e.g., a Pearson’s correlation of 0.8 (Section
Uncertainty assessment). Ideal cases lead to AP close to one and low AP indicates
instability but not vice versa, which means low AP is a sufficient indicator for
instability (Figure 4.17b). Second, the uncertainty can also be revealed by standard
bootstrap analysis. We generated 100 sets of resampled data and computed the
correlation in process time between the original and each resampled set (see Section
4.5 “Uncertainty assessment”). In failure scenarios the results of original data and
resampled data often differ and correlations are scattered with large variance. On
the other hand, in ideal scenarios, process time estimates of resampled results agree
with the original one and correlations are centered around one (Figure 4.17c).

Uncovering distinct underlying cellular distributions in process time
We applied Chronocell to a variety of datasets with different anticipated sampling
distributions over time. For those datasets, we estimated read depth as described
in Section Read depth estimation (Figure 4.19), and then filtered genes for fitting
based on their means, variances and unspliced to spliced ratios (see Section 4.5
“Real datasets preprocessing”). The trajectory structures are determined based on
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prior knowledge. Random initialization was always performed and its uncertainty
was assessed by both AP and bootstrapping. Warm start was applied as well if cell
type annotations were available, which were used to initialize the fitting process.
The corresponding clusters (Poisson mixtures) model was fitted with the same read
depth and used for comparison. The genes were selected based on goodness of fit,
in the same manner as in the simulation (see Section 4.5 “Gene selection”). Then,
DE genes are selected based on the fold changes in transcription rates across states.

We first tested our method on the T cells of PBMC (Peripheral Blood Mononuclear
Cells) dataset from 10x Genomics, which is typically expected to exhibit a few
distinct clusters (Figure 4.20a). Indeed, though the AIC of trajectory model is lower
than clusters model likely due to unaccounted noise, the scores of 100 random
initializations display multiple minima: multiple different cell orderings result in
similar AIC values (Figure 4.20b). The low average precision (0.28) of random
initializations suggests clusters model would be more suitable for PBMC. Serving
as a negative control, it confirms our ability to reject unreliable results on real
datasets, even when standard model selection methods are invalidated by incorrect
modeling of noise.

The second dataset contains a snapshot collection of glutamatergic neuronal lineage
cells in a developing human forebrain (Figure 4.21a) (La Manno et al., 2018), which
is presumed to capture cells along a continuous trajectory. However, the unstable
result of random initializations indicates its unreliability, as results with reversed
directions yield comparable AIC scores (Figure 4.21b), resembling simulations that
lack dynamics information (Figure 4.17b). This observation is further supported
by examining the cellular posterior distributions obtained through warm start with
cell type annotations, where the average posterior distribution reveals that cells are
concentrated around starting time 𝜏0, i.e., the initial state, with a low entropy (Figure
4.21c). Therefore, both the inconsistency indicated by the concentrated posterior
and instability indicated by comparable peaks of AIC suggest this is not a suitable
dataset for Chronocell and likely lacks enough dynamics.

The third dataset contains erythroid lineage cells during mouse gastrulation collected
from multiple time points (Figure 4.22a) (Pijuan-Sala et al., 2019). Biological time
availability offers a valuable means to evaluate results by comparing the posterior
distributions of cells to their corresponding physical times, which is particularly
useful since real snapshot datasets lack a definitive ground truth. The AIC scores
of random initializations show a clear minimum at a correct direction that align
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with cell type annotations (Figure 4.23a), and the average precision of random
initializations is 0.79 which is notably higher than those of PBMC and Forebrain
datasets (Figures 4.20b and 4.21b). The process times of bootstrap samples are
reasonably stable as well (Figure 4.23a). The fitted dynamics were able to explain
most of the variance, leaving the CV2 of unexplained noise of most genes under
1 (Figure 4.23c). Therefore, the Erythroid dataset appears to be a suitable dataset
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for our trajectory model. The best result from random initialization is used for
analysis (Figure 4.22b), and cellular posterior distributions confirm that cells have
a broad distribution over process time (Figure 4.22c). Furthermore, the posterior
distributions of cells do not differ significantly until E7.5, after which they roughly
progress along the process time in sync with real-time progression (Figure 4.22d).
This observation aligns with the understanding that erythroid differentiation in a
mouse embryo is believed to begin around embryonic day 7.5 (E7.5) (Baron, Isern,
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scores of 100 random initializations (blue dots) compared to those of three clusters
(Poisson mixtures) model (yellow line). AP stands for average precision.
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Figure 4.21: Inference results for Forebrain data. a) Schematics of Forebrain
data and PCA plot of cells colored by cell type annotations. b) The AIC scores of
the trajectory and cluster models. The x-axis is the mean process time correlations
of 100 random initializations (blue dots). The AIC scores of random initializations
are compared to those of warm start (red line) as well as three Poisson mixture
model (yellow line). AP stands for average precision. c) Posterior distributions of
process time of the trajectory model with warm start. Cells were ordered in y-axis
by their inferred mean process time and the left bar displays their cell types using
the colors in a). The below histogram shows average posterior distribution averaged
over cells. The entropy of the average posterior distribution was calculated using its
weights on the 100 discretized time grids.

and Fraser, 2012). Although the alignment with physical time is not perfect, it
still suggests that our trajectory model can successfully capture the correct trend of
process time, even when assuming a uniform sampling distribution for all cells.

After applying our gene selection procedure based on relative likelihood and dis-
carding genes with extreme values, we ended up with 24 (49%) genes (Figure
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Figure 4.22: Inference results for Erythroid data. a) Schematics of Erythroid
data and PCA plot of cells colored by cell type annotations. b) The fitted trajectory
structure and inferred mean process time from random initialization indicated in
blue on the same PCA plot as in a). c) Posterior distributions of process time.
Cells were ordered in y-axis by their inferred mean process time and the left bar
displays their cell types using the colors in a). The below histogram shows average
posterior distribution over cells. The entropy of the average posterior distribution
was calculated using its weights on the 100 discretized time grids. d) Averaged
posterior distribution across cells from different experimental time points. n is the
number of cells. e) 𝛼 values of 24 selected genes over states. f) Phase plots of top
five DE genes of 24 selected genes. The x-axis is the raw unspliced counts and y-
axis is the raw spliced counts. The blue curve is the fitted mean of product Poisson
distributions of unspliced and spliced counts over process time, and its darkness
corresponds to the value of process time.

4.22e). Subsequently for demonstration, we chose the top five DE genes (Cpox,
Smim1, Abcg2, Rbpms, Prtg) with the largest fold change of transcription rates, and
plotted their phase portraits (Figure 4.22f). Interestingly, four of them (Cpox (Take-
tani, Furukawa, and Furuyama, 2001), Smim1 (Aniweh et al., 2019), Abcg2 (Zhou
et al., 2005), Rbpms (Rooij et al., 2017)) were reported to be directly relevant to
erythroid development, which illustrates that selecting DE genes based on inferred
transcription rates is a straightforward and effective approach.
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Figure 4.23: Supplementary figures for Erythroid data. a) AIC scores and mean
process time correlations of 100 random initializations (blue dots) compared to those
of warm start (red line) as well as three clusters (Poisson mixtures) model (yellow
line). AP stands for average precision. Mean process time of the initialization with
lowest AIC is indicated in blue on the same PCA plot as in a). b) AIC scores and
mean process time correlations of 100 bootstrap samples. The x-axis is the Pearson’s
correlation between the mean process time of each bootstrap and the those of original
data, i.e., the plotted one in a). c) Distribution of remaining squared coefficient of
variance of 49 genes used in the fitting. Remaining squared coefficient of variance
is calculated by dividing the remaining unexplained variance by mean squared.

Based on the results from datasets ranging from clusters to trajectories, it becomes
evident that real datasets can display a spectrum of continuity in cellular process
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time distribution. Therefore, it is critical to assess the quality of inference and verify
the requirements for reliable results are indeed met.

Degradation rates estimates agree with metabolic labeling data
In addition to validating the process time, we also sought to validate the inferred
parameters, which motivated us to use a metabolic labeling dataset from scEU-seq,
comprising human retinal pigment epithelial (RPE1) cells undergoing cell cycles
(Figure 4.24a) (Battich, Beumer, et al., 2020). Metabolic labeling of new mRNA
allows for the estimation of degradation rates from cells with varying labeling times,
enabling a comparison with our parameter estimations.
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Figure 4.24: Inference results for Cell cycle data. a) Schematics of Cell cycle
data and scatter plot of the Geminin-GFP and Cdt1-RFP of RPE1 cells colored by
cell type annotations. b) The fitted trajectory structure and inferred mean process
time from random initialization indicated in blue on the same scatter plot as in a).
c) Posterior distributions of process time. Cells were ordered in y-axis by their
inferred mean process time and the left bar displays their cell types using the colors
in a). The below histogram shows average posterior distribution averaged over cells.
The entropy of the average posterior distribution was calculated using its weights
on the 100 discretized time grids. d) 𝛼 values of 84 selected genes over states.
e) Comparison of 𝛾 estimates for 84 selected genes with estimates derived from
metabolic RNA labeling data. CCC stands for concordance correlation coefficient.
n is the number of genes for which estimates are available in each respective paper.

In the trajectory structure, we specified that the initial and final states were identical.
Given our assumption that the initial state is at a steady state, capturing the cyclic
nature of the cell cycle poses an additional requirement that cells must also approach
a steady state in the last interval as well, which happened to be reasonably satisfied by
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our results. In line with the expectation that cell cycle is a highly dynamic process,
the random initialization provides a relatively stable result: the AIC exhibits a single
minimum that aligns with the direction of cell cycle progression (Figure 4.25a), and
bootstrap samples mostly align with the result of the original one (Figure 4.25b).
Starting from the result of random initialization, a desynchronized model was fitted
to enhance the accuracy of parameter estimations (Figure 4.25c). The resulting fit
maintains alignment with the cell cycle progression (Figure 4.24b), and the CV2

of the unexplained noise mostly remains below 1 for most of the genes (Figure
4.25c). The RPE1 dataset was metabolically labeled for different lengths of time
but posterior distributions of RPE1 cells with different labeling times do not show
significant differences, as a negative control in contrast to the erythroid data (Figure
4.25e).

The posterior distributions successfully capture the cyclic nature of the data. The cell
types ordered by mean process time exhibit a cyclic pattern (Figure 4.24c); the phase
plots of marker genes confirm the cycling dynamics of fitted means of unspliced and
spliced counts (Figure 4.25f); the starting and ending values of fitted means of most
of genes match with each other (Figure 4.25g). As both axes are cyclic, it is possible
to connect the opposite edges and transform the two-dimensional cell-by-time grids
posterior distributions into a torus on the surface of which the posterior distributions
look like a circle (Figure 4.24c). Based on cell type annotation, total RNA counts
number (Figure 4.25h), and marker genes dynamics (Figure 4.25e), we can roughly
assign the three intervals to G2/M, G1/S, and S/G2 phase, and mitosis happens
shortly after 𝜏0.

After selecting genes by relative likelihood and discarding genes with extreme val-
ues, we ended up with 84 (46%) genes (Figure 4.24d). We compared the degradation
rates of 84 selected genes to those derived by scEU-seq (Battich, Beumer, et al.,
2020) and TimeLapse-seq (Schofield et al., 2018). For scEU-seq, as we neglected
the changes in degradation rate along cell cycle, we used the averaged degrada-
tion rates in Figure S10C of Battich et al. We observed moderate correlations
between our degradation rate estimates and the respective estimates from Battich
and Schofield (Figure 4.24e), and these correlations exhibited a magnitude similar
to the correlation between the Battich and Schofield estimates (Figure 4.25i), which
suggests that the parameters inferred by Chronocell indeed possess a meaningful
biophysical interpretation.
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4.4 Discussion
We have introduced Chronocell, a method constructed upon a trajectory model fea-
turing biophysically meaningful parameters and a principled approach to fitting and
analysis. Counts are directly modeled, estimation accuracy is characterized, and un-
reliable instances are discerned. We found several requirements regarding dynamics
and noise that must be satisfied to obtain reliable results, which makes process time
inference challenging and renders retrospective model assessment indispensable.
We applied Chronocell to different kinds of real datasets, recognized inapplicable
ones by assessing instability, and demonstrated meaningful interpretation of process
time and parameters on applicable ones.

Of note, our trajectory model is simplified to balance interpretability and tractability.
Building on the concept of cell state transitions, we have assumed piecewise constant
transcription rates which describe genes with fast chromatin states switching in
saturated regime, but may be unrealistic for many biological systems. Furthermore,
we have assumed that splicing and degradation rates remain constant, which although
reasonable for many genes, is not accurate for genes with peaked response (Rabani
et al., 2011). We also did not incorporate transcriptional bursting due to the absence
of an analytically determined temporal solution, and this leads to a under-dispersed
distribution compared to what is typically observed in biological data. Nevertheless,
this can be resolved by using numerical solutions (Gorin2023-ax). However, even
with this simplified model, we have found that accurate inference imposes strict
requirements on data. This question is inherently challenging and insufficiently
specified due to the existence of latent variables and flexibility of the transcription
rates. A more realistic model would have even more stringent requirements.

Since fitting dynamical parameters is challenging from static snapshots, physical
time information could offer valuable insights when incorporated into our latent
variables model. While the requirements on sampling and noise might potentially
be relaxed, they would likely persist to some extent. Thus, intensely sampled
time series datasets derived from well-defined cellular processes would be the ideal
choice for trajectory inference. However, it remains to address the key question of
how physical time should be translated into sampling distribution assumptions. The
choice of sampling distribution reflects our understanding of cell heterogeneity at
each time point. Should we fix the process time to physical time completely, i.e., a
delta distribution? Or should we assume heterogeneity within one time point? If
so, what kind of distribution should we use? There is no straightforward answer,
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as it depends on our understanding of the process being studied. For instance, in
a neuron dataset with cells sampled at five time points after stimulation, assuming
homogeneous cell responses would suggest using a delta distribution, which aligns
process time directly with physical time. However, if we account for heterogeneity
within a time point, other distributions may be more appropriate. Furthermore,
assuming different distributions (delta, exponential, uniform) can lead to different
results (Figure 4.26). This underscores the necessity for a more comprehensive
understanding and modeling of cell heterogeneity, and optimal experimental design
for both the number and timing of the time points to generate more informative data.

We have not yet provided a benchmark against other methods. Each trajectory in-
ference method assumes a different model, and comparing methods with different
underlying models is often less informative without ground truth. For example,
descriptive models use conceptually different approaches, so comparing them is
an "apples to oranges" situation, as they cannot recover the true time of data un-
der Chronocell trajectory model. On the other hand, they may be more suitable
for exploratory analysis, with fewer data requirements and being less computation-
demanding. Similarly, in model-based approaches, the model inherently reflects our
understanding of the data, and discrepancies in results arise from differences be-
tween models. This underscores the importance of using models that are grounded
in biophysical motivation. For demonstration purposes, we provide a comparison
of Chronocell with some widely used trajectory inference methods, including Sling-
shot (Street et al., 2018), Monocle 3 (Cao et al., 2019), and diffusion pseudotime
(Haghverdi et al., 2016), as well as recently published veloVI which also integrates
trajectory inference with RNA velocity (Du et al., 2024). These comparisons are
demonstrated on the simulated data used for illustration in Figure 4.7, as well as sim-
ulations generated by dyngen (Cannoodt, Saelens, Deconinck, et al., 2021) (Figure
4.27). We find that other methods cannot correctly recover true time on data gener-
ated under the Chronocell model (Figure 4.28). For dyngen simulation, Chronocell
has comparable or better accuracy though all methods capture the correct trend but
fail to recover true time accurately. For real data, benchmarking is more challenging
due to the lack of ground truth. The closest approximation to ground truth is the
experimental time in time series data, especially with short enough intervals and a
clear start point. Despite the uncertainty of assumed cell heterogeneity discussed
above, at least the inferred time of cells should proceed along with experimental
time. Therefore, we also test other methods on the neuron data and find that only
Monocle 3 captures the general trend of time progression (Figure 4.29).



84

In summary, our biophysically motivated model of the dynamical processes cap-
tured in single-cell data enables the inference of process times and parameters with
biophysical interpretations. It presents an alternative approach to unveil continu-
ous latent cell representations within a well-defined and rigorous framework, and
highlights the limitations of what can be inferred using current snapshot single-cell
genomics data.

4.5 Methods
We begin by describing our trajectory model, followed by a description of the
inference procedure. Next, we explain the analysis pipeline, including our gene and
model selection procedure. Then, we elucidate the simulation setup. Finally, we
detail the preprocessing of real datasets.

Throughout the Methods we denote data by X, and note that X corresponds to a
cell by gene by species array. We use 𝑖 to index cells, 𝑗 to index genes, and 𝑐 to
index species. Parameters are denoted by 𝜃, and latent variables by 𝑧. 𝑝(·) means a
probability distribution.

Model
We used a simple and interpretable latent variable model for the probability dis-
tribution of the counts, with explicit biophysical meaning associated to each latent
variable. We assumed cells are asynchronous, and we therefore introduced two
latent variables that corresponded to the lineage and time of the cell.

Therefore, in our trajectory model, the gene expression data of each cell x was
described as a function of latent variables z = (𝑙, 𝑡) which specify the lineage 𝑙 and
time 𝑡 of the cell. By considering a particular parametric class of gene expression
dynamics that specify the distribution 𝑝(y|z, 𝜃) of in vivo counts y, and a sequencing
noise model 𝑝(𝑥 |𝑦), we mapped latent variable 𝑧 into data space and arrived at an
explicit formulation of data distribution that could be trained using the expectation-
maximization (EM) algorithm. In other words, we assumed the counts of each cell
x had the following density:

𝑝(x|𝜃) =
∫

z
𝑝(x|z, 𝜃)𝑝(z)𝑑z =

∫
z
𝑝(x|y)𝑝(y|z, 𝜃)𝑝(z)𝑑z,

where 𝑝(𝑧) is the distribution of latent variables.
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In the following, we specify 𝑝(𝑦 |𝑧, 𝜃), 𝑝(𝑥 |𝑦) and 𝑝(𝑧), which are based on the
transcription model, measurement model and sampling measure.

Transcription model

Since current transcriptomic data can be used to measure the numbers of both nascent
and mature transcripts, we considered the production, processing, and degradation of
individual RNA molecules in our transcription model, as in previous RNA velocity
literature (La Manno et al., 2018).

The distribution of RNA counts in the reaction system (Equation4.2) is known
(Jahnke and Huisinga, 2007). We assumed that the initial distribution of 𝑈 and 𝑆
was a product Poisson distributions, which implies that the mean parameter vector
𝜆 = (𝜆𝑢, 𝜆𝑠) of𝑈 and 𝑆 evolved according to Equation(4.3).

The functional form of 𝐴𝑙 (𝑡) reflects our assumptions of gene expression dur-
ing development. However, explicitly modeling transcription rates as functions of
gene expressions is hard and tends to overfit. More fundamentally, we have some
prior physical intuition; this function is actually 𝐴𝑙 (𝜆, u, 𝑡), where u is some high-
dimensional vector of regulator concentrations. These data are not possible to collect
using currently available technologies, although this constraint may change in the
coming years. In principle, we can write down these equations, and even simulate
them (using dyngen (Cannoodt, Saelens, Deconinck, et al., 2021) or the stochastic
simulation algorithm), but we strived to start with an analytically tractable model,
particularly to recapitulate and formalize the increasingly popular RNA velocity
framework. Therefore, we used a phenomenological model and didn’t consider
gene interactions. Rather, the effect of transcriptional regulation on each gene dur-
ing development was summarized into synchronized state switching and each state
had its transcription rate. This formalized transient cell types.

To be able to account for multiple lineages, we assumed cell states S = 0, 1, ..., 𝑆
formed a directed graph, with each lineage represented as a path of length 𝐾 on
this graph.. The trajectory structure described the graph, and recorded the states
𝑠(𝑙, 𝑘) ∈ S, 𝑙 = 1, ..., 𝐿, 𝑘 = 1, ..., 𝐾 of the 𝐿 lineages during the 𝐾 stages. We
treated the trajectory structure as known since it can typically be obtained from
our previous knowledge of the data. Specifically, for lineage 𝑙, we assumed 𝐴𝑙 (𝑡)
is a piecewise constant function: 𝐴𝑙 (𝑡) = 𝛼𝑠 (𝑙, 𝑘), where the cellular state index
s is determined by the lineage 𝑙, and the time interval 𝑘 to which 𝑡 belongs, i.e.,
𝑡 ∈ (𝜏𝑘−1, 𝜏𝑘 ]. The state index 𝑠 = 𝑠(𝑙, 𝑘) was determined by the trajectory structure.
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For example, given the trajectory structure in Figure 4.2, 𝑠(𝑙 = 1, 𝑘 = 0) = 𝑠(𝑙 =
2, 𝑘 = 0) = 0, 𝑠(𝑙 = 1, 𝑘 = 1) = 𝑠(𝑙 = 2, 𝑘 = 1) = 1, 𝑠(𝑙 = 2, 𝑘 = 2) = 2 and
𝑠(𝑙 = 2, 𝑘 = 2) = 3.

Then, the parametric solution of 𝜆 was given by

𝑞 = arg min
𝑘

{𝑘 |𝜏𝑘 ≥ 𝑡},

𝜆𝑢 (𝑡) =
𝑞−1∑︁
𝑘=1

𝛼𝑠(𝑙,𝑘)
𝛽

(
𝑒−𝛽(𝑡−𝜏𝑘) − 𝑒−𝛽(𝑡−𝜏𝑘−1)

)
+
𝛼𝑠(𝑙,𝑞)
𝛽

(
1 − 𝑒−𝛽(𝑡−𝜏𝑞−1)

)
+ 𝜆𝑢 (0)𝑒−𝛽𝑡 ,

𝜆𝑠 (𝑡) =
𝑞−1∑︁
𝑘=1

𝛽𝛼𝑠(𝑙,𝑘)
𝛾(𝛽 − 𝛾)

(
𝑒−𝛾(𝑡−𝜏𝑘) − 𝑒−𝛾(𝑡−𝜏𝑘−1)

)
+
𝛽𝛼𝑠(𝑙,𝑞)
𝛾(𝛽 − 𝛾)

(
1 − 𝑒−𝛾(𝑡−𝜏𝑞−1)

)
+

(
𝜆𝑠 (0) +

𝛽

𝛽 − 𝛾𝜆𝑢 (0)
)
𝑒−𝛾𝑡 − 𝛽

𝛽 − 𝛾𝜆𝑢 (𝑡).

Assuming cells are at steady states at time 0, we have 𝜆𝑢 (0) = 𝛼𝑠𝑙,0 and 𝜆𝑠 (0) =
𝛽

𝛾
𝛼𝑠𝑙,0 . Therefore, for each gene, the parameters are 𝜃 = (𝛼, 𝛽, 𝛾, 𝜏).

Measurement model

Next, we needed to have a measurement model that connected counts number y in
cells to the observed counts x in a single-cell RNA-seq experiment.

We assumed each molecule of mRNA produces Bernoulli(𝑞) number of captured
RNA molecules, which is also an good approximation of a Poisson model with
low mean (Gorin and Lior Pachter, 2023; Sarkar and Stephens, 2021).The capture
rate 𝑞 for each molecule can potentially depend on factors such as cell read depth,
gene-specific, and species-specific biases in mRNA capture methods. However, in
our model, we assume the capture rate only varies with cell read depth (or cell size),
i.e., 𝑞 = 𝑟𝑖, where 𝑟𝑖 represents the read depth (cell size) of cell 𝑖. With 𝑖 as the cell
index, 𝑗 as the gene index, and 𝑐 as the species index, we have

𝑥𝑖 𝑗𝑐 ∼ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑦𝑖 𝑗𝑐, 𝑟𝑖), 𝑦𝑖 𝑗𝑐 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 𝑗𝑐),

where 𝜆 𝑗𝑐 is the ODE solution for species c of gene j.
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This is equivalent to multiplying the mean of Poisson distributions by a constant 𝑐𝑖.
Since usually only the relative value of read depth 𝑐𝑖 can be available, we absorbed
the mean of 𝑐𝑖 into 𝛼 and infer their product directly:

𝑥𝑖 𝑗𝑐 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑐𝑖𝜆 𝑗𝑐).

Sampling distribution

Now that we have defined the 𝑝(𝑥 |𝑧, 𝜃), the only remaining thing to complete 𝑝(𝑥 |𝜃)
is the sampling distribution 𝑝(𝑧), which describes the prior distribution of latent
variables. Given the formula of 𝑝(𝑦 |𝑧, 𝜃), it is easy to see that the model is not
identifiable if 𝑝(𝑧) is not fixed, because we can change 𝑝(𝑧) together with 𝛽 and 𝛾
easily without changing 𝑝(𝑥), for example, by scaling 𝛽 and 𝛾 and transform 𝑝(𝑧)
accordingly. Therefore, we assumed 𝑡 ∈ [0, 1] and fixed a uniform prior for 𝑡 on
(0, 1]. With this given prior distribution, the model was identifiable, because the
parameterized form of the means of Poisson distributions is identifiable and Poisson
distribution is identifiable (Teicher, 1961). If one has information about real time,
one can adjust the range and prior of 𝑡 to be have more physical meaning. For
example, for the cell cycle dataset, if one knows that the whole cycle takes 24 hours,
then one can either set the range of 𝑡 to be [0, 24], or scale the results by dividing
both 𝛽 and 𝛾 by 24, while keeping the other parameters unchanged.

Connection to cluster models

In the fast dynamic limit, as there are few cells out of steady states, transitions (edge)
disappear and only states (nodes) remain, and both the weight of lineages and the
length of time interval (or the weight at t=0 for state 0) determine the mixture weights
of clusters. Specifically, for the state 0, its weight equals the weight at t=0, while
for the state 2, its weight equals the product of the length of the second time interval
(𝜏1, 𝜏2] and the weight of the second lineages. Thus, the Poisson mixtures model
strictly belongs to the degenerate cases of our trajectory model, which connects
Chronocell to biophysical cluster models like meK-Means (Tara Chari, Gorin, and
Lior Pachter, 2024a), barring differences in noise models and hard/soft assignment.
This does not mean that our trajectory model should be fit on cluster data, because the
resulted process time is no longer meaningful. Instead, these connections allowed
us to better compare the models, and determine which model was more appropriate
(see Section 4.5 “Gene selection”).
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Inference
Chronocell overview

Input The input of Chronocell are 1) trajectory structure, 2) sampling assumption,
and 3) scRNA-seq count matrix. Trajectory structure is provided to Chronocell as
a 2D array, with each lineage (path) represented as a row. Along with the structure,
an initial guess of switching time is also needed as a starting point in the fitting. The
sampling assumption refers to the prior distribution of the latent variables (process
time and lineages) for each cell. This is represented as a 3D array with shape (n, l,
m), where n is the number of cells, l is the number of lineages, and m is the number
of time grids.

Model Building upon the common transcription model, we have two classes of
models based on the assumption of global switch time: (1) the synchronized model,
which assumes a completely synchronized switch in transcription rates across all
genes; and (2) the desynchronized model, where each gene has its own switching
time. The desynchronized model is more challenging to fit from scratch, so we
recommend using a warm start based on the results of the synchronized model.

Inference We use the expectation–maximization algorithm to fit the trajectory
model on the scRNA-seq count matrix.

Output The primary output of Chronocell consists of the parameters and posterior
distribution for each cell. Other relevant information such as the Akaike Information
Criterion (AIC) and the Fisher information matrix can also be calculated.

Maximum likelihood estimates of parameters by EM algorithm

We use the expectation–maximization algorithm to estimate model parameters 𝜃.
For simplicity, we discretize the latent variable 𝑡 with finite regular grid points over
the interval: 𝑡 = 𝑡1, ...., 𝑡𝑀 , which basically approximates a continuous measure with
a discrete measure. Then, the latent variable z=(l,t) describing lineage and time is
discrete, and we write

∑
𝑧𝑖

to denote the summation over all L lineages and M time
grid points, i.e.,

∑
𝑧 =

∑𝐿
𝑙=1

∑𝑀
𝑚=1. With this, the objective function becomes
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𝜃 = arg max
𝜃

log 𝑝(𝑥 |𝜃),

log 𝑝(𝑥 |𝜃) =
𝑛∑︁
𝑖=1

log =

𝑛∑︁
𝑖=1

log
∫
𝑧𝑖

𝑝(𝑥𝑖, 𝑧𝑖 |𝜃)𝑑𝑧𝑖 ≈
𝑛∑︁
𝑖=1

log
∑︁
𝑧𝑖

𝑝(𝑥𝑖, 𝑧𝑖 |𝜃),

where i is the cell index and 𝑝(𝑥𝑖, 𝑧𝑖 |𝜃) denotes the probability of observing 𝑥𝑖 with
the latent variable being 𝑧𝑖 for cell i.

As log function is concave, we can use Jensen’s inequality:
𝑛∑︁
𝑖=1

log
∑︁
𝑧𝑖

𝑝(𝑥𝑖, 𝑧𝑖 |𝜃) =
𝑛∑︁
𝑖=1

log
∑︁
𝑧𝑖

𝑝(𝑧𝑖 |𝑥𝑖, 𝜃)
𝑝(𝑥𝑖, 𝑧𝑖 |𝜃)
𝑝(𝑧𝑖 |𝑥𝑖, 𝜃)

,

≥
𝑛∑︁
𝑖=1

∑︁
𝑧𝑖

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃) log
𝑝(𝑥𝑖, 𝑧𝑖 |𝜃)
𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃)

.

Since 𝑝(𝑥𝑖 ,𝑧𝑖 |𝜃)
𝑝(𝑧𝑖 |𝑥𝑖 ,𝜃) = 𝑝(𝑥𝑖 |𝜃) is a constant for all 𝑧𝑖, the equality holds and

𝑛∑︁
𝑖=1

log
∑︁
𝑧𝑖

𝑝(𝑥𝑖, 𝑧𝑖 |𝜃) =
𝑛∑︁
𝑖=1

∑︁
𝑧𝑖

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃) log
𝑝(𝑥𝑖 |𝑧𝑖, 𝜃)𝑝(𝑧𝑖)
𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃)

.

Our trajectory model makes it possible to write out 𝑝(𝑥𝑖 |𝑧𝑖, 𝜃) explicitly:

log 𝑝(𝑥𝑖 |𝑧𝑖, 𝜃) =
𝑝∑︁
𝑗=1

log 𝑝(𝑥𝑖 𝑗 |𝑧𝑖, 𝜃 𝑗 ),

log 𝑝(𝑥𝑖 𝑗 |𝑧𝑖, 𝜃 𝑗 ) =
2∑︁
𝑐=1

[ (
𝑥𝑖 𝑗𝑐 log

(
𝑟𝑖𝜆𝑐 (𝑙, 𝑡𝑚, 𝜃 𝑗 )

)
− 𝑟𝑖𝜆𝑐 (𝑙, 𝑡𝑚, 𝜃 𝑗 ) − log(𝑥𝑖 𝑗𝑐!)

) ]
.

Therefore, we could use the expectation–maximization algorithm efficiently. Specif-
ically, in the E-step of EM algorithm, we calculated the posterior distribution
𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃) based on 𝑝(𝑥𝑖 |𝑧𝑖, 𝜃),

𝑝(𝑧𝑖 |𝑥𝑖, 𝜃) =
𝑝(𝑧𝑖)𝑝(𝑥𝑖 |𝑧𝑖, 𝜃)∑
𝑧𝑖
𝑝(𝑧𝑖)𝑝(𝑥𝑖 |𝑧𝑖, 𝜃)

=
𝑝(𝑧𝑖) exp (log 𝑝(𝑥𝑖 |𝑧𝑖, 𝜃))∑
𝑧𝑖
𝑝(𝑧𝑖) exp (log 𝑝(𝑥𝑖 |𝑧𝑖, 𝜃))

.
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In the M-step, based on fixed 𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃) and analytical form of 𝑝(𝑥𝑖 |𝑧𝑖, 𝜃), we
optimized 𝜃 𝑗 for each gene 𝑗 separately by maximizing

𝐹𝑗 =

𝑛∑︁
𝑖=1

∑︁
𝑧𝑖

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃) log 𝑝(𝑥𝑖 𝑗 |𝑧𝑖, 𝜃 𝑗 ),

Both the value and the gradient of 𝐹𝑗 can be written out analytically and com-
puted efficiently. Therefore, we could use off-the-shelf quasi-Newton methods for
optimizing 𝐹𝑗 with respect to 𝜃 𝑗 , e.g., ’L-BFGS-B’ method in minimize function
provided by Scipy (Virtanen et al., 2020; Zhu et al., 1997).

In each step of EM algorithm, we alternated between the expectation and maximiza-
tion steps. The implementation is based on defining the function that calculates
𝑝(𝑥𝑖 𝑗 |𝑧𝑖, 𝜃), so it would be easy to modify 𝑝(𝑥𝑖 𝑗 |𝑧𝑖, 𝜃) for different models in the
future.

A warm start incorporating prior knowledge about data can help algorithm converge
to the optimal 𝜃∗ quickly. If neither initial parameters nor 𝑝(𝑧 |𝑥) is given, we use
random initializations. Multiple runs with different starting points are used to avoid
local minima. By default, we tried 100 different random initializations, and run 100
steps for each initialization both for random initialization and warm start.

Poisson mixtures model

For fitting clusters, we used Poisson mixture models. Suppose there are S mixtures
with transcription rates 𝛼 𝑗 𝑠, 𝑠 = 1, ..., 𝑆 for each gene 𝑗 , and each mixture is at
steady state. Thus, the parameters of one gene are 𝑎 𝑗 = 𝛼

𝛽
and 𝜌 =

𝛽 𝑗
𝛾 𝑗

, since only
the ratio is identifiable.

𝑝(𝑥𝑖 |𝜃) =
∑︁
𝑠

𝑝(𝑥𝑖 |𝑠, 𝑎 𝑗 𝑠, 𝜌)

=
∑︁
𝑠

Π 𝑗𝑃Poiss(𝑋 = 𝑥𝑖 𝑗1;𝜆 = 𝑟𝑖𝑎𝑠)𝑃Poiss(𝑋 = 𝑥𝑖 𝑗2;𝜆 = 𝑟𝑖𝑎 𝑗 𝑠𝜌).

Similarly to the Gaussian mixture model, we could use the EM algorithm to infer
parameters (including mixture weights) and posteriors.
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Analysis
Fisher information

The Fisher information matrix (FIM) is defined to be

I(𝜃0) ≡ E

[ [
𝜕

𝜕𝜃
log(𝑝(𝑥 |𝜃))

] [
𝜕

𝜕𝜃
log(𝑝(𝑥 |𝜃))

]T]
|𝜃=𝜃0

.

Since

𝜕

𝜕𝜃
log(𝑝(𝑥 |𝜃)) = 𝜕

𝜕𝜃
log(

∫
𝑝(𝑥, 𝑧 |𝜃)𝑑𝑧)

≈ 𝜕

𝜕𝜃
log(

∑︁
𝑧

𝑝(𝑥, 𝑧 |𝜃))

=
1∑

𝑧 𝑝(𝑥, 𝑧 |𝜃)
∑︁
𝑧

(
𝜕𝑝(𝑥, 𝑧 |𝜃)

𝜕𝜃

)
=

1∑
𝑧 𝑝(𝑥, 𝑧 |𝜃)

∑︁
𝑧

(
𝑝(𝑧) 𝜕𝑒

log 𝑝(𝑥 |𝑧,𝜃)

𝜕𝜃

)
=

1∑
𝑧 𝑝(𝑥, 𝑧 |𝜃)

∑︁
𝑧

(
𝑝(𝑧)𝑒log 𝑝(𝑥 |𝑧,𝜃) 𝜕 log 𝑝(𝑥 |𝑧, 𝜃)

𝜕𝜃

)
=

∑︁
𝑧

(
𝑝(𝑥, 𝑧 |𝜃)∑
𝑧 𝑝(𝑥, 𝑧 |𝜃)

𝜕 log 𝑝(𝑥 |𝑧, 𝜃)
𝜕𝜃

)
=

∑︁
𝑧

(
𝑝(𝑧 |𝑥, 𝜃) 𝜕 log 𝑝(𝑥 |𝑧, 𝜃)

𝜕𝜃

)
,

we could calculate FIM numerically with the explicit form of the derivative and the
posterior distribution.

Gene selection

We did not use absolute likelihoods to select dynamical genes, because different
genes have different scales and are not directly comparable. Instead, we noticed
that the cluster model serves as a natural reference point for comparison, as genes
with no dynamics can be fitted equally well, if not better, by clusters. Therefore, we
decided to use the relative likelihood as a criterion for gene selection.

For trajectory model,
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𝑛∑︁
𝑖=1

log
∑︁
𝑧𝑖

𝑝(𝑥𝑖, 𝑧𝑖 |𝜃) =
𝑛∑︁
𝑖=1

∑︁
𝑧𝑖

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃) log
𝑝(𝑥𝑖 |𝑧𝑖, 𝜃)𝑝(𝑧𝑖)
𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃)

=

𝑛∑︁
𝑖=1

∑︁
𝑧𝑖

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃) log
𝑝(𝑧𝑖)

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃)

+
𝑛∑︁
𝑖=1

∑︁
𝑧𝑖

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃) log 𝑝(𝑥𝑖 |𝑧𝑖, 𝜃)

=

𝑛∑︁
𝑖=1

∑︁
𝑧𝑖

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃) log
𝑝(𝑧𝑖)

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃)

+
𝑛∑︁
𝑖=1

𝑝∑︁
𝑗=1

∑︁
𝑧𝑖

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃) log 𝑝(𝑥𝑖 𝑗 |𝑧𝑖, 𝜃 𝑗 ).

Similarly for clusters model,

𝑛∑︁
𝑖=1

log
𝑆∑︁
𝑠=1

𝑝(𝑥𝑖, 𝑠 |𝜃) =
𝑛∑︁
𝑖=1

∑︁
𝑠

𝑝𝑖 (𝑠 |𝑥𝑖, 𝜃) log
𝑝(𝑠)

𝑝𝑖 (𝑠 |𝑥𝑖, 𝜃)

+
𝑛∑︁
𝑖=1

𝑝∑︁
𝑗=1

∑︁
𝑠

𝑝𝑖 (𝑠 |𝑥𝑖, 𝜃) log 𝑝(𝑥𝑖 𝑗 |𝑠, 𝜃 𝑗 ).

We defined the gene-wise likelihood of gene j for trajectory model to be

1
𝑝

𝑛∑︁
𝑖=1

∑︁
𝑧𝑖

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃) log
𝑝(𝑧𝑖)

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃)
+

𝑛∑︁
𝑖=1

∑︁
𝑧𝑖

𝑝𝑖 (𝑧𝑖 |𝑥𝑖, 𝜃) log 𝑝(𝑥𝑖 𝑗 |𝑧𝑖, 𝜃 𝑗 ),

and for clusters,

1
𝑝

𝑛∑︁
𝑖=1

∑︁
𝑠

𝑝𝑖 (𝑠 |𝑥𝑖, 𝜃) log
𝑝(𝑠)

𝑝𝑖 (𝑠 |𝑥𝑖, 𝜃)
+

𝑛∑︁
𝑖=1

∑︁
𝑠

𝑝𝑖 (𝑠 |𝑥𝑖, 𝜃) log 𝑝(𝑥𝑖 𝑗 |𝑠, 𝜃 𝑗 ).

The first term is meant to represent the difference in likelihood caused by different
flexibility of latent variables of two models.

For gene selection, we compared the gene likelihood of two models and selected
genes whose gene likelihood of trajectory model was higher than those of the cluster
model.
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Uncertainty assessment

We used uncertainty/instability to falsify results. First, we evaluated the variation
of different random initializations to assess the uncertainty of the inference. This
was done by performing multiple (usually 100) random initializations. Specifically,
we evaluated whether the process time estimation of initializations with high ELBO
scores concentrated around the correct direction. To quantify this, we classified the
output of each random initialization to be correct if the process time estimates had
a correlation higher than 0.8 with the reference, and we used different ELBO score
thresholds to compute the precision-recall curve, which were then summarized by
average precision (AP). An ideal case with high ELBO scores concentrated around
correlation one led to an AP close to one while multiple comparable maxima lead
to low AP.

Another approach to assess uncertainty is through bootstrap resampling. The same
inference procedure is applied to the resampled data, and the variation in the resultant
process time serves as an indicator of instability. Specifically, we calculate the
correlation of process time between the original and the resampled data and interpret
instability as large variance of the correlation.

Simulations
We randomly generated parameters for 200 genes and sampled 2000 cells by de-
fault unless otherwise specified. Cells were sampled uniformly over process time
and lineages. We then fitted the model with the correct trajectory structure and
synchronized model if not stated otherwise.

For the simulation parameters, we assumed that the transcription parameters (𝛼,𝛽,𝛾)
followed the log-normal distribution 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (𝜇, 𝜎), where 𝜇 is the mean and
𝜎 is the standard deviation of the variable’s natural logarithm. We attempted to
derive realistic parameters for the distributions from the literature. Hence, we
assumed 𝛽 ∼ 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (2, 0.5), 𝛾 ∼ 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (0.5, 0.5) so that unspliced to
spliced ratio was around 0.2 and their distributions resembled those determined
from metabolic labeling datasets (Rabani et al., 2011). The 𝛼 were assumed to
follow 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (2, 1), so that the mean of spliced counts were similar to those
in scRNA-seq data. We assumed the read depth follows Beta distribution 𝑟 ∼
𝐵𝑒𝑡𝑎(𝜇 = 1

4 , 𝑣 = 1
64 ), where 𝜇 was the mean and 𝑣 the variance. For simulations

with Gamma noise, we multiplied the mean of Poisson distribution 𝜆 by a random
variable following Gamma distribution with mean 1 and variance 0.5.
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For simulations under the desynchronized model, gene-wise 𝜏𝑘 was sampled from
a uniform distribution on [𝑇𝑘 − Δ𝜏

2 , 𝑇𝑘 +
Δ𝜏
2 ], where 𝑇𝑘 corresponds to the global 𝜏𝑘

in the synchronized model, and Δ𝜏 was the smallest interval length ensuring that 𝜏𝑘
retains its order.

To vary the sampling distributions, we generated a Gaussian distribution with a
random mean and standard deviation 0.05. We then sampled both from the Gaussian
and the uniform distribution, and blended them together in different proportions.
The percentages of time sampled from a Gaussian ranged from 0 to 1, increasing by
0.1 increments.

To characterize the time errors, we calculate root mean squared error (RMSE) for
the posterior mean of process time in comparison to the true time. To calculate the
errors of parameters, we divide the absolute error of 𝛼 by the square root of true
values and 𝛽, 𝛾 by true values, so that errors of different genes are more comparable.
We refer to these as normalized errors throughout the text.

Real datasets preprocessing
To estimate the squared coefficient of variation of the read depth 𝜉 := E

[
Cov(𝑋𝑎 ,𝑋𝑏)
E[𝑋] E[𝑌 ]

]
𝑎,𝑏

,
we calculated the covariance matrix of all genes with nonzero means, which was
divided by the mean squared and averaged across gene pairs to calculate the
mean normalized covariance as an estimate of 𝜉. We then selected Poissonian
genes whose variances are close to baseline variance with reasonably large mean
(𝑣𝑎𝑟 < 1.2(𝜇 + 𝜉𝜇2), 𝜇 > 0.01). However, as some genes can be co-regulated and,
therefore, correlated, we calculated the mean normalized covariance of Poissonian
genes and repeated selected new Poissonian genes until the mean normalized co-
variance no longer changed. This typically occurred after two iterations. Finally,
we normalized the sum of counts of the selected Poissonian genes by their mean to
obtain the relative read depth estimates, which were then used as fixed parameters
during the fitting process.

Based on simulations of factors of informativeness of the data, including numbers
of cells and genes, the average mean of 𝛼 parameters as well as 𝛽 and 𝛾 ratio,
we determined the procedure of filtering genes for fitting: we applied count mean
thresholds (0.02 for unspliced and 0.1 for spliced), filtered out genes with a small
unspliced to spliced ratio (𝑈

𝑆
< 𝑒−4), and finally, selected genes with a variance

larger than 1.2 times the baseline variance, i.e., 𝑣𝑎𝑟 > 1.2(𝜇 + 𝜉𝜇2), where 𝜇 is
the mean, 𝑣𝑎𝑟 is the variance, and 𝜉 is the read depth CV2. For cell cycle data, we
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also constrained genes to the Gene Ontology term "cell_cycle" (GO:0007049). We
occasionally adjusted the variance threshold to 1.5 in order to end up with 50–200
genes. Then trajectory and Poisson mixture models were fitted on those genes.

Use of other methods
We have also used dyngen to generate simulation data (Cannoodt, Saelens, Decon-
inck, et al., 2021). We use a bifurcation backbone for generation of 10000 cells and
200 genes following its vignette.

For Monocle 3 and diffusion pseudotime, we always provide the correct root cells
whose simulation times are 0 for simulations. For real dataset, we set to the cells
from the cell type that is expected to be the progenitor. In Monocle 3, when the cells
form disconnected clusters, only cells on the partition that includes the root cell has
finite pseudotime. We only consider those cells and discard other cells with infinite
pseudotime for comparison with simulation time. For slingshot, we manually set
the true start cluster based on the simulation time for simulation and the cell type in
real datasets. For veloVI, we use the mean latent time across genes for comparison
with simulation time.
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Figure 4.25: Supplementary figures for Cell cycle data. a) AIC scores and mean
process time correlations of 100 random initializations (blue dots) compared to those
of warm start (red line) as well as three clusters (Poisson mixtures) model (yellow
line). AP stands for average precision. Mean process time of the initialization with
lowest AIC is indicated in blue on the same PCA plot as in a). b) AIC scores
and mean process time correlations of 100 bootstrap samples. The x-axis is the
Pearson’s correlation between the mean process time of each bootstrap and the
those of original data, i.e., the plotted one in a. c) ELBO scores over iterations
for desynchronized model. The fitting started with the best random initializations
result of synchronized model. d) Distribution of remaining squared coefficient of
variance of 182 genes used in the fitting. Remaining squared coefficient of variance
is calculated by dividing the remaining unexplained variance by mean squared. e)
Averaged posterior distribution across cells with different labeling times. n is the
number of cells. f) Dynamics of three marker genes. The blue curve is the fitted
mean of product Poisson distributions of unspliced and spliced counts over process
time, and its darkness corresponds to the value of process time. Cells’ raw counts
(gray) are plotted against their corresponding process times. g) Starting and ending
values of fitted mean of Poisson distributions. h) Total counts over process time
of cells colored by cell type annotations. i) Comparison of 𝛾 estimates from two
metabolic RNA labeling papers for 84 selected genes. Estimates of 67 genes are
available in both papers. CCC stands for concordance correlation coefficient.
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Neuron data. Fitting was warm started from delta distribution at physical time
under different sampling distribution priors using the shown trajectory structure. a)
The assumed sampling distribution. For iii, uniform distribution is assumed for cells
from all time points. b) The fitted trajectory structure and inferred mean process
time indicated in blue on the PCA plot. c) Violin plots of mean process time of cells
with different labeling times. Three blue bars represent the mean and extremes.
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Figure 4.27: Results of Chronocell compared to other methods on simulations
generated by dyngen. Chronocell, Monocle 3 (Cao et al., 2019), Slingshot (Street
et al., 2018), diffusion pseudotime (Haghverdi et al., 2016) and veloVI (Du et
al., 2024) are applied on simulation generated using dyngen (Cannoodt, Saelens,
Deconinck, et al., 2021). Inferred time is plotted against true time, where x-axis is
the true simulation time normalized between 0 and 1 and y-axis is corresponding
inferred time normalized between 0 and 1. RMSE stands for root mean square error
of inferred time. a) The dyngen simulation projected into the first two principal
component spaces. A bifurcation backbone is used. b) The fit trajectory structure
and results of Chronocell. c) The result of Monocle 3. d) The result of Slingshot.
e) The result of diffusion pseudotime. f) The result of veloVI.
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Figure 4.28: Results of other methods on Figure 2 simulation. Monocle 3 (Cao
et al., 2019), Slingshot (Street et al., 2018), diffusion pseudotime (Haghverdi et al.,
2016) and veloVI (Du et al., 2024) are applied on simulation data used in Figure
2. Inferred time is plotted against true time, where x-axis is the true simulation
time and y-axis is corresponding inferred time normalized between 0 and 1. RMSE
stands for root mean square error of inferred time.
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Monocle 3a Slingshot Diffusion pseudotimeb c veloVId

Figure 4.29: Results of other methods on Neuron data. Monocle 3 (Cao et al.,
2019), Slingshot (Street et al., 2018), diffusion pseudotime (Haghverdi et al., 2016)
and veloVI (Du et al., 2024) are applied on Neuron data used in Figure 4.26 to
generate violin plots comparing inferred time to experimental time. In these plots,
the x-axis represents the experimental time, while the y-axis shows the corresponding
inferred time.
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C h a p t e r 5

FUTURE DIRECTIONS

Gorin, Gennady, John J Vastola, Meichen Fang, and Lior Pachter (2022). “Inter-
pretable and tractable models of transcriptional noise for the rational design of
single-molecule quantification experiments”. In: Nat. Commun. 13.1, p. 7620.
doi: 10.1038/s41467-022-34857-7.

In this thesis, we advocate for a balanced coexistence of the two cultures in single-
cell RNA sequencing analysis. The ideal approach is a balanced integration of data
models and algorithmic models based on the questions at hand. For example, we
can begin by exploring the data with algorithmic models, which provide a broad
overview. Then, based on those exploratory results, we can build data models to
closely examine the underlying biological mechanisms. With these mechanistic
insights, we can develop more suitable and biologically informed algorithmic mod-
els. Such integration can enhance both the efficiency and depth of scRNA-seq data
analysis.

In line with this perspective, we present two mechanistic models for normalization
and trajectory inference. Our emphasis lies in the interpretability afforded by
biophysically inspired models and the rigor of principled statistical inference, which
together enable more meaningful insights into the underlying biological processes.

However, our models are admittedly naive and raise more questions than they
answer. They are oversimplified and cannot account for all sources of variation.
In the extrinsic noise model, a single random variable is insufficient even mature
counts in pseudo-cells. In the process time model, the assumption of piecewise-
constant transcription rates is unlikely to hold in realistic biological systems. We
can keep listing the assumptions and simplification that we made for our models.
After all, models are a compromise between tractability and the complexity of the
real world. A mechanistic model must be simple enough to allow full inference
from the available experimental data.

This constraint can be seen as both an advantage and a limitation, as developing
mechanistic models depends more heavily on an iterative interplay between exper-
imental data and theoretical development. The limitation is that model cannot be

https://doi.org/10.1038/s41467-022-34857-7
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improved until more informative experiments appear. For example, in the context
of scRNA-seq normalization, more experiments need to be done to characterize
technical noise in each scRNA-seq methods.

In an ideal scenario, scRNA-seq would achieve the same level of precision and
reproducibility as physics experiments. For example, just as all free-fall experiments
conducted under the same conditions yield virtually identical measurements of
gravitational acceleration, each scRNA-seq experiment using the same protocol
would produce data with consistent and predictable technical noise. This would
allow biological variability to be interpreted with the same confidence physicists
place in natural constants.

Currently, reproducibility in single-cell RNA-seq is often assessed by comparing
mean expression levels across experiments. However, what truly matters is the full
distribution of gene expression, not just the average. This is analogous to measuring
gravity: while all objects may hit the ground, the defining feature of gravity is the
consistent acceleration, not merely the fact that they fall.

The advantage of this constraint is that it helps guide rational experimental design.
As we demonstrated in (Gorin, Vastola, Fang, et al., 2022), in a closed-loop frame-
work for the rational design of transcriptomics experiments, mathematical analysis
informs the design of experiments that are maximally informative for distinguishing
between competing hypotheses, such as the CIR and Γ-OU models for transcrip-
tion rates (Figure 5.1). Unfortunately, our work focused on the theoretical analysis
and model fitting aspects of this framework, the experimental feedback loop re-
mains to be completed. Outside of scRNA-seq, prior work in fluorescence-based
transcriptomics has demonstrated the use of Fisher information criteria to optimize
experimental design and detect environmental fluctuations from time-course data
(Fox, Neuert, and Munsky, 2020). These studies highlight the feasibility and value
of closing the loop between model development and experimental validation, which
is particularly lacking in the field of scRNA-seq.

Even in the era of big data, not all data are equally informative. The value of a
dataset depends not merely on its size, but on how well it is aligned with the specific
scientific question being addressed. Therefore, mechanistic models remain valuable
for enabling researchers to design experiments that gather the right data, not just
more data, even if their interpretability and capacity for rigorous inference are set
aside.
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Figure 5.1: Framework for the rational design of transcriptomics experiments. a)
Model-based closed loop paradigm. A researcher begins by representing two or more
competing hypotheses as interpretable and tractable mathematical models (middle
right of circle). Next, they perform a detailed mathematical analysis of each model,
computing quantities (e.g., RNA count distributions and moments) that can help
distinguish one hypothesis from another. Using the results of that analysis as input,
they identify the experiment that best distinguishes the two models. Finally, they
perform this experiment on some population of cells, use the resulting data to refine
and/or reject models, and repeat the process with an updated ensemble of models. b)
Interpretable and tractable modeling framework for transcription rate variation. We
consider stochastic models of transcription involving (i) nascent/unspliced RNA,
(ii) mature/spliced RNA, and (iii) a stochastic and time-varying transcription rate
𝐾 (𝑡). The transcription rate is assumed to evolve in time according to a simple, one-
dimensional SDE that includes a mean-reversion term (which tends to push 𝐾 (𝑡)
towards its mean value) and a noise term (which causes 𝐾 (𝑡) to randomly fluctuate).
Here, we have specifically chosen dynamics for which the long-time probability
distribution of 𝐾 (𝑡) is a gamma distribution (gray curve), because this assumption
yields empirically plausible negative binomial-like RNA distributions. However,
the framework does not require this in general. c) Two plausible models studied
in this paper. The gamma Ornstein–Uhlenbeck (Γ-OU) model describes DNA m
echanics, whereas the Cox–Ingersoll–Ross (CIR) model describes regulation by a
high copy number regulator.
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