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ABSTRACT

Gravitational wave analysis requires waveform models to compare with observed
signals from compact binaries. These models are based on and validated by numer-
ical relativity waveforms—waveforms output from codes developed to numerically
evolve the Einstein field equations. The efficacy of numerical waveforms for anal-
ysis is limited by error from both numerical and astrophysical sources. This thesis
makes two contributions to the quantification and mitigation of this error.

Chapter 2 describes a new algorithm for eccentricity reduction, the process of de-
termining initial conditions for quasicircular binary orbits. This iterative procedure
requires a measurement of eccentricity based on an early-inspiral trajectory. We
find that the use of nonlinear fitting techniques such as variable projection leads to
vastly improved consistency in eccentricity measurements.

Finally, Chapter 3 presents an in-depth quantification of error in numerical binary
neutron star waveforms from three vastly different numerical relativity codes. We
find that overall these codes produce consistent binary neutron star evolutions, but
that further accuracy improvements will be required for analysis of next-generation
gravitational wave detector signals.
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C h a p t e r 1

INTRODUCTION

General relativity (GR), the modern theory of gravitation, describes gravity as a
geometric property of spacetime, a four-dimensional manifold that is curved by
the presence of energy. This concept is succinctly encapsulated by the Einstein
Field Equations (EFEs), a set of nonlinear partial differential equations. GR has
been wildly successful in predicting observed effects not explained by Newtonian
gravity. In particular, GR predicts the existence of black holes, regions in spacetime
formed by extremely compact mass and causally separated by an “event horizon”,
and gravitational waves (GWs), waves that propagate in spacetime itself (analagous
to electromagnetic radiation and its propagation in electromagnetic fields).

Extraordinary scientific effort has been put towards the detection and analysis of
GWs (e.g. Refs. [15, 60, 10, 1, 4, 7, 77]). Although theoretically any accelerating
and spherically asymmetric object emits gravitational radiation, the characteristic
strain scale for GWs passing through Earth is so miniscule—ranging from about
10−23 to 10−18 even for loud signals—that only extremely energetic systems have
so far proven feasible as subjects for observation. In fact, the only such system
from which direct observations have been successfully made is compact binary
coalescence (CBC), a pair of orbiting compact objects (e.g. black holes or neutron
stars) that inspiral towards each other as a result of gravitational waves removing
orbital energy (a process termed radiation-reaction) until they become close enough
to merge, producing a ringdown signal in the aftermath as the newly formed object
stabilizes. The relativemasses of themerging objects (with equal-mass ratio binaries
following vastly different evolutions from extreme-mass ratio binaries) and the
presence of spins influences the resulting GW signal, so properties of the binary can
be inferred from the signal morphology.

The first gravitational wave detection came indirectly from the discovery of the
Hulse–Taylor pulsar [51], a neutron star-pulsar binary with an orbital decay rate
in precise agreement with the rate of energy loss due to GW emission [85]. The
first direct GW observation was achieved decades later by the Laser Interferometry
Gravitational-wave Observatory (LIGO) Scientific Collaboration [6]. The detected
signal, named GW150914, was emitted by a binary black hole (BBH) and was
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the first of many similar compact binary detections to follow, including neutron
star-black hole (NSBH) [9] and binary neutron star (BNS) events [5]. The primary
mechanism of the LIGO GW detectors (specifically, the Virgo and Kamioka Grav-
itational Wave Detector (KAGRA) collaborations) is laser interferometry bolstered
by highly sophisticated isolation from noise. Currently, GW interferometers are
sensitive enough to detect compact binaries several orbits before merger [8], but are
limited to stellar mass binary sources1.

Extensive matched-filter searches are used to identify likely GW signals in detection
data [64, 65, 7]; signals are then further characterized through comparison to
waveform templates and parameter estimation to constrain possible source properties
(e.g. masses and spins) [8, 2]. However, it is not known ahead of time what
parameters a signal will have, so each of these steps requires accurate waveform
models.

A vast amount of research is dedidated to the purpose of developing gravitational
waveform models. There is no single closed-form solution describing the full evo-
lution of a CBC, so different modeling formalisms have been developed according
to the span of gravitational regimes a CBC passes through. Post-Newtonian (PN)
expansion [21], expressing the spacetime metric in terms of perturbations from
Newtonian gravity in orders of E2/22, provides an analytical description of wave-
forms in the weak-field regime with low E2/22, e.g. from binaries with large orbital
separation. PN modeling is surprisingly effective in the inspiral regime, even past
the point where intuition suggests it should break down [17, 86]. Nonetheless,
PN can be extended with effective-one-body resummation [26] and the self-force
formalism [70], which are applied in practice to extreme mass ratio systems.

However, analytical modeling is not sufficient to describe the physics of compact
binaries during the merger phase—for this purpose, the EFEs must be solved nu-
merically, and the field of numerical relativity (NR) has developed to address this
daunting task. On a high level, the goal of NR is to numerically solve the system
of equations given by the EFEs, particularly for compact binary systems with GW
emissions in the frequency band relevant for GW observatories2. In practice, this
process requires successful interplay between several elements of mathematical and

1The space-based Laser Interferometer Space Antenna (LISA) is expected to be sensitive to super-
massive binary black hole sources [12].

2Luckily, the EFEs in vacuum are mass scale-invariant, so the EFE description of BBHs is dependent
on the mass ratio and not total mass.
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computational machinery, since the EFEs specify a set of ten coupled nonlinear
partial differential equations.

The first complete numerical simulation of a BBH coalescence was achieved in
2005 by Frans Pretorius [71], and since then many NR code suites have been written
to consolidate the required technical tools for compact binary simulation, with or
without matter, into a single simulation framework, such as the Spectral Einstein
Code (SpEC) [81], the Einstein Toolkit (ETK) [58], the Bi-functional Adaptive
Mesh (BAM) code [24, 25], IllinoisGRMHD [39], the Templated-Hydrodynamics
Code (THC) [74], Maya [54], GR-Athena++ [33], GRChombo [31, 14], HAD [13],
and SpECTRE [56]. These codes widely vary in setup, algorithmic schemes, and
formalisms. For numerical integration, the EFEsmust first be expressed in an appro-
priate form—that is, as an initial value problem that can be evolved forward in time.
Multiple formalisms of the EFEs have been devised for implementation in NR codes,
such as the generalized harmonic [72, 57], Baumgarte-Shapiro-Shibata-Nakamura
[82, 19], and Z4c [22] formulations. Codes also take different approaches in how to
deal with the physical singularities in black holes—using either “moving puncture”
methods [18, 29] or by excising singularities from the evolution domain [48] as in
SpEC. Furthermore, while many codes use finite differencing, SpEC uses spectral
discretization for gravitational evolution [68], and SpECTRE implements a hybrid
approach [56, 35, 34].

An end goal of NR is the production of large numerical waveform banks for use
in observation experiments both directly in GW signal analysis and for reference in
other modeling techniques such as effective-one-body [26], phenomenological [52,
55], or surrogate [83, 84] modeling. Such banks, or catalogs, need to span the
wide parameter space of possible detection sources; for BBHs this space is at least
7-dimensional (for mass ratio and each 3-dimensional spin). As with NR codes,
several BBH catalogs have been constructed by the NR community, including the
NINJA [16, 11], MAYA [40], NCSA [50], GR-Athena++ [76], and BAM [47]
catalogs. The Simulating eXtreme Spacetimes (SXS) collaboration has produced
the largest catalog of BBH simulations to date using SpEC [23], totaling to ∼3000
publically available numerical waveforms, but still more are needed to thoroughly
cover the BBH parameter space. The addition of matter to the evolution system
makes BNSs and NSBHs even more expensive to simulate than BBHs, but there is
no less need for a comprehensive BNS/NSBH waveform catalog. Attempts have
been made at BNS catalogs, such as the CoRe database [38, 46]. However, because
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of the added expense and difficulty of matter evolution, no comparably sized catalog
to the SXS BBH database exists for BNS/NSBH waveforms.

A number of complications arise in numerical codes regardless of implementa-
tion choices, not least of which is the problem of how to correctly choose initial
conditions, termed initial data. Initial data—the metric information from which
evolution starts—needs to be constructed given a set of desired orbital parameters,
e.g. masses, spins, initial positions, and initial velocities [88]. The choice of pa-
rameters reflects the astrophysical conditions of the simulated binary—in particular,
orbital eccentricity carries implications for the binary formation channel. Binaries
lose eccentricity during inspiral because of the radiation-reaction process [67, 66],
so isolated binaries with long inspirals have low eccentricity by the time they merge
and reach detection bands; conversely, dynamical binary formation channels can
sometimes result in high eccentricity mergers [62, 80, 42, 89].

Because most GW detections are consistent with quasicircular orbits [79, 87, 45,
78, 63, 43, 53, 75], quasicircular binary simulation is of high interest to the NR
community. However, eccentricity is difficult to control in a numerical binary
simulation. Constructed initial data introduces spurious junk radiation in numerical
binary evolution [32]. This junk radiation dissipates during the first feworbital cycles
of evolution, affecting the extracted waveform as well as the orbital parameters
recovered after evolution [59, 90, 49]. Additionally, eccentricity is not a well-
defined parameter in GR, so measurement of eccentricity in a numerical orbit is
imperfect due to the presence of nonzero radial velocity, and generally depends
on definitions contrived from Newtonian mechanics and phenomenology in either
the binary kinematics or the waveform (see e.g. Refs. [20, 27]). Most NR codes
simulate quasicircular binaries by iteratively evolving initial data, measuring the
apparent eccentricity in early evolution, and correcting the initial data for a new
evolution in a process called eccentricity reduction [69, 28]. Accurate and robust
eccentricity measurement in spite of the inherent difficulties is crucial for the tuning
of numerical binary parameters.

Nonvacuum systems (e.g. BNSs and NSBHs as opposed to BBHs) pose an even
greater challenge for simulation, as the EFEs are then coupled to the equations
of hydrodynamics. Independent of additional gravitational coupling, numerically
evolving hydrodynamical systems is already a rich field for which a body of algo-
rithmic techniques have been developed. Computational hydrodynamics presents
problems in discretizing the fluid equations so that physicality is preserved, and ac-
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curately resolving phenomena within a large range of scales. In the context of NR,
the challenge is then to incorporate hydrodynamical evolution while maintaining the
integrity of the gravitational solution. Since the gravitational waveform is affected
by the tidal deformation of merging neutron stars, BNS signals can constrain neutron
star properties and the dense matter equation of state [30, 41, 3]. Tidal deformability
signatures cannot be modeled analytically as they primarily occur near the merger
regime where PN approximation breaks down and so are fitted for from numerical
waveforms [37, 36], exacerbating the need for numerical binary neutron star wave-
forms in GW analysis. The current lack of an extensive BNS waveform catalog will
need to be addressed for future GW analysis to be possible.

As in all computational simulation, one of themajor challenges ofNR is to effectively
balance accuracy and efficiency. Current numerical waveforms need high enough
accuracy to not systematically bias statistical waveform analysis, but currently do
not meet this standard for next-generation detectors (e.g. Cosmic Explorer [77]
and the Einstein Telescope [60]) and will require a 10× accuracy improvement
to keep up [73, 44, 61]. The technical overhead involved even for a single BBH
simulation (including ∼20 orbits of inspiral with complete merger and ringdown
evolution) can result in runtimes on the scale of weeks or months, so simply running
simulations with higher resolutions is not a feasible long-term solution. Error is
both numerical and astrophysical in nature, and the NR community cannot resolve
the deficiencies of current codes without first quantifying these errors and gaining a
thorough understanding of what sources are dominant.

This thesis addresses the need for error quantification and mitigation in binary
waveform simulations in two contributions. First, described in Chapter 2, is a new
algorithm for eccentricity reduction that shows improved consistency compared to
previous methods. Chapter 3 presents a BNS waveform error analysis of state-of-
the-art NR codes SpEC, FIL, and SpECTRE, and provides an assessment of how
current accuracy standards fare in relation to the requirements set by future detector
experiments.
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Simulation of quasicircular compact binaries is a major goal in numerical relativity,
as they are expected to constitute most gravitational wave observations. However,
given that orbital eccentricity is not well-defined in general relativity, providing ini-
tial data for such binaries is a challenge for numerical simulations. Most numerical
relativity codes obtain initial conditions for low-eccentricity binary simulations by it-
erating over a sequence of short simulations—measuring eccentricity mid-evolution
and correcting the initial data parameters accordingly. Eccentricity measurement
depends on a numerically challenging nonlinear fit to an estimator model, and the
resulting eccentricity estimate is extremely sensitive to small changes in how the fit
is performed. We have developed an improved algorithm that produces more con-
sistent measurements of eccentricity relative to the time window chosen for fitting.
The primary innovations are the use of the nonlinear optimization algorithm, vari-
able projection, in place of more conventional routines, an initial fit parameter guess
taken from the trajectory frequency spectrum, and additional frequency processing
of the trajectory data prior to fitting.

2.1 Introduction
Quasicircular compact binaries are expected to make up the majority of binaries
detected by gravitational wave observatories. This is because gravitational radia-
tion causes binaries to circularize during inspiral, resulting in low eccentricity at
merger [35, 34]. Indeed, most studies of gravitational-wave (GW) detection events
show that the waveforms are consistent with quasicircular orbits [44, 55, 14, 43,
32, 13, 20, 40]. However, there is evidence that some events may have nonzero
eccentricity [17]. This suggests that some binaries might have formed relatively re-
cently by dynamical processes, for example, in dense environments such as globular
clusters [31, 45, 12, 59].

Our best understanding of GW events from binary mergers relies on numerical
relativity (NR). This can be either from direct simulations, or from surrogate mod-
els [51, 3, 56, 22, 57, 21] or analytical waveform models [10, 28, 26] calibrated to
NR. These NR simulations are formulated in terms of initial-value problems that
involve two steps. The first step is the construction of initial data [9] that satisfy the
Einstein constraint equations on some surface of constant coordinate time. In this
step properties such as the masses and spins of the objects and their initial positions
and velocities are freely specifiable. The second step is the evolution of the initial
data through time, which yields the spacetimemetric as a function of time, including
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the emitted gravitational radiation.

To understand quasicircular binary inspirals, it is therefore important to construct
NR simulations that have nearly zero orbital eccentricity. In Newtonian physics
this would be straightforward: Kepler’s laws allow specifying initial positions and
velocities of the objects that correspond to zero eccentricity. However, this is not
true in general relativity (GR). First of all, in GR there are no truly circular orbits
because of radiation reaction. Thus, the goal is to achieve a quasicircular orbit in
which the binary orbit decays at a monotonic (as opposed to oscillatory) rate, in
the absence of spin. For spinning objects, the goal is still to reduce oscillations
in the orbit, but this is more complicated because spin-spin interactions produce
oscillations that must be distinguished from those caused by eccentricity [7]. In
the post-Newtonian (PN) approximation it is possible to compute expressions for
particle positions and velocities (or equivalently, initial orbital separation, orbital
frequency, and radial velocity) that give quasicircular orbits [2], and indeed by
using high enough order PN these expressions can be used [19, 8] to produce NR
simulations with eccentricity of order 10−3. However, for accurate waveforms we
want to achieve eccentricities smaller than this.

One potential drawback of using PN expressions directly is that the gauge (coordi-
nate) choices used in PN typically differ from those used in NR [36, 50], so that PN
and NR orbits can disagree to an extent that is difficult to predict. Yet another prob-
lem stems from initial transients that appear in NR simulations. These transients
occur because NR initial data, even in the infinite-resolution limit, does not contain
the same gravitational radiation as would a snapshot of a binary that has been inspi-
ralling since the infinite past. Instead, at the beginning of the evolution the solution
quickly relaxes to quasiequilibrium, slightly changing the initial parameters and the
orbit and emitting high-frequency gravitational waves in the process; these waves
are known as “junk radiation”. There have been attempts to reduce the amount of
junk radiation in NR simulations [1, 58, 23, 24, 42, 49, 27, 50], but typically one
simply discards the first few orbits of the simulation until the junk radiation has
decayed away [6].

To handle the above difficulties, we have adopted an iterative method for producing
quasicircular NR initial data [38, 7, 39, 41]: an initial guess is chosen for NR initial
data parameters, the binary is evolved for a few orbits using NR and the eccentricity
is measured from that evolution, and then the initial guess is updated so as to give
smaller eccentricity for the next iteration. See Fig. 2.1 for an illustration of the
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process.

In this chapter we discuss improvements to the iterative eccentricity-reduction
method of Ref. [7] and its implementation in the NR code SpEC [48]. Although we
limit the discussion and particular examples to black-hole binaries and to SpEC, the
methods here can also be used for binaries containing neutron stars and in other NR
codes.

The improvements discussed here deal with the eccentricity measurement stage
of Fig. 2.1. Measurement of eccentricity from a binary evolution is an active
research problem. Current approaches include fitting an analytic model to either the
waveform or kinematic output [7], or constructing a definition for eccentricity based
on waveform properties or the inspiral energetics [46, 4]. Note that eccentricity
measurements that use kinematic output such as trajectories require less evolution
time than those that need to run long enough to extract waveform information at
the outer boundary. This computational cost can be significant depending on the
number of iterations that the algorithm requires.

Eccentricity measurement in SpEC involves extracting coordinate trajectories of
BHs from an NR simulation, computing the orbital angular velocity Ω(C) from the
trajectories, fitting its time derivative ¤Ω(C) to a PN-inspired formula (Eq. (2.10)
below) that involves the eccentricity, and reading off the eccentricity from the
fit. Before our improvements, the implementation of this procedure was not very
robust. For example, small changes in the time interval over which ¤Ω(C) is fit or
small changes in the initial guesses for the fit parameters often led to large changes
in the measured eccentricity. Occasionally, the fitting procedure completely failed
to converge. We show below that our changes greatly improve the robustness of the
algorithm.

This chapter is organized as follows. In Sec. 2.2, we first describe how eccentricity
reduction is currently performed in the SpEC code, and then present several new
techniques to address the shortcomings of the current method. In Sec. 2.3, we
apply these techniques to the SXS public waveform catalog [6] and compare the
consistency of measured eccentricities with that of the current eccentricity reduc-
tion method. Finally, we summarize our findings in Sec. 2.4. We adopt the unit
convention � = 2 = 1.
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Evolve early
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Figure 2.1: A simplified schematic of how quasicircular binary evolutions are
achieved in NR codes. After the inspiral has run for 1–2 orbital periods after
gravitational wave junk radiation, the trajectory is fit to the model in Eq. (2.10)
and an estimate of the eccentricity is calculated as a derived quantity from the fit
parameters. If the eccentricity is below a set target value, the evolution is continued.
Otherwise, the initial conditions are updated using the formulation in Eq. (2.13)
and a new evolution is started. This cycle of restarting evolution with updated
initial conditions typically needs to be repeated multiple times in order to achieve
an eccentricity of order 10−4.
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2.2 Methods

2.2.1 Current eccentricity reduction method
Here we outline the method that is currently used for eccentricity reduction in SpEC.
This method is described in more detail in Ref. [7].

To start a binary evolution at some initial time, onemust specify the positions and the
velocities of the objects at that time. Without loss of generality, we assume the two
objects are initially on the positive and negative G axis with initial positions ®G1(0)
and ®G2(0), and their initial velocities ¤®G1(0) and ¤®G2(0) are in the GH plane. Given
®A (C) = ®G1(C) − ®G2(C) and ¤®A (C) = ¤®G1(C) − ¤®G2(C), we then specify the initial coordinate
distance A0 = |®A (0) | between the objects, the radial velocity ¤A0 = (®A (0) · ¤®A (0))/A0,
and the initial orbital frequency Ω0 = Ω(0) of the binary. Orbital frequency can be
defined as

Ω(C) =

���®A × ¤®A ���
A2 . (2.1)

For a Newtonian binary, a circular orbit would be achieved by setting ¤A0 = 0 and
setting A0 and Ω0 according to Kepler’s law. For a relativistic binary, there are no
true circular orbits because of radiation reaction. One can write PN expressions for
a choice of ¤A0, A0, and Ω0 that achieves a quasicircular orbit [2, 19, 8], but these
expressions do not account for possible gauge differences between PN and NR.

Therefore, as described above, we use the iterative procedure summarized in Fig-
ure 2.1: we guess values of ¤A0, A0, andΩ0 (typically using low-order PN), evolve for
a few binary orbits, and measure the eccentricity. We then use this measurement to
update the values of ¤A0, A0, and Ω0 for the next iteration. The procedure stops when
the eccentricity is below some tolerance, at which point we evolve to the desired
final time.

For each step in the iterative procedure, initial data is generated from the given A0,
¤A0, and Ω0 values using an initial data solver such as Spells [37]. The initial data
is numerically evolved through early inspiral, and the eccentricity is then measured
using the extracted time series of orbital frequency Ω(C) and its first time derivative
¤Ω(C). These quantities are computed from the coordinate trajectories of the centers
of the apparent horizons. An alternative would be to compute the eccentricity
from the gravitational waveform. However, using the coordinate trajectories has the
advantage of requiring fewer orbits (and less simulation run time) than a method
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based onwaveform data. Using waveform data would require running the simulation
long enough for the signal to propagate to a region far from the source where the
waveform can be measured. We expect that the difference between eccentricity
measured from the trajectory and measured from the waveform to be unimportant
for the purposes of eccentricity reduction.

For eccentricity estimation and corrections to the initial data parameters, we use the
formulation described in Ref. [7]; for clarity, we will outline it here.

Updates to the initial data parameters require three quantities that are not directly
output by the simulation: initial eccentricity 4, frequency of eccentricity-induced
oscillations l, and initial mean anomaly q0. These three quantities are estimated
by fitting a phenomenological model to the time derivative of the orbital frequency.

In the derivation of updating formulae, we follow the ¤Ω(C) model of Ref. [7], which
holds for low eccentricity. For small 4, Newtonian mechanics gives as the relation
between ¤Ω and 4

Ω(C) = Ω̄ + 24Ω̄ sin (lC + q0) , (2.2)
¤Ω(C) = 24Ω̄l cos (lC + q0) , (2.3)

where Ω(C) is the time-dependent orbital frequency and Ω̄ is the mean value of
orbital frequency (i.e., without eccentricity or spin-induced oscillations). Including
additional terms for radiation reaction and spin-spin interaction, the eccentricity
estimator model becomes

¤Ω(C) = (Ω(C) + 24Ω̄l cos(lC + q0) −
Ω̄

"2Ā
� sin(2Ω̄C + W), (2.4)

where (Ω(C) characterizes the non-oscillatory increase in mean value of ¤Ω(C) result-
ing from radiative energy loss during inspiral, " = <1 +<2 is the total mass of the
binary, and Ā is the mean value of separation. The last term in Eq. (2.4) accounts for
eccentricity-independent oscillations in ¤Ω(C) caused by spin-spin interactions. The
quantity � is defined by

� = ( ®(0 · =̂0)2 + ( ®(0 · _̂0)2, (2.5)

where ®(0 =
(
1 + <2

<1

)
®(1 +

(
1 + <1

<2

)
®(2 is the initial total spin vector, and

=̂(C) = ®A
A
, !̂# (C) =

®A × ¤®A���®A × ¤®A ��� , _̂(C) = !̂# × =̂, (2.6)

=̂0 = =̂(0), !̂#0 = !̂# (0), _̂0 = _̂(0), (2.7)
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so !̂# is orthogonal to the instantaneous orbital plane. The quantity W is defined
such that

sin W = cosU sinU, (2.8)

cosU ≡
®(0 −

(
®(0 · !̂#0

)
!̂#0��� ®(0 −

(
®(0 · !̂#0

)
!̂#0

��� · =̂0, (2.9)

where Eq. (2.9) defines U. Given that the final term in Eq. (2.4) is included only to
capture spin-induced effects, the second term captures the full contribution to ¤Ω(C)
from eccentricity. The goal of eccentricity reduction is then to modify the initial
data parameters ¤A0, A0, and Ω0 so that the second term in Eq. (2.4) vanishes, and
therefore 4 = 0 in the Newtonian limit.

For curve fitting, we use a form of Eq. (2.4) with simplified prefactors for the
sinusoidal terms,

¤Ω(C) = � ()2 − C)−11/8 + � ()2 − C)−13/8

+ � cos
(
lC + 0C2 + q0

)
− � sin (Ū(C) + qB) , (2.10)

cos Ū(C) ≡
®(0 −

(
®(0 · !̂#

)
!̂#��� ®(0 −

(
®(0 · !̂#

)
!̂#

��� · =̂. (2.11)

Here the first two terms describe radiation reaction [7], and are equivalent to (Ω(C) in
Eq. (2.4). The final term in Eq. (2.10) is equivalent to the final term in Eq. (2.4), and
captures oscillations from spin-spin interactions1. For nonspinning binaries, this
term goes to zero and should be omitted from fitting. Our goal is to fit the derivative
of the orbital frequency, as obtained from an NR simulation, to Eq. (2.10). This fit
has nine unknown parameters to be determined: �, �, �, �, )2, l, 0, q0, and qB.

From Eq. (2.4) and the parameters found by fitting to Eq. (2.10), eccentricity is
estimated as

4 =
�

2Ω̄l
, (2.12)

following from the Newtonian definition of eccentricity and Eq. (2.4). Ω0 is used
as an approximation in place of Ω̄ for the following results.

1It can be shown that sin 2Ū = 2 sin(2Ω̄C + W).



22

The resulting updating formulae, as detailed in Ref. [7], are

Δ ¤A0 =
�

2Ω0
cos q0, (2.13a)

ΔΩ0 = −
�l

4Ω2
0

sin q0. (2.13b)

In the above discussion, we choose to fix A0 and update ¤A0 and Ω0. Alternatively,
one can choose to fix Ω0 and update A0 and ¤A0 instead, using a similarly derived
update formula for A0. One variable is fixed in order to set the scale of the orbit, and
the other two are corrected to determine other features of the orbit.

Here we collect certain symbol definitions for clarity. The variable Ω0 is the
initial orbital frequency, an initial condition specified in the elliptic solver for initial
data, and updated through Eq. (2.13b). The variable Ω(C) refers to the orbital
frequency time series obtained by numerical evolution, that is then fit to the form of
Eq. (2.10). The variable l is the frequency of oscillations in Ω(C) that are induced
by eccentricity, and is a fit parameter in Eq. (2.10). The variable Ω̄ is the mean value
of Ω.

2.2.2 Improved algorithm for eccentricity fitting
Overall, the method described in Sec. 2.2.1 works reasonably well, and has been
used to reduce eccentricity for all of the non-eccentric NR simulations in the SXS
simulation catalog [6]. However, we have found that a key step in the method,
fitting NR trajectories to Eq. (2.10), is not very robust and is often the limiting factor
that determines how small an eccentricity can be obtained. In particular, standard
nonlinear fitting methods sometimes fail to converge when fitting to Eq. (2.10), and
even worse, the results of the fit are sometimes extremely sensitive to small details
such as the time interval chosen for fitting. These problems are related to the large
number of nonlinear fit parameters in Eq. (2.10), and to the difficulties in choosing
initial guesses for these parameters.

In this section, we propose some new techniques to mitigate these problems and
thus improve the robustness of eccentricity measurement. First, we detail a new
frequency-domain method for removing spin-spin oscillations from ¤Ω(C). This
method allows ¤Ω(C) to be fit to a simpler function that has fewer fit parameters, and
it provides a better initial guess for the fit parameter l. We then briefly introduce
the variable projection algorithm [16] for solving nonlinear least squares problems
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Figure 2.2: Some ¤Ω(C) trajectories from public SXS BBH simulations. The quan-
tity ¤Ω(C) generally increases during inspiral, but both eccentricity and spin-spin
precession can induce oscillations. Models such as that described in Sec. 2.2.1
measure eccentricity by characterizing these oscillations. The spin-spin oscillations
occur at about twice the frequency of the eccentricity-induced oscillations, so spin-
spin effects could be accounted for either by fitting for them (i.e., the last term in
Eq. (2.10)), or by removing them via a low-pass filter. In nonspinning simulations
such as SXS:BBH:0188, only eccentricity-induced oscillations are present.
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and show how this algorithm can reduce the number of nonlinear parameters in the
fit. Next, we discuss the choice of initial guesses for the fit parameters, why the
results of the previous method are sensitive to this choice, and how this choice can
be improved through the use of variable projection and frequency-domain filtering.

2.2.2.1 Frequency domain pre-processing

The last term in Eq. (2.10) describes oscillations caused by spin-spin interactions.
However, the parameters in that term do not enter into the measurement of the eccen-
tricity or the updating formulas forΩ0 and ¤A0—that term and its two fit parameters are
present solely to model an effect that we subtract out. We can take advantage of this
to simplify Eq. (2.10). The last term in Eq. (2.10) describes oscillations in ¤Ω(C) with
roughly twice the frequency of the oscillations caused by eccentricity (recall that l,
Ω0, and Ω̄ are all equal in the Newtonian limit for small eccentricity). Figure 2.2
shows a small selection of ¤Ω(C) trajectories extracted from simulations in the SXS
public catalog [6, 47]. Notice that simulations SXS:BBH:0761, SXS:BBH:1004,
and SXS:BBH:1867, which have significant precessing spins, have a much more
complicated ¤Ω(C) with higher frequencies than does SXS:BBH:0188, which has no
spins. The higher frequency of spin-spin interactions suggests that we can remove
the spin-spin term in Eq. (2.10) if we first apply an appropriate low-pass filter to the
frequency spectrum of ¤Ω(C).

To perform a low-pass filter, we first compute the power spectrum of ¤Ω(C). To do
this, the time series ¤Ω(C) must be preprocessed before taking a Fourier transform.
This is because ¤Ω(C) is nonperiodic and its mean value increases over the course of
inspiral. Here, we detail the preprocessing steps we have used.

First, we must account for the average increase in ¤Ω over time. This trend is caused
by radiation reaction, and we can approximate it as a linear process because of the
short timescale of the part of the signal that we will fit to. Thus we fit a linear trend
to ¤Ω(C) and subtract it off. We then apply a window function to the interval of the
signal being fit to mitigate the Gibbs phenomenon [54]. Empirically we find that a
Hamming window [18] is particularly effective in preserving the underlying signal
structure. The resulting time series is then zero-padded on both sides to increase
frequency-domain resolution. For a time series with time steps of size ∼10−1" , we
note that ∼104 zeros on each end gives a frequency resolution ∼10−3 "−1, which we
find is sufficient to resolve important features in the frequency domain. Figure 2.3
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shows an ¤Ω trajectory extracted from an SXS public catalog simulation [6] and
transformed into the frequency domain using the process described above.

Now we turn to the low-pass filter, which we use to remove spin-spin oscillations in
¤Ω(C) and simplify Eq. (2.10) by dropping the final term. In Fig. 2.3, the spin-spin
oscillations correspond to the peak at 2c 5 ≈ 3.5 × 10−2 "−1 in the right panel. To
perform the low-pass filter, we choose a cutoff frequency at the first local minimum
that occurs after the dominant frequency peak. In Fig. 2.3, this cutoff frequency
occurs at 2c 5 ≈ 2.5 × 10−2 "−1. We then set ¤̃Ω to zero for all frequencies greater
than this cutoff. The new spectrum is then inverse transformed to give a filtered
time domain ¤Ω(C) usable for fitting. This filtered ¤Ω(C) is shown as the blue curve in
the left panel of Fig. 2.3. We find that fitting to the filtered ¤Ω(C), ignoring the final
term in Eq. (2.10), produces approximately the same value of eccentricity as fitting
to the original ¤Ω(C) and keeping the final term in Eq. (2.10).

In addition to removing the spin-spin oscillations, the low-pass filter also removes
higher overtones in ¤Ω and also high-frequency numerical noise, both of which are
unmodeled by Eq. (2.10) and can interfere with the robustness of fitting. Thus
the low-pass filter technique improves the eccentricity measurement algorithm on
several fronts.

2.2.2.2 Initial guesses for fit parameters

The nonlinear least squares methods used for fitting ¤Ω(C) to Eq. (2.10) are iterative:
Initial guesses for the nonlinear fit parameters are provided, and the method refines
those initial guesses multiple times until convergence is achieved. Care must be
taken to choose accurate initial guesses, because inaccurate initial guesses can lead
to convergence in local minima. Figure 2.4 shows slices in the solution space of
Eq. (2.10) for the parameter l. The cost function is computed for an analytically
generated sample dataset, and each curve shown uses a different length in time of
sample data. For parameters l and 0 (not shown), both of which enter as cosine
arguments, there are many local minima near the global minimum. Moreover, the
larger the time interval over which ¤Ω(C) is fit, the more local minima are present,
and the closer they are to the desired global minimum. This trend means that
counterintuitively, fitting over a longer inspiral does not necessarily translate to
finding a more accurate solution. However, inclusion of at least one full orbital
period is crucial for determining an optimal value of l.
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Empirically, we observe that the guess for l is the most important factor in guar-
anteeing that we converge to the global minimum. The typical total time interval
used for fitting, roughly one to two orbital periods, is too small to allow for high
resolution of )2 or 0, and neither )2 nor 0 appear in the formula for eccentricity or
the updating formulas. As Fig. 2.5 shows, the value of thel guess has a large impact
on the quality of the resulting fits, regardless of the fitting technique used. A poor
guess for l can result in a fit that entirely fails to capture the primary oscillations in
¤Ω(C) caused by eccentricity.

For the previous method of eccentricity reduction described in Sec. 2.2.1, the dif-
ficulty of choosing accurate initial guesses typically prevents brute-force fitting to
Eq. (2.10). Instead, the algorithm proceeds with a series of models and fits, where
the first fit in the series uses a model consisting only of a few terms in Eq. (2.10) and
therefore fewer parameters. The next fit adds another term and more parameters to
the model, and uses the results of the previous fit to provide initial guesses for the
parameters. This process continues until the final fit uses all terms in Eq. (2.10).
Each intermediate fit effectively functions as a search for an accurate initial guess
for one or more new parameters.

We employ three strategies to tackle the problem of initial guesses. The first strategy,
discussed above in Sec. 2.2.2.1, is to simplify the fitting function by filtering, so
that the last term of Eq. (2.10), and the corresponding parameters that need initial
guesses, can be dropped. The second strategy, discussed in Sec. 2.2.2.3 below,
is to use a fitting technique called variable projection, which solves for a subset
of the parameters using linear least squares and therefore does not require initial
guesses for them. As we will show below, the use of variable projection means
that initial guesses are required for only )2, l, and 0. The third strategy is used for
the parameter l, which empirically we have found is the one that needs the most
accurate initial guess. We obtain the initial guess forl from the frequency spectrum
¤̃Ω that we computed in Sec. 2.2.2.1. In particular, we choose l as the center of
the initial peak in ¤̃Ω. Care must be taken to correctly identify this frequency. We
use a standard peak-finding routine (e.g. scipy.signal.find_peaks [53]) on the
amplitude spectrum, with a limit on the minimum amplitude allowed, and restrict
the peak search to local maxima in a bandwidth of Ω0 ± 40%. For the simulation
shown in Fig. 2.3, Ω0 = 1.69 × 10−2 "−1, and the dominant frequency in ¤̃Ω is
1.49 × 10−2 "−1 in the right panel of the figure. This frequency is in the search
bandwidth and would be chosen as the initial guess. Rarely, there may be no peak in
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this range, or else multiple peaks of comparable amplitude, in which case no guess
can be extracted from ¤̃Ω. In that case, we default to choosing l to be 0.8Ω0, a value
that was chosen by trial-and-error. In the few cases we have seen of this failure
mode, it indicates that the eccentricity is too small to measure reliably. We find that
when an initial guess for l can be obtained from the frequency spectrum, it offers
an improvement over the previous trial-and-error method, as shown in Fig. 2.5.

Two other parameters, )2 and 0, require initial guesses. The guess for )2 is approxi-
mated from the quadropole formula. Because 0 is typically at a much smaller scale
than the other fit parameters, we find 0 = 0 to be an adequate initial guess.

2.2.2.3 Variable projection

As discussed in Sec. 2.2.2.4, Eq. (2.10) is an especially challenging nonlinear least
squares problem. Much of this difficulty can be removed by noting that Eq. (2.10)
leads to a separable least squares problem, that is, some of the parameters in the fit
enter the model linearly while others are nonlinear.

The “best” algorithm for separable problems has been known for a long time, since
1973 [16], and is called variable projection. It was implemented originally in a
Fortran code called VARPRO [15]. The idea is to start with initial guesses only
for the nonlinear parameters. Then standard linear least squares solves for the
linear parameters by the usual analytic process. Next, an iterative nonlinear fitting
routine updates the nonlinear parameters with the linear parameters held fixed. The
whole procedure is then iterated until a suitable tolerance is achieved. The clever
part of the algorithm is that the Jacobian of the cost function with respect to the
nonlinear parameters that is used in the nonlinear fitting has a dependence on the
linear parameters. This is because the nonlinear parameters depend implicitly on
the linear ones. Ref. [16] worked out this contribution to the Jacobian—it can be
computed explicitly from the analytic solution of the linear least-squares problem
using linear algebra techniques. In general, this algorithm is never worse than
brute-force nonlinear least squares fitting, and often succeeds when brute force fails.
A major reason for this is the reduced dimensionality of the nonlinear part of the
fitting.

In the case of Eq. (2.10), the nonlinear parameters in the model are l, )2, 0, q0, and
qB, while �, �,�, and� are the linear parameters. To get themaximumbenefit out of
variable projection, one should reparameterize themodel so that as many parameters
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as possible enter linearly. For example, a term of the form � cos(lC + q0) should be
rewritten as � cos q0 cos(lC) −� sin q0 sin(lC). This avoids having to treat q0 as a
nonlinear parameter. We will do this below in recasting Eq. (2.10) to Eq. (2.14).

In this work, we have relied on a modern implementation of VARPRO [29] in Matlab.
We have translated this code into Python so that it can use the nonlinear solvers
available in Scipy. This Python version is publicly available at Ref. [52].

2.2.2.4 New fitting formula for ¤Ω(C)

Eq. (2.10) can be rewritten as

¤Ω(C) = � ()2 − C)−11/8 + � ()2 − C)−13/8

+ �̄1 cos
(
lC + 0C2

)
− �̄2 sin

(
lC + 0C2

)
− �̄1 cos (Ū(C)) − �̄2 sin (Ū(C)) , (2.14)

where we have absorbed factors of cos q0, cos qB, etc., into new parameters �̄1, �̄2,
�̄1, and �̄2. This substitution eliminates two nonlinear parameters (q0 and qB) in
favor of two extra linear parameters, so that there are now six linear parameters and
three nonlinear parameters as opposed to four linear parameters and five nonlinear
parameters. Note that we have retained the spin-spin terms, the ones with with
coefficients �̄1 and �̄2, for completeness, although in practice we can omit these
terms as long as we filter out the corresponding effects according to the procedure
in Sec. 2.2.2.1.

With variable projection, Eq. (2.14) requires guesses only for )2, l, and 0, so we
have reduced the nonlinear fit to three dimensions instead of the original nine. Note
that only the magnitude of � (not �̄1 or �̄2) appears in the correction formulae
Eq. (2.13) and the eccentricity formula Eq. (2.12), and � is easily computed by
�2 = �̄2

1 + �̄
2
2 .

For all analyses in the following section, we drop the � ()2 − C)−13/8 term from
Eqs. (2.10) and (2.14) for fitting. We find that the degeneracy in the � and �
parameters contributes some inconsistency to the fit solution, and this term is difficult
to resolve in a trajectory only 1-2 orbits long. It is possible that fitting over a longer
time span, where radiation reaction has a bigger effect, might require keeping this
term.
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Figure 2.4: The cost function for Eq. (2.10) with a single parameter varied and all
others left constant, calculated using trajectories of varying length. The residual
curve of l, an argument for the sinusoidal components of Eq. (2.10), contains
several local minima near the global minimum. Furthermore, these local minima
become closer and more numerous if time window length is increased. Optimizing
Eq. (2.10) requires navigating around such local minima.

2.3 Robustness test
Here we compare the consistency of eccentricity measurements made both with and
without our improved fitting algorithm. We apply our methods first to an analytic
trajectory, then to simulations from the SXS public waveform catalog [6, 47].

A key motivation for improving our algorithm is that the original method described
in Sec. 2.2.1 is extremely sensitive to the time interval [Cmin, Cmax] used for the fit.
Consider Fig. 2.6, which shows best fit parameters to an analytic ¤Ω(C). The ¤Ω(C)
used in Fig. 2.6 is a function that obeys Eq. (2.10) exactly, and is given as follows:

¤Ω(C) = 0.287 (13000 − C)−11/8+ (2.15)

(1.44×10−7) cos(0.013C + (1.80×10−7)C2 + 4.68)
+ # (C),

where # (C) is noise from a Guassian distribution with a width of 10−8. The red
crosses in Fig. 2.6 show the best fit parameters of Eq. (2.10) for this ¤Ω(C), but as
a function of Cmin (with Cmax set such that Cmax − Cmin is the same for each point).
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Figure 2.5: An ¤Ω time series for an equal mass, nonspinning BBH numerically
simulated using SpEC (SXS:BBH:2085) and resulting curves of best fit found using
variable projection for different initial guesses of l. In particular, the fit in blue
(barely visible over the black curve) uses a guess for l found from the dominant
peak in the Fourier transform of ¤Ω, as described in Sec. 2.2.2.1 and 2.2.2.2. A small
change in the value of this guess can greatly impact the quality of the resulting fit,
to the extent that primary features are not captured, as in the red fit curve.

For the red crosses, we used the original fit method implemented in SpEC, the
scipy.optimize.minimize [53] routine and a series of fits incrementally adding
terms from Eq. (2.10). Small changes in Cmin (compared to the orbital period) can
produce eccentricities that vary by large amounts, sometimes even by a factor of 2
or larger. This sensitivity is effectively a source of noise that limits our ability to
accuratelymeasure eccentricity, and this noise hampers the ability of the eccentricity
reduction procedure to converge to a small value of eccentricity.

The blue circles in Fig. 2.6 are the same as the red crosses, except using the new tech-
niques described in Sec. 2.2. When Cmin is shifted, best fit values from the previous
method often jump discontinuously. Figure 2.7 is the same as Fig. 2.6 except that
¤Ω(C) comes from unequal mass, spinning SpEC BBH simulation SXS:BBH:0235.
We see that even with data from an NR simulation, the new method is significantly
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less sensitive to Cmin than the previous method. In addition, Fig. 2.6 shows that
the new method tends to converge to the correct solution more often. Overall, our
proposed method gives considerable improvement in both consistency and accuracy
over the previously used algorithm. Since variable projection is more successful
than conventional algorithms at converging to global solutions [30], the localminima
highlighted in Fig. 2.4 are one likely source of the previously observed inconsistency
in measured eccentricity.

One measure of the sensitivity of the eccentricity measurement to the time interval
[Cm8=, Cm0G] is to compute f4, the standard deviation of 4 as a function of Cm8= (i.e. in
the appropriate subplot of Fig. 2.7). For Fig. 2.7, this value is f4 = 3.39×10−6 for
the previous method and f4 = 2.47×10−7 for the method described in this chapter.
We now repeat Fig. 2.7 for all BBH simulations in the SXS public waveform catalog.
The catalog currently consists of about 2300 precessing and nonprecessing BBH
simulations covering a broad parameter space spanning mass ratios 1 ≤ @ ≤ 10
and spin magnitudes 0 ≤ jeff ≤ 0.998 [6]. We use simulations with a reference
eccentricity 4ref < 3 × 10−3, totaling roughly 2200 runs. For each simulation in the
catalog we compute f4, and we plot these values as a histogram in Fig. 2.8. We see
a trend in that the best fit 4 with our proposed method is generally more consistent
than with the implementation that is currently used in SpEC.

Another issue with the previously used routine is that it occasionally fails to converge
to any solution during eccentricity reduction, often because of reaching a maximum
number of iterations without satisfying any exit criteria. When this happens, initial
data updates for eccentricity reduction cannot be computed at all. Variable projection
converges more often and with fewer fitting iterations required. Several SpEC runs
that previously failed because the fit during eccentricity reduction failed to converge
succeedwhen variable projection is used in place of standard nonlinear least squares.

2.4 Conclusion
We have presented several improvements in an algorithm for reducing the orbital
eccentricity of binary simulations in NR. Unlike in Newtonian physics, it is not
straightforward in NR to specify initial orbital parameters that yield orbits with zero
eccentricity. Instead, we use an iterative procedure, outlined in Fig. 2.1, in which
eccentricity is estimated by doing a short evolution. If the estimated eccentricity
is large, the initial data is corrected and the evolution is restarted. This process is
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Figure 2.6: Best fit values for Eq. (2.10) (with the � term dropped) and calculated
eccentricity versus fitting window placement. We performed this method compar-
ison using an analytic time series, not an NR simulation. For each set of window
bounds, a nonlinear fit was performed on a dataset generated by fixing the parame-
ters of Eq. (2.10) to exact numerical values and adding Gaussian noise to each point
in the time series. The same window size, 900 " (roughly two orbital periods),
and bounds were used for each method. Fits labelled “this paper” were done with
Eq. (2.14) and initial guesses found using the method proposed in Sec. 2.2, and
found values of q0 and � are derived. Error bars for these points are computed
as the square root of the corresponding diagonal element in the covariance matrix.
Fits labelled “previous method” were done with the previous implementation for
eccentricity reduction found in SpEC. These points do not have error bars since error
estimates are not implemented with this method. Ideally, the result of the fit should
have little to no dependence on the fit cutoff times, so the expected curve for each
parameter is a horizontal line at the exact value. However, because the model has
so many parameters that require guesses, the previous method is quite sensitive to
the time window and often converges to an incorrect value.



34

repeated until the measured eccentricity is acceptably low.

The eccentricity estimation step of this iterative procedure involves fitting the results
of an NR simulation (in our case, the derivative of the orbital frequency ¤Ω(C)) to
an estimator model, Eq. (2.10). Because the model has many parameters, some of
which enter nonlinearly, the fit requires a nonlinear least squares algorithm, which
in turn requires accurate initial guesses for the parameters so as to not fall into
local minima of the cost function. The model and its solution method are sensitive
to small details, and the previous method of eccentricity reduction used in SpEC,
described in Sec. 2.2.1, occasionally fails to converge. It is sometimes possible to
fix individual failures by hand, by fine-tuning parameters of the algorithm such as
initial guesses. However, eccentricity reduction takes place as part as an automated
pipeline that allows a single user to run dozens or hundreds of BBH simulations
at once [6]. When running hundreds of simulations, even infrequent eccentricity
reduction failures require significant human time to fix. A key goal of the new
method presented here is to eliminate or at least reduce these failures.

We have found a number of new techniques that improve the reliability of best fit
solutions for the eccentricity estimator first derived in Ref. [7]. Our main improve-
ments can be summarized as follows:

1. An initial guess for thel0 fit parameter taken from the ¤Ω frequency spectrum.

2. Use of variable projection for nonlinear least squares fitting and reparameter-
ization of Eq. (2.10) into Eq. (2.14) for fitting in order to fully take advantage
of variable projection. This effectively reduces the nonlinear least squares
model from nine to three dimensions.

3. Removal of high frequency content before fitting, enabling the removal of an
additional spin-spin precession term from the model.

4. Removal of a higher-order radiation-reaction term from the model when ap-
propriate, to reduce degeneracy in fit parameters.

These methods are currently being integrated into the SpEC code as part of the
automated pipeline, and will also see future use in the SpECTRE code [11]. Note that
although these techniques have been implemented in SpEC, they are not specific to
SpEC and can be used in other NR codes. Further testing is needed to determine how
these improvements affect the efficacy of eccentricity reduction, i.e., the number of
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iterations required for initial data correction to achieve low eccentricity (e.g. at or
below O(10−4)) and the lowest achievable eccentricity.

In general, we expect to see eccentricity reduction in the gravitational waveform
corresponding to eccentricity reduction in the trajectory. Whether eccentricity in the
waveform ismore effectively reduced as a result of our improvements is an interesting
question since the waveform strain is the relevant quantity used for comparisons
with experimental observations. Variable projection and frequency preprocessing
are techniques that can also be applied to eccentricity estimators using gravitational
waveforms instead of trajectory time series. Specifically, variable projection is
useful for fit models that include linear parameters, or nonlinear parameters that can
be rewritten as a combination of linear parameters. Extension of this method to
use gravitational waveforms as input instead of orbital trajectories could in principle
be done as follows: first extract the time-dependent angular velocity from the
waveform [5] and compute its time derivative ¤Ω(C), and then use that ¤Ω(C) as input
to this method. The reason we choose trajectories instead of gravitational waveforms
here is computational efficiency: extracting the gravitational waveform during the
eccentricity reduction procedurewouldmean that for each iteration, the ‘Evolve early
inspiral’ step in Figure 2.1 would need to continue for additional orbits (and thus
additional CPU time) so that the radiation has time to propagate from the near zone
to the large radii where the waveform is measured. Also, because we do not generate
waveforms during the eccentricity-reduction iterations, we have not explicitly looked
at how eccentricities as measured from the waveform decrease during eccentricity
reduction. Although one might expect that trajectories would contain gauge effects
not present in the waveform, the NR community has consistently observed that NR
trajectories behave ‘reasonably’, e.g. they agree with PN trajectories [33]; we expect
that eccentricities measured from the waveform should roughly agree with those
measured from the trajectories.

A related problem to eccentricity reduction is measurement of larger eccentricities
and tuning of NR parameters to achieve a desired eccentric orbit. Just as eccentricity
is iteratively reduced as described in Sec. 2.2.1, it can similarly be driven to a nonzero
target value using an eccentricity estimator requiring a nonlinear fit. The model
presented in Ref. [7] is derived in the limit of small 4, so O(42) terms are dropped
from Eq. (2.2). For large eccentricity, a more general functional form is used, and
an additional parameter (the mean anomaly) must be specified. Application of the
techniques introduced here has not been fully explored in this case. We note that
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Ref. [25] introduces a new technique for larger eccenctricities.

All testing presented here was done using BBH simulations. However, the eccen-
tricity reduction method used here is not limited to black holes. The method as
described in Sec. 2.2.1 is used in SpEC for BNS and BHNS simulations, so the
improvements found here apply to those simulations as well.
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then computed. We take this value as measure of fit consistency, and ideally it
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is smaller than when using the current SpEC implementation. Note the logarithmic
scale on the vertical axis.
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C h a p t e r 3

ERROR QUANTIFICATION AND COMPARISON OF BINARY
NEUTRON STAR GRAVITATIONAL WAVEFORMS FROM

NUMERICAL RELATIVITY CODES

[1] Sarah Habib et al. “Error quantification and comparison of binary neutron
star gravitational waveforms from numerical relativity codes”. In prepara-
tion.
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Future gravitational wave detections of merging binary neutron star systems have the
possibility to tightly constrain the equation of state of dense nuclear matter. In order
to extract such constraints, gravitational waveform models need to be calibrated to
accurate numerical relativity simulations of the late inspiral andmerger. In thiswork,
we take an essential step toward classifying the error and potential systematics in
current generation numerical relativity simulations of merging binary neutron stars.
To this end, we perform a direct comparison of three codes (FIL, SpEC, SpECTRE),
which differ in almost all aspects, including the numerical methods and discretiza-
tions used and equations solved. We find that despite these different approaches,
the codes are—within current numerical resolution bounds—fully consistent, and
broadly comparable in cost for a given accuracy level. Our results indicate that
the error in the waveforms is primarily dominated by the hydrodynamic evolution.
We also discuss current limitations and cost estimates for numerical relativity sim-
ulations to reach the accuracies required in the era of next-generation gravitational
detectors.

3.1 Introduction
Binary neutron star (BNS) mergers are exciting gravitational wave sources. With
two events detected [2, 3], and many more expected before the end of this decade
and beyond [95, 5], there are multiple scientific opportunities to be leveraged. Apart
from multi-messenger astronomy of afterglows and gamma-ray bursts associated
with BNS (see, e.g. Ref. [33] for a recent review), the gravitational wave (GW) sig-
nal itself promises to provide a wealth of information on the dense matter equation
of state (EOS) (e.g., Refs. [27, 104]). This is because neutron stars, unlike black
holes [78, 31], can be tidally deformed, altering the gravitational waveform in the
final orbits approaching merger [57, 107]. Extracting this deformation for the first
GW event of a merging BNS, GW170817, has already led to strong constraints on
the EOS [10, 1, 90, 103, 36], with future detectors promising to deliver extremely
tight constraints, e.g., on the radii of neutron stars [28, 56] (see e.g., Refs. [105, 53]
for caveats stemming from phase transitions, chemical equilibration effects [112],
and mode resonances [98]). One of the limiting factors in interpreting GW sig-
nals to sufficient accuracy to extract this information are well-calibrated waveform
models (see, e.g., Ref. [44] for current models). Exacerbating this need, currently
available models are not accurate enough for next-generation detectors [63]. Since
tidal deformability imprints on the waveform cannot be fully computed from post-
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Newtonian theory, which breaks down near merger, they are commonly fitted from
numerical relativity (NR) simulations [42, 41, 44]. However, NR simulations of
BNS are only available in a limited number of public catalogs [43, 64, 75, 76], which
are not systematically sampled, as most of the simulations are targeting primarily the
post-merger phase, which has different physics and accuracy requirements [30, 122,
34]. It is therefore important to ask what would be required to build a systematic
catalog.

While NR simulations of binary black hole (BBH) mergers have been carried out
at extreme precisions already [25], BNS merger simulations so far lag substantially
behind, in part because of limited convergence and substantial errors stemming from
the hydrodynamical modeling of the stellar material [101, 16, 89, 79]. Different
groups have implemented a number of strategies for computing GW waves from
merging BNS, especially on the hydrodynamics side, using high-order numerical
methods [101, 16, 89], including entropy based limiting [47, 46], and spectral [48]
or finite-element methods [38, 6]. Because of their algorithmic or implementation
differences, these codes have different intrinsic errors and computational costs.
While most codes solve a version of the BSSN [116, 15] or Z4 set of equations [20,
17, 71, 9], others use a generalized harmonic set of variables [99, 81]. Initial
conditions for the simulations need to be computed numerically, e.g., by solving the
extended conformally thin sandwich (XCTS) equations [96]. This is commonly done
using spectral [66, 120, 119, 94] or finite-difference [50, 121] discretizations. Given
all these various parts it seems important to ask whether using any such combination
of different methods and codes lead to comparable errors or systematic differences
when used under production settings. However, only a limited number of direct
code comparisons have been carried out [52, 68, 93]. In light of the above question
of building a waveform catalog it seems, however, imperative to have a well-defined
error budget, as has been established in the case of BBH simulations [7].

In this work, we present a direct code comparison between three different NR
codes (FIL [89, 54], SpEC [115, 114, 117, 118], and SpECTRE [38]) for BNS
merger simulations. These use different numerical algorithms, formulations of the
Einstein equations, and independent initial-data codes, such as the FUKA [94, 67] and
SpELLs [119] libraries. As such, the comparison of codes is as different as currently
possible with codes in the community, and allows for a faithful assessment of
intrinsic consistency and error budgets of current generation numerical waveforms.
We outline the currently (limited) accuracy of typical production-level simulations
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and discuss potential requirements for future simulation work.s

This chapter is structured as follows. In Sec. 3.2 we present the setup for the
comparison. The main results are shown in Sec. 3.3, before concluding in Sec. 3.4.
This work uses a unit convention of � = 2 = 1.

3.2 Methods
For this comparison we adopt an equal mass BNS system with negligible neutron
star spin and a total mass of " = 1.350"� at infinite separation, and a baryon
mass of "1 = 1.4958"� per NS. We adopt an initial separation of 47.67 km.
The initial data are prescribed using the extended conformal thin-sandwich (XCTS)
formulation [96]. For more details see, e.g., Refs. [120, 119]. We further adopt
eccentricity-reducing initial parameters following the parametrization of Ref. [26].
Specifically, we use

¤0 = −8.09518351 × 10−5 ,

"2
�Ω = 0.008017218957 ,

where ¤03/2 is the initial radial velocity of the stars, 3 the binary separation, and Ω
their initial angular velocity.

The choice of equation of state (EOS) dictates tidal effects and contributes to
observable features in the GW signal, particularly during and after late inspiral. We
use the SLy [45] spectral EOS implemented in Ref. [61]. At the time of writing, the
SLyΓ2 model is within current EOS constraints from BNS observations [1, 4]. A
spectral EOS is represented as a set of basis functions with coefficients [80]. In the
EOS representation we use [61], the pressure % is related to the rest-mass density
d, via

%(G, )) = %0 exp
(
Γ0G + Θ(G)

[
W2
G3

3
+ W3

G4

4

] )
+ d) , (3.1)

where ) is the temperature, G = log(d/d0), %0 = 3.36254 − 7, W2 = 0.4029,
W3 = −0.1008, d0 = 1.01184 − 4, Γ0 = 2, and Θ(G) is the Heaviside function. This
representation is chosen to minimize loss of convergence due to non-smoothness in
the equation of state [61, 106].
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3.2.1 Evolution codes
We use the standard 3 + 1 decomposition in numerical relativity, in which the
spacetime metric 6`a takes the form

3B2 = −U23C2 + W8 9
(
3G8 + V83C

) (
3G 9 + V 93C

)
, (3.2)

where U is the lapse, V8 is the shift, and W8 9 is the spatial metric.

All tested codes solve the general relativistic (magneto-)hydrodynamics (GR(M)HD)
system of equations in flux-balanced conservation form [49]

mC[ + m8L8 ([) = Y([). (3.3)

Here[ is the state vector of conserved variables to be evolved, L8 ([) are the fluxes,
and Y([) are source terms. More details on the discretizations and the codes are
provided in the following sections below. All runs were performed on comparable
hardware, i.e. AMD EPYC CPUs with ∼ 2.5 GHz clock speed.

3.2.1.1 FIL

The Frankfurt/IllinoisGRMHD (FIL) code is based on the Einstein Toolkit
infrastructure [82]. It implements the GRMHD equations in 3+1 form [49], which
are solved using a fourth-order accurate version of the conservative finite-difference
ECHO scheme [37]. Reconstruction to cell interfaces uses WENO-Z [21], with
fluxes F being computed using a HLLE Riemann solver [51]. We additionally limit
the fluxes using an approximate second-order a priori positivity-preserving limiter
based on the density [102]. The resulting limited fluxes are then corrected using a
DER4 corrector [37] to achieve overall higher order. In detail, we compute fluxes
at cell interfaces, 8 + 1/2,

�8+1/2 =
13
12
F8+1/2 −

1
24

(
F8+3/2 − F8−1/2

)
. (3.4)

Primitive inversion is carried out using the scheme of Ref. [73], with a fall-back
for purely hydrodynamical flows [62]. We also use an entropy-based backup solver.
Equation of state handling is provided using FIL’s microphysics infrastructure,
which offers twoways of handling the spectral EOS used here. First, the EOS routine
has been implemented using direct numerical integration outlined in Ref. [61].
However, we have found it more convenient to simply tabulate the spectral EOS
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using a uniformly sampled table with 1,000 grid points, which is then interpolated
linearly in logarithmic quantities.

The Einstein equations are solved using the Z4c formalism [17, 71] in moving
puncture gauge [8]. Specifically, we adopt

mCU − V8m8U = −2U , (3.5)

mCV
: − V8m8V: =

3
4
�: , (3.6)

mC�
: − V8m8�: =

(
mC − V8m8

)
Γ̃: − [�: , (3.7)

where  is the trace of extrinsic curvature, Γ̃: and �: are the variables for the
Gamma-driver, and ["� = 0.2. We adopt Z4c damping parameters of ^ = 0.04.
All damping parameters have a roll-off with inverse distance that sets in at a radius
of '/"� = 64.

The resulting set of equations is then solved using a strong-stability preserving third-
order Runge-Kutta scheme [65]. FIL uses a domain of 7 uniform-resolution AMR
grids centered on each NS, with a total domain extent of 2, 048"�. The initial data
configuration is computed using the FUKA code [94]. FUKA uses the KADATH spectral
solver library [67]. The equation of state is handled using the same log-linear table
used for the evolution.

3.2.1.2 SpEC

SpEC evolves the gravitational and hydrodynamic systems on two separate spatial
grids [48]. The Einstein equations are evolved on a pseudospectral grid; the hy-
drodynamics equations are evolved on a finite-difference grid. Evolution is done
with a third-order Runge-Kutta time stepper. The time step on the pseudospectral
grid is chosen adaptively to reach a target tolerance varying with the chosen grid
resolution. The time step on the finite- difference grid is allowed to be larger: up
to ΔC = ΔG/4, with ΔG the minimum grid spacing. At the end of a time step on
the finite-difference grid, the metric and its derivatives are interpolated onto the
finite-difference grid by first refining the spectral data using spectral interpolation,
then using third-order interpolation onto the finite-difference grid. The primitive
fluid variables are interpolated onto the pseudospectral grid using monotonicity-
preserving polynomial interpolation. Data at intermediate times is obtained using
linear interpolation (higher-order interpolation is possible but has no practical im-
pact on the accuracy of the simulations [77]). More details on the time stepping
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methods can be found in Ref. [77], while grid-to-grid interpolation is described in
Ref. [48].

The pseudospectral grid during inspiral is composed of a set of spherical shells
centered on eachNS, balls around theNS interior regions, distorted cubes connecting
the spherical regions to the wave zone, and spherical shells centered on the center of
mass of the binary in thewave zone. SpEC employs adaptivemesh refinement (AMR)
for the pseudospectral grid, adjusting resolution based on the errors estimated from
the coefficients of the spectral expansion for each evolved variable. The target
truncation error is scaled as ΔG5

��
, with details in Ref. [60]. The finite-difference

grid uses a constant resolution grid during inspiral, and fixed mesh refinement after
merger. In both cases, the finest level of the computational domain is divided into
blocks of ∼ 6 km3 that are only evolved if matter is present in the region of space
that they cover. More specifically, if all grid cells in a block have densities below
6× 109 g/cm3, it is removed from the computational domain. If matter with density
above 1010 g/cm3 approaches within 3 grid cells of a removed block, that block is
added and evolved once more. The threshold densities are decreased far away from
the center of the binary, as described in Ref. [60]. As the SpEC grid is constructed
so that the centers of the compact objects are fixed on the grid during inspiral, the
effective grid resolution increases as the neutron stars spiral in. Whenever the grid
spacing is reduced by 20%, we interpolate onto a new finite-difference grid with
the original grid resolution. Once the BNS approaches merger and the NSs deform,
spherical pseudospectral domains around each NS no longer characterize symmetry
in the binary, so both grids are restructured. When the maximum density on the
pseudospectral grid grows to 3% higher than its initial value, the grid switches to a
ball centered at the coordinate center of mass of the binary system, surrounded by
spherical shells covering the wave zone. After contact, the finite-difference grid is
made of four nested cubes. The finest resolution grid covers a 40 km3 region around
the center of mass of the system. Each coarser level of refinement is twice as large
in each dimension.

To keep the center of mass of the neutron stars fixed on the grid during inspiral, SpEC
uses a time-dependent map between grid coordinates and “inertial” coordinates.
That map includes both a global rescaling of the coordinates and a rotation around
the polar axis. The control system used to evolve the scaling factor and rotation
angle is described in more detail in Ref. [70].

The spacetime metric is evolved using the first-order GH formulation [81], in which
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the coordinates x obey the wave equation

6`a∇f∇fGa = �` (x, 6`a), (3.8)

where �` (x, 6`a) is an arbitrary gauge source function, which in SpEC is set to the
harmonic gauge �` = 0. This gives a system of equations and several constraint
equations for 6`a, Φ8`a ≡ m86`a, and Π`a ≡ =WmW6`a, where =W is the unit normal
vector to the spatial slice. Constraints are not enforced during numerical evolution
and need to be monitored. SpEC damps the constraints C` = Γ` + �` and C8`a =
Φ8`a − m86`a, where Γ` = Γaa` is the contracted Christoffel symbol and Φ8`a the
first-order reduction variable in the GH system. The constraint damping parameters
are chosen the same as in Ref. [60]. In addition to constraint damping, violations
are controlled by constraint-preserving boundary conditions enforced at the outer
boundary of the computational domain as extra terms in the evolved variables [81,
110].

The hydrodynamics evolution uses numerical fluxes at cell faces that are computed
from the characteristic fluxes and characteristic variables reconstructed on cell faces
using the fifth-order accurate MP5 reconstructor, using the methods introduced in
Ref. [102]. A density floor of dfloor = 6 × 104 g/cm3 is imposed, below which
densities are reset to dfloor. Below datm ≈ 1 × 106 g/cm3, we also apply atmosphere
corrections limiting the velocity of the fluid in the corotating frame to < 0.00012 and
the pressure to %(d, )) < 1.01%(d, 0). We also require ) ≥ 0. Finally, corrections
to the conservative variables are performed whenever the evolution reaches values
of the conserved variables that are close to becoming unphysical (i.e. to no longer
correspond to physical values of the primitive variables), as described in Ref. [60].

3.2.1.3 SpECTRE

SpECTRE uses a hybrid discontinuous Galerkin-finite difference method [39, 38] on
a single grid to evolve both the Einstein equations and the hydrodynamic equations.
SpECTRE also uses the first-order GH formulation (as described in Sec. 3.2.1.2) and
a third-order Adams-Moulton predictor-corrector time stepper. The computational
domain is divided into nonoverlapping elements, and each element is evolved using
either a discontinuous Galerkin (DG) or finite-difference (FD) scheme. Points in
DG elements use Legendre-Gauss-Lobatto quadrature, while FD elements use a
cell-centered equidistantly-spaced Cartesian grid in the “reference” or “logical”
coordinates.
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Whether an element uses DG or FD is determined dynamically. After each time
step or substep, the validity of the DG solution in each element is checked with a
troubled-cell indicator (TCI) as described below. In DG elements where the DG
solution is deemed inadmissible, the step is undone and recomputed using FD. In
FD elements, if the TCI determines that the DG solution would be acceptable, the
next time/sub step will use DG. The TCI algorithm is essentially the same as that
used in Ref. [38]. The TCI algorithm checks that evolved conserved variables �̃
and g̃ are positive (in practice above a small but positive number), that the primitive
variables can be recovered, and that the DG basis function expansion converges
for �̃ and g̃. Finally, if we are in atmosphere we always use DG (atmosphere is
determined similarly as in the SpEC code). DG and FD representations of the same
element use different sets of grid points. For a DG element with # grid points in
a particular dimension, the corresponding FD element uses (2# − 1) grid points in
that dimension. When an element switches from DG to FD, the conserved variables
are interpolated to the FD grid. When switching from FD to DG, a constrained
linear least squares system is used to construct the restriction1 operator [38]. DG
has superior accuracy and efficiency for smooth solutions, but exhibits undesirable
oscillatory behavior (Gibbs phenomenon) at discontinuities. The DG-FD hybrid
method combines the advantages of DG with the robustness of FD. In practice,
elements near the NS surfaces are primarily FD.

The computational domain consists of a rectangular inner domain of Cartesian
elements containing the two NSs, and several wedge-shaped subdomains in the
surrounding wave zone. The outer boundary of the computational domain is at
'boundary = 605"�. SpECTRE uses three different coordinate systems. The “logical”
or “reference” coordinates are locally Cartesian coordinates defined in each element
on the cube [−1, 1]3 and are the coordinates in which the basis functions (i.e. Leg-
endre polynomials) are defined. These are then mapped using time-independent
coordinate maps to the “grid” frame. The grid coordinates are still Cartesian, but
the individual elements are deformed to better suit the geometry of the underlying
physical system. The grid coordinates corotate with the binary. Finally, the grid
coordinates are mapped to the “inertial” frame2 using a time-dependent map that
currently is only a rotation (a translation is necessary for unequal mass systems to
track the center-of-mass). The rotation is controlled by a feedback control system

1In our previous papers we called this operation “reconstruction” but find the terminology confusing
with the reconstruction performed in the FD algorithm.

2The coordinates are not actually the coordinates of an inertial observer.
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similar to that used in Ref. [38] and in BBH simulations [84]. We smoothly disable
the rotation over a time scale of 10"� when the center of mass separation between
the two stars falls below 5"�.

SpECTRE uses the same constraint damping approach as SpEC for the GH system,
with parameters that are exactly those described inRef. [38] except that theGaussians
now comove with the stars. The same constraint-preserving boundary conditions are
also applied. We use harmonic gauge �0 = 0 for the entire evolution. The hydro-
dynamics evolution also uses the divergence-cleaning Valencia formulation of the
GRMHD equations but with zero magnetic field [11, 59, 14]. Primitive recovery for
non-magnetized flows is done using the scheme from [62]. The GRMHD equations
are solved using a flux-difference-splitting scheme with second-order spatial deriva-
tives. The HLLE Riemann solver is used alongside fifth-order positivity-preserving
adaptive-order reconstruction [40], the same scheme used in Ref. [38]. Thus, even
though the GH equations on the FD grid are solved at sixth order, the FD solver is
currently formally second-order accurate because of the GRMHD solver.

3.2.2 Waveform extraction
For a given mode of the GW strain ℎ;<, the waveform amplitude � and phase q are
defined from the strain as

Aℎ;< = �;<4
−8q;< . (3.9)

Sign conventions are not consistent among all codes (see Ref. [22], Appendix C for
a discussion). For the following results, we use the sign convention

ℎ = ℎ+ − 8ℎ×. (3.10)

For our analysis, we primarily focus on the ; = 2, < = 2 mode.

We consider two ; = 2, < = 2 waveforms to be equivalent if they differ by only by
an overall phase shift (equivalent to a rotation in the G-H plane) and/or an overall
time offset. So when comparing two different waveforms, we first align them by
explicitly time-shifting and phase-shifting one of them. This must be done carefully
because differences between waveforms are very sensitive to alignment. A typical
alignment method is to time-shift and phase-shift so that the two waveforms reach
their maximum amplitude at the same time and phase. However, we find that
this results in phase differences being dominated by errors during the merger and
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post-merger, and we are most interested in errors during inspiral. So instead, we
align waveforms by choosing the optimal time and phase shift to minimize the
difference in amplitude and phase of the ; = 2, < = 2 strain mode over a chosen
time window during the inspiral; this is a two-dimensional root-finding problem.
The time window chosen for alignment, typically around [700 "�, 2000 "�], must
start sufficiently late such that junk radiation or CCE junk is not included in the
minimization.

Asymptotic GW quantities can be extracted upon completion of a numerical sim-
ulation. The three primary methods for achieving this are using Nakano extrapo-
lation (NE), finite-radius extrapolation (FRE), and Cauchy-Characteristic evolution
(CCE). In the following results we apply these different methods and assess their
contribution to overall simulation error.

3.2.2.1 Nakano extrapolation

FIL extracts the Weyl scalar Ψ4 at coordinate spheres of finite radii A. We use the
perturbative formula proposed as Eq. 3 in Ref. [83],

lim
A→∞

AΨ;<4 =

(
1 − 2"

Ā

)
× (3.11)[

ĀΨ;<4 −
(; − 1) (; + 2)

2Ā

∫
ĀΨ;<4 3C

]
(3.12)

for a given extraction radius Ā . We use this formula to obtain Ψ4 at future null
infinity for FIL.

The Ψ4 spherical harmonic waveform can then be integrated to obtain the modes of
the gravitational wave (GW) strain ℎ, which are given as

ℎ;< = −
∫ C

−∞

∫ C ′

−∞
Ψ;<4 3C′′ 3C′ , (3.13)

where the sign is appropriately chosen for each code. However, simply integrating
Ψ4 in time tends to cause a spurious nonlinear drift in the strain [109]. The standard
solution is to compute the strain using fixed frequency integration (FFI) [109],
i.e., integration of Ψ4 in the frequency domain while fixing the contribution from
frequencies below a chosen cutoff. The cutoff frequency is a free parameter that
must be fine tuned and chosen with care to avoid damping physical frequencies or
amplifying unphysical features. Where necessary we use a cutoff near the orbital
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frequency, the lowest physical frequency present in the system, as suggested in
Ref. [109]. All FILwaveforms presented are computed using the NE GW extraction
method.

3.2.2.2 Finite radius extrapolation

SpEC uses FRE to extract GW data. Specifically, in SpEC, Ψ4 and ℎ are computed
on a series of concentric spherical shells approximately evenly spaced in 1/A and
centered on the binary. The waveforms are then extrapolated to future null infinity
by fitting a series in powers of 1/A to the data on the concentric shells [23]. Less
care is taken in using the “best” tetrad when computing Ψ4 and ℎ on the shells
since the errors from tetrad differences will extrapolate away. We emphasize that in
addition to extracting Ψ4 directly, SpEC directly and independently extracts the GW
strain ℎ using the Sarbach and Tiglio formulation [113] of the Regge-Wheeler and
Zerilli equations [108, 123] with implementation details described in Refs. [111,
25, 24]. Unless otherwise stated, we use the extrapolated waveforms for SpEC in
our analysis.

3.2.2.3 Cauchy-Characteristic Evolution

Cauchy-characteristic evolution (CCE) [19, 18, 69, 12, 91, 92] is a waveform
extraction method where Einstein’s equations are solved out to future null infinity,
I+. Metric data on a worldtube at some finite radius is written to disk during the
Cauchy evolution, i.e., during the GH simulation in SpEC and SpECTRE. This data
is then used as a boundary condition to the characteristic evolution that evolves the
outgoing gravitational radiation to I+. CCE is able to capture physical effects like
gravitational wave memory that are not present in extrapolated waveforms [88, 85].
Figure 3.1 shows a schematic representation of the simulation domains involved.
By solving the Einstein equations to I+, CCE circumvents extrapolation errors
inherent in FRE waveforms. Thus, CCE will generally produce more realistic
waveforms than any extrapolation procedure. Despite these advantages, CCE is
not completely parameter-free since initial data on the initial null slice needs to be
chosen and different radii for the worldtube can be used. An additional complication
that CCE presents is that the waveforms are output in an arbitrary Bondi-Metzner-
Sachs (BMS) frame. This frame is not generally going to match the one that the
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extrapolated waveforms are in. We choose to always map the waveforms to their
own superrest frame [85].

We use several worldtube radii for CCE, and find that the resulting waveforms
differ slightly. SpEC uses radii of {129, 496, 863, 1230} "� while SpECTRE uses
{200, 250, 300, 350, 400, 450, 500} "�. All CCEwaveforms are extracted using the
SpECTRE CCE module [92]. For each code, we choose the extraction radius with
the smallest Ψ2 constraint.

We use SpEC to study the difference between extrapolated and CCE waveforms
for BNS simulations. Since SpECTRE does not output any finite radius or extrap-
olated waveforms, it is crucial to understand if systematic difference between the
extrapolated and CCEwaveforms are a dominant source of discrepancy between dif-
ferent codes. For SpECTRE waveforms, we use a CCE worldtube radius of 200 "�,
which minimizes effects from the outer computational boundary at 605 "�. This
worldtube radius is in the range typically used for BBH simulations as well.

3.3 Results
In this section, we perform several side-by-side comparisons of BNS simulations
with the same initial parameters run by different codes. Table 3.1 describes the
runs examined in this section. We analyze SpEC and FIL at three different finite-
difference resolutions each, allowing for convergence tests. Each level increases
the resolution by about 25%. We restrict our analysis to inspiral and merger in the
following.

Note that at the time of writing, SpECTREBNS simulation is not in a production state
and some SpECTRE runs are in progress, so analysis and comparison of SpECTRE
BNS waveforms in the following sections is limited.

3.3.1 Waveform properties
Here we compare waveform features during the inspiral. Figure 3.2 shows the real
part of the GW strain Aℎ22 and the strain amplitude |Aℎ22 | for the highest-resolution
runs available from each code. Waveforms in Fig. 3.2 have been individually aligned
to SpEC Lev3 by time and phase shifts as described in Sec. 3.2.2.

In general, all three codes show remarkable agreement by eye in frequency and
phase evolution until merger. The fact that we start out with very good agreement



59

2

CCE Domain

Cauchy Domain

u
I+

Γ

Σu

FIG. 1: A sketch of the Cauchy and Characteristic domains.
The Cauchy system evolves Einstein’s equations on spacelike
hypersurfaces, while the Characteristic system evolves Ein-
stein’s equations on compactified null hypersurfaces Σu that
extend to I+. Boundary conditions for the Characteristic sys-
tem are required on the worldtube Γ and are provided there
by the Cauchy system.

Cauchy-characteristic evolution1 Cauchy-
characteristic evolution (CCE) [30–32] is an alternative
waveform extraction method that uses metric data on a
single worldtube Γ to provide boundary conditions for a
second full nonlinear field simulation along hypersurfaces
generated by outgoing null geodesics. CCE avoids many
of the assumptions made by other extraction methods,
and instead computes the full solution to Einstein’s
equations in a Bondi-Sachs coordinate system at I+,
from which waveform quantities may be unambiguously
derived. The CCE domain and salient hypersurfaces are
illustrated in Fig. 1.

There are two notable previous implementations of
CCE. The original implementation, PITT Null [33, 34],
is a part of the Einstein Toolkit, and demonstrated the
feasibility of the CCE approach. Unfortunately, as it is a
finite difference implementation, PITT Null struggles

1 The acronym CCE has also been used in the past to refer to
“Cauchy-characteristic extraction”, which describes only the part
of the computation moving from the Cauchy coordinates to a set
of quantities that could separately be evolved on null characteris-
tic curves. Most of our descriptions refer to the entire algorithm
as a single part of the wave computation, so we refer to the com-
bination of Cauchy-characteristic extraction and characteristic
evolution as simply CCE.

to achieve high precision and can be very costly to run
[35]. The first spectral implementation of CCE is a mod-
ule of the Spectral Einstein Code (SpEC). That imple-
mentation was first reported in [36], and has undergone a
number of updates and refinements [37, 38], including re-
cent work that assembled a number of valuable analytic
tests that assisted in refining and optimizing the code
[35].
In this paper, we present our new implementation of

CCE in the SpECTRE [39] code base, which incorporates
a number of improvements to the waveform extraction
system. The SpECTRE CCE module implements a mod-
ified version of the evolution system in Bondi-Sachs coor-
dinates [40] that is able to guarantee that no pure-gauge
logarithms arise that spoil the spectral convergence of the
scheme as the system evolves. Further, the SpECTRE
CCE system is able to use formulation simplifications to
implement the computation for all five Weyl scalars as
suggested in [40]. We have also implemented numerical
optimizations specific to the SpECTRE CCE system to
ensure rapid and precise waveform extraction, and we
have re-implemented and extended the collection of tests
that was previously effective in testing and refining the
SpEC implementation [35].
SpECTRE [39, 41] is a next-generation code base for

which the aim is to construct scalable multi-physics sim-
ulations of astrophysical phenomenon such as neutron
star mergers, binary black hole coalescences, and core-
collapse supernovae. It is the goal of the SpECTRE
project to construct a highly precise astrophysical simula-
tion framework that scales well to & 106 cores. The core
SpECTRE evolution system uses discontinuous Galerkin
methods with a task-based parallelism model. The dis-
continuous Galerkin method has the ability to refine a
domain by subdividing the computation into local cal-
culations coupled by boundary fluxes. SpECTRE then
uses the task-based parallelism framework, charm++
[42–44], to schedule and run the resulting multitude of
separate calculations, which ensures good scaling prop-
erties of the method.
The CCE system in SpECTRE enjoys some efficiency

gain from sharing a common well-optimized infrastruc-
ture with the discontinuous Galerkin methods and makes
modest use of the parallelization framework (see Sec. IV).
However, the characteristic evolution itself is imple-
mented as a single spectral domain that covers the entire
asymptotic region from the worldtube Γ out to I+. The
smooth behavior of the metric away from the binary co-
alescence ensures exponential convergence of the mono-
lithic spectral method. In principle, the CCE method
could be applied to a subdivided asymptotic domain.
However, the unusual features of the field equations for
CCE (reviewed in Sec. II) would require special treat-
ment to appropriately account for boundary information.
Moreover, any subdivision of the angular direction would
obscure the spherical shell geometry that permits efficient
calculation of the angular degrees of freedom of the sys-
tem via spin-weighted spherical harmonic (SWSH) meth-

Figure 3.1: A schematic spacetime diagram showing the domains of CCE. The
initial evolution of the Einstein equations through inspiral, merger, and ringdown
is done in the Cauchy domain. The Cauchy evolution then supplies initial data
on the worldtube Γ for the proceeding evolution in the characteristic domain. The
characteristic evolution takes place on null hypersurfaces ΣD that extend to null
infinity I+, and from the charateristic system the outgoing gravitational radiation at
I+ can be recovered. Figure reproduced from Ref. [92] (Figure 1).
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already implies that we should be able to meaningfully compare the different codes
quantitatively. Since the initial configuration is constructed without gravitational
wave content from previous orbits being present in the initial domain, junk radia-
tion, spurious waveform content sourced from the relaxation of initial data in the
beginning of evolution, and CCE junk (present in SpECTRE only) are present (see
initial oscillations in the amplitude), but do not significantly impact the observed
code agreement.

Figure 3.3 provides a zoom-in on the time of merger for all resolutions. Runs in
this figure are unaligned and are instead matched in time to the retarded time at
infinity, D, as best estimated for each code. Since numerical resolution strongly
affects (spurious) dissipation of orbital energy, we expect a monotonic increase in
the time of merger with increasing resolution. In all codes, higher resolution runs
do reach merger at later times, by as much as ∼60 "�. Note that the coalescence
time in both SpEC and FIL appears to converge asymptotically with increasing grid
resolution. As such, the waveforms we use should have a sufficiently high fidelity
for a code comparison, which we provide in quantitative terms in the following.

3.3.2 Error analysis
There are several possible sources of error in numerical-relativity waveforms. One
source is roundoff error, originating from the finite precision of values represented
by computer hardware. More important and usually dominant is truncation error,
which comes from approximating continuous values as discrete. In numerical
waveforms, truncation error includes contributions from discretization in space and
time. Additional error sources come from extrapolation of waveform quantities to
future null infinity. While CCE does not have extrapolation errors, it is still subject to
truncation errors in the discretization of the Einstein equations on the characteristic
domain, and systematic errors from choosing the worldtube radius and initial data
on the initial null slice. Improving the accuracy of numerical waveforms requires
understanding which of these error sources dominate.

In the following sections, we show several measures of error using the phase of the
; = 2, < = 2 mode of the strain. In Sec. 3.3.2.1 we perform self-convergence tests
with SpEC and FIL to check the self-consistency of measured errors with expected
convergence rates. In Sec. 3.3.2.2 we measure the impact of waveform extrac-
tion in overall phase error, and in Sec. 3.3.2.3 we extrapolate continuum solutions
from SpEC and FIL waveforms to assess systematic agreement between the two
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Figure 3.2: Real part of the ; = 2, < = 2 strain mode ℜ(Aℎ22) and amplitude of
the ; = 2, < = 2 strain mode |Aℎ22 | for the highest resolution runs available from
each code (SpEC Lev3, FIL Lev2, and SpECTRE Lev2). Runs are aligned to SpEC
Lev3 with a time and phase shift. All waveforms generally show close agreement
during inspiral and reach merger at similar times, having similar cycle evolutions,
peak amplitudes, and inspiral lengths.

codes. Lastly, in Sec. 3.3.3 we discuss what our findings imply for target accuracy
requirements with respect to next-generation gravitational wave observatories.

3.3.2.1 Phase error convergence

Convergent behavior in phase is a particularly important benchmark for numerical
waveforms since the phase encodes various information about the system, including
tidal deformability [57]. In this section, we perform self-convergence tests using
SpEC and FIL waveforms to determine whether phase error scales predictably with
grid resolution within each code.

Suppose we have a numerical waveform evolved at three uniform spatial resolutions
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ΔG� < ΔG" < ΔG! . If truncation error from a FD scheme is the dominant
error source, then for some exact solution 5 (G) we can write the expected solution
obtained, 5̃ (ΔG), as

5̃ (G) = 5 (ΔG) + �ΔG?, (3.14)

where �ΔG? is the contribution from truncation error. The variable ? is the conver-
gence order, which depends on and can be computed for a given choice of numerical
FD scheme. Thus we expect that

5̃ (ΔG") − 5̃ (ΔG�)
5̃ (ΔG!) − 5̃ (ΔG")

=
ΔG

?

"
− ΔG?

�

ΔG
?

!
− ΔG?

"

. (3.15)

We calculate phase errors as the difference in time series at different resolutions,
e.g. 5̃ (ΔG") − 5̃ (ΔG�).

A numerical result is said to be convergent if the equality in Eq. (3.15) holds for
the expected ?, meaning the error scales predictably with a limiting factor of the
numerical accuracy, e.g. grid resolution. Convergence indicates that truncation error
is the dominant error source and that implementations of the contributing numerical
schemes are correct. Quantifying this error can be straightforward in numerical
codes that have a fixed discretization, as in FIL, whereas in hybrid schemes, as
in SpEC, in which the spectral and FD schemes have different orders, error cannot
easily be analyzed in this way unless, e.g., the FD error dominates.

In Fig. 3.4, we show the phase differenceΔq in radians over time between consecutive
resolutions given three runs for SpEC and FIL. Each difference is calculated with the
higher resolution time series interpolated onto the time grid of the lower resolution
time series. Waveforms are matched by estimated retarded time without alignment,
similar to those shown in Fig. 3.3. Colored lines show the phase differences between
two waveforms of differing resolution, and dashed lines show the phase differences
rescaled by the expected factor from Eq. (3.15) assuming some convergence order.

Errors in dashed lines are scaled from the higher resolution error and ideally should
match the lower resolution error, and vice versa for dotted lines. SpEC errors
are rescaled assuming third-order convergence (? = 3). General convergence in
SpEC is difficult to assess because of its coupled evolution grids and the competing
effects of several numerical schemes. However, the rescaled errors do not conform
to the measured errors, indicating that the error is not entirely dominated by the
hydrodynamic sector, at least for the lowest resolution simulation available. It
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is likely that the multiple schemes in SpEC interact differently at different grid
resolutions (e.g. such that errors between SpEC Lev2 and SpEC Lev3 cancel). For
different setups, SpEC has previously shown convergence during inspiral for BHNS
waveforms [48].

FIL errors are rescaled assuming the expected third order (? = 3). The rescaled
errors show that FIL is consistent with third-order convergence during inspiral as
demonstrated previously [89]. Although the FD scheme in FIL is formally fourth-
order convergent, accuracy is limited either by the third-order time stepper or the
third-order fallback reconstruction in the WENO-Z algorithm.

Overall, we confirm that phase errors systematically decrease with resolution for
SpEC and FIL, and find that overall phase errors are small, on the order of O(10−2).

3.3.2.2 Waveform extraction error

In this section, we assess the error contribution from waveform extraction. It has
previously been established that extraction errors can dominate in the early inspi-
ral of BNS simulations (e.g, Ref. [16]). In BBH simulations, errors in waveform
extraction have been well investigated (e.g., Refs. [32, 25]). BBH waveform ex-
traction has undergone many recent advances with the development of CCE [92,
91]. Unlike FRE, CCE evolves the spacetime from a chosen timelike worldtube out
to future null infinity and is capable of resolving gravitational wave memory [97].
Since CCE is generally considered to be the best mathematically well-motivated
extraction method, we evaluate extraction error by comparing between CCE and
FRE waveforms in SpEC, effectively treating CCE as a reference point. We prefer
this method over comparing different FRE waveforms as it gives a measure of total
FRE error. It has been shown that for BBH, CCE is more accurate than FRE in that
it obeys the Bondi constraints better and matches better to PN at early times [85, 86,
87], and it has been shown that the numerical truncation error associated with CCE
is much smaller than the numerical truncation error of the spectral BBH Cauchy
evolution [92, 91]. Given that even for spectral BBH simulations the FRE error
is smaller than truncation error [25], we expect truncation error (in particular due
to hydrodynamics) and not wave extraction error to be dominant for current BNS
waveforms. Note, however, that some aspects of CCE are under active investigation,
and beyond the scope of this work.
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Figure 3.5 shows the phase difference between CCE and FRE waveforms at the
same FD grid resolution. The shown CCE waveform is extracted using a worldtube
radius of ' = 496 "�. The CCE waveform has been aligned with a time and
phase shift to SpEC Lev3 as extrapolated with FRE. The black dashed line shows
the phase difference (i.e. the truncation error, similar to those shown in Fig. 3.4)
between SpEC Lev2 and SpEC Lev3, both extrapolated with FRE, for comparison
of truncation error with extraction error. In general, truncation error is either larger
than or comparable to the phase difference between CCE and FRE waveforms
through inspiral and is clearly larger than extraction error at merger, indicating that
truncation error tends to dominate over extraction error, as expected.

It turns out that the choice of CCE worldtube radius makes a small difference in the
CCE waveforms, for reasons that are not fully understood and beyond the scope of
this work. In theory, the best choice of worldtube radius minimizes Bondi constraint
values. For Fig. 3.5, we choose the worldtube radius that minimizes the Bondi
constraint value Ψ2, as Ψ2 is a criterion in BMS frame fixing. However, extraction
error is subdominant relative to truncation error at all examined worldtube radii, so
our findings are not significantly impacted by the choice of radius.

3.3.2.3 Phase error comparison

In this section, our goal is to directly compare the phase errors of the three different
codes presented in this chapter. This is important because it allows us to draw
conclusions about potential systematic differences between the codes (e.g., small
differences even on the initial data level will lead to slightly different physical
parameters of the system). It also allows us to estimate the computational cost per
level of accuracy, which we do in the next section.

Oneway of facilitating a comparison is to designate a reference solution and compare
to it. This is easiest if a clear convergence order of a code can be established, as it
allows us to extrapolate the numerical solutions to their continuum limit (at zero grid
spacing), so-called Richardson extrapolation. Given a numerical solution 5̃ (ΔG)
computed at two different grid resolutions ΔG1, ΔG2 and known convergence order
?, the solution in the limit of zero grid spacing can be estimated from Eq. (3.14) as

5 (G) ≈ 5̃ (ΔG1) +
5̃ (ΔG1) − 5̃ (ΔG2)

A ? − 1
(3.16)
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Figure 3.5: Phase difference between FRE and CCE waveforms at the same grid
resolution, with the CCE waveform extracted using a worldtube radius of ' =

496 "�. The black dashed line shows relative truncation error between SpEC Lev2
and SpEC Lev3 extracted with FRE. Extraction error is comparable to or lower
than truncation error throughout inspiral. This trend holds for all examined CCE
worldtube radii, although there is no clear trend in error with respect to worldtube
radius.

assuming � is independent of grid resolution (which it should be), and with A =
ΔG2/ΔG1,.

FIL results in a systematic third-order convergent solution, as shown in Sec. 3.3.2.1
(see also Ref. [89]). We therefore adopt the extrapolated FIL solution as our
reference for the purpose of this comparison and compute phase differences for all
waveforms. The Richardson extrapolation assumes third-order convergence in FIL
(as verified in Sec. 3.3.2.1) and uses the highest two resolution runs available, FIL
Lev1 and FIL Lev2. In particular, the ; = 2, < = 2 strain mode is extrapolated,
and the reference phase is computed from the Richardson extrapolated strain as a
derived quantity.

Figure 3.6 shows the phase error relative to the reference phase for all runs. Each
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run has independently been aligned to the Richardson extrapolated waveform using
the process outlined in Sec. 3.2.2. The phase differences oscillate around zero at
early times because of the choice of alignment window.

The behavior of the errors in each code as grid resolution changes indicates whether
there is a systematic phase discrepancy between the two codes. If SpEC converged
to a significantly different phase evolution from FIL, the difference in the SpEC
phase from the Richardson extrapolated FIL phase would asymptotically approach
some large value as grid resolution increases. In Fig. 3.6 we find that SpEC and
FIL approach similar magnitudes of phase error with increasing grid resolution, and
SpEC appears to approach 0 with increasing resolution instead of leveling off at a
finite value. The errors in SpEC Lev3 and FIL Lev2 (the highest resolution runs
from each code) differ from each other on the scale of O(10−2) through inspiral.
Given that, as shown in Sec. 3.3.2.1, truncation error is also generally of order
O(10−2), we conclude that no systematic difference in phase between SpEC and FIL
is resolvable from truncation error at these resolutions. Figure 3.6 indicates a rough
upper bound on truncation error in phase for FIL, which is on the order of O(10−1)
for the resolutions we adopt.

3.3.3 Implications
In order to keep up with the accuracy demands of next-generation gravitational
wave detectors, numerical waveforms need to reach mismatch errors much smaller
than what is currently achieved [100, 63]. In this section we discuss the numerical
resolution and computational cost required for such an improvement.

A way of estimating accuracy and cost requirements is through waveform mis-
matches. Mismatch is a standard tool in gravitational waveform analysis for not
only error measurement but also matching waveform templates to signal data. Our
definition of mismatch, which we summarize here, is the same as in Ref. [22].

Given two complexwaveform strains ℎ1 and ℎ2, we define their inner product 〈ℎ1 |ℎ2〉
as

〈ℎ1 |ℎ2〉 =
∫ +∞

−∞

ℎ̃1( 5 ) ℎ̃∗2( 5 )
(= ( 5 )

35 , (3.17)

where ℎ̃1( 5 ) and ℎ̃2( 5 ) are the strains in the frequency domain, ℎ̃∗2( 5 ) is the
complex conjugate of ℎ2( 5 ), and (= ( 5 ) is noise power spectral density. (= ( 5 ) is
set by detector precision, and we use the Advanced LIGO noise curve [13] for the
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following calculations. Then, we define mismatchM(ℎ1, ℎ2) as

M(ℎ1, ℎ2) = 1 − max
Xq, XC

ℜ

[
〈ℎ1 |ℎ2〉√

〈ℎ1 |ℎ1〉 〈ℎ2 |ℎ2〉

]
, (3.18)

in which ℎ1 and ℎ2 are aligned with phase and time shifts Xq, XC that minimize
mismatch. We use the alignment procedure described in Sec. 3.2.2 to align wave-
forms for the purposes of mismatch analysis. We compute mismatches using only
the ; = 2, < = 2 strain modes, and we use the extent of each numerical waveform
from the end of junk radiation to the peak amplitude.

We compare mismatches to the faithfulness criterion defined in [58, 35] and perform
an analysis similar to that done in [47]. For faithful GW parameter estimation, a
numerical waveform ℎ should satisfy

M(ℎ, ℎref) <
#

2d̃2 , (3.19)

where d̃ is the desired signal-to-noise ratio (SNR). Formally, # ≤ 1, but in practice
it is sometimes set to the number of intrinsic parameters in order to obtain a less
strict threshold value [29], so we use both # = 1 and # = 6. We use the Richardson
extrapolated strain computed in Sec. 3.3.2.3 as ℎref . To determine what grid spac-
ing would be necessary to reach a given mismatch threshold, We can extrapolate
mismatch to arbitary resolution by fitting computed mismatches to a power law
(M ∝ ΔG−?, where ? is convergence order). For the following analysis, we assume
a convergence order of ? = 3 for both codes, which is likely an underestimate for
SpEC and consistent with the previously shown results in Sec. 3.3.2.1 for FIL.

Figure 3.7 shows the relationship between mismatches and grid separation. Scatter
plot points in both subplots show the reference mismatches for the various numerical
BNS runs from SpEC and FIL. Solid curves show mismatch extrapolated for each
code to arbitrary resolutions using the known reference mismatches. The distin-
guishability thresholds with d̃ = 30 and # = {1, 6} are marked as dashed horizontal
lines. The mismatch extrapolations and the threshold lines intersect at the grid
separation required for the reference mismatch in either code to meet the threshold
criteria. Figure 3.8 then shows total compute time in core hours until merger as a
function of grid separation. Compute cost curves are extrapolated from the known
costs of numerical runs (given in Table 3.1) using the cost scaling ∝ O

(
ΔG4) . Scat-

ter plot points show these compute costs for the numerical runs from SpEC and FIL.
The diamond and cross points show the extrapolated costs at the resolutions required
to reach the target thresholds as shown in Fig. 3.7.



71

Code Threshold T

Threshold
grid

spacing
[S�]

Threshold
grid

spacing [m]

Projected
computational cost to
merger [core-hours]

SpEC 1 0.0360 53.2 10,647,965
SpEC 6 0.0654 96.6 976,546
FIL 1 0.0408 60.2 31,213,955
FIL 6 0.0742 109.6 2,864,719

Table 3.2: A summary of the results computed in Sec. 3.3.3. For the given code
and reference mismatch threshold, the grid resolution and compututational cost
required to achieve the thresholdmismatch are shown according to the extrapolations
specified in Sec. 3.3.3.

The mismatchesM(ℎ, ℎref) of SpEC Lev2 and SpEC Lev3 are 0.0336 and 0.0114
respectively. Extrapolating from these mismatches, we find that, assuming third
order convergence, a SpEC run must have a grid spacing of ∼0.036 "� in order to
reach the # = 1 threshold, i.e. roughly triple the resolution of SpECLev3 and a∼97×
cost increase; SpEC reaches the # = 6 threshold at a grid resolution of ∼0.065 "�,
i.e. roughly double the resolution of SpEC Lev3 and a ∼8× cost increase. For a more
conservative cost estimate, we can treat the convergence order as a fitting parameter
instead of fixing it. This gives a resulting convergence order of ? = 5.2, which is
plausible for SpEC, and the target resolution becomes ∼0.063 "�, leading to a ∼9×
cost increase. For FIL Lev2 and FIL Lev1, we findmismatchesM(ℎ, ℎref) of 0.0104
and 0.0512. The # = 1 threshold resolution assuming third order convergence is
then ∼0.041 "�, resulting in a ∼134× cost increase from FIL Lev3; the # = 6 target
resolution is ∼0.074 "�, giving a ∼5× cost increase. These results are summarized
in Table 3.2.

3.4 Conclusion
Next-generation gravitational wave detectors offer exciting prospects for probing
dense matter with BNS [28, 56]. In order to extract this information from the
GW signal, highly accurate models for inspiral gravitational wave emission will be
needed [63]. Crucially, these rely on calibration to NR simulations [44], which in
turn will have similar accuracy requirements.

In this work, we investigated potential systematics in gravitational waveforms com-
puted with current numerical relativity simulations. We have done so by performing
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Figure 3.8: The computational cost in core hours for a BNS waveform through
merger in relation to the finite difference grid separation ΔG. Dots mark compute
times of runs presented in this paper, crosses mark the projected costs given the grid
separations required to reach the # = 1 mismatch threshold shown in Fig. 3.7, and
diamonds mark the respective costs for the # = 6 threshold. Curves are extrapolated
from known run costs assuming cost scales as O

(
ΔG4) . For either SpEC or FIL,

a BNS run with high enough grid resolution to reach the target mismatch would
require on the order of 1 million to 10 million core hours.

a direct code comparison of three NR codes (FIL, SpEC, SpECTRE) that are max-
imally different in both the equations they solve and the numerical schemes they
use. We have presented a detailed BNS error analysis that covers GW phase error,
convergence behavior, and extraction error across multiple resolutions of BNS runs
with the same initial data parameters. By quantifying error in a BNS waveform
observable and considering the relative impacts of evolution error and extraction
error, this analysis contributes to an area of limited study in the current literature.

Reassuringly, we find that within currently used numerical resolutions the codes
systematically agree, and are, in part, convergent. We further show that waveform
extraction errors are at present negligible when compared to a more accurate and
well-defined CCE approach. Also, SpEC and SpECTRE use pseudo-spectral and
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finite-element methods for the wavezone. In this region, BNS simulations are the
same as BBH simulations for these codes, and BBH simulations with SpEC and
SpECTRE have substantially smaller errors than BNS (e.g., Refs. [25, 84]). These
considerations likely imply that the waveform error is currently limited by the
hydrodynamic evolution.

Using the current computational cost, which for a given accuracy we find to be
roughly comparable among all codes within a factor of a few (see Table 3.1), we
predict that resolutions three to four times higher than what are used now may be
needed to built a catalog to meet the requirements of next-generation facilities (see
also Ref. [47] for similar conclusions). Additional improvements on the hydrody-
namics side [47, 74] (see also Refs. [101, 16, 89]), as well as the use of new hardware
acceleration [55] may be necessary to overcome present limitations.

As a starting point, this work only considers one binary configuration with equal
mass components (see, e.g., Ref. [72] for potential challenges in BBH waveforms).
Additionally, our analysis is confined to the ; = 2, < = 2 waveform mode. Higher-
order modes have even greater accuracy requirements in order to be numerically
resolved, but may be important for unequal mass systems. Future work will be
needed to address these issues.
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