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ABSTRACT

The planetary-scale overturning circulation of the ocean is maintained by small-scale di-
apycnal mixing in the abyss. Recent theory and observations suggest that this turbulence is
bottom-enhanced, confining the upwelling needed to close this circulation to thin bottom
boundary layers (BLs) over sloping topography. Developing an understanding of how this
mixing shapes the abyssal circulation, both locally and at the basin scale, is the unifying
goal of this thesis.
The local response of a water column to mixing has previously been understood using a
one-dimensional model of a rotating, stratified fluid over a sloping seafloor. Canonically,
this model assumes no cross- or along-slope variations of the flow, pressure, and buoyancy
anomalies. At steady state, it predicts a peculiar form of the net cross-slope transport, how-
ever, failing to consider its coupling to the global circulation. For symmetric bathymetry
without along-slope variations, for instance, this large-scale context implies that all cross-
slope BL transport must be exactly returned in the interior. This interior downwelling is then
turned by the Coriolis acceleration, rapidly spinning up along-slope flow in balance with a
cross-slope barotropic pressure gradient. With these added physics, the one-dimensional
model better captures the local response to mixing over an idealized ridge, for example. Us-
ing BL theory, we explicitly describe how the BL and interior communicate in this model.
The up-slope transport of dense water in the bottom BL contributes a net downward flux
of buoyancy, creating an effective bottom boundary condition on the interior. The coupling
goes both ways, with the interior stratification at the top of the BL setting the strength of the
BL transport. Variations across the slope then allow for BL–interior exchange.
Ultimately, the net transport of the local response must conserve potential vorticity at the
basin scale. To better understand this coupling for arbitrary topography, we develop a novel
finite element model of the planetary geostrophic equations. Using a combination of sim-
ulations and BL theory, we then study the mixing-driven abyssal circulation in an ideal-
ized bowl-shaped basin. In the absence of wind forcing and the joint effect of baroclinicity
and relief, the leading-order barotropic transport flows along 𝑓∕𝐻 contours, where 𝑓 is
the Coriolis frequency and 𝐻 is the depth. The local response to mixing is coupled to this
barotropic circulation, simultaneously constrained by the barotropic circulation and forcing
it via a bottom stress curl. For closed 𝑓∕𝐻 contours, a strong along-contour barotropic cir-
culation spins up, reminiscent of the local response described above. On the other hand, if
these contours intersect the boundary, a case more typical in the real ocean, the barotropic
transport is suppressed. This decouples the leading-order local response from the large-scale
circulation and intensifies bottom BL upwelling. This work therefore suggests that the local
abyssal stratification in the presence of bottom-enhanced mixing strongly depends on the
large-scale context.
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C h a p t e r 1

INTRODUCTION

The long-term memory of Earth’s climate is stored in the cold, dark depths of the abyssal
ocean, waiting to be recalled as it travels back to the surface. There is water in the abyss that
has not seen the surface in hundreds if not thousands of years. Although this can make these
waters seem remote to humans, they are an integral part of our planet’s climate. As a massive
reservoir of heat, carbon, and other climate-relevant tracers, the abyss plays a crucial role
in setting Earth’s “heartbeat” as it cycles between glacial and inter-glacial states. Even the
fate of anthropogenic climate change, though it will not be fully realized in our lifetimes,
ultimately depends on how the abyss responds to a rapidly warming climate.
But how does this abyssal water begin its journey, and what allows it to finally return to the
surface? By pulling up buckets of seawater, sailors have known that the deep ocean is cold
since at least the mid-1700s. At first, it was hypothesized that this water came from the polar
regions via hemispheric overturning cells that upwelled at the equator (“Lenz’s Doctrine”;
Carpenter, 1874). This picture was disproved by the Meteor expedition in the early 1900s,
where oceanographers Alfred Merz and Georg Wüst discovered that the dense water formed
in the North Atlantic spread at mid-depth beyond the equator, with the abyss being filled with
southern-source water (Warren and Wunsch, 1981, dark blue arrows in Fig. 1.1a). Clearly,
the deep ocean is not a stagnant tub filled with uniformly dense water.
This implies that, somehow, these abyssal waters must eventually return to the surface, en-
abling them to exert an influence on the climate. It has long been understood that this process
cannot be entirely buoyancy driven—otherwise all motion would be confined to the upper
ocean, where most of the heating/cooling occurs (Sandström, 1908; Jeffreys, 1925). Instead,
some mechanical forcing is needed to explain the overturning we observe. It is now also
understood that part of the overturning can be accomplished adiabatically: the wind forcing
in the Southern Ocean tilts isopycnals enough to allow mid-depth northern-source water to
resurface along isopycnals (e.g., Wolfe and Cessi, 2011; Marshall and Speer, 2012, shal-
lower isopycnal in Fig. 1.1a).1 The densest bottom waters, however, must cross isopycnals
to resurface (deeper isopycnal in Fig. 1.1a); some form of turbulent mixing is vital for the
overturning. Walter Munk described this process with his classic one-dimensional balance
between diapycnal advection and diffusion in the vertical:

𝑤𝜕𝑏
𝜕𝑧

= 𝜕
𝜕𝑧

(

𝜅 𝜕𝑏
𝜕𝑧

)

, (1.1)
1In reality, some diapycnal mixing of these waters does occur (e.g., Sloyan and Rintoul, 2001; Lumpkin

and Speer, 2007; Ledwell et al., 2011), but it is not the leading order mechanism.
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Figure 1.1: Sketches of (a) the meridional overturning circulation and (b) the effect of bottom-
enhanced mixing over sloping bathymetry.

with the turbulent diffusivity 𝜅 parameterizing the mixing of buoyancy 𝑏 through down-
gradient diffusion (Munk, 1966). At the time, he assumed a constant diffusivity and inferred
the vertical upwelling 𝑤 ∼ 𝑂(10−7 ms−1) from estimates of bottom water production. This
leads to an exponential profile of buoyancy, and, fitting to an observed decay scale of 𝜅∕𝑤 ∼
𝑂(1000 m), a required diffusivity of 𝜅 ∼ 𝑂(10−4 m2 s−1).
Since then, with the help of observations of dissipation rates from microstructure profilers
and inferences of 𝜅 from tracer release experiments, the picture has become significantly
more complicated. Initial estimates of interior diffusivities were found to be more than an
order of magnitude smaller than Munk’s initial estimate (e.g., Osborn and Cox, 1972; Gregg,
1989; Ledwell et al., 1993). Later, observational campaigns were able to uncover the “miss-
ing mixing” in the bottom few hundred meters of the ocean over rough topography, where
𝜅 can be strongly enhanced up to 𝑂(10−3 m2 s−1) (e.g., Polzin et al., 1997; Ledwell et al.,
2000; Waterhouse et al., 2014, purple squiggles in Fig. 1.1b). Once again, Munk pioneered
a shift in thinking, arguing that tidal dissipation plays a key role in generating this mixing
(Munk and Wunsch, 1998). Of the approximately 2 TW of energy needed to mix bottom
waters back to the surface, more than half is now thought to be generated by tidal forcing
(Garrett and Kunze, 2007), with a sizeable chunk of the rest resulting from large-scale cur-
rents flowing over topographic features (Nikurashin and Ferrari, 2011). The observations
and theory for how internal waves generated by tidal and geostrophic currents break over
rough topography, generating small-scale turbulence, is still an active area of research (see
Whalen et al., 2020, and references therein for a review). For the purposes of this thesis, we
instead simply view this turbulence as a given forcing and ask the question:

How does near-bottom mixing

shape the abyssal circulation?
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Even before observations revealed that mixing in the ocean is bottom-intensified, a number
of studies recognized that the sloping bottom of the ocean is crucial in describing mixing-
generated dynamics. Because buoyancy cannot be mixed through a solid boundary, the buoy-
ancy flux −𝜅𝜕𝑧𝑏 must go to zero at the bottom2. This additional piece of the puzzle is key
once we consider bottom-enhanced mixing: without it, Munk’s simple one-dimensional bal-
ance would actually predict downwelling (𝑤 < 0) given observed near-exponential profiles
of 𝜅 and 𝑏. The picture that then emerges consists of a net abyssal upwelling that is a small
residual of weak subsidence throughout the interior and strong upwelling in thin bottom
boundary layers (BLs; Garrett, 1990; Ferrari et al., 2016; de Lavergne et al., 2016; Mc-
Dougall and Ferrari, 2017; Callies, 2018, red and blue arrows in Fig. 1.1b). Observations
from a recent dye release experiment in a submarine canyon within the Rockall Trough ap-
pear to support this theory (Wynne-Cattanach et al., 2024).
The question now becomes: how does this local response to mixing couple to the global cir-
culation? To answer this, we turn to the planetary geostrophic (PG) equations, which have
been a cornerstone of our understanding of the large-scale ocean circulation (e.g., Robin-
son and Stommel, 1959; Welander, 1959; Colin de Verdière, 1988; Samelson and Vallis,
1997a; Salmon, 1998; Pedlosky, 1998). They are derived from the full Boussinesq system
by assuming small Rossby numbers and large horizontal scales, filtering out fast-timescale
dynamics while retaining nonlinear advection in the buoyancy equation. The PG inversion,
which expresses the flow 𝒖 = (𝑢, 𝑣,𝑤) and pressure 𝑝 in terms of the buoyancy, reads

𝑓𝒛 × 𝒖 = −∇𝑝 + 𝑏𝒛 + 𝑭 , (1.2)
∇ ⋅ 𝒖 = 0, (1.3)

where 𝑓 is the Coriolis parameter, 𝒛 is the local vector opposite to gravity and 𝑭 is a vector
field representing friction. The buoyancy then evolves according to

𝜕𝑏
𝜕𝑡

+ 𝒖 ⋅ ∇𝑏 = ∇ ⋅ (𝜅∇𝑏) , (1.4)
the more general version of Munk’s balance (1.1). In local Cartesian coordinates (𝑥, 𝑦, 𝑧)
and with a meridional gradient in the planetary vorticity such that 𝑓 = 𝑓0 + 𝛽𝑦, the inviscid
PG vorticity balance is then

𝛽𝑣 = 𝑓 𝜕𝑤
𝜕𝑧
, (1.5)

implying that meridional flow must be accompanied by stretching or squashing of the fluid
column. The classic Stommel and Arons (1959a,b) theory uses this framework in the sim-
ple case of uniform diapycnal upwelling driven by constant mixing. In that case, integrat-
ing (1.5) over the depth of the abyss yields a weak poleward flow in the basin interior, imply-
ing that the dense water sourced at high latitudes is transported equatorward predominantly

2Technically, it should be equal to the geothermal heat flux, which I will neglect throughout this thesis work
due to its relatively small magnitude in the modern climate (e.g., Emile-Geay and Madec, 2009; de Lavergne
et al., 2016; McDougall and Ferrari, 2017).
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within deep (frictional) western boundary currents. While the real abyssal circulation is
much more complicated than this simple model, as we will see over the course of this thesis,
western boundary currents are, in fact, a robust characteristic of the deep ocean.
Our understanding of the abyssal circulation beyond the Stommel and Arons theory has
been shaped by a local one-dimensional form of the PG equations over a uniform slope
(e.g., Phillips, 1970; Wunsch, 1970; Thorpe, 1987; Garrett et al., 1993; Callies, 2018).3 In
the canonical form of this model, variations in the flow, pressure, and buoyancy anomaly
are neglected in planes parallel to the slope, allowing the local response to be directly com-
puted. Intuition for the basin-scale circulation is then often derived from examining vari-
ations in the local response predicted by this model across a domain (e.g., Phillips et al.,
1986; McDougall, 1989; Garrett, 1991; Dell and Pratt, 2015; Callies and Ferrari, 2018;
Drake et al., 2020). The following phenomenology for the abyssal circulation then arises:
bottom-enhanced mixing tilts isopycnals slightly upward before plunging them into the slop-
ing seafloor (black line in Fig. 1.1b). The corresponding cross-slope4 buoyancy gradients
drive upslope flow in the bottom BL with downwelling aloft, accompanied by thermal wind
shear in the along-slope flow (orange arrows in Fig. 1.1b). Under the canonical assumptions,
the steady state of this local model demands that net cross-slope transport be 𝑈 = 𝜅∞ cot 𝜃,
where 𝜅∞ is the far-field turbulent diffusivity and 𝜃 is the local slope angle (Thorpe, 1987;
Garrett et al., 1993). This curious constraint on the interior flow, which clearly breaks down
as 𝜃 → 0, is only achieved after the interior along-slope flow slowly diffuses to its steady
state over thousands of years for typical abyssal parameters (MacCready and Rhines, 1991).
While it is possible for the local response to have an impact on the net transport of the global
circulation, the opposite should also be true. Chapter 2 of this thesis, published as Peterson
and Callies (2022), works toward this goal by adding a transport constraint to the local
theory. In a symmetric domain with no along-slope variations, the net transport 𝑈 should
vanish to satisfy continuity (1.3). Adding this constraint to the local model implies that the
net BL upwelling must be equal and opposite to the net downwelling in the interior. The local
model must be modified to include a cross-slope barotropic pressure gradient 𝜕𝑥𝑃 to support
this added constraint. As the downwelling flow in the interior is turned in the along-slope
direction by the Coriolis acceleration, it is put in geostrophic balance with this cross-slope
pressure gradient. This allows the far-field flow to feel the effects of mixing within one
inertial period, adjusting much more rapidly than the diffusion-limited canonical model.
This transport-constrained model is able to fully capture mixing-generated dynamics in the
absence of along-slope variations, such as the flow spun up by bottom-enhanced mixing over
an idealized ridge (Ruan and Callies, 2020).

3The canonical one-dimensional dynamics are actually derived from the full Boussinesq equations (Chap-
ter 2), but this is not necessary for the purpose of studying the salient abyssal dynamics.

4We use “cross-slope” for the horizontal direction pointing towards shallower depths and “along-slope” for
the along-isobath direction perpendicular to this.



5

0 200 400 600 800
x (km)

0.0

0.5

1.0

1.5

2.0

2.5

z (
km

)

(a)

Isopycnals

Rayleigh drag
Fickian friction

2 1 0
Along-slope flow

(×10 2 m s 1)

0.0

0.5

1.0

1.5

2.0

z (
km

)

(b)

v

Figure 1.2: Comparison between the flow produced by bottom-intensified mixing in a one-
dimensional model with Rayleigh drag versus Fickian friction. Shown are the (a) buoyancy fields
remapped to the 𝑥–𝑧 plane and (b) along-slope flow after 10 years of spin up from rest using parame-
ters typical of the Brazil Basin along the mid-Atlantic ridge. The isopycnals are qualitatively similar
between the two models, but the resulting along-slope flow is critically different. A strong interior
flow is generated when Fickian friction is used, while damping in the interior prevents such flow in
the model with Rayleigh drag.

In Chapter 3, published as Peterson and Callies (2023), we make use of this more faithful
model of the local response to mixing to pinpoint how abyssal BLs communicate with the
interior. Using BL theory (e.g., Bender and Orszag, 1999; Chang, 2007), we make explicit
the separation between interior and BL contributions to the flow and buoyancy. A classic
application of this technique arises in the context of Stommel’s (1948) gyre theory (Veronis,
1966), although there the coupling is one-way: the interior solution can be calculated in
isolation, and the western BL is a passive element of the theory. For bottom BLs on slopes,
however, the BL transport plays an active role in setting the structure of the interior solution.
By moving dense water up the slope, the BL supplies a downward flux of buoyancy that the
interior feels as an effective bottom boundary condition. This transport is itself dependent on
the cross-slope interior stratification at the top of the BL, providing an avenue for exchange
between the BL and interior.
The models in Chapters 2 and 3 rely on along-slope symmetry to be able to fully constrain
the local response to mixing, a property that is broken if, for example, meridional variations
in the Coriolis parameter 𝑓 are allowed. To make progress in understanding the more general
case, numerical solutions of the full PG equations (1.2)–(1.4) must be pursued. A number
of PG circulation models (PGCMs) exist (e.g., Salmon, 1986; Samelson and Vallis, 1997b;
Edwards et al., 1998; Callies and Ferrari, 2018), but they all employ Rayleigh drag in the
momentum equations such that 𝑭 = −𝑟𝒖⟂ for some damping rate 𝑟. While this choice helps
reduce the computational complexity of the problem, it leads to an excessive amount of
drag on the interior flow, quashing the circulation (blue lines in Fig. 1.2). A more physical
representation of the momentum fluxes filtered out by the PG approximation would be by a



6
Fickian friction term of the form

𝑭 = 𝜕
𝜕𝑧

(

𝜈
𝜕𝒖⟂
𝜕𝑧

)

, (1.6)
with 𝜈 the turbulent viscosity (here we assume that fluxes in the local vertical direction 𝑧
dominate). The PG flow can be thought of as the residual flow after a thickness-weighted
average over transients, with this friction term parameterizing their effects on momentum
by the divergence of an Eliassen–Palm flux (e.g., Young, 2012; Jansen et al., 2024). This
turbulence closure leads to more physical flow in the interior (orange lines in Fig. 1.2),
warranting the development of a 𝜈PGCM to revisit studies of the mixing-driven abyssal
circulation.
Developing a numerical model of the PG equations with Fickian friction capable of resolv-
ing thin bottom BLs over complex topography is a challenging problem. Standard finite
differencing schemes (Arakawa and Lamb, 1981) struggle to resolve the bathymetry ade-
quately enough to faithfully represent BL upwelling. Terrain-following coordinate formula-
tions solve this proble, but so-called “pressure gradient errors” (e.g., Haney, 1991) limit their
ability to scale to global simulations. Our approach, described in Chapter 4, instead makes
use of the geometrically flexible, high-order accurate finite element method on unstructured
grids. This method is somewhat unconventional in the ocean modeling community, partly
due to difficulties in simulating hydrostatic flows (e.g., Guillén-González and Rodríguez-
Galván, 2015). The key innovation of the 𝜈PGCM is that it solves a form of the PG equa-
tions with an artificially increased aspect ratio (e.g., Kuang et al., 2005; Garner et al., 2007;
Salmon, 2009), allowing it to leverage standard mixed finite element techniques for Stokes
flow (e.g., Hughes, 1987; Elman et al., 2014). This method could even be extended to the
full Boussinesq equations, potentially allowing for the use of finite elements in global ocean
models without the need for ad hoc stabilization schemes.
In Chapter 5, we make use of the 𝜈PGCM to understand the physics of the mixing-driven
abyssal circulation in an idealized bowl-shaped basin with no buoyancy advection, enabling
us to isolate and study the connection between the local response to the basin-scale flow.
While the local theory from Chapter 2 exploits along-slope symmetry to constrain𝑈 to zero,
in general, the local response is coupled to a vorticity-conserving barotropic circulation. In
particular, in the absence of wind forcing and the joint effect of baroclinicity and relief
(JEBAR), the leading-order barotropic transport flows along 𝑓∕𝐻 contours, where𝐻 is the
depth. The local response to mixing is then simultaneously constrained by this circulation
and a forcing to it via the bottom stress curl. If 𝑓∕𝐻 contours are closed, a strong barotropic
circulation spins up along them (e.g., Kawase, 1993; Thompson, 1995; Hallberg and Rhines,
1996), which can be understood using the theories built up in Chapters 2 and 3. On the
other hand, when contours intersect the boundary, as is more typical in the real ocean, the
barotropic transport is suppressed. This decouples the leading-order local response from the
large-scale circulation and intensifies upwelling in the bottom BL.
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Finally, in Chapter 6, we conclude and outline possible future directions of this research.
The numerical and theoretical models presented in Chapters 4 and 5 open up many new
opportunities for studying the phenomenology of the abyssal circulation within the new
framework of mixing-driven upwelling in thin bottom BLs. In particular, one of the most
exciting questions left to be pursued is how these dynamics connect to the global overturning
and, ultimately, the climate system as a whole.
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C h a p t e r 2

RAPID SPIN UP AND SPIN DOWN OF FLOW ALONG SLOPES

This chapter is reproduced from the published article:
Peterson, H. G., and J. Callies, 2022: Rapid spinup and spindown of flow along slopes. Jour-
nal of Physical Oceanography, 52 (4), 579–596, doi:10.1175/JPO-D-21-0173.1. © Ameri-
can Meteorological Society. Used with permission.
As a self-contained work, some notation may differ from conventions used elsewhere in this
thesis.

2.1 Abstract
The near-bottom mixing that allows abyssal waters to upwell tilts isopycnals and spins up
flow over the flanks of mid-ocean ridges. Meso- and large-scale currents along sloping to-
pography are subjected to a delicate balance of Ekman arrest and spin down. These two
seemingly disparate oceanographic phenomena share a common theory, which is based on
a one-dimensional model of rotating, stratified flow over a sloping, insulated boundary. This
commonly used model, however, lacks rapid adjustment of interior flows, limiting its ability
to capture the full physics of spin up and spin down of along-slope flow. Motivated by two-
dimensional dynamics, the present work extends the one-dimensional model by constraining
the vertically integrated cross-slope transport and allowing for a barotropic cross-slope pres-
sure gradient. This produces a closed secondary circulation by forcing Ekman transport in
the bottom boundary layer to return in the interior. The extended model can thus capture
Ekman spin up and spin down physics: the interior return flow is turned by the Coriolis ac-
celeration, leading to rapid rather than slow diffusive adjustment of the along-slope flow.
This transport-constrained one-dimensional model accurately describes two-dimensional
mixing-generated spin up over an idealized ridge and provides a unified framework for un-
derstanding the relative importance of Ekman arrest and spin down of flow along a slope.

2.2 Introduction
The ocean is a rotating, stratified shell of fluid with a geometrically complicated bottom
boundary. The sloping seafloor affects a number of aspects of the ocean’s circulation. It al-
lows near-bottom diapycnal mixing to bend isopycnals and thus spin up a circulation in the
abyss (e.g., Phillips, 1970; Wunsch, 1970; Garrett, 1990; Callies and Ferrari, 2018), and
it allows for bottom Ekman layers to be arrested by buoyancy forces and thus for currents
to slide along slopes without being spun down (Rhines and MacCready, 1989; MacCready
and Rhines, 1991, 1993). These spin up and spin down processes have long been studied
using the equations of motion in a coordinate frame that is rotated to align with the slop-

https://doi.org/10.1175/JPO-D-21-0173.1
https://www.ametsoc.org/PUBSCopyrightPolicy
https://www.ametsoc.org/PUBSCopyrightPolicy
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ing bottom and simplified by considering variations in the slope-normal direction only (see
Garrett et al., 1993, for a review). We here argue that new insight can be gained by enforcing
a transport constraint in these one-dimensional dynamics and allowing for a time dependent
cross-slope barotropic (vertically constant) pressure gradient. These modifications enable
boundary mixing to spin up an interior flow much more rapidly than through “slow diffu-
sion” (MacCready and Rhines, 1991), and they allow for Ekman spin down in addition to
Ekman arrest, capturing the competition between the two processes.
Enhanced turbulent mixing near the seafloor is thought to be a crucial element of the over-
turning circulation of the abyssal ocean, and 1D dynamics have been a powerful tool for
understanding the dynamical response to such mixing over a sloping bottom. Antarctic Bot-
tom Water fills the abyss of the Atlantic and Pacific basins (e.g., Lumpkin and Speer, 2007;
Talley, 2013). For these dense waters to return to the surface, they must cross isopycnals and
thus require diapycnal mixing (e.g., Munk, 1966; Munk and Wunsch, 1998; Ferrari, 2014).
Observations have revealed that this diapycnal mixing is strongly enhanced over rough to-
pography (e.g., Polzin et al., 1997; Ledwell et al., 2000; Waterhouse et al., 2014), where tidal
and geostrophic currents produce a field of vigorous internal waves that break and produce
small-scale turbulence (e.g., Garrett and Kunze, 2007; Nikurashin and Ferrari, 2011). Our
understanding of how the ocean responds to this mixing, both locally and globally, has been
shaped by 1D theory for a stratified, rotating fluid overlying a sloping, insulated seafloor
(e.g., Phillips, 1970; Wunsch, 1970; Thorpe, 1987; Garrett et al., 1993). This theory (and
the thinking it inspires), suggests that bottom-intensified mixing spins up diabatic upslope
flow in a thin bottom boundary layer and diabatic downslope flow in a stratified mixing layer
above (Garrett, 1990; Ferrari et al., 2016; de Lavergne et al., 2016; McDougall and Ferrari,
2017; Callies, 2018). Variations in these locally produced flows give rise to exchange with
the interior and produce a basin-scale circulation in the abyss (e.g., Phillips et al., 1986; Mc-
Dougall, 1989; Garrett, 1991; Dell and Pratt, 2015; Callies and Ferrari, 2018; Drake et al.,
2020).
It has recently become clear, however, that the canonical 1D theory falls short in capturing
two- and three-dimensional abyssal spin up, even in highly idealized contexts. The cross-
slope mean flow generated by the 1D system is too weak to keep abyssal mixing layers strat-
ified and instead produces a configuration that is baroclinically unstable (Wenegrat et al.,
2018; Callies, 2018). Even if the role of baroclinic eddies is set aside, as will be done in the
remainder of this work, spin up in two dimensions is qualitatively different from that pre-
dicted by 1D theory. Ruan and Callies (2020), considering bottom-intensified mixing over
an idealized mid-ocean ridge (cf., Fig. 2.1), found that an interior flow along the ridge spins
up rapidly, in direct contrast to the slow diffusion predicted by the canonical 1D equations
(MacCready and Rhines, 1991). We show below that this rapid adjustment can be captured
in 1D dynamics if a constraint is imposed on the vertically integrated cross-slope transport.
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Figure 2.1: Sketch of idealized mid-ocean ridge geometry. By continuity and symmetry, the vertically
integrated cross-ridge transport 𝑈 must vanish.

The 1D dynamics have also been a cornerstone in our understanding of the spin down—
or lack thereof—of meso- and large-scale geostrophic currents flowing along topographic
slopes. Over a flat bottom boundary, a current induces Ekman transport in the bottom bound-
ary layer. If the strength of the interior flow varies in the horizontal, so will the Ekman
transport, leading to Ekman pumping and suction. By continuity, this generates a secondary
circulation so that the boundary layer transport is returned in the interior. The Coriolis
acceleration then turns the flow, spinning down the original current on a time scale of
𝜏𝑆 = 𝑓−1Ek−1∕2 where 𝑓 is the inertial frequency, Ek = 𝜈∕𝑓𝐻2 is the Ekman number,
𝜈 is a turbulent viscosity scale, and 𝐻 is a height scale (e.g., Pedlosky, 1979). The slop-
ing boundary adds new physics to the problem: as fluid is moved up- or down-slope due
to Ekman transport, it experiences a buoyancy force that opposes its motion (Rhines and
MacCready, 1989; MacCready and Rhines, 1991). If a balance between the Coriolis and
buoyancy forces is reached, the Ekman transport is “arrested.” This shuts down the sec-
ondary circulation and halts further spin down, so that from then on the far-field current
experiences an approximately free-slip bottom boundary condition. The timescale at which
Ekman arrest occurs is roughly 𝜏𝐴 = (𝑆𝑓 )−1 where 𝑆 = 𝑁2 tan2 𝜃∕𝑓 2 is the slope Burger
number for a fluid with buoyancy frequency𝑁 over a slope at an angle 𝜃 above the horizon-
tal (MacCready and Rhines, 1991). The sloping topography thus enables the interior flow
to persist if Ekman arrest is much faster than spin down, that is if 𝜏𝐴∕𝜏𝑆 = Ek1∕2∕𝑆 ≪ 1
(Garrett et al., 1993).
The canonical 1D model captures only the physics of Ekman arrest, not those of spin down.
In that model, the cross-slope Ekman transport produced by the initial along-slope flow
need not be returned in the interior, so the secondary circulation that can spin down the
along-slope flow is lacking. While the physics of these two processes have now been known
for decades, fully understanding their competition and interplay has been hampered by this
disconnect. Chapman (2002) captured both processes in a simplified bulk model, but the
connection to the more complete 1D dynamics remained opaque. We show below that a 1D
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Figure 2.2: Difference between the canonical and transport-constrained 1D models. Sketched are typ-
ical isopycnals and cross-slope flow 𝑢 as a function of 𝑧 for spin-up with constant mixing coefficients.
Colors represent the barotropic pressure gradient 𝜕𝑥𝑃 .

model derived directly from the full equations of motion can capture the physics of spin
down and arrest if a transport constraint is imposed and a cross-slope pressure gradient is
included, the same two modifications to the canonical 1D dynamics that allow for a rapid
adjustment of the interior flow in spin up.
The key innovation of this work, introduced more fully in the next section, is thus a transport-
constrained 1D model capable of representing rapid spin up and spin down. With the geom-
etry sketched in Fig. 2.2 and using standard notation, the modified 1D dynamics are

𝜕𝑢
𝜕𝑡

− 𝑓𝑣 = −𝜕𝑃
𝜕𝑥

+ 𝑏 tan 𝜃 + 𝜕
𝜕𝑧

(

𝜈 𝜕𝑢
𝜕𝑧

)

, (2.1)
𝜕𝑣
𝜕𝑡

+ 𝑓𝑢 = 𝜕
𝜕𝑧

(

𝜈 𝜕𝑣
𝜕𝑧

)

, (2.2)
𝜕𝑏
𝜕𝑡

+ 𝑢𝑁2 tan 𝜃 = 𝜕
𝜕𝑧

[

𝜅
(

𝑁2 + 𝜕𝑏
𝜕𝑧

)]

, (2.3)

∫
𝐻

0
𝑢 d𝑧 = 𝑈. (2.4)

Crucially, 𝑈 is an imposed cross-slope transport that we will typically set to zero, and 𝑃 is a
barotropic pressure perturbation from the background state of rest. The transport constraint
enforces that any boundary layer transport must be returned outside the boundary layer,
creating a secondary circulation and allowing for rapid adjustment of the along-slope flow. It
is possible to impose this transport constraint because we allow for an implicitly determined
time-varying barotropic cross-slope pressure gradient 𝜕𝑥𝑃 .
In canonical 1D dynamics, this cross-slope pressure gradient is absent from (2.1) or fixed
in time to balance an initial along-slope flow. In that case, an anomalous geostrophic flow 𝑣
must satisfy the balance −𝑓𝑣 = 𝑏 tan 𝜃 (which by hydrostatic balance equals 𝜕𝑧𝑝 tan 𝜃, the
projection of the vertical perturbation pressure gradient onto the slope). A change in the
geostrophically balanced along-slope flow thus requires a typically slow modification of the
buoyancy anomaly 𝑏. The inclusion of a time-varying 𝜕𝑥𝑃 in the modified equation (2.1)
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instead allows the balance −𝑓𝑣 = −𝜕𝑥𝑃 and thus the rapid spin up or spin down of a
(barotropic) geostrophic flow.
We derive this model in Section 2.3, where we motivate it by comparing the 1D and 2D
equations in the planetary geostrophic (PG) limit. We then demonstrate the utility of the
modified model by considering mixing-generated spin up over an idealized mid-ocean ridge
in Section 2.4 and the spin down of an along-slope current in Section 2.5. We offer a dis-
cussion in Section 2.6 and conclude in Section 2.7.

2.3 Rapid Adjustment and Constrained Transport
In this section, we motivate the transport-constrained 1D model summarized above. We be-
gin with a review of the canonical 1D theory, emphasizing the fact that it does not enforce
any constraints on vertically integrated cross-slope transport. We then find that, when con-
sidering the 1D and 2D systems in the PG limit, the inversion statements take the same form
and include an explicit transport term. In the 2D system, this term is constrained by the ge-
ometry of the domain. With this in mind, we modify the 1D model to allow for constrained
transport by including a time-varying barotropic pressure gradient term.

2.3.1 Canonical one-dimensional dynamics
The canonical 1D model is typically derived by writing the Boussinesq equations in a ro-
tated coordinate system aligned with a slope that is inclined at an angle 𝜃 above the hori-
zontal (e.g., Garrett et al., 1993). We here deviate from this approach by remaining in the
un-rotated coordinates, which is a slightly more natural choice if the horizontal components
of the turbulent momentum and buoyancy fluxes are neglected but yields equivalent dynam-
ics. Assuming no variations of the flow, pressure perturbation, or buoyancy perturbation in
planes parallel to the slope (see Appendix A for a more detailed derivation), we obtain

𝜕𝑢
𝜕𝑡

− 𝑓𝑣 = 𝑏 tan 𝜃 + 𝜕
𝜕𝑧

(

𝜈 𝜕𝑢
𝜕𝑧

)

, (2.5)
𝜕𝑣
𝜕𝑡

+ 𝑓𝑢 = 𝜕
𝜕𝑧

(

𝜈 𝜕𝑣
𝜕𝑧

)

, (2.6)
𝜕𝑏
𝜕𝑡

+ 𝑢𝑁2 tan 𝜃 = 𝜕
𝜕𝑧

[

𝜅
(

𝑁2 + 𝜕𝑏
𝜕𝑧

)]

, (2.7)

where 𝑢 is the cross-slope velocity, 𝑣 is the along-slope velocity, and 𝑓 is the (constant) iner-
tial frequency. As explained in Appendix A, 𝑢 is the horizontal projection of the cross-slope
velocity as it would be defined in a fully rotated coordinate system, but we will still refer to it
as the cross-slope velocity for simplicity. We have split the total buoyancy 𝐵 into a constant
background stratification and a perturbation so that 𝐵 = 𝑁2𝑧 + 𝑏. Turbulent momentum
and buoyancy transfer are represented by a diffusive closure with turbulent viscosity 𝜈 and
turbulent diffusivity 𝜅, related by the turbulent Prandtl number 𝜇 = 𝜈∕𝜅. We explore the
consequences of using Rayleigh drag, a lower-order closure, in Appendix C (cf., Callies and
Ferrari, 2018; Drake et al., 2020). The fluid satisfies no-slip and insulating boundary condi-
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tions at the bottom: 𝑢 = 0, 𝑣 = 0, and 𝜕𝑧𝐵 = 𝑁2 + 𝜕𝑧𝑏 = 0 at 𝑧 = 𝑥 tan 𝜃 = 0, assuming
(without loss of generality) that we apply these equations at 𝑥 = 0. At the upper boundary,
we impose no stress and a fixed buoyancy flux −𝜅𝑁2: 𝜕𝑧𝑢 = 0, 𝜕𝑧𝑣 = 0, and 𝜕𝑧𝑏 = 0 at
𝑧 = 𝐻 + 𝑥 tan 𝜃 = 𝐻 at 𝑥 = 0. The evolution is independent of 𝐻 if 𝐻 is large, in which
case the domain can be considered semi-infinite. Importantly, the assumption that the pres-
sure perturbation does not vary in the cross-slope direction leaves only the projection of the
buoyancy force in (2.5).
Numerical, analytical, and approximate solutions to these equations for both constant and
bottom-enhanced 𝜅 can be found in the literature (e.g., Garrett et al., 1993; Callies, 2018).
The system has a steady state, in which the turbulent buoyancy flux convergence or diver-
gence is balanced by cross-slope advection. This steady state is approached during both
spin up and spin down first by rapid adjustment in the boundary layer, followed by a slow
set up of a non-zero along-slope flow in the interior (Thorpe, 1987; MacCready and Rhines,
1991; Garrett et al., 1993). Outside the boundary layer, the dominant balance in (2.5) is
−𝑓𝑣 = 𝑏 tan 𝜃, so the along-slope flow and buoyancy perturbations evolve in lockstep.
Combined with the other two equations, this yields

(1 + 𝑆)𝜕𝑏
𝜕𝑡

= 𝜕
𝜕𝑧

(

𝜅
[

𝑁2 + (1 + 𝜇𝑆)𝜕𝑏
𝜕𝑧

])

, (2.8)

implying that the adjustment of the far field is diffusive and thus slow (MacCready and
Rhines, 1991).
Throughout the evolution, the vertically integrated buoyancy budget is

∫
∞

0

𝜕𝑏
𝜕𝑡

d𝑧 + 𝑈𝑁2 tan 𝜃 = 𝜅∞𝑁
2, (2.9)

where 𝜅∞ is the far-field diffusivity. This implies that the steady state is achieved by bal-
ancing the turbulent buoyancy flux into the water column with a net upslope transport
𝑈 = 𝜅∞ cot 𝜃. During the transient, however, there is no explicit constraint on the cross-
slope transport, and cross-slope transport in the boundary layer does not need to be returned
above. This canonical 1D model thus lacks a closed secondary circulation that could produce
a more rapid adjustment of the along-slope flow than through slow diffusion.

2.3.2 Canonical one-dimensional model in the planetary geostrophic framework
By considering both the 1D and 2D dynamics in the PG limit, we can directly compare their
inversion statements and clarify the role of transport through an explicit term in the equa-
tions. The PG approximation assumes large horizontal scales and small Rossby numbers,
rendering the tendency terms in the momentum equations negligible. This approximation is
reasonable for mixing-generated spin up in the abyss, but the tendency terms are crucial in
Ekman arrest and spin down. The simplified PG dynamics clearly illustrate the importance
of constrained transport, however, which is ultimately key in both cases.
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With the PG approximation applied, the canonical 1D equations (2.5) to (2.7) become

−𝑓𝑣 = 𝑏 tan 𝜃 + 𝜕
𝜕𝑧

(

𝜈 𝜕𝑢
𝜕𝑧

)

, (2.10)
𝑓𝑢 = 𝜕

𝜕𝑧

(

𝜈 𝜕𝑣
𝜕𝑧

)

, (2.11)
𝜕𝑏
𝜕𝑡

+ 𝑢𝑁2 tan 𝜃 = 𝜕
𝜕𝑧

[

𝜅
(

𝑁2 + 𝜕𝑏
𝜕𝑧

)]

. (2.12)

Given a buoyancy perturbation 𝑏, the momentum equations (2.10) and (2.11) allow us to
invert for the flow (𝑢, 𝑣), and the buoyancy is evolved in time through (2.12). We define a
streamfunction 𝜒(𝑧) such that 𝑢 = 𝜕𝑧𝜒 , allowing us to cast the inversion as a single stream-
function equation. Integrating (2.11) from some level to 𝑧 = 𝐻 yields

𝜕𝑣
𝜕𝑧

= 𝑓
𝜈
(𝜒 − 𝑈 ). (2.13)

Differentiating (2.10) and substituting 𝜕𝑧𝑣 from (2.13) yields the streamfunction inversion
equation:

𝜕2

𝜕𝑧2

(

𝜈
𝜕2𝜒
𝜕𝑧2

)

+ 𝑓 2

𝜈
(𝜒 − 𝑈 ) = −𝜕𝑏

𝜕𝑧
tan 𝜃. (2.14)

The boundary conditions are that 𝜒 = 0 and 𝜕𝑧𝜒 = 0 at 𝑧 = 0 and 𝜒 = 𝑈 and 𝜕2𝑧𝜒 = 0
at 𝑧 = 𝐻 . Although not needed for the evolution, the along-slope flow can also be inferred
from 𝜒 by integrating (2.13) from the bottom up, using 𝑣 = 0 at 𝑧 = 0.
In these equations, the vertically integrated transport 𝑈 must be treated as an unknown
(𝑈 = 𝜅∞ cot 𝜃 applies in steady state only). We must supplement (2.14) with an additional
boundary condition. Enforcing 𝑣 = 0 at 𝑧 = 0 in (2.10) yields

𝜕
𝜕𝑧

(

𝜈
𝜕2𝜒
𝜕𝑧2

)

= −𝑏 tan 𝜃 at 𝑧 = 0, (2.15)

which closes the system and allows us to determine 𝑈 implicitly. As we will see in the next
section, however, this vertically integrated transport is constrained by the non-local context
in 2D and 3D geometries and cannot evolve as freely as in these canonical 1D equations.

2.3.3 Two-dimensional planetary geostrophic dynamics
Consider the mixing-generated spin up of PG flow over the idealized 2D ridge sketched in
Fig. 2.1. If the 1D model is to serve its purpose, then we should expect it to provide an
accurate description of the local flow on the flanks of the ridge. Continuity and symmetry
imply that the vertically integrated cross-ridge transport within this domain must be zero,
however, in contrast with the canonical model. This simple example of a non-local constraint
on transport illustrates a key piece of physics missing from the canonical 1D theory.
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To make this comparison explicit, we consider the 2D PG equations for a fluid with depth
𝐻(𝑥),

−𝑓𝑣 = −𝜕𝑝
𝜕𝑥

+ 𝜕
𝜕𝑧

(

𝜈 𝜕𝑢
𝜕𝑧

)

, (2.16)
𝑓𝑢 = 𝜕

𝜕𝑧

(

𝜈 𝜕𝑣
𝜕𝑧

)

, (2.17)
𝜕𝑝
𝜕𝑧

= 𝑏, (2.18)
𝜕𝑢
𝜕𝑥

+ 𝜕𝑤
𝜕𝑧

= 0, (2.19)
𝜕𝑏
𝜕𝑡

+ 𝑢 𝜕𝑏
𝜕𝑥

+𝑤
(

𝑁2 + 𝜕𝑏
𝜕𝑧

)

= 𝜕
𝜕𝑧

[

𝜅
(

𝑁2 + 𝜕𝑏
𝜕𝑧

)]

, (2.20)
where 𝑝 is the pressure divided by a reference density and 𝑤 is the vertical velocity. The
boundary conditions are again an insulating and no-slip bottom,𝑁2+𝜕𝑧𝑏 = 0 and 𝑢 = 𝑣 = 0
at 𝑧 = −𝐻 ; a constant-flux and free-slip top 𝜕𝑧𝑏 = 0 and 𝜕𝑧𝑢 = 𝜕𝑧𝑣 = 0 at 𝑧 = 0; and no
normal flow across both boundaries, which together with 𝑢 = 0 at 𝑧 = −𝐻 reduces to𝑤 = 0
at 𝑧 = −𝐻 and 𝑧 = 0.
As before, we turn the momentum equations (2.16) to (2.19) into one streamfunction inver-
sion. Defining 𝜒(𝑥, 𝑧) such that 𝑢 = 𝜕𝑧𝜒 and 𝑤 = −𝜕𝑥𝜒 , we have

𝜕2

𝜕𝑧2

(

𝜈
𝜕2𝜒
𝜕𝑧2

)

+ 𝑓 2

𝜈
(𝜒 − 𝑈 ) = 𝜕𝑏

𝜕𝑥
, (2.21)

where 𝑈 = ∫ 0
−𝐻 𝑢 d𝑧 is the vertically integrated transport, a constant in 𝑥 by continuity. The

boundary conditions are similar to the 1D case: 𝜒 = 0 and 𝜕𝑧𝜒 = 0 at 𝑧 = −𝐻 and 𝜒 = 𝑈
and 𝜕2𝑧𝜒 = 0 at 𝑧 = 0.
The inversion equations (2.14) and (2.21) have the same form in 1D and 2D. Under the
assumption that 𝑏 does not vary in planes parallel to the slope, 𝜕𝑥𝑏 = −𝜕𝑧𝑏 tan 𝜃. Continuity
and symmetry over our 2D ridge (Fig. 2.1), however, set the transport term to zero—whereas
the canonical 1D model generally produces a time-varying 𝑈 ≠ 0. This explicit difference
between the two inversions causes qualitative differences between the 1D and 2D solutions,
as seen in Ruan and Callies (2020) and further discussed below (Fig. 2.4). In general, the
1D dynamics are coupled to the barotropic vorticity equation via the vertically integrated
transport terms. The sinusoidal ridge considered here is a simple incarnation of this coupling
in which the transport is always zero. Although this choice of geometry is specific, it is not
contrived; it should be possible to explain the dynamics over the ridge flanks with 1D theory.
The same principles still hold for asymmetric 2D geometries, where 𝑈 must be determined
as part of the inversion but again is the result of a non-local constraint (see Appendix B).

2.3.4 Transport-constrained one-dimensional dynamics
The analysis of the PG inversions in the previous section suggests that a 1D model must in-
clude an additional constraint on𝑈 to faithfully reproduce local 2D dynamics. The canonical
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1D model (2.5) to (2.7) must therefore be modified to include another degree of freedom,
with a natural choice being a vertically constant, time-varying pressure gradient 𝜕𝑥𝑃 . This
pressure gradient can accelerate a barotropic cross-slope flow 𝑢 as needed to satisfy the
transport constraint. The transport-constrained 1D dynamics are then

𝜕𝑢
𝜕𝑡

− 𝑓𝑣 = −𝜕𝑃
𝜕𝑥

+ 𝑏 tan 𝜃 + 𝜕
𝜕𝑧

(

𝜈 𝜕𝑢
𝜕𝑧

)

, (2.22)
𝜕𝑣
𝜕𝑡

+ 𝑓𝑢 = 𝜕
𝜕𝑧

(

𝜈 𝜕𝑣
𝜕𝑧

)

, (2.23)
𝜕𝑏
𝜕𝑡

+ 𝑢𝑁2 tan 𝜃 = 𝜕
𝜕𝑧

[

𝜅
(

𝑁2 + 𝜕𝑏
𝜕𝑧

)]

, (2.24)

∫
𝐻

0
𝑢 d𝑧 = 𝑈, (2.25)

with 𝑈 prescribed. The tendency terms 𝜕𝑡𝑢 and 𝜕𝑡𝑣 are dropped if the PG approximation is
applied.
As we will see in the solutions presented below, the transport constraint and barotropic
pressure gradient are what allow the system to rapidly adjust in the interior. Physically, the
requirement that 𝑈 = 0 forces any boundary layer transport to be returned in the interior
(Fig. 2.2). This secondary circulation is not the same as the dipole in the diabatic circulation
generated by bottom-intensified mixing; it is present even in the case of constant 𝜅 and
acts on the entire column. The interior cross-slope flow 𝑢 is then turned by the Coriolis
acceleration via (2.23), leading to rapid adjustment in the far-field along-slope flow 𝑣. This
sets up geostrophic balance with the barotropic pressure gradient in the interior: −𝑓𝑣 =
−𝜕𝑥𝑃 . Classic Ekman spin up and spin down dynamics are now captured.
It should be noted that this geostrophic adjustment occurs instantaneously if the PG ap-
proximation is applied. The secondary circulation that sets up the barotropic along-slope
geostrophic flow is therefore only implicit in the PG model and not part of the explicit
streamfunction 𝜒 .

2.4 Mixing-Generated Spin Up Over an Idealized Ridge
The modification to the 1D system described in the previous section enables it to capture the
rapid spin up of interior flow encountered in 2D dynamics. The canonical 1D model fails to
do so. To demonstrate this, we employ 1D and 2D numerical models to perform a mixing-
generated spin-up experiment over the idealized symmetric ridge depicted in Fig. 2.1. For
simplicity, we use the PG approximation for all models in this section, although subtle dif-
ferences in spinup between PG and full models are noted in Appendix D.

2.4.1 Numerical models
We solve the 2D PG system given by the inversion equation (2.21) and evolution equation
(2.20) using terrain-following coordinates and second-order finite differences (cf., Callies
and Ferrari, 2018). Model parameters and geometry are taken from Ruan and Callies (2020)
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Figure 2.3: Flow fields in a 2D 𝜈PGCM simulation of mixing-generated spin up over the sinu-
soidal ridge sketched in Fig. 2.1. Shown are (a) the streamfunction 𝜒 (shading and black contours)
with positive values indicating counter-clockwise and negative values indicating clockwise flow and
(b) the along-ridge flow 𝑣 (shading). The solution is shown after three years of spin up with bottom-
intensified 𝜅 and 𝜇 = 1. The gray curves show isopycnals, and the red vertical lines show where 1D
profiles are examined in Figs. 2.4 and 2.5.

to roughly match those of the Brazil Basin (Table 2.1), except that we enlarge the ridge to a
more realistic size because the computational constraints from Ruan and Callies (2020) do
not apply here. Specifically, we take the domain height to be a sinusoid:

𝐻(𝑥) = 𝐻0 + 𝐴 cos 2𝜋𝑥
𝐿

(2.26)
with 𝐻0 = 2 km, 𝐴 = 800 m, and 𝐿 = 2000 km. Mixing is represented by a bottom-
intensified profile of turbulent diffusivity,

𝜅 = 𝜅0 + 𝜅1𝑒−(𝑧+𝐻)∕ℎ, (2.27)
with parameters obtained from a fit to Brazil Basin observations (Callies, 2018, Table 2.1).
To reduce the impact of the upper boundary on the solution, we increase 𝐻(𝑥) uniformly
by 1 km compared to Ruan and Callies (2020) and apply 𝜕𝑧𝑏 = 0 rather than 𝑁2 + 𝜕𝑧𝑏 = 0
at 𝑧 = 0. This ensures that isopycnals remain very nearly flat at the top of the domain,
such that the PG evolution does not depend on the height of the domain. Horizontal grid
spacing is uniform at about 7 km, whereas vertical grid spacing follows Chebyshev nodes
with resolution on the order of 0.1 m at 𝑧 = −𝐻 to comfortably resolve the boundary layers.

Inertial frequency 𝑓 −5.5 × 10−5 s−1
Far-field buoyancy frequency 𝑁 10−3 s−1
Far-field diffusivity 𝜅0 6 × 10−5 m2 s−1
Bottom-enhancement of diffusivity 𝜅1 2 × 10−3 m2 s−1
Decay scale of diffusivity ℎ 200 m
Prandtl number 𝜇 1 or 200

Table 2.1: Parameters used in the spin-up calculations, taken from Ruan and Callies (2020) and
roughly corresponding to the Mid-Atlantic Ridge flank in the Brazil Basin.
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Figure 2.4: Comparison between the canonical and transport-constrained 1D solutions and their abil-
ity to capture the 2D simulation of mixing-generated spin up over a ridge. For all solutions, 𝜇 = 1, and
the profiles are taken at 𝑥 = 500 km (red lines in Fig. 2.3). Shown are the (a), (d) streamfunction 𝜒 ,
(b), (e) along-ridge flow 𝑣, and (c), (f) stratification 𝜕𝑧𝐵. The first row (a–c) shows the canonical
1D solution (steady state in black) while the second row (d–f) shows the transport-constrained 1D
solution. All panels include the 2D 𝜈PGCM solution (dotted) for comparison.

We time step the full buoyancy𝐵 (rather than 𝑏) using a mixed implicit–explicit scheme and
a time step of 10 days. We refer to this model as the 2D 𝜈PGCM.
We attempt to reproduce the 2D 𝜈PGCM solution locally with the two 1D theories, using the
local slope angle (𝜃 ≈ 2.5 × 10−3 radians) and fluid depth (𝐻 = 2 km) at the center of the
ridge flank (𝑥 = 500 km, Fig. 2.3). The 1D models use the same numerical methods as the
2D 𝜈PGCM to solve the inversion equation (2.14) and evolution equation (2.12) over a single
column. For the canonical case, the extra boundary condition given by (2.15) is employed,
whereas for the transport-constrained case 𝑈 = 0 is specified. The depth 𝐻 is large enough
that upper-boundary effects do not affect the solution. All models are initialized with 𝑏 = 0,
so that the total buoyancy is initially 𝐵 = 𝑁2𝑧.

2.4.2 Results
The insulating boundary condition at 𝑧 = −𝐻 leads to a buoyancy flux convergence and thus
a positive buoyancy anomaly at the bottom, bending isopycnals into the ridge and spinning
up a circulation (Fig. 2.3). Bottom-intensified mixing also produces buoyancy flux diver-
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Figure 2.5: Comparison between the canonical and transport-constrained 1D solutions and their abil-
ity to capture the 2D simulation of mixing-generated spin up over a ridge. For all solutions, 𝜇 = 200,
and profiles are taken at 𝑥 = 500 km (red lines in Fig. 2.3). Shown are the (a), (d) streamfunction 𝜒 ,
(b), (e) along-ridge flow 𝑣, and (c), (f) stratification 𝜕𝑧𝐵. The first row (a–c) shows the canonical
1D solution (steady state in black) while the second row (d–f) shows the transport-constrained 1D
solution. All panels include the 2D 𝜈PGCM solution (dotted) for comparison.

gence above, causing isopycnals to bend up before plunging towards the slope. Strong up-
welling develops in a thin bottom boundary layer, broader and weaker downwelling occurs
above, and a geostrophic along-slope flow emerges throughout the water column (Fig. 2.3).
Our PG solutions are nearly identical to those of Ruan and Callies (2020), who simulated
the full primitive equations using the MITgcm (Appendix D).
The canonical 1D theory fails to capture the evolution on the ridge flanks (Fig. 2.4a–c, Ruan
and Callies, 2020). The canonical 1D theory predicts upslope flow in the bottom boundary
layer that is an order of magnitude stronger than in the 2D system. The 2D streamfunction
differs substantially from the canonical 1D theory, which produces substantial net cross-
slope transport. The canonical 1D model predicts a diffusive progression of the along-slope
flow into the interior, and substantial bottom stress induces the strong upslope Ekman trans-
port. By contrast, the 2D simulation’s transport constraint leads to zero bottom stress in the
along-slope flow because (2.13) implies 𝜕𝑧𝑣 = 0 at 𝑧 = −𝐻 when 𝑈 = 0. The buoyancy
evolution is similar between the two models, except that the strong cross-slope flow in the
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canonical 1D solution maintains a stronger stratification in the bottom boundary layer.
In contrast with the canonical model, the transport-constrained 1D model matches the results
from the 2D 𝜈PGCM very well (Fig. 2.4d–f). By enforcing the 𝑈 = 0 constraint, we enable
the streamfunction to match the 2D solution. Additionally, the secondary circulation sets up a
barotropic pressure gradient that allows the far-field along-slope flow to rapidly adjust rather
than grow diffusively as in the canonical theory. Finally, the two models yield nearly identical
buoyancy profiles. In both models, advection is negligible, and the buoyancy evolution is
dominated by diffusion. This is confirmed by separate simulations without the buoyancy
advection terms, which yield very nearly identical solutions to those in Fig. 2.4 (not shown).
The transport-constrained 1D evolution equation only includes the cross-slope advection of
the background buoyancy gradient𝑁2 tan 𝜃, neglecting nonlinear transport terms. A system
in which advection plays a more dominant role in the evolution of buoyancy would be a
more challenging test of the transport-constrained 1D model. To achieve such a scenario,
we increase the Prandtl number to 𝜇 = 200 as a crude parameterization of baroclinic eddies
(e.g., Rhines and Young, 1982; Greatbatch and Lamb, 1990; Callies, 2018; Holmes et al.,
2019). The transport-constrained 1D model still accurately describes the 2D dynamics under
these conditions (Fig. 2.5d–f). The increased Prandtl number thickens the boundary layer
and strengthens the upwelling, which in turn maintains some of the stratification near the
bottom boundary. The far-field along-slope flow still adjusts rapidly, although the transport-
constrained 1D model slightly over-predicts this evolution, caused by minor differences in
the buoyancy field arising from the 2D advection missing in the 1D model. The canonical
1D theory continues to fail miserably (Fig. 2.5a–c).

2.5 Spin Down and Ekman Arrest
As argued in the introduction, transport-constrained 1D dynamics can also elucidate the in-
terplay between Ekman arrest and spin down on a slope. We ask how an initially barotropic
along-slope flow 𝑉 , which is in geostrophic balance with a cross-slope pressure gradient,
𝑓𝑉 = 𝜕𝑥𝑃 , adjusts to the presence of a sloping boundary. The current generates a cross-
slope Ekman transport. This Ekman transport has two effects: it acts on the cross-slope buoy-
ancy gradient to produce buoyancy anomalies that slow down this transport, and, through
the transport constraint, it produces a secondary circulation in the interior that spins down
the initial along-slope flow 𝑉 . Depending on the relative timescales of arrest and spin down,
either the secondary circulation spins down 𝑉 , or the Ekman transport is arrested before 𝑉
has been spun down, in which case the bottom becomes slippery and the flow persists.
This problem has been studied with the canonical 1D model by imposing a 𝜕𝑥𝑃 that balances
the initial flow and is held fixed in time (MacCready and Rhines, 1991; Garrett et al., 1993).
Without a transport constraint, this model only contains the physics of Ekman arrest, with
no mechanism for spinning down the interior flow other than slow diffusion. The transport-
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Figure 2.6: Comparison between the canonical and transport-constrained 1D simulations of spin
down in a regime where Ekman arrest dominates. The Ekman number is Ek = 10−4, and the slope
Burger number is 𝑆 = 0.5, such that 𝜏𝐴 = 2, 𝜏𝑆 = 102, and 𝜏𝐴∕𝜏𝑆 = 2 × 10−2. Shown are the
(a), (d) cross-slope flow �̃�, (b), (e) along-ridge flow �̃�, and (c), (f) perturbation stratification 𝜕�̃��̃� in
increments of Ekman arrest times. The first row (a–c) shows the canonical 1D solution, while the
second row (d–f) shows the transport-constrained 1D solution. The barotropic pressure gradient 𝜕�̃�𝑃is shown in dashed lines in (e) and held fixed at −1 in (b). For clarity, only the first 10 Ekman layer
depths are shown, but the full domain height is 𝐻∕𝛿 = Ek−1∕2 = 100.

constrained 1D model, in contrast, captures the secondary circulation and thus the physics
of spin down. In this model, 𝜕𝑥𝑃 is allowed to change with time, as needed to satisfy the
transport constraint 𝑈 = 0. In the following, we review the timescales for Ekman spin down
and arrest and map out the parameter space using the transport-constrained 1D model.

2.5.1 Nondimensional one-dimensional equations
To distill the dynamics down to its fundamental parameters, we nondimensionalize the 1D
equations by setting

𝑡 = 𝑇 𝑡, 𝑧 = 𝛿�̃�, 𝑢 = 𝑉 �̃�, 𝑣 = 𝑉 �̃�, 𝑏 = �̃�. (2.28)

We assume a constant viscosity 𝜈 and set 𝜅 = 0 to focus on arrest and spin down without
the effects of buoyancy diffusion (cf., MacCready and Rhines, 1991). We choose an inertial
timescale, the Ekman layer height scale, and a buoyancy scale corresponding to the buoyancy
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anomaly produced by cross-slope Ekman advection persisting for one inertial timescale:

𝑇 = 1
𝑓
, 𝛿 =

√

𝜈
𝑓
,  = 𝑉 𝑁2 tan 𝜃

𝑓
. (2.29)

With these scales, equations (2.22) to (2.25) become
𝜕�̃�
𝜕𝑡

− �̃� = −𝜕𝑃
𝜕�̃�

+ 𝑆�̃� + 𝜕2�̃�
𝜕�̃�2

, (2.30)
𝜕�̃�
𝜕𝑡

+ �̃� = 𝜕2�̃�
𝜕�̃�2

, (2.31)
𝜕�̃�
𝜕𝑡

+ �̃� = 0, (2.32)

∫
𝐻∕𝛿

0
�̃� d�̃� = �̃� = 0, (2.33)

where we set �̃� = 0. The nondimensional height of the domain may be written as 𝐻∕𝛿 =
Ek−1∕2. The model is thus fully characterized by two nondimensional parameters: the slope
Burger number 𝑆 = 𝑁2 tan2 𝜃∕𝑓 2 and the Ekman number Ek = 𝜈∕𝑓𝐻2. It is worth noting
that with these choices in the nondimensionalization, the total stratification becomes

𝜕�̃�
𝜕�̃�

= 𝑓𝛿 cot 𝜃
𝑉

+ 𝜕�̃�
𝜕�̃�
, (2.34)

introducing a third nondimensional number, 𝑓𝛿 cot 𝜃∕𝑉 , a measure of the background strat-
ification. As a consequence of setting 𝜅 = 0, the flow’s evolution is independent of this
parameter.

2.5.2 Spin down and Ekman arrest timescales
Ekman spin down occurs when the geostrophic far-field along-slope flow �̃� = ±1 is eroded
by a secondary circulation. First, a cross-slope Ekman transport of order unity (�̃� ∼ ∓1
over 0 < �̃� ≲ 1) is generated. If the along-slope current had lateral structure, variations in
this Ekman transport would produce convergences and divergences that would drive a sec-
ondary circulation. Despite not capturing such lateral variations in the current, the transport-
constrained 1D model does produce this secondary circulation. The convergence and diver-
gence of the Ekman transport is delegated to �̃�→ ±∞ and the constraint �̃� = 0 ensures that
all cross-slope Ekman transport is returned in the interior. Being distributed uniformly over
the domain of height𝐻 , this cross-slope return flow has a magnitude �̃� ∼ ±𝛿∕𝐻 = ±Ek1∕2.
With negligible friction in the interior, (2.31) implies that this return flow is turned into the
along-slope direction by the Coriolis acceleration, 𝜕𝑡�̃� ≈ −�̃� ∼ ∓Ek1∕2, spinning down the
initial flow. This implies a spin-down timescale

𝜏𝑆 = 1
√Ek

. (2.35)

In dimensional terms, this is 𝜏𝑆 = 𝑓−1Ek−1∕2 and a classical result (e.g., Pedlosky, 1979). It
is worth noting that quasi-geostrophic dynamics suggest that, in a system with a characteris-
tic lateral length scale𝐿, the vertical height scale𝐻 in this scaling would be the minimum of
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𝑓𝐿∕𝑁 (the “Prandtl scale”) and the fluid depth (e.g., Holton, 1965; MacCready and Rhines,
1991).
Ekman arrest, in contrast, involves the interaction of buoyancy forces with Ekman transport
across a slope. As before, the initial along-slope flow �̃� = 𝜕�̃�𝑃 ∼ ±1 induces a cross-slope
Ekman transport of order unity. The transport acts on the cross-slope buoyancy gradient
through (2.32), generating a buoyancy anomaly of magnitude �̃� ∼ ±𝜏 over a timescale 𝜏.
The buoyancy force opposes the transport, ultimately neutralizing it once𝑆�̃� ∼ 𝜕�̃�𝑃 in (2.30)
and the near-bottom along-slope flow has been eliminated without requiring any change in
𝜕�̃�𝑃 . This yields an arrest timescale of

𝜏𝐴 = 1
𝑆
, (2.36)

or, in dimensional form, 𝜏𝐴 = (𝑆𝑓 )−1 (e.g., Rhines and MacCready, 1989). As pointed out
by MacCready and Rhines (1991), this scaling needs modification if 𝑆 ≳ 1, a regime in
which the Ekman transport cannot be assumed to persist at its original magnitude for the
full time 𝜏. We only straddle this parameter regime and ignore the correction proposed by
MacCready and Rhines (1991) for simplicity. This makes our analysis of the above scaling
relevant for abyssal ridges (𝑆 ∼ 10−3) and some continental slopes and seamounts (𝑆 ∼
10−1).
Ekman spin down and arrest thus operate on different time scales. If the spin-down timescale
is short compared to the arrest timescale, the along-slope current is spun down before the
Ekman transport is arrested. Conversely, if the arrest timescale is short compared to the spin-
down timescale, the Ekman transport is diminished before the current is spun down, and the
arrested Ekman layer acts as an essentially slippery boundary condition for the persisting
current. This competition between the two processes is characterized by the ratio of their
timescales (Garrett et al., 1993):

𝜏𝐴
𝜏𝑆

=
√Ek
𝑆

. (2.37)
When this ratio is large, we expect spin down; when it is small, we expect arrest. These
physics were identified by MacCready and Rhines (1991), but the canonical 1D model em-
ployed there did not capture spin down and thus could not elucidate this competition explic-
itly. As discussed in the introduction, the bulk model introduced in Chapman (2002) was
capable of representing both processes but lacked a direct connection to the full equations
of motion.

2.5.3 Numerical results
We now explore the competition between spin down and Ekman arrest across the parameter
space (𝑆,Ek), solving equations (2.30) to (2.33) numerically using second-order finite dif-
ferences over a grid of 29 to 211 Chebyshev nodes (depending on Ek) and a Crank–Nicolson
timestepping scheme with a timestep of Δ𝑡 = min{𝜏𝐴∕100, 𝜏𝑆∕100}. As mentioned above,
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Figure 2.7: Comparison between the canonical and transport-constrained 1D simulations of spin
down in a regime where spin down dominates. The Ekman number is Ek = 10−4, and the slope
Burger number is 𝑆 = 10−2, such that 𝜏𝐴 = 102, 𝜏𝑆 = 102, and 𝜏𝐴∕𝜏𝑆 = 1. Shown are the
(a), (d) cross-slope flow �̃�, (b), (e) along-ridge flow �̃�, and (c), (f) perturbation stratification 𝜕�̃��̃� in
increments of Ekman arrest times. The first row (a–c) shows the canonical 1D solution, while the
second row (d–f) shows the transport-constrained 1D solution. The barotropic pressure gradient 𝜕�̃�𝑃is shown in dashed lines in (e) and held fixed at −1 in (b). For clarity, only the first 10 Ekman layer
depths are shown, but the full domain height is 𝐻∕𝛿 = Ek−1∕2 = 100.

the depth of the domain depends on the Ekman number through 𝐻∕𝛿 = Ek−1∕2, so more
nodes are required for smaller Ek. We initialize all simulations with �̃� = 0, �̃� = 0, and a
barotropic geostrophic flow �̃� = −1, so as to induce upwelling in the Ekman layer. This
choice is made without loss of generality: downwelling solutions induced by �̃� = 1 are
equivalent due to symmetry of the system with 𝜅 = 0. The along-slope flow must balance
𝜕�̃�𝑃 so that, initially, we have 𝜕�̃�𝑃 = �̃� = −1. To compare with the canonical 1D theory, we
hold 𝜕�̃�𝑃 = −1 fixed and drop the transport constraint (2.33) as in MacCready and Rhines
(1991). In the transport-constrained model, on the other hand, 𝜕�̃�𝑃 is allowed to change in
time, such that the extra constraint (2.33) can be satisfied.
We begin with a case in which Ekman arrest occurs before the interior flow is spun down.
With 𝑆 = 0.5 and Ek = 10−4 (𝐻∕𝛿 = 100), the arrest and spin-down timescales are 𝜏𝐴 = 2
and 𝜏𝑆 = 102. Their ratio is 𝜏𝐴∕𝜏𝑆 = 0.02, so Ekman arrest is about 50 times faster than
spin down. This parameter regime might occur on the slopes of a typical seamount or on the
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Figure 2.8: Competition between spin down and Ekman arrest in the transport-constrained 1D model.
Colors show the fraction of the initial far-field along-slope flow �̃� remaining after (a) five arrest
times and (b) five spin-down times for a wide range of spin-down timescales 𝜏𝑆 = Ek−1∕2 and arrest
timescales 𝜏𝐴 = 1∕𝑆.

continental slope. Both the canonical and transport-constrained 1D models capture Ekman
arrest, so they should produce similar results in this regime. Indeed, after five arrest times,
the two model solutions show the same qualitative behavior (Fig. 2.6). In both models, the
Ekman transport decays with time. The along-slope flow adjusts in the Ekman layer and
shows a hint of diffusion into the interior in both cases, although the interior geostrophic
flow is also spun down by a few percent in the transport-constrained 1D model. The stratifi-
cation is enhanced by upwelling, although in the very bottom Ekman layer the models yield
large negative perturbations to the stratification due to our choice of 𝜅 = 0. Depending on
one’s choice of nondimensional background stratification in (2.34), this could lead to grav-
itationally unstable solutions. This unphysical result was also encountered by MacCready
and Rhines (1991), and subsequent studies used more sophisticated turbulence parameteri-
zations to analyze the problem in the presence of convection (e.g., Trowbridge and Lentz,
1991; MacCready and Rhines, 1993; Brink and Lentz, 2010).
As we move into a parameter regime where spin down becomes important, the two models
diverge (Fig. 2.7). With 𝑆 = 10−2 and Ek = 10−4 (𝐻∕𝛿 = 100), the arrest and spin-
down timescales are 𝜏𝐴 = 𝜏𝑆 = 102. Spin down is now as important as Ekman arrest.
About 80% of the original geostrophic flow is eroded in the transport-constrained model af-
ter five Ekman arrest times, whereas the interior along-slope flow (by design) remains fixed
at −1 in the canonical model. The rapid spin down of the geostrophic flow in the transport-
constrained model also leads to much weaker Ekman transport and therefore smaller strati-
fication changes in the boundary layer. These results are in contrast with Chapman’s (2002)
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model, which suggested a more prominent role of Ekman arrest in this parameter regime.
This quantitative difference might stem from differences in turbulence closures; Chapman
(2002) used linear bottom drag, allowing his model to reach a non-trivial steady state. A
more direct comparison between the two models can be achieved by employing the same
turbulence closures in the transport-constrained 1D model, but that is beyond the scope of
this paper. As the slope Burger number is further reduced to 𝑆 ∼ 10−3 (and Ek held fixed),
a value typical for abyssal ridge flanks such as in Fig. 2.1, spin down becomes strongly
dominant over Ekman arrest.
To assess how accurately the ratio 𝜏𝐴∕𝜏𝑆 captures the competition between Ekman spin
down and arrest in the transport-constrained model, we compute solutions with 𝜏𝐴 and 𝜏𝑆
varied over multiple orders of magnitude. The simple ratio of Ekman arrest time to spin down
time captures the dynamics of the far-field along-slope flow remarkably well (Fig. 2.8). After
five arrest times, 𝑡 = 5𝜏𝐴, simulations with a larger 𝜏𝐴∕𝜏𝑆 have smaller geostrophic flows
than those with smaller ratios (Fig. 2.8a). If 𝜏𝐴∕𝜏𝑆 > 1, the interior flow has been almost
completely spun down at 𝑡 = 5𝜏𝐴, whereas for 𝜏𝐴∕𝜏𝑆 < 0.1, the interior flow is almost
entirely preserved at 𝑡 = 5𝜏𝐴 because Ekman arrest has prevented spin down. Spin down
is not entirely prevented, however. After five spin-down times, 𝑡 = 5𝜏𝑆 , the geostrophic
current is substantially eroded, even when 𝜏𝐴∕𝜏𝑆 < 0.1 (Fig. 2.8b).

2.6 Discussion
The transport-constrained model does not generally allow for a steady state. Part of the
attraction of the canonical 1D model has been that it achieves a steady-state balance between
buoyancy advection and diffusion. It has become apparent here, however, that this comes at
the expense of implying a peculiar choice for the cross-slope mass transport: 𝑈 is implicitly
chosen such that the barotropic cross-slope pressure gradient is eliminated. This choice is
clearly incorrect in our example of a simple 2D ridge. Our discussion therefore challenges
the significance of the steady transport𝑈 = 𝜅∞ cot 𝜃 of the canonical model. If the canonical
steady state was for some reason desired, one could recover it by setting 𝑈 = 𝜅∞ cot 𝜃 in
the transport-constrained 1D model, but it is not clear to us how that might be justified.1
Instead, we argue that the transport 𝑈 is the result of coupling with the non-local part of the
dynamics and that achieving a steady state must also involve these non-local dynamics. The
transport-constrained model thus encourages a reconsideration of the interaction between
the boundary layer and interior dynamics. Boundary layer theory can be used to clarify the
physics of this interaction, a topic we are planning to discuss in a separate manuscript.
The lack of a steady state also complicates discussions of the effectiveness of boundary mix-
ing (Garrett, 1990; Garrett et al., 1993; Garrett, 2001). While advective restratification tends
to be weaker with the transport constraint (cf., Ruan and Callies, 2020), a full discussion of

1Even if 𝜅∞ = 0, such that the canonical model has a steady state with 𝑈 = 0, the evolution of the two
models remains dramatically different because 𝑈 ≠ 0 in the canonical model before the steady state is reached.
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this point must involve non-local effects that balance the net lightening in the 1D column,
such that a steady state can be reached.
The dependence of the transport-constrained 1D model on the domain height 𝐻 is worth
clarifying. The spin-down physics discussed in Section 2.5 depend explicitly on 𝐻 because
the magnitude of the cross-slope return flow that develops in response to the Ekman transport
depends on how deep a water column this return flow is distributed over. The spin-down
timescale 𝜏𝑆 is thus proportional to𝐻 (or the Prandtl scale if the current has lateral structure
on a scale similar to or smaller than the deformation radius). In contrast, the PG dynamics
discussed in Section 2.4 are independent of 𝐻 as long as isopycnals remain flat at the top
of the domain. This is because the geostrophic adjustment of the along-slope current occurs
instantaneously if the momentum tendencies are dropped. The actual rate of this adjustment,
which does depend on 𝐻 , becomes immaterial in the PG limit.
In general PG dynamics, the vertically integrated transport arises from the coupling between
columnar baroclinic 1D inversions and the barotropic vorticity equation. The same is true
in 2D, but the barotropic dynamics reduce to either 𝑈 = 0 or an explicit formula for 𝑈 (see
Appendix B). Thinking of the dynamics in this way, in conjunction with boundary layer
theory, is both conceptually and computationally advantageous. Extended to 3D in future
work, this approach allows for new insight into the role of the bottom boundary layer in the
dynamics of the abyssal circulation. The theory presented in this paper, however, does not
lend itself to making claims about the large-scale context, and we do not make any effort to
do so.
Throughout this work, we have relied on simple representations of turbulent momentum
and buoyancy fluxes, certainly not giving justice to the complexity of turbulence in bottom
boundary and stratified mixing layers. Even in idealized spin-down scenarios, turbulence
can be generated by a mix of shear, gravitational, symmetric, and centrifugal instabilities
(Wenegrat and Thomas, 2020). Furthermore, we have ignored the presence of small-scale
topography, which excites the strong internal-wave field that produces bottom-intensified
turbulence (e.g., Nikurashin and Legg, 2011), as well as baroclinic eddies, which might
help restratify abyssal mixing layers (Callies, 2018). More sophisticated turbulence param-
eterizations can be added to the transport-constrained equations, or the transport constraint
can be added to local three-dimensional calculations in slope-aligned coordinates that re-
solve the turbulence (e.g., Wenegrat et al., 2018; Callies, 2018; Ruan et al., 2019; Wene-
grat and Thomas, 2020; Ruan et al., 2021). In spin-down calculations, for example, a more
faithful description of the turbulent dynamics would reintroduce the asymmetry between
downwelling- and upwelling-favorable currents. Despite this added complexity, however,
the transport constraint and its consequences for rapid adjustment should remain important
in many circumstances.
Under what circumstances does the canonical model remain accurate? One might hope that
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it does if Ek1∕2 ≫ 𝑆, so that Ekman arrest quickly halts the spin down that is not captured
by the canonical model. No matter how rapidly Ekman arrest occurs, however, we find that
the transport-constrained 1D model still spins down the interior flow eventually (Fig. 2.8b).
Conservatively, the canonical theory should thus be restricted to times 𝑓𝑡 ≪ Ek−1∕2, al-
though the lifetime can be extended if Ekman arrest is fast enough to slow down the spin
down process. In any case, this argument renders the canonical steady state meaningless and
implies that the canonical 1D model is never valid under the PG approximation, in which
spin down is instantaneous.
Equipped with the transport-constrained model, one should revisit previous results that were
based on canonical 1D dynamics. In addition to the spin-down problem, in which slow diffu-
sion is replaced by a rapid adjustment through a secondary circulation, several other topics
might warrant reconsideration, for example:

1. Motivated by observations over the East Pacific Rise, Thompson and Johnson (1996)
integrated the canonical equations starting from rest and with bottom-intensified mix-
ing, very similar to the calculations presented in Section 2.4. They found bottom-
intensified along-slope currents and inferred transports comparable to deep western
boundary currents. Transport-constrained dynamics, however, produce flow that in-
stead decays towards the bottom (compare Fig. 2.4b,e). While it remains unclear what
happens in the presence of a planetary vorticity gradient, when interior meridional
flow must be attended by vortex stretching, it is apparent that the canonical solutions
should be considered less than definitive.

2. The mean flows discussed in Callies (2018) would similarly be altered by a transport
constraint. Cross-slope transport in the bottom boundary layer is weaker when the
integrated transport is constrained (e.g., Fig. 2.4a,d), implying that restratification by
mean flows is even weaker than implied by the canonical model employed in Callies
(2018). The conclusion that baroclinic eddies are crucial in enhancing the stratifica-
tion in abyssal mixing layers is thus robust, as confirmed in Ruan and Callies (2020),
where submesoscale eddies were found to dominate in a 3D model with constrained
transport. The utility of the steady solutions to the canonical equations presented in
Callies (2018), however, is called into question.

3. Benthuysen and Thomas (2012) examined the effects of boundary mixing on the po-
tential vorticity (PV) of the fluid during the spin down of an initial along-slope cur-
rent. In the canonical 1D model that they employed, the interior current is diffusively
eroded until a non-trivial steady flow is reached, as described by MacCready and
Rhines (1991). Benthuysen and Thomas (2012) found that the initial flow direction
relative to the steady flow determines whether PV is injected or extracted from the
fluid. If this study were revisited with the transport-constrained 1D model, the qual-
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itative behaviour of the flow would be altered, at least if spin down dominates over
Ekman arrest (as in Figs. 2.7). The conclusion that PV fluxes primarily depend on the
direction of the initial current, however, relies only on Ekman buoyancy flux physics
and is likely robust.

2.7 Conclusions
Recent work has highlighted the role that abyssal mixing layers play in the circulation of
the abyssal ocean (Ferrari et al., 2016; de Lavergne et al., 2016; McDougall and Ferrari,
2017; Holmes et al., 2018; Callies and Ferrari, 2018; Drake et al., 2020). A starting point
for understanding these dynamics of a stratified, rotating fluid overlying an inclined seafloor
has been the canonical 1D theory first developed by Phillips (1970) and Wunsch (1970). We
have shown here, however, that the choice to set the cross-slope pressure gradient to zero in
these dynamics eliminates important physics. If instead a constraint is imposed on the verti-
cally integrated cross-slope transport, which can be thought of as arising from the non-local
context of the 1D column, and a barotropic cross-slope pressure gradient is allowed, rapid
spin up and spin down of the interior along-slope flow can be captured. With this transport
constraint, a secondary cross-slope circulation can develop in the 1D framework, even if
there are no lateral variations in the flow, and act on the interior flow. These modified 1D
dynamics accurately capture the mixing-generated spin up over an idealized 2D ridge, where
the canonical 1D dynamics fail. It can be hoped that these transport-constrained 1D dynam-
ics can serve as a more reliable cornerstone for building a theory of the abyssal circulation
than the canonical 1D system.
Capturing the Ekman spin down of an interior current, the transport-constrained 1D model
can also be used to study the competition between spin down and Ekman arrest in a uni-
fied framework. We have presented the simplest model of this competition, employing a
constant viscosity and no buoyancy diffusion, in which previous expectations are exactly
matched. For 𝑆 ≪ 1, the competition is described completely by the ratio of spin-down and
arrest timescales 𝜏𝐴∕𝜏𝑆 = Ek1∕2∕𝑆 (MacCready and Rhines, 1991; Garrett et al., 1993). A
more detailed exploration of these dynamics, with more realistic turbulence closures plugged
into the transport-constrained model or with a transport constraint imposed on turbulence-
resolving simulations, is left to future work.
Data availability statement. The numerical models for all the simulations presented here are
hosted at https://github.com/hgpeterson/nuPGCM.
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Figure 2.9: Sketch of the coordinates aligned with the slope and gravity as used in the 1D model.
The covariant basis vector of coordinate 𝑗 is denoted by 𝒆𝑗 , and the corresponding contravariant
component of the velocity vector is denoted by 𝑢𝑗 , such that 𝒖 = 𝑢𝑗𝒆𝑗 (summation implied).

2.8 Appendix A: 1D Model in Coordinates Aligned with the Slope and Gravity
Here we derive the 1D model by transforming into a coordinate system in which coordinate
lines are aligned with the slope and with the direction of gravity (Fig. 2.9). This coordinate
system is a more natural choice than the often-used fully rotated coordinate system if the hor-
izontal components of the turbulent momentum and buoyancy fluxes are neglected from the
outset. If the turbulence is roughly isotropic, this neglect is consistent with the assumption
of a small aspect ratio made to drop inertial terms in the vertical momentum equation.
The hydrostatic Boussinesq equations in Cartesian coordinates (𝑥, 𝑦, 𝑧), with 𝑧 aligned with
gravity, read

𝜕𝑢𝑥

𝜕𝑡
+ 𝒖 ⋅ ∇𝑢𝑥 − 𝑓𝑢𝑦 = −𝜕𝑝

𝜕𝑥
+ 𝜕
𝜕𝑧

(

𝜈 𝜕𝑢
𝑥

𝜕𝑧

)

, (2.38)
𝜕𝑢𝑦

𝜕𝑡
+ 𝒖 ⋅ ∇𝑢𝑦 + 𝑓𝑢𝑥 = −𝜕𝑝

𝜕𝑦
+ 𝜕
𝜕𝑧

(

𝜈 𝜕𝑢
𝑦

𝜕𝑧

)

, (2.39)

𝑏 = 𝜕𝑝
𝜕𝑧
, (2.40)

𝜕𝑢𝑥

𝜕𝑥
+ 𝜕𝑢𝑦

𝜕𝑦
+ 𝜕𝑢𝑧

𝜕𝑧
= 0, (2.41)

𝜕𝑏
𝜕𝑡

+ 𝒖 ⋅ ∇𝑏 + 𝑢𝑧𝑁2 = 𝜕
𝜕𝑧

[

𝜅
(

𝑁2 + 𝜕𝑏
𝜕𝑧

)]

, (2.42)
where the velocity components are written using superscripts rather than as 𝑢, 𝑣, and𝑤 as in
the main text. The superscripts indicate contravariant components, and this tensor notation
helps keep the notation clear as we transform into the non-Cartesian coordinates. We now
define a new coordinate system (𝜉, 𝜂, 𝜁 ) such that 𝜁 = 0 at the sloping boundary (Fig. 2.9):

𝜉 = 𝑥, 𝜂 = 𝑦, 𝜁 = 𝑧 − 𝑥 tan 𝜃. (2.43)
This is analogous to terrain-following coordinates but for an infinite slope and no horizon-
tal upper boundary (cf., Callies and Ferrari, 2018). The contravariant velocity components
under this coordinate transformation are then

𝑢𝜉 = 𝑢𝑥, 𝑢𝜂 = 𝑢𝑦, 𝑢𝜁 = 𝑢𝑧 − 𝑢𝑥 tan 𝜃, (2.44)
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and the partial derivatives transform as

𝜕
𝜕𝑥

= 𝜕
𝜕𝜉

− tan 𝜃 𝜕
𝜕𝜁
, 𝜕

𝜕𝑦
= 𝜕
𝜕𝜂
, 𝜕

𝜕𝑧
= 𝜕
𝜕𝜁
. (2.45)

Hydrostatic balance thus implies that
−𝜕𝑝
𝜕𝑥

= −𝜕𝑝
𝜕𝜉

+ tan 𝜃 𝜕𝑝
𝜕𝜁

= −𝜕𝑝
𝜕𝜉

+ 𝑏 tan 𝜃, (2.46)
so that the hydrostatic Boussinesq equations in this new coordinate system read

𝜕𝑢𝜉

𝜕𝑡
+ 𝒖 ⋅ ∇𝑢𝜉 − 𝑓𝑢𝜂 = −𝜕𝑝

𝜕𝜉
+ 𝑏 tan 𝜃 + 𝜕

𝜕𝜁

(

𝜈 𝜕𝑢
𝜉

𝜕𝜁

)

, (2.47)
𝜕𝑢𝜂

𝜕𝑡
+ 𝒖 ⋅ ∇𝑢𝜂 + 𝑓𝑢𝜉 = −𝜕𝑝

𝜕𝜂
+ 𝜕
𝜕𝜁

(

𝜈 𝜕𝑢
𝜂

𝜕𝜁

)

, (2.48)

𝑏 = 𝜕𝑝
𝜕𝜁
, (2.49)

𝜕𝑢𝜉

𝜕𝜉
+ 𝜕𝑢𝜂

𝜕𝜂
+ 𝜕𝑢𝜁

𝜕𝜁
= 0, (2.50)

𝜕𝑏
𝜕𝑡

+ 𝒖 ⋅ ∇𝑏 + 𝑢𝜉𝑁2 tan 𝜃 + 𝑢𝜁𝑁2 = 𝜕
𝜕𝜁

[

𝜅
(

𝑁2 + 𝜕𝑏
𝜕𝜁

)]

. (2.51)

Neglecting all variations in 𝜉 and 𝜂, except for the barotropic pressure gradient 𝜕𝑥𝑃 if de-
sired, implies that 𝑢𝜁 = 0 by continuity, and the equations simplify to

𝜕𝑢𝜉

𝜕𝑡
− 𝑓𝑢𝜂 = −𝜕𝑃

𝜕𝑥
+ 𝑏 tan 𝜃 + 𝜕

𝜕𝜁

(

𝜈 𝜕𝑢
𝜉

𝜕𝜁

)

, (2.52)
𝜕𝑢𝜂

𝜕𝑡
+ 𝑓𝑢𝜉 = 𝜕

𝜕𝜁

(

𝜈 𝜕𝑢
𝜂

𝜕𝜁

)

, (2.53)
𝜕𝑏
𝜕𝑡

+ 𝑢𝜉𝑁2 tan 𝜃 = 𝜕
𝜕𝜁

[

𝜅
(

𝑁2 + 𝜕𝑏
𝜕𝜁

)]

. (2.54)

Since 𝑢𝜉 = 𝑢𝑥, 𝑢𝜂 = 𝑢𝑦, and 𝜕𝜁 = 𝜕𝑧, these are equivalent to (2.5) to (2.7) (with 𝜕𝑥𝑃 = 0)
and (2.22) to (2.24) in the main text. We note that 𝑢𝜉 = 𝑢𝑥 is the horizontal projection of
the cross-slope velocity as it would be defined in a fully rotated coordinate system. This is
because the basis vector 𝒆𝜉 = 𝒆𝑥 + tan 𝜃 𝒆𝑧 does not have unit length (Fig. 2.9).

2.9 Appendix B: Calculation of the Cross-Ridge Transport for General Topography
For symmetric 2D bottom topography such as in Fig. 2.1, it is immediately clear by conti-
nuity and symmetry that the vertically integrated cross-ridge flow 𝑈 must vanish. Similarly,
if the depth𝐻 vanishes anywhere in the 2D domain, 𝑈 = 0 everywhere follows by continu-
ity. For general topography in a 2D periodic domain, however, we need to compute 𝑈 along
with the PG inversion (2.21). We here show how this can be done and illustrate the procedure
with a solution for mixing-generated spin up over an asymmetric 2D ridge (Fig. 2.10).
First, it is useful to split the streamfunction 𝜒 into two components:

𝜒 = 𝜒𝑏 + 𝑈𝜒𝑈 . (2.55)
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The buoyancy component 𝜒𝑏 is defined as solving

𝜕2

𝜕𝑧2

(

𝜈
𝜕2𝜒𝑏

𝜕𝑧2

)

+ 𝑓 2

𝜈
𝜒𝑏 = 𝜕𝑏

𝜕𝑥
(2.56)

with the boundary conditions 𝜒𝑏 = 0 at both 𝑧 = −𝐻 and 𝑧 = 0. The transport compo-
nent 𝜒𝑈 instead solves

𝜕2

𝜕𝑧2

(

𝜈
𝜕2𝜒𝑈

𝜕𝑧2

)

+ 𝑓 2

𝜈
𝜒𝑈 = 𝑓 2

𝜈
, (2.57)

with the boundary conditions 𝜒𝑈 = 0 at 𝑧 = −𝐻 and 𝜒𝑈 = 1 at 𝑧 = 0, such that (2.55)
solves the inversion equation (2.21) and satisfies the boundary conditions 𝜒 = 0 at 𝑧 = −𝐻
and 𝜒 = 𝑈 at 𝑧 = 0. Note that both 𝜒𝑏 and 𝜒𝑈 are independent of 𝑈 and can be calculated
without its knowledge.
To obtain a formula for 𝑈 , we follow a similar approach as in the classic “Island Rule” (e.g.,
Pedlosky et al., 1997). We begin by taking the 𝑥-mean, denoted by ⟨ ⋅ ⟩, of the 𝑥-momentum
equation (2.16) at 𝑧 = 0, which gives

−𝑓 ⟨𝑣⟩ −
⟨ 𝜕
𝜕𝑧

(

𝜈 𝜕𝑢
𝜕𝑧

)⟩

= 0 at 𝑧 = 0. (2.58)

Applying the definition of the streamfunction and the relation (2.13), this can be written as
⟨

𝑓 2

𝜈
(𝜒 − 𝑈 )

⟩

+
⟨

𝜕
𝜕𝑧

(

𝜈
𝜕2𝜒
𝜕𝑧2

)⟩

= 0 at 𝑧 = 0, (2.59)

where (⋅) = ∫ 0
−𝐻 (⋅) d𝑧. Substituting (2.55) and solving for 𝑈 yields

𝑈 = −

⟨

𝜕
𝜕𝑧

(

𝜈 𝜕
2𝜒𝑏

𝜕𝑧2

)⟩

𝑧=0
+
⟨

𝑓 2

𝜈
𝜒𝑏

⟩

⟨

𝜕
𝜕𝑧

(

𝜈 𝜕
2𝜒𝑈
𝜕𝑧2

)⟩

𝑧=0
+
⟨

𝑓 2

𝜈
(𝜒𝑈 − 1)

⟩

, (2.60)

thus completing the solution to (2.14).
To showcase the calculation using (2.60), we perform a simulation of mixing-generated spin
up over the asymmetric ridge in Fig. 2.10. We obtain𝑈 ≈ 1.7×10−4 m2 s−1 after three years
of spin up.

2.10 Appendix C: Spin Up with Rayleigh Drag
In studies of mixing-generated spin up in the abyss, the turbulent transport of momentum
has been parameterized using Rayleigh drag by Callies and Ferrari (2018) and Drake et al.
(2020). Here we briefly show the consequences of such a closure in the context of the
transport-constrained 1D theory.
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Figure 2.10: Mixing-generated spin up over an asymmetric ridge, showing net transport 𝑈 ≈ 1.7 ×
10−4 m2 s−1. The streamfunction (shading and black contours) is shown at 3 years, with positive
values indicating counter-clockwise flow and negative values clockwise flow. The gray curves show
isopycnals.

The momentum and continuity equations for the 2D PG system with Rayleigh drag take the
form

−𝑓𝑣 = 𝜕𝑝
𝜕𝑥

− 𝑟𝑢, (2.61)
𝑓𝑢 = −𝑟𝑣, (2.62)
𝜕𝑝
𝜕𝑧

= 𝑏, (2.63)
𝜕𝑢
𝜕𝑥

+ 𝜕𝑤
𝜕𝑧

= 0, (2.64)

where 𝑟 is a friction parameter. The lower order of these equations compared with (2.16)
to (2.19) reduces the number of boundary conditions that we may apply: we only require
no-normal flow at the bottom and top boundaries. As above, we define a streamfunction
such that 𝜕𝑧𝜒 = 𝑢, yielding the inversion equation

𝑓 2 + 𝑟2

𝑟
𝜕2𝜒
𝜕𝑧2

= − 𝜕𝑏
𝜕𝑥
, (2.65)

with boundary conditions 𝜒 = 0 at 𝑧 = −𝐻 and 𝜒 = 𝑈 at 𝑧 = 0. Notice that, in contrast
to the case with Fickian momentum transfer, the streamfunction response to a buoyancy
gradient is not localized in 𝑧. There is no height scale other than the domain height. As in
Appendix B, the streamfunction can be split into buoyancy and transport components to
obtain a formula for 𝑈 :

𝑈 = −
⟨

𝜕𝜒𝑏

𝜕𝑧

⟩

𝑧=0

/

⟨

𝜕𝜒𝑈

𝜕𝑧

⟩

𝑧=0
. (2.66)

Let us now compare this with the 1D system. In a slope-aligned coordinate system and
with a barotropic cross-slope pressure gradient included, the PG momentum equations with
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Rayleigh drag take the form

−𝑓𝑣 = −𝜕𝑃
𝜕𝑥

+ 𝑏 tan 𝜃 − 𝑟𝑢, (2.67)
𝑓𝑢 = −𝑟𝑣, (2.68)

or, as a streamfunction equation,
𝑓 2 + 𝑟2

𝑟
𝜕2𝜒
𝜕𝑧2

= 𝜕𝑏
𝜕𝑧

tan 𝜃, (2.69)
with boundary conditions 𝜒 = 0 at 𝑧 = 0 and 𝜒 = 𝑈 at 𝑧 = 𝐻 . Again, the inversion
is equations are equivalent in 2D and the transport-constrained 1D system. The lack of an
additional height scale applies to the transport-constrained 1D model as well, which means
that solutions depend strongly on the domain height𝐻 . This also means that the limit𝐻 →

∞ is no attainable in the transport-constrained model with Rayleigh drag. This is clear from
the vertical integral of the momentum equations, which yields

𝑓 2 + 𝑟2

𝑟
𝑈 = −𝐻𝜕𝑃

𝜕𝑥
+ ∫

𝐻

0
𝑏 tan 𝜃 d𝑧. (2.70)

The limit 𝐻 → ∞ thus requires 𝜕𝑥𝑃 → 0, but then the transport 𝑈 cannot be specified
separately.
As with Fickian diffusion, the transport-constrained 1D model better captures the 2D solu-
tion. Rayleigh friction applies throughout the whole water column, however, causing return
flow to spread across the full domain. This leads to errors in both 1D models due to their
slope-aligned coordinate system.

2.11 Appendix D: Comparison Between PG and Non-PG Transport-Constrained 1D
Solutions

In the main text, we argue that the PG approximation is sufficient for describing the dynamics
of mixing-generated spin up over an idealized ridge. Additionally, we claim that our PG
solutions match those of Ruan and Callies (2020), who solved the 2D primitive equations.
For full transparency, we here show a comparison between the transport-constrained 1D
dynamics with and without momentum tendency terms included (Fig. 2.11).
To directly compare with the solutions in Ruan and Callies (2020), we use a domain height
of𝐻 = 1 km and show the solutions in intervals of 1000 days. The slope-aligned coordinate
system in the 1D theory makes it difficult to reproduce their results with boundary conditions
applied on a horizontal upper boundary. To minimize boundary layer effects at the upper
boundary, we therefore retain a constant buoyancy flux −𝜅𝑁2 as in the main text, which
leads to slight differences in the upper 200 m from Ruan and Callies (2020).
Overall, the transport-constrained 1D PG model predicts mixing-generated spin up that is
nearly identical to the 2D primitive equation solution shown in Ruan and Callies (2020)



35

0 1 2
Cross-ridge �ow u
(×10−4 m s−1)

−1.0
−0.8
−0.6
−0.4
−0.2
0.0

Ve
rti
ca
lc
oo

rd
in
at
ez(km

)

(a)

−3.0 −1.5 0.0 1.5
Along-ridge �ow v
(×10−2 m s−1)

(b)

1000 days
2000 days
3000 days
4000 days
5000 days

0.0 0.5 1.0
Strati�cation )zB

(×10−6 s−2)

(c)

Full
PG

−1 0 1 2
−1

−0.95
−0.9

Figure 2.11: Comparison between PG and full transport-constrained 1D solutions for mixing-
generated spin up. For all solutions, parameters are as in Ruan and Callies (2020) (i.e. Table 2.1
with 𝜇 = 1, 𝜃 = 2.5 × 10−3, and 𝐻 = 1 km). Shown are the (a) cross-slope flow 𝑢, (b), along-slope
flow 𝑣, and (c) stratification 𝜕𝑧𝐵. Solid lines denote full solutions while dotted lines show PG so-
lutions. The transport-constrained 1D PG model matches Ruan and Callies (2020) remarkably well
(cf., their Fig. 4), with the full model capturing fast variations in Ekman transport [inset of panel (a)].

(cf., their Fig. 4). The only substantial difference is that the Ekman transport in the PG
system instantaneously adjusts and remains roughly constant throughout the 5000 day spin
up, whereas the full system produces initially larger and subsequently decreasing cross-slope
flow (Fig. 2.11a). This arises because the initial buoyancy field does not satisfy the bottom
boundary condition, so the initial adjustment is faster than the inertial timescale.
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C h a p t e r 3

COUPLING BETWEEN ABYSSAL BOUNDARY LAYERS AND THE
INTERIOR OCEAN IN THE ABSENCE OF ALONG-SLOPE VARIATIONS

This chapter is reproduced from the published article:
Peterson, H. G., and J. Callies, 2023: Coupling between abyssal boundary layers and the
interior ocean in the absence of along-slope variations. Journal of Physical Oceanography,
53 (1), 307–322, doi:10.1175/JPO-D-22-0082.1. © American Meteorological Society. Used
with permission.
As a self-contained work, some notation may differ from conventions used elsewhere in this
thesis.

3.1 Abstract
To close the overturning circulation, dense bottom water must upwell via turbulent mixing.
Recent studies have identified thin bottom boundary layers (BLs) as locations of intense up-
welling, yet it remains unclear how they interact with and shape the large-scale circulation of
the abyssal ocean. The current understanding of this BL–interior coupling is shaped by 1D
theory, suggesting that variations in locally produced BL transport generate exchange with
the interior and thus a global circulation. Until now, however, this picture has been based on
a 1D theory that fails to capture the local evolution in even highly idealized 2D geometries.
The present work applies BL theory to revised 1D dynamics, which more naturally gener-
alizes to two and three dimensions. The BL is assumed to be in quasi-equilibrium between
the upwelling of dense water and the convergence of downward buoyancy fluxes. The BL
transport, for which explicit formulae are presented, exerts an influence on the interior by
modifying the bottom boundary condition. In 1D, this BL transport is independent of the
interior evolution, but in 2D the BL and interior are fully coupled. Once interior variables
and the bottom slope are allowed to vary in the horizontal, the resulting convergences and
divergences in the BL transport exchange mass with the interior. This framework allows
for the analysis of previously inaccessible problems such as the BL–interior coupling in the
presence of an exponential interior stratification, laying the foundation for developing a full
theory for the abyssal circulation.

3.2 Introduction
Thin boundary layers (BLs) at the ocean’s bottom have recently come into focus as the pri-
mary locations in which small-scale turbulence lightens bottom waters, thus playing a cru-
cial role in closing the overturning circulation of the abyss (Ferrari et al., 2016; de Lavergne
et al., 2016). The connection between these BLs and the large-scale abyssal circulation,

https://doi.org/10.1175/JPO-D-22-0082.1
https://www.ametsoc.org/PUBSCopyrightPolicy
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however, remains to be fully explained. The cornerstone of our present understanding of the
mixing-generated abyssal circulation is a 1D model of a stratified, rotating fluid overlying a
sloping, insulated seafloor (e.g., Phillips, 1970; Wunsch, 1970; Thorpe, 1987; Garrett et al.,
1993). This 1D theory helped bring bottom BLs into center stage, predicting that the lo-
cal response to bottom-intensified mixing is characterized by diabatic upslope flow in the
thin BL compensated in part by diabatic downslope flow spread across the interior (Garrett,
1990; Ferrari et al., 2016; de Lavergne et al., 2016; McDougall and Ferrari, 2017; Callies,
2018). Our description of large-scale abyssal dynamics is shaped by this local theory: the
natural conclusion is that variations in these locally produced flows generate exchange with
the interior and producing a global circulation (e.g., Phillips et al., 1986; McDougall, 1989;
Garrett, 1991; Dell and Pratt, 2015; Holmes et al., 2018). This picture fails to consider the
potential feedback of the circulation produced in the interior back onto the BL, however,
suggesting that this framework is incomplete.
In addition to this lack of two-way coupling, progress has also been hampered by the canoni-
cal 1D theory failing to reproduce the local evolution in simple 2D geometries. The canonical
1D model predicts slow diffusion of the interior along-slope flow (MacCready and Rhines,
1991), whereas simulations of bottom-intensified mixing over an idealized 2D mid-ocean
ridge display rapid spin up of the interior (Ruan and Callies, 2020). In Peterson and Callies
(2022, hereafter PC22), we remedied this shortcoming by including the physics of a sec-
ondary circulation and barotropic pressure gradient. The key is to constrain the vertically
integrated cross-slope transport to force upwelling flow in the BL to return in the interior.
This downwelling flow is then turned in the along-slope direction by the Coriolis accel-
eration and balanced by a barotropic pressure gradient, leading to rapid adjustment in the
interior as seen in 2D. With this more faithful 1D model, we have a reliable foundation to
describe the role of abyssal BLs in the large-scale circulation.
Callies and Ferrari (2018) and Drake et al. (2020) connected BL dynamics to the horizon-
tal circulation in a 3D planetary-geostrophic (PG) model with idealized bathymetry and
Rayleigh friction. Callies and Ferrari (2018) found that, for vertically constant interior strat-
ification and on moderate slopes, local 1D theory accurately emulates the 3D model’s dy-
namics. On the sloping sidewalls of the idealized bathymetry, upslope transport in thin bot-
tom BLs is compensated by downwelling aloft. At the base of the slopes, however, 1D theory
breaks down in favor of a basin-scale circulation that feeds the BLs on slopes. An integral
of the local upslope 1D BL transport along the perimeter of the basin provides an accu-
rate estimate of the overturning. These ideas fail, however, once the interior stratification
is far from constant, because 1D theory can only consider perturbations to a constant back-
ground stratification (Drake et al., 2020). This is a severe limitation, given the real ocean’s
near-exponential stratification (e.g., Munk, 1966). For a more realistic stratification, down-
welling in the interior is weakened and BL upwelling dominates, though the vertical extent
and structure of the net transport remains to be explained. In this work, we provide a frame-
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Figure 3.1: Illustration of the BL correction to interior solution. Shown is a typical streamfunction 𝜒 ,
defined such that 𝜕𝑧𝜒 = 𝑢𝑥 where 𝑢𝑥 is the cross-slope flow, after three years of mixing-generated
abyssal spin up at a slope Burger number 𝜚 = 10−3 (see section 3.3). The solution is depicted
over (a) the entire 2 km domain as well as (b) a zoom-in to the bottom 100 m, shown in (a) in
gray shading. The interior solution 𝜒I varies slowly compared with the scale of the BL, and the BL
correction 𝜒B ensures that boundary conditions are satisfied.

work for concretely understanding this interplay between the BL and interior.
Below, we derive self-contained equations for interior 1D and 2D PG dynamics on an 𝑓 -
plane with effective boundary conditions that capture the effects of BLs. We accomplish this
using BL theory, splitting variables into their interior and BL contributions (e.g., Bender and
Orszag, 1999; Chang, 2007, Fig. 3.1). This explicitly separates the interior and BL dynamics
and allows for deep physical insight into their coupling. Famously, Stommel’s (1948) gyre
theory can be solved with BL methods (Veronis, 1966), although the coupling there is one-
way: the interior solution can be calculated in isolation, and the western BL is a passive
element of the theory. We find that this is different for bottom BLs on slopes. Their structure
is shaped by the interior solution, but the buoyancy and mass fluxes carried in the BL feed
back on the interior solution in the form of boundary conditions.
A central result of this paper is an explicit expression for the cross-slope BL transport (per
unit along-slope distance) in terms of interior variables and flow parameters. In 1D, the BL
transport takes the form 𝜅 cot 𝜃 𝜇𝜚∕(1+𝜇𝜚), where 𝜇 = 𝜈∕𝜅 is the turbulent Prandtl number
with 𝜈 being the turbulent viscosity and 𝜅 the turbulent diffusivity, and 𝜚 = 𝑁2 tan2 𝜃∕𝑓 2

is the slope Burger number with 𝑁 being the background interior buoyancy frequency, 𝑓
the inertial frequency, and 𝜃 the bottom slope angle. All variables are evaluated at the bot-
tom (or, more generally, just above the BL). In the canonical 1D framework, a steady-state
balance between cross-slope upwelling of dense water and turbulent mixing requires that
the total transport tends towards 𝜅∞ cot 𝜃, where 𝜅∞ is the far-field turbulent diffusivity
(Thorpe, 1987; Garrett et al., 1993). Our revised result instead applies to the bottom BL
transport and is valid throughout transient evolution, provided that the BL has adjusted to
a quasi-steady state. Unlike the canonical result, this expression smoothly approaches zero
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as 𝜃 → 0, more harmoniously connecting the model over a slope with conventional flat-
bottom Ekman theory (e.g., Pedlosky, 1979). The expression has the same form in 2D, but
there the slope Burger number is a function of interior cross-isobath buoyancy gradients as
well as the local topographic slope. Thus, in 2D, variations in interior buoyancy gradients
and the topographic slope cause convergence in the BL transport, generating exchange with
the interior. A similar process occurs in 3D with the added physics of along-isobath vari-
ations and a modified interior balance, but we leave the details of 3D dynamics to future
work.
In section 3.3, we begin by reviewing the transport-constrained 1D model from PC22, fol-
lowed by a derivation of the 1D BL theory. We derive the 2D BL theory in section 3.4,
applying the framework to simulations of mixing-generated spin up under a vertically vary-
ing background stratification. In section 3.5, we re-derive the 1D and 2D BL equations in a
more rigorous fashion, quantifying the accuracy of our claims in the previous sections and
uncovering some subtleties in the dynamics. Finally, we provide discussion and conclusions
in sections 3.6 and 3.7, respectively.

3.3 One-dimensional boundary layer theory
In this section, we apply BL theory to the revised 1D model from PC22 and present re-
sults from numerical integrations of both the full and BL equations. Here and through-
out the paper, we employ PG scaling, thus focusing our attention on the slow and large-
scale response to mixing. The PG flow should be interpreted as the residual flow after a
thickness-weighted average over transients due to turbulence, waves, and baroclinic eddies,
with the effect of these transients included as parameterized Eliassen–Palm and diapycnal
fluxes (Young, 2012).

3.3.1 Transport-constrained one-dimensional dynamics
We first consider 1D PG dynamics along a uniform slope at an angle 𝜃 above the horizontal.
The 1D model is typically derived by writing the Boussinesq equations in a rotated coordi-
nate system aligned with the slope (e.g., Garrett et al., 1993). We slightly deviate from this
approach by keeping the vertical coordinate aligned with gravity, which is a more natural
choice if the horizontal components of the turbulent momentum and buoyancy fluxes are
neglected, but it yields equivalent dynamics (PC22).1 Specifically, we write the 1D model
in (𝜉, 𝜂, 𝜁 ) coordinates defined by

𝜉 = 𝑥, 𝜂 = 𝑦, 𝜁 = 𝑧 − 𝑥 tan 𝜃, (3.1)

where (𝑥, 𝑦, 𝑧) defines the usual Cartesian coordinate system with 𝑧 aligned with grav-
ity. These coordinates are analogous to terrain-following coordinates (used below) in 1D

1In the limit 𝜃 ≪ 1, the gravity-aligned coordinate system employed here and the previously used fully
rotated coordinate system yield the same equations.
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with 𝜁 = 0 at the bottom. Neglecting all variations in 𝜉 and 𝜂, except for the barotropic
pressure gradient 𝜕𝑥𝑃 (equivalently, 𝜕𝜉𝑃 , since 𝑃 is independent of 𝑧), and constraining
the vertically integrated cross-slope transport to 𝑈 𝜉 (typically to zero), the PG equations
become

−𝑓𝑢𝜂 = −𝜕𝑃
𝜕𝑥

+ 𝑏′ tan 𝜃 + 𝜕
𝜕𝜁

(

𝜈 𝜕𝑢
𝜉

𝜕𝜁

)

, (3.2)

𝑓𝑢𝜉 = 𝜕
𝜕𝜁

(

𝜈 𝜕𝑢
𝜂

𝜕𝜁

)

, (3.3)
𝜕𝑏′

𝜕𝑡
+ 𝑢𝜉𝑁2 tan 𝜃 = 𝜕

𝜕𝜁

[

𝜅
(

𝑁2 + 𝜕𝑏′

𝜕𝜁

)]

, (3.4)

∫
∞

0
𝑢𝜉 𝑑𝜁 = 𝑈 𝜉 . (3.5)

Here, 𝑢𝜉 is the cross-slope velocity2 and 𝑢𝜂 is the along-slope velocity. We have split the total
buoyancy 𝑏 into a constant background stratification and a perturbation so that 𝑏 = 𝑁2𝑧+𝑏′.
The fluid satisfies no-slip and insulating boundary conditions at the bottom: 𝑢𝜉 = 0, 𝑢𝜂 = 0,
and 𝜕𝜁𝑏 = 𝑁2 + 𝜕𝜁𝑏′ = 0 at 𝜁 = 0. In the far field, we impose decay conditions on the shear
and anomalous buoyancy flux: 𝜕𝜁𝑢𝜉 → 0, 𝜕𝜁𝑢𝜂 → 0, and 𝜕𝜁𝑏′ → 0 as 𝜁 → ∞. The extra
degree of freedom supplied by 𝜕𝑥𝑃 allows the transport constraint (3.5) to be satisfied at
all times. Physically, this constraint forces cross-slope upwelling in the BL to return in the
interior, where it is then turned into the along-slope direction by the Coriolis force. In the
PG framework, this process is instantaneous, and the far-field along-slope flow satisfies the
balance: −𝑓𝑢𝜂 = −𝜕𝑥𝑃 . This leads to rapid spin up of the along-slope flow throughout the
water column, as seen in simulations of 2D spin up (Ruan and Callies, 2020, PC22).
We employ a simple down-gradient closure for the turbulent momentum and buoyancy
fluxes generated by, e.g., breaking internal waves but allow for variations in the mixing
coefficients 𝜈 and 𝜅. We assume these variations to occur on a scale larger than the BL
thickness. In our examples below, 𝜈 and 𝜅 are bottom-enhanced in abyssal mixing layers
a few hundred meters thick, inspired by typical observations over rough mid-ocean ridges.
Our main results, however, generalize to the case in which 𝜈 and 𝜅 vary rapidly within the
BL, for example going to zero in a log-layer.
As in PC22, we cast equations (3.2) to (3.5) into an inversion equation for the flow, written
in terms of a streamfunction 𝜒(𝜁 ) defined such that 𝑢𝜉 = 𝜕𝜁𝜒 , and an evolution equation for
the buoyancy perturbation:

𝜕2

𝜕𝜁2

(

𝜈
𝜕2𝜒
𝜕𝜁2

)

+ 𝑓 2

𝜈
(𝜒 − 𝑈 𝜉) = −𝜕𝑏

′

𝜕𝜁
tan 𝜃, (3.6)

𝜕𝑏′

𝜕𝑡
+
𝜕𝜒
𝜕𝜁
𝑁2 tan 𝜃 = 𝜕

𝜕𝜁

[

𝜅
(

𝑁2 + 𝜕𝑏′

𝜕𝜁

)]

. (3.7)
2Due to our non-orthogonal coordinate system, 𝑢𝜉 is technically the 𝑥-projection of the cross-slope velocity

as it would be defined in a fully rotated coordinate system (PC22, appendix A). For simplicity, we refer to it as
the “cross-slope velocity” throughout.
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Figure 3.2: Sketch of BL theory framework for (a) 1D dynamics over a uniform slope and (b) 2D
dynamics over more complicated topography.

The boundary conditions are that 𝜒 = 0 and 𝜕𝜁𝜒 = 0 at 𝜁 = 0 and 𝜒 → 𝑈 𝜉 as 𝜁 → ∞. If
desired, one may infer the along-slope flow from 𝜒 by integrating

𝜕𝑢𝜂

𝜕𝜁
= 𝑓
𝜈
(𝜒 − 𝑈 𝜉) (3.8)

from the bottom up, using 𝑢𝜂 = 0 at 𝜁 = 0. Equations (3.6) and (3.7) fully describe the 1D
PG system and can readily be solved numerically. But insight into the BL–interior coupling
is more easily gained using BL theory.

3.3.2 Boundary layer theory
Under steady conditions, equations (3.6) and (3.7) can be combined to form a single fourth-
order ordinary differential equation for𝜒 . The fourth- and zeroth-order terms in that equation
balance if 𝜒 varies on a scale 𝑞−1 defined by

(𝛿𝑞)4 = 1 + 𝜇𝜚, (3.9)

where 𝛿 =
√

2𝜈∕𝑓 is the familiar flat-bottom Ekman layer thickness, and the mixing co-
efficients are evaluated at 𝜁 = 0. This defines the BL scale of a rotating fluid adjacent to
a sloping bottom (e.g., Garrett et al., 1993). For typical abyssal parameters, 𝑞−1 ∼ 10 m
(Callies, 2018). This thinness of the BL compared to the scale of variations in the interior
ocean is what allows us to apply BL theory.
We begin by splitting solutions into interior contributions 𝜒I and 𝑏′I, which vary slowly in 𝜁 ,
and BL corrections 𝜒B and 𝑏′B, which ensure boundary conditions are satisfied and have
appreciable magnitude in the thin BL only. A similar approach was taken in Callies (2018)
with the canonical 1D model, but the analysis presented here is time-dependent and exten-
sible to higher dimensions (section 3.4). If the mixing coefficients 𝜈 and 𝜅 vary on a scale
much larger than 𝑞−1, the fourth-order term in (3.6) can be neglected in the interior:

𝑓 2

𝜈
𝜒I = −

𝜕𝑏′I
𝜕𝜁

tan 𝜃, (3.10)

assuming 𝑈 𝜉 = 0 (see appendix A for the 𝑈 𝜉 ≠ 0 case). Substituted back into the buoyancy
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equation (3.7), this reduces the interior dynamics to a modified diffusion equation:

𝜕𝑏′I
𝜕𝑡

= 𝜕
𝜕𝜁

(

𝜅

[

𝑁2 + (1 + 𝜇𝜚)
𝜕𝑏′I
𝜕𝜁

])

. (3.11)

This is a result familiar from Gill (1981), Garrett and Loder (1981), and Garrett (1982):
advection of the background stratification by the secondary circulation becomes a horizontal
diffusion term, with diffusivity 𝜈𝑁2∕𝑓 2. The form here is the result of the sloping boundary:
the vertical coordinate depends on the slope-parallel distance multiplied by tan 𝜃, which
explains the factor tan2 𝜃 in the additional diffusion term.
This interior evolution must be complemented by a representation of the bottom BL that
supplies an effective boundary condition for the interior equation. The key assumption here
is that the BL scale 𝑞−1 is thin compared to interior variations. This thinness of the BL also
implies that it is quasi-steady on the time scales of the interior evolution. The BL correction
thus satisfies the steady buoyancy equation

𝜕𝜒B
𝜕𝜁

𝑁2 tan 𝜃 = 𝜕
𝜕𝜁

(

𝜅
𝜕𝑏′B
𝜕𝜁

)

. (3.12)

Since all BL variables decay into the interior, i.e., as 𝜁 → ∞, this balance can be integrated
to

𝜒B𝑁
2 tan 𝜃 = 𝜅

𝜕𝑏′B
𝜕𝜁

. (3.13)
This relation is all that is needed to derive a boundary condition on the interior solution.
At 𝜁 = 0, 𝜒I + 𝜒B = 0, such that the full 𝜒 = 0 boundary condition is satisfied. So, using
(3.10),

𝜕𝑏′B
𝜕𝜁

= −𝑁
2 tan 𝜃
𝜅

𝜒I = 𝜇𝜚
𝜕𝑏′I
𝜕𝜁

at 𝜁 = 0. (3.14)
The insulating boundary condition then becomes

0 = 𝑁2 +
𝜕𝑏′I
𝜕𝜁

+
𝜕𝑏′B
𝜕𝜁

= 𝑁2 + (1 + 𝜇𝜚)
𝜕𝑏′I
𝜕𝜁

at 𝜁 = 0. (3.15)

The BL correction thus contributes an additional term 𝜇𝜚𝜕𝜁𝑏′I to the boundary condition for
the interior buoyancy evolution (3.11). The added term represents physics akin to an Ekman
buoyancy flux (e.g., Marshall and Nurser, 1992; Thomas and Lee, 2005): the BL transport 𝜒I
acts on the cross-slope buoyancy gradient 𝑁2 tan 𝜃 and produces a buoyancy sink for the
interior. This boundary condition on the interior problem implies a stratification at the top
of the BL that is reduced from the background by a factor 𝜇𝜚∕(1 + 𝜇𝜚) and a BL transport,
from combining (3.15) and (3.10),

𝜒I = 𝜅 cot 𝜃 𝜇𝜚
1 + 𝜇𝜚

at 𝜁 = 0, (3.16)
as claimed in the introduction (Fig. 3.2a). We note that the transport-constrained system,
unlike the canonical one, has no steady state in a semi-infinite domain, yet previous work
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on the BL–interior interaction has often begun with the canonical result that the steady
transport is 𝑈 𝜉 = 𝜅∞ cot 𝜃 (e.g., Woods, 1991; Callies and Ferrari, 2018; Drake et al.,
2020). The revised expression in (3.16) instead applies to the transport confined to the BL
and more sensibly leaves the net transport (and steady-state dynamics) to be controlled by
the large-scale context.
If desired, the BL correction can easily be determined from

𝜕4𝜒B
𝜕𝜁4

+ 4𝑞4𝜒B = 0, (3.17)

with 𝜒B = −𝜒I and 𝜕𝜁𝜒B = 0 at 𝜁 = 0 (neglecting the much smaller interior contribution
to 𝜕𝜁𝜒 at the bottom) and 𝜒B → 0 as 𝜁 → ∞. This has a similar form as the steady canonical
1D problem with constant mixing coefficients (e.g., Garrett et al., 1993), but the boundary
conditions and right-hand side are different because the transport constraint is imposed and
the interior solution has been subtracted out. The general solution takes the form of the
familiar Ekman spiral:

𝜒B = −𝜒I𝑒−𝑞𝜁 (cos 𝑞𝜁 + sin 𝑞𝜁 ), (3.18)
where 𝜒I is evaluated at 𝜁 = 0 as in (3.16).
This analytical expression for the BL correction also allows us to directly diagnose how
the far-field along-slope flow is influenced by the BL. From (3.8) and (3.10), the interior
along-slope shear follows thermal wind balance,

𝜕𝑢𝜂I
𝜕𝜁

= − 1
𝑓
𝜕𝑏′I
𝜕𝜁

tan 𝜃, (3.19)

which implies, upon integration in the vertical,

𝑢𝜂I (𝜁 ) = 𝑢𝜂I (0) −
1
𝑓
[

𝑏′I(𝜁 ) − 𝑏
′
I(0)

]

tan 𝜃. (3.20)

The integration constant 𝑢𝜂I (0), the flow at the upper edge of the BL, can be determined
from the BL solution (3.18) and (3.8): 𝑢𝜂I (0) = −𝑢𝜂B(0) = −𝑓𝜒I(0)∕𝑞𝜈(0). This BL con-
tribution to the interior along-slope flow has the same form as the steady-state canonical
result with constant mixing coefficients (Thorpe, 1987; Garrett et al., 1993), but here it is
rapidly spun up and accompanied by an additional interior thermal-wind component. We
will see in section 3.5 that this BL contribution is typically of higher asymptotic order than
the thermal-wind contribution.
It should be noted that the key results (3.15) and (3.16) also apply if there are variations in
the mixing coefficients within the thin BL, as may be expected as the turbulence becomes
suppressed very close to the bottom. The physics that lead to (3.15) and (3.16) are that the
diffusive buoyancy flux into the BL is balanced by cross-slope advection within the BL and
that the interior obeys (3.10). While the BL corrections are more complicated if 𝜈 and 𝜅 are
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not approximately constant across the BL, for example including a log-layer if the mixing
coefficients go to zero near the bottom, the effective boundary condition for the interior is
the same.
In summary, BL theory has enabled us to elucidate the connection between the BL and in-
terior in 1D. The BL transport quickly adjusts to (3.16), regardless of the interior dynamics.
This transport allows the BL to communicate with the interior by moving dense water up
the slope, providing a buoyancy sink and modifying the interior bottom boundary condi-
tion (3.15) (Fig 3.2a). In 1D, the BL is thus independent of the evolution of the interior, yet
the cross-slope advection by the BL transport affects the interior dynamics. As we will see
in the next section, the BL–interior coupling in 2D are even richer, with the interior being
able to feed back onto the BL. But first, we present some illustrative 1D examples.

3.3.3 Examples
The following experiments depict 1D PG spin up with and without BL theory. The simula-
tions start in a state of rest: isopycnals are flat (𝑏′ = 0), and the flow is zero (𝜒 = 0). The
turbulent mixing then generates a buoyancy perturbation, bending isopycnals into the slope
and spinning up a circulation. The transport constraint ensures that BL transport is exactly
returned in the interior, and without a source of dense bottom water, the initial stratification
is mixed away with time.
To numerically solve the 1D PG equations, we use second-order finite differences as in
PC22. The model can either solve for the full flow and density profiles using equations (3.6)
and (3.7) or evolve the interior variables of the BL theory with equation (3.11). Model pa-
rameters are adapted from Callies (2018) and roughly match those of the Brazil Basin (Ta-
ble 3.1). Mixing is represented by a bottom-intensified profile of turbulent diffusivity,

𝜅 = 𝜅0 + 𝜅1𝑒−𝜁∕ℎ, (3.21)

with parameters obtained from a fit to Brazil Basin observations (Callies, 2018, Table 3.1).
When solving the full 1D PG equations, grid spacing follows Chebyshev nodes with res-
olution on the order of 0.1 m at 𝜁 = 0 to comfortably resolve the boundary layers. The
BL simulations need not resolve the thin bottom BL, and we therefore use a uniform grid

Inertial frequency 𝑓 −5.5 × 10−5 s−1
Far-field buoyancy frequency 𝑁 10−3 s−1
Far-field diffusivity 𝜅0 6 × 10−5 m2 s−1
Bottom-enhancement of diffusivity 𝜅1 2 × 10−3 m2 s−1
Decay scale of diffusivity ℎ 200 m
Prandtl number 𝜇 1

Table 3.1: Parameters used in simulations of spin up, adapted from Callies and Ferrari (2018) and
roughly corresponding to the mid-Atlantic ridge flank in the Brazil Basin.
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Figure 3.3: Comparison of the 1D BL solution with full 1D PG spin up over two different slope
angles. Shown are the (a), (d) streamfunction 𝜒 , (b), (e) along-slope flow 𝑢𝑦 = 𝑢𝜂 , and (c), (f) strati-
fication 𝑁2 + 𝜕𝑧𝑏′ as functions of 𝑧 = 𝜁 for separate simulations in which the slope Burger number
is (a–c) 𝜚 = 10−3, corresponding to a bottom slope of 𝜃 ≈ 1.7 × 10−3 rad, and (d–f) 𝜚 = 0.5 so
that 𝜃 ≈ 3.9 × 10−2 rad. The insets of (a) and (d) show the streamfunction 𝜒 in the bottom 100 m,
showcasing the accuracy of the BL correction. The 1D BL theory matches the 1D dynamics perfectly.

spacing of 8 m for these. The domain height of 2 km is large enough that upper-boundary
effects do not affect the solution. The model is integrated forward in time using an implicit
timestepping scheme with a timestep of one day.
The 1D BL model yields an excellent approximation of the full 1D PG solution (Fig. 3.3).
The interior dynamics match the interior of the full solution, and although the BL model only
explicitly computes the interior evolution, the BL correction computed offline from (3.18)
is very accurate. The match is trivial when 𝜇 = 1 and 𝜚 = 10−3, because the shallow slope
leads to a relatively weak BL transport, and thus the advective modification to the buoyancy
flux in (3.11) and (3.15) is negligible. The interior system is then nearly identical to the full
one, with diffusion dominating the dynamics. The case where 𝜚 = 0.5, in contrast, is a more
trying test of the 1D BL theory. The BL transport in this case is an order of magnitude larger
than before, leading to enhanced stratification in the BL. This is properly captured in the BL
model, with the interior stratification reaching about 0.4 × 10−6 s−2 at the bottom and the
BL correction bringing it smoothly to zero.
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Figure 3.4: Sketch of terrain-following coordinates used in 2D BL theory. The covariant basis vector
of coordinate 𝑗 is denoted by 𝒆𝑗 , and the corresponding contravariant component of the velocity
vector is denoted by 𝑢𝑗 , such that 𝒖 = 𝑢𝑗𝒆𝑗 (summation implied).

The assumption of 1D dynamics breaks down as soon as lateral variations in the slope are
allowed, but we can anticipate the upcoming 2D results using intuition derived from the
above 1D theory. Equation (3.16) gives an explicit expression for the BL transport in 1D
depending on the local slope angle 𝜃 and buoyancy gradient across the slope 𝑁2 tan 𝜃. In
2D, these inputs are spatially dependent, with horizontal buoyancy gradients also varying in
time as part of the interior dynamics. Local 1D theory would thus predict convergences and
divergences in BL transport, generating BL–interior mass exchange (Fig. 3.2b). This leads
to a more complex picture in 2D, with interior dynamics feeding back onto the BL, as we
will see in the following section.

3.4 Two-dimensional boundary layer theory
In this section, we extend the 1D BL theory to the 2D PG equations in terrain-following
coordinates. We first derive the 2D BL equations and then apply them to idealized numerical
simulations.

3.4.1 Boundary layer theory
In 2D, the interaction between the BL and interior is more interesting because, in addition
to the BL advection imposing a buoyancy flux on the interior, variations in the BL trans-
port produce mass exchange with the interior (e.g., Phillips et al., 1986; McDougall, 1989;
Kunze et al., 2012; Dell and Pratt, 2015; Ledwell, 2018; Holmes et al., 2018). The BL theory
generalizes from 1D to 2D and brings these physics into clearer focus.
Applying the BL theory to the 2D PG equations is most easily done in terrain-following
coordinates:

𝜉 = 𝑥, 𝜂 = 𝑦, 𝜎 = 𝑧
𝐻
, (3.22)

where 𝐻(𝑥) is the fluid depth (Fig. 3.4). Under this transformation, derivatives in (𝑥, 𝑧)
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space become

𝜕
𝜕𝑥

= 𝜕
𝜕𝜉

−
𝜎𝜕𝑥𝐻
𝐻

𝜕
𝜕𝜎

and 𝜕
𝜕𝑧

= 1
𝐻

𝜕
𝜕𝜎
, (3.23)

and the contravariant velocity components are

𝑢𝜉 = 𝑢𝑥, 𝑢𝜂 = 𝑢𝑦, and 𝑢𝜎 = 1
𝐻

(

𝑢𝑧 − 𝜎 𝜕𝐻
𝜕𝑥

𝑢𝑥
)

, (3.24)

assuming no variations in 𝜂 (see appendix B of Callies and Ferrari (2018) for more details).
The 2D PG equations in terrain-following coordinates are then

−𝑓𝑢𝜂 = −𝜕𝑝
𝜕𝜉

+ 𝜎 𝜕𝐻
𝜕𝑥

𝑏 + 1
𝐻2

𝜕
𝜕𝜎

(

𝜈 𝜕𝑢
𝜉

𝜕𝜎

)

, (3.25)

𝑓𝑢𝜉 = 1
𝐻2

𝜕
𝜕𝜎

(

𝜈 𝜕𝑢
𝜂

𝜕𝜎

)

, (3.26)
1
𝐻
𝜕𝑝
𝜕𝜎

= 𝑏, (3.27)
𝜕
𝜕𝜉

(

𝐻𝑢𝜉
)

+ 𝜕
𝜕𝜎

(

𝐻𝑢𝜎
)

= 0, (3.28)
𝜕𝑏
𝜕𝑡

+ 𝑢𝜉 𝜕𝑏
𝜕𝜉

+ 𝑢𝜎 𝜕𝑏
𝜕𝜎

= 1
𝐻2

𝜕
𝜕𝜎

(

𝜅 𝜕𝑏
𝜕𝜎

)

, (3.29)

where 𝑝 is the pressure divided by a reference density. The boundary conditions are again
an insulating and no-slip bottom, 𝜕𝜎𝑏 = 0 and 𝑢𝜉 = 𝑢𝜂 = 0 at 𝜎 = −1; a constant-flux and
free-slip top 𝐻−1𝜕𝜎𝑏 = 𝑁2 and 𝜕𝜎𝑢𝜉 = 𝜕𝜎𝑢𝜂 = 0 at 𝜎 = 0; and no normal flow across both
boundaries, 𝑢𝜎 = 0 at 𝜎 = −1 and 𝜎 = 0. We neglect horizontal turbulent fluxes, consistent
with the assumption of a small aspect ratio if the turbulence is close to isotropic. This is in
contrast with some other PG models, which employed horizontal diffusion terms to satisfy
the no-normal-flow condition at vertical side-walls (e.g., Colin de Verdière, 1986; Samelson
and Vallis, 1997b).
As before, we express the momentum equations (3.25) to (3.28) as one streamfunction in-
version. We define 𝜒(𝜉, 𝜎) such that the continuity equation (3.28) is automatically satisfied:

𝐻𝑢𝜉 =
𝜕𝜒
𝜕𝜎

and 𝐻𝑢𝜎 = −
𝜕𝜒
𝜕𝜉
. (3.30)

Integrating (3.26) from some level to 𝜎 = 0, we obtain
1
𝐻
𝜕𝑢𝜂

𝜕𝜎
= 𝑓
𝜈
(𝜒 − 𝑈 𝜉), (3.31)

as in equation (3.8). Here,𝑈 𝜉 = ∫ 0
−1𝐻𝑢

𝜉 𝑑𝜎 is the vertically integrated transport, a constant
in 𝜉 by continuity. Combining 𝐻−1𝜕𝜎 of (3.25) and 𝜕𝜉 of (3.27) and substituting 𝐻−1𝜕𝜎𝑢𝜂

from (3.31) yields the streamfunction inversion equation similar to 1D:
1
𝐻4

𝜕2

𝜕𝜎2

(

𝜈
𝜕2𝜒
𝜕𝜎2

)

+ 𝑓 2

𝜈
(𝜒 − 𝑈 𝜉) = 𝜕𝑏

𝜕𝜉
− 𝜎
𝐻
𝜕𝐻
𝜕𝑥

𝜕𝑏
𝜕𝜎
. (3.32)
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The boundary conditions are similar to the 1D case but for a finite domain: 𝜒 = 0 and 𝜕𝜎𝜒 =
0 at 𝜎 = −1 and 𝜒 = 𝑈 𝜉 and 𝜕2𝜎𝜒 = 0 at 𝜎 = 0.
Splitting 𝑏 and 𝜒 into BL and interior contributions and neglecting the fourth-order term in
(3.32) in the interior as before, the interior inversion reads

𝑓 2

𝜈
𝜒I =

𝜕𝑏I
𝜕𝜉

− 𝜎
𝐻
𝜕𝐻
𝜕𝑥

𝜕𝑏I
𝜕𝜎

=
𝜕𝑏I
𝜕𝑥
, (3.33)

setting 𝑈 𝜉 = 0 as implied by a configuration that is symmetric in 𝑥 (see appendix A for
the 𝑈 𝜉 ≠ 0 case). The circulation in the 𝑥–𝑧 plane is simply proportional to the buoyancy
gradient in 𝑥. The interior buoyancy evolution is given by

𝜕𝑏I
𝜕𝑡

+ 1
𝐻

(

𝜕𝜒I
𝜕𝜎

𝜕𝑏I
𝜕𝜉

−
𝜕𝜒I
𝜕𝜉

𝜕𝑏I
𝜕𝜎

)

= 1
𝐻2

𝜕
𝜕𝜎

(

𝜅
𝜕𝑏I
𝜕𝜎

)

. (3.34)
The BL physics appear in the boundary condition on the interior buoyancy field. The BL
buoyancy budget, assuming a quasi-steady state and a slowly varying interior buoyancy field,
is

1
𝐻
𝜕𝜒B
𝜕𝜎

𝜕𝑏I
𝜕𝜉

= 1
𝐻2

𝜕
𝜕𝜎

(

𝜅
𝜕𝑏B
𝜕𝜎

)

, (3.35)
with 𝜕𝜉𝑏I evaluated at 𝜎 = −1. The neglected advection terms are smaller by a factor
(𝑞𝐻)−1 ≪ 1 than the terms retained in (3.35). This is because the boundary conditions
enforce that 𝜒B ∼ 𝜒I and 𝜕𝜎𝑏B ∼ 𝜕𝜎𝑏I, such that 𝜕𝜎𝜒B ∼ (𝑞𝐻)𝜕𝜎𝜒I and 𝑏B ∼ (𝑞𝐻)−1𝑏I
(see section 3.5 for more detail). Vertically integrating (3.35) across the BL and applying
the boundary conditions 𝜒I + 𝜒B = 0 and 𝜕𝜎𝑏I + 𝜕𝜎𝑏B = 0 at 𝜎 = −1, as well as decay
conditions for 𝜒B and 𝜕𝜎𝑏B, yields

𝜒I
𝜕𝑏I
𝜕𝜉

= 𝜅
𝐻
𝜕𝑏I
𝜕𝜎

at 𝜎 = −1. (3.36)
Substituting this bottom boundary condition for the interior into the interior inversion (3.33),
we again arrive at an explicit formula for this BL transport:

𝜒I =
𝜅
𝜕𝐻
𝜕𝑥

𝜇
𝑓 2

𝜕𝐻
𝜕𝑥

𝜕𝑏I
𝜕𝜉

1 − 𝜇
𝑓 2

𝜕𝐻
𝜕𝑥

𝜕𝑏I
𝜕𝜉

=
𝜈
𝑓 2

𝜕𝑏I
𝜕𝜉

1 − 𝜇
𝑓 2

𝜕𝐻
𝜕𝑥

𝜕𝑏I
𝜕𝜉

at 𝜎 = −1. (3.37)

This is the generalization of the 1D result (3.16): −𝜕𝑥𝐻 is analogous to the local slope tan 𝜃
and 𝜕𝜉𝑏I now takes the place of the previously constant cross-slope buoyancy gradient𝑁2 tan 𝜃.
Note that this expression is again well-behaved in the limit of small slopes (𝜕𝑥𝐻 → 0)
and thus gives a globally valid expression for the BL transport and of the mass exchange
𝐻𝑢𝜎I = −𝜕𝜉𝜒I at 𝜎 = −1 between the BL and the interior.
As in 1D, we can now explicitly describe contributions to the interior along-slope flow from
thermal wind in the interior and a contribution from shear in the BL. Combining (3.31)
and (3.33) yields the thermal-wind balance

1
𝐻
𝜕𝑢𝜂I
𝜕𝜎

= 1
𝑓
𝜕𝑏I
𝜕𝑥
, (3.38)
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which, upon integration in the vertical, becomes

𝑢𝜂I (𝜎) = −
𝑓𝜒I(−1)
𝜈(−1)𝑞

+ 𝐻
𝑓 ∫

𝜎

−1

𝜕𝑏I
𝜕𝑥

(�̃�) 𝑑�̃�. (3.39)

The first term again represents the BL contribution 𝑢𝜂I = −𝑢𝜂B at 𝜎 = −1, which may be
computed directly from the BL solution

𝜒B = −𝜒I𝑒−𝑞𝐻(𝜎+1)[cos 𝑞𝐻(𝜎 + 1) + sin 𝑞𝐻(𝜎 + 1)], (3.40)
similar to (3.18). Here 𝑞 can still be written in the same form as in (3.9) but with a gener-
alized slope Burger number 𝜚 = −𝜕𝑥𝐻𝜕𝜉𝑏I(−1)∕𝑓 2, which varies in the horizontal. Equa-
tion (3.39) has the same form as (3.20), except that cross-slope buoyancy gradients can now
contribute to the thermal-wind term.
In 2D, we again find that the interior solution experiences a buoyancy flux due to the cross-
slope advection by the BL transport. In contrast to the 1D case, however, both the BL trans-
port given by (3.37) and the cross-slope buoyancy gradient 𝜕𝜉𝑏I may vary in time and space
(Fig. 3.2b). Convergence in the BL transport then drives mass injection into the interior,
further altering 𝜕𝜉𝑏I and continuing the feedback process.
It is worth noting that BL theory can also be applied to a passive tracer, not just buoyancy.
The interior tracer concentration would have a similar effective boundary condition captur-
ing transport by BL flow. The interior tracer equation should also include a representation
of along-isopycnal stirring (Redi, 1982).

3.4.2 Examples
We now illustrate these theoretical results using numerical simulations over idealized to-
pographies. We solve the full 2D PG system (3.29) and (3.32) and the 2D BL PG sys-
tem (3.33) and (3.34) using numerical methods and model parameters similar to the 1D
case described above. The mixing profile is now written as

𝜅 = 𝜅0 + 𝜅1𝑒−(𝑧+𝐻)∕ℎ, (3.41)
following the bottom topography. First, we study spin up over an idealized azimuthally sym-
metric seamount with constant initial stratification. We then analyze spin up over an ideal-
ized mid-Atlantic ridge with both constant and exponentially varying initial stratification.
As in the 1D spin up experiments, the simulations all start with flat isopycnals and no flow.
The circulation that emerges is powered by the potential-energy source 𝜅𝜕𝑧𝑏 integrated over
the domain.

Idealized seamount

The topography of the abyssal ocean has a range of slopes. Seamounts, for instance, can
reach slope Burger numbers of order 10 or more and have received some attention regarding
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Figure 3.5: Flow fields in a simulation of mixing-generated PG spin up over an idealized 2D
seamount. Shown are (a) the streamfunction 𝜒 (shading and black contours) with positive values
indicating counter-clockwise and negative values indicating clockwise flow and (b) the along-slope
flow 𝑢𝑦 = 𝑢𝜂 . The solution is shown after 20 years of spin up. The gray curves show isopycnals, and
the red vertical lines show where 1D profiles are examined in Fig. 3.6.

their role in the abyssal overturning circulation (e.g., McDougall, 1989; McDougall and
Ferrari, 2017; Ledwell, 2018; Holmes et al., 2018). The 1D BL theory [equation (3.11)] is
sensitive to the slope Burger number, with a steeper slope leading to a larger modification
of the diffusive buoyancy flux by advection. At the same time, the 2D BL theory shows
that horizontal variations in this slope lead to gradients in BL transport that are not taken
into account by the 1D theory. In this section, we therefore compare both 1D and 2D BL
solutions to the full 2D PG flow over a seamount.
Similar to the analysis in Ledwell (2018), we consider an azimuthally symmetric Gaussian
seamount in axisymmetric coordinates (Fig. 3.5). On an 𝑓 -plane, the flow is invariant under
rotation about the center of the seamount, allowing us to fully describe the flow using 2D
theory (see appendix B). The depth of the seafloor as a function of distance 𝑟 from the
symmetry axis is given by

𝐻(𝑟) = 𝐻0 − 𝐴 exp
(

− 𝑟2

2𝓁2

)

, (3.42)

where the maximum depth is 𝐻0 = 5.5 km, the height of the seamount is 𝐴 = 3 km, the
width of the seamount is 𝓁 = 50 km, and the width of the domain is 𝐿 = 200 km. We
assume no flow at 𝑟 = 0 and allow the flow to evolve freely at 𝑟 = 𝐿, consistent with our
assumption that horizontal diffusion may be neglected. In the horizontal, the grid has an
even spacing of about 0.8 km. As in the 1D models, we use Chebyshev nodes in the vertical
when solving the full 2D PG equations (with a near-bottom resolution of about 10−5 in 𝜎-
space) and uniform grid spacing for the 2D BL equations (with a resolution of about 10−3
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Figure 3.6: Comparison of the 1D and 2D BL solutions with full 2D PG mixing-generated spin up
over a seamount. Profiles are taken at the steepest slope on the seamount (red lines in Fig. 3.5). Shown
are the (a), (d) streamfunction 𝜒 , (b), (e) along-slope flow 𝑢𝑦 = 𝑢𝜂 , and (c), (f) stratification 𝜕𝑧𝑏. The
insets of (a) and (d) show the streamfunction 𝜒 in the bottom 50 m, showcasing the BL correction.
The 1D BL solution is a decent approximation to the flow, but the cross-slope variations considered
in the 2D BL theory allow it to better match the full 2D solution in this high slope Burger number
regime.

in 𝜎-space). We initialize the model at rest with a constant stratification 𝑏 = 𝑁2𝑧 and use a
mixed implicit–explicit time integration scheme with a timestep of one day.
At the steepest point on the seamount (𝑟 = 50 km, red lines in Fig. 3.5), the slope Burger
number 𝜚 is order unity. The 1D BL solution applied at this position over-predicts the strati-
fication in the bottom 500 m and under-predicts it above (Fig. 3.6). This leads to errors in the
predicted interior along-slope flow, which can be understood from (3.20) and (3.39): even
subtle changes in the buoyancy field can lead to substantial impacts on 𝑢𝜂I after being inte-
grated throughout the column. The 1D BL solution’s buoyancy field differs from that of the
2D solution because its secondary circulation, enforced simply by a transport constraint, is
stronger. This is due to the lack of a two-way feedback in 1D; the BL cannot exchange mass
with the interior and the induced changes in the interior do not reduce the BL transport. The
2D BL theory, in contrast, captures these physics and agrees well with the full 2D model.
This confirms that the 2D BL equations are capable of fully capturing 2D PG spin up, even
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Figure 3.7: Simulations of mixing-generated PG spin up over an idealized 2D mid-ocean ridge with
varying initial stratifications. Shown are the streamfunctions 𝜒 (shading and black contours) with
positive values indicating counter-clockwise and negative values indicating clockwise flow for sim-
ulations with (a) constant initial stratification and (b) exponential initial stratification (isopycnals in
gray). For each simulation, we show (c) the BL transport 𝑈 𝜉

B computed from equation (3.37) and
(d) the resulting exchange velocity 𝐻𝑢𝜎 = −𝜕𝜉𝑈

𝜉
B. The solutions are shown after three years of spin

up. The gradient in stratification across the ridge facilitates larger exchange velocities at the peak and
flanks.

in regimes with relatively large variations in local slope.

Exponential background stratification

The simulations presented so far were initialized with a constant background stratification.
In the real ocean, the stratification varies significantly in the vertical, often decreasing close
to exponentially with depth (e.g., Munk, 1966). A number of studies have attempted to dis-
cern how this may shape the abyssal circulation, often qualitatively arguing that variations
in stratification across slopes must lead to gradients in BL transports, inducing BL–interior
exchange (e.g., Phillips et al., 1986; Salmun et al., 1991). Quantitative explanations of this
process, however, have remained complicated and opaque at best. A major benefit of the
BL theory framework built up here is that it provides concise expressions for the BL trans-
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port in terms of interior variables, allowing us to reason about how varying background
stratification might impact the abyss with minimal mathematical gymnastics.
Let us consider an idealized mid-Atlantic ridge, following previous studies of mixing-generated
spin up in the abyss (e.g., Ruan and Callies, 2020; Drake et al., 2020, PC22). The depth of
the 2D ridge is given by

𝐻(𝑥) = 𝐻0 + 𝐴 cos
(2𝜋𝑥
𝐿

)

, (3.43)
where the mean depth is 𝐻0 = 2 km, the amplitude is 𝐴 = 800 m, and the width is 𝐿 =
2000 km (Fig. 3.7). At the steepest point on the ridge, the slope Burger number 𝜚 is approx-
imately 2× 10−3 , typical of the mid-Atlantic ridge. We apply periodic boundary conditions
at 𝑥 = 0 and 𝑥 = 𝐿 and use a constant horizontal grid spacing of about 8 km. The vertical
grid spacing is as before. We run one simulation with constant initial stratification as before
and one initialized with an exponential stratification: 𝜕𝑧𝑏 ∝ 𝑒𝑧∕𝑑 . We set the decay scale
to 𝑑 = 1000 m and choose the proportionality constant such that the bottom stratification at
the center of the ridge flank matches that of the simulation with constant 𝑁2 = 10−6 s−2.
We again use a mixed implicit–explicit timestepping scheme, this time with a timestep of
10 days, enabled by the much weaker advective terms.
The circulation in the case with exponential initial stratification is stronger and more con-
fined to the peak of the ridge compared to the case with constant initial stratification (Fig. 3.7a,b).
This is better understood by the explicit formula for 2D BL transport derived in the previous
subsection. Evaluating equation (3.37) for these simulations, we see that the BL transport is
enhanced at the peak of the ridge with exponential background stratification (Fig. 3.7c). For
the small slopes in this simulation, equation (3.37) reduces to

𝜒I ≈
𝜈
𝑓 2
𝜕𝑏I
𝜕𝜉

at 𝜎 = −1. (3.44)

In the case with constant stratification, the initial cross-slope buoyancy gradient is propor-
tional to −𝜕𝑥𝐻 and does not change appreciably with time, explaining the sinusoidal BL
transport. For exponential stratification, in contrast, we have 𝜕𝜉𝑏I ∝ −𝑒−𝐻∕𝑑𝜕𝑥𝐻 , which is
enhanced at shallower depths. As a result, the exchange velocity

𝐻𝑢𝜎 = −𝜕𝜉𝜒I ≈ − 𝜈
𝑓 2
𝜕2𝑏I
𝜕𝜉2

at 𝜎 = −1 (3.45)

is also enhanced for the case with exponential stratification (Fig. 3.7d). In both cases, 𝜕𝜉𝑏I
does not evolve much in the first three years, so the exchange does not either. The BL theory
enables us to easily and quantitatively understand this behavior.

3.5 Asymptotic theory
In the previous sections, we derived the BL equations somewhat heuristically, glossing over
some detail of the underlying asymptotics. In this section, we present a more rigorous deriva-
tion of the BL theory that justifies the claims in the previous sections and sheds light on the
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asymptotic orders of the various components of the flow. The casual reader should note that
the contents of this section are not required to understand the main results of the paper.
We show below that, in both 1D and 2D, the cross-slope flow is of lower order than the
along-slope flow in the interior, aligning with our intuition from the examples above. The
interior flow evolves on a slow timescale driven by diffusion and second-order advection
of the leading-order buoyancy in the interior. The BL flow is of first order, in between the
orders of the interior along- and cross-slope flows. If the transport is constrained to zero,
this implies that the leading-order interior flow vanishes at the bottom. These results do not
generally hold in 3D, but we leave this generalization to future work.

3.5.1 One-dimensional asymptotics
To begin the formal derivation of the 1D BL equations, we first nondimensionalize the 1D
equations (3.2)–(3.5) in order to isolate the key parameters in the problem. We define char-
acteristic scales for the vertical coordinate, velocities, and mixing coefficients such that

𝜁 ∼ 𝐻0, 𝑢𝜉 , 𝑢𝜂 ∼ 𝑈, 𝜈 ∼ 𝜈0, and 𝜅 ∼ 𝜅0, (3.46)

where 𝜈0 and 𝜅0 are characteristic values of 𝜈 and 𝜅. We assume that the pressure and buoy-
ancy terms in (3.2) scale with the Coriolis term and that the buoyancy perturbation scales
with the background buoyancy scale:

𝜕𝑃
𝜕𝑥

∼ 𝑓𝑈 and 𝑏′ ∼ 𝑓𝑈
tan 𝜃

= 𝑁2𝐻0. (3.47)

Assuming an advective timescale, so that

𝑡 ∼
𝐻0

𝑈 tan 𝜃
= 𝑓
𝑁2 tan2 𝜃

, (3.48)

then yields the nondimensional 1D equations

−𝑢𝜂 = −𝜕𝑃
𝜕𝑥

+ 𝑏′ + 𝜀2 𝜕
𝜕𝜁

(

𝜈 𝜕𝑢
𝜉

𝜕𝜁

)

, (3.49)

𝑢𝜉 = 𝜀2 𝜕
𝜕𝜁

(

𝜈 𝜕𝑢
𝜂

𝜕𝜁

)

, (3.50)

𝜇𝜚
(

𝜕𝑏′

𝜕𝑡
+ 𝑢𝜉

)

= 𝜀2 𝜕
𝜕𝜁

[

𝜅
(

1 + 𝜕𝑏′

𝜕𝜁

)]

, (3.51)

∫
∞

0
𝑢𝜉 𝑑𝜁 = 𝑈 𝜉 , (3.52)

where all variables are redefined to their scaled versions. The nondimensional parameters for
the 1D problem are thus the Ekman number 𝜀2 = 𝜈0∕𝑓𝐻2

0 , the Prandtl number 𝜇 = 𝜈0∕𝜅0,
and the slope Burger number 𝜚 = 𝑁2 tan2 𝜃∕𝑓 2, although 𝜇 and 𝜚 only appear as a product,
so 𝜇𝜚 can be considered a single parameter. The reason for defining the Ekman number as 𝜀2
will become clear in the BL analysis below.
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To develop the asymptotic theory, we assume the scaling 𝜀 ≪ 1 and 𝜇𝜚 ∼ 1. While the
Burger number is typically small in the abyss, the turbulent Prandtl number may be large if
momentum fluxes by baroclinic eddies are taken into account. If instead 𝜇𝜚 ≪ 1, buoyancy
advection is negligible in the BL, and the theory developed with 𝜇𝜚 ∼ 1 remains accurate
(Fig. 3.3a).
We begin with the interior and expand all variables in 𝜀2: 𝑢𝜉I = 𝑢𝜉I0 + 𝜀

2𝑢𝜉I2 +… , etc. This
expansion into even powers of 𝜀 is sufficient because 𝜀 only appears as 𝜀2 in the interior
equations. The 𝑂(1) interior flow then satisfies

−𝑢𝜂I0 = −
𝜕𝑃0
𝜕𝑥

+ 𝑏′I0, (3.53)
𝑢𝜉I0 = 0, (3.54)
𝜕𝑏′I0
𝜕𝑡

= 0. (3.55)

At this order, the interior along-slope flow is in balance with the barotropic pressure gradient
and the projection of the buoyancy perturbation, and the interior cross-slope flow is zero.
The𝑂(1) buoyancy equation is trivial, implying that the interior buoyancy evolution is slow
compared to the advective timescale assumed in the scaling.
To obtain the evolution of the 𝑂(1) interior buoyancy, we need to go to 𝑂(𝜀2) and also
expand the time coordinate, 𝜕𝑡 = 𝜕𝑡0 + 𝜀

2𝜕𝑡2 +… Higher-order buoyancy terms inherit the
slow evolution from the low orders, so 𝜕𝑡0𝑏′I2 = 0. The buoyancy equation (3.51) at 𝑂(𝜀2) is
then

𝜇𝜚

(

𝜕𝑏′I0
𝜕𝑡2

+ 𝑢𝜉I2

)

= 𝜕
𝜕𝜁

[

𝜅

(

1 +
𝜕𝑏′I0
𝜕𝜁

)]

. (3.56)

This implies that advection and turbulent diffusion operate on a slow time 𝑡2. Since the𝑂(1)
and 𝑂(𝜀) interior cross-slope flows are zero, the dominant buoyancy advection is by the
second-order flow in the interior, given by (3.50) at 𝑂(𝜀2):

𝑢𝜉I2 =
𝜕
𝜕𝜁

(

𝜈
𝜕𝑢𝜂I0
𝜕𝜁

)

. (3.57)

Equations (3.53), (3.56), and (3.57) comprise the leading-order interior dynamics. They can
be expressed in terms of the streamfunction 𝜒I, whose leading non-zero component is 𝜒I2,
recovering (3.10) and (3.11) above (assuming 𝑈 𝜉 = 0). The interior along-slope flow can
be obtained by integrating the thermal-wind balance 𝜕𝜁𝑢𝜂I0 = −𝜕𝜁𝑏′I0, which follows from a
𝜁 -derivative of (3.53):

𝑢𝜂I0 = 𝑢𝜂I0(0) −
[

𝑏′I0 − 𝑏
′
I0(0)

]

. (3.58)
The integration constant 𝑢𝜂I0(0) must be determined from the BL correction. If the transport
constraint is 𝑈 𝜉 = 0, one finds that 𝑢𝜂I0(0) = 0.
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In the thin bottom BL, 𝜁 -derivatives are enhanced, elevating the diffusion terms in (3.49)–
(3.51) to 𝑂(1). Given that the BL thickness scales with 𝜀, we assume the BL variables to
depend on the re-scaled vertical coordinate 𝜁 = 𝜁∕𝜀, with which 𝜕𝜁 = 𝜀−1𝜕𝜁 . The nondi-
mensional BL equations are then

−𝑢𝜂B = 𝑏′B + 𝜕
𝜕𝜁

(

𝜈
𝜕𝑢𝜉B
𝜕𝜁

)

, (3.59)

𝑢𝜉B = 𝜕
𝜕𝜁

(

𝜈
𝜕𝑢𝜂B
𝜕𝜁

)

, (3.60)

𝜇𝜚

(

𝜕𝑏′B
𝜕𝑡

+ 𝑢𝜉B

)

= 𝜕
𝜕𝜁

(

𝜅
𝜕𝑏′B
𝜕𝜁

)

. (3.61)

Crucially, the insulating bottom boundary condition picks up a factor of 𝜀−1 after this re-
scaling:

1 +
𝜕𝑏′I
𝜕𝜁

= −1
𝜀
𝜕𝑏′B
𝜕𝜁

at 𝜁 = 0. (3.62)

This factor of 𝜀−1 means that we need an 𝑂(𝜀) BL buoyancy to absorb the 𝑂(1) interior
buoyancy flux into the BL. We thus expand the BL variables in terms of 𝜀 rather than 𝜀2. We
immediately find that the 𝑂(1) BL buoyancy flux must vanish at the bottom: 𝜕𝜁𝑏′B0 = 0. In
the case with zero net transport (𝑈 𝜉 = 0), this condition, along with the boundary conditions
on the flow 𝑢𝜉B0 = 0 and 𝑢𝜂B0 = −𝑢𝜂I0 at 𝜁 = 0, forces the𝑂(1) BL flow to vanish and the𝑂(1)
interior along-slope flow to go to zero at the bottom, consistent with the examples shown
in Fig. 3.3 (see appendix A for the 𝑈 𝜉 ≠ 0 case). The BL flow instead comes in at 𝑂(𝜀), in
between the orders of the interior along- and cross-slope flows. This 𝑂(𝜀) BL flow satisfies

−𝑢𝜂B1 = 𝑏′B1 +
𝜕
𝜕𝜁

(

𝜈
𝜕𝑢𝜉B1
𝜕𝜁

)

, (3.63)

𝑢𝜉B1 =
𝜕
𝜕𝜁

(

𝜈
𝜕𝑢𝜂B1
𝜕𝜁

)

, (3.64)

𝜇𝜚𝑢𝜉B1 =
𝜕
𝜕𝜁

(

𝜅
𝜕𝑏′B1
𝜕𝜁

)

, (3.65)

with the bottom boundary conditions 𝜕𝜁𝑏′B1 = −(1 + 𝜕𝜁𝑏′I0), 𝑢𝜉B1 = 0, and 𝑢𝜂B1 = 0. The
tendency term 𝜕𝑡0𝑏

′
B1 is dropped because the interior does not evolve on this timescale, so

the BL will not either. These BL equations are equivalent to (3.12) and (3.17).
This more rigorous derivation of the 1D BL equations clarifies the asymptotic orders of the
various components of the flow. The leading-order contributions are 𝑂(𝜀2) for the interior
cross-slope flow, 𝑂(1) for the interior along-slope flow, and 𝑂(𝜀) for both components of
the BL flow. Buoyancy does not have an 𝑂(1) BL correction—only its derivative does.
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3.5.2 Two-dimensional asymptotics
The 2D asymptotics follow in much the same way as in 1D. We again nondimensionalize the
equations of motion (3.25)–(3.29), setting characteristic scales equivalent to (3.46)–(3.48):

𝜉 ∼ 𝐿, 𝑢𝜉 , 𝑢𝜂 ∼ 𝑈, 𝑢𝜎 ∼ 𝑈
𝐿
, 𝐻 ∼ 𝐻0, 𝜈 ∼ 𝜈0, 𝜅 ∼ 𝜅0,

𝑝 ∼ 𝑈𝑓𝐿, 𝑏 ∼ 𝑓𝑈𝐿
𝐻0

= 𝑁2𝐻0, 𝑡 ∼ 𝐿
𝑈
. (3.66)

We then arrive at the nondimensional 2D PG equations

−𝑢𝜂 = −𝜕𝑝
𝜕𝜉

+ 𝜎 𝜕𝐻
𝜕𝑥

𝑏 + 𝜀2

𝐻2
𝜕
𝜕𝜎

(

𝜈 𝜕𝑢
𝜉

𝜕𝜎

)

, (3.67)

𝑢𝜉 = 𝜀2

𝐻2
𝜕
𝜕𝜎

(

𝜈 𝜕𝑢
𝜂

𝜕𝜎

)

, (3.68)
1
𝐻
𝜕𝑝
𝜕𝜎

= 𝑏, (3.69)
𝜕
𝜕𝜉

(

𝐻𝑢𝜉
)

+ 𝜕
𝜕𝜎

(

𝐻𝑢𝜎
)

= 0, (3.70)

𝜇𝜚
(

𝜕𝑏
𝜕𝑡

+ 𝑢𝜉 𝜕𝑏
𝜕𝜉

+ 𝑢𝜎 𝜕𝑏
𝜕𝜎

)

= 𝜀2

𝐻2
𝜕
𝜕𝜎

(

𝜅 𝜕𝑏
𝜕𝜎

)

, (3.71)

where 𝜚 = 𝑁2𝐻2
0∕𝑓

2𝐿2 is now the conventional Burger number. Again assuming the scal-
ing 𝜀 ≪ 1 and 𝜇𝜚 ∼ 1, expanding interior variables in 𝜀2, and matching orders as before,
we arrive at the complete set of interior equations

−𝑢𝜂I0 = −
𝜕𝑝I0
𝜕𝜉

+ 𝜎 𝜕𝐻
𝜕𝑥

𝑏I0, (3.72)

𝑢𝜉I2 =
1
𝐻2

𝜕
𝜕𝜎

(

𝜈
𝜕𝑢𝜂I0
𝜕𝜎

)

, (3.73)

1
𝐻
𝜕𝑝I0
𝜕𝜎

= 𝑏I0, (3.74)
𝜕
𝜕𝜉

(

𝐻𝑢𝜉I2
)

+ 𝜕
𝜕𝜎

(

𝐻𝑢𝜎I2
)

= 0, (3.75)

𝜇𝜚
(

𝜕𝑏I0
𝜕𝑡2

+ 𝑢𝜉I2
𝜕𝑏I0
𝜕𝜉

+ 𝑢𝜎I2
𝜕𝑏I0
𝜕𝜎

)

= 1
𝐻2

𝜕
𝜕𝜎

(

𝜅
𝜕𝑏I0
𝜕𝜎

)

. (3.76)

We again find that the interior along-slope flow is of lower order than the interior cross-slope
flow, and the interior buoyancy evolution is again slow. In 2D, the interior slope-normal
flow 𝑢𝜎I2 comes in, contributing a second-order advective flux in the vertical, along with the
cross-slope advection. Formulated using the streamfunction 𝜒I2, this recovers the interior
equations (3.33) and (3.34) derived above. The 𝑂(1) interior along-slope flow can again
be obtained by integrating thermal wind in the vertical, with the bottom correction 𝑢𝜂I0(−1)
dropping out for 𝑈 𝜉 = 0.
The BL contribution can again be assessed after a re-scaling of the vertical coordinate such
that �̄� = 𝜎∕𝜀. We again find that the 𝑂(1) BL flow, along with the interior along-slope
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flow 𝑢𝜂I0 at the bottom, vanishes when 𝑈 𝜉 = 0. The BL flow is instead of 𝑂(𝜀), satisfying

−𝑢𝜂B1 = −𝜕𝐻
𝜕𝑥

𝑏B1 +
1
𝐻2

𝜕
𝜕�̄�

(

𝜈
𝜕𝑢𝜉B1
𝜕�̄�

)

, (3.77)

𝑢𝜉B1 =
1
𝐻2

𝜕
𝜕�̄�

(

𝜈
𝜕𝑢𝜂B1
𝜕�̄�

)

, (3.78)

𝜇𝜚𝑢𝜉B1
𝜕𝑏I0
𝜕𝜉

= 1
𝐻2

𝜕
𝜕�̄�

(

𝜅
𝜕𝑏B1
𝜕�̄�

)

, (3.79)
with hydrostatic balance and continuity implying that 𝑝B1 = 0 and 𝑢𝜎B1 = 0, respectively. The
BL is again characterized by a balance between cross-slope advection and down-gradient
diffusion of buoyancy, with the BL buoyancy flux due to 𝑏B1 balancing the interior buoyancy
flux due to 𝑏I0 at the bottom as before: 1 + 𝜕𝜎𝑏I0 = −𝜕�̄�𝑏B1 at 𝜎 = −1. The tendency term
in (3.79) is again dropped because the interior evolution is slow, so the BL evolution must
be slow as well. Expressing 𝐻𝑢𝜉B1 = 𝜕�̄�𝜒B2, vertically integrating (3.79), and enforcing
𝜒I2 + 𝜒B2 = 0 at 𝜎 = −1 yields an effective boundary condition on the interior. The BL-
interior exchange velocity 𝑢𝜎I2 = −𝑢𝜎B2 at 𝜎 = −1 may be obtained by vertically integrating

𝜕
𝜕𝜉

(

𝐻𝑢𝜉B1
)

+ 𝜕
𝜕�̄�

(

𝐻𝑢𝜎B2
)

= 0. (3.80)
The leading-order equations obtained using this more rigorous approach again match the
expressions derived heuristically above. The asymptotic orders revealed by this approach
are the same as in the 1D case.

3.6 Discussion
Callies and Ferrari (2018) studied the mixing-generated abyssal circulation in an idealized
global basin using PG dynamics, but their model employed Rayleigh drag rather than a
Fickian friction. The models and theory presented here make use of a down-gradient tur-
bulence closure of the momentum fluxes, allowing them to produce more realistic BLs and
avoid unphysical interior momentum sinks. Still, the results presented here provide some
insight into the conclusions from this previous study. With Rayleigh drag, Callies and Fer-
rari (2018) found that the canonical 1D model was a reasonably accurate emulator for the
full dynamics over slopes with a constant initial stratification. This may have been some-
what of a coincidence, as in their case the steady state canonical transport 𝜅∞ cot 𝜃 was zero
everywhere, adding a transport constraint to the canonical 1D model. With Fickian fric-
tion, setting 𝜅∞ = 0 does not immediately make the canonical 1D model equivalent to the
transport-constrained 1D model because it still evolves diffusively and with nonzero trans-
port, taking thousands of years to equilibrate (PC22). Rayleigh drag, in contrast, damps flow
in the interior, allowing for fast adjustment (in a matter of years, not shown) to the 𝑈 𝜉 = 0
steady state. The combination of 𝜅∞ = 0 and Rayleigh drag thus conspired to let Callies and
Ferrari (2018) get the right answer from the canonical model, but modifying either of these
choices would have made the argument fall apart.
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Furthermore, Callies and Ferrari’s (2018) application of BL theory was somewhat ad hoc.
For slopes steep enough for the canonical BL theory to apply, the steady-state transport was
exactly zero, meaning that all upslope transport was exactly balanced by downslope transport
above. The BL theory broke down at the base of the slopes, allowing the BLs to be fed by
dense water from the south and the less dense downwelled water to return south, forming a
basin-wide circulation that constituted an overturning. The overturning transport could thus
be estimated with an isobath integral of the upslope transport in BLs on the slopes. As Drake
et al. (2020) pointed out, however, this approach is not successful if the interior stratification
is far from constant and canonical BL theory does not apply. The theory presented here
supplies a globally valid expression for the BL transport that allows for variations in the
interior stratification. At this point, this expression is only a diagnostic tool, itself depending
on the interior dynamics, but it unambiguously describes how the interior can exert control
on the BL, and vice versa, ultimately generating a basin-wide circulation that involves both
BL and interior pathways—and mass exchange between them. This sharpens our view of
the abyssal overturning, with no confusion about the roles of the BL and interior.
The framework presented here can also help understand the results from Drake et al. (2020)
regarding how water mass transformations are affected by changes in the interior stratifica-
tion. Using the same 3D PG model with Rayleigh friction as in Callies and Ferrari (2018),
they found that the degree of compensation between BL upwelling and interior downwelling
is strongly dependent on vertical variations in the initial stratification. With only the canoni-
cal 1D theory as a starting point, they were unable to explain the vertical extent and structure
of water mass transformations. The BL theory presented here would enable us to understand
these physics more clearly, because it explicitly separates the BL and interior components
of the flow. This allows us to describe the abyssal circulation in terms of flows into and out
of the BL, rather than simply bulk diapycnal motion throughout the water column. In sec-
tion 3.4, we demonstrated the power of this framework in describing abyssal spin up in 2D
with exponential initial stratification. Applied to 3D simulations such as those in Drake et al.
(2020), this approach would undoubtedly shed light on what shapes the vertical structure of
water mass transformations in the abyss.
Here, we have only presented results in 1D and 2D. We leave the 3D case to a future paper,
but preliminary work indicates that much of the theory developed here carries over, although
there are some key differences. In 3D, the interior dynamics satisfies geostrophic balance in
both the 𝜉 and 𝜂 directions. Because of this, the asymptotics in 3D are qualitatively different
from those presented in section 3.5 of this paper: instead of evolving on a slower timescale,
the leading-order 3D interior buoyancy field is advected by the geostrophic velocities, with
diffusion only playing a role at higher order. We anticipate that this qualitative difference
between 2D and 3D may be crucial in explaining the full 3D abyssal circulation. In 3D, it is
also no longer possible to write the PG inversion in terms of a scalar streamfunction. This
makes the mathematics more complicated, but it is still possible to write down an expression
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for the 3D BL transport in terms of interior variables evaluated at the bottom. As in 2D,
the 3D BL mass and buoyancy transports feed back on the interior, now with gradients in
the 𝜂 direction shaping the flow field. A future extension to 3D will allow us to explain the
dynamics of abyssal circulations in more complicated and realistic geometries, including
cases with variations in 𝑓 .3

Our BL theory results are not only theoretically useful but could also lighten the computa-
tional demand of simulating the abyssal circulation. The interior solution can be computed
without the need to resolve the thin BL, allowing numerical models to have coarser grids and
larger timesteps. This is crucial when studying the 3D system over long abyssal timescales
of thousands or tens of thousands of years (e.g., Wunsch and Heimbach, 2008; Liu et al.,
2009; Jansen et al., 2018). This framework could even be used to analyze tracer transport
without explicitly resolving the BL, allowing us to better understand carbon and heat stor-
age (e.g., Sarmiento and Toggweiler, 1984) and Lagrangian pathways (e.g., Rousselet et al.,
2021) in the abyss. If needed, the BL correction can be computed after the fact on a finer
grid as was done for Figs. 3.3 and 3.6.
Although the results presented here are derived in the context of PG dynamics, they might
also point the way towards a parameterization of the effects of BLs over a sloping seafloor
in primitive-equation models. Applying effective boundary conditions on the interior evo-
lution, following the BL framework, should most easily be accomplished in models with
terrain-following coordinates But a translation to 𝑧-coordinates also appears feasible, which
would alleviate not only the need to resolve thin boundary layers in the vertical but also the
need to capture BL flow across the artificial steps in the topography in such models. An
extension of the BL theory to 3D is needed, however, to produce expressions directly useful
for such a parameterization effort.
The circulation in the examples presented in this paper depend on the particular, simple
closure of turbulent momentum and buoyancy fluxes employed in all of them. Although
Fickian friction is much more physical than Rayleigh drag, our use of it with a simple pro-
file for 𝜈 still glosses over the true complexity of turbulence in the abyss. Without a more
faithful representation of the internal-wave field and baroclinic eddies in abyssal mixing
layers, we cannot claim to be accurately simulating the dynamics of the real ocean. The BL
framework, however, is robust to the choice of turbulence parameterization—as long as the
vertical scale of the turbulent mixing in the interior is larger than the thickness of the BL,
our approach should require minimal modification. The results presented here are in terms
of a particular choice of parameterization, but the general themes describing how the BL
and interior communicate will carry over to more complex closures. This flexibility makes

3Variations in 𝑓 will allow for vortex stretching in the absence of friction: 𝛽𝑢𝑦 = 𝑓𝜕𝑧𝑢𝑧, where 𝛽 = 𝜕𝑦𝑓 .
In the 𝑓 -plane solutions considered here, a non-zero interior vertical velocity only appears at second order (see
section 3.5).
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BL theory an attractive tool for understanding the mixing-generated abyss over a hierarchy
of complexities.

3.7 Conclusions
Motivated by observations of bottom-enhanced mixing, recent work on the abyssal circu-
lation has focused on the role of thin bottom BLs (Ferrari et al., 2016; de Lavergne et al.,
2016; McDougall and Ferrari, 2017; Holmes et al., 2018; Callies and Ferrari, 2018; Drake
et al., 2020). Until now, the coupling between these BLs and the interior circulation remained
opaque, with most of our understanding coming from somewhat heuristic arguments using
1D theory. The framework presented in this work uses BL theory to paint a clear picture of
the interior–BL interaction of the mixing-generated abyssal circulation. By explicitly defin-
ing BL and interior contributions to the flow, we obtain expressions for the BL transport
in 1D and 2D that are bounded for all bottom slopes, solving the old 1D conundrum of
the steady total transport 𝜅∞ cot 𝜃 being set by the far-field mixing and diverging for small
slopes. In the revised theory, the BL transport is set by local flow parameters and interior
variables evaluated at the bottom, with the total transport allowed to evolve according to
the global context. The interior dynamics are themselves modified by this BL transport,
which advects dense water up-slope and thus modifies the interior bottom boundary condi-
tion. This two-way coupling provides a complex yet transparent story of how BLs influence
the abyssal circulation, and this framework makes previously unwieldy problems, such as
determining the response to vertically varying initial stratification, comparatively simple.
With these promising results, we anticipate that BL theory will play a crucial role in the
development of a more complete understanding of the abyssal circulation in the real ocean.
Data availability statement. The numerical models for all the simulations presented here are
hosted at https://github.com/hgpeterson/nuPGCM.
Acknowledgments. This material is based upon work supported by the National Science
Foundation under Grant No. OCE-2149080. We thank David Marshall and an anonymous
reviewer for their helpful feedback on our original manuscript.

3.8 Appendix A: BL Theory when 𝑈 𝜉 ≠ 0
For completeness, we here show how the BL theory derivations in sections 3.3 and 3.4 are
slightly altered when the transport 𝑈 𝜉 is non-zero. In both 1D and 2D, the interior inversion
is modified to include the added transport term. The BL accounts for 1∕(1+𝜇𝜚) of the total
transport, leading to a modified interior bottom boundary condition compared to before. The
2D case is special in that the total transport is itself a function of the flow and geometry of
the domain (see appendix B of PC22), allowing us to derive an explicit equation for 𝑈 𝜉 in
that case.

https://github.com/hgpeterson/nuPGCM
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3.8.1 One-dimensional theory
The 1D interior inversion for general 𝑈 𝜉 is

𝑓 2

𝜈
(𝜒I − 𝑈 𝜉) = −

𝜕𝑏′I
𝜕𝜁

tan 𝜃. (3.81)
This does not affect 𝜕𝜁𝜒I, leaving the interior evolution equation (3.11) unchanged. This
new interior balance results in a modified bottom boundary condition compared with equa-
tion (3.15):

𝜅

[

𝑁2 + (1 + 𝜇𝜚)
𝜕𝑏′I
𝜕𝜁

]

= 𝑈 𝜉𝑁2 tan 𝜃 at 𝜁 = 0. (3.82)
The added flux on the right-hand side represents the integrated buoyancy supplied to the
column by the net transport 𝑈 𝜉 . The BL transport (cf. 3.16) now takes the form

𝜒I =
𝑈 𝜉

1 + 𝜇𝜚
+ 𝜅 cot 𝜃 𝜇𝜚

1 + 𝜇𝜚
at 𝜁 = 0, (3.83)

supplying a fraction of the total transport. For 𝜇𝜚 ≪ 1, the BL absorbs the majority of the
added transport. Note that the bottom boundary condition may be written as 𝜅(𝑁2+𝜕𝜁𝑏′I) =
𝜒I𝑁2 tan 𝜃 regardless of whether 𝑈 𝜉 is nonzero. The BL correction 𝜒B remains the same as
in (3.18), with 𝜒I at 𝜁 = 0 now coming from (3.83).
The asymptotic order of 𝑈 𝜉 must match that of 𝜒I, so it must be restricted to be 𝑂(𝜀2). It is
then simple to incorporate 𝑈 𝜉 ≠ 0 into the theory presented in section 3.5.

3.8.2 Two-dimensional theory
In 2D, the general interior inversion is

𝑓 2

𝜈
(𝜒I − 𝑈 𝜉) =

𝜕𝑏I
𝜕𝜉

− 𝜎
𝐻
𝜕𝐻
𝜕𝑥

𝜕𝑏I
𝜕𝜎
, (3.84)

and again the BL absorbs a fraction of the added transport so that (3.37) becomes
𝜒I =

𝑈 𝜉

1 + 𝜇𝜚
+ 𝜅
𝜕𝑥𝐻

𝜇𝜚
1 + 𝜇𝜚

at 𝜎 = −1, (3.85)

where 𝜚 = −𝜕𝑥𝐻𝜕𝜉𝑏I∕𝑓 2 at 𝜎 = −1. For symmetric topography, 𝑈 𝜉 = 0, but this is not the
case in general. We can infer 𝑈 𝜉 for asymmetric geometries with knowledge of the interior
buoyancy distribution. Evaluating (3.39) at 𝜎 = 0 and taking the mean in 𝜉, denoted by ⟨⋅⟩,
we have

⟨

𝑢𝜂I (0)
⟩

= 0 = −
⟨

𝑓
𝑞𝜈
𝜒I

⟩

+

⟨

𝐻
𝑓 ∫

0

−1

𝜕𝑏I
𝜕𝑥

(𝜎) 𝑑𝜎

⟩

, (3.86)

where, crucially, the BL transport from equation (3.85) now depends on 𝑈 𝜉 . We have as-
sumed that the domain is tall enough such that gradients in buoyancy at 𝜎 = 0 are small and
therefore ⟨𝑢𝜂I (0)⟩ = 0. Solving for 𝑈 𝜉 yields

𝑈 𝜉 =

⟨

𝐻 ∫ 0
−1

𝜕𝑏I
𝜕𝑥
(𝜎) 𝑑𝜎

⟩

+
⟨

1
𝑞
𝜕𝜉𝑏I
1+𝜇𝜚

⟩

⟨

𝑓 2

𝑞𝜈
1

1+𝜇𝜚

⟩ , (3.87)
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where all variables are evaluated at 𝜎 = −1 unless otherwise noted. Simulations of an asym-
metric ridge, similar to that in appendix B of PC22, confirm the accuracy of this formula
(not shown).
Again, we restrict ourselves to cases where the non-dimensional𝑈 𝜉 is𝑂(𝜀2), the same order
as 𝜒I. This is true when the second term on the right in equation (3.86) of lower order than
the first. This is always the case after a fast initial adjustment.

3.9 Appendix B: Axisymmetric Coordinates
For simulations of an idealized seamount, we transform to axisymmetric coordinates, as-
suming rotational symmetry. The depth 𝐻 is then a function of the radial distance 𝑟 and
invariant under rotation about the origin by some angle 𝜙, leading to effectively 2D flow.
Defining 𝜌 = 𝑟 and 𝜎 = 𝑧∕𝐻 , we have

−𝜌𝑓𝑢𝜙 = −𝜕𝑝
𝜕𝜌

+ 𝜎 𝜕𝐻
𝜕𝑟
𝑏 + 1

𝐻2
𝜕
𝜕𝜎

(

𝜈 𝜕𝑢
𝜌

𝜕𝜎

)

, (3.88)

𝜌𝑓𝑢𝜌 = 𝜌2

𝐻2
𝜕
𝜕𝜎

(

𝜈 𝜕𝑢
𝜙

𝜕𝜎

)

, (3.89)
𝜕𝑝
𝜕𝜎

= 𝑏𝐻, (3.90)
𝜕
𝜕𝜌

(𝜌𝐻𝑢𝜌) + 𝜕
𝜕𝜎

(𝜌𝐻𝑢𝜎) = 0, (3.91)
𝜕𝑏
𝜕𝑡
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𝜕𝜌

+ 𝑢𝜎 𝜕𝑏
𝜕𝜎

= 1
𝐻2

𝜕
𝜕𝜎

(

𝜅 𝜕𝑏
𝜕𝜎

)

. (3.92)

The streamfunction inversion takes the same form as in Cartesian coordinates,
1
𝐻4

𝜕2

𝜕𝜎2

(

𝜈
𝜕2𝜒
𝜕𝜎2

)

+ 𝑓 2

𝜈
(𝜒 − 𝑈 ) = 𝜕𝑏

𝜕𝜌
− 𝜎
𝐻
𝜕𝐻
𝜕𝑟

𝜕𝑏
𝜕𝜎
, (3.93)

with a slight difference in the streamfunction definition due to the new form of the divergence
operator:

𝑢𝜌 = 1
𝐻
𝜕𝜒
𝜕𝜎

and 𝑢𝜎 = − 1
𝜌𝐻

𝜕(𝜌𝜒)
𝜕𝜌

. (3.94)
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C h a p t e r 4

THE 𝜈PGCM: A FLEXIBLE FINITE ELEMENT MODEL OF THE
LARGE-SCALE OCEAN CIRCULATION

4.1 Introduction
The ocean is a vast reservoir of heat, carbon, nutrients, and other tracers crucial to the evolu-
tion of Earth’s climate (e.g. Sarmiento and Gruber, 2006). The dense abyssal waters formed
due to buoyancy loss in the polar regions (e.g., Lumpkin and Speer, 2007; Talley, 2013)
sequester these tracers away from the surface for hundreds to thousands of years, regulating
the climate on long timescales (e.g., Sarmiento and Toggweiler, 1984). Alongside observa-
tional efforts, numerical ocean models are valuable tools for elucidating the key elements of
this circulation. Historically, improvements in these models have gone hand-in-hand with
developments in our oceanographical understanding and have shaped policy and planning
(Fox-Kemper et al., 2021). In particular, the character of the modeled overturning circula-
tion exherts a strong control on simulated past (e.g., Kageyama et al., 2009; Zhang et al.,
2013), present, and future (e.g., Gregory et al., 2005; Winton et al., 2014; He et al., 2017;
Weijer et al., 2020; Baker et al., 2023) climates.
Paradoxically, this slow, planetary-scale circulation is dependent on fast, small-scale turbu-
lence that cannot be directly resolved in a numerical model of the global ocean. The densest
bottom waters formed in the Southern Ocean must undergo diapycnal mixing to lighten and
return to the surface (e.g., Munk, 1966; Munk and Wunsch, 1998; Ferrari, 2014). Typically,
this small-scale mixing is parameterized in models by down-gradient diffusion of buoyancy
with either a fixed profile of turbulent diffusivity 𝜅 or a time-dependent scheme calibrated to
high-resolution simulations (e.g., Large et al., 1994). Microstructure observations of turbu-
lence in the abyss show that mixing is strongly heterogeneous and most vigorous over rough
topography (e.g. Polzin et al., 1997; Ledwell et al., 2000; Waterhouse et al., 2014), where
internal waves break and become non-linear (e.g., Garrett and Kunze, 2007; Nikurashin and
Ferrari, 2011). This spatial structure of turbulence suggests that the abyssal upwelling cru-
cial for closing the overturning is confined to the bottom 𝑂(10 m) of the ocean and over
topographic slopes (e.g., Ferrari et al., 2016; de Lavergne et al., 2016; McDougall and Fer-
rari, 2017).
These thin bottom boundary layers (BLs) present a unique challenge in simulating the large-
scale ocean circulation. Due to computational demands, even state-of-the-art global ocean
models have a resolution of 𝑂(100 m) near the bottom (e.g., ECCO Consortium et al.,
2021), with yet coarser resolutions needed to simulate the coupled climate system over thou-
sands of years (e.g., Rugenstein et al., 2019). When simulating the full Boussinesq system,
the timestep is limited by fast-timescale dynamics such as small-scale turbulence, internal
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waves, and baroclinic eddies, most of which cannot be directly resolved at the coarse spatial
resolution of global ocean models in the first place. A more natural approach would be to
employ the planetary geostrophic (PG) approximation (e.g., Pedlosky, 1979; Vallis, 2017),
filtering out the intertial terms in the momentum equations by assuming small Rossby num-
bers while retaining full buoyancy advection by assuming large horizontal scales. The PG
equations have been a cornerstone of our understanding of the large-scale ocean circulation
(e.g., Robinson and Stommel, 1959; Welander, 1959; Colin de Verdière, 1988; Samelson
and Vallis, 1997a; Salmon, 1998; Pedlosky, 1998), with a number of PG circulation models
(PGCMs) already in existence (e.g., Salmon, 1986; Samelson and Vallis, 1997b; Edwards
et al., 1998; Callies and Ferrari, 2018). For computational simplicity, these models employ
Rayleigh drag in the momentum equations, leading to excessive damping of interior flows
and unphysical bottom BLs (Peterson and Callies, 2023). In our 𝜈PGCM, described below,
we instead view the PG flow as the residual flow after a thickness-weighted average over
transients, parameterizing their effects on momentum through an Eliassen–Palm flux with
turbulent viscosity 𝜈 (e.g., Young, 2012; Jansen et al., 2024).
The complex land-sea boundary of the ocean poses another challenge for its numerical sim-
ulation. Not only is this geometry crucial in setting up the qualitative “figure-8” shape of the
overturning (e.g., Ferrari et al., 2014), but in the context of abyssal upwelling, the sloping
bottom is what allows bottom BL flows to upwell dense water against the stratified buoyancy
field. Idealized “shoebox” models with a flat bottom are capable of generating seemingly
Earth-like overturning circulations (e.g., Nikurashin and Vallis, 2011; Jansen and Nadeau,
2019), but the diapycnal upwelling of abyssal waters occurs within unrealistic BLs on ver-
tical side-walls in these models. The majority of ocean models with realistic bathymetry
use structured meshes and finite differencing (Arakawa and Lamb, 1981) due to their ease,
efficiency, and familiarity (e.g., Griffies et al., 2009; Fox-Kemper et al., 2019). Although
shaved-cell implementations exist to better resolve the bottom bathymetry (e.g., Adcroft
et al., 1997), they are rarely used in practice and still lead to a “staircase” pattern that requires
prohibitively high horizontal resolution to represent up-slope BL flows. Terrain-following
vertical coordinates are an attractive solution, though errors associated with representing
horizontal pressure gradients in these coordinates (e.g., Haney, 1991) and the singularity
along the coastline are currently a barrier for their adoption in global models.
While less standard in models of the global ocean, the geometrical flexibility of unstruc-
tured grids and the high order accuracy of the finite element method combine to make a
particularly desirable alternative. Part of the reason for the slow adoption of these methods
in geophysical fluid dynamics problems is that they were initially designed for elliptic par-
tial differential equations. The PG equations can be thought of separately as an advection–
diffusion equation for buoyancy and an inversion statement for the flow and pressure. Finite
element solutions to the advection–diffusion problem are now standard, though a stabiliza-
tion scheme is sometimes necessary (e.g., Elman et al., 2014). The PG inversion, on the
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other hand, can be thought of as an incompressible Stokes problem with a body force due
to rotation and the added physics of buoyancy forces. Textbook mixed finite element tech-
niques (e.g., Hughes, 1987; Elman et al., 2014) are effective at solving the Stokes problem
for isotropic diffusion, but they lose accuracy and even destabilize for hydrostatic prob-
lems (e.g., Guillén-González and Rodríguez-Galván, 2015). Following multiple other stud-
ies (e.g., Kuang et al., 2005; Garner et al., 2007; Salmon, 2009), we employ the “aspect ratio
trick,” artificially increasing the aspect ratio 𝛼 while holding all other nondimensional pa-
rameters fixed. This re-introduces diffusion in the local-vertical momentum equation, guar-
anteeing numerical stability. Even for large aspect ratios (𝛼 ≲ 1∕2) compared to the ocean
(𝛼 = 10−3), the qualitative behavior of the flow remains the same.
In the next section, we introduce the PG equations that we use to describe the physics of the
mixing-generated abyssal circulation. We will choose a particular nondimensionalization
that makes the role of the aspect ratio explicit while also retaining isotropy in the friction
terms. In section 4.3, we describe how the 𝜈PGCM solves these equations numerically us-
ing finite elements and an artificially enhanced aspect ratio. We briefly conclude with some
example simulations in a parabolic bowl basin in section 4.4, showcasing some of the capa-
bilities of this model.

4.2 Planetary geostrophic equations
As prefaced in the introduction, we aim to describe the large-scale ocean circulation using
the PG equations, which are derived from the Boussinesq equations by assuming large hor-
izontal scales and small Rossby numbers. In index notation, the dimensional PG equations
in Cartesian space (𝑥1, 𝑥2, 𝑥3) read

2𝑒𝑖𝑗𝑘Ω𝑗𝑢𝑘 = − 𝜕𝑝
𝜕𝑥𝑖

+ 𝑏𝑧𝑖 +
𝜕
𝜕𝑥𝑗

(

2𝜈𝜎𝑖𝑗
)

, (4.1)
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (4.2)
𝜕𝑏
𝜕𝑡

+ 𝑢𝑖
𝜕𝑏
𝜕𝑥𝑖

= 𝜕
𝜕𝑥𝑖

(

𝜅 𝜕𝑏
𝜕𝑥𝑖

)

, (4.3)
where 𝒖 = (𝑢1, 𝑢2, 𝑢3) is the velocity vector, 𝑝 is the pressure, and 𝑏 is the buoyancy. The
first term in (4.1) represents the Coriolis acceleration, with 𝑒𝑖𝑗𝑘 the Levi–Civita symbol for
the cross product and 𝛀 the rotation vector of the volume; we do not make the traditional
approximation. The buoyancy force acts only in the direction opposite to gravity, defined
by the unit vector 𝒛(𝒙). We parameterize turbulent mixing of buoyancy by a down-gradient
flux proportional to the turbulent diffusivity 𝜅 (Munk, 1966). The Eliassen–Palm fluxes
parameterizing mixing due to eddies contribute a diffusion term in the momentum equations
with eddy viscosity 𝜈. To account for spatially varying 𝜈, this friction term is written in terms
of the rank-2 strain rate tensor,

𝜎𝑖𝑗 = 𝜎(𝒖)𝑖𝑗 =
1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

. (4.4)
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For constant 𝜈, this term is equivalent to the regular Laplacian of 𝒖. We apply a no-slip
condition on the flow at the bottom boundary of the domain ΓB, and at the surface ΓS we
demand no normal flow and that the stress in the local horizontal direction is set by the wind
stress:

𝒖 = 0 on ΓB, (4.5)
𝑢𝑖𝑛𝑖 = 0 and 𝜈𝜎𝑖𝑗𝑛𝑖 = 𝜏𝑖𝑗𝑛𝑖 on ΓS, (4.6)

where 𝒏 is the normal vector to the boundary. The buoyancy flux through the bottom is
set to  (typically zero unless accounting for geothermal heating effects), and either the
buoyancy or the buoyancy flux can be set at the surface:

−𝜅 𝜕𝑏
𝜕𝑥𝑖

𝑛𝑖 =  on ΓB, (4.7)

𝑏 = 𝑏S or − 𝜅 𝜕𝑏
𝜕𝑥𝑖

𝑛𝑖 =  on ΓS. (4.8)

These PG dynamics can be viewed separately as an evolution equation for buoyancy (4.3)
and an inversion statement for the flow (4.1). A single timestep in the numerical model,
described below and illustrated in Fig. 4.4, makes use of this separation rather than simulta-
neously evolving the entire system. Although the code supports arbitrary initial conditions,
for the purposes of understanding the basic phenomenology of the mixing-driven circula-
tion, we here initialize all simulations with flat isopycnals aligned with gravity and constant
stratification 𝑁2 such that 𝜕𝑧𝑏 = 𝑁2 at 𝑡 = 0 (using the notation 𝜕𝑧 ≡ 𝑧𝑖𝜕𝑥𝑖).

4.2.1 Nondimensionalization and parameters
To isolate role of the aspect ratio in this problem, the 𝜈PGCM ultimately solves the nondi-
mensional PG equations, derived below. We scale all spatial coordinates by the natural length
scale of the domain 𝐿 (e.g., the radius of the planet or the width of the basin) and all veloc-
ities by the same scale:

𝑥𝑖 = 𝐿�̃�𝑖 and 𝑢𝑖 = 𝑈�̃�𝑖, (4.9)
for 𝑖 = 1, 2, 3. Given the typical initial condition defined above, a natural scaling for buoy-
ancy would be 𝑏 ∼ 𝑁2𝐻 for some depth scale of the ocean 𝐻 . Unlike in quasi-geostrophic
theory, however, the PG equations do not explicitly impose a background stratification so
that, in general, a representative scale for𝑁2 in the abyssal ocean will depend on the context
of the problem. We additionally define characteristic scales for the rotation rate and mixing
coefficients:

Ω𝑖 ∼ Ω, 𝜈 ∼ 𝜈0, 𝜅 ∼ 𝜅0. (4.10)
Finally, we assume that the pressure gradient term in (4.1) scales with the Coriolis term, that
the buoyancy also scales with the pressure scale divided by𝐻 from hydrostatic balance, and
that time scales advectively:

𝑝 ∼ Ω𝑈𝐿, 𝑏 ∼ Ω𝑈𝐿
𝐻

= 𝑁2𝐻, 𝑡 ∼ 𝐿
𝑈
. (4.11)
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Figure 4.1: Sketches of a slice along 𝑥1 of (a) an isolated basin with 𝑥3 aligned with gravity and (b)
the global ocean represented as a spherical shell embedded in Cartesian space.

Applying these scales to equations (4.1)–(4.3) yields the following nondimensional PG
equations:

2𝑒𝑖𝑗𝑘Ω̃𝑗 �̃�𝑘 = − 𝜕�̃�
𝜕�̃�𝑖

+ 𝛼−1�̃�𝑧𝑖 + 𝛼2𝜀2
𝜕
𝜕�̃�𝑗

(

2�̃��̃�𝑖𝑗
)

, (4.12)
𝜕�̃�𝑖
𝜕�̃�𝑖

= 0, (4.13)

𝜇𝜚
(

𝜕�̃�
𝜕𝑡

+ �̃�𝑖
𝜕�̃�
𝜕�̃�𝑖

)

= 𝛼2𝜀2 𝜕
𝜕�̃�𝑖

(

�̃� 𝜕�̃�
𝜕�̃�𝑖

)

, (4.14)

where 𝛼 = 𝐻∕𝐿 is the aspect ratio, 𝜀2 = 𝜈0∕Ω𝐻2 is the Ekman number, 𝜚 = 𝑁2𝐻2∕Ω2𝐿2

is the Burger number, and 𝜇 = 𝜈0∕𝜅0 is the turbulent Prandtl number. The wind stress
boundary condition at the surface is now 𝛼2𝜀2�̃��̃�(�̃�)𝑖𝑗𝑛S𝑖 = 𝜏𝑖𝑗𝑛S𝑖 and the buoyancy boundary
conditions are −�̃�𝜕�̃�𝑖 �̃�𝑛𝑖 = ̃ at the bottom and either �̃� = �̃�S or −�̃�𝜕�̃�𝑖 �̃�𝑛𝑖 = ̃ at the surface.
Since we will work in nondimensional coordinates for the remainder of the paper, we will
henceforth drop the ̃ notation.
With all three spatial coordinates scaled by𝐿, the effect of the aspect ratio 𝛼 on the dynamics
is made explicit and the domain  itself must have an aspect ratio of 𝛼. For an isolated basin
with 𝑥3 being the vertical coordinate aligned with gravity, this implies that −𝛼 ≤ 𝑥3 ≤
0 (Fig. 4.1a). If instead  is the entire ocean, 𝛼 naturally becomes the thickness of the
shell relative to the radius of the sphere (Fig. 4.1b). This scaling guarantees that the viscous
friction term in (4.12) is spatially isotropic, a desirable property for computing numerical
solutions. More importantly, for 𝛼 > 0 hydrostatic balance is not exactly required, as can be
seen by dotting (4.12) with the local vertical 𝒛:

𝜕𝑝
𝜕𝑧

= 𝛼−1𝑏 + 𝛼2𝜀2 𝜕
𝜕𝑥𝑗

(

2𝜈𝜎𝑖𝑗
)

𝑧𝑖, (4.15)

where again 𝜕𝑧 ≡ 𝑧𝑖𝜕𝑥𝑖 . For the ocean, typical order-of-magnitude length scales are 𝐻 ≈
103 m and 𝐿 ≈ 106 m, implying 𝛼 ≈ 10−3. Hence, the small aspect ratio assumption is of-
ten made, eliminating the diffusion term in (4.15). While standard finite element techniques
may be used to solve the Stokes problem with rotation, they become brittle under this ap-
proximation (e.g., Guillén-González and Rodríguez-Galván, 2015). To leverage established
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methods, we will therefore keep 𝛼 larger than zero but small enough to capture the qualita-
tive dynamics of the ocean. A similar approach was taken by Salmon (1986) for a PG model
with Rayleigh drag. In section 4.3, we will explore the effects of an enhanced aspect ratio
on the dynamics of our Fickian diffusion model.
The other parameters of the flow are free to be chosen to match the physical context. The
rotation rate of the Earth is Ω ≈ 10−4 s−1 and the stratification in the abyss is around 𝑁 ≈
10−3 s−1, yielding a Burger number of 𝜚 ≈ 10−4. Over rough topography, one might expect
strong turbulence associated with a turbulent diffusivity on the order of 𝜅0 ≈ 10−3 m2 s−1

(e.g., Waterhouse et al., 2014). The magnitude of the turbulent viscosity depends on whether
or not a parameterization of eddies is considered. Without eddies, it is reasonable to assume
that, for weakly stratified abyssal waters, small-scale mixing of buoyancy would occur on
similar scales to the mixing of momentum, implying that 𝜈0 ∼ 𝜅0, or 𝜇 ∼ 1 (e.g., Caulfield,
2021). An Eliassen–Palm flux equivalent to an eddy diffusivity of 𝐾 ≈ 103 m2 s−1 (Gent
and Mcwilliams, 1990), however, would require an enhanced viscosity of 𝜈0 ≈ 10 m2 s−1,
or 𝜇 ≈ 104. This is consistent with previous studies that find 𝜇 ≫ 1 in the presence of
submesoscale baroclinic eddies generated in abyssal mixing layers (e.g., Wenegrat et al.,
2018; Callies, 2018). In the first case, where 𝜈0 ≈ 10−3 m2 s−1, the Ekman number 𝜀 is on
the order of 10−3. In the eddy-parameterizing case of 𝜈0 ≈ 10 m2 s−1, on the other hand, it is
enhanced to 𝜀 ≈ 10−1. Given that the nondimensional bottom Ekman layer thickness 𝛿∕𝐿 =
√

2𝜈0∕(Ω0𝐿2) =
√

2 𝛼𝜀, these differences are crucial in setting the minimum resolution
required for numerical simulations. In the following, we apply the eddy parameterization
with 𝜀 = 2 × 10−2 and 𝜇 = 104 so that 𝜇𝜚 = 1, which is both more realistic and reduces
resolution constraints.

4.3 Numerical method
In this section, we describe the numerical scheme used in the 𝜈PGCM to solve the nondi-
mensional PG equations (4.12)–(4.14). We discretize the domain using an unstructured mesh
of tetrahedra, allowing considerable geometrical flexibility at the cost of requiring a more
sophisticated numerical method than standard finite differences on a structured grid. The
numerical solution satisfies the weak Galerkin form of the equations and lives in a specially
chosen finite element space to guarantee stability. To obtain smooth solutions, we must ar-
tificially increase the aspect ratio 𝛼, introducing diffusion in the hydrostatic equation. The
matrix equations for the PG inversion and evolution are solved separately using iterative
solvers. We use Strang splitting to handle advection and diffusion as separate partial steps
in the evolution equation.

4.3.1 Weak formulation
To derive the finite element formulation of the model equations, we first define the function
spaces in which we would like our solutions to live. These spaces need not specify any
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Neumann conditions such as in (4.6), (4.7), and (4.8), as those will be taken care of by
boundary integrals in the weak formulation, as we will see below. The velocity, pressure,
and buoyancy spaces are then

 ≡ {

𝒖 ∈ [𝐻1()]3 ∶ 𝒖 = 0 on ΓB and 𝑢𝑖𝑛𝑖 = 0 on ΓS

}

, (4.16)
 ≡ {

𝑝 ∈ 𝐿2() ∶ ∫ 𝑝 d𝒙 = 0
}

, (4.17)
 ≡ 𝐿2() or  ≡ {

𝑏 ∈ 𝐿2() ∶ 𝑏 = 𝑏0 on ΓS

}

, (4.18)

respectively, where the buoyancy space depends on whether the Dirichlet or Neumann con-
dition is chosen in (4.8). Here, [𝐻1()]3 refers to the Sobolev space of all three-component
vector functions that satisfy

‖𝒖‖2𝐻1 = ∫
(

𝑢𝑖𝑢𝑖 +
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

)

d𝒙 <∞, (4.19)

and 𝐿2() refers to the Lebesgue space of all functions that are square integrable, i.e.,

‖𝑝‖2𝐿2 = ∫ 𝑝
2 d𝒙 <∞. (4.20)

Without the integral constraint in  , the pressure may only be determined up to an additive
constant.
The weak form of the PG inversion is obtained by dotting equations (4.12) and (4.13) with
test functions (𝒗, 𝑞) ∈  ×  , integrating over the domain, and performing integration by
parts on the divergence of the strain rate, yielding

∫
[

2𝑒𝑖𝑗𝑘Ω𝑗𝑢𝑘𝑣𝑖 +
𝜕𝑝
𝜕𝑥𝑖

𝑣𝑖 +
𝜕𝑢𝑖
𝜕𝑥𝑖

𝑞 + 𝛼2𝜀2𝜈𝜎(𝒖)𝑖𝑗𝜎(𝒗)𝑖𝑗
]

d𝒙

= ∫ 𝛼
−1𝑏𝑧𝑖𝑣𝑖 d𝒙 + ∫ΓS

𝜏𝑖𝑗𝑛𝑗𝑣𝑖 d𝒙. (4.21)

This is known as a saddle-point problem (notice that the pressure 𝑝 never multiplies its test
function 𝑞). As we will see in the next section, this limits the discrete spaces on which we
may stably represent the solution. Following the same steps for the buoyancy equation (4.14),
this time multiplying by a test function 𝑐 ∈ , yields the weak formulation

∫
[

𝜕𝑏
𝜕𝑡
𝑐 + 𝑢𝑖

𝜕𝑏
𝜕𝑥𝑖

𝑐 + 𝜃𝜅 𝜕𝑏
𝜕𝑥𝑖

𝜕𝑐
𝜕𝑥𝑖

]

d𝒙 = 𝜃 ∫ΓB
𝑐 d𝒙 + 𝜃 ∫ΓS

𝑐 d𝒙, (4.22)

where 𝜃 = 𝛼2𝜀2∕𝜇𝜚. In the Dirichlet boundary condition case, the last integral over ΓS is
removed .
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4.3.2 Finite element discretization
To solve equations (4.21) and (4.22) numerically, we tesselate the domain into a mesh ℎ
of finite pieces (or “elements”) with characteristic length scale ℎ. In two dimensional space,
each element 𝑇𝑘 ∈ ℎ is a triangle whereas in three dimensions we use tetrahedra (Fig. 4.2).
In general, the quality of the mesh can have a significant impact on the accuracy of the
solution. We use meshes generated by Gmsh (Geuzaine and Remacle, 2009), although there
are many other meshing software packages available. We here show results for a parabolic
bowl with

ΓB =
{

𝒙 ∈ ℝ3 ∶ 𝑥21 + 𝑥
2
2 ≤ 1 and 𝑥3 = −𝛼(1 − 𝑥21 − 𝑥

2
2)
}

, (4.23)
ΓS =

{

𝒙 ∈ ℝ3 ∶ 𝑥21 + 𝑥
2
2 ≤ 1 and 𝑥3 = 0

}

, (4.24)

though arbitrary geometries are possible with this method. In general, one now defines a
subspace of the full solution space that can be spanned by a finite number of basis functions
defined on the mesh, converting the continuous form of the weak formulation (4.16)–(4.22)
into a discrete problem. A simple and common choice for this subspace is the set of contin-
uous, piecewise-polynomial functions of degree 𝑛 over the elements, 𝑃𝑛(ℎ). Denoting each
node in the mesh by 𝒙𝑖, one can create a set of basis functions for this space {𝜑𝑖} that satisfy

𝜑𝑖(𝒙𝑗) = 𝛿𝑖𝑗 , (4.25)

where 𝛿𝑖𝑗 is the Kronecker delta. For the linear space 𝑃1(ℎ), the element vertices supply
enough nodes to span the space (orange crosses in Fig. 4.2a,c), but for higher-order spaces,
more nodes are needed.
As discussed above, this formulation of the PG inversion is equivalent to the Stokes problem
with rotation, allowing us to employ a standard mixed finite element scheme. Although not
all discrete subspaces are stable for saddle-point problems such as (4.21), if they satisfy the
so-called LBB condition, a unique solution that depends continuously on the forcing exists
(e.g. Hughes, 1987; Elman et al., 2014). It is possible to choose a finite element basis that
does not satisfy the LBB condition, but ad hoc stabilization schemes are necessary (e.g.,
Danilov et al., 2004). We instead choose the simple and accurate 𝑃2–𝑃1 basis that is known
to satisfy the LBB condition. In this basis, the velocities are quadratic while the pressure is
linear, so that the discrete subspaces defined over the mesh are

ℎ ≡ [𝑃2(ℎ)]3 ∩ and ℎ ≡ 𝑃1(ℎ) ∩  . (4.26)

The degrees of freedom for the velocity components therefore exist on both the midpoints
and vertices of the elements while those of the pressure are just on the vertices (Fig. 4.2a,c).
The added degrees of freedom from using second-order elements increases the computa-
tional demand of the PG inversion, but, as we will see in the next section, the convergence
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Figure 4.2: Meshes ℎ of (a) two- and (b) three-dimensional basin domains and sketches of (c) tri-
angular and (d) tetrahedral finite elements 𝑇𝑘 ∈ ℎ. The meshes are generated for a parabolic basin
with 𝛼 = 1∕2 and a characteristic resolution of ℎ = 1∕20. In the mixed finite element method de-
scribed in section 4.3.2, the pressure degrees of freedom 𝐩𝑘𝑗 correspond to values on the vertices of
each element while the velocity and buoyancy degrees of freedom (𝐮𝑖)𝑘𝑗 and 𝐛𝑘𝑗 exist on both the
vertices and midpoints. The superscripts indicate that these are the degrees of freedom on the local
element 𝑇𝑘.

rate is rapid enough that resolution constraints are not as high. While not needed for sta-
bility, we represent buoyancy with quadratic, rather than linear, polynomials to ensure high
accuracy:

ℎ ≡ 𝑃2(ℎ) ∩ . (4.27)

With the discrete subspaces defined in (4.26) and (4.27), we can assemble the matrices
needed to compute the PG inversion and evolve buoyancy in time. If {(𝜑𝑖)𝑗}, {𝜓𝑗}, and {𝜑𝑖}
are the sets of basis vectors for ℎ, ℎ, and ℎ, respectively, then the solution to the weak
formulation of the PG equations can be represented as linear combinations of these func-
tions:

(𝑢𝑖)ℎ(𝒙) = (𝐮𝑖)𝑗(𝜑𝑖)𝑗(𝒙), 𝑝ℎ(𝒙) = 𝐩𝑗𝜓𝑗(𝒙), 𝑏ℎ(𝒙) = 𝐛𝑗𝜑𝑗(𝒙), (4.28)
with 𝐮𝑖, 𝐩, and 𝐛 being the vectors of projection coefficients. Note that, because the under-
lying basis vectors are continuously defined over the entire domain, so are the solutions.
This is in contrast to typical finite difference methods where the solution is only defined on
the grid. Conveniently, because of the choice of nodal basis functions defined by the prop-
erty (4.25), the projection coefficients are equal to the values of these functions on the nodes
of the mesh:

(𝑢𝑖)ℎ(𝒙𝑘) = (𝐮𝑖)𝑘, 𝑝ℎ(𝒙𝑘) = 𝐩𝑘, 𝑏ℎ(𝒙𝑘) = 𝐛𝑘. (4.29)

Given the buoyancy coefficients 𝐛, the coefficients for the velocity and pressure 𝐱 = [𝐮𝟏, 𝐮2,
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𝐮3, 𝐩]𝑇 can be determined by solving the matrix equation

�̂�𝐱 = �̂�𝐛 + 𝐬, (4.30)

where �̂�, �̂�, and 𝐬 are computed by integrating the weak formulation of the inversion (4.21)
for each basis function. For instance,

�̂�𝑖𝑗 = ∫ 𝛼
−1𝜑𝑗𝑧𝑘(𝜑𝑘)𝑖 d𝒙 and 𝐬𝑖 = ∫ 𝜏𝑘𝑗𝑛𝑗(𝜑𝑘)𝑖 d𝒙. (4.31)

We use the Julia (Bezanson et al., 2017) package Gridap.jl to automate this step (Badia and
Verdugo, 2020). A high-resolution three-dimensional inversion can easily contain millions
of tetrahedra, making a direct solve of the matrix equation (4.30) impractical. Instead, we
load �̂� onto a GPU using CUDA.jl (Besard et al., 2019) and solve the problem iteratively
using Krylov.jl’s (Montoison and Orban, 2023) implementation of the generalized minimum
residual method (GMRES). In the following section, evaluate the error of this method.

4.3.3 Convergence rates for the PG inversion
As a test case to validate the accuracy and convergence rate of the numerical inversion, we
solve for (𝒖ℎ, 𝑝ℎ) given flat isopycnals in the parabolic bowl geometry: 𝑏 = 𝛼−1𝑥3. The exact
solution is

𝒖 = 0 and 𝑝 =
𝑥23
2𝛼2

− 𝐶, (4.32)
where 𝐶 is a constant to satisfy the integral constraint equal to 4/35 for the two-dimensional
bowl and 1/12 for the three-dimensional bowl. Deviations from this exact solution result
from inaccuracies in representing horizontal pressure gradients, making it a useful test case.
Since isopycnals are flat throughout much of the ocean, these pressure gradient errors can
be detrimental for ocean models if they are not small relative to full flow. Such errors are
ubiquitous in terrain-following coordinate models (e.g., Haney, 1991), prohibiting their use
for global-scale problems. As we will see below, these errors are relatively modest in our
model and, importantly, their magnitude rapidly decreases with increasing resolution.
From finite element theory (e.g., Hughes, 1987; Elman et al., 2014), the error in the so-called
“energy norm” for the 𝑃2–𝑃1 method scales as

‖𝒖ℎ‖𝐻1 + ‖𝑝 − 𝑝ℎ‖𝐿2 ∼ 𝑂(ℎ2), (4.33)

where, again, ℎ is the characteristic mesh resolution. This is indeed the case for a range of
parameters in both two- and three-dimensional inversions (Fig. 4.3a,b). We also find that
this error scales roughly like 𝑂(𝛼−2𝜀−2). This follows from the fact that the BL scale is
proportional to 𝛼𝜀 so that the effective resolution with respect to the BL ℎeff ∼ ℎ∕(𝛼𝜀). Since
the error tends to be concentrated near the boundary for this problem, it is not a surprise that
the energy norm scales like ℎ2eff .
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Figure 4.3: Convergence rates of the PG inversion with respect to resolution ℎ, Ekman number 𝜀,
and aspect ratio 𝛼 for the case of flat isopycnals in a parabolic bowl basin (see Fig. 4.2a,b) with true
solution (4.32). (a) and (c) are for two-dimensional geometry and (b) and (d) show results for the
three-dimensional inversion. The error scales like ℎ2 in the energy norm [(a) and (b)] and ℎ3 in the
max norm [(c) and (d)].

While there is not a general theory for the scaling of the maximum error ‖𝒖ℎ‖𝐿∞ ≡ sup |𝒖ℎ|,
its value is more interpretable than that of the energy norm. We find that, for this particu-
lar test with flat isopycnals, the error empirically scales with ℎ3 (Fig. 4.3c,d). This rapid
convergence rate in the maximum pressure gradient error is promising for the accuracy of
large-scale ocean circulation simulated by this model. Next, we will couple the inversion to
the evolution equation to simulate time-dependent flow.

4.3.4 Timestepping
Once the solution is projected onto the discrete finite element space described above, the
weak form of the buoyancy evolution (4.22) becomes

𝐌𝜕𝐛
𝜕𝑡

+ 𝐹 (𝐮𝑖,𝐛) + 𝜃𝐊𝐛 = 𝜃𝐟 , (4.34)
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Figure 4.4: Flow chart of a single Strang-split timestep from 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡 in a simulation (see
section 4.3.4 for details). “Invert” refers to solving the matrix equation (4.30) for the PG inversion.
The half- and forward advection steps are described in equations (4.38) and (4.40), respectively, and
the Δ𝑡∕2 diffusion steps follow equation (4.41).

where
𝐌𝑖𝑗 = ∫ 𝜑𝑖𝜑𝑗 d𝒙 and 𝐊𝑖𝑗 = ∫ 𝜅

𝜕𝜑𝑖
𝜕𝑥𝑘

𝜕𝜑𝑗
𝜕𝑥𝑘

d𝒙, (4.35)
are known as the “mass” and “stiffness” matrices in the finite element literature and the
vector 𝐟 is due to the forcing terms on the right-hand side of (4.22). The non-linear advection
term takes the form

𝐹 (𝐮𝑖,𝐛)𝑗 = (𝐮𝑖)𝑘𝐛𝑙 ∫(𝜑𝑖)𝑘
𝜕𝜑𝑙
𝜕𝑥𝑖

𝜑𝑗 d𝒙, (4.36)
which must be explicitly re-computed as the solution evolves.
To simplify the treatment of both advection and diffusion, we employ Strang splitting (Strang,
1968) to handle each separately . Specifically, we split each timestep into (1) a half-step of
diffusion, (2) a full-step of advection, and (3) a final half-step of diffusion (Fig. 4.4). For
advection, we use a second-order explicit Runge–Kutta step (also known as the midpoint
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method):

Step 1: Solve (4.30) for 𝐮𝑛 given 𝐛𝑛, (4.37)
Step 2: 𝐛

𝑛+ 1
2

∗ = 𝐛𝑛 − Δ𝑡
2
𝐌−1𝐹 (𝐮𝑛𝑖 ,𝐛

𝑛), (4.38)

Step 3: Solve (4.30) for (𝐮𝑖)𝑛+
1
2

∗ given 𝐛
𝑛+ 1

2
∗ , (4.39)

Step 4: 𝐛𝑛+1∗ = 𝐛𝑛 − Δ𝑡𝐌−1𝐹
(

(𝐮𝑖)
𝑛+ 1

2
∗ ,𝐛

𝑛+ 1
2

∗

)

, (4.40)
where Δ𝑡 is the step size. The superscripts are a short-hand for 𝐛𝑛 = 𝐛(𝑡𝑛) where 𝑡𝑛 = 𝑛Δ𝑡
with 𝑛 = 0, 1, 2,… and the the subscript ∗ indicates that only an advection step has been
performed. The matrix 𝐌−1 is not computed explicitly, but instead the linear system is it-
eratively solved on a GPU using the conjugate gradient (CG) method. Using a left pre-
conditioner of (diag𝐌)−1, this approach is extremely efficient, typically converging to a
reasonable tolerance in less than 10 iterations. Note that this second-order method requires
two updates of the velocity field (steps 1 and 3). For the diffusion half-steps, we use the
second-order accurate, semi-implicit Crank–Nicolson method:

(

𝐌 + 𝜃Δ𝑡
4
𝐊
)

𝐛𝑛+1 =
(

𝐌 − 𝜃Δ𝑡
4
𝐊
)

𝐛𝑛+1∗ + 𝜃Δ𝑡𝐟 . (4.41)
We again solve this linear system using the CG method preconditioned by the inverse of the
diagonal of the matrix on the left-hand side.
A key advantage of solving the PG equations as opposed to the full Boussinesq system
is that they filter out fast-timescale dynamics, allowing for large timesteps. For the results
showcased in section 4.4, we use a uniform timestep of Δ𝑡 = 0.1, which translates to a
dimensional time of about 0.1∕(Ω𝜚) ≈ 100 days. This timestep, which is orders of magnitude
larger that that of most global ocean models, enables us to relatively cheaply simulate large-
scale ocean dynamics over long timescales. The basin simulations in the next section are
run to a nondimensional time of 𝑡 = 25 or about 80 years, with each taking only about 16
hours to complete on a single compute node with an H100 gpu. With some performance
optimizations and parallelization, the 𝜈PGCM could therefore be used to investigate the
millennial-timescale dynamics of the overturning circulation.

4.4 Results
With the methods laid out in the previous section, we now showcase some of the capabilities
of the 𝜈PGCM. We begin by examining the effect of varying the aspect ratio 𝛼 in a simple but
representative example. Based on these results, we conclude that even 𝛼 = 1∕2 qualitatively
captures the same dynamics exhibited as 𝛼 → 0. We then present results from a more com-
plex simulation on a 𝛽-plane, which displays the model’s ability to represent Rossby waves
and complicated interior buoyancy evolution. While the formulation of the model allows for
a general geometry, forcings, and nondimensional parameters, we here document results for
the specific case of a parabolic bowl basin with no wind stress or buoyancy forcing.
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Figure 4.5: Snapshot of flow components (colors) and isopycnals (gray lines) at 𝑥2 = 0 and nondi-
mensional time 𝑡 = 25 in a three-dimensional simulation of mixing-driven spin up on an 𝑓 -plane
(𝛀 = 𝒆3). The aspect ratio is 𝛼 = 1∕2, Ekman number is 𝜀 = 2 × 10−2, and Prandtl times Burger
number is 𝜇𝜚 = 1. The vertical red line in (a) indicates location of profiles in Fig. 4.1.
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Figure 4.6: Vertical profiles taken at 𝑥1 = 0.5 and 𝑥2 = 0 in the bowl (red line in Fig. 4.5) at
nondimensional time 𝑡 = 25 for spin up on an 𝑓 -plane (𝛀 = 𝒆3). The panels show the (a) zonal
flow 𝑢1, (b) meridional flow 𝑢2, (c) vertical flow 𝑢3∕𝛼, and (d) stratification 𝛼𝜕𝑥3𝑏, with solid lines
for two-dimensional simulations and dashed lines for three-dimensional. Results are shown for an
aspect ratio 𝛼 of 1/2, 1/4, and 1/8, with the vertical coordinate scaled by 1∕𝛼 to allow for a direct
comparison.

4.4.1 Aspect ratio effects
To examine the dynamical effect of an artificially increased aspect ratio, we run a set of
simulations with 𝛼 = 1/2, 1/4, and 1/8 in the bowl on an 𝑓 -plane, i.e., 𝛀 = 𝒆3 ≡ (0, 0, 1)𝑇 in
nondimensional coordinates. We choose a nondimensional turbulent diffusivity profile that
decays exponentially with distance (in 𝑥3) from the bottom 𝑧B(𝒙),

𝜅(𝒙) = 10−2 + exp
(

−
𝑧B(𝒙)
𝛼∕10

)

, (4.42)
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Figure 4.7: Snapshots at nondimensional time 𝑡 = 25 of (a) velocity (arrows) and speed (colors) at the
surface (𝑥3 = 0) and (b) buoyancy at 𝑥3∕𝛼 = 1∕2 in a three-dimensional simulation of mixing-driven
spin up on an 𝛽-plane [𝛀 = (1+𝑥2)𝒆3]. The aspect ratio is 𝛼 = 1∕2, Ekman number is 𝜀 = 2×10−2,
and Prandtl times Burger number is 𝜇𝜚 = 1. Gray circle in (b) represents the coastline at 𝑥3 = 0.

qualitatively consistent with observations over rough topography (e.g., Polzin et al., 1997;
Callies, 2018). Starting from flat isopycnals 𝑏 = 𝑥3∕𝛼 and no flow, a weakly stratified layer
near the bottom develops to satisfy the no-flux boundary condition, bending isopycnals into
the slopes (gray lines in Fig. 4.5). The cross-slope buoyancy gradient within this layer gen-
erates strong upwelling in the bottom BL and weak downwelling aloft, characteristic of
bottom-enhanced mixing (Fig. 4.5a,c). Due to the rotational symmetry of this geometry on
an 𝑓 -plane, the net transport of this secondary cross-slope circulation must be zero. By
thermal wind balance, the horizontal buoyancy gradients also support substantial shear in
the meridional flow near the bottom, leading to a strong circumbasin flow in the interior
(Fig. 4.5b). This flow has little effect on the buoyancy evolution since along-slope buoyancy
gradients are weak. The cross-slope BL upwelling, on the other hand, brings dense water up
the slope, working against mixing to bolster the stratification near the bottom. Without any
buoyancy forcing, however, the simulation tends towards a completely mixed state.
Because this geometry is axisymmetric on an 𝑓 -plane, the dynamics are well-described by
a two-dimensional model in polar coordinates with no variations in the azimuthal direc-
tion (Peterson and Callies, 2022, 2023). Even for a two-dimensional simulation in Cartesian
coordinates, the flow and stratification are nearly identical to the three-dimensional bowl
(compare solid to dashed lines in Fig. 4.6), providing a useful validation of the model. As
the aspect ratio is decreased, some quantitative changes in the solution emerge, with the
largest deviations occurring in the far-field along-slope flow (Fig. 4.6b) and the stratification
near the bottom (Fig. 4.6d). The qualitative structure of the circulation, however, remains
robust even for 𝛼 = 1∕2. For the purposes of most idealized experiments, we therefore do
not expect the artificially increased aspect ratio to affect qualitative conclusions. A more
quantitative study of the overturning with realistic bathymetry and forcing, however, would
warrant using an aspect ratio as small as computationally feasible.
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Figure 4.8: Snapshot of flow components (colors) and isopycnals (gray lines) at 𝑥2 = 0 and nondi-
mensional time 𝑡 = 25 in a three-dimensional simulation of mixing-driven spin up on an 𝛽-plane
[𝛀 = (1 + 𝑥2)𝒆3]. The aspect ratio is 𝛼 = 1∕2, Ekman number is 𝜀 = 2 × 10−2, and Prandtl times
Burger number is 𝜇𝜚 = 1.

4.4.2 Circulation in a bowl basin on a 𝛽-plane
For a more dynamic showcase of the capabilities of the model, we solve for the dynamics on
a 𝛽-plane, varying the rotation rate in the meridional direction such that 𝛀 = (1+𝑥2)𝒆3. This
breaks the along-slope symmetry that was present in the 𝑓 -plane setup, leading to a circula-
tion that can no longer be described by two-dimensional physics. One particularly striking
difference between the two simulations is the presence of Rossby waves on the 𝛽-plane
(Figs. 4.7 and 4.8). The early evolution resembles the 𝑓 -plane case, with mixing bending
isopycnals into the slope, generating zonal buoyancy gradients that support a shear in the
meridional flow by thermal wind balance. This initial perturbation in the meridional flow
then excites Rossby waves that propagate westward along the planetary vorticity gradient.
These waves eventually reach the western side of the basin, where they interact with the
boundary and set up a western boundary current (e.g., Pedlosky et al., 1997). Other PG
ocean models also set up western boundary currents (e.g., Callies and Ferrari, 2018), but
Rayleigh drag tends to suppress Rossby waves more aggressively than the Fickian friction
used here (Callies, personal communication).

4.5 Conclusions and Future Directions
The 𝜈PGCM represents a novel use of finite elements in a numerical model of the large-scale
ocean circulation, allowing it to capture the complicated geometry of the ocean and accu-
rately represent the near-bottom dynamics that are now understood to be a crucial component
of the overturning. By making the PG approximation, which filters out fast, small-scale dy-
namics, the model can afford to take large timesteps needed to simulate the overturning on
millennial timescales. This unique tool could therefore help answer many outstanding ques-
tions about the large-scale ocean circulation. For instance, this model could be used to ex-
plain how the overturning may have shifted during the Last Glacial Maximum to store more
carbon (Curry and Oppo, 2005; Sigman et al., 2010; Lund et al., 2011; Ferrari et al., 2014;
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Jansen, 2017). It could also be used to uncover the mechanisms behind and implications of
the observed abyssal heat uptake in recent decades (Purkey and Johnson, 2010; Desbruyères
et al., 2016; Lele et al., 2021; Johnson and Purkey, 2024). Ultimately, the 𝜈PGCM could even
be coupled to ice, atmosphere, and land models to understand the full Earth system (e.g.,
Holden et al., 2016).
We also envision the numerical approaches developed here as potentially paving the way
for the more general adoption of finite elements and unstructured grids in the field. The
methods described in section 4.3 could naturally be extended to the full Boussinesq system
by reformulating the inversion as an Oseen problem iteration. The aspect ratio trick could
then be the key to leveraging standard mixed finite element methods in global ocean models
without the need for complicated stabilization schemes.
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C h a p t e r 5

CONNECTING THE LOCAL RESPONSE TO ABYSSAL MIXING TO THE
BASIN-SCALE CIRCULATION

5.1 Abstract
The circulation of the abyssal ocean is thought to be sustained by turbulence over a rough
seafloor. Over sloping topography, this bottom-enhanced mixing produces diapycnal up-
welling within a thin bottom boundary layer and downwelling aloft. Simplified theories have
been developed to understand this local response to mixing, for example by assuming an
along-slope symmetry and imposing a constraint on the cross-slope transport. Ultimately,
the local response to mixing on slopes must be connected to the basin-scale circulation, how-
ever, and the barotropic transport must conserve potential vorticity. This coupling between
the local response to mixing and the basin-scale circulation is studied here in the context of
an idealized bowl-shaped basin. In the absence of wind forcing and the joint effect of baro-
clinicity and relief (JEBAR), the leading-order barotropic transport flows along 𝑓∕𝐻 con-
tours, where 𝑓 is the Coriolis frequency and𝐻 is the depth. The local response to mixing is
coupled to this barotropic circulation. It can be thought of as simultaneously constrained by
the barotropic circulation and forcing it via a bottom stress curl. If 𝑓∕𝐻 contours are closed,
a strong barotropic circulation spins up along them as in simplified theories of the local re-
sponse in the absence of along-slope variations. If these contours intersect the boundary, a
case more typical in the real ocean, the barotropic transport is suppressed. This decouples the
leading-order local response from the large-scale circulation and intensifies bottom bound-
ary layer upwelling. Planetary geostrophic dynamics and boundary layer theory are used to
describe this interplay between the local response to mixing and the basin-scale circulation,
and numerical solution are presented to illustrate the flows and test the theory.

5.2 Introduction
After dense Antarctic Bottom Water fills the global abyssal ocean basins (e.g., Lumpkin and
Speer, 2007; Talley, 2013), it must eventually undergo diapycnal transformation to return
to the surface and close the overturning (e.g., Munk, 1966; Munk and Wunsch, 1998; Fer-
rari, 2014). This transformation is achieved by small-scale turbulent mixing, which we now
understand to be bottom-enhanced over rough topography (e.g., Polzin et al., 1997; Led-
well et al., 2000; Waterhouse et al., 2014), where internal waves are prone to breaking (e.g.,
Garrett and Kunze, 2007; Nikurashin and Ferrari, 2011). Considering the one-dimensional
balance between diapycnal advection and diffusion in the vertical, bottom-enhanced mixing
must confine the upwelling needed to close the overturning to the bottom few meters of the
water column (e.g., Ferrari et al., 2016; de Lavergne et al., 2016; McDougall and Ferrari,
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Figure 5.1: Illustration of buoyancy field generated from bottom-enhanced diffusion in the vertical
and resulting flow predicted from the uniform slope model of PC22. For details of the dynamical
equations and nondimensionalization, refer to section 5.3. (a) Vertical profiles of stratification 𝜕𝑧𝑏 at
a column depth of 𝐻 = 0.75 corresponding to the red line in (d), with time ranging from 𝑡 = 10−3
(purple) to 𝑡 = 10−2 (light blue) at a spacing of 10−3. For the remainder of the paper, we freeze
the buoyancy field at 𝑡 = 10−2. (b) Cross-slope flow 𝑢 and (c) along-slope flow 𝑣 inferred from the
uniform slope model at 𝑡 = 10−2. Parameters are as in section 5.4: an Ekman number of 𝜀 = 2×10−2,
turbulent viscosity of 𝜈 = 1, and nondimensional slope 𝜃 = 𝜋∕4 corresponding to the slope at the
red line in (d). (d) Horizontal buoyancy gradient 𝜕𝑥𝑏 (colors) and isopycnals (gray lines) at 𝑡 = 10−2
in a bowl geometry 𝐻 = 1 − 𝑥2 − 𝑦2 for 0 ≤ 𝑥 ≤ 1 and 𝑦 = 0.

2017). Recent observations from a canyon in the Rockall Trough agree with this prediction
(Wynne-Cattanach et al., 2024). How this bottom-enhanced mixing on slopes shapes the
hydrography and basin-scale circulation, however, remains poorly understood.
In some circumstances, it is possible to fully describe the local response of a water column
to bottom-enhanced mixing using a one-dimensional model. Canonically, this model of a
rotating and stratified fluid over a sloping seafloor assumes no cross- or along-slope vari-
ations of the flow, pressure, and buoyancy anomalies (e.g., Phillips, 1970; Wunsch, 1970;
Thorpe, 1987; Garrett et al., 1993). It produces a peculiar steady-state solution, however,
in which the vertically integrated cross-slope transport is set by the local slope and interior
mixing strength, and it approaches this steady state diffusively over thousands of years for
typical abyssal parameters (MacCready and Rhines, 1991; Thompson and Johnson, 1996).
The inference that the local response dictates the net transport of the global circulation fails
to consider that the coupling goes both ways. In Chapter 2 (hereafter PC22), we took a step
toward accounting for the large-scale context in the local response to mixing. In the absence
of along-slope variations, the vertically integrated cross-slope transport should vanish to
satisfy volume conservation. The effects of this constraint are illustrated in Fig. 5.1 for a
buoyancy field generated by bottom enhanced mixing of fluid with initially constant strat-
ification over a uniform slope (panel a; see section 5.3 for details). The requirement that
all the upwelling in the bottom boundary layer (BL) be returned in the interior above sets
up a secondary cross-slope circulation (Fig. 5.1b). To allow for a transport constraint, the
one-dimensional model must be modified to include a cross-slope barotropic pressure gra-



83
(a)

10 9 10 8 10 7

f/H (m 1 s 1)

(b)

Figure 5.2: 𝑓∕𝐻 contours for (a) the global ocean and (b) the south Brazil Basin region from 40◦S
to 10◦S and 50◦W to 20◦E [red box in (a)]. Bathymetry data from Smith and Sandwell (1997, up-
dated).

dient 𝜕𝑥𝑃 . As the cross-slope flow returns in the interior, it is turned in the along-slope
direction by the Coriolis acceleration and put in geostrophic balance with the cross-slope
pressure gradient (Fig. 5.1c). The interior along-slope flow is then enabled to spin up rapidly,
rather than being controlled by diffusion. This transport-constrained model fully describes
the spinup of mixing-generated flow in the absence of along-slope variations, capturing the
flow spun up by bottom-enhanced mixing over an idealized ridge, for example (Ruan and
Callies, 2020).
The PC22 model relies on symmetry in the along-slope direction to provide enough con-
straints to solve for the local response. This symmetry is broken if, for instance, meridional
variations in the Coriolis parameter 𝑓 are allowed. In general, the local response is coupled
to the basin-scale potential-vorticity-conserving barotropic circulation. The net transport of
the local response is constrained by the barotropic circulation, as in PC22 (though now in
both directions). At the same time, the curl of the bottom stress due to the local response
is itself a forcing in the barotropic problem. Classical models of the barotropic circulation
(e.g., Stommel, 1948; Munk, 1950; Robinson, 1970; Rattray, 1982; Mertz and Wright, 1992)
use a simple form of the bottom stress without considering buoyancy effects. In this work,
we use standard Ekman BL theory (e.g., Pedlosky, 1979; Vallis, 2017) to derive explicit
expressions for the bottom stress in terms of the barotropic transport, buoyancy field, and



84
wind stress. This allows us to leverage intuition from textbook barotropic dynamics (e.g.,
Pedlosky, 1979; Vallis, 2017) to understand the connection between the local response to
mixing and the basin-scale circulation.
To understand this coupling in a simple context, we study the flow produced by a prescribed
buoyancy field, neglecting advective dynamics. In particular, for a buoyancy field dependent
only on the depth of the fluid 𝐻 (as in the purely mixing-generated field in Fig. 5.1), the
joint effect of baroclinicity and relief (JEBAR) drops out of the barotropic vorticity equation.
Furthermore, we find that the bottom-stress curl from Ekman BL theory is not a leading-
order term in the barotropic vorticity budget in the interior of the basin. In the absence of a
wind-stress curl, therefore, the leading-order barotropic flow in this case must follow 𝑓∕𝐻
contours. These contours tend to be open and fairly longitudinal in the real ocean, but they
can close around large enough topographic features (e.g., Dewar, 1998, cf. Fig. 5.2). These
two different topological states of the 𝑓∕𝐻 contours in an abyssal basin strongly alter the
qualitative barotropic dynamics. Flow along closed contours is unencumbered in the invis-
cid equations of motion, allowing strong, resonant flows (e.g., Kawase, 1993; Thompson,
1995; Hallberg and Rhines, 1996). Open contours, on the other hand, intersect the bound-
ary, thereby destroying the leading-order barotropic circulation. The first case only slightly
modifies the circulation compared to the local response derived from the PC22 model, with
the barotropic flow now directed along 𝑓∕𝐻 contours rather than simply along-slope. These
are one and the same on an 𝑓 -plane, implying that the PC22 model would still apply (pro-
vided that the assumption of along-slope symmetry is still a good one). The second case,
however, would require a modification of the local theory to include a constraint on both the
cross- and along-slope transports, as we will see below.
In section 5.3 we begin by introducing the planetary geostrophic (PG) formulation and ideal-
ized abyssal basin that will serve as our testbed for the remainder of the paper. We then dive
into the phenomenology of numerical solutions for the PG circulation within this basin in
section 5.4. The hydrography is set by bottom-enhanced diffusion of buoyancy starting from
flat isopycnals, and the resulting flow is computed on an 𝑓 -plane and two 𝛽-planes, one with
closed 𝑓∕𝐻 contours and one with open ones. In section 5.5, we use intuition from these
numerically-derived circulations to motivate a theoretical description of the connection be-
tween the local baroclinic response to mixing and the barotropic circulation. A discussion
of the significance of these results and key conclusions are provided in sections 5.6 and 5.7,
respectively.

5.3 A model problem for an abyssal basin
The goal of this study is to understand how the local response to bottom-enhanced mix-
ing interacts with the basin-scale circulation. With this in mind, we will consider an ide-
alized, closed basin to isolate this physics. We choose a bowl-shaped domain defined by a
parabolic depth function, which sets a coastline along the unit circle centered at the origin
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Figure 5.3: 𝑓∕𝐻 contours in a circular mid-latitude basin for 𝐻 = 1 − 𝑥2 − 𝑦2 and (a) 𝑓 = 1, (b)
𝑓 = 1 + 0.5𝑦, (c) 𝑓 = 1 + 𝑦. The red line and circle in (a) indicate where the zonal slices in Fig. 5.4
and the profiles in Fig. 5.5 are taken, respectively.

in the 𝑥–𝑦 plane (Fig. 5.3). The symmetry about the origin is the main reason for using this
geometry as opposed to rectangular basin more often employed in idealized studies of the
large-scale circulation (e.g., Ito and Marshall, 2008; Wolfe and Cessi, 2011; Nikurashin and
Vallis, 2011; Callies and Ferrari, 2018; Jansen and Nadeau, 2019). By varying 𝛽 in the the
Coriolis parameter 𝑓 (𝑦) = 𝑓0 + 𝛽𝑦, we can examine the dynamics under different 𝑓∕𝐻
contour topologies, with 𝑓∕𝐻 = (1 + 𝛽𝑦)∕(1 − 𝑥2 − 𝑦2) under the nondimensionalization
defined below. On an 𝑓 -plane (𝛽 = 0), this yields axisymmetric 𝑓∕𝐻 contours (Fig. 5.3a),
vastly simplifying the description of the coupling between the local and global dynamics,
as we will see in the next section. As 𝛽 is increased, the 𝑓∕𝐻 contours shift southward
(Fig. 5.3b,c), breaking this symmetry and demanding a more general treatment of the prob-
lem. Once 𝛽 ≥ 1, these contours open, perhaps more representative of most of the real
ocean’s 𝑓∕𝐻 contours (Fig. 5.2). As anticipated in the introduction and explained in de-
tail in the next section, the basin-scale dynamics are qualitatively different for open versus
closed contours. In this way, the three cases considered here (𝛽 = 0, 0.5, 1) cover three key
scenarios, allowing us to develop and test a general theory for the connection between the
local response to mixing and the basin-wide abyssal circulation.

5.3.1 Planetary geostrophic equations
To put the focus on the mixing-generated abyssal circulation, we employ the planetary
geostrophic (PG) approximation (e.g., Pedlosky, 1979; Vallis, 2017). The PG scaling as-
sumes large horizontal scales and small Rossby numbers, removing the inertial terms in the
momentum equations. This filters out fast-timescale dynamics such as small-scale turbu-
lence, internal waves, and baroclinic eddies, but we interpret the PG flow as the residual
flow after a thickness-weighted average over these transients, with their effects included as
parameterized Eliassen–Palm and diapycnal fluxes (e.g., Young, 2012). The dimensional
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PG equations in Cartesian space (𝑥, 𝑦, 𝑧) are

−𝑓𝑣 = −𝜕𝑝
𝜕𝑥

+ 𝜕
𝜕𝑧

(

𝜈 𝜕𝑢
𝜕𝑧

)

, (5.1)
𝑓𝑢 = −𝜕𝑝

𝜕𝑦
+ 𝜕
𝜕𝑧

(

𝜈 𝜕𝑣
𝜕𝑧

)

, (5.2)
𝜕𝑝
𝜕𝑧

= 𝑏, (5.3)
∇ ⋅ 𝒖 = 0, (5.4)

𝜕𝑏
𝜕𝑡

+ 𝒖 ⋅ ∇𝑏 = 𝜕
𝜕𝑧

(

𝜅 𝜕𝑏
𝜕𝑧

)

, (5.5)

where 𝒖 = (𝑢, 𝑣,𝑤) is the velocity vector, 𝑏 is the buoyancy, and 𝜈 and 𝜅 are the turbulent
viscosity and diffusivity, respectively. We apply no-slip (𝒖 = 0) and no-flux (𝜕𝑧𝑏 = 0)
boundary conditions at the bottom that is located at 𝑧 = −𝐻(𝑥, 𝑦). At the surface (𝑧 = 0),
we demand no normal flow (𝑤 = 0) with a wind stress forcing (𝜈𝜕𝑧𝒖⟂ = 𝝉) and a fixed
uniform buoyancy (𝑏 = 0). We here neglect horizontal turbulent fluxes, consistent with the
assumption of a small aspect ratio if the turbulence is close to isotropic, though these terms
are kept in the simulations for numerical stability (see section 5.4 and appendix A).
These PG dynamics can be viewed separately as an evolution equation for buoyancy (5.5)
and an inversion statement for the flow (5.1) to (5.4). For this study, we aim to understand the
inversion statement in isolation, leaving an analysis of the full PG system for future work.
To consider a flow-field in the context of abyssal mixing, we apply the inversion statement
to a buoyancy field generated by pure bottom-enhanced diffusion. We solve

𝜕𝑏
𝜕𝑡

= 𝜕
𝜕𝑧

(

𝜅 𝜕𝑏
𝜕𝑧

)

(5.6)

with an initial condition of flat isopycnals, 𝑏0 = 𝑁2𝑧, where 𝑁2 is the initial stratifi-
cation. This setting is, of course, a major simplification of the dynamics; in reality, the
ocean is thought to be in nearly steady state, with advection in balance with diffusion:
𝒖 ⋅ ∇𝑏 = 𝜕𝑧(𝜅𝜕𝑧𝑏) (Munk, 1966). Instead, the buoyancy field satisfying (5.6) simply mixes
towards 𝑏 = 0, and the flow derived from the inversion statement has no impact on this
evolution. As we will see in the following sections, however, the phenomenology the PG
inversion alone is rich enough to warrant isolated study, and its understanding can be used
as a stepping stone for studying the complete dynamics.

5.3.2 Nondimensionalization and parameters
To isolate key parameters in the problem, we will work with the nondimensional PG equa-
tions for the remainder of the paper. We define the characteristic scales for the horizontal
and vertical coordinates, velocities, Coriolis parameter, and mixing coefficients such that

𝑥, 𝑦 ∼ 𝐿, 𝑧 ∼ 𝐻0, 𝑢, 𝑣 ∼ 𝑈0, 𝑤 ∼
𝑈0𝐻0
𝐿

, 𝑓 ∼ 𝑓0, 𝜈 ∼ 𝜈0, 𝜅 ∼ 𝜅0. (5.7)
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Unlike in quasi-geostrophic theory, the PG equations do not impose an explicit background
stratification. For the simple diffusion problem considered in (5.6), however, the initial con-
dition sets a natural scaling for buoyancy of 𝑏 ∼ 𝑁2𝐻0. In general, a representative scale
for 𝑁2 in the abyssal ocean is not uniquely defined and will depend on the context. Fi-
nally, we assume that the horizontal pressure gradient terms in (5.1) and (5.2) scale with the
Coriolis terms, that the buoyancy also scales with the pressure scale divided by 𝐻0 from
hydrostatic balance (5.3), and that time scales advectively:

𝑝 ∼ 𝑓0𝑈0𝐿, 𝑏 ∼
𝑓0𝑈0𝐿
𝐻0

= 𝑁2𝐻0, 𝑡 ∼ 𝐿
𝑈0
. (5.8)

Applying these scales to equations (5.1) to (5.5) yields the following nondimensional PG
equations:

−𝑓�̃� = −𝜕�̃�
𝜕�̃�

+ 𝜀2 𝜕
𝜕�̃�

(

�̃� 𝜕�̃�
𝜕�̃�

)

, (5.9)
𝑓 �̃� = −𝜕�̃�

𝜕�̃�
+ 𝜀2 𝜕

𝜕�̃�

(

�̃� 𝜕�̃�
𝜕�̃�

)

, (5.10)
𝜕�̃�
𝜕�̃�

= �̃�, (5.11)
∇̃ ⋅ �̃� = 0, (5.12)

𝜇𝜚
(

𝜕�̃�
𝜕𝑡

+ �̃� ⋅ ∇̃�̃�
)

= 𝜀2 𝜕
𝜕�̃�

(

�̃� 𝜕�̃�
𝜕�̃�

)

, (5.13)

where 𝜀2 = 𝜈0∕𝑓0𝐻2
0 is the Ekman number, 𝜚 = 𝑁2𝐻2

0∕𝑓
2
0𝐿

2 is the Burger number, and
𝜇 = 𝜈0∕𝜅0 is the turbulent Prandtl number. The wind stress boundary condition at �̃� = 0 is
now 𝜀2�̃�𝜕�̃��̃�⟂ = 𝝉 . We will work in with nondimensional variables for the remainder of the
paper, dropping the ̃ decoration for visual clarity.
Typical order-of-magnitude scales for an abyssal basin are

𝑓0 ≈ 10−4 s−1, 𝐻0 ≈ 103 m, 𝑁 ≈ 10−3 s−1, 𝐿 ≈ 106 m, (5.14)
yielding a Burger number of 𝜚 ≈ 10−4. Over rough topography, one might expect strong
turbulence associated with a turbulent diffusivity on the order of 𝜅0 ≈ 10−3 m2 s−1 (e.g.,
Waterhouse et al., 2014). Although the magnitude of the turbulent viscosity is less clear,
it is reasonable to assume that, for weakly stratified abyssal waters, small-scale mixing of
buoyancy would occur on similar scales to the mixing of momentum, implying that 𝜈0 ∼ 𝜅0,
or 𝜇 ∼ 1 (e.g., Caulfield, 2021). Parameterizing the Eliassen–Palm flux of submesoscale
baroclinic eddies generated in abyssal mixing layers would require 𝜇 ≫ 1 (e.g., Wenegrat
et al., 2018; Callies, 2018), but we reserve a complete study of how eddy restratification
affects the basin-scale circulation for future work. Taking 𝜈0 = 𝜅0 = 10−3 m2 s−1 then
puts 𝜀 at about 3 × 10−3. To properly resolve the BL in the numerical model described in
the next section, we instead choose a magnified value of 𝜀 = 2 × 10−2, which thickens the
BL and speeds up diffusion but does not qualitatively change the solutions.
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For scales relevant to the basin-scale abyssal circulation, we therefore make the following
assumptions:

𝜀 ≪ 1 and 𝜇𝜚 ∼ 𝜀2. (5.15)
The first of these assumptions motivates the use of BL theory (section 5.5), as a typical ra-
tio of the bottom Ekman layer thickness 𝛿 =

√

2𝜈0∕𝑓0 to the column depth 𝐻0 is √2 𝜀 ≈
2.8 × 10−2 (this translates to a dimensional BL thickness of 28 m given 𝐻0 = 1 km). Ac-
cording to the BL theory derived in Chapter 3 (hereafter PC23), the cross-isopycnal flow
in the PC22 model is of 𝑂(𝜀) in the BL and 𝑂(𝜀2) in the interior. Along with the second
scaling assumption in (5.15), this would suggest that, in the absence of along-slope vari-
ations, advection of buoyancy in (5.13) is of higher order in 𝜀 than diffusion. While this
may no longer be the case once along-slope variations are allowed, as we will show below,
it further motivates our simplification of the buoyancy equation to pure diffusion (5.6) as
a first look at the basin-scale dynamics. We therefore solve the nondimensional buoyancy
diffusion equation in the vertical,

𝜇𝜚𝜕𝑏
𝜕𝑡

= 𝜀2 𝜕
𝜕𝑧

(

𝜅 𝜕𝑏
𝜕𝑧

)

, (5.16)

with the initial condition 𝑏 = 𝑧 and boundary conditions 𝜕𝑧𝑏 = 0 at 𝑧 = −𝐻 and 𝑏 = 0
at 𝑧 = 0.

5.4 Numerical inversions for the three-dimensional mixing-driven flow
Before developing a mathematical theory, in this section we will build intuition for the phe-
nomenology of the mixing-generated circulation from numerical solutions of the idealized
problem described above. We use the finite element method to integrate the diffusion equa-
tion (5.16) forward in time and solve a form of the PG inversion (5.9) to (5.12) with an
artificially large aspect ratio for numerical stability (see appendix A). As expected, on an
𝑓 -plane, the circulation in the bowl is axisymmetric, allowing us to describe the local dy-
namics using the theory from PC22 and PC23. The tilted isopycnals due to mixing rapidly
spin up a far-field flow that circumnavigates the basin. On a 𝛽-plane, the along-slope symme-
try is broken, and the barotropic circulation shifts southward following 𝑓∕𝐻 contours. For
open contours, the barotropic transport is nearly zero throughout the domain, constraining
the vertical structure of the flow and leading to stronger BL transport.

5.4.1 Numerical approach
Despite the simplified form of the PG inversion (5.9) to (5.12) compared to the full Boussi-
nesq system, solving the problem numerically in an arbitrary domain and with high resolu-
tion in the bottom BL can still prove challenging. The geometrically flexible finite element
method is a natural choice for this problem, but the small aspect ratio of the ocean destabi-
lizes standard techniques (e.g., Guillén-González and Rodríguez-Galván, 2015). To leverage
the robustness of standard finite element techniques without altering the qualitative behavior
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of the circulation, we artificially increase the aspect ratio 𝛼 = 𝐻0∕𝐿 to 1/2, re-introducing
both diffusion in the vertical momentum equation and horizontal diffusion of momentum.
This “aspect ratio trick” has been utilized in a number of other models (e.g., Kuang et al.,
2005; Garner et al., 2007; Salmon, 2009). We consider the effects of the approximation in
appendix A.
With horizontal diffusion terms included, the PG inversion is equivalent to rotating Stokes
flow, which may be solved efficiently and accurately using textbook mixed finite element
methods (e.g., Hughes, 1987; Elman et al., 2014). We choose the so-called 𝑃2–𝑃1 method,
where velocity and pressure are represented by quadratic and linear basis functions, respec-
tively. For this method, the energy-normed error scales quadratically in mesh resolution.
To resolve the BL scale, we discretize the domain using an unstructured tetrahedral mesh
with a uniform resolution of 10−2 generated using Gmsh (Geuzaine and Remacle, 2009). We
use the generalized minimum residual method (GMRES) to iteratively solve the resulting
linear system for velocity and pressure given the buoyancy field. For simplicity, we do not
specify a spatial structure in the nondimensional turbulent viscosity, setting 𝜈 = 1 every-
where. The implementation in Julia (Bezanson et al., 2017), which makes use of Gridap.jl
for finite elements (Badia and Verdugo, 2020), Krylov.jl for iterative solvers (Montoison
and Orban, 2023), and CUDA.jl for GPU support (Besard et al., 2019), is hosted on GitHub
(https://github.com/hgpeterson/nuPGCM).
As stated previously, we apply the PG inversion to a buoyancy field generated by bottom-
enhanced diffusive mixing in the vertical (5.16). We choose a nondimensional turbulent
diffusivity profile that decays exponentially with height above bottom,

𝜅(𝑥, 𝑦, 𝑧) = 10−2 + exp
(

−𝑧 +𝐻(𝑥, 𝑦)
0.1

)

, (5.17)

qualitatively consistent with observations over rough topography (e.g., Polzin et al., 1997;
Callies, 2018). Equation (5.16) is then discretized using 𝑃2 finite elements for buoyancy and
integrated in time using the second-order semi-implicit Crank–Nicolson method. Starting
from flat isopycnals 𝑏 = 𝑧, a bottom mixing layer with 𝜕𝑧𝑏 < 1 instantaneously develops
to satisfy the no-flux boundary condition (Fig. 5.1a). This mixing layer grows diffusively—
first rapidly near the bottom where 𝜅 ∼ 𝑂(1), then more slowly once it reaches the interior
where 𝜅 ∼ 𝑂(10−2)—eroding the stratification in the column towards zero. When applied
along the sloping bowl bathymetry, this vertical mixing bends isopycnals into the slopes,
generating cross-slope buoyancy gradients (Fig. 5.1b). These buoyancy gradients, as we will
see in the following sections, spin up a basin-scale circulation described by the PG inversion.
We will analyze the PG inversion in the remainder of the paper for the buoyancy field at 𝑡 =
10−2 (light blue line in Fig. 5.1a). Using the scales defined above, this corresponds to a
dimensional time of about 𝑡∗ = 𝑡∕𝑓0𝜚 ≈ 10 days. This short time reflects the artificially
enhanced Ekman number, which accelerates the rate of diffusion by a factor of ∼100. We

https://github.com/hgpeterson/nuPGCM
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will now explore the phenomenology of the circulation set up by this buoyancy field for the
three cases outlined in Fig. 5.3, starting with the simplest case of an 𝑓 -plane.

5.4.2 Circulation on an 𝑓 -plane
On an 𝑓 -plane, by symmetry, the dynamics are equivalent for any slice through the origin.
As discussed in the introduction, this along-slope invariance allows us to apply the theory
built up in PC22 and PC23 to determine the local response. In particular, this means that the
vertically integrated zonal velocity,

𝑈 ≡ ∫
0

−𝐻
𝑢 d𝑧, (5.18)

along a zonal section through 𝑦 = 0 (red line in Fig. 5.3) must vanish. Along this zonal
section, the flow field exhibits the BL upwelling and interior downwelling characteristic of
bottom-enhanced mixing (Figs. 5.4a,g). The transport constraint, by the meridional momen-
tum balance (5.10) and the along-slope symmetry, implies that the meridional (along-slope)
shear at the bottom must vanish. This implies weak near-bottom flow, such that the thermal
wind shear in the mixing layer leads to strong meridional flow in the interior (Fig. 5.4d).
These dynamics are well-described by the local theory, as showcased in Fig. 5.5 for a par-
ticular profile taken at 𝑥 = 0.5 and 𝑦 = 0 (red dot in Fig. 5.3). In section 5.5, this local
model will be described and generalized in detail, but for now the transport-constrained
one-dimensional model from PC22 is a sufficient mental picture.
As we will make more explicit in section 5.5, the barotropic circulation must in general con-
serve potential vorticity, which depends on the geometry of the 𝑓∕𝐻 contours, the vertically-
integrated buoyancy field, and the wind-stress curl. For the symmetric buoyancy field con-
sidered here, and in the absence of a wind stress, this balance implies free leading-order
barotropic flow along closed 𝑓∕𝐻 contours. On an 𝑓 -plane, this simply means that fluid
columns must remain at a constant depth as they circumnavigate the basin. The barotropic
streamfunction Ψ describing this circulation, defined such that

−𝜕Ψ
𝜕𝑦

= 𝑈 and 𝜕Ψ
𝜕𝑥

= 𝑉 , (5.19)

where 𝑉 ≡ ∫ 0
−𝐻 𝑣 d𝑧, is therefore a function of𝐻 (Fig. 5.6). The strength of this along-slope

barotropic circulation is set by the amount of thermal wind shear over the mixing layer (see
section 5.5 and appendix C for details). Specifically, as we will see in equation (5.40), the
magnitude of Ψ is linearly proportional to the thickness of the mixing layer, the strength of
the cross-slope buoyancy gradient within it, and the depth of the fluid column.

5.4.3 Circulation on a 𝛽-plane
On a 𝛽-plane, the 𝑓∕𝐻 contours shift southward, breaking the rotational symmetry that was
present on the 𝑓 -plane and therefore invalidating the model for the local response based on
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Figure 5.4: Zonal sections at 𝑦 = 0 of velocity components (colors) and isopycnals (gray lines) at
𝑡 = 10−2 for (column 1; a, d, g) 𝛽 = 0, (column 2; b, e, h) 𝛽 = 0.5, and (column 3; c, f, i) 𝛽 = 1. The
velocity components are organized by row, with (row 1; a, b, c) zonal flow 𝑢 at the top, (row 2; d, e,
f) meridional flow 𝑣 in the middle, and (row 3; g, h, i) vertical flow 𝑤 at the bottom. Red line in (a)
indicates location of profiles in Fig. 5.5.
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Figure 5.6: Barotropic streamfunctionΨ (colors and black lines) at 𝑡 = 10−2 for (a) 𝛽 = 0, (b) 𝛽 = 0.5,
and (c) 𝛽 = 1. Negative values imply counter-clockwise flow. For reference, the 𝑓∕𝐻 contours from
Fig. 5.3 are overlayed in green.

along-slope symmetry. We will consider two cases: 𝛽 = 0.5 and 𝛽 = 1, with the former
having closed 𝑓∕𝐻 contours and the latter having open contours (Fig. 5.3b,c). As alluded
to in the introduction, these two cases lead to dramatically different barotropic circulations,
which then shape the local response to mixing.
For closed 𝑓∕𝐻 contours (𝛽 = 0.5), the magnitude of the barotropic circulation is compa-
rable to that of the 𝑓 -plane case (Fig. 5.6b). The streamfunction is very nearly a function
of 𝑓∕𝐻 , with a slight perturbation towards the western side of the basin. Looking again at
a zonal section through 𝑦 = 0, the interior meridional flow is similar to the 𝑓 -plane case,
with a slight barotropic shift toward zero in the interior (Fig. 5.4e). This is especially clear
in the vertical profile at 𝑥 = 0.5 and 𝑦 = 0 (Fig. 5.5b). The zonal and vertical circulation in
the interior of this section can best be understood by considering the stretching and squash-
ing of fluid columns to conserve vorticity. Since 𝑓 increases with 𝑦, fluid columns moving
northward on the eastern side of the basin must stretch by moving towards deeper waters to
the west in order to keep 𝑓∕𝐻 constant. This explains the westward and downwelling flow
on this side of the basin (Fig. 5.4b,h). On the other hand, fluid columns moving southward
on the western side of the basin must squash by moving towards shallower waters, leading
to westward and upwelling flow. The zonal flow in the interior is roughly barotropic, while
the vertical component decays roughly linearly (Fig. 5.5a,c). This is consistent with vorticity
conservation in the interior, given the nearly barotropic interior meridional flow. This zonal
circulation in the interior is much stronger than that of the 𝑓 -plane case, leading to enhanced
shear in the BL.
The circulation completely changes once 𝑓∕𝐻 contours open. As before, the leading or-
der barotropic flow is directed along 𝑓∕𝐻 contours, but this time these contours encounter
the boundary, where the flow must be zero. The magnitude of the barotropic circulation is,
therefore, considerably reduced (Fig. 5.6c). The near-zero transport throughout the domain
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provides a constraint that decouples the local response from the basin-wide circulation. Un-
like the model for the local response in the 𝑓 -plane case, here both 𝑈 and 𝑉 must vanish.
This model for the local response, described in section 5.5 and appendix B, captures the
qualitative vertical structure of the flow at 𝑥 = 0.5 and 𝑦 = 0, with quantitative errors to be
expected given that the net transport is not exactly zero in the full inversion (Fig. 5.5). This
constraint on the net transport has important implications for the vertical structure of the cir-
culation. With the thermal wind shear unchanged, the meridional flow in the interior must
shift to satisfy 𝑉 = 0 (Figs. 5.4f and 5.5b). This generates a larger shear near the bottom,
thereby enhancing the up-slope BL transport (Figs. 5.4c,i and 5.5a,c). If buoyancy advec-
tion was allowed, this stronger BL upwelling than the 𝑓 -plane case would be more efficient
at restratifying the mixing layer, as we will discuss further in section 5.6. To compensate
for this BL transport and ensure that that 𝑈 ≈ 0, the zonal flow in the interior is weakly
westward in balance with a barotropic meridional pressure gradient.

5.5 Theory for the flow inversion
The phenomenology exhibited in the previous section shows that, for a fixed buoyancy field,
the circulation resulting from the PG inversion varies substantially depending on the underly-
ing 𝑓∕𝐻 contours. For open contours, the barotropic circulation vanishes at leading order,
rendering the leading-order local response independent of any global context. For closed
contours, on the other hand, a leading-order along-contour barotropic flow develops. This
transport constrains the local response, whose bottom-stress curl then provides a sink of
barotropic vorticity so that, in general, the two problems must be solved simultaneously. For
the 𝑓 -plane case, however, the along-slope symmetry provided enough of a constraint to al-
low us to describe the local response independently with the model derived in PC22. In this
section, we will describe the mathematical formalism of these results, clarifying how the
local and barotropic responses are coupled and deriving asymptotically accurate analytical
expressions.

5.5.1 Barotropic vorticity conservation
Turbulent mixing of buoyancy in the abyss generates a local flow response that must re-
con with the basin-wide circulation. The barotropic circulation may be described by the
barotropic vorticity equation, derived by integrating the horizontal momentum equations (5.9)
and (5.10) over the water column and then cross-differentiating:

− J
( 𝑓
𝐻
,Ψ

)

= − J
( 1
𝐻
, 𝛾
)

+ 𝒛 ⋅
(

∇ × 𝝉
𝐻

)

− 𝜀2𝒛 ⋅ ∇ ×
( 𝜈
𝐻
𝜕𝒖
𝜕𝑧

|

|

|−𝐻

)

, (5.20)

where J(𝐴,𝐵) = 𝜕𝑥𝐴𝜕𝑦𝐵−𝜕𝑦𝐴𝜕𝑥𝐵 is the Jacobian operator. For a closed simply connected
domain like the bowl considered in this study, the boundary condition isΨ = 0. The first term
on the right-hand side depends on both the topography and the three-dimensional structure
of the buoyancy field through 𝛾 = − ∫ 0

−𝐻 𝑧𝑏 d𝑧 and is therefore often called the joint-effect
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of baroclinicity and relief (JEBAR) term. For our simple diffusion case, 𝛾 = 𝛾(𝐻), so that
JEBAR is zero.
Equation (5.20) can be interpreted as a conservation equation for the “tracer” Ψ advected by
the “flow” 𝑓∕𝐻 and with “sources” and “sinks” on the right-hand side (e.g., Welander, 1968;
Salmon, 1998; Vallis, 2017). This tracer analogy helps explain the qualitative difference
between the open- and closed-contour inversions (Fig. 5.6). For closed 𝑓∕𝐻 contours, the
streamfunction can “flow” along a closed loop, gaining “concentration” from the “source”
terms along the way. This is how the 𝑓 -plane and 𝛽 = 0.5 simulations could maintain such
strong barotropic circulations (e.g., Hallberg and Rhines, 1996). For 𝛽 = 1, however, the
contours open, and any “concentration” acquired while “flowing” in the interior will be
lost at the boundary. In the inversions shown above, the only “source” term is the bottom-
stress curl, which is itself a part of the solution. For closed contours, this frictional term
can become large outside a lateral boundary layer, whereas open contours produce lateral
(western) boundary layers with friction remaining small in the interior.
A closed description requires an expression for the bottom-stress curl term in equation (5.20),
where the barotropic circulation explicitly couples to the local response. In the classic Stom-
mel (1948) model, the bottom stress is simply taken to be proportional to the vertically inte-
grated transport; taking its curl then yields a term proportional to the horizontal Laplacian
of Ψ, adding a lateral diffusion term to the tracer analogy. More physically, Ekman theory
should be applied to the bottom boundary layer, such that the bottom stress depends on the
near-bottom geostrophic flow. Because the near-bottom geostrophic flow depends on both
the barotropic circulation and the baroclinic shear, this couples the barotropic problem to
the local response to mixing. This theory is developed over the next two sections.

5.5.2 The local response to mixing
The local response can be determined by solving the frictional thermal wind relations, which
arise from differentiating the momentum equations (5.9) and (5.10) in 𝑧 and substituting
hydrostatic balance (5.11):

−𝑓 𝜕𝑣
𝜕𝑧

= − 𝜕𝑏
𝜕𝑥

+ 𝜀2 𝜕
2

𝜕𝑧2
(

𝜈 𝜕𝑢
𝜕𝑧

)

, (5.21)

𝑓 𝜕𝑢
𝜕𝑧

= −𝜕𝑏
𝜕𝑦

+ 𝜀2 𝜕
2

𝜕𝑧2
(

𝜈 𝜕𝑣
𝜕𝑧

)

. (5.22)
As a reminder, all variables (including 𝑓 and 𝜈) are nondimensional. Given the horizontal
buoyancy gradients, equations (5.21) and (5.22) define a set of two coupled second-order
ordinary differential equations in 𝑧 for the shear of the horizontal flow (𝜕𝑧𝑢, 𝜕𝑧𝑣). The first set
of boundary conditions are due to the wind stress (𝜀2𝜈𝜕𝑧𝑢 = 𝜏𝑥 and 𝜀2𝜈𝜕𝑧𝑣 = 𝜏𝑦 at 𝑧 = 0),
while the second set arises from the barotropic transport constraint:

−∫
0

−𝐻
𝑧𝜕𝑢
𝜕𝑧

d𝑧 = 𝑈 and − ∫
0

−𝐻
𝑧𝜕𝑣
𝜕𝑧

d𝑧 = 𝑉 , (5.23)
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Figure 5.7: Solutions to the frictional thermal wind equations (5.21) and (5.22) for cases with
(a) zonal transport only (b) meridional transport only, and (c) no transport with a zonal buoyancy
gradient taken from the bowl simulation at 𝑥 = 0.5, 𝑦 = 0, and 𝑡 = 10−2 (see Fig. 5.1). Second-order
accurate BL theory solutions (see appendix B) are shown in black dashed lines. Parameters are as in
the full inversion at 𝑥 = 0.5 and 𝑦 = 0 (𝜀 = 2 × 10−2, 𝑓 = 1, 𝜈 = 1, 𝐻 = 0.75) with horizontal
diffusion ignored.

coupling the problem to the barotropic vorticity equation (5.20). Since 𝒖 = 0 at 𝑧 = −𝐻 ,
the horizontal flow can easily be determined from the shear by integrating upward: 𝑢(𝑧) =
∫ 𝑧
−𝐻 𝜕𝑧𝑢 d𝑧 and 𝑣(𝑧) = ∫ 𝑧

−𝐻 𝜕𝑧𝑣 d𝑧. The vertical flow can be determined by cross-differentiating
the horizontal momentum equations (5.9) and (5.10) and applying continuity (5.12), which
yields the frictional vorticity balance,

𝛽𝑣 = 𝑓 𝜕𝑤
𝜕𝑧

+ 𝜀2 𝜕
𝜕𝑧

(

𝜈
𝜕𝜁
𝜕𝑧

)

, (5.24)

where 𝜁 = 𝜕𝑥𝑣 − 𝜕𝑦𝑢 is the relative vorticity. From this relation, it is clear that the local
interior vertical velocity reflects the stretching or squashing needed to conserve potential
vorticity of the fluid column as it moves across a meridional planetary vorticity gradient.
Near the boundaries, where the friction term dominates, horizontal variations in the local
response yield Ekman pumping and suction.
Solutions to the equations (5.21) to (5.22) are well-understood from standard Ekman theory
(e.g., Ekman, 1905; Pedlosky, 1979; Vallis, 2017). For a purely zonal transport with no
horizontal buoyancy gradients, the flow is constant in the interior with 𝑢 = 𝑈∕𝐻 and 𝑣 = 0,
and both follow a classic Ekman spiral to zero in the bottom BL (Fig. 5.7a). For 𝑓 > 0, the
positive zonal transport spirals counter-clockwise, generating a small, positive meridional
transport in the BL. Likewise, for a positive meridional transport, the constant interior flow
𝑢 = 0 and 𝑣 = 𝑉 ∕𝐻 spirals near the bottom such that a small, negative zonal BL transport is
created (Fig. 5.7b). Finally, when no net transport is allowed but a buoyancy gradient in 𝑥 is
present due to turbulent mixing on a slope, the shear in the meridional flow satisfies thermal
wind in the interior (Fig. 5.7c). The constraint that 𝑉 = 0 then implies a non-zero interior
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flow at the top of the bottom BL, leading to an Ekman spiral with positive zonal transport
in the BL.
These hypothetical profiles already shed light on the differences between the vertical struc-
ture of the flow from the inversions shown in the previous section. For each vertical column
in the domain, linearity of the baroclinic equations (5.21) and (5.22) implies that the full flow
is a linear combination of the solutions in Fig. 5.7. On an 𝑓 -plane at 𝑦 = 0 in the bowl, the
zonal transport is zero, so that the full solution would be 𝑉 times the response in Fig. 5.7b
plus the response in Fig. 5.7c. The positive meridional transport at (0.5, 0) in Fig. 5.6a then
helps to explain the profiles in Fig. 5.5: the barotropic contribution in Fig. 5.7b shifts the
dipole in the interior meridional flow in Fig. 5.7c up and reduces the up-slope BL trans-
port. For 𝛽 = 0.5, the meridional transport is reduced in magnitude and the zonal transport
is slightly negative at this point, which explains the negative barotropic shifts in the inte-
rior flow. Finally, the 𝛽 = 1 inversion has nearly zero barotropic transport throughout the
domain due to the open 𝑓∕𝐻 contours, leading to negligible contributions from the local
responses due to transport. Thus, the profiles in the open-contour case mostly resembled the
local baroclinic response to horizontal buoyancy gradients alone (Fig. 5.7c). By removing
the response due to meridional transport, the up-slope transport is enhanced.
This formulation of the local problem is generally applicable, with the integral conditions (5.23)
describing exactly how the local response is constrained by the barotropic problem (5.20).
Similarly, when along-slope symmetry is present, such as in the 𝑓 -plane case in the bowl
geometry, the barotropic problem can be sufficiently simplified to enable an explicit calcu-
lation of the local response. Taking 𝑥 and 𝑦 to be the local cross- and along-slope directions,
neglecting along-slope variations in the barotropic vorticity equation (5.20) implies

𝜕
𝜕𝑥

(

𝜈
𝐻
𝜕𝑣
𝜕𝑧

|

|

|

|−𝐻

)

= 0. (5.25)

Integrating in 𝑥 from the center of the domain, where the flow must vanish by symmetry,
this reduces to the requirement that the along-slope shear vanishes everywhere along the
bottom:

𝜕𝑣
𝜕𝑧

= 0 at 𝑦 = 0, 𝑧 = −𝐻. (5.26)
The same conclusion can be reached by integrating the 𝑦-momentum equation from 𝑧 = −𝐻
to 𝑧 = 0, assuming 𝜕𝑦𝑝 = 0 and 𝑈 = 0 (PC22). The constraint in (5.26) then replaces the
along-slope integral boundary condition in (5.23), and the cross-slope transport is set to
zero by the symmetry described above. This local model is mathematically equivalent to
the streamfunction formulation of the dynamics in the 𝑥–𝑧 plane from PC22, but it more
naturally generalizes to the three-dimensional problem. If one assumes a uniform bottom
slope 𝜃, the horizontal buoyancy gradient becomes 𝜕𝑥𝑏 = −𝜕𝑧𝑏 tan 𝜃, and the vertical flow
is simply𝑤 = 𝑢 tan 𝜃, as in the standard one-dimensional models (see appendices A and B).
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5.5.3 Boundary layer theory
The barotropic and local problems outlined in the previous two sections form a complete
description of the PG inversion. The two must be solved together, with the solution to the
local problem feeding in to the bottom-stress curl “sink” term in the the barotropic vortic-
ity equation (5.20) and the barotropic solution appearing in the integral constraint (5.23) of
the local inversion (5.21) to (5.22). In this section we use standard Ekman BL theory (e.g.,
Pedlosky, 1979; Vallis, 2017) to arrive at an analytical expression for the bottom stress, al-
lowing us to explicitly describe how the local response couples to the basin-wide dynamics.
In the following, we here describe the salient results of the BL theory and leave the details
in appendix B.
We split the flow into an interior contribution 𝒖I, which varies slowly in 𝑧, and bottom
and surface BL corrections 𝒖B and 𝒖S, respectively, which ensure boundary conditions are
satisfied and have appreciable magnitude in thin BLs only. The interior solution is then, to
𝑂(𝜀), in thermal wind balance:

𝑓
𝜕𝑣I
𝜕𝑧

= 𝜕𝑏
𝜕𝑥

and 𝑓
𝜕𝑢I
𝜕𝑧

= −𝜕𝑏
𝜕𝑦
. (5.27)

In the absence of a buoyancy gradient, the flow in the interior is constant, consistent with
both profiles in Fig. 5.7a,b and 𝑢 in Fig. 5.7c (where 𝜕𝑦𝑏 = 0). To satisfy the no-flow bound-
ary condition at the bottom, this flow is brought to zero by friction in a classic Ekman spiral,
with coefficients set by the (yet to be determined) interior flow at the top of the bottom BL:

𝑢B = −𝑒−𝑞�̄�
(

𝑢I|−𝐻 cos 𝑞�̄� + 𝑣I|−𝐻 sin 𝑞�̄�
)

, (5.28)
𝑣B = −𝑒−𝑞�̄�

(

𝑣I|−𝐻 cos 𝑞�̄� − 𝑢I|−𝐻 sin 𝑞�̄�
)

. (5.29)

The solution is written in terms of the stretched vertical coordinate �̄� = (𝑧+𝐻)∕𝜀 and 𝑞−1 =
√

2𝜈|−𝐻∕𝑓 is the bottom BL thickness in this coordinate. With 𝑏 = 0 at 𝑧 = 0, the shear
of the interior velocities (5.27) is zero at the surface, automatically satisfying the surface
boundary condition for no wind stress. If a non-zero wind stress is allowed, an𝑂(𝜀−1)Ekman
spiral BL correction at the surface 𝒖S must be present as well.
The Ekman spiral in the bottom BL (5.28) and (5.29) generates considerable shear near the
bottom, providing a frictional sink of barotropic vorticity. To derive an explicit formula for
the curl of this bottom stress, we must first determine the interior flow at the top of the
BL 𝑢I|−𝐻 and 𝑣I|−𝐻 . This can be done by considering the contributions of the interior and
BL components to the vertically-integrated transport:

𝑈 = 𝑈I + 𝑈S + 𝜀𝑈B and 𝑉 = 𝑉I + 𝑉S + 𝜀𝑉B. (5.30)

Due to the thinness of the surface and bottom BLs, their integrals pick up a factor of 𝜀, but
since the surface BL correction is of 𝑂(𝜀−1), its integral contribution is of 𝑂(1). Neglecting
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the 𝑂(𝜀) contributions from the bottom BL in (5.30) and solving for the interior flow at the
top of the bottom BL yields

𝑢I|−𝐻 = 𝑈
𝐻

− 1
𝑓𝐻 ∫

0

−𝐻
𝑧𝜕𝑏
𝜕𝑦

d𝑧 − 𝜏𝑦

𝑓𝐻
, (5.31)

𝑣I|−𝐻 = 𝑉
𝐻

+ 1
𝑓𝐻 ∫

0

−𝐻
𝑧 𝜕𝑏
𝜕𝑥

d𝑧 + 𝜏𝑥

𝑓𝐻
. (5.32)

With these constants determined, is now possible to write down the bottom stress due to the
BL correction (5.28) and (5.29):

𝜕𝑢B
𝜕𝑧

|

|

|−𝐻
= 𝑞
𝜀

[

𝑈 − 𝑉
𝐻

− 1
𝑓𝐻 ∫

0

−𝐻
𝑧
(

𝜕𝑏
𝜕𝑥

+ 𝜕𝑏
𝜕𝑦

)

d𝑧 − 𝜏𝑥 + 𝜏𝑦
𝑓𝐻

]

, (5.33)

𝜕𝑣B
𝜕𝑧

|

|

|−𝐻
= 𝑞
𝜀

[

𝑈 + 𝑉
𝐻

+ 1
𝑓𝐻 ∫

0

−𝐻
𝑧
(

𝜕𝑏
𝜕𝑥

− 𝜕𝑏
𝜕𝑦

)

d𝑧 + 𝜏𝑥 − 𝜏𝑦
𝑓𝐻

]

. (5.34)

This 𝑂(𝜀−1) contribution is the dominant term in the full stress. Equations (5.33) and (5.34)
explicitly separate the contributions to the bottom stress in terms of three physical sources: 1) the
barotropic transports, 2) the full-column buoyancy gradients, and 3) the wind stress. The lat-
ter two terms are external forcings to the problem, while the barotropic transports couple the
local flow to the basin-scale circulation.
Plugging these analytical expressions for the bottom stress into the barotropic vorticity equa-
tion (5.20) yields the following closed equation for the barotropic streamfunction:

𝜀∇⟂ ⋅
( 𝑟
𝐻

∇⟂Ψ
)

− J
(𝑓 + 𝜀𝑟

𝐻
,Ψ

)

= − J
( 1
𝐻
, 𝛾
)

+ 𝒛 ⋅
(

∇ × 𝝉
𝐻

)

− 𝜀 − 𝜀 , (5.35)

where ∇⟂ = (𝜕𝑥, 𝜕𝑦) is the horizontal gradient operator,

 = 𝜕
𝜕𝑥

[

𝑟
𝑓𝐻 ∫

0

−𝐻
𝑧
(

𝜕𝑏
𝜕𝑥

− 𝜕𝑏
𝜕𝑦

)

d𝑧

]

+ 𝜕
𝜕𝑦

[

𝑟
𝑓𝐻 ∫

0

−𝐻
𝑧
(

𝜕𝑏
𝜕𝑥

+ 𝜕𝑏
𝜕𝑦

)

d𝑧

]

(5.36)

is the curl of the bottom stress due to baroclinicity, and

 = 𝜕
𝜕𝑥

(

𝜏𝑥 + 𝜏𝑦
𝑓𝐻

)

− 𝜕
𝜕𝑦

(

𝜏𝑦 − 𝜏𝑥
𝑓𝐻

)

, (5.37)

is the curl of wind-induced bottom stress. Because the first terms in the equations for the
bottom stresses (5.33) and (5.34) are proportional to𝑈 and 𝑉 , a Laplacian term appears just
as in the Stommel theory, with the diffusion coefficient 𝑟∕𝐻 = 𝜈|−𝐻𝑞∕𝐻2 dependent on
the thickness of the bottom BL. In contrast with the Stommel model, there is also a cross
term 𝜀 J(𝑟∕𝐻,Ψ), applying an 𝑂(𝜀) modification to the “advection” term J(𝑓∕𝐻,Ψ) (e.g.,
Rattray, 1982). The more important changes come from the the other two terms in the bottom
stresses: the term due to the baroclinic buoyancy response and the term due to the bottom
return flow from the wind stress forcing contribute 𝑂(𝜀) “sources” to Ψ.
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Figure 5.8: Comparison of the barotropic streamfunction Ψ at 𝑡 = 10−2 and 𝑦 = 0 between the 3D 𝑓 -
plane inversion and the local model assuming along-slope symmetry (5.40). The modifications to the
local model described in appendix C are applied to partially account for the added diffusion terms in
the 3D model.

Making use of the fact that 𝜀 ≪ 1, we can further describe the physics of the barotropic
circulation in terms of its expansion in 𝜀, defining Ψ = Ψ0 + 𝜀Ψ1 +…. The leading-order
balance in (5.35) is then simply

− J
( 𝑓
𝐻
,Ψ0

)

= − J
( 1
𝐻
, 𝛾
)

+ 𝒛 ⋅
(

∇ × 𝝉
𝐻

)

= 0, (5.38)
where the last equality is true in our inversions with no wind stress and 𝛾 = 𝛾(𝐻). This con-
firms our intuition that the leading-order barotropic streamfunction is constant along 𝑓∕𝐻
contours: Ψ0 = Ψ0(𝑓∕𝐻) (e.g., Rattray, 1982; Mertz and Wright, 1992). The source terms
due to the curl of the bottom stress come into play at 𝑂(𝜀):

∇⟂ ⋅
( 𝑟
𝐻

∇⟂Ψ0

)

− J
( 𝑟
𝐻
,Ψ0

)

− J
( 𝑓
𝐻
,Ψ1

)

=  +  . (5.39)
For open contours, Ψ0(𝑓∕𝐻) must be identically zero due to the boundary condition Ψ0 = 0
at the coast, explaining the destruction of the leading-order streamfunction for the 𝛽 = 1 in-
version (Fig. 5.6c). The strength of the circulation is then set at the next order by  and  ,
with the addition of a lateral boundary layer to satisfy the boundary condition, as in the stan-
dard Stommel theory (Veronis, 1966). The theoretical profiles in Fig. 5.5, however, simply
assume 𝑈 = 𝑉 = 0 to fully decouple the local response from the barotropic circulation.
For closed contours, Ψ0(𝑓∕𝐻) is non-zero and can, in general, be determined by integrat-
ing (5.39) along 𝑓∕𝐻 contours to remove the Ψ1 term. This leads to a second-order ODE
for Ψ0(𝑓∕𝐻) with a forcing due to the integral of  +  on the RHS.
When along-slope symmetry is present, as in our 𝑓 -plane case, the along-slope barotropic
transport can be directly computed from the model for the local response described above
and in appendix C. Applying the constraints 𝜕𝑦𝑏 = 0, 𝑈 = 0, and 𝜕𝑧𝑣|−𝐻 = 0 and solving
for 𝑉 yields

𝜕Ψ0
𝜕𝑥

= − 1
𝑓 ∫

0

−𝐻
𝑧 𝜕𝑏
𝜕𝑥

d𝑧 and
𝜕Ψ1
𝜕𝑥

= −𝐻
𝑓𝑞

𝜕𝑏
𝜕𝑥

|

|

|

|−𝐻
. (5.40)
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For a full derivation out to 𝑂(𝜀2), see appendix C. Physically, the leading-order term repre-
sents thermal-wind shear integrated over the column, suggesting that the along-slope trans-
port scales with the horizontal buoyancy gradient over the mixing layer, the height of this
layer, and the total depth of the column. The flow at the next order must be barotropic, setting
up an𝑂(𝜀) Ekman layer at the bottom. Setting the𝑂(1) along-slope shear to zero then deter-
mines this𝑂(𝜀) correction to the barotropic transport, which plays an important quantitative
role here due to the relative magnitudes of Ψ0 and 𝜀 (Fig. 5.8). Similarly, to achieve quanti-
tative agreement in Fig. 5.5, the profiles for the local responses are computed out to 𝑂(𝜀2)
(see appendices B and C).

5.6 Discussion
The buoyancy distribution of the abyssal ocean in steady state is set by a balance between
diapycnal advection and diapycnal mixing (Munk, 1966). The advecting flow is itself a func-
tion of this buoyancy field, and, in this work, we chose to focus our attention on this depen-
dence in the context of the PG approximation. In the “strong diffusion regime,” where 𝜇𝜚 ∼
𝜀2, this yields a full description of the circulation: the buoyancy evolves according to simple
diffusion and the flow passively varies according to the PG inversion of this field. Restrict-
ing ourselves to this very basic dynamics allowed us to make progress in understanding the
generalizations of previous theories for the local response to mixing. It is worth noting that,
assuming one somehow knew the steady-state buoyancy field from the advection–diffusion
problem, the analysis presented here would apply to the steady-state flow field. Without a
complete understanding of how this flow is determined, however, it would be impossible to
know how the buoyancy field arrived at that steady state to begin with. This paper therefore
represents one important step in developing a full theory for the abyssal circulation, with
the next being to consider the feedback of this flow onto the buoyancy field.
Some speculation for how advection could shape the buoyancy field, given the flow inver-
sions presented here, is possible. For instance, the enhanced BL upwelling for open 𝑓∕𝐻
contours (Figs. 5.4i, 5.5c) could encounter a negative feedback once it is allowed to interact
with the hydrography. This transport of dense water up the slope would work to restratify
the BL, potentially alleviating the need for baroclinic eddies to maintain stratification in the
abyss (Callies, 2018). This flattening of isopycnals will, in turn, reduce the thermal wind
shear above the BL, weakening the BL transport. This negative feedback on the BL trans-
port could be particularly relevant given the ubiquity of open 𝑓∕𝐻 contours in the real ocean
(Fig. 5.2). The larger interior vertical velocities for 𝛽-plane inversions (Figs. 5.4h,i, 5.5c)
would also modify the interior stratification with advection allowed. The pattern of down-
welling on the eastern side and upwelling on the western side of the basin for the zonal
section at 𝑦 = 0 would work to generate a negative zonal buoyancy gradient and hence
equatorward shear in the interior meridional flow. This flow must, in turn, conserve vorticity,
perturbing the vertical velocities and likely generating westward-propagating long Rossby
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waves. These Rossby waves would then allow for communication between the eastern and
western sides of the basin, playing an important role in setting up a western boundary current
in the early stages of spinup.
Ultimately, the goal will be to describe these dynamics in terms of BL–interior communica-
tion to better understand the role that bottom-enhanced mixing plays in shaping the abyssal
circulation. The BL theory in PC23 builds a foundation for this theory by considering the
case with along-slope symmetry. This theory illustrates how upslope BL transport supplies a
downward flux of buoyancy that the interior feels as an effective bottom boundary condition.
As the cross-slope stratification at the top of the BL evolves, so does the BL transport, pro-
viding an avenue for exchange. This description should carry over to the more general case,
with the local response now coupled to the barotropic vorticity equation as discussed here.
While the interior dynamics may evolve on a faster timescale, supporting Rossby waves, the
BLs should remain quasi-steady, again setting an effective bottom boundary condition on
the interior.
In this paper, we only show numerical inversions for the simple case of no wind stress
and a symmetric buoyancy field in a simple basin geometry. The theory is general, how-
ever, allowing us to reason about how the circulation would change under different scenar-
ios without explicitly computing the inversion. In general, the wind-stress curl and JEBAR
terms provide leading-order sources/sinks of barotropic vorticity in equation (5.38). If these
terms are nonzero, a leading-order barotropic circulation could be supported even in the
open 𝑓∕𝐻 contour case. The wind-forced circulation, however, should be largely confined
to the thermocline, reducing its impact on the abyssal circulation, at least in subtropical re-
gions (Luyten et al., 1983). We put our focus on the abyssal circulation powered by bottom-
enhanced mixing, but its interplay with the wind-forced circulation, especially in subpolar
regions, could be studied using the same framework.
As a final caveat, we note that the analytical theory presented in the main text of this work
assumes no horizontal diffusion and no diffusion in the vertical momentum equation, while
the numerical solutions to the PG equations do include these terms for stability. Over a
uniform slope, these terms contribute a factor of (1 + 𝛼2 tan2 𝜃)3∕4 modification the the
BL scale 𝑞−1 (appendices A and C). While this leads to a slight quantitative modification
to the flow, the qualitatively the physics remain unchanged. This correction is included in
the BL solutions presented in Figures 5.5 and 5.8 to more directly compare with the three-
dimensional model, although slight errors are still expected due to curvatures in the slope.
The BL solutions in Figure 5.7 do not require this modification, as there the local response
is computed directly from equations (5.21) and (5.22) without these diffusion terms.
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5.7 Conclusions
Our understanding of how observed bottom-enhanced mixing shapes the global abyssal
ocean circulation has been guided by theories focused on the local dynamics above slopes
(e.g., Phillips et al., 1986; McDougall, 1989; Garrett, 1991; Dell and Pratt, 2015; Holmes
et al., 2018; Callies and Ferrari, 2018; Drake et al., 2020). In this work, we explored how
this local response couples to the basin-scale barotropic circulation for a fixed buoyancy
field under the PG approximation. While barotropic dynamics have been well understood
since Welander (1968), their connection to the baroclinic response to mixing over sloping
topography is novel. We found that the bottom-stress curl of the local response forces the
barotropic vorticity through three primary mechanisms: shear due to barotropic interior cur-
rents, baroclinicity of the buoyancy field, and bottom return flow due to the wind stress.
These terms drop out at leading order away from the coastline, yielding the standard bal-
ance between “advection” of Ψ along 𝑓∕𝐻 contours and “sources” from JEBAR and the
wind-stress curl (e.g., Rattray, 1982; Mertz and Wright, 1992).
To focus on how baroclinicity of the local response shapes the barotropic circulation, we
considered the flow field resulting from zero wind-stress and a buoyancy field that is a func-
tion of depth. The “sources” in the leading-order barotropic vorticity equations vanish in
this case, implying that Ψ0 must follow 𝑓∕𝐻 contours. When these contours are closed,
such as over large topographic features (e.g., Fig. 5.2b), a leading-order along-contour trans-
port develops, with its magnitude set by the thermal wind shear over the mixing layer. On
an 𝑓 -plane, this corresponds to an along-slope transport, and, for axisymmetric bathyme-
try, the local response is completely determined by the one-dimensional model of PC22.
For open 𝑓∕𝐻 contours, in contrast, Ψ0 must be zero, decoupling the leading-order local
response from the large-scale context.
This second is case is more representative of the 𝑓∕𝐻 contours in real ocean basins (Fig. 5.2a)
and has important implications for the influence of the BL on the interior circulation. Con-
straining the net transport of the local response to zero enhances the along-slope shear at
the top of the BL, promoting the BL upwelling from 𝑂(𝜀) to 𝑂(1) compared to the response
in the case of along-slope symmetry. Once allowed to advect buoyancy, this BL flow would
more efficiently transport dense water up the slope, supplying a stronger effective buoyancy
flux at the bottom felt by the interior (cf. PC23). This could imply that baroclinic eddies are
not required to maintain abyssal stratification (cf. Wenegrat et al., 2018; Callies, 2018).

5.8 Appendix A: The PG inversion with non-zero aspect ratio
The non-dimensional PG inversion as it is presented in equations (5.9) to (5.12) in the main
text implicitly assumes a small aspect ratio and, hence, does not contain horizontal diffusion.
This is an excellent assumption for the ocean, since, using the scales from section 5.35.3.2,
the aspect ratio is around 𝐻0∕𝐿 ∼ 10−3. For numerical stability, however, we found it
necessary to re-introduce these terms by artificially inflating the aspect ratio. This comes
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with the cost of quantitative errors, but the qualitative dynamics remain the same, as we
hope to convince you of here.
The PG inversion that our numerical model ultimately solves reads

−𝑓𝑣 = −𝜕𝑝
𝜕𝑥

+ 𝛼2𝜀2 𝜕
𝜕𝑥

(

𝜈 𝜕𝑢
𝜕𝑥

)

+ 𝛼2𝜀2 𝜕
𝜕𝑦

(

𝜈 𝜕𝑢
𝜕𝑦

)

+ 𝜀2 𝜕
𝜕𝑧

(

𝜈 𝜕𝑢
𝜕𝑧

)

, (5.41)

𝑓𝑢 = −𝜕𝑝
𝜕𝑦

+ 𝛼2𝜀2 𝜕
𝜕𝑥

(

𝜈 𝜕𝑣
𝜕𝑥

)

+ 𝛼2𝜀2 𝜕
𝜕𝑦

(

𝜈 𝜕𝑣
𝜕𝑦

)

+ 𝜀2 𝜕
𝜕𝑧

(

𝜈 𝜕𝑣
𝜕𝑧

)

, (5.42)
𝜕𝑝
𝜕𝑧

= 𝑏 + 𝛼4𝜀2 𝜕
𝜕𝑥

(

𝜈 𝜕𝑤
𝜕𝑥

)

+ 𝛼4𝜀2 𝜕
𝜕𝑦

(

𝜈 𝜕𝑤
𝜕𝑦

)

+ 𝛼2𝜀2 𝜕
𝜕𝑧

(

𝜈 𝜕𝑤
𝜕𝑧

)

, (5.43)

∇ ⋅ 𝒖 = 0, (5.44)

where 𝛼 = 𝐻0∕𝐿 is the squared aspect ratio. For 𝛼 ≠ 0, horizontal diffusion terms are
retained in the momentum equations. Crucially, hydrostatic balance is no longer exactly
satisfied in equation (5.43). This allows us to use classical finite element techniques for
Stokes flow, as described in the main text.
To quantify the impact that artificially increasing 𝛼 has on the inversions considered here, we
will consider the simple case of a uniform bottom slope in the 𝑥 direction at an angle 𝜃 with
the horizontal. We define the transformation from Cartesian to slope-following coordinates
as

𝜉 = 𝑥, 𝜂 = 𝑦, 𝜁 = 𝑧 − 𝑥 tan 𝜃, (5.45)
(see PC22, Fig. A1, for a sketch). The contravariant velocity components under this coordi-
nate transformation are then

𝑢𝜉 = 𝑢, 𝑢𝜂 = 𝑣, 𝑢𝜁 = 𝑤 − 𝑢 tan 𝜃, (5.46)

and the partial derivatives transform as
𝜕
𝜕𝑥

= 𝜕
𝜕𝜉

− tan 𝜃 𝜕
𝜕𝜁
, 𝜕

𝜕𝑦
= 𝜕
𝜕𝜂
, 𝜕

𝜕𝑧
= 𝜕
𝜕𝜁
. (5.47)

Neglecting variations in planes parallel to the slope (the 𝜉 and 𝜂 directions) while still allow-
ing for a cross-slope barotropic pressure gradient 𝜕𝑥𝑃 , equations (5.41) to (5.44) become

−𝑓𝑢𝜂 = −𝜕𝑃
𝜕𝑥

+ 𝑏′ tan 𝜃 + Γ2𝜀2 𝜕
𝜕𝜁

(

𝜈 𝜕𝑢
𝜉

𝜕𝜁

)

, (5.48)

𝑓𝑢𝜉 = Γ𝜀2 𝜕
𝜕𝜁

(

𝜈 𝜕𝑢
𝜂

𝜕𝜁

)

, (5.49)

∫
0

−𝐻
𝑢𝜉 d𝜁 = 0, (5.50)

where 𝑏′ is the buoyancy perturbation from a background 𝑏 = 𝑧. Equations (5.48) to (5.50)
form the generalization of the (non-dimensional) transport-constrained 1D inversion for 𝛼 ≠
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Figure 5.9: Snapshot of (a) cross-slope flow 𝑢 and (b) along-slope flow 𝑣 satisfying the transport-
constrained 1D equations (5.48) to (5.50) for aspect ratios 𝛼 = 0 and 1/2 and the same mixing-driven
buoyancy field at 𝑡 = 10−2 used in the main text. The column depth𝐻 = 0.75 and local slope 𝜃 = 𝜋∕4
corresponding to the point 𝑥 = 0.5 and 𝑦 = 0 on the bowl, as in Fig. 5.5. In this case, the vertical
velocity is the same as the cross-slope flow since 𝑤 = 𝑢 tan 𝜃.

0. The only differences to the 𝛼 = 0 model are the factors of Γ = 1 + 𝛼2 tan2 𝜃 multiplying
the flux terms. Physically, these factors come from the projection of the horizontal fluxes in
the direction of the slope, with an extra factor of Γ in the 𝜉-momentum equation due to the
non-hydrostatic part of 𝜕𝜁𝑝.
Even for 𝛼 = 0.5, three orders of magnitude larger than that of the abyssal ocean, the 1D
model solutions at 𝜃 = 𝜋∕4 (corresponding to 𝑥 = 0.5 and 𝑦 = 0 in the bowl, as in Fig. 5.5)
are qualitatively similar to the 𝛼 = 0 case (Fig. 5.9). As expected, the factors of Γ = 1.25
on the friction terms lead to slight thickening of the BL (Fig. 5.9a). From BL theory, the
new bottom Ekman layer thickness is 𝛿 = Γ4∕3

√

2𝜀 (see appendix C). Somewhat more
surprisingly, the interior along-slope flow is reduced for the 𝛼 = 1∕2 case (Fig. 5.9b). This
can be explained with BL theory, where we find that the asymptotic expansion of 𝜕𝑥𝑃 ∼
𝑓𝑣|0 in 𝜀 is

𝜕𝑃
𝜕𝑥

= 𝑏′|−𝐻 tan 𝜃 − 𝜀Γ4∕3

√

2𝜈|−𝐻
𝑓

tan 𝜃 + 𝑂(𝜀2). (5.51)

The first term comes from the transport constraint, which forces the interior along-slope
flow to be zero at the top of the BL. The 𝑂(𝜀) correction comes from the fact that the shear
in the 𝑂(1) interior along-slope flow must balance the shear from the 𝑂(𝜀) BL correction.
Since Γ4∕3 ≈ 1.3 for 𝛼 = 1∕2, the change in 𝜕𝑥𝑃 between the two cases is about 10−2,
consistent with the change in 𝑣|0 in Fig. 5.9.
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5.9 Appendix B: BL solution to the frictional thermal wind equations
This appendix contains the full derivation of the BL theory solution to the local inver-
sion (5.21) and (5.22) described in section 5.5. As described in the main text, we split
the flow into interior, surface BL, and bottom BL components 𝒖I, 𝒖S, and 𝒖B, respectively.
We further expand these components in 𝜀 so that 𝒖I = 𝒖I0 + 𝜀𝒖I1 + 𝜀2𝒖I2 + … and 𝒖B =
𝒖B0+𝜀𝒖B1+𝜀2𝒖B2+…. As we will see below, the surface boundary condition 𝜀2𝜈𝜕𝑧𝒖⟂ = 𝝉
requires that the leading-order surface BL correction be of 𝑂(𝜀−1): 𝒖S = 𝜀−1𝒖S−1 + 𝒖S0 +
𝜀𝒖S1 +…. In what follows, we determine the solutions for each component up to 𝑂(𝜀2), ap-
plying matching conditions between them to satisfy the boundary conditions and transport
constraints. In the last section, we briefly outline how the vertical flow may be determined.

5.9.1 Leading-order solution
Starting with the interior equations,

−𝑓
𝜕𝑣I
𝜕𝑧

= − 𝜕𝑏
𝜕𝑥

+ 𝜀2 𝜕
2

𝜕𝑧2

(

𝜈
𝜕𝑢I
𝜕𝑧

)

, (5.52)

𝑓
𝜕𝑢I
𝜕𝑧

= −𝜕𝑏
𝜕𝑦

+ 𝜀2 𝜕
2

𝜕𝑧2

(

𝜈
𝜕𝑣I
𝜕𝑧

)

, (5.53)

we immediately find that, to leading-order, the horizontal flow is in thermal wind balance,

𝑓
𝜕𝑣I0
𝜕𝑧

= 𝜕𝑏
𝜕𝑥

and 𝑓
𝜕𝑢I0
𝜕𝑧

= −𝜕𝑏
𝜕𝑦
, (5.54)

as shown in equation (5.27) in the main text. To ensure that the transport constraints (5.23)
are satisfied at each order, we must keep track of the the vertically integrated transport due
to each component of the flow. The transport due to this leading-order interior flow can be
determined by integrating twice in the vertical:

∫
0

−𝐻
𝑢I0 d𝑧 = 𝐻𝑢I0|−𝐻 + 1

𝑓 ∫
0

−𝐻
𝑧𝜕𝑏
𝜕𝑦

d𝑧 ≡ 𝑈I0, (5.55)

∫
0

−𝐻
𝑣I0 d𝑧 = 𝐻𝑣I0|−𝐻 − 1

𝑓 ∫
0

−𝐻
𝑧 𝜕𝑏
𝜕𝑥

d𝑧 ≡ 𝑉I0, (5.56)

where the leading-order interior flow at the top of the BL 𝒖I0|−𝐻 is yet to be determined.
To determine the bottom BL correction, we transform equations (5.21) and (5.22) using the
stretched vertical coordinate 𝑧B = (𝑧 +𝐻)∕𝜀 so that 𝜕𝑧 → 𝜀−1𝜕𝑧B . The frictional terms are
then promoted to 𝑂(1) so, assuming the turbulent viscosity varies over a scale much larger
than the bottom BL, the bottom BL flow satisfies

−𝑓
𝜕𝑣B
𝜕𝑧B

= 𝜈|−𝐻
𝜕3𝑢B
𝜕𝑧3B

, (5.57)

𝑓
𝜕𝑢B
𝜕𝑧B

= 𝜈|−𝐻
𝜕3𝑣B
𝜕𝑧3B

. (5.58)
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Note that the buoyancy gradient terms are taken care of in the interior equations (5.52)
and (5.53). Upon integration in the vertical (keeping in mind that 𝒖B → 0 as 𝑧B → ∞) and
substitution, equations (5.57) and (5.58) can be combined into a single, fourth-order ODE
for 𝑢B:

𝜕4𝑢B
𝜕𝑧4B

+ 4𝑞4B𝑢B = 0, (5.59)

where 𝑞−1B =
√

2𝜈|−𝐻∕𝑓 is the bottom BL thickness in 𝑧B coordinates. Since there are no
factors of 𝜀 in this equation, it is true for each order of 𝑢B. The leading-order bottom BL
correction is therefore a classic Ekman spiral with coefficients determined by the bottom
boundary condition 𝒖I0 = −𝒖B0.

𝑢B0 = −𝑒−𝑞B𝑧B
(

𝑢I0|−𝐻 cos 𝑞B𝑧B + 𝑣I0|−𝐻 sin 𝑞B𝑧B
)

, (5.60)
𝑣B0 = −𝑒−𝑞B𝑧B

(

𝑣I0|−𝐻 cos 𝑞B𝑧B − 𝑢I0|−𝐻 sin 𝑞B𝑧B
)

, (5.61)

corresponding to equations (5.28) and (5.29) in the main text. The vertical integral of this
leading-order bottom BL correction picks up a factor of 𝜀 due to the thinness of the layer:

𝜀∫
∞

0
𝑢B0 d𝑧B = −𝜀

𝑢I0|−𝐻 + 𝑣I0|−𝐻
2𝑞B

≡ 𝜀𝑈B1, (5.62)

𝜀∫
∞

0
𝑣B0 d𝑧B = +𝜀

𝑢I0|−𝐻 − 𝑣I0|−𝐻
2𝑞B

≡ 𝜀𝑉B1. (5.63)

If a non-zero buoyancy gradient and/or wind stress is present at the surface, a BL will form
there as well. In the stretched vertical coordinate 𝑧S = 𝑧∕𝜀, we again arrive at a fourth-order
ODE for 𝑢S,

𝜕4𝑢S
𝜕𝑧4S

+ 4𝑞4S𝑢S = 0, (5.64)

this time with 𝑞−1S =
√

2𝜈|0∕𝑓 . The surface stress boundary condition split between the
interior and BL components is

𝜀𝜈
𝜕𝑢S
𝜕𝑧S

= 𝜏𝑥 − 𝜀2𝜈
𝜕𝑢I
𝜕𝑧

and 𝜀𝜈
𝜕𝑣S
𝜕𝑧S

= 𝜏𝑦 − 𝜀2𝜈
𝜕𝑣I
𝜕𝑧

(5.65)

at 𝑧 = 0. As alluded to above, this shows explicitly that a surface BL correction of 𝑂(𝜀−1)
is needed to balance the 𝑂(1) wind stress. This correction must again be of the form

𝑢S−1 = 𝑒𝑞S𝑧S
(

𝑐1 cos 𝑞S𝑧S + 𝑐2 sin 𝑞S𝑧S
)

, (5.66)
𝑣S−1 = 𝑒𝑞S𝑧S

(

𝑐1 sin 𝑞S𝑧S − 𝑐2 cos 𝑞S𝑧S
)

, (5.67)

where the coefficients can be determined from the 𝑂(1) surface boundary condition (5.65),
which yields

𝑐1 =
𝜏𝑥 + 𝜏𝑦
2𝜈|0𝑞S

and 𝑐2 =
𝜏𝑥 − 𝜏𝑦
2𝜈|0𝑞S

. (5.68)
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The vertical integral of the surface BL correction again picks up a factor of 𝜀 due to the
thinness of the layer, but this cancels with the order of the flow:

𝜀∫
0

−∞
𝜀−1𝑢S−1 d𝑧S = +𝜏

𝑦

𝑓
≡ 𝑈S0, (5.69)

𝜀∫
0

−∞
𝜀−1𝑣S−1 d𝑧S = −𝜏

𝑥

𝑓
≡ 𝑉S0, (5.70)

so this transport is ultimately of the same order as 𝑼I0.
The leading-order solution to the local inversion is now fully characterized apart from the
constants 𝑢I0|−𝐻 and 𝑣I0|−𝐻 . These can be determined in terms of the barotropic transport 𝑼
by combining the contributions from each of these components. Expanding the transport in 𝜀
so that 𝑼 = 𝑼0 + 𝜀𝑼1 + 𝜀2𝑼2 +…, we have the 𝑂(1) balance

𝑼0 = 𝑼I0 + 𝑼S0, (5.71)

with𝑼B1 contributing at the next order. Substituting the results from equations (5.55), (5.56),
(5.69), and (5.70) into (5.71) and solving for the interior velocities at the top of the bottom
BL yields

𝑢I0|−𝐻 =
𝑈0
𝐻

− 1
𝑓𝐻 ∫

0

−𝐻
𝑧𝜕𝑏
𝜕𝑦

d𝑧 − 𝜏𝑦

𝑓𝐻
, (5.72)

𝑣I0|−𝐻 =
𝑉0
𝐻

+ 1
𝑓𝐻 ∫

0

−𝐻
𝑧 𝜕𝑏
𝜕𝑥

d𝑧 + 𝜏𝑥

𝑓𝐻
, (5.73)

as shown in equations (5.31) and (5.32) in the main text. The leading-order solution is now
complete.
Apart from building intuition for the local response, this analytical solution can now also
be used to explicitly couple the local response to the barotropic circulation via the bottom
stress curl. By nature of the large vertical shear in the bottom BL correction, it dominates
the bottom stress at leading order:

𝜕𝒖
𝜕𝑧

|

|

|−𝐻
=
𝜕𝒖I
𝜕𝑧

|

|

|−𝐻
+ 1
𝜀
𝜕𝒖B
𝜕𝑧B

|

|

|

|0
. (5.74)

The leading-order bottom stress is therefore of𝑂(𝜀−1) and, using 𝒖I0|−𝐻 from (5.72) and (5.73),
takes the form

1
𝜀
𝜕𝑢B0
𝜕𝑧B

|

|

|

|0
=
𝑞B
𝜀

[

𝑈0 − 𝑉0
𝐻

− 1
𝑓𝐻 ∫

0

−𝐻
𝑧
(

𝜕𝑏
𝜕𝑥

+ 𝜕𝑏
𝜕𝑦

)

d𝑧 − 𝜏𝑥 + 𝜏𝑦
𝑓𝐻

]

, (5.75)

1
𝜀
𝜕𝑣B0
𝜕𝑧B

|

|

|

|0
=
𝑞B
𝜀

[

𝑈0 + 𝑉0
𝐻

+ 1
𝑓𝐻 ∫

0

−𝐻
𝑧
(

𝜕𝑏
𝜕𝑥

− 𝜕𝑏
𝜕𝑦

)

d𝑧 + 𝜏𝑥 − 𝜏𝑦
𝑓𝐻

]

, (5.76)

corresponding to equations (5.33) and (5.34) in the main text.
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5.9.2 𝑂(𝜀) solution
In the main text, only the leading-order solution is presented. It can be informative, how-
ever, to expand each component one more order in 𝜀, particularly when the leading-order
circulation set by thermal-wind shear is weak.
The interior equations (5.52) and (5.53) at 𝑂(𝜀) are simply

𝜕𝑣I1
𝜕𝑧

= 0 and
𝜕𝑢I1
𝜕𝑧

= 0, (5.77)
implying that 𝑢I1 and 𝑣I1 are constants in 𝑧. The bottom BL equations (5.57) and (5.58)
are the same at 𝑂(𝜀), implying the same form of the second-order BL correction 𝒖B1 as
in (5.60) and (5.61), this time with the coefficients 𝒖I0|−𝐻 replaced by 𝒖I1. The integral will
again pick up a factor of 𝜀, yielding the 𝑂(𝜀2) contribution 𝑼B2 to the total transport. The
surface boundary condition (5.65) at𝑂(1) just becomes 𝜕𝑧S𝒖S0 = 0, implying 𝒖S0 = 0, while
at 𝑂(𝜀) we have 𝜈𝜕𝑧S𝒖S1 = −𝜈𝜕𝑧𝒖I0 at 𝑧 = 0. If a buoyancy gradient at the surface exists,
this will lead to an 𝑂(𝜀) surface BL correction of the same form as in (5.66) and (5.67) with
coefficients of the same form as in (5.68) with 𝝉 replaced by −𝜈𝜕𝑧𝒖I0|0. This correction
yields an 𝑂(𝜀2) contribution to the vertically integrated transport 𝑼S2.
We again use the transport constraint to solve for 𝒖I1 in terms of 𝑼1. The 𝑂(𝜀) transport is
determined by the first-order barotropic interior correction and the integral of the leading-
order bottom BL correction:

𝑼1 = 𝐻𝒖I1 + 𝑼B1. (5.78)
Substituting the form of 𝑼B1 from (5.62) and (5.63) and solving for 𝒖I1 yields

𝑢I1 =
𝑈1
𝐻

+
𝑢I0|−𝐻 + 𝑣I0|−𝐻

2𝐻𝑞B
, (5.79)

𝑣I1 =
𝑉1
𝐻

−
𝑢I0|−𝐻 − 𝑣I0|−𝐻

2𝐻𝑞B
, (5.80)

where 𝒖I0|−𝐻 can be read off from (5.72) and (5.73). The 𝑂(1) bottom stress from (5.74),
which comes in to the barotropic vorticity equation at 𝑂(𝜀2), is then

𝜕𝑢I0
𝜕𝑧

|

|

|−𝐻
+
𝜕𝑢B1
𝜕𝑧B

|

|

|

|0
= − 1

𝑓
𝜕𝑏
𝜕𝑦

|

|

|

|−𝐻
+ 𝑞B

(

𝑢I1 − 𝑣I1
)

, (5.81)
𝜕𝑣I0
𝜕𝑧

|

|

|−𝐻
+
𝜕𝑣B1
𝜕𝑧B

|

|

|

|0
= + 1

𝑓
𝜕𝑏
𝜕𝑥

|

|

|

|−𝐻
+ 𝑞B

(

𝑢I1 + 𝑣I1
)

. (5.82)

5.9.3 𝑂(𝜀2) solution
Finally, we here present the results for the 𝑂(𝜀2) solution for completeness, which are not
needed to understand the leading-order physics but are used to compute the solutions shown
in Figs. 5.5 and 5.7 for quantitative comparison. The most important modification comes
from the interior equations (5.52) and (5.53) at 𝑂(𝜀2),

−𝑓
𝜕𝑣I2
𝜕𝑧

= 𝜕2

𝜕𝑧2

(

𝜈
𝜕𝑢I0
𝜕𝑧

)

and 𝑓
𝜕𝑢I2
𝜕𝑧

= 𝜕2

𝜕𝑧2

(

𝜈
𝜕𝑣I0
𝜕𝑧

)

, (5.83)
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or, after plugging in the leading-order solution (5.54),

𝑓 2 𝜕𝑣I2
𝜕𝑧

= 𝜕2

𝜕𝑧2

(

𝜈 𝜕𝑏
𝜕𝑦

)

and 𝑓 2 𝜕𝑢I2
𝜕𝑧

= 𝜕2

𝜕𝑧2
(

𝜈 𝜕𝑏
𝜕𝑥

)

. (5.84)

The thermal wind shear therefore contributes a second-order correction to the flow, which
can again be directly determined upon integration,

𝑢I2 = 𝑢I2|−𝐻 + 1
𝑓 2

𝜕
𝜕𝑧

(

𝜈 𝜕𝑏
𝜕𝑥

)

− 1
𝑓 2

𝜕
𝜕𝑧

(

𝜈 𝜕𝑏
𝜕𝑥

)

|

|

|

|−𝐻
, (5.85)

𝑣I2 = 𝑣I2|−𝐻 + 1
𝑓 2

𝜕
𝜕𝑧

(

𝜈 𝜕𝑏
𝜕𝑦

)

− 1
𝑓 2

𝜕
𝜕𝑧

(

𝜈 𝜕𝑏
𝜕𝑦

)

|

|

|

|−𝐻
, (5.86)

where again 𝑢I2|−𝐻 and 𝑣I2|−𝐻 are constants to be determined by the matching conditions.
Integration over the column then yields a second-order contribution to the barotropic trans-
port:

∫
0

−𝐻
𝑢I2 d𝑧 = 𝐻𝑢I2|−𝐻 + 𝜈

𝑓 2
𝜕𝑏
𝜕𝑥

|

|

|

|0
− 𝜈
𝑓 2

𝜕𝑏
𝜕𝑥

|

|

|

|−𝐻
− 𝐻
𝑓 2

𝜕
𝜕𝑧

(

𝜈 𝜕𝑏
𝜕𝑥

)

|

|

|

|−𝐻
≡ 𝑈I2, (5.87)

∫
0

−𝐻
𝑣I2 d𝑧 = 𝐻𝑣I2|−𝐻 + 𝜈

𝑓 2
𝜕𝑏
𝜕𝑦

|

|

|

|0
− 𝜈
𝑓 2
𝜕𝑏
𝜕𝑦

|

|

|

|−𝐻
− 𝐻
𝑓 2

𝜕
𝜕𝑧

(

𝜈 𝜕𝑏
𝜕𝑦

)

|

|

|

|−𝐻
≡ 𝑉I2. (5.88)

As at 𝑂(𝜀), the 𝑂(𝜀2) bottom BL takes on the same form as (5.60) and (5.61), now with
coefficients 𝑢I2|−𝐻 and 𝑣I2|−𝐻 . This correction only modifies the transport by 𝑂(𝜀3). There
is no surface BL correction at𝑂(𝜀2) since the surface boundary condition (5.65) at this order
is simply 𝜕𝑧S𝒖S2 = 0. As before, the coefficients for the second-order flow at the top of the
bottom BL can be determined by writing the second-order transport in terms of its interior
and BL contributions, 𝑼2 = 𝑼I2 + 𝑼B2 + 𝑼S2, which becomes

𝑈2 = 𝐻𝑢I2|−𝐻 − 𝜈
𝑓 2

𝜕𝑏
𝜕𝑥

|

|

|

|−𝐻
− 𝐻
𝑓 2

𝜕
𝜕𝑧

(

𝜈 𝜕𝑏
𝜕𝑥

)

|

|

|

|−𝐻
−
𝑢I1 + 𝑣I1
2𝑞B

, (5.89)

𝑉2 = 𝐻𝑣I2|−𝐻 − 𝜈
𝑓 2
𝜕𝑏
𝜕𝑦

|

|

|

|−𝐻
− 𝐻
𝑓 2

𝜕
𝜕𝑧

(

𝜈 𝜕𝑏
𝜕𝑦

)

|

|

|

|−𝐻
+
𝑢I1 − 𝑣I1
2𝑞B

, (5.90)

where 𝑢I1 and 𝑣I1 are determined above. Note that the surface terms in (5.87) and (5.88)
cancel with those that appear from the surface BL correction 𝑼S2.

5.9.4 Vertical flow
As described in the main text, the vertical flow can be determined from the horizontal flow
by the frictional vorticity balance (5.24). In general, this will require knowledge of how the
horizontal flow varies in 𝑥 and 𝑦 due to the 𝜁 term. For the special local responses shown
in Fig. 5.5, however, a consistent local solution up to 𝑂(𝜀) can be determined. The 𝑂(1)
and 𝑂(𝜀) balances in the interior for (5.24) are

𝛽𝑣I0 = 𝑓
𝜕𝑤I0
𝜕𝑧

and 𝛽𝑣I1 = 𝑓
𝜕𝑤I1
𝜕𝑧

. (5.91)
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Using 𝑣I0 and 𝑣I1 from the previous sections, these can then be integrated from 𝑧 = 0 to
determine 𝑤I0 and 𝑤I1. The constants of integration 𝑤I0|0 and 𝑤I1|0 are the zeroth- and
first-order contributions to the Ekman pumping velocities, respectively. For the profiles in
Fig. 5.5, these are zero. Due the 𝜁 term in (5.24), a rigorous treatment of the bottom BL
correction as above is not possible. Instead, we make the simplifying assumption that, in the
bottom BL, the flow is aligned with the slope:

𝑤B0 = −𝐻𝑥𝑢B0 −𝐻𝑦𝑣B0 and 𝑤B1 = −𝐻𝑥𝑢B1 −𝐻𝑦𝑣B2. (5.92)

In general, the matching conditions for𝑤0 and𝑤1 may not be satisfied with this assumption.
For the simple cases of either along-slope symmetry or 𝑈 = 𝑉 = 0, however, the boundary
condition is satisfied.

5.10 Appendix C: Models for the local response to mixing
The BL theory in appendix B is presented in terms of general expansions for the transports𝑈
and 𝑉 and fully neglects the terms that arise when the aspect ratio is increased (appendix A).
For the open-contour case, the local model simply sets 𝑈 = 𝑉 = 0, but the local model in
the absence of along-slope variations instead assumes 𝑈 = 0 and 𝜕𝑧𝑣|−𝐻 = 0. We here
outline how one can solve for the expansions of 𝑉 in the latter case and clarify how the BL
theory can be modified to account for the added diffusion terms used in the numerical model.
The models for the local response shown in Figs. 5.5 and 5.8 use these modifications.

5.10.1 Modification for 𝛼 ≠ 0
Following appendix A, for 𝜕𝑦𝑏 = 0 and 𝐻𝑦 = 0 (as is the case at 𝑦 = 0 in the bowl),
the frictional thermal wind equations (5.21) and (5.22) for an increased aspect ratio are
approximately

−𝑓 𝜕𝑣
𝜕𝑧

= − 𝜕𝑏
𝜕𝑥

+ Γ2𝜀2 𝜕
2

𝜕𝑧2
(

𝜈 𝜕𝑢
𝜕𝑧

)

, (5.93)

𝑓 𝜕𝑢
𝜕𝑧

= Γ𝜀2 𝜕
2

𝜕𝑧2
(

𝜈 𝜕𝑣
𝜕𝑧

)

, (5.94)

where Γ = 1+𝛼2𝐻2
𝑥 . This modification does not account for curvature in𝐻 . The BL theory

for these equations follows the same procedure as in appendix B, now with 𝜕𝑦𝑏 = 0 and the
added Γ terms. The most notable modification is in the BL equations, which become

−𝑓𝑣B = Γ2𝜈|−𝐻
𝜕2𝑢B
𝜕𝑧2B

, (5.95)

𝑓𝑢B = Γ𝜈|−𝐻
𝜕2𝑣B
𝜕𝑧2B

, (5.96)
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at the bottom and similarly for the surface. At 𝑂(1), this leads to a modified bottom BL
correction compared to (5.60) and (5.61) of the form

𝑢B0 = −𝑒−𝑞B𝑧B
(

𝑢I0|−𝐻 cos 𝑞B𝑧B + Γ−1∕2𝑣I0|−𝐻 sin 𝑞B𝑧B
)

, (5.97)
𝑣B0 = −𝑒−𝑞B𝑧B

(

𝑣I0|−𝐻 cos 𝑞B𝑧B − Γ+1∕2𝑢I0|−𝐻 sin 𝑞B𝑧B
)

, (5.98)
where now 𝑞−1B = Γ3∕4√2𝜈|−𝐻∕𝑓 . The BL solutions at other orders follow the same pattern.
Thus, the added terms due to increasing the aspect ratio lead to a thicker BL by a factor
of Γ3∕4 and a slightly asymmetrical Ekman spiral. The 𝑂(1) and 𝑂(𝜀) interior solutions are
unchanged, but an extra factor of Γ does appear at 𝑂(𝜀2) compared to (??):

𝑓 2 𝜕𝑢I2
𝜕𝑧

= Γ 𝜕
2

𝜕𝑧2
(

𝜈 𝜕𝑏
𝜕𝑥

)

. (5.99)

5.10.2 Assuming along-slope symmetry
We now turn specifically to the local model in the case of along-slope symmetry. From (5.54),
the leading-order interior cross-slope flow 𝑢I0 must be a constant since 𝜕𝑦𝑏 = 0. The trans-
port constraint 𝑈 = 0 then implies that this constant is zero so that 𝑈0 = 𝐻𝑢I0|−𝐻 = 0.
Setting the leading-order along-slope bottom stress from (5.76) to zero implies that

𝑉0 = − 1
𝑓 ∫

0

−𝐻
𝑧 𝜕𝑏
𝜕𝑥

d𝑧, (5.100)

as in (5.40) in the main text. From (5.56), this implies that 𝑣I0|−𝐻 = 0 as noted in PC23.
Since the leading-order interior flow in both directions vanishes at the bottom, there is no
leading-order BL correction: 𝒖B0 = 0. Consequently, there is no 𝑂(𝜀) contribution to the
net transport from the cross-slope BL correction, and thus equations (5.79) and (5.80) imply
that 𝑢I1 = 0 and 𝑣I1 = 𝑉1∕𝐻 . We can determine 𝑣I1 from setting the second-order along-
slope bottom stress (5.82) to zero, which yields

𝑉1 = − 𝐻
𝑓𝑞B

𝜕𝑏
𝜕𝑥

|

|

|

|−𝐻
, (5.101)

as in (5.40) in the main text. Note that 𝑞B is modified for 𝛼 ≠ 0 as described in the previous
section. At the next order, we find that 𝑣I2 is a constant from equation (5.86) and 𝑈2 = 0
implies that

𝑢I2|−𝐻 = Γ
𝑓 2

𝜕
𝜕𝑧

(

𝜈 𝜕𝑏
𝜕𝑥

)

|

|

|

|−𝐻
, (5.102)

from (5.89), modified for the 𝛼 ≠ 0 case. This yields
𝑢I2 =

Γ
𝑓 2

𝜕
𝜕𝑧

(

𝜈 𝜕𝑏
𝜕𝑥

)

, (5.103)

from (5.99). As usual, these lead to an 𝑂(𝜀2) BL correction that contributes an 𝑂(𝜀3) term
to the net transport. Setting the along-slope bottom stress from this correction to zero yields

𝑣I2 = −𝑢I2|−𝐻 = − Γ
𝑓 2

𝜕
𝜕𝑧

(

𝜈 𝜕𝑏
𝜕𝑥

)

|

|

|

|−𝐻
, (5.104)
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so that

𝑉2 = −Γ𝐻
𝑓 2

𝜕
𝜕𝑧

(

𝜈 𝜕𝑏
𝜕𝑥

)

|

|

|

|−𝐻
+ 1

2𝑓𝑞2B

𝜕𝑏
𝜕𝑥

|

|

|

|−𝐻
, (5.105)

following (5.90).



113
C h a p t e r 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions
A beautiful (and sometimes frustrating) quality of the ocean is that the spatial and temporal
scales of its flows span multiple orders of magnitude, with the global-scale overturning de-
pending on centimeter-scale diapycnal mixing to return dense waters to the surface (Munk,
1966). Observations of this turbulent mixing show that it is bottom-enhanced over rough
topography (e.g., Polzin et al., 1997; Ledwell et al., 2000; Waterhouse et al., 2014), putting
a recent spotlight on the dynamics of thin bottom BLs of upwelling (e.g., Ferrari et al., 2016;
de Lavergne et al., 2017; McDougall and Ferrari, 2017; Holmes et al., 2018). The theory and
numerical simulations presented in this thesis aim to understand the implications of this het-
erogeneous mixing for the circulation of the abyssal ocean. To that end, we focused mainly
on PG dynamics driven by mixing modeled by an idealized turbulent diffusivity profile.
We began by examining the local dynamics over a uniform bottom slope, which we showed
must include a transport constraint and barotropic pressure gradient to account for the large-
scale context (Chapter 2). With these added physics, this local theory predicts a rapid spin
up of strong along-slope flow. BL theory can then be employed to elucidate how the BL
communicates with the interior in the absence of along-slope variations (Chapter 3). We
found that the upslope BL transport, which itself depends on the interior evolution, generates
a downward flux of buoyancy that acts as an effective bottom boundary condition on the
interior. This two-way coupling between the BL and interior then provides an avenue for
exchange as the transport varies across the slope.
Lifting the along-slope symmetry assumption made in Chapters 2 and 3 requires consid-
eration of the coupling between local and basin-scale PG dynamics. To aid in the study
of this interaction and work toward a more realistic description of the abyssal circulation,
we developed the 𝜈PGCM, a finite element model of the three-dimensional PG equations
(Chapter 4). Facilitated by simulations in an idealized bowl-shaped basin, we developed a
theory for the PG inversion that describes how the local response to mixing connects to the
barotropic circulation (Chapter 5). In this theory, which generalizes the transport constraint
applied in Chapter 2, the local response is constrained by the barotropic circulation while
simultaneously forcing it via a bottom stress curl. The barotropic flow must conserve vor-
ticity, implying that the character of 𝑓∕𝐻 contours, which are open throughout most of the
real ocean, can shape the abyssal response to mixing. In the absence of wind forcing and
JEBAR, the leading-order barotropic circulation must vanish for open 𝑓∕𝐻 contours. This
enhances the along-slope shear near the bottom, strengthening BL upwelling compared to
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the case with along-slope symmetry. This suggests that the upwelling in bottom BLs could
be more efficient at restratifying the abyss than previously thought, potentially alleviating
the need for eddy restratification (cf. Callies, 2018).

6.2 Future Directions
The theory for the dynamics of the abyssal ocean has come a long way since the flat bottom,
uniform upwelling models pioneered by Stommel and Arons (1959a) and Munk (1966).
While it has recently become clear that observed bottom-enhanced mixing limits abyssal
upwelling to thin bottom BLs over slopes, it remains to be seen precisely how these dynamics
modify our existing understanding of the overturning. With the theory and numerical model
developed in this thesis, it should now be possible to directly probe this question.
In the real ocean, as discussed in Chapter 1, the abyssal overturning is largely diabatic while
the mid-depth overturning is quasi-adiabatic, relying on buoyancy and wind forcing in the
Southern Ocean to upwell. These qualitative pathways can be captured using a simple ocean
geometry consisting of a single basin connected to a re-entrant channel, which has served
as a testbed for understanding scalings for the abyssal overturning (e.g., Ito and Marshall,
2008; Nikurashin and Vallis, 2011; Mashayek et al., 2015; Jansen and Nadeau, 2016). Pre-
viously, however, this geometry has been represented as a “shoebox” with a flat bottom and
vertical sidewalls, leading to unphysical water mass transformations. Using the the 𝜈PGCM
(Chapter 4), this problem can be revisited in a more realistic setup with bottom-enhanced
mixing and sloping bathymetry (e.g., Fig. 6.1). In this more realistic configuration, we ex-
pect most of the modifications to the abyssal stratification to occur in mixing layers near
the bottom, with the interior stratification set by the balance between wind stress forcing
and eddy restratification in the channel. This may invalidate previous theories based on the
horizontal average diffusivity acting on the horizontal average stratification at a particular
depth (e.g., Mashayek et al., 2015; Jansen and Nadeau, 2019). Based on the simple case with
along-slope symmetry (Chapter 3), the cross-slope stratification at the top of the BL is likely
to play an important role in setting the strength of BL upwelling and, hence, the overturning.
We therefore envision a stronger abyssal overturning compared to previous theories, consis-
tent with some global ocean model simulations with bottom-enhanced mixing (e.g., Saenko
and Merryfield, 2005; Jayne, 2009; Melet et al., 2016).
The large timesteps afforded by employing the PG approximation allow the 𝜈PGCM to be
used as a powerful tool to investigating the ocean’s role in shaping past, present, and future
climate. Simulations with a forcing equivalent to that of the Last Glacial Maximum could
explain how the overturning may have shifted to store more carbon (Curry and Oppo, 2005;
Sigman et al., 2010; Lund et al., 2011; Ferrari et al., 2014; Jansen, 2017). A modern-day forc-
ing, on the other hand, could be used to uncover the mechanisms behind and implications of
the observed abyssal heat uptake in recent decades (Purkey and Johnson, 2010; Desbruyères
et al., 2016; Lele et al., 2021; Johnson and Purkey, 2024). Even the controversial human-
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Figure 6.1: Sketch of potential channel–basin geometry with sloping topography, which could be
used in the 𝜈PGCM in idealized studies of the overturning circulation. The nondimensional depth
smoothly goes to zero along the coast except in the southern part of the domain, meant to represent
the Southern Ocean, where it is re-entrant (arrows).

driven “AMOC slowdown” hypothesis (e.g., Gregory et al., 2005; Rahmstorf et al., 2015;
Jackson et al., 2015; Weijer et al., 2020; Baker et al., 2023) could be studied within this
framework. Even with decades of model development and computational scaling, the large
spread in mean overturning strengths between the global ocean models commonly used to
explore each of these climate states has not changed (e.g., Schmittner et al., 2005; Nayak
et al., 2024). Based on the discussion above, this could be due to the prevailing failure of all
global models to accurately represent BL upwelling. Given the strong control of the back-
ground stratification on the efficiency of ocean heat uptake (Newsom et al., 2023), properly
representing this mean overturning is crucial for understanding the circulation response to
various climate forcings. The 𝜈PGCM could therefore shed light on this problem and, in the
long-term, be coupled to idealized ice, atmosphere, and land models with realistic bathy-
metry to understand the role of the overturning in the full Earth system (cf. Holden et al.,
2016).
Alongside these numerical experiments, efforts to develop a complete theory for the abyssal
ocean’s response to bottom enhanced mixing will help build our intuition for these prob-
lems. An important next step would be to extend the BL theory in Chapter 5 to include
the full buoyancy evolution, as was done for the simplified case of along-slope symmetry
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in Chapter 3. Such a theory would help make explicit the effects that bottom BLs of up-
welling would have on the basin-scale circulation, allowing us to pinpoint how previous
overturning theories will be altered once this physics is properly resolved. The simulations
presented at the end of Chapter 4 provide a first look at the rich phenomenology of these full
dynamics. While the interior evolution is far more complex with buoyancy advection, the
quasi-equilibrium assumption for the BLs still holds. This bodes well for BL theory, with
the BL again supplying an effective bottom boundary condition on the interior. The inter-
play of long Rossby waves in the interior with this BL transport will likely contribute to the
story, though we still know little about what processes excite these waves, what determines
the character of their propagation, and how they will modify abyssal upwelling. We hypoth-
esize that the initial mixing-driven along-slope shear could provide the initial excitation.
An eigenmode decomposition of the linearized PG equations for general bathymetry would
be key in understanding how this perturbation projects onto the natural wave modes of the
system and subsequently evolves. This could be accomplished within the same numerical
framework as the 𝜈PGCM.
The theory and numerical model developed in this thesis aim to take key steps toward a
complete understanding of the mixing-driven abyssal ocean circulation over sloping topog-
raphy. They will hopefully pave the way for a fresh perspective on the overturning as they
are applied to more realistic problems in the future.
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