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ABSTRACT

Uncertainty poses a significant challenge for decision-makers in energy and sus-
tainability domains. The ongoing energy transition—characterized by increasing
penetrations of variable renewable generation, deployment of novel grid assets
like battery energy storage systems, and growing risks from climate-driven natu-
ral disasters—introduces new, multifaceted uncertainties that traditional operational
methods struggle to accommodate. While artificial intelligence (AI) and machine
learning (ML) hold significant promise for navigating this transition and improving
the efficiency of energy system operation, their direct deployment to high-stakes
energy and sustainability problems presents substantial risks. In particular, current
AI/ML tools typically lack guarantees on reliability, robustness, and safety, and thus
pose a risk of poor performance or catastrophic failure if deployed in the real world.
To make progress on decarbonization while maintaining reliability, new approaches
are needed to enable the design of AI- and ML-augmented algorithms that achieve
near-optimal performance while providing rigorous guarantees on robustness and
reliability when deployed in real-world energy and sustainability problems.

This thesis addresses this challenge from two complementary perspectives, seeking
to bridge the gap between theoretical algorithmic insights and practical impact.
In the first part, we develop learning-augmented algorithms that integrate black-
box AI/ML “advice” into online optimization problems while ensuring provable,
worst-case performance guarantees. We propose algorithms for several classes of
problems—including cases with convex costs, nonconvex costs, and long-term dead-
line constraints—that obtain the provably optimal tradeoff between exploiting good
AI performance and worst-case robustness. We demonstrate these algorithms’ abil-
ity to improve operational efficiency in energy and sustainability domains through
case studies on cogeneration power plant operation under high renewables penetra-
tion and carbon-aware workload shifting for geographically-distributed datacenters.

In the second part of this thesis, we move beyond the “black box” model of AI/ML
to explore how risk-awareness and reliability can be integrated as primary de-
sign criteria in AI/ML model training and algorithm development more generally.
We consider this objective along several avenues, introducing new theoretical and
methodological approaches for risk-aware optimization and uncertainty quantifica-
tion, designing new mechanisms for pricing general forms of uncertainty in electric-
ity markets, and developing new frameworks for training machine learning models
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with provable reliability guarantees. Throughout, we emphasize connections with
and applications to energy and sustainability problems ranging from grid-scale
battery storage operation to power grid contingency analysis. Together, these ap-
proaches highlight the challenges facing and benefits to risk- and reliability-aware
learning and decision-making.
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C h a p t e r 1

INTRODUCTION

Uncertainty poses a pervasive and growing challenge in the modern world, with
volatility, emerging risks, and complex, unpredictable system dynamics impact-
ing domains ranging from financial markets to supply chains. In few areas are
the challenges presented by uncertainty so evident as in energy and sustainability:
decision-making entities like energy system and resource operators must plan for
and operate in the face of high-dimensional, multi-faceted uncertainties like short-
and long-term trends in electricity demand, natural disaster risks, and market partic-
ipants’ strategic behavior. The threat of climate change and the ongoing transition
to a decarbonized economy intensify these challenges: numerous factors, includ-
ing a dramatic increase in the penetration of nondispatchable, variable renewable
generation like wind and solar, emergence of novel asset types such as grid-scale
battery storage, increasing electricity demand due to electrification, and the rising
risks of wildfires and other natural disasters, all drive increased complexity and
uncertainty [1–3]. This poses a significant challenge for decision-makers of many
kinds—including small-scale energy resource operators, large-scale grid operators,
and operators of other energy-intensive infrastructure like datacenters—who must
plan and operate their systems as efficiently as possible in the face of these growing
uncertainties while meeting sustainability goals and continuing to ensure system
reliability.

The recent groundbreaking developments in Artificial Intelligence (AI) and Machine
Learning (ML) hold significant promise for addressing this growing uncertainty
and improving decision-making performance. Indeed, AI and ML have achieved
significant improvements upon state-of-the-art and human-level performance in
application domains such as autonomous driving [4] and game playing [5–7], and
AI tools are used widely in real-world use cases including programming [8] and
social media content moderation [9]. These advancements in AI and ML are also
beginning to make an impact in the domains of energy and sustainability: real-
world deployments of AI have been used to optimize the energy efficiency of data
center cooling systems [10] and the profitability of grid-scale battery energy storage
systems [11]. In addition, multiple regional power system operators in the United
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States and abroad are actively exploring its application to large-scale power grid
planning and operation [12–15].

However, naively deploying AI and ML to high-stakes, safety-critical, and societally-
impactful domains such as energy and sustainability comes with significant risks.
Modern AI and ML tools have failure modes which are often not well understood
[16], including susceptibility to adversarial attacks [17], poor generalization when
faced with distribution shift and new problem domains [18, 19], and a propensity
to hallucinate false and potentially dangerous information [20]. Such failures could
cause very costly and even catastrophic downside risks in energy and sustainability
applications, such as spikes in cost or emissions, constraint violations, or even black-
outs. While a great deal of effort has been expended in recent years to understand
the mechanisms underlying these failure modes and develop new AI and ML models
with improved safety and reliability, there remains a critical lack of algorithmic and
methodological approaches enabling both rigorous, theoretical guarantees on the
safety and reliability of AI and ML in high-stakes application domains, as well as
near-optimal performance of these models for decision-making objectives. The
lack of such principled, reliable, and optimal methods for training and deploying AI
and ML models significantly hinders the deployment of AI for real-world problems
in energy and sustainability; while leveraging AI in these applications could en-
able improved efficiency and a more rapid energy transition, AI lacks the requisite
guarantees for these applications, where reliability is paramount.

Moreover, the growing appetite for larger and better AI models is currently exacer-
bating existing challenges in energy and sustainability. The training and deployment
of these growing models is expected to fuel an exponential increase in the electricity
consumption of datacenters over the next decade [21]. Such a dramatic increase in
electricity demand risks progress on decarbonizing the electricity sector, as power
system operators must build and maintain fossil fuel generation assets to keep up
with demand [22]. The rapid growth in datacenter demand has sustainability ram-
ifications beyond just carbon emissions: modern datacenters consume a significant
volume of water for cooling [23], and power they consume both from grid assets
and local backup generation can emit harmful air pollutants [24]. This feedback
loop—whereby the rise of AI accentuates our current energy and sustainability
challenges—makes clear the need for new tools to help power system and datacenter
operators absorb this increased demand through more efficient utilization of renew-
able energy and existing grid assets. While AI itself can help toward this end, it
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must be developed and deployed in a reliable manner to avoid further intensifying
these challenges.

Thus, to realize the promise of AI and ML as transformative technologies while
addressing the pressing societal challenges posed by energy and sustainability, there
is an imminent need to develop new, theoretically-grounded approaches for training
and deploying reliable AI and ML tools. In particular, a new generation of AI-
and ML-augmented algorithms is needed to bridge the divide between the excellent
performance of modern AI/ML tools and the rigorous, theoretical guarantees on
reliability offered by classical algorithms and decision-making frameworks in these
high-stakes energy and sustainability problems.

1.1 Challenges and Prior Work
There has been a great deal of progress in recent years on the development of
fundamental algorithms and mechanisms for the planning and operation of sus-
tainable systems in energy and beyond, and new techniques to train and deploy
AI and ML tools in these applications. However, significant challenges hinder the
reliable, widespread deployment of AI and ML in such real-world, high-stakes, and
safety-critical energy and sustainability tasks. This is due both to the fundamental
difficulty of the underlying problems—which often exhibit complex, constrained
structure—as well as fundamental technical challenges that arise in the design of
algorithms and AI/ML-driven tools with rigorous guarantees in these settings.

Unifying Challenges in Energy and Sustainability:
Hard Constraints, Intertemporal Coupling, and Operational Reliability
Many problems in energy systems and sustainability exhibit complex, constrained
problem structure that significantly complicates their efficient and reliable solu-
tion. For instance, energy grid operation problems feature many different kinds
of constraints, including nonconvex power flow feasibility constraints [25], high-
dimensional security and contingency constraints ensuring resilience to asset failures
[26, 27], and intertemporal constraints that bind decisions across time, like ramp
constraints [28–30], state-of-charge constraints for energy storage [31], and deadline
constraints for deferrable loads [32–34]. In addition, problems like energy resource
operation and datacenter operation often involve costs which depend on decisions
made across multiple timesteps, such as ramp costs for modifying decisions or
turning assets on and off [35–38].
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This complex structure poses two distinct types of challenge for reliable system
operation. First, it may be computationally difficult to obtain a decision that fea-
sibly satisfies the desired constraints; for example, the high-dimensional structure
of the constraint set for security-constrained optimal power flow quickly leads to
intractability for large-scale power grids [26]. Second, the coupling between un-
certainty and the intertemporal structure of these problems poses its own set of
challenges. This structure means that earlier decisions can significantly influence
the cost or feasibility of later decisions, even while future conditions (such as renew-
able energy availability) are not yet known. Amid this uncertainty, decision-makers
face strict reliability needs of multiple kinds: assets must be dispatched feasibly,
sufficient energy supply must be available to meet demand, and workload or electric
load deadlines must be met. As such, decision-makers must carefully quantify and
plan for future uncertainty during operation, to ensure that their current decisions
do not lead to higher costs or infeasible operating conditions in the future. They
must also plan for many kinds of uncertainty, ranging from short-term electricity
price and demand variability to longer-term trends in the grid makeup, consumer
energy demand, and natural disaster risk.

Many different approaches have been proposed to address these challenges, in-
cluding heuristic methods and convex relaxations to solve computationally difficult
power systems problems [39, 40], numerous frameworks in robust and stochastic
optimization to ensure feasibility and control risk in the face of uncertainty [41–49],
and online algorithms that accommodate intertemporal structure like ramp costs
and constraints [29, 30, 37, 38]. However, these kinds of approaches are limited by
their conservativeness: to ensure robust and reliable operation, they must generally
sacrifice performance. Furthermore, they are typically not designed to fully take
advantage of real-world data.

Data-driven AI and ML techniques have the potential to significantly improve per-
formance in these problems, and have already seen great success in applications
such as grid carbon intensity forecasting [50, 51], contingency screening [52, 53],
and power flow optimization [54–57]. However, the previously-mentioned failure
modes of AI and ML also pose significant risks for their deployment to real-world
energy and sustainability applications, with adversarial attacks [58], distribution
shift [59], and hallucination [60] all posing their own risks for feasibility and perfor-
mance. These risks are particularly significant given the societally-critical nature of
the energy domain. Thus, to take advantage of the typically excellent performance
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of AI/ML tools in energy and sustainability problems, we must ensure that they can
be deployed with rigorous, provable guarantees on reliability.

One can employ two approaches to this end. On the one hand, one might seek to
take advantage of existing, already-trained AI/ML tools, and process them through
a separate algorithm to “robustify” their behavior. On the other hand, one might
instead seek to train new models which are reliable by design, promoting some
desired reliability notion to a primary design criterion during model training. This
thesis will consider both approaches, and we will briefly discuss each of these two
paradigms in the following sections.

Leveraging Untrusted, Black-Box AI/ML for Decision-Making
Ongoing developments in AI and ML have led to a wealth of models achieving
excellent performance for many different applications; of particular note are large
foundation models which can perform well across domains. However, nearly all
of these models are “black boxes,” in the sense that very little can be understood
about how they produce decisions and their failure modes. Recent work has sought
to understand these failure modes better through means such as empirical and
theoretical analyses of adversarial robustness [61, 62], and to propose new methods
to train models that are robust to adversarial perturbations [63, 64], and distribution
shift [65]. These training methodologies cannot in general guarantee that the
resulting model produces decisions that are reliable in a worst-case sense. While
tools like neural network verification [66–68] can rigorously certify such reliability
in some applications, these tools cannot scale to the general forms of multi-stage,
online, and constrained decision-making problems in energy and sustainability to
which we might seek to apply AI and ML.

A recent line of work on algorithms with predictions, or learning-augmented al-
gorithms, has sought to investigate how such untrusted, black-box AI and ML
models can be effectively utilized for decision-making problems. In this paradigm,
a decision-maker seeks to exploit the predictions or “advice” offered by a model
when they are useful, obtaining cost close to that of the AI/ML model in this case—
i.e., consistency—while maintaining rigorous, worst-case performance guarantees
if the model performs poorly—called robustness. The design of robust and con-
sistent algorithms was first studied by [69] for the online caching problem, and by
[70] for the problems of ski rental and non-clairvoyant job scheduling. Since these
initial works, more than 200 papers have been written on the design and analysis
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of learning-augmented algorithms for online and offline problems including peak-
aware energy scheduling [71], mechanism design [72], bipartite matching [73], and
electric vehicle charging [74].1

However, there are significant challenges facing the development of learning-
augmented algorithms for more general decision-making problems. Specifically, in
complex, high-dimensional, and multi-stage decision-making problems—representative
of important energy and sustainability problems like energy resource dispatch—it
is challenging to design algorithms that optimally trade off between consistency
(exploiting AI/ML advice) and robustness (worst-case performance). For instance,
prior to the work presented in this thesis, previous learning-augmented algorithms
for the metrical task systems problem, a general form of online optimization with
switching costs, simply applied off-the-shelf algorithms that do not exploit problem
structure [75]. As such, these previous approaches are suboptimal, and cannot fully
leverage the power of good AI/ML performance. Thus, a key challenge for such
general problems is designing algorithms that leverage problem structure to obtain
better performance bounds.

Another significant challenge is the design of learning-augmented algorithms which
can accommodate complex intertemporal structure, such as problems with both
long-term deadline constraints and switching/ramp costs. This is a challenge for on-
line algorithm design even without considering the incorporation of AI/ML advice:
prior work in the literature on the design and competitive analysis of algorithms has
only considered either switching costs [76, 77] or long-term deadline constraints [78,
79]. However, these features are both critical for practical applications like spatial
and temporal load shifting for sustainable datacenters. Thus, designing algorithms
which can make optimal decisions in the face of this varied problem structure, and
that can furthermore leverage the advice of AI/ML while maintaining worst-case
guarantees, is an important problem.

Risk-, Uncertainty-, and Reliability-Aware Methods
The approaches discussed in the previous section are useful, as they enable robustly
leveraging black-box AI/ML models for decision-making; in particular, any existing
AI/ML model can be used as the “advice” in a learning-augmented algorithm,
and no a priori guarantees are needed. However, these approaches still introduce
some conservativeness, as they require post-processing the model or its outputs in

1See https://algorithms-with-predictions.github.io/ for a repository of papers re-
lated to this framework.

https://algorithms-with-predictions.github.io/
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some fashion to obtain the desired, e.g., robustness guarantee. To obtain optimal
performance, it would be better to train a new, problem-specific AI/ML model to
be reliable by design by, e.g., enforcing some notion of model reliability during
training. Such enforcement can often be done in an approximate fashion: for
instance, constraint satisfaction can be promoted by adding a penalty to the training
loss, and adversarial robustness can be promoted via adversarial training [63]. Such
notions of reliability can also, in some cases, be enforced provably during training
through means like feasibility enforcement layers [56, 80] and certified training [64,
81, 82]. However, for broader notions of reliability such as uncertainty calibration,
risk control, and satisfaction of more general constraints, provably enforcing these
properties during training remains an open challenge. New strategies to this end
would enable the design of new methods for learning over the set of provably reliable
models, allowing for better performance in applications where both performance and
reliability are critical.

This particular challenge in learning evokes a complementary, yet broader theme
spanning beyond AI and ML: how should we integrate risk, uncertainty, and reli-
ability as first-class design criteria when developing algorithms, mechanisms, and
decision-making frameworks? And how do these considerations impact the de-
sign and analysis of optimal strategies? This is a rich theme that connects to
many different problems, including risk-sensitive (online) learning [83–87], risk-
and uncertainty-aware optimization and control [46, 47, 49, 88, 89], and uncertainty
quantification [90–92]. Despite the wide range of prior research on this general
theme, many questions remain open in specific applications regarding how to opti-
mally utilize and account for risk and uncertainty in decision-making problems.

1.2 Contributions of This Thesis
Motivated by the aforementioned challenges, this thesis considers the following
central question:

How can we design theoretically-grounded AI- and ML-augmented algorithms to
enable the safe and reliable deployment of modern AI/ML tools to critical

problems in energy and sustainability?

We structure our investigation in two parts. The first considers the design of learning-
augmented algorithms which leverage the advice of black-box AI and ML tools to
improve performance while maintaining worst-case guarantees for a collection of
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general online optimization problems. The second part takes a broader view of
algorithms, machine learning, and reliability, considering both the design of risk-,
uncertainty-, and reliability-aware machine learning models, as well as algorithmic
questions around the integration of risk and uncertainty in online decision-making
and electricity market operation.

Part I: Algorithms with Black-Box AI/ML Advice
In the first part of this thesis, we examine the question of designing learning-
augmented algorithms, or algorithms that leverage the advice of potentially unre-
liable “black-box” AI or ML models for online decision-making problems while
maintaining worst-case performance guarantees. Specifically, we seek algorithms
with two kinds of performance guarantees: robustness, a worst-case multiplicative
cost guarantee relative to the offline optimal algorithm (i.e., a competitive ratio),
and consistency, a multiplicative cost guarantee relative to the performance of the
AI/ML model itself. We consider the design of robust and consistent algorithms
in several problem settings built on the general theme of online optimization with
switching costs; for each setting, new algorithmic insights are needed to enable
optimal performance. We motivate and evaluate our algorithms throughout with
applications in energy and sustainability.

We begin this agenda in Chapter 2 by considering the problem of convex function
chasing, where an online decision-maker seeks to minimize the total cost of making
and switching between decisions in a normed vector space. This problem framework
models general classes of online optimization problems with ramping costs such as
datacenter operation, where servers can turn on and off (at some expense, due to
overhead) in order to meet workload demand and minimize energy expenditure [37,
38, 93]. The decision-maker seeks to obtain cost close to the advice of a black-box
AI/ML algorithm when it performs well—i.e., consistency—as well as worst-case
robustness when the advice performs poorly.

We begin by considering learning-augmented algorithms that deterministically
“switch” between following the decisions of the advice and those of a chosen baseline
algorithm. We show that, in general, no algorithms in this class can simultaneously
be robust while obtaining consistency less than 3; that is, any switching algorithm
that has bounded worst-case robustness must pay at least 3 times the cost of the
advice in the worst case. To break through this fundamental limit, we propose three
novel algorithms that exploit the problem’s convexity to enable better performance.
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The first, AOBD, achieves a consistency of (1 + 𝜖) and robustness of 2 + 2
𝜖

when
the decision space is the real line R, which we prove is the optimal tradeoff amongst
all algorithms in this setting. We then move to higher-dimensional decision spaces,
proposing an algorithm, Interp, that achieves (

√
2 + 𝜖)-consistency and O( 𝐶

𝜖2 )-
robustness for any 𝜖 > 0, where 𝐶 is the competitive ratio of any chosen baseline
algorithm for convex function chasing or a special case thereof. Finally, we propose
an algorithm BdInterp that achieves (1 + 𝜖)-consistency and O(𝐶𝐷

𝜖
)-robustness

when the decision space has diameter bounded by 𝐷.

In Chapter 3, we go beyond the convex setting of the previous chapter, considering the
design of learning-augmented algorithms for metrical task systems (MTS), a broad
generalization of convex function chasing where cost functions can be nonconvex
and the switching costs are a general metric. In this setting, we propose a randomized
algorithm, Dart, that for any 𝜖 > 0, obtains (1 + 𝜖)-consistency together with a
robustness of 2O(1/𝜖) relative to any chosen baseline algorithm. We further prove that
this exponential tradeoff is necessary: any (1+ 𝜖)-consistent algorithm for learning-
augmented MTS must have a robustness of at least 2Ω(1/𝜖) . However, we show that
in several important special cases of MTS, Dart achieves better robustness: when
the metric space has bounded diameter 𝐷, Dart achieves robustness 1

𝜖
relative

to the baseline algorithm (with an additive term of 𝐷
𝜖

), and in the setting of the
celebrated 𝑘-server problem, Dart can achieve robustness 𝑘

𝜖
. Notably, these results

follow from specialized analyses, and do not require any modification of the Dart
algorithm itself.

Because Dart is a randomized algorithm, we then turn to the question of whether
we can design a deterministic algorithm to match its performance. We propose a
new algorithm, DetRobustML, that essentially matches the robustness-consistency
tradeoff achieved by Dart when provided with an a priori bound on the diameter
of the decision space; however, DetRobustML (and, in fact, any deterministic al-
gorithm) cannot obtain the diameter-independent optimality guarantees achieved
by Dart. We conclude the chapter with a case study, evaluating both Dart
and DetRobustML on a realistic model of cogeneration power plant operation
on high-renewables power grids. Our experimental results demonstrate the substan-
tial value of our learning-augmented algorithms to bridge the excellent performance
of machine-learned approaches with the reliability of standard dispatch methods.

In Chapter 4, we take a step back from learning-augmented algorithm design,
and instead focus on a more fundamental question in online algorithm design.
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Specifically, we ask: how can we design optimal algorithms for online optimization
with switching costs when there is a deadline constraint present? This problem
is motivated by the general task of carbon-aware temporal load shifting, where a
datacenter operator may choose to pause a workload during times when the local
grid energy has high carbon intensity, in order to take advantage of lower-carbon
energy in the future. In this setting, there is both an overhead cost for saving or
restoring the state of a workload—a switching cost—as well as a deadline by which
time the workload must be completed—a deadline constraint. While previous
online algorithms problems have involved either of these features independently,
their combination presents unique challenges for optimal algorithm design.

To this end, we introduce the “online pause and resume” problem, where a decision-
maker is faced with a sequence of prices of length 𝑇 , and after each price has been
revealed must decide whether to accept it. The decision-maker’s goal is to choose
the 𝑘 lowest (or highest) prices, while also accounting for the cost of switching
between decisions (i.e., each time they start or stop purchasing/selling). In this
problem, the prices represent the carbon intensity of the grid, the switching costs
represent the overhead of starting or stopping the workload, and 𝑘 represents the
size of the workload that must be completed by time 𝑇 . We propose a framework of
double-threshold algorithms for this problem, which utilize two distinct threshold
rules to decide whether a decision-maker should accept or reject a price depending
on what their previous decision was. We further show that these algorithms, in both
the minimization and maximization variants of the problem, obtain the provably
optimal competitive ratio amongst all deterministic algorithms. We conclude the
chapter with a case study applying our double threshold algorithmic framework to a
model of carbon-aware temporal workload shifting with real carbon intensity traces,
showing that our approach improves significantly upon existing baselines.

We conclude the first part of this thesis with Chapter 5, which returns to the design
of learning-augmented algorithms in a problem setting that builds on the previous
chapters. Specifically, this chapter is motivated by the challenge of carbon-aware
spatiotemporal workload shifting in datacenters, where a company operating geo-
graphically distributed datacenters seeks to shift a workload across time and be-
tween regions to take advantage of low-carbon energy, while accommodating both
the overhead costs of load shifting (both temporally and spatially), and the workload
deadline. To model this application, we introduce the problem of spatiotemporal on-
line allocation with deadline constraints (SOAD), in which a decision-maker seeks
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to complete a workload with deadline 𝑇 by allocating it amongst the points of a
general metric space (𝑋, 𝑑). At each time, the decision-maker is faced with a cost
function representing the cost to service the workload at each point of the metric
space (e.g., the carbon intensity at each datacenter location), and they must decide
where to shift the workload, incurring a switching cost 𝑑 (·, ·) that reflects the over-
head of both local (temporal) shifting and global (spatial) shifting. This problem
setting unites the general metric space setting of MTS considered in Chapter 3 and
the deadline-constrained structure considered in Chapter 4, and formalizes the open
challenge of designing algorithms for this more complex setting.

We first propose a randomized pseudo-cost minimization algorithm (PCM) for
SOAD, which chooses decisions at each time by minimizing the difference between
the instantaneous cost and a carefully-designed pseudo-cost term, which promotes
satisfaction of the deadline constraint over time. We show that this algorithm ob-
tains a competitive ratio that is optimal up to a logarithmic factor in the size of the
metric space 𝑋 , which results from the use of randomized metric embeddings to
accommodate general metrics. We then propose a learning-augmented algorithm,
ST-CLIP, which builds on this pseudo-cost minimization framework by including a
consistency constraint that enables taking advantage of black-box AI/ML advice. We
prove that ST-CLIP obtains the optimal tradeoff between consistency and robustness
up to a logarithmic factor in the size of the metric space 𝑋 , again resulting from the
metric embedding. Finally, we perform extensive evaluations of our algorithms in
a case study on carbon-aware spatiotemporal workload shifting leveraging real data
on carbon traces, cluster traces, and throughput between datacenters. Our experi-
mental results demonstrate the significant value of learning-augmented algorithms
for reducing the carbon emissions of compute workloads.

Part II: Beyond the Black Box: New Frontiers in Uncertainty, Risk, and Relia-
bility
In the second part of this thesis, we move beyond the black-box AI/ML advice frame-
work and consider the question of designing risk-, uncertainty-, and reliability-aware
machine learning models and algorithms. In particular, we are motivated by two
complementary, yet related questions. First, how should we train machine learn-
ing models in a manner that enforces reliability, risk, and uncertainty guarantees?
Second, how can we optimally incorporate risk and uncertainty into algorithms and
mechanisms for online and multi-stage decision-making? Though the latter question
is not directly related to the broader theme of machine learning, it has important im-
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plications for the downstream application of machine learning tools resulting from
the former question—for instance, how to incorporate the uncertainty estimates of
a machine learning model into online decision-making. While we cannot possibly
address all of the possible connections between these two avenues here, in this part
we will survey several research directions that they motivate, drawing attention to
potential connections where they arise.

We begin this part in Chapter 6, where we study the design of risk-sensitive on-
line algorithms, with risk-sensitive notions of performance used in their design
and competitive analysis. This paradigm is motivated in part by the randomized
learning-augmented algorithms presented in Chapters 3 and 5, and the question
of whether such randomization can expose decision-makers to potential downside
risk in the form of large costs (even with small probability). To this end, we
introduce the CVaR𝛿-competitive ratio (𝛿-CR) using the conditional value-at-risk
of an algorithm’s cost, which measures the expectation of the (1 − 𝛿)-fraction of
worst outcomes against the offline optimal cost, and use this measure to study three
online optimization problems: continuous-time ski rental, discrete-time ski rental,
and one-max search. These problems, which are prototypical problems in online
optimization, serve as building blocks for more complex problems like MTS, and
also have connections with real applications such as dynamic power management
[94], peak-aware economic dispatch in microgrids [95], and energy trading [96].

We develop optimal and near-optimal algorithms for each of these problems, finding
that the structure of the optimal 𝛿-CR and algorithm varies significantly between
problems. We first prove that the optimal 𝛿-CR for continuous-time ski rental is
2 − 2−Θ( 1

1−𝛿 ) , obtained by an algorithm described by a delay differential equation.
In contrast, in discrete-time ski rental with buying cost 𝐵, there is an abrupt phase
transition at 𝛿 = 1 − Θ( 1

log 𝐵 ), after which the classic deterministic strategy is
optimal. Similarly, one-max search exhibits a phase transition at 𝛿 = 1

2 , after which
the classic deterministic strategy is optimal; we also obtain an algorithm that is
asymptotically optimal as 𝛿 ↓ 0 that arises as the solution to a delay differential
equation. These results highlight a fundamental limit to the value of randomization
when decision-makers are risk-sensitive, and serve as a theoretical foundation for
potential future work integrating risk senstivity into learning-augmented algorithms
in more general settings.

Whereas Chapter 6 focuses primarily on how to make optimal decisions with risk-
sensitive objectives, Chapter 7 considers the complementary question of how to best
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quantify uncertainty for optimal decision-making. Ensuring robust performance in
risk-aware decision-making problems requires well-calibrated estimates of uncer-
tainty, which can be difficult to achieve with neural networks. While a number of
uncertainty quantification methods have been proposed in recent years to enable
the calibration of machine-learned uncertainty estimates, these estimates are still
typically learned in a manner that is separate from the downstream decision-making
problem. That is, conventional approaches for decision-making and optimization
under uncertainty typically separate the estimation of uncertainty from the optimiza-
tion using it. This significantly hinders performance in high-dimensional settings,
where there can be many valid uncertainty estimates, each with its own performance
profile—i.e., not all uncertainty is equally valuable for downstream decision-making.

To address this challenge, Chapter 7 develops an end-to-end framework to learn un-
certainty sets for conditional robust optimization problems in a way that is informed
by the downstream decision-making loss, with robustness and calibration guaran-
tees provided by conformal prediction. The end-to-end nature of this methodology
ensures that uncertainty sets are both calibrated, and allowed to focus on regions
of the parameter space that matter the most for decision-making performance. We
specifically propose to represent general families of convex uncertainty sets with
partially input-convex neural networks, which are learned and calibrated as part
of our framework. We perform extensive experiments comparing our end-to-end
framework against conventional two-stage “estimate-then-optimize” methods on the
problems of energy storage arbitrary and portfolio optimization, finding that our
framework yields significantly improved performance while maintaining the uncer-
tainty calibration guarantees needed for robust operation.

In Chapter 8, we move from the machine learning questions of the previous chapter
to their downstream implications for the operation of energy systems. Specifically,
we ask: given an uncertainty set (say, for example, learned in the end-to-end fashion
proposed in the previous chapter) that we would like to use for robust electricity
market dispatch, or given some other risk-sensitive or stochastic dispatch method,
how should we design prices to support an efficient market equilibrium? To this
end, we propose a pricing mechanism for multi-stage electricity markets that does
not explicitly depend on the choice of dispatch procedure or optimization method.
Our approach can accommodate a wide range of methodologies for power sys-
tem economic dispatch under uncertainty, including multi-interval dispatch, multi-
settlement markets, scenario-based dispatch, chance-constrained dispatch policies,
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and robust optimization-based dispatch. We prove that our pricing scheme pro-
vides both ex-ante and ex-post dispatch-following incentives for participants by
simultaneously supporting per-stage and ex-post competitive equilibria. In numeri-
cal experiments on a ramp-constrained test system, we demonstrate the benefits of
scheduling under uncertainty and show how our price decomposes into components
corresponding to energy, intertemporal coupling, and uncertainty.

Finally, in Chapter 9, we return to the theme of reliability-aware learning, motivated
by the problem of contingency screening in power grids. Power system operators
must ensure that dispatch decisions remain feasible in case of grid outages, or
contingencies, to prevent cascading failures and ensure reliable operation. However,
checking the feasibility of all 𝑁 − 𝑘 contingencies—every possible simultaneous
failure of 𝑘 grid components—is computationally intractable even for small 𝑘 . As
such, system operators must use heuristic screening methods that might not include
all relevant contingencies, which can generate false negatives where unsafe scenarios
are misclassified as safe. In this final chapter, we propose to use input-convex neural
networks (ICNNs) for contingency screening. We show that ICNN reliability can be
determined by solving a convex optimization problem, and by scaling model weights
using this problem as a differentiable optimization layer during training, we can learn
an ICNN classifier that is both data-driven and has provably guaranteed reliability—
i.e., that guarantees a zero false negative rate. We evaluate this methodology in a
case study of 𝑁 −2 contingency screening on the IEEE 39-bus test network, where it
yields substantial (10-20×) speedups over exhaustive contingency screening while
maintaining excellent classification accuracy. We further show that the learned
ICNNs can also be used to speed up the solution of the security-constrained DC
optimal power flow problem, providing comparable speedups while maintaining
excellent cost and feasibility.

Notably, the training methodology we propose in this final chapter is similar in spirit
to that proposed for end-to-end learning of calibrated uncertainty sets in Chapter 7.
Both frameworks employ differentiable optimization, input-convex neural networks,
and an “end-to-end” flavor whereby the model is transformed to ensure some notion
of reliability—in Chapter 7, uncertainty set calibration, and in Chapter 9, zero
false negative rate. Both frameworks benefit from the model being able to focus
its learning capacity on regions of the input-output space which are most relevant,
enabling better performance while preserving the desired reliability guarantees.
This commonality poses the interesting question, for future work, of whether the
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framework can be generalized to allow for the enforcement of more general notions
of reliability during machine learning model training.





Part I

Algorithms with Black-Box AI/ML
Advice
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C h a p t e r 2

CHASING CONVEX BODIES AND FUNCTIONS WITH
BLACK-BOX ADVICE

We consider the problem of convex function chasing with black-box advice, where
an online decision-maker aims to minimize the total cost of making and switching
between decisions in a normed vector space, aided by black-box advice such as the
decisions of a machine-learned algorithm. The decision-maker seeks cost compara-
ble to the advice when it performs well, known as consistency, while also ensuring
worst-case robustness even when the advice is adversarial. We first consider the
common paradigm of algorithms that switch between the decisions of the advice
and a competitive algorithm, showing that no algorithm in this class can improve
upon 3-consistency while staying robust. We then propose three novel algorithms
that bypass this limitation by exploiting the problem’s convexity. The first, Adap-
tive Online Balanced Descent, obtains an optimal tradeoff of (1 + 𝜖)-consistency
and O( 1

𝜖
)-robustness in the one-dimensional setting. The second, Interp, achieves

(
√

2+𝜖)-consistency andO( 𝐶
𝜖2 )-robustness for any 𝜖 > 0, where𝐶 is the competitive

ratio of an algorithm for convex function chasing or a subclass thereof. The third,
BdInterp, achieves (1 + 𝜖)-consistency and O(𝐶𝐷

𝜖
)-robustness when the problem

has bounded diameter 𝐷.

This chapter is primarily based on the following paper:

[1] N. Christianson, T. Handina, and A. Wierman, “Chasing Convex Bodies
and Functions with Black-Box Advice,” in Proceedings of the Thirty Fifth
Conference on Learning Theory, PMLR, Jun. 2022, pp. 867–908. [Online].
Available:https://proceedings.mlr.press/v178/christianson22a.
html.

which is licensed under the Creative Commons Attribution 4.0 International License
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/. In addi-
tion, the results on the one-dimensional setting presented in Section 2.4 are adapted
from the paper

https://proceedings.mlr.press/v178/christianson22a.html
https://proceedings.mlr.press/v178/christianson22a.html
https://creativecommons.org/licenses/by/4.0/
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[1] D. Rutten, N. Christianson, D. Mukherjee, and A. Wierman, “Smoothed
Online Optimization with Unreliable Predictions,” Proceedings of the ACM
on Measurement and Analysis of Computing Systems, vol. 7, no. 1, 12:1–
12:36, Mar. 2023. doi: 10.1145/3579442. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3579442.

2.1 Introduction
We study the problem of convex function chasing (CFC), in which a player chooses
decisions x𝑡 online from a normed vector space X = (𝑋, ∥ · ∥) in order to minimize
the total cost

∑𝑇
𝑡=1 𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥, where each 𝑓𝑡 is a convex “hitting” cost

function that is revealed prior to the player’s selection of x𝑡 , and the term ∥x𝑡 −x𝑡−1∥
penalizes changing decisions between rounds. A number of subclasses of CFC have
been discussed in the literature, characterized by various restrictions on the class
of cost functions 𝑓𝑡 . Of particular note is the special case of convex body chasing
(CBC), in which each cost function 𝑓𝑡 is the {0,∞} indicator of a convex set 𝐾𝑡 ,
so that each decision x𝑡 must reside strictly within 𝐾𝑡 . Algorithms for CFC and its
special cases are judged on the basis of their competitive ratio, i.e., the worst-case
ratio in cost between the algorithm and the hindsight optimal sequence of decisions
(Definition 2.2.1).

Convex body chasing and function chasing were introduced by [77] as continuous
versions of several fundamental problems in online algorithms, including Metri-
cal Task Systems [76] and the 𝑘-server problem [97]. CFC has also been studied
recently as the problem of “smoothed online convex optimization” (SOCO), intro-
duced by [38]. The basic premise of CFC/SOCO, of choosing decisions online to
optimize per-round costs with minimal movement between decisions, has seen wide
application in a number of domains, including datacenter load-balancing [38] and
right-sizing [37, 93], electric vehicle charging [98], and control [99, 100].

In high-dimensional settings, the performance of algorithms for CBC and CFC can
be arbitrarily poor: [77] showed a

√
𝑑 lower bound on the competitive ratio of any

algorithm for CBC (and thus CFC) in 𝑑-dimensional Euclidean space, which [101]
extended to an Ω(max{

√
𝑑, 𝑑

1− 1
𝑝 }) lower bound in R𝑑 with the ℓ𝑝 norm. Prospects

are poor even for subclasses of CFC with additional restrictions on the functions 𝑓𝑡 .
For instance, CFC with 𝛼-polyhedral cost functions, i.e., where each 𝑓𝑡 has a unique
minimizer away from which it grows with slope at least 𝛼 > 0, has been studied
widely in the SOCO literature. State-of-the-art algorithms in this setting achieve

https://doi.org/10.1145/3579442
https://dl.acm.org/doi/10.1145/3579442
https://dl.acm.org/doi/10.1145/3579442
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competitive ratio O(𝛼−1), which grows arbitrarily large in the 𝛼 → 0 limit [102,
103].

The modern tools of machine learning wield great promise for improving upon
these pessimistic performance guarantees. That is, for practical applications, there
is often large amounts of data recorded from past problem instances, enabling the
training of machine learning models that can outperform traditional, conservative
online algorithms. However, these machine-learned algorithms are “black boxes,”
in the sense that they lack rigorous, worst-case performance guarantees. Such black-
box algorithms might typically outperform robust online algorithms, but their lack
of uncertainty quantification can lead to arbitrarily poor performance in the worse
case, if they are deployed on held-out problem instances or under distribution shift.

Thus, a natural question arises: is it possible to develop algorithms that achieve
both the worst-case guarantees of traditional online algorithms for CFC and the
average-case performance of machine-learned algorithms or other sources of black-
box “advice”?

These desiderata are naturally encoded in the notions of robustness and consistency
introduced by [69] in the context of competitive caching. In this framework, a
consistent algorithm is one with a competitive ratio with respect to the black-box
advice, implying that when the advice is accurate, the algorithm will perform well;
on the other hand, a robust algorithm is one that has a finite competitive ratio,
regardless of advice performance. Our goal is to develop algorithms with tunable
robustness and consistency guarantees, so that a decision-maker can decide in
advance the tradeoff they wish to make between exploiting good advice performance
and ensuring worst-case robustness in the case that advice performs poorly.

Contributions
We answer the question above by proposing novel algorithms with tunable robustness
and consistency bounds for CFC and any subclass thereof. In particular, we reduce
the general problem of designing robust and consistent algorithms for CFC to the
design of bicompetitive meta-algorithms (Definitions 2.2.4, 2.2.5), which are unified
“recipes” for combining black-box advice with a robust algorithm in a manner that
guarantees a competitive ratio with respect to both ingredients. These “recipes”
are very general—they can be used to combine advice with any algorithm for any
subclass of CFC to obtain a customized robustness and consistency guarantee for
that subclass without explicit knowledge of the algorithm or advice design.
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More specifically, our contributions are twofold. We first consider the class of
“switching” algorithms, which switch between the decisions of the advice and a
robust algorithm. This class of algorithms has received considerable attention in the
literature on robustness and consistency, and in particular, nearly all prior algorithms
for CFC with black-box advice in dimension greater than one have been switching
algorithms. We prove a fundamental limit on the robustness and consistency of any
switching algorithm for CFC, showing that no switching algorithm for CFC can
improve on 3-consistency while obtaining finite robustness (Theorem 2.3.3). We
give a switching meta-algorithm Switch (Algorithm 1) achieving this fundamental
limit, obtaining (3 + O(𝜖))-consistency and O( 𝐶

𝜖2 )-robustness for any 𝜖 > 0, where
𝐶 is the competitive ratio of any algorithm for CFC or a subclass thereof. We
further show that the fundamental limit on switching algorithms can be broken in
the special case of nested CBC, in which successive bodies are nested. In this setting,
we provide an algorithm NestedSwitch (Algorithm 2) achieving (1+𝜖)-consistency
along with O( 𝑑

𝜖
)-robustness for nested CBC in 𝑑 dimensions (Proposition 2.3.4).

Second, galvanized by the limitations of switching algorithms, we develop algo-
rithms exploiting the convexity of the CFC problem to obtain improved robustness
and consistency bounds. We first propose a (non-meta) algorithm for the one-
dimensional setting, Adaptive Online Balanced Descent (Algorithm 3), that achieves
(1+ 𝜖)-consistency and O( 1

𝜖
)-robustness when the decision space is 𝑋 = R, and we

show that this is the asymptotically optimal tradeoff in this setting. We then propose
a meta-algorithm Interp (Algorithm 4) that, for any normed vector space X of ar-
bitrary dimension, given a 𝐶-competitive algorithm for a subclass of CFC, achieves
(𝜇(X) + 𝜖)-consistency and O( 𝐶

𝜖2 )-robustness for any desired 𝜖 > 0, where 𝜇(X)
is a geometric constant depending on the structure of the decision space that is

√
2

when X is a Hilbert space and that is strictly less than 3 in any ℓ𝑝 space, 𝑝 ∈ (1,∞)
(Theorem 2.4.4). Moreover, under the additional assumption that the advice and
the 𝐶-competitive algorithm are never farther apart than some distance 𝐷, we give
a meta-algorithm BdInterp (Algorithm 5) that achieves (1 + 𝜖)-consistency and
O(𝐶𝐷

𝜖
)-robustness (Theorem 2.4.5). In particular, BdInterp gives nearly-optimal

consistency and robustness for the problem of CFC with 𝛼-polyhedral cost functions
when 𝐷 = 𝑂 (1) in 𝛼.

A key feature of our results is their generality: our main results on bicompetitive
meta-algorithms (Proposition 2.3.2, Theorems 2.4.4, 2.4.5) hold in vector spaces
with any norm and arbitrary, even infinite, dimension. This enables application to
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problems where the decisions x𝑡 are infinite-dimensional objects such as probability
measures, which could arise in settings such as iterated games. Moreover, these
meta-algorithms enable the design of customized robust and consistent algorithms
for any subclass of CFC, since they are agnostic to the specific algorithms used.
We illustrate this by giving specific robustness and consistency results for the cases
of CFC, CBC, and CFC restricted to 𝛼-polyhedral hitting cost functions; we give
further examples in Section 2.G.

Related work
Our work contributes to the literatures on CBC, CFC, and SOCO as well as the
emerging literature on online algorithms with black-box advice. We discuss each in
turn below.

CBC, CFC, and SOCO. The problems of convex body chasing and function chas-
ing were introduced by Friedman and Linial [77], who gave a competitive algorithm
for CBC in 2-dimensional Euclidean space. The problem in general dimension 𝑑
has been largely settled in the last few years. In the setting where subsequent bodies
are nested, Argue, Bubeck, et al. [104] gave an O(𝑑 log 𝑑)-competitive algorithm in
any norm, and Bubeck et al. [101] later gave an O(min{𝑑,

√︁
𝑑 log𝑇})-competitive

algorithm in the Euclidean setting that uses the geometric Steiner point of the convex
bodies. Later, Argue, Gupta, et al. [105] and Sellke [106] concurrently obtained
O(𝑑)-competitive algorithms for general CFC. The latter work builds upon the
methods of Bubeck et al. [101], developing a “functional” Steiner point algorithm
that is 𝑑-competitive for CBC and (𝑑+1)-competitive for CFC in any normed space,
matching the lower bound of 𝑑 in the ℓ∞ norm setting.

Several special cases of CFC/SOCO with restrictions on hitting cost structure have
been studied in the literature to the end of obtaining “dimension-free” competitive
ratios for these subclasses. Chen et al. [102] obtained the first such bound for the
subclass of CFC where hitting cost functions 𝑓𝑡 are 𝛼-polyhedral, which we call
𝛼CFC. The authors propose an algorithm, “Online Balanced Descent” (OBD),
which achieves a competitive ratio O( 1

𝛼
). This upper bound has been successively

refined, with the most recent entry a simple greedy algorithm from Zhang et al. [103]
that achieves competitive ratio max{1, 2

𝛼
} in any normed vector space of arbitrary

(even infinite) dimension by moving to the minimizer of each hitting cost function.
The O( 1

𝛼
) upper bound has been broken by Lin [107] in the finite-dimensional

Euclidean setting with an O( 1
𝛼1/2 )-competitive algorithm, Greedy OBD, that is
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Problem Algorithm Name Comp. Ratio Setting
CFC Functional Steiner Point 𝑑 + 1 R𝑑 with any norm
CBC Functional Steiner Point 𝑑 R𝑑 with any norm
𝛼CFC Greedy max

{
1, 2

𝛼

}
Any normed vector space

𝛼CFC Greedy OBD O
(

1
𝛼1/2

)
R𝑑 with ℓ2 norm

Table 2.1: Competitive ratios for state-of-the-art algorithms for CFC,CBC, and
𝛼CFC.

optimal within the class of memoryless, rotation- and scale-invariant algorithms.
Another subclass of CFC that has received attention is that with (𝜅, 𝛾)-well-centered
hitting cost functions, which generalize well-conditioned functions. Argue, Gupta,
and Guruganesh [108] propose an algorithm achieving anO(2𝛾/2𝜅) competitive ratio
for this subclass, and an improved algorithm achieving competitive ratio O(

√
𝜅) for

the particular class of 𝜅-well-conditioned functions along with a nearly matching
Ω(𝜅1/3) lower bound. We summarize the state-of-the-art algorithms and competitive
ratios that we refer to in our later results in Table 2.1, giving an extended version of
the table in Section 2.A, Table 2.2.

Online Algorithms with Black-Box Advice. The idea of using machine-learned,
black-box advice to improve online algorithms was first proposed by Mahdian et
al. [109] to design algorithms for online ad allocation, load balancing, and facility
location. Formal notions of robustness and consistency were later coined by Lykouris
and Vassilvtiskii [69] in the context of designing learning-augmented algorithms for
caching. The last few years have seen a surge in the application of the robustness
and consistency paradigm in designing online algorithms augmented with black-
box advice for a multitude of problems, for example ski rental and non-clairvoyant
scheduling [70, 110], energy generation scheduling [71], bidding and bin-packing
[111], and Q-learning [112].

Closest to our work are the recent papers of Antoniadis et al. [75] and Rutten, Chris-
tianson, et al. [113]. The former considers the problem of designing algorithms
for metrical task systems (MTS) with black-box advice. MTS can be thought of
as (non-convex) function chasing on general metric spaces, and hence their results
also give robustness/consistency guarantees for CFC. They apply two classical
results on combining 𝑘-server algorithms [114, 115] and on combining MTS algo-
rithms via 𝑘-experts algorithms [116, 117] to devise, in our parlance, bicompetitive
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meta-algorithms for MTS. In particular, their first algorithm switches between the
advice and a 𝐶-competitive algorithm for MTS, and achieves 9-consistency and
9𝐶-robustness. They also propose a randomized switching algorithm that, under
the assumption that the metric space has bounded diameter 𝐷, obtains cost bounded
in expectation by min{(1+ 𝜖)CAdv+O( 𝐷𝜖 ), (1+ 𝜖)𝐶 ·COpt+O( 𝐷𝜖 )}, where CAdv is
the cost of the advice and COpt is the optimal cost. However, the large O( 𝐷

𝜖
) additive

factors in their result preclude (1 + 𝜖)-consistency, since when CAdv = O(1), the
consistency bound will be 1 + 𝜖 + Ω( 𝐷

𝜖
). This is to be expected, since as we show

in Section 2.3, no deterministic switching algorithm can improve on 3-consistency
while having finite robustness. Moreover, their results due not allow tuning robust-
ness and consistency, i.e., neither algorithm allows trading-off robustness in order
to obtain consistency arbitrarily close to 1.

On the other hand, [113] considers the problem of CFC with 𝛼-polyhedral hitting
costs (𝛼CFC), but with the convexity assumption dropped from the hitting costs 𝑓𝑡 .
They obtain a (1 + 𝜖)-consistent, 2Õ( 1

𝛼𝜖
)-robust algorithm in this setting, together

with a lower bound showing that this exponential tradeoff between robustness and
consistency is necessary due to their non-convex setting. Their algorithm is a
switching algorithm and crucially depends on the 𝛼-polyhedral structure of the
hitting cost functions, and hence cannot be extended to general CFC. The authors
also propose an algorithm for CFC in the 1-dimensional case (where 𝑋 = R) that
achieves (1+ 𝜖)-consistency and O( 1

𝜖2 ) robustness, and they prove a lower bound of
(1 + 𝜖)-consistency and Ω( 1

𝜖
) robustness on any algorithm for CFC with black-box

advice.1 They leave open the broader problem of developing robust and consistent
algorithms for CFC and its many subclasses in the higher-dimensional setting.

Notation
Throughout this chapter, 𝑋 refers to a real vector space of arbitrary dimension.
When a norm ∥ · ∥ is distinguished, 𝐵(x, 𝑟) is the closed ∥ · ∥-ball of radius 𝑟 ≥ 0
centered at x, and Π𝐾x is a metric projection of the point x ∈ 𝑋 onto a closed convex
set 𝐾 . For x, y ∈ 𝑋 , we define [x, y] := {z ∈ 𝑋 : z = 𝜆x + (1 − 𝜆)y, 𝜆 ∈ [0, 1]}
as the convex span of x and y. The non-negative reals are denoted by R+, and for
𝑇 ∈ N, we write [𝑇] := {1, . . . , 𝑇}. Asymptotic notation involving the variable
𝜖 > 0 reflects the asymptotic regime 𝜖 → 0.

1The algorithm for the 1-dimensional setting proposed in [113] is the “Adaptive Online Balanced
Descent” algorithm we describe in Algorithm 3. In Section 2.4, we provide a refined analysis to
show that, in fact, this algorithm is (1 + 𝜖)-consistent and O( 1

𝜖
)-robust, matching the lower bound.
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2.2 Preliminaries
We consider the general problem of convex function chasing (CFC) on a real normed
vector space X = (𝑋, ∥ · ∥). In particular, we make no assumption on either the
dimension of X or on the choice of norm ∥ · ∥. In CFC, a decision-maker begins
at some initial point x0 ∈ 𝑋 , and at each time 𝑡 ∈ N is handed a convex function
𝑓𝑡 : 𝑋 → R+ and must choose some x𝑡 ∈ 𝑋 , paying both the hitting cost 𝑓𝑡 (x𝑡), as
well as the movement or switching cost ∥x𝑡−x𝑡−1∥ induced by the norm. Crucially, x𝑡
is chosen prior to the revelation of any future cost functions 𝑓𝑘 , 𝑘 > 𝑡, i.e., decisions
are made online. The game ends at some time 𝑇 ∈ N, which is unknown to the
decision-maker in advance. We refer to a tuple (x0, 𝑓1, . . . , 𝑓𝑇 ) as an instance of the
CFC problem. The total cost incurred by the decision-maker on a problem instance
is

∑𝑇
𝑡=1 𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥.

Informally, an online algorithm for CFC is an algorithm that, on a given instance of
CFC, produces decisions online. We denote by Alg𝑡 the 𝑡th decision made by an
online algorithm Alg; by convention, Alg0 := x0, the starting point of the instance.
Then the cost CAlg incurred by Alg on an instance is

CAlg =

𝑇∑︁
𝑡=1

𝑓𝑡 (Alg𝑡) + ∥Alg𝑡 − Alg𝑡−1∥.

We also introduce the partial cost notation CAlg(𝑡, 𝑡′) =
∑𝑡′
𝑖=𝑡 𝑓𝑖 (Alg𝑖) + ∥Alg𝑖 −

Alg𝑖−1∥, defined for 1 ≤ 𝑡 ≤ 𝑡′ ≤ 𝑇 . We refer to the set of all online algorithms for
CFC as ACFC.

We typically compare online algorithms for CFC against Opt, the offline optimal
algorithm that chooses the hindsight optimal sequence of decisions for any problem
instance. Its cost is the optimal value of the following convex program:

COpt = COpt(x0, 𝑓1, . . . , 𝑓𝑇 ) := min
x1,...,x𝑇∈𝑋

𝑇∑︁
𝑡=1

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥

and its decisions are determined by the optimal solution. To evaluate the perfor-
mance of an online algorithm for CFC, we consider the competitive ratio, which
measures the worst case ratio in costs between an algorithm and Opt. In the follow-
ing, we define both the conventional competitive ratio as well as a generalization
that allows for comparing against arbitrary benchmark algorithms.
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Definition 2.2.1. Let Alg(1) be an online algorithm for CFC, and let Alg(2) be
another (not necessarily online) algorithm for CFC.2 Alg(1) is defined to be 𝐶-
competitive with respect to Alg(2) if, regardless of problem instance, C(1)Alg ≤ 𝐶 ·C

(2)
Alg.

In particular, if Alg(2) = Opt, we simply say that Alg(1) is 𝐶-competitive, or has
competitive ratio 𝐶.

Subclasses of Convex Function Chasing
CFC is a broad set of problems and many subclasses have received attention in the
literature. We consider several subclasses of the general CFC problem in this work,
distinguished by different assumptions on the hitting cost functions. In this section,
we briefly define the subclasses of CFC which we refer to in our later results in the
main text. We give more detailed definitions of these and several other subclasses
of CFC in Section 2.A.

Convex Body Chasing. In the problem of convex body chasing (CBC), the
decision-maker must choose each decision x𝑡 from a convex body 𝐾𝑡 ⊆ 𝑋 that
is revealed online. This can be seen as a special case of CFC where 𝑓𝑡 is 0 on 𝐾𝑡
and ∞ elsewhere; see Section 2.A for more details on this equivalence. A notable
special case of CBC is the problem of nested convex body chasing (NCBC), in which
subsequent bodies are nested, i.e., 𝐾𝑡 ⊇ 𝐾𝑡+1 for each 𝑡. We define ACBC as the set
of all online algorithms for CBC that are feasible, i.e., that produce decisions within
the convex body 𝐾𝑡 at each time. We define ANCBC similarly as the set of feasible
online algorithms for NCBC.

𝛼-Polyhedral Convex Function Chasing. Several subclasses of CFC have been
studied in the literature with hitting cost functions 𝑓𝑡 restricted so as to enable
dimension-free competitive ratios. One of the most well-studied such subclasses is
the problem of 𝛼-polyhedral convex function chasing (𝛼CFC), e.g., [102, 103], in
which each hitting cost function 𝑓𝑡 is restricted to be globally 𝛼-polyhedral, meaning
intuitively that it has a unique minimizer, away from which it grows with slope at
least 𝛼 > 0.

Definition 2.2.2. Let (𝑋, ∥ · ∥) be a normed vector space, and let 𝛼 > 0. A function
𝑓 : 𝑋 → R+ is globally 𝛼-polyhedral if it has unique minimizer x∗ ∈ 𝑋 , and in

2Like Opt, the decision of Alg(2) at some time 𝑡 is allowed to depend on problem instance data
revealed after time 𝑡.
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addition,

𝑓 (x) ≥ 𝑓 (x∗) + 𝛼∥x − x∗∥ for all x ∈ 𝑋.

Using Black-Box Advice: Robustness, Consistency, and Bicompetitive Analysis

In this work, we seek algorithms for CFC and its subclasses that can exploit the
good performance of a black-box advice algorithm, such as a reinforcement learn-
ing model, while maintaining rigorous worst-case performance guarantees. More
specifically, we strive for algorithms that can obtain cost not much worse than
optimal when the black-box advice is perfect, yet which have uniformly bounded
competitive ratio when the advice is arbitrarily bad or even adversarial. This dual
objective is naturally formulated in terms of robustness and consistency, which were
introduced by [69] and are defined as follows.

Definition 2.2.3. Let Alg be an online algorithm for CFC, and let Adv be a black-box
advice algorithm. Alg is said to be 𝑐-consistent if it is 𝑐-competitive with respect
to Adv. On the other hand, Alg is defined to be 𝑟-robust if it is 𝑟-competitive,
independent of the performance of Adv.

Our precise goal is to design algorithms achieving (1 + 𝜖)-consistency and 𝑅(𝜖)-
robustness for CFC and its subclasses, where 𝜖 > 0 is a hyperparameter chosen by
the decision-maker that encodes confidence in the advice. The dependence of the
robustness 𝑅(𝜖) on 𝜖 anticipates a tradeoff between exploiting advice and worst-case
robustness. We ideally seek algorithms with robustness 𝑅(𝜖) as small as possible,
so that the tradeoff between consistency and robustness is tight.

Our methodology for designing robust and consistent algorithms is very general, in
the sense that we do not restrict to any special cases of CFC and do not consider
in our analysis the explicit behavior of the advice or of any specific algorithm
for CFC. This is in contrast to the work of [113], whose main robustness and
consistency guarantees depend crucially upon the 𝛼-polyhedral setting. Rather, we
will primarily approach the task of designing robust and consistent algorithms via a
more general problem of designing bicompetitive meta-algorithms for CFC, which,
informally, are “recipes” for combining two CFC algorithms to produce a single
algorithm with competitive guarantees with respect to both input algorithms. More
formally, we give the following definitions.
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Definition 2.2.4. An online algorithm Alg for CFC is (𝑐, 𝑟)-bicompetitive with
respect to a pair of algorithms (Alg(1) ,Alg(2)) if Alg is simultaneously 𝑐-competitive
with respect to Alg(1) and 𝑟-competitive with respect to Alg(2) . Equivalently, the
cost of Alg can be bounded as

CAlg ≤ min
{
𝑐 · CAlg(1) , 𝑟 · CAlg(2)

}
.

Definition 2.2.5. A meta-algorithm Meta for CFC is a mapping Meta : ACFC ×
ACFC → ACFC. That is, Meta takes as input two online algorithms for CFC
and returns a single online algorithm for the problem. Meta is said to be (𝑐, 𝑟)-
bicompetitive if its output is always (𝑐, 𝑟)-bicompetitive with respect to its inputs.

It follows immediately from the previous two definitions that if Meta is (𝑐, 𝑟)-
bicompetitive, Adv is the advice, and Rob is a 𝑏-competitive algorithm for (a
subclass of) CFC, then Meta(Adv,Rob) is 𝑐-consistent and 𝑟𝑏-robust. We discuss
this observation in more detail in Section 2.A. Thus bicompetitive meta-algorithms
give a general approach for designing robust and consistent algorithms for CFC and
its subclasses.

The idea of approaching robust and consistent algorithm design via the design of
bicompetitive meta-algorithms has been considered to some extent in the literature
on other online problems, e.g., in the work of [75] on combining algorithms for
MTS. To our knowledge, however, our specific terminology has not seen wide use
in the literature.

2.3 Warmup: Switching Algorithms and Their Fundamental Limits
A natural first approach for designing bicompetitive meta-algorithms for CFC is
to consider the class of switching algorithms, whose decisions switch between two
other algorithms:

Definition 2.3.1. A meta-algorithm Meta is a switching meta-algorithm if, at
each time 𝑡, the decision Meta𝑡 (Alg(1) ,Alg(2)) made by Meta resides in the set
{Alg(1)𝑡 ,Alg(2)𝑡 }.

Switching algorithms have garnered significant attention in the literature on robust-
ness and consistency in recent years, e.g., [71, 75, 113, 118]. In particular, the only
robust and consistent algorithms for CFC or subclasses thereof in general dimension
are the switching algorithms of [75] for MTS and [113] for 𝛼CFC.
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Algorithm 1: Switch(Adv,Rob; 𝑏, 𝛿)
Input: Algorithms Adv,Rob ∈ ACFC; hyperparameters 𝑏 > 1, 𝛿 ∈ (0, 1]
Output: Decisions x1, . . . , x𝑇 chosen online

1 𝑖 ← 0
2 while problem instance has not ended do
3 if 𝑖 ≡ 0 mod 2 then
4 x𝑡 ← Adv𝑡 until the last time 𝑡 that CAdv(1, 𝑡) ≤ 𝑏𝑖
5 𝑖 ← 𝑖 + 1
6 else
7 x𝑡 ← Rob𝑡 until the last time 𝑡 that CRob(1, 𝑡) ≤ 𝛿𝑏𝑖
8 𝑖 ← 𝑖 + 1
9 end

In Algorithm 1, we generalize these prior algorithms to the general CFC setting,
proposing a meta-algorithm Switch which takes as hyperparameters 𝑏 > 1 and
𝛿 ∈ (0, 1]. In the following proposition, we show that Switch obtains a tunable
bicompetitive bound.

Proposition 2.3.2. Suppose Adv,Rob are algorithms for CFC and CRob ≥ 1.
Then the switching meta-algorithm Switch (Algorithm 1) is

(
3 + O(𝜖), 5 + O( 1

𝜖2 )
)
-

bicompetitive with respect to the inputs (Adv,Rob), where 𝜖 > 0 is an algorithm
hyperparameter.

Note that, in order to reduce the two hyperparameters 𝑏, 𝛿 used by Switch to a single
hyperparameter 𝜖 as in the statement of Proposition 2.3.2, we can simply introduce
an auxiliary variable 𝛾 and make the substitutions 𝛿 ← 𝑏𝛾2 − 𝑏−1, 𝑏 ←

√︁
𝛾−2 + 1,

and 𝛾 ←
√︁
𝜖
4 . Our proof of Proposition 2.3.2 follows closely that of [75, Theorem

1], extending it via the recent result of [118, Theorem 5] on linear search with a
“hint”; we present a proof in Section 2.B.

If Adv is an advice algorithm and Rob is a 𝐶-competitive algorithm for (a subclass
of) CFC, then Switch yields (3+O(𝜖))-consistency and (5 + O( 1

𝜖2 ))𝐶-robustness.
Notably, this does not appear to allow for arbitrary consistency: specifically, Switch
cannot attain consistency less than 3 while maintaining finite robustness. This
limitation is unsurprising, since an identical lower bound holds on the algorithm for
linear search on which Switch is based [118, Theorem 7], which can be extended
to a lower bound on the bicompetitiveness of switching meta-algorithms. It is
natural, then, to ask whether this lower bound also applies to the robustness and
consistency of CFC algorithms. That is, can we devise a switching algorithm that,
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so long as it is provided with some non-adversarial, competitive algorithm Rob,
beats 3-consistency while staying robust?

In the following theorem, which we prove in Section 2.B, we show that robustness
and consistency also face this fundamental limit: any algorithm that switches be-
tween black-box advice and an advice-agnostic competitive algorithm cannot beat
3-consistency while preserving robustness. We prove the theorem in the ℓ2 setting,
though the result extends to other norms such as the ℓ∞ norm.

Theorem 2.3.3. Consider the ℓ2 norm setting. Let Adv be an advice algorithm, and
let Rob be any (deterministic) competitive algorithm for CBC that is advice-agnostic.
Let Alg be an online algorithm that deterministically switches between Adv and Rob.
If Alg is 𝑐-consistent with 𝑐 < 3, then Alg cannot have finite robustness.

This lower bound implies that to obtain finite robustness alongside consistency 𝑐 < 3
for general CFC, one must venture beyond the realm of switching algorithms. This
is exactly the focus of Section 2.4, where we approach this task by exploiting the
convexity of CFC. First, though, we ask: are there any special cases of CFC in
which switching algorithms can obtain (1+ 𝜖)-consistency and finite robustness for
any 𝜖 > 0? The answer is affirmative for 𝛼CFC [113], and as we show in the next
proposition, such an algorithm also exists for NCBC. Specifically, we propose an
algorithm, NestedSwitch (Algorithm 2), which can achieve a (1 + 𝜖)-consistent,
O( 𝑑

𝜖
)-robust tradeoff for NCBC by using a simple threshold-based rule for switching

between the advice and the Steiner point algorithm of [101]. We prove Proposition
2.3.4 in Section 2.B.

Proposition 2.3.4. Consider the problem of NCBC on (R𝑑 , ∥ · ∥ℓ2), where the initial
body 𝐾1 resides in some ball 𝐵(y, 𝑟) of radius 𝑟 containing x0, and COpt ≥ 1. If Rob
is the Steiner point algorithm ([101]) that chooses the Steiner point of𝐾𝑡 at each time
𝑡, then NestedSwitch (Algorithm 2) is (1+𝜖)-consistent and

(
1 + 1

𝜖

)
𝑟 (𝑑+2)-robust,

where 𝜖 > 0 is a hyperparameter.

2.4 Beyond Switching Algorithms: Exploiting Convexity to Break 3-
Consistency

In this section, we present our main results: three novel algorithms that transcend
the limitations of switching algorithms by exploiting the convexity of CFC. The key
insight that enables this improved performance is that hedging between Adv and
some more robust decision—i.e., choosing a decision that is a convex combination
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Algorithm 2: NestedSwitch(Adv,Rob; 𝜖, 𝑟)
Input: Algorithms Adv,Rob ∈ ANCBC; hyperparameters 𝜖, 𝑟 > 0
Output: Decisions x1 ∈ 𝐾1, . . . , x𝑇 ∈ 𝐾𝑇 chosen online

1 for 𝑡 = 1, 2, . . . , 𝑇 do
2 Observe 𝐾𝑡 , x̃𝑡 := Adv𝑡 , and s𝑡 := Rob𝑡
3 if 𝜖 · CAdv(1, 𝑡) ≥ 𝑟 (𝑑 + 2) then
4 x𝑡 ← s𝑡
5 else
6 x𝑡 ← x̃𝑡
7 end

of Adv and some robust strategy Rob, or that approaches but does not reach Adv
unless it is sufficiently good—allows for more nuanced algorithmic behavior than
switching permits.

AOBD: An Optimal Memoryless Algorithm in One Dimension
We begin this section by considering the restricted setting where the vector space
is 𝑋 = R; the results in this subsection are adapted from Rutten, Christianson, et
al. [113]. We may assume without loss of generality that the norm is the absolute
value | · |, since all norms on R are a scalar multiple of this one. Note that despite
its simplicity, the one-dimensional setting has seen significant study in the literature
on CFC/SOCO as well as their application to, e.g., sustainable datacenter operation
[37, 119, 120]. We will also make the temporary assumption that each 𝑓𝑡 has a
finite minimizer, though this assumption can be lifted (see the discussion following
Theorem 2.4.1).

We propose in Algorithm 3 a strategy which we call Adaptive Online Balanced
Descent (AOBD), that builds on the classic Online Balanced Descent framework
[102] to incorporate black-box advice. Note that this algorithm is not a meta-
algorithm, since it only requires the input of a single advice algorithm; rather, it
acts to directly “robustify” the decisions made by the provided advice, without
incorporating the decisions of some additional robust strategy. Intuitively, AOBD
seeks to follow the advice as closely as possible while approximately balancing
the incurred hitting cost with the movement cost. The extent to which the hitting
cost and movement cost can differ is governed by two confidence hyperparameters
𝛽 > 1 > 𝛽 > 0; intuitively, if the ratio 𝛽/𝛽 is larger, the algorithm will have more
leeway to follow the advice closely, even if this leads to an imbalance between
movement and hitting cost (this corresponds to an increase in the width of the
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Algorithm 3: Adaptive Online Balanced Descent AOBD(Adv; 𝛽, 𝛽)

Input: Algorithm Adv; hyperparameters 𝛽 > 1 > 𝛽 > 0
Output: Decisions 𝑥1 ∈ R, . . . , 𝑥𝑇 ∈ R chosen online

1 for 𝑡 = 1, 2, . . . , 𝑇 do
2 Observe 𝑓𝑡 and 𝑥𝑡 := Adv𝑡
3 Choose some 𝑣𝑡 ∈ arg min𝑣∈R 𝑓𝑡 (𝑣)
4 Define 𝑥(𝜆) := (1 − 𝜆)𝑥𝑡−1 + 𝜆𝑣𝑡 for 𝜆 ∈ [0, 1]
5 Choose 𝜆 ∈ [0, 1] such that |𝑥(𝜆) − 𝑥𝑡−1 | = 𝛽 𝑓𝑡 (𝑥(𝜆)), or 𝜆 = 1 if no such 𝜆

exists
6 Choose 𝜆 ∈ [0, 1] such that |𝑥(𝜆) − 𝑥𝑡−1 | = 𝛽 𝑓𝑡 (𝑥(𝜆)), or 𝜆 = 1 if no such 𝜆

exists
7 �̂�← arg min

𝜆∈[𝜆,𝜆] |𝑥(𝜆) − 𝑥𝑡 |
8 𝑥𝑡 ← 𝑥(�̂�)
9 end

interval [𝜆, 𝜆] employed in line 7 of the algorithm). Determining the values of 𝜆
and 𝜆 can be done efficiently using binary search.

In the following theorem, we characterize the robustness and consistency of AOBD.

Theorem 2.4.1. The algorithm AOBD (Algorithm 3) is max
{ 1+𝛽

1−𝛽 ,
1+𝛽
𝛽

}
-consistent

and max
{
1 + 2𝛽, 1 + 𝛽−1

}
-robust. In particular, if 𝛽 = 𝜖

2+𝜖 and 𝛽 = 1
𝜖

for some

𝜖 ∈ (0, 1), then AOBD is (1 + 𝜖)-consistent and
(
2 + 2

𝜖

)
-robust.

A proof of this theorem is presented in Section 2.C. Before proceeding, we make
two brief remarks. First, note that our analysis is a refined version of the original
analysis in the paper [113], which enables us to obtain an improved robustness-
consistency tradeoff. Second, note that the assumption we made that each 𝑓𝑡 has a
finite minimizer can be easily relaxed by redefining 𝑥(𝜆) in any case that 𝑣𝑡 ∈ {±∞}
so that the algorithm “moves toward” 𝑣𝑡 until the relevant balance condition holds.

A natural question is whether the tradeoff between robustness and consistency
incurred by AOBD is necessary, or whether any better tradeoff can be obtained. As
we show in the following theorem, AOBD achieves a tradeoff between robustness
and consistency that is asymptotically optimal in 𝜖 .

Theorem 2.4.2. Let 𝜖 ∈ (0, 1
2 ), and let Alg be any algorithm for CFC on R with

advice Adv. If Alg is (1 + 𝜖)-consistent, then it must be at least 1
2𝜖 -robust.
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A proof of this theorem is presented in Section 2.C. This result, together with the up-
per bound obtained by AOBD, implies that the optimal tradeoff between consistency
and robustness for CFC on R is (1 + 𝜖)-consistency and Θ( 1

𝜖
)-robustness. Having

established such an optimal tradeoff in the one-dimensional setting, one might
wonder whether a similar algorithmic strategy might enable near-optimal tradeoffs
between consistency and robustness in more general settings—i.e., whether it is
possible to incorporate black-box advice into the Online Balanced Descent frame-
work [102] in higher-dimensional vector spaces. Unfortunately, it is not likely that
such a straightforward extension of AOBD can obtain good robustness-consistency
tradeoffs: [113, Theorem 15] shows that any memoryless and symmetry-invariant
algorithm (which includes natural generalizations of the Online Balanced Descent
framework) cannot in general obtain both robustness and nontrivial consistency. As
such, more sophisticated algorithms that effectively utilize memory are needed to
take advantage of black-box advice while preserving robustness in high-dimensional
settings.

Interp: a (
√

2 + 𝜖,O(𝜖−2))-Bicompetitive Meta-Algorithm
We now return to the setting of general dimension and arbitrary convex functions
𝑓𝑡 , and the task of designing bicompetitive meta-algorithms. We preface our algo-
rithmic discussion with some definitions from the geometry of real normed vector
spaces X = (𝑋, ∥ · ∥) which we employ in the proposed algorithm’s statement and
performance bound. We present abridged introductions of these notions here, giving
more detail in Section 2.D.

We begin by introducing the rectangular constant 𝜇(X) of a normed vector space
X, which is bounded between

√
2 and 3, with 𝜇(X) =

√
2 when X is Hilbert and

𝜇(ℓ𝑝) < 3 for any 𝑝 ∈ (1,∞) ([121, 122]). Next, we define the radial retraction.

Definition 2.4.3 ([123]). On a normed vector space X = (𝑋, ∥ · ∥), the radial
retraction 𝜌(· ; 𝑟) : 𝑋 → 𝐵(0, 𝑟) is the metric projection onto the closed ball of
radius 𝑟 ≥ 0:

𝜌(x; 𝑟) =


x if ∥x∥ ≤ 𝑟

𝑟 x
∥x∥ if ∥x∥ > 𝑟.

On a fixed normed space X, the collection of radial retractions 𝜌(· ; 𝑟) with 𝑟 > 0
share a Lipschitz constant, which we call 𝑘 (X). It is known that 1 ≤ 𝑘 (X) ≤ 2
([124]), and moreover 𝑘 (X) ≤ 𝜇(X) (Section 2.D, Proposition 2.D.6).
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Algorithm 4: Interp(Adv,Rob; 𝜖, 𝛾, 𝛿)
Input: Algorithms Adv,Rob; hyperparameters 𝜖 > 0 and 𝛾 > 0, 𝛿 > 0

satisfying 2𝛾 + 2𝛿 = 𝜖
Output: Decisions x1, . . . , x𝑇 chosen online

1 for 𝑡 = 1, 2, . . . , 𝑇 do
2 Observe 𝑓𝑡 , x̃𝑡 := Adv𝑡 , and s𝑡 := Rob𝑡
3 if CRob(1, 𝑡) ≥ 𝛿 · CAdv(1, 𝑡) then
4 x𝑡 ← x̃𝑡
5 else
6 y𝑡 ← s𝑡−1 + 𝜌 (x̃𝑡 − s𝑡−1; ∥x𝑡−1 − s𝑡−1∥)
7 z𝑡 ← s𝑡−1 + 𝜌 (y𝑡 − s𝑡−1; max{∥y𝑡 − s𝑡−1∥ − 𝛾 · CAdv(𝑡, 𝑡), 0})
8 x𝑡 ← s𝑡 + 𝜌(x̃𝑡 − s𝑡 ; ∥z𝑡 − s𝑡−1∥)
9 end

With these definitions at our disposal, we now proceed to the main result of this
section. We propose Algorithm 4, a meta-algorithm Interp that takes as input
two algorithms Adv,Rob for (a subclass of) CFC, and hyperparameters 𝜖, 𝛾, 𝛿 > 0
satisfying 2𝛾+2𝛿 = 𝜖 . Interp works as follows: at each time 𝑡, if the cost of Rob so
far is a substantial fraction of the cost of Adv, then Interp can move to Adv𝑡 while
staying competitive with respect to Rob, and it does so (line 4). Otherwise, Interp
moves to a point x𝑡 determined by the series of radial projections (lines 6, 7, and
8), which intuitively guide Interp to take a “greedy step” toward the decision made
by Rob while still remaining close enough to Adv so as to maintain a consistency
guarantee.

We characterize the bicompetitive performance of Interp in the following theorem,
which holds in any normed vector space X of arbitrary dimension.

Theorem 2.4.4. Interp (Algorithm 4) is

©«𝜇(X) + 𝜖, 1 + 𝑘 (X)𝛾 +
𝜇(X) + 𝜖 + 1 + 𝑘 (X)

𝛾

𝛿

ª®¬ –bicompetitive

with respect to (Adv,Rob). With 𝛾, 𝛿 chosen optimally, the bound is (𝜇(X) +
𝜖,O(𝜖−2)).

In particular, if Adv is advice and Rob is 𝐶-competitive for (a subclass of) CFC,
then Interp is (𝜇(X) + 𝜖)-consistent and O(𝐶𝜖−2)-robust.

Notably, Interp (Algorithm 4) strictly improves on the 3-consistent lower bound for
switching meta-algorithms in any ℓ𝑝 space with 1 < 𝑝 < ∞, in which it holds that
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𝜇(ℓ𝑝) < 3. Moreover, it obtains consistency (
√

2+𝜖) in any Hilbert space. We prove
Theorem 2.4.4 and give details regarding optimal selection of the parameters 𝛾, 𝛿
in Section 2.E. The proof employs two potential function arguments with different
potential functions for the bounds with respect to Adv and Rob. Moreover, the
generality of the theorem’s setting requires the development of several geometric
results characterizing the radial projection and its relation to the rectangular constant
in arbitrary-dimensional normed vector spaces, which we present in Section 2.E prior
to the main proof. These results are crucial for enabling Interp’s robustness and
consistency in the general setting and elucidate the presence of the constants 𝜇(X)
and 𝑘 (X) in its bicompetitive bound.

We also detail robustness and consistency corollaries of Theorem 2.4.4 for multiple
subclasses of CFC in Section 2.G. In particular, Theorem 2.4.4 and Table 2.1 imply
an algorithm for CFC and CBC on R𝑑 with any norm that is (𝜇(R𝑑 , ∥ · ∥) + 𝜖)-
consistent and O( 𝑑

𝜖2 )-robust; we also obtain an algorithm for 𝛼CFC that is (𝜇(X) +
𝜖)-consistent and O( 1

𝛼𝜖2 )-robust for 𝛼CFC on any normed vector space X.

Attaining (1 + 𝜖)-Consistency in Bounded Instances with BdInterp
In the preceding section, we proved that in the Hilbert space setting, Interp (Algo-
rithm 4) obtains consistency (

√
2 + 𝜖) while remaining competitive with respect to

Rob. While this is a significant improvement on the limit of 3-consistency faced
by switching algorithms, the question remains: can we devise an algorithm that
achieves (1 + 𝜖)-consistency and 𝑅(𝜖) < ∞ competitiveness with respect to Rob
for any 𝜖 > 0, in any normed vector space? In this section, we provide a sim-
ple sufficient condition under which this is possible: if there exists some constant
𝐷 ∈ R+ for which ∥Adv𝑡 − Rob𝑡 ∥ ≤ 𝐷 for all 𝑡, then there is a meta-algorithm that
is (1 + 𝜖,O( 𝐷

𝜖
))-bicompetitive with respect to (Adv,Rob). We call this condition

𝐷-boundedness of Adv and Rob; it arises naturally in a number of settings, for
example in any CBC instance in which the diameter of each body 𝐾𝑡 is bounded by
𝐷.

We present the algorithm achieving this bicompetitive bound, BdInterp, in Algo-
rithm 5. Just like Interp, BdInterp takes as input two algorithms Adv,Rob for (a
subclass of) CFC, and hyperparameters 𝜖, 𝛾, 𝛿 > 0 satisfying 2𝛾+2𝛿 = 𝜖 . At a high
level, BdInterp operates similarly to Interp, though it takes smaller greedy steps
toward Rob, enabling it to maintain (1 + 𝜖)-consistency. Specifically, BdInterp
works as follows: if the cost of Rob is a sufficient fraction of the cost of Adv, then
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Algorithm 5: BdInterp(Adv,Rob; 𝜖, 𝛾, 𝛿)
Input: Algorithms Adv,Rob; hyperparameters 𝜖 > 0 and 𝛾 > 0, 𝛿 > 0

satisfying 2𝛾 + 2𝛿 = 𝜖
Output: Decisions x1, . . . , x𝑇 chosen online

1 for 𝑡 = 1, 2, . . . , 𝑇 do
2 Observe 𝑓𝑡 , x̃𝑡 := Adv𝑡 , and s𝑡 := Rob𝑡
3 if CRob(1, 𝑡) ≥ 𝛿 · CAdv(1, 𝑡) then
4 x𝑡 ← x̃𝑡
5 else
6 𝜈 ← ∥x𝑡−1−s𝑡−1∥

∥x̃𝑡−1−s𝑡−1∥ if x̃𝑡−1 ≠ s𝑡−1, otherwise 𝜈 ← 0
7 y𝑡 ← 𝜈x̃𝑡 + (1 − 𝜈)s𝑡
8 x𝑡 ← s𝑡 + 𝜌 (y𝑡 − s𝑡 ; max{∥y𝑡 − s𝑡 ∥ − 𝛾 · CAdv(𝑡, 𝑡), 0})
9 end

BdInterp moves to Adv𝑡 (line 4). Otherwise, it selects an auxiliary point y𝑡 as
the point along the segment [s𝑡 , x̃𝑡] with the same relative position as x𝑡−1 on the
segment [s𝑡−1, x̃𝑡−1] (line 7), and then chooses x𝑡 by taking a greedy step toward s𝑡
from y𝑡 (line 8).

We present the performance result for BdInterp in Theorem 2.4.5; like Theorem
2.4.4, the result holds in any normed vector space X of arbitrary dimension.

Theorem 2.4.5. Suppose that Adv and Rob are 𝐷-bounded, i.e., ∥Adv𝑡 −Rob𝑡 ∥ ≤ 𝐷
for all 𝑡 ∈ [𝑇]; and assume that CRob ≥ 1. Then BdInterp (Algorithm 5) is(

1 + 𝜖, 𝐷 + 𝐷
𝛾
+ 1 + 𝜖

𝛿

)
–bicompetitive

with respect to (Adv,Rob). With 𝛾, 𝛿 chosen optimally, the bound is (1 + 𝜖,O( 𝐷
𝜖
)).

In particular, if Adv is advice and Rob is 𝐶-competitive for (a subclass of) CFC,
then BdInterp is (1 + 𝜖)-consistent and O(𝐶𝐷

𝜖
)-robust.

Remarkably, Theorem 2.4.5 states that BdInterp not only improves on the consis-
tency of Interp, but it also strictly improves upon Interp’s O(𝜖−2) competitiveness
with respect to Rob when 𝐷 = 𝑜(𝜖−1). Moreover, BdInterp substantially improves
on the randomized switching algorithm of [75] in the 𝐷-bounded setting, provid-
ing a tunable robustness and consistency guarantee with no additive factor in the
consistency term. We give a proof of Theorem 2.4.5, as well as details on optimal
parameter selection, in Section 2.F. The argument follows a similar line of reasoning
as that of our proof of Theorem 2.4.4, though in the proof of competitiveness with
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respect to Rob (i.e., robustness), we employ a novel potential function constructed
via the ratio between the respective distances of x𝑡 and x̃𝑡 to s𝑡 .

We detail robustness and consistency corollaries of Theorem 2.4.5 for multiple
subclasses of CFC in Section 2.G. In particular, Theorem 2.4.5 and Table 2.1 imply
an algorithm for CFC and CBC with any norm that is (1+ 𝜖)-consistent and O( 𝑑𝐷

𝜖
)-

robust on 𝐷-bounded instances. We also obtain an algorithm for 𝛼CFC in the
𝐷-bounded finite-dimensional Euclidean setting that achieves (1 + 𝜖)-consistency
and O( 𝐷

𝛼1/2𝜖
)-robustness. This latter bound is nearly tight for 𝛼CFC: Theorem 2.4.2

gives a lower bound of Ω( 1
𝜖
) for any (1 + 𝜖)-consistent 𝛼CFC algorithm when

𝛼 = 2𝜖 . When 𝐷 = 𝑂 (1), Theorem 2.4.5 gives us (1 + 𝜖)-consistency and
O( 1

𝛼1/2𝜖
)-robustness, leaving a gap of just O(𝛼−1/2) between the upper and lower

bounds. We leave to future work the question of whether these upper and lower
bounds can be made tight and whether the factor of 𝐷 (and more generally the
𝐷-boundedness assumption) can be dropped; this latter question will be studied in
Chapter 3 of this thesis.

2.5 Conclusion
In this chapter, we examine the question of integrating black-box advice into algo-
rithms for convex function chasing using the notions of robustness and consistency
from the literature on online algorithms with machine-learned advice. We first pro-
pose an algorithm that switches between the decisions of an arbitrary𝐶-competitive
algorithm Rob and the advice, showing that it obtains (3 + O(𝜖))-consistency and
finite robustness for any 𝜖 > 0. We moreover show that this is optimal, in the sense
that no switching algorithm can improve upon 3-consistency while maintaining fi-
nite robustness. We then move beyond switching algorithms, and propose three
algorithms, AOBD, Interp, and BdInterp, which obtain improved robustness and
consistency guarantees by exploiting the convexity inherent in the CFC problem.
In particular, AOBD obtains the optimal tradeoff of (1 + 𝜖)-consistency and O( 1

𝜖
)-

robustness in the one-dimensional setting, Interp obtains (
√

2 + 𝜖)-consistency
and O( 𝐶

𝜖2 )-robustness in the general Hilbert space setting, and under the addi-
tional assumption of 𝐷-boundedness, BdInterp can obtain (1+ 𝜖)-consistency and
O(𝐶𝐷

𝜖
)-robustness.

Several interesting questions remain open for future work: in particular, (a) the
question of whether (1 + 𝜖)-consistency and finite robustness can be obtained for
general CFC without the 𝐷-boundedness assumption, and (b) the question of tight
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Problem State-of-the-Art Competitive Ratio Setting

CFC 𝑑 + 1 R𝑑 with any norm
CBC 𝑑 R𝑑 with any norm
𝑘CBC 2𝑘 + 1 R𝑑 with ℓ2 norm
𝛼CFC max

{
1, 2

𝛼

}
Any normed vector space

𝛼CFC O
(

1
𝛼1/2

)
R𝑑 with ℓ2 norm

(𝜅, 𝛾)CFC (2 + 2
√

2)2𝛾/2𝜅 R𝑑 with ℓ2 norm

Table 2.2: Competitive ratios for state-of-the-art algorithms on various subclasses
of CFC.

lower bounds on robustness and consistency for CFC and its many subclasses.
Specifically, for the case of CFC in general, we pose the question of whether
(1 + 𝜖)-consistency is possible together with O( 𝑑

𝜖
)-robustness, or even whether the

dependence on 𝜖 and 𝑑 can be further improved in the robustness bound. We will
provide more insight on these questions in the subsequent chapter of this thesis.

Appendix
In these appendix sections, we provide additional background on CFC and its special
cases, proofs of the theoretical results in the main body of the chapter, and geometric
details that are leveraged in our design and analysis of Interp (Algorithm 2.4.4).

2.A Preliminaries
In this section, we provide more detailed definitions of the subclasses of convex
function chasing considered in this work, including both those introduced in Section
2.2 as well as several additional special cases which we refer to in the robustness and
consistency results given in Section 2.G. We also review state-of-the-art competitive
algorithms for each subclass, which we summarize in Table 2.2, which is an extended
version of Table 2.1 in the main text. We then elaborate on the claim made in
Section 2.2 that a (𝑐, 𝑟)-bicompetitive meta-algorithm for CFC, along with a 𝑏-
competitive algorithm for a subclass of CFC, together yield a 𝑐-consistent and
𝑟𝑏-robust algorithm for that subclass.

Subclasses of CFC
Convex body chasing. In the problem of convex body chasing (CBC) on a
normed vector space (𝑋, ∥ · ∥), at each time 𝑡 a decision-maker is given a convex



40

body 𝐾𝑡 ⊆ 𝑋 and faces the requirement that their decision x𝑡 must reside within 𝐾𝑡 .
A further special case of CBC is the problem of nested convex body chasing (NCBC),
in which subsequent bodies are nested, i.e., 𝐾𝑡 ⊇ 𝐾𝑡+1 for each 𝑡. We define the set
of all online algorithms which are feasible for CBC, i.e., which produce decisions
residing within the convex body 𝐾𝑡 at each time, as ACBC. We define ANCBC

similarly as the set of all online algorithms which are feasible for NCBC. [106]
proved that an algorithm based on a functional generalization of the Steiner point of
a convex body achieves competitive ratio 𝑑 for CBC and 𝑑 + 1 for general CFC in
R𝑑 equipped with any norm.

The problem of convex body chasing can easily be seen as a special case of CFC in
which each hitting cost 𝑓𝑡 is the {0,∞} indicator of the convex set 𝐾𝑡 . That is,

𝑓𝑡 (x) =


0 if x ∈ 𝐾𝑡
∞ otherwise.

As noted in [106], we need not even require hitting costs to take infinite values
to recover convex body chasing from function chasing. Indeed, restricting to the
finite-dimensional setting,3 consider 𝑓𝑡 defined as

𝑓𝑡 (x) = 3 · 𝑑 (x, 𝐾𝑡) = 3 min
y∈𝐾𝑡
∥x − y∥.

Then any algorithm Alg ∈ ACFC yields a set of decisions Alg1, . . . ,Alg𝑇 on the
instance (x0, 𝑓1, . . . , 𝑓𝑇 ); and moreover, Alg can be transformed into an algorithm
Alg′ ∈ ACFC with strictly improved cost, and which in particular incurs no hitting
cost, by setting

Alg′𝑡 =


Alg𝑡 if Alg𝑡 ∈ 𝐾𝑡
Π𝐾𝑡Alg𝑡 otherwise.

Clearly each decision Alg′𝑡 resides in the convex body 𝐾𝑡 ; thus Alg′ is a feasible
online algorithm for CBC, i.e., Alg′ ∈ ACBC. Moreover, the cost of Alg′ on the
CBC instance is identical to its cost for the corresponding CFC instance, since it
incurs no hitting cost. It follows that the competitive ratio of Alg′ for the CBC
problem is at most the competitive ratio of Alg as a CFC algorithm, since Opt for
a CBC instance and its corresponding CFC instance always coincide. In short, a
𝐶-competitive algorithm for CFC is also 𝐶-competitive for CBC.

3This restriction is natural because no algorithm can be competitive for CBC in the infinite-
dimensional setting. We impose the restriction in order to ensure existence of a metric projection
onto 𝐾𝑡 .
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Remark 2.A.1. The preceding line of reasoning can be extended to show that a
𝐶-competitive algorithm for CFC gives a 𝐶-competitive algorithm for CFC with
strict decision constraints, i.e., where at time 𝑡, the decision x𝑡 must both reside in
some convex body 𝐾𝑡 and also incurs a convex hitting cost 𝑓𝑡 (x𝑡).

Chasing low-dimensional convex bodies. A special case of convex body chasing
that has received significant attention is the problem of chasing low-dimensional
bodies in higher-dimensional space: indeed, the seminal work of [77] began by ad-
dressing the problem of chasing lines in the Euclidean plane. [125] later presented
a 3-competitive algorithm for chasing lines in (R𝑑 , ∥ · ∥ℓ2), and most recently [108]
gave an algorithm that is (2𝑘 + 1)-competitive for chasing convex bodies lying in
𝑘-dimensional affine subspaces, regardless of the dimension 𝑑 of the underlying Eu-
clidean space. Motivated by this last result, we define the problem of 𝑘-dimensional
convex body chasing (𝑘CBC), comprised of all instances of CBC in which each
body 𝐾𝑡 lies within an affine subspace of dimension at most 𝑘—i.e., dim aff 𝐾𝑡 ≤ 𝑘
for all 𝑡.

𝛼-polyhedral convex function chasing. A class of functions that has been studied
extensively in the literature on online optimization with switching costs (SOCO) is
the class of globally 𝛼-polyhedral functions, e.g., [102, 103], which are defined as
follows.

Definition 2.A.2. Let (𝑋, ∥ · ∥) be a normed vector space, and let 𝛼 > 0. A function
𝑓 : 𝑋 → R+ is globally 𝛼-polyhedral if it has unique minimizer x∗ ∈ 𝑋 , and in
addition,

𝑓 (x) ≥ 𝑓 (x∗) + 𝛼∥x − x∗∥ for all x ∈ 𝑋.

Roughly speaking, a globally 𝛼-polyhedral function has a unique minimizer, away
from which it grows with slope at least 𝛼. For a fixed 𝛼 > 0, we define the
problem of 𝛼-polyhedral convex function chasing (𝛼CFC) comprised of all those
problem instances of CFC in which, in addition to being convex, each function 𝑓𝑡

is also globally 𝛼-polyhedral. 𝛼CFC has been widely studied due to its admitting
algorithms with “dimension-free” competitive ratios: [103] showed that a greedy
algorithm that simply moves to the minimizer x∗𝑡 of each function 𝑓𝑡 is max{1, 2

𝛼
}-

competitive for 𝛼CFC in any normed vector space. In the setting of R𝑑 with the ℓ2

norm, [107] gave an algorithm augmenting the Online Balanced Descent algorithm
of [102] to achieve a competitive ratio of O( 1

𝛼1/2 ).
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(𝜅, 𝛾)-well-centered convex function chasing. Another class of functions that has
received attention in the design of algorithms for subclasses of CFC with dimension-
free competitive ratios is the set of (𝜅, 𝛾)-well-centered functions, introduced by
[108]:

Definition 2.A.3. Let (𝑋, ∥ · ∥) be a normed vector space, and let 𝜅, 𝛾 ≥ 1. A
function 𝑓 : R𝑑 → R+ with minimizer x∗ is (𝜅, 𝛾)-well-centered if there exists some
𝑎 > 0 such that

𝑎

2
∥x − x∗∥𝛾 ≤ 𝑓 (x) ≤ 𝑎𝜅

2
∥x − x∗∥𝛾 for all x ∈ 𝑋.

Intuitively, the growth rate of a (𝜅, 𝛾)-well-centered function away from its mini-
mizer (as measured with the “distance” ∥ · ∥𝛾) is bounded above and below, and
the ratio of these bounds is at most 𝜅. For fixed 𝜅, 𝛾 ≥ 1, we define the problem
of (𝜅, 𝛾)-well-centered convex function chasing ((𝜅, 𝛾)CFC) comprised of all those
problem instances of CFC in which each 𝑓𝑡 is (𝜅, 𝛾)-well-centered. [108] showed
that the "Move towards Minimizer" algorithm is (2 + 2

√
2)2𝛾/2𝜅-competitive for

(𝜅, 𝛾)CFC on R𝑑 equipped with the ℓ2 norm.

Bicompetitive meta-algorithms give robust and consistent algorithms
In this section, we briefly justify the claim that if Meta is a (𝑐, 𝑟)-bicompetitive
meta-algorithm for CFC, Adv is an advice algorithm, and Rob is a 𝑏-competitive
online algorithm for a subclass of CFC, then Meta(Adv,Rob) is 𝑐-consistent and
𝑟𝑏-robust for that subclass. This is straightforward to see for non-CBC subclasses, or
more generally, for any subclass of CFC which does not involve hard constraints on
the decisions x𝑡 . In particular, Rob being 𝑏-competitive means that CRob ≤ 𝑏 ·COpt,
and so (𝑐, 𝑟)-bicompetitiveness of Meta implies that both CMeta(Adv,Rob) ≤ 𝑐 ·CAdv

and CMeta(Adv,Rob) ≤ 𝑟 · CRob ≤ 𝑟𝑏 · COpt, as desired.

The only subclasses that require more careful justification are those, such as CBC,
with hard constraints on the decisions. However, so long as the advice always gives
feasible decisions—e.g., in the CBC case, Adv ∈ ACBC, so Adv𝑡 ∈ 𝐾𝑡 for each
𝑡—then we can obtain the same result by applying the reasoning from Section 2.A
on equivalent CFC reformulations of instances with hard constraints. That is, on
any instance of the subclass, we must simply run Meta(Adv,Rob) on its equivalent
reformulation as a CFC instance, and we thereby obtain the same guarantees of
𝑐-consistency and 𝑟𝑏-robustness for the subclass.
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2.B Switching Algorithms
Proof of Proposition 2.3.2
The proof follows the argument of [118, Theorem 5] and uses a similar line of
reasoning as [75, Theorems 1, 18] in applying an algorithm for linear search to
CFC.

Each value of 𝑖 encountered in the execution of Algorithm 1 is taken to refer to a
phase of the algorithm; every decision x𝑡 made during a particular value of 𝑖 is said
to take place during the 𝑖th phase. Our strategy will be to bound the cost that the
algorithm incurs in each phase 𝑖, including the cost it takes to switch from the last
decision of the previous phase 𝑖 − 1.

As a base case, consider 𝑖 = 0. The total cost incurred by the algorithm during this
phase is bounded by 𝑏𝑖 = 𝑏0 = 1, by line 4 of the algorithm.

Now consider phase 𝑖 > 0, and assume that 𝑖 is odd; after proving the cost bound
for phase 𝑖 in the odd case, we will state the corresponding bound for the even
case, which follows a nearly identical argument. Let 𝑡 be the last timestep in the
(𝑖 − 1)th phase—that is, 𝑡 is defined such that CAdv(1, 𝑡 + 1) > 𝑏𝑖−1. We will assume
that CAdv(1, 𝑡) ≤ 𝑏𝑖−1, i.e., the algorithm makes at least one decision during phase
(𝑖 − 1), selecting x𝑡 = Adv𝑡 ; but the upper bound we obtain will also apply to the
case where the (𝑖−1)th phase is vacuous. Let 𝑡 be the last timestep corresponding to
phase 𝑖, i.e., 𝑡 ≥ 𝑡 is defined such that CRob(1, 𝑡 + 1) > 𝛿𝑏𝑖. If 𝑡 = 𝑡, then clearly no
decisions are made during phase 𝑖, so no cost is incurred during this phase. On the
other hand, if 𝑡 > 𝑡, then certainly CRob(1, 𝑡) ≤ 𝛿𝑏𝑖, so the cost incurred by Switch
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during phase 𝑖, starting from its position at time 𝑡, can be bounded as

CSwitch(𝑡 + 1, 𝑡) =
𝑡∑︁

𝑡=𝑡+1
𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥

= 𝑓𝑡+1(x𝑡+1) + ∥x𝑡+1 − x𝑡 ∥ +
𝑡∑︁

𝑡=𝑡+2
𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥

≤ 𝑓𝑡+1(x𝑡+1) + ∥x𝑡+1 − x0∥ + ∥x𝑡 − x0∥ +
𝑡∑︁

𝑡=𝑡+2
𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥

= 𝑓𝑡+1(Rob𝑡+1) + ∥Rob𝑡+1 − x0∥ + ∥Adv𝑡 − x0∥

+
𝑡∑︁

𝑡=𝑡+2
𝑓𝑡 (Rob𝑡) + ∥Rob𝑡 − Rob𝑡−1∥

≤ CRob(1, 𝑡) + CAdv(1, 𝑡)
≤ 𝛿𝑏𝑖 + 𝑏𝑖−1,

where the first two bounds use the triangle inequality, and the last bound follows by
construction of 𝑡 and 𝑡. By a very similar argument, if 𝑖 is even, we can bound the
cost incurred by Switch during phase 𝑖 as 𝛿𝑏𝑖−1+𝑏𝑖. Then the total cost expenditure
of Switch through the end of some phase 𝑁 > 0 is at most

𝑏0 +
⌊ 𝑁−1

2 ⌋∑︁
𝑖=0
(𝛿𝑏2𝑖+1 + 𝑏2𝑖) +

⌊ 𝑁2 ⌋∑︁
𝑗=1
(𝛿𝑏2 𝑗−1 + 𝑏2 𝑗 )

=


𝑏𝑁 + 2

∑ 𝑁
2 −1
𝑖=0 (𝑏

2𝑖 + 𝛿𝑏2𝑖+1) if 𝑁 is even

𝛿𝑏𝑁 + 2𝑏𝑁−1 + 2
∑ 𝑁−3

2
𝑖=0 (𝑏

2𝑖 + 𝛿𝑏2𝑖+1) if 𝑁 is odd.
(2.1)

Suppose then that the instance ends at time 𝑇 during phase 𝑁 . We break into cases
depending on the value of 𝑁 .

First, if 𝑁 = 0, then clearly CSwitch = CAdv, so Switch is 1-competitive with respect
to Adv. Moreover, since CAdv ≤ 𝑏0 = 1, then by the assumption in the proposition
statement that CRob ≥ 1, it follows that Switch is at most 1-competitive with respect
to Rob.

Second, if 𝑁 = 1, then CSwitch ≤ 2𝑏0 + CRob = 2 + CRob. Since CAdv > 1 and
CRob ≤ 𝛿𝑏 (due to the instance ending at phase 𝑁 = 1), this means that Switch is at
most (2+𝛿𝑏)-competitive with respect to Adv. Moreover, by assumption CRob ≥ 1,
Switch is at most 3-competitive with respect to Rob.
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Next, suppose 𝑁 > 1 and 𝑁 is even. Then we have

CSwitch ≤ 2

𝑁
2 −1∑︁
𝑖=0
(𝑏2𝑖 + 𝛿𝑏2𝑖+1) + CAdv

which follows by applying (2.1) to bound cost through phase (𝑁 − 1), and bounding
the remaining cost by 𝛿𝑏𝑁−1 +CAdv, i.e., the cost to switch back to Adv and follow
it until the instance ends. Then note that CAdv ≥ 𝑏𝑁−2 by definition of phase;
introducing the substitution 2𝑘 := 𝑁 − 2, we find that the competitive ratio of
Switch with respect to Adv is bounded as

CSwitch
CAdv

≤ 1 + 2
∑𝑘
𝑖=0(𝑏2𝑖 + 𝛿𝑏2𝑖+1)

𝑏2𝑘

= 1 + 2
(
𝑏2𝑘+2 − 1
𝑏2𝑘 (𝑏2 − 1)

+ 𝛿𝑏 𝑏2𝑘+2 − 1
𝑏2𝑘 (𝑏2 − 1)

)
≤ 1 + 2

(
𝑏2

𝑏2 − 1
+ 𝛿 𝑏3

𝑏2 − 1

)
.

On the other hand, we know that CAdv ≤ 𝑏𝑁 and CRob ≥ 𝛿𝑏𝑁−1, so by similar
reasoning the competitive ratio of Switch with respect to Rob is bounded as

CSwitch
CRob

≤ 𝑏
𝛿
+ 2

∑𝑘
𝑖=0(𝑏2𝑖 + 𝛿𝑏2𝑖+1)

𝛿𝑏2𝑘+1

≤ 𝑏
𝛿
+ 2

(
𝑏

𝛿(𝑏2 − 1)
+ 𝑏2

𝑏2 − 1

)
.

Finally, consider 𝑁 > 1 for odd 𝑁 . Then

CSwitch ≤ 2

𝑁−1
2∑︁
𝑖=0

𝑏2𝑖 +
𝑁−3

2∑︁
𝑖=0

𝛿𝑏2𝑖+1 + CRob.

Noting that CRob ≤ 𝛿𝑏𝑁 , CAdv ≥ 𝑏𝑁−1, and making the substitution 2𝑘 = 𝑁 − 1, we
obtain that the competitive ratio of Switch with respect to Adv is bounded as

CSwitch
CAdv

≤ 𝛿𝑏 + 2
∑𝑘
𝑖=0 𝑏

2𝑖 +∑𝑘−1
𝑖=0 𝛿𝑏

2𝑖+1

𝑏2𝑘

≤ 𝛿𝑏 + 2
(
𝑏2

𝑏2 − 1
+ 𝛿 𝑏

𝑏2 − 1

)
.



46

On the other hand, we know that CRob ≥ 𝛿𝑏𝑁−2 = 𝛿𝑏2𝑘−1. Thus the competitive
ratio of Switch with respect to Rob is bounded as

CSwitch
CRob

≤ 1 + 2
∑𝑘
𝑖=0 𝑏

2𝑖 +∑𝑘−1
𝑖=0 𝛿𝑏

2𝑖+1

𝛿𝑏2𝑘−1

≤ 1 + 2
(
1
𝛿

𝑏3

𝑏2 − 1
+ 𝑏2

𝑏2 − 1

)
.

Combining these various cases, we obtain that Switch is(
1 + 2

(
𝑏2

𝑏2 − 1
+ 𝛿 𝑏3

𝑏2 − 1

)
, 1 + 2

(
𝑏2

𝑏2 − 1
+ 1
𝛿

𝑏3

𝑏2 − 1

))
–bicompetitive

with respect to (Adv,Rob). Introducing an auxiliary parameter 𝛾 and making the
substitutions 𝛿 ← 𝑏𝛾2 − 𝑏−1, 𝑏 ←

√︁
𝛾−2 + 1, and 𝛾 ←

√︁
𝜖
4 , we arrive at the

bicompetitive bound in terms of 𝜖 stated in the proposition.

Proof of Theorem 2.3.3
We consider the setting of R𝑑 with the ℓ2 norm, where the advice Adv is adversarial
and Rob is an arbitrary 𝑏-competitive algorithm for CBC, with 𝑏 < ∞; Alg is any
algorithm that switches between Rob and Adv. For simplicity of presentation, we
will assume that

√
𝑑 is an integer. Rob is assumed to be advice-agnostic, i.e., the

behavior of Adv does not impact the decisions made by Rob (nor does the behavior
of Alg, since Alg itself depends on both Adv and Rob). We construct a lower
bound in the spirit of the standard example of chasing faces of the hypercube. At
a high level, the CBC instance we construct has two phases: the first is comprised
of multiple subphases in which an affine subspace is chosen adversarially and is
repeatedly served until Rob has “almost” stopped moving. This phase lasts either
until 3

√
𝑑 subphases have concluded, or until the first time that Alg coincides with

Adv at the end of a subphase, whichever happens sooner. If the former holds, i.e., if
Alg ends each of the 3

√
𝑑 subphases at Rob, then the instance is done. Otherwise,

the second phase begins: there are a few different cases, but generally, the same
affine subspace is served repeatedly while Adv slowly drifts away from Rob until
Alg switches back to Rob. Then, the final body is simply the last advice decision
as a singleton, forcing Alg to move back to the advice, and the instance concludes.

We now describe the lower bound in more specific detail. Since Rob is advice-
agnostic, we may begin by describing its behavior before specifying the behavior
of Adv and reasoning about the switching algorithm Alg. We denote by e 𝑗 ∈ R𝑑 ,
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𝑗 ∈ [𝑑] the 𝑗 th standard unit basis vector, which is 1 in its 𝑗 th entry and 0 elsewhere.
Choose any 𝛿 > 0. The starting position is x0 = 0.

Phase one. At time 𝑡 = 1, the served body 𝐾1 is the hyperplane forcing the first
coordinate to be 𝑧1 := 1:

𝐾1 =
{
x : x⊤e1 = 𝑧1

}
.

This same hyperplane 𝐾1 is then repeatedly served until the time 𝑚1 at which Rob
is almost stationary. That is, the time 𝑚1 < ∞ is chosen to satisfy the property that
the cumulative cost incurred by Rob after time 𝑚1, if 𝐾1 were repeated indefinitely
thereafter, is bounded above by 𝛿. Such a time 𝑚1 must exist, since Rob is 𝑏-
competitive, the offline optimal cost for the instance comprised of repeated 𝐾1s is 1,
and the tail of a convergent series converges to zero. At time 𝑚1, if Alg’s decision
coincides with that of Adv, i.e., if Alg𝑚1 = Adv𝑚1 (note we will define the behavior
of Alg and Adv later on), then we say that phase one is complete and we move on
to phase two below. Otherwise, we continue to the next subphase in phase one as
follows.

Let 𝑧2 := − sgn(Rob𝑚1,2) be the negative of the sign of Rob’s 2nd entry at time 𝑚1

(defaulting to 1 if Rob𝑚1,2 = 0). At time 𝑡 = 𝑚1 + 1, we serve a new affine subspace
𝐾2 defined as

𝐾2 =
{
x : x⊤e𝑖 = 𝑧𝑖, 𝑖 = 1, 2

}
.

Note that this forces Rob to incur cost at least 1 at time 𝑚1 + 1. This same body
is repeated until the time 𝑚2 at which Rob is almost stationary. That is, just as
before, 𝑚2 is defined as the time at which, if 𝐾2 were repeated indefinitely from time
𝑚2 + 1 onward, Rob would incur total cost no more than 𝛿 after time 𝑚2. For the
same reason as before, 𝑚2 < ∞ is certain to exist by 𝑏-competitiveness of Rob. If
Alg𝑚2 = Adv𝑚2 , then we say that phase one is complete and move on to phase two
below. Otherwise, we continue to the next subphase in phase one.

The remaining subphases in phase one are constructed similarly: for each 𝑗 =

3, . . . , 3
√
𝑑, we define 𝑧 𝑗 := − sgn(Rob𝑚 𝑗−1, 𝑗 ) to be the negative of the sign of Rob’s

𝑗 th entry at time 𝑚 𝑗−1, and at time 𝑡 = 𝑚 𝑗−1 + 1, we serve a new affine subspace 𝐾 𝑗
defined as

𝐾 𝑗 =
{
x : x⊤e𝑖 = 𝑧𝑖, 𝑖 = 1, . . . , 𝑗

}
, (2.2)

which forces Rob to incur cost at least 1. This body 𝐾 𝑗 is then repeated until the time
𝑚 𝑗 at which Rob is almost stationary, i.e., after which it would incur cumulative
cost no more than 𝛿, were 𝐾 𝑗 to be repeated indefinitely. Then, if Alg𝑚 𝑗

= Adv𝑚 𝑗
,
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we say that phase one is complete and move on to phase two below. Otherwise, we
remain in phase one and repeat this step with an incremented value of 𝑗 . Once the
subphase corresponding to 𝑗 = 3

√
𝑑 is completed, then the instance is concluded

without moving on to phase two.

Behavior of the advice. We specify the behavior of Adv based on the behavior of
Rob on the (possibly) counterfactual instance wherein phase one runs to termination
without moving to phase two. That is, let r1, r2, . . . , r𝑚3

√
𝑑

be the decisions of Rob
on an auxiliary CBC instance where 𝐾1 is served from time 1 through 𝑚1, 𝐾2 is
served from time 𝑚1+1 through 𝑚2, and so on, terminating with 𝐾3

√
𝑑

being served
from time 𝑚3

√
𝑑−1 + 1 through 𝑚3

√
𝑑
. Then define

a = arg max
x∈{±1}𝑑−3

√
𝑑

min
𝑗=1,...,3

√
𝑑

∥x − r
𝑚 𝑗 ,3
√
𝑑+1:∥ℓ2 , (2.3)

where r
𝑚 𝑗 ,3
√
𝑑+1: is the vector obtained by dropping the first 3

√
𝑑 entries in r𝑚 𝑗

.

Thus, a is the corner of the hypercube {±1}𝑑−3
√
𝑑 that is farthest (in ℓ2) from any of

the subvectors comprised of the last 𝑑 − 3
√
𝑑 entries of the decisions r𝑚1 , . . . , r𝑚3

√
𝑑

made by Rob at the conclusion of the phase one subphases. Then we define the
advice’s phase one behavior simply as follows: at time 1, the advice immediately
moves to the point

â = (𝑧1, . . . , 𝑧3
√
𝑑
, 𝑎1, . . . , 𝑎𝑑−3

√
𝑑
),

and it remains there until phase one is completed.

Phase two. Fix 𝜖 > 0. Suppose that phase one terminates at time 𝑚 𝑗 , where
𝑗 < 3

√
𝑑 (since if 𝑗 = 3

√
𝑑, then the instance ends without moving on to phase two).

Thus it is the case that Alg𝑚 𝑗
= Adv𝑚 𝑗

= â, and Rob𝑚 𝑗
= r𝑚 𝑗

. Then the instance
splits into two cases:

1.) Suppose that ∥a − r
𝑚 𝑗 ,3
√
𝑑+1:∥ℓ2 ≥

√︁
𝑑 − 3

√
𝑑, and define v =

a−r
𝑚𝑗 ,3

√
𝑑+1:

∥a−r
𝑚𝑗 ,3

√
𝑑+1:∥ℓ2

.
Then at each time 𝑡 = 𝑚 𝑗 + 1, . . . , 𝑚 𝑗 + 𝑘 (where 𝑘 will be defined later), we
serve the body 𝐾 𝑗 again. By our selection of 𝑚 𝑗 , the robust algorithm Rob
will remain 𝛿-close to its decision Rob𝑚 𝑗

, since we are simply continuing to
serve the same body. However, at each of these times, we make the advice
move to the point

Adv𝑡 =
(
𝑧1, . . . , 𝑧3

√
𝑑
, 𝑎1 + (𝑡 − 𝑚 𝑗 )𝜖𝑣1, . . . , 𝑎𝑑−3

√
𝑑
+ (𝑡 − 𝑚 𝑗 )𝜖𝑣𝑑−3

√
𝑑

)
.

That is, at each time 𝑡 = 𝑚 𝑗 + 1, . . . , 𝑚 𝑗 + 𝑘 , the advice takes a step of length
𝜖 in the direction v in its last 𝑑 − 3

√
𝑑 coordinates. Then 𝑘 is chosen such that
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𝑚 𝑗 + 𝑘 is the first time after 𝑚 𝑗 at which Alg𝑚 𝑗+𝑘 = Rob𝑚 𝑗+𝑘 , i.e., the first
time at which the algorithm switches back to Rob after following the advice.
Note that 𝑘 < ∞, by the assumption that Alg has finite robustness. Then the
final body is chosen as

𝐾fin =
{
Adv𝑚 𝑗+𝑘

}
=

{(
𝑧1, . . . , 𝑧3

√
𝑑
, 𝑎1 + 𝑘𝜖𝑣1, . . . , 𝑎𝑑−3

√
𝑑
+ 𝑘𝜖𝑣

𝑑−3
√
𝑑

)}
,

which allows the advice to stay put while Rob and Alg must move back to
coincide with it.

2.) Suppose that ∥a−r
𝑚 𝑗 ,3
√
𝑑+1:∥ℓ2 <

√︁
𝑑 − 3

√
𝑑. Since a maximizes the objective

of (2.3), then it must hold that

min
𝑖=1,...,3

√
𝑑

∥ − a − r
𝑚𝑖 ,3
√
𝑑+1:∥ℓ2 <

√︃
𝑑 − 3

√
𝑑. (2.4)

Let 𝑖∗ be the minimizing index in (2.4); note that 𝑖∗ ≠ 𝑗 , since otherwise,

2
√︃
𝑑 − 3

√
𝑑 = ∥2a∥
≤ ∥a − r

𝑚 𝑗 ,3
√
𝑑+1:∥ℓ2 + ∥a + r

𝑚 𝑗 ,3
√
𝑑+1:∥ℓ2 by the triangle inequality

< 2
√︃
𝑑 − 3

√
𝑑

giving a contradiction. Then the instance splits into two further subcases:

(a) Suppose that 𝑖∗ < 𝑗 . Then, just as in case 1.), at each time 𝑡 = 𝑚 𝑗 +
1, . . . , 𝑚 𝑗 + 𝑘 , we serve the body 𝐾 𝑗 again. At each of these times, we
make the advice move to the point

Adv𝑡 =
(
𝑧1, . . . , 𝑧3

√
𝑑
, 𝑎1 + (𝑡 − 𝑚 𝑗 )𝜖𝑣1, . . . , 𝑎𝑑−3

√
𝑑
+ (𝑡 − 𝑚 𝑗 )𝜖𝑣𝑑−3

√
𝑑

)
,

where v =
a−r

𝑚𝑗 ,3
√
𝑑+1:

∥a−r
𝑚𝑗 ,3

√
𝑑+1:∥ℓ2

just as in case 1.). Just as in case 1.), 𝑘 is chosen
such that 𝑚 𝑗 + 𝑘 is the first time after 𝑚 𝑗 at which Alg𝑚 𝑗+𝑘 = Rob𝑚 𝑗+𝑘 ,
i.e., the first time at which the algorithm switches back to Rob after
following the advice. Then the final body is chosen as

𝐾fin =
{
Adv𝑚 𝑗+𝑘

}
=

{(
𝑧1, . . . , 𝑧3

√
𝑑
, 𝑎1 + 𝑘𝜖𝑣1, . . . , 𝑎𝑑−3

√
𝑑
+ 𝑘𝜖𝑣

𝑑−3
√
𝑑

)}
,

which allows the advice to stay put while Rob and Alg must move back
to coincide with it.
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(b) Suppose that 𝑖∗ > 𝑗 . Then for each 𝑙 = 𝑗 +1, . . . , 𝑖∗, serve the body 𝐾𝑙 as
defined in (2.2) from time𝑚𝑙−1+1 through𝑚𝑙 , while keeping the advice
at the same point â. Since Rob is advice agnostic and this sequence
of bodies coincides with the remainder of the phase one sequence of
bodies, it will be the case that Rob𝑚𝑖∗ = r𝑚𝑖∗ . Then, finally, we split into
two further subcases.

(i) If Alg𝑚𝑖∗ = Rob𝑚𝑖∗ = r𝑚𝑖∗ , then simply choose the final body as

𝐾fin = {â} ,

which allows the advice to stay put while Rob and Alg must move back
to coincide with it.

(ii) If Alg𝑚𝑖∗ = Adv𝑚𝑖∗ = â, then proceed similarly to subcase (a): for
each time 𝑡 = 𝑚𝑖∗ +1, . . . , 𝑚𝑖∗ + 𝑘 , we serve the body 𝐾𝑖∗ again and make
the advice move to the point

Adv𝑡 =
(
𝑧1, . . . , 𝑧3

√
𝑑
, 𝑎1 + (𝑡 − 𝑚 𝑗 )𝜖𝑣1, . . . , 𝑎𝑑−3

√
𝑑
+ (𝑡 − 𝑚 𝑗 )𝜖𝑣𝑑−3

√
𝑑

)
,

where this time v =
a−r

𝑚𝑖∗ ,3
√
𝑑+1:

∥a−r
𝑚𝑖∗ ,3

√
𝑑+1:∥ℓ2

. Just as in subcase (a), 𝑘 is chosen
such that𝑚𝑖∗+𝑘 is the first time after𝑚𝑖∗ at which Alg𝑚𝑖∗+𝑘 = Rob𝑚𝑖∗+𝑘 ,
i.e., the first time at which the algorithm switches back to Rob after
following the advice starting from time 𝑚𝑖∗ . Then the final body is
simply chosen as

𝐾fin =
{
Adv𝑚 𝑗+𝑘

}
=

{(
𝑧1, . . . , 𝑧3

√
𝑑
, 𝑎1 + 𝑘𝜖𝑣1, . . . , 𝑎𝑑−3

√
𝑑
+ 𝑘𝜖𝑣

𝑑−3
√
𝑑

)}
,

which allows the advice to stay put while forcing Rob and Alg to move
to coincide with it.

Cost analysis. Let us now tally costs for each of the cases of the instance to prove
the result.

Consider the initial case where the instance never makes it out of phase one; this
means that 3

√
𝑑 subphases occur in phase one, and Alg finishes each subphase

at the Rob decision. Since ∥r𝑚 𝑗
− r𝑚 𝑗−1 ∥ℓ2 ≥ 1 for each 𝑗 = 1, . . . , 3

√
𝑑 (where

r𝑚0 := r0 = x0), this means that Alg incurs cost at least 3
√
𝑑, whereas the advice,

which moves immediately to â ∈ {±1}𝑑 and stays there throughout the entire
instance, incurs cost

√
𝑑. Thus Alg is at least 3-consistent, and we are done.
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Now, we turn to each of the cases within which the instance makes it to phase two.
First, consider case 1.). Since Alg𝑚 𝑗

= Adv𝑚 𝑗
= â, the cost incurred by Alg

through time 𝑚 𝑗 is at least
√
𝑑. Then from time 𝑚 𝑗 to 𝑚 𝑗 + 𝑘 − 1 while Alg is

following the advice, Alg incurs cost ∥(𝑘 − 1)𝜖v∥ℓ2 = (𝑘 − 1)𝜖 . At time 𝑚 𝑗 + 𝑘 ,
Alg switches back to Rob, incurring cost at least

∥Adv𝑚 𝑗+𝑘−1 − Rob𝑚 𝑗+𝑘 ∥ℓ2 ≥ ∥Adv𝑚 𝑗+𝑘−1 − Rob𝑚 𝑗
∥ℓ2 − ∥Rob𝑚 𝑗

− Rob𝑚 𝑗+𝑘 ∥ℓ2

≥ ∥Adv𝑚 𝑗+𝑘−1 − Rob𝑚 𝑗
∥ℓ2 − 𝛿

≥ ∥Adv
𝑚 𝑗+𝑘−1,3

√
𝑑+1: − Rob

𝑚 𝑗 ,3
√
𝑑+1:∥ℓ2 − 𝛿

= ∥(a + (𝑘 − 1)𝜖v) − r
𝑚 𝑗 ,3
√
𝑑+1:∥ℓ2 − 𝛿

= ∥a − r
𝑚 𝑗 ,3
√
𝑑+1:∥ℓ2 + (𝑘 − 1)𝜖 − 𝛿

≥
√︃
𝑑 − 3

√
𝑑 + (𝑘 − 1)𝜖 − 𝛿. (2.5)

Finally, by an analogous argument to (2.5), to switch back to Adv, Alg incurs a cost
of at least

√︁
𝑑 − 3

√
𝑑 + 𝑘𝜖 − 𝛿. In sum, Alg incurs a total cost of

√
𝑑 +2

√︁
𝑑 − 3

√
𝑑 +

(3𝑘 − 2)𝜖 − 2𝛿. On the other hand, Adv incurs a total cost of
√
𝑑 + 𝑘𝜖 . Then the

consistency of Alg is

√
𝑑 + 2

√︁
𝑑 − 3

√
𝑑 + (3𝑘 − 2)𝜖 − 2𝛿

√
𝑑 + 𝑘𝜖

which can be made arbitrarily close to 3 by choosing 𝜖 and 𝛿 small and taking 𝑑
arbitrarily large.

Next, let us move to case 2.). First, we set up some preliminaries. Let us call
𝜌 =

√︁
𝑑 − 3

√
𝑑 − ∥a− r

𝑚 𝑗 ,3
√
𝑑+1:∥ℓ2 , and note that 𝜌 > 0. Since ∥a− r

𝑚 𝑗 ,3
√
𝑑+1:∥ℓ2 ≥

∥ − a − r
𝑚𝑖∗ ,3

√
𝑑+1:∥ℓ2 , we have that

∥ − a − r
𝑚𝑖∗ ,3

√
𝑑+1:∥ℓ2 ≤

√︃
𝑑 − 3

√
𝑑 − 𝜌 (2.6)

and hence

∥r
𝑚𝑖∗ ,3

√
𝑑+1:∥ℓ2 ≥ ∥ − a∥ − ∥ − a − r

𝑚𝑖∗ ,3
√
𝑑+1:∥ℓ2

≥ 𝜌. (2.7)
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Then

∥â − r𝑚𝑖∗ ∥ℓ2 ≥ ∥a − r
𝑚𝑖∗ ,3

√
𝑑+1:∥ℓ2 (2.8)

≥
a − Π

𝐵(−a,
√
𝑑−3
√
𝑑−𝜌)

a

ℓ2

(2.9)

=

2a − Π
𝐵(0,
√
𝑑−3
√
𝑑−𝜌)

2a

ℓ2

(2.10)

=

2a − (
√︃
𝑑 − 3

√
𝑑 − 𝜌) a

∥a∥ℓ2


ℓ2

(2.11)

=

a + 𝜌 a
∥a∥ℓ2


ℓ2

=

√︃
𝑑 − 3

√
𝑑 + 𝜌 (2.12)

whereΠ𝐾x denotes the projection of the point x onto the convex body𝐾 , (2.8) follows
from a and r

𝑚𝑖∗ ,3
√
𝑑+1: being subvectors of â and r𝑚𝑖∗ , respectively, (2.9) follows from

(2.6) and non-expansivity of the projection, (2.10) follows from translation, (2.11)
applies the fact that the projection onto an origin-centered ball is just a radial
projection, and (2.12) follows from ∥a∥ℓ2 =

√︁
𝑑 − 3

√
𝑑.

Now, let us consider the subcases, starting with subcase (a). Since 𝑖∗ < 𝑗 , we know
that Alg𝑚𝑖∗ = Rob𝑚𝑖∗ = r𝑚𝑖∗ . Then by (2.7), Alg incurs cost at least 𝜌 to get to r𝑚𝑖∗ ,
and by (2.12) it incurs another cost of at least

√︁
𝑑 − 3

√
𝑑 + 𝜌 to get to Adv𝑚 𝑗

= â.
From time 𝑚 𝑗 to 𝑚 𝑗 + 𝑘 − 1 while Alg is following the advice, Alg incurs cost
(𝑘−1)𝜖 . Then at time𝑚 𝑗 +𝑘 , Alg switches back to Rob, and by a similar analysis to
that in (2.5) done for case 1.), it incurs cost at least

√︁
𝑑 − 3

√
𝑑− 𝜌+ (𝑘 −1)𝜖 −𝛿 to do

so. Finally, to switch back to Adv, Alg incurs a cost of at least
√︁
𝑑 − 3

√
𝑑−𝜌+𝑘𝜖−𝛿.

Then in sum, Alg has incurred a total cost of 3
√︁
𝑑 − 3

√
𝑑 + (3𝑘 − 2)𝜖 − 2𝛿 in this

instance case. On the other hand, Adv incurs a total cost of
√
𝑑 + 𝑘𝜖 , so Alg has

consistency

3
√︁
𝑑 − 3

√
𝑑 + (3𝑘 − 2)𝜖 − 2𝛿
√
𝑑 + 𝑘𝜖

,

which can be made arbitrarily close to 3 by choosing 𝜖 and 𝛿 small and taking 𝑑
arbitrarily large.

Now, we move to subcase (b), beginning first with (i). Alg spends
√
𝑑 to get to

Adv𝑚 𝑗
= â in the first place, and then by (2.12) it spends cost at least

√︁
𝑑 − 3

√
𝑑 + 𝜌

to get to Rob𝑚𝑖∗ at time 𝑚𝑖∗ . Finally, it spends at least another
√︁
𝑑 − 3

√
𝑑 + 𝜌 to get

back to â for the final timestep. Thus in sum, Alg incurs cost
√
𝑑+2(

√︁
𝑑 − 3

√
𝑑+𝜌),
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whereas Adv incurs cost
√
𝑑, giving a consistency of

√
𝑑 + 2(

√︁
𝑑 − 3

√
𝑑 + 𝜌)

√
𝑑

,

which even for arbitrarily small 𝜌 > 0 can be made arbitrarily close to 3 by choosing
𝑑 sufficiently large.

Finally, we consider scenario (ii) in subcase (b). Alg first spends
√
𝑑 to get to

Adv𝑚 𝑗
= â, and then from time 𝑚𝑖∗ + 1 through 𝑚𝑖∗ + 𝑘 − 1 it incurs cost (𝑘 − 1)𝜖 to

follow the advice. Using (2.12) and reasoning analogous to that in (2.5), Alg incurs
cost

√︁
𝑑 − 3

√
𝑑+ 𝜌+ (𝑘 −1)𝜖 −𝛿 to switch back to Rob at time𝑚𝑖∗ + 𝑘 , and finally, it

incurs cost
√︁
𝑑 − 3

√
𝑑 + 𝜌 + 𝑘𝜖 − 𝛿 to switch back to the advice in the final timestep.

Thus in sum, Alg incurs cost at least
√
𝑑+2(

√︁
𝑑 − 3

√
𝑑+ 𝜌) + (3𝑘 −2)𝜖 −2𝛿, while

Adv incurs cost
√
𝑑 + 𝑘𝜖 . Thus Alg has consistency

√
𝑑 + 2(

√︁
𝑑 − 3

√
𝑑 + 𝜌) + (3𝑘 − 2)𝜖 − 2𝛿
√
𝑑 + 𝑘𝜖

,

which, even for very small 𝜌 > 0, can be made arbitrarily close to 3 by choosing
𝜖, 𝛿 small and taking 𝑑 sufficiently large.

Proof of Proposition 2.3.4
Let us first recall Theorem 2.1 of [101], which characterizes the cost incurred by
moving to the Steiner point of each nested body.

Theorem 2.B.1 ([101, Theorem 2.1]). Let x0 = 0 and 𝐾1 ⊆ 𝐵(0, 𝑟) for some 𝑟 > 0.
Then following the Steiner point of each nested body 𝐾𝑡 incurs total movement cost
no more than 𝑟𝑑.

We now prove Proposition 2.3.4. For clarity, we abbreviate NestedSwitch in this
proof as NS.

If NS only ever follows Adv, then 𝜖 · CAdv < 𝑟 (𝑑 + 2) and CNS = CAdv, so
CNS ≤ 𝑟 (𝑑+2)

𝜖
. Thus NS is 1-competitive with respect to Adv and 𝑟 (𝑑+2)

𝜖
-robust,

since COpt ≥ 1.

On the other hand, if NS only ever follows Rob, then CNS = CRob and 𝜖 · CAdv ≥
𝑟 (𝑑 + 2). Since Rob just follows the Steiner point of each nested body, we have
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CRob ≤ 𝑟 + 𝑟𝑑, where the 𝑟𝑑 comes from Theorem 2.B.1 and the extra factor of 𝑟
arises from the triangle inequality applied to the 𝑡 = 1 movement:

∥s1 − x0∥ℓ2 ≤ ∥s1 − y∥ℓ2 + ∥y − x0∥ℓ2 ≤ ∥s1 − y∥ℓ2 + 𝑟.

Thus CNS = CRob ≤ 𝑟 (𝑑 + 1) ≤ (1 + 𝜖)CAdv, and the desired robustness also holds.

Finally, suppose NS switches to Rob at time 𝑡 ∈ [𝑇]; i.e., NS1 = Adv1, . . . ,NS𝑡−1 =

Adv𝑡−1,NS𝑡 = Rob𝑡 , . . . ,NS𝑇 = Rob𝑇 . We know that

CNS(1, 𝑡 − 1) = CAdv(1, 𝑡 − 1) < 𝑟 (𝑑 + 2)
𝜖

and since 𝐾𝑡 ⊆ 𝐵(y, 𝑟),

CNS(𝑡, 𝑡) = ∥Rob𝑡 − Adv𝑡−1∥ℓ2 ≤ 2𝑟

and finally
CNS(𝑡 + 1, 𝑇) = CRob(𝑡 + 1, 𝑇) ≤ 𝑟𝑑.

Thus in sum,

CNS ≤
𝑟 (𝑑 + 2)

𝜖
+ 𝑟𝑑 + 2𝑟 =

(
1 + 1

𝜖

)
𝑟 (𝑑 + 2).

This gives both the robustness and consistency bounds, since 𝜖 · CAdv ≥ 𝑟 (𝑑 + 2)
and COpt ≥ 1.

2.C Proofs for the One-Dimensional Setting
Proof of Theorem 2.4.1
Consistency bound. We begin by proving the competitive bound with respect to
Adv—i.e., consistency—via a potential function argument. Define the potential
function 𝜙𝑡 = |𝑥𝑡 − 𝑥𝑡 | and denote Δ𝜙𝑡 = 𝜙𝑡 − 𝜙𝑡−1. For each time 𝑡 ∈ [𝑇], there
are four different possible cases: (1) the algorithm already began at the minimizer
𝑣𝑡 , (2) the algorithm moves all the way to the advice 𝑥𝑡 , which is equivalent to the
condition that 𝑥𝑡 is contained in the interval between 𝑥(𝜆) and 𝑥(𝜆) by line 7 of the
algorithm, (3) the algorithm moves “past” the advice, and (4) the algorithm moves
toward but does not reach the advice.

(1) Suppose that 𝑥𝑡−1 = 𝑣𝑡 . Then 𝑥𝑡 = 𝑣𝑡 , so there is no movement cost, and
𝑓𝑡 (𝑥𝑡) = 𝑓𝑡 (𝑣𝑡) ≤ 𝑓𝑡 (𝑥𝑡). As such,

Δ𝜙𝑡 = |𝑣𝑡 − 𝑥𝑡 | − |𝑣𝑡 − 𝑥𝑡−1 |
≤ |𝑥𝑡 − 𝑥𝑡−1 |
≤ 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | − 𝑓𝑡 (𝑥𝑡),
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which, rearranging, implies

𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | + Δ𝜙𝑡 ≤ 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |. (2.13)

(2) Suppose that 𝑥𝑡 = 𝑥𝑡 , i.e., AOBD moves directly to the advice. Thus 𝑓𝑡 (𝑥𝑡) =
𝑓𝑡 (𝑥𝑡), and

Δ𝜙𝑡 = −|𝑥𝑡−1 − 𝑥𝑡−1 |
≤ |𝑥𝑡 − 𝑥𝑡−1 | − |𝑥𝑡 − 𝑥𝑡−1 |
= 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | − 𝑓𝑡 (𝑥𝑡) − |𝑥𝑡 − 𝑥𝑡−1 |,

which, rearranging, implies

𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | + Δ𝜙𝑡 ≤ 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |. (2.14)

(3) Suppose that 𝑥𝑡 ≠ 𝑥𝑡 lies between 𝑥𝑡 and 𝑣𝑡 , and that 𝑥𝑡−1 is on the same side
of 𝑣𝑡 as 𝑥𝑡 ; these assumptions encode the condition that the algorithm spends
at least part of its turn moving “past” the advice toward the minimizer, i.e.,
moving from 𝑥𝑡−1 to 𝑥𝑡 requires some movement away from 𝑥𝑡 . Without loss
of generality, we can assume that 𝑥𝑡 < 𝑥𝑡 ≤ 𝑣𝑡 and 𝑥𝑡−1 < 𝑣𝑡 . Because 𝑣𝑡 is a
minimizer of 𝑓𝑡 , 𝑓𝑡 is nonincreasing on the interval [𝑥𝑡−1, 𝑣𝑡], so it must be the
case that 𝑥(𝜆) ≤ 𝑥(𝜆). Because 𝑥𝑡 < 𝑥𝑡 , line 7 of the algorithm implies that
𝑥𝑡 = 𝑥(𝜆), so |𝑥𝑡 − 𝑥𝑡−1 | ≤ 𝛽 𝑓𝑡 (𝑥𝑡).4 As a result,

Δ𝜙𝑡 = |𝑥𝑡 − 𝑥𝑡 | − |𝑥𝑡−1 − 𝑥𝑡−1 |
≤ |𝑥𝑡 − 𝑥𝑡−1 | + |𝑥𝑡 − 𝑥𝑡−1 |
≤ 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | − 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | since 𝑓𝑡 (𝑥𝑡) ≤ 𝑓𝑡 (𝑥𝑡)
≤ 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | − (1 − 𝛽) 𝑓𝑡 (𝑥𝑡)

≤ 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | −
1 − 𝛽
1 + 𝛽 ( 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |) ,

which, rearranging, implies

𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | + Δ𝜙𝑡 ≤
1 + 𝛽
1 − 𝛽 ( 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |) . (2.15)

4If the balancing equality in line 5 of the algorithm does not hold for any 𝜆 ∈ [0, 1], then this
implies that |𝑥(𝜆) − 𝑥𝑡−1 | ≤ 𝛽 𝑓𝑡 (𝑥(𝜆)) for all 𝜆 ∈ [0, 1]—and in particular for 𝜆 = 1—since the
movement cost term is increasing in 𝜆 and the hitting cost term is nonincreasing in 𝜆.
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(4) Assume without loss of generality that 𝑥𝑡 ≤ 𝑣𝑡 . Suppose that 𝑥𝑡 lies outside
of the interval [𝑥𝑡 , 𝑣𝑡), and that the ray −−−−→𝑥𝑡−1𝑥𝑡 contains 𝑥𝑡 ; these assumptions
encode the condition that the algorithm spends its turn moving toward the advice
𝑥𝑡—i.e., that |𝑥𝑡 − 𝑥𝑡 | < |𝑥𝑡−1 − 𝑥𝑡 |—and that it does not reach 𝑥𝑡 . We break into
two further cases:
(a) Suppose that 𝑥𝑡 = 𝑣𝑡 . Clearly 𝑓𝑡 (𝑥𝑡) ≤ 𝑓𝑡 (𝑥𝑡). Then

Δ𝜙𝑡 = |𝑥𝑡 − 𝑥𝑡 | − |𝑥𝑡−1 − 𝑥𝑡−1 |
= |𝑥𝑡 − 𝑥𝑡−1 | − |𝑥𝑡 − 𝑥𝑡−1 | − |𝑥𝑡−1 − 𝑥𝑡−1 | (2.16)

≤ |𝑥𝑡 − 𝑥𝑡−1 | − |𝑥𝑡 − 𝑥𝑡−1 |
≤ 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | − 𝑓𝑡 (𝑥𝑡) − |𝑥𝑡 − 𝑥𝑡−1 |,

where (2.16) follows from the assumption that 𝑥𝑡 is closer to 𝑥𝑡 than 𝑥𝑡−1

is. Rearranging, we have

𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | + Δ𝜙𝑡 ≤ 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |. (2.17)

(b) Suppose that 𝑥𝑡 ≠ 𝑣𝑡 ; this implies by the definition of 𝑥(𝜆) and line 6 of the
algorithm that 𝜆 < 1. Moreover, because increasing 𝜆 moves 𝑥(𝜆) toward
𝑥𝑡 , yet 𝑥𝑡 ≠ 𝑥𝑡 , it must be the case that 𝑥𝑡 = 𝑥(𝜆), and since 𝜆 < 1, we have
the equality |𝑥𝑡 − 𝑥𝑡−1 | = 𝛽 𝑓𝑡 (𝑥𝑡). As a result, Thus

Δ𝜙𝑡 = |𝑥𝑡 − 𝑥𝑡 | − |𝑥𝑡−1 − 𝑥𝑡−1 |
= |𝑥𝑡 − 𝑥𝑡−1 | − |𝑥𝑡 − 𝑥𝑡−1 | − |𝑥𝑡−1 − 𝑥𝑡−1 |
≤ |𝑥𝑡 − 𝑥𝑡−1 | − |𝑥𝑡 − 𝑥𝑡−1 |

≤ 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | −
𝛽

1 + 𝛽
( 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |) ,

which, rearranging, implies

𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | + Δ𝜙𝑡 ≤
1 + 𝛽
𝛽
( 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |) . (2.18)

Summing the various cases (2.13), (2.14), (2.15), (2.17), and (2.18) over time, we
obtain the claimed consistency bound:

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | ≤ max

{
1 + 𝛽
1 − 𝛽 ,

1 + 𝛽
𝛽

}
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |.

Robustness bound. We now move to proving the robustness of AOBD, once again
using a potential function argument. Let 𝑜1, . . . , 𝑜𝑇 ∈ R denote the decisions of
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the offline optimal algorithm, and define the potential function 𝜙𝑡 = |𝑥𝑡 − 𝑜𝑡 |, with
Δ𝜙𝑡 = 𝜙𝑡 − 𝜙𝑡−1. We break into two different cases.

(1) Suppose that 𝑓𝑡 (𝑥𝑡) ≤ 𝑓𝑡 (𝑜𝑡). Note that, by construction of the algorithm,
|𝑥𝑡 − 𝑥𝑡−1 | ≤ 𝛽 𝑓𝑡 (𝑥𝑡). Let 𝑐 > 𝛽 − 1, and observe that

Δ𝜙𝑡 = |𝑥𝑡 − 𝑜𝑡 | − |𝑥𝑡−1 − 𝑜𝑡−1 |
≤ |𝑜𝑡 − 𝑜𝑡−1 | + |𝑥𝑡 − 𝑥𝑡−1 |
≤ (1 + 𝑐) ( 𝑓𝑡 (𝑜𝑡) + |𝑜𝑡 − 𝑜𝑡−1 |) − (1 + 𝑐) 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |
≤ (1 + 𝑐) ( 𝑓𝑡 (𝑜𝑡) + |𝑜𝑡 − 𝑜𝑡−1 |) − (1 + 𝑐 − 𝛽) 𝑓𝑡 (𝑥𝑡)

≤ (1 + 𝑐) ( 𝑓𝑡 (𝑜𝑡) + |𝑜𝑡 − 𝑜𝑡−1 |) −
1 + 𝑐 − 𝛽

1 + 𝛽
( 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |) ,

which, rearranging, gives

𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | +
1 + 𝛽

1 + 𝑐 − 𝛽
Δ𝜙𝑡 ≤

(1 + 𝛽) (1 + 𝑐)
1 + 𝑐 − 𝛽

( 𝑓𝑡 (𝑜𝑡) + |𝑜𝑡 − 𝑜𝑡−1 |) .

Selecting 𝑐 = 2𝛽, we obtain

𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | + Δ𝜙𝑡 ≤ (1 + 2𝛽) ( 𝑓𝑡 (𝑜𝑡) + |𝑜𝑡 − 𝑜𝑡−1 |) . (2.19)

(2) Suppose that 𝑓𝑡 (𝑥𝑡) > 𝑓𝑡 (𝑜𝑡); this implies that 𝑥𝑡 ≠ 𝑣𝑡 , so in particular, the
balance condition holds for some 𝛽 ∈ [𝛽, 𝛽]: |𝑥𝑡 − 𝑥𝑡−1 | = 𝛽 𝑓𝑡 (𝑥𝑡). In addition,
𝑓𝑡 (𝑥𝑡) > 𝑓𝑡 (𝑜𝑡) implies that AOBD must have moved closer to 𝑜𝑡 during its turn.
Thus

Δ𝜙𝑡 = |𝑥𝑡 − 𝑜𝑡 | − |𝑥𝑡−1 − 𝑜𝑡−1 |
= |𝑜𝑡 − 𝑥𝑡−1 | − |𝑥𝑡 − 𝑥𝑡−1 | − |𝑥𝑡−1 − 𝑜𝑡−1 |
≤ |𝑜𝑡 − 𝑜𝑡−1 | − |𝑥𝑡 − 𝑥𝑡−1 |

= |𝑜𝑡 − 𝑜𝑡−1 | −
𝛽

1 + 𝛽 ( 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |)

≤ 𝑓𝑡 (𝑜𝑡) + |𝑜𝑡 − 𝑜𝑡−1 | −
𝛽

1 + 𝛽 ( 𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |) ,

which, rearranging, yields

𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | + Δ𝜙𝑡 ≤
1 + 𝛽
𝛽
( 𝑓𝑡 (𝑜𝑡) + |𝑜𝑡 − 𝑜𝑡−1 |) . (2.20)
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Summing the cases (2.19) and (2.20) over time, we obtain the claimed robustness
bound:

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 | ≤ max
{
1 + 2𝛽, 1 + 𝛽−1

} 𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡) + |𝑥𝑡 − 𝑥𝑡−1 |.

Proof of Theorem 2.4.2
Let 𝑥𝑡 denote the decisions of Alg, and 𝑥𝑡 the decisions of Adv. Consider a problem
instance where 𝑥0 = 𝑥0 = 0, 𝑓1(𝑥) = 2𝜖 |𝑥 − 1|, 𝑥1 = 1, and the time horizon is
𝑇 = 2. We distinguish two cases:

(1) Suppose that Alg chooses 𝑥1 ≥ 1
2 . Let 𝑓2(𝑥) = |𝑥 |, with advice 𝑥2 = 0. Then

the optimal solution stays at 0 for the entire instance, incurring a cost of 2𝜖 . On
the other hand, Alg incurs a cost of at least 1, so the competitive ratio is at least
1
2𝜖 .

(2) Suppose that Alg chooses 𝑥1 <
1
2 . Let 𝑓2(𝑥) = |𝑥 − 1|, with advice 𝑥2 = 1.

Then Adv incurs total cost 1, while Alg incurs a cost of 1+ 2𝜖 (1− 𝑥1) > 1+ 𝜖 ;
thus, Alg is not (1 + 𝜖)-consistent.

2.D Background from the Geometry of Normed Vector Spaces
In this appendix section, we introduce some notions and results from the literature
on the geometry of normed vector spaces, expanding on the brief definitions of the
rectangular constant and the radial retraction given in the main text in Section 9.
In the following definitions and results, X = (𝑋, ∥ · ∥) is an arbitrary real normed
vector space.

We begin by defining Birkhoff-James orthogonality, which generalizes the usual
Hilbert space orthogonality.

Definition 2.D.1 ([126, p.169]; [127, p.265]). x ∈ 𝑋 is Birkhoff-James orthogonal
to y ∈ 𝑋 , denoted x ⊥ y, if ∥x∥ ≤ ∥x + 𝜆y∥ for all 𝜆 ∈ R.

Note that, unlike orthogonality in Hilbert spaces, Birkhoff-James orthogonality is
not generally symmetric. However, it is homogeneous.

Lemma 2.D.2 ([127, p.265]; [121, Remark 1]). If x ⊥ y, then 𝑎x ⊥ 𝑏y for all
𝑎, 𝑏 ∈ R.
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Using Birkhoff-James orthogonality, we can formally define define the first constant
we introduced in Section 9: the rectangular constant. It is motivated by the following
observation: in a finite-dimensional inner product space, orthogonality of x and y
implies that ∥x∥+∥y∥∥x+y∥ ≤

√
2. In an arbitrary normed vector space, the upper bound

√
2

is replaced with the rectangular constant, defined as follows using Birkhoff-James
orthogonality.

Definition 2.D.3 ([128, Definition 2]; original from [121, Definition 2]). The rect-
angular constant 𝜇(X) of a real normed vector space X is defined as

𝜇(X) = sup
x⊥y

∥x∥ + ∥y∥
∥x + y∥ .

It is known that
√

2 ≤ 𝜇(X) ≤ 3 [121, Section II], and these bounds are tight:
𝜇(X) =

√
2 for any Hilbert space [121, Example 1, Section III], and 𝜇(X) = 3 for

“nonuniformly nonsquare” spaces such as ℓ1 and ℓ∞ ([122]). Moreover, 𝜇(ℓ𝑝) < 3
for all 𝑝 ∈ (1,∞). In fact, tighter bounds are known for the ℓ𝑝 spaces: we review
these in the following theorem.

Theorem 2.D.4 ([122, Theorems 5.2, 5.4, 5.5]). For 1 < 𝑝 ≤ 2,

𝜇(ℓ𝑝) ≤ min

{(
1 +

(
21/(𝑝−1) − 1

) 𝑝−1
)1/𝑝

,

√︂
𝑝

𝑝 − 1

}
.

For 𝑝 ≥ 2,

𝜇(ℓ𝑝) ≤
(
1 +

(
2𝑝−1 − 1

)1/(𝑝−1)
) (𝑝−1)/𝑝

.

Together, these constitute an upper bound on 𝜇(ℓ𝑝) that attains a (tight) minimum
of
√

2 at 𝑝 = 2, and that continuously increases toward 3 as 𝑝 →∞ and 𝑝 → 1.

We now reiterate the definition of the radial retraction and its Lipschitz constant
given in Section 9.

Definition 2.D.5 ([123]). On a normed vector space X = (𝑋, ∥ · ∥), the radial
retraction 𝜌(· ; 𝑟) : 𝑋 → 𝐵(0, 𝑟) is the metric projection onto the closed ball of
radius 𝑟 ≥ 0:

𝜌(x; 𝑟) =


x if ∥x∥ ≤ 𝑟

𝑟 x
∥x∥ if ∥x∥ > 𝑟.
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We define 𝑘 (X) to be the Lipschitz constant of 𝜌(· ; 1), i.e., the smallest real number
satisfying

∥𝜌(x; 1) − 𝜌(y; 1)∥ ≤ 𝑘 (X)∥x − y∥

for all x, y ∈ 𝑋 .

It holds that 𝑘 (X) is bounded between 1 and 2 in any normed vector spaceX ([124]).
Moreover, 𝑘 (X) is identically the Lipschitz constant of 𝜌(· ; 𝑟) for any 𝑟 > 0 ([123]).
To see that this is the case, observe that 𝜌(x; 𝑟) = 𝑟 · 𝜌( x

𝑟
; 1); it then follows that

∥𝜌(x; 𝑟) − 𝜌(y; 𝑟)∥ = 𝑟
𝜌 (x

𝑟
; 1

)
− 𝜌

(y
𝑟

; 1
) ≤ 𝑘 (X)∥x − y∥.

Thus 𝑘 (X) is an upper bound on the Lipschitz constant of 𝜌(x; 𝑟) for general 𝑟 > 0.
Similar reasoning shows that 𝜌(x; 𝑟) can have no smaller Lipschitz constant than
𝑘 (X); so 𝑘 (X) is the Lipschitz constant for all 𝜌(x; 𝑟), 𝑟 > 0.

We conclude this section with a result relating 𝑘 (X) with 𝜇(X).

Proposition 2.D.6. On a real normed vector space X = (𝑋, ∥ · ∥), it holds that
𝑘 (X) ≤ 𝜇(X).

Proof. [124, Theorem 1] characterizes 𝑘 (X) as follows:

𝑘 (X) = sup
x⊥y,y≠0,𝜆∈R

∥y∥
∥y − 𝜆x∥ . (2.21)

Since, by Lemma 2.D.2, Birkhoff-James orthogonality is homogeneous, it is straight-
forward to see that (2.21) can be equivalently expressed as

𝑘 (X) = sup
x⊥y,y≠0

∥y∥
∥x + y∥ .

Then it is clear that

𝑘 (X) = sup
x⊥y,y≠0

∥y∥
∥x + y∥ ≤ sup

x⊥y

∥x∥ + ∥y∥
∥x + y∥ = 𝜇(X).

2.E Proof of Theorem 2.4.4
Geometric lemmas
Before presenting the analysis of Algorithm 4, we take a brief foray into the geometric
theory of normed vector spaces, presenting and proving some lemmas that will be
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helpful in proving the bicompetitive bound given in Theorem 2.4.4. The results in
this section depend heavily on the definitions and results introduced in Section 2.D.

The first lemma characterizes (a modified form of) the radial retraction as a metric
projection onto the boundary of a closed ball.

Lemma 2.E.1. Let (𝑋, ∥ · ∥) be a normed vector space, and consider arbitrary
𝑟 ≥ 0, x ∈ 𝑋 , and y ∈ 𝑋 \ {x}. Define ŷ = x + 𝑟 y−x

∥y−x∥ . Then ∥y − ŷ∥ ≤ ∥y − w∥ for
all w ∈ 𝜕𝐵(x, 𝑟).

Proof. It suffices to consider the case when x = 0. If 𝑟 = 0, 𝜕𝐵(0, 𝑟) = {0}, so the
result is clear. Otherwise, fix arbitrary w ∈ 𝜕𝐵(0, 𝑟) and observe

∥y − w∥ ≥ |∥y∥ − ∥w∥| by the triangle inequality

= |∥y∥ − 𝑟 |
= |∥y∥ − ∥ŷ∥|
= ∥y − ŷ∥

where the last step follows from collinearity of y, ŷ, and 0.

The second lemma generalizes the following geometric fact in the Euclidean plane
to an arbitrary normed vector spaces: given a triangle abc in (R2, ∥ · ∥ℓ2), and points
x ∈ [a, b], y ∈ [a, c] with ∥x− b∥ℓ2 = ∥y− c∥ℓ2 , it holds that ∥x− y∥ℓ2 ≤ ∥b− c∥ℓ2 .
In the general setting, this becomes a statement about the distance between the radial
retractions of a single point onto two balls of the same radius with different centers.

Lemma 2.E.2. Let (𝑋, ∥ · ∥) be a normed vector space, and fix arbitrary a, b, c ∈ 𝑋
and 𝑟 ≥ 0. Define x = b+𝜌(a−b; 𝑟) and y = c+𝜌(a−c; 𝑟). Then ∥x−y∥ ≤ ∥b−c∥.

Proof. We may assume without loss of generality that ∥a − b∥ ≥ ∥a − c∥. If b = c,
∥x − y∥ = 0 = ∥b − c∥. Thus we restrict to the case where b ≠ c and distinguish
cases based on the value of 𝑟. We may further restrict to the case where ∥a− c∥ > 0,
as the case a = c is trivial.

If 𝑟 = 0, then x = b and y = c. Thus ∥x − y∥ = ∥b − c∥. On the other hand, if
𝑟 ≥ ∥a−b∥, then 𝑟 ≥ ∥a−c∥ as well, so x = y = a, and certainly ∥x−y∥ = 0 ≤ ∥b−c∥.
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Next, suppose ∥a− c∥ ≤ 𝑟 < ∥a− b∥. Then y = a, so ∥x− y∥ = ∥x− a∥. Moreover,
∥x − b∥ = 𝑟 ≥ ∥a − c∥. Then by the triangle inequality,

∥b − c∥ ≥ |∥a − b∥ − ∥a − c∥|
= |∥a − x∥ + ∥x − b∥ − ∥a − c∥|
≥ ∥a − x∥
= ∥x − y∥.

Finally, suppose 0 < 𝑟 < ∥a−c∥, and define𝜆 = 1− 𝑟
∥a−c∥ . Since y+b−c = b+𝑟 a−c

∥a−c∥ ,
we know that y + b − c ∈ 𝜕𝐵(b, 𝑟). Observe moreover that

z := y + 𝜆(b − c) = b + 𝑟 a − b
∥a − c∥ ∈ [a, b]

and z ≠ b by assumption that 𝑟 > 0. Thus z−b
∥z−b∥ =

a−b
∥a−b∥ , so x = b + 𝑟 z−b

∥z−b∥ . Thus:

∥b − c∥ = ∥(y + b − c) − y∥
= ∥(y + b − c) − z∥ + ∥z − y∥ by collinearity of y, z, y + b − c

≥ ∥x − z∥ + ∥z − y∥ applying Lemma 2.E.1 (2.22)

≥ ∥x − y∥ by triangle inequality,

where, in (2.22), x, y, ŷ,w, and 𝑟 in Lemma 2.E.1 are instantiated during its invoca-
tion with this proof’s b, z, x, (y + b − c), and 𝑟, respectively.

The next geometric lemma provides a bound on the total distance traveled first
between two points on a sphere, and then from the second point to a scaled version
thereof, in terms of the rectangular constant and the distance between the initial and
final points.

Lemma 2.E.3. Let (𝑋, ∥ · ∥) be a normed vector space, and let 𝑡 > 1, 𝑟 > 0, and
x, y ∈ 𝜕𝐵(0, 𝑟). Then

∥y − x∥ + (𝑡 − 1)∥y∥ ≤ 𝜇(X)∥𝑡y − x∥.

Proof. By a corollary of the Hahn-Banach theorem [129, Chapter 3, Corollary 7],
there exists a support functional 𝑓 ∈ 𝑋∗ at y, i.e., some bounded linear functional
𝑓 : 𝑋 → R, with ∥ 𝑓 ∥𝑋∗ = 1, 𝑓 (y) = ∥y∥ = 𝑟, and the property that the hyperplane
𝐻 (𝑟) := {z ∈ 𝑋 : 𝑓 (z) = 𝑟} contains no points in int(𝐵(0, 𝑟)). Note that we can
equivalently write 𝐻 (𝑟) in affine subspace form 𝐻 (𝑟) = y + ker( 𝑓 ) = {z ∈ 𝑋 : z =
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y + h, h ∈ ker( 𝑓 )}, by linearity of 𝑓 . The fact that 𝐻 (𝑟) contains no points in the
interior of 𝐵(0, 𝑟) means that y ⊥ h for all h ∈ ker( 𝑓 ).

Define 𝑠 = 𝑓 (x), and note that since ∥x∥ = 𝑟 and ∥ 𝑓 ∥𝑋∗ = 1, we must have 𝑠 ≤ 𝑟.
Then define z = 𝑠

𝑟
y, and observe 𝐻 (𝑠) = x + ker( 𝑓 ) = z + ker( 𝑓 ). Thus x = z + h

for some specific h ∈ ker( 𝑓 ). By homogeneity of Birkhoff-James orthogonality
(Lemma 2.D.2), it follows that (𝑡 − 𝑠

𝑟
)y ⊥ −h. As such,

∥y − x∥ + (𝑡 − 1)∥y∥ ≤ ∥y − z∥ + ∥x − z∥ + (𝑡 − 1)∥y∥

=

(
1 − 𝑠

𝑟

)
∥y∥ + ∥h∥ + (𝑡 − 1)∥y∥

= ∥ − h∥ +
(
𝑡 − 𝑠

𝑟

)
∥y∥

≤ 𝜇(X)
−h +

(
𝑡 − 𝑠

𝑟

)
y


= 𝜇(X)∥𝑡y − x∥.

Finally, we present a lemma building upon Lemma 2.E.3 that will be indispensable
for the consistency analysis of Algorithm 4.

Lemma 2.E.4. Let (𝑋, ∥·∥) be a normed vector space, and fix arbitrary 𝑟 ≥ 0, w, y ∈
𝑋 , and x ∈ 𝑋 \ int(𝐵(w, 𝑟)). Define x̂ = w + 𝜌(x − w; 𝑟) and ŷ = w + 𝜌(y − w; 𝑟).
Then

∥ŷ − x̂∥ + ∥y − ŷ∥ ≤ 𝜇(X)∥y − x∥ + ∥x − x̂∥.

Proof. If 𝑟 = 0, then 𝐵(w, 𝑟) = {w}, so x̂ = ŷ = w, and the result follows from the
triangle inequality, as 𝜇(X) ≥

√
2. Thus we restrict to the case that 𝑟 > 0.

It suffices to consider the case where w = 0. Then x̂ = 𝜌(x; 𝑟) and ŷ = 𝜌(y; 𝑟). We
distinguish two cases.

First, suppose y ∈ 𝐵(0, 𝑟). Then ŷ = y, and by the triangle inequality,

∥ŷ − x̂∥ + ∥y − ŷ∥ = ∥y − x̂∥ ≤ ∥y − x∥ + ∥x − x̂∥ ≤ 𝜇(X)∥y − x∥ + ∥x − x̂∥.

Second, suppose y ∈ 𝑋 \ 𝐵(0, 𝑟). Then ŷ = 𝑟
y
∥y∥ . We distinguish two further

subcases.
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(i) Suppose that ∥y − ŷ∥ ≤ ∥x − x̂∥. Then

∥ŷ − x̂∥ + ∥y − ŷ∥ ≤ ∥ŷ − x̂∥ + ∥x − x̂∥
≤ 𝑘 (X)∥y − x∥ + ∥x − x̂∥
≤ 𝜇(X)∥y − x∥ + ∥x − x̂∥ by Proposition 2.D.6.

(ii) On the other hand, suppose that ∥y− ŷ∥ > ∥x− x̂∥, or equivalently, ∥y∥ ≥ ∥x∥,
and define z = 𝜌(y; ∥x∥) = ∥x∥ y

∥y∥ . By collinearity, ∥z − ŷ∥ = ∥x∥ − 𝑟 =

∥x − x̂∥. Furthermore, we have that

∥ŷ − x̂∥ ≤ ∥x∥
𝑟
∥ŷ − x̂∥ = ∥z − x∥.

It then follows that

∥ŷ − x̂∥ + ∥y − ŷ∥ ≤ ∥z − x∥ + ∥y − z∥ + ∥z − ŷ∥

= ∥z − x∥ +
(
∥y∥
∥x∥ − 1

)
∥z∥ + ∥x − x̂∥

≤ 𝜇(X)∥y − x∥ + ∥x − x̂∥

where the final inequality follows from Lemma 2.E.3, where x, z ∈ 𝜕𝐵(0, ∥x∥)
are (respectively) the points x, y in that lemma’s statement.

We have now presented all technical lemmas that will be employed in our proof of
Theorem 2.4.4. Before moving on to this proof in the next section, we first provide
several immediate corollaries of the preceding lemmas characterizing various steps
of Algorithm 4.

Corollary 2.E.5. In the specification of Interp (Algorithm 4), if 𝑥𝑡 is determined by
Line 8, then ∥x𝑡 − z𝑡 ∥ ≤ ∥s𝑡 − s𝑡−1∥.

Proof. This follows immediately from Lemma 2.E.2 with the lemma’s a, b, c, and
𝑟 respectively chosen as x̃𝑡 , s𝑡−1, s𝑡 and ∥z𝑡 − s𝑡−1∥.

Corollary 2.E.6. In the specification of Interp (Algorithm 4),

∥y𝑡 − x𝑡−1∥ ≤ 𝑘 (X)∥x̃𝑡 − x̃𝑡−1∥.
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Proof. This follows by definition of the Lipschitz constant 𝑘 (X) of the radial re-
traction, and the observation that y𝑡 (respectively x𝑡−1) is the radial retraction of x̃𝑡
(respectively x̃𝑡−1) onto the ball 𝐵(s𝑡−1, ∥x𝑡−1 − s𝑡−1∥).

Corollary 2.E.7. In the specification of Interp (Algorithm 4),

∥y𝑡 − x𝑡−1∥ + ∥x̃𝑡 − y𝑡 ∥ ≤ 𝜇(X)∥x̃𝑡 − x̃𝑡−1∥ + ∥x̃𝑡−1 − x𝑡−1∥.

Proof. This follows immediately from Lemma 2.E.4 with x, y,w, and 𝑟 in the
lemma’s statement chosen respectively as x̃𝑡−1, x̃𝑡 , s𝑡−1, and ∥x𝑡−1 − s𝑡−1∥, which in
turn yields ŷ = y𝑡 and x̂ = x𝑡−1.

Proof of bicompetitive bound
We prove the bicompetitive bound of Theorem 2.4.4 in two parts: we will first
show the competitive ratio with respect to Adv, and will follow with the competitive
ratio with respect to Rob. Both results proceed via potential function arguments:
the first uses the potential function ∥x̃𝑡 − x𝑡 ∥, and the second uses the potential
function 𝑐∥x𝑡 − s𝑡 ∥ (with 𝑐 to be defined later on). The robustness and consistency
claim then follows immediately from the bicompetitive bound and the observation
in Section 2.A.

Proof of competitiveness with respect to Adv. We define “phases” of the algorithm
as follows: if x𝑡 is determined by line 4 of the algorithm, then the advice is in the
“Adv” phase. Otherwise, if x𝑡 is determined by line 8, then the advice is in the
“Rob” phase. We refer to the time indices in which the algorithm is in the “Rob”
phase as 𝑅1, . . . , 𝑅𝑘 ∈ [𝑇] (where 𝑘 ≤ 𝑇 , and 𝑅1 < · · · < 𝑅𝑘 are in increasing
order). If the algorithm is never in the “Rob” phase, then x𝑡 = x̃𝑡 ∀𝑡 ∈ [𝑇], and thus
Interp is 1-competitive with respect to Adv. Thus we restrict to the case that there
is at least one time index in which the algorithm is in the “Rob” phase. By design,
for each 𝑗 ∈ [𝑘], CRob(1, 𝑅 𝑗 ) ≤ 𝛿 · CAdv(1, 𝑅 𝑗 ).

Now we break into two cases depending on the phase. First, suppose that Interp is
in the “Adv” phase. This means that x𝑡 = x̃𝑡 . Then

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ + ∥x̃𝑡 − x𝑡 ∥ = 𝑓𝑡 (x̃𝑡) + ∥x̃𝑡 − x𝑡−1∥
≤ 𝑓𝑡 (x̃𝑡) + ∥x̃𝑡 − x̃𝑡−1∥ + ∥x̃𝑡−1 − x𝑡−1∥ (2.23)

follows immediately from the triangle inequality.
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Second, consider the case that the algorithm is in the “Rob” phase. This means that
x𝑡 is determined by line 8 of the algorithm; and there exists some 𝜆 ∈ [0, 1] for
which x𝑡 = 𝜆s𝑡 + (1 − 𝜆)x̃𝑡 . In this case, observe

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ + ∥x̃𝑡 − x𝑡 ∥
≤ 𝜆 𝑓𝑡 (s𝑡) + (1 − 𝜆) 𝑓𝑡 (x̃𝑡) + 2∥x𝑡 − z𝑡 ∥
+ 2∥z𝑡 − y𝑡 ∥ + ∥y𝑡 − x𝑡−1∥ + ∥x̃𝑡 − y𝑡 ∥ (2.24)

≤ 2 · CRob(𝑡, 𝑡) + 2𝛾 · CAdv(𝑡, 𝑡) + 𝑓𝑡 (x̃𝑡) + ∥y𝑡 − x𝑡−1∥ + ∥x̃𝑡 − y𝑡 ∥ (2.25)

where (2.24) follows from convexity of 𝑓𝑡 and the triangle inequality, and (2.25)
follows from bounding ∥x𝑡 − z𝑡 ∥ via Corollary 2.E.5 and ∥z𝑡 − y𝑡 ∥ via line (7) of the
algorithm. Invoking Corollary 2.E.7 gives the result

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ + ∥x̃𝑡 − x𝑡 ∥
≤ 2 · CRob(𝑡, 𝑡) + 2𝛾 · CAdv(𝑡, 𝑡) + 𝑓𝑡 (x̃𝑡) + 𝜇(X)∥x̃𝑡 − x̃𝑡−1∥ + ∥x̃𝑡−1 − x𝑡−1∥
≤ 2 · CRob(𝑡, 𝑡) + (𝜇(X) + 2𝛾)CAdv(𝑡, 𝑡) + ∥x̃𝑡−1 − x𝑡−1∥. (2.26)

Summing (2.23) and (2.26) over time and noting that the left-hand side ∥x̃𝑡 − x𝑡 ∥
and right-hand side ∥x̃𝑡−1 − x𝑡−1∥ telescope, we obtain

CInterp(1, 𝑇)

≤
𝑇∑︁
𝑡=1

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ + ∥x̃𝑇 − x𝑇 ∥

≤
∑︁

𝑡∈{𝑅 𝑗 }𝑘𝑗=1

2 · CRob(𝑡, 𝑡) + (𝜇(X) + 2𝛾)CAdv(𝑡, 𝑡) +
∑︁

𝑡∈[𝑇]\{𝑅 𝑗 }𝑘𝑗=1

CAdv(𝑡, 𝑡)

≤ 2 · CRob(1, 𝑅𝑘 ) + (𝜇(X) + 2𝛾)CAdv(1, 𝑇)
≤ 2𝛿 · CAdv(1, 𝑅𝑘 ) + (𝜇(X) + 2𝛾)CAdv(1, 𝑇)
≤ (𝜇(X) + 𝜖)CAdv(1, 𝑇)

where the second to last inequality follows from the assumption that the algorithm is
in the “Rob” phase at time 𝑅𝑘 , implying CRob(1, 𝑅𝑘 ) ≤ 𝛿·CAdv(1, 𝑅𝑘 ); and in the last
inequality we use the assumption on the parameters that 2𝛾 + 2𝛿 = 𝜖 . This gives the
competitive bound with respect to Adv. Note that we can repeat the same argument
with truncated time horizon to obtain that Interp is (𝜇(X) + 𝜖)-competitive with
respect to Adv at every timestep.

Proof of competitiveness with respect to Rob. Define the potential function
𝜙𝑡 = 𝑐∥x𝑡 − s𝑡 ∥, with 𝑐 > 0 to be determined later.
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Let 𝑡′ ∈ {0, . . . , 𝑇} be the last time interval in which the algorithm’s decision
is determined by line 4 of the algorithm, or equivalently, the greatest 𝑡 such that
CRob(1, 𝑡) ≥ 𝛿·CAdv(1, 𝑡). Applying the competitive bound of Interp with respect to
Adv to the subhorizon 𝑡 = 1, . . . , 𝑡′, we have CInterp(1, 𝑡′) ≤ (𝜇(X) + 𝜖)CAdv(1, 𝑡′).
By the triangle inequality, and since all algorithms begin at the same starting point
x0, we have ∥x̃𝑡′ − s𝑡′ ∥ ≤ CAdv(1, 𝑡′) + CRob(1, 𝑡′). Putting these together, we have

CInterp(1, 𝑡′) + 𝜙𝑡′ = CInterp(1, 𝑡′) + 𝑐∥x̃𝑡′ − s𝑡′ ∥
≤ (𝜇(X) + 𝜖)CAdv(1, 𝑡′) + 𝑐(CAdv(1, 𝑡′) + CRob(1, 𝑡′))

≤
(
𝜇(X) + 𝜖 + 𝑐

𝛿
+ 𝑐

)
CRob(1, 𝑡′). (2.27)

Now consider arbitrary 𝑡 ∈ {𝑡′+1, . . . , 𝑇}. We distinguish two cases. First, suppose
x𝑡 = s𝑡 . Then

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ + 𝜙𝑡 − 𝜙𝑡−1 = 𝑓𝑡 (s𝑡) + ∥s𝑡 − x𝑡−1∥ + 𝑐∥s𝑡 − s𝑡 ∥ − 𝑐∥s𝑡−1 − x𝑡−1∥
≤ 𝑓𝑡 (s𝑡) + ∥s𝑡 − s𝑡−1∥ + ∥s𝑡−1 − x𝑡−1∥ − 𝑐∥s𝑡−1 − x𝑡−1∥
≤ CRob(𝑡, 𝑡) (2.28)

where the final inequality holds so long as 𝑐 ≥ 1.

On the other hand, suppose x𝑡 ≠ s𝑡 . Observe that

∥x𝑡 − s𝑡 ∥ ≤ ∥z𝑡 − s𝑡−1∥ by line 8 of the algorithm

= ∥y𝑡 − s𝑡−1∥ − 𝛾 · CAdv(𝑡, 𝑡) by line 7 of the algorithm and x𝑡 ≠ s𝑡
≤ ∥x𝑡−1 − s𝑡−1∥ − 𝛾 · CAdv(𝑡, 𝑡) by line 6 of the algorithm.

(2.29)

Then noting that x𝑡 = 𝜆s𝑡 + (1 − 𝜆)x̃𝑡 for some 𝜆 ∈ [0, 1], we have

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ + 𝜙𝑡 − 𝜙𝑡−1

≤ 𝜆 𝑓𝑡 (s𝑡) + (1 − 𝜆) 𝑓𝑡 (x̃𝑡) + ∥x𝑡 − x𝑡−1∥ − 𝑐𝛾 · CAdv(𝑡, 𝑡) (2.30)

≤ 𝑓𝑡 (s𝑡) + 𝑓𝑡 (x̃𝑡) + ∥x𝑡 − z𝑡 ∥ + ∥z𝑡 − y𝑡 ∥ + ∥y𝑡 − x𝑡−1∥ − 𝑐𝛾 · CAdv(𝑡, 𝑡) (2.31)

≤ CRob(𝑡, 𝑡) + 𝑓𝑡 (x̃𝑡) + 𝛾 · CAdv(𝑡, 𝑡) + ∥y𝑡 − x𝑡−1∥ − 𝑐𝛾 · CAdv(𝑡, 𝑡) (2.32)

≤ CRob(𝑡, 𝑡) + (𝑘 (X) + 𝛾 − 𝑐𝛾)CAdv(𝑡, 𝑡) (2.33)

≤ CRob(𝑡, 𝑡) (2.34)

where (2.30) follows from convexity and (2.29), (2.31) follows from the triangle
inequality, (2.32) follows from bounding ∥𝑥𝑡 − 𝑧𝑡 ∥ via Corollary 2.E.5 and ∥𝑧𝑡 − 𝑦𝑡 ∥
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via algorithm line (7), (2.33) follows from the observation in Corollary 2.E.6, and
(2.34) holds so long as 𝑐 ≥ 1 + 𝑘 (X)

𝛾
.

Thus we set 𝑐 = 1 + 𝑘 (X)
𝛾

; summing (2.28) and (2.34) over times 𝑡′ + 1, . . . , 𝑇 and
adding to (2.27), we obtain

CInterp(1, 𝑇) ≤ ©«1 + 𝑘 (X)
𝛾
+
𝜇(X) + 𝜖 + 1 + 𝑘 (X)

𝛾

𝛿

ª®¬ CRob(1, 𝑡′) + CRob(𝑡′ + 1, 𝑇)

≤ ©«1 + 𝑘 (X)
𝛾
+
𝜇(X) + 𝜖 + 1 + 𝑘 (X)

𝛾

𝛿

ª®¬ CRob(1, 𝑇).

Parameter optimization
We conclude with a brief comment on the optimal selection of parameters 𝛾, 𝛿 for
Interp. If we minimize the competitive bound of Interp with respect to Rob over
parameters 𝛾, 𝛿 > 0 satisfying 2𝛾 + 2𝛿 = 𝜖 , then we obtain the following O( 1

𝜖2 )
bound on the competitive ratio with respect to Rob (with arguments of 𝜇(X), 𝑘 (X)
suppressed):

3 +
2(𝜖 + 𝑘 (X)(4 + 𝜖) + 𝜖 𝜇(X)) + 4

√︁
𝑘 (X)(2 + 𝜖) (2𝑘 (X) + 𝜖 (1 + 𝜖 + 𝜇(X)))
𝜖2

which is obtained by setting

𝛾 =

√︁
𝑘 (X)(2 + 𝜖) (2𝑘 (X) + 𝜖 (1 + 𝜖 + 𝜇(X))) − 𝑘 (X)(2 + 𝜖)

2(1 − 𝑘 (X) + 𝜖 + 𝜇(X))

and
𝛿 =

𝜖

2
− 𝛾.

With parameters chosen optimally thus, Interp is (𝜇(X)+𝜖,O(𝜖−2))-bicompetitive.
Moreover, even if 𝜇(X) and 𝑘 (X) are not known exactly, simply setting 𝛾 = 𝛿 = 𝜖

4
gives an (up to a constant factor) identical (𝜇(X) + 𝜖,O(𝜖−2))-bicompetitiveness.

2.F Proof of Theorem 2.4.5
We prove Theorem 2.4.5 in two parts: we first prove the competitive ratio of
BdInterp with respect to Adv, and then we prove the competitive ratio with respect
to Rob. The robustness and consistency claim then follows immediately from the
bicompetitive bound and the observation in Section 2.A.
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Proof of competitiveness with respect to Adv. We define “phases” of the algorithm
as follows: if x𝑡 is determined by line 4 of the algorithm, then the advice is in the
“Adv” phase. Otherwise, if x𝑡 is determined by line 8, then the advice is in the
“Rob” phase. We refer to the time indices in which the algorithm is in the “Rob”
phase as 𝑅1, . . . , 𝑅𝑘 ∈ [𝑇] (where 𝑘 ≤ 𝑇 , and 𝑅1 < · · · < 𝑅𝑘 are in increasing
order). If the algorithm is never in the “Rob” phase, then x𝑡 = Adv𝑡 ∀𝑡 ∈ [𝑇], and
thus BdInterp is 1-competitive with respect to Adv. Thus we restrict to the case
that there is at least one time index in which the algorithm is in the “Rob” phase.
By design, for each 𝑗 ∈ [𝑘], CRob(1, 𝑅 𝑗 ) ≤ 𝛿 · CAdv(1, 𝑅 𝑗 ).

Now we break into two cases depending on the phase. First, suppose the BdInterp
is in the “Adv” phase. This means that x𝑡 = x̃𝑡 . Then

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ + ∥x̃𝑡 − x𝑡 ∥ = 𝑓𝑡 (x̃𝑡) + ∥x̃𝑡 − x𝑡−1∥
≤ 𝑓𝑡 (x̃𝑡) + ∥x̃𝑡 − x̃𝑡−1∥ + ∥x̃𝑡−1 − x𝑡−1∥ (2.35)

follows immediately from the triangle inequality.

Second, consider the case that the algorithm is in the “Rob” phase. This means that
x𝑡 is determined by line 8 of the algorithm; and there exists some 𝜆 ∈ [0, 1] for
which x𝑡 = 𝜆s𝑡 + (1 − 𝜆)x̃𝑡 . In this case, observe

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ + ∥x̃𝑡 − x𝑡 ∥
≤ 𝜆 𝑓𝑡 (s𝑡) + (1 − 𝜆) 𝑓𝑡 (x̃𝑡) + 2∥x𝑡 − y𝑡 ∥ + ∥y𝑡 − x𝑡−1∥ + ∥x̃𝑡 − y𝑡 ∥ (2.36)

≤ 𝑓𝑡 (s𝑡) + 𝑓𝑡 (x̃𝑡) + 2𝛾 · CAdv(𝑡, 𝑡) + ∥y𝑡 − x𝑡−1∥ + ∥x̃𝑡 − y𝑡 ∥ (2.37)

where (2.36) follows from convexity of 𝑓𝑡 and the triangle inequality, (2.37) follows
via algorithm line 8. Observing that x𝑡−1 = 𝜈x̃𝑡−1 + (1 − 𝜈)s𝑡−1, we can use the
triangle inequality to obtain

∥y𝑡 − x𝑡−1∥ ≤ 𝜈∥x̃𝑡 − x̃𝑡−1∥ + (1 − 𝜈)∥s𝑡 − s𝑡−1∥. (2.38)

Moreover, observe

∥x̃𝑡 − y𝑡 ∥ = (1 − 𝜈)∥x̃𝑡 − s𝑡 ∥
≤ (1 − 𝜈) (∥x̃𝑡 − x̃𝑡−1∥ + ∥x̃𝑡−1 − s𝑡−1∥ + ∥s𝑡 − s𝑡−1∥)
= (1 − 𝜈) (∥x̃𝑡 − x̃𝑡−1∥ + ∥s𝑡 − s𝑡−1∥) + ∥x̃𝑡−1 − x𝑡−1∥ (2.39)

where the final equality follows by definition of 𝜈. Applying (2.38) and (2.39) to
(2.37), we obtain

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ + ∥x̃𝑡 − x𝑡 ∥
≤ 2 · CRob(𝑡, 𝑡) + (1 + 2𝛾)CAdv(𝑡, 𝑡) + ∥x̃𝑡−1 − x𝑡−1∥. (2.40)
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Summing (2.35) and (2.40) over time and noting that the left-hand side ∥x̃𝑡 − x𝑡 ∥
and right-hand side ∥x̃𝑡−1 − x𝑡−1∥ telescope, we obtain

CBdInterp(1, 𝑇)

≤
𝑇∑︁
𝑡=1

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ + ∥x̃𝑇 − x𝑇 ∥

≤
∑︁

𝑡∈{𝑅 𝑗 }𝑘𝑗=1

2 · CRob(𝑡, 𝑡) + (1 + 2𝛾)CAdv(𝑡, 𝑡) +
∑︁

𝑡∈[𝑇]\{𝑅 𝑗 }𝑘𝑗=1

CAdv(𝑡, 𝑡)

≤ 2 · CRob(1, 𝑅𝑘 ) + (1 + 2𝛾)CAdv(1, 𝑇)
≤ 2𝛿 · CAdv(1, 𝑅𝑘 ) + (1 + 2𝛾)CAdv(1, 𝑇)
≤ (1 + 𝜖)CAdv(1, 𝑇)

where the second to last inequality follows from the assumption that the algorithm
is in the “Rob” phase at time 𝑅𝑘 , implying CRob(1, 𝑅𝑘 ) ≤ 𝛿 · CAdv(1, 𝑅𝑘 ); and in
the last inequality we use the assumption on the parameters that 2𝛾 + 2𝛿 = 𝜖 . This
gives the competitive bound with respect to Adv. Note that we can repeat the same
argument with truncated time horizon to obtain that BdInterp is (1+𝜖)-competitive
with respect to Adv at every timestep.

Proof of competitiveness with respect to Rob. Define the potential function
𝜙𝑡 = 𝑐

∥x𝑡−s𝑡 ∥
∥x̃𝑡−s𝑡 ∥ , with 𝑐 > 0 to be determined later (we set 𝜙𝑡 := 0 in the case that

x̃𝑡 = s𝑡).

Let 𝑡′ ∈ {0, . . . , 𝑇} be the last time interval in which the algorithm’s decision is
determined by line 4 of the algorithm, or equivalently, the greatest 𝑡 such that
CRob(1, 𝑡) ≥ 𝛿 · CAdv(1, 𝑡). Applying the competitive bound of BdInterp with
respect to Adv to the subhorizon 𝑡 = 1, . . . , 𝑡′, we have CBdInterp(1, 𝑡′) ≤ (1 +
𝜖)CAdv(1, 𝑡′). Thereby we obtain

CBdInterp(1, 𝑡′) + 𝜙𝑡′ ≤ (1 + 𝜖)CAdv(1, 𝑡′) + 𝑐

≤ 1 + 𝜖
𝛿

CRob(1, 𝑡′) + 𝑐. (2.41)

where in the first inequality we have used the fact that ∥x𝑡 − s𝑡 ∥ ≤ ∥x̃𝑡 − s𝑡 ∥ for all 𝑡.
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Now consider arbitrary 𝑡 ∈ {𝑡′+1, . . . , 𝑇}. We distinguish two cases. First, suppose
x𝑡 = s𝑡 and x̃𝑡−1 ≠ s𝑡−1. Then

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ + 𝜙𝑡 − 𝜙𝑡−1 = 𝑓𝑡 (s𝑡) + ∥s𝑡 − x𝑡−1∥ − 𝑐
∥x𝑡−1 − s𝑡−1∥
∥x̃𝑡−1 − s𝑡−1∥

≤ 𝑓𝑡 (s𝑡) + ∥s𝑡 − s𝑡−1∥

+ ∥x𝑡−1 − s𝑡−1∥ − 𝑐
∥x𝑡−1 − s𝑡−1∥
∥x̃𝑡−1 − s𝑡−1∥

≤ CRob(𝑡, 𝑡) (2.42)

where the final inequality holds so long as 𝑐 ≥ 𝐷, by 𝐷-boundedness of Adv and
Rob. Clearly (2.42) will also hold in the case that x̃𝑡−1 = s𝑡−1, since this will imply
x𝑡−1 = s𝑡−1.

On the other hand, suppose x𝑡 ≠ s𝑡 . Thus we can assume that x̃𝑡 ≠ s𝑡 and x̃𝑡−1 ≠ s𝑡−1.
First, note that

∥x𝑡 − s𝑡 ∥
∥x̃𝑡 − s𝑡 ∥

=
∥y𝑡 − s𝑡 ∥ − 𝛾 · CAdv(𝑡, 𝑡)

∥x̃𝑡 − s𝑡 ∥
(2.43)

= 𝜈 − 𝛾 · CAdv(𝑡, 𝑡)
∥x̃𝑡 − s𝑡 ∥

≤ ∥x𝑡−1 − s𝑡−1∥
∥x̃𝑡−1 − s𝑡−1∥

− 𝛾 · CAdv(𝑡, 𝑡)
𝐷

(2.44)

where (2.43) follows from line 8 of the algorithm and x𝑡 ≠ s𝑡 , and (2.44) follows by
definition of 𝜈 and the 𝐷-boundedness of Adv,Rob.

Then noting that by convexity, x𝑡 = 𝜆s𝑡 + (1 − 𝜆)x̃𝑡 for some 𝜆 ∈ [0, 1], we have

𝑓𝑡 (x𝑡) + ∥x𝑡 − x𝑡−1∥ + 𝜙𝑡 − 𝜙𝑡−1

≤ 𝜆 𝑓𝑡 (s𝑡) + (1 − 𝜆) 𝑓𝑡 (x̃𝑡) + ∥x𝑡 − x𝑡−1∥ − 𝑐
𝛾 · CAdv(𝑡, 𝑡)

𝐷
(2.45)

≤ 𝑓𝑡 (s𝑡) + 𝑓𝑡 (x̃𝑡) + ∥x𝑡 − y𝑡 ∥ + ∥y𝑡 − x𝑡−1∥ − 𝑐
𝛾 · CAdv(𝑡, 𝑡)

𝐷
(2.46)

≤ 𝑓𝑡 (s𝑡) + 𝑓𝑡 (x̃𝑡) + 𝛾 · CAdv(𝑡, 𝑡) + 𝜈∥x̃𝑡 − x̃𝑡−1∥

+ (1 − 𝜈)∥s𝑡 − s𝑡−1∥ − 𝑐
𝛾 · CAdv(𝑡, 𝑡)

𝐷
(2.47)

≤ CRob(𝑡, 𝑡) +
(
1 + 𝛾 − 𝑐𝛾

𝐷

)
CAdv(𝑡, 𝑡)

≤ CRob(𝑡, 𝑡) (2.48)

where (2.45) follows from convexity and (2.44), (2.46) follows from the triangle
inequality, and (2.47) follows from (2.38) and line 8 of the algorithm. The final
inequality (2.48) holds as long as 𝑐 ≥ 𝐷 + 𝐷

𝛾
.
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Thus we set 𝑐 = 𝐷 + 𝐷
𝛾

; summing (2.42) and (2.48) over times 𝑡′ + 1, . . . , 𝑇 and
adding to (2.41), we obtain

CInterp(1, 𝑇) ≤
1 + 𝜖
𝛿

CRob(1, 𝑡′) + 𝐷 +
𝐷

𝛾
+ CRob(𝑡′ + 1, 𝑇)

≤ 1 + 𝜖
𝛿

CRob(1, 𝑇) + 𝐷 +
𝐷

𝛾

≤
(
𝐷 + 𝐷

𝛾
+ 1 + 𝜖

𝛿

)
CRob(1, 𝑇)

where in the final inequality we have used the assumption that CRob ≥ 1.

Parameter optimization
To conclude, we briefly comment on the optimal selection of parameters 𝛾, 𝛿 for
BdInterp. Optimizing the competitive bound of BdInterp with respect to Rob over
those 𝛾, 𝛿 > 0 satisfying 2𝛾 + 2𝛿 = 𝜖 , we obtain the following O( 𝐷

𝜖
)-competitive

bound with respect to Rob:

2 + 𝐷 +
2(1 + 𝐷) + 4

√︁
𝐷 (1 + 𝜖)

𝜖

which is obtained by setting

𝛾 =
𝐷𝜖

2(𝐷 +
√︁
𝐷 (1 + 𝜖)

and
𝛿 =

𝜖

2
− 𝛾.

With parameters chosen optimally thus, BdInterp is (1 + 𝜖,O(𝐷𝜖−1))-
bicompetitive. Moreover, even if 𝐷 is not known exactly a priori, simply set-
ting 𝛾 = 𝛿 = 𝜖

4 gives an (up to a constant factor) identical (1 + 𝜖,O(𝐷𝜖−1))-
bicompetitiveness.

2.G Robustness and Consistency Corollaries of Theorems 2.4.4 and 2.4.5
In this section, we detail the upper bounds on robustness and consistency resulting
from Theorems 2.4.4 and 2.4.5 on CFC and each of its subclasses defined in Sec-
tion 2.A. Each of these corollaries follows immediately upon instantiating the robust
algorithm Rob provided as input to Interp (Algorithm 4) or BdInterp (Algorithm
5) with a competitive algorithm whose competitive ratio is listed in Table 2.2. We
begin with the corollaries of Theorem 2.4.4.
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Corollary 2.G.1. (i) Interp (Algorithm 4) with Rob chosen as the functional
Steiner point algorithm ([106]) is (𝜇(R𝑑 , ∥ · ∥) + 𝜖)-consistent and O( 𝑑

𝜖2 )-
robust for CFC and CBC on R𝑑 with any norm.

(ii) Interp (Algorithm 4) with Rob chosen as the low-dimensional chasing al-
gorithm of [108] is (

√
2 + 𝜖)-consistent and O( 𝑘

𝜖2 )-robust for 𝑘CBC on
(R𝑑 , ∥ · ∥ℓ2).

(iii) Interp (Algorithm 4) with Rob chosen as the greedy algorithm ([103]) is
(𝜇(X) + 𝜖)-consistent and O( 1

𝛼𝜖2 )-robust for 𝛼CFC on any normed vector
space X.

(iv) Interp (Algorithm 4) with Rob chosen as the greedy OBD algorithm ([107])
is (
√

2 + 𝜖)-consistent and O( 1
𝛼1/2𝜖2 )-robust for 𝛼CFC on (R𝑑 , ∥ · ∥ℓ2).

(v) Interp (Algorithm 4) with Rob chosen as the Move towards Minimizer algo-
rithm ([108]) is (

√
2 + 𝜖)-consistent and O( 2𝛾/2𝜅

𝜖2 )-robust for (𝜅, 𝛾)CFC on
(R𝑑 , ∥ · ∥ℓ2).

In particular, each of the consistency bounds is
√

2 + 𝜖 in the case that the decision
space is Hilbert.

We now present the corollaries of Theorem 2.4.5.

Corollary 2.G.2. In each of the following, suppose that (Adv,Rob) are 𝐷-bounded
and CRob ≥ 1.

(i) BdInterp (Algorithm 5) with Rob chosen as the functional Steiner point algo-
rithm ([106]) is (1 + 𝜖)-consistent and O( 𝑑𝐷

𝜖
)-robust for CFC and CBC on

R𝑑 with any norm.

(ii) BdInterp (Algorithm 5) with Rob chosen as the low-dimensional chasing
algorithm of [108] is (1 + 𝜖)-consistent and O( 𝑘𝐷

𝜖
)-robust for 𝑘CBC on

(R𝑑 , ∥ · ∥ℓ2).

(iii) BdInterp (Algorithm 5) with Rob chosen as the greedy algorithm ([103]) is
(1 + 𝜖)-consistent and O( 𝐷

𝛼𝜖
)-robust for 𝛼CFC on any normed vector space.

(iv) BdInterp (Algorithm 5) with Rob chosen as the Greedy OBD algorithm ([107])
is (1 + 𝜖)-consistent and O( 𝐷

𝛼1/2𝜖
)-robust for 𝛼CFC on (R𝑑 , ∥ · ∥ℓ2).

(v) BdInterp (Algorithm 5) with Rob chosen as the Move towards Minimizer
algorithm ([108]) is (1 + 𝜖)-consistent and O( 2𝛾/2𝜅𝐷

𝜖
)-robust for (𝜅, 𝛾)CFC

on (R𝑑 , ∥ · ∥ℓ2).
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C h a p t e r 3

OPTIMAL ROBUSTNESS-CONSISTENCY TRADEOFFS FOR
LEARNING-AUGMENTED METRICAL TASK SYSTEMS

Moving beyond the convex setting of the previous chapter, we now examine the
problem of designing learning-augmented algorithms for the more general metrical
task systems (MTS) problem that exploit machine-learned advice while maintain-
ing rigorous, worst-case guarantees on performance. We propose a randomized
algorithm, Dart, that achieves this dual objective, providing expected cost within a
multiplicative factor (1 + 𝜖) of the machine-learned advice (i.e., consistency) while
ensuring expected cost within a multiplicative factor 2O(1/𝜖) of a baseline robust
algorithm (i.e., robustness) for any 𝜖 > 0. We show that this exponential tradeoff
between consistency and robustness is unavoidable in general, but that in important
subclasses of MTS, such as when the metric space has bounded diameter and in the
𝑘-server problem, our algorithm achieves improved, polynomial tradeoffs between
consistency and robustness. We further show that, given an a priori bound 𝐷 on
the distance between the advice and robust decisions, a deterministic algorithm
can obtain (1 + 𝜖)-consistency and cost within a multiplicative factor O( 1

𝜖
) of the

robust baseline algorithm, with an additive constant of O( 𝐷
𝜖
). We demonstrate

the practical value of these algorithms in a case study on cogeneration power plant
operation under high renewables penetration. In particular, our algorithms enable
significant efficiency improvements while ensuring robustness to potentially poor
machine learning performance.

This chapter is primarily based on the following paper:

[1] N. Christianson, J. Shen, and A. Wierman, “Optimal Robustness-
Consistency Tradeoffs for Learning-Augmented Metrical Task Systems,”
in Proceedings of The 26th International Conference on Artificial Intelli-
gence and Statistics, PMLR, Apr. 2023, pp. 9377–9399. [Online]. Available:
https://proceedings.mlr.press/v206/christianson23a.html.

which is licensed under the Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0): https://creativecommons.org/licenses/by/4.0/. In
addition, Sections 3.6, 3.7, and 3.E, which present the deterministic algorithm, its

https://proceedings.mlr.press/v206/christianson23a.html
https://creativecommons.org/licenses/by/4.0/
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performance analysis, and experimental results for the cogeneration power plant
operation application, are adapted from the paper

[1] N. Christianson, C. Yeh, T. Li, M. Hosseini, M. T. Rad, A. Golmohammadi,
and A. Wierman, “Robust Machine-Learned Algorithms for Efficient Grid
Operation,” Environmental Data Science, vol. 4, e24, Apr. 2025, issn: 2634-
4602. doi: 10.1017/eds.2024.28. [Online]. Available: https://www.
cambridge.org/core/journals/environmental-data-science/
article/robust-machinelearned-algorithms-for-efficient-
grid-operation/0E29B936A8FEE565B169F70372B7F9DE.

under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License (CC BY-NC-SA 4.0): https://creativecommons.
org/licenses/by-nc-sa/4.0/. In accordance with the Share-Alike require-
ment, these sections are distributed under the same license.

3.1 Introduction
The metrical task systems (MTS) problem is a central problem in the theory of online
algorithms, encompassing a wide range of problems broadly characterized as “online
optimization with switching costs” such as convex function chasing (CFC) and 𝑘-
server. In MTS, a decision-maker is faced with a metric space (𝑋, 𝑑) and a sequence
of adversarial cost functions 𝑓1, . . . , 𝑓𝑇 : 𝑋 → [0,+∞] that are revealed online; after
the function 𝑓𝑡 is revealed, the decision-maker chooses a decision 𝑥𝑡 ∈ 𝑋 and pays
the service cost 𝑓𝑡 (𝑥𝑡) as well as the switching or movement cost 𝑑 (𝑥𝑡 , 𝑥𝑡−1), which
penalizes changing decisions. The MTS problem has deep connections with online
learning [116, 130, 131] and broad applicability to problems such as energy system
operation [132, 133], datacenter operation [37, 38, 134], smoothed online regression
and clustering [99, 135, 136], and logistics [137]. MTS algorithms are designed to
minimize the competitive ratio, which quantifies the worst-case ratio in cost between
an algorithm and the offline optimal sequence of decisions (Definition 3.2.1). The
competitive ratio of MTS algorithms grows in the cardinality or dimension of the
decision space; for instance, if |𝑋 | = 𝑛, any deterministic algorithm is Ω(𝑛)-
competitive and any randomized algorithm is Ω(log 𝑛)-competitive [76, 138].

Due to the worst-case nature of the competitive ratio, traditional algorithms for MTS
are conservative and may perform poorly in high-dimensional settings. In many
real-world sequential decision-making tasks, however, significant data is available
concerning typical problem instances, enabling data-driven, machine-learned (ML)
algorithms to outperform traditional algorithms, which ignore such data. Despite

https://doi.org/10.1017/eds.2024.28
https://www.cambridge.org/core/journals/environmental-data-science/article/robust-machinelearned-algorithms-for-efficient-grid-operation/0E29B936A8FEE565B169F70372B7F9DE
https://www.cambridge.org/core/journals/environmental-data-science/article/robust-machinelearned-algorithms-for-efficient-grid-operation/0E29B936A8FEE565B169F70372B7F9DE
https://www.cambridge.org/core/journals/environmental-data-science/article/robust-machinelearned-algorithms-for-efficient-grid-operation/0E29B936A8FEE565B169F70372B7F9DE
https://www.cambridge.org/core/journals/environmental-data-science/article/robust-machinelearned-algorithms-for-efficient-grid-operation/0E29B936A8FEE565B169F70372B7F9DE
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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this excellent practical performance, ML algorithms come with no a priori guar-
antees on worst-case behavior. As such, their performance may be jeopardized at
deployment time if they are faced with distribution shift or unseen problem instances.

The tension between ML algorithms’ excellent average-case performance and their
lack of worst-case guarantees has motivated the development of learning-augmented
algorithms for a wide range of online problems such as ski-rental, scheduling, and
caching [69, 70, 109, 139]. These algorithms are designed to exploit the performance
of untrusted or “black-box” advice (e.g., from an ML algorithm) while maintaining
rigorous guarantees on worst-case performance. Specifically, learning-augmented
algorithms are designed to give simultaneous guarantees of consistency—a competi-
tive guarantee against the advice—along with robustness—a worst-case competitive
ratio guarantee (Definition 3.2.2). Tunable guarantees are typically sought so that
(1 + 𝜖)-consistency can be obtained alongside bounded robustness for any 𝜖 > 0,
enabling better exploitation of good advice when 𝜖 is chosen to be small.

Antoniadis et al. [75] propose two algorithms that switch between an advice algo-
rithm and a 𝐶-competitive algorithm for MTS or a special case thereof, giving guar-
antees of robustness and consistency for any MTS problem. In particular, their deter-
ministic algorithm achieves 9-consistency and 9𝐶-robustness and their randomized
algorithm achieves expected cost bounded by (1+ 𝜖) ·min {CAdv, 𝐶 · COpt}+O( 𝐷𝜖 ),
where 𝐷 = diam(𝑋) and CAdv,COpt are the advice and offline optimal costs, respec-
tively. However, their deterministic algorithm cannot improve upon 9-consistency
and the randomized algorithm is limited by the additiveO( 𝐷

𝜖
) term, which precludes

obtaining arbitrarily small consistency (e.g., when CAdv is small relative to the di-
ameter) and causes the bound to degrade or fail as the diameter of the metric space
grows. This diameter-dependence is of particular limitation to special cases of MTS
such as CFC and 𝑘-server, where the natural setting is an unbounded metric space
like R𝑛. In addition, this randomized algorithm applies the classic multiplicative
weights approach of [116], which is not clearly optimal in this setting.

Several subsequent works obtain robustness and consistency bounds independent of
diameter in special cases. Rutten, Christianson, et al. [113] propose an algorithm
achieving (1 + 𝜖)-consistency and 2Õ( 1

𝛼𝜖
)-robustness under certain conditions on

𝛼, 𝜖 > 0 when service cost functions 𝑓𝑡 are restricted to be 𝛼-polyhedral (Defini-
tion 3.2.4). In the case of convex function chasing (Section 3.2) on (R𝑛, ∥ · ∥ℓ2),
Christianson et al. [140] propose a (

√
2+𝜖)-consistent, O( 𝑛

𝜖2 )-robust algorithm, and
Rutten, Christianson, et al. [113] give a (1 + 𝜖)-consistent, O( 1

𝜖
)-robust algorithm
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for the one-dimensional case (see Chapter 2.4). Lindermayr et al. [141] give an
algorithm for 𝑘-server (Section 3.2) on R that achieves (1 + O(𝜖))-consistency and
O( 1

𝜖 𝑘−1 )-robustness.

These latter results indicate that in certain subclasses of MTS, it is possible to
obtain robustness and consistency bounds that are independent of metric space
diameter. However, these results only exist for a few subclasses of MTS, and do not
always guarantee (1 + 𝜖)-consistency for arbitrarily small 𝜖 > 0, thus limiting the
exploitation of good advice. The following, important questions remain open: Does
there exist a general algorithm for MTS and its subclasses that achieves (1 + 𝜖)-
consistency for any 𝜖 > 0 and bounded robustness? And is it possible to obtain
robustness bounded independently of the metric space diameter?

Contributions
In this work, we answer the above questions in the affirmative. Specifically, we
propose a randomized algorithm, Dart (Algorithm 6), that, given any advice and
any 𝐶-competitive algorithm for MTS or a special case thereof, achieves (1 + 𝜖)-
consistency and 2O(1/𝜖)𝐶-robustness (Theorem 3.3.1), with robustness independent
of the diameter of the metric space.

This main result implies several robustness and consistency bounds for subclasses
of MTS (Corollary 3.3.2), which we summarize in Table 3.1. In particular, we
answer the question posed by [140] (Chapter 2) of whether (1 + 𝜖)-consistency
and bounded robustness can be achieved for convex function chasing (CFC) on
unbounded domains with 𝜖 arbitrarily close to 0. We further prove lower bounds
on robustness and consistency for MTS and CFC, showing that our upper bounds
are essentially tight: any (1 + 𝜖)-consistent algorithm must have robustness 2Ω(1/𝜖)

(Theorems 3.4.1, 3.4.2). Despite this exponential tradeoff for MTS and CFC in
general settings, we show by a refined analysis that Dart actually achieves robustness
O(𝐶

𝜖
) when the space’s diameter is bounded, with an additive term on the robustness

matching the dependence on diameter of [75] (Theorem 3.5.1). Moreover, we find
that Dart achievesO( 𝑘

𝜖
)-robustness for the 𝑘-server problem, giving the best known

robustness and consistency tradeoff in general metric spaces for this widely-studied
special case of MTS (Theorem 3.5.3). We also consider the problem of 𝑘-chasing
convex, 𝛼-polyhedral functions, a generalization of both 𝑘-server and CFC, and
we find that Dart guarantees robustness O( 𝑘

𝛼𝜖
) in the one-dimensional setting

(Theorem 3.5.4).



79

In addition to Dart, we propose a deterministic algorithm, DetRobustML, that
achieves (1+𝜖)-consistency and O(𝐶

𝜖
)-robustness when the diameter of the space is

bounded, with an additive constant on the robustness matching that incurred by Dart
in this setting (Theorem 3.6.1). While this algorithm requires prior knowledge of the
diameter bound and does not ensure the diameter-independent robustness achieved
by Dart, its determinism may be desirable to decision-makers who wish to avoid
potential added risk resulting from the randomness used by Dart.

Finally, we present an experimental evaluation of Dart and DetRobustML in
Section 3.7. These experiments, conducted on a realistic model of cogeneration
power plant operation under increasing renewables penetration, show that Dart
and DetRobustML can significantly reduce cost by exploiting machine-learned
advice, while improving reliability and robustness when the advice performs poorly.
Moreover, both algorithms outperform the state-of-the-art multiplicative weights
algorithm of Antoniadis et al. [75].

Our algorithms—and Dart especially—are distinguished from prior learning-
augmented algorithms for MTS in both their generality and specific MTS-oriented
design. Prior algorithms were either devised for different online problems and sim-
ply applied off-the-shelf to MTS with advice (e.g., the cow path and multiplicative
weights algorithms of Antoniadis et al. [75]), or heavily leveraged geometric and
structural assumptions on the problem setting (e.g., convexity in [140] (Chapter 2),
𝛼-polyhedrality in [113], 𝑋 = R in [141]). In contrast, Dart works for any MTS or
special case and is designed principally to achieve (1 + 𝜖)-consistency with respect
to an advice algorithm. Specifically, it operates by updating probabilities assigned
to the advice and to a chosen competitive algorithm based on the costs incurred by
each algorithm as well as the distance between the two algorithms’ decisions. The
dependence on this latter quantity is important, as this enables obtaining consistency
and robustness independent of diameter, and the randomized algorithm of [75] lacks
such a dependence.

Proving the performance bounds for Dart requires several technical contributions.
Dart’s robustness is obtained by directly bounding the extent to which Dart can be
led astray by bad advice; this approach requires proving a lower bound on a broad
class of sums that includes as a special case the harmonic series (Supplemental
Section 3.B). Moreover, the extremal case of this lower bound naturally leads to the
robustness and consistency lower bound for MTS (Theorem 3.4.1). Furthermore, our
lower bound on robustness and consistency for CFC (Theorem 3.4.2) makes novel
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Table 3.1: Summary of prior robustness and consistency results for MTS and its
special cases, with this chapter’s contributions in bold. Recall 𝐷 = diam(𝑋).

Problem Reference Consistency Robustness Assumptions

MTS
|𝑋 | = 𝑛

[142] — O(log2 𝑛)COpt
[75] 9 · CAdv 9 · O(log2 𝑛)COpt
[75] (1+𝜖)CAdv+O( 𝐷𝜖 ) (1+ 𝜖)O(log2 𝑛)COpt+O( 𝐷𝜖 ) 𝐷 < ∞
This

chapter (1 + 𝝐)CAdv
min{2O(1/𝝐 )O(log2 𝒏)COpt,

O(
log2 𝒏

𝝐 )COpt + O(𝑫𝝐 )}

CFC
𝑋 ⊆ R𝑛

[106] — 𝑛 · COpt
[75] 9 · CAdv 9𝑛 · COpt
[75] (1+𝜖)CAdv+O( 𝐷𝜖 ) (1 + 𝜖)𝑛 · COpt + O( 𝐷𝜖 ) 𝐷 < ∞
[140] (

√
2 + 𝜖)CAdv O

(
𝑛

𝜖 2

)
COpt Euclidean

This
chapter (1 + 𝝐)CAdv

min{2O(1/𝝐 )𝒏 · COpt,
O(𝒏𝝐 )COpt + O(𝑫𝝐 )}

𝑘-server

[97] — (2𝑘 − 1)COpt

[75] 9 · CAdv 9(2𝑘 − 1)COpt
[75] (1+𝜖)CAdv+O( 𝐷𝜖 ) (1 + 𝜖) (2𝑘 − 1)COpt + O( 𝐷𝜖 ) 𝐷 < ∞
[141] (1 + O(𝜖))CAdv O( 1

𝜖 𝑘−1 )COpt 𝑋 = R
This

chapter (1 + 𝝐)CAdv O( 𝒌𝝐 )COpt

𝑘-chasing
convex,

𝛼-polyhedral
functions
𝑋 ⊆ R𝑛

[135]
This

chapter
— O( 𝒌𝜶 )COpt

[75] 9 · CAdv 9 · O( 𝑘
𝛼
)COpt

[75] (1+𝜖)CAdv+O( 𝐷𝜖 ) (1 + 𝜖)O( 𝑘
𝛼
)COpt + O( 𝐷𝜖 ) 𝐷 < ∞

This
chapter (1 + 𝝐)CAdv

min{2O(1/𝝐 )O( 𝒌𝜶 )COpt,
O( 𝒌

𝜶𝝐 )COpt + O(𝑫𝝐 )}

This
chapter (1 + 𝝐)CAdv O( 𝒌

𝜶𝝐 )COpt 𝑋 = R

use of an observation (due to [142]) that MTS instances on trees are equivalent,
in a certain sense, to CFC instances in a weighted ℓ1 space. To our knowledge,
no prior work has used this correspondence to translate performance bounds on
MTS algorithms to results for CFC. Finally, the results we obtain in Section 3.5 all
follow via refined analyses of the Dart algorithm, and in particular do not require
modification of the algorithm or prior knowledge of, e.g., the diameter bound. Thus,
Dart is a unified algorithm that matches or improves upon the best known results
on robustness and consistency for MTS and many of its subclasses.
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Notation
Let R+ denote the nonnegative extended reals. We define [𝑛] := {1, . . . , 𝑛} for
𝑛 ∈ N. Metric spaces (𝑋, 𝑑) are assumed to be complete and separable. For a
metric space 𝑋 , diam(𝑋) := sup𝑥,𝑦∈𝑋 𝑑 (𝑥, 𝑦). Δ(𝑋) denotes the set of (Borel)
probability measures on the metric space 𝑋; when 𝑋 is finite with cardinality 𝑛, we
identify this with the simplex Δ𝑛. For 𝑥 ∈ 𝑋 , 𝛿𝑥 is the Dirac measure supported at
𝑥. In asymptotic notation involving the variable 𝜖 , the implied regime is 𝜖 → 0.

3.2 Preliminaries
This section introduces the metrical task systems problem and several subclasses that
have received significant attention. We motivate these problems with applications
to data science and multi-agent logistics, and introduce the notion of learning-
augmented algorithms that enable breaking past pessimistic worst-case guarantees.

Metrical Task Systems
Let (𝑋, 𝑑) be a metric space. In the metrical task systems (MTS) problem, at
each time 𝑡 ∈ [𝑇], a player beginning from some position 𝑥0 ∈ 𝑋 observes an
adversarially-chosen cost function 𝑓𝑡 : 𝑋 → R+ and must choose a state 𝑥𝑡 ∈ 𝑋 to
move to. The player then pays both the service cost 𝑓𝑡 (𝑥𝑡) as well as the movement
cost 𝑑 (𝑥𝑡 , 𝑥𝑡−1). The time horizon 𝑇 is unknown to the player a priori. An instance
of MTS is characterized by a metric space (𝑋, 𝑑), a starting position 𝑥0, and the cost
function sequence 𝑓1, . . . , 𝑓𝑇 .

A deterministic online algorithm Alg for MTS is a sequence of maps Alg𝑡 :
(R𝑋+ )𝑡 → 𝑋 which map the cost functions observed through time 𝑡 to a decision in 𝑋
for each 𝑡 ∈ [𝑇]. That is, upon observing the cost function 𝑓𝑡 , Alg𝑡 ( 𝑓1, . . . , 𝑓𝑡) ∈ 𝑋
is the decision produced by Alg at time 𝑡. When the instance is implicitly understood,
we suppress the arguments and simply write Alg𝑡 for Alg’s decision at time 𝑡. Alg
thus incurs cost

CAlg :=
𝑇∑︁
𝑡=1

𝑓𝑡 (Alg𝑡) + 𝑑 (Alg𝑡 ,Alg𝑡−1).

We define the notation CAlg(𝑡, 𝑡′) :=
∑𝑡′
𝜏=𝑡 𝑓𝑡 (Alg𝜏) + 𝑑 (Alg𝜏,Alg𝜏−1) to reflect

Alg’s total cost incurred from time 𝑡 through 𝑡′; if 𝑡 > 𝑡′, then CAlg(𝑡, 𝑡′) := 0.

A randomized MTS algorithm produces its decisions randomly: Alg𝑡 ∼ 𝑝𝑡 ∈ Δ(𝑋).
It suffices to describe a randomized algorithm by its marginal distribution over
states at each time (see, e.g., [142]). That is, suppose Alg𝑡 is distributed according
to 𝑝𝑡 at each time 𝑡 ∈ [𝑇]; then the least-cost way for Alg to move from 𝑝𝑡−1



82

to 𝑝𝑡 is to couple the two distributions so as to minimize expected movement.
Thus consecutive decisions should be distributed jointly according the optimal
Wasserstein-1 transportation plan between 𝑝𝑡−1 and 𝑝𝑡 :

(Alg𝑡 ,Alg𝑡−1) ∼ 𝛾𝑡 := arg min
𝛾∈Π(𝑝𝑡 ,𝑝𝑡−1)

E[𝑑 (𝑥𝑡 , 𝑥𝑡−1)],

where (𝑥𝑡 , 𝑥𝑡−1) ∼ 𝛾 and Π(𝜇, 𝜈) is the set of distributions over 𝑋2 with
marginals 𝜇 and 𝜈. If Alg couples consecutive decisions according to 𝛾𝑡 , then
E[𝑑 (Alg𝑡 ,Alg𝑡−1)] = W1

𝑋
(𝑝𝑡 , 𝑝𝑡−1), the Wasserstein-1 distance between 𝑝𝑡 and

𝑝𝑡−1.1 Thus, E[CAlg] :=
∑𝑇
𝑡=1 𝑓𝑡 (𝑝𝑡) +W1

𝑋
(𝑝𝑡 , 𝑝𝑡−1), where 𝑓𝑡 (𝑝𝑡) := E𝑥∼𝑝𝑡 [ 𝑓𝑡 (𝑥)].

The offline optimal algorithm Opt for an MTS instance chooses the hindsight optimal
sequence of decisions:

COpt := inf
𝑥1,...,𝑥𝑇∈𝑋

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡) + 𝑑 (𝑥𝑡 , 𝑥𝑡−1).

Algorithms for MTS are typically judged by their competitive ratio, an adaptive
measure of performance against Opt or any other algorithm.

Definition 3.2.1. A deterministic algorithm Alg is 𝑐-competitive with respect to
another algorithm Alg′ if, on any problem instance,

CAlg ≤ 𝑐 · CAlg′ + 𝑏,

where 𝑏 is independent of the problem instance. If Alg′ is Opt, we simply say that
Alg is 𝑐-competitive, or has competitive ratio 𝑐. If Alg or Alg′ are randomized, we
replace costs with expected costs in the inequality:

E[CAlg] ≤ 𝑐 · E[CAlg′] + 𝑏.

When service cost functions are arbitrary, algorithms for MTS can only be compet-
itive on metric spaces with finite cardinality |𝑋 | = 𝑛 ∈ N. In this case, the work
function algorithm achieves the optimal deterministic competitive ratio of 2𝑛 − 1
[76]. However, randomization can improve performance, with state-of-the-art algo-
rithms achieving competitive ratio O(log2 𝑛) [142, 143], which is tight for certain
metric spaces [138].

1Note that the optimal transportation plan 𝛾𝑡 exists by the assumption made throughout that 𝑋
is complete and separable.
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Consistency, Robustness, and Bicompetitiveness
The competitive ratio quantifies worst-case performance of an online algorithm;
its focus on the worst case thus biases algorithm design toward more conservative
algorithms. Moreover, as just noted, the competitive ratio of MTS algorithms de-
grades as |𝑋 | grows. In practical applications, however, data on typical problem
instances is available, and thus data-driven machine-learned algorithms may signif-
icantly outperform traditional competitive algorithms. Since these machine-learned
algorithms generally lack worst-case performance guarantees, we seek to design al-
gorithms that exploit the good performance of a machine-learned advice algorithm
(hereafter, Adv) while maintaining worst-case competitiveness. This motivates the
following definitions.

Definition 3.2.2. Let Adv be an advice algorithm. An algorithm Alg is 𝑐-consistent
if it is 𝑐-competitive with respect to Adv. Alg is said to be 𝑟-robust if it is 𝑟-
competitive, regardless of the performance of Adv.

Thus, if Adv is a machine-learned algorithm and Alg is 𝑐-consistent and 𝑟-robust,
then Alg achieves performance within a multiplicative factor 𝑐 of the machine-
learned advice while maintaining a worst-case competitive ratio. In this work, we
design algorithms with tunable guarantees of robustness and consistency, i.e., that
can achieve (1 + 𝜖)-consistency for any 𝜖 > 0 while keeping bounded robustness.
We approach this by designing bicompetitive algorithms, defined as follows.

Definition 3.2.3. Let Alg,Alg′,Alg′′ be three algorithms. Alg is (𝑐, 𝑟)-
bicompetitive with respect to (Alg′,Alg′′) if Alg is both 𝑐-competitive with respect
to Alg′ and 𝑟-competitive with respect to Alg′′.

It follows that if Alg is (𝑐, 𝑟)-bicompetitive with respect to algorithms (Adv,Rob)
and Rob is 𝑏-competitive, then Alg is 𝑐-consistent and 𝑟𝑏-robust. Thus to design
robust and consistent MTS algorithms, it suffices to design bicompetitive algorithms.
We detail prior robustness and consistency results for MTS in Table 3.1.

Special Cases of MTS
We now briefly describe some important special cases of MTS that are of particular
relevance for applications to data science and multi-agent planning. Select bounds
on competitive ratio, robustness, and consistency from prior work are detailed in
Table 3.1.
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Convex function chasing. The problem of convex function chasing (CFC), also
known as “smoothed” online convex optimization, is an MTS in which the metric
space is a finite-dimensional normed vector space and cost functions 𝑓𝑡 are restricted
to be convex. The best known algorithm for CFC in an arbitrary 𝑛-dimensional
normed vector space achieves competitive ratio 𝑛 and improved performance of
O(min{𝑛,

√︁
𝑛 log𝑇}) in the Euclidean setting [106]. On the other hand, any algo-

rithm for CFC in R𝑛 with the ℓ𝑝 norm has competitive ratio Ω(max{
√
𝑛, 𝑛1−1/𝑝})

[101]. It is straightforward to see by Jensen’s inequality and convexity of norms that
a 𝑐-competitive randomized algorithm for CFC can be derandomized by taking the
expectation, yielding a 𝑐-competitive deterministic algorithm for CFC [120].

A number of special cases of CFC in which cost functions have additional structure
have received attention in the literature. For example, the case where each 𝑓𝑡 is the
{0,+∞} indicator of a convex set 𝐾𝑡 ⊆ R𝑛 is known as convex body chasing and
was first considered by Friedman and Linial [77]; the case of well-conditioned 𝑓𝑡

was considered by Argue, Gupta, and Guruganesh [108]. The class of 𝛼-polyhedral
functions has been widely studied as a special case in the CFC literature [102, 103,
144] and is defined as follows.

Definition 3.2.4 (cf. Definition 2.2.2). Fix 𝛼 > 0 and a normed vector space
(R𝑛, ∥ · ∥). A function 𝑔 : R𝑛 → R+ is 𝛼-polyhedral if it has a unique minimizer
v ∈ R𝑛, and for all x ∈ R𝑛, 𝑔(x) ≥ 𝑔(v) + 𝛼∥x − v∥.

A simply greedy algorithm obtains competitive ratio max{1, 2
𝛼
} for CFC with 𝛼-

polyhedral service costs [103], but better results can be obtained in the Euclidean
setting [107].

𝒌-server. In the 𝑘-server problem, we control 𝑘 agents (“servers”) residing in the
metric space 𝑋 , and at each time 𝑡, we receive a request 𝑟𝑡 ∈ 𝑋 and must move
one of the servers to 𝑟𝑡 , paying the distance traveled by the server we moved to
meet the request. It is straightforward to see this is an MTS on the metric space(𝑋
𝑘

)
(i.e., unordered 𝑘-tuples of states in 𝑋) endowed with the minimal matching

distance inherited from the metric on 𝑋 . The service cost 𝑓𝑡 enforces that one of
the servers is located at 𝑟𝑡 , so for x𝑡 := {𝑥 (1)𝑡 , . . . , 𝑥

(𝑘)
𝑡 } ∈

(𝑋
𝑘

)
, 𝑓𝑡 (x𝑡) = ∞ · 1𝑟𝑡∉x𝑡 .

The (deterministic) work function algorithm is (2𝑘 − 1)-competitive for 𝑘-server on
any metric space [97], and no deterministic algorithm can achieve competitive ratio
better than 𝑘 [145]. Significant work has been done establishing tighter bounds on
deterministic algorithms in particular metric spaces as well as sublinear bounds for
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randomized algorithms; see [146] for a survey and [147, 148] for recent results. For
brevity, we only invoke the O(𝑘)-competitiveness of the work function algorithm in
our work.

𝒌-chasing convex functions. The problem of 𝑘-chasing convex functions is a gen-
eralization of both 𝑘-server and CFC: the setting is taken to be a finite-dimensional
vector space (R𝑛, ∥ · ∥), and we maintain a set of 𝑘 servers x𝑡 := {x(1)𝑡 , . . . , x(𝑘)𝑡 } ∈(R𝑛
𝑘

)
. At time 𝑡, an adversary serves a convex cost function 𝑔𝑡 : R𝑛 → R+, and after

moving our servers (by the triangle inequality, it suffices to just move one), we pay
the service cost min𝑖∈[𝑘] 𝑔𝑡 (x(𝑖)𝑡 ) and the movement cost. Similar to 𝑘-server, this
is an MTS on the metric space

(R𝑛
𝑘

)
endowed with the minimal matching distance

inherited from the norm, with service costs 𝑓𝑡 of the form 𝑓𝑡 (x𝑡) := min𝑖∈[𝑘] 𝑔𝑡 (x(𝑖)𝑡 ).
This problem was introduced by [135], which found that under suitable structural
assumptions on the functions 𝑔𝑡 , competitive guarantees from existing 𝑘-server
algorithms can be translated to 𝑘-chasing. However, they obtain randomized al-
gorithms with guarantees dependent on adaptivity of the adversary. For the sake
of clarity, in our work we consider 𝑘-chasing of convex, 𝛼-polyhedral functions
(Definition 3.2.4), which enable translating deterministic algorithms for 𝑘-server
into deterministic algorithms for 𝑘-chasing. In particular, following the proof of
[135, Theorem 3.1], we have the following result, which is proved in Section 3.A.

Proposition 3.2.5. Let 𝑔1, . . . , 𝑔𝑇 : R𝑛 → R+ be an instance of 𝑘-chasing convex,
𝛼-polyhedral functions. If Alg is a deterministic, 𝐶-competitive algorithm for 𝑘-
server, then applying Alg to the sequence of minimizers v1, . . . , v𝑇 of 𝑔1, . . . , 𝑔𝑇

achieves competitive ratio at most 𝐶max{1, 2
𝛼
} for the 𝑘-chasing instance.

It follows that the algorithm feeding the minimizers 𝑣1, . . . , 𝑣𝑇 to the (2𝑘 − 1)-
competitive work function algorithm as requests is (2𝑘 − 1)max{1, 2

𝛼
}-competitive

for 𝑘-chasing convex 𝛼-polyhedral functions.

Applications
Besides its deep connections to online learning [116, 130], MTS and its special
cases have numerous applications to problems in operations and data science: many
online decision-making problems that penalize switching between decisions can be
modeled within this framework. For instance, MTS has been applied to contextual
Bayesian optimization with switching costs [149] and energy system operation
[132, 133], CFC has applications to smoothed online regression [99, 132] and 𝑘-
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server and its generalizations have applications to multi-agent planning and logistics
[137], dynamic clustering [135, 136], and beyond. To motivate our work designing
learning-augmented algorithms for MTS, we briefly detail several applications of
MTS and its special cases to decision-making problems in operations and data
science.

Energy Resource Operation. Consider the problem of operating a self-scheduled
dispatchable generation resource such as a combined cycle power plant or grid-
scale energy storage. The goal of the resource operator is to choose dispatch
decisions x𝑡 ∈ 𝑋 (such as generator setpoints, charge/discharge decisions, etc.) that
maximize profit (equivalently, minimize negative profit) while satisfying operational
constraints such as meeting a certain level of electricity demand. For many resources,
the operator is faced with two kinds of costs at each timestep 𝑡: (1) the instantaneous
cost/negative profit 𝑓𝑡 (x𝑡), which varies with time and depends on such factors as
electricity price, fuel price, operational constraints, and weather conditions that
influence generation efficiency, and (2) a cost 𝑑 (x𝑡 , x𝑡−1) that penalizes switching
decisions. The switching cost is an important consideration for multiple kinds
of resources, such as conventional thermal generation—for which frequent ramping
causes decreased efficiency and increased wear-and-tear [35]—and battery storage—
for which large fluctuations in charge/discharge rate can cause degradation [150].
Accounting for this switching cost is thus of increasing importance on the modern
grid, with increasing levels of variable renewable generation necessitating more
frequent and significant ramp events.

Depending on the structure of the decision space 𝑋 , the negative profit functions
𝑓𝑡 , and the switching cost 𝑑, this problem can be cast as either an instance of MTS
or some special case such as CFC. However, when the dimension of the deci-
sion space is large, traditional competitive algorithms for MTS/CFC may perform
poorly for energy resource dispatch, since the competitive ratio grows as a function
of dimension. While machine-learned algorithms trained on historical data may
perform much better, it is crucial that they come with performance guarantees to
ensure reliable and secure operation. This motivates the development of algorithms
that can be consistent with respect to such ML advice while maintaining worst-case
guarantees on robustness. We will discuss a more specific application to the setting
of cogeneration power plant operation in Section 3.7.
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Smoothed Online Clustering. Suppose a decision-maker seeks to cluster a stream
of points arriving online and must pay both for the distance between a point and
the cluster center it is assigned to, as well as for the movement of cluster centers
as they are updated to accommodate new arrivals. When the clustering objective
is the 𝑘-median objective, this problem is naturally modeled as an instance of
𝑘-chasing convex, 𝛼-polyhedral functions 𝑔𝑡 of the form 𝑔𝑡 (x) = 𝑐𝑡 ∥x − v𝑡 ∥ℓ1 .
The decision-maker’s server positions x𝑡 ∈

(R𝑛
𝑘

)
encode the 𝑘 cluster centers, the

minimizer v𝑡 represents the position of the new arrival, and the service cost 𝑓𝑡 (x𝑡) =
min𝑖∈[𝑘] 𝑔𝑡 (x(𝑖)𝑡 ) gives the cost of assigning the new arrival to the nearest cluster
center. The weight 𝑐𝑡 in the cost reflects the tradeoff between movement and service
cost, i.e., the tradeoff between stability of the clustering and cost of adding new
arrivals to the existing clusters.

When 𝛼 is small and the number of clusters 𝑘 is large, traditional competitive
algorithms for 𝑘-chasing may perform poorly on this smoothed clustering objective,
since the competitive ratio scales like 𝑘

𝛼
(Proposition 3.2.5). Machine-learned

algorithms trained on “typical” examples of evolving datasets may perform better in
practice, but come with no guarantees, motivating our work on robust and consistent
algorithm design.

Smoothed Online Regression. Suppose a learner seeks to fit a sequence of re-
gressors to an evolving dataset without changing the estimated parameters too much
as the dataset evolves (e.g., to prevent rapid changes to predictions, which in some
applications may impact user experience). This problem is naturally modeled as an
instance of CFC where the service cost functions 𝑓𝑡 : R𝑛 → R+ encode the loss of
the regression objective given the dataset at time 𝑡, and the switching cost penalizes
changing regressors x𝑡 ∈ R𝑛 at each time. A number of online regression tasks with
convex losses can be modeled in this framework, such as Ridge/Lasso regression,
logistic regression, and maximum likelihood estimation [99]. However, if the re-
gressor is high-dimensional, then traditional competitive algorithms for CFC may
perform very poorly on the smoothed regression objective, since the competitive
ratio scales linearly in 𝑛. Machine-learned algorithms trained on “typical” examples
of evolving datasets may perform better, but again they will not come with guaran-
tees on performance, thus motivating our work on robust and consistent algorithm
design.
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Algorithm 6: Dart(Adv,Rob; 𝜖)
Input: Algorithms Adv,Rob; parameter 𝜖 > 0
Output: Distributions 𝑝1, . . . , 𝑝𝑇 ∈ Δ(𝑋) chosen online

1 𝜆0 ← 0
2 for 𝑡 = 1, 2, . . . , 𝑇 do
3 Observe 𝑓𝑡 , 𝑎𝑡 := Adv𝑡 , and 𝑟𝑡 := Rob𝑡
4 if CRob(1, 𝑡) ≥ 𝜖

4 · CAdv(1, 𝑡) then
5 𝜆𝑡 ← 1
6 else
7 𝜆𝑡 ← max

{
𝜆𝑡−1 −

𝜖
2 CAdv (𝑡,𝑡)+(1−𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡 )

2𝑑 (𝑎𝑡−1,𝑟𝑡−1) , 0
}

8 𝑝𝑡 ← 𝜆𝑡𝛿𝑎𝑡 + (1 − 𝜆𝑡)𝛿𝑟𝑡
9 end

3.3 A Bicompetitive Algorithm for Metrical Task Systems
We now present a randomized algorithm, Dart (Distance-Adaptive Robust Weight
Transport, Algorithm 6), that achieves a bicompetitive guarantee (1 + 𝜖, 2O(1/𝜖)) in
expectation with respect to any pair of (randomized) MTS algorithms (Adv,Rob).

The algorithm works as follows: it maintains a mixing weight 𝜆𝑡 ∈ [0, 1] associated
with the decision 𝑎𝑡 := Adv𝑡 at each time 𝑡. This weight is adaptively updated at
each timestep after observing the decisions made by Adv and Rob, as well as their
relative costs and the distance between the two algorithms’ decisions (lines 4-7).
Dart then chooses its decision according to the distribution 𝑝𝑡 (line 8), which takes
value Adv𝑡 with probability 𝜆𝑡 and Rob𝑡 with probability (1 − 𝜆𝑡). For the weight
update, there are two cases. First, if Rob has incurred at least an O(𝜖) fraction of
the cost that Adv has (line 4), then the all weight is placed on Adv. If this is not the
case, 𝜆𝑡 is decreased—that is, weight is shifted from Adv toward Rob in proportion
to the ratio between Adv’s instantaneous cost and the distance between the two
algorithms (line 7). The parameter 𝜖 > 0 provided as input to Dart governs how
closely Dart follows Adv, i.e., how much we choose to “trust” the advice. A choice
of 𝜖 that is very small will cause 𝜆𝑡 to stay closer to 1, giving better consistency in
exchange for possibly worse robustness. On the other hand, a larger choice of 𝜖 will
cause the weight 𝜆𝑡 to decrease more rapidly toward 0 in line 7, leading Dart to
more closely follow Rob and improving worst-case robustness. The specific form
of the update rule for 𝜆 is designed to ensure that, in the case of line 7, the weight 𝜆𝑡
decreases slowly enough for Dart to maintain performance close to that of Adv (i.e.,
consistency), yet quickly enough that Dart has bounded performance with respect
to Rob. Note that, since Dart is a randomized algorithm, we couple consecutive
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distributions 𝑝𝑡−1, 𝑝𝑡 according to the optimal (Wasserstein-1) transportation plan,
as discussed in Section 3.2.

The following theorem explicitly characterizes the performance of Dart.

Theorem 3.3.1. Let Adv,Rob be any two (possibly randomized) algorithms for
MTS or a special case thereof. For any chosen 𝜖 > 0, Algorithm 6 (Dart) achieves
bicompetitiveness

(
1 + 𝜖, 2O(1/𝜖)

)
in expectation against (Adv,Rob).

Our proof, which is presented in Section 3.B, consists of two parts. We first prove
competitiveness with respect to Adv via amortized analysis, using the potential
function E𝑥𝑡∼𝑝𝑡 [𝑑 (𝑥𝑡 , 𝑎𝑡)]. We then prove competitiveness with respect to Rob by
means of a novel sum argument, upper bounding 𝜆𝑡 in terms of the cost incurred
by Adv. This bound explicitly characterizes how much cost Dart can be forced to
incur by a “bad” advice algorithm Adv before transferring all of its weight to Rob.

As immediate corollaries to Theorem 3.3.1, we obtain the following upper bounds
on robustness and consistency for MTS, CFC, 𝑘-server, and 𝑘-chasing, which are
proved in Section 3.B.

Corollary 3.3.2. Choose any 𝜖 > 0.

i. There is a (1+𝜖)-consistent, 2O(1/𝜖)O(log2(𝑛))-robust randomized algorithm
for MTS on any 𝑛-point metric space.

ii. There is a (1+ 𝜖)-consistent, 2O(1/𝜖)𝑛-robust deterministic algorithm for CFC
on any 𝑛-dimensional normed vector space.

iii. There is a (1 + 𝜖)-consistent, 2O(1/𝜖) (2𝑘 − 1)-robust randomized algorithm
for 𝑘-server on any metric space.

iv. There is a (1 + 𝜖)-consistent, 2O(1/𝜖)O( 𝑘
𝛼
)-robust randomized algorithm for

𝑘-chasing convex, 𝛼-polyhedral functions on any normed vector space.

We wish to emphasize that the bicompetitive bound in Theorem 3.3.1 is the first
bicompetitive bound for general MTS that is both independent of metric space
diameter and provides bounded competitiveness with respect to Rob for arbitrarily
small 𝜖 > 0. This latter property is of particular significance to practical application
since this enables Dart to achieve performance arbitrarily close to that of a black-
box ML algorithm for MTS while maintaining a worst-case competitive guarantee,
enabling better exploitation of the good ML performance.
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In addition, the bound’s independence from diameter enables obtaining robustness
guarantees on unbounded spaces: Corollary 3.1.1.ii resolves the question of [140]
of whether (1 + 𝜖)-consistency and bounded robustness can be achieved for CFC
on unbounded domains with arbitrary 𝜖 > 0, and Corollaries 3.1.1.iii and iv answer
for the first time the analogous question for 𝑘-server and 𝑘-chasing of convex, 𝛼-
polyhedral functions. Although most practical problems have finite (but potentially
very large) diameter, the robustness bounds given by Dart still improve on the
diameter-dependent results of [75] and [140] (Theorem 2.4.5 in Chapter 2) when
diam(𝑋) = 2𝜔(1/𝜖) . Moreover, as we will discuss in Section 3.5, Dart achieves
even better robustness when the diameter is bounded, matching the dependence of
these other results and giving further-improved bounds for the 𝑘-server problem.

3.4 Fundamental Limits on Robustness and Consistency
Though the tradeoff between robustness and consistency given by Dart is expo-
nential, it turns out that this is the best that we can hope for from any robust and
consistent MTS algorithm. In the following theorem, which is proved in Section 3.C,
we present a lower bound on the robustness of any (1 + 𝜖)-consistent randomized
MTS algorithm, showing that it must be exponential in 1/𝜖 .

Theorem 3.4.1. Let 𝜖 ∈ (0, 1]. There is an MTS instance on a finite metric space
(𝑋, 𝑑) with |𝑋 | = O( 1

𝜖
) and an adversarial advice algorithm Adv such that any

randomized algorithm achieving (1 + 𝜖)-consistency with respect to Adv is 2Ω(1/𝜖)-
robust.

Since the metric space 𝑋 in the preceding theorem has cardinality O( 1
𝜖
), Dart

achieves robustness 2O(1/𝜖) , by Corollary 3.3.2.i. Thus, Dart yields the optimal
robustness-consistency tradeoff for general metrical task systems, up to constant
factors in the exponent. Moreover, the metric space realizing the lower bound
in Theorem 3.4.1 is not a pathological example: it is simply a finite subset of
R with the usual (Euclidean) metric. Further note that this lower bound does
not contradict the diameter-dependent upper bound of [75]: the metric space has
diameter exponential in 1/𝜖 , and hence the randomized algorithm of [75] also
obtains exponential robustness in this setting.

This exponential lower bound on the tradeoff between robustness and consistency for
MTS raises the question of whether improved tradeoffs can be obtained for special
cases of MTS where there is added structure. In particular, could the convexity
inherent in CFC yield an improved dependence on 𝜖 in the robustness? In the
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following theorem, we answer this question in the negative, showing that in certain
normed vector spaces the robustness-consistency tradeoff remains exponential.

Theorem 3.4.2. Let 𝜖 ∈ (0, 1]. There is a CFC instance in RO(1/𝜖) endowed with a
weighted ℓ1 norm, along with an adversarial advice algorithm Adv, such that any
algorithm that is (1 + 𝜖)-consistent with respect to Adv has robustness 2Ω(1/𝜖) .

We present a proof in Section 3.C; it follows via a reduction to the MTS instance
realizing the lower bound of Theorem 3.4.1, using the fact that MTS instances on
a tree metric can be isometrically converted into CFC instances in a weighted ℓ1

space (à la [142]). To the best of our knowledge, our use of this correspondence to
obtain lower bounds on the performance of algorithms for CFC is novel.

As Corollary 3.3.2.ii gives a (1+ 𝜖)-consistent, 2O(1/𝜖)-robust algorithm for CFC in
a normed vector space of dimension O( 1

𝜖
), Dart thus achieves the optimal tradeoff

between robustness and consistency for CFC in general normed vector spaces, up to
constant factors in the exponent. Note that this leaves open the question of whether
subexponential robustness can be achieved for CFC under other norms such as the
Euclidean norm.

3.5 Breaking the Exponential Robustness Barrier
In Sections 3.3 and 3.4, we saw that Dart achieves (1+𝜖, 2O(1/𝜖))-bicompetitiveness,
and that the resultant tradeoff between robustness and consistency is optimal in
general for MTS and CFC. However, prior work has obtained subexponential
robustness bounds in certain special cases of MTS, including for CFC and 𝑘-server
on the real line [113, 141]. In addition, for spaces with diameter bounded by some
finite constant 𝐷, (1+ 𝜖)-consistency and O( 1

𝜖
)-robustness can be obtained for CFC

in 𝑛 dimensions with an additive term O( 𝐷
𝜖
) on the robustness [140], and a similar

bound holds for MTS more generally [75].

Given that Theorem 3.3.1 suggests an exponential bicompetitive tradeoff for Dart, it
is worth asking whether Dart can perform better on such “easier” problem instances.
It turns out that this is the case: we can prove that, in several special cases, Dart
achieves (1 + 𝜖)-consistency together with robustness that depends only linearly on
1
𝜖
. Notably, none of these improved bounds require modification of Dart: they

simply follow by a refined analysis. We consider three cases in turn.
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Bounded Diameter
When the metric space has bounded diameter 𝐷, and more generally when the
algorithms Adv and Rob are never farther apart than a distance 𝐷, Dart achieves
bicompetitiveness (1 + 𝜖,O( 1

𝜖
)) with respect to (Adv,Rob), with just an additive

term of O( 𝐷
𝜖
) on its competitiveness with respect to Rob. This matches the depen-

dence on diameter obtained in prior work [75, 140]. Note that unlike the randomized
algorithm of [75], this result does not require advance knowledge of the diameter
bound 𝐷; it simply results from a specialized analysis in the case that the algorithms
Adv and Rob are never further apart than a distance 𝐷. We present the formal
performance bound in the following theorem.

Theorem 3.5.1. Let Adv,Rob be any two (possibly randomized) algorithms for MTS
or a special case thereof. For any chosen 𝜖 > 0, if 𝑑 (Adv𝑡 ,Rob𝑡) ≤ 𝐷 for all 𝑡 ∈ [𝑇],
Algorithm 6 (Dart) achieves cost bounded as

CDart ≤ min
{
(1 + 𝜖)CAdv,O

(
1
𝜖

)
CRob + O

(
𝐷

𝜖

)}
.

That is, Dart is (1 + 𝜖,O(1/𝜖))-bicompetitive against (Adv,Rob), with an additive
constant O(𝐷/𝜖) on its competitive guarantee against Rob.

This result is proved in Section 3.D. It is worth emphasizing that this bicompetitive
guarantee holds in addition to the exponential tradeoff given by Theorem 3.3.1.
Thus Dart is (1+ 𝜖)-competitive with respect to Adv and has cost bounded by CRob

as

CDart ≤ min
{
O

(
1
𝜖

)
CRob + O

(
𝐷

𝜖

)
, 2O(1/𝜖)CRob

}
.

As such, Dart achieves the “best of both worlds” in terms of robustness, regardless
of whether 𝐷 is small or large. This simultaneous bound further extends to all the
robustness bounds in Corollary 3.3.2.

𝑘-server
We next consider the 𝑘-server problem. In doing so, we restrict Adv and Rob to
be lazy algorithms for 𝑘-server, i.e., algorithms that at any timestep move at most
one server, moving none if the current server positions already satisfy the request.
This assumption is without loss of generality [151, §10.2.3]. We also make the
assumption that all servers begin at the same location; relaxing this assumption only
changes the results by a constant additive term.
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We first state a lemma relating the distance between any two lazy 𝑘-server algorithms
to the offline optimal cost; the lemma is proved in Section 3.D.

Lemma 3.5.2. Let 𝑠1, . . . , 𝑠𝑇 ∈ 𝑋 be the request sequence for a 𝑘-server instance on
the metric space (𝑋, 𝑑), and let Adv and Rob be any two (possibly randomized) 𝑘-
server algorithms. Further suppose that Adv and Rob are both lazy, and that all their
servers start at the same point 𝑥0 ∈ 𝑋 . Let a1, . . . , a𝑇 ∈

(𝑋
𝑘

)
and r1, . . . , r𝑇 ∈

(𝑋
𝑘

)
be the sequences of server positions of Adv and Rob, respectively, for the problem
instance. Then for any time 𝑡 ∈ [𝑇],

𝑑mm(a𝑡 , r𝑡) ≤ 𝑘 · COpt(1, 𝑡),

where 𝑑mm is the minimal matching distance inherited from the metric 𝑑.

Given any metric space (𝑋, 𝑑), Lemma 3.5.2 allows us to bound the diameter of the
subset of 𝑋 that can be occupied by a lazy algorithm for a 𝑘-server instance by 𝑘 times
the offline optimal cost on that instance. Substituting this bound into Theorem 3.5.1
and using the fact that the work function algorithm is (2𝑘 − 1)-competitive, we
obtain the following result.

Theorem 3.5.3. Consider 𝑘-server on an arbitrary metric space with all servers
starting at some 𝑥0 ∈ 𝑋 . Let Adv be a lazy advice algorithm, and let Rob be a
lazy version of the work function algorithm. For any 𝜖 > 0, Algorithm 6 (Dart) is
(1 + 𝜖)-consistent and O( 𝑘

𝜖
)-robust.

This is the first result obtaining (1 + 𝜖)-consistency together with robustness linear
in 1

𝜖
for 𝑘-server; in particular, applying the diameter bound from Lemma 3.5.2 to

the multiplicative weights algorithm of [75] yields only a bound of O(𝑘) on both
robustness and consistency, which is no better than ignoring advice.

𝑘-chasing
Finally, we consider 𝑘-chasing of convex, 𝛼-polyhedral functions on R. We as-
sume that Rob is a 𝑘-server algorithm that operates on the sequence of minimizers
𝑣1, . . . , 𝑣𝑇 , e.g., the work function algorithm applied to this sequence, which by
Proposition 3.2.5 is O( 𝑘

𝛼
)-competitive. Moreover, we assume that Adv and Rob

are both lazy, meaning that they move at most a single server, and they only move
a server if it results in strictly lower service cost. Again, this is without loss of
generality. A similar diameter bound to that for 𝑘-server yields the following result,
which is proved in Section 3.D.
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Theorem 3.5.4. Let Adv be a lazy advice algorithm for 𝑘-chasing convex, 𝛼-
polyhedral functions on R, and let Rob be a lazy, O( 𝑘

𝛼
)-competitive algorithm for

the problem with the property that, at each time 𝑡 ∈ [𝑇], Rob has a server at the
minimizer 𝑣𝑡 of the current cost function. Suppose Adv and Rob begin with all servers
at the same position 𝑥0 ∈ R. Then Dart achieves, for any 𝜖 > 0, (1+ 𝜖)-consistency
and O( 𝑘

𝛼𝜖
)-robustness.

3.6 A Deterministic Algorithm under Bounded Diameter
In many real-world applications, it may be desirable to produce decisions determin-
istically, to avoid potential risk resulting from randomized algorithms like Dart,
which obtains the optimal tradeoff between robustness and consistency amongst
all randomized algorithms, but which might, with some small probability, perform
poorly. Despite the fact that Dart can be derandomized in the CFC setting by
taking the expectation (Corollary 3.3.2ii), there is no obvious way to do so for the
general MTS setting. Motivated by this consideration, in this section we propose
a deterministic algorithm, DetRobustML, that deterministically switches between
the actions of the advice Adv and a baseline Rob. This algorithm, which is spec-
ified in Algorithm 7, behaves as follows: it begins by following Adv’s decisions,
but if Adv surpasses a certain cost threshold and Rob is performing relatively well,
DetRobustML will switch to following Rob’s decisions (line 8). However, if Rob
begins to perform worse relative to Adv, then DetRobustML will switch back to
following Adv (line 15). The specific thresholds for switching are determined by the
parameters 𝜖, 𝛿 > 0, which reflect the decision-maker’s confidence in Adv; they also
depend on 𝐷, the maximum distance between Adv and Rob at any time during the
problem instance. When 𝜖 and 𝛿 are small (close to 0), DetRobustML will spend
more time following the decisions of Adv, and the threshold for switching to Rob
will be more stringent. On the other hand, when 𝜖 and 𝛿 are large, DetRobustML
will spend more of its time following the decisions of Rob. Tuning 𝜖 and 𝛿 thus
allows for trading off between robustness and consistency.

In the following theorem, which is proved in Section 3.E, we present an analytic
performance bound on DetRobustML.

Theorem 3.6.1. Let 𝐷 be an upper bound on the distance betweeen Adv and Rob
for all time, i.e., 𝑑 (Adv𝑡 ,Rob𝑡) ≤ 𝐷 for all 𝑡 ∈ [𝑇]. Then for 𝜖, 𝛿 > 0, the algorithm
DetRobustML(𝜖, 𝛿, 𝐷) (Algorithm 7) achieves cost bounded as

CDetRobustML ≤ min
{
(1 + 𝜖 + 𝛿)CAdv,

(
1 + 1 + 𝜖

𝛿

)
CRob +

(
1 + 2

𝜖

)
𝐷

}
.
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Algorithm 7: The algorithm DetRobustML(𝜖, 𝛿, 𝐷). Note that all algorithms
are assumed to begin in the same initial state 𝑥0, so 𝑎0 = 𝑟0 = 𝑥0 (where
𝑎0 = Adv0 and 𝑟0 = Rob0).
Input: Algorithms Adv,Rob; hyperparameters 𝜖, 𝛿 > 0, space diameter 𝐷
Output: Decisions 𝑥1, . . . , 𝑥𝑇 chosen online

1 𝑠← 1
2 𝑥1 ← 𝑎1 := Adv1
3 for 𝑡 = 2, 3, . . . , 𝑇 do
4 Observe 𝑓𝑡 , 𝑎𝑡 := Adv𝑡 , and 𝑟𝑡 := Rob𝑡
5 if 𝑥𝑡−1 = 𝑎𝑡−1 then // Case where the algorithm coincides with

Adv𝑡−1
6 if CAdv(𝑠, 𝑡) ≥ 2𝐷

𝜖
and CRob(1, 𝑡) < 𝛿 · CAdv(1, 𝑡) then

7 𝑠← 𝑡 + 1
8 𝑥𝑡 ← 𝑟𝑡

9 else
10 𝑥𝑡 ← 𝑎𝑡

11 else // Case where the algorithm coincides with Rob𝑡−1
12 if CRob(1, 𝑡) < 𝛿 · CAdv(1, 𝑡) then
13 𝑥𝑡 ← 𝑟𝑡
14 else
15 𝑥𝑡 ← 𝑎𝑡

16 end

In particular, when 𝛿 = 𝜖 , DetRobustML is (1+ 2𝜖,O(1/𝜖))-bicompetitive against
(Adv,Rob), with an additive constant of O( 𝐷

𝜖
) on its competitive guarantee against

Rob.

Two remarks are in order. First, note that the performance bound achieved
by DetRobustML—including both the bicompetitive bound and the distance-
dependent additive term—asymptotically matches the one obtained by Dart in
the distance-bounded setting (Theorem 3.5.1). There is one primary difference be-
tween the results: DetRobustML requires prior knowledge of the distance bound
𝐷, which is used in the cost threshold in line 6; in contrast, Dart does not require
knowledge of this distance bound. As such, Dart’s performance bound will be
significantly less conservative than that of DetRobustML in settings where the
decision space has a large diameter but Adv and Rob remain close to each other,
or when 𝐷 is large but the cost incurred by Rob is small. Moreover, it is worth
noting that Dart maintains its distance-independent bound (Theorem 3.3.1) even if
𝐷 is unbounded, whereas DetRobustML requires a finite 𝐷 to obtain a nontrivial
performance bound with respect to Rob.
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Figure 3.1: A schematic of the cogeneration power plant model. The plant operator
chooses how much electricity (yellow arrow) and steam (blue arrow) the three gas
turbines (left cooling tower) produce, as well as how much steam is directed to the
steam turbine (right cooling tower) to produce additional electricity. At each time 𝑡,
ambient conditions (e.g., temperature) together with electricity and steam demand
are represented by the vector θ𝑡 , and electricity and steam dispatch decisions are
represented by the vector x𝑡 .

Second, recall that in Theorem 2.3.3 of the previous chapter, we proved a lower bound
showing that any deterministic switching algorithm that achieves finite robustness
must have consistency at least 3. At first glance, this might seem to conflict with
the above bound for DetRobustML, which is a switching algorithm. However,
this is not the case, as the lower bound construction relies on allowing Adv and
Rob to be arbitrarily far apart, so 𝐷 has no a priori bound. As such, while there
is a fundamental limit on the robustness and consistency achievable for switching
algorithms—and thus, in the MTS setting, deterministic algorithms—in general,
DetRobustML demonstrates that this is not the case for the bounded diameter
setting.

3.7 An Application to Cogeneration Power Plant Operation
In this section, we evaluate the performance of our algorithms, Dart and
DetRobustML, on a realistic model of combined cycle cogeneration power plant
operation under increasing penetrations of variable renewable energy generation.
We use an adapted form of the CogenEnv environment from SustainGym, a re-
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inforcement learning benchmarks suite [59]; specifically, our experimental setup
builds on the code available at https://zenodo.org/records/13623809 to in-
clude experiments involving Dart and the multiplicative weights algorithm of [75].

Model
Consider the problem of operating a combined cycle cogeneration power plant to
meet both electricity and steam demand in the presence of exogenous variable
renewable generation; see Figure 3.1 for a schematic. Specifically, we consider
a plant with three gas turbines and a single steam turbine; we index the gas and
steam turbines as {1, 2, 3} and {4}, respectively. At each time 𝑡 ∈ [𝑇], representing
every 15 minutes over the course of a 24 hour period, the plant operator observes
an electricity demand (net of renewables) 𝑑𝑡 ∈ R+ and a steam demand 𝑞𝑡 ∈ R+. In
response, they choose energy dispatch setpoints 𝑝 (𝑖)𝑡 ∈ [𝑝𝑖, 𝑝𝑖] and steam dispatch
setpoints 𝑠(𝑖)𝑡 ∈ [𝑠𝑖, 𝑠𝑖] for all the turbines 𝑖 = 1, . . . , 4, where 𝑝

𝑖
, 𝑝𝑖 are the lower

and upper bounds, respectively, for the energy dispatch, and 𝑠
𝑖
, 𝑠𝑖 are the lower and

upper bounds, respectively, for the steam dispatch. Note that while the gas turbines
𝑖 = 1, 2, 3 produce steam, and thus have positive steam dispatches, the steam turbine
𝑖 = 4 consumes steam, so 𝑠

(4)
𝑡 < 0. The plant operator’s goal is to minimize

the total cost of its dispatch decisions (its hitting cost) and its cost for ramping
electricity generation (its switching cost) while producing sufficient electricity and
steam to meet demand. Formally, the plant operator faces the following constrained
minimization problem:

min
p1,...,p𝑇∈[p,p̄]
s1,...,s𝑇∈[s,s̄]

𝑇∑︁
𝑡=1

𝑓 (p𝑡 , s𝑡 ;θ𝑡) + 𝛼∥p𝑡 − p𝑡−1∥1 (3.1a)

s.t.
4∑︁
𝑖=1

𝑝
(𝑖)
𝑡 = 𝑑𝑡 for all 𝑡 = 1, . . . , 𝑇 (3.1b)

4∑︁
𝑖=1

𝑠
(𝑖)
𝑡 = 𝑞𝑡 for all 𝑡 = 1, . . . , 𝑇, (3.1c)

where p𝑡 = (𝑝 (𝑖)𝑡 )4𝑖=1, s𝑡 = (𝑠(𝑖)𝑡 )4𝑖=1, 𝑓 is a per-round fuel cost function that depends
on ambient conditions such as temperature, pressure, and humidity, θ𝑡 is a vector
containing these ambient conditions for time 𝑡, and 𝛼 is a parameter determining the
magnitude of the switching cost—i.e., the extent to which ramping energy generation
is penalized. Importantly, the demands 𝑑𝑡 , 𝑞𝑡 and the cost function’s parameters θ𝑡
are not all known in advance, so the plant operator cannot solve Problem 3.1 all

https://zenodo.org/records/13623809


98

at once. Instead, the plant operator only knows the current timestep’s problem
parameters θ𝑡 , 𝑑𝑡 , and 𝑞𝑡 exactly, though they may have (possibly noisy) access to
predictions of these parameters in a short lookahead window.

In our experiments, we utilize the cogeneration power plant fuel cost function and
associated data on ambient conditions, electricity demand, and steam demand from
the CogenEnv environment in SustainGym [59]. This environment models the fuel
cost of the cogeneration power plant in a black-box fashion via neural networks,
due to the complexity of the physical model of the system; thus, the fuel cost is
nonconvex in general. We use a ramp constant of 𝛼 = 2, and in our experiments
evaluating the impact of increased renewable energy generation, we utilize wind
data obtained from the Wind Integration National Dataset Toolkit [152].

This cogeneration dispatch problem can be easily seen as an instance of the more
general MTS problem, where the hitting cost is the fuel cost 𝑓 (·;θ𝑡) (with added
penalties for the constraints (3.1b) and (3.1c)) and the switching cost is the ramp
cost.2 In the rest of this section, we will absorb the electricity and steam demands
𝑑𝑡 , 𝑞𝑡 into the vector θ𝑡 , and we will write the objective of Problem (3.1) abstractly
as

𝑇∑︁
𝑡=1

𝑓 (x𝑡 ,θ𝑡) + 𝑑 (x𝑡 , x𝑡−1),

where x𝑡 is the vector of all decisions and 𝑑 is the ramp cost.

Because this problem is online, the decision-maker only has access to the parameters
θ1, . . . ,θ𝑡 that have been revealed through time 𝑡 when making the decision x𝑡 .
However, we will assume that the decision-maker has access to (possibly inaccurate)
forecasts θ̂𝑡+1|𝑡 , . . . , θ̂𝑡+𝑤 |𝑡 of parameters within a lookahead window of length
𝑤 ∈ N, which can help them anticipate and reduce future ramp costs. Such forecasts
could be obtained using standard ML methods for predicting near-term weather or
energy demand.

Advice and Robust Algorithms
In our experiments, we seek to evaluate the performance of Dart and DetRobustML
when combining two different strategies Adv and Rob for the cogeneration dispatch
problem. In the following, we briefly describe the strategies we employ to this end.

2Note that while in (3.1) only ramping energy decisions yields a ramp cost, in the general MTS
setting, the switching cost must be a metric, so changing any decision must result in a switching
cost. However, we can model this by simply making the ramp cost for the steam decisions arbitrarily
small.
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Our robust baseline algorithm, Rob, will be a myopic, greedy algorithm that simply
chooses the decision x𝑡 that minimizes 𝑓 (·;θ𝑡) at each time 𝑡. This algorithm,
which we call Greedy, resembles the single-stage dispatch algorithm widely used
by power system operators, and it also has worst-case cost guarantees under mild
assumptions on the structure of the cost function 𝑓 such as 𝛼-polyhedrality [103].
Its behavior is characterized formally as follows:

Greedy : θ𝑡 ↦→ arg min
x∈R𝑑

𝑓 (x;θ𝑡) =: x𝑡 .

That is, Greedy can be viewed as a function that, when provided with the current
parameter vector θ𝑡 , returns the minimizer of 𝑓 (·;θ𝑡) as a dispatch decision. Since
we assume that 𝑓 (·;θ𝑡) penalizes all constraints from the original problem (3.1),
Greedy will satisfy these constraints. Note that, since 𝑓 is nonconvex (due to
its being parametrized as a neural network), we may not be able to solve for the
minimizer of 𝑓 (·;θ𝑡) exactly; in practice, we will employ sequential least-squares
programming in SciPy to solve for Greedy’s decision [153].

For our advice algorithm, Adv, we train a neural network model to approximate the
behavior of model predictive control (MPC) in an unsupervised fashion. That is, at
time 𝑡, given the known current parameter vector θ𝑡 and forecasts θ̂𝑡+1|𝑡 , . . . , θ̂𝑡+𝑤 |𝑡

of parameters over the next 𝑤 = 6 timesteps, we want our model, which we call ML,
to choose decisions x𝑡 , x𝑡+1, . . . , x𝑡+𝑤 that minimize the lookahead objective

𝑓 (x𝑡 ;θ𝑡) +
𝑡+𝑤∑︁
𝜏=𝑡+1

𝑓 (x𝜏; θ̂𝑡+𝜏 |𝑡) + 𝑑 (x𝜏, x𝜏−1). (3.2)

At each time 𝑡, ML will output recommend decisions x𝑡 , . . . , x𝑡+𝑤, but only the
decision x𝑡 will be binding; that is, we will implement only the first decision
x𝑡 , and then at time 𝑡 + 1, we will repeat this process with a new window of
predictions to choose x𝑡+1. To train ML, we construct a dataset D = {𝚯𝑖}𝑁𝑖=1 of
100 days’ worth of (𝑤 + 1)-length windows of cost function parameters (i.e., each
𝚯𝑖 = (θ𝑡 , θ̂𝑡+1|𝑡 , . . . , θ̂𝑡+𝑤 |𝑡) for some 𝑡). For the purposes of training, we construct
this dataset assuming perfect predictions, i.e., θ̂𝑡+𝑖 |𝑡 = θ𝑡+𝑖. We then train ML to
take as input a parameter window 𝚯𝑖 and output decisions x𝑡 , . . . , x𝑡+𝑤 using (3.2)
as the loss function; because the fuel cost 𝑓 is itself modeled as a neural network,
this loss is differentiable, and thus standard stochastic gradient descent methods can
be applied to train our model. To ensure that ML produces decisions that respect the
plant capacity limits and supply-demand balance constraints for electricity (3.1b)
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and steam (3.1c), we employ the method of [56], including a gauge map on the
output layer of the neural network to enforce constraint satisfaction.

Note that, despite the fact that this unsupervised training approach may yield low
empirical error on the training set and the gauge map ensures constraint satisfaction,
this does not guarantee that the ML algorithm will perform well on out-of-sample
instances or under distribution shift on the parameter forecasts. This motivates
combining ML with Greedy via the learning-augmented algorithms we designed
earlier in this chapter, to ensure that even if ML is not performing well, we still have
worst-case performance guarantees with respect to our Greedy baseline.

Finally, we remark that, while the objective (3.2) resembles that of a standard
MPC problem, MPC with even a moderate lookahead window 𝑤 is computationally
prohibitive to run in this setting due to the nonconvexity of the fuel cost functions
𝑓 (·,θ𝑡) and the coupling across time through the switching costs. For a more
detailed discussion of these considerations and a comparison of the time complexity
of MPC against our ML approach, see the full paper [133].

Experimental Results
In this section, we evaluate the performance of Dart and DetRobustML on the
cogeneration power plant operation problem when provided input algorithms Adv =

ML and Rob = Greedy as described in the previous section. We begin by exploring
the impact of poor machine learning performance due to a distribution shift in
prediction noise. That is, we compare the setting of perfect predictions (θ̂𝑡+1|𝑡 =

θ𝑡+1, . . . , θ̂𝑡+𝑤 |𝑡 = θ𝑡+𝑤) to the case of predictions with added i.i.d. Gaussian
noise and increasing standard deviation 𝜎 (i.e., θ̂𝑡+1|𝑡 = θ𝑡+1 + z𝑡+1|𝑡 , . . . , θ̂𝑡+𝑤 |𝑡 =

θ𝑡+𝑤 + z𝑡+𝑤 |𝑡 , with z𝜏 |𝑡
i.i.d.∼ N(0, 𝜎I)). Note that these noisy predictions will not

impact the performance of Greedy, which does not use lookahead; it will only
impact the performance of ML and the algorithms that use it.

We evaluate the performance of ML, Greedy, Dart (with 𝜖 = 4.4), and
DetRobustML (with 𝜖 = 𝛿 = 1.05) under noise magnitude 𝜎 ranging between
0 and 100. Algorithm hyperparameters were selected to yield the best tradeoff be-
tween performance under the low noise (𝜎 = 0) and high noise (𝜎 = 100) regimes.
We also evaluate the performance of the randomized multiplicative weights algo-
rithm 𝑀𝐼𝑁𝑟𝑎𝑛𝑑 of Antoniadis et al. [75] for a range of hyperparameters 𝜖 between
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Figure 3.2: Cost (normalized by Greedy’s) of Dart (a) and DetRobustML (b)
compared against ML, Greedy, and the randomized algorithm of Antoniadis et
al. [75] (evaluated across several hyperparameter choices) under increasing noise
𝜎 on the lookahead predictions. Curves indicate mean normalized cost; shaded
regions (provided for Dart and DetRobustML) cover ± one standard deviation.

0 and 1, the range over which their theoretical performance guarantee is valid.3 We
display the resulting costs, normalized by those of Greedy, in Figure 3.2. Remark-
ably, despite the fact that ML’s performance degrades as 𝜎 increases, we find that
both Dart and DetRobustML gracefully transition between the good performance
of ML for small 𝜎 to beating the performance of Greedy in the large 𝜎 regime.
In particular, both Dart and DetRobustML uniformly improve upon both Greedy
and ML on average, regardless of prediction noise, even though the quality of pre-
dictions is unknown to the algorithm a priori. In general, the performance of Dart
appears to essentially match that of DetRobustML, suggesting that in this specific
application, there is not a significant benefit to the improved theoretical guarantees
Dart obtains. Despite the fact that it is randomized, though, Dart appears to obtain
slightly better performance and less variance in cost than DetRobustML in the large
𝜎 regime. In contrast, while the algorithm of Antoniadis et al. takes advantage of
good ML performance when 𝜎 is small, its performance degrades as 𝜎 increases.
Thus, Dart and DetRobustML, which gracefully trade off between good ML per-
formance and good robust performance under high 𝜎, uniformly outperform the
algorithm of Antoniadis et al.

We next examine the performance of the algorithms Dart and DetRobustML (with
unchanged parameters) under increasing penetration of wind energy between 0 MW

3Recall that the randomized algorithm of Antoniadis et al. [75] obtains expected cost bounded
by (1 + 𝜖) ·min{CML,CGreedy} + O( 𝐷𝜖 ).
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Figure 3.3: Cost (normalized by Greedy’s) of Dart (a) and DetRobustML (b) com-
pared against ML and Greedy under increasing wind penetration. Curves indicate
mean normalized cost; shaded regions (provided for ML, Dart, and DetRobustML)
cover ± one standard deviation.

and 400 MW (reflecting roughly a 2/3 fraction of peak demand), displaying the
results in Figure 3.3. We find that the efficiency improvement of ML over Greedy
widens for moderate wind penetration (up to 300 MW), highlighting the value
of using machine-learned algorithms with lookahead to increase efficiency when
variable renewable generation necessitates more frequent ramping. Moreover, in
this regime, both Dart and DetRobustML, though close in average performance
to ML, offer significantly lower variance in cost compared to ML. Thus, these
learning-augmented strategies enable not just improved performance through ma-
chine learning, but also more reliable performance in cases where machine learning
fails.

Notably, it appears that ML’s performance suffers and gets closer to that of Greedy
when wind penetration nears 400 MW, possibly reflecting the fundamental challenge
of adequately anticipating and mitigating future ramp needs in a high-renewables
environment, even when equipped with lookahead. Nonetheless, ML still delivers a
modest improvement in cost even in this high-renewables regime, which is matched
by Dart and DetRobustML, which continue to provide the best tradeoff between
performance and reliability.

3.8 Concluding Remarks
In this chapter, we examine the problem of designing learning-augmented algorithms
for MTS and its special cases. Our main algorithm, Dart, achieves (1 + 𝜖)-
consistency and robustness exponential in 1

𝜖
for MTS and its special cases, which we
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show is tight for both MTS and for CFC with a certain weighted ℓ1 norm. We further
show that Dart achieves improved performance, matching known results, when the
diameter of the problem instance is bounded, and improves upon the best known
bounds on robustness and consistency for 𝑘-server on any metric space and for 𝑘-
chasing on the line. We also propose a deterministic algorithm, DetRobustML, that,
given an a priori bound on the diameter of the decision space, obtains performance
comparable to that of Dart. We evaluate our algorithms on a realistic model of
cogeneration power plant operation, where they exhibit an ability to bridge the
good performance of machine-learned algorithms with the reliability of standard
algorithms.

Several interesting avenues remain open for study. Specifically, (i) can subexpo-
nential robustness be achieved for CFC and 𝑘-chasing with “nicer” norms, e.g.,
in the Euclidean setting, (ii) can matching lower bounds be obtained on robust-
ness and consistency for the 𝑘-server problem, and (iii) is it possible to design
learning-augmented algorithms for online optimization problems with more gen-
eral, constrained structure by extending the ideas developed in this work? This last
question will be the focus of Chapter 5.

Appendix
In these appendix sections, we present proofs of the theoretical results in the main
body of the chapter.

3.A Proof of Proposition 3.2.5
Let 𝑔1, . . . , 𝑔𝑇 be the sequence of 𝛼-polyhedral cost functions for an instance of
𝑘-chasing, and let v1, . . . , v𝑇 ∈ R𝑛 be their minimizers. Let Opt𝑠 be the offline
optimal algorithm for the 𝑘-server instance on R𝑛 with requests v1, . . . , v𝑇 , and
let Opt𝑐 be the offline optimal algorithm for the 𝑘-chasing instance on R𝑛 with
function requests 𝑔1, . . . , 𝑔𝑇 . We denote by C𝑠

Opt𝑠 the cost of Opt𝑠 as a 𝑘-server
algorithm (i.e., ignoring the service costs), and by C𝑐

Opt𝑠 the cost of Opt𝑠 as a 𝑘-
chasing algorithm (including the hitting costs); we use similar notation for Alg.
Note that the cost of a 𝑘-server algorithm applied to the minimizers of the 𝑘-chasing
instance will simply be the cost of the 𝑘-server algorithm (i.e., the total movement
cost incurred by the servers) plus the sum of minimizer costs

∑𝑇
𝑡=1 𝑔𝑡 (v𝑡), since the

minimizer will be occupied by a server at each time. Thus,

C𝑐
Alg = C𝑠

Alg +
𝑇∑︁
𝑡=1

𝑔𝑡 (v𝑡),



104

and the same holds for Opt𝑠.

Let o1, . . . , o𝑇 ∈
(R𝑛
𝑘

)
be the sequence of server positions of the algorithm Opt𝑐, and

let 𝑖𝑡 ∈ [𝑘] denote the server of Opt𝑐 that realizes the binding service cost at time
𝑡, i.e., 𝑖𝑡 := arg min𝑖∈[𝑘] 𝑔𝑡 (o

(𝑖)
𝑡 ). Thus COpt𝑐 =

∑𝑇
𝑡=1 𝑔𝑡 (o

(𝑖𝑡 )
𝑡 ) + 𝑑 (o𝑡 , o𝑡−1), where 𝑑

is the minimal matching distance inherited from the norm ∥ · ∥. Define the offline
algorithm Opt′𝑐 that acts like Opt𝑐, except that at time 𝑡 it moves the server 𝑖𝑡 from
o(𝑖𝑡 )𝑡 to the minimizer v𝑡 , and moves it back to o(𝑖𝑡 )𝑡 at time 𝑡 + 1 before any other
server is moved. Since the costs 𝑔𝑡 are 𝛼-polyhedral,

COpt′𝑐 =

𝑇∑︁
𝑡=1

𝑔𝑡 (v𝑡) + 2∥o(𝑖𝑡 )𝑡 − v𝑡 ∥ + 𝑑 (o𝑡 , o𝑡−1)

≤
𝑇∑︁
𝑡=1

max
{
1,

2
𝛼

} (
𝑔𝑡 (v𝑡) + 𝛼∥o(𝑖𝑡 )𝑡 − v𝑡 ∥

)
+ 𝑑 (o𝑡 , o𝑡−1)

≤ max
{
1,

2
𝛼

} 𝑇∑︁
𝑡=1

𝑔𝑡 (o(𝑖𝑡 )𝑡 ) + 𝑑 (o𝑡 , o𝑡−1)

= max
{
1,

2
𝛼

}
COpt𝑐 . (3.3)

Moreover, since Opt′𝑐 always has a server at v𝑡 at time 𝑡, it is a feasible 𝑘-server
algorithm for the request sequence v1, . . . , v𝑇 , and its cost as a 𝑘-server algorithm
is simply its total cost as a 𝑘-chasing algorithm, minus the the sum of minimizer
service costs. Thus we have

C𝑐
Alg = C𝑠

Alg +
𝑇∑︁
𝑡=1

𝑔𝑡 (v𝑡)

≤ 𝐶 · C𝑠
Opt𝑠 +

𝑇∑︁
𝑡=1

𝑔𝑡 (v𝑡) (3.4)

≤ 𝐶 · COpt′𝑐 (3.5)

≤ 𝐶 ·max
{
1,

2
𝛼

}
COpt𝑐 , (3.6)

where (3.4) follows by 𝐶-competitiveness of Alg for 𝑘-server, (3.5) follows from
the fact that Opt𝑠 is optimal and Opt′𝑐 is feasible for the 𝑘-server instance v1, . . . , v𝑇 ,
and (3.6) follows (3.3). Thus Alg is 𝐶 · max

{
1, 2

𝛼

}
-competitive for the 𝑘-chasing

instance.
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3.B Proofs for Section 3.3
Proof of Theorem 3.3.1
It suffices to prove the bicompetitive bound in the case that Adv and Rob are
deterministic algorithms. That is, we prove the following bound on Dart’s expected
cost:

E[CDart] ≤ min{(1 + 𝜖)CAdv, 2O(1/𝜖)CRob}, (3.7)

where the expectation is over the randomness of Dart. The result in its full
generality, i.e., when Adv and Rob can be randomized algorithms, follows by the
observation that (3.7) establishes the same bound on the expected cost of Dart
conditioned on a particular pair of realized trajectories (𝑎1, . . . , 𝑎𝑇 ), (𝑟1, . . . , 𝑟𝑇 ) of
Adv and Rob:

E[CDart |𝑎1, . . . , 𝑎𝑇 ; 𝑟1, . . . , 𝑟𝑇 ] ≤ min{(1 + 𝜖)CAdv, 2O(1/𝜖)CRob},

where the expectation is now over the randomness of Dart,Adv, and Rob. With
this inequality established, the desired result follows immediately by taking the
expectation over the behavior of Adv and Rob on both sides and applying the law
of total expectation.

In the following, we thus assume that Adv and Rob are deterministic, with decision
trajectories 𝑎1, . . . , 𝑎𝑇 and 𝑟1, . . . , 𝑟𝑇 , respectively. All expectations are over the
decisions 𝑥1, . . . , 𝑥𝑇 made by Dart, which are each distributed marginally according
to 𝑥𝑡 ∼ 𝑝𝑡 , with consecutive distributions jointly distributed according to the optimal
transportation plan 𝛾𝑡 between 𝑝𝑡−1 and 𝑝𝑡 .

We begin by proving competitiveness with respect to Adv, i.e., consistency of
Dart. The argument takes the form of a potential function argument, with potential
function 𝜙𝑡 = E[𝑑 (𝑥𝑡 , 𝑎𝑡)] = (1−𝜆𝑡)𝑑 (𝑟𝑡 , 𝑎𝑡). For an arbitrary time 𝑡, there are two
cases.

(1) Suppose the algorithm follows the case in line 4; then 𝜆𝑡 = 1, so 𝑥𝑡 = 𝑎𝑡 . Then

E[ 𝑓𝑡 (𝑥𝑡) + 𝑑 (𝑥𝑡 , 𝑥𝑡−1) + 𝜙𝑡 − 𝜙𝑡−1]
= 𝑓𝑡 (𝑎𝑡) + 𝜆𝑡−1𝑑 (𝑎𝑡 , 𝑎𝑡−1) + (1 − 𝜆𝑡−1)𝑑 (𝑎𝑡 , 𝑟𝑡−1)
+ (1 − 𝜆𝑡)𝑑 (𝑟𝑡 , 𝑎𝑡) − (1 − 𝜆𝑡−1)𝑑 (𝑟𝑡−1, 𝑎𝑡−1)

≤ 𝑓𝑡 (𝑎𝑡) + 𝑑 (𝑎𝑡 , 𝑎𝑡−1) (3.8)

where (3.8) follows from the triangle inequality applied to 𝑑 (𝑎𝑡 , 𝑟𝑡−1).
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(2) Suppose the algorithm follows the case in line 6. First, note that since the cou-
pling between 𝑥𝑡−1 and 𝑥𝑡 is done via the optimal transport plan between 𝑝𝑡−1 and
𝑝𝑡 , we can upper bound E[𝑑 (𝑥𝑡 , 𝑥𝑡−1)] by the expected movement cost under any
transport plan between 𝑝𝑡−1 and 𝑝𝑡 . In particular, we can use the transport plan
in which we first send a probability mass of min

{ 𝜖
2 CAdv (𝑡,𝑡)+(1−𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡 )

2𝑑 (𝑎𝑡−1,𝑟𝑡−1) , 𝜆𝑡−1

}
from 𝑎𝑡−1 to 𝑟𝑡−1, resulting in a mass of 𝜆𝑡 at 𝑎𝑡−1 and of (1−𝜆𝑡) at 𝑟𝑡−1, followed
by sending the entire mass at 𝑎𝑡−1 to 𝑎𝑡 and the entire mass at 𝑟𝑡−1 to 𝑟𝑡 . Upper
bounding E[𝑑 (𝑥𝑡 , 𝑥𝑡−1)] with this transportation plan, we find:

E[𝑑 (𝑥𝑡 , 𝑥𝑡−1)] ≤ (1 − 𝜆𝑡)𝑑 (𝑟𝑡 , 𝑟𝑡−1) + 𝜆𝑡𝑑 (𝑎𝑡 , 𝑎𝑡−1)

+min
{ 𝜖

2CAdv(𝑡, 𝑡) + (1 − 𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡)
2𝑑 (𝑎𝑡−1, 𝑟𝑡−1)

, 𝜆𝑡−1

}
𝑑 (𝑎𝑡−1, 𝑟𝑡−1)

≤ (1 − 𝜆𝑡)𝑑 (𝑟𝑡 , 𝑟𝑡−1) + 𝜆𝑡𝑑 (𝑎𝑡 , 𝑎𝑡−1)

+
𝜖
2CAdv(𝑡, 𝑡) + (1 − 𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡)

2
. (3.9)

Second, note that

(1 − 𝜆𝑡)𝑑 (𝑟𝑡 , 𝑎𝑡) ≤ (1 − 𝜆𝑡) (𝑑 (𝑟𝑡 , 𝑟𝑡−1) + 𝑑 (𝑎𝑡 , 𝑎𝑡−1))

+
(
1 − 𝜆𝑡−1 +

𝜖
2CAdv(𝑡, 𝑡) + (1 − 𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡)

2𝑑 (𝑎𝑡−1, 𝑟𝑡−1)

)
𝑑 (𝑎𝑡−1, 𝑟𝑡−1)

(3.10)

≤ (1 − 𝜆𝑡) (𝑑 (𝑟𝑡 , 𝑟𝑡−1) + 𝑑 (𝑎𝑡 , 𝑎𝑡−1))

+ (1 − 𝜆𝑡−1)𝑑 (𝑎𝑡−1, 𝑟𝑡−1) +
𝜖
2CAdv(𝑡, 𝑡) + (1 − 𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡)

2
(3.11)

where (3.10) follows from the triangle inequality and line 7 of the algorithm.
Then, by (3.9) and (3.11), and noting that 𝜆𝑡 ≤ 𝜆𝑡−1 in this case, we have

E[ 𝑓𝑡 (𝑥𝑡) + 𝑑 (𝑥𝑡 , 𝑥𝑡−1) + 𝜙𝑡 − 𝜙𝑡−1]
= 𝜆𝑡 𝑓𝑡 (𝑎𝑡) + (1 − 𝜆𝑡) 𝑓𝑡 (𝑟𝑡) + E[𝑑 (𝑥𝑡 , 𝑥𝑡−1)]
+ (1 − 𝜆𝑡)𝑑 (𝑟𝑡 , 𝑎𝑡) − (1 − 𝜆𝑡−1)𝑑 (𝑟𝑡−1, 𝑎𝑡−1)

≤
(
1 + 𝜖

2

)
( 𝑓𝑡 (𝑎𝑡) + 𝑑 (𝑎𝑡 , 𝑎𝑡−1)) + 2( 𝑓𝑡 (𝑟𝑡) + 𝑑 (𝑟𝑡 , 𝑟𝑡−1)).

Summing cases 1 and 2 over time and using the fact that case 2 only occurs in
timesteps 𝑡 where CRob(1, 𝑡) < 𝜖

4CAdv(1, 𝑡) we obtain

E[CDart] ≤ (1 + 𝜖)CAdv.
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We now turn to proving the competitive bound with respect to Rob, i.e., robustness.
Let 𝜏 ∈ {0, . . . , 𝑇} be the last time index that CRob(1, 𝜏) ≥ 𝜖

4 ·CAdv(1, 𝜏). Clearly if
𝜏 = 0, then 𝜆𝑡 = 0 for all 𝑡 ∈ [𝑇], so Dart follows Rob exactly and we are finished.
Thus we restrict to the case that 𝜏 ≥ 1, i.e., 𝜆𝑡 > 0 for some time 𝑡 ∈ [𝑇]. By the
consistency result just presented, we have

E[CDart] = E[CDart(1, 𝜏)] + E[CDart(𝜏 + 1, 𝑇)]
≤ (1 + 𝜖)CAdv + E[CDart(𝜏 + 1, 𝑇)]

≤ 4(1 + 𝜖)
𝜖

CRob(1, 𝜏) + E[CDart(𝜏 + 1, 𝑇)] . (3.12)

Thus we are faced with the task of bounding E[CDart(𝜏 + 1, 𝑇)] in terms of CRob.
Let 𝜎 ≥ 𝜏 be the last time index at which 𝜆𝜎 > 0 (it is possible that 𝜎 = 𝑇 , i.e., that
the weights 𝜆𝑡 remain strictly positive from time 𝜏 through the end of the instance).
Note that, if 𝜎 < 𝑇 − 1, then at time 𝜎 + 1 the algorithm will move to coinciding
with Rob, and from time 𝜎 + 2 onward the algorithm (and its costs) will exactly
coincide with Rob. Then the cost of Dart during this phase is

E[CDart(𝜏 + 1, 𝑇)]
= E[CDart(𝜏 + 1, 𝜎 + 1) + CDart(𝜎 + 2, 𝑇)]
= E[CDart(𝜏 + 1, 𝜎)] + 𝑓𝜎+1(𝑟𝜎+1) + E[𝑑 (𝑟𝜎+1, 𝑥𝜎)] + CRob(𝜎 + 2, 𝑇)

≤
𝜎∑︁

𝑡=𝜏+1
E [ 𝑓𝑡 (𝑥𝑡) + 𝑑 (𝑥𝑡 , 𝑥𝑡−1)] + 𝜆𝜎𝑑 (𝑟𝜎, 𝑎𝜎) + CRob(𝜎 + 1, 𝑇)

≤
𝜎∑︁

𝑡=𝜏+1
𝜆𝑡 𝑓𝑡 (𝑎𝑡) + (1 − 𝜆𝑡) 𝑓𝑡 (𝑟𝑡) + (1 − 𝜆𝑡)𝑑 (𝑟𝑡 , 𝑟𝑡−1) + 𝜆𝑡𝑑 (𝑎𝑡 , 𝑎𝑡−1)

+
𝜖
2CAdv(𝑡, 𝑡) + (1 − 𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡)

2
+ 𝜆𝜎𝑑 (𝑟𝜎, 𝑎𝜎) + CRob(𝜎 + 1, 𝑇) (3.13)

≤
𝜎∑︁

𝑡=𝜏+1
(1 − 𝜆𝑡)CRob(𝑡, 𝑡) +

(
1 + 𝜖

4

)
CAdv(𝑡, 𝑡)

+ 𝜆𝜎𝑑 (𝑟𝜎, 𝑎𝜎) + CRob(𝜎 + 1, 𝑇) (3.14)

≤ CRob(𝜏 + 1, 𝑇) +
(
1 + 𝜖

4

)
CAdv(𝜏 + 1, 𝜎) + 𝜆𝜎𝑑 (𝑟𝜎, 𝑎𝜎) (3.15)

≤ CRob(𝜏 + 1, 𝑇) +
(
1 + 𝜖

4

)
CAdv(𝜏 + 1, 𝜎) + CRob(1, 𝜎) + CAdv(1, 𝜎) (3.16)

≤ CRob(𝜏 + 1, 𝑇) + CRob(1, 𝜎) + CAdv(1, 𝜏) +
(
2 + 𝜖

4

)
CAdv(𝜏 + 1, 𝜎)

≤ CRob(𝜏 + 1, 𝑇) + CRob(1, 𝜎) +
4
𝜖

CRob(1, 𝜏) +
(
2 + 𝜖

4

)
CAdv(𝜏 + 1, 𝜎) (3.17)
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where (3.13) follows (3.9) and the fact that 𝜆𝜎 > 0, so 𝜆𝑡 = 𝜆𝑡−1 −
𝜖
2 CAdv (𝑡,𝑡)+(1−𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡 )

2𝑑 (𝑎𝑡−1,𝑟𝑡−1) exactly for each 𝑡 = 𝜏+1, . . . , 𝜎, (3.14) follows from𝜆𝑡 ≤ 𝜆𝑡−1

for 𝑡 = 𝜏+1, . . . , 𝜎, (3.16) follows from the triangle inequality applied to 𝑑 (𝑟𝜎, 𝑎𝜎),
and (3.17) follows by the assumption that CRob(1, 𝜏) ≥ 𝜖

4 · CAdv(1, 𝜏).

All that remains is to upper bound (2+ 𝜖
4 )CAdv(𝜏 + 1, 𝜎) under the assumption that

𝜆𝜎 > 0. By assumption, 𝜆𝜏 = 1, hence

𝜆𝜎 = 1 −
𝜎∑︁

𝑡=𝜏+1

𝜖
2CAdv(𝑡, 𝑡) + (1 − 𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡)

2𝑑 (𝑎𝑡−1, 𝑟𝑡−1)
. (3.18)

This begs the question: given that 𝜆𝜎 > 0, how large can CAdv(𝜏 + 1, 𝜎) be? To
help answer this question, we prove the following lemma.

Lemma 3.B.1. Let (𝑦𝑖)𝑇𝑖=0 be a sequence of nonnegative reals with 𝑦0 > 0. Then

𝑇∑︁
𝑡=1

𝑦𝑡∑𝑡−1
𝑖=0 𝑦𝑖

≥ log

(∑𝑇
𝑖=0 𝑦𝑖

𝑦0

)
. (3.19)

This lemma can be seen as a generalization of the classical observation that the 𝑇 th
harmonic number 𝐻𝑇 is lower bounded by log(𝑇 + 1); indeed, this result can be
recovered from Lemma 3.B.1 by setting 𝑦𝑖 = 1 for all 𝑖. The proof of the lemma
goes as follows.

Proof. Define a piecewise constant function 𝑦(𝑡) : [0, 𝑇] → R+ as follows:

𝑦(𝑡) =



𝑦1 for 𝑡 ∈ [0, 1)

𝑦2 for 𝑡 ∈ [1, 2)
...

𝑦𝑇 for 𝑡 ∈ [𝑇 − 1, 𝑇]

and further define a function 𝑌 (𝑡) : [0, 𝑇] → R+ as its integral:

𝑌 (𝑡) = 𝑦0 +
∫ 𝑡

0
𝑦(𝑠) d𝑥.

Note that for 𝑡 ∈ [𝑇], 𝑌 (𝑡) = ∑𝑡
𝑖=0 𝑦𝑖. Moreover, by the fundamental theorem of

calculus, Y’(t) = y(t).

Since 𝑌 (𝑡) is increasing, observe that for arbitrary 𝑡 ∈ [𝑇],∫ 𝑡

𝑡−1

𝑦(𝑠)
𝑌 (𝑠) d𝑠 ≤

∫ 𝑡

𝑡−1

𝑦𝑡

𝑌 (𝑡 − 1) d𝑠 =
𝑦𝑡

𝑌 (𝑡 − 1) =
𝑦𝑡∑𝑡−1
𝑖=0 𝑦𝑖

.
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Thus, we may lower bound the sum on the left-hand side of (3.19) as follows:
𝑇∑︁
𝑡=1

𝑦𝑡∑𝑡−1
𝑖=0 𝑦𝑖

≥
𝑇∑︁
𝑡=1

∫ 𝑡

𝑡−1

𝑦(𝑠)
𝑌 (𝑠) d𝑠

=

∫ 𝑇

0

𝑦(𝑠)
𝑌 (𝑠) d𝑠

=

∫ 𝑇

0

𝑌 ′(𝑠)
𝑌 (𝑠) d𝑠

= [log(𝑌 (𝑠))]𝑇𝑠=0

= log(𝑌 (𝑇)) − log(𝑌 (0)),

establishing the desired bound.

With the lemma proved, let us return to (3.18) and the question of how large
CAdv(𝜏 + 1, 𝜎) can be given that 𝜆𝜎 remains strictly positive. By (3.18), this is
equivalent to the question of how large CAdv(𝜏 + 1, 𝜎) can be given that the sum∑𝜎
𝑡=𝜏+1

𝜖
2 CAdv (𝑡,𝑡)+(1−𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡 )

2𝑑 (𝑎𝑡−1,𝑟𝑡−1) is strictly less than 1. To answer this question, it
suffices to prove a lower bound on the sum in terms of CAdv(𝜏 + 1, 𝜎). If we can
show that

𝜎∑︁
𝑡=𝜏+1

𝜖
2CAdv(𝑡, 𝑡) + (1 − 𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡)

2𝑑 (𝑎𝑡−1, 𝑟𝑡−1)
≥ 𝑔(CAdv(𝜏 + 1, 𝜎)) (3.20)

for some strictly increasing function 𝑔 : R+ → R+, then CAdv(𝜏 + 1, 𝜎) ≥ 𝑔−1(1)
would imply that

∑𝜎
𝑡=𝜏+1

𝜖
2 CAdv (𝑡,𝑡)+(1−𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡 )

2𝑑 (𝑎𝑡−1,𝑟𝑡−1) ≥ 1. Thus the assumption that∑𝜎
𝑡=𝜏+1

𝜖
2 CAdv (𝑡,𝑡)+(1−𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡 )

2𝑑 (𝑎𝑡−1,𝑟𝑡−1) < 1 will in turn imply an upper bound of CAdv(𝜏 +
1, 𝜎) < 𝑔−1(1) on the cost, as desired.

Let us thus construct a lower bound in the form of (3.20). Before moving on, we
note two inequalities: first,

𝑑 (𝑎𝜏, 𝑟𝜏) ≤ CAdv(1, 𝜏) + CRob(1, 𝜏) ≤
(
1 + 4

𝜖

)
CRob(1, 𝜏) (3.21)

by the assumption that CRob(1, 𝜏) ≥ 𝜖
4 · CAdv(1, 𝜏). Second, for 𝑡 ∈ {𝜏 + 1, . . . , 𝜎},

𝑑 (𝑎𝑡 , 𝑟𝑡) ≤ CAdv(1, 𝑡) + CRob(1, 𝑡)

≤
(
1 + 𝜖

4

)
CAdv(1, 𝑡) (3.22)

≤
(
1 + 𝜖

4

)
CAdv(1, 𝜏) +

(
1 + 𝜖

4

)
CAdv(𝜏 + 1, 𝑡)

≤
(
1 + 4

𝜖

)
CRob(1, 𝜏) +

(
1 + 𝜖

4

)
CAdv(𝜏 + 1, 𝑡), (3.23)
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where (3.22) and (3.23) both follow from the assumption that 𝜏 is the last time index
in which CRob(1, 𝜏) ≥ 𝜖

4 · CAdv(1, 𝜏). Applying the bounds (3.21) and (3.23), we
obtain

𝜎∑︁
𝑡=𝜏+1

𝜖
2CAdv(𝑡, 𝑡) + (1 − 𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡)

2𝑑 (𝑎𝑡−1, 𝑟𝑡−1)

≥ 𝜖
4

𝜎∑︁
𝑡=𝜏+1

CAdv(𝑡, 𝑡)
𝑑 (𝑎𝑡−1, 𝑟𝑡−1)

≥ 𝜖

4(1 + 𝜖
4 )

𝜎∑︁
𝑡=𝜏+1

(1 + 𝜖
4 )CAdv(𝑡, 𝑡)(

1 + 4
𝜖

)
CRob(1, 𝜏) + (1 + 𝜖

4 )CAdv(𝜏 + 1, 𝑡 − 1)
. (3.24)

(Recall that CAlg(𝑡, 𝑡′) is defined to be 0 when 𝑡′ < 𝑡). Applying Lemma 3.B.1
to (3.24) with 𝑦0 =

(
1 + 4

𝜖

)
CRob(1, 𝜏) and 𝑦𝑖 = (1 + 𝜖

4 )CAdv(𝜏 + 𝑖, 𝜏 + 𝑖) for
𝑖 = 1, . . . , 𝜎 − 𝜏, we obtain

𝜎∑︁
𝑡=𝜏+1

𝜖
2CAdv(𝑡, 𝑡) + (1 − 𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡)

2𝑑 (𝑎𝑡−1, 𝑟𝑡−1)

≥ 𝜖

4(1 + 𝜖
4 )

log
©«
(
1 + 4

𝜖

)
CRob(1, 𝜏) + (1 + 𝜖

4 )CAdv(𝜏 + 1, 𝜎)(
1 + 4

𝜖

)
CRob(1, 𝜏)

ª®®¬
=

𝜖

4 + 𝜖 log
(
1 + 𝜖

4
CAdv(𝜏 + 1, 𝜎)

CRob(1, 𝜏)

)
. (3.25)

Thus the lower bound (3.20) holds with 𝑔 : R+ → R+ defined as 𝑔(𝑦) =

𝜖
4+𝜖 log

(
1 + 𝜖

4
𝑦

CRob (1,𝜏)

)
. Since

𝑔−1(1) = 4CRob(1, 𝜏)
𝜖

[
exp

(
4 + 𝜖
𝜖

)
− 1

]
,

by the argument following (3.20), we obtain the upper bound CAdv(𝜏 + 1, 𝜎) <
4CRob (1,𝜏)

𝜖

[
exp

(
4+𝜖
𝜖

)
− 1

]
on Adv’s cost from time 𝜏 + 1 through 𝜎. Substituting
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this bound into (3.17), and that bound subsequently into (3.12), we conclude that

E[CDart] ≤
4(1 + 𝜖)

𝜖
CRob(1, 𝜏) + E[CDart(𝜏 + 1, 𝑇)]

≤ 4(1 + 𝜖)
𝜖

CRob(1, 𝜏) + CRob(𝜏 + 1, 𝑇) + CRob(1, 𝜎)

+ 4
𝜖

CRob(1, 𝜏) +
(
2 + 𝜖

4

)
CAdv(𝜏 + 1, 𝜎)

≤
(
5 + 8

𝜖

)
CRob +

(
2 + 𝜖

4

)
CAdv(𝜏 + 1, 𝜎)

≤
(
5 + 8

𝜖

)
CRob +

(
2 + 𝜖

4

) 4CRob(1, 𝜏)
𝜖

[
exp

(
4 + 𝜖
𝜖

)
− 1

]
= 2O(1/𝜖)CRob.

This concludes the proof.

Proof of Corollary 3.3.2
These results follow immediately from Theorem 3.3.1, the definition of bicompet-
itiveness (Definition 3.2.3), and the observation that an algorithm that is (𝑐, 𝑟)-
bicompetitive with respect to (Adv,Rob), where Rob is 𝑏-competitive, achieves
𝑐-consistency with respect to Adv together with 𝑟𝑏 robustness. Thus (i) follows
from the existence of an O(log2 𝑛)-competitive algorithm for MTS on any 𝑛-point
metric space [142]; (ii) follows from the existence of an 𝑛-competitive algorithm for
CFC on any 𝑛-dimensional normed vector space [106], as well as the fact that CFC
algorithms can be derandomized by taking the expectation; (iii) follows from the
fact that the work function algorithm is (2𝑘 − 1)-competitive for 𝑘-server [97]; and
(iv) follows from Proposition 3.2.5, i.e., the fact that the work function algorithm is
(2𝑘 − 1)max

{
1, 2

𝛼

}
-competitive for 𝑘-chasing 𝛼-polyhedral convex functions.

3.C Proofs for Section 3.4
Proof of Theorem 3.4.1
We proceed under the assumption that 2

𝜖
∈ N; if this is not the case, then the same

result holds up to some small constant factor. We define the metric space (𝑋, 𝑑) as
follows: 𝑋 = {0} ∪ {2𝑖 : 𝑖 = 0, . . . , 2

𝜖
}, and 𝑑 is just the usual (Euclidean) metric on

R: for 𝑥, 𝑦 ∈ 𝑋 , 𝑑 (𝑥, 𝑦) = |𝑥 − 𝑦 |. All algorithms start at 𝑥0 = 1.

The MTS instance realizing the lower bound is constructed as follows: at each time
𝑡 = 1, . . . , 𝑇 := 2

𝜖
, the adversary delivers the service cost function

𝑓𝑡 (𝑥) = ∞ · 1𝑥∉{0,2𝑡 },
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forcing any competitive algorithm to assign zero probability mass to any point
other than 0 and 2𝑡 . The advice chooses decisions Adv𝑡 = 2𝑡 at each time, i.e., it
deterministically chooses the rightmost point with zero service cost. Let Alg be an
arbitrary randomized algorithm for MTS that is (1 + 𝜖)-consistent with respect to
Adv.

Suppose 𝑝𝑡 is the probability that Alg assigns to the state Adv𝑡 = 2𝑡 at time 𝑡;
1 − 𝑝𝑡 is thus the probability assigned to the state 0. If 𝑝𝑡 ≤ 𝑝𝑡−1, then the expected
movement cost of Alg at time 𝑡 is

W1
𝑋 (𝑝𝑡 , 𝑝𝑡−1) = 𝑝𝑡2𝑡−1 + (𝑝𝑡−1 − 𝑝𝑡)2𝑡−1 = 𝑝𝑡−12𝑡−1.

On the other hand, if 𝑝𝑡 > 𝑝𝑡−1, then the expected movement cost of Alg at time 𝑡 is

W1
𝑋 (𝑝𝑡 , 𝑝𝑡−1) = 𝑝𝑡−12𝑡−1 + (𝑝𝑡 − 𝑝𝑡−1)2𝑡 ≥ 𝑝𝑡2𝑡−1 > 𝑝𝑡−12𝑡−1.

Combining the above equality and inequality, the total cost of Alg from time 1
through 𝑡 is bounded below as

E[CAlg(1, 𝑡)] ≥
𝑡∑︁
𝜏=1

𝑝𝜏−12𝜏−1 (3.26)

for any 𝑡 ∈ [𝑇], with 𝑝0 = 1 by convention.

Since Alg is (1 + 𝜖)-consistent with respect to Adv, it must be the case that, for
each 𝑡 ∈ [𝑇],

E[CAlg(1, 𝑡)] + (1 − 𝑝𝑡)2𝑡 ≤ (1 + 𝜖)CAdv(1, 𝑡). (3.27)

If this were not the case, then the adversary could simply send 𝑓𝑡+1(𝑥) = ∞ · 1𝑥≠2𝑡

as the final service cost and end the instance, and Alg would violate the assumed
consistency. Note that CAdv(1, 𝑡) =

∑𝑡
𝜏=1 2𝜏−1 = 2𝑡 − 1. By the inequalities (3.26)

and (3.27), it must hold that

𝑡∑︁
𝜏=1

𝑝𝜏−12𝜏−1 + (1 − 𝑝𝑡)2𝑡 ≤ (1 + 𝜖) (2𝑡 − 1) (3.28)

for all 𝑡 ∈ [𝑇]. For 𝑡 = 1, this tells us that 1+ 2(1− 𝑝1) ≤ 1+ 𝜖 , so 𝑝1 ≥ 1− 𝜖
2 . It is

straightforward to see via induction that in general, 𝑝𝑡 ≥ 1 − 𝑡 𝜖2 . Thus, from (3.26),
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we obtain

E[CAlg] ≥
𝑇∑︁
𝑡=1

𝑝𝑡−12𝑡−1

≥
𝑇∑︁
𝑡=1

(
1 − (𝑡 − 1) 𝜖

2

)
2𝑡−1

=
𝜖

2
2

2
𝜖
+1 − (1 + 𝜖)

where the final equality follows from 𝑇 = 2
𝜖
. Thus we have obtained that E[CAlg] =

2Ω(1/𝜖) . Since the offline optimal algorithm for this instance simply moves to 0 and
stays there, incurring total cost 1, Alg is thus 2Ω(1/𝜖)-robust.

Proof of Theorem 3.4.2
The proof proceeds via a reduction to the lower bound presented in the previous
proof (Section 3.C). Specifically, we show that the space of probability distributions
over the metric space (𝑋, 𝑑) from the previous proof endowed with the Wasserstein-1
distance W1

𝑋
is bijectively isometric to a convex subset 𝐾 of a vector space endowed

with a weighted ℓ1 norm. This fact, along with a similar correspondence between
service costs, will imply that any trajectory of decisions produced by a randomized
MTS algorithm on a given problem instance is in one-to-one correspondence with
a trajectory of decisions produced by a deterministic CFC algorithm on a corre-
sponding instance, and that moreover, the two trajectories incur identical cost (both
movement and service). Note that this correspondence was essentially observed for
tree metrics in [142]; our construction is slightly different, so we provide further
detail for the sake of completeness.

Let 𝑛 = 2
𝜖
+ 2, and let 𝑋 = {0} ∪ {2𝑖 : 𝑖 = 0, . . . , 2

𝜖
} be as in the previous section.

Let the simplex Δ𝑛 ⊂ R𝑛 represent the set of probability distributions over 𝑋 , with
𝑖th coordinate corresponding to the probability assigned to the 𝑖th state of 𝑋 (in
increasing order, e.g., 0 is the 1st state). We define the convex body

𝐾 = {x ∈ R𝑛 : x ≥ 0, 𝑥1 = 1, 𝑥𝑖 ≥ 𝑥𝑖+1 for 𝑖 = 1, . . . , 𝑛 − 1}.

Let us define a linear map from Δ𝑛 to 𝐾: the map 𝚽 : R𝑛 → R𝑛 represented by the
upper triangular matrix with all ones on and above the diagonal, and all zeros below
the diagonal. In other words,

(𝚽p)𝑖 =
∑︁
𝑗≥𝑖
𝑝 𝑗
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for each 𝑖 ∈ [𝑛]. It is straightforward to observe that 𝚽(Δ𝑛) ⊆ 𝐾 , by the property
that any p ∈ Δ𝑛 satisfies p ≥ 0 and 1⊤p = 1. To see that 𝚽−1(𝐾) ⊆ Δ𝑛, first note
that 𝚽−1 is just the matrix with 1s occupying its diagonal, and −1s just above the
diagonal, i.e.,

𝚽−1 =



1 −1
1 −1

. . .
. . .

1 −1
1


.

But then, for x ∈ 𝐾 ,

𝚽−1x =


𝑥1 − 𝑥2
...

𝑥𝑛−1 − 𝑥𝑛
𝑥𝑛


.

And thus by definition of 𝐾 , we have 𝚽−1x ≥ 0 and 1⊤𝚽−1x = 𝑥1 = 1. Thus
𝚽−1(𝐾) ⊆ Δ𝑛, so 𝚽 is a bijection between Δ𝑛 and 𝐾 .

Now, define a vector of weights w ∈ R𝑛 with 𝑤1 = 𝑤2 = 1, and 𝑤𝑖 = 2𝑖−3 for
𝑖 = 3, . . . , 𝑛. We define a correspondingly weighted ℓ1 norm as follows: for x ∈ R𝑛,

∥x∥ℓ1 (w) :=
𝑛∑︁
𝑖=1

𝑤𝑖 |𝑥𝑖 |.

On the other hand, we also consider the Wasserstein-1 distance

W1
𝑋 (p, p′) = min

𝛾∈Π(p,p′)
E(𝑥,𝑥′)∼𝛾 [𝑑 (𝑥, 𝑥′)]

between two distributions p, p′ ∈ Δ𝑛 over states of 𝑋 . Since 𝑋 is a subset of R and
𝑑 is the standard metric on R, the Wasserstein-1 distance can be computed in closed
form [154]: defining 𝐹p : R → [0, 1] as the cumulative distribution function of p
over R, we have

W1
𝑋 (p, p′) =

∫
R
|𝐹p(𝑡) − 𝐹p′ (𝑡) | d𝑡 = |𝑝1 − 𝑝′1 | +

𝑛∑︁
𝑖=2

2𝑖−2
𝑖∑︁
𝑗=1
|𝑝 𝑗 − 𝑝′𝑗 |. (3.29)

We now show that 𝚽 preserves the Wasserstein-1 distance: for any p, p′ ∈ Δ𝑛, we
have

∥𝚽p −𝚽p′∥ℓ1 (w) =
𝑛∑︁
𝑖=1

𝑤𝑖

����� 𝑛∑︁
𝑗=𝑖

𝑝 𝑗 − 𝑝′𝑗

����� . (3.30)
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Applying the equalities 1⊤p = 1⊤p′ = 1 and
∑𝑛
𝑗=𝑖 𝑝 𝑗 = 1 −∑𝑖−1

𝑗=1 𝑝 𝑗 (and similarly
for p′), equality of (3.29) and (3.30) follows immediately. Thus 𝚽 is a bijective
isometry between (Δ𝑛,W1

𝑋
) and (𝐾, ∥ · ∥ℓ1 (𝑤)).

We now go about showing that on the MTS instance realizing the lower bound proved
in the previous section (Section 3.C), there is a corresponding CFC instance with
the property that any sequence of decisions p1, . . . , p𝑇 ∈ Δ𝑛 for the MTS instance
maps under 𝚽 to a sequence of decisions x1, . . . , x𝑇 for the CFC instance, and that
moreover, these sequences have identical costs for their respective instances. Note
that this correspondence will hold more generally beyond the particular instance we
consider.

Define for each 𝑡 ∈ [𝑇] the vector c𝑡 ∈ R
𝑛

+ whose 1st and (𝑡 +2)th entry is 0, with all
other entries +∞; these are the vector representations of the service cost functions
for the lower bound from the previous section. Then let us define a CFC instance
with cost functions 𝑓𝑡 : R𝑛 → R+ defined as

𝑓𝑡 (x) = c⊤𝑡 𝚽−1x +∞ · 1x∉𝐾 .

The costs 𝑓𝑡 are certainly convex, since c⊤𝑡 𝚽−1x is linear and 𝐾 is a convex set.
Moreover, because of the indicator term, the only decisions yielding finite cost are
those residing in 𝐾 . Observe that for any p ∈ Δ𝑛, 𝑓𝑡 (𝚽p) = c⊤𝑡 p. Thus, it is
straightforward to observe by the construction of the cost functions and the fact
that 𝚽 is a bijective isometry between (Δ𝑛,W1

𝑋
) and (𝐾, ∥ · ∥ℓ1 (𝑤)) that the CFC

instance defined by 𝑓1, . . . , 𝑓𝑇 on R𝑛 is equivalent to the MTS instance defined
by c1, . . . , c𝑇 on 𝑋 , in the sense that sequences of decisions for the latter are in
one-to-one correspondence via 𝚽 with (finite-cost) sequences of decisions for the
former, and this correspondence preserves total cost (both moving and service).
Thus any performance bound on algorithms for the MTS instance translates to an
identical performance bound on algorithms for the CFC instance, giving the desired
result.

3.D Proofs for Section 3.5
Proof of Theorem 3.5.1
The proof is identical to that of Theorem 3.3.1 presented in Section 3.B, save for
the function 𝑔 realizing the lower bound 3.20. By assumption, 𝑑 (𝑎𝑡 , 𝑟𝑡) ≤ 𝐷 for all
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𝑡 ∈ [𝑇], hence
𝜎∑︁

𝑡=𝜏+1

𝜖
2CAdv(𝑡, 𝑡) + (1 − 𝜆𝑡−1) 𝑓𝑡 (𝑎𝑡)

2𝑑 (𝑎𝑡−1, 𝑟𝑡−1)
≥

𝜎∑︁
𝑡=𝜏+1

𝜖
2CAdv(𝑡, 𝑡)

2𝐷

=
𝜖

4𝐷
CAdv(𝜏 + 1, 𝜎).

Thus, per the argument following (3.20), CAdv(𝜏 + 1, 𝜎) < 4𝐷
𝜖

. Substituting this
bound into (3.15), we obtain

E[CDart(𝜏 + 1, 𝑇)] ≤ CRob(𝜏 + 1, 𝑇) +
(
1 + 𝜖

4

)
CAdv(𝜏 + 1, 𝜎) + 𝜆𝜎𝑑 (𝑟𝜎, 𝑎𝜎)

≤ CRob(𝜏 + 1, 𝑇) +
(
1 + 𝜖

4

) 4𝐷
𝜖
+ 𝐷

and substituting this bound subsequently into (3.12), we conclude

E[CDart] ≤
4(1 + 𝜖)

𝜖
CRob(1, 𝜏) + E[CDart(𝜏 + 1, 𝑇)]

≤ 4(1 + 𝜖)
𝜖

CRob(1, 𝜏) + CRob(𝜏 + 1, 𝑇) +
(
1 + 𝜖

4

) 4𝐷
𝜖
+ 𝐷

≤
(
4 + 4

𝜖

)
CRob +

4𝐷
𝜖
+ 2𝐷.

Thus the proof.

Proof of Lemma 3.5.2
Recall that all the servers of both Adv and Rob begin at the state 𝑥0 ∈ 𝑋 at time 0.
Fix any 𝑡 ∈ [𝑇]. The algorithm Adv has servers at 𝑎 (1)𝑡 , · · · , 𝑎 (𝑘)𝑡 ∈ 𝑋 and Rob has
servers at 𝑟 (1)𝑡 , · · · , 𝑟 (𝑘)𝑡 . Since Adv and Rob are both lazy, each of these 2𝑘 servers
must either be at 𝑥0, or at some previous request 𝑠𝑖 for 𝑖 ∈ [𝑡]. Consider a pair of
server positions 𝑎 ( 𝑗)𝑡 and 𝑟 ( 𝑗)𝑡 for some 𝑗 ∈ [𝑘]; if 𝑎 ( 𝑗)𝑡 = 𝑟

( 𝑗)
𝑡 , then 𝑑 (𝑎( 𝑗)𝑡 , 𝑟

( 𝑗)
𝑡 ) = 0.

On the other hand, if one of the servers is at 𝑥0 and the other is at 𝑠𝑖 for some 𝑖 ∈ [𝑡],
then 𝑑 (𝑎 ( 𝑗)𝑡 , 𝑟

( 𝑗)
𝑡 ) ≤ 𝑑 (𝑥0, 𝑠𝑖) ≤ COpt(1, 𝑡), since the offline optimal will also have

had to move a server from 𝑥0 to meet the request 𝑠𝑖. Finally, if both 𝑎 ( 𝑗)𝑡 and 𝑟 ( 𝑗)𝑡 are
at different requests 𝑠𝑖, 𝑠 𝑗 for 𝑖 ≠ 𝑗 ∈ [𝑡], then

𝑑 (𝑎 ( 𝑗)𝑡 , 𝑟
( 𝑗)
𝑡 ) = 𝑑 (𝑠𝑖, 𝑠 𝑗 ) ≤ COpt(1, 𝑡).

To see that this holds, note that if Opt served the requests 𝑠𝑖 and 𝑠 𝑗 with different
servers, then by the triangle inequality COpt(1, 𝑡) ≥ 𝑑 (𝑥0, 𝑠𝑖) + 𝑑 (𝑥0, 𝑠 𝑗 ) ≥ 𝑑 (𝑠𝑖, 𝑠 𝑗 )
since all the servers began at 𝑥0. On the other hand, if Opt served 𝑠𝑖 and 𝑠 𝑗 with the
same server, then that server must have moved from 𝑠𝑖 to 𝑠 𝑗 (or vice versa), hence
𝑑 (𝑠𝑖, 𝑠 𝑗 ) ≤ COpt(1, 𝑡).



117

Since there are 𝑘 such pairs of servers 𝑎 ( 𝑗)𝑡 , 𝑟
( 𝑗)
𝑡 , and since 𝑑mm is the minimal

matching distance, we obtain

𝑑mm(a𝑡 , r𝑡) ≤
𝑘∑︁
𝑗=1

𝑑 (𝑎 ( 𝑗)𝑡 , 𝑟
( 𝑗)
𝑡 ) ≤ 𝑘 · COpt(1, 𝑡).

Proof of Theorem 3.5.4
Before proving the theorem, let us formally define lazy algorithms for 𝑘-chasing
convex, 𝛼-polyhedral functions on R.

Definition 3.D.1. An algorithm Alg for 𝑘-chasing convex, 𝛼-polyhedral functions
on R is lazy if, at each time 𝑡, the following conditions hold on its decision:

i. Alg moves at most a single server at time 𝑡, and the only server that it moves
(if any) is the one that realizes the service cost.

ii. Alg only moves a server in order to obtain a strictly lower service cost.

That is, if Alg is a lazy algorithm for 𝑘-chasing convex, 𝛼-polyhedral functions
on R and x𝑡−1, x𝑡 ∈

(R
𝑘

)
are Alg’s decisions at times 𝑡 − 1 and 𝑡 on an instance

𝑔1, . . . , 𝑔𝑇 : R → R+, then either x𝑡−1 = x𝑡 , or x𝑡−1 and x𝑡 differ by exactly one
server, and moreover,

min
𝑖∈[𝑘]

𝑔𝑡 (𝑥 (𝑖)𝑡 ) < min
𝑖∈[𝑘]

𝑔𝑡 (𝑥 (𝑖)𝑡−1).

With this definition formalized, it is straightforward to see by the triangle inequality
that, similar to the 𝑘-server setting [151, §10.2.3], we can assume without loss of
generality that Adv and Rob are lazy algorithms for 𝑘-chasing convex functions on
R. Next, we prove the following lemma.

Lemma 3.D.2. Let 𝑔1, . . . , 𝑔𝑇 : R → R+ be a sequence of 𝛼-polyhedral costs for
an instance of 𝑘-chasing convex, 𝛼-polyhedral functions on R endowed with the
usual (Euclidean) metric 𝑑 (𝑥, 𝑦) = |𝑥 − 𝑦 |. Let Adv and Rob be two lazy algorithms
for the problem that both start with all servers at the same point 𝑥0 ∈ R, and let
a1, . . . , a𝑇 ∈

(R
𝑘

)
and r1, . . . , r𝑇 ∈

(R
𝑘

)
be the sequences of server positions of Adv

and Rob, respectively, on the problem instance. Further suppose that Rob ends each
timestep with a server at the minimizer 𝑣𝑡 = arg min𝑥 𝑔𝑡 (𝑥), so, 𝑣𝑡 ∈ r𝑡 at each time
𝑡. Then, for any time 𝑡 ∈ [𝑇], we have

𝑑mm(a𝑡 , r𝑡) ≤ max{𝑘, 𝑘/𝛼} · COpt(1, 𝑡),



118

where 𝑑mm is the minimal matching distance inherited from the metric 𝑑.

Proof. Suppose without loss of generality that all servers start at 𝑥0 = 0. Note
that since Adv is lazy (without loss of generality) and costs are 𝛼-polyhedral and
convex, Adv will never move a server away from the minimizer 𝑣𝑡 of the current
cost function 𝑔𝑡 .

Fix any time 𝑡 ∈ [𝑇]. Suppose without loss of generality that Adv and Rob have
servers indexed in increasing order, i.e., 𝑎 (1)𝑡 ≤ · · · ≤ 𝑎

(𝑘)
𝑡 and 𝑟 (1)𝑡 ≤ · · · ≤ 𝑟 (𝑘)𝑡 .

Define 𝜏 = arg min𝜏∈[𝑡] 𝑣𝜏 and 𝜎 = arg max𝜎∈[𝑡] 𝑣𝜎. We break into two cases.

(1) Suppose 0 ∈ [𝑣𝜏, 𝑣𝜎]. Since Adv begins with all servers at 0 and never
moves away from a minimizer, all of its servers will lie in the interval [𝑣𝜏, 𝑣𝜎].
Similarly, since Rob begins with all servers at 0, is lazy, and always occupies
the current minimizer with a server, all of its server positions will also lie in the
interval [𝑣𝜏, 𝑣𝜎]. As a result, we have

𝑑mm(a𝑡 , r𝑡) ≤
𝑘∑︁
𝑖=1

𝑑 (𝑎 (𝑖)𝑡 , 𝑟
(𝑖)
𝑡 ) ≤ 𝑘 · 𝑑 (𝑣𝜏, 𝑣𝜎), (3.31)

since the minimal matching of a𝑡 and r𝑡 will match servers in increasing order,
and all servers lie in the interval [𝑣𝜏, 𝑣𝜎].
Now we must simply bound 𝑑 (𝑣𝜏, 𝑣𝜎) in terms of COpt(1, 𝑡). Let let 𝑜∗𝜏 be Opt’s
closest server to 𝑣𝜏 at time 𝜏, and let 𝑜∗𝜎 be Opt’s closest server to 𝑣𝜎 at time 𝜎.
Since all servers begin at 0, we can thus lower bound COpt(1, 𝑡) by

COpt(1, 𝑡) ≥ 𝑔𝜏 (𝑜∗𝜏) + 𝑑 (𝑜∗𝜏, 0) + 𝑔𝜎 (𝑜∗𝜎) + 𝑑 (𝑜∗𝜎, 0)
≥ 𝛼 · 𝑑 (𝑜∗𝜏, 𝑣𝜏) + 𝑑 (𝑜∗𝜏, 0) + 𝛼 · 𝑑 (𝑜∗𝜎, 𝑣𝜎) + 𝑑 (𝑜∗𝜎, 0) (3.32)

≥ min{1, 𝛼} · 𝑑 (𝑣𝜏, 𝑣𝜎) (3.33)

where (3.32) follows by 𝛼-polyhedrality of the cost functions. Substituting
(3.33) into (3.31) then gives

𝑑mm(a𝑡 , r𝑡) ≤ max
{
𝑘,
𝑘

𝛼

}
COpt(1, 𝑡),

as desired.
(2) Suppose 0 is outside of the interval [𝑣𝜏, 𝑣𝜎]; we may assume without loss of

generality that 0 < 𝑣𝜏. By similar reasoning as in the previous case, all of the
servers of Adv and Rob, by laziness, are in the interval [0, 𝑣𝜎]. Then we follow
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a similar argument. Note that

𝑑mm(a𝑡 , r𝑡) ≤
𝑘∑︁
𝑖=1

𝑑 (𝑎 (𝑖)𝑡 , 𝑟
(𝑖)
𝑡 ) ≤ 𝑘 · 𝑑 (0, 𝑣𝜎),

and, defining 𝑜∗𝜎 as Opt’s closest server to 𝑣𝜎 at time 𝜎,

COpt(1, 𝑡) ≥ 𝑔𝜎 (𝑜∗𝜎) + 𝑑 (𝑜∗𝜎, 0)
≥ 𝛼 · 𝑑 (𝑜∗𝜎, 𝑣𝜎) + 𝑑 (𝑜∗𝜎, 0)
≥ min{1, 𝛼} · 𝑑 (0, 𝑣𝜎).

Thus we obtain

𝑑mm(a𝑡 , r𝑡) ≤ max
{
𝑘,
𝑘

𝛼

}
COpt(1, 𝑡),

completing the proof.

The result of Theorem 3.5.4 then follows immediately by substituting the diameter
bound from Lemma 3.D.2 into Theorem 3.5.1 and instantiating Rob with the work
function algorithm applied to the minimizer sequence 𝑣1, . . . , 𝑣𝑇 , which we know
is O( 𝑘

𝛼
)-competitive.

3.E Proof of Theorem 3.6.1
We begin by showing CDetRobustML ≤ (1 + 𝜖 + 𝛿)CAdv. Note that DetRobustML
(Algorithm 7) consists of phases in which DetRobustML first coincides with Adv,
and then switches to following Rob, before switching back to Adv, and so on. We
will assume that DetRobustML ends the instance coinciding with Adv, so 𝑥𝑇 = 𝑎𝑇 ;
the case in which DetRobustML ends at 𝑟𝑇 is similar. Let 𝑡𝑖 denote the timestep in
which DetRobustML switches from Rob back to Adv for the 𝑖th time, with 𝑡0 := 1
since DetRobustML always begins by following Adv. Similarly, let 𝑚𝑖 denote
the timestep in which DetRobustML switches from Adv to Rob for the 𝑖th time.
Clearly we have 1 = 𝑡0 < 𝑚1 < 𝑡1 < · · · < 𝑚𝑘 < 𝑡𝑘 ≤ 𝑇 , for some 𝑘 ∈ N. Even
though DetRobustML ends at Adv, define 𝑚𝑘+1 := 𝑇 + 1 for notational simplicity.
Then the cost of DetRobustML may be written as
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CDetRobustML =

𝑚1−1∑︁
𝜏=1

𝑓𝜏 (𝑎𝜏) + 𝑑 (𝑎𝜏, 𝑎𝜏−1)

+
𝑘∑︁
𝑖=1

(
𝑓𝑚𝑖 (𝑟𝑚𝑖 ) + 𝑑 (𝑟𝑚𝑖 , 𝑎𝑚𝑖−1) +

𝑡𝑖−1∑︁
𝜏=𝑚𝑖+1

𝑓𝜏 (𝑟𝜏) + 𝑑 (𝑟𝜏, 𝑟𝜏−1)

+ 𝑓𝑡𝑖 (𝑎𝑡𝑖 ) + 𝑑 (𝑎𝑡𝑖 , 𝑟𝑡𝑖−1) +
𝑚𝑖+1−1∑︁
𝜏=𝑡𝑖+1

𝑓𝜏 (𝑎𝜏) + 𝑑 (𝑎𝜏, 𝑎𝜏−1)
)

≤ CAdv(1, 𝑚1 − 1) +
𝑘∑︁
𝑖=1

(
CRob(𝑚𝑖, 𝑡𝑖 − 1) + 𝑑 (𝑟𝑚𝑖−1, 𝑎𝑚𝑖−1)

+ CAdv(𝑡𝑖, 𝑚𝑖+1 − 1) + 𝑑 (𝑎𝑡𝑖−1, 𝑟𝑡𝑖−1)
)

(3.34)

≤ CAdv(1, 𝑚1 − 1) + 2𝑘𝐷

+
𝑘∑︁
𝑖=1

CRob(𝑚𝑖, 𝑡𝑖 − 1) + CAdv(𝑡𝑖, 𝑚𝑖+1 − 1) (3.35)

≤ (1 + 𝜖)CAdv +
𝑘∑︁
𝑖=1

CRob(𝑚𝑖, 𝑡𝑖 − 1) (3.36)

≤ (1 + 𝜖 + 𝛿)CAdv (3.37)

where (3.34) follows from the triangle equality on 𝑑 (𝑟𝑚𝑖 , 𝑎𝑚𝑖−1) and 𝑑 (𝑎𝑡𝑖 , 𝑟𝑡𝑖−1),
and (3.35) follows by the diameter bound. The inequality (3.36) follows by line 6
of the algorithm, which states that the algorithm will switch from following Adv
to following Rob at time 𝑡 only if CAdv(𝑠, 𝑡) ≥ 2𝐷

𝜖
. Noting that at the start of any

timestep 𝑡, 𝑠 is exactly

𝑠 = max
𝑖:𝑚𝑖+1≤𝑡

𝑚𝑖 + 1

(with 𝑚0 := 0 for notational convenience), it follows that for each 𝑖 ∈ [𝑘],
CAdv(𝑚𝑖−1 + 1, 𝑚𝑖) ≥ 2𝐷

𝜖
. Thus

2𝑘𝐷 ≤ 𝜖
𝑘∑︁
𝑖=1

CAdv(𝑚𝑖−1 + 1, 𝑚𝑖) = 𝜖 · CAdv(1, 𝑚𝑘 ) ≤ 𝜖 · CAdv.

Finally, (3.37) follows from

𝑘∑︁
𝑖=1

CRob(𝑚𝑖, 𝑡𝑖 − 1) ≤ CRob(1, 𝑡𝑘 − 1) < 𝛿 · CAdv(1, 𝑡𝑘 − 1) ≤ 𝛿 · CAdv,
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since by definition, 𝑥𝑡𝑘−1 = 𝑟𝑡𝑘−1, which by line 12 of the algorithm means that
CRob(1, 𝑡𝑘 − 1) < 𝛿 · CAdv(1, 𝑡𝑘 − 1). Thus we have proved the desired bound
CDetRobustML ≤ (1 + 𝜖 + 𝛿)CAdv.

We now turn to showing CDetRobustML ≤
(
1 + 1+𝜖

𝛿

)
CRob+

(
1 + 2

𝜖

)
𝐷. First suppose

DetRobustML finishes the instance coinciding with Adv, so 𝑥𝑇 = 𝑎𝑇 . Let 𝜏 ∈
{0, . . . , 𝑇 − 1} denote the last time at which DetRobustML coincided with Rob, or
that 𝑥𝜏 = 𝑟𝜏. Thus the cost can be bounded as

CDetRobustML = CDetRobustML(1, 𝜏 + 1) + CDetRobustML(𝜏 + 2, 𝑇)
≤ (1 + 𝜖 + 𝛿)CAdv(1, 𝜏 + 1) + CAdv(𝜏 + 2, 𝑇) (3.38)

≤ max
{(

1 + 1 + 𝜖
𝛿

)
CRob(1, 𝜏 + 1) + 2𝐷

𝜖
,

(
1 + 1 + 𝜖

𝛿

)
CRob

}
(3.39)

≤
(
1 + 1 + 𝜖

𝛿

)
CRob +

2𝐷
𝜖

(3.40)

where (3.38) follows via the previously proved inequality CDetRobustML ≤ (1 +
𝜖 + 𝛿)CAdv, and (3.39) follows by the fact (according to line 14 of the algorithm)
that DetRobustML switching from Rob to Adv at time 𝜏 + 1 means that CRob ≥
𝛿 · CAdv(1, 𝜏 + 1), as well as from the following observation: since DetRobustML
coincides with Adv between times 𝜏 + 1 and 𝑇 , line 6 of the algorithm tells us that
either CAdv(𝜏 + 2, 𝑇) < 2𝐷

𝜖
or CRob ≥ 𝛿 · CAdv.

Finally, suppose DetRobustML finishes the instance coinciding with Rob, so 𝑥𝑇 =

𝑟𝑇 . Let 𝜎 ∈ {0, . . . , 𝑇 − 1} denote the last time at which DetRobustML coincided
with Adv, or that 𝑥𝜎 = 𝑎𝜎. By the previous case’s inequality (3.40), we have

CDetRobustML = CDetRobustML(1, 𝜎) + CDetRobustML(𝜎 + 1, 𝑇)

≤
(
1 + 1 + 𝜖

𝛿

)
CRob(1, 𝜎) +

2𝐷
𝜖
+ 𝑓𝜎+1(𝑟𝜎+1)

+ 𝑑 (𝑟𝜎+1, 𝑎𝜎) + CRob(𝜎 + 2, 𝑇)

≤
(
1 + 1 + 𝜖

𝛿

)
CRob(1, 𝜎) +

2𝐷
𝜖
+ 𝐷 + CRob(𝜎 + 1, 𝑇)

≤
(
1 + 1 + 𝜖

𝛿

)
CRob +

(
1 + 2

𝜖

)
𝐷.
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C h a p t e r 4

THE ONLINE PAUSE AND RESUME PROBLEM: OPTIMAL
ALGORITHMS AND AN APPLICATION TO CARBON-AWARE

LOAD SHIFTING

We now take a brief detour from the design of learning-augmented algorithms to
investigate the design of competitive algorithms for online optimization problems
with switching costs and long-term deadline constraints. We propose to study the
online pause and resume problem, where a player attempts to find the 𝑘 lowest
(alternatively, highest) prices in a sequence of fixed length 𝑇 , which is revealed se-
quentially. At each timestep, the player is presented with a price and decides whether
to accept or reject it. The player incurs a switching cost whenever their decision
changes in consecutive timesteps, i.e., whenever they pause or resume purchasing.
This online problem is motivated by the goal of carbon-aware load shifting, where a
workload may be paused during periods of high carbon intensity and resumed dur-
ing periods of low carbon intensity, and a cost is incurred when saving or restoring
its state. This problem has strong connections to existing problems studied in the
literature on online optimization, though it introduces unique technical challenges
that prevent the direct application of existing algorithms. Extending prior work
on threshold-based algorithms, we introduce double-threshold algorithms for both
the minimization and maximization variants of this problem. We further show that
the competitive ratios achieved by these algorithms are the best achievable by any
deterministic online algorithm. Finally, we empirically validate our proposed algo-
rithm through case studies on the application of carbon-aware load shifting using
real carbon trace data and existing baseline algorithms.

This chapter is primarily based on the following paper:

[1] A. Lechowicz, N. Christianson, J. Zuo, N. Bashir, M. Hajiesmaili, A. Wier-
man, and P. Shenoy, “The Online Pause and Resume Problem: Optimal
Algorithms and An Application to Carbon-Aware Load Shifting,” Proceed-
ings of the ACM on Measurement and Analysis of Computing Systems, vol. 7,
no. 3, 45:1–45:32, Dec. 2023. doi: 10.1145/3626776. [Online]. Available:
https://doi.org/10.1145/3626776.

https://doi.org/10.1145/3626776
https://doi.org/10.1145/3626776
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4.1 Introduction
This chapter introduces and studies the online pause and resume problem (OPR),
considering both minimization (OPR-min) and maximization (OPR-max) variants.
In OPR-min, a player is presented with time-varying prices in a sequential manner
and decides whether or not to purchase one unit of an item at the current price. The
player must purchase 𝑘 units of the item over a time horizon of 𝑇 and they incur
a switching cost whenever their decision changes in consecutive timesteps, i.e.,
whenever they pause or resume purchasing. The goal of the player is to minimize
their total cost, which consists of the aggregate price of purchasing 𝑘 units and
the aggregate switching cost incurred over 𝑇 slots. In OPR-max, the setting is
exactly the same, but the goal of the player is to maximize their total profit, and
any switching cost that they incur is subtracted. In both cases, the price values are
revealed to the player one by one in an online manner, and the player has to make a
decision without knowing the future values.

Our primary motivation for introducing OPR is the emerging importance of carbon-
aware computing and, more specifically, carbon-aware temporal workload shifting,
which has seen significant attention in recent years [33, 155–157]. In carbon-
aware temporal workload shifting, an interruptible and deferrable workload may
be paused during periods of high carbon intensity and resumed during periods
of low carbon intensity. The workload must be running for 𝑘 units of time to
complete and must be completed before its deadline 𝑇 . However, pausing and
resuming the workload typically comes with overheads such as storing the state
in memory and checkpointing. For example, an empirical study [158] shows that
this overhead can nullify any savings in carbon emissions from temporal shifting
if the job is interrupted frequently. Moreover, with the rise of big ML training
workloads, such as the training, fine-tuning, and inference of large language models
(LLM), datacenter workloads’ memory footprints are frequently in the hundreds
of GBs [159–161]. These emerging workloads will result in high checkpoint-and-
restore overheads, which must be considered in carbon-aware scheduling. This
motivates adding a switching cost in OPR, since a naïve algorithm that does not
account for the interruptions’ overhead may frequently checkpoint and, in some
cases, increase carbon emissions beyond a carbon-agnostic execution.

The objective of temporal workload shifting is to minimize the total carbon footprint
of running the workload, which includes both the original compute demand and the
overhead due to pausing and resuming (a.k.a., the switching cost). We consider a
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worst-case performance objective based on competitive analysis, defined explicitly in
Section 4.2, wherein we seek to find an effective algorithm that is robust to uncertain
and nonstochastic fluctuations in price (or carbon intensity in the context of carbon-
aware load shifting). We note that even though statistical modeling of grid carbon
intensity has been explored [162], we focus on developing worst-case optimized
algorithms as the intended application has nonlinearity and nonstationarity, which
complicate the task of designing a single probabilistic model to solve this problem.

OPR also captures other interesting applications with highly variable time-varying
costs where switching frequently is undesirable. A related example is the carbon-
aware electric vehicle (EV) charging problem, which considers when to charge an
EV with respect to the time-varying availability of carbon-free electricity, a charging
deadline (e.g., set by the EV owner), and battery health design goals (i.e., a constant
charging rate is better for battery longevity) [150]. When the charger is non-adaptive
(i.e., the charging rate is either 0 or the maximum rate), the problem reduces exactly
to OPR. Beyond these “carbon-aware” applications, there are additional examples
that deal with pricing, such as managing grid-scale energy storage with respect to
real-time prices in the wholesale electricity market, where a “smooth” charge or
discharge rate is desired [163]. Another example is renting spot virtual machines
from a cloud service provider in the setting where pricing is set according to supply-
demand dynamics [164–166].

On the theory front, the OPR problem has strong connections to various existing
problems in the literature on online optimization. We extensively review the prior
literature in Section 4.7 and focus on the most relevant theoretical problems below.
The OPR problem is a generalization of the 𝑘-search problem [79, 96], which
belongs to the broader class of online conversion problems [167], a.k.a., time series
search and one-way trading [78]. In the minimization variant of the 𝑘-search
problem, an online decision-maker aims to buy 𝑘 units of an item for the least
cost over a sequence of time-varying cost values. At each step, a cost value is
observed, and the decision is whether or not to buy one unit at the current observed
cost without knowing the future values (see Section 4.2 for a deeper discussion
of 𝑘-search). In contrast to 𝑘-search, the OPR problem introduces the additional
component of managing the switching cost, which poses a significant additional
challenge in algorithm design.

The existence of the switching cost in OPR connects it to the well-studied prob-
lem of smoothed online convex optimization (SOCO) [38], also known as convex
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function chasing (CFC) [77], and its generalizations including metrical task systems
(MTS) [76]. In SOCO, a learner is faced with a sequence of cost functions 𝑓𝑡 that
are revealed online, and must choose an action 𝑥𝑡 after observing 𝑓𝑡 . Based on
that decision, the learner incurs a hitting cost, 𝑓𝑡 (𝑥𝑡) as well as a switching cost,
∥𝑥𝑡 − 𝑥𝑡−1∥, which captures the cost associated with changing the decision between
rounds. In contrast to SOCO, OPR includes the long-term constraint of satisfying
the demand of 𝑘 units over the horizon 𝑇 , which poses a significant challenge not
present in SOCO-like problems.

The coexistence of these differentiating factors, namely the switching cost and the
long-term deadline constraint, make OPR uniquely challenging, and means that
prior algorithms and analyses for related problems such as 𝑘-search and SOCO
cannot be directly adapted.

Contributions. We introduce online algorithms for the minimization and maxi-
mization variants of OPR and show that our algorithms achieve the best possible
competitive ratios. We also evaluate the empirical performance of the proposed
algorithms on a case study of carbon-aware load shifting. The details of our contri-
butions are outlined below.

Algorithmic idea: Double-threshold To tackle OPR, we focus our efforts on
online threshold-based algorithms (OTA), the prominent design paradigm for classic
problems such as 𝑘-search [79, 96], one-way trading [78, 167], and online knapsack
problems [168–170]. In the 𝑘-min search problem, for example, a threshold-based
algorithm specifies 𝑘 threshold values and chooses to trade the 𝑖-th item only if the
current price is less than or equal to the value suggested by the 𝑖-th threshold value.

Direct application of prior OTA algorithms to OPR results in undesirable behavior
(such as frequently changing decisions) since their threshold function design is
oblivious to the switching cost present in OPR. To address this challenge, we seek
an algorithm that can simultaneously achieve the following behaviors: (1) when
the player is in “trading mode,” they should not impulsively switch away from
trading in response to a price that is only slightly worse, since this will result in a
switching penalty; and (2) the player should not switch to “trading mode” unless
prices are sufficiently good to warrant the switching cost. These two ideas motivate
an algorithm design that uses two distinct threshold functions, each of which captures
one of the above two cases. We present our algorithms DTPR-min and DTPR-max
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for OPR-min and OPR-max, respectively, in Section 4.3, which build upon this
high-level idea of a double-threshold.

Main results While OTA algorithms are intuitive and simple to describe, it is highly
challenging to design threshold functions that lead the corresponding algorithms
to be competitive against the offline optimum. The addition of switching cost
in OPR further exacerbates the technical challenge of designing optimal threshold
functions. The key result which enables our double-threshold approach is a technical
observation (see Observation 4.3.3), which shows that the difference between the
functions guiding the algorithm’s decisions should be exactly 2𝛽, where 𝛽 represents
the fixed switching cost incurred by changing the decision in OPR.

Identifying this relationship between the two threshold functions significantly fa-
cilitates the competitive analysis of both DTPR-min and DTPR-max, enabling our
derivation of a closed form of each threshold. Using this idea, we characterize the
competitive ratios of DTPR-min and DTPR-max as a function of problem parameters,
including an explicit dependence on the magnitude of the switching cost 𝛽 (see The-
orems 4.4.1 and 4.4.2). Furthermore, we derive lower bounds for the competitive
ratio of any deterministic online algorithm, showing that our proposed algorithms
are optimal for this problem (formal statements in Theorems 4.4.5 and 4.4.6). The
competitive ratios we derive for both DTPR-min and DTPR-max exactly recover the
best prior competitive results for the 𝑘-search problem [79], which corresponds to
the case of 𝛽 = 0 in OPR, i.e., no switching cost. Formal statements and a more
detailed discussion of our main results are presented in Section 4.4.

Case study. Finally, in Section 4.6, we illustrate the performance of our pro-
posed algorithm by conducting an experimental case study simulating the carbon-
aware load shifting problem. We utilize real-world carbon traces from Electricity
Maps [171], which contain carbon intensity values for grid-sourced electricity across
the world. Our experiments simulate different strategies for scheduling a deferrable
and interruptible workload in the face of uncertain future carbon intensity values.
We show that our algorithm’s performance significantly improves upon existing
baseline methods and adapted forms of algorithms for related problems such as
𝑘-min search.
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4.2 Problem Formulation and Preliminaries
We begin by formally introducing the OPR problem and providing background on
the online threshold-based algorithm design paradigm, which is used in the design of
our proposed algorithms. Table 4.1 summarizes the core notation for OPR. Recall
that this formulation is motivated by the setting of carbon-aware temporal workload
shifting, as described in the introduction.

Problem Formulation
We present two variants of the online pause and resume problem (OPR).1 In OPR-
min (OPR-max) a player must buy (sell) 𝑘 ≥ 1 units of some asset (one unit at each
timestep) with the goal of minimizing (maximizing) their total cost (profit) within a
time horizon of length 𝑇 . At each timestep 1 ≤ 𝑡 ≤ 𝑇 , the player is presented with a
price 𝑐𝑡 , and must immediately decide whether to accept this price (𝑥𝑡 = 1) or reject
it (𝑥𝑡 = 0). The player is required to complete this transaction for all 𝑘 units by
some point in time 𝑇 . Both 𝑘 and 𝑇 are known in advance. Thus, the requirement
of 𝑘 transactions is a hard constraint, i.e.,

∑𝑇
𝑡=1 𝑥𝑡 = 𝑘 , and if at time 𝑇 − 𝑖 the player

still has 𝑖 units remaining to buy/sell, they must accept the prices in the subsequent
𝑖 slots to accomplish 𝑘 transactions.

Additionally, in both variants of OPR, the player incurs a fixed switching cost 𝛽 > 0
whenever they decide to change decisions between two adjacent timesteps (i.e.,
when ∥𝑥𝑡−1 − 𝑥𝑡 ∥ = 1). We assume that 𝑥0 = 0 and 𝑥𝑇+1 = 0, implying that any
player must incur a minimum switching cost of 2𝛽, once for switching “on” and
once for switching “off.” While the player incurs at least a switching cost of 2𝛽,
note that the total switching cost incurred by the player is bounded by the size of the
asset 𝑘 since the switching cost cannot be larger than 𝑘2𝛽.

In summary, the offline version of OPR-min can be summarized as follows:

min
𝑥1,...,𝑥𝑇∈{0,1}

(
𝑇∑︁
𝑡=1

𝑐𝑡𝑥𝑡

)
︸     ︷︷     ︸

Accepted prices

+
(
𝑇+1∑︁
𝑡=1

𝛽 | |𝑥𝑡 − 𝑥𝑡−1 | |
)

︸                  ︷︷                  ︸
Switching cost

s.t.
𝑇∑︁
𝑡=1

𝑥𝑡 = 𝑘,︸      ︷︷      ︸
Deadline constraint

(4.1)

1We use OPR whenever the context is applicable to both minimization (OPR-min) and maxi-
mization (OPR-max) variants of the problem, otherwise, we refer to the specific variant. The same
policy applies to DTPR, our proposed algorithm for OPR.
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Table 4.1: A summary of key notation in the OPR problem

Notation Description
𝑘 ∈ N Number of units which must be bought (or sold)
𝑇 Deadline constraint; the player must buy (or sell) 𝑘 units before

time 𝑇
𝑡 ∈ [1, 𝑇] Current timestep
𝑥𝑡 ∈ {0, 1} Decision at time 𝑡. 𝑥𝑡 = 1 if price 𝑐𝑡 is accepted, 𝑥𝑡 = 0 if 𝑐𝑡 is not

accepted
𝛽 Switching cost incurred when algorithm’s decision 𝑥𝑡 ≠ 𝑥𝑡−1
𝑈 Upper bound on any price that will be encountered
𝐿 Lower bound on any price that will be encountered

𝜃 = 𝑈/𝐿 Price fluctuation ratio
𝑐𝑡 (Online input) Price revealed to the player at time 𝑡

𝑐min & 𝑐max (Online input) The actual minimum and maximum prices in a
sequence

while the offline version of OPR-max is

max
𝑥1,...,𝑥𝑇∈{0,1}

(
𝑇∑︁
𝑡=1

𝑐𝑡𝑥𝑡

)
−

(
𝑇+1∑︁
𝑡=1

𝛽 | |𝑥𝑡 − 𝑥𝑡−1 | |
)

s.t.
𝑇∑︁
𝑡=1

𝑥𝑡 = 𝑘.

(4.2)

Of course, our focus is the online version of OPR, where the player must make
irrevocable decisions at each timestep without the knowledge of future inputs. More
specifically, in both variants of OPR the sequence of prices {𝑐𝑡}𝑡∈[1,𝑇] is revealed
sequentially—future prices are unknown to an online algorithm, and each decision
𝑥𝑡 is irrevocable.

Competitive analysis Our goal is to design an online algorithm that main-
tains a small competitive ratio [76], i.e., performs nearly as well as the of-
fline optimal solution. For an online algorithm ALG and an offline optimal
solution OPT, the competitive ratio for a minimization problem is defined as:
CR(ALG) = max𝜎∈Ω ALG(𝜎)/OPT(𝜎), where 𝜎 denotes a valid input sequence for
the problem andΩ is the set of all feasible input instances. Further, OPT(𝜎) is the op-
timal cost given this input, and ALG(𝜎) is the cost of the solution obtained by running
the online algorithm over this input. Conversely, for a problem with a maximization
objective, the competitive ratio is defined as max𝜎∈Ω OPT(𝜎)/ALG(𝜎). With these
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definitions, the competitive ratio for both minimization and maximization problems
is always greater than or equal to one, and the lower the better.

Note that competitive algorithm development, in its classic worst-case optimized
design, cannot capture data-driven adaptation and stochasticity of data in decision-
making. However, beyond the significance of the theoretical analysis in this frame-
work, competitive algorithms could be of interest to practitioners since they are
robust against adversarial or non-stationary behavior in the underlying environment.
For example, in the context of carbon-aware load shifting, the carbon intensity
values significantly change across the temporal and spatial domains following the
makeup and behavior of an electric grid (e.g., different ISOs and generation mixes;
see Figure 4.9 in the appendix); and online algorithms are robust to those drastic
temporal and spatial variations. Competitive algorithms are extremely simple to
implement, e.g., in OPR, all we need are two threshold functions to decide the
pause and resume decisions. Furthermore, worst-case optimized algorithms can
potentially be augmented with machine-learned predictions, as explored in, e.g.,
[69, 70, 75, 111, 140, 167], to achieve the best of both worlds of worst-case and
average-case performance.

Assumptions and additional notations. We make no assumptions on the underly-
ing distribution of the prices other than the assumption that the set of prices arriving
online {𝑐𝑡}𝑡∈[1,𝑇] has bounded support, i.e., 𝑐𝑡 ∈ [𝐿,𝑈] ∀𝑡 ∈ [1, 𝑇], where 𝐿 and𝑈
are known to the player. We also define 𝜃 = 𝑈/𝐿 as the price fluctuation. These are
standard assumptions in the literature for many online problems, including one-way
trading, online search, and online knapsack; and without them the competitive ratio
of any algorithm is unbounded. Most papers in this literature additionally assume
that 𝑈, 𝐿 > 0 (i.e., the lowest price is still positive), but our design can handle the
special case where 𝐿 = 0, and therefore do not adopt this assumption. We use
𝑐min(𝜎) = min𝑡∈[1,𝑇] 𝑐𝑡 and 𝑐max(𝜎) = max𝑡∈[1,𝑇] 𝑐𝑡 to denote the minimum and
maximum encountered prices for any valid OPR sequence 𝜎.

Background: Online Threshold-Based Algorithms (OTA)
Online threshold-based algorithms (OTA) are a family of algorithms for online op-
timization in which a carefully designed threshold function is used to specify the
decisions made at each timestep. At a high level, the threshold function defines
the “minimum acceptable quality” that an arriving input/price must satisfy in order
to be accepted by the algorithm. The threshold is chosen specifically so that an
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agent greedily accepting prices meeting the threshold at each step will be ensured a
competitive guarantee. This algorithmic framework has seen success in the online
search and one-way trading problems [78, 79, 96, 167] as well as the related online
knapsack problem [168–170]. In these works, the derived threshold functions are
optimal in the sense that the competitive ratios of the resulting threshold-based
algorithms match information-theoretic lower bounds of the corresponding online
problems. As discussed in the introduction, the framework does not apply directly
to the OPR setting, but we make use of ideas and techniques from this literature. We
briefly detail the most relevant highlights from the prior results before discussing
how these related problems generalize to OPR in the next section.

1-min/1-max search. In the online 1-min/1-max search problem, a player attempts
to find the single lowest (respectively, highest) price in a sequence, which is revealed
sequentially. The player’s objective is to either minimize their cost or maximize
their profit. When each price arrives, the player must decide immediately whether
to accept the price, and the player is forced to accept exactly one price before the
end of the sequence. For this problem, El-Yaniv et al. [78] presents a deterministic
threshold-based algorithm. The algorithm assumes a finite price interval, i.e., the
price is bounded by the interval [𝐿,𝑈], where 𝐿 and 𝑈 are known. Then, it sets a
constant threshold Φ =

√
𝐿𝑈, and the algorithm simply selects the first price that is

less than or equal to Φ (for the maximization version, it accepts the first price greater
than or equal to Φ). This algorithm achieves a competitive ratio of

√︁
𝑈/𝐿 =

√
𝜃,

which matches the lower bound; hence, it is optimal [78].

𝑘-min/𝑘-max search. The online 𝑘-min/𝑘-max search problem extends the 1-
min/1-max search problem—a player attempts to find the 𝑘 lowest (conversely,
highest) prices in a sequence of prices revealed sequentially. The player’s objec-
tive is identical to the 1-min/1-max problem, and the player must accept at least 𝑘
prices by the end of the sequence. Several works have developed a known optimal
deterministic threshold-based algorithm for this problem, including [78, 79]. Lever-
aging the same assumption of a finite price interval [𝐿,𝑈], the threshold function
is a sequence of 𝑘 thresholds {Φ𝑖}𝑖∈[1,𝑘] , which is also called the reservation price
policy. At each step, the algorithm accepts the first price, which is less than or equal
to Φ𝑖, where 𝑖 − 1 is the number of prices that have been accepted thus far (for the
maximization version, it accepts the first price which is ≥ Φ𝑖). In the 𝑘-min setting,
this algorithm is 𝛼-competitive, where 𝛼 is the unique solution of
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1 − 1/𝜃
1 − 1/𝛼 =

(
1 + 1

𝛼𝑘

) 𝑘
. (4.3)

For the 𝑘-max variant, this algorithm is 𝜔-competitive, where 𝜔 is the unique
solution of

𝜃 − 1
𝜔 − 1

=

(
1 + 𝜔

𝑘

) 𝑘
. (4.4)

The sequence of thresholds {Φ𝑖}𝑖∈[1,𝑘] for both variants of the problem are con-
structed by analyzing possible input cases, “hedging” against the risk that future
(unknown) prices will jump to the worst possible value, i.e., 𝑈 for 𝑘-min search, 𝐿
for 𝑘-max search. These potential cases can be enumerated for different values of 𝑖,
where 0 ≤ 𝑖 ≤ 𝑘 denotes the number of prices accepted so far. By simultaneously
balancing the competitive ratios for each of these cases (setting each ratio equal
to the others), the optimal threshold values and the optimal competitive ratios are
derived. We refer to this technique as the balancing rule and a rigorous proof of
this approach, with corresponding lower bounds, can be found in [79]. The lower
bounds highlight that the 𝛼 and 𝜔 which solve the expressions for the competitive
ratios above are optimal for any deterministic 𝑘-min and 𝑘-max search algorithms,
respectively. Further, 𝛼 and𝜔 provide insight into a fundamental difference between
the minimization and maximization settings of 𝑘-search. As discussed in [79], for
large 𝜃, the best algorithm for 𝑘-max search is roughly 𝑂 (𝑘 𝑘

√
𝜃)-competitive, while

the best algorithm for 𝑘-min search is at best𝑂 (
√
𝜃)-competitive. Similarly, for fixed

𝜃 and large 𝑘 , the optimal competitive ratio for 𝑘-max search is roughly 𝑂 (ln 𝜃),
while the optimal competitive ratio for 𝑘-min search converges to 𝑂 (

√
𝜃).

4.3 Double Threshold Pause and Resume (DTPR) Algorithm
A fundamental challenge in algorithm design for OPR is how to characterize thresh-
old functions that incorporate the presence of switching costs in their design. Our
key algorithmic insight is to incorporate the switching cost into the threshold func-
tion by defining two distinct threshold functions, where the function to be used for
price admittance changes based on the current state (i.e., whether or not the previous
price was accepted by the algorithm).

To provide intuition for the state-dependence of the threshold function, consider the
setting of OPR-min. At a high level, if the player has not accepted the previous
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Algorithm 8: Double Threshold Pause and Resume for OPR-min (DTPR-min)
Input: threshold values {ℓ𝑖}𝑖∈[1,𝑘] and {𝑢𝑖}𝑖∈[1,𝑘] defined in Eq. (4.5), deadline

𝑇

Output: online decisions {𝑥𝑡}𝑡∈[1,𝑇]
1 initialize: 𝑖 = 1
2 while price 𝑐𝑡 arrives and 𝑖 ≤ 𝑘 do

// close to the deadline 𝑇, we must accept remaining prices
3 if (𝑘 − 𝑖) ≥ (𝑇 − 𝑡) then
4 price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1

// If the previous price was not accepted, use the lower thresholds
5 else if 𝑥𝑡−1 = 0 then
6 if 𝑐𝑡 ≤ ℓ𝑖 then
7 price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1
8 else
9 price 𝑐𝑡 is rejected, set 𝑥𝑡 = 0

// If the previous price was accepted, use the upper thresholds
10 else if 𝑥𝑡−1 = 1 then
11 if 𝑐𝑡 ≤ 𝑢𝑖 then
12 price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1
13 else
14 price 𝑐𝑡 is rejected, set 𝑥𝑡 = 0
15 update 𝑖 = 𝑖 + 𝑥𝑡
16 end

price, they should wait to accept anything until prices are sufficiently low to justify
incurring a cost to switch decisions. On the other hand, if the player has accepted
the previous price, they might be willing to accept a slightly higher price—if they
do not accept this price, they will incur a cost to switch decisions. While this
high-level idea is intuitive, characterizing the form of threshold functions such that
the resulting algorithms are competitive is challenging.

The DTPR-min algorithm Our proposed algorithm, Double Threshold Pause and
Resume (DTPR) for OPR-min is summarized in Algorithm 8. Prior to any prices
arriving online, DTPR-min computes two families of threshold values, {ℓ𝑖}𝑖∈[1,𝑘]
and {𝑢𝑖}𝑖∈[1,𝑘] , where ℓ𝑖 ≤ 𝑢𝑖 ∀𝑖 ∈ [1, 𝑘], whose values are defined as follows.

Definition 4.3.1 (DTPR-min Threshold Values). For each integer 𝑖 on the interval
[1, 𝑘], the following expressions give the corresponding threshold values of 𝑢𝑖 and
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ℓ𝑖 for DTPR-min.

𝑢𝑖 = 𝑈

[
1 −

(
1 − 1

𝛼

) (
1 + 1

𝑘𝛼

) 𝑖−1
]
+ 2𝛽

[(
1
𝑘𝛼
− 1
𝑘
+ 1

) (
1 + 1

𝑘𝛼

) 𝑖−1
]
,

ℓ𝑖 = 𝑢𝑖 − 2𝛽,

(4.5)

where 𝛼 is the competitive ratio of DTPR-min defined in Equation (4.9).

The role of these thresholds is to incorporate the switching cost into the algorithm’s
decisions, and to alter the acceptance criteria of DTPR-min based on the current
state. For OPR-min, the current state is whether the previous item was accepted,
i.e., whether 𝑥𝑡−1 is 0 or 1. As prices are sequentially revealed to the algorithm at
each time 𝑡, the 𝑖th price accepted by DTPR-min will be the first price which is at
most ℓ𝑖 if 𝑥𝑡−1 = 0, or at most 𝑢𝑖 if 𝑥𝑡−1 = 1. We note that 𝐿 does not explicitly
appear in this definition. As 𝑖 approaches 𝑘 , the values of these thresholds decrease,
getting closer to 𝐿 (See Figure 4.1). Note that, as indicated in Line 4, DTPR-min
may be forced to accept the last prices of the sequence, which can be “worse” than
the current threshold values, to satisfy the deadline constraint of OPR. Since 𝑇 (the
deadline) does not appear explicitly in the threshold definition, our analysis can
handle the case where 𝑇 is not known to the online player, and the forced acceptance
is triggered by some external signal.

The DTPR-max algorithm Pseudocode is summarized in the appendix, in Al-
gorithm 9. The logical flow of DTPR-max shares a similar structure to that of
DTPR-min, with a few important differences highlighted here. For OPR-max, the
𝑖th price accepted by DTPR-max will be the first price which is at least 𝑢𝑖 if 𝑥𝑡−1 = 0,
or at least ℓ𝑖 if 𝑥𝑡−1 = 1. Further, the threshold functions are defined as follows.

Definition 4.3.2 (DTPR-max Threshold Values). For each integer 𝑖 on the interval
[1, 𝑘], the following expressions give the corresponding threshold values of ℓ𝑖 and
𝑢𝑖 for DTPR-max.

ℓ𝑖 = 𝐿

[
1 + (𝜔 − 1)

(
1 + 𝜔

𝑘

) 𝑖−1
]
− 2𝛽

[(
𝜔

𝑘
− 1
𝑘
+ 1

) (
1 + 𝜔

𝑘

) 𝑖−1
]
,

𝑢𝑖 = ℓ𝑖 + 2𝛽,
(4.6)

where 𝜔 is the competitive ratio of DTPR-max defined in Equation (4.10).

In Figures 4.1 and 4.2, we plot threshold values for DTPR-min and DTPR-max,
respectively, using example parameters of 𝑈 = 30, 𝐿 = 5, 𝑘 = 10, and 𝛽 = 3.
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2β

Figure 4.1: DTPR-min thresholds ℓ𝑖 and
𝑢𝑖 for 𝑖 ∈ [1, 𝑘] plotted using example
parameters (𝑘 = 10).

2β

Figure 4.2: DTPR-max thresholds 𝑢𝑖 and
ℓ𝑖 for 𝑖 ∈ [1, 𝑘] plotted using example
parameters (𝑘 = 10).

We annotate the difference of 2𝛽 between ℓ𝑖 and 𝑢𝑖; recall that each of these
thresholds corresponds to a current state for DTPR, i.e., whether the previous item
was accepted. Note that the DTPR-min threshold values decrease as 𝑘 gets larger,
while the DTPR-max threshold values increase as 𝑘 gets larger. At a high-level, each
𝑖th threshold “hedges” against a scenario where none of the future prices meet the
current threshold. In this case, even if the algorithm is forced to accept the worst
possible prices at the end of the sequence, we want competitive guarantees against
an offline OPT. Such guarantees rely on the fact that in the worst-case, OPT cannot
accept prices that are all significantly better than DTPR’s 𝑖th “unseen” threshold value
because such prices did not exist in the sequence.

Designing the Double Threshold Values
A key component of the DTPR algorithms for both variants are the thresholds in
Equations (4.5) and (4.6). The key idea is to design the thresholds by incorporating
the switching cost into the balancing rules as a hedge against possible worst-case
scenarios. To accomplish this, we enumerate three difficult cases that DTPR may
encounter. (CASE-1): Consider an input sequence where DTPR does not accept any
prices before it is forced to accept the last 𝑘 prices. Here, the enforced prices in the
worst-case sequence will be 𝑈 for OPR-min and 𝐿 for OPR-max. This sequence
occurs only if no price in the sequence meets the first threshold for acceptance.
On the other hand, in the case that DTPR does accept prices before the end of the
sequence, we can further divide the possible sequences into two extreme cases for
the switching cost it incurs. (CASE-2): In one extreme, the algorithm incurs only
the minimum switching cost of 2𝛽, meaning that 𝑘 contiguous prices are accepted
by DTPR. (CASE-3): In the other extreme, DTPR incurs the maximum switching cost
of 𝑘2𝛽, meaning that 𝑘 non-contiguous prices are accepted. Intuitively, in order
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for DTPR to be competitive in either of these extreme cases, the prices accepted in
the latter case should be sufficiently “good” to absorb the extra switching cost of
(𝑘 − 1)2𝛽.

Given the insight from these cases, we use can use the balancing rule (see Section
4.2) to derive the two threshold families. Let 𝜎 be any arbitrary sequence for
OPR. Given these extreme input sequences, we now concretely show how to write
the balancing rule equations. We consider the cases of DTPR-min and DTPR-max
separately below.

Balancing equations for DTPR-min To balance between possible inputs for OPR-
min, consider the following examples for three different values of 𝑐min(𝜎) > ℓ, ℓ =
{ℓ1, ℓ2, ℓ3}. If 𝑐min(𝜎) > ℓ𝑖, we know that OPT cannot do better than 𝑘ℓ𝑖 + 2𝛽.
Suppose that 𝛼 is the target competitive ratio. Then each term in equation (4.7)
corresponds to a different case (e.g., a possible input), and we solve for the threshold
values by “balancing” between all of these possible cases:

DTPR-min(𝜎)
OPT(𝜎) ≤ 𝑘𝑈 + 2𝛽

𝑘ℓ1 + 2𝛽︸     ︷︷     ︸
𝑐min (𝜎)>ℓ1

=
ℓ1 + (𝑘 − 1)𝑈 + 4𝛽

𝑘ℓ2 + 2𝛽
=
𝑢1 + (𝑘 − 1)𝑈 + 2𝛽

𝑘ℓ2 + 2𝛽︸                                                   ︷︷                                                   ︸
𝑐min (𝜎)>ℓ2

=
ℓ1 + ℓ2 + (𝑘 − 2)𝑈 + 6𝛽

𝑘ℓ3 + 2𝛽
=
ℓ1 + 𝑢2 + (𝑘 − 2)𝑈 + 4𝛽

𝑘ℓ3 + 2𝛽
=
𝑢1 + 𝑢2 + (𝑘 − 2)𝑈 + 2𝛽

𝑘ℓ3 + 2𝛽︸                                                                                                        ︷︷                                                                                                        ︸
𝑐min (𝜎)>ℓ3

= · · · = 𝛼. (4.7)

As an example, consider 𝑐min(𝜎) > ℓ2 and the corresponding cases enumerated
above. Suppose DTPR-min accepts one price before the end of the sequence 𝜎, and
the other prices accepted are all 𝑈. In the first case, where the competitive ratio
is ℓ1+(𝑘−1)𝑈+4𝛽

𝑘ℓ2+2𝛽 , we consider the scenario where DTPR-min switches twice: once to
accept the price ℓ1, and once to accept (𝑘 − 1) prices at the end of the sequence,
incurring switching cost of 4𝛽.

In the second case, where the competitive ratio is 𝑢1+(𝑘−1)𝑈+2𝛽
𝑘ℓ2+2𝛽 , we consider the

hypothetical scenario where DTPR-min only switches once to accept some value 𝑢1

followed by (𝑘 − 1) prices at the end of the sequence, incurring switching cost of
2𝛽. By enumerating cases in this fashion for the other possible values of 𝑐min(𝜎),
we derive a relationship between the lower thresholds ℓ𝑖 and the upper thresholds 𝑢𝑖
in terms of the switching cost.
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Balancing equations for DTPR-max The same idea extends to balance between
possible inputs for OPR-max. Consider the following examples for a few values
of 𝑐max(𝜎). If 𝑐max(𝜎) < 𝑢𝑖, we know that OPT cannot do better than 𝑘𝑢𝑖 − 2𝛽.
Suppose that𝜔 is the target competitive ratio, and we balance between the following
possible cases (e.g., possible inputs):

OPT(𝜎)
DTPR-max(𝜎) ≤

𝑘𝑢1 − 2𝛽
𝑘𝐿 − 2𝛽︸     ︷︷     ︸
𝑐max (𝜎)<𝑢1

=
𝑘𝑢2 − 2𝛽

𝑢1 + (𝑘 − 1)𝐿 − 4𝛽
=

𝑘𝑢2 − 2𝛽
ℓ1 + (𝑘 − 1)𝐿 − 2𝛽︸                                                   ︷︷                                                   ︸

𝑐max (𝜎)<𝑢2

=
𝑘𝑢3 − 2𝛽

𝑢1 + 𝑢2 + (𝑘 − 2)𝐿 − 6𝛽
=

𝑘𝑢3 − 2𝛽
𝑢1 + ℓ2 + (𝑘 − 2)𝐿 − 4𝛽

=
𝑘𝑢3 − 2𝛽

ℓ1 + ℓ2 + (𝑘 − 2)𝐿 − 2𝛽︸                                                                                                       ︷︷                                                                                                       ︸
𝑐max (𝜎)<𝑢3

= · · · = 𝜔. (4.8)

Solving for the threshold values Given the above balancing equations for both the
minimization and maximization variants, the next step is to solve for the unknown
values of ℓ𝑖 and 𝑢𝑖. The following observation summarizes the key insight that
enables this. We show that one can express each ℓ𝑖 in terms of 𝑢𝑖 and 𝛽, which
facilitates the analysis required to solve for thresholds in each balancing equation
(given by Equations (4.7) and (4.8)).

Observation 4.3.3. By letting 𝑢𝑖 = ℓ𝑖 + 2𝛽 ∀𝑖 ∈ [1, 𝑘], we obtain each possible
worst-case permutation of ℓ𝑖 thresholds, 𝑢𝑖 thresholds, and switching cost. Let
𝑦 ∈ [1, 𝑘 − 1] denote the number of switches incurred by DTPR.
For DTPR-min, suppose that 𝑐min(𝜎) > ℓ 𝑗+1. By the definition of DTPR-min, we
know that accepting any 𝑢𝑖 helps avoid a switching cost of +2𝛽 in the worst case.
Thus,

𝑗∑︁
𝑖=0

𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽 = ℓ𝑖 + . . .︸  ︷︷  ︸
𝑦

+ 𝑢𝑖 + . . .︸  ︷︷  ︸
𝑗−𝑦

+(𝑘 − 𝑗)𝑈 + (𝑦 + 1)2𝛽

=

𝑗∑︁
𝑖=0

ℓ𝑖 + (𝑘 − 𝑗)𝑈 + ( 𝑗 + 1)2𝛽.

For DTPR-max, suppose that 𝑐max(𝜎) < 𝑢 𝑗+1. By the definition of DTPR-max, we
know that accepting any ℓ𝑖 helps avoid a switching cost of −2𝛽 in the worst case.
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Thus,

𝑗∑︁
𝑖=0

ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽 = 𝑢𝑖 + . . .︸  ︷︷  ︸
𝑦

+ ℓ𝑖 + . . .︸  ︷︷  ︸
𝑗−𝑦

+(𝑘 − 𝑗)𝐿 − (𝑦 + 1)2𝛽

=

𝑗∑︁
𝑖=0

𝑢𝑖 + (𝑘 − 𝑗)𝐿 − ( 𝑗 + 1)2𝛽.

With the above observation, for DTPR-min, one can substitute 𝑢𝑖 − 2𝛽 for each ℓ𝑖.
By comparing adjacent terms in Equation (4.7), standard algebraic manipulations
give a closed form for each 𝑢𝑖 in terms of 𝑢1. Setting 𝑘𝑈+2𝛽

𝑘 (𝑢1−2𝛽)+2𝛽 = 𝛼, we obtain the
explicit expression for 𝑢1, yielding a closed formula for {𝑢𝑖}𝑖∈[1,𝑘] and {ℓ𝑖}𝑖∈[1,𝑘] in
Equation (4.5). Considering the balancing rule in Equation (4.7) for the case where
𝑐min(𝜎) ≥ ℓ𝑘+1, it follows that ℓ𝑘+1 = 𝐿, and thus 𝑢𝑘+1 = 𝐿 + 2𝛽. By substituting
this value into Definition 4.3.1, we obtain an explicit expression for 𝛼 as shown in
Equation (4.9).

Conversely, for DTPR-max, we substitute ℓ𝑖 +2𝛽 for each 𝑢𝑖. By comparing adjacent
terms in Equation (4.8), standard methods give a closed form for each ℓ𝑖 in terms
of ℓ1. Setting 𝑘 (ℓ1+2𝛽)−2𝛽

𝑘𝐿−2𝛽 = 𝜔, we obtain the explicit expression for ℓ1, yielding
the closed formula for {ℓ𝑖}𝑖∈[1,𝑘] and {𝑢𝑖}𝑖∈[1,𝑘] in Equation (4.6). Considering the
balancing rule in Equation (4.8) for the case where 𝑐max(𝜎) ≤ 𝑢𝑘+1, it follows that
𝑢𝑘+1 = 𝑈, and thus ℓ𝑘+1 = 𝑈 − 2𝛽. By substituting this value into Definition 4.3.2,
we obtain an explicit expression for 𝜔 as shown in Equation (4.10).

4.4 Main Results
We now present competitive results of DTPR for both variants of OPR and discuss
the significance of the results in relation to other algorithms for related problems.
Our results for the competitive ratios of DTPR-min and DTPR-max are summarized
in Theorems 4.4.1 and 4.4.2. We also state the lower bound results for any determin-
istic online algorithms for OPR-min and OPR-max in Theorems 4.4.5 and 4.4.6.
Proofs of the results for DTPR-min and DTPR-max are deferred to Section 4.5 and
Section 4.B, respectively. Formal proofs of lower bound theorems are given in
Section 4.D, and a sketch is shown in Section 4.5. Note that in the competitive
results, 𝑊 (𝑥) denotes the Lambert 𝑊 function, i.e., the inverse of 𝑓 (𝑥) = 𝑥𝑒𝑥 . It
is well-known that 𝑊 (𝑥) behaves like ln(𝑥) for large 𝑥 [172, 173]. We start by
presenting our competitive bounds on DTPR-min and DTPR-max.



139

0
0

U/4

U/4

switching cost

L

~√θ

O(k)

∞

Figure 4.3: DTPR-min: Plotting actual
values of competitive ratio 𝛼 for fixed
𝑘 ≥ 1, fixed 𝑈 > 𝐿, and varying values
for 𝐿 and 𝛽 (switching cost). Color rep-
resents the order of 𝛼 for a given setting
of 𝜃 and 𝛽.
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Figure 4.4: DTPR-max: Plotting actual
values of competitive ratio 𝜔 for fixed
𝑘 ≥ 1, fixed 𝑈 > 𝐿, and varying values
for 𝐿 and 𝛽 (switching cost). Color rep-
resents the order of 𝜔 for a given setting
of 𝜃 and 𝛽.

Theorem 4.4.1. DTPR-min is an 𝛼-competitive deterministic algorithm for
OPR-min, where 𝛼 is the unique positive solution of

𝑈 − 𝐿 − 2𝛽

𝑈 (1 − 1/𝛼) −
(
2𝛽 − 2𝛽

𝑘
+ 2𝛽

𝑘𝛼

) =

(
1 + 1

𝑘𝛼

) 𝑘
. (4.9)

Theorem 4.4.2. DTPR-max is an 𝜔-competitive deterministic algorithm for
OPR-max, where 𝜔 is the unique positive solution of

𝑈 − 𝐿 − 2𝛽

𝐿 (𝜔 − 1) − 2𝛽
(
1 − 1

𝑘
+ 𝜔

𝑘

) =

(
1 + 𝜔

𝑘

) 𝑘
. (4.10)

These theorems present upper bounds on the competitive ratios, showing their depen-
dence on the problem parameters. To investigate the behavior of these competitive
ratios, in Figures 4.3 and 4.4, we show the competitive ratios of both algorithms as
problem parameters are varied. More specifically, in Figure 4.3, we visualize 𝛼 as
a function of 𝛽 and 𝐿, where 𝑘 and 𝑈 are fixed. The color (shown as an annotated
color bar on the right-hand side of the plot) represents the order of 𝛼. If 𝛽 > 0
and 𝐿 → 0, Figure 4.3 shows that 𝛼 is roughly 𝑂 (𝑘), which we discuss further in
Corollary 4.4.3(a). In Figure 4.4, we visualize 𝜔 as a function of 𝛽 and 𝐿, where 𝑘
and 𝑈 are fixed. The color represents the order of 𝜔. In the dark blue region of the
plot, Figure 4.4 shows that 𝜔 → ∞ when 𝑏 =

2𝛽
𝐿
→ 𝑘 , which provides insight into

the extreme case for switching cost when 𝛽 ≳ 𝑘𝐿
2 .

To obtain additional insight into the form of the competitive ratios in Theorems
4.4.1 and 4.4.2, we present the following corollaries for two asymptotic regimes of
interest: REGIME-1 captures the order of the competitive ratio when 𝑘 is fixed and
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𝛼 or 𝜔 are sufficiently large, and REGIME-2 captures the order of the competitive
ratio when 𝑘 →∞.

Corollary 4.4.3. (a) For REGIME-1, with fixed 𝑘 ≥ 1 and 𝛽 ∈ (0, 𝑈−𝐿2 ), the
competitive ratio of DTPR-min is

𝛼 ∼
𝑘𝛽

𝑘𝐿 + 2𝛽
+

√︄
𝑘2𝐿𝑈 + 2𝑘𝐿𝛽 + 2𝑘𝑈𝛽 + 4𝛽2 + 𝑘2𝛽2

𝑘2𝐿2 + 4𝑘𝐿𝛽 + 4𝛽2 , and 𝛼 ∼ 𝑂 (𝑘) for 𝐿 → 0.

(b) Furthermore, for REGIME-2, with 𝑘 → ∞ and 𝑐 =
2𝛽
𝑈
, 𝑐 ∈ (0, 𝑈−𝐿

𝑈
), the

competitive ratio of DTPR-min is

𝛼 ∼

𝑊
©«
(
𝑐 + 1

𝜃
− 1

)
𝑒𝑐

𝑒

ª®®¬ − 𝑐 + 1


−1

.

Corollary 4.4.4. (a) For REGIME-1, with fixed 𝑘 ≥ 1 and 𝑏 =
2𝛽
𝐿
, 𝑏 ∈ (0, 𝑘), the

competitive ratio of DTPR-max is

𝜔 ∼ 𝑂

(
𝑘+1

√︂
𝑘 𝑘

𝑘𝜃

𝑘 − 𝑏

)
,

and (b) for REGIME-2, with 𝑘 →∞ and 𝑏 =
2𝛽
𝐿
, 𝑏 ∈ (0, 𝑘), the competitive ratio of

DTPR-max is
𝜔 ∼ 𝑊

(
𝜃 − 1 − 𝑏
𝑒1+𝑏

)
+ 1 + 𝑏.

Corollary 4.4.3(a) contextualizes the behavior of 𝛼 (the competitive ratio of
DTPR-min) in the most relevant OPR-min setting (when 𝛽 ∈ (0, 𝑈−𝐿2 )). Note
that in this minimization setting, as 𝛽 grows, the competitive ratio improves. Let us
also briefly discuss the other cases for the switching cost 𝛽, and why this interval
makes sense. When 𝛽 > 𝑈−𝐿

2 , the switching cost is large enough such that OPT only
incurs a switching cost of 2𝛽. In this regime, 𝛼 does not fully capture the competitive
ratio of DTPR-min, since every value in the threshold family {𝑢𝑖}𝑖∈[1,𝑘] is at least
𝑈; in other words, whenever the algorithm begins accepting prices, it will accept 𝑘
prices in a single continuous segment, incurring minimal switching cost of 2𝛽. As
𝛽 → ∞, the competitive ratio of DTPR-min approaches 1. This theoretical result
corresponds nicely with the empirical observation in [158] that a large switching
overhead can nullify carbon emission reductions from temporal shifting if the job is
interrupted frequently.
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Conversely, Corollary 4.4.4(a) contextualizes the behavior of 𝜔 in the most relevant
OPR-max setting (when 𝛽 ∈ (0, 𝑘𝐿2 )), but we also discuss the other cases for the
switching cost 𝛽, and why this interval makes sense. When 𝛽 ≥ 𝑘𝐿

2 , the switching
cost is too large, and the competitive ratio may become unbounded. Note that this
is shown explicitly in Figure 4.4. Consider an adversarial sequence which forces
any OPR-max algorithm to accept 𝑘 prices with value 𝐿 at the end of the sequence.
On such a sequence, even a player which incurs the minimum switching cost of 2𝛽
achieves zero or negative profit of 𝑘𝐿 − 2𝛽 ≤ 0, and this is not well-defined.

Next, to begin to investigate the tightness of Theorems 4.4.1 and 4.4.2, it is interesting
to consider special cases that correspond to models studied in previous work. In
particular, when 𝛽 = 0, i.e., there is no switching cost, OPR degenerates to the
𝑘-search problem [79]. For fixed 𝑘 ≥ 1 and 𝜃 → ∞, the optimal competitive ratios
shown by [79] are

√︁
𝜃/2 for 𝑘-min, and 𝑘+1√

𝑘 𝑘𝜃 for 𝑘-max (see Section 4.2).

Both versions of DTPR exactly recover the optimal 𝑘-search algorithms [79].2 Fig-
ure 4.3 shows that if 𝛽 = 0 and 𝐿 → 0, then 𝛼 → ∞, which matches the 𝑘-min
result of

√︁
𝜃/2 ∼ ∞. Similarly, Figure 4.4 shows that if 𝛽 = 0 and 𝐿 → 0, then

𝜔→∞, which matches the 𝑘-max result of 𝑘+1√
𝑘 𝑘𝜃 ∼ ∞.

More generally, one can ask if the competitive ratios of DTPR can be improved
upon by other online algorithms outside of the special case of 𝑘-search. Our next
set of results highlights that no improvement is possible, i.e., that DTPR-min and
DTPR-max maintain the optimal competitive ratios possible for any deterministic
online algorithm for OPR.

Theorem 4.4.5. Let 𝑘 ≥ 1, 𝜃 ≥ 1, and 𝛽 ∈ (0, 𝑈−𝐿2 ). Then 𝛼 given by Equation (4.9)
is the best competitive ratio that a deterministic online algorithm for OPR-min can
achieve.

Theorem 4.4.6. Let 𝑘 ≥ 1, 𝜃 ≥ 1, and 𝛽 ∈ (0, 𝑘𝐿2 ). Then𝜔 given by Equation (4.10)
is the best competitive ratio that a deterministic online algorithm for OPR-max can
achieve.

2To see this, note that by eliminating all 𝛽 terms from Equations (4.9) and (4.10), we exactly
recover Equations (4.3) and (4.4), which are the definitions of the 𝑘-search algorithms. When
𝜃 → ∞ as 𝐿 → 0, DTPR-min and DTPR-max match each 𝑘-search result exactly when 𝛽 = 0. In
Corollaries 4.4.3(b) and 4.4.4(b), DTPR-min and DTPR-max also match each 𝑘 search result exactly
when 𝑘 →∞ and 𝛽 = 0. (See Sec. 4.2)
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By combining Theorems 4.4.1 and 4.4.2 with Theorems 4.4.5 and 4.4.6, these
results imply that the competitive ratios of DTPR-min and DTPR-max are optimal
for OPR-min and OPR-max.

Finally, it is interesting to contrast the upper and lower bounds for OPR with those
for 𝑘-search, since the contrast highlights the impact of switching costs. In OPR-
min, when 𝛽 > 0, we find that the DTPR-min competitive results improve on optimal
results for 𝑘-min search (where 𝛽 = 0 is assumed), particularly in the case where
𝐿 approaches 0 (i.e., 𝜃 → ∞). Since Theorem 4.4.5 implies that DTPR-min is
optimal, this shows that the addition of switching cost in OPR-min enables an
online algorithm to achieve a better competitive ratio compared to 𝑘-min search,
which is a surprising result. In contrast, for OPR-max with 𝛽 > 0, DTPR-max’s
competitive bounds are worse than existing results for 𝑘-max search, particularly for
large 𝛽. Since Theorem 4.4.6 implies that DTPR-max is optimal, this suggests that
OPR-max is fundamentally a more difficult problem compared to 𝑘-max search.

We note that although the lower bounds shown in Theorems 4.4.5 and 4.4.6 specif-
ically apply to deterministic algorithms, there are lower bounds in the literature for
randomized 𝑘-search [79]. The randomized bound for 𝑘-min search are not an order-
improvement over the deterministic lower bound, while the randomized results for
𝑘-max search improve the lower bound to Ω(ln 𝜃). However, in the regimes of 𝑘
which are interesting for applications (where 𝑘 is sufficiently large), there will be a
small difference between the deterministic upper bound and the randomized lower
bound in practice. Combined, these results for 𝑘-search suggest that randomization
similarly may not yield large improvements in the OPR setting. Exploring this
dynamic further for OPR is an interesting direction for future work.

4.5 Proofs
We now prove the results described in the previous section. In Section 4.5, we
prove the DTPR-min results presented in Theorem 4.4.1 and Corollary 4.4.3. In
Section 4.5, we provide a proof sketch for the lower bound results in Theorems 4.4.5
and 4.4.6, and defer the formal proofs to Section 4.D. The competitive results for
DTPR-max in Theorem 4.4.2 and Corollary 4.4.4 are deferred to Section 4.B.

Competitive Results for DTPR-min
We begin by proving Theorem 4.4.1 and Corollary 4.4.3. The key novelty in the
proof of the main competitive results (Theorems 4.4.1 and 4.4.2) lies in our effort
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to derive two threshold functions and balance the competitive ratio in several worst-
case instances with respect to these thresholds, as outlined in Section 4.3.

Proof of Theorem 4.4.1. For 0 ≤ 𝑗 ≤ 𝑘 , let S 𝑗 ⊆ S be the sets of OPR-min price
sequences for which DTPR-min accepts exactly 𝑗 prices (excluding the 𝑘 − 𝑗 prices
it is forced to accept at the end of the sequence). Then, all of the possible price
sequences for OPR-min are represented by S =

⋃𝑘
𝑗=0 S 𝑗 . Also, recall that by

definition, ℓ𝑘+1 = 𝐿. Let 𝜖 > 0 be a fixed constant, and define the following two
price sequences 𝜎𝑗 and 𝜌 𝑗 :

∀ 𝑗 ∈ [2, 𝑘] : 𝜎𝑗 = ℓ1, 𝑢2, . . . , 𝑢 𝑗 ,𝑈, ℓ 𝑗+1 + 𝜖, . . . , ℓ 𝑗+1 + 𝜖︸                     ︷︷                     ︸
𝑘

,𝑈,𝑈, . . . ,𝑈︸         ︷︷         ︸
𝑘

.

∀ 𝑗 ∈ [2, 𝑘] : 𝜌 𝑗 = ℓ1,𝑈, ℓ2,𝑈, . . . ,𝑈, ℓ 𝑗 ,𝑈, ℓ 𝑗+1 + 𝜖, . . . , ℓ 𝑗+1 + 𝜖︸                     ︷︷                     ︸
𝑘

,𝑈,𝑈, . . . ,𝑈︸         ︷︷         ︸
𝑘

.

There are two special cases for 𝑗 = 0 and 𝑗 = 1. For 𝑗 = 0, we have that 𝜎0 = 𝜌0,
and this sequence simply consists of ℓ1+ 𝜖 repeated 𝑘 times, followed by𝑈 repeated
𝑘 times. For 𝑗 = 1, we also have that 𝜎1 = 𝜌1, and this sequence consists of one
price with value ℓ1 and one price with value𝑈, followed by ℓ2 + 𝜖 repeated 𝑘 times
and𝑈 repeated 𝑘 times.

Observe that as 𝜖 → 0, 𝜎𝑗 and 𝜌 𝑗 are sequences yielding the worst-case ratios in
S 𝑗 , as DTPR-min is forced to accept (𝑘 − 𝑗) worst-case 𝑈 values at the end of the
sequence, and each accepted value is exactly equal to the corresponding threshold.

Note that𝜎𝑗 and 𝜌 𝑗 also represent two extreme possibilities for the additive switching
cost. In 𝜎𝑗 , DTPR-min only switches twice, but it mostly accepts values 𝑢𝑖. In 𝜌 𝑗 ,
DTPR-min must switch 𝑗 + 1 times because there are many intermediate 𝑈 values,
but it only accepts values ℓ𝑖.

In the worst case, we have

DTPR-min(𝜎𝑗 )
OPT(𝜎𝑗 )

=
DTPR-min(𝜌 𝑗 )
OPT(𝜌 𝑗 )

.

Also, the optimal solutions for both sequences are lower bounded by the same
quantity: 𝑘𝑐min(𝜎𝑗 ) + 2𝛽 = 𝑘𝑐min(𝜌 𝑗 ) + 2𝛽. For any sequence 𝑠 in S 𝑗 , we have that
𝑐min(𝑠) > ℓ 𝑗+1, so OPT(𝜌 𝑗 ) = OPT(𝜎𝑗 ) ≤ 𝑘ℓ 𝑗+1 + 2𝛽.
By definition of the threshold families {ℓ𝑖}𝑖∈[1,𝑘] and {𝑢𝑖}𝑖∈[1,𝑘] , we know that



144∑ 𝑗

𝑖=1 ℓ𝑖 + 𝑗2𝛽 =
∑ 𝑗

𝑖=1 𝑢𝑖 for any value 𝑗 ≥ 2:

DTPR-min(𝜌 𝑗 ) =
(
𝑗∑︁
𝑖=1

ℓ𝑖 + (𝑘 − 𝑗)𝑈 + ( 𝑗 + 1)2𝛽
)

=

(
ℓ1 +

𝑗∑︁
𝑖=2

𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 4𝛽

)
= DTPR-min(𝜎𝑗 ).

Note that whenever 𝑗 < 2, we have that 𝜎0 = 𝜌0, and 𝜎1 = 𝜌1. Thus,
DTPR-min(𝜌 𝑗 ) = DTPR-min(𝜎𝑗 ) holds for any value of 𝑗 . By definition of ℓ1,
we simplify ℓ1 +

∑ 𝑗

𝑖=2 𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 4𝛽 to
∑ 𝑗

𝑖=1 𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽. Then, for any
sequence 𝑠 ∈ S 𝑗 , we have the following:

DTPR-min(𝑠)
OPT(𝑠) ≤

DTPR-min(𝜎𝑗 )
OPT(𝜎𝑗 )

=
DTPR-min(𝜌 𝑗 )
OPT(𝜌 𝑗 )

≤
∑ 𝑗

𝑖=1 𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽
𝑘ℓ 𝑗+1 + 2𝛽

. (4.11)

Before proceeding to the next step, we use an intermediate result stated in the
following lemma with a proof given in Section 4.C.

Lemma 4.5.1. For any 0 ≤ 𝑗 ≤ 𝑘 , by definition of {ℓ𝑖}𝑖∈[1,𝑘] and {𝑢𝑖}𝑖∈[1,𝑘] ,

𝑗∑︁
𝑖=1

𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽 ≤ 𝛼 · (𝑘ℓ 𝑗+1 + 2𝛽).

For 𝜖 → 0, the competitive ratio DTPR-min/OPT is exactly 𝛼:

∀0 ≤ 𝑗 ≤ 𝑘 :
DTPR-min(𝜎𝑗 )
OPT(𝜎𝑗 )

=

∑ 𝑗

𝑖=1 𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽
𝑘ℓ 𝑗+1 + 2𝛽

= 𝛼,

and thus for any sequence 𝑠 ∈ S,

∀𝑠 ∈ S :
DTPR-min(𝑠)
𝑘𝑐min(𝑠) + 2𝛽

≤ 𝛼.

Since OPT(𝑠) ≥ 𝑘𝑐min(𝑠) + 2𝛽 for any sequence 𝑠, this implies that DTPR-min is
𝛼-competitive.
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Proof of Corollary 4.4.3. To show part (a) for REGIME-1, with fixed 𝑘 ≥ 1, observe
that we can expand the right-hand side of Equation (4.9) using the binomial theorem
to obtain the following:

𝑈 − 𝐿 − 2𝛽

𝑈

(
1 − 1

𝛼

)
− 2𝛽

(
1 − 1

𝑘
+ 1

𝑘𝛼

) = 1 + 1
𝛼
+ Θ

(
𝛼−2

)
.

Next, observe that 𝛼★ solving the following expression satisfies 𝛼★ ≥ 𝛼 ∀𝑘 : 𝑘 ≥ 1,
(i.e., 𝛼★ is an upper bound of 𝛼):

𝑈 − 𝐿 − 2𝛽

𝑈

(
1 − 1

𝛼★

)
− 2𝛽

(
1 − 1

𝑘
+ 1

𝑘𝛼★

) = 1 + 1
𝛼★
.

By solving the above for 𝛼★, we obtain

𝛼 ∼ 𝛼★ =
𝑘𝛽

𝑘𝐿 + 2𝛽
+

√︄
𝑘2𝐿𝑈 + 2𝑘𝐿𝛽 + 2𝑘𝑈𝛽 + 4𝛽2 + 𝑘2𝛽2

𝑘2𝐿2 + 4𝑘𝐿𝛽 + 4𝛽2 .

Last, note that as 𝐿 → 0, we obtain the following result:

𝛼 ∼
𝑘

2
+

√︄
𝑘𝑈

2𝛽
+ 1 + 𝑘

2

4
≈ 𝑂 (𝑘) .

To show part (b) for REGIME-2, we first observe that the right-hand side of Equa-

tion 4.9 can be approximated as
(
1 + 1

𝑘𝛼

) 𝑘
≈ 𝑒1/𝛼 when 𝑘 → ∞. Then by taking

limits on both sides, we obtain the following:
𝑈 − 𝐿 − 2𝛽

𝑈

(
1 − 1

𝛼

)
− 2𝛽 (1)

= 𝑒1/𝛼 .

For simplification purposes, let 𝛽 = 𝑐𝑈/2, where 𝑐 is a small constant on the interval(
0, 𝑈−𝐿

𝑈

)
. We then obtain the following:

𝑈 − 𝐿 − 𝑐𝑈

𝑈

(
1 − 1

𝛼

)
− 𝑐𝑈

= 𝑒1/𝛼 =⇒ 𝐿/𝑈 + 𝑐 − 1 =

(
1
𝛼
+ 𝑐 − 1

)
𝑒1/𝛼 .

By definition of Lambert 𝑊 function, solving this equation for 𝛼 obtains the result
in Corollary 4.4.3(b).

Lower Bound Analysis: Proof of Theorem 4.4.5 (OPR-min Lower Bound)
In Theorems 4.4.5 and 4.4.6, we state that any deterministic strategy achieves a
competitive ratio of at least 𝛼 for OPR-min, and at least 𝜔 for OPR-max. In this
section, we formalize the lower bound construction which proves Theorem 4.4.5.
A similar construction is used to prove Theorem 4.4.6 in Section 4.D. These two
results jointly imply that our proposed DTPR algorithms are both optimal.
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Proof of Theorem 4.4.5. Let ALG be a deterministic online algorithm for OPR-min,
and suppose that the adversary uses the price sequence ℓ1, . . . , ℓ𝑘 , which is exactly
the sequence defined by (4.5). ℓ1 is presented to ALG, at most 𝑘 times or until ALG
accepts it. If ALG never accepts ℓ1, the remainder of the sequence is all 𝑈, and ALG
achieves a competitive ratio of 𝑘𝑈+2𝛽

𝑘ℓ1+2𝛽 = 𝛼, as defined in (4.7).

If ALG accepts ℓ1, the next price presented is 𝑈, repeated at most 𝑘 times or until
ALG switches to reject 𝑈. After ALG has switched, ℓ2 is presented to ALG, at most 𝑘
times or until ALG accepts it. Again, if ALG never accepts ℓ2, the remainder of the
sequence is all𝑈, and ALG achieves a competitive ratio of at least ℓ1+(𝑘−1)𝑈+4𝛽

𝑘ℓ2+2𝛽 = 𝛼,
as defined in (4.7).

As the sequence continues, whenever ALG does not accept some ℓ𝑖 after it is presented
𝑘 times, the adversary increases the price to 𝑈 for the remainder of the sequence.
Otherwise, if ALG accepts 𝑘 prices before the end of the sequence, the adversary
concludes by presenting 𝐿 at least 𝑘 times.

Observe that any ALG which does not immediately reject the first 𝑈 presented to it
after accepting some ℓ𝑖 obtains a competitive ratio strictly worse than 𝛼. To illustrate
this, suppose ALG has just accepted ℓ1, incurring a cost of ℓ1+𝛽 so far. The adversary
begins to present𝑈, and ALG accepts 𝑦 ≤ (𝑘 − 1) of these𝑈 prices before switching
away. If 𝑦 = (𝑘 − 1), ALG will accept 𝑘 prices before the end of the sequence and
achieve a competitive ratio of ℓ1+(𝑘−1)𝑈+2𝛽

𝑘𝐿+2𝛽 > 𝛼. Otherwise, if 𝑦 < (𝑘 − 1), the cost
incurred by ALG so far is at least ℓ1+2𝛽+ 𝑦𝑈, while the cost incurred by ALG if it had
immediately switched away (𝑦 = 0) would be ℓ1 + 2𝛽—since any price which might
be accepted by ALG in the future should be ≤ 𝑈, the latter case strictly improves the
competitive ratio of ALG.

Assuming that ALG does immediately reject any 𝑈 presented to it, and that ALG
accepts some prices before the end of the sequence, the competitive ratio attained
by ALG is at least

∑ 𝑗

𝑖=1 ℓ𝑖+( 𝑗+1)2𝛽+(𝑘− 𝑗)𝑈
𝑘ℓ 𝑗+1+2𝛽 = 𝛼, as defined in (4.7).

Similarly, if ALG accepts 𝑘 prices before the end of the sequence, the competitive
ratio attained by ALG is at least

∑𝑘
𝑖=1 ℓ𝑖+𝑘2𝛽
𝑘𝐿+2𝛽 = 𝛼, as defined in (4.7).

Since any arbitrary deterministic online algorithm ALG cannot achieve a competitive
ratio better than 𝛼 playing against this adaptive adversary, our proposed algorithm
DTPR-min is optimal.
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4.6 Case Study: Carbon-Aware Temporal Workload Shifting
We now present experimental results for the DTPR algorithms in the context of the
carbon-aware temporal workload shifting problem. We evaluate DTPR-min (and
DTPR-max in Section 4.A) against existing algorithms from the literature that have
been adapted for OPR.

Experimental Setup
We consider a carbon-aware load shifting system that operates on a hypothetical
datacenter. An algorithm is given a deferrable and interruptible job that takes 𝑘 time
slots to complete, along with a deadline 𝑇 ≥ 𝑘 , such that the job must be completed
at most 𝑇 slots after its arrival. The objective is to selectively run units of the job
such that the total carbon emissions are minimized while still completing the job
before its deadline.

For the minimization variant (OPR-min) of the experiments, we consider carbon
emissions intensities, as the price values. At each timestep 𝑡, the electricity supply
has a carbon intensity 𝑐𝑡 , i.e., if the job is being processed during the timestep 𝑡
(𝑥𝑡 = 1), the datacenter’s carbon emissions during that timestep are proportional
to 𝑐𝑡 . If the job is not being processed during the timestep 𝑡 (𝑥𝑡 = 0), we assume
for simplicity that carbon emissions in the idle state are negligible and essentially
0. To model the combined computational overhead of interrupting, checkpointing,
and restarting the job, the algorithm incurs a fixed switching cost of 𝛽 whenever
𝑥𝑡−1 ≠ 𝑥𝑡 , whose values are selected relative to the price values.

Carbon data traces We use real-world carbon traces from Electricity Maps [171],
which provide time-series information about the average carbon emissions intensity
of the electric grid. We use traces from three different regions: the Pacific Northwest
of the U.S., New Zealand, and Ontario, Canada. The data is provided at an hourly
granularity and includes the current average carbon emissions intensity in grams of
CO2 equivalent per kilowatt-hour (gCO2eq/kWh), and the percentage of electricity
being supplied from carbon-free sources. In Figure 4.9 (in Section 4.A), we plot
three representative actual traces for carbon intensity over time for a 96-hour period
in each region.

Parameter settings We test for time horizons (𝑇) of 48 hours, 72 hours, and 96
hours. The chosen time horizon represents the time at which the job with length 𝑘
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Table 4.2: Summary of carbon trace data sets

Location Pacific NW, U.S. New Zealand Ontario, Canada
Number of Data Points 10,144 1,324 17,898
Max. Carbon Intensity (𝑈) 648 gCO2eq/kWh 165 gCO2eq/kWh 181 gCO2eq/kWh
Min. Carbon Intensity (𝐿) 18 gCO2eq/kWh 54 gCO2eq/kWh 15 gCO2eq/kWh
Duration (mm/dd/yy) 04/20/22 - 12/06/22 10/19/21 - 11/16/21 10/19/21 - 12/06/22

must be completed. As is given in the carbon trace data, we consider time slots of
one hour.

The online algorithms we use in experiments take 𝐿 and 𝑈 as parameters for their
threshold functions. To set these parameters, we examine the entire carbon trace for
the current location. For the Pacific NW trace and the Ontario trace, these values
represent lower and upper bounds of the carbon intensity values for a full year. For
the New Zealand trace, these values are a lower and upper bound for the values
during a month of data, which is reflected by a smaller fluctuation ratio. We set 𝐿
and 𝑈 to be the minimum and maximum observed carbon intensity over the entire
trace.

To generate each input sequence, a contiguous segment of size𝑇 is randomly sampled
from the given carbon trace. In a few experiments, we simulate greater volatility
over time by “scaling up” each price’s deviation from the mean. First, we compute
the average value over the entire sequence. Next, we compute the difference between
each price and this average. Each of these differences is scaled by a noise factor of
𝑚 ≥ 1. Finally, new carbon values are computed by summing each scaled difference
with the average. If 𝑚 = 1, we recover the same sequence, and if 𝑚 > 1, any
deviation from the mean is proportionately amplified. Any values which become
negative after applying this transformation are truncated to 0. This technique allows
us to evaluate algorithms under different levels of volatility. As we are in the regime
where 𝐿 = 0, none of the other online algorithms considered have competitive
guarantees, since their competitive ratios become unbounded when 𝐿 → 0. Instead,
our DTPR algorithm maintains its optimal bound defined in (4.9) and (4.10) due to
the presence of switching cost 𝛽 in the competitive bounds. Performance in the
presence of greater carbon volatility is important, as on-site renewable generation is
seeing greater adoption as a supplementary power source for datacenters [155, 156].

Benchmark algorithms To evaluate the performance of DTPR, we use a dynamic
programming approach to calculate the offline optimal solution for each given se-
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Table 4.3: Summary of algorithms tested in our OPR experiments

Algorithm Carbon-aware Switching-aware Description
OPT (offline) YES YES Optimal offline solution

Carbon-Agnostic NO YES Runs job in the first 𝑘 time slots

Const. Threshold YES NO
Runs job if carbon meets thresh-
old
√
𝑈𝐿 [78]

𝑘-search YES NO
Runs 𝑖th slot of job if carbon
meets threshold Φ𝑖 [79]

DTPR YES YES
This work (algorithms proposed
in Section 4.3)

quence and objective, which allows us to report the empirical competitive ratio
for each tested algorithm. We compare DTPR against two categories of benchmark
algorithms, which are summarized in Table 4.3.

The first category of benchmark algorithms is carbon-agnostic algorithms, which
run the jobs during the first 𝑘 time slots in order, i.e., accepting prices 𝑐1, . . . , 𝑐𝑘 .
This approach incurs the minimal switching cost of 2𝛽, because it does not interrupt
the job while it is being processed. The carbon-agnostic approach simulates the
behavior of a scheduler that runs the job to completion as soon as it is submitted,
without any focus on reducing carbon emissions. Note that the performance of this
approach significantly varies based on the randomly selected sequence, since it will
perform well if low-carbon electricity is available in the first few slots, and will
perform poorly if the first few slots are high-carbon.

We also compare DTPR against switching-cost-agnostic algorithms, which only con-
sider carbon cost. We have two algorithms of this type, each drawing from existing
online search methods in the literature. Although they do not consider the switching
cost in their design, they still incur a switching cost whenever their decision in
adjacent time slots differs.

The first such algorithm is a constant threshold algorithm, which uses the
√
𝑈𝐿

threshold value first presented for online search in [78]. In our minimization ex-
periments, this algorithm runs the workload during the first 𝑘 time slots where the
carbon intensity is at most

√
𝑈𝐿.

The other switching-cost-agnostic algorithm tested is the 𝑘-search algorithm shown
by [79] and described in Section 4.2. The 𝑘-min search algorithm chooses to run
the 𝑖th hour of the job during the first time slot where the carbon intensity is at most
Φ𝑖.
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(a) Ontario, Canada (b) U.S. Pacific Northwest (c) New Zealand

Figure 4.5: Experiments for three distinct time horizons, where 𝑇 ∈ {48, 72, 96}.
(a): Ontario, Canada carbon trace, with 𝜃 = 12.06̄. (b): U.S. Pacific Northwest
carbon trace, with 𝜃 = 36. (c): New Zealand carbon trace, with 𝜃 = 3.05̄.

Experimental Results
We now present our experimental results. Our focus is on the empirical compet-
itive ratio (a lower competitive ratio is better). We report the performance of all
algorithms for each experimental setting, in each tested region. Throughout the
minimization experiments, we observe that DTPR-min outperforms the benchmark
algorithms. The 95th percentile worst-case empirical competitive ratio achieved by
DTPR-min is a 48.2% improvement on the carbon-agnostic method, a 15.6% im-
provement on the 𝑘-min search algorithm, and a 14.4% improvement on the constant
threshold algorithm.

In Figure 4.5, we show results for three different values of horizon 𝑇 in each carbon
trace, with fixed 𝛽 ≈ 𝑈/20, fixed 𝑘 = ⌈𝑇/6⌉, and no added volatility. Although our
experiments test three distinct values for 𝑇 , we later observe that the ratio between 𝑘
and 𝑇 is the primary factor that changes the performance of the algorithms we test;
in this figure, DTPR and the benchmark algorithms compare very similarly on the
same carbon trace for different 𝑇 values. As such, we set 𝑇 = 48 in the rest of the
experiments in this section for brevity. This represents a time horizon of 48 hours.

In the first experiment, we test all algorithms for different job lengths 𝑘 in the
range from 4 hours to 𝑇/2 (24 hours). The switching cost 𝛽 is non-zero and fixed
to ≈ 𝑈/20, and no volatility is added to the carbon trace. By testing different
values for 𝑘 , this experiment tests different ratios between the workload length and
the horizon provided to the algorithm. In Figures 4.6(a), 4.7(a), and 4.8(a), we
show that the competitive ratio of DTPR-min outperforms others, and it compares
particularly favorably for short job lengths. Averaging over all regions and job
lengths, the competitive ratio achieved by DTPR-min is a 11.4% improvement on
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Figure 4.6: Experiments on Ontario, Canada carbon trace, with 𝜃 = 12.06̄, and
𝑇 = 48. (a): Changing job length 𝑘 w.r.t. time horizon 𝑇 (𝑥-axis), vs. competitive
ratio. (b): Changing switching cost 𝛽 w.r.t. 𝑈 (𝑥-axis), vs. competitive ratio. (c):
Different volatility levels w.r.t. 𝑈 (𝑥-axis), vs. competitive ratio. (d): Cumulative
distribution function of competitive ratios.

the carbon-agnostic method, a 14.0% improvement on the 𝑘-min search algorithm,
and a 5.5% improvement on the constant threshold algorithm.

In the second experiment, we test all algorithms for different switching costs 𝛽 in the
range from 0 to 𝑈/5. The job length 𝑘 is set to 10 hours, and no volatility is added
to the carbon trace. By testing different values for 𝛽, this experiment tests how
an increasing switching cost impacts the performance of DTPR-min with respect
to other algorithms which do not explicitly consider the switching cost. In Figures
4.6(b), 4.7(b), and 4.8(b), we show that the observed competitive ratio of DTPR-min
outperforms the benchmark algorithms for most values of 𝛽 in all regions. Un-
surprisingly, the carbon-agnostic technique (which incurs minimal switching cost)
performs better as 𝛽 grows. While the constant threshold algorithm has relatively
consistent performance, the 𝑘-min search algorithm performs noticeably worse as 𝛽
grows. Averaging over all regions and switching cost values, the competitive ratio
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Figure 4.7: Experiments on U.S. Pacific Northwest carbon trace, with 𝜃 = 36, and
𝑇 = 48. (a): Changing job length 𝑘 w.r.t. time horizon 𝑇 (𝑥-axis), vs. competitive
ratio. (b): Changing switching cost 𝛽 w.r.t. 𝑈 (𝑥-axis), vs. competitive ratio. (c):
Different volatility levels w.r.t. 𝑈 (𝑥-axis), vs. competitive ratio. (d): Cumulative
distribution function of competitive ratios.

achieved by DTPR-min is a 18.2% improvement on the carbon-agnostic method, a
8.9% improvement on the 𝑘-min search algorithm, and a 4.1% improvement on the
constant threshold algorithm.

In the final experiment, we test all algorithms on sequences with different volatility.
The job length 𝑘 and switching cost 𝛽 are both fixed as previously. We add volatility
by setting a noise factor from the range 1.0 to 3.0. By testing different values for
this volatility, this experiment tests how each algorithm handles larger fluctuations
in the carbon intensity of consecutive timesteps. In Figures 4.6(c), 4.7(c), and
4.8(c), we show that the observed competitive ratio of DTPR-min outperforms the
benchmark algorithms for all noise factors in all regions. Intuitively, higher volatility
values cause the online algorithms to perform worse in general. Averaging over all
regions and noise factors, the competitive ratio achieved by DTPR-min is a 53.6%
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(a) Changing 𝑘 (b) Changing 𝛽

(c) Changing volatility (d) CDF

Figure 4.8: Experiments on New Zealand carbon trace, with 𝜃 = 3.05̄, and 𝑇 = 48.
Note: the line for Carbon-Agnostic overlaps the line for Constant Threshold in some
of the above plots. (a): Changing job length 𝑘 w.r.t. time horizon 𝑇 (𝑥-axis), vs.
competitive ratio. (b): Changing switching cost 𝛽 w.r.t. 𝑈 (𝑥-axis), vs. competitive
ratio. (c): Different volatility levels w.r.t. 𝑈 (𝑥-axis), vs. competitive ratio. (d):
Cumulative distribution function of competitive ratios.

improvement on the carbon-agnostic method, a 13.5% improvement on the 𝑘-min
search algorithm, and a 14.3% improvement on the constant threshold algorithm.

By averaging over all experiments for a given region, we obtain the cumulative
distribution function plot for each algorithm’s competitive ratio in Figures 4.6(d),
4.7(d), and 4.8(d). Compared to the carbon-agnostic, constant threshold, and 𝑘-
min search algorithms, DTPR-min achieves a lower average empirical competitive
ratio distribution for all tested regions. Across all regions at the 95th percentile,
DTPR-min achieves a worst-case empirical competitive ratio of 1.40. This represents
a 48.2% improvement over the carbon-agnostic algorithm, and improvements of
15.6% and 14.4% over the 𝑘-min search and constant threshold switching-cost-
agnostic algorithms, respectively.
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4.7 Related Work
This chapter contributes directly to three lines of work: (i) work on online search and
related problems, e.g., 𝑘-search, one-way trading, and online knapsack; (ii) work on
online optimization problems with switching costs, e.g., metrical task systems and
convex function chasing; and (iii) work on carbon-aware load shifting. We describe
the relationship to each below.

Online Search. The OPR problem is related to the online 𝑘-search problem [79,
96], as discussed in the introduction and Section 4.2. It also has several similar
counterparts, including online conversion problems such as one-way trading [78,
167, 174, 175] and online knapsack problems [168–170], with practical applications
to stock trading [79], cloud pricing [164], electric vehicle charging [176], etc. The
𝑘-search problem can be viewed as an integral version of the online conversion
problem, while the general online conversion problem allows continuous one-way
trading. The basic online knapsack problem studies how to pack arriving items of
different sizes and values into a knapsack with limited capacity, while its exten-
sions to item departures [164, 169] and multidimensional capacity [170] have also
been studied recently. Another line of research leverages ML predictions to design
learning-augmented online algorithms for online 𝑘-search [96] and online conver-
sion [169]. However, to the best of our knowledge, none of these works consider
the switching cost of changing decisions.

Metrical Task Systems. The metrical task systems (MTS) problem was intro-
duced by Borodin et al. in [76]. Several decades of progress on upper and lower
bounds on the competitive ratio of MTS recently culminated with a tight bound of
Θ(log2 𝑛) for the competitive ratio of MTS on an arbitrary 𝑛-point metric space, with
Θ(log 𝑛) being possible on certain metric spaces such as trees [138, 142]. Several
modified forms of MTS have also seen significant attention in the literature, such as
smoothed online convex optimization (SOCO) and convex function chasing (CFC),
in which the decision space is an 𝑛-dimensional normed vector space and cost func-
tions are restricted to be convex [38, 77]. The best known upper and lower bounds
on the competitive ratio of CFC are𝑂 (𝑛) and Ω(

√
𝑛), respectively, in 𝑛-dimensional

Euclidean spaces [101, 106]. However, algorithms with competitive ratios indepen-
dent of dimension can be obtained for certain special classes of functions, such as
𝛼-polyhedral functions [102]. Several recent works have also investigated the design
of learning-augmented algorithms for various cases of CFC/SOCO and MTS which
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exploit the performance of ML predictions of the optimal decisions [75, 113, 140,
177, 178] (see, in particular, Chapters 2 and 3 of this thesis). The key characteristic
distinguishing OPR from MTS is the presence of a deadline constraint. None of
the algorithms for MTS-like problems are designed to handle long-term constraints
while being competitive.

Carbon-Aware Temporal Workload Shifting. The goal of shifting workloads
in time to allow more sustainable operations of datacenters has been of interest
for more than a decade, e.g., [37, 179–181]. Traditionally, such papers have used
models that build on one of convex function chasing, 𝑘-search, or online knapsack
to design algorithms; however such models do not capture both the switching
costs and long-term deadlines that are crucial to practical deployment. In recent
years, the load shifting literature has focused specifically on reducing the carbon
footprint of operations, e.g., [33, 155–157]. Perhaps most related to this chapter
is [33], which explores the problem of carbon-aware temporal workload shifting
and proposes a threshold-based algorithm that suspends the job when the carbon
intensity is higher than a threshold value and resumes it when it drops below the
threshold. However, it does not consider switching nor does it provide any deadline
guarantees. Other recent work on carbon-aware temporal shifting seeks to address
the resultant increase in job completion times. In [182], authors leverage the
pause and resume approach to reduce the carbon footprint of ML training and
high-performance computing applications such as BLAST [183]. However, instead
of resuming at normal speed (1×) during the low carbon intensity periods, their
applications resume operation at a faster speed (𝑚×), where the scale factor 𝑚
depends on the application characteristics. It uses a threshold-based approach to
determine the low carbon intensity periods but does not consider switching costs or
provide any deadline guarantees. A future direction is to extend the DTPR algorithms
to consider the ability to scale up speed after resuming jobs.

In addition to our direct contributions in the above fields, our work is adjacent to
several existing studies which have considered switching costs and hysteretic control
in queueing models for single servers, server farms, and clouds. In [184], an M/M/1
queueing system is presented where the decision maker chooses arrival and service
rates at each epoch and incurs a switching cost to change the rates. In this regime,
they show that the optimal policy is a hysteretic policy, which exhibits resistance to
change due to the switching cost. Gandhi et al. [185] present an M/M/k queueing
system for server farms with setup costs, where turning a server on incurs a time
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delay. Similarly, [186] presents and analyzes a nearly-optimal mechanism to control
the performance and power consumption of a server farm, where the setup cost
incurs time and energy. A few works have also considered similar problems with
different assumptions, such as job arrivals distributed according to a stochastic fluid
model [187], and modeling the control policy as a Markov decision process [188].
It is notable that nearly all of these works derive hysteretic control policies based
on the queue length, which essentially use a double threshold technique to resist
changing decisions as a function of switching cost, a similar flavor of the result as
we present in our setting. However, OPR is foundationally different as compared to
the above works since we consider a single workload, a single deadline, and costs
are exogenous to the online decision; this results in an algorithm design and analysis
technique that differ substantially from these queueing models.

4.8 Concluding Remarks
Motivated by carbon-aware load shifting, we introduce and study the online pause
and resume problem (OPR), which bridges gaps between several online optimization
problems. To our knowledge, it is the first online optimization problem that includes
both long-term constraints and switching costs. Our main results provide optimal
online algorithms for the minimization and maximization variants of this problem, as
well as lower bounds for the competitive ratio of any deterministic online algorithm.
Notably, our proposed algorithms match existing optimal results for the related 𝑘-
search problem when the switching cost is 0, and improve on the 𝑘-min search
competitive bounds for non-zero switching cost. The key to our results is a novel
double threshold algorithm that we expect to be applicable in other online problems
with switching costs.

There are a number of interesting directions in which to continue the study of OPR.
We have highlighted the application of OPR to carbon-aware load shifting, but OPR
also applies to many other problems where pricing changes over time and frequent
switching is undesirable. Pursuing these applications is important. Theoretically,
there are several interesting open questions. First, considering the target application
of carbon-aware load shifting, some workloads are highly parallelizable [182],
which adds another dimension of scaling to the problem (i.e., instead of choosing
to run 1 unit of the job in each time slot, the online player must decide how
many units to allocate at each time slot). Furthermore, considering heterogeneous
switching costs would be a logical extension of the setting we have considered
here, modeling, for example, switching models which act as a function of the
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Figure 4.9: Carbon intensity (in gCO2eq/kWh) values plotted for each region tested
in our numerical experiments, with one-hour granularity. We plot a representative
random interval of 96 hours, with vertical lines demarcating the different values for𝑇
(time horizon) tested in our experiments. In all regions, carbon values roughly follow
a diurnal (daily cycle) pattern. Actual values and observed intensities significantly
vary in different regions.

time spent in the current state. Both of these make the theoretical problem more
challenging, and are important considerations for future work. Additionally, very
recent work has incorporated machine-learned advice to achieve better performance
on related online problems, including 𝑘-search [96, 167], CFC/SOCO [140, 178],
and MTS [75, 113, 177]. Designing learning-augmented algorithms for OPR is
a very promising line of future work, particularly considering applications such as
carbon-aware load shifting, where accurate predictions can significantly improve the
algorithm’s understanding of the future in the best case, without sacrificing worst-
case guarantees. This challenge motivates our work in the next chapter, where we
design learning-augmented algorithms for a setting that generalizes OPR to allow
for both temporal and spatial load shifting.

Appendix
In these appendix sections, we present additional experimental results for the
DTPR-max algorithm as well as deferred proofs of theoretical results in the main
body of the paper.
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Algorithm 9: Double Threshold Pause and Resume for OPR-max (DTPR-max)
Input: threshold values {𝑢𝑖}𝑖∈[1,𝑘] and {ℓ𝑖}𝑖∈[1,𝑘] defined in Equation (4.6),

deadline 𝑇
Output: online decisions {𝑥𝑡}𝑡∈[1,𝑇]

1 initialize: i = 1;
2 while price 𝑐𝑡 arrives and 𝑖 ≤ 𝑘 do

// close to the deadline 𝑇, we must accept remaining prices
3 if (𝑘 − 𝑖) ≥ (𝑇 − 𝑡) then
4 price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1

// If the previous price was not accepted, use the upper thresholds
5 else if 𝑥𝑡−1 = 0 then
6 if 𝑐𝑡 ≥ 𝑢𝑖 then
7 price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1
8 else
9 price 𝑐𝑡 is rejected, set 𝑥𝑡 = 0

// If the previous price was accepted, use the lower
10 else if 𝑥𝑡−1 = 1 then
11 if 𝑐𝑡 ≥ ℓ𝑖 then
12 price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1
13 end
14 else
15 price 𝑐𝑡 is rejected, set 𝑥𝑡 = 0
16 end
17 update 𝑖 = 𝑖 + 𝑥𝑡
18 end

4.A Case Study Results for DTPR-max Algorithm
This section presents and discusses the deferred experimental results for the
DTPR-max algorithm (pseudocode summarized in Algorithm 9) in the carbon-aware
temporal workload shifting case study. We evaluate DTPR-max against the same
benchmark algorithms described in Section 4.6.

For the maximization metric, we consider the percentage of carbon-free electricity
powering the grid. At each timestep 𝑡, the electricity supply has a carbon-free
percentage 𝑐𝑡 , i.e., if the job is being processed during time slot 𝑡 (𝑥𝑡 = 1), the
electricity powering the datacenter’s is 𝑐𝑡% carbon-free, and the objective is to
maximize this percentage over all 𝑘 slots of the active running of the workload.

In these maximization experiments, the switching-cost-agnostic 𝑘-max-search al-
gorithm chooses to run the 𝑖th hour of the job during the first time slot where the
carbon-free supply is at leastΦ𝑖. Similarly, the constant threshold algorithm chooses
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Figure 4.10: Maximization experiments on Ontario, Canada carbon trace, with
𝜃 ≈ 1.51 and 𝑇 = 48. (a): Changing job length 𝑘 w.r.t. time horizon 𝑇 (𝑥-axis), vs.
competitive ratio. (b): Changing switching cost 𝛽 w.r.t. 𝑈 (𝑥-axis), vs. competitive
ratio. (c): Different volatility levels w.r.t. 𝑈 (𝑥-axis), vs. competitive ratio. (d):
Cumulative distribution function of competitive ratios.

to run the job whenever the carbon-free supply is at least
√
𝑈𝐿. We set 𝐿 and 𝑈 to

be the minimum and maximum carbon-free supply percentages over the entire trace
being studied.

As in Section 4.6, our focus is on the competitive ratio (lower competitive ratio is
better). We report the performance of all algorithms for each experiment setting, in
each tested region.

In the first experiment, we test all algorithms for different job lengths 𝑘 in the
range from 4 hours to 𝑇/2(24). The switching cost 𝛽 is non-zero and fixed,
and no volatility is added to the carbon trace. By testing different values for 𝑘 ,
this experiment tests different ratios between the workload length and the slack
provided to the algorithm. In Figures 4.10(a), 4.11(a), and 4.12(a), we show that
the observed average competitive ratio of DTPR-max narrowly outperforms the
benchmark algorithms for all values of 𝑘 in all regions, and it compares particularly
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favorably for short job lengths. Averaging over all regions and job lengths, the
competitive ratio achieved by DTPR-max is a 4.9% improvement on the carbon-
agnostic method, a 8.4% improvement on the 𝑘-max search algorithm, and a 2.1%
improvement on the constant threshold algorithm.

In the second experiment, we test all algorithms for different switching costs 𝛽 in the
range from 0 to𝑈/5. The job length 𝑘 is set to 10 hours, and no volatility is added to
the carbon trace. By testing different values for 𝛽, this experiment tests how an in-
creasing switching cost impacts the performance of DTPR-max with respect to other
algorithms which do not explicitly consider the switching cost. In Figures 4.10(b),
4.11(b), and 4.12(b), we show that the average competitive ratio of DTPR-max no-
tably outperforms the other algorithms for a wide range of 𝛽 values in all regions.
Unsurprisingly, the carbon-agnostic technique (which only incurs a switching cost
of 2𝛽) is more competitive as 𝛽 grows. The 𝑘-max search algorithm performs
noticeably worse as 𝛽 grows. While the constant threshold algorithm has relatively
consistent performance, the 𝑘-max search algorithm performs noticeably worse as
𝛽 grows. Averaging over all regions and switching cost values, the competitive ratio
achieved by DTPR-max is a 2.5% improvement on the carbon-agnostic method, a
6.4% improvement on the 𝑘-max search algorithm, and a 0.1% improvement on the
constant threshold algorithm.

In the final experiment, we test all algorithms on sequences with different volatility.
The job length 𝑘 and switching cost 𝛽 are both fixed. We add volatility by setting a
noise factor from the range 1.0 to 3.0. By testing different values for this volatility,
this experiment tests how each algorithm handles larger fluctuations in the carbon
intensity of consecutive timesteps. In Figures 4.10(c), 4.11(c), and 4.12(c), we
show that the observed average competitive ratio of DTPR-max outperforms the
other algorithms for most noise factors in all regions, with a slight degradation in
the Pacific Northwest region. Intuitively, higher volatility values cause the online
algorithms to perform worse in general. Averaging over all regions and noise factors,
the competitive ratio achieved by DTPR-max is a 13.0% improvement on the carbon-
agnostic method, a 11.2% improvement on the 𝑘-max search algorithm, and a 2.1%
improvement on the constant threshold algorithm.

By averaging over all experiments for a given region, we obtain the cumulative
distribution function plot for each algorithm’s competitive ratio in Figures 4.10(d),
4.11(d), and 4.12(d). Compared to the carbon-agnostic, constant threshold, and
𝑘-max search algorithms, DTPR-max generally exhibits a lower average empirical
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Figure 4.11: Maximization experiments on U.S. Pacific Northwest carbon trace,
with 𝜃 ≈ 5.24 and 𝑇 = 48. (a): Changing job length 𝑘 w.r.t. time horizon 𝑇
(𝑥-axis), vs. competitive ratio. (b): Changing switching cost 𝛽 w.r.t. 𝑈 (𝑥-axis), vs.
competitive ratio. (c): Different volatility levels w.r.t. 𝑈 (𝑥-axis), vs. competitive
ratio. (d): Cumulative distribution function of competitive ratios.

competitive ratio over the tested regions. Notably, all of the algorithms are nearly
1-competitive in our experiments. Compared to our minimization experiments,
DTPR-max outperforms the baseline algorithms by a smaller margin. Across all re-
gions at the 95th percentile, DTPR-max achieves a worst-case empirical competitive
ratio of 1.08. This represents a 16.1% improvement over the carbon-agnostic algo-
rithm, and improvements of 11.4% and 2.19% over the 𝑘-max search and constant
threshold switching-cost-agnostic algorithms, respectively.

We conjecture that one dynamic contributing to this is the relatively low values of
𝜃 observed for the carbon-free supply percentage in these real-world carbon traces.

4.B Competitive Analysis of DTPR-max: Proof of Theorem 4.4.2
Here we prove the DTPR-max results presented in Theorem 4.4.2 and Corollary 4.4.4.
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Figure 4.12: Maximization experiments on New Zealand carbon trace, with 𝜃 ≈ 1.35
and 𝑇 = 48. (a): Changing job length 𝑘 w.r.t. time horizon 𝑇 (𝑥-axis), vs.
competitive ratio. (b): Changing switching cost 𝛽 w.r.t. 𝑈 (𝑥-axis), vs. competitive
ratio. (c): Different volatility levels w.r.t. 𝑈 (𝑥-axis), vs. competitive ratio. (d):
Cumulative distribution function of competitive ratios.

Proof of Theorem 4.4.2. For 0 ≤ 𝑗 ≤ 𝑘 , let S 𝑗 ⊆ S be the sets of OPR-max price
sequences for which DTPR-max accepts exactly 𝑗 prices (excluding the 𝑘 − 𝑗 prices
it is forced to accept at the end of the sequence). Then all of the possible price
sequences for OPR-max are represented by S =

⋃𝑘
𝑗=0 S 𝑗 . By definition, 𝑢𝑘+1 = 𝑈.

Let 𝜖 > 0 be fixed, and define the following two price sequences 𝜎𝑗 and 𝜌 𝑗 :

∀0 ≤ 𝑗 ≤ 𝑘 : 𝜎𝑗 = 𝑢1, ℓ2, . . . , ℓ 𝑗 , 𝐿, 𝑢 𝑗+1 − 𝜖, . . . , 𝑢 𝑗+1 − 𝜖︸                      ︷︷                      ︸
𝑘

, 𝐿, 𝐿, . . . , 𝐿︸        ︷︷        ︸
𝑘

.

∀0 ≤ 𝑗 ≤ 𝑘 : 𝜌 𝑗 = 𝑢1, 𝐿, 𝑢2, 𝐿, . . . , 𝐿, 𝑢 𝑗 , 𝐿, 𝑢 𝑗+1 − 𝜖, . . . , 𝑢 𝑗+1 − 𝜖︸                      ︷︷                      ︸
𝑘

, 𝐿, 𝐿, . . . , 𝐿︸        ︷︷        ︸
𝑘

.

We have two special cases for 𝑗 = 0 and 𝑗 = 1. For 𝑗 = 0, we have that 𝜎0 = 𝜌0,
and this sequence simply consists of 𝑢1− 𝜖 repeated 𝑘 times, followed by 𝐿 repeated
𝑘 times. For 𝑗 = 1, we also have that 𝜎1 = 𝜌1, and this sequence consists of one
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price with value 𝑢1 and one price with value 𝐿, followed by 𝑢2 − 𝜖 repeated 𝑘 times
and 𝐿 repeated 𝑘 times.

Observe that as 𝜖 → 0, 𝜎𝑗 and 𝜌 𝑗 are sequences yielding the worst-case ratios in
S 𝑗 , as DTPR-max is forced to accept (𝑘 − 𝑗) worst-case 𝐿 values at the end of the
sequence, and each accepted value is exactly equal to the corresponding threshold.

𝜎𝑗 and 𝜌 𝑗 also represent two extreme possibilities for the switching cost. In 𝜎𝑗 ,
DTPR-max only switches twice, but it mostly accepts values ℓ𝑖. In 𝜌 𝑗 , DTPR-maxmust
switch 𝑗 + 1 times because there are many intermediate 𝐿 values, but it only accepts
values which are at least 𝑢𝑖.

Observe that OPT(𝜎𝑗 )/DTPR-max(𝜎𝑗 ) = OPT(𝜌 𝑗 )/DTPR-max(𝜌 𝑗 ). First, the
optimal solution for both sequences is exactly the same: 𝑘𝑐max(𝜎𝑗 ) − 2𝛽 =

𝑘𝑐max(𝜌 𝑗 ) − 2𝛽.
For any sequence 𝑠 in S 𝑗 , we also know that 𝑐max(𝑠) < 𝑢 𝑗+1, so OPT(𝜌 𝑗 ) =

OPT(𝜎𝑗 ) ≤ 𝑘𝑢 𝑗+1 − 2𝛽.

By definition of the threshold families {𝑢𝑖}𝑖∈[1,𝑘] and {ℓ𝑖}𝑖∈[1,𝑘] , we know that∑ 𝑗

𝑖=1 𝑢𝑖 − 𝑗2𝛽 =
∑ 𝑗

𝑖=1 ℓ𝑖 for any value 𝑗 ≥ 2:

DTPR-max(𝜌 𝑗 ) =
(
𝑢1 +

𝑗∑︁
𝑖=2

ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 4𝛽

)
=

(
𝑗∑︁
𝑖=1

𝑢𝑖 + (𝑘 − 𝑗)𝐿 − ( 𝑗 + 1)2𝛽
)

= DTPR-max(𝜎𝑗 ).

Note that whenever 𝑗 < 2, we have that 𝜎0 = 𝜌0, and 𝜎1 = 𝜌1. Thus,
DTPR-min(𝜌 𝑗 ) = DTPR-min(𝜎𝑗 ) holds for any value of 𝑗 .

By definition of 𝑢1, we simplify 𝑢1+
∑ 𝑗

𝑖=2 ℓ𝑖+(𝑘− 𝑗)𝐿−4𝛽 to
∑ 𝑗

𝑖=1 ℓ𝑖+(𝑘− 𝑗)𝐿−2𝛽.
For any sequence 𝑠 ∈ S 𝑗 , we have the following:

OPT(𝑠)
DTPR-max(𝑠) ≤

OPT(𝜎𝑗 )
DTPR-max(𝜎𝑗 )

=
OPT(𝜌 𝑗 )

DTPR-max(𝜌 𝑗 )

≤
𝑘𝑢 𝑗+1 − 2𝛽∑ 𝑗

𝑖=1 ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽
. (4.12)
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Lemma 4.B.1. For any 𝑗 ∈ [0, 𝑘], by definition of {𝑢𝑖}𝑖∈[1,𝑘] and {ℓ𝑖}𝑖∈[1,𝑘] ,

𝜔 ·
(
𝑗∑︁
𝑖=1

ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽

)
≤ 𝑘𝑢 𝑗+1 − 2𝛽.

The proof is deferred to Section 4.C.

For 𝜖 → 0, the competitive ratio OPT/DTPR-max is exactly 𝜔:

∀0 ≤ 𝑗 ≤ 𝑘 :
OPT(𝜎𝑗 )

DTPR-max(𝜎𝑗 )
=

𝑘𝑢 𝑗+1 − 2𝛽∑ 𝑗

𝑖=1 ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽
= 𝜔.

and thus for any sequence 𝑠 ∈ S,

∀𝑠 ∈ S :
𝑘𝑐max(𝑠) − 2𝛽
DTPR-max(𝑠) ≤ 𝜔.

Since OPT(𝑠) ≤ 𝑘𝑐max(𝑠) − 2𝛽 for any sequence 𝑠, this implies that DTPR-max is
𝜔-competitive.

Proof of Corollary 4.4.4. For simplification purposes, let 𝛽 = 𝑏𝐿/2, where 𝑏 is a
real constant on the interval (0, 𝑘). To show part (a) for REGIME-1, with fixed 𝑘 ≥ 1,
observe that for sufficiently large 𝜔, we have the following:

𝜃 − 𝑏 − 1 = (𝜔 − 1)
(
1 + 𝜔

𝑘

) 𝑘
−

(
𝑏 − 𝑏

𝑘
+ 𝑏𝜔

𝑘

) (
1 + 𝜔

𝑘

) 𝑘
≈ (1 + 𝑜(1))

[
𝜔

(𝜔
𝑘

) 𝑘
− 𝑏

(𝜔
𝑘

) 𝑘+1
− 𝑏

]
.

Let 𝜔+ = 𝑘+1
√︃
𝑘 𝑘 · 𝑘𝜃

𝑘−𝑏 . Then, for sufficiently large 𝜔, we have the following:

(1 + 𝑜(1))
[
𝜔+

(𝜔+
𝑘

) 𝑘
− 𝑏

(𝜔+
𝑘

) 𝑘+1
− 𝑏

]
= (1 + 𝑜(1)) (𝑘 − 𝑏) (𝜃)

𝑘 − 𝑏
= (1 + 𝑜(1)) [𝜃 − 𝑏] .

Furthermore, let 𝜀 > 0 and set 𝜔− = (1 − 𝜀) 𝑘+1
√︃
𝑘 𝑘 · 𝑘𝜃

𝑘−𝑏 . A similar calculation as

above shows that for sufficiently large 𝜃 we have:

(𝜔− − 1)
(
1 + 𝜔−

𝑘

) 𝑘
−

(
𝑏 − 𝑏

𝑘
+ 𝑎𝜔−

𝑘

) (
1 + 𝜔−

𝑘

) 𝑘
≥ (1 − 3𝑘𝜀) [𝜃 − 𝑏] .

Thus, 𝜔 = 𝑂

(
𝑘+1
√︃
𝑘 𝑘 𝑘𝜃

𝑘−𝑏

)
satisfies (4.10) for sufficiently large 𝜔, fixed 𝑘 ≥ 1, and
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𝛽 = 𝑏𝐿
2 s.t. 𝑏 ∈ (1, 𝑘).

To show part (b) for REGIME-2, observe that the right-hand side of (4.10) can be
approximated as

(
1 + 𝜔

𝑘

) 𝑘 ≈ 𝑒𝜔 when 𝑘 →∞. Then by taking limits on both sides,
we obtain the following:

𝑈 − 𝐿 − 2𝛽
𝐿 (𝜔 − 1) − 2𝛽 (1) = 𝑒

𝜔.

Let 𝛽 = 𝑏𝐿/2 as outlined above. We then obtain the following:
𝑈 − 𝐿 − 𝑏𝐿
𝐿 (𝜔 − 1) − 𝑏𝐿 =

𝜃 − 1 − 𝑏
𝜔 − 1 − 𝑏 = 𝑒𝜔 =⇒ 𝜃 − 1 − 𝑏 = (𝜔 − 1 − 𝑏) 𝑒𝜔.

By definition of the Lambert 𝑊 function, solving this equation for 𝜔 obtains part
(2).

4.C Proofs of Lemmas 4.5.1 and 4.B.1
In this section, we give the deferred proofs of Lemmas 4.5.1 and 4.B.1, which are
used in the proofs of Theorem 4.4.1 and Theorem 4.4.2, respectively.

Proof of Lemma 4.5.1. We show that the following holds for any 𝑗 ∈ [0, 𝑘], by
Definition 4.3.1:

𝑗∑︁
𝑖=1

𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽 ≤ 𝛼 · (𝑘ℓ 𝑗+1 + 2𝛽).

First, note that 𝑘ℓ 𝑗+1 = 𝑘 (𝑢 𝑗+1 − 2𝛽) for all 𝑗 ∈ [0, 𝑘], by Observation 4.3.3. This
gives us the following:

𝑗∑︁
𝑖=1

𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽 ≤ 𝛼𝑘𝑢 𝑗+1 + 𝛼2𝛽 − 𝛼𝑘2𝛽,

𝑗∑︁
𝑖=1

𝑢𝑖 + (𝑘 − 𝑗)𝑈 + [2𝛽 − 𝛼2𝛽 + 𝛼𝑘2𝛽] ≤ 𝛼𝑘𝑢 𝑗+1,

(𝑘 − 𝑗)𝑈
𝛼𝑘

+
∑ 𝑗

𝑖=1 𝑢𝑖

𝛼𝑘
+

[
2𝛽
𝛼𝑘
− 2𝛽
𝑘
+ 2𝛽

]
≤ 𝑢 𝑗+1.

By substituting Def. 4.3.1 into
∑ 𝑗

𝑖=1 𝑢𝑖, the above can be simplified exactly to the
closed form for 𝑢 𝑗+1:

𝑈

𝛼
− 𝑗𝑈
𝛼𝑘
+

(∑ 𝑗

𝑖=1 𝑢𝑖

𝛼𝑘

)
+

[
2𝛽
𝛼𝑘
− 2𝛽
𝑘
+ 2𝛽

]
= 𝑢 𝑗+1,[

𝑈 −
(
𝑈 − 1

𝛼

) (
1 + 1

𝛼𝑘

) 𝑗 ]
+

[(
2𝛽
𝛼𝑘
− 2𝛽
𝑘
+ 2𝛽

) (
1 + 1

𝛼𝑘

) 𝑗 ]
= 𝑢 𝑗+1

and the claim follows by the definition of 𝑢 𝑗+1.



166

Proof of Lemma 4.B.1. We show that the following holds for any 𝑗 ∈ [0, 𝑘], by
Definition 4.3.2:

𝜔 ·
(
𝑗∑︁
𝑖=1

ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽

)
≤ 𝑘𝑢 𝑗+1 − 2𝛽.

First, note that 𝑘𝑢 𝑗+1 = 𝑘 (ℓ 𝑗+1 + 2𝛽) for all 𝑗 ∈ [0, 𝑘], by Observation 4.3.3. This
gives us the following:

𝑗∑︁
𝑖=1

ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽 ≤
𝑘ℓ 𝑗+1

𝜔
− 2𝛽
𝜔
+ 𝑘2𝛽

𝜔
,

𝑗∑︁
𝑖=1

ℓ𝑖 + (𝑘 − 𝑗)𝐿 −
[
2𝛽 − 2𝛽

𝜔
+ 𝑘2𝛽

𝜔

]
≤
𝑘ℓ 𝑗+1

𝜔
,

𝜔

(∑ 𝑗

𝑖=1 ℓ𝑖

)
𝑘

+ 𝜔(𝑘 − 𝑗)𝐿
𝑘

−
[
𝜔2𝛽
𝑘
− 2𝛽
𝑘
+ 2𝛽

]
≤ ℓ 𝑗+1.

By substituting Def. 4.3.2 into
∑ 𝑗

𝑖=1 ℓ𝑖, the above can be simplified exactly to the
closed form for ℓ 𝑗+1:

𝜔𝐿 − 𝜔 𝑗𝐿
𝑘
+
𝜔

(∑ 𝑗

𝑖=1 ℓ𝑖

)
𝑘

−
[
𝜔2𝛽
𝑘
− 2𝛽
𝑘
+ 2𝛽

]
= ℓ 𝑗+1,[

𝐿 + (𝜔𝐿 − 𝐿)
(
1 + 𝜔

𝑘

) 𝑗 ]
−

[(
𝜔2𝛽
𝑘
− 2𝛽
𝑘
+ 2𝛽

) (
1 + 𝜔

𝑘

) 𝑗 ]
= ℓ 𝑗+1

and the claim follows by the definition of ℓ 𝑗+1.

4.D Proofs of Lower Bound Results
This section formally proves the lower bound results for OPR-max, building on the
proof for OPR-min provided in Section 4.5.

Proof of Theorem 4.4.6 (OPR-max Lower Bound)
Proof of Theorem 4.4.6. Let ALG be a deterministic online algorithm for OPR-max,
and suppose that the adversary uses the price sequence 𝑢1, . . . , 𝑢𝑘 , which is exactly
the sequence defined by (4.6). 𝑢1 is presented to ALG, at most 𝑘 times or until ALG
accepts it. If ALG never accepts 𝑢1, the remainder of the sequence is all 𝐿, and ALG
achieves a competitive ratio of 𝑘𝑢1−2𝛽

𝑘𝐿−2𝛽 = 𝜔, as defined in (4.8).

If ALG accepts 𝑢1, the next price presented is 𝐿, repeated at most 𝑘 times or until
ALG switches to reject 𝐿. After ALG has switched, 𝑢2 is presented to ALG, at most 𝑘
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times or until ALG accepts it. Again, if ALG never accepts 𝑢2, the remainder of the
sequence is all 𝐿, and ALG achieves a competitive ratio of at least 𝑘𝑢2−2𝛽

𝑢1+(𝑘−1)𝐿−4𝛽 = 𝜔,
as defined in (4.8).

As the sequence continues, wheneverALG does not accept some 𝑢𝑖 after it is presented
𝑘 times, the adversary drops the price to 𝐿 for the remainder of the sequence.
Otherwise, if ALG accepts 𝑘 prices before the end of the sequence, the adversary
concludes by presenting𝑈 at least 𝑘 times.

Observe that any ALG which does not immediately reject the first 𝐿 presented to
it after accepting some 𝑢𝑖 obtains a competitive ratio strictly worse than 𝜔. To
illustrate this, suppose ALG has just accepted 𝑢1, achieving a profit of 𝑢1 − 𝛽 so far.
The adversary begins to present 𝐿 prices, and ALG accepts 𝑦 ≤ (𝑘 − 1) of these 𝐿
prices before switching away. If 𝑦 = (𝑘 −1), ALGwill accept 𝑘 prices before the end
of the sequence and achieve a competitive ratio of 𝑘𝑈−2𝛽

𝑢1+(𝑘−1)𝐿−2𝛽 > 𝜔. Otherwise,
if 𝑦 < (𝑘 − 1), the profit achieved by ALG so far is at most 𝑢1 − 2𝛽 + 𝑦𝐿, while
the profit achieved by ALG if it had immediately switched away (𝑦 = 0) would be
𝑢1 − 2𝛽—since any price which might be accepted by ALG in the future should be
≥ 𝐿, the latter case strictly improves the competitive ratio of ALG.

Assuming that ALG does immediately reject any 𝐿 presented to it, and that ALG
accepts some prices before the end of the sequence, the competitive ratio attained
by ALG is at least 𝑘𝑢 𝑗+1−2𝛽∑ 𝑗

𝑖=1 𝑢𝑖−( 𝑗+1)2𝛽+(𝑘− 𝑗)𝐿
= 𝜔, as defined in (4.8).

Similarly, if ALG accepts 𝑘 prices before the end of the sequence, the competitive
ratio attained by ALG is at least 𝑘𝑈−2𝛽∑𝑘

𝑖=1 𝑢𝑖−𝑘2𝛽
= 𝜔, as defined in (4.8).

Since any arbitrary deterministic online algorithm ALG cannot achieve a competitive
ratio better than 𝜔 playing against this adaptive adversary, our proposed algorithm
DTPR-max is optimal.
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C h a p t e r 5

LEARNING-AUGMENTED COMPETITIVE ALGORITHMS FOR
SPATIOTEMPORAL ONLINE ALLOCATION WITH DEADLINE

CONSTRAINTS

We now return to the general task of designing learning-augmented algorithms in
a setting that unites the general metric structure of Chapter 3 and the long-term
deadline constraint of Chapter 4. In particular, we introduce and study spatiotem-
poral online allocation with deadline constraints (SOAD), a new online problem
motivated by emerging challenges in energy and sustainability. In SOAD, an on-
line player completes a workload by allocating and scheduling it on the points of a
metric space (𝑋, 𝑑) while subject to a deadline 𝑇 . At each timestep, a service cost
function is revealed that represents the cost of servicing the workload at each point,
and the player must irrevocably decide the current allocation of work to points.
Whenever the player moves this allocation, they incur a movement cost defined by
the distance metric 𝑑 (·, ·) that captures, e.g., an overhead cost. SOAD formalizes
the open problem of combining general metrics and deadline constraints in the
online algorithms literature, unifying problems such as metrical task systems and
online search. We propose a competitive algorithm for SOAD along with a match-
ing lower bound establishing its optimality. Our main algorithm, ST-CLIP, is a
learning-augmented algorithm that takes advantage of predictions (e.g., forecasts of
relevant costs) and achieves an optimal consistency-robustness tradeoff. We evaluate
our proposed algorithms in a simulated case study of carbon-aware spatiotemporal
workload management, an application in sustainable computing that schedules a
delay-tolerant batch compute job on a distributed network of datacenters. In these
experiments, we show that ST-CLIP substantially improves on heuristic baseline
methods.

This chapter is primarily based on the following paper:

[1] A. Lechowicz, N. Christianson, B. Sun, N. Bashir, M. Hajiesmaili, A. Wier-
man, and P. Shenoy, “Learning-Augmented Competitive Algorithms for
Spatiotemporal Online Allocation with Deadline Constraints,” Proceedings
of the ACM on Measurement and Analysis of Computing Systems, vol. 9,
no. 1, 8:1–8:49, Mar. 2025. doi: 10.1145/3711701. [Online]. Available:
https://dl.acm.org/doi/10.1145/3711701.

https://doi.org/10.1145/3711701
https://dl.acm.org/doi/10.1145/3711701
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5.1 Introduction
We introduce and study spatiotemporal online allocation with deadline constraints
(SOAD), an online optimization problem motivated by emerging challenges in
sustainability. In SOAD, an online player aims to service a workload by allocating
and scheduling it on one of 𝑛 points represented by a metric space (𝑋, 𝑑). They pay
a service cost at a point if the workload is currently being serviced there, a spatial
movement cost defined by the metric whenever they change the allocation between
points, and a temporal switching cost when bringing the workload into or out of
service at a single point. The workload arrives with a deadline constraint 𝑇 that
gives the player some slack, i.e., the workload can be paused for some time to avoid
high cost periods without violating the constraint.

SOAD builds on a long history of related problems in online algorithms. In par-
ticular, two lines of work share specific features in common with our setting. One
line of work focuses on metrical task systems (MTS) and smoothed online convex
optimization (SOCO), where problems consider online optimization with move-
ment costs over general metrics, but do not accommodate long-term constraints,
such as deadlines [76, 101, 102, 138, 142, 146, 189]. A complementary line of
work is that of online search problems with long-term constraints, such as one-way
trading (OWT) and online knapsack—these problems enforce that a player’s cumu-
lative decisions satisfy a constraint over the entire input, but do not consider general
metric (decision) spaces or movement costs [78, 79, 174, 176]. SOAD extends both
MTS/SOCO-type problems and OWT-type problems by simultaneously considering
general metric movement/switching costs and deadline (i.e., long-term) constraints.

For many applications, the underlying problem to be solved often requires a model
with both smoothed optimization (i.e., movement costs) and deadline constraints.
Furthermore, for an application such as carbon-aware workload management in dat-
acenters, where the spatial movement cost corresponds to, e.g., network delays (see
Section 5.2), it is necessary to consider a general metric space, since pairwise net-
work latencies do not necessarily correspond to simple distances such as Euclidean
(geographic) distances. The question of whether it is possible to design competitive
online algorithms in this combined setting has remained open for over a decade,
with theoretical progress emerging only in the last few years in special cases such
as the unidimensional setting, in ℓ1 vector spaces, or with different performance
metrics such as regret [190–195] (see, in particular, Chapter 4 of this thesis). This
work seeks to close this gap by answering the following question:
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Is it possible to design online algorithms for SOAD that manage the challenges of
general metrics and provide competitive guarantees without violating the deadline

constraint?

It is well known that problems related to SOAD, such as MTS and OWT, are difficult
in the sense that their competitive ratios scale in the size of the decision space or
the ratio between maximal and minimal prices. However, these pessimistic lower
bounds hold in the worst case, while in practice a decision-maker can often leverage
data-driven machine learning approaches to obtain algorithms that perform bet-
ter empirically. Recent work in the online algorithms literature has leveraged the
paradigm of learning-augmented algorithms [69, 70] to design and analyze algo-
rithms that can take advantage of patterns in the input via untrusted “advice” (e.g.,
predictions from a machine learning model) without losing adversarial competitive
bounds. Such learning-augmented algorithms have been designed for precursor
problems to SOAD, including MTS and OWT [75, 140, 167, 177] (see, in par-
ticular, Chapters 2 and 3 of this thesis). In the SOAD setting, supported by the
availability of practical predictions for our motivating applications and a lack of
learning-augmented algorithmic strategies that accommodate both general metrics
and deadline constraints, we additionally consider the question:

Can we design algorithms for SOAD that integrate untrusted advice (such as
machine-learned predictions) to further improve performance without losing

worst-case guarantees?

Related work
Our results address a long-standing open problem of combining online optimization
with general switching costs (MTS/SOCO) and deadline constraints. Although
general MTS is a famously well-studied problem in online algorithms [76, 116, 143,
189, 196, 197], it has not been studied under the general form of long-term intertem-
poral constraints that we consider in the SOAD formulation. Amongst the two lines
of related work, prior work has focused on either designing MTS-style algorithms
using techniques such as mirror descent [142], primal-dual optimization [197], and
work functions [198], or OWT-style algorithms using techniques such as threshold-
based algorithm design [79, 168], pseudo-reward maximization [170, 176], and
protection-level policies [78]. As these distinct techniques have been tailored to
their respective problem settings, there has been almost no cross-pollination be-
tween MTS-type and OWT-type problems until this work. The combination of
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smoothed optimization and long-term constraints has drawn recent attention in the
paradigm of regret analysis in problems such as bandits with knapsacks and OCO
with long-term constraints [190, 191]. However, despite established connections be-
tween MTS and online learning [116], the problem of optimal competitive algorithm
design in general settings of this form has yet to be explored.

A select few works [192–195] consider both switching costs and deadline constraints
in a competitive regime, although they are restricted to special cases such as uni-
dimensional decisions or ℓ1 metrics. Due to these assumptions, their results and
algorithms fail to capture the general problem that we consider. As just one example,
all of these works assume that the switching cost is only temporal, in the sense that
the online player pays the same cost whether they are switching into or out of a
state that makes progress towards the deadline constraint. This assumption is overly
restrictive because it cannot accommodate switching cost situations that may arise
in motivating applications, e.g., the case where the player chooses to move between
points of the metric while simultaneously switching into an ON state.

Our work also contributes to the field of learning-augmented algorithms, designed to
bridge the performance of untrusted advice and worst-case competitive guarantees
[69, 70]. Learning-augmented design has been studied in many online problems
including ski rental [110], bipartite matching [199], and several related problems
including MTS/SOCO and OWT [75, 96, 140, 167, 193, 195]. For MTS/SOCO,
a dominant algorithmic paradigm is to adaptively combine the actions of a robust
decision-maker and those of, e.g., a machine-learning model [75, 140]; optimal
tradeoffs between robustness and consistency have also been shown in the case
of general metrics [177] (see Chapter 3). For OWT and 𝑘-search, several works
have given threshold-based algorithms incorporating predictions that are likewise
shown to achieve an optimal robustness-consistency tradeoff [96, 167]. The advice
models for these two tracks of literature are quite different and lead to substantially
different algorithms—namely, online search problems typically assume that the
algorithm receives a prediction of, e.g., the best price, while MTS/SOCO typically
consider black-box advice predicting the optimal decision at each timestep. Amongst
the limited prior literature that considers learning-augmentation in problems with
switching costs and deadline constraints [193–195], both advice models have been
considered, underscoring the challenge of the SOAD setting, where the optimal
choice of advice model (and corresponding design techniques) is not obvious a
priori.
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Contributions
Our main technical contributions make progress on a longstanding problem in online
optimization that models emerging practical problems in areas such as sustainability.
Our algorithms and lower bounds for SOAD are the first results to consider com-
petitive analysis for deadline-constrained problems on general metrics. We obtain
positive results for both of the questions posed above under assumptions informed
by practice. In particular, we provide the first competitive algorithm, PCM (Pseudo-
Cost Minimization, see Algorithm 10), for this type of problem in Section 5.3, and
show that it achieves the best possible competitive ratio up to log factors that result
from the generality of the metric. Surprisingly, the competitive upper bound we
prove for SOAD (Theorem 5.3.3) compares favorably against known strong lower
bounds for precursor problems such as MTS and OWT; which suggests an insight
that additional structure imposed by constraints can actually facilitate competitive
decision making, despite the added complexity of the general metric and deadline
constraint. To achieve this result, we develop theoretical tools from both lines of
related work that help us tackle challenging components of SOAD. For instance, we
leverage randomized metric embeddings and optimal transport to endow a general
metric (𝑋, 𝑑) with a structure that facilitates analysis. From the online search liter-
ature, we leverage techniques that balance the tradeoff between cost and constraint
satisfaction, specifically generalizing these ideas to operate in the more complex
metric setting necessitated by SOAD.

In Section 5.4, we introduce our main learning-augmented algorithm, ST-CLIP,
which integrates black-box decision advice based on, e.g., machine-learned predic-
tions to significantly improve performance without losing worst-case competitive
bounds. In our approach, we first prove an impossibility result on the robustness-
consistency tradeoff for any algorithm. Using an adaptive optimization-based frame-
work first proposed by [195], we design an algorithm that combines the theoretical
tools underpinning PCM in concert with a constraint hedging against worst-case
service costs and movement costs that threaten the desired consistency bound. This
ensures ST-CLIP attains the optimal tradeoff (up to log factors) in general metric
spaces.

In Section 5.5, motivated by real-world applications where the movement cost
between points of the metric may not be constant, we present a generalization of
SOAD where distances are allowed to be time-varying and show that our algorithms
extend to this case. Finally, in Section 5.6, we evaluate our algorithms in a case
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study of carbon-aware spatiotemporal workload management (see Section 5.2) on a
simulated global network of datacenters. We show that ST-CLIP is able to leverage
imperfect advice and significantly improve on heuristic baselines for the problem.

5.2 Problem Formulation, Motivating Applications, Challenges, and Prelim-
inaries

In this section, we introduce the spatiotemporal online allocation with deadline
constraints (SOAD) problem and provide motivating applications as examples. We
also discuss some intrinsic challenges in SOAD that prevent the direct application
of existing techniques, and introduce relevant preliminaries from related work.

Spatiotemporal online allocation with deadline constraints (SOAD)
Problem statement. Consider a decision-maker that manages 𝑛 points defined on
a metric space (𝑋, 𝑑), where 𝑋 denotes the set of points and 𝑑 (𝑢, 𝑣) denotes the
distance between any two points 𝑢, 𝑣 ∈ 𝑋 . In a time-slotted system, the player aims
to complete a unit-size workload before a deadline 𝑇 while minimizing the total
service cost by allocating the workload across points and time.

Allocation definition. The decision-maker specifies a spatial allocation to one
of the points 𝑢 ∈ 𝑋 . At the chosen point, they also make a temporal allocation
that fractionally divides the allocation between two states, ON(𝑢) and OFF(𝑢) , where
the allocation to ON(𝑢) represents the amount of resources actively servicing the
workload. Let x𝑡 := {𝑥ON(𝑢)𝑡 , 𝑥OFF

(𝑢)
𝑡 }𝑢∈𝑋 denote the allocation decision at time 𝑡

across all points and states, where 𝑥ON(𝑢)𝑡 and 𝑥OFF(𝑢)𝑡 denote the allocation to the ON
and OFF states at point 𝑢, respectively. The feasible set for this vector allocation is
given by X := {x ⊆ [0, 1]2𝑛 : 𝑥ON(𝑢) + 𝑥OFF(𝑢) ∈ {0, 1},∀𝑢 ∈ 𝑋, ∥x∥1 = 1}.

Deadline constraint. Let 𝑐(x𝑡) : X → [0, 1] denote a constraint function that is
known to the decision-maker and models the fraction of the workload completed by
an allocation x𝑡 . Specifically, we let 𝑐(x𝑡) =

∑
𝑢∈𝑋 𝑐

(𝑢) ·𝑥ON(𝑢)𝑡 , where 𝑐(𝑢) is a positive
throughput constant that encodes how much of the workload is completed during
one time slot with a full allocation to the state ON(𝑢) . Across the entire time horizon,
the decision-maker is subject to a deadline constraint stipulating that the cumulative
allocations must satisfy

∑𝑇
𝑡=1 𝑐(x𝑡) ≥ 1. This encodes the requirement that sufficient

allocations must be assigned to the ON states to finish a unit-size workload by the
deadline 𝑇 . The assumption that the workload is of unit size is made without loss of
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generality, as 𝑐(·) can be scaled appropriately—e.g., if a workload doubles in size,
𝑐(·) can be scaled by a factor of 1/2 to reflect this.

Service and switching costs. At each time 𝑡, the cost of allocation x𝑡 consists
of a service cost 𝑓𝑡 (x𝑡) =

∑
𝑢∈𝑋 𝑓

(𝑢)
𝑡 · 𝑥ON(𝑢)𝑡 for allocations to ON states, where 𝑓 (𝑢)𝑡

represents the service cost of point 𝑢 at time 𝑡; and a switching cost 𝑔(x𝑡 , x𝑡−1)
that includes a spatial movement cost of moving the allocation between points and
a temporal switching cost incurred between ON and OFF states within one point.
Specifically, whenever the decision-maker changes the allocation across points,
they pay a movement cost 𝑑 (𝑢𝑡−1, 𝑢𝑡), where 𝑢𝑡′ = {𝑢 ∈ 𝑋 : 𝑥ON(𝑢)

𝑡′ + 𝑥OFF(𝑢)
𝑡′ = 1}

is the location of the allocation at time 𝑡′ (in Section 5.5, we give a generalization
where 𝑑 (·, ·) also varies with time). Within each point, the decision-maker pays
a switching cost ∥x𝑡 − x𝑡−1∥ℓ1 (𝜷) =

∑
𝑢∈𝑋 𝛽

(𝑢) |𝑥ON(𝑢)𝑡 − 𝑥ON(𝑢)
𝑡−1 |, where 𝛽(𝑢) is the

switching overhead factor when changing the ON / OFF allocation at point 𝑢. The
overall switching cost is 𝑔(x𝑡 , x𝑡−1) := 𝑑 (𝑢𝑡−1, 𝑢𝑡) + ∥x𝑡 − x𝑡−1∥ℓ1 (𝜷) , and 𝑔 is known
in advance. The decision-maker starts (at 𝑡 = 0) with a full allocation at some OFF
state, and they must end (at 𝑡 = 𝑇+1) with their full allocation at any OFF state.

Spatiotemporal allocation with deadline constraints. The objective of the player
is to minimize the total cost while satisfying the workload’s deadline constraint. Let
I := { 𝑓𝑡 (·)}𝑡∈[𝑇] denote an input sequence of SOAD. For a given I, the offline
version of the problem can be formulated as:

[SOAD]

min
{x𝑡 }𝑡∈[𝑇 ]

∑︁𝑇

𝑡=1
𝑓𝑡 (x𝑡)︸          ︷︷          ︸

Service cost

+
∑︁𝑇+1

𝑡=1
𝑔 (x𝑡 , x𝑡−1)︸                ︷︷                ︸

Switching cost (e.g., overhead)

s.t.
∑︁𝑇

𝑡=1
𝑐(x𝑡) ≥ 1,︸               ︷︷               ︸

Deadline constraint

x𝑡 ∈ X.
(5.1)

In the offline setting, we note that a randomized version of the above formulation,
without binary constraints, is convex, implying that it can be solved efficiently
using, e.g., iterative methods. However, our aim is to design an online algorithm
that chooses an allocation x𝑡 for each time 𝑡 without knowing future costs { 𝑓𝑡′ (·)}𝑡′>𝑡 .

Motivating applications
In this section, we give examples of applications that motivate the SOAD problem.
We are particularly motivated by an emerging class of carbon-aware sustainability
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problems that have attracted significant attention in recent years—see the first ex-
ample. SOAD also generalizes canonical online search problems such as one-way
trading [78], making it broadly applicable across domains as we discuss in detail
below. We focus on key components of each setting without exhaustively discussing
idiosyncrasies, although we mention some extensions of SOAD in each setting. We
defer a few more problem examples to Section 5.A.

Carbon-aware workload management in datacenters. Consider a delay-tolerant
compute job scheduled on a distributed network of datacenters with the goal of
minimizing the total carbon (CO2) emissions of the job. Each job arrives with a
deadline𝑇 that represents its required completion time, typically in minutes or hours.
Service costs 𝑓 (𝑢)𝑡 represent the carbon emissions of executing a workload at full
speed in datacenter 𝑢 at time 𝑡. The metric space (𝑋, 𝑑) and the spatial movement
cost 𝑑 (𝑢𝑡 , 𝑢𝑡−1) capture the carbon emissions overhead of geographically migrating a
compute workload between datacenters. The temporal switching cost ∥x𝑡−x𝑡−1∥ℓ1 (𝜷)
captures the carbon emissions overhead due to reallocation of resources (e.g., scaling
up/down) within a single datacenter [158]. Finally, the constraint function 𝑐(x𝑡)
encodes what fraction of the job is completed by a given scheduling decision x𝑡 .
The topic of shifting compute in time and space to decrease its carbon footprint
has seen significant attention in recent years [33, 155–158, 200–202], particularly
for compute needs with long time scales and flexible deadlines (e.g., ML training),
which realize the most benefits from temporal shifting. These works build on a long
line of work advancing sustainable datacenters more broadly (e.g., in terms of energy
efficiency), some of which leverage techniques from online optimization [37, 38,
164, 179–181, 203–210]. We comment that SOAD is the first online formulation that
can model the necessary combined dimensions of spatial and temporal switching
costs with deadlines. However, we also note that some aspects of this problem may
not yet be fully captured by SOAD—for instance, it might be necessary to consider
multiple concurrent batch workloads rather than a single one, resource contention,
datacenter capacity constraints, or processing delays caused by migration that are
not fully captured by the current formulation. In this sense, SOAD serves as a
building block that could accommodate extensions to consider these aspects of the
problem—we consider one such extension in Section 5.5.

Supply chain procurement. Consider a firm that must source a certain amount
of a good before a deadline 𝑇 , where the good is stored in several regional ware-
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houses [211]. Service costs 𝑓 (𝑢)𝑡 are proportional to the per unit cost of purchasing
and transporting goods from warehouse 𝑢 during time slot 𝑡. The metric space
(𝑋, 𝑑) and the spatial movement cost 𝑑 (𝑢𝑡 , 𝑢𝑡−1) capture the overhead of switching
warehouses, including, e.g., personnel costs to travel and inspect goods. The tempo-
ral switching cost ∥x𝑡 −x𝑡−1∥ℓ1 (𝜷) captures the overhead of stopping or restarting the
purchasing and transport of goods from a single warehouse. Finally, the constraint
function 𝑐(x𝑡) dictates how many goods can be shipped during time 𝑡 according to
purchasing decision x𝑡 . We note that in practice, the firm may need to purchase from
multiple warehouses concurrently—they are restricted to purchase from only one in
the strict SOAD formulation given above, but this can be relaxed without affecting
the algorithms or results that we present in the rest of the chapter.

Mobile battery storage. Consider a mobile battery storage unit (e.g., a battery
trailer [212]) that must service several discharge locations by, e.g., the end of the
day (deadline 𝑇), with the goal of choosing when and where to discharge based
on the value that storage can provide in that time and place. Service costs 𝑓

(𝑢)
𝑡

can represent the value of discharging at location 𝑢 during time slot 𝑡 (lower is
better). The metric space (𝑋, 𝑑) and the spatial movement cost 𝑑 (𝑢𝑡 , 𝑢𝑡−1) capture
the overhead (e.g., lost time or fuel cost) due to moving between locations, and
the temporal switching cost ∥x𝑡 − x𝑡−1∥ℓ1 (𝜷) captures the overhead of connecting
or disconnecting from a discharge point at a single location, including, e.g., cell
degradation due to cycling [150]. The constraint function 𝑐(x𝑡) captures how much
energy has been discharged during time 𝑡 according to decision x𝑡 . The problem of
maximizing the utility that mobile battery storage provides may be useful in, e.g.,
emergency relief situations where the main power grid has gone down. A light
extension of SOAD may capture the case where the travel time from point to point
significantly affects the feasible discharge time at the destination; such an extension
would factor any lost time into the constraint function 𝑐(x𝑡).

Background & assumptions
In this section, we provide background on the competitive analysis used throughout
the chapter and formalize our assumptions on the costs in SOAD, motivated by the
structure of applications.

Competitive analysis. We evaluate the performance of an online algorithm for
this problem via the competitive ratio [76, 145]: let OPT(I) denote the cost of an
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optimal offline solution for instance I, and let ALG(I) denote the cost incurred
by running an online algorithm ALG over the same instance. Then the competitive
ratio of ALG is defined as CR(ALG) := supI∈Ω ALG(I)/OPT(I) =: 𝜂, where Ω is the set
of all feasible inputs for the problem, and ALG is said to be 𝜂-competitive. Note
that CR(ALG) is always at least 1, and a smaller competitive ratio implies that the
online algorithm is guaranteed to be closer to the offline optimal solution. If ALG is
randomized, we replace the cost ALG(I) with the expected cost (over the randomness
of the algorithm).

Assumption 5.1. Each service cost function 𝑓𝑡 (·) satisfies bounds, i.e.,
𝑓
(𝑢)
𝑡 ∈ [𝑐(𝑢)𝐿, 𝑐(𝑢)𝑈] for all ON(𝑢) : 𝑢 ∈ 𝑋 and for all 𝑡 ∈ [𝑇], where 𝐿 and 𝑈

are known, positive constants.

This assumption encodes the physical idea that there exist upper and lower bounds
on the service cost faced by the player. 𝐿 and 𝑈 are normalized by the throughput
coefficient 𝑐(𝑎) so that they can be independent of the amount of the deadline
constraint satisfied by servicing the workload at a specific point 𝑎 ∈ 𝑋 .

Assumption 5.2. The temporal switching cost factor is bounded by 𝛽(𝑎) ≤ 𝜏𝑐(𝑎)

for all 𝑎 ∈ 𝑋 . The normalized spatial distance between any two ON states is
upper bounded by 𝐷, i.e., 𝐷 = sup𝑢,𝑣∈𝑋:𝑢≠𝑣

𝑑 (𝑢,𝑣)
min{𝑐 (𝑢) ,𝑐 (𝑣) } . Further, we assume that

𝐷 + 2𝜏 ≤ 𝑈 − 𝐿.

In SOAD, 𝜏 represents the worst-case overhead of stopping, starting, or changing
the rate of service at a single point, while 𝐷 represents the worst-case overhead
incurred by moving the allocation between the two most distant points. In, e.g., the
applications mentioned above, we typically expect 𝜏 to be much smaller than 𝐷.
Note that there are two ON states with a normalized distance greater than 𝑈 − 𝐿,
one of these states should be pruned from the metric, because moving the allocation
between them would negate any benefit to the service cost. Specifically, recall
that 𝐿 and 𝑈 give bounds on the total service cost of the workload, and consider
an example of two points 𝑢, 𝑣 that are normalized distance 𝐷′ > 𝑈 − 𝐿 apart, with
𝑐(𝑢) = 𝑐(𝑣) = 1, and 𝜏 = 0. Let the starting point 𝑢 and other point 𝑣 have service
costs that are the worst-possible and best-possible (i.e., 𝑈 and 𝐿), respectively.
Observe that if the player opts to move the allocation to 𝑣, they incur a movement
cost of 𝐷′ and a total objective of 𝐿 + 𝐷′. In contrast, if they had stayed at point 𝑢,
their total objective would be𝑈, which is < 𝐿 + 𝐷′ by assumption.
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Connections to existing models and challenges
As discussed in the related work, SOAD exhibits similarities to two long-standing
tracks of literature in online algorithms; however, SOAD is distinct from and cannot
be solved by existing models.

The first of these is the work on the classic metrical task systems (MTS) problem
introduced by Borodin et al. [76] and related forms, including smoothed online
convex optimization (SOCO) [102]. In these works, an online player makes deci-
sions with the objective of minimizing the sum of the service cost and switching
cost. However, standard algorithms for MTS/SOCO are not designed to handle the
type of long-term constraints (e.g., such as deadlines) that SOAD considers. More-
over, standard MTS and SOCO algorithms are designed to address either movement
cost over points (i.e., 𝑑 (𝑎𝑡−1, 𝑎𝑡)) or temporal switching cost (i.e., ∥x𝑡 − x𝑡−1∥ℓ1 (𝜷)).
SOAD requires a spatiotemporal allocation that considers both types of switching
costs simultaneously.

On the other hand, the one-way trading (OWT) problem introduced by El-Yaniv et
al. [78] and related online knapsack problems [168, 176] consider online optimiza-
tion with long-term constraints. To address these constraints, canonical algorithms
use techniques such as threat-based or threshold-based designs to "hedge" between
the extremes of quickly fulfilling the constraint and waiting for better opportunities
that may not materialize. However, these works do not consider switching costs and
rarely address multidimensional decision spaces.

The design of algorithms via competitive analysis for MTS/SOCO with long-term
constraints has long been an open problem, and has seen only limited progress
in a few recent works. These works have primarily leveraged techniques from
online search, generalizing unidimensional problems such as 𝑘-search [192] (see
Chapter 4) and OWT [193, 194] to additionally consider a temporal switching
cost. A recent study considered a generalization to the multidimensional case,
introducing the problem of convex function chasing with a long-term constraint
(CFL) [195]. The authors of this work propose a competitive algorithm for CFL,
although their results depend on a very specific metric structure (ℓ1 vector spaces
or weighted star metrics), which cannot be used to model the general spatial and
temporal switching costs in SOAD. Furthermore, even in the multidimensional
case, these existing works that consider switching costs and long-term constraints
assume a single source of switching costs, i.e., that the cost to switch into a state
making progress towards the long-term constraint is the same as the cost to switch
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out of that state. This type of structure and analysis fails in the SOAD setting due
to the generality of the metric (i.e., moving to a new point while “switching ON”
to complete some of the workload and “switching OFF” within the new point have
different costs).

Worst-case competitive guarantees provide robustness against non-stationarities
in the underlying environment, which may be desired for applications such as
carbon-awareness due to the demonstrated non-stationarity associated with such
signals [201]. However, algorithms that are purely optimized for worst-case guar-
antees are often overly pessimistic. To address this, we study learning-augmented
design in the SOAD setting, which brings additional challenges. For instance, ex-
isting learning-augmented results for MTS/SOCO and OWT each leverage distinct
algorithm design strategies based on different advice models that separately address
features of their problem setting (i.e., switching costs, deadline constraints). These
prior results naturally prompt questions about how to incorporate ML advice in a
performant way that can simultaneously handle the generality of the switching costs
in SOAD while ensuring that the deadline constraint is satisfied.

Preliminaries of technical foundations
In this section, we introduce and discuss techniques from different areas of the
online algorithms literature that we use in subsequent sections to address the SOAD
challenges discussed above.

Unifying arbitrary metrics. The generality of the metric space in SOAD is a key
challenge that precludes the application of algorithm design techniques from prior
work requiring specific metric structures. In classic MTS, the online player also
makes decisions in an arbitrary metric space (𝑋, 𝑑), which poses similar challenges
for algorithm design. A key result used to address this is that of Fakcharoenphol
et al. [213], who show that for any 𝑛-point metric space (𝑋, 𝑑), there exists a
probabilistic embedding into a hierarchically separated tree (HST) T = (𝑉, 𝐸)
with at most 𝑂 (log 𝑛) distortion, i.e., ET

[
𝑑 (T ) (𝑢, 𝑣)

]
≤ 𝑂 (log 𝑛)𝑑 (𝑢, 𝑣) for any

𝑢, 𝑣 ∈ 𝑋 . For MTS, this result implies that any 𝜂-competitive algorithm for MTS
on trees is immediately 𝑂 (log 𝑛)𝜂-competitive in expectation for MTS on general
𝑛-point metrics, exactly by leveraging this embedding.

To solve MTS using such a tree, Bubeck et al. [142] consider a randomized algorithm
on the leaves of T denoted by L, where the nodes of L correspond to points in 𝑋 .
This randomized metric space is given by (ΔL , W1), where ΔL is the probability



181

simplex over the leaves of T , and W1 denotes the Wasserstein-1 distance. For
two probability distributions p, p′ ∈ ΔL , the Wasserstein-1 distance is defined as
W1(p, p′) := min𝜋𝑥,𝑥′∈Π(p,p′) E [𝑑 (𝑥, 𝑥′)], where Π(p, p′) is the set of transport dis-
tributions over L2 with marginals p and p′. A randomized algorithm that produces
marginal distributions p ∈ ΔL then couples consecutive decisions according to the
optimal transport plan 𝜋𝑥,𝑥′ defined by Wasserstein-1. Bubeck et al. [142] further
show that (ΔL , W1) is bijectively isometric to a convex set 𝐾 with a weighted ℓ1

norm ∥ · ∥ℓ1 (w) based on edge weights in the tree.

Metric tree embedding for SOAD. Prior approaches by Fakcharoenphol et al. [213]
and Bubeck et al. [142] are able to manage the spatial movement cost from moving
allocation between points. To further accommodate the temporal switching cost
between ON and OFF states within a single point, we develop a probabilistic tree
embedding T = (𝑉, 𝐸) and the corresponding vector space (𝐾, ∥ · ∥ℓ1 (w)) in the
following Definition 5.2.1 and Definition 5.2.2, respectively.

Definition 5.2.1 (Probabilistic tree embedding T = (𝑉, 𝐸) for SOAD). Let (𝑋, 𝑑)
denote the underlying metric space over 𝑛 points, and let T ′ denote an HST con-
structed on the points of 𝑋 according to the method by Fakcharoenphol et al. [213].
Label the leaves of T ′ according to the 𝑛 ON states, one for each point. Then the
final tree T is constructed by adding 𝑛 edges and 𝑛 nodes to just the leaves of
T ′—each new node represents the corresponding OFF state at that point, and the
new edge is weighted according to the temporal switching cost at that point (i.e.,
𝛽(𝑢)). The resultant “state set” S includes both the leaves of T (OFF states) and
their immediate predecessors (ON states).

Figure 5.1: An illustration of the probabilistic tree embedding (Definition 5.2.1) for
the motivating application. Points in the metric are represented as pairs of circles
on the left. On the right, the first three levels of the tree approximate the metric
space (𝑋, 𝑑) [213], and the last level captures the ON / OFF structure of SOAD.
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Note that T preserves distances between the points of 𝑋 with expected 𝑂 (log 𝑛)
distortion, while the switching cost between ON and OFF states at a single point is
preserved exactly. Our competitive algorithm (see Section 5.3) operates in a convex
subset of a vector space constructed according to this HST embedding.

Definition 5.2.2 (Vector space (𝐾, ∥ · ∥ℓ1 (w))). Given a hierarchically separated tree
T = (𝑉, 𝐸) constructed according to Definition 5.2.1, with root 𝑟 ∈ 𝑉 , state set
S ⊆ 𝑉 , and leaf set L ⊂ S, let 𝑃(𝑢) denote the parent of any node 𝑢 ∈ 𝑉 \ 𝑟.
Construct the following set:

𝐾 :=


k ∈ R|𝑉 |

����������
k(𝑟) = 1,

k(𝑢) =
∑︁

𝑣:𝑃 (𝑣)=𝑢

k(𝑣) for all 𝑢 ∈ 𝑉 \ L,

k(𝑢) ∈ [0, 1] for all 𝑢 ∈ S


.

Let w be a non-negative weight vector on vertices of T , where w(𝑟) = 0 and
w(𝑢) > 0 for all 𝑢 ∈ 𝑉 \ 𝑟. Recall that the edges of T are weighted—we let w(𝑢)

denote the weight of edge {𝑃(𝑢) , 𝑢}, and define a weighted ℓ1 norm as ∥k∥ℓ1 (w) :=∑
𝑢∈𝑉 w(𝑢) |k(𝑢) |, for any k ∈ 𝐾 . Finally, we define a linear map from ΔS to 𝐾 (and

its corresponding inverse), given by a matrix map Φ : R2𝑛 → R|𝑉 |. We let 𝐴(𝑢)

denote the set of node 𝑢’s ancestors in T , and (with a slight abuse of notation) let
S(𝑖) : {1, . . . , 2𝑛} → S and 𝐾 (𝑖) : {1, . . . , |𝑉 |} → 𝑉 denote indexing maps that
recover the object in S or 𝑉 , respectively. Then Φ ∈ R|𝑉 |×2𝑛 and Φ−1 ∈ R2𝑛×|𝑉 | are
defined as

Φ𝑖, 𝑗 :=



1 if 𝐾 (𝑖) = 𝑟

1 if 𝐾 (𝑖) = S( 𝑗)

1 if 𝐾 (𝑖) ∈ S and 𝑃(S( 𝑗)) = 𝐾 (𝑖)

1 if 𝐾 (𝑖) ∈ 𝑉 \ S and 𝐾 (𝑖) ∈ 𝐴(S( 𝑗))

0 otherwise

and

Φ−1
𝑖, 𝑗 :=


1 if S(𝑖) = 𝐾 ( 𝑗)

−1 if 𝐾 ( 𝑗) ∈ L and 𝑃(𝐾 ( 𝑗)) = S(𝑖)

0 otherwise.

In words, Φ maps a distribution over ΔS to the corresponding vector in 𝐾 by
accumulating probability mass upwards from the leaves of T towards the root. Φ−1
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reverses this by selecting the appropriate indices for 𝑢 ∈ S from 𝐾 , and recovers
probabilities by subtracting the mass at the OFF state from the ON state (since the
OFF state is a leaf, the ON state accumulates its probability in 𝐾).

Randomized algorithm for SOAD. We define some shorthand notation. For a
decision k ∈ 𝐾 , p = Φ−1k gives a corresponding probability distribution on ΔS .
Note that X ⊂ ΔS ⊂ R2𝑛, and by linearity of expectation, the service and constraint
functions 𝑓𝑡 (·), 𝑐(·) : X → R remain well-defined (in expectation) on ΔS . Within
𝐾 , we let 𝑓 𝑡 (k) = 𝑓𝑡 (Φ−1k) and 𝑐(k) = 𝑐(Φ−1k). For a given starting point 𝑠 ∈ 𝑋 ,
we slightly abuse notation and let 𝛿𝑠 ∈ ΔS denote the Dirac measure supported at
OFF(𝑠) . Recall that the SOAD formulation specifies an allocation that is discrete
in terms of choosing a point in the metric, and fractional in terms of the resource
allocation at a given point. To capture this structure while using the embedding
results discussed above, we consider a mixed setting that is probabilistic in spatial
assignment but deterministic in the ON / OFF allocation. We state the equivalence of
this setting and the fully probabilistic one below, deferring the proof to Section 5.C.

Theorem 5.2.3. For a randomized SOAD decision p𝑡 ∈ ΔS , the expected cost
is equivalent if a point in 𝑋 is first chosen probabilistically and the ON / OFF
probabilities at that point are interpreted as (deterministic) fractional allocations.

Enforcing a deadline constraint using pseudo-cost. Existing algorithms for
MTS-type problems are not designed to handle a deadline constraint while re-
maining competitive. For SOAD, we draw from the pseudo-cost minimization [176]
approach for online search problems, where the player is subject to a long-term
buying/selling constraint that poses similar algorithmic challenges.

Under the pseudo-cost framework, we start by assuming that a mandatory allocation
condition exists to strictly enforce the deadline constraint. Let 𝑧(𝑡) denote the fraction
of the deadline constraint satisfied (in expectation) up to time 𝑡 (we henceforth call
this the utilization). To avoid violating the constraint, a mandatory allocation begins
at time 𝑗 , as soon as (𝑇 − ( 𝑗 + 1))𝑐(𝑢) < (1− 𝑧( 𝑗)) ∀𝑢 ∈ 𝑋 , i.e., when the remaining
time after the current slot would be insufficient to satisfy the constraint. Note that in
practice, 𝑧( 𝑗) would be replaced by the actual constraint satisfaction so far. During
the mandatory allocation, a cost-agnostic player takes control and makes maximal
allocation decisions to ensure the workload is finished before the deadline.
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Intuitively, the mandatory allocation complicates competitive analysis—in the worst-
case, an adversary can present the worst service cost (𝑈) during the final steps. The
key idea behind pseudo-cost minimization is to rigorously characterize a tradeoff
between completing the constraint “too early” and waiting too long (i.e., risking
a mandatory allocation) using a pseudo-cost function. Such a function takes the
lower and upper bounds on service cost (i.e., 𝐿 and𝑈) as parameters, and assigns a
pseudo-cost to each increment of progress towards the constraint. In an algorithm,
this function is used by solving a small minimization problem at each step, whose
objective considers the true cost of a potential decision and an integral over the
pseudo-cost function—generating decisions using this technique creates a connec-
tion between the utilization and the best service cost encountered throughout the
sequence, ensuring that the algorithm completes “exactly enough” of the constraint
before mandatory allocation in order to achieve a certain competitive ratio against
the best service cost, which is a lower bound on OPT. We also note that in the
learning-augmented setting, the pseudo-cost minimization problem can be com-
bined with a consistency constraint, as shown by [195], to integrate certain forms
of advice without losing the robust (i.e., competitive) qualities of the pseudo-cost.

5.3 PCM: A Competitive Online Algorithm
This section presents a randomized competitive algorithm for SOAD that leverages
the metric tree embeddings and pseudo-cost minimization design discussed above
in Section 5.2. We further show that our algorithm achieves a competitive ratio that
is optimal for SOAD up to log factors.

Algorithm description
We present a randomized pseudo-cost minimization algorithm (PCM) in Algo-
rithm 10. PCM operates on the metric space (𝐾, ∥ · ∥ℓ1 (w)) defined in Definition
5.2.2 and extends the original pseudo-cost minimization framework [176] to ad-
dress the setting where the decision space is given by an arbitrary convex set 𝐾 with
distances given by ∥ · ∥ℓ1 (w) .

We define a pseudo-cost function 𝜓(𝑧) : [0, 1] → [𝐿,𝑈], where 𝑧 is the utiliza-
tion (i.e., the completed fraction of the deadline constraint in expectation). Our
construction of 𝜓 takes advantage of additional structure in the SOAD setting—this
function depends on the parameters of the SOAD problem, including 𝑈, 𝐿, 𝐷, and
𝜏 specified in Assumptions 5.1 and 5.2.
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Algorithm 10: Pseudo-cost minimization algorithm for SOAD (PCM)
Input: constraint function 𝑐(·), convex set 𝐾 with distance metric ∥·∥ℓ1 (w) ,

pseudo-cost function 𝜓(𝑧), starting OFF state 𝑠 ∈ S.
1 initialize: 𝑧 (0) = 0; k0 = Φ𝛿𝑠; p0 = 𝛿𝑠.
2 while cost function 𝑓𝑡 (·) is revealed and 𝑧 (𝑡−1) < 1 do
3 Solve pseudo-cost minimization problem:

k𝑡 = arg min
k∈𝐾 :𝑐 (k)≤1−𝑧 (𝑡−1)

𝑓 𝑡 (k) + ∥k − k𝑡−1∥ℓ1 (w) −
∫ 𝑧 (𝑡−1)+𝑐 (k)

𝑧 (𝑡−1)
𝜓(𝑢)𝑑𝑢, (5.2)

p𝑡 = Φ−1k𝑡 . (5.3)

Update utilization 𝑧 (𝑡 ) = 𝑧 (𝑡−1) + 𝑐(p𝑡 ).
4 end

Definition 5.3.1 (Pseudo-cost function 𝜓 for SOAD). For a given parameter 𝜂 > 1,
the pseudo-cost function is defined as 𝜓(𝑧) = 𝑈 − 𝜏+ (𝑈/𝜂−𝑈 +𝐷 + 𝜏) exp(𝑧/𝜂), 𝑧 ∈
[0, 1].

Given the pseudo-cost function from Definition 5.3.1, PCM solves a minimization
problem (5.2) at each step 𝑡 to generate a decision k𝑡 ∈ 𝐾; the objective of this
problem is to minimize a combination of the per-step cost plus a pseudo-cost term
that encourages (deadline) constraint satisfaction. At a high level, the 𝜓 term
enforces that k𝑡 satisfies “exactly enough” of the deadline constraint (in expectation)
to make adequate progress and maintain an expected competitive ratio of 𝜂 against
the current estimate of OPT, without “overbuying” and preventing better costs from
being considered in the future. At a glance, it is not obvious that the pseudo-
cost minimization problem is straightforward to actually solve in practice. In the
following, we show that (5.2) is a convex minimization problem.

Theorem 5.3.2. Under the assumptions of SOAD, the pseudo-cost minimization
(5.2) is a convex minimization problem.

We defer the proof of Theorem 5.3.2 to Section 5.D. At a high-level, the result
implies that the solution to (5.2) can be found efficiently using convex programming
techniques [214, 215]. Compared to prior works [176, 195], our design of 𝜓
differentiates between the spatial movement cost and temporal switching cost (in
particular, 𝐷 only appears within the exponential, while 𝜏 appears inside and outside
of the exponential term). This removes a source of pessimism—when PCM makes
a decision to move to a distant point in the metric (i.e., paying a worst-case factor of
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𝐷), it can safely assume that it will only have to pay a factor of 𝜏 to switch OFF if the
next cost function is bad. This allows PCM to take advantage of spatially distributed
OFF states, where all of the existing works that use a pseudo-cost paradigm for
temporal load-shifting cannot.

We note that PCM’s decisions in𝐾 are marginal probability distributions overΔS; we
now briefly detail how feasible deterministic decisions inX are extracted from these
outputs. We assume the player interprets distributions according to a mixed random
/ fractional setting (see Theorem 5.2.3), allowing them to make fractional resource
allocation decisions within a single point while the allocation is probabilistically
assigned to a single point. At each timestep, PCM generates p𝑡 ∈ ΔS . We let
r𝑡 := {𝑟 (𝑢)𝑡 ← 𝑝ON

(𝑢)
𝑡 + 𝑝OFF(𝑢)𝑡 : 𝑢 ∈ 𝑋} aggregate the ON / OFF probabilities at each

location of 𝑋 . Given this spatial distribution over 𝑋 , consecutive decisions should
be jointly distributed according to the optimal transport plan between r𝑡−1 and r𝑡 ,
given by (r𝑡 , r𝑡−1) ∼ 𝜋𝑡 := arg min𝜋∈Π(r𝑡 ,r𝑡−1) E [𝑑 (𝑢𝑡 , 𝑢𝑡−1)], where (𝑢𝑡 , 𝑢𝑡−1) ∼ 𝜋𝑡

and Π(r𝑡 , r𝑡−1) is the set of distributions over 𝑋2 with marginals r𝑡 and r𝑡−1. If
the decision-maker couples decisions according to 𝜋𝑡 , then the expected spatial
movement cost of the deterministic decisions is equivalent toW1(r𝑡 , r𝑡−1), the spatial
Wasserstein-1 distance between r𝑡 and r𝑡−1. Given a previous deterministic point
assignment 𝑢𝑡−1, the player can obtain the point assignment 𝑢𝑡 by sampling through
the conditional distribution 𝜋𝑡 (𝑢𝑡 |𝑢𝑡−1). The fractional ON / OFF allocation in x𝑡 at
the chosen location 𝑢𝑡 ∈ 𝑋 is then given by 𝑝ON

(𝑢)
𝑡 /𝑟 (𝑢)𝑡 and 𝑝OFF

(𝑢)
𝑡 /𝑟 (𝑢)𝑡 , respectively; by

Theorem 5.2.3, this gives that E [𝑔(x𝑡 , x𝑡−1)] = W1(p𝑡 , p𝑡−1).

Main results
In Theorem 5.3.3, we state a bound on the competitive ratio of PCM.

Theorem 5.3.3. Under Assumptions 5.1 and 5.2, PCM is𝑂 (log 𝑛)𝜂-competitive for
SOAD, where 𝜂 is the solution to ln

(
𝑈−𝐿−𝐷−2𝜏
𝑈−𝑈/𝜂−𝐷

)
= 1

𝜂
and given by:

𝜂 :=

[
𝑊

(
(𝐷 + 𝐿 −𝑈 + 2𝜏) exp

(
𝐷−𝑈
𝑈

)
𝑈

)
+ 𝑈 − 𝐷

𝑈

]−1

, (5.4)

where𝑊 is the Lambert𝑊 function [216], and the𝑂 (log 𝑛) factor is due to the tree
embedding [213].

Compared to previous works such as MTS and OWT, the competitive bound in
Theorem 5.3.3 compares favorably. In particular, the upper bound is better than
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one might expect from, e.g., combining the bounds of MTS and OWT. For the
minimization variant of OWT, the optimal competitive ratio due to Lorenz et al. [79]
is

[
𝑊

(
(1/𝜃 − 1) 𝑒−1) + 1

]−1, where 𝜃 is defined as 𝑀/𝑚, and 𝑀 ≥ 𝑚 are bounds on
the prices (i.e., (𝑚, 𝑀) ≈ (𝐿,𝑈)). For MTS, the randomized state-of-the-art due
to Bubeck et al. [142] is 𝑂 (log2 𝑛). Asymptotically, compared to both of these
bounds, 𝜂 “loses” a log factor depending on the number of points in the metric, and
it is known that 𝑊 (𝑥) ∼ ln(𝑥) as 𝑥 → ∞ [172, 173]. Compared to OWT, 𝜂 adds
a dependency on 𝐷 and 𝜏, parameters describing the cost due to the metric and
switching, but we note that Assumption 5.2 (i.e., bounds on 𝐷 and 𝜏 in terms of 𝑈
and 𝐿) prevents the competitive ratio from significantly increasing.

Given the result in Theorem 5.3.3, a natural question is whether any online algorithm
for SOAD can achieve a better competitive bound. We answer this in the negative,
showing that PCM’s competitive ratio is the best achievable up to log factors that
are due to the metric embedding. In particular, we show a class of difficult instances
on which no algorithm can achieve a competitive ratio better than 𝜂; since the
definition of the competitive ratio covers all valid inputs, this gives a corresponding
lower bound on the competitive ratio of any algorithm for SOAD.

Theorem 5.3.4. For any𝑈, 𝐿, 𝜏, and 𝐷 ∈ [0, (𝑈 − 𝐿)), there exists a set of SOAD
instances on a weighted star on which no algorithm ALG can achieve ALG/OPT better
than 𝜂 (for 𝜂 defined in (5.4)).

Proof overviews
We give proof sketches of Theorems 5.3.3 and 5.3.4, relegating the full proofs of
both to Section 5.D.

Proof Sketch of Theorem 5.3.3. To show this result, we give two lemmas to
characterize the cost of OPT and the expected cost of PCM, respectively. First, note
that the solution given by PCM is feasible, by definition of the mandatory allocation
(i.e.,

∑𝑇
𝑡=1 𝑐(p𝑡) = 1). On an arbitrary SOAD instance I ∈ Ω, we denote the final

utilization (before the mandatory allocation) by 𝑧( 𝑗) .

Lemma 5.3.5. The offline optimum is lower bounded by OPT(I) ≥ max{𝜓(𝑧 ( 𝑗 ) )−𝐷,𝐿}
𝑂 (log 𝑛) .

We can show by contradiction that for any instance, the definition of the pseudo-cost
minimization enforces that 𝜓(𝑧( 𝑗)) − 𝐷 is a lower bound on the best service cost
seen in the sequence (see (5.12)). Note that the best choice for OPT is to service the
entire workload at the minimum cost (if it is feasible). This yields a corresponding
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lower bound on OPT—formally, OPT(I) ≥ max{𝜓(𝑧 ( 𝑗 ) )−𝐷, 𝐿}/𝑂 (log 𝑛), where the log
factor appears due to the distortion in the metric tree embedding.

Lemma 5.3.6. PCM’s expected cost is bounded by E[PCM(I)] ≤
∫ 𝑧 ( 𝑗 )

0 𝜓(𝑢)𝑑𝑢+ (1−
𝑧( 𝑗))𝑈 + 𝜏𝑧( 𝑗) .

The definition of the pseudo-cost provides an automatic bound on the expected cost
incurred during any timestep where progress is made towards the deadline constraint
(i.e., whenever the service cost is non-zero).

We show that 𝜏𝑧( 𝑗) is an upper bound on the excess cost that can be incurred by PCM
in the other timesteps (i.e., due to temporal switching costs, see (5.13)). Summing
over all timesteps, this gives that the expected cost of PCM is upper bounded by∫ 𝑧 ( 𝑗 )

0 𝜓(𝑢)𝑑𝑢+(1−𝑧
( 𝑗))𝑈+𝜏𝑧( 𝑗) , where (1−𝑧( 𝑗))𝑈 is due to the mandatory allocation.

Combining the two lemmas and using the definition of the pseudo-cost function
to observe that

∫ 𝑧 ( 𝑗 )

0 𝜓(𝑢)𝑑𝑢 + (1 − 𝑧
( 𝑗))𝑈 + 𝜏𝑧( 𝑗) ≤ 𝜂

[
𝜓(𝑧( 𝑗)) − 𝐷

]
(see (5.14))

completes the proof.

Proof Sketch of Theorem 5.3.4. In Definition 5.D, we define a class of 𝑦-
adversaries denoted by G𝑦 and A𝑦 for 𝑦 ∈ [𝐿,𝑈], along with a corresponding
weighted star metric 𝑋 that contains 𝑛 points, each with 2 states (ON and OFF),
where the distance between any two points in the metric is exactly 𝐷. These adver-
saries present cost functions at the ON states of X in an adversarial order that forces
an online algorithm to incur a large switching cost. The G𝑦 adversary presents a cost
function at each step that is “bad” (i.e.,𝑈) in all ON states except for one which is not
at the starting point or the current state of online algorithm ALG. The A𝑦 adversary
starts by exactly mimickingG𝑦 and presenting “good” cost functions at distant points,
before eventually presenting “good” cost functions at the starting point. Both ad-
versaries present “good” cost functions in an adversarial non-increasing order, such
that the optimal solutions approach 𝑦—formally, OPT(G𝑦) → min{𝑦 + 𝐷 + 𝜏,𝑈},
and OPT(A𝑦) → 𝑦. By competing against both adversaries simultaneously, this
construction captures a tradeoff between being too eager/reluctant to move away
from the starting point.

Under this special metric and class of adversaries, the cost of any (potentially
randomized) online algorithm ALG can be fully described by two arbitrary constraint
satisfaction functions 𝑠(𝑦), 𝑡 (𝑦) : [𝐿,𝑈] → [0, 1] (see (5.16)), where each function
corresponds to one of two stages of the adversary (i.e., “good” cost functions
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arriving at spatially distant points, or at the starting point). For ALG to be 𝜂★-
competitive (where 𝜂★ is unknown), we give corresponding conditions on 𝑠(𝑦) and
𝑡 (𝑦) expressed as differential inequalities (see (5.17)). By applying Grönwall’s
Inequality [217, Theorem 1, p. 356], this gives a necessary condition such that 𝜂★

must satisfy: 𝜂★ ln
(
𝑈−𝐿−𝐷−2𝜏
𝑈−𝑈/𝜂★−𝐷

)
− 𝜂★𝐷+𝜂★2𝜏

𝑈/𝜂★−𝑈+𝐷 ≤ 𝑠(𝐿) ≤ 1 − 𝑡 (𝐿) ≤ 1 − 𝜂★𝐷+𝜂★2𝜏
𝑈/𝜂★−𝑈+𝐷 .

The optimal 𝜂★ is obtained by solving for the transcendental equation that arises
when the inequalities are binding, yielding the result.

5.4 ST-CLIP: A Learning-Augmented Algorithm
In this section, we consider how a learning-augmented algorithm for SOAD can
leverage untrusted advice to improve on the average-case performance of PCM while
retaining worst-case guarantees. For learning-augmented algorithms, competitive
ratio is interpreted via the notions of consistency and robustness [69, 70]. Letting
ALG denote a learning-augmented online algorithm provided with advice denoted
by Adv, ALG is said to be 𝛼-consistent if it is 𝛼-competitive with respect to Adv,
and 𝛾-robust if it is 𝛾-competitive with respect to OPT when given any advice (i.e.,
regardless of Adv’s performance). We present ST-CLIP (see Algorithm 11), which
uses an adaptive optimization-based approach combined with the robust design of
PCM to achieve an optimal consistency-robustness tradeoff. We start by formally
defining the advice model we use below.

Definition 5.4.1 (Black-box advice model for SOAD). For a given SOAD instance
I ∈ Ω, we let Adv(I) denote untrusted black-box decision advice, i.e., Adv(I) :=
{a𝑡 ∈ ΔS : 𝑡 ∈ [𝑇]}. If Adv is correct, a player that plays a𝑡 at each step attains
the optimal solution (Adv(I) = OPT(I)).

Although a𝑡 is defined on the probability simplex ΔS , a deterministic Adv at time
𝑡 is given by combining the Dirac measure supported at a point and a specific ON /
OFF allocation. We henceforth assume that Adv is feasible, satisfying the constraint
(
∑𝑇
𝑡=1 𝑐(a𝑡) ≥ 1).

While it is not obvious a machine learning model could directly provide such
feasible predictions, in practice, we leverage the black-box nature of the definition to
combine, e.g., machine-learned predictions of relevant costs with a post-processing
pipeline that solves for a predicted optimal solution (see Section 5.6).
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ST-CLIP: an optimal learning-augmented algorithm
We present ST-CLIP (spatiotemporal consistency-limited pseudo-cost minimiza-
tion, Algorithm 11), which obtains a near-optimal robustness-consistency tradeoff
for SOAD (Theorem 5.4.4).

ST-CLIP takes a hyperparameter 𝜀 ∈ (0, 𝜂 − 1], which parameterizes a tradeoff
between following the untrusted advice (𝜀 → 0) and prioritizing robustness (𝜀 →
𝜂 − 1). We start by defining a target robustness factor 𝛾 (𝜀) , which is the unique
solution to the following equation:

𝛾 (𝜀) = 𝜀 + 𝑈
𝐿
− 𝛾

(𝜀) (𝑈 − 𝐿 + 𝐷)
𝐿

ln
(
𝑈 − 𝐿 − 𝐷 − 2𝜏

𝑈 − 𝑈/𝛾 (𝜀) − 𝐷 − 2𝜏

)
. (5.5)

We note that 𝛾 (𝜀→0) → 𝑈/𝐿, which is a trivial competitive ratio for any mandatory
allocation scheme (i.e., if the entire constraint is satisfied at the deadline for the
worst price 𝑈). The precise value of 𝛾 (𝜀) originates from a robustness-consistency
lower bound (Theorem 5.4.4), and ST-CLIP uses it to define a pseudo-cost function
𝜓 (𝜀) that enforces 𝛾 (𝜀)-robustness in its decisions.

Definition 5.4.2 (Pseudo-cost function 𝜓 (𝜀) for SOAD). For 𝜌 ∈ [0, 1] and 𝛾 (𝜀)

given by (5.5), let 𝜓 (𝜀) (𝜌) be defined as: 𝜓 (𝜀) (𝜌) = 𝑈 + 𝐷 − 𝜏 + (𝑈+𝐷/𝛾 (𝜀) −𝑈 +
𝐷 + 𝜏) exp(𝜌/𝛾 (𝜀)).

Similarly to PCM (see Section 5.3), 𝜓 (𝜀) is used in a minimization problem solved
at each timestep to obtain a decision. However, since ST-CLIP must also consider
the actions of Adv, it follows the consistency-limited pseudo-cost minimization
paradigm, which places a consistency constraint on the aforementioned minimiza-
tion. This constraint enforces that ST-CLIP always satisfies (1 + 𝜀)-consistency,
which is salient when Adv is close to optimal. Within this feasible set, the pseudo-
cost minimization drives ST-CLIP towards decisions that are “as robust as possible.”

Additional challenges in algorithm design. In contrast to prior applications of
the CLIP technique [195], the SOAD setting introduces a disconnect between the
advice and the robust algorithm (e.g., PCM); specifically, Adv furnishes decisions
that are supported on the (randomized) metric ΔS , while PCM makes decisions
on the tree metric given by (𝐾, ∥ · ∥ℓ1 (w)). Since the CLIP technique effectively
“combines” Adv with a robust algorithm, this poses a challenge in the SOAD
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setting, introducing a 𝑂 (log 𝑛) dependency in the consistency bound.1 With ST-
CLIP (see Algorithm 11), we carefully decouple the “advice side” and the “robust
side” of the CLIP technique to achieve a (1 + 𝜀)-consistency bound. While an
𝑂 (log 𝑛) factor is likely unavoidable on arbitrary metrics in the adversarial setting
of robustness (e.g., as is the case for metrical task systems [142, 177]), the non-
adversarial setting of consistency (i.e., when advice is correct) implies that such
a factor should be avoidable. Furthermore, removing a factor of 𝑂 (log 𝑛) allows
ST-CLIP to achieve consistency arbitrarily close to 1, which is often desirable in
practice when the advice is often of high quality.

To accomplish this decoupling, ST-CLIP uses the pseudo-cost minimization defined
in (5.6) to generate intermediate “robust decisions” (k𝑡 ∈ 𝐾) on the tree embedding
(see Definition 5.2.1). These decisions are converted into marginal probability dis-
tributions on the underlying simplex (i.e., p𝑡 ∈ ΔS) before evaluating the consistency
constraint. Since Adv also specifies decisions on ΔS , this decoupling allows the
constraint to directly compare the running cost of ST-CLIP and Adv, without losing
a log(𝑛) factor due to the tree embedding. To hedge against worst-case scenarios
that might cause ST-CLIP to violate the desired (1+𝜀)-consistency, the consistency
constraint in (5.7) extrapolates the cost of such scenarios on the randomized decision
space ΔS .

Notation. We introduce some shorthand notation to simplify the algorithm’s
pseudocode as follows: we let SC𝑡 denote the expected cost of ST-CLIP’s decisions
up to time 𝑡, i.e., SC𝑡 :=

∑𝑡
𝑗=1 𝑓 𝑗 (p 𝑗 ) +W1(p 𝑗 , p 𝑗−1), and similarly let Adv𝑡 denote

the (expected) cost of the advice up to time 𝑡: Adv𝑡 :=
∑𝑡
𝑗=1 𝑓 𝑗 (a 𝑗 ) +W1(a 𝑗 , a 𝑗−1).

As 𝑧(𝑡) denotes the utilization of ST-CLIP, we let 𝐴(𝑡) denote the utilization of Adv
at time 𝑡 (i.e., the expected fraction of the deadline constraint satisfied by Adv so far).
In addition, ST-CLIP also keeps track of a robust pseudo-utilization 𝜌(𝑡) ∈ [0, 1];
this term describes the portion of its decisions thus far that are attributable to the
robust pseudo-cost minimization, and we have 𝜌(𝑡) ≤ 𝑧(𝑡) for all 𝑡 ∈ [𝑇]. This
quantity is updated according to the k𝑡 that solves an unconstrained minimization
in (5.8), ensuring that when Adv has incurred a “bad” service cost that would
otherwise not be considered by the robust algorithm, the pseudo-cost 𝜓 (𝜀) maintains
some headroom to accept better service costs that might arrive in the future.

1Directly applying the CLIP technique to the (𝐾, ∥ · ∥ℓ1 (w) ) decision space considered in PCM
yields an unremarkable consistency upper bound of 𝑂 (log 𝑛) (1+ 𝜀), due to the distortion in the tree
metric.
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Consistency constraint intuition. Within the constraint (5.7), ST-CLIP encodes
several “worst-case” scenarios that threaten the desired consistency bound. The
first three terms on the left-hand side and the Adv𝑡 term on the right-hand side
consider the actual cost of ST-CLIP and Adv so far, along with the current decision
under consideration, where the expected switching cost is captured by the optimal
transport plan with respect to the previous decision.

The W1(p, a𝑡) term on the left-hand side charges ST-CLIP in advance for the
expected movement cost between it and the advice—the reasoning for this term is
to hedge against the case where the constraint becomes binding in future steps, thus
requiring ST-CLIP to move and follow Adv. If the constraint did not charge for
this potential movement cost in advance, a binding constraint in future timesteps
might result in either an infeasible problem or a violation of (1 + 𝜀)-consistency.
The 𝜏𝑐(a𝑡) term on both sides charges both Adv and ST-CLIP in advance for the
temporal switching cost they must incur before the deadline—ST-CLIP is charged
according to a𝑡 (as opposed to p𝑡) to continue hedging against the case where it must
move to follow the advice in future timesteps, finally paying 𝜏𝑐(a𝑡) to switch OFF
at the deadline.

On the right-hand side, the (1 − 𝐴(𝑡))𝐿 term assumes that Adv can satisfy the
remaining deadline constraint at the best marginal service cost 𝐿. In contrast,
the final terms on the left-hand side (1 − 𝑧(𝑡−1) − 𝑐(p))𝐿 + max((𝐴(𝑡) − 𝑧(𝑡−1) −
𝑐(p)), 0) (𝑈 − 𝐿) balance between two scenarios—namely, they assume that ST-
CLIP can satisfy a fraction of the remaining constraint (up to (1 − 𝐴(𝑡))) at the best
cost by following Adv, but any excess beyond this (given by (𝐴(𝑡) − 𝑧(𝑡))), must be
fulfilled at the worst service cost𝑈, possibly during a mandatory allocation.

At a high level, ST-CLIP’s constraint on ΔS combined with the pseudo-cost min-
imization on (𝐾, ∥ · ∥ℓ1 (w)) generates decisions that are maximally robust while
preserving consistency.

Main results
In Theorem 5.4.3, we give upper bounds on the robustness and consistency of
ST-CLIP.

Theorem 5.4.3. For any 𝜀 ∈ (0, 𝜂 − 1], ST-CLIP is (1 + 𝜀)-consistent and
𝑂 (log 𝑛)𝛾 (𝜀)-robust for SOAD, where 𝛾 (𝜀) is the solution to (5.5).
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Algorithm 11: ST-CLIP (spatiotemporal consistency-limited pseudo-cost min-
imization) for SOAD
Input: Consistency parameter 𝜀, constraint function 𝑐(·), pseudo-cost 𝜓 (𝜀) (·), starting

OFF state 𝑠 ∈ S.
1 initialize:
𝑧 (0) = 0; 𝜌 (0) = 0; 𝐴(0) = 0; SC0 = 0; Adv0 = 0; k0 = Φ𝛿𝑠; p0 = a0 = 𝛿𝑠.

2 while cost function 𝑓𝑡 (·) is revealed, untrusted advice a𝑡 is revealed, and 𝑧 (𝑡−1) < 1 do
3 Update advice cost Adv𝑡 ← Adv𝑡−1 + 𝑓𝑡 (a𝑡 ) +W1(a𝑡 , a𝑡−1) and advice utilization

𝐴(𝑡 ) ← 𝐴(𝑡−1) + 𝑐(a𝑡 ).
4 Solve the constrained pseudo-cost minimization problem:

k𝑡 = arg min
k∈𝐾 :𝑐 (k)≤1−𝑧 (𝑡−1)

𝑓 𝑡 (k) + ∥k − k𝑡−1∥ℓ1 (w) −
∫ 𝜌(𝑡−1)+𝑐 (k)

𝜌(𝑡−1)
𝜓 (𝜀) (𝑢) 𝑑𝑢 (5.6)

such that p← Φ−1k and
SC𝑡−1 + 𝑓𝑡 (p) +W1(p, p𝑡−1) +W1(p, a𝑡 ) + 𝜏𝑐(a𝑡 )
+ (1 − 𝑧 (𝑡−1)− 𝑐(p))𝐿 +max{𝐴(𝑡 )− 𝑧 (𝑡−1)− 𝑐(p), 0}(𝑈 − 𝐿)
≤ (1 + 𝜀) [Adv𝑡 + 𝜏𝑐(a𝑡 ) + (1 − 𝐴(𝑡 ) )𝐿] . (5.7)

5 Update running cost SC𝑡 ← SC𝑡−1 + 𝑓𝑡 (p𝑡 ) +W1(p𝑡 , p𝑡−1) and utilization
𝑧 (𝑡 ) ← 𝑧 (𝑡−1) + 𝑐(p𝑡 ).

6 Solve the unconstrained pseudo-cost minimization problem:

k̃𝑡 = arg min
k∈𝐾 :𝑐 (k)≤1−𝑧 (𝑡−1)

𝑓 𝑡 (k) + ∥k − k𝑡−1∥ℓ1 (w) −
∫ 𝜌(𝑡−1)+𝑐 (k)

𝜌(𝑡−1)
𝜓 (𝜀) (𝑢) 𝑑𝑢 (5.8)

7 Update the robust pseudo-utilization 𝜌 (𝑡 ) ← 𝜌 (𝑡−1) +min{𝑐(k̃𝑡 ), 𝑐(p𝑡 )}.
8 end

Furthermore, we give a lower bound on the best achievable robustness ratio for any
(1 + 𝜀)-consistent algorithm, using a construction of a challenging metric space
and service cost sequence. Since robustness and consistency are defined over all
valid inputs (i.e., based on competitive ratio), this result characterizes the optimal
robustness-consistency tradeoff, and implies that ST-CLIP matches the optimal up
to log factors that are due to the metric embedding.

Theorem 5.4.4. Given untrusted advice Adv and 𝜀 ∈ (0, 𝜂 − 1], any (1 + 𝜀)-
consistent learning-augmented algorithm for SOAD is at least 𝛾 (𝜀)-robust, where
𝛾 (𝜀) is defined in (5.5).

Learning-augmentation and robustness-consistency tradeoffs have been previously
considered in both MTS and OWT; we briefly review how Theorem 5.4.4 compares.
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For MTS, Christianson et al. [177] show that for 𝜀 ∈ (0, 1], any (1 + 𝜀)-consistent
algorithm must be 2Ω(1/𝜀)-robust (see Chapter 3). While optimal tradeoffs for the
minimization variant of OWT have not been studied, Sun et al. [167] show that any
𝛾-robust algorithm must be 𝜃/[𝜃/𝛾 + (𝜃 − 1) (1 − 1/𝛾 ln(𝜃−1/𝛾−1))]-consistent in the
maximization case, where 𝜃 = 𝑈/𝐿 is the price bound ratio. While these bounds are
not directly comparable, it is notable that the extra structure of SOAD allows it to
avoid the exponential robustness of MTS.

Proof overviews
We now give proof sketches of Theorems 5.4.3 and 5.4.4, relegating the full proofs
to Section 5.E.

Proof Sketch of Theorem 5.4.3. We separately consider consistency and robustness
in turn.

Lemma 5.4.5. ST-CLIP is (1 + 𝜀)-consistent when the advice is correct, i.e.,
Adv(I) = OPT(I).

For consistency, recall that the constraint enforces that the expected cost of ST-
CLIP thus far at time 𝑗 (i.e., before mandatory allocation) satisfies (5.7). Since this
constraint holds for all steps before the mandatory allocation, we must resolve the
cost during the mandatory allocation. We characterize two worst-case scenarios
based on whether ST-CLIP has completed less (Case 1, see (5.20)) or more (Case
2, see (5.21)) of the deadline constraint compared to Adv. In either of these
cases, (5.20) and (5.21) show that replacing the “hedging terms” that follow SC 𝑗−1

and Adv 𝑗−1 in the constraint with worst-case service and movement costs yields a
consistency ratio that is ≤ (1 + 𝜀).

Lemma 5.4.6. ST-CLIP is 𝑂 (log 𝑛)𝛾 (𝜀)-robust, where 𝛾 (𝜀) is defined in (5.5).

For robustness, we define two cases that characterize “bad” advice, namely “inactive”
advice that forces mandatory allocation (Case 1, see (5.22)), and “overactive” advice
that incurs sub-optimal cost (Case 2, see (5.24)). For each of these, we derive
bounds on the portion of ST-CLIP’s expected solution that is allowed to come from
the pseudo-cost minimization without violating consistency.

In Case 1, ST-CLIP assumes that Adv can satisfy the constraint at the best possible
service cost 𝐿, so we derive an upper bound describing the maximum utiliza-
tion achievable via the pseudo-cost minimization before the mandatory allocation
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(see Proposition 5.E.1). In Case 2, ST-CLIP must follow Adv to avoid violating
consistency, even if Adv incurs sub-optimal cost—we derive a lower bound on
the amount of utilization that ST-CLIP must “spend” while continually satisfying
the (1 + 𝜀)-consistency constraint (see Proposition 5.E.2). These characteriza-
tions enable pseudo-cost proof techniques (e.g., as in Theorem 5.3.3) that show
𝑂 (log 𝑛)𝛾 (𝜀)-robustness in each case.

Proof Sketch of Theorem 5.4.4. In Definition 5.E.3, we define a slight variant
of the special metric and 𝑦-adversary construction from Theorem 5.3.4, denoted
by A′𝑦. Informally, A′𝑦 presents “good” cost functions at distant points, before
eventually presenting just the best service cost functions (i.e., 𝑦) at the starting
point. We consider two types of advice that each capture consistency and robustness,
respectively. In this setting, bad advice completes none of the deadline constraint
before the mandatory allocation, while good advice makes the exact decisions that
recover OPT(A′𝑦).

Using the proof of Theorem 5.3.4, we characterize the cost of a learning-
augmented algorithm ALG according to two arbitrary constraint satisfaction func-
tions 𝑠(𝑦), 𝑡 (𝑦) : [𝐿,𝑈] → [0, 1] (see (5.26)). Conditioned on the advice
that ALG receives, any 𝛼-consistent and 𝛾-robust ALG must satisfy two condi-
tions, where the robustness condition follows from the proof of Theorem 5.3.4
(see (5.25)), and the consistency condition is given by 𝛾

∫ 𝐿

𝑈/𝛾 ln
(
𝑈−𝑢−𝐷+2𝜏
𝑈−𝑈/𝛾−𝐷−2𝜏

)
𝑑𝑢 +

[2𝐷 + 2𝜏]
[
𝛾 ln

(
𝑈−𝐿−𝐷+2𝜏
𝑈−𝑈/𝛾−𝐷−2𝜏

)]
≤ 𝛼𝐿 − 𝐿 (see (5.27)). Substituting 𝛼 := (1 + 𝜀)

and binding the inequality above yields the result.

5.5 Generalization to Time-Varying Metrics
Before moving to our case study, we present a generalization of the results in
Sections 5.3 and 5.4 to settings with time-varying metrics. This is motivated by
the applications of SOAD (see Section 5.2) since in practice, the distance between
points in the metric (e.g., network delays, transit costs) may not be constant. The
extension to time-varying metrics is straightforward, and we present corollaries for
both PCM and ST-CLIP after formalizing the extension of SOAD that we consider.

SOAD with time-varying distances (SOAD-T)
In SOAD with time-varying distances, we let 𝑑𝑡 (·, ·) : 𝑡 ∈ [𝑇] denote a time-varying
distance function between points in 𝑋 , and we assume that an online algorithm ALG
is always able to observe the current distance 𝑑𝑡 at time 𝑡. Additionally, we redefine
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𝐷 to be an upper bound on the normalized spatial distance between any two points in
𝑋 over the entire time horizon 𝑇 , namely 𝐷 = sup𝑡∈[𝑇]

(
max𝑢,𝑣∈𝑋:𝑢≠𝑣

𝑑𝑡 (𝑢, 𝑣)
min{𝑐 (𝑢) ,𝑐 (𝑣) }

)
.

Although distances between the locations of 𝑋 are time varying, SOAD-T assumes
that the temporal switching cost between ON and OFF states at a single point 𝑢 ∈ 𝑋
is constant (i.e., ∥ · ∥ℓ1 (𝜷) is not time-varying) for simplicity of presentation.

Main results
In the following results, we show that our robust algorithm PCM (see Algorithm 10),
and our learning-augmented algorithm ST-CLIP (see Algorithm 11) are both suffi-
ciently flexible to provide guarantees in SOAD-T with minimal changes. Note that
the lower bounds in the time-invariant setting still apply to the time-varying setting
(e.g., by setting 𝑑𝑡 constant for all 𝑡 ∈ [𝑇]).

First, as a corollary to Theorem 5.3.3, we show that PCM retains its 𝑂 (log 𝑛)𝜂
competitive bound in the setting of SOAD-T. We state the result here and give the
full proof in Section 5.F.

Corollary 5.5.1. PCM is 𝑂 (log 𝑛)𝜂-competitive for SOAD-T, where 𝜂 is given by
(5.4).

Furthermore, as a corollary to Theorem 5.4.3, we show that ST-CLIP’s consistency-
robustness bound also holds for the time-varying setting of SOAD-T when just one
term is swapped within the consistency constraint. We state the result here and give
the full proof in Section 5.F.

Corollary 5.5.2. With a minor change to the consistency constraint, ST-CLIP is
(1 + 𝜀)-consistent and 𝑂 (log 𝑛)𝛾 (𝜀)-robust for SOAD-T, where 𝛾 (𝜀) is the solution
to (5.5).

5.6 Case Study: Carbon-aware Workload Management in Datacenters
We end the chapter with a case study applying our algorithms to the problem of
carbon-aware workload management on a simulated global network of datacenters.

Experimental setup
We simulate a carbon-aware scheduler that schedules a delay-tolerant batch job
on a network of datacenters. We simulate a global network of datacenters based
on measurements between Amazon Web Services (AWS) regions. We construct
SOAD instances as follows: we generate a job with length 𝐽 (in hours), an arrival
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time (rounded to the nearest hour), and a “data size” 𝐺, where 𝐺 gives the amount
of data (in GB) to be transferred while migrating the job. The task is to finish the job
before the deadline 𝑇 while minimizing total CO2 emissions, which are a function
of the scheduling decisions and the carbon intensity at each timestep and region.

AWS measurement data. We pick 14 AWS regions [218] based on available
carbon data (see Table 5.2 in the appendix). Among these regions, we collect
72,900 pairwise measurements of latency and throughput, compute the mean and
variance, and sample a latency matrix. To model migration overhead, we scale the
data transferred (and corresponding latency) to match𝐺. These values are scaled by
carbon data to define a distance metric on the regions in terms of CO2 overhead. To
model network heterogeneity, we set a parameter 𝜅 ∈ [0, 1] to adjust the simulated
energy of the network. 𝜅 is a ratio—if 𝜅 = 0.5, a minute of data transfer from
machine(s) in one region to machine(s) in another uses half as much energy as
executing at the full allocation (i.e., 𝑥ON( ·)𝑡 = 1) for one minute.

Carbon data traces. We obtain hourly carbon intensity data for each region,
expressed as grams of CO2 equivalent per kilowatt-hour. In the main body, we
consider average carbon intensity [171], which gives the average emissions of all
electricity generated on a grid at a certain time; this data spans 2020-2022 and in-
cludes all regions. In Section 5.B, we also consider marginal carbon intensity [219];
this signal is available for 9 regions in 2022, and also includes proprietary forecasts.

We use the latency of moving data between regions to calculate a CO2 overhead
for the metric (𝑋, 𝑑) (latency × energy × carbon intensity). In most cases, we
approximate the network’s carbon intensity by the average across regions. When
specified, we introduce variation by resampling the carbon intensity of up to Υ ∈
[0, 𝑛2] links each timestep. We henceforth call Υ a volatility factor; resampling
assigns a new random carbon intensity (within [𝐿,𝑈]) to a link between two regions.

Cloud job traces. We use Google cluster traces [220] that provide a real distribution
of job lengths. We normalize this distribution such that the maximum length is 12
hours—each job’s length 𝐽 is drawn from the distribution and rounded up to the
next integer, so 𝐽 falls in the range {1, ..., 12}.

Forecasts. We generate forecasts of the carbon intensity for each location and
time. These forecasts are used to solve for a predicted optimal solution that assumes
they are correct, which becomes black-box Adv for ST-CLIP. For the average carbon
intensity signal, we generate synthetic forecasts by combining true data with random
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noise.2 Letting Carbon(𝑢)𝑡 denote the carbon intensity at datacenter 𝑢 and time 𝑡, our
synthetic forecast is given by Pred(𝑢)𝑡 = 0.6 ·Carbon(𝑢)𝑡 +0.4 ·Unif(𝐿,𝑈). To test ST-
CLIP’s robustness, Experiment V directly manipulates Adv. We set an adversarial
factor 𝜉 ∈ [0, 1], where 𝜉 = 0 implies Adv is correct. We use a solver on true data to
obtain two solutions, where one is given a flipped objective (i.e., it maximizes carbon
emissions). Letting {x★𝑡 }𝑡∈[𝑇] denote the decisions of OPT and {x̆𝑡}𝑡∈[𝑇] denote the
decisions of the maximization solution, we have Adv := {(1− 𝜉)x★𝑡 + 𝜉x̆𝑡}𝑡∈[𝑇] . We
note that although this is unrealistic in practice, manipulating Adv directly allows
us to to quantify the sensitivity of ST-CLIP against all sources of error.

Setup details. We simulate 1,500 jobs for each configuration. Each job’s arrival
region and arrival time is uniformly random across all active regions and times.
Each job’s deadline 𝑇 and data size 𝐺 are either fixed or drawn from a distribution,
and this is specified. To set the parameters 𝐿 and 𝑈, we examine the preceding
month of carbon intensities (in all regions) leading up to the arrival time and set 𝐿
and𝑈 according to the minimum and maximum, respectively. We set the following
defaults (i.e., unless otherwise specified): The metric covers all 14 regions. Each
job’s length is drawn from the Google traces as above. The temporal switching
coefficient 𝜏 is set to 1, the network energy factor 𝜅 is set to 0.5, and the volatility
factor Υ is set to 0 (i.e., the network is stable).

Benchmark algorithms. We compute the offline optimal solution for each instance
using CVXPY [215]. We compare ST-CLIP and PCM against four baselines adapted
from literature. The first is a carbon-agnostic approach that runs the job whenever
it is submitted without migration, simulating the behavior of a non-carbon-aware
scheduler. We also consider two greedy baselines that use simple decision rules.
The first of these is a greedy policy that examines the current carbon intensity across
all regions at the arrival time, migrates to the “greenest” region (i.e., with lowest
carbon intensity), and runs the full job. This captures an observation [221] that
one migration to a consistently low-carbon region yields most of the benefits of
spatiotemporal shifting. We also consider a policy that we term delayed greedy,
which examines the full forecast across all regions, migrating to start the job at the
“best region and time” (i.e., slot with lowest predicted carbon anywhere). If there
is not enough time to finish the job after the identified slot, it is scheduled to start
as close to it as possible. The final baseline is a simple threshold-based approach

2We use an open-source ML model that provides carbon intensity forecasts for U.S. regions [50]
to tune the magnitude of random noise such that Adv’s empirical competitive ratio is slightly worse
than an Adv that uses the ML forecasts.
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(c) Average empirical com-
petitive ratios for varying en-
ergy factor 𝜅, with 𝐺 =

4, 𝑇 ∼ UnifZ(12, 48).

Figure 5.2: Experimental results comparing ST-CLIP against several baseline algo-
rithms.

from temporal shifting literature [192, 222]; it sets a threshold
√
𝑈𝐿, based on prior

work in online search [78]. At each timestep, it runs the job in the best region whose
carbon intensity is ≤

√
𝑈𝐿, without considering migration overheads. If no regions

are ≤
√
𝑈𝐿 at a particular time, the job is checkpointed in place, and a mandatory

allocation happens when approaching the deadline if the job is not finished.

Experimental results
We highlight several experiments here, referring to Section 5.B for the extended set.
A summary is given in Figure 5.2a, where we plot a cumulative distribution function
(CDF) of the empirical competitive ratio for all tested algorithms in Expts. I-IV
and VI-VIII. Given imperfect advice, ST-CLIP[𝜀 = 2] significantly outperforms
the baselines, improving on greedy, delayed greedy, simple threshold, and carbon-
agnostic by averages of 32.1%, 33.5%, 79.4%, and 88.7%, respectively. In Expts.
I-III, each job’s deadline is a random integer between 12 and 48 (denoted by 𝑇 ∼

UnifZ(12, 48)). In these experiments, both greedy policies outperform our robust
algorithm, PCM. This result aligns with prior findings [221]; since these experiments
consider all 14 regions, there are consistent low-carbon grids in the mix that give
an advantage to the greedy policies. In Expt. IV, we examine this further, showing
that the performance of greedy policies can degrade in realistic situations.

Experiment I: Effect of job data size 𝐺. In Figure 5.2b, we plot the average
empirical competitive ratio for job data sizes𝐺 ∈ {1, . . . , 10}. Recall that parameter
𝐷 depends on the diameter of the metric space (i.e., the worst migration overhead
between regions); as 𝐺 increases, this maximum overhead grows. As predicted
by the theoretical bounds, PCM’s performance degrades as 𝐺 grows; we observe
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Figure 5.3: Further experimental results comparing ST-CLIP against several base-
line algorithms.

the same effect for the greedy policies and simple threshold. Since it can leverage
advice, ST-CLIP maintains consistent performance for many settings of 𝐺.

Experiment II: Effect of network energy scale 𝜅. Figure 5.2c plots the average
empirical competitive ratio for 𝜅 ∈ [0.1, 1], fixing𝐺 = 4. As in Expt. I, 𝜅 affects the
parameter 𝐷—thus, the performance of PCM degrades slightly as 𝜅 grows. When
𝜅 is small, greedy policies perform nearly as well as ST-CLIP, though they degrade
as 𝜅 increases; ST-CLIP’s usage of advice yields consistent performance.

Experiment III: Effect of volatility factor Υ. In Figure 5.3a, we plot the
average empirical competitive ratio for Υ ∈ [28, 196], fixing 𝐺 = 4. Aligning with
the theoretical results (Corollary 5.5.1 & 5.5.2), we find that PCM and ST-CLIP’s
performance is robust to this volatility. Both of the greedy policies do not consider
the migration overhead and only migrate once, so their performance is consistent.

Experiment IV: Effect of electric grids and datacenter availability. Greedy
policies do well in Expts. I-III, where some regions have consistently low-carbon
grids.3 In practice, a greedy policy may face obstacles if it is unable to migrate
to low-carbon regions. For instance, such regions might reach capacity, removing
them as migration options. Jobs may also be restricted from leaving a region
due to regulations [223]. Further, consistently low-carbon grids often leverage
hydroelectric or nuclear sources that are difficult to build at scale compared to
cheaper renewables [224]. This is important because it suggests future grids will
moreso resemble those marked by renewable intermittency.

3Figure 5.5 in the appendix plots a sample of carbon intensity data for all 14 regions to motivate
this visually.
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Figure 5.4: Average empirical competitive ratio for varying adversarial factor 𝜉,
with 𝐺 = 4, 𝑇 = 12. 𝜉 → 0 implies that Adv → OPT, and as 𝜉 grows, Adv
degrades.

In Figure 5.3b and 5.3c, we present results where the metric is a subset of the
14 regions, giving results on more subsets in Section 5.B. By considering these
subsets, we approximate issues discussed above (e.g., datacenter congestion, grid
characteristics). Figure 5.3b considers a “no hydroelectric” subset that omits Sweden
and Quebec. Under this subset, PCM closes the gap with the greedy policies, with
an average competitive ratio that is within 4.24% of both. Figure 5.3c considers a
smaller subset of 5 regions: South Korea, Virginia, Sydney, Quebec, and France.
On this mixed set of grids, PCM outperforms greedy and delayed greedy by 30.91%
and 28.79%, respectively. The results above highlight that situations do arise
where greedy policies perform worse than both ST-CLIP and PCM. However, such
situations are not a majority—out of the 14 random subsets that we tested, PCM
outperformed the greedy policy in four subsets, including the “mixed” (Figure 5.3c)
and “mixed 2” (Figure 5.7c) subsets. PCM is relatively conservative in its decisions,
being optimized for worst-case (adversarial) inputs; this advantages greedy policies
on the majority of instances that do not benefit from the “worst-case hedging”
behavior that PCM exhibits.

Experiment V: Effect of bad black-box advice 𝜉. Figure 5.4 plots the effect of
bad black-box advice on ST-CLIP’s performance. We test values of 𝜉 ∈ [0, 0.6],
generating Adv according to the technique discussed in Section 5.6. ST-CLIP is
initialized with 𝜀 ∈ [0.1, 2, 5, 10], where 𝜀 → 0 implies that it follows Adv more
closely. We also plot the empirical competitive ratio of PCM and Adv as opposing
baselines. We find that ST-CLIP nearly matches Adv when it is correct, while
degrading more gracefully as Adv’s cost increases. This result shows that ST-CLIP
is empirically robust to even adversarial black-box advice.
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5.7 Conclusion
Motivated by sustainability applications, we introduce and study spatiotemporal
online allocation with deadlines (SOAD), the first online problem that combines
general metrics with deadline constraints, bridging the gap between existing liter-
ature on metrical task systems and online search. Our main results present PCM
as a competitive algorithm for SOAD, and ST-CLIP, a learning-augmented algo-
rithm that achieves a near-optimal robustness-consistency tradeoff. We evaluate our
proposed algorithms in a case study of carbon-aware workload management in data-
centers. A number of questions remain for future work, including natural extensions
motivated by applications. For computing applications, SOAD may be extended
to model resource contention and/or delayed access to resources, particularly after
moving the allocation to a new point. Similarly, an extension to model multiple
workloads with different deadlines would be natural (e.g., scheduling multiple batch
jobs, dynamic job arrivals/departures).

Our theoretical results contend with substantial generality (i.e., in the metric); it
would be interesting to explore whether improved results can be obtained under a
more structured setting.

Appendix
In these appendix sections, we describe additional example applications of the SOAD
framework, we provide additional experimental results on our proposed algorithms,
and we give full proofs of the theoretical results in the main body of the chapter.

5.A Deferred Examples
In this section, we detail two more examples of applications that motivate the SOAD
problem introduced in the main body, picking up from Section 5.2.

Carbon-aware or cost-aware autonomous electric vehicle charging. Consider
an autonomous electric vehicle taxi (AEV) servicing a city [225] with multiple
charging stations. Suppose that by the end of a day (i.e., deadline 𝑇), the AEV must
replenish the charge that it will have used throughout the day. Service costs 𝑓 (𝑢)𝑡 can
represent either the carbon emissions of charging at location 𝑢 during time slot 𝑡, or
the charging cost plus opportunity cost of charging at location 𝑢 during time slot 𝑡.
We note that even within a single city, the locational marginal emissions (i.e., the
carbon intensity of electricity at a specific location) may vary significantly [226],
and charging prices can be similarly variable based on, e.g., time-of-use and/or
zonal energy pricing [227]. The metric space (𝑋, 𝑑) and the spatial movement
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Table 5.1: A summary of key notation.

Notation Description
𝑡 ∈ [𝑇] Timestep index
X Feasible set for vector allocation decisions

x𝑡 ∈ X Allocation decision at time 𝑡
𝑓𝑡 (·) : X → R (Online input) Service cost function revealed to the player at time 𝑡

𝑐(·) : X → [0, 1] Constraint function; describes the fraction satisfied by an allocation
𝑑 (𝑢, 𝑣) : 𝑢, 𝑣 ∈ 𝑋 → R Spatial distance in the metric (𝑋, 𝑑)

∥x − x′∥ℓ1 (𝛽) : x, x′ ∈ X → R Switching costs between ON and OFF allocations
𝑔(·, ·) := 𝑑 (·, ·) + ∥ · ∥ℓ1 (𝛽) Combined movement & switching cost between points and allocations

𝑢 ∈ 𝑋 Point 𝑢 in an 𝑛-point metric space (𝑋, 𝑑)
ON(𝑢) , OFF(𝑢) ON state and OFF state at point 𝑢, respectively

𝑥ON
(𝑢)

𝑡 , 𝑥OFF
(𝑢)

𝑡 ∈ [0, 1] Fractional allocations to ON / OFF states at point 𝑢 at time 𝑡
𝑐 (𝑢) ∈ (0, 1] Throughput coefficient; describes constraint satisfied by 𝑥ON(𝑢) = 1

𝑓
(𝑢)
𝑡 ∈ [𝑐 (𝑢)𝐿, 𝑐 (𝑢)𝑈] Service cost coefficient at ON(𝑢) & time 𝑡; proportional to 𝐿 > 0 and𝑈.

𝛽 (𝑢) > 0 Switching coefficient; describes switching cost between ON(𝑢) ↔ OFF(𝑢)
𝜏 : 𝛽 (𝑢) ≤ 𝜏𝑐 (𝑢) ∀𝑢 ∈ 𝑋 Upper bound on normalized switching coefficient

𝐷 = sup𝑢,𝑣∈𝑋
𝑑 (𝑢, 𝑣)

min{𝑐 (𝑢) ,𝑐 (𝑣) } Upper bound on normalized spatial distance between any two points

S Discrete set of all ON and OFF states
ΔS Probability measure over S

p𝑡 ∈ ΔS Probability distribution (& corresponding random allocation) at time 𝑡
W1 (p, p′) : p, p′ ∈ ΔS → R Optimal transport distance between distributions (in terms of 𝑔(·, ·))

𝛿𝑠 ∈ ΔS Dirac measure supported at OFF(𝑠)

T = (𝑉, 𝐸) Hierarchically separated tree (HST) constructed by Definition 5.2.1
𝐾 ⊂ R |𝑉 | Vector space corresponding to T (see Definition 5.2.2)
k𝑡 ∈ 𝐾 Vector decision (& corresponding prob. distribution) at time 𝑡

Φ ∈ R |𝑉 |×2𝑛 Linear map such that Φp ∈ 𝐾 and Φ−1k ∈ ΔS
∥ · ∥ℓ1 (w) : 𝐾 → R Weighted ℓ1 norm that recovers optimal transport distances in T
𝑓 𝑡 (k) = 𝑓𝑡 (Φ−1k)
𝑐(k) = 𝑐(Φ−1k) Notation shorthand for functions defined on vector space 𝐾

𝑧 (𝑡 ) ∈ [0, 1] Utilization; fraction of constraint satisfied in expectation up to time 𝑡
Adv(I) := {a𝑡 ∈ ΔS}𝑡∈[𝑇 ] Black-box advice provided to ST-CLIP (see Definition 5.4.1)

𝐴(𝑡 ) ∈ [0, 1] Adv utilization; fraction of constraint satisfied by 𝑐(a1) + · · · + 𝑐(a𝑡 )

cost 𝑑 (𝑢𝑡−1, 𝑢𝑡) capture either the carbon overhead (in terms of “wasted” electricity)
or the opportunity/time cost of moving to a different location for charging. The
temporal switching cost ∥x𝑡 − x𝑡−1∥ℓ1 (𝜷) captures the small overhead of stopping or
restarting charging at a single location, due to extra energy or time spent connecting
or disconnecting from the charger at location 𝑢. Finally, the constraint function
𝑐(x𝑡) captures how much charge is delivered during time 𝑡 according to decision x𝑡 ,
where an x𝑡 that places a full allocation in the OFF(𝑢) state indicates that the AEV is
serving customers (i.e., not charging). Since the AEV may move around in the city
while serving customers, x𝑡 should be updated exogenously to reflect the true state.
We note that SOAD may not capture the case where the distance between charging
stations is large (i.e., moving to a different location incurs substantial discharge) or
the case where the AEV is at risk of fully discharging the battery before time 𝑇 ,
which would require immediate charging.
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Table 5.2: Summary of CO2 data sets for each tested AWS region in our case study
experiments, including the minimum and maximum carbon intensities, duration,
granularity, and data availability.

Average Carbon Intensity
(in gCO2eq/kWh) [171]

Marginal Carbon Intensity
(in gCO2eq/kWh) [219]Location AWS Region Duration Min. Max. Duration Min. Max.

Virginia, U.S. us-east-1 293 567 48 1436
California, U.S. us-west-1 83 451 67 1100
Oregon, U.S. us-west-2 42 682 427 2000
Quebec, Canada ca-central-1 26 109 887 1123
London, U.K. eu-west-2 56 403 706 1082
France eu-west-3 18 199 549 1099
Sweden eu-north-1 12 59 438 2556
Germany eu-central-1 130 765 11 1877
Sydney, Australia ap-southeast-2 267 817

01/01/2022 -
12/31/2022

Hourly
granularity

8,760
data points 12 1950

Brazil sa-east-1 46 292
South Africa af-south-1 586 785
Israel il-central-1 514 589
Hyderabad, India ap-south-2 552 758
South Korea ap-northeast-2

01/01/2020 -
12/31/2022

Hourly
granularity

26,304
data points

453 503

Data not available

Allocating tasks to volunteers. Consider a non-profit that has a task to complete
before some short-term deadline 𝑇 , with several locations and scheduled time slots
for volunteer efforts (e.g., stores, community centers) throughout a region. Using
platforms such as VolunteerMatch [228], volunteers can signal their interests in
tasks (e.g., via a ranking) and availability—in assigning this task, the non-profit
may want to maximize the engagement of their assigned volunteer(s). Service costs
𝑓
(𝑢)
𝑡 can represent the aggregate rankings of the volunteers present at location 𝑢

during time slot 𝑡, where a lower number means that they are more interested in a
given task. The metric space (𝑋, 𝑑) and the spatial movement cost 𝑑 (𝑢𝑡−1, 𝑢𝑡) can
capture the cost of, e.g., moving supplies that must be present at the location to work
on the task. The temporal switching cost ∥x𝑡 − x𝑡−1∥ℓ1 (𝜷) may capture the cost of,
e.g., setting up or breaking down the setup required to work on the task at a given
location 𝑢. Finally, the constraint function 𝑐(x𝑡) captures how much of the task can
be completed during time 𝑡 according to assignment decision x𝑡 . We note that the
fractional allocation to ON / OFF states specified by SOAD may not be useful in this
setting because, e.g., groups of volunteers may not be fractionally divisible.

5.B Supplemental Experiments
In this section, we present additional results and figures to complement those in the
main body. In the first few results, we present additional experiments manipulating
parameters using the average carbon intensity signal. Then, in Section 5.B, we
present a supplemental slate of experiments using the marginal carbon intensity
signal obtained from WattTime [219].
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Figure 5.5: Average carbon intensity traces [171] for all 14 AWS regions, over a
week-long period in 2020.
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length 𝐽, with 𝐺 = 4, 𝑇 ∼
UnifZ(12, 48).
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(b) Average empirical com-
petitive ratios for varying
temporal switching coeffi-
cient 𝜏, with 𝐺 = 4, 𝑇 ∼
UnifZ(12, 48).
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Figure 5.6: Supplementary experimental results comparing ST-CLIP against several
baseline algorithms in varied settings.

Experiment VI: Effect of job length 𝐽. Figure 5.6a plots the average empirical
competitive ratio for fixed job lengths 𝐽 ∈ {1, . . . , 10}, where 𝐽 is the length of
the job in hours. In this experiment, we fix each job’s data size to 𝐺 = 4. As 𝐽
increases, the empirical competitive ratio of PCM improves, and ST-CLIP remains
consistent. We note that the simple threshold technique is able to achieve good
performance in the case when 𝐽 = 1; intuitively, since this simple threshold is
agnostic to the switching overhead, its performance degrades when it uses more
than one opportunity to migrate between regions (i.e., when the job takes more than
one time slot).

As is characteristic of realistic cloud traces, the Google cluster traces we use in
Experiments I-V are mostly composed of shorter jobs between 1 and 2 hours long.
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These results for fixed job lengths highlight that ST-CLIP and PCM do even better
when given lengthy jobs—such jobs are less frequent but take up a disproportionate
amount of compute cycles (and thus contribute disproportionately to the carbon
footprint of) a typical datacenter.

Experiment VII: Effect of temporal switching coefficient 𝜏.
Recall that increasing or decreasing 𝜏 simulates jobs that have more or less time-
consuming checkpoint and resume overheads, respectively. In Figure 5.6b, we
plot the average empirical competitive ratio for varying 𝜏 ∈ {0, . . . , 100}. In this
experiment, we fix 𝐽 = 4 and𝐺 = 4. Compared to varying𝐺, 𝜏 has a smaller impact
across the board, although as predicted by the theoretical bounds, the performance
of PCM degrades slightly as 𝜏 grows, and the greedy policies are similarly affected.

Experiment VIII: Effect of number of datacenters 𝑛.
Building off of the idea in Experiment IV, in Figure 5.6c we plot the average
empirical competitive ratio for varying 𝑛 ∈ [4, 13], where a random subset (of size
𝑛) is sampled from the base 14 regions for each batch job instance. For each job,
we fix 𝐺 = 4, a deadline 𝑇 that is a random integer between 12 and 48, and use
the average carbon intensity signal. We find that most algorithms’ performance
degrades as the size of the subset increases. This is likely because the expected
range of carbon intensities expands as more diverse electric grids are included in the
subset. As in previous experiments, ST-CLIP’s performance with black-box advice
is consistent as 𝑛 increases.

Experiment IV (continued): Effect of electric grids and datacenter availability.
Continuing from Experiment IV in the main body, we present results where the met-
ric space is constructed on four additional subsets of the 14 regions. By considering
these region subsets, we approximate issues of datacenter availability, and electric
grid characteristics that might face a deployment in practice.

Figure 5.7a considers a North American subset of 4 regions: California, Oregon,
Virginia, and Quebec. Under this subset, PCM slightly outperforms greedy and
delayed greedy by 8.31% and 8.24%, respectively. Figure 5.7b considers an “EU /
GDPR” subset that includes 4 regions: France, Germany, London, and Sweden. On
this subset, with a large proportion of consistent low-carbon grids (i.e., both Sweden
and France), the greedy and delayed greedy policies outperform PCM by 21.54%
and 20.25%, respectively. These results highlight a “best case” situation where the
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Figure 5.7: Supplementary experimental results comparing ST-CLIP against several
baseline algorithms on various subsets of regions.

greedy policies are able to outperform PCM and nearly match the performance of
ST-CLIP. Figure 5.7c considers a second “mixed” subset of 7 regions: California,
South Korea, Germany, Hyderabad, Israel, Sweden, and South Africa. On this
subset, with a geographically distributed mix of high and low-carbon grids, PCM
outperforms greedy and delayed greedy by 3.74% and 4.73%, respectively.

We briefly note that since the greedy policies exhibit fairly good performance across
many of these experiments, for the intended application of carbon-aware workload
management in datacenters it may be worthwhile to evaluate the performance of
ST-CLIP when given black-box advice Adv that simply encodes the decisions of the
greedy policy. Since the black-box advice model can accommodate any arbitrary
sequence of decisions, including heuristics, such a composition may achieve a
favorable tradeoff between average-case performance and worst-case guarantees if,
e.g., machine-learned forecasts are not available.

Experiment IX: Runtime (wall clock) overhead measurements.
In this experiment, we measure the wall clock runtime of each tested algorithm. Our
experiment implementations are in Python, using NumPy [229], SciPy [230], and
CVXPY [215]—we use the time.perf_counter()module in Python to calculate
the total runtime (in milliseconds) for each algorithm on each instance, and report
this value normalized by the deadline to give the per-slot (i.e., hourly) overhead of
each algorithm.

Figure 5.8 reports these measurements for batch jobs with deadlines 𝑇 ∈ {6, ..., 48},
fixed 𝐺 = 4, and job lengths from the Google trace are truncated to 𝑇/2 if necessary.
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Figure 5.8: Average per-slot wall clock runtime for instance sizes (i.e., deadlines)
𝑇 ∈ {6, ..., 48}, with 𝐺 = 4.

For this experiment, we run each algorithm and each instance in a single thread on
a MacBook Pro with M1 Pro processor and 32 GB of RAM.

We find that the average per-slot (i.e., once per hour) runtimes of PCM and ST-CLIP
are 2.3 milliseconds and 24.3 milliseconds, respectively—this reflects the relative
complexity of the optimization problems being solved in each, and the runtime is
steady in the size of the instance, as is expected from an online algorithm. The
optimal solution takes, on average, 173.8 milliseconds per slot to solve, although
note that it finds the solution for all time slots at once. As the size of the instance
(𝑇) grows, this per-slot time slightly increases. Intuitively, the decision rule-based
algorithms (carbon agnostic, simple threshold, and the greedy policies (not included
in the plot)) have the lowest, and functionally negligible, runtime. This last
result suggests that one effective way to reduce the impact of PCM and ST-CLIP’s
runtime overhead would be to develop approximations that avoid computing the
exact solution to the minimization problem. However, for carbon intensity signals
that are updated every 5 minutes to one hour, the overhead of PCM and ST-CLIP is
likely reasonable in practice.

Marginal Carbon Intensity
In contrast to average carbon intensity, the marginal carbon intensity signal calculates
the emissions of the generator(s) that are responding to changes in load on a grid
at a certain time. From WattTime [219], we obtain data for 9 of the 14 regions we
consider, spanning all of 2022. This data also includes carbon intensity forecasts
published by WattTime, and we use these forecasts directly instead of generating
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Figure 5.9: Marginal carbon intensity traces [171] for 9 AWS regions, over a week-
long period in 2022.

synthetic forecasts as in Section 5.6. In Figure 5.9, we plot a one-week sample of
carbon intensity data to motivate this visually.

A high-level summary of these experiments is given in Figure 5.10a—this plot gives
a cumulative distribution function (CDF) of the empirical competitive ratios for all
tested algorithms, aggregating over all experiments that use the marginal carbon
intensity signal. In these experiments, we consider all of the 9 regions for which the
marginal data is available, and each job’s deadline 𝑇 is a random integer between
12 and 48 (henceforth denoted by 𝑇 ∼ UnifZ(12, 48)).

In these experiments, we observe differences that are likely attributable to the
characteristic behavior of the marginal carbon intensity signal, which generally
represents the high emissions rate of a quick-to-respond generator (e.g., a gas turbine)
unless the supply of renewables on the grid exceeds the current demand. However,
the relative ordering of performance has been largely preserved.

Interestingly, we note that the real forecasts are worse in the marginal setting com-
pared to the average carbon intensity signal, again likely because of the character-
istics of marginal carbon. Rather than predicting, e.g., the diurnal patterns of an
average signal, predicting marginal carbon requires a model to pick out specific time
slots where curtailment is expected to occur.

Despite these challenges of forecasting the marginal signal, ST-CLIP with 𝜀 = 2
outperforms the baselines in both average and worst-case performance, improving
on the closest greedy policy by an average of 12.04%, and outperforming delayed
greedy, simple threshold, and carbon-agnostic by averages of 11.02%, 37.12%, and
85.67%, respectively.
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Figure 5.10: Supplementary experimental results comparing ST-CLIP against sev-
eral baseline algorithms when using marginal carbon intensity.

Marginal Experiment I: Effect of job length 𝐽.
In Figure 5.10b, we plot the average competitive ratio for different job lengths
𝐽 ∈ {1, . . . , 10}. Each job has 𝐺 = 4 and an integer deadline 𝑇 randomly sampled
between 12 and 48. Compared to the greedy policies, our robust baseline PCM
performs favorably in these experiments, which is likely due to a combination of
differences in the marginal setting and the less performant forecasts. Similar to
the average carbon setting, the simple threshold technique performs well when the
job length is short, but performance suffers when it has more opportunities for
migration.

Marginal Experiment II: Effect of job data size 𝐺.
In Figure 5.10c, we plot the average empirical competitive ratio for different job
data sizes 𝐺 ∈ {1, . . . , 10} using the marginal carbon signal. As predicted by
the theoretical bounds, and observed in the main body for the average carbon
experiments, the performance of PCM degrades as 𝐺 grows—we observe the same
effect for the greedy policies and the simple threshold algorithm. The performance
of ST-CLIP also grows, which suggests that larger migration overhead does have an
impact when the advice suffers from a lack of precision due to the more challenging
setting for forecasts posed by marginal carbon intensity.

5.C Proofs for Section 5.2
In the following, we prove Theorem 5.2.3, which shows that the expected cost of
any randomized SOAD decision p𝑡 ∈ ΔS is equivalent to that of a decision which



211

chooses a point in 𝑋 probabilistically according to the distribution of p𝑡 and then
interprets the ON / OFF probabilities at that point as deterministic allocations inX.

Proof of Theorem 5.2.3. Suppose that p𝑡 , p𝑡−1 are probability distributions over the
randomized state space ΔS , and let E [Cost(p𝑡 , p𝑡−1)] denote the expected cost of
decision p𝑡 . This cost is defined as follows:

E [Cost(p𝑡 , p𝑡−1)] = E [ 𝑓𝑡 (p𝑡) + 𝑔(p𝑡 , p𝑡−1)] .

Recall that because the cost function 𝑓𝑡 is linear and separable, the expectation can
be written as:

E [ 𝑓𝑡 (p𝑡)] =
∑︁
𝑢∈𝑋

𝑓
(𝑢)
𝑡 𝑝ON

(𝑢)
𝑡 .

For any p𝑡 ∈ ΔS , let r𝑡 := {𝑟 (𝑢)𝑡 ← 𝑝ON
(𝑢)

𝑡 + 𝑝OFF(𝑢)𝑡 : 𝑢 ∈ 𝑋} ∈ Δ𝑋 , i.e., a vector that
aggregates the total probabilities across the states space S at each point of 𝑋 .

We note that by disaggregating the spatial and temporal switching costs, we have
that the expectation E [𝑔(p𝑡 , p𝑡−1)] can be written in terms of the Wasserstein-1
distance with respect to the underlying metric 𝑋 and a linear temporal term that
depends on the probability assigned to the OFF state. This is the case because the
optimal transport plan W1(p𝑡 , p𝑡−1) must always involve first moving probability
mass to/from the OFF and ON states at each point of 𝑋 , and then within the spatial
metric—this follows since SOAD defines that movement within the spatial metric
𝑋 can only be made between ON states—i.e., a player moving from OFF(𝑢) to OFF(𝑣)

must first traverse to ON(𝑢) , then through the metric 𝑋 , and finally through ON(𝑣) .

E [𝑔(p𝑡 , p𝑡−1)] = W1(r𝑡 , r𝑡−1) +
∑︁
𝑢∈𝑋

𝛽(𝑢) |𝑝OFF(𝑢)𝑡 − 𝑝OFF(𝑢)𝑡−1 |.

Thus, the expected cost of p𝑡 can be written as:

E [Cost(p𝑡 , p𝑡−1)] =
∑︁
𝑢∈𝑋

𝑓
(𝑢)
𝑡 𝑝ON

(𝑢)
𝑡 +W1(r𝑡 , r𝑡−1) +

∑︁
𝑢∈𝑋

𝛽(𝑢) |𝑝OFF(𝑢)𝑡 − 𝑝OFF(𝑢)𝑡−1 |.

In the mixed probabilistic/deterministic setting, the true allocation to ON(𝑢) (denoted
by 𝑝ON(𝑢)𝑡 ) for any point 𝑢 ∈ 𝑋 is defined as 𝑝ON(𝑢)𝑡 = 𝑝ON

(𝑢)
𝑡 /𝑟 (𝑢)𝑡 (conversely, we have

𝑝OFF
(𝑢)

𝑡 = 𝑝OFF
(𝑢)

𝑡 /𝑟 (𝑢)𝑡 ). Letting L(𝑢)𝑡 ∈ {0, 1} denote an indicator variable that encodes
the player’s location (i.e., point) at time 𝑡 (0 if player is not at 𝑢, 1 if player is at 𝑢),
the expected cost of p̃𝑡 can be written as follows:

E [Cost(p̃𝑡 , p̃𝑡−1)]

= E

[∑︁
𝑢∈𝑋

L(𝑢)𝑡 𝑓
(𝑢)
𝑡 𝑝ON

(𝑢)
𝑡

]
+W1(r𝑡 , r𝑡−1) + E

[∑︁
𝑢∈𝑋

���L(𝑢)𝑡 𝛽(𝑢) 𝑝OFF
(𝑢)

𝑡 − L(𝑢)
𝑡−1𝛽

(𝑢) 𝑝OFF
(𝑢)

𝑡−1

���] .



212

Noting that E
[
L(𝑢)𝑡

]
= 𝑟
(𝑢)
𝑡 by linearity of expectation we have:

E [Cost(p̃𝑡 , p̃𝑡−1)]

=
∑︁
𝑢∈𝑋

𝑟
(𝑢)
𝑡 𝑓

(𝑢)
𝑡 𝑝ON

(𝑢)
𝑡 +W1(r𝑡 , r𝑡−1) +

∑︁
𝑢∈𝑋
|𝑟 (𝑢)𝑡 𝛽(𝑢) 𝑝OFF

(𝑢)
𝑡 − 𝑟 (𝑢)

𝑡−1𝛽
(𝑢) 𝑝OFF

(𝑢)

𝑡−1 |.

Furthermore, recalling the definitions of 𝑝ON(𝑢)𝑡 and 𝑝OFF(𝑢)𝑡 , we have the following:

E [Cost(p̃𝑡 , p̃𝑡−1)] =
∑︁
𝑢∈𝑋

𝑓
(𝑢)
𝑡 𝑝ON

(𝑢)
𝑡 +W1(r𝑡 , r𝑡−1) +

∑︁
𝑢∈𝑋

𝛽(𝑢) |𝑝OFF(𝑢)𝑡 − 𝑝OFF(𝑢)𝑡−1 |.

Recalling that W1(p𝑡 , p𝑡−1) = W1(r𝑡 , r𝑡−1) +
∑
𝑢∈𝑋 𝛽

(𝑢) |𝑝OFF(𝑢)𝑡 − 𝑝OFF(𝑢)
𝑡−1 | by the

structure of the spatial and temporal switching costs completes the proof, since
E [Cost(p𝑡 , p𝑡−1)] = E [Cost(p̃𝑡 , p̃𝑡−1)], and thus the expected cost is equivalent if a
point (location) is first chosen probabilistically and the ON / OFF probabilities at that
point are then interpreted as deterministic (fractional) allocations.

5.D Proofs for Section 5.3
Convexity of the pseudo-cost minimization problem in PCM
In this section, we prove Theorem 5.3.2, which states that the pseudo-cost mini-
mization problem central to the design of PCM is a convex minimization problem,
implying that it can be solved efficiently.

For convenience, let ℎ𝑡 (k) : 𝑡 ∈ [𝑇] represent the pseudo-cost minimization prob-
lem’s objective for a single arbitrary timestep:

ℎ𝑡 (k) = 𝑓𝑡 (k) + ∥k − k𝑡−1∥ℓ1 (w) −
∫ 𝑧 (𝑡−1)+𝑐(k)

𝑧 (𝑡−1)
𝜓(𝑢)𝑑𝑢. (5.9)

Proof of Theorem 5.3.2. We prove the statement by contradiction. By definition,
the sum of two convex functions gives a convex function. Since ∥k − k𝑡−1∥ℓ1 (w)
is a norm and k𝑡−1 is fixed, by definition it is convex. We have also assumed as
part of the problem setting that each 𝑓𝑡 (k) is linear. Thus, 𝑓𝑡 (k) + ∥k − k𝑡−1∥ℓ1 (w)
must be convex. The remaining term is the negation of

∫ 𝑧 (𝑡−1)+𝑐(k)
𝑧 (𝑡−1) 𝜓(𝑢)𝑑𝑢. Let

𝑤(𝑐(k)) =
∫ 𝑧 (𝑡−1)+𝑐(k)
𝑧 (𝑡−1) 𝜓(𝑢)𝑑𝑢. By the fundamental theorem of calculus, we have

∇𝑤(𝑐(k)) = 𝜓(𝑧(𝑡−1) + 𝑐(k))∇𝑐(k).

Let 𝑏(𝑐(k)) = 𝜓(𝑧(𝑡−1) + 𝑐(k)). Then we have

∇2𝑤(𝑐(k)) = ∇2𝑐(k)𝑤(𝑐(k)) + ∇𝑐(k)𝑏′(𝑐(k))∇𝑐(k)⊺ .
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Since 𝑐(k) is piecewise linear by the definition of SOAD, we know that
∇2𝑐(k)𝑤(𝑐(k)) = 0. Since 𝜓 is monotonically decreasing on the interval [0, 1], we
know that 𝑏′(𝑐(k)) < 0, and thus ∇𝑐(k)𝑏′(𝑐(k))∇𝑐(k)⊺ is negative semidefinite.
This implies that 𝑤(𝑐(k)) is concave in k.

Since the negation of a concave function is convex, this causes a contradiction,
because the sum of two convex functions gives a convex function. Thus, ℎ𝑡 (·) =
𝑓𝑡 (k) + ∥k−k𝑡−1∥ℓ1 (w)−

∫ 𝑧 (𝑡−1)+𝑐(k)
𝑧 (𝑡−1) 𝜓(𝑢)𝑑𝑢 is always convex under the assumptions

of SOAD.

By showing that ℎ𝑡 (·) is convex, it follows that the pseudo-cost minimization (5.2)
in PCM is a convex minimization problem (i.e., it can be solved efficiently using
numerical methods).

Proof of Theorem 5.3.3
In the following, we prove Theorem 5.3.3. In what follows, we let I ∈ Ω de-
note an arbitrary valid SOAD instance. Let 𝑧( 𝑗) =

∑
𝑡∈[𝑇] 𝑐(k𝑡) denote the final

utilization before the mandatory allocation. Also note that 𝑧(𝑡) =
∑
𝑚∈[𝑡] 𝑐(k𝑚) is

non-decreasing over 𝑡.

In what follows, we let 𝜂 be defined as the solution to ln
(
𝑈−𝐿−𝐷−2𝜏
𝑈−𝑈/𝜂−𝐷

)
= 1

𝜂
, which

has a closed form given by:

𝜂 :=

[
𝑊

(
(𝐷 + 𝐿 −𝑈 + 2𝜏) exp

(
𝐷−𝑈
𝑈

)
𝑈

)
+ 𝑈 − 𝐷

𝑈

]−1

. (5.10)

Note that setting 𝜂 as above satisfies the following equality within the pseudo-cost
function 𝜓 (defined in Definition 5.3.1):

𝜓(1) = 𝑈 − 𝜏 + (𝑈/𝜂 −𝑈 + 𝐷 + 𝜏) exp(1/𝜂) = 𝐿 + 𝐷.

We start by proving Lemma 5.3.5, which states that OPT is lower bounded by

OPT(I) ≥
max

{
𝜓(𝑧( 𝑗)) − 𝐷, 𝐿

}
𝑂 (log 𝑛) .

Proof of Lemma 5.3.5. Without loss of generality, denote the minimum gradient
of any cost function (excluding OFF states) by ∇min. Suppose that a cost function 𝑓𝑚
with ∇min gradient (at a dimension corresponding to any ON state) arrives at timestep
𝑚.
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Recall that PCM solves the following pseudo-cost minimization problem at time 𝑚:

k𝑚 = arg min
k∈𝐾:𝑐(k)≤1−𝑧 (𝑡−1)

𝑓𝑚 (k) + ∥k − k𝑚−1∥ℓ1 (w) −
∫ 𝑧 (𝑚−1)+𝑐(k)

𝑧 (𝑚−1)
𝜓(𝑢)𝑑𝑢.

By assumption, since 𝑓𝑚 (·) is linear and satisfies ∇ 𝑓𝑚 < 𝜓(𝑧( 𝑗)) − 𝐷, there must
exist a dimension in 𝑓𝑚 (i.e., a service cost associated with an ON state) that satisfies
the following. Let ON[𝑑] ⊂ [𝑑] denote the index set (i.e., the dimensions in k) that
correspond to allocations in ON states.

∃𝑖 ∈ ON[𝑑] : 𝑓𝑚 (k)𝑖 ≤ [∇min · 𝑐(k)]𝑖 .

Also note that ∥k−k𝑚−1∥ℓ1 (w) is upper bounded by (𝐷 + 𝜏)𝑐(k), since in the worst-
case, PCM must pay the max movement and switching cost to move the allocation
to the “furthest” point and make a decision k.

Since 𝜓 is monotone decreasing on the interval 𝑧 ∈ [0, 1], by definition we have that
k𝑚 solving the true pseudo-cost minimization problem is lower-bounded by the k̆𝑚
solving the following minimization problem (specifically, the constraint satisfaction
satisfies 𝑐(k̆𝑚) ≤ 𝑐(k𝑚)):

k̆𝑚 = arg min
k∈𝐾:𝑐(k)≤1−𝑧 (𝑡−1)

∇min · 𝑐(k) + 𝐷𝑐(k) + 𝜏𝑐(k) −
∫ 𝑧 (𝑚−1)+𝑐(k)

𝑧 (𝑚−1)
𝜓(𝑢)𝑑𝑢. (5.11)

By expanding the right hand side, we have:

∇min · 𝑐(k) + 𝐷𝑐(k) + 𝜏𝑐(k) −
∫ 𝑧 (𝑚−1)+𝑐 (k)

𝑧 (𝑚−1)
𝜓(𝑢)𝑑𝑢

= ∇min · 𝑐(k) + 𝐷𝑐(k) + 𝜏𝑐(k) −
∫ 𝑧 (𝑚−1)+𝑐 (k)

𝑧 (𝑚−1)
[𝑈 − 𝜏 + (𝑈/𝜂 −𝑈 + 𝐷 + 𝜏) exp(𝑢/𝜂)] 𝑑𝑢

= (∇min −𝑈 + 𝐷 + 𝜏)𝑐(k) − [(𝜏 −𝑈 + 𝐷)𝜂 +𝑈]
(
exp

(
𝑧 (𝑚−1) + 𝑐(k)

𝜂

)
− exp

(
𝑧 (𝑚−1)

𝜂

))
.

Letting 𝑐(k) be some scalar 𝑦 (which is valid since we assume there is at least one
dimension 𝑖 ∈ [𝑑] where the growth rate of 𝑓𝑚 (·) is at most ∇min), the pseudo-cost
minimization problem finds the value 𝑦 that minimizes the following quantity:

(∇min −𝑈 + 𝐷 + 𝜏)𝑦 − [(𝜏 −𝑈 + 𝐷)𝜂 +𝑈]
(
exp

(
𝑧(𝑚−1) + 𝑦

𝜂

)
− exp

(
𝑧(𝑚−1)

𝜂

))
.

Taking the derivative of the above with respect to 𝑦 yields the following:

∇min + 𝐷 + 𝜏 −𝑈 −
[(𝜏 −𝑈 + 𝐷)𝜂 +𝑈] exp

(
𝑧 (𝑚−1)+𝑦

𝜂

)
𝜂

= ∇min + 𝐷 − 𝜓(𝑧(𝑚−1) + 𝑦). (5.12)
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Note that since the minimization problem is convex by Theorem 5.3.2, the unique
solution to the above coincides with a point 𝑦 where the derivative is zero. This
implies that PCM will increase 𝑐(k) until ∇min = 𝜓(𝑧(𝑚−1) + 𝑦) − 𝐷, which further
implies that 𝜓(𝑧(𝑚)) = ∇min + 𝐷.

Since this minimization k̆𝑚 is a lower bound on the true value of k𝑚, this implies
that 𝜓(𝑧(𝑡)) −𝐷 is a lower bound on the minimum service cost coefficient (excluding
OFF states) seen so far at time 𝑡. Further, the final utilization 𝑧( 𝑗) gives that the
minimum service cost coefficient over any cost function over the entire sequence is
lower bounded by 𝜓(𝑧( 𝑗)) − 𝐷.

Note that the best choice for OPT is to service the entire workload at the minimum
service cost if it is feasible. Since the vector space (𝐾, ∥ · ∥ℓ1 (w)) used by PCM has
at most 𝑂 (log 𝑛) distortion with respect to the underlying metric used by OPT (see
Definition 5.2.1), this implies that OPT(I) ≥ max{𝜓(𝑧 ( 𝑗 ) )−𝐷, 𝐿}

𝑂 (log 𝑛) .

Next, we prove Lemma 5.3.6, which states that the expected cost of PCM(I) is
upper bounded by E[PCM(I)] ≤

∫ 𝑧 ( 𝑗 )

0 𝜓(𝑢)𝑑𝑢 + (1 − 𝑧( 𝑗))𝑈 + 𝜏𝑧( 𝑗) .

Proof of Lemma 5.3.6. Recall that 𝑧(𝑡) =
∑
𝑚∈[𝑡] 𝑐(k𝑚) is non-decreasing over 𝑡.

Observe that whenever 𝑐(k𝑡) > 0, we have that 𝑓𝑡 (k𝑡) + ∥k𝑡 − k𝑡−1∥ℓ1 (w) <∫ 𝑧 (𝑡−1)+𝑐(k𝑡 )
𝑧 (𝑡−1) 𝜓(𝑢)𝑑𝑢. Then, if 𝑐(k𝑡) = 0, which corresponds to the case when k𝑡

allocates all of the marginal probability mass to OFF states, we have the following:

𝑓𝑡 (k𝑡) + ∥k𝑡 − k𝑡−1∥ℓ1 (w) −
∫ 𝑧 (𝑡−1)+𝑐(k𝑡 )

𝑧 (𝑡−1)
𝜓(𝑢)𝑑𝑢 = 0 + ∥k𝑡 − k𝑡−1∥ℓ1 (w) − 0

= ∥k𝑡 − k𝑡−1∥ℓ1 (w) . (5.13)

This gives that for any timestep where 𝑐(k𝑡) = 0, we have the following inequality,
which follows by observing that from Assumption 5.2, any marginal probability
mass assigned to ON states in the previous timestep can be moved to OFF states at a
cost of at most 𝜏𝑐(k𝑡−1).

𝑓𝑡 (k𝑡) + ∥k𝑡 − k𝑡−1∥ℓ1 (w) ≤ ∥k𝑡 − k𝑡−1∥ℓ1 (w)
≤ 𝜏𝑐(k𝑡−1),∀𝑡 ∈ [𝑇] : 𝑐(k𝑡) = 0.

Since any timestep where 𝑐(k𝑡) > 0 implies that 𝑓𝑡 (k𝑡) + ∥k𝑡 − k𝑡−1∥ℓ1 (w) <∫ 𝑧 (𝑡−1)+𝑐(k𝑡 )
𝑧 (𝑡−1) 𝜓(𝑢)𝑑𝑢, we have the following inequality across all timesteps (i.e.,

an upper bound on the excess cost not accounted for by the pseudo-cost):

𝑓𝑡 (k𝑡) + ∥k𝑡 − k𝑡−1∥ℓ1 (w) −
∫ 𝑧 (𝑡−1)+𝑐(k𝑡 )

𝑧 (𝑡−1)
𝜓(𝑢)𝑑𝑢 ≤ 𝜏𝑐(k𝑡−1),∀𝑡 ∈ [𝑇] .
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Thus, we have

𝜏𝑧( 𝑗) =
∑︁
𝑡∈[ 𝑗]

𝜏𝑐(k𝑡−1)

≥
∑︁
𝑡∈[ 𝑗]

[
𝑓𝑡 (k𝑡) + ∥k𝑡 − k𝑡−1∥ℓ1 (w) −

∫ 𝑧 (𝑡−1)+𝑐(k𝑡 )

𝑧 (𝑡−1)
𝜓(𝑢)𝑑𝑢

]
=

∑︁
𝑡∈[ 𝑗]

[
𝑓𝑡 (k𝑡) + ∥k𝑡 − k𝑡−1∥ℓ1 (w)

]
−

∫ 𝑧 ( 𝑗 )

0
𝜓(𝑢)𝑑𝑢

= PCM(I) − (1 − 𝑧( 𝑗))𝑈 −
∫ 𝑧 ( 𝑗 )

0
𝜓(𝑢)𝑑𝑢.

Combining Lemma 5.3.5 and Lemma 5.3.6 gives

CR ≤ E[PCM(I)]
OPT(I) ≤

∫ 𝑧 ( 𝑗 )

0 𝜓(𝑢)𝑑𝑢 + (1 − 𝑧( 𝑗))𝑈 + 𝜏𝑧( 𝑗)

max{𝜓(𝑧( 𝑗)) − 𝐷, 𝐿}
≤ 𝜂,

where the last inequality holds since for any 𝑧 ∈ [0, 1]:∫ 𝑧

0
𝜓(𝑢)𝑑𝑢 + 𝜏𝑧 + (1 − 𝑧)𝑈

=

∫ 𝑧

0
[𝑈 − 𝜏 + (𝑈/𝜂 −𝑈 + 𝐷 + 𝜏) exp(𝑧/𝜂)] 𝑑𝑢 + (1 − 𝑧)𝑈 + 𝜏𝑧

=

[
((𝜏 −𝑈 + 𝐷)𝜂 +𝑈) e

𝑢
𝜂 +𝑈𝑢 − 𝜏𝑢

] 𝑧
0
+ (1 − 𝑧)𝑈 + 𝜏𝑧

= ((𝜏 −𝑈 + 𝐷)𝜂 +𝑈) e
𝑧
𝜂 − (𝜏 −𝑈 + 𝐷)𝜂

= 𝜂

[(
(𝜏 −𝑈 + 𝐷) + 𝑈

𝜂

)
e
𝑧
𝜂 − 𝜏 +𝑈 − 𝐷

]
= 𝜂[𝜓(𝑧) − 𝐷] . (5.14)

This completes the proof of Theorem 5.3.3.

Proof of Theorem 5.3.4
In this section, we prove Theorem 5.3.4, which states that 𝜂 (as defined in (5.4))
is the optimal competitive ratio for SOAD. To show this lower bound, we first
define a family of special two-stage adversaries, a corresponding metric space 𝑋 ,
and then show that the competitive ratio for any algorithm is lower bounded under
the instances provided by these adversaries.

Prior work has shown that difficult instances for online search problems with a min-
imization objective occur when inputs arrive at the algorithm in an decreasing order
of cost [78, 79, 176, 192]. For SOAD, we extend this idea and additionally consider
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Figure 5.11: A motivating illustration of
the lower bound star metric considered in
Definition 5.D. Light gray circles repre-
sent the points of the metric space (𝑋, 𝑑),
and darker circles represent the OFF states
of SOAD. Note that the distance be-
tween any two points in the metric is
diam(𝑋) = 𝐷𝑐.

how adaptive adversaries can strategically present good service cost functions at
distant points in the metric first, followed by good service costs at the starting point
(e.g., “at home”), to create a family of sequences that simultaneously penalize the
online player for moving “too much” and for not moving enough.

We now formalize two such families of adversaries, namely {G𝑦}𝑦∈[𝐿,𝑈] and
{A𝑦}𝑦∈[𝐿,𝑈] , where A𝑦 and G𝑦 are both called 𝑦-adversaries.

Definition 5.D.1 (𝑦-adversaries for SOAD). Let 𝑚 ∈ N be sufficiently large, and
𝜎 := (𝑈−𝐿)/𝑚. The metric space 𝑋 is a weighted star metric with 𝑛 points, each
with an ON and OFF state. For the constraint function 𝑐(·), we set one throughput
constant for all ON states such that 𝑐(𝑢) ≪ 1 : 𝑢 ∈ 𝑋 . This value is henceforth simply
denoted by 𝑐. See Figure 5.11 for an illustration.

The movement cost can be represented by a weighted ℓ1 norm ∥ · ∥ℓ1 (w) that combines
the spatial distances given by the metric with the temporal switching cost. Recall
Assumption 5.2—at any single point 𝑢, the switching cost between the ON and OFF
states is given by 𝜏𝑐 · |𝑥ON(𝑢)𝑡 − 𝑥ON(𝑏)

𝑡−1 | (i.e., for two arbitrary allocations x𝑡 and x𝑡−1)
for 𝜏 > 0. Furthermore, for any two disjoint points in the metric 𝑢, 𝑣 : 𝑢 ≠ 𝑣, the
distance between ON(𝑢) and ON(𝑣) is exactly 𝐷𝑐 = diam(𝑋).

Let 𝑦 denote a value on the interval [𝐿,𝑈], which represents the “best service cost
function” presented by the 𝑦-adversary in their sequence. We define two distinct
stages of the input.

In Stage 1, the adversary presents two types of cost functions such that “good
cost functions” are always at points that are distant to the online player. These cost
functions are denoted (for convenience) as Up(𝑥) = 𝑈𝑥, and Down𝑖 (𝑥) = (𝑈−𝑖𝜎)𝑥,
where one such cost function is delivered at each point’s ON state, at each timestep.

Without loss of generality, let the starting point be 𝑠 ∈ 𝑋 and the start state be OFF(𝑠)

(for both ALG and OPT). In the first timestep, the adversary presents cost function
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Up(𝑥) = 𝑈𝑥 at the starting point’s ON state (i.e., ON(𝑠)), and Down1(𝑥) at all of the
other (𝑛 − 1) ON states.

If ALG ever moves a non-zero fractional allocation to an ON state other than the
starting point, that point becomes inactive, meaning that the adversary will present
Up(𝑥) at that location in the next timestep and for the rest of the sequence.

In the second timestep, the adversary presents cost function Up(𝑥) = 𝑈𝑥 at the
starting point and any inactive points, and Down1(𝑥) at all of the other ON states.
The adversary continues to sequentially present Down1(𝑥) in this manner until it
has presented it at least 𝜇 times (where 𝜇 := 1/𝑐). It then moves on to present
Down2(𝑥), Down3(𝑥), and so forth. The adversary follows the above pattern,
presenting “good cost functions” to a shrinking subset of ON states until they present
Down𝑚𝑦 (𝑥) = 𝑦𝑥 up to 𝜇 times at any remaining active states. In the timestep after
the last Down𝑚𝑦 (𝑥) = 𝑦𝑥 is presented, the adversary presents Up(𝑥) everywhere,
and Stage 1 ends.

In Stage 2, the adversary presents Up(𝑥) and Down𝑖 (𝑥) cost functions at the starting
point 𝑠, in an alternating fashion. All other ON states are considered inactive in
this stage, so they only receive Up(𝑥). In the first timestep, the adversary presents
Down1(𝑥) at the starting point, followed by Up(𝑥) in the following timestep. In
the third timestep, the adversary presents Down2(𝑥) at the starting point, followed
by Up(𝑥) in the subsequent timestep. The adversary continues alternating in this
manner until they present Down𝑚𝑦 (𝑥) = 𝑦𝑥 at the starting point. In the 𝜇 − 1
timesteps after Down𝑚𝑦 (𝑥) = 𝑦𝑥 is presented, the adversary presents Down𝑚𝑦 (𝑥) =
𝑦𝑥 at the starting point (allowing OPT to reduce their switching cost). Finally, the
adversary presents Up(𝑥) everywhere for the final 𝜇 timesteps, and Stage 2 ends.

The first family of 𝑦-adversaries, {G𝑦}𝑦∈[𝐿,𝑈] , only uses Stage 1—the sequence
ends when Stage 1 ends. The second family, {A𝑦}𝑦∈[𝐿,𝑈] , sequentially uses both
stages—cost functions are presented using the full Stage 1 sequence first, which is
then followed by the full Stage 2 sequence. This concatenated sequence ends when
Stage 2 ends.

Note that the final cost function for any point in any 𝑦-adversary instance is always
Up(𝑥).

Proof of Theorem 5.3.4. Let 𝑠(𝑦) and 𝑡 (𝑦) denote constraint satisfaction functions
mapping [𝐿,𝑈] → [0, 1], that fully describe ALG’s expected deadline constraint
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satisfaction (i.e., E
[∑

𝑡∈[ 𝑗] 𝑐(k)
]

before the mandatory allocation) during Stage 1
and Stage 2, respectively.

Note that for large 𝑚, Stage 1 and Stage 2 for 𝑦 = 𝑧 − 𝜎 are equivalent to first
processing Stage 1 and Stage 2 for 𝑦 = 𝑧, and then processing an additional batch of
cost functions such that the best cost function observed is Down𝑚𝑧−𝜎 (𝑥) = (𝑧−𝜎)𝑥.

As the expected deadline constraint satisfactions at each timestep are unidirectional
(irrevocable), we must have that 𝑠(𝑦) and 𝑡 (𝑦) both satisfy 𝑠(𝑦 − 𝜎) ≥ 𝑠(𝑦) and
𝑡 (𝑦 − 𝜎) ≥ 𝑡 (𝑦), i.e., 𝑠(𝑦) and 𝑡 (𝑦) are non-decreasing on [𝐿,𝑈]. Note that the
optimal solutions for adversaries G𝑦 and A𝑦 are not the same.

In particular, we have that OPT(G𝑦) = min{𝑦 + 𝐷 + 𝜏,𝑈}. For relatively large 𝑦,
the optimal solution may choose to satisfy the constraint at the starting point, but
for sufficiently small 𝑦, the optimal solution on G𝑦 may choose to move to a distant
point. For A𝑦, since the “good cost functions” arrive at the starting point, we have
OPT(A𝑦) = 𝑦 for any 𝑦 ∈ [𝐿,𝑈].

Due to the adaptive nature of the 𝑦-adversary, any ALG incurs expected movement
cost proportional to 𝑠(𝑦) during Stage 1. Furthermore, since 𝑐 ≪ 1 for all ON
states, note that as soon as 𝑠(𝑦) > 𝑐, in expectation, ALG has moved away from the
starting point. Thus, during Stage 2, ALG must also incur expected movement cost
proportional to 𝑡 (𝑦) as it “moves back” to the starting point. Let l = 𝑈/𝜂★−2𝜏 denote
the worst marginal cost that an 𝜂★-competitive ALG should be willing to accept in
either stage. The total expected cost incurred by an 𝜂★-competitive online algorithm
ALG on adversaries A𝑦 and G𝑦 can be expressed as follows:

E[ALG(G𝑦)] = 𝑠(l)l −
∫ 𝑦

l
𝑢𝑑𝑠(𝑢) + 𝐷𝑠(𝑦) + (1 − 𝑠(𝑦))𝑈 + 2𝜏𝑠(𝑦) (5.15)

E[ALG(A𝑦)] = 𝑠(l)l −
∫ 𝑦

l
𝑢𝑑𝑠(𝑢) + 𝐷𝑠(𝑦) + 𝑡 (l)l

−
∫ 𝑦

l
𝑢𝑑𝑡 (𝑢) + 𝐷𝑡 (𝑦) (5.16)

+ (1 − 𝑠(𝑦) − 𝑡 (𝑦))𝑈 + 2𝜏 [𝑠(𝑦) + 𝑡 (𝑦)] .

In the above expressions, 𝑢𝑑𝑠(𝑢) is the expected cost of buying 𝑑𝑠(𝑢) constraint
satisfaction at cost 𝑢. The same convention extends to 𝑢𝑑𝑡 (𝑢). 𝐷𝑠(𝑦) and 𝐷𝑡 (𝑦)
represent the movement cost paid by ALG during Stage 1 and Stage 2, respectively,
given that “good service cost functions” arrive at distant points (i.e., at distance
𝐷). (1 − 𝑠(𝑦))𝑈 and (1 − 𝑠(𝑦) − 𝑡 (𝑦))𝑈 give the expected cost of the mandatory
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allocation on adversary G𝑦 and A𝑦, respectively. Similarly, 2𝜏 gives the expected
temporal switching cost due to allocation decisions made (excepting the mandatory
allocation).

For any 𝜂★-competitive algorithm, the constraint satisfaction functions 𝑠(·) and
𝑡 (·) must simultaneously satisfy E[ALG(G𝑦)] ≤ 𝜂★OPT(G𝑦) and E[ALG(A𝑦)] ≤
𝜂★OPT(A𝑦) for all 𝑦 ∈ [𝐿,𝑈]. This gives a necessary condition that the functions
must satisfy as follows:

𝑠(l)l −
∫ 𝑦

l
𝑢𝑑𝑠(𝑢) + 𝐷𝑠(𝑦) + (1 − 𝑠(𝑦))𝑈 + 2𝜏𝑠(𝑦) ≤ 𝜂★ [𝑦 + 𝐷 + 2𝜏]

𝑠(l)l −
∫ 𝑦

l
𝑢𝑑𝑠(𝑢) + 𝑡 (l)l −

∫ 𝑦

l
𝑢𝑑𝑡 (𝑢)

+ (1 − 𝑠(𝑦) − 𝑡 (𝑦))𝑈 + [𝐷 + 2𝜏] (𝑠(𝑦) + 𝑡 (𝑦)) ≤ 𝜂★ [𝑦] .

By integration by parts, the above expressions imply that the constraint satisfaction
functions 𝑠(𝑦) and 𝑡 (𝑦) must satisfy the following conditions:

𝑠(𝑦) ≥ 𝑈 − 𝜂
★𝑦 − 𝜂★𝐷 − 2𝜂★𝜏

𝑈 − 𝑦 − 𝐷 − 2𝜏
− 1
𝑈 − 𝑦 − 𝐷 − 2𝜏

∫ 𝑦

l
𝑠(𝑢)𝑑𝑢

𝑡 (𝑦) ≥ (𝑦 + 𝐷 −𝑈 + 2𝜏)𝑠(𝑦)
𝑈 − 𝑦 − 𝐷 − 2𝜏

+ 𝑈 − 𝜂★𝑦
𝑈 − 𝑦 − 𝐷 − 2𝜏

− 1
𝑈 − 𝑦 − 𝐷 − 2𝜏

∫ 𝑦

l
𝑠(𝑢) + 𝑡 (𝑢)𝑑𝑢

≥ 𝜂★𝐷 + 𝜂★2𝜏
𝑈 − 𝑦 − 𝐷 − 2𝜏

− 1
𝑈 − 𝑦 − 𝐷 − 2𝜏

∫ 𝑦

l
𝑡 (𝑢)𝑑𝑢. (5.17)

In what follows, we substitute l = 𝑈
𝜂
− 2𝜏. By Grönwall’s Inequality [217, Theorem

1, p. 356], we have the following:

𝑠(𝑦) ≥ 𝑈 − 𝜂
★𝑦 − 𝜂★𝐷 − 2𝜂★𝜏

𝑈 − 𝑦 − 𝐷 − 2𝜏
−

∫ 𝑦

l

𝑈 − 𝜂★𝑢 − 𝜂★𝐷 − 2𝜂★𝜏
(𝑈 − 𝑢 − 𝐷 − 2𝜏)2

𝑑𝑢

≥ 𝑈 − 𝜂
★𝑦 − 𝜂★𝐷 − 2𝜂★𝜏

𝑈 − 𝑦 − 𝐷 − 2𝜏

−
[
2𝜏𝜂★ +𝑈𝜂★ − 2𝜏 −𝑈
𝑢 −𝑈 + 𝐷 + 2𝜏

− 𝜂★ ln (𝑈 − 𝑢 − 𝐷 − 2𝜏)
] 𝑦

l

≥ 𝜂★ ln (𝑈 − 𝑦 − 𝐷 − 2𝜏)

− 𝜂★ ln (𝑈 − l − 𝐷 − 2𝜏) − 𝜂
★𝐷 + 𝜂★2𝜏
𝑈
𝜂★
−𝑈 + 𝐷

∀𝑦 ∈ [𝐿,𝑈];

𝑡 (𝑦) ≥ 𝜂★𝐷 + 𝜂★2𝜏
𝑈 − 𝑦 − 𝐷 − 2𝜏

−
∫ 𝑦

l

𝜂★𝐷 + 𝜂★2𝜏
(𝑈 − 𝑢 − 𝐷 − 2𝜏)2

𝑑𝑢
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≥ 𝜂★𝐷 + 𝜂★2𝜏
𝑈 − 𝑦 − 𝐷 − 2𝜏

−
[
−𝜂★𝐷 − 𝜂★2𝜏
𝑢 −𝑈 + 𝐷 + 2𝜏

] 𝑦
l

≥ 𝜂★𝐷 + 𝜂★2𝜏
l −𝑈 + 𝐷 + 2𝜏

.

By the definition of the adversaries G𝑦 and A𝑦, we have that 𝑡 (𝐿) ≤ 1 − 𝑠(𝐿), and
thus 𝑠(𝐿) ≤ 1− 𝑡 (𝐿). We combine this inequality with the above bounds to give the
following condition for any 𝜂★-competitive online algorithm:

𝜂★ ln (𝑈 − 𝐿 − 𝐷 − 2𝜏) − 𝜂★ ln (𝑈 − l − 𝐷 − 2𝜏) − 𝜂
★𝐷 + 𝜂★2𝜏
𝑈
𝜂★
−𝑈 + 𝐷

≤ 𝑠(𝐿) ≤ 1 − 𝑡 (𝐿) ≤ 1 − 𝜂★𝐷 + 𝜂★2𝜏
l −𝑈 + 𝐷 + 2𝜏

.

The optimal 𝜂★ is obtained when the above inequality is binding, and is given by the
solution to the following transcendental equation (after substituting 𝑈

𝜂
− 2𝜏 for l):

ln
[
𝑈 − 𝐿 − 𝐷 − 2𝜏
𝑈 − 𝑈/𝜂★ − 𝐷

]
=

1
𝜂★
. (5.18)

The solution to the above is given by the following (note that 𝑊 (·) denotes the
Lambert W function):

𝜂★→
[
𝑊

(
(𝐷 + 𝐿 −𝑈 + 2𝜏) exp

(
𝐷−𝑈
𝑈

)
𝑈

)
+ 𝑈 − 𝐷

𝑈

]−1

. (5.19)

5.E Proofs for Section 5.4
Proof of Theorem 5.4.3
In this section, we prove Theorem 5.4.3, which states that ST-CLIP is (1 + 𝜀)-
consistent for any 𝜀 ∈ (0, 𝜂− 1], and𝑂 (log 𝑛)𝛾 (𝜀)-robust, where 𝛾 (𝜀) is the solution
to (5.5).

Proof. We show the result by separately considering consistency (the competitive
ratio when advice is correct) and robustness (the competitive ratio when advice is
not correct) in turn.

Recall that the black-box advice Adv is denoted by a decision a𝑡 at each time 𝑡.
Throughout the proof, we use shorthand notation SC𝑡 to denote the expected cost of
ST-CLIP up to time 𝑡, and Adv𝑡 to denote the cost of Adv up to time 𝑡. We start by
proving Lemma 5.4.5 to show that ST-CLIP is (1 + 𝜀)-consistent.
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Proof of Lemma 5.4.5. First, we note that the constrained optimization enforces
that the expected cost of ST-CLIP so far plus a term that forecasts the mandatory
allocation is always within (1 + 𝜀) of the advice. There is always a feasible p𝑡
that satisfies the constraint, because setting k𝑡 = Φa𝑡 is always within the feasible
set. Formally, if timestep 𝑗 ∈ [𝑇] denotes the timestep marking the start of the
mandatory allocation, the constraint in (5.7) holds for every timestep 𝑡 ∈ [ 𝑗].

Thus, to show (1 + 𝜀) consistency, we must resolve the cost of any actions during
the mandatory allocation and show that the final expected cost of ST-CLIP is upper
bounded by (1 + 𝜀)Adv.

Let I ∈ Ω be an arbitrary valid SOAD sequence. If the mandatory allocation begins
at timestep 𝑗 < 𝑇 , both ST-CLIP and Adv must greedily satisfy the constraint
during the last 𝑚 timesteps [ 𝑗 , 𝑇]. This is assumed to be feasible, and the cost due
to switching in and out of ON / OFF states is assumed to be negligible as long as 𝑚
is sufficiently large.

Let (1 − 𝑧( 𝑗−1)) denote the remaining deadline constraint that must be satisfied by
ST-CLIP in expectation at these final 𝑚 timesteps, and let (1 − 𝐴( 𝑗−1)) denote the
remaining deadline constraint to be satisfied by Adv. We consider two cases, corre-
sponding to the cases where ST-CLIP has underprovisioned with respect to Adv (i.e.,
it has completed less of the deadline constraint in expectation) and overprovisioned
(i.e., completed more of the deadline constraint), respectively.

Case 1: ST-CLIP(I) has “underprovisioned” ((1 − 𝑧( 𝑗−1)) > (1 − 𝐴( 𝑗−1)))

In this case, ST-CLIP must satisfy more of the deadline constraint (in expectation)
during the mandatory allocation compared to Adv. From the previous timestep, we
know that the following constraint holds:

SC 𝑗−1 +W1(p 𝑗−1, a 𝑗−1) + 𝜏𝑐(a 𝑗−1) + (1 − 𝐴( 𝑗−1))𝐿 + (𝐴( 𝑗−1) − 𝑧( 𝑗−1))𝑈
≤ (1 + 𝜀)

[
Adv 𝑗−1 + 𝜏𝑐(a 𝑗−1) + (1 − 𝐴( 𝑗−1))𝐿

]
.

Let {p𝑡}𝑡∈[ 𝑗 ,𝑇] and {a𝑡}𝑡∈[ 𝑗 ,𝑇] denote the decisions made by ST-CLIP and Adv during
the mandatory allocation, respectively. Conditioned on the fact that ST-CLIP has
completed 𝑧( 𝑗−1) fraction of the deadline constraint in expectation, we have that
E

[∑𝑇
𝑡= 𝑗 𝑐(p𝑡)

]
= (1 − 𝑧( 𝑗−1)) and

∑𝑇
𝑡= 𝑗 𝑐(a𝑡) = (1 − 𝐴( 𝑗−1)).

Considering { 𝑓𝑡 (·)}𝑡∈[ 𝑗 ,𝑇] , by assumption we have a lower bound based on 𝐿, namely∑𝑇
𝑡= 𝑗 𝑓𝑡 (a𝑡) ≥ 𝐿

∑𝑇
𝑡= 𝑗 𝑐(a𝑡). For the service costs that ST-CLIP must incur over and
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above what Adv incurs, we have a upper bound based on 𝑈, so E
[∑𝑇

𝑡= 𝑗 𝑓𝑡 (p𝑡)
]
≤∑𝑇

𝑡= 𝑗 𝑓𝑡 (a𝑡) +𝑈 (
∑𝑇
𝑡= 𝑗 𝑐(p𝑡) −

∑𝑇
𝑡= 𝑗 𝑐(a𝑡)).

Note that the worst case for ST-CLIP occurs when
∑𝑇
𝑡= 𝑗 𝑓𝑡 (a𝑡) exactly matches this

lower bound, i.e.,
∑𝑇
𝑡= 𝑗 𝑓𝑡 (a𝑡) = 𝐿

∑𝑇
𝑡= 𝑗 𝑐(a𝑡), as Adv is able to satisfy the rest

of the deadline constraint at the best possible marginal price. Furthermore, note
that if ST-CLIP and Adv are in different points of the metric at time 𝑗 , the term
W1(p 𝑗−1, a 𝑗−1) in the left-hand-side of the constraint allows ST-CLIP to “move
back” and follow Adv just before the mandatory allocation begins, thus leveraging
the same cost functions as Adv. By the constraint in the previous timestep, we have
the following:

SC 𝑗−1 +W1(p 𝑗−1, a 𝑗−1) + 𝜏𝑐(a 𝑗−1) + (1 − 𝐴( 𝑗−1))𝐿 + (𝐴( 𝑗−1) − 𝑧( 𝑗−1))𝑈
≤ (1 + 𝜀) [Adv 𝑗−1 + 𝜏𝑐(a 𝑗−1) + (1 − 𝐴( 𝑗−1))𝐿],

SC 𝑗−1 + 𝜏𝑐(a 𝑗−1) + 𝐿
𝑇∑︁
𝑡= 𝑗

𝑐(a𝑡) +𝑈
(
𝑇∑︁
𝑡= 𝑗

𝑐(p𝑡) −
𝑇∑︁
𝑡= 𝑗

𝑐(a𝑡)
)

≤ (1 + 𝜀)
[
Adv 𝑗−1 + 𝜏𝑐(a 𝑗−1) + 𝐿

𝑇∑︁
𝑡= 𝑗

𝑐(a𝑡)
]
≤ (1 + 𝜀)Adv(I).

E [ST-CLIP(I)] ≤ (1 + 𝜀)Adv(I). (5.20)

Case 2: ST-CLIP(I) has “overprovisioned” ((1 − 𝑧( 𝑗−1)) ≤ (1 − 𝐴( 𝑗−1)))

In this case, ST-CLIP must satisfy less of the deadline constraint (in expectation)
during the mandatory allocation compared to Adv.

From the previous timestep, we know that the following constraint holds:

SC 𝑗−1 +W1(p 𝑗−1, a 𝑗−1) + 𝜏𝑐(a 𝑗−1) + (1 − 𝑧( 𝑗−1))𝐿
≤ (1 + 𝜀)

[
Adv 𝑗−1 + 𝜏𝑐(a 𝑗−1) + (1 − 𝐴( 𝑗−1))𝐿

]
.

Let {p𝑡}𝑡∈[ 𝑗 ,𝑇] and {a𝑡}𝑡∈[ 𝑗 ,𝑇] denote the decisions made by ST-CLIP and Adv during
the mandatory allocation, respectively. As previously, we have thatE

[∑𝑇
𝑡= 𝑗 𝑐(p𝑡)

]
=

(1 − 𝑧( 𝑗−1)) and
∑𝑇
𝑡= 𝑗 𝑐(a𝑡) = (1 − 𝐴( 𝑗−1)).

Considering { 𝑓𝑡 (·)}𝑡∈[ 𝑗 ,𝑇] , we have a lower bound on
∑𝑇
𝑡= 𝑗 𝑓𝑡 (·) based on 𝐿, namely∑𝑇

𝑡= 𝑗 𝑓𝑡 (p𝑡) ≥ 𝐿
∑𝑇
𝑡= 𝑗 𝑐(p𝑡) and

∑𝑇
𝑡= 𝑗 𝑓𝑡 (a𝑡) ≥ 𝐿

∑𝑇
𝑡= 𝑗 𝑐(a𝑡). Since ST-CLIP has

“overprovisioned,” we know E
[∑𝑇

𝑡= 𝑗 𝑐(p𝑡)
]
≤ ∑𝑇

𝑡= 𝑗 𝑐(a𝑡), and thus it follows that

E
[∑𝑇

𝑡= 𝑗 𝑓𝑡 (p𝑡)
]
≤ ∑𝑇

𝑡= 𝑗 𝑓𝑡 (a𝑡).
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By the constraint in the previous timestep, we have:

SC 𝑗−1 +W1(p 𝑗−1, a 𝑗−1) + 𝜏𝑐(a 𝑗−1) + (1 − 𝑧( 𝑗−1))𝐿
Adv 𝑗−1 + 𝜏𝑐(a 𝑗−1) + (1 − 𝐴( 𝑗−1))𝐿

=
SC 𝑗−1 +W1(p 𝑗−1, a 𝑗−1) + 𝜏𝑐(a 𝑗−1) + 𝐿

∑𝑇
𝑡= 𝑗 𝑐(p𝑡)

Adv 𝑗−1 + 𝜏𝑐(a 𝑗−1) + 𝐿
∑𝑇
𝑡= 𝑗 𝑐(a𝑡)

≤ (1 + 𝜀).

Let 𝑦 = E
[∑𝑇

𝑡= 𝑗 𝑓𝑡 (p𝑡)
]
− 𝐿∑𝑇

𝑡= 𝑗 𝑐(p𝑡), and let 𝑦′ =
∑𝑇
𝑡= 𝑗 𝑓𝑡 (a𝑡) − 𝐿

∑𝑇
𝑡= 𝑗 𝑐(a𝑡).

By definition, 𝑦 ≥ 0 and 𝑦′ ≥ 0. Note that by resolving the mandatory allocation
and by definition, we have that the final expected cost E [ST-CLIP(I)] ≤ SC 𝑗−1 +
W1(p 𝑗−1, a 𝑗−1) + 𝜏𝑐(a 𝑗−1) + 𝐿

∑𝑇
𝑡= 𝑗 𝑐(p𝑡) + 𝑦, and Adv(I) ≥ Adv 𝑗−1 + 𝜏𝑐(a 𝑗−1) +

𝐿
∑𝑇
𝑡= 𝑗 𝑐(a𝑡) + 𝑦′.

Furthermore, since ST-CLIP has “overprovisioned” and by the linearity of the cost
functions 𝑓𝑡 (·), we have that 𝑦 ≤ 𝑦′. Combined with the constraint from the previous
timestep, we have the following bound:

E [ST-CLIP(I)]
Adv(I) ≤

SC 𝑗−1 +W1(p 𝑗−1, a 𝑗−1) + 𝜏𝑐(a 𝑗−1) + 𝐿
∑𝑇
𝑡= 𝑗 𝑐(p𝑡) + 𝑦

Adv 𝑗−1 + 𝜏𝑐(a 𝑗−1) + 𝐿
∑𝑇
𝑡= 𝑗 𝑐(a𝑡) + 𝑦′

≤
SC 𝑗−1 +W1(p 𝑗−1, a 𝑗−1) + 𝜏𝑐(a 𝑗−1) + 𝐿

∑𝑇
𝑡= 𝑗 𝑐(p𝑡)

Adv 𝑗−1 + 𝜏𝑐(a 𝑗−1) + 𝐿
∑𝑇
𝑡= 𝑗 𝑐(a𝑡)

≤ (1 + 𝜀). (5.21)

Thus, by combining the bounds in each of the above two cases, the result follows,
and we conclude that ST-CLIP is (1 + 𝜀)-consistent with accurate advice.

Having proved consistency, we next prove Lemma 5.4.5 to show that ST-CLIP is
𝑂 (log 𝑛)𝛾 (𝜀)-robust.

Proof of Lemma 5.4.6. Let 𝜀 ∈ (0, 𝜂★ − 1] be the target consistency (recalling
that ST-CLIP is (1 + 𝜀)-consistent), and let I ∈ Ω denote an arbitrary valid SOAD
sequence. To prove the robustness of ST-CLIP, we consider two “bad cases” for
the advice Adv(I), and show that in the worst-case, ST-CLIP’s competitive ratio is
bounded by 𝑂 (log 𝑛)𝛾 (𝜀) .

Case 1: Adv(I) is “inactive”
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Consider the case where Adv accepts nothing during the main sequence and instead
satisfies the entire deadline constraint at the end of the sequence immediately before
the mandatory allocation, incurring the worst possible movement & switching cost
in the process. In the worst-case, this gives that Adv(I) = 𝑈 + 𝐷 + 𝜏.

Based on the consistency constraint (and using the fact that ST-CLIP will always
be “overprovisioning” with respect to Adv throughout the main sequence), we can
derive an upper bound on the constraint satisfaction that ST-CLIP is “allowed to
accept” from the robust pseudo-cost minimization. Recall the following constraint:

SC𝑡−1 + 𝑓𝑡 (p𝑡) +W1(p𝑡 , p𝑡−1) +W1(p𝑡 , a𝑡) + 𝜏𝑐(a𝑡) + (1 − 𝑧(𝑡−1) − 𝑐(p𝑡))𝐿
≤ (1 + 𝜀)

[
Adv𝑡 + 𝜏𝑐(a𝑡) + (1 − 𝐴(𝑡))𝐿

]
.

Proposition 5.E.1. Under “inactive” advice, 𝑧PCM is an upper bound on the amount
that ST-CLIP can accept from the pseudo-cost minimization in expectation without
violating (1 + 𝜀)-consistency, and is defined as:

𝑧PCM = 𝛾 (𝜀) ln
[
𝑈 − 𝐿 − 𝐷 − 2𝜏

𝑈 − 𝑈/𝛾 (𝜀) − 𝐷 − 2𝜏

]
.

Proof. Consider an arbitrary timestep 𝑡. If ST-CLIP is not allowed to make a
decision that makes progress towards the constraint (i.e., it cannot accept anything
more from the robust pseudo-cost minimization), we have that 𝑐(p𝑡) is restricted to
be 0. Recall that a𝑡 = 𝛿𝑠 (where 𝛿𝑠 is the Dirac measure at the starting OFF state)
for any timesteps before the mandatory allocation, because the advice is assumed to
be inactive. By definition, since any cost functions accepted so far in expectation
(i.e., in SC𝑡−1) can be attributed to the robust pseudo-cost minimization, we have
the following in the worst-case, using the same techniques used in the proof of
Theorem 5.3.3:

SC𝑡−1 =

∫ 𝑧 (𝑡−1)

0
𝜓 (𝜀) (𝑢)𝑑𝑢 + 𝜏𝑧(𝑡−1) .

Combining the above with the left-hand side of the consistency constraint, we have
the following. Observe that p𝑡 is in an OFF state, a𝑡 = 𝛿𝑠, and any prior movement
costs to make progress towards the constraint can be absorbed into the pseudo-
cost 𝜓 since ∥k𝑡 − k𝑡−1∥ℓ1 (w) ≥ W1(p𝑡 , p𝑡−1). Furthermore, in the worst-case,
W1(p𝑡 , a𝑡) = 𝐷𝑧(𝑡−1) (i.e., the pseudo-cost chooses to move to a point in the metric
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that is a distance 𝐷 away from Adv).

SC𝑡−1 +W1(p𝑡 , a𝑡) + (1 − 𝑧(𝑡−1))𝐿

=

∫ 𝑧 (𝑡−1)

0
𝜓 (𝜀) (𝑢)𝑑𝑢 + 𝜏𝑧(𝑡−1) + 𝐷𝑧(𝑡−1) + (1 − 𝑧(𝑡−1))𝐿.

As stated, let 𝑧(𝑡−1) = 𝑧PCM. Then by properties of the pseudo-cost,

SC𝑡−1 +W1(p𝑡 , a𝑡) + (1 − 𝑧PCM)𝐿

=

∫ 𝑧PCM

0
𝜓 (𝜀) (𝑢)𝑑𝑢 + 𝜏𝑧PCM + (1 − 𝑧PCM)𝑈

+ (1 − 𝑧PCM)𝐿 + 𝐷𝑧PCM − (1 − 𝑧PCM)𝑈
= 𝛾 (𝜀)

[
𝜓 (𝜀) (𝑧PCM) − 𝐷

]
+ (1 − 𝑧PCM)𝐿 + 𝐷𝑧PCM − (1 − 𝑧PCM)𝑈

= 𝛾 (𝜀)𝐿 + (𝐿 −𝑈)
(
1 − 𝛾 (𝜀) ln

[
𝑈 − 𝐿 − 𝐷 − 2𝜏

𝑈 − 𝑈/𝛾 (𝜀) − 𝐷 − 2𝜏

] )
+ 𝐷𝑧PCM

= 𝛾 (𝜀)𝐿 + 𝐿 −𝑈 + (𝑈 − 𝐿 + 𝐷) 𝛾 (𝜀) ln
[
𝑈 − 𝐿 − 𝐷 − 2𝜏

𝑈 − 𝑈/𝛾 (𝜀) − 𝐷 − 2𝜏

]
.

Substituting for the definition of 𝛾 (𝜀) , we obtain:

SC𝑡−1 +W1(p𝑡 , a𝑡) + (1 − 𝑧PCM)𝐿

= 𝛾 (𝜀)𝐿 + 𝐿 −𝑈 + (𝑈 − 𝐿 + 𝐷) 𝛾 (𝜀) ln
[
𝑈 − 𝐿 − 𝐷 − 2𝜏

𝑈 − 𝑈/𝛾 (𝜀) − 𝐷 − 2𝜏

]
=

[
𝜀𝐿 +𝑈 − 𝛾 (𝜀) (𝑈 − 𝐿 + 𝐷) ln

[
𝑈 − 𝐿 − 𝐷 − 2𝜏

𝑈 − 𝑈/𝛾 (𝜀) − 𝐷 − 2𝜏

] ]
+ 𝐿 −𝑈 + (𝑈 − 𝐿 + 𝐷) 𝛾 (𝜀) ln

[
𝑈 − 𝐿 − 𝐷 − 2𝜏

𝑈 − 𝑈/𝛾 (𝜀) − 𝐷 − 2𝜏

]
= 𝜀𝐿 + 𝐿 = (1 + 𝜀)𝐿.

This completes the proposition, since (1 + 𝜀)𝐿 is exactly the right-hand side of
the consistency constraint (note that (1 + 𝜀) [Adv𝑡 + 𝜏𝑐(a𝑡) + (1 − 𝐴𝑡)𝐿] = (1 +
𝜀)𝐿).

If ST-CLIP is constrained to use at most 𝑧PCM of its utilization to be robust, the
remaining (1− 𝑧PCM) utilization must be used for the mandatory allocation and/or to
follow Adv. Note that if ST-CLIP has moved away from Adv’s point in the metric,
and Adv turns out to be “inactive” bad advice that incurs sub-optimal service cost
late in the sequence, the consistency constraint will become non-binding and ST-
CLIP will not have to move back to follow Adv in the metric. Thus, we have the



227

following worst-case competitive ratio for ST-CLIP, specifically for Case 1, where
we assume OPT(I) → 𝜓 (𝜀) (𝑧PCM)/𝑂 (log 𝑛) = 𝐿/𝑂 (log 𝑛), as in, e.g., Lemma 5.3.5:

E [ST-CLIP(I)]
OPT(I) ≤

∫ 𝑧PCM
0 𝜓 (𝜀) (𝑢)𝑑𝑢 + 𝜏𝑧PCM + (1 − 𝑧PCM)𝑈

𝐿/𝑂 (log 𝑛)
(5.22)

≤
∫ 𝑧PCM

0 𝜓 (𝜀) (𝑢)𝑑𝑢 + 𝜏𝑧PCM + (1 − 𝑧PCM)𝐷 + (1 − 𝑧PCM)𝑈
𝐿/𝑂 (log 𝑛)

.

(5.23)

By the definition of 𝜓 (𝜀) (·), we have the following:

E [ST-CLIP(I)]
OPT(I) ≤

∫ 𝑧PCM
0 𝜓 (𝜀) (𝑢)𝑑𝑢 + 𝜏𝑧PCM + (1 − 𝑧PCM)𝐷 + (1 − 𝑧PCM)𝑈

𝐿/𝑂 (log 𝑛)

≤
𝛾 (𝜀)

[
𝜓 (𝜀) (𝑧PCM) − 2𝐷

]
𝐿/𝑂 (log 𝑛)

≤ 𝛾
(𝜀) [𝐿 + 2𝐷 − 2𝐷]

𝐿/𝑂 (log 𝑛)

≤ 𝑂 (log 𝑛)𝛾 (𝜀) .

Case 2: Adv(I) is “overactive”

We now consider the case where Adv incurs bad service cost due to “accepting”
cost functions which it “should not” (i.e., Adv(I) ≫ OPT(I)). Let Adv(I) = V ≫
OPT(I) (i.e., the final total cost of Adv is V for some V ∈ [𝐿,𝑈], and V is much
greater than the optimal solution).

This is without loss of generality, since we can assume that V is the “best marginal
service and movement cost” incurred by Adv at a particular timestep and the con-
sistency ratio changes strictly in favor of Adv. Based on the consistency constraint,
we can derive a lower bound on the amount that ST-CLIP must accept from Adv
in expectation to stay (1 + 𝜀)-consistent. To do this, we consider the following
sub-cases:

• Sub-case 2.1: Let V ≥ 𝑈+𝐷
1+𝜀 .
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In this sub-case, ST-CLIP can fully ignore the advice, because the following con-
sistency constraint is never binding (note that Adv𝑡 ≥ 𝑈+𝐷

1+𝜀 𝐴
(𝑡)):

SC𝑡−1 + 𝑓𝑡 (p𝑡) +W1(p𝑡 , p𝑡−1) +W1(p𝑡 , a𝑡)
+ 𝜏𝑐(a𝑡) + (1 − 𝐴(𝑡))𝐿 + (𝐴(𝑡) − 𝑧(𝑡−1) − 𝑐(p𝑡))𝑈
≤ (1 + 𝜀)

[
Adv𝑡 + 𝜏𝑐(a𝑡) + (1 − 𝐴(𝑡))𝐿

]
,

(𝐷 + 𝜏)𝑐(a𝑡) + (1 − 𝐴(𝑡))𝐿 + (𝐴(𝑡))𝑈 ≤ (1 + 𝜀)
[
V𝑐(a𝑡) + 𝜏𝑐(a𝑡) + (1 − 𝐴(𝑡))𝐿

]
,

(𝐷 + 𝜏)𝐴(𝑡) + (1 − 𝐴(𝑡))𝐿 +𝑈𝐴(𝑡) ≤ (1 + 𝜀)
[
𝑈 + 𝐷
1 + 𝜀 𝐴

(𝑡) + 𝜏𝐴(𝑡) + (1 − 𝐴(𝑡))𝐿
]
.

• Sub-case 2.2: Let V ∈ (𝐿, 𝑈+𝐷1+𝜀 ).

In this case, in order to remain (1 + 𝜀)-consistent, ST-CLIP must follow Adv and
incur some “bad cost,” denoted by V. We derive a lower bound that describes
the minimum amount that ST-CLIP must follow Adv in order to always satisfy the
consistency constraint.

Proposition 5.E.2. Under “overactive” advice, 𝑧Adv is a lower bound on the amount
that ST-CLIP must accept from the advice in order to always satisfy the consistency
constraint, and is defined as:

𝑧Adv ≥ 1 − V𝜀
𝑈 + 𝐷 − V .

Proof. For the purposes of showing this lower bound, we assume there are no
marginal service costs in the instance that would otherwise be accepted by the
robust pseudo-cost minimization.

Based on the consistency constraint, we have the following:

SC𝑡−1 + 𝑓𝑡 (p𝑡) +W1(p𝑡 , p𝑡−1) +W1(p𝑡 , a𝑡)
+ 𝜏𝑐(a𝑡) + (1 − 𝐴(𝑡))𝐿 + (𝐴(𝑡) − 𝑧(𝑡−1) − 𝑐(p𝑡))𝑈
≤ (1 + 𝜀)

[
Adv𝑡 + 𝜏𝑐(a𝑡) + (1 − 𝐴(𝑡))𝐿

]
.

We let 𝑓𝑡 (p𝑡)+W1(p𝑡 , p𝑡−1)+W1(p𝑡 , a𝑡)+𝜏𝑐(a𝑡) ≤ 𝑣𝑐(p𝑡) for any p𝑡 : 𝑐(p𝑡) < 𝑐(a𝑡),
which holds by linearity of the cost functions 𝑓𝑡 (·) and a prevailing condition that
𝑐(p𝑡) ≤ 𝑐(a𝑡) for the “bad service costs” accepted by Adv. Note that ST-CLIP
must “follow” Adv to distant points in the metric to avoid violating consistency, and
recall that p𝑡 = a𝑡 is always in the feasible set. Under this condition that ST-CLIP
follows Adv, W1(p𝑡 , p𝑡−1) + 𝜏𝑐(a𝑡) is upper bounded by the movement cost of Adv
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and absorbed into V. The term W1(p𝑡 , a𝑡) is upper bounded by 𝐷 (𝐴(𝑡) − 𝑐(p𝑡)) by
Assumption 5.2 of the metric.

SC𝑡−1 + V𝑐(p𝑡) + 𝐿 − 𝐿𝐴(𝑡) +𝑈𝐴(𝑡) + 𝐷𝐴(𝑡) −𝑈𝑧(𝑡−1) −𝑈𝑐(p𝑡) − 𝐷𝑐(p𝑡)
≤ (1 + 𝜀)

[
V𝐴(𝑡−1) + V𝑐(a𝑡) + 𝐿 − 𝐿𝐴(𝑡)

]
,

V𝑐(p𝑡) − 𝐷𝑐(p𝑡) −𝑈𝑐(p𝑡)
≤ (1 + 𝜀)

[
V𝐴(𝑡−1) + V𝑐(a𝑡) + 𝐿 − 𝐿𝐴(𝑡)

]
− SC𝑡−1 − 𝐿 + 𝐿𝐴(𝑡) −𝑈𝐴(𝑡) − 𝐷𝐴(𝑡) +𝑈𝑧(𝑡−1) ,

V𝑐(p𝑡) − 𝐷𝑐(p𝑡) −𝑈𝑐(p𝑡)
≤ V𝐴(𝑡) − 𝐷𝐴(𝑡) −𝑈𝐴(𝑡) − SC𝑡−1 +𝑈𝑧(𝑡−1)

+ 𝜀
[
V𝐴(𝑡−1) + V𝑐(a𝑡) + 𝐿 − 𝐿𝐴(𝑡)

]
,

𝑐(p𝑡) ≥
V𝐴(𝑡) − 𝐷𝐴(𝑡) −𝑈𝐴(𝑡) − SC𝑡−1 +𝑈𝑧(𝑡−1) + 𝜀

[
V𝐴(𝑡) + 𝐿 − 𝐿𝐴(𝑡)

]
V − 𝐷 −𝑈 .

In the event that 𝐴(𝑡−1) = 0 (i.e., nothing has been accepted so far by either Adv or
ST-CLIP), we have:

𝑐(p𝑡) ≥
V𝑐(a𝑡) − 𝐷𝑐(a𝑡) −𝑈𝑐(a𝑡) + 𝜀 [V𝑐(a𝑡) + 𝐿 − 𝐿𝑐(a𝑡)]

V − 𝐷 −𝑈 ,

𝑐(p𝑡) ≥ 𝑐(a𝑡) −
𝜀 [V𝑐(a𝑡) + 𝐿 − 𝐿𝑐(a𝑡)]

𝑈 + 𝐷 − V .

Through a recursive definition, we can show that for any 𝐴(𝑡) , given that ST-CLIP
has satisfied 𝑧(𝑡−1) of the deadline constraint by following Adv so far, it must set p𝑡
such that:

𝑧(𝑡) ≥ 𝑧(𝑡−1) + 𝑐(a𝑡) −
𝜀 [V𝑐(a𝑡) + 𝐿 − 𝐿𝑐(a𝑡)]

𝑈 + 𝐷 − V .

Continuing the assumption that V is constant, if ST-CLIP has accepted 𝑧(𝑡−1) thus
far, we have the following if we assume that all of the constraint satisfaction up to
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this point happened in a single previous timestep 𝑚:

𝑐(p𝑡) ≥ 𝐴(𝑡) −
𝑈𝑐(p𝑚) + 𝐷𝑐(p𝑚) − SC𝑡−1 + 𝜀

[
V𝐴(𝑡) + 𝐿 − 𝐿𝐴(𝑡)

]
𝑈 + 𝐷 − V ,

𝑐(p𝑡) ≥ 𝑐(a𝑡) + 𝑐(a𝑚) − 𝑐(p𝑚)

− 𝜀 [V(𝑐(a𝑡) + 𝑐(a𝑚)) + 𝐿 − 𝐿 (𝑐(a𝑡) + 𝑐(a𝑚))]
𝑈 + 𝐷 − V ,

𝑐(p𝑡) + 𝑐(p𝑚) ≥ 𝑐(a𝑡) + 𝑐(a𝑚) −
𝜀 [V(𝑐(a𝑡) + 𝑐(a𝑚)) + 𝐿 − 𝐿 (𝑐(a𝑡) + 𝑐(a𝑚))]

𝑈 + 𝐷 − V ,

𝑧(𝑡) ≥ 𝐴(𝑡) −
𝜀

[
V𝐴(𝑡) + 𝐿 − 𝐿𝐴(𝑡)

]
𝑈 + 𝐷 − V .

This gives intuition into the desired 𝑧Adv bound. The above motivates that the
aggregate expected constraint satisfaction by ST-CLIP at any given timestep 𝑡 must
satisfy a lower bound. Consider that the worst case for Sub-case 2.2 occurs when
all of the 𝑣 prices accepted by Adv arrive first, before any prices that would be
considered by the pseudo-cost minimization. Then let 𝐴(𝑡) = 1 for some arbitrary
timestep 𝑡, and we have the stated lower bound on 𝑧Adv.

If ST-CLIP is forced to use 𝑧Adv of its utilization to be (1 + 𝜀) consistent against
Adv, that leaves at most (1 − 𝑧Adv) utilization for robustness. We define 𝑧′ =
min(1 − 𝑧Adv, 𝑧PCM) and consider the following two cases.

• Sub-case 2.2.1: if 𝑧′ = 𝑧PCM, the worst-case competitive ratio is bounded by
the following. Note that if 𝑧′ = 𝑧PCM, the amount of utilization that ST-CLIP
can use to “be robust” is exactly the same as in Case 1, and we again have that
OPT(I) → 𝜓 (𝜀) (𝑧PCM)/𝑂 (log 𝑛) = 𝐿/𝑂 (log 𝑛):

E [ST-CLIP(I)]
OPT(I)

≤
∫ 𝑧PCM

0 𝜓 (𝜀) (𝑢)𝑑𝑢 + 𝜏𝑧PCM + (1 − 𝑧Adv − 𝑧PCM)𝑈 + 𝑧AdvV
𝐿/𝑂 (log 𝑛)

,

≤
∫ 𝑧PCM

0 𝜓 (𝜀) (𝑢)𝑑𝑢 + 𝜏𝑧PCM + (1 − 𝑧PCM)𝐷 + (1 − 𝑧PCM)𝑈
𝐿/𝑂 (log 𝑛)

,

≤ 𝑂 (log 𝑛)𝛾 (𝜀) . (5.24)

• Sub-case 2.2.2: if 𝑧′ = 1 − 𝑧Adv, the worst-case competitive ratio is bounded by
the following. Note that ST-CLIP cannot use 𝑧PCM of its utilization for robustness,
so the following bound assumes that the “robust service costs” accepted by ST-CLIP
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are bounded by the worst (1 − 𝑧Adv) fraction of the pseudo-cost function 𝜓 (𝜀) (note
that 𝜓 (𝜀) is non-increasing on 𝑧 ∈ [0, 1]):

E [ST-CLIP(I)]
OPT(I) ≤

∫ 1−𝑧Adv
0 𝜓 (𝜀) (𝑢)𝑑𝑢 + 𝜏(1 − 𝑧Adv) + 𝑧AdvV

𝐿/𝑂 (log 𝑛)
.

Note that if 𝑧′ = 1 − 𝑧Adv, we know that 1 − 𝑧Adv < 𝑧PCM, which further gives the
following by definition of 𝑧Adv:

1 − 𝑧PCM < 1 − V𝜀
𝑈 + 𝐷 − V ,

V𝜀 < (𝑈 + 𝐷 − V)𝑧PCM,

V <
𝑈 + 𝐷
(1 + 𝜀

𝑧PCM
) .

By plugging V back into the definition of 𝑧Adv, we have that 𝑧AdvV ≤(
(1−𝑧PCM) (𝑈+𝐷)

1+ 𝜀
𝑧PCM

)
, giving the following:

E [ST-CLIP(I)]
OPT(I)

≤

∫ 1−𝑧Adv
0 𝜓 (𝜀) (𝑢)𝑑𝑢 + 𝜏(1 − 𝑧Adv) +

(
(1−𝑧PCM) (𝑈+𝐷)

1+ 𝜀
𝑧PCM

)
𝐿/𝑂 (log 𝑛)

,

≤
∫ 𝑧PCM

0 𝜓 (𝜀) (𝑢)𝑑𝑢 + 𝜏𝑧PCM + (1 − 𝑧PCM)𝐷 + (1 − 𝑧PCM)𝑈
𝐿/𝑂 (log 𝑛)

,

≤ 𝑂 (log 𝑛)𝛾 (𝜀) .

Thus, by combining the bounds in each of the above two cases, the result follows,
and we conclude that ST-CLIP is 𝑂 (log 𝑛)𝛾 (𝜀)-robust.

Having proven Lemma 5.4.5 (consistency) and Lemma 5.4.6 (robustness), the state-
ment of Theorem 5.4.3 follows: ST-CLIP is (1 + 𝜀)-consistent and 𝑂 (log 𝑛)𝛾 (𝜀)-
robust given any advice for SOAD.

Proof of Theorem 5.4.4
In this section, we prove Theorem 5.4.4, which states that 𝛾 (𝜀) (as defined in (5.5))
is the optimal robustness for any (1 + 𝜀)-consistent learning-augmented SOAD
algorithm.

Proof. To show this result, we build off the same 𝑦-adversaries for SOAD defined
in Definition 5.D, where 𝑦 ∈ [𝐿,𝑈]. For the purposes of showing consistency, we
define a slightly tweaked adversary A′𝑦:
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Definition 5.E.3 (A′𝑦 adversary for learning-augmented SOAD). Recall the A𝑦

adversary defined in Definition 5.D. During Stage 1 of the adversary’s sequence,
A𝑦 and A′𝑦 are identical. In Stage 2, A′𝑦 presents Up(𝑥) at the starting point’s
ON state ON(𝑠) once, followed by Down𝑚𝑦 (𝑥) = 𝑦𝑥 at ON(𝑠) . All other ON states are
considered inactive in this stage, so they only receive Up(𝑥). In the 𝜇 − 1 timesteps
after Down𝑚𝑦 (𝑥) = 𝑦𝑥 is presented, the adversary presents Down𝑚𝑦 (𝑥) = 𝑦𝑥 at
the starting point in the metric (allowing OPT and Adv to reduce their switching
cost). Finally, the adversary presents Up(𝑥) everywhere for the final 𝜇 timesteps,
and Stage 2 ends.

As in the proof of Theorem 5.3.4, for adversary A′𝑦, the optimal offline objective
is OPT(A′𝑦) → 𝑦. Against these adversaries, we consider two types of advice—the
first is bad advice, which stays with their full allocation at the starting OFF state (i.e.,
a𝑡 = 𝛿𝑠) for all timesteps 𝑡 < 𝑗 before the mandatory allocation, incurring a final
cost of𝑈 + 2𝜏.

On the other hand, good advice sets a𝑡 = 𝛿𝑠 for all timesteps up to the first timestep
when 𝑦 is revealed at the starting point in the metric, after which it sets 𝑎ON(𝑠)𝑡 = 1/𝜇
to achieve final cost Adv(A′𝑦) = OPT(A′𝑦) = 𝑦 + 2𝜏/𝜇.

We let (𝑠(𝑦) + 𝑡 (𝑦)) denote a robust constraint satisfaction function [𝐿,𝑈] →
[0, 1], that fully quantifies the actions of a learning-augmented algorithm ALG play-
ing against adaptive adversary A′𝑦, where (𝑠(𝑦) + 𝑡 (𝑦)) gives the progress towards
the deadline constraint under the instance A′𝑦 before (either) the mandatory allo-
cation or the black-box advice sets 𝑎ON(𝑠)𝑡 > 0. Since the conversion is unidirec-
tional (irrevocable), we must have that 𝑠(𝑦 − 𝜎) + 𝑡 (𝑦 − 𝜎) ≥ (𝑠(𝑦) + 𝑡 (𝑦)), i.e.,
(𝑠(𝑦) + 𝑡 (𝑦)) is non-increasing in [𝐿,𝑈].

As in the proof of Theorem 5.3.4, the adaptive nature ofA′𝑦 forces any algorithm to
incur a movement and switching cost proportional to (𝑠(𝑦) + 𝑡 (𝑦)) during the robust
phase, specifically denoted by (𝐷 + 2𝜏) (𝑠(𝑦) + 𝑡 (𝑦)). Recall that by the proof of
Theorem 5.3.4, for any 𝛾-competitive online algorithm ALG, we have the following
condition on (𝑠(𝑦) + 𝑡 (𝑦)) for all 𝑦 ∈ [𝐿,𝑈]:

(𝑠(𝑦) + 𝑡 (𝑦)) ≥ 𝛾 ln (𝑈 − 𝑦 − 𝐷 − 2𝜏) − 𝛾 ln (𝑈 − l − 𝐷 − 2𝜏) . (5.25)
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Furthermore, we have that the expected cost of ALG on adversary A′𝑦 is given by:

E
[
ALG(A′𝑦)

]
= 𝑠(l)l −

∫ 𝑦

l
𝑢𝑑𝑠(𝑢) + 𝐷𝑠(𝑦) + 𝑡 (l)l −

∫ 𝑦

l
𝑢𝑑𝑡 (𝑢) + 𝐷𝑡 (𝑦)

+ (1 − 𝑠(𝑦) − 𝑡 (𝑦))𝑈 + 2𝜏 [𝑠(𝑦) + 𝑡 (𝑦)] . (5.26)

To simultaneously be 𝛼-consistent when the advice is correct, ALG must satisfy
E

[
ALG(A′

𝐿
)
]
≤ 𝛼OPT(A′

𝐿
) = 𝛼𝐿. If the advice is correct, ALG must pay an

additional factor of 𝐷 to move back and follow Adv in the worst case—but can
satisfy the rest of the deadline constraint at the best cost functions 𝐿. It must also
still pay for switching incurred by the robust algorithm (recall that OPT pays no
switching cost). Using integration by parts, we have:∫ 𝐿

l
𝑠(𝑢) + 𝑡 (𝑢)𝑑𝑢 + [2𝐷 + 2𝜏] (𝑠(𝐿) + 𝑡 (𝐿))

+(1 − 𝑠(𝑦) − 𝑡 (𝑦))𝐿 + 𝐿 (𝑠(𝑦) + 𝑡 (𝑦)) ≤ 𝛼𝐿,∫ 𝐿

l
𝑠(𝑢) + 𝑡 (𝑢)𝑑𝑢 + [2𝐷 + 2𝜏] (𝑠(𝐿) + 𝑡 (𝐿)) ≤ 𝛼𝐿 − 𝐿. (5.27)

By combining equations (5.25) and (5.27), and substituting l = 𝑈/𝛾, the robust
constraint satisfaction function (𝑠(𝑦) + 𝑡 (𝑦)) of any 𝛾-robust and𝛼-consistent online
algorithm must satisfy:

𝛾

∫ 𝐿

l
ln

(
𝑈 − 𝑢 − 𝐷 − 2𝜏
𝑈 − 𝑈/𝛾 − 𝐷 − 2𝜏

)
𝑑𝑢 + [2𝐷 + 2𝜏]

[
𝛾 ln

(
𝑈 − 𝐿 − 𝐷 − 2𝜏
𝑈 − 𝑈/𝛾 − 𝐷 − 2𝜏

)]
≤𝛼𝐿 − 𝐿.

When all inequalities are binding, this equivalently gives that

𝛼 ≥ 𝛾 + 1 − 𝑈
𝐿
+ 𝛾(𝑈 − 𝐿 + 𝐷)

𝐿
ln

(
𝑈 − 𝐿 − 𝐷 − 2𝜏
𝑈 − 𝑈/𝛾 − 𝐷 − 2𝜏

)
. (5.28)

We define 𝛼 such that 𝛼 := (1 + 𝜀). By substituting for 𝛼 into (5.28), we recover
the definition of 𝛾 (𝜀) as given by (5.5), which subsequently completes the proof.
Thus, we conclude that any (1 + 𝜀)-consistent algorithm for SOAD is at least 𝛾 (𝜀)-
robust.

5.F Proofs for Section 5.5
Proof of Corollary 5.5.1
In this section, we prove Corollary 5.5.1, which states that PCM is 𝑂 (log 𝑛)𝜂-
competitive for SOAD-T, the variant of SOAD where distances in the metric (𝑋, 𝑑)
are allowed to be time-varying (see Section 5.5).
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We recall a few mild assumptions on the SOAD-T problem that directly imply the
result. Let 𝑑𝑡 (·, ·) denote the distance between points in 𝑋 at time 𝑡 ∈ [𝑇]. We
redefine 𝐷 as 𝐷 = sup𝑡∈[𝑇]

(
max𝑢,𝑣∈𝑋:𝑢≠𝑣

𝑑𝑡 (𝑢, 𝑣)
min{𝑐 (𝑢) ,𝑐 (𝑣) }

)
, i.e., it is an upper bound

on distance between any two points in the metric at any time over the horizon 𝑇 .
Recall that the temporal switching cost between ON and OFF states at a single point
is defined as non-time-varying, so ∥ · ∥ℓ1 (𝛽) gives the temporal switching cost for all
𝑡 ∈ [𝑇].

We also assume that the tree embedding-based vector space (𝐾, ∥ · ∥ℓ1 (w)) defined
by Definition 5.2.1 is appropriately reconstructed at each step, and that PCM has
knowledge of the current distances (i.e., ∥ · ∥ℓ1 (w) accurately reflects 𝑑𝑡 (·, ·) at time
𝑡).

Under these assumptions, every step in the proof of Theorem 5.3.3 holds. In
particular, note that in Lemma 5.3.5, the only fact about the distance function that
is used is the fact that the distance between two ON states is upper bounded by 𝐷,
in (5.11), and that the vector space (𝐾, ∥ · ∥ℓ1 (w)) has expected 𝑂 (log 𝑛) distortion
with respect to the underlying metric, which follows by definition. In Lemma 5.3.6,
most of PCM’s movement cost is absorbed into the integral over the pseudo-cost
function 𝜓, and the only other fact about the distance that is used is that the distance
between ON and OFF states at a single point 𝑢 ∈ 𝑋 is fixed and bounded by 𝜏𝑐(𝑢) ,
which follows by definition. Thus, we conclude that PCM is𝑂 (log 𝑛)𝜂-competitive
for SOAD-T.

Proof of Corollary 5.5.2
In this section, we prove Corollary 5.5.2, which states that a minor change to the
consistency constraint enables ST-CLIP to be (1 + 𝜀)-consistent and 𝑂 (log 𝑛)𝛾 (𝜀)-
robust for SOAD-T, given any 𝜀 ∈ (0, 𝜂 − 1].

We start by recalling assumptions on the SOAD-T problem that inform the result.
Recall that we redefine 𝐷 as 𝐷 = sup𝑡∈[𝑇]

(
max𝑢,𝑣∈𝑋:𝑢≠𝑣

𝑑𝑡 (𝑢, 𝑣)
min{𝑐 (𝑢) ,𝑐 (𝑣) }

)
, i.e., it is an

upper bound on distance between any two points at any time over the horizon 𝑇 , and
the temporal switching cost between ON and OFF states at a single point is defined
as non-time-varying, so ∥ · ∥ℓ1 (𝛽) gives the temporal switching cost for all 𝑡 ∈ [𝑇].

We also assume that the tree embedding-based vector space (𝐾, ∥ · ∥ℓ1 (w)) defined
by Definition 5.2.1 is appropriately reconstructed at each step, and that ST-CLIP
has knowledge of the current distances (i.e., ∥ · ∥ℓ1 (w) and W1(·, ·) accurately reflect
𝑑𝑡 (·, ·) at time 𝑡).
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For the consistency constraint, we define a modified Wasserstein-1 distance function
W

1
that will be used in the consistency constraint to hedge against the time-varying

properties of the metric. This distance computes the optimal transport between two
distributions onΔS while assuming that the underlying distances are given by 𝑑 (·, ·),
which is itself defined such that 𝑑 (𝑢, 𝑣) = 𝐷min{𝑐(𝑢) , 𝑐(𝑣)} : 𝑢, 𝑣 ∈ 𝑋 : 𝑢 ≠ 𝑣.

W
1(p, p′) := min

𝜋∈Π(p,p′)
E

[
𝑑 (x, x′)

]
, (5.29)

where (x, x′) ∼ 𝜋𝑡 and Π(p, p′) is the set of distributions over 𝑋2 with marginals p
and p′.

Intuitively, the purpose of W
1

is to leverage the 𝐷 upper bound between points in
the metric to give a “worst-case optimal transport” distance between distributions,
assuming that the time-varying distances increase in future timesteps.

To this end, within the definition of the consistency constraint (5.7), ST-CLIP for
SOAD-T replaces the term W1(p, a𝑡) with W

1(p, a𝑡); this term hedges against the
case where ST-CLIP must move to follow Adv in a future timestep, and in the
time-varying distances case, we charge ST-CLIP an extra amount to further hedge
against the case where the underlying distances between ST-CLIP and Adv grow in
future timesteps.

Paralleling the proof of Theorem 5.4.3, we consider consistency and robustness
independently.

Consistency. For consistency, according to the proof of Lemma 5.4.5, we show
that resolving the mandatory allocation remains feasible in the time-varying case.
First, note that there is always a feasible p𝑡 that satisfies the consistency constraint,
since even in the time-varying case, setting k𝑡 = Φa𝑡 is always within the feasible
set—this follows by observing that at a given time 𝑡, if ST-CLIP has moved away
from Adv, it has already “prepaid” a worst-case movement cost of W

1(p𝑚, a𝑚) (for
some previous timestep𝑚) in order to move back and follow Adv. The remainder of
the proof of Lemma 5.4.5 only uses the fact that at the beginning of the mandatory
allocation (at time 𝑗 ∈ [𝑇]), W1(p 𝑗−1, a 𝑗−1) is an upper bound on the movement
cost paid by ST-CLIP (if necessary) while migrating to Adv’s points in the metric to
take advantage of the same service cost functions. By definition of W

1
, this follows

for any time-varying distance 𝑑𝑡 (·, ·), and the remaining steps in the proof hold.

Robustness. For robustness, following the proof of Lemma 5.4.6, we show that a
certain amount of ST-CLIP’s utilization can be “set aside” for robustness. First, note
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that in Case 1 (i.e., “inactive” advice), the proof of Proposition 5.E.1 only requires
that W1(p𝑡 , a𝑡) is bounded by 𝐷, which follows immediately by the definition of
W

1
—the remaining steps for Case 1 follow. In Case 2 (i.e., “overactive” advice), note

that the proof of Sub-case 2.1 similarly only requires thatW1(p𝑡 , a𝑡) is bounded by𝐷,
which follows because W1(p𝑡 , a𝑡) ≤ W

1(p𝑡 , a𝑡) ≤ 𝐷max{𝑐(p𝑡), 𝑐(a𝑡)}. Likewise,
the remaining steps for Case 2 follow.

Thus, we conclude that ST-CLIP is (1 + 𝜀)-consistent and 𝑂 (log 𝑛)𝛾 (𝜀)-robust for
SOAD-T, given any 𝜀 ∈ (0, 𝜂 − 1].
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C h a p t e r 6

RISK-SENSITIVE ONLINE ALGORITHMS

In the first part of this thesis, we focused on the design of learning-augmented
algorithms for online problems, where a decision-maker seeks to obtain consistency
relative to the performance of a black-box AI/ML advice algorithm, and worst-case
robustness in case of poor AI/ML advice performance. In Chapters 3 and 5, however,
the primary algorithms we designed were randomized, with robustness bounds only
holding in expectation. This could potentially expose decision-makers to poor
empirical performance, depending on the randomness inherent in the algorithm.
This is potentially problematic for risk-sensitive decision-makers in high-stakes
application domains, who may seek to minimize their likelihood of incurring costs
of a particular magnitude.

Inspired by this challenge, we study the design of risk-sensitive online algorithms,
in which risk measures are used in the competitive analysis of randomized online
algorithms. We introduce the CVaR𝛿-competitive ratio (𝛿-CR) using the conditional
value-at-risk of an algorithm’s cost, which measures the expectation of the (1 − 𝛿)-
fraction of worst outcomes against the offline optimal cost, and use this measure to
study three online optimization problems: continuous-time ski rental, discrete-time
ski rental, and one-max search. These problems are prototypical problems in the
literature on online algorithms and online optimization, and have connections to
applications such as peak-aware economic dispatch in microgrids [95] and energy
trading [96]. The structure of the optimal 𝛿-CR and algorithm varies significantly
between problems: we prove that the optimal 𝛿-CR for continuous-time ski rental
is 2− 2−Θ( 1

1−𝛿 ) , obtained by an algorithm described by a delay differential equation.
In contrast, in discrete-time ski rental with buying cost 𝐵, there is an abrupt phase
transition at 𝛿 = 1−Θ( 1

log 𝐵 ), after which the classic deterministic strategy is optimal.
Similarly, one-max search exhibits a phase transition at 𝛿 = 1

2 , after which the classic
deterministic strategy is optimal; we also obtain an algorithm that is asymptotically
optimal as 𝛿 ↓ 0 that arises as the solution to a delay differential equation.

This chapter is primarily based on the following paper:

[1] N. Christianson, B. Sun, S. Low, and A. Wierman. “Risk-Sensitive On-
line Algorithms.” Accepted for Presentation at the Conference on Learn-
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ing Theory 2024: https : / / proceedings . mlr . press / v247 /
christianson24a.html. arXiv: 2405.09859 [cs], [Online]. Available:
http://arxiv.org/abs/2405.09859.

6.1 Introduction
Randomness can improve decision-making performance in many online problems;
for instance, randomization improves the competitive ratio of online ski rental from
2 to 𝑒

𝑒−1 [231], of metrical task systems (MTS) from linear to polylogarithmic in
number of states [76, 142], and of online search from polynomial to logarithmic
in the fluctuation ratio [78, 79]. However, this improved performance can only be
obtained on average over multiple problem instances, as a randomized algorithm
may vary wildly in its performance on any particular run. While this may not pose
a concern for decision-making agents facing a large number of problem instances,
such variability may be undesirable if an agent has only a small number of instances
to solve, or if they are sensitive to risks of a particular magnitude or likelihood.

Numerous fields, including economics, finance, and decision science, have fielded
research on risk aversion and alternative risk measures that enable modifying
decision-making objectives to accommodate these risk preferences (e.g., [232–
236]). One of the most well-studied risk measures in recent years, due to its
nice properties (as a coherent risk measure) and computational tractability, is the
conditional value-at-risk (CVaR𝛿), which measures the expectation of a random
loss/reward on its (1 − 𝛿)-fraction of worst outcomes [237–239]. CVaR𝛿 and other
risk measures have been applied to problems spanning finance and insurance [240,
241], energy systems [48, 49], and robotic control [89, 242], and have been studied
as an objective in place of the expectation in MDPs [85, 87, 243], bandits [244,
245], and online learning [83, 246, 247].

Despite the significant extent of literature on risk-sensitive algorithms for online
learning with the conditional value-at-risk, there has been no work on the design
and analysis of competitive algorithms for online optimization problems like ski
rental, online search, knapsack, function chasing, or MTS with risk-sensitive ob-
jectives. These types of online optimization problems have deep connections with
online learning [116, 130, 131], but also substantial qualitative differences due
varied problem structures and the competitive analysis framework. Coupled with
their practical applications to problems like TCP acknowledgement [248], online
matching [249], dynamic power management [94], peak-aware economic dispatch
in microgrids [95], and energy trading [96], we are thus motivated to ask: how

https://proceedings.mlr.press/v247/christianson24a.html
https://proceedings.mlr.press/v247/christianson24a.html
https://arxiv.org/abs/2405.09859
http://arxiv.org/abs/2405.09859
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can we design competitive online algorithms when we care about the CVaR𝛿 of the
cost/reward, and what are the optimal competitive ratios for different problems?

In this work, we begin to work toward answering this question, studying risk sen-
sitivity in the design of competitive online algorithms for online optimization. In
particular, we focus on two of the prototypical problems in online optimization:
ski rental, which, as a special case of MTS, encapsulates the fundamental “rent vs.
buy” tradeoff inherent in online optimization with switching costs [94, 120], and
one-max search, which exhibits a complementary “accept vs. wait” tradeoff funda-
mental to constrained online optimization [250, 251]. While both of these problems
are simple to pose, they both reflect crucial components of the difficulty of more
complicated online optimization problems, and thus serve as ideal analytic testbeds
for investigating the design of risk-sensitive algorithms in online optimization.

Contributions
In this work, we define a novel version of the competitive ratio that penalizes a
randomized algorithm’s cost via the conditional value at risk (CVaR𝛿), which we
call the CVaR𝛿-competitive ratio (𝛿-CR). We then study the design of algorithms
for several online problems with the 𝛿-CR objective. We make contributions along
three fronts:

(1) Optimal Risk-Sensitive Online Algorithms We find the optimal CVaR𝛿-
competitive algorithm for continuous-time ski rental with any 𝛿 and characterize its
𝛿-CR as 2 − 2−Θ( 1

1−𝛿 ) . For discrete-time ski rental, we analytically characterize the
optimal CVaR𝛿-competitive algorithm when 𝛿 = O( 1

𝐵
), where 𝐵 is the buying cost,

and we prove that there is a phase transition at 𝛿 = 1 − Θ( 1
log 𝐵 ), after which the

optimal 𝛿-CR coincides with the deterministic optimal 2 − 1
𝐵

. Finally, we propose
an algorithm for one-max search whose 𝛿-CR is asymptotically optimal for small
𝛿, and we prove that one-max search exhibits a phase transition at 𝛿 = 1

2 , after
which the optimal 𝛿-CR coincides with the deterministic optimal

√
𝜃, where 𝜃 is the

so-called “fluctuation ratio” of the problem.

(2) Techniques For continuous-time ski rental and one-max search, we show that
the conditional value-at-risk of an algorithm’s cost can be written as an integral
expression of its inverse cumulative distribution function. This parametrization is
useful both for proving analytic bounds on algorithms’ 𝛿-CR, and as a source for
optimal algorithms for these problems: it is through this formulation that we obtain
the delay differential equation describing the optimal algorithm for continuous-time
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ski rental, and similarly how we obtain our algorithm for one-max search, which is
asymptotically optimal when 𝛿 is small. For both versions of ski rental, our results
rely on structural characterizations of the optimal algorithm which, while evocative
of similar results from the ski rental literature, require significantly more care due
to the complicated behavior of the conditional value-at-risk.

(3) Insights We gain several new insights from our results. The phase transitions
in the discrete-time ski rental and one-max search problems, where 𝛿 sufficiently
large implies that the optimal 𝛿-CR is the deterministic optimal competitive ratio,
suggests that there is a sharp limit to the benefit that randomization can yield in
certain risk-sensitive online problems. Moreover, the qualitative difference between
the continuous- and discrete-time ski rental problems—namely, the fact that the
latter has a phase transition while the former does not—indicates that continuous
and discrete problems may, in general, behave differently when risk sensitivity is
introduced.

Related Work
Risk-aware online algorithms As mentioned earlier, while numerous problems
in MDPs, bandits, and online learning have been studied with the conditional value-
at-risk and other risk measures penalizing the objective, we are not aware of existing
work in the literature designing competitive online algorithms for online optimiza-
tion with such objectives. Even-Dar et al. [83] consider the related problem of
online learning with expert advice and rewards depending on the Sharpe ratio and
mean-variance risk measures; they prove lower bounds precluding the possibility of
obtaining sublinear regret in this setting as well as upper bounds for several relaxed
objectives. While their work also considers a notion of competitive ratio against the
best fixed expert in its lower bounds, their upper bounds focus on regret-style results,
and their problem setting is markedly different from those we consider. A related
problem is the demonstration of high-probability guarantees on the competitive
ratio of randomized online algorithms, which was studied by Komm et al. [252] for
a general class of online problems. However, their work is concerned with proving
that existing algorithms have performance close to some nominal value with high
probability, rather than designing new algorithms that are provably optimal given an
agent’s particular risk preferences and the distribution over algorithm performance.

Closest to our current work is the recent paper of Dinitz et al. [253] on risk-
constrained algorithms for ski rental, where the objective remains to minimize the
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competitive ratio defined in terms of expected cost, but algorithms must satisfy
additional constraints on the likelihood that their cost will exceed a specified value.
This amounts to imposing constraints on the value-at-risk (VaR), or quantiles, of the
algorithm’s competitive ratio; in contrast, we focus on algorithms that are optimal
for a risk-sensitive objective involving the conditional value at risk, which considers
not just the likelihood of exceeding a certain value, but the expectation over the
resulting tail of the distribution. VaR and CVaR have been exhaustively compared
in the financial literature (e.g., [241, 254]), and CVaR, which is a so-called coherent
risk measure, often exhibits more favorable robustness and handling of tail events
than VaR, which is not coherent [235]. Indeed, VaR is very sensitive to problem
structure and parameter selection, leading to the interesting non-continuous behavior
in solution structure observed in [253]. CVaR does not beget such sensitivity, but
influences the solution structure in its own unique way: for continuous-time ski
rental and one-max search, we obtain algorithms that result from the solution of
delay differential equations.

Beyond worst-case analysis of algorithms The strengthening and weakening of
the adversary as 𝛿 is varied in the CVaR𝛿-competitive ratio is similar in spirit to
beyond worst-case analysis, where the adversary is weakened or additional infor-
mation is provided to enable improved bounds over the pessimistic and unrealistic
adversarial setting. There is a significant breadth of work in the literature apply-
ing these ideas to online optimization and other online problems. Some notable
directions on this subject are smoothed analysis [255, 256], in which an adversary’s
decision is tempered with stochastic noise; algorithms with advice [257, 258], in
which an algorithm receives a small number of accurate bits of information about
the problem instance in advance; and algorithms with predictions [69, 70, 167, 177,
193], in which algorithms are augmented with potentially unreliable predictions
about the problem instance, and algorithms seek to exploit these predictions when
they are accurate while maintaining worst-case guarantees when they are not.

Notation
Throughout, capital letters (e.g., 𝑋) refer to random variables on R, which we
interchangeably refer to via their measures (e.g., 𝜇 ∈ B(R)) or their cumulative
distribution functions (e.g., 𝐹𝑋 (𝑥) = 𝜇(−∞, 𝑥]). Given a random variable 𝑋 with
support bounded in the interval [𝑎, 𝑏], we define its inverse CDF as 𝐹−1

𝑋
(𝑝) =

inf{𝑥 ∈ [𝑎, 𝑏] : 𝐹𝑋 (𝑥) ≥ 𝑝}; note that, given the bounded support, this definition
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agrees with the standard definition (where the infimum is taken over all of R) for all
𝑝 ∈ (0, 1], with the only disagreement being at 𝑝 = 0, where 𝐹−1

𝑋
(0) = ess inf 𝑋 ,

whereas the standard definition yields −∞; this variant is well-established in the
literature (e.g., [259, Definition 1.16]). We use this definition to ensure finiteness
of 𝐹−1

𝑋
on [0, 1], and the bounded support of 𝑋 will be clear by context whenever

the inverse CDF is discussed. R+ denotes the nonnegative reals and R++ the strictly
positive reals, and N denotes the natural numbers. The notation [·]+ refers to the
max{·, 0} function, and for any 𝑁 ∈ N, we write [𝑁] = {1, . . . , 𝑁} and denote by
Δ𝑁 the 𝑁-dimensional probability simplex. For a vector x ∈ R𝑛, we denote its 𝑖th
entry 𝑥𝑖. The function 𝑊𝑘 (𝑥) refers to the 𝑘th branch of the Lambert 𝑊 function,
which is defined as a solution to𝑊𝑘 (𝑥)𝑒𝑊𝑘 (𝑥) = 𝑥 (see, e.g., [216]).

6.2 Background & Preliminaries
In this section, we introduce risk measures and the conditional value-at-risk, and
give overviews of the three online problems we study in this work.

Risk Measures and the Conditional Value-at-Risk
A risk measure is a mapping from the set ofR-valued random variables toR that gives
a deterministic valuation of the risk associated with a particular random loss. As risk
preferences can vary by decision-making agent and application, many different risk
measures have been introduced and studied in the literature (see, e.g., [260, Chapter
6] for several examples). A prominent class of measures that has emerged in practice
due to its favorable properties is the set of coherent risk measures [235]. Perhaps one
of the most well-studied coherent risk measures in recent years is the conditional
value-at-risk (CVaR): the CVaR at probability level 𝛿 of a random variable 𝑋 ,
written CVaR𝛿 [𝑋], is the expectation of 𝑋 on the 𝛿-tail of its distribution, i.e., its
(1 − 𝛿)-fraction of worst outcomes. It can be defined in several ways:

Definition 6.2.1 (Conditional Value-at-Risk). Let 𝑋 be a real-valued random vari-
able with CDF 𝐹𝑋 . If 𝑋 has a density 𝑓 , then for 𝛿 ∈ [0, 1) the conditional value-at
risk at level 𝛿 of 𝑋 is defined as the expectation of 𝑋 , conditional on its outcome
lying in the 𝛿-tail of its distribution [237]:

CVaR𝛿 [𝑋] = E[𝑋 |𝑋 ≥ 𝐹−1
𝑋 (𝛿)] .



245

For a general random loss 𝑋 with probability measure 𝜇, CVaR𝛿 [𝑋] can be defined
in several equivalent ways [238, 239, 261]:

CVaR𝛿 [𝑋] = inf
𝑡∈R

{
𝑡 + 1

1 − 𝛿E[𝑋 − 𝑡]
+
}

=
1

1 − 𝛿

∫ 1

𝛿

𝐹−1
𝑋 (𝑝) d𝑝

= sup
𝜈∈Q

E𝑌∼𝜈 [𝑌 ],

(6.1)

where in the final expression, Q is an uncertainty set of probability measures defined
as

Q = {𝜈 : 𝜇 = 𝛽𝜈 + (1 − 𝛽)𝜌 for some measure 𝜌 and 𝛽 ∈ [1 − 𝛿, 1]}.

The first expression in (6.1) is a variational form of CVaR𝛿, and is useful for tractable
formulations of risk-sensitive optimization problems. The latter two expressions
highlight the intuition that CVaR𝛿 [𝑋] computes the expected loss of 𝑋 on the worst
(1 − 𝛿)-fraction of outcomes in its distribution, or, in the parlance of [261] which
we sometimes adopt, on the “worst (1 − 𝛿)-sized subpopulation.”

From the above definition it is clear that CVaR0 [𝑋] = E[𝑋] and
lim𝛿↑1 CVaR𝛿 [𝑋] → ess sup 𝑋 , the largest value that 𝑋 can take [262]; we thus
define CVaR1 [𝑋] := ess sup 𝑋 , so that CVaR𝛿 is defined for all 𝛿 ∈ [0, 1].

Online Algorithms and Competitive Analysis
In the study of online algorithms, algorithm performance is typically measured via
the competitive ratio, or the worst case ratio in (expected) cost between an algorithm
and the offline optimal strategy that knows all uncertainty in advance.

Definition 6.2.2 (Competitive ratio). Consider an online problem with uncertainty
drawn adversarially from a set of instances I. Let Alg be a deterministic online
algorithm for the problem, and let Opt be the offline optimal algorithm. Alg’s
competitive ratio (CR) is the worst-case ratio in cost between Alg and Opt over all
problem instances:

CR(Alg) := sup
𝐼∈I

Alg(𝐼)
Opt(𝐼) .

If Alg has competitive ratio𝐶, it is also called C-competitive. If Alg is a randomized
algorithm, then the competitive ratio is defined with its expected cost:

CR(Alg) := sup
𝐼∈I

E[Alg(𝐼)]
Opt(𝐼) ,
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where the expectation is taken over Alg’s randomness.

In our work, we introduce a new version of the competitive ratio for randomized
algorithms that goes beyond expected performance: instead, we penalize a random-
ized algorithm via the ratio between the conditional value-at-risk of its cost and the
offline optimal’s cost, terming this metric the CVaR𝛿-competitive ratio (abbreviated
𝛿-CR).

Definition 6.2.3 (CVaR𝛿-Competitive Ratio). Let Alg be a randomized algorithm,
and let Opt be the offline optimal algorithm. The CVaR𝜹-Competitive Ratio (𝜹-CR)
is defined as the worst-case ratio between the CVaR𝛿 of Alg’s cost and the offline
optimal cost:

𝛿-CR(Alg) := sup
𝐼∈I

CVaR𝛿 [Alg(𝐼)]
Opt(𝐼) ,

where the CVaR𝛿 is taken over Alg’s randomness.

It is immediately clear that any deterministic algorithm has 𝛿-CR = CR for all
𝛿 ∈ [0, 1], while for randomized algorithms these metrics will generally differ for
𝛿 > 0. Note that, given the definition of CVaR𝛿 as focusing on the worst (1 − 𝛿)-
fraction of a distribution, the 𝛿-CR may also be interpreted as a metric that gives the
adversary additional power to shift the distribution of the algorithm’s randomness.
Under this interpretation, the 𝛿-CR may be viewed as an interpolation between the
classic randomized case where the adversary has no power over Alg’s randomness
(𝛿 = 0), and the case where the adversary has full control over Alg’s randomness
and determinism is optimal (𝛿 = 1). This model can also be seen as a complement
to the oblivious adversary, which knows Alg but cannot see the realization of its
randomness, and the adaptive adversary, which sees all random outcomes; in the
𝛿-CR case, while the adversary does not see Alg’s random outcome directly, it has
the ability to control this outcome in a way limited by the CVaR.

Online Problems Studied
We now provide a brief introduction for each of the three problems we study in this
work.

Continuous-Time Ski Rental In the continuous-time ski rental (CSR) problem,
a player faces a ski season of unknown and adversarially-chosen duration 𝑠 ∈ R++,
and must choose how long to rent skis before purchasing them. In particular, the
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player pays cost equal to the duration of renting, and cost 𝐵 for purchasing the skis.
Deterministic algorithms for ski rental are wholly determined by the day 𝑥 ∈ R++
on which the player stops renting and purchases the skis: an algorithm that rents
until day 𝑥 and then purchases pays cost 𝑠 · 1𝑥>𝑠 + (𝑥 + 𝐵) · 1𝑥≤𝑠. Randomized
algorithms can be described by a random variable 𝑋 over purchase days, in which
case the algorithm pays (random) cost 𝑠 · 1𝑋>𝑠 + (𝑋 + 𝐵) · 1𝑋≤𝑠. Given knowledge
of the total number of skiing days 𝑠, the offline optimal strategy is to rent for the
entire season if 𝑠 < 𝐵, incurring cost 𝑠, and to buy immediately otherwise, yielding
cost 𝐵. Defining 𝛼CSR,𝜇

𝛿
as the 𝛿-CR of a strategy 𝑋 ∼ 𝜇, we have

𝛼
CSR,𝜇
𝛿

:= sup
𝑠∈R++

𝛼
CSR,𝜇
𝛿

(𝑠) := sup
𝑠∈R++

CVaR𝛿 [𝑠 · 1𝑋>𝑠 + (𝑋 + 𝐵) · 1𝑋≤𝑠]
min{𝑠, 𝐵} ,

where 𝛼CSR,𝜇
𝛿

(𝑠) denotes the competitive ratio of the strategy 𝜇when the adversary’s
decision is 𝑠. We denote by 𝛼CSR,∗

𝛿
the smallest 𝛿-CR of any strategy. We will omit

the “CSR” in the superscript when it is clear through context that we are discussing
the continuous-time ski rental problem.

We will assume without loss of generality that 𝐵 = 1. It is well known that
𝛼

CSR,∗
1 = 2, which is achieved by purchasing skis deterministically at time 1, and
𝛼

CSR,∗
0 = 𝑒

𝑒−1 , which is achieved by a probability density supported on the interval
[0, 1] [231, 263]. In the following lemma, which is proved in Section 6.A, we show
that when considering 𝛿-CR as a performance metric with general 𝛿 ∈ [0, 1], we
may similarly restrict our focus to probability measures with support on [0, 1].

Lemma 6.2.4. Let 𝜇1 be a distribution on R+. There is a distribution 𝜇2 with
support in [0, 1] such that, for any 𝛿 ∈ [0, 1], 𝜇2 has no worse 𝛿-CR than 𝜇1:
𝛼

CSR,𝜇2
𝛿

≤ 𝛼CSR,𝜇1
𝛿

.

An important consequence of the preceding lemma is that we can restrict the adver-
sary’s decisions to 𝑠 ∈ (0, 1], since choosing 𝑠 > 1 will not change the 𝛿-CR for
any random strategy supported on [0, 1]. Thus for 𝜇 supported in [0, 1], we have
𝛼

CSR,𝜇
𝛿

= sup𝑠∈(0,1] 𝛼
CSR,𝜇
𝛿

(𝑠).

Discrete-Time Ski Rental In the discrete-time ski rental (DSR) problem, a player
faces a ski season of unknown and adversarially-chosen duration 𝑠 ∈ N and must
choose an integer number of days to rent skis before purchasing them; renting for a
day costs 1, and purchasing skis has an integer cost 𝐵 ≥ 2. The cost structure
is essentially identical to the continuous-time case, except the algorithm’s and
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adversary’s decisions are restricted to lie in N: if a player buys skis at the start of day
𝑥 ∈ N and the true season duration is 𝑠 ∈ N, their cost will be 𝑠·1𝑥>𝑠+(𝐵+𝑥−1)·1𝑥≤𝑠.
Thus for a random strategy 𝑋 ∼ 𝜇 with support on N, the 𝛿-CR is defined as follows:

𝛼
DSR(𝐵),𝜇
𝛿

:= sup
𝑠∈N

𝛼
DSR(𝐵),𝜇
𝛿

(𝑠) := sup
𝑠∈N

CVaR𝛿 [𝑠 · 1𝑋>𝑠 + (𝐵 + 𝑋 − 1) · 1𝑋≤𝑠]
min{𝑠, 𝐵} .

As in the continuous-time setting, we denote by 𝛼DSR(𝐵),∗
𝛿

the smallest 𝛿-CR of
any strategy, and will omit the “DSR” from the superscript when it is clear from
context, instead writing just 𝛼𝐵,𝜇

𝛿
. It is well known that 𝛼𝐵,∗1 = 2 − 1

𝐵
, achieved

by deterministically purchasing skis at the start of day 𝐵, and 𝛼𝐵,∗0 = 1
1−(1−𝐵−1)𝐵 ,

which approaches 𝛼CSR,∗
0 = 𝑒

𝑒−1 as 𝐵 → ∞. Following identical reasoning as in
Lemma 6.2.4 for the continuous-time setting, we may without loss of generality
restrict our focus to strategies 𝜇 with support on [𝐵], and likewise to adversary
decisions in [𝐵]. Finally, note that the discrete problem is easier than the continuous-
time problem, i.e., 𝛼DSR(𝐵),∗

𝛿
≤ 𝛼CSR,∗

𝛿
for all 𝛿 ∈ [0, 1] and 𝐵 ∈ N; this is because

we can embed DSR into the continuous setting by restricting the continuous-time
adversary to choose season durations { 1

𝐵
, . . . , 𝐵−1

𝐵
, 1} and reducing the player’s

buying cost by 1
𝐵

.

One-Max Search In the one-max search (OMS) problem, a player faces a sequence
of prices 𝑣𝑡 ∈ [𝐿,𝑈] arriving online, with𝑈 ≥ 𝐿 > 0 known upper and lower bounds
on the price sequence; we define the fluctuation ratio 𝜃 = 𝑈

𝐿
as the ratio between

these bounds. The player’s goal is to sell an indivisible item for the greatest possible
price: after observing a price 𝑣𝑡 , the player can choose to either accept the price
and earn profit 𝑣𝑡 , or to wait and observe the next price. The duration 𝑇 ∈ N of
the sequence is a priori unknown to the player, and if 𝑇 elapses and the player has
not yet sold the item, they sell it for the smallest possible price 𝐿 in a compulsory
trade. In the deterministic setting, the player aims to minimize their competitive
ratio, defined as the worst-case ratio between the price accepted by the player and
the optimal price 𝑣max = max𝑡 𝑣𝑡 :

CR(Alg) := sup
(𝑣1,...,𝑣𝑇 )∈[𝐿,𝑈]𝑇

Opt(𝑣1, . . . , 𝑣𝑇 )
Alg(𝑣1, . . . , 𝑣𝑇 )

= sup
(𝑣1,...,𝑣𝑇 )∈[𝐿,𝑈]𝑇

𝑣max
Alg(𝑣1, . . . , 𝑣𝑇 )

,

with an expectation around Alg in the denominator if the algorithm is randomized.
Note that this definition of competitive ratio differs from that in Definition 6.2.2
because this is a reward maximization, rather than a loss minimization, problem.
Likewise, when discussing the conditional value-at-risk and 𝛿-CR in this setting,
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we will use the reward formulation, which is the expected reward on the worst (i.e.,
smallest) (1 − 𝛿)-fraction of outcomes in the reward distribution [239]:

CVaR𝛿 [𝑋] = sup
𝑡∈R

{
𝑡 − 1

1 − 𝛿E[𝑡 − 𝑋]
+
}
=

1
1 − 𝛿

∫ 1−𝛿

0
𝐹−1
𝑋 (𝑝) d𝑝. (6.2)

While these definitions of CVaR𝛿 and CR differ from those employed in discussion
of the ski rental problem, we will generally not distinguish which version we are
using throughout this chapter, as it will be clear from context which problem (and
hence which version) we are concerned with.

The one-max search problem was first studied in [78], which found that the op-
timal deterministic competitive ratio is

√
𝜃, achieved by a “reservation price” or

“threshold” [167] algorithm that accepts the first price above
√
𝐿𝑈. Randomization

improves the competitive ratio exponentially: the optimal randomized competitive
ratio is 1 +𝑊0

(
𝜃−1
𝑒

)
= Θ(log 𝜃), where 𝑊0 is the principal branch of the Lambert

𝑊 function [78, 79]. In this work, we restrict our focus to the class of random
threshold algorithms without loss of generality;1 such algorithms fix a distribution
𝜇 with support on [𝐿,𝑈], draw a threshold 𝑋 ∼ 𝜇 at random, and accept the first
price above 𝑋 , earning profit 𝐿 ·1𝑋>𝑣max+𝑋 ·1𝑋≤𝑣max .2 Thus the 𝛿-CR of a threshold
algorithm is defined:

𝛼
OMS(𝜃),𝜇
𝛿

:= sup
𝑣∈[𝐿,𝑈]

𝛼
OMS(𝜃),𝜇
𝛿

(𝑣) := sup
𝑣∈[𝐿,𝑈]

𝑣

CVaR𝛿 [𝐿 · 1𝑋>𝑣 + 𝑋 · 1𝑋≤𝑣]
, (6.3)

where we denote by 𝛼OMS(𝜃),𝜇
𝛿

(𝑣) the 𝛿-CR of one-max search with fluctuation ratio
𝜃 restricted to price sequences with maximal price 𝑣, which is wholly determined
by the distribution of the random threshold 𝑋 . As in the ski rental problems, we
denote by 𝛼OMS(𝜃),∗

𝛿
the optimal 𝛿-CR for the problem, and we omit “OMS” from

the superscript when the problem is clear from context.

6.3 CVaR𝛿-Competitive Continuous-Time Ski Rental:
Optimal Algorithm and Lower Bound

As noted in the previous section, the optimal deterministic competitive ratio for
continuous-time ski rental is 𝛼∗1 = 2, and the optimal randomized competitive ratio

1This restriction is made without loss of generality, in the sense that any randomized algorithm
for OMS with 𝛿-CR 𝛼 can be approximated by a random threshold policy with 𝛿-CR 𝛼 + 𝜖 , with 𝜖
arbitrarily small; see Section 6.A for a full explanation.

2When the player uses a random threshold algorithm, we may assume that they earn profit exactly
𝑋 whenever 𝑋 ≤ 𝑣max, since if the adversary (who is unaware of 𝑋) plays a sequence of prices that
increases by 𝜖 at every time until reaching 𝑣max, then the player will accept the first price above 𝑋 ,
which will be at most 𝑋 + 𝜖 ; sending 𝜖 → 0, the player’s profit is exactly 𝑋 .
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is 𝛼∗0 = 𝑒
𝑒−1 . This immediately motivates the question of what the optimal 𝛿-CR is,

for arbitrary 𝛿 ∈ (0, 1): how does 𝛼∗
𝛿

grow as 𝛿 ↑ 1? And does 𝛼∗
𝛿

strictly improve
on the deterministic worst case of 2 whenever 𝛿 < 1?

The classical approach for obtaining the optimal randomized algorithm for
continuous-time ski rental is to assume that the optimal purchase distribution has a
probability density 𝑝 supported on [0, 1], use this to express the expected cost of
the algorithm given any adversary decision, and write out the inequalities that must
be satisfied for the algorithm to be 𝛼-competitive for some constant 𝛼 [231]:∫ 𝑠

0
(𝑡 + 1)𝑝(𝑡) d𝑡 + 𝑠

∫ 1

𝑠

𝑝(𝑡) d𝑡 ≤ 𝛼𝑠 for all 𝑠 ∈ [0, 1] .

The optimal 𝑝 is found by setting these inequalities to equalities, differentiating with
respect to 𝑠, solving the resulting differential equations, and choosing 𝛼 to ensure
𝑝 integrates to 1. If we attempt to apply this methodology to the problem with
the 𝛿-CR objective, we are met with two challenges: first, while the assumption
that the optimal strategy has a density and the trick of setting the above inequalities
to equalities works in the expected cost setting, there is no guarantee that these
assumptions can be imposed without loss of generality when the expectation is
replaced with CVaR𝛿. Second, and more formidably, even if we can restrict to
densities, the limits of integration in the CVaR𝛿 case will depend on the particular
quantile structure induced by 𝑝. If 𝑋 ∼ 𝑝 and 𝐹𝑋 (𝑠) ≥ 1 − 𝛿, using the definition
of CVaR𝛿 as the expected cost on the worst (1 − 𝛿)-sized subpopulation of the loss,
one can compute

CVaR𝛿 [𝑠 · 1𝑋>𝑠 + (𝑋 + 1) · 1𝑋≤𝑠] =
∫ 𝑠

𝐹−1
𝑋
(𝐹𝑋 (𝑠)−(1−𝛿))

(𝑡 + 1)𝑝(𝑡) d𝑡,

whose lower limit of integration depends on 𝑝’s quantile structure in a nontrivial way
(i.e., it is the smallest point with CDF value equal to 𝐹𝑋 (𝑠) − (1 − 𝛿)), significantly
complicating the formulation of any differential equation we could construct using
this expression.

Not all is lost, however: if we instead take inspiration from the formulation of CVaR𝛿

in terms of the inverse CDF of the loss distribution, it is possible to formulate the
CVaR𝛿 of the loss of an arbitrary strategy 𝑋 (i.e., not necessarily one with a density)
in terms of the inverse CDF of 𝑋 . We state this result formally in the following
lemma, which is proved in Section 6.B.

Lemma 6.3.1. Let 𝑋 be a random variable supported in [0, 1], and fix an adversary
decision 𝑠 ∈ (0, 1]. Then the CVaR𝛿 of the cost incurred by the algorithm playing
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𝑋 is

CVaR𝛿 [𝑠 · 1𝑋>𝑠 + (𝑋 + 1) · 1𝑋≤𝑠]

=


1

1−𝛿

[
(1−𝛿−𝐹𝑋 (𝑠))𝑠 +

∫ 𝐹𝑋 (𝑠)
0 (1+𝐹−1

𝑋
(𝑡)) d𝑡

]
if 𝐹𝑋 (𝑠) ≤ 1−𝛿

1
1−𝛿

∫ 𝐹𝑋 (𝑠)
𝐹𝑋 (𝑠)−(1−𝛿) (1 + 𝐹

−1
𝑋
(𝑡)) d𝑡 otherwise.

While the integral representation of the algorithm’s cost given in Lemma 6.3.1
depends on both the CDF 𝐹𝑋 and the inverse CDF 𝐹−1

𝑋
, it is possible to remove the

CDF when it is continuous and strictly increasing on [0, 1]; in this case, for any
𝑠 ∈ [0, 1], we may define a corresponding 𝑦 = 𝐹𝑋 (𝑠) and replace 𝐹𝑋 (𝑠) with 𝑦 and
𝑠 with 𝐹−1

𝑋
(𝑦) in Lemma 6.3.1’s representation. We will show later that the optimal

strategy indeed has such a continuous and strictly increasing 𝐹𝑋 (see Lemmas 6.B.7
and 6.B.8 in Section 6.B).

As a first application of the representation for the CVaR𝛿-cost in Lemma 6.3.1, we
construct in the following theorem a family of densities parametrized by 𝛿 whose
𝛿-CR we can compute analytically, giving an upper bound on 𝛼∗

𝛿
, and in particular

showing that 𝛼∗
𝛿
< 2 for all 𝛿 ∈ [0, 1).

Theorem 6.3.2. Let 𝑝𝛿 (𝑥) be a probability density defined on the unit interval [0, 1]
as

𝑝𝛿 (𝑥) =
(1 − 𝛿) (1 − 𝑒 𝑐

1−𝛿 )
𝑐(𝑒 𝑐

1−𝛿 (𝑥 − 1) − 𝑥)
,

with constant 𝑐 = −1+2𝑊−1 (−1/2√𝑒)
2 ≈ 1.25643, where 𝑊−1 is the −1 branch of the

Lambert𝑊 function. Then the strategy that buys on day 𝑋 ∼ 𝑝𝛿 achieves competitive
ratio

𝛼
𝑝 𝛿
𝛿

= 2 − 1
𝑒

𝑐
1−𝛿 − 1

.

In particular, 𝛼𝑝 𝛿
𝛿
< 2 for all 𝛿 ∈ [0, 1).

We present a proof of this theorem in Section 6.B. Our approach is to compute the
inverse CDF corresponding to the proposed density and reformulate the inequalities
defining 𝛼𝑝 𝛿

𝛿
-competitiveness using Lemma 6.3.1; the rest of the work is concerned

with computing 𝛼𝑝 𝛿
𝛿

.

Intuitively, the strategy 𝑝𝛿 in Theorem 6.3.2 behaves like one might expect a good
algorithm for ski rental with the 𝛿-CR metric should: it assigns less probability
mass to earlier times and more to later times, and as 𝛿 increases, it shifts mass
from earlier times to later times. However, the algorithm cannot be optimal, since
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𝛼
𝑝0
0 = 2− 1

𝑒𝑐−1 ≈ 1.60, which is larger—though only slightly—than the randomized
optimal 𝑒

𝑒−1 ≈ 1.58. This motivates the question: is it possible to leverage the
representation in Lemma 6.3.1 to obtain the optimal algorithm for continuous-time
ski rental with the 𝛿-CR objective? In the following theorem, we answer this question
in the affirmative: in particular, the optimal algorithm’s inverse CDF is the solution
to a delay differential equation defined on the interval [0, 1].

Theorem 6.3.3. For any 𝛿 ∈ [0, 1), let 𝜙 : [0, 1] → [0, 1] be the solution to the
delay differential equation

𝜙′(𝑡) = 1
𝛼(1 − 𝛿) [𝜙(𝑡) − 𝜙(𝑡 − (1 − 𝛿))] for 𝑡 ∈ [1 − 𝛿, 1],

with initial condition 𝜙(𝑡) = log
(
1 + 𝑡

(𝛼−1) (1−𝛿)

)
on 𝑡 ∈ [0, 1 − 𝛿]. Then when

𝛼 = 𝛼∗
𝛿
, 𝜙 is the inverse CDF of the unique optimal strategy for continuous-time ski

rental with the 𝛿-CR metric.

We prove this theorem in Section 6.B. The crux of the proof is a pair of structural
lemmas (Lemmas 6.B.3 and 6.B.6) which establish that, for any 𝛿 ∈ [0, 1), the
optimal algorithm 𝜇∗ is indifferent to the adversary’s decision, i.e., 𝛼𝜇

∗

𝛿
(𝑠) = 𝛼∗

𝛿

for all 𝑠 ∈ (0, 1]. This is analogous to the trick of “setting the inequalities to
equalities” in the classical version of ski rental [231], but requires a great deal
more care in the continuous-time CVaR𝛿 setting to make rigorous. In addition, this
result depends on the fact that 𝛼∗

𝛿
< 2, which we showed in Theorem 6.3.2. With

this property established, we can apply Lemma 6.3.1 to pose a family of integral
equations constraining the optimal inverse CDF, which can be transformed to obtain
the delay differential equation in Theorem 6.3.3.

Note, however, that the delay differential equation yielding the optimal inverse CDF
depends on the optimal 𝛿-CR 𝛼∗

𝛿
, which we have no analytic form for. Fortunately,

the solution 𝜙 to the delay differential equation in Theorem 6.3.3 has the property
that 𝜙(𝑡) is strictly decreasing in 𝛼 for each 𝑡 ∈ (0, 1] (see Section 6.B); since
the optimal inverse CDF must have 𝜙(1) = 1 (see Lemma 6.B.8 in the appendix),
𝛼∗
𝛿

is equivalently defined as the unique choice of 𝛼 for which the solution to the
above delay differential equation satisfies 𝜙(1) = 1. We may thus determine 𝛼∗

𝛿
via

binary search: given some 𝛼, we solve the delay differential equation numerically
and evaluate 𝜙(1); if 𝜙(1) > 1, then we decrease 𝛼, and if 𝜙(1) < 1, we increase
𝛼. We plot the optimal 𝛿-CR obtained via this binary search methodology (with



253

0.0 0.2 0.4 0.6 0.8 1.0

1.6

1.7

1.8

1.9

2.0

C
V

aR
-C

om
pe

tit
iv

e 
R

at
io

Optimal CSR, *

Suboptimal CSR, p

Lower bound

Figure 6.1: CVaR𝛿-competitive ratios from Theorems 6.3.2 (Suboptimal) and 6.3.3
(Optimal) and lower bound from Theorem 6.3.4 for continuous-time ski rental.

delay differential equations solved numerically in Mathematica) alongside the upper
bound from Theorem 6.3.2 in Figure 6.1.

While Theorem 6.3.3 gives us a method for computing the optimal strategy and 𝛿-CR
for continuous-time ski rental, it does not give an analytic form of this solution or
metric. An analytic form of 𝜙(𝑡) can be obtained when 𝛿 ≤ 1

2 , though its form
is complicated and does not facilitate analysis of the optimal 𝛿-CR in this regime
(see Section 6.B). We thus conclude this section by providing a lower bound on 𝛼∗

𝛿
,

which we prove in Section 6.B.

Theorem 6.3.4. For any 𝛿 ∈ [0, 1), the optimal 𝛿-CR 𝛼∗
𝛿

has the lower bound

𝛼∗𝛿 ≥ max
{

𝑒

𝑒 − 1
, 2 − 1

2⌊ 1
1−𝛿 ⌋−1

}
.

We plot this lower bound in Figure 6.1 alongside the upper bound from Theo-
rem 6.3.2 and the optimal competitive ratio. While this lower bound is vacuous
for 𝛿 < 2

3 , in which case it is exactly the expected cost lower bound of 𝑒
𝑒−1 , it has

the same asymptotic form as the upper bound in Theorem 6.3.2 as 𝛿 approaches 1.
Thus, Theorems 6.3.2 and 6.3.4 together give us that 𝛼∗

𝛿
= 2 − 1

2Θ( 1
1−𝛿 ) , as 𝛿 ↑ 1.

6.4 CVaR𝛿-Competitive Discrete-Time Ski Rental:
Phase Transition and Analytic Optimal Algorithm

Having characterized the optimal algorithm and 𝛿-CR for continuous-time ski rental
in the previous section, we now turn to the discrete-time version of the problem, and
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ask: are there any qualitative differences between the optimal algorithm or 𝛿-CR for
the discrete problem and the continuous-time problem? And are there any regimes
of 𝛿 for which we can analytically characterize the optimal algorithm? It turns
out that the answer to both of these questions is yes; we begin by showing, in the
following theorem, that the optimal 𝛿-CR for the discrete-time ski rental problem
exhibits a phase transition at 𝛿 = 1−Θ( 1

log 𝐵 ) such that, for 𝛿 beyond this transition,
the optimal algorithm is exactly the deterministic algorithm that buys at time 𝐵.

Theorem 6.4.1. Let 𝛼𝐵,∗
𝛿

be the optimal 𝛿-CR for discrete-time ski rental with buying
cost 𝐵 ∈ N. Then 𝛼𝐵,∗

𝛿
exhibits a phase transition at 𝛿 = 1 − Θ( 1

log 𝐵 ), whereby
before this transition, 𝛼𝐵,∗

𝛿
strictly improves on the deterministic optimal 𝛿-CR of

2 − 1
𝐵

, whereas after this transition, 𝛼𝐵,∗
𝛿

= 2 − 1
𝐵

. Specifically:

(i) For all 𝛿 < 1 − 𝑐
log(𝐵+1) , the optimal 𝛿-CR is strictly bounded above by the

deterministic optimal CR: 𝛼𝐵,∗
𝛿

< 2− 1
𝐵

(where 𝑐 = −1+2𝑊−1 (−1/2√𝑒)
2 ≈ 1.25643

as in Theorem 6.3.2).

(ii) For all 𝛿 ≥ 1− 1
2⌊log2 𝐵⌋+1 , the optimal 𝛿-CR is exactly the deterministic optimal

CR: 𝛼
𝐵,∗
𝛿

= 2 − 1
𝐵

. Thus, the optimal algorithm for this regime purchases
deterministically at time 𝐵.

We prove this result in Section 6.C; the proof of part (i) of follows essentially imme-
diately from our analytic upper bound for the continuous setting (Theorem 6.3.2),
and the proof of part (ii) is adapted from that for the continuous-time lower bound
(Theorem 6.3.4) in order to handle the discrete nature of the problem. Note that
this phase transition behavior is in sharp contrast to the behavior of the optimal
𝛿-CR and algorithm in the continuous time setting: whereas in continuous time,
𝛼

CSR,∗
𝛿

strictly improves on the deterministic optimal for all 𝛿 < 1, in discrete time,
𝛼

DSR(𝐵),∗
𝛿

is equal to the deterministic optimal for a non-degenerate interval of 𝛿,
implying a limit to the benefit of randomization in the risk-sensitive setting. In
addition, this phase transition result gives an analytic solution for the algorithm with
optimal 𝛿-CR when 𝛿 is sufficiently large; a natural, complementary question is
whether it is possible to obtain an analytic solution for the optimal algorithm with
smaller 𝛿. We prove in the next theorem that such a solution can be obtained when
𝛿 = O( 1

𝐵
).
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Theorem 6.4.2. Suppose 𝛿 ≤
(
𝐵−1
𝐵

)𝐵−1 (1−(1−1/𝐵)𝐵)−1

𝐵
= O( 1

𝐵
). Then the optimal

𝛿-CR 𝛼
𝐵,∗
𝛿

and strategy p𝐵,𝛿,∗ for discrete-time ski rental with buying cost 𝐵 are

𝛼
𝐵,∗
𝛿

=
𝐶 − 𝛿
1 − 𝛿 and 𝑝

𝐵,𝛿,∗
𝑖

=
𝐶

𝐵

(
1 − 1

𝐵

)𝐵−𝑖
for all 𝑖 ∈ [𝐵],

where 𝐶 = 1
1−(1−1/𝐵)𝐵 is the optimal competitive ratio for the 𝛿 = 0 case. In

particular, p𝐵,𝛿,∗ is constant as a function of 𝛿, and is identical to the optimal
algorithm for the expected cost setting.

We prove this result in Section 6.C; the proof follows a similar strategy to the proof
characterizing the optimal strategy in the continuous-time setting, and in particular
involves the proof of several technical lemmas that, similar to Lemmas 6.B.3 and
6.B.6 in the continuous-time setting, characterize the optimal algorithm p𝐵,𝛿,∗ via
the adversary’s indifference to its chosen ski season duration. As a consequence of
this theorem, we can analytically obtain the optimal algorithm for discrete-time ski
rental with the 𝛿-CR objective whenever 𝛿 = O( 1

𝐵
), and the corresponding 𝛿-CR is

a rational function of 𝛿. We anticipate that extensions of this result may be possible
for larger 𝛿, but in general the optimal 𝛿-CR will be a piecewise function of 𝛿 whose
pieces, including the number of pieces and the intervals they are defined on, will
depend on 𝐵, so we leave the problem of characterizing the 𝛿-CR for all 𝛿 and
general 𝐵 to future work. However, if computational results suffice, an adapted form
of the binary search approach employed in [253, Appendix E] can be used in tandem
with a linear programming formulation of the CVaR in order to approximate the
optimal solution for any 𝛿 with 𝛼𝐵,∗

𝛿
< 2 − 1

𝐵
.

6.5 CVaR𝛿-Competitive One-Max Search:
Asymptotically Optimal Algorithm and Phase Transition

We now turn our focus to the one-max search problem. As noted in Section 6.2,
existing results for this problem in the deterministic and randomized settings have
established that the optimal deterministic competitive ratio is 𝛼𝜃,∗1 =

√
𝜃 and the

optimal randomized competitive ratio is 𝛼𝜃,∗0 = 1 + 𝑊0

(
𝜃−1
𝑒

)
= Θ(log 𝜃), where

𝜃 = 𝑈
𝐿

is the fluctuation ratio. We seek to obtain an upper bound on the 𝛿-CR for
more general 𝛿; to this end, we prove a lemma that, in an analogous fashion to
Lemma 6.3.1 for the continuous-time ski rental problem, leverages the integral form
of the conditional value-at risk to let us express the CVaR𝛿-reward of a particular
randomized threshold algorithm 𝑋 in terms of the inverse CDF of 𝑋 .
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Lemma 6.5.1. Let 𝑋 be a random variable supported in [𝐿,𝑈], and fix an adversary
choice of the maximal price 𝑣 ∈ [𝐿,𝑈]. Then the CVaR𝛿 of the profit earned by the
algorithm playing the random threshold 𝑋 is

CVaR𝛿 [𝐿 · 1𝑋>𝑣 + 𝑋 · 1𝑋≤𝑣]

=


𝐿 if 𝐹𝑋 (𝑣) ≤ 𝛿

1
1−𝛿

[
(1 − 𝐹𝑋 (𝑣))𝐿 +

∫ 𝐹𝑋 (𝑣)−𝛿
0 𝐹−1

𝑋
(𝑡) d𝑡

]
otherwise.

We prove this lemma in Section 6.D. While the representation of the CVaR𝛿 of
profit in this case differs substantially from the cost representation for ski rental in
Lemma 6.3.1, it nonetheless also has a relatively simple parametrization in terms
of the inverse CDF of the decision 𝑋 , which will facilitate algorithm design. This
is due, in part, to the piecewise linear structure exhibited by the cost/profit in these
problems, and we anticipate that extending our results to online problems with more
general classes of piecewise linear costs and rewards may be a fruitful avenue for
future work.

While the representation of the CVaR𝛿-reward in Lemma 6.5.1 depends on both the
CDF and the inverse CDF of 𝑋 , we can eliminate the CDF so long as the maximal
price 𝑣 ∈ 𝐹−1

𝑋
( [0, 1]). Using this fact, we prove the following theorem, proposing

an algorithm and establishing an upper bound on the 𝛿-CR for all 𝛿 ∈ [0, 1]. We
prove the result in Section 6.D.

Theorem 6.5.2. Let 𝛿 ∈ [0, 1], and let 𝜙 : [0, 1] → [𝐿,𝑈] be the solution to the
following delay differential equation:

𝜙′(𝑡) =
𝛼𝜃
𝛿

1 − 𝛿 [𝜙(𝑡 − 𝛿) − 𝐿] for 𝑡 ∈ [𝛿, 1], (6.4)

with initial condition 𝜙(𝑡) = 𝛼𝜃
𝛿
𝐿 on 𝑡 ∈ [0, 𝛿], where 𝛼𝜃

𝛿
is chosen such that

𝜙(1) = 𝑈 when 𝛿 < 1, and 𝛼𝜃
𝛿

:=
√
𝜃 when 𝛿 = 1. Then 𝜙 is the inverse CDF of

a random threshold algorithm for one-max search with 𝛿-CR 𝛼𝜃
𝛿
. Moreover, 𝛼𝜃

𝛿
is

bounded above by the unique positive solution 𝑟 (𝛿) to the equation

(𝑟 (𝛿) − 1)
(
1 + 𝑟 (𝛿)

𝑛(𝛿)

)𝑛(𝛿)
= 𝜃 − 1, (6.5)

where 𝑛(𝛿) = max
{
1,

⌊ (
⌊𝛿−1⌋ − 1

)
/2

⌋}
, with the 𝛿 = 0 case defined by taking

𝛿 ↓ 0. In particular,

𝛼𝜃𝛿 ≤


1 +𝑊0

(
𝜃−1
𝑒

)
+ O(𝛿) as 𝛿 ↓ 0

√
𝜃 when 𝛿 > 1

5 ,
(6.6)
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with the equality 𝛼𝜃
𝛿
=
√
𝜃 when 𝛿 ≥ 1

2 , where the asymptotic notation omits
dependence on 𝜃.

We make three brief remarks concerning this result. First, note that the proposed
algorithm merely gives an upper bound on the 𝛿-CR of one-max search and might not
be optimal, although its 𝛿-CR matches the optimal randomized and deterministic
algorithms in the 𝛿 = 0 and 1 cases. Second, when 𝛿 ∈ [0, 1), it is possible to
analytically solve the delay differential equation (6.4) by integrating step-by-step
(see Section 6.D):

𝜙(𝑡) = 𝐿 + (𝛼𝜃𝛿 − 1)𝐿
∞∑︁
𝑗=0

(𝛼𝜃
𝛿
) 𝑗 ( [𝑡 − 𝑗𝛿]+) 𝑗

(1 − 𝛿) 𝑗 𝑗! . (6.7)

When 𝛿 = 0, (6.7) simplifies to 𝜙(𝑡) = 𝐿 + (𝛼𝜃
𝛿
− 1)𝐿𝑒𝛼𝜃𝛿 𝑡 , the optimal randomized

algorithm [176]. On the other hand, when 𝛿 ∈ (0, 1), all terms with 𝑗 ≥ ⌈𝛿−1⌉
disappear for 𝑡 ∈ [0, 1], so 𝜙(𝑡) is a continuous, piecewise polynomial function. In
either case, 𝜙(1) is strictly increasing in 𝛼𝜃

𝛿
> 0, so the 𝛿-CR 𝛼𝜃

𝛿
can be obtained

numerically by solving 𝜙(1) = 𝑈 via standard root-finding methods.

Finally, when 𝛿 ≥ 1
2 , Theorem 6.5.2 asserts that 𝛼𝜃

𝛿
=
√
𝜃, which is identical to the

optimal deterministic competitive ratio. This raises the question: can any algorithm
improve upon the deterministic bound when 𝛿 ≥ 1

2 , or is this behavior reflective of a
phase transition at 𝛿 = 1

2 such that randomness cannot improve performance when
𝛿 is greater than this level? In the following result, which we prove in Section 6.D
by leveraging connections with the 𝑘-max search problem [79], we provide a lower
bound establishing that the latter case is true, and that moreover, the algorithm in
Theorem 6.5.2 is asymptotically optimal for small 𝛿.

Theorem 6.5.3. Fix 𝛿 ∈ [0, 1], let 𝛼𝜃,∗
𝛿

be the optimal 𝛿-CR for one-max search,
and define 𝑟 (𝛿) to be the unique positive solution to the equation

(𝑟 (𝛿) − 1)
(
1 +

𝑟 (𝛿)
𝑛(𝛿)

)𝑛(𝛿)
= 𝜃 − 1, (6.8)

where 𝑛(𝛿) = max
{
1,

⌈
𝛿−1⌉ − 1

}
, with the 𝛿 = 0 case defined by taking 𝛿 ↓ 0. Then

𝛼
𝜃,∗
𝛿
≥ 𝑟 (𝛿); in particular,

𝛼
𝜃,∗
𝛿
≥


1 +𝑊0

(
𝜃−1
𝑒

)
+Ω(𝛿) as 𝛿 ↓ 0

√
𝜃 when 𝛿 ≥ 1

2 ,
(6.9)

where the asymptotic notation omits dependence on 𝜃.
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Figure 6.2: CVaR𝛿-competitive ratio of the algorithm in Theorem 6.5.2 along with
the upper bound (6.5) and lower bound (6.8) for one-max search.

Thus, in contrast to the continuous-time ski rental problem, which exhibited no
phase transition in its competitive ratio, and the discrete-time ski rental problem,
which had a phase transition that shrank as 𝐵→∞, Theorem 6.5.3 establishes that
the one-max search problem has a phase transition at 𝛿 = 1

2 that remains present
even as 𝜃 →∞. As such, there is a significant limit to the power of randomization in
risk-sensitive one-max search. In addition, note that the form of the implicit lower
bound (6.8) matches that of the upper bound (6.5), aside from the definitions of the
functions 𝑛(𝛿) and 𝑛(𝛿). This suggests that our upper and lower bounds are tight
up to the choice of the function 𝑛(𝛿) = Θ(𝛿−1). In particular, this tightness is made
clear in the analytic bounds (6.6) and (6.9) in the 𝛿 ↓ 0 limit, which indicate that
our algorithm is asymptotically optimal when 𝛿 is small. We plot the numerically
obtained 𝛿-CR 𝛼𝜃

𝛿
together with the upper and lower bounds (6.5) and (6.8) in

Figure 6.2 when 𝐿 = 1 and 𝑈 = 100, which confirms the near-tightness of the
bounds and the phase transition at 𝛿 = 1

2 .

6.6 Conclusion
In this chapter, we consider the problem of designing risk-sensitive online algo-
rithms, with performance evaluated via a competitive ratio metric—the 𝛿-CR—
defined using the conditional value-at-risk of an algorithm’s cost. We consider the
continuous- and discrete-time ski rental problems as well as the one-max search
problem, obtaining optimal (and suboptimal) algorithms, lower bounds, and ana-
lytic characterizations of phase transitions in the optimal 𝛿-CR for discrete-time ski
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rental and one-max search. Our work motivates many interesting new directions,
including (a) obtaining an exact or asymptotic analytic form of the optimal 𝛿-CR
for discrete-time ski rental and one-max search across all 𝛿, (b) the design and
analysis of risk-sensitive algorithms for online problems with more general classes
of cost and reward functions, or more complex problems such as metrical task
systems, (c) exploring the use of alternative risk measures in place of the condi-
tional value-at-risk, and (d) exploring potential connections between risk-sensitive
online algorithms and robustness to distribution shift in learning-augmented online
algorithms, drawing motivation from the framing of CVaR𝛿 in terms of distribution
shift.

Appendix
In these appendix sections, we present proofs of the theoretical results in the main
body of the chapter.

6.A Additional Details for Section 6.2
Proof of Lemma 6.2.4
Let 𝑋1 ∼ 𝜇1, and define another random variable 𝑋2 ∼ 𝜇2 with support on [0, 1] as

𝑋2 =


𝑋1 if 𝑋1 ≤ 1

1 otherwise.

Suppose 𝑠 ∈ [0, 1). Clearly 1𝑋1>𝑠 = 1𝑋2>𝑠 and 1𝑋1≤𝑠 = 1𝑋2≤𝑠, and since 𝑋2 = 𝑋1

when 𝑋1 ≤ 1, 𝑋1 · 1𝑋1≤𝑠 = 𝑋2 · 1𝑋2≤𝑠 for 𝑠 < 1. Thus

𝛼
𝜇1
𝛿
(𝑠) =

CVaR𝛿 [𝑠 · 1𝑋1>𝑠 + (𝑋1 + 1) · 1𝑋1≤𝑠]
min{𝑠, 1}

=
CVaR𝛿 [𝑠 · 1𝑋2>𝑠 + (𝑋2 + 1) · 1𝑋2≤𝑠]

min{𝑠, 1}
= 𝛼

𝜇2
𝛿
(𝑠). (6.10)

Now, consider the case 𝑠 ∈ [1,+∞]. By construction, 𝑋2 ≤ 1, so 1𝑋2>𝑠 = 0 and
1𝑋2≤𝑠 = 1, and thus

𝛼
𝜇2
𝛿
(𝑠) =

CVaR𝛿 [𝑠 · 1𝑋2>𝑠 + (𝑋2 + 1) · 1𝑋2≤𝑠]
min{𝑠, 1} (6.11)

= 1 + CVaR𝛿 [𝑋2] (6.12)
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where (6.11) uses translation invariance of CVaR. On the other hand, we have

𝛼
𝜇1
𝛿
(𝑠) =

CVaR𝛿 [𝑠 · 1𝑋1>𝑠 + (𝑋1 + 1) · 1𝑋1≤𝑠]
min{𝑠, 1}

≥ CVaR𝛿 [1 · 1𝑋1>𝑠 + (𝑋1 + 1) · 1𝑋1≤𝑠] (6.13)

= 1 + CVaR𝛿 [𝑋1 · 1𝑋1≤𝑠] (6.14)

≥ 1 + CVaR𝛿 [𝑋2], (6.15)

where (6.13) follows by monotonicity of CVaR, (6.14) follows by translation invari-
ance, and (6.15) follows by monotonicity when 𝑠 = +∞ (in which case 1𝑋1≤𝑠 = 1).
Combining (6.10), (6.12), and (6.15), we obtain 𝛼𝜇2

𝛿
≤ 𝛼𝜇1

𝛿
, as claimed.

On the Restriction to Random Threshold Policies
In this section, we briefly justify the claim that the restriction to random threshold
policies for one-max search is made without loss of generality. Let Alg be an
arbitrary randomized algorithm for one-max search. Following the argument in the
proof of [78, Theorem 1], the lack of memory restrictions in this problem implies,
by Kuhn’s Theorem, that Alg is, without loss of generality, a mixed strategy, or a
probability distribution over deterministic algorithms [264]. For some 𝑘 ∈ N, let
𝜖 = 𝑈−𝐿

𝑘
, and define a restricted set of adversary price sequences I𝜖 as

I𝜖 = {v : v = (𝐿, 𝐿 + 𝜖, . . . , 𝐿 + 𝑛𝜖), 𝑛 ∈ {0, . . . , 𝑘}} ,

i.e., I𝜖 is the set of all price sequences that begin at 𝐿 and increase by 𝜖 at each
time. If the adversary is restricted to choosing price sequences in I𝜖 , then any
deterministic algorithm is equivalent in behavior to some deterministic threshold
algorithm. To see why, note that I𝜖 comprises 𝑘 + 1 price sequences, each of
a unique length in [𝑘 + 1]; we will call v𝑛 the sequence of length 𝑛 ∈ [𝑘 + 1].
Moreover, v𝑛 constitutes the first 𝑛 entries of v𝑛+1. As such, the behavior of a
deterministic algorithm Alg on v𝑛 will be identical to its behavior on the first 𝑛
prices revealed in v𝑛+1; in particular, if Alg sells at time 𝑗 < 𝑛 in v𝑛, it will do the
same in v𝑛+1 and earn the same profit 𝐿 + ( 𝑗 − 1)𝜖 . As a result, Alg’s behavior
on I𝜖 is wholly determined by the price at which it chooses to sell, which will be
consistent across price sequences in this set; in other words, Alg is equivalent to a
deterministic threshold algorithm, with threshold chosen amongst the 𝑘 + 1 choices
{𝑣 : 𝑣 = 𝐿+𝑛𝜖, 𝑛 ∈ {0, . . . , 𝑘}}.3 Thus, on I𝜖 , the mixed strategy Alg is equivalent

3If Alg never sells on any of the sequences in I𝜖 , we can choose a corresponding deterministic
threshold of𝑈, which obtains performance at least as good.
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to a distribution over such threshold algorithms, i.e., a random threshold algorithm
𝑋 ∼ 𝜇 with support on {𝑣 : 𝑣 = 𝐿 + 𝑛𝜖, 𝑛 ∈ {0, . . . , 𝑘}}. Formally, we have

𝛼Alg
𝛿 = sup

v∈[𝐿,𝑈]𝑇 ,
𝑇∈N

𝑣max
CVaR𝛿 [Alg(v)]

≥ max
v∈I𝜖

𝑣max
CVaR𝛿 [Alg(v)]

≥ max
v∈I𝜖

𝑣max
CVaR𝛿 [𝐿 · 1𝑋>𝑣max + 𝑋 · 1𝑋≤𝑣max]

= max
𝑣=𝐿+𝑛𝜖,
𝑛∈{0,...,𝑘}

𝑣

CVaR𝛿 [𝐿 · 1𝑋>𝑣 + 𝑋 · 1𝑋≤𝑣]
(6.16)

where Alg(v) denotes the (random) profit of Alg on the price sequence v, 𝑣max :=
max 𝑗 𝑣 𝑗 , and (6.16) holds by the construction of I𝜖 . Then since 𝑋 ∼ 𝜇 is a random
threshold algorithm, its 𝛿-CR (with unrestricted adversary) is defined as in (6.3):

𝛼
𝜇

𝛿
= sup
𝑣∈[𝐿,𝑈]

𝑣

CVaR𝛿 [𝐿 · 1𝑋>𝑣 + 𝑋 · 1𝑋≤𝑣]

≤ max
𝑛∈{0,...,𝑘}

sup
𝑣∈[𝐿+𝑛𝜖, 𝐿+(𝑛+1)𝜖)

𝑣

CVaR𝛿 [𝐿 · 1𝑋>𝑣 + 𝑋 · 1𝑋≤𝑣]

≤ max
𝑛∈{0,...,𝑘}

𝐿 + (𝑛 + 1)𝜖
CVaR𝛿 [𝐿 · 1𝑋>𝐿+𝑛𝜖 + 𝑋 · 1𝑋≤𝐿+𝑛𝜖 ]

(6.17)

≤ max
𝑣=𝐿+𝑛𝜖,
𝑛∈{0,...,𝑘}

𝑣

CVaR𝛿 [𝐿 · 1𝑋>𝑣 + 𝑋 · 1𝑋≤𝑣]
+ 𝜖
𝐿

(6.18)

≤ 𝛼Alg
𝛿 + 𝜖

𝐿
(6.19)

where the inequality (6.17) holds due to 𝑋 having support restricted to {𝑣 : 𝑣 =

𝐿 + 𝑛𝜖, 𝑛 ∈ {0, . . . , 𝑘}}, which implies that CVaR𝛿 [𝐿 · 1𝑋>𝑣 + 𝑋 · 1𝑋≤𝑣] is equal to
the 𝑣 = 𝐿+𝑛𝜖 case for all 𝑣 ∈ [𝐿 + 𝑛𝜖, 𝐿 + (𝑛 + 1)𝜖), (6.18) follows by the fact that
the algorithm’s profit is lower bounded by 𝐿, and (6.19) follows by the inequality in
(6.16). Thus, by selecting 𝑘 arbitrarily large (i.e., 𝜖 arbitrarily small), the random
threshold algorithm 𝑋 can be made to have 𝛿-CR arbitrarily close to the original
randomized algorithm Alg.

6.B Proofs and Additional Results for Section 6.3
Proof of Lemma 6.3.1
Before proving the result, we first prove a general lemma that allows for writing an
algorithm’s CVaR𝛿-cost given a particular adversary’s decision 𝑠 ∈ [0, 1] in terms
of the inverse CDF of the algorithm’s decision.
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Lemma 6.B.1. Let 𝑋 be a random variable supported in [0, 1], and fix an adver-
sary’s decision 𝑠 ∈ [0, 1]. Then the inverse CDF of the ski rental cost given by the
random variable 𝐶 (𝑋, 𝑠) = 𝑠 · 1𝑋>𝑠 + (𝑋 + 1) · 1𝑋≤𝑠 is

𝐹−1
𝐶 (𝑋,𝑠) (𝑝) =


𝑠 if 𝑝 ≤ 1 − 𝐹𝑋 (𝑠)

1 + 𝐹−1
𝑋
(𝑝 + 𝐹𝑋 (𝑠) − 1) otherwise,

for 𝑝 ∈ [0, 1].

Proof. Observe that the cost𝐶 (𝑋, 𝑠) takes value 𝑠 when 𝑋 > 𝑠, and is equal to 𝑋+1
otherwise, which is always at least 𝑠; as such, we can easily compute its CDF:

𝐹𝐶 (𝑋,𝑠) (𝑥) =


0 if 𝑥 < 𝑠

1 − 𝐹𝑋 (𝑠) if 𝑥 ∈ [𝑠, 1)

1 − 𝐹𝑋 (𝑠) + 𝐹𝑋 (𝑥 − 1) if 𝑥 ∈ [1, 1 + 𝑠].

Note that 𝐶 (𝑋, 𝑠) is supported in [𝑠, 1 + 𝑠]; thus, we define its inverse CDF as

𝐹−1
𝐶 (𝑋,𝑠) (𝑝) = inf{𝑥 ∈ [𝑠, 1 + 𝑠] : 𝐹𝐶 (𝑋,𝑠) (𝑥) ≥ 𝑝}

=


𝑠 if 𝑝 = 0

𝑠 if 𝑝 ∈ (0, 1 − 𝐹𝑋 (𝑠)]

inf{𝑥 ∈ [1, 1 + 𝑠] : 1 − 𝐹𝑋 (𝑠) + 𝐹𝑋 (𝑥 − 1) ≥ 𝑝} otherwise

=


𝑠 if 𝑝 ≤ 1 − 𝐹𝑋 (𝑠)

1 + inf{𝑥 ∈ [0, 𝑠] : 𝐹𝑋 (𝑥) ≥ 𝑝 + 𝐹𝑋 (𝑠) − 1} otherwise

=


𝑠 if 𝑝 ≤ 1 − 𝐹𝑋 (𝑠)

1 + 𝐹−1
𝑋
(𝑝 + 𝐹𝑋 (𝑠) − 1) otherwise,

just as claimed.

Lemma 6.3.1 now follows as a near-immediate consequence of the preceding lemma.

Proof of Lemma 6.3.1. Define𝐶 (𝑋, 𝑠) = 𝑠 ·1𝑋>𝑠+ (𝑋 +1) ·1𝑋≤𝑠 as the algorithm’s
cost given a strategy 𝑋 and adversary’s decision 𝑠, just as in Lemma 6.B.1. By the
second definition of CVaR𝛿 in (6.1) expressing it as an integral of the inverse CDF,
we may write CVaR𝛿 [𝐶 (𝑋, 𝑠)] as:

CVaR𝛿 [𝐶 (𝑋, 𝑠)] =
1

1 − 𝛿

∫ 1

𝛿

𝐹−1
𝐶 (𝑋,𝑠) (𝑡) d𝑡.
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We break into two cases. If 𝛿 > 1 − 𝐹𝑋 (𝑠), then by Lemma 6.B.1, 𝐹−1
𝐶 (𝑋,𝑠) (𝑡) =

1 + 𝐹−1
𝑋
(𝑡 + 𝐹𝑋 (𝑠) − 1) on the entire domain of integration, so we have

CVaR𝛿 [𝐶 (𝑋, 𝑠)] =
1

1 − 𝛿

∫ 1

𝛿

1 + 𝐹−1
𝑋 (𝑡 + 𝐹𝑋 (𝑠) − 1) d𝑡

=
1

1 − 𝛿

∫ 𝐹𝑋 (𝑠)

𝐹𝑋 (𝑠)−(1−𝛿)
1 + 𝐹−1

𝑋 (𝑡) d𝑡.

On the other hand, if 𝛿 ≤ 1 − 𝐹𝑋 (𝑠), then by Lemma 6.B.1, 𝐹−1
𝐶 (𝑋,𝑠) (𝑡) = 𝑠 on

[𝛿, 1 − 𝐹𝑋 (𝑠)] and 𝐹−1
𝐶 (𝑋,𝑠) (𝑡) = 1 + 𝐹−1

𝑋
(𝑡 + 𝐹𝑋 (𝑠) − 1) on [1 − 𝐹𝑋 (𝑠), 1]. Thus,

CVaR𝛿 [𝐶 (𝑋, 𝑠)] =
1

1 − 𝛿

(∫ 1−𝐹𝑋 (𝑠)

𝛿

𝑠 d𝑡 +
∫ 1

1−𝐹𝑋 (𝑠)
1 + 𝐹−1

𝑋 (𝑡 + 𝐹𝑋 (𝑠) − 1) d𝑡
)

=
1

1 − 𝛿

[
(1 − 𝛿 − 𝐹𝑋 (𝑠))𝑠 +

∫ 𝐹𝑋 (𝑠)

0
1 + 𝐹−1

𝑋 (𝑡) d𝑡
]
.

Proof of Theorem 6.3.2
First, note that the CDF of the strategy 𝑋 on [0, 1] is

𝐹𝑋 (𝑥) =
∫ 𝑥

0
𝑝𝛿 (𝑦) d𝑦 = −

1 − 𝛿
𝑐

log
[
1 +

(
𝑒−

𝑐
1−𝛿 − 1

)
𝑥

]
,

which is strictly increasing (and hence one-to-one) on [0, 1], with 𝐹𝑋 (0) = 0 and
𝐹𝑋 (1) = 1. The corresponding inverse CDF is

𝐹−1
𝑋 (𝑦) =

1 − 𝑒−
𝑐𝑦

1−𝛿

1 − 𝑒− 𝑐
1−𝛿
,

for 𝑦 ∈ [0, 1]. This is strictly increasing in 𝑦, so 𝐹−1
𝑋

is one-to-one, and any adversary
decision 𝑠 ∈ [0, 1] corresponds to some 𝑦 ∈ [0, 1] such that 𝑠 = 𝐹−1

𝑋
(𝑦).
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Now suppose the adversary’s decision is 𝑠 = 𝐹−1
𝑋
(𝑦) for 𝑦 ≤ 1 − 𝛿. Then by

Lemma 6.3.1, the the 𝛿-CR of the algorithm’s cost in this case is

CVaR𝛿 [𝑠 · 1𝑋>𝑠 + (𝑋 + 1) · 1𝑋≤𝑠]
𝑠

=
1

𝐹−1
𝑋
(𝑦)

1
1 − 𝛿

[
(1 − 𝛿 − 𝑦)𝐹−1

𝑋 (𝑦) +
∫ 𝑦

0
1 + 𝐹−1

𝑋 (𝑡) d𝑡
]

=
1

1 − 𝛿

[
(1 − 𝛿 − 𝑦) + 1 − 𝑒− 𝑐

1−𝛿

1 − 𝑒−
𝑐𝑦

1−𝛿

(
𝑦 +

∫ 𝑦

0

1 − 𝑒− 𝑐𝑡
1−𝛿

1 − 𝑒− 𝑐
1−𝛿

d𝑡

)]
=

1
1 − 𝛿

[
(1 − 𝛿 − 𝑦) + 1 − 𝑒− 𝑐

1−𝛿

1 − 𝑒−
𝑐𝑦

1−𝛿

(
𝑦 + 1 − 𝑐𝑦 − 𝑒−

𝑐𝑦

1−𝛿 (1 − 𝛿) − 𝛿
𝑐(𝑒− 𝑐

1−𝛿 − 1)

)]
=

1
1 − 𝛿

[
(1 − 𝛿 − 𝑦) + 2 − 𝑒− 𝑐

1−𝛿

1 − 𝑒−
𝑐𝑦

1−𝛿
𝑦 − 1 − 𝛿

𝑐

]
= 1 + 𝑦

1 − 𝛿

(
2 − 𝑒− 𝑐

1−𝛿

1 − 𝑒−
𝑐𝑦

1−𝛿
− 1

)
− 1
𝑐

(6.20)

≤ 2 − 𝑒− 𝑐
1−𝛿

1 − 𝑒−𝑐 −
1
𝑐

(6.21)

where the final inequality (6.21) follows from the straightforward observation that
(6.20) is increasing in 𝑦, so is maximized in this case at 𝑦 = 1 − 𝛿 (recall we have
assumed 𝑦 ≤ 1 − 𝛿).

Now, consider the alternative case that 𝑦 > 1− 𝛿. By Lemma 6.3.1, the the 𝛿-CR of
the algorithm’s cost in this case is

CVaR𝛿 [𝑠 · 1𝑋>𝑠 + (𝑋 + 1) · 1𝑋≤𝑠]
𝑠

=
1

𝐹−1
𝑋
(𝑦)

1
1 − 𝛿

∫ 𝑦

𝑦−(1−𝛿)
1 + 𝐹−1

𝑋 (𝑡) d𝑡

=
1 − 𝑒− 𝑐

1−𝛿

1 − 𝑒−
𝑐𝑦

1−𝛿

(
1 + 𝑒

− 𝑐𝑦

1−𝛿 (1 − 𝑒𝑐) + 𝑐
𝑐(1 − 𝑒− 𝑐

1−𝛿 )

)
=

2 − 𝑒− 𝑐
1−𝛿

1 − 𝑒−
𝑐𝑦

1−𝛿
+ 𝑒
− 𝑐𝑦

1−𝛿 (1 − 𝑒𝑐)
𝑐(1 − 𝑒−

𝑐𝑦

1−𝛿 )
(6.22)

≤ 2 − 𝑒− 𝑐
1−𝛿

1 − 𝑒− 𝑐
1−𝛿
+ 𝑒
− 𝑐

1−𝛿 (1 − 𝑒𝑐)
𝑐(1 − 𝑒− 𝑐

1−𝛿 )
(6.23)

where the final inequality (6.23) follows from the fact that (6.22) is increasing in 𝑦,
and thus is maximized for 𝑦 = 1 (recall that 𝑦 ∈ (1 − 𝛿, 1] in this case). To see that
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this is the case, observe that

d
d𝑦

(
2 − 𝑒− 𝑐

1−𝛿

1 − 𝑒−
𝑐𝑦

1−𝛿
+ 𝑒
− 𝑐𝑦

1−𝛿 (1 − 𝑒𝑐)
𝑐(1 − 𝑒−

𝑐𝑦

1−𝛿 )

)
= −𝑒

𝑐 (𝑦−1)
1−𝛿 (−𝑐 + 𝑒 𝑐

1−𝛿 (1 + 2𝑐 − 𝑒𝑐))
(1 − 𝑒

𝑐𝑦

1−𝛿 )2(1 − 𝛿)

=
𝑒
𝑐 (𝑦−1)

1−𝛿 𝑐

(1 − 𝑒
𝑐𝑦

1−𝛿 )2(1 − 𝛿)
(6.24)

> 0 for all 𝑦 ∈ (1 − 𝛿, 1],

where (6.24) follows by the assumption in the theorem statement that
𝑐 = −1+2𝑊−1 (−1/2√𝑒)

2 , since if we substitute this definition of 𝑐 into 1 + 2𝑐 − 𝑒𝑐, we
obtain

1 + 2𝑐 − 𝑒𝑐 = −2𝑊−1 (−1/2√𝑒) − 𝑒−
1+2𝑊−1 (−1/2

√
𝑒)

2

= −𝑒− 1
2

(
2
√
𝑒 ·𝑊−1 (−1/2√𝑒) + 𝑒−𝑊−1 (−1/2√𝑒)

)
= 0, (6.25)

since the Lambert𝑊 function is defined to satisfy𝑊𝑘 (𝑧) · 𝑒𝑊𝑘 (𝑧) = 𝑧.

Combining the two cases (6.21) and (6.23), we have that the 𝛿-CR of the algorithm
that buys on a random day with density 𝑝𝛿 is

𝛼
𝑝 𝛿
𝛿

= max
{

2 − 𝑒− 𝑐
1−𝛿

1 − 𝑒−𝑐 −
1
𝑐
,

2 − 𝑒− 𝑐
1−𝛿

1 − 𝑒− 𝑐
1−𝛿
+ 𝑒
− 𝑐

1−𝛿 (1 − 𝑒𝑐)
𝑐(1 − 𝑒− 𝑐

1−𝛿 )

}
. (6.26)

We will now show that for our chosen constant 𝑐, the latter entry in the maximum is
larger for all 𝛿 ∈ [0, 1). Define a function 𝑓 as the difference of (6.23) and (6.21):

𝑓 (𝛿; 𝑐) = 2 − 𝑒− 𝑐
1−𝛿

1 − 𝑒− 𝑐
1−𝛿
+ 𝑒
− 𝑐

1−𝛿 (1 − 𝑒𝑐)
𝑐(1 − 𝑒− 𝑐

1−𝛿 )
−

(
2 − 𝑒− 𝑐

1−𝛿

1 − 𝑒−𝑐 −
1
𝑐

)
.

Our goal is to show that 𝑓 (𝛿; 𝑐) ≥ 0 for all 𝛿 ∈ [0, 1). First, observe that 𝑓 (0) = 0.
Moreover, since lim𝛿↑1 𝑒

− 𝑐
1−𝛿 = 0, we have

lim
𝛿↑1

𝑓 (𝛿; 𝑐) = 2 − 2
1 − 𝑒−𝑐 +

1
𝑐

= − 2𝑒−𝑐

1 − 𝑒−𝑐 +
1
𝑐

= − 2
𝑒𝑐 − 1

+ 1
𝑐

= 2
(

1
1 − 𝑒𝑐 +

1
2𝑐

)
= 0,
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where the final equality follows from rearranging the equality 1+2𝑐− 𝑒𝑐 = 0 shown
in (6.25), which follows from our choice of 𝑐. Thus the function 𝑓 (𝛿; 𝑐) is zero at
the endpoints of the interval [0, 1). Since 𝑓 ′ is continuously differentiable, if we
can show that 𝑓 ′(0; 𝑐) > 0 and that 𝑓 ′(𝛿; 𝑐) = 0 exactly once on the interval [0, 1),
these together will imply the desired property that 𝑓 (𝛿; 𝑐) ≥ 0 for all 𝛿 ∈ [0, 1).4

Computing the derivative of 𝑓 at 𝛿 = 0, we find

𝑓 ′(𝛿; 𝑐)
���
𝛿=0

=

𝑒−
𝑐

1−𝛿

(
(1 − 𝑒𝑐)2 − 𝑐

(
−1 + 2𝑒𝑐 − 2𝑒− 𝑐𝛿

1−𝛿 + 𝑒−
𝑐 (1+𝛿 )

1−𝛿

))
(𝑒𝑐 − 1) (1 − 𝑒− 𝑐

1−𝛿 )2(1 − 𝛿)2

�����
𝛿=0

(6.27)

=
𝑐 + 𝑒𝑐 (𝑒𝑐 − 1 − 2𝑐)

(𝑒𝑐 − 1)2

=
𝑐

(𝑒𝑐 − 1)2
(6.28)

> 0,

where (6.28) follows from (6.25). Moreover, inspecting the form of (6.27), it is
clear that 𝑒− 𝑐

1−𝛿 and the denominator (𝑒𝑐 − 1) (1 − 𝑒− 𝑐
1−𝛿 )2(1 − 𝛿)2 are both strictly

positive (recall, in particular, that 𝑐 > 1). As such, the sign of 𝑓 ′(𝛿; 𝑐) is exactly
the sign of (1 − 𝑒𝑐)2 − 𝑐

(
−1 + 2𝑒𝑐 − 2𝑒− 𝑐𝛿

1−𝛿 + 𝑒−
𝑐 (1+𝛿 )

1−𝛿

)
, so to determine the zeros

of 𝑓 ′(𝛿; 𝑐), we may instead determine the zeros of the expression

(1 − 𝑒𝑐)2 − 𝑐
(
−1 + 2𝑒𝑐 − 2𝑒−

𝑐𝛿
1−𝛿 + 𝑒−

𝑐 (1+𝛿 )
1−𝛿

)
.

To this end, we compute another derivative:

d
d𝛿

[
(1 − 𝑒𝑐)2 − 𝑐

(
−1 + 2𝑒𝑐 − 2𝑒−

𝑐𝛿
1−𝛿 + 𝑒−

𝑐 (1+𝛿 )
1−𝛿

)]
=

2𝑐2𝑒−
𝑐𝛿

1−𝛿 (𝑒− 𝑐
1−𝛿 − 1)

(1 − 𝛿)2

< 0

for all 𝛿 ∈ [0, 1), since 𝑒− 𝑐
1−𝛿 < 1. As

(1 − 𝑒𝑐)2 − 𝑐
(
−1 + 2𝑒𝑐 − 2𝑒−

𝑐𝛿
1−𝛿 + 𝑒−

𝑐 (1+𝛿 )
1−𝛿

) �����
𝛿=0

= 4𝑐2 − 𝑐(−3 + 2𝑒𝑐 + 𝑒−𝑐)

= 4𝑐2 − 𝑐(−1 + 4𝑐 + 𝑒−𝑐)

= − (1 + 2 ·𝑊−1 (−1/2√𝑒))2

4 ·𝑊−1 (−1/2√𝑒)
≈ 0.899 > 0

4To see that this is the case, suppose instead that 𝑓 (𝛿′; 𝑐) < 0 for some 𝛿′ ∈ (0, 1), and note that
strict positivity of the initial derivative 𝑓 ′ (0; 𝑐) > 0, continuity of 𝑓 ′, and the limit lim𝛿↑1 𝑓 (𝛿; 𝑐) = 0
imply that 𝑓 ′ (𝛿; 𝑐) must be zero at least twice on the interval, contradicting the supposition that
𝑓 ′ (𝛿; 𝑐) = 0 exactly once.
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and

lim
𝛿↑1
(1 − 𝑒𝑐)2 − 𝑐

(
−1 + 2𝑒𝑐 − 2𝑒−

𝑐𝛿
1−𝛿 + 𝑒−

𝑐 (1+𝛿 )
1−𝛿

)
= 𝑐 − 2𝑐𝑒𝑐 + (𝑒𝑐 − 1)2

=
1
2
+𝑊−1 (−1/2√𝑒)

≈ −1.256 < 0,

it follows that (1 − 𝑒𝑐)2 − 𝑐
(
−1 + 2𝑒𝑐 − 2𝑒− 𝑐𝛿

1−𝛿 + 𝑒−
𝑐 (1+𝛿 )

1−𝛿

)
, and thus 𝑓 ′(𝛿; 𝑐), has

exactly one zero on [0, 1). As argued previously, this implies that 𝑓 (𝛿; 𝑐) ≥ 0 for
all 𝛿 ∈ [0, 1), and hence the second entry on the right-hand side of (6.26) is always
larger:

𝛼
𝑝 𝛿
𝛿

=
2 − 𝑒− 𝑐

1−𝛿

1 − 𝑒− 𝑐
1−𝛿
+ 𝑒
− 𝑐

1−𝛿 (1 − 𝑒𝑐)
𝑐(1 − 𝑒− 𝑐

1−𝛿 )
.

Simplifying this formula via (6.25), we have

𝛼
𝑝 𝛿
𝛿

= 2 − 1
𝑒

𝑐
1−𝛿 − 1

,

from which it is readily observed that 𝛼𝑝 𝛿
𝛿
< 2 for all 𝛿 ∈ [0, 1); moreover, lim𝛿↑1 2−

1
𝑒

𝑐
1−𝛿 −1

= 2, so the above expression for 𝛼𝑝 𝛿
𝛿

is valid, and indeed optimal, in the case
of 𝛿 = 1 (in this case, we interpret the algorithm as placing full probability mass on
purchasing at time 1). On the other hand, 𝛼𝑝0

0 = 2 − 1
𝑒𝑐−1 ≈ 1.60 > 𝛼∗0 ≈ 1.58, so

this algorithm is not optimal for all 𝛿, though it provides a very close approximation
of the optimal competitive ratio in the case of 𝛿 = 0.

Proof of Theorem 6.3.3
It is known that the optimal ski-rental algorithm 𝜇∗ is indifferent to the adversary’s
decision 𝑠 ∈ (0, 1] when 𝛿 = 0 (in the expected cost case), i.e., 𝛼𝜇

∗

0 (𝑠) =
𝑒
𝑒−1 for

all 𝑠 ∈ (0, 1] [231]. A similar tightness property was proved in [253] in the setting
of discrete-time ski rental with VaR constraints. In the following, we show that this
tightness property also holds for any 𝛿 ∈ (0, 1) for continuous-time ski rental: if
𝜇∗
𝛿

is optimal for the 𝛿-CR, then 𝛼𝜇
∗

𝛿
(𝑠) = 𝛼

𝜇∗

𝛿
for all 𝑠 ∈ (0, 1]. Following the

high-level strategy of [253], we prove this result in two steps: first, we prove that
𝛼
𝜇∗

𝛿
(1) = 𝛼

𝜇∗

𝛿
. Then, we prove that for any algorithm 𝜇, if 𝛼𝜇

𝛿
(𝑠) < 𝛼

𝜇

𝛿
for some

𝑠 ∈ (0, 1], we can construct an algorithm �̂� with a competitive ratio that is no worse
than 𝜇, yet which has 𝛼 �̂�

𝛿
(1) < 𝛼�̂�

𝛿
, thus implying 𝜇 is not optimal. We begin with a

lemma establishing that any optimal algorithm cannot have a probability mass more
than (1 − 𝛿) (𝛼∗

𝛿
− 1) on any single point.
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Lemma 6.B.2. Let 𝛿 ∈ [0, 1), and let 𝜇∗ be an algorithm with optimal 𝛿-CR for
continuous-time ski rental. Then 𝜇∗ cannot assign any point a probability mass
greater than (1 − 𝛿) (𝛼∗

𝛿
− 1).

Proof. By Lemma 6.2.4 we can assume that 𝜇∗ has support in [0, 1]; now suppose
for the sake of contradiction that 𝜇∗(𝑥) > (1 − 𝛿) (𝛼∗

𝛿
− 1) for some 𝑥 ∈ [0, 1]. We

can easily construct a lower bound on the 𝛿-CR as follows:

𝛼
𝜇∗

𝛿
(𝑥) >

(1 − 𝛿) (𝛼∗
𝛿
− 1) (1 + 𝑥) + (1 − 𝛿 − (1 − 𝛿) (𝛼∗

𝛿
− 1))𝑥

(1 − 𝛿)𝑥

=
(1 − 𝛿) (𝛼∗

𝛿
− 1) + (1 − 𝛿)𝑥
(1 − 𝛿)𝑥

=
𝛼∗
𝛿
− 1
𝑥
+ 1

≥ 𝛼∗𝛿

where the final inequality follows since 𝛼∗
𝛿
−1
𝑥

is decreasing in 𝑥 and 𝛼∗
𝛿
−1
𝑥
+1

���
𝑥=1

= 𝛼∗
𝛿
.

Since 𝜇∗ was assumed optimal, this strict inequality clearly yields a contradiction.

We conclude by briefly noting that (1− 𝛿) (𝛼∗
𝛿
− 1) < 1− 𝛿, since by Theorem 6.3.2,

𝛼∗
𝛿
< 2 for any 𝛿 ∈ [0, 1).

Now, we prove that the competitive ratio must be tight when 𝑠 = 1.

Lemma 6.B.3. Let 𝛿 ∈ [0, 1), and let 𝜇 be an algorithm with optimal 𝛿-CR for
continuous-time ski rental, so 𝛼𝜇

𝛿
= 𝛼∗

𝛿
. Then 𝛼𝜇

𝛿
(1) = 𝛼𝜇

𝛿
.

Proof. Suppose otherwise, and let 𝛼𝜇
𝛿
(1) = 𝛼

𝜇

𝛿
− 𝜖 for some 𝜖 > 0. Note that by

Lemma 6.B.2, 𝜇 cannot place a probability mass greater than (1− 𝛿) (𝛼∗
𝛿
−1) on any

single point, which is strictly less than (1 − 𝛿) by the fact that 𝛼∗
𝛿
< 2 for 𝛿 ∈ [0, 1)

(Theorem 6.3.2). In particular, this implies that 𝜇 does not assign all its probability
to the decision 𝑥 = 1, and decreasing the probability mass assigned to a particular
decision 𝑥 and moving it to an earlier decision will strictly decrease the 𝛿-CR at that
decision.

Now, consider another algorithm �̂� with measure defined as:

�̂� = (1 − 𝛾)𝜇 + 𝛾𝛿1,

with 𝛾 > 0 a small constant and where 𝛿1 is a unit point mass at 𝑥 = 1. For any
𝑠 ∈ (0, 1), one of the following two cases must hold:
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(a) Suppose 𝛼𝜇
𝛿
(𝑠) = 𝑠−1 · CVaR𝛿 [𝑠 · 1𝑋>𝑠 + (𝑋 + 1) · 1𝑋≤𝑠] = 1. This means

that the worst (1 − 𝛿)-sized subpopulation of the loss distribution (i.e., the
distribution of the random variable 1𝑋>𝑠 + 𝑠−1(𝑋 + 1) · 1𝑋≤𝑠) is contained in
the event 𝑋 > 𝑠, so it must be that 𝑋 takes values at most 𝑠 with probability
zero, i.e., 𝜇[0, 𝑠] = 0. Likewise, we must have �̂�[0, 𝑠] = 0, so 𝛼 �̂�

𝛿
(𝑠) = 1 as

well.

(b) Alternatively, let 𝛼𝜇
𝛿
(𝑠) > 1. This means that 𝜇[0, 𝑠] = 𝑐 > 0. We break into

two subcases:

(i) If 𝑐 < 1 − 𝛿, then the worst (1 − 𝛿)-sized subpopulation of the loss
distribution must yield a loss of 1 with probability 1 − 𝛿 − 𝑐 > 0; hence we
may write

𝛼
𝜇

𝛿
(𝑠) = E[𝑠−1(𝑋 + 1) · 1𝑋≤𝑠] + 1 − 𝛿 − 𝑐

= 𝑐 · E[𝑠−1(𝑋 + 1) · 1𝑋≤𝑠 |𝑋 ≤ 𝑆] + 1 − 𝛿 − 𝑐.

Let 𝐵 ∼ Bernoulli(𝛾) be independent of 𝑋 , and define �̂� as a random variable
that is equal to 𝑋 when 𝐵 = 0 and is 1 otherwise; clearly �̂� has distribution
�̂�. Then since �̂�[0, 𝑠] = (1 − 𝛾)𝜇[0, 𝑠] = (1 − 𝛾)𝑐, we similarly obtain

𝛼
�̂�

𝛿
(𝑠) = E[𝑠−1( �̂� + 1) · 1�̂�≤𝑠] + 1 − 𝛿 − (1 − 𝛾)𝑐

= E[𝑠−1(𝑋 + 1) | �̂� ≤ 𝑠]P( �̂� ≤ 𝑠) + 1 − 𝛿 − (1 − 𝛾)𝑐 (6.29)

= E[𝑠−1(𝑋 + 1) |𝑋 ≤ 𝑠]P( �̂� ≤ 𝑠) + 1 − 𝛿 − (1 − 𝛾)𝑐 (6.30)

= (1 − 𝛾)𝑐 · E[𝑠−1(𝑋 + 1) |𝑋 ≤ 𝑠] + 1 − 𝛿 − (1 − 𝛾)𝑐
< 𝛼

𝜇

𝛿
(𝑠), (6.31)

where (6.29) holds since, by construction, �̂� ≤ 𝑠 < 1 implies �̂� = 𝑋;
(6.30) follows from the fact that the event �̂� ≤ 𝑠 is exactly the joint event
{𝑋 ≤ 𝑆, 𝐵 = 0} and 𝑋 is independent of 𝐵; and (6.31) is a consequence of
𝛾 > 0 and E[𝑠−1(𝑋 + 1) |𝑋 ≤ 𝑠] > 1 for 𝑠 < 1.

(ii) If 𝑐 ≥ 1 − 𝛿, then the worst (1 − 𝛿)-sized subpopulation of the loss
distribution is wholly induced by outcomes of 𝑋 lying in the interval [0, 𝑠];
calling 𝜈 this subpopulation distribution of 𝑋 , we have 𝛼𝜇

𝛿
(𝑠) = E𝑋∼𝜈 [𝑠−1(𝑋+

1)]. This subpopulation shrinks to size (1 − 𝛿) (1 − 𝛾) in the construction of
�̂�, so in order to construct the worst-case (1 − 𝛿)-sized loss subpopulation of
�̂�, we must augment 𝜈 with an additional loss subpopulation (call it �̂�) with
size (1− 𝛿)𝛾. It must hold that some nontrivial portion of the losses included
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in �̂� are strictly less than 𝑠 · 𝛼𝜇
𝛿
(𝑠), for if this were not the case, it would imply

that 𝜇 contains a probability atom of size 1−𝛿
1−𝛾 , violating optimality. Thus, we

may calculate:

𝛼
�̂�

𝛿
(𝑠) = (1 − 𝛾) · E𝑋∼𝜈 [𝑠−1(𝑋 + 1)] + 𝛾 · E𝑋∼�̂� [1𝑋>𝑠 + 𝑠−1(𝑋 + 1) · 1𝑋≤𝑠]

< (1 − 𝛾) · E𝑋∼𝜈 [𝑠−1(𝑋 + 1)] + 𝛾 · 𝛼𝜇
𝛿
(𝑠) (6.32)

= 𝛼
𝜇

𝛿
(𝑠),

where (6.32) follows from a nontrivial portion of the losses in �̂� being strictly
less than 𝛼𝜇

𝛿
(𝑠).

Finally, consider the case of 𝑠 = 1. In this case, the loss is always 𝑋 + 1, since
𝑋 ≤ 1 without loss of generality (Lemma 6.2.4); since this is strictly increasing in
the outcome of 𝑋 , the worst (1 − 𝛿)-sized subpopulation of the loss distribution is
exactly the (1− 𝛿) tail of 𝑋 , which we call 𝜈. This tail shrinks to size (1− 𝛿) (1− 𝛾)
in the construction of �̂�, but an additional probability mass of weight 𝛾 is added to
the outcome 𝑋 = 1, and as this outcome maximizes the loss, the worst (1− 𝛿)-sized
subpopulation of the loss under �̂� is easily seen to be (1 − 𝛾)𝜈 + 𝛾𝛿1. Thus, if we
choose 𝛾 = 𝜖

2 ,

𝛼
�̂�

𝛿
(1) = (1 − 𝛾) · E𝑋∼𝜈 [𝑋 + 1] + 𝛾 · E𝑋∼𝛿1 [𝑋 + 1]

= (1 − 𝛾)𝛼𝜇
𝛿
(1) + 2𝛾

= (1 − 𝛾) (𝛼𝜇
𝛿
− 𝜖) + 2𝛾

< (𝛼𝜇
𝛿
− 𝜖) + 2𝛾

= 𝛼
𝜇

𝛿
.

It follows from the above cases that 𝛼 �̂�
𝛿

= sup𝑠∈(0,1] 𝛼
�̂�

𝛿
< 𝛼

𝜇

𝛿
: for 𝑠 ∈ (0, 1)

satisfying case (a), 𝛼�̂�
𝛿
(𝑠) = 1 < 𝛼𝜇

𝛿
, and in case (b) and the case of 𝑠 = 1, we have

shown 𝛼 �̂�
𝛿
(𝑠) < 𝛼

𝜇

𝛿
. However, this implies that �̂� has strictly better 𝛿-CR than 𝜇,

contradicting the optimality of 𝜇. As a result, we must have 𝛼𝜇
𝛿
(1) = 𝛼𝜇

𝛿
.

We will now begin to prove the second structural result: that if 𝛼𝜇
𝛿
(𝑠) < 𝛼𝜇

𝛿
for some

𝑠 ∈ (0, 1), we can construct an algorithm �̂� with 𝛿-CR that is no worse than 𝜇 and
for which 𝛼 �̂�

𝛿
(1) < 𝛼 �̂�

𝛿
, which by the previous lemma implies that 𝜇 is not optimal.

We will first prove a series of technical lemmas that support this proof: the first tells
us that, if there is “slack” in the 𝛿-CR for a given adversary decision 𝑥 ∈ (0, 1],
then this implies that there is slack of a comparable magnitude in a small interval
[𝑥, 𝑥 + 𝜖].
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Lemma 6.B.4. Let 𝛿 ∈ [0, 1), and let 𝜇 be an algorithm for continuous-time
ski rental with support in [0, 1]. Suppose there exists an 𝑥 ∈ (0, 1) for which
𝛼
𝜇

𝛿
(𝑥) < 𝛼𝜇

𝛿
, and define 2𝛾 := 𝛼𝜇

𝛿
− 𝛼𝜇

𝛿
(𝑥) > 0. Then there exists some 𝜖 > 0 such

that for any 𝑦 ∈ [𝑥, 𝑥 + 𝜖], 𝛼𝜇
𝛿
(𝑦) ≤ 𝛼𝜇

𝛿
− 𝛾.

Proof. When 𝛿 = 0, CVaR𝛿 is exactly the expectation, so we have:

𝛼
𝜇

0 (𝑥) = E[1𝑋>𝑥 + 𝑥−1(𝑋 + 1) · 1𝑋≤𝑥]
= 1 − 𝐹𝑋 (𝑥) + 𝑥−1 (𝐹𝑋 (𝑥) + E[𝑋 · 1𝑋≤𝑥])

= 1 − 𝐹𝑋 (𝑥) + 𝑥−1
(
𝐹𝑋 (𝑥) +

∫ 𝑥

0
1 − 𝐹𝑋 ·1𝑋≤𝑥 (𝑡) d𝑡

)
= 1 − 𝐹𝑋 (𝑥) + 𝑥−1

(
𝐹𝑋 (𝑥) +

∫ 𝑥

0
𝐹𝑋 (𝑥) − 𝐹𝑋 (𝑡) d𝑡

)
, (6.33)

which is easily seen to be right-continuous at 𝑥, by right-continuity of the CDF.
Thus there must exist some 𝜖 ensuring |𝛼𝜇0 (𝑥) − 𝛼

𝜇

0 (𝑦) | ≤ 𝛾 for all 𝑦 ∈ [𝑥, 𝑥 + 𝜖],
which implies the desired property.

On the other hand, suppose 𝛿 ∈ (0, 1). We can choose 𝜖 > 0 sufficiently small such
that 𝜌 := 𝐹𝑋 (𝑥 + 𝜖) − 𝐹𝑋 (𝑥) = P(𝑋 ∈ (𝑥, 𝑥 + 𝜖]) ≤ 𝛿 (this is always possible due to
right-continuity of 𝐹𝑋). Defining the algorithm’s cost given an adversary decision
𝑠 as 𝐶 (𝑋, 𝑠) = 𝑠 · 1𝑋>𝑠 + (𝑋 + 1) · 1𝑋≤𝑠, we have

𝛼
𝜇

𝛿
(𝑥 + 𝜖) = 1

(1 − 𝛿) (𝑥 + 𝜖)

∫ 1

𝛿

𝐹−1
𝐶 (𝑋,𝑥+𝜖) (𝑡) d𝑡

≤ 1
(1 − 𝛿) (𝑥 + 𝜖)

[∫ 1−𝜌

𝛿−𝜌
𝐹−1
𝐶 (𝑋,𝑥+𝜖) (𝑡) d𝑡 +

∫ 1

1−𝜌
𝐹−1
𝐶 (𝑋,𝑥+𝜖) (𝑡) d𝑡

]
. (6.34)

Now, applying Lemma 6.B.1, we can bound each of the two integrals in (6.34). For
the first integral, there are two cases according to the two cases in Lemma 6.B.1: if
𝛿− 𝜌 > 1−𝐹𝑋 (𝑥+ 𝜖), then 𝐹−1

𝐶 (𝑋,𝑥+𝜖) (𝑡) = 1+𝐹−1
𝑋
(𝑡 +𝐹𝑋 (𝑥+ 𝜖) −1) on the domain

of integration, so we have∫ 1−𝜌

𝛿−𝜌
𝐹−1
𝐶 (𝑋,𝑥+𝜖) (𝑡) d𝑡 =

∫ 1−𝜌

𝛿−𝜌
1 + 𝐹−1

𝑋 (𝑡 + 𝐹𝑋 (𝑥 + 𝜖) − 1) d𝑡

=

∫ 𝐹𝑋 (𝑥+𝜖)−𝜌

𝐹𝑋 (𝑥+𝜖)−(1−𝛿)−𝜌
1 + 𝐹−1

𝑋 (𝑡) d𝑡

=

∫ 𝐹𝑋 (𝑥)

𝐹𝑋 (𝑥)−(1−𝛿)
1 + 𝐹−1

𝑋 (𝑡) d𝑡

= (1 − 𝛿) CVaR𝛿 [𝐶 (𝑋, 𝑥)]
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where the final equality follows by Lemma 6.3.1. Dividing both sides by (1−𝛿) (𝑥+
𝜖), we obtain

1
(1 − 𝛿) (𝑥 + 𝜖)

∫ 1−𝜌

𝛿−𝜌
𝐹−1
𝐶 (𝑋,𝑥+𝜖) (𝑡) d𝑡 =

CVaR𝛿 [𝐶 (𝑋, 𝑥)]
𝑥 + 𝜖 < 𝛼

𝜇

𝛿
(𝑥) (6.35)

since 𝜖 > 0 implies 𝑥
𝑥+𝜖 < 1. Similarly, if 𝛿 − 𝜌 ≤ 1 − 𝐹𝑋 (𝑥 + 𝜖), the value of

𝐹−1
𝐶 (𝑋,𝑥+𝜖) (𝑡) depends on which part of the domain of integration contains 𝑡:∫ 1−𝜌

𝛿−𝜌
𝐹−1
𝐶 (𝑋,𝑥+𝜖) (𝑡) d𝑡

=

∫ 1−𝐹𝑋 (𝑥+𝜖)

𝛿−𝜌
𝑥 + 𝜖 d𝑡 +

∫ 1−𝜌

1−𝐹𝑋 (𝑥+𝜖)
1 + 𝐹−1

𝑋 (𝑡 + 𝐹𝑋 (𝑥 + 𝜖) − 1) d𝑡

= (1 − 𝛿 − 𝐹𝑋 (𝑥)) (𝑥 + 𝜖) +
∫ 𝐹𝑋 (𝑥)

0
1 + 𝐹−1

𝑋 (𝑡) d𝑡.

Dividing both sides by (1 − 𝛿) (𝑥 + 𝜖), we obtain

1
(1 − 𝛿) (𝑥 + 𝜖)

∫ 1−𝜌

𝛿−𝜌
𝐹−1
𝐶 (𝑋,𝑥+𝜖) (𝑡) d𝑡

=
1

1 − 𝛿

[
(1 − 𝛿 − 𝐹𝑋 (𝑥)) +

1
𝑥 + 𝜖

∫ 𝐹𝑋 (𝑥)

0
1 + 𝐹−1

𝑋 (𝑡) d𝑡
]

<
1

(1 − 𝛿)𝑥

[
(1 − 𝛿 − 𝐹𝑋 (𝑥))𝑥 +

∫ 𝐹𝑋 (𝑥)

0
1 + 𝐹−1

𝑋 (𝑡) d𝑡
]

= 𝛼
𝜇

𝛿
(𝑥), (6.36)

where the final step is a consequence of Lemma 6.3.1; note this exactly matches
the bound (6.35) in the first case. For the second integral in (6.34), since 𝜌 =

𝐹𝑋 (𝑥 + 𝜖) − 𝐹𝑋 (𝑥), we have 1 − 𝜌 = 1 − 𝐹𝑋 (𝑥 + 𝜖) + 𝐹𝑋 (𝑥) ≥ 1 − 𝐹𝑋 (𝑥 + 𝜖), so by
Lemma 6.B.1 we may calculate∫ 1

1−𝜌
𝐹−1
𝐶 (𝑋,𝑥+𝜖) (𝑡) d𝑡 =

∫ 1

1−𝜌
1 + 𝐹−1

𝑋 (𝑡 + 𝐹𝑋 (𝑥 + 𝜖) − 1) d𝑡

=

∫ 𝐹𝑋 (𝑥+𝜖)

𝐹𝑋 (𝑥)
1 + 𝐹−1

𝑋 (𝑡) d𝑡

≤ (𝐹𝑋 (𝑥 + 𝜖) − 𝐹𝑋 (𝑥)) (1 + 𝐹−1
𝑋 (𝐹𝑋 (𝑥 + 𝜖))) (6.37)

≤ (𝐹𝑋 (𝑥 + 𝜖) − 𝐹𝑋 (𝑥)) (1 + 𝑥 + 𝜖) (6.38)

where the bound (6.37) follows by monotonicity of the inverse CDF, and (6.38) is
from the well-known bound 𝐹−1

𝑋
(𝐹𝑋 (𝑦)) ≤ 𝑦 (e.g., [259, Lemma 1.17f]).
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Inserting (6.35), (6.36), and (6.38) into (6.34), we obtain the bound

𝛼
𝜇

𝛿
(𝑥 + 𝜖) < 𝛼𝜇

𝛿
(𝑥) + 1

1 − 𝛿

(
1 + 1

𝑥 + 𝜖

)
(𝐹𝑋 (𝑥 + 𝜖) − 𝐹𝑋 (𝑥)). (6.39)

Right-continuity of the CDF ensures that the right-hand side of (6.39) can be made at
most 𝛼𝜇

𝛿
(𝑥)+𝛾 by choosing 𝜖 > 0 sufficiently small, thus establishing the result.

The second technical lemma we will need to prove the structural result asserts that
if 𝑋 comes from a distribution with a probability atom at 𝑥 ∈ (0, 1], then there is a
non-degenerate interval of slack in the 𝛿-CR. The assumed bound on the size of the
probability atom is made without loss of generality due to Lemma 6.B.2, since we
solely focus on the optimal algorithm.

Lemma 6.B.5. Fix 𝛿 ∈ [0, 1), and let 𝑋 ∼ 𝜇 be a random variable supported in
[0, 1] with a probability atom of mass 𝜂 ≤ (𝛼∗

𝛿
− 1) (1− 𝛿) at some 𝑥 ∈ (0, 1]. Then

there is some 𝜖 > 0 and 𝛾 > 0 such that 𝛼𝜇
𝛿
(𝑦) ≤ 𝛼𝜇

𝛿
(𝑥) − 𝛾 for all 𝑦 ∈ [𝑥 − 𝜖, 𝑥).

Proof. Let us assume that there exists an 𝜖 > 0 such that 𝐹𝑋 (𝑥−𝜖) > 1−𝛿; the alter-
native case follows from an essentially identical argument. Then by Lemma 6.3.1,

𝛼
𝜇

𝛿
(𝑥) − 𝛼𝜇

𝛿
(𝑥 − 𝜖)

=
1

1 − 𝛿

[
1
𝑥

∫ 𝐹𝑋 (𝑥)

𝐹𝑋 (𝑥)−(1−𝛿)
1 + 𝐹−1

𝑋 (𝑡) d𝑡 −
1

𝑥 − 𝜖

∫ 𝐹𝑋 (𝑥−𝜖)

𝐹𝑋 (𝑥−𝜖)−(1−𝛿)
1 + 𝐹−1

𝑋 (𝑡) d𝑡
]

as 𝜖 ↓ 0
=

1
(1 − 𝛿)𝑥

[∫ 𝐹𝑋 (𝑥)

𝐹𝑋 (𝑥)−𝜂
1 + 𝐹−1

𝑋 (𝑡) d𝑡 −
∫ 𝐹𝑋 (𝑥)−(1−𝛿)

𝐹𝑋 (𝑥)−𝜂−(1−𝛿)
1 + 𝐹−1

𝑋 (𝑡) d𝑡
]

(6.40)

> 0,

where (6.40) follows by taking the limit 𝜖 ↓ 0 and by the assumption 𝜂 ≤ (𝛼∗
𝛿
−1) (1−

𝛿) < 1− 𝛿. The final inequality follows from 𝐹−1
𝑋
(𝑡) = 𝑥 on 𝑡 ∈ (𝐹𝑋 (𝑥) − 𝜂, 𝐹𝑋 (𝑥)],

along with the fact that 𝐹−1
𝑋
(𝑡) < 𝑥 on 𝑡 ≤ 𝐹𝑋 (𝑥)−𝜂, which implies that the integrand

of the second integral in (6.40) is strictly less than the first integrand (which is 1+𝑥),
as 𝜂 < 1 − 𝛿. This strict inequality holds in the limit, so there exists some 𝛾 > 0 for
which lim𝜖↓0 𝛼

𝜇

𝛿
(𝑥) − 𝛼𝜇

𝛿
(𝑥 − 𝜖) = 2𝛾; that this holds in the limit implies that there

is some 𝜖 > 0 such that 𝛼𝜇
𝛿
(𝑦) ≤ 𝛼𝜇

𝛿
(𝑥) − 𝛾 for all 𝑦 ∈ [𝑥 − 𝜖, 𝑥), as desired.

We are now prepared to prove the structural result establishing that the optimal
algorithm has 𝛿-CR that is independent of the adversary’s choice of season duration
𝑥 ∈ (0, 1).
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Lemma 6.B.6. Let 𝛿 ∈ [0, 1), and let 𝜇 be an algorithm with optimal 𝛿-CR for
continuous-time ski rental, so 𝛼𝜇

𝛿
= 𝛼∗

𝛿
. Then 𝛼𝜇

𝛿
(𝑥) = 𝛼𝜇

𝛿
for all 𝑥 ∈ (0, 1).

Proof. Suppose for the sake of contradiction that 𝛼𝜇
𝛿
(𝑥) < 𝛼𝜇

𝛿
for some 𝑥 ∈ (0, 1).

We will construct another algorithm �̂� with 𝛼 �̂�
𝛿
≤ 𝛼𝜇

𝛿
and 𝛼 �̂�

𝛿
(1) < 𝛼

�̂�

𝛿
, which by

Lemma 6.B.3 immediately implies that �̂�, and therefore 𝜇, is not optimal. In the
following proof, we will say that 𝜇 has “slack” at 𝑥 when 𝛼𝜇

𝛿
(𝑥) < 𝛼𝜇

𝛿
.

Define 𝑥 = sup{𝑦 ∈ [0, 1] : 𝛼𝜇
𝛿
(𝑦) < 𝛼

𝜇

𝛿
}. If 𝑥 = 1 and 𝛼𝜇

𝛿
(𝑥) < 𝛼

𝜇

𝛿
, clearly by

Lemma 6.B.3 we’re done. On the other hand, if 𝑥 < 1, we must have 𝛼𝜇
𝛿
(𝑥) = 𝛼𝜇

𝛿
by

the supremum definition of 𝑥 and Lemma 6.B.4. Thus, we may proceed assuming
that 𝑥 ∈ (0, 1] and 𝛼𝜇

𝛿
(𝑥) = 𝛼

𝜇

𝛿
. Note that the interval (𝑥, 1], if it is nonempty,

cannot contain any probability atoms, by Lemma 6.B.5 and the definition of 𝑥.

We will now proceed to prove the result in two parts. First, we will show that we
can construct a distribution �̃� with no worse 𝛿-CR than 𝜇 that has slack at 𝑥, i.e.,
𝛼
�̃�

𝛿
(𝑥) < 𝛼 �̃�

𝛿
. Then, we will show that we can construct new distributions iteratively

propagating this slack toward 1, eventually culminating with the desired �̂� with
𝛼
�̂�

𝛿
≤ 𝛼𝜇

𝛿
and 𝛼 �̂�

𝛿
(1) < 𝛼 �̂�

𝛿
.

Part (1): Obtaining slack at 𝑥 We break into two cases depending on whether 𝜇
has a probability atom at 𝑥.

(a) Suppose 𝜇 has a probability atom at 𝑥 of size 𝜁 ; by Lemma 6.B.2, 𝜁 must be
bounded as

𝜁 ≤ (𝛼∗𝛿 − 1) (1 − 𝛿) < 1 − 𝛿.

Then by Lemma 6.B.5, there is an 𝜖 > 0 and 𝛾 > 0 such that 𝛼𝜇
𝛿
(𝑦) ≤ 𝛼𝜇

𝛿
− 𝛾

for all 𝑦 ∈ [𝑥 − 𝜖, 𝑥). Define a measure �̃� from 𝜇 by moving a small amount
of mass 𝜂 > 0 from 𝑥 to 𝑥 − 𝜖 ; it can easily be seen that this will not change
𝛼
𝜇

𝛿
(𝑦) for 𝑦 < 𝑥 − 𝜖 , it will strictly decrease 𝛼𝜇

𝛿
(𝑥) due to shifting of its

mass to an action with a smaller cost, and similarly it will either decrease
or not affect 𝛼𝜇

𝛿
(𝑦) for 𝑦 > 𝑥. Note that Lemma 6.B.2’s bound on 𝜁’s size

𝜁 ≤ (𝛼∗
𝛿
− 1) (1 − 𝛿) < 1 − 𝛿 is crucial to obtain that 𝛼𝜇

𝛿
(𝑥) strictly decreases,

since if 𝜁 were larger than 1− 𝛿, decreasing its mass by a small amount might
not change the 𝛿-CR at 𝑥.

On the interval [𝑥−𝜖, 𝑥), the 𝛿-CR will increase, but at most by 𝜂

1−𝛿

(
1 + 1

𝑥−𝜖

)
,

which by choosing 𝜂 small can be kept sufficiently small that 𝛼 �̃�
𝛿
(𝑦) < 𝛼

𝜇

𝛿
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remains true for all 𝑦 ∈ [𝑥 − 𝜖, 𝑥). To see this, note that this movement of
mass increases 𝐹𝑋 by 𝜂 on the interval [𝑥 − 𝜖, 𝑥); as a result, on the interval
(𝐹𝑋 (𝑥 − 𝜖), 𝐹𝑋 (𝑥 − 𝜖) + 𝜂], 𝐹−1

𝑋
will decrease to 𝑥 − 𝜖 . That is, �̃� ∼ �̃� will

have inverse CDF of the form

𝐹−1
�̃�
(𝑝) =



𝐹−1
𝑋
(𝑝) if 𝑝 ≤ 𝐹𝑋 (𝑥 − 𝜖)

𝑥 − 𝜖 if 𝑝 ∈ (𝐹𝑋 (𝑥 − 𝜖), 𝐹𝑋 (𝑥 − 𝜖) + 𝜂]

𝐹−1
𝑋
(𝑝 − 𝜂) if 𝑝 ∈ (𝐹𝑋 (𝑥 − 𝜖) + 𝜂, 𝐹𝑋 (𝑥)]

𝐹−1
𝑋
(𝑝) otherwise.

(6.41)

Assuming that 𝐹𝑋 (𝑥) > 1 − 𝛿 (the alternative case proceeds similarly), we
may compute, using Lemma 6.3.1:

(1 − 𝛿) (𝑥 − 𝜖) · 𝛼�̃�
𝛿
(𝑥 − 𝜖) =

∫ 𝐹�̃� (𝑥−𝜖)

𝐹�̃� (𝑥−𝜖)−(1−𝛿)
1 + 𝐹−1

�̃�
(𝑡) d𝑡

=

∫ 𝐹𝑋 (𝑥−𝜖)+𝜂

𝐹𝑋 (𝑥−𝜖)+𝜂−(1−𝛿)
1 + 𝐹−1

�̃�
(𝑡) d𝑡

= 𝜂(1 + 𝑥 − 𝜖) +
∫ 𝐹𝑋 (𝑥−𝜖)

𝐹𝑋 (𝑥−𝜖)+𝜂−(1−𝛿)
1 + 𝐹−1

𝑋 (𝑡) d𝑡

≤ 𝜂(1 + 𝑥 − 𝜖) + (1 − 𝛿) (𝑥 − 𝜖) · 𝛼𝜇
𝛿
(𝑥 − 𝜖),

implying that 𝛼 �̃�
𝛿
(𝑥 − 𝜖) ≤ 𝛼

𝜇

𝛿
(𝑥 − 𝜖) + 𝜂

1−𝛿

(
1 + 1

𝑥−𝜖

)
. Similarly, for any

𝑦 ∈ (𝑥 − 𝜖, 𝑥) with 𝐹𝑋 (𝑦) − 𝐹𝑋 (𝑥) < 1 − 𝛿 (any others are not impacted by
this change), we can obtain an analogous bound:

(1 − 𝛿)𝑦 · 𝛼�̃�
𝛿
(𝑦) ≤ 𝜂(1 + 𝑥 − 𝜖) + (1 − 𝛿)𝑦 · 𝛼𝜇

𝛿
(𝑦)

implying that 𝛼 �̃�
𝛿
(𝑦) ≤ 𝛼𝜇

𝛿
(𝑦) + 𝜂

1−𝛿
1+𝑥−𝜖
𝑦
≤ 𝛼𝜇

𝛿
(𝑦) + 𝜂

1−𝛿

(
1 + 1

𝑥−𝜖

)
. Note that

these bounds are coarse, and intuitively capture the idea that if we introduce
a new point mass of size 𝜂 within the support of the worst-case loss subpopu-
lation distribution realizing the CVaR𝛿, the worst that this added loss can do
is increase the CVaR𝛿 in proportion to the loss value that it adds, weighted
by its probability normalized by 1 − 𝛿. Thus, it is clear that by selecting 𝜂
sufficiently small, we can guarantee that 𝛼 �̃�

𝛿
(𝑦) < 𝛼𝜇

𝛿
(𝑦) for all 𝑦 ∈ [𝑥 − 𝜖, 𝑥),

while we have still strictly decreased 𝛼𝜇
𝛿
(𝑥) by moving some of its mass to an

earlier decision, thus introducing slack at 𝑥.

(b) Suppose that 𝜇 does not have a point mass at 𝑥; thus, 𝐹𝑋 is continuous at 𝑥.
We break into two further cases:
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(i) Suppose that there is some 𝑦 < 𝑥 such that 𝜇 has a point mass at 𝑦 and

lim
ℎ↓0

𝐹𝑋 (𝑥) − 𝐹𝑋 (𝑦 − ℎ) < 1 − 𝛿.

By the argument in part (a), we can construct a measure �̃� by moving
some small amount 𝜂 > 0 of mass from 𝑦 to 𝑦 − 𝜖 for some 𝜖 > 0, which
will not impact 𝛼𝜇

𝛿
(𝑧) for 𝑧 < 𝑦−𝜖 , will increase it in a controlled manner

(such that we can maintain slack by choosing 𝜂 sufficiently small) for
𝑧 ∈ [𝑦 − 𝜖, 𝑦), and will strictly decrease it for 𝑧 = 𝑦. We can choose 𝜖
sufficiently small that 𝐹𝑋 (𝑥) −𝐹𝑋 (𝑦− 𝜖) ≤ 1− 𝛿, by the strict inequality
in the limit assumed above. Moreover, this modification will also strictly
decrease 𝛼𝜇

𝛿
(𝑧) for 𝑧 ∈ [𝑦, 𝑥]. In particular, for 𝑥 we have, using the

inverse CDF expression (6.41) and Lemma 6.3.1,

(1 − 𝛿)𝑥 · 𝛼 �̃�
𝛿
(𝑥) =

∫ 𝐹�̃� (𝑥)

𝐹�̃� (𝑥)−(1−𝛿)
1 + 𝐹−1

�̃�
(𝑡) d𝑡

=

∫ 𝐹𝑋 (𝑥)

𝐹𝑋 (𝑥)−(1−𝛿)
1 + 𝐹−1

�̃�
(𝑡) d𝑡

=

∫ 𝐹𝑋 (𝑦)

𝐹𝑋 (𝑥)−(1−𝛿)
1 + 𝐹−1

�̃�
(𝑡) d𝑡 +

∫ 𝐹𝑋 (𝑥)

𝐹𝑋 (𝑦)
1 + 𝐹−1

�̃�
(𝑡) d𝑡

<

∫ 𝐹𝑋 (𝑦)

𝐹𝑋 (𝑥)−(1−𝛿)
1 + 𝐹−1

𝑋 (𝑡) d𝑡 +
∫ 𝐹𝑋 (𝑥)

𝐹𝑋 (𝑦)
1 + 𝐹−1

𝑋 (𝑡) d𝑡

= (1 − 𝛿)𝑥 · 𝛼𝜇
𝛿
(𝑥),

where the strict inequality results from 𝐹−1
𝑋
(𝑡) being strictly decreased

on the domain
(𝐹𝑋 (𝑦− 𝜖), 𝐹𝑋 (𝑦− 𝜖) +𝜂] and the choice of 𝜖 satisfying 𝐹𝑋 (𝑥) −𝐹𝑋 (𝑦−
𝜖) ≤ 1− 𝛿. In the above derivation we have assumed that 𝐹𝑋 (𝑥) > 1− 𝛿;
the alternative case proceeds similarly.

Thus, if the worst (1 − 𝛿) fraction of loss outcomes when the adver-
sary chooses 𝑥 contains decisions (of positive probability) from a non-
degenerate set [𝑦 − 𝜖, 𝑦], and 𝑦 has a probability atom, we have that
introducing slack at 𝑦 in turn introduces slack at 𝑥.

(ii) Suppose that 𝜇 has no point mass at any 𝑦 satisfying the property that
𝑦 < 𝑥 and
limℎ↓0 𝐹𝑋 (𝑥)−𝐹𝑋 (𝑦−ℎ) < 1−𝛿. This implies that there must be a small
interval to the left of 𝑥 on which 𝐹𝑋 is continuous, since 𝐹𝑋 must increase
from 𝐹𝑋 (𝑥) − (1 − 𝛿) to 𝐹𝑋 (𝑥) without any discontinuities. There thus
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must exist, by the supremum definition of 𝑥, some 𝑦 < 𝑥 at which 𝐹𝑋
is continuous, 𝛼𝜇

𝛿
(𝑦) < 𝛼𝜇

𝛿
, and 𝐹𝑋 (𝑥) − 𝐹𝑋 (𝑦) < 1 − 𝛿. Continuity of

the 𝛿-CR on this subinterval, and the bound (6.39) in particular, imply
that there is some non-degenerate interval [𝑦, 𝑦 + 𝜖] and 𝛾 > 0 such that
𝛼
𝜇

𝛿
(𝑧) ≤ 𝛼𝜇

𝛿
−𝛾 for all 𝑧 ∈ [𝑦, 𝑦+𝜖]. By the assumption that 𝛼𝜇

𝛿
(𝑥) = 𝛼𝜇

𝛿

while there are no point masses on the interval [𝑦, 𝑥], the bound (6.39)
in particular tells us that we can choose 𝜖 such that the half-open interval
(𝑦, 𝑦 + 𝜖] has strictly positive measure. Then suppose we move a small
fraction 𝜂 of the probability mass on (𝑦, 𝑦 + 𝜖] to 𝑦. By the same basic
argument as employed previously, this will not affect the 𝛿-CR 𝛼

𝜇

𝛿
(𝑧)

for 𝑧 < 𝑦, and if we choose 𝜂 small enough, it will increase 𝛼𝜇
𝛿
(𝑧) for

𝑧 ∈ [𝑦, 𝑦 + 𝜖) in a controlled fashion so that we can keep 𝛼 �̃�
𝛿
(𝑧) < 𝛼𝜇

𝛿
.

Moreover, by the assumption 𝐹𝑋 (𝑥) − 𝐹𝑋 (𝑦) < 1− 𝛿, 𝛼𝜇
𝛿
(𝑥) will strictly

decrease, just as it did in the previous subcase. Thus, we can introduce
slack at 𝑥 while not increasing the 𝛿-CR.

Having obtained a measure �̃� with a 𝛿-CR not worse than 𝜇 and with slack at 𝑥, we
now proceed to the second part.

Part (2): Obtaining slack at 1 If 𝑥 = 1, we are done; otherwise, recall that by
definition (𝑥, 1] cannot have any probability atoms, since this would introduce slack
in the interval by Lemma 6.B.5, so 𝐹�̃� is continuous on [𝑥, 1] (note that at 𝑥 itself, it
may only be right-continuous). The argument employed to obtain slack at 1 follows
an iterated form of the approach in case (b.ii) from part 1: Because �̃� has slack at 𝑥,
the bound (6.39) implies that it has slack in an interval [𝑥, 𝑥 + 𝜖] with the property
that �̃�(𝑥, 𝑥 + 𝜖] > 0. Then we may transfer a fraction 𝜂 of the probability mass on
(𝑥, 𝑥 + 𝜖] to 𝑥, and as long as 𝜂 is chosen sufficiently small, this will increase 𝛼 �̃�

𝛿
(𝑦)

for 𝑦 ∈ [𝑥, 𝑥 + 𝜖) while maintaining slack, and it will strictly decrease 𝛼 �̃�
𝛿
(𝑧) for all

𝑧 ≥ 𝑥 + 𝜖 such that 𝐹�̃� (𝑧) − 𝐹�̃� (𝑥) ≤ 1 − 𝛿 (note we can choose 𝜖 so that this set of
𝑧 is nonempty). Thus we can “propagate” the slack in the 𝛿-CR to decisions whose
CDF value is up to 1 − 𝛿 greater than that of the original slack point, 𝑥, without
increasing the 𝛿-CR of the algorithm. Iteratively applying this construction at most
O( 1

1−𝛿 ) times, we eventually obtain an algorithm �̂� with 𝛿-CR no worse than 𝜇, and
with slack at 1: 𝛼�̂�

𝛿
(1) < 𝛼 �̂�

𝛿
≤ 𝛼𝜇

𝛿
.

Using the structural characterization of the optimal algorithm in terms of its 𝛿-CR’s
indifference to the adversary’s choice of ski season duration, we may now prove that
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the optimal algorithm has a CDF that is both strictly increasing and continuous (i.e.,
one-to-one) on the interval [0, 1].

Lemma 6.B.7. Fix 𝛿 ∈ [0, 1), and let 𝑋 ∼ 𝜇 be a random variable yielding the
optimal 𝛿-CR for continuous-time ski rental, i.e., 𝛼𝜇

𝛿
= 𝛼∗

𝛿
. Then 𝐹𝑋 is strictly

increasing on [0, 1].

Proof. When 𝛿 ∈ (0, 1), this is an immediate consequence of the strict inequality
(6.39) in the proof of Lemma 6.B.4: if 𝐹𝑋 were not strictly increasing, there would
exist a non-degenerate interval [𝑎, 𝑏] ⊆ [0, 1] with 𝐹𝑋 (𝑥) = 𝑐 for all 𝑥 ∈ [𝑎, 𝑏],
which by (6.39) would imply that 𝛼𝜇

𝛿
(𝑎 + 𝜖) < 𝛼

𝜇

𝛿
(𝑎) for some small 𝜖 > 0,

contradicting (via Lemma 6.B.6) the optimality of 𝜇. Likewise, in the 𝛿 = 0 case,
𝐹𝑋 not strictly increasing means 𝐹𝑋 (𝑎 + 𝜖) = 𝐹𝑋 (𝑎) for all sufficiently small 𝜖 ,
so the expression (6.33) in the proof of Lemma 6.B.4 implies that 𝛼𝜇0 will strictly
decrease for some small interval starting at 𝑎, again contradicting the optimality of
𝜇 by Lemma 6.B.6.

Lemma 6.B.8. Fix 𝛿 ∈ [0, 1), and let 𝑋 ∼ 𝜇 be a random variable yielding the
optimal 𝛿-CR for continuous-time ski rental, i.e., 𝛼𝜇

𝛿
= 𝛼∗

𝛿
. Then 𝐹𝑋 is continuous

on [0, 1], 𝐹𝑋 (0) = 0, and 𝐹𝑋 (1) = 1.

Proof. The first two properties amount to proving that the optimal algorithm contains
no probability atoms; the third is always satisfied, since we can assume without loss
of generality that 𝑋 is supported on [0, 1] (Lemma 6.2.4). Suppose for the sake of
contradiction that 𝜇 has an atom at 𝑥 ∈ [0, 1]. If 𝑥 = 0, 𝜇 cannot be competitive, let
alone optimal, yielding a contradiction and establishing 𝐹𝑋 (0) = 0. Otherwise, if
𝑥 ∈ (0, 1], Lemma 6.B.5 implies that there is slack in the 𝛿-CR—i.e., there is some
𝜖 > 0 such that 𝛼𝜇

𝛿
(𝑥 − 𝜖) < 𝛼𝜇

𝛿
(𝑥), which by Lemmas 6.B.3 and 6.B.6 contradicts

the optimality of 𝜇. Thus 𝜇 has no atoms and 𝐹𝑋 is continuous on [0, 1].

We are now adequately equipped to prove the main result of this section, Theo-
rem 6.3.3.

Proof of Theorem 6.3.3. Let 𝜙 : [0, 1] → [0, 1] be the inverse CDF of the optimal
strategy for continuous-time ski rental with the 𝛿-CR metric. By Lemmas 6.B.7
and 6.B.8, 𝜙 is strictly increasing and continuous on [0, 1], and hence one-to-one,
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with 𝜙(0) = 0 and 𝜙(1) = 1. By Lemma 6.3.1, for any fixed adversary decision
𝑠 ∈ (0, 1], we may express the CVaR𝛿 of the cost incurred by playing 𝑋 ∼ 𝜙 as

CVaR𝛿 [𝑠 · 1𝑋>𝑠 + (𝑋 + 1) · 1𝑋≤𝑠]

=


1

1−𝛿

[
(1−𝛿−𝜙−1(𝑠))𝑠 +

∫ 𝜙−1 (𝑠)
0 (1+𝜙(𝑝)) d𝑝

]
if 𝜙−1(𝑠) ≤ 1−𝛿

1
1−𝛿

∫ 𝜙−1 (𝑠)
𝜙−1 (𝑠)−(1−𝛿) (1 + 𝜙(𝑝)) d𝑝 otherwise.

By Lemmas 6.B.3 and 6.B.6, the optimal algorithm has competitive ratio inde-
pendent of the adversary’s choice 𝑠 ∈ (0, 1] of the ski season duration—that is,
𝛼∗
𝛿
(𝑠) = 𝛼∗

𝛿
for all 𝑠 ∈ (0, 1]. As such, 𝜙 must satisfy the following equations:

1
1 − 𝛿

[
(1 − 𝛿 − 𝜙−1(𝑠))𝑠 +

∫ 𝜙−1 (𝑠)

0
(1 + 𝜙(𝑝)) d𝑝

]
= 𝛼∗𝛿 · 𝑠 if 𝜙−1(𝑠) ≤ 1 − 𝛿

1
1 − 𝛿

∫ 𝜙−1 (𝑠)

𝜙−1 (𝑠)−(1−𝛿)
(1 + 𝜙(𝑝)) d𝑝 = 𝛼∗𝛿 · 𝑠 otherwise

for all 𝑠 ∈ (0, 1]. Because 𝜙 is one-to-one, the above equations holding for all
𝑠 ∈ (0, 1] is equivalent to their holding for all 𝑡 ∈ (0, 1] when 𝑠 := 𝜙(𝑡) (and hence
𝑡 = 𝜙−1(𝑠)):

1
1 − 𝛿

[
(1 − 𝛿 − 𝑡)𝜙(𝑡) +

∫ 𝑡

0
(1 + 𝜙(𝑝)) d𝑝

]
= 𝛼∗𝛿 · 𝜙(𝑡) if 𝑡 ≤ 1 − 𝛿 (6.42)

1
1 − 𝛿

∫ 𝑡

𝑡−(1−𝛿)
(1 + 𝜙(𝑝)) d𝑝 = 𝛼∗𝛿 · 𝜙(𝑡) otherwise. (6.43)

Differentiating (6.42) with respect to 𝑡, we find

𝜙′(𝑡) + 1
1 − 𝛿 [−𝜙(𝑡) − 𝑡𝜙

′(𝑡) + 1 + 𝜙(𝑡)] = 𝛼∗𝛿 · 𝜙′(𝑡)

=⇒ 𝜙′(𝑡) = 1
(𝛼∗

𝛿
− 1) (1 − 𝛿) + 𝑡 ,

and integrating this and applying the initial condition 𝜙(0) = 0, we obtain 𝜙(𝑡) =
log

(
1 + 𝑡

(𝛼∗
𝛿
−1) (1−𝛿)

)
on 𝑡 ∈ [0, 1 − 𝛿]. Differentiating the second equation (6.43)

and rearranging, we obtain

𝜙′(𝑡) = 1
𝛼∗
𝛿
(1 − 𝛿) [𝜙(𝑡) − 𝜙(𝑡 − (1 − 𝛿))] . (6.44)

Thus, as claimed, 𝜙 is the solution to the delay differential equation (6.44) subject
to the initial condition 𝜙(𝑡) = log

(
1 + 𝑡

(𝛼∗
𝛿
−1) (1−𝛿)

)
on 𝑡 ∈ [0, 1 − 𝛿]. Uniqueness

of 𝜙 as the optimal strategy follows from uniqueness results in the theory of delay
differential equations, e.g., [265, Theorem 3.1].
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Optimal solution is strictly decreasing in 𝛼
Here, we will prove that the solution 𝜙(𝑡) to the delay differential equation posed
in Theorem 6.3.3 is strictly decreasing in 𝛼 for 𝑡 ∈ (0, 1]. Let 𝜙𝛼 (𝑡) denote the
solution at time 𝑡 for a given choice of 𝛼. We will employ a form of induction on
the continuum in our argument:

Definition 6.B.9 (Induction on the continuum, [266]). Let 𝑃(𝑡) : R → {0, 1} be
a truth-valued function, and let [𝑎, 𝑏] be a closed interval. Suppose the following
three properties hold:

(1) 𝑃(𝑎) = 1;

(2) For any 𝑥 ∈ [𝑎, 𝑏), 𝑃(𝑡) = 1 for all 𝑡 ∈ [𝑎, 𝑥] implies 𝑃(𝑡) = 1 in some
non-degenerate interval [𝑥, 𝑥 + 𝜖);

(3) For any 𝑥 ∈ (𝑎, 𝑏], 𝑃(𝑡) = 1 for all 𝑡 ∈ [𝑎, 𝑥) implies 𝑃(𝑥) = 1.

Then 𝑃(𝑡) = 1 for all 𝑡 ∈ [𝑎, 𝑏].

Fix 𝛼 < 𝛼′; in our setting, 𝑃(𝑡) will be the truth function of the strict inequality
𝜙𝛼 (𝑡) > 𝜙𝛼′ (𝑡), and the interval of interest will be 𝑡 ∈ [1 − 𝛿, 1].

First, note that we clearly have𝑃(1−𝛿) = 1, since 𝜙𝛼 (1−𝛿) = log
(
1 + 1

𝛼−1

)
, which is

strictly decreasing in𝛼; in fact, we have that the initial condition 𝜙(𝑡) = log
(
1 + 𝑡

𝛼−1
)

is strictly decreasing for all 𝑡 ∈ (0, 1 − 𝛿]. Thus property (1) is satisfied.

Second, note that the solutions 𝜙𝛼, 𝜙𝛼′ are both continuous, as they are the solutions
to a delay differential equation. Continuity guarantees that if 𝜙𝛼 (𝑡) > 𝜙𝛼′ (𝑡), then
𝜙𝛼 (𝑥) > 𝜙𝛼′ (𝑥) for 𝑥 in some interval [𝑡, 𝑡 + 𝜖] with 𝜖 > 0. Thus property (2) holds.

Finally, suppose 𝜙𝛼 (𝑡) > 𝜙𝛼′ (𝑡) for 𝑡 in some interval [1 − 𝛿, 𝑥). By the integral
form (6.43) of the delay differential equation, we have

𝜙𝛼 (𝑥) =
1

𝛼(1 − 𝛿)

∫ 𝑥

𝑥−(1−𝛿)
1+𝜙𝛼 (𝑡) d𝑡 >

1
𝛼′(1 − 𝛿)

∫ 𝑥

𝑥−(1−𝛿)
1+𝜙𝛼′ (𝑡) d𝑡 = 𝜙𝛼′ (𝑥),

where the strict inequality follows from 𝛼 < 𝛼′ and the assumption that 𝜙𝛼 (𝑡) >
𝜙𝛼′ (𝑡) for 𝑡 in [1 − 𝛿, 𝑥) (this inequality also holds for the initial condition on the
region (0, 1− 𝛿]). Thus property (3) holds, and we conclude that 𝜙𝛼 (𝑡) > 𝜙𝛼′ (𝑡) for
all 𝑡 ∈ (0, 1].
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Analytic solution when 𝛿 ≤ 1
2

When 𝛿 ≤ 1
2 , the delay differential equation on the domain [1 − 𝛿, 1] can be

written as an ordinary differential equation by substituting the initial condition in
for 𝜙(𝑡 − (1 − 𝛿)):

𝜙′(𝑡) = 1
𝛼(1 − 𝛿)

[
𝜙(𝑡) − log

(
1 + 𝑡 − (1 − 𝛿)
(𝛼 − 1) (1 − 𝛿)

)]
with initial value 𝜙(1 − 𝛿) = log

(
1 + 1

𝛼−1

)
. Solving this initial value problem with

Mathematica, we obtain that 𝜙 takes the value

𝜙(𝑡) = 𝑒
− 2(1−𝛿 )−𝑡

𝛼(1−𝛿 )

[
𝑒 · Ei

(
1
𝛼
− 1

)
− 𝑒 · Ei

(
(2 − 𝛼) (1 − 𝛿) − 𝑡

𝛼(1 − 𝛿)

)
+ 𝑒 1

𝛼 log
( 𝛼

𝛼 − 1

)]
+ log

(
1 + 𝑡 − (1 − 𝛿)
(𝛼 − 1) (1 − 𝛿)

)
,

on the interval [1 − 𝛿, 1], where Ei(𝑥) = −
∫ ∞
−𝑥

𝑒−𝑡

𝑡
d𝑡 is the exponential integral.

Proof of Theorem 6.3.4
This proof is essentially a tightening of the phase transition bound in the discrete
setting (Theorem 6.4.1(ii); see Section 6.C), enabled by the continuity of the decision
space [0, 1]. The lower bound of 𝑒

𝑒−1 holds trivially, since increasing 𝛿 increases
the 𝛿-CR; thus we focus on the second element in the max. Let 𝜇 be an arbitrary
distribution supported in [0, 1].

Let 𝑛 =
⌊ 1

1−𝛿
⌋
− 1, and define the indices 𝑖0 = 0, 𝑖𝑘 = 1 − 1

2𝑘 for each 𝑘 ∈ [𝑛], and
𝑖𝑛+1 = 1. We partition the unit interval into 𝑛 + 1 different sets 𝐼𝑘 , with

𝐼𝑘 = [𝑖𝑘−1, 𝑖𝑘 ]

for each 𝑘 ∈ [𝑛 + 1]. Because 𝑛 + 1 =
⌊ 1

1−𝛿
⌋
, by the pigeonhole principle there

must be at least one interval 𝐼𝑘 with 𝜇(𝐼𝑘 ) ≥ 1− 𝛿. Let the adversary’s choice of ski
season duration be 𝑖𝑘 , and suppose 𝑘 ≤ 𝑛. Because 𝜇(𝐼𝑘 ) ≥ 1 − 𝛿, there is at least a
(1 − 𝛿) fraction of outcomes in which the algorithm’s decision 𝑥 lies in 𝐼𝑘 , and thus
we can lower bound the 𝛿-CR as

𝛼
𝜇

𝛿
(𝑖𝑘 ) =

CVaR𝛿 [𝑖𝑘 · 1𝑋>𝑖𝑘 + (𝑋 + 1) · 1𝑋≤𝑖𝑘 ]
𝑖𝑘

≥ 𝑖𝑘−1 + 1
𝑖𝑘

=
2 − 1

2𝑘−1

1 − 1
2𝑘

= 2.
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Alternatively, suppose 𝑘 = 𝑛 + 1. Again, there is at least a (1 − 𝛿) fraction of
outcomes in which the algorithm’s decision 𝑥 lies in 𝐼𝑛+1, so we can lower bound
the 𝛿-CR as

𝛼
𝜇

𝛿
(𝑖𝑛+1) =

CVaR𝛿 [𝑖𝑛+1 · 1𝑋>𝑖𝑛+1 + (𝑋 + 1) · 1𝑋≤𝑖𝑛+1]
𝑖𝑛+1

≥ 𝑖𝑛 + 1
𝑖𝑛+1

= 2 − 1
2𝑛
.

Thus, regardless of which set 𝐼𝑘 contains the at least (1 − 𝛿) fraction of mass, the
𝛿-CR will be at least 2 − 1

2𝑛 . Substituting in the definition of 𝑛, we obtain

𝛼
𝜇

𝛿
≥ 2 − 1

2⌊ 1
1−𝛿 ⌋−1

for any algorithm 𝜇.

6.C Proofs for Section 6.4
Proof of Theorem 6.4.1
We will prove parts (i) and (ii) of the theorem separately.

Proof of Theorem 6.4.1, part (i). Recall that 𝛼DSR(𝐵),∗
𝛿

≤ 𝛼CSR,∗
𝛿

for all 𝐵 ∈ N, since
the discrete-time version of the ski rental amounts to restricting the continuous
adversary’s power. The bound in Theorem 6.3.2 thus implies that 𝛼𝐵,∗

𝛿
≤ 2− 1

𝑒
𝑐

1−𝛿 −1
,

so a sufficient condition for 𝛼𝐵,∗
𝛿

to strictly improve on the deterministic worst-case
competitive ratio of 2 − 1

𝐵
is to have 2 − 1

𝑒
𝑐

1−𝛿 −1
< 2 − 1

𝐵
. Rearranging this equation

to isolate 𝛿 yields 𝛿 < 1 − 𝑐
log(𝐵+1) , as claimed.

Proof of Theorem 6.4.1, part (ii). Let 𝑛 = log2 𝐵; note that 2⌊𝑛⌋ ≤ 𝐵 ≤ 2⌈𝑛⌉ , and
hence 1 ≤ 𝐵

2⌊𝑛⌋ < 2—the second inequality is strict because if it held with equality,
this would imply 𝐵 = 2⌊𝑛⌋+1, or log2 𝐵 = 𝑛 = ⌊𝑛⌋ + 1. Define the (not necessarily
integer) indices 𝑖𝑘 = (2

𝑘−1)𝐵
2𝑘 for every 𝑘 ∈ {0, . . . , ⌊𝑛⌋}. We construct the following

sets: for each 𝑘 ∈ [⌊𝑛⌋], define:

𝐼𝑘 = {⌈𝑖𝑘−1⌉ + 1, . . . , ⌊𝑖𝑘⌋},
𝐽𝑘 = {⌈𝑖𝑘⌉},
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and define 𝐽⌊𝑛⌋+1 = {𝐵}. It is straightforward to observe that these sets form a cover
of the action set [𝐵]: ( ⌊𝑛⌋⋃

𝑘=1
𝐼𝑘

)
∪

(⌊𝑛⌋+1⋃
𝑘=1

𝐽𝑘

)
= [𝐵] .

To see this, simply note that ⌈𝑖0⌉ + 1 = 0 + 1 = 1 and

⌈𝑖⌊𝑛⌋⌉ =
⌈
𝐵 − 𝐵

2⌊𝑛⌋
⌉
= 𝐵 − 1,

since 𝐵

2⌊𝑛⌋ < 2.

Now suppose that 1
1−𝛿 ≥ 2⌊𝑛⌋ + 1; then for any strategy p ∈ Δ𝐵, the pigeonhole

principle assures us that p must assign probability at least (1 − 𝛿) to one of the
action sets 𝐼𝑘 or 𝐽𝑘 in the cover. However, for each of these action sets, there is
an adversary decision that forces each action in the set to have competitive ratio at
least 2 − 1

𝐵
. If the set in question is 𝐼𝑘 for some 𝑘 ∈ [⌊𝑛⌋], then if the adversary

chooses the true number of skiing days to be ⌊𝑖𝑘⌋, the action in 𝐼𝑘 with the smallest
competitive ratio is ⌈𝑖𝑘−1⌉ + 1, which has competitive ratio lower bounded as

𝐵 + (⌈𝑖𝑘−1⌉ + 1) − 1
⌊𝑖𝑘⌋

≥ 𝐵 + 𝑖𝑘−1
𝑖𝑘

=
1 + 2𝑘−1−1

2𝑘−1

2𝑘−1
2𝑘

= 2.

On the other hand, if the set in question is one of the singleton sets 𝐽𝑘 = {𝑥}, then if
the adversary chooses the true number of skiing days as 𝑥, the competitive ratio of
this action is lower bounded as

𝐵 + 𝑥 − 1
𝑥

= 1 + 𝐵 − 1
𝑥

= 2 − 1
𝐵
+

(
𝐵 − 1
𝑥
− 𝐵 − 1

𝐵

)
≥ 2 − 1

𝐵

since 𝑥 ∈ [𝐵], and in particular 𝑥 ≤ 𝐵. Thus, for each set in this cover, there is
an adversary decision forcing every action in the set to have competitive ratio at
least 2 − 1

𝐵
. However, since one of these sets 𝑆 must have probability at least 1 − 𝛿

assigned to it by p, the “bad” adversary decision corresponding to 𝑆 will yield a
competitive ratio of at least 2 − 1

𝐵
with probability at least 1 − 𝛿. It immediately
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follows that the adversary can force a 𝛿-CR of at least 2 − 1
𝐵

in this setting, which
implies that the optimal strategy is to buy deterministically at time 𝐵, which has a
𝛿-CR of exactly 2 − 1

𝐵
.

Rearranging the condition 1
1−𝛿 ≥ 2⌊𝑛⌋ + 1 to isolate 𝛿, we obtain 𝛿 ≥ 1 − 1

2⌊𝑛⌋+1 =

1 − 1
2⌊log2 𝐵⌋+1 , as claimed.

Note that the lower bound on 𝛿 obtained in the above proof can be improved to
1 − 1

log2 𝐵+1 when 𝐵 is a power of 2, as in this case all of the sets 𝐽𝑘 for 𝑘 < 𝑛 + 1
are redundant, so eliminating these, the resulting cover has only 𝑛 + 1 sets. This is
essentially equivalent to the argument used in the continuous-time lower bound (cf.
Section 6.B).

Proof of Theorem 6.4.2
Before proving the theorem, we will first prove an structural lemma analogous to the
tightness results Lemmas 6.B.3 and 6.B.6 in the continuous-time setting, which will
establish that so long as 𝛿 is not too large, the optimal algorithm p𝐵,𝛿,∗ satisfies the
property that 𝛼𝐵,p

𝐵,𝛿,∗

𝛿
(𝑖) = 𝛼𝐵,∗

𝛿
for all 𝑖 ∈ [𝐵]. In other words, under the algorithm

with optimal 𝛿-CR for discrete-time ski rental, the adversary is indifferent to the ski
season duration that it chooses. First, we pose an optimization-based formulation
of the 𝛿-CR of an arbitrary algorithm p that will facilitate the analysis.

Lemma 6.C.1. Let 𝛿 ∈ [0, 1), and let p ∈ Δ𝐵 be an algorithm for discrete-time ski
rental with buying cost 𝐵. Then 𝛼𝐵,p

𝛿
(𝑖), the 𝛿-CR when the adversary chooses the

true number of skiing days as 𝑖 ∈ [𝐵], can be expressed as

𝛼
𝐵,p
𝛿
(𝑖) = max

q∈R𝐵
1

1 − 𝛿
©«

𝑖∑︁
𝑗=1

𝐵 + 𝑗 − 1
𝑖

𝑞 𝑗 +
𝐵∑︁

𝑗=𝑖+1
𝑞 𝑗

ª®¬ (6.45)

s.t. 0 ≤ q ≤ p

1⊤q = 1 − 𝛿.

Proof. This is an immediate consequence of the minimization formulation of CVaR𝛿

presented in (6.1); in fact, this is the Lagrange dual of that formulation, applied to
the definition of 𝛿-CR for continuous-time ski rental. This is also the particular
case of the supremum form of CVaR𝛿 in (6.1) which computes the expected cost on
the worst “(1 − 𝛿)-sized subpopulation of the distribution” p when the loss random
variable takes discrete outcomes; the optimal solution q is obtained by “filling in” p
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starting from the indices with highest cost, i.e., starting with 𝑖, then 𝑖 − 1, through 1,
and then starting again with the indices 𝑖 + 1 through 𝐵, until the probability budget
1−𝛿 has been depleted. This structure of the optimal solution q can also be obtained
from the characterization of CVaR𝛿 for discrete random variables provided in [238,
Proposition 8].

We also prove another technical lemma asserting that any if 𝑝𝑖 = 0 for some index
𝑖, this must introduce slack in 𝛼𝐵,p

𝛿
(𝑖).

Lemma 6.C.2. Let p ∈ Δ𝐵 be an algorithm for discrete-time ski rental with buying
cost 𝐵 that has 𝛿-CR 𝛼

𝐵,p
𝛿

. If 𝑝𝑖 = 0, then 𝛼𝐵,p
𝛿
(𝑖) < 𝛼𝐵,p

𝛿
.

Proof. Suppose 𝑝1 = 0; then we may eliminate the variable 𝑞1 and its coefficient
in the objective of the maximization form of the 𝛿-CR in (6.45), since 𝑞1 must be
zero; then it is clear

𝛼
𝐵,p
𝛿
(1) = max

q∈R𝐵
1

1 − 𝛿
©«
𝐵∑︁
𝑗=2

𝑞 𝑗
ª®¬ = 1

s.t. 0 ≤ q ≤ p

1⊤q = 1 − 𝛿,

which is strictly less than 𝛼𝐵,p
𝛿

, since we always have the ordering 𝛼𝐵,p
𝛿
≥ 𝛼𝐵,∗0 =

1
1−(1−1/𝐵)𝐵 > 1.

Alternatively, suppose that 𝑖 > 1 and 𝑝𝑖 = 0. If it is also the case that 𝑝 𝑗 = 0 for all
𝑗 < 𝑖, then the prior argument holds and we once again have 𝛼𝐵,p

𝛿
(𝑖) = 1. Otherwise,

at least one 𝑝 𝑗 > 0 for 𝑗 < 𝑖. Since 𝑝𝑖 = 0, we may eliminate the variable 𝑞𝑖 and its
coefficient in the objective of the maximization form of the 𝛿-CR in (6.45), since 𝑞𝑖
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must be zero; thus

𝛼
𝐵,p
𝛿
(𝑖) = max

q∈R𝐵
1

1 − 𝛿
©«
𝑖−1∑︁
𝑗=1

𝐵 + 𝑗 − 1
𝑖

𝑞 𝑗 +
𝐵∑︁

𝑗=𝑖+1
𝑞 𝑗

ª®¬ (6.46)

s.t. 0 ≤ q ≤ p

1⊤q = 1 − 𝛿

< max
q∈R𝐵

1
1 − 𝛿

©«
𝑖−1∑︁
𝑗=1

𝐵 + 𝑗 − 1
𝑖 − 1

𝑞 𝑗 +
𝐵∑︁

𝑗=𝑖+1
𝑞 𝑗

ª®¬ (6.47)

s.t. 0 ≤ q ≤ p

1⊤q = 1 − 𝛿
= 𝛼

𝐵,p
𝛿
(𝑖 − 1)

where the strict inequality holds due to the fact that, since there is some 𝑝 𝑗 > 0 for
𝑗 < 𝑖, the optimal solution of both maximization problems will have some 𝑞 𝑗 > 0,
and on this domain the objective of (6.46) is strictly less than that of (6.47). Thus
𝛼
𝐵,p
𝛿
(𝑖) < 𝛼𝐵,p

𝛿
(𝑖 − 1) ≤ 𝛼𝐵,p

𝛿
.

Using these lemmas, we can now prove the structural result establishing that the
optimal algorithm, as long as it has competitive ratio strictly better than 2 − 1

𝐵
, has

𝛿-CR independent of the adversary’s choice of ski season duration. This is similar
in spirit to the “principle of equality” in the expected cost setting (see, e.g., [267])
and our tightness results in continuous time (Lemmas 6.B.3 and 6.B.6).

Lemma 6.C.3. Let 𝛿 ∈ [0, 1) be such that the optimal 𝛿-CR for ski rental with
buying cost 𝐵 strictly improves on the deterministic optimal, i.e, 𝛼𝐵,∗

𝛿
< 2 − 1

𝐵
, and

let p𝐵,𝛿,∗ be an algorithm obtaining this optimal 𝛿-CR. Then

𝛼
𝐵,p𝐵,𝛿,∗
𝛿

(𝑖) = 𝛼𝐵,∗
𝛿

for all 𝑖 ∈ [𝐵].

Proof. We will abbreviate p𝐵,𝛿,∗ simply as p. By assumption that 𝛼𝐵,∗
𝛿

< 2 − 1
𝐵

, it
must be the case that 𝑝𝑖 < 1 − 𝛿 for all 𝑖 ∈ [𝐵].

Suppose for the sake of contradiction that there is some slack in the 𝛿-CR for some
adversary decision 𝑖 ∈ [𝐵], so that

𝛼
𝐵,p
𝛿
(𝑖) < 𝛼𝐵,∗

𝛿
.
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Similar to the structure of the proof for tightness in the continuous-time setting, we
will prove this result in two parts: in part (a), we will show that there exists some
other distribution p̂ ∈ Δ𝐵 with at least as good 𝛿-CR as p that has slack at time
𝑖 = 𝐵, i.e., 𝛼𝐵,p̂

𝛿
≤ 𝛼𝐵,p

𝛿
and 𝛼𝐵,p̂

𝛿
(𝐵) < 𝛼

𝐵,∗
𝛿

. Then, in part (b) we will show that
we can redistribute this slack to every other time, i.e., we can construct some other
p̃ ∈ Δ𝐵 with 𝛼𝐵,p̃

𝛿
≤ 𝛼𝐵,p̂

𝛿
and 𝛼𝐵,p̃

𝛿
(𝑖) < 𝛼𝐵,∗

𝛿
for all 𝑖 ∈ [𝐵], which implies that p is

not optimal.

(a) Let 𝑖 be the largest element in [𝐵] with the slack property 𝛼𝐵,p
𝛿
(𝑖) < 𝛼𝐵,∗

𝛿
; if

𝑖 = 𝐵, we may define p̂ = p and move to part (b). Otherwise, we have 𝑖 < 𝐵. Note
that since there is no slack for adversary decisions 𝑖+1, . . . , 𝐵, Lemma 6.C.2 implies
that 𝑝 𝑗 > 0 for all 𝑗 = 𝑖 + 1, . . . , 𝐵. Inspecting the maximization formulation of
𝛼
𝐵,p
𝛿
(𝑖) in (6.45), it is clear that by adding a small constant 𝜖 > 0 to 𝑝𝑖 and subtracting

𝜖 from 𝑝𝑖+1, one can slightly increase 𝛼𝐵,p
𝛿
(𝑖) while strictly decreasing 𝛼𝐵,p

𝛿
(𝑖 + 1),

thus introducing slack at 𝑖 + 1. This is because increasing 𝑝𝑖 (which, recall, must
be strictly less than 1 − 𝛿) by 𝜖 ≤ 1 − 𝛿 − 𝑝𝑖 will increase the optimal 𝑞𝑖 in the
maximization form of 𝛼𝐵,p

𝛿
(𝑖) by 𝜖 , since 𝑞𝑖 is associated with the largest coefficient

in the objective. However, the budget constraint 1⊤q = 1 − 𝛿 means that some
other 𝑞 𝑗 (or the sum of several 𝑞 𝑗 ) must then decrease by 𝜖 in the optimal solution,
leading to an increase of the optimal value by at most 𝜖

(
𝐵+𝑖−1
𝑖
− 1

)
. On the other

hand, decreasing 𝑝𝑖+1 by 𝜖 ≤ 𝑝𝑖+1 will lead to a corresponding decrease by 𝜖 of the
optimal 𝑞𝑖+1 in the maximization form of 𝛼𝐵,p

𝛿
(𝑖 + 1), since 𝑞𝑖+1 is associated with

the largest coefficient in the objective, and the fact 𝑝𝑖+1 < 1 − 𝛿 means 𝑞𝑖+1 = 𝑝𝑖+1

for the optimal q. However, since 𝑝𝑖 is increased by 𝜖 , this decrease in 𝑞𝑖+1 will
be absorbed by 𝑞𝑖 (or a combination of multiple 𝑞 𝑗 , 𝑗 ≠ 𝑖 + 1), which is associated
with the second largest coefficient in the objective. Altogether, the optimal value of
the problem will decrease by at least 𝜖

(
𝐵+𝑖
𝑖+1 −

𝐵+𝑖−1
𝑖+1

)
, meaning that 𝛼𝐵,p

𝛿
(𝑖 + 1) has

decreased accordingly. Thus if we choose 𝜖 > 0 satisfying

𝜖 ≤ min{1 − 𝛿 − 𝑝𝑖, 𝑝𝑖+1} and 𝛼
𝐵,p
𝛿
(𝑖) + 𝜖

(
𝐵 + 𝑖 − 1

𝑖
− 1

)
< 𝛼

𝐵,∗
𝛿
,

the modified distribution obtained from increasing 𝑝𝑖 by 𝜖 and decreasing 𝑝𝑖+1 by 𝜖
will have slack at both 𝑖 and 𝑖+1. By similar reasoning, 𝛼𝐵,p

𝛿
( 𝑗) will not be impacted

for 𝑗 < 𝑖 and will not increase (but might decrease) for 𝑗 > 𝑖 + 1. Repeating this
process at 𝑖 + 1, 𝑖 + 2, and so on, we eventually obtain a distribution p̂ with the
properties that 𝛼𝐵,p̂

𝛿
≤ 𝛼𝐵,∗

𝛿
and 𝛼𝐵,p̂

𝛿
(𝐵) < 𝛼𝐵,∗

𝛿
.
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(b) Suppose p̂ is a distribution satisfying the properties 𝛼𝐵,p̂
𝛿
≤ 𝛼𝐵,∗

𝛿
and 𝛼𝐵,p̂

𝛿
(𝐵) <

𝛼
𝐵,∗
𝛿

, and define a new distribution p̃ by shifting a small 𝜖 fraction of the mass on
all actions 𝑖 < 𝐵 to 𝐵:

𝑝𝑖 =


(1 − 𝜖)𝑝𝑖 for 𝑖 < 𝐵

𝑝𝐵 + 𝜖
∑𝐵−1
𝑖=1 𝑝𝑖 for 𝑖 = 𝐵.

Note that this will always result in a different distribution when 𝜖 > 0, since
otherwise p̂ must place all probability on the action 𝐵, violating the assumption of
𝛼
𝐵,∗
𝛿

< 2 − 1
𝐵

. Similar to the previous case, we evaluate the impact of this change
on the 𝛿-CR through inspection of the maximization formula (6.45). Since we add
mass at most 𝜖 to the action 𝐵, the optimal 𝑞𝐵, which is associated with the largest
coefficient in the objective of 𝛼𝐵,p̂

𝛿
(𝐵), will increase by at most 𝜖 , compensated by a

decrease in the sum of 𝑞1, . . . , 𝑞𝐵−1, each of which has a coefficient at least 1. Thus
we will have 𝛼𝐵,p̃

𝛿
(𝐵) ≤ 𝛼𝐵,p̂

𝛿
(𝐵) + 𝜖

(
1 − 1

𝐵

)
. On the other hand, consider 𝑖 < 𝐵; if

𝑝𝑖 = 0, Lemma 6.C.2 ensures that there will be slack in 𝛼𝐵,p̃
𝛿
(𝑖). If instead 𝑝𝑖 > 0,

then by a similar argument to the previous part, it holds that 𝛼𝐵,p̃
𝛿
(𝑖) < 𝛼

𝐵,p̂
𝛿
(𝑖),

since decreasing all of the nonzero 𝑝𝑖 entries by a multiplicative factor of (1 − 𝜖)
will in particular decrease the optimal 𝑞𝑖 (and possibly other 𝑞 𝑗 with 𝑗 < 𝑖) by
the same factor, while increasing 𝑞 𝑗 associated with smaller coefficients in the
objective of (6.45). Together, these bounds imply that 𝜖 can be chosen such that
𝛼
𝐵,p̃
𝛿
(𝑖) < 𝛼

𝐵,p̂
𝛿
(𝑖) ≤ 𝛼𝐵,∗

𝛿
for all 𝑖 ∈ [𝐵], contradicting the assumed optimality of

p.

Note that while we cannot validate the 𝛿-CR condition 𝛼𝐵,∗
𝛿

< 2 − 1
𝐵

of the above
lemma a priori without knowledge of the 𝛿-CR, by part (ii) of the theorem, we can
in general use the sufficient condition 𝛿 < 1 − 𝑐

log(𝐵+1) as a heuristic.

With these lemmas proved, we are now prepared to prove the theorem.

Proof of Theorem 6.4.2. We will abbreviate p𝐵,𝛿,∗ simply as p. We will prove this
result in two parts: first, we show that the proposed p, defined as:

𝑝𝑖 =
𝐶

𝐵

(
1 − 1

𝐵

)𝐵−𝑖
for all 𝑖 ∈ [𝐵], obtains the claimed competitive bound of 𝐶−𝛿1−𝛿 for the assumed range
of 𝛿, giving an upper bound on the 𝛿-CR in this region. After proving this upper
bound, we will then prove that p is, in fact, optimal for this region of 𝛿.
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Observe that 𝑝𝑖 is increasing in 𝑖; thus, 𝑝1 = 𝐶
𝐵

(
1 − 1

𝐵

)𝐵−1
is the smallest probability

assigned by p to any action, and moreover, by the assumption on the range of 𝛿 in
the theorem statement, we have 𝛿 ≤ 𝑝1 ≤ 𝑝𝑖 for any 𝑖 ∈ [𝐵]. Inspecting the
maximization form of CVaR𝛿 in (6.45), one can easily observe that an optimal q
for 𝛼𝐵,p

𝛿
(𝑖) when 𝑖 < 𝐵 will be 𝑞 𝑗 = 𝑝 𝑗 for 𝑗 < 𝐵 and 𝑞𝐵 = 𝑝𝐵 − 𝛿, since when

𝑖 < 𝐵, 𝑞𝐵 is associated with the (smallest) coefficient 1 in the objective, while if
𝑖 = 𝐵, the optimal solution will be 𝑞1 = 𝑝1 − 𝛿 and 𝑞 𝑗 = 𝑝 𝑗 for 𝑗 > 1, since 𝑞1 is
associated with the (smallest) coefficient 1 in the objective. As a result, the CVaR𝛿

for this range of 𝛿 amounts to subtracting 𝛿 from the original competitive ratio and
normalizing by 1 − 𝛿, i.e.,

𝛼
𝐵,p
𝛿
(𝑖) = 1

1 − 𝛿

(
𝛼
𝐵,p
0 (𝑖) − 𝛿

)
.

Since 𝛼𝐵,p0 (𝑖) = 𝐶 = 1
1−(1−1/𝐵)𝐵 for all 𝑖 ∈ [𝐵], we obtain the claimed 𝛿-CR:

𝛼
𝐵,p
𝛿

= 𝐶−𝛿
1−𝛿 .

Now, we turn to proving that this is the optimal 𝛿-CR for 𝛿 ≤ 𝐶
𝐵

(
1 − 1

𝐵

)𝐵−1
;

henceforth, p𝛿 will refer to the algorithm with optimal 𝛿-CR, which is presumed
to be unknown. It must be the case that 𝛼𝐵,p

𝛿

𝛿
is continuous in 𝛿; this is because

𝛼
𝐵,p𝛿
𝛿+𝜖 −𝛼

𝐵,p𝛿
𝛿

is bounded by a linear function of 𝜖 , since there exist optimal q𝛿+𝜖 , q𝛿

in the corresponding optimization formulations (6.45) satisfying ∥q𝛿+𝜖 − q𝛿∥1 ≤ 𝜖
due to the structure of the optimal solution (i.e., its “filling in” 𝑝𝑖 associated with
larger costs first, and indifference between 𝑝 𝑗 associated with the coefficient 1). This
in turn implies that p𝛿 ought to be continuous as a function of 𝛿 when 𝛼𝐵,p

𝛿

𝛿
< 2− 1

𝐵
;

if this were not the case, i.e., if p𝛿 were discontinuous at some 𝛿, then letting 𝑖 be
the smallest index such that 𝑝𝛿

𝑖
is discontinuous at 𝛿, it is clear from inspection of

the maximization form (6.45) that this would introduce a discontinuity in 𝛼𝐵,p
𝛿

𝛿
,

yielding a contradiction whenever the 𝛿-CR equality (Lemma 6.C.3) is supposed to

hold. Note that when 𝛿 ≤ 𝐶
𝐵

(
1 − 1

𝐵

)𝐵−1
, 𝛼𝐵,∗

𝛿
≤ 𝐶−𝛿

1−𝛿 < 2, since 𝐶−𝛿
1−𝛿 is increasing in

𝛿 and

𝐶 − 𝛿
1 − 𝛿

�����
𝛿=𝐶

𝐵 (1− 1
𝐵 )𝐵−1

=
©«

(𝐵 − 1)2

1 +
(
1 − 1

𝐵

)𝐵
− 𝐵
+ 𝐵

ª®®¬
−1

,

which is increasing in 𝐵 and has limit 𝑒
𝑒−1 as 𝐵 → ∞. Thus by Lemma 6.C.3, the

tightness property must hold on the specified domain of 𝛿: 𝛼𝐵,p
𝛿

𝛿
(𝑖) = 𝛼𝐵,p

𝛿

𝛿
for all

𝑖 ∈ [𝐵].
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p𝛿 continuous in particular implies that, for any 𝜖 > 0, there is some non-degenerate

interval [0, 𝛿] with the property that, for all 𝛿 ∈ [0, 𝛿], 𝑝𝛿
𝑖
≥ 𝑝0

0−𝜖 =
𝐶
𝐵

(
1 − 1

𝐵

)𝐵−1
−

𝜖 . Thus, if we pick 𝛿 sufficiently small, the optimal solution of the maximization
form of 𝛼𝐵,p

𝛿

𝛿
(𝑖) in (6.45) will be q = p𝛿 − 𝛿e 𝑗 , where 𝑗 is an index associated with

the cost 1 in the objective, since this is the lowest cost. Defining the cost matrix M
whose 𝑖th row contains the cost coefficients when the true ski season duration is 𝑖:

𝑀𝑖 𝑗 =


𝐵+ 𝑗−1
𝑖

if 𝑗 ≤ 𝑖

1 otherwise,

we thus have the equation

1
1 − 𝛿

(
Mp𝛿 − 𝛿 · 1

)
= 𝛼

𝐵,p𝛿
𝛿
· 1

when 𝛿 is sufficiently small. Rearranging, we have

Mp𝛿 =
(
(1 − 𝛿)𝛼𝐵,p

𝛿

𝛿
+ 𝛿

)
· 1. (6.48)

Now, notice that (6.48) is of the form Mp = 𝑐·1; this is exactly the equation that arises
in the classical discrete-time ski-rental setting when we seek to obtain the optimal
algorithm for the (expected cost) competitive ratio (see, e.g., [267]). Since M is
invertible, the unique solution is p = 𝑐 ·M−11, and 𝑐must be chosen as𝐶 = 1

1−(1− 1
𝐵
)𝐵

to ensure normalization of the resulting probability distribution. However, in our
setting, this same reasoning implies that p𝛿 =

(
(1 − 𝛿)𝛼𝐵,p

𝛿

𝛿
+ 𝛿

)
· M−11, and

(1 − 𝛿)𝛼𝐵,p
𝛿

𝛿
+ 𝛿 = 𝐶 to ensure p𝛿 is a valid probability distribution. As a result,

we obtain 𝛼𝐵,p
𝛿

𝛿
= 𝐶−𝛿

1−𝛿 and p𝛿 = p0, as claimed. Finally, note that the preceding
argument was made for 𝛿 small enough that the optimal solution of the maximization
form of 𝛼𝐵,p

𝛿

𝛿
(𝑖) in (6.45) is of the form q = p𝛿 − 𝛿e 𝑗 , where 𝑗 is an index associated

with the cost 1 in the objective. Because p𝛿 is constant in 𝛿 while this condition

holds, this condition is seen to be equivalent to 𝛿 ≤ 𝑝0
0 = 𝐶

𝐵

(
1 − 1

𝐵

)𝐵−1
.

6.D Proofs and Additional Results for Section 6.5
Proof of Lemma 6.5.1
We begin by calculating an expression for the inverse CDF of the profit random
variable 𝐿 · 1𝑋>𝑣 + 𝑋 · 1𝑋≤𝑣 in terms of the inverse CDF of the threshold 𝑋 . As
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shorthand, we define the cost function 𝐶 (𝑋, 𝑣) = 𝐿 · 1𝑋>𝑣 + 𝑋 · 1𝑋≤𝑣 . Then clearly

𝐹𝐶 (𝑋,𝑣) (𝑦) = P(𝐶 (𝑋, 𝑣) ≤ 𝑦) =

P(𝑋 > 𝑣) + P(𝑋 ≤ 𝑦) if 𝑦 ≤ 𝑣

1 otherwise

=


1 − 𝐹𝑋 (𝑣) + 𝐹𝑋 (𝑦) if 𝑦 ≤ 𝑣

1 otherwise

and hence, for 𝑡 ∈ [0, 1],

𝐹−1
𝐶 (𝑋,𝑣) (𝑡) = inf{𝑦 ∈ [𝐿,𝑈] : 𝐹𝐶 (𝑋,𝑣) (𝑦) ≥ 𝑡}

=


𝐿 if 𝑡 ≤ 1 − 𝐹𝑋 (𝑣)

inf{𝑦 ∈ [𝐿,𝑈] : 1 − 𝐹𝑋 (𝑣) + 𝐹𝑋 (𝑦) ≥ 𝑡} otherwise

=


𝐿 if 𝑡 ≤ 1 − 𝐹𝑋 (𝑣)

𝐹−1
𝑋
(𝑡 − 1 + 𝐹𝑋 (𝑣)) otherwise.

Using the definition of CVaR𝛿 as an integral of the inverse CDF (6.2), we have

CVaR𝛿 [𝐶 (𝑋, 𝑣)]

=
1

1 − 𝛿

∫ 1−𝛿

0
𝐹−1
𝑋 (𝑡) d𝑡

=


𝐿 if 1 − 𝛿 ≤ 1 − 𝐹𝑋 (𝑣)

1
1−𝛿

[
(1 − 𝐹𝑋 (𝑣))𝐿 +

∫ 1−𝛿
1−𝐹𝑋 (𝑣) 𝐹

−1
𝑋
(𝑡 − 1 + 𝐹𝑋 (𝑣)) d𝑡

]
otherwise

=


𝐿 if 𝐹𝑋 (𝑣) ≤ 𝛿

1
1−𝛿

[
(1 − 𝐹𝑋 (𝑣))𝐿 +

∫ 𝐹𝑋 (𝑣)−𝛿
0 𝐹−1

𝑋
(𝑡) d𝑡

]
otherwise,

as claimed.

Proof of Theorem 6.5.2
In this proof, we will suppress the sub- and superscript and simply write 𝛼 := 𝛼𝜃

𝛿
.

First, note that when 𝛿 = 1, the initial condition 𝜙(𝑡) = 𝛼𝐿 =
√
𝐿𝑈 holds over the

entire interval [0, 1]. This is the inverse CDF of the deterministic optimal strategy
that always plays the threshold

√
𝐿𝑈, and is hence

√
𝜃-competitive; this is easily

seen to match the solution to (6.5). In the following, we will restrict to 𝛿 < 1.
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Let 𝜙(𝑡) be the solution to the delay differential equation posed in the theorem
statement; If we solve it on the region [𝛿, 1] by integration, we have

𝜙(𝑡) =

𝛼𝐿 for 𝑡 ∈ [0, 𝛿]

𝛼𝐿 + 𝛼𝜃
𝛿

1−𝛿
∫ 𝑡

𝛿
𝜙(𝑠 − 𝛿) − 𝐿 d𝑠 for 𝑡 ∈ (𝛿, 1]

=


𝛼𝐿 for 𝑡 ∈ [0, 𝛿]

𝛼𝐿 − 𝛼𝜃
𝛿
(𝑡−𝛿)𝐿
1−𝛿 + 𝛼𝜃

𝛿

1−𝛿
∫ 𝑡−𝛿

0 𝜙(𝑠) d𝑠 for 𝑡 ∈ (𝛿, 1]

=


𝛼𝐿 for 𝑡 ∈ [0, 𝛿]
𝛼

1−𝛿

[
(1 − 𝑡)𝐿 +

∫ 𝑡−𝛿
0 𝜙(𝑠) d𝑠

]
for 𝑡 ∈ (𝛿, 1].

(6.49)

𝜙 is clearly continuous on [0, 1], and by construction, 𝜙(𝑡) is also strictly increasing
on [𝛿, 1], since in this region 𝜙′(𝑡) = 𝛼𝜃

𝛿

1−𝛿 [𝜙(𝑡 − 𝛿) − 𝐿] =
𝛼𝐿
1−𝛿 (𝛼 − 1) > 0 since

the 𝛿-CR cannot be 1 unless the problem is trivial (𝜃 = 1). Thus, assuming 𝛼 is
chosen such that 𝜙(1) = 𝑈, we have that 𝜙 is one-to-one on the interval [𝛿, 1] and
𝜙( [𝛿, 1]) = 𝜙( [0, 1]) = [𝛼𝐿,𝑈].

Now, assume that an algorithm uses 𝜙 as the inverse CDF of its random threshold 𝑋 ,
and suppose the adversary chooses a sequence with maximal price 𝑣max < 𝛼𝐿. In
this case, the algorithm will not accept a price during the sequence, since 𝜙( [0, 1]) =
[𝛼𝐿,𝑈] implies that 𝑋 only takes values within the interval [𝛼𝐿,𝑈]. In this case,
the algorithm earns (deterministic) profit 𝐿 during the compulsory trade, so the
algorithm’s 𝛿-CR is simply 𝑣max

𝐿
< 𝛼𝐿

𝐿
= 𝛼.

On the other hand, suppose the adversary chooses a sequence with maximal price
𝑣max ≥ 𝛼𝐿. Because 𝜙 is one-to-one on [𝛿, 1], 𝜙−1 exactly coincides with the CDF
of 𝑋 on the domain [𝛼𝐿,𝑈], and for 𝜙(𝜙−1(𝑣max)) = 𝑣max. Defining 𝑡 = 𝜙−1(𝑣max),
noting that 𝑡 ≥ 𝛿, and applying Lemma 6.5.1, we may compute the 𝛿-CR:

𝑣max
CVaR𝛿 [𝐿 · 1𝑋>𝑣 + 𝑋 · 1𝑋≤𝑣]

=
𝜙(𝑡)

1
1−𝛿

[
(1 − 𝜙−1(𝑣max))𝐿 +

∫ 𝜙−1 (𝑣max)−𝛿
0 𝜙(𝑠) d𝑠

]
=

𝜙(𝑡)
1

1−𝛿

[
(1 − 𝑡)𝐿 +

∫ 𝑡−𝛿
0 𝜙(𝑠) d𝑠

]
= 𝛼,

where the final equality follows from the integral form of 𝜙(𝑡) in (6.49). Thus 𝜙,
when used as an inverse CDF for the random threshold, yields an algorithm with
𝛿-CR 𝛼.
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Now, let us establish an analytic characterization of 𝜙 for 𝛿 ∈ [0, 1]. When 𝛿 = 0,
the delay differential equation simplifies to an ordinary differential equation 𝜙′(𝑡) =
𝛼(𝜙(𝑡) − 𝐿) with initial condition 𝜙(0) = 𝛼𝐿. Solving this initial value problem
yields the solution 𝜙(𝑡) = 𝐿+(𝛼−1)𝐿𝑒𝛼𝑡 , which is easily seen to coincide with (6.7)
in the 𝛿→ 0 limit, as the sum in (6.7) becomes the Taylor series of the exponential
𝑒𝛼𝑡 .

On the other hand, if 𝛿 ∈ (0, 1), then we may solve the delay differential equation by
integrating step-by-step. That is, suppose we know 𝜙(𝑡 − 𝛿) exactly on the interval
[𝑘𝛿, (𝑘 + 1)𝛿] for some 𝑘 ∈ N, either by the initial condition or because we have
solved for 𝜙(𝑡) on the previous interval [(𝑘 − 1)𝛿, 𝑘𝛿]. Then we may treat the delay
differential equation as an ordinary differential equation on [𝑘𝛿, (𝑘 + 1)𝛿] and solve
for 𝜙(𝑡) accordingly.

We claim that on the interval [𝑘𝛿, (𝑘 + 1)𝛿], 𝜙 takes the form

𝜙(𝑡) = 𝐿 + (𝛼 − 1)𝐿
𝑘∑︁
𝑗=0

𝛼 𝑗 (𝑡 − 𝑗𝛿) 𝑗
(1 − 𝛿) 𝑗 𝑗! . (6.50)

Note that this inductive form of 𝜙 for any nonnegative integer 𝑘 is equivalent to the
form of 𝜙 posited in the theorem statement in (6.7), as 𝑡 ∈ [𝑘𝛿, (𝑘 + 1)𝛿] causes all
terms with 𝑗 ≥ 𝑘 + 1 in (6.7) to vanish.

We establish the validity of this form by induction on 𝑘 , which is exactly the number
of step-by-step integrations that must be performed to obtain the solution 𝜙 on the
interval [𝑘𝛿, (𝑘 + 1)𝛿]. As the base case, when 𝑘 = 0, (6.50) simply reduces to the
initial condition 𝜙(𝑡) = 𝛼𝐿 on the interval [0, 𝛿]. Now suppose that the formula
holds for a certain 𝑘; expressing 𝜙(𝑡) as an integral of the delay differential equation
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starting from (𝑘 + 1)𝛿, we have that, for 𝑡 ∈ [(𝑘 + 1)𝛿, (𝑘 + 2)𝛿],

𝜙(𝑡) = 𝜙((𝑘 + 1)𝛿) + 𝛼

1 − 𝛿

∫ 𝑡

(𝑘+1)𝛿
𝜙(𝑠 − 𝛿) − 𝐿 d𝑠

= 𝐿 + (𝛼 − 1)𝐿
𝑘∑︁
𝑗=0

𝛼 𝑗 ((𝑘 + 1)𝛿 − 𝑗𝛿) 𝑗
(1 − 𝛿) 𝑗 𝑗!

+ 𝛼

1 − 𝛿

[
−(𝑡 − (𝑘 + 1)𝛿)𝐿 +

∫ 𝑡−𝛿

𝑘𝛿

𝜙(𝑠) d𝑠
]

(6.51)

= 𝐿 + (𝛼 − 1)𝐿
𝑘∑︁
𝑗=0

𝛼 𝑗 ((𝑘 + 1 − 𝑗)𝛿) 𝑗
(1 − 𝛿) 𝑗 𝑗!

+ 𝛼

1 − 𝛿

[
− (𝑡 − (𝑘 + 1)𝛿)𝐿

+
∫ 𝑡−𝛿

𝑘𝛿

𝐿 + (𝛼 − 1)𝐿
𝑘∑︁
𝑗=0

𝛼 𝑗 (𝑠 − 𝑗𝛿) 𝑗
(1 − 𝛿) 𝑗 𝑗! d𝑠

]
(6.52)

= 𝐿 + (𝛼 − 1)𝐿
𝑘∑︁
𝑗=0

𝛼 𝑗 ((𝑘 + 1 − 𝑗)𝛿) 𝑗
(1 − 𝛿) 𝑗 𝑗!

+ 𝛼

1 − 𝛿

(𝛼 − 1)𝐿
𝑘∑︁
𝑗=0

𝛼 𝑗 (𝑠 − 𝑗𝛿) 𝑗+1

(1 − 𝛿) 𝑗 ( 𝑗 + 1)!


𝑡−𝛿

𝑠=𝑘𝛿

= 𝐿 + (𝛼 − 1)𝐿
𝑘∑︁
𝑗=0

𝛼 𝑗 ((𝑘 + 1 − 𝑗)𝛿) 𝑗
(1 − 𝛿) 𝑗 𝑗!

+ (𝛼 − 1)𝐿

𝑘∑︁
𝑗=0

𝛼 𝑗+1(𝑡 − ( 𝑗 + 1)𝛿) 𝑗+1

(1 − 𝛿) 𝑗+1( 𝑗 + 1)!
−

𝑘∑︁
𝑗=0

𝛼 𝑗+1((𝑘 − 𝑗)𝛿) 𝑗+1

(1 − 𝛿) 𝑗+1( 𝑗 + 1)!


= 𝐿 + (𝛼 − 1)𝐿

𝑘∑︁
𝑗=0

𝛼 𝑗 ((𝑘 + 1 − 𝑗)𝛿) 𝑗
(1 − 𝛿) 𝑗 𝑗!

+ (𝛼 − 1)𝐿

𝑘+1∑︁
𝑗=1

𝛼 𝑗 (𝑡 − 𝑗𝛿) 𝑗
(1 − 𝛿) 𝑗 𝑗! −

𝑘+1∑︁
𝑗=1

𝛼 𝑗 ((𝑘 − ( 𝑗 − 1))𝛿) 𝑗
(1 − 𝛿) 𝑗 𝑗!


= 𝐿 + (𝛼 − 1)𝐿 + (𝛼 − 1)𝐿

𝑘+1∑︁
𝑗=1

𝛼 𝑗 (𝑡 − 𝑗𝛿) 𝑗
(1 − 𝛿) 𝑗 𝑗!

= 𝐿 + (𝛼 − 1)𝐿
𝑘+1∑︁
𝑗=0

𝛼 𝑗 (𝑡 − 𝑗𝛿) 𝑗
(1 − 𝛿) 𝑗 𝑗! ,

where (6.51) and (6.52) follow by the induction hypothesis. Thus, by induction, we
have established that (6.7) is the solution to the delay differential equation (6.4).
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Let us now turn to analyzing the competitive ratio 𝛼. First, note that when 𝛿 ≥ 1
2 ,

we have
𝜙(𝑡) = 𝛼𝐿 + 𝛼𝐿

1 − 𝛿 (𝛼 − 1) [𝑡 − 𝛿]+, (6.53)

as all terms in (6.7) with 𝑗 > 1 vanish for 𝑡 ≤ 1. As 𝛼 must be chosen so that
𝜙(1) = 𝑈, solving this equation for 𝛼 yields

𝛼𝐿 + 𝛼(𝛼 − 1)𝐿 = 𝑈 =⇒ 𝛼 =
√
𝜃.

We may also obtain an identical upper bound on 𝛼 for all 𝛿 ∈ [0, 1) (and in particular,
𝛿 > 1

5 ) by simply lower bounding 𝜙 by (6.53), since every term in the sum in (6.7)
is nonnegative:

𝑈 = 𝜙(1) ≥ 𝛼𝐿 + 𝛼𝐿

1 − 𝛿 (𝛼 − 1) (1 − 𝛿)

=⇒ 𝛼 ≤
√
𝜃.

This establishes the 𝛿 > 1
5 case in the analytic bound (6.6); moreover, this case

matches the implicit bound 𝑟 (𝛿) defined by (6.5) since 𝛿 > 1
5 implies 𝑛(𝛿) =

max
{
1,

⌊ (
⌊𝛿−1⌋ − 1

)
/2

⌋}
= 1, in which case 𝑟 (𝛿) is the positive root of the equation

(𝑟 (𝛿) − 1) (𝑟 (𝛿) + 1) = 𝜃 − 1, i.e.,
√
𝜃.

On the other hand, suppose that 𝛿 ≤ 1
5 . We have that

𝜃 =
𝜙(1)
𝐿

= 1 + (𝛼 − 1)
∞∑︁
𝑗=0

𝛼 𝑗 ( [1 − 𝑗𝛿]+) 𝑗
(1 − 𝛿) 𝑗 𝑗!

= 1 + (𝛼 − 1)
𝑘∑︁
𝑗=0

𝛼 𝑗 (1 − 𝑗𝛿) 𝑗
(1 − 𝛿) 𝑗 𝑗! where 𝑘 :=

⌊
𝛿−1⌋ (6.54)

≥ 1 + (𝛼 − 1)
𝑘∑︁
𝑗=0

𝛼 𝑗 (1 − 𝑗

𝑘
) 𝑗

(1 − 1
𝑘
) 𝑗 𝑗!

(6.55)

= 1 + (𝛼 − 1)
𝑘∑︁
𝑗=0

(
𝑘 − 𝑗
𝑘 − 1

) 𝑗
𝛼 𝑗

𝑗!

≥ 1 + (𝛼 − 1)
⌊(𝑘−1)/2⌋∑︁

𝑗=0

(
𝑘 − 𝑗
𝑘 − 1

) 𝑗
𝛼 𝑗

𝑗!
(6.56)

where (6.54) follows from the fact that 𝑗𝛿 ≥ 1 for all integers 𝑗 ≥
⌊
𝛿−1⌋ + 1 and

𝑗𝛿 ≤ 1 for 𝑗 ≤
⌊
𝛿−1⌋ , and (6.55) follows due to the fact that 1− 𝑗𝛿

1−𝛿 is decreasing in 𝛿 for
𝛿 < 1 and 𝛿 ≤

( ⌊
𝛿−1⌋ )−1

= 𝑘−1. Now, we claim that for all 𝑗 ∈ {0, . . . , ⌊(𝑘−1)/2⌋},
the following inequality holds:
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(
𝑘 − 𝑗
𝑘 − 1

) 𝑗 1
𝑗!
≥

(
⌊(𝑘 − 1)/2⌋

𝑗

)
1

⌊(𝑘 − 1)/2⌋ 𝑗 . (6.57)

Note that, by our assumption that 𝛿 ≤ 1
5 , we have 𝑘 ≥ 5, so ⌊(𝑘 − 1)/2⌋ ≥ 1 and the

right-hand side of (6.57) is well-defined. To see that this inequality holds, we will
bound the ratio between the right-hand side of (6.57) and the left-hand side above
by 1. Calling this ratio 𝑅( 𝑗), observe that

𝑅( 𝑗) =
(⌊(𝑘−1)/2⌋

𝑗

) 1
⌊(𝑘−1)/2⌋ 𝑗(

𝑘− 𝑗
𝑘−1

) 𝑗 1
𝑗!

=

⌊(𝑘−1)/2⌋!
(⌊(𝑘−1)/2⌋− 𝑗)!⌊(𝑘−1)/2⌋ 𝑗(

𝑘− 𝑗
𝑘−1

) 𝑗
=
(𝑘 − 1) 𝑗 ∏ 𝑗−1

𝑖=0 (⌊(𝑘 − 1)/2⌋ − 𝑖)
(𝑘 − 𝑗) 𝑗 ⌊(𝑘 − 1)/2⌋ 𝑗 ,

from which it is clear that 𝑅(0) = 1, 𝑅(1) = 1, and

𝑅( 𝑗) = 𝑅( 𝑗 − 1) · (𝑘 − 𝑗 + 1) 𝑗−1(𝑘 − 1) (⌊(𝑘 − 1)/2⌋ − 𝑗 + 1)
(𝑘 − 𝑗) 𝑗 ⌊(𝑘 − 1)/2⌋

for 𝑗 ≥ 2. Thus, if we can prove that (𝑘− 𝑗+1) 𝑗−1 (𝑘−1) (⌊(𝑘−1)/2⌋− 𝑗+1)
(𝑘− 𝑗) 𝑗 ⌊(𝑘−1)/2⌋ ≤ 1 for each

𝑗 ∈ {2, . . . , ⌊(𝑘 − 1)/2⌋}, induction will yield the desired property that 𝑅( 𝑗) ≤ 1
for all such 𝑗 . Thus we compute:

(𝑘 − 𝑗 + 1) 𝑗−1(𝑘 − 1) (⌊(𝑘 − 1)/2⌋ − 𝑗 + 1)
(𝑘 − 𝑗) 𝑗 ⌊(𝑘 − 1)/2⌋

=

(
1 + 1

𝑘 − 𝑗

) 𝑗−1
𝑘 − 1
𝑘 − 𝑗 ·

⌊(𝑘 − 1)/2⌋ − 𝑗 + 1
⌊(𝑘 − 1)/2⌋

≤ 1
1 − 𝑗−1

𝑘− 𝑗
· 𝑘 − 1
𝑘 − 𝑗 ·

⌊(𝑘 − 1)/2⌋ − 𝑗 + 1
⌊(𝑘 − 1)/2⌋ (6.58)

=
𝑘 − 1

𝑘 − 2 𝑗 + 1
· ⌊(𝑘 − 1)/2⌋ − 𝑗 + 1

⌊(𝑘 − 1)/2⌋

≤ 𝑘 − 1
𝑘 − 2 𝑗 + 1

· (𝑘 − 1)/2 − 𝑗 + 1
(𝑘 − 1)/2 (6.59)

= 1

where (6.58) follows by applying a version of Bernoulli’s inequality (e.g., [268,

Chapter 3, (1.2)]) to
(
1 + 1

𝑘− 𝑗

)−( 𝑗−1)
and (6.59) follows from the fact that 1 − 1

𝑥

is increasing in 𝑥 for 𝑥 > 0. Thus, we have established that 𝑅( 𝑗) ≤ 1 for all
𝑗 ∈ {0, . . . , ⌊(𝑘 − 1)/2⌋}, and hence (6.57) holds for all such 𝑗 . Applying this
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inequality to (6.56), we obtain

𝜃 ≥ 1 + (𝛼 − 1)
⌊(𝑘−1)/2⌋∑︁

𝑗=0

(
𝑘 − 𝑗
𝑘 − 1

) 𝑗
𝛼 𝑗

𝑗!

≥ 1 + (𝛼 − 1)
⌊(𝑘−1)/2⌋∑︁

𝑗=0

(
⌊(𝑘 − 1)/2⌋

𝑗

)
𝛼 𝑗

⌊(𝑘 − 1)/2⌋ 𝑗

= 1 + (𝛼 − 1)
(
1 + 𝛼

⌊(𝑘 − 1)/2⌋

) ⌊(𝑘−1)/2⌋
, (6.60)

where (6.60) follows from the binomial theorem. Note that, since we have assumed
𝛿 ≤ 1

5 in this case, 𝑛(𝛿) as defined in the theorem is equal to ⌊(𝑘 − 1)/2⌋, which
is always at least 2. Thus, observing that (6.60) is increasing in 𝛼 when 𝛼 > 0, we
immediately obtain that the unique positive solution 𝑟 (𝛿) to the equality (6.5) is an
upper bound on 𝛼.

All that remains to be shown is the 𝛿 ↓ 0 case in the analytic bound (6.6); to facilitate
this case, we prove the following lemma characterizing the asymptotic behavior of
solutions to equations of the general form (6.5) as 𝛿 becomes small.

Lemma 6.D.1. Let 𝑟 (𝛿) be the unique positive solution to the equation

(𝑟 (𝛿) − 1)
(
1 + 𝑟 (𝛿)

𝑛(𝛿)

)𝑛(𝛿)
= 𝜃 − 1, (6.61)

where 𝑛(𝛿) is a function satisfying

𝑐1𝛿 ≤
1
𝑛(𝛿) ≤ 𝑐2𝛿

for all 𝛿 ∈ (0, 1], given some 𝑐2 ≥ 𝑐1 > 0. Then 𝑟 (𝛿) = 1+𝑊0

(
𝜃−1
𝑒

)
+Θ(𝛿), where

the asymptotic notation reflects the 𝛿 ↓ 0 regime and omits dependence on 𝜃.

The proof of Lemma 6.D.1 relies on the bounds in the following lemma.

Lemma 6.D.2. Let 𝐶 ≥ 1 and and 𝑛 ∈ R++. Then

𝑒
log(1+𝐶 )

𝐶
𝑥 ≤

(
1 + 𝑥

𝑛

)𝑛
≤ 𝑒𝑥−

𝐶−log(1+𝐶 )
𝐶2

𝑥2
𝑛

for all 𝑥 ∈ [0, 𝑛𝐶].

Proof. We begin by showing that, for 𝑥 ∈ [0, 𝐶], the inequalities

log(1 + 𝐶)
𝐶

𝑥 ≤ log(1 + 𝑥) ≤ 𝑥 − 𝐶 − log(1 + 𝐶)
𝐶2 𝑥2 (6.62)
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hold. First, note that the first inequality in (6.62) holds due to the fact that log(1+ 𝑥)
is concave and agrees in value with log(1+𝐶)

𝐶
𝑥 at both 𝑥 = 0 and 𝐶. For the second

inequality, first observe that log(1 + 𝑥) and 𝑥 − 𝐶−log(1+𝐶)
𝐶2 𝑥2 agree in value at 𝑥 = 0

and 𝐶. Consider their difference

𝑓 (𝑥) = 𝑥 − 𝐶 − log(1 + 𝐶)
𝐶2 𝑥2 − log(1 + 𝑥);

we will show that 𝑓 (𝑥) is nonnegative on [0, 𝐶]. Computing its derivative, we have

𝑓 ′(𝑥) = 𝑥
(
− 2
𝐶
+ 1

1 + 𝑥 +
2 log(1 + 𝐶)

𝐶2

)
which has roots

𝑥1 = 0, 𝑥2 =
𝐶2 + 2 log(1 + 𝐶) − 2𝐶

2(𝐶 − log(1 + 𝐶)) ,

where we can observe 𝑥2 > 0, since𝐶 ≥ 1 implies the well-known bounds𝐶− 1
2𝐶

2 <

log(1 + 𝐶) < 𝐶. Thus, if we can show that 𝑓 ′(𝑥) > 0 for all 𝑥 ∈ (0, 𝑥2), this will
establish the desired property that 𝑓 (𝑥) ≥ 0 for all 𝑥 ∈ [0, 𝐶]. Given that 𝑓 ′ is
continuous on the nonnegative reals and only has roots at 0 and 𝑥2, it suffices to
show that 𝑓 ′ is positive for some small 𝜖 > 0. Noting that 𝐶 − 1

2𝐶
2 < log(1 + 𝐶)

implies 𝐶 − 1
2𝐶

2 + 𝛿 = log(1 + 𝐶) for some 𝛿 > 0, it follows that

𝑓 ′(𝑥) = 𝑥
(
− 2
𝐶
+ 1

1 + 𝑥 +
2 log(1 + 𝐶)

𝐶2

)
= 𝑥

(
2 log(1 + 𝐶) − 2𝐶

𝐶2 + 1
1 + 𝑥

)
= 𝑥

(
−𝐶2 + 2𝛿

𝐶2 + 1
1 + 𝑥

)
= 𝑥

(
−1 + 2𝛿

𝐶2 +
1

1 + 𝑥

)
,

which can be made strictly positive by choosing 𝑥 > 0 sufficiently small, thus
establishing the bound.

Multiplying (6.62) by 𝑛, exponentiating, and making the substitution 𝑥 ← 𝑦

𝑛
, we

obtain the bounds

𝑒
log(1+𝐶 )

𝐶
𝑦 ≤

(
1 + 𝑦

𝑛

)𝑛
≤ 𝑒𝑦−

𝐶−log(1+𝐶 )
𝐶2

𝑦2
𝑛

for 𝑦

𝑛
∈ [0, 𝐶], i.e., 𝑦 ∈ [0, 𝑛𝐶].

With Lemma 6.D.2 proved, we may now proceed with the proof of Lemma 6.D.1.
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Proof of Lemma 6.D.1. We begin by establishing coarse lower and upper bounds
on the solution 𝑟 (𝛿) to (6.61). First, note that 𝜃 = 1 (the trivial case when all prices
are identical) yields the unique positive solution 𝑟 (𝛿) = 1 =

√
𝜃 = 1 +𝑊0

(
𝜃−1
𝑒

)
,

regardless of the value of 𝑛(𝛿). On the other hand, suppose 𝜃 > 1. It is clear that
𝑛(𝛿) = 1 implies 𝑟 (𝛿) =

√
𝜃 and the 𝛿 ↓ 0 limit (equivalently 𝑛(𝛿) → ∞, by the

assumed bounds on 𝑛(𝛿)) yields 𝑟 (0) = 1 +𝑊0

(
𝜃−1
𝑒

)
. In addition, observe that the

left-hand side of (6.61) is continuous and strictly increasing in both 𝑟 (𝛿) and 𝑛(𝛿)
when 𝑟 (𝛿) > 1 and 𝑛(𝛿) > 0. Thus, increasing 𝑛(𝛿) from 1 must yield a decrease in
𝑟 (𝛿). As a result, we must have 𝑟 (𝛿) ∈

[
1 +𝑊0

(
𝜃−1
𝑒

)
,
√
𝜃

]
for all 𝛿 ∈ [0, 1].

Now, we continue on to prove the main result. We break the proof into two parts:
the upper bound and the lower bound. In the following, we omit the dependence of
𝑟 (𝛿) and 𝑛(𝛿) on 𝛿, simply writing 𝑟 and 𝑛, respectively.

Upper bound. Since 𝑟 ∈
[
1 +𝑊0

(
𝜃−1
𝑒

)
,
√
𝜃

]
, we may apply the lower bound in

Lemma 6.D.2 with 𝐶 = 𝑐2𝛿
√
𝜃 to (6.61) to obtain

𝜃 − 1 = (𝑟 − 1)
(
1 + 𝑟

𝑛

)𝑛
≥ (𝑟 − 1)

(
1 + 𝑟

1
𝑐2𝛿

) 1
𝑐2 𝛿

(6.63)

≥ (𝑟 − 1)𝑒
log(1+𝑐2 𝛿

√
𝜃 )

𝑐2 𝛿
√
𝜃

𝑟
, (6.64)

where (6.63) follows by the monotonicity of the left-hand side of (6.61) in 𝑛.
Monotonicity of (6.64) in 𝑟 > 1 and the definition of the Lambert𝑊 function yields
the bound

log(1 + 𝑐2𝛿
√
𝜃)

𝑐2𝛿
√
𝜃

(𝑟 − 1) ≤ 𝑊0
©«

log(1 + 𝑐2𝛿
√
𝜃)

𝑐2𝛿
√
𝜃

· 𝜃 − 1

exp
(

log(1+𝑐2𝛿
√
𝜃)

𝑐2𝛿
√
𝜃

) ª®®¬ ,
and hence

𝑟 ≤ 1 + 𝑐2𝛿
√
𝜃

log(1 + 𝑐2𝛿
√
𝜃)
·𝑊0

©«
log(1 + 𝑐2𝛿

√
𝜃)

𝑐2𝛿
√
𝜃

· 𝜃 − 1

exp
(

log(1+𝑐2𝛿
√
𝜃)

𝑐2𝛿
√
𝜃

) ª®®¬ .
Taylor expanding about 𝛿 = 0 gives:

𝑟 ≤ 1 +𝑊0

(
𝜃 − 1
𝑒

)
+
𝑐2
√
𝜃 ·𝑊0

(
𝜃−1
𝑒

)
2

𝛿 + O(𝛿2),

i.e., 𝑟 = 1 +𝑊0

(
𝜃−1
𝑒

)
+ O(𝛿) as 𝛿 ↓ 0.
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Lower bound. Since 𝑟 ∈
[
1 +𝑊0

(
𝜃−1
𝑒

)
,
√
𝜃

]
, we may apply the upper bound in

Lemma 6.D.2 with 𝐶 = 𝑐1𝛿
√
𝜃 to (6.61) to obtain

𝜃 − 1 = (𝑟 − 1)
(
1 + 𝑟

𝑛

)𝑛
≤ (𝑟 − 1)

(
1 + 𝑟

1
𝑐1𝛿

) 1
𝑐1 𝛿

(6.65)

≤ (𝑟 − 1)𝑒𝑟−
𝑐1 𝛿
√
𝜃−log(1+𝑐1 𝛿

√
𝜃)

(𝑐1 𝛿
√
𝜃 )2

𝑐1𝛿𝑟
2

≤ (𝑟 − 1)𝑒𝑟−
𝑐1 𝛿
√
𝜃−log(1+𝑐1 𝛿

√
𝜃)

(𝑐1 𝛿
√
𝜃 )2

𝑐1𝛿(1+𝑊0( 𝜃−1
𝑒 ))2 (6.66)

where (6.65) follows by the monotonicity of the left-hand side of (6.61) in 𝑛 and
(6.66) results from 𝑟 ≥ 1+𝑊0

(
𝜃−1
𝑒

)
and the fact that 𝐶 − log(1+𝐶) ≥ 0 for 𝐶 ≥ 0.

Following the same approach as employed in the upper bound, monotonicity of
(6.66) in 𝑟 > 1 and the definition of the Lambert𝑊 function yields the lower bound

𝑟 ≥ 1 +𝑊0
©«(𝜃 − 1) exp


𝑐1𝛿
√
𝜃 − log

(
1 + 𝑐1𝛿

√
𝜃

)
(𝑐1𝛿
√
𝜃)2

𝑐1𝛿

(
1 +𝑊0

(
𝜃 − 1
𝑒

))2
− 1


ª®®¬ ,

and Taylor expanding about 𝛿 = 0 gives

𝑟 ≥ 1 +𝑊0

(
𝜃 − 1
𝑒

)
+
𝑐1 ·𝑊0

(
𝜃−1
𝑒

) (
1 +𝑊0

(
𝜃−1
𝑒

))
2

𝛿 +Ω(𝛿2),

i.e., 𝑟 = 1 +𝑊0

(
𝜃−1
𝑒

)
+Ω(𝛿) as 𝛿 ↓ 0.

Having proved Lemma 6.D.1, the 𝛿 ↓ 0 case in the analytic bound (6.6) fol-
lows as an immediate consequence of the fact that, when 𝛿 ∈ (0, 1], 𝑛(𝛿) =

max
{
1,

⌊ (
⌊𝛿−1⌋ − 1

)
/2

⌋}
can be upper bounded as

max
{
1,

⌊(
⌊𝛿−1⌋ − 1

)
/2

⌋}
≤ max

{
1, 𝛿−1}

= 𝛿−1
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and lower bounded as

max
{
1,

⌊(
⌊𝛿−1⌋ − 1

)
/2

⌋}
=


⌊(
⌊𝛿−1⌋ − 1

)
/2

⌋
if 𝛿 ≤ 1

5

1 otherwise

≥

⌊
2⌊𝛿−1⌋/5

⌋
if 𝛿 ≤ 1

5

1 otherwise
(6.67)

≥

⌊ 8

25𝛿
−1⌋ if 𝛿 ≤ 1

5

1 otherwise
(6.68)

≥


3
25𝛿
−1 if 𝛿 ≤ 1

5

1 otherwise
(6.69)

≥ 3
25
𝛿−1,

where (6.67), (6.68), and (6.69) hold since 𝛿 ≤ 1
5 implies −1 ≥ −1

5 ⌊𝛿
−1⌋ ≥ −1

5𝛿
−1,

which in turn implies ⌊𝛿−1⌋ ≥ 𝛿−1 − 1 ≥ 4
5𝛿
−1 and

⌊ 8
25𝛿
−1⌋ ≥ 8

25𝛿
−1 − 1 ≥ 3

25𝛿
−1.

This concludes the proof.

Proof of Theorem 6.5.3
The proof of this lower bound follows by establishing a connection between one-
max search with the 𝛿-CR metric and the problem of deterministic 𝑘-max search,
which is a modified form of one-max search in which an agent seeks to sell 𝑘
units of an item, rather than a single one. [79] gives a threshold-based algorithm
for 𝑘-max search which uses 𝑘 distinct, increasing price thresholds, with the agent
selling its 𝑖th item at the first price surpassing the 𝑖th threshold. We construct
our lower bound by comparing the quantiles of an arbitrary randomized algorithm
for one-max search to the price thresholds of [79] for ⌊𝛿−1⌋-max search. We will
assume without loss of generality that 𝐿 = 1 and𝑈 = 𝜃. In the following, we define
𝑘 := 𝑛(𝛿) = max

{
1, ⌈𝛿−1⌉ − 1

}
and write the solution to (6.8) as 𝑟 := 𝑟 (𝛿) for

clarity. That is, 𝑟 is the unique positive solution to the equation

(𝑟 − 1)
(
1 + 𝑟

𝑘

) 𝑘
= 𝜃 − 1. (6.70)

Note that (6.70) has a unique positive solution 𝑟 since the left-hand side is strictly
increasing in 𝑟 when 𝑟 > 0. First, in the 𝛿 = 0 case, (6.70) becomes

(𝑟 − 1)𝑒𝑟 = 𝜃 − 1,
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whose solution is exactly 𝑟 = 1 +𝑊0

(
𝜃−1
𝑒

)
. Moreover, note that the 𝛿 = 0 case

is exactly the standard case of randomized one-max search with expected cost, in
which case [78] has shown that the optimal competitive ratio is exactly the unique
positive solution to (𝑟 − 1)𝑒𝑟 = 𝜃 − 1, thus establishing the validity of our lower
bound for 𝛿 = 0.5

On the other hand, suppose 𝛿 = 1; in this case, 𝑘 = 1, and (6.70) becomes

(𝑟 − 1) (1 + 𝑟) = 𝜃 − 1,

yielding the positive solution 𝑟 =
√
𝜃, which matches the optimal deterministic

strategy for one-max search [78]. Since the optimal 𝛿-CR coincides with the optimal
deterministic CR when 𝛿 = 1, this establishes the validity of our bound for this case.

Now, consider an arbitrary 𝛿 ∈ (0, 1); note that, in this case, 𝑘 simplifies to
𝑘 = ⌈𝛿−1⌉ − 1. Define 𝑘 price thresholds 𝑝1, . . . , 𝑝𝑘 following [79, Lemma 1]:

𝑝𝑖 = 1 + (𝑟 − 1)
(
1 + 𝑟

𝑘

) 𝑖−1

for 𝑖 ∈ [𝑘]. Let 𝑋 ∼ 𝜇 be any random threshold algorithm for one-max search
supported on [1, 𝜃] (recall from Section 6.2 that the restriction to such random
threshold algorithms is made without loss of generality). For each 𝑖 ∈ [𝑘], define
𝑞𝑖 ∈ [1, 𝜃] as the 𝑖th (𝑘 + 1)-quantile of 𝑋:

𝑞𝑖 = 𝐹
−1
𝑋

(
𝑖

𝑘 + 1

)
.

By definition of the inverse CDF, for each 𝑖 we have 𝜇[1, 𝑞𝑖] ≥ 𝑖
𝑘+1 and 𝜇[𝑞𝑖, 𝜃] ≥

1 − 𝑖
𝑘+1 .

Suppose that 𝑞𝑖 > 𝑝𝑖 for some 𝑖 ∈ [𝑘], and let 𝑖∗ be the smallest index for which this
strict inequality holds. If 𝑖∗ = 1, then we have

𝜇(𝑝1, 𝜃] ≥ 𝜇[𝑞1, 𝜃] ≥ 1 − 1
𝑘 + 1

= 1 − 1
⌈𝛿−1⌉

≥ 1 − 𝛿,

so the algorithm assigns a probability mass of at least 1 − 𝛿 to thresholds strictly
greater than 𝑝1. Thus its 𝛿-CR is lower bounded as

𝛼
𝜃,𝜇

𝛿
(𝑝1) =

𝑝1
CVaR𝛿 [1 · 1𝑋>𝑝1 + 𝑋 · 1𝑋≤𝑝1]

≥ 𝑝1
1

= 𝑟.

5[78] specifically shows that the solution 𝑟 to the equation (𝑟 − 1)𝑒𝑟 = 𝜃 − 1 is the optimal
competitive ratio for a fractional version of one-max search known as one-way-trading, and that
randomized one-max search (with expected cost) is equivalent to this fractional version, in the
sense that any algorithm for one can be transformed into an algorithm for the other with identical
competitive ratio.
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Otherwise, if 𝑖∗ > 1, then we have 𝑞𝑖∗ > 𝑝𝑖∗ and 𝑞 𝑗 ≤ 𝑝 𝑗 for all 𝑗 ∈ [𝑖∗ − 1]. We
define a modified version of the inverse CDF of 𝑋 as

�̂�−1
𝑋 (𝑡) =


1 if 𝑡 = 0

𝑞 𝑗 if 𝑡 ∈ ( 𝑗−1
𝑘+1 ,

𝑗

𝑘+1 ] for 𝑗 ∈ [𝑖∗ − 1]

𝐹−1
𝑋
(𝑡) otherwise,

which is the inverse CDF of the modified random variable �̂� obtained by moving
all the probability mass between 𝑞 𝑗−1 and 𝑞 𝑗 to 𝑞 𝑗 for each 𝑗 ∈ [𝑖∗ − 1], leaving
the rest of the distribution alone. Clearly 𝐹−1

𝑋
(𝑡) ≤ �̂�−1

𝑋
(𝑡) for all 𝑡 ∈ [0, 1], since

inverse CDFs are increasing and we define �̂�−1
𝑋

by increasing the value of 𝐹−1
𝑋

on
( 𝑗−1
𝑘+1 ,

𝑗

𝑘+1 ] to 𝑞 𝑗 = 𝐹−1
𝑋

(
𝑗

𝑘+1

)
for 𝑗 ∈ [𝑖∗ − 1].

Now, suppose the adversary chooses the maximum price as 𝑝𝑖∗; then the CVaR𝛿 of
the algorithm’s profit is upper bounded as:

CVaR𝛿 [1 · 1𝑋>𝑝𝑖∗ + 𝑋 · 1𝑋≤𝑝𝑖∗ ]
≤ CVaR 1

𝑘+1
[1 · 1𝑋>𝑝𝑖∗ + 𝑋 · 1𝑋≤𝑝𝑖∗ ] (6.71)

=
1

1 − 1
𝑘+1

[
1 − 𝐹𝑋 (𝑝𝑖∗) +

∫ 𝐹𝑋 (𝑝𝑖∗ )− 1
𝑘+1

0
𝐹−1
𝑋 (𝑡) d𝑡

]
(6.72)

≤ 𝑘 + 1
𝑘

[
1 − 𝐹𝑋 (𝑝𝑖∗) +

∫ 𝐹𝑋 (𝑝𝑖∗ )− 1
𝑘+1

0
�̂�−1
𝑋 (𝑡) d𝑡

]
(6.73)

=
𝑘 + 1
𝑘

1 − 𝐹𝑋 (𝑝𝑖∗) +
1

𝑘 + 1

𝑖∗−2∑︁
𝑗=1

𝑞 𝑗 +
(
𝐹𝑋 (𝑝𝑖∗) −

𝑖∗ − 1
𝑘 + 1

)
𝑞𝑖∗−1

 (6.74)

≤ 𝑘 + 1
𝑘

1 −
𝑖∗

𝑘 + 1
+ 1
𝑘 + 1

𝑖∗−1∑︁
𝑗=1

𝑞 𝑗

 (6.75)

≤ 1
𝑘

𝑘 + 1 − 𝑖∗ +
𝑖∗−1∑︁
𝑗=1

𝑝 𝑗

 , (6.76)

where (6.71) holds due to the property that CVaR𝛿 (in the maximization setting)
is decreasing in 𝛿 [239, Proposition 3.4] and 𝛿 ≥ (⌈𝛿−1⌉)−1 = (𝑘 + 1)−1; (6.72)
follows from Lemma 6.5.1 and the fact that 𝑖∗ > 1 implies 𝐹 (𝑝𝑖∗) ≥ 𝐹 (𝑞𝑖∗−1) ≥ 1

𝑘+1 ;
(6.73) follows from 𝐹−1

𝑋
≤ �̂�−1

𝑋
; (6.74) follows by the definition of �̂�−1

𝑋
and the

fact that 𝑝𝑖∗ ∈ [𝑞𝑖∗−1, 𝑞𝑖∗) implies 𝐹𝑋 (𝑝𝑖∗) − 1
𝑘+1 ∈

[
𝑖∗−2
𝑘+1 ,

𝑖∗−1
𝑘+1

)
; (6.75) is a result

of 𝐹𝑋 (𝑝𝑖∗) ≤ 𝑖∗

𝑘+1 and 𝑞𝑖∗−1 ≥ 1; and (6.76) follows by the assumption that, in this
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case, 𝑞 𝑗 ≤ 𝑝 𝑗 for all 𝑗 ∈ [𝑖∗ − 1]. Substituting the definition of 𝑝 𝑗 into (6.76) and
simplifying the sum, we thus obtain the lower bound

𝛼
𝜃,𝜇

𝛿
(𝑝𝑖∗) =

𝑝𝑖∗

CVaR𝛿 [1 · 1𝑋>𝑝𝑖∗ + 𝑋 · 1𝑋≤𝑝𝑖∗ ]

≥
𝑘

(
1 + (𝑟 − 1)

(
1 + 𝑟

𝑘

) 𝑖∗−1
)

𝑘 + 1 − 𝑖∗ +∑𝑖∗−1
𝑗=1 1 + (𝑟 − 1)

(
1 + 𝑟

𝑘

) 𝑗−1

= 𝑟.

Finally, consider the case that 𝑞𝑖 ≤ 𝑝𝑖 for all 𝑖 ∈ [𝑘]. Defining

�̂�−1
𝑋 (𝑡) =


1 if 𝑡 = 0

𝑞 𝑗 if 𝑡 ∈ ( 𝑗−1
𝑘+1 ,

𝑗

𝑘+1 ] for 𝑗 ∈ [𝑘]

𝐹−1
𝑋
(𝑡) otherwise,

it is straightforward to see that an argument identical to the previous case gives the
following upper bound when the adversary chooses a maximum price of 𝜃:

CVaR𝛿 [1 · 1𝑋>𝜃 + 𝑋 · 1𝑋≤𝜃] ≤
1
𝑘

𝑘∑︁
𝑗=1

𝑝 𝑗 .

As a result, the 𝛿-CR in this case is lower bounded as

𝛼
𝜃,𝜇

𝛿
(𝜃) = 𝜃

CVaR𝛿 [1 · 1𝑋>𝜃 + 𝑋 · 1𝑋≤𝜃]

≥ 𝑘𝜃∑𝑘
𝑗=1 1 + (𝑟 − 1)

(
1 + 𝑟

𝑘

) 𝑗−1

=
𝑟𝜃

1 + (𝑟 − 1)
(
1 + 𝑟

𝑘

) 𝑘
= 𝑟 by (6.70).

Thus, we have established that any random threshold algorithm (and thus any
algorithm) for one-max search has 𝛿-CR at least 𝑟. For the analytic bounds in (6.9),
there are two cases: first, the 𝛿 ≥ 1

2 case follows from the fact that 𝛿 ≥ 1
2 implies

𝑘 = max
{
1, ⌈𝛿−1⌉ − 1

}
= 1, in which case 𝑟 =

√
𝜃. Second, the 𝛿 ↓ 0 case follows

as an immediate consequence of Lemma 6.D.1 upon noting that, for 𝛿 ∈ (0, 1],
𝑛(𝛿) = max

{
1, ⌈𝛿−1⌉ − 1

}
can be upper bounded as

max
{
1, ⌈𝛿−1⌉ − 1

}
≤ max

{
1, 𝛿−1} = 𝛿−1
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and lower bounded as

max
{
1, ⌈𝛿−1⌉ − 1

}
=


⌈𝛿−1⌉ − 1 if 𝛿 < 1

2

1 otherwise

≥


2
3 ⌈𝛿
−1⌉ if 𝛿 < 1

2

1 otherwise
(6.77)

≥


1
2𝛿
−1 if 𝛿 < 1

2

1 otherwise

≥ 1
2
𝛿−1,

where (6.77) follows from the fact that 𝛿 < 1
2 implies ⌈𝛿−1⌉ ≥ 3, so −1 ≥ −1

3 ⌈𝛿
−1⌉.

This concludes the proof.
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C h a p t e r 7

END-TO-END CONFORMAL CALIBRATION FOR
OPTIMIZATION UNDER UNCERTAINTY

In the previous chapter, we considered the design of online algorithms when faced
with risk-sensitive objectives. We now turn to a complementary question of how we
should best learn uncertainty estimates for risk-aware decision-making problems.
In particular, machine learning can significantly improve performance for decision-
making under uncertainty in a wide range of domains. However, ensuring robustness
guarantees requires well-calibrated uncertainty estimates, which can be difficult to
achieve with neural networks. Moreover, in high-dimensional settings, there may
be many valid uncertainty estimates, each with their own performance profile—i.e.,
not all uncertainty is equally valuable for downstream decision-making. To address
this problem, this chapter develops an end-to-end framework to learn uncertainty
sets for conditional robust optimization in a way that is informed by the down-
stream decision-making loss, with robustness and calibration guarantees provided
by conformal prediction. In addition, we propose to represent general convex uncer-
tainty sets with partially input-convex neural networks, which are learned as part of
our framework. Our approach consistently improves upon two-stage estimate-then-
optimize baselines on concrete applications in energy storage arbitrage and portfolio
optimization.

This chapter is primarily based on the following paper:

[1] C. Yeh∗, N. Christianson∗, A. Wu, A. Wierman, and Y. Yue. “End-to-End
Conformal Calibration for Optimization Under Uncertainty.” arXiv: 2409.
20534 [cs, math], [Online]. Available: http://arxiv.org/abs/
2409.20534.

7.1 Introduction
Well-calibrated estimates of forecast uncertainty are vital for risk-aware decision-
making in many real-world systems. For instance, grid-scale battery operators
forecast electricity prices to schedule battery charging/discharging to maximize
profit, while they rely on uncertainty estimates to minimize financial or operational
risk. Similarly, financial investors use forecasts of asset returns with uncertainty
estimates to maximize portfolio returns while minimizing downside risk.

https://arxiv.org/abs/2409.20534
https://arxiv.org/abs/2409.20534
http://arxiv.org/abs/2409.20534
http://arxiv.org/abs/2409.20534
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Figure 7.1: Whereas prior “estimate-then-optimize” (ETO, top) approaches separate
the model training from the optimization (decision-making) procedure, we propose
a framework for end-to-end (E2E, bottom) conformal calibration for optimization
under uncertainty that directly trains the machine learning model using gradients
from the task loss.

Historically, approaches for decision-making under uncertainty have often treated
the estimation of uncertainty separately from its use for downstream decision-
making. This “estimate then optimize” (ETO) paradigm [269] separates the problem
into an “estimate” stage, where a predictive model is trained to forecast the uncer-
tain quantity, yielding an uncertainty set estimate, followed by an “optimize” stage,
where the forecast uncertainty is used to make a decision. Notably, any cost as-
sociated with the downstream decision is usually not provided as feedback to the
predictive model.

A recent line of work [269–272] has made steps toward bridging the gap between
uncertainty quantification and robust optimization-driven decision-making, where
optimization problems take a forecast uncertainty set as a parameter, as is common in
energy systems [273, 274] and financial applications [275, 276]. However, existing
approaches are suboptimal for several reasons:

1. The predictive model is not trained with feedback from the downstream
objective. Because the downstream objective is often asymmetric with respect
to the forecasting model’s error, the trained predictive model, though it provides
accurate predictions, may yield significantly worse performance on the true
decision-making objective.

2. For the robust optimization to be tractable, the forecast uncertainty sets
have restricted parametric forms. Common parametric forms include box and
ellipsoidal uncertainty sets, limiting the expressivity of uncertainty estimates.

3. Because neural network models are often poor at estimating their own un-
certainty, the forecasts may not be well-calibrated. Recent approaches such
as isotonic regression [92] and conformal prediction [277] have made progress
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in providing calibrated uncertainty estimates from deep learning models, but
such methods are typically applied post-hoc to trained models and are therefore
difficult to incorporate into an end-to-end training procedure.

As such, there is as of yet no comprehensive methodology for training calibrated
uncertainty-aware deep learning models end-to-end with downstream decision-
making objectives. In this chapter, we provide the first such methodology. We
make three specific contributions corresponding to the three issues identified above:

1. We develop a framework for training prediction models end-to-end with
downstream decision-making objectives and conformal-calibrated uncer-
tainty sets in the context of the conditional robust optimization problem. This
framework is illustrated in Figure 7.1 (bottom). By including differentiable con-
formal calibration in our model during training, we close the loop and ensure that
feedback from the uncertainty’s impact on the downstream objective is accounted
for in the training process, since not all model errors nor uncertainty estimates
will result in the same downstream cost. This end-to-end training enables the
model to focus its learning capacity on minimizing error and uncertainty on
outputs with the largest decision-making cost, with more leeway for outputs that
have lower costs.

2. We propose using partially input-convex neural networks (PICNNs) as the
nonconformity score function for conformal prediction, enabling the ap-
proximate parametrization of arbitrary compact, convex uncertainty sets in
the conditional robust optimization problem. To the best of our knowledge,
no existing works use PICNNs to parametrize such arbitrary convex uncertainty
sets. Due to the universal convex function approximation property these networks
enjoy [278], this approach enables training much more general representations
of uncertainty than prior works have considered, which in turn yields substantial
improvements on downstream decision-making performance. Importantly, PIC-
NNs are well-matched to our conditional robust optimization problem: we show
that the robust problem resulting from this parametrization can be reformulated
as a tractable convex optimization problem.

3. We propose an exact and computationally efficient method to differentiate
through the conformal prediction procedure during training. Unlike prior
work [279], our method gives exact gradients, without using approximate ranking
and sorting methods.
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Finally, we extensively evaluate the performance of our approach on two applica-
tions: an energy storage arbitrage task and a portfolio optimization problem. We
demonstrate conclusively that the combination of end-to-end training with the flexi-
bility of the PICNN-based uncertainty sets consistently improves over ETO baseline
methods. The performance benefit of our end-to-end method is apparent even under
distribution shift. Our code is available on GitHub.

7.2 Problem Statement and Background
Our problem is defined formally as follows: suppose that data (𝑥, 𝑦) ∈ R𝑚 × R𝑛 is
sampled i.i.d. from an unknown joint distribution P. Upon observing the input 𝑥
(but not the label 𝑦), an agent makes a decision 𝑧 ∈ R𝑝. After the decision is made,
the true label 𝑦 is revealed, and the agent incurs a task loss 𝑓 (𝑥, 𝑦, 𝑧), for some
known task loss function 𝑓 : R𝑚 × R𝑛 × R𝑝 → R. In addition, the agent’s decision
must satisfy a set of joint constraints 𝑔(𝑥, 𝑦, 𝑧) ≤ 0 coupling 𝑥, 𝑦, and 𝑧.

As an illustrative example, consider an agent who would like to minimize the costs of
charging and discharging a battery over 24 hours in a day. The agent may use weather
forecasts and historical observations 𝑥 to predict future energy prices 𝑦. Based on
the predicted prices, the agent decides on the amount 𝑧 to charge or discharge the
battery. The task loss 𝑓 is the cost incurred by the agent, and the constraints 𝑔
include limits on how fast the battery can charge as well as the maximum capacity
of the battery. This example is explored in more detail in Section 7.5.

Because the agent does not observe the label 𝑦 prior to making its decision, ensuring
good performance and constraint satisfaction requires that the agent makes decisions
𝑧 that are robust to the various outcomes of 𝑦. A common objective is to choose 𝑧
to robustly minimize the task loss and satisfy the constraints over all realizations of
𝑦 within a (1− 𝛼)-confidence region Ω(𝑥) ⊂ R𝑛 of the true conditional distribution
P(𝑦 | 𝑥), where 𝛼 ∈ (0, 1) is a fixed risk level based on operational requirements.
In this case, the agent’s robust decision can be expressed as the optimal solution to
the following conditional robust optimization (CRO) problem [269]:

𝑧★(𝑥) := arg min
𝑧∈R𝑝

max
�̂�∈Ω(𝑥)

𝑓 (𝑥, �̂�, 𝑧) s.t. 𝑔(𝑥, �̂�, 𝑧) ≤ 0. (7.1)

After the agent decides 𝑧★(𝑥), the true label 𝑦 is revealed, and the agent incurs the
task loss 𝑓 (𝑥, 𝑦, 𝑧★(𝑥)). Thus, the agent seeks to minimize expected task loss

E(𝑥,𝑦)∼P
[
𝑓 (𝑥, 𝑦, 𝑧★(𝑥))

]
. (7.2)

https://github.com/chrisyeh96/e2e-conformal
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While the joint distribution P is unknown, we assume that we have a dataset
𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 of i.i.d. samples from P. Then, our objective is to train a machine
learning model to learn an approximate (1 − 𝛼)-confidence set Ω(𝑥) of possible 𝑦
values for each input 𝑥. Formally, our learned Ω(𝑥) should satisfy the following
marginal coverage guarantee.

Definition 7.2.1 (marginal coverage). An uncertainty set Ω(𝑥) for the distribution
P provides marginal coverage at level (1 − 𝛼) if P(𝑥,𝑦)∼P (𝑦 ∈ Ω(𝑥)) ≥ 1 − 𝛼.

Comparison to related work. The problem of constructing data-driven and
machine-learned uncertainty sets with probabilistic coverage guarantees for use
in robust optimization has been widely explored in prior literature (e.g., [280–283]).
Chenreddy, Bandi, and Delage [269] first coined the phrase “conditional robust
optimization” for the problem (7.1) and considered learning context-dependent un-
certainty setsΩ(𝑥) in this setting. However, their approach results in a mixed integer
optimization that is intractable to solve for large-scale problems. Moreover, they
follow the “estimate then optimize” (ETO) paradigm [284]. As shown in Figure 7.1
(top), the ETO paradigm separates the machine learning model training from the
decision optimization. The lack of feedback from the downstream task loss dur-
ing model training in ETO generally leads to uncertainty sets Ω(𝑥) which yield
suboptimal results. Several other recent papers follow the ETO paradigm using ho-
moskedastic ellipsoidal uncertainty sets [285], heteroskedastic box and ellipsoidal
uncertainty sets [286], and a “union of balls” parametrization of uncertainty [270].
In our experiments (Section 7.5), we demonstrate consistent improvements over the
methods of Johnstone and Cox [285] and Sun, Liu, and Li [286].

Closest to our work is an “end-to-end” formulation of the CRO problem posed by
Chenreddy and Delage [272], which aims to learn conditional uncertainty sets Ω(𝑥)
using a weighted combination of the downstream task loss along with a “conditional
coverage loss” to promote calibrated uncertainty. However, they focus solely on
ellipsoidal uncertainty sets, and their conditional coverage loss does not provably
ensure coverage for their learned uncertainty sets. In our experiments, we do
not compare against Chenreddy and Delage [272] because we only consider other
methods with a provable coverage guarantee.1

1As of the time of writing, the approach of Chenreddy and Delage [272] also suffers from
substantial inconsistencies between their code implementation and the equations from their paper.
In particular, the conditional coverage loss proposed in their paper is not implementable, as it will
(almost surely) yield zero gradients.

https://github.com/Achenred/End-to-end-CRO/
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A concurrent related work by Wang et al. [271] approaches the problem of learning
unconditional uncertainty sets for robust optimization, while achieving finite sample
robust constraint satisfaction guarantees. While their method also uses an end-to-end
task loss, we find their use of the same uncertainty set Ω for every problem instance
(i.e., Ω is independent of 𝑥) to be highly restrictive and unrealistic. For example, in
the context of our battery control problem, this restriction would disallow the use of
weather forecasts and historical price data to estimate uncertainty in future energy
prices. Moreover, they also use restrictive uncertainty set parametrizations such as
box, ellipsoidal, and polyhedral uncertainty.

In contrast, our work overcomes these limitations: we incorporate differentiable
conformal calibration during training to ensure that uncertainty is learned end-
to-end in a manner that is both calibrated and minimizes task loss. We apply
split conformal post-hoc calibration during inference for provable guarantees on
coverage. Furthermore, we use partially input-convex neural networks [287] to
directly parameterize the nonconformity score function in conformal prediction,
enabling a general and expressive representation of arbitrary conditional convex
uncertainty regions that can vary with 𝑥 and be used efficiently in robust optimization.

Beyond the above closely related work, this chapter builds upon and contributes to
several different areas in machine learning and robust optimization; see Section 7.B
for a comprehensive discussion.

7.3 End-to-End Training of Conformally Calibrated Uncertainty Sets
In this section, we describe our proposed methodological framework for end-to-end
task-aware training of predictive models with conformally calibrated uncertainty for
the conditional robust optimization problem (7.1). Our overarching goal is to learn
uncertainty sets Ω(𝑥) which provide (1 − 𝛼) coverage for any choice of 𝛼 ∈ (0, 1),
and which offer the lowest possible task loss (7.2). To this end, we must consider
three primary questions:

1. How should the family of uncertainty sets Ω(𝑥) be parametrized?
2. How can we guarantee that the uncertainty set Ω(𝑥) provides coverage at level

1 − 𝛼?
3. How can the uncertainty set Ω(𝑥) be learned to minimize expected task loss?

Figure 7.1 (bottom) illustrates the key parts of our framework to answer these
questions. First, we use a machine learning model to parametrize a nonconformity
score function 𝑠𝜃 , and we define the uncertainty set Ω(𝑥) to be a 𝑞-sublevel set
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of 𝑠𝜃 (𝑥, ·). Second, we use conformal calibration to pick 𝑞 to enforce marginal
coverage. Third, we backpropagate gradients through both the robust optimization
and conformal calibration steps to update the machine learning model, thereby
enabling end-to-end learning. Section 7.3 describe each of these parts in detail, and
Algorithm 12 shows pseudocode for both training and inference.

For the rest of the chapter, we make the following assumptions on the functions 𝑓
and 𝑔 to ensure tractability of the resulting optimization problem.

Assumption 7.1. We assume the task loss has the form 𝑓 (𝑥, 𝑦, 𝑧) = 𝑦⊤𝐹 (𝑥, 𝑧) +
𝑓 (𝑥, 𝑧), where 𝐹 (𝑥, 𝑧) is an affine function of 𝑧 and 𝑓 (𝑥, 𝑧) is convex in 𝑧. Further-
more, we assume that 𝑔(𝑥, 𝑦, 𝑧) = 𝑔(𝑥, 𝑧) does not depend on 𝑦 and that 𝑔 is convex
in 𝑧.

Representations of the uncertainty set
We consider convex uncertainty sets of the form

Ω𝜃 (𝑥) = {�̂� ∈ R𝑛 | 𝑠𝜃 (𝑥, �̂�) ≤ 𝑞} , (7.3)

where 𝑠𝜃 : R𝑚 ×R𝑛 → R is an arbitrary nonconformity score function that is convex
in �̂�, 𝑞 is a scalar, and 𝜃 collects the parameters of a model that we will seek to
learn. Note that this representation loses no generality; any family of convex sets
Ω(𝑥) can be represented as such a collection of sublevel sets of a partially input-
convex function 𝑠(𝑥, �̂�). This particular representation is chosen due to the ease of
calibrating sets of this form via conformal prediction to ensure marginal coverage,
as we will describe in Section 7.3.

In choosing a particular score function 𝑠𝜃 , one must balance two considerations: first,
the generality of the sets Ω𝜃 (𝑥) that 𝑠𝜃 can represent, and second, the tractability
of the resulting robust optimization problem (7.1). We will now show that our
representation (7.3) generalizes commonly-used box and ellipsoidal uncertainty
sets, which are known to have tractable robust problems; later, in Section 7.4, we
will propose to approximate more general convex uncertainty sets using partially
input-convex neural networks.

Box uncertainty sets. A simple uncertainty representation is box uncertainty
where Ω(𝑥) = [𝑦(𝑥), 𝑦(𝑥)] is an 𝑛-dimensional box whose lower and upper bounds
depend on 𝑥. Let ℎ𝜃 : R𝑚 → R𝑛 × R𝑛 be a neural network that estimates lower
and upper bounds: ℎ𝜃 (𝑥) = (ℎlo

𝜃
(𝑥), ℎhi

𝜃
(𝑥)). To represent a box uncertainty set
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in the form (7.3), we define a nonconformity score function that generalizes scalar
conformalized quantile regression [288]:

𝑠𝜃 (𝑥, 𝑦) = max(∥ℎlo
𝜃 (𝑥) − 𝑦∥∞, ∥𝑦 − ℎ

hi
𝜃 (𝑥)∥∞).

Then, the uncertainty set (7.3) becomes

Ω𝜃 (𝑥) =
[
ℎlo
𝜃 (𝑥) − 𝑞1, ℎhi

𝜃 (𝑥) + 𝑞1
]
=:

[
𝑦(𝑥), 𝑦(𝑥)

]
.

Given a box uncertainty set Ω𝜃 (𝑥), we can take the dual of the inner maximization
problem (see Section 7.C) to transform the robust optimization problem (7.1) into
an equivalent form that is convex, and hence tractable, under Assumption 7.1:

arg min
𝑧∈R𝑝

min
𝜈∈R𝑛

(𝑦(𝑥) − 𝑦(𝑥))⊤𝜈 + 𝑦(𝑥)⊤𝐹 (𝑥, 𝑧) + 𝑓 (𝑥, 𝑧)

s.t. 𝜈 ≥ 0, 𝜈 − 𝐹 (𝑥, 𝑧) ≥ 0, 𝑔(𝑥, 𝑧) ≤ 0.
(7.4)

Ellipsoidal uncertainty sets. Another common form of uncertainty set is ellip-
soidal uncertainty. Suppose a neural network model ℎ𝜃 : R𝑚 → R𝑛 × S𝑛+ predicts
mean and covariance parameters ℎ𝜃 (𝑥) = (𝜇𝜃 (𝑥),Σ𝜃 (𝑥)), so that P̂ (𝑦 | 𝑥; 𝜃) =
N(𝑦 | 𝜇𝜃 (𝑥),Σ𝜃 (𝑥)) denotes a predicted conditional density, where N(· | 𝜇, Σ) is
the multivariate normal density function. In this case, we define the nonconformity
score function based on the squared Mahalanobis distance [285, 286]

𝑠𝜃 (𝑥, 𝑦) = (𝑦 − 𝜇𝜃 (𝑥))⊤(Σ𝜃 (𝑥))−1(𝑦 − 𝜇𝜃 (𝑥)),

which yields uncertainty sets (7.3) that are ellipsoidal:

Ω𝜃 (𝑥) = {�̂� | ( �̂� − 𝜇𝜃 (𝑥))⊤(Σ𝜃 (𝑥))−1( �̂� − 𝜇𝜃 (𝑥)) ≤ 𝑞}.

Let 𝐿𝜃 (𝑥) denote the unique lower-triangular Cholesky factor of Σ𝜃 (𝑥) (i.e., Σ𝜃 (𝑥) =
𝐿𝜃 (𝑥)𝐿𝜃 (𝑥)⊤). Taking the dual of the inner maximization problem and invoking
strong duality (see Section 7.C), we transform the robust optimization problem (7.1)
into an equivalent form that is convex, and hence tractable, under Assumption 7.1:

arg min
𝑧∈R𝑝

√
𝑞∥𝐿𝜃 (𝑥)⊤𝐹 (𝑥, 𝑧)∥2 + 𝜇𝜃 (𝑥)⊤𝐹 (𝑥, 𝑧) + 𝑓 (𝑥, 𝑧)

s.t. 𝑔(𝑥, 𝑧) ≤ 0.
(7.5)

Conformal uncertainty set calibration
As long as the uncertainty set Ω𝜃 (𝑥) can be expressed in the form (7.3), we can
use the split conformal prediction procedure at inference time to choose a value 𝑞
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Algorithm 12: End-to-end conformal calibration for robust decisions under
uncertainty

1 function Train(training data 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, uncertainty level 𝛼, initial
model parameters 𝜃):

2 foreach mini-batch 𝐵 ⊂ {1, . . . , 𝑁} do
3 Randomly split batch: 𝐵 = (𝐵cal, 𝐵pred)
4 Compute 𝑞 = Quantile({𝑠𝜃 (𝑥𝑖, 𝑦𝑖)}𝑖∈𝐵cal , 1 − 𝛼)
5 foreach 𝑖 ∈ 𝐵pred do
6 Solve for robust decision 𝑧★

𝜃
(𝑥𝑖) using (7.4), (7.5), or (7.7)

7 Compute gradient of task loss: 𝑑𝜃𝑖 = 𝜕 𝑓 (𝑥𝑖, 𝑦𝑖, 𝑧★𝜃 (𝑥𝑖))/𝜕𝜃
8 end
9 Update 𝜃 using gradients

∑
𝑖∈𝐵pred 𝑑𝜃𝑖

10 end
11 function Inference(model parameters 𝜃, calibration data 𝐷cal = {(𝑥𝑖, 𝑦𝑖)}𝑀𝑖=1,

uncertainty level 𝛼, input 𝑥):
12 Compute 𝑞 = Quantile({𝑠𝜃 (𝑥, �̃�)}(𝑥,�̃�)∈𝐷cal , 1 − 𝛼)
13 return robust decision 𝑧★

𝜃
(𝑥) using (7.4), (7.5), or (7.7)

14 function Quantile(scores 𝑆 = {𝑠𝑖}𝑀𝑖=1, level 𝛽):
15 𝑠(1) , . . . , 𝑠(𝑀+1) = SortAscending(𝑆 ∪ {+∞})
16 return 𝑠(⌈(𝑀+1)𝛽⌉)

that ensures Ω𝜃 (𝑥) provides marginal coverage (Theorem 7.2.1) at any confidence
level 1 − 𝛼. The split conformal procedure assumes access to a calibration dataset
𝐷cal = {(𝑥𝑖, 𝑦𝑖)}𝑀𝑖=1 drawn exchangeably from P. We refer readers to Angelopoulos
and Bates [90] for details on this procedure.

Lemma 7.3.1 (from Angelopoulos and Bates [90], Appendix D). Let 𝐷cal =

{(𝑥𝑖, 𝑦𝑖)}𝑀𝑖=1 be a calibration dataset drawn exchangeably (e.g., i.i.d.) from P,
and let 𝑠𝑖 = 𝑠𝜃 (𝑥𝑖, 𝑦𝑖). If 𝑞 = Quantile({𝑠𝑖}𝑀𝑖=1, 1 − 𝛼) (see Algorithm 12) is the
empirical ⌈(𝑀+1) (1−𝛼)⌉

𝑀
-quantile of the set {𝑠𝑖}𝑀𝑖=1 and (𝑥, 𝑦) is drawn exchangeably

with 𝐷cal, then Ω𝜃 (𝑥) has the marginal coverage guarantee

1 − 𝛼 ≤ P𝑥,𝑦,𝐷cal (𝑦 ∈ Ω𝜃 (𝑥)) ≤ 1 − 𝛼 + 1
𝑀 + 1

.

We use split conformal prediction, rather than full conformal prediction, both
for computational tractability and to avoid the problem of nonconvex uncertainty
sets that can arise from the full conformal approach, as noted in Johnstone and
Cox [285]. For the rest of this chapter, we assume 𝛼 ∈ [ 1

𝑀+1 , 1) so that
𝑞 = Quantile({𝑠𝑖}𝑀𝑖=1, 1 − 𝛼) < ∞ is finite. Thus, for appropriate choices of
the score function 𝑠𝜃 , the uncertainty set Ω𝜃 (𝑥) is not unbounded.
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While the split conformal prediction procedure in Theorem 7.3.1 ensures that the
uncertainty set Ω𝜃 (𝑥) satisfies (1 − 𝛼) coverage at inference time, this process does
not address the question of training the uncertainty set Ω𝜃 (𝑥) (via the score function
𝑠𝜃) to ensure optimal task performance while maintaining coverage. In Section 7.3,
we propose applying a separate differentiable conformal prediction procedure during
training to address this challenge.

End-to-end training and calibration
Thus far, we have discussed how to calibrate an uncertainty set Ω𝜃 (𝑥) of the
form (7.3) to ensure coverage, and we described two choices of score function 𝑠𝜃
parametrizing common box and ellipsoidal uncertainty sets. However, to ensure that
the uncertainty sets Ω𝜃 (𝑥) both guarantee coverage and ensure optimal downstream
task performance, it is necessary to design an end-to-end training methodology that
can incorporate both desiderata in a fully differentiable manner. We propose such a
methodology in Algorithm 12.

Our end-to-end training approach minimizes the empirical task loss
ℓ(𝜃) = 1

𝑁

∑𝑁
𝑖=1 ℓ𝑖 (𝜃) using minibatch gradient descent, where ℓ𝑖 (𝜃) =

𝑓 (𝑥𝑖, 𝑦𝑖, 𝑧★𝜃 (𝑥𝑖)). This requires differentiating through both the robust optimiza-
tion problem as well as the conformal prediction step. The gradient of the task
loss on a single instance is dℓ𝑖

d𝜃 =
𝜕 𝑓

𝜕𝑧
| (𝑥𝑖 ,𝑦𝑖 ,𝑧★𝜃 (𝑥𝑖))

𝜕𝑧★
𝜃

𝜕𝜃
|𝑥𝑖 , where 𝜕𝑧★

𝜃

𝜕𝜃
|𝑥𝑖 is computed by

differentiating through the Karush–Kuhn–Tucker (KKT) conditions of the convex
reformulation of the optimization problem (7.1) (i.e., the problems (7.4), (7.5))
following the approach of Amos and Kolter [289], under mild assumptions on the
differentiability of 𝑓 and 𝑔. Note that the gradient of any convex optimization
problem can be computed with respect to its parameters as such [290, Appendix B].

To include calibration during training, we assume that for every (𝑥, 𝑦) in our training
set, 𝑠𝜃 (𝑥, 𝑦) is differentiable w.r.t. 𝜃 almost everywhere; this assumption holds for
common nonconformity score functions, including those used in this chapter. We
then adopt the conformal training approach [279] in which a separate 𝑞 is chosen
in each minibatch, as shown in Algorithm 12. The chosen 𝑞 depends on 𝜃 (through
𝑠𝜃), and 𝑧★

𝜃
(𝑥𝑖) depends on the chosen 𝑞. Therefore 𝜕𝑧★

𝜃

𝜕𝜃
involves calculating 𝜕𝑧★

𝜃

𝜕𝑞

𝜕𝑞

𝜕𝜃
,

where 𝜕𝑞

𝜕𝜃
requires differentiating through the empirical quantile function. Whereas

Stutz et al. [279] uses a smoothed approximate quantile function for calculating 𝑞,
we find the smoothing unnecessary, as the gradient of the empirical quantile function
is unique and well-defined almost everywhere. Importantly, our exact gradient is
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Figure 7.2: Consider a robust portfolio optimization problem with 2 assets, where
𝑦 ∈ R2 is a random vector of asset returns, and the decision 𝑧 ∈ R2 represents
portfolio weights: max𝑧 min�̂�∈Ω −𝑧⊤ �̂� s.t. 𝑧 ≥ 0, 1⊤𝑧 ≤ 1. Let the distribution of
asset returns 𝑦 be uniform over 3 discrete points (black). The optimal box (blue),
ellipse (orange), and PICNN (green) uncertainty sets are shown with their robust
decision vectors 𝑧★. The flexibility of the PICNN uncertainty representation allows
it to achieve the lowest expected task loss.

both more computationally efficient and simpler to implement than the smoothed
approximate quantile approach. See Section 7.D for more details.

After training has concluded and we have performed the final conformal calibration
step, the resulting model enjoys the following theoretical guarantee on performance
(cf. Sun, Liu, and Li [286, Proposition 1]).

Proposition 7.3.2. Under the same assumptions as Theorem 7.3.1, the task loss
satisfies the following bound with probability at least 1 − 𝛼 (over 𝑥, 𝑦, and the
calibration set 𝐷cal):

𝑓 (𝑥, 𝑦, 𝑧★𝜃 (𝑥))

≤
(
min
𝑧∈R𝑝

max
�̂�∈Ω𝜃 (𝑥)

𝑓 (𝑥, �̂�, 𝑧) s.t. 𝑔(𝑥, �̂�, 𝑧) ≤ 0
)
.

Proof. This result is an immediate consequence of the split conformal coverage
guarantee of Theorem 7.3.1, which ensures that for the true (𝑥, 𝑦) ∼ P, P𝑥,𝑦,𝐷cal (𝑦 ∈
Ω𝜃 (𝑥)) ≥ 1 − 𝛼, despite the fact that the distribution P(𝑦 | 𝑥) is unknown. The
realized task loss will thus, with probability at least 1 − 𝛼, improve on the optimal
value of the robust problem (7.1).

7.4 Representing General Convex Uncertainty Sets via PICNNs
The previous section discussed how to train calibrated box and ellipsoidal uncer-
tainty sets end-to-end to optimize the downstream task loss. However, both box and
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ellipsoidal uncertainty sets have restrictive shapes which may yield suboptimal task
performance. If Ω𝜃 (𝑥) could represent any arbitrary convex uncertainty set, this
more expressive class would enable obtaining better task loss. Figure 7.2 illustrates
an example where a general convex uncertainty set representation provides a clear
advantage over box and ellipsoid uncertainty.

To this end, we propose to directly learn a partially-convex nonconformity score
function 𝑠𝜃 : R𝑚 ×R𝑛 → R that is convex only in the second input vector. Fixing 𝑥,
any 𝑞-sublevel set {�̂� ∈ R𝑛 | 𝑠𝜃 (𝑥, �̂�) ≤ 𝑞} of 𝑠𝜃 is a convex set, and likewise every
family of convex sets can be expressed as the 𝑞-sublevel sets of some partially-convex
function. To implement this approach, we are faced with two questions.

1. How should we parametrize the score function 𝑠𝜃 so Ω𝜃 (𝑥) can approxi-
mate arbitrary convex sets? A natural answer is to parametrize 𝑠𝜃 with a par-
tially input-convex neural network (PICNN) [287], which can efficiently approx-
imate any partially-convex function [278]. We consider a PICNN defined as
𝑠𝜃 (𝑥, 𝑦) = 𝑊𝐿𝜎𝐿 +𝑉𝐿𝑦 + 𝑏𝐿 , where

𝜎0 = 0, 𝑢0 = 𝑥, 𝑊𝑙 = �̄�𝑙 diag( [�̂�𝑙𝑢𝑙 + 𝑤𝑙]+)
𝑢𝑙+1 = ReLU (𝑅𝑙𝑢𝑙 + 𝑟𝑙) , 𝑉𝑙 = �̄�𝑙 diag(�̂�𝑙𝑢𝑙 + 𝑣𝑙)
𝜎𝑙+1 = ReLU (𝑊𝑙𝜎𝑙 +𝑉𝑙𝑦 + 𝑏𝑙) , 𝑏𝑙 = �̄�𝑙𝑢𝑙 + �̄�𝑙 ,

(7.6)

with weights 𝜃 = (𝑅𝑙 , 𝑟𝑙 , �̄�𝑙 , �̂�𝑙 , 𝑤𝑙 , �̄�𝑙 , �̂�𝑙 , 𝑣𝑙 , �̄�𝑙 , �̄�𝑙)𝐿𝑙=0. The matrices �̄�𝑙 are con-
strained to be entrywise nonnegative to ensure convexity of 𝑠𝜃 with respect to 𝑦. For
ease of notation, we assume all hidden layers 𝜎1, . . . , 𝜎𝐿 have the same dimension
𝑑.

2. Does the chosen parametrization of Ω𝜃 (𝑥) (via PICNNs) yield a tractable
reformulation of the CRO problem (7.1)? Fortunately, we show in the following
theorem that the answer is yes.

Theorem 7.4.1. Let Ω𝜃 (𝑥) = {�̂� ∈ R𝑛 | 𝑠𝜃 (𝑥, �̂�) ≤ 𝑞}, where 𝑠𝜃 is a PICNN
as defined in (7.6). Then, under Assumption 7.1, the CRO problem (7.1) with
uncertainty set Ω𝜃 (𝑥) is equivalent to the following convex (and hence tractable)
minimization problem:

arg min
𝑧∈R𝑝

min
𝜈∈R2𝐿𝑑+1

𝑏(𝜃, 𝑞)⊤𝜈 + 𝑓 (𝑥, 𝑧)

s.t. 𝐴(𝜃)⊤𝜈 =
[
𝐹 (𝑥, 𝑧)

0

]
, 𝜈 ≥ 0, 𝑔(𝑥, 𝑧) ≤ 0

(7.7)
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where 𝐴(𝜃) ∈ R(2𝐿𝑑+1)×(𝑛+𝐿𝑑) and 𝑏(𝜃, 𝑞) ∈ R2𝐿𝑑+1 are constructed from the
weights 𝜃 of the PICNN (7.6), and 𝑏 also depends on 𝑞.

We prove Theorem 7.4.1 in Section 7.C; the main idea is that whenΩ𝜃 (𝑥) is a sublevel
set of a PICNN, we can equivalently reformulate the inner maximization problem in
(7.1) as a linear program and take the dual to yield a tractable minimization problem.

Since the PICNN uncertainty sets are of the same form as (7.3) and yield a tractable
convex reformulation (7.7) of the CRO problem (7.1), we can apply the split con-
formal procedure detailed in Section 7.3 to choose 𝑞 ∈ R and obtain coverage
guarantees on Ω𝜃 (𝑥), and we can employ the same end-to-end training methodology
from Section 7.3 to train calibrated uncertainties end-to-end using the downstream
task loss. In some cases during training, the inner maximization problem of (7.1)
with PICNN-parametrized uncertainty set may be unbounded (if Ω𝜃 (𝑥) is not com-
pact) or infeasible (if the chosen 𝑞 is too small causing Ω𝜃 (𝑥) to be empty). This
will lead, respectively, to an infeasible or unbounded equivalent problem (7.7). We
can avoid this concern by adjusting the PICNN architecture to ensure its sublevel
sets are compact and by suitably increasing 𝑞 when needed to ensure Ω𝜃 (𝑥) is never
empty. Such modifications do not change the general form of the problem (7.7)
and preserve the marginal coverage guarantee for the uncertainty set Ω𝜃 (𝑥); see
Section 7.C for details.

7.5 Experiments
In this section, we present experimental results for our E2E method against several
ETO baselines. Code to reproduce our results are provided in the supplementary
materials.

Problem descriptions
We consider two tasks: price forecasting for battery storage operation and portfolio
optimization. Their task loss functions and constraints satisfy Assumption 7.1.

Price forecasting for battery storage. This problem comes from Donti, Amos,
and Kolter [291], where a grid-scale battery operator predicts electricity prices
𝑦 ∈ R𝑇 over a 𝑇-step horizon and uses the predicted prices to decide a battery
charge/discharge schedule for price arbitrage. The input features 𝑥 include the past
day’s prices and temperature, the next day’s energy load forecast and temperature
forecast, binary indicators of weekends or holidays, and yearly sinusoidal features.
The operator decides how much to charge (𝑧in ∈ R𝑇 ) or discharge (𝑧out ∈ R𝑇 ) the
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Figure 7.3: Task loss performance (mean ±1 stddev across 10 runs) for the battery
storage problem with no distribution shift (top) and with distribution shift (bottom).
Lower values are better.

battery, which changes the battery’s state of charge (𝑧state ∈ R𝑇 ). The battery has
capacity 𝐵, charging efficiency 𝛾, and maximum charging/discharging rates 𝑐in and
𝑐out. The task loss function represents the multiple objectives of maximizing profit,
flexibility to participate in other markets by keeping the battery near half its capacity
(with weight 𝜆), and battery health by discouraging rapid charging/discharging (with
weight 𝜖):

𝑓 (𝑦, 𝑧) =
𝑇∑︁
𝑡=1

𝑦𝑡 (𝑧in − 𝑧out)𝑡 + 𝜆∥𝑧state − 𝐵
2

1∥2 + 𝜖 ∥𝑧in∥2 + 𝜖 ∥𝑧out∥2.

The constraints are, for all 𝑡 = 1, . . . , 𝑇 ,

𝑧state
0 = 𝐵/2, 𝑧state

𝑡 = 𝑧state
𝑡−1 − 𝑧

out
𝑡 + 𝛾𝑧in

𝑡 ,

0 ≤ 𝑧in ≤ 𝑐in, 0 ≤ 𝑧out ≤ 𝑐out, 0 ≤ 𝑧state
𝑡 ≤ 𝐵.

Following Donti, Amos, and Kolter [291], we set 𝑇 = 24, 𝐵 = 1, 𝛾 = 0.9, 𝑐in = 0.5,
𝑐out = 0.2, 𝜆 = 0.1, and 𝜖 = 0.05.

Portfolio optimization. We adopt the portfolio optimization setting and synthetic
dataset from Chenreddy and Delage [272], where the prediction targets 𝑦 ∈ R𝑛 are
the returns of a set of 𝑛 securities, and the decision 𝑧 ∈ R𝑛 sets portfolio weights.
The task loss is 𝑓 (𝑦, 𝑧) = −𝑦⊤𝑧, with constraints 𝑧 ≥ 0, 1⊤𝑧 = 1. The synthetic
dataset consists of (𝑥, 𝑦) ∈ R2×2 drawn from a mixture of three 4-D multivariate
normal distributions. For these experiments, we provide details about the data in
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Section 7.E and experimental results in Section 7.A. The results are similar to those
for battery storage, except that portfolio optimization is a lower dimensional and
easier problem.

Baseline methods
We implemented several “estimate-then-optimize” (ETO) baselines, listed below,
to compare against our end-to-end (E2E) method. These two-stage ETO baselines
are trained using task-agnostic losses such as pinball loss or negative log-likelihood
(NLL). To ensure a fair comparison against our E2E method, we also apply conformal
calibration to each ETO method after training to satisfy coverage.

• ETO denotes models with identical neural network architectures to our E2E models,
differing only in the loss function during training. The box uncertainty ETO
model is trained with pinball loss to predict the 𝛼

2 and 1 − 𝛼
2 quantiles. The

ellipsoidal uncertainty ETO model is trained with a multivariate normal negative
log-likelihood loss. For the PICNN ETO model, we train 𝑠𝜃 using a negative
log-likelihood loss by interpreting 𝑠𝜃 as an energy function—i.e., P̂𝜃 (𝑦 | 𝑥) ∝
exp(−𝑠𝜃 (𝑥, 𝑦))—yielding the loss NLL(𝜃) = ln 𝑠𝜃 (𝑥, 𝑦)+ln 𝑍𝜃 (𝑥),where 𝑍𝜃 (𝑥) =∫
�̃�∈R𝑛 exp(−𝑠𝜃 (𝑥, �̃�)) d�̃�, following the approach of Lin and Ba [292]. More details

of the ETO models are given in Section 7.E.
• ETO-SLL is our implementation of the box and ellipsoid uncertainty ETO methods

from Sun, Liu, and Li [286]. Unlike ETO, ETO-SLL first trains a point estimate
model (without uncertainty) with mean-squared error loss. Then, ETO-SLL box
and ellipsoidal uncertainty sets are derived from training a separate quantile
regressor using pinball loss to predict the (1−𝛼)-quantiles of absolute residuals or
ℓ2-norm of residuals of the point estimate. Unlike ETOwhich can learn ellipsoidal
uncertainty sets with different covariance matrices for each input 𝑥, the ETO-SLL
ellipsoidal uncertainty sets all share the same covariance matrix (up to scale).

• ETO-JC is our implementation of the ellipsoid uncertainty ETO method by John-
stone and Cox [285]. Like ETO-SLL, ETO-JC also first trains a point estimate
model (without uncertainty) with mean-squared error loss. ETO-JC uses the same
covariance matrix (with the same scale) for each input 𝑥.

Battery storage problem results
Figure 7.3 (top) compares task loss performance for different uncertainty levels
(𝛼 ∈ {.01, .05, .1, .2}) and the different uncertainty set representations for the ETO
baselines against our proposed E2E methodology on the battery storage problem with
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no distribution shift. Our E2E approach consistently yields improved performance
over all ETO baslines, for all three uncertainty set parametrizations, and over all
tested uncertainty levels 𝛼. Moreover, the PICNN uncertainty representation, when
trained end-to-end, provides up to 42% relative improvement in performance over
the best ETO box uncertainty set and up to 209% relative improvement over the
best ETO ellipse uncertainty set. We additionally show the corresponding coverage
obtained by the learned uncertainty sets in Figure 7.4 (top); all models obtain
coverage close to the target level, confirming that the improvements in task loss
performance from our E2E approach do not come at the cost of worse coverage.

Performance under distribution shift
The aforementioned results were produced without distribution shift, where our
training and test sets were sampled uniformly at random, thus ensuring exchange-
ability and guaranteeing marginal coverage. In this section, we evaluate our method
on the more realistic setting with distribution shift by splitting our data temporally;
our models are trained on the first 80% of days and evaluated on the last 20% of
days. Figures 7.3 (bottom) and 7.4 (bottom) mirror Figures 7.3 (top) and 7.4 (top),
except that there is now distribution shift. We again find that our E2E approach
consistently yields improved performance over all ETO baselines, for all three un-
certainty set parametrizations, and for all tested uncertainty levels 𝛼. Likewise, the
PICNN uncertainties, when trained end-to-end, improve on the performance offered
by box and ellipsoidal uncertainty. We find unsurprisingly that, under distribution
shift, the models do not provide the same level of coverage guaranteed in the i.i.d.
case, as the exchangeability assumption needed for conformal prediction no longer
holds. The ellipsoidal and PICNN models tend to provide worse coverage than the
box uncertainty, which we believe reflects how ellipsoidal and PICNN uncertainty
sets offer greater representational power, and thus might be fitting too closely to the
pre-shift distribution, which impacts robustness under distribution shift. Devising
methods to anticipate distribution shift when training these more expressive models,
and in particular the PICNN-based uncertainty, remains an interesting avenue for
future work.

7.6 Conclusion
In this chapter, we develop the first end-to-end methodology for training predictive
models with uncertainty estimates (with calibration enforced differentiably through-
out training) that are utilized in downstream conditional robust optimization prob-
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lems. We demonstrate an approach utilizing partially input-convex neural networks
(PICNNs) to represent general convex uncertainty regions, and we perform exten-
sive experiments on a battery storage application and a portfolio optimization task.
Whereas prior works on two-stage estimate-then-optimize approaches emphasized
“the convenience brought by the disentanglement of the prediction and the uncer-
tainty calibration” [286], our results highlight that such “convenience” comes at a
substantial cost; our end-to-end approach, combined with the expressiveness of the
PICNN representation, has clear performance gains over the traditional two-stage
methods.

A number of interesting directions for future work on learning decision-aware uncer-
tainty in an end-to-end manner remain. First, while our PICNN-based uncertainty set
representation allows the parametrization of general convex uncertainty sets, future
work may explore nonconvex uncertainty regions. Doing so may require eschewing
the analytical methods for differentiating through convex optimization problems
and instead use, e.g., policy gradient methods for passing gradients through general
stochastic and robust optimization problems. Second, developing end-to-end meth-
ods to target conditional calibration (as opposed to marginal calibration) remains
an active research direction. Finally, one may explore other types of constraints
besides uncertainty set-based robustness, such as value-at-risk (VaR) or conditional
value-at-risk (CVaR) constraints.

Appendix
In these appendix sections, we present additional experimental results and descrip-
tions, we discuss our contributions in the context of related work, and we provide
theoretical details and proofs underlying our proposed methodology.

7.A Additional Experimental Results
Experimental results: Battery storage
The optimal task losses shown in black dotted lines in Figure 7.3 are the lowest
average achievable task loss on the test set given perfect knowledge of the target
𝑦. The optimal task loss is calculated for each example (𝑥, 𝑦) in the test set as
𝑓 (𝑥, 𝑦, 𝑧★opt) where

𝑧★opt = arg min
𝑧∈R𝑝

𝑓 (𝑥, 𝑦, 𝑧) s.t. 𝑔(𝑥, 𝑦, 𝑧) ≤ 0.

Figure 7.4 plots the marginal coverage of the different uncertainty sets across four
levels of 𝛼. As discussed in Section 7.5, coverage levels stay consistent between the
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Figure 7.4: Coverage (mean ±1 stddev across 10 runs) for the battery storage
problem with no distribution shift (top) and with distribution shift (bottom). The
dotted black line indicates the target coverage level 1 − 𝛼. Our E2E models achieve
similar coverage to the ETO baselines, confirming that the lower task loss of our
E2E models does not come at the expense of worse coverage.

ETO baselines and our E2E models, confirming that the lower task loss of our E2E
models does not come at the expense of worse coverage.

Experimental results: Portfolio optimization
Tables 7.1 and 7.2 show the task loss and coverage results for the portfolio opti-
mization problem. We again find that our E2E approach generally improves upon
the ETO baselines at all uncertainty levels 𝛼, with the exception of box uncertainty
where all the methods achieve similar performance. Our PICNN-based uncertainty
representation, when learned end-to-end, performs better than box uncertainty and
comparably with ellipse uncertainty. The similarity in performance between E2E
ellipsoidal uncertainty and E2E PICNN uncertainty is likely due to the underlying
aleatoric uncertainty (i.e., the uncertainty in P(𝑦 | 𝑥)) generally taking an ellip-
soidal shape—the conditional distribution P(𝑦 | 𝑥) is a Gaussian mixture model,
and it tends to have a dominant mode (see, e.g., Figure 7.5). In terms of coverage,
we find that all the models and training methodologies obtain coverage very close
to the target level, confirming that the improvements in task loss performance from
our E2E approach do not come at the cost of worse coverage.

Because the conditional distribution P(𝑦 | 𝑥) for the portfolio optimization prob-
lem is 2-dimensional, we can visualize the conditional distribution as well as the
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Table 7.1: Task loss performance (mean ± 1 stddev across 10 runs) for the port-
folio optimization problem. Lower values are better, and the best performance for
each uncertainty-level 𝛼 is highlighted. The results show that our E2E methods
consistently outperform the ETO baselines.

uncertainty level 𝛼
0.01 0.05 0.1 0.2

ETO Box -1.16 ± 0.42 -1.37 ± 0.12 -1.39 ± 0.13 -1.41 ± 0.12
ETO Ellipse -1.09 ± 0.12 -1.24 ± 0.11 -1.29 ± 0.10 -1.33 ± 0.10
ETO PICNN -0.95 ± 0.24 -1.11 ± 0.24 -1.20 ± 0.22 -1.31 ± 0.16
ETO-SLL Box -1.41 ± 0.13 -1.42 ± 0.12 -1.42 ± 0.12 -1.44 ± 0.11
ETO-SLL Ellipse -1.12 ± 0.22 -1.37 ± 0.12 -1.40 ± 0.12 -1.43 ± 0.12
ETO-JC Ellipse -1.16 ± 0.17 -1.40 ± 0.11 -1.42 ± 0.11 -1.44 ± 0.11

E2E Box -1.21 ± 0.44 -1.40 ± 0.14 -1.43 ± 0.11 -1.43 ± 0.10
E2E Ellipse -1.48 ± 0.12 -1.47 ± 0.11 -1.48 ± 0.11 -1.47 ± 0.11
E2E PICNN -1.45 ± 0.14 -1.48 ± 0.10 -1.48 ± 0.10 -1.47 ± 0.11

uncertainty sets estimated by our models. Figure 7.5 plots the conditional density
for input 𝑥 =

[
−1.167 0.024

]⊤
, along with the 𝛼 = 0.1 uncertainty sets Ω𝜃 (𝑥)

and the resulting decision vectors 𝑧★
𝜃
(𝑥) for each uncertainty set parametrization.

Uncertainty sets and decision vectors from both ETO and E2E models are shown
in different colors. The key takeaway from this figure is that smaller uncertainty
sets (which is what ETO training tends to produce) do not always result in lower
task loss. Furthermore, the more flexible parametrization of the PICNN allows it to
learn uncertainty set shapes that may be more amenable to the downstream robust
decision task than box or ellipsoidal uncertainty, even if the resulting uncertainty
set has a larger or odder shape.

7.B Related Work
Task-based learning. The notion of “task-based” end-to-end model learning was
introduced by Donti, Amos, and Kolter [291], which proposed to train machine
learning models end-to-end in a manner capturing a downstream stochastic op-
timization task. To achieve this, the authors backpropagate gradients through a
stochastic optimization problem, which is made possible for various types of con-
vex optimization problems via the implicit function theory [289–291]. However,
Donti, Amos, and Kolter [291] does not train the model to estimate uncertainty and
thereby does not provide any explicit guarantees on robustness on their decisions
to uncertainty. Our framework improves upon this baseline by yielding calibrated
uncertainty sets which can then be used to obtain robust decisions.
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Table 7.2: Coverage (mean ±1 stddev across 10 runs) for the portfolio optimization
problem. Our E2E models achieve similar coverage to the ETO baselines, confirm-
ing that the lower task loss of our E2E models does not come at the expense of worse
coverage.

uncertainty level 𝛼
0.01 0.05 0.1 0.2

ETO Box .984 ± .007 .947 ± .017 .902 ± .017 .786 ± .020
ETO Ellipse .988 ± .004 .944 ± .020 .894 ± .022 .794 ± .027
ETO PICNN .989 ± .006 .949 ± .014 .901 ± .019 .801 ± .034
ETO-SLL Box .985 ± .012 .945 ± .021 .885 ± .030 .796 ± .029
ETO-SLL Ellipse .989 ± .011 .945 ± .024 .885 ± .039 .795 ± .030
ETO-JC Ellipse .991 ± .006 .953 ± .017 .902 ± .026 .796 ± .026

E2E Box .989 ± .006 .949 ± .012 .903 ± .016 .785 ± .019
E2E Ellipse .992 ± .006 .954 ± .010 .903 ± .022 .798 ± .022
E2E PICNN .993 ± .002 .953 ± .010 .912 ± .017 .798 ± .024
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Figure 7.5: This figure plots the density of the conditional distribution P(𝑦 | 𝑥)
for 𝑥 =

[
−1.167 0.024

]⊤ from the portfolio optimization problem, with darker
colors indicating higher density. Also plotted are the 𝛼 = 0.1 uncertainty sets Ω𝜃 (𝑥)
(dashed lines) and the resulting decision vectors 𝑧★

𝜃
(𝑥) (arrows) for each uncertainty

set parametrization. Results for ETO models are shown in blue, whereas results for
E2E are shown in orange. The “true” 𝑦 sampled from P(𝑦 | 𝑥) is drawn in green,
and the task loss for this example is computed using this 𝑦. The decision vectors
have been artificially scaled larger to be easier to see.

Uncertainty Quantification. Various designs for deep learning regression models
that provide uncertainty estimates have been proposed in the literature, including
Bayesian neural networks [293, 294], Gaussian process regression and deep kernel
learning [295–297], ensembles of models [298], and quantile regression [288],
among other techniques. These methods typically only provide heuristic uncertainty
estimates that are not necessarily well-calibrated [299].
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Post-hoc methods such as isotonic regression [92] or conformal prediction [277]
may be used to calibrate the uncertainty outputs of deep learning models. These
calibration methods generally treat the model as a black box and scale predicted
uncertainty levels so that they are calibrated on a held-out calibration set. Isotonic
regression guarantees calibrated outputs in the limit of infinite data, whereas con-
formal methods provide probabilistic, finite-sample calibration guarantees when the
calibration set is exchangeable (e.g., drawn i.i.d. from the same distribution) with
test data. These calibration methods are generally not included in the model train-
ing procedure because they involve non-differentiable operators, such as sorting.
However, recent works have proposed differentiable losses [279, 300] that approxi-
mate the conformal prediction procedure during training and thus allow end-to-end
training of models to output more calibrated uncertainty. As approximations, these
methods lose the marginal coverage guarantees that true conformal methods pro-
vide. However, such guarantees can be recovered at test time by replacing the
approximations with true conformal prediction.

Robust and stochastic optimization. The optimization community has proposed
a number of techniques over the years to improve robust decision-making under
uncertainty, including stochastic, risk-sensitive, chance-constrained, distributionally
robust, and robust optimization (e.g., [260, 301–303]). These techniques have been
applied to a wide range of applications, including energy systems operation [29, 41,
42, 45, 46, 48, 304, 305] and portfolio optimization [275, 276, 281]. In these works,
the robust and stochastic optimization methods enable selecting decisions (grid
resource dispatches or portfolio allocations) in a manner that is aware of uncertainty,
e.g., so an energy system operator can ensure that sufficient generation is available
to meet demand even on a cloudy day without much solar generation. Typically,
however, the construction of uncertainty sets, estimated probability distributions
over uncertain parameters, or ambiguity sets over distributions takes place offline
and is unconnected to the eventual decision-making task. Thus, our proposed end-
to-end approach allows for simultaneous calibration of uncertainty sets with optimal
decision-making.

7.C Maximizing Over the Uncertainty Set
We consider robust optimization problems of the form

min
𝑧∈R𝑝

max
�̂�∈R𝑛

�̂�⊤𝐹𝑧 + 𝑓 (𝑥, 𝑧) s.t. �̂� ∈ Ω(𝑥), 𝑔(𝑥, 𝑧) ≤ 0.
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For fixed 𝑧, the inner maximization problem is

max
�̂�∈R𝑛

�̂�⊤𝐹𝑧 s.t. �̂� ∈ Ω(𝑥),

which we analyze in the more abstract form

max
𝑦∈R𝑛

𝑐⊤𝑦 s.t. 𝑦 ∈ Ω

for arbitrary 𝑐 ∈ R𝑛 \ {0}. The subsections of this appendix derive the dual form of
this maximization problem for specific representations of the uncertainty set Ω.

Suppose 𝑦 is standardized or whitened by an affine transformation with 𝜇 ∈ R𝑛 and
invertible matrix𝑊 ∈ R𝑛×𝑛

𝑦transformed = 𝑊−1(𝑦 − 𝜇)

so that Ω is an uncertainty set on the transformed 𝑦transformed. Then, the original
primal objective can be recovered as

𝑐⊤𝑦 = 𝑐⊤(𝑊𝑦transformed + 𝜇) = (𝑊𝑐)⊤𝑦transformed + 𝑐⊤𝜇.

In our experiments, we use element-wise standardization of 𝑦 by setting 𝑊 =

diag(𝑦std), where 𝑦std ∈ R𝑛 is the element-wise standard-deviation of 𝑦.

Maximizing over a box constraint
Let [𝑦, 𝑦] ⊂ R𝑛 be a box uncertainty set for 𝑦 ∈ R𝑛. Then, for any vector 𝑐 ∈ R𝑛,
the primal linear program

max
𝑦∈R𝑛

𝑐⊤𝑦 s.t. 𝑦 ≤ 𝑦 ≤ 𝑦

has dual problem

min
𝜈∈R2𝑛

[
𝑦⊤ −𝑦⊤

]
𝜈 s.t.

[
𝐼𝑛 −𝐼𝑛

]
𝜈 = 𝑐, 𝜈 ≥ 0,

which can also be equivalently written as

min
𝜈∈R𝑛
(𝑦 − 𝑦)⊤𝜈 + 𝑦⊤𝑐 s.t. 𝜈 ≥ 0, 𝜈 − 𝑐 ≥ 0.

Since strong duality always holds for linear programs, the optimal values of the
primal and dual problems will be equal so long as one of the problems is feasible,
e.g., so long as the box [𝑦, 𝑦] is nonempty. We can thus incorporate this dual
problem into the outer minimization of (7.1) to yield the non-robust form (7.4).
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Maximizing over an ellipsoid
For any 𝑐 ∈ R𝑛 \ {0}, Σ ∈ S𝑛++, and 𝑞 > 0, the primal quadratically constrained
linear program (QCLP)

max
𝑦∈R𝑛

𝑐⊤𝑦 s.t. (𝑦 − 𝜇)⊤Σ−1(𝑦 − 𝜇) ≤ 𝑞

has dual problem

min
𝜈∈R

1
4𝜈
𝑐⊤Σ𝑐 + 𝜇⊤𝑐 + 𝜈𝑞 s.t. 𝜈 ≥ 0.

By Slater’s condition, strong duality holds by virtue of the assumption that 𝑞 > 0
(which implies strict feasibility of the primal problem), and thus the primal and dual
problems have the same optimal value. Moreover, since Σ is positive definite and
𝑞 > 0, this problem has a unique optimal solution at 𝜈★ = 1

2√𝑞 ∥𝐿
⊤𝑐∥2, where 𝐿 is

the unique lower-triangular Cholesky factor of Σ (i.e., Σ = 𝐿𝐿⊤). Substituting 𝜈★

into the dual problem yields

√
𝑞∥𝐿⊤𝑐∥2 + 𝜇⊤𝑐.

Plugging this into (7.1) yields the non-robust form (7.5).

We write the dual objective in terms of the Cholesky factor 𝐿 because our predictive
models for ellipsoidal uncertainty directly output the entries of 𝐿 (see Section 7.E).
Note, however, that the dual problem solution can be equivalently written in terms
of the square-root of Σ, because

∥𝐿⊤𝑐∥22 = 𝑐⊤𝐿𝐿⊤𝑐 = 𝑐⊤Σ𝑐 = 𝑐⊤Σ1/2Σ1/2𝑐 = ∥Σ1/2𝑐∥22.

Proof of Theorem 7.4.1: Maximizing over the sublevel set of a PICNN
Let 𝑠𝜃 : R𝑚 × R𝑛 → R be a partially input-convex neural network (PICNN) with
ReLU activations as described in (7.6), so that 𝑠𝜃 (𝑥, 𝑦) is convex in 𝑦. Suppose that
all the hidden layers have the same dimension 𝑑 (i.e., ∀𝑙 = 0, . . . , 𝐿 − 1: 𝑊𝑙 ∈ R𝑑×𝑑 ,
𝑉𝑙 ∈ R𝑑×𝑛, 𝑏𝑙 ∈ R𝑑), and the final layer 𝐿 has 𝑊𝐿 ∈ R1×𝑑 , 𝑉𝐿 ∈ R1×𝑛, 𝑏𝐿 ∈ R. Let
𝑐 ∈ R𝑛 be any vector. Then, the optimization problem

max
𝑦∈R𝑛

𝑐⊤𝑦 s.t. 𝑠𝜃 (𝑥, 𝑦) ≤ 𝑞 (7.8)
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can be equivalently written as

max
𝑦∈R𝑛, 𝜎1,...,𝜎𝐿∈R𝑑

𝑐⊤𝑦 (7.9a)

s.t. 𝜎𝑙 ≥ 0𝑑 ∀𝑙 = 1, . . . , 𝐿 (7.9b)

𝜎𝑙+1 ≥ 𝑊𝑙𝜎𝑙 +𝑉𝑙𝑦 + 𝑏𝑙 ∀𝑙 = 0, . . . , 𝐿 − 1 (7.9c)

𝑊𝐿𝜎𝐿 +𝑉𝐿𝑦 + 𝑏𝐿 ≤ 𝑞. (7.9d)

To see that this is the case, first note that (7.9) is a relaxed form of (7.8), obtained
by replacing the equalities 𝜎𝑙+1 = ReLU (𝑊𝑙𝜎𝑙 +𝑉𝑙𝑦 + 𝑏𝑙) in the definition of the
PICNN (7.6) with the two separate inequalities𝜎𝑙+1 ≥ 0𝑑 and𝜎𝑙+1 ≥ 𝑊𝑙𝜎𝑙+𝑉𝑙𝑦+𝑏𝑙
for each 𝑙 = 0, . . . , 𝐿 − 1. As such, the optimal value of (7.9) is no less than that
of (7.8). However, given an optimal solution 𝑦, 𝜎1, . . . , 𝜎𝐿 to (7.9), it is possible
to obtain another feasible solution 𝑦, �̂�1, . . . , �̂�𝐿 with the same optimal objective
value by iteratively decreasing each component of 𝜎𝑙 until one of the two inequality
constraints (7.9b), (7.9c) is tight, beginning at 𝑙 = 1 and incrementing 𝑙 once all
entries of 𝜎𝑙 cannot be decreased further. This procedure of decreasing the entries
in each 𝜎𝑙 will maintain problem feasibility, since the weight matrices 𝑊𝑙 are all
assumed to be entrywise nonnegative in the PICNN construction; in particular, this
procedure will not increase the left-hand side of (7.9d). Moreover, since one of the
two constraints (7.9b), (7.9c) will hold for each entry of each �̂�𝑙 , this immediately
implies that 𝑦 is feasible for the unrelaxed problem (7.8), and so (7.8) and (7.9) must
have the same optimal value.

Having shown that we may replace the convex program (7.8) with a linear equivalent
(7.9), we can write this latter problem in the matrix form

max
𝑦∈R𝑛, 𝜎1,...,𝜎𝐿∈R𝑑

𝑐⊤𝑦 s.t. 𝐴


𝑦

𝜎1
...

𝜎𝐿


≤ 𝑏
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where

𝐴 =



−𝐼𝑑
. . .

−𝐼𝑑
𝑉0 −𝐼𝑑
... 𝑊1

. . .

...
. . . −𝐼𝑑

𝑉𝐿 𝑊𝐿


∈ R(2𝐿𝑑+1)×(𝑛+𝐿𝑑) , 𝑏 =



0𝑑
...

0𝑑
−𝑏0
...

−𝑏𝐿−1

𝑞 − 𝑏𝐿


∈ R2𝐿𝑑+1.

(7.10)
By strong duality, if this linear program has an optimal solution, its optimal value is
equal to the optimal value of its dual problem:

min
𝜈∈R2𝐿𝑑+1

𝑏⊤𝜈 s.t. 𝐴⊤𝜈 =

[
𝑐

0𝐿𝑑

]
, 𝜈 ≥ 0. (7.11)

We can incorporate this dual problem (7.11) into the outer minimization of (7.1) to
yield the non-robust form (7.7). For a more interpretable form of this dual problem,
let 𝜈(𝑖) denote the portion of the dual vector 𝜈 corresponding to the 𝑖-th block-row
of matrix 𝐴, indexed from 0. That is, 𝜈(𝑖) = 𝜈𝑖𝑑+1:(𝑖+1)𝑑 for 𝑖 = 0, . . . , 2𝐿 − 1.
Furthermore, let 𝜇 = 𝜈2𝐿𝑑+1 be the last entry of 𝜈. Written out, the dual problem
(7.11) becomes

min
𝜈 (0) ,...,𝜈 (2𝐿−1)∈R𝑑 , 𝜇∈R

𝜇(𝑞 − 𝑏𝐿) −
𝐿∑︁
𝑙=0

𝑏⊤𝑙 𝜈
(𝐿+𝑙)

s.t.
[
𝑉⊤0 · · · 𝑉⊤

𝐿

]
𝜈𝐿𝑑+1: = 𝑐

𝑊⊤𝑙+1𝜈
(𝐿+𝑙+1) − 𝜈(𝐿+𝑙) − 𝜈(𝑙) = 0𝑑 ∀𝑙 = 0, . . . , 𝐿 − 1

𝜈 ≥ 0.

Ensuring feasibility of the PICNN maximization problem
As noted at the end of Section 7.3, it may sometimes be the case that the inner max-
imization problem of (7.1) is unbounded or infeasible when Ω𝜃 (𝑥) is parametrized
by a PICNN, since in general, the sublevel sets of the PICNN might be unbounded,
or the 𝑞 selected by the split conformal procedure detailed in Section 7.3 may be
sufficiently small that Ω𝜃 (𝑥) = {�̂� ∈ R𝑛 | 𝑠𝜃 (𝑥, �̂�) ≤ 𝑞} is empty for certain inputs
𝑥. We can address each of these concerns using separate techniques.
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Ensuring compact sublevel sets To ensure that the PICNN-parametrized score
function 𝑠𝜃 (𝑥, 𝑦) has compact sublevel sets in 𝑦, we can redefine the output layer by
setting 𝑉𝐿 = 01×𝑛 and adding a small ℓ∞ norm term penalizing growth in 𝑦:

𝑠𝜃 (𝑥, 𝑦) = 𝑊𝐿𝜎𝐿 + 𝜖 ∥𝑦∥∞ + 𝑏𝐿 , (7.12)

where 𝜖 ≥ 0 is a small penalty term, and where all the remaining parameters and
layers remain identical to their definition in (7.6). This modification ensures that,
for any fixed 𝑥, 𝑠𝜃 (𝑥, 𝑦) has compact sublevel sets, since 𝜎𝐿 ≥ 0 by construction
(7.6) and the penalty term 𝜖 ∥𝑦∥∞ will grow unboundedly large as 𝑦 goes to infinity
in any direction, so long as 𝜖 > 0. Moreover, so long as 𝜖 is chosen sufficiently small
and the PICNN is sufficiently deep, this modification should not negatively impact
the ability of the PICNN to represent general compact convex uncertainty sets.

Using this modified PICNN (7.12), the maximization problem (7.8) can be written
as an equivalent linear program

max
𝑦∈R𝑛, 𝜎1,...,𝜎𝐿∈R𝑑 ,

𝜅∈R

𝑐⊤𝑦 (7.13a)

s.t. 𝜎𝑙 ≥ 0𝑑 ∀𝑙 = 1, . . . , 𝐿 (7.13b)

𝜎𝑙+1 ≥ 𝑊𝑙𝜎𝑙 +𝑉𝑙𝑦 + 𝑏𝑙 ∀𝑙 = 0, . . . , 𝐿 − 1 (7.13c)

𝜅 ≥ 𝑦𝑖, 𝜅 ≥ −𝑦𝑖 ∀𝑖 = 1, . . . , 𝑛 (7.13d)

𝑊𝐿𝜎𝐿 + 𝜖𝜅 + 𝑏𝐿 ≤ 𝑞 (7.13e)

where the equivalence between (7.8) and (7.13) follows the same argument as that
employed in the previous section when showing the equivalence of (7.8) and (7.9).
We can thus likewise apply strong duality to obtain an equivalent minimization form
of the problem (7.13) and incorporate this into the outer minimization of (7.1) to
yield a non-robust problem of the general form (7.7).

Ensuring Ω𝜃 (𝑥) is nonempty If the 𝑞 chosen by the split conformal procedure is
too small such that Ω𝜃 (𝑥) is empty, i.e., 𝑞 ≤ 𝑞min where

𝑞min := min
�̂�∈R𝑛

𝑠𝜃 (𝑥, �̂�), (7.14)

then we simply increase 𝑞 to 𝑞min so that Ω𝜃 (𝑥) is guaranteed to be nonempty. That
is, for input 𝑥, we set

𝑞 = max
(
min
�̂�∈R𝑛

𝑠𝜃 (𝑥, �̂�), Quantile({𝑠𝜃 (𝑥𝑖, 𝑦𝑖)}(𝑥𝑖 ,𝑦𝑖)∈𝐷cal , 1 − 𝛼)
)
.
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This preserves the marginal coverage guarantee, as increasing 𝑞 can only result in a
larger uncertainty set Ω𝜃 (𝑥).

In theory, 𝑞min varies as a function of 𝜃, and it is possible to differentiate through the
optimization problem (7.14) using the methods from Agrawal et al. [290] since the
problem is convex and 𝑠𝜃 is assumed to be differentiable w.r.t. 𝜃 almost everywhere.
However, to avoid this added complexity, in practice, we treat 𝑞min as a constant. In
other words, on inputs 𝑥 where we have to increase 𝑞 to 𝑞min, we treat 𝜕𝑞

𝜕𝜃
= 0.

7.D Exact Differentiable Conformal Prediction
In this section, we prove how to exactly differentiate through the conformal prediction
procedure, unlike the approximate derivative first introduced in [279].

Theorem 7.D.1. Let 𝛼 ∈ (0, 1) be a risk level, and let 𝑠𝑖 := 𝑠𝜃 (𝑥𝑖, 𝑦𝑖) denote the
scores computed by a score function 𝑠𝜃 : R𝑚×R𝑛 → R over data points {(𝑥𝑖, 𝑦𝑖)}𝑀𝑖=1.
Suppose 𝑠𝜃 (𝑥𝑖, 𝑦𝑖) is differentiable w.r.t. 𝜃 for all 𝑖 = 1, . . . , 𝑀 .

Define 𝑠𝑀+1 := ∞. Let𝜎 : {1, . . . , 𝑀+1} → {1, . . . , 𝑀+1} denote the permutation
that sorts the scores in ascending order, such that 𝑠𝜎(𝑖) ≤ 𝑠𝜎( 𝑗) for all 𝑖 < 𝑗 . For
simplicity of notation, we may write 𝑠(𝑖) := 𝑠𝜎(𝑖) .

Let 𝑞 = Quantile({𝑠𝑖}𝑀𝑖=1, 1 − 𝛼) where the Quantile function is as defined in
Algorithm 12. That is, 𝑞 = 𝑠(𝑘) , where 𝑘 := ⌈(𝑀 + 1) (1 − 𝛼)⌉ ∈ {1, . . . , 𝑀, 𝑀+1}.
If 𝑠(𝑘) is unique, then

d𝑞
d𝜃

=


d

d𝜃 𝑠𝜃 (𝑥𝜎(𝑘) , 𝑦𝜎(𝑘)), if 𝛼 ≥ 1
𝑀+1

0, otherwise.

Proof. First, when 𝛼 ∈ (0, 1
𝑀+1 ), we have 𝑘 = 𝑀+1, so 𝑞 = ∞ is constant regardless

of the choice of 𝜃. Thus, d𝑞
d𝜃 = 0.

Now, suppose 𝛼 ≥ 1
𝑀+1 . The Quantile function returns the 𝑘-th largest value of

{𝑠𝑖}𝑀𝑖=1 ∪ {∞}. Since we assume 𝑠(𝑘) is unique, we have d𝑞
d𝑠 (𝑖)

= 1[𝑖 = 𝑘]. Finally,
we have

d𝑞
d𝜃

=

𝑀∑︁
𝑖=1

d𝑞
d𝑠
𝑖

d𝑠𝑖
d𝜃

=

𝑀∑︁
𝑖=1

d𝑞
d𝑠(𝑖)

d𝑠(𝑖)
d𝜃

=
d𝑠(𝑘)
d𝜃

=
d

d𝜃
𝑠𝜃 (𝑥𝜎(𝑘) , 𝑦𝜎(𝑘)).

The two key assumptions in this theorem are that (1) 𝑠𝜃 is differentiable w.r.t. 𝜃, and
(2) 𝑠(𝑘) is unique. When 𝑠𝜃 is a neural network with a common activation function
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(e.g., ReLU), (1) holds for inputs (𝑥, 𝑦) ∈ R𝑚 ×R𝑛 almost everywhere and 𝜃 almost
everywhere. Regarding (2), in practice, just as the gradient of the max function
is typically implemented without checking whether its inputs have ties, we do not
check whether 𝑠(𝑘) is unique.

7.E Experiment Details
Our experiments were conducted across a variety of machines, including private
servers and Amazon AWS EC2 instances, ranging from 12-core to 128-core ma-
chines. Our ETO experiments benefited from GPU acceleration across a combina-
tion of NVIDIA GeForce GTX 1080 Ti, Titan RTX, T4, and A100 GPUs. Our E2E
experiments did not use GPU acceleration, due to the lack of GPU support in the
cvxpylayers Python package [290].

In all experiments, we use a batch size of 256 and the Adam optimizer [306]. Models
were trained for up to 100 epochs with early stopping if there was no improvement
in validation loss for 10 consecutive epochs.

For box and ellipsoid ETO baseline models, we performed a hyperparameter grid
search over learning rates (10−4.5, 10−4, 10−3.5, 10−3, 10−2.5, 10−2, 10−1.5) and L2
weight decay values (0, 10−4, 10−3, 10−2). For PICNN ETO models we performed
a hyperparameter grid search over learning rates (10−4, 10−3, 10−2) and L2 weight
decay values (10−4, 10−3, 10−2).

Uncertainty representation
Box uncertainty Our box uncertainty model uses a neural network ℎ𝜃 with 3
hidden layers of 256 units each and ReLU activations with batch-normalization.
The output layer has dimension 2𝑛, where dimensions 1 : 𝑛 predict the lower bound.
Output dimensions 𝑛 + 1 : 2𝑛, after passing through a softplus to ensure positivity,
represents the difference between the upper and lower bounds. That is,[

ℎlo
𝜃
(𝑥)

ℎhi
𝜃
(𝑥)

]
=

[
ℎ𝜃 (𝑥)1:𝑛

ℎ𝜃 (𝑥)1:𝑛 + softplus(ℎ𝜃 (𝑥)𝑛+1:2𝑛)

]
.

This architecture ensures that ℎhi
𝜃
(𝑥) > ℎlo

𝜃
(𝑥).

In the two-stage ETO baseline, we first train ℎ𝜃 to estimate the 𝛼/2- and (1 − 𝛼/2)-
quantiles, so that [ℎlo

𝜃
(𝑥), ℎhi

𝜃
(𝑥)] represents the centered (1−𝛼)-confidence region.

Quantile regression is a common method for generating uncertainty sets for scalar
predictions by estimating quantiles of the conditional distribution P(𝑦 | 𝑥) [288].
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For scalar true label 𝑦, quantile regression models are commonly trained to minimize
pinball loss (a.k.a. quantile loss) where 𝛽 is the quantile level being estimated:

pinball𝛽 ( �̂�, 𝑦) =

𝛽 · (𝑦 − �̂�), if 𝑦 > �̂�

(1 − 𝛽) · ( �̂� − 𝑦), if 𝑦 ≤ �̂�.

To generalize the pinball loss to our setting of multi-dimensional 𝑦 ∈ R𝑛, we sum
the pinball loss across the dimensions of 𝑦: pinball𝛽 ( �̂�, 𝑦) =

∑𝑛
𝑖=1 pinball𝛽 ( �̂�𝑖, 𝑦𝑖).

Our end-to-end (E2E) box uncertainty models use the same architecture as above,
initialized with weights from the the trained ETO model. We found it helpful to use
a weighted combination of the task loss and pinball loss during training of the E2E
models to improve training stability. In our experiments, we used a weight of 0.9 on
the task loss and 0.1 on the pinball loss. The E2E models used the best L2 weight
decay from the ETO models, and the learning rate was tuned across 10−2, 10−3, and
10−4.

Ellipsoidal uncertainty Our ellipsoidal uncertainty model uses a neural network
ℎ𝜃 with 3 hidden layers of 256 units each and ReLU activations with batch-
normalization. The output layer has dimension 𝑛 + 𝑛(𝑛 + 1)/2, where dimen-
sions 1 : 𝑛 predict the mean 𝜇𝜃 (𝑥) and the remaining output dimensions are used
to construct a lower-triangular Cholesky factor 𝐿𝜃 (𝑥) of the covariance matrix
Σ𝜃 (𝑥) = 𝐿𝜃 (𝑥)𝐿𝜃 (𝑥)⊤. We pass the diagonal entries of 𝐿𝜃 (𝑥) through a softplus
function to ensure strict positivity, which then ensures Σ𝜃 (𝑥) is positive definite.

For the ETO baseline, we trained the model using the negative log-likelihood (NLL)
loss

NLL(𝜃) = 1
𝑁

∑︁
(𝑥,𝑦)∈𝐷

− lnN(𝑦 | 𝜇𝜃 (𝑥), Σ𝜃 (𝑥)),

where N(· | 𝜇, Σ) denotes the density of a multivariate normal distribution with
mean 𝜇 and covariance matrix Σ.

Our end-to-end (E2E) ellipsoidal uncertainty models use the same architecture as
above, initialized with weights from the the trained ETO model. We found it helpful
to use a weighted combination of the task loss and NLL loss during training of the
E2E models to improve training stability. In our experiments, we used a weight of
0.9 on the task loss and 0.1 on the NLL loss. The E2E models used the best L2
weight decay from the ETO models, and the learning rate was tuned across 10−2,
10−3, and 10−4.
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PICNN uncertainty Our PICNN has 2 hidden layers with ReLU activations.

For the battery storage problem, we used 64 units per hidden layer. We did not
run into any feasibility issues for the PICNN maximization problem, so we did not
restrict 𝑉𝐿 as described in Section 7.C, and we set 𝜖 = 0.

For the portfolio optimization problem, we tried 32, 64, and 128 units per hidden
layer, finding that 32 units worked best for the portfolio optimization problem, 128
units performed marginally better for the battery storage problem. We did run
into feasibility issues for the PICNN maximization problem, which we resolved by
setting 𝑉𝐿 = 01×𝑛 as described in Section 7.C. This change alone was sufficient, and
we set 𝜖 = 0.

For the ETO baseline, we take inspiration from the approach by [292] to give
probabilistic interpretation to a PICNN model 𝑠𝜃 via the energy-based model
P̂𝜃 (𝑦 | 𝑥) = 1

𝑍𝜃 (𝑥) exp(−𝑠𝜃 (𝑥, 𝑦)) where 𝑍𝜃 (𝑥) :=
∫
�̃�∈R𝑛 exp(−𝑠𝜃 (𝑥, �̃�)) d�̃� is the

normalizing constant. We train our ETO PICNN models with an approximation to
the true NLL loss based on samples from the Metropolis-Adjusted Langevin Algo-
rithm (MALA), a Markov Chain Monte Carlo (MCMC) method. We refer readers
to our code for the specific hyperparameters and implementation details we used.

Note that under this energy-based model, adding a scalar constant 𝑐 to the
PICNN (i.e., 𝑠𝜃 (𝑥, 𝑦) + 𝑐) does not change the probability distribution. That is,
exp(−𝑠𝜃 (𝑥, 𝑦)) ∝ exp(−𝑠𝜃 (𝑥, 𝑦) + 𝑐). To regularize the PICNN model, which
has a bias term in its output layer, we therefore introduce a regularization loss of
𝑤zero · 𝑠𝜃 (𝑥, 𝑦)2 where 𝑤zero is a regularization weight. This regularization loss
encourages 𝑠𝜃 (𝑥, 𝑦) to be close to 0, for all examples in the training set. In our
experiments, we set 𝑤zero = 1.

Our end-to-end (E2E) PICNN uncertainty models use the same architecture as
above, initialized with weights from the the trained ETO model. Unlike for box
and ellipsoidal uncertainty which used a weighted combination of task loss and
NLL loss, our E2E PICNN uncertainty models are trained only with the task loss.
Similar to the ETO PICNN model, we also regularize the E2E PICNN. Here, we add
a regularization loss of 𝑤q · 𝑞2, where 𝑤q is a regularization weight and 𝑞 is the
conformal prediction threshold computed in each minibatch of E2E training. This
regularization loss term aims to keep 𝑞 near 0; without this regularization, we found
that 𝑞 tended to grow dramatically over training epochs with poor task loss. In our
experiments, we set 𝑤q = 0.01.
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The E2E models used the best L2 weight decay from the ETO models. For the
battery storage problem, we tested learning rates of 10−3 and 10−4. For the portfolio
optimization problem, we used a learning rate of 5 × 10−3.

Data
Price forecasting for battery storage We use the same dataset as Donti, Amos,
and Kolter [291] in our price forecasting for battery storage problem. In this dataset,
the target 𝑦 ∈ R24 is the hourly PJM day-ahead system energy price for 2011-2016,
for a total of 2189 days. Unlike Donti, Amos, and Kolter [291], though, we do
not exclude any days whose electricity prices are too high (>500$/MWh). Whereas
Donti, Amos, and Kolter [291] treated these days as outliers, our conditional robust
optimization problem is designed to output robust decisions. For predicting target
for a given day, the inputs 𝑥 ∈ R101 include the previous day’s log-prices, the given
day’s hourly load forecast, the previous day’s hourly temperature, the given day’s
hourly temperature, and several calendar-based features such as whether the given
day is a weekend or a US holiday.

For the setting without distribution shift, we take a random 20% subset of the
dataset as the test set; because the test set is selected randomly, it is considered
exchangeable with the rest of the dataset. For the setting with distribution shift,
we take the chronologically last 20% of the dataset as the test set; because load,
electricity prices, and temperature all have distribution shifts over time, the test set
is not exchangeable with the rest of the dataset. For each seed, we further use a
80/20 random split of the remaining data for training and calibration.

Portfolio optimization For the portfolio optimization task, we used synthetically
generated data. We sample 𝑥 ∈ R2, 𝑦 ∈ R2 from a mixture of three 4-D multivariate
Gaussian distributions as used in [272]. Formally,

[
𝑥

𝑦

]
∼ 𝑝𝑎N(𝜇𝑎, Σ𝑎) + 𝑝𝑏N(𝜇𝑏, Σ𝑏) + 𝑝𝑐N(𝜇𝑐, Σ𝑐)
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where 𝑝𝑎 + 𝑝𝑏 + 𝑝𝑐 = 1. Specifically,

𝑝𝑎 = 𝜙, 𝑝𝑏 =
1

𝛼GMM + 1
(1 − 𝜙), 𝑝𝑐 =

𝛼GMM
𝛼GMM + 1

(1 − 𝜙),

𝜇𝑎 = 04, 𝜇𝑏 =

[
0 5 5 0

]⊤
, 𝜇𝑐 = 𝜇𝑏,

Σ𝑎 =


1 0 0.37 0
0 1.5 0 0

0.37 0 2 0.73
0 0 0.73 3


, Σ𝑏 = 𝛼GMMΣ𝑎, Σ𝑐 =

1
𝛼GMM

Σ𝑎

for some 𝜙 ∈ [0, 1] and 𝛼GMM ∈ [0, 1]. In our experiments, we used 𝜙 = 0.7
and 𝛼GMM = 0.9. (Chenreddy and Delage [272] do not disclose the values of 𝜙
and 𝛼GMM chosen for their experiments.) For each random seed, we generate 2000
samples and use a (train, calibration, test) split of (600, 400, 1000).
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C h a p t e r 8

PRICING UNCERTAINTY IN STOCHASTIC MULTI-STAGE
ELECTRICITY MARKETS

In the previous chapter, we considered the question of how to learn calibrated
uncertainty sets to improve performance in a class of conditional robust optimization
problems. However, if we seek to deploy such robust strategies in applications such
as electricity market dispatch, a complementary, operational question arises: how
should we price this uncertainty to ensure efficient market operation? Inspired by
this question, this chapter proposes a pricing mechanism for multi-stage electricity
markets that does not explicitly depend on the choice of dispatch procedure or
optimization method. Our approach is applicable to a wide range of methodologies
for the economic dispatch of power systems under uncertainty, including multi-
interval dispatch, multi-settlement markets, scenario-based dispatch, and chance-
constrained or robust dispatch policies. We prove that our pricing scheme provides
both ex-ante and ex-post dispatch-following incentives by simultaneously supporting
per-stage and ex-post competitive equilibria. In numerical experiments on a ramp-
constrained test system, we demonstrate the benefits of scheduling under uncertainty
and show how our price decomposes into components corresponding to energy,
intertemporal coupling, and uncertainty.

This chapter is primarily based on the following paper (© 2023 IEEE):

[1] L. Werner∗, N. Christianson∗, A. Zocca, A. Wierman, and S. Low, “Pricing
Uncertainty in Stochastic Multi-Stage Electricity Markets,” in 2023 62nd
IEEE Conference on Decision and Control (CDC), Dec. 2023, pp. 1580–
1587. doi: 10.1109/CDC49753.2023.10384022. [Online]. Available:
https://ieeexplore.ieee.org/document/10384022.

8.1 Introduction
Rapid changes in the composition of the generation mix in power markets is creating
several challenges for system operators (SOs). First, increasing renewable penetra-
tion from solar and wind is injecting variability and uncertainty into available power
supply. Second, there is a lack of suitable market mechanisms tailored to the phys-
ical characteristics of distributed energy resources (DERs), such as energy storage,
which are seeking to join markets in increasing numbers. Third, electrification of

https://doi.org/10.1109/CDC49753.2023.10384022
https://ieeexplore.ieee.org/document/10384022
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vehicle charging and thermal (heating/cooling) loads is impacting the shape and
variability of the demand profile, leading to periods of high, sustained ramping.

These factors have a common theme of uncertainty, and SOs have been rapidly
innovating on new market structures and dispatch procedures to handle it. These
include multi-interval lookahead dispatch [307], ramping reserves [308], operating
reserves [309], capacity markets [310], and multi-stage or intraday markets. Along-
side, researchers have been investigating techniques from stochastic optimization
to efficiently dispatch the market under uncertainty, including robust optimization
[41, 311], chance-constrained optimization [48], scenario optimization [312], and
distributionally robust optimization [46].

Uncertainty impacts the stability of pricing signals and can lead to market distortions
such as out-of-merit dispatch, ramping shortages, and load shedding. Even with
more advanced and accurate forecasts, SOs must still dispatch the system in a way
that anticipates forecast uncertainty and the possibility of distribution shift over time.
Pricing that incorporates characterizations of uncertainty is necessary to fairly and
efficiently compensate different resources for their contributions to a reliable power
supply.

The contribution in this chapter is a pricing scheme for multi-stage markets that
does not depend on the particular characterization of uncertainty or the method for
optimizing over dispatch decisions that account for this uncertainty. Our approach
is different from those in several recent works where the construction of the energy
price intimately depends on the optimization paradigm (e.g., chance-constrained
[46], robust [311], or rolling-window [313, 314]). We show that our proposed
prices can be decomposed into components corresponding to the standard loca-
tional marginal price (LMP), intertemporal coupling, and uncertainty. Finally, we
establish that this price clears the market under profit-maximizing assumptions on
the participants and that it supports both ex-ante and ex-post dispatch-following
incentives (see Section 8.3 for definitions).

Related Work
Our work draws on two main lines of inquiry into electricity market mechanism
design. The first is dispatching and pricing multi-interval markets in the presence
of intertemporal coupling constraints. The second is dispatching and pricing using
techniques from robust and stochastic optimization.
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Pricing multi-period electricity markets In rolling-window real-time economic
dispatch schemes, distribution shift in predicted net demand can lead to lost oppor-
tunity cost (LOC) and distorted truthful bidding incentives for generators. Several
pricing mechanisms building on standard uniform pricing schemes have been pro-
posed in recent years to mitigate the lack of dispatch-following incentives [307,
315, 316]. A more recent line of work [31, 313, 314] has proposed a non-uniform
pricing scheme, Temporal Locational Marginal Pricing (TLMP), and has estab-
lished a dual definition of dispatch-following incentives. Simultaneously satisfying
a “partial equilibrium” (i.e., ex ante dispatch-following incentive in every stage) and
a general equilibrium (i.e., ex post) forms the notion of “strong equilibrium,” used
in this work.

Our pricing mechanism is distinguished from these works as they do not incorporate
uncertainty directly in the lookahead dispatch algorithms, but rather design prices
to mitigate incentive misalignment as a result of inaccurate predictions and distri-
bution shift. However, these lookahead algorithms might be infeasible [29, 43],
necessitating our development of more general pricing schemes that can incorporate
such robust constraints.

Pricing stochastic electricity markets There has been much recent interest in
designing electricity markets incorporating robust or stochastic constraints to ensure
reliable operation in the face of uncertainty. For example, such dispatch schemes
include economic dispatch with robust constraints [41, 311], chance constraints [47,
317, 318], distributionally robust chance constraints [45, 46], and conditional value
at risk constraints [48]. However, in the subset of these works that explicitly address
the problem of designing price mechanisms for the stochastic dispatch problem,
inconsistent notions of ex ante dispatch-following incentives are considered which
leaves open the need for out-of-market settlements to make up for lost opportunity
cost.

This work improves practically upon existing methodologies by combining the
temporally-coupled multi-interval dispatch used in practice with stochastic market-
clearing mechanisms proposed in the research literature. Our approach can be
applied to any formulation of stochastic or robust economic dispatch and ensures
zero lost opportunity cost on the part of market participants by considering both ex
ante and ex post dispatch-following incentives in the price specification.



342

Stage: 0 1 2 . . . T

Figure 8.1: Coupling between 𝑇 + 1 stages in DA + RT economic dispatch. A
directed edge between two stages indicates that the later-stage decision depends
explicitly on the decision committed to in the earlier stage.

8.2 Multi-Stage Dispatch Under Uncertainty
The day-ahead (DA) and real-time (RT) stages of electricity market clearing form
a 𝑇 + 1 stage sequential optimization problem, with coupling between the stages
and uncertainty from load and renewables realized between each of the 𝑇 stages.
The first stage is the single-shot, DA optimization problem which determines a unit
commitment and associated dispatch for the upcoming 24-hour time horizon. This
dispatch, although not physically realized, may be financially settled. Subsequently,
in real time, a receding-horizon multi-interval optimization is performed. The first
interval from each of these 𝑇 subproblems is financially binding. Between each
of the subproblems, the SO utilizes updated forecasts of uncertain demand and
renewable generation to improve the efficiency of the dispatch.

The stages of the sequential problem are temporally coupled in the manner depicted
in Figure 8.1. The first (DA) stage couples to all of the subsequent stages because
it fixes the unit commitment—and therefore the upper/lower generation bounds,
ramp limits, etc.—in the 𝑇 subsequent (RT) stages. Within the RT market, stages
are coupled consecutively due to the form of ramping constraints and the battery
state-of-charge updates.

Since the 𝑇 + 1 stages are solved and settled sequentially, we consider two groups of
stages at a time: the period with no uncertainty, and the set of periods with remaining
uncertainty. In the DA stage, the SO seeks to solve a stochastic optimization problem
that fixes here-and-now decisions for the unit commitment while selecting policies
for the wait-and-see decisions of RT stage 1. The purpose of the policies is to
provide realization-dependent recourse in subsequent stages. However, in each of
these stages, after uncertainty has been revealed, the multi-interval optimization is
solved again for the next stage.
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Notation
For each optimization interval indexed by 𝑡 ∈ {0, . . . , 𝑇}, each market participant
𝑖 ∈ {1, . . . , 𝑁} has a dispatch vector x𝑖,𝑡 ∈ R𝑀𝑖,𝑡 where 𝑀𝑖,𝑡 is the dimension of
the dispatch vector for 𝑖 in stage 𝑡. The dispatch x𝑖,𝑡 includes all of the quantities
associated with participant 𝑖 in stage 𝑡. For conventional generators, this is just
their power generation. For storage resources, it includes power generation and
state-of-charge. We do not consider discrete variables, such as those needed for unit
commitment, in our presentation here. They can be included without impacting our
pricing or dispatch results, although the dispatch problem would need to be modified
slightly as in [46, 319]. System states, such as nodal power injections, line flows,
and voltage angles, can be written in terms of the individual dispatch variables x𝑖,𝑡
and are therefore not explicitly notated. For each 𝑡, we collect dispatch vectors into
a single decision vector:

x𝑡 := (x1,𝑡 , . . . , x𝑁,𝑡) ∈ R𝑀𝑡 ,

where 𝑀𝑡 :=
∑
𝑖 𝑀𝑖,𝑡 . Associated with each dispatch vector is a market price

𝝅𝑡 ∈ R𝑀𝑡 . The revenue (or payment) each participant receives over the entire
horizon is 𝝅⊤𝑡 x𝑡 .

For each 𝑡 we associate a random vector of uncertainty 𝝃𝑡 ∈ R𝑃𝑡 . Realizations of
𝝃𝑡 , denoted 𝝃𝑡 , are obtained sequentially after the dispatch x̂𝑡−1 has been committed
but prior to computing x𝑡 . We also assume that the SO has access to a forecast
θ𝑡 that represents their best knowledge at stage 𝑡 about subsequent uncertainty
𝝃𝑡+1, . . . , 𝝃𝑇 . The composition of the forecast depends on what information is
accessible. In the simplest case, θ𝑡 is just a point forecast of 𝝃𝑡+1, . . . , 𝝃𝑇 . When
distributional information is available, θ𝑡 can be a set of parameters describing each
forecast distribution and its support. Since stage 0 is the DA/UC stage of the market
clearing, which happens when no uncertainty has been realized, 𝝃0 is defined to be
a set of forecasts over the subsequent 𝑇 RT intervals.

In the rest of the chapter, we denote by a𝜏:𝑡 the set of vectors {a 𝑗 }𝑡𝑗=𝜏. If 𝜏 > 𝑡,
we define this to be the empty set. For 𝜏, 𝑡 ∈ N satisfying 𝜏 ≤ 𝑡, we define
[𝜏, 𝑡] := {𝜏, 𝜏 + 1, . . . , 𝑡}.

Ex-post Dispatch Problem and Prices
If the SO had perfect forecasts of uncertainty, it could solve the following optimiza-
tion problem (8.1) for all time intervals simultaneously. This is a useful solution
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because it benchmarks the efficiency of dispatch algorithms and quantifies the impact
of uncertainty.

Problem 8.1. Given an uncertainty realization 𝝃, the ex-post dispatch problem for
all 𝑇 + 1 stages is:

min
x0,...,x𝑇

𝑇∑︁
𝑡=0

𝑁∑︁
𝑖=1

𝑐𝑖,𝑡 (x𝑖,0:𝑡 ; 𝝃0:𝑡) (8.1a)

s.t. 𝑓𝑡 (x𝑡 ; 𝝃0:𝑡) ≤ 0 ∀𝑡 (8.1b)

𝑔𝑖,𝑡 (x𝑖,𝑡 ; 𝝃0:𝑡) ≤ 0 ∀𝑖, ∀𝑡 (8.1c)

ℎ𝑖,𝑡 (x𝑖,0:𝑡 ; 𝝃0:𝑡) ≤ 0 ∀𝑖, ∀𝑡. (8.1d)

Our formulation contains three types of constraints: (8.1b) convex system-wide
constraints 𝑓𝑡 that couple decisions across market participants but within each stage
(e.g., power balance, line flow limits, zonal constraints, reserve requirements); (8.1c)
private constraints 𝑔𝑖,𝑡 for participant 𝑖 and stage 𝑡 (e.g., generation limits, state-of-
charge (SOC) limits); and (8.1d) private constraints ℎ𝑖,𝑡 for participant 𝑖 coupling
their decisions in stage 𝑡 to all previous dispatches (e.g., ramping, storage SOC
updates, unit commitment-dependent generation limits).

This formulation of economic dispatch incorporates linear power flow equations,
network constraints, zonal constraints, reserve constraints, private constraints, and
intertemporal constraints for both conventional generators, flexible and inflexible
loads, and storage.

Assumption 8.1. We assume that for each 𝑖, 𝑡, functions 𝑐𝑖,𝑡 , 𝑓𝑡 , 𝑔𝑖,𝑡 , and ℎ𝑖,𝑡 are
convex w.r.t x𝑡 . We also assume that they are causal, in the sense that they possibly
depend on any dispatches and uncertainty realized until time 𝑡. Finally, for non-
triviality, we assume that Problem 8.1 has a feasible solution.

If market dispatches x∗0, . . . , x
∗
𝑇

are generated by the optimal solution of Problem
8.1, then the market clearing price that supports a competitive equilibrium is just
the dual multiplier associated with constraint (8.1b) (cf. [313, 316]).

Sequential Market Dispatch
In practice, solving Problem 8.1 is not a viable procedure for clearing the market
due to the combination of uncertain inter-stage coupling constraints. Instead, SOs
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resort to solving a sequence of market-clearing optimization problems.1 For each
stage, updated forecasts of uncertainty are used as problem parameters, and advisory
forward decisions are computed, but only the decision for the current stage is settled.

The market-clearing problem for stage 𝑡 is presented in Problem 8.2, where the
function 𝑉𝑡 : R𝑀𝑡 → R represents the forward cost of dispatch x𝑡 ; we refer to this as
the forward value or cost-to-go function. As with the functions in Problem 8.1, 𝑉𝑡
may be parameterized by all uncertainty realized up to 𝑡, all previous dispatches, as
well as forecasts of future uncertainty θ𝑡 that are available at time 𝑡:

𝑉𝑡 (x𝑡 ; x̂𝑖,0:𝑡−1, 𝝃0:𝑡 ,θ𝑡).

In service of simpler notation, we make this dependence on parameters implicit in
the remainder of the manuscript and simply refer to 𝑉𝑡 (x𝑡), except where an explicit
reference to a particular parameter is necessary. In Section 8.2, we remark on how
𝑉𝑡 is already incorporated in market dispatch problems in practice as well as on the
theoretical benefits of abstracting the forward cost of decisions in this way.

Problem 8.2. Let x̂0:𝑡−1 be the sequence of dispatches committed prior to stage 𝑡
and 𝝃0:𝑡 the uncertainty realized through stage 𝑡. The sequential dispatch problem
for interval 𝑡 is:

min
x𝑡

∑︁
𝑖

𝑐𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; 𝝃0:𝑡) +𝑉𝑡 (x𝑡) (8.2a)

s.t. 𝝀𝑡 ⊥ 𝑓𝑡 (x𝑡 ; 𝝃0:𝑡) ≤ 0 (8.2b)

𝝁𝑖,𝑡 ⊥ 𝑔𝑖,𝑡 (x𝑖,𝑡 ; 𝝃0:𝑡) ≤ 0 ∀𝑖 (8.2c)

𝜼𝑖,𝑡 ⊥ ℎ𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; 𝝃0:𝑡) ≤ 0 ∀𝑖. (8.2d)

The dual multipliers associated with each set of constraints are indicated to the left
of each constraint (and followed by “⊥”). When 𝑉𝑡 (x𝑡) is convex with respect to
x𝑡 , and the convexity conditions from Assumption 8.1 hold, then (8.2) is a convex
optimization problem.

The following algorithm specifies how the system operator clears and settles the
market over the multi-stage scheduling horizon. Note that at each stage, the SO
requires a scheme for deciding the prices 𝝅∗𝑡 (see below).

1For example, this sequence could be the combination of a day-ahead forward market followed
by real-time adjustment market clearings every 15 minutes.
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Algorithm 8.1.

1. The SO generates a DA uncertainty forecast 𝝃0 and solves Problem 8.2 for 𝑡 = 0
to produce decisions x∗0 and prices 𝝅∗0.

2. For 𝑡 = 1, . . . , 𝑇:
a) Nature realizes uncertainty 𝝃𝑡;
b) The SO solves Problem 8.2 to produce dispatches x∗𝑡 and prices 𝝅∗𝑡 ;
c) Each participant realizes dispatch x̂𝑡 := x∗𝑡 and settles with the SO 𝑖 at

𝝅∗
𝑖,𝑡
⊤x̂𝑖,𝑡 .

Assumption 8.2. Solving Problem 8.2 iteratively for 𝑡 = 0, . . . , 𝑇 produces a fea-
sible sequence of dispatches. Note that such recursive feasibility is in general not
guaranteed and may depend on the choice of 𝑉𝑡 and θ; see [29, 43] for further
consideration of these details.

Specifying the cost-to-go function 𝑉𝑡
Depending on the parameterization of the uncertainty forecast θ𝑡 and the choice of
the stochastic optimization model, the function 𝑉𝑡 adopts different forms. We show
below how several common stochastic paradigms fit into this framework. These
encompass the multi-settlement and rolling-window optimization procedures (with
and without lookahead) used by SOs in practice as well as stochastic optimization
formulations increasingly studied in the research literature.

Rolling dispatch without lookahead. This procedure is the traditional approach
to dispatching the DA and RT markets, where each stage (or interval) is optimized
without considering the forward consequences of the current dispatch. Thus, x𝑡 is
only coupled intertemporally to x̂0:𝑡−1 through the constraints (8.2d). In this case,
𝑉𝑡 := 0 for all 𝑡 = 0, . . . , 𝑇 . As this is convex, Problem 8.2 is, therefore, convex and
tractable.

Rolling dispatch with lookahead. To better handle uncertainty, SOs make use
of forecasts and advisory decisions over a lookahead horizon of length ℎ > 1. Ex-
ploiting lookahead predictions can increase the feasibility and ex-post optimality of
the overall dispatch sequence since it allows for anticipating future ramp, unit com-
mitment, and storage charge/discharge needs [320]. The forecast is a point forecast
θ𝑡 = (𝝃𝑡+1, . . . , 𝝃𝑡+ℎ), available at time 𝑡, of the true uncertainties 𝝃𝑡+1, . . . , 𝝃𝑡+ℎ to
be realized.
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𝑉𝑡 (x𝑡 ;θ𝑡) := min
x𝑡+1,...,x𝑡+ℎ

𝑡+ℎ∑︁
𝜏=𝑡+1

𝑁∑︁
𝑖=1

𝑐𝑖,𝜏 (x𝑖,𝑡+1:𝜏, x̂𝑖,0:𝑡 ; 𝝃0:𝑡 , 𝝃𝑡+1:𝜏) (8.3a)

s.t. 𝑓𝜏 (x𝜏; 𝝃0:𝑡 , 𝝃𝑡+1:𝜏) ≤ 0 ∀𝜏 (8.3b)

𝑔𝑖,𝜏 (x𝑖,𝜏; 𝝃0:𝑡 , 𝝃𝑡+1:𝜏) ≤ 0 ∀𝑖,∀𝜏 (8.3c)

ℎ𝑖,𝜏 (x𝑖,𝑡+1:𝜏, x̂𝑖,0:𝑡 ; 𝝃0:𝑡 , 𝝃𝑡+1:𝜏) ≤ 0 ∀𝑖,∀𝜏. (8.3d)

In the above, ∀𝜏 means 𝜏 ∈ [𝑡 + 1, 𝑡 + ℎ]. By convention, if (8.3) is infeasible,
𝑉𝑡 = +∞. By standard arguments on the convexity of the optimal value of a convex
program under affine perturbations (e.g., [214, Section 5.6.1]), we have the following
structural result on the cost-to-go 𝑉𝑡 .

Proposition 8.2.1. 𝑉𝑡 (x𝑡 ;θ𝑡) in (8.3) is convex in x𝑡 .

Although 𝑉𝑡 in (8.3) is convex, it is not possible to write down a closed-form
solution in general. However, (8.3) can be incorporated into the formulation of
the problem (8.2), recovering the standard lookahead economic dispatch problem
studied in [313, 316], which is a tractable convex optimization problem. Note
that in a solution x𝑡 , x𝑡+1, . . . , x𝑡+ℎ to (8.2) with 𝑉𝑡 defined as (8.3), only the first
dispatch x𝑡 is binding for the purposes of Algorithm 8.1. The remaining dispatches
x𝑡+1, . . . , x𝑡+ℎ are advisory and are re-computed for each successive interval.

Chance-constrained optimization. Chance-constrained optimization has re-
ceived increasing interest for its ability to optimize over decisions with constraints
involving stochastic uncertainty [46, 317, 321]. The form of 𝑉𝑡 presented next
enables probabilistic guarantees on the feasibility of the advisory dispatch under
a distributional assumption on uncertainty. At time 𝑡, we define 𝑝𝑡 to be the dis-
tribution of future uncertainty 𝝃𝑡+1:𝑡+ℎ conditioned on all uncertainty realizations
through time 𝑡. The forecast θ𝑡 collects parameters of this distribution or of the
SO’s best guess of this distribution. In this case, the risk-neutral chance-constrained
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lookahead value function is defined as follows:

𝑉 (x𝑡 ;θ𝑡) :=

min
x𝑡+1,...,x𝑡+ℎ

E
𝝃𝑡+1:𝑡+ℎ∼𝑝𝑡

[
𝑡+ℎ∑︁
𝜏=𝑡+1

𝑁∑︁
𝑖=1

𝑐𝑖,𝜏 (x𝑖,𝜏; 𝝃𝜏)
]

(8.4a)

s.t. P𝝃𝑡+1:𝜏 [ 𝑓𝜏 (x𝜏; 𝝃0:𝑡 , 𝝃𝑡+1:𝜏) ≤ 0] ≥ 1 − 𝜀 𝑓𝜏 ∀𝜏 (8.4b)

P𝝃𝑡+1:𝜏 [𝑔𝑖,𝜏 (x𝑖,𝜏; 𝝃0:𝑡 , 𝝃𝑡+1:𝜏) ≤ 0] ≥ 1 − 𝜀𝑔
𝑖,𝜏

∀𝑖,∀𝜏 (8.4c)

P𝝃𝑡+1:𝜏 [ℎ𝑖,𝜏 (x𝑖,𝑡+1:𝜏, x̂𝑖,0:𝑡 ; 𝝃0:𝑡 , 𝝃𝑡+1:𝜏) ≤ 0] ≥ 1 − 𝜀ℎ𝑖,𝜏 ∀𝑖,∀𝜏. (8.4d)

In the above, ∀𝜏 means 𝜏 ∈ [𝑡 + 1, 𝑡 + ℎ]. By convention, if (8.3) is infeasible,
𝑉𝑡 = +∞. The hyperparameter 𝜀’s can be tuned by the SO to adjust the permissible
probability of a constraint violation.

In general, (8.4) is intractable due to the difficulty in computing probabilities and
expectations over arbitrary distributions 𝑝𝑡 . In particular, the feasible set defined
by the constraints may be nonconvex even if the constraint functions 𝑓𝜏, 𝑔𝑖,𝜏, ℎ𝑖,𝜏 are
convex. The structure of the constraints may also make the problem infeasible, e.g.,
a fixed advisory decision will generally be insufficient to guarantee feasibility under
any demand realization, and uncertainty-dependent recourse may be necessary.
However, by introducing suitable assumptions on the structure of the problem such
as linearity of 𝑐𝑖,𝜏, 𝑓𝜏, 𝑔𝑖,𝜏, ℎ𝑖,𝜏, Gaussianity of 𝑝𝑡 , separating joint chance constraints
into individual chance constraints, and replacing advisory decisions with advisory
uncertainty-dependent affine policies, a tractable, convex counterpart to (8.4) can
be formed. For details on such a transformation, we refer the reader to recent
literature on chance-constrained optimization and economic dispatch [317, 322].
Alternatively, given samples from the underlying distribution of uncertainty, a robust
form of this chance-constrained problem could be formulated using an approach
similar to the conformal uncertainty set methodology proposed in Chapter 7.

Other stochastic formulations. The procedure we have been following in this
section to formulate the sequential dispatch problem in the form (8.2) be applied to
other stochastic optimization settings, including scenario-based optimization, robust
optimization, and distributionally robust optimization, where there is an extensive
literature on convex, tractable reformulations [29, 41, 45, 46, 312].

In fact, although all of these approaches to defining𝑉𝑡 rely on constructing a tractable
optimization problem, this is not necessary for Problem 8.2. As long as𝑉𝑡 is convex
and it is possible to obtain gradients of 𝑉𝑡 for any input x𝑡 , then optimization (8.2)
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can be solved using gradient-based methods. And, as we will show in the next
section, the price formation also depends only on being able to compute gradients
of 𝑉𝑡 for the market dispatch.

8.3 Pricing Multi-Stage Uncertainty
In this section, we define the market clearing price and prove that it supports
a competitive market clearing solution under ex-ante and ex-post definitions of
dispatch-following incentives.

Model of market participation
In order to establish the properties of a competitive equilibrium, we first present
the participant’s model of market behavior. We assume that the agents are price-
takers, in that they do not bid strategically to impact the price. Further, we assume
that they optimize for the current stage of the optimization problem and do not
price future decisions into the bid for the current interval. We express the agent’s
profit-maximizing behavior precisely through the following problem.

Problem 8.3. Under a given price 𝝅𝑖,𝑡 , agent 𝑖’s profit-maximizing schedule in
interval 𝑡 is:

arg max
x𝑖,𝑡

𝝅⊤𝑖,𝑡x𝑖,𝑡 − 𝑐𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; 𝝃0:𝑡) (8.5a)

s.t. 𝝁𝑖,𝑡 ⊥ 𝑔𝑖,𝑡 (x𝑖,𝑡 ; 𝝃0:𝑡) ≤ 0 (8.5b)

𝜼𝑖,𝑡 ⊥ ℎ𝑖,𝑡 (x𝑖,𝑡 ; x̂𝑖,0:𝑡−1, 𝝃0:𝑡) ≤ 0. (8.5c)

Equilibrium Concepts
We are interested in pricing mechanisms that the SO can implement to promote
dispatch-following incentives. These incentives come in two varieties: ex-ante,
which apply before uncertainty realization and dispatch, and ex-post, which apply
after uncertainty has been realized and dispatches have been committed. Adopt-
ing terminology from [313, 314], we now present equilibrium notions that will
encourage both ex-ante and ex-post dispatch following incentives.

Definition 8.3.1. Let x0, . . . , x𝑇 be a dispatch sequence and 𝝅0, . . . , 𝝅𝑇 be a price
sequence, and let 𝝃 be a realization of uncertainty. This pair of sequences supports
a general equilibrium over the entire scheduling horizon 𝑡 = 0, . . . , 𝑇 if and only if
the following conditions hold:
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1. Market Clearing Condition. The dispatch sequence satisfies the system-wide
constraints at all times:

𝑓𝑡 (x𝑡 , 𝝃0:𝑡) ≤ 0 ∀𝑡 ∈ [0, 𝑇] .

2. Incentive Compatibility. For each participant 𝑖, x𝑖,0, . . . , x𝑖,𝑇 is an optimal
solution of the participant’s ex post problem:

arg max
x𝑖,0,...,x𝑖,𝑇

𝑇∑︁
𝑡=0

𝝅𝑖,𝑡
⊤x𝑖,𝑡 − 𝑐𝑖,𝑡 (x𝑖,𝑡 , x𝑖,0:𝑡−1; 𝝃0:𝑡) (8.6a)

s.t. 𝝁𝑖,𝑡 ⊥ 𝑔𝑖,𝑡 (x𝑖,𝑡 ; 𝝃0:𝑡) ≤ 0 ∀𝑡 ∈ [0, 𝑇] (8.6b)

𝜼𝑖,𝑡 ⊥ ℎ𝑖,𝑡 (x𝑖,𝑡 , x𝑖,0:𝑡−1; 𝝃0:𝑡) ≤ 0 ∀𝑡 ∈ [0, 𝑇] . (8.6c)

That is, the dispatch sequence minimizes the lost opportunity cost of each
participant 𝑖 over the entire scheduling horizon.

A dispatch and price sequence that supports a general equilibrium supports ex-post
dispatch-following incentives. However, when the SO schedules in the presence
of uncertainty, e.g., in the case of multi-interval lookahead or stochastic dispatch,
a missing payments problem can arise due to distribution shift. The works [313,
314] discuss this issue extensively in the lookahead setting and further show how
this missing payment problem arises even when there are perfect forecasts (but a
truncated lookahead horizon). To address this, they introduce an additional notion
of partial equilibrium at each dispatch stage which may be viewed as a condition on
ex-ante dispatch-following incentives.

Definition 8.3.2. Let x𝑡 be the dispatch and 𝝅𝑡 be the price from interval 𝑡, and
let 𝝃0:𝑡 be a realization of uncertainty up through 𝑡. This pair supports a partial
equilibrium for stage 𝑡 if and only if the following conditions hold:

1. Market Clearing Condition:

𝑓𝑡 (x𝑡 , 𝝃0:𝑡) ≤ 0.

2. Incentive Compatibility: For each 𝑖, the subvector x𝑖,𝑡 of x𝑡 is the optimal
solution of (8.5) under price 𝝅𝑖,𝑡 .

The work in [313, 314] also adopts a dual notion of equilibrium that combines
partial and general equilibrium.
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Definition 8.3.3. A dispatch sequence x0, . . . , x𝑇 and price sequence 𝝅0, . . . , 𝝅𝑇

support a strong equilibrium under sequentially realized uncertainty 𝝃1, . . . , 𝝃𝑇 if
and only if they support both a general equilibrium and a partial equilibrium for
each 𝑡.

By employing this stronger notion of equilibrium, both ex-ante and ex-post incentive
alignment can be guaranteed in the lookahead dispatch setting. We adopt this
notion of strong equilibrium in our work to enable pricing that guarantees dispatch-
following incentives in the case of general lookahead value function𝑉𝑡 , such as those
in the case of stochastic optimization formulations of the market dispatch problem.

Pricing a strong equilibrium
In each interval, the market operator solves (8.2) to generate a dispatch for that
interval for each participant x∗

𝑖,𝑡
along with a price vector 𝝅∗

𝑖,𝑡
defined as

𝝅∗𝑖,𝑡 :=−Dx𝑖,𝑡 𝑓𝑡 (x∗𝑡 ; 𝝃0:𝑡)⊤𝝀∗𝑡︸                    ︷︷                    ︸
Locational marginal price

− ∇x𝑖,𝑡𝑉𝑡 (x∗𝑖,𝑡 ;θ𝑡)︸                ︷︷                ︸
Price of uncertainty

−Dx𝑖,𝑡 ℎ𝑖,𝑡 (x∗𝑖,𝑡 , x̂𝑖,0:𝑡−1; 𝝃0:𝑡)⊤𝜼∗𝑖,𝑡︸                                  ︷︷                                  ︸
Price of intertemporal coupling

.
(8.7)

This price is defined in terms of optimal dual variables and derivatives of objec-
tive/constraint functions at the optimal point. The notation Dx𝑖,𝑡 𝑓𝑡 (x∗𝑡 ; 𝝃𝑡) represents
the Jacobian of the function 𝑓𝑡 with respect to variable x𝑖,𝑡 evaluated at x𝑖,𝑡 = x∗

𝑖,𝑡
.

Our price admits a straightforward decomposition into several functional parts. The
first component of the price is the standard locational marginal price (LMP). The
second term prices the cost of scheduling under uncertainty. The magnitude of
this term is determined both by the particular choice of 𝑉𝑡 as well as the quality
of the uncertainty parameterization in θ𝑡 . The last component is a price on the
intertemporal coupling between decisions. The price of ramping presented in [313]
is a special case of this term; our formulation admits other intertemporal couplings,
such as from storage state-of-charge [31]. This price is discriminatory, in that each
participant may see a different price. The necessity of such price discrimination
when there are intertemporal coupling constraints on generators is proven in [313].

We now establish the equilibrium properties of this price. Given the prior convexity
assumptions on 𝑐𝑖,𝑡 , 𝑓𝑡 , 𝑔𝑖,𝑡 , and ℎ𝑖,𝑡 , problems (8.5) and (8.6) are convex.
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Theorem 8.3.4. Fix a 𝑡 ∈ [0, 𝑇] and let x∗𝑡 be the dispatch produced by the optimal
solution of (8.2) and let 𝝅∗𝑡 be the price as defined in (8.7) using optimal primal/dual
variables from (8.2). This dispatch-price pair forms a partial equilibrium for interval
𝑡.

Proof. For an interval 𝑡, we have realized uncertainty 𝝃𝑡 and a previous dispatch
sequence x̂0:𝑡−1. Assume that problem (8.2) has been solved to optimality yielding
optimal primal/dual solutions (not necessarily unique) x∗𝑡 , 𝝀∗𝑡 , 𝝁∗𝑖,𝑡 , 𝜼

∗
𝑖,𝑡
∀𝑖.

The market clearing condition in Definition 8.3.2 is satisfied by primal feasibility
of the optimal solution x∗𝑡 . Without loss of generality, the rest of the proof will
be shown for a particular 𝑖. To show incentive compatibility, we write down the
Lagrangian of (8.2) for a given 𝑡:

L𝑡 =
𝑁∑︁
𝑖=1

𝑐𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; 𝝃0:𝑡) +𝑉𝑡 (x𝑡 ;θ𝑡) + 𝝀⊤𝑡 𝑓𝑡 (x𝑡 ; 𝝃0:𝑡)

+
𝑁∑︁
𝑖=1

𝝁⊤𝑖,𝑡𝑔𝑖,𝑡 (x𝑖,𝑡 ; 𝝃0:𝑡) +
𝑁∑︁
𝑖=1

𝜼⊤𝑖,𝑡ℎ𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; 𝝃0:𝑡).

The stationarity conditions hold at optimality:

0 =∇x𝑖,𝑡 𝑐𝑖,𝑡 (x∗𝑖,𝑡 , x̂𝑖,0:𝑡−1; 𝝃0:𝑡) + ∇x𝑖,𝑡𝑉 (x∗𝑡 ; 𝜃𝑡)
+ Dx𝑖,𝑡 𝑓𝑡 (x∗𝑡 ; 𝝃0:𝑡)⊤𝝀∗𝑡 + Dx𝑖,𝑡𝑔𝑖,𝑡 (x∗𝑖,𝑡 ; 𝝃0:𝑡)⊤𝝁∗𝑖,𝑡
+ Dx𝑖,𝑡 ℎ𝑖,𝑡 (x∗𝑖,𝑡 , x̂𝑖,0:𝑡−1; 𝝃0:𝑡)⊤𝜼∗𝑖,𝑡 .

(8.8)

The argument uses the convex KKT theorem. We construct primal-dual solutions
that satisfy the KKT optimality conditions (primal/dual feasibility, complemen-
tary slackness, and stationarity) of problem (8.5). Because (8.5) is convex, the
constructed primal-dual solution is also optimal. Define

x𝑖,𝑡 := x∗𝑖,𝑡 , (8.9a)

𝝁𝑖,𝑡 := 𝝁∗𝑖,𝑡 , (8.9b)

𝜼𝑖,𝑡 := 0. (8.9c)

x𝑖,𝑡 satisfies primal feasibility of (8.5) because x∗
𝑖,𝑡

is primal feasible for (8.2). 𝝁𝑖,𝑡 and
𝜼𝑖,𝑡 are dual feasible because both are non-negative by construction. Complementary
slackness holds for 𝝁𝑖,𝑡 because 𝝁∗

𝑖,𝑡
is optimal for (8.2), and holds for 𝜼𝑖,𝑡 trivially.

The Lagrangian of (8.5) is

L𝑖,𝑡 = −𝝅∗𝑖,𝑡
⊤x𝑖,𝑡 + 𝑐𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; 𝝃0:𝑡)

+ 𝝁⊤𝑖,𝑡𝑔𝑖,𝑡 (x𝑖,𝑡 ; 𝝃0:𝑡) + 𝜼⊤𝑖,𝑡ℎ𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; 𝝃0:𝑡).
(8.10)
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Now to check the stationarity condition,

∇x𝑖,𝑡L𝑖,𝑡 = −𝝅
∗
𝑖,𝑡 + ∇x𝑖,𝑡 𝑐𝑖,𝑡 (x

∗
𝑖,𝑡 , x̂𝑖,0:𝑡−1; 𝝃𝑡)

+ Dx𝑖,𝑡𝑔𝑖,𝑡 (x
∗
𝑖,𝑡 ; 𝝃0:𝑡)⊤𝝁∗𝑖,𝑡 + 0

= Dx𝑖,𝑡 𝑓𝑡 (x∗𝑡 ; 𝝃0:𝑡)⊤𝝀∗𝑡 + ∇x𝑖,𝑡𝑉 (x∗𝑡 ; 𝜃𝑡)
+ Dx𝑖,𝑡 ℎ𝑖,𝑡 (x∗𝑖,𝑡 ; x̂𝑖,𝑡−1, 𝝃𝑡)⊤𝜼∗𝑖,𝑡
+ ∇x𝑖,𝑡 𝑐𝑖,𝑡 (x

∗
𝑖,𝑡 , x̂𝑖,0:𝑡−1; 𝝃𝑡)

+ Dx𝑖,𝑡𝑔𝑖,𝑡 (x
∗
𝑖,𝑡 ; 𝝃0:𝑡)⊤𝝁∗𝑖,𝑡

= 0,

where the first equality comes by from plugging (8.9) into (8.10) and the second
equality comes from plugging in the price defined in (8.7). The third equality holds
because the expression is identical to (8.8).

Theorem 8.3.5. The sequences of dispatches x∗0, . . . , x
∗
𝑇

and prices 𝝅∗0, . . . , 𝝅
∗
𝑇

pro-
duced by Algorithm 8.1 over the entire scheduling horizon form a general equilib-
rium.

Proof. This result uses the same approach as for Theorem 8.3.4. We construct a
primal-dual solution for the individual participant’s ex-post LOC problem (8.6) from
the primal-dual variables computed over the scheduling horizon with Algorithm
8.1 and then show that this solution is optimal. The intertemporal coupling and
uncertainty terms allow the Lagrangian of (8.6) to decouple across intervals and
thus the optimality conditions of (8.2) apply simultaneously.

First, the market clearing condition is satisfied because the constraint (8.2b) holds
for every 𝑡.

The Lagrangian of the individual participant’s ex-post LOC problem (8.6) is

L𝑖,𝑡 =
𝑇∑︁
𝑡=0
−𝝅∗𝑖,𝑡

⊤x𝑖,𝑡 + 𝑐𝑖,𝑡 (x∗𝑖,𝑡 ; 𝝃𝑡) + 𝜼
⊤
𝑖,𝑡𝑔𝑖,𝑡 (x𝑖,𝑡 ; 𝝃𝑡)

+ 𝝂⊤𝑖,𝑡ℎ𝑖,𝑡 (x𝑖,𝑡 , x𝑖,𝑡−1; 𝝃𝑡).
(8.11)

Define

x𝑖,𝑡 := x∗𝑖,𝑡 ∀𝑡, (8.12a)

𝜼𝑖,𝑡 := 𝜼∗𝑖,𝑡 ∀𝑡, (8.12b)

𝝂𝑖,𝑡 := 0 ∀𝑡. (8.12c)
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Primal/dual feasibility and complementary slackness follow from the same argument
as in Theorem 8.3.4. The individual’s stationarity condition, which must hold across
the entire time horizon, follows from

∇x𝑖,𝑡L𝑖,𝑡 =
𝑇∑︁
𝑡=0
−𝝅∗𝑖,𝑡

⊤ + ∇x𝑖,𝑡 𝑐𝑖,𝑡 (x
∗
𝑖,𝑡 ; 𝝃𝑡)

+ Dx𝑖,𝑡𝑔𝑖,𝑡 (x
∗
𝑖,𝑡 ; 𝝃𝑡)⊤𝜼∗𝑖,𝑡

+ Dx𝑖,𝑡 ℎ𝑖,𝑡 (x
∗
𝑖,𝑡 ; x̂𝑖,𝑡−1, 𝝃𝑡)⊤𝝂∗𝑖,𝑡

=

𝑇∑︁
𝑡=0

𝐴
(𝑖)
𝑡

⊤
𝝀∗𝑡 + Dx𝑖,𝑡 𝑓𝑡 (x∗𝑡 ; 𝝃𝑡)⊤𝝁∗𝑡 + ∇x𝑖,𝑡𝑉 (x∗𝑡 ; 𝜃𝑡)

+ ∇x𝑖,𝑡 𝑐𝑖,𝑡 (x
∗
𝑖,𝑡 ; 𝝃𝑡) + Dx𝑖,𝑡𝑔𝑖,𝑡 (x

∗
𝑖,𝑡 ; 𝝃𝑡)⊤𝜼∗𝑖,𝑡

+ Dx𝑖,𝑡 ℎ𝑖,𝑡 (x∗𝑖,𝑡 ; x̂𝑖,𝑡−1, 𝝃𝑡)⊤𝝂∗𝑖,𝑡
= 0.

The last equality holds because the equality (8.8) holds for each 𝑡. This reveals the
motivation of the price construction in (8.7). Including a term for the intertemporal
coupling constraints ℎ𝑖,𝑡 allows the pricing problem to decouple across intervals.
Thus, the participant could leave the market after any interval and their LOC would
be 0.

The result in Theorem 8.3.5 shows that the price (8.7) guarantees that each participant
has zero lost opportunity cost at the end of the scheduling horizon. The intertemporal
coupling term compensates participants for any lost opportunity cost due to binding
intertemporal constraints (e.g., ramping) whereas the uncertainty term compensates
participants for any lost opportunity cost due to the system operator’s uncertainty-
aware scheduling procedure.

The following corollary holds from Theorems 8.3.4 and 8.3.5:

Corollary 8.3.6. The sequences of dispatches x∗0, . . . , x
∗
𝑇

and prices 𝝅∗0, . . . , 𝝅
∗
𝑇

produced by Algorithm 8.1 over the entire scheduling horizon support a strong
equilibrium.

A strong equilibrium is a desirable property of a market-clearing price because
it provides dispatch-following incentives during each stage of scheduling horizon
while also correcting the missing payment problem that arises ex-post.
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Table 8.1: Generator parameters for the test case

Generator Pmin (MW) Pmax (MW) Ramp Rate (% Pmax/hour) Cost ($/MWh)
Gas C.C. 350 550 25% 50

Gas Peaker 100 120 200% 70
Solar 0 250 NA 0
Wind 0 350 NA 0

8.4 Experiments
We explore how uncertainty affects dispatch efficiency and pricing under our mech-
anism through a test case similar to that presented in [314]. We consider a power
system with a gas combined-cycle (C.C.) plant, a gas peaker plant, solar, wind, and
load in a single bus network. The gas plants are ramp constrained whereas the re-
newables are not. Cost functions are linear and are parameterized by their marginal
cost. All parameters for the generators are given in Table I.

We obtain 24-hr load and renewable generation profiles from CAISO from Sep.
9, 2021 [323]. These include both forecast day-ahead trajectories and the actual,
realized real-time trajectories, all of which were normalized to 1000MW peak de-
mand. Sample realizations of the true trajectories are simulated by adding correlated
zero-mean Gaussian noise to the actual values.

Algorithm 8.1 was implemented to clear the market in a rolling fashion. The dispatch
horizon for a single run of the market is 24 hours, consisting of 289 individual stages:
one DA dispatch and RT dispatches every 5 minutes. The first stage (𝑡 = 0) is the DA
unit commitment problem. The unit commitment problem makes use of a 24-hour
ahead hourly DA forecast in the CAISO data.2 The subsequent RT stages take the
unit commitment as fixed.

We implement the three mechanisms from Section 8.2 for dispatching in RT. First
is myopic scheduling, where only the current interval’s cost and constraints are
optimized but generator ramping constraints bind the current decision to the realized
dispatch from the previous interval. This is a deterministic problem, as demand
and renewable generation are assumed to be known, and does not account for
the cost of future decisions in the scheduling horizon. Second is multi-interval
lookahead scheduling with a 3-hour lookahead horizon. A lookahead forecast is

2In North American ISOs, there is often a financial settlement in the DA market. Although
our formulations accommodate a financially settled DA market, we do not empirically analyze the
DA market settlement in this work, as intertemporal coupling and uncertainty do not arise in the
formation of the DA prices.
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Figure 8.2: DA (dashed line) and optimal RT (solid line) dispatch trajectories for
generators and load over a 24 hour scheduling horizon.

computed by taking the mean of a small subset of random trajectories. Third is a
multi-interval chance-constrained lookahead problem, where the constraints for the
advisory periods hold probabilistically and the objective function is the expected
cost for the advisory periods. The distribution parameters of the trajectory forecasts
are obtained from the set of randomly sampled trajectories.

Figure 8.2 shows the dispatch trajectories for each of the generators in the system
under optimal ex-post scheduling. Note that due to its high cost relative to the
other generators, the gas peaker is only active during the peak demand hours when
the ramp needs of the system exceed available capacity. Lookahead dispatch with
point forecasts results in dispatching the peaker less often for binding ramping
constraints but more during other intervals due to the cost of uncertain dispatch.
Chance-constrained lookahead dispatch is able to avoid most of the binding ramping
constraints at the expense of more precautionary dispatches due to uncertainty.

Figure 8.3 presents the benefits of scheduling with lookahead and stochastic forward
cost policies. When the forecast error is zero, accounting for forward cost results
in more costly dispatch than myopic scheduling. This is due to the inherent conser-
vatism and robustness that these policies provide. However, as uncertainty increases,
myopic scheduling becomes more costly than uncertainty-aware scheduling due to
load shedding actions and sub-optimal dispatch of higher cost generators.

Finally, we show how our proposed market clearing price (8.7) decomposes into
its constituent components in Figure 8.4. The largest component of the price
is the uniform shadow price of the power balance constraint. However, for the
ramp-constrained gas generator, there are additional terms that compensate for the
opportunity cost of the system operator’s imperfect scheduling under uncertainty.
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Figure 8.3: Total dispatch cost of the different pricing schemes under increasing
forecast error. Forecast error is defined as the mean absolute percentage deviation
from the true trajectory realization.

Figure 8.4: Price trajectory 𝝅∗
𝑖,𝑡

for the gas combined-cycle generator under𝜎 = 10%
forecast uncertainty for different real-time forecast methodologies.

The additional complexity of computing price (8.7) is negligible compared to the
standard LMP and T-LMP in [313], as it is also defined in terms of optimal dual
variables and cost function gradients. The complexity of the dispatch problem
depends on the choice of procedure (e.g., change-constrained, robust, scenario).

8.5 Conclusion
In this chapter, we present a unified mechanism for pricing uncertainty in a multi-
stage dispatch setting, incorporating both standard deterministic lookahead dispatch
and stochastic market clearing approaches (e.g., chance-constrained, robust) within
the same pricing framework. We prove that our price provides dispatch following
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incentives as well as zero lost opportunity costs for generators. Potential areas of
future work include a detailed empirical comparison with other pricing method-
ologies, such as the standard LMP and the R-TLMP [313], analyzing the system
operator’s merchandizing surplus under this pricing mechanism, and comparing
multi-settlement and single-settlement pricing methodologies.
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C h a p t e r 9

FAST AND RELIABLE 𝑁 − 𝑘 CONTINGENCY SCREENING
WITH INPUT-CONVEX NEURAL NETWORKS

In the last few chapters, we considered questions pertaining to risk and uncertainty
in online decision-making, learning, and pricing. However, there are many other
notions of reliability—besides risk- and uncertainty-awareness—that we might wish
to incorporate into the training and deployment of machine learning models. In this
final chapter of the thesis, we consider a setting where a similar conceptual toolkit to
the end-to-end learning approach in Chapter 7 can be developed into a framework to
enforce reliability—or controlled false negative rate—of machine learning classifiers
for the problem of contingency screening in power grids.

Power system operators must ensure that dispatch decisions remain feasible in case
of grid outages or contingencies to prevent cascading failures and ensure reliable
operation. However, checking the feasibility of all 𝑁 − 𝑘 contingencies—every
possible simultaneous failure of 𝑘 grid components—is computationally intractable
even for small 𝑘 , requiring system operators to resort to heuristic screening methods.
Because of the increase in uncertainty and changes in system behaviors, heuristic
lists might not include all relevant contingencies, generating false negatives in which
unsafe scenarios are misclassified as safe. In this work, we propose to use input-
convex neural networks (ICNNs) for contingency screening. We show that ICNN
reliability can be determined by solving a convex optimization problem, and by
scaling model weights using this problem as a differentiable optimization layer
during training, we can learn an ICNN classifier that is both data-driven and has
provably guaranteed reliability. That is, our method can ensure a zero false negative
rate. We empirically validate this methodology in a case study on the IEEE 39-bus
test network, observing that it yields substantial (10-20×) speedups while having
excellent classification accuracy.

This chapter is primarily based on the following paper:

[1] N. Christianson, W. Cui, S. Low, W. Yang, and B. Zhang, “Fast and Reli-
able 𝑁 − 𝑘 Contingency Screening with Input-Convex Neural Networks,”
in Proceedings of the 7th Annual Learning for Dynamics & Control Con-
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ference, PMLR, Jun. 2025, pp. 527–539. [Online]. Available: https://
proceedings.mlr.press/v283/christianson25a.html.

which is licensed under the Creative Commons Attribution 4.0 International License
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/.

9.1 Introduction
Power systems face increasing uncertainty due to increasing variable renewable
generation and environmental factors such as extreme weather events and wildfires.
To ensure reliable operation in the face of this growing uncertainty, power system
operators must dispatch generation resources in a manner that anticipates and is
robust to potential asset outages, such as the failure of a transmission line [53, 324].
Failing to anticipate and prepare for such outages can lead to cascading failures that
may necessitate load shedding, as occurred in the Texas blackouts in 2021 [325].

To assess and plan for the impacts of potential asset failures before they occur,
system operators must perform contingency analysis to identify which failures
will result in a post-failure operating point that is infeasible [27, Chapter 3]. In
particular, NERC regulations mandate that US power systems remain stable for
all 𝑁 − 1 contingencies—contingencies involving the loss of a single asset—and
that system operators plan for the multi-element contingencies with the most se-
vere consequences [326]. Assessing the security of and planning for such 𝑁 − 𝑘
contingencies—simultaneous losses of 𝑘 > 1 assets—is crucial for reliable system
operation, as such correlated failures can cause severe blackouts, such as the 2003
Northeast blackout [327]. However, the complexity of contingency analysis grows
exponentially in the number of simultaneous failures 𝑘 that is considered: in a sys-
tem with 𝑁 components, the number of such contingencies is Ω(𝑁 𝑘 ), which quickly
becomes intractable for 𝑘 > 1 in large-scale power systems.

To combat this intractability and enable the efficient screening of 𝑁 − 𝑘 contingen-
cies for 𝑘 > 1, a number of approaches have been developed in the recent literature.
These methods fall into one of two categories: (1) heuristic approaches using, e.g.,
machine learning to predict contingency feasibility, and (2) exact methods that re-
duce computational expense by certifying feasibility of a collection of contingencies
using “representative” constraints. However, these methods fall short on two fronts.
The heuristic approaches (1) come with no rigorous guarantees on prediction ac-
curacy or reliability; thus, they might misclassify a critical contingency as feasible,
causing system outages. On the other hand, the exact methods (2), while reliable,

https://proceedings.mlr.press/v283/christianson25a.html
https://proceedings.mlr.press/v283/christianson25a.html
https://creativecommons.org/licenses/by/4.0/
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ML model fICNN
Reliable ML model 

fICNN(r* ⋅)
Classification loss 
L (fICNN(r*x), y)

Feasibility/scaling 
problem (9.10) Scaling ratio r* Training data (x, y)

Gradient 
∂L

∂fICNN
Figure 9.1: A schematic of our proposed methodology for training reliable classifiers
for contingency screening; see Algorithm 13 for a full description. Note that the
scaling ratio 𝑟∗ is computed using a differentiable convex optimization layer, so the
gradient 𝜕𝐿/𝜕 𝑓ICNN is aware of this scaling step.

are typically hand-designed rules which cannot take advantage of historical data to
accelerate contingency analysis by focusing on the most relevant or likely contin-
gencies for a particular power system. To enable reliable and efficient screening
of higher-order 𝑁 − 𝑘 contingencies in modern power systems, new approaches
are needed to bridge the data-driven paradigm of machine learning with the strong
reliability guarantees of exact methods.

Contributions
In this work, we confront this challenge, proposing a machine learning approach to
screening 𝑁 − 𝑘 contingencies that is fast, data-driven, and comes with provable
guarantees on reliability. In particular, we propose to use input-convex neural net-
works (ICNNs) to screen arbitrary collections of contingencies for infeasibility. We
define a reliable classifier as one that never misclassifies an infeasible contingency
as feasible—that is, one that makes no false negative predictions—and we show
that ICNN reliability can be certified by solving a collection of convex optimization
problems (Proposition 9.3.1). Furthermore, we show that an unreliable ICNN can be
transformed into a reliable one with zero false negative rate by suitably scaling model
parameters by the solution to a convex optimization problem (Theorem 9.3.2), and
we propose a training methodology that enables learning over the restricted set of
provably reliable ICNNs by applying this scaling during training via a differentiable
convex optimization layer (Theorem 9.4.1, Algorithm 13). This fully differentiable
approach ensures that the scaling procedure and its dependence on model parame-
ters are accounted for during gradient descent updates; see Figure 9.1 for a diagram
outlining this approach.
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Our approach allows for trading off the online computational burden of con-
tingency screening for an offline one: it requires a significant computational
investment during the training procedure to guarantee model reliability, but at de-
ployment time, screening for contingencies only requires a single feedforward pass
of the ICNN. We test our approach in a case study on the IEEE 39-bus test system,
finding that it yields significant (10-20×) speedups in runtime while ensuring zero
false negative rate and excellent (2-5%) false positive rate (Section 9.5). In addition,
our approach yields an ICNN parametrizing an inner approximation to the set of
network injections that are feasible across contingencies, which enables 10× faster
preventive dispatch via security-constrained optimal power flow (Section 9.5). We
anticipate that our proposed approach to learning efficient data-driven inner approx-
imations to complex feasible sets using ICNNs could be of broader interest for other
applications in energy systems and control.

Related Work
Our work contributes to four areas in the power systems and machine learning
literature.

Power system contingency analysis. The problem of assessing the feasibility of
contingencies has been studied in the power systems community for decades as
a foundational part of secure grid operation [324]. Much work in recent years
has sought to develop faster methods for contingency analysis, including exact
methods that do not sacrifice reliability [328–330] as well as heuristic and machine
learning approaches that achieve faster speeds at the expense of accuracy [52, 53,
331]. Closest to our work is that of [332], which proposes an approach using
“representative constraints” to reduce the number of contingencies that must be
considered; these representative constraints constitute an inner approximation of
the set of all injections that are feasible across contingencies, just as our approach
yields an ICNN-parametrized inner approximation to this set. In contrast to all
prior approaches, our approach is both data-driven—using ICNN models, which
have substantial representational efficiency [278, Theorem 2], to learn from system
data—and ensures rigorous guarantees on reliability, enabling fast and accurate
contingency screening without any false negative predictions.

Convex inner approximations in power systems. The design of tractable, convex
inner approximations to complicated convex or nonconvex sets is a widely studied
problem in power systems and control, with applications to problems such as AC-
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optimal power flow [333–335] and aggregate flexibility of electric vehicles [336].
When the set one wishes to approximate is convex, our approach could be adapted to
enable learning such inner approximations in a data-driven manner, yielding greater
efficiency and a better approximation due to the representational capacity of ICNNs.

Machine learning in power systems. Machine learning techniques have been
applied to a wide range of problems in power systems, including contingency analysis
[52, 53], optimal power flow [56, 57], and security-constrained optimal power flow
[54, 337]. Of particular note in this direction are the papers [55, 338, 339], which
specifically apply ICNNs to the problems of voltage control and optimal power flow.
While some of the works applying machine learning to optimal power flow obtain
generalization guarantees or provable constraint satisfaction for their methods, these
guarantees hold specifically for the dispatch problem and cannot be extended to
yield faster reliable approaches for contingency analysis. Thus, we give the first
machine learning approach to contingency analysis with provable guarantees on
model accuracy.

Robust and reliable machine learning. A number of approaches have been de-
veloped to train machine learning models that are reliable in some sense, including
methods to control the false positive/negative rates of a classifier [340, 341] and
neural network verification and transformation techniques [342–344]. Recently,
the field of learning-augmented algorithms [69, 70] has developed new approaches
to incorporate untrusted or “black-box” machine learning predictions into decision-
making problems, including a number of energy-related problems [71, 74, 133, 193].
In contrast to these prior approaches, our methodology enables learning data-driven
ICNN models for contingency classification that are reliable by design, with zero
false negative rate enforced during training via a differentiable convex optimization
layer.

Notation
Let R+ denote the nonnegative reals. Given a vector x ∈ R𝑛, we denote its 𝑖th entry
𝑥𝑖; similarly, given a matrix M ∈ R𝑚×𝑛, its 𝑖th row is denoted m𝑖 and its 𝑖 𝑗 th entry is
denoted 𝑚𝑖 𝑗 . Given 𝑛 ∈ N, we define [𝑛] = {1, . . . , 𝑛}, and given a setX, we define
P(X) as its power set. Given a set A ⊆ R𝑛, intA denotes its interior and vol(A)
denotes its volume.
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9.2 Model and Preliminaries
We begin by reviewing power network economic dispatch via the DC-optimal power
flow problem and the problem of screening for infeasible contingencies. We then
describe our classification approach to contingency screening and the input-convex
neural networks we employ to this end.

DC-OPF and Contingency Screening
Consider a power network with topology represented by a graph 𝐺 = (𝑉, 𝐸), where
𝑉 is the set of nodes/buses and 𝐸 is the set of edges/transmission lines. Let 𝑛 = |𝑉 |
be the number of buses and 𝑚 = |𝐸 | be the number of lines. Without loss of
generality, we will assume that each bus 𝑖 ∈ [𝑛] has a single generator.

To dispatch generation while minimizing cost and satisfying demand and other
constraints in large-scale transmission networks, system operators typically solve
the DC-optimal power flow (OPF) problem, which considers a linearized model of
power flow [345]. In this problem, the system operator is faced with a known vector
d ∈ R𝑛 of (net) demands across buses, and in response chooses generator dispatches
p ∈ R𝑛 to minimize cost while satisfying several operational constraints:

min
p∈R𝑛

∑︁
𝑖∈[𝑛]

𝑐𝑖 (𝑝𝑖) (9.1a)

s.t. p ≤ p ≤ p (9.1b)

1⊤(p − d) = 0 (9.1c)

f ≤ H(p − d) ≤ f. (9.1d)

Here, 𝑐𝑖 (𝑝𝑖) is the cost for the generation decision 𝑝𝑖 on generator 𝑖, the constraint
(9.1b) enforces lower and upper capacity limits p, p ∈ R𝑛 on generation, (9.1c)
enforces supply-demand balance, and (9.1d) enforces the lower and upper bounds
f, f ∈ R𝑚 on line power flows given the nodal net injection vector p−d. The matrix H
mapping from nodal net power injections to line power flows is specifically defined
as H := BC⊤L†, where B ∈ R𝑚×𝑚 is the diagonal matrix of line admittances,
C ∈ R𝑛×𝑚 is a bus-by-line directed incidence matrix with entries defined as

𝑐 𝑗 𝑙 =


+1 if line 𝑙 = 𝑗 → 𝑘 for some 𝑘 ∈ 𝑉

−1 if line 𝑙 = 𝑖 → 𝑗 for some 𝑖 ∈ 𝑉

0 otherwise,

for some arbitrary orientation on the lines 𝐸 , and L = CBC⊤ is the admittance-
weighted network Laplacian.
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In the DC-OPF problem (9.1), the system operator solves for a feasible dispatch
vector given a nominal network topology 𝐺. In practice, however, after a dispatch
decision is chosen and the net nodal power injections x := p − d are fixed, the
network topology might change due to the failure of one or more lines. As a result
of this contingency, the matrix H mapping net power injections to line power flows
will change, causing the line flows to redistribute and potentially violate the line flow
limits (9.1d). Such violations may cause further lines to trip, causing a cascade of
failures [27, Chapter 4]. Thus, to ensure continued feasible and reliable operation,
the system operator must determine which contingencies are infeasible and must be
planned for. This is the contingency analysis problem, which is defined formally as
follows.1

Problem 9.0 (Contingency Analysis). Let C ⊆ P([𝑚]) be a set of contingencies
of interest, where each 𝑐 ∈ C represents a set of failed lines, and let x = p − d ∈ R𝑛

be a vector of nodal net power injections. In the contingency analysis problem, the
system operator seeks to determine whether the net injection x yields feasible line
flows for each contingency 𝑐 ∈ C—that is, whether

f ≤ H𝑐x ≤ f

for each 𝑐 ∈ C, where H𝑐 = B𝑐C⊤𝑐 L†𝑐 is defined for the post-contingency network
topology with lines 𝐸 \ 𝑐.

A standard choice for the set of reference contingencies C is the collection of all
𝑁 − 𝑘 contingencies, or the set of all possible simultaneous failures of up to 𝑘 lines;
in this case,

C = {𝑐 ⊆ [𝑚] : 1 ≤ |𝑐 | ≤ 𝑘}.

In practice, however, it is impractical to check the feasibility of all possible 𝑁 − 𝑘
contingencies in real time for even moderately small 𝑘: in a network with 𝑚

lines, there are Ω(𝑚𝑘 ) such possible contingencies, and so the complexity of 𝑁 − 𝑘
contingency analysis grows exponentially with 𝑘 . Instead, system operators typically
only consider the 𝑁 − 1 case, augmented with a small number of representative
or problematic higher-order contingencies selected via heuristic methods. Such

1Given a change in network topology resulting from a contingency, infeasibility could arise in
either the line flow limits (9.1d) or the supply-demand balance constraint (9.1c); the latter is possible
only in the case of islanding contingencies which disconnect the network into multiple connected
components. Because the set of islanding contingencies can be determined in advance, in this work
we will restrict our focus only to the set of non-islanding contingencies and the feasibility of the line
limits (9.1d).
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heuristics work well most of the time, since typically only a small number of
contingencies are likely either to occur or to cause system infeasibility. However,
they give no guarantees on system (in)feasibility for the broader set of possible 𝑁− 𝑘
contingencies for 𝑘 > 1.

In this work, we seek to develop methods that can efficiently check whether a net
injection x is feasible for all contingencies in some general, large reference set C,
such as the set of all 𝑁 − 𝑘 contingencies for 𝑘 > 1. To this end, we introduce
the contingency screening problem as a coarse-grained version of the contingency
analysis problem.

Problem 9.1 (Contingency Screening). Let C ⊆ P([𝑚]) be a set of contingencies
of interest, and let x ∈ R𝑛 be a vector of nodal net power injections. In the
contingency screening problem, the system operator seeks to determine whether the
net injection x is feasible for all contingencies 𝑐 ∈ C—that is, whether x is in the
feasible region

FC :=
{
y ∈ R𝑛 : f ≤ H𝑐y ≤ f ∀𝑐 ∈ C

}
, (9.2)

where each H𝑐 = B𝑐C⊤𝑐 L†𝑐 is defined for the post-contingency network topology with
lines 𝐸 \ 𝑐.

The (true) feasible region FC defined above is the set of all net injections which
remain feasible under any contingency in the set C. For notational convenience, in
the rest of the chapter we write this set abstractly as

FC := {y ∈ R𝑛 : Ay ≤ b} , (9.3)

where A ∈ R2𝑚 |C|×𝑛 and b ∈ R2𝑚 |C| collect all of the constraints f ≤ H𝑐y ≤ f
in (9.2). We will assume that A contains no zero rows, since these would encode
vacuous constraints. We will also make the following mild assumptions on the
structure of FC .

Assumption 9.1. FC is a strict subset of R𝑛 whose interior contains the origin:
FC ⊊ R𝑛 and 0 ∈ intFC . Equivalently, A has at least one row and A0 < b.

Note that these assumptions are reasonable: the first simply means that FC encodes
some constraint; if it does not, then there is no need to perform contingency screen-
ing. The second assumption amounts to the condition that the lower and upper line
limits f, f are bounded away from zero, which should hold in practice.
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The contingency screening problem differs from the problem of contingency anal-
ysis in that it focuses on feasibility across the entire reference set of contingencies
C, rather than the feasibility of individual contingencies. We can thus frame con-
tingency screening as a binary classification problem where one seeks to classify a
net injection vector x ∈ R𝑛 as feasible or infeasible, and true labels are given by the
indicator function 𝑓C defined as

𝑓C (x) =


0 if x ∈ FC (feasible)

1 otherwise (infeasible).

While at first glance this might appear to be a simpler problem than the full contin-
gency analysis problem, determining whether some injection x ∈ FC (i.e., computing
the label 𝑓C (x)) still has complexity Ω(𝑚 |C|) in general, as it requires checking the
feasibility of each contingency in C. This feasibility verification is tractable given
sufficient time and computational resources, but it will generally take too long for
real-time operation when the network and contingency set are large. If approxima-
tions suffice, we could instead use techniques from machine learning to learn a more
computationally efficient approximation of the function 𝑓C in a data-driven fashion
using, e.g., neural networks; however, this computational speedup will typically
come at the expense of reduced classification accuracy. In particular, a generic ma-
chine learning classifier might suffer false negatives, where it classifies injections as
feasible when they are not. While false positives (misclassifying a feasible injection
as infeasible) may simply cause increased caution, false negatives pose a serious
threat to reliable power system operation, since an infeasible injection that is not
identified as such could lead to a cascade of failures.

While the machine learning literature has developed a number of techniques to
reduce the incidence of false negatives in classification, such as increasing the
loss weight of examples in the positive class, none of these techniques can yield
provably guaranteed control over the false negative rate. To confidently deploy
machine learning methods to contingency screening, they should ideally avoid any
false negative predictions; we call such a classifier reliable.

Definition 9.2.1. A classifier 𝑓 : R𝑛 → {0, 1} for the contingency screening problem
(Problem 9.1) is said to be reliable if it has zero false negative rate, i.e., if

𝑓 (x) = 0 implies x ∈ FC

for any x ∈ R𝑛.
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Note that a reliable classifier 𝑓 is exactly one whose predicted feasible region
{x ∈ R𝑛 : 𝑓 (x) = 0} is contained inside the true feasible region FC; that is,
the predicted feasible region should be an inner approximation of the true feasible
region. Our goal in this work is to develop an approach for training reliable ML
classifiers for contingency screening that satisfy this property. For general machine
learning models and classification problems, determining whether this containment
property holds is not typically tractable. However, as we will see in Section 9.3,
the convex polyhedral structure of the true feasible region FC enables tractably
answering this question when we restrict to a class of convex neural networks.

Input-Convex Neural Networks
Input-convex neural networks (ICNNs) [287] are a restricted class of neural networks
that parametrize convex functions. We consider feed-forward ICNNs 𝑓ICNN : x ↦→ y
with 𝑘 hidden layers of the form

z1 = ReLU (D1x + b1)
z𝑖 = ReLU (W𝑖−1z𝑖−1 + D𝑖x + b𝑖) for 𝑖 = 2, . . . , 𝑘 (9.4)

y = W𝑘z𝑘 + D𝑘+1x + b𝑘+1,

where z𝑖 is the 𝑖th hidden layer, the intermediate activation function is ReLU(𝑥) =
max{𝑥, 0}, and the the weight matrices W𝑖 are all assumed to have nonnegative
entries (the weights D𝑖 can have arbitrary entries). It is relatively straightforward
to see that, under these assumptions (and more generally in the case of convex,
nondecreasing activation functions), 𝑓ICNN(x) is convex in x [287, Proposition 1].
Moreover, given sufficient depth and width, ICNNs can approximate any convex
function arbitrarily well [278, Theorem 1].

In the remainder of this work, for our application to the contingency screening
problem, we will consider ICNNs with input dimension 𝑛 and output dimension
1. When using an ICNN to classify the feasibility of an injection x, we will
take its prediction to be 𝜎( 𝑓ICNN(x)), where 𝜎(𝑥) = (1 + 𝑒−𝑥)−1 is a sigmoidal
activation applied to the output of the ICNN. In this case, predictions less than 0.5
will correspond to a “feasible” classification (0), and those strictly greater than 0.5
will correspond to “infeasible” (1). With this setup, one readily observes that the
predicted feasible region of an ICNN is exactly its 0-sublevel set:

{x ∈ R𝑛 : 𝜎( 𝑓ICNN(x)) ≤ 0.5} = {x ∈ R𝑛 : 𝑓ICNN(x) ≤ 0}.
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Note that the universal convex function approximation property enjoyed by ICNNs
implies that any convex set can be approximated arbitrarily well by the 0-sublevel
set of an ICNN. Thus, ICNNs are well-matched to the task of approximating the
true feasible region FC for contingency screening, which is itself a convex set.

Following Definition 9.2.1, a reliable ICNN classifier is one whose predicted feasible
region is contained inside the true feasible region FC . In the next section, we will
discuss how the convex structure of an ICNN enables both (a) tractably determining
whether this containment property holds and (b) scaling an ICNN’s parameters to
guarantee its reliability.

9.3 Certifying and Enforcing Reliability for ICNN Contingency Classifiers
As discussed in Section 9.2, a reliable classifier for the contingency screening
problem is one that makes no false negative predictions, i.e., whose predicted
feasible region is fully contained inside the true feasible region FC (9.2). For an
ICNN classifier 𝑓ICNN, this amounts to the property that its 0-sublevel set is contained
in FC . An immediate question that arises is whether it is possible to certify that a
given classifier 𝑓ICNN satisfies this reliability criterion. Conveniently, we can show
that certifying this property reduces to solving a collection of convex optimization
problems.

Proposition 9.3.1. An ICNN classifier for the contingency screening problem is
reliable—i.e., has zero false negative rate—if and only if

max
x∈R𝑛

a⊤𝑗 x

s.t. 𝑓ICNN(x) ≤ 0

 ≤ 𝑏 𝑗 (9.5)

for all 𝑗 ∈ [2𝑚 |C|], where a 𝑗 is the 𝑗 th row of A.

Proof. We first observe that, since 𝑓ICNN is a convex function, the optimization
problem in (9.5) is a convex problem, and thus can be solved tractably. Given
this convexity, the fact that containment of the 0-sublevel set of 𝑓ICNN inside the
polyhedron FC can be determined by solving a collection of convex optimization
problems of the form (9.5) is a standard result in convex optimization (see, e.g.,
[346]). For the sake of completeness, we briefly describe the proof here.

For the forward direction, suppose that containment holds, i.e., {x ∈ R𝑛 : 𝑓ICNN(x) ≤
0} ⊆ FC . This means that 𝑓ICNN(x) ≤ 0 implies Ax ≤ b; thus any feasible solution x
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to the problem in (9.5) will satisfy the inequality a⊤
𝑗
x ≤ 𝑏 𝑗 , and hence this inequality

will hold at optimality.

For the reverse direction, suppose that (9.5) holds for all 𝑗 . If there were some
x ∈ R𝑛 which was not feasible (x ∉ FC) and yet was predicted feasible by the ICNN
( 𝑓ICNN(x) ≤ 0), this would imply the existence of some 𝑗 such that a⊤

𝑗
x > 𝑏 𝑗 ,

yielding a contradiction.

The previous proposition provides a way of tractably certifying whether a given
ICNN classifier is reliable, but it does not give a means of transforming an unreliable
classifier into a reliable one. Since reliability of a classifier is exactly containment of
its predicted feasible set inside the true feasible set, a natural approach to enforcing
reliability would be to transform the classifier to translate and scale its predicted
feasible set into the interior of FC . In general, the problem of scaling a convex setA
to be contained in another convex setB can be tractably cast as a convex optimization
problem in certain special cases, such as when both A and B are polyhedra given
in halfspace description (see the foundational work of Eaves and Freund [346]).
However, the set we are concerned with scaling is the 0-sublevel set of an ICNN,
which has not been considered in prior work on set containment, and which is more
complex due to the multilayer structure and substantial representational efficiency
of ICNNs [278, Theorem 2].

Nonetheless, as we show in the following theorem, it is possible to perform such a
scaling efficiently by solving a collection of convex optimization problems, yielding
a reliable classifier.

Theorem 9.3.2. Let 𝑟∗ and v∗ be the optimal solutions to the optimization problem

min
𝑟∈R+,v∈R𝑛

𝑟 (9.6a)

s.t. 𝑧∗𝑗 ≤ a⊤𝑗 v + 𝑏 𝑗𝑟 ∀ 𝑗 ∈ [2𝑚 |C|] , (9.6b)

where
𝑧∗𝑗 := max

x∈R𝑛
a⊤𝑗 x

s.t. 𝑓ICNN(x) ≤ 0
(9.7)

for each 𝑗 ∈ [2𝑚 |C|]. Then the transformed ICNN classifier 𝑓ICNN defined as

𝑓ICNN(x) := 𝑓ICNN(𝑟∗x + v∗)

has zero false negative rate. Moreover, (9.6) has a feasible solution as long as the
original predicted feasible set {x ∈ R𝑛 : 𝑓ICNN(x) ≤ 0} is bounded.
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Before proving Theorem 9.3.2, we first make four brief comments. First, note that
the boundedness assumption on the predicted feasible set {x ∈ R𝑛 : 𝑓ICNN(x) ≤ 0}
can be easily enforced by, e.g., adding an indicator function to 𝑓ICNN that is 0 for all
∥x∥ ≤ 𝐷 and +∞ otherwise, where 𝐷 is some large constant.

Second, note that the transformed classifier 𝑓ICNN can be obtained from 𝑓ICNN (as
defined in (9.4)) by multiplying the weights D𝑖 by 𝑟∗ and adding D𝑖v∗ to the biases. Its
predicted feasible set is a transformed version of 𝑓ICNN’s, obtained by translating by
−v∗ and scaling down by a factor of 𝑟∗. As long as 𝑟∗ is not infinite—that is, if (9.6)
is feasible—then the predicted feasible set of 𝑓ICNN will be nonempty (assuming
that 𝑓ICNN’s predicted feasible set is nonempty). We thus seek to minimize 𝑟 to
maximize the volume of 𝑓ICNN’s predicted feasible set, which will ensure reliability
while minimizing the conservativeness of this classifier as an inner approximation
of the true feasible set FC .

Note that the resulting classifier might still be relatively conservative and suffer
poor prediction accuracy on the negative class, i.e., a large false positive rate. In
Section 9.4 we will propose a methodology to reduce this conservativeness and
enforce classifier reliability during training by incorporating a version of the scaling
problem (9.6) into the training process as a differentiable layer.

Third, observe that computing 𝑟∗ and v∗ requires solving a collection of 2𝑚 |C|
optimization problems (9.7) followed by a linear program (9.6) with just as many
constraints. One might question, thus, the benefit of our scaling approach over
exhaustive checking of contingencies, which has a similar dependence on |C| in its
complexity. However, our approach has a substantial benefit: this scaling must only
be performed once to obtain a classifier that is provably reliable for any net injection,
and all subsequent feasibility predictions only require an efficient feedforward pass of
the ICNN. In contrast, exhaustively checking contingencies must be done separately
for every net injection. Thus, our approach yields significantly improved efficiency
at deployment time by moving the computational burden of ensuring reliability from
the online, real-time setting to an offline preprocessing step.

Finally, we note that it is possible to transform the problems (9.6), (9.7) into a single
linear program by taking the Lagrange dual of each maximization problem (9.7)
[347] (see Chapter 7.C), similar to the approach for polyhedra in [346]. However,
our multi-problem formulation is more efficient, as it lends itself to a distributed
solution approach where we solve each of the smaller, independent optimization
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problems (9.7) in parallel before using their optimal solutions to solve the linear
program (9.6).

We now present a proof of Theorem 9.3.2.

Proof of Theorem 9.3.2. Consider the optimization problem

max
𝑟∈R+,v∈R𝑛

vol ({x ∈ R𝑛 : 𝑓ICNN(𝑟x + v) ≤ 0}) (9.8a)

s.t.


max
x∈R𝑛

a⊤𝑗 x

s.t. 𝑓ICNN(𝑟x + v) ≤ 0

 ≤ 𝑏 𝑗 ∀ 𝑗 ∈ [2𝑚 |C|] (9.8b)

where we seek to maximize the volume of the predicted feasible set of 𝑓ICNN (to
minimize conservativeness) after scaling and translating it by 𝑟 and v, subject to the
constraint that this transformed set is contained in the true feasible set FC . First,
note that since FC has nonempty interior—and specifically, 0 ∈ intFC (Assump-
tion 9.1)—then if the original predicted feasible set {x ∈ R𝑛 : 𝑓ICNN(x) ≤ 0}
is bounded, then (9.8) has a feasible solution. This is because there must be a
𝜀-neighborhood about the origin that remains contained in FC; thus, since the pre-
dicted feasible region of 𝑓ICNN is bounded, it is possible to choose a translation v
and a sufficiently large (yet finite) 𝑟 to ensure the transformed predicted region is
contained in this 𝜀-neighborhood.

Now, let us consider the objective (9.8a) and the constraints (9.8b) separately. We
can assume that 𝑟 > 0, since 𝑟 = 0 would only be feasible if FC were all of R𝑛,
which violates Assumption 9.1. For the objective, observe that

vol ({x ∈ R𝑛 : 𝑓ICNN(𝑟x + v) ≤ 0})

= vol
(
{𝑟−1(y − v) ∈ R𝑛 : 𝑓ICNN(y) ≤ 0, y ∈ R𝑛}

)
= 𝑟−𝑛 · vol ({y ∈ R𝑛 : 𝑓ICNN(y) ≤ 0}) , (9.9)

where the final equality follows from the fact that homogeneously scaling a body by
𝑠 in 𝑛 dimensions scales the volume by 𝑠𝑛, and translation has no impact on volume.
Since the volume term in (9.9) is independent of the decision variables 𝑟 and v,
and maximizing 𝑟−𝑛 will yield the same optimal solution as minimizing 𝑟 (since
the function 𝑠 ↦→ 𝑠−1/𝑛 is strictly decreasing on 𝑠 > 0), we can replace (9.8a) with
min𝑟∈R+,v∈R𝑛 𝑟 while keeping the same optimal solution. This exactly matches the
objective in (9.6a).
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Next, consider the constraints (9.8b). By Proposition 9.3.1, these constraints enforce
the reliability—or zero false negative rate—of the transformed classifier 𝑓ICNN(𝑟x+
v). For a given 𝑗 ∈ [2𝑚 |C|], since 𝑟 > 0, we have


max
x∈R𝑛

a⊤𝑗 x

s.t. 𝑓ICNN(𝑟x + v) ≤ 0

 ≤ 𝑏 𝑗
⇐⇒


max
y∈R𝑛

a⊤𝑗 𝑟
−1(y − v)

s.t. 𝑓ICNN(y) ≤ 0

 ≤ 𝑏 𝑗
⇐⇒


max
y∈R𝑛

a⊤𝑗 y

s.t. 𝑓ICNN(y) ≤ 0

 ≤ a⊤𝑗 v + 𝑏 𝑗𝑟

which exactly matches (9.6b) and (9.7).

9.4 Training Reliable ICNN Classifiers with Differentiable Convex Optimiza-
tion Layers

Theorem 9.3.2 in the previous section provides an approach to scale the parameters
of an existing ICNN classifier to guarantee provable reliability, or zero false negative
rate. However, this post-hoc scaling process could yield significant conservative-
ness. This is because scaling down the predicted feasible region by a factor of 𝑟 > 1
decreases its volume by a factor of 𝑟𝑛; under mild assumptions on the probability
distribution over net injections x ∈ R𝑛 seen at deployment time, this scaling could
beget an exponential increase in the false positive rate compared to the original,
unreliable classifier.

To avoid this conservativeness, it is necessary to incorporate this scaling procedure
into the training of the ICNN classifier, rather than applying it only after training.
A natural approach is as follows: at each epoch of training, first solve the problems
(9.6) and (9.7) to determine the optimal scaling parameters 𝑟∗ and v∗. Then, evaluate
the training loss of the transformed ICNN classifier—for a single injection/label pair
(x, 𝑦), we denote this loss 𝐿 ( 𝑓ICNN(𝑟∗x + v∗), 𝑦), where 𝐿 is some classification
loss—and update the model 𝑓ICNN using the gradient 𝜕𝐿

𝜕 𝑓ICNN
, where 𝜕 𝑓ICNN refers to

the gradient with respect to all the parameters of 𝑓ICNN. This approach aligns the
training loss with the objective of learning the optimal reliable classifier, since the
loss that is minimized through gradient descent is that of the reliable, scaled version
of the generic classifier 𝑓ICNN.
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However, this approach is incomplete. In particular, note that the scaling parameters
𝑟∗, v∗ resulting from the problem (9.6) themselves depend on the parameters of 𝑓ICNN

through each 𝑧∗
𝑗
. Defining �̂� := 𝑓ICNN(𝑟∗x + v∗), by the chain rule, the gradient of

𝐿 ( �̂�, 𝑦) with respect to the parameters of 𝑓ICNN is

𝜕𝐿

𝜕 𝑓ICNN
( �̂�, 𝑦) = 𝜕𝐿

𝜕�̂�

(
𝜕�̂�

𝜕 𝑓ICNN
+ 𝜕�̂�

𝜕𝑟∗

∑︁
𝑗

𝜕𝑟∗

𝜕𝑧∗
𝑗

𝜕𝑧∗
𝑗

𝜕 𝑓ICNN
+ 𝜕�̂�

𝜕v∗
∑︁
𝑗

𝜕v∗

𝜕𝑧∗
𝑗

𝜕𝑧∗
𝑗

𝜕 𝑓ICNN

)
.

Thus to compute the gradient of the loss 𝐿 with respect to the parameters of the
ICNN 𝑓ICNN, it is necessary to also compute the gradients of the optimal solutions
𝑟∗, v∗ of (9.6) with respect to each 𝑧∗

𝑗
, and the gradient of each optimal value

𝑧∗
𝑗

of (9.7) with respect to 𝑓ICNN’s parameters. To compute these gradients, we
can employ differentiable convex optimization layers [290], which automatically
compute the gradient of a convex optimization problem with respect to problem
parameters by differentiating through the Karush-Kuhn-Tucker (KKT) conditions
of the problem, allowing the incorporation of such problems into machine learning
training methodologies in a fully differentiable manner. By computing 𝑟∗ and v∗

using differentiable layers, we ensure that the training process is “aware” of the
scaling procedure that is applied to 𝑓ICNN to guarantee reliability.

While this fully differentiable approach ensures that the scaling procedure is ac-
counted for when computing the loss gradient, it requires computing both the so-
lution to (9.6) and the solutions to (9.7) for all 𝑗 ∈ [2𝑚 |C|] using differentiable
layers, which typically require additional computational overhead beyond a non-
differentiable solution [290]. Because we need to apply this scaling at each epoch
of training to enforce reliability, reducing the number of differentiable optimization
layers used at each step of training would improve computational efficiency.

Fortunately, as we show in the following theorem, it is possible to obtain a fully
differentiable scaling procedure using just a single differentiable optimization prob-
lem.

Theorem 9.4.1. Let 𝑧∗
𝑗

be defined as in (9.7) for each 𝑗 ∈ [2𝑚 |C|], and let 𝑗∗ :=
arg max 𝑗 𝑧∗𝑗/𝑏 𝑗 . Define 𝑟∗ to be the optimal value of the following problem:

𝑟∗ := max
x∈R𝑛

a⊤𝑗∗x/𝑏 𝑗∗

s.t. 𝑓ICNN(x) ≤ 0.
(9.10)

Then the transformed ICNN classifier 𝑓ICNN defined as

𝑓ICNN(x) := 𝑓ICNN(𝑟∗x)
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has zero false negative rate. Moreover, (9.10) has a feasible solution as long as the
original predicted feasible set {x ∈ R𝑛 : 𝑓ICNN(x) ≤ 0} is bounded.

Proof. Consider the optimization problem (9.6), and fix v = 0; this problem remains
feasible, by the assumption that the predicted feasible set is bounded, and since
0 ∈ intFC (Assumption 9.1) implies that b > 0. The optimal solution 𝑟∗ to (9.6) is
the smallest value of 𝑟 that satisfies the constraints (9.6b); this is exactly

𝑟∗ := max
𝑗
𝑧∗𝑗/𝑏 𝑗 .

It is straightforward to see that this 𝑟∗ is identical to the one obtained by (9.10).
Thus, the scaling obtained from (9.10) inherits the zero false negative rate yielded
by (9.6).

In Theorem 9.4.1, the values 𝑧∗
𝑗
only need to be computed in order to determine the

maximizing index 𝑗∗; then, the scaling ratio 𝑟∗ is computed using just the single
optimization problem (9.10). As such, all of the 𝑧∗

𝑗
can be computed in parallel in

a non-differentiable fashion, and only (9.10) must be solved using a differentiable
layer. Note additionally that the lack of a translation variable v in (9.10) should
not yield any additional conservativeness during training, since the ICNN can learn
biases that would imitate the impact of any such possible v.

We outline in Algorithm 13 a training methodology incorporating the fast, differ-
entiable scaling procedure in Theorem 9.4.1. In this process, we begin by “warm-
starting” the training for 𝑀𝑤 epochs by performing standard gradient descent on the
classification loss without scaling for reliability. Then, for each of the remaining 𝑀𝑠

epochs, the model is scaled using a differentiable layer implementing (9.10) before
evaluating the training loss. Note that after every gradient step, the ICNN’s weights
W𝑖 must be clipped to the positive orthant to maintain convexity.

9.5 Experimental Results
In this section, we describe the results of our ICNN training methodology (Algo-
rithm 13) in a case study of 𝑁 − 2 contingency screening on the IEEE 39-bus test
network [348, 349]. All experiments were performed on a MacBook Pro with 12-
core M3 Pro processor, and the code for implementing the experiments is available
upon request.

We used the IEEE 39-bus test network implemented in pandapower [350]. We
generated 14,000 random demand vectors from a multivariate normal distribution
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Algorithm 13: Training procedure for reliable ICNN classifiers
Input: training data {(x𝑖, 𝑦𝑖)}𝑁𝑖=1, initial ICNN 𝑓ICNN, warm-start epochs 𝑀𝑤,

scaling epochs 𝑀𝑠, batch size 𝑠
/* Warm-start the ICNN training without scaling */

1 for each epoch in [𝑀𝑤] do
2 for each mini-batch 𝐵 ⊂ [𝑁] do
3 Evaluate the loss 1

𝑠

∑
𝑖∈𝐵 𝐿 ( 𝑓ICNN(x𝑖), 𝑦𝑖)

4 Compute the gradient 𝜕 loss
𝜕 𝑓ICNN

and use it to update 𝑓ICNN

5 end
6 end
/* Train with scaling to enforce reliability */

7 for each epoch in [𝑀𝑠] do
8 Compute

𝑧∗𝑗 := max
x∈R𝑛

a⊤𝑗 x

s.t. 𝑓ICNN(x) ≤ 0

for each 𝑗 ∈ [2𝑚 |C|]
1010 Set 𝑗∗ := arg max 𝑗 𝑧∗𝑗/𝑏 𝑗
11 Compute

𝑟∗ := max
x∈R𝑛

a⊤𝑗∗x/𝑏 𝑗∗

s.t. 𝑓ICNN(x) ≤ 0

using a differentiable convex optimization layer
12 Evaluate the loss 1

𝑠

∑
𝑖∈𝐵 𝐿 ( 𝑓ICNN(𝑟∗x𝑖), 𝑦𝑖) of the scaled model on a

mini-batch 𝐵
13 Compute the gradient 𝜕 loss

𝜕 𝑓ICNN
and use it to update 𝑓ICNN

14 end

centered at the nominal demand with relative standard deviation 15% and random
covariance. We assigned each generator a linear cost with random coefficient
between 10 and 50, and set line limits uniformly to 1600 MW. We then solved the
DC-OPF problem (9.1) for each demand instance to obtain net injections, which
were then standardized and split into a 10,000 sample training set, a 2,000 sample
validation set, and a 2,000 sample test set.

To construct the true feasible set FC , we took the set of all 𝑁 − 2 contingencies and
dropped any islanding contingencies as well as contingencies that were infeasible
more than 90% of the time, since these should be handled separately. We eliminated
any dimensions for which the generated injection data was constant and eliminated
redundant constraints using the method from [332, Theorem 2], using as a bounding
box the empirical dimension-wise minimum and maximum net injections, multiplied
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by 1.2 for buffer and extended to include the origin. This resulted in a constraint
matrix A with 3,613 rows and 26 columns. To account for the standardized training
data, we multiplied the rows of A by 𝝈 and subtracted A𝝁 from b, where 𝝁 and 𝝈

are the dimension-wise mean and standard deviation of the unstandardized training
data.

We trained both ICNNs and standard, nonconvex neural networks (NNs) for the
contingency screening task using PyTorch [351]. All networks had a hidden width of
50, we enforced boundedness of the predicted feasible set by adding a layer ensuring
the output would always be positive outside of the aforementioned bounding box of
net injections, and we trained models using hidden depths of 1, 2, and 3, as well as
weights of 0.5, 1, and 1.5 on the positive class of the binary cross-entropy loss to
probe the impact of positive class weight on false negative rate. For each choice of
parameters, we trained 3 models with independent seeds, and in our results we report
the mean and standard deviation of performance over these seeds. We trained the
ICNNs using 500 warm-start epochs and 9,500 scaling epochs, and the nonconvex
NNs were trained using 10,000 standard epochs. The cvxpylayers library [290]
was used to differentiably solve the optimization problem in line 11 of the training
methodology (Algorithm 13). We used the Adam optimizer [306] with learning
rate 10−2, decreasing the learning rate by a factor of 10 at epoch 1,500 and again
at 8,500. During each training run, we kept track of the false positive rate on the
validation set at each epoch and selected as the training output the model with the
best such validation set performance.

We show in Figure 9.2 a 2-dimensional slice of the true feasible region FC and
the predicted feasible region of a 1-layer ICNN trained via our methodology. It is
evident that the ICNN respects the inner approximation property as a result of the
scaling procedure while learning to focus on the data-intensive region at the bottom
of the true feasible region. The ICNN does not need to learn the shape of the entire
true feasible region due to data sparsity at the top of this slice, enabling a more
efficient representation.

Contingency Screening Results
We show in Figure 9.3 a comparison of ICNNs with several hidden depths trained
via our methodology against standard NNs and the exhaustive method of checking
all constraints individually for the contingency screening problem. Note that the
“Positive Weight” value refers to the weight assigned to elements of the positive
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Figure 9.2: 2-dimensional slice of the true feasible region and the predicted feasible
region of a trained ICNN with hidden depth 1, with net injections from the test set
overlaid.

class in the training loss, where weights less than 1 typically encourage lower false
positive rates, and weights greater than 1 typically encourage lower false negative
rates.

Notably, the ICNNs trained with our differentiable scaling procedure in Algorithm 13
achieve a speedup of 10-20× over the exhaustive method, depending on the depth
of the ICNN (Figure 9.3, top). Moreover, they uniformly achieve a false negative
rate of 0 (Figure 9.3, middle), as guaranteed by our theoretical results, and a false
positive rate between 2% and 5% (Figure 9.3, bottom). While the effect is not
significant, it appears in the cases of hidden depth 1 and 3 that a lower positive
weight may decrease the false positive rate of our approach, though further study is
needed to understand whether this behavior holds in general.

In comparison, the nonconvex NNs achieve a better false positive rate, ranging
between 0.5% and 1%, but suffer significant false negative rates of 1% to 3%,
demonstrating that they cannot reliably be used for contingency screening, as they
could misclassify infeasible scenarios as feasible. Our approach thus enables sig-
nificantly faster screening than the exhaustive method while ensuring the reliability
that cannot be guaranteed by standard NNs.
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Figure 9.3: Results for our ICNN-based contingency analysis method, compared
against a nonconvex neural network (NN) model and exhaustive checking of contin-
gencies. (Top) Runtime to screen the feasibility of the 2,000 test injections. (Middle)
False negative rate. (Bottom) False positive rate.
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Faster Preventive Dispatch via SC-OPF
In practice, power system operators often want to perform preventive dispatch to
ensure that the chosen operating point will remain feasible in the case of contingen-
cies. This problem, known as security-constrained (SC)-DC-OPF, adds to (9.1) the
additional constraint that x := p − d should be feasible for all contingencies in the
reference set C—that is, p − d ∈ FC:

min
p∈R𝑛

∑︁
𝑖∈[𝑛]

𝑐𝑖 (𝑝𝑖) (9.11a)

s.t. p ≤ p ≤ p (9.11b)

1⊤(p − d) = 0 (9.11c)

f ≤ H(p − d) ≤ f (9.11d)

p − d ∈ FC . (9.11e)

Because our ICNN approach to contingency screening yields an ICNN 𝑓ICNN(𝑟∗·)
whose 0-sublevel set is an inner approximation to FC , one might naturally consider
replacing the security constraint (9.11e) in the full SC-OPF problem with the con-
servative inner approximation 𝑓ICNN (𝑟∗(p − d)) ≤ 0 in an attempt to accelerate the
solution time of this problem, since the original set FC is typically high-dimensional.
We test the performance of this approach and its impact on system cost and infeasi-
bility using our ICNN models trained on the IEEE 39-bus system, and we display
the results in Figure 9.4.

We see that, while the ICNNs with hidden depth 3 do not offer a speedup compared
to solving (9.11) exactly, the 2-layer ICNNs halve the runtime, and the shallowest
1-layer ICNNs speed up this problem by nearly a factor of 10 (Figure 9.4, top).
Remarkably, they achieve this speedup while increasing the dispatch cost by no
more than 0.1% on average over the full SC-OPF problem (Figure 9.4, middle), and
increasing the share of infeasible demand instances by only ∼1%. It also appears
that, for the ICNNs with hidden depth 1, decreasing the positive weight leads to
better cost and less infeasibility. This agrees with intuition, since a lower positive
weight encourages lower false positive rates, meaning that the ICNN should be a
less conservative inner approximation to the set FC . However, further study will be
needed to determine whether this observation generalizes, as the trend falls within
the error bars and our deeper models do not seem to exhibit this behavior.

To conclude, note that we could modify our training methodology in Algorithm 13
by replacing the classification loss with a differentiable convex optimization layer
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Figure 9.4: Results for the ICNN-based SC-OPF problem compared to the full SC-
OPF problem (9.11). (Top) Runtime to solve the SC-OPF problem or ICNN version
thereof on 2,000 test injections, disregarding infeasible injections. (Middle) Percent
excess cost of the ICNN version of SC-OPF relative to the full SC-OPF problem
(9.11). (Bottom) Percentage of infeasible demand instances for the ICNN version
of SC-OPF compared against the full SC-OPF problem (9.11).
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encoding the SC-OPF problem with ICNN security constraint. This would likely
improve the performance of the ICNN for SC-OPF, since training the model end-to-
end in such a manner would align training with the eventual downstream task faced
by the model. We leave an implementation and evaluation of this change to future
work.

9.6 Discussion and Conclusions
In this chapter, we propose a methodology for data-driven training of input-convex
neural network classifiers for contingency screening in power systems with zero
false negative rate. We show that certifying and enforcing zero false negative rate—
i.e., reliability—of an ICNN classifier can be achieved by solving a collection of
optimization problems, and by incorporating these problems into a differentiable
convex optimization layer during ICNN training, we can restrict training to be
over the set of provably reliable models. We evaluate the performance of our
approach on contingency screening and preventive dispatch on the IEEE 39-bus
test system, showing that it achieves good performance, guaranteed reliability, and
a significant computational speedup over conventional methods. We anticipate
that the computational benefit of our approach will be even more significant for
larger-scale power systems and higher-order contingency screening problems.

A number of interesting avenues remain open for future work, including (a) scaling
up this approach to enable application to larger-scale power systems; (b) combining
this screening approach with, e.g., methods from group testing to achieve comparable
speedups for the full contingency analysis problem; and (c) extending this method-
ology to other applications that require constructing tractable inner approximations
to some complicated set, such as learning data-driven and safe inner approximations
to AC-OPF feasible regions or electric vehicle aggregate flexibility sets. In addition,
given the similarities between this methodology and that proposed in Chapter 7 for
learning calibrated uncertainty sets, it would be interesting to explore whether this
broader conceptual framework can be extended to enable training machine learning
models while enforcing more general notions of reliability.
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