
Aligning and Comparing Vision Representations to
Improve Understanding and Performance

Thesis by
Neehar Kondapaneni

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy in Computation and Neural Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended May 27, 2025

ii

© 2025

Neehar Kondapaneni
ORCID: 0000-0002-2782-3977

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

To my labmates, Grant Van Horn, Oisin Mac Aodha, Matteo Ronchi, Joseph Marino,
Mason McGill, Serim Ryou, Jennifer J. Sun, Tony Zhang, Sara Beery, and Elijah
Cole, Kevin Le, Suzanne Stathatos, Laure Delisle, Markus Marks, Manuel Knott,
Rogério Guimarães, Raphi Kang, Anna Ding, Madison Van Horn, Sevan Brodjian,
Michael Hobley, and Atharva Sehgal: thank you for welcoming me, being great
friends and mentors, and all of the fun memories.

To the 355D pod: I couldn’t have asked for a more fun group to grind with.

To Caroline Murphy: thank you for making my life so much simpler.

To Markus Marks: you taught me to be optimistic, perhaps the most important skill I
have learned as a researcher.

To Oisin Mac Aodha: thank you for your steady mentorship and friendship; you have
helped me improve as a researcher each and every year. You always ask the tough
questions, forcing me to think more deeply. I hope I’ll be able to come up with these
questions for myself going forward.

To Pietro Perona: thank you for letting me join your research group. I have met
wonderful people and learned interesting things here. Thank you, specifically, for
teaching me how to think about the bigger picture both in research and in life.

To Takaki Komiyama, Hiroshi Makino and Pamela Reinagel: thank you for letting
me have my first research experiences and giving me space to be creative.

To all of my friends: Andrew Hua, Mazden Mastromauro, Victor Rodrigo, Eric
Hytönen, Migal Manickaraj, Brandon Toy, Zachery Iton, Taeho Kim, Prithvi Akella,
Tomi Esho, Salvador Gomez, Eric Ocegueda, Alexandre de Faveri, David Garrett
and Marina Lecoeuche: thank you all for your friendship. I have so many happy
memories with you all. A special thank you to Manu, Eric, Migal, Brandon, and
Taeho: thank you all for the memories, thoughtful conversations, and support through
my injuries.

To my family – Mom, Dad, Manu, Pedamma, Pedananna, Ammamma, Tata, Amit
and Meena: thank you so much for the unwavering support and love. You all have
taught me important life lessons and helped me become who I am today.

To Meera Prasad, thank you for the encouragement and your positivity. These last
three years would not have been the same without you.

iv

ABSTRACT

Recent advances in large artificial intelligence (AI) models have enabled these
models to perform a wide range of real-world tasks with skill levels comparable to or
surpassing those of humans. In this thesis, we develop methods to compare, analyze,
and align data representations from these powerful models. In Part 1, we develop
methods for estimating human knowledge during a learning task and for comparing
various data representations. These methods are steps towards a system designed
to help us learn from AI. In Part 2, we show how aligning models can be useful in
two separate domains. First, we discover and fix a misalignment in the inputs to a
powerful foundation model and show how it improves performance. Second, we show
that biologically inspired object manipulation tasks can be used as a training signal
for learning human-aligned representations of number. Our results demonstrate the
potential for alignment and comparison methods to improve the overall performance
of AI models, improve our understanding of biological intelligence, and help us
discover new patterns in the natural world.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Neehar Kondapaneni et al. “Representational Difference Clustering.” In:
ICLR 2025 Workshop on Bidirectional Human-AI Alignment. url: https:
//openreview.net/forum?id=OxhHnD9wuZ.
N.K. participated in developing the idea, writing the manuscript, and creating
figures. N.K. also wrote the code and ran the experiments.

[2] Neehar Kondapaneni, Oisin Mac Aodha, and Pietro Perona. “Representational
Difference Explanations.” In: arXiv preprint arXiv:2505.23917 (2025). url:
https://arxiv.org/abs/2505.23917.
N.K. participated in developing the idea, writing the manuscript, and creating
figures. N.K. also wrote the code and ran the experiments.

[3] Neehar Kondapaneni, Oisin Mac Aodha, and Pietro Perona. “Representa-
tional Similarity via Interpretable Visual Concepts.” In: The Thirteenth
International Conference on Learning Representations. 2025. url: https:
//openreview.net/forum?id=ih3BJmIZbC.
N.K. participated in developing the idea, writing the manuscript, and creating
figures. N.K. also wrote the code and ran the experiments.

[4] Markus Marks et al. “A closer look at benchmarking self-supervised pre-
training with image classification.” In: International Journal of Computer
Vision (2025), pp. 1–13. url: https : / / link . springer . com /
article/10.1007/s11263-025-02402-w.
N.K. participated in writing the manuscript and creating figures.

[5] Neehar Kondapaneni and Pietro Perona. “A number sense as an emergent prop-
erty of the manipulating brain.” In: Scientific Reports 14.1 (2024), p. 6858. url:
https://www.nature.com/articles/s41598-024-56828-2.
N.K. participated in formulating the idea and experiments, writing the
manuscript and conceptualizing figures. N.K. also wrote the code and created
the figures.

[6] Neehar Kondapaneni et al. “Less is more: Discovering concise network
explanations.” In: ICLR 2024 Workshop on Representational Alignment. 2024.
url: https://openreview.net/forum?id=JBwpD6Yy8Q.
N.K. participated in developing the idea, writing the manuscript, and creating
figures. N.K. also wrote the code and ran the experiments.

[7] Neehar Kondapaneni et al. “Text-image alignment for diffusion-based per-
ception.” In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. 2024, pp. 13883–13893. url: https://
openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_
Text-Image_Alignment_for_Diffusion-Based_Perception_
CVPR_2024_paper.html.

https://openreview.net/forum?id=OxhHnD9wuZ
https://openreview.net/forum?id=OxhHnD9wuZ
https://arxiv.org/abs/2505.23917
https://openreview.net/forum?id=ih3BJmIZbC
https://openreview.net/forum?id=ih3BJmIZbC
https://link.springer.com/article/10.1007/s11263-025-02402-w
https://link.springer.com/article/10.1007/s11263-025-02402-w
https://www.nature.com/articles/s41598-024-56828-2
https://openreview.net/forum?id=JBwpD6Yy8Q
https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html

vi

N.K. participated in developing the idea, writing the manuscript, and creating
figures, writing the code, and running the experiments.

[8] Neehar Kondapaneni, Pietro Perona, and Oisin Mac Aodha. “Visual Knowledge
Tracing.” In: European Conference on Computer Vision. Springer. 2022,
pp. 415–431. url: https://link.springer.com/chapter/10.
1007/978-3-031-19806-9_24.
N.K. participated in developing the idea, writing the manuscript, and creating
figures. N.K. also wrote the code and ran the experiments.

https://link.springer.com/chapter/10.1007/978-3-031-19806-9_24
https://link.springer.com/chapter/10.1007/978-3-031-19806-9_24

vii

CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Contents . vi
List of Figures . x
List of Tables . xxxviii
Chapter I: Introduction . 1

1.1 Aligning Humans and Models for Improving Model Understanding . 2
1.2 Learning from AI . 2
1.3 Aligning Representations for Improving Model Performance 6
1.4 Aligning Representations for Modeling Human Visual Psychology . . 6
1.5 Thesis Motivation and Organization 7

I Learning from AI 15
Chapter II: Visual Knowledge Tracing . 16

2.1 Abstract . 16
2.2 Introduction . 16
2.3 Related Work . 18
2.4 Method . 20
2.5 Experiments . 24
2.6 Conclusion . 31
Appendix . 33
2.7 Additional Experiments . 33
2.8 CNN Architecture Details . 39
2.9 Additional Results . 40
2.10 Learned Representations . 43
2.11 Feature Space . 45
2.12 Additional Implementation Details 46

Chapter III: Representational Similarity via Interpretable Visual Concepts . . 51
3.1 Abstract . 51
3.2 Introduction . 51
3.3 Related Work . 52
3.4 Method . 54
3.5 Results . 59
3.6 Limitations . 65
3.7 Conclusion . 66
Appendix . 67
3.8 Additional Experiments . 67

viii

3.9 Additional Implementation Details 86
Chapter IV: Representational Difference Explanations 96

4.1 Abstract . 96
4.2 Introduction . 96
4.3 Related Work . 97
4.4 Method . 99
4.5 Results . 103
4.6 Conclusions . 109
Appendix . 110
4.7 Limitations . 110
4.8 Additional Results . 111
4.9 Additional Methods . 127
4.10 Implementation Details . 131

Chapter V: Outlook . 140
5.1 Expert Data is Abundant . 140
5.2 Multiple Sources of Supervision . 140
5.3 Humans at Multiple Skill Levels . 140
5.4 Estimating Human Knowledge is Infeasible 141
5.5 General Thoughts about XAI . 141
5.6 Conclusion . 142

II Applications of Aligning Representations 144
Chapter VI: Text-image Alignment for Diffusion-based Perception 145

6.1 Abstract . 145
6.2 Introduction . 145
6.3 Related Work . 148
6.4 Methods . 149
6.5 Results . 152
6.6 Discussion . 160
Appendix . 162
6.7 Cross-attention Analysis . 162
6.8 Additional ADE20K Results . 166
6.9 Qualitative Examples . 168
6.10 Implementation Details . 177

Chapter VII: A Number Sense as an Emergent Property
of the Manipulating Brain . 186
7.1 Abstract . 186
7.2 Introduction . 187
7.3 Results . 191
7.4 Discussion . 194
7.5 Methods . 198
7.6 Dataset & Code Availability . 203
Appendix . 204
7.7 Additional Experiments . 204

ix

7.8 Dataset Statistics . 215
7.9 Network Details . 216

IIIConclusion 221
Chapter VIII: Conclusion . 222

8.1 A Step Towards Learning from AI 222
8.2 Aligning the Interface Between Models 223
8.3 Using Aligned Models to Make Hypotheses about Biological Intelligence223
8.4 Final Thoughts . 223

x

LIST OF FIGURES

Number Page

2.1 Overview. We model a learner as an evolving classifier in a learned
feature space. We assume the feature space is static and, as the
learner is presented with images and class labels over time, their
internal classification function self-updates. Here, we illustrate this
for three time-steps, for two learners, learning a binary classification
task (orange versus blue). 17

2.2 Collecting visual knowledge tracing datasets. (A) Example images
from the three different datasets from our experiments. ‘Butterflies’
contains images of five different species and was originally presented
in [43]. ‘Eyes’ contains optical coherence tomography images of
the human retina from [47], and features two diseased classes and
one normal one. ‘Greebles’ is a synthetic dataset we created where
the three object classes vary in terms of shape and color. (B) Data
collection pipeline. A random image is selected (1), shown to the
learner (2), and the learner provides a response (3). Their response is
stored (4) and the correct class label is provided to them (5). 25

2.3 Human learner performance on our three datasets. For each
dataset we provide histograms of learner performance on the respective
training and testing sequences. The training results are always worse
as it include responses from all time-steps, including when the learner
has just started the task and is unfamiliar with the classes. For
‘Greebles’, the worse performance on the test set compared to the
other datasets indicates that learners find this task more challenging. 28

xi

2.4 Comparing student accuracy and tracing model predicted ac-
curacy. (Top) The smoothed average human learner accuracy for
class over time from the Butterflies dataset. The shadowed regions
indicate confidence intervals as the number of samples in each time
and class bin are not guaranteed to be the same. (Bottom) The average
probability of having a class correctly predicted by the static 𝜙𝑠𝑡𝑎𝑡𝑖𝑐
model (orange) and the recurrent 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 model (green). At each
time-step, for each learner in the test set, the models predict class
probabilities for ∼ 50 images per class. The probabilities are averaged
(solid line) and the shadows indicate one standard deviation. In both
rows, the red line indicates the point at which the learners switch from
training to testing. After that, the models will continue to produce the
same probabilities on the test images for the remaining time-steps as
the sampled images do not change. 29

2.5 Human and model performance on the Butterflies dataset. (Top)
The smoothed average human learner accuracy for each class over time
on the Butterflies dataset. The shadowed regions indicate confidence
intervals as the number of samples in each time and class bin are
not guaranteed to be the same. (Bottom) The average probability of
getting a class correct predicted by the static 𝜙𝑠𝑡𝑎𝑡𝑖𝑐 model (orange),
𝜙𝑠𝑡𝑎𝑡𝑖𝑐_𝑡𝑖𝑚𝑒 model (green), the direct response 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 model (purple),
and the classifier prediction 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 model (red). At each time-step,
for each learner in the test set, the models predict class probabilities
for ∼ 50 images per class. The probabilities are averaged (solid line)
and the shadows indicate one standard deviation. While both recurrent
models have similar traces, the 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 produces smoother average
probabilities. 40

2.6 Human and model performance on the Eyes dataset. See Fig. 2.5
for a detailed caption. 41

xii

2.7 Statistics of the Greebles dataset. The Greebles dataset was inspired
by the one used in [26]. In our version, the three classes vary in Head
Width and Size (top row), Body Width and Size (middle row), and
the Red and Green channel for the RGB color (bottom row). The
histograms overlap completely for Head Width, Head Size, and Body
Width. These variations serve as distractors since they provide no
information about which class an image belongs to. The other features,
Body Size, the Red channel, and the Green channel have different
distributions and can be used to estimate the class. Agara and Bari
are most separable by Body Size, Cooka is most separable from both
Agara and Bari in the two color channels. However, note that they
are not perfectly separated and it is possible, although less likely,
for two images from different classes to take on the same properties.
This makes the Greebles dataset particularly challenging, since the
important features are both subtle and imperfect for distinguishing
between classes. 41

2.8 Human and model performance on the Greebles dataset. See
Fig. 2.5 for a detailed caption. 42

2.9 Visualizing hidden and cell states of the tracing model. The hidden
states and cell states of the LSTM for 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 while tracing 25
test-set learners are plotted in 2D using the UMAP dimensionality
reduction algorithm [61]. (Top) The hidden state representations
are colored according to the probability (purple to yellow) that a
response produced with that hidden state would correctly classify
an image of the class in the panel title. We can see that the classes
that correspond to the best average performance by humans are in
well-defined clusters (e.g. Cabbage White), whereas the classes that
are commonly mistaken for each other are grouped together and have
much weaker probabilities of being correct. (Bottom) The cell states
are visualized in the same manner. For the cell states, we can see
that the clusters seem to be dragged across a single dimension. The
Cabbage White and Red Admiral cluster is split in two pieces in the
cell state, which we explore in Fig. 2.10. 43

xiii

2.10 Tracing individual student performance. (Top) The sequence of
correct and incorrect responses made by two human learners during
training. We selected these two learners as they demonstrate different
learning behaviors. It seems Learner B may already be familiar with
butterflies. (Bottom) We overlay each learners’ trajectory through the
hidden and cell states. The colors represent the time-step, where dark
blue is the beginning of training, light-grey is the middle, and dark
red is the end. We see that Learner B’s trajectory quickly skips to the
left of the cell state, suggesting the LSTM encodes the learners skill
level on all classes in certain dimensions of the cell state and uses the
hidden state to translate the skill level into an appropriate response
for the image shown to the learner. 44

2.11 Visualizing the feature space. The feature space learned by the
CNN must support several types of behaviors, since behavior changes
between learners and over time. We use PCA to reduce the learned
feature space into two dimensions. (Left) We show a subset of
images in the Butterflies dataset colored by the ground truth label.
Aside from the Cabbage White class, which is the easiest to identify,
the representations are difficult to separate. (Right) We use the
hyperplanes predicted while tracing a single learner X to induce a
subspace and visualize the features in that subspace. Within the
subspaces, the classes are much better separated. Each row shows
a subspace induced by a hyperplane for different time-steps - where
the time-step is indicated on the left. The colors represent the class
and the labelled color is the target class for the image being evaluated
in that time-step. We see that, over time, the target class is pushed
further to the right and is better separated from the other classes (see
orange cluster in time-step 15 vs. 25). Classes that are confused for
each other have less separation, whereas classes like Cabbage White,
that are rarely confused, are extremely well-separated from the other
classes. Also, note that the subspace orientation (target class moved
to the right) matches how the dot product between the hyperplanes
and features is translated into probabilities in the model. 45

xiv

3.1 Representational Similarity via interpretable Visual Concepts
(RSVC). (Concept Extraction): First, activations for a set of image
patches, I𝑐, are computed for each model (𝑀1 and 𝑀2). Second,
the activation matrix for 𝑀1 is factorized into the concept coefficient
matrix U1 and the concept basis W1, i.e. A1 ≈ U1W1. Each entry in
a column vector of the coefficient matrix U1 represents the strength of
a concept in an image. Concepts are visualized by the image patches
that correspond to the top 𝑛 coefficients. Here, we highlight only two
concepts, 𝑢𝑎1 and 𝑢𝑏1 . The top four images for these concepts indicate
that 𝑢𝑎1 represents bluejay tail and 𝑢𝑏1 represents sky background.
(Concept Regression): To measure concept similarity, we learn a
weight matrix W∗2→1 to map A2 to the concept coefficient matrix
U2. We denote the predicted coefficient matrix as U2→1. (Concept
Similarity): Finally, we compute the correlation between columns
of U2→1 and U1. If A2 contains a concept in U1, then the predicted
coefficient vector should be highly correlated to the real coefficient
vector. In this example, we see that the bluejay tail concept is poorly
represented in 𝑀2, but both models share the sky background concept. 55

3.2 Adding and discovering a toy concept. Here we train two ResNet-18
models, 𝑀𝑝𝑠 and 𝑀𝑛𝑐. 𝑀𝑝𝑠 is trained to associate a pink square (i.e.
Concept 1) with the Common Eider class, while 𝑀𝑛𝑐 is trained to be
invariant to the pink square concept. We find that the similarity score
from 𝑀𝑛𝑐 → 𝑀𝑝𝑠 for Concept 1 is ∼ 0.0, indicating that 𝑀𝑛𝑐 is unable
to predict Concept 1 from 𝑀𝑝𝑠. To understand various aspects of the
differences between the two models, RSVC inspects three distinct
regions of the predicted vs. real coefficient scatter plot (Sec. 3.4.4).
(Green): RSVC visualizes images corresponding to the top-10 𝑀𝑝𝑠

target concept coefficients. This allows the user to understand what
the target concept is encoding. This concept clearly reacts strongly
to the pink square visual feature. (Blue): RSVC visualizes the image
patches with the largest 𝑀𝑛𝑐 under-predicted coefficients. 𝑀𝑛𝑐 under-
reacts to the pink square when compared to 𝑀𝑝𝑠. (Orange): RSVC
visualizes the image patches corresponding to the top-10 𝑀𝑛𝑐 over-
predicted coefficients. The over-predicted patches show that 𝑀𝑛𝑐

cannot distinguish between background and the pink square. 61

xv

3.3 Concept similarity vs. concept importance. We compare four pairs
of models using CMCS: (A) RN18 vs. RN50, (B) RN50 vs. ViT-S, (C)
ViT-S vs. ViT-L, and (D) DINO vs. MAE. The y-axis represents the
concept importance (CI) measured using concept integrated gradients.
Warmer colors represent the density of points in a region. We
highlight several regions in the plots: (1) low similarity and low
importance concepts that are unique to a model but contribute little to
its decisions, (2) high importance and high similarity concepts that
are shared across both models and also contribute greatly to decision
making, (3) low similarity, high importance concepts that only one
model has discovered, but are very important to that model’s decisions. 62

3.4 Replacement test results. We determine whether poorly predicted
coefficients for concepts actually impact model behavior (Sec. 3.5.3).
We use color to represent the concept importance (warmer is higher
importance). When ignoring low importance concepts, we observe
expected trends, i.e. decreases in similarity (ΔPearson) result in in-
creases in the 𝑙2-distance, increases in KL-divergence on the classifier
logits, and decreases in model accuracy. The effect also seems to
be scaled by importance, for example, changes to low importance
concepts (black) has no impact on ΔKL. 63

3.5 Interpreting low similarity concepts. In this example, we find a
RN50 concept for the barbell class that the ViT-S is not able to predict.
(Green): The RN50 concept reacts to images of hands lifting barbells.
Additionally, many images contain vertical supports for a squat rack.
We train a regression model on the ViT-S activations to predict the
RN50 concept coefficients. (Blue): The ViT-S regression model
under-reacts to images containing hands, people, and squat racks.
(Orange): It over-reacts to images that have a greater focus on weight
plates. These results suggest that the the specific concept of hands
lifting barbells is not represented in the ViT-S. In Sec. 3.5.5 we use
an LLVM to analyze the image collages (IC1 and IC2) and find that it
detects similar differences in the visualizations. 64

xvi

3.6 Layerwise mean-max concept similarity. We compare four pairs of
models across many selected layers using Pearson correlation. Each
entry in the matrix is the mean maximum concept similarity (MMCS)
between 𝑀1 and 𝑀2 at a particular pair of layers. Brighter colors
represent higher MMCS values. We see that, in general, concept
similarity is highest in earlier layers and decays as networks get deeper.
We also notice that there is a slight increase in similarity towards the
final layers (Sec. 3.8.1). 68

3.7 MCS (Pearson) vs. lasso regression. We see that the most points
lie above the red-line. This means that lasso regression (followed
by Pearson correlation on the predicted and real coefficients) usually
predicts a higher similarity value than the MCS values directly on the
columns of the coefficient matrix. Thus, we experimentally validate
that the Pearson correlation acts as a noisy lower bound on concept
similarity. 70

3.8 Qualitative samples. In each row, we show visualizations for selected
concepts from different model comparisons. In the first column of
each row, we show scatter plots between real and predicted concept
coefficients. Colored points mark the top-9 images in different subre-
gions of the scatterplot. Each subregion indicates a different aspect
of dissimilarity. (Green): Top-9 images for the real concept. These
images are used to help the user understand what the target concept
pays attention to. (Blue): Top-9 images that are underpredicted by
the contrasted model. (Orange): Top-9 images that are over-predicted
by the contrasted model. You may need to zoom in to best analyze
the image grids. We discuss possible interpretations of the concepts
in Sec. 3.8.2. See Sec. 3.4.4 for a detailed breakdown of how to
interpret these plots. 76

xvii

3.9 LLVM concept difference analysis. We use ChatGPT-4o [53] to
analyze concept differences. We provide a general system prompt
asking the LLVM to describe the collages, provide a description of
the similarities and differences between the collages, and provide a
final judgement on whether there is a semantic difference between
the collages. We provide an example for the rugby ball class. The
LLVM receives the image collage (IC) corresponding the top-k concept
images (IC1) and the over-predicted concept images (IC2), see Fig. 3.5
for more details on image collages. Here, the LLVM notices that IC1
focuses on hands and ball contact, whereas the IC2 focuses more on
lower bodies. The described difference matches the manual annotation
provided in Sec. 3.8.2. 77

3.10 Specificity of toy concept. In Fig. 3.2, we showed that 𝑀𝑛𝑐 is not
able to predict the pink square concept from 𝑀𝑝𝑠. In this figure, we
show that the toy concept does not impact the similarity between other
concepts learned by the networks. We visualize the top-10 patches
from Concept 2 and Concept 3 of 𝑀𝑝𝑠 in the same class (Common
Eider). These concepts correspond to the white and black color pattern
of the bird and a water background. Note that these models have been
trained from scratch on NABirds resulting in a relatively low 34%
accuracy. This leads to noisier concepts that are more challenging
to interpret. Importantly, we can see that 𝑀𝑛𝑐 still has a very high
similarity score for these two concepts, highlighting the specificity of
RSVC. 78

3.11 Neuron analysis for volleyball concept difference. In Fig. 3.8 we
visualized a RN50 concept for the volleyball class that the RN18 did
not contain. In this figure, we explore the top-6 neurons used by the
regression model to predict the RN50 concept. We find that Neuron
465 is sensitive to edges between a volleyball net and the background.
It seems to mistake some grid-like textures for nets as well (image
[1, 0], [1, 1], and [2, 0]). In addition, it seems to be sensitive to
volleyballs high in the air. Neuron 340 seems to activate for athletes
in indoor gyms and seems partial to lower bodies. Neuron 297 is
sensitive to close-ups of nets with hands or arms in the frame. In
summary, these neuron visualizations help to explain some of the
images over-predicted by the regression model. 79

xviii

3.12 Impact of training on stanford cars. In each row, we show visu-
alizations for selected concepts from comparing R18 NAB+SC to
R18 s483. In the first two rows, we visualize two R18 NAB+SC
concepts that R18 s483 cannot reproduce. The first concept is a
racing stripe that is associated with the Shelby Mustang. The R18
s483 model appears to sometimes entangle this concept with a blue
color, irrespective of the car model. The second concept appears to be
common features associated with Mercedes cars. For this concept, the
difference between the two models is more abstract and challenging
to interpret. We visualize NAB R18 s483 concepts in the next three
rows. First, we show a R18 s483 concept that R18 NAB+SC is unable
to predict. We see that this concept is very abstract without a clear
pattern, but is generally related to sandy textures. Next, we visualize
two car-related concepts from R18 s483. We find that these concepts
are sensitive to the combination of the presence of a car and a specific
color. For the orange car concept, the R18 NAB+SC makes small
over-predictions with different shades of orange. For the yellow car
concept, the over-predicted group shows a different shade of yellow
and a specific style of car. A discussion of these results is available
in Sec. 3.8.5. 80

xix

3.13 Effect of seed and dataset on ResNet-18 similarity. We compare sev-
eral pairs of ResNet-18 models while varying their training protocols.
We use the same base model in all comparisons, a ResNet-18 model
trained with the seed set to 4834586 (R18 s483). (A) We compare the
base model to a model trained with seed 87363356 (R18 s873) and
find that the two models are highly similar despite the change in seed.
(B) We train a ResNet-18 on a modified dataset where we exclude
169 classes that belong to the coarse category of waterbirds (R18
NAB-WB). When comparing to the seed variation experiment, we see
a slight increase in the number of dissimilar concepts. (C) We train
a ResNet-18 on a combined dataset of NABirds and Stanford Cars
(R18 NAB+SC). To compare to the base model, we freeze the base
model’s backbone and re-train the linear classifier on this combined
dataset. We find that introducing Stanford Cars results in a significant
increase in dissimilar concepts. (Right) Finally, we compare to a
model pre-trained on ImageNet and fine-tuned on NABirds (R18
ImgNet PT). We find that training on ImageNet introduces many novel
concepts that are dissimilar to the features of the base model. 81

3.14 DINO and MAE seed variation. We explore the effects of varying
seed on finetuning a DINO and MAE model on the NABirds dataset.
(Left): We show layerwise and last layer comparisons of MAE_s483
vs. DINO_s483. These plots are reproductions from the main text. The
black line denotes the average concept similarity. For this comparison,
the average similarity in both directions is 0.80. (Center): We
compare DINO_s873 vs. MAE_s873. We see a similar layerwise
matrix and last layer similarity to DINO_s483 vs. MAE_s483. The
average similarity for both models is, once again, 0.80. (Right):
We compare DINO_s483 vs. DINO_s873 and find that there is a
better layer-to-layer mapping in the layerwise comparison matrix.
In addition, the average similarity in both directions is 0.89, higher
than comparisons across the different pretraining strategies. Taken
together, these results indicate that individual concepts change due to
different seeds, but the global structure of the relationship between
these models is not affected by seed. 82

xx

3.15 SMCS vs CI. We visualize same-model concept similarity (SMCS)
against the concept importance. We find that reconstructing more
important concepts tends to be easier for ResNets. However, for some
ViT models, there can be important learned concepts that are hard
to predict. Importantly, SMCS is significantly higher than CMCS
indicating that the regression task is feasible. 83

3.16 Replacement test for DINO vs. MAE (NABirds). We find that for
the DINO vs. MAE comparison. As Pearson correlation decreases
the 𝑙2-distance increases, KL-divergence increases, and the match
accuracy decreases. Notably, the Pearson correlation decreases a
smaller amount than for the other three pairs of models, but the change
in the three metrics is on the same order as the other comparisons.
This suggests that these two models are more sensitive to changes in a
concept. 84

3.17 Replacement test for ViT-S vs. ViT-L and RN50 vs. ViT-S. We find
that for these model comparisons, as Pearson correlation decreases
the 𝑙2-distance increases, KL-divergence increases, and the match
accuracy decreases. 85

3.18 Impact of regularization on regression. Here we vary the 𝜆 for the
𝑙1 penalty on the regression model. We use the first 200 classes of
ImageNet for these visualizations. In the left column, we visualize the
distribution of similarity values for each value of 𝜆. In the center, we
visualize the number of non-zero coefficients. In the right column, we
visualize the similarity vs. importance plots for 𝜆 = 0.1 and 𝜆 = 0.5.
We find that, as expected, increasing the 𝑙1 penalty reduces similarity
by increasing the number of zeroed coefficients. In all experiments in
the paper, we use an 𝑙1 penalty of 0.1. 86

xxi

3.19 Impact of number of concepts on similarity. Here we vary 𝑘 , the
number of concepts in the dictionary and explore the impact on the
similarity distribution. We use the first 200 classes of ImageNet
for these visualizations. In the left column, we plot the distribution
of similarity scores for 5, 10, 15, and 20 concepts. In the center
column, we visualize the distribution of reconstruction errors for
different number of concepts. As expected, increasing the number of
concepts results in lower reconstruction errors. In the right column,
we visualize similarity vs. importance for 10 and 20 concepts. We
observe that increasing the number of concepts disproportionately
increases the number of dissimilar concepts. For all results in the
paper we use 10 concepts. 87

4.1 Intuition behind our method. Representational Difference Expla-
nations (RDX) aim to highlight the substantive differences between
two representations (e.g. 𝑨 and 𝑩, which are the embedding matrices
produced by two different models for the same set of data). Here
𝑨 supports discrimination between circles and squares, whereas 𝑩

does not. Clustering the two representations independently would not
reveal the square/circle sub-structure in 𝑨. By “subtracting” 𝑩 from
𝑨, RDX reveals which items are considered similar in 𝑨, but not in 𝑩.
RDX isolates differences, and ignores data that may be equally well
grouped in both representations, such as the triangles and diamonds. . 98

xxii

4.2 Comparing RDX to NMF. We train a small CNN on a modified MNIST
dataset that only contains images of the digits 3, 5, and 8. We compare
a strong model checkpoint representation (𝑴𝑆, 94% accuracy) with
a final ‘expert’ model representation (𝑴𝐸 , 98% accuracy). The
left and middle columns show PCA projections of the 𝑴𝑆 and 𝑴𝐸

representations, respectively. The transparent colors indicate classes
in the dataset: 3 (light-blue), 5 (light-orange), and 8 (light-green). The
right most columns visualize the images selected by the explanation
methods. We extract three concepts for each method. (A) We generate
explanations using NMF [4] with maximum sampling [4, 9, 17].
The bold colored points on the PCA plots indicate the location of
the sampled images. The images can be seen in the right-most
column. We show that this approach for concept visualization results
in indistinguishable explanations despite both models containing
significant representational differences. (B) We use RDX to generate
three explanations for images that are considered highly similar by
𝑴𝑆, but dissimilar by 𝑴𝐸 . We overlay the points sampled by this
approach on both models’ representations. In the right column, we
visualize the explanations. 103

4.3 Binary success rate evaluation of XAI methods. For each XAI
method, we compute the binary success rate (BSR) (Sec. 4.4.5, where
higher is better) on all difference experiments. We use neighborhood
distances to measure BSR (Sec. 4.4.1). Each method (x-axis) is
assigned a different color, we showBSR(E 𝑨) (darker box) and BSR(E𝑩)
(lighter box). (Panel A) We show results on the MNIST and CUB
PCBM experiments (Sec. 4.5.3), in which we modify the representation
and test if RDX can help identify the modification. (Panel B) We
show results when comparing large vision models with unknown
differences (Sec. 4.5.4). We compare recovering differences with and
without an initial alignment step (Sec. 4.4.4). In all cases, our RDX
approach consistently outperforms the dictionary learning baselines. . 104

xxiii

4.4 Recovering vertical flip modifications on MNIST. Explanations
produced by three XAI methods, RDX, KMeans, and NMF, to compare
models 𝑴↕ and 𝑴↑↓. Both models are trained on a dataset with
vertically flipped and normal images. 𝑴↕ is trained to associate the
original label to flipped digits and 𝑴↑↓ is trained to predict a new
set of labels for flipped digits. We expect 𝑴↕ to mix flipped and
unflipped digits while 𝑴↑↓ should separate them. We generate 3
explanations for each method. (Col 1, 2) KMeans and NMF generate
explanations that are difficult to understand. (Col 3) RDX captures the
expected difference. RDX(𝑴↕𝑴↑↓) reveals that 𝑴↕ represents flipped
and normal 6s, 7s, and 9s closer together than in 𝑴↑↓. RDX(𝑴↑↓,𝑴↕)
shows that 𝑴↑↓ has clean clusters of 3s, flipped 5s, and flipped 2s
without any mixing. 105

4.5 Recovering the “Spotted Wing” concept in CUB. We train a post-
hoc concept bottleneck model on the CUB dataset. For each image,
we use the predicted concept logits as the image’s embedding vector
(i.e. representation). Here we compare a model using the complete
concept representation (𝑪𝐴) with a model representation without the
spotted wing concept (𝑪𝐴−𝑆). We visualize one of five generated
explanations for each model using RDX and CNMF. We observe that
RDX’s explanation focuses on the spotted wing concept and that 𝑪𝐴−𝑆
considers images with and without spotted wings to be more similar
than 𝑪𝐴 does. In contrast, the CNMF explanations for each model are
both unrelated to the spotted wing concept and indistinguishable from
each other, since the representations are highly similar and CNMF

discovers nearly the same concepts in both. 106

xxiv

4.6 Discovering unknown differences. We useRDX to generate difference
explanations for representations with unknown differences. We
visualize two comparisons with alignment. In both comparisons,
we visualize the shared structure (gray), cluster membership (light
colors), and selected samples for explanations (dark colors) on PCA
projections of the representations. We can see that the selected indices
are grouped compactly in the left PCA plot, but are spread apart in
the right one. (RDX(𝑴𝐷2,𝑴

′
𝐷
)) on Primates. We discover unique

concepts in DINOv2 for commonly confused primates in ImageNet.
In the PCA plot, we see that the green (Expl. 2) and purple (Expl. 4)
explanations are cleanly separated in 𝑴𝐷2, but mixed in 𝑴′

𝐷
. The

explanations show that only DINOv2 has unique concepts for tan-
colored gibbons and for gibbons with white chin fur. (RDX(𝑴𝐶𝑁 ,𝑴

′
𝐶
))

on Maples. We compare the representations of CLIP-iNat and CLIP
on four types of maple trees from iNaturalist. We see that CLIP-iNat
contains a unique concept for fall-colored Red Maple leaves (Expl. 4)
and a second concept that mixes fall-colored and green Silver Maple
leaves (Expl. 5). Further analysis is provided in Sec. 4.5.4. 108

4.7 Comparing RDX to SAE and KMeans. In Fig. 4.2, we visualized
NMF explanations for two model representations, from a ‘strong’ 𝑴𝑆

and an ‘expert’ model 𝑴𝐸 , trained on MNIST-[3,5,8]. Here we
show explanations generated using SAE with maximum sampling
and KMeans with centroid sampling. (A) SAE explanations are
confusing and potentially misleading. SAE(𝑴𝑆) shows mostly 3s
in all explanations, whereas SAE(𝑴𝐸) shows one explanation with
mixed 5s and 8s, and two explanations with 5s and 8s respectively.
These explanations do not convey which of the two representations is
weaker and may even suggest that the 𝑴𝑆 is the expert representation.
(B) KMeans explanations are indistinguishable. Given that these two
representations are highly similar, the centroids for the clusters in
both representations are nearly the same. (C) RDX(𝑴𝐸 ,𝑴𝑆) shows
explanations that helps us understand that 𝑴𝐸 does a better job of
grouping 3s and 5s than 𝑴𝑆, matching the known difference between
the two models. The lack of an explanation for 8s suggest that 𝑴𝑆 is
relatively better at distinguishing 8s. We confirm this in Sec. 4.8.1. . 117

xxv

4.8 Interpreting Dictionary Learning Concepts. We identify two
issues with dictionary learning methods for XAI that make them
challenging to understand. These results are from the same experiment
as in Sec. 4.5.2 and Sec. 4.8.1. Maximum sampling to explain concept
vectors hides important nuances in model behavior. In (1) and (2),
highlighted in red, we can see that 𝑴𝑆 and 𝑴𝐸 both encode roughly
the same concept, with maximum activations for images of 5s (indices
500-1000) and weaker activations for images of 3s and 8s (indices
0-500 and 1000-1500). The generated explanations for both concepts
show 5s. However, we can see that the activations for 3s and 8s are
relatively lower in (2) than the activations for 3s and 8s in (1). These
subtle nuances are critical for understanding how the two models
behave differently, but are completely lost in the existing approaches
for generating explanations. Thus, existing explanations for dictionary
learning concepts are incomplete. (B) Analyzing a single image
through the lens of these concepts is extremely challenging. Users are
tasked with using incomplete explanations of a concept in a weighted
sum with un-intuitive coefficients. For example, image 800 is an
image of a “standard” 5, but is encoded by a weighted combination
over a concept of “strange” 5s and 8s and normal 8s. See Sec. 4.8.1 for
a discussion on the impact of monosemanticity and polysemanticity
in this context. 118

xxvi

4.9 Effect of Alignment. (Top) We compare CLIP and CLIP-iNat
with and without aligning CLIP-iNat (denoted by 𝑀′ notation). We
visualize PCA plots of the representations with cluster membership
(light colors) and samples (dark colors). In each direction, the left
plot contains the concept “source” representation while the right plot
has the selected clusters overlayed on its representation. (Unaligned,
Left) We generate five spectral clusters, we can see that they group
nicely in the left plot and are spread apart in the right plot. We
highlight the region of the red cluster for comparison after alignment.
(Aligned, Right) After alignment, we can see that it is more difficult
to get clusters that have large differences in their distances in the
two representations. We find that the region that the red cluster
came from in the unaligned comparison is no longer selected after
alignment. Explanation The red cluster (unaligned) contains maples
in fall foliage. Both networks can represent this concept, although the
unaligned CLIP-iNat representation does not prioritize it. 119

4.10 Additional explanations for MNIST comparisons. Modifications
are described in detail in Tab. 4.4. We compare 𝑴49 (mixes 4s
and 9s) to 𝑴𝑏 (no modifications). We observe that RDX generates
explanations focused on the known difference. KMeans and NMF

have 1/6 explanations related the known difference. (Middle) We
compare 𝑴35 (mixes 3s and 5s) to 𝑴49 (mixes 4s and 9s). RDX

conveys the modifications made to both models, specifically 𝑀35

mixes 3s and 5s and that 𝑀49 mixes 4s and 9s. Also, it shows that
𝑀49 organizes 3s better than 𝑀35. KMeans has one explanation
related to the known differences, while NMF has none. (Bottom)
We compare 𝑴ℎ 𝑓 𝑚 (mixed flipped and unflipped digits) to 𝑴ℎ 𝑓 𝑠

(separated flipped and unflipped digits). RDX reveals mixing between
flipped and unflipped 6s, 9s and 3s in 𝑴ℎ 𝑓 𝑚 and no mixing for 2s,
flipped 3s and 5s in 𝑴ℎ 𝑓 𝑠. KMeans explanations are confusing. NMF
has 2/6 explanations that align with the known difference. 120

xxvii

4.11 Explanations for the “Spotted Wing” concept. We selected a few
explanation grids to show in Fig. 4.5. Here we visualize all five
explanations generated by two XAI methods, best viewed zoomed in.
(Top) In row 1, the RDX explanation grids show birds with and without
spotted wings mixed together. In row 2, the explanation grids are
predominantly made up of birds with spotted wings. In explanation
five, we see that RDX can generate clusters with too few images to
generate a full grid. (Bottom) In both rows, each CNMF explanation
grids shows a different kind of bird, unrelated to the known difference.
For example, we can see concepts for yellow birds, seabirds, and black
birds. The explanations for both models are indistinguishable. 121

4.12 Explanation for the “Yellow Back” concept. We visualize expla-
nations from comparing 𝑪𝐴−𝑌𝐵 vs. 𝑪𝐴. (Top) In row 1, the RDX
explanation grids show red and yellow birds. Upon closer inspection,
one can observe birds that have yellow/red backs mixed with birds with
black backs. This is particularly easy to notice in the 4th explanation
grid. There are birds with yellow heads and black backs mixed with
birds with black heads and yellow backs. In row 2 (explanations 1 - 2)
we see that 𝑪𝐴 groups birds without yellow backs closer together than
𝑪𝐴−𝑌𝐵. Explanations 1 - 3 indicate that only 𝑪𝐴 groups some types of
birds with tan, yellow, and red backs together. (Bottom) In both rows,
each SAE explanation grids shows concepts that correspond to differ-
ent bird types, unrelated to the known difference. The explanations
for both models are also indistinguishable. 122

xxviii

4.13 Investigating DINOv2 vs. DINO on Mittens (aligned). We vi-
sualize RDX difference explanations in both directions on the Mit-
tens dataset (Tab. 4.7). This dataset contains images of mittens,
socks and Christmas stocking from ImageNet [50]. For example,
RDX(𝑴𝐷2,𝑴

′
𝐷
) generates explanations for concepts that are in 𝑴𝐷2

(DINOv2), but not 𝑴′
𝐷

(aligned DINO). We refer to the explanations
as E1 to E5 (left to right). (Top) PCA plots of the representations with
cluster membership (light colors) and samples (dark colors). In each
direction, the left plot contains the concept “source” representation
while the right plot has the selected clusters overlayed on its represen-
tation. Clusters on the left plot generally appear better organized than
in the right plot. (RDX(𝑴𝐷2,𝑴

′
𝐷
)) E1: crocheted socks, E2: hori-

zontal mittens, E3: vertical pairs of mittens, E4: crocheted mittens,
E5: children’s mittens. (RDX(𝑴𝐷 ,𝑴

′
𝐷2)) E1: multi-colored wool

socks, E2: assorted pairs of mittens, E3: children with Christmas
decorations, E4: Christmas paraphernalia mittens, and E5: woolen
clothes being worn. 123

4.14 Investigating DINOv2 vs. DINO on Primates (aligned). We vi-
sualize RDX difference explanations in both directions on the Pri-
mates dataset (Tab. 4.7). This dataset contains images of gibbons,
siamangs and spider monkeys from ImageNet [50]. For example,
RDX(𝑴𝐷2,𝑴

′
𝐷
) generates explanations for concepts that are in 𝑴𝐷2

(DINOv2), but not 𝑴′
𝐷

(aligned DINO). We refer to the explanations
as E1 to E5 (left to right). (Top) PCA plots of the representations with
cluster membership (light colors) and samples (dark colors). In each
direction, the left plot contains the concept “source” representation
while the right plot has the selected clusters overlayed on its represen-
tation. Clusters on the left plot generally appear better organized than
in the right plot. (RDX(𝑴𝐷2,𝑴

′
𝐷
)) E1: black siamangs in diverse en-

vironments, E2: tan gibbons, E3: orangutans and gibbons playing, E4:
white-cheeked gibbons, and E5: spider monkeys. (RDX(𝑴𝐷 ,𝑴

′
𝐷2))

E1: siamangs laying in grass, E2: gibbons swinging, E3: lower
resolution images of primates, viewed through glass or from videos,
E4: tree environment with distant primates, and E5: assorted primates
behind fencing. 124

xxix

4.15 Investigating CLIP-iNat vs. CLIP on Maples (aligned). We visu-
alize RDX difference explanations in both directions on the Maples
dataset (Tab. 4.7). This dataset contains images of red maples, sugar
maples, Norway maples, and silver maples from iNaturalist [49].
RDX(𝑴𝐶𝑁 ,𝑴

′
𝐶𝑁
) generates explanations for concepts that are in 𝑴𝐶𝑁

(CLIP-iNat), but not 𝑴′
𝐶

(aligned CLIP). We refer to the explanations
as E1 to E5 (left to right). (Top) PCA plots of the representations
with cluster membership (light colors) and samples (dark colors).
In each direction, the left plot contains the concept “source” repre-
sentation while the right plot has the selected clusters overlayed on
its representation. Clusters on the left plot generally appear better
organized than in the right plot. These types of maples have subtle
differences beyond the expertise of most people so we use ChatGPT-4o
to generate descriptions. (RDX(𝑴𝐶𝑁 ,𝑴

′
𝐶
)) E1: “Large, dark green,

sharply lobed leaves; smooth surface; some handheld, often against
tree bark or forest background,” E2: “Varied color (green, red, yellow),
symmetric lobes with central point, often single leaves photographed
on flat surfaces,” E3: “Small clusters of light green to reddish leaves,
forest floor or rocky environment, less prominent lobes,” E4: “Bright
red leaves, often handheld, five lobes with narrow points, smooth
margins, clear vein structure,” and E5: “Yellow mottled leaves, some
black spotting, thick lobes, visible veins, photos taken in autumn
light or against tree bark.” (RDX(𝑴𝐶 ,𝑴

′
𝐶𝑁
)) E1: “Leaves with deep

sinuses, bright green, flat edges, consistent lighting, often low to
ground or with visible bark,” E2: “Yellow-green foliage, broad flat
leaves with few teeth, tree clusters with hanging leaves, slight curl,”
E3: “Five-lobed leaves, medium green, fine-toothed edges, spread
flat, some variation in lighting and angle,” E4: “Red spring buds
and samaras, no full leaves visible, bare branches, sky background,
some birds,” and E5: “Light green leaves with coarsely toothed edges,
translucent lighting, some purplish tinge in parts, lobed leaves.” . . . 125

xxx

4.16 Investigating CLIP-iNat vs. CLIP on Corvids (aligned). We
visualizeRDX difference explanations in both directions on the Corvids
dataset (Tab. 4.7). This dataset contains images of crows and ravens
from iNaturalist [49]. For example, RDX(𝑴𝐶𝑁 ,𝑴

′
𝐶𝑁
) generates

explanations for concepts that are in 𝑴𝐶𝑁 (CLIP-iNat), but not 𝑴′
𝐶

(aligned CLIP). We refer to the explanations as E1 to E5 (left to right).
(Top) PCA plots of the representations with cluster membership (light
colors) and samples (dark colors). In each direction, the left plot
contains the concept “source” representation while the right plot has
the selected clusters overlayed on its representation. Clusters on
the left plot generally appear better organized than in the right plot.
These types of corvids have subtle differences beyond the expertise
of most people so we use ChatGPT-4o to generate descriptions.
(RDX(𝑴𝐶𝑁 ,𝑴

′
𝐶
)) E1: ‘Birds in arid or rocky environments; perched

or flying; often alone or in small groups; slimmer builds; medium
size; matte black feathers,” E2: ‘Urban and suburban settings; birds
near buildings, fences, and pavement; typically foraging; in pairs or
groups; more compact build,” E3: ‘Close-up or detailed views of
large, shaggy birds; prominent beaks and throat hackles; perched or
interacting with environment,” and E4: ‘Birds flying in sky; high
contrast silhouettes; open sky backgrounds; wing shapes and flight
patterns emphasized,” E5: ‘Birds with other wildlife (e.g. bear,
eagle); perched alone or with others; prominent size; thick bills
and throat feathers.” (RDX(𝑴𝐶 ,𝑴

′
𝐶𝑁
)) E1: ”Birds in wooded or

forested environments; perched on branches; medium size; matte
black feathers; mostly solitary or in pairs,” E2: ‘Birds on open
branches or tall perches; slightly larger size; thick beaks; prominent
neck feathers (hackles); more upright posture,” E3: ‘Birds on ground
in urban/park environments; sparse trees; usually in small groups;
foraging or walking,” E4: ‘Footprints in mud, sand, or snow; distinct
three-toed tracks; measurement tools in several images; variable
substrate,” and E5: ‘Flocks of birds flying or perched in large groups;
sky or treetops visible; misty or open-air environments.” 126

xxxi

4.17 BSR variants for RDX difference function variants. We compute
BSR variants for all RDX distance variants using each difference
function. By default we use the locally biased difference function, we
denote experiments with the subtraction difference function as RDX
(Sub). We compute the BSR metric on the MNIST experiments. We
see, that BSR𝐿𝑆 is a poor metric, thus we focus on BSR (neighborhood)
and BSR𝑀𝑁 to assess the different variants. See Sec. 4.9.5 for a longer
discussion. Under all distance variants, we can see that RDX with the
locally biased difference function outperforms subtraction consistently. 128

4.18 BSR variants for RDX variants and baselines. We compute BSR
variants for several methods. We evaluate RDX variants with neigh-
borhood distances (RDX), neighborhood distances and PageRank [61]
sampling (RDX𝑃𝑅), max-normalized distances (RDX𝑀𝑁), and locally-
scaled distances [60] (RDX𝐿𝑆). We compute the BSR metric with
all three distance function variants on the MNIST, CUB, and Im-
ageNet/iNaturalist experiments (without alignment). We see that
BSR𝐿𝑆 is a poor metric as all methods perform perfectly in one of
the two comparison directions, suggesting that the scaling technique
does not make distances across representations comparable. We
focus BSR (neighborhood) and BSR𝑀𝑁 to assess the different variants.
First, we see broadly that RDX variants outperform all baseline meth-
ods. Among them, RDX and RDX𝑀𝑁 , although RDX𝑀𝑁 shows slightly
greater variance. 129

4.19 Comparing explanations using max-normalized distances vs.
neighborhood distances. (Row 1) Both RDX variants generate
good difference explanations that capture mixing that is unique to
𝑴35. (Row 2) RDX with neighborhood distances focuses much more
on the known difference with all three explanations showing cleanly
grouped 3s. In contrast, RDX𝑀𝑁 shows one group of 3s and two other
groups unrelated to the known difference. 130

6.1 Text-Aligned Diffusion Perception (TADP). In TADP, image cap-
tions align the text prompts and images passed to diffusion-based
vision models. In cross-domain tasks, target domain information is
incorporated into the prompt to boost performance. 146

xxxii

6.2 Overview of TADP. We test several prompting strategies and evaluate
their impact on downstream vision task performance. Our method
concatenates the cross-attention and multi-scale feature maps before
passing them to the vision-specific decoder. In the blue box, we show
three single-domain captioning strategies with differing levels of text-
image alignment. We propose using BLIP [17] captioning to improve
image-text alignment. We extend our analysis to the cross-domain
setting (yellow box), exploring whether aligning the source domain
text captions to the target domain may impact model performance
by appending caption modifiers to image captions generated in the
source domain and find model personalization modifiers (Textual
Inversion/Dreambooth) work best. 150

6.3 Effects of latent scaling (LS) and BLIP caption minimum length.
We report mIoU for Pascal, mIoU for ADE20K, and RMSE for NYUv2
depth (right). (Top) Latent scaling improves performance on Pascal
∼0.8 mIoU (higher is better), ∼0.3 mIoU, and ∼5.5% relative RMSE
(lower is better). (Bottom) We see a similar effect for BLIP minimum
token length, with longer captions performing better, improving ∼0.8
mIoU on Pascal, ∼0.9 mIoU on ADE20K, and ∼0.6% relative RMSE. 153

6.4 Cross-attention maps for different types of prompting (before
training). We compare the cross-attention maps for four types of
prompting: oracle, BLIP, Average EOS tokens, and class names
as space-separated strings. The cross-attention maps for different
heads at all different scales are upsampled to 64x64 and averaged.
When comparing Average Template EOS and Class Names, we see
(qualitatively) averaging degrades the quality of the cross-attention
maps. Furthermore, we find that class names that are not present in the
image can have highly localized attention maps (e.g., ‘bottle’). Further
analysis of the cross-attention maps is available in Sec. 6.7, where we
explore image-to-image generation, copy-paste image modifications,
and more. 156

xxxiii

6.5 Qualitative image-to-image variation. An untrained stable diffusion
model is passed an image to perform image-to-image variation. The
number of denoising steps conducted increases from left to right (5 to
45 out of a total of 50). On the top row, we pass all the class names in
Pascal VOC 2012: “background airplane bicycle bird boat bottle bus
car cat chair cow dining table dog horse motorcycle person potted
plant sheep sofa train television”. In the bottom row we pass the
BLIP caption “a bird and a dog”. 163

6.6 Copy-paste experiment. A bottle, a cat, and a horse from different
images are copied and pasted into our base image to see how the
cross-attention maps change. The label on the left describes the
category of the item that has been pasted into the image. The labels
above each map describe the cross-attention map corresponding to
the token for that label. 164

6.7 Averaging vs. EOS. In [7], for each class name, the EOS token from
80 prompts (containing the class name) was averaged together. The
averaged EOS tokens for each class were concatenated together and
passed to the diffusion model as text input. We explore if averaging
drives the diffuse nature of the cross-attention maps. We replace the
80 prompt templates with a single prompt template: “a photo of a
{class name}” and visualize the cross-attention maps. In the top row,
we show the averaged template EOS tokens. In the bottom row, we
show the single template EOS tokens. 164

6.8 Impact of off-target classes on semantic segmentation performance.
The matrices show normalized scores averaged over pixels on Pascal
VOC 2012 for an oracle-trained model when receiving either present
class names (left) or all class names (right). 165

6.9 Recall analysis. ADE20k mIOU per image with respect to the recall
of classes present in the caption. We embedded each word in our
caption with CLIP’s text encoder. We considered a cosine similarity
of ≥ 0.9 with the embedded class name as a match. Linear regression
analysis shows positive correlations between recall and mIoU (𝑟 = 0.28).167

6.10 Object size analysis. ADE20k IOU per object image with respect
to the relative object size (pixels divided by total pixels). Linear
regression analysis shows positive correlations between relative object
size and the IoU-score of a class (𝑟 = 0.40). 167

xxxiv

6.11 Ground truth examples of the tokenized datasets. 168
6.12 Textual inversion and Dreambooth tokens of Cityscapes to Dark

Zurich. 168
6.13 Textual inversion and Dreambooth tokens of VOC to Comic. . . . 169
6.14 Textual inversion and Dreambooth tokens of VOC to Watercolor. 169
6.15 Predictions (top) and Ground Truth (bottom) visualizations for

Pascal VOC2012. 170
6.16 Predictions (top) and Ground Truth (bottom) visualizations for

ADE20K. 170
6.17 Predictions (top) and Ground Truth (bottom) visualizations for

NYUv2 Depth. 170
6.18 Depth estimation comparison: Image, Ground Truth, and predic-

tion visualizations for Midas, VPD, and TADP (ours) in NYUv2
Depth. Black boxes (red on original image) show where TADP is
better than Midas and/or VPD. 171

6.19 Image segmentation comparison: Image, Ground Truth, and
prediction visualizations for InternImage, VPD, and TADP (ours)
in ADE20K. Red boxes show where TADP is better than InternImage
and/or VPD. 172

6.20 Image segmentation comparison: Image, Ground Truth, and
prediction visualizations for InternImage, VPD, and TADP (ours)
in ADE20K. Red boxes show where TADP is better than InternImage
and/or VPD. 173

6.21 Depth estimation comparison: Image, Ground Truth, and predic-
tion visualizations for Midas, VPD, and TADP (ours) in NYUv2
Depth. TADP is worse than Midas and/or VPD in these images in
terms of the general scale . 174

6.22 Image segmentation comparison: Image, Ground Truth, and
prediction visualizations for InternImage, VPD, and TADP (ours)
in ADE20K. Red boxes show where TADP is worse than InternImage
and/or VPD. 174

6.23 Cross-domain image segmentation comparison: Image, Ground
Truth, and prediction visualizations for Refign-DAFormer, and
TADP (ours) for Cityscapes to Dark Zurich Val. Red boxes show
where TADP is better than Refign-DAFormer. 175

xxxv

6.24 Cross-domain object detection comparison: Image, Ground Truth,
and prediction visualizations for DASS, and TADP (ours) for
Pascal VOC to Watercolor2k. Red boxes show the detections of
each model. Notice that TADP not only beats DASS mostly, but also
finds more objects than the ones annotated in the ground truth. . . . 176

7.1 Schematics of our model. (A) (Left-to-right) A sequence of actions
modifies the visual scene over time. (B) (Bottom-to-top) The scene
changes as a result of manipulation. The images 𝑥𝑡 and 𝑥𝑡+1 of the
scene before and after manipulation are mapped by perception into
representations 𝑧𝑡 and 𝑧𝑡+1. These are compared by a classifier to
predict which action took place. Learning monitors the error between
predicted action and a signal from the motor system representing
the actual action, and updates simultaneously the weights of both
perception and the classifier to increase prediction accuracy. (C)
(Bottom-to-top) Our model of perception is a hybrid neural network
composed of the concatenation of a convolutional neural network
(CNN) with a fully-connected network (FCN 1). The classifier is
implemented by a fully connected network (FCN 2) which compares
the two representations 𝑧𝑡 and 𝑧𝑡+1. The two perception networks are
actually the same network operating on distinct images and therefore
their parameters are identical and learned simultaneously in a Siamese
network configuration [26]. Details of the models are given in Fig. 7.15.190

7.2 Training image sequence samples. We trained our model using
sequences of images that were generated by randomly concatenating
take (T), put (P) and shake (S) manipulations, while limiting the
number of objects to the {0 . . . 3} set (see Methods - Training Sets).
We experimented with two different environment/scene statistics:
(A) Identical objects (15x15 pixel squares) with random position.
(B) Objects (squares) of variable position, size and contrast. The
overall image intensity is a poor predictor of cardinality in this dataset
(statistics in Fig. 7.14). Images have been inverted to better highlight
objects with low contrast. 190

xxxvi

7.3 Action classification performance. The network accurately classifies
actions up to the training limit of three objects, regardless of the
statistics of the data (the x axis indicates the number of objects in
the scene before the action takes place). Error increases when the
number of objects in the test images exceeds the number of objects in
the training set. 95% Bayesian confidence intervals are shown by the
shaded areas (272 ≤ N ≤ 386). The gray region highlights test cases
where the number of objects exceeds the number in the training set.
The dashed red line indicates chance level. 191

7.4 The embedding space for Model B. To explore the structure of
the embedding space, we generated a dataset with {0 . . . 30} objects,
extending the number of objects far beyond the limit of 3 objects
in the training task. Each image in the dataset was passed through
Model B and the output (the internal representation/embedding) of
the image is shown. See Fig. 7.4 for Model A. (A) Each dot indicates
an image embedding and the embeddings happen to be arranged
along a line. The number of objects in each image is color coded.
The smooth gradation of the color suggests that the embeddings are
arranged monotonically with respect to the number of objects in the
corresponding image. The inset shows that the embeddings of the
images that contain only a few objects are arranged along the line into
“islands.” (B) We apply an unsupervised clustering algorithm to the
embeddings. Each cluster that is discovered is denoted by a specific
color. The cluster X, denoted by black crosses, indicates points that the
clustering algorithm excluded as outliers. (C) The confusion matrix
shows that the clusters that are found by the clustering algorithm
correspond to numbers. Images containing 0 — 6 objects are neatly
separated into individual clusters; after that images are collected into a
large group that is not in one-to-one correspondence with the number
of objects in the image. The color scale is logarithmic (base 10). . . . 192

xxxvii

7.5 Relative and absolute estimation of quantity. (A) Two images may
be compared for quantity [32] by computing their embedding and
observing their position along our model’s embedding line: the image
that is furthest along the line is predicted to contain more objects.
Here images containing a test number of objects (see three examples
above containing N=12, 16 and 20 objects) are compared with images
containing the reference number of objects (vertical orange dashed
line, N=16). The number of objects in the test image is plotted
along the x axis and the proportion of comparisons that result in a
“more” response are plotted on the y-axis (blue line). Human data
from 10 subjects [33] is plotted in green. (B) The position of images
in the embedding space fall along a straight line that starts with 0,
and continues monotonically with an increasing number of objects.
Thus, the position of an image in the embedding line is an estimate
for the number of objects in the scene. Here we demonstrate the
outputs of such a model, where we rescale the embedding coordinate
(an arbitrary unit) so that one unit of distance matches the distance
between the “zero” and the “one” clusters. The y-axis represents
such perceived numerosity, which is not necessarily an integer value.
The red line indicates perfect prediction. Each violin plot (light
blue) indicates the distribution of perceived numerosities for a given
ground-truth number of objects. The width of the distributions for
the higher counts indicates that perception is subject to errors. There
is a slight underestimation bias for higher numbers, consistent with
that seen in humans [34, 35]. In fact, Krueger shows that human
numerosity judgements (on images with 20 to 400 objects) follow a
power function with an exponent of 0.83 ± 0.2. The green line and its
shadow depict the range of human numerosity predictions on the same
task. The orange lines are power function fits for seven models trained
in the same fashion as Model B with different random initializations. 195

xxxviii

LIST OF TABLES

Number Page

2.1 Performance of different visual knowledge tracing approaches
on data from human learners. We observe that our two recurrent
based models, the direct response 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 and the classifier prediction
𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 , perform best on the Butterflies and Eyes dataset but are
worse on the synthetic Greebles task. Learners found the Greebles
task the most challenging, and as a result, there was much less
learning occurring compared to the first two datasets. ‘GT Label’ is
an additional baseline that uses the corresponding ground truth class
label 𝑦 as the prediction of the learner’s response 𝑟. 29

2.2 Performance of all model variants on the Butterflies dataset. The
model variant is denoted in the subscript corresponding to the same
subscripts in 2.7.1. One can see that 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 (𝑏𝑎𝑠𝑒) performs poorly for a
recurrent model. This model does not have access to any information
about the current time-step and is effectively guessing both the image
that will be shown and the associated response. We also show the
per-class average precision scores on the train sequence in addition to
the micro and macro scores from before. These scores show that the
benefit of the recurrent models appear primarily in classes that have
large changes in average performance (e.g. Red Admiral) over the
training period. The models with † are models presented in Table 1 of
the main paper. The scores are reported with their standard deviations
and the top average performers in each column are in bold. 36

2.3 Performance of all model variants on the Eyes dataset. Please see
the caption of Table 2.2 for more details. 37

2.4 Performance of all model variants on the Greebles dataset. Please
see the caption of Table 2.2 for more details. 37

xxxix

2.5 Performance of models trained using a pre-trained ResNet with
partially frozen weights. Method details are described in Sec. 2.7.5.
We only compare model variants that appear in the main text. Similar
to the original experiment results the classifier prediction model
(𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑) performs the best. However, the overall performance
decreases slightly across the board. We observe a larger decrease for
the direct response model (𝜙𝑑𝑖𝑟𝑒𝑐𝑡), likely due to the larger dependence
that it has on the feature space. 38

2.6 Performance of models after concatenating per-class accuracy
information to the input vector for the tracing model. Method
details are described in (Sec. 2.7.6). We only compare model variants
that appear in the main text. We observed a boost for all models. . . . 38

2.7 Effect of embedding dimension on model performance. We train
the 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 tracing model on the butterflies dataset with different
embedding dimensions. We find that embedding dimension has no
impact on performance. 38

2.8 Structure of the CNN backbone used to learn the image represen-
tation. The bolded and italicized entries are variable and depend on
the experiment and dataset. The number of image channels (img_chns)
is three for the Butterflies and Greebles dataset, but is one for Eyes.
The Butterflies and OCT datasets contain larger images (144 x 144),
and so img_feats is set to 1296. For the Greebles dataset, the images
are (128 x 128) and img_feats is set to 1204. Finally, the output of
the model is the size of the embedding dimension and is set to 16 for
all experiments. 39

3.1 Model performance. 89
3.2 Concept extraction. 89
3.3 Computational cost for ResNet18 vs. ResNet-50 on ImageNet. . . 90
3.4 Selected layers. 91

4.1 Linear probe accuracy across datasets described in Tab. 4.7. . . . 114
4.2 Ground truth label counts for explanations on Maples. 115
4.3 Comparing RDX variants on 𝑴35 vs. 𝑴𝑏 under different BSR

variants. 130
4.4 Expected effects of “known” differences. 133
4.5 Models and their identifiers from the TIMM library. 134

xl

4.6 Runtime (in seconds) for each XAI method. 134
4.7 Comparison summary table. Experimental settings where we report

comparison name, dataset, number of images, concepts, and gamma
values. We name the comparisons using one direction, but compare
in both directions in all experiments. 135

6.1 Prompting for Pascal VOC2012 Segmentation. We report the single-
scale validation mIoU for Pascal experiments. (R): Reproduction of
VPD, Avg: EOS token averaging, LS: Latent Scaling, G: Grammar,
OT: Off-target information. For our method, we indicate the minimum
length of the BLIP caption with TADP-𝑋 and nouns only with (NO). 152

6.2 Semantic segmentation with different methods for ADE20k. Our
method (green) achieves SOTA within the diffusion-pretrained models
category. The results of our oracle indicate the potential of diffusion-
based models for future research as it is significantly higher than the
overall SOTA (highlighted in yellow). See Tab. 6.1 for a notation key
and Tab. 6.6 for fast schedule results. 154

6.3 Depth estimation in NYUv2. We find latent scaling accounts for a
relative gain of ∼ 5.5% on the RMSE metric. Additionally, image-text
alignment improves ∼ 4% relative on the RMSE metric. A minimum
caption length of 40 tokens performs the best.We also explore adding a
text-adapter (TA) to TADP, but find no significant gain. See Table 6.1
for a notation key. 155

6.4 Cross-domain semantic segmentation. Cityscapes (CD) to Dark
Zurich (DZ) val and Nighttime Driving (ND). We report the mIoU.
Our method sets a new SOTA for DarkZurich and Nighttime Driving. 158

6.5 Cross-domain object detection. Pascal VOC to Watercolor2k and
Comic2k. We report the AP and 𝐴𝑃50. Our method sets a new SOTA
for Watercolor2K. 159

6.6 Semantic segmentation fast schedule on ADE20K. Our method has
a large advantage over prior work on the fast schedule with significantly
better performance in both the single-scale and multi-scale evaluations
for 4k and 8k iterations. 166

xli

6.7 ADE20K — Oracle Precision-Recall Ablations We modify the
oracle captions by randomly adding or removing classes such that
the precision and recall are 0.50, 0.75, or 1.00. We train models
on ADE20K on a fast schedule (4K) using these captions. The 4k
iteration oracle equivalent is highlighted in blue. 166

6.8 Single-Domain Hyperparameters. 178
6.9 Cross-Domain Hyperparameters. 179

1

C h a p t e r 1

INTRODUCTION

Intelligence depends on information-rich and organized representations of signals
from the real world. In biology, organisms receive sensory input, compress it, and
structure it for future use. Similarly, artificial intelligences (AIs) rely on compressed
representations of raw data that enable them to perform complex tasks. The past few
years have seen remarkable progress in AI, driven by advances in datasets, model
architectures, and training methods. Yet, despite this progress, our understanding of
a model’s internal representations remains surprisingly limited. Richard Feynman
once said, “What I cannot create, I do not understand.” Amusingly, AI research
seems to have embraced a different principle: we regularly create things we do not
fully understand. This is not a new phenomenon — humans have long relied on
intuition to make progress. For instance, farmers successfully bred livestock for
desirable traits centuries before the discovery of genetics. However, it is clear that
understanding has benefits: it allows us to be more efficient with our resources and
better anticipate possible failures. For example, due to our knowledge of genetics,
we have modified plants to be more hardy and cured diseases at their root causes.

Data, like images, videos, text, audio, etc., capture signals that exist in our world.
These signals contain redundancy, for example, in a landscape image, many pixels
will capture the “sky.” Rather than storing all of this redundant information, we
compress the raw data into concise formats that (ideally) contain the information we
care about. These compressed formats are called data representations. This thesis
presents research into comparing and aligning data representations to help uncover
how both humans and models process visual scenes. The following section provides
background on how these approaches can be used to improve our understanding of
model behavior, to improve model performance, and build a better understanding of
biological vision representations. Finally, I present the motivation and overview for
the chapters of this thesis.

2

1.1 Aligning Humans and Models for Improving Model Understanding
AI has become part of workflows in science [1, 2, 3], software engineering [4, 5],
law [6, 7], etc. As it becomes deeply integrated into core systems in our society,
we must ask if it is well-aligned with our goals as a community. This concern was
famously expressed by Norbert Wiener in 1960:

“If we use, to achieve our purposes, a mechanical agency with whose
operation we cannot efficiently interfere. . . , we had better be quite sure
that the purpose put into the machine is the purpose which we really
desire.”

Broadly speaking, there are two paths towards aligning humans and AI models:

• Models are trained to mimic human representations and/or behavior.
One of the key drivers behind the adoption of large language models (LLMs)
in society are training approaches that have been developed to align model
outputs to human preferences [8, 9, 10, 11]. These methods are designed
to encourage LLMs to generate content that is safe, factually accurate, and
reliable, thereby fostering greater user trust in human–AI interactions.

• Humans learn to understand model behavior. A second approach to align-
ment focuses on helping humans better understand complex models, effectively
aligning human mental representations to the model’s representation [12, 13,
14, 15]. This line of research aims to generate explanations of model behavior
by analyzing how a model transforms different inputs to arrive at an output.
The next section explores why learning from AI is valuable, and outlines the
methods that enable us to do so effectively.

1.2 Learning from AI
AI models have already surpassed humans in several domains, such as playing chess
or go [16], driving cars safely [17], recognizing species in images [18, 19]. In the
coming years, they are likely to exceed human performance in many more. In these
cases, I argue that it is more valuable for humans to learn from the model’s knowledge
than for developers to constrain the model to behave like a human. This perspective
underlies several chapters of this thesis, which are motivated by the goal of enabling
humans to learn from AI, specifically in the context of categorizing visual scenes. In
my view, there are three components to effective systems for teaching humans.

3

1. Estimation of student knowledge. In the educational system, this takes the
form of conversation, quizzes, and tests.

2. Explanations that effectively communicate knowledge. In the educational
system, this takes the form of lectures, textbooks, tutorials, assignments, etc.
Ideally, explanations are personalized for each student, so that they are targeted
to weaknesses in the student’s knowledge.

3. Curricula to lead students towards expert knowledge. In the educational
system, this takes the form of teachers using their experience to inform the
sequencing of course material, essentially the design of the syllabus.

Effective teaching systems require a feedback loop from all three components, student
knowledge informs the design of curricula, student knowledge requires the adjustment
of explanations, and both curricula and explanations improve student knowledge. All
of the components to build an effective teaching system have parallels in the machine
learning literature, but they have not reached a level of maturity at which they can
be combined into a single effective teaching system for visual categorization. I will
expand on each in the following subsections.

1.2.1 Knowledge Tracing
Knowledge tracing methods aim to track the knowledge of a student as they learn
new material. These methods take a history of questions and student responses as
input and tries to predict the student’s future responses. Initially, these methods were
Bayesian models [20], but they have given way to deep learning based approaches [21].
Recently, pre-trained LLMs have also been shown to be effective at tracing student
knowledge [22, 23]. While reasonably large datasets exist for knowledge tracing in
text based learning settings, like math, science, statistics, etc. [24, 25], large datasets
do not yet exist for visual learning.

1.2.2 Explainable AI (XAI)
Explainable AI (XAI), interpretability, mechanistic interpretabilty, etc. are all
common names for methods that aim to break down model behavior in human
understandable ways, ie., explanations. XAI methods are grouped into two broad
categories:

Intrinsic XAI. Intrinsic XAI methods modify model architectures or behavior to
enforce that the model uses an interpretable reasoning process to arrive at a decision.

4

For example, concept bottleneck models ask models to predict the presence of a
concept as an intermediate step to making a decision [26], visual programming
methods ask model’s to generate executable code that can be directly inspected [27,
28, 29], and B-cos networks enforce that neuron activations to align with specific
inputs [30]. However, in general, intrinsic XAI methods tend to reduce model
performance by introducing extra constraints [26, 30]. This is not ideal if the goal is
to understand model behavior that exceeds human performance.

Post-hoc XAI. The majority of XAI methods are post-hoc XAI methods. These
methods try to analyze existing models without introducing any constraints on their
training procedure. Broadly, there are two categories of post-hoc XAI methods:

• Local Methods. [31, 32, 33] These methods aim to attribute a model’s output
to a specific part of the input. For example, if a model decided that an image
was of a dog, what part of the image did it use to arrive at the decision? It
could be the face, tail, body, background, etc.

• Global Methods. [14, 34, 35, 36, 37, 38, 39] These methods aim to convey a
“global” understanding of the types of features that the model has discovered in
the data. Many global methods are a form of dictionary learning. Dictionary
learning methods aim to decompose model outputs into a set of interpretable,
core “concepts” and measure how much each of these concepts contributed to
each model’s decision.

Some recent methods combine both local and global approaches to generate more
detailed explanations for users [12, 40, 41, 42].

Concept-based XAI. Concept-based XAI methods can be used as a post-hoc XAI
method and have had some success in human evaluations [12, 14, 41]. These
methods assume models learn human understandable concepts, sets of inputs that
contain some common characteristic. To extract these concepts, model embeddings
are decomposed into a linear combination of 𝑘 concept embeddings and concept
coefficients. The concept embeddings and coefficients are learned using one of many
dictionary-learning approaches [13, 36]. Once learned, the concepts are visualized
by sampling the inputs that have the largest coefficients for each concept [12, 13, 36].

Evaluation. Hundreds of XAI methods have been developed, but evaluations show
that there is significant room for improvement. We have found that XAI methods can

5

help humans understand models a little better in specific situations, but they can also
confuse users [12, 41, 43, 44, 45]. For example, Kim et al. found that users were
more likely to trust a model provided any explanation, even if the explanation was for
an incorrect prediction, suggesting that the explanations are not precise enough to be
trusted. This is related to a critical challenge in explainable AI: the trade-off between
generating explanations that are simple enough to be comprehensible to users and
those that are faithful to the model’s internal computations. In practice, explanation
algorithms often favor simplicity, which may obscure the actual mechanisms driving
predictions. One possible solution to this issue is to introduce curricula that is
designed to slowly close the gap between the user’s knowledge and human knowledge.
While this has not yet been completely realized, there is some evidence that this may
be the case. Recently, Schut et. al showed that explanations for a neural network
chess model could help grandmasters (chess experts) improve their play, but these
same explanations would be too complex to interpret for a layperson [46].

1.2.3 Teaching Systems
Methods for automating the teaching of categorization tasks have been explored.
Work in this space is called machine teaching for humans. Generally, machine
teaching algorithms select a model for the student, a learning algorithm for the
student, and then develop an algorithm to optimize the learning of the student [47].
Many algorithms developed for this task assume that they have knowledge of the
learner model [48, 49]. However, the problem quickly becomes difficult under
more realistic conditions, such as limited access to the learner’s current knowledge
state [50]. Despite these challenges, several algorithms have been successful for
teaching visual categories, although they often rely on strong assumptions about
the learner’s behavior [51, 52, 53]. A central obstacle in designing algorithms to
teach humans lies in evaluation: assessing teaching effectiveness typically requires
costly and complex human-subject experiments. For example, evaluations of these
algorithms bring up questions similar to the ones in evaluating explainability methods:
How much did the student know initially? How long should we interact with the
student? Is the material even learnable? What kind of user interface is appropriate for
this experiment? These questions make developing and evaluating machine teaching
methods challenging.

6

1.3 Aligning Representations for Improving Model Performance
Recently, researchers have developed “foundation" models, large vision, language,
and multi-modal models that have impressive performance and generalize to many
established tasks [2, 18, 19, 54, 55, 56, 57]. The training procedures for these models
are often costly and difficult to reproduce, as they make use of very large models,
massive datasets, and costly, specialized infrastructure. Rather than re-training new
models from scratch, researchers have been adapting and combining foundation
models to solve complex tasks. When combining two or more models, it is critical
that the outputs of one model are aligned well with the inputs of the next model
in order to maximize model performance. These efforts have been valuable and
improved model performance on important tasks like image generation [58, 59],
image segmentation [1, 60], visual question answering [27, 28, 29], etc.

In a separate line of research, certain types of alignment to human representations has
been observed to improve model generalization and performance on classification
tasks [61, 62]. Although not an explicit goal, CLIP [18], a powerful foundation
model that shows impressive generalizability on an array of classification tasks, also
aligns model representations to human knowledge by aligning textual captions for
visual data [63].

1.4 Aligning Representations for Modeling Human Visual Psychology
The human brain is effectively a black-box, it’s internal mechanisms are both difficult
to understand and hard to observe. Thus, a common approach to studying the human
brain is to thoughtfully select an interesting set of stimuli, present it to the brain, and
carefully measure the resulting outputs.

There are several “levels" at which one can conduct this kind of experiment. For
example, at the neuronal level, patch clamp recordings have been used to understand
the behavior of ion channels in a neuron [64]. At a systems level, optogenetics has
been used to perturb and record the behavior of biological neural networks [65].
Finally, at a cognitive level, psychophysics has developed careful stimuli to understand
the psychology of the human brain [66].

In particular, visual psychophysics [67] investigates human visual psychology by
measuring how humans respond to specific visual stimuli. Results from this line
of research have revealed when humans are able to detect signals from noise [68],
the likelihood that humans will notice a minor difference in stimuli [66], the ability
of humans to estimate the number of objects in a visual scene with only a quick

7

glance [69], etc. Of course, the natural follow-up question is: How do these
phenomena arise mechanistically? Biological experiments can be costly and invasive,
thus, there is great interest in aligned models of the human visual system that can
be used to guide experimentation and generate hypotheses about how the brain
operates [70, 71, 72]. Interestingly, both the process of aligning a model and the
aligned model itself are valuable. The methods used to align a model tell us about
what data [73], model architectures [74, 75, 76], learning signal [77, 78, 79], etc. are
possibly relevant in how humans learn to perceive the world. The model itself can
be used in experiments that can generate hypotheses about how the human visual
system may react to certain stimuli [80, 81, 82, 83].

1.5 Thesis Motivation and Organization
This thesis is organized into three parts. In Part 1, I present work motivated by
the goal of learning from vision models. In Chapter 2, I introduce a method for
tracing student knowledge on visual categorization tasks. In this study, we collected
a dataset in which students were shown an image and asked to predict its category.
As feedback, the students received the correct category name. Upon completing
this project, it became clear that (1) collecting data in this manner was too costly
and (2) richer forms of feedback would be necessary to teach visual categories
effectively. This realization, combined with the emergence of models surpassing
human performance in visual categorization, shifted my focus toward the challenge
of generating explanations that could help humans learn patterns discovered by
the vision model. Concept-based explainable AI (XAI) methods (Sec. 1.2.2) have
been widely used to extract interpretable concepts from model representations.
However, modern models learn thousands of concepts, making it difficult for users to
navigate these explanations and understand how each concept contributes to overall
performance. A core principle of effective teaching is identifying what a student
does not yet understand. Ideally, we would like to filter model concepts so that we
show the human student features they have not yet discovered. One natural approach
is to compare human and model representations to identify concepts unique to the
model. However, collecting the data needed to estimate human representations is
costly. As a proxy for this ultimate goal, I decided to develop methods that could
compare two model representations and show us concepts that were unique to each
model. Specifically, in Chapter 3, I describe an approach that compares model
representations using visual concepts. This method extracts concepts for each model
independently and compares the concepts to help users gain insight into conceptual

8

differences between models. Our results revealed interesting and subtle differences
between models that could be linked to differences in model performance. However,
we found that the explanations could be challenging to interpret. In Chapter 4, we
conduct experiments that identify three issues with using concept-based XAI for
comparison:

1. Independent concept extraction leads to overlapping concepts. When
concept extraction is performed separately for each model, especially if the
models are similar, the resulting concepts tend to overlap. This overlap
can result in nearly identical explanations that fail to highlight meaningful
differences between model representations.

2. Sampling images with the maximum coefficients can hide model differences.
When representations and concepts are similar, sampling the inputs with the
maximum coefficients can hide subtle differences between concept coefficients
on the rest of the dataset. These concept coefficient differences are critical for
understanding how the two models differ in performance.

3. Linear combinations of concepts are uninterpretable. Asking users to
mentally perform a weighted linear combination over concept explanations to
understand how a model represents an input places an unreasonable cognitive
burden on the user. In practice, this leads to vague or inaccurate interpretations,
particularly when comparing how different models represent an input.

These insights motivated the design of a new method for comparing model representa-
tions. Unlike our previous approach, our method jointly analyzes both representations
to generate targeted explanations that focus only on differences. It avoids visualizing
samples with the maximum coefficients and avoids using linear combinations, leading
to outputs that are more intuitive and easier to interpret. As we show in Chapter 4,
this new approach produces clearer comparisons and more actionable insights into
how model representations differ. In the future, I believe it will be possible to directly
compare human representations to model representations allowing us to efficiently
discover gaps in human knowledge. In Chapter 5, I explore several possible paths
toward realizing this goal.

In Part 2, I present two applications of aligning representations. In Chapter 6, we
discover a misalignment between the text and image inputs that are passed to a pow-
erful multi-modal model. After correcting this misalignment, we observe significant

9

performance improvements, and achieve state-of-the-art (SOTA) performance in
several challenging tasks. In Chapter 7, we develop a biologically inspired learning
framework for exploring number perception in vision systems. We hypothesize that
a children’s interaction with the world, namely, the way it manipulates objects, has a
critical role in developing and organizing mental representations of number. We find
that training a model with our proposed learning framework results in a human-like
representation that can reproduce several known psychophysical properties of human
number perception.

Part 3 contains the conclusion and discusses directions for future work.

References

[1] Uriah Israel et al. “A foundation model for cell segmentation.” In: arXiv
preprint arXiv:2311.11004 (2023).

[2] Alexander Kirillov et al. “Segment anything.” In: Proceedings of the IEEE/CVF
international conference on computer vision. 2023, pp. 4015–4026.

[3] John Jumper et al. “Highly accurate protein structure prediction with Al-
phaFold.” In: nature 596.7873 (2021), pp. 583–589.

[4] Windsurf Team. Windsurf. https://windsurf.com/. Accessed: 2025-
05-07. 2024.

[5] Cursor Team. Cursor: The AI Code Editor. https://www.cursor.com/
en. Accessed: 2025-05-07. 2024.

[6] Lex Machina. Lex Machina Legal Analytics.https://www.lexisnexis.
com/en-us/products/lex-machina.page. Accessed: 2025-05-08.
2025.

[7] Bloomberg Law. AI in Legal Practice: Explained.https://pro.bloomberglaw.
com/insights/technology/ai-in-legal-practice-explained/.
Accessed: 2025-05-08. 2025.

[8] Tianhao Shen et al. “Large language model alignment: A survey.” In: arXiv
preprint arXiv:2309.15025 (2023).

[9] Shengxiong Ouyang et al. “Pseudo-label generation-evaluation framework for
cross domain weakly supervised object detection.” In: 2021 IEEE International
Conference on Image Processing (ICIP). IEEE. 2021, pp. 724–728.

[10] Yang Liu et al. “Trustworthy llms: a survey and guideline for evaluating large
language models’ alignment.” In: arXiv preprint arXiv:2308.05374 (2023).

[11] Yuntao Bai et al. “Training a helpful and harmless assistant with reinforcement
learning from human feedback.” In: arXiv preprint arXiv:2204.05862 (2022).

https://windsurf.com/
https://www.cursor.com/en
https://www.cursor.com/en
https://www.lexisnexis.com/en-us/products/lex-machina.page
https://www.lexisnexis.com/en-us/products/lex-machina.page
https://pro.bloomberglaw.com/insights/technology/ai-in-legal-practice-explained/
https://pro.bloomberglaw.com/insights/technology/ai-in-legal-practice-explained/

10

[12] Thomas Fel et al. “CRAFT: Concept recursive activation factorization for
explainability.” In: CVPR. 2023.

[13] Hoagy Cunningham et al. “Sparse autoencoders find highly interpretable
features in language models.” In: ICLR. 2024.

[14] Been Kim et al. “Interpretability beyond feature attribution: Quantitative
testing with concept activation vectors (TACV).” In: ICML. 2018.

[15] Lisa Schut et al. “Bridging the human-ai knowledge gap: Concept discovery
and transfer in alphazero.” In: arXiv preprint arXiv:2310.16410 (2023).

[16] David Silver et al. “A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play.” In: Science 362.6419 (2018), pp. 1140–
1144. doi: 10.1126/science.aar6404.

[17] Kristofer D Kusano et al. “Comparison of Waymo rider-only crash data to
human benchmarks at 7.1 million miles.” In: Traffic Injury Prevention 25.sup1
(2024), S66–S77.

[18] Alec Radford et al. “Learning Transferable Visual Models From Natural
Language Supervision.” In: International Conference on Machine Learning
(2021), pp. 8748–8763. (Visited on 08/21/2023).

[19] Maxime Oquab et al. “Dinov2: Learning robust visual features without
supervision.” In: arXiv preprint arXiv:2304.07193 (2023).

[20] Albert T Corbett and John R Anderson. “Knowledge tracing: Modeling the
acquisition of procedural knowledge.” In: User modeling and user-adapted
interaction 4 (1994), pp. 253–278.

[21] Chris Piech et al. “Deep knowledge tracing.” In: Advances in neural information
processing systems 28 (2015).

[22] Unggi Lee et al. “Language model can do knowledge tracing: Simple but
effective method to integrate language model and knowledge tracing task.” In:
arXiv preprint arXiv:2406.02893 (2024).

[23] Seyed Parsa Neshaei et al. “Towards modeling learner performance with large
language models.” In: arXiv preprint arXiv:2403.14661 (2024).

[24] Douglas Selent, Thanaporn Patikorn, and Neil Heffernan. “Assistments dataset
from multiple randomized controlled experiments.” In: Proceedings of the
Third (2016) ACM Conference on Learning@ Scale. 2016, pp. 181–184.

[25] Youngduck Choi et al. “Ednet: A large-scale hierarchical dataset in education.”
In: Artificial Intelligence in Education: 21st International Conference, AIED
2020, Ifrane, Morocco, July 6–10, 2020, Proceedings, Part II 21. Springer.
2020, pp. 69–73.

[26] Pang Wei Koh et al. “Concept bottleneck models.” In: International conference
on machine learning. PMLR. 2020, pp. 5338–5348.

https://doi.org/10.1126/science.aar6404

11

[27] Damiano Marsili et al. Visual Agentic AI for Spatial Reasoning with a Dynamic
API. 2025. arXiv: 2502.06787 [cs.CV]. url: https://arxiv.org/
abs/2502.06787.

[28] Dídac Surís, Sachit Menon, and Carl Vondrick. “Vipergpt: Visual infer-
ence via python execution for reasoning.” In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2023, pp. 11888–11898.

[29] Tanmay Gupta and Aniruddha Kembhavi. “Visual programming: Composi-
tional visual reasoning without training.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2023, pp. 14953–
14962.

[30] Moritz Böhle, Mario Fritz, and Bernt Schiele. “B-cos networks: Alignment is
all we need for interpretability.” In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2022, pp. 10329–10338.

[31] Ramprasaath R Selvaraju et al. “Grad-CAM: visual explanations from deep
networks via gradient-based localization.” In: IJCV (2020).

[32] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ““Why should I
trust you?" Explaining the predictions of any classifier.” In: KDD. 2016.

[33] Scott M. Lundberg and Su-In Lee. “A unified approach to interpreting model
predictions.” In: NeurIPS. 2017.

[34] Amirata Ghorbani et al. “Towards automatic concept-based explanations.” In:
NeurIPS (2019).

[35] Ruihan Zhang et al. “Invertible concept-based explanations for cnn models
with non-negative concept activation vectors.” In: AAAI. 2021.

[36] Thomas Fel et al. “A holistic approach to unifying automatic concept extraction
and concept importance estimation.” In: NeurIPS (2023).

[37] Matthew Kowal et al. “Understanding Video Transformers via Universal
Concept Discovery.” In: CVPR. 2024.

[38] Eleonora Poeta et al. “Concept-based explainable artificial intelligence: A
survey.” In: arXiv:2312.12936 (2023).

[39] David Bau et al. “Understanding the role of individual units in a deep neural
network.” In: PNAS (2020).

[40] Jessica Schrouff et al. “Best of both worlds: local and global explanations with
human-understandable concepts.” In: arXiv:2106.08641 (2021).

[41] Reduan Achtibat et al. “From attribution maps to human-understandable
explanations through concept relevance propagation.” In: Nature Machine
Intelligence (2023).

[42] Neehar Kondapaneni et al. “Less is more: Discovering concise network
explanations.” In: ICLR 2024 Workshop on Representational Alignment. 2024.
url: https://openreview.net/forum?id=JBwpD6Yy8Q.

https://arxiv.org/abs/2502.06787
https://arxiv.org/abs/2502.06787
https://arxiv.org/abs/2502.06787
https://openreview.net/forum?id=JBwpD6Yy8Q

12

[43] Peter Hase and Mohit Bansal. “Evaluating explainable AI: Which algorith-
mic explanations help users predict model behavior?” In: arXiv preprint
arXiv:2005.01831 (2020).

[44] Sunnie SY Kim et al. “HIVE: Evaluating the human interpretability of visual
explanations.” In: European Conference on Computer Vision. Springer. 2022,
pp. 280–298.

[45] Subhash Kantamneni et al. “Are sparse autoencoders useful? a case study in
sparse probing.” In: arXiv preprint arXiv:2502.16681 (2025).

[46] Christoph Schuhmann et al. “LAION-400M: Open Dataset of CLIP-Filtered
400 Million Image-Text Pairs.” In: arXiv preprint arXiv:2111.02114 (2021).
(Visited on 08/29/2023).

[47] Xiaojin Zhu. “Machine teaching: An inverse problem to machine learning
and an approach toward optimal education.” In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 29. 1. 2015.

[48] Adish Singla et al. “Near-optimally teaching the crowd to classify.” In: ICML.
2014, pp. 154–162.

[49] Anette Hunziker et al. “Teaching multiple concepts to a forgetful learner.” In:
NeurIPS (2019).

[50] Weiyang Liu et al. “Towards black-box iterative machine teaching.” In:
International Conference on Machine Learning. PMLR. 2018, pp. 3141–3149.

[51] Edward Johns, Oisin Mac Aodha, and Gabriel J Brostow. “Becoming the
expert-interactive multi-class machine teaching.” In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 2616–2624.

[52] Oisin Mac Aodha et al. “Teaching categories to human learners with visual
explanations.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 3820–3828.

[53] Pei Wang, Kabir Nagrecha, and Nuno Vasconcelos. “Gradient-based algorithms
for machine teaching.” In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2021, pp. 1387–1396.

[54] Robin Rombach et al. “High-Resolution Image Synthesis with Latent Diffusion
Models.” In: 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2022), pp. 10674–10685. (Visited on 07/27/2023).

[55] Josh Achiam et al. “Gpt-4 technical report.” In: arXiv:2303.08774 (2023).

[56] Junnan Li et al. “BLIP-2: Bootstrapping Language-Image Pre-training with
Frozen Image Encoders and Large Language Models.” In: arXiv preprint
arXiv:2301.12597 (2023). (Visited on 08/09/2023).

[57] Hugo Touvron et al. “Llama 2: Open foundation and fine-tuned chat models.”
In: arXiv preprint arXiv:2307.09288 (2023).

13

[58] Rinon Gal et al. “An Image is Worth One Word: Personalizing Text-to-Image
Generation using Textual Inversion.” In: arXiv preprint arXiv:2208.01618
(2022). (Visited on 08/21/2023).

[59] Nataniel Ruiz et al. “DreamBooth: Fine Tuning Text-to-Image Diffusion
Models for Subject-Driven Generation.” In: arXiv preprint arXiv:2208.12242
(2022). (Visited on 08/21/2023).

[60] Neehar Kondapaneni et al. “Text-image alignment for diffusion-based per-
ception.” In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. 2024, pp. 13883–13893. url: https://
openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_
Text-Image_Alignment_for_Diffusion-Based_Perception_
CVPR_2024_paper.html.

[61] Ilia Sucholutsky and Tom Griffiths. “Alignment with human representations
supports robust few-shot learning.” In: Advances in Neural Information
Processing Systems 36 (2023), pp. 73464–73479.

[62] Robert Geirhos et al. “ImageNet-trained CNNs are biased towards texture;
increasing shape bias improves accuracy and robustness.” In: International
conference on learning representations. 2018.

[63] Raja Marjieh et al. “Words are all you need? language as an approximation for
human similarity judgments.” In: arXiv preprint arXiv:2206.04105 (2022).

[64] Erwin Neher and Bert Sakmann. “Single-channel currents recorded from
membrane of denervated frog muscle fibres.” In: Nature 260.5554 (1976),
pp. 799–802.

[65] Edward S Boyden et al. “Millisecond-timescale, genetically targeted optical
control of neural activity.” In: Nature neuroscience 8.9 (2005), pp. 1263–1268.

[66] Gustav Theodor Fechner. Elemente der psychophysik. Vol. 2. Breitkopf u.
Härtel, 1860.

[67] Fergus W Campbell and John G Robson. “Application of Fourier analysis to
the visibility of gratings.” In: The Journal of physiology 197.3 (1968), p. 551.

[68] Arthur E Burgess et al. “Efficiency of human visual signal discrimination.” In:
Science 214.4516 (1981), pp. 93–94.

[69] W Stanley Jevons. “The power of numerical discrimination.” In: Nature 3.67
(1871), pp. 281–282.

[70] Martin Schrimpf et al. “Brain-score: Which artificial neural network for object
recognition is most brain-like?” In: bioRxiv (2018).

[71] Daniel LK Yamins and James J DiCarlo. “Using goal-driven deep learning
models to understand sensory cortex.” In: Nature neuroscience 19.3 (2016),
pp. 356–365.

https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html

14

[72] Grace W Lindsay. “Convolutional neural networks as a model of the visual
system: Past, present, and future.” In: Journal of cognitive neuroscience 33.10
(2021), pp. 2017–2031.

[73] Bria Long et al. “The BabyView dataset: High-resolution egocentric videos
of infants’ and young children’s everyday experiences.” In: arXiv preprint
arXiv:2406.10447 (2024).

[74] Samanwoy Ghosh-Dastidar and Hojjat Adeli. “Spiking neural networks.” In:
International journal of neural systems 19.04 (2009), pp. 295–308.

[75] Ziming Liu, Eric Gan, and Max Tegmark. “Seeing is believing: Brain-inspired
modular training for mechanistic interpretability.” In: Entropy 26.1 (2023),
p. 41.

[76] Ghislain St-Yves et al. “Brain-optimized deep neural network models of human
visual areas learn non-hierarchical representations.” In: Nature communica-
tions 14.1 (2023), p. 3329.

[77] Timothy P Lillicrap et al. “Random synaptic feedback weights support error
backpropagation for deep learning.” In: Nature communications 7.1 (2016),
p. 13276.

[78] Benjamin Scellier and Yoshua Bengio. “Equilibrium propagation: Bridging
the gap between energy-based models and backpropagation.” In: Frontiers in
computational neuroscience 11 (2017), p. 24.

[79] Neehar Kondapaneni and Pietro Perona. “A number sense as an emergent
property of the manipulating brain.” In: Scientific Reports 14.1 (2024),
p. 6858. url: https://www.nature.com/articles/s41598-
024-56828-2.

[80] Ruixing Liang et al. “Unidirectional brain-computer interface: Artificial neural
network encoding natural images to fMRI response in the visual cortex.” In:
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. 2024, pp. 1851–1855.

[81] Thomas Langlois et al. “Passive attention in artificial neural networks predicts
human visual selectivity.” In: Advances in Neural Information Processing
Systems 34 (2021), pp. 27094–27106.

[82] Guohua Shen et al. “Deep image reconstruction from human brain activity.”
In: PLoS computational biology 15.1 (2019), e1006633.

[83] Neehar Kondapaneni, Pietro Perona, and Oisin Mac Aodha. “Visual Knowledge
Tracing.” In: European Conference on Computer Vision. Springer. 2022,
pp. 415–431. url: https://link.springer.com/chapter/10.
1007/978-3-031-19806-9_24.

https://www.nature.com/articles/s41598-024-56828-2
https://www.nature.com/articles/s41598-024-56828-2
https://link.springer.com/chapter/10.1007/978-3-031-19806-9_24
https://link.springer.com/chapter/10.1007/978-3-031-19806-9_24

Part I

Learning from AI

15

16

C h a p t e r 2

VISUAL KNOWLEDGE TRACING

Neehar Kondapaneni, Pietro Perona, and Oisin Mac Aodha. “Visual Knowledge
Tracing.” In: European Conference on Computer Vision. Springer. 2022, pp. 415–
431. url: https://link.springer.com/chapter/10.1007/978-3-
031-19806-9_24.

2.1 Abstract
Each year, thousands of people learn new visual categorization tasks — radiologists
learn to recognize tumors, birdwatchers learn to distinguish similar species, and
crowd workers learn how to annotate valuable data for applications like autonomous
driving. As humans learn, their brain updates the visual features it extracts and
attend to, which ultimately informs their final classification decisions. In this work,
we propose a novel task of tracing the evolving classification behavior of human
learners as they engage in challenging visual classification tasks. We propose models
that jointly extract the visual features used by learners as well as predicting the
classification functions they utilize. We collect three challenging new datasets
from real human learners in order to evaluate the performance of different visual
knowledge tracing methods. Our results show that our recurrent models are able to
predict the classification behavior of human learners on three challenging medical
image and species identification tasks.

2.2 Introduction
Humans excel at learning new concepts even when they have only received limited
explicit supervision [2, 3]. Key to our success is our ability to extract informative
and generalizable representations from the world around us and our ability to update
these representations given relatively sparse feedback. This capacity, in turn, enables
us to perform complex tasks such as spatial navigation and visual categorization with
apparent ease.

Despite recent progress that has been made in computer vision in learning visual
representations through self-supervision alone [4, 5, 6], large amounts of supervision
are still required to make best use of the resulting features [7]. In light of this,
it is important for us to better understand: (i) what are the properties that make

https://link.springer.com/chapter/10.1007/978-3-031-19806-9_24
https://link.springer.com/chapter/10.1007/978-3-031-19806-9_24

17

w1
t−2

w1
t−1

w1
t

Learner 1

Learner 2

w2
t−1

w2
t−2

w2
t

Figure 2.1: Overview. We model a
learner as an evolving classifier in a learned
feature space. We assume the feature space
is static and, as the learner is presented with
images and class labels over time, their in-
ternal classification function self-updates.
Here, we illustrate this for three time-steps,
for two learners, learning a binary classifi-
cation task (orange versus blue).

representations learned by humans so effective, (ii) how are these representations
learned, and (iii) can we predict the classification behavior of humans during learning?
Our ultimate goal is to obtain better insight into how humans are such effective
learners, which can then potentially inform new learning mechanisms for future
artificial systems.

In order to attempt to address some of these questions, in this work we explore the
problem of visual knowledge tracing. In the educational data mining community,
knowledge tracing is the problem of monitoring and predicting the evolving knowledge
state of a learner engaged in a learning task [8]. Recent work has applied advances
in deep learning to knowledge tracing for question and answer-style text datasets
and has investigated applications in domains such as mathematics education [9, 10,
11]. However, tracing the behavior of humans that are engaged in learning and
performing challenging visual categorization tasks is underexplored. Most closely
related is the work on deep metric learning that attempts to learn human aligned
visual representations from sparse human annotations [12]. However, these works
typically make simplifying assumptions, e.g. assuming the learners are not changing
over time (i.e. they are ‘static’) or that the visual criteria used by the learners is the
same across all learners. Instead, we explore a more challenging visual knowledge
tracing setting where the learners are assumed to be non-stationary during learning,
i.e. the visual features they use to perform the classification task at hand can, and
likely do, change over time (see Fig. 2.1).

We present a recurrent neural network-based approach for visual knowledge tracing.
Once trained, our models are capable of predicting the classification behavior of
human learners that were not observed during training. The proposed models make
use of the history of previous learner responses, images, and ground truth class
labels in order to predict their future responses. Through experiments on three
challenging image classification datasets we show that our models are superior to
baseline approaches. Our models are capable of tracing the learning dynamics more

18

accurately than non-recurrent baselines. We make the following three contributions:
(i) A new model for visual knowledge tracing that jointly estimates the visual features
and per-time-step classification function used by non-stationary human learners. (ii)
A new set of annotations for three benchmark evaluation datasets collected from
humans engaged in learning challenging visual classification tasks. (iii) A detailed
comparison of several visual knowledge tracing methods on these datasets.

2.3 Related Work
2.3.1 Metric Learning
The goal of metric learning is to learn perceptual embeddings such that distance in
the lower dimensional embedding space encodes information related to semantic
similarity. Pre-deep learning approaches to metric learning were primarily concerned
with learning embeddings directly for each item in an input set. In the case of
learning from human supervision, approaches that use relative similarity judgements
have been shown to be effective [13, 14, 15, 16]. These methods have also been
extended to the adaptive setting where the model can decide which items to request
annotations for in order to speed up training [17].

More recently, end-to-end metric learning methods have attempted to parameterize
an embedding function (e.g. a convolutional neural network) directly [18, 19]. As a
result, they are able to embed any new item into the embedding space, even those not
seen at training time. Representative earlier applications of this line of work include
image ranking [20] and face recognition [21]. The standard assumption made by
the majority of these methods is that only one similarity criterion is being used.
However, when collecting data from human annotators, different individuals may be
using different visual criteria when making classification and similarity judgements,
e.g. one individual could be using shape, while the other is using color. Furthermore,
the same individual may change the criteria they use conditioned on the specific
items they are shown, and could change to another criteria when shown another set
of items at a different point in time.

There has been some work that attempts to deal with the fact that different similarity
criteria may be being used. These range from fully supervised, where the similarity
criteria is known at training time [22], through to unsupervised methods that
attempt to estimate the criteria [23, 24, 25, 26]. Attempts have also been made to
probabilistically estimate item embeddings along with annotator-specific parameters
representing the individual criteria they are using [26].

19

One common assumption made by the above methods is that the learner is stationary,
i.e. they are used a predefined and fixed similarity criteria, or small set of criteria,
which do not evolve or change over time. This is a reasonable assumption to make
when dealing with common everyday object categories where the annotators will
likely be familiar with the objects depicted and have an a priori understanding of how
the visual features of the objects may vary. However, this assumption is violated in
cases where the annotator is in the process of learning the visual concepts of interest.
In this work, we address this non-stationary setting and show that by doing this, we
can more accurately predict the visual classification behavior of real human learners.

2.3.2 Human Category Representation
Existing models of human category representation and learning can be clustered
into five major groups: rule-based, prototype-based, exemplar-based, knowledge
/ theory-based, and decision boundary-based approaches [27, 28]. The current
consensus is that humans likely use multiple different category-learning systems
depending on the specific nature of the task at hand [29, 30]. For example, in
rule-based tasks, the optimal policy may be easy to verbalize and thus efficiently
encoded via a set of rules. In practice however, perceptual tasks such as fine-grained
visual categorization can be much harder to represent in this way [31]. Several works
have attempted to extract perceptual embeddings that align with human similarity
judgements from coarse [32, 33] and more fine-grained [34] image collections. [35]
showed that with simple linear transformations, pre-trained deep image classifiers
can be predictive of human similarity judgements. Relevant to our work, [36]
investigated whether human learning dynamics mimic gradient descent in Artificial
Neural Networks when learning visual categories. However, they assumed they had
access to the feature space used by the human, whereas we instead attempt to learn
this. In this work, we also aim to extract human-aligned representations, but in the
more challenging setting whereby our learners are not static, but instead are in the
process of learning the categorization task.

2.3.3 Knowledge Tracing
The problem of modelling the hidden state of dynamic learners as they interact with
a learning task has also been tackled in the knowledge tracing literature. Bayesian
Knowledge Tracing-based methods model a learner’s knowledge state by assuming
that the learner can be represented as a Markov process which updates online during
learning [37]. Building on this line of work, Deep Knowledge Tracing (DKT)

20

instead uses a recurrent neural network as the underlying tracing model [9], and fully
self-attention-based methods have also been proposed [10, 11]. It is important to
note that conventional knowledge tracing attempts to model knowledge acquisition as
a binary variable at the ‘skill’ level (i.e. the visual class) as opposed to the ‘instance’
level (i.e. a specific image). In contrast, our approach jointly learns an image
embedding function in addition to being able to capture and predict the individual
learning trajectories of multiple different learners. A detailed comparison of the
original DKT model and our model is provided in the supplementary material (see
Sec. 2.7.2).

2.3.4 Machine Teaching
Estimating the representations used by humans is an important component for
developing automated teaching algorithms and systems. Machine teaching algorithms
address the teaching problem by generating sequences of instructional examples
to show to novice learners in order to improve their ability on a given task [38].
Machine teaching has applications in crowdsourcing where the aim is to efficiently
train crowdworkers, in addition to education where the goal is to train new experts,
e.g. in medical image analysis [39, 40].

There is a growing body of work in computer vision that attempts to teach visual
concepts to human learners, e.g. [41, 42, 43, 44, 45]. However, many of these
works assume a fixed feature space that is generated before teaching begins [41, 42,
43]. In one experiment, [43] showed that representations that are better aligned
with human perception result in improved learner performance on the downstream
teaching task. While we do not explicitly investigate teaching algorithms in this
work, we instead explore a setting where data is collected from humans engaged in
learning a visual categorization task with instructional images selected by a ‘random’
teacher. Importantly, the representations and learner parameterizations extracted by
our model can be used directly with computer assisted teaching methods.

2.4 Method
Our goal is to estimate the image classification function used by a human learner
that has been provided with a sequence of images and corresponding ground truth
class labels as training data. We begin by outlining the problem, and then present
our approach to human visual knowledge tracing.

21

2.4.1 Problem Setup
Given an image x as input, we model a human learner as a classification function
that returns a response, 𝑟 𝑘 = argmax𝑐 𝑃(𝑐 |x, 𝜃𝑘). Here, 𝑟 is a discrete class label
representing the class response for learner 𝑘 , i.e. 𝑟 ∈ {1, ..., 𝐶}, where 𝐶 is the
number of possible classes, and 𝜃𝑘 are unobserved parameters representing the state
of the learner. Our learners are not stationary as their internal ‘knowledge state’
changes depending on the information they have previously been exposed to that is
relevant to the task. As a result, for a given learner 𝑘 we model their classification
function at time 𝑡 as 𝑟 𝑘

𝑡+1 = argmax𝑐 𝑃(𝑐 |x, 𝜃𝑘𝑡 , x𝑘1:𝑡 , 𝑦
𝑘
1:𝑡 , 𝑟

𝑘
1:𝑡). Here, (x𝑘1:𝑡 , 𝑦

𝑘
1:𝑡 , 𝑟

𝑘
1:𝑡)

is the history of images, ground truth class labels, and responses that a learner 𝑘 has
seen, and provided, up to and including time 𝑡.

Specifically, at each training time-step, a learner 𝑘 is presented with an image x,
they provide their response 𝑟 , and are given feedback in the form of the correct class
label 𝑦 (Fig. 2.2B). However, fitting a model for an individual learner with a single
response per time-step is difficult. Alternatively, requesting more responses per
time-step would reduce the number of teaching examples presented to the learner
in the same amount of time. Instead, to overcome this limited information setting,
we train a model 𝜙 across many learners, allowing the model to discover knowledge
states and learning rules shared across all learners. Once trained, our model can
make predictions for how a learner, who was not observed during training, will
classify an image based on their prior classification behavior.

2.4.2 Tracing Human Learners
Our tracing model 𝜙 can be decomposed into a feature extractor 𝑓 , a classification
function 𝜓, and a non-learned and non-linear transformation 𝜎 (softmax). We
explore how to represent the feature extractor and classification function.

A natural choice for the feature extractor 𝑓 is a Convolutional Neural Network (CNN).
Given an image x as input, the feature extractor outputs a 𝐷 dimensional vector
z = 𝑓 (x). We will assume that all learners use the same underlying feature extractor
which remains constant over time i.e. 𝑓 = 𝑓 𝑘𝑡 , and that they simply differ in the
relative importance they place on different visual features. While these are both
big assumptions to make, they are not overly restrictive. For example, a novice
and an expert might engaged in the same visual classification task but differ in
the set of visual features they select in order to make their decision. Furthermore,
while we assume that the feature extractor remains constant over the time interval

22

of our experiments, we do not assume that the classification function 𝜓 used by a
learner remains static. In the next sections we will explore different choices for
this classification function, comparing simple static classifiers with more expressive
recurrent models.

Static Tracing Model

The first model we explore is the simplest. Here we assume that all learners use
the same classifier which does not vary over time. In this setting, 𝜓 is a multi-class
linear classifier with a weight matrix w and per-class biases b,

𝜙𝑠𝑡𝑎𝑡𝑖𝑐 (x) = 𝜎(𝜓(𝑓 (x))) = 𝜎(w⊺ 𝑓 (x) + b). (2.1)

This model is similar to conventional metric learning approaches which do not
attempt to capture any annotator specific differences related to individual biases or
temporal changes. At training time we simply estimate one set of parameters for all
learners. This model does not take the response history into account.

Time-Sensitive Tracing Model

One obvious limitation of the static tracing model is that it does not take into account
the fact that a learner will likely change over time, i.e. they may be much worse at
a new classification task early on, but may improve over time as they are shown
sequences of example images along with their associated ground truth class labels.
A more advanced model, that captures this temporal evolution, is one that has a
different classifier for each time-step,

𝜙𝑠𝑡𝑎𝑡𝑖𝑐_𝑡𝑖𝑚𝑒 (x) = 𝜎(w⊺
𝑡 𝑓 (x) + b𝑡). (2.2)

Again, the same classifiers are shared across all learners, but in this case the weights
and biases are different at each time-step, i.e. w𝑡 ≠ w𝑡−1.

2.4.3 Recurrent Tracing Models
The previous tracing models do not account for the fact that individual learners
may start with different levels of ability and update their internal knowledge state in
different ways depending on the information that they are provided with. [9] showed
that recurrent networks could be used to track the skill acquisition of human learners
engaged in learning math quiz questions. Direct application of their model to our
visual categorization setting is not possible as they assume one hot encodings of

23

the query and learner responses as input. Their approach also uses large training
sets – on the order of thousands of learners and tens of thousands of interactions.
Furthermore, they model knowledge acquisition at the ‘concept’ (i.e. visual category)
and not ‘instance’ (i.e. a specific image) level, and thus their approach is not capable
of making predictions for items not seen during training. We build on [9] and adapt
it to our visual category learning setting by presenting two different recurrent-based
models for human visual knowledge tracing.

Direct Response Model

Our first model uses a recurrent network to directly predict the responses of a learner
given their previous response history,

𝜙𝑑𝑖𝑟𝑒𝑐𝑡 (x) = 𝜎(𝜓𝑟𝑛𝑛 (z𝑘1:𝑡 , 𝑦
𝑘
1:𝑡 , 𝑟

𝑘
1:𝑡 , z, 𝑦)). (2.3)

Here, 𝜓𝑟𝑛𝑛 is a recurrent network (in practice we represent this using an LSTM [46])
and z𝑡 = 𝑓 (x𝑡) are visual features extracted from our CNN.

This model assumes that a learner’s knowledge state at time 𝑡 is defined by the images
they have previously seen and their past classification responses. Recurrent models
can produce unique transformations for individual learners by conditioning on their
hidden states. In this case, after the shared feature extractor transforms an image into
a feature vector, the model modifies the feature vector with a series of non-linear
transformations conditioned on the learner’s hidden state. The final linear layer
transforms the feature vector into a predicted response. Note that this model is also
conditioned on the current query image z = 𝑓 (x) and the corresponding ground truth
class label 𝑦.

Classifier Prediction Model

Our second recurrent model attempts to provide a more interpretable approximation
of human classification. In this case, instead of letting the recurrent model directly
predict the probability for each response, it instead attempts to approximate the
weights of a linear classifier used internally by the learner. Importantly, the values
this classifier takes will depend on the response history of a given learner and will
differ at each time-step,

w𝑘
𝑡 , b𝑘𝑡 = 𝜓𝑟𝑛𝑛 (z𝑘1:𝑡 , 𝑦

𝑘
1:𝑡 , 𝑟

𝑘
1:𝑡 , 𝑦), (2.4)

𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 (x) = 𝜎(w⊺
𝑡 z + b𝑡). (2.5)

24

Unlike the previous direct prediction recurrent model, we now explicitly represent
the classification function used by an individual learner. Also, here the features z for
the query image are not processed by the recurrent network in Eqn. 2.4. Instead they
are evaluated using the much simpler predicted classifier weights in Eqn. 2.5. This
decoupling is advantageous in applications like machine teaching where we have to
query the tracing model multiple times at each time-step in order to determine the
next image to show learners. Reducing the computation required to perform these
queries will result in faster teacher algorithms.

2.4.4 Training Tracing Models
We jointly estimate the parameters of the feature extractor 𝑓 and classification
functions 𝜙 for each of the above models using a standard cross entropy loss,

L = − 1
𝐾𝑇

𝐾∑︁
𝑘=1

𝑇∑︁
𝑡=1

log(𝜙(x𝑘𝑡)𝑟). (2.6)

Here, 𝜙(x𝑘𝑡)𝑟 indicates the predicted probability from a model 𝜙 choosing class 𝑟,
for learner 𝑘 , at time-step 𝑡. The training objective aims to minimize the difference
between the learner responses from our training set and the tracing model outputs.

2.5 Experiments
In this section we evaluate the different proposed models for visual knowledge tracing
on data we collected from real human participants1.

2.5.1 Datasets
Traditional image classification datasets mostly contain labels produced by annotators
familiar with the subject material, e.g. [48, 49, 50], or they have at least received
detailed instructions and examples on how to annotate them, e.g. [51]. As a result,
these datasets do not contain annotations from learners engaged in learning a task
and are thus not suitable for evaluating visual knowledge tracing. While some work
has focused on teaching crowd learners (e.g. [41, 43, 44]), they often use teaching
image sequences that are determined offline and fixed. For our tracing experiments,
we require unbiased sequences of images that are randomly selected for each learner.
Some of these existing works compare their approaches to a random image selection
baseline, but the size of these random teaching subsets is insufficient for thorough
evaluation of our different tracing approaches, e.g. [43] have random selection data

1Code and dataset — https://github.com/nkondapa/VisualKnowledgeTracing

https://github.com/nkondapa/VisualKnowledgeTracing

25
Butterflies

(A) Image Datasets (B) Data Collection

Cabbage
White

Monarch Queen Red
Admiral

Viceroy

Eyes

DME Drusen Normal

Greebles

Agara Bari Cooka

12

3

4

5
B

A B C

Figure 2.2: Collecting visual knowledge tracing datasets. (A) Example images
from the three different datasets from our experiments. ‘Butterflies’ contains images
of five different species and was originally presented in [43]. ‘Eyes’ contains optical
coherence tomography images of the human retina from [47], and features two
diseased classes and one normal one. ‘Greebles’ is a synthetic dataset we created
where the three object classes vary in terms of shape and color. (B) Data collection
pipeline. A random image is selected (1), shown to the learner (2), and the learner
provides a response (3). Their response is stored (4) and the correct class label is
provided to them (5).

from only ∼ 40 participants. Due to these limitations, we collected annotations from
human learners for three challenging fine-grained visual classification datasets.

Image Data

We selected three different image datasets that cover three distinct domains: artificial
data where we have full knowledge of the underlying distribution, medical image
data, and images of different wildlife species. The first two datasets in particular
are representative of the types of visual identification tasks that many humans are
interested in learning.

Our first dataset, ‘Butterflies’, contains images from five different common species of
North American butterflies. The ‘Cabbage White’ class is immediately recognizable,
’Red Admiral’ can be learned relatively easily, and the remaining three are difficult
to discriminate. This dataset was originally used in [43] and contains between 386
and 481 images per class, for a total of 2,224 images. Our second dataset, ‘Eyes’, is
a three-class subset of a large collection of publicly available images of the human
retina from [47]. It contains two diseased classes, ‘Diabetic Macular Edema’ (DME)
and ‘Drusen’, and one ‘Normal’ class. We manually selected 200 images from each

26

class. The third dataset is a challenging synthetic one we created called ‘Greebles’.
It contains three classes, where the underlying feature space used to generate the
images is known by design. The relevant features are the body length and color, but
the images also includes some irrelevant variation in the form of the head size and
body width. The distinctions between the classes can be subtle, making the task
challenging. It contains 1,200 images in total, with an even number per class. Visual
examples for each of the datasets are presented in Fig. 2.2A. Note that the single
examples in Fig. 2.2A do not covey the visual diversity of the datasets.

Human Data Collection

For each of the previously described datasets, we collected data from human
participants that were engaged in learning the classification task. Each learner was
presented with 30 training images and 15 test images. During the training phase
they were provided with ground truth feedback indicating the correct class labels.
This feedback was not provided in the test phase. For each image, we asked learners
to rank the top three classes in order of most likely to least likely to be correct
(see Sec. 2.12.1 for further information). The training and testing examples were
randomly selected for each learner. An overview of the data collection process for
one iteration, for one learner, is shown in Fig. 2.2B.

The data was collected using a custom built a web application and the participants
were recruited through the crowd sourcing app Prolific [52]. In total, we collected
data from 150 learners for each dataset, where each individual could only do the task
once. The median time spent on the Butterflies task, including training and testing,
was ∼ 11.7 minutes with a median of 11 correct on the test phase. The corresponding
statistics for the Eyes dataset was ∼ 12.1 minutes with a median of 13 correct, and
for the Greebles dataset is was ∼ 8.8 minutes with a median of 9 correct.

Our human learners demonstrated learning across all three datasets. In Fig. 2.3
we plot two histograms for each dataset, the first histogram displays the number of
correct responses during the training (i.e. teaching) phase and the second reports the
same for the test phase. For all of the datasets, we see a right skew in the histogram
of correct responses in the testing phase, indicating that most learners are providing
correct answers after training. The skewness for each dataset is −0.45 for Butterflies,
−0.81 for Eyes, and −0.37 for Greebles. The skewness is correlated to the amount
of improvement learners showed on a given dataset. The numbers imply that the
Greebles task is the most difficult and the learners demonstrate the least improvement.

27

The Eyes dataset, on the other hand, is clearly the easiest. We provide additional
analysis in the supplementary material (Sec. 2.9).

2.5.2 Implementation Details
All models we are considering primarily consist of a feature extractor and a classifi-
cation function. The feature extractor is implemented as a CNN with eight layers
(two convolutional, two max-pool, four linear), and is the same across all models
(Sec. 2.8). The feature extractor produces a 16 dimensional embedding for an input
image which is then processed by the respective classification function. We evaluated
one of our models on higher dimensional feature spaces, but found no impact on
performance (Sec. 2.7.7). For the two recurrent models, 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 and 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 , we
use a three layer LSTM-based [46] fully connected network with a hidden dimension
of size 128. The output of the LSTM is passed to a small two-layer network that
transforms the output into the desired representation (either a response or a classifier
(see Sec. 2.4.3)). We provide a detailed description of the architectures and inputs in
the supplementary material (Sec. 2.12.2).

All models are trained using mini-batch stochastic gradient descent with a batch size
of 16 using the Adam optimizer [53]. For the feature extractor, we use a learning
rate of 1e-5, and we use a learning rate of 1e-3 for each of the different classification
functions. We train using a cross entropy loss. Models are trained with early stopping.
Training ends when the best validation loss does not improve for 35 epochs. The
upper limit on the number of training epochs is 400. Data is split into train (70%),
validation (13.3%), and test (16.7%) splits at the learner level, i.e. sequences from
the same individual learner cannot be in more than one split. To ensure more robust
results, we validate models by re-shuffling the data five times and report the averages
across the splits using micro and macro average precision.

2.5.3 Results
Tracing Human Learners

We compute the precision and recall curves for each of the visual knowledge tracing
models on the held-out learners and report the average precision for each. We also
include one additional model for completeness, the ground truth baseline model
(GT Label). This baseline does not fit any parameters and simply predicts the
corresponding ground truth label of the image for all learners at all time-steps
(instead of predicting the learner’s response). Results are summarized in Table 2.1.
Standard deviations are between 0.01 and 0.03 for all models, and do not change the
interpretation of the results.

28

0 10 20 30
Number Correct

0

5

10

15

20

25

30

C
o
u
n
t

Train Sequence

0 5 10 15
Number Correct

0

5

10

15

20

25

C
o
u
n
t

Test Sequence

0 10 20 30
Number Correct

0

5

10

15

20

25

C
o
u
n
t

Train Sequence

0 5 10 15
Number Correct

0

10

20

30

40

50

C
o
u
n
t

Test Sequence

0 10 20 30
Number Correct

0

5

10

15

20

25

C
o
u
n
t

Train Sequence

0 5 10 15
Number Correct

0

5

10

15

20

C
o
u
n
t

Test Sequence

Butterflies Eyes Greebles

Figure 2.3: Human learner performance on our three datasets. For each dataset
we provide histograms of learner performance on the respective training and testing
sequences. The training results are always worse as it include responses from all
time-steps, including when the learner has just started the task and is unfamiliar with
the classes. For ‘Greebles’, the worse performance on the test set compared to the
other datasets indicates that learners find this task more challenging.

We observe that the recurrent models, 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 and 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 , out-perform the baselines
in tracing the learner on the Butterflies (∼8%) and Eyes datasets (∼6%). However,
on the Greebles dataset, the static tracing model, 𝜙𝑠𝑡𝑎𝑡𝑖𝑐, outperforms the recurrent
models by (∼3%). Both recurrent models are comparable in terms of performance,
indicating the reduction in computation described in Sec. 2.4.3 does not come with a
reduction in performance. The time-sensitive tracing model, 𝜙𝑠𝑡𝑎𝑡𝑖𝑐_𝑡𝑖𝑚𝑒, is clearly
the worst at tracing learners, likely owing to the unrealistic assumptions it makes
about them.

Finally we explore the differences between how different models trace human learners.
Fig. 2.4 shows the average probability of predicting an image correctly for each
time-step conditioned on each class for the Butterflies dataset. In the top row, we
present the training and test-split average accuracy on each of the fives classes over
time for the human learners. As previously noted, the training sequences contains
30 randomly selected images and the test sequence contains 15 images. We can see
that on average, some classes are much easier than others. In the bottom row, we
average model-predicted probabilities for ∼50 images in each class. To produce the
probabilities for the recurrent 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 model, we processes the sequential data of
the same set of learners in the top panel. The static tracing model, 𝜙𝑠𝑡𝑎𝑡𝑖𝑐, estimates a
hyperplane for each class that roughly tracks the average probability of being correct
per class. As expected, this model is not capable of capturing any learning behavior.
In contrast, 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 more faithfully traces how the average probability evolves over
time. Note, that we process each of the test images independently for 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 .

29

Table 2.1: Performance of different visual knowledge tracing approaches on
data from human learners. We observe that our two recurrent based models, the
direct response 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 and the classifier prediction 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 , perform best on the
Butterflies and Eyes dataset but are worse on the synthetic Greebles task. Learners
found the Greebles task the most challenging, and as a result, there was much less
learning occurring compared to the first two datasets. ‘GT Label’ is an additional
baseline that uses the corresponding ground truth class label 𝑦 as the prediction of
the learner’s response 𝑟.

Greebles Eyes Butterflies
Train Test Train Test Train Test

Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro
GT Label 0.48 0.51 0.58 0.61 0.56 0.56 0.69 0.69 0.45 0.44 0.50 0.49
𝜙𝑠𝑡𝑎𝑡𝑖𝑐 0.63 0.52 0.67 0.58 0.60 0.59 0.67 0.68 0.55 0.53 0.64 0.61
𝜙𝑠𝑡𝑎𝑡𝑖𝑐_𝑡𝑖𝑚𝑒 0.52 0.44 0.49 0.40 0.34 0.34 0.33 0.34 0.54 0.52 0.61 0.59
𝜙𝑑𝑖𝑟𝑒𝑐𝑡 0.70 0.59 0.77 0.64 0.66 0.65 0.75 0.74 0.55 0.53 0.60 0.57
𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 0.71 0.62 0.77 0.65 0.65 0.65 0.74 0.74 0.54 0.52 0.60 0.57

0.25

0.50

0.75

1.00
Cabbage White Monarch Queen

Human Data

Train-Test Divider

Red Admiral Viceroy

0 20 40
0.00

0.25

0.50

0.75

1.00

A
v

e
ra

g
e

 P
ro

b
a

b
il

it
y

A
v
e
ra

g
e
 H

u
m

a
n
 A

cc
.

0 20 40 0 20 40
Time Step

Static Model

Classifier Pred.

0 20 40 0 20 40

Figure 2.4: Comparing student accuracy and tracing model predicted accuracy.
(Top) The smoothed average human learner accuracy for class over time from the
Butterflies dataset. The shadowed regions indicate confidence intervals as the number
of samples in each time and class bin are not guaranteed to be the same. (Bottom)
The average probability of having a class correctly predicted by the static 𝜙𝑠𝑡𝑎𝑡𝑖𝑐
model (orange) and the recurrent 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 model (green). At each time-step, for
each learner in the test set, the models predict class probabilities for ∼ 50 images
per class. The probabilities are averaged (solid line) and the shadows indicate one
standard deviation. In both rows, the red line indicates the point at which the learners
switch from training to testing. After that, the models will continue to produce the
same probabilities on the test images for the remaining time-steps as the sampled
images do not change.

2.5.4 Discussion
Comparing Models

We observe that our recurrent models are quite effective at tracing human learner
knowledge on visual categorization tasks for datasets where there is a clear learning
signal. On the Greebles dataset, which is the most challenging and displays the

30

least amount of learning, we see that the simple static tracing model 𝜙𝑠𝑡𝑎𝑡𝑖𝑐 is less
prone to over-fitting and is thus marginally better. The time-sensitive tracing model
𝜙𝑠𝑡𝑎𝑡𝑖𝑐_𝑡𝑖𝑚𝑒 performs the worst overall. Unlike the recurrent methods, it is unable to
share information between time-steps, forcing it to fit a classifier at each time-step
with only ∼90 training points (the number of learners in the training set after we split
out the validation and test sets). This makes it extremely prone to over-fitting on the
limited training data that is available.

The direct response model 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 and the classifier prediction model 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 differ
in their outputs and their inputs. 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 includes z, the representation of the query
image x to be classified by the learner, as input to the LSTM. 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 outputs
weights of a multi-class linear classifier that is used to classify the representation z.
Unlike 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 , z is not an input to the LSTM for 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 . However, both models
incorporate the ground truth label 𝑦 for x as input. These structural differences
between the models make little difference to the tracing performance, but the 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑
model is more efficient if it needs perform evaluation multiple times for new query
items. In supplementary experiments (2.7.1), we explore the impact of removing the
ground truth class label 𝑦 for the query image from the input. We observe that this
results in a large decrease in performance for both models, suggesting that this class
information is valuable to the model when making future predictions. Also in the
supplement, we compare two cognitive models (prototype and exemplar [54]) (2.7.3),
a Transformer model [55] (2.7.4), a pre-trained ResNet feature extractor (2.7.5), and
input meta-information to the tracing models (2.7.6). We find that the cognitive,
Transformer, and ResNet models do not out-perform the recurrent architectures, but
are worth further exploration. Additionally, including meta-information in the input
vectors results in a performance increase across all models we tested, suggesting
this a promising direction for future work. Finally, we explore the representations
learned by the recurrent models (Secs. 2.10, 2.11).

Limitations and Future Work

Currently, we train our feature encoder 𝑓 from scratch for each task on relatively small
amounts of image data. One source of improvement would be to pre-train the feature
space so that it better reflects human visual similarity judgements. Such an improved
feature space would provide a better starting point for task specific finetuning.
Replacing the LSTM with an appropriately designed Transformer network [56] is
another change that could result in greater flexibility for the model. Transformers are

31

better able to capture long-term dependencies and have been shown to be useful in
knowledge tracing on non-visual educational datasets [10, 55]. However, it remains
to be seen if this would be valuable for visual knowledge tracing.

Our approaches do not explicitly model memory decay — the phenomenon of
memory ‘fading’ due to the passage of time [57, 58]. This is likely to be more of
a problem when tracing over longer time horizons, e.g. days or weeks, as opposed
to the multiple minute long sessions that our learners engage in. Similarly, given
the short time durations of our teaching sessions, we assume that no significant
‘feature learning’ is happening for individual learners. Instead we model learners
as attending to a subset of the different visual features that are captured in our joint
embedding space. In future work, it would be interesting to further explore if these
two assumptions are valid.

Applications

Successful tracing of human learners has implications for crowd-sourcing annotations,
metric learning, and machine teaching. Early detection of poor annotators in crowd
sourcing would reduce monetary and time costs in labelling datasets. Additionally,
identifying annotators with ‘specialist’ knowledge could allow for targeted crowd
sourcing, tailoring to the abilities of each individual annotator. A successful tracing
algorithm should be able to predict future performance with increasing confidence
as the learners are being trained on the annotation task.

The most impactful domain for a successful tracing algorithm is automated teaching,
e.g. teaching medical image interpretation skills [39, 40]. Teaching humans is
challenging because their knowledge state is unobserved, it changes over time, and
the information they provide using current interfaces can be limited. In this work, we
show that with a reasonable amount of training data (i.e. data from ∼ 150 learners),
and only a single response at each time-step, we are able to capture information about
the learner’s current knowledge for visual classification tasks. The types of visual
knowledge tracing approaches presented could be used in conjunction with machine
teaching methods. The more a teaching algorithm knows about the learner, the more
effective it can be when selecting examples to present to them.

2.6 Conclusion
More accurate models of human visual classification will lead to improved methods
for crowd annotation collection, better techniques for automatically teaching visual

32

knowledge to human learners, and perhaps provide us with insight into how we
can build future artificial systems that are more data efficient. To this end, in this
work we explored the problem of visual knowledge tracing — the task of predicting
the internal, potentially time varying, image classification function used by human
learners. To do this, we presented a series of models that range in complexity from
basic static linear classifiers all the way to recurrent models that take a learner’s prior
response history into account when making predictions about their future behavior.
We collected new annotations for three challenging visual classification tasks from
humans engaged in a visual learning task in order to benchmark the performance of
these different models. Our results show that our recurrent neural network-based
models resulted in the most faithful reproductions of unobserved learner predictions
on real image datasets. Finally, we outlined limitations of our work and pointed to
open questions that require further investigation.

Acknowledgments

Thanks to the anonymous reviews for their valuable feedback. This work was in part
supported by the Turing 2.0 ‘Enabling Advanced Autonomy’ project funded by the
EPSRC and the Alan Turing Institute and also by the Simons Collaboration on the
Global Brain.

33

Appendix
2.7 Additional Experiments
In this section, we present several additional models and also consider the impact of
embedding dimension on performance.

2.7.1 RNN Variants
We can vary the input information to both of the recurrent models in three ways. The
notation in parentheses maps to the entries in the later supplementary tables.

(base): The models only receive the history of images, ground truth class labels, and
learner responses

𝜓𝑟𝑛𝑛 (z𝑘1:𝑡 , 𝑦
𝑘
1:𝑡 , 𝑟

𝑘
1:𝑡)). (2.7)

(y): In addition to the history, the model receives the ground truth class label of the
image shown to the learner at the current time-step

𝜓𝑟𝑛𝑛 (z𝑘1:𝑡 , 𝑦
𝑘
1:𝑡 , 𝑟

𝑘
1:𝑡 , 𝑦)). (2.8)

(y, z): Finally, as in the main paper, the model can include both the ground truth
class of the image and the representation of the image from the learned CNN

𝜓𝑟𝑛𝑛 (z𝑘1:𝑡 , 𝑦
𝑘
1:𝑡 , 𝑟

𝑘
1:𝑡 , z, 𝑦)). (2.9)

The results of the variants are presented in Tables 2.2, 2.3, and 2.4.

2.7.2 DKT
Next, we adapt Deep Knowledge Tracing (DKT) [9] to our setting. We deviate from
the original DKT method in two main ways. First, the types of queries (e.g. math
problems) in educational datasets do not allow for instance-level representations.
Instead, skills (i.e. question types) were jointly encoded with information about
whether the problem was answered correctly by the learner. Second, the output of
DKT was the learner’s probability of being correct for each skill, not a particular
question instance.

We modify the DKT algorithm to make it appropriate for the setting described in our
work. We replace skills with the class-level label for an image and convert the output
into a probability distribution over the class labels such that it can be trained with the
cross-entropy loss

𝜙𝑑𝑘𝑡 (𝑦) = 𝜎(𝜓𝑟𝑛𝑛 (𝑦𝑘1:𝑡 , 𝑟
𝑘
1:𝑡 , 𝑦)). (2.10)

34

At a high-level, this model variant encodes no instance-level (i.e. image) information
to make its predictions.

We observe that this DKT model (𝜙𝑑𝑘𝑡) performs slightly worse in all cases, indicating
that image information is valuable to enable the models to better trace learner
performance. The results of the DKT variant are presented in Tables 2.2, 2.3, and
2.4.

2.7.3 Cognitive Models
Cognitive models make stronger assumptions on how humans learn. We modify the
prototype and exemplar models described in the cognitive science literature [54] and
evaluate them on our datasets.

Prototype

The prototype model proposes that learners store a prototypical image for each
class. Each new image is compared to the learner’s class prototypes and the highest
similarity class is selected. In our formulation, the class prototype is the average
feature representation of previously seen images of that class. In the following
equations, 𝜏 is the current time-step, 𝑃𝑘𝜏 (𝑐) is the prototype of class c for learner k at
time-step 𝜏, and 𝛿 is the dirac-delta function and acts as a selector for images from
class c,

𝑃𝑘𝜏 (𝑐) =
1

𝜏 − 1
·
𝜏−1∑︁
𝑡

𝑧𝑘𝑡 ∗ 𝛿(𝑦𝑘𝜏 − 𝑐), (2.11)

𝑟 𝑘𝜏 (𝑐) =
𝑠𝑖𝑚(𝑃𝑘𝜏 (𝑐), 𝑧𝑘𝜏)∑
𝑐 𝑠𝑖𝑚(𝑃𝑘𝜏 (𝑐), 𝑧𝑘𝜏)

. (2.12)

Exemplar

The exemplar model proposes that learners store previously seen images in a memory
bank of exemplars. Query images are compared to all of the exemplars. The learner
chooses the class with the highest total similarity to the query image. In the following
equations, 𝐸 𝑘𝜏 (𝑐) is the sum of the class c similarity scores for learner 𝑘 at time-step
𝜏 with respect to the current image 𝑧𝑘𝜏 . Following [54], we introduce a learnable
parameter 𝛾 to scale the similarities (this value is fixed to 1 in the prototype model),

35

𝐸 𝑘𝜏 (𝑐) =
𝜏−1∑︁
𝑡

𝑠𝑖𝑚(𝑧𝑘𝑡 , 𝑧𝑘𝜏) · 𝛿(𝑦𝑘𝜏 − 𝑐), (2.13)

𝑟 𝑘𝜏 (𝑐) =
𝑠𝑖𝑚(𝐸 𝑘𝜏 (𝑐), 𝑧𝑘𝜏)𝛾∑
𝑐 𝑠𝑖𝑚(𝐸 𝑘𝜏 (𝑐), 𝑧𝑘𝜏)𝛾

. (2.14)

Both models compute similarity by using an exponential decay function over the
Euclidean distance between feature representations of the images,

𝑠𝑖𝑚(𝑧𝑖, 𝑧 𝑗) = 𝑒−𝑐∗𝑑 (𝑧𝑖 ,𝑧 𝑗) . (2.15)

Finally, instead of learning the feature space separately with visual similarity
experiments, we jointly estimate a CNN along with the model parameters to discover
the feature space.

We find that these models perform worse than the models presented in the main
paper. However, simple modifications (like weighting the history of exemplars or
images in the prototype) may help. Exploring the space of cognitive models is an
interesting direction for future work. The results of these variants are presented in
Tables 2.2, 2.3, and 2.4.

2.7.4 Transformers
Recently, the knowledge tracing community has found the Transformer architecture to
be an effective model for tracing human learners in non-visual tasks. We modify the
SAINT model [55] for our visual learning setting. First, we introduce a CNN-based
feature extraction stage to embed images. The encoder receives the current image’s
embedding and its ground truth label. The decoder gets the previous learner response.
The decoder predicts the learner’s response to the image (also passed to the encoder).

The Transformer model does surprisingly poorly on these datasets. We expect
that future work exploring Transformer architectures designed for this task will
demonstrate performance on par with the recurrent models. The results of the
Transformer model are presented in Tables 2.2, 2.3, and 2.4.

2.7.5 ResNet Backbone Experiments
We swap out our CNN backbone with a ResNet-18 [59] pre-trained on ImageNet.
We freeze the weights in layers 1, 2, and 3, but leave layer 4 to be learned. The output
of layer 4 is passed to a fully-connected layer that reduces the output of the layer to

36

Table 2.2: Performance of all model variants on the Butterflies dataset. The
model variant is denoted in the subscript corresponding to the same subscripts
in 2.7.1. One can see that 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 (𝑏𝑎𝑠𝑒) performs poorly for a recurrent model. This
model does not have access to any information about the current time-step and is
effectively guessing both the image that will be shown and the associated response.
We also show the per-class average precision scores on the train sequence in addition
to the micro and macro scores from before. These scores show that the benefit of
the recurrent models appear primarily in classes that have large changes in average
performance (e.g. Red Admiral) over the training period. The models with † are
models presented in Table 1 of the main paper. The scores are reported with their
standard deviations and the top average performers in each column are in bold.

Butterflies
Train Test

Cabbage
White Monarch Queen Red

Admiral Viceroy Micro Macro Micro Macro

GT Label† 0.94±0.03 0.32±0.01 0.36±0.04 0.65±0.04 0.27±0.01 0.48±0.02 0.51±0.02 0.58±0.02 0.61±0.02
𝜙𝑠𝑡𝑎𝑡𝑖𝑐† 0.95±0.01 0.37±0.02 0.34±0.06 0.66±0.03 0.27±0.03 0.63±0.02 0.52±0.02 0.67±0.02 0.58±0.03

𝜙𝑠𝑡𝑎𝑡𝑖𝑐_𝑡𝑖𝑚𝑒† 0.97±0.01 0.34±0.03 0.29±0.03 0.35±0.03 0.24±0.02 0.52±0.02 0.44±0.01 0.49±0.01 0.40±0.01
𝜙𝑑𝑘𝑡 0.95±0.02 0.43±0.02 0.45±0.04 0.72±0.05 0.33±0.06 0.67±0.02 0.57±0.02 0.74±0.02 0.64±0.02

𝜙𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 0.96±0.01 0.36±0.03 0.34±0.02 0.69±0.06 0.26±0.01 0.62±0.02 0.52±0.02 0.68±0.05 0.58±0.04
𝜙𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 0.95±0.02 0.32±0.03 0.30±0.05 0.59±0.08 0.27±0.03 0.53±0.03 0.48±0.03 0.63±0.01 0.54±0.02
𝜙𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟 0.90±0.03 0.30±0.03 0.27±0.04 0.35±0.13 0.26±0.03 0.44±0.05 0.42±0.04 0.53±0.07 0.45±0.07
𝜙𝑑𝑖𝑟𝑒𝑐𝑡 (𝑏𝑎𝑠𝑒) 0.34±0.02 0.29±0.03 0.23±0.02 0.26±0.02 0.22±0.03 0.27±0.01 0.27±0.01 0.20±0.01 0.20±0.01
𝜙𝑑𝑖𝑟𝑒𝑐𝑡 (𝑦) 0.97±0.02 0.43±0.03 0.48±0.05 0.76±0.07 0.38±0.04 0.71±0.02 0.60±0.02 0.78±0.02 0.66±0.01
𝜙𝑑𝑖𝑟𝑒𝑐𝑡 (𝑦,z)† 0.97±0.01 0.41±0.04 0.44±0.06 0.77±0.07 0.36±0.03 0.70±0.03 0.59±0.02 0.77±0.03 0.64±0.03
𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 (𝑏𝑎𝑠𝑒) 0.96±0.01 0.41±0.06 0.32±0.05 0.59±0.14 0.25±0.02 0.59±0.06 0.51±0.05 0.61±0.06 0.52±0.05
𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 (𝑦)† 0.98±0.01 0.46±0.02 0.48±0.04 0.78±0.05 0.38±0.02 0.71±0.02 0.62±0.01 0.77±0.02 0.65±0.02
𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 (𝑦,z) 0.98±0.01 0.45±0.01 0.47±0.04 0.78±0.05 0.37±0.02 0.70±0.02 0.61±0.01 0.77±0.03 0.66±0.02

the desired dimensionality, as opposed to the final classifier used for the ImageNet
classification task. The results of these experiments are presented in Table 2.5.

2.7.6 Including Per-Class Accuracy as Input
We find that including some meta-information can help with tracing performance.
To do this, we compute a learner’s accuracy on each class at each time-step and
concatenate this vector to the input of three tracing models (𝜙𝑠𝑡𝑎𝑡𝑖𝑐, 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 and
𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑). We find a boost in performance across all models. The results are
presented in Table 2.6, where we observe a boost in performance. It is likely that
other sources of meta-information (such as time-taken on an example) will also
help [60].

2.7.7 Varying Embedding Dimension
We demonstrate that varying the embedding dimension of the feature extractor has
little effect on the performance of the direct response model (Table 2.7).

37

Table 2.3: Performance of all model variants on the Eyes dataset. Please see the
caption of Table 2.2 for more details.

Eyes
Train Test

DME Drusen Normal Micro Macro Micro Macro
GT Label† 0.56±0.02 0.54±0.03 0.58±0.02 0.56±0.02 0.56±0.02 0.69±0.02 0.69±0.01
𝜙𝑠𝑡𝑎𝑡𝑖𝑐† 0.63±0.03 0.53±0.05 0.62±0.02 0.60±0.03 0.59±0.03 0.67±0.02 0.68±0.02

𝜙𝑠𝑡𝑎𝑡𝑖𝑐𝑡 𝑖𝑚𝑒† 0.32±0.01 0.35±0.01 0.36±0.01 0.34±0.00 0.34±0.01 0.33±0.01 0.34±0.02
𝜙𝑑𝑘𝑡 0.63±0.02 0.60±0.03 0.65±0.02 0.63±0.02 0.63±0.02 0.74±0.03 0.73±0.03

𝜙𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 0.41±0.09 0.41±0.05 0.42±0.09 0.41±0.08 0.41±0.08 0.37±0.02 0.39±0.02
𝜙𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 0.61±0.04 0.50±0.04 0.56±0.04 0.56±0.03 0.56±0.03 0.65±0.04 0.65±0.05
𝜙𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟 0.57±0.02 0.48±0.02 0.59±0.03 0.54±0.02 0.55±0.02 0.68±0.04 0.67±0.04
𝜙𝑑𝑖𝑟𝑒𝑐𝑡 (𝑏𝑎𝑠𝑒) 0.38±0.02 0.40±0.01 0.38±0.02 0.38±0.01 0.39±0.01 0.35±0.01 0.34±0.01
𝜙𝑑𝑖𝑟𝑒𝑐𝑡 (𝑦) 0.65±0.03 0.62±0.03 0.68±0.03 0.66±0.02 0.65±0.02 0.75±0.01 0.73±0.02
𝜙𝑑𝑖𝑟𝑒𝑐𝑡 (𝑦,z)† 0.64±0.02 0.62±0.03 0.69±0.02 0.66±0.02 0.65±0.02 0.75±0.01 0.74±0.02
𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 (𝑏𝑎𝑠𝑒) 0.48±0.05 0.39±0.02 0.48±0.05 0.45±0.04 0.45±0.03 0.44±0.02 0.44±0.02
𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 (𝑦)† 0.65±0.02 0.62±0.03 0.69±0.01 0.65±0.03 0.65±0.02 0.74±0.02 0.74±0.04
𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 (𝑦,z) 0.64±0.01 0.62±0.03 0.69±0.02 0.65±0.02 0.65±0.02 0.75±0.01 0.74±0.02

Table 2.4: Performance of all model variants on the Greebles dataset. Please see
the caption of Table 2.2 for more details.

Greebles
Train Test

Agara Bari Cooka Micro Macro Micro Macro
GT Label† 0.51±0.02 0.37±0.03 0.43±0.03 0.45±0.02 0.44±0.02 0.50±0.01 0.49±0.01
𝜙𝑠𝑡𝑎𝑡𝑖𝑐† 0.63±0.03 0.43±0.04 0.55±0.05 0.55±0.03 0.53±0.03 0.64±0.01 0.61±0.01

𝜙𝑠𝑡𝑎𝑡𝑖𝑐𝑡 𝑖𝑚𝑒† 0.64±0.04 0.39±0.02 0.54±0.04 0.54±0.03 0.52±0.03 0.61±0.01 0.59±0.02
𝜙𝑑𝑘𝑡 0.59±0.03 0.41±0.03 0.49±0.05 0.52±0.02 0.50±0.02 0.59±0.02 0.55±0.02

𝜙𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 0.52±0.11 0.36±0.03 0.45±0.05 0.46±0.07 0.45±0.06 0.44±0.08 0.43±0.08
𝜙𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 0.58±0.03 0.42±0.01 0.54±0.05 0.52±0.02 0.51±0.02 0.58±0.02 0.57±0.02
𝜙𝑒𝑥𝑒𝑚𝑝𝑙𝑎𝑟 0.59±0.02 0.43±0.03 0.52±0.05 0.52±0.03 0.51±0.03 0.63±0.01 0.60±0.01
𝜙𝑑𝑖𝑟𝑒𝑐𝑡 (𝑏𝑎𝑠𝑒) 0.37±0.02 0.35±0.02 0.36±0.01 0.36±0.00 0.36±0.00 0.34±0.02 0.34±0.02
𝜙𝑑𝑖𝑟𝑒𝑐𝑡 (𝑦) 0.59±0.02 0.41±0.03 0.51±0.04 0.52±0.02 0.50±0.03 0.59±0.02 0.55±0.02
𝜙𝑑𝑖𝑟𝑒𝑐𝑡 (𝑦,z)† 0.62±0.03 0.42±0.03 0.55±0.05 0.55±0.03 0.53±0.03 0.60±0.02 0.57±0.03
𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 (𝑏𝑎𝑠𝑒) 0.63±0.03 0.40±0.02 0.56±0.06 0.55±0.02 0.53±0.03 0.61±0.02 0.60±0.03
𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 (𝑦)† 0.62±0.03 0.41±0.03 0.54±0.03 0.54±0.02 0.52±0.03 0.60±0.02 0.57±0.03
𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 (𝑦,z) 0.63±0.03 0.41±0.03 0.55±0.03 0.55±0.02 0.53±0.01 0.61±0.02 0.59±0.02

38

Table 2.5: Performance of models trained using a pre-trained ResNet with
partially frozen weights. Method details are described in Sec. 2.7.5. We only
compare model variants that appear in the main text. Similar to the original
experiment results the classifier prediction model (𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑) performs the best.
However, the overall performance decreases slightly across the board. We observe
a larger decrease for the direct response model (𝜙𝑑𝑖𝑟𝑒𝑐𝑡), likely due to the larger
dependence that it has on the feature space.

Butterflies
Train Test

Cabbage
White Monarch Queen Red

Admiral Viceroy Micro Macro Micro Macro

GT Label 0.94±0.03 0.32±0.01 0.36±0.04 0.65±0.04 0.27±0.01 0.48±0.02 0.51±0.02 0.58±0.02 0.61±0.02
𝜙𝑠𝑡𝑎𝑡𝑖𝑐 0.95±0.01 0.36±0.02 0.32±0.04 0.65±0.04 0.27±0.03 0.62±0.02 0.51±0.02 0.67±0.03 0.57±0.03

𝜙𝑠𝑡𝑎𝑡𝑖𝑐_𝑡𝑖𝑚𝑒 0.44±0.02 0.25±0.02 0.22±0.01 0.33±0.03 0.19±0.02 0.28±0.01 0.29±0.00 0.27±0.02 0.34±0.02
𝜙𝑑𝑖𝑟𝑒𝑐𝑡 0.97±0.01 0.41±0.03 0.38±0.06 0.74±0.07 0.28±0.03 0.66±0.03 0.55±0.02 0.70±0.03 0.58±0.04
𝜙𝑐𝑙𝑠𝑝𝑟𝑒𝑑 0.97±0.01 0.39±0.02 0.49±0.02 0.75±0.06 0.32±0.03 0.69±0.01 0.59±0.01 0.75±0.01 0.65±0.02

Table 2.6: Performance of models after concatenating per-class accuracy
information to the input vector for the tracing model. Method details are
described in (Sec. 2.7.6). We only compare model variants that appear in the main
text. We observed a boost for all models.

Greebles Eyes Butterflies
Train Test Train Test Train Test

Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro
𝜙𝑠𝑡𝑎𝑡𝑖𝑐† 0.63 0.52 0.67 0.58 0.60 0.59 0.67 0.68 0.55 0.53 0.64 0.61

𝜙𝑠𝑡𝑎𝑡𝑖𝑐+𝑝𝑒𝑟𝐶𝑙𝐴𝑐𝑐 0.65 0.54 0.69 0.58 0.63 0.62 0.69 0.70 0.59 0.57 0.66 0.65
𝜙𝑑𝑖𝑟𝑒𝑐𝑡† 0.70 0.59 0.77 0.64 0.66 0.65 0.75 0.74 0.55 0.53 0.60 0.57

𝜙𝑑𝑖𝑟𝑒𝑐𝑡+𝑝𝑒𝑟𝐶𝑙𝐴𝑐𝑐 0.71 0.62 0.78 0.67 0.69 0.69 0.78 0.78 0.53 0.51 0.61 0.57
𝜙𝑐𝑙𝑠𝑝𝑟𝑒𝑑† 0.71 0.62 0.77 0.65 0.65 0.65 0.74 0.74 0.54 0.52 0.60 0.57

𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑+𝑝𝑒𝑟𝐶𝑙𝐴𝑐𝑐 0.71 0.61 0.79 0.67 0.69 0.69 0.79 0.79 0.53 0.51 0.60 0.58

Table 2.7: Effect of embedding dimension on model performance. We train the
𝜙𝑑𝑖𝑟𝑒𝑐𝑡 tracing model on the butterflies dataset with different embedding dimensions.
We find that embedding dimension has no impact on performance.

Butterflies
Train Test

Cabbage
White Monarch Queen Red

Admiral Viceroy Micro Macro Micro Macro

𝜙𝑑𝑖𝑟𝑒𝑐𝑡_𝑑𝑖𝑚8 0.98±0.01 0.41±0.03 0.45±0.06 0.77±0.07 0.35±0.03 0.70±0.03 0.59±0.03 0.77±0.03 0.65±0.04
𝜙𝑑𝑖𝑟𝑒𝑐𝑡_𝑑𝑖𝑚16 0.98±0.01 0.42±0.05 0.46±0.04 0.77±0.07 0.37±0.03 0.70±0.02 0.60±0.02 0.78±0.03 0.66±0.03
𝜙𝑑𝑖𝑟𝑒𝑐𝑡_𝑑𝑖𝑚32 0.98±0.01 0.43±0.04 0.46±0.03 0.77±0.06 0.35±0.02 0.70±0.02 0.60±0.01 0.78±0.02 0.67±0.02
𝜙𝑑𝑖𝑟𝑒𝑐𝑡_𝑑𝑖𝑚64 0.97±0.01 0.43±0.03 0.48±0.04 0.78±0.06 0.37±0.03 0.71±0.02 0.61±0.02 0.79±0.01 0.66±0.01

39

2.8 CNN Architecture Details
In Table 2.8 we describe the architecture of the CNN used to encode images for all
of the models.

Table 2.8: Structure of the CNN backbone used to learn the image representation.
The bolded and italicized entries are variable and depend on the experiment and
dataset. The number of image channels (img_chns) is three for the Butterflies and
Greebles dataset, but is one for Eyes. The Butterflies and OCT datasets contain
larger images (144 x 144), and so img_feats is set to 1296. For the Greebles dataset,
the images are (128 x 128) and img_feats is set to 1204. Finally, the output of the
model is the size of the embedding dimension and is set to 16 for all experiments.

CNN backbone
layer in channels out channels k s p activation
conv1 img_chns 8 5 1 2 PReLU

maxpool1 - - 4 - - PReLU
conv2 8 16 5 1 2 PReLU

maxpool2 - - 4 - - -
flatten - - - - - -
linear img_feats 512 - - - PReLU
linear 512 256 - - - PReLU
linear 256 256 - - - PReLU
linear 256 16 - - - PReLU

40

2.9 Additional Results
We recreate Fig. 2.4 for all datasets and include results from the Direct Response and
Time-Sensitive Model. For the Greebles dataset, we include the histograms of the
features of the classes to demonstrate the difficulty of the task.

0.00

0.25

0.50

0.75

1.00

A
v
e
ra

g
e
 H

u
m

a
n
 A

cc
.

Cabbage White Monarch Queen
Human Data

Train-Test Divider

Red Admiral Viceroy

0 20 40
0.00

0.25

0.50

0.75

1.00

A
v
e
ra

g
e
 P

ro
b

a
b

ili
ty

0 20 40 0 20 40
Time Step

Static Model

Time-Sensitive Model

Classifier Model

Direct Model

0 20 40 0 20 40

Figure 2.5: Human and model performance on the Butterflies dataset. (Top) The
smoothed average human learner accuracy for each class over time on the Butterflies
dataset. The shadowed regions indicate confidence intervals as the number of
samples in each time and class bin are not guaranteed to be the same. (Bottom) The
average probability of getting a class correct predicted by the static 𝜙𝑠𝑡𝑎𝑡𝑖𝑐 model
(orange), 𝜙𝑠𝑡𝑎𝑡𝑖𝑐_𝑡𝑖𝑚𝑒 model (green), the direct response 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 model (purple), and
the classifier prediction 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 model (red). At each time-step, for each learner
in the test set, the models predict class probabilities for ∼ 50 images per class.
The probabilities are averaged (solid line) and the shadows indicate one standard
deviation. While both recurrent models have similar traces, the 𝜙𝑑𝑖𝑟𝑒𝑐𝑡 produces
smoother average probabilities.

41

0.00

0.25

0.50

0.75

1.00

A
v
e
ra

g
e
 H

u
m

a
n
 A

cc
.

DME Drusen Normal

Human Data

Train-Test Divider

0 10 20 30 40
0.00

0.25

0.50

0.75

1.00

A
v
e
ra

g
e
 P

ro
b

a
b

ili
ty

0 10 20 30 40
Time Step

Static Model

Time-Sensitive Model

Classifier Model

Direct Model

0 10 20 30 40

Figure 2.6: Human and model performance on the Eyes dataset. See Fig. 2.5 for
a detailed caption.

13 14 15 16 17 18
0

50

100

150

Body Width

Agara

Bari

Cooka

10 15 20 25 30
0

20

40

60

80

Body Size
12 13 14 15 16 17 18 19

0

50

100

150

Head Width

Agara

Bari

Cooka

12 13 14 15 16 17 18 19
0

50

100

150
Head Size

50 100 150 200 250 300
0

20

40

60

Red

Agara

Bari

Cooka

50 100 150 200 250 300
0

20

40

60

Green

Figure 2.7: Statistics of the Greebles dataset. The Greebles dataset was inspired
by the one used in [26]. In our version, the three classes vary in Head Width and
Size (top row), Body Width and Size (middle row), and the Red and Green channel
for the RGB color (bottom row). The histograms overlap completely for Head Width,
Head Size, and Body Width. These variations serve as distractors since they provide
no information about which class an image belongs to. The other features, Body
Size, the Red channel, and the Green channel have different distributions and can be
used to estimate the class. Agara and Bari are most separable by Body Size, Cooka
is most separable from both Agara and Bari in the two color channels. However,
note that they are not perfectly separated and it is possible, although less likely, for
two images from different classes to take on the same properties. This makes the
Greebles dataset particularly challenging, since the important features are both subtle
and imperfect for distinguishing between classes.

42

0 10 20 30 40
0.00

0.25

0.50

0.75

1.00

A
v
e
ra

g
e
 P

ro
b

a
b

ili
ty

0 10 20 30 40
Time Step

Static Model

Time-Sensitive Model

Classifier Model

Direct Model

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

A
v
e
ra

g
e
 H

u
m

a
n
 A

cc
.

Agara Bari Cooka
Human Data

Train-Test Divider

Figure 2.8: Human and model performance on the Greebles dataset. See Fig. 2.5
for a detailed caption.

43

0 10
0

10

Hi
dd

en
 S

ta
te

Cabbage White Monarch Queen Red Admiral Viceroy

0 5 10

5

10

Ce
ll

St
at

e

Figure 2.9: Visualizing hidden and cell states of the tracing model. The hidden
states and cell states of the LSTM for 𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑 while tracing 25 test-set learners
are plotted in 2D using the UMAP dimensionality reduction algorithm [61]. (Top)
The hidden state representations are colored according to the probability (purple to
yellow) that a response produced with that hidden state would correctly classify an
image of the class in the panel title. We can see that the classes that correspond to
the best average performance by humans are in well-defined clusters (e.g. Cabbage
White), whereas the classes that are commonly mistaken for each other are grouped
together and have much weaker probabilities of being correct. (Bottom) The cell
states are visualized in the same manner. For the cell states, we can see that the
clusters seem to be dragged across a single dimension. The Cabbage White and Red
Admiral cluster is split in two pieces in the cell state, which we explore in Fig. 2.10.

2.10 Learned Representations
Here we explore the representations learned by the the classifier prediction model
(𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑) on the Butterflies dataset. In Fig. 2.9 we visualize the internal state of the
model and in Fig. 2.10 we provide an in depth comparison for two different learners.

44

5 0 5 10 15

0

5

10

0 2 4 6 8 10 12

4

6

8

10

12

Learner A

5 0 5 10 15

0 2 4 6 8 10 12

Learner B

H
id

d
e
n
 S

ta
te

C
e
ll

S
ta

te

0 5 10 15 20 25 30
Time Step (Training)

A

B

Le
a
rn

e
r

correct

incorrect

Figure 2.10: Tracing individual student performance. (Top) The sequence of
correct and incorrect responses made by two human learners during training. We
selected these two learners as they demonstrate different learning behaviors. It
seems Learner B may already be familiar with butterflies. (Bottom) We overlay
each learners’ trajectory through the hidden and cell states. The colors represent the
time-step, where dark blue is the beginning of training, light-grey is the middle, and
dark red is the end. We see that Learner B’s trajectory quickly skips to the left of
the cell state, suggesting the LSTM encodes the learners skill level on all classes in
certain dimensions of the cell state and uses the hidden state to translate the skill
level into an appropriate response for the image shown to the learner.

45

2.11 Feature Space
In Fig. 2.11 we visualize the feature space learned by the CNN for the classifier
prediction model (𝜙𝑐𝑙𝑠_𝑝𝑟𝑒𝑑) on the Butterflies dataset.

Cabbage White
Monarch
Queen
Red Admiral
Viceroy

0.001 0.002 0.003 0.004 0.005
PCA Dim 1

0.015

0.020

0.025

0.030

0.035

PC
A

D
im

 2

Viceroy

0.4 0.2 0.0 0.2 0.4 0.6

0.0

0.1

Ti
m

e
St

ep
 0

1.0 0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

Ti
m

e
St

ep
 5 Cabbage White

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.0

0.2

Ti
m

e
St

ep
 1

5

Monarch

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.1

0.0

0.1

Ti
m

e
St

ep
 2

5

Monarch

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
PCA Dim 1

0.1

0.0

0.1

Ti
m

e
St

ep
 2

9

Viceroy

Learner X

Figure 2.11: Visualizing the feature space. The feature space learned by the CNN
must support several types of behaviors, since behavior changes between learners
and over time. We use PCA to reduce the learned feature space into two dimensions.
(Left) We show a subset of images in the Butterflies dataset colored by the ground
truth label. Aside from the Cabbage White class, which is the easiest to identify, the
representations are difficult to separate. (Right) We use the hyperplanes predicted
while tracing a single learner X to induce a subspace and visualize the features in
that subspace. Within the subspaces, the classes are much better separated. Each
row shows a subspace induced by a hyperplane for different time-steps - where the
time-step is indicated on the left. The colors represent the class and the labelled color
is the target class for the image being evaluated in that time-step. We see that, over
time, the target class is pushed further to the right and is better separated from the
other classes (see orange cluster in time-step 15 vs. 25). Classes that are confused for
each other have less separation, whereas classes like Cabbage White, that are rarely
confused, are extremely well-separated from the other classes. Also, note that the
subspace orientation (target class moved to the right) matches how the dot product
between the hyperplanes and features is translated into probabilities in the model.

46

2.12 Additional Implementation Details
2.12.1 Types of Learner Responses
There are several ways to request information from the learner: they can provide
their best guess, a ranked list of guesses, or confidence scores for each class. In these
datasets, we ask for a ranking of each learner’s top 3 classes as a balance between
time-spent and informativeness. While our models are trained on their top choice
(equivalent to their best guess), we hypothesize that the extra information available in
the ranked responses can be leveraged to improve response prediction performance.
We leave this to future work.

2.12.2 Recurrent Neural Networks
Here we elaborate on the details of the recurrent neural network based models.

Direct Response Model. At each time-step, this model receives the hidden states,
cell states, the learner’s response to the previous interaction, the embedding of the
current image, and the true label of the current image. The model predicts the
response of the learner with respect to the input image.

Classifier Prediction Model. At each time-step, this model receives the hidden state,
cell state, the embedding of the image from the previous interaction, the learner’s
response to the previous interaction, and the true label of the current image. The
model predicts a classifier that is used to classify the embedding of the input image
such that it matches the response of the learner to that input image at that time-step.

Ground truth labels and learner responses are represented as one-hot-encoded vectors.
For both models, at the first time-step, some of the values that make up the input
vector are not available to the model. For example, the hidden state, cell state, the
response to previous interaction, etc. These vectors are initialized to zeros.

47

References

[1] Neehar Kondapaneni, Pietro Perona, and Oisin Mac Aodha. “Visual Knowledge
Tracing.” In: European Conference on Computer Vision. Springer. 2022,
pp. 415–431. url: https://link.springer.com/chapter/10.
1007/978-3-031-19806-9_24.

[2] Ellen M Markman. Categorization and naming in children: Problems of
induction. mit Press, 1989.

[3] Fei Xu and Joshua B Tenenbaum. “Word learning as Bayesian inference.” In:
Psychological review (2007).

[4] Zhirong Wu et al. “Unsupervised feature learning via non-parametric instance
discrimination.” In: CVPR. 2018.

[5] Ting Chen et al. “A simple framework for contrastive learning of visual
representations.” In: ICML. 2020.

[6] Kaiming He et al. “Momentum contrast for unsupervised visual representation
learning.” In: CVPR. 2020.

[7] Elijah Cole et al. “When does contrastive visual representation learning work?”
In: CVPR. 2022.

[8] Qi Liu et al. “A survey of knowledge tracing.” In: arXiv:2105.15106 (2021).

[9] Chris Piech et al. “Deep knowledge tracing.” In: Advances in neural information
processing systems 28 (2015).

[10] Shalini Pandey and George Karypis. “A self-attentive model for knowledge
tracing.” In: arXiv:1907.06837 (2019).

[11] Shi Pu et al. “Deep knowledge tracing with transformers.” In: International
Conference on Artificial Intelligence in Education. 2020, pp. 252–256.

[12] Mahmut Kaya and Hasan Şakir Bilge. “Deep metric learning: A survey.” In:
Symmetry (2019).

[13] Joseph B Kruskal and Myron Wish. Multidimensional scaling. 11. Sage, 1978.

[14] Laurens Van Der Maaten and Kilian Weinberger. “Stochastic triplet embed-
ding.” In: International Workshop on Machine Learning for Signal Processing.
2012, pp. 1–6.

[15] Michael Wilber, Iljung Kwak, and Serge Belongie. “Cost-effective hits for
relative similarity comparisons.” In: Proceedings of the AAAI Conference on
Human Computation and Crowdsourcing. Vol. 2. 2014, pp. 227–233.

[16] Brett D Roads and Michael C Mozer. “Predicting the ease of human category
learning using radial basis function networks.” In: Neural Computation (2021).

[17] Omer Tamuz et al. “Adaptively Learning the Crowd Kernel.” In: ICML. 2011.

https://link.springer.com/chapter/10.1007/978-3-031-19806-9_24
https://link.springer.com/chapter/10.1007/978-3-031-19806-9_24

48

[18] Karsten Roth et al. “Revisiting training strategies and generalization perfor-
mance in deep metric learning.” In: ICML. 2020, pp. 8242–8252.

[19] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. “A metric learning reality
check.” In: ECCV. 2020, pp. 681–699.

[20] Jiang Wang et al. “Learning fine-grained image similarity with deep ranking.”
In: CVPR. 2014, pp. 1386–1393.

[21] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified
embedding for face recognition and clustering.” In: CVPR. 2015, pp. 815–823.

[22] Andreas Veit, Serge Belongie, and Theofanis Karaletsos. “Conditional simi-
larity networks.” In: CVPR. 2017, pp. 830–838.

[23] Kun Ho Kim, Oisin Mac Aodha, and Pietro Perona. “Context Embedding
Networks.” In: CVPR. 2018, pp. 8679–8687.

[24] Ishan Nigam, Pavel Tokmakov, and Deva Ramanan. “Towards latent attribute
discovery from triplet similarities.” In: ICCV. 2019, pp. 402–410.

[25] Reuben Tan et al. “Learning similarity conditions without explicit supervision.”
In: ICCV. 2019, pp. 10373–10382.

[26] Peter Welinder et al. “The multidimensional wisdom of crowds.” In: NeurIPS
(2010).

[27] Dagmar Zeithamova. Category learning systems. The University of Texas at
Austin, 2008.

[28] F Gregory Ashby and W Todd Maddox. “Human category learning 2.0.” In:
Annals of the New York Academy of Sciences (2011).

[29] F Gregory Ashby and Jeffrey B O’Brien. “Category learning and multiple
memory systems.” In: Trends in cognitive sciences 9.2 (2005), pp. 83–89.

[30] F Gregory Ashby and W Todd Maddox. “Human category learning.” In: Annu.
Rev. Psychol. 56 (2005), pp. 149–178.

[31] Irving Biederman and Margaret M Shiffrar. “Sexing day-old chicks: a case
study and expert systems analysis of a difficult perceptual-learning task.” In:
Journal of Experimental Psychology: Learning, memory, and cognition 13.4
(1987), p. 640.

[32] Martin N Hebart et al. “Revealing the multidimensional mental representations
of natural objects underlying human similarity judgements.” In: Nature human
behaviour 4.11 (2020), pp. 1173–1185.

[33] Brett D Roads and Bradley C Love. “Enriching imagenet with human similarity
judgments and psychological embeddings.” In: CVPR. 2021.

[34] Robert M Nosofsky et al. “Toward the development of a feature-space rep-
resentation for a complex natural category domain.” In: Behavior Research
Methods 50.2 (2018), pp. 530–556.

49

[35] Maria Attarian, Brett D Roads, and Michael C Mozer. “Transforming neural
network visual representations to predict human judgments of similarity.” In:
arXiv:2010.06512 (2020).

[36] Daniel N Barry and Bradley C Love. “Human learning follows the dynamics
of gradient descent.” In: PsyArXiv (2021).

[37] Albert T Corbett and John R Anderson. “Knowledge tracing: Modeling the
acquisition of procedural knowledge.” In: User modeling and user-adapted
interaction 4 (1994), pp. 253–278.

[38] Xiaojin Zhu et al. “An overview of machine teaching.” In: arXiv:1801.05927
(2018).

[39] Chi-Tung Cheng et al. “Artificial intelligence-based education assists medical
students’ interpretation of hip fracture.” In: Insights into Imaging 11.1 (2020),
pp. 1–8.

[40] Elnaz Amiri, Patty Sha, and Evan M Palmer. “Training Novices to Discriminate
Retinal Diseases Using Perceptual Learning.” In: Proceedings of the Human
Factors and Ergonomics Society Annual Meeting. 2020, pp. 1456–1460.

[41] Adish Singla et al. “Near-optimally teaching the crowd to classify.” In: ICML.
2014, pp. 154–162.

[42] Edward Johns, Oisin Mac Aodha, and Gabriel J Brostow. “Becoming the
expert-interactive multi-class machine teaching.” In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 2616–2624.

[43] Oisin Mac Aodha et al. “Teaching categories to human learners with visual
explanations.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 3820–3828.

[44] Pei Wang, Kabir Nagrecha, and Nuno Vasconcelos. “Gradient-based algorithms
for machine teaching.” In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2021, pp. 1387–1396.

[45] Pei Wang and Nuno Vasconcelos. “A Machine Teaching Framework for
Scalable Recognition.” In: ICCV. 2021, pp. 4945–4954.

[46] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In:
Neural computation 9.8 (1997), pp. 1735–1780.

[47] Daniel S Kermany et al. “Identifying medical diagnoses and treatable diseases
by image-based deep learning.” In: Cell 172.5 (2018), pp. 1122–1131.

[48] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context.” In: ECCV.
2014.

[49] Grant Van Horn et al. “Building a bird recognition app and large scale dataset
with citizen scientists: The fine print in fine-grained dataset collection.” In:
CVPR. 2015.

50

[50] Alina Kuznetsova et al. “The open images dataset v4.” In: IJCV (2020).

[51] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge.”
In: IJCV (2015).

[52] Prolific. www.prolific.co, accessed Mar 7 2022.

[53] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion.” In: arXiv:1412.6980 (2014).

[54] Robert M Nosofsky, Brian Meagher, and Parhesh Kumar. “Contrasting
Exemplar and Prototype Models in a Natural-Science Category Domain.” In:
CogSci. 2020.

[55] Youngduck Choi et al. “Towards an appropriate query, key, and value compu-
tation for knowledge tracing.” In: Proceedings of the Seventh ACM Conference
on Learning@ Scale. 2020.

[56] Ashish Vaswani et al. “Attention is all you need.” In: NeurIPS (2017).

[57] Burr Settles and Brendan Meeder. “A trainable spaced repetition model for
language learning.” In: ACL. 2016.

[58] Anette Hunziker et al. “Teaching multiple concepts to a forgetful learner.” In:
NeurIPS (2019).

[59] Kaiming He et al. “Deep residual learning for image recognition.” In: CVPR.
2016.

[60] Dongmin Shin et al. “Saint+: Integrating temporal features for ednet correctness
prediction.” In: LAK21: 11th International Learning Analytics and Knowledge
Conference. 2021.

[61] Leland McInnes et al. “UMAP: Uniform Manifold Approximation and Projec-
tion.” In: The Journal of Open Source Software (2018).

www.prolific.co

51

C h a p t e r 3

REPRESENTATIONAL SIMILARITY VIA INTERPRETABLE
VISUAL CONCEPTS

Neehar Kondapaneni, Oisin Mac Aodha, and Pietro Perona. “Representational
Similarity via Interpretable Visual Concepts.” In: The Thirteenth International
Conference on Learning Representations. 2025. url: https://openreview.
net/forum?id=ih3BJmIZbC.

3.1 Abstract
How do two deep neural networks differ in how they arrive at a decision? Measuring
the similarity of deep networks has been a long-standing open question. Most existing
methods provide a single number to measure the similarity of two networks at a given
layer, but give no insight into what makes them similar or dissimilar. We introduce
an interpretable representational similarity method (RSVC) to compare two networks.
We use RSVC to discover shared and unique visual concepts between two models.
We show that some aspects of model differences can be attributed to unique concepts
discovered by one model that are not well represented in the other. Finally, we conduct
extensive evaluation across different vision model architectures and training protocols
to demonstrate its effectiveness. Code: github.com/nkondapa/RSVC

3.2 Introduction
The accuracy of deep neural networks has steadily increased over the last few years
thanks to improvements in model architectures, dataset size, and pretraining strategies.
However, much less is understood regarding how the representations of different
models have changed to make the models more effective. Thus, there is growing
interest in developing methods that allow practitioners to compare different networks.
Comparing the activation matrices of two neural networks over the same set of
inputs underpins current representational similarity methods, e.g. CCA [2], CKA [3],
RSA [4], and Brain-score [5]. While these approaches provide a score denoting
the similarity between two different models, they do not identify the specifics of
what makes two models’ computations similar or dissimilar, and what aspects of a
representation lead to differences in model decisions.

https://openreview.net/forum?id=ih3BJmIZbC
https://openreview.net/forum?id=ih3BJmIZbC
https://github.com/nkondapa/RSVC

52

In parallel, methods for concept-based eXplainable AI (XAI) have improved our
ability to understand what features individual models use to arrive at decisions.
Understanding these features is critical for ensuring model fairness and identifying
potential sources of bias [6, 7]. In general, XAI methods sacrifice model fidelity to
produce explanations that are simple enough for human interpretation [8, 9]. Thus,
there is a tension between model fidelity and human understanding.

We propose that contrasting two models is an effective way to identify and highlight
what makes a model unique, so that users can identify critical features that drive
differences in model behavior. To investigate this idea we develop a new approach
that extends concept-based XAI methods so they can quantitatively measure repre-
sentational similarity and provide interpretable insights into the differences between
models. We name our method Representational Similarity via interpretable Visual
Concepts (RSVC). Our method builds on interpretability approaches in which the
activations of a given layer are decomposed into a coefficient matrix and a vector
basis. These approaches group images that produce similar activation patterns
together. Thus, we define a visual concept to be the equivalence class of images that
produce a similar activation pattern. After computing visual concepts from each
model, our method evaluates whether the visual concepts from one model are also
used by the other model. We make three contributions:

• RSVC, a new approach for providing human-interpretable insights into model
differences (Fig. 6.1).

• A validation strategy to link representational differences to model decisions.

• Experiments to show that RSVC can measure similarity at both coarse- and
fine-grained levels.

3.3 Related Work
3.3.1 Representational Similarity
Similarity methods attempt to quantify the similarity/dissimilarity between pairs of
different models [2, 3, 10, 11, 12]. Models can be compared based on their functional
(i.e. how their outputs differ) or their representational (i.e. how the features activations
of intermediate layers differ) similarity [13]. While functional similarity can tell
us about how model outputs vary, two models can achieve the same performance
with significantly different representations. These differences matter, e.g. while two
different forms of pretraining can achieve similar performance on certain datasets,
they may transfer poorly to others [14].

53

Representational similarity metrics have successfully been used to analyze the
differences between architectures [15, 16], explore the effects of different kinds of
pretraining [14, 17, 18], develop novel strategies for efficient ensembling [19], or
perform ensembling that is robust to distribution shifts [20]. Some methods have
leveraged representational similarity to build tools for text-to-image generation [21]
or model-to-model translation [22]. In neuro- and cognitive science, representational
similarity is used to measure how well models are able to approximate the neural
recordings of the brain and/or the behavior of humans [4, 5, 23, 24, 25]. In the
disentanglement literature, representational similarity has been used to evaluate how
well the learned representation matches known ground truth latent factors. A popular
approach is to use regularized linear predictors to map learned factors to ground
truth latent factors [26, 27, 28, 29, 30]. Recently, [22] proposed a method that
uses correlated activation patterns across networks to mine for “Rosetta Neurons.”
These neurons provide insights about features that re-occur consistently in many
models. In contrast to our proposed method, Rosetta Neurons do not quantify the
overall similarity between networks and do not identify neurons that explain model
differences. Most closely related to our work is that of [5] and [11] which use a linear
regression model as a similarity metric between the activations of two networks. We
describe these methods in more detail in Sec. 3.4.2.

The primary limitation of most existing representational similarity methods is that
they can quantify how similar the representations of two models are, but can not tell
users what makes the models similar or dissimilar. We propose a new approach that
aims to address this question. Our approach leverages concept-based explainability
as an intermediate step to measure representational similarity.

3.3.2 Explainable AI (XAI)
XAI methods aim to answer the questions (1) what features did a model use to arrive
at a decision and (2) where is the relevant information in the input. Local explanation
methods focus on pixel-based attribution, in which a heatmap indicates the region
of the image that is most relevant to the model’s decision [31, 32, 33]. While
local explanations are able to answer the “where” question, it can be challenging to
interpret “what” is being highlighted as attributions can be noisy.

To better address the “what” question, global concept-based explanations can be
used [8, 34, 35, 36, 37, 38, 39]. These approaches discover groups of images (or

54

image regions) that share some visual feature that is relevant to the model’s decision
making. In addition, “glocal” methods have been developed to answer both questions
simultaneously [40, 41, 42, 43].

[44] take a different approach to explaining model decisions whereby linear surrogate
models are trained to reproduce the output of a deep neural network. Then, each
training image is given a score that reflects how much it contributed to the final
weights of the learned model. In [45], this approach was extended to analyze the
differences between two models by identifying the differences in training images that
each model relies on to arrive at different decisions. While our work also aims to
compare two models in an interpretable manner, our approach uses the activations
of the original model itself. This gives RSVC the advantage of being able to link
representational changes to functional model behavior.

3.4 Method
We propose a new approach to compare the representations of two models using
concepts. Our approach is closely related to methods for computing representational
similarity, such as BrainScore [5] and the metric in [11], and builds upon prior
work in concept extraction [8, 35, 41]. We bridge approaches from these two fields,
resulting in an interpretable method to measure representational similarity for deep
neural networks (Fig. 6.1).

3.4.1 Concept Extraction
[8] showed that many concept based explainability approaches can be generalized as
dictionary learning methods. In these approaches, a set of 𝑛 input images I is used
to compute activations from a specific layer 𝑙 of a neural network resulting in an
activation matrix A ∈ R𝑛×𝑑 , where each row is an activation vector of dimensionality
𝑑. Then, a dictionary learning algorithm can be used to approximate the activations
as A ≈ UW. The row vectors of the vector basis W ∈ R𝑘×𝑑 can be interpreted as a
set of 𝑘 concepts. Similarly, the rows of the coefficient matrix U ∈ R𝑛×𝑘 represent
the importance of a particular concept vector in W for a given image. By visualizing
the images that have the largest concept coefficients for a given concept, we are
able to understand what visual concepts the network has identified in the data. The
effectiveness of such concept based XAI methods has been demonstrated via user
studies in previous work [34, 35, 41].

Our goal is to develop a method to compare the representational similarity between
two models, not just in terms of a single numerical score, but via interpretable

55

≈𝐴1 𝑊1Model 1 (𝑀1)
Concept Extraction𝑈1

𝑢1𝑎

𝑢1𝑎 bluejay tail

𝑢1𝑏

𝑢1𝑏 sky background

Concept Regression

Model 2 (𝑀2) 𝐴2 𝑊2→1∗ = 𝑈2→1

𝑢2→1𝑎
Can Model 2 predict Model 1 concepts?

Concept Similarity

𝜌
,𝑢2→1𝑏

𝜌
,

The sky background (𝑢1𝑏) is shared, but bluejay tail (𝑢1𝑎) is “missing”.

𝑀1 , 𝑀2 𝑀1 , 𝑀2

Figure 3.1: Representational Similarity via interpretable Visual Concepts
(RSVC). (Concept Extraction): First, activations for a set of image patches, I𝑐,
are computed for each model (𝑀1 and 𝑀2). Second, the activation matrix for 𝑀1
is factorized into the concept coefficient matrix U1 and the concept basis W1, i.e.
A1 ≈ U1W1. Each entry in a column vector of the coefficient matrix U1 represents
the strength of a concept in an image. Concepts are visualized by the image patches
that correspond to the top 𝑛 coefficients. Here, we highlight only two concepts, 𝑢𝑎1
and 𝑢𝑏1 . The top four images for these concepts indicate that 𝑢𝑎1 represents bluejay
tail and 𝑢𝑏1 represents sky background. (Concept Regression): To measure concept
similarity, we learn a weight matrix W∗2→1 to map A2 to the concept coefficient matrix
U2. We denote the predicted coefficient matrix as U2→1. (Concept Similarity):
Finally, we compute the correlation between columns of U2→1 and U1. If A2 contains
a concept in U1, then the predicted coefficient vector should be highly correlated to
the real coefficient vector. In this example, we see that the bluejay tail concept is
poorly represented in 𝑀2, but both models share the sky background concept.

concepts. For each model, we use the concept extraction approach proposed in
CRAFT [41]. We denote the first model as 𝑀1, and the second as 𝑀2. Importantly,
we make no assumption that these two models are from the same model family, e.g.
one could be a CNN and the other a Vision Transformer. We outline the concept
extraction process for 𝑀1, but the same process is applied to 𝑀2.

For a specific object class 𝑐, we select the set of images I𝑐1 that 𝑀1 predicted to
contain class 𝑐. By grouping images according to model predictions, as opposed
to only the ground truth labels, we are able to identify concepts used in all images
that the model believes are part of class 𝑐. This allows the method to provide better
insight into both correct and incorrect predictions. Images are usually composed of
several visual concepts, so we extract evenly spaced patches from the image to form

56

a set of “concept proposal” images. These patches are more likely to contain a single
visual concept and are easier to interpret. We re-use I𝑐1 to refer to the set of concept
proposal images.

Each concept proposal is resized to the model’s input resolution and passed through
the network. Note that all networks are trained with cropping augmentation, such
that patches are in the domain of training images. We denote the activations from a
specific layer 𝑙 and class 𝑐 as A1 ∈ R|I

𝑐
1 |×𝑑 , where 𝑑 is the dimension of the activations

of the layer. We then use a dictionary learning algorithm with 𝑘 components to
decompose A1 into a matrix U1 ∈ 𝑅 |I

𝑐
1 |×𝑘 and W1 ∈ R𝑘×𝑑 , such that A1 ≈ U1W1.

We refer to U1 as the concept coefficient matrix and W1 as the concept basis. We
repeat this process for 𝑀2, resulting in U2 and W2. Intuitively, each row of a concept
coefficient matrix U encodes the contribution of each concept vector in W to the
activation vector of a particular image in I.

To measure concept similarity between two models, we need to understand how
each concept reacts to the same set of images. For example, if both networks
have discovered a concept that reacts to the color red, they would both have an
activation pattern that spikes when red objects are presented. Following this logic,
we propose that if two concept vectors are encoding the same information, their
concept coefficients over the same set of images should be correlated. To obtain a
shared set of images, we take the union over the image sets I𝑐1 ∪ I

𝑐
2 to form I𝑐. The

proposals are passed through the model 𝑀1 to produce A1 for the shared concept set.
Given the concept basis W1 (which is specific to 𝑀1), we re-compute U1 over the
shared set of images. We repeat this process for 𝑀2 to compute U2. In practice, we
use a non-negative least squares solver, since the original coefficient matrices are
non-negative (Sec. 3.9).

3.4.2 Concept Similarity
Here we address the following question: in a specific pair of layers, does 𝑀1 encode
the same concepts as 𝑀2? In the following sections, we make use of A1, A2, U1 and
U2 to compute the similarity between concepts encoded in 𝑀1 and 𝑀2. We consider
two different approaches that trade-off computational cost and error. In Sec. 3.8.1
we describe a correlation based metric that has a low computational cost that we use
to coarsely compare many layers of two neural networks.

In order to more accurately measure similarity in a single layer, we propose a
regression based metric similar to the strategy in [11] and the BrainScore [5], which

57

was originally introduced to compare artificial neural networks to biological neural
networks. In [11], the outputs of a convolutional layer in one model are mapped
to the outputs of a convolutional layer in another network using a sparse weight
matrix. The prediction error between the predicted outputs and true outputs are
used as a metric for the similarity between the two layers. In BrainScore, for a set
of 𝑛 stimuli (e.g. images), the activations from a layer of the DNN are stored in a
matrix A ∈ R𝑛×𝑑 , where 𝑑 is the dimensionality of the layer activations. For the
same set of stimuli, neural recordings are measured from an animal and processed
forming a vector y ∈ R𝑛 for each target “neuroid.” A linear mapping is introduced to
predict the neural responses from the DNN activations, y = Aw∗ + 𝑏, where w∗ are
the weights of the regressor and 𝑏 is the bias. The regression model is trained on
a set of training images and evaluated on held out test images where the predicted
outputs of the regressor are compared to the true neural responses using Pearson
correlation, giving a score between −1 and 1.

To compare two neural networks using these methods, each column of A2 would
serve as prediction targets for regression with A1 resulting in a similarity score for
each column of A2. However, visualizing and interpreting each neuron results in an
explanation that is too complex for users. Instead, a more interpretable result can be
achieved by setting the coefficient matrix U2 as regression targets for A1 (Fig. 6.1).
Essentially, RSVC encodes similarity by measuring how well 𝑀1 can predict the
concept coefficients of 𝑀2 and vice-versa,

A1W∗1→2 = U1→2 and A2W∗2→1 = U2→1, (3.1)

where we learn W∗ such that the following regularized (𝑙1) mean-squared error is
minimized.

min
W∗

1
𝑛

𝑛∑︁
𝑖=1
(AW∗ − U)2 + 𝜆∥W∗∥1. (3.2)

𝑙1 regularization guides the regression model to seek a sparse set of neurons
in 𝑀1 that can be used to predict 𝑈2 and reduces over-fitting to the regression
training data. We also compute baselines for each model from their own activation
matrices, learning W∗1→1 and W∗2→2. Finally, we compute the Pearson and Spearman
correlation between columns of the predicted coefficient matrix and columns of the
true coefficient matrix to get a similarity score for each concept between -1 and 1.
We refer to the score as cross-model concept similarity (CMCS) when computed
across two models, and as same-model concept similarity (SMCS) when computed
within the same model.

58

Finally, we investigate whether similar or dissimilar concepts are more important to
model decisions by applying concept integrated gradients [8]. Concept integrated
gradients measure the contribution of each concept to a model’s decision (Sec. 3.9.1).

3.4.3 Replacement Test
To link differences in predicted concept coefficients and real concept coefficients to
model behavior, we conduct a “replacement test.”

1: for 𝑖 = 1 to 𝐾 do
2: Ū𝑖

2→1 ← Copy(U1)
3: Ū𝑖

2→1 [:, 𝑖] ← U2→1 [:, 𝑖]
4: Ā𝑖

2→1 ← Ū𝑖
2→1𝑊1

5: z̄𝑖2→1 ← ℎ(Ā𝑖
2→1)

6: ȳ𝑖2→1 ← argmax(z̄𝑖2→1)
7: end for

For each model comparison, we conduct a re-
placement operation over each column of the
coefficient matrix and keep track of the resultant
reconstructed activation matrix, model logits, and
model predictions (as seen in the pseudocode
on the left). We perform the replacement opera-
tion using the same model predicted coefficients
U1→1 (baseline) and also the cross-model pre-

dicted coefficients U2→1. We measure the impact of replacement at three levels
during a classification task. We denote ℎ as the classification head that produces
logits (z) for each input image. We compute the mean 𝑙2-distance between each row
of Ā𝑖

2→1 and Ā𝑖
1→1, the mean KL-divergence over the logits z̄𝑖2→1 and z̄𝑖1→1, and the

match accuracy between ȳ𝑖2→1 and ȳ𝑖1→1.

3.4.4 Interpreting Low Similarity Concepts
How should we visually compare predicted and real concepts? Concept based XAI
methods like CRAFT [41] and CRP [42] visualize the 𝑛 images with the largest
concept coefficient as representatives of the visual feature encoded by the concept.
The same approach can be used to visualize similar concepts, since, by definition,
similar concepts have highly correlated activation patterns over the shared set of
concept proposal images. However, this approach is misleading when low similarity
concepts are discovered. When a concept is dissimilar it may share the same top 𝑛
images, but have entirely uncorrelated coefficients over the remaining images. This
possibility is further amplified due to the mean squared error (MSE) loss used to
estimate the regression matrix W∗1→2. The MSE loss penalizes prediction error on
the largest coefficients disproportionately, leading to a higher chance the two models
share the same top 𝑛 images.

To address this, we develop a new approach to specifically visualize how two models
are dissimilar with respect to a concept. We start by visualizing the target concept by

59

using an image collage corresponding to the top 𝑛 concept coefficients. The target
concept is compared to the predicted concept by visualizing the top 𝑛 over-predicted
coefficients and top 𝑛 under-predicted coefficients. This allows users to reason about
visual features that one model entangles or disentangles with the target concept,
improving their overall understanding of the compared models. To ensure sample
diversity, we enforce that we visualize one patch per image. We also exclude the
top-10 real concept images when selecting the over and under predicted points.
In Figs. 3.2 and 3.5, we demonstrate our proposed approach for interpreting the
dissimilarity of the concepts. We include more visualizations in Sec. 3.8.2.

3.4.5 Implementation Details
We choose a ResNet-18 (RN18), ResNet-50 (RN50) [46], ViT-S, ViT-L [47], DINO
ViT-B (DINO) [48], and MAE ViT-B (MAE) [49] from the timm library [50] for our
experiments. All models were trained on ImageNet [51]. For our exploration with
DINO and MAE, we finetune the models on NABirds [52]. We compare four pairs
of models: RN18 vs. RN50, ViT-S vs. ViT-L, RN50 vs. ViT-S, and DINO vs. MAE.
Model performance on their respective datasets are reported in Tab. 4.1. The first
two pairs have a clear difference in performance, implying that there are significant
representational differences between the models. The second two pairs are roughly
equal in overall performance, allowing us to explore how representational differences
may result in different behavior even when overall performance is the same. For
the 𝑙1 penalty, we sweep 𝜆 on a subset of data and find 𝜆 = 0.1 to be a reasonable
choice (Fig. 3.18). Additionally, we set the number of concepts 𝑘 = 10 to balance
reconstruction error and computational cost (Fig. 3.19). We provide further details
on the concept extraction, concept comparison and computational cost in Sec. 3.9.

3.5 Results
3.5.1 Discovering A “Toy” Concept
While understanding models on real data is closely related to real-world use cases,
it results in complex concepts that can be more challenging to interpret. To better
understand the properties of RSVC, we design an experiment in which we train a
model on images modified with a simple toy visual concept. In this experiment, we
are able to control what the model learns and explore how RSVC works in a more
controlled setting.

We train two ResNet-18 models from scratch on all classes from a modified NABirds
dataset [52]. The first model, 𝑀𝑝𝑠, is trained to make use of the toy concept in its

60

decisions and the second, 𝑀𝑛𝑐 is trained to become invariant to the toy concept. The
toy concept is a 20𝑝𝑥 × 20𝑝𝑥 pink square that is stochastically placed on the images
at a random location. For 𝑀𝑝𝑠, the concept appears on images from the Common
Eider class with a 70% probability, giving the concept predictive power. For 𝑀𝑛𝑐, the
concept appears on images from any class with a 50% probability, giving the concept
no predictive value. Thus, 𝑀𝑝𝑠 should learn to attend to the visual concept while
𝑀𝑛𝑐 should learn to ignore the concept, since it is simply noise. Finally, both models
are tested on a dataset in which the concept appears on images from the Common
Eider class with a 100% probability. Provided that 𝑀𝑛𝑐 successfully learns to ignore
the concept, RSVC should have a low similarity score to any concept in 𝑀𝑝𝑠 that
primarily fixates on the pink square. Recall that concepts are visualized using image
patches. This allows us to break the 100% correlation between the pink square and
the image during testing, such that only some patches contain the added concept.
Both models achieve ∼34% classification accuracy on the test set of NABirds.

In Fig. 3.2, we visualize the similarity from 𝑀𝑛𝑐 to Concept 1 in 𝑀𝑝𝑠. We find
that 𝑀𝑛𝑐 has a near zero similarity to Concept 1 in 𝑀𝑝𝑠, which we visually identify
to be a concept that fixates on the pink square. Importantly, the modified training
paradigm does not affect the similarity scores between other concepts in the two
models. In Fig. 3.10, we show that 𝑀𝑛𝑐 has high similarity to two other concepts in
𝑀𝑝𝑠. Thus, we show that RSVC clearly identifies the primary conceptual difference
between the two models in this controlled experiment.

3.5.2 Concept Similarity vs. Concept Importance
To analyze real data, we start by exploring the relationship between concept similarity
and importance in the penultimate layers of different models trained on ImageNet [51].
We compute the cross-model concept similarity (CMCS) and the concept impor-
tance (CI) for every extracted concept. In Fig. 3.3, we plot the concept similarity
from 𝑀1 to 𝑀2 against the concept importance for 𝑀2 across four pairs of models.
In Sec. 3.8.7, we compare same-model concept similarity (SMCS) to CI. In both of
these figures, a point with low similarity and high importance would indicate that
in layer 𝑙, 𝑀1 can not predict the coefficients of a concept that 𝑀2 finds important
in decision making. We use color to indicate the density of points in a region
(warmer colors indicate more density). As expected, we find that SMCS values are
significantly higher than CMCS values, since the model is predicting its own concepts.

61
Common Eider | Concept 1 | Mnc → 𝑀𝑝𝑠

Top-10 𝑀𝑝𝑠 Concept Patches

pink squares overlayed over water and tails

over-sensitivity to water without pink square under-sensitivity to pink squares

Top-10 Overpredicted Concept Patches Top-10 Underpredicted Concept Patches

Figure 3.2: Adding and discovering a toy concept. Here we train two ResNet-18
models, 𝑀𝑝𝑠 and 𝑀𝑛𝑐. 𝑀𝑝𝑠 is trained to associate a pink square (i.e. Concept 1)
with the Common Eider class, while 𝑀𝑛𝑐 is trained to be invariant to the pink square
concept. We find that the similarity score from 𝑀𝑛𝑐 → 𝑀𝑝𝑠 for Concept 1 is ∼ 0.0,
indicating that 𝑀𝑛𝑐 is unable to predict Concept 1 from 𝑀𝑝𝑠. To understand various
aspects of the differences between the two models, RSVC inspects three distinct
regions of the predicted vs. real coefficient scatter plot (Sec. 3.4.4). (Green): RSVC
visualizes images corresponding to the top-10 𝑀𝑝𝑠 target concept coefficients. This
allows the user to understand what the target concept is encoding. This concept clearly
reacts strongly to the pink square visual feature. (Blue): RSVC visualizes the image
patches with the largest 𝑀𝑛𝑐 under-predicted coefficients. 𝑀𝑛𝑐 under-reacts to the
pink square when compared to 𝑀𝑝𝑠. (Orange): RSVC visualizes the image patches
corresponding to the top-10 𝑀𝑛𝑐 over-predicted coefficients. The over-predicted
patches show that 𝑀𝑛𝑐 cannot distinguish between background and the pink square.

In cross-model comparisons, we observe that models tend to have medium/high
similarity for most concepts, since dense regions in the plot tend to be above 0.6
similarity. We also notice that the similarity scores from ViTs and ResNets have a
different overall structure, with ResNets having a longer tail of low similarity and
low importance concepts. Finally, except for DINO vs. MAE we find that there are
several low/medium similarity concepts that also have a medium/high importance.
In Sec. 3.8.5, we systematically vary the training protocol (seed and data) for a
ResNet-18 model and measure the impact of the changes on model similarity. We

62

DC

A B
1 2

3

Figure 3.3: Concept similarity vs. concept importance. We compare four pairs of
models using CMCS: (A) RN18 vs. RN50, (B) RN50 vs. ViT-S, (C) ViT-S vs. ViT-L,
and (D) DINO vs. MAE. The y-axis represents the concept importance (CI) measured
using concept integrated gradients. Warmer colors represent the density of points
in a region. We highlight several regions in the plots: (1) low similarity and low
importance concepts that are unique to a model but contribute little to its decisions,
(2) high importance and high similarity concepts that are shared across both models
and also contribute greatly to decision making, (3) low similarity, high importance
concepts that only one model has discovered, but are very important to that model’s
decisions.

find that changes in model training lead to intuitive changes in similarity and use
RSVC to reveal some concepts that suggest how the two models differ (Fig. 3.12). In
summary, we observe two key results: (1) model differences are largely driven by
medium similarity, medium importance concepts, jointly contributing to significant
changes in model behavior and (2) some models do learn “unique” low similarity,
high importance concepts. In the following sections we explore both of these results
further.

3.5.3 Replacement Test
In order to better understand how variations in similarity impact model behavior
we conduct a replacement test (described in Sec. 3.4.3). This test allows us to

63

Figure 3.4: Replacement test results. We determine whether poorly predicted
coefficients for concepts actually impact model behavior (Sec. 3.5.3). We use color
to represent the concept importance (warmer is higher importance). When ignoring
low importance concepts, we observe expected trends, i.e. decreases in similarity
(ΔPearson) result in increases in the 𝑙2-distance, increases in KL-divergence on the
classifier logits, and decreases in model accuracy. The effect also seems to be scaled
by importance, for example, changes to low importance concepts (black) has no
impact on ΔKL.

measure how changes in concept similarity impacts the 𝑙2-distance of the activations,
KL-divergence of the logits, and match accuracy of the predictions. We investigate
this question because it is possible that changes in Pearson correlation are due to
changes in predicted coefficients on unimportant images for a particular concept,
leading to no change in model behavior. In Fig. 3.4, we visualize the change
in Pearson correlation (ΔPearson) against the change in the three aforementioned
metrics. We use color to indicate concept importance (warmer colors are more
important). As expected, we observe a trend showing that 𝑙2-distance increases as
similarity decreases. For the KL-divergence, we observe two trends: (1) when the
importance is sufficiently high, the KL-divergence increases as similarity decreases
and (2) when the importance is low, there is no effect on the model’s logits. Finally,
we observe a trend that shows that model predictions change as a function of both
similarity and importance. We find that these trends roughly hold for all models,
although the structure of the plots changes for ViTs. See Sec. 3.8.8 for more results.

64

Barbell | ViT-S → ResNet50

Top-10 (R50) Concept Patches

hands and arms lifting barbell

over-sensitivity to weight equipment under-sensitivity to people + gym equipment

Top-10 (ViT-S) Overpredicted Concept Patches Top-10 (ViT-S) Underpredicted Concept Patches

(IC 1)

(IC 2)

Figure 3.5: Interpreting low similarity concepts. In this example, we find a RN50
concept for the barbell class that the ViT-S is not able to predict. (Green): The
RN50 concept reacts to images of hands lifting barbells. Additionally, many images
contain vertical supports for a squat rack. We train a regression model on the ViT-S
activations to predict the RN50 concept coefficients. (Blue): The ViT-S regression
model under-reacts to images containing hands, people, and squat racks. (Orange):
It over-reacts to images that have a greater focus on weight plates. These results
suggest that the the specific concept of hands lifting barbells is not represented in the
ViT-S. In Sec. 3.5.5 we use an LLVM to analyze the image collages (IC1 and IC2)
and find that it detects similar differences in the visualizations.

3.5.4 Low Similarity Concepts
In Fig. 3.3 we observe that model comparisons identify low similarity, high importance
concepts. These concepts are particularly interesting because they identify visual
features that one model has constructed that the other has not. In Fig. 3.5 we apply
our proposed approach for understanding the dissimilarity between predicted and
real concepts (see Sec. 3.4.4). We analyze a RN50 concept used on the barbell class,
which primarily reacts to images containing hands/arms lifting a barbell. When a
regression model is trained on the ViT-S activations to predict the coefficients of the
RN50 concept, the model becomes over-sensitive to any image with weight plates
or gym equipment and remains under-sensitive to images of people around gym

65

equipment. This result suggests that the ViT-S does not have a feature encoding
“hands lifting weights.” In Fig. 3.8, we show several examples of important low
similarity concepts that are visually interpretable.

3.5.5 LLVM Generated Concept Difference Analysis
Fig. 3.5 contains a manual analysis of the difference between a visual concept for the
barbell class from two different models. Here we use an LLVM (ChatGPT-4o [53]) to
analyze image collages and describe them. This approach has a similar goal to [54],
in which the authors use an LLVM to interpret specific MLP heads in a CLIP ViT
model. The input and output structure for this experiment is provided in Fig. 3.9.
We do not emphasize differences in the system prompt, instead we ask the model
to describe both similarities and differences. We provide the top-k image collage
(IC1) and the over-predicted image collage (IC2) as input to the LLVM. The LLVM
outputs for the barbell concept are presented below. We observe that the LLVM
description is similar to the manual description in the caption:

LLVM Analysis of a Visual Concept from the Barbell class
IC1: A collage of people engaging in strength training exercises, with a focus
on lifting dumbbells, barbells, and performing weightlifting movements.
IC2: A collage showcasing gym equipment and weights, with some emphasis
on exercises involving barbells and dumbbells but with fewer people depicted.
Similarity: Both collages center on weightlifting and gym-related activities,
featuring equipment and exercises.
Difference: IC1 highlights people actively performing weightlifting exercises,
while IC2 primarily focuses on the gym equipment and setup with minimal
human involvement.
Semantically different: [Yes] IC1 emphasizes the activity of weightlifting,
whereas IC2 focuses more on the tools and environment of the gym.

3.6 Limitations
We limit our analysis to computer vision models. In practice, there is nothing
restricting the application of the RSVC approach to large language models, but we
leave this for future work. Our work builds on concept-based XAI methods, and thus
inherits the trade-off between fidelity and interpretability. In particular, we note that
the reconstruction error varies for each model, which may explain some properties
of concept similarity in our experiments. However, we are agnostic to the precise
concept extraction method used and thus our approach will benefit from further

66

advances in these methods. For example, incorporating a recursive strategy like the
one presented in CRAFT [41], may significantly improve the number of interpretable
comparisons discovered. Outside of overly artificial settings whereby two models
are trained on completely different datasets, we note that it can be challenging to
compare the representations of two models trained on the same or similar datasets
(e.g. ImageNet) as done in this work. However, we believe that this more challenging
setting is of most interest and relevance.

3.7 Conclusion
We introduced a new method for exploring representational similarity via interpretable
visual concepts (RSVC). In contrast to existing representational similarity methods
that simply provide a single numerical score to denote similarity, our approach fuses
ideas from concept-based explainability and shows us what visual concepts make
two models similar or dissimilar. In particular, we demonstrate that comparing
models can be an effective path towards understanding what concepts a model is
missing. In future, this may be helpful in identifying sources of model failures. We
presented experiments on a range of different vision models and demonstrated that
our approach is general and can be applied across a variety of different backbone
models, irrespective of the pretraining objective used by the model. Finally, we
suggest that explaining the functional differences in two models’ behavior could
serve as a valuable testbed for future XAI research. We hope that our work opens
the door to further investigation into how concepts are represented inside of deep
networks.

Acknowledgments
NK and PP were supported by the Simons Foundation and the Resnick Sustainability
Institute. OMA was supported by a Royal Society Research Grant. The authors thank
Rogério Guimares, Markus Marks, Atharva Sehgal, and the anonymous reviewers
for their valuable feedback.

67

Appendix
3.8 Additional Experiments
3.8.1 Layerwise Concept Similarity
Correlation

We propose a correlation based comparison method that has a lower computational
cost than the regression method presented in the main text (Sec. 3.4.2). This approach
allows us to efficiently compare many concepts and layers for two models. Recall
that each column of U contains the concept coefficients of a specific concept for
each image. If the concepts encode the same information, they should have highly
correlated activation patterns since they would react similarly to the same proposal
images. Thus, we compute the correlation for each vector u𝑖1 ∈ Columns(U1) and
u 𝑗2 ∈ Columns(U2). We measure both Pearson and Spearman correlation to form the
correlation matrices R𝜌 ∈ R𝑘×𝑘 and R𝑆 ∈ R𝑘×𝑘 . Since concepts extracted from each
network do not have a direct correspondence, MCS measures the concept similarity
between a concept from 𝑀1 and all of the concepts from 𝑀2 and keeps the maximum.
We compute the maximum concept similarity (MCS𝑐) over each dimension of the
correlation matrix for each concept and class:

MCS𝑐1 = max
𝑖

R𝑖 𝑗 and MCS𝑐2 = max
𝑗

R𝑖 𝑗 . (3.3)

MCS is fast to compute and can be done with relatively few image samples (Sec. 3.9.2).
Thus, we use it to compute layerwise concept similarity which gives us coarse-grained
insights into the similarity between each layer of two different models. For layerwise
concept similarity, we compute the correlation matrix R𝑐 between 𝑀1 and 𝑀2 at
each pair of layers for every class 𝑐. Then, for each correlation matrix we compute
the mean maximum concept similarity (MMCS) over each dimension and then take
the average of the two matrices:

MMCS𝑚 =
1
𝑘 · 𝑐

𝑐∑︁
𝑐=1

𝑘∑︁
𝑖=1

MCS𝑐,𝑖𝑚 ,

MMCS = (MMCS1 +MMCS2)/2.
(3.4)

However, correlation based similarity can be affected by confounds from concept
extraction. For example, extracted concepts can entangle or disentangle visual
features that are encoded by the respective models. Suppose U1 encodes features for
both ears and snouts of a dog together in a single concept, but these two features are
disentangled into two concepts in U2, the maximum match between these concepts

68

0 10 20 30 40

ResNet-50 Layers

0

5

10

15

R
e
s
N

e
t-

1
8
 L

a
y
e
rs

ResNet-18 vs. ResNet-50 MMCS

0.4

0.6

0 10 20 30 40

ResNet-50 Layers

0

5

10

V
iT

-S
 L

a
y
e
rs

ViT-S vs. ResNet-50 MMCS

0.2

0.3

0.4

0 5 10

DINO Layers

0

2

4

6

8

10

M
A

E
 L

a
y
e
rs

MAE vs. DINO MMCS

0.30

0.35

0.40

0.45

0.50

0 5 10 15 20

ViT-L Layers

0

2

4

6

8

10

V
iT

-S
 L

a
y
e
rs

ViT-S vs. ViT-L MMCS

0.20

0.25

0.30

0.35

0.40

0.45

Figure 3.6: Layerwise mean-max concept similarity. We compare four pairs of
models across many selected layers using Pearson correlation. Each entry in the
matrix is the mean maximum concept similarity (MMCS) between 𝑀1 and 𝑀2 at a
particular pair of layers. Brighter colors represent higher MMCS values. We see
that, in general, concept similarity is highest in earlier layers and decays as networks
get deeper. We also notice that there is a slight increase in similarity towards the
final layers (Sec. 3.8.1).

would be lower even though both networks are encoding the same information.
Additionally, extracted concepts do not contain all the information in the network
since there is some reconstruction error when learning the decomposition. Thus,
correlation matrices can tell us when two concepts are highly similar, but do not tell
us if a concept is missing in a layer. However, they can serve as a noisy lower bound
for measuring concept similarity (Sec. 3.8.1).

Comparing Model Layers

In Fig. 3.6, we explore how concept similarity arises across many layers of each
network. We compute the MMCS at each pair of layers and visualize the resulting
matrix. For all models, we find that concept similarity is highest at the early layers
of each model and decays gradually as network depth increases. In all model
comparisons, we see a slight increase in similarity towards the final layers relative
to the preceding layers, suggesting that the way networks organize information
converges as the network get closer to producing a final decision. Interestingly, [24]
also found the last layer to have better properties for concept extraction.

We also notice several properties unique to each comparison. When comparing
different sized models with the same architecture, the similarity is related to the

69

relative depth of the layer. For ResNets, we notice that matrices show a pattern of
increased similarity after residual blocks and lower similarity for layers within blocks.
For the ViT-S and ViT-L we find that there is a broad band of concept similarity
in the middle of each network in which the ViT-S layers 4 through 9 have higher
similarity to ViT-L layers 5 through 20. In addition, there is an increase in concept
similarity between the last layer of the ViT-S and the last three layers of the ViT-L.
When comparing the RN50 to ViT-S we find that concept similarity of layers 0
through 25 are most similar to layers 0 through 3. This finding matches observations
found in previous work, in which relatively earlier layers in the ViT match relatively
later layers in the ResNet [16]. Finally, when comparing the MAE to DINO, we see
high concept similarity between the first 3 layers of DINO and the first 8 layers of
the MAE. However, this similarity decays significantly as the layer index of DINO
increases. This divergence in concept similarity may be due to differences between
supervised and self-supervised training, but further research is needed.

Comparing MCS (Pearson) to Lasso Regression (Pearson)

In Sec. 3.8.1, we claimed that MCS (Pearson) could serve as a noisy lower bound to
better measurements of similarity like CMCS (Pearson). This is because MCS is
computed over concepts extracted by the decomposition method, which introduces
its own entanglements, disentanglements, and reconstruction error. In Fig. 3.7, we
compare the penultimate layers of the four pairs of models and compute both MCS
(Pearson) and the CMCS (Pearson). We find that MCS is correlated to CMCS, but,
as expected, under-predicts the concept similarity. For this experiment only, due to
the fact that we computed Pearson correlation over images in the training set of the
deep neural network, we compare to the mean similarity score that is computed from
the held-out folds of the five lasso regression models. The held-out folds are not part
of the training set for the regression models, but were part of the training set of the
deep neural network. However, this comparison is more fair, since we compare the
two methods on the same set of images.

3.8.2 Analyzing Concepts
In Fig. 3.8 we display some more examples of dissimilar concepts found through
RSVC. We also provide interpretations of the dissimilarities between the concepts.
Note that these dissimilarities do not necessarily indicate worse performance on
images from this class because there are many possible correct strategies when trying
to make a decision about an image.

70

Figure 3.7: MCS (Pearson) vs. lasso regression. We see that the most points lie
above the red-line. This means that lasso regression (followed by Pearson correlation
on the predicted and real coefficients) usually predicts a higher similarity value
than the MCS values directly on the columns of the coefficient matrix. Thus, we
experimentally validate that the Pearson correlation acts as a noisy lower bound on
concept similarity.

Rugby Ball | RN18→ RN50
The RN50 has learned a visual concept that entangles the arms of a rugby player
and the rugby ball. We see in the under-predicted samples that the regression model
under-predicts samples with the players’ limbs and rugby balls together. When
visualizing the over-predicted samples we can see that the regression model increases
sensitivity to both close-ups of rugby balls and to the legs of the players. These
results suggest that the RN18 encodes for the legs of the rugby players independently
of the rugby ball and the regression model is using these independent features to try
and reproduce the RN50’s concept. It also suggests that the RN18 is not encoding
the arms as an independent feature.

Grey Whale | ViT-S→ ViT-L
It appears that the ViT-L has learned a visual concept for whales surfacing parallel
to the surface of the water. We can see that the regression model under-predicts
images of the whales back and also images of its eye in a horizontal orientation. The
regression model seems to have increased sensitivity to breaching whales, either
raising their tails or their heads. This suggests that the ViT-S has entangled calm
whales floating at the surface with active whales breaching the water.

71

Strawberry | RN50→ ViT-S
This concept is one of the lowest similarity concepts that causes a meaningful change
in model behavior (as seen by the KL-Divergence). We can see that the ViT-S has
learned a concept for mixed fruits that include strawberries. The under-predicted and
over-predicted samples show that the RN50 has no ability to reproduce this pattern,
suggesting that it ignores mixed fruits entirely.

Volleyball | RN18→ RN50
The RN50 has learned to encode volleyball players in a variety of active positions.
There seems to be an emphasis on hands and arms near or above the net. The RN18
under-predicts close-up images of volleyballs and players at the net and it tends
to over-predict images containing balls high in the air and close-ups of nets/grids.
This suggests that the regression model is trying to reproduce the behavior of the
RN50 concept using a variety of related features learned by the RN18. We explore
the top-6 neurons that most contribute to the regression model’s prediction of this
concept in Fig. 3.11. We compute the neuron contribution using permutation feature
importance (Sec. 3.9). We find that the regression model uses RN18 neurons that
are highly sensitive to volleyballs in the air, players near nets, and close-ups of
nets qualitatively explaining some of the differences between the predicted and real
concept.

Bluejay | ViT-B MAE→ ViT-B DINO
The DINO model has isolated the tail of the bluejay as an important visual feature.
The regression model under-predicts images with bluejay tails and over-predicts
random images, suggesting that this concept is not independently encoded in the
feature space of the MAE.

3.8.3 LLVM Generated Concept Difference Analysis
In Fig. 3.9, we describe a procedure that uses LLVM’s for analyzing the image
collages produced by RSVC. We apply this method to the comparisons in Fig. 3.8
and report the results below. We find that the LLVM annotations are fairly similar to
the manual annotations.

Rugby Ball | RN18→ RN50
IC1: A collage featuring various close-ups of players holding rugby balls during
gameplay, emphasizing hands and ball contact.
IC2: A collage with mixed shots of rugby gameplay, focusing on players’ lower
bodies, shorts, and action involving the rugby ball from different perspectives.

72

Similarity: Both collages depict scenes from rugby games and include elements of
players and rugby balls in action.
Difference: IC1 focuses on hand interactions with the rugby ball, while IC2
emphasizes lower body dynamics and broader gameplay elements.
Semantically different: [Yes] IC1 highlights ball handling, whereas IC2 portrays
physical movement and positioning.

Grey Whale | ViT-S→ ViT-L
IC1: A collage featuring close-up views of whales, focusing on surface water
interaction and detailed textures of their bodies.
IC2: A collage showing whales from various perspectives, including body parts like
tails, heads, and fins, with more diverse settings and details.
Similarity: Both collages depict whales and highlight different parts of their bodies
in aquatic environments.
Difference: IC1 emphasizes close-up textures and water interaction, while IC2
provides broader views of whales, showing distinct body parts and their environment.
Semantically different: [Yes] IC1 focuses on textures and surface detail, while IC2
captures a wider perspective of whale features and behaviors.

Strawberry | RN50→ ViT-S
IC1: A collage featuring various fruits, with a focus on strawberries along with other
fruits like grapes, blueberries, and kiwi, emphasizing vibrant colors and diversity.
IC2: A collage entirely centered on strawberries, showing detailed close-ups of their
textures and seeds in different lighting and angles.
Similarity: Both collages prominently showcase strawberries and their textures.
Difference: IC1 includes a mix of other fruits alongside strawberries, while IC2
exclusively focuses on strawberries and their intricate details.
Semantically different: [Yes] IC1 presents a broader context of mixed fruits, whereas
IC2 isolates strawberries as the sole subject.

Volleyball | RN18→ RN50
IC1: A collage depicting volleyball gameplay, focusing on players’ hands, the
volleyball, and interactions around the net during action-packed moments.
IC2: A collage showing volleyball gameplay as well but with a wider variety of
scenes, including players near the net, different environments, and more casual
setups.
Similarity: Both collages revolve around volleyball and the central theme of gameplay
near the net.

73

Difference: IC1 emphasizes action shots with players and the ball in dynamic
moments, while IC2 includes a mix of gameplay contexts and less action-oriented
scenes.
Semantically different: [Yes] IC1 focuses on the intensity and dynamics of volleyball
action, whereas IC2 portrays a broader variety of volleyball scenarios and contexts.

Bluejay | ViT-B MAE→ ViT-B DINO
IC1: A collage of close-up views of blue jay feathers, primarily showcasing the
distinctive blue and black patterns on their wings and tails.
IC2: A collage of blue jays in various settings, including full-body shots, close-ups
of their heads, and natural habitats like branches and foliage.
Similarity: Both collages feature blue jays and focus on their unique physical features
and natural environment.
Difference: IC1 highlights detailed patterns on blue jay feathers, while IC2 captures
a broader context of the bird’s appearance and behavior in its habitat.
Semantically different: [Yes] IC1 emphasizes feather patterns, whereas IC2 provides
a holistic view of blue jays in their environment.

3.8.4 Specificity of RSVC on the Toy Concept Experiment
In Sec. 3.5.1 we showed how RSVC can be used to distinguish between a model
trained to use the pink square concept and a model trained to ignore the pink square
concept. However, training with the pink square concept could have undesirable
effects on other model concepts for the Common Eider class. In Fig. 3.10, we show
two shared concepts that are unaffected by the pink square. This experiment suggests
that our toy concept training procedure does not impact other concepts learned by
the networks.

3.8.5 Varying ResNet-18 Training
Next, we conduct controlled variations of model training and measure how it effects
model concept similarity in the last layer. We train a ResNet-18 model on variations
of the NABirds dataset.

We start by comparing two ResNet-18 models trained on NABirds with different
seeds, 4834586 (R18 s483) and 87363356 (R18 s873). We find that, despite varying
the seed during training, both models discover highly similar concepts (Fig. 3.13A).
Then, we train a ResNet-18 model on a modified version of the NABirds dataset in
which waterbirds (169 classes) have been excluded during training (R18 NAB-WB).
After training, the backbone is frozen and just the classification head is trained on the

74

full dataset. We compare this model to R18 s483 trained on the full dataset (34%). We
find that training without waterbirds results in a significant decrease in performance
(25%) and, surprisingly, only a slight increase in dissimilar concepts (Fig. 3.13B).

We then explore if introducing novel features from an out-of-domain dataset would
result in more dissimilar concepts. In this experiment, we train one model (R18
NAB+SC) on a combined dataset of NABirds and Stanford Cars [55] achieving
37% accuracy on the combined classification task. To compare to R18 s483, we
freeze the backbone and re-train the model head on both NABirds and Stanford Cars,
achieving 26% accuracy. We find training the backbone on Stanford Cars significantly
increases concept dissimilarity (Fig. 3.13C). Interestingly, we find that the increase
in dissimilarity is bi-directional, both models are less able to predict the concepts
of their contrasted pair. In order to better understand the bi-directional nature of
this dissimilarity, we visualize a few concepts from each model in Figure 3.12.
These concepts were selected by (1) filtering concepts above the 75th percentile
in delta KL-divergance, (2) visualizing the 15 lowest delta Pearson concepts and
(3) manually selecting concepts that were easiest to interpret. We find dissimilar
concepts from the R18 NAB+SC model that seem to be semantic concepts specific
to car models. In contrast, we found no dissimilar car related concepts that met the
criteria from R18 s483. Instead, we find that concepts that meet this criteria are
from NABirds classes and tend to be challenging to interpret. We then visualize
R18 s483 concepts that result in the largest kl-divergence when replaced by the
predictions from R18 NAB+SC. When visualizing these concepts we find two car
related concepts that seem to be primarily driven by color, but not car model. These
results match the intuition that R18 NAB+SC should contain more complex, car
model aligned concepts that can be used to better classify images from Stanford Cars.
However, it is not a complete explanation of model behavior and further analysis is
needed to make concrete statements about concept dissimilarity.

Finally, we compare a ResNet-18 trained on ImageNet and fine-tuned on NABirds
to a NABirds model (R18 ImgNet PT). Unsurprisingly, this results in the most
dissimilar concepts (Fig. 3.13D). In sum, we find that larger changes during training
results in more dissimilar concepts.

75

3.8.6 DINO and MAE Seed Variation Experiments
In Section 3.5, we compared a DINO pretrained model and a MAE pretrained model
that were finetuned on the NABirds dataset. In those experiments, models were
finetuned with the seed set to 4834586. In this section, we explore comparisons to
models finetuned with a different seed, 87363356. The models finetuned with the
new seed are denoted as DINO_s873 and MAE_s873. We compare two pairs of
models, DINO_s873 to MAE_s873 and DINO_s483 to DINO_s873. In Figure 3.14,
we show that changing the seed does change the concepts learned, but that the general
relationship between the different pretraining strategies is preserved. In particular, we
find that comparing DINO models finetuned with different seeds results in a higher
average similarity (∼0.89) than models with different pretraining strategies (∼0.80),
indicating that the seed has a smaller impact on finetuning than the initialization.

3.8.7 Same Model Concept Similarity vs. Concept Importance
In this section, we validate the feasibility of the regression task. Due to the
reconstruction error inherent in decomposition methods, it is not possible to perfectly
predict the concept coefficients from the activation matrix. However, in Fig. 3.15,
we show that the regression models do well when trying to do same-model concept
regression and significantly better than cross-model concept regression.

3.8.8 Additional Replacement Tests
In Figs. 3.16 and 3.17 we visualize the replacement tests for the three pairs of models
not presented in the main text. We see the same effects as before, with a decrease in
similarity corresponding to increasing changes in model behavior. Notably, although
DINO and MAE models (finetuned on NABirds) have high similarity relative to the
other models, they show stronger changes in model behavior for smaller changes in
similarity. However, it is not clear whether these differences are due to changes in
dataset or changes in pretraining.

76

Rugby Ball | ResNet18 → ResNet50

Grey Whale | ViT-S → ViT-L

Strawberry | ResNet50 → ViT-S

Bluejay | ViT-B MAE → ViT-B DINO

UnderpredictedTop-9 Concept Patches

Volleyball | ResNet18 → ResNet50

Overpredicted

Figure 3.8: Qualitative samples. In each row, we show visualizations for selected
concepts from different model comparisons. In the first column of each row, we show
scatter plots between real and predicted concept coefficients. Colored points mark
the top-9 images in different subregions of the scatterplot. Each subregion indicates
a different aspect of dissimilarity. (Green): Top-9 images for the real concept. These
images are used to help the user understand what the target concept pays attention to.
(Blue): Top-9 images that are underpredicted by the contrasted model. (Orange):
Top-9 images that are over-predicted by the contrasted model. You may need to
zoom in to best analyze the image grids. We discuss possible interpretations of the
concepts in Sec. 3.8.2. See Sec. 3.4.4 for a detailed breakdown of how to interpret
these plots.

77

I am going to ask you to analyze image collages. You will receive two image collages and your
task is to: (1) provide one sentence to describe each image collage. (2) Provide one sentence to
describe similarities between the image collages and one sentence to describe the differences
between the image collages. (3) Make a judgement on whether the two collages convey
different semantic information and summarize it in a few words. The format of your output
should be organized as follows:

IC1: desc
IC2: desc

Similarity: desc
Difference: desc

Semantically different: (Boolean Answer) - desc

System
Prompt

Input

Output

Figure 3.9: LLVM concept difference analysis. We use ChatGPT-4o [53] to
analyze concept differences. We provide a general system prompt asking the LLVM
to describe the collages, provide a description of the similarities and differences
between the collages, and provide a final judgement on whether there is a semantic
difference between the collages. We provide an example for the rugby ball class.
The LLVM receives the image collage (IC) corresponding the top-k concept images
(IC1) and the over-predicted concept images (IC2), see Fig. 3.5 for more details on
image collages. Here, the LLVM notices that IC1 focuses on hands and ball contact,
whereas the IC2 focuses more on lower bodies. The described difference matches
the manual annotation provided in Sec. 3.8.2.

78

Common Eider | Concept 2 | Mnc → 𝑀𝑝𝑠
Top-10 𝑀𝑝𝑠 Concept Patches

black and white color pattern of Common Eider

light blue ocean background

Top-10 𝑀𝑝𝑠 Concept Patches

Common Eider | Concept 3 | Minv → 𝑀𝑝𝑠

Figure 3.10: Specificity of toy concept. In Fig. 3.2, we showed that 𝑀𝑛𝑐 is not
able to predict the pink square concept from 𝑀𝑝𝑠. In this figure, we show that the
toy concept does not impact the similarity between other concepts learned by the
networks. We visualize the top-10 patches from Concept 2 and Concept 3 of 𝑀𝑝𝑠 in
the same class (Common Eider). These concepts correspond to the white and black
color pattern of the bird and a water background. Note that these models have been
trained from scratch on NABirds resulting in a relatively low 34% accuracy. This
leads to noisier concepts that are more challenging to interpret. Importantly, we can
see that 𝑀𝑛𝑐 still has a very high similarity score for these two concepts, highlighting
the specificity of RSVC.

79

Volleyball | ResNet18 → ResNet50

Neuron 465 | Imp: 0.10 Neuron 340 | Imp: 0.08 Neuron 297 | Imp: 0.05

Neuron 33 | Imp: 0.02 Neuron 203 | Imp: 0.02 Neuron 355 | Imp: 0.01

ResNet18 Neurons

Figure 3.11: Neuron analysis for volleyball concept difference. In Fig. 3.8 we
visualized a RN50 concept for the volleyball class that the RN18 did not contain. In
this figure, we explore the top-6 neurons used by the regression model to predict the
RN50 concept. We find that Neuron 465 is sensitive to edges between a volleyball
net and the background. It seems to mistake some grid-like textures for nets as well
(image [1, 0], [1, 1], and [2, 0]). In addition, it seems to be sensitive to volleyballs
high in the air. Neuron 340 seems to activate for athletes in indoor gyms and seems
partial to lower bodies. Neuron 297 is sensitive to close-ups of nets with hands or
arms in the frame. In summary, these neuron visualizations help to explain some of
the images over-predicted by the regression model.

80
NAB R18 (s483) → NAB+SC R18

UnderpredictedTop-9 Concept Patches

NAB+SC R18 → NAB R18 (s483)

Overpredicted

Figure 3.12: Impact of training on stanford cars. In each row, we show
visualizations for selected concepts from comparing R18 NAB+SC to R18 s483. In
the first two rows, we visualize two R18 NAB+SC concepts that R18 s483 cannot
reproduce. The first concept is a racing stripe that is associated with the Shelby
Mustang. The R18 s483 model appears to sometimes entangle this concept with a
blue color, irrespective of the car model. The second concept appears to be common
features associated with Mercedes cars. For this concept, the difference between
the two models is more abstract and challenging to interpret. We visualize NAB
R18 s483 concepts in the next three rows. First, we show a R18 s483 concept that
R18 NAB+SC is unable to predict. We see that this concept is very abstract without
a clear pattern, but is generally related to sandy textures. Next, we visualize two
car-related concepts from R18 s483. We find that these concepts are sensitive to the
combination of the presence of a car and a specific color. For the orange car concept,
the R18 NAB+SC makes small over-predictions with different shades of orange. For
the yellow car concept, the over-predicted group shows a different shade of yellow
and a specific style of car. A discussion of these results is available in Sec. 3.8.5.

81

0 5 10 15

R18 s483

0.0

2.5

5.0

7.5

10.0

12.5

15.0

R
1
8
 N

A
B

-W
B

0.40

0.45

0.50

0.55

0.60

0 5 10 15

R18 s873

0.0

2.5

5.0

7.5

10.0

12.5

15.0

R
1
8
 s

4
8
3

0.55

0.60

0.65

0.70

0 5 10 15

R18 NAB+SC

0.0

2.5

5.0

7.5

10.0

12.5

15.0

R
1
8
 s

4
8
3

0.45

0.50

0.55

0.60

0.65

0 5 10 15

R18 ImgNet PT

0.0

2.5

5.0

7.5

10.0

12.5

15.0

R
1
8
 s

4
8
3

0.3

0.4

0.5

0.6

A B DC

Figure 3.13: Effect of seed and dataset on ResNet-18 similarity. We compare
several pairs of ResNet-18 models while varying their training protocols. We use the
same base model in all comparisons, a ResNet-18 model trained with the seed set to
4834586 (R18 s483). (A) We compare the base model to a model trained with seed
87363356 (R18 s873) and find that the two models are highly similar despite the
change in seed. (B) We train a ResNet-18 on a modified dataset where we exclude
169 classes that belong to the coarse category of waterbirds (R18 NAB-WB). When
comparing to the seed variation experiment, we see a slight increase in the number
of dissimilar concepts. (C) We train a ResNet-18 on a combined dataset of NABirds
and Stanford Cars (R18 NAB+SC). To compare to the base model, we freeze the base
model’s backbone and re-train the linear classifier on this combined dataset. We find
that introducing Stanford Cars results in a significant increase in dissimilar concepts.
(Right) Finally, we compare to a model pre-trained on ImageNet and fine-tuned on
NABirds (R18 ImgNet PT). We find that training on ImageNet introduces many
novel concepts that are dissimilar to the features of the base model.

82

0 5 10

DINO Layers

0

2

4

6

8

10

D
IN

O
_
s
8
7
3
 L

a
y
e
rs

DINO_s873 vs. DINO MMCS

0.30

0.35

0.40

0.45

0.50

0 5 10

DINO_s873 Layers

0

2

4

6

8

10

M
A

E
_
s
8
7
3
 L

a
y
e
rs

MAE_s873 vs. DINO_s873 MMCS

0.30

0.35

0.40

0.45

0 5 10

DINO_s483 Layers

0

2

4

6

8

10

M
A

E
_
s
4

8
3

 L
a
y
e
rs

MAE_s483 vs. DINO_s483 MMCS

0.30

0.35

0.40

0.45

0.50

Figure 3.14: DINO and MAE seed variation. We explore the effects of varying
seed on finetuning a DINO and MAE model on the NABirds dataset. (Left): We
show layerwise and last layer comparisons of MAE_s483 vs. DINO_s483. These
plots are reproductions from the main text. The black line denotes the average
concept similarity. For this comparison, the average similarity in both directions
is 0.80. (Center): We compare DINO_s873 vs. MAE_s873. We see a similar
layerwise matrix and last layer similarity to DINO_s483 vs. MAE_s483. The average
similarity for both models is, once again, 0.80. (Right): We compare DINO_s483
vs. DINO_s873 and find that there is a better layer-to-layer mapping in the layerwise
comparison matrix. In addition, the average similarity in both directions is 0.89,
higher than comparisons across the different pretraining strategies. Taken together,
these results indicate that individual concepts change due to different seeds, but the
global structure of the relationship between these models is not affected by seed.

83

A B

C D

Figure 3.15: SMCS vs CI. We visualize same-model concept similarity (SMCS)
against the concept importance. We find that reconstructing more important concepts
tends to be easier for ResNets. However, for some ViT models, there can be important
learned concepts that are hard to predict. Importantly, SMCS is significantly higher
than CMCS indicating that the regression task is feasible.

84

Figure 3.16: Replacement test for DINO vs. MAE (NABirds). We find that for
the DINO vs. MAE comparison. As Pearson correlation decreases the 𝑙2-distance
increases, KL-divergence increases, and the match accuracy decreases. Notably,
the Pearson correlation decreases a smaller amount than for the other three pairs
of models, but the change in the three metrics is on the same order as the other
comparisons. This suggests that these two models are more sensitive to changes in a
concept.

85

Figure 3.17: Replacement test for ViT-S vs. ViT-L and RN50 vs. ViT-S. We find
that for these model comparisons, as Pearson correlation decreases the 𝑙2-distance
increases, KL-divergence increases, and the match accuracy decreases.

86

λ: 0.5

λ: 0.1

Figure 3.18: Impact of regularization on regression. Here we vary the 𝜆 for the 𝑙1
penalty on the regression model. We use the first 200 classes of ImageNet for these
visualizations. In the left column, we visualize the distribution of similarity values
for each value of 𝜆. In the center, we visualize the number of non-zero coefficients.
In the right column, we visualize the similarity vs. importance plots for 𝜆 = 0.1 and
𝜆 = 0.5. We find that, as expected, increasing the 𝑙1 penalty reduces similarity by
increasing the number of zeroed coefficients. In all experiments in the paper, we use
an 𝑙1 penalty of 0.1.

3.9 Additional Implementation Details
3.9.1 Concept Extraction
For each model considered in this study, we provide information about concept
extraction in Tab. 3.2. First, images are resized to 224x224 and then processed into
16 evenly spaced 64x64 pixel patches. Patches are then resized back to the image
resolution of the network. We sample 100 images per model for concept extraction.
All models taken from the timm library were trained with Inception style random
cropping. Custom trained models were trained using random resized cropping with
horizontal flipping. This ensures that the resized patches are in-domain for the
network. To produce an activation matrix A that can be decomposed, the outputs of
the network are processed. The ResNets [46] produce outputs with a batch 𝑏, channel
𝑐, height ℎ and width 𝑤 dimension. To create a matrix that can be decomposed, we
use global average pooling over the ℎ and 𝑤 dimensions. The ViTs [47] produce
outputs with a batch 𝑏, sequence 𝑠, and feature dimension 𝑑. We select the class
token from the sequence dimension resulting in a two-dimensional matrix. We use
NNMF for ResNets since they contain ReLU layers and can produce positive only

87

k = 20

k = 10

Figure 3.19: Impact of number of concepts on similarity. Here we vary 𝑘 ,
the number of concepts in the dictionary and explore the impact on the similarity
distribution. We use the first 200 classes of ImageNet for these visualizations. In
the left column, we plot the distribution of similarity scores for 5, 10, 15, and 20
concepts. In the center column, we visualize the distribution of reconstruction errors
for different number of concepts. As expected, increasing the number of concepts
results in lower reconstruction errors. In the right column, we visualize similarity
vs. importance for 10 and 20 concepts. We observe that increasing the number of
concepts disproportionately increases the number of dissimilar concepts. For all
results in the paper we use 10 concepts.

activations. NNMF restricts the U and W matrix to be positive. For, ViT models,
we use Semi-NMF [56] which allows for both positive and negative values in the W
matrix, but requires positive values in the U matrix. We use a non-negative least
squares solver to fit coefficients to a new set of data points:

min
U1

∥A1 − U1W1∥22,

subject to U1 ≥ 0.
(3.5)

Concept Integrated Gradients

Integrated gradients measures the importance of each pixel by averaging the gradients
of the input image, as the input image is varied from a baseline value to its true
value [57]. To compute concept integrated gradients the formulation is modified. Let
ℎ1 represent the head of 𝑀1, i.e. the final layer(s), and A1 be the output activations
from the layer preceding ℎ1. As described earlier, we factorize A1 ≈ U1W1.

88

We denote row vectors of U1 as r𝑖1 ∈ Rows(U1), such that r𝑖1 ∈ R
1×𝑑 . To link model

predictions to learned concepts, we compute model predictions as

ẑ𝑖1 = ℎ1(r𝑖1W1), (3.6)

where ẑ𝑖1 ∈ R1×𝑑 is a row vector of prediction probabilities. Then, to compute
concept integrated gradients, we average over the gradients as we linearly step from
a baseline vector r𝑏 = 0 to r𝑖1

𝜑(r𝑖1) = (r
𝑖
1 − r𝑏) ×

∫ 1

0
∇r𝑖1

ℎ1

((
𝛼r𝑏 + (1 − 𝛼) (r𝑖1 − r𝑏

))
W)𝑑𝛼. (3.7)

Thus, for each class and concept we have a single value that represents the importance
of that concept to model decisions. We implement concept integrated gradients
based on the implementation in the xplique library [58]. For all experiments we
integrate over 30 steps.

3.9.2 Concept Similarity
Correlation. Pearson and Spearman are computed using scikit-learn [59]. We use
50 images for each class from the training set of the model. Images are resized to
224 × 224. We use a patch size of 64 × 64 resulting in 16 patches per image. Thus,
Pearson and Spearman correlation is computed using 800 total patches per class.
The patches are resized and passed through the model to generate activations at a
given layer.

Regression. We use lasso-regression [60] with a 0.1 weight on the 𝑙1 penalty. We
visualize the effect of this parameter on similarity in Fig. 3.18. Regression models
are trained on the activations from at least 5 images (80 patches) and at most 200
images (3200 patches) sourced from the original training split of the dataset. For
each concept and class, we train five lasso-regression models on different equally
sized folds. The regression model weights are averaged and then the model is
evaluated on images from the validation/test split of the original dataset. The inputs
and targets are standardized to have a mean of zero and a standard deviation of
one. The regression is trained using the Celer library [61]. Finally, the predicted
coefficients are unnormalized before the Pearson and Spearman correlation are
computed. To compute feature importance scores for regression models, we use the
permutation feature importance implementation from scikit-learn [59]. We use the
default parameters with 5 repeats and the random state set to 0.

Layerwise Comparisons. We list all of the layers used in the layerwise comparisons
in Tab. 3.4.

89

Spearman Correlation. In all experiments, we found Spearman correlation to be
very similar to Pearson correlation, thus we have excluded these results.

Visualizing Dis-similar Concepts. We select one patch per image in order of
maximum concept coefficient. The top 𝑛 patches for the real images are excluded
from the pool of images used to visualize the under-predicted and over-predicted
coefficients.

3.9.3 Computational Cost
All experiments were conducted using on a machine with an AMD Ryzen 7 3700X
8-Core Processor and a single GeForce RTX 4090 GPU. In Table 3.3, we detail the
computational cost of each step of our proposed method. For a comparison between
a ResNet-18 and a ResNet-50 on all 1000 classes of ImageNet, RSVC, and MCS
take approximately 20 hours.

Table 3.1: Model performance.

Model timm Model ImageNet
Accu-
racy

NaBirds
Accu-
racy

ResNet-18 resnet18.a2_in1k 70.6% −
ResNet-50 resnet50.a2_in1k 79.8% −
ViT-S vit_small_patch16_224.augreg_in21k_ft_in1k81.3% −
ViT-L vit_large_patch16_224.augreg_in21k_ft_in1k 85.8% −
DINO ViT-B vit_base_patch16_224.dino − 71.2%
MAE ViT-B vit_base_patch16_224.mae − 71.2%

Table 3.2: Concept extraction.

Model Layer
Post-

processing

Method Number
of

Concepts

Patch Size Recon.
Error
(Last
Layer)

ResNet-18 GAP NNMF 10 64 176.2
ResNet-50 GAP NNMF 10 64 205.5
ViT-S Class

Token
Semi-
NMF

10 64 926.9

ViT-L Class
Token

Semi-
NMF

10 64 1650.8

DINO ViT-B Class
Token

Semi-
NMF

10 64 191.0

MAE ViT-B Class
Token

Semi-
NMF

10 64 656.5

90

Table 3.3: Computational cost for ResNet18 vs. ResNet-50 on ImageNet.

Step sec/it Total Time
Activation Extraction (RN50) 1.50 25m
Concept Extraction (RN50) 2.00 33m
Concept Comparison (RSVC) Last Layer 9.00 2h30m
Concept Comparison (MCS) All Layers 14.56 4h
Concept Int. Grad 41.56 11h 30m
Regression Evaluation 2.30 38m
Total Time - 19h36m

91

Table 3.4: Selected layers.

Model Layers
ResNet-18 act1, layer1.0.act1, layer1.0.act2, layer1.1.act1, layer1.1.act2,

layer2.0.act1, layer2.0.act2, layer2.1.act1, layer2.1.act2,
layer3.0.act1, layer3.0.act2, layer3.1.act1, layer3.1.act2,
layer4.0.act1, layer4.0.act2, layer4.1.act1, layer4.1.act2

ResNet-50 act1, layer1.0.act1, layer1.0.act2, layer1.0.act3, layer1.1.act1,
layer1.1.act2, layer1.1.act3, layer1.2.act1, layer1.2.act2,
layer1.2.act3, layer2.0.act1, layer2.0.act2, layer2.0.act3,
layer2.1.act1, layer2.1.act2, layer2.1.act3, layer2.2.act1,
layer2.2.act2, layer2.2.act3, layer2.3.act1, layer2.3.act2,
layer2.3.act3, layer3.0.act1, layer3.0.act2, layer3.0.act3,
layer3.1.act1, layer3.1.act2, layer3.1.act3, layer3.2.act1,
layer3.2.act2, layer3.2.act3, layer3.3.act1, layer3.3.act2,
layer3.3.act3, layer3.4.act1, layer3.4.act2, layer3.4.act3,
layer3.5.act1, layer3.5.act2, layer3.5.act3, layer4.0.act1,
layer4.0.act2, layer4.0.act3, layer4.1.act1, layer4.1.act2,
layer4.1.act3, layer4.2.act1, layer4.2.act2, layer4.2.act3

ViT-S block0, block1, block2, block3, block4, block5, block6, block7,
block8, block9, block10, block11

ViT-L block0, block1, block2, block3, block4, block5, block6, block7,
block8, block9, block10, block11, block12, block13, block14,
block15, block16, block17, block18, block19, block20, block21,
block22, block23

DINO ViT-B block0, block1, block2, block3, block4, block5, block6, block7,
block8, block9, block10, block11

MAE ViT-B block0, block1, block2, block3, block4, block5, block6, block7,
block8, block9, block10, block11

92

References

[1] Neehar Kondapaneni, Oisin Mac Aodha, and Pietro Perona. “Representa-
tional Similarity via Interpretable Visual Concepts.” In: The Thirteenth
International Conference on Learning Representations. 2025. url: https:
//openreview.net/forum?id=ih3BJmIZbC.

[2] Harold Hotelling. “Relations between two sets of variates.” In: Biometrika.
1936.

[3] Simon Kornblith et al. “Similarity of neural network representations revisited.”
In: ICML. 2019.

[4] Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. “Representa-
tional similarity analysis-connecting the branches of systems neuroscience.”
In: Frontiers in systems neuroscience (2008).

[5] Martin Schrimpf et al. “Brain-score: Which artificial neural network for object
recognition is most brain-like?” In: bioRxiv (2018).

[6] Margot E Kaminski and Jennifer M Urban. “The right to contest AI.” In:
Columbia Law Review (2021).

[7] Mauritz Kop. “EU artificial intelligence act: the European approach to AI.” In:
Stanford-Vienna Transatlantic Technology Law Forum, Transatlantic Antitrus
and IPR Developments. 2021.

[8] Thomas Fel et al. “A holistic approach to unifying automatic concept extraction
and concept importance estimation.” In: NeurIPS (2023).

[9] Hoagy Cunningham et al. “Sparse autoencoders find highly interpretable
features in language models.” In: ICLR. 2024.

[10] Maithra Raghu et al. “Svcca: Singular vector canonical correlation analysis
for deep learning dynamics and interpretability.” In: NeurIPS (2017).

[11] Yixuan Li et al. “Convergent learning: Do different neural networks learn the
same representations?” In: International Workshop on Feature Extraction:
Modern Questions and Challenges at NeurIPS. 2015.

[12] Minyoung Huh et al. “The platonic representation hypothesis.” In: ICML.
2024.

[13] Max Klabunde et al. “Similarity of neural network models: A survey of
functional and representational measures.” In: arXiv:2305.06329 (2023).

[14] Zhenda Xie et al. “Revealing the dark secrets of masked image modeling.” In:
CVPR. 2023.

[15] Thao Nguyen, Maithra Raghu, and Simon Kornblith. “Do wide and deep net-
works learn the same things? uncovering how neural network representations
vary with width and depth.” In: ICLR. 2021.

https://openreview.net/forum?id=ih3BJmIZbC
https://openreview.net/forum?id=ih3BJmIZbC

93

[16] Maithra Raghu et al. “Do vision transformers see like convolutional neural
networks?” In: NeurIPS (2021).

[17] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. “What is being
transferred in transfer learning?” In: NeurIPS (2020).

[18] Young-Jin Park et al. “Quantifying Representation Reliability in Self-Supervised
Learning Models.” In: UAI. 2024.

[19] Wentao Zhang et al. “Efficient diversity-driven ensemble for deep neural
networks.” In: ICDE. 2020.

[20] Yoonho Lee, Huaxiu Yao, and Chelsea Finn. “Diversify and disambiguate:
Out-of-distribution robustness via disagreement.” In: ICLR. 2023.

[21] Robin Rombach, Patrick Esser, and Bjorn Ommer. “Network-to-network
translation with conditional invertible neural networks.” In: NeurIPS (2020).

[22] Amil Dravid et al. “Rosetta neurons: Mining the common units in a model
zoo.” In: ICCV. 2023.

[23] Lukas Muttenthaler et al. “Human alignment of neural network representa-
tions.” In: ICLR. 2023.

[24] Thomas Fel et al. “Harmonizing the object recognition strategies of deep
neural networks with humans.” In: NeurIPS (2022).

[25] Jannis Ahlert et al. “How aligned are different alignment metrics?” In: ICLR
Workshop on Representational Alignment (Re-Align). 2024.

[26] Cian Eastwood and Christopher KI Williams. “A framework for the quantitative
evaluation of disentangled representations.” In: ICLR. 2018.

[27] Cian Eastwood et al. “Dci-es: An extended disentanglement framework with
connections to identifiability.” In: ICLR. 2023.

[28] Francesco Locatello et al. “Challenging common assumptions in the unsuper-
vised learning of disentangled representations.” In: ICML. 2019.

[29] Karsten Roth et al. “Disentanglement of correlated factors via hausdorff
factorized support.” In: ICLR. 2023.

[30] Sunny Duan et al. “Unsupervised model selection for variational disentangled
representation learning.” In: ICLR. 2020.

[31] Ramprasaath R Selvaraju et al. “Grad-CAM: visual explanations from deep
networks via gradient-based localization.” In: IJCV (2020).

[32] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ““Why should I
trust you?" Explaining the predictions of any classifier.” In: KDD. 2016.

[33] Scott M. Lundberg and Su-In Lee. “A unified approach to interpreting model
predictions.” In: NeurIPS. 2017.

94

[34] Been Kim et al. “Interpretability beyond feature attribution: Quantitative
testing with concept activation vectors (TACV).” In: ICML. 2018.

[35] Amirata Ghorbani et al. “Towards automatic concept-based explanations.” In:
NeurIPS (2019).

[36] Ruihan Zhang et al. “Invertible concept-based explanations for cnn models
with non-negative concept activation vectors.” In: AAAI. 2021.

[37] Matthew Kowal et al. “Understanding Video Transformers via Universal
Concept Discovery.” In: CVPR. 2024.

[38] Eleonora Poeta et al. “Concept-based explainable artificial intelligence: A
survey.” In: arXiv:2312.12936 (2023).

[39] David Bau et al. “Understanding the role of individual units in a deep neural
network.” In: PNAS (2020).

[40] Jessica Schrouff et al. “Best of both worlds: local and global explanations with
human-understandable concepts.” In: arXiv:2106.08641 (2021).

[41] Thomas Fel et al. “CRAFT: Concept recursive activation factorization for
explainability.” In: CVPR. 2023.

[42] Reduan Achtibat et al. “From attribution maps to human-understandable
explanations through concept relevance propagation.” In: Nature Machine
Intelligence (2023).

[43] Neehar Kondapaneni et al. “Less is more: Discovering concise network
explanations.” In: ICLR 2024 Workshop on Representational Alignment. 2024.
url: https://openreview.net/forum?id=JBwpD6Yy8Q.

[44] Andrew Ilyas et al. “Datamodels: Predicting predictions from training data.”
In: ICML. 2022.

[45] Harshay Shah et al. “Modeldiff: A framework for comparing learning algo-
rithms.” In: ICML. 2023.

[46] Kaiming He et al. “Deep residual learning for image recognition.” In: CVPR.
2016.

[47] Alexey Dosovitskiy. “An image is worth 16x16 words: Transformers for image
recognition at scale.” In: ICLR. 2021.

[48] Mathilde Caron et al. “Emerging properties in self-supervised vision trans-
formers.” In: ICCV. 2021.

[49] Kaiming He et al. “Masked autoencoders are scalable vision learners.” In:
CVPR. 2022.

[50] Ross Wightman. PyTorch Image Models. https://github.com/
rwightman/pytorch-image-models. 2019. doi:10.5281/zenodo.
4414861.

https://openreview.net/forum?id=JBwpD6Yy8Q
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861

95

[51] Jia Deng et al. “Imagenet: A large-scale hierarchical image database.” In:
2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255.

[52] Grant Van Horn et al. “Building a bird recognition app and large scale dataset
with citizen scientists: The fine print in fine-grained dataset collection.” In:
CVPR. 2015.

[53] Josh Achiam et al. “Gpt-4 technical report.” In: arXiv:2303.08774 (2023).

[54] Yossi Gandelsman, Alexei A. Efros, and Jacob Steinhardt. “Interpreting CLIP’s
Image Representation via Text-Based Decomposition.” In: ICLR. 2024.

[55] Jonathan Krause et al. “3D Object Representations for Fine-Grained Catego-
rization.” In: ICCV Workshops. 2013.

[56] Chris HQ Ding, Tao Li, and Michael I Jordan. “Convex and semi-nonnegative
matrix factorizations.” In: PAMI (2008).

[57] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for
deep networks.” In: ICML. 2017.

[58] Thomas Fel et al. “Xplique: A Deep Learning Explainability Toolbox.” In:
Workshop on Explainable Artificial Intelligence for Computer Vision at CVPR
(2022).

[59] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.” In: JMLR
(2011).

[60] Robert Tibshirani. “Regression shrinkage and selection via the lasso.” In:
Journal of the Royal Statistical Society Series B: Statistical Methodology
(1996).

[61] Mathurin Massias, Alexandre Gramfort, and Joseph Salmon. “Celer: a fast
solver for the lasso with dual extrapolation.” In: ICML. 2018.

96

C h a p t e r 4

REPRESENTATIONAL DIFFERENCE EXPLANATIONS

Neehar Kondapaneni, Oisin Mac Aodha, and Pietro Perona. “Representational
Difference Explanations.” In: arXiv preprint arXiv:2505.23917 (2025). url:
https://arxiv.org/abs/2505.23917.

4.1 Abstract
We propose a method for discovering and visualizing the differences between two
learned representations, enabling more direct and interpretable model comparisons.
We validate our method, which we call Representational Differences Explanations
(RDX), by using it to compare models with known conceptual differences and
demonstrate that it recovers meaningful distinctions where existing explainable AI
(XAI) techniques fail. Applied to state-of-the-art models on challenging subsets of
the ImageNet and iNaturalist datasets, RDX reveals both insightful representational
differences and subtle patterns in the data. Although comparison is a cornerstone of
scientific analysis, current tools in machine learning, namely post hoc XAI methods,
struggle to support model comparison effectively. Our work addresses this gap by
introducing an effective and explainable tool for contrasting model representations.

4.2 Introduction
In recent years, deep learning researchers and engineers have explored the costs and
benefits of using larger datasets and more complex architectures. These changes
have often led to distinct models with different representations of the same data. An
intuitive approach to understanding the effects of different architectures and training
choices is to analyze the representational differences between models. Dictionary
learning (DL)-based explainable AI (XAI) methods, like sparse autoencoders (SAEs)
and non-negative matrix factorization (NNMF), are powerful tools for analyzing
model representations that surface model concepts, i.e. semantically meaningful
sub-components of the input data [2, 3, 4, 5, 6, 7, 8]. These approaches are formulated
as a dictionary learning problem [9] such that model representations are decomposed
into a linear combination of learned concept vectors. Concept vectors are then
converted into human-friendly explanations by selecting a subset of input items (e.g.
a set of images) that maximally align with the vector. These explanations have been

https://arxiv.org/abs/2505.23917

97

shown to help users better understand models [2, 4, 8, 10]. However, when adapting
existing DL-based XAI methods for comparing models with known differences, we
find that they often generate explanations that are unrelated to the known difference
between models (Sec. 4.5.2 and Sec. 4.5.3).

We identify three issues with existing DL-based XAI methods that limit their power
of analysis, especially when comparing representations. First, when representational
differences are relatively small, concepts from different models tend to overlap and
it is thus difficult to spot differences. Second, we observe that existing methods
visualize concepts by sampling items with the largest activations [2, 4, 6, 7, 11],
which tend to be the ones that are easiest to interpret, and miss more nuanced
differences, thus offering incomplete explanations. Finally, to understand nuanced
differences between models, users need to consider the weighted sum of several
concepts via their incomplete explanations which can be imprecise and difficult.

We propose a new XAI method, named Representational Difference Explanations
(RDX) for explaining model differences. Rather than focusing on one representation
at a time, RDX compares two representations against each other to isolate the
differences between them (Fig. 6.1). Additionally, unlike DL-methods which
generate incomplete explanations for concept vectors, we take the perspective that a
concept and its explanation are one and the same thing. We enforce that a concept is
equivalent to a small set of similar inputs that can be interpreted by a human.

We make the following three contributions:

• A new method, RDX, that identifies explainable differences between model repre-
sentations.

• A metric to measure the effectiveness of such representation difference explanations.

• Experiments comparing RDX against baseline methods for explaining model
differences.

4.3 Related Work
Explainability. Explainable AI methods for computer vision attempt to generate
explanations to help users understand model behavior. There are two broad classes
of methods: local methods [12, 13, 14, 15] attribute regions of an image to a model’s
decision and often take the form of heatmaps, while global methods [2, 3, 16] generate
a global explanation (e.g. a grid of images or image regions) that represent a visual
concept that is learned by a model. Visual concepts are usually defined as images
that the model considers to be similar. These visual concepts help users achieve a

98

Repr. A Repr. B RDX(A, B)

All shapes are
separable.

Circles and squares
are not separable.

RDX(A, B) isolates regions that are
considered similar in A, but not in B.

A B A B

Figure 4.1: Intuition behind our method. Representational Difference Explana-
tions (RDX) aim to highlight the substantive differences between two representations
(e.g. 𝑨 and 𝑩, which are the embedding matrices produced by two different models
for the same set of data). Here 𝑨 supports discrimination between circles and squares,
whereas 𝑩 does not. Clustering the two representations independently would not
reveal the square/circle sub-structure in 𝑨. By “subtracting” 𝑩 from 𝑨, RDX reveals
which items are considered similar in 𝑨, but not in 𝑩. RDX isolates differences, and
ignores data that may be equally well grouped in both representations, such as the
triangles and diamonds.

more general understanding of model behavior [2, 4, 8, 10, 17]. For example, they
can reveal that a model has learned to use water as a cue for detecting a certain
species of waterbird. Local and global methods can also be combined to provide
detailed explanations that describe both the concepts and the image regions used by
a model when making a decision [4, 5, 6, 18, 19].

Representational Similarity. Representational similarity methods [20, 21, 22,
23, 24] aim to quantify the similarity between network representations. These
methods operate by passing the same set of items through two models to generate
two embedding matrices. These embedding matrices are then compared, resulting in
a single value that quantifies their degree of similarity. While these approaches can
provide useful, coarse-grained insights [25, 26, 27, 28, 29, 30, 31], they do not help
with understanding fine-grained model differences. Recently, several methods have
been proposed which compare networks through interpretable concepts [5, 6, 17].
Both RSVC and USAEs [5, 17] extract concepts independently for each model and
match them in a subsequent step, resulting in partially overlapping concepts that can
make interpretation challenging. USAEs[6] use a “universal” sparse autoencoder to
learn a common representational space across several models, making it challenging
to analyze new models or datasets. Additionally, none of these methods are designed
to specifically seek out differences, although differences may be detected as a

99

byproduct of their approaches. In contrast, our approach uses information from both
representations simultaneously to discover differences between them. It requires no
training, making it easy to apply to new models and bespoke datasets.

Comparing Graphs. Our approach is related to graph comparison methods. Many
methods have been developed for comparing graphs, including methods for matching
the largest common subgraphs [32], detecting anomalies [33], grouping network
types [34], and measuring the similarity between graphs via kernels [35]. The
majority of existing methods are concerned with developing specialized strategies
for handling challenges associated with comparing very large web-scale graphs with
mismatched nodes. In addition, these approaches aim to quantify network similarity
with a score rather than to visualize and understand qualitative differences. In
contrast, our approach is designed to provide fine-grained, qualitative understanding
of the differences between two “graphs” that have the same nodes, but different
edge weights. While some approaches [36, 37] have been developed to visualize
differences between graphs, these methods focus on highlighting the addition and
removal of nodes. Most relevant to our work is DiSC [38], a modification of the
spectral clustering algorithm. DiSC addresses a setting in which there are two
experimental conditions, where the same types of measurements are taken in both
conditions. Given this shared feature space, it seeks out features that cluster together
in one condition, but not in the other. This paradigm is relevant for biological
experiments, in which genes may co-activate in certain experimental conditions. Our
approach differs from DiSC in two key ways: (1) Neural networks do not have a
shared feature space, therefore we focus on discovering differential clusters of inputs,
not features. (2) We construct an affinity matrix emphasizing the difference between
representations. This makes our approach more flexible than DiSC, since it can be
used with any clustering algorithm.

4.4 Method
We propose a method, RDX, to explain differences between models via concepts
by identifying inputs that only one of the two models considers to be semantically
related. To do so, we construct an affinity matrix that assigns high affinity to pairs
of inputs that are similar, according to representation 𝑨 and dissimilar according to
representation 𝑩, and perform clustering to reveal distinctive similarity structures
in 𝑨. At a high-level, RDX performs the following steps: (1) compute the pairwise
distances between inputs in 𝑨 and 𝑩 to build distance matrices, 𝑫𝐴 and 𝑫𝐵, (2)
compute the normalized difference between the matrices to form difference matrices

100

𝑮𝐴,𝐵 and 𝑮𝐵,𝐴, and (3) use the difference matrix to sample difference explanations,
i.e. explanations that reveal where the two representations disagree. Intuitively,
negative edges in 𝑮𝐴,𝐵 indicate that the corresponding pair of inputs were closer
together in 𝑨 than they were in 𝑩.

As input, we have 𝑛 data items from which we compute two embedding matrices
obtained from two different models, 𝑨 ∈ R𝑛×𝑑𝐴 and 𝑩 ∈ R𝑛×𝑑𝐵 , where 𝑑𝐴 and 𝑑𝐵
are the embedding dimensions for models 𝐴 and 𝐵 respectively. 𝑨 and 𝑩 contain
embeddings over the same set of inputs, where each row corresponds to the same
input item, i.e. each row is an embedding vector. We refer to the ith embedding
vector in 𝑨 as 𝒂𝑖. We consider several options for each step of RDX and provide
details for the best choices in the following sections. Additional model variants are
described in Sec. 4.9.

4.4.1 Computing Normalized Distances
To contrast representations using their distance matrices, the distances must be
comparable.

Neighborhood Distances. We compute the pairwise Euclidean distance matrices,
𝑫𝐴 ∈ 𝑅𝑛×𝑛 and 𝑫𝐵 ∈ 𝑅𝑛×𝑛, for each embedding matrix separately. For each entry
𝒂𝑖 in a given embedding matrix, we rank all other entries by their distance to 𝒂𝑖.
This rank is used as the scale-invariant nearest neighbor distance between 𝒂𝑖 and
𝒂 𝑗 . Thus, distances are integers between 0 and 𝑛. We refer to the outputs as the
normalized distance matrices 𝑫̄𝐴 and 𝑫̄𝐵.

4.4.2 Constructing Difference Matrices
Given 𝑫̄𝐴 and 𝑫̄𝐵, we develop a method for comparing the normalized distances
that emphasizes differences of where either model considers two inputs similar. The
method is asymmetric. Here we present it in one direction.

Locally Biased Difference Function

Consider two pairs of embeddings with indices 𝑖, 𝑗 and 𝑖, 𝑘 . Suppose 𝑫̄𝑖 𝑗

𝐴
= 500 and

𝑫̄𝑖 𝑗

𝐵
= 600 in the first pair, and 𝑫̄𝑖𝑘

𝐴
= 1 and 𝑫̄𝑖𝑘

𝐵
= 101 in the second. Comparing

the distances across the representations (500 − 600, 1 − 101) results in the same
amount of change (−100, −100), but a change from a distance of 1 to a distance
of 101 suggests a more important conceptual difference. To address this issue, we
propose a locally-biased difference function:

𝑮𝑖 𝑗

𝐴,𝐵
= tanh(𝛾 · (𝑫̄𝑖 𝑗

𝐴
− 𝑫̄𝑖 𝑗

𝐵
)/(min(𝑫̄𝑖 𝑗

𝐴
, 𝑫̄𝑖 𝑗

𝐵
)). (4.1)

101

By dividing by the minimum distance across both representations, this function
prioritizes differences in embedding distances in which either representation considers
the embeddings to be similar. This ensures that large differences in distant embeddings
are ignored, but large differences in nearby embeddings are emphasized. To avoid
exponential growth in our difference function when distances are small, we apply a
tanh function to normalize the outputs, with 𝛾 controlling how quickly the function
saturates. Given an item indexed by 𝑖, this function will output negative values when
the distance between 𝑖 and 𝑗 is smaller in 𝑨 than in 𝑩. Thus, negative matrix entries
denote items that are closer in 𝑨 than in 𝑩.

4.4.3 Sampling Difference Explanation Grids
The next step is to communicate representational differences to the user. For visual
data, sets of images, presented as an image grid of 9-25 images, have been used to
communicate visual concepts [2, 4]. We aim to sample 𝑚 sets of images (i.e. image
grids) from the difference matrix. Each set of images should contain images that
are considered similar by only 𝑨, i.e. indices that have pairwise negative matrix
entries in 𝑮𝑖 𝑗

𝐴,𝐵
. We refer to this set of images as a difference explanation (𝐸) that

defines a concept unique to one model and we refer to the collection of difference
explanations as E 𝑨. If we consider the difference matrix as the adjacency matrix
of a graph, we are essentially looking for a subgraph of size |𝐸 | with large negative
values on all edges. There are many options for sampling subgraphs, we consider a
direct sampling (see Sec. 4.9.4) and a spectral clustering based approach.

Spectral Clustering. We convert 𝑮𝐴,𝐵 into an affinity matrix: 𝑭𝐴,𝐵 = exp(−𝛽 ·
𝑮𝐴,𝐵). To ensure the affinity matrix is symmetric, we average it with its transpose.
From this affinity matrix, we seek to sample a set of 𝑚 difference explanation grids
E 𝑨. Given an affinity matrix, spectral clustering solves a relaxed version of the
normalized cut problem [39]. Normalized cuts (N-Cut) seek out a partition of a
graph that minimizes the sum of the cut edges, while balancing the size of the
partition [40]. Since, edges in 𝑭𝐴,𝐵 are large when inputs are closer in 𝑨 than they
are in 𝑩, spectral clustering is biased to finding partitions in which inputs are close
together in 𝑨, but far apart in 𝑩. In practice, when both representations have a similar
structure, edges in that structure will have an affinity close to 1, since the difference
is near 0. To discard these regions, we generate 𝑚 + 1 clusters and discard the cluster
with lowest mean affinity as it represents regions we are uninterested in. Spectral
clusters can contain too many inputs to be visualized all at once. To convert each
cluster into an explanation grid (𝐸), we define the k-neighborhood affinity (KNA).

102

For each image in the spectral cluster, the KNA is the sum of the edges between
that image and its k-nearest neighbors (also from within the cluster). Recall that
larger affinity edges indicate more disagreement about the similarity between two
images, thus we select the image and neighbors corresponding to the max KNA (see
pseudo-code Sec. 4.9.1).

4.4.4 Representational Alignment
When models have significant representational differences, it is possible that these
differences could be mitigated by aligning the representations. For example, both
models may be the same up to some (e.g. linear) transformation. In these settings, it
can be useful to first maximize the alignment between models before exploring the
representational differences, since this can reveal fundamental differences between
the models. To align the representation 𝑨 ∈ R𝑛×𝑑𝐴 to 𝑩 ∈ R𝑛×𝑑𝐵 , we learn a
transformation matrix 𝑴𝐴𝐵 ∈ R𝑑𝐴×𝑑𝐴 that minimizes the centered kernel alignment
(CKA) loss [41] between the transformed 𝑨 and 𝑩:

𝑴∗𝐴𝐵 = arg min
𝑴

1 − CKA(𝑨𝑴, 𝑩), (4.2)

where CKA(·, ·) represents the linear CKA similarity. We denote aligned representa-
tions as 𝑨′. See Sec. 4.10.2 for training details.

4.4.5 Evaluating Explanations

Algorithm 1: Evaluation of Explana-
tions on Representation A.

1: Input: Grids E 𝑨 = {𝐸1, . . . , 𝐸𝑘 },
and distances 𝑫̄𝐴, 𝑫̄𝐵

2: BSR = 0

3: for each grid 𝐸 ∈ E 𝑨 do
4: for each pair (𝑖, 𝑗) ∈ 𝑒, 𝑖 ≠ 𝑗 do
5: if 𝑫̄𝑖 𝑗

𝐴
< 𝑫̄𝑖 𝑗

𝐵
then

6: BSR += 1

7: end if
8: end for
9: end for

All explanation methods in this work
produce a set of explanation grids for
both representations. Recall that E 𝑨 is
the set of explanation grids for 𝑨. The
goal of a difference explanation grid is
to identify sets of items that are closer
together in one representation than they
are in the other. We develop a metric,
the binary success rate (BSR), to eval-
uate whether a method has succeeded
at this task. 𝑫̄𝑖 𝑗

𝐴
represents the distance

between two items in representation 𝑨

and 𝑫̄𝑖 𝑗

𝐵
represents the same for repre-

sentation 𝑩. We measure how frequently the distance for a pair of items from an
explanation grid is smaller in 𝑨 than in 𝑩. In the pseudo-code above, we provide the
algorithm for computing BSR(E 𝑨).

103

𝑴𝑆 𝑴𝐸

NMF(𝑴𝑆) Explanations

NMF(𝑴𝐸) Explanations

NMF(𝑴𝐸)
concept 1
samples.

(A) NMF explanations are indistinguishable despite significant differences in representation.

(B) RDX highlights differences between 𝑴𝑆 and 𝑴𝐸, by identifying concepts specific to 𝑴𝑆.

RDX(𝑴𝑆,𝑴𝐸) Explanations

• 5s are spread apart in
𝑴𝐸, but close in 𝑴𝑆.

• A style of 3s, 5s and 8s that 𝑴𝑆
can’t distinguish, but 𝑴𝐸 can.

• Another style of 3s and 5s that
only 𝑴𝑆 can’t distinguish.

RDX(𝑴𝑆,𝑴𝐸)

NMF(𝑴𝑆) NMF(𝑴𝐸)

𝑴𝐸𝑴𝑆

Image samples for
RDX(𝑴𝑆,𝑴𝐸) concept 1.

NMF(𝑴𝑆)
concept 1
samples.

Acc: 98% Acc: 94%

Figure 4.2: Comparing RDX to NMF. We train a small CNN on a modified MNIST
dataset that only contains images of the digits 3, 5, and 8. We compare a strong
model checkpoint representation (𝑴𝑆, 94% accuracy) with a final ‘expert’ model
representation (𝑴𝐸 , 98% accuracy). The left and middle columns show PCA
projections of the 𝑴𝑆 and 𝑴𝐸 representations, respectively. The transparent colors
indicate classes in the dataset: 3 (light-blue), 5 (light-orange), and 8 (light-green).
The right most columns visualize the images selected by the explanation methods.
We extract three concepts for each method. (A) We generate explanations using
NMF [4] with maximum sampling [4, 9, 17]. The bold colored points on the
PCA plots indicate the location of the sampled images. The images can be seen
in the right-most column. We show that this approach for concept visualization
results in indistinguishable explanations despite both models containing significant
representational differences. (B) We use RDX to generate three explanations for
images that are considered highly similar by 𝑴𝑆, but dissimilar by 𝑴𝐸 . We overlay
the points sampled by this approach on both models’ representations. In the right
column, we visualize the explanations.

4.5 Results
We conduct three types of experiments to evaluate the effectiveness of RDX. (Sec-
tion 4.5.2) We compare two simple representations with subtle differences to show
that existing XAI methods fail to explain these differences. (Section 4.5.3) We show
that these trends continue to hold in more realistic settings. Through modifications

104

(A) Recovering “Known” Differences

MNIST CUB PCBM

(B) Discovering Unknown Differences

Unaligned Aligned

Figure 4.3: Binary success rate evaluation of XAI methods. For each XAI method,
we compute the binary success rate (BSR) (Sec. 4.4.5, where higher is better) on all
difference experiments. We use neighborhood distances to measure BSR (Sec. 4.4.1).
Each method (x-axis) is assigned a different color, we show BSR(E 𝑨) (darker box)
and BSR(E𝑩) (lighter box). (Panel A) We show results on the MNIST and CUB
PCBM experiments (Sec. 4.5.3), in which we modify the representation and test if
RDX can help identify the modification. (Panel B) We show results when comparing
large vision models with unknown differences (Sec. 4.5.4). We compare recovering
differences with and without an initial alignment step (Sec. 4.4.4). In all cases, our
RDX approach consistently outperforms the dictionary learning baselines.

of various models, we manipulate representations to have “known” differences. We
then stage comparisons and assess whether existing XAI methods are able to recover
these differences. (Section 4.5.4) We use RDX to compare models with unknown
differences and find that it can reveal novel insights about models and datasets.

4.5.1 Implementation Details
We use several models in our evaluation. Unless specified otherwise, for our
modified MNIST experiments, we use a 2-layer convolutional network with an output
dimension of 64. We also train a post-hoc concept bottleneck model (PCBM) [42]
with a ResNet-18 [43] backbone on the CUB dataset [44] using the standard training
procedure [42]. Finally, we conduct experiments using several models that are
available from the timm library [45]: DINO [46] vs. DINOv2 [47] and CLIP [48]
vs. CLIP-iNat (i.e. a CLIP model fine-tuned on data from the iNaturalist platform [49]).
In these experiments, models are compared on subsets of images from 2-4 commonly
confused classes in ImageNet [50] or iNaturalist [49]. More training details are
provided in Sec. 4.10.1. We compare our approach to several DL for XAI baselines:
sparse auto-encoders (SAE) [51], non-negative matrix factorization (NMF) [52],
principal component analysis (PCA) [53], and KMeans [54]. We use convex non-
negative matrix factorization (CNMF) [55] if the activations of the last layer contains
negative values. We provide details on baseline methods in Sec. 4.10.3 and details
for RDX are provided in Sec. 4.10.4. We conduct ablations in Sec. 4.9.

105
KMeans(%) NMF(%)

KMeans(%↑↓) NMF(%↑↓)

RDX(%	 ,%↑↓)

RDX(%↑↓,%)↕

↕↕↕

Figure 4.4: Recovering vertical flip modifications on MNIST. Explanations
produced by three XAI methods, RDX, KMeans, and NMF, to compare models 𝑴↕
and 𝑴↑↓. Both models are trained on a dataset with vertically flipped and normal
images. 𝑴↕ is trained to associate the original label to flipped digits and 𝑴↑↓ is
trained to predict a new set of labels for flipped digits. We expect 𝑴↕ to mix flipped
and unflipped digits while 𝑴↑↓ should separate them. We generate 3 explanations for
each method. (Col 1, 2) KMeans and NMF generate explanations that are difficult
to understand. (Col 3) RDX captures the expected difference. RDX(𝑴↕𝑴↑↓) reveals
that 𝑴↕ represents flipped and normal 6s, 7s, and 9s closer together than in 𝑴↑↓.
RDX(𝑴↑↓,𝑴↕) shows that 𝑴↑↓ has clean clusters of 3s, flipped 5s, and flipped 2s
without any mixing.

4.5.2 Dictionary Learning Fails to Reveal Differences in Similar Representa-
tions

Dictionary learning (DL) approaches for XAI are commonly used to discover
and explain vision models [4, 5, 6, 16]. We hypothesize that explanation grids
sampled from DL concepts are not helpful for describing differences between
similar representations, even if the representations contain behaviorally significant
differences. To test this, we train a 2-layer convolutional network with an output
dimension of 8 on a modified MNIST dataset that contains only images for the
digits 3, 5, and 8. We compare a checkpoint from epoch 1 with strong performance
(94% accuracy) to the final, ‘expert’ checkpoint at epoch 5 (98%). We refer to
these checkpoints as 𝑴𝑆 (strong model) and 𝑴𝐸 (expert model). We conduct this
experiment to assess if an XAI method can reveal subtle differences between two
models.

A good difference explanation should reveal the concepts that explain why 𝑴𝑆

under-performs 𝑴𝐸 by 4%. In Fig. 4.2A we show that NMF with maximum sampling
generates effectively the same explanation grid for both representations. This is
because NMF has learned highly similar concepts for both representations, and the
representational differences are captured in smaller and noisier concept coefficients

106

Mix of non-spotted and spotted wings in explanation for
𝑪𝐴−𝑆. In contrast, only spotted wings in 𝑪𝐴 explanation.

Indistinguishable explanations for both models that
are unrelated to wing spotted-ness.

CNMF(𝑪𝐴−𝑆) CNMF(𝑪𝐴)RDX(𝑪𝑨−𝑺, 𝑪𝑨) RDX(𝑪𝑨, 𝑪𝑨−𝑺)

Figure 4.5: Recovering the “Spotted Wing” concept in CUB. We train a post-hoc
concept bottleneck model on the CUB dataset. For each image, we use the predicted
concept logits as the image’s embedding vector (i.e. representation). Here we
compare a model using the complete concept representation (𝑪𝐴) with a model
representation without the spotted wing concept (𝑪𝐴−𝑆). We visualize one of five
generated explanations for each model using RDX and CNMF. We observe that RDX’s
explanation focuses on the spotted wing concept and that 𝑪𝐴−𝑆 considers images
with and without spotted wings to be more similar than 𝑪𝐴 does. In contrast, the
CNMF explanations for each model are both unrelated to the spotted wing concept
and indistinguishable from each other, since the representations are highly similar
and CNMF discovers nearly the same concepts in both.

for images that 𝑴𝑆 is less certain about. Maximum sampling selects the images
with the largest coefficients, meaning these images are not sampled when visualizing
concepts (Fig. 4.8A). In Fig. 4.7, we show that SAE and KMeans also fail to explain
representational differences. An alternative approach to understanding differences
could be to inspect individual images of interest and try to understand them through
their concepts. In Fig. 4.8B, we show the difficulty of reasoning about an image via a
weighted combination of concept explanations. In contrast, RDX concepts are defined
by their explanation grid and are sampled from difference regions. This ensures that
RDX explanations select images considered similar by 𝑴𝑆 that 𝑴𝐸 does not consider
similar. In Fig. 4.2B, we can see that 𝑴𝑆 is confused by certain styles of 3s, 5s, and
8s that look similar when compared to 𝑴𝐸 . In Fig. 4.7C we visualize the reverse
direction for RDX and find that 𝑴𝐸 contains clusters of challenging 3s and 5s, that
are confused by 𝑴𝑆. Finally, in Sec. 4.8.1 we discuss if perfectly monosemantic DL
concepts would solve these issues. We argue that monosemanticity is likely infeasible
when trying to compare representational differences and that, even if achieved, it
cannot solve the issue of weighted combinations of explanations.

107

4.5.3 RDX Recovers “Known” Differences
Here we evaluate different XAI approaches by comparing MNIST trained models
that have a modified training procedure. We select modifications such that we can
have strong expectations on the differences between the learned representations.
Specifically, we trained on a MNIST dataset with vertically flipped digits, where
𝑴↕ was trained to use the same labels for both normal and flipped digits and 𝑴↑↓

was given new labels for flipped digits. The training modifications and expected
representational changes are provided in Tab. 4.4. In Fig. 4.4, we visualize the
outputs of three XAI methods for comparing 𝑴↕ and 𝑴↑↓. We clearly see that RDX’s
explanations focus on the actual expected difference. It shows that 𝑴↕ considers
flipped and normal digits as being more similar than 𝑴↑↓. In contrast, KMeans and
NMF result in unfocused and seemingly random explanations. In Fig. 4.3 we can see
that this trend is consistent as all baseline methods have a lower BSR than RDX.

To explore differences between models trained on more complex images, we use
a post-hoc concept bottleneck model (PCBM) trained on the CUB bird species
dataset (Sec. 4.10.1). The CUB PCBM (𝑪𝐴) predicts a score for 112 human-defined
concepts, these concepts are then used to make species classification decisions, where
we treat the concept predictions as a feature vector for an image. In each comparison,
we remove a single concept from the feature vectors and compare the representations.
The list of eliminated concepts used in this experiment can be found in Tab. 4.4.
In Fig. 4.3A (right) we report the BSR score for each method for this experiment.
We find that RDX variants perform better than the baselines, especially for difference
explanations on the complete representation 𝑪𝐴. In Fig. 4.5, we visualize the outputs
of RDX and CNMFwhen comparing a model without the spotted wing concept (𝑪𝐴−𝑆)
against 𝑪𝐴. As expected, we find that difference explanations show that 𝑪𝐴−𝑆 mixes
images with and without spots, whereas, 𝑪𝐴 is much better at grouping images
with spotted wings. In contrast, we show that CNMF can result in both unrelated
and indistinguishable explanations. We show more examples in Sec. 4.8.2. Taken
together, these results indicate that RDX is capable of revealing how changes in both
training and fine-grained concepts can affect a model’s representation.

4.5.4 RDX Discovers “Unknown” Differences
In our final experiment, we test the effectiveness of RDX for knowledge discovery by
applying it to two models with unknown differences. We compare DINO with DINOv2
on four groups of ImageNet classes. We also compare CLIP against an iNaturalist
fine-tuned CLIP (CLIP-iNat) model on three groups of different species. We conduct

108

Expl. 2 Expl. 4

Expl. 5Expl. 4

RDX 𝑴𝐷2,𝑴𝐷
′ on Primates (ImageNet)

RDX 𝑴𝐶𝑁,𝑴𝐶
′ on Maples (iNaturalist)

𝑴𝐶
′

𝑴𝐷
′𝑴𝐷2

𝑴𝐶𝑁

Figure 4.6: Discovering unknown differences. We use RDX to generate difference
explanations for representations with unknown differences. We visualize two
comparisons with alignment. In both comparisons, we visualize the shared structure
(gray), cluster membership (light colors), and selected samples for explanations (dark
colors) on PCA projections of the representations. We can see that the selected
indices are grouped compactly in the left PCA plot, but are spread apart in the right
one. (RDX(𝑴𝐷2,𝑴

′
𝐷
)) on Primates. We discover unique concepts in DINOv2

for commonly confused primates in ImageNet. In the PCA plot, we see that the
green (Expl. 2) and purple (Expl. 4) explanations are cleanly separated in 𝑴𝐷2,
but mixed in 𝑴′

𝐷
. The explanations show that only DINOv2 has unique concepts

for tan-colored gibbons and for gibbons with white chin fur. (RDX(𝑴𝐶𝑁 ,𝑴
′
𝐶
)) on

Maples. We compare the representations of CLIP-iNat and CLIP on four types of
maple trees from iNaturalist. We see that CLIP-iNat contains a unique concept for
fall-colored Red Maple leaves (Expl. 4) and a second concept that mixes fall-colored
and green Silver Maple leaves (Expl. 5). Further analysis is provided in Sec. 4.5.4.

all of the knowledge discovery experiments with and without alignment. We align one
model at a time, resulting in twice the number of comparisons for baseline methods.
We can see in Fig. 4.3 (Panel B) that RDX outperforms all baseline methods in
discovering representational differences. Additionally, we see that alignment makes it
more challenging to discover differences for the baseline methods, but RDXmaintains
good performance in both settings. In Fig. 4.6 (RDX(𝑴𝐷2,𝑴

′
𝐷
)), we visualize

difference explanations by comparing DINOv2 to DINO using images from three
primate classes from ImageNet. We find that DINOv2 does a better job at organizing
two types of gibbons with different visual characteristics, suggesting that it would be
more capable than DINO at fine-grained classification. In Fig. 4.6 (RDX(𝑴𝐶𝑁 ,𝑴

′
𝐶
)),

109

we visualize fine-grained difference explanations on species of maple trees. We
find that only CLIP-iNat contains well-separated concepts for two different species
of maple, despite both clusters sharing a secondary characteristic of leaves with
fall-colors. While CLIP does not mix the images from these concepts, we see
that it does not group them as tightly, suggesting it may be organizing images
using a different characteristic like color. We apply RDX to several more examples
in Sec. 4.8.3 and use a vision language model to assist in the analysis. Finally, we
also discuss general limitations in Sec. 4.7.

4.6 Conclusions
As models become larger and more powerful they encode more and more different
concepts, making it critical to focus our attention on describing unique concepts
the models have discovered. In this work, we posit that comparing representations
allows us to filter away common structure and reveal concepts that may be more
interesting the user. We propose RDX, a new approach for isolating the differences
between two representations. RDX requires no training, can be applied to any model
that generates an embedding for an input, and is a general framework that can easily
be modified with different choices for its intermediate steps. In our experiments we
show that RDX is able to recover known model differences, and is also able to surface
interesting unknown differences. These differences can teach us both about model
differences and also about the training data used. The next step is testing RDX in
real-life applications to see if it can be used to help experts, such as radiologists or
ecologists, discover new structures in their models and datasets.

Acknowledgments

We thank Atharva Sehgal, Rogério Guimarães, and Michael Hobley for providing
feedback on the work. OMA was supported by a Royal Society Research Grant. NK
and PP were supported by the Resnick Sustainability Institute.

110

Appendix
4.7 Limitations
Here we discuss some of the limitations of RDX and our analysis.
Compute. Computing and storing the full pairwise distance matrix requires O(𝑛2)
memory, which may become impractical for large 𝑛. In this work, we are able to
apply our method to at least 5000 data points and we have not explored larger values
of 𝑛.
Concept Definition. While our decision to define concepts by an explanation of
𝑘 images is helpful for users, it does not allow us to communicate concepts like
“roundness” that may react linearly over a range of image types. Instead, concepts
like “’roundness” would be discretized into sub-concepts that can be communicated
by an explanation grid.
BSR agreement with human-interpretability. In Fig. 4.19, we find that two
methods can have the same BSR, but have significant differences in what they focus
on in their explanations. Thus, we propose that BSR should not be directly optimized
for, but should instead be a proxy metric, and that qualitative results should always
be used to support BSR scores.
Breadth. Our approach works on any representation, but we focus on vision models
in our experiments. Future work should explore if this approach can be useful when
comparing text and multi-modal representations.
Utility. We find that RDX explanations are useful for identifying representational
differences, but more work needs to be done to link these representational differences
to performance differences on specific tasks such as classification. In Sec. 4.8.2
(Maples), we see only some RDX explanations align with differences in classification.
RDX is unsupervised in that it only requires two sets of representations as input, but
in future work it would be interesting to explore incorporating classifier information
into RDX explanations.

4.7.1 Societal Impact
We do not anticipate any specific ethical or usage concerns with the method proposed
in this work. We propose a method for model comparison which we hope will
improve our understanding of model representations. Deeper insight can lead to
better detection of bias, better understanding of methods, and discovery of new
knowledge about our datasets that may be beneficial for society. However, better
understanding can also amplify negative usages of AI.

111

4.8 Additional Results
4.8.1 Additional Results on MNIST-[3,5,8]
We train a small convolutional network on a modified MNIST dataset containing
only images for digits 3, 5 and 8. We compare two checkpoints from training at
epoch 1 (𝑴𝑆) and epoch 5 (𝑴𝐸). These checkpoints differ in representation and
overall performance. In Fig. 4.2, we showed the results from applying NMF to this
setting. Here, we also evaluate SAE and KMeans.

SAE and KMeans Fail to Explain Representational Differences

In Fig. 4.7 we visualize the explanations generated by SAE and KMeans. We find that
both methods fail to generate explanations that can help us understand the difference
between the two representations. The SAE generates confusing explanations that
may even be misleading. Surprisingly, the SAE explanations for 𝑴𝑆 are less mixed
than 𝑴𝐸 , suggesting 𝑴𝑆 has a better separated representational space, which we
know to be incorrect. This is likely a result of random variations in the concepts
discovered by the SAE, a phenomena also observed in [56]. KMeans, like NMF,
generates indistinguishable explanations for both representations. This is due to the
images near the centroids of similar representations being effectively the same, since
these are regions in which model confidence is higher.

General Issues with Interpreting Dictionary Learning Methods.

There are two critical issues with interpreting explanations from dictionary learning
methods. We visualize these issues in Fig. 4.8. We show that visualizing the
maximal samples of a concept is an incomplete explanation of the behavior of that
concept. This is because concepts can activate for multiple groups of images at
varying strengths and visualizing the top-k images does not tell users about other
types of images a concept may react to. These “other” images, with smaller concept
coefficients, are critical for understanding the task of comparing two representations,
since they can be the source of representational differences (Fig. 4.8A).

Importantly, this issue raises questions about the feasibility of decomposing models
into monosemantic concepts. Monosemantic concepts are defined as concepts that
have a single, unambiguous, meaning and extracting them are the goal of sparse
autoencoder methods for XAI [7, 11, 57]. Consider a concept vector that encodes the
concept of “roundness.” This concept is neither monosemantic nor polysemantic, as
it is too ambiguous for monosemanticity, but not disparate enough to be polysemantic.

112

On a dataset of objects that are interpolations from squares to circles, this concept
would react to all round objects, but most strongly to circles. A maximally sampled
explanation for this concept could easily mislead the user into believing that the
concept reacts only for circles. Trying to convert the “roundness” concept into
discrete monosemantic concepts that only react to well-defined shapes leads to
questions about the boundaries of the discretization and the number of concepts
that can be meaningfully analyzed by a human. When comparing two models that
share the “roundness” concept, differences in discretization could lead to partially
overlapping concepts, such as those seen in [17].

When comparing two representations it is sometimes necessary to analyze specific
images that the two representations disagree upon. When applying dictionary-
learning based methods to understand what concepts make up an image, users
are required to mentally perform a weighted combination over incomplete concept
explanations (Fig. 4.8B). This task is un-intuitive and imprecise in the context of a
single model. If the concepts for the two models being compared are even slightly
different, this task becomes essentially impossible. Notably, this issue persists even if
concepts are monosemantic since most images are likely to contain several concepts.

Using RDX to Discover Concepts Specific to

RDX is not a symmetric method. In Fig. 4.7C we visualize the second direction
RDX(𝑴𝐸 , 𝑴𝑆). These explanations reveal images considered similar in 𝑴𝐸 , but
not in 𝑴𝑆. These explanations show that the expert model 𝑴𝐸 is able to group
challenging images of the same digit that 𝑴𝑆 is unable to. Additionally, we note
that the explanations exclude 8, suggesting that the difference in similarities between
images of 8 in 𝑴𝐸 and 𝑴𝑆 is smaller than the difference in similarities for images of
3 and 5. Indeed, the prediction agreement for linear classifiers trained on these two
representations is 95% on 3, 95% on 5, and 98% on 8 matching our expectations.

4.8.2 Additional Results for “Known” Differences
We describe the modifications to models in known difference comparisons in Tab. 4.4.
Comparison details are found in Tab. 4.7.

MNIST. In Fig. 4.10, we visualize the explanations from RDX, KMeans, and NMF
for 𝑴49 vs. 𝑴𝑏, 𝑴35 vs. 𝑴49, and 𝑴ℎ 𝑓 𝑚 vs. 𝑴ℎ 𝑓 𝑠.

In all comparisons,RDX explanations clearly show the expected difference between the
two representations. In contrast, KMeans and NMF generate unfocused explanations

113

that are often indistinguishable from each other. At best, we find that the baseline
approaches may contain 2/6 explanations focused on the known difference between
models.

CUB PCBM. In Fig. 4.11 and Fig. 4.12 we visualize five explanations for comparing
𝑪𝐴−𝑆 vs. 𝑪𝐴 and 𝑪𝐴−𝑌𝐵 vs. 𝑪𝐴 using RDX and a baseline method. 𝑪𝐴 is the CUB
PCBM concept vector with all concepts retained. 𝑪𝐴−𝑆 removes the spotted wing
concept from the concept vector and 𝑪𝐴−𝑌𝐵 removes the yellow back concept from
the concept vector. We expect that explanations are composed of images that contain
these concepts. In both comparisons, the baseline method (CNMF or SAE) generates
indistinguishable and unfocused explanations that provide no insight about the known
differences. On the other hand, RDX explanations focus on the known differences and
can reveal interesting insights about the impact of removing a concept. In Fig. 4.12,
the RDX explanations help teach us about how the PCBM uses the “yellow-back”
concept. On first glance, the model without the yellow-back concept (𝑪𝐴−𝑌𝐵) appears
to do a better job of grouping colorful yellow/red birds. When inspected more closely,
it becomes clear that there is a mixture of birds with black faces and colored backs
and birds with red/yellow faces and black backs. This indicates that the yellow-back
concept is used as a fine-grained discriminator between these two color patterns. It
also indicates that the PCBM model may be suffering from leakage [58] and does
not discriminate between bright red and yellow colors. In the other direction, we see
that the yellow-back concept helps organize birds with colorful backs into organized
groups (explanations 3-5), but also helps organize “regular” birds into well-separated
groups (explanations 1-2).

4.8.3 Additional Results for Discovering ”Unknown” Differences
We visualize complete RDX results for four comparisons using the representational
alignment step from Sec. 4.4.4:

1. 𝑴𝐷 vs. 𝑴𝐷2 on Mittens (Fig. 4.13)

2. 𝑴𝐷 vs. 𝑴𝐷2 on Primates (Fig. 4.14)

3. 𝑴𝐶 vs. 𝑴𝐶𝑁 on Maples (Fig. 4.15)

4. 𝑴𝐶 vs. 𝑴𝐶𝑁 on Corvids (Fig. 4.16)

See Tab. 4.7, for a description of the datasets and Tab. 4.5 for details about the
models. Although explaining classifier predictions is not the goal of RDX, we train a

114

Table 4.1: Linear probe accuracy across datasets described in Tab. 4.7.

Mittens Primates Maples Corvids
DINO (𝑴𝐷) 0.933 0.918 – –
DINOv2 (𝑴𝐷2) 0.965 0.921 – –
CLIP (𝑴𝐶) – – 0.752 0.790
CLIP-iNat (𝑴𝐶𝑁) – – 0.796 0.787

linear classifier on these representations to gain an insight into the quality of their
organization and to assist in interpretation (Tab. 4.1). Training details are provided
in Sec. 4.10.1. We use the classifier accuracies and predictions as supplemental
information to understand representational differences.

In all representational difference comparisons, RDX reveals interesting insights about
differences in model representations. In the first two comparisons, models perform
well and we are able to interpret the discovered concepts fairly easily without using
additional information from the classifiers.

Mittens. We find that DINOv2 does a better job of organizing mittens by their
orientation (see Fig. 4.13). It also has a unique concept for children’s mittens that
is not present in DINO. On the other hand, DINO has unique concepts for children
around Christmas related items and Christmas items on their own. These two
concepts appear to be entangled in DINOVv2.

Primates. We notice that DINO contains four unique concepts that appear to fixate
on secondary characteristics (see Fig. 4.14). Explanation 1 seems to react to siamangs
on grass, explanation 3 picks up on lower quality images, like screenshots from a
video or images taken through enclosure glass, explanation 4 contains scenes of
branches and greenery where primates are distant, and explanation 5 contains scenes
of a variety of primates behind fencing. In contrast, DINOv2 explanations tend to be
focused on the primate type. For example, explanation 1 also picks up on siamangs,
but in a variety of environments. Explanation 3 shows gibbons swinging in trees and
explanation 5 shows spider monkeys in trees, these two concepts are entangled in
DINO, suggesting DINO is more sensitive to the background/activity of the monkeys
than the species.

In the next two comparisons (Maples and Corvids), we evaluate how RDX performs
when classifier performance is much lower. We expect these representations to be
more poorly organized and subsequently more challenging to interpret. In the first
comparison (Maples), we select a comparison where there is a large performance

115

Table 4.2: Ground truth label counts for explanations on Maples.

RDX(𝑴𝐶 ,𝑴
′
𝐶𝑁
) RDX(𝑴𝐶𝑁 ,𝑴

′
𝐶
)

Maple Type E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

Norway Maple 1 1 2 0 0 9 0 1 0 0
Silver Maple 3 3 1 2 1 0 0 7 0 9
Sugar Maple 3 3 4 0 0 0 9 0 0 0
Red Maple 2 2 2 7 8 0 0 1 9 0

difference (4%). In the second (Corvids), we explore a setting in which fine-tuning
CLIP on iNaturalist images did not improve the quality of the representation, although
it may have changed it.

Maples. Fine-grained maple tree classification is a challenging task which is beyond
the skill of most people. The clear performance gap between model’s indicates
that CLIP-iNat has learned important features, we explore if RDX is able to help us
generate hypotheses on what those might be (see Fig. 4.15). In Fig. 4.6 we analyzed
explanations 4 and 5 from RDX(𝑴𝐶𝑁 ,𝑴

′
𝐶
). This allowed us to hypothesize that

CLIP was biased towards encoding Maple leaves by color/season rather than species.
Despite this bias, we find that classifiers trained on both representations perform
reasonably well on these two image grids. This suggests that this representational
difference may not be important for classification. However, we notice that there
are differences in the classifier predictions for explanations 2 and 3. We use this
information to propose some hypotheses. The dataset labels for explanation 2 indicate
that all of the images are sugar maples. CLIP-iNat gets 7/9 correct, while CLIP
gets 5/9. With this information, we hypothesize that CLIP-iNat is able to detect
sugar maples leaves in images with a variety of seasons, backgrounds, and lighting.
In explanation 3, we see young, bushy maple trees around rocks and waterways.
The classification labels indicate the majority of these images contain silver maples.
CLIP-iNat gets 8/9 correct, while CLIP gets only 4/9 correct. This suggests that
CLIP-iNat has learned to associate this visual concept with silver maples and that
this is an effective strategy for classification on this dataset. We also observe some
higher-level characteristics of the explanations when analyzed with their ground
truth labels. Explanations for CLIP-iNat tend to have labels that correspond with
one of the ground truth labels, while CLIP does not (Tab. 4.2. This make sense, as
CLIP-iNat was fine-tuned on a classification dataset.

116

Corvids. Neither representation supports good classification on the challenging
Corvids dataset (see Fig. 4.16). However, RDX reveals some interesting concepts
unique to each model. For example, RDX(𝑴𝐶 ,𝑴

′
𝐶𝑁
) explanation 4, shows a CLIP

specific concept for Corvid footprints. In explanation 5, we see a concept for flocks
of crows. In the other direction, CLIP-iNat has a learned a concept for large ravens
in natural settings like hillsides or beaches (explanation 1). It has also learned a
concept for crows in urban settings like schools, fields and pavement (explanation
2). Additionally, CLIP-iNat makes a stronger distinction between perched crows in
urban settings (explanation 4) and flying crows (explanation 5).

Effects of Alignment. In Fig. 4.9, we visualize the effect of alignment when
comparing CLIP to CLIP-iNat on the Maples dataset. We see that alignment can
result in a significant change in the spectral clusters detected from the affinity
matrix. In particular, one discovered concept is only present in the unaligned
comparison. This indicates that both representations contain the information to
represent the concept, but their initial configurations differ. After alignment, the
concepts discovered are more likely to be fundamental differences between the
two representations. Although there are some limitations to this interpretation
(see Sec. 4.7), we focus on aligned comparisons in our qualitative plots, as it makes
interpretation similar.

ChatGPT-4o Analysis. Analyzing and annotating several explanations for each
model is time consuming and cognitively demanding. We explore if ChatGPT-4o [59]
is capable of annotating the images for us in the Maples and Corvids comparisons.
We use the prompt:

Prompt

I am going to ask you to analyze image grids. You will receive a strip of five
image grids. The images in the grid will be from the categories: <category list>.
Your task is to concisely describe the consistent features that appear in each image
grid. You do not need to use complete sentences. The format of your output
should be a dictionary like this. E1: desc1, E2: desc2, E3: desc3, E4: desc4, E5:
desc5.

The outputs are provided in the figure captions of Fig. 4.15 and Fig. 4.16. We find
that the annotations are clear, reasonable, and helpful.

117

𝑴𝑆 | 94% 𝑴𝐸 | 98%
SAE(𝑴𝑆) SAE(𝑴𝐸)

KMeans(𝑴𝐸)KMeans(𝑴𝑆)

SAE(𝑴𝑆) Explanations

SAE(𝑴𝐸) Explanations

KMeans(𝑴𝑆) Explanations

KMeans(𝑴𝐸) Explanations

RDX(𝑴𝐸, 𝑴𝑆)
samples.

RDX(𝑴𝐸, 𝑴𝑆)
overlayed on 𝑴𝑆

RDX(𝑴𝐸, 𝑴𝑆) Explanations

• 3s are closer together in 𝑴𝐸.
• A style of 3s that are

confused by 𝑴𝑆 with 5s.
• A style of 5s that 𝑴𝑆

confuses with 3s.

(A) SAE explanations are surprisingly misleading about the representational difference.

(B) KMeans explanations are indistinguishable despite differences in representation.

(C) RDX(𝑴𝐸, 𝑴𝑆) highlights inputs considered similar in𝑴𝐸, but not in 𝑴𝑆.

Figure 4.7: Comparing RDX to SAE and KMeans. In Fig. 4.2, we visualized
NMF explanations for two model representations, from a ‘strong’ 𝑴𝑆 and an ‘expert’
model 𝑴𝐸 , trained on MNIST-[3,5,8]. Here we show explanations generated using
SAE with maximum sampling and KMeans with centroid sampling. (A) SAE
explanations are confusing and potentially misleading. SAE(𝑴𝑆) shows mostly 3s in
all explanations, whereas SAE(𝑴𝐸) shows one explanation with mixed 5s and 8s,
and two explanations with 5s and 8s respectively. These explanations do not convey
which of the two representations is weaker and may even suggest that the 𝑴𝑆 is the
expert representation. (B) KMeans explanations are indistinguishable. Given that
these two representations are highly similar, the centroids for the clusters in both
representations are nearly the same. (C) RDX(𝑴𝐸 ,𝑴𝑆) shows explanations that helps
us understand that 𝑴𝐸 does a better job of grouping 3s and 5s than 𝑴𝑆, matching the
known difference between the two models. The lack of an explanation for 8s suggest
that 𝑴𝑆 is relatively better at distinguishing 8s. We confirm this in Sec. 4.8.1.

118

NMF(𝑴𝑆) Coeff. NMF(𝑴𝐸) SAE(𝑴𝐸) SAE(𝑴𝑆)
Im

ag
e

In
de

x

Concept Index

3.68 0.90+ =

(A) Maximum sampling for NMF and SAE hides complexities of concept vectors.

(B) Weighted combinations of maximally sampled explanations are unintuitive.

Image 800

SAE(𝑴𝑬) Explanation for Image 800

(1) (2)

Concept Index Concept Index Concept Index

3

5

8

Class
Label

Figure 4.8: Interpreting Dictionary Learning Concepts. We identify two issues
with dictionary learning methods for XAI that make them challenging to understand.
These results are from the same experiment as in Sec. 4.5.2 and Sec. 4.8.1. Maximum
sampling to explain concept vectors hides important nuances in model behavior. In
(1) and (2), highlighted in red, we can see that 𝑴𝑆 and 𝑴𝐸 both encode roughly
the same concept, with maximum activations for images of 5s (indices 500-1000)
and weaker activations for images of 3s and 8s (indices 0-500 and 1000-1500).
The generated explanations for both concepts show 5s. However, we can see that
the activations for 3s and 8s are relatively lower in (2) than the activations for 3s
and 8s in (1). These subtle nuances are critical for understanding how the two
models behave differently, but are completely lost in the existing approaches for
generating explanations. Thus, existing explanations for dictionary learning concepts
are incomplete. (B) Analyzing a single image through the lens of these concepts is
extremely challenging. Users are tasked with using incomplete explanations of a
concept in a weighted sum with un-intuitive coefficients. For example, image 800 is
an image of a “standard” 5, but is encoded by a weighted combination over a concept
of “strange” 5s and 8s and normal 8s. See Sec. 4.8.1 for a discussion on the impact
of monosemanticity and polysemanticity in this context.

119

Maples (iNaturalist)

𝑴𝐶 𝑴𝐶𝑁 𝑴𝐶𝑁
′𝑴𝐶

RDX(𝑴𝐶 ,𝑴𝐶𝑁) RDX 𝑴𝐶 ,𝑴𝐶𝑁
′

Unaligned Aligned

RDX 𝑴𝐶, 𝑴𝐶𝑁
Explanation

Figure 4.9: Effect of Alignment. (Top) We compare CLIP and CLIP-iNat with and
without aligning CLIP-iNat (denoted by 𝑀′ notation). We visualize PCA plots of the
representations with cluster membership (light colors) and samples (dark colors). In
each direction, the left plot contains the concept “source” representation while the
right plot has the selected clusters overlayed on its representation. (Unaligned, Left)
We generate five spectral clusters, we can see that they group nicely in the left plot
and are spread apart in the right plot. We highlight the region of the red cluster for
comparison after alignment. (Aligned, Right) After alignment, we can see that it
is more difficult to get clusters that have large differences in their distances in the
two representations. We find that the region that the red cluster came from in the
unaligned comparison is no longer selected after alignment. Explanation The red
cluster (unaligned) contains maples in fall foliage. Both networks can represent this
concept, although the unaligned CLIP-iNat representation does not prioritize it.

120

RDX(𝑴49,𝑴𝑏) KMeans(𝑴49) NMF(𝑴49)

RDX(𝑴𝑏,𝑴49) KMeans(𝑴𝑏) NMF(𝑴𝑏)

RDX(𝑴35,𝑴49) KMeans(𝑴35) NMF(𝑴35)

RDX(𝑴49,𝑴35) KMeans(𝑴49) NMF(𝑴49)

RDX(𝑴ℎ𝑓𝑚,𝑴ℎ𝑓𝑠) KMeans(𝑴ℎ𝑓𝑚) NMF(𝑴ℎ𝑓𝑚)

RDX(𝑴ℎ𝑓𝑠,𝑴ℎ𝑓𝑚) KMeans(𝑴ℎ𝑓𝑠) NMF(𝑴ℎ𝑓𝑠)

Figure 4.10: Additional explanations for MNIST comparisons. Modifications
are described in detail in Tab. 4.4. We compare 𝑴49 (mixes 4s and 9s) to 𝑴𝑏 (no
modifications). We observe that RDX generates explanations focused on the known
difference. KMeans and NMF have 1/6 explanations related the known difference.
(Middle) We compare 𝑴35 (mixes 3s and 5s) to 𝑴49 (mixes 4s and 9s). RDX conveys
the modifications made to both models, specifically 𝑀35 mixes 3s and 5s and that
𝑀49 mixes 4s and 9s. Also, it shows that 𝑀49 organizes 3s better than 𝑀35. KMeans
has one explanation related to the known differences, while NMF has none. (Bottom)
We compare 𝑴ℎ 𝑓 𝑚 (mixed flipped and unflipped digits) to 𝑴ℎ 𝑓 𝑠 (separated flipped
and unflipped digits). RDX reveals mixing between flipped and unflipped 6s, 9s and
3s in 𝑴ℎ 𝑓 𝑚 and no mixing for 2s, flipped 3s and 5s in 𝑴ℎ 𝑓 𝑠. KMeans explanations
are confusing. NMF has 2/6 explanations that align with the known difference.

121

RDX(𝑪𝐴−𝑆, 𝑪𝐴)

RDX(𝑪𝐴, 𝑪𝐴−𝑆)

CNMF(𝑪𝐴−𝑆)

CNMF(𝑪𝐴)

Figure 4.11: Explanations for the “Spotted Wing” concept. We selected a
few explanation grids to show in Fig. 4.5. Here we visualize all five explanations
generated by two XAI methods, best viewed zoomed in. (Top) In row 1, the RDX
explanation grids show birds with and without spotted wings mixed together. In
row 2, the explanation grids are predominantly made up of birds with spotted wings.
In explanation five, we see that RDX can generate clusters with too few images to
generate a full grid. (Bottom) In both rows, each CNMF explanation grids shows
a different kind of bird, unrelated to the known difference. For example, we can
see concepts for yellow birds, seabirds, and black birds. The explanations for both
models are indistinguishable.

122

RDX(𝑪𝐴−𝑌𝐶, 𝑪𝐴)

RDX(𝑪𝐴, 𝑪𝐴−𝑌𝐶)

SAE(𝑪𝐴−𝑌𝐶)

SAE(𝑪𝐴)

Figure 4.12: Explanation for the “Yellow Back” concept. We visualize expla-
nations from comparing 𝑪𝐴−𝑌𝐵 vs. 𝑪𝐴. (Top) In row 1, the RDX explanation grids
show red and yellow birds. Upon closer inspection, one can observe birds that have
yellow/red backs mixed with birds with black backs. This is particularly easy to
notice in the 4th explanation grid. There are birds with yellow heads and black
backs mixed with birds with black heads and yellow backs. In row 2 (explanations 1
- 2) we see that 𝑪𝐴 groups birds without yellow backs closer together than 𝑪𝐴−𝑌𝐵.
Explanations 1 - 3 indicate that only 𝑪𝐴 groups some types of birds with tan, yellow,
and red backs together. (Bottom) In both rows, each SAE explanation grids shows
concepts that correspond to different bird types, unrelated to the known difference.
The explanations for both models are also indistinguishable.

123

RDX 𝑴𝐷2,𝑴𝐷
′ Explanations

RDX 𝑴𝐷,𝑴𝐷2
′ Explanations

𝑴𝐷
′𝑴𝐷2

RDX 𝑴𝐷,𝑴𝐷2
′ PCARDX 𝑴𝐷2,𝑴𝐷

′ PCA

𝑴𝐷2
′𝑴𝐷

Figure 4.13: Investigating DINOv2 vs. DINO on Mittens (aligned). We visualize
RDX difference explanations in both directions on the Mittens dataset (Tab. 4.7). This
dataset contains images of mittens, socks and Christmas stocking from ImageNet [50].
For example, RDX(𝑴𝐷2,𝑴

′
𝐷
) generates explanations for concepts that are in 𝑴𝐷2

(DINOv2), but not 𝑴′
𝐷

(aligned DINO). We refer to the explanations as E1 to E5
(left to right). (Top) PCA plots of the representations with cluster membership
(light colors) and samples (dark colors). In each direction, the left plot contains the
concept “source” representation while the right plot has the selected clusters overlayed
on its representation. Clusters on the left plot generally appear better organized
than in the right plot. (RDX(𝑴𝐷2,𝑴

′
𝐷
)) E1: crocheted socks, E2: horizontal

mittens, E3: vertical pairs of mittens, E4: crocheted mittens, E5: children’s mittens.
(RDX(𝑴𝐷 ,𝑴

′
𝐷2)) E1: multi-colored wool socks, E2: assorted pairs of mittens, E3:

children with Christmas decorations, E4: Christmas paraphernalia mittens, and E5:
woolen clothes being worn.

124

RDX 𝑴𝐷2,𝑴𝐷
′ Explanations

RDX 𝑴𝐷,𝑴𝐷2
′ Explanations

𝑴𝐷
′𝑴𝐷2 𝑴𝐷2

′𝑴𝐷

RDX 𝑴𝐷,𝑴𝐷2
′ PCARDX 𝑴𝐷2,𝑴𝐷

′ PCA

Figure 4.14: Investigating DINOv2 vs. DINO on Primates (aligned). We visualize
RDX difference explanations in both directions on the Primates dataset (Tab. 4.7). This
dataset contains images of gibbons, siamangs and spider monkeys from ImageNet [50].
For example, RDX(𝑴𝐷2,𝑴

′
𝐷
) generates explanations for concepts that are in 𝑴𝐷2

(DINOv2), but not 𝑴′
𝐷

(aligned DINO). We refer to the explanations as E1 to E5
(left to right). (Top) PCA plots of the representations with cluster membership (light
colors) and samples (dark colors). In each direction, the left plot contains the concept
“source” representation while the right plot has the selected clusters overlayed on its
representation. Clusters on the left plot generally appear better organized than in
the right plot. (RDX(𝑴𝐷2,𝑴

′
𝐷
)) E1: black siamangs in diverse environments, E2:

tan gibbons, E3: orangutans and gibbons playing, E4: white-cheeked gibbons, and
E5: spider monkeys. (RDX(𝑴𝐷 ,𝑴

′
𝐷2)) E1: siamangs laying in grass, E2: gibbons

swinging, E3: lower resolution images of primates, viewed through glass or from
videos, E4: tree environment with distant primates, and E5: assorted primates behind
fencing.

125

𝑴𝐶
′𝑴𝐶𝑁 𝑴𝐶𝑁

′𝑴𝐶

RDX 𝑴𝐶,𝑴𝐶𝑁
′ PCARDX 𝑴𝐶𝑁,𝑴𝐶

′ PCA

RDX 𝑴𝐶𝑁,𝑴𝐶
′ Explanations

RDX 𝑴𝐶,𝑴𝐶𝑁
′ Explanations

Figure 4.15: Investigating CLIP-iNat vs. CLIP on Maples (aligned). We visualize
RDX difference explanations in both directions on the Maples dataset (Tab. 4.7).
This dataset contains images of red maples, sugar maples, Norway maples, and
silver maples from iNaturalist [49]. RDX(𝑴𝐶𝑁 ,𝑴

′
𝐶𝑁
) generates explanations for

concepts that are in 𝑴𝐶𝑁 (CLIP-iNat), but not 𝑴′
𝐶

(aligned CLIP). We refer to the
explanations as E1 to E5 (left to right). (Top) PCA plots of the representations with
cluster membership (light colors) and samples (dark colors). In each direction, the
left plot contains the concept “source” representation while the right plot has the
selected clusters overlayed on its representation. Clusters on the left plot generally
appear better organized than in the right plot. These types of maples have subtle
differences beyond the expertise of most people so we use ChatGPT-4o to generate
descriptions. (RDX(𝑴𝐶𝑁 ,𝑴

′
𝐶
)) E1: “Large, dark green, sharply lobed leaves; smooth

surface; some handheld, often against tree bark or forest background,” E2: “Varied
color (green, red, yellow), symmetric lobes with central point, often single leaves
photographed on flat surfaces,” E3: “Small clusters of light green to reddish leaves,
forest floor or rocky environment, less prominent lobes,” E4: “Bright red leaves,
often handheld, five lobes with narrow points, smooth margins, clear vein structure,”
and E5: “Yellow mottled leaves, some black spotting, thick lobes, visible veins,
photos taken in autumn light or against tree bark.” (RDX(𝑴𝐶 ,𝑴

′
𝐶𝑁
)) E1: “Leaves

with deep sinuses, bright green, flat edges, consistent lighting, often low to ground or
with visible bark,” E2: “Yellow-green foliage, broad flat leaves with few teeth, tree
clusters with hanging leaves, slight curl,” E3: “Five-lobed leaves, medium green,
fine-toothed edges, spread flat, some variation in lighting and angle,” E4: “Red
spring buds and samaras, no full leaves visible, bare branches, sky background, some
birds,” and E5: “Light green leaves with coarsely toothed edges, translucent lighting,
some purplish tinge in parts, lobed leaves.”

126

𝑴𝐶
′

𝑴𝐶𝑁

𝑴𝐶𝑁
′𝑴𝐶

RDX 𝑴𝐶,𝑴𝐶𝑁
′ PCARDX 𝑴𝐶𝑁,𝑴𝐶

′ PCA

RDX 𝑴𝐶𝑁,𝑴𝐶
′ Explanations

RDX 𝑴𝐶,𝑴𝐶𝑁
′ Explanations

Figure 4.16: Investigating CLIP-iNat vs. CLIP on Corvids (aligned). We visualize
RDX difference explanations in both directions on the Corvids dataset (Tab. 4.7).
This dataset contains images of crows and ravens from iNaturalist [49]. For example,
RDX(𝑴𝐶𝑁 ,𝑴

′
𝐶𝑁
) generates explanations for concepts that are in 𝑴𝐶𝑁 (CLIP-iNat),

but not 𝑴′
𝐶

(aligned CLIP). We refer to the explanations as E1 to E5 (left to
right). (Top) PCA plots of the representations with cluster membership (light colors)
and samples (dark colors). In each direction, the left plot contains the concept
“source” representation while the right plot has the selected clusters overlayed on its
representation. Clusters on the left plot generally appear better organized than in
the right plot. These types of corvids have subtle differences beyond the expertise
of most people so we use ChatGPT-4o to generate descriptions. (RDX(𝑴𝐶𝑁 ,𝑴

′
𝐶
))

E1: ‘Birds in arid or rocky environments; perched or flying; often alone or in
small groups; slimmer builds; medium size; matte black feathers,” E2: ‘Urban and
suburban settings; birds near buildings, fences, and pavement; typically foraging;
in pairs or groups; more compact build,” E3: ‘Close-up or detailed views of large,
shaggy birds; prominent beaks and throat hackles; perched or interacting with
environment,” and E4: ‘Birds flying in sky; high contrast silhouettes; open sky
backgrounds; wing shapes and flight patterns emphasized,” E5: ‘Birds with other
wildlife (e.g. bear, eagle); perched alone or with others; prominent size; thick
bills and throat feathers.” (RDX(𝑴𝐶 ,𝑴

′
𝐶𝑁
)) E1: ”Birds in wooded or forested

environments; perched on branches; medium size; matte black feathers; mostly
solitary or in pairs,” E2: ‘Birds on open branches or tall perches; slightly larger
size; thick beaks; prominent neck feathers (hackles); more upright posture,” E3:
‘Birds on ground in urban/park environments; sparse trees; usually in small groups;
foraging or walking,” E4: ‘Footprints in mud, sand, or snow; distinct three-toed
tracks; measurement tools in several images; variable substrate,” and E5: ‘Flocks
of birds flying or perched in large groups; sky or treetops visible; misty or open-air
environments.”

127

4.9 Additional Methods
4.9.1 K-neighborhood Affinity (KNA) Pseudocode
Let 𝑭𝐴,𝐵 ∈ R𝑛×𝑛 denote the full affinity matrix computed between all image pairs
using representations 𝑨 and 𝑩. For a given spectral cluster 𝐶 ⊆ {1, . . . , 𝑛}, we
extract the submatrix 𝑭𝐶

𝐴,𝐵
∈ R𝑟×𝑟 , where 𝑟 = |𝐶 |, by selecting only the rows and

columns of 𝑭𝐴,𝐵 corresponding to the indices in 𝐶. This subset of the affinity
matrix 𝑭𝐶

𝐴,𝐵
captures pairwise affinities within the cluster and serves as input to the

KNA-based selection procedure.

Algorithm 1 Selecting Image and Neighbors with Maximum KNA
Require: Cluster 𝐶 = {𝑥1, 𝑥2, . . . , 𝑥𝑟}, Subset of affinity matrix 𝑭𝐴,𝐵 ∈ R𝑟×𝑟 ,

Number of neighbors 𝑘
Ensure: Image 𝑥max and its 𝑘-nearest neighbors 𝑁max

1: for each image 𝑥𝑖 in 𝐶 do
2: 𝑁𝑖 ← indices of the 𝑘 largest values in row 𝐴[𝑖, :]
3: KNA(𝑥𝑖) ←

∑
𝑗∈𝑁𝑖

𝐴[𝑖, 𝑗]
4: end for
5: 𝑥max ← arg max𝑥𝑖 KNA(𝑥𝑖)
6: 𝑁max ← 𝑁𝑥max

7: return 𝑥max, 𝑁max

4.9.2 Normalized Distance Variants
Both variants compute the pairwise Euclidean distance for each embedding matrix,
resulting in 𝑫𝐴 ∈ 𝑅𝑛×𝑛 and 𝑫𝐵 ∈ 𝑅𝑛×𝑛.

Max-normalized Euclidean Distances. Each distance matrix is divided by the
maximum distance in the matrix, such that both 𝑫𝐴 and 𝑫𝐵 are normalized between
0 and 1. Referred to as RDX𝑀𝑁 .

Locally Scaled Euclidean Distances. We compute a locally-scaled Euclidean
distance that has been shown to have desirable properties for clustering [60]. For
each embedding vector 𝒂𝑖, this function scales the latent distances between 𝒂𝑖 and
all other inputs 𝒂 𝑗 by the distance 𝑫𝑖𝑘

𝐴
, where 𝒂𝑘 is the 7th neighbor of 𝒂𝑖. Referred

to as RDX𝐿𝑆.

BSR Variants. We also use these variants to compute the BSR metric. We refer
to the variants as BSR𝑀𝑁 and BSR𝐿𝑆. BSR with no subscript uses neighborhood
distances.

128

BSR BSR𝑀𝑁 BSR𝐿𝑆

Figure 4.17: BSR variants for RDX difference function variants. We compute
BSR variants for all RDX distance variants using each difference function. By
default we use the locally biased difference function, we denote experiments with
the subtraction difference function as RDX (Sub). We compute the BSR metric on
the MNIST experiments. We see, that BSR𝐿𝑆 is a poor metric, thus we focus on
BSR (neighborhood) and BSR𝑀𝑁 to assess the different variants. See Sec. 4.9.5 for a
longer discussion. Under all distance variants, we can see that RDX with the locally
biased difference function outperforms subtraction consistently.

4.9.3 Difference Matrix Function Variants
Subtraction. The simplest approach to comparing the normalized distance matrices
is subtraction:

𝑮𝐴,𝐵 = 𝑫̄𝐴 − 𝑫̄𝐵. (4.3)

If the distance between two inputs is small in 𝑫̄𝐴 and large in 𝑫̄𝐵, it would result in
a large negative value in the difference matrix. If the distances are approximately
equal in both matrices, then it would result in a value near zero in the difference
matrix. Therefore, images considered similar in only one of the two representations
would be identified by large negative values in 𝑮𝑖 𝑗

𝐴,𝐵
. Unfortunately, subtraction

can be sensitive to imperfect normalization and/or large changes in already distant
embeddings.

4.9.4 Difference Explanation Sampling Variants
PageRank. We rank nodes in the graph by their PageRank [61]. Let the node with
the largest PageRank be 𝑖. We select the |𝐸 | − 1 nodes corresponding to the |𝐸 | − 1
largest edges with one endpoint at 𝑖. We remove these nodes from the pool and iterate
until all 𝑚 sets of explanation grids (E) are sampled.

129

BSR BSR𝑀𝑁 BSR𝐿𝑆

Figure 4.18: BSR variants for RDX variants and baselines. We compute BSR
variants for several methods. We evaluate RDX variants with neighborhood dis-
tances (RDX), neighborhood distances and PageRank [61] sampling (RDX𝑃𝑅), max-
normalized distances (RDX𝑀𝑁), and locally-scaled distances [60] (RDX𝐿𝑆). We
compute the BSR metric with all three distance function variants on the MNIST,
CUB, and ImageNet/iNaturalist experiments (without alignment). We see that BSR𝐿𝑆
is a poor metric as all methods perform perfectly in one of the two comparison
directions, suggesting that the scaling technique does not make distances across
representations comparable. We focus BSR (neighborhood) and BSR𝑀𝑁 to assess
the different variants. First, we see broadly that RDX variants outperform all baseline
methods. Among them, RDX and RDX𝑀𝑁 , although RDX𝑀𝑁 shows slightly greater
variance.

4.9.5 Results
In Fig. 4.17 and Fig. 4.18 we evaluate the different variants for RDX. We find that
all RDX variants perform better than baseline methods indicating that using both
representations to isolate differences is an effective strategy.

First, when comparing difference functions on known MNIST comparisons (Fig. 4.17),
we see a consistent advantage for the locally biased difference function. In all other
experiments, we use the locally biased difference function. Second, PageRank [61]
sampling is slightly worse than our cluster and sample approach (Fig. 4.18). Third,
we notice that BSR𝐿𝑆 is a flawed metric. One comparison direction consistently
scores near perfectly while the other is quite poor, indicating that distances are not
comparable across the two representations. This indicates that local scaling [60], is
not appropriate when comparing across representations, although future work may
be able to modify it appropriately. Finally, when comparing RDX to RDX𝑀𝑁 we notice
that they perform reasonably similarly in the metrics. In Tab. 4.3, we show results
for a comparison between 𝑴35 and 𝑴𝑏 under BSR and BSR𝑀𝑁 We can see that RDX
with neighborhood distances performs well under BSR, but worse on BSR𝑀𝑁 . In
contrast, RDX𝑀𝑁 performs well on both metrics. We visualize the explanations for

130

these methods in Fig. 4.19. While both methods have good explanations for 𝑴35

vs. 𝑴𝑏, we can see that in the other direction the two methods differ significantly.
RDX with neighborhood distances is much more focused on the known difference
than RDX𝑀𝑁 . This is likely due to the issue described in Sec. 4.4.2. Thus, we use
RDX and BSR with neighborhood distances for the main experiments.

Table 4.3: Comparing RDX variants on 𝑴35 vs. 𝑴𝑏 under different BSR variants.

RDX(𝑴35,𝑴𝑏) RDX𝑀𝑁 (𝑴35,𝑴𝑏) RDX(𝑴𝑏,𝑴35) RDX𝑀𝑁 (𝑴𝑏,𝑴35)
BSR 0.80 0.86 0.82 0.88

BSR𝑀𝑁 0.95 0.63 0.97 0.81

RDX(𝑴35,𝑴𝑏)

RDX(𝑴𝑏,𝑴35)

RDX𝑀𝑁(𝑴35,𝑴𝑏)

RDX𝑀𝑁(𝑴𝑏,𝑴35)

Figure 4.19: Comparing explanations using max-normalized distances vs.
neighborhood distances. (Row 1) Both RDX variants generate good difference ex-
planations that capture mixing that is unique to 𝑴35. (Row 2) RDXwith neighborhood
distances focuses much more on the known difference with all three explanations
showing cleanly grouped 3s. In contrast, RDX𝑀𝑁 shows one group of 3s and two
other groups unrelated to the known difference.

131

4.10 Implementation Details
4.10.1 Model Training
Failures of Existing Methods on MNIST-[3,5,8] (Sec. 4.5.2). We train a 2-layer
convolutional network with an output dimension of eight on a modified MNIST [62]
dataset that only contains the digits 3, 5, and 8 ((MNIST-[3,5,8]). The network is
trained for five epochs with a batch size of 128. We use the Adam [63] optimizer
with the learning rate set to 1e-2 and a one-cycle learning rate schedule. The global
seed is set to 4834586. For the comparison experiment, we select a checkpoint at
epoch 1, step 184 with strong performance (𝑴𝑆, 94%) and the final checkpoint at
epoch 5 with expert performance (𝑴𝐸 , 98%).

Recovering “Known” Differences (Sec. 4.5.3). First, we train a 2-layer convolutional
network with an output dimension of 64 on several modified MNIST datasets.
See Tab. 4.4 for modification details. The network is trained for five epochs with
a batch size of 128. We use the Adam [63] optimizer with the learning rate set to
1e-2 and a one-cycle learning rate schedule. The global seed is set to 4834586 for
all models. Models are evaluated on the modified dataset that they were trained on.
Second, we train a post-hoc concept bottleneck model (PCBM) [42] on the CUB
dataset [44] using the original procedure [42]. The model backbone is a ResNet-
18 [43] pre-trained on CUB from pytorchcv [64]. The concept classifier is from
scikit-learn [65] and is trained with stochastic gradient descent with the elastic-net
penalty. The learning rate is set to 1e-3 and the model is trained for a maximum
of 10000 iterations with a batch size of 64. For the comparison experiments, we
eliminate a concept by deleting the corresponding concept index from the predicted
concept vector. The eliminated concepts are provided in Tab. 4.4. Models are
compared on all images in the CUB train set.

Discovering “Unknown” Differences (Sec. 4.5.4). All models in this experiment
were downloaded from the timm library [45]. Details are available in Tab. 4.5.

4.10.2 Alignment Training
To align representation 𝑨 to representation 𝑩, we learn a transformation matrix
𝑴𝐴𝐵 ∈ R𝑑𝐴×𝑑𝐴. We randomly sample 70% of the embeddings in our dataset to train
the transformation matrix. The other 30% are used as a validation set. The matrix is
trained for 100 steps, with the Adam optimizer [63] with a learning rate of 0.001.
We measure the CKA on the validation set and keep the best transformation matrix.

132

4.10.3 Baselines
For the baseline methods we use the scikit-learn [65] implementations for PCA, NMF,
and KMeans. For CNMF, we use the pymf [66] implementation. The code for the
SAE is adapted from [5]. The SAE has a linear encoder, a relu activation and a linear
decoder. Inputs are z-score normalized. It is trained for 500 epochs with a batch size
of 2000 or the maximum number of images. The dimension is set to the number of
desired explanations (3 or 5 depending on the experiment). We use a linear learning
rate warmup over the first 10 epochs, after which the learning rate is fixed at 0.001.
The model is trained with the Adam [63] optimizer. The sparsity coefficient is set to
0.0004. For PCA, NMF, CNMF, and SAE we generate explanations by sampling the
|𝐸 | images with the largest coefficients for each concept vector. For KMeans, we
sample images closest to the centroid of the cluster.

4.10.4 RDX details
We sweep 𝛾 on one comparison from each experiment group (see breaks in Tab. 4.7)
and select the value that results in the highest performance on BSR. We find that a 𝛾
of 0.05 or 0.1 works well. We set 𝛽 to 5 in all experiments.

4.10.5 Comparison Summary
A complete list of comparisons, the data used in the comparison, and the number
of images is available in Tab. 4.7. We choose to generate 3 explanations for all
MNIST comparisons and 5 explanations for all other comparisons. We choose 3
or 5 because we prefer a small set of explanations for users to analyze. For all
experiments, we use 3× 3 image grids. In all comparisons where images are from an
existing dataset, we use images from the train split because the train split is usually
larger. Note that our method is training free and is not impacted by the dataset splits.
For the iNaturalist comparisons, 600 research grade images are downloaded from
the iNaturalist website [49] with licenses (cc-by,cc-by-nc,cc0). Images are restricted
to be a maximum of 500 pixels on the longest side.

4.10.6 Computational Cost
All experiments were conducted using on a machine with an AMD Ryzen 7 3700X
8-Core Processor and a single GeForce RTX 4090 GPU with 128GB of RAM.
In Tab. 4.6, we show the time taken for each method on the CUB dataset (5000
images). RDX𝑃𝑅 uses PageRank [61] to rank nodes for sampling and is slower. The
time for SAE varies with the model’s output dimension and the number of images.
In the table, the ResNet18 has an output dimension of 512.

133

Table 4.4: Expected effects of “known” differences.

Repr. ID Modification Expectation

𝑴𝑆

MNIST dataset only contains
3, 5, and 8. Model checkpoint
is from epoch 1, step 184 with

94%

Mistakes on more challenging images.
Clusters have slight overlaps.

𝑴𝐸

MNIST dataset only contains
3, 5, and 8. Final model

checkpoint with 98%
Clusters have little to no overlap.

𝑴𝑏 None Baseline model with well-separated
clusters.

𝑴35
Labels for 5 are replaced with

3.
3s and 5s are mixed together in the

representation.

𝑴49
Labels for 9 are replaced with

4.
4s and 9s are mixed together in the

representation.

𝑴↔

Dataset includes horizontally
flipped images and uses the

original label for flipped
images.

Will mix flipped and unflipped digits
together.

𝑴⇄

Dataset includes horizontally
flipped images and uses new

labels for flipped images.

Horizontally flipped digits are separated
into new clusters.

𝑴↕

Dataset includes vertically
flipped images and uses the

original label for flipped
images.

Will mix flipped and unflipped digits
together.

𝑴↑↓

Dataset includes vertically
flipped images and uses new

labels for flipped images.

Vertically flipped digits are separated
into new clusters.

𝑪𝐴 None Baseline model with organized
representational geometry.

𝑪𝐴−𝑆
Remove the spotted wing

concept.
Representational changes for images of

birds with spotted wings.

𝑪𝐴−𝑌𝐵
Remove the yellow back

concept.
Representational changes for images of

birds with yellow backs.

𝑪𝐴−𝑌𝐶
Remove the yellow crown

concept.
Representational changes for images of

birds with yellow crowns.

𝑪𝐴−𝐸
Remove the eyebrow on head

concept.
Representational changes for images of

birds with head eyebrows.

𝑪𝐴−𝐷
Remove the duck-like shape

concept.
Representational changes for images of

birds with duck-like shapes.

134

Table 4.5: Models and their identifiers from the TIMM library.

Repr. ID Description Timm Library ID

𝑴𝐷 DINO vit_base_patch16_224.dino

𝑴𝐷2 DINOv2 vit_base_patch14_reg4_dinov2.lvd142m

𝑴𝐶 CLIP hf_hub:timm/vit_large_patch14_clip_336.openai

𝑴𝐶𝑁 CLIP ft. iNat hf_hub:timm/vit_large_patch14_clip_336.
laion2b_ft_in12k_in1k_inat21

Table 4.6: Runtime (in seconds) for each XAI method.

RDX RDX𝑃𝑅 KMeans CNMF SAE PCA Classifiers

Time (s) 32.71 187.78 9.65 14.95 629.95 8.49 97.3

135

Table 4.7: Comparison summary table. Experimental settings where we report
comparison name, dataset, number of images, concepts, and gamma values. We
name the comparisons using one direction, but compare in both directions in all
experiments.

Comparison Comparison Dataset Num.
Ims. |E | RDX-

𝛾

𝑴𝑆 vs. 𝑴𝐸 MNIST-[3,5,8] 500 x 3 3 0.05

𝑴35 vs. 𝑴𝑏 MNIST 500 x 10 3 0.1

𝑴49 vs. 𝑴𝑏 MNIST 500 x 10 3 0.1

𝑴35 vs. 𝑴49 MNIST 500 x 10 3 0.1

𝑴ℎ 𝑓 𝑚 vs. 𝑴ℎ 𝑓 𝑛 MNIST w/ hflip 250 x 20 3 0.1

𝑴vfm vs. 𝑴vfs MNIST w/ vflip 250 x 20 3 0.1

𝑴↑↓ vs. 𝑴↕ MNIST w/ vflip 250 x 20 3 0.1

𝑪𝐴−𝑆 vs. 𝑪𝐴 CUB 5000 5 0.1

𝑪𝐴−𝑌𝐵 vs. 𝑪𝐴 CUB 5000 5 0.1

𝑪𝐴−𝑌𝐶 vs. 𝑪𝐴 CUB 5000 5 0.1

𝑪𝐴−𝐸 vs. 𝑪𝐴 CUB 5000 5 0.1

𝑪𝐴−𝐷 vs. 𝑪𝐴 CUB 5000 5 0.1

𝑴𝐷 vs. 𝑴𝐷2
Primates-[gibbon, siamang,
spider monkey] (ImageNet) 500x3 5 0.05

𝑴𝐷 vs. 𝑴𝐷2
Clothes-[mitten, Christmas
stocking, sock] (ImageNet) 500x3 5 0.05

𝑴𝐷 vs. 𝑴𝐷2
Buses-[trolley bus, school bus,

passenger car] (ImageNet) 500x3 5 0.05

𝑴𝐷 vs. 𝑴𝐷2
Dogs-[whippet, Saluki, Italian

greyhound] (ImageNet) 500x3 5 0.05

𝑴𝐶 vs. 𝑴𝐶𝑁
Corvids-[Crows, Ravens]

(iNaturalist) 500x2 5 0.05

𝑴𝐶 vs. 𝑴𝐶𝑁

Gators-[American Alligator,
American Crocodile]

(iNaturalist)
500x2 5 0.05

𝑴𝐶 vs. 𝑴𝐶𝑁

Maples-[Sugar Maple, Red
Maple, Norway Maple, Silver

Maple] (iNaturalist)
500x4 5 0.05

136

References

[1] Neehar Kondapaneni, Oisin Mac Aodha, and Pietro Perona. “Representational
Difference Explanations.” In: arXiv preprint arXiv:2505.23917 (2025). url:
https://arxiv.org/abs/2505.23917.

[2] Been Kim et al. “Interpretability beyond feature attribution: Quantitative
testing with concept activation vectors (TACV).” In: ICML. 2018.

[3] Amirata Ghorbani et al. “Towards automatic concept-based explanations.” In:
NeurIPS (2019).

[4] Thomas Fel et al. “CRAFT: Concept recursive activation factorization for
explainability.” In: CVPR. 2023.

[5] Samuel Stevens et al. “Sparse Autoencoders for Scientifically Rigorous
Interpretation of Vision Models.” In: arXiv:2502.06755 (2025).

[6] Harrish Thasarathan et al. “Universal Sparse Autoencoders: Interpretable
Cross-Model Concept Alignment.” In: arXiv:2502.03714 (2025).

[7] Hoagy Cunningham et al. “Sparse autoencoders find highly interpretable
features in language models.” In: ICLR. 2024.

[8] Lisa Schut et al. “Bridging the human–AI knowledge gap through concept
discovery and transfer in AlphaZero.” In: PNAS (2025).

[9] Thomas Fel et al. “A holistic approach to unifying automatic concept extraction
and concept importance estimation.” In: NeurIPS (2023).

[10] Julien Colin et al. “What i cannot predict, i do not understand: A human-
centered evaluation framework for explainability methods.” In: NeurIPS
(2022).

[11] Leo Gao et al. “Scaling and evaluating sparse autoencoders.” In: ICLR. 2025.

[12] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for
deep networks.” In: ICML. 2017.

[13] Scott M. Lundberg and Su-In Lee. “A unified approach to interpreting model
predictions.” In: NeurIPS. 2017.

[14] Sebastian Bach et al. “On Pixel-Wise Explanations for Non-Linear Classifier
Decisions by Layer-Wise Relevance Propagation.” In: PLOS ONE (2015).

[15] Ramprasaath R Selvaraju et al. “Grad-CAM: visual explanations from deep
networks via gradient-based localization.” In: IJCV (2020).

[16] Ruihan Zhang et al. “Invertible concept-based explanations for cnn models
with non-negative concept activation vectors.” In: AAAI. 2021.

[17] Neehar Kondapaneni, Oisin Mac Aodha, and Pietro Perona. “Representational
Similarity via Interpretable Visual Concepts.” In: ICLR. 2025.

https://arxiv.org/abs/2505.23917

137

[18] Reduan Achtibat et al. “From attribution maps to human-understandable
explanations through concept relevance propagation.” In: Nature Machine
Intelligence (2023).

[19] Neehar Kondapaneni et al. “Less is more: Discovering concise network
explanations.” In: ICLR 2024 Workshop on Representational Alignment. 2024.
url: https://openreview.net/forum?id=JBwpD6Yy8Q.

[20] Harold Hotelling. “Relations between two sets of variates.” In: Biometrika.
1936.

[21] Simon Kornblith et al. “Similarity of neural network representations revisited.”
In: ICML. 2019.

[22] Maithra Raghu et al. “Svcca: Singular vector canonical correlation analysis
for deep learning dynamics and interpretability.” In: NeurIPS (2017).

[23] Yixuan Li et al. “Convergent learning: Do different neural networks learn the
same representations?” In: International Workshop on Feature Extraction:
Modern Questions and Challenges at NeurIPS. 2015.

[24] Minyoung Huh et al. “The platonic representation hypothesis.” In: ICML.
2024.

[25] Thao Nguyen, Maithra Raghu, and Simon Kornblith. “Do wide and deep net-
works learn the same things? uncovering how neural network representations
vary with width and depth.” In: ICLR. 2021.

[26] Maithra Raghu et al. “Do vision transformers see like convolutional neural
networks?” In: NeurIPS (2021).

[27] Zhenda Xie et al. “Revealing the dark secrets of masked image modeling.” In:
CVPR. 2023.

[28] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. “What is being
transferred in transfer learning?” In: NeurIPS (2020).

[29] Young-Jin Park et al. “Quantifying Representation Reliability in Self-Supervised
Learning Models.” In: UAI. 2024.

[30] Wentao Zhang et al. “Efficient diversity-driven ensemble for deep neural
networks.” In: ICDE. 2020.

[31] Yoonho Lee, Huaxiu Yao, and Chelsea Finn. “Diversify and disambiguate:
Out-of-distribution robustness via disagreement.” In: ICLR. 2023.

[32] Horst Bunke. “On a relation between graph edit distance and maximum
common subgraph.” In: Pattern recognition letters (1997).

[33] Panagiotis Papadimitriou, Ali Dasdan, and Hector Garcia-Molina. “Web
graph similarity for anomaly detection.” In: Journal of Internet Services and
Applications (2010).

https://openreview.net/forum?id=JBwpD6Yy8Q

138

[34] Edoardo M Airoldi, Xue Bai, and Kathleen M Carley. “Network sampling
and classification: An investigation of network model representations.” In:
Decision support systems (2011).

[35] S Vichy N Vishwanathan et al. “Graph kernels.” In: JMLR (2010).

[36] Daniel Archambault. “Structural differences between two graphs through
hierarchies.” In: Graphics Interface. 2009.

[37] Helen C Purchase, Eve Hoggan, and Carsten Görg. “How important is
the “mental map”’?–an empirical investigation of a dynamic graph layout
algorithm.” In: Graph Drawing: 14th International Symposium. 2007.

[38] Ram Dyuthi Sristi, Gal Mishne, and Ariel Jaffe. “Disc: Differential spectral
clustering of features.” In: NeurIPS (2022).

[39] Ulrike Von Luxburg. “A tutorial on spectral clustering.” In: Statistics and
computing (2007).

[40] Jianbo Shi and Jitendra Malik. “Normalized cuts and image segmentation.”
In: TPAMI (2000).

[41] Aninda Saha, Alina Bialkowski, and Sara Khalifa. “Distilling representational
similarity using centered kernel alignment (cka).” In: BMVC. 2022.

[42] Mert Yuksekgonul, Maggie Wang, and James Zou. “Post-hoc concept bottle-
neck models.” In: ICLR. 2023.

[43] Kaiming He et al. “Deep residual learning for image recognition.” In: CVPR.
2016.

[44] Catherine Wah et al. “The caltech-ucsd birds-200-2011 dataset.” In: (2011).

[45] PyTorch Image Models (timm). https://timm.fast.ai. 2025. (Visited on 05/01/2025).

[46] Mathilde Caron et al. “Emerging properties in self-supervised vision trans-
formers.” In: ICCV. 2021.

[47] Maxime Oquab et al. “Dinov2: Learning robust visual features without
supervision.” In: arXiv preprint arXiv:2304.07193 (2023).

[48] Alec Radford et al. “Learning transferable visual models from natural language
supervision.” In: ICML. 2021.

[49] iNaturalist. https://www.inaturalist.org. 2025. (Visited on 05/01/2025).

[50] Jia Deng et al. “Imagenet: A large-scale hierarchical image database.” In:
2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255.

[51] Andrew Ng et al. “Sparse autoencoder.” In: CS294A Lecture notes 2011
(2011).

[52] Daniel Lee and H Sebastian Seung. “Algorithms for non-negative matrix
factorization.” In: NeurIPS (2000).

139

[53] Karl Pearson F.R.S. “LIII. On lines and planes of closest fit to systems of points
in space.” In: The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science (1901).

[54] Stuart Lloyd. “Least squares quantization in PCM.” In: IEEE transactions on
information theory (1982).

[55] Chris HQ Ding, Tao Li, and Michael I Jordan. “Convex and semi-nonnegative
matrix factorizations.” In: PAMI (2008).

[56] Thomas Fel et al. “Archetypal sae: Adaptive and stable dictionary learning for
concept extraction in large vision models.” In: arXiv:2502.12892 (2025).

[57] Senthooran Rajamanoharan et al. “Jumping ahead: Improving reconstruction
fidelity with jumprelu sparse autoencoders.” In: arXiv:2407.14435 (2024).

[58] Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. “Addressing leakage
in concept bottleneck models.” In: NeurIPS (2022).

[59] ChatGPT-4o. https://openai.com/index/gpt-4o-system-card/. 2025. (Visited
on 05/01/2025).

[60] Lihi Zelnik-Manor and Pietro Perona. “Self-tuning spectral clustering.” In:
NeurIPS (2004).

[61] Lawrence Page et al. The PageRank citation ranking: Bringing order to the
web. Tech. rep. Stanford infolab, 1999.

[62] Yann LeCun. “The MNIST database of handwritten digits.” In: http://yann.lecun.com/exdb/mnist/
(1998).

[63] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion.” In: arXiv:1412.6980 (2014).

[64] Oleg Sémery. PyTorchCV: Computer Vision Models for PyTorch. https://pypi.org/project/pytorchcv.
2018.

[65] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.” In: JMLR
(2011).

[66] Christian Thurau. PyMF: Python Matrix Factorization Module. https://pypi.org/project/PyMF/.
Version 0.2. 2011.

140

C h a p t e r 5

OUTLOOK

Chapters 2, 3, and 4 describe methods that could be used in systems that help us learn
from AI. In this section, I outline how estimating student knowledge during learning
tasks (knowledge tracing) and comparing representations of data (representational
comparison) could be used to actually achieve this goal in practice.

5.1 Expert Data is Abundant
In some domains, expert-level human data is readily available, making it straightfor-
ward to train models that approximate human knowledge. For instance, in chess and
e-sports, we have access to extensive game logs from high-level players. In these
contexts, comparing the representations of superhuman models to those learned
from human data offers a way to uncover patterns that human experts may not yet
have discovered. Notably, recent work has demonstrated that chess grandmasters
can improve their performance by studying strategies learned by AlphaZero [1],
revealing insights previously unknown to humans [2].

5.2 Multiple Sources of Supervision
In medicine and biology, multiple diagnostic approaches are often available, each
differing in accuracy and cost. For example, skin conditions can be assessed
visually or through biopsies, with biopsies being more accurate but significantly
more expensive [3, 4]. Recent studies show that vision models can sometimes
outperform doctors in diagnosing skin conditions from medical images [5, 6]. This
opens up a unique opportunity: by comparing models trained to replicate doctor-level
diagnoses against models that achieve superhuman performance, we can identify
what additional knowledge or cues the superhuman models have learned, potentially
revealing gaps in expert understanding.

5.3 Humans at Multiple Skill Levels
Some platforms feature users with varying levels of expertise, making them ideal
testbeds for personalized tutoring systems. Platforms like iNaturalist [7], Ge-
oGuessr [8], and FathomVerse [9] engage users in tasks that rely on visual categoriza-
tion. In such settings, visual knowledge tracing algorithms can estimate a user’s level

141

of understanding based on their past interactions. By comparing the representations
of high-performing users with those of beginners, we can identify missing concepts
in beginners and use this insight to guide novice users toward faster improvement.

5.4 Estimating Human Knowledge is Infeasible
In some cases, it may be impractical to explicitly estimate human knowledge.
Even then, model comparison remains a powerful tool. By analyzing checkpoints
throughout a model’s training, we can observe how its internal representations evolve
and what concepts emerge over time. Studying this trajectory can reveal the order in
which patterns are learned, offering insights into how the model learns and the types
of patterns that exist in the dataset.

5.5 General Thoughts about XAI
In Chapter 3, I explored whether existing XAI methods could be adapted for a specific
task such as model comparison. For example, I was interested to see if there was
a method that could precisely explain why two models disagreed on a particular
prediction. In Chapter 4, we discussed some issues with the method proposed in
Chapter 3 and developed an improvement. In this process, I realized that many XAI
approaches (though not all), had some common issues:

1. XAI methods are often designed without clear goals in mind. Many research
efforts do not have specific use cases in mind when developing an XAI method,
leading to general solutions that struggle when evaluated on specific tasks like
comparison.

2. XAI methods often simplify models too much. Explanations generated by
XAI methods must necessarily be a simplification of model behavior because
humans cannot process all aspects of the model’s behavior at once. When
methods are designed without clear evaluations in mind, they result in general
solutions that simplify and discard important aspects of the model’s behavior.
This is partially a consequence of our evaluation process, since simple, easily
understandable explanations are preferred by users. Unfortunately, models
are complex and there is no reason to expect that we can understand them via
simple explanations. This is especially true, if we are trying to understand
patterns discovered by superhuman AI models.

142

3. XAI methods are facing a filtering problem. As models and datasets have
become larger, it is possible to generate thousands of different explanations for
various aspects of a model’s behavior. Of course, this is impossible for human
observers to actually process, so we need methods that filter explanations to
only show us “interesting” material.

5.6 Conclusion
The paths I have described in this section illustrate how knowledge tracing and model
comparison can help us identify what AI models know, what humans might be
missing, and how to bridge that gap. By leveraging expert data, diverse supervision
sources, and user variability, we can begin designing systems that guide human
learning in targeted, data-driven ways. Ultimately, this brings us closer to the goal of
using AI to teach humans and potentially help us discover new knowledge.

143

References

[1] David Silver et al. “A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play.” In: Science 362.6419 (2018), pp. 1140–
1144. doi: 10.1126/science.aar6404.

[2] Lisa Schut et al. “Bridging the human–AI knowledge gap through concept
discovery and transfer in AlphaZero.” In: PNAS (2025).

[3] Elena Losina et al. “Visual screening for malignant melanoma: a cost-
effectiveness analysis.” In: Archives of dermatology 143.1 (2007), pp. 21–
28.

[4] Angela Devine et al. “Costs and cost-effectiveness of cervical cancer screening
strategies in women living with HIV in Burkina Faso: The HPV in Africa
Research Partnership (HARP) study.” In: PLoS One 16.3 (2021), e0248832.

[5] Titus J Brinker et al. “Deep neural networks are superior to dermatologists in
melanoma image classification.” In: European Journal of Cancer 119 (2019),
pp. 11–17.

[6] Holger A Haenssle et al. “Man against machine: diagnostic performance of
a deep learning convolutional neural network for dermoscopic melanoma
recognition in comparison to 58 dermatologists.” In: Annals of oncology 29.8
(2018), pp. 1836–1842.

[7] iNaturalist community. iNaturalist: A Community for Naturalists. https:
//www.inaturalist.org. Accessed: 2025-06-01. 2023.

[8] GeoGuessr AB. GeoGuessr: A Geography Game.https://www.geoguessr.
com. Accessed: 2025-06-01. 2023.

[9] Genevieve Patterson et al. “FathomVerse: A community science dataset for
ocean animal discovery.” In: arXiv preprint arXiv:2412.01701 (2024).

https://doi.org/10.1126/science.aar6404
https://www.inaturalist.org
https://www.inaturalist.org
https://www.geoguessr.com
https://www.geoguessr.com

Part II

Applications of Aligning
Representations

144

145

C h a p t e r 6

TEXT-IMAGE ALIGNMENT FOR DIFFUSION-BASED
PERCEPTION

Neehar Kondapaneni et al. “Text-image alignment for diffusion-based perception.”
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2024, pp. 13883–13893. url: https://openaccess.thecvf.com/
content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_

for_Diffusion-Based_Perception_CVPR_2024_paper.html.

6.1 Abstract
Diffusion models are generative models with impressive text-to-image synthesis
capabilities and have spurred a new wave of creative methods for classical machine
learning tasks. However, the best way to harness the perceptual knowledge of these
generative models for visual tasks is still an open question. Specifically, it is unclear
how to use the prompting interface when applying diffusion backbones to vision tasks.
We find that automatically generated captions can improve text-image alignment and
significantly enhance a model’s cross-attention maps, leading to better perceptual
performance. Our approach improves upon the current state-of-the-art (SOTA) in
diffusion-based semantic segmentation on ADE20K and the current overall SOTA
for depth estimation on NYUv2. Furthermore, our method generalizes to the cross-
domain setting. We use model personalization and caption modifications to align our
model to the target domain and find improvements over unaligned baselines. Our
cross-domain object detection model, trained on Pascal VOC, achieves SOTA results
on Watercolor2K. Our cross-domain segmentation method, trained on Cityscapes,
achieves SOTA results on Dark Zurich-val and Nighttime Driving. Project page:
vision.caltech.edu/TADP/ Code page: github.com/damaggu/TADP

6.2 Introduction
Diffusion models have set the state-of-the-art (SOTA) for image generation [2, 3, 4, 5].
Recently, a few works have shown diffusion pre-trained backbones have a strong prior
for scene understanding that allows them to perform well in advanced discriminative
vision tasks, such as semantic segmentation [6, 7], monocular depth estimation [7],
and keypoint estimation [8, 9]. We refer to these works as diffusion-based perception
methods. Unlike contrastive vision language models (e.g., CLIP) [10, 11, 12],

https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html
https://www.vision.caltech.edu/tadp/
https://github.com/damaggu/TADP

146

“a dog and a bird”

”in a watercolor style”

Captioner

Caption Modifier

+

Single-domain

Cross-domain

Depth Estimation

Segmentation

Object Detection

Diffusion-Pretrained
Vision Model

CLIP

Figure 6.1: Text-Aligned Diffusion Perception (TADP). In TADP, image captions
align the text prompts and images passed to diffusion-based vision models. In
cross-domain tasks, target domain information is incorporated into the prompt to
boost performance.

generative models have a causal relationship with text, in which text guides image
generation. In latent diffusion models, text prompts control the denoising U-Net [13],
moving the image latent in a semantically meaningful direction [14].

We explore this relationship and find that text-image alignment significantly improves
the performance of diffusion-based perception. We then investigate text-target
domain alignment in cross-domain vision tasks, finding that aligning to the target
domain while training on the source domain can improve a model’s target domain
performance (Fig. 6.1).

We first study prompting for diffusion-based perceptual models and find that in-
creasing text-image alignment improves semantic segmentation and depth estimation
performance. We find that unaligned text prompts can introduce semantic shifts to
the feature maps of the diffusion model [14] and that these shifts can make it more

147

difficult for the task-specific head to solve the target task. Specifically, we ask whether
unaligned text prompts, such as averaging class-specific sentence embeddings [7,
10], hinder performance by interfering with feature maps through the cross-attention
mechanism. Through ablation experiments on Pascal VOC2012 segmentation [15]
and ADE20K [16], we find that off-target and missing class names degrade image
segmentation quality. We show automated image captioning [17] achieves sufficient
text-image alignment for perception. Our approach (along with latent representation
scaling, see Sec. 6.5.1) improves performance for semantic segmentation on Pascal
and ADE20k by 4.0 mIoU and 1.7 mIoU, respectively, and depth estimation on
NYUv2 [18] by 0.2 RMSE (+8% relative) setting the new SOTA.

Next, we focus on cross-domain adaptation: can appropriate image captioning
help visual perception when the model is trained in one domain and tested on a
different domain? Training models on the source domain with the appropriate
prompting strategy leads to excellent unsupervised cross-domain performance on
several benchmarks. We evaluate our cross-domain method on Pascal VOC [15, 19]
to Watercolor2k (W2K) and Comic2k (C2K) [20] for object detection and Cityscapes
(CS) [21] to Dark Zurich (DZ) [22] and Nighttime (ND) Driving [23] for semantic
segmentation. We explore varying degrees of text-target domain alignment and find
that improved alignment results in better performance. We also demonstrate using two
diffusion personalization methods, Textual Inversion [24] and DreamBooth [25], for
better target domain alignment and performance. We find that diffusion pre-training
is sufficient to achieve SOTA (+5.8 mIoU on CS→DZ, +4.0 mIoU on CS→ND, +0.7
mIoU on VOC→W2k) or near SOTA results on all cross-domain datasets with no
text-target domain alignment, and including our best text-target domain alignment
method further improves +1.4 AP on Watercolor2k, +2.1 AP on Comic2k, and +3.3
mIoU on Nighttime Driving. Overall, our contributions are as follows:

• We propose a new method using automated caption generation that significantly
improves performance on several diffusion-based vision tasks through increased
text-image alignment.

• We systematically study how prompting affects diffusion-based vision perfor-
mance, elucidating the impact of class presence, grammar in the prompt, and
previously used average embeddings.

• We demonstrate that diffusion-based perception effectively generalizes across
domains, with text-target domain alignment improving performance, which can
be further boosted by model personalization.

148

6.3 Related Work
6.3.1 Diffusion models for single-domain vision tasks
Diffusion models are trained to reverse a step-wise forward noising process. Once
trained, they can generate highly realistic images from pure noise [2, 3, 4, 5]. To
control image generation, diffusion models are trained with text prompts/captions
that guide the diffusion process. These prompts are passed through a text encoder to
generate text embeddings that are incorporated into the reverse diffusion process via
cross-attention layers.

Recently, some works have explored using diffusion models for discriminative vision
tasks. This can be done by either utilizing the diffusion model as a backbone for the
task [6, 7, 8, 9] or through fine-tuning the diffusion model for a specific task and
then using it to generate synthetic data for a downstream model [26, 27]. We use the
diffusion model as a backbone for downstream vision tasks.

VPD [7] encodes images into latent representations and passes them through one
step of the Stable Diffusion model. The cross-attention maps, multi-scale features,
and output latent code are concatenated and passed to a task-specific head. Text
prompts influence all these maps through the cross-attention mechanism, which
guides the reverse diffusion process. The cross-attention maps are incorporated into
the multi-scale feature maps and the output latent representation. The text guides
the diffusion process and can accordingly shift the latent representation in semantic
directions [14, 24, 28, 29]. The details of how VPD uses the prompting interface
are described in Sec. 6.4. In short, VPD uses unaligned text prompts. In our work,
we show how aligning the text to the image by using a captioner can significantly
improve semantic segmentation and depth estimation performance.

6.3.2 Image captioning
CLIP [10] introduced a novel learning paradigm to align images with their captions.
Shortly after, the LAION-5B dataset [30] was released with 5B image-text pairs;
this dataset was used to train Stable Diffusion. We hypothesize that text-image
alignment is important for diffusion-pretrained vision models. However, images used
in advanced vision tasks (like segmentation and depth estimation) are not naturally
paired with text captions. To obtain image-aligned captions, we use BLIP-2 [17], a
model that inverts the CLIP latent space to generate captions for novel images.

149

6.3.3 Diffusion models for cross-domain vision tasks
A few works explore the cross-domain setting with diffusion models [6, 27]. Benig-
mim et al. [27] use a diffusion model to generate data for a downstream unsupervised
domain adaptation (UDA) architecture. In [6], the diffusion backbone is frozen, and
the segmentation head is trained with a consistency loss with category and scene
prompts guiding the latent code towards target cross-domains. Similar to VPD, the
category prompts consist of token embeddings for all classes present in the dataset,
irrespective of their presence in any specific image. The consistency loss forces the
model to predict the same output mask for all the different scene prompts, helping the
segmentation head become invariant to the scene type. Instead of using a consistency
loss, we train the diffusion model backbone and task head on the source domain data
with and without incorporating the style of the target domain in the caption. We find
that better alignment with the target domain (i.e., target domain information included
in the prompt) results in better cross-domain performance.

6.3.4 Cross-domain object detection
Cross-domain object detection can be divided into multiple subcategories, depending
on what data / labels are at train / test time available. Unsupervised domain
adaptation objection detection (UDAOD) tries to improve detection performance by
training on unlabeled target domain data with approaches such as self-training [31,
32], adversarial distribution alignment [33] or generating pseudo labels for self-
training [34]. Cross-domain weakly supervised object detection (CDWSOD) assumes
the availability of image-level annotations at training time and utilizes pseudo labeling
[20, 35], alignment [36] or correspondence mining [37]. Recently, [38] used CLIP [10]
for Single Domain Generalization, which aims to generalize from a single domain to
multiple unseen target domains. Our text-based method defines a new category of
cross-domain object detection that tries to adapt from a single source to an unseen
target domain by only having the broad semantic context of the target domain (e.g.,
foggy/night/comic/watercolor) as text input to our method. When we incorporate
model personalization, our method can be considered a UDAOD method since we
train a token based on unlabeled images from the target domain.

6.4 Methods
Stable Diffusion [5]. The text-to-image Stable Diffusion model is composed of four
networks: an encoder E , a conditional denoising autoencoder (a U-Net in Stable
Diffusion) 𝜖𝜃 , a language encoder 𝜏𝜃 (the CLIP text encoder in Stable Diffusion), and

150

Denoising U-Net

Depth
Estimation

Domain adaptation

Text-image alignment Text-domain alignment

Multi-scale Feature Maps

EOS class token
[dog, bird, car, airplane, ...]

BLIP
“a photo of a dog and a parrot”

Oracle
“dog bird”

Textual Inversion / DreamBooth

“in a <token> style”

simple
“in a watercolor style”

null
“ ”

Cross-attention

CLIP

Prompt

Image
Encoder

Task-
specific
Decoder

Semantic
Segmentation

Object
Detection

LS

Figure 6.2: Overview of TADP. We test several prompting strategies and evaluate
their impact on downstream vision task performance. Our method concatenates the
cross-attention and multi-scale feature maps before passing them to the vision-specific
decoder. In the blue box, we show three single-domain captioning strategies with
differing levels of text-image alignment. We propose using BLIP [17] captioning to
improve image-text alignment. We extend our analysis to the cross-domain setting
(yellow box), exploring whether aligning the source domain text captions to the target
domain may impact model performance by appending caption modifiers to image
captions generated in the source domain and find model personalization modifiers
(Textual Inversion/Dreambooth) work best.

a decoder D. E and D are trained before 𝜖𝜃 , such that D(E (𝑥)) = 𝑥 ≈ 𝑥. Training 𝜖𝜃
is composed of a pre-defined forward process and a learned reverse process. The
reverse process is learned using LAION-400M [39], a dataset of 400 million images
(𝑥 ∈ 𝑋) and captions (𝑦 ∈ 𝑌). In the forward process, an image 𝑥 is encoded into
a latent 𝑧0 = E (𝑥), and 𝑡 steps of a forward noise process are executed to generate
a noised latent 𝑧𝑡 . Then, to learn the reverse process, the latent 𝑧𝑡 is passed to
the denoising autoencoder 𝜖𝜃 , along with the time-step 𝑡 and the image caption’s
representation C = 𝜏𝜃 (𝑦). 𝜏𝜃 adds information about 𝑦 to 𝜖𝜃 using a cross-attention
mechanism, in which the query is derived from the image, and the key and value are
transformations of the caption representation. The model 𝜖𝜃 is trained to predict the
noise added to the latent in step 𝑡 of the forward process:

𝐿𝐿𝐷𝑀 := EE (𝑥),𝑦,𝜖∼N (0,1),𝑡
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝜏𝜃 (𝑦))∥22

]
, (6.1)

where 𝑡 ∈ {0, ..., 𝑇}. During generation, a pure noise latent 𝑧𝑇 and a user-specified
prompt are passed through the denoising autoencoder 𝜖𝜃 for 𝑇 steps and decoded
D(𝑧0) to generate an image guided by the text prompt.

Diffusion for Feature Extraction. Diffusion backbones have been used for down-
stream vision tasks in several recent works [6, 7, 8, 9]. Due to its public availability
and performance in perception tasks, we use a modified version (see Sec. 6.5.1) of

151

the feature extraction method in VPD. An image latent 𝑧0 = E (𝑥) and a conditioning
C are passed through the last step of the denoising process 𝜖𝜃 (𝑧0, 0, C). The cross-
attention maps 𝐴 and the multi-scale feature maps 𝐹 of the U-Net are concatenated
𝑉 = 𝐴 ⊕ 𝐹 and passed to a task-specific head 𝐻 to generate a prediction 𝑝 = 𝐻 (𝑉).
The backbone 𝜖𝜃 and head 𝐻 are trained with a task-specific loss L𝐻 (𝑝, 𝑝).
Average EOS Tokens. To generate C, previous methods [6, 7] rely on a method
from CLIP [10] to use averaged text embeddings as representations for the classes
in a dataset. A list of 80 sentence templates for each class of interest (such as “a
<adjective> photo of a <class name>”) are passed through the CLIP text encoder. We
use B to denote the set of class names in a dataset. For a specific class (𝑏 ∈ B), the
CLIP text encoder returns an 80× 𝑁 ×𝐷 tensor, where N is the maximum number of
tokens over all the templates, and D is 768 (the dimension of each token embedding).
Shorter sentences are padded with EOS tokens to fill out the maximum number of
tokens. The first EOS token from each sentence template is averaged and used as the
representative embedding for the class such that C ∈ R|B |×768. This method is used
in [6, 7], we denote it as C𝑎𝑣𝑔 and use it as a baseline. For semantic segmentation,
all of the class embeddings, irrespective of presence in the image, are passed to the
cross-attention layers. Only the class embedding of the room type is passed to the
cross-attention layers for depth estimation.

6.4.1 Text-Aligned Diffusion Perception (TADP)
Our work proposes a novel method for prompting diffusion-pretrained perception
models. Specifically, we explore different prompting methods G to generate C. In
the single-domain setting, we show the effectiveness of a method that uses BLIP-2
[17], an image captioning algorithm, to generate a caption as the conditioning for
the model: G (𝑥) = 𝑦̃ → C. We then extend our method to the cross-domain setting
by incorporating target domain information to C = C +M(P)𝑠, where M is a
caption modifier that takes target domain information P as input and outputs a
caption modification M(P)𝑠 and a model modification M(P)𝜖𝜃 . In Sec. 6.5, we
analyze the text-image interface of the diffusion model by varying the captioner
G and caption modifier M in a systematic manner for three different vision tasks:
semantic segmentation, object detection, and monocular depth estimation. Our
method and experiments are presented in Fig. 6.2. Following [7], we train our
ADE20k segmentation and NYUv2 depth estimation models with fast and regular
schedules. On ADE20k, we train using 4k steps (fast), 8k steps (fast), and 80k steps
(normal). For NYUv2 depth, we train on a 1-epoch (fast) schedule and a 25-epoch
(normal) schedule. For implementation details, refer to Appendix 6.10.

152

Method Avg TA LS G OT mIoUss

VPD(R) [7] ✓ ✓ ✓ 82.34
VPD(LS) ✓ ✓ ✓ ✓ 83.06
Class Embs ✓ ✓ 82.72
Class Names ✓ ✓ 84.08
TADP-0 ✓ ✓ 86.36
TADP-20 ✓ ✓ 86.19
TADP-40 ✓ ✓ 87.11
TADP(NO)-20 ✓ 86.35

TADP-Oracle ✓ 89.85

Table 6.1: Prompting for Pascal VOC2012 Segmentation. We report the single-
scale validation mIoU for Pascal experiments. (R): Reproduction of VPD, Avg: EOS
token averaging, LS: Latent Scaling, G: Grammar, OT: Off-target information. For
our method, we indicate the minimum length of the BLIP caption with TADP-𝑋 and
nouns only with (NO).

6.5 Results
6.5.1 Latent scaling
Before exploring image-text alignment, we apply latent scaling to encoded images
(Appendix G of Rombach et al. [5]). This normalizes the image latents to have
a standard normal distribution. The scaling factor is fixed at 0.18215. We find
that latent scaling improves performance using C𝑎𝑣𝑔 for segmentation and depth
estimation (Fig. 6.3). Specifically, latent scaling improves ∼0.8% mIoU on Pascal,
∼0.3% mIoU on ADE20K, and a relative ∼5.5% RMSE on NYUv2 Depth (Fig. 6.3).

6.5.2 Single-domain alignment
Average EOS Tokens. We scrutinize the use of average EOS tokens for C (see
Sec. 6.4). While average EOS tokens are sensible when measuring cosine similarities
in the CLIP latent space, it is unsuitable in diffusion models, where the text guides
the diffusion process through cross-attention. In our qualitative analysis, we find
that average EOS tokens degrade the cross-attention maps (Fig. 6.4). Instead, we
explore using CLIP to embed each class name independently and use the tokens
corresponding to the actual word (not the EOS token) and pass this as input to the
cross-attention layer:

GClassEmbs(B) = 𝑐𝑜𝑛𝑐𝑎𝑡 (CLIP(𝑏) |𝑏 ∈ B) → CClassEmbs. (6.2)

Second, we explore a generic prompt, a string of class names separated by spaces:

GClassNames(B) = {‘ ’ + 𝑏 |𝑏 ∈ B} → CClassNames. (6.3)

153

no LS w/LS80.0

82.5

85.0
Pascal VOC2012

 mIoU % ()

no LS w/LS50.0

52.5

55.0
ADE20K

 mIoU % ()

no LS w/LS0.20

0.25

0.30
NYUv2

 RMSE ()

0 20 4086

87

88

0 20 40
BLIP min words

54.0

54.5

55.0

0 20 400.220

0.225

0.230

Figure 6.3: Effects of latent scaling (LS) and BLIP caption minimum length.
We report mIoU for Pascal, mIoU for ADE20K, and RMSE for NYUv2 depth
(right). (Top) Latent scaling improves performance on Pascal ∼0.8 mIoU (higher is
better), ∼0.3 mIoU, and ∼5.5% relative RMSE (lower is better). (Bottom) We see
a similar effect for BLIP minimum token length, with longer captions performing
better, improving ∼0.8 mIoU on Pascal, ∼0.9 mIoU on ADE20K, and ∼0.6% relative
RMSE.

These prompts are similar to the ones used for averaged EOS tokens C𝑎𝑣𝑔 w.r.t.
overall text-image alignment but instead use the token corresponding to the word
representing the class name. We evaluate these variations on Pascal VOC2012
segmentation. We find that CClassNames improves performance by 1.0 mIoU, but
CClassEmbs reduces performance by 0.3 mIoU (see Tab. 6.1). We perform more
in-depth analyses of the effect of text-image alignment on the diffusion model’s
cross-attention maps and image generation properties in Appendix 6.7.

TADP. To align the diffusion model text input to the image, we use BLIP-2 [17] to
generate captions for every image in our single-domain datasets (Pascal, ADE20K,
and NYUv2).

GTADP(𝑥) = BLIP-2(𝑥) → CTADP(𝑥) (6.4)

BLIP-2 is trained to produce image-aligned text captions and is designed around
the CLIP latent space. However, other vision-language algorithms that produce
captions could also be used. We find that these text captions improve performance
in all datasets and tasks (Tabs. 6.1, 6.2, 6.3). Performance improves on Pascal

154

Method #Params FLOPs Crop mIoUss mIoUms

self-supervised pre-training
EVA [40] 1.01B - 8962 61.2 61.5
InternImage-L [41] 256M 2526G 6402 53.9 54.1
InternImage-H [41] 1.31B 4635G 8962 62.5 62.9

multi-modal pre-training
CLIP-ViT-B [42] 105M 1043G 6402 50.6 51.3
ViT-Adapter [43] 571M - 8962 61.2 61.5
BEiT-3 [44] 1.01B - 8962 62.0 62.8
ONE-PEACE [45] 1.52B - 8962 62.0 63.0

diffusion-based pre-training
VPDA32 [7] 862M 891G 5122 53.7 54.6
VPD(R) 862M 891G 5122 53.1 54.2
VPD(LS) 862M 891G 5122 53.7 54.4
TADP-40 (Ours) 862M 2168G 5122 54.8 55.9

TADP-Oracle 862M - 5122 72.0 -

Table 6.2: Semantic segmentation with different methods for ADE20k. Our
method (green) achieves SOTA within the diffusion-pretrained models category.
The results of our oracle indicate the potential of diffusion-based models for future
research as it is significantly higher than the overall SOTA (highlighted in yellow).
See Tab. 6.1 for a notation key and Tab. 6.6 for fast schedule results.

segmentation by ∼4% mIoU, ADE20K by ∼1.4% mIoU, and NYUv2 Depth by a
relative RMSE improvement of 4%. We see stronger effects on the fast schedules for
ADE20K with an improvement of ∼5 mIoU at (4k), ∼2.4 mIoU (8K). On NYUv2
Depth, we see a smaller gain on the fast schedule ∼2.4%. All numbers are reported
relative to VPD with latent scaling.

We perform some ablations to analyze what aspects of the captions are important.
We explore the minimum token number hyperparameter for BLIP-2 to explore if
longer captions can produce more useful feature maps for the downstream task. We
try a minimum token number of 0, 20, and 40 tokens (denoted as CTADP-N) and find
small but consistent gains with longer captions, resulting on average 0.75% relative
gain for 40 tokens vs. 0 tokens (Fig. 6.3). Next, we ablate the Pascal CTADP-20

captions to understand what in the caption is necessary for the performance gains we
observe. We use NLTK [49] to filter for the nouns in the captions. In the CTADP(NO)-20

155

Method RMSE↓ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑ REL ↓ log10 ↓
default schedule

SwinV2-L [46] 0.287 0.949 0.994 0.999 0.083 0.035
AiT [47] 0.275 0.954 0.994 0.999 0.076 0.033
ZoeDepth [48] 0.270 0.955 0.995 0.999 0.075 0.032
VPD [7] 0.254 0.964 0.995 0.999 0.069 0.030

VPD(R) 0.248 0.965 0.995 0.999 0.068 0.029
VPD(LS) 0.235 0.971 0.996 0.999 0.064 0.028
TADP-40 0.225 0.976 0.997 0.999 0.062 0.027

fast schedule, 1 epoch

VPD 0.349 0.909 0.989 0.998 0.098 0.043
VPD(R) 0.340 0.910 0.987 0.997 0.100 0.042
VPD(LS) 0.332 0.926 0.992 0.998 0.097 0.041
TADP-0 0.328 0.935 0.993 0.999 0.082 0.038

Table 6.3: Depth estimation in NYUv2. We find latent scaling accounts for a
relative gain of ∼ 5.5% on the RMSE metric. Additionally, image-text alignment
improves ∼ 4% relative on the RMSE metric. A minimum caption length of 40
tokens performs the best.We also explore adding a text-adapter (TA) to TADP, but
find no significant gain. See Table 6.1 for a notation key.

nouns-only caption setting, we achieve 86.4% mIoU, similar to 86.2% mIoU with
CTADP-20 (Tab. 6.1), suggesting nouns are sufficient.

Oracle. This insight about nouns leads us to ask if an oracle caption, in which all the
object class names in an image are provided as a caption, can improve performance
further. We define B(𝑥) as the set of class names present in image 𝑥.

GOracle(𝑥) = {‘ ’ + 𝑏 |𝑏 ∈ B(𝑥)} → COracle(𝑥) (6.5)

While this is not a realistic setting, it serves as an approximate upper bound on
performance for our method on the segmentation task. We find a large improvement
in performance in segmentation, achieving 89% mIoU on Pascal and 72.2% mIoU on
ADE20K. For depth estimation, multi-class segmentation masks are only provided
for a smaller subset of the images, so we cannot generate a comparable oracle.
We perform ablations on the oracle captions to evaluate the model’s sensitivity to
alignment. For ADE20K, on the 4k iteration schedule, we modify the oracle captions
by randomly adding and removing classes such that the recall and precision are

156

O
ra

cl
e

C
la

ss
N

a
m

e
s

background bird dog

B
LI

P

a dog and a bird

airplane bicycle bird boat bottle dog

background airplane bicycle bird boat bottle dog

A
v
g

.
E
O

S
To

ke
n

Figure 6.4: Cross-attention maps for different types of prompting (before
training). We compare the cross-attention maps for four types of prompting:
oracle, BLIP, Average EOS tokens, and class names as space-separated strings. The
cross-attention maps for different heads at all different scales are upsampled to
64x64 and averaged. When comparing Average Template EOS and Class Names,
we see (qualitatively) averaging degrades the quality of the cross-attention maps.
Furthermore, we find that class names that are not present in the image can have highly
localized attention maps (e.g., ‘bottle’). Further analysis of the cross-attention maps
is available in Sec. 6.7, where we explore image-to-image generation, copy-paste
image modifications, and more.

at 0.5, 0.75, and 1.0 (independently) (Tab. 6.7). We find that both precision and
recall have an effect, but recall is significantly more important. When recall is lower
(0.50), improving precision has minimal impact (<1% mIoU). However, precision
has progressively larger impacts as recall increases to 0.75 and 1.00 (∼3% mIoU and
∼7% mIoU). In contrast, recall has large impacts at every precision level: 0.5 - (∼6%
mIoU), 0.75 - (∼9% mIoU), and 1.00 - (∼13% mIoU). BLIP-2 captioning performs
similarly to a precision of 1.00 and a recall of 0.5 (Tab. 6.2). Additional analyses
w.r.t. precision, recall, and object sizes can be found in Appendix 6.8.

6.5.3 Cross-domain alignment
Next, we ask if text-image alignment can benefit cross-domain tasks. In cross-domain,
we train a model on a source domain and test it on a different target domain. There
are two aspects of alignment in the cross-domain setting: the first is also present
in single-domain, which is image-text alignment; the second is unique to the cross-

157

domain setting, which is text-target domain alignment. The second is challenging
because there is a large domain shift between the source and target domain. Our
intuition is that while the model has no information on the target domain from the
training images, an appropriate text prompt may carry some general information
about the target domain. Our cross-domain experiments focus on the text-target
domain alignment and use GTADP for image-text alignment (following our insights
from the single-domain setting).

Training. Our experiments in this setting are designed in the following manner: we
train a diffusion model on the source domain captions CTADP(𝑥). With these source
domain captions, we experiment with four different caption modifications (each
increasing in alignment to the target domain), a null Mnull(P) caption modification
where Mnull(P)𝑠 = ∅ = Mnull(P)𝜖𝜃 = ∅, a simple Msimple(P) caption modifier
where Msimple(P)𝑠 is a hand-crafted string describing the style of the target domain
appended to the end andMsimple(P)𝜖𝜃 = ∅, a Textual Inversion [24]MTI(P) caption
modifier where the output MTI(P)𝑠 is a learned Textual Inversion token <*> and
MTI(P)𝜖𝜃 = ∅, and a DreamBooth [25]MDB(P) caption modifier whereMDB(P)𝑠
is a learned DreamBooth token <SKS> and MDB(P)𝜖𝜃 is a DreamBoothed diffusion
backbone. We also include two additional control experiments. In the first, Mud(P)
an unrelated target domain style is appended to the end of the string. In the second,
Mnd(P) a nearby but a different target domain style is appended to the caption.
MTI(P) and MDB(P) require more information than the other methods, such that
P represents a subset of unlabelled images from the target domain.

Testing. When testing the trained models on the target domain images, we want
to use the same captioning modification for the test images as in the training setup.
However, GTADP introduces a confound since it naturally incorporates target domain
information. For example, GTADP(𝑥) might produce the caption “a watercolor
painting of a dog and a bird” for an image from the Watercolor2K dataset. Using
the Msimple(P) captioning modification on this prompt would introduce redundant
information and would not match the caption format used during training. In order
to remove target domain information and get a plain caption that can be modified in
the same manner as in the training data, we use GPT-3.5 [53] to remove all mentions
of the target domain shift. For example, after using GPT-3.5 to remove mentions of
the watercolor style in the above sentence, we are left with “an image of a bird and a
dog.” With these GPT-3.5 cleaned captions, we can match the caption modifications
used during training when evaluating test images. This caption-cleaning strategy

158

Method Dark Zurich-val ND
mIoU mIoU

DAFormer [50] – 54.1
Refign-DAFormer [51] – 56.8
PTDiffSeg [6] 37.0 –

TADPnull 42.8 57.5
TADPsimple 39.1 56.9
TADPTextualInversion 41.4 60.8
TADPDreamBooth 38.9 60.4

TADPNearbyDomain 41.9 56.9
TADPUnrelatedDomain 42.3 55.1

Table 6.4: Cross-domain semantic segmentation. Cityscapes (CD) to Dark Zurich
(DZ) val and Nighttime Driving (ND). We report the mIoU. Our method sets a new
SOTA for DarkZurich and Nighttime Driving.

lets us control how target domain information is included in the test image captions,
ensuring that test captions are in the same domain as train captions.

Evaluation. We evaluate cross-domain transfer on several datasets. We train
our model on Pascal VOC [15, 19] object detection and evaluate on Watercolor2K
(W2K) [20] and Comic2K (C2K) [20]. We also train our model on the Cityscapes [21]
dataset and evaluate on the Nighttime Driving (ND) [23] and Dark Zurich-val (DZ-
val) [22] datasets. We show results in Tabs. 6.4, 6.5. In the following sections, we also
report the average performance of each method on the cross-domain segmentation
datasets (average mIoU) and the cross-domain object detection datasets (average
AP).

Null caption modifier. The null captions have no target domain information. In this
setting, the model is trained with captions with no target domain information and
tested with GPT-3.5 cleaned target domain captions. We find diffusion pre-training
to be extraordinarily powerful on its own, with just plain captions (no target domain
information); the model already achieves SOTA on VOC→W2K with 72.1 𝐴𝑃50,
SOTA on CD→DZ-val with 42.8 mIoU and SOTA on CD→ND with 60.8 mIoU.
Our model performs better than the current SOTA [32] on VOC→W2K and worse
on VOC→C2K (highlighted in yellow in Tab. 6.5). However, [32] uses a large extra
training dataset from the target (comic) domain, so we highlight in bold our results in
Tab. 6.5 to show they outperform all other methods that use only images in C2K as
examples from the target domain. Furthermore, these results are with a lightweight

159

Method Watercolor2k Comic2k
AP AP50 AP AP50

Single Domain Generalization (SGD)

CLIP the gap [38] – 33.5 – 43.4

Cross domain weakly supervised object detection

PLGE [35] – 56.5 – 41.7
ICCM [37] – 57.4 – 37.1
H2FA R-CNN [36] – 59.9 – 46.4

Unsupervised domain adaptation object detection

ADDA [52] – 49.8 – 23.8
MCAR [33] – 56.0 – 33.5
UMT [31] – 58.1 – –
DASS-Detector (extra data) [32] – 71.5 – 64.2

TADPnull 42.1 72.1 31.1 57.4
TADPsimple 43.5 72.2 31.9 56.6
TADPTextualInversion 43.2 72.2 33.2 57.4
TADPDreamBooth 43.2 72.2 32.9 56.9

TADPNearbyDomain 42.0 71.5 31.8 56.4
TADPUnrelatedDomain 42.2 71.9 32.0 55.9

Table 6.5: Cross-domain object detection. Pascal VOC to Watercolor2k and
Comic2k. We report the AP and 𝐴𝑃50. Our method sets a new SOTA for Water-
color2K.

FPN [54] head, in contrast to other competitive methods like Refign [51], which uses
a heavier decoder. These captions achieve 50.5 average mIoU and 36.6 average AP.

Simple caption modifier. We then add target domain information to our captions by
prepending the target domain’s semantic shift to the generic captions. These caption
modifiers are hand-crafted. For example, “a dog and a bird” becomes “a X style
painting of a dog and a bird” (where X is watercolor for W2K and comic for C2K)
and “a dark night photo of a dog and a bird” for DZ. These captions achieve 48.0
average mIoU and 37.7 average AP.

160

Textual Inversion caption modifier. Textual inversion [24] is a method that learns a
target concept (an object or style) from a set of images and encodes it into a new
token. We learn a novel token from target domain image samples to further increase
image-text alignment (for details, see Sec. 6.10.1). In this setting, the sentence
template becomes “a <token> style painting of a dog and a bird.” We find that, on
average, Textual Inversion captions perform the best, achieving 51.1 average mIoU
and 38.2 average AP.

DreamBooth caption modifier. DreamBooth-ing [25] aims to achieve the same goal
as textual inversion. Along with learning a new token, the stable-diffusion backbone
itself is fine-tuned with a set of target domain images (for details, see Sec. 6.10.1).
We swap the stable diffusion backbone with the DreamBooth-ed backbone before
training. We use the same template as in textual inversion. These captions achieve
49.7 average mIoU and 38.1 average AP.

Ablations. We ablate our target domain alignment strategy by introducing unrelated
and nearby target-domain style modifications. For example, this would be “a dashcam
photo of a dog and a bird” (unrelated) and “a constructivism painting of a dog and a
bird” (nearby) for the W2K and C2K datasets. “A watercolor painting of a car on the
street” (unrelated) and “a foggy photo of a car on the street” for the ND and DZ-val
datasets. We find these off-target domains reduce performance on all datasets.

6.6 Discussion
We present a method for image-text alignment that is general, fully automated,
and can be applied to any diffusion-based perception model. To achieve this, we
systematically explore the impact of text-image alignment on semantic segmentation,
depth estimation, and object detection. We investigate whether similar principles
apply in the cross-domain setting and find that alignment towards the target domain
during training improves downstream cross-domain performance.

We find that EOS token averaging for prompting does not work as effectively as
strings for the objects in the image. Our oracle ablation experiments show that
our diffusion pre-trained segmentation model is particularly sensitive to missing
classes (reduced recall) and less sensitive to off-target classes (reduced precision),
and both have a negative impact. Our results show that aligning text prompts to
the image is important in identifying/generating good multi-scale feature maps
for the downstream segmentation head. This implies that the multi-scale features
and latent representations do not naturally identify semantic concepts without the

161

guidance of the text in diffusion models. Moreover, proper latent scaling is crucial
for downstream vision tasks. Lastly, we show how using a captioner, which has the
benefit of being open vocabulary, high precision, and downstream task agnostic,
to prompt the diffusion pre-trained segmentation model automatically improves
performance significantly over providing all possible class names.

We also find that diffusion models can be used effectively for cross-domain tasks. Our
model, without any captions, already surpasses several SOTA results in cross-domain
tasks due to the diffusion backbone’s generalizability. We find that good target
domain alignment can help with cross-domain performance for some domains, and
misalignment leads to worse performance. Capturing information about target
domain styles in words alone can be difficult. For these cases, we show that
model personalization through Textual Inversion or Dreambooth can bridge the
gap without requiring labeled data. Future work could explore how to expand our
framework to generalize to multiple unseen domains. Future work may also explore
closed vocabulary captioners that are more task-specific to get closer to oracle-level
performance.

6.6.1 Acknowledgements
Pietro Perona and Markus Marks were supported by the National Institutes of Health
(NIH R01 MH123612A) and the Caltech Chen Institute (Neuroscience Research
Grant Award). Pietro Perona, Neehar Kondapaneni, Rogerio Guimaraes, and Markus
Marks were supported by the Simons Foundation (NC-GB-CULM-00002953-02).
Manuel Knott was supported by an ETH Zurich Doc.Mobility Fellowship. We thank
Oisin Mac Aodha, Yisong Yue, and Mathieu Salzmann for their valuable inputs that
helped improve this work.

162

Appendix
6.7 Cross-attention Analysis
Qualitative image-to-image variation analysis. We present a qualitative and quanti-
tative analysis of the effect of off-target class names added to the prompt. In Fig. 6.5,
we use the stable diffusion image to image (img2img) variation pipeline (with the
original Stable Diffusion 1.5 weights) to qualitatively analyze the effects of prompts
with off-target classes. The img2img variation pipeline encodes a real image into a la-
tent representation, adds a user-specified amount of noise to the latent representation,
and de-noises it (according to a user-specified prompt) to generate a variation on the
original image. The amount of noise added is dictated by a strength ratio indicating
how much variation should occur. A higher ratio results in more added noise and
more denoising steps, allowing a relatively higher impact of the new text prompt
on the image. We find that CClassNames (see caption for details) results in variations
that incorporate the off-target classes. This effect is most clear looking across the
panels left to right in which objects belonging to off-target classes (an airplane and
a train) become more prominent. These qualitative results imply that this prompt
modifies the latent representation to incorporate information about off-target classes,
potentially making the downstream task more difficult. In contrast, using the BLIP
prompt changes the image, but the semantics (position of objects, classes present)
of the image variation are significantly closer to the original. These results suggest
a mechanism for how off-target classes may impact our vision models. We quanti-
tatively measure this effect using a fully trained Oracle model in the following section.

Copy-Paste Experiment. An interesting property in Fig. 6.4 is that the word
bottle has strong cross-attention over the neck of the bird. We hypothesize that
diffusion models seek to find the nearest match for each token since they are trained
to generate images that correspond to the prompt. We test this hypothesis on a
base image of a dog and a bird. We first visualize the cross-attention maps for a
set of object labels. We find that the words bottle, cat, and horse have a strong
cross-attention to the bird, dog, and dog, respectively. We paste a bottle, cat, and
horse into the base image to see if the diffusion model will localize the “correct”
objects if they are present. In Fig. 6.6, we show that the cross-attention maps prefer
to localize the “correct” object, suggesting our hypothesis is correct.

Averaged EOS Tokens: Averaging vs. EOS? Averaged EOS Tokens create diffuse
attention maps that empirically harm performance. What is the actual cause of the

163

decrease in performance? Is it averaging, or is it the usage of many EOS tokens? We
replace the averaged EOS tokens with single prompt EOS tokens and find that the
attention maps are still diffuse. This indicates that the usage of EOS tokens is the
primary cause of the diffuse attention maps and not the averaging.
Quantitative effect of CClassNames on Oracle model. To quantify the impact of the
off-target classes on the downstream vision task, we measure the averaged pixel-wise
scores (normalized via Softmax) per class when passing the CClassNames to the Oracle
segmentation model for Pascal VOC 2012 (Fig. 6.8). We compare this to the original
oracle prompt. We find that including the off-target prompts significantly increases
the probability of a pixel being misclassified as one of the semantically nearby
off-target classes. For example, if the original image contains a cow, including the
words dog and sheep, it significantly raises the probability of misclassifying the
pixels belonging to the cow as pixels belonging to a dog or a sheep. These results
indicate that the task-specific head picks up the effect of off-target classes and is
incorporated into the output.

5 10 15 20 25 30 35 40 45

Class

Names

BLIP

De-noising steps

Figure 6.5: Qualitative image-to-image variation. An untrained stable diffusion
model is passed an image to perform image-to-image variation. The number of
denoising steps conducted increases from left to right (5 to 45 out of a total of 50). On
the top row, we pass all the class names in Pascal VOC 2012: “background airplane
bicycle bird boat bottle bus car cat chair cow dining table dog horse motorcycle
person potted plant sheep sofa train television”. In the bottom row we pass the BLIP
caption “a bird and a dog”.

164

background airplane bicycle bird boat bottle cat dog horse
+

 H
o
rs

e
+

 C
a
t

+
 B

o
tt

le

Figure 6.6: Copy-paste experiment. A bottle, a cat, and a horse from different
images are copied and pasted into our base image to see how the cross-attention
maps change. The label on the left describes the category of the item that has been
pasted into the image. The labels above each map describe the cross-attention map
corresponding to the token for that label.

airplane bicycle bird boat bottle bus dog

A
ve

ra
g
e

E
O

S
 T

o
ke

n
E
O

S
 T

o
ke

n

Figure 6.7: Averaging vs. EOS. In [7], for each class name, the EOS token from
80 prompts (containing the class name) was averaged together. The averaged EOS
tokens for each class were concatenated together and passed to the diffusion model
as text input. We explore if averaging drives the diffuse nature of the cross-attention
maps. We replace the 80 prompt templates with a single prompt template: “a photo
of a {class name}” and visualize the cross-attention maps. In the top row, we show
the averaged template EOS tokens. In the bottom row, we show the single template
EOS tokens.

165

air
pla

ne
bic

ycl
e

bir
d

bo
at
bo

ttle bu
s car catcha

ir
cow

din
ing

 ta
ble do

g
ho

rse

moto
rcy

cle
pe

rso
n

po
tte

d p
lan

t
she

ep sof
a
tra

in

tel
ev

isio
n

Activation

airplane
bicycle

bird
boat

bottle
bus
car
cat

chair
cow

dining table
dog

horse
motorcycle

person
potted plant

sheep
sofa
train

television

Ta
rg

et

0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.01 0.76 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01

0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00

0.01 0.01 0.01 0.87 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00

0.00 0.01 0.00 0.01 0.88 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.00 0.01 0.92 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.75 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01

0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.90 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.80 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01

0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.90 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00

0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.90 0.00 0.01 0.01 0.00 0.00 0.00 0.01

0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.88 0.02 0.01 0.00 0.00 0.01 0.01

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.89 0.00 0.00 0.01 0.01 0.00

0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.70 0.01 0.01 0.01 0.01

0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.92 0.00 0.00 0.00

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.80 0.01 0.01

0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.91 0.00

0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.80

air
pla

ne
bic

ycl
e

bir
d

bo
at
bo

ttle bu
s car catcha

ir
cow

din
ing

 ta
ble do

g
ho

rse

moto
rcy

cle
pe

rso
n

po
tte

d p
lan

t
she

ep sof
a
tra

in

tel
ev

isio
n

Activation

airplane
bicycle

bird
boat

bottle
bus
car
cat

chair
cow

dining table
dog

horse
motorcycle

person
potted plant

sheep
sofa
train

television

Ta
rg

et

0.85 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.61 0.01 0.03 0.02 0.02 0.03 0.02 0.04 0.02 0.02 0.02 0.02 0.03 0.03 0.01 0.01 0.01 0.02 0.02

0.02 0.02 0.40 0.02 0.01 0.02 0.02 0.02 0.03 0.05 0.01 0.15 0.02 0.02 0.02 0.02 0.10 0.02 0.02 0.02

0.06 0.03 0.02 0.49 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.07 0.02

0.02 0.01 0.01 0.01 0.72 0.02 0.02 0.02 0.02 0.00 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.02

0.02 0.02 0.01 0.02 0.02 0.65 0.03 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.06 0.02

0.03 0.02 0.01 0.01 0.01 0.03 0.68 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.03

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.17 0.02 0.02 0.01 0.59 0.01 0.01 0.01 0.01 0.04 0.02 0.01 0.01

0.01 0.03 0.01 0.02 0.02 0.02 0.02 0.02 0.64 0.01 0.03 0.02 0.02 0.02 0.03 0.02 0.01 0.03 0.02 0.02

0.02 0.02 0.03 0.02 0.01 0.03 0.03 0.01 0.03 0.22 0.02 0.17 0.21 0.02 0.02 0.02 0.05 0.02 0.03 0.02

0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.65 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.79 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01

0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.09 0.01 0.08 0.53 0.01 0.02 0.02 0.03 0.01 0.02 0.02

0.02 0.04 0.01 0.02 0.02 0.02 0.03 0.02 0.03 0.01 0.02 0.02 0.01 0.62 0.03 0.02 0.01 0.01 0.02 0.02

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.86 0.01 0.00 0.01 0.01 0.01

0.02 0.03 0.04 0.04 0.03 0.03 0.02 0.02 0.05 0.02 0.05 0.03 0.02 0.03 0.02 0.42 0.03 0.02 0.03 0.02

0.02 0.02 0.04 0.02 0.01 0.02 0.03 0.01 0.03 0.15 0.02 0.21 0.09 0.02 0.02 0.02 0.22 0.02 0.02 0.02

0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.16 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.51 0.02 0.01

0.02 0.02 0.01 0.02 0.01 0.07 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.65 0.02

0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.76

Figure 6.8: Impact of off-target classes on semantic segmentation performance.
The matrices show normalized scores averaged over pixels on Pascal VOC 2012 for
an oracle-trained model when receiving either present class names (left) or all class
names (right).

166

6.8 Additional ADE20K Results

Method 4K Iters 8K Iters

mIoUss mIoUms mIoUss mIoUms

VPD (null text) 41.5 - 46.9 -
VPDA32 [7] 43.1 44.2 48.7 49.5
VPD(R) 42.6 43.6 49.2 50.4
VPD(LS) 45.0 45.8 50.5 51.1
TADP-20 (Ours) 50.2 50.9 52.8 54.1
TADP(TA)-20 (Ours) 49.9 50.7 52.7 53.4

Table 6.6: Semantic segmentation fast schedule on ADE20K. Our method has
a large advantage over prior work on the fast schedule with significantly better
performance in both the single-scale and multi-scale evaluations for 4k and 8k
iterations.

Recall

Pr
ec

isi
on

0.50 0.75 1.00

0.
50 49.53 52.00 55.22

0.
75 49.17 51.46 58.62

1.
00 50.20 54.82 63.29

Table 6.7: ADE20K — Oracle Precision-Recall Ablations We modify the oracle
captions by randomly adding or removing classes such that the precision and recall
are 0.50, 0.75, or 1.00. We train models on ADE20K on a fast schedule (4K) using
these captions. The 4k iteration oracle equivalent is highlighted in blue.

167

0.0 0.5 1.0
mIoU

0.0-0.2
0.2-0.4
0.4-0.6
0.6-0.8
0.8-1.0

Re
ca

ll

Figure 6.9: Recall analysis. ADE20k
mIOU per image with respect to the
recall of classes present in the caption.
We embedded each word in our caption
with CLIP’s text encoder. We consid-
ered a cosine similarity of ≥ 0.9 with
the embedded class name as a match.
Linear regression analysis shows pos-
itive correlations between recall and
mIoU (𝑟 = 0.28).

0.0 0.5 1.0
IoU

0.0-0.2
0.2-0.4
0.4-0.6
0.6-0.8
0.8-1.0

Re
la

tiv
e

ob
je

ct
 si

ze

Figure 6.10: Object size analysis.
ADE20k IOU per object image with
respect to the relative object size (pix-
els divided by total pixels). Linear
regression analysis shows positive cor-
relations between relative object size
and the IoU-score of a class (𝑟 = 0.40).

168

6.9 Qualitative Examples

Figure 6.11: Ground truth examples of the tokenized datasets.

Figure 6.12: Textual inversion and Dreambooth tokens of Cityscapes to Dark
Zurich.

169

Figure 6.13: Textual inversion and Dreambooth tokens of VOC to Comic.

Figure 6.14: Textual inversion and Dreambooth tokens of VOC to Watercolor.

170

Pr
ed

ict
io

n
Gr

ou
nd

 Tr
ut

h

Figure 6.15: Predictions (top) and Ground Truth (bottom) visualizations for
Pascal VOC2012.

Pr
ed

ict
io

n
Gr

ou
nd

 Tr
ut

h

Figure 6.16: Predictions (top) and Ground Truth (bottom) visualizations for
ADE20K.

Pr
ed

ict
io

n
Gr

ou
nd

 Tr
ut

h

Figure 6.17: Predictions (top) and Ground Truth (bottom) visualizations for
NYUv2 Depth.

171

Figure 6.18: Depth estimation comparison: Image, Ground Truth, and predic-
tion visualizations for Midas, VPD, and TADP (ours) in NYUv2 Depth. Black
boxes (red on original image) show where TADP is better than Midas and/or VPD.

172

Figure 6.19: Image segmentation comparison: Image, Ground Truth, and
prediction visualizations for InternImage, VPD, and TADP (ours) in ADE20K.
Red boxes show where TADP is better than InternImage and/or VPD.

173

Figure 6.20: Image segmentation comparison: Image, Ground Truth, and
prediction visualizations for InternImage, VPD, and TADP (ours) in ADE20K.
Red boxes show where TADP is better than InternImage and/or VPD.

174

Figure 6.21: Depth estimation comparison: Image, Ground Truth, and predic-
tion visualizations for Midas, VPD, and TADP (ours) in NYUv2 Depth. TADP
is worse than Midas and/or VPD in these images in terms of the general scale

Figure 6.22: Image segmentation comparison: Image, Ground Truth, and
prediction visualizations for InternImage, VPD, and TADP (ours) in ADE20K.
Red boxes show where TADP is worse than InternImage and/or VPD.

175

Figure 6.23: Cross-domain image segmentation comparison: Image, Ground
Truth, and prediction visualizations for Refign-DAFormer, and TADP (ours)
for Cityscapes to Dark Zurich Val. Red boxes show where TADP is better than
Refign-DAFormer.

176

Figure 6.24: Cross-domain object detection comparison: Image, Ground Truth,
and prediction visualizations for DASS, and TADP (ours) for Pascal VOC to
Watercolor2k. Red boxes show the detections of each model. Notice that TADP not
only beats DASS mostly, but also finds more objects than the ones annotated in the
ground truth.

177

6.10 Implementation Details
To isolate the effects of our text-image alignment method, we ensure our model setup
precisely follows prior work. Following VPD [7], we jointly train the task-specific
head and the diffusion backbone. The learning rate of the backbone is set to 1/10
the learning rate of the head to preserve the benefits of pre-training better. We
describe the different tasks by describing 𝐻 and L𝐻 . We use an FPN [54] head with
a cross-entropy loss for segmentation. We use the same convolutional head used in
VPD for monocular depth estimation with a Scale-Invariant loss [55]. For object
detection, we use a Faster-RCNN head with the standard Faster-RCNN loss [56]1.
Further details of the training setup can be found in Tab. 6.8 and Tab. 6.9. In our
single-domain tables, we include our reproduction of VPD, denoted with a (R). We
compute our relative gains with our reproduced numbers, with the same seed for all
experiments.

1Object detection was not explored in VPD.

178

Hyperparameter Value
Learning Rate 0.00008
Batch Size 2
Optimizer AdamW
Weight Decay 0.005
Warmup Iters 1500
Warmup Ratio 1𝑒 − 6
U-Net Learning Rate Scale 0.01
Training Steps 80000

(a) ADE20k - full schedule

Hyperparameter Value
Learning Rate 0.00016
Batch Size 2
Optimizer AdamW
Weight Decay 0.005
Warmup Iters 150
Warmup Ratio 1𝑒 − 6
Unet Learning Rate Scale 0.01
Training Steps 8000

(b) ADE20k - fast schedule 8k

Hyperparameter Value
Learning Rate 0.00016
Batch Size 2
Optimizer AdamW
Weight Decay 0.005
Warmup Iters 75
Warmup Ratio 1𝑒 − 6
Unet Learning Rate Scale 0.01
Training Steps 4000

(c) ADE20k - fast schedule 4k

Hyperparameter Value
Learning Rate 5𝑒 − 4
Batch Size 3
Optimizer AdamW
Weight Decay 0.1
Layer Decay 0.9
Epochs 25
Drop Path Rate 0.9

(d) NYUv2

Hyperparameter Value
Learning Rate 5𝑒 − 4
Batch Size 3
Optimizer AdamW
Weight Decay 0.1
Layer Decay 0.9
Epochs 1
Drop Path Rate 0.9

(e) NYUv2 - fast schedule

Hyperparameter Value
Learning Rate 0.00001
Batch Size 2
Gradient Accumulation 4
Epochs 15
Optimizer AdamW
Weight Decay 0.01

(f) Pascal VOC

Table 6.8: Single-Domain Hyperparameters.

179

Hyperparameter Value
Learning Rate 0.00008
Batch Size 2
Optimizer AdamW
Weight Decay 0.005
Warmup Iters 1500
Warmup Ratio 1𝑒 − 6
Unet Learning Rate Scale 0.01
Training Steps 40000

(a) Cityscapes→ Dark Zurich & NightTime
Driving

Hyperparameter Value
Learning Rate 0.00001
Batch Size 2
Epochs 100
Optimizer AdamW
Weight Decay 0.01
Learning Rate Schedule Lambda
(b) Pascal VOC→Watercolor & Comic

Hyperparameter Value
Prior Preservation Cls Images 200
Learning Rate 5𝑒−6
Training Steps 1000

(c) Dreambooth Hyperparameters

Hyperparameter Value
Steps 3000
Learning Rate 5.0𝑒 − 04
Batch Size 1
Gradient Accumulation 4
(d) Textual Inversion Hyperparameters

Table 6.9: Cross-Domain Hyperparameters.

180

6.10.1 Model personalization
For textual inversion, we use 500 images from DZ-train and five images for W2K and
C2K and train all tokens for 1000 steps. We use a constant learning rate scheduler
with a learning rate of 5𝑒 − 4 and no warmup. For Dreambooth, we use the same
images as in textual inversion but train the model for 500 steps (DZ) steps or 1000
steps (W2K and C2K). We use a learning rate of 2𝑒 − 6 with a constant learning rate
scheduler and no warmup. We use no prior preservation loss.

181

References

[1] Neehar Kondapaneni et al. “Text-image alignment for diffusion-based per-
ception.” In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. 2024, pp. 13883–13893. url: https://
openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_
Text-Image_Alignment_for_Diffusion-Based_Perception_
CVPR_2024_paper.html.

[2] Jiahui Yu et al. “Scaling Autoregressive Models for Content-Rich Text-to-
Image Generation.” In: arXiv preprint arXiv:2206.10789 (2022).

[3] Aditya Ramesh et al. “Hierarchical Text-Conditional Image Generation with
CLIP Latents.” In: arXiv preprint arXiv:2204.06125 (2022). (Visited on
08/24/2023).

[4] Chitwan Saharia et al. “Photorealistic Text-to-Image Diffusion Models with
Deep Language Understanding.” In: arXiv preprint arXiv:2205.11487 (2022).

[5] Robin Rombach et al. “High-Resolution Image Synthesis with Latent Diffusion
Models.” In: 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2022), pp. 10674–10685. (Visited on 07/27/2023).

[6] Rui Gong et al. “Prompting Diffusion Representations for Cross-Domain
Semantic Segmentation.” In: arXiv preprint arXiv:2307.02138 (2023). (Visited
on 07/27/2023).

[7] Wenliang Zhao et al. “Unleashing Text-to-Image Diffusion Models for Vi-
sual Perception.” In: arXiv preprint arXiv:2303.02153 (2023). (Visited on
07/27/2023).

[8] Grace Luo et al. “Diffusion Hyperfeatures: Searching Through Time and
Space for Semantic Correspondence.” In: arXiv preprint arXiv:2305.14334
(2023).

[9] Luming Tang et al. “Emergent Correspondence from Image Diffusion.” In:
arXiv preprint arXiv:2306.03881 (2023).

[10] Alec Radford et al. “Learning Transferable Visual Models From Natural
Language Supervision.” In: International Conference on Machine Learning
(2021), pp. 8748–8763. (Visited on 08/21/2023).

[11] Chao Jia et al. “Scaling Up Visual and Vision-Language Representation
Learning With Noisy Text Supervision.” In: arXiv preprint arXiv:2102.05918
(June 2021). (Visited on 08/30/2023).

[12] Yangguang Li et al. “Supervision Exists Everywhere: A Data Efficient
Contrastive Language-Image Pre-training Paradigm.” In: arXiv preprint
arXiv:2110.05208 (Mar. 2022). (Visited on 08/30/2023).

https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html
https://openaccess.thecvf.com/content/CVPR2024/html/Kondapaneni_Text-Image_Alignment_for_Diffusion-Based_Perception_CVPR_2024_paper.html

182

[13] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation.” In: Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015. Ed. by Nassir Navab
et al. Vol. 9351. Cham: Springer International Publishing, 2015, pp. 234–241.
(Visited on 08/21/2023).

[14] Manuel Brack et al. “SEGA: Instructing Diffusion using Semantic Dimen-
sions.” In: arXiv preprint arXiv:2301.12247 (2023). (Visited on 08/21/2023).

[15] M. Everingham et al. The PASCAL Visual Object Classes Challenge 2012
(VOC2012). 2012. url: http : / / www . pascal - network . org /
challenges/VOC/voc2012/workshop/index.html.

[16] Bolei Zhou et al. “Scene Parsing through ADE20K Dataset.” In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2017),
pp. 5122–5130.

[17] Junnan Li et al. “BLIP-2: Bootstrapping Language-Image Pre-training with
Frozen Image Encoders and Large Language Models.” In: arXiv preprint
arXiv:2301.12597 (2023). (Visited on 08/09/2023).

[18] Nathan Silberman et al. “Indoor Segmentation and Support Inference from
RGBD Images.” In: European Conference on Computer Vision (ECCV) (2012).
Ed. by Andrew Fitzgibbon et al. (Visited on 08/21/2023).

[19] M. Everingham et al. The PASCAL Visual Object Classes Challenge 2007
(VOC2007) Results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.

[20] Naoto Inoue et al. “Cross-Domain Weakly-Supervised Object Detection
Through Progressive Domain Adaptation.” In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2018, pp. 5001–5009.

[21] Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene
Understanding.” In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016), pp. 3213–3223.

[22] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. “Guided Curriculum
Model Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime
Image Segmentation.” In: 2019 IEEE/CVF International Conference on
Computer Vision (ICCV) (2019), pp. 7373–7382.

[23] Dengxin Dai and Luc Van Gool. “Dark Model Adaptation: Semantic Image
Segmentation from Daytime to Nighttime.” In: 2018 21st International
Conference on Intelligent Transportation Systems (ITSC) (2018), pp. 3819–
3824.

[24] Rinon Gal et al. “An Image is Worth One Word: Personalizing Text-to-Image
Generation using Textual Inversion.” In: arXiv preprint arXiv:2208.01618
(2022). (Visited on 08/21/2023).

http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

183

[25] Nataniel Ruiz et al. “DreamBooth: Fine Tuning Text-to-Image Diffusion
Models for Subject-Driven Generation.” In: arXiv preprint arXiv:2208.12242
(2022). (Visited on 08/21/2023).

[26] Weijia Wu et al. “DiffuMask: Synthesizing Images with Pixel-level Annotations
for Semantic Segmentation Using Diffusion Models.” In: arXiv preprint
arXiv:2303.11681 (2023). (Visited on 07/27/2023).

[27] Yasser Benigmim et al. “One-shot Unsupervised Domain Adaptation with
Personalized Diffusion Models.” In: arXiv preprint arXiv:2303.18080 (2023).
(Visited on 08/26/2023).

[28] Amir Hertz et al. “Prompt-to-Prompt Image Editing with Cross Attention
Control.” In: arXiv preprint arXiv:2208.01626 (2022). (Visited on 08/29/2023).

[29] Yogesh Balaji et al. “eDiff-I: Text-to-Image Diffusion Models with an Ensemble
of Expert Denoisers.” In: arXiv preprint arXiv:2211.01324 (2022). (Visited
on 08/29/2023).

[30] Christoph Schuhmann et al. “LAION-5B: An open large-scale dataset for train-
ing next generation image-text models.” In: arXiv preprint arXiv:2210.08402
(2022). (Visited on 09/25/2023).

[31] Jinhong Deng et al. “Unbiased mean teacher for cross-domain object detec-
tion.” In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, pp. 4091–4101.

[32] Barış Batuhan Topal, Deniz Yuret, and Tevfik Metin Sezgin. “Domain-Adaptive
Self-Supervised Pre-Training for Face & Body Detection in Drawings.” In:
arXiv preprint arXiv:2211.10641 (2022).

[33] Zhen Zhao et al. “Adaptive object detection with dual multi-label prediction.”
In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXVIII 16. Springer. 2020, pp. 54–69.

[34] Junguang Jiang et al. “Decoupled adaptation for cross-domain object detec-
tion.” In: arXiv preprint arXiv:2110.02578 (2021).

[35] Shengxiong Ouyang et al. “Pseudo-label generation-evaluation framework for
cross domain weakly supervised object detection.” In: 2021 IEEE International
Conference on Image Processing (ICIP). IEEE. 2021, pp. 724–728.

[36] Yunqiu Xu et al. “H2fa r-cnn: Holistic and hierarchical feature alignment for
cross-domain weakly supervised object detection.” In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 14329–14339.

[37] Luwei Hou et al. “Informative and consistent correspondence mining for
cross-domain weakly supervised object detection.” In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021,
pp. 9929–9938.

184

[38] Vidit Vidit, Martin Engilberge, and Mathieu Salzmann. “CLIP the Gap: A
Single Domain Generalization Approach for Object Detection.” In: 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2023), pp. 3219–3229.

[39] Christoph Schuhmann et al. “LAION-400M: Open Dataset of CLIP-Filtered
400 Million Image-Text Pairs.” In: arXiv preprint arXiv:2111.02114 (2021).
(Visited on 08/29/2023).

[40] Yuxin Fang et al. “EVA: Exploring the Limits of Masked Visual Representation
Learning at Scale.” In: 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2022), pp. 19358–19369.

[41] Wenhai Wang et al. “InternImage: Exploring Large-Scale Vision Foundation
Models with Deformable Convolutions.” In: 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2022), pp. 14408–14419.

[42] Yongming Rao et al. “DenseCLIP: Language-Guided Dense Prediction with
Context-Aware Prompting.” In: 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2022), pp. 18061–18070.
(Visited on 08/28/2023).

[43] Zhe Chen et al. “Vision Transformer Adapter for Dense Predictions.” In: arXiv
preprint arXiv:2205.08534 (2022).

[44] Wen Wang et al. “Image as a Foreign Language: BEIT Pretraining for Vision
and Vision-Language Tasks.” In: 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2023), pp. 19175–19186.

[45] Peng Wang et al. “ONE-PEACE: Exploring One General Representation
Model Toward Unlimited Modalities.” In: arXiv preprint arXiv:2305.11172
(2023). (Visited on 08/29/2023).

[46] Ze Liu et al. “Swin Transformer V2: Scaling Up Capacity and Resolution.”
In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2021), pp. 11999–12009.

[47] Jia Ning et al. “All in Tokens: Unifying Output Space of Visual Tasks via Soft
Token.” In: arXiv preprint arXiv:2301.02229 (2023). (Visited on 08/29/2023).

[48] Shariq Farooq Bhat et al. “ZoeDepth: Zero-shot Transfer by Combining
Relative and Metric Depth.” In: arXiv preprint arXiv:2302.12288 (2023).
(Visited on 08/29/2023).

[49] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing
with Python: analyzing text with the natural language toolkit. O’Reilly Media,
Inc., 2009.

185

[50] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. “DAFormer: Improving
Network Architectures and Training Strategies for Domain-Adaptive Seman-
tic Segmentation.” In: 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (Mar. 2022), pp. 9914–9925. (Visited on
08/30/2023).

[51] David Brüggemann et al. “Refign: Align and Refine for Adaptation of Semantic
Segmentation to Adverse Conditions.” In: 2023 IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV) (2022). (Visited on 08/30/2023).

[52] Eric Tzeng et al. “Adversarial discriminative domain adaptation.” In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 7167–7176.

[53] Tom Brown et al. “Language models are few-shot learners.” In: Advances in
neural information processing systems 33 (2020), pp. 1877–1901.

[54] Alexander Kirillov et al. “Panoptic Feature Pyramid Networks.” In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2019), pp. 6392–6401.

[55] David Eigen, Christian Puhrsch, and Rob Fergus. “Depth Map Prediction
from a Single Image using a Multi-Scale Deep Network.” In: Advances in
Neural Information Processing Systems 27 (NIPS 2014). 2014. (Visited on
08/29/2023).

[56] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks.” In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 39.6 (June 2017), pp. 1137–1149. (Visited on
08/30/2023).

186

C h a p t e r 7

A NUMBER SENSE AS AN EMERGENT PROPERTY
OF THE MANIPULATING BRAIN

Neehar Kondapaneni and Pietro Perona. “A number sense as an emergent property
of the manipulating brain.” In: Scientific Reports 14.1 (2024), p. 6858. url:
https://www.nature.com/articles/s41598-024-56828-2.

7.1 Abstract
The ability to understand and manipulate numbers and quantities emerges during
childhood, but the mechanism through which humans acquire and develop this ability
is still poorly understood. We explore this question through a model, assuming that
the learner is able to pick up and place small objects from, and to, locations of its
choosing, and will spontaneously engage in such undirected manipulation. We further
assume that the learner’s visual system will monitor the changing arrangements of
objects in the scene and will learn to predict the effects of each action by comparing
perception with a supervisory signal from the motor system. We model perception
using standard deep networks for feature extraction and classification, and gradient
descent learning. Our main finding is that, from learning the task of action prediction,
an unexpected image representation emerges exhibiting regularities that foreshadow
the perception and representation of numbers and quantity. These include distinct
categories for zero and the first few natural numbers, a strict ordering of the numbers,
and a one-dimensional signal that correlates with numerical quantity. As a result,
our model acquires the ability to estimate numerosity, i.e. the number of objects
in the scene, as well as subitization, i.e. the ability to recognize at a glance the
exact number of objects in small scenes. Remarkably, subitization and numerosity
estimation extrapolate to scenes containing many objects, far beyond the three objects
used during training. We conclude that important aspects of a facility with numbers
and quantities may be learned with supervision from a simple pre-training task. Our
observations suggest that cross-modal learning is a powerful learning mechanism
that may be harnessed in artificial intelligence.

https://www.nature.com/articles/s41598-024-56828-2

187

7.2 Introduction
7.2.1 Background
Mathematics, one of the most distinctive expressions of human intelligence, is
founded on the ability to reason about abstract entities. We are interested in the
question of how humans develop an intuitive facility with numbers and quantities,
and how they come to recognize numbers as an abstract property of sets of objects.
There is wide agreement that innate mechanisms play a strong role in developing a
number sense [2, 3, 4], that development and learning also play an important role [3],
that naming numbers is not necessary for the perception of quantities [5, 6], and a
number of brain areas are involved in processing numbers [7, 8]. Quantity-tuned
units have been described in physiology experiments [4, 9, 10, 11] as well as in
computational studies [12, 13, 14, 15].

7.2.2 Related Work
The role of learning in developing abilities that relate to the natural numbers and
estimation has been recently explored using computational models. Fang et al. [16]
trained a recurrent neural network to count sequentially and Sabathiel et al. [17]
showed that a neural network can be trained to anticipate the actions of a teacher
on three counting-related tasks – they find that specific patterns of activity in the
network’s units correlate with quantities. The ability to perceive numerosity, i.e. a
rough estimate of the number of objects in a set, was explored by Stoianov, Zorzi
and Testolin [12, 13], who trained a deep network encoder to efficiently reconstruct
patterns composed of dots, and found that the network developed units or “neurons”
that were coarsely tuned to quantity, and by Nasr et al. [14], who found the same
effect in a deep neural network that was trained on visual object classification, an
unrelated task. In these models quantity-sensitive units are an emergent property. In
a recent study, Kim et al. [15] observed that a random network with no training will
exhibit quantity-sensitive units. After identifying these units, [12, 13, 14, 15] train a
supervised classifier on a two-set comparison task to assess numerosity properties
encoded by the deep networks. These works showed that training a classifier with
supervision, in which the classifier is trained and evaluated on the same task and data
distribution, is sufficient for recruiting quantity-tuned units for relative numerosity
comparison. Our work focuses on this supervised second stage. Can more be
learned with less supervision? We show that a representation for numerosity, that
generalizes to several tasks and extrapolates to large quntities, may arise through a
simple, supervised pre-training task. In contrast to prior work, our pre-training task

188

only contains scenes with up to 3 objects, and our model generalizes to scenes with
up to 30 objects.

7.2.3 Approach
We focus on the interplay of action and perception as a possible avenue for this to
happen. More specifically, we explore whether perception, as it is naturally trained
during object manipulation, may develop representations that support a number
sense. In order to test this hypothesis we propose a model where perception learns
how specific actions modify the world. The model shows that perception develops a
representation of the scene which, as an emergent property, can enable the ability to
perceive numbers and estimate quantities at a glance [18, 19].

In order to ground intuition, consider a child who has learned to pick up objects, one
at a time, and let them go at a chosen location. Imagine the child sitting comfortably
and playing with small toys (acorns, Legos, sea shells) which may be dropped into a
bowl. We will assume that the child has already learned to perform at will, and tell
apart, three distinct operations (Fig. 7.1A). The put (P) operation consists of picking
up an object from the surrounding space and dropping it into the bowl. The take
(T) operation consists in doing the opposite: picking up an object from the bowl
and discarding it. The shake (S) operation consists of agitating the bowl so that the
objects inside change their position randomly without falling out. Objects in the
bowl may be randomly moved during put and take as well.

We hypothesize that the visual system of the learner is engaged in observing the
scene, and its goal is predicting the action that has taken place [20]as a result of
manipulation. By comparing its prediction with a copy of the action signal from
the motor system it may correct its perception, and improve the accuracy of its
predictions over time. Thus, by performing P, T, and S actions in a random sequence,
manipulation generates a sequence of labeled two-set comparisons to learn from.

We assume two trainable modules in the visual system: a “perception” module that
produces a representation of the scene, and a “classification” module that compares
representations and guesses the action (Fig. 7.1).

During development, perceptual maps emerge, capable of processing various scene
properties. These range from basic elements like orientation [21] and boundaries [22]
to more complex features such as faces [23] and objects [24, 25]. We propose that,
while the child is playing, the visual system is being trained to use one or more such
maps to build a representation that facilitates the comparison of the pair of images

189

that are seen before and after a manipulation. These representations are often called
embeddings in machine learning.

A classifier network is simultaneously trained to predict the action (P, T, S) from the
representation of the pair of images (see Fig. 7.1). As a result, the visual system
is progressively trained through spontaneous play to predict (or, more accurately,
post-dict) which operation took place that changed the appearance of the bowl.

We postulate that signals from the motor system are available to the visual system
and are used as a supervisory signal (Fig. 7.1B). Such signals provide information
regarding the three actions of put, take and shake and, accordingly, perception may
be trained to predict these three actions. Importantly, no explicit signal indicating
the number of objects in the scene is available to the visual system at any time.

Using a simple model of this putative mechanism, we find that the image representation
that is being learned for classifying actions, simultaneously learns to represent and
perceive the first few natural numbers, to place them in the correct order, from zero
to one and beyond, as well as estimate the number of objects in the scene.

We use a standard deep learning model of perception [27, 28, 29]: a feature extraction
stage is followed by a classifier (Fig. 7.1). The feature extraction stage maps the
image 𝑥 to an internal representation 𝑧, often called an embedding. It is implemented
by a deep network [28] composed of convolutional layers (CNN) followed by fully
connected layers (FCN 1). The classifier, implemented with a simple fully connected
network (FCN 2), compares the representations 𝑧𝑡 and 𝑧𝑡+1 of the before and after
images to predict which action took place. Feature extraction and classification
are trained jointly by minimizing the prediction error. We find that the embedding
dimension makes little difference to the performance of the network (Fig. 7.3). Thus,
for ease of visualization, we settled on two dimensions.

We carried out train-test experiments using sequences of synthetic images containing
a small number of randomly arranged objects (Fig. 7.2). When training we limited
the top number of objects to three (an arbitrary choice), and each pair of subsequent
images was consistent with one of the manipulations (put, take, shake). We ran our
experiments twice with different object statistics. In the first dataset the objects were
identical squares, in the second they had variable size and contrast. In the following
we refer to the model trained on the first dataset as Model A and the model trained on
the second dataset as Model B.

190

?

perception

scene

representation

prediction

classifier

learning

CNN

FCN 1

CNN

FCN 1

xt xt+1

zt zt+1

FCN 2

{P,T,S}

Shared

Weights

xt xt+1

B C

zt+1zt

take putshake

A

take

Figure 7.1: Schematics of our model. (A) (Left-to-right) A sequence of actions
modifies the visual scene over time. (B) (Bottom-to-top) The scene changes as a result
of manipulation. The images 𝑥𝑡 and 𝑥𝑡+1 of the scene before and after manipulation
are mapped by perception into representations 𝑧𝑡 and 𝑧𝑡+1. These are compared by a
classifier to predict which action took place. Learning monitors the error between
predicted action and a signal from the motor system representing the actual action, and
updates simultaneously the weights of both perception and the classifier to increase
prediction accuracy. (C) (Bottom-to-top) Our model of perception is a hybrid neural
network composed of the concatenation of a convolutional neural network (CNN)
with a fully-connected network (FCN 1). The classifier is implemented by a fully
connected network (FCN 2) which compares the two representations 𝑧𝑡 and 𝑧𝑡+1. The
two perception networks are actually the same network operating on distinct images
and therefore their parameters are identical and learned simultaneously in a Siamese
network configuration [26]. Details of the models are given in Fig. 7.15.

P P S T

P S P T

A

B

Figure 7.2: Training image sequence samples. We trained our model using
sequences of images that were generated by randomly concatenating take (T), put (P)
and shake (S) manipulations, while limiting the number of objects to the {0 . . . 3} set
(see Methods - Training Sets). We experimented with two different environment/scene
statistics: (A) Identical objects (15x15 pixel squares) with random position. (B)
Objects (squares) of variable position, size and contrast. The overall image intensity
is a poor predictor of cardinality in this dataset (statistics in Fig. 7.14). Images have
been inverted to better highlight objects with low contrast.

191

1 2 3 4 5 6 7 8
Number of Objects before Action

10 4

10 3

10 2

10 1

100

Er
ro

r

Take

Model 1
Model 2
chance

0 1 2 3 4 5 6 7 8

Shake

0 1 2 3 4 5 6 7

Put

Figure 7.3: Action classification performance. The network accurately classifies
actions up to the training limit of three objects, regardless of the statistics of the
data (the x axis indicates the number of objects in the scene before the action takes
place). Error increases when the number of objects in the test images exceeds the
number of objects in the training set. 95% Bayesian confidence intervals are shown
by the shaded areas (272 ≤ N ≤ 386). The gray region highlights test cases where
the number of objects exceeds the number in the training set. The dashed red line
indicates chance level.

7.3 Results
We found that models learn to predict the three actions on a test set of novel image
sequences (Fig. 7.3) with an error below 1% on scenes up to three objects (the highest
number during training). Performance degrades progressively for higher numbers
beyond the training range. Model B’s error rate is higher, consistently with the task
being harder. Thus, we find that our model learns to predict actions accurately as one
would expect from supervised learning. However, there is little ability to generalize
the task to scenes containing previously unseen numbers of objects. Inability to
generalize is a well-known shortcoming of supervised machine learning and will
become relevant later.

When we examined the structure of the embedding we were intrigued to find a
number of interesting regularities (Fig. 7.4). First, the images’ representations do
not spread across the embedding, filling the available dimensions, as is usually the
case. Rather, they are arranged along a one-dimensional structure. This trait is very
robust to extrapolation: after training (with up to three objects), we computed the
embedding of novel images that contained up to thirty objects and found that the
line-like structure persisted (Fig. 7.4A). This embedding line is also robust with
respect to the dimensions of the embedding — we tested from two to 256 and
observed it each time (Fig. 7.3).

192

100 200 300 400 500 600 700
500

400

300

200

100

di
m

 2

A

0
5
10
15
20
25
30

100 200 300 400 500 600 700
dim 1

500

400

300

200

100

B

X
A0
B0
C0
D0
E0
F0
G0
H0

C

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of objects

A0

B0

C0

D0

E0

H0

G0

F0

Cl
us

te
r l

ab
el

s

0

1

2

3

4

Figure 7.4: The embedding space for Model B. To explore the structure of the
embedding space, we generated a dataset with {0 . . . 30} objects, extending the
number of objects far beyond the limit of 3 objects in the training task. Each
image in the dataset was passed through Model B and the output (the internal
representation/embedding) of the image is shown. See Fig. 7.4 for Model A. (A)
Each dot indicates an image embedding and the embeddings happen to be arranged
along a line. The number of objects in each image is color coded. The smooth
gradation of the color suggests that the embeddings are arranged monotonically with
respect to the number of objects in the corresponding image. The inset shows that
the embeddings of the images that contain only a few objects are arranged along
the line into “islands.” (B) We apply an unsupervised clustering algorithm to the
embeddings. Each cluster that is discovered is denoted by a specific color. The
cluster X, denoted by black crosses, indicates points that the clustering algorithm
excluded as outliers. (C) The confusion matrix shows that the clusters that are found
by the clustering algorithm correspond to numbers. Images containing 0 — 6 objects
are neatly separated into individual clusters; after that images are collected into a
large group that is not in one-to-one correspondence with the number of objects in
the image. The color scale is logarithmic (base 10).

193

Second, images are arranged almost monotonically along the embedding line accord-
ing to the number of objects that are present (Fig. 7.4A). Thus, the representation
that is developed by the model contains an order. We were curious as to whether
the embedding coordinate, i.e. the position of an image along the embedding line,
may be used to estimate the number of objects in the image. Any one of the features
that make up the coordinates of the embedding provides a handy measure for this
position, measured as the distance from the beginning of the line – the value of these
coordinates may be thought of as the firing rate of specific neurons [30]. We tested
this hypothesis both in a relative and in an absolute quantity estimation task. First,
we used the embedding coordinate to compare the number of objects in two different
images and assess which is larger, and found very good accuracy (Fig. 7.5A). Second,
assuming that the system may self-calibrate, e.g. by using the “put” action to estimate
a unit of increment, then an absolute measure of quantity may be computed from the
embedding coordinate. We tested this idea by computing such a perceived number
against the actual count of objects in images (Fig. 7.5B). The estimates turn out to
be quite accurate, with a slight underestimate that increases as the numbers become
larger. Both relative and absolute estimates of quantity were accurate for as many as
thirty objects (we did not test beyond this number), which far exceeds the training
limit of three. We looked for image properties, other than “number of objects”, that
might drive the estimate of quantity and we could not find any convincing candidate
(see Methods and Fig. 7.2).

Third, image embeddings separate out into distinct “islands” at one end of the
embedding line (Fig. 7.4A inset). The brain is known to spontaneously cluster
perceptual information [8, 31], and therefore we tested empirically whether this
form of unsupervised learning may be sufficient to discover distinct categories
of images/scenes from their embedding. We found that unsupervised learning
successfully discovers the clusters with very few outliers in both Model A and the
more challenging Model B (Fig. 7.4B).

Fourth, the first few clusters discovered by unsupervised learning along the embed-
ding line are in almost perfect one-to-one correspondence with groups of images that
share the same number of objects (Figs. 7.4C). Once such distinct number categories
are discovered, they may be used to classify images. This is because the model maps
the images to the embedding, and the unsupervised clustering algorithm can classify
points in the embedding into number categories.

194

Thus, our model learns the ability to carry out instant association of images with a
small set of objects with the corresponding number category.

A fifth property of the embedding is that there is a limit to how many distinct
number categories are learned. Beyond a certain number of objects one finds large
clusters which are no longer number-specific (Fig. 7.4). I.e. our model learns distinct
categories for the numbers between zero and eight, and additional larger categories
for, say, “more than a few” and for “many.”

There is nothing magical in the fact that during training we limited the number of
objects to three, our findings did not change significantly when we changed the
number of objects that are used in training the action classifier (Fig. 7.6, 7.7), when
we restricted the variability of the objects actions (7.7.5), and when “put” and “take”
could affect multiple objects at once (7.7.6), i.e. when actions were imprecise. In
the last two experiments, we find a small decrease in the separability of clusters in
the subitization range (Figs. 7.9, 7.12), such that unsupervised clustering is more
sensitive to its free parameter (minimum cluster size).

7.4 Discussion
Our model and experiments demonstrate that a representation of the first few natural
numbers, absolute numerosity perception, and subitization may be learned by an
agent who is able to carry out simple object manipulations. The training task,
action prediction, provides supervision for two-set comparisons. This supervision
is limited to scenes with up to 3 objects, and yet the model can successfully carry
out relative numerosity estimation on scenes with up to 30 objects. Furthermore,
action prediction acts as a pretraining task that gives rise to a representation that can
support subitization and absolute numerosity estimation without requiring further
supervision.

The two mechanisms of the model, deep learning and unsupervised clustering, are
computational abstractions of mechanisms that have been documented in the brain.

A number of predictions are suggested by the regularities in the image representation
that emerge from our model.

First, the model discovers the structure underlying the integers. The first few num-
bers, from zero to six, say, emerge as categories from spontaneous clustering of the
embeddings of the corresponding images. Clustered topographic numerosity maps
observed in human cortex may be viewed as confirming this prediction [8].

195

0 5 10 15 20 25 30
Test number

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 "

m
o
re

"

model

reference

human

12 16 20

0 5 10 15 20 25 30
Number of objects

0

5

10

15

20

25

30

P
e
rc

e
iv

e
d
 n

u
m

e
ro

si
ty

y=x
x0.83

x0.95

model fits

A

B

Figure 7.5: Relative and absolute estimation of quantity. (A) Two images may
be compared for quantity [32] by computing their embedding and observing their
position along our model’s embedding line: the image that is furthest along the
line is predicted to contain more objects. Here images containing a test number of
objects (see three examples above containing N=12, 16 and 20 objects) are compared
with images containing the reference number of objects (vertical orange dashed
line, N=16). The number of objects in the test image is plotted along the x axis
and the proportion of comparisons that result in a “more” response are plotted on
the y-axis (blue line). Human data from 10 subjects [33] is plotted in green. (B)
The position of images in the embedding space fall along a straight line that starts
with 0, and continues monotonically with an increasing number of objects. Thus,
the position of an image in the embedding line is an estimate for the number of
objects in the scene. Here we demonstrate the outputs of such a model, where we
rescale the embedding coordinate (an arbitrary unit) so that one unit of distance
matches the distance between the “zero” and the “one” clusters. The y-axis represents
such perceived numerosity, which is not necessarily an integer value. The red line
indicates perfect prediction. Each violin plot (light blue) indicates the distribution of
perceived numerosities for a given ground-truth number of objects. The width of
the distributions for the higher counts indicates that perception is subject to errors.
There is a slight underestimation bias for higher numbers, consistent with that seen
in humans [34, 35]. In fact, Krueger shows that human numerosity judgements
(on images with 20 to 400 objects) follow a power function with an exponent of
0.83 ± 0.2. The green line and its shadow depict the range of human numerosity
predictions on the same task. The orange lines are power function fits for seven
models trained in the same fashion as Model B with different random initializations.

196

These number categories are naturally ordered by their position on the embed-
ding line, a fundamental property of numbers. The ability to think about numbers
may be thought of as a necessary, although not sufficient, step towards counting,
addition and subtraction [36, 37]. The dissociation between familiarity with the
first few numbers and the ability to count has been observed in hunter-gatherer
societies [6] suggesting that these are distinct steps in cognition. In addition, we find
that these properties emerge even when the number of objects involved in the action
is random, further relaxing the assumptions needed for our model (Sec. 7.7.6).

Second, instant classification of the number of objects in the scene is enabled by the
emergence of number categories in the embedding, but it is restricted to the first
few integers. This predicts a well-known capability of humans, commonly called
subitization [18, 38].

Third, a linear structure, which we call embedding line, where images are ordered
according to quantity, is an emergent representation. This prediction is strongly
reminiscent of the mental number line which has been postulated in the psychology
literature [39, 40, 41, 42]. The embedding line confers to the model the ability to
estimate quantities both in relative comparisons and in absolute judgments. The
model predicts the ability to carry out relative estimation, absolute estimation, as well
as the tendency to slight underestimation in absolute judgments. These predictions
are confirmed in the psychophysics literature [32, 34].

Fourth, subitization and numerosity estimation extend far beyond the number of
objects used in training. While the model trains itself to classify actions using up to
three objects, subitization extends to 5-8 objects and numerosity estimation extends
to at least thirty, which is as far as we tested. Extrapolating from the training set
is a hallmark of abstraction, which eludes most supervised models [43], yet has
been shown in rhesus monkeys [44]. Consensus in the deep networks literature is
that models interpolate their training set, while here we have a striking example of
generalization beyond the training set.

Fifth, since in our model manipulation teaches perception, one would predict that
children who lack the ability or the drive to manipulate would show retardation
in the development of a number sense. A study of children with Developmental
Coordination Disorder [45] is consistent with this prediction.

197

Sixth, our model predicts that adaptation affects estimation, but not subitzation. This
is because subitization solely relies on classifiers, which allows for a direct estimate
of quantity. Estimation, however, relies on an analog variable, the coordinate along
the embedding line, which requires calibration. These predictions are confirmed in
the psychophysics literature [32, 34].

Seventh, our model predicts the existence of summation units, which have been
documented in the physiology literature [30] and have been postulated in previous
models [46]. It does not rule out the simultaneous presence of other codes, such as
population codes or labeled-line codes [10].

The model is simple and our clustering method is essentially parameter-free. Our
observations are robust with respect to large variations in the dimension of the
embedding, the number of objects in the training set and the tuning parameters of
the clustering algorithm. Yet, the model accounts qualitatively and, to some extent,
quantitatively for a disparate set of observations by psychologists, psychophysicists
and cognitive scientists.

There is a debate in the literature on whether estimation and subitization are supported
by the same mechanisms or separate ones [32, 47]. Our model suggests a solution
that supports both arguments: both perceptions rely on a common representation,
the embedding. However, the two depend on different mechanisms that take input
from this common representation.

It is important to recognize the limitations of our model: it is designed to explore the
minimal conditions that are required to learn several cognitive number tasks, and
abstracts over the details of a specific implementation in the brain. For instance, we
limit the model to vision, while it is known that multiple sensory systems may con-
tribute, including hearing, touch and self-produced actions [48, 49, 50]. Furthermore,
the visual system serves multiple tasks, such as face processing, object recognition,
and navigation. Thus, it is likely that multiple visual maps are simultaneously
learned, and it is possible that our “latent representation” is shared with other visual
modalities [14]. Additionally, we postulate that visually-guided manipulation, and
hence the ability to detect and locate objects, is learned before numbers. Thus, it
would perhaps be more realistic to consider input from an intermediate map where
objects have been already detected and located, and are thus represented as “tokens”,
in visual space, and this would likely make the model’s task easier, perhaps closer
to Model A than to Model B. However, making this additional assumption is not
necessary for our observations.

198

An interesting question is whether object manipulation, which in our model acts as
the supervisory signal during play, may be learned without supervision and before
the learner is able to recognize numbers. Our work sheds no light on this question,
and simply postulates that this signal is available and, importantly, that the agent is
able to discriminate between the three put, take and shake actions. Our model shows
that this simple signal on scenes containing a few objects may be bootstrapped to
learn about integers, and to perform subitization and numerosity estimation in scenes
containing many objects.

Our investigation adds a concrete case study to the discussion on how abstraction may
be learned without explicit supervision. While images containing, say, five objects
will look very different from each other, our model discovers a common property,
i.e. the number of items, which is not immediately available from the brightness
distribution or other scene properties. The mechanism driving such abstraction may
be interpreted as an implicit contrastive learning signal [51], where the shake action
identifies pairs of images that ought to be considered as similar, while the put and
take actions signal pairs of images that ought to be considered dissimilar, hence the
clustering. However, there is a crucial difference between our model and traditional
contrastive learning. In contrastive learning, the similarity and dissimilarity training
signals are pre-defined for each image pair and the loss is designed to achieve an
intended learning goal – to bring the embeddings of similar images together and push
the embeddings of dissimilar images apart. In our model, image pairs are associated
by an action and the network is free to organize the embeddings in any manner that
would be efficient for solving the action prediction task. The learned representation
is surprisingly robust – while the primary supervised task, action classification, does
not generalize well beyond the three objects used in training, the abstractions of
number and quantity extend far beyond it.

7.5 Methods
7.5.1 Network Details
The network we train is a standard deep network [29] composed of two stages. First,
a feature extraction network maps the original image of the scene into an embedding
space (Fig. 7.1A). Second, a classification network takes the embedding of two
sequential images and predicts the action that modified the first into the second
(Fig. 7.1B). Given the fact that the classification network takes the embedding of

199

two distinct images as its input, each computed by identical copies of the feature
extraction network, the latter is trained in a Siamese configuration [26].

The feature extraction network is a 9-layer CNN followed by two fully connected
layers (details in Fig. 7.15A). The first 3 layers of the feature extraction network are
from AlexNet [28] pre-trained on ImageNet [52] and are not updated during training.
The remaining four convolutional layers and two fully connected layers are trained in
our action prediction task.

The dimension of the output of the final layer is a free parameter (it corresponds to
the number of features and to the dimension of the embedding space). In a control
experiment we varied this dimension from one to 256, and found little difference
in the action classification error rates (Fig. 7.3). We settled for a two-dimensional
output for the experiments that are reported here.

The classification network is a two-layer fully connected network that outputs a
three-dimensional one-hot-encoding vector indicating a put, take or shake action
(details in Fig. 7.15B).

Training procedure

The network was trained with a negative log-likelihood loss (NLL loss) function with
a learning rate of 1e-4. The NLL loss calculates error as the -log of the probability
of the correct class. Thus, if the probability of the correct class is low (near 0), the
error is higher. The network was trained for 30 epochs with 30 mini-batches in each
epoch. Each mini-batch was created from a sequence of 180 actions, resulting in 180
image pairs. Thus, the network saw a total of 162,000 unique pairs of images over
the course of training.

We tested for reproducibility by training Model B thirty times with different random
initializations of the network and different random seeds in our dataset generation
algorithm. The embeddings for these reproduced models are shown in Figure 7.7.

Compute

All models were trained on a GeForce GTX TITAN X using PyTorch. Each model
takes at most 20 minutes to train. We train a total of 106 models (including
supplemental experiments).

200

7.5.2 Synthetic Dataset Details
Training sets

We carried out experiments using synthetic image sequences where objects were
represented by randomly positioned squares. The images were 244x244 pixels (px)
in size. Objects were positioned with uniform probability in the image, with the
exception that they were not allowed to overlap and a margin of at least 3px clearance
between them was imposed. We used two different statistics of object appearance:
identical size (15px) and contrast (100%) in the first, and variable size (10px - 30px)
and contrast (9.8% - 100%) in the second (Fig. 7.2). Mean image intensity statistics
for the two training sets are shown in Figure 7.14. The mean image intensity is highly
correlated with the number of objects in the first dataset, while it is ambiguous and
thus not very informative in the second. We elaborate on covariates like mean image
intensity in the following section.

Each training sequence was generated starting from zero objects, and then selecting
a random action (put, take, shake) to generate the next image. The take action is
meaningless when the scene contains zero objects and was thus not used there. We
also discarded put actions when the objects reached a maximum number. This limit
was three for most experiments, but limits of five and eight objects were also explored
(Fig. 7.6).

Test sets

In different experiments we allowed up to eight objects per image (Figs. 7.3, 7.6)
and thirty objects per image (Figs. 7.4, 7.5A, 7.5B) in order to assess whether the
network can generalize to tasks on scenes containing previously unseen numbers of
objects. The first test set (up to 8 objects) was generated following the same recipe
as the training set. The second test (up to 30 objects) set was generated to have
random images with the specified number of objects (without using actions), this test
set is guaranteed to be balanced. In section 7.7.1, we use the 30 object test set to
estimate covariates for numerosity and analyze their impact on task performance.
We were unable to find an image property that would “explain away” the abstraction
of number (Fig. 7.2). We note that a principled analysis of the information that is
carried out by individual object images is still missing from the literature [53] and
this point deserves more attention.

201

7.5.3 Action classification performance
To visualize how well the model was able to perform the action classification task, we
predict actions between pairs of images in our first test set. The error, calculated by
comparing the ground truth actions to the predicted actions, is plotted with respect
to the number of objects in the visual scene at 𝑥𝑡 . 95% Bayesian confidence intervals
with a uniform prior were computed for each data point, and a lower bound on the
number of samples is provided in the figure captions (Figs. 7.3, 7.3, 7.6).

7.5.4 Interpreting the embedding space
We first explored the structure of the embedding space by visualizing the image
embeddings in two dimensions. The points, each one of which corresponds to one
image, are not scattered across the embedding. Rather, they are organized into
a structure that exhibits five salient features: (a) the images are arranged along a
one-dimensional structure, (b) the ordering of the points along the line is (almost)
monotonic with respect to the number of objects in the corresponding images, (c)
images are separated into groups at one end of the embedding, and these groups are
discovered by unsupervised learning, (d) these first few clusters are in one-to-one
correspondence with the first few natural numbers, (e) there is a limit to how many
number-specific clusters are discovered (Fig. 7.4).

To verify that the clusters can be recovered by unsupervised learning we applied a
standard clustering algorithm, and found almost perfect correspondence between
the clusters and the first few natural numbers (Fig. 7.4). The clustering algorithm
used was the default Python implementation of HDBSCAN [54]. HDBSCAN is a
hierarchical, density based clustering algorithm, and we used the euclidean distance
as an underlying metric [55]. HDBSCAN has one main free parameter, the minimum
cluster size, which was set to 90 in Figure 7.4. All other free parameters were left
at their default values. Varying the minimum cluster size between 5 and 95 does
not have an effect on the first few clusters, although it does create variation in the
number and size of the later clusters. Beyond 95, the algorithm finds only three
clusters corresponding to 0, 1 and greater than 1.

One additional structure is not evident from the the embedding and may be recovered
from the action classifier: the connections between pairs of clusters. For any pair of
images that are related by a manipulation, two computations will be simultaneously
carried out; first, the supervised action classifier in the model will classify the action
as either P, T, or S (Fig. 7.3) and, at the same time, the unsupervised subitization

202

classifier (Fig. 7.5A) will assign each image in the pair to the corresponding number-
specific cluster. As a result, each pair of images that is related by a P action provides
a directed link between a pair of clusters (Fig. 7.5A, red arrows), and following
such links one may traverse the sequence of numbers in an ascending order. The
T actions provide the same ordering in reverse (blue arrows). Thus, the clusters
corresponding to the first few natural numbers are strung together like the beads in
a necklace, providing an unambiguous ordering that starts from zero and proceeds
through one, two, etc. (Fig. 7.5 A, B). The numbers may be visited both in ascending
and descending order. As we pointed out earlier, the same organization may be be
obtained more simply by recognizing that the clusters are spontaneously arranged
along a line, which also supports the natural ordering of the numbers [41, 56, 57].
However, the connection between the order of the number concepts, and the actions
of put and take, will support counting, sum and subtraction.

To estimate whether the embedding structure is approximately one dimensional and
linear in higher dimensions we computed the one-dimensional linear approximation to
the embedding line, and measured the average distortion of using such approximation
for representing the points. More in detail, we first defined a mean-centered
embedding matrix with M points and N dimensions, each point corresponding to
the embedding of an image. We then computed the best rank 1 approximation to
the data matrix by computing its singular value decomposition (SVD) and zeroing
all the singular values beyond the first one. If the embedding is near linear, this
rank 1 approximation should be quite similar to the original matrix. To quantify
the difference between the original matrix and the approximation, we calculated the
element-wise residual (the Frobenius norm of the difference between the original
matrix and the approximation), then computed the ratio of the Frobenius norm of
the residual matrix and the Frobenius norm of the original matrix. The nearer the
ratio is to 0, the smaller the residual, and the better the rank 1 approximation. We
call this ratio the linear approximation error, we show this error compared to some
embeddings in Figure 7.7. We computed the embedding for dimensions 8, 16, 64,
and 256, (one experiment each) and found ratios of 0.702%, 2.23%, 2.77%, and
2.24%, suggesting that they are close to linear.

7.5.5 Estimating relative quantity
We can use the perceived numerosity to reproduce a common task performed in
human psychophysics. Subjects are asked to compare a reference image to a test
image and respond in a two-alternative forced choice paradigm with “more” or “less.”

203

We perform the same task using the magnitude of the embedding as the fiducial
signal. The model responds with more if the embedding of the test image has a larger
perceived numerosity than the reference image. The psychometric curves generated
by our model are presented in Figure 7.5A and match qualitatively the available
psychophysics [32, 35].

7.5.6 Estimating absolute quantity
As described above, the clusters are spaced regularly along a line and the points in
the embedding are ordered by the number of objects in the corresponding images
(Fig. 7.5). We postulate that the number of objects in an image is proportional to the
distance of that image’s embedding from the embedding of the empty image. Given
the linear structure, any one of the embedding features, or their sum, may be used to
estimate the position along the embedding line. In order to produce an estimate we
use the embedding of the “zero” cluster as the origin. The zero cluster is special, and
may be detected as such without supervision, because all its images are identical and
thus it collapses to a point. The distance between “zero” and “one”, computed as the
pairwise distance between points belonging to the corresponding clusters, provides a
natural yardstick. This value, also learned without further supervision, can be used
as a unit distance to interpret the signal between 0 and n. This estimate of numerosity
is shown in Figure 7.5B against the actual number of objects in the image. We draw
two conclusions from this plot. First, our unsupervised model allows an estimate of
numerosity that is quite accurate, within 10-15% of the actual number of objects.
Second, the model produces a systematic underestimate, similar to what is observed
psychophysically in human subjects [34].

7.6 Dataset & Code Availability
All data generated or analysed during this study can be found here. The data can also
be generated with the code. Code is available here.

7.6.1 Acknowledgements
The California Institute of Technology and the Simons Foundation (Global Brain
grant 543025 to PP) generously supported this work. Daniel Israel wrote the code for
the jitter and action size supplemental experiments. We are very grateful to a number
of colleagues who provided references to the literature and insightful suggestions:
Alessandro Achille, Katie Bouman, David Burr, Eli Cole, Jay MacClelland, Markus
Meister, Mario Perona, Giovanni Paolini, Stefano Soatto, Alberto Testolin, Kate
Stevenson, Doris Tsao, Yisong Yue and two anonymous referees.

https://data.caltech.edu/records/achmg-dc274
https://github.com/nkondapa/ManipulationToNumberSense

204

Appendix
7.7 Additional Experiments
7.7.1 Controlling for spurious correlates of “number”
Do image properties, other than the abstraction of “object number”, drive the quantity
estimate of our model? Many potential confound variables, such as the count of
pixels that are not black, are correlated with object number and might play a role in
the model’s ability to estimate the number of objects in the scene. If that were the
case, one might argue that our model is not learning the abstraction of “number”, but
rather learning to measure image properties that are correlated with number.

We controlled for this hypothesis by exploiting the natural variability of our test
set images. We explored three image properties that correlate with the number of
objects and might thus be exploited to estimate the number of objects: (a) overall
image brightness, (b) the area of the envelope of the objects in the image, and (c) the
total number of pixels that differ from the background. Since objects in training set
B vary both in size and in contrast, these three variables are not deterministically
related to object number and thus, we reason, confound variable fluctuations ought
to affect error rates independently of the number of objects.

We focused on close-call relative estimate tasks (e.g. 16 vs 18 objects), where errors
are frequent both for our model and for human subjects, and, while holding the
number of objects constant in each of the two scenes being compared, we studied the
behavior of error rates as a function of fluctuations in the confound variables. One
would expect more errors when comparing image pairs where quantities that typically
correlate with the number of objects are anticorrelated in the specific example
(Fig. 7.1). Conversely, one would expect lower error rates when the confound
variables are positively correlated with number.

In Fig. 7.2 error rates are plotted vs each one of the confound variables when the n. of
objects is held constant. We could not find large systematic biases even for extreme
variations in the confound variables. In conclusion, we do not find support for the
argument that any of the confound variables we studied is implicated significantly in
the estimate of quantity.

7.7.2 Interpreting the Embedding Space
Does the dimension of the embedding space influence the action classification error?
We wondered what is the effect of this free parameter on the model’s performance.
We explored this question by training our model repeatedly with the same training

205

0.408

In
te

ns
ity

Numerosity : 14

0.000

Numerosity : 16

-0.309

Numerosity : 18

0.129

Su
m

m
ed

Ob
je

ct
 A

re
as

0.000 -0.286

0.201

Co
nv

ex
 H

ul
l

0.000 -0.269

Figure 7.1: Sample images where covariates are anticorrelated with number.
We sample images where the three covariates we study (one covariate per row) are
anticorrelated with the number of objects. The number below each plot shows the
fractional difference from the value of the covariate in the reference image (center
column). For example, in the top right, there is a 30.9% decrease in average image
intensity when compared to the intensity in the reference image (center column).
Another example: in the last row, the scene with 18 objects has a 26.9% smaller
convex hull than the corresponding scenes with 14 and 16 objects. For each row,
from the lowest numerosity to the highest, the model predicts a perceived numerosity
of 12.82, 14.01, and 16.60 (Intensity); 13.21, 14.43, 15.55 (Summed Object Area);
13.22, 15.28, 16.44 (Convex Hull). Thus, our model correctly classifies the relative
numerosity for each one of the image pairs that may be formed from each row (our
model slightly underestimates numerosity, see Figure 7.5B.) Image pairs formed this
way are used in the experiments shown in Figure 7.2, where this manipulation was
repeated multiple times and confidence intervals were computed.

206

0.0 1.5 3.0 4.5
0.6
0.7
0.8
0.9
1.0

Reference : 3

1
2
4
5

0 1 2 3

1
2
4
5

0.0 2.5 5.0 7.5

1
2
4
5

0.6 0.0 0.6 1.2 1.8
0.6
0.7
0.8
0.9
1.0

Reference : 9

7
8
10
11

0.4 0.0 0.4 0.8 1.2

7
8
10
11

0.4 0.0 0.4 0.8 1.2

7
8
10
11

0.4 0.0 0.4 0.8
0.6
0.7
0.8
0.9
1.0

Reference : 16

14
15
17
18

0.25 0.00 0.25 0.50 0.75

14
15
17
18

0.2 0.0 0.2 0.4

14
15
17
18

0.3 0.0 0.3 0.6
Median Binned Intensity

0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

Reference : 24

22
23
25
26

0.2 0.0 0.2 0.4
Median Binned Summed

Object Areas

22
23
25
26

0.15 0.00 0.15 0.30
Median Binned Convex Hull

22
23
25
26

Figure 7.2: Effects of covariates of numerosity. Three covariates of the number of
objects in the scene are explored for possible influence on our model’s estimate of
numerosity. These are average image intensity (left column), the sum of the areas of
the objects (middle column), and the area of the objects’ convex hull (right column).
Each plot shows the error rates in a relative quantity discrimination task like the one
in Figure 7.5A. We generate a test set of 4650 test images, 150 images per number
of objects. For each plot we chose reference images containing respectively 3, 9,
16 and 24 objects (rows of the figure) and had our model judge relative numerosity
w.r. to test images containing a different but similar number of objects (indicated in
the legend and associated with colors). Given the stochastic nature of the images,
the covariates vary over a wide range for each number of objects (see examples in
Fig. 7.1). For each number of objects, we plot the model’s error rates (y axis) as a
function of the value of the covariate quantity (x axis) which is expressed as fractional
difference from the reference image (the values are binned). Shadows display 95%
Bayesian confidence intervals(𝑁 > 100, where N is bin size). Horizontal error
lines indicate no correlation of numerosity estimation with the covariate quantity. A
few lines have slopes that differ slightly from zero indicating a possible correlation.
However, some of the slopes indicate a negative correlation (i.e. the better the signal,
the higher the error rate). From this evidence it is difficult to conclude that that the
model is exploiting anything but “number” to estimate numerosity.

207

20 21 23 24 26 28

Embedding Dimension

10 2

10 1

Er
ro

r

Take
Shake
Put

Figure 7.3: Action classification error as a function of embedding dimension.
Classification errors for Model B, averaged over the number of items in the scene (0 -
3) are plotted as a function of the dimension of the embedding (a free parameter in
our model). Since the effect is minimal we arbitrarily picked a dimension of two for
ease of visualization (Figs. 7.4, 7.5). The shadows show 95% Bayesian confidence
intervals (287 ≤ N ≤ 355).

images, and varying the dimension of the embedding (Fig. 7.1). Figure 7.3 shows
that the effect of the embedding dimension is negligible. This was initially surprising
to us. An explanation may be found in the fact that learning produces an embedding
that is organized as a line (see Fig 7.4 and Sec. 7.7.4).

Next, we explored the structure of the embedding space in the region where images
containing 0-3 objects (the training range) are represented. As discussed in the main
text we find that the embedding is organized into clusters (Fig. 7.5 (A,B)). Each
cluster contains embeddings of images with the same number of objects. For each
pair of images that were generated by a put action we drew a red arrow connecting
the corresponding embeddings. We used blue arrows for take pairs. It is clear from
the figure that by following the red arrows one may visit numbers in increasing order:
0-1-2-3 and vice-versa for blue arrows, i.e. the embedding that is produced by our
model supports counting up and down.

7.7.3 Varying Training Limit
In our main experiment we trained our model to classify actions with scenes
containing from zero to three objects. Does this choice influence qualitatively or
quantitatively our observations?

To explore this question we re-trained our model using images that were generated
with a total number of three, five and eight objects. As expected, we find that adding

208

200 400 600 800 1000

dim 1

200

400

600

800

1000

1200

d
im

 2

A
0

5

10

15

20

25

30

200 400 600 800 1000

dim 1

200

400

600

800

1000

1200

B
X

A0

B0

C0

D0

E0

F0

G0

H0

I0

C

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of objects

A0

B0

C0

D0

F0

E0

G0

I0

H0

C
lu

st
e
r

la
b

e
ls

0

1

2

3

4

Figure 7.4: The embedding space for Model A. We reproduce Fig. 7.4 for model
A. (A) Similar to Model B, we observe a monotonically increasing line with well
seperated groups at lower quantities. (B) We apply an unsupervised clustering
algorithm to the embeddings. Each cluster that is discovered is denoted by a specific
color. The cluster X, denoted by black crosses, indicates points that the clustering
algorithm excluded as outliers. (C) The confusion matrix shows that the clusters that
are found by the clustering algorithm correspond to numbers. Images containing 0 -
7 objects are neatly separated into individual clusters; after that images are collected
into a large group that is not in one-to-one correspondence with the number of objects
in the image. The color scale is logarithmic (base 10).

more objects to the training images reduces the action classification error for image
pairs with corresponding number of objects (Fig. 7.6). We find no change in the
linearity of the embeddings, however, the number of clusters seems to increase with
the training limit (Figs. 7.7A,B). This increase in clusters that corresponds with
training limit likely explains the improvement in action classification performance.

7.7.4 Reproducibility of the 1D structure of the embedding
The line-like organization of our embedding space is a striking feature. Is this the
result of chance, or is this a robust feature that may be reproduced reliably?

We explored this question by repeating our experiments, varying each the random
seed used to generate the training images, as well as the random seed used to initialize
the model perception network’s weights. We show all the embeddings we obtained
in Fig. 7.7. Each time we measured how line-like are the embeddings and we report
the deviation from an exact line as a percent error below each embedding. We found

209

10 1 100 101 102 103

Euclidean distance

0.0

100.0

200.0

300.0

400.0

500.0

C
o
u
n
t Take

Put

Shake

10 1 100 101 102 103

Euclidean distance

0.0

200.0

400.0

600.0

800.0

C
o
u
n
t Take

Put

Shake

A B

C D

Figure 7.5: Embeddings with topology for Model A and Model B. A close-up look
at the embedding space within the training limit. The left side are plots from Model
A and the right side from Model B. (A), (B) Unsupervised clustering is performed
on the embedding space. Each embedding is colored by it’s cluster. Each cluster A0
- D0 correspond to images with numerosities 0 - 3. The clusters are well-separated.
The “zero” clusters, for both Model A and Model B, are immediately recognizable
as they have no variance (orange dot). As numerosity increases, Model A clusters
remain well-separated, whereas Model B clusters begin to come closer to each other.
We also overlay a topology from the training actions (P), (T), (S). Blue arrows joining
a pair of points represent take actions, red arrows represent put actions. Arrows
representing shake actions are under the point clouds and are mostly not visible. (C),
(D) Distances between pairs of points in the embedding space are histogrammed
by action. The histograms show the clearly different distribution for shake actions
in comparison to take and put actions. Furthermore, the overlap between shake
and non-shake actions is smaller for Model A than Model B, explaining the higher
performance in action classification for Model A.

210

1 2 3 4 5 6 7 8
Number of Objects before Action

10 4

10 3

10 2

10 1

100

Er
ro

r

Take
(3)
(5)
(8)

0 1 2 3 4 5 6 7 8
10 4

10 3

10 2

10 1

100 Shake

0 1 2 3 4 5 6 7
10 4

10 3

10 2

10 1

100 Put

Figure 7.6: Effect of modifying the training limit. (see also Fig. 7.3) In order to
explore the effect of the number of objects during training, we trained the network
to predict actions using a maximum of 3, 5, or 8 objects with images like those in
dataset B (Fig. 7.2B). We tested the network on 8 objects. Each panels shows errors
on the training task and are in the same style as Figure 7.3. The line-breaks and
dashed lines mark where the training limit ends and the testing region begins, and the
legend shows the training limit in parentheses. The shadows provide 95% confidence
intervals (287 ≤ N ≤ 355). As expected, the error is lower when the training limit is
higher.

that the deviations from a perfect line are very small, and most look perfectly linear
with a few exceptions where we see slight kinks in the line.

7.7.5 Restricting Dataset Variability
In our main experiment the arrangement of the objects in the scene varied randomly
between put, take and shake actions. The size and contrast were varied as well. This
was because we did not wish to presume that the agent (a child) playing with the
objects would have to be careful with their motions. Furthermore we did not wish to
presume that lighting conditions, and thus image contrast, and object pose, and thus
their apparent size, would be preserved during the play session. However, one may
suspect that scene randomness could help the model abstract the concept of “number”
without being distracted by other factors such as object placement, contrast and size.

We explored the effect of randomness by modifying the process that generates data for
Model B. In dataset B, object properties (area, intensity) are completely randomized
before and after an action (Fig. 7.2B). We thus constructed a new dataset (Fig. 7.8),
where we restricted the randomness before and after an action by reducing the amount
of change in an object’s area and intensity to a small amount of jitter. However,
we still randomize object position, which we find is fundamental to learning a
generalizable model of numerosity. We find that even after reducing object variation,

211

Error: 0.1% Error: 0.1% Error: 2.0% Error: 2.0% Error: 2.2% Error: 0.0%

Error: 2.1% Error: 1.1% Error: 0.9% Error: 0.3% Error: 0.2% Error: 0.1%

Error: 0.2% Error: 0.3% Error: 0.3% Error: 0.7% Error: 0.2% Error: 0.2%

Error: 2.6% Error: 0.2% Error: 0.7% Error: 2.3% Error: 1.8% Error: 1.8%

Error: 0.1% Error: 0.1% Error: 0.0% Error: 0.3% Error: 0.6% Error: 0.3%

800 600 400 200
dim 1

100

200

300

400

500

600

d
im

 2

5

10

15

20

25

30

200 100 0
dim 1

200

100

0

100

200

d
im

 2

5

10

15

20

25

30

A B

C

Figure 7.7: Miscellaneous embedding spaces. (see also Fig. 7.4) (A) Embedding
space for the network trained on dataset B, with up to five objects. (B) Embedding
space for the network trained on dataset B, with up to eight objects. (C) Embedding
spaces for 30 different random initializations. We repeated the training procedure 30
times on different random initializations of dataset B, with a training limit of 3 objects.
Qualitatively, 21 embedding spaces look like a straight line, six initializations present
a slight kink in the line, and three instances either present a large kink or two kinks.
The linear approximation error (Methods - Interpreting the Embedding Space) is
provided above each subplot and measures the approximate deviation from a purely
linear model. An error below 4% predicts an approximately linear embedding line.

the model has learned has the same properties as Model B (Fig. 7.9). However,
learning is more sensitive to the initial seed (Fig. 7.10). We refer to this dataset as
the jitter dataset and model’s trained by this dataset as Jitter Models.

7.7.6 Imprecise Action Sizes
Will our model learn the abstraction of “number” even when the put and take actions
will place or remove an unpredictable random number of objects?

212

S P S T

Figure 7.8: Jitter Datasets. In Jitter Datasets, we restrict the change in size
and contrast an object may undergo due to an action. After each action, the size
(diagonal) of an object will be allowed to jitter by up to 3 pixels and the contrast by
±0.02% of the maximum contrast. We find that these small perturbations in object
representations are sufficient to recreate similar results to those seen with Model B.

100 200 300 400 500 600 700 800 900
dim 1

20

40

60

80

100

di
m

 2

A
0
5
10
15
20
25
30

100 200 300 400 500 600 700 800 900
dim 1

20

40

60

80

100
B

X
A0
B0
C0
D0
E0
F0

C

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of objects

A0

B0

C0

D0

F0

E0

Cl
us

te
r l

ab
el

s

0

1

2

3

4

Figure 7.9: Properties of Jitter Models. We find that the important properties of
the Model B representation arise with Jitter Models. The model representations are
linear, monotonic, with the early numbers easily separable. We set the minimum
cluster size to 30 (HDBSCAN), in order to produce the most concise plots. Note the
Jitter Model representations are more sensitive to minimum cluster size.

We explored this question by randomizing the number of objects that each action
affects in the range 0-3, as opposed to exactly 1 as in the main experiment. We
capped the maximum number of objects to 3, like previous experiments. We find
that while precise actions help in building distinct clusters in the subitization range,
it is not necessary to retain the important properties of the generalizable number
line. We refer to this dataset as the imprecise actions dataset (Fig. 7.11) and model’s
trained by this dataset as Imprecise Action Models. We find that all the properties of
the original model retained (Fig. 7.12) and that the model is reproducible (Fig. 7.13).

213

Error: 0.1% Error: 1.0% Error: 0.3% Error: 0.7% Error: 0.3% Error: 0.2%

Error: 0.2% Error: 0.0% Error: 0.1% Error: 0.3% Error: 0.2% Error: 4.7%

Error: 0.1% Error: 0.6% Error: 0.0% Error: 0.5% Error: 1.5% Error: 0.3%

Error: 0.9% Error: 0.1% Error: 7.4% Error: 2.7% Error: 0.0% Error: 0.1%

Error: 2.3% Error: 8.9% Error: 0.1% Error: 0.4% Error: 2.3% Error: 1.1%

Figure 7.10: Reproducibility of Jitter Models. We vary the initial seed to determine
how reproducible the results are. We find model’s trained with the jitter dataset
learn mostly linear representations, however, certain seeds do result in large kinks.
This indicates that visual variability between scenes will help the model learn the
abstraction of number.

P S P T

Figure 7.11: Imprecise Action Datasets. In this dataset, we allow the number of
objects taken or placed during an action to be 0-3 (limited by the number of objects
in the visual scene). The maximum number of objects is still set to 3. This dataset
mimics a situation in which the agent is imprecise with their actions and does not
always select one object. The object’s size and contrast are randomized between
actions (like in dataset B).

214

75 50 25 0 25 50 75 100
dim 1

250

200

150

100

50

0

50

di
m

 2

A

0
5
10
15
20
25
30

75 50 25 0 25 50 75 100
dim 1

250

200

150

100

50

0

50

100
B

X
A0
B0
C0
D0
E0
F0
G0
H0
I0

C

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of objects

A0

B0

C0

D0

F0

H0

I0

E0

G0

Cl
us

te
r l

ab
el

s
0

1

2

3

4

Figure 7.12: Properties of Imprecise Action Models. We find that the important
properties of the Model B representation arise with Imprecise Action Models. The
model representations are linear, monotonic, with the early numbers easily separable.
However, the separability of the early clusters is rougher than with precise action
sizes. We set the minimum cluster size to 50 (HDBSCAN), in order to produce
the most concise plots. Note the Imprecise Action Model representations are more
sensitive to minimum cluster size.

Error: 0.7% Error: 0.2% Error: 1.8% Error: 0.1%

Error: 0.6% Error: 0.8% Error: 0.4% Error: 0.0%

Figure 7.13: Reproducibility of Imprecise Action Models. We vary the initial
seed to determine how reproducible the results are. We find model’s trained with the
imprecise action sizes learn mostly linear representations.

215

7.8 Dataset Statistics

0 1 2 3
Number of objects

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
ea

n
im

ag
e

in
te

ns
ity

A

0 1 2 3
Number of objects

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
B

0 1 2 3
Number of objects

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
ea

n
im

ag
e

in
te

ns
ity

C

0 1 2 3
Number of objects

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
D

Figure 7.14: Training set statistics. (A) In dataset A (Fig. 7.2A) objects have
the same size and contrast. Thus, the number of objects predicts the mean image
intensity and vice-versa. (B) Objects in dataset B (Fig. 7.2B) have variable sizes and
variable contrast, thus mean image intensity is not sufficient to predict the number of
objects. (C) Objects in the jitter datasets (Fig. 7.8) have a restricted, but variable
size and contrast. We see the image statistics are similar to that of dataset B, but
have a smaller amount of variability. (D) Objects in the imprecise actions datasets
(Fig. 7.8) have random numbers of objects manipulated in an action. We see the
image statistics are effectively the same as that of dataset B.

216

7.9 Network Details

Action
Classification

Network

Pre-Trained
(Fixed) AlexNet

LINEAR [6272, 2]

 + PReLU

LINEAR [2, 2]

EMBEDDING (Zt)

MAXPOOL 2D [2x2 - s2]

CONV 2D [3x3 - s1, 128]

 + PReLU

MAXPOOL 2D [2x2 - s2]

CONV 2D [5x5 - s1, 256]

+ PReLU

CONV 2D [5x5 - s1, 192]

 + ReLU

MAXPOOL 2D [3x3 - s2]

CONV 2D [11x11 - s4, 64]

 + ReLU

IMAGE

244x244x3

Learned
CNN

EMBEDDING (Zt+1)

PReLU + LINEAR [6, 256]

- ++

LINEAR [256, 3] +

LOG(SOFTMAX)

P S T

EMBEDDING (Zt)

NLL LOSS

A B

Figure 7.15: Detailed diagram of the network structure.
(A) The feature extraction / embedding network. The gray layers are pre-trained on
ImageNet [28, 52] and remain fixed throughout the course of training. The orange
layers are randomly seeded and trained simultaneously with the classifier in (B).
The details of the layer are described within the brackets. For example, [11x11 -
s4, 64] is an 11x11 kernel with a stride of 4 and 64 filters. During a training step,
the embedding network accepts an image (𝑥𝑡) of the visual scene and generates a
lower-dimensional feature embedding (𝑧𝑡) of the visual scene. An action: (P), (T),
or (S) modifies the visual scene and the “after” image (𝑥𝑡+1) is passed through the
embedding network as well. The outputs of the embedding network, (𝑧𝑡) and (𝑧𝑡+1)
are treated as inputs to the action classification network. The shared embedding
network is trained together with the classifier (B), in a Siamese configuration. (B)
The action classification network is a 2-layer classifier network and is composed of
two fully connected layers with a log-softmax transformation on the output. The
input is the representation of the visual scene before and after an action is performed.
The negative log-likelihood (NLL) loss function is used to train both the action
classification network and the embedding network simultaneously. An overview of
the entire training paradigm is shown in Figure 7.1.

217

References

[1] Neehar Kondapaneni and Pietro Perona. “A number sense as an emergent
property of the manipulating brain.” In: Scientific Reports 14.1 (2024),
p. 6858. url: https://www.nature.com/articles/s41598-
024-56828-2.

[2] Fei Xu, Elizabeth S Spelke, and Sydney Goddard. “Number sense in human
infants.” In: Developmental science 8.1 (2005), pp. 88–101.

[3] Stanislas Dehaene. The number sense: How the mind creates mathematics.
OUP USA, 2011.

[4] Pooja Viswanathan and Andreas Nieder. “Neuronal correlates of a visual
“sense of number” in primate parietal and prefrontal cortices.” In: Proceedings
of the National Academy of Sciences 110.27 (2013), pp. 11187–11192.

[5] Peter Gordon. “Numerical cognition without words: Evidence from Amazo-
nia.” In: Science 306.5695 (2004), pp. 496–499.

[6] Pierre Pica et al. “Exact and approximate arithmetic in an Amazonian indigene
group.” In: Science 306.5695 (2004), pp. 499–503.

[7] Stanislas Dehaene et al. “Sources of mathematical thinking: Behavioral and
brain-imaging evidence.” In: Science 284.5416 (1999), pp. 970–974.

[8] Ben M Harvey et al. “Topographic representation of numerosity in the human
parietal cortex.” In: Science 341.6150 (2013), pp. 1123–1126.

[9] Andreas Nieder and Stanislas Dehaene. “Representation of number in the
brain.” In: Annual review of neuroscience 32 (2009), pp. 185–208.

[10] Andreas Nieder. “The neuronal code for number.” In: Nature Reviews Neuro-
science 17.6 (2016), p. 366.

[11] Dmitry Kobylkov et al. “Number neurons in the nidopallium of young domestic
chicks.” In: Proceedings of the National Academy of Sciences 119.32 (2022),
e2201039119. doi: 10.1073/pnas.2201039119. eprint: https:
//www.pnas.org/doi/pdf/10.1073/pnas.2201039119.
url: https://www.pnas.org/doi/abs/10.1073/pnas.
2201039119.

[12] Ivilin Stoianov and Marco Zorzi. “Emergence of a ‘visual number sense’
in hierarchical generative models.” In: Nature neuroscience 15.2 (2012),
pp. 194–196.

[13] Marco Zorzi and Alberto Testolin. “An emergentist perspective on the origin
of number sense.” In: Philosophical Transactions of the Royal Society B:
Biological Sciences 373.1740 (2018), p. 20170043.

[14] Khaled Nasr, Pooja Viswanathan, and Andreas Nieder. “Number detectors
spontaneously emerge in a deep neural network designed for visual object
recognition.” In: Science advances 5.5 (2019), eaav7903.

https://www.nature.com/articles/s41598-024-56828-2
https://www.nature.com/articles/s41598-024-56828-2
https://doi.org/10.1073/pnas.2201039119
https://www.pnas.org/doi/pdf/10.1073/pnas.2201039119
https://www.pnas.org/doi/pdf/10.1073/pnas.2201039119
https://www.pnas.org/doi/abs/10.1073/pnas.2201039119
https://www.pnas.org/doi/abs/10.1073/pnas.2201039119

218

[15] Gwangsu Kim et al. “Visual number sense in untrained deep neural networks.”
In: Science Advances 7.1 (2021), eabd6127.

[16] Mengting Fang et al. “Can a recurrent neural network learn to count things?”
In: CogSci. 2018.

[17] Silvester Sabathiel, James L McClelland, and Trygve Solstad. “Emerging
Representations for Counting in a Neural Network Agent Interacting with a
Multimodal Environment.” In: Artificial Life Conference Proceedings. MIT
Press. 2020, pp. 736–743.

[18] W Stanley Jevons. “The power of numerical discrimination.” In: Nature 3.67
(1871), pp. 281–282.

[19] Manuela Piazza et al. “Are subitizing and counting implemented as separate
or functionally overlapping processes?” In: Neuroimage 15.2 (2002), pp. 435–
446.

[20] Yosef Singer et al. “Sensory cortex is optimized for prediction of future input.”
In: Elife 7 (2018), e31557.

[21] David H Hubel and Torsten N Wiesel. “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex.” In: The Journal of
physiology 160.1 (1962), p. 106.

[22] Rüdiger Von der Heydt, Esther Peterhans, and Gunter Baumgartner. “Illu-
sory contours and cortical neuron responses.” In: Science 224.4654 (1984),
pp. 1260–1262.

[23] Doris Y Tsao et al. “A cortical region consisting entirely of face-selective
cells.” In: Science 311.5761 (2006), pp. 670–674.

[24] Doris Y Tsao et al. “Faces and objects in macaque cerebral cortex.” In: Nature
neuroscience 6.9 (2003), pp. 989–995.

[25] Chou P Hung et al. “Fast readout of object identity from macaque inferior
temporal cortex.” In: Science 310.5749 (2005), pp. 863–866.

[26] Jane Bromley et al. “Signature verification using a “siamese” time delay
neural network.” In: Advances in neural information processing systems. 1994,
pp. 737–744.

[27] Yann LeCun et al. “Gradient-based learning applied to document recognition.”
In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks.” In: Advances in neural
information processing systems. 2012, pp. 1097–1105.

[29] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” In:
Nature 521.7553 (2015), pp. 436–444.

219

[30] Jamie D Roitman, Elizabeth M Brannon, and Michael L Platt. “Monotonic
coding of numerosity in macaque lateral intraparietal area.” In: PLoS Biol 5.8
(2007), e208.

[31] Max Wertheimer. Laws of organization in perceptual forms. Kegan Paul,
Trench, Trubner & Company, 1938.

[32] David Burr and John Ross. “A visual sense of number.” In: Current biology
18.6 (2008), pp. 425–428.

[33] Paula A Maldonado Moscoso et al. “Adaptation to hand-tapping affects
sensory processing of numerosity directly: evidence from reaction times
and confidence.” In: Proceedings of the Royal Society B 287.1927 (2020),
p. 20200801.

[34] Véronique Izard and Stanislas Dehaene. “Calibrating the mental number line.”
In: Cognition 106.3 (2008), pp. 1221–1247.

[35] Lester E Krueger. “Single judgments of numerosity.” In: Perception &
Psychophysics 31.2 (1982), pp. 175–182.

[36] Lisa Feigenson, Stanislas Dehaene, and Elizabeth Spelke. “Core systems of
number.” In: Trends in cognitive sciences 8.7 (2004), pp. 307–314.

[37] Stanislas Dehaene. “Origins of mathematical intuitions: The case of arith-
metic.” In: Annals of the New York Academy of Sciences 1156.1 (2009),
pp. 232–259.

[38] David Burr, Giovanni Anobile, and Marco Turi. “Adaptation affects both high
and low (subitized) numbers under conditions of high attentional load.” In:
Seeing and Perceiving 24.2 (2011), pp. 141–150.

[39] Frank Restle. “Speed of adding and comparing numbers.” In: Journal of
Experimental Psychology 83.2p1 (1970), p. 274.

[40] Stanislas Dehaene, Serge Bossini, and Pascal Giraux. “The mental representa-
tion of parity and number magnitude.” In: Journal of experimental psychology:
General 122.3 (1993), p. 371.

[41] Stanislas Dehaene et al. “Arithmetic and the brain.” In: Current opinion in
neurobiology 14.2 (2004), pp. 218–224.

[42] Rosa Rugani et al. “Number-space mapping in the newborn chick resembles
humans’ mental number line.” In: Science 347.6221 (2015), pp. 534–536.

[43] Andrew Trask et al. “Neural arithmetic logic units.” In: Advances in neural
information processing systems 31 (2018).

[44] Jessica F Cantlon and Elizabeth M Brannon. “Shared system for ordering
small and large numbers in monkeys and humans.” In: Psychological science
17.5 (2006), pp. 401–406.

220

[45] Alice Gomez et al. “Mathematical difficulties in developmental coordination
disorder: Symbolic and nonsymbolic number processing.” In: Research in
Developmental Disabilities 43 (2015), pp. 167–178.

[46] Tom Verguts and Wim Fias. “Representation of number in animals and
humans: A neural model.” In: Journal of cognitive neuroscience 16.9 (2004),
pp. 1493–1504.

[47] Samuel J Cheyette and Steven T Piantadosi. “A unified account of numerosity
perception.” In: Nature Human Behaviour (2020), pp. 1–8.

[48] Marie Amalric, Isabelle Denghien, and Stanislas Dehaene. “On the role of
visual experience in mathematical development: Evidence from blind math-
ematicians.” In: Developmental cognitive neuroscience 30 (2018), pp. 314–
323.

[49] Virginie Crollen and Olivier Collignon. “How visual is the number sense?
Insights from the blind.” In: Neuroscience & Biobehavioral Reviews (2020).

[50] Giovanni Anobile et al. “A Sensorimotor Numerosity System.” In: Trends in
Cognitive Sciences (2020).

[51] Raia Hadsell, Sumit Chopra, and Yann LeCun. “Dimensionality reduction by
learning an invariant mapping.” In: 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06). Vol. 2. IEEE. 2006,
pp. 1735–1742.

[52] Jia Deng et al. “Imagenet: A large-scale hierarchical image database.” In:
2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255.

[53] Alberto Testolin et al. “Visual sense of number vs. sense of magnitude in
humans and machines.” In: Scientific reports 10.1 (2020), pp. 1–13.

[54] Leland McInnes, John Healy, and Steve Astels. “hdbscan: Hierarchical density
based clustering.” In: Journal of Open Source Software 2.11 (2017), p. 205.
doi:10.21105/joss.00205. url:https://doi.org/10.21105/
joss.00205.

[55] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. “Density-based
clustering based on hierarchical density estimates.” In: Pacific-Asia conference
on knowledge discovery and data mining. Springer. 2013, pp. 160–172.

[56] Stanislas Dehaene and Laurent Cohen. “Towards an anatomical and functional
model of number processing.” In: Mathematical cognition 1.1 (1995), pp. 83–
120.

[57] Marco Zorzi, Konstantinos Priftis, and Carlo Umiltà. “Neglect disrupts the
mental number line.” In: Nature 417.6885 (2002), pp. 138–139.

https://doi.org/10.21105/joss.00205
https://doi.org/10.21105/joss.00205
https://doi.org/10.21105/joss.00205

Part III

Conclusion

221

222

C h a p t e r 8

CONCLUSION

The work in this thesis has explored various aspects of aligning and comparing data
representations with a few different goals in mind.

8.1 A Step Towards Learning from AI
Learning from AI, aligning human mental representations with those of the model,
is driven by the expectation that AI will surpass human capabilities, prompting a
need to understand and learn from it. The introduction outlined core challenges in
building automated teaching systems to facilitate this process.

In Chapter 2, we introduced an initial approach to tracing visual knowledge as human
learners engaged in a visual categorization task. However, there is still much to
be done before such systems can reliably estimate student knowledge in automated
teaching contexts. A major obstacle is the surprising scarcity of datasets capturing
long-term human learning of visual categories. Despite visual categorization being
an extremely common task, for instance, naturalists identifying species, medical
trainees diagnosing conditions, or geo-guessers locating countries, large-scale datasets
tracking visual learning over time are virtually nonexistent. Building such a dataset
would benefit not only automated teaching and AI explanation systems, but also the
field of visual cognition.

Chapters 3 and 4 investigated methods for comparing two representations of the same
input data, with the goal of understanding how differences in representation might
explain variations in model behavior. In the context of explainable AI, this introduces
a new challenge: can we develop techniques that enable users to anticipate when two
models will behave differently on a downstream task? While current methods show
promise, further research is needed to build tools that demonstrably achieve this
goal. While comparing model representations will be a useful application of such
methods, I am most excited about applying these methods to compare human and
model representations. In Chapter 5, I explore possible paths towards this goal. For
example, as knowledge tracing advances, it may soon be possible to directly contrast
human representations with model representations, revealing concepts that models
have discovered but students have missed.

223

These insights could help surface unknowns — echoing how educators diagnose and
address conceptual misunderstandings.

8.2 Aligning the Interface Between Models
In Chapter 6, we aligned the text and visual inputs for a powerful visual foundation
model. We found that this relatively small change made a dramatic difference in
overall model performance. The critical finding came from a qualitative inspection
of the interface between the text model that processed the textual inputs and the
vision model that generated the outputs. As our methods trend towards complex
combinations of pre-trained foundation models, it is critical that we carefully assess
if we have successfully aligned the different components of our system to achieve the
best performance possible.

8.3 Using Aligned Models to Make Hypotheses about Biological Intelligence
Chapter 7 explores a biologically inspired mechanism for learning numerosity in
synthetic visual scenes. While previous work had shown the presence of numerosity
sensitive neurons in artificial neural networks, we noticed that these methods
implicitly assumed a supervised mechanism for recruiting these neurons to support
counting related behaviors. Inspired by the way children interact randomly with
objects, we set up a learning game for an artificial neural network in which it was
asked to predict changes to the visual scene. This game resulted in a highly organized
and human-aligned representation that could reproduce number-related behaviors
observed in humans. It is clear that interaction is a key component in learning. As
collaborations between AI and robotics increase, AIs will be able to directly interact
with the world (embodied AI) and learn from experience. It will be interesting to see
if embodied AI representations will naturally align with human representations, or if
they will discover new ways to reason about the world.

8.4 Final Thoughts
Going forward, we have an exciting opportunity to learn about the nature of
intelligence. AIs have become sufficiently large, complex, and useful that they
are objects worthy of study themselves, just as we study biological intelligence.
Thankfully, studying artificial intelligence is much more accessible than biological
intelligence. We have access to every weight and activation, we can perturb and
modify models freely, and we receive feedback on our interventions quickly. By
engaging in a loop of analyzing and modifying AI systems, I hope we are able

224

to develop safer and more powerful models, develop insights about biological
intelligence, and discover new patterns in the natural world through the knowledge
of super-human AI.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Contents
	List of Figures
	List of Tables
	Introduction
	Aligning Humans and Models for Improving Model Understanding
	Learning from AI
	Aligning Representations for Improving Model Performance
	Aligning Representations for Modeling Human Visual Psychology
	Thesis Motivation and Organization

	Learning from AI
	Visual Knowledge Tracing
	Abstract
	Introduction
	Related Work
	Method
	Experiments
	Conclusion
	Appendix
	Additional Experiments
	CNN Architecture Details
	Additional Results
	Learned Representations
	Feature Space
	Additional Implementation Details

	Representational Similarity via Interpretable Visual Concepts
	Abstract
	Introduction
	Related Work
	Method
	Results
	Limitations
	Conclusion
	Appendix
	Additional Experiments
	Additional Implementation Details

	Representational Difference Explanations
	Abstract
	Introduction
	Related Work
	Method
	Results
	Conclusions
	Appendix
	Limitations
	Additional Results
	Additional Methods
	Implementation Details

	Outlook
	Expert Data is Abundant
	Multiple Sources of Supervision
	Humans at Multiple Skill Levels
	Estimating Human Knowledge is Infeasible
	General Thoughts about XAI
	Conclusion

	Applications of Aligning Representations
	Text-image Alignment for Diffusion-based Perception
	Abstract
	Introduction
	Related Work
	Methods
	Results
	Discussion
	Appendix
	Cross-attention Analysis
	Additional ADE20K Results
	Qualitative Examples
	Implementation Details

	A Number Sense as an Emergent Property of the Manipulating Brain
	Abstract
	Introduction
	Results
	Discussion
	Methods
	Dataset & Code Availability
	Appendix
	Additional Experiments
	Dataset Statistics
	Network Details

	Conclusion
	Conclusion
	A Step Towards Learning from AI
	Aligning the Interface Between Models
	Using Aligned Models to Make Hypotheses about Biological Intelligence
	Final Thoughts

