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Abstract

A family of spherically symmetric, non-static,
non-homogeneous relativistic models with zero nressure
is considered. In the first chapter the pioneer work of
Lemaitre and Tolman is reviewed. The fundamental partial
differential equation is transformed into a parametric
nair which may be solved explicitly in terms of known
functions.

In the second chapter the nature of the most
general solutions and the conditions under which they will
exist are determined. The Robertson-Tolman notation is
extended to apply to non-homogeneous models. The
fundamental equation 1s solved in terms of Weierstrassian
elliptic functions. Tihe solutions in terms of elliptic
functions are then shown to behave in the expected manner.

Approximate solutions not involving ellintic
functions which will apnly vhen the cosmological constant
is small as compared to another parameter are derived in
the following chapter. Iurther information about the
relations between the various solutions is obtained.

In the fourth chapter all of the special non-
ellintic solutions are found for which the coefficients
of the fundamental equation are finite. The well known
static and non-static homogeneous models vith zero »ressure

are shown to be special cases of this family of cosmologpical
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models. The Robertson two-dimensional granhical repre-
sentation of the existence conditions for homogeneous
models is extended to its equivalent three-dimensional
representation for these models. A general expression
for the local proper density within these models is
derived and further nhysical restrictions upon the
solutions are developed.

In the final chapter the usefulness of this
family of models is illustrated by apvlying the special
solutions for a zero cosmological constant to the
cosmological problem. Suitable expressions are derived
for the red-shift, for the number of nebulae which
would be counted to a limiting magnitude, and for the
observed magnitude of a source of known luminosity
located at a stated coordinate. A model is then con-
structed which agrees with Hubble's ohservational data

to a first approximation.
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Chapter I

Introduction

We shall consider a group of spherically sym-
metrical, non-homogeneous, non-static cosmological models
composed entirely of dust particles which, by definition,
are incavable of exerting any pressures whatsoever. The
use of cosmological models filled with only dust particles
is a good approximation to the known observational facts
of the present epoch. In these models each dust particle
represents a single nebula. No significant intergalactic
forces other than gravitation are known at present. Any
radiation pressures upon the nebulae within our obser-
vational neighborhood are vanishingly small. No col-
lisions between the nebulae, which would produce a
kinetic "gas" pressure, have been observed or assumed.
Hence dust-filled models are a good first approximation.
The energy-momentum tensor for such models will be

"T—’“'_.F)cixﬂ'cix
ds ds
where 6) is macroscopic density of the dust as
measured by a local observer moving with the dust and the
quantities g%gﬂ' and g%ﬁy are components of the velocity
of the dust with respect éi the coordinates in use.
In this work a special coordinate system will be

used which moves with the dust. Such coordinate systems

(1.1)



are called "co-moving" coordinates. By definition the
spacial components of the velocity of the dust with re-
spect to co-moving coordinates shall be zero. That is,
j—éﬁH = 0 for /Ai L. The line-element to be used, which
is yet to be developed, is one having a "cosmic" time
orthogonal to the space-like components. Hence the time-
like component of the velocity of the dust with respect to

the co-moving coordinates shall be unity. That is,

dx*
ds s

(1.1) reduces to

Consequently the energy-momentum tensor of

TH=0 [per » #4] T =0 (1.2)

To put this energy-momentum tensor (1.2) into a
form such that Dingle's Formulae (Ref. 1, pp. 254-7) may be
used, we must lower one index. Lowering the index, we find
T8 = g,, T2 0 for all W# L since all of the T in

the summation will be zero from (1.2). Also, Tj = g ™4z o

you
for all Y# 4 since all of the T**when ™ # 4 in the
summation will be zero from (1.2) while gy, = O from
the assumed form of the line-element since it is assumed
that the "cosmic" time will be orthogonal to all of the
space-like components. TFinally, Ta= gi,e T 1(3

since all of the T4 where & #Z 4 in the summation

will be zero from (1.2) while g,, = 1 from the assumed



form of the line element and Thbk = © from (1.2). There- |
fore the energy-momentum tensor of (1.2) with one lowered

index becomes
ThE =0 [porv#4] Ti=p (1.3)

The energy-momentum tensor of (1.2) and (1.3)
contains three assumptions. The first and most important
assumntion is the total absence of pressure in the universe.
This is one of the basic postulates. The two remaining
agssumptions were made for mathematical convenience. They are
the use of co-moving coordinates'and the use of a line-
element with an orthogenal "cosmic" time.

Since the zero pressure postulate is the important
one, it might be well to examine it more closely. A pressure
would be measured by a local observer moving with the dust if
there were a transfer of momenta across any of the faces of a
three-dimensional spacial cell that he could erect about him-
self for purposes of measurement. Such a transfer of momenta
could be produced by two mechanisms, either by a flow of
radiation, or by the motion of a material particle across a
cell face. All radiation must be excluded from these models.
Since radiation will move with the limiting velocity with
respect to any coordinates that the local observer might use,
momenta would be transferred across the cell faces. The prohi-

bition on transfer of momenta by material particles is a more



delicate restriction. It is mathematically possible to have
co-moving coordinates in which the particles "mix" upon
motion. That is, the particles in the neighborhood of co-
moving coordinate r; would "flow throush" the particles in
the neighborhood of co-moving coordinate r, during motion.
A local observer at r; would then observe a macroscopic
pressure because of the transfer of momenta by the particles
in the neighborhood of r,. Consequently, a restriction must
be placed upon the types of possible motion within the modéls
to be considered. The space within a model can be divided
into unequal cells produced by connecting together adjacent
particles. Then each cell, as viewed by a local observer, is
free to change in shape and size, but no cell is allowed to
penetrate another. This restriction, it will be seen, places
certain limits on otherwise arbitrary functions of 1r that
will arise in the solutions of the Field Equations for the
models under consideration.'

That "mixing" motions are gravitationally possible is
illustrated by the present motion of the Solar Svstem through
the Ursa Major Group (stars of Ursa Major, Sirius,X Coronae,
FEAurigae, et al). This is the type of motion on the stellar
scale that must be forbidden in the models under discussion on
the galactic scale.

Cnly one of the postulates, that of zero pressure,

has been utilized so far. The other postulate, that of



spherical symmetry, will be used in establishing the line-
element. In reducing the line-element, the mathematically
simplifying assumptions of co-moving coordinates and of an
orthogonal "cosmic" time must not be violated. The treat-
ment used in prcducing the line-element will be identical to
that given by Toiman (Ref. 1, pp. 36L-6).

We shzll start with the most general form of line-

element which exhibits spacial spherical symmetry
P .
ds*=-e'dr®- e"(r*d6* +r*sin*0 dcb"’) +e’dt?* + 2 adrdt (1.4)

where A, }A , Y , and a are functions of r and t. We
shall simplify this line-element by allowable coordinate
transformations which do not upset the co-moving character of
the coordinates to a form having g1l = 1 and all other
Bot, = O»

Possible coordinate transformations are restricted by

the requirement that

gr . d8 . dd . (1.5)
eis ds ds
These are the conditions which must be satisfied by
the spacial components of the particle velocities in co-moving
coordinates. This means that no transformations of r, © ,
or (ﬁ are possible. However, transformations may be made in

the time-like coordinate t.



Let us transform the time-like coordinate t to
g new time-~like coordinate t' which will be a function of
r and t. This transformation may be differentially

defined by the equation

dt’:rz(adr“ +e"dt) (1.6)

where Y] is an integrating factor, a function of r and
t, which makes the right-hand side of (1.6) a perfect

differential. In accordance with (1.6) we shall have

- 2
&’dt? + 2 adrdt .—.,;jg,, - & dr (1.7)

Substituting (1.7) into (1.4) and droppine the primes, we

find that the line-element is reduced to the simpler form
A .
ds®*=-e'dr®* -/ (r*de® + r*sin*6 d¢2) + eVdt? (1.8)

where 2_, /A , and )Y are now functions of r and the
present t. The co-moving relations (1.5) are not disturbed
since r, 6 , and Cb are the same variables as before. The
line-element (1.8) has now been reduced to one of Dingle's
general forms (Ref. 1, p. 253).

We have reduced the single cross-term g1, to zero
by the transformation (1.6) but we have not yet reduced &l
to unitv. This further reduction can be made by a more

comprehensive consideration of the co-moving character of the



coordinates. In co-movine coordinates a given particle nust
be stationary in its spacial coordinates. That is, the r,
©, and ¢ coordinates for a given particle must remain
constant for all past, present, and future times. It is not
enoucrh for the snmacial comnonents of the particle velocity to
reduce to zero. It 1s also necessary for the spacial
components of the particle acceleration to reduce to zero.

A narticle might be accelerated by many different forces,
such as a voressure gradient, electro-magnetic or gravitatiénal
forces. We have not nostulated any electro-magnetic forces
in the models that we are considering. Since we have
vostulated zero pressure everywhere in our models, there will
be no pressure gradients. Hence the only forces that might
accelerate the particles with resvect to their coordinate
frames will be gravitational. We must, therefore, imnose

the further condition that the spacial comnonents of the
gravitational accelerations must be zero in our co-moving
coordinates. This condition may be stated in terms of the
eouations for a geodesic, by recalling the co-moving re-

lations of (1.5) as
dr=-{aa1}(g =0 LC-faqzfdt)-0 L4--{a43)¢) =0

The conditions of (1.9), it might be emphasized, are
anplicable only because of the absence of vpressure gradients

in these models.



The Christoffel three-index symbols of (1.9) are
easily evaluated by the use of Dingle's Formulae (Ref. 1,
v. 254) by taking D = ev. By these means the conditions

(1.9) will be seen to reduce readily to the conditions

2¥ - 2Y =2V -0 (1.10)

ar T 36 3¢

The second and third of the conditions (1.10) are identically
true since Y in the line-element (1.8) was taken to be a

a function of r and t only. The first condition, how- "
ever, shows that the quantity Y 1is a function of t only.
Therefore, we may make a simple transformation in the time-

scale only defined differentially as
/ L
dt'=e?*" dt (1.11)

Since this scale transformation does not involve any of the
spacial coordinates, the co-moving character of the coordi-
nates is untouched.

By substituting the scale transformation of (1.11)

into the line-element (1.8) and dropping the primes, the line-

element becomes
ds? = —eadrz - e'u’(rzdez + r*sin®*6 ol¢2) + dt* (1.12)

where Z and f& continue as functions of r and the

nresent t. We have now achieved our original objective



of reducing 811 to unity. We can, however, make one

further simple reduction. Let us define a new quantity

w +2 log "
et 3

e = (1.13)
by collecting terms. Substitutine this new cuantity (1.13)
into the line-element (1.12) we have
ds? = —e’dr® - e“(d6* + sin*0 d¢?) + dt? (1.14)

where A and w are functions of r and t. This is the non-
homogeneous line-element of Tolman (Ref. 2) and Lemaitre
(Ref. 3).

The line-element (1.14) contains in the simplest
Doésible form the second postulate of spherical symmetry
alone with the mathematically simplifying assumptions of co-
moving coordinates and an orthogonal "cosmic" time. The
energy-momentum tensor (1.3) contains the first postulate of
zero pressure along with the mathematically simvlifyving
assumptions of co-moving cocordinates and an orthogonal
"cosmic" time. The line-element and the energy-momentum
tensor are, therefore, comvatible and must be combined to
vroduce the desired series of cosmological models. The
connection between the two is, of course, HBinstein's field

equations of general relativity

-8nTH =Ry -5 QE/"; +/\9}»L | (1.15)



which equates the tensor 5}5 derived from the line-
element with the energy-momentum tensor. Relativistic
unitg of length, time, and mass are used in (1.15). The
constant /\ in the last term is the hypothetical
cosmological constant.

The equations (1.15) can be produced without
great difficulty by the use of Dingle's formulae

(Ref. 1, pp. 254-7) by taking

i=el x = r
B =a* x?2 =0
¢ = e“sin?e x> =&
D=1 b = ¢
Then
- —w —Aw/z va 3wk
R ’e'z‘+w‘+2“)‘A:=o (1.16)
e 3 __ o Mw" g_z__a_)) L W
nTs =8l =-¢e (2*U4 2 /)T2Yatz2 "3 (1.17)
A A =0
+4
grTh =@ “- e_a(w,,+§w,2_ Zgl) s 27 A -\ =87 (1.18)
ol 2™ T2 )t gt ° o
2 = / o /
gne'rf =-8w T = &2 - S & =0 e

and all other Tﬁ' are identically equal to zero. Tolman's
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notation has been used in equations (1.16) to (1.19) in
which the dots represent partial differentiation with
respect to t while the primes represent partial differ-
entiation with respect to r.

The partial differential equations (1.16) to (1.19),
ir they can be solved,‘will determine the density (3 and the
values of A and @ at all times and places. Being
vartial differential equations, the solutions will involve a
nunber of arbitrary functions of r or t. These arbitr;ry
functions actually serve a useful purpose since they will
allow the imposition of a certain number of boundary con-
ditions on a given model, such as initial density distri-
bution, initial particle velocities and accelerations. After
this imposition of boundary conditions the subsequent
temporal and spacial history of the model can be calculated.
Unfortunately, the partial differential equations are non-
linear. They cannot, therefore, be solved by straight-
forward methods, but only by artifice. We shall now examine
a group of artifices by which a formal solution can be
obtained in the most general case and more useable solutions
can be obtained for certain physically interesting special
cases.

Let us begin with the simplést eauation (1.19).
After rearranging this equation, we can write it

. - e/

A-w =2

I)I

(1.20)



Fach side of this equation can readily be integrated with

respect to t. Carrying this out, we have

A-w = 2 log w’ + Q) (1.21)

where (P() is an arbitrary and unknown function of r.
The arbitrary function must be added to the integrand be-
cause partial, rather than complete, differentials are
involved. The solution (1.21) is now a perfectly general

4

relation between A and ¢ and not simply a special case.

- =)
Let us define a new arbitrary function of r as 4 (g + 1) =€ .
Then we can rewrite (1.21) as exponentials in the form
A W &)/2
e =e ——— (1.22)
4(g+1)

This is not the same form as derived by Tolman (Ref. 2, eq. 8),
but this definition of g as the arbitrary function of r
will be found to be more convenient in later equations.

An examination of (1.22) will show that g can
rance in value only between -1 and + o0. From their use
in the line-element (1.14) e and e® can be only
positive and real. In order that e” nhave only vositive
real values, W must be a real function of r and t.
Consequently the square of the partial derivative 0312

can be only a positive real number. Therefore the denomi-

nator on the right-hand side of (1.22) can vary only through



real values. This places the stated limits on the other-

wise perfectly arbitrary function g.

Having found an expression for EBA in (1.22) we

may substitute this into the line-element (1.14) which eives
2 «w /2 2 2
ds® = -e WO dr* 4+ d6* + sin*0 do?| + dt
4(9+()

This line-element (1.23)is the non-homogeneous analog of the
well-known Friedman-Robertson non-static homogeneous line-:
element.

Further useful integrals can be obtained from the
three remaining differential equations (1.16) to (1.18).
Substituting (1.22) into (1.16) and rearrangine, we obtain

e“’(éic()z—/\+cl3):3

4

. 2
Multivnlyine (1.24) by O e2%and again rearraneine, we see

that the equation may be written as
e Ew(u’f 2 ) _ d o3¢
—le* (— - = = = e
at[ 2 3A] 29at

Acain both sides of this equation can readily be intecrated

with resvect to t giving

Ew(o® _ 2 A\ = 2
(%7 -3n) = 292" + 2n

where h 1is another arbitrary function of r necessary in

the inteerand to give a general solution,

(1.23)

(1.24)

(1.25)

(1.26)



However, equation (1.26) is still a partial
differential equation. A further integration is necessary
to express the temporal and spacial behavior of e® in
analytic form. By multiplying (1.26) by —%G‘“éwand re-
arranging, this equation may be written as

!
=
2

¢ 2

w e = g + he - —‘—Ae“’ (1.27)

!
4 3

This equation might appear more familiar if the dot
notation is replaced by the more conventional partial differ-
entiation signs as

(g%eéw)z =9 + he= + é—j\e‘” (1.28)
The integratioh of (1.28) is the crux of the work which is to
‘follow. It will be noticed that the two arbitrary functions
of r that have been introduced, namely g and h, are both
somewhat different from the similar functions used by Tolman
(Ref. 2). The functions defined here have been found, how-
ever, to reduce the bulk of the expressions somewhat and have
proved, therefore, more convenient for use. |
There now remain two unused partial differential
equations, namely (1.17) and (1.J8). Substitution of (1.22)
into (1.17) merely yields (1.24) again, and so nothing new
is gained. Substitution of (1.22) into (1.18), however, will

vield an expression for the density C) in the model.



Using (1.20) and (1.22) in (1.18), we obtain

s /

2 e - : )
B =F o+ 2 -e (g + 29 ) - A e

This equation may be put into a more simple form by com-
bining it with (1.26). Differentiating (1.26) with resvect

to r, we obtain

/

3w i i X 4
23—2 =e?z wl[§w2+—;7—e <9+‘2;‘9,)-°/\] (1.30)

Hence, it is obvious that the density equation may be written

in the particularly simple form

_2e 2" dh
8re = s S (1.31)

Equation (1.31) shows that the otherwise arbitrary function h

can never be a constant if these models are to contain matter.
We have now developed enough relationships that we

may return to the discussion of allowable motions in these

A

models. From their use in the line-element both @ and
e” must be real and positive at 2l1ll times and for all
values of r. However, there are no restrictionsas yet on
the values. Mathematically e%? and €3%% could be either
positive or negative or could oscillate in sign as the

variables r and t change. Physically, a stricter condi-

tion must be imposed.



Let us consider an instantaneous measurement of
total proper distances from the origin of the co-moving
coordinates to a particular co-moving coordinate point Ty
8,, ¢, at a particular time t,. We will arbitrarily
make these measurements from the origin to the reference
point on the r, - sphere, which length we will denote as 1j;
then along a longitude line of the r, - sphere, we shall
denote this length as 12; finally along a latitude line
on the r, - sphere to the coordinate point, this length
will be denoted as 13. These proper lengths are related 1
the guy for the particular timé to and to the co-moving

coordinate system by the equations
Y O, ¢,
L e L
1, =Je2 dr lz :Jezwde / =Jezwsmed¢
3
= ) o o

We can regard the ll, 12, and l3 measures 8s
constituting another coordinate system. Then the prohibition
against "mixing" motions of the particles can be restated as
a requirement that the mapping of the co-moving coordinates
upon the l-measure coordinates must be strictly one-to-one ,
at all times and places. If two or more distinct sets of |
co-moving coordinates, say (ry, 6, , 43 ) and (r2,€52,<?2),
have identical values of ll’ 12, 13 at a given time, the
physical meaning is that they all occupy the same space.
Since these are non-static models, this implies that the

neighborhoods of co-moving coordinate-l and of co-moving

(1.32)



coordinate-2 are passing through each other. This, as
discussed earlier, is a direct violation of our basic
postulate of zero pressure everywhere within the model.

An examination of (1.32) will show that one-to-one

mappine is possible only if the algebraic signs of E?EA and

3 4 L
e2® are invariant. ~-In other words, ez)‘ and sz may be
either negative or positive, but they cannot oscillate between

1%
the two signs. While negetive values of €% and

g
are permissible, they add nothing new to the physics of the’
gituation. Negative values must be assigned to e_"‘;A and
eé“’if the co-moving coordinates r, © , and ¢> are
stated as negative numbers themselves. In the work which is
to follow we shall assume that the co-moving coordinates are
enumerated in the same sense and sien as the l-measure
coordinates. Consequently, we shall restrict eﬁA and
é?%&) solely to positive values.

The restriction of these terms to positive wvalues
in turn places definite conditions on the otherwise completely
arbitrary functions g and h. An examination of (1.26),
bearing in mind that e ,GE%G’ and <*/2 are both
positive and real while /A and g have real values, will
show that the arbitrary function h must be a real
function.

The restriction of E?éA to positive values

vlaces conditions upon 2(g + l)éj and on the r-dependence



of the function, @ . An examination of (1.21) will show

that the arbitrary function (P(r) may at times be complex

in value., While w’ must be real, it is free to assume
negative values. When Xy is negative, 2 logcul= 2 logthi2ni.
Consequently, (P(r) must have an equal and opvnosite

imaginary part, that is (P(r) = RealP(r)F 2mi because

the left-hand part of (1.21) must, by definition, be real.

This does not alter our previous conclusion that
-Real W(r) £ 2717L

Lie + 1) =€ must be positive at all times, but
1 _ czRealpte) £ _
it does allow 2(g + 1) =€ to ‘assume either positive

s i !
or negative values. Moreover, we see that @ and
1
2(e + 1) must always have the same sign. These conclusions

are substantiated if (1.22) is rewritten as

/

2§V§ﬁﬁ: (1.33)

z2 and eéuJ are both limited to

when we recall that €
positive values.

A physical condition that must be observed is that
the density can never be negative. In the equation for
density (1.31) the right-hand side is made up of three terms.
The factor e‘%aj is always positive since it is the product
of two positive terms. Consequently, w’  and é%? must
again both be of the same sign. The physical restrictions
on the arbitrary functions can now be summerized as the re-
quirement that dh , 9w , and 2(g + l)% must always

dr or
be of the same sign.



To conclude this chapter, let us return to (1.28),
the integration of which under various conditions will make
up most of the subject matter in the following chapters.

In (1.26) the dependent variable is actually ez , and so
the mathematical notation can be simplified by taking

vy =€2% yhich reduces (1.28) to

y(_g%>2:95+h+—§]\ 53 (1.34)

The first integral (1.22) assumes a particularly simple form

in this notation

% = (gg)z (1.35)

While the density integral (1.31) is not greatly clarified

by this substitution

dh
dr
5ﬂf>=3——-a (1.36)
2 (43
orly
By taking the square-root of both sides, we can
write equation (1.34) as a linear partial differential
equation of the first order in the standard form
Pt Y28 + (st Y)Y = Rty (1.37)

where 5 =W Q =0 and R =\/ég+h+ ?‘3,[\5?

Such eouations are easily solved by the method of Lagrange.



The corresponding system of ordinary differential equations

for the characteristics is

dt _dr _ dy (1.38)
P "0 R

If any two independent solutions to (1.38) can be found, such
as u=a and VvV = b, then the general solution to (1.37)
is any arbitrary function of these two solutions, such as
¢(u,v). For the second term of (1.38), one solution is
where r

obviously r = r is any positive number. Using

0? 0O

this solution with the first and last terms of (1.38), we find
the second solution will be the solution of
dt _ P(rn,t 4 (1.39)
dy R(l’;,t,y)
This is an ordinary differential equation since r is to be
considered as a constant during its integration. Let us
indicate its solution as gb(t,ro,y) = b. Then the general
solution of (1.37) is q}(t,r,y) = f(r), where r 1is again
a completely independent variable arnd f(r) is an arbitrary
function since this is an arbitrary function of u and v.:
Following the method of Lagrange, the general
solution to the partial differential equation (1.34) may be

written as

t+f = V9 _dy (1.40
f3y+h+3Ag3 e



- )=

where f 1is an arbitrary function of r. The integral is

to be evaluated according to (1.39) by taking the independent
variable r to be constant (r = ro). After the integral 1is
formally evaluated, then the constant value r, 1s to be
replaced once more by the indevendent variable r.

The integral in (1.40) can be evaluated under the
most general conditions in terms of elliptic functions, if
a simple transformation is made in the independent variable.
The integral can be evaluated in terms of better known d
analytical functions only in those special cases in which the
cubic under the radical either is reduced in degree or has
repeated roots. Moreover, it will be noted that the solution
(1.40) after integration is an expression for t 1in terms
of r and y. This is a result of (1.39) which can be
integrated only in the form t + b = (J(rg,y). It will be
found that an explicit statement of y in terms of r
and t in known functions is possible only under highly
restricted specisl conditions.

However, it is y that is the variable of physical
interest. If we cannot express y explicitly in terms of
known functions, perhaps we can express it explicitly in
some other manner, such as in terms of functions involving
a parameter. It will be observed that (1.34) is suggestive
of Weierstrass's or Jacobi's elliptic differential equetion.

If (1.34) can be altered by transformations into one of these



known differential equations, then y can be explicitly given
in terms of the transformed independent variables. The
necessary transformations must reduce the cross-term to a
simple square of a derivative and must reorder the polynomial
on the right-hand side into one of the normal forms.

Let us introduce a new independent variable &
which is to be a function of both r and t. By the intro-
duction of this new variable we wish to transform
y(gf)z = ¢ (r,t,y) into (g%ﬁz =®(r,& ,y). With the
introduction of the new variable/the derivative becomes
§%==§§ gf . Now & was introduced under the most
general conditions. Consequently, one condition may be

imposed upon it to make & a definite function of r and t.

For this condition let us take

o8 _ K

ot Y
where K 1is a function of r which we can specify to suit
our convenience. Then (1.34) is transformed into
K2(24)" = *+hy + +Ay” (1.42)

The polynomial in (1.42) may now be transformed into either
Weierstrass's or Jacobi's normal form by a simple trans-

formation of the dependent variable. The partial differential



equation (1.42) is readily solved by Lagranece's method.
For this equation Lagrange's method is effectively one of
replacing the partial derivative by an ordinary derivative
and replacing the independent variable r Dby a constant
value (r = r ) for purposes of integration. Then, under
these conditions, a formal solution is found. In the

resulting formal solution the constant r is once more

o
replaced by the independent variable r for a solution
to the partial differential equation (1.42).

The imposed condition (1.41) can also be

integrated by Lagrange's method. This yields the equation

t+15=fﬁ————df
K

where f 1is the previous arbitrary function of r. As
before, the integral in (1.43) is to be evaluated under the
formal condition of =» = ro, after which it is again
revlaced by the independent variable r.

The pair of equations (1.42) and (1.43) are fully
equivalent to the previous solution (1.40). If the solutions
to (1.42) and (1.43) are found, they will be of the form
y = 4)(1; &) and t +f =W (r,& ). Thus this pair
of solutions are parametric equations for y and t in
terms of a parameter & and an independent variable r.

The evident advantage of this procedure is the explicit

(1.43)



statement of y 1in terms of known functions. Moreover, in

the work which follows it will be seen that the equation

pair (1.42) and (1.43) is more elegant to handle than the

more conventional equation (1.40).



Chapter 1T

General Solutions

In this chapter we shall consider the solution of
the partial differential equation (1.34) under the most
general conditions. Such general solutions can be ex-
pressed only in terms of elliptic functions. In following
chapters we shall examine various non-elliptic solutions
and approximations that can be made under certain special
assumptions.

The nature of the possible general solutions can
be obtained from the differential equation (1.34) without
actually solving it. Let us rewrite this equation in the

form
(34)" - 309099 + 1

We know that y(r,t) is restricted to real positive values,
that g(r) and h(r) are real functions where only g(r)
is somewhat restricted, and that /\ is theoretically an
unrestricted real constant. Actually, from the closeness
of the Newtonian approximation in celestial mechanics, we
know that /\ must be an extremely small number, if not
actually zero. However, in general terms, we can say that

the values of the variable and the coefficients in (2.1)

must lie somewhere within the following ranges

(2.1)



Moreover we can say that O <,(§g§ since a negative
value for (%%-2 would require a complex value for
wir,t).

For those solutions which include y = 0, we
see that as y —= 0 that (gg)zzs h(r)/y and hence
that y(r,t) = (% h)'/s (t +{')’“/3 in the neighborhood of
y = 0. We see, moreover, that the only solutions which
will include y = O are those for which h(r) > O.
Every solution with h(r) < O must have a finite
minimum value for y(r,t).

On the other hand, for those solutions where
y(r,t) approaches positive infinity, we see that
(%‘-’ th:-é—/\yz as y —s + 00 and hence that in this
neiehborhood that y(r,t) = Gﬂgf‘tun[ . Consequently, the
only solutions in which y(r,t) can approach infinity are
those having /A » 0. ZXvery solution having A < 0 must
have a finite maximum value for y(r,t).

Let us now consider the "turnineg points" of y(r t)
as a function of t at a narticular value of r = Dsa
With the understood assumption that y(ro,t) is s continuous

function, there are only two types of possible "turning



points". When (g%)2=4-oo, the turning point is a cusp.
From the nature of the right-hand side of (2.1), this is
possible in the finite range only at y = O. When

(g% % = 0, the turning point is smooth. This turning
point might be either a maximum, a minimum, or a point of
inflexion. IMoreover these smooth turning points can occur
only at the roots of the cubic which is contained within

the parenthesis in (2.1). This cubic can have a maximum of
three real roots, of which only a maximum of two could be d
vpositive since the y2 +term in the cubic is zero. However,
this cubic will have three real roots only if the value of
its discriminant is less than zero. Stated mathematically,
this condition is that (’%‘)3[93"’ %Ahzj < O . If the
value of the discriminant is greater than zero, then the
cubic can have only one real root, which might be either
positive or negative in value. An allowable solution to
(2.1) can have a point of inflexion only at a positive
repeated root of the cubic, and only then if the cubic is
positive for values of y(rg,t) which are both greater and
less than the repeated root. This specialization produces

a2 non-elliptic solution which will be considered in a later
chapter. However, there it will be shown that the allowable
solutions do not pass through the repeated root, but
approach it asymptotically. Thus, the solutions to (2.1) do

not have points of inflexion, but only maxima and minima,



varyine monotonically between them.

Since we need a system to classify our allowable
solutions, we shall adopt the notation first evolved by
Robertson (Ref. L, D. 74 et seq.) and extended by Tolman
(Ref. 1, p.398 et seq.) for use with homogeneocus models. We
shall use the Robertson-Tolman notation to describe the
local behavior of our non-static, non-homogeneous models.
Thus, if an observer at ry would determine that the behavior
of matter in his immediate neighborhood was identical with°
what he would have expected in a homoceneous 07 model, we
shall classify the behavior of the model at ro as being
01. As this observer explored his surroundine space more
deeply, he would discover, however, that the behavior of
matter is different from his own at a distance, since the
determining functions g(r) and h(r) are free to vary with
radius vector. Let us determine, therefore, the types of
behavior that might be expected at 1ry with different
values of glr,) and hir,).

First, let us find the types of solutions that
could be expected when /\ > 0. e shall assume that
e(ry), hir,), and /A are all finite and non-zero. When
any of these three terms is allowed to become either zero
or infinite, we shall find specialized non-elliptic
solutions, which will be treated elsewhere. Let us break
the problem up into quadrants according to the sien of e(r,)

and h(rg).



l. gZirs) > 0 h(ry) > 0 . Here the cubic, and

hence (g%)z is positive over the entire allowed range of
v(rg,t). Therefore, y(ro, -o0) 1is infinite, while y(rgy,t)
decreases monotonically until y = 0 at t + f = 0, where

it goes through a cusp turnine voint after which it increases
monotonically until y(r,, +o0) 1is again infinite. This
local behavior is identical with the model behavior of a
monotonic universe of the first tvpe in the Robertson-Tolman
notation (My).

2. glrs) £ 0 h(rg) > 0 . Here the cubic will

have two real positive roots if ﬁhe discriminant is less than
zero., The condition that must be satisfied is that
|93!>§Ah2 . Let us indicate these two positive roots by
E1 and EZ’ where E2 > El. Then there are two independent
ranges for y(ry,t) which will give %%)2:> 0. Since the
cubic is positive for 0 y(ro,t) & E,, this is an
allowed solution with cusp turning points at y = 0 and smooth
maximum turning points at y = E; while oscillating
monotonically between these two values. This local behavior
is equivalent to an oscillating universe of the first type
and is denoted as 07. The cubic is also positive for
E, {y(rp,t). This solution has y(rp, -oo) = +o0 decreasing
monotonically until y = E, where it has a smooth minimum

and then increasing monotonically until y(ry,+00) = +o00.

This locil behavior is equivalent to a wonotonic universe



of the second type and will be denoted as Mg.

On the other hand, if the discriminant is ereater
than zero, the cubic will have no positive roots. The
condition to be satisfied is, of course, that lgg‘ < 29—/\ h?‘ .
Here the cubic will be positive for all positive values of
y and hence the allowable solution will again be similar to
a monotonie universe of the first type and will be denoted
as M.

3. elra) D 0 h(rs) < 0 . In this case the

cubic has one real positive root, which we may indicate as
E. The cubic will be positive when E (y(ry,,t)4&<+ 00 and
the allowed solution will again be locally equivalent to a
monotonic universe of the second type and will be denoted
as MZ'

he glra) €0 h(r,) € 0 . The conditions here

are similar to those in the preceding paragraph. The cubic
has a single real positive root, say E. The cubic is
positive when E y(rg,t)&+0° and the local behavior is
similar to that of a monotonic universe of the second type
and will be denoted as M.

Now let us repeat this procedure under the
contrary assumption that A < 0 but that g(r,), h(ro),
/\ are all finite and non-zero.

1. glr,) >0 hirs) > 0 . Here the cubic has

a single real positive root, say E. The cubic is positive



when 0 £y(r,,t) & E. Hence, the local behavior is

similar to an oscillating universe of the first type with

cusp turning points at y = 0 and smooth maxima at y = E.
This 1s the behavior which we have denoted as 01.
2. glrg) £ 0 h(rs) > 0 . Again the cubic

has a single real positive root at E. The cubic is positive

in the domain O £ y(ry,t) £ E. The local behavior is

similar to that of an oscillating universe of the first tyne
and will be denoted as 07,

3. glrg) > 0 h(ro) €< 0 . Once more the cubic

will have two real positive roots, which we shall call Eq

and E, with E2 > El if the discriminant is less than
zero. With the present signs for the three coefficients,

the condition for two positive roots is that g°> = |Alh®
Here, however, the cubic will be positive when

By £ y(rg,t) é-Ez. The allowed solution will then have maxima
at y = E, and minima at y = E; and will oscillate smoothly
between these two values. This local behavior is similar to
that of an oscillating universe of the second type and willA
accordingly be denoted as 0.

Under the opposite condition of a discriminsnt
greater in value than zero, the cubic will have no real
positive roots. This condition is, of course, that
93<2?‘l/\] hz- Here the cubic, and hence (Qﬂ)z , will Dbe

ot
neeative for all positive values of y(ry,t). Therefore



no physically possible solution exists under these
conditions.

L. glr,) £ 0 h(rpo) € 0 . 3ince all of the

coefficients of the cubic would be negative under these
conditions, it is obvious that the cubic would itself be
necative for all positive values of y. Hence it is again
obvious that no physically possible solution could exist.
These allowable solutions and the conditions under
which they exist are summarized in Table I. In this table
a code letter has been assigned to each solution so that
it can be identified in later discussion. Non-homogeneous
models can be constructed having several different tvnes of
behavior since g¢(r) and h(r) are nearly arbitrary
functions which are subject only to the condition that the
resulting densities must not be negative at any nlace or
time in the model. The density problem will be discussed
in a later chapter after the actual elliptic solutions have
been obtained. Complete freedom in mixing all types of be-
havior is impossible, of course, since the cosmological
constant /\ is, by definition, constant throughout the
model. Thus, if /A > 0, then O, behavior is excluded.
While if /\ < 0, then M; and M, behavior is
forbidden.

Having determined the nature of all allowable

solutions, let us now turn to the exact solution of the



Table I

A g(r) h(r) Type Range Conditions Code Letter
+ + M, |[0¢ygroo A
O, |o<y«E, l93]>g/\hz B
4 = | + [ Mz [Etytw 1 C
M, |o¢y ¢ |199<E A h? D
+ — M2 |E¢y & E
G o M2 [E4Y4+o0 F
- + Oi  |o4y<E G /.
~ + | O |o¢y<E H |
- + —_ O2 [E1¢Y4LE2 93>29i’/\)h2 I

No Solution |9°< 2 |AlW?
— No Solution

of the vartial differential equation (2.1). We shall

consider first the solution pair (1.42) and (1.43). Let us
transform (l1.42) into Weierstrass's normal form and solve

the resulting equation by Lagrange's method. The choice of
Weierstrassian elliptic functions is quite arbitrary. The
partial differential equation (1.42) can also be transformed
into Jacobi's normal form and the solutions obtained in terms
of Jacobian elliptic functions. Actually, extensive calculations
have been made in both systems of elliptic functions. The
Jacobian functions for the purposes of this work were found to
be even more uneainly and difficult than the Weierstrassian
ellivtic functions and accordingly were discarded. None of

the alternate theory in terms of Jacobian elliptic functions



will be given here.

Since the function K(r) may be specified to
suit our convenience, let us take K(r) = (h/h)l/B. To
transform the polynomial in (1.42) into Weierstrass's normal
form, let us introduce a new dependent variable defined as
2 ='é%££%' + &(r) where  o((r) = E;Zg%ﬁig is solely

a function of r. Then, for purposes of integration, (1.42)

becomes effectively,

dxy® 3 _
(QE;) =4z 532?5 533 (2.2)
where the invariants g, = 12 x? and gy = _go - —é/\

are to be regarded as constants (r = ry). If the three
roots of the cubic in (2.2) are all distinet, the solution is
well known to be the Weilerstrassian elliptic function

2 =05(§ 5 82 g3). Therefore, the first of the parametric

equations will be

(2.3)

where now the invariants gz(r) and gB(r) along with the
functions K(r) and O (r) are all taken to be functions
of the independent variable r.

The cubic in (2.2) will have repeated roots for
those special cases which will reduce its discriminant to zero.

In these special cases the solution to (2.1) may be expressed



in terms of better known, non-elliptic functions, and so
will be considered in the following chapters. The condition

for a zero discriminant of this cubic is

A[cx3+ jg/\] =0 (2.1)

Consequently, the two svecial cases ]\ = 0 and

cx3=-2% are excluded from the discussion in this chaﬁter.
The second parametric equation is found by substi-

tutine (2.3) into (1.43) giving

_ dé¢ |
t““gcr)—Jm (2.5)

The elliptic function (P(§) is defined over the complex
plane. Hence the parameter § may &assume complex values,
However, the parameter § is physically restricted to those
values which will yield positive real values for y(r,t)

and which will give only real values for +t. The consequences
of this restriction will be discussed shortly.

Let us now return to our original solution (1.40)
and show that its reduction leads also to equations (2.3) and
(2.5)., Thus we shall show the identity of a direct inte-
gration of (1.40) and of the more elegant use of the
parametric equations (1l.42) and (1.43). To integrate (1.40)
let us invert and translate the dependent variable y(r,t)

into a new dependent variable z(r,t), where 2z 1is defined



= KO L o) ana K(r) and o(r) are the same

as Z
guantities which were used before. This reduces (1.40) into

the transformed integral

L+ ) = d= (2.6)

(z—cx)\[Zz?’ - g.% — 93

where g, and gB have been defined earlier. The integral
(2.6) is an elliptic integral of the third kind. It is, in
fact, Weierstrass's third normal form. This integral may be
integrated by introducing Weierstrass's elliptic function.
Takine advantage of the well known relationship for

Welerstrass's elliptic function d% p(g) =\/4 f?s@) - 92 65<§) - 9s

we make the additional transformation of =z =§>(§ ;gE’gB)
which transforms the integral (2.6) into

_1__dsg :
't'*”F(V')—*{-%—(—gT:—&— {2:5)

v
Since this last integral is identical with one obtained from
the parametric equations, it has been numbered to correspond.
Two transformations, one real and one elliptic, have
been made in the dependent variable. Solving these trans-

formations for y we have

K(r)

5 = (P(g) -.o((r) (2.3)




Since this expression is again identical with that obtainéd
from the first parametric equation, it has also been numbered
to correspond. Thus a direct integration of (1.40) yields
exactly the same two equations (2.3) and (2.5) as did the
pair of parametric equations. Hence the two procedures for
solution are perfectly equivalent.

The parametric equations (1l.42) and (1.43) were
deduced with great generality, but perhaps with a corre-
sponding loss of intuitive reality. However, it is easilyi
shown that the parametric equations are inherent in the
straight-forward solution of (1.40), which has just been
presented. In reducing (1.40) to (2.5) two transformations
were made in the dependent variable. The transformation
z = &5 (§ ;€2,23) requires that 2z satisfy the differential
equation §§)Q=‘423—-922 - 93 when r is held constant
(r = rq). When the other transformation =z = i%%Q + ()

is substituted into this differential equation and solved for

y, we have

K ) {ia&l;ﬂ’i} = gy +hemy + 5N y" ©(1.42)

when we allow r to be an independent variable again. This
is the first of the two parametric equations. The second
narametric equation follows readily from the substitution of

2.3) into (2.5) which gives



£+ fer) =Xﬂ_i£ (1.43)
K(yr)

Thus the parametric equations may be directly derived from
the general solution (1.40).

The evaluation of the integral in (2.5) now remains
to be done. The integrand in (2.5) is an elliptic function of
the second order with a double zerd at £ =0 and all
congruent points and with simple poles at &= X and &= -X
and all congruent points, where the constant X is any one
of the complex numbers which will satisfy P(X) = x .
Consequently, the integrand of (2.5) may be expressed in terms
of Weierstrass's Zeta functions (Ref. 5, p. 369). Since the
residue at the pole §= X 1is + 3556 while the residue at

the other pole §==-—)Q 18 - —— , the integrand may

P00

be expressed as

(P(gl}-cx = (PI‘(X) ‘1— C(X’g) - C(X"'g) £ 2@(7(.)—} (2.7)

where the constant term in the expansion by Zeta functions has
been determined by the presence of a double zero at the origin.
Since Zeta functions are readily integrable in terms

of Weierstrassian Sigma functions, the integral (2.5) becomes

t+ f(r) =

‘ ox-£) _ _
P’(x) {log (X +¢) 2 §Gx) F(§°)} kel

The second constant of integration F( §; ) is actually

redundant since it could have been combined with the other



constant of integration f(r). The redundant constant of
integration F( & ) has been introduced to allow the zero-

point of t + f(r) to be adjusted at will with respect to

£ . If we should take t + f(r) = 0 when &= 0, then
F(O) = 0., But if we wish to take the zero-point of
t + f(r) at one of the half-neriods of fﬁ§) , usually

denoted as @, , Wz, and W;, then P(w;) =2w;G(X)-2%5(w) +TTL

where J may be either 1, 2, or 3. We shall see that this

micht be desirable for some of the solutions outlined in Table I.
The pair of equations (2.3) and (2.8) constitute

a complete parametric solution to the differential equation

(2.1). The solutions of (2.1) involving only non-elliptic

functions which arise when the cubic in (2.2) has repeated

roots are only special cases of the general solution given

in (2.3) and (2.8). These special solutions may be found

from the known degenerations of the elliptic functions in

(2.3) and (2.8) when two or more of the roots are identical.

The statement of the value of the elliptic integral given

in (2.8) is not the one given in standard compendia such as

Jahnke and Emde (Ref. 6, p.105). The form given in (2.8)

was adopted to avoid difficulties in passing to the limit
as two or more of the roots in the cubic in (2.2)
approach a common value.

The elliptic functions in (2.3) and (2.8) are not

corwenient functions for actual calculation. o complete



tables exist for these functions. While there are

numerical procedures by which the values of these elliptic

functions may be obtained, they are so difficult that any
extended calculation of y(r,t) would hardly be feasible.
In the following chapter some non-elliptic approximations
to (2.3) and (2.8) will be given for the physically
interesting case of |[\\<(5<u3‘ . However, there are no
easy calculational methods when J/\ 1is comparable to o’
in value. The general solution given by equations (2.3)
and (2.8) must contain the four types of behavior
diagrammed in Table I as well as all forms of special
behavior to be discussed in later chapters. This sepa-
ration of physical reality from the esoteric mathematical
formalism of the general solution must be done from the
known properties of the elliptic functions and from the
permissible ranges of the parameter 5\ as determined by
physical considerations.

The elliptic function (F(§) is doubly-periodic
with the two periods 2, and 2 Wy, whose ratio cannot
be real. That is (? ( € +2mw, +2nw,) = F(g) when

m and n are any positive or negative integers. This

might be compared with a familiar singly-periodic function

such as the trigonometric sine function which has a single

period of 2TT. This means that Sin (§ + 2nm) = Sin § ,

4



where again n 1is any integer. The single periodicity of
Sin& means that it can be defined over the entire
complex § -plane by defining Sin.§ within some
fundamental period-strip such as 0 £ Real8 £ 27T. The
extension to the entire §—plane is then made by repeated
dunlications of the fundamental period-strip under
successive translations of one period. 1In the same way the
elliptic function 65(§) may be defined over the entire
g-qﬂane by defining it within a fundamental period-
parallelogram. One possible choice for the fundamental
period-parallelogram would be that parallelogram in the
§'-plane whose apices are 2w,, 2w, + 2w,, 2w,, and O
Then (P(g) is defined over the entire £-plane by reveated
duplications of this fundamental period-parallelogram
under successive translations of the form 2mw, + 2nwy
where m and n compass all of the integers. Thus our
study of equation (2.3) may be confined to a single period-
parallelogram in the & -plane since it will merely repeat
itself according to a regular pattern over the remainder of
the \f-plane. |
It is well known that Sin& has poles at the
extremities of its period-atripas Imaginaryg-—* + 00 .
Thus it is not surprising that the Welerstrassian elliptic
function <9(g) has double poles at the apices of the

fundamental period-parallelogram just outlined, namely at



0, 2w, 2w, + 2w,, and 2w,. These poles repeat
themselves, of course, over the entire §i—plane according
to the regular pattern. The relationships of the zeros
within the period-strip of a singly-periodic function and
within the period-parallelogram of a doubly-periodio
function are also analogous. Thus a doubly-periodic
function such as the Weierstrassian elliptic function
might be thought of as a logical higher generalization of
the intuitively more acceptable singly-periodic functions.
The Weierstrassian Sigma and Zeta functions used

in equation (2.8) may be definedvas

C'(w =—j<g:<u) dw and log o (w) ZJC(«A) du. It should be
noted that the Sigma and Zeta functions are not doubly-
periodic but vary in a regular wey from one period-
parallelogram to another. Thus a study of equation (2.8)
cannot be confined to a study of its behavior within a
single period-parallelogram. However, in the only case in
which the parameter € extends beyond a single veriod-
parallelogram, namely, in the 07 and 0, solutions, it
will be seen that the parameter & simply initiates a new
cycle of oscillating behavior when it enters the adjacent
period-parallelogram being equivalent, therefore, to a
simple translation of the time axis. Further information
on the Welerstrassian elliptic functions may be found in any

of the standard works on mathematical analysis



_[_"j-

(e.e., Ref. 5, Chap. 13). Notation for these functions has
not been standarized but varies from author to author.

The periods of the elliptic function (F(§) are
related to the three roots of the cubic in (2.2), which we

shall denote by e}, ep, and e3 by the relations
e = pw) €, = f(wa) e,= p(ws) (2.9)
el+62+63=O W, + W, +wy=0

For a given set of three roots, six different elliptic
functions may be formed from the six possible ways in which
the two periods 2w, and 2, may be associated with the
three roots. Actually, as far as calculations are concerned,
these six elliptic functions are perfectly equivalent. ZFor a
given value of § each of these six elliptic functions will
vield exactly the same numerical value, The six seemingly
different elliptic functions arise from the six possible
choices for the fundamental period-parallelogram in the complex

g -plane. TFor convenience in the work to follow, we need to
settle upon one of the six possible representations as the o6ne
which will be used.

Tach elliptic function 6)(§';g2,g3) having real

values for g» and gB has a possible fundamental period
which is real. Let us take this real period to be positive

and denote it as 2w,. Let us take the root e; as



associated with this real period by the relation f%uh) = él.
We shall see later that the root e is real. We shall
chose 2w, so that the period-parallelogram lies within the

first quadrant and so that Argw»Arg(-«3). With the period

2 w, will be associated the root e, by the relation @Gﬂz)= e, .

If all three roots are real, then 2w, is a pure imaginary
and e1 > e = €. If the two roots ep and ey are
complex, then the period 2w, is also complex. The period
2037 -2cw, - 2w, is always complex. !

The elliptic function (p(g) is physiecally
restricted to real values, since y(r,t), X(r), and O(r)
are all real quantities. Consequently, §‘ is not free to
vary over the entire § -plane but is confined to a family-of
allowable curves over the & -plane. These allowable curves
may be delineated from a study of the inverse elliptic

integral (vide Ref. 7, p.77) corresponding to the elliptic

function =z = ¢>(§ ;gz,gB), which is
0

£=|gu -3
= .ng where S = ju’ - gou = 24 .
F-

Because of the presence of the three poles of the integrand
at the points €1, ©5s and €3 in the u-plane, the value
of the integral (2.10) §‘ is not independent of the path
of integration. There is, in fact, a doubly infinite set

of values §’ which correspond to a given value of =z

(2.10)



depending upon how the path of integration loops around the
poles at e, ey, and ey . This is, of course, nothing
but the familiar statement of double-periodicity of the
elliptic function =z =(P(€) . The mapping of the z-plane
upon the §‘-plane can be made one-to-one only by introducing
cuts and Riemannian surfaces into the wu-plane.

Since the allowable values of 5 will depend
upon whether the three roots e;, e,, and e, are all
real or whether two of these roots are complex, the two
cases will be considered separately. Let us first examine
the conditions when ej; 1is reel and e, and ey are
complex conjugates. ZFrom the discriminant of the cubic, this

will be true whenever
3 l
/\[oa +Zé-/\} >0 (2.11)

Under these conditions S 1is real and positive whenever
u > ey and real, while S 1is real and negative whenever
u < ey and real.

Let us now determine the rangeof § corresponding,
to 2z by integral (2.10) when z > ej. Let us assume that
the vu-plane has been cut from each of the branch points
el, ey, and e out to infinity. T.et us take our contour
for integration along the positive real axis in the u-plane.

Along this contour, for z > e;, 3 is everywhere positive.



Let us assume in the particular Riemann sheet in which our
contour is situated that 8=% is positive. Then it is
obvious that 0 & § £, when +00>»z > ey . If other
contours are chosen which loop around the three branch vpoints
in various ways, the range of & corresponding to
z 2 e is extended. Alternately, the complete possible
range for &§ when 2z » e; can be found from the
proverties of (P(§) , such as its evenness and its
double~periodicity. The lines in the §-plane which delineate
the possible values of & when 2z > e} and real will be
found to consist of the real axié and &8ll lines parallel to
the real axis and passing through the poles of =z =(P(§) e
The values that & will assume when 2z & ej] may
be obtained in the same fashion. Since ey 1s the only real
root, the other two being complex, S will be negative for
all real u which are smaller than € Consequently,
S’% will be a pure imaginary along the real axis for all
real u< e;. Let us assume in the particular Riemannian
sheet in which we have taken our contour that S'?l§ is a
positive imaginary. There will be at least one sheet in
- which this condition and the one of the preceding paragraph
are valid. Hence, for the simple contour along the reai
axis and making an infinitely small half-circle around the
brarch point at ey, we see by (2.10) that §= w, + iP(2)

(function of z) when z £ej;. It is easy to show that



§ — 2w, when z —> - o . We can prove this in the
limit by taking the closed contour along a larse segment of
the real axis, a large semi-circle, and completed by a small
contour around the branch point ep and long contours along
each side of the cut to e, . Thus, for this particular
Riemannian sheet, we have w,&£&§<2cw;, when 2z £ ey . This
puts a definite restriction upon the provportions of the
neriod-parallelogram since it requires that Real 2w,= W, .
Tﬁis requirement will be supported by the approximate d
solutions in the following chapter. By using other contours
or by using the known properties of 65(§) , we see that the
lines in the & -plane which delineate the possible values of
& when z ( e; and real consist of the imaginary axis and
all lines parallel to the imaginary axis and passing through
the poles of =z =(P(§) N

The situation which has been discussed is diagrammed
in Fig. 2.1. Here part of the &-plane is shown with the
lines which contain all of the values of & which will yield
real values for z =65(§) . The solid horizontal lines
contain all of those § which will give real values of
% :> ey, while the dotted vertical lines contain all of the

& which will give real values of 2z £ e The diagonal

]- Ll
broken lines have been ruled in purely as an alid to the eye
in visualizing the net of period-parallelograms into which

the & -plane is divided. Actually, only the horizontal
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seement from O to &, and the vertical segment from I,

to 2w, have been discussed. The remainder of the allowed
line system has been derived either from a consideration of
alternative contours of integration or from the proverties :

of (fJ(g) "

(2.10) that if ey

We have also proved en passant by (2.9) and
1s taken as the one real root, then the
veriod 2w, is real and positive under the conditions that
we have assumed.

Geometrically the system of horizontal and

vertical lines must intersect. There are only two classes



of points at which they can interséot without creating an
ambiguity in value. One such class of points is § = @,
and all congruent points since at these points =z = ey -
The remaining class of acceptable points of intersection
is at the poles of (P(g) since no ambiguity in value can
be said to exist at a singularity. But from the theory of
<P(§) we know that Arg(%%%) %; when e, and ey are
comnlex. Thus the reguirement that Real 2w,=w, is
again verified.

Let us now consider the second case in which the
three roots €1, ©€p, and e3 of the cubic in (2.2) are

all real. From the discriminant of the cubic, this will

be true whenever

A[q3+ 2= } £0 (5.12)

Let us number our roots in the following order: e]_:> e3 > e, .

Then the quantity S in (2.10) will have the followineg siens

+oo > u > ey S >0
o1 > U 2> €4 s 0
e3 >u > e S >0
e, >u> -o00 s £ 0

Let us once more assume that the u-plane is cut and
multi-sheeted. Iet us take a simple contour of integration
for (2.10) along the real axis, slightly indented where

necessary to pass any of the singularities at ey, e,, and g .



For the purpose of our discussion, let us choose the particular

Riemann sheet in which

I
-

+00 > u > e S positive real

e] > u > e3 s-% positive imaginary
ey > U > e, s-% negative real

e, > U > -0 5-% negative imaginary

Then by the previous reasoning, we would have

to >z 2 € OL gL
&1 » Z 2 e W, £ § LW +ws
ey » %2 2 & _ W, +Wy>E D We

ey 2 2 p -o00 W€ 20

The last statement that &§ —= O when 2z — - 0O may be shown
in the 1limit from a contour that is made up ©f a laree
seegment of the real axis and completed by a large semi-circle
on the side away from the cuts. Since the closed contour
does not contain any singularities, the foregoing 1limit can
be proved.

The foregoing ranges of §‘ for real values of
Z =(P(§) may be extended, as previously, either by the
consideration of alternate contours or by the properties
of (ﬁ(§) . The situation for three real roots is shown in
Fig. 2.2. This plotted portion of the § -plane shows
segments of four families of allowed curves for the

variation of &§ . These encompass all values of §



which will yield real values for 3z = €(§) plotted

according to the following scheme

+t0 > 2 2 e s0lid horizontal lines
&1 2 %2 2 83 dotted vertical lines
€3 > 2z > ep dotted horizontal 1ines
€ 2 Z 2 -00 solid vertical lines

The system of solid vertical and horizontal lines outline the
meshes of period-parallelograms. Again it is obvious that
under our assumptions the period 2w, 1is real and positivé.
With a little study it is also obvious that in this case We
have the period 2w, as a positive pure imaginary.

Any of the allowed lines for & in Fieg. 2.1 or
FPie. 212 will give an acceptable value for y(r,t) in (2.3)
if the giegn of K(r), which is determined solely by the
sien of h(r), is properly adjusted. However, the
allowable values of &  are further restricted by the
parametric solution for the time t. The time t 1is always

a real number and must vary through purely real numbers as

y(nt)
K(r) ’

will be a real number whenever & ranges over any of the

§ wvaries. The integrand of (2.5), which is

families of lines shown in Fig. 2.1 or Fig. 2.2. Hence, if
the path of integration for (2.5) contains a segment of any
of the allowable lines which are parallel to the imsginary

axis, then in that seement we would have d4d& - (a pure imaginary).
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Gonsequently, the value of the integral, which is t + f(r),
would have a purely imaginary increment when &  ranges

over that vertical segment. Since f(r) 1is a constant for
a given value of r, this imaginary increment is impossible.
Therefore the path of integration of (2.5) cannot include
any part of the imaginary axis or of any line parallel to it.
Thus we see that the only physically allowable values of

are those which are included within the horizontal families



of lines shown in Fig. 2.1 and Fie. 2.2. The vertical
families of lines shown in these two figures, while
acceptable for y(r,t), must be excluded as yielding physi-
cally impossible values for t.

We have found valid ranges for the parameter &
which will give solutions of real physical meaning to the
general solutions (2.3) and (2.8). One valld range for the
parameter & is the system of lines in the &-plane
consisting of the real axis and all congruent lines re-
sulting from the periodicity of &5(§) . These congruent
lines are also parallel to the real axis and displaced from
it by 2nw, where n 1is any positive or negative integer.
Wwhile & varies along anv line of this family,
+0 >z =HP(§) » e, with z =+00 at &€= 0 and
all congruent points and with z = e1 at §'=CO. and all
congruent points. If the three roots are all real, a second
valid range of & is possible. This consists of a line
through «J,; parallel to the real axis and all congruent
lines produced by a displacement of 2nw, from it. When
§ varies along any line of this second family,
er € z = PC8) Le3, with z = e, at §=W3 and all
congruent points and with 2z = e3 at § =wW3 and all
congruent points. TFor a given value of N\ the roots are
solely functions of the value of ((r). For the most

general case the value of ((r) will vary with r and



consequently the behavior of y(r,t) will also vary.
Therefore the relation of X (r) to the roots is
important. In particular, if 7{ should lie uvnon one of
the allowed lines for &§ in the & -plane, y(r,t) would
have a simple pole at & =X and all congruent points.
This, of course, 1s required for M; and M2 solutions.

Let us substitute ((r) into the cubic

S(x) =4x>-9,% - g, = 3N ¢ (2.13)

Therefore, while & (r) 1is free to vary through all of the
real numbers, it will never cross a real root of the cubic
since S(o ) 1is a constant, independent of X (r). Hence
if JA(r) 1is located by any means as being between two real
roots of the cubic, it will remain between those two real
roots throughout its variation. In the case that the cubic
possesses only one real root e; ‘then if X(r) is
established by any means as being greater or less in value
than eq, it will remain so throughout its variation.

Such determinations can be made in the limiting
cases in which the cubic has repeated roots. 1In the
limitine case that X (r)— X 0O , i3 N can be
neglected in g5 as compared with 8x> and the cubic

approaches

S(a>t@)=4z>- g,z ~ g, ~ 4(z+2)(z-)" (2.14)



where the cubic has a real root of -2« and a real re-
peated root of X . In the other limitine case in which

3
oz _ )
78 N we have

S(oP=-gN)=42°- g, 2 — g, =4 (z-2)(z +ox)?

in which the cubic has a real root of 2 and a real
repeated root of -&. The location of A (r) with
respect to the roots from (2.13, (2.14), and (2.15) is
given in Table II. Since we have arbitrarily taken ej
to be either the only real root or to be the largest
vpositive root, it has been necessary to reorder the roots
in one instance.

After these rather lengthy preliminaries, We are
now ready to particularize the general solution of equations
(2.3) and (2.8). In the early part of this chapter we
deduced certain conclusions directly from equation (2.1) as
to the local behavior of the solutions under certain
specified conditions. These conclusions are tabulated in
Table I. “e also found that if the solutions contain the
values y(r,t) = 0 or y(r,t) =+ 00 that they must behave
in = certain fashion in the neighborhood of these values,

We will now examine the general solution to see if these
conditions are fulfilled.

An inspection of Table II shows that the problem

falls into four groups. Let us take these groups in order.

(2.15)



Table II

A X e, €3 €, Range
+ oo -2 X X
0<3>“zl‘é/\ Real Complex Complex| o> €,
C=-zg A | 2 - X -
+ Change in notation of roots
C=-gg A | ~ —x | 2x
o® <—21_|é§ Real | Real | Real |€,{xX{ ey
— o0 =2k X (©¢
+ o0 (0. X -2
o®>-z A | Real | Real | Real [(3¢&@
— |oP=—zg A\ | 2 - - X
3 |
C<C 2 A Real |Complex|Complex e
- 0 2K X X

First, let us consider the cesse in which A > 0 5
Here we will have one real and two complex roots for the cubic
in equation (2.2), and consequently the system of allowed 1ines
for the variation of & shown in ¥ig. 2.1 will apply. Since
X (ry) 1is real and greater than ey in value, X eand its

congruent points will lie on the allowed lines for f . Ior

the sake of definiteness, let us take 0 { X 4 W, where X

and o>~ _L

T\
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is the real number which satisfies (f(7()= X (ry). Under

these conditions, the situation in the & -plane is shown in

Tie. 2.3. Only a part of one period-narallelogram is shown,

but this is sufficient since these relations are repeated

indefinitely over the mesh of the period-parallelograms.
There are two classes of solutions. ‘hen

-X & § {+X and in congruent segments, we have M

solutions. When 2w ~X2>&2+X and in all congruent segments,



we have M, solutions. When -—-X £§4+X and in

V
Q W

all congruent segments, then (P<§) (ro); hence K(rp)

in equation (2.3) must be positive. From the definition
of X(r), h(r,) > 0O for the M; solutions. If

F(& ) = 0 in equation (2.8), then at € = 0 and
congruent vpoints, we have y = 0 and 1t + f(r,) = 0.

If equations (2.3) and (2.8) are exnanded about the point
€ = o or about any of the congruent points and only the
first term of the expansion retained, then we find

y = K(ro) £ and t + f(ry) ~ % € . These two
parametric equations may be combined into the explicit

2/ g 5 & ¢
= which is wvalid in

expression vy(r,t) = (9h/ufé(t + T)
the neighborhood of y = 0. This is, of course, exactly
the behavior predicted in the preliminary discussion for a
solution in the neighborhood of y = 0. Moreover, since
equation (2.3) can be zero only at EZ 8 and congruent
points (i.e., the poles ofé%g)), this behavior in the
neighborhood of y = O must be true for all possible
valid 0Oy and M; solutions.

Let us now examine the behavior of the My
solution in the neighborhood of & = +7X . At the point
& = + X we have by substitution into equations (2.3)
and (2.8) that y = +o0 and t + f(r,) = +o0. This is

proper for a Ml solution. Zxpanding equations (2.3) and

(2.8) in the neighborhood of &§ = + X we find to the



K (v.) !
& (€ -x)

log (§ - X). Since for the particular

and that

first terms that y =~
I
e

X chosen, we know from equation (2.2) that

t + fry) =

657(7(> =-( A /3)%, we can combine the two parametric
expressions into the explicit statement that
v = Hqé%_eJ§l$+¥) which will be valid in the neighborhood
of y —>=+00 and t -—=>+00., If we define a new function
of integration as f"(rg) = flry) + 3(3/ A )%log(l%gf)
the limitine behavior at infinity is identical with that
given in the preliminary discussion in the early part of
this chapter. At the other pole & = - X , we have by
substitution that y =+o0o and t + f{ry) = - co. The
1limiting behavior of y(r,, t—+-o0o0) can be found by the
same procedure and is again identical with that given in
the preliminary discussion. lioreover since equation (2. 3)
can be infinite only at & =% X and congruent points,
. this behavior as y-—» +o0omust be true for all valid M
and M2 solutions.

Since we have teken /A > 0, the condition
o3 > - N\ /L8 is true for all positive values of O((ro);
The sien of X (r,) is the same as the sign of e(ry);
hence the M; golution is velid for
/A >0, elry) > 0, and h(rg) > 0 which are the conditions
for solution A in Table I. The condition K>>- /A /48

allows A (r,) to assume a limited range of negative values.



But by the definition of O (r,) the condition u3>-}eA
is identical with the earlier condition ]93) & %—/\ h* so
with A>0, =#(r,) <0, and h(r,) > O wunder the
condition 193‘<§—/\, h* we have solution D of Table I.

Now consider the second class of solutions when
2w,-X 2 € >+ X and all congruent segments. Here
65(§) £ d(rp) and so K(r

necative to give physically plausible values for y in

o) &and hence h(r,) must be
equation (2.3). We may, if we wish, adjust F( §°) as

discussed earlier so that t + f(r,) = 0 at =, ,

At this point y has its minimum value of y = K(rg) (e )7t

At the point & = + X, we have y = +o0 and t + f(ry) =+oo.
At the point & = 2w,—- X, we have y =+0 and t + f(ry) =-00.
Thus for this range of the parameter, the solution is indeed

M,. The limiting behavior of y when y—+00 is the same

as that discussed in a previous paragraph. FHence we have an

¥, solution for A >0, glry) > 0, and h(ry) £ 0 which

N

is exactly solution E 1in Table I. We also have an M,
solution for A >0, g(ry) <o, h(ry) € 0 under the
condition that [931 <%/\ h* , which is part of solution r
in Table I.

Let us now consider the second case in Table II
where /f\ > 0 and where &> < - A /48, Here we have
three real roots for the cubic of equation (2.2) and hence

will have the allowed system of lines for the variation of &



shown in Fig. 2.2. Since e, « 4_83, X and its
congruent points will again lie on the allowed lines for

& . To be specific, let us take Wy & A LW, +W, and
then the situation in the &-plane is shown in Fie. 2.4
where again only part of one period-parallelogram is
shown. Here there are three classes of solutions accordine
to whether §' lies within one of three different domains.
If §' ranges over all of the real values or over a
congruent domain, O; solutions are produced. Since
everywhere within these congruent domains

05(§):>C1(r0), K(ry,) and hence h(ry) will be positive
in equation (2.3). At § = 0 and at all congruent points
y = 0 Dby substitution into equation (2.3)., 1¢
| §°) = 0, then t + f(ry) = 0 at §= 0. At the

congruent point & = 2o t +f(r,) = T where

4 [
W = i L { ¥
dsl(?()[ &%) 7( C(w,)] Let us consider the

parametric point § within the first period-parallelogram,

T =

that is 0<& < 2w,, and a congruent point & + 2nco,
where n 1s any positive or negative integer. Then, upon
substitution into equations (2.3) and (2.8) we have

v(ry, & ) = ¥(rg, € + 2nw,) and t(rg, & + 2nw)) = t(rg,&)
Thus the 07 solutions are indeed cyclic with a period of
in time. In these solutions the maximum value of

y = K(rg) (e - o()-l occurs at & = &, sand at all

A 3 .
congruent points. Since the condition X <(-/\/h8 is

+nT.

T
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3
equivalent to the earlier )9 }:>‘§ N h* , these 0y

solutions exist when /\ > 0, e(r,)< 0, h(ry) > O and
subject to the stated condition. This is exactly solution
B in Table I.

If & 1lies within the domain 2w, +2w,~X 3 §2+)X,

or some coneruent domain, then DM, solutlons exist. Vithin



any of these coneruent domains 05(§) > A (ry), and hence
h(r,) must be positive. At £ 2w, +2w, - X we find
that y =+ 00 and t + f(ry) =+oo. While at & =+X
we have y =+o0o and t + f(ro) == 00 . At §= W, + Wy,
we have the minimum value of y = K(ry) (e3 -o)"L. ye
may adjust F( §, ) as indicated earlier so that

t + f(rg) = 0 at this point, if desired. Therefore the
local behavior of these solutions is Mo as stated. These
solutions exist when /A > 0, gl(ry) € 0, hiro) > 0, under
the condition that ’93} > %/\. hz and are accordingly
identical with solution C 1in Table I.

The remaining class of solutions is produced when
£ 1lies within the domain <+ > & > 2co,—X or any
coneruent domain. These solutions are also Mo, Within any
of these congruent domains <P(§) £ ol(r,), and hence h(rg)
must be negative. The behavior at the poles of y and at
the minimum values of y 1is similar to that of other Iy
solutions. There is no particular reason for repeating this
discussion with only small changes in the symbols used. It
It mieght be noted, however, for all solutions in which
h(ry) << O that the parameter §' must progress in a
negative direction if the time t 1s to progress in a
positive direction. This last class of Mp solutions exists
when /\ > 0, g(ry)<0, h(r,) £ 0, under the condition

kaﬁ >>§.A.h2. Hence this is the remainder of the solution F



eiven in Table I.

In the third case in Table II where
A <0 and o > - A /L8, the cubic has three real roots
and hence the system of allowed lines for & will be
identical with those of the previous case. Since
e3¢ % ey, X and its congruent points will not lie on
any of the allowed lines. Hence the valu=s of y in
equation (2.3) will not possess poles for any of the allowed
variations of & . Consequently our solutions will be {
bounded from above in accordance with our early discussion
for all cases in which A < 0., Since X does not lie upon
any of the allowed lines for & , 1its exact definition is
not important for the determination of the domains of &
for the various possible classes of solution. For convenience
in our drawing, we shall take X as lying within the
fundamental period-parallelogram, but this assumption has no
further implications. The situation for this case within
the & -plane is shown in Fig. 2.5. There are two domains
for‘ & which will give two different types of solutions.
When § ranges through all the real values and for all other
congruent domainé, an 07 solution exists. When the
parameter §' ranges along a line through &, parallel to
the real axis and for all congruent domains, an 0,
solution exists.

For real values of & or for any congruent values

05(§) > d(ry), and hence h(r,) is positive for these
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classes. The behavior of these 07 golutions is identical:

with that of the Oy solution discussed earlier, and so it

does not need to be repeated here. The condition

o’ >-/\ /L8 is identical with the earlier condition

93><—?IAI h*. Therefore the O0; solutions occur when

N £ 0, glry) > 0, h(ry) >0, subject to the condition 93>;,{9)A[h2

and are thereby identified with part of the solution G in Table I.



When &€ lies within the other domain
(F(g) 4 Alr,), and hence h(r,) must be nesative to give
proper physical meaning. Here we have a new class of
solutions. Here the minimum velue y = K(rg) (eo -<x)‘1
occurs at § = &, and all congruent points, while the
maximum value vy = K(rg) (63 - a)-l occurs at § =W +wz
and all congruent points. By adjusting the constant F(§;)
we can have t + f(r,) = 0 at any desired point, wherein
it repeats itself except for an additive constant T
in each successive mesh of the period-parallelograms.
As in the 0; solution, we find for a given point € and
one'of its congruent points
&+ 2nw, that y(rg, § + 2nw,) = y(ry, &) and that
t{rp, € + 2nw;) = t(ro, & ) - nT. Hence these solutions
are bounded at finite non-zero values both for maximum
and minimum values and are periodic with the period T in
time. Thus these solutions behave locally like O0p. These
solutions occur when A <0, gl(ry) >0, h(ry)<40, and
subject to the condition 93>3%f/\fh2 and hence are
identical with solution I in Table I.

The remaining case in Teble II is for
A<0 with o £ - AN /L8. Here we have one real snd two
complex roots to the cubic. The system of allowed lines for
variation of & 1is accordingly that of Fig. 2.1. Since

<€, , X and its congruent points do not lie within the
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allowed range of variation of & . Takine X for
convenience in illustration as being within the
fundamental period-parallelogram, the situation in the

§ -plane for this last case is that shown in Fig. 2.6.
Here there 1s only one congruent group of domains for
which 0y solutions exist. Since é%§)>”1(ro), h(rg)

is positive in value. The condition ®® <& - A /L8 is
satisfied for all negative values of Ci(ro) and
consequently for all negative values of g(ro), Therefore.
we will expect an O3 solution when

A L0, glrg) < 0, h(ry)> 0 which are the conditions
for the solution H of Table I.

The condition ™°< - A/L8 allows A(ry) to
assume a limited range of positive values. This condition
is equivalent to the earlier condition 93<%—,/\] hz .
Hence with /A<0, e(ry) > o, h(ry) > 0 and subiect to
this last condition, we have the remsinder of solution
G in Table I.

The foregoing comprise all of the physically valiq
solutions to the original differential equation (2.1) under
the most general conditions. However, there are a number
of special solutions to this differential equation in terms
of non-elliptic functions. These special solutions, which

exist under restricted conditions, will be considered in
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the following chapters. The general solutions agree with
the deductions made earlier from the equation (2.1). The
only solutions which include the value y = O are the

0y and Wy solutions for which in all cases h(r,) > O
The only general solutions in which y approaches infinity

in value are the M; and My solutions for which in all

cases /\ > 0. Moreover, these solutions behave in the
neichborhoods of y = 0 and of y —= + 00 as predicted.

When the nomenclature is transformed back to the originsl



Table IIT

/\ | Conditions glr) hir) | Type |Parameter Range

Code letter

+ + Mi |- X£€ 8 £+ X A
0(3>_~|__ + ~ Mz |2w=-X> & +X E
48 —~ + M | X £ 8 £+X D

- = - Mz [20-X> €2+X |Rart of F
. + O, |é=all Real nrs. B
g N[ = [+ [ Ma|Xge@unaox] C

— — Ma | X3 £ 2w.-X |Part of F

O(3>’——L + + Oy |[&=all Real nrs.|Part of &
48 + — 0o |§=w2+Real nrs. I

o3 L =% = O, |&=all Real nrs. |Part of €
48 — + O, |[&=all Real nrs. H

functions, the local behavior of the general solutions is

found to be that postulated in Table I for the various signs

and conditions on A\

» &lro), and h(ry). we have in

addition established the actual ranges for the parameter

& under these conditions so that actual calculations,

albeit with great difficulty, can be made.

This material can be presented more succinectly in

tabular form, as in Table I1I., Ilere the first few columns

give the various possible conditions for

N, glry,), and h(rg). The next column gives the




Robertson-Tolman symbol for the local behavior of the
solution in the neighborhood of r = r,, The following
column gives one possible range for the parameter &
for these conditions. The parameter range given is only
one out of an infinite number of possible parameter
rances which will fit the same condition. ITf §' varies
over one of the ranges given in Table III, then

§ +'2nu%+'2vncoz is another congruent parameter range
which will give equivalent mathematical results. The
last column carries the code letters first assigned to
the tenative solutions in Table I. These code letters

facilitate the intercomparison of Tables I and IIT.
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Chapter IIT

Approximate Solutions

In the preceding chapter we have solved the
partial differential equation (2.1) in the form of two
parametric equations involving Weierstrassian elliptic
functions. The allowable values of the parameter which will
yield all physically acceptable solutions under the most
peneral conditions have been tabulated in Table TII. While
these solutions are exact, they are not convenient for
actual calculations because of the complexities of the
Weierstrassian functions. For the purposes of & numerical
computation we would prefer a good non-elliptic approximation
to an exact, but intractable, elliptic solution. In this
chapter we shall develop some non-elliptic approximations
to the general solution under certain conditions upon the
values of O (r) and /\ which may or may not be true.

In the preceding chapter we have taken the
cosmological constant A\ as being an unrestricted real
constant. That is,~0{ A &+00 . This is in accordance
with the genersl theory of relativity in which /\ may be
assigned any real value and the Einstein Field Equation
will still have a zero divergence. However, the actual
value of the cosmological constant is to be determined from
the architecture of the space-time continuum with which we

are concerned. The planetary orbits are given within the



limits of the observational errors by the flat assumption
that /A = 0. Thus the cosmological constant is very small,

if not actually zero. Since the homogeneous cosmology is =
first approximatibn to the non-homogeneous models being
considered here, the value of the cosmological constant

must fall within the range deduced by Tolman (Ref. 1, p. 47L4)
of -2 x 1018 A <5.7 x 10-1®, where the unit of length
used is the light-year.

While a plausible assumption is that A\ = G, this
is a severe restriction, which will be considered in the
following chapter. In this chapter we shall make the less
severe assumption that N\ is a vanishingly small number,
and in particular that |A| < |C13’ . This last assumption
is one that may or may not be true since O(r) itself
has small values within the surrounding space that we are
able to observe. We shell later see that taking
n(r) = 4k°r3 and g(r) = -r2/R2, where K> =§%TTE% reduces
the line-element (1.23) to one of the standard forms for a
non-static homogeneous line-element. Hence to the
homogeneous approximation, we have from Tolman's data
(Ref. 1, pp. 461 & 474) that -2.7 x 10713 ofr) K 2.9 x 10-14,
where again the unit of length used is the light-year. This,
3

|

)

of course, does not prove the assumption that l!\\ <: ‘Ci
but it does show that the condition is possibly true.
I A= 0, then g3 = -8<><3 in (2.2) and the cubic

has two repeated roots as shown in (2.14). Under these



conditions the general solution of (2.3) and (2.8) may be
expressed in terms of non-elliptic functions. Hence if
/\ were vanishinely smell and \/\‘ <: |CX3\, we would
have g, == -8 and the cubic of (2.2) would have two

nearly eocual roots. Thus we would expect to obtain an

approximation to (2.3) and (2.8) in terms of non-
elliptic functions, where the approximation becomes
better and better as the two nearly equal roots approach
each other in value, that is as N —= o,

From Madelune (Ref. 7, p. 78, eqgs. 21 & 22 corrected)
we take the relations between the invariants and the periods
of the Weierstrassian functions as

9.~ () [ + 200> 4]

6 0o 5 _2n
Y ALLU N L 4 E A
93"(“?) [216 3 | —c‘}”‘}
n=1
5 -o_o’x
where q - em‘w'?

The periods COT and @), are marked with an asterisk to
distinguish them from the periods O, and W, used in
the previous chapter. The periods used in Chapter II
were defined in a particular way while @) and an may
be any one of the six possible pairs of values. We shall
identify e and @5 to suit our convenience. In some
cases they will be defined as in Chapter II while in

other cases the indentification will be exactly reversed



from that of the previous chapter.

As N approaches zero, a approaches either zero
or unity, depending upon how the two periods are defined.
That is, as N — 0, one of the periods approaches a
finite 1imit, which may be either real or imaginary, while
the other period approsches an infinte limit, which again
may be either real or imaginary. We shall take W) as
the period whose limit is finite as /A — 0. Then by the
definition of q, q —= 0 as /\—= 0. Consequently, if"
we expand the Welerstrassian functions in powers of q,
the first few terms of these expansions will give a good
approximation for computational purposes as A — o.

In this work we shall carry out the approximatiom as far as
the < term wherever this 1s feasible.

Since our invarisnts are
S = 19w and gB = —8(X3- /\ /3, we can use equations
(3.1) and (3.2) to obtain approximate expressions for X(r),
cof, and QQ;. The uncertainity in sign upon taking the
square root of (3.1) may be resolved by an appeal to the
decenerations of the Weilerstrassian functions
(vide Ref. 6, p. 105). When ¢ = 0 with o £ 0 we find
that @, 1is a real number; hence the negative sign must be
used and we have

A(r) %—.%—(21;‘)2[| + |20%2+____]

(3.3)



This approximation may 1in turn be solved for the veriod Ojf

wr%&/%& [l + 60 %24——-—] (3.1)

While the definition of g gives the approximation for QJ; as

x f )
(A-)z %'é—-—'—— ,.‘_3__0(.. [‘ + 60%24— — -—-—] ‘03 % (3.5)

Apn approximation is also needed for q if
computations are to be made. This approximation can be made
by forming 34/3 €3 g2-% = -1 - A /2, from equations
(3.1) and (3.2), rearranging, taking a square root, and then

inverting the series as

G=~137 78 [1—5.295xxo'3-&/-\3-+———1 (35)

Therefore, in the extreme condition that x= - A , the

first term of (3.6) by itself gives q to two significant
figures. 1f I/\{ is appreciably smaller than hxsl , the
first term of (3.6) alone gives q to sufficient accuracy
 for all comprutational purposes with the present observationgl
data. By taking the condition o= -/\ as extreme, then
l%[will have a maximum value of 6.94 x 10-3. Thus

approximations to the Welerstrassian functions which are



Table IV

Class ) | §=Real |£=,+Real | g w* o
I + M M| — ie |-iC |c-£c
in - O, M, M| e |C |iC
T + O, O, e |-G | G
v - — ie | c |GG

carried only to the

q2 “term will give more significant

fieures than the present observational data would justify.

Hence the approximations to the general solutions, which are

to be derived, will be quite good under the conditions stated

at the beginning of this chapter.

may be used to find nearly exact values of g,

The three approximations of (3.4),

(3.5), and (3.6)

&y

X
9 (A.)z_ y

for the four main groups of conditions listed in Table ITIT.

As such,

the data of Table IV aremerely an extension of

the data of Table III and are valid only under the conditions

of this chapter.

to the four grouns so that they may be referred to in the

text.

In the first column numerals are assigned

The secondcolumn gives the siecn of the cosmological
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constant. The third column gives the sign of X (r), which’
is sufficilent in the present circumstances where |A|< {cx3\ :
The next two columns are only reminders as to the types'of
solutions which will occur. The exact statements about the
typves of solutions which will exist are found in Table III.
The sixth column gives the approximate value of g, where
€ 1s a small finite real number whose value is to be
determined from (3.6). The following column gives the
approximate value of oof, where C7 1is a finite real
number whose value is to be derived from (3.4). The last
column gives the approximate value of W}, where Co

is a large real number which approaches infinity as g
approaches zero. The exact value of Co is to be found
from (3.5). Table IV is actually only a mnemonic to aid in
arranging the various approximstions to the general
solutions.

There is considerable freedom in specifying the
periods w7} and wWj; because of the ambiguity in sign of
eouations (3.4) and (3.5) and because of the symmetry of
the poles of Cﬁ(g) about the real axis. Those listed in
Table IV were chosen to give a vanishing a with an
infinitely increasing C,. It has been assumed here that
both C; and C, are positive real numbers. Eouation
(3.5) gives complex values for (D, in classes I and IV

since log 1i€= 3TT i + log €. The periods of Table IV



are readily identified with the periods of the previous

chapter. They are, in fact

I W) = W ~2wa Wi W -Ww,
II W) = W, S = G
11T Wi=-Wy Wiy = Wy
IV wf = Wy Gy = Gl

In classes II and III the three roots of the cubic in (2.2)
are all real and the period-parallelogram is a highly
elongated rectangle which apvroaches an infinite strip as
a approaches zero. In classes I and IV two of the roots
are complex and the elongated period-parallelogram is not
rectangular but still approaches an infinite strip parallel
either to the real or to the imaginary axis as a
approaches zero. In class IV it is immediately obvious
that Real Wy, = 4 Real W, as stated in the previous chapter.
If the periods for class I are solved, we find that
G,= 20, and ,= Cy + 3iCy. Hence here also
Real w,= % Realw,. This is a verification for the statement
in chavnter II, which was derived mainly by geometrical
reasoning.

The Weierstrassian Pe-function may be stated as
(vide Ref. 5, p. 379)

+ +00

/
=TT N )L § csc?TE-2nws) 2 nrew,
(P(f) (2‘0."> 3 + Zw"‘ csc o

-~ o0 - 00

(3.7)



where the prime over the second summation sign signifies
that the n = 0 term is to be suppressed. ZEquation (3.7)
may be used with equation (3.3) to form approximations for
equation (2.3). The latter approximetion may in turn be
integrated according to equation (2.5) to give an
approximation for equation (2.8). This we shall now
nroceed to do for each of the eight allowable solutions
listed in Table IV.

1., Classes II & Iv, § = x.

We shall use x throughout this chapter to
signify a purely real variable. Here we wish to
approximate in the neighborhood of § = 0 and along the
real axis. We shall accordingly find approximations to
the following two solutions
II. A>0 g < 0 b >0 Wi=g¢
Iv. N<0 g<£ 0 h > 0 ool 6, q =le 9% =-€

From (3.7) and (3.3) to the q? term, we find

P -~ () g + 896 o) -]
2——5‘- 1

Under the present restrictions, 56 q2<g 1, so (3.8)

may be used in (2.3) to give an approximete solution which
is valid over the entire real range of x. Carrying out the
approximations and transforming the coefficients back into

the original g(r) and h(r) functions, we have



S 2[80 - = ——
HNQT__S)_[l Cose-l-% {80 65 cosE 16c0526+co$36}+ ] (3.9)

t+f %____h_____ [e—sine +?2{I4OQ-)255in6 -8sin26 +-:;—sin 39}4————:’ (3.10)

where €9=€%§
]

with q? =+€?, we have Solution B of Tables I & III;

with R =-€?, we have Solution H of Tables I & III.

The relation between ¥y (-g)%(t + ) 1s a distorted cycloid,
approaching more and more closely to a perfect cycloid as

q— 0., This is in agreement with de Sitter's (Ref. 8) .
numerical quadratures of the non-static homogeneous models.

2. Classes I & III, & = Xx.

We wish to find the approximations in the
neichborhood of & = 0 and along the real axis for the

following solutions

I. A>0 g>0 h>0 Wf=-1ic q=ie g2 =-€
¢ 2
IIT.AK © z >0 h > 0 wi:-lcl q =€ q2_+eOl
Carrying the series expansion to the q2 term, we find that
@(g‘)-qm-/n )2 - | + 8 2(6—cosh‘l’.‘.)+——-- { 3.d1)
\2C| sinhz%é % Cl
]

This cannot be used in (2.3) to give an approximation over
the entire range of x since 02 term will exceed the first
term in value as x-—+»%x00. /e shall first approximate in

the vicinity of x = O where the q? term is appreciably
smaller than the first term. Then we must consider a new

approximation in the neighborhood of § =&, for the further
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behavior of the solutions. We note, however, that for

class III o2 =+€% so (3.11) does not change sien as x
varies throughout its real range. Hence both approximations
for this class are for a single cyclic solution. In class I
q° = -e®* so (3.11) will change sign, going throueh a

zero, which produces a pole for y(r,t) at x =X and at
any congruent point. Thus the two approximations are for
two different solutions. The approximation in the
neighborhood of x = O 1is for the M; solution with

h > 0, while the other approximation in the vicinity of

€ =W, will yield the M, solution with h £ O.

Carryineg out the indicated approximations in the neighborhood

of x = 0, we have

o~ h -— -— 2 - = Cco cos —
Y ~-2-9-[coshe | % {80 65 coshB - 186 cosh 26 + h 39} P _..] (3.12)
t+f 2:3& [sinhe -6- %Q{MO - 125sinh© - 8sinh 26 +-é—sinh39}+ -—-—] (3.13)

T X%
where e ==
G

with q? =+€2%, we have part of Solution G of Tables I & III;

with o° =-€?, we have Solution A of Tables I & ITI.

If these parametric equations are plotted with g 0, the
resultine curve for the relation between y and t 4+ f will
be found to be similar to de Sitter's Curve V as given by
Tolman (Ref. 1, p. 411). This should be expected, of course,

since de Sitter's curve V 1s a numerical integration of a My



solution in a homogeneous model. These parametric equatiohs
might be termed a distorted imaginary cycloid, since the
substitution of an imaginary parameter and a change of sign
for g(r) into (3.12) and (3.13) will exactly yield the
earlier parametric equations (3.9) and (3.10).

For the 07 solution of class III,
W,;= Ch—>=+ 00 as q—=0. Consequently, we would expect
this 07 solution to resemble more and more closely a
My solution as g — O, For the 0; approximation in the
neighborhood of & =@, which will be presented shortly, we .
expect to find less and less physical meaning as q — O,
degenerating into y =+ocoand t + f =X 00 when q = O.
Thus, as the 1limit is approached, the parametric
approximations of (3.12) and (3.13) will be sufficient for
the entire solution of class III.

3, Class IITI, & =W, + x.

In the previous section we have seen that the
behavior of the 0y solution in the neighborhood of & = 0
and congruent points is very similar to the behavior of a
My solution. We need to approximate the 0; solution in
the neiechborhood of its maximum points, & =, and
conegruent points, to show that it is actually cyclic. Since
W, =007 in class III, we shall approximate up to the qZ?

’ § ok x g .
term in the vicinity of §==002+ X, Wwhich gives



Pl - Q,,_(_ZT_TG‘Y[-B% cosk%'é + 32%2(2—c05h2.%‘¥.) +———} (3.14)

Usine (3.14) in turn, we find for the 0; solution in

the neieghborhood of & = @, + x that

| - 4 —_——
y z_gh._[_g%_ sech ©® + sech™® - 5 + ] (3.15)
] ~br .
‘I:+F'—§,—9'1/2[E§ tan” (sinh B) ++anh9—~|2*9+“"—‘] (3.16)
where =FC='1~ . q =€ and all other condition on the

class III 0y solution are as in the previous section.

As predicted, we see as q—>0 that y— 4+ 00O
and t + f—» Xt QO . Ve can gain further insight into the
behavior of this approximation by assuming that aq is |
sufficiently small so that only the first term in (3.15) and
(3.16) needs to be considered. Then the two parametric

equations can be solved explicity as

3%\[‘%\—3— cos[\/%(t-rﬂ] (3.1

Thus the maxima of the 07 solutions are distorted cosine .
curves. Hence the O solutions are cyclic as indicated.
But it is also obvious when /\—0 that the 07 solutions

anpproach to My behavior.



L. Class I, & =@ + x.

Here we seek the approximation in the neiehborhood
of § =&, and congruent points and along the real axis for

the following solution

I. A0 #>0 h<0 @Wf=-1iC q=ie q? =-€° 1,

We cannot use the approximations of the preceding section
®x
| ®

since in class I we have = 2cj, —~ W Carrying out the

reguired avvroximation up to the q2 term for the neiehbor-
hood of &= 2w,- W, + x, we find

|

2 7T
cosh zc

per-«~-(E)|

= 8%2(6 + cosh.TC’_:Z‘_) ¥ — *_}
I

Using this to find the corresponding approximations to the

general solution, we have

yz-é':-g- ,}:oshe + | +%2{60 +30cosh® -36cesh26 -6 cosh 39} + - = --]

t+-Fz2“';’/ [Sinhe +0 + %2-{120 © +905inh©® -18 sinh 26 - 2 sinh 36}-}--——]

g2
_ITX
where -zj—

Under the conditions stated at the beginning of this section,

this is Solution E of Tables I & ITII

The parabola-like relationship between y and t
defined by the approximations of (3.19) and (3.20) is not
one of the named family of parametric curves. If this

relationship is calculated, it will be found to resemble

(3.18)

(3.19)

(3.20)
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closely de Sitter's M2 solutions for the homogenous models,
as might be expected. This approximation is not good for
large values of O , and consequently, for large values

of y or t + f, since the ¢2 term of (3.18) will then
exceed the first term in value.

5. Class III, & =@W,+ x.

We have produced the approximations for all of the
solutions listed in Table IV in which the parameter &
ranges over the real axis or some congruent line. There
remain three solutions in Table IV in which the parameter
varies over W, + x or some congruent line. Here we wish
to consider the O, solution which exists under the
following conditions:
11I. N L0 >0 h<0 Wf=-1c¢ q =€ 0?2 =+€* 0o,
Since in class III W,= -w;, we shall approximate up to the

92 term in the neighborhood of & = @7 4+ x

2
J)(§)-0(av..-<—-———-ﬂ ) ’ +8c82(6+cosh1-"—"-)+———— (3.21)
2C 27TX Cl
| cosh*IIX
2C

This approximation may be used in (2.3) only for a limited
range of x since the q2 term will exceed the first term
as x—»* ©0O. To obtain the temporal behavior of the entire 02
solution, we must make a second approximation in the

neighborhood of E =W, + W, + x. For the present

neishborhood, we have



yz__b_l}oshe+)+% {60+30cosh9 36cosh26 - 6coshae}+___}'

(3.22)

}f ,A\_,Z”P;/ [S;nhe+9 +%2{1206 +90sinh® — 18 sinh 26 - 2sinh 36}-4»—] (3.23)

32

_IT X
Ci
This is formally identical with an earlier apnroximstion,

where

except that here q2 =+€~ and this part of Solution I of

Tables I & III. Consequently, the O, solution in the
neichborhood of & =@, end congruent points resembles the
M, solution, becoming identical with it when aq = O.

6. Class III, €z, +0,4+ x.

To continue the study of the 0, solution, we
now want td approximate to it in the vicinity of its
maxima at & =@, +wa, and congruent points. Carrying out
this approximation up to the .02 term in the neighborhood

of £z +wj; + x, we find

P(g‘) 0t~—(—%)2{8? CoshTTx .,.32(_3_ (2-cosh TTX)+____} (3.2L)

Usine (3.24) gives

yz—éb-[g% sech® -sech®®© +=5 + - - —]
t+F=$:§ -LﬁthBMhG)—hmh94“%9'*‘“']
g 8%

TT X
where = =
G

(3.25)

(3.26)
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Under the same conditions as the previous section, this is

the remainder of Solution I of Tables I & III. By taking

q sufficiently small so that all terms other than the first
may be ignored, we can solve these parametric equations

explicitly as

Y z\/?{ cos[‘/—%z\ (t+{)] (3.27)

Thus the behavior of the O2 solution at its maxima is
similiar to the behavior of the Ol solution at its
maxima, being a distorted cosine .curve.

7. Class II, & =w,+ x.

There are two solutions that exist along this line,
both being M,. We shall first consider the M2 solution
that exists in the neishborhood of &§ = Wz under the
following conditions:

II. AN > 0 e<0 h<0 WF=o0y q =€ 9% = +€ W

In the vicinity of & Z )+ x to the qR term, we have

Os(g)”c(z%)z{-B%cos%l‘ +32%2(2-cos21rc_x.)+___} (3.28)

mployine (3.28) in the usual way, we find

yz((:——g))[éi%sec 26 +sec;229—-—é—+~~——-] (3.29)
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h | o
£ z(ig—)%[‘é% log +an( —E-) + tan 26 -6+ ]

- T
where e z§§
Under the conditions stated here, this is part of

Solution F in Tables I & III, With q sufficiently

small so that all terms other than the first may be dropped,

these parametric equations can be solved explicitly by

means of the elementary lambda and gudermannian functions as

y ;;«,.\}:/%3 cosh[ _% (+ +-F)]

Thus this M? solution is a distorted catemary.

8. Class II, & =@+ W32 + x.

The remaining solution listed in Table IV is
II. N >0 g L0 h>0 wW¥=¢0 qa =€ g2 B
Carrying out this approximation to the g?2 term in the

neieshborhood of §=¢Co + ]+ x, we find

9“‘(‘:%[@'% sec 260 - sec*26 + -—'?: +,———1

MEERAE

(3.30)

(3.31)

(3.32)

©4

.
where 2C,

Under the conditions stated here, this is Solution C of

Tables I & III. The further approximation when only the

a-l term is considered is identical with (3.31) so this

solution is also a distorted catenary.



The foregoing comprise the apvroximations to
every solution listed in Table IV under the conditions
stated at the beginning of this chapter. Approximations
have not been esiven for every solution in Table III.
Solution D and narts of Solutions F and G exist only when
Al > 48 l0<3[ , which is contrary to our apvroximating
conditions. These solutions, as well as those of Table IV,
may be approximated under different conditions. Since the
cubic of (2:2) will also have repeated roots when

= - L8 st , we shall take = - L8+ A , where
A is a vanishinely small real aquantity.

“ith this new condition, we can avpproximate to

the 02 term, as before. Zquation (3.1) egives an

approximation for O (r) which is

uuva:+é(ézﬂfp-+12c>%2+—-—-]
]

This is identical with (3.3) except for sign. When the
sguare root of (3.1) is taken, the sign is ambieious. Aas
before, the correct sign to use is determined from the
degenerations of the elliptic function (vide Ref. &6, ». 105)
when q = 0. Here, ore of the periods is real and finite
wheﬁ A< 0 and &> 0., Thus the positive sign is used in
this case.

The approximation for X (r) and the definition

of aq may be used to express avnproximations for the two

(3.34)
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periods. Fquation (3.34) gives

w, ~ S [{ + 60 %,-+ ]

This is identical with (3.4) except for the sien under the
radical. FHere, as before, we shall take @5 to be that
period which annroaches a finite limit as A —* 0. Using

(3.35) and the definition of g we find

W, ”‘“'é"\/_l::—g;[l + 60%2-{——————][03 G

This is again identical with (3.5) except for the sien
under the radical.

The approximation for a 1is made by forming
B-VFS— €3 gz'%é =1 - JK/2A<X3, where the definition of
A has been used. Substituting for g, and £3 from
(3.1) and (3.2), rearrancing the series, takine a square

root of the series and finally invertine the series, we have

’441/d3ﬁ+5295x;o A +-——]

which is identical with (3.6) except for some siens and one
symbol.

The foregoing approximations alone with (3.7) may
be used to establish arproximations up to the q? term for

the general solutions (2.3) and (2.8). This approximation

(3.35)

(3.36)

(3.37)
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for the basic term of (2.3) is

) + 00
oﬁ@)-ocz(-z%?)z[—% +Zfsczﬂ_(é_;it\“’zl - 32¢°+ —-—~]
i !

As shown in the previous discussion, the remainine cosecant
series is to be further exnanded in terms of x and o
for the particular domain of & which is used. The
approximation for (2.3) end (2.8) may be carried out in the
same way, but not with the same ease, as before. The 4
presence of the 2/3 +term in (3.38) complicates this problem.
In the previous avpnroximations the 1/3 term of (3.7) was
exactly cancelled by the same term of oppnosite sign in (3.3).
The conditions for this second set of avproximations
have little intuitive appesl since they require a non-
vanishing cosmological constant in the most genersl cases.
Furthermore, this appeal is lessened by the difficulty of
intecratine the approximation in (2.5). Consequently, a
eroup of exact solutions will be given here for the svecial
case in which q = 0.
A review of the previous apnroximations will show’
that they fall into two classes. Some are made up of a
ocroup of terms not containing g and of further terms in a?
or hieher powers. As g —= 0 these apvroximations are
dominated by the terms that do not contain a. Thus, for

a somewhat roueher approximation, as o -— 0 the terms in

g may be disregarded entirely. The remaining class of

(3.38)



aporoximations has a dominsnt term involving q‘l. Thus

as q—> 0 these approximations have little physical
usefulness since the minimum value of vy Dbecomes an
extremely large number. In the same sense the exact
solutions in the special case that A= 0 are rough
aporoximations to at least parts of Solutions B, C, D, F, G,
and T of Table T when A =~ - 4,8 o, Takine then, the
special case q = 0 the approximation of (3.38) reduces

to the exact statement of

6‘>(§)~0c=oc[3csc22”wi = 2] (3.39
Before deriving the special solutions from (3.39)

let us turn back to (2.1) and Table I to determine the nature

of the expected special solutioné. First, let us consider

/A >O . Then the special condition /\ = - La o s

identical with - g3 = 9 AN/, with |¢°|>2A N, as win

be true when q—= 0 from one side, (2.1) has two solutions

as shown in the discussion of chavnter II. One of these

solutions is 07 with a maximum value of y = Ei{ and with,

%y < O . ‘hile the other solution is M, with a

El

ot?
2
minimum value of y = E5; and with EL&\ > O . Then as

ot? |g
2 2
a —» 0 we must have 1 E5 an e ;T> 51z é:»-CD
With q = 0, E{ = E, = E" where E'" has been used to

denote the repeated root of the cubic of (2.1), and



g% E”==C) along with g;% E”= O . An inspection of
(2.1) with a repeated root in the cubic will show that not
only the first two time derivatives are zero at the reneated
root, but also that all higher time derivatives are likewise
zero. Consequently, in the limiting solutions to (2.1) vy
cannot cross the line y = E'' nor can Yy touch the line

y = B" a8 either a maximum or a minimum. Therefore these
solutions can only approach or depart from y = E'
asymptotically. Thus the 0 solution, Solution B of

Table I, must resemble locally an asymptotic universe of the
first typre, usually denoted as Al, as q—= 0. Likewise
the M, solution, which is Solution C of Table I, must
locally come to resemble closely an asymptotic universe of
the second type, which is denoted as An

With 93‘<%/\ h® , as will be true when q—=0

from the other side, (2.1) has a single M} solution,
Solution D of Table I. Then as q—= 0 this M; solution
must take on the appearance of de Sitter's curve III as

given by Tolman (Ref. 1, p. 411) where the auasi-plateau
becomes longer and longer as the critical point is approachéd.
At the critical point this My solution must break up into
the two special solutions, A and Az. Thus the 4
special solution is a rough approximation to Solution D for

0 &< y< E'" when A—= 0. The A, special solution is

a rouch approximation for Solution D with



]l

E"" Ly &+o00 when A —> 0. It should be noted that the
quasi—plgteau of the IM; solution does not contain a point
of inflection since the first time derivative is never zero.
This is in agreement with the statement of Chapnter II that
none of the physically acceptable solutions of (2.1) can
have points of inflection, but can only vary monotonically
with respect to time between maxima and minima. This is

always true since if y 1is any solution of (2.1),

"y _ 2%y 2y
?ggg-Fl(yﬁ-gzz —+ FQ(Y)E§E . Hence for a particular
value of y for which 2Y -0 anda 2¥ = O, y can only

ot? ot
approach that value asymptotically since all higher time

derivatives are also zero.

Since in this special case at y = 1I'" we have
all time derivatives equal to zero, we have a special static
solution to (2.1). This static solution is unstable to any
perturbations in y. Any perturbation tending to increase
y will be accentuated and the local behavior becomes As,
Any contrary tendency for y to decrease would also be
further ageravated into locsal Ay behavior. Thus this
special static solution behaves locally like the Hinstein
static homoeeneous model and will be denoted as El’
Kinstein behavior of the first tyve. This extension of the

Robertson-Tolman notation is to allow for a later type of

static behavior.
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Because the sign of h(r) has no effect upon the
sien of X (r), the snecial condition A = - L8 2  can be
satisfied with e < 0O h < 0, which by Table I means ar
M2 solution. The cubic of (2.1) has s repeated root under
these conditions, but the repeated root is negative and
thus has no physical significance. Nevertheless, the cubic
of (2.2) has a repeated root and hence (2.3) and (2.8) can
be expressed exactly in terms of non-elliptic functions.
This rives a non-elliptic statement of Solution F under the,
svecified snecial conditions.

“hen f\ < 0, the special condition A = - 48013
is identical with g3 = - 9Ah2/h. with 93>-§/\ hz as
will be true when q-—0O from one side, (2.1) has a single
02 solution, Solution I of Table I. This cyclic solution
has maxima and minima of X, and E,. As q-*0, we have

l
— P' —ﬂ —— __—g ——
L and () . Conseouentlv
2 ai&z E', atz - iy

Ez
the 1imit of the O, solution when q = O 1s another

E,—~E

static solution. This static solution has its own unigue

form of instability. When y 1s perturbed from its static
value of y = B", the solution ceases to exist. Consequently,
we shall term this local behavior Einstein behavior of the
second tyve and denote it as Ese It could hardly be considered
even as & rough approximation for the O, solution. As

shown in Table I, there is no solution at any point when

q—» 0 from the other side. As before, these special



Table V

VAN Coenditions a(r) hr) Type Range
A, o4y <LE”
+ A E”égé.}_m
+ |-g=2Ah* - -
4 u
E, y=E
- M2 |E<4yé+eo
. E 3=Ell
— |g=-FAb" | 4+ =
+ O |o4y«E

conditions can also be satisfied with ¢ > 0 and h > O,
and we obtain a non-ellintic special solution for the Oy
Solution G.

These six special solutions are summarized in
Table V. The asterisks are used with N{ and 0f to
indicate that these are snecial non-elliptic solutions.
There are two static solutions, which will be considered
in the following chapter. Here we shall proceed to derive

the four non-static special solutions.

9, INE O, g >0, h > 0, 0y

Since our special condition is that

3_
o= - A /48, X(r) 4is a positive real constant which

is entirely determined by the existing cosmological constant.



Assuming that this constant has been determined, the two
periods are w,"-—— —2‘%07 =, and w; =i{00 =gz, accordine

to (3.35) and (3.36). The system of the period-rarallelograms
has degenerated into a vertical svstem of strips. There is
only one path within the finite part of the § -plane

which we can consider and that is § = X. Using the exact
statement (3.39) we find the exact solution for this

special case to be

_3hl 3 _
9= 9[“‘“2'5:“2‘ | (3.40)

t+f =§_3% ﬁfan"% tan 9) - GJ (3.41)

where O = x W/BCX

This exact solution has been verified by
substitutine it into the oriecinal differential equation
(2.1) under the special condition here assumed. This bit
of mathematical formalism will not be presented here. This
parametric solution may be seen by inspection to be cyclic
with minimum values of y = 0 when & = (NTT) where n
is any positive or negative integer. Similarly, the
solution has maximum values of y = 3h/g when 6= (n +l%)TT.
The period of time in which one complete cycle would be
executed would be T = 3 (1[3_— 1 ) hTT/e®2. This is 04

behavior, as predicted.
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100 N>0, 40 h >0, A

Here, O&(r) is determined by the special
condition as a real negative constant whose exact value
is known, once the cosmological constant is found. Equations

: . TT
(3.35) and (3.36) then give for the two periods oof=—4,24:3E§-"602

and oJ§==oo=co,. Thus the period-parallelograms in the

§ -plane have here degenerated into a system of horizontal
infinite strips. There are, accordingly, two systems of
allowed lines for §' . Let us first consider the real axis
and all other congruent lines. Taking § = x 1in (3.39) we

find the exact solution

q = 2(9) cosh 26 +2 {3.42)
o gcmg) o] oo
bt («g)%[z g riane2) +©

where o= x—\/—Bo(
This parametric solution gives
vy =0 and t + f =0 when ©= 0 with y approaching
3h/2(-g) asymptotically and t + f—+= * 0O when © —= £ 0O
This is the typical A; solution which was predicted in the
earlier discussion.
11. A >0, £0, h<£0, My

The second system of lines in the §¥qﬂane along

with & can vary with physical significance is § =&, + x
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and congruent lines. Taking this value of the parameter,

we find
3-h[__3 _
3 2(‘9) LZ—-coshze ’] (3.44)
- 3(=h |43 | cO+h9+-/5) N .
t+f (“9)3/2[ co+h@_{3_ 9] (3.45)
where 6= xq/-3¢ and -0.659494 +0.659,

As before, we have taken advantace of the FlE, )
term in (2.8) to adjust the t + f solution so that
t + £ =0 when 6= 0. The formal similarity of (3.43)
and (3.45) with (2.8) might be noticed. When O = 0, we
have the minimum value of y which is 3h/e. 4s ||
increases, we will have infinite values for both (3.4.L) and
(3.45). In (3.44) we have y =+0O0 whenever cosh 28 = 2,
In (3.45) we have t + f =+00 whenever coth®© = —\/_'3—
and t + f =-00 whenever coth©& = - 1[3-. The same value
of 6 satisfies both of these conditions and is
approximately ]69‘ = 0.659. This is, of course, either X
or one of its congruent points. Thus these equations give
a non-elliptic solution to the M, case under the stated
special conditions.

12. N>0, <0, h>0, A,

Continuing the solution for the remaining

permitted variation of ‘g , we find
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- _3h 3
J ‘2(_9)[‘+ cosh 29—2J

bt = )3/2[9 1/*"’3<3//:jcccf’:r*:‘:)]

where O = x -\/ -3& and ‘9| > 0.659.

These equations are merely (3.44) and (3..45)
rearranced. An attempt has been made throughout this study
to present the coefficients of bracketed terms as real
vositive quantities. FHere, since h(r) has chaneged siens
between section 11 and 12, a sign has been altered in both
the coefficient and the bracketed terms in stating (3.46)
and (3.47). There are two domains of & to be considered.
When © = ca. +0.659, y =+4+00 and t + f =-00 and while
©-—>+0c0, y approaches 3h/2(-g) asymptotically and
t + f—=+00. Thus for this allowed ranse of © , the
local behavior of y with time is one which begins with
infinite expansion and contracts asymptotically to the
Kinstein value. For the other range of &) , we have when
O = ca. -0.659 that y =+00 and t + f = +00, and when
© — —o0o that y approaches 3h/2(-g) aéymptotically
with t + f—+-00. Thils local behavior of y with time
is then the inverse of the preceding since here y begins
with the Finstelin value and expands from it asymptotically
until it is infinite. This is, in both cases, the

postulated A, behavior.

(3.46)

(3.47)
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This last group of solutions is mathematically
interesting since they are fully equivalent to the known
Finstein and asymptotic solutions of homogeneous cosmology.
However, they do not appeal too strongly to the physical
intuition since they exist only under highly specialized
conditions. If any assumptions are made as to the exact
value of the cosmological constant, a more plausible
assumption would seem to be that it is zero. This
assumption, along with the special solutions that will
arise with zero values for g(r) and h(r), will be

considered in the chapter that immediately follows.
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Chapter 1V

Special Solutions and Conclusions

In previous chapters we have found the general
solution to the partisl differential equation (1.34) and
have presented the approximations to the general solution
under certain conditions. In this chapter we shall find all
of the special solutions to the partisl differential
equation (1.34) when the coefficients are restricted to
finite values. We shall summarize the various possible types
of local behavior with a given value of the cosmological
constant by presenting this material graphically. Finally,
we shall derive a general solution for the proper local
density within these models. We shall then see what
further restrictions are placed upon our solutions by the
physical requirement that the density of matter can never
be negative. The material of this chapter will conclude
the general theory of spherically-symmetric, non-homogeneous,
relativistic models having zero pressure.

The general solution was derived in Chapter II
when the three roots of the cubic in (2.2) were all
distinct. A very obvious group of special solutions is .
found when two or more of these roots are repeated. The

cubic will have two repeated roots whenever

A[A+ 48 ocﬂ:O

(4.1)
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This condition may be satisfied in two ways. If /A = 0,
condition (4.1) is satisfied and we have a repeated root of
o and a sinele root of -2X. The condition (4.1) may
also be satisfied with J\ = - 48 ° and we will have a

reveated root of = X and a single root of <2,

Of these two alternates, the condition A\ 0
is vhysically the most probable value. FREinstein
(Ref. 9, pp. 109-132) in a recent book has stated that he
originally introduced the cosmological constant into his
Field Equations only to make possible a static solution
containing metter. While this térm is logically permissible,
he has observed that it makes for a considerable complication
of the theory. To cuote him exactly: "If Hubble's
expansion had been discovered at the time of
the creation of the general theory of relativity, the
cosmological member would never have been introduced. It
seems now so much less justified to introduce such a
member into the field equations, since its introduction loses
its sole original justification,--that of leading to a
natural solution of the cosmologic problem.™

Einstein and his pupils (e.2., Ref. 10) in recent
papers have been using the Field ZTauations without the
cosmological constant. Bergmann (Ref. 11, p. 179), an

associate of Einstein, in a recent book states the Field
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Tquations without the cosmological constant, and no where
in his text does he even suggest the possibility of such a
term. Certainly, in deciding for or agsinst a non-zero
cosmoloeical constant, the opinion of the founder of the
relativity theory and of his school must be given due weight.
One of the most disturbing consequences of
assuming a non-zero cosmological constant is that empty
space is not flat, and that conversely, flat space is not
empty. This has been noted by Gregory (Ref. 12, p. 180),
amone others. Tolman (Ref. 1, pp. 402-3) has ably summa-
rized the matter. Quoting Tolman: ™ * * * /A = 0
certainly seems the most reasonable assumption to make at
the present time. In the first place the original
arcument, as discussed in TP139, for Einstein's addition of
the logically permissible but otherwise surprising
cosmolorsical term to his original field equations in order
to obtain a universe with a finite density of matter, now
no longer exists in view of the wider nossibilities presented
by non-static models. In the second place, we have at the
present time no accented theory for any value at all for the
cosmological constant, although interesting consideratioqs
concerning this matter have been presented by Eddington.
And in the third place, from the observational point of view
we can at least say that the value of /A must be small in

order not to upset the application of relativistic theory
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to the orbits of the planets. Hence in what follows we
shall lay special stress on the behsviour of models with
the cosmological term omitted.™

Teking N\ = 0 in equetion (3.6) we have aq = O.
Usine a = O in the approximations of the first part of
Chapter III, we obtain exact solutions for this special
case. Only three types of solutions survive. We shall list
these three solutions along with the conditions under which

they exist.

1. e(r) >0 hir)>0 AN=0 M

y = Eha [%059169 - i]

Zh% [smh o - 9]
o
2. g{r) <0 hir) >0 ANA=0 0,

___h _ ]
y _.2?615-[l cos B

__h (5.
t+{—2(-9)3/z[9 Snej

t+f =

3. _elr) >0 hir) < 0 A=0 M,

g:%‘_g_) cosh © + )]

t+f =__l§;% [smh o +o|

(L.2)

(L.3)
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There is no solution in the fourth case in which
g(r) < 0, h(r) £ 0, and /\ = 0 since gﬁf would be
imaginary for all allowable values of y(r,t).

It should be noted that the three nreceding
special solutions may be derived directly from the general
solution (2.3) and (2.8), from the known degenerations of
the Weierstrassian elliptic functions (vide, Ref. 6, pp. 105-0).
In fact, the particular form of (2.8) was so chosen that this
derivation might be performed without logarithmic
difficulties. This derivation from the degenerations of the
elliptic functions has been made,»but the work will not be
presented here. The derivation is long and tedious, but
is no more rigorous than the obvious derivation from the
material of Chapter III. Furthermore, the derivation by the
degenerations of the elliptic functions yields no additional
information about the special solutions. In addition, these
three special solutions, as well as all other special
solutions to be presented in this chapter, have been checked
by direct substitution into the original partial differential
equation. The procedure followed is obvious and will not be
further commented upon.

The other alternative for a reveated root in the
cubic of (2.2) is A = - 48 o? . The six special solutions
resulting from this condition have been discussed in the

last vart of Chapter III. The actual solutions for the
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four non-static cases will be found there and need not bev
repeated in this chapter. The six special solutions and
the conditions under which they exist are:

1. glr) >0 h(r) > 0 N= - ,80° OI

Bquations (3.40) and (3.41)

2. g(r)< 0 nh(r) 4L 0 A=-ui80>

Equations (3.44) and (3.45)

3. glr) < 0 hir) > O = - 1,808 Ay

Equations (3.42) and (3.43)

L. gl(r) <0 hir) > 0 A= - L4803 A,
Equations (3.46) and (3.47)
5. e(r)<0  n(r) >0 A=-i8c* m

This case was discussed in Chapter III, but the
solution was not given. It may readily be seen that the

solution in this case is

3h
_ — e——— 08
Y g (4.8)

where t can take any real value. The condition A\ = - 48C13
defines a functional relationship between g(r) and h(r).‘
Substituting this functional relationship and solution

(4.8) into the partial differential equation (1.34), we see

that it is satisfied identically and hence that ’aijf = o.

Equation (1.34) can be differentiated to give an expression
2

for —-—32{;2 in terms of y(r,t), e(r), h(r), and AN .
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Substituting the functional relationship and (4.8) into this

derived equation, we see that it also is satisfied identically

2

and that g;% = 0. Hence from the reasoning of Chapter III

it follows that all hiecher partial time derivatives are also
identically zero. Consequently, equation (4.8) is a static,
albéit unstable, solution to the problem.

If we take our functions as g(r) = - r?2/R? and
h(r) = 2r3/3R?, where R is a real positive constant, then
(L.8) reduces to y(r) = r. Substituﬁing this into equatioh

’

(1.23) egives the corresponding line-element as

dsz;—-[Ji + r*d6” + r*sin®O d‘i’z} + dt*

Substituting the same values into equation (1.36) gives the

density as
(57Tf) = égz
While a substitution into the condition A= - 1,8 o gives

/\=R,_
Eouations (4.9), (4.10), and (4.11) are, respectively, the
line-element, the density, and the curvature of a static

Einstein model with zero pressure. Furthermore, any other

El solution can be converted into this form by a simple

(4.9)

(4.10)

(4.11)
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transformation of the r-coordinate. It is for this reasén
that the El solutions have been designated as "Einstein
behavior of the first type".

6._glr) >0 n(r)<L0 A=-i8x’ B

These conditions are those of the previous case
with all signs ohahged. The solution to these conditions is
still equation (4.8). However, if the attempt 1s made to
extend the E, solution over a finite range of r, it will
be found from equation (1.36) that the resulting density is

negative. Hence the & solution does not exist over a

2
finite volume of space, but only for isolated values of r.
It is a transition case between two non-static solutions.
For these reasons the E2 solutions have been designated
"Einstein behavior of the second type™.

We know from the homogeneous theory there are
only three possible static models, of which only one, the
Einstein model, contains matter. The two remaining static
models, namely the de Sitter and the Special Relativity
solutions, should be deductible as speciél cases of the
non-homogeneous theory. although it is somewhat auxiliary
to the present line of development, they might best be

considered at this time.

1. elr) =0 hir) = 0 AE D Special Relativity

The nartial differential equation (1l.34) is

readily integrated under these special conditions as
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y(r) = f(r).
If we take y(r) = f(r) = r, then the line-element becomes

ds®*= - [dr®*+ r*d6® + r?sin*0 dé¢*] + dt*
which is the line-element of Special Relativity. Since
h(r) = constant, this model does not contain matter.

2. e(r) =0 hir) =0 A>0 de Sitter

If we take-é AN = k? = 1/R?, the partial
differential equation (1.34) can be integrated as
K(t+F)
yir) =€
If we define the arbitrary function as f(r) = R log r,

then we have y(r) =r ekt  and the line-element becomes
kt
ds?=—e" [dr2+ r*de? +rzsin29d¢2]+dt2

This is the Lemaitre (Ref. 13, p. 188) - Robertson
(Ref. 14, p. 835) form of the de Sitter line-element. It
can be transformed into the more conventional form of the
de Sitter line-element by the transformation equations egiven
by Tolman (Ref. 1, eq. 142.8, p. 347). Here again, since
h{r) = constant, the model contains no matter.

To return to the special solutions of the partial
differential equation (1.34) when the cubic in (2.2) has

repeated roots, we have one more case to consider. This is

(L4.12)

(4.13)

(4.14)

(4.15)
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the case when all three roots are repeated. The cublic of
(2.2) will have a triply-repeated root of zero when

0. The cubic of (2.3) cannot have a

€, = 0 and g3
triply-repeated non-zero root because of the absence of

the y2 +term. The conditions can be satisfied only by

o =0 and /= 0. The condition X = 0 can be
satisfied either by taking g(r) = O or by teking

h(r) = ©O. However, we wish to restrict our solutions to
those arising from finite coefficients in eqguation (1.34);
hence we must reject h(r) = OO and take instead

g(r) = 0. Under these conditions the differential equation

may be integrated explicitly as
3
vir,t) =(29? h) (t+F)*>

The conditions under which this solution exists are:

e(r) =0 h(r) > 0 A=0 M1

The factor of 9/, which is the coefficient of h(r) in
this solution is actually redundant since it could be
absorbed into the arbitrary function. However, the general
solution (2.2) and (2.8) reduces exactly to (4.16) with

the degenerations of the Weierstrassian elliptic functions
when all three roots are equal. The special solution (4.16)
is an extension to all values of r and t of the known
behavior of the general Ol and Ml solutions in the

neighborhood of y = O,

(4.16)
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The foregoing discussion does not include all of
the special solutions to the partial differential equation
(1.34). When one or more of the coefficients of this
equation, namely e(r), h(r), and A , are zero, the
degree of the polynomial may be reduced by transformations
or otherwise and the special solution found in terms of
non-elliptic functions. All of the possible special
solutions when the three coefficients are limited to finite
values are listed in Table VI. Since most of these
solutions have already been discussed, they are tabulated
in the table by equation numbers only. The remaining
nine solutions which have not been discussed are given
in Table VI along with the conditions under which they
exist. These solutions are readily derived by elementary
mathematics in each case and do not require discussion here.
Two limiting cases might be noted. They are y = OO,
which is denoted by I for "infinite model"; and y = 0,
which is denoted by Z for "zero model". These are
themselves limiting cases of other special solutions.

Table VI and Table I egive all of the solutions to
the partial differential equation (1.34) when the three
coefficients have finite values. This tabular material
might be made more comprehensible by presenting the

conditions under which the various solutions exist in
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Table VI
A 9”‘) h(r) Solution Symbol
+ + egs. (42) and (4.3) M,
o L= | + | eas (44) and_4.5) O,
4 - egs. (46) and (4.7) M2
- - no solution n.s.
-+ + eqs. (3.40) and (3.41) Of
-+ - eq. (4.8) E2
_482l_— | — | egs. (3.44) and (3.46) z
egs. (3.42) and (3.43) Al
- + | egs. (3.46)and (3.47) Az
eq. (4.8) =
< (3h)8 4inh Y3 V34
s 3..(A) sinh ™ ¥4 (t+f) M
~/3h\5 sin5{-3A
-l o |+ y=(Bp)s sin%L3h () o
2\
+ — 3:(—%‘)3cos %l’—g—/—‘* (t+f) M2
- - no solution n.s.
I + H=1/K93 ]sinh@(t+f) M,
. [=A
- |+ | 5 3:1/92\9181n\/—;(t+f)l g
s - y =1/:/%9 cosh@(t +f) M.
— - ho Solution n.s
+ | o y=vg|t+f] M,
O -+ eq. (4.16) M
O — O no solution n.s.
o - no solution hn. s
o & eq. (4.12) S.R.
o) + Y=o0 I
+ O o) eq. (4.14) d.S.
+ @) o y=0 Z
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scravrhical form. This is a logical extension of Robertson's

(Ref. 4) similar treatment for the homoeeneous models.

+h
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Fie. 4.1

7

Robertson defined a certain critical auantity which he
denoted as ( and plotted this critical quantity against

R, a measure of the instantaneous proner distances within
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the model. Robertson made two separate plots over half-

planes; one for the open models, and one for the closed

A\ =0

ou

uo1Nn|os

N

.

models. By the obvious artifice of plotting ¢ against

-h

Fig. L.?

R2, these two separate plots can be combined into a single

curve over the entire Q - R? plane. This plot of Q against
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R? can be interpreted as delineating areas within the

q - R? plane in which the various possible homogeneous

A<O

+h
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+g

uolinjes ou

Uoin|os ou
X

v 7
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Fige 4.3

solutions would exist. The solutions which will exist for

a particular value of J/\ are then found as a one-

dimensional domain, formed by the insection of a straight
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line (Q = constant) with these areas.

Since the non-homogeneous models are a higher
order of generalization than the homogeneous models, a
eraphical presentation of the solution conditions must be
made in three or more dimensions. The method that we shall
follow is to plot the data of Tables I and VI in three-
dimensional g - h - /\ space. The general solutions
of Table I exist within volumes delineated bv the planes
g(r) = 0, h(r) =0, A=0, and by the surface
N\ = - 1,8 %3, The special solutions of Table VI exist
within areas upon these planes or surface. Certain limiting
forms of the special solutions in Table VI exist only
along lines at isolated points within the g - h - A
space. The solutions which will exist for a particular
value of J/\ are then found as a two-dimensional domain
by the intersection of a plane ( /\ = constant) with the
various volumes, areas, lines or points.

Since it is manifestly difficult to give a clear
representation of a three-dimensional plot upon two-
dimensional paper, the various relations are indicated in
the accompanying figures as representative intercepts of.
three different J/\ = constant planes with the g - h - A
space. Fig. 4.1 shows a typical intersection when X > 0.
The general solutions of Table I which will apply in this

case are shown as areas in Fig. 4.1l which have been cross-



=118=

hatched to distinguish the various types of local behavior;
Fach of these areas represents a single tyne of local
behavior, except for one area in the second quadrant.
Within this exceptional area the local behavior may be

either 0 or N depending on the particular range of

2
v{r,t) which is involved. This is in accordance with
Table I and the two allowed ranges for y(r,t) are non-
overlapping. The special solutions of Table VI are shown
in Fig. 4.1 as existing along lines or at a point at the
origin. The Ay, Ar, and E; speclal solutions exist
along the upper-half of the curve Az - a8cx3, while

the non-elliptic MZ solution exists along the lower-

half of this curve. This curve approachies the line

g =0 as A -0, and approaches the line

0> eg> -1 as /N\—= co . Only a half-plane is repre-
sented in Fig. 4.1 since we must have g(r) > -1. The
approximations of the first nart of Chapter III apply
whenever I/\[ < ]cxs‘ . Thus, for a finite A , there

is always an area in Fig. 4.1 in which these approximations
would apply. This area approaches the line

h(r) = 0 when /\—>+ 0O. C(n the other hand, this area
fills more and more of the g - h plane as AN— O
becoming eousl to the entire vlane when [\ = O. Any
particular non-homogeneous model could be diacrammed as a

curve on the ¢ - h plane in Fig. 4.1 which includes all
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of the values assumed by g(r) and h(r). This curve could
include any or all of the possible localvtypes of behavior
shown in Fie. 4.1.

The transition case A = 0 1is shown in Fig. L4.2.
Here all of the solutions are non-elliptic. 7The curve
= - h8<x? has degenerated into the line g(r) = 0. A
new feature appears in the third quadrent. No physical
solutions are possible with the g(r; and h(r) values
in the third oquadrant. The point at the origin represents “
the limiting special case of the Special Relativity
solution. The remaining case of A < 0 1is shown in
Fig. 4L.3. The area of no physicsl solution has widened to
include part of the fourth quadrant. As f\—*'-oo, this
area continues to increase until in the limit there is no
phvsical solution within both the third and the fourth
quadrants. The curve /\ = - ASCX? has shifted to the
right-hand side of the line g(r) = 0. As /\-—>=-00, this
curve approaches more and more closely to the line
0< g &+ 00. The special solution E, exists slong the
lower half of this curve, while the non-elliptic solution
O; exists along the upper half. As before, the
approximations of the first part of Chapter III apply to a
symmetrical area lying about the line h(r) = 0. When

/\ = 0, this area of approximation covers the entire

g - h plane, but as f\‘*'-oo, this area approaches more



and more closely to the line h(r) = O.

Thus far in this study we have restricted our
solutions to those which will yield positive values for
v(r,t) and reel values for t. Physically, these are
necessary but not sufficient conditions. A physically
crucial condition is that the local proper dersity at all
times and all places within the model must either be zero
or a real positive value. A negative density would have
no nhysical meaning. We shall devote the remainder of
this chapter to deriving a general expression for the
proper local density within the models and to a consider-
ation of further restrictions which might be placed upon
the solutions summarized in Tables I and VI by the re-
auirement that the density never be negative.

The proper local density may be found by
substitutine the eceneral solution (2.3) into the ex-

pression for the density (1.36). This yields

12 [p©) -

dh _ F#'€) 28 _ 2 ( () -} du
dr Sh%)?i or 3had5ff)~oc ETS

We wish to express (4.17) in a form which depends only on

8Trp =

the local values of g(r), h(r), & , =and the consteant
value of /\ . The derivative 9%% is acceptable, since

d
X(r) = 7/5(2h)2/3, and so this derivative can be expressed

(L.17)
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in terms of g(r) and h(r) only. The partial derivative

g}é is not so amisble. It is not immediately obvious how

g varies with r and t. A relationship for %é can
be found by differentiating equation (2.5), the second
member of the general solution pair, with respect to r.

This eives

£
df _ 5 |44  da =TS
dr *auj@(u)-a dr = (P(‘g)—-a dr (4.18)
%

where §; is the value of the parameter when t + f = 0
and & is the present value of the parameter for the
particular values of r and t, which are being con-
sidered. The derivative gg can now be eliminated by
combinine equations (4.17) and (4.18).

To carry out the indicated procedure, an
expression must be obtained fo.r the derivativea—%( (F(§J0(\ .
The partial derivative of the Weierstrassian Pe-function
with respect to its invariants cannot be found in any of
the standard mathematical works, but can be derived with
some labor. The steps in this derivation will only be
sketched out herein. We begin with the inverse elliptic
inteeral, equation (2.10), which corresponds to the
Welerstrassian Pe-function. First, we must differentiate

this integral with respect to X (r). The resulting
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expression contains a new elliptic integral which may be
evaluated in the usual way by expressing the integrand as

a sum of Zeta-functlons and thereby carryinge out the
indicated inté&ration. This result will have coefficients
involvine X(r) and the three roots, e;, ep, and es.
This is not the most useful form. However, this expression
may be further reduced, with some patience, by the known
relations between X(r), e;, e,, and e; and the
invariants, €5 and g3, of the Weierstrassian Pe-function.

The result of this work is

5% P00 =~ 3O<_L_A] Ef’l@;ot)gg(g;m) -ug} + 2 [p) —2a][65(§) +a (14.19)

4 [ o3

The validity of (4.19) can be checked in at least
two ways. It is readily verified in the neishborhood of
§' = 0. The series exparsion of the Weierstrassian
Pe-function (vide Ref. 6, p. 99) is uniformly convergent end
may be differentiated term by term. This gives a series
expansion for é%(f(g)cx) . Equation (4.19) may be expanded
into a similar series and the coefficients of the two serieé
may be compared. This has been done for the first few terms
and they were found to be identical. The second method
is to derive an approximate expression for 3%IP(§JOO

when[1&,<g:]cx3} . This is readily done by a transfor-

mation of the invariants of the Welerstrassian Pe-function.
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An avpproximation to (4.19) under the same conditions will be
found to yield the same expression. Thus the derivstion of
(L.19) would seem to be without error.

Substituting (4.19) into (4.17), we have a complete
expression for the last term in the denominstor. Substi-
tutine (4.19) into (L4.18), we have an expression which
contains an integral which may again be integrated by the
use of certain srtifices. The partial derivative
may be eliminated between the two resulting equations and

we find the general solution for the proper local density

to be
o] dh
8 3 12}:&(?) 0‘] e \
i " e po (4.20)
e — 3hg 9 A +4"“_—_”[a3+$1x] B =
P =L - S W L P | ss)-o8 ) da
where A —[dr‘ 4{0‘3+¢z_l5A} {20‘ g‘(g:s) 4—4& 03(§°)_0( + (ch.)~d~ I
P
sl B =5 j(¢-8)x - C@)p - {p()-2}{p(8) +
There are several interesting cases of the general
solution for the proper local density. In the special case
that O((r) = constant and f(r) = constant, we have
3 .
8Trf) = I 2 [05(6)~0(] (4.21)

Furthermore, under these conditions, it can readily be

shown that & is a function of t alone since all of the



-124-

partial derivatives of § with resvect to r can be shown
to be zero. FHence, ecuation (4.21) is also a function

of 1t only under these conditions and the model has been
reduced to the non-static, homogeneous snecial case of the
eeneral solution. These homogeneous special cases will
have physical validity only when the density, as given by
eouation (4.21), is greater or equal to zero. This
reauires that Ep(g)—WX],> O, which will be true for all
solutions in which h(r) > 0. This excludes only one type
of local behavior listed in Table I, namely the O, 1local
behavior of solution I. Thus it is possible to have
homogeneous special cases having Oy, Ml’ and M2

behavior or havine asny further specialization of these, such

as Ay, A El, S:R., d.5., I, or Z; but it is not

2
possible to have a homogeneous model with O, or E2
behavior as a special case of our general solutions (2.3)
and (2.8).

One vossible choice for g(r) and h(r) which
will satisfy the condition O(r) = constart, is
e(r) = - r2/R% and h(r) = 4 k3 r3, where k is a scale-
constant which will be used to adjust the co-moving coordinate
svstem so that it agrees with proper measure at a particular
time, say when t = t,. Using these values for g(r) and
h(r), we find that y = 3q%§%j§ . As before, if we take

f(r) =constant, then [}xg)—cﬂ is a function of t alone.
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To make the co-moving coordinate system agree with vproper
measure at t = t; we must have y = r at the time;

hence we must take k = [(fa(g)-o(:[ = (%TT(OO)'/S where

6{ is the density at t = t,. Using these values in (1.35),

the line-element may be expressed as
(t) 2 2
dsz = -—e8 .___Ei_r__.. + r:doe* + r“sinZGohf:J.;. dtz

where e 8(to) =1, This is one of the well-known forms of*
the homogeneous non-static line-element. We may now
summarize the discussion by statihg that when

X(r) = constant, f(r) = constant, and h(r) » 0, the

general ssolutions (2.3) and (2.8) degenerate into homogeneous
solutions having zero pressure.

The existence of a sub-class of homogeneous
solutions suggests the further exploration of all possible
static solutions. It was shown earlier in this chapter that
the only static solution which contains matter and which
applies over a finite volume of space is the E; solution.
This solution exists, subject to the restriction that
lﬁ308= 4@3/9h2,= - /\ = - constant. If the coordinate
system used is to be equal to the proper measure, then we
must also have h(r) = - 3h/2¢ = r. Solving these two
conditions together, we find that we must have

h(r) = (2/3) r3 (constant). Since we can denote the constant

{422
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as we please, we shall take h(r) = 2r3/3R2, from which it
immediately follows that g(r) = - r2/R2 and 8TT§)= 2/R2.
Thus the only static solution of physical interest is
homoeeneous. It thereby follows that there are no static
non-homogeneous models which contain matter and which
apnly over a finite volume of space.

The conditions X (r) = constant and f(r) = constant
were rather drastic. Iet us try the less restrictive
conditions that X(r) = constant but that f(r) 7é constant.

Then equation (4.20) reduces to

3
12 [ P& — x
fmo = 12009 -o] -
an C G

which is a non-static, non-homogeneous statement for density.
It is obvious that O, Ml, or other solutions in which

the parameter includes § = 0 cannot exist under these
conditions. The elliptic function §5Y§) has a triple pole
at § = 0, and so we would have 652 (constant)/§3 in the
neiehborhood of § = 0. This would require the existence of
negative densities, so these solutions are not accevtable.

It is also obvious that no solutions can exist subject to
these conditions with h(r) < 0 since Cﬁ/(a%) = 0 and
negative densities would once more appear within the model.
Thus the only solutions which can exist subjiect to these

conditions are the M2 behavior of solution C of Table I,



=127~

or one of its special cases such as the A2 solution.

Furthermore, these solutions will exist only if
3hp'e gt 3%}.
The most general solution (4.20) can be some-
what simplified by considering the solutions in groups
according to the value of §; . Tor 07, My, Al, eto.

solutions in which we can take '§°= O, this expression

becomes

2 [0%) -] 42

D= 3h

If in (4.24) we have h df/dr # 0, then in the neighborhood
of &€= 0 we again have P = (constant)/§3 and the
appearance of negative densities. Therefore, a mathematical

condition on these solutions is that f(r) = constant. With

f(r) = constant there is no difficulty since the last
groun of terms in the denominator will vary as §'2 in the
neighborhood of § = 0, and so the density will vary as

63 = (constant)/f6 in this neighborhood and accordingely,
will remain positive at all times and places.

The O solution is cyclic. While it will behave

1
properly in the neighborhood of the sineularity at § =0
with the above condition, this will not be so for the
conegruent sineularities at g = 2no,. This follows since it

is possible to prove that C(w,)F# X, and hence the

: (
S’é - 3hg (§)g—‘f +3 e +Z,§A} [%{){0@ . §(§)}~{(P(§)-2a}{@(§)+a}]

L.2L)
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density will again vary as P = (constant)/§3 in the
neieshborhoods of the sinecularities at

§ = 2nw, (n%0) where (ﬁ’(g) has a triple pole. Thus
the additional restriction of X (r) = constant must be
imposed uvon the 0, solutions. This means that the only
allowable Ol solutions are the homogeneous models.

These restrictions upon the Ol solutions are
probably more mathematical than physical. The basic
assumption of zero pressure is certainly violated in the
neighborhoods of the singularities and so our equations are
actvally non-applicable. However, it would also seem
impossible to have a physical condition in which the densities
varied cyclically at all points, approachine infinity once
each cvecle, but where the period of the cycles is a non-
constant function of r. This would require after two or
three cycles from g = 0, that the density at some point,

say r would be aporoaching infinity, while the density

0
at another point which is separated from r, only by an
infinitesimal distance would be small. This would entail a
type of discontinuity which is not to be expected in
macroscopic nhysics. One would expect that the effect of
the neglected pressure term would be to slow the rate of
contraction in the more rapidly contracting recions so that

the true period of the cycle would be the same at all points

of the model. Therefore the Ol solutions derived in this
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study should be regsrded as only approximations to the
true Ol behavior where the approximation is good only
over a part of one cycle.

The same remarks apply to the condition
f(r) = constant. This is a mathematical rather than a
physical restriction. However, the My and the Ay
solutions spend only a vanishingly small part of their
history in the epoch in which pressure terms are important.
Consequently, the Ml and Al solutions derived herein
should be very cood approximations to the true behavior
except in the immedilate neighborﬁbod of the singularity.

In the remaining solutions we may take §° = Wi
where ; 1is one of the half-veriods of the eiliptic

functions. Equation (4.20) then becomes

IZDWQ—@fdb

8 = (4.25)
d_h_ - / 3h d *
a ~Shp'©A + 3557 BA]BJ%

h o= |df x Slwi) — xwi

mere LI T A] e o

and B [ 2(5) x(E-c;) - C(5- w)}+{(p(§) }{&@)-ek}—{(P(§)~2a}{5p(§)+u}}

and where e =(P(w;) , while ej and ey are the re-

mainine two roots. The last term in quantity A can be
shown to be a pure imeginary when & =@, . This term
can be shown to have a complex value whenever éi - Wiz .

There are no compensating terms elsewhere 1in (4.25). 1In



particular, the quantity B has only real values
throughout the parameter range cﬁ"g . This complex
cuantity A would produce & complex density in (L.25)
which would have no nhysicel meaning whatsoever. There-
fore, we must conclude that solutions whose parameter raneges
include either of the points G, or &3 have no physical
existence unless we also have X (r) = constant. This
letter possibility has already been explored and has been
found to yield a single M2 solution (solution C of Table I).
Nothine is geined by tryine to teske another point within
the parameter range for §; since the complex values for
density will still be found.

This is an important conclusion, because it shows
that the 0, solution (solution I of Table I) and one M,
solution (part of solution F in Table I) do not exist.
Neither do their specisl forms. Thus the stranece E2
solution which was a special case of the O2 has no actual
existence. This conclusion puts the non-homogenebus theory
into strict analoey with the homogeneous theory. The O2
solution can exist in the homogeneous theory only through the
presence of a particular type of pressure. Homogeneous -
models with zero pressure will not have O2 solutions. Thus
the possible types of local behavior within the non-homogeneous
models which we have developed are identical to the possible

typnes of behavior within homogeneous models having zero
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pressure. No new tynes of local behavior have been produced
by the introduction of & non-homoeeneous distribution of
matter within the model.

Returning to equation (4.25), if we take &, = @,
the last term in the ouentity A can be shown to be real.
Thus this M2 solution is possible. The value of the
quantity A 1is fixed for a given value of 1r. Hence the
value of the collection of terms 3 h dﬂﬂﬂ A is odd with
respect to @, . The value of the quantity B varies with
the parameter § , but is even in value with respect to &, .
Therefore, the variation in density at a given point, say
r = rp, 1is not in general symmetric with respect to
t + £ = 0. The variation in a proper distance perperdicular
to the r-coordinate at r = r,, however, will be strictly
symretrical with respect to t + f = 0. This seeming
contradiction arises from the variation in the rate of
expansion and contraction with r. A measurement of density
is a measurement over a volume and is affected by the
differential motion of particles on either side of r = r,.
The specified measure of length, however,.is a one-
dimensional measurement upon a snhere which is contracting
and expandine symmetrically.

With this rather fruitful discussion of density,
we conclude the presentation of the general theory of

relativistic, non-homogeneous models having shherical
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symmetry and zero pressure. This general theory can be
aprlied to & variety of problems in which the two basic
assumptions of zero (or vanishingly small) pressure and
spherical symmetry can be made. Typical problems would
be the consideration of low temperature gas or dust
clouds, open star clusters, the outer atmosphere of
extended stars, clusters of galaxies, or the physical
universe itself. In the followineg and final chapter we
shall take the universe for illustrative material. e
shall use the general theory which has been presented
here and will attempt to construct a non-homogeneous
cosmological model which will be consistent with the

present observational data.
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Chapter V

Application to Cosmology

As an illustration of the foregoine rather
esoteric theory, we shall epply it to the entire observable
physical universe. The role of this chapter as illustrative,
rather than definitive materisl, must be emphasized. e shall
derive several formulae under assumptions which mske for
simpler methematics, but which are not the best of physics.
However, it will be apparent that the procedures under which
these formulae are derived may be generalized to apply to a
set of assumptions which will make for better vnhysics. Ve
shall construct a model for the universe which agrees fairly
well with the observations. However, it acain will be
apparent that the constsnts in this model are adjusted only
to the first approximation. By repeated computations it
would be possible to adjiust these constants more finely so
that an even better fit of thesory and observation would
result. But here again, we shall regard the procedure as
being more important than the exact value of numbers in
the second and third decimal places.

The cosmological problem not onlv has a great
apreal to the imagination, but it is also, concevtually,
another "test" of the Ceneral Relativity Theory as a
practical law of gravitation. Unfortunately, this is not
so in practice. An almost infinite variety of theoretical

models may be constructed which will satisfy the Field



Equations of @General Relativity. The observational
material is a gtatistical collection of data to &
rather limited depth in space. The shortness of the
observational range and the dispersion within the data
prevent a unique determination of a single theoretical
model as being the true one.

The observational data is mainly the work of
Hubble (Refs. 15, 16, 17, 18, & 19). It consists primarilx
of two bodies of information. The first is a statistical
correlation between observed red-shift and observed
magnitudes. The second is a statistical correlation be-
tween observed nebular counts as reduced to certain
standard conditions and observed limitine maenitudes. 1In
addition to this moderately well determined data there
are two other poorly determined data which must be fitted
into our model. The third datum is the present averaged-
out density of matter within our own immediate neighborhood
of the universe. Not even the proper order of magnitude
is knovn for this important datum. The fourth datum is
the "ace of the universe", by which we mean the total
lapsed time from the last singularity to the present epoch.
While there is fair agrecment as to the order of magnitude
for this datum, there still exists considerable difference
of opinion as to its value. It should be remembered that

not even the first two bodies of data are sufficiently exact
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for our purvmoses. The really crucial data were obtained
at the extreme workine rance of the Hooker telescope. The
empirical corrections which must be applied to this data to
reduce it to standard conditions, particularly in the case
of the nebular counts, are larger than the effect which is
sousht. This is hardly a desirable statistical condition,
but we shall assume that the data as corrected by Hubble
are acceptable. Otherwise we shall have nothing to work
with, It is hoped that the use of larger telescovnes with-
in the near future will not only‘extend the data but will
also reduce the uncertainties.

A theoretical cosmological model is constructed
by making a erouvp of completely arbitrary assumptions as
to the distribution of matter within the model, the
probable egquation of state within the model, the value of
the cosmological constant, ete. The consequences of these
a priori vnostulates are then developed according to the
General Theory of Relativity and are found as a line-
element and equations for proper local density and pressufe.
If the relationship between the coordinate system and the
mass points that pcpulate the model is either known or
postulated, these consequences may be further elaborated
into expressions for red-shift, total counts to a given
coordinate, and observed magnitude for a source of known

luminosity &t a known coordinate, as seen by an observer
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at a svecified point within the model. The a »nriori
postulates are so chosen as to simplify the mathematics
as much as possible and then their validity is determined
by the relative agreement or lack of agreement between the
theoretical predictions and the observations.

The simplest possible group of assumptions lead
to the hishly restricted family of static homogeneous
universes. This, of course, is the first logical approxi-
mation to the cosmological problem. However, as is well
knovwn, the twin observations of a finite density of matter
and a real red-shift within the physical universe completely
invalidate these simple assumptions.

A more sophisticated set of assumptions, so chosen
as to make the partial differential equations linear,
vield the more general family of non-static homogeneous
universes. Hubble (Ref. 15) has rather premsturely rejected
these models as valid representations of the physical universe.
Hubble's rejection was based upon three presumptive
anomalies for these models. The averaged-out density that
was seeminely reoguired was of a higher order than was
comparable with other data. A small closed universe whose
extent was only slightly greater than the assumed depth of
the deepest survey apparently had to be postulated. An
age of the universe was indicated which was considerably less

than the current estimations of the geological age of the



Earth's crust.

Nevertheless, Hubble's rejection of the
homogeneous models is premature for at least two reasons.
First, as discussed earlier, the data are not sufficiently
good. A sliehtly different method of handling the
corrections would lead to completely different conclusions.
Secondly, it is doubtful whether his extrapolation of the
red-shift beyond the region in which it has been measured
may be accepted. Statistically, the procedure that he
followed was the only possible one. The observational
data are scanty, but are'sufficieﬁt to give the coefficient
of the first power term to three figures, and to indicate
the magnitude and possible range of the coefficient of
the second power term, but they are not sufficient to give
any information about the third power term. The third
power term could quite possibly be insignificant over the
ranege within which the red-shift has been measured, but
could be crucially important for the distances of the
deepest nebular count survevs. It is obvious that the
value of the third power term cannot be obtained from the
nresent observational data, but it could be theoretically
predicted for a given model. If a homogeneous model is
constructed with the proper values of density, pressure,
and cosmological constant to give the first two powers of

the red-shift correctly over the measured range, then the
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theoretically probaeble value of the third power term could
be calculated from the model. If this third power term
were nercative and of sufficient magnitude, the homogeneous
model could also be fitted to the count data. The usefulness
of the model would then depend upon the physical reasonable-
ness of the predicted density, pressure, cosmological
constant, and age for the universe. This is an important
vproiect which should be carried throueh, but it is hardly
our province since we are concerned with non-homogeneous
models.

In order to explain his observational data,
Hubble (Ref. 15) has provosed a non-relativistic model
which is essentially static and homogeneous but one in
which the red-shift is directly proportional to the time
that the photon has becen in transit between the source and
the observer. This makes for statistical simplicity but
for serious theoretical complexity. If this proposal
were true, problems would arise as to the meaning of
measurements made upon extra-terrestrial systems, the known
instability of static homogeneous distributions, and the
nature of the physical effect which causes the loss of
enerey in the photon while it is moving throush svpace.
Probably the best evidence against this explanation of
red-shift has been found by Hubble (kef. 20). If the red-

shift is the linear function of time in flight for the
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photon as proposed by Hubble, red-shifts should be found
for the galaxies which make up our local system. The
more remote members of our local system are at a
sufficiently great distance from us so that the expected
red-shift should be greater than the corrections which
must be apnlied to the data. However, if the red-shift
is due simply to the classic Doppler effect, as postulated
in the relstivistic models, it should not be found within
our own local system since the cluster of nebulae is
presumeably gravitationally stable. Hubble's careful
measurements of the red-shifts for the members of our
local system, after correction for the velocity of the
observer, support the latter conclusion. Thus the
simplest hypothesis that can be made about the nature of
the red-shift is that it is s Doppler effect, produced by
actual relative velocities between the nebulae. We must
seek a more elevated family of relativistic models which
will'explain the observational data in the event of the
failure of the non-static homogeneous vprogram which
previously has been suggested.

In the preceding four chapters we have been
concerned with a new set of a priori assumptions which are
a higher aporoximation to the cosmological probler since
they allow for non-homogeneity within the models.

Tolman (Ref. 2, pp. 174-5) has shown that the homogeneous
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models are unstable, going over into non-homogeneous modeis
upon perturbation. It is difficult to conceive of a
model which expands from a singular state and which remains
homogeneous throuchout its history. We have achieved our
non-homogeneity at the price of non-linearity in our
equations. To make the problem solvable, we have made
certain special assumptions which must be recognized be-
cause of their bearing upon the cosmologicel problem.
First, we have agsumed zero pressure within our
models. This appears to be a good approximation for the
present epoch since the important forces presently
acting upon the nebulae are probably those of gravitation
alone., This is a poor approximation, however, if we wish
to extrapolate back in time to the original singular state.
A universe composed of mass points without pressure begins
its expansion from the singular state at an iﬁfinite rate.
A real universe, composed of mass volumes and subject to
an equation of state, begins 1ts expansion at a finite rate
and follows a completely different initial history because
of the viscosity-like forces which then operate between
the mass volumes. Any calculations of the age of the
universe made upon the zero nrecssure approximation will
therefore be in error by being too small.
The error in calculating the age of the universe

from models in which pressure terms have been neglected
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depends unon the present level of expansion. If the model
is well expanded at the present epoch so that the initial
stage durine which the pnressure was important is but a

very small fraction of the total history of the model,

then the error is slight. Fowever, the model that we shall
construct is but partially expanded at present epoch and the
pressure was important during a larece fraction of its
history. Thus we must expect a sizeable error in our
calculation of the age of the universe. It should be
vossible to evolve a correction for the retarding effects

of the neglected pressure. Wyman (Ref. 21) has solved the
Field Eaquations for non-homogeneous distributions under an
equation of state with certain assumptions. Wyman's
solutions break down for the present epoch in which the
pressure 1s necliscibly small, whereas our solutions break
down for the initial epoch in which pressures are

comparable to gravitational forces. A judicious combination
of the two solutions should suggest a reasonable correction
term. L1t should be noted, however, that Wyman's solutions
presupnose a uniform pressure in all directions at a given
point and a given time. We would expect instead, that the
nressure at the initial evnoch consists of a non-directionsl
chaotic term plus a directed term produced bty the outflowing
of radiation. Thus a calculation of a correction to the age
of the universe would involve several questions of great

delicacy.
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Secondly, we have assumed a spnherically symmetrié
distribution of matter. This would seem to be a reasonable
vostulate., The model that we shall use expands from a
singular point. The assumption of spherical symmetry
about that sineular point during the subsequent expansion
should be a good first avrroximation. It is true that we
have assumed in the precedine chapters that if a singular
point were present within the model that it would be a
unique point. Conceptually, space might contain several
such singular points, each of wh;ch would expand into a
rigantic ensemble of nebulae and clusters of nebulae,

Such aconceptual ensemble we shall term a meta-galaxy,
But the best interpretation of our present data is that
the distance of our deevest survey is small comnared to
the dimensions of our meta-galaxy and that we are
completely immersed within it. Thus the existence or non-
exlstence of other meta-galaxies becomes a meta-nhysical
nroblem., It has no value in the creation of a theory to
explain the vresent observations. Under these conditions,
the assumption of svherical symmetry apnears to be cood
physics.

The assumption that the universe expanded from a
single sineular point 1is, of course, Lemaitre's hvpothesis.
Although it is somewhat renuenant because of its overtonzs

of Genesis, we shall see that it 1s the simplest hvpothesis
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that we can make. It is significant that theoreticians inv
other fields, such as Gamow (Ref. 22), have postulated the
same ontology to explaln the observed relative distribution
of the elements.

Thirdly, we haﬁe assumed a co-movihg coordinate
system. That is, in a certain type of coordinate system
we have assumed that the mass points have fixed coordinates
throughout the history of the model. This implies that
there is at least one coordinate system for which the
mass points are not in rotation about the center. This is
in direct contradiction to the observed behavior of smaller
scale gravitational units such as nebulae and clusters of
nebulae. We cannot fit a co-moving coordinate system to
the mass points that make up a rotating spiral nebula
because the variation of angular velocity with radius vector
would destroy the coordinate system within a finite time.
e must assume that the meta-galaxy is about the only
eravitational system which is not in rotation, but this is
not too unreasonable. First, the meta-galaxy is unstable
since it is obsasrved to be expanding. Rotatioﬁ would tend
to produce a stable system. Secondly, in the singular
state there must be at least one coordinate system for
which Lemaitre's "giant atom" is not in rotation. Conser-
vation of angular momentum would then require that the

expanded universe be rotationally at rest with respect to
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this special system of coordinates. Thus the assumption of
co-moving coordinates seems to be a reasonable hypothesis.

| In addition to the three assumptions which are
inherent in the general theory developed in the preqeding
chapters we shall make three special assumptions which are
Trankly designed to reduce the mathematical labor. Two
of these special assumptions are reasonable, while the third
is actually bad physics. As the fourth assumption we shall
take the cosmological constant to be zero. This has the
great advantage of giving non-elliptic solutions. As
pointed out in the preceding chapter, this is the most
reasonable a priori value to assume for this term. But
this remains a special assumption which we are not compelled
to make. Interesting and useful solutions might well
result from assuming small positive or negative values
for the cosmological constant. This possibility should
be kept in mind for future work.

The fifth assumption is that the cuserver is

is located at the center of the meta-galaxy. This
homocentric hypothesis is manifestly poor physics. It
can be rationalized as being the logical first step in the
transition from homogeneous to non-homogeneous models. But
even this rationalization implies that expressions for a
non-central observer will be sousht immediately after a

workable procedure is established. Since the purpose of
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this chanter is illustration rather than deduction of
exact cosmological conclusions, the homocentric hypothesis
is excusable. It does simplify the mathematical work
considerably. However, all of the guantities having
cosmologicdl interest; such as density, curvature, red-shift,
counts, magnitudes, and age, depend upon the choice made
for the vnosition of the observer. A complete satisfactory
cosmological theory cannot be expected until the more
general case of the non-centric observer has been solved.
The procedures which will be presented in this chapter
anpear to be capable of such a generalization.

Under the first four assumpntions there are
only three possible solutions to the Field Equations.
They are M; Dbehavior with equations (4.2) and (L4.3);
0y Dbehavior with equations (hot) and (4.5); and Mp
behavior with equations (4.6) and (4.7). We could con-
struct a model containing any arbitrary combination of
these three solutions. For simplicity we shall restrict
our meta-galaxy to a sinele type of behavior. This is a
sixth assumption. As s first approximation it 1s entirely
logical.

We can show by appealing to formulae which will

be presented later that the M solution does not lead

2
to a satisfactory model. In the neighborhood of the observer

at the origin, we must choose a coordinate system so that
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Table VII
Model Density Parameter R s
ems./cc. 1t,-yrs. yrs.
10-30 7.616 1.86 x 109 1.85 x 109
" 10-28 2.905 2.08 x 109 1.58 x 109
= 5,077 x 10-28 Transition point
0y 10-27 890 71 1.89 x 109 g x 108

=

¥y = r to make the coordinate distance and the observer's
proper distance agree. If some other coordinate system were
used, it would have to be transfdrmed to an eaquivalent form
when calculations were made with the model to be compared
with the observations. Since a radial increment and the
proper distance must agree in the neighborhood of the oriein,
it can be shown that g(r) = b,r® where n>O0 in that
neighborhood. But the increment in nebular counts in the
neighborhood of the origin must be 4N == (constant) r?

from which we must have dh/dr = Cq r2, where Cl’> 0

in this region. But since h(r) < 0 1is one of the basic
conditions for the existence of the M2 solution, we must
furthermore have h(r) == - C, + Cqr? + - , where Cr> 0

in this region. But then the parametric equation (4.6) for
the M, solution cives y =~ (constant)/rn 79 r in the
neiechborhood of the origin which is in direct contradiction
to the first necessary assumption. Thus the M, solution

must be rejected.
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There remain two possible solutions which may be
used for our model. These two solutions are non-overlapping
and the choice of one or the other depends entirely upon
the vprover density at the origin at the present epoch as
may be seen in Table VII which has been calculated by
methods which are yet to be presented. The second column
gives the assumed density at the origin and for the
present epoch. The third column gives the value of the
parameter to be used in equations (4.2), (4.3), (4.4), and
(4L.5) under these conditions. The next column gives local
radius of curvature while the lasf column gives present
ace of the universe.

Since we wish to keep the density within our
model as low as possible, we shall chose the M; solution.
This choice 1s not as arbitrary as it may seem since it is
based upon considerable computation which will not be presented
here. All formulae and calculations in the remainder of
this chapter will be given in’terms of the Ml solutions.
However, calculations have been made with both types of
models and in all cases it has been found that a given My
relationship can be transformed into its eauivalent 0y
relationship by alterine a few signs and replacing the
hyverbolic functions with the corresponding circular functions.

Within a sufficiently small neighborhood of the

origin, the model will be essentially homogeneous. Hence,
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within thet neiechborhood, we must have g(r) == r2/RR and
h(r) & I k3 r3 by the reasoning of the previous chapter.
The constant k is a scale-constant which will be used to
adjust the co-moving coordinate system so that it agrees with
proper measure at the nresent epoch. Conseouently, the
functions h(r) and g(r) may be expressed for the entire

model as power series in the form

hir) = 4 k3 r3 (1 + ajr + a2r2 + a3r3 + - - )

R
=
i

(r2/R?) (1 + byr +~b2r2 T

where the coefficients aj; and Ds

;4 are determined by the

non-homogeneity of the model.

It was also shown in the preceding chapter that we
must take f(r) = constent for both the I¥j; and the 0y
solutions if negative densities are to be avoided. This
conclusion is quite obvious if either equations (4.2) and
(4.3) or equations (4.4) and (4.5) are used with equation
(1.36). Since we must take f(r) to be a constant, we shall
assign it the value of zero. This places the oriein of the
time coordinate at the singularity. Consequently, we shall
write for the time coordinate in ecuation (4.3) t + T,
where t 1s the local time of the observer which reduces to
zero at the present epoch, while T 1is the present age of

the model.
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Using these conventions, we can rewrite eguations

(4L.2) and (4.3) as

8:2“-3R2r (p+q,r‘+o_2rz+aar3+——-—} [COS"I@“I]
(1+br+br*4 ——-) _

t+f = 2K R’ U+ar+a,r*yar’+ - —-) sinhe—e]
(l+b,r+b,_r‘2+"‘“‘)3/z‘

For convenience in calculation, we will wish for our line-
element to reduce to the Special Relativity form in the
immediate neicshborhood of the observer. By equations (a.lé)
and (4.13) of the preceding chepter, this will reouire that
vy == r in that reeion. This, in turn, places the condition

J ~

on (5.2) that
2 X3 R2 (cosh@,-1) = 1

where ©, 1is the value of the parameter for the origin and

the present evoch.
When equation (5..4) is satisfied, we may develop
v(r,t) over the entire model as a double Taylor expansion

in the form

° 2 2 3 2 3
g:r[Hc,t Pttt rt tegrTh gt + CartT H o, r*t +Cor +——_]

We shall furthermore place a condition on the series
coefficients which bear suverscrints so that no term in r

alore to a higher power than unity will appear in (5.5).

(5.

(5.

(5

2)

3)

o 4y)
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That is, we shall make
cf = c§ = ¢y = -~ = F 0,

This is actually a condition upon the a; eand by
coefficients of (5.1). In practice, we shall determine the
ay coefficients by the cosmological requirements of the
model and then determine the by coefficients so that
condition (5.6) is satisfied. This condition makes it
possible to at least appr&ximately integrate the equations
for the geodesics. Noreover, it puts (5.5) into an analogous
form with the equivalent expression for a homogeneous model.
The cross-terms, whose coefficients are cy,p, 13> 23> et e.
nroduce the non-homogeneity in the model. If these cross-
terms should vanish and if condition (5.6) is.satisfied,
then v(r,t)= r F(t), which is exactly the homogeneous form.
We should note that we now have only one arbitrary function
at our disposal. The remaining arbitrary function is h(r)
since g(r) will now be determined bv h(r) and condition
(5.6)

The desired relation for nebular counts is not
too difficult to derive. By combining the line-element (1.23)
with the density equation (1.31) and integrating over the

ancle variables, we see that the amount of mass between

r and 1r + dr 1is
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Expanding this expression into a series and integrating
the series term by term, we find that the total mass out

to a general coordinate distance r 1is
4 { 5 6
M=2 i<3[r3+a,r~ + {az—O'SEQ}P»+ {03—-—‘52(% +%)}r + - - —-]

The mass, of course, is independent of the time since co-

movineg coordinates have been used. In the neighborhood of”

the oriein, we must have 2 k3r3 =5§TT§gr3 which determines

the scale-constant k as
k3 :_2..
5TTR

where E% is the proper density at the origin and at the
present epoch.

The total number of nebulae out to a given

"coordinate distance r will be proportional to (5.8). We

(5.8)

(5.9

can parallel the reasoning of Tolman and Hubble (Refs. 23 and 15)

for the counts within a homogeneous model exactly in all
details and write to the same order of approximation for

the counts within our non-homogeneous model

log N = 0.6 (m - a?%b + F* + C,

where N 1is the total number of nebulae counted per unit

area of the sky down to a limiting magnitude m. This

(5.10)
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limitine maenitude must be corrected for the change in the
rate of energy flow produced by the red-shift and for the
different absorption in the llarth's atmosphere and in the
telescope mirror, and the different sensitivity of the
photographio plate for the shifted radiation. The A§§L
term is Hubble's aprroximation for this total red-shift
correction. The red-shift to be nused 1s that for a nebulae
having an absolute magnitude M, taken by Hubble to be -15.15,
and having an apparent magnitude equal to the limiting

value m of the counts. There is some question as to
whether this approximation for the total red-shift correction
is valid, but for uniformity we shall use it. The constant

C depends upon the conventions that are adopted. Hubble
reduced his counts to nebulae per square degree and found
statistically that C = - 9,052. The term F* contains

the effects of the non-homogeneity and the curvature of the
model. By making the parallel derivation referred to, we

find that
Fx=log[l+a,r+{az-o.3§z}rz+{as—h'~2(—%'+%)}'”3+~——~] . (5.11)

In this derivation we have used a relation between coordinate
distance and limiting magnitude which is yet to be given.

The derivation of the red-shift is not quite so
simple. It can be shown that the radial lines of our

coordinate system are null-geodesics. Then light, leavinge
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a source at ™ and traveling down a radial line to the
origin, must by the line-element be subject to the

differential relation

! Q_H_dr—.—_d't (5.12)

By usine (5.5) and (5.1) this differential relation may be

expressed as an infinite series in the form

2
-E+C.t $Ct%82¢c,rt ~ EEFTZ"' o gy zc,srt2+3c23r"t_2—;'-i rg —E%arg-l»--- dredt( s 13)

If we consider a ray of light leavine a source at the
coordinate ry; at the time 17 and arrivire at the origin
at the time t,5 which is taken to be very small, being

comparable to zero, we will have formally that

n

[————-—]olr :to—'t, (5.14)

Where the integrand is the infinite series of (5.13). Un-
fortunately the integrand contains terms in both r and ¢t
in such a form that they cannot be separated. However, when
the photon passes through any given value of 1r, 1t does
have a definite value of t. If we knew this relation bve-
tween r .and t along the radial line, we could integrate
(5.14) directly.

We can anproach this desired relationshin between

r and t by successive approximations. If we take only the



-154-

first term of the infinite series, we find the first

apoproximation to be
t=to_ro

If we substitute this first approximation back into the
integrand of (5.14), now taking the first two terms, we

find the second aporoximation to be
t = to - (1 + cyto)r + 2eyr?

Substitutine this second approximation back into the inteesrand,
now taking all terms up to the second power, we shall find
the third apnnroximation. Substituting the third apvroxi-
mation back into the integrand and using more terms will
give & still higher order of apnroximation. But, by this
time, the approximation has become very awkward to handle.
However, we are interested only in obtaining the
red-shift. For this let us consider two light rays; one
leaving ry at tl end arriving at the origin at tg5 = O,
while the other leaves ry at tl +-6tl and arrives at
the oriein at t5 =8t,. By making the fourth approxi-
mation on the two light rays simultaneously and subtractine ;
them, we see that large blocks of terms will be cancelled.
Furthermore, by taking t, to be so small that all of its
hiecher vpowers greater than unity may be neclected, we shall

find that
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Stnq-qr+{4:+g QJ é)+§qg—cmd¢c3—§q3+cn}wﬁu__~ (5.15)

But since gif =1 + -%%1 , we can solve (5.15)

for the red-shift. Thus the red-shift, observed at the
origin and the nresent epoch for a source which is located

at r, will be

3
"6'% :Cnr"'{Z'Ctz‘Cz"'clz}"z-*'{g"cu(c.z*é;) - %ch"‘ C.C|z+C3“%C:3 "‘Cza}r S 18 16

This relation can be checked in two ways. Our model will
reduce to a homogeneous one if the cross-terms vanish, tha%
18y a4f gy5 = 013 = c23 = 0., Then the red-shift should
also reduce to the homogenous relation under this condition.
If the well known equation for red-shift in a homogeneous
model is re-exnressed in equivalent form, this will be seen
to be true. The second check may be effected by letting
all terms in t? and higher powers of t +vanish. Then the
instantaneous acceleration of the source with respect to tre
oriein also vanishes and the Special Relativity equation for
Doppler shift can be used. This limiting case is also
verified. Thus equation (5.16) would seem to be a valid
expression for the red-shift in our non-homogeneous model.
The last relation that must be developed is one
between coordinate distance and observed magnitude. We first
shall be concerned with conceptual quantities which are

called bolometric. These are the quantities which would



~156-

conceptually be measured unon a perfect photogranhic plate
exposed in a perfect telescope which is located in empty
space. Bolometric cguantities may be reduced to the
vhotogranhic quantities which are actually measured by means
of a series of semi-empirical corrections which will allow
for the selective absorption through the Earth's atmosphere,
the imperfections of the telescope, and the spectral
sensitivity of the photeraphic plate.

A magnitude measurement is based uvon the
observed density of a.pho1bgranhiq image which was exposed
for a egiven time. Thus we are concerned with the amount of
enerey which flows through our telescope anerture in a unit
time., Tet us take the center of our telescone aperture to

be exactly at the coordinate origein. Every photon that

leaves the source at coordinate ry ‘travels along & null-
ceodesic line in our co-moving coordinate system. We are
concerned with the very minute cone of null-geodesics which
has its apex at the source and which just fills the
telescope anerture. TFnergy flows into the cone from the
source at a rate which we shall denote as Z}Fﬁ/ Aty

but flows out of the cone into the telescore at a different
rate, which we shall denote as AR,/ Ato. The difference
in the entrance and exit rates of enercy flow is caused by
the relative motion of the source and the telescope. Since

our model is exnanding, each photon that enters our telescope
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is degraded in energy by the red-shift. Moreover, a block
of energy which flows into the cone from the source in

unit time will requife more than unit time to flow into the
telescore. Thus we have two effects which will reduce the
rate of energy flow into our telescope from the original
rate of enerey flow into the cone from the source. We

have, in fact

seoion oufiyon 88 45

The central line of the cone of null-geodesics
will be a radial line of the coordinate system. This
radiel line 1s also one of the null-geodesics. Let us
consider the small angle w measured in proper units at
the source between thic radisl line and one of the extreme
rays of the cone. Then the rate at which energsy flows

into the cone from the source will be

______A E; = (Cons‘f‘anf) I C\)Z
Lty

where I 1s the total emissive power of the source and the
constant contains the various factors of provportionality.
If we can determine the anple W , we can solve our
nroblem.

We shall solve the problem by determinine the
null-geodesics through the source. e shall find to a

very close avpproximation the null-geodesic which jiust barely

(517

(5.18)



enters the aparture of

he ansle

our telescopre., ‘We may then find

as measured in coordinate units at the

source between the radisl line and this extreme ruil-

ceodesic by

[
tan W' = -r

as is well known in analytic geometry.

meassurad in cocordinate

S
+lo

But the sngle w'

units cannot be used in (5.18).

The relationship between coordinate measure and proper

measure is given, of course, by the line-element (1.23).

We can see from this line-element that the anegle

measured in nroper units at the source must be

tan o

from which the vproblem
(5.12), and (5.17).
The eceodesic

by the use cf Dinele's

=_y-|/l+9

d¢
y’  dr

can be solved by combinine (5.20),

equations are found without difficulty

formilae (ref. 1, pp. 254-7). They are

d .

dor [l Yy, o drds 099! (O] 04919 5inp(de)* <
C‘Sz+[gl 2(‘+s) (ds)+zy’c'5°‘5 yl (ds) y, SN 9(2—?) O
d2e ! dr Jdg 1 d6 dt _ gin© cos ©fd8)* -

Gt TR R Y255 g~ e (g8) =0

d*¢ ‘dr d¢ +to do d¢ p do dt _
dsz+2--g s ds + 2co s ds +2'§L ds ds =G

(5.20)
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The notstion is one which wes previously used in which the
dots represent vartial differentistion with resvect to t
while the nrimes represent vnartial differentiation with

respect to r.

If in (5.22) we take © = 47T and 3%@: &s
2
initial ccnditions, we see that jS? = 0. This means that

if a peodesic initially lies within this plene, it lies
vithin the same plane throughout its trajectory. In the

same way in (5.23) if the geodesic was initiallv a radial

2
line with 55? = 0, then jsf = 0 &nd the eseodesic remains

a radial line. This verifies the earlier statements that

the radial lines are null-geodesics. But only one geodesic
within the cone will be a radial line. For all of the
oth:rs %gi will have a non-zero initial value. However,
with ©= 2T7 we see that (5.23) may be integrated exactly

as

K,
— .

dé _
as
where Kl is a constant of intecsration.

By using the line-element in a degenerate form

since ds = 0 for a null-reodesic, and bv usine the initial

con’ition ©= 17T we may restate ecuation (5.24) in the form

ot w2 .
flo()=-§ [y -vilEl) (529



In the homogeneous special case in which the cross-terms
vanish we can integrate (5.206) exactly as §%§'= Kzr/y

where K is another constant of integration. Then, by

2
using this result along with (5.25) in the line-element
we can integrate exactly and find the homogeneous null-
geodesics. “Je would find that the homogeneous null-
ceodesics in the closed 07 models would be ellivses
centered on r = 0 &and having semi-majior axes of R

and semi-minor axes which depend on the initial angle of
of the ray at the source. We would be concerned, of
course, with that extreme null-geodesic whose semi-minor
axlis is enual to the radius of our telescope aperture.
Similarly, in the open M; models we would find the
homogeneous null-geodesics to be hyperbolas centered on

r = 0 and having semi-major axes of R and semi-minor
axes which again depend upon the initial angle of the ray
at the source.

We cannot integrate (5.26) exactly for our non-
homoreneous models; hence we must make an approximate
solution. We shall assume that our non-homogeneous model
is nearly homogeneous. Accordinely, the cross-terms in.
(5.5) will be vanishingly small as compared to the purely
time dependent terms. We will take as our approximate

expression for vy{r,t) the purely time d=pendent
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terms plus a small non-homogeneous correction term which
will be the largest of the cross-terms. For convenience in
notation, we shall denote K]_/K2 = & . Then to the desired
order of apnroximation we find that d¢/dt =~&/ry. Using
this result and the eapproximate expression for y(r,t) in

(5.26) we find that

éifvl<2_c(1+§qq2r?+~——)

ds .N Yy Pclis?- (5.27)

Using (5.27) and (5.25) in the line-element, we *

find that the differential equation which must be satisfied

by the null-geodesics in our co-movine coordinates is

/2 | 3 2
Yy Fﬁvz”v—ifﬁ+§cm&r +---) |
Hz(l+9) - 62 Y_2C,252

de
The solution of this differential eauation is a distorted

conic section. The semi-minor axis of this distorted conic
section is determined by the condition dr/d¢ = 0. Because
of the extreme smallness of the remainine factors on the
rieht-hand side of (5.28), this condition is satisfied to

a very high order of apnroximation by r = s . Thus, to
obtain the initial angle of the extreme ray within the null-’
geodesic cone, we shall take & to be the radius of the

aperture of our telescope. Then we shall have

o tanw = & (4620 logr+——--) (5.29
T +5cc,rPs—--)
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By combining (5.29), (5.18), and (5.17) we fird

that

= 2
l ~ Consfon'!’/ A [I-PC.gSzlog P m o
. r= {A+6a/ U+icc.roy___

where 1y 1is the bolometric luminosity of the source as
observed at the origin. For the deepest count in the model
that we shall use, the non-homogerneous correction term in
(5.30) has a value of 0.9966, which differs insienificantly
from unity for all observational purposes. Thus while a
finite focusing effect does exist because of the non-
homogeneity of the model, it has no practical conseguences
for a central observer. This is not to say, however, that
the focusing effect would not be important for a non-central
observer. In the latter case, the term & would be of
astronomical instead of terrestrial dimensions.

Since the non-homogeneous focusing effect is
insienificant for the central observer within our model,
we shall henceforth neglect it. TFollowing the reasoning
of Tolman and Hubble (Ref. 23) we can write for the desiredi
relation between the coordinate distance and the observed
photographic magnitude for a source of absolute nhotoeraphic
magnitude M located at 1r and having an observed red-
SA
A

shift of as

log 1 = O.2{m-510g(l + 57*4 - K - I\'I} + 1

(5.30)
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where the term K consolidates the semi-empirical correction
terms which are necessary to change from conceptual
bolometric to actual photographic magnitudes. Hubble

(Ref. 15) has stated that to a close aprroximation

5 loe(l + %@) + K = h-%?; consequently we shall use (5.31)

in the form
log r = 0.2(m - u-%%) + L.54L3

for making comnrutations, where we have taken M = =15.15.

Equations (5.32), (5.16), and (5.10) are the re-
quired relations for making computations with our model.

As stated earlier, the relation (5.32) was used in the
derivation of (5.10). In makine computations with these
formulae we must use a consistent set of relativistic units.
The particular set of units that we shall use in calculating
from our model will be the year as the unit of time, the
lisht-year as the unit of length, and a comparable unit

for mass.

We shall fit our model to a first apvroximation
to the primary body of data, namely the red-shift asgainst
magnitude and the counts against limiting magnitude. The
remaining two pieces of data, namely the local density and
the age of the universe, will be determined by the re-
quirements of the fitting procedure for the previous data.

In 8ll cases we shall accept Hubble's figcures as published.

(5.32)
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Since these were collected at the working limits of the
lareest telescopes and were corrected by factors which
lie on the border-line of knowledre, there is reasonable
doubt about the exact values of the figures and the
correctness of the procedures. Among these doubtful items
are the determination of the limiting magnitudes in the
counts, the value of the term KX which corrects from
bolometric to photographic magnitudes, the approximating
vrocedures, the calculation of the term zln%, and the
correct value of M. TFor instance, Fletcher (Ref. 2i.)
has recently suggested that M éhould be about a half
maenitude fainter than the value that was used.

We do not wish to besgin a controversyv. Hubble's
figures and data may be exactly correct in all particulars
“le shall accept his published figures and shall attemnt
to construct a model, to the first arnroximation only,
based upon presently accepted vhysics which will justify
Hubble's data. This 1s an important desideratum since
Hubble's work has been widely interpreted as demostrating
a kind of failure of the classical relativity theory and of
requirine the discovery of a new principle of phvsics. How-
ever, because of reasonable doubt =s to the complete
validity of the experimental data, the fault for any
nartial failure of this attempt must not be assessed entirely

against the theory.
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Hubble has derived a statistical relation be-

tween red-shift and relativistic coordinates as

SA -

ST 5037 X 10710 r 4 2,54 x 10719 22, (5.33)

The first term is determined to three filgures from the
data and can be considered to be auite good. The data are
too scant to fix the second term. Hubble states that the
probable value for the second term must lie between

2,26 x 10719 anda 3.2 x 10-19, Because of the lack of
sufficient data, it is impossible to determine anything
about a nossible third power term.

‘e shall take a model in which the third power
term of the red-shift is negative and important in value
for the deeper count surveys. Accordinely, Iubble's
statisticel adjustment of the second power term would be
a bit too low. We shall arbitrarily take his uvnver
probable 1limit as being the correct value. This is aquite
crude, but is possibly sufficient for a first approxi-
mation. A correct procedure would be to calculate the
red-shift asgainst maenitude relation for the model and
then to make the model fit the observations for the
cluster nebulae. Th,s latter procedure will be required
for a more detailed it of model aecainst observations.

Hubble has statistically determined three terms

of (5.10). The observationally determined terms are
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Log N, m, and €. It is conceptuslly vnossible to

observationally determine é;x , but practically this
term was out of range of existing instruments. Therefore,
SA ot

there are two terms, namely and F7, which must be

A
theoretically determined from the model to fit tihe

observations. Hubble has defined a quantity A me as
= - 1o - - 48 10 x
Am, = m s[logN C]_473-—%—-F

which can ve evaluated from the observational data.
#ittin~ our model to the count data then reduces to ob-
taining the proper values of Awm,. ubtle has tabulated
his values of [}rnc against limiting magnitudes. However,
if we calculate this aquantity from his published data, we
will find slightly different values as shown in Table VIII.
As before, we shall accept Hubble's values in making our
calculations., The differences shown in the last column
of the table réquire explanation, however,

Turnine finally to our theoretical model, the
conditions (5.4) and (5.9) when solved with the expression

for él gives
cosh ©,+ 1 = c¢§/2k> = 3¢ /b,

Since the numerical value of c¢q 1s ¢iven in (5433), the
value of the parameter at r = t = 0O can be calculated

whenever G% is assumed. This value of the parameter when

(5.34)
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Table VIII

m Hubble Omer H-20
21:03 0.676 0.673 + 0.003
20,0 0.468 O.bly + 0,028
19.4 0.368 0.41 - 0.042
19.0 0.314 0:31 + 0,004
18«47 0,253 Q.24 + 0,013

used with the expression for ¢y and equations (5.2) and
(5.3) can be used to determine R and T. This was the
procedure by which Table VII was calculated.

We shall take a model in which
Co= 3.3 x 10-28 gms/c.c. Then from (5.34) we find that
©,= 1.3603 and that R = 3.147 x 109 1t.-yrs. while
T = 1.344 x 109 yrs. This assumntion of density is not
arbitrary. This 1s the result of a series of calculations
in which various different densities were assumed until a
negative third power term was found for the red—shift as
given by (5.16) which was thought to be of the proper order
of magnitude.

The next step is to fit to the second power term
of the red-shift. Of the three elements that make up this

2

term in (5.16), %oi is fixed, ¢, 1is determined by the

2

assumption for density and is a maximum for the transition
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density between the 07 and My models, while ¢y, 1is
determined by the non-homogeneity of the model. If the
model were homogeneous, the c¢j2 term would vanish. By
the extreme assumption that the density of a homogeneonus
model were exactly the transition value, we would have

)

%ci - ¢, = 2.16 x 10-19, which is rather close to

2
Hubble's probable lower limit for this term. However,
such a homogeneous model would not yield Hubble's count
data. To fit a homogeneous model we would have to »nrove
either that Hubble's count data was very seriously in
error, or we would have to construct a different
homogeneous model hsving non-zero pressure and cosmoloeical
constant.

Under the assumption of zero cosmoloecical constant
we must assume a non-homogeneous model. Ior the model
that we are constructing we will have

o% - By = 1.916 x 10-19, gince we wish the coefficient

R

of the second vnovwer term to be 3.2 x 10‘19, we must take
cip = 1.284 x 10-19, The condition that

c = 0 gives Dby = - 3.247 aj. This result and the
vreceding numerical value for c¢j3p requires that

a; = -9.2 x 1010, Thus, to the first aporoximation, we
are reouired to assume a non-homogeneous model in which

the density is decreasing away from the center.
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The third step is to satisfy the count data.
We shall assume in the shallow survey to the limitine
magnitude of 18.47 that the effects of the third power
term in the red-shift may be ignored. This a poor
assumption but it is justified for a first anvroximation.
Then, to obtain Hubble's value of Amy we must take
a, = 1.234 x 10 ~17, The condition that ¢3 = O then
eives b, = -4.015 x 10-17., Ve may now calculate the
third power term of the red shift. The most important
element in this term as eiven by (5.16) is Cp3. We find
that cg4 = -1.642 x 10-27 under the foregoing assumptions.

Calculating the remaining elements of the third power

term for the red shift we find that for this model

%A = 5.37x107"°r + 3.2x107"°r2 = 1,583 %103 r3 4 — — —

in which the third power term is of the proper order of
maenitude but is probably too great in value. .

The last step 1s to fit the remainder of the
count data. Ve still have ag at our disposal and we shall
attempt to tailor it to give fair agreement with the data.
In making this fit we shall assume that the effects of
the fourth power term in the red-shift may be neglected
throuchout the range in which count data are available.
For the deepest count to a limiting magnitude of 21.03

this 1is vrobably a poor assumption. Again, for a first

(5. 35)
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anproximation the pnrocedure is justified.

To make the required calculations we must find
the values of r and égl which correswnond to the
limitine maenitudes m. To a first anproximation we can
do this gravnhically by plotting two curves to a sufficiently
oven scale so that three figure interpolation is nossible.
We have plotted (5.35) to such a scale where we have taker
convenient values of r. We have then used these data in

(5.32) which was rewritten as

m=51log r - 22.715+4§7T2 (5.36)

and have pnlotted a second curve of limiting magnitude acainst
r. From these two curves the required values of r and

==  for the limitiné magnitudes m were found and they

are eiven in the first three columns of Table IX. This
information alone with Hubble's values for A my eiven in
Table VIII determine the values of the relativistic correction
term F' which will be required to justify the count datsa.
This partially experimental quantity, which has been

denoted as Fé, is listed in the fourth column of Table IX.
The theoretic value of F' as determined by our model is
given by (5.11). Since the coefficients a1, @, b1, and
R have already been fixed by the requirements u»on our
model, we have only aj to vary to fix the data. This was

done by computing those terms of (5.11) which are fixed and
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subtractine then from log-1 F;. The differences should
be mainly the a3r3 term, although the neglected higher

power terms in (5.11) might be important.

Table IX
) -8 LK >
m = rx1io s FC cC -0 %
21.03 0.165 L.19 - 0.0096 - 0,020/ - 0.0168 Olu3

20.00 | 0.138 | 2.72 | + 0.0504 0.0603 | + 0.0099] 1.1%

+

19. 4 09110 2.16 + 0.0432 + 0.0473 + 0.0041 1.18
19.0° 0.095 1.85 + 0.0396 + 0.0354 - 0.0042 1.15
18447 0.082 1..9 + 0,0450 + 0,0199 - 0.0251 1.10

As would be expected from the annroximate vrocedure used in
fittine this model, this predicted a3r3 term nearly
vanishes for the survey to the limitine magnitude 18..47.

The remaining‘four surveys were used to determine an
average value for a3 which is a3 = -2.46 x 10-26, Using
this average value in the full form of (5.11) the fifth
column of calculated values of I* was computed. The
residuals, which are the differences between the calculated
and observed values of F*, are given in the sixth column.
The agreement between this first aprnroximate form of tle
model and the observations is fair. The residuals for the

three intermediate surveys are essentially ecual to the

residuals obtained bv Hubble (Ref 15, Table X) fror
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his static model with a unknown cause for the red-shift.
The coneruity of the two extreme surveys is disturbed by
the known errors in this first approximating procedure,
which have been discussed earlier. This agreement can
obviously be improved by reneatine the indicated
nrocedures several times with increasinely better anvrox-
imations at each calculational step.

We may compute the local proper density any-
where within the model from the use of (1.3%4). TFor the
particular time t = 0, +this density expressed as a

ratio to the proyer density at the origin is

—S-:I+%a,r’+%azr?-+ 2_a3r‘3+___._

Since the coefficients aj, a,, and a3 are now fixed ,
this density ratio may be computed, where again the

effects of powers higher than the third have been neelected.
This information is tabulated in the last column of Table IX.
The density ratio slowly decreases away from the oriein to

a minimum of about 0.99 and then increases to a maximum of
1.18 within the ranre of the count surveys, but star@s to
drop drastically at the extreme range of the surveys. This

is the tyne of behavior that we would exvect, althourh the

model needs further adjusting. If the sineular state of

the universe had a finite mass, we would expect the

density ratio to begsin to drop when the coordinate distance

(5.37)
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became comparable to the age of the universe. TFowever,
from present estimations as to the age of the universe,
we would exnect the density ratio to beecin to drovo for
coordinates about three times greater than the one
indicated here. There are at least two causes for the
seeming anomaly. First, the coefficient of the third
power term in the redi-gshift given in (5.35) is probably
too great. Second, higher power terms have been
consistently neglected throuchout the computations.
These neglected higher nower terms mieght well be
significant for the deepest surveys.

we can summarize this first teq;tive model by

listing the coefficients which have been employed. They

are
o= 3.3 x 10728gm/ce. R = 3.147 x 109 1t-yrs.
o= 1.35603 T = 1.344 x 109 yrs,
a; = -9.8 x 10-10 b1 = 31.85 x 10-10
a, = 1.235 x 10717 by = - 4,015 x 10-17
as = - 2.46 x 10-26

This model is appealing in that it is evolved from accepted
physics but that it yields Hubble's otherwise disturbine

observational data to a fair approximation. The red-shifts
are the classic Doppler effects. The non-homoegeneity of the

model is what should be expected from the known instability.
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of homoeceneous models. The theory apnears to be sound
and the fit of the model could be improved by further
computation. There is considerable doubt, however, as

to the wisdom of making a more detailed fit until the
many questions as to the actual validity of Hubble's data
are answered.

Having considered the primary data of red-shifts
and counts, let us now turn to the secondary data of
density and age. The density that must be assumed to fit
the other data, namely o= 3.3 x 10-28 gms./c.c., is a
reasonable one. Hubble (Ref. 16, n. 76) has estimated
the order of magnitude of the averaged-out density of
the luminous matter within the universe to be 10-30 eoms./c.c.
-Sinclair Smith's (Ref. 25) measurements upon the Virgo
cluster would indicate that the order of magnitude for
the averagsed-out density of all matter within the universe
must be about 2 x 10-28 ems./c.c. The discrepancy be-
tween these two estimatiors must be due to a large part
of the total mass of the universe being non-lwninous.
Ferhaps it is scattered as meteoric material between the
nebulae. Zwicky's (Ref. 20) measurements upon the Coma
cluster would indicate an even higher value of about
L x 10-28 ems./c.c. Tor the magnitude of the averaged-

out density. Thus the value which must be assumed to make
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our model fit 1s an entirely reasonable one. On the
other hand, a more detailed study of the dynemics of the
nebular clusters by the astronomers would be aquite welcome
since the density is a rather sensitive factor in our
model. A slightly different density would produce
considerably different behavior.
The situation for the calculated age of the
universe is not so pleasant. It is about two-thirds of
the most reasonable value. As indicated in the discussion
at the beginning of this chapter, there are at least tio
reasons why the calculated age of the universe could be
expected to be in error. First, the assumption of a
central position for the observer is manifestly false.
A non-central position for the observer would alter both
R and T by considerable amounts. Second, all pressure
effects have been neglected. Our model is in an early
stage of evolution as shown by the small present value of
the parameter (E%= 1.3603. We would expect pressure effects
to have been appreciable for a large fraction of its history.
If these neglected pressure terms included a viscous-like
force, we would expect our calculated age to be too small.
The age of the universe is not a well established
datum as only a rough order of magnitude is given by the

nresently known data. The most common assumption is that
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it lies between 2 x 109 vears and 3 x 109 vears. The
lower limit 1s set by the radioactive determinations upon
the oldest rock of the Tarth. This lower limit is about
2 x 109 years. The same figure is found for the upper
limit of radioactive determinations upon meteorities.
This would =apnear to be siegnificant since it has been
estimated that 60% of the meteorities originate within
interstellar space. The upper limit of roughly 1010
vears is set by the calculated relaxation times for
stellar and nebular clusters. Turther rough suvporting
evidence is found in the continued existence of certain

3

types of super-luminous stars ard in the observed failure
of ecuipartition of energy within our own galaxy. The
most reasonable present value for the age of the universe
would appear to be about 2 X 109 yvears. This assumes
that the Barth was produced at the time of the
sinpularity and formed its crust by sweevning up the
meteoric material which was present with a high density
at that epoch. This 1s in agreement with severasl present
theories as to planetary evceclution and would zccount for
the known small eccentricity of the Farth's present orbit.
In concluding this chanter it must once more

be emphasized that the material vresented here is

illustrative rather than definitive. Ve wish to show the
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practical value of the seemingly abstruse theory of the
first four chapters. The formulae developed for the red-
shift, counts, and magnitudes, as well as the procedures
utilized in rouehly fitting this tenative model to the
observational data, are the important elements. The
precise fiesures of the various values evolved are not too
consequential. They can be bettered by obvious, albeit

Sisyphean labor.
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