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ABSTRACT

This thesis comprises four independent parts and an appendix.

1. We define and study expansion problems on countable structures in the setting of
descriptive combinatorics. We consider both expansions on countable Borel equivalence
relations and on countable groups, in the Borel, measure, and category settings, and
establish some basic correspondences between the two notions. We then explore in de-
tail many examples, including finding spanning trees in graphs, finding monochromatic

sets in Ramsey’s Theorem, and linearizing partial orders.

2. Standard results in descriptive set theory provide sufficient conditions for a set
P C NY x NN to admit a Borel uniformization, namely, when P has small or large
sections. We consider an invariant analogue of these results with respect to a Borel
equivalence relation F. Given E, we show that every such P admits an E-invariant
Borel uniformization if and only if E is smooth. We also compute the definable
complexity of counterexamples in the case where E is not smooth, using category,
measure, and Ramsey-theoretic methods. We also show that the set of pairs (F, P)
such that P has large sections and admits an E-invariant Borel uniformization is

3 3-complete.

3. Let E, F be Borel equivalence relations on X, Y, and P be an E-invariant Borel
set whose sections contain countably many F-classes. We explore obstructions to
the existence of Borel E-invariant uniformizing sets for P, i.e., sets choosing one
F-class from every section. We survey known results, and prove new dichotomies for
the case where P has o-bounded finite sections. On the way, we prove a dichotomy

characterizing the essential values of Borel cocycles into residually finite Polish groups.

4. We show that the Kechris—Solecki—-Todorcevié¢ dichotomy implies the Harrington—
Kechris-Louveau dichotomy. We also give a simple proof of a graph-theoretic dichotomy
of Miller for doubly-indexed sequences of analytic graphs, and show that this dichotomy

generalizes to finite-dimensional hypergraphs but not to No-dimensional hypergraphs.

5. An effective version of Nadkarni’s Theorem was proved in Ditzen’s unpublished
Ph.D. thesis. The appendix contains a streamlined exposition of the proof and provides
an alternative proof of the Effective Ergodic Decomposition Theorem for invariant
measures (also originally proved by Ditzen). In addition, we show that the existence

of an invariant Borel probability measure is not effective.
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Chapter 1

INTRODUCTION

Broadly speaking, descriptive set theory is the study of definable sets in Polish spaces,
i.e., separable and completely metrizable topological spaces. Examples of Polish spaces
include the space R of real numbers, the Cantor space 2% of infinite binary sequences,
and the Baire space NV of infinite sequences of natural numbers. What it means
to be definable is intentionally flexible; it is beneficial to consider various notions of
definability depending on the context. Most commonly we consider the Borel sets,
that is, the sets generated by the basic open sets via the operations of countable
union, countable intersection and complementation. In this thesis we also consider
various other classes of sets, such as the larger classes of analytic, measurable, or Baire

measurable sets, or the more restricted classes of G4 sets or “effectively Borel” sets.

Restricting ourselves to definable sets has many benefits. First, we avoid pathologies
that may exist in the general context, such as non-measurable sets or sets of reals
of cardinality strictly between Xy and the continuum. Second, using the structure
afforded to us by the definitions of these sets, we get more refined and broadly
applicable versions of general results. For example, the Perfect Set Theorem asserts
that not only does the continuum hypothesis hold for analytic sets, but in this case
there is a concrete witness to uncountability—every uncountable analytic set contains
a homeomorphic copy of the Cantor space. As another example, by the Lusin—Novikov
Uniformization Theorem not only do Borel families of countable sets have choice
functions (a consequence of the axiom of choice), such families admit choice functions
that are Borel. Finally, by considering the definable complexity of sets and functions
between them, we get a much finer analysis of and comparison between the complexity
of various sets, structures, and combinatorial problems; one can view this as analogous

to the study of complexity and reductions in computer science.

One concept that has become especially important, both in theory and in application,
is that of a Borel equivalence relation. A Borel equivalence relation on a Polish space
X is an equivalence relation E that is Borel, considered as a set of pairs in the product
X x X. The main notion of relative complexity between various Borel equivalence
relations is that of Borel reduction: if E is a Borel equivalence relation on X and

F' is a Borel equivalence relation on Y, a Borel reduction from E to F' is a Borel
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function f: X — Y so that zoFz, <= f(x¢)F f(x1). We write E <g F when there

is a Borel reduction from E to F', and in this case we view F as being “at least as

complicated” as FE.

We give a brief overview of the “base” of the poset of Borel equivalence relations with
respect to Borel reducibility: The simplest Borel equivalence relations are the smooth
ones, i.e., those that admit Borel reductions to equality on R. Above these there is

Eo, the eventual equality relation on 2Y:
rEoy <= InVk > n(xp = yi).

By the Harrington—Kechris-Louveau Theorem, if E is a Borel equivalence relation
that is not smooth, then [y <p E. The structure of the Borel equivalence relations

above [ is much more complicated; see for example [Gao08; Kan08; Kec25].

The central focus of this thesis is on finding Borel solutions to combinatorial problems
that are “compatible with” or “invariant with respect to” various Borel equivalence
relations. We explain in detail below what this means in various contexts, and give an

overview of our results.

1.1 Definable expansions

A countable Borel equivalence relation is an equivalence relation whose equivalence
classes are countable. Given a countable Borel equivalence relation E, a Borel
structuring of E is a Borel assignment of a first-order structure on each EF-class C.
When each of these structures comes from a class K of countable structures, we call
this a Borel K-structuring of E.

Broadly speaking, given a combinatorial problem on countable structures, we are
interested in solving it in a “uniformly Borel” way on a countable Borel equivalence
relation, possibly after throwing away a meagre set or a null set. There are various
examples of interest coming from graph theory, such as finding (edge) colourings,
perfect matchings or spanning trees in graphs. Other examples include finding infinite
monochromatic sets as in Ramsey’s Theorem, or linearizing partial orders. Such
problems have been studied extensively in this context; see for example [KM20; Pik21;
CK18; GX24].

In Chapter 2, we consider these problems within the framework of expansions. Given
first-order languages £ C L£* and an L-structure A, we call an L*-structure A* an
expansion of A if A = A*[L, where A*[L denotes the reduct of A* to L. If K is a class

of £ structures and K* is a class of L*-structures, the ezpansion problem for (IC,C*)
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is the problem of determining whether every structure in K admits an expansion in
IC*. All of the combinatorial problems above, such as graph colourings and Ramsey’s

Theorem, can be phrased as expansion problems.

We study here the “uniformly Borel” analogue of expansion problems. That is, we
consider expansion problems (IC, K*) for which every element of X admits an expansion
to an element of C*. Given such a problem, a countable Borel equivalence relation
E and a Borel K-structuring A of E, we study the following problem: is there a
Borel K*-structuring A* of E whose restriction to every E-class is an expansion of the

original structuring A7

We also study an “equivariant” version of the Borel expansion problem. Let I' be
a group and (I, K*) is an expansion problem with K, £* Borel. We let K(I") (resp.
KC*(I")) denote the set of structures in K (resp. K*) whose universe is I'. The action of
I" on itself by multiplication on the left induces a natural action of I' on IC(I"), K*(T').
The T'-equivariant expansion problem is then the following: is there a Borel map
f:K() — K*(I), taking A € (') to an expansion f(A), which is equivariant with
respect to the induced action of I" on K(I'), £*(I")?

Our primary objective is to study this correspondence between the Borel expansion
problem on CBER and the Borel equivariant expansion for countable groups I'. More
generally, we study also the connection between these problems in the settings of
measure and category, i.e., when we are allowed to solve these problems after possibly
removing a null or meagre set. We show that there is natural correspondence between
[-equivariant expansions for countable groups I' and countable Borel equivalence
relations which arise via free Borel actions of I'. We then apply our results to various

examples.

We include below a representative sample of our results; see Chapter 2 for more precise

definitions and further results.

In terms of measure, we consider random expansions for countable groups, where we
say an invariant measure v on *(I") is a random expansion of an invariant measure p
on K(I') when the reduct of v is equal to u. We show that the existence of random
expansions on I'" depends only on its orbit equivalence class, where we say groups I', A
are orbit equivalent if there is a countable Borel equivalence relation £ induced by

free probability-measure-preserving actions of both I" and A.

Theorem 1.1.1. Let (K,K*) be an expansion problem and I', A be countably infinite

groups. If I'; A are orbit equivalent, then I' admits random expansions from I to IC* if



and only if A admits random expansions from K to K*.

For category, we consider generic equivariant expansions on Gg classes of structures,
i.e., equivariant expansions on comeagre subsets of (I"). Given an expansion problem
(K, £*) and a countably infinite group I', we say K admits [-equivariant expansions
generically if there is a comeagre invariant Borel set X C IC(I") such that there is a

Borel I'-equivariant expansion map X — K*(T").

We show that when IC consists of structures with trivial algebraic closure that are
not definable from equality, whether or not K admits I'-equivariant expansions to K*
generically is independent of the group I'. (A structure is said to have trivial algebraic
closure if its automorphism group has infinite orbits, even after fixing finitely many
points, and is definable from equality when relations between tuples of points depend

only on their equality types.)

Theorem 1.1.2. Let (IC,K*) be an expansion problem. Suppose that KC is Gs and the
generic element of IC has trivial algebraic closure and is not definable from equality.

Then the following are equivalent:

1. For every countably infinite group I', IC admits I'-equivariant expansions to KC*

generically.

2. There exists a countably infinite group T' for which K admits T"-equivariant

expansions to KC* generically.

As one concrete example, we consider the problem of choosing from a countable linear

order without endpoints a subset that is order-isomorphic to Z, in a Borel way.
Theorem 1.1.3.

1. Let IC be the class of linear orders without endpoints, and IC* be the class of linear
orders without endpoints along with a subset of order-type Z.. For any countably
infinite group I', IC does not admit I'-equivariant expansions to K* generically.
In particular, every non-smooth CBER E admits a Borel assignment of linear
orders to every E-class so that there is no Borel way to choose an infinite subset

of each E-class that has order-type Z.

2. There is a Borel I'-invariant set X C KC(I') and a Borel equivariant expansion

map f: X — K*(I') such that, for all invariant random K-structures p on I', p
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admits a random expansion to KC* if and only if u(X) = 1, in which case f.u
gives such an expansion. Moreover, we can choose f so that for all L € X, f(L)

picks out an interval in L.

1.2 Invariant uniformization

Let X,Y besetsand let P C X xY satisfy Vo € X3y € Y(z,y) € P. A uniformization
of P is a function f: X — Y so that Vo € X((z, f(z)) € P). If E is an equivalence
relation on X, we say P is E-invariant if voExy — P,, = P,,, where P, = {y €
Y : (z,y) € P} is the x-section of P. In this case, an E-invariant uniformization is a

uniformization f such that xoExy = f(xo) = f(z1).

A uniformization for P can be viewed as a choice function for the family {P, : v € X}.
When X, Y are Polish spaces and P is Borel, standard results in descriptive set theory
give sufficient conditions for the existence of Borel uniformizations of P, such as when

P has small or large sections; see e.g. [Kec95, Section 18].

Suppose now that P has small or large sections. In Chapter 3, we study the existence
of Borel F-invariant uniformizations of P, when E is a Borel equivalence relation on

X and P is E-invariant.

Given a Borel equivalence relation F, we consider the property that every E-invariant
P with countable (resp. K,, non-meagre, non-null) sections admits a Borel E-invariant
uniformization. We show that in every case, E has this property if and only if F is

smooth.

Theorem 1.2.1 (Kechris-Wolman). Let E be a Borel equivalence relation on a Polish

space X . Then the following are equivalent:

(i) E is smooth,

(ii) every E-invariant Borel set P with non-null sections admits a Borel E-invariant

uniformization;

(7ii) every E-invariant Borel set P with non-meagre sections admils a Borel E-

invariant uniformization;

(iv) every E-invariant Borel set P with K, sections admits a Borel E-invariant

uniformization;

(v) every E-invariant Borel set P with countable sections admits a Borel E-invariant

uniformization.
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We also characterize the minimal definable complexity of counterexamples. Below
we state the largest class for which there are always Borel invariant uniformizations;
for each of these cases, we also give counterexamples at the next level of the Borel

hierarchy.

Theorem 1.2.2 (Kechris-Wolman). Let X, Y be Polish spaces, E a Borel equivalence
relation on X, and P C X x Y an E-invariant Borel relation. Suppose one of the

following holds:

(i) P, € AY and u,(P,) >0, for all x € X, and some Borel assignment x + i, of

probability Borel measures i, on'Y;
(ii) P, € F, and P, non-meager, for all x € X;

(iii) P, € Gs and P, non-empty and K, (in particular countable), for all z € X.
Then there is a Borel E-invariant uniformization.

We next consider “local” dichotomies. Miller recently proved a dichotomy showing that
[Ey is essentially the only obstruction to the existence of invariant uniformizations, in
the case of countable sections [Mild, Theorem 2]. We provide a different proof of this
dichotomy, using Miller’s (G, Hy) dichotomy [Mill2] and Lecomte’s Ny-dimensional
hypergraph dichotomy [Lec09]. We also prove an Ry-dimensional (Gg, Hy)-type di-
chotomy, which generalizes Lecomte’s dichotomy in the same way that the (Gg, Hy)
dichotomy generalizes the G dichotomy, and use this to give still another proof of

this theorem.

Informally, dichotomies such as [Mild, Theorem 2] provide upper bounds on the
complexity of the collection of Borel sets satisfying certain combinatorial properties;
for example, (the effective version of) Miller’s dichotomy gives a bound of I} for the
set of pairs (F, P) admitting Borel E-invariant uniformizations, when P has countable
sections. Thus, one method of showing that there is no analogous dichotomy in other
cases is to provide lower bounds on the complexity of such sets. We show that this
is the case for the large section problem, namely, we show that the set of such pairs

(E, P), where P has large sections, is X3-complete.

Theorem 1.2.3 (Kechris-Wolman). Let P be the class of pairs (E, P) such that E is a
Borel equivalence relation on NN and P C NN x NN 45 Borel and E-invariant, has large

sections, and admits an E-invariant Borel uniformization. Then P is Xi-complete.



The following is still open:

Problem 1.2.4. Is there an analogous dichotomy or anti-dichotomy result for the

case where P has K, sections?

We end the chapter with some partial results concerning the more general problem of
invariant countable uniformization, i.e., invariant uniformization where we choose a

countable set in each section instead of a single point.

1.3 Invariant uniformization over quotients

Suppose now that F is a Borel equivalence relation on a Polish space X and F'is a
Borel equivalence relation on a Polish space Y. We say P C X x Y is F x F-invariant
if

ol & yoFy1 & (v0,90) € P = (21,41) € P.

Suppose now that P is Borel and E x F-invariant. We say P has countable sections
over F if the sections of P each contain countably many F-classes. A Borel E-invariant
uniformization of P over F' is a Borel set U C P that is F x F-invariant, and whose

sections each contain exactly one F'-class.

In this chapter, we look at dichotomies characterizing the existence of Borel E-invariant
uniformizations of P over F, when P is Borel, ¥ X F-invariant and has countable

sections over F.

We begin by considering the case where the sections of P contain finitely many
F-classes. The following has been shown independently by the author and Miller
(personal communication), who pointed out that it follows from their work on essential

values of Borel cocycles.

Theorem 1.3.1. Let E, F be Borel equivalence relations on Polish spaces X,Y,
and P C X XY be a Borel E X F-invariant set whose sections contain exactly n
F-classes, n > 2. There is a finite basis of minimal obstructions to the existence of
Borel E-invariant uniformizations of P over F', corresponding to the set of minimal

fixed-point-free subgroups of S, (up to conjugacy).

If E is an equivalence relation and I" is a group, a map p: E — I' is a cocycle if it

satisfies the cocycle identity

p(x,y)ply, z) = p(z, 2)
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for tByFEx. If T is a countable discrete group, E is a Borel equivalence relation on a
Polish space X, p: E — I" is a Borel cocycle and A C I is a non-empty set, we say A
is an essential value of p if for every partition (B, ),en of X into Borel sets, there is
some n so that for all A € A there are z # y € B,, with p(z,y) = A.

If " is a group, F is a Borel equivalence relation on X, F' is a Borel equivalence
relationon Y, and p: E — I', 7 : F — ' are cocycles, a continuous embedding of p
into 7 is a continuous injection f : X — Y so that xoFz; <= f(x9)F f(x1), and
p(xo, z1) = 7(f(x0), f(x1)) for zoFx.

Miller has proved the following dichotomy characterizing the essential values of Borel

cocycles into countable groups.

Theorem 1.3.2 (Miller [Mila, Theorem 1]). Suppose A < T' are countable discrete
non-trivial groups. There is a canonical cocycle , :Eqg — A so that for every Borel

equivalence relation E and every Borel cocycle p : E— T, the following are equivalent:

1. A is an essential value of p.

2. There is a continuous embedding of , into p.

We include a simple proof of Theorem 1.3.1 from Miller’s dichotomy for essential

values of Borel cocycles.

We then consider the case where P has countable sections over F', but can be partitioned
into countably many FE x F-invariant Borel sets that have bounded finite sections
over F'. We prove a dichotomy characterizing the essential values of Borel cocycles

into pro-finite Polish groups, and use this to generalize Theorem 1.3.1 to this setting.

Theorem 1.3.3. Let (I'y)nen be a sequence of finite groups, and F,, be a family of
non-trivial subsets of I',, that is closed under conjugation. For every Borel equivalence

relation E on X and every Borel cocycle p : E— 11, Ty, the following are equivalent:

1. The family (Fy,)n is an essential value for p, meaning that for every cover of X
by Borel sets By, there are i,k such that projp (p(E[Bix \ A(Bix))) contains

an element of F;.

2. There is a subgroup A < T[, 'y so that projp (A) contains an element of F, for
alln € N, a (somewhat canonical) cocycle : Eq — [, T, that has A as an

essential value, and a continuous embedding of into p.
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Theorem 1.3.4. Let E, F be Borel equivalence relations on Polish spaces X,Y , and

P, C X XY be Borel E x F-invariant sets whose sections contain exactly a(n) > 2
F-classes. There is a (somewhat canonical) basis of minimal obstructions to the
existence of Borel E-invariant uniformizations of U, P, over F', corresponding to

fized-point-free subgroups of 11, Sa(n)-

1.4 Descriptive dichotomy theorems

We have discussed so far various dichotomy theorems in descriptive set theory concern-
ing Borel equivalence relations. We recall now some of the most important, namely
Silver’s Theorem and the Harrington-Kechris-Louveau Theorem. If E is a Borel
equivalence relation on X and F' is a Borel equivalence relation on Y, a continuous
embedding of E into F' is a reduction f : X — Y from F to F that is continuous and

injective.
Theorem 1.4.1 (Silver). Let E be a co-analytic equivalence relation on a Polish space.
Exactly one of the following hold:

1. E has countably many equivalence classes.

2. There is a continuous embedding of equality on 2~ into E.
Theorem 1.4.2 (Harrington—Kechris-Louveau). Let E be a Borel equivalence relation
on a Polish space. Fxactly one of the following hold:

1. E is smooth, i.e., there is a Borel reduction of E to equality on R.

2. There is a continuous embedding of Eq into E.
We note that the Harrington—Kechris—Louveau Theorem extends prior results of

Glimm and Effros, who proved this in the case that E is induced by a continuous

action of a locally compact Polish group (and in particular when E' is countable).

We also recall the graph-theoretic dichotomy of Kechris—Solecki—-Todorcevi¢. We say
a (directed) graph G on a Polish space X is analytic if it is analytic as a subset of
X x X, and we say G has countable Borel chromatic number if there is a cover of X
by countably many G-independent Borel sets. If G is a graph on X and H is a graph
on Y, a homomorphism from G to H is a map f : X — Y so that

roGry = f(wo)H f(z1).
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Fix a set S C 2<N that contains exactly one sequence of every length, and which is
dense, meaning that for all t € 2<V there is some s € S with ¢ C s. Define the directed
graph Gy on 2V by

Go={(s7(0)"z,s"(1)"x) : s € S,z € 2V},
where ~ denotes concatenation of sequences.

Theorem 1.4.3 (Kechris—Solecki-Todorcevi¢). Let G be a directed analytic graph on
a Polish space. Ezactly one of the following hold:

1. G has countable Borel chromatic number.

2. There is a continuous homomorphism of Gy into G.

The original proofs of all of these dichotomies used techniques of effective descriptive
set theory. In [Mil12], Miller found a classical proof of the Kechris-Solecki-Todorcevié
Theorem, and used this to give a classical proof of Silver’s Theorem and the Glimm-—
Effros dichotomy for countable Borel equivalence relations. Miller also proved a
generalization of the Kechris—Solecki-Todorcevi¢ Theorem, and used this to give a

classical proof of the full Harrington—Kechris—Louveau Theorem.

Since then, it has remained an open question whether there is a proof of the Harrington—
Kechris-Louveau Theorem directly from the Kechris—Solecki-Todor¢evi¢ Theorem. In

Chapter 5, we show that this is indeed the case.

Theorem 1.4.4. There is a proof of the Harrington—Kechris—Louveau Theorem directly

from the Kechris—Solecki—Todorcevié¢ Theorem.

We then give new proofs of a dichotomy of Miller for doubly-indexed sequences
of analytic graphs and show that this dichotomy generalizes to finite-dimensional
hypergraphs but not infinite-dimensional hypergraphs, in contrast to most other
graph-theoretic dichotomies. We also prove that if G is written as a finite union of
Baire measurable graphs, then there is a continuous embedding of Gy into one of these

graphs, without applying the Kechris—Solecki—Todorcevi¢ Theorem.

1.5 Ditzen’s effective version of Nadkarni’s Theorem
An effective version of Nadkarni’s Theorem was proved in Ditzen’s unpublished Ph.D.

thesis. Appendix A contains a streamlined exposition of the proof, and provides
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an alternative proof of the Effective Ergodic Decomposition Theorem for invariant
measures (also originally proved by Ditzen). In addition, we show that the existence of
an invariant Borel probability measure is not effective. We use this example to construct
an effectively Borel non-smooth equivalence relation that does not effectively admit a

compact action realization, giving a concrete witness to [FKSV23, Proposition 4.3.17].
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Chapter 2

DEFINABLE EXPANSIONS ON COUNTABLE GROUPS AND
COUNTABLE BOREL EQUIVALENCE RELATIONS

Michael S. Wolman

2.1 Introduction

A countable Borel equivalence relation (CBER) on a Polish space X is a Borel
equivalence relation £ C X? whose equivalence classes are countable. Given a CBER
E, a (Borel) structuring of E is a Borel assignment of a first-order structure on each

E-class C (see Sections 2.2.5 and 2.3.1 for precise definitions).

In this paper, we are primarily concerned with the descriptive combinatorics of locally
countable structures. Broadly speaking, given a combinatorial problem on countable
structures, we are interested in solving it in a “uniformly Borel” way, possibly after
throwing away a meagre set or a null set. For instance, given a Borel structuring of a
CBER F by countable graphs, we may be interested in characterizing exactly when
one can find a Borel colouring of these graphs with countably many colours, i.e., a
colouring so that the assignment of the colour classes to the vertices in each E-class is
a Borel structuring of E. Other examples of combinatorial problems include finding
proper edge colourings, perfect matchings or spanning trees in graphs, finding infinite
monochromatic sets (as in Ramsey’s Theorem), and extending a given partial order
into a linear order; see Section 2.2.2 for more. We refer the reader to [KKM20; Pik21]
for a survey of results in descriptive combinatorics, and to [CK18; BC24] for more on
the structurability of CBER.

For “locally finite” structures, many of these combinatorial problems can be expressed
in terms of constrain satisfaction or locally checkable labelling problems on graphs.
In this setting, there has been a lot of recent progress towards finding solutions
to various expansion problems, using tools from theoretical computer science and
finite combinatorics such as the Lovasz Local Lemma and connections with LOCAL
algorithms in distributed computing [Ber23; BCGGRV22; GR23]. However, we note
that many problems are not locally finite and hence do not fit within this framework;

for example, linearizations of partial orders, or Ramsey’s Theorem (see e.g. [GX24]).
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Here, we consider these problems in the more general framework of ezpansions. Given
first-order languages £ C L£* and an L-structure A, we call an L*-structure A* an
expansion of A if A = A*[L, where A*[L denotes the reduct of A* to L. If K is a class
of £ structures and K* is a class of L*-structures, the ezpansion problem for (IC,KC*)
is the problem of determining whether every structure in K admits an expansion in
IC*. For a countably infinite set X, let (X)) denote the set of structures in I whose
universe is X, and call I a Borel class of structures if K(X) is Borel for all countably

infinite sets X.

Given an expansion problem (K, *) for which every element of K admits an expansion
to an element of K*, we get a corresponding “uniformly Borel” expansion problem:
For every CBER E and any structuring of E with elements of K, is there a structuring
of E/ with elements of K* which is an expansion of the original structuring on every
FE-class? In general, one can view this Borel expansion problem as asking if there is
a “canonical” assignment of an expansion in K* to every element of IC; this is made

precise in [CK18, arXiv version, Appendix B; BC24].

One can also interpret the Borel expansion problem in terms of definable equivariant
maps. If I" is a group acting on a countably infinite set X and (C, K£*) is an expansion
problem with K, IC* Borel, we may consider the I'-equivariant expansion problem: Is
there a Borel map f : K(X) — K*(X), taking A € K(X) to an expansion f(A),
which is equivariant with respect to the induced action of I' on K(X), £*(X)?

There is a natural correspondence between I'-equivariant expansions for countable
groups I', in the special case where I' acts on X = I' by multiplication on the
left, and CBER which arise via free Borel actions of I" (see Section 2.3.2). By the
Feldman—-Moore Theorem, every CBER is induced by a Borel action of a countable
group, though in general we cannot expect this action to be free [Kec25, Section 11].
Nevertheless, CBER induced by free Borel actions of countable groups are a great
source of (counter-)examples in the study of Borel expansions on CBER (especially
with respect to the Schreier graphs of their actions), and remain very relevant in the

study of the descriptive combinatorics of locally countable structures.

The primary objective of this paper is to study this correspondence between the
Borel expansion problem on CBER and the Borel equivariant expansion for countable
groups I'. More generally, we study also the connection between these problems in the
settings of measure and category, i.e., when we are allowed to solve these problems after
possibly removing a null or meagre set. We shall see that by exploiting this connection,

we can apply results and techniques from the theory of CBER to prove theorems about
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equivariant expansions on countable groups (see e.g. Sections 2.3.4, 2.3.5, and 2.4).
Conversely, we apply tools from symbolic dynamics and probability theory (such as
the mass transport principle and random walks on groups) to the study of equivariant
expansions, which gives in some cases precise characterizations of exactly when certain
structurings of CBER admit definable expansions (c.f. Sections 2.3.3, 2.3.6, and 2.4).

The connection between expansions on CBER and equivariant expansions in the
purely Borel setting has been studied independently in [BC24|, with the goal of
making precise the relation between the existence of Borel expansions on CBER and
“canonical” expansions from K to K*. There, Banerjee and Chen [BC24, Corollary 3.29,
Remark 2.25] show that every Borel structuring of a CBER admits a Borel expansion
if and only if there is a Borel Sy-equivariant expansion map, for classes K of structures
that interpret the theories of Lusin—Novikov functions and countable separating families
(c.f. [BC24, Definitions 3.18, 3.23]). (We note however that the classes we study in
this paper do not interpret these theories.) Expansion problems have also been studied
in the context of invariant random structures on groups, i.e., invariant probability
measures on K(I'), and one can view equivariant expansions as a natural strengthening
of this notion; see e.g. [KKM20, Sections 6, 15] for some examples in graph combinatorics,

or [GLM24; Alp22] for linearizations of partial orders.

Organization. The structure of this paper is as follows. In Section 2.2 we give
precise definitions of expansions on CBER and equivariant expansions on groups for
expansion problems, in the Borel, Baire category, and measurable settings. We also
give examples of various expansion problems of interest, that we study in detail in
Section 2.4.

In Section 2.3, we prove several general theorems relating equivariant expansions on
groups ' with Borel expansions on CBER induced by free Borel actions of I'. We
describe in Section 2.3.2 a weak duality between the two notions, which can be viewed
as an analogue of [BC24, Corollary 3.29] for this setting. We then consider random
expansions for countable groups, where we say an invariant measure v on K*(T') is a
random expansion of an invariant measure p on IC(I") when the reduct of v is equal to
u (c.f. Section 2.2.3). We show that the existence of random expansions on I' depends
only on its orbit equivalence class, where we say groups I', A are orbit equivalent if
there is a CBER E induced by free probability-measure-preserving actions of both I"
and A.

Theorem 2.1.1 (Theorem 2.3.7). Let (K,K*) be an expansion problem and I', A be
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countably infinite groups. If ', A are orbit equivalent, then I' admits random expansions

from IC to KC* if and only if A admits random expansions from K to K*.

We note that this has already been observed in some special cases, for example with
linearizations in [Alp22], though we show here that it holds more generally for all

expansion problems. We also give a sort of converse in Proposition 2.3.8.

Next, we consider generic equivariant expansions on Gy classes of structures, i.e.,
equivariant expansions on comeagre subsets of K(I') (c.f. Section 2.2.3). Given an
expansion problem (I, X*) and a countably infinite group I', we say K admits I'-
equivariant expansions generically if there is a comeagre invariant Borel set X C K(T")
such that there is a Borel I'-equivariant expansion map X — K*(I"). We show that
when K consists of structures with trivial algebraic closure that are not definable
from equality, whether or not K admits I'-equivariant expansions to * generically is
independent of the group I'. (A structure is said to have trivial algebraic closure if its
automorphism group has infinite orbits, even after fixing finitely many points, and is
definable from equality when relations between tuples of points depend only on their

equality types; see Definition 2.3.11 for precise definitions of these terms.)

Theorem 2.1.2 (Theorem 2.3.13). Let (KC,K*) be an expansion problem. Suppose
that IC is G5 and the generic element of IC has trivial algebraic closure and is not

definable from equality. Then the following are equivalent:

1. For every countably infinite group I', IC admits I'-equivariant expansions to KC*

generically.

2. There exists a countably infinite group I' for which K admits T"-equivariant

expansions to K* generically.

A CBER FE is smooth if there is a Borel set that contains exactly one point from
every E-class. We give in Section 2.3.6 sufficient conditions for an expansion problem
to satisfy (a) that every structuring of a smooth CBER admits a Borel expansion
(Proposition 2.3.22 and Remark 2.3.23), or (b) that every non-smooth CBER admits

a structuring with no Borel expansion (Proposition 2.3.25 and Corollary 2.3.26).

In Section 2.4 we analyze in detail the expansion problem for the examples described in
Section 2.2.2, using in particular the tools we developed in Section 2.3. We summarize

our results in Table 2.1; we highlight a few of these below.
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Call a CBER aperiodic if it has only infinite equivalence classes. In [KST99] it is
shown that for every non-smooth aperiodic CBER F, there are Borel sets A, B which
have infinite intersection with every FE-class, but for which there is no Borel bijection

f A — B whose graph is contained in E. By contrast, we have the following:

Theorem 2.1.3 (Generic bijections (Theorem 2.4.3)). Let E be an aperiodic CBER
on X and A, B C X be sets that have infinite intersection with every E-class. Then
there is a comeagre E-invariant set Y C X and a Borel bijection f : ANY — BNY
whose graph is contained in E, i.e., such that xEf(x) for allx € ANY.

The problem of whether an invariant random partial order on a countably infinite
group I' can be linearized was studied in [GLM24; Alp22]. Alpeev [Alp22] has shown
that this random expansion property holds for I' if and only if I" is amenable. By

contrast, for equivariant maps and CBER we have the following:
Theorem 2.1.4 (Linearizations (Theorems 2.4.11 and 2.4.12)).

1. Let K be the class of partial orders and IC* be the class of linear orders extending
a given partial order. For every countably infinite group I', K does not admit

['-equivariant expansions to K* generically.

2. For every non-smooth CBER E, there is a Borel assignment of a partial order
to every E-class so that there is no Borel way of extending these partial orders
to linear orders on every E-class. Moreover, if E is aperiodic then one can
ensure that for every E-invariant probability Borel measure u, there is no Borel

extension of the partial orders to linear orders p-a.e.

A CBER F is treeable if there is a Borel assignment of a connected acyclic graph
to every E-class. The class of treeable CBER has been studied extensively; see e.g.
[Kec25, Section 10]. In Section 2.4.5, we consider CBER E that admit Borel spanning
trees for every Borel assignment of a connected graph to every E-class. Clearly every
such CBER is treeable. We show that the hyperfinite CBER have this property, where
a CBER is said to be hyperfinite if it can be written as an increasing union of CBER

with finite equivalence classes.

Theorem 2.1.5 (Spanning trees (Theorem 2.4.16)). Let E be a CBER. If E is
hyperfinite, then for every Borel assignment of a connected graph to each E-class,

there is a Borel assignment of a spanning tree to each E-class.
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It is unknown whether the class of CBER with this spanning tree property coincides
with the treeable CBER or the hyperfinite CBER, or if it lies somewhere in between.

As a final example, we consider the problem of choosing from a linear order without
endpoints a subset that is order-isomorphic to Z, in a Borel way. We give a complete
classification of the invariant random structures on countably infinite groups that admit
random expansions for this problem, and show moreover that these expansions can
always be taken to come from equivariant Borel maps. In particular, this characterizes
exactly when a Borel structuring of a CBER admits a Borel expansion for this problem

p-a.e., for any invariant measure .
Theorem 2.1.6 (Z-lines (Theorems 2.4.18 and 2.4.20)).

1. Let K be the class of linear orders without endpoints, and K* be the class of linear
orders without endpoints along with a subset of order-type Z.. For any countably
infinite group T, IC does not admit T'-equivariant expansions to K* generically.
In particular, every non-smooth CBER E admits a Borel assignment of linear
orders to every E-class so that there is no Borel way to choose an infinite subset

of each E-class that has order-type Z.

2. There is a Borel I'-invariant set X C KC(I') and a Borel equivariant expansion
map f: X — K*(I') such that, for all invariant random K-structures p on I', p
admits a random expansion to KC* if and only if u(X) = 1, in which case f.u
gives such an expansion. Moreover, we can choose f so that for all L € X, f(L)

picks out an interval in L.

We also give in Section 2.4.7 a survey of recent results regarding the existence of Borel
proper edge colourings of bounded-degree graphs (i.e. definable Vizing’s Theorem),
and in Section 2.4.8 a survey of the current landscape regarding the existence of Borel

perfect matchings in bipartite graphs (i.e. definable Hall’s Theorem).

We end with a list of open problems in Section 2.5.
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2.2 Preliminaries

For a background on general descriptive set theory, see [[Kec95]. For a survey of the
theory of CBER, see [Kec25]. For the basics of structurability of CBER, see [CK18].

2.2.1 Languages and structures
By a language, we will always mean a countable relational first-order language, i.e.,
a countable set £ = {R; :i € I}, where each R; is a relation symbol with associated

arity n; > 1.

Fix now a language £ and let X be a set. An L-structure on X is a tuple
A = (X, R*)ges where RA C X™ for each n-ary relation symbol R € £. We call X

the universe of A, and let Mod,(X) denote the space of L-structures on X.

For A € Modz(X) and Y C X, let A]Y € Mod,(Y) denote the restriction of A
to Y, given by
RAY (g, . yn) <= RAy1, ..., yn)

for all n-ary R € £ and yy,...,y, € Y. For L' C L, we let A[L' = (X, R)per
denote the reduct of A to L', i.e., the structure we get when we “forget” the relations
in £\ £'. (Note that the notation A[(—) is used both for restrictions and reducts;

which one we are referring to throughout this paper will be clear from context.)
If A is an L-structure on X and f : X — Y is a bijection, we write f(A) fo