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Abstract 

A family of spherically symmetric, non-static, 

non-homogeneous relativistic models with zero pressure 

is considered. In the first chapter the pioneer work of 

Lemaitre and Tolman is reviewed. The fundamental partial 

diffArential equation is transformed into a par8~1etric 

nair which may be solved explicitly in terms of known 

functions. 

In the second chapter the nature of the most 

general solutions and the conditions under which they will 

exist are determined. The Robertson-Tolman notation is 

extended to apply to non-homogeneous models. The 

fundamental equation is solved in terms of Weierstrassian 

elliptic functions. The solutions in terms of elliptic 

functions are then shown to behave in the expected manner. 

Anproximste solutions not involving ellintic 

functions whicll will apnly vhen the cosmolog-ical constant 

is small as compared to another parameter are derived in 

the following chapter. Further information about the 

relations between the various solutions is obtained. 

In the fourth chapter all of the special non

elli~tic solutions are found for which the coefficients 

of the fundamental equation are finite. rrhe well known 

static and non-static homogeneous models 1.- ith zero 11ressure 

are shown to be special cases of this family of cosn; olovical 
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models. The Robertson two-dimensional gra9hical repre

sentation of the existence conditions for homogeneous 

models is extended to its equivalent three-dimensional 

representation for these models. A peneral expression 

for the local proper density within these models is 

derived and further physical restrictions upon the 

solutions are developed. 

In the final chapter the usefulness of this 

family of models is illustrated by applying the special 

solutions for a zero cosmological constant to the 

cosmological problem. Suitable expressions are derived 

for the red-shift, for the number of nebulae ·which 

would be counted to a limiting magnitude, and for the 

observed magnitude of a source of known luminosity 

located at a stated coordinate. A model is then con

structed which agrees with Hubble's ohservational data 

to a first approximation. 



Contents 

Acknowledgment i 

Abstract ii 

Chapter I 1 

Introduction 

Chapter II 25 

General Solutions 

Chapter III 71 

Approximate Solutions 

Chapter IV 102 

Snecial Solutions and Conclusions 

Chanter V 133 

Application to Cosmology 

References 178 



-1-

Chapter I 

Introduction 

We shall consider a group of spherically sym

metrical, non-homogeneous, non-static cosmolog ical models 

composed entirely of dust particles which, by definition, 

are incapable of exerting any pressures whatsoever. The 

use of cosmological models filled with only dust particles 

is a good approximation to the known observational facts 

of the present epoch. In these models each dust particle 

represents a single nebula. No significant intergalactic 

forces other than gravitation are known at present. Any 

radiation pressures upon the nebulae within our obser

vational neighborhood are vanishingly small. No col

lisions between the nebulae, which would produce a 

kinetic "gas" pressure, have been observed or assumed. 

Hence dust-filled models are a good first approximation. 

The energy-momentum tensor for such models will be 

where is macroscopic density of the dust as 

measured by a local observer moving with the dust and the 

quantities d x f-l and d x)) are components of the velocity 
ds ds 

of the dust with respect to the coordinates in use. 

In this work a special coordinate system will be 

used which moves with the dust. Such coordinate systems 

(1.1) 



are called "co-moving" coordinates. By definition the 

spacial components of the velocity of the dust with re-

spect to 

J.xl-'- -
els 

co-moving coordinates shall be zero. That is, 

0 for p-':/:- 4. The line-element to be used, which 

is yet to be developed, is one having a "cosmic" time 

orthogonal to the space-like components. Hence the time

like component of the velocity of the dust with respect to 

the co-moving coordinates shall be unity. That is, 

dx 4 __ 1 . 
els 

Consequently the energy-momentum tensor of 

(1.1) reduces to 

To put this energy-momentum tensor (1.2) into a 

form such that Dingle's Formulae (Ref. 1, pp. 254-7) may be 

used, we must lower one index. Lowering the index, we find 

T I-'- = g Trt.!-'-= O for all f '# 4 since all of the T ~f- in 2) )) 0( 

the summation will be zero from (1.2). Also, T! = g~~T~4 = 0 

for all ')) #- 4 since all of the oc4 T when 0( -/= 4 in the 

summation will be zero from (1.2) while g~4 = O from 

the assumed form of the line-element since it is assumed 

that the "cosmic" time will be orthogonal to all of the 

space-like components . Finally , T : = g4cx T ex 4 = f 
since all of the T oc 4 where <X j. 4 in the summation 

will be zero from (1.2) while g 44 = 1 from the assumed 

( 1.2) 



form of the line element and T44 = p from (1.2). There

fore the energy-momentum t ensor of (1.2) with one lowered 

index becomes 

T t = Q [,U- or )) =/= 4] 

The energy-momentum tensor of (1.2) and (1.3) 

contains three assumptions. The first and most important 

assum9tion is t he total abs enc e of pressure in the universe. 

This is one of the basic postulates. The two r emaining { 
l 

a ssumptions were made for mathematical convenience. They are 

the use of co-moving coordinates and the use of a line

element with an orthogijnal ''cosmic" time. 

Since the zero pressure postulate is the important 

one, it might be wel l to examine it more closely. A pressure 

would be measured by a local observer moving with the dust if 

there were a transfer of momenta across any of the faces of a 

three-dimensional spacial cell that he could erect about him

self for purposes of measurement. Such a transfer of momenta 

could be produced by two mechanisms, either by a flow of 

radiation, or by the motion of a material particle across a 

cell face. All radiation must be excluded from these models. 

Since radiation will move with the limiting velocity with 

respect to any coordinates that the local observer might use, 

momenta would be transferred across the cell faces. The prohi

bition on transfer of momenta by material particles is a more 

( 1. 3) 



delicate restriction. It is mathematically possible to have 

co-moving coordinates in which the particles "mix" upon 

motion. That is, the particles in the neighborhood of co

moving coordinate r1 would "flow through" the particles in 

the neighborhood of co-moving coordinate r2 during motion. 

A local observer at r1 would then observe a macroscopic 

pressure because of the transfer of momenta by the particles 

in the neighborhood of r 2 . Consequently, a restriction must 

be placed upon the types of possible motion within the models 

to be considered. The space witbin a model can be divided 

into unequal cells produced by connecting together adjacent 

particles. Then each cell, as viewed by a local observer,, is 

free to change in shape and size, but no cell is allowed to 

penetrate another. This restriction, it will be seen, places 

certain limits on otherwise arbitrary functions of r that 

will arise in the solutions of the Field Equations for the 

models under consideration. 

That "mixing" motions are gravitationally possible is 

illustrated by the present motion of the Solar System throueti 
t 

the Ursa Major Group ( stars of Ursa Major, Sirius ,ex Coronae, 

,SAurigae, et al). This is the type of motion on the stellar 

scale that must be forbidden in the models under discussion on 

the galactic scale. 

Only one of the postulates, that of zero pressure, 

has been utilized so far. The o~her postulate, that of 



spherical symmetry, will be used in establishing the line

element. In reducing the line-element, the mathematically 

simplifying assumptions of co-moving coordinates and of an 

orthogonal "cosmic" time must not be violated . The treat

ment used in producing the l ine-element will be i dent ica l t o 

that given by Tol man (Ref. 1, pp. 364-6). 

We sha ll start with the most general form of line

element which exhibits spacial spherical symmetry 

where it , µ , )) , and a are functions of r and t. We 
I 

shall simplify this line-element by allowable coordinate 

transformations which do not upset t he co-moving character of 

the coordinates to a form having g44 = 1 and all other 

g L = o. Cl 1-

Possible coordinate transformations are restricted cy 

the requirement that 

d,=d8=dcb=0 
ds ds d.s 

These are the conditions which must be satisfied by 

the spacial components of the particle velocities in co-moving 

coordinates. This means that no transformations of r , 8 , 

or cp are possible. However, transformations may be made in 

the time-like coordinate t. 

( 1. 5) 



Let us transform the time-like coordinate t to 

a new time-like coordinate t' which will be a function of 

r and t. This transformation may be differentially 

defined by the equation 

where )1 is an integrating factor, a function of r and 

t, which makes the right-hand side of (1.6) a perfect 

differential. In accordance with (1.6) we shall have 

dt'2 2 
- ~ d.r2. 

ri2e)) ev 

Substituting (1.7) into (1.4) and dropping the primes, we , · 

find that the line-element is reduced to the simpler form 

where A, f- , and )) are now functions of r and the 

present t. The co-moving relations ( 1. 5) are not disturbed 

since r, 8 and cp are the same variables as befo~e. The 

line-element (1.8) has now been reduced to one of Dingle's 

general forms (Ref. 1, p. 253). 

We have reduced the single cross-term g14 to zero 

by the transformation (1.6) but we have not yet r educed g44 
to unity. This further reduction can be made by a more 

comprehensive consideration of the co ... moving character of the 

(1. 6) 

( 1. 8) 



coordinates. In co-movinf coordinates a ~iven particle must 

be stationary in its spacial coordinates. That is, the r, 

e, and q:> coordinates for a given particle must remain 

constant for all past, present, and future times. It is not 

enou~h for the snacial comnonents of the particle velocity to 

reduce to zero. It is also necessary for the spacial 

compon ents of the particle acceleration to reduce to zero. 

A narticle might be accelerated by many different forces, 
< 

such as a nressure gradient, electro-magnetic or gravitatidnal 

forces. We have not nostulated any electro-mapnetic forces 

in the models that we are considerinp. Since we have 

nostulated zero pressure everywhere in our models, there will 

be no pressure gradients. Hence the only forces that might 

accelerate the particles with respect to their coordinate 

frames will be gravitational. We must, therefore, imnose 

the further condition that the spacial components of the 

~ravitational accelerations must be zero in our co-moving 

coordinates. This condition may be stated in terms of the 

eouations for a geodesic, by recallin~ the co-movinr re

lations of (1.5) as 

~ =-{44 3](dt ·)~~O 
oL s~ ' ds) 

The conditions of (1.9), it might be emphasized, are 

anplicable only because of the absence of pressure gradients 

in these models. 

( 1. 9) 



The Christoffel three-index symbols of (1.9) are 

easily evaluated by the use of Dingle's Formulae (Ref. 1, 

u. 254) by takinr- D = ev. By these means the conditions 

{1.9) will be seen to reduce readily to the conditions 

3v _ 8)) 

or - 08 (1.10) 

The second and third of the conditions (1.10) are identically 

true since )) in the line-element {1.8) was taken to be a 

a function of r and t only. The first condition, how- ~ 

ever, shows that the quantity ~ is a function of t only. 

Therefore, we may make a simple transformation in the time

scale only defined differentially as 

Since this scale transformation does not involve any of the 

spacial coordinates, the co-moving character of the coordi

nates is untouched. 

By substituting the scale transformation of (1.11) 

into the line-element (1.8) and dropping the primes, the line-

element becomes 

where A and JJ.. continue as functions of r and the 

nresent t. We have now achieved our original objective 

(1.11) 

(1.12) 



of reducing g44 to unity. Vve can, however, make one 

further simple reduction. Let us define a new quantity 

CAJ u. + 2 lo,:1 r e = er 

by collecting terms. Substituting this new quantity (1.13) 

into the line-element (1.12) we have 

{ 1.13) 

( 1.14) 

where A.. and u..J are functions of r and t. < Thi s l s the non-

homopeneous line-element of Tolman (Ref. 2) and Lema i t r e 

(Ref. 3). 

The line-element (l.11+,) contains in the simplest 

uossible form the second postulate of spher ical symmetry 

along with the mathematically simpl ifying assumptions of co

movinp; coordinates and an orthogonal ".cosmic" time. 'l'he 

energy-momentum tensor (l.J) contains the first postulate of 

zero pressure along with the mathematically simplifying 

assumptions of co-moving coordinate s and an orthog onal 

"cosmicn time. 'The line-element and the energy-momentum 

tensor are, therefore, compatible and must be combined to 

~roduce the desired series of cosmological models. The 

connection between the two is, of course, Einstein's field 

equations of general relativity 

- 8n Tf'- = R>-'- - -1 R afl + A afl 
).I )) 2 J l} J\.J)} ( 1.15) 



which equates the tensor 91: derived from the line-

element ·with the energy-momentum t ensor. Rela ti vis tic 

units of length, time, and mass are used in (1.15). The 

constant A in t he last term is the hypothetical 

cosmological constant . 

The equations (1 .15) can be produced without 

great difficulty by the use of Dingle's formulae 

(Ref . 1 , pp . 254-7) by taking 

A = e). xl - r -
B = e c.,J x2 =e 
C = e w sin2e x3 = ct> 

D = 1 x4 = t 

'r hen 

1 -W _). 12- •• 3 :l., I\ 
8nT1. = e - e ~ + w + 4 w - 1. l. = 0 

")-. ( II I 2 'l ', -') •• 
8nT2 = 8rrT 3 = - e- ~ + ~ - ~ + .LL 

2 3 2 4 4 2 

4 W - )\ ~ II 3 I 2. il_ I ') • .2 "l • 8nT
4 

= e- -e W +-w -~ +.9:2.. + ~ -J\ =8TT.O 
4 2 4 2 I 

I • 
~ 

2 
_,a.w'+w 1 =0 

2 

and all other T t are ident ically equal to zero . ~f'olman' s 

( 1.16) 

( 1.1 7) 

( 1.18) 

( 1 . 19) 



-.LL -

notation has been used in equations (1.16) to {1.19) in 

which the dots represent partial differentiation with 

respect to t while the primes represent partial differ

entiation with respect to r. 

The partial differential equations (1.16 ) to (1.19), 

if they can be solved, will determine the density f and the 

values of A and w at all times and places. Being 

partial differential equations, the solutions will involve a 
< 
' number of arbitrary functions of r or t. These arbitrary 

functions actually serve a usefu1 purpose since they will 

allow the imposition of a certain number of boundary con

ditions on a given model, such as initial density distri

~1tion, initial particle velocities and accelerations. After 

this imposition of boundary conditions the subsequent 

temporal and spacial history of the mode l can be calculated. 

Unfortunately, the partial differentia l equations are non

linear. They cannot, therefore, be solved by strai~ht

forward methods, but only by artifice. We shall now examine 

a group of artifices by which a formal solution can be 

obtained in the most general case and more useable solutions 

can be obtained for certain physically inte r esting s pe c~al 

cases. 

Let us beg in with the simpl est e 0uation (1 .19). 

After rearranging this equation, we can write it 

• • • I 

A.-w ==2~ 
w' 

{ 1. 20) 



Each side of this equation can readily be inte~rated with 

respect to t. Carrying this out, we have 

A - c..v = 2 109 W
1 

+ <.J)(r) 

where LP<•) is an arbitrary and unknown function of r. 

The arbitrary function must be added to the integrand be

cause partial, rather than complete, differentials are 

involved. The solution {1.21) is now a perfectly general 
< 
\ 

relation between A and Gu and not simply a special case. 

{ 1.21) 

Let us define a new arbitrary function of r as 
-t.p(r) 

4(g+l)=e. 

Then we can rewrite {1.21) as exponentials in the form 

( 1. 22) 

This is not the same form as derived by Tolman (Ref. 2, eq. 8 ), 

but this definition of g as the arbitrary function of r 

will be found to be more convenient in later equations . 

An examination of (1.22) will show that g can 

range in value only between -1 and + co . From their use 

in the lin~-element ( 1.14) e A and ew can be only 

positive and real. In order that ew have only positive 

real values, w must be a real function of r 

Consequently the s quare of the part i a l deri vat i ,re 

and t. 
,2 

w 

can be only a positive real number. Therefore the denomi

nator on the right-hand side of (1. 22) can vary only through 



real values. This places the stated limits on the other

wise perfectly arbitrary function g. 

Having found an expression for e >. in ( 1. 22) we 

may substitute this into the line-element (1.14) which ~ives 

This line-element (1.23) is the non-homogeneous analog of the 

well-known Friedman- Robertson non-static homogeneous line- ~ 

element. 

Further useful integrals can be obtained from the 

three remaining differential equations (1.16) to (1.18). 

Substitutin~ (1 .22) into (1.16 ) and rearranging, we obtain 

• .I. w 
MultiplyinP-'. (1 .24) by w e 2 and again rearranp1"ing- , we see 

that the equation may be written as 

A~ain both sides of this equation can readily be inte~rated 

with respect to t giving 

,Nhere h is another arbitrary function of r necessary in 

the inteprand to p1"ive a general solution. 

( 1. 2 3) 

(1.24) 

( 1. 25) 

( 1.26) 



However, equation (1.26) is still a partial 

differential equation. A further integration is necessary 

to express the temporal and spacial behavior of ec.u in 
- ..!.t...) 

analytic form. By multiplying ( 1. 26) by ½ e 2 and re-

arranging, this equation may be written as 

I 2 W h - .!..w _I_ l\ ew 
4 w ·e =- 9 + e :z. + 3 

This equation might appear more familiar if the dot 

notation is replaced by the more conventional partial differ

entiation signs as 

The integrat ion of (1.28) is the crux of the work which is to 

follow. It will be noticed that the two arbitrary functions 

of r that have been introduced, namely g and h, are both 

somewhat different from the similar functions used by Tolman 

(Ref. 2). The functions defined here have been found, how

ever, to reduce the oulk of the expressions somewhat and have 

proved, therefore, more convenient for use. 

There now remain two unused partial differential 

equations , namely (1.17) and (1.18). Substitution of (1.22) 

into (1.17) merely yields (1.24) again, and so nothing new 

is gained. Substitution of (1 . 22) into (1.18), however, will 

yi eld an expression for the density f in the model. 

( 1. 27) 

( 1.28) 



Using (1.20) and (1.22) in (1.18), we obtain 

8 • 2. w c..v -w L'.. n A 3 • • I ( 2 ') 
TT(° = 4 w + c:;T - e 9 + ~ - 1 'l. 

This equation may be put into a more simple form by com

bining it with (1.26). Differentiating (1.26) with respect 

to r, we obtain 

Hence , it is obvious that the density equation may be written 

in the particularly simple form 

-~W 

( 1.29) 

( 1. 30) 

8 2 e z rrp = 
w' 

dh 
dr 

( 1. 31) 

Equation (1.31) shows that the otherwise arbitrary function h 

can never be a constant if these models are to contain matter . 

We have now developed enough relationships that we 

may return to the discussion of allowable motions in these 

models. From their use in the line-element both e" and 

ew must be real and positive at all times and for all 

values of r. However, there are no restrictions as yet on 

the values. Mathematically ei A and e½ w could be either 

positive or negative or could oscillate in sign as the 

variables r and t change. Physically, a stricter condi

tion must be imposed. 



Let us consider an instantaneous measurement of 

total proper distances from the origin of the co-moving 

coordinates to a particular co-moving coordinate point r 0 , 

8
0 

, 9) 0 at a particular time t 0 • Vl e will arbitrarily 

make these measurements from the origin to the reference 

point on the r 0 - sphere, which length we will denote as 11; 

then along a longitude line of the r 0 - sphere, we shall 

denote this length as finally along a latitude line 

on the r 0 - sphere to the coordinate point, this length 

will be denoted as 13 · These proper lengths are related to 

the g~~ for the particular time t 0 and to the co-moving 

coordinate system by the equations 
<Po 

/
3 

= J e ½ w s; n e d. <j, 
0 0 

We can regard the 11 , 12 , and 13 measures as 

constituting another coordinate system. Then the prohibition 

agaj_nst "mixing" motions of the particles can be restated as 

a requirement that the mapping of the co-moving coordinates 

upon the 1-measure coordinates must be strictly one-to-one ~ 

at all times and places. If two or more distinct sets of 

co-moving coordinates, say (r1, 8, , ~ 

have identical values of 11 , 12 , 13 at a given time, the 

physical meaning is that they all occupy the same space. 

Since these are non-static models, this implies that the 

neighborhoods of co-moving coordinate-1 and of co-moving 

{ 1. 32) 



coordinate-2 are passing through each other. This, as 

discussed earlier, is a direct violation of our basic 

postulate of zero pressure everyw-here within the model. 

An examination of (1.32) will show that one-to-one 

mapping is possible only if the algebraic signs of and 
_I_ w . . e 2 are invariant. -In other words, 

1. ;.. ..!...w 
e 2 and e 2 may be 

either negative or positive, but they cannot oscillate between 

the two signs. While negative values of and 

are permissible, they add nothing new to the physics of the~ 

situation. Negative values must be assigned to and 
I 

e2 = if the co-moving coordinates r, 8 and <p are 

stated as negative numbers themselves. In the work which is 

to follow we shall assume that the co-moving coordinates are 

enumerated in the same sense and si~n as the 1-measure 

coordinates. Consequently, we shall restrict 
..L ). 

e 2 and 
I 

e z:w solely to positive values. 

The restriction of these terms to positive values 

in turn places definite conditions on the otherwise completely 

arbitrary functions g and h. An examination of (1.26), 

bearing in mind that and • 2/ w 2 are both 

positive and real while l\. and g have real values, will 

show that the arbitrary function h must be a real 

function. 

The restriction of e ½ /I to positive values 
l 

places conditions upon 2(g + 1) 2 and on the r-de pendence 



of the function, Cu • An examination of (1.21) will show · 

that the arbitrary function tp(r) may at times be complex 

in value . While w' must be real, it is free to assume 

t • 1 'Vh w 1 
• t • ' I 11 nega ive va ues. v en is nega ive , 2 log w = 2 log w 1±2tti. 

Consequently , <.p (r) must have an equal and op~osite 

imaginary part, that is l{) (r) = Real lp (r) + 2ni because 

t he left - hand part of (1 . 21) must , by definition, be real . 

This does not alter our prev ious conclusion that 
-Rea.I I.J)(.-) ± 2TT i. 

4( r-. + 1) =e mus t be pos i tive at all times, but :, 

1 )
_
2
1 --'•F.c<tl(P(.-J-±rri. 

it does allow 2 ( g + = e 2 
t o as sume either positive 

or negative values. I Moreover, we see that w and 
l 

2(g + 1) 2 must always have the same sign. These conclusions 

are substantiated if (1.22) is rewritten as 

when we recall that ei ~ and ei c..., are both limited t o 

positive values. 

A physical condition that must be observed is that 

the density can never be negative. In the equation for 

density (1.31) the right-hand side is made U n 
.t ' of three terms. 

- ~w 
The factor e 2 is always positive since it is the pr oduct 

of two positive terms. Consequently , 0./ and dh must 
d.r 

again both be of the same sign. The physical restrictions 

on the arbitrary functions can now be summerized as the re-

quirement that dh 
dr 

be of the same sign. 

and 
l 

2( g + 1) 2 must always 

( 1. 3 3) 



To conclude this chapter, let us return to (1.28), 

the integration of which under various conditions will make 

up most of the subject matter in the following chapters . 
.! c.,J 

In (1.26) the dependent variable is actually e 2 
, and so 

the mathematical notation can be simplified by taking 

y = eiw which reduces (1.28) to 

The first integral (1.22) assumes a particularly simple form 

in this notation 

While the density integral (1.31) is not greatly clarified 

by this substitution 

By taking the square-root of both sides, we can 

write equation (1 .34) as a linear partial differential 

equation of the first order in the standard form 

where Q, = 0 

Such equations are easily solved by the method of Lagrange. 

( 1. 34) 

( 1. 35) 

( 1. 36) 

( 1. 37) 



The corresponding system of ordinary differential equations 

for the characteristics is 

dt _ clr = ~ 
P O R 

If any two independent solutions to (1.38) can be found, such 

as u = a and v = b . then the general solution to (1.37) 

is any arbitrary function of these two solutions, such as 

¢ (u,v). For the second term of (1.38), one solution is 

obviously r = r 0 , where r 0 is any positive number. Using 

this solution with the first and ·last terms of (1.38) , we find 

the second solution will be the solution of 

dt 
d!:J 

P(~, l, tj) 
RCr;, t~~) 

This is an ordinary differential equation since r is to be 

considered as a constant during its integration. Let us 

indicate its solution as (f (t,r0 ,y) = b. Then the general 

solution of (1.37) is lp (t,r,y) = f(r}, where r is again 

a completely independent variable and f(r) is an arbitrary 

function since this is an arbitrary function of u and v. 

Following the method of Lagrange, the general 

solution to the partial differential equation (1.34) may be 

written as 

( 1. 38) 

( 1. 39) 

( 1.40) 



where f is an arbitrary function of r . The integral is 

to be evaluated according to (1.39) by taking the independent 

variable r to be constant (r = r
0

). After the integral is 

formally evaluated, then the constant value r 0 is to be 

replaced once more by the independent variable r. 

The integral in (1.40) can be evaluated under the 

most general conditions in terms of elliptic functions, if 

a simple transformation is made in the independent variable. 

The integral can be evaluated in terms of better known 

analytical functions only in tho~e special cases in which the 

cubic under the radical either is reduced in degree or has 

repeated roots. Moreover, it will be noted that the solution 

(1. 40) after integration is an expression for t in terms 

of r and y. This is a result of (1.39) which can be 

integrated only in the form t + b = t/J (r0 ,y). It will be 

found that an explicit statement of y in terms of r 

and t in knovm functions is possible only under highly 

restricted special conditions. 

However, it is y that is the variable of physical 

interest. If we cannot express y explicitly in terms of 

known functions, perhaps we can express it explicitly in · 

some other manner, such as in terms of functions involving 

a parameter. It will be observed that (1.34 ) is suggestive 

of Weierstrass's or Jacobi's elliptic differential equation. 

If {1.3~ can be altered by transformations into one of these 



known differential equations, then y can be explicitly g iven 

in terms of the transformed independent variables. The 

necessary transformations must reduce the cross - term to a 

simple square of a derivative and must reorder the polynomial. 

on the right-hand side into one of the normal forms. 

Let us introduce a new independent variable s 
which is to be a function of both r and t. By the intro

duction of this new variable we wish to transform 

y( ~ )2 = tj) (r,t,y) into (~ )2 = cp (r, c; ,y). With the 

introduction of the new varia ble the derivative becomes 

Now c;' wa s introduced under the most 

general conditions. Consequently , one condition may be 

imposed upon it to make S a definite function of r and t. 

For this condition let us take 

K 
'-:J 

where K is a function of r wh i ch we can specify to suit 

our convenience. Then (1.34) is transformed into 

The polynomial in (1.42) may now be transformed into either 

Weierstrass's or Jacobi's normal form by a simple trans

formation of the dependent variable. The partial dif ferential 

( 1. 1+1) 

( 1. 42) 



equation (1.42) is readily solved by Lagranr e's method. 

For this equation Lagrange's method is effectively one of 

replacing the partial derivative by an ordinary derivative 

and replacing the independent variable r by a constant 

value (r = r 0 ) fo r purposes of integration. Then, under 

these conditions , a f orma l solution is found. In the 

resulting formal solution the constant r 0 is once more 

replaced by the independent variable r for a solution 

to the partial differential equation (1.42). 

The imposed condition (1.41) can also be 

integrated by Lagrange's method. This yields the equation 

where f is the previous arbitrary function of r. As 

before, the integral in (1.43) is to be evaluated under the 

formal condition of r = r 0 , after which it is again 

re placed by the independent variable r. 

The pair of equations (1.42) and (1.43) are fully 

equivalent to the previous solution (1.40). If the solutions 

to (1.42) and (1.43) are found, they will be of the form 

y = cp (r, ~ and t + f = lJ; ( r, ~ ) . Thus this pair 

of solutions are parametric equations for y and t in 

terms of a parameter ~ and an independent variable r. 

The evident advantage of this procedure is the explicit 

f 



statement of y in terms of known functions. Moreover, in 

the work which follows it will be seen that the equation 

pair (1.42) and (1.43) is more elegant to handle than the 

more conventional equation (1.40). 



Chapter II 

General Solutions 

In this chapter we shall consider the solution of 

the partial differential equation (1.34) under the most 

general conditions. Such general solutions can be ex

pressed only in terms of elliptic functions. In followine 

chapters vrn shall examine various non-elliptic solutions 

and approximations that can be made under certain special 

assumptions. 

The nature of the possible general solutions can 

be obtained from the differential equation (1.34) without 

actually solving it. Let us rewrite this equation in the 

form 

We know that y(r,t) is restricted to real positive values, 

that g(r) and h(r) are real functions where only g (r) 

is somewhat restricted, and that ./\ is theoretically an 

unrestricted real constant. Actually, from the closeness 

of the Newtonian approximation in celestial mechanics, we 

know that .I\. must be an extremely small number, if not 

actually zero. However, in general terms, we can say that 

the values of the variable and the coefficients in (2.1) 

must lie somewhere within the following ranges 

( 2 .1) 



-(X) t.. -...:: A ~ -+- (X) 

0 ~ y(r,t) { + 00 

-1 ~ g(r) ~ + cO 

- oo ~ h(r) ~ + 00 

(ou) 2 

Moreover we can say that O , at since a negative 

value for (~;)
2 

would require a complex value for 

y(r,t). 

For those solutions which include y = o, we 

see that as y - 0 that (~)-z~ h(r)/y and henc e 

that y( r, t) ~ (~ h)'13 
( t + f) -a../3 in the neie;hborhood of 

y = O. We see, moreover, that the only solutions which 

will include y = 0 are those for which h(r) ~ O. 

Every solution with h{ r) < 0 must have a finite 

minimum value for y(r,t). 

On the other hand, for those solutions where 

y(r,t) approaches positive inf i nity, we see that 

(~)z~~J\~z as 

neighborhood that 

y - + oo a nd hence that in this 
rK It. +-rl 

y(r,t) ~ e~3 Consequently, the 

only solutions in which y(r,t) can a pproach infinity are 

those having l\. ~ 0. Every solution having A < 0 must 

have a finite maximwn value for y(r,t). 

Let us now consider the "turning. points" of y(r□, t ) 

as a function of t at a narti cular value of r = r o· 

With the understood assumption that y(r0 ,t) is e continuous 

function, there are only two types of possible "turning 



points". When ( ~~) 2= + ro , the turning point is a cusp. 

From the nature of the right-hand side of (2 .1) , this is 

possible in the finite range only at y = o. When 

(~)
2 

= O, the turning point is smooth. This turning 

point might be either a maximum, a minimum, or a point of 

inflexion. Moreover these smooth turning points can occur 

only at the roots of the cubic which is contained within 

the parenthesis in (2.1). This cubic can have a maximum of 
' \ 

three real roots, of which only a maximum of two could be 

positive since the y2 term in the cubic is zero. However, 

this cubic will have three real roots only if the value of 

its discriminant is less than zero. Stated mathematically_, 

this condition is that (¾)3 (9 3
+ ~Ah

2

] < 0. If the 

value of the discriminant is greater than zero, then the 

cubic can have only one real root, which might be either 

positive or negative in value. An allowable solution to 

(2.1) can have a point of inflexion only at a positive 

repeated root of the cubic, and only then if the cubic is 

positive for values of y(r0 ,t) which are both great er and 

less than the repeated root. Th is s pecialization produces 

a non-elliptic solution which will be considered in a later 

chapter. However, there it will be shown that the allowable 

solutions do not pass through the repeated root, but 

approach it asymptotically. Thus, the solutions to (2.1) do 

not have points of inflexion, but only maxima and minima, 



varyin~ monotonically between them . 

Since we need a systPm to classify our allowable 

solutions, we shall adopt the notation first evolved by 

Robertson (Ref. 4, p. 74 et seq.) and extended by Tolman 

(Ref. 1, p.398 et seq.) for use wl t h homogeneous models. We 

shall use the Robertson-Tolman notation to describe the 

local behavior of our non-static, non-hoomgeneous models. 

Thus, if an observer at r 0 would determine that the behavior 

of matter in his immediate neighborhood was identical with ~ 

what he would have expected in a homogeneous 01 model, we 

shall classify the behavior of the model at r 0 as being 

01. As this observer explored his surrounding space more 

deeply, he would discover, however, that the behavior of 

matter is different from his own at a distance, since the 

determining functions g (:r) and h(r) are free to vary with 

radius vector. Let us determine, therefore, the types of 

behavior that mi~ht be expected at r 0 with different 

values of g(r0 ) and h(r
0

). 

First, let us find the types of solutions that 

' could be expected when 1\ > O. We shall a ssume that 

g(r0 ), h(r0 ), and A are all finite and non-zero. When 

any of these three terms is allowed to become either zero 

or infinite, we shall find specialized non-elliptic 

solutions, which will be treated elsewhere. Let us break 

the problem up into quadrants according to the sign of g(r 0 ) 

and h(r 0 ). 



1. g(r 0 ) > O h(r 0 ) > O. Here the cubic, and 

hence (~)
2 

is positive over the entire allowed ranfe of 

y(r0 ,t). Therefore, y(r0 , - co) is infinite, while y(r 0 ,t) 

decreases monotonically until y = 0 at t + f = O, where 

it goes through a cusp turninp uoint after which it increases 

monotonically until y(r0 , +co ) is again infinite. This 

local behavior is identical with the model behavior of a 

monotonic universe of the first type in the Robertson-Tolman 

notation (M1) . < 
l 

2 . .._g.._(_r.,..0..._) ___ <..._o ___ h,...:.(_r..,.o'""')_>_o . He re the cubic wi 11 

have two real positive roots if the discriminant is less than 

zero. The condition that must be satisfied is that 

Let us indicate these two positive roots by 

E1 and E2 , where E2 > E1 . Then there are two independent 

ranges for y(r0,t) which will g ive (~)z > o. Since the 

cubic is positive for O ~ y(r 0 ,t) ~ E1 , this is an 

allowed solution with cusp turning points at y = o and smooth 

maximum turning points at y = E1 while oscillating 

monotonically between these two values. This local behavior 

is equivalent to an oscillating universe of the first type 

and is denoted as o1 . The cubic is also positive for 

E2 , y(r 0 ,t). This solution has y(r 0 , - oo ) = +oo decreasing 

monotonically until y ~ E2 where it has a smooth minimum 

and then increasing monotonically unt i l y(r0 ,+ oo ) = + oo. 

This locil behavior is equivalent to a monotonic univers e 



of the second t ype and will be denoted a s M2 . 

On the other hand , if the discriminant is greater 

than zero, the cubic will have no positive roots. The 

condition to be satisfied is, of course, that Is '31 < t A h 2 
• 

Here the cubic will be positive for all pos itive val ues of 

y and hence the allowable solution wi l l aga i n be s imilar to 

a monotonic universe of the firs t type and will be denoted 

~ 

h( r 0 ) < O . In this case the ' 

cubic has one real positive root, which we may indicate as 

E. The cubic will be positive when E ~ y(r0 ,t) £+ CtJ and 

the allowed solution will again be locally equivalent to a 

monotonic universe of the second type and will be denot ed 

h(r0 )< 0. The condi t ions here 

are similar to those in the preceding paragraph. The cubic 

has a s i ngle real positive root , say E. The cubic is 

positive when E ~ y(r0 ,t) ~+ <X> and the local behavior is 

similar to that of a monotonic universe of the s econd type 

and will be denoted as M2 . 

Now let us repeat this procedure under the 

contrary assumption that l\ < O but that g ( r 0 ) , h ( r o) , 

i\ are all finite and non-zero. 

h(r0 ) > O. Here the cubic has 

a sin~le real positive root, say E. The cubic is positive 



- ).l-

E. Hence, the local behavior is 

similar to an oscillating universe of the first type with 

cusp turning points at y = 0 and smooth maxima at y = E. 

This is the behavior which we have denoted as o1 . 

h( r 0 ) > 0 . Again the cubic 

has a single real positive root at E. The cubic is ~ositive 

in the domain O ~ y(r0 ,t) ~ E. The local behavior is 

similar to that of an oscillating universe of the first ty~e 

and will be denoted as 01. 

3. g ( ro) > 0 h( rob < O . Once more the cubic 

will have two real positive roots, which we shall call E1 

and E 2 if the discriminant is less than 

zero. With the present signs for the three coefficients, 

9 3 > 49 I/\.I h2. the condition for two positive roots is that 

Here, however, the cubic will be positive when 

E1 f y(r 0 ,t) £ E2 . The allowed solution will then have maxima 

at y = E2 and minima at y = E1 and will oscillate smoothly 

between these two values. This local behavior is similar to 

that of an oscillating universe of the second type and will 

accordingly be denoted as 02. 

Under the opposite condition of a discriminant 

greater in value than zero, the cubic will have no real 

positive roots. This condition is, 

9
3
<49 //\1 h2

• H th b" d L~ ere e cu ic, an 

negative for all positive values of 

of course, that 

hence ( ~) 
2

, will be 

y(r0 ,t). Therefore 



no physically possible solution exists under these 

conditions. 

h(r0 ) < 0. 3ince all of the 

coefficients of r,he cubic would be negative under these 

conditions, it is obvious that the cubic would itself be 

negative for all positive values of y. Hence it is again 

obvious that no physically possible solution could exist. 

These allowable solutions and the conditions under 

which they exist are summarized in Table I. < In this table ' 

a code letter has been assigned to each solution so that 

it can be identified in later discussion. Non-homogeneous 

models can be constructed having several different types of 

behavior since g (r) and h(r) are nearly arbitrary 

functions which are subject only to the condition that the 

resulting densities must not be negative at any place or 

time in the model. The density problem will be discussed 

in a later chapter after the actual elliptic solutions have 

been obtained. Complete freedom in mixing all types of be

havior is impossible, of course, since the cosmolog ical 

constant /\ is, by definition, constant throughout the 

model. Thus, if .A.. > O, then o2 behavior is excluded. 

While if /\ < 0, then M1 and M2 behavior is 

forbidden. 

Having determined the nature of all allowable 

solutions, let us now turn to the exact solution of the 



Table I 

l\. g('r) her) T!:Jp€ Range Conditions Code Letter 

+ + M, O~~~·Hx:> A 
o, O{~ {: E1 ls31 > ~ J\ }l· 

B 
- + M2 c2 ~~,+oo C + M, o,8 ,+oo \s3l<f /\ h2 D 
+ - M2 E,~ 440? E 
- - M2 E,!:j,+oo F 

+ · + 0, O{~~E G 
- + o, o,y~E H 

- 02. Ci,~{.E:z. 9
3> ~ IA)H' I + -

No Solution 93< ¾ IAl n:z. 

- - No Solution 

of the :partial differential equation (2.1). We shall 

conside r first the solution pair (1.42) and (1.43). Let us 

transform (1.42) into Weierstrass's normal form and s olve 

the resulting equation by Lagrange's method. The choice of 

Weierstra s sian elli ptic functions is quite arbitrary. The 

partial differential equation (1. 42) can also be transformed 

into Jacobi's normal form and the solutions obtained in terms 

of Jacobian elliptic functions. Actually, extensive calculations 

have been made in both systems of elliptic functions. The 

Jacobian functions for the purpose s of this work were found to 

be even more unf airily and difficult than the Weierstrassian 

elli~tic functions and accordingly were discarded. None of 

the alternate theory in terms of Jacobian elliptic functions 



will be given here. 

Since the function K(r) may be specified to 

suit our convenience, let us take K(r) = (h/4) 113. To 

transform the polynomial in (1.42) into Weierstrass 1 s normal 

form, let us introduce a new dependent variable defined as 
_ K crJ 9 

z - y(r,t) + ex.Cr) where ex (-r) = 3 ( 2 h)2/3 is solely 

a function of r. Then, for purposes of integration, (1.42) 

becomes effectively, 

where the invariants g2 = 12 cr 2 3 I j\ and g 3 = -8 cx. - 3 

are to be regarded as constants (r = r0 ). If the three 

roots of the cubic in (2.2) are all distinct, the solution is 

well known to be the Weierstrassian elliptic function 

z ={f> (S ~ g2, g3). Th erefore, the first of the parametric 

equations will be 

Ker) 
!:J (~ t) - (?CF;) - Ol(r) 

where now the invariants g2(r) and g 3(r) along with the 

functions K(r) and CX (r) are all taken to be functions 

of the independent variable r. 

The cubic in (2.2) will have repeated roots for 

those special cases which will reduce its discriminant to zero. 

In these special cases the solution to (2.1) may be expressed 

( 2. 2) 

( 2. 3) 



in terms of better known, non-elliptic functions, and so 

will be considered in the following chapters. The condition 

for a zero discriminant of this cubic is 

Consequently, the two snecial cases l\ = 0 and 

cx 3 :::: - 4
1

8 
I\. are excluded from the discussion in this chapter. 

The second parametric equation is found by substi-
" l 

tutin~ (2.J) into (1.43) giving 

t + -f (r) = J cft 
fCsJ - O{ 

The elliptic function (?($) is defined over the complex 

plane. Hence the parameter ~ may assume complex values. 

However, the parameter ~ is physically restricted to those 

values which will yield positive real values for y(r,t) 

and which will give only real values for t. The consequences 

of this restriction will be discussed shortly. 

Let us now return to our original solution (1.40) 
~ 

and show that its reduction leads also to equations (2.3) and 

(2.5). Thus we shall show the identity of a direct inte

gration of (1.40) and of the more elegant use of the 

parametric equations (1.42) and (1.43). To integrate (1.40) 

let us invert and translate the dependent variable y(r,t) 

into a new dependent variable z(r,t), where z is defined 

( 2. 4) 



as z = K~rJ + ~Cr) and K(r) and CX. (r) are the same 

quantities which were used before. This reduces (1.40) into 

the transformed integral 

where g2 and have been defined earlier. The integral 

(2 .6) is an elliptic integral of the third kind. It is, in 

fact, Weierstrass's third normal form. This integral may b~ 
) 

integrated by introducing Weierstrass's elliptic function. 

Taking advantage of the well known relationship for 

Weierstrass Is elliptic function t f1Cs) == ✓4 f'Cs) - '32 r(s) - (::h 

we make the additional transformation of z = (f( f ;g2 ,g3 ) 

which transforms the integral (2.6) into 

t + f(r) 

Since this last integral is identical with one obtained from 

the parametric equations, it has been numbered t o correspond. 

rrwo transformations, one real and one elliptic, have 

been made in the dependent variable. Solving these trans

formations for y we have 

( 2. 6) 

( 2. 5) 

( 2. 3) 



Since this expression is again identical with that obtained 

from the first parametric equation, it has also been numbered 

to correspond. Thus a direct integration of (1.40) yields 

exactly the same two eQuations (2.J) and (2.5) as did the 

pair of parametric equations. Hence the two procedures for 

solution are perfectly equivalent. 

The parametric equations (l.h2) and (1.43) were 

deduced with great generality, but perhaps with a corre-
< 

spending loss of intuitive reality. However, it is easily ' 

shown that the parametric equations are inherent in the 

straight~forward solution of (1.40), which has just been 

presented. In reducing (1.40) to (2.5) two transformations 

were made in the dependent variable. The transformation 

z = (P (~ ;g2,g3) requires that 

equation c~:r·:::: 4 :e
3 

- 9z ~ - 93 

z satisfy the differential 

when r 

When the other transformation 

is held 

z = KCr) 

~ 

constant 

is substituted into this differential equation and solved for 

y, we have 

when we allow r to be an independent variable again. This 

is the first of the two parametric equations. The second 

~arametric equation follows readily from the substitution of 

~-3) into (2.5) which gives 

( 1. 42) 



( 1. 43) 

Thus the parametric equations may be directly derived from 

the general solution (1.40). 

The evaluation of the integral in (2.5) now remains 

to be done. The integrand in (2.5) is an elliptic function of 

the second order with a double zero at $ = 0 and all 

congruent points and with simple poles at $ == 'X. and $ = - X 

and all congruent points, where the constant X. is any one 

of the complex numbers which will satisfy f (-X.) = CX • 

Consequently, the integrand of (2.5) may be expressed in terms 

of Weierstrass's Zeta functions (Ref. 5, p. 369). Since the 

residue at the pole 5= )( 
the other pole $ = - X 

be expressed as 

I 
is + d3 '(x.) 

• I 
J.S - (?'('X..) 

while the residue at 

the integrand may 

where the constant term in the expansion by Zeta functions has 

been determined by the presence of a double zero at the ori~in. 

Since Zeta functions are readily integrable in terms 

of Weierstrassian Sigma functions, the integral (2.5) becomes 

The second constant of integration F( c;
0 

) is actually 

redundant since it could have been combined with the other 

( 2. 7) 

( 2. 8) 



constant of integration f(r). The redundant constant of 

integration F( §
0 

) has been introduced to allow the zero

point of t + f(r) to be adjusted at will with respect to 

If we should take t + f(r) = 0 when ~ ; o, then 

F( 0 ) = O. But if we wish to take the zero-point of 

t + f(r) at one of the half-periods of {f(§) , usually 

denoted as w, , Wz , and W 3 , then F( wj ) =2uJ/~'(x.)-.2-X.S'(w) ±TIL 

where j may be either 1, 2, or 3. We shall see that this 
, 

might be desirable for some of the solutions outlined in Table I. 

The pair of equations (2.3) and (2.8) constitute 

a complete j1arametric solution to the differential equation 

(2.1). The solutions of (2.1) involving only non-elliptic 

functions which arise when the cubic in (2.2) has repeated 

roots are only special cases of the general solution given 

in (2 .3) and (2.8). These special solutions may be found 

from the known degenerations of the elliptic functions in 

(2 .3 ) and (2.8) when two or more of the roots are identical. 

The statement of the value of the elliptic integral given 

in (2.8) is not the one given in standard compendia such as 

J ahnke and Emde (Ref. 6, p.105 ) . The form given in (2. 8 ) 

was adopted to avoid difficulties in passing to the lim~t 

as t wo or more of the roots in the cubic in (2.2) 

a~proach a common value. 

The elliptic functions in (2 .3) and (2.8) are not 

~convenient functions for actual calculation. No complete 



tables exist for these func t ions. While there are 

numerical procedures by which the values of these elliptic 

functions may be obtained, they are so difficult that any 

extended calculation of y(r,t) would hardly be feasible. 

In the following chapter some non-elliptic approximations 

to (2.3) and (2. 8 ) will be given for the physically 

interesting case of Ii\.\ < I °' 3
1 . However, there are no 

easy calculational methods when J\. is comparable to ~
3 

in value. The general solution given by equations (2.3) 

and (2.8) must contain the four types of behav i or 

diagrammed in Table I as well as all forms of special 

behavior to be discussed in later chapters. This sepa

ration of physical reality from the esoteric mathematical 

formalism of the general solution must be done from the 

knovm properties of the elliptic functions and from the 

permissible ranges of the parameter ~ as determined by 

physical considerations. 

The elliptic function (f=>(s) is doubly-periodic 

with the two periods 2 c..J1 and 2 W2 , whose ratio cannot 

be real. That is (P ( ~ + 2 mW•+ 2n w~) = r( €) when 

m and n are any positive or negative integers. This • 

might be compared with a familiar singly-periodic function 

such as the trigonometric sine function which has a single 

period of 2 n . This means that Sin ( 5 + 2nn ) = Sin S , 

.( 
l 



where again n is any integer. The single periodicity 8 f 

Sin <; means that it can be defined over the entire 

complex ~ -plane by defining Sin ,;' within some 

fundamental period-strip such as O ~ Real ~ {. 2Tf . The 

extension to the entire $ -plane is then made by repeated 

du plications of the fundamental period-stri p under 

successive translations of one period. In the same way the 

elliptic function (PCs) may be defined over the entire 

~ -plane by defining it within a fundamental period

parallelogram. One possible cho~ce for the fundamental 

period-parallelogram would be that parallelogram in the 

.( 
\ 

$ -plane whose apices are 2w 1, 2 w, + 2 w 2 , 2 wv and O. 

Then (PCs) is defined over the entire 5 -plane by repeated 

duplications of this fundamental period-parallelogram 

under successive translations of t he form 2m w 1 + 2n w 2 

where m and n compass all of the integers. Thus our 

study of equation (2.J) may be confined to a single period

parallelop.;ram in the $ -plane since it will merely repeat 

itself according to a regular pattern over the remainder of 

the .; -plane. 

It is well known that Sin € has poles at the 

extremities of its period--atnip as Imaginary £;~ ± 00 . 

Thus it is not surprising that the Weierstrassian elliptic 

function (f>(5) has double poles at the apices of the 

fundamental period-parallelogram just outlined, namely at 



0, 2 w 11 2 w, -+ 2 w 2 , and 2 w 2 • These poles repeat 

themselves, of course, over the entire S -plane according 

to the regular pattern. The relationships of the zeros 

within the period-strip of a singly-periodic function and 

within the period-parallelogram of a doubly-periodic 

function are also analogous. Thus a doubly-periodic 

function such as the Weierstrassian elliptic function 

might be thought of as a logical higher generalization of 

the intuitively more acceptable singly-periodic functions. 

The Weierstrassian Sigma and Zeta functions used 

in equation (2.8) may 

s(u.) = - S&'UL) clu. and 

be defined as 

log CY (<A-) = J ( (u.) du. It should be 

noted that the Sigma and Zeta functions are not doubly

periodic but vary in a regular way from one period

parallelogram to another. Thus a study of equation (2.8) 

cannot be confined to a study of its behavior within a 

sin~le period-parallelogram. However, in the only case in 

which the pare.meter · l; extends beyond a single period-

parallelogram, namely, in the o1 and 02 solutions, it 

' ·will be seen that the parameter ~ simply initiates a ne~ 

cycle of oscillating behavior when it enters the adjacent 

period-parallelogram being equivalent, therefore, to a 

simple translation of the time axis. Further information 

on the Weierstrassian elliptic functions may be found in any 

of the standard works on mathematical analysis 
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(e.g., Ref. 5, Chap. 13). Notation for these functions has 

not been standarized but varies from author to author. 

The periods of the elliptic function (f (~) are 

related to the three roots of the cubic in (2.2), which we 

shall denote by e1, e2 , and e3 by the relations 

.( 
\ 

For a given set of three roots, six different elliptic 

functions may be formed from the six possible ways in which 

the two periods 2 w, and 2 w 2 may be associated with the 

three roots. Actually, as far as calculations are concerned, 

these six elliptic functions are perfectly equivalent. For a 

given value of ~ each of these six elliptic functions will 

yield exactly the same numerical value. The six seemingly 

different elliptic functions arise from the six possible 

choices for the fundamental period-parallelogram in the complex 

~ -plane. For convenience in the work to follow , we need to 

settle unon one of the six possible re~resentations as the one 

which will be used. 

Each elliptic function (J' ( s ;g2,gJ) having real 

values for g2 and g
3 

has a possible fundamental period 

which is real. Let us take this real period to be positive 

and denote it as 2 w 1 • Let us take the root e1 as 

( 2. 9) 



associated with this real period by the relation (f(w,) = e1 . 

We shall see later that the root e1 is real. We shall 

chose 2 wz. so that the period-parallelogram lies within the 

first quadrant and so that Arg wz>Arg( -c.J3 ). \ivi th the period 

2 Wz will be associated the root e2 by the relation t<w2)= ~~ . 

If all three roots are real, then 2 c....:>~ is a pure imaginary 

and e1 > e 3 > e2 • If the two roots e2 and e 3 are 

complex, then the period 2 W 2 is also complex. The period 

2 c.., 3 = -2 w 1 - 2 w 2 is always complex. 

The elliptic function f(€) is physically 

restricted to real values, since y(r,t), K(r), and CX (r) 

are all real quantities. Consequently, ~ is not free to 

vary over the entire ~ -plane but is confined to a family of 

allowable curves over the g -plane. These allowable curves 

may be delineated from a study of the inverse elliptic 

integral (vide Ref. 7, p.77) corresponding to the elliptic 

function z = (r' (s 
Q'.) 

s=JW 
.c 

where S = 4u3 - g 2u - g -,. • 
" ./ 

Because of the presence of the three poles of the integrand 

at the points e1 , and in the u-plane, the value 

of the integral (2 .10) ~ is not independent of the path 

of integration. There is, in fact, a doubly infinite set 

of values ~ which correspond to a given value of z 

( 2 .1 O) 



depending upon how the path of integration loops around the 

poles at e1, e 2 , and e 3 . This is, of course, nothing 

but the familiar statement of double-periodicity of the 

elliptic function z = (fC~) . The mapping of the z-plane 

upon the ~ -plane can be made one-to-one only by introducing 

cuts and Riemannian surfaces into the u-plane. 

Since the allowable values of ~ will depend 

upon whether the three roots e1 , e 2 , and e
3 

are all 

real or whether two of these roots are complex, the two 

cases will be considered separately. Let us first examine 

the conditions when is real and are 

< 
1 

complex conjugates. From the discriminant of the cubic, this 

will be true whenever 

Under these conditions S is real and positive whenever 

u > e1 and real, while S is real and negative whenever 

u < e1 and real. 

Let us now determine the range of s correspondin,q ! 

to z by integral (2.10) when z ~ e1. Let us assume that 

thA u-plane has been cut from each of the branch points 

e1, e 2 , and e 3 out to infinity . r ,et Uf; take our contour 

for integration alone; the positive real axi s in the u-plane. 

Along this contour, for z > e1 , is everywhere positive. 

( 2 .11) 



Let us assume in the particular Riemann sheet in which our 

contour is situated that s-! is positive. Then it is 

obvious that O ~ s , w, when + 00 ~ z ~ e1 . If other 

contours are chosen which loop around the three branch points 

in various ways, the range of <;' corresponding to 

z ~ e1 is extended. Alternately, the complete possible 

ranp:e for ~ when z ~ e1 can be found from the 

properties of (PC.;) such as its evenness and its 

double-periodicity. The lines in the $ -plane which delineate 

the possible values of $ when z ) e1 and real viill be 

found to consist of the real axis and all lines parallel to 

the real axis and passing through the poles of z =(PC~) 

The values that <; will assume when z ~ e1 may 

be obtained in the same fashion. Since e1 is the only real 

root, the other two being complex , S will be negative for 

all real u which a re smaller tha n e 1 . Consequently, 
l s-~ will be a pure imaginary along the real axis for all 

real u < e 1 . Let us assume in the particular Riemannian 

sheet in whi ch we have taken our contour that s-½ is a 

positive imaginary. There will be at least one sheet in 

which this condition and the one of the preceding paragraph 

are valid. Hence, for the simple contour along the real 

axis and making an infinitely small half-circle around the 

branch point at e1, we see by (2.10) that s = WI + i LS)Cz) 

( function of z) when z ~ e1 . It is easy to show that 



2 w 2 when z ~ - oo We can prove this in the 

limit by taking the closed contour along a large segment of 

the real axis, a large semi-circle, and completed by a small 

contour around the branch point e2 and long contours along 

each side of the cut to e2 . Thus, for this pa r ticula r 

Riemannian sheet, we have w 1 ~ ~ ~ 2 w 2 when z (. e1 . This 

puts a definite restriction u pon the pro~ortions of the 

period-parallelog ram since it requires that Real 2 w~ = w 1 • 

This requirement will be supported by the app roximate 

solutions in the following chapt~r. By using other contours 

or by using the known properties of (PC~) we see that the 

lines in the S -plane which delineate the possible va lues of 

~ when z ~ e1 and real c onsist of the i ma r, ina ry axis and 

all lines parallel to the imag inary axis and passing t hrougp 

the poles of z = f>(s) . 

f he situation which has been discussed is diag ramr~ed 

in Fi g . 2 .1. Here part of the <; - plane is shown with the 

lines which contain all of the values of ~ which will yield 

real values for z = (P ( s) The solid horizontal lines 

contain all of those $ which will g ive real values of 

z ) e1 , while the dotted vertica l lines contain a ll of. the 

~ which will g ive real v alues of z , e 1 . The d iag onal 

broken line s have been ruled in purely a s an aid to the e y e 

in visualizing the net of period-parall elog rams into which 

the ~ - pl a n e is divided. Actually , only the horizontal 
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se~ment from O to w, and the vertical segment from w, 

to 2 w< have been discussed. The remainder of the allowed 

line system has been derived either from a consideration of 

alternative contours of integration or from the pronerties , 

of fC€) . We have also proved en passant by (2.9) and 
. 

(2 .1 0) that if e1 is taken as the one real root, then the 

period 2 w 1 is real and positive under the conditions that 

we have assumed. 

Geometrically the system of horizontal and 

vertical lines must intersect. There are only two classes 



of points at which they can intersect without creating an 

ambiguity in value. One such class of points is S = w, 

and all congruent points since at these points z = e1 . 

The remaining class of acceptable points of intersection 

is at the poles of (PCs) since no ambiguity in value can 

be said to exist at a sJngularity. But from the theory of 

(P(~) we know that Arg (i~)<; when e2 

comnlex. Thus the reQuirement that Real 

a.gain verified. 

and are 

Let us now consider th~ second case in which the 

three roots and of the cubic in (2.2) are 

all real. From the discriminant of the cubic, this will 

be true whenever 

Let us number our roots in the following order: e1 ,> e 3 > e2 

Then the quanti ty S in (2.10) will have the following signs 

+ 00 > u > el s > 0 

el > u > 83 s < 0 

e3 > u > e2 s > 0 

e2 > u ) - oo s < 0 

Let us once more assume that the u-:plane is cu t and 

multi-sheeted. Let us take a simple contour of integration 

for (2.10) along the real axis, slightly indented where 

necessary to pass any of the singularities at and e 3 • 



For the purpose of our discussion, let us choose the particular 

Ri emann sheet in which 
1 

+ OJ > u > el s- ,;; positive real 

e1 > u > e3 s- i positive imaginary 

> 1 

83 > u e2 3-0 negative real 
l 

e2 > u > - (X) s- '"' negative imaginary 

Then by the previous reasoning , we would have 

+ (P ~ z ~ el O{. s {W, 
~ 

el ~ z 4 e3 W, {. S ~ W, + W2 
\ 

e3 ) z ~ e2 w, +w2~S ~ Wz 

82 > z 4 - 00 W24 S ~o 
The last statement that s ~ 0 when z ~ - oo may be shown 

in the limit from a ~ontour that is made up ai a large 

segment of the real axis and completed by a l a r ge semi-circ l e 

on the side away from the cuts. Since the closed contour 

does not contain any sin~ularities, the fo r egoi~g limit can 

be proved. 

The foregoing ranges of s for rea l values of 

may be extended, as previously, either by the 

consideration of alternate contours or by the properties 

of (J' ( s) . The situation for three real roots is shown in 

Fi P" . 2. 2. This plotted portion of the ~ - plane shows 

segments of four famil ies of allowed curves for the 

variation of <; Thes e encompass al l values of g 



which will yield real values for z = (P(5) plotted 

according to the following scheme 

+ Cl> ~ z ~ el solid horizontal lines 

el ~ z ~ 83 dot ted vertical lines 

e3 ~ z ~ e2 dotted horizontal l ines 

82 ~ z ~ - CX> solid vertical lines 

The system of solid vertical and horizontal lines outline the 

meshes of period-parallelograms. Again it is obvious that 

under our assumptions the period 2 w 1 is real and positive. 

With a little study it is also obvious that in this case we 

have the period 2W2 as a positive pure imaginary . 

Any of the allowed lines for S in Fig. 2 .1 or 

Fip . 212 will give an acceptable value for y(r,t) in (2.3) 

if the sign of K(r), which is determined solely by the 

sign of h(r), is properly adjusted. However, the 

allowable values of S are further restricted by the 

parametric solution f or the time t. The time t is always 

a real number and must vary t hrough purely real numbers as 

varies. The integrand of (2.5), which is 

will be a real number whenever ~ ranges over any of the 

families of lines shown in Fig. 2.1 or Fig. 2.2. Hence, if 

the path of integration for (2.5) contains a segment of any 

of the allowable lines which are parallel to the imag inary 

axis, then in that segment we would have d s = (a pure imag inary) . 
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Consequently, the value of the integral, which is t + f(r), 

would have a purely imag inary increment when g ranges 

over that vertical segment. Since f (r) is a cons tant for 

a ~iven value of r, this imaginary increment is impossible. 

Ther efore the path of integration of (2.5) cannot include 

any part of the imar, inary axis or of any line parallel to it. 

Thus we see that the only physically allowable values of 

are those which are included within the horizontal families 



of lines shown in Fig. 2.1 and Fig . 2.2. The vertical 

families of lines shown in these two figures, while 

acceptable for y(r,t), must be excluded as yielding physi

cally impossible values for t. 

We have found valid ranges for the parameter ~ 

which will give solutions of real physical meaning to the 

general solutions (2.3) and (2.8). One valid range for the 

parameter ~ is the system of lines in the s -plane 

consisting of the real axis and all congruent lines re

sulting from the periodicity of (?(5) . These congruent 

lines are also parallel to the real axis and displaced from 

it by 2n W2 where n is any positive or negative integer. 

While s varies along any l i ne of this family , 

el , With z = + CXJ at 

all congruent points and with z = e1 at 

S = O and 

g = w, and all 

congruent points. If the three roots are all real, a second 

valid ran~e of ~ is possible. This consists of a line 

through W.c. parallel to the real axis and all congruent 

lines produced by a displacement of 2n W2 from it. When 

S varies along any line of this second family, 

e2 ~ z = (f'(~) { e 3 , with z = e 2 at S = Wz and all 

con@:ruent points and with z = e 3 at ~ = W3 and all 

congruent points. For a given value of 1\. the roots are 

solely functions of the value of ct (r). For the most 

general case the value of CX (r) will vary with r and 



consequently the behavior of y(r,t) will also vary. 

Therefore the relation of <x (r) to the roots is 

important. In partic ular, if ')(_ should lie upon one of 

the allowed lines for S in the ~ -plane, y(r,t) would 

have a simple pole at S = 'X and all congruent points. 

This, of course, is required for M1 and M2 solutions. 

Let us substitute CX ( r) into the cubic 

, 
\ 

Therefore, while CX (r) is free to vary through all of the 

real nu..mbers, it will never cross a real root of the cubic 

s i nce s ( ex ) is a constant, independent of CX ( r). Hence 

if CX (r) is located by any means as being between two real 

roots of the cubic, it will remain between those two real 

roots throughout its variation. In the case that the cubic 

possesses only one real root e1 then if CX. (r) is 

established by any means as beinr greater or less in value 

than e1 , it will remain so throughout its variation. 

Such determinations can be made in the limiting ' 

cases in which the cubic has repeated roots. In the 

limiting case that ex (r) -+-- ± o:) 3 A. can be 

neglected in g3 as compared with 8 cx.3 and the cubic 

approaches 

(2.13) 

( 2. 14) 



where the cubic has a real root of -2 ex and a real re

p~ated root of ~ . In the other limitinr case in which 
'3 

a:'. = - -' /\ 
48 

we have 

in which the cubic has a real root of 2 CX and a real 

repeated root of - ex . The location of ct (r) with 

r espect to the roots from (2.13, (2 .14), and (2 .15) is 

given in Table II. Since we have arbitrarily taken e1 

to be either the only real root or to be the largest 

nositive root, it has been necessary to reorder the roots 

in one instance. 

After these rather lengthy preliminaries, we are 

now ready to part icularize the general solution of equations 

(2.3) and (2.8). In the early part of this chapter we 

deduced certain conclusions directly from equation (2.1) as 

to the local behavior of the solutions under certain 

specified conditions. These conclusions are tabulated in 

Table I. <e also f ound that if the solutions contain the 

values y(r,t) = 0 or y(r,t) = + oo that they must behave 

in r. certain fashion in the neighborhood of these values. 

We will now examine the general solution to see if these 

conditions are fulfilled. 

An inspection of Table II shows that the problem 

falls into four groups. Let us take these groups in order. 

( 2 .15) 



Table II 

A <X el es e2 Range 
+ (XJ -2e1. C( Ci.. 

3 I 
o<. )~ 461\ Real Complex Complex ex> e, 

cx3=-4B I\ 2cx. - ex - ex 

+ Change rn not at ion of r-oots 

cx.3== - 41A /\. - 0( -o. 2oc. 

cx3(--' /\ 48 Real Real Real ez{Ci. ~e3 

-oo -2oc ex. ex 

+ 00 ex ex -2cx 

cx.3> __ 1 A 
48 Real Real Real e3 loc (.e\ 

- c:x.3 = - 2f8 /\ 2oc - ex. - ex: 

cx3<: 4k /\ Rea\ Complex Complex 
ex< e, 

- a) -Zoe. ex ct 

First, let us consider the ca se in vrhich /\. > 0 a nd cx3 > -
4

'
8 

f\ 

Here we will have one real and two complex roots for the cubic 
.. 

in equation (2.2), and conse quently the s ystem of allowed lin es 

fo r the variation of c; shown in li'ig. 2.1 will apply . . Since 

CX (r0 ) is real and greater than e1 in value, X and its 

congruent points will lie on the allowed lines for ~ . :Bb r 

the sake of definiteness, let us take O < X <. w I where 'X..,, 
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is the real number which satisfies 

lj:::.-1L 
e,-0! 

t+f= 0 

cfC-X) = cf.. ( ro). Under 

these conditions, the situation in the ,; -plane is shown in 

Fig. 2.3. Only a part of one period-narallelogram is shown, 

but this is sufficient since these relations are repeated 

indef initely over the mesh of the period-parallelo~rams. 

There are two classes of solutions. 'dhen 

- X , -; { + X.. and in congruent segments , we have M1 

solutions. 'Hhen 2.w,-X. ~ s ~ + X and in al l congruent sefments, 



we have M2 solutions. When - X {:. ~ {-+ X and i_n 

all congruent seg,ments, then (1)U;)~ CX (r
0

); hence K(r0 ) 

in equation (2.3) must be positive. From the definition 

of K(r), h(r 0 ) > O for the M1 solutions. If 

F( s0 ) = 0 in equation (2. 8 ), then at S = 0 and 

conrruent points, we have y = O and t + f(r
0

) = O. 

I f equations (2.3) and (2. 8 ) are exnanded about the point 

0 or about any of the congruent points and only the 

first term of the expansion retained, then we find 

These two 

parametric equations may be combined into the explicit 
'/3 2/ 

expression y(r,t) ~ (9h/4) (t + f) 3 which is valid in 

the neighborhood of y = O. This is, of course, exactly 

the behavior predicted in the preliminary discussion for a 

solution in the neighb orhood of y = O. Moreover , since 

equation (2.3) can be zero only at S = O and cong ruent 

points (i.e., the poles of ~Cs) ), this behavior in the 

neifhborhood of y = 0 must be true for all possible 

valid o1 and M1 solutions. 

Let us now examine the behavior of the M1 

solution in the neighborhood of S = + 'X. . At the point 

~ = + X we have by substitution into equations ( 2. 3) 

and (2. 8 ) that y = + oo and t + f(r 0 ) = +oo . This is 

proper for a M., 
.i 

solution. 

(2.8) in the neighborhood of 

Expending equations (2.3) and 

~ = + 'X.., we find ·to the 

, 
\ 



K (..-o) 
first terms that y ~ ~ (~ -x.) and that 

I 
t + f(r 0 ) ~ cf,'(X) log ($ - -X. ). Since for the particular 

X chosen, we know from equation (2.2) that 

(P 1 
( -X) = - ( I\ /3) ½, we can combine the two parametric 

expressions into the explicit statement that 

K 
13 N ct+-r> 

y ~ 1/A e which will be valid in the neighborhood 

of y - + ct) and t ~ + oo. If we define a new function 

of integration as f >,' (r0 ) = f(r 0 ) + ½(3/ 1',.. )~log (A
3
K

2
) 

the limiting behavior at infinity is identical with that 

given in the preliminary discussion in the early part of 

this chapter . At the other pole $ = - X we have by 

substitution that y = +oo and t + f(r 0 ) = - 00 . The 

limiting behavior of y( r 0 , t --+- - oo) can be found by the 

same procedure a nd is again identical with that given in 

the preliminary discussion. Moreover since equation ( 2. 3) 

can be infinite only at ~ = ± X.. and congruent points, 

. this behavior as y ~ +co must be true for all valid M1 

and M2 solutions. 

Since we have t aken .I\. > 0, the condition 

.( 
l 

()( 
3 > - I\. / 48 is true for all positive values of CX { r 

0
). 

The si~n of CX {r0 ) is the same as the sign of g(r
0

); • 

hence the M1 solution is valid for ... -
j\ > 0, e (r 0 ) > o, and h(r0 ) > 0 which are the conditions 

for solution A in Table I. The condition CJ,_?'> - J\. / 48 

allows CX. (r0 ) to assume a limited range of negat ive values. 



But by the definition of 0.. ( r O ) the condition ex 3 > -~8 A. 

is identical with the earlier condition )9 3 
J < ~ I\ h ~ so 

with /\. > 0, P' ( r O ) < 0, and h ( r 
O

) > O under the 

condition 19 3 \< ~.I\ h 2 we have solution D of Table I. 

Now consider the s econd clas s of solutions when 

2 w 1 -X ~ s ~ + X and all congruent sef.,rnents. Here 

(J5Cs) ~C( (ro) and so K(r
0

) and hence h(r 0 ) must be 

negative to give physically plausible values for y in 

equation (2.J). We may, if we wish, adjust F( ~
0

) as 

discussed earlier so that t + f(r 0 ) - 0 at $ = w, - . 
.( 
\ 

At this point y has its minimum value of y = K(r0 ) (e1 - CX )-1 

At the point <; - + X , have - + 00 and t f(r0 ) =+ 00 . we y - + 

-

. 

At the point s - 2 w 1 - X, we have y = +oo and t + f(r 0 ) = - 00 . 

Thus for this range of the parameter, the solution is indeed 

M2 . The limiting behavior of y when y ~ + CP is the same 

as that discussed in a previous paragraph. Hence we have an 

N:2 solution for /\ > o, g (r0 ) > o, and h(r
0

) <. · o which 

is exactly solution E in Table I. We also have an M2 

solution for A.> O, g(r 0 ) < O, h(r0 ) < O under the 

condition that /9 3
/ <! /\ h-z , which is part of solution F 

in Table I. 

Let us now consider the second case in Table II 

where I\ > 0 and where CX 
3 < - J\ / 48. Here we have 

three real roots for the cubic of equation (2.2) and hence 

will have the allowed system of lines for the variation of c;' 



-o.L-

shown in Fig. 2.2. Since e2 <.O( {. e 3 , X. and its 

con~ruent points will again lie on the allowed lines for 

{ . To be specific, let us take Wz ~ 'X.. £w, +W2 and 

then the situation in the S -plane is shown in Fig. 2.4 

where again only part of one period-parallelogram is 

shown. Here there are three classes of solutions accordin~ 

to whether S lies within one of thre e different domains. 

If s ranges over all of the real values or over a 

congruent domain, 01 solutions are produced . Si nce 

everywhere within these congruen~ domains 

(]5(s)>O(. (ro), K(r0 ) and hence h(r0 ) will be positive 

in equation (2 .J). At ~ = 0 and at all congruent points 

y = 0 by substitution into equation (2.3) . If 

F( ~ ) = 0, then t + f(r 0 ) = 0 at 
0 

$ = 0. At the 

congruent point S = 2 c.u, , t +f ( r 0 ) - T where 

T = <P;X) [ w, C: (x) ?(_ ( ( w,)] • Let us cons ider the 

, 
\ 

param etric point <; within the fi ·r~s:t period-parallelogram, 

that is o< s _< 2 c.0 1 , and a congruent point f + 2n w, 

where n is any positive or negative integer. Then, upon 

substitution into equations (2.3) and (2.8) we have 

y(r0 , f_; ) = y(r 0 , ~ + 2n c...:> 1} and t(r0 , <; + 2n w1) = t(r0· , <;' ) +n T. 

Thus the 01 solutions are indeed cyclic with a period of T 

in time. In these solutions the maximum value of 

y = K( r 0 ) ( e1 - cx )-l occurs at c; = w, and at all 

congruent points. Since the condition c:1-.
3 <- 1\/48 is 



Fig. 2.4 

equiva lent to the earlier }9 3
} >~I\ h 2 

the s e o1 

solutions exist when /\ > O, p.: {r0 ) < 0, h(r0 ) > 0 and 

subject to the stated condition. This is exactly solution 

B in 1I1able I. 

at !;:::2w1 

~::O 
t+f=T 

If <;' lies within the domain 2 w, + 2 w 2 -X. ~ ~ ~ +X, 

or some congruent domain, then M2 solutions exist. ·vlithin 



any of these conr-i:ruent doma ins (f ( ~) ,)- CX. ( r 0 ), and hence 

h(ro) must be positive. At g- = 2w,+2w~-X 

that y = + 00 and t + f(r 0 ) = + oo . While at 

we find 

we have y = +CXJ and t + f(r 0 ) =- <XJ . At S = w, +Wz 

we have the minimum value of y = K(r 0 ) (e 3 - cx. )-1. we 

may ad j ust F( ~ 
>o 

as indicated earlier so that 

t + f(r0 ) = 0 at this point, if desired. Therefore the 

local behavior of these solutions is M2 as stated. These 

solutions exist when 1\. > 0 , g(r0 ) ..(_ O, h(r0 ) > o, 

the condition that / 9 3 } > ! .I\ ~ 2 
and are accordingly 

identical with solution C in Table I. 

.( 

under 

The remaining class of solutions is produced when 

~ lies vii thin the domain + X ~ ~ ) 2w2 -?l or any 

con~ruent domain. These solutions are also M2. Wi thin any 

of these congruent domains f(~) {. cx (ro), and hence h(r0 ) 

must be negative. The behavior at the poles of y and at 

the minimum values of y is similar to that of other M2 

solutions. There is no particular reason for repeatin~ this 

discussion with only small changes in the symbols u s ed. It 

It might be noted, however, for all solutions in which 

h(r 0 ) < 0 that the parameter ~ must progress in a 

negative direction if the time t is to progress in a 

positive direction. This last class of M2 solutions exists 

when J\ > O, g{r0 ) .( O, h(r0 ) < o, under the condition 

/93
/ ) ! I\. h 2 • Hence this is the remainder of the solution F 



~iven in Table I. 

In the third case in Tabl~ II where 

I\. < 0 and Ot'
3 

) - /\ /48, the cubic has three real roots 

and hence the system of allowed lines for <; will be 

id entical with those of the previous case. Since 

e3 ~ 0( ~ e1, 'X. and its congruent points will not lie on 

any of the allowed lines. Hence the valU9 of y in 

equation (2.3) will not possess poles for any of the allowed 

variations of i; Consequently our solutions will be 
./ 
1 

bounded from above in accordance .with our early discussion 

for all cases in which /\. < 0. Since X does not lie upon 

any of the allowed lines for ~ its exact definition is 

not important for the determination of the domains of <;' 

for the various possible class es of solution. For convenience 

in our drawing, we shall take X. as lying within the 

fundamental period-parallelogram, but this assumption has no 

further implications. The si tuation for this case within 

the ~ -plane is shown in Fig. 2.5. There are two domains 

for ~ which will g ive two different types of solutions. 

When $ ranges through all the real values and for all other 

congruent domains, an 01 solution exists. When the 

parameter <; ranges along a line through 0 2 parallel to 

the real axis and for all congruent domains, an o2 

solution exists. 

For real values of <;' or for any congruent values 

(f (s) > CX (r 0 ), and hence h(r 0 ) is positive for these 
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I 

classes. The behavior of the se 01 solutions is identical t 

with that of the o1 solution discussed earlier, and so it 

does not need to be repeated here. The condition 

<X. 
3 > - I\. /48 is identical with the earlier condition 

9 3 > ~ )/\.{ h2
• Therefore the o1 solutions occur wh en 

/\ < 0, e; (r 0 ) > O, h(r 0 ) > O, subject to the condition 93 >?1Alh2. 

a nd are thereby identified with part of the solution Gin Table I. 



When c; lies within the other domain 

d3(~) < ct(r0 ), and hence h(r0 ) must be negative to g ive 

proper physical meaning. Here we have a new class of 

solutions. Here the minimum value y = K(ro) (e 2 _ <X }-1 

occurs at l;, ::: Wz and all congruent points, while the 

maximum valu-- Y ;;; K( r 0 ) ( e:3 - ex )-1 occurs at <;' = w, + Wz 

and all congruent points. By adjusting the constant F( ~ 

we can have t + f(r 0 ) = O at any d esired point, wherein 

it repeats itself exce pt for an additive constant T 

in each succesRive mesh of the period-parallelo~rams. 

As in the o1 solution, we find for a given point S and 

one of its congruent po ints 

,;' + 2n w 1 that y(r0 , S + 2n w 1 ) = y{r0 , s ) and that 

t(r0 , $ + 2 nw, ) = t(r 0 , ~ ) - nT. Hence these solutions 

are bounded at finite non-zero values both for maximum 

and minimum values and are periodic with the period T in 

time. Thus these solutions behave local l y like 02. These 

solutions occur when /\-c( O, g(r 0 ) > 0, h(r0 ) z_ O, and 

sub ,j ect to the condition 9 3 >~Ji\./ h2 
and hence are 

identical with solution I in Table I. 

The remaining case in Table II is for 

j\ L.. 0 with cx3 <. - .A. /48. Here we have one real and two 

complex roots to the cubic. The system of allowed lines for 

variation of <; is accordinPly that of Fi~. 2.1. Since 

CX < e, > x., and its cong ruent points do not lie within the 
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allowed range of variation of ,;" . Takinr X. for 

convenience in illustration as being within the 

fundamental period-parallelogram, the situation in the 

$' -plane for this last case is that shown in Fig. 2.6. 

Here there is only one congruent group of domains for 

which 01 solutions exist. Since (PC~)> C( ( ro) , h ( r O) 

is positive in value. The condition 01-.
3 <. - .A. / 48 is 

satisfied for all negative values of oC. (r 0 ) and 

consequently for all negative values of g (r 0 ). Therefore 

we will expect an 01 solution when 

/\. <.. O, g(r0 ) < 0, h(r 0 ) > 0 which are the conditions 

for the solution Hof Table I. 

The condition ac 3 < - /\./48 allows C( (r0 ) to 

assume a limited range of positive values. This condition 

is equivalent to the earlier condition 9 3<~ /Al h2

• 

Hence with /\.< o, g(r 0 ) > O, h(r0 ) > O and sub j ect to 

this last condition, we have the remainder of solution 

Gin Table I. 

' ) 

The foregoing comprise all of the physically valid 

solutions to the ori~inal differential equation (2.1) under 

the most g eneral conditions. However, there are a number · 

of special solutions to this differential equation in terms 

of non-elli ptic functions. These special solutions, wh i ch 

exist under restricted conditions, will be considered in 

~ 
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t he following chapters. The g eneral solutions agree with 

the deductions made earl.i e r from the equation (2.1). The 

only solutions which include the value y = 0 are the 

I 
I 

, 
l 

01 and M1 solutions for wh ich in all cases h(r0) > O. 

The only general s olutions in which y approaches infinity 

in value are the and solutions for which in all 

cases /\_ > O. Moreover, these solutions behave in the 

neip;hborhoods of y - O and of y - + 00 as predicted. 

'dhen the nomenclature is transformed back to the orig ina l 

I 
I 

I 

I 



Table III 

A Conditions g(ro) h(ro) T~pe Para.rri~:ler Ra.nge Code Letter 

+ + M, -:xfs~+x. A 

oc.3> _ _!__/\ + - ~h. 2w, -X.~ ,; ~ +?C. E 
48 - + M, -X ~ $ ~ +X D 

+ - - M2.. 26.l, - x.) ~} +X Part of 

- + o, s=all Real m-s. 8 
cx..3(- _I j\ 

48 - + M2.. x 4 s ~zc..,,+2c..,rx C 
- - M2.. x~ ~ 4 2(..)2. -x.. Pat"t 

, 
of 

cl>· - ...}_ I\ + + o, s=all Reo.l nrs. Part o+ 
48 + - 02. $ :::-l\)z + Rea I nrs. I 

-
oc.-' <- _, I\ + + o, 5=0.II Real nrs. Part ·of 

48 - + o, ~ = a.\1 Real nrs. H 

functions, the local behavior of the general solutions is 

found to be that postulated in ~able I for the various signs 

and conditions on A. g (ro) , and h(r0 ). We have in 

addition established the actual range s for the parameter 

~ under these conditions so that actual calculations, 

albeit with great difficulty, can be made. 

This material can be presented more succinctly in 

tabular form, as in Table III. Here the first few columns 

give the various possible conditions for 

I\. , g(r0 ) , and h(r 0 ). The next column g ives the 

F 

F 

G 

6 



Robertson-Tolman symbol for the local behavior of the 

solution in the neiehborhood of r = r 0 • The following 

column gives one possible range for the parameter f 
for these conditions. The parruneter range g iven is only 

one out of an infinite number of possible parameter 

ranges which will fit the same condition. If s varies 

over one of the ranges g iven in Table III, then 

l; + 2 nw1 + 2.vnw 2 is another congruent parameter range 

which will give equivalent mathematical results. The 

last column carries the code letters first assigned to 

the tenative solutions in Table I. These code letters 

facilitate the intercomparison of Tables I and III. 
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Chapter III 

Approximate Solutions 

In the preceding chapter we have solved the 

partial differential equation (2.1) in the form of two 

parametric e~uations involving Weierstrassian elliptic 

functions. The allowable values of the parameter which will 

yield all physically acceptable solutions under the most 

general conditions have been tabulated in Table III. While 

these solutions are exact, they are not convenient for . 
actual calculations because of the complexities of the 

Weierstrassian functions. For the purposes of a numerical 

computation we would prefer a good non-elliptic approximation 

to an exact, but intractable, elliptic solution. In this 

chapter we shall develop some non-elliptic approximations 

to the general solution under certain conditions upon the 

values of CX ( r) and A which may or may not be true. 

In the preceding chapter we have taken the 

cosmological constant A as being an unrestricted real 

constant. That is, -oo l .I\. '- + 00 This is in accordance 

with the general theory of relativity in which /\. may be 1 

assigned any real value and the Einstein Field Equation 

will still have a zero divergence. However, the actual 

value of the cosmological constant is to be determined from 

the architecture of the space-time continuum with which we 

are concerned. The planetary orbits are given within the 



limits of the observational errors by the flat assumption 

that l\. = 0. Thus the cosmological constant is very small, 

if not actually zero. Since the homogeneous cosmology is ~ 

first approximation to the non-homogeneous models being 

considered here, the value of the cosmolog ical constant 

must fall within the :range deduced by Tolman (Ref. 1, p. 474) 

of -2 x 10-18 <A < 5. 7 x 10-18 , where the unit of length 

used is the light-year. 

' While a plausible assumption is that /\. = O, this 

is a severe restri ction, which will be considered in the 

foll owinr; chapter. In this chapter we shall make the less 

severe assumption that .A. is a vanishingly small number, 

and in particular that /Al< lcx 3 ! . This last assumption 

is one that may or may not be true since CX (r) itself 

has small values within the surrounding space that we are 

able to observe. We shall l a ter see that taking 

and g{r) = -r2/R2, where k 3 - £np 
- 3 ' reduces 

the line-element (1.23) to one of the standard forms for a 

non-static homogeneous line-element. Hence to the 

homogeneous approximation, we have from Tolman's data 

(Ref. 1, pp. 461 & 474) that -2.7 X 10-l3 <_or(r) < 2.9 X 10-14, 

where again the unit of length used is the light-year. This, 

of course, does not prove the assumption that IA\<\ cx
3

j 

but it does show that the condition is possibly true. 

If A = o, then 8 
3 . 

g 3 = - <X 1n ( 2.2 ) and the cubic 

has two repeated roots as shown in (2.14). Under these 



conditions the genera l solution of (2 .J) and (2.8) may be 

expressed in terms of non-elliptic functions. Hence if 

l\. were vanishinpTly small and \.I\.\ < I CX 3 
\ , vve would 

have and the cubic of (2.2) would have two 

nearly eaual roots. Thus we would expect to obtain an 

approximation to (2 .J ) and (2. 8 ) in terms of non

elliptic functions, where the approximation becomes 

better and better as the two nearly equal roots approach 

each other in value, that is as .I\ ___.. O. 

From Madel unP-; (Ref. 7, p. 78, eqs. 21 & 22 corrected) 

we take the relations between the invariants and the periods 

of the Weierstrassian functions as 

where 

7 ~ n5 <tl2.n] 
3 L I - '11211 ,.,..,, .. 

i.rr~ 
q = e I 

The periods W~ and G.); are msrked with an asterisk to 

distinguish them frorn. the periods W 1 and w 2 used in 

the previous chapter. The periods used in Chapter II 

were defined in a particular way while w; and w; may 

be any one of the six possible pairs of values. We shall 

identify Cv~ and w; to suit our convenience. In some 

cases they will be defined as in Chapter II while in 

other cases the indentification will be exactly r eversed 

( 3 .1) 

( 3. 2) 



from that of the previous chapter. 

As /\. a pproaches zero, q approaches either zero 

or unity, depending upon how the t wo periods are defined. 

That is, as ./\. _..., O, one of the periods approaches a 

finite limit, which may be either real or imag inary, while 

the other period approaches an infinte limit, which again 

may be either real or imag inary. We shall take w~ as 

the period whose limit is fi nite as /\ ~ O. Then by the 

' definition of q, q -- 0 as /\.-.. 0. Consequently, if ' 

v:e expand the We ierstrassian functions in powers of q, 

the first few terms of these expansions will give a good 

approximation for computational purposes as I\~ O. 

In this work we shall carry out the approximaticn as far as 

the q2 term wherever this is feasible. 

Since our invari ants are 

f7 2 = 12 ex 2. and g
3 

= -8 C:X
3 

- l\. /3, we can use equations 

(3.1) and (3.2) to obtain approximate expressions fo r ~( r), 

>t and W 2 . The uncerta i nity in sign upon taking t he 

squa r e root of (3.1) may be resolved by an appeal to the 

de~enerations of the Weierstrassian functions 

(vide Ref. 6, p. 105). When q_ = 0 with 0( < 0 we f\nd 

t hat is a real number; hence the negative sign must be 

used and we have 

( 3. 3) 



This approxi ma tion may in turn be solved for the period 

Wx ~ TT [1 + 60 a.2. + - - -] 1 2,/-3cx D 
( 3. 4) 

\Nhile the definition of q gives the approximation for W ~ a s 

An approximation is also needed for q if 

computations are to be made. This approximation can be made 

_ r-:, - 3/2 A 3 by forming 3 -v 3 g 3 g 2 = -1 - t ~ /24 ex from equations 

(3.1) and (3.2) , rearranging , taking a square root, and then 

inverting the series as 

Q. ~ I ~ [ \ - 5. 2 9 5 X I 0- '3 .f.l_ + - - -1 
u 144 l'""cx3 cx3 

Therefore, in the extreme condition that cx.3= - A the 

first term of (3.6) by itself' gives q to t wo signi f icant 

figures. If IAI • • 1 1 f rv
3 I , is appreciab y smal er than --... the 

first term of (3. 6 ) a lone gives q to sufficient accuracy 

for al l comr,utational purposes with the present observation~l 

data. By taking the condition 3 - /\ ex - -.1\. as extreme, then 

f~I will have a maximum value of 6.94 x 10-3. Thu s 

approximations to the Weierstrassian functions which are 

( 3. 5) 

(3 .6 ) 



Table IV 

X Class A CA(r) 5 = Rea.I ~ =('...)2 +Rea.l 't w"' I W2 

I + M, M2. ---- l.€ -LC, C2-f C, 

+ 
II - o, M2 M2. € c, i. C2 

m + o, 02 € -LC, ,C2 
I -

N - o, - LE. c, i.¼+½C, 

carried only to the q2 ~term will give more significant 

figures than the present observational data ~ould j ust i fy. 

Hence the a pproximations to the general solutions , which are 

to be derived , will be quite good under the conditions stated 

at the beg inning of this chapter. 

The three approximations of (3.4) , (3.5) , and (3. 6 ) 

may be used to find nearly exact values of q , 

for the four main groups of conditions listed in Table III . 

As such , the data of Table IV a·re merely an extension of • 

the data of Table III a nd are valid only under the conditions 

of this chapter. In the first column numerals are assigned 

to t he four groups so that they may be referred to in the 

text. The secondcglumn g ives the sign of t he cosmological 
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constant. The third column gives the sign of CX ( r), which 

is sufficient in the present circumstances where IA\< I 0c'. 3 
\ • 

The next two columns are only reminders as to the types of 

solutions which will occur. The exact statements about the 

types of solutions which will exist are found in Table III. 

The sixth column gives the approximate value of q, where 

€ is a small finite real number whose value is to be 

determined from (J.6). The following column gives the 

approximate value of w;, where C1 is a finite real 

number whose value is to be derived from (J.4). The last 

column gives the approximate value of Wi, where c2 

is a large real number which approaches infinity as q 

approaches zero. The exact value of c2 is to be found 

from (3.5). Table IV is actually only a mnemonic to aid in 

arranging the various approximations to the general 

solutions. 

There is considerable freedom in specifying the 

periods w,t 
I and w"' 2. because of the ambiguity in sign of 

eouations ( J. 4) and ( 3. 5) and because of the symrrLetry of 

the poles of (P(~) about the real axis. Those listed in 

Table IV were chosen to give a vanishing q with an 

infinitely increasing c2 . It has been assumed here that 

both c1 and c2 are positive real numbers. Equation 

(3.5) gives complex values for w; in classes I and IV 

since log i € = ½ TT i + log € . The periods of Table IV 



are readily identified with the periods of the previous 

chapter. They are, in fact 

I wx 
I = w 1 - 2wll. 

II w~ =w. 

III w: = -W2. 

IV w)( = w. 
I 

In classes II and III the three roots of the cubic in (2.2) 

are all real and the period-parallelogram is a highly 

elongated rectangle which ap~roaches an i nfinite strip as 

q approaches zero. In classes I and IV t wo of the roots 

are complex and the elongated period-parallelogram is not 

rectangular but still approaches an infinite strip parallel 

either to the real or to the imaginary axis as q 

approaches zero. In class IV it is immediately obvious 

that Real w~ = ½ Real W 1 as stated in the previous chapter. 

If the periods for class I are solved, we find that 

W,= 2c 2 and Hence here also 

Real W.2. = ½ Real w 1 • This is a verification for the statement 

in chapter II, which was derived mainly by geometrical 

reasoning. 

The Weierstrassian Pe-function may be stated as 

(vide Ref. 5, p. 379) 

( 3. 7) 



where the :9rime over the second summation sign signifies 

that the n = 0 term is to be suppressed. Equation (3.7 ) 

may be used with equation (3.3) to form approximations for 

equation (2.)). The latter approximation may in turn be 

integrated according to equation {2.5) to give an 

approximation for equation (2.8) . This we shall now 

nroceed to do for each of the eight allowable solut ions 

listed in Table IV. 

1. Classes II & IV, ~ = x. 

We shall use x throughout this chapter to 

signify a purely real variable. Here we wish to 

approximate in the neighborhood of S = 0 and along the 

real axis. We shall accordingly find approximations to 

the following two solutions 

II. /\.) 0 

IV. /\. < 0 

g < 0 

g < 0 

h > 0 

h ) 0 

W *-c 1 - 1 

W 1 = Cl 

q = € q_2 = +E:2. 

q = L€ q 2 = - € 2. 

From (3.7) and (3.3) to the q2 term, we find 

(PCs) - ex~ I TT )
2 s I + 8 c{( 6 - cos TTC,)( ) + - - -} 

C2c1 [.sin 2. nx o 
2c1 

Under the pr es ent restrictions, 56 q2(< 1, so (3.8 ) 

may be used in ( 2.3) to give an approximate solution vvhich 

is valid over the entire real rang e of x. Carrying out the 

approximations and transforming the coeff ic i ents back into 

the orig i nal g(r ) and h(r) func t ions, we have 

( 3. 8) 



i + f ~ h re- sine+ <('140 e -125 s;ne -8 Sin 20 + 3 sin 3eJ+ ---1 
2(-.9)3/~ [ 1. J 

with 

with 

where 8 = 7;~ 
q2 = +€ 2

, we have Solution B of Tables I & III; 

q2 = - E 2 , we have Solution H of Tables I & III. 

( 3. 9) 

( 3 .10) 

The relation between y 
l 

( -g )2 ( t + f) is a distorted cycloid, 

approaching more and more closely to a perfect cycloid as 

q ~ O. This is in agreement with de Sitter's (Ref. 8) 

numerical quadratures of the non-static homogeneous models. 

2. Classes I & III, s = x. 

We wish to find the approximations in the 

neighborhood of S = 0 and along the real axis for the 

followinr, solutions 

' l 

I. l\> 0 g > 0 h > 0 W i = - i C1 q = LE q2 

III. /\.< 0 f2; > 0 h > 0 W * = - i Cl q = E q2 
1 

Carrying the series expansion to the q2 term, we find that 

'6(5)-Q'.~-l!!._)
2

{- I + Bi2 (6-cosh!US.)+---} 
u r2c. Sinh2. ;~, C, 

This cannot be used in (2.3) to give an approximation over ' 

the entire range of x since q2 term will exceed the first 

term in value as x -. ± co . We shall first approximate in 

the vicinity of x = 0 where the q2 term is appreciably 

smaller than the first term. Then v,re must consider a new 

approximation in the neir,hborhood of s =w, for the further 

- Ea. ·r, 
- - i\1:I_ 

=+€~ O:i. 

( 3 .11) 



behavior of the solutions. We note, however, that for 

class III a 2 = + € 2. so { .3 .11) does not change sign as x 

varies throughout its real range. Hence both approximations 

for this class are for a single cyclic solution. In class I 

q2 = - E 
2 so ( 3 .11) will change sign, going through a 

zero, which produces a pole for y( r, t) at x = X and at 

any congruent point. Thus the two approximations are for 

two different solutions. The approximation in the 

neighborhood of x = O is for the M1 solution with 

h > 0, while the other approxim_ation in the vicinity of 

s = w, will yield the M2 solution with h <.. 0. 

Carryin{! out the indicated approximations in the neighborhood 

of x = O, we have 

l+f"' 
2 

;.,~ r;nh e -e- 'i'{l40 - 125 s;nhe -8sinh 2e + 3 Sinh30} + - --] 

where 8 = 1T x 
C, 

( .3 .12) 

(3.13) 

with q2 = +E 2 , we have part of Solution G of Tables I & III; 

with q2 = -E 2 , we have Solution A of Tables I & III. 

If these parametric equations are plotted with q = O, the 

resulting curve for the relation between y and t + f will 

be found to be similar to de Sitter's Curve Vas ~iven by 

Tolman (Ref. 1, p. 411). This should be expected, of course, 

since de Sitter's curve V is a numerical integration of a ivI1 



solution in a homogeneous model. These parametric equations 

might be termed a distorted imaginary cycloid, since the 

substitution of an imaginary parameter and a change of sign 

for g(r) into (3.12) and (3.13) will exactly yield the 

earlier parametric equations {3.9) and (3.10). 

For the o1 solution of class III, 

W 1 = c2-- + CYJ as q ~ 0. Cons equentl y , we would expect 

this o1 solution to resemble more and more closely a 
, 

M1 solution as q ___.. o. For the o1 approximation in the 

neighborhood of c; = w, which will be presented shortly, we . 

expect to find less and less physical meaning as q -- O, 

degenerating into y = +CD and t + f = ± 00 when q_ = 0. 

Thus, as the limit is approached, the parametric 

approximations of (3.12) and (3.13) will be sufficient for 

the entire solution of class III. 

J. Class III, ~ = W,+ x. 

In the previous section we have seen that the 

behavior of the o1 solution in the neighborhood of ~ = 0 

and congruent points is very similar to the behavior of a 

M1 solution. We need to approximate the o1 solution in 

the neighborhood of its maximum points, S : w, and 

congruent points, to show that it is actually cyclic. Since 

W 1 = w; in class III, we shall approximate up to the q_2 

term in the vicinj_ty of ,; = Cu~+ x, which g ives 



Usin~ (3.14) in turn, we find for the o1 solution in 

the neighborhood of c; = w, + x that 

~ ~ _h_r_,_ sech e + sech
2 e - l + 

9 [Bi --] 

(3 .14) 

( 3 .15) 

( 3 .16) 

where q =€ ' and all other condition Oil'the 

class III o1 solution are as in the previous section. 

As predicted, we see as q -+- 0 that y _... + oo 

and t + f-.. ± 00 . We can gain further insierht into the 

behavior of this approximation by assuming that q is 

sufficiently small so that only the first term in (J.15) and 

(J.16) needs to be considered. Then the two parametric 

equations can be solved explicity as 

Thus the maxima of the 01 solutions are distorted cosine 

curves. Hence the o1 solutions are cyclic as i ndi cat~d ~ 

But it is also obvious when A._,..o that the 01 solutions 

anproach to M1 behavior. 

( 3 .1 7) 
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4. Class I, ~ = W, + x. 

Here we seek the approximation in the nei~hborhood 

of S = w, and congruent points and alon~ the real axis for 

the following solution 

I. A> o g > 0 = i.E q 

We cannot use the approximations of the preceding section 

since in class I we have Carryinf, out the 

required approximation up to the q2 term for the neit2:hbor-

~ X X hood of > = 2 wz. - w, + x, we find 

Using this to find the corresponding approximations to the 

?eneral solution, we have 

( 3 .18) 

!:J~.2~ tosh8 + I +cf {60 +30cosh e -36cosh 2e - 6 cosh 30} + - - -] ( J.l9) 

where 

Under the conditions stated at the beginning of this section, 

this is Solution E of Tables I & III 

The parabola-like relationship between y and t 

defined by the approximations of (3.19) and (3.20) is not 

one of the named family of parametric curves. If this 

relationship is calculated, it will be found to resemble 
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closely de Sitter's M2 solutions for the homogenous mode'is, 

as might be expected. This approximation is not ~ood for 

large values of 9 , and consequently, for large values 

of y or t + f, since the q2 term of (J.18) will t hen 

excPed the first term in value. 

We have produced the approximations for all of the 

solutions listed in Table IV in which the parameter c; 

ranges over the real axis or some congruent line. There 

remain three solutions in Table IV in which the parameter 

varies over W 2 + x or some congruent line. Here we wish 

to consider the o2 solution wh ich exists under the 

following conditions: 

III. .I\.< 0 g > 0 h < 0 /_' * • C 1.A..1 1=-i 1 q =€ 

, 
l 

Since in class III 
)( - w, , we shall approximate up to the 

q2 term in the neighborhood of <; = w; + x 

This approximation rnay be used in (2.J) only for a limited 

range of x since the q2 term will exceed the first term 

( 3. 21) 

as x _.. + oo . To obtain the temporal behavior of the entire o2 
solution, we must make a second approximation in the 

neifhborhood of S = w, + W 2 + x. For the present 

neiFhborhood, we have 
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where 

'This is formally identical with an earlier approximation, 

except that here q2 = +€ 2. and t11is part of Solution I of 

Tables I & III . Consequently, the o2 solution in the 

nei r-:hborhood of ~ = W 2 and coni;::ruent points resembles the ', 

M2 solution, becoming identical with it when q = O. 

6 . C 1 ass I I I , $ = W, + W2. + x . 

To continue the study of the 02 solution, we 

now want to approximate to it in the vicinity of its 

maxima at $ = c.v, + W2. and congruent points. Carrying out 

this approximation up to the . q2 term in the neighborhood 

of $ = CJ~ + w; + x, we find 

Using (3.24) g ives 

u ,:::_:,. - h [-'- sech 8 - sech
2 0 + ~ + - - -] 

0 9 8~ 2 

t + f-= -t l_!_tan- 1
(sinh0) - fanh e + ~ 0 + - - -] 

9 2 LB~ 
h 8 _ 1TX 

w ere - C, 

( 3. 22) 

( 3. 24) 

( 3. 2 5) 

( 3. 2 6) 



Under the same conditions as the previous section, this is 

the remainder of Solution I of Tables I & III. By taking 

q sufficiently small so that all terms other than the first 

may be ignored, we can solve these parametric equations 

explicitly as 

Thus the behavior of the o2 solution at its maxima is 

similiar to the behavior of the o1 solution at its 

maxima, being a distorted cosine -curve. 

7. Class II, ~ =wz + x. 

There are two solutions that exist along this 1ine, 

both being We shall first consider the M 2 solution 

that exists in the neir;hborhood of ~ = Wz under the 

following co nditions: 

II. A > 0 g < o q =E o2 = +E 
2 

CL 

In the vicinity of $ = W~ + x to the q2 term, we have 

Employing (3.28) in the usual way, we find 

!:J~(-h) [_,_sec 28 + sec:
2 28 - 2. +---1 

c-9i L8i 

( .3. 27) 

( 3. 2 8) 

( 3. 29) 



t + f = (- h) [_I_ I oa ton (e + li) + tan 2 e - 0 + - - _ 7 
<- 9)3,z L 8 i J 4 J 

where 8:lTX 
2C, 

Under the conditions stated here, this is part of 

Solution Fin Tables I & III. With q sufficiently 

small so that all terms other than the first rnay be dropped, 

these parametric equations can be solved explicitly by 

means of the elementary lambda and gudermannian ·functions as 

Thus this M2 solution is a distorted catenary. 

8. Class II, 

The remaining solution listed in Table IV is 

I I. J\. > 0 g <O q =€ 

'carrying out this approximation to the q2 term in the 

neip:hborhood of 5 = Cv~ + w; + x, we find 

!3 ~_h_ [
8

1 sec 2B - secz 28 + -1 + - - -] 
c-9)L< i 2 

where 0=~ 2C, 
Under the cond. i tions stated here, this is Solution C of 

Tables I & III. The further approximation when only the 

q-1 term is considered is identical with (3.31) so this M2 

solution is also a distorted ca tenary. 

( 3. 30) 

( 3. 31) 

( 3. 32) 

( 3. 3 3) 
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The foregoing comprise the approximations to 

every solution listed in Table IV under the conditions 

stated at the beginning of this chapter. Approximations 

have not been Riven for every solution in Table III. 

Solution D and parts of Solutions F and G exist only when 

!Al > 48 I 0(
3

/ , which is contrary to our approximating 

condit ions. These solutions, as well as those of Table IV, 

may be approximA.ted under different conditions. Sin ce the 

cubic of (2.2) will also have repeated root s when 

I\.= - 48 0(
3

, we shall take /\= - 48r:::J... 3 + A , where 

~ is a vanishingly small real quantity. 

~ith this new condition, we can approximate to 

the q2 term, as before. Equation (3.1) g ives an 

approximation for C:X.(r) which is 

This is identical with (3.3) except for sign. When the 

square root of ( 3.1) is taken, the sign is ambig ious. As 

before, the correct si~n to use is determined from t he 

degenerations of the elliptic function (vide Ref. 6, p . 105) 

when q_ = O. Here, one of the periods is real and finite 

when /\ < 0 and oc > 0. Thus the positive si gn is used in 

this case. 

'i'he approximation for Cf.. ( r) and the definition 

of q may be used to express a pproximations for the t wo 
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periods. Equation (3.34) gives 

This is identical with (3.4) except for the si~n under the 

radical. Here, as before, we shall take to be that 

period which an nroaches a finite limit as 7\. ~ O. Using 

(3.35) and the definition of q we find 

This is again identical with (3.5) except for the sipn 

under the radical. 

The approximation for Q is made by forming 

3 -{T g 3 g 2 -
3
/2. = 1 - A/24 c:x 3

, where the d e f inition of 

/l has been used. Substituting for g2 and from 

(J.l) and (3.2), rearrang inr, the series, taking a souare 

root of the series and finall y inverting the series, we have 

a~ - 1- II: 'i + 5.295 x 10-
3 A+ - - -] 

D 144 -V~ ~ cx3 

which is identical with (3.6) except for some sipn s and one 

symbol. 

The foreg oing approximations alonp with (3.7) may 

be used to establish a~proximations up to the q2 term for 

the general solutions (2.3) and (2 .8). This approximation 

( 3. 3 5) 

( 3. 36) 

( 3. 3 7) 
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for the bas ic term of (2.3) is 

- 32f + ---] 

As shown in the })revious d i s cus s ion, the rema i ninP coseca nt 

s eries is to be further expanded in terms of x and ~ 

for the particular domain of <; which is used. The 

approximation for (2.J) and (2 . 8 ) may be carried out in t he 

s ame way , but not with the same ea se, as before. The , 
1 

presence o~ t he 2/ 3 t Arm in (3.38 ) complica t es t hi s probl em. 

In the previous a pnroxirnations the 1 / J term of (3.7) was 

exactly canc ell ed by the same term of opposite sign i n (J .J ). 

The conditions for t his second se t of anpr oximat ions 

have little intuitive a ppeal s i nce they re quire a non

vanishing cosmol og ica l constant in t he most gene ra l case s. 

Furthermore, this appea l is lessened by the d i f ficul ty of 

integratinf the a pproximation in (2.5), Cons eq uently , a 

qr oup of exa ct solutions will be p; iven here for the s pecia l 

ca se in which q = o. 

A r-eview of t he previous a pnroxi mat i ons will showt 

that they fa l l into two cla sses. Some are made up of a 

~roup of t e rms not containing q and of further terms in q2 

or higher powers. As q --o these a pproximations a r e 

dominated by the t erms t hat do not contain q . Thus, for 

a somewha t rougher a pproximation, as q -- 0 the terms in 

q may be d.i sregardai entirely. The remaininp- cla s s of 

( J . 38) 
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ap:9roximations has a dominant t e r m involving q-1. r~hus 

as q_ -- 0 these approxima t i ons have little physi cal 

usefulness since the minimum value of y becomes an 

extremely lari9"e number. In the same sense the exact 

solutions in t he SJ)ecial case that A= 0 are r ough 

approx i mations to a t least parts of Solutions B, C, D, F, G, 

and I of Table I when l\. -= - 48 CX.
3

• Taking then, the 

special ca~e q = 0 the approximation of (J.38 ) reduces 

to t he exact statemen t of 

Before deriving the s pecial solutions fr om (J .39) 

let us turn back to (2.1) and Table I to determine the nature 

of the expected special solutions. First, let us consider 

A ) O . rrhen the s pecial condition J\. = - L~ ~ cx3 is 

identical with - f,3 = 9 /\. h2 /4 . With )9
3
/) £ /\. h 

2 
, as will 

be true when q --- O from one side, ( 2 .1 ) has t wo solutions 

as shown in the discuss i on of chapter II. One of these 

solutions is o1 with a maximum value of y = E1 and with 

C, 2-u I ~ < 0 Vlhil e the at 2 • 
E, 

minim1m value of y = E2 

we must have 

other solution is M2 with a 

and with ~{1) ) 0 . Then a·s • 
E2. 

E1 ~ E2 and 0 :l.Y, _... 0~~ ( -. Q . 
at2. E, at.~ E:z. 

With q = 0, = .E " where E" has been u sed to 

denote the repeated root of the cub i c of (2.1), and 

( 3. 39) 
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'2JJ/ ::::. 0 at E" 
An inspection of 

(2.1) with a repeate~ root in t he cubic will show t hat not 

only the firs t t wo time deriva tives are zero at the re neated 

root, but also tha t all higher time derivatives are likewis e 

zero. r:onseouently, in the limiting solutions tD (2.1) y 

cannot cross the line y = E" nor can y tou ch the line 

y = E" as either a maximum or a minimum. Therefore th e se 

solutions can only approach or depart from y = E" 

asymptotically. Thus the o1 solution, Solution B of 

Table I, must resemble locally an asymptotic uni verse af the 

first t ype, usually denoted as A1, as q _.. O. Likewis e 

the M2 solution, which is Solution C of Table I, must 

locally come to resemble closely an asymptotic uni ve rse of 

the second type, which is denoted as A2 . 

'Wi" th j 9
3 I< 49 /\ h:t ' , ~ as will be true when a -+r 0 

from the other side, (2.1) has a single Mi solution, 

Solution D of Table I. Then as q ~ 0 this Mi solution 

must take on the appearance of de Sitter's curve III as 

given by Tolman (Ref. 1, p. 411) where the auasi-plateau 

becomes longer and longer as the critical point is a pproach~d. 

At the critical point this M1 solution must break up into 

the two special solutions, A1 and A2 . Thus the A1 

special solution is a rough approximation to Solution D for 

when .i\. -- o. The A2 special solution is 

a rou~h approximation for Solution D with 



-94-

E '' , y , + a:J, when t\, ~ 0. It should be noted tha t the 

quasi-~lateau of the solution does not cont ain a point 

of inflection since the first time derivative is never zero. 

This is i n agreement with the statement of Cha pter II t hat 

none of the physically acceptable solutions of (2.1) can 

have points of inflection, but can only vary monotonically 

with respect to time between maxima and. minima. This is 

always true since if y is any solution of (2.1), 
any - a:l.,y 
atn-F1( Y) a-t.2-+ F 2 ( y) ~~ . Hence for a particula r 

c,zy - ~ = value of y for which at.2- - O and at 0, y can only 

approach that value asymptotically since all higher time 

derivatives are also zero. 

Since in this special ca se at y = E 11 we have 

al l time derivatives equal to zero, we have a s pecial static 

solution to (2.1). This static solution is unstable to any 

perturbations in y. Any perturbation tending to increase 

y will be accentuated and the local behav i or becomes A2 . 

Any contrary tendency for y to decrease would also be 

furt her aggravated into local A1 behavi or. Thus this 

special static solution behaves locally like the Einstein 

s tatic homogeneous model and will be denoted as i
1

, 

Einstein behavior of t he first type. This extension of the 

Robertson-Tolman notation is to allow for a later type of 

static behavior. 
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Because the sign of h(r) ha s no effect upon the 

sii:::rn of 0( ( r), the snecial condition A = - 48 cx3 can be 

satisfied with g < O h < 0, which by 'l'a ble I means ar: 

M2 solution. The cubic of (2.1 ) has a repeated root under 

these conditions, but the repea ted root is negative and 

thus has no physical significance. Nevertheless, the cubic 

of (2.2) has a repeated root and hence (2.J) and (2. 8) can 

be expressed exactly in terms of non-elliptic functions. 

This ~ives a non-elliptic statement of Solution Funder the 

specified snecial conditions. 

;?hen 1\ < 0, the special condition A = - 48 <x 3 

is identical with g3 = 

will be true when q - o from one s ide, ( 2 .1) has a single 

o2 solution, Solution I of Table I. This cyclic solution 

has max ima and minima of -r,, 
.J:!,2 and El. As q --+ O, we have 

E1- E ~ 
2 E" and ~, ~1 

_at2. ~ ot2 ~ 0 Consequently, 

the limit of the 02 solution when q = 0 is another 

static solution. This static solution has its own unique 

form of instability. When y is perturbed from its static 

value of y = E", the solution ceases to exist. Consequen~ly, 

we shall term this local behavior Einstein behavior of the 

second type and denote it as E2 . It could hardly be con sidered 

even as a rough approximation for the o2 solution. As 

shown in Table I, there is no solution at any point when 

q ~ 0 from the other side. As before, these special 



Table V 

A Conditions g(r-) her> Type Range 

A, o,~,E" 

-!l= ~Ah 2 + A2 E"' ~ {+oo 
+ -

E1 _y = E'' 
' 

- M; E~~~+oo 

E2 E " 
3 9 ha. - ~= - 9=- 4 A + 

+ 0)( o~y~E I 

conditions can also be satisfied with p > O and h) 0, 

and we obtain a non-elli ptic specia l solution for the 

Solution G. 

These six special solutions are summarized in 

~able V. The asterisks are used with Mf and ot to 

indicate that these are special non-elliptic solutions. 

0 

There are t wo static solutions, which will be considered 

l 

in the following chapter. Here we shall proceed to derive 

the four non-static special solutions . 

..:....9_ . .c._A._<_O.-_.L.-, _...,__?_>_o_,,'-_h ____ >_o ...... ,_o1 
Since our special condition is that 

3_ A / Cf... - - . 48, CX ( r) is a positive real constant which 

is entirely determined by the existing cosmol og ical cons t ant. 



Assuming that this constant has been determined, the two 
X TT w X. • periods are w, = 2 ,r3 ex == , and Wz =- 1, ro :c: w ::i. accordin f-". 

to (3.35) and (3.36). The system of the period- narallelograms 

has degenerat ed into a vertical s ystem of strips. There is 

only one path within t he finite part of the S -plane 

which we can consider and that is ~ = x. Using the exa ct 

statement (3.39) we find the exact solution for this 

special case to be 

_ 3h [ 3 
!:J - 29 Lcos20+2 

-t+f 

where B= x-{3cx 
This exact solution has been verified by 

subs tituting it into the orig i nRl differential e quation 

( 2 .1) under the S})ecial conditi on he re assumed. This bit 

of mathematical formali sm vv ill not be pr e sented here. 'T1his 

parffinetric solution ma y be seen by inspection to be cyclic 

with minimmn values of y = 0 when 0 = (n TT) where n 

is any positive or negative integer. Similarly, the 

solution has me.x imum values of y = 311/g when 0 = ( n + ½)TT. 

The period of time in which one complete cycle would be 

executed would be T = 3 ( -{3" - 1 ) hIT /g 312• . This is o1 

behavior, as predicted. 

( 3. 40 ) 

( 3 . 41) 
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10. /\. > o. g ( 0 h > 0, 

Here, CX.(r) is determined by the special 

condition as a real negative constant whose exact value 

is known, once the cosmological constant is found. Equations 

) 
x . TT _ ,, 

(3.35 and (3.36) then give for the two periods W 1 =-L2-,/- 3 cx --..,._,z 

X and W 2 == oo = W 1 • Thus the period-parallelograms in the 

S -plane have here degenerated into a system of horizontal 

infinite strips. There are, accordingly, two systems of 

allowed line s for <; • 
, 

Let us first consider the real axis 

and all other congruent lines. Taking ~ = x in (3.39) we 

find the exact solution 

u _ 3h [i · 3 ] 
J-2(-9) -cosh2e+2 

where 

This parametric solution r ive s 

y = 0 and t + f = 0 when 0 = 0 with y approaching 

3h/2 (-g ) asymptotically a nd t + f--... ,± 00 when 0 -- ± 00 

This is the typical A1 solution which was predicted in t he 

earlier discussion. 

11. /\ > 0, (!, < o, 

The second system of lines in the <; - plane along 

with S can vary with physical significance is ~ = Wz + x 

( 3 . 42) 

( 3. 43) 
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~nd congruent lines. Taking this value of the parameter, 

we find 

y _ 3(-h) [ 3 11 
- 2(-9) [2 - co&h 28 - 1J ( 3. 44) 

t +f = 3(-h) ID lo (co+he +-/5) - e] (3.4 5} 
(-9) 3/2 L2 .9 co+he --{3 

where 0 = ":X~ and -0.659 ~8 ~ +0.659. 

As before, we have taken advantage of the F( g0 ) 

term in (2. 8 } to adjust the t + f solution so that 

t + f = 0 when 0= O. The formal similarity of (3.43) 

and ( 3.45} with (2. 8 ) might be noticed. When 8 = O, we 

have the minimum value of y which is 3h//'.\ . As I 0/ 
increases, we will have infinite values for both (3.4~ ) a nd 

(3.45). In (3.44) we have y =+oo whenever cosh 2 8 = 2. 

In ( 3. 45) we have t + f = + oo whe never coth e = fi 
and t + f = - oo whenever coth e = - .{3 . The same value 

of e satisfies both of these conditions and is 

approximately Jel = 0. 659. This is, of course, either X 
or one of its congruent points. Thus these equations give 

a non-elliptic solution to the M2 case under the stated 

special conditions. 

12. ./\ > 0, g < o, h > O, 

Continuing the solution for the remaining 

permitted variation of 5 , we find 
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u :::: 3h r, + 3 ] 
0 2(-9)L 1 cosh20-2 

t +f ::= 3h3 re_ -fl_ loglfi + coth 0)1 
(- .9) V:z. L 2 \-i/3 - cot he 

where 6 = X 7/ -3D: and I 0 I > O. 6 59. 

~hese equations are merely (3.44) and (3.45) 

rearranped. An attempt has been made throughout this study 

to present the coefficients of bracketed terms as real 

positive quantities. He re, since h(r) has changed si~ns 

between section 11 and 12, a sign has been altered in both 

the coefficient and the bracketed terms in stating (3.46) 

and (3.47). There are two doma ins of 8 to be considered. 

When 0 = ca. +0.659, y =+oo and t + f =-ro and while 

8 ~ + CXJ , y approaches 3h /2 ( - g ) asymptotically and 

t + f-+- + oo. 'T'hus for this allowed range of 8 , the 

local behavior of y with time is one which beg ins with 

infinite expansion and contracts asymptotically to the 

Einstein value. For the other range of 8 , we have when 

0 = ca. -0.659 that y =+oo and t + f = +00, and when 

0 -- - oo that y approaches 3h/2 ( -g) asymptotically 

with t + f ~ - oo. 11his local behavior of y with time. 

is then the inver se of the preceding since here y begins 

with the Einstein value and expands from it asymptotically 

until it is infinite. This is, in both cases, the 

postulated A2 behavior. 

( 3. 46) 

( 3. 4 7) 
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This last group of solutions is ma thematically 

inter esting sinc e t hey a r e fully e quival ent to the known 

Einstein and asymptotic solutions of homogeneous cosmology. 

However, they do not appeal too strongly to the physical 

intuition since they exist only under highly specialized 

conditions. If any assumptions are made a s to the exact 

value of the cosmolog ical constant, a more plausible 

assumption would seem to be that it is zero. This 

assumption, along with the special solutions that will 

arise with zero values for g (r) and h(r), will be 

considered in the chapter that immediately follows. 
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Chapter IV 

Special Solutions and Conclusions 

In previous chapters we have found the general 

solution to the partial differential equation (1.34) and 

have presented the approximations to the general solution 

under certain conditions. In this chapter we shall find all 

of the special solutions to the partial differential 

equation (1.34} when the coefficients are restricted to 

finite values. 11ife shall summarize the various possible typ'e s 

of local behavior with a given value of the cosmological 

constant by presenting this material graphically. Finally, 

we shall derive a general solution for the proper local 

density within these models. We shall then see what 

further restrictions are placed upon our solutions by the 

physical requirement that the density of matter can never 

be negative. The material of this chapter will conclude 

the general theory of spherically-symmetric, non-homogeneous, 

relativistic models having zero pressure. 

The general solution was derived in Chapter II 

when the three roots of the cubic in (2.2) were all 

distinct. A very obvious group of special solutions is 

found when two or more of these roots are repeated. The 

cubic will have two repeated roots whenever 

A [A + 4 8 ~ 3 
] -= o ( 4 .1) 
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This condition may be satisfied in two ways. If A= 0, 

condition (4.1) is satisfied and we have a reneated root of 

c::;... and a single root of -2 CX. The condition ( 4.1) may 

also be satisfied with A= - 48 cx 3 
and we will have a 

repeated root of - ex. and a single root of 2cx. 

Of these two alternates, the condition .i\. = 0 

is nhysically the most probable value. Einstein 

(Ref. 9, pp. 109-132) in a recent book has stated that he 

originally introduced the cosmological constBnt into his 

Field Equations only to make possible a static solution 

containing matter. While this term is logically permissible, 

he has observed that it makes for a considerable complication 

of the theory. To quote him exactly: "If Hubble's 

expansion had been discovered at the time ~f 

the creation of the general theory of relativity, the 

cosmological member would never have been introduced. It 

seems now so much less justified to introduce such a 

member into the field equations, since its introduction loses 

its sole original justification,--that of leading to a 

natural solution of the cosmologic problem. 11 

Einstein and his pupils (e.g., Ref. 10) in recent 

papers have been using the Field Equations without the 

cosmological constant. Bergmann (Ref. 11, p. 179), an 

associate of Einstein, in a recent book states the Field 
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~auations without the cosmolog, ical constant, and no where 

in his text does he even su~gest the possibility of such a 

term. Certainly, in deciding for or against a non-zero 

cosmolog::ical cons tant, the opinion of the founder of the 

relativity theory and of his school must be given due weight. 

One of the most disturbing consequences of 

assuming a non-zero cosmological constant is that empty 

space is not flat, and that conversely, flat space i s not 

empty. This has been noted by Gregory (Re f . 12, p. 180), 

amonP.'. others. Tolman (Ref. 1, pp. 402-3) has ably summa-

rized the matter. Q,uotinp; Tolman: " * * * 1\. = 0 

certainly seems the most reasonable assumption to make at 

the present time. In the first place the orie inal 

arr urnent, as discussed in TP 1.39, f or Einstein's addition of 

the log ically permissible but otherwise surprising 

cosmolo~ical term to his original field e quations in ord er 

to obtain a universe with a finite density of matt er, now 

no longer exists in view of the wi der nossibilities presented 

by non-static models. In the second place, we have at the 

nresent time no accepted theory for any value at all for t he 

cosmological constant, although interesting cons id erations 

concerning this matter have been presented by Eddington. 

And in the third place, from the observational point of vi ew 

vie can at least say that the value of /\ must be small in 

order not to upset the application of relativistic theory 
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to the orbits of the planets. Hence in what f ollows we 

shall lay specia l stress on the behaviour of models with 

the cosmological t erm omitted." 

Taking A= 0 in eq_uation (J. 6 ) we have q = O. 

Usin~ q = 0 in the a pproximations of the first part of 

Chapter III, we obta in exact solutions for this specia l 

case. Only three types of solutions survive. We shall list 

these three solutions along with the conditions under which 

they exist. 

1. g {r))O 

2. v( r) < o 

3. g{r) > 0 

h{ r) ') 0 1\. = 0 

-1: + f = h Is in h e - eJ 
2 3

3/2 L' 

h ( r) > 0 i\.= 0 

t + f = h [e - s; n e] 2 (- 9) 3/2, 

h( r) < 0 

t + f = (- h) rs in h 0 + e] z g'.3/2, L. 

( 4. 2) 

( 4 . .3) 

{ 4. 4) 

{ 4. 6) 

( .4. 7) 
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There is no solution in the fourth case in which 

g (r) < O, h(r) ..( O, and A= 0 since '2..Y- would be 
at 

ima~inary for all allowable values of y(r,t). 

It should be noted that the three preceding 

special solutions may be derived directly from the g eneral 

solution ( 2 .3) and (2.8 ), from the known degenerations of 

the Weiers trassian elliptic functions (vide, Ref. 6 , pp. 105-6 ). 

In fact, the pa rticular f orm of (2.8) was so chos en that this 

derivation nlight be performed without logarithmic 

difficulti es. This deriva tion from the degenera tions of the 

e l liptic fun ctions has been made, but the work will not be 

presented here. The deriva tion is long and tedious, but 

is no more rigorous than the obvious derivation from the 

material of Chapt er III. Furthermore, the deriva tion by the 

degenerations of the elliptic functions y ields no add itiona l 

informat i on about the s pecial solutions. In addition, these 

t hree special solutions, as well as all other s pecial 

solutions to be presented in this chapter, have be en checked 

by direct substitution into the orig inal partial differential 

equation. 
. t 

The procedure followed is obvious and will not be 

f urther commented upon. 

The other alterna tive for a repeated root in the 

cubic of ( 2. 2) is A = - 48 CY... 
3 

• The six special solutions 

resulting from this condition have been discussed in the 

last part of Chapter III. The actual solutions for the 
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four non-static cases will be found there and need not be 

repeated in this chapter. The six special solutions and 

the conditions un~er which they exist are: 

-=1-=-. __i.g.w., (=r_,!..)_>.;_..,.,o ___ h..!.,( _r.,_) _> ____ o __ i\_=_-___ 4_8 _0l._
3 __ o;: 

2. g(r) < 0 

3. p:(r) < O 

4. g(r) < O 

5. g (r) < 0 

Equations (3.40) and (3.41) 
3 >j<; 

h ( r ) .( O ./\ = - 48 ex M2 

Eauations (3.44) and (3.45) 

h( r) ) 0 3 I\.= - 48 ex. 

Equations (3.42) and (3.43) 
'3 h(r) > 0 .A.= -48cx. A2 

Equations (3.46) and (3.47) 

h ( r) > 0 1\.. = - 48 ex. 3 
E1 

This case was discussed in Chapter III, but the 

solution was not given. It may readily be seen that the 

solution in this case is 

where t can take any real value. The condition /\. = - 48 <:::J..
3 

defines a functional relationship between g(r) and h(r). 

Substituting this functional relationship and solution . 

(4.8) into the partial differential equation (1.34), we see 

that it is satisfied identically and hence that ~ = O. 

Equation (1.34) can be differentiated to give an expression 
02.<j 

for dt2 in terms of y(r,t), g(r), h(r), and A . 

( 4. 8) 
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Substituting the functional relationship and (4.8) into this 

derived equation, we see that it also is satisfied identically 

a2y -and that o·P· - O. Hence from the reasoning of Chapter III 

it follows that all hip:her partial time derivatives are also 

identically zero. Consequently, equation (4.8} is a static, 

albeit unstable, solution to the problem. 

If we take our functions as g(r} = - r2/R2 and 

h(r} = 2r3/JR2, where R is a real positive constant, then 

(4.8} reduces to y(r} = r. Substituting this into equatioh 

(1.23} gives the corresponding line-element as 

+ dt 2 

Substituting the same values into equation (1.36) gives the 

density as 

8np -

Wb ile a substitution into the condition /\. = - 48 cx3 gives 

j\ --

Eauations (4.9}, (4.10), and (4.11) are, respectively, the 

line-element, the density, and the curvature of a static 

Einstein model with zero pressure. Furthermore, any other 

E1 solution can be converted into this form by a simple 

( 4. 9) 

(4.10) 

( 11- .11) 
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transformation of the r-coordinate. It is for this reason 

that the E1 solutions have been designated as "Einstein 

behavior of the first type". 

6. g ( r) > O h ( r) < O A = - 48 ex 3 
E 2 

' These conditions are those of the previous case 

with all signs changed. The solution to these conditions is 

still equation (4.8). However, if the attempt is made to 

extend the E2 solution over a finite range of r, it will 

be foUI?-d from equation (1.36) that the resulting density i~ 

negative. Hence the E2 solution does not exist over a 

finite volume of space, but only for isolated values of r. 

It is a transition case between two non-static solutions. 

For these reasons the E2 solutions have been designated 

"Einstein behavior of the second type 11
• 

We know from the homogeneous theory there are 

only three possible static models, of which only one, the 

Einstein model, contains matter. The t wo remaining static 

models, namely the de Sitter and the Special Relativity 

solutions, should be deductible as special cases of the 

non-homogeneous theor y . Although it is somewhat auxiliary 

to the pre s ent line of development, they might best be 

considered at this time. 

1. g(r) = O hlr) = O A=o Special Relativity 

~he nartial differential equation (1.34) is 

readily int egrated under these s pecial conditions as 
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y(r) = flr). 

If 1Ne take y( r) = f ( r) = r, then the line-element becomes 

ds 2 -= -[dr 2 + r 2 de2. + r 2 sin 2 9 d.4> 2
] + dt 2 

which is the l ine-element of Special Relativity. Since 

h(r) = constant, this model does not contain matter . 

2. g(r) = 0 h(r) =O A>o de Sitter 

If we take .J.. .I\. 
3 = k2 = l/R2 , the partial 

differential equation (1.34) can be integrated as 

l{(-t;+-f) 

( 4 .12) 

( 4 . lJ) 

y ( r ) = e ( 4 . 14) 

If we define the arbitrary function as f(r) = R log r, 

then we have y(r) = r ekt and the line-element becomes 

This is the Lemaitre (Ref. 13, p. 1 88) - Robertson 

(Ref. 14, p. 835) form of the de Sitter line-element. It 

can be transformed into the more conventional form of the 

de Sitter lin€-element by the transformation equations given 

by Tolman (Ref. 1, eq. 142. 8 , p. 347}. Here again, since 

h(r) = constant, the model contains no matter. 

To return to the special solutions of the partia l 

differential equation (1.34) when the cubic in (2.2) has 

repeated roots, we have one more case to consider. This is 
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t he case when all three roots are repeated. The cubic of 

(2.2} will have a triply-repeated root of zero when 

g2 = O and g3 = O. The cubic of (2.J} cannot have a 

triply-repeated non-zero root because of the absence of 

the y2 term. The conditions can be satisfied only by 

Ol = 0 and A= o. The condition ct= O can be 

satisfied either by taking g(r) = 0 or by taking 

h(r) = 00. However, we wish to restrict our solutions to 

those arising from finite coefficients in equation (1.34}; 

hence we must reject h(r) = CX) and take instead 

g ( r) = O. Under .these conditions the differential equation 

may be integrated explicitly as 

The conditions under which this solution exists are: 

g(r) = O h( r) ) 0 A=o 

The factor of 9/4 which is the coefficient of h(r) in 

this solution is actually redundant since it could be 

absorbed into the arbitrary function. However, the general 

solution (2.2) and (2.8} reduces exactly to (4.1 6 ) with 

the degenerations of the Weierstrassian elliptic functions · 

when all three roots are equal. The special solution (4.16) 

is an extension to all values of r and t of the known 

behavior of the general o1 and M1 solutions in the 

neighborhood of y = o. 

( 4 .16) 
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The foregoing discussion does not include all of 

the special solutions to the partial differential equation 

{1.34). When one or more of the coefficients of this 

equation, namely g{r), h(r), and A are zero, the 

degree of the polynomial may be reduced by transformations 

or otherwise and the special solution found in terms of 

non-elliptic functions. All of the possible special 

solutions when the three coefficients are limited to finite 

values are listed in Table VI. Since most of these 

solutions have already been discu~sed, they are tabulated 

in the table by equation numbers only. The remaining 

nine solutions which have not been discussed are given 

in Table VI along with the conditions under which they 

exist. The s e solutions are readily derived by elemRntary 

mathematics in each case and do not require discussion here. 

Two limi tinP, cases might be noted. They are y = ex) , 

which is denoted by I for "infinite model"; and y = 0, 

which is denoted by Z for "zero model". These are 

themselves limitinr, cases of other special solutions. 

Table VI and Table I give all of the solutions to 

t he partial differential equation {1.34) when the three 

coefficients have finite values. This tabular material 

might be made more comprehensible by presenting the 

conditions under which the various solutions exist in 
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Table VI 

I\ gcr> h(r) Solution S_ymbol 

+ + eqs. (4.2) and (4.3) M, 

0 - + eqs. (4.4) and (4.5) o, 
+ - eqs. (4.6) and ( 4. 7} M2. 

- - no solution n.s. 

+ + eqs. (3. 40) and (3. 41) Of 
+ - eq. (4.8) E2 

3 
-48oc - - eqs. (3.44) and (3.46) Ml 

eqs. (3 .42) and (3 .43) A, 
- + eqs. (3.46) and (3.47) Az. 

eq. (4.8) E, 

+ + ~=-f3 h9~ sinh
213 ../3A (t+f) A - 2 M1 

- + ~==(~~)~ sin½f~A(t+f) Ql 
0 

+ --. ~=("Jh)t§ cosh~/3j (t+f) M2. 

- - no solution n.s. 

+ + &=-{¥/ sinh{f(t+f) { M, 

- + 0 8 =~/sin.fl( t +fl[ 01 

+ - ~ =-fJ! cosh{f ( t +f) M2 

- - no .solution n.s. 

+ 0 ~ =.f91 t+f I M, 
0 + eq. (4.16) M, 

0 - 0 no solution n.s. 

0 - no solution n.s. 
0 0 eq. {4.12) 5.R. 
0 + y =a:) I 

+ 0 0 eq. (4. 14) d.S. 
± 0 0 Y=O ~ 
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P-ranhical form. This is a lop-ical extension of Roberts on's 

(Ref. L+) similar treatment for the homoP- ene ou s rn.ode ls. 

-h 

Rnbe~tson defined a certain critical 0uantity which he 

denoted as Q and plotted t his crit ical quantity a~ainst 

R, a meAsure of the instantane ous proner distanc es withi n 



-115-

the model. Robertson ~made two separate plot s ove r half

planes; one for the open models, and one for the closed 

9=-1 

:J 
0 

(J) 

0 

~ ..... 
0 
.:::s 

+h IA=OI 

Fig. 4 .2 

models. By the obvious a rtifice of plotting Q, a ga inst 

+9 

R2, these two separate plots can be combined into a sing le 

curve over the entire Q, - R2 plane. This plot of Q a.g~inAt 
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R2 can be _interpreted as delineating areas within the 

Q - R2 plane in which t h e various possible homog eneous 

(/) 
0 -

+h 

E.. n.s 
0 
::3 

-h 

Ul 
0 
C -0 
::l 

Fig. 4.3 

solutions would exist. The solutions which wi ll exist for 

a particular value of .I\. are t hen found as a one

dimensional domain, formed by the insection of a straight 

+9 
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line (Q = constant) with these areas. 

Since the non-homogeneous models are a higher 

order of generalization than the homogeneous models, a 

graphical presentation of the solution conditions must be 

made in three or more dimensions. The method that we shall 

follow is to plot the data of Tables I and VI in t hree

dimensional g - h - I\. space. The general solutions 

of Table I exist within volumes delineated by the planes 

g(r) = o, h(r) = O, A = O, and by the surface 

1\ = - L~8 cx3
• The special solutions of Table VI exist 

within areas upon these planes or surface. Certain limiting 

forms of the special solutions in Table VI exist only 

along lines at isolated points within the g - h -/\. 

space. The solutions which will exist for a particular 

value of /\ are then found as a two-dimensional domain 

by the intersection of a plane ( .1\ = constant) with the 

various volumes, areas, lines or points. 

Since it is manifestly difficult to give a clear 

representation of a three-dimensional plot upon two

dimensional paper, the various relations are indicated in 

the accompanying figures as representative intercepts of . 

three different A = constant planes with the g - h - A 
space. Fig. 4 .1 shows a typical intersection when I\ > 0. 

The general solutions of Table I which will apply in this 

ca s e are shown as areas in Fig. 4.1 which have been cross-



hatched to distinguish the various types of local behavior. 

Each of these areas repr es ents a single type of local 

behavior, exc ept for one area in the second quadrant. 

Within this exceptiona l area the loca l behavior may be 

either o1 or M2 , depending on the particular range of 

y(r,t) wh :i ch is involved. This is in accordance with 

Table I and the t wo allowed ranges for y(r,t) are non

overlapping. The special solutions of Table VI are shown 

in Fig. 4.1 as exi sting alonp.: lines or a t a point at the 

origin. The A1 , A2 , and E1 special solutions exist 

a long t he upper-half of the curve /\. = - 48 ()( 3
, while 

i . , .* t he non-ell ptic M2 solution exists a long the lower-

half of this curve. This curve approa ches the line 

g = O as A - O, and approaches the line 

0 ~ g ~ -1 as 1\. - co . Only a ha lf-plane is repre

sented in Fig . 4 .1 since ;,v e must have g ( r) ~ -1. The 

approximations of the first nart of Chapter III apply 

whenever IA[ < I CX 3
\ • Thus, for a finite A , there 

is always an area in Fi g . 4.1 in which these ai:iproxima tions 

woul d a pply. This area approaches the lihe 

h ( r) = 0 when ./\.- + 00 . Cn the other hand, this area 

fills more and more of the g - h plane as A ~ 0 

becoming e qua l to the ent i re plane v1hen .1\. = O. Any 

particular non-homogeneous model could be diap-rammed as a 

curve on the p - h plane in Fig . 4.1 which includes all 
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of the values assumed by g(r) and h(r). This curve coula 

include any or all of the possible local types of behavior 

shown in Fig. 4.1. 

The transition case A = 0 is shown in Fig. 4.2. 

Here all of the solutions are non-elliptic. 1be curve 

A = - 48 ex. 3 
has degenerated into the line fl ( r) = 0. A 

new feature a ppears in the third quadrant. No physical 

solutions are possible with the g(r) and h(r) values 

in the third quadrant. The point at the origin repr,esents ', 

the limiting special case of the Special Relativity 

solution. The remaining case of /\. < 0 is shown in 

Fig. 4.3. The area of no physical solution has widened to 

include part of the fourth quadrant. As A- - oo, this 

area continues to increase until in the limit there is no 

nhysical solution within both the third and the fourth 

auadrants. '1,h A -- - 48 "' 3 _ e curve v-. has shifted to the 

rip:ht-hand side of the line g(r) = O. As 1\-+--oo, this 

curve approaches more and more closely to the line 

0 ~ v, ~ + CO . The special solution E2 exists along the 

lower half of this curve, while the non-elliptic solution 

* o1 exists along the upper half. As before, the 

approximations of the first part of Chapter III apply to a 

symmetrical area lying about the line h(r) = 0. When 

I\.= O, this area of approximation covers the entire 

g - h plane, but as .f\.-.- - co, this area approaches more 



and more closely to the line h(r) = O. 

Thus far in this study we have restricted our 

solutions to tho s e which vd ll yield positive value s for 

y(r,t) and rea l values for t. Physically , these are 

necessary but not sufficient conditions. A physically 

crucia l condition is that the local proper density at all 

times and all places within t he model must either be zero 

or a real positive value. A negative density would have 

no nhys ical meaning. We shall devote the remainder of 

this chapter to deriving a ~ener~l expression for the 

proper local density within the models and to a consider

ation of further restrictions which might be placed upon 

the solutions summarized in Tables I and VI by the re

quirement that the density never be ne~ative. 

The proper local density may be f ound by 

substituting the penera l solution (2.3) into the ex

pression for the density (1.36 ). This yields 

We wish to express (4.17) in a form which depends only on 

the local values of g(r), h(r), $ , e.nd the constant 

value of ./\ . The derivative j~ is acceptable, since 

ct,(r) = l?/3(2h)2/3, and so this derivative can be expressed 



in terms of g(r) and h{r) only. The partial derivative 

'c>~ is not so amiable. It is not immediately obvious how ar 
5 varies with r and t. A relationship for can 

be found by differentiating equation (2.5), the second 

member of the p;eneral solution pair, with respect to r. 

This gives 

f 

df _ _a_ J du.. doc I a~ + d i- - a ex ~ ( u) - ex dr tf'Cs) - OL or 
ff.. 

where so is the value of the parameter when t + f = 0 

and $ is the present value of the parameter for the 

particular values of r and t, which are being con-

sidered. 

combinine 

The derivative M can now be eliminated by ar 
equations (4.17) and (4.18). 

To carry out the indicated procedure, an 

expression must be obtained for the derivative a°oc (f (f ~ex) . 
~he partial derivative of the Weierstrassian Pe-function 

with respect to its invariants cannot be found in a ny of 

the standard mathematical works, but can be derived with 

some labor. The steps in this derivation will only be 

sketched out herein. We begin with the inver se elliptic 

integral, equation {2.10), which corresponds to the 

Weierstrassian Pe-function. First, we must diff erentiate 

this integral with respect to ct (r). The resulting 

{ 4 .18) 



expression contains a new elliptic integral which may be 

evaluated in th e usua l way by expressing the integrand as 

a sum of Zeta-functions and thereby carryinp. out the 

indicated inter ration. This result will have coefficients 

involvinf CX.(r) and the three roots, e1, e2, and e3. 

This is not the most useful form. However, this expression 

may be further reduced, with some patience, by the known 

relations between O((r), e1 , e2 , and e 3 and the 

invariants, and of the Weierstrassian Pe-functiob . 

The result of this work is 

The validity of (4.19) can be checked in at least 

two ways. It is readily verified in the nei~hborhood of 

~ = O. The series expansion of the Weierstrassian 

Pe-function (vide Ref. 6, p. 99) is uniformly convergent and 

may be differentiated term by term. This g ives a series 

expansion for a~ if>Cs; ex) Equation (4.19) may be expanded 
t 

into a similar series and the coefficients of the two series 

may be compared. This has been done for the first few terms 

and they were found to be identical. The second method 

is to derive an approximate expression for 0<; f(~; ex) 

This is readily done by a transfor-

mation of the invariants of t he Weierstrassian Pe-function. 



An approximation to (4.19) under the same conditions will be 

fo und to yie l d the same expression. Thus the derivation of 

(4.19) would seem to be without error. 

Substituting (4.19) into (Li,.17), we have a complete 

ex~ression for the last term in the denominator. Substi

tuting (Li, .19) into (4.1 8 ), we have an expression which 

contains an integral wh ich may again be integ rated by the 

use of certain artific es. The partial derivative 

may be eliminat~d between the t wo resulting equations and 

we find the genera l solution for the proper local density 

to be 

where - rdf Ci. { I <;c ) 4- / &'<so) + <;"(§".) - C<So J d~] 
A - L~fr - 4fx 3 -+ 4'e.11J 2<X So 4a. f<s.) - ex fCso) - C(, cfr 

and B = [-f ~•J [c ~ -$J C( - t;"(t;) 1 -{,re<) - 2 0( }{ flS) + cxJ 1 
There a re several interestinf cases of the general 

solut ion for the proper local density. In the special c a se 

that CX. ( r) = constant and f ( r) = constant, •:'i e have 

8rrf ~ I 2 [fC~) -ex] 3 

Furthermore, under these conditions, it can readily be 

shown that $ is a function of t alone since a l l of the 

( 4, 20) 

( 4. 21) 
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-partial derj_vati ves of 5 with res pect to r can be shown 

to be zero. Renee, equation (4.21) is also a function 

of t only under the s e conditions and the model has been 

reduced to the non-static, homogeneous s pe cia l ca se of the 

general solution. These homogeneous special cases will 

have physical validity only when the density, as given by 

e~uation (L~.21), is greater or equal to zero . This 

renuires that [J,(~) - cx] ~ 0, which will be true for all 

solutions in which h{r) > O. This excludes only one type 

of local behav.ior listed in Table I, namely the o2 local 

behavior of solution I. Thus it is poss ible to have 

homogeneous special cases havinp and l\,j 
2 

behavior or havin~ s ny further specialization of these, such 

as S. R. , d. S. , I' or z · , but it is not 

possibl e to have a homogeneous rwd el with o2 or E2 

behavior as a snecial cas e of our peneral solutions (2.3) 

and ( 2. 8) . 

One uossible choice for g(r) and h(r) whi ch 

will satisfy the condition C((r) = constant, is 

and where k is a scale- • 

constant which i--rill be used to ad Just the co-moving coor.dinate 

system so that it agrees with proper measure at a particular 

time, say ·when t = ta. Using these values for g (r) and 

h { r ) , 
kr 

·N e find that y = <f>Cs)-oc. As before, if v, e take 

f{r ) =constant, then Qp<s> - ex] is a function of t alone. 



To make the co-moving coordinate system agree with proper 

measure at t = t 0 we must have y = r at the time; 

hence we must take k = [f<s)-ec] = ( i TT Po) 113 
where 

f0 is the density at t = t 0 • Using these values in ( 1. 35), 

the line-element may be expressed as 

where e ~(to) = 1. This is one of the well-known forms of', 

the homog eneous non-static line-element. We may now 

summarize the discussion by stating that ·when 

CX(r) = constant, f(r) = constant, and h(r) ) O, the 

~eneral ~solutions (2.3) and (2.8) degenerate into homogeneous 

solutions having zero pressure. 

The existence of a sub-class of homogeneous 

solutions suggests the further exploration of all possible 

static solutions. It was shown earlier in this chapter that 

the only static solution which contains matter and which 

applies over a finite volume of space is the E1 solution. 

This solution exists, subject to the restriction that 

48 cx3 = 4g3 /9h2 , = - /\. = - constant. If the coordinate 

system used is to be equal to the pro -per measure, then we 

must also have h(r) = - 3h/2g = r. Solving these two 

conditions together, ·we find that we must have 

h(r) = (2 / 3) r3 (constant). Since we can denote the constant 

( 4. 22) 



as we pl ea se , we shall take h(r) = 2r 3/3R2 , from which it 

immediately follows that g (r) = - r2/R2 and 8np= 2/R2 . 

Thus the only static solution of physical interest is 

homogeneous. It thereby follows that there are no static 

non-homogeneous models which contain matter and which 

apnly over a finite volume of s pace. 

~he conditions Ck(r) = constant and f(r) = constant 

were rather drastic. Let us try the les s restrictive 

conditions that CX(,r) = constant but that f(r) f=. constJnt. 

'rhen equation ( 4 .20) reduces to 

3 
12 [(f>(s) - ex] 

8np -------
- 3h (t>'C~) df 

dh dr 
clr 

which is a non-static, non-homogeneous statement for density. 

It is obvious that o1 , M1 , or other solutions in which 

the parameter includes S = O cannot exist under these 

conditions. The el l iptic function cf 1(5) has a triple pole 

at € = O, and so we would have p = (constant)/~ 3 in the 

neifhborhood of S = O. This would require the existence of 

nerat ive densities, so these solutions are not accept a ble. 

It is also obvious that no solutions can exist sub ject tq 

these conditions with h( r) < 0 since (? 1 
(CJi,) = 0 and 

negative densities woul d once more appear within the model. 

Thus the only solutions which can exist sub~ect to these 

conditi ons are the M2 behavior of solution C of Table I, 

( 4. 23) 
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or one of its special cases such as the A2 solution. 

Furthermore, these solutions vvi ll exist only if 

3 h '°,cs) d f < d h . 
u- dr d r 

The most general solution ( 4. 20) can be so:me-

what simplified by considering the solutions in groups 

according to the value of 50 • For o1 , M1 , A1 , etc. 

solutions in which vve can take $
0 

= O, this expression 

becomes 

8rrp= dh , df 3h f~ i1 ~ ( 4.24) 
ol r - 3 hf (~) Jr + 4 {oc3 + ~ll} L 2. s. {O(s - ,;y~J5- {<f><r)-2aj[<f>C5)+cx_} J 

If in (4.21~) we have h df /dr =/:: O, then in the neighborhood 

of 5 = O we again have p = (constant)/$ 3 and the 

appearance of negative densities. Therefore, a mathematical 

condition on these solutions is that f(r) = constant. With 

f(r) = constant there is no difficulty since the last 

p:roun of terms in the denominator will vary as ~ 2 
in the 

neighborhood of S = O, and so the density will vary as 

r = (constant)/ § 6 in this neighborhood and accordingly, 

will remain positive at all times and places. 

The o1 solution is cyclic. While it will behave 

properly in the neiphborhood of the sin~ularity at s = 0 

with the above condition, this will not be so for the 

congruent sin~ularities at S = 2n W 1 • This follows since it 

is possible to prove that C:(w,) -:j=. (X w, and hence the 
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density will again vary as f = {constant)/ 5 3 in the 

neighborhoods of the singularities at 

{n-=/=O) where (J5'(~) has a triple pole. Thus 

the additional restriction of CX. {r) = constant must be 

imposed unon the o1 solutions. This means that the only 

allowable o1 solutions are the homogeneous models. 

These restrictions upon the o1 solutions are 

probably more mathematical than physical. The basic 

assumption of zero pressure is certainly violated in the 

neighborhoods of the sinf,ularities and so our equations are 

actually non-applicable. However, it would also seem 

impossible to have a physical condition in which the densities 

varied cyclically at all points, approachinr infinity once 

each cycle, but where the period of the cycles is a non

constant function of r. This would require after two or 

three cycles from ~ = O, that the density at some point, 

say r 0 , would be apnroaching infinity, while the density 

at another point which is separated from r
0 

only by an 

infinitesimal distance would be small. This would entail a 

type of discontinuity which is not to be expected in 

macroscopic f>hysics. One would expect that the effect o:f 

the neglected pressure term would be to slow the rate of 

contraction in the more rapidly contracting re~ions so that 

the true period of the cycle would be the same at all points 

of the model. Therefore the o1 solutions derived in this 



study should be regarded as only a r proximations to the 

true o1 behavior ·where the approximation is good only 

over a pa r t of one cycle. 

The same rema rks a pply to the condition 

f(r) = constant. 1}his is a mathematical rather than a 

physica l restriction. However, the M1 and the A1 

solutions spend only a vanishingly small part of their 

history in the epoch in which pressure t erms are important. 

Consequently, the M1 a nd A1 solutions derived herein 

shoul d be very good approximations to the true behavior 

except in the immediate nei p- hborhood of the singularity. 

In the remaining solutions we may take 5
0 

= Wi, 

where is one of the half-neriods of the elliptic 

functions. Equation (4 .20) then becomes 
:3 dh 

Brr p == _____ , 2_Gf>..::..--<s_)_-_cx_J----=d::;;...;r ____ _ 

~~ 3 h (f>'<~) A + 4 rt)l3 ! is-A] B ~~ 

where ldf ex. S"(wt) - 0c ev~] 
A = Ldr - 4{cx3 + 4~.1\. J ei - 0( 

and 

and v,rhere wh ile and ek are the re-

mainin~ t wo roots. The last term in q_uantity A can be 

shown to be a pure imaginary when .§"
0 

= W 2 . This term 

can be sho~~ to have a complex value whenever 

There are no compensating terms elsewhere in (4.25). In 

, 
l 

( 4. 25) 
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particular, the quantity B has only real values 

throu,i;,:hout the parameter range of 5 . This complex 

quantity A would produce a complex density in (4.25) 

which would have no nhysical meaning whatsoever. Ther& 

fore, we must conclude that solutions whose parameter ranges 

include either of the points W 2 or W3 have no physical 

existence unless we also have CX(r) = constant. This 

latter possibili t y has already been explored and has been 

found to yield a single M2 solution (solution C of Table I). 

Nothinv is fained by tryinf to t~ke another point within 

the parameter ranp.e for €
0 

since the complex values for 

density will still be found. 

This is an important conclusion, because it shows 

that the o2 solution (solution I of Table I) and one M2 

solution (part of solution Fin Table I) do not exist. 

Neither do their special forms. Thus the strani;r e E 2 

solution which was a special case of the o2 has no actual 

existence. This conclusion puts the non-homop:eneous theory 

into strict analogy with the homogeneous theory. The o2 

solution can exist in the homogeneous theory only through t he 

presence of a particular type of pressure. Homogeneous 

models with zero pressure will not have o2 solutions. Thus 

the possible types of local behavior within the non-homogeneous 

models which we have developed are identical to the possible 

types of behavior within homogeneous models having zero 
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pressure. No new types of local behavior have been produced 

by the introduction of a non-homor,eneous d istribution of 

matt er within the model. 

Returning to equati on (4.25), if vrn take 50 = W 1 

the last term in the r:i ua.nti ty A can be shown to be r ea l . 

Thus this M2 solution is possible. The value of the 

ouantity A is fixed for a g iven value of r. Hence the 

value of the collection of terms 3 h <f'(s) A is odd with 

res pect to W 1 'l'he value of the quantity B varie s wi t'h 

t he paramet er S , but is even in value with respect to w 1 . 

Therefore, the variation in density at a g iven point, say 

r = r 0 , is not in genera l symmetric with respect to 

t + f = 0. The variation i n a proper d i s tance perpendicula r 

to t he r-coordinate at r = r0 , however, will be strictly 

symrr,etrical vvi th respect to t + f = 0. This seeming 

contradiction arises from the variation in the rat e of 

expansion and contraction with r. A measurement of density 

is a me asurement over a volume and is a ffected by the 

differential motion of particles on either side of r = r 0 • 

The specified measure of length, however, is a one

dimensional measurement upon a s nhere which is contracttng 

and expandin~ symmetrically. 

With this rather fruitful discussion of density , 

we conclude the presentation of the g eneral theory of 

relativistic, non-homof eneou s models having s ~~herical 
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symmetry and zero pressure. This general theory can be 

applied to a variety of problems in which the two basic 

assumptions of zero (or vanishingly small) pressure and 

spherical syrrunetry can be made. Typical problems would 

be the consideration of low temperature gas or dust 

clouds, open star clusters,the outer atmosphere of 

extended stars, clust ers of galaxies, or the physical 

universe itself. In the following and final chapter we 

shall take the universe for illustrative material. We 

shall use the general theory whic~h has been presented 

here and will attempt to construct a non-homogeneous 

cosmological model which will be consistent with the 

present observational data. 



Chapter V 

Application to Cosmology 

As an illustration of the foregoing ra t her 

esoteric theory, we shall apply it to the entire observable 

physical universe. The role of this chapter a s illustrative, 

rather than def ini ti ve material, must be emphasized. Vie shall 

derive several formulae under assumptions which make for 

simpler mathematics, but which are not the best of physics. 

However, it v:ill be apparent that the procedures under whicb 

these formulae are derived may be generalized to apply to a 

set of assumptions vvhich will tnake for better physics. ;·v1 e 

shall construct a model for the universe which agrees fairly 

well with the observations. However, it again will be 
/ 

apparent that the constants in this model are adjusted only 

to the first approximation. By repeated computations it 

would be possible to adjust these constants more finely so 

that an even better fit of theory and observation would 

result. nut here again, we shall regard the procedure as 

being more important than the exact value of numbers in 

the second and third decimal places. 

The cosmological problem not only has a great 

apneal to the imagination, but it is also, conce:otually ,. 

another 11 test" of the General Relativity Theory as a 

practical law of gravitation. Unfortunately, this is not 

so in practice. An almost infinite variety of theoretical 

models may be constructed v,rhich will satisfy the Field 
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Equations ·of General Relativity. The observational 

material is a statistical collection of data to a 

rather limited depth in space. The shortness of the 

observational range and the dispersion within the data 

prevent a unique determination of a single theoretical 

model as being the true one. 

The observational data is mainly the work of 

Hubble (Refs. 15, 16, 17, 18, & 19). It consists primarily 

of two bodies of information. The first is a statistical 

correlation between observed red-shift and observed 

magnitudes. The second is a statistical correlation be

tween observed nebular counts as reduced to certain 

standard conditions and observed limiting ma~nitudes. In 

addition to this moderately well determined data there 

are two other poorly determined data which must be fitted 

into our model. The third datum is the present averaged

out density of matter within our own immediate neighborhood 

of the universe. Not even the proper order of magnitude 

is knovm for this important datum. The fourth datum is 

the "aP:e of the universe", by which we mean the total 

lapsed time from the last singularity to the present epoch. 

While there is fair ar;re ement as to the order of magnitude 

for this datum, there still exists considerable difference 

of opinion as to its value. It should be remembered that 

not even the first t wo bodies of data are sufficiently exact 



for our purnoses. The really crucial data were obta ined 

at t he extreme working r ange of the Hooker telescope. The 

empirical corrections which must be a pplied to this data to 

reduce it to standard conditions, particularly in the cas e 

of the nebular counts, are larger than the effect which is 

s ou.7ht. This is hardly a de s irable statistical condition , 

but we shall assume that the data as corrected by Hubble 

are acceptable. Otherwise we shall have nothing to work . •• 

with. It is hoped that the use of larger telescopes with 

in the near future will not only extend the data but will 

also reduce the uncertainties. 

A theoretical cosmological model is constructed 

by makinr. a f, roup of completely arbitrary assumptions as 

to the distribution of matter within the model, the 

probable equation of state within the model, the value of 

t he cosmological constant, etc.. The consequences of these 

a priori postulates are then developed according to the 

General Theory of Relativity and are found as a line-

element and equations for proper local density a nd pres sure. 

If the relationship between the coordinate system and the 

mass points that pcpul a te the model is either known or 

postulated , these consequences may be further elaborated 

into expressions for red-shift, total counts to a given 

coordinate, and observed magnitude for a source of known 

luminosity at a known coordinate, as seen by an obs erver 
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at a snecified point within the model. The a priori 

postulates are so chosen as to simplify the mathematics 

as mu ch as possible and then their validity is determined 

by the relative agreement or lack of agreement between t he 

theoretical predictions and the observations. 

r.rh e simplest possible group of assumptions lead 

to the hi~hly restricted f amily of static homogeneous 

universes. This, of course , is the first l og ical approxi

mation to the cosmolog ical problem. However, as is well 

knovm, the t win observations of a finite density of matter 

and a real r ed-shift within the physical universe completely 

invalidate these simple assumptions. 

A more sophisticated set of assumptions, so cho sen 

as to make the partial differential equa tions linear, 

yield the more general family of non-static homogeneous 

unive r ses. Hubble (Ref. 15) ha s rather prematurely rejected 

these models as valid representations of the physical universe. 

Hubble's rejection was based upon three presumptive 

anomalies ·f' or these models. The averaged-out density that 

was seeminn:ly required was of a higher order than was 

comparable with other data. A small closed univer se whose 

extent was only slightly greater than the assumed de pth of 

the deepest survey apparently had to be postulated. An 

af-e of the universe was indicated which wa s consid erably less 

than the current estimations of the geoloRical age of the 
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Earth's crust. 

Nevertheless, Hubble's rejection of the 

homogeneous models is premature for at least two reasons. 

First, as discussed earl i er, the data are not sufficiently 

~ood. A sli~htly different method of handling the 

corrections would lead to completely different conclusions. 

Secondly, it is doubtful whether his extrapolation of the 

red-shift beyond the region in which it has been measured 

may be accepted. Statistically, the procedure that he 

follo·wed was the only possible one. The observational 

data are scanty, but are · sufficient to Rive the coefficient 

of the first power term to three figures, and to indicate 

the magnitude and possible range of the coefficient of 

the second power tenn, but they are not sufficient to give 

any information about the third power term. The third 

power tenn could quite possibly be insignificant over the 

range within which the red-shift has been measured, but 

could be crucially important for the distances of the 

deepest nebular count surveys. It is obvious that the 

value of the third power term cannot be obtained from the 

present obse r vational data, but it could be theoreticall! . 

predicted for a given model. If a homogeneous model is 

constructed with the proper values of density, pressure, 

and cosmological constant to give the first two powers of 

the red-shift correctly over the measured range, then the 
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theoretically probable value of the third power t e rm could 

be calculated from the model. If this third power term 

were nevative and of sufficient ma gnitude, the homogene ous 

model could also be fitted to the count data. The usefulnes s 

of the model would then depend upon the physical reasonabl e

ness of the predicted density, pressur e, cosmological 

constant, and age f or t he universe. This i s an important 

pro ~ect which should be carried through, but it is hardly 

our province since we a re concerned with non-homogeneous 

models. 

In order to explain his observational data, 

Hubble (Ref. 15) has proposed a non-relativistic model 

which is essentially static and homogeneous but one in 

vrhich the red-shift is directly pro portional to the time 

that the photon has be 0n in transit between the source and 

the observer. This makes for statistical simpl i city but 

for serious t heoretical complexity. If this proposal 

were true, problems would arise as to the meaning of 

measurements made upon extra-terrestrial systems, the known 

instability of static homog eneous distri butions, and the 

nature of the physical effect ~~ ich causes the loss of 

energy in the photon while it is moving throu~h space. 

Probably the best eviden ce against this explanation of 

red-shift ha s been found by Hubble (Ref. 20). If the red

shift is the linear function of time in f l i pht f or the 



photon as proposed by Hubble, red-shifts should be found 

for the galaxies which make up our local system. 7he 

more remote members of our local system are at a 

sufficiently great distance from us so that the expected 

red-sh ·i_f t should be r reater than the corrections which 

must be apolied to the data. However, i f the red-shift 

is due simply to the classic Doppler effect, as postulated 

in the relati vis tic models, it should not be found v: i thin 

our own local system since the cluster of nebulae is 

nresu.meabl y gravitationally stable. Hubble's careful 

measurements of the red-shifts for the members of our 

local system, after correction for the velocity of the 

observer, support the latter conclusion. Thus the 

simplest hypothesis tha t can be made about the nature of 

the red-shift is that it is a Doppler effect, produced by 

actual relative velo c ities between the nebulae. We must 

seek a more elevated family of relativistic models whict 

will explain the observational data in the event of the 

failure of the non-static homogeneous program which 

previously has been sug~ested. 

In the preceding four chapters we have been 

concerned with a new set of a priori assumptions which are 

a higher ap, roximation to the cosmological problem since 

they allow for non-homogeneity within the models. 

Tolman (Ref. 2, pp. 174- 5) has shown that the homoge~eous 
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mod els are unstable, going over into non-homogeneous models 

upon nerturbation. I t is difficult to conceive of a 

model which expands from a singular state and which remains 

homogeneous throuP-hout its history. We have achieved our 

non-homogeneity at t he price of non-linearity in our 

equations. To make the problem solvable, we have made 

certain special assumptions which must be recognized be

cause of their bearing upon the cosmolog ica l problem. 

First, we have assumed zero pressure within our 

models. This appears to be a good approximation for the 

present epoch since the important forces presently 

actinf upon the nebulae are probably those of gravitation 

alone. This is a poor approximation, however, if we wish 

to extrapolate back in time to the original singular state. 

A universe composed of mass points without pre s sure begins 

its expansion from the singul ar state at an infinite rate. 

A real uni verse, composed of mass volumes and sub ,i ect to 

an equation of state, begins its expansion at a finite r a te 

and follows a completely different initial history because 

of the viscosity-like forces which then operate between 

the mass volumes. Any calculations of the age of the 

universe made upon the zero nre f sure a pproximation will 

therefore be in error by being too small. 

The error in calculating the age of the universe 

from models in which pressure terms have been neglected 
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depends u ~on the present level of expansion. If the model 

is well expanded at the present epoch so that the initial 

stage <luring wh ich the pressure was important is but a 

very small fraction of the total history of the model, 

then the error is slieht. However, the model that we shall 

construct is but partially expanded at present epoch and the 

pressure was important during a large fraction of its 

history. Thus we must expect a s izeable error in our 

calculation of the age of the universe. It should be 

possible to evolve a correction for the retarding effects 

of the neglected pressure. Wyman (Ref. 21) has solved the 

Field Equations for non-homogeneous distributions under an 

equation of state with certain assumptions. Wyman's 

solutions break down for the present epoch in which the 

pressure is ne~li~ibly small, whereas our solutions break 

down f or the initial epoch in which pressures a re 

comparable to gravitational forces. A jud icious combination 

of the t wo solutions should suggest a reasonable correction 

term. lt should be noted, however, that Wyman's solutions 

presuppose a uniform pressure in all directions at a g iven 

point and a g iven time. iNe would expe ct instead, t hat t .he 

nres sure at the initial e po ch consists of a non-directional 

chaotic term plus a directed term :produced by the outflowing 

of radiation. Thus a ca l cula t ion of a correcti on to the age 

of the uni verse would invo lve several questions of r r ea t 

delicacy. 
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secondly, we have assumed a s uherically symmetric 

distribution of matter. This would seem to be a reasonable 

1Jostulate. The model that we shall use expands from a 

singular point. The assumption of spherical symmetry 

about that sinimlar point during the subsequent expansion 

should be a good first a:pnroximation. It is true that we 

have assumed in the preceding chapters that if a sin~ular 

point were nresent within the model that it would be a . ~ 

uni~1e point. Conceptually, space mirht contain several 

such singular points, each of which would expand into a 

~ipantic ensemble of nebulae and clusters of nebulae. 

Such a c·once:ptual ensemble we shall term a meta-palaxy. 

But the best interpretation of our present data is that 

the distance of our deepest survey is s:r.:all comnared to 

the dimensions of our meta-galaxy and that we are 

completely immersed within it. Thus the existence or non

existence of other meta-f,alaxies becomes a meta-nhysical 

nroblem. It has no value in the creation of a the ory to 

explain the nresent observations. Under these conditions, 

the assumption of snherical symmetry appears to be ~ood 

physics. 

The assumption that the universe expanded from a 

single sin~ular point is, of course, Lemaitre's hypothesis. 

Althonp:h it is somewhat renu.a:nant because of its overton3s 

of Genesis, we shall s ee that it is the simplest hypothesis 
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that we can make. It is significant that theoreticians in 

other fields, such as Gamow (Ref. 22), have postulated the 

same ontology to explain the observed relative distribution 

of th e elements. 

Thirdly , we have assumed a co-moving coordinate 

system. That is, in a certain type of coordina te system 

we have assumed that the mass points have fixed coordinates 

throughout the history of the model. This implies that 

there is at least one coordinate system for which the 

mass points are not in rotation about the center. This is 

in direct contradiction to the observed behavior of smaller 

scale gravitational units such as nebulae and clusters of 

nebulae. We cannot fit a co-moving coordinate system to 

the mas s points tha t make up a rotating spiral nebula 

because the varia t ion of angular veloc i t y with radius vector 

would destroy the coordinate system within a finite time. 

We must assume that the meta-galaxy is about the only 

gravitational system which is not in rotation, but this i s 

not t oo unreasonable. First, the meta-r alaxy is unstable 

since it is observed to be expanding . Rotation would tend 

to produce a stable system. Sec ondly, in the singular 

state there must be at least one coordinate system for 

which Lemaitre's "giant atom" is not in rotation. Conser

vation of angula r momentum would then require that the 

expanded universe be rotationally at rest with respect to 
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this special system of coordinates. Thus the assumption of 

co-moving coordinates seems to be a reasonable hypothesis. 

In addition to the three assumptions which are 

inherent in the general theory developed in the preceding 

chapters we shall make three special assumptions which are 

frankly designed to reduce the mathematical labor. ~No 

of these special assumptions are reasonable, while the thi r d 

is actually bad physics. As the fourth assumption we shall 

take t he cosmological. constant to be zero. This has the 

great advantage of giving non-e l ~iptic solutions. As 

pointed out in the preceding chapter, this is the most 

reasonable a priori value to assu.rr1e for this term. But 

this rema ins a special assumption which v,re are not compel led 

to make. Interesting and us eful solutions mif,bt well 

result fr om assuming small positive or negative values 

for th e cosmological constant. This possibility shoul d 

be kept in mind for future work. 

The fifth assumption is that the observer is 

is located at the center of the meta-galaxy. This 

homocentric hypothesis is manifestly poor physics. It 

can be rationalized as being the logical first step in the 

transition from homogeneous to non-homogeneous models. But 

even this rationalization implies that expressions for a 

non-central observer will be sou["ht immediately after a 

workable procedure is established. Since the purpose of 
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this cha~ter is illus tration r a t her than deduction of 

exact cosmolog i cal conclusions, the homocentric hypothesis 

is excusable. It does simplify the mathematical work 

considerably. However, all of the quantities having 

cosmoloricclinterest; such as density, curvature , red-shift, 

counts, magnitudes, and age, depend upon the choice mad e 

for the position of the observer. /\. complete satisfactory 

cosmological theory cannot be expected until the more 

general case of the non-centric obse rve r has been solved. 

The procedures which will be presented in this chapter 

appear to be capable of such a generalization. 

Under the first four ass1mptions there are 

only t hree possible solutions to the Field Equations. 

They are M1 behavior with equations (4.2) and (4.3); 

o1 behavior with equations (4.4) and (4.5); and M2 

behavior with equations (4.6) and (4.7). We could con

struct a model containing any arbitrary combination of 

these three solutions. For simplicity we shall restrict 

our meta-galaxy to a single t ype of behavior. This is a 

sixth assumption. As a first approximation it is entirely 

logical. 

We can show by appealing to formulae whi ch will 

be presented later that the M2 solution does not lead 

to a satisfactory model. In the neighborhood of the observer 

at the orifin, we must choose a coordinate system so that 
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Table VII 

Model Density Parameter R T 
p:ms./cc. lt .-y:rs. yrs. 

10-30 7. 616 1.86 X 109 l. 85 X 109 
lvI1 10-28 2.905 2.08 X 109 1.58 X 109 

= 5°077 X 10-28 Transition point 

0 1 10-27 89° 7' 1.89 X 109 8 X 108 

y ~ r to make the coordinate distance and the observer's 

proper distance a?-ree. If some other coordinate system were 

used, it vv0uld have to be transformed to an e quivalent form 

when calculations were made with the model to be compared 

with the observations. Since a radial increment and the 

proper ;_listance must agree in the neighborhood of the orip-in, 

it can be shovm that g (r) --------- b rn n where n> 0 in that 

neiRhborhood. But the increment in nebular counts in the 

neig hborhood of the origin must be dN ~ (c onstant) r2 

from which we must have dh/dr ~ c1 r2, where c1 > 0 

in this region. But since h(r) < 0 is one of the basic 

conditions for the existence of the M2 solution, we must 

furthermore have h(r)~-c2 + C1r2 + - where C2) 0 

in this reg ion. But then the parametric equation ( 4. 6 ) for 

the M2 solution r ives y ~ (constant) /rn -=/= r in the 

nei~hborhood of the origin which is in direct contradiction 

to the first necessary assumption. Thus the M2 solution 

must be rejected. 
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There remain t v-ro possible solutions which may be · 

used for our model. These two solutions are non-overlapping 

and the choice of one or the other depends entirely upon 

the proper density at the oririn at the present epoch as 

may be seen in Table VII which has been calculated by 

methods which are yet to be presented. 'l'he second column 

~ives the assumed density at the origin and for the 

present epoch. The third column gives the value of the 

parameter to be used in equations (4.2), (4.3), (4.4), and 

(4.5) under these conditions. The next column pives local 

radius of curvature while the last column gives present 

a~e of the universe. 

Since we wish to keep the density within our 

model as low as possible, we shall chose the M1 solution. 

This choice is not as arbitrary as it may seem since it is 

based upon considerable computation which will not be presented 

here. All formulae and calculations in the remainder of 

this chapter will be given in terms of the M1 solutions. 

However, calculations have been made with both types of 

models and in all cases it ha s been found that a given M1 

relationship can be transformed into its equivalent o1 

relationship by altering a few signs and replacinp the 

hynerbolic functions with the corresponding circular functions. 

Within a sufficiently small neighborhood of the 

ori~in, the model will be es s entially homo~eneous. Hence, 
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within that neip:hborhood, we must have g, (r) ~ r2/R2 and 

h(r) ~ 4 k3 r3 by the reasoning of the previous chap ter. 

The constant k is a scale-constant whi ch will be used to 

adjust the co-movinf c oordinate system so tha t it a~rees with 

prope r measure at the ~resent epoch. Con seouently, the 

functions h(r) and g (r) may be expre ssed for the entire 

model as power series in the form 

where the coefficients ai and 

non-homogeneity of the model. 

b, 
l 

are det e rmined by the 

It was also shown in the preceding chapter thB;t we 

must take f(r) = constant for both the ~ l a nd the o1 

solutions if negative densities are to be avoided. This 

conclusion is quite obvious if either equations (4.2) and 

(4.3) or equations (4.4) and (4.5) are used with equation 

(1.3 6 ). Since we must take f(r) to be a constant, we shall 

assign it the value of zero. This places the oripin of th~ 

time coordinate ai the singularity. Conse quently, we shall 

write for the time coord inate in e Quation (4.3) t + T, 

where t is the local time of the observer which reduces to 

zero at the present epoch, vvh ile T is the present ar:e of 

the model. 

( 5 .1) 
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Using these conventions, we can rewrite e quations 

(4.2) and (4.3) as 

t+f = 2 k3 R'3 (I+ a,r + a,._r:z+ a.3r3 + - --) 
( I + b, r + b2 r 

2 + - - - ) 3/~ 

[sinh e - e] 
For convenience in calculation, we will wish for our line

element to reduce to the Special Relativity form in the 

i mmediate nei f".h borhood of the observer. By eriua tions (L~ .12 ) 

and (4.13) of the precedinf chapter, this will require that 

y ~ r in that reP'. ion. S1his, in turn, places the condition 

on (5.2) that 

where 8 0 is the value of the parameter for the orig in and 

the present epoch. 

When equation (5.4) is satisfied, we may develop 

y(r,t) over the entire model as a double Taylor expansion 

in the form 

We shall furthermore pl ace a condition on the series 

coefficients which bear superscripts so that no term in r 

alone to a higher power than unity will a ppear in (5.5). 

( 5. 2) 

( 5 . 3) 

( 5. 4) 

( 5. 5) 



That is, we shall make 

- - - = o, 

This is actually a condition upon the a. 
1 

and b· 1 

coefficients of (5.1). In practice, we shall determine the 

ai coefficients by the cosmolop, ical requirements of the 

model and then determine the b· 1 coefficients so that 

condition (5.6) is satisfied. This condition makes it 

possible to at least approximately integrate the equations · 

for the geodesics. Moreover, it puts (5.5) into an analogous 

form with the equivalent expression for a homogeneous model. 

The cross-terms, whose coefficients are 012, c13 , 0
23

, etc. 

nroduoe the non-homogeneity in the model. If these cross-

terms should vanish and if condition (5.6) is sa t isfi ed , 

then y ( r, t )= r F ( t) , ·vvhich is exactly th e homor:eneous form. 

We should note that we now have only one arbitrary function 

at our dis-posal. 'L'he remaining a rbitrary function is h(r) 

since g (r) will now be determined by h (r) and condition 

( 5 . 6 ) 

The desired relation for nebular counts is not 

too difficult to derive. By combining the line-elemen t . (1.23) 

wi th the density equation (1.31) and integrating over the 

anvle variables , we see t hat the amount of mass between 

r and r + dr is 

( 5. 6) 
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dh 
J-;: 

----dr 
2,/1+9 

Expanding this expression into a series and integrating 

the series term by term, we find that the tota l mass out 

to a general coordinate distance r is 

The ma s s, of course, is independent of the time since co

movin~ coordinates have been used. In the neighborhood of~ 

the orir:in, we must have 2 k3r3_ = j'"TT (9, r3 which determines 

the scale-constant k as 

where 

k3 = .£.TTfO 3 \ 0 

is the proper density at the origin and at the 

present e poch. 

The total number of nebulae out to a given 

·coordinate distance r will be proportional to (5.8). We 

( 5. 7) 

( 5. 8) 

( 5. 9) 

can parallel the reasoning of Tolman and Hubble (Refs. 23 and 15) 

for the counts within a homog eneous model exactly in all 

details and write to the same order of approximation for 

the counts within our non-homogeneous model 

Log N = 0.6 (m - 46,;\i\) + F>.< + C, 

where N is t he total number of nebulae counted per unit 

area of the sky dovm to a limiting magnitude m. 'T'his 

( 5 .10) 



limi tinP- ma~mi tude must be corrected for the change in the 

rate of energy flow produced by the red-shift and for the 

different absorption in the ],:arth' s atmos:r,here and in · the 

telescope mirror, and the diff erent sensitivity of the 

photographic plate for the shifted radiation. The 4 6AA 

term is Hubble 1 s approximation for this total red-shift 

correction. The red-shift to be used is that for a nebulae 

havinr an absolute magnitude M, taken by Hubble to be -15.15, 

and having an apparent magnitude equal to the limiting 

value m of the counts. There is some question as to 

whether this approximation for the total red-shift correction 

is valid, but for uniformity we shall use it. The constant 

C depends upon the conventions that are adopted. Rubble 

reduced his counts to nebulae per square degree and found 

statistically that C = - 9.052. The term F* contains 

the effects of the non-homoreneity and the curvature of the 

model. By making the parallel derivation referred to, we 

find that 

In this derivation we have used a relation between coordinate 

distance and limiting magnitude which is yet to be given. 

The derivation of the red-shift is not qui te so 

simple. It can be shovm that the radial lines of our 

coordinate system are null-peodesics. Then lirht, leaving 

( 5 .11) 
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a source at r 1 and traveling down a radial line to the 

ori~in, must by the line-element be subject to the 

differential relation 

1 S2H dr - d t 
,fi+g a r 

By using (5.5) and (5.1 ) thi s differential relation may be 

expressed as an infinite series in the form 

If we consider a r ~y of light leavinR R source at the 

coordinate r 1 at the time t 1 and arriving at the orig in 

at t he time t 0 which is taken to b e very small, being 

comparable to zero, we will have f ormally that 

r; 

J[-Jdr -=.t0- f, 
0 

Wher e the integr and is the infi nite series of ( 5. 1 3). Un

fortuna tely the integrand contains terms in both r and t 

in such a form t ha t they cannot be separated. However, when 

t h e photon passes through any g iven value of r, it does 

have a definite value of t. If we knew this relation ~e

t ween r ~and t alon~ the radial line, we could integrate 

( 5. 1 4 ) directl y. 

We can a nproach this desired relationshi p between 

r and t by successive approximations. If we take only the 

( 5. 12) 

( 5 .14) 
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first term o:f the infinite series, we find the first 

approximation to be 

t = t 0 - r. 

If we substitute this first approximation back into the 

inte~rand of ( 5.14 ) , now taking the first t ~ terms, we 

find the second approximation to be 

::3ubsti tuting this second approximation back into the inte p.: ra'nd, 

now taking all terms up to the second power, we shall find 

the third ap nroximation. Substituting the third a~proxi

mation back into the integrand and using more terms will 

give a still higher order of approximation. But, by this 

time, the approximation has become very awkward to handle. 

However, we are interested only in obtaining the 

red-shift. For this let us consider t ~o light rays; one 

leaving r 1 at t 1 and arriving at the origin at t 0 = O, 

while the other leaves r 1 at t 1 + 6 t 1 and a rrives at 

the orip; in at t 0 = 6 t 0 • By making the fourth approxi

mation on the t wo light rays simultaneously and subtractinf 

them, we see that large blocks of terms will be cancelled. 

Furthermore, by taking t 0 to be so s rnall that all of its 

higher powers greater th8n unity may be ne~lected, we shall 

find that 



6t1 I- [' 2 J 2.. f, ( 2 
1 ) 4 4 C ] 

3 
- = c,r,+ ~C,+C2.-C,2 r;- -l°6"c,c,-R._ +3c,c2.-C, C,z+C3-3C,3+ 2'3 r, +---
6to . 

But since , we can solve (5.15) 

for the red-shift. Thus the red-shift, observed at the 

orig in and the ~resent epoch for a source which i s located 

at r, will be 

This relation can be checked in t wo ways. Our model will 

reduce to a homop; eneous one if the cross-terms vanish, that 

i s, if c12 = c13 = c
23 

= O. Then the red-shift should 

also reduce to the homo~enous relati on under this condition . 

If the well known equation for red-shift in a homopeneous 

mod el is re-ex::iressed in e quivalent form, this will be s een 

to be true. The second check may be effected by letting 

a ll terms in t2 and higher powers of t vanish. Then the 

instantaneous acceleration of the source with respect to t te 

ori~in also vanishes and the Special Relativity equation for 

Doppler shift can be used. This limiting case is also 

verified. Thus equation (5.16) would seem to be a valid 

expression for the red-shift in our non-homogeneous model. 

The last relation that must be developed is one 

between coordinate distance and observed magnitude. We first 

shall be concerned with conceptual quantities which are 

called bolometric. These are the quant ities vvhicl1 would 

( 5 .15) 
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conc eptually be measured upon a perfect photo~raphic pla te 

exposed in a perfect te l escope which is located in empty 

space. Bolometric quantities may be reduced to the 

photogra nhic quantit ies which are actually measured by means 

of a series of semi-empirical corrections which will allow 

for the selective absorption through the Earth's atmosphere, 

the imperfections of the telescope, and the spectral 

sensi t ivity of the photpraphic plate. 

A magnitude measurement is based u pon the 

obse rved density of a photogra phic image vvhich was exposed 

< 
l 

for a a.iven time. Thus we are concerned with the amount of 

en erg-y ,vh i ch flows throuf- h our telescol:)e a nerture in a unit 

time . Let us take the center of our tel escope a perture to 

be exactly at · the coordinate orig in. Every nhoton that 

leaves the s ource at coord i nate r 1 travels along e null

~eodesic line in our co-moving coordina te system. We are 

concerned with the very minute cone of null-geodesics wh ich 

has its apex a t t he source and which just fi ll s the 

telescope a r) erture. Enerp;y flows into the cone from the 

sonrce at a rate whi ch we shall denote as D. E1/ 6 t 1 

but flows out of the cone into the telescone a t a di f fere nt 

r ate , which we shall denote as 6. E0 / D,. t 0 • The d i f fer ence 

~n the entrance and exit rates of energy flow is caused by 

the relative motion of the source and the tel escope. Since 

our model is exnandinv , each photon that enters our t elesc ope 
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is degraded in energy by the red-shift. Moreover, a block 

of enerr.:y wh ich flows into the cone from the source in 

unit time will require more than unit time to flow into the 

telesc01,e. Thus we have two effects which vid.1 1 reduce the 

rate of energy flow into our telescope from the original 

rate of Anergy flow into the cone from the source. We 

have, i n fact 

The centra l line of th e cone o f null-peodesics 

will be a radial line of the c oordina te system. This 

radial line is also one of the null - reodesics. Let us 

consider the s mall anr,le w measured in proper uni ts a t 

the sou r ce betwe en thi s rad i a l line and one of the extreme 

rays of the con e. Then the rate at which enerpy f lows 

i nto the cone from the source will be 

where I i s th e total emissive powe r of the source and the 

constant c on tains the various factors of proport iona lity. 

I f we can determine the anfle W , we c e n solve our 

nroblem. 

We shall solve the problem by determininp t he 

null-geodesics through the source. We shall find to a 

v ery close approximation t he null-geodesic wh i ch j ust barely 

( 5 .1 7) 

( 5. 18) 
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enters t he A.perture of our telesconP- . 'N e may then find 

• he anrrle w' a s measured in c oordinate units a t the 

source between the radial line a nd this ext r err:e r 1,. l l -

p-eodAsic by 

tan w' == _ r de 
dr 

as js well known in a nalytic pe ometr y . But t he an~le w' 

mea sur9d in coordinate un i ts cannot be used i n ( 5.18 ). 

The relationship bP-twe en c oordinate measu re and pr oper 

measure is p iven, of course, by the line-element (1. 23) . 

We can see from this line-element that the anR'le W 

measured in :nroper units at the s ource rr.u st be 

tan w - !3,/T+g dq, 
!::i' dr 

from which the problem can be solved by co~bi n i ng (5 . 20), 

( 5 . 1 R) , and ( 5 . 1 7) . 

The geodesic equations a re found without diffic ulty 

by the nse c f DinP-1.e' s f o rm 11lae (ref. 1, pp . 2 54-7). They are 

( 5 .19) 

( 5. 2 0) 

d
2 e + 2 };L

1 
ddr d,e + 2 .iJ. dd0 $ _sine cos e(~ef>s)z:: 0 ( 5, 22) 

d s%. ':J s °' s !:J s d s a 
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The notation js one which was previously us ed in which the 

dots represent partial d ifferentiation with res nect to t 

while the pr imes represent partial differentiation with 

respect to r. 

If in (5. 22 ) we take 8 = ½TT and 
de 
d.s = 0 as 

initia l c onditions, we see tha t This mean s t ha t 

if a t9'eodes ic initially lies iv ithin this pla.ne, it lies 

,,·ithin t he same plane thr oughout its trajectory. In the 

same way in ( 5.23 ) if the p:eodesic was initia lly a ra d ial 

line with ~: = 0 , then d:l.4> - 0 
ds 2 -

and t he ~eodes ic remains 

a radial line. This v e rifies the earli e r statements tha t 

the radial lines are null-g eod e sics. But only one ?eodes ic 

wi t hin the cone wi ll b 8 a rad i a l line . For all of the 

will have a non-zero initial value. However, 

with 0 = ½n we see t ha t ( 5.23) may be integ r ated exactly 

as 

where K1 is a constant of intep r a tion. 

By usinp the l i ne-element in a degene r ate form 

since ds = 0 for a m1ll-v eodesic, and by usinp ~be initia l 

con · ition 0 = ½TT we may restat e e quation ( 5.?4) in the form 

( 5. 24) 

(5.25) 

( 5. 26) 
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In the homog eneous special case in which the cross-t e rms 

dt 
vanish we can integrate ( 5.26) exactly as d 

5 
= K2r/y 

where K 2 is another constant of integration. Then, by 

using this result along with (5.25) in the line-element 

we can intefrate exactly and find the homogeneous null

geodef:dcs. · ie w 1uld find that the homogeneous null

~eo~esics in the closed 01 models would be ellinses 

centered on r = O and havinp semi-ma ,j or 2xes of R 

and semi-minor axe s which depend on the initial angle of 

of the ray at the source. We wogld be concerned , of 

course, with tha t extreme null-geodesic whose semi-minor 

axis is eaua l to the radius of our telescope aperture. 

Similarly, in the open M1 models we would find the 

homogfmeous null-geodesic s to be hyperbolas centered on 

r = 0 and havin~ semi-major axes of R and semi-minor 

axe s which again d e pend upon the initial ang le of the ray 

FJ.t the source. 

We cannot integrate (5.26) exactly for our non

homoP-eneous models; hence W-': must make a n approx i mate 

solution. \Ne shall assume tha t our non-homogeneous model 

is neRrly homogeneous. Accordinp ly, the cross-terms in , 

( 5.5) will be venishinr;ly s rnall as compared to the purely 

time dependent terms. We wil l take a s our apyiroxima te 

exnression for y(r,t) the purely time d e pendent 
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terms plus a small non-homogeneous correction te rm which 

will be the largest of the cros s -terms. For convenience in 

notation, vve shAll denote K1 /K2 = 6 . Then to the desired 

order of apnroximation we find that d¢ / dt ~ 6/ry. Using 

this result and. the approximate expression for y( r, t) in 

(5.26) we find that 

Using (5.27) and (5.25) in the line-element, we ~ 

find tha t the differential equation which must be satisfied 

by the null-g eodesics in our co-movinr-" coordinates is 

The solution of this differePtial e ouation is a d istorted 

conic section. ~he semi-minor axis of this distorted conic 

section is determined by the condition dr/d<P = o. Because 

of the extreme smallness of the remaining factors on the 

riPht-hand side of (5.28), this condition is satisfied to 

a very high order of ap!)roximation by r = 6 . ri:'hus, to 

obtain the initial angle of the extreme ray within the null- ' 

geodesic cone, we shall take S to be the radius of the 

aperture of our telescope. Then we shall have 

( 5. 27) 

( 5 . 28) 

( 5. 29) 



By combining (5.29), (5.18), and (5.17) we find 

that 

where lb is the bolometric luminosity of the source as 

obs erved at the oripin. For the deepest count in the model 

that ~e shall use, the non-homo~eneous correction term in 

(5. 30) has a value of 0.9966, which differs insign ificani ly 

from unity for a ll observational purposes. Thus while a 

finite focusine effect does exist because of the non

homogeneity of the model , it has no practical consequences 

for a central observer. This is not t o say, however, that 

the focusing effect would not be important for a non-c entral 

observer. In the latter case, the term 6 would be of 

astronomical instead of terrestrial d imensions. 

Since t he non-homogeneous focusin g effect is 

insipnificant for the centr al observer within our model, 

we shall hen ceforth neglect it. Foll □vving the reasoning 

of Tolman and Hubble (Ref. 2J) we can write for the desired 

relation between the coordinate distance and the observe_d 

photographic magnitude for a source of absolute photo~raphic 

magnitude M located at r a nd having an obse rved red-

shift of 6;:\ 
.i\. 

as 

1012: r = 0.2 [ m-5log(l + ~>...➔ - K - M } + 1 

(5.30) 

( 5. Jl) 
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where the term K consolidates the semi-empirical correction 

terms which are necessary to change from conceptual 

bolometric to actual photographic magnitudes. Hubble 

(Ref. 15) has stated that to a close appr oximation 

5 lop- ( 1 + ~ ) + K = 4 ~; consequently we shall use ( 5. '.31) 

in the form 

log r = 0.2(m - 4 ~i\) + 4.51.i,3 (5.32) 

for making comr utations, where we have t a ken lVi = -15.15. 

Equations (5.32), (5.1 6 ), and (5.10) are the re

quired relations for makin€: computations with our model. 

As stated earl i er, the relation (5.32) was used in the 

derivation of (5.10). In making computations with these 

formulae we must use a consistent set of relativi s tic units. 

The particular set of units that we shall use in calculating 

from our model will be the year as the unit of ti me, t he 

li~ht-year as the unit of length, and a comparabl e unit 

for mass. 

We shall fit our model to a first a pproxima tion 

to the primary body of data, namely t Le red-shift against 

magni t ude and the counts a gainst limiting magnitude. Th~ 

remaining two pieces of data, namely the local density and 

the age of the universe, will be determined by the re

quirements of the fitting procedure for the previous data. 

In all cases we shall s ccept Hubble's fi r ures as published. 



Since these were collected at the working limits of the 

lar~est telescopes and were corrected by factors which 

lie on the border-line of knowled P,e, there is reasonable 

doubt about the exact values of the figures a nd the 

correctness of the procedures. Among these doubt f ul it ems 

are the det ermination of the limiting magnitudes in the 

counts, t.he value of the term K which corrects from 

bolometric to photographic magnitudes, the approximatinr 

~rocedures, the calcul a tion of the term ~rn
0

, and the 

correct value of M. For instance, Fletcher (Ref. 21i- ) 

has recently s uggested thAt M should be a bout a half 

ma¢\n i tud e fainter than the value that was used. 

We do not wish to bei;rin a controversy . Hubble's 

fi gures and data may be exactly correct in all particular~ 

~e shal l acc ept his published fi gures and shall attempt 

to cons truct a model, to the first a nn r oximation only, 

based upon presently accepted physics which will justify 

Hubble's data. This is an important desideratum since 

Hubble's work has been widely interpreted as demostratin{Z 

' a kind of failure of the classical relativity theory and of 

requiring the discovery of a new principle of nhvsi cs. How

ever, because of reasonable doubt ,0,s to the compl ete 

validity of the experimental data, the fault for any 

nartial failure of this attempt must not be as s es s ed enti r ely 

against t he theory. 
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Hubble has derived a statistical relation be

t ween re ~-shift and relativistic coordinates as 

The first term is determined to three figures from the 

data and can be considered to be ouite good. The data are 

too scant to fix the second tern, . Hubble states that the 

probable value for the second term must lie between 

2.2 6 x 10-19 and J.2 x 10-19. Because of the lack of 

sufficient data, it is impossible to determine anythinr 

about a nossible third power term. 

We shall take a model in which the third power 

term of the red-shift is negative and important in value 

for the deeper count surveys. Accordinr: ly, Hubble's 

statistical adjustment of the second povrnr term would be 

a bit too low. We shall arbitrarily take his u pper 

probable limit as beinP the correct value. This is ouite 

crude, but is possibly sufficient for a first approxi

matjon. A correct procedure would be to calculate t he 

red - shift arainst rn.arrnitude relation for the model and 

then to make the model fi t the observations for the 

cluster nebulae. Th i s latter procedure will be required 

for a more detailed fit of model against observations. 

Hubbl e has statistically determined tbree terms 

of (5 .10). The observationally determined terms are 



Lo~ N, m, and C. It is conceptual ly possible to 

b t • 11 d t ~ 6 i\ b • • o SP, rva iona y e erm.Lne -X- , ut practica lly this 

t r_, rm wa s out of ran.9; e of existing instruments. Therefore, 

there are t 1.',10 terms, narn.ely 6 ;:>.. and 
11 

..,..,* 
J.i ' 

which must be 

theoretically det ermined from the model t o fit t he 

observations. Hubble has defined a quantity ~ m., as 

·which can oe evaluated from the observati onal data. 

~ittin° our model to the count data t hen reduces to ob

ta ininr, the }Jroper values of 6rn
0

• Hub bl e has tabulated 

his val ue s of 6 m
0 

against limiting marni tudes. However, 

if we ca l cul a te this nuantity from his published data,we 

will find slightly differ ent values as shovm in Table VIII. 

As before, we shall accept Hubble's values in making our 

ca lculations. The differences shown in the last column 

of the table require explanation, however. 

Turning finally to our theoretical model, the 

conditions (5.4) and (5.9) when solved with the express i on 

for c1 gives 

Since the numerical value of c1 is g iven in (5.33), the 

value of the parameter at r = t = 0 can be calculated 

whenever p
0 

is assumed. This value of the parameter when 

( 5. 34) 

( 5. 34) 
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Table VIII 

m Hubble Omer H - 0 

21 , 01 o.676 o. 673 + 0.003 

20.0 0.468 0.44 + 0.028 

19.4 0.368 0. 41 - 0.042 

19.0 0.314 O.Jl + 0. 0 01., 

18.47 0.253 0.24 + 0.01 3 

used with the expression for c1 and equations (5.2) and 

(5.3) can be used to determine R and T. This was the 

procedure by which Table VII was calculated. 

We shall take a model in which 

p0 = 3.3 x 10-28 gms /c.c. Then from (5.34 ) we find that 

8 0 = 1.3603 and that R = J.147 x 109 lt.-yrs. while 

T = 1.344 x 109 yrs. This assurnr tion of density is not 

arbitrary. This is the result of a serie s of calculations 

in which various different densities were assumed until a 

negative third power term was found for the red-shift as 

~iven by (5.16) which was thourht to be of the proper ord er 

of magnitude. 

The next step is to fit to the s econd power term 

of the red-shift. Of the three elements that make u p this 

term in ( 5 .1 6 ) , .!.c2 
2 1 is fixed, is determined by the 

assumption for density and is a maximum for the transition 
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density between the o1 and M1 models, while c12 is 

deterrn. j_ned by the non-homo p: eneity of the model. If the 

model were homo Ps eneous, the 012 term would vanish. By 

the extreme assumption tha t the density of a homogene r)us 

model were exactly the transition value, we would have 

lc2 - ,...._,. 2 16 X 10-19 
2 1 02 ......... - • ' which is rather close to 

Hubble's probable lower limit for this t e r m. However, 

such a homop-eneous model would not yi Ald Hubble's count 

data. 'ro fit a homop: eneous model we would have to prove 

either that Hubble's count data was very seriously in 

error, or we would have to construct a different 

homogeneous model having non-zero pressure and cosmololl ical 

constant. 

Under the assumption of zero cosmolorr ical constant 

we must assume a non-hoP1.0feneous model. li'or the model 

that we are constructing we will have 

½cf - c 2 = 1.916 x 10-19. Since we wish the coefficient 

of the second pm:er term to be J.2 x 10-19, we must take 

012 = 1.234 x 10-1 9. The condition that 

c~ = 0 ~ives b1 = - J.247 a1. This result and the 

preceding numerical value for c12 requires that 

a 1 = -9. 8 x 10-10. Thus, to the first approximation, we 

are reauired to assume a non-homogeneous model in which 

the density is decreasing away from the center. 
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The third step i s to satisfy the count dat~. 

We shall assume in the shallow survey to the limitinc 

ma p-nitude of 18.47 that the eff ects of the third power 

term in the red-shift may be i gnored. r.rh i s a poor 

assumption but it is jus tified for a first a nnr oximat ion . 

Then, to obtain Hubble 's va lue of ~ m0 we rf'\ust take 

a 2 : 1.2)4 X 10 -17 The condition that c~ = 0 then 

p: ives b2 = -4.015 x 10-17. We may now calculate the 

third pmver term of the red shift. The most i mportant 

element in this term as g iven by (5.16) is c23 . We find 

that c23 = -1.642 x 10- 27 under the f orego ing assumptions. 

Calculating the rema ining elements of the third powe r 

term for the red shift we find that for this model 

in which the third power term is of the pro-per order of 

ma~rni tude but is probably t oo great in value . . 

The last step is t o fit the remainder of the 

count data . '-i fe still have a3 at our disposal and we shall 

attempt to tailor it to g ive fair agre ement with the data. 

In making this fit we shal l asswne that the effects of 

the fourth power tern1 in the r ed-shi ft may be ne~lected 

throughout t he rang e in which count data are available. 

For the deepest count to a limiting magnitude of 21.03 

this is probabl y a ~oor assumption. Again , f or a first 

( 5. 3 5) 
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annroximation the procedure is justifi ed. 

To make the required calculations we must find 

the values of r and &?t.>.. which corres ;)oncl to the 

limiting maPnitudes m. To a first a p~roximation we can 

do this granhically by plottinf two curves to a suffici en tly 

open scale so that three figure interpolation is possible. 

We have plotted (5.35) to such a scale where we have t akeTI 

convenient values of r. We have then used these data in 

(5.32) which was rewritten as 

m = 5 lop; r - 22.715 + 4 6i\ 
i\ 

and have plotted a sec ond curve of limiting mapnitude against 

r. From these tvrn curves the required values of r a nd 

for the limiting magnitudes m were found and they 

are ~iven in the first three colUJ11~s of Ta ble IX. This 

information alonR' vvi th Huhble' s values for 6 mo pi ven in 

Table VIII determine the values of the relativistic correction 

term F* which will be required to justify the count data. 

This partially experimental quanti ty, which has been 

denoted as is listed in the fourth column of rrable IX. 

The theoretic value of F:ir: as determined by our mo cl el is 

given by (5 .11). Since the coefficients a 1 , a2 , b1, and 

R have a lready been fixed by the requirements u ,, on our 

model, we have only a 3 to vary to fix the data. This was 

done by computing those terms of (5.11) whi ch are fixed and 

( 5. 36) 
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subtractinf then from The differences should 

be mainly the a 3r3 term, although the negl ected hip-her 

power terms in ( 5.11) mir:ht be i mportant. 

S'able IX 

6i\ I'"' X 10-S -p,* F ,.._ C 0 m i\ --•-o C 

21.03 0.1 65 L1- .19 - 0.0096 - O. 02 6L~ - 0 . 016 8 

20.00 0.138 2.72 + 0.0504 + 0.0603 + 0.0099 

19 . 4 0 .110 2. 16 + 0.0432 + 0.0473 + o. 0041 

19.0 · 0 . 095 l.85 + 0 .0396 + 0.035h - 0.0042 

18.47 0.082 l. L9 + 0.0450 + 0.0199 - 0.0251 

¾. 
0.Li-3 

1.1 8 

1 .18 

1.15 

1 .10 

As would be expected from the am)roximate :9rocedure used in 

fittinP- this model, thi s predicted a 3r3 t erm nearly 

vanishes for the survey t o the 1 imi ting mae;ni tude 18 . L1-7. 

The remaining four surveys were used to determine an 

average value for a 3 which is a 3 = -2,46 x 10- 26. Usine 

this avera~e value in the full form of (5.11) the fifth 

column of calculated values of F* was comput ed . The 

residual s , which are the differences between the calculat ed 

and observed values of are given in the sixth column. 

'17he agreement between this first ap1)roximate form of tre 

model and the obs ervations is fa i r. The residuals for the 

three int ermediate surveys are essentiall ;s,r eoual to t. t1 e 

residual s obta i ned by Hubble (Re f 15, Table X) from 
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his static model with a unknown cause for the red-shift. 

The conp·ru :L ty of the two extreme suI·veys is disturbed by 

the knovm errors in this first approxima t inp: procedure, 

vJhich have been o.iscussed earlier. This ag reement can 

obviously be improved by reneatin~ the indica ted 

~rocedures several times with increasingly better anprox

imations at each calculational step. 

'Ne may compute the local proper dens i t y any

where within th e mode l from the use of (1. 36 ). For the 

particular time t = O, this density expressed as a 

ratio to the proper density at th e origin is 

e 
Po 

Since the coefficients and are now f ixe1 , 

this density ratio may be computed, where again t he 

effects of powers higher than the third have been nePlected. 

This information is tabulated in the last column of Table IX. 

The density ratio slowly decreases away frorri the orig in to 

a minimum of about 0.99 and then increase s to a maximum of 

1.18 within the ranpe of the count surveys, but starts t o 

drop drastically at the extreme range of the surveys. This 

is the tyne of behavior that we would expect, althourh the 

model needs further adjustin~ . If the singular state of 

the universe had a finite mass, we would expect the 

density ratio to ber: in to drop when the c oordinate distance 

( 5. 37) 
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became comparable to the a[';e of' the universe. However, 

from l)resent estimations as to the age of the uni verse, 

we would expect the densi t y ratio to bepin to drou for 

coordinates about three times greater than the one 

indicatAd here. There are at least two causes for the 

seeming anomaly. First, the coefficient of the third 

povier term in th P. r e r'!. -shift given in ( 5. 35) is probably 

too great . Second, higher power te!'!IlS have been 

consistently nAglected throughout the computations. 

These n eglected hieher nower terms mifht well be 

significant for the deepest surveys. 
,-
( 

ij i e can summarize this first tenative mode l by 
i' 

l is tinr t he coefficients which have been employed. They 

are 

po = 3.3 X 10-28gm/ cc . R = 3.147 X 109 lt-yrs. 

0o = 1.3603 T = 1.344 X 109 Y'I' S , 

al = - 9.8 X 10-10 b1 = 31.85 X 10-10 

82 -- 1. 235 X 10-17 b2 = - 4.015 X 10-17 

a " = - 2.46 X 10-26 
_; 

This model is appealing in that it is evolved from accepted 

physics but that it yields Hubble's otherwise disturbing 

observational data to a fair approximation. The red-shifts 

are the classic ~oppler effects. The non-homogeneity of the 

model is what should be expected from the known instab H i t y . 
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of homog- eneous models. The theory api)ears to be sound 

and the fit of the model could be improved by further 

co:r.rputation. There is considerable doubt, however, as 

to the wisdom of making a more detailed fit until the 

many questions as to the Rctual validity of Hubble's data 

are answered. 

Havinp considered the primary data of red-shifts 

and counts, let us now turn to the secondary data of 

dens i ty and age. The density that must be assumed to fit 

the other data, na',1ely Po= 3.3 x 10-28 gms./c.c., is a 

reasonable one. Hubble (Ref. 16 , n . 76 ) has estimated 

the order of magnitude of the averaged-out density of 

the luminous matter within the universe t o be 1 0 -30 r:ms ./c.c. 

•Sinclair Smith's (Hef. 25) measurements u pon the Virg o 

cluster would indicat e that the order of mar nitude fo r 

the averaped-out density of all matter within the universe 

must be about 2 x 10-28 gms./c.c. The discrepancy be

tween these two estimations must be due to a large part 

of the total ma ss of the universe being non-lu._minous. 

Pe r haps it is scattered as meteoric material between the 

nebulae. Zwicky's (Ref. 26) measurements upon the Coma 

cluster would indicate an even hifher value of about 

4 x 10-28 pms. / c. c. for the mar:ni tude of the averaged-

out density. Thus the va lue which must be assumed to make 
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our model fit is an entirely reasonable one. On the 

other hand, a more dAtailed study of the dynamics of the 

nebular clusters by the astronomers would be quite welcome 

since the density is a rather sensitive factor in our 

model. A slirhtly different dens ity would produce 

considerably different behavior. 

The situation for the calculated age of the 

universe is not so pleasant. It is ab out two-thi r ds of 

the most reasonable value. As indicated in the discuss j on 

at the beginning of this chapter, there are at least t Fo 

reasons why the calculated age of the universe could be 

expected to be in error. First, the assumpt i on of a 

central position for the observer is manifestly false. 

A non-central oosition for the observer would alter both 

R and T by considerable arwunts. Second, all pressure 

effects have been neglected. Our model is in an early 

stage of evolution as shown by the small present value of 

the parameter 0
0
= 1. ,3603. We would expect pressure effects 

to have been hppreciable for a large fraction of its history. 

If these neglected pressure terms included a viscous-like 

f orce, we ~Jould expect our calculated age to be too small. 

The age of the universe is not a we l l established 

datu,11 as only a roup,h order of magnitude is ,c.:,;i ven by the 

presently known data. The most common assumption is that 
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it lies betvrnen 2 x 109 years and 3 x 109 years. The 

lower limit is set by the radioactive determi nation s upon 

the oldest rock of the Earth. This lower limit is a bout 

2 x 109 years. r11he same fip-ure is found for tl:rn upper 

limit of radioactive determinations u pon me t eorities. 

This would a p~ear to be significant since it has been 

estimated tha t 60% of the meteorities originate within 

interstellar s pa ce. 'rhe upper limit of r oughly 1010 

years is set by the calculated relaxation times for 

stellar and nebular clusters. Further rough sunporting 

evidence is found in the continued existen ce of certain 

type s of super - l uminous stars a nd in t he observed f a ilure 

of e quipartition of energy within our own galaxy. The 

most reasonable present value for t he age of the universe 

would appear to be about 2 x 109 years. This assumes 

that the Earth wa s produced at the time of the 

singularity and f ormed its crus t by sweeping up the 

meteoric material which was present with a hi gh density 

at that epoch. This is in agreement with several present 

t heories as to planetary evolution and would a ccount f or 

t he known small eccent ricity of the Earth's :present orbit. 

In concludinp: this chapt er it must once more 

be emnhasized t hat t he material presented here is 

illustrative rather than definitive. \'le vvish to show the 
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practical value of the seemingly abstruse theory of the 

first four chapters. The formulae developed for the red

shift, counts, and maRnitudes, as well as the procedures 

utilized in rouphly fjtting this tenative model to the 

observational data, are the important elements. Tlrn 

precise fipures of the various values evolved are not too 

consequential. ~hey can be bettered by obvious, albeit 

Sisyphean labor. 
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