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I come with empty hands and the desire to unbuild walls

URSULA K. LE GUIN
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ABSTRACT

The 2020s is the decade of survey instruments in astronomy. Radio astronomy is
no exception, with Caltech’s proposed DSA-2000 being the most powerful radio
interferometer in the world, costing much less than competing instruments. Key to
this achievement are two core breakthroughs: a completely ambient-temperature
receiver and a “radio camera” backend that images the sky in real time. DSA-2000
will have record-breaking survey speed and sensitivity, enabled by these two key
breakthroughs, giving astronomers all over the world open access to exquisite all-sky
maps to enable the discovery of billions of new radio sources, precise timing of
pulsars, and localization of fast radio bursts. The array will produce enough data to
keep astronomers busy for a century.

In this thesis, we discuss the development of one of the key breakthroughs, the
ambient-temperature receiver. Specifically, we focus on the design, testing, and
implementation of the wideband, ambient-temperature low noise amplifier. We
cover the design from analytic first principles through precision measurement of its
performance. We follow this with a discussion of the design and implementation of
the analog signal path, including a high performance, RF over fiber link. Finally,
we discuss the Galactic Radio Explorer (GReX) instrument, designed as a global
experiment probing the brightest radio transients in the local universe.



vii

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] K. A. Shila, “Computationally Efficient Design of an LNA Input Matching
Network Using Automatic Differentiation,” IEEE Journal of Microwaves,
May 7, 2025. doi: 10.1109/JMW.2025.3568779,
K.A.S is the sole author, and designed the amplifier, performed the experiments,
and wrote the paper. Minor edits were made to the published version to adapt
to the thesis style.

[2] K. A. Shila, S. Niedbalski, L. Connor, et al., “GReX: An Instrument Overview
and New Upper Limits on the Galactic FRB Population.,” Publications of the
Astronomical Society of the Pacific, 2025, In Review. arXiv: 2504.18680
[astro-ph.HE],
K.A.S is the first author and contributed the engineering details of the paper
and the updated rate analysis. Minor edits were made to the published version
to adapt to the thesis style.

https://doi.org/10.1109/JMW.2025.3568779
https://arxiv.org/abs/2504.18680
https://arxiv.org/abs/2504.18680


viii

TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Published Content and Contributions . . . . . . . . . . . . . . . . . . . . . . vii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Chapter I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Decade for Surveys . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Designing A Survey Instrument . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter II: Optimization of Low Noise Amplifiers . . . . . . . . . . . . . . . 12
2.1 Noise Theory Background . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Noise Circles and Constraint Equations . . . . . . . . . . . . . . . . 14
2.3 Wideband Design Under Constraints . . . . . . . . . . . . . . . . . 25
2.4 Wideband Nonuniform Line Matching . . . . . . . . . . . . . . . . 28

Chapter III: Computationally Efficient Design of an LNA Input Matching
Network Using Automatic Differentiation . . . . . . . . . . . . . . . . . 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter IV: Analog Signal Path Design for DSA-2000 . . . . . . . . . . . . . 57
4.1 RF Over Fiber Link . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 LNA Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter V: GReX: An instrument overview and new upper limits on the
Galactic FRB population . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5 Beam Modelling with Measurements of Galactic HI . . . . . . . . . 106
5.6 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.7 Upper Limit of Bright FRBs . . . . . . . . . . . . . . . . . . . . . . 110
5.8 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . 112

Appendix A: Automatic Differentiation . . . . . . . . . . . . . . . . . . . . . 116
Appendix B: Useful Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.1 Interferometer Survey Speed and Sensitivity . . . . . . . . . . . . . 120



ix

B.2 Intermodulation Products . . . . . . . . . . . . . . . . . . . . . . . 122
Appendix C: GReX Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.1 Telescope Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.2 HI Line Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



x

LIST OF ILLUSTRATIONS

Number Page
1.1 Comparison of radio telescopes at 1.4 GHz in survey speed and

sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 DSA-2000 system noise temperature contributions . . . . . . . . . . 4
1.3 Diagram of a radio interferometer. . . . . . . . . . . . . . . . . . . . 6
1.4 Radio interferometer Fourier pairs. . . . . . . . . . . . . . . . . . . 7
1.5 DSA-2000 Test Array under construction at OVRO . . . . . . . . . . 9
2.1 Equivalent noise representations of ABCD networks. . . . . . . . . . 13
2.2 4F50 𝑆11, 𝑆22, 𝑆21, and ΓOpt from 0.1 GHz to 10 GHz. . . . . . . . . 17
2.3 Diramics 4F50 |ΓA |=0.9 optimum noise solution at 1.5 GHz. . . . . . 18
2.4 Optimum noise figure versus |ΓA | at 1.5 GHz. . . . . . . . . . . . . . 19
2.5 20 dB optimum noise solution at 1.5 GHz. . . . . . . . . . . . . . . . 20
2.6 Series-Series feedback in Z parameters. . . . . . . . . . . . . . . . . 22
2.7 𝜇′ and MSG versus inductive degeneration for the 4F50 at 1.5 GHz. . 23
2.8 𝑆11, 𝑆22, and ΓOpt from 0.1 GHz to 10 GHz and noise optimum ΓS at

1.5 GHz under 1.5 nH source degeneration. . . . . . . . . . . . . . . 25
2.9 MSG vs Degeneration vs Freq . . . . . . . . . . . . . . . . . . . . . 26

2.10 Performance under 0.8 nH degeneration with a 20 dB gain constraint. 27
2.11 Performance under 0.8 nH degeneration with a 18 dB gain constraint. 27
2.12 Optimal impedance profile, noise, and gain for an 80 mm NTL. . . . 30
2.13 Impedance profile, noise, and gain for an 80 mm NTL, 𝜆=0.005. . . . 32
2.14 Impedance profile, noise, and gain for an 100 mm NTL, 𝜆=0.005. . . 32
2.15 Impedance profile, noise, and gain for an 120 mm NTL, 𝜆=0.005. . . 32
3.1 Reflection planes for a typical microwave transistor amplifier, its input

matching network (IMN), and output matching network (OMN). . . . 38
3.2 Experimental verification of runtime speed of gradient computation

for various methods versus NTL discretization. . . . . . . . . . . . . 42
3.3 Cross-section of the suspended stripline with critical dimensions . . . 45
3.4 Schematic of the RF-portion of the LNA . . . . . . . . . . . . . . . 45
3.5 Optimized NTL input matching network. . . . . . . . . . . . . . . . 46
3.6 LN2 cold termination measurement setup. . . . . . . . . . . . . . . . 47
3.7 System schematic of the Y-factor measurement . . . . . . . . . . . . 49



xi

3.8 The assembled amplifier in a machined aluminum enclosure with
terminations and the lid removed. . . . . . . . . . . . . . . . . . . . 50

3.9 Measured (solid) versus simulated (dashed) S parameters. . . . . . . 51
3.10 Measured (solid) versus simulated (dashed) 𝑆21. . . . . . . . . . . . 51
3.11 Measured (solid) and simulated (dashed) noise temperature of this

work (lower trace), prior work [5] (higher trace), and 95% confidence
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 RFoF system diagram . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 RFoF equivalent noise circuit . . . . . . . . . . . . . . . . . . . . . 58
4.3 Diagram of RIN test setup . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Measured RIN of an AGx laser . . . . . . . . . . . . . . . . . . . . 60
4.5 Laser output power vs. laser current and DC photocurrent. . . . . . . 61
4.6 Measured RIN of an AGx laser vs laser output at three frequencies. . 61
4.7 RFoF output-referred current noise . . . . . . . . . . . . . . . . . . 62
4.8 RFoF input-referred current noise . . . . . . . . . . . . . . . . . . . 63
4.9 RFoF link noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10 RFoF link input noise temperature . . . . . . . . . . . . . . . . . . . 67
4.11 Diagram of linearity test setup . . . . . . . . . . . . . . . . . . . . . 68
4.12 RFoF measured OIPn . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.13 Spurious-free dynamic range for the intrinsic RFoF link . . . . . . . 70
4.14 Spurious-free dynamic range for the RFoF link vs laser current . . . . 71
4.15 Linearity metrics for single- and double- isolated lasers . . . . . . . . 72
4.16 Noise temperature for single- and double- isolated lasers . . . . . . . 73
4.17 FTX and FRX PCBs . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.18 Bonded transistor on microcooler and constructed cooled amplifier . 81
4.19 Test setup for cooled amplifier noise measurements . . . . . . . . . . 83
4.20 Measured noise temperature of cooled amplifier . . . . . . . . . . . 83
4.21 Cross-section of an LNA-embedded feed . . . . . . . . . . . . . . . 85
4.22 Comparison of the co-optimized LNA (in a test chassis) and the

previous 50 Ω design . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.23 Simulated noise temperature of co-optimized and original LNA de-

signs given a simulated feed source impedance . . . . . . . . . . . . 86
5.1 Completed FEMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Measured conversion gain of the FEM . . . . . . . . . . . . . . . . . 92
5.3 Inside a GReX box . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 FPGA gateware internals . . . . . . . . . . . . . . . . . . . . . . . . 95



xii

5.5 T0 subtasks and inter-thread communication . . . . . . . . . . . . . . 97
5.6 Detection candidate for an injected burst. . . . . . . . . . . . . . . . 100
5.7 Grafana dashboard monitoring system performance. . . . . . . . . . 100
5.8 Deployed GReX terminals . . . . . . . . . . . . . . . . . . . . . . . 102
5.9 Mercator map with deployed and on-sky GReX stations . . . . . . . 102

5.10 Measured GReX radiated power . . . . . . . . . . . . . . . . . . . . 106
5.11 Stokes I spectra measured using I-LOFAR of GReX radiated power . 106
5.12 Observed data and corresponding simulations of the HI-line . . . . . 108
5.13 System temperature and relative receiver gain . . . . . . . . . . . . . 110
5.14 Posterior distribution of FRB event rate 𝜆 with associated dashed 95%

confidence upper limits. . . . . . . . . . . . . . . . . . . . . . . . . 111
A.1 Computational graph of forward-mode evaluation of 𝑓 (𝑔(𝑥)). . . . . 116
A.2 Computational graph of forward-mode evaluation of 𝑓 (𝑎, 𝑏), with the

tangent seeded on 𝑏. . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.3 Graph of reverse-mode evaluation of 𝑓 (𝑔(𝑥)). . . . . . . . . . . . . . 118
A.4 Graph of reverse-mode evaluation of 𝑓 (𝑎, 𝑏). . . . . . . . . . . . . . 119



xiii

LIST OF TABLES

Number Page
3.1 Runtime Comparison of NTL Optimization Methods . . . . . . . . . 47
3.2 Comparison of Similar Radio Astronomy LNAs . . . . . . . . . . . 53
4.1 Cascade analysis of analog signal path . . . . . . . . . . . . . . . . . 77



1

C h a p t e r 1

INTRODUCTION

1.1 The Decade for Surveys
One would be hard-pressed to find a better time to be working in astronomy than
at this moment. Amazing new instruments are coming online that are pushing the
boundaries of what can be observed, giving astronomers a deluge of data to explore
and new secrets of the universe to unlock. For engineers, every new instrument starts
as a question: “What is possible?” Every year the answer changes as technology
progresses, giving astronomers more compute power, more sensitivity, and lower
costs.

This decade is especially exciting with the deployment of a slew of powerful new
instruments. Specifically, we are seeing an emphasis on survey instruments, mapping
out the sky across the entire EM spectrum. These types of experiments are not
proposal-based where one would request to look at some interesting object, instead
relying on the community at large to explore the data, searching for patterns, outliers,
and really anything interesting. This is well-motivated, as most major discoveries
in astronomy were serendipitous. Having such a large volume of data across
parameter space enables discovery of the unexpected, assuming we are prepared [1].
Additionally, surveys democratize science by enabling everyone to explore the rich
datasets, instead of allowing only a select few whose proposals were accepted to
have access to high-quality data. All this is to say that surveys are a key tool in
modern astronomy and are consistently ranked among the highest priority in science
funding [2].

In the optical, the Vera Rubin Observatory in Chile will soon conduct a massive
all-sky survey [3], with a projected first light in July 2025. The recently launched
SPHEREx satellite [4] has just started its survey. In the radio, the VLA Sky Survey
(VLASS) [5] is ongoing, imaging the whole sky visible to the VLA in New Mexico.
VLASS builds off the success of previous VLA-based surveys1, further improving
sensitivity and resolution. However, while the survey continues to be successful, the
speed at which it images the sky pales in comparison to the other modern surveys.
Rubin images 10 deg2 every 15 s or 2 400 deg2/hr (during the nighttime). SPHEREx
1Which are some of the most scientifically successful experiments that the VLA has performed.
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will survey the entire sky once every six months, or a speed of 5 deg2/hr. VLASS
operates at only about 0.01 deg2/hr, while splitting time between the survey and other
planned observations. Even though VLASS (and previous radio surveys) are very
successful, they are being executed on instruments poorly optimized for surveys.

This is where the Deep Synoptic Array 2000 (DSA-2000) [6] comes in. Rather
than using existing radio telescopes to survey the sky, DSA-2000 is a bespoke
survey instrument to match the scale and cadence of surveys from other wavelengths.
This will result in a massive legacy dataset that will produce enough data to keep
astronomers busy for decades to come.

1.2 Designing A Survey Instrument
In the design of a survey instrument, the key metric is the speed at which we can
create images of the sky. The faster we can make high-sensitivity maps, the faster
we can get these maps in the hands of astronomers to do science. We can quantify
this measure via survey speed, defined as the time required to map one patch of sky
down to some fixed noise level

SS (deg2/hr) ≈ 1.217𝜂𝑎Δ𝜈
[
𝜆𝑆𝜈𝑁𝐷

𝑇Sys

]2
. (1.1)

This equation for the survey speed of reflector-based radio telescope arrays (derived
in Section B.1) depends on the number of antennas 𝑁 , the system noise temperature
𝑇Sys, the diameter of the dishes 𝐷, the aperture efficiency of the dishes 𝜂𝑎, the
observation wavelength 𝜆, the integration bandwidth Δ𝜈, and the desired 1𝜎 flux
density 𝑆𝜈 in Jy. In essence, this metric combines the sensitivity of the instrument
with how much of the sky it can see. One could also just ask about that sensitivity,
given by

𝑆𝜈 (𝜇Jy @ 1 hr) ≈ 1852
𝑇Sys

𝜂𝑎𝐷2𝑁
√︁
Δ𝜈(GHz)

, (1.2)

which gives the RMS noise in 𝜇Jy in one hour of integration. The ideal instrument
would have a minimal noise and a large collecting area, which corresponds to a high
survey speed.

Using these metrics, we can compare the planned DSA-2000 performance against
other planned and deployed instruments. DSA-2000 will be composed of 2000, 5 m
dishes operating at an aperture efficiency of about 0.7, observing from 0.7 GHz to
2 GHz with a system noise temperature of about 25 K. For this comparison, we will
look at DSA-110 [7], ASKAP [8], MeerKAT [9], CHORD [10], VLA [11], and
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Figure 1.1: Comparison of radio telescopes at 1.4 GHz in survey speed and sensitivity.

ngVLA [12], shown in Figure 1.1. From these results, it is clear that the proposed
DSA-2000 will outperform all instruments in this band in survey speed, with only
the ngVLA having higher sensitivity. This is not too surprising as the ngVLA is a
multi-billion dollar project with massive reflectors and cryogenically cooled receivers.
If we quantify the science output of these instruments as proportional to their survey
speed2, and then try to predict science per dollar, we see a very different story.

The construction costs for a radio telescope array can be broken down into two major
chunks: the processing hardware and the antennas themselves. For an 𝑁-antenna
array, the cost of the compute scales with 𝑁2. We will ignore operation cost and
everything else just so we can get a grasp on the design-space. To keep costs low,
it would seem that we would want to keep 𝑁 low, but our survey speed increases
by 𝑁2, so these are certainly at odds. Currently, compute is relatively inexpensive
for the kind of processing we need to do, at least compared to the cost of the
antenna hardware itself. Our current estimates for DSA-2000 put the cost of the
compute (again ignoring power, installation, operations, etc.) at around $20M for
2,000 antennas. The antennas cost about $30k each, for a total of $60M before
trenching, installation, etc. Compare this to ngVLA’s much larger, cryogenically
cooled antennas, which cost about $7M each.
2A somewhat dubious claim, but good enough for this exercise.
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To improve sensitivity, matching the ngVLA, we could add cryogenics to cool
the DSA-2000 receiver to 20 K, which would cost about $100k per antenna [13].
Simulations predict this will reduce our system noise temperature by 7 K to 18 K, as
cooling only impacts the feed and LNA and there are still other sources of noise (the
sky, spillover noise, etc.; see Figure 1.2). If each antenna costs around $30k, adding
cryogenics quadruples the cost, while not even doubling the survey speed.

All of this leads to the conclusion that if you can build high-performance/inexpensive
antennas and receivers, build lots of them! And the key to an inexpensive antenna is
not using cryogenics. As survey speed scales with 𝑇−2

Sys, any reduction in system noise
will dramatically increase the science per dollar of the instrument. The strong impact
of reducing noise then motivates the work in this thesis. Of all the contributions to
𝑇Sys, currently the LNA is the largest (as shown in Figure 1.2), which suggests where
to spend effort to maximize the impact on the science.

Figure 1.2: DSA-2000 system noise temperature contributions. Reproduced from [14]
with permission from J. Flygare.

If it is so obvious to build a large 𝑁 telescope, a reasonable question would be, “why
haven’t people done this before?” To answer this, we need to discuss a bit more about
radio telescope interferometers.

Radio telescopes were initially built using a single, large aperture. A large collecting
area increases sensitivity and resolution, but the cost of building a large reflector
with diameter 𝐷 is ∝ 𝐷2.5−2.7 [15]. Additionally, there are practical upper limits on
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the size of a reflector one could build, with the largest single-dish antenna being the
FAST telescope in China at 500 m in diameter, with a 300 m effective aperture. At a
typical observation frequency of 1.4 GHz, the diffraction-limited resolution of FAST
is 3 arcmin. Compare this with a modest optical observatory such as Keck, with
a 10 m mirror, where they achieve an angular resolution of better than 0.05 arcsec
(assuming a modern, adaptive optics imaging system).

To overcome this resolution shortcoming, the concept of radio interferometry was
developed by Ruby Payne-Scott and Joseph Pawsey in the 1940s. They used the
interference pattern produced by combining radio signals reflecting off the ocean
with an antenna on top of a cliff to pinpoint emission from sunspots. This essentially
provided them with the angular resolution of a telescope the size of the distance from
their antenna to the image of their antenna in the ocean. This concept was further
developed by Martin Ryle and Antony Hewish in the 50s, where they used an array
of antennas and Earth’s rotation to synthesize an equivalent aperture beyond that
provided by just the antenna baselines. This technique is so powerful, it was part of
Ryle and Hewish’s Nobel Prize in Physics in 19743. Modern aperture synthesis uses
a combination of spatially distributed antennas and Earth rotation to synthesize a
single massive telescope. Very long baseline interferometry (VLBI) has receivers all
over the world to synthesize an Earth-sized telescope, used to create the first images
of a black hole [16].

The radio interferometer imaging procedure starts with the coherent combination
of the time-averaged product of signals from pairs of antennas. As the signal from
the sky is essentially incoherent noise, this result is a statistical correlation product
between antennas. There exists a relationship between the collection of all these
correlation products (known as visibilities) and the image of the sky. This relationship
is known as the van Cittert-Zernike theorem4 and states

𝑉 (r1, r2) ≈
∬ ∞

−∞
𝐼 (𝑙, 𝑚)𝑒−2𝜋 𝑗 (𝑢𝑙+𝑣𝑚)𝑑𝑙𝑑𝑚 = F {𝐼 (𝑙, 𝑚)} , (1.3)

where 𝑉 (r1, r2) is the visibility or mutual spatial coherence function given by the
time average product of the received signal (electric field) from the pair of antennas
at two points in space (r1 and r2)

𝑉 (r1, r2) = ⟨𝐸 (r1)𝐸 (r2)∗⟩ , (1.4)
3Which, notably, did not include Jocelyn Bell, who actually discovered the first pulsar to which the
Prize was attributed.

4Using a small angle approximation, which results in the Fourier relationship.



6

and 𝑢 and 𝑣 are the spatial differences between the two points5

r1 − r2 = u = (𝑥1 − 𝑥2, 𝑦1 − 𝑦2) = (𝑢, 𝑣) , (1.5)

and 𝐼 (𝑙, 𝑚) is the intensity distribution (image) of the sky in a direction-cosine
reference frame. All of this is to say that the inverse Fourier transform of the
visibilities gives us the image of the sky.

Figure 1.3: Diagram of a radio interferometer.

A problem then arises from the fact that we have not continuously sampled all the
points in 𝑢 and 𝑣 as we have a discrete number of antennas and therefore a finite
number of visibilities. Not only that, but there is a maximum distance that we
can separate antennas due to cable lengths, land usage, Earth’s diameter, and other
practical considerations. Combining these two shortcomings, we essentially image
the sky through a diffraction-limited, shattered mirror. This imaging procedure is
shown in Figure 1.4 as Fourier pairs, where a sparse sampling of the Fourier-domain
of the true image results in the measured, dirty image. As the dirty image is a distorted
version of the true image, we must attempt to recover the true image algorithmically.
However, due to the sparse sampling of the 𝑢𝑣 plane, this is an ill-posed inverse
problem and does not have a simple solution. Various optimization-based strategies
are used for this, perhaps the most popular being an iterative blind deconvolution
algorithm called CLEAN [18].
5Ignoring changes in height 𝑧, which is something you might want to consider [17]



7
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⊛

(b) Point-Spread Function

=

(c) Dirty Image
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(d) True Visibilities

×

(e) Sampling Function

=

(f) Sampled Visibilities

Figure 1.4: Radio interferometer Fourier pairs.

As we increase the number of antennas and the area they cover, we fill out the 𝑢𝑣
plane more and more, resulting in a better image. In the same manner as survey speed,
this encourages us to build a telescope with bigger 𝑁 . However, the tradition in radio
astronomy is to distribute the raw visibilities as the data product. In sparse arrays
like the Very Large Array, or the Event Horizon Telescope, the scientist performing
the analysis might want full control over how the image is formed from the sparse
data, making their own assumptions on how to interpret them. For DSA-2000, let
us assume we observe 16,000 frequency channels every 10 seconds. If there are
2,000 dual-polarized antennas and each visibility is an 8+8-bit complex number, that
works out to a visibility data rate of 25.6 GB per second. Over a year at this rate,
we would accumulate 0.8 exabytes of data6. The entirety of the Internet Archive7

stores around 100 petabytes of data for real-time, global access at a cost of $2.5M
per month. At our data rate, that totals $300M per year, more than the construction
cost of the array, just in storage! Not only that, but this rate would keep increasing as
we accumulate more and more data as we continue to survey the sky. This cost is
6Or eight times the storage capacity of Data from Star Trek: The Next Generation.
7https://archive.org/

https://archive.org/
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one of the primary reasons why the community has not built large 𝑁 arrays.

But here is the trick; at some point as 𝑁 increases, the 𝑢𝑣 plane becomes complete
enough where a simple inverse Fourier transform of the sampled visibilities results
in a dirty image that requires little to no “cleaning”. Therefore, we could build
a deterministic pipeline to capture images of the sky in real time and store those
images instead of the raw visibilities, saving many orders of magnitude in storage
costs. This is what we call the “Radio Camera” concept and is the enabling feature
of the DSA-2000, breaking the cost curve in storage for large 𝑁 arrays. The low-
pass filtering effect due to the maximum separation of antennas is still in play,
resulting in less sharp final images. This can be improved slightly through standard
image post-processing such as sharpening algorithms or ML-based super resolution
approaches [19].

1.3 Thesis Outline
Given the motivation to build an inexpensive, high-performance receiver, this thesis
covers my work in squeezing out every drop of performance across the analog signal
path for DSA-2000 to maximize sensitivity and survey speed, increasing our science
impact per dollar. The thesis is broken into two major sections: my work on the
DSA-2000 and my work on the Galactic Radio Explorer (GReX), which is a separate,
smaller experiment aimed at finding exceptionally bright fast radio bursts (FRBs).
These are two distinct projects and are presented out of order chronologically, with
DSA-2000 content presented first, representing the bulk of my work. GReX acted
as my introduction to the field of radio astronomy, starting early in my degree at
Caltech. It was intended to be a pathfinder instrument for DSA-2000, but changed in
scope as the project progressed.

The novel contributions of this thesis are:

• Development of an ambient-temperature low noise amplifier matching network
using advanced algorithmic techniques (DSA-2000)

• Experiments with feed impedance to LNA noise matching and chip-scale
Peltier micro-cooling (DSA-2000)

• Development of a low-cost, rapidly deployable radio telescope (GReX)

We start in Chapter 2 with an overview of analytic formalisms surrounding low noise
amplifier design and optimization. Having a collection of closed-form results that
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encompass the various performance metrics for an LNA are required for designing
an optimization framework. Chapter 3 is a reproduction of a published article that
discusses the design of an improved room-temperature low noise amplifier for the
DSA-2000, using the formalisms built in the previous chapter, and is my primary
contribution. Chapter 4 discusses the complete analog signal path for DSA-2000,
including the analysis, design, and implementation of a high-performance RF over
fiber link and further enhancements to the LNA such as solid-state cooling and
antenna impedance co-optimization. We finish with Chapter 5, a reproduction of an
article that describes the GReX instrument and new upper limits on galactic FRB
populations.

Figure 1.5: DSA-2000 Test Array under construction at OVRO
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C h a p t e r 2

OPTIMIZATION OF LOW NOISE AMPLIFIERS

In this chapter, we discuss the analytic formalisms around the design of low noise
amplifiers and applications in optimization-based design. Too often, engineers
quickly reach for the optimizer in the circuit simulator to achieve some desired
result. Without a sense of fundamental limits and a grasp on the trade-space, this
quickly leads to frustration when desired goals are not met. All the trade-offs that
we make when designing amplifiers are sourced from analytic expressions. To
design for a given point in the trade-space, we typically need to solve a nonlinear,
constrained optimization problem. For many of these problems, the objective function
is surprisingly convex1, with some having an exact, analytic solution. We use these
solutions along with appropriate numerical optimization to quickly visualize the
design space for a given device and make informed decisions during amplifier design.
This analytic background then provides motivation and bounds for building more
complex amplifier optimization problems.

2.1 Noise Theory Background
No discussion around LNAs would be complete without an overview of noise in
microwave circuits. Rather than give full derivations, which can be found in many
excellent textbooks, we will focus on the important results.

Sources of Noise
Johnson-Nyquist noise [1] describes that a resistor at physical temperature𝑇 produces
a noise power proportional to its temperature due to the physical agitation of carriers
inside the conductor. For temperature 𝑇 and Boltzmann’s constant 𝑘𝐵, the power
spectral density of the noisy resistor is

𝑆Nyquist (𝑊/Hz) = 𝑘𝐵𝑇 . (2.1)

This noise power is approximately white, with the power spectral density falling off
at high frequencies following Planck’s law. The approximation that 𝑆Planck ≈ 𝑆Nyquist

is adequate up through terahertz frequencies at room temperature. This noise is
1Where there is exactly one local minimum, versus non-convex optimization where finding the global
minimum is generally NP-Hard.
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present in all electronics and can be the limiting factor for sensitivity at microwave
frequencies. As all sources of thermal noise are uncorrelated, there is little we can
do to reduce it apart from physical cooling, motivating the use of cryogenics in
applications such as radio telescopes and quantum computers.

Shot noise, described by Schottky in 1918 [2], arises from random fluctuations in
electric current due to the discretization of charge. In DC conditions, if one were to
observe each carrier individually pass through a conductor, the exact arrival time
of the next carrier is uncertain and follows a Poissonian process. The fluctuation
in the count of carriers per unit time over the average velocity of the carriers is the
shot noise. This process is also white, and given a current of 𝐼 and electron charge 𝑞,
shot noise has a power spectral density of

𝑆Shot (𝐴2/Hz) = 2𝑞𝐼 . (2.2)

Other sources of noise include 1/ 𝑓 noise, which combines many mechanisms with a
1/ 𝑓 power spectral density, and quantum noise, which describes the minimum noise
from a physical linear amplifier. For microwave circuits, these sources of noise are
usually dwarfed by thermal and shot noise. The one exception is for oscillators, as
upconversion of 1/ 𝑓 noise can result in phase noise in microwave circuits.

Noise in Two Port Networks

+

−
Port 1

+

−
Port 2Noisy

ABCD
𝑖2𝑛

𝑣2
𝑛

+

−
Port 1

+

−
Port 2Noiseless

ABCD

Figure 2.1: Equivalent noise representations of ABCD networks.

Given a linear two-port network with a collection of internal noise generators, Rothe
and Dahlke [3] show us that we can represent this circuit as a noiseless two-port
network with external, correlated noise generators. Figure 2.1 shows the equivalent
circuits in an ABCD (cascade) network form, with the noise current and voltage
sources at the input. These sources are correlated by some complex correlation
coefficient, 𝜌. Given the magnitude of these noise sources and the correlation
coefficient, one can draw a few conclusions about the behavior under varied source
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(Port 1) terminations. For example, if the sources were perfectly correlated, we could
present a source admittance 𝑌𝑆 that will generate a noise voltage from 𝑖𝑛 to perfectly
destructively interfere with 𝑣𝑛, resulting in zero noise. As we have seen earlier, there
are many uncorrelated noise processes in real circuits, so in reality this correlation in
the input-referred noise generators is some nonzero, less than unity quantity. The
relationship between 𝑌𝑆 and the resulting noise implies that there exists a source
impedance that minimizes the input-referred noise.

The noise dependence on the source admittance is the primary result that enables the
development of low noise microwave amplifiers. Just as we can design matching
networks to power match devices, we can design matching networks to present the
optimal source impedance that minimizes noise.

2.2 Noise Circles and Constraint Equations
The noise figure of a two-port amplifier [4] is

𝐹 = 𝐹Min +
4𝑟𝑛 |ΓS − ΓOpt |2

(1 − |ΓS |2) |1 + ΓOpt |2
, (2.3)

where 𝐹Min is the minimum achievable noise temperature, 𝑟𝑛 is the so-called noise
equivalent resistance representing how quickly the noise changes as ΓS moves from
ΓOpt, normalized to the characteristic impedance 𝑍0, ΓOpt is the source reflection
coefficient that achieves 𝐹Min, and ΓS is the source reflection coefficient. These three
numbers, 𝐹Min, 𝑟𝑛, and ΓOpt, form the noise parameters of an amplifier and fully
characterize the noise behavior of the device under any source impedance condition.
These three numbers can be computed from the noise generators in Figure 2.1, 𝑣2

𝑛, 𝑖2𝑛,
and their correlation 𝜌.

If we were to attempt to solve Equation 2.3 for ΓS such that we achieve a desired
noise figure 𝐹, we start by separating the ΓS components from the rest of the equation

|ΓS − ΓOpt |2
1 − |ΓS |2

=
𝐹 − 𝐹Min

4𝑟𝑛
|1 + ΓOpt |2 . (2.4)

As the right side of this equation is constant, we write

𝑁 =
Δ𝐹
4𝑟𝑛
|1 + ΓOpt |2 , (2.5)

where Δ𝐹 is the desired noise penalty (in noise figure) from 𝐹Min. The solution to
this in ΓS is a circle on the complex plane with center

𝐶𝐹 =
ΓOpt

1 + 𝑁 (2.6)
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and radius

𝑅𝐹 =

√︁
𝑁2 + 𝑁 (1 − |ΓOpt |2)

1 + 𝑁 . (2.7)

So, for a given set of noise parameters and desired noise (greater than or equal to the
device’s minimum noise), we draw a circle on the Smith chart of equal noise. If we
were to design a matching network to build an amplifier for this noise, we have an
infinite number of impedances to choose from.

As engineering is all about tradeoffs, we need to start introducing additional constraints
apart from noise. If we did not, one would rightly ask, "Why not simply match to
ΓOpt?" Primarily, the answer to this arises from the unfortunate reality that ΓOpt is
distinct from the conjugate input reflection coefficient of the device, Γ∗In. This implies
that as you attempt to match a device for optimum noise, you do not optimally deliver
power to it. In other words, the optimum noise impedance has a reflection or gain
penalty.

In system design, these various performance metrics describe the trade-space. One
can pick high gain or low reflection, but have bad noise performance, or vice versa.
As Friis tells us in the cascaded noise equation [5]

𝐹Total = 𝐹1 + 𝐹2 − 1
𝐺𝐴1

+ 𝐹3 − 1
𝐺𝐴1𝐺𝐴2

· · · + 𝐹𝑁 − 1∏𝑁−1
𝑖=1 𝐺𝐴𝑖

, (2.8)

where 𝐺𝐴𝑖 is the available gain of the ith amplifier, we must maximize the gain of
the early stages to reduce the noise impact of noise contributors further down the
signal chain. Again, part of the system design work is evaluating all these tradeoffs.

Traditionally, the exploration into these tradeoffs is rather brute-force. However,
a more disciplined approach can be taken. We can formulate exact solutions for
optimum noise under constraints, allowing us to explore theoretical limits given a
device’s intrinsic behavior and informing engineering decisions made in design.

Optimum Noise Under Constraints
Suppose we want to design an LNA with a given reflection coefficient or equivalent
voltage standing wave ratio (VSWR). The amplifier we want will have minimum
noise, with VSWR being less than or equal to some limit. Given that

VSWR =
1 + |ΓA |
1 − |ΓA | (2.9)

and
|ΓA | =

���� ΓIn − Γ∗S
1 − ΓInΓS

���� , (2.10)
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where
ΓIn = 𝑆11 + 𝑆12𝑆21ΓL

1 − 𝑆22ΓL
, (2.11)

we write this problem as a mathematical minimization equation via

minimize
ΓS

𝐹 (ΓS)

subject to |ΓA | ≤ |ΓA |Max .

(2.12)

As written, this is a constrained, nonlinear optimization problem. These types of
problems are characteristically difficult to solve and are usually non-convex. In this
case, however, there is an exact solution.

In the previous section, we mentioned that constant noise induces circles in the ΓS

plane. The same is true for constant VSWR. For a given |ΓA |, we draw the circle
with center

𝐶𝑉 =
Γ∗In(1 − |ΓA |2)
1 − |ΓAΓIn |2

(2.13)

and radius

𝑅𝑉 =

��|ΓA | |1 − |ΓIn |2
����1 − |ΓAΓIn |2

�� . (2.14)

Points inside this circle have strictly lower reflection, so we know a solution to
Equation 2.12 must lie on this circle or inside it. If we consider the case where ΓOpt

is not inside the constant VSWR circle, we fully constrain the optimum solution to
lie on this circle. This is where we apply the noise circle formalism from before. As
the radius of this circle scales with Δ𝐹, we want to find the noise circle that just
touches the constant VSWR circle. We know this will have a solution, as we can keep
increasing the radius until it touches the VSWR circle. We also know that this will
have exactly one solution, as any further intersections would arise from a larger circle
with higher noise. This is the geometric intuition for the convexity of Equation 2.12.

Expressing this condition mathematically, we state

𝑅 + 𝑅𝐹 = |𝐶 − 𝐶𝐹 | , (2.15)

or the sum of the two circles’ radii equal the Euclidean distance between the centers
of the two circles, given an arbitrary circle with center 𝐶 and radius 𝑅 and the noise
circle stated above. Solving this relation for 𝑁 (Equation 2.5) gives the quadratic
result following [6]

𝑁 =
−𝐵 ±

√
𝐵2 − 4𝐴𝐶
2𝐴

, (2.16)
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where

𝑐1 = |𝐶 |2 − 𝑅2 − 1

𝑐2 = |ΓOpt − 𝐶 |2 − 𝑅2

𝐴 = 𝑐2
1 − 4𝑅2

𝐵 = 2𝑐1𝑐2 + 4𝑅( |ΓOpt |2 − 1)
𝐶 = 𝑐2

2

We then take this result and substitute it in to Equation 2.5 to solve for Δ𝐹. To
disambiguate between the two solutions, we apply the constraint that 𝑁 must be
positive, and if both solutions are positive, we take the smaller of the two. From here,
we immediately compute a minimum theoretical noise under a VSWR constraint.

Worked Examples
To showcase these results, we investigate the 400 nm x 200 µm gate, four-finger
(4F50) transistor from Diramics [7] at a bias of 𝑉𝑑=0.5 V, 𝐼𝑑=16 mA, using the
vendor-supplied model. This transistor is an exceptionally high-performance device
with very low noise, even at room temperature, and has been used in previous LNAs
such as [8], [9]. We start by considering only the device’s S and noise parameters,
with no further circuitry. Some of these metrics are shown in Figure 2.2. This allows
us to set the stage for input/output matching and feedback.
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Figure 2.2: 4F50 𝑆11, 𝑆22, 𝑆21, and ΓOpt from 0.1 GHz to 10 GHz.

We start by analyzing this device at a single frequency point, 1.5 GHz. If we wanted
the optimum ΓS for this device under the constraint that |ΓA | ≤ 0.9, we find Δ𝐹 of
0.012 or an 𝐹 of 1.038 or 11.1 K of noise temperature. Using this result, we compute
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the center and radii of the two circles. Then, with both centers and either radius, we
compute their osculation point using simple geometry

ΓS =


𝐶𝐹 − 𝑅𝐹 𝐶−𝐶𝐹

|𝐶−𝐶𝐹 | , if |𝐶 − 𝐶𝐹 | ≤ 𝑅 and 𝑅𝐹 ≤ 𝑅
𝐶𝐹 + 𝑅𝐹 𝐶−𝐶𝐹

|𝐶−𝐶𝐹 | , otherwise
. (2.17)

Plotted on the Smith chart in Figure 2.3, we observe the result is as expected, with
the intersection of the two circles giving the optimum Γ𝑆.
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Figure 2.3: Diramics 4F50 |ΓA |=0.9 optimum noise solution at 1.5 GHz.

We now begin to explore some useful results. First, we compute the achievable
noise given a range of VSWR constraints to quickly analyze the tradeoff between the
two. In Figure 2.4, we plot the achievable noise temperature in K under a reflection
constraint sweeping |ΓA | from 0.1 to 0.95. A value for |ΓA | higher than 0.95 places
ΓOpt inside the VSWR circle, implying that for any constraint higher than 0.95 we
would pick ΓS = ΓOpt and our noise would be 𝐹Min. This result alone tells us that
we will have to make considerable sacrifices in reflection to achieve good noise
performance.

It is important to note that the Equation 2.16 solution is agnostic to the constraining
circle. Instead of VSWR, we could use a different circle such as constant gain instead.
Specifically, we look at circles of constant available gain, as those are drawn on the
ΓS plane as is noise.
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Figure 2.4: Optimum noise figure versus |ΓA | at 1.5 GHz.

Available gain is defined as

𝐺𝐴 =
𝑃AVN
𝑃AVS

=
Power available from the network
Power available from the source

, (2.18)

where
𝐺𝐴 =

1 − |ΓS |2
|1 − 𝑆11ΓS |2

|𝑆21 |2
1 − |ΓOut |2

(2.19)

and
ΓOut = 𝑆22 + 𝑆12𝑆21ΓS

1 − 𝑆11ΓS
. (2.20)

This function is only parameterized by ΓS and the device characteristics, operating
under the assumption that the output is conjugate-matched. In the same manner as
ΓA and noise, we solve for the values of ΓS that result in the same available gain. If
we define a normalized desired gain of

𝑔𝑎 =
𝐺𝑎

|𝑆21 |2
, (2.21)

the center and radius of the circles for constant 𝑔𝑎 are

𝐶𝑎 =
𝑔𝑎

(
𝑆∗11 − 𝑆22Δ∗

)
1 + 𝑔𝑎

(
|𝑆11 |2 − |Δ|2

) (2.22)

and

𝑅𝑎 =

√︃
1 − 𝑔𝑎

(
1 − |𝑆11 |2 − |𝑆22 |2 + |Δ|2

) + 𝑔2
𝑎 |𝑆12𝑆21 |2

1 + 𝑔𝑎
(
|𝑆11 |2 − |Δ|2

) , (2.23)

where

Δ = 𝑆11𝑆22 − 𝑆12𝑆21 .
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Looking back at Figure 2.2, at 1.5 GHz, we achieve a maximum stable gain (MSG)
of about 25 dB and an 𝑆21 (gain under 50 Ω conditions) of about 20 dB where

𝑀𝑆𝐺 =
|𝑆21 |
|𝑆12 | . (2.24)

If we draw the circle of constant available gain of 20 dB (which intersects the center
of the Smith chart, as it is the value of 𝑆21) and the intersecting minimum noise
circle, we find the result shown in Figure 2.5. Notably, ΓOpt is inside the constant
gain circle, implying that ΓOpt results in a higher gain than the chosen value. While
usually we would want more gain, we will proceed with the 𝐺𝐴 =20 dB solution for
illustrative purposes.
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Figure 2.5: 20 dB optimum noise solution at 1.5 GHz.

Observing the relative positions of 𝑆∗11 and the VSWR circles from Figure 2.3, this
ΓS solution will have suboptimal VSWR. To be more precise, we can substitute this
ΓS into Equation 2.10 and find that the |ΓA | for this solution is 0.986 with a noise
temperature of 13.2 K. From the other perspective, if we took the ΓS solution from
Figure 2.3 with a |ΓA | = 0.9, we find that the available gain using Equation 2.19 has
a high negative value, indicating this solution is unstable! If we use the unilateral
approximation where 𝑆12 = 0, we find that the available gain for the ΓS solution under
the |ΓA | = 0.9 constraint is 28 dB, 2 dB over the maximum stable gain. In fact, if we
compute ΓOut for this same ΓS, we find a magnitude greater than unity, indicating
oscillation.
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Stability and Degeneration
Up to this point, we have failed to mention the impact of stability on the computed
results. As we intend to design an amplifier and not an oscillator, it is imperative
that the magnitudes of our reflection coefficients are less than unity. For a single
gain element (transistor), we use Rowlett’s [10] stability factor, K, to determine if the
amplifier is stable.

𝐾 =
1 − |𝑆11 |2 − |𝑆22 |2 + |Δ|2

2|𝑆12𝑆21 | . (2.25)

When K is greater than unity and the magnitude of the determinant of the S matrix
|Δ| is less than unity, the amplifier is unconditionally stable. This considers potential
matching on both the source and load side of the device.

While stability is critical, we can be a bit more lax than “unconditional” stability.
To expand on this, stability of every impedance over the load plane is not strictly
required, as we will know precisely what the ΓL value will be (assuming we are
conjugate matching). On the input, we have a bit more to consider. As shown earlier,
we have a range of impedances that represent various trade-offs. To make sure we
are correctly comparing performance between options, those ΓS solutions must be
stable. Additionally, we have been operating under the assumption that this LNA
will be attached to a 50 Ω source, which is not quite true. If the amplifier we are
designing were a consumer product, we would have no idea what source impedance
the customer might try to attach it to. For us in astronomy, the impedance of the feed
antenna is typically designed to be close to 50 Ω, but will degrade out of band. We
need to ensure that over the frequency range that the amplifier has gain (up to tens
of GHz for this high 𝑓𝑡 Diramics device), the presented source impedance does not
cause the amplifier to oscillate.

Instead of evaluating unconditional stability, we focus on the magnitude of the S
parameters and the geometric stability factors [11]. Specifically, we compute 𝜇′,
which represents the distance from the center of the Smith chart to the source-plane
stability circle (the boundary of the impedance region that pushes the device into
instability). If this quantity is greater than unity, no impedance in the source plane
will cause the amplifier to oscillate.

𝜇′ =
1 − |𝑆22 |2

|𝑆11 − 𝑆∗22Δ| + |𝑆21𝑆12 | (2.26)

There are many ways one could stabilize a potentially unstable amplifier. Unfortu-
nately, most of these methods degrade the amplifier’s noise. An alternative strategy is
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to use the common technique of inductive degeneration [12]. For the common-source
amplifier we are investigating, this degeneration is realized as an inductor in series
with the source terminal. In implementation, this could be a transmission line, a
bond wire, or a lumped component.

To begin evaluating the performance of the degenerated device, we compute the
modified S parameters of the transistor under degeneration. The series-series
feedback of the inductor attached to the source terminal is equivalent to the sum of
the networks’ Z parameters, shown in Figure 2.6.

Z1

𝑖1 𝑖2

Z2 𝑖2𝑖1

+

−

𝑣1

+

−

𝑣2

Figure 2.6: Series-Series feedback in Z parameters.

Converting the S parameters to Z parameters with

Z =
𝑍0
Δ𝑠

[
(1 + 𝑆11) (1 − 𝑆22) + 𝑆12𝑆21 2𝑆12

2𝑆21 (1 − 𝑆11) (1 + 𝑆22) + 𝑆12𝑆21

]
, (2.27)

where
Δ𝑠 = (1 − 𝑆11) (1 − 𝑆22) − 𝑆12𝑆21

and

S =
1
Δ𝑧

[
(𝑍11 − 𝑍0) (𝑍22 + 𝑍0) + 𝑍12𝑍21 2𝑍0𝑍12

2𝑍0𝑍21 (𝑍11 + 𝑍0) (𝑍22 − 𝑍0) − 𝑍12𝑍21

]
,

(2.28)
where

Δ𝑧 = (𝑍11 + 𝑍0) (𝑍22 + 𝑍0) − 𝑍12𝑍21 ,

we take the transistor’s S parameters, convert to Z parameters, add the Z parameters
of the impedance of the feedback (𝑍𝐽2 where 𝐽2 is the 2x2 unit-matrix), and convert
back to S parameters to evaluate the new S parameters and derived stability. The S
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parameters of this construction are

SDegen =
1

𝑍 (𝑆11 + 𝑆12 + 𝑆21 + 𝑆22) − 2𝑍0

([
Δ𝐴 Δ𝐵
Δ𝐵 Δ𝐴

]
+ 2𝑍0S

)
, (2.29)

where

Δ𝐴 = Δ + 𝑆12 + 𝑆21 − 1

Δ𝐵 = −Δ + 𝑆11 + 𝑆22 − 1 .

We could attempt to substitute Equation 2.29 into Equation 2.26 and solve for the
L that forces 𝜇′ to unity, but we are unfortunately not guaranteed a solution. An
alternative approach is to plot 𝜇′ across a range of inductances to explore their
relationship. However, the maximum gain of the modified amplifier also changes
with degeneration, as expected for an amplifier under feedback. These two metrics
are plotted versus the degeneration inductance in Figure 2.7.
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Figure 2.7: 𝜇′ and MSG versus inductive degeneration for the 4F50 at 1.5 GHz.

From these results, we determine that to achieve an MSG of 20 dB, we can apply at
most 1.5 nH of degeneration. The 𝜇′ metric is the distance of the source stability
circle from the center of the Smith chart, so we compare this value with the magnitude
of the desired ΓS to evaluate conditional stability. 1.5 nH is a reasonable value for the
degeneration inductor, as we will be wire bonding the source pad of the die transistor,
and the rule of thumb is about 1 nH of inductance per 1 mm of bond wire length.

Next, we must evaluate the effect of degeneration on the noise parameters. Starting
from the Hartmann and Strutt result [13] which describes the changes in noise
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parameters under feedback, we compute the “noise parameter transformation matrix”
as

𝑛 =
1
Δ𝑛

[
Δ𝑛 𝑍0𝑍 (Δ + 𝑆22 − 𝑆11 + 2𝑆21 − 1)
0 2𝑆21𝑍0

]
, (2.30)

where
Δ𝑛 = 𝑍 (𝑆11 − 1) (𝑆22 − 1) + 𝑆21(2𝑍0 − 𝑆12𝑍)

under the assumption of series feedback, as is the case for the degeneration inductance
as shown earlier. From here, we use the relations

𝑅′𝑛 = 𝑅𝑛 |𝑛11 + 𝑛12𝑌Corr |2 + 𝐺𝑛 |𝑛12 |2 (2.31)

𝐺′𝑛 =
𝐺𝑛𝑅𝑛 |𝑛11𝑛22 − 𝑛12𝑛21 |2

𝑅′𝑛
(2.32)

𝑌 ′Corr =
𝑅𝑛 (𝑛21 + 𝑛22𝑌Corr) (𝑛∗11 + 𝑛∗12𝑌

∗
Corr) + 𝐺𝑛𝑛22𝑛

∗
12

𝑅′𝑛
, (2.33)

where 𝑅𝑛 is the noise resistance, 𝐺𝑛 is the noise conductance, and 𝑌Corr = 𝐺Corr +
𝑗𝐵Corr is the correlation admittance, with the noise figure equation here being
expressed as

𝐹 = 1 + 𝐺𝑛

𝐺𝑠
+ 𝑅𝑛
𝐺𝑠
|𝑌𝑆 − 𝑌Corr |2 , (2.34)

with 𝑌𝑆 = 𝐺𝑆 + 𝑗𝐵𝑆 being the source admittance. This equation for the noise figure
uses different noise parameters than those in Equation 2.3, and we convert between
the two using results from [14] with

𝑌Opt =

√︄
𝐺𝑁

𝑅𝑁
+ 𝐺2

Corr − 𝑗𝐵Corr (2.35)

𝐹Min = 1 + 2𝑅𝑁 (𝐺Corr + 𝐺Opt) , (2.36)

and

𝑌Corr =
𝐹Min − 1

2𝑅𝑁
− 𝐺Opt − 𝑗𝐵Opt (2.37)

𝐺𝑁 = 𝑅𝑁 (𝐺2
Opt − 𝐺2

Corr) . (2.38)

Using this result, we recompute the noise behavior of the degenerated device. Given
a small degeneration inductance, the resulting noise parameters do not change much.
[13] gives an approximation that under the conditions

𝐿Degen ≪ 1
𝜔

���� 2𝑆21𝑍0
(1 − 𝑆11) (1 − 𝑆22) − 𝑆12𝑆21

���� (2.39)
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and
Re{𝑛12} ≪ 𝑅𝑛 Re{𝑌Corr}

𝑅𝑛 |𝑌Corr |2 + 𝐺𝑛
, (2.40)

the noise parameters are unchanged. As we cannot make this assumption in general,
we will always recompute the noise parameters in our analysis. The degenerated S
parameters and ΓOpt are shown in Figure 2.8 along with the optimum noise ΓS under
a 20 dB gain constraint, similar to Figure 2.5.
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Figure 2.8: 𝑆11, 𝑆22, and ΓOpt from 0.1 GHz to 10 GHz and noise optimum ΓS at
1.5 GHz under 1.5 nH source degeneration.

While the Γ𝑆 result appears similar to Figure 2.3, the degenerated solution achieves
a noise temperature of 9.56 K with a |ΓA | of only 0.195, or an |𝑆11 |2 of −14.2 dB,
which is excellent for an LNA. Compare this with the Figure 2.3 solution, which had
a noise of 11.1 K and |𝑆11 |2 of −0.45 dB, while also being unstable. The degenerated
performance is an improvement as ΓOpt and 𝑆∗11 have shifted closer together, at the
expense of maximum stable gain.

If this were a single-frequency LNA, we could design a simple matching network to
conjugate-match the output and provide the ΓS solved here at the input. Much to the
chagrin of the RF engineer, customers and scientists demand bandwidth. Next, we
explore how these design techniques apply to wideband design.

2.3 Wideband Design Under Constraints
Using the techniques established thus far, we move to evaluate the wideband behavior
of the transistor under investigation. To do so, we solve either the VSWR or gain
constrained problem, and plot the resulting noise, gain, and 𝑆11 versus frequency.
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For this section, we focus on the same device and bias point, over the 0.7 GHz to
2 GHz range, matching the target band for the DSA-2000.

We begin by choosing a desired gain constraint of 𝐺𝐴=20 dB. Given the previous
analyses, this should be a good compromise between maximizing gain and minimizing
noise. We then evaluate MSG over frequency and degeneration inductance to find
the maximum degeneration value that allows for an MSG greater than our desired
𝐺𝐴 across the band. We are maximizing degeneration to result in a maximally stable
amplifier. The plot of MSG versus frequency and degeneration is shown in Figure 2.9.
From this result, we observe that to achieve 20 dB of gain over our entire frequency
range, we need an inductance of 0.8 nH, less than our 1.5 nH result from before.
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Figure 2.9: MSG vs Degeneration vs Freq and 20 dB contour.

With this degeneration value, we solve for the optimum noise ΓS under a 𝐺𝐴=20 dB
constraint, and compute the remaining parameters such as the input and output return
loss and noise.

In Figure 2.10, we see that from 0.7 GHz to 1.75 GHz, we achieve higher gain than
the requested value, with ΓS taking on the value of ΓOpt. After 1.75 GHz, however,
we sacrifice noise to maintain our gain requirement. Additionally, we observe that
the input return loss (IRL) and output return loss (ORL) are reasonable, notably
positive (in loss) indicating this implementation is stable, as we expect from the
MSG curve. However, at 2 GHz we are at the limit of stable gain under the gain
matching condition where 𝐺𝐴 = MSG. This may imply that small perturbations in
the design will cause it to oscillate. To build a more robust amplifier, we will want
additional margin. Furthermore, the noise gets significantly worse past 1.75 GHz.
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Figure 2.10: Performance under 0.8 nH degeneration with a 20 dB gain constraint.
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Figure 2.11: Performance under 0.8 nH degeneration with a 18 dB gain constraint.

With the same degeneration value, we then evaluate at a reduced gain constraint
of 18 dB. Shown in Figure 2.11, we see that we are meeting our gain requirement
across the whole frequency range, implying the optimum ΓS is simply ΓOpt.

For a radio telescope interferometer, we are usually not particularly interested in the
return loss, rather gain and noise. Minimizing noise gives the telescope sensitivity,
while gain reduces the impact of the noise generators after the LNA. Poor return
loss would result in passband ripple, the effects of which are usually calibrated out.
However, in some extreme cases such as 21 cm cosmology, these effects need to be
carefully controlled [15]. We could evaluate the noise performance under return loss
constraints, but we would see similar results to those shown under gain constraints.
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As such, we move our attention to the implementation of the network that performs
the match to ΓOpt.

2.4 Wideband Nonuniform Line Matching
From the result in Figure 2.11, we know now we want to create a matching network
directly for ΓOpt, under 0.8 nH of inductive source degeneration. Unfortunately, there
is not an analytic way to design a matching network for an arbitrary impedance
response with frequency. There are many optimization approaches in the literature,
perhaps the most popular being the “Real Frequency Technique” (RFT) [16], [17].
In RFT, coefficients for a Laplace-domain polynomial are optimized, minimizing
an error function between desired and modelled behavior in the least-squares sense.
Solving for these polynomials involves iterative root-finding, on top of the normal
iterative gradient-descent optimization. After we have found the optimum 𝑁th order
polynomial, we still need to perform a synthesis step where we transform the result
into lumped or distributed components. Unfortunately, there is no guarantee during
optimization that the resulting implementation is physical. Additionally, the multistep
iteration and finite-difference approximation of the gradient is slow and imprecise.

If we happened to know the topology of the matching network a priori, we could
attempt to directly optimize it using the same least-squares approach. For the case of
this amplifier we are attempting to design, there are very few matching topologies
which would be acceptable. This primarily comes from the fact that 𝐹Min is very
small, so any discrete components will be too lossy and significantly impact our
noise. So, we are left with transmission line matching, either as cascaded stubs,
cascaded steps, or some combination of the two. One of the more interesting
topologies to investigate is the nonuniform transmission line (NTL). These lines
vary their impedance continuously as a function of position. NTLs have been widely
studied in matching contexts, even for complex loads [18]. As NTLs are still just
transmission lines, our matching network loss is driven by the attenuation constant
of the implementation, which can be very low, resulting in an exceptionally low-loss
match.

Here, we attempt to use NTLs to match to ΓOpt over our wide bandwidth, formulated as
a least-squares problem against ΓS. The difficulty in this approach is parameterizing
the NTL in a simple way that allows us to compute ΓS. A common tactic is to
discretize the line into many uniform sections and cascade their scattering behavior.
With many sections, this yields a good approximation to the smooth transmission
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line.

In optimization, we use a gradient-descent approach, which will require the derivative
of our cost function with respect to every input variable. We parameterize the NTL
by 𝑁 lines of characteristic impedance 𝑍𝑖, each with constant length of 𝛿𝐿 across 𝑀
distinct frequencies 𝜈 and source reflection coefficient (before the input matching
network) of ΓS, and write our cost function as

𝐸 =
1
𝑀

𝑀∑︁
𝑖=1

������ΓOut
©­«
𝑁∏
𝑗=1

𝐴(𝑍 𝑗 , 𝛿𝐿, 𝜈𝑖), Γ𝑆ª®¬ − ΓOpt𝑖

������
2

, (2.41)

where the final ABCD parameters are converted to S parameters using the standard
transformations [5]. As all the expressions thus far are analytic, the gradient for
𝛿𝐸/𝛿𝑍 𝑗 has an analytic form. As 𝑁 increases, however, this expression will have
exponentially more terms. One could use the finite-difference method to compute
this derivative, but this is inefficient and imprecise. Instead, we will make use of
automatic differentiation to compute the exact gradients. Doing so has significant
performance implications, which will be discussed in Chapter 3.

One important note on the cost function in Equation 2.41 is that we will minimize
mean squared error to ΓOpt, not noise. The distance between ΓS and ΓOpt is
proportional to noise, but the true relationship follows from Equation 2.3, which
contains the same geometric error term of |ΓS − ΓOpt |2, but is divided by 1 − |ΓS |2.
We could use the full noise equation in optimization, however this more simple
geometric approximation yields a satisfactory result.

Given a set of ΓOpt with frequency and a total length 𝐿, we compute the optimum 𝑍 𝑗

versus linear distance profile. In the current formulation, the total length of the line
𝐿 is not part of the optimization, so we must try several lengths. From [18], longer
lines should perform better, although we will be at odds with insertion loss in actual
implementation. We start our design with the length set to slightly less than 𝜆/4 at
700 MHz, as NTLs have been used for miniaturization of quarter wave lines [19].
Assuming the transmission line is in free space, we start at a length of 80 mm. We
also constrain the characteristic impedances between 45 Ω and 350 Ω as that is the
range of what is practically realizable in suspended microstrip, an exceptionally
low-loss topology. The resulting profile and performance is shown in Figure 2.12.

In Figure 2.12, several things are immediately apparent. One, the line is notably
not smooth, rather oscillating between the high and low impedance limits. The
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Figure 2.12: Optimal impedance profile, noise, and gain for an 80 mm NTL.

noise match, however, is reasonable, with a band-average of 7.99 K compared to the
band-average of 𝑇Min of 7.64 K. Unfortunately, the sharp discontinuities break our
working assumption of smoothness in the nonuniform lines. These discontinuities
create EM effects not captured by the cascaded uniform section model. For example,
in microstrip, large step discontinuities such as these can drastically alter circuit
behavior and must be accounted for [20]. The optimizer converging on a non-smooth
result for an NTL has been shown in the literature [21], and in the limit approximates
an R-transformer [22]. We have a few options to account for this behavior. One,
we could add in a circuit model of the discontinuity, although this would rely on
knowing the transmission line implementation. Second, we could add a constraint to
the optimization to account for smoothness. We will choose the latter, as we want to
make minimal assumptions about the transmission line topology.

In [23], one option to contend with the stepped behavior of NTL optimization is to
add a constraint where every impedance step is no more than some preset limit. For
a 100-section line, the implementation of the constraint adds a 99-element constraint
vector, with an associated highly sparse constraint Jacobian. This adds a lot of
complexity to the optimization problem and makes the performance significantly
worse. We propose an alternative of regularizing for total smoothness by adding a
Lagrange multiplier to the sum of impedance deltas. With this, the new cost function
looks like

𝐸 =
1
𝑀

𝑀∑︁
𝑖=1

������ΓOut
©­«
𝑁∏
𝑗=1

𝐴(𝑍 𝑗 , 𝛿𝐿, 𝜈𝑖), Γ𝑆ª®¬ − ΓOpt𝑖

������
2

+ 𝜆
𝑀

𝑀∑︁
𝑖=2
|𝑍𝑖 − 𝑍𝑖−1 |2 , (2.42)

where 𝜆 adjusts the strength of the regularization term.
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For the same 𝑀=100, L=80 mm problem, but now with regularization for 𝜆=0.005,
we compute the result shown in Figure 2.13. While this result is smooth, the gain
and noise profiles are worse. The average noise temperature is now 8.53 K, about
half a Kelvin worse than the previous result and 1 K worse than the minimum noise.
Lowering 𝜆 improves this, but of course, with sharper features in the impedance
profile.

The performance of the smooth line allows us to conclude that we may be better
served with a longer line. This agrees with [18], in that the longer line is similar
to more cascaded transformers. Using the same 𝜆=0.005 regularization, we re-run
the optimization for a few different lengths shown in Figure 2.13, Figure 2.14, and
Figure 2.15. The noise is decreasing with increased length, with the 120 mm design
achieving 7.90 K, slightly improved over the 80 mm unregularized solution.

All the smooth solutions are realizable in suspended stripline/microstrip, but we have
failed to account for the insertion loss of the matching network itself. As the line
grows in length, so does its loss and therefore noise. As the resulting design achieves
a noise of 10 K, even 0.15 dB of insertion loss will double the noise. Additionally, the
loss of the line is roughly proportional to its impedance, so the more high impedance
section line we have, the worse the noise due to the smaller cross-sectional area
and associated resistance per unit length. The precise details of optimizing the line
considering its loss is the subject of Chapter 3.



32

0 50 100
0

100

200

300

400

Position (mm)

𝑍
0

(Ω
)

1 1.5 2

10

20

30

Frequency (GHz)

T/
dB

𝑇𝐸

𝑇Min
𝐺𝐴

Figure 2.13: Impedance profile, noise, and gain for an 80 mm NTL, 𝜆=0.005.
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Figure 2.14: Impedance profile, noise, and gain for an 100 mm NTL, 𝜆=0.005.
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Figure 2.15: Impedance profile, noise, and gain for an 120 mm NTL, 𝜆=0.005.



33

References

[1] H. Nyquist, “Thermal Agitation of Electric Charge in Conductors,” Physical
Review, vol. 32, no. 1, pp. 110–113, Jul. 1928. doi: 10.1103/PhysRev.32.
110.

[2] W. Schottky, “Über spontane Stromschwankungen in verschiedenen Elektriz-
itätsleitern,” Annalen der Physik, vol. 362, no. 23, pp. 541–567, Jan. 1918.
doi: 10.1002/andp.19183622304.

[3] H. Rothe and W. Dahlke, “Theory of Noisy Fourpoles,” Proceedings of the IRE,
vol. 44, no. 6, pp. 811–818, Jun. 1956. doi: 10.1109/JRPROC.1956.274998.

[4] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed.
Upper Saddle River, N.J: Prentice Hall, 1997, 506 pp.

[5] D. M. Pozar, Microwave Engineering, 4th ed. Hoboken, NJ: Wiley, 2012.

[6] G. Link and V. Rao Gudimetla, “Analytical expressions for simplifying
the design of broadband low noise microwave transistor amplifiers,” IEEE
Transactions on Microwave Theory and Techniques, vol. 43, no. 10, pp. 2498–
2501, Oct. 1995. doi: 10.1109/22.466187.

[7] “Diramics pH-200 4F50.” (), [Online]. Available: https://diramics.
com/wp-content/uploads/downloads/DIRAMICS-pH-100-4F50.pdf
(visited on 02/04/2025).

[8] J. Shi and S. Weinreb, “Room-Temperature Low-Noise Amplifier With 11-K
Average Noise From 0.6 to 2 GHz,” IEEE Microwave and Wireless Technology
Letters, vol. 33, no. 11, pp. 1540–1543, Nov. 2023. doi: 10.1109/LMWT.
2023.3315269.

[9] S. Weinreb and J. Shi, “Low Noise Amplifier With 7-K Noise at 1.4 GHz and
25 °C,” IEEE Transactions on Microwave Theory and Techniques, vol. 69,
no. 4, pp. 2345–2351, Apr. 2021. doi: 10.1109/TMTT.2021.3061459.

[10] J. Rollett, “Stability and Power-Gain Invariants of Linear Twoports,” IRE
Transactions on Circuit Theory, vol. 9, no. 1, pp. 29–32, Mar. 1962. doi:
10.1109/TCT.1962.1086854.

[11] M. Edwards and J. Sinsky, “A new criterion for linear 2-port stability using a
single geometrically derived parameter,” IEEE Transactions on Microwave
Theory and Techniques, vol. 40, no. 12, pp. 2303–2311, Dec. 1992. doi:
10.1109/22.179894.

[12] P. Leroux and M. Steyaert, “Detailed Study of the Common-Source LNA
with Inductive Degeneration,” in LNA-ESD Co-Design for Fully Integrated
CMOS Wireless Receivers, Boston, MA: Springer US, 2005, pp. 73–110. doi:
10.1007/1-4020-3191-2_4.

https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1002/andp.19183622304
https://doi.org/10.1109/JRPROC.1956.274998
https://doi.org/10.1109/22.466187
https://diramics.com/wp-content/uploads/downloads/DIRAMICS-pH-100-4F50.pdf
https://diramics.com/wp-content/uploads/downloads/DIRAMICS-pH-100-4F50.pdf
https://doi.org/10.1109/LMWT.2023.3315269
https://doi.org/10.1109/LMWT.2023.3315269
https://doi.org/10.1109/TMTT.2021.3061459
https://doi.org/10.1109/TCT.1962.1086854
https://doi.org/10.1109/22.179894
https://doi.org/10.1007/1-4020-3191-2_4


34

[13] K. Hartmann and M. Strutt, “Changes of the four noise parameters due to
general changes of linear two-port circuits,” IEEE Transactions on Electron
Devices, vol. 20, no. 10, pp. 874–877, Oct. 1973. doi: 10.1109/T-ED.1973.
17761.

[14] P. Heymann and M. Rudolph, “Noise of Linear Two-Ports,” in A Guide to
Noise in Microwave Circuits: Devices, Circuits and Measurement, IEEE, 2022,
pp. 101–108. doi: 10.1002/9781119859390.ch7.

[15] J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N.
Mahesh, “An absorption profile centred at 78 megahertz in the sky-averaged
spectrum,” Nature, vol. 555, no. 7694, pp. 67–70, Mar. 2018. doi: 10.1038/
nature25792.

[16] B. Yarman and H. Carlin, “A Simplified "Real Frequency" Technique Applied
to Broad-Band Multistage Microwave Amplifiers,” IEEE Transactions on
Microwave Theory and Techniques, vol. 30, no. 12, pp. 2216–2222, Dec. 1982.
doi: 10.1109/TMTT.1982.1131411.

[17] H. Carlin and P. Amstutz, “On optimum broad-band matching,” IEEE Trans-
actions on Circuits and Systems, vol. 28, no. 5, pp. 401–405, May 1981. doi:
10.1109/TCS.1981.1085001.

[18] G. Xiao and K. Yashiro, “Impedance matching for complex loads through
nonuniform transmission lines,” IEEE Transactions on Microwave Theory
and Techniques, vol. 50, no. 6, pp. 1520–1525, Jun. 2002. doi: 10.1109/
TMTT.2002.1006413.

[19] M. Khalaj-Amirhosseini, “Nonuniform Transmission Lines as Compact Uni-
form Transmission Lines,” Progress In Electromagnetics Research C, vol. 4,
pp. 205–211, 2008. doi: 10.2528/PIERC08082602.

[20] T. C. Edwards and M. B. Steer, “Discontinuities in Microstrip,” in Foundations
for Microstrip Circuit Design, IEEE, 2016, pp. 227–267. doi: 10.1002/
9781118936160.ch9.

[21] P. Miazga, “Discrete shape optimization method of a non-uniform transmission
line — advantages and drawbacks,” in MIKON 2008 - 17th International
Conference on Microwaves, Radar and Wireless Communications, May 2008,
pp. 1–4.

[22] S. Rosloniec, “Design of stepped transmission line matching circuits by opti-
mization methods,” IEEE Transactions on Microwave Theory and Techniques,
vol. 42, no. 12, pp. 2255–2260, Dec. 1994. doi: 10.1109/22.339750.

[23] P. Miazga, “Nonuniform transmission line matching circuits synthesis - Ana-
lytical versus optimization approach,” in 2014 20th International Conference
on Microwaves, Radar and Wireless Communications (MIKON), Jun. 2014,
pp. 1–4. doi: 10.1109/MIKON.2014.6899913.

https://doi.org/10.1109/T-ED.1973.17761
https://doi.org/10.1109/T-ED.1973.17761
https://doi.org/10.1002/9781119859390.ch7
https://doi.org/10.1038/nature25792
https://doi.org/10.1038/nature25792
https://doi.org/10.1109/TMTT.1982.1131411
https://doi.org/10.1109/TCS.1981.1085001
https://doi.org/10.1109/TMTT.2002.1006413
https://doi.org/10.1109/TMTT.2002.1006413
https://doi.org/10.2528/PIERC08082602
https://doi.org/10.1002/9781118936160.ch9
https://doi.org/10.1002/9781118936160.ch9
https://doi.org/10.1109/22.339750
https://doi.org/10.1109/MIKON.2014.6899913


35

C h a p t e r 3

COMPUTATIONALLY EFFICIENT DESIGN OF AN LNA INPUT
MATCHING NETWORK USING AUTOMATIC

DIFFERENTIATION

[1] K. A. Shila, “Computationally Efficient Design of an LNA Input Matching
Network Using Automatic Differentiation,” IEEE Journal of Microwaves,
May 7, 2025. doi: 10.1109/JMW.2025.3568779,

In this chapter, we present a method for the design of an LNA input matching
network using automatic differentiation (AD), a technique made popular by machine
learning. The input matching network consists of a non-uniform suspended stripline
transformer, directly optimized with AD-provided gradients. Compared to the
standard approach of finite-differences, AD provides orders of magnitude faster
optimization time for gradient-based solvers. This dramatic speedup reduces the
iteration time during design and enables the exploration of more complex geometries.
The LNA designed with this approach improves over a previous two-section uniform-
line design, achieving an average noise temperature of (11.53 ± 0.42) K over the
frequency range of 0.7 GHz to 2 GHz at room temperature. We optimized the
geometry in under 5 s, 40x faster than optimizing with finite-differences.

3.1 Introduction
Radio telescope receivers are typically cooled to give high sensitivity, but the cost
of cooling is prohibitive for arrays of thousands of telescopes. Receivers with
ambient-temperature LNAs are becoming competitive with cooled designs at low
frequencies, resulting in dramatically decreased cost that enables the development
of enormous arrays such as the DSA-2000 [1]. A key metric for these arrays is the
speed at which they create images of the sky. The observation time required for
some fixed noise in an image is ∝ 𝑇2, where 𝑇 is the system noise temperature. At
decimeter wavelengths, LNA noise typically dominates the system noise [2], so even
1 K improvement in the LNA significantly increases the survey speed and subsequent
science return. The key LNA development has been the use of a low-noise transistor
from Diramics [3] with a low-loss suspended stripline input matching network [4],
[5], consisting of uniform transmission line (UTL) transformers. We have improved

https://doi.org/10.1109/JMW.2025.3568779
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the LNA noise temperature by changing the input matching network to a non-uniform
transmission line (NTL).

It is well known that NTLs are useful in wideband matching and are easily imple-
mented in suspended stripline. For our LNA, an NTL gives a better trade-off between
insertion loss and noise match, but designing such a line is nontrivial. The geometry
must be directly optimized in situ, as no closed-form expression for the desired
behavior of the NTL exists.

To optimize the geometry of the NTL, we follow the standard practice of gradient
descent. In most electronic design automation (EDA) packages, the gradient
is approximated via finite-differencing, but finite-differencing is imprecise and
inefficient for large-dimensional optimization, as is the case for an NTL problem.
While direct optimization is a common technique in designing NTLs [6]–[8], the
performance overhead of computing the gradient is a limiting factor.

Instead of computing the gradient with finite-differencing, we used automatic
differentiation (AD) [9], an algorithmic tool made popular by machine learning.
AD is an accelerated way to compute the exact derivatives of an arbitrary computer
program. As AD is an exact method, it is more precise than finite-differencing and
typically higher performance. Gradient-descent optimization of NTLs with AD
dramatically reduces optimization time, which enables more complex designs.

In this chapter, we describe the design, implementation, and experimental verification
of an LNA whose input matching network is an NTL designed via direct optimization
using AD. The NTL design achieves lower average noise temperature than the
UTL design. Optimization of the NTL took under 5 s, 40x faster than solving the
equivalent finite-differenced gradient-based problem in a commercial EDA package.

In Section 3.2, we discuss this mathematical formulation in detail with an overview
of the LNA design problem posed as constrained nonlinear optimization, the AD
method, and NTL design. In Section 3.3, we discuss the implementation details
of applying this technique to our LNA design. Finally, in Section 3.4, we present
experimental results to demonstrate the performance of the amplifier.

3.2 Mathematical Formulation
Low-Noise Amplifier Optimization
The priority for any LNA design is to minimize the amplifier’s noise. Balancing
this priority with other requirements such as input reflection, stability, gain, etc. is
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application-specific and is stated mathematically as

minimize
ΓS

𝐹 (𝐹Min, 𝑅𝑛, ΓOpt, ΓS)

subject to 𝐺 (S, ΓL, ΓS) ≤ 𝜉 ,
(3.1)

where 𝐹 is the noise objective function, given here in the standard form of noise
figure [10], driven by the device’s noise parameters via

𝐹 = 𝐹Min +
4𝑅𝑛

��ΓS − ΓOpt
��2

𝑍0
��1 + ΓOpt

��2 (
1 − |ΓS |2

) , (3.2)

where 𝐹Min is the minimum noise figure, 𝑅𝑛 is the noise equivalent resistance,
and ΓOpt is the optimum source reflection coefficient that results in 𝐹Min. 𝐺 is
the constraint, a function of the transistor’s S parameters, S, and input and output
reflection coefficients, ΓS and ΓL, shown in Figure 3.1. The constraint function
captures any of the non-noise requirements and is represented by an inequality with
some scalar 𝜉. The solution to (3.1) is the ΓS that minimizes the noise figure given
a biased transistor’s S and noise parameters under some constraint. Notably, the
solution gives minimum noise without specifying any goal or target. It is then up
to the designer to evaluate the result and determine if it is satisfactory, loosening
the constraints as necessary. This is distinct from “goal-based” optimization, where
the optimizer attempts to solve a potentially unfeasible problem and returns a
goal-weighted least-squares solution.

If we were only interested in constraining input reflection, we would define 𝜉 as a
maximum allowed magnitude of ΓA and write our constraint function as

𝐺 ≤ |ΓA |Max . (3.3)

Alternatively, we could constrain the gain to be greater than some value, either case
being a trade-off between power and noise match. In this work, we will constrain
|ΓA |.
The optimal ΓS solution, however, is only valid at a single frequency and could be
readily solved by hand. In practice, we sample the device’s S and noise parameters
across a set of 𝑁 discrete frequency points, 𝝂, and our goal is to design an amplifier
that operates over a subset of that range. For this wideband LNA design, one
formulation is to minimize the average noise

minimize
ΓS(𝝂)

1
𝑁

𝑁∑︁
𝑖=1

𝐹 (𝜈𝑖)

subject to 𝐺 (𝝂) ≤ |ΓA |Max .

(3.4)
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Figure 3.1: Reflection planes for a typical microwave transistor amplifier, its input
matching network (IMN), and output matching network (OMN).

Here, the minimizer and constraints are vector-valued. In this form, (3.4) is a
constrained, weighted, nonlinear least-squares problem, as minimizing the average
noise figure over ΓS(𝝂) is proportional to minimizing the 𝑅𝑛-weighted mean squared
distance between ΓS(𝝂) and ΓOpt(𝝂), subject to the input reflection constraint.

In practice, the ΓS(𝝂) solution is not directly useful, as ultimately, we aim to
design the network that induces ΓS(𝝂). Therefore, instead of minimizing over
ΓS(𝝂), we minimize over the input matching network directly. If, for example, this
matching network were a series UTL with electrical length 𝑙, phase constant 𝛽, and
characteristic impedance 𝑍𝐿 , the problem becomes

minimize
𝑙, 𝑍𝐿

1
𝑁

𝑁∑︁
𝑖=1

𝐹 (ΓS(𝜈𝑖))

subject to 𝐺 (ΓS(𝝂)) ≤ |ΓA |Max ,

(3.5)

where
ΓS(𝜈) = 𝑍0

[
𝑍𝐿 + 𝑗 𝑍0 tan (𝛽(𝜈)𝑙)
𝑍0 + 𝑗 𝑍𝐿 tan (𝛽(𝜈)𝑙)

]
. (3.6)

Here, we reduce the dimensionality of the problem from 𝑁 to two as we are solving
for a single length and characteristic impedance. However, there is no guarantee that
this topology achieves the same average noise figure as the optimum ΓS(𝝂) solution.
Solving this transformed problem is now akin to regression, as the structure of the
matching network dictates the frequency response and the solver will try to “curve
fit” that frequency response to the optimum ΓS(𝝂) solution. Selecting an appropriate
network topology is therefore crucial for achieving optimal results. In this work, we
investigate NTLs as a general-purpose topology.

With a chosen a topology, we solve the minimization problem with gradient-based
nonlinear optimization. The inclusion of an inequality in the constraint (3.3) implies
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the solver must contend with a system of Karush-Kuhn-Tucker (KKT) conditions [11]
and therefore must be solved numerically. Gradient-based KKT solvers will evaluate
the cost function, the constraints, and the gradient/Jacobian potentially thousands
of times. Computing these values efficiently is essential to the performance of this
design method.

Automatic Differentiation
Traditionally, there are three ways one can generate gradients for optimization. First,
if the cost expression is simple, one could solve the gradient by hand by applying the
rules of calculus. However, if the expression were large or if it were a black-box with
unknown internals, deriving an expression for the gradients might be impossible.
The second approach is to approximate the gradient via finite-differencing each term
using the standard form,

𝑑𝑓

𝑑𝑥
≈ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)

ℎ
. (3.7)

This is a simple formulation which works on any well-behaved function and is the
solution of choice for most EDA software. However, these approximations suffer
from numeric instability and high sensitivity to the choice of the step size ℎ [12].

The third option is to use a computer algebra system to perform “symbolic differ-
entiation”. This method applies the rules of calculus to an expression tree and is a
simple mechanistic process for computers. However, the complexity of computing a
symbolic result grows exponentially with the number of terms, resulting in a problem
known as “expression swell” [13]. For optimization, we are not interested in the
symbolic form as we only need an accurate numeric gradient to know the direction
of steepest descent, so this extra computation is not useful.

Automatic differentiation (AD) is a technique distinct from the aforementioned
approaches, where a program algorithmically computes derivatives via the accu-
mulation of values during execution. This method is not an approximation like
(3.7), nor does it generate expressions like symbolic differentiation. While there are
several implementation strategies, the general formulation yields accurate gradients
to machine precision with a small, constant overhead. As AD operates on values
rather than expressions, it can be applied to most programs, including those that
utilize loops, branching statements, and recursion. Efficient implementations of
AD have been transformational in the machine learning community, where large,
complex models composed of arbitrary code can be differentiated and optimized [14].
From the AD perspective, a program that computes circuit behavior (noise, gain,
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etc.) is no different from a program that implements a machine learning model, as
both are composed of simple, differentiable pieces.

The application of AD to circuits is not a new idea, but is surprisingly underutilized.
As noted in [15], “[AD] can enable applications previously deemed impractical”.
While AD has not had much exposure outside of machine learning, it has been recently
used for parameter estimation of lumped-element circuit models [16] and sensitivity
analysis of EM structures [17]. Some older works conclude the performance overhead
may not justify use over finite-differences, but the explosion in machine learning
research has accelerated the development of high-performance AD libraries.

AD operates by decomposing a complex function into a sequence of simple operations
with known derivatives. As the function is evaluated, AD propagates these derivatives
via the chain rule. The chain rule states that each subsequent derivative is multiplied
by the previous. As multiplication is associative, we can compute the total derivative
from input to output or vice versa. This leads to the two modes of AD: forward-mode
and reverse-mode.

In forward-mode, derivatives are computed as the function is evaluated, starting
with the input independent variables. Each operation in the function is evaluated
along with its derivative with respect to the input, which propagates forward to
compute the final derivative. This method is efficient when the function has few
inputs and many outputs, as each input’s derivative must be propagated through the
function one at a time, similar to finite-differences. In reverse-mode, the function
is first evaluated normally, and then derivatives are propagated backward from the
outputs to inputs, using the chain rule to accumulate derivatives with respect to
each input. This is identical to the familiar “backpropagation” algorithm used in
training neural networks. Reverse-mode is particularly efficient for functions with
few outputs and many inputs, such as machine learning, where the goal is often to
compute gradients of a scalar loss function with many parameters. The same is true
for this work, where circuit optimization manifests as high dimensional optimization
of a scalar cost function. In either mode, AD computes exact derivatives and is more
computationally efficient compared to traditional numerical differentiation methods.
A more complete mathematical treatment of AD is given in Appendix A.

Non-Uniform Transmission Lines
Non-uniform transmission lines (NTLs) are a class of transformer structures used in
many microwave circuits. These transmission lines vary their impedance continuously
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as a function of position to achieve such goals as matching [18], filtering [19], or
miniaturization [20]. For ambient-temperature LNAs designed around very low
noise transistors, minimizing the loss of the input matching network is essential. As
discussed in [4], suspended stripline matching structures provide the lowest loss.
Implementing the suspended stripline as an NTL is a natural development of the
stepped transformer in [5] and empirically results in a lower noise temperature. Other
strategies such as lumped matching are simply too lossy and are not considered for
this work.

Unfortunately, the scattering behavior for a general NTL has no analytic form. This
arises from the fact that for a general transmission line, the voltage and current as
a function of position are governed by a set of Riccati differential equations [21].
While closed-form solutions exist for special cases, such as exponential tapers [22],
a standard approach for analyzing arbitrary NTLs is to discretize the line into many
small lengths of constant impedance sections.

We represent the discretized approximation of an NTL as the multiplication of ABCD
(cascade) matrices of the uniform sections [23]. For a uniform transmission line of
length 𝑙 with characteristic impedance 𝑍𝑐 and propagation constant 𝛾, this matrix is

A (𝑍𝑐, 𝛾, 𝑙) =
[

cosh 𝛾𝑙 𝑍𝑐 sinh 𝛾𝑙
1/𝑍𝑐 sinh 𝛾𝑙 cosh 𝛾𝑙

]
=

[
𝐴 𝐵

𝐶 𝐷

]
. (3.8)

For an NTL defined by a characteristic impedance and propagation constant profile
with position, 𝑍𝑐 (𝑥), 𝛾(𝑥), and total length 𝐿, we pick a discretization of 𝑀 points
and compute

ANTL ≈
𝑀∏
𝑖=1

A (𝑍𝑐 (𝑖𝐿/𝑀) , 𝛾 (𝑖𝐿/𝑀) , 𝐿/𝑀) . (3.9)

We convert this final ABCD matrix into scattering parameters via

S =
1
𝜁

[
𝐴 + 𝐵/𝑍0 − 𝐶𝑍0 + 𝐷 2(𝐴𝐷 − 𝐵𝐶)

2 −𝐴 + 𝐵/𝑍0 − 𝐶𝑍0 + 𝐷

]
, (3.10)

where
𝜁 = 𝐴 + 𝐵/𝑍0 + 𝐶𝑍0 + 𝐷 , (3.11)

and 𝑍0 is the reference impedance for the S parameters and reflection coefficients in
the design.

To design an NTL for some particular function, we can optimize the set of discrete
impedances that approximate the NTL [6]. In this case, we are solving the “inverse
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Figure 3.2: Experimental verification of runtime speed of gradient computation for
various methods versus NTL discretization.

problem” of finding the discretized 𝑍𝑐 (𝑥) that yields some behavior. To perform
this optimization, we take the set of impedances, compute the two-port scattering
behavior via (3.9) and (3.10), and use this result to compute an error function against
the desired behavior. For gradient-based optimization, we need the gradient of this
error function with respect to the set of impedances.

For an 𝑀-section discretization of an NTL, a program needs to evaluate 𝑀 − 1
matrix multiplications. Then, for the finite-difference method (or forward-mode AD),
the program evaluates the sensitivity of the cost function with respect to every 𝑀
section. These combined operations, performed for every iteration of an optimizer,
have an algorithmic complexity of O(𝑀2). This scaling dramatically increases the
optimization time of designs with large 𝑀. However, large 𝑀 is desirable as it
reduces error due to discretization. With reverse-mode AD, which “back-propagates”
the sensitivity of the cost function to the inputs, the complexity of computing the
gradient is constant over 𝑀 . This results in an optimization complexity of O(𝑀).

The massive speedup of computing the gradients using reverse-mode AD results in
orders of magnitude faster NTL optimization. To demonstrate this, we computed the
gradient of a simple scalar cost function (|𝑆11 |2) with respect to an 𝑀-discretized
NTL of constant length. The runtime of this computation versus 𝑀 is shown in
Figure 3.2. For a typical 𝑀 of 100 sections [24], reverse-mode AD yields gradients
two orders of magnitude faster than forward-mode and without the numerical error
of finite-differencing.

The utility of this direct-optimization method extends beyond solving the 𝑍𝑐 (𝑥)
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profile. To implement the NTL, one would use the 𝑍𝑐 (𝑥) result to synthesize physical
dimensions. This problem is ill-posed, as realistic transmission lines have coupled
𝑍𝑐 and 𝛾, both of which are functions of frequency. A simpler approach is instead to
optimize the geometry directly [7], [8]. The geometry induces a 𝑍𝑐 and 𝛾, which is
then used in (3.9).

Recent work [25] has shown another strategy, using convolutional neural networks to
capture the geometry-driven behavior of an NTL which is then used for optimization-
based inverse design. However, this method is resource-intensive as it relies on many
full-wave simulations of “example” lines as well as network training. While the
simple cascade method that we use suffers from the 𝑀-discretization, it does not
require training, or lengthy EM simulations, and is therefore much faster.

To perform the direct geometry optimization, we start with the per-unit-length
equivalent resistance, inductance, conductance, and capacitance (RLGC) model of a
transmission line with

𝛾 =
√︁
(𝑅 + 𝑗𝜔𝐿) (𝐺 + 𝑗𝜔𝐶) , (3.12)

and
𝑍𝑐 =

√︁
(𝑅 + 𝑗𝜔𝐿) /(𝐺 + 𝑗𝜔𝐶) . (3.13)

This model captures all the effects of loss and dispersion. While some transmission
lines like coax have an analytic RLGC form, in general, we use curve-fit models.
These models can be frequency-dependent, and are readily extracted from measured
data or EM simulations [26]. For suspended stripline, we parameterize this model
by widths of the center conductor W and total length 𝐿, as the mechanical design
dictates fixed height, dielectric constant, etc. The model also enables constraints on
geometry like maximum/minimum length or width. These constraints should be kept
loose to maximize the likelihood of finding an optimal design.

We apply the NTL direct optimization method to our LNA problem via

minimize
𝐿,W

1
𝑁

𝑁∑︁
𝑖=1

𝐹 (ΓS(𝜈𝑖,W, 𝐿))

subject to 𝐺 (ΓS(𝝂,W, 𝐿)) ≤ |ΓA |Max ,

(3.14)

where ΓS follows (3.10). Here, the geometry of the NTL is the domain over which
we solve the nonlinear least squares problem from before. This benefits our LNA
design in that we simultaneously account for both the match to ΓOpt and the insertion
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loss of the line itself. This proves to be critical to the design, as the insertion loss of
the input matching network is close in magnitude to the minimum noise figure of the
transistor. The direct optimization approach balances the two sources of noise to
result in an optimal design.

3.3 Implementation
To design the improved amplifier, we started with the design from [5]. We make
use of the same 400 nm x 200 µm gate, four-finger transistor from Diramics [3] at a
slightly lower bias of 𝑉𝑑=0.5 V, 𝐼𝑑=16 mA to match the vendor’s updated model. To
improve linearity, we changed to a two-stage design versus the three-stage design of
the prior work. We also replaced the second stage with a higher current transistor with
near identical noise, the SAV-541+ from Mini-Circuits. As the first stage provides
more than 20 dB of gain, the noise of the amplifier is practically independent of
these modifications. These changes result in an amplifier with better linearity and
slightly lower gain. Lastly, we borrow the general chassis geometry for the suspended
stripline input matching network. Apart from these similarities, the designs are
independent. The goal for this design was to improve the noise while maintaining
similar gain and 𝑆11 over the same bandwidth of 0.7 GHz to 2 GHz.

For the suspended stripline input, we chose the dimensions to satisfy a few conditions.
First, the total height of the completed amplifier must be ≤20 mm to satisfy a
mechanical constraint for the telescope feed design. Second, the substrate must
be close to the centerline of the amplifier to accommodate connectors. Finally,
the distance between the substrate and the top and bottom ground planes should
be close to equal to minimize the average current density and therefore insertion
loss. The large substrate to ground spacing allows for the construction of very high
impedance sections, as is required for this particular design due to the transistor’s
high 𝑍Opt. The resulting model cross-section geometry is shown in Figure 3.3. The
substrate material is 0.508 mm-thick RT/duroid 5880 with 0.5 oz cladding. We chose
a surface finish of electroless palladium / immersion gold (EPIG) over rolled copper
to minimize surface roughness, to eliminate lossy nickel, and to provide a suitable
surface for wire bonding.

We drew the stripline geometry in ANSYS’s 2D Extractor, and solved for the RLGC
parameters as a function of frequency from 0.1 GHz to 3 GHz in 51 uniform steps
and as a function of trace width from 0.05 mm to 15 mm swept logarithmically with
111 steps per decade.
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Figure 3.3: Cross-section of the suspended stripline with critical dimensions. X=33,
Y=20, S=20, H1=9.5, H2=7, all values in mm.
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Figure 3.4: Schematic of the RF-portion of the amplifier. C1=3x47 pF, C2=2.5 pF,
C3=2 pF, C4=20 pF, L1=100 nH, L2,L3=120 nH, L4=2 nH, L5=4.7 nH, R1=5.1kΩ,
R2=41.2Ω.

Next, we designed the section of the amplifier following the input matching network in
Keysight’s Advanced Design System (ADS). We used models of lumped components
from Modelithics and the Diramics-provided model of the first stage transistor. This
section of the design was unremarkable and used standard techniques. We used
resistive matching to achieve wideband, high output return loss. We accomplished
interstage matching with a single series capacitor. We designed the second stage
active bias following the vendor’s recommendation. Once we completed this design,
we created a layout to perform a full wave EM co-simulation with the component
circuit models, a crucial step in solving layout-related stability issues. Finally, we
exported the partial amplifier S and noise parameters for the final optimization step
of this work. The schematic for the amplifier is shown in Figure 3.4.

We wrote the NTL optimization code in the Julia programming language [27], an
open-source, high-level, high-performance language for scientific computing. This
language has an extensive ecosystem in both AD and in nonlinear optimization.
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Figure 3.5: Optimized NTL input matching network.

Further, the AD implementations in Julia typically outperform implementations in
other languages.

In Julia, we collected the RLGC data from the 2D EM simulation, as well as the
S and noise parameters from the circuit simulation. We used the RLGC data to
create a linear interpolation across width and frequency for each parameter. We
constructed the optimization problem with Optimization.jl. This package exposes
a structure for defining arbitrary, constrained optimization problems that provide
their gradients using a pluggable AD backend. We used the state-of-the-art package
Enzyme.jl [28] as the reverse-mode AD backend as-is with no modifications. We
limited the optimization domain to widths between 0.1 mm and 15 mm and lengths
between 50 mm and 120 mm. We set the constraints such that the input return loss
was greater than ∼9 dB for every point in frequency, representing a compromise
between match and noise.

We solved the optimization problem for 100 sections, with an initial profile of a
100 mm-length linear taper from 15 mm to 0.1 mm using the Ipopt solver [29]. On
an Intel Xeon Gold 6128 workstation, 50 iterations were completed in under 5 s. As
gradient-based optimization only finds a local minimum, we ran the optimizer from
different starting vectors to compare a few different results. The problem was robust
against initial conditions, as solving with different starting profiles resulted in similar
line shapes of equal performance. In the worst initial case of random widths, the
solver took around 2x longer to converge. However, we know a priori the transformer
should transition from 50 Ω to the high 𝑍Opt, so a linear profile is a reasonable initial
condition. The resulting shape is shown in Figure 3.5.

Finally, we simulated the resulting geometry in a full-wave 3D EM solver to validate
performance. Following this simulation, we removed a section of the line to place
low-loss DC-blocking capacitors and added a high-𝑍 stub for the DC gate bias. This
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Figure 3.6: LN2 cold termination measurement setup.

geometry was added at the lowest-𝑍 section of the NTL to minimize the perturbation.
We re-simulated the geometry to verify the performance with the DC block and bias
structures.

To compare the presented AD method to a commercial EDA tool, we constructed the
equivalent optimization problem in ADS, using the same interpolated RLGC data. To
prevent ADS from re-simulating the circuit following the NTL, we optimized against
the exported S and noise parameters. The timing results are shown in Table 3.1 for
various finite-difference (FD) and gradient-free (GF) methods. All trials achieved
the same noise temperature within 0.1 K, with the AD approach around 40x faster
than the next best solver in ADS.

Table 3.1: Runtime Comparison of NTL Optimization Methods

Solver Runtime (s) Relative Time
Ipopt (Reverse-Mode AD) 5 1.0

Gradient Descent (FD) 193 38.6
Quasi-Newton (FD) 1718 343.6

Simulated Annealing (GF) 3026 605.2
Genetic (GF) 25200 5040.0
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3.4 Experimental Results
Noise Measurement Procedure
Since the amplifier in this work is incredibly low noise, we measured the noise
using the Y-factor method with a termination in liquid nitrogen (LN2) and a separate
room-temperature termination. If we know the atmospheric pressure, then we
precisely know the boiling point of LN2. Then, given the temperature of the cold
termination, we need to consider the length of coax that exits the LN2 bath, its
frequency-dependent insertion loss, and its temperature gradient. As the thermal
conductivity of most materials is dependent on their temperature, the temperature
gradient along the length of the coax line is nonlinear and must be solved numerically,
as described in [30].

Next, we must consider the thermal load on the cold termination. Even when
submerged, heat from the warm side of the line will travel into the termination. To
reduce this effect, we could use a stainless steel line, as it has low thermal conductivity.
However, the temperature-dependent conductivity (and therefore insertion loss) of
stainless steel is not well known. Instead, we follow the submerged termination with
a long length of line before exiting the bath. In our case, we used an 8 cm section of
RG402 coax connected to a submerged 1 m coil and termination. We used a heater,
shown in Figure 3.6, to maintain the warm end of the coax at ambient temperature.
Finally, we attached a previously characterized N to SMA adapter to the warm end
of the cold load to mate with the N-type socket on the constructed LNA. This setup,
shown in Figure 3.6, has a frequency-dependent output noise following the curve-fit
result

𝑇Cold (K) = 78.0824 + 1.2425 𝑓GHz − 0.1166 𝑓 2
GHz . (3.15)

The error on this result depends on uncertainty in the length of the coax between
the surface of the LN2 and the heater (nominally 8 cm), the warm-side temperature
(nominally 297 K), and the atmospheric pressure (nominally 100 kPa). Assuming
worst-case errors of ±1 cm of length, ±2 C in temperature, and ±0.5 kPa of pressure,
we derive an error model in frequency,

𝛿𝑇Cold (K) = 0.0776 + 0.0568 𝑓GHz − 0.0048 𝑓 2
GHz . (3.16)

Finally, we must consider the errors due to changing source impedance between the
hot and cold states. These errors are present in all Y-factor measurements but are
exacerbated in our LN2 approach as there are two distinct terminations. The impact
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𝑇𝐴

Figure 3.7: System schematic of the Y-factor measurement. The device under
test (DUT) is presented a termination with reflection coefficients ΓS𝐻 and ΓS𝐶 at
two temperatures 𝑇𝐻 and 𝑇𝐶 , respectively. The DUT is followed by a series of
preamplifiers (PA) before being digitized by the receiver (RX). The total noise
temperature referred to the input of the DUT is 𝑇𝐴. The reflection coefficient at the
input of the device under test is ΓA.

on the measured Y-factor stems from two effects: the shift in the amplifier’s effective
input noise due to its noise parameters (3.2) and changes in available gain.

First, to use the Y-factor method, we must assume that the amplifier’s noise remains
constant between the two states, implying that the impact of the noise parameters is
negligible. Given that we measured both terminations to have return loss ≥25 dB
and simulated 𝑅𝑛 ≤2 Ω and |ΓOpt | ≤0.6, we expect no worse than 0.03 K error due to
this assumption.

Next, we evaluate the impact due to changes in available gain. Given a termination
at the input of a noisy receiver, shown in Figure 3.7, the output noise is given by

𝑃 = 𝑘𝑏𝐵𝐷RX𝐺A
(
𝑇𝐻,𝐶 + 𝑇A

)
, (3.17)

where 𝑘𝑏 is Boltzmann’s constant, 𝐵 is the noise equivalent bandwidth, 𝐷RX is a
scaling term capturing other digital and analog gain factors in the receiver, 𝑇𝐻,𝐶
is the hot or cold noise temperature at the amplifier input, 𝑇A = 𝑇A(ΓS𝐻,𝐶 ) is the
equivalent input noise temperature, and 𝐺A = 𝐺A(ΓS𝐻,𝐶 ) is the available gain of the
amplifier given by

𝐺A =
|𝑆21 |2

(
1 − |Γ𝑆 |2

)
|1 − Γ𝑆Γ𝐴 |2

(
1 − |𝑆22 |2

) . (3.18)

We write our expression for the measured Y-factor as a ratio of these hot and cold
powers [31], but now without the assumption that 𝐺A remains constant due to the
impact of ΓS𝐻,𝐶 ,

𝑌 =
𝑃H
𝑃C

=
𝐺A,H (𝑇H + 𝑇A)
𝐺A,C (𝑇C + 𝑇A) = 𝐶

(
𝑇H + 𝑇A
𝑇C + 𝑇A

)
, (3.19)

where the correction 𝐶 due to mismatch error [32] is

𝐶 =
1 − |Γ𝑆H |2
1 − |Γ𝑆C |2

|1 − Γ𝑆CΓ𝐴 |2
|1 − Γ𝑆HΓ𝐴 |2

. (3.20)
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Figure 3.8: The assembled amplifier in a machined aluminum enclosure with
terminations and the lid removed.

Solving (3.19) for 𝑇A yields

𝑇A =
𝑇H − 𝑇C𝑌/𝐶
𝑌/𝐶 − 1

. (3.21)

This equation for noise temperature is identical to the standard expression, but with a
correction term applied to Y. Usually, this factor is close to unity, but as our amplifier
is primarily designed for noise and not return loss, and the noise is exceptionally
low, the interaction between ΓA and ΓS results in a nontrivial correction. For our
amplifier and terminations, 𝐶 is between 0.974 and 1.019, representing a change in
the computed noise of about 2 K to 4 K, or a third of the total expected noise.

Additionally, we have uncertainty in the reflection coefficient measurements, which
results in uncertainty in this correction factor. Following the datasheet for our
network analyzer [33], we create a curve-fit function to describe the uncertainty in
both phase and magnitude, as a function of magnitude. For our frequency range and
IF bandwidth, these are

𝛿 |Γ| = 0.004 + 0.006|Γ| (1 + |Γ|) , (3.22)

and
𝛿 arg(Γ) = 0.25◦

|Γ| + 0.5◦ . (3.23)

Finally, we need to remove the noise of the receiver. We do so by performing
a measurement with a room temperature termination on the receiver’s input and
subtracting the linear power from the hot and cold powers of the device under test.
We performed all these calculations also in the Julia language, making use of the
Measurements.jl [34] package to propagate uncertainty.



51

0.8 1 1.2 1.4 1.6 1.8 2
−40

−30

−20

−10

0
𝑆11

𝑆22

Frequency (GHz)

dB

Figure 3.9: Measured (solid) versus simulated (dashed) S parameters.
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Figure 3.10: Measured (solid) versus simulated (dashed) 𝑆21.
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Figure 3.11: Measured (solid) and simulated (dashed) noise temperature of this work
(lower trace), prior work [5] (higher trace), and 95% confidence regions.
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Measured Results
We measured the S parameters of the assembled amplifier (shown in Figure 3.8)
and the hot and cold terminations with a Keysight N5242A network analyzer with
no averaging or smoothing. We used a Siglent SSA3032X as the noise receiver,
preceded by a Mini-Circuits ZX60-P105LN+ amplifier and bias tee. We configured
the spectrum analyzer to measure from 0.6 GHz to 2.1 GHz with a resolution
bandwidth of 1 MHz, video bandwidth of 1 kHz, attenuation of 0 dB, preamplifier
enabled, and log power averaging. After a 30 min warm-up time, data were saved for
the noise of the receiver and the device under test with the hot and cold terminations,
recording the physical temperatures. All measurements were performed at an ambient
temperature of 297 K. We performed these power measurements five times each,
saving the batch mean and standard deviation. In error analysis, we used these
standard deviation data divided by

√
5 as the standard error of measurement.

We processed the measurements by computing the corrected Y-factor from (3.21),
including uncertainty. Finally, these data were smoothed with a 150 MHz sliding
window. The results are shown in Figure 3.11. The average noise temperature
from 0.7 GHz to 2 GHz is (11.53 ± 0.42) K . The measured S parameters match the
simulation well, as shown in Figure 3.9 and Figure 3.10, with disagreement in 𝑆22

due to an un-modeled output connector interface. 𝑆21 is reasonably flat with ≥35 dB
across the band and has a maximum of 39 dB, and 𝑆11 is ≤−8 dB. Differences
between the simulated and measured 𝑆11 and 𝑆21 are due to imperfect wire bond
geometry.

We performed these measurements on the amplifier from the prior work [5] using the
same test setup, procedure, and physical temperature to ensure a fair comparison. The
results of this new measurement are also shown in Figure 3.11. Our measurements of
the average noise temperature for the prior amplifier is (12.48 ± 0.42) K . Comparing
the two amplifiers across the same frequencies, the presented design shows a
(0.95 ± 0.59) K mean improvement. As shown in Table 3.2, the presented amplifier
outperforms not only the prior work in noise, but also other similar uncooled
amplifiers intended for radio astronomy over a wide bandwidth.

3.5 Conclusion
In this chapter, we demonstrated the design of a non-uniform transmission line LNA
input matching network using AD-accelerated gradient-based optimization. This
amplifier achieves a frequency-averaged noise temperature of (11.53 ± 0.42) K from
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0.7 GHz to 2 GHz at 297 K. The NTL design outperforms a previous uniform-line
design by (0.95 ± 0.59) K . This design method is algorithmically more efficient than
finite-difference optimization, and outperforms such solvers by more than 40x for
this problem. AD is a general-purpose method for computing derivates and could
be adopted for many other microwave problems such as parameter estimation and
sensitivity analysis, as well as inverse design of structures besides NTLs.

Table 3.2: Comparison of Similar Radio Astronomy LNAs

Ref. Freq. (GHz) 𝑆21 (dB) 𝑇50
1(K) Topo. / Tech.

This Work 0.7-2 36 11.5 ± 0.4 NTL / InP
[5] 0.7-2 40 12.5 ± 0.42 UTL / InP
[35] 0.3-1.5 32 18 ± 6 Discrete / InP
[36] 0.7-1.4 17 20 CMOS

1 Band-averaged noise temperature with a 50 Ω source impedance
2 Our measurements of this amplifier
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C h a p t e r 4

ANALOG SIGNAL PATH DESIGN FOR DSA-2000

The Analog Signal Path (ASP) subsystem in the DSA-2000 is responsible for all the
signal processing before digitization. There is no frequency conversion, so the entire
signal path consists of amplifiers, filters, attenuators, and most notably an RF over
fiber optic (RFoF) link. While RFoF links are widely used in radio astronomy [1]–[3],
none have been deployed at the scale of DSA-2000. This chapter discusses the ASP
system as a whole, focusing on the design, implementation, and testing of the RFoF
link. We also describe modifications to the LNA to improve the match to the feed
and tests of an LNA with thermoelectric cooling of the first stage transistor, all to
further improve the noise.

4.1 RF Over Fiber Link

Port 1

𝐼𝐿

−𝑉𝐿

𝑉𝑃

Port 2

Figure 4.1: RFoF system diagram

To transport the RF signal from each antenna to the processing facility, we are using RF
over fiber (RFoF) links. These links use RF power to directly modulate the current of a
solid-state diode laser, resulting in intensity modulated light. After traveling through
up to 20 km of single mode fiber, this optical signal is presented to a photodiode,
where it is converted back into RF current. This style of analog RF transmission is
used in cable television and commercial/military antenna remoting applications. It is
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important to note that direct modulation is similar, but architecturally very different
from digital modulation, where 1s and 0s are achieved by pulsing the laser nearing
100% modulation depth. In RF or analog modulation, we operate in the small signal
regime of the laser/photodiode transfer function and are subject to their gain, noise,
and linearity characteristics. While this is a simple and inexpensive solution for
long-haul analog transmission, the dynamic range is limited by the distortion in the
laser and noise from the laser or photodiode, depending on the amount of optical
loss in the link.

Noise

𝑅𝐿

𝑖𝐿

+

−
Port 1 𝑠𝑖𝐿 𝑝2

𝐿
𝑝𝐿 𝜂𝐺𝑂𝑝𝐿 𝑖2𝑃

+

−
Port 2

Figure 4.2: RFoF equivalent noise circuit

We begin by focusing on the noise figure of the intrinsic laser to photodiode link.
Noise figure is defined as the degradation in signal-to-noise ratio (SNR) from input
to output. The noise at the input is taken as thermal noise in the generator impedance
at a reference temperature of 𝑇0. There are several mechanisms by which the SNR is
reduced in the link. There is added thermal noise due to various resistive components,
relative intensity noise or RIN in the laser, optical loss in the fiber (whose noise figure
is identical to that of a passive RF attenuator [4]), and shot noise in the receiving
photodiode. In the simple, direct-modulated diode link we are studying, RIN and
shot noise are the dominant terms, and as such we will ignore the various other
sources of thermal noise [5].

The relative intensity noise of the laser (RIN) is the mean deviation in optical output
power about the mean square output, given by

RIN (dB/Hz) = 𝑝2
𝐿

𝑃2 , (4.1)

where 𝑝2
𝐿 is the average fluctuation in optical power and 𝑃 is the DC optical power.

RIN is driven by fluctuations in the photon count in the laser gain cavity through
various mechanisms. If the laser were biased well past its threshold current, RIN is
dominated by shot noise. In this regime 𝑝2

𝐿 ∝ 𝑃, so RIN ∝ 1/𝑃. At lower optical



59

power, RIN is dominated by spontaneous emission [6] and is ∝ 1/𝑃3. Unfortunately,
this spectrum is not white, unlike pure shot noise. Near the laser’s relaxation
resonance, RIN is amplified [7], giving a slope to the power spectral density. Other
device-dependent effects can also strongly shape the spectral and bias-dependent
effects. As the behavior of RIN is strongly laser-dependent, we start with an
experiment measuring our laser’s RIN.

To measure the laser RIN, we employ the “subtraction method” [8]. This method
sidesteps the need for an optical spectrum analyzer by measuring the induced
photocurrent noise due to the laser’s intensity noise on an RF spectrum analyzer.
This experiment requires two measurements, one with the laser off and one with the
laser on. In the off state (with the photodiode biased), we measure the power spectral
density of the receiver with the dark current of the photodiode. Then, with the laser
biased, we repeat the measurement, this time reading a power spectral density of the
aforementioned noise sources superimposed with the laser’s noise. With the laser
biased, we note the DC photocurrent of the photodiode. A figure of the test setup is
shown in Figure 4.3.

Spectrum Analyzer

Fiber
Pigtail

50Ω

Mounted
Laser

Mounted
Photodiode Bias TeeBias TeeTermination

30.00 mA

Laser Bias

-5.00 V

Photodiode Bias

Figure 4.3: Diagram of RIN test setup

To compute the link noise alone, we subtract the “dark” noise from the measurement
with the laser on. Then, we compute the noise power into the spectrum analyzer
from the photodiode’s DC shot noise, and subtract that as well to result in just the
laser’s noise power. Finally, as the noise power is proportional to 𝑝2

𝐿 , we divide by
DC photocurrent’s equivalent power to compute RIN, given by

RIN (dB/Hz) = 10 log 10
𝑆𝑇 − 𝑆𝑅𝑋 − 2𝑞𝐼𝑃𝐷𝑍0

𝐼2𝑃𝐷𝑍0
, (4.2)
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where 𝑆𝑇 is the total power spectral density, 𝑆𝑅𝑋 is the measured “dark” power
spectral density, 𝐼𝑃𝐷 is the DC photocurrent, 𝑞 is the electron charge, and 𝑍0 is the
input impedance of the spectrum analyzer. We then repeat this measurement as a
function of bias. The result of this experiment is shown in Figure 4.4. The ripple in
this measurement is due to the mismatch between the high impedance photodiode
and the length of transmission line and bias tee before the 50 Ω spectrum analyzer
input. Missing data are due to the sensitivity limitations of the spectrum analyzer.
The general shape of rising noise with frequency comes from the aforementioned
laser relaxation resonance driving up RIN. The relaxation resonance for this laser is
just above 3 GHz, past the top end of the measurement.

107 108 109
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−160
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−120

Frequency (Hz)
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(d
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H
z)

Figure 4.4: Measured RIN of an AGx laser. Top to bottom: 10 mA to 50 mA in steps
of 4 mA.

To validate our assumptions about RIN, we look at the bias (optical power) response
at several frequencies. To observe the dependence on laser power instead of laser
bias current, however, we need to transform the laser current to power via the laser’s
threshold current 𝐼𝑡ℎ and slope efficiency 𝑠. As we also have measurements of the
DC photocurrent, and know the photodiode’s responsivity 𝜂 and an approximate
less-than-unity gain (loss) of the connector interface 𝐺𝑂 , we can estimate the optical
power from that direction as well. From the datasheet, 𝐼𝑡ℎ=8 mA, 𝑠=0.315 W/A,
𝜂=0.93 A/W. We estimate 𝐺𝑂 to be 0.98.

Looking at the response in Figure 4.5, we observe that the datasheet values and our
assumptions agree. This implies we can use either conversion factor to compute laser
power instead of disconnecting the laser and attaching it to an optical power meter.

Figure 4.6 shows the RIN versus laser power at a few frequencies. We observe the
steep increase in RIN at low laser power due to spontaneous emission, and the linear
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Figure 4.5: Laser output power vs. laser current and DC photocurrent.
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Figure 4.6: Measured RIN of an AGx laser vs laser output at three frequencies.

section due to shot noise at higher power, matching our prediction.

To aid in analysis, we ignore the frequency dependence for now and fit a simple
quadratic model at 1.5 GHz

RINModel = −131.2 − 5.5𝑃 + 0.19𝑃2 , (4.3)

where 𝑃 is the laser output power in mW, also plotted in Figure 4.6.

Now that we understand the bias and frequency response of RIN, we continue with
our noise analysis. In the small signal case, the laser appears as a small resistor
𝑅𝐿 , with deviations in current manifesting as deviations in the intensity of the light
following the slope efficiency of the laser. The RIN is then superimposed over this
modulated light, creating a mean square deviation over the DC optical power 𝑃
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following
𝑝2
𝐿 = RIN · 𝑃2𝐵 . (4.4)

Finally, the light is attenuated by the less-than-unity gain of the fiber, 𝐺𝑂 , and is
converted back into current following the photodiode’s responsivity. As the laser is
biased to a fixed optical output from which it is then modulated, the DC photocurrent
generates shot noise in the photodiode following

𝑖2𝑃 = 2𝑞𝐼𝑃𝐵 = 2𝑞𝑃𝐺𝑂𝜂𝐵 . (4.5)

The equivalent noise circuit for this system is shown in Figure 4.2.

We simplify this circuit by combining the dependent sources and moving the noise
currents forward towards the output, Port 2. The total current gain between the laser
input and the photodiode is

𝑔𝑖 = 𝑠𝐺𝑂𝜂 . (4.6)

Noise in the optical power of the laser manifests as noise in the photocurrent, scaled
by the square of the passive gain of the fiber and the photodiode responsivity, (𝐺𝑂𝜂)2.
As the shot noise and RIN are uncorrelated, the total noise current is their sum given
by

𝑖2Out = 𝑝
2
𝐿 (𝐺𝑂𝜂)2 + 𝑖2𝑃 = 𝑃𝐺𝑂𝜂𝐵(𝑃𝐺𝑂𝜂 · RIN + 2𝑞) . (4.7)

The simplified, output-referred circuit is shown in Figure 4.7.

𝑅𝐿

𝑖𝐿

+

−
Port 1 𝑔𝑖𝑖𝐿

+

−
Port 2𝑖2Out

Figure 4.7: RFoF output-referred current noise

It is usual to work in input-referred noise and here we encounter the first quirk in
noise analysis, where instead of simply referring 𝑖2Out to the input by 𝑔2

𝑖 , we must
consider the impact of the source termination. Definitionally, noise figure is the
degradation in SNR, where the “signal” originates from a power source, i.e., with
a source impedance. This is emblematic of the difficulty in this type of analysis,
as it would seem that moving the currents forward in the previous case is the same
as moving them backwards towards the input. However, the subtle distinction here
is that moving forward is asking, "how does current changing at the input branch
manifest as current at the output", which depends solely on the gain, whereas moving
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backwards is asking, "what equivalent current at the input would manifest as current
at the output", which depends on the circuitry attached to the input. We begin to
solve this problem by working backwards, starting with the current we want at the
input under the source termination condition and working towards the output.

𝑅𝐿

𝑖𝐿

𝑖2In𝑅𝑆 𝑔𝑖𝑖𝐿

+

−
Port 2

Figure 4.8: RFoF input-referred current noise

In this configuration, we use the current divider to find

𝑖𝐿 = 𝑖In
𝑅𝑆

𝑅𝐿 + 𝑅𝑆 . (4.8)

Then, we use the current gain to move to the output

𝑖Out = 𝑔𝑖𝑖In
𝑅𝑆

𝑅𝐿 + 𝑅𝑆 . (4.9)

Finally, we solve for 𝑖In in terms of 𝑖Out, and take the time average of the square

𝑖2In =
𝑖2Out

𝑔2
𝑖

(
𝑅𝐿
𝑅𝑆
+ 1

)2
. (4.10)

To find the noise figure, we use the relation

𝐹 =
𝑖2Total

𝑖2𝑆

=
𝑖2In + 𝑖2𝑆
𝑖2𝑆

=
𝑖2In

𝑖2𝑆

+ 1 , (4.11)

where 𝑖2𝑆 is the thermal noise in the generator, defined as

𝑖2𝑆 = 4𝑘𝐵𝑇0𝐺𝑆𝐵 , (4.12)

where 𝐺𝑆 is the source conductance and 𝑇0 =290 K (IEEE standard). Combining
these equations yield

𝐹 = 1 +
𝑖2Out

(
𝑅𝐿
𝑅𝑆
+ 1

)2

4𝑘𝐵𝑇0𝐺𝑆𝐵𝑔
2
𝑖

. (4.13)

Finally, as we prefer to work in equivalent noise temperature, we use 𝑇𝑒 = 𝑇0(𝐹 − 1),
we find

𝑇𝑒 =
𝑃𝑅𝑆

4𝑘𝐵𝑠2𝐺𝑂𝜂
(𝑃𝐺𝑂𝜂 · RIN + 2𝑞)

(
𝑅𝐿
𝑅𝑆
+ 1

)2
. (4.14)
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This equivalent noise temperature result gives insight into the behavior of the link
under different source impedances. If we are free to choose 𝑅𝑆 through matching,
we would want to know what 𝑅𝑆 provides the best noise performance. We solve for
this quantity by minimizing Equation 4.14, finding the 𝑅𝑆 that solves 𝛿𝑇𝑒/𝛿𝑅𝑠 = 0.
Taking the positive solution of the quadratic yields

𝑅𝑆,Opt = 𝑅𝐿 . (4.15)

This follows from the fact that all the noise sources are not electrically influenced by
the source impedance, so by conjugate matching the laser, we maximize the link’s
gain and therefore minimize the input-referred noise. In this case, we can find the
minimum noise temperature of

𝑇Min =
𝑃𝑅𝐿

𝑘𝐵𝑠2𝐺𝑂𝜂
(𝑃𝐺𝑂𝜂 · RIN + 2𝑞) , (4.16)

which is a ratio of
𝑇𝑒
𝑇Min

=
(𝑅𝑆 + 𝑅𝐿)2

4𝑅𝑆𝑅𝐿
, (4.17)

or 3.025 for 𝑅𝑆 =50 Ω and 𝑅𝐿 =5 Ω The plot for minimum noise alongside the 50 Ω
noise is shown in Figure 4.9. This figure uses typical parameters for our laser1, which
has a RIN following our model in Equation 4.3, a slope efficiency 𝑠 of 0.315 W/A,
and a slope impedance of 5 Ω and for our photodiode2, which has a slope efficiency
𝜂 of 0.93 A/W. The conclusion from this plot is that for laser powers between 8 mW
and 12 mW, the noise is about the same, within a factor of 2, and remains that way
as we increase the loss.

With 𝑇𝑒 (𝑅𝑆) and 𝑅𝑆,Opt, we have essentially derived the noise parameters of the
RFoF link. Notably missing from this analysis are the parasitics of the components,
the series inductance of the leads of the packaged coaxial laser and photodiode, and
the junction capacitance of the photodiode. To minimize noise, as we have seen, we
will want to power match at the input of the network. As such, any inductance at the
input will need to be tuned out in addition to matching the slope resistance.

S Parameters

In analyzing the gain and reflection coefficients of the RFoF link, it is more convenient
to analyze S parameters instead of voltages and currents. However, determining the
1https://www.agxtech.com/PDF/PLMR3+Rev+4.0.pdf
2https://www.agxtech.com/PDF/PPDA+R5.6.pdf

https://www.agxtech.com/PDF/PLMR3+Rev+4.0.pdf
https://www.agxtech.com/PDF/PPDA+R5.6.pdf


65

−2 0 2 4 6 8 10 12 14 16 18 20 22104

105

106

Optical Loss (dB)

Li
nk

N
oi

se
Te

m
p.

@
La

se
rI

np
ut

(K
)

4 mW
8 mW
12 mW

Figure 4.9: RFoF link noise (𝑅𝑆 = 50 Ω (solid) and optimal (dotted)) versus optical
attenuation.

S parameters directly from the Figure 4.2 model is nontrivial due to the dependent
sources. Instead, it would be easier to consider the Y parameters and convert using
the well-known formula. The Y parameters of Figure 4.2 are

𝑌Link =
1
𝑅𝐿

[
1 0

𝑠𝜂𝐺O 0

]
. (4.18)

Converting to S parameters gives

𝑆Link =


𝑅𝐿 − 𝑍0
𝑅𝐿 + 𝑍0

0

2𝑍0𝑠𝜂𝐺O
𝑅𝐿 + 𝑍0

1


. (4.19)

𝑆11 of this result is as expected, it is simply the reflection coefficient of the laser’s
slope impedance. 𝑆21, however, is more nuanced. If we substitute numbers into
this equation such as 𝑍0=50 Ω, 𝑅𝐿=5 Ω and 𝑠𝜂𝐺Opt=0.2, we find |𝑆21 |2=−8.79 dB.
If we “match” the laser by setting the characteristic impedance equal to the laser’s
impedance 𝑅𝐿 = 𝑍0, the equation reduces to 𝑠𝜂𝐺Opt. However, using the same
device parameters, we find |0.2|2=−13.98 dB, unintuitively lower gain than before.
The apparent drop in gain is because the equation for 𝑆21 assumes both the output
and input ports have equivalent characteristic impedance, and changing the output
impedance changes the power delivered from the photodiode. It would be more
correct to analyze this circuit with an explicit matching network at the input.
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For a real load as we are exploring, we can use an ideal transformer at the input as
our matching network, which has an ABCD matrix of

𝐴𝑇𝐹 =

[
𝑁 0
0 1/𝑁

]
. (4.20)

We convert the Y matrix of the link to ABCD parameters using the standard equation
to arrive at

𝐴Link = − 1
𝑠𝜂𝐺O

[
0 𝑅𝐿

0 1

]
. (4.21)

We then cascade to get

𝐴Combined = − 1
𝑠𝜂𝐺O

[
0 𝑁𝑅𝐿

0 1/𝑁

]
. (4.22)

And then finally converting to S parameters, we find

𝑆Combined = − 1
𝑍0 + 𝑁2𝑅𝐿

[
𝑍0 − 𝑁2𝑅𝐿 0
2𝑁𝑍0𝑠𝜂𝐺O 1

]
. (4.23)

If 𝑁 =
√︁
𝑍0/𝑅𝐿 , matching to the laser resistance, this reduces to

𝑆Matched =

[
0 0

−√𝑍0𝑠𝜂𝐺O/
√
𝑅𝐿 1

]
. (4.24)

Using the same parameters as before, the matched link now has an |𝑆21 |2 of −3.98 dB,
or 4.81 dB higher gain than unmatched. A notable result from this is that positive
power gain can be achieved, even though the intrinsic link exhibits a current gain of
less than unity. For example, if 𝑠𝜂𝐺𝑂=0.2, 𝑍0=50 Ω, and 𝑅𝐿=2 Ω, the link’s gain
|𝑆21 | would be unity. While unintuitive, the transformer acts as a current gain device,
for which a given turns ratio will counteract the current loss in the link. From both
the noise and gain perspective, we want to power match the input of the laser. We
can perform this match with a wideband transformer, although finding a device with
such an extreme impedance ratio may prove difficult. Alternatively, transmission
line matching or lumped matching could be employed.

Linearity
The final metric we evaluate for the RFoF link is the linearity. If radio frequency
interference (RFI) is strong enough, nonlinearity in the signal chain would result in
frequency products in addition to the center frequency of the RFI itself. The strength
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of these 𝑛th-order products depends on the strength of the incoming signal and the
𝑛th derivative of the transfer function of the system. One way to reduce the impact
of this distortion is to simply limit the incoming signal strength. Doing so, however,
is at odds with added noise, as we want to increase power before a noisy component
to reduce that component’s noise impact on the SNR. To compare RFoF links (bias
settings, laser or photodiode choice, etc.), we use “spurious free dynamic range” or
(SFDR) as a noise-normalized linearity metric. SFDR is defined as the maximum
signal power at the output for which the power of the 𝑛-th order intermodulation
product is equal to the noise power. This is defined following [9] as

SFDR𝑛 (dB) = 𝑛 − 1
𝑛
(OIP𝑛 − 𝑁𝑂) , (4.25)

where OIP𝑛 is the 𝑛th order output intermodulation intercept point and 𝑁𝑂 is the
output noise power, both defined in dBm. We only need to consider 𝑛 = 3 for
narrowband systems, but our radio telescope is more than an octave, so we must
consider second order distortion as well, as distortion products from the lower half
of the band will appear in the upper half.

Experimental Results
Noise
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Figure 4.10: RFoF link input noise temperature from 10 mA to 50 mA (top to bottom)
in steps of 4 mA.

To validate our noise derivation, we directly measured the link output noise and
referred this to the input. The setup is identical to that used in the RIN characterization,
shown in Figure 4.3. We used a spectrum analyzer as a power meter to measure
the noise power, with the link input terminated with a room-temperature load. In
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addition to this “hot” measurement, we also measured the noise of the receiver,
including the “dark current” of the photodiode. Finally, we subtracted the linear
noise powers to leave us with just the noise of the link. Using measured power gain
from a network analyzer, we referred the noise power back to the input.

We measured the noise power spectral density on a spectrum analyzer at the output of
the photodiode, subtracting the receiver noise. The input-referred noise temperature
in Figure 4.10 matches our expected result from Figure 4.9, with high laser currents
resulting in an input noise temperature of about 60 000 K in the band of interest.
While this is an excellent result, we need to consider both the noise and linearity to
compute the SFDR.

Linearity

Network Analyzer

Bias TeePower
Combiner

Fiber
Pigtail

Mounted
Laser

Mounted
Photodiode

-5.00 V

Photodiode Bias

30.00 mA

Laser Bias

Figure 4.11: Diagram of linearity test setup

While it is simple to measure noise and gain to validate analytic expressions, linearity
is more difficult as we do not have an expression for the actual transfer function of
the laser and photodiode pair. The solution is to probe the individual derivatives of
the transfer function by injecting a pair of tones and observing their intermodulation
products, derived for reference in Appendix B. For the experiment, we inject two
closely spaced tones, 𝜔𝐿 and 𝜔𝐻 (1 MHz apart) and observe five tones on the output.
We observe the powers of the two fundamental tones to track the gain, 𝑃𝐿 and 𝑃𝐻 ,
𝜔𝐿 + 𝜔𝐻 for IM2 to compute OIP2 via

OIP2 (dBm) = 𝑃𝐿 + 𝑃𝐻 − IM2 , (4.26)
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and 2𝜔𝐻 − 𝜔𝐿 for IM3𝐻 , and 2𝜔𝐿 − 𝜔𝐻 for IM3𝐿 to compute OIP3 via

OIP3 (dBm) = 2𝑃𝐿 + 𝑃𝐻 − IM3𝐿
2

(4.27)

=
𝑃𝐿 + 2𝑃𝐻 − IM3𝐻

2
. (4.28)

As OIP3 has two unique solutions, we are typically interested in the worst case, which
will be the minimum of the two OIP3 results. For most components, the two terms
will be close to equal. Performing this experiment for the AGx laser and photodiode
pair from before, we measured the results shown in Figure 4.12.
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Figure 4.12: RFoF measured OIPn. Red trace is the receiver linearity, black traces
bottom to top are laser currents from 10 mA to 50 mA in steps of 2 mA

This measurement was performed on a PNA-X network analyzer, utilizing the two
independent sources as the two tones incident on the link under test, shown in
Figure 4.11. We used a power combiner to join these two outputs, and calibrated
out the loss of the combiner and bias tee to result in an incident power of −20 dBm
for each tone. The analyzer was then configured to detune the receiver to follow the
five tones of interest described earlier, measuring the power directly in dBm. This
measurement includes a correction for the loss in the cable and internals following
the photodiode.

Both the IP2 and IP3 results are excellent for this laser, being limited by the dynamic
range of the PNA-X in the IP3 measurement. In the presented range, the gain only
changes slightly, from an average of −5 dB to −4 dB across the band, with associated
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input values changing accordingly. The linearity improves through increased laser
power, but then worsens as the device starts to saturate, near 50 mA.

Combining the noise and linearity measurements, we compute the spurious-free
dynamic range as defined in Equation 4.25, shown in Figure 4.13. Here, we see
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Figure 4.13: Spurious-free dynamic range for the intrinsic RFoF link. Traces bottom
to top are laser currents from 10 mA to 50 mA in steps of 2 mA. Noise power is the
measured intrinsic link noise under 100 kHz of noise equivalent bandwidth.

that we are limited primarily by the 2nd-order linearity, although it is important to
note that after 1 GHz, the power in the second order tone (2 GHz) is out of band and
will be filtered out). At high laser powers, in the band of 0.7 GHz to 2 GHz, we can
expect SFDR of better than 60 dB for the intrinsic RFoF link.

As the SFDR falls off at high laser power while the noise improves, we find the
optimum laser bias of around 38 mA shown in Figure 4.14.

Long-Haul RFoF
The final piece of the RFoF puzzle involves the consequences of the exceptionally
long fiber that connects the most remote antennas in the telescope to the digitizers.
Current estimates predict the longest fiber lengths will be about 20 km. As the
lasers operate at 1310 nm, the effective loss in standard single-mode fiber is around
0.5 dB/km. Figure 4.9 indicates that the resulting 10 dB of optical loss (20 dB in RF
power loss) will result in about a factor of four increase in noise. This is still an
acceptable noise level, as there can be a significant amount of gain before the link.
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Figure 4.14: Spurious-free dynamic range for the RFoF link vs laser current

In initial experiments with a 20 km spool on the bench, linearity and noise both
worsened significantly more than what was expected. We believe the origin of
these effects are reflections off imperfect connectors and Rayleigh backscattering,
coupled with poor isolation in the laser and laser chirp. While simple reflections
are a well-known issue in RFoF links, the induced distortion due to the increased
effect of Rayleigh backscattering in long fibers combined with the laser chirp is
more nuanced. Only recently has this effect been discussed in the context of radio
astronomy [1], [10].

Rayleigh backscattering is a phenomenon in optical fiber where imperfections in
the refractive index results in scattering. While this would typically manifest as a
linear effect (and is the dominant component of loss in fiber optic links [11]), the
interaction with the chirp of the laser results in nonlinear effects. Chirp is the change
in instantaneous optical frequency of the laser as it is directly modulated. As Rayleigh
backscattering sends a reflected wave back into the laser, the time-dependence of
chirp results in the different optical frequencies mixing and retransmitting, resulting
in a distorted signal.

There are a few ways one could mitigate the distortion introduced from chirp and
scattering. The most straightforward approach would be to use a lower chirp laser, or
to use an external modulator where there would be no chirp. Both of these solutions,
however, are typically expensive. The solution for one radio telescope (the SKA) [10]
is to introduce a dithering tone. This low frequency modulation added on top of the
RF modulation results in decoherence of the scattered light and the light emitted from
the gain cavity of the laser. This solution, however, requires additional hardware and
filtering. The most simple solution is to instead purchase lasers with more optical
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Figure 4.15: Linearity metrics for single- and double- isolated lasers at 0 and 20 km.
Both lasers are operated at 40 mA.

isolation built in, or add in-line isolators in the path of the fiber near the laser. For
most vendors, a double isolator (which increases the optical isolation by 20 dB) is on
the order of a $10 increase in cost.

We find that adding additional isolators is an effective way to reduce the nonlinearities
introduced by Rayleigh backscattering by repeating the earlier tests on the bench
with a 20 km spool3, shown in Figure 4.15. In this figure, the top row are tests with
0 km of fiber, with the laser and photodiode directly connected. The bottom row
adds a 20 km spool of single-mode fiber between the two. The left column shows
OIP2 and the right column shows OIP3. All four measurements are shown for the
3Thank you, Courtney!
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single- and double-isolated lasers.
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Figure 4.16: Noise temperature for single- and double- isolated lasers at 0 km (dotted)
and 20 km (solid). Both lasers are operated at 40 mA.

From Figure 4.15, it is clear that at 20 km we observe Rayleigh scattering as the
linearity for the single-isolated laser is significantly lower. Adding the double isolator
improves the linearity for both second and third order distortion. It is important to
note, however, that the overall output intercept points have dropped in the case of
the long fiber. This is due to the fiber introducing 10 dB of loss, and the primary
distortion mechanism is from the laser itself. If you add the 10 dB of loss back to the
20 km numbers, the double-isolated intercept points match the 0 km measurements,
matching our expectations.

We can see similar behavior in noise by measuring the devices in the same manner
as described earlier. The results are shown in Figure 4.164. With the single-isolator
laser, the noise increases by more than an order of magnitude when we add the 20 km
of fiber, which is much more than the predicted results from Figure 4.9. With the
double-isolated laser, however, the noise is almost exactly what we predict of around
2 × 105 K.

Adding a double isolator is a simple, low-cost solution that significantly improves
the performance of the link in the long-haul limit. Additionally, doing so does not
reduce performance in the short-fiber distances. The output power of the laser is
lower in the double-isolated case due to the doubled insertion loss of the isolator, but
this only mildly increases the noise.
4Ripples are due to uncalibrated cables that connect to the bare diodes, as this measurement was
performed on a spectrum analyzer with a tracking generator and not a network analyzer
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4.2 System Design
Link Budget
For the DSA-2000, we are presented with a few key science requirements that induce
engineering requirements. For us, the most important metric is survey speed. Our
ability to survey the sky to high sensitivity with a fast cadence is one reason this
instrument will be impactful. Survey speed is a consequence of the radiometer
equation, where we compute the RMS uncertainty in a noise measurement by

𝜎𝑇 =
𝑇Sys√
𝐵𝜏

, (4.29)

given system temperature 𝑇Sys, bandwidth 𝐵 and integration time 𝜏. If our goal is
to have high confidence in our results, say 5𝜎 and the telescope has some fixed
bandwidth, we have two “free” parameters: 𝑇Sys and 𝜏. These are free in the sense
that 𝑇Sys is an engineering requirement and 𝜏 is an operational requirement. If 𝑇Sys

were very low, we could integrate over much less time to achieve the same statistical
result. For a large survey, we must perform this integration for every piece of the
sky we want to observe. As such, driving down 𝑇Sys is critical for the survey speed
performance, quadratically so.

To not significantly perturb the survey speed, we chose to place a limit of no more
than 1 K added to 𝑇Sys from electronics following the LNA. As the LNA has ≈35 dB
of gain, this implies a maximum tolerable noise of ≈3100 K at the output of the LNA.

Next, we focus on the total gain requirement. The amount of absolute power required
to drive the digitizers is dependent on the exact digitizer we use. The current design
uses the 12-bit AD92075 from Analog Devices. The full-scale peak-to-peak input
voltage is 1.475 V across the differential 100 Ω input. We want to set the gain of the
analog signal path such that the astronomical signal exercises about three bits [12].
A detectable signal must be above the device’s quantization noise, reducing the
effective bit-depth of the ADC to an “effective number of bits” (ENOB). Our ADC
has an ENOB of about 9 at 2 GHz. This implies that three bits correspond to a
peak-to-peak voltage of 23.05 mV, or −31.78 dBm into the 100 Ω differential input.
At the input of the analog signal path, 𝑇Sys induces a noise power of −93.48 dBm
(25 K across our 1.3 GHz bandwidth). Therefore, we require at least 61.7 dB of gain.
About 35 dB of gain is covered by the LNA, leaving only 26.7 dB needed for the
remainder of the ASP.
5https://www.analog.com/media/en/technical-documentation/data-
sheets/ad9207.pdf

https://www.analog.com/media/en/technical-documentation/data-sheets/ad9207.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad9207.pdf
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Finally, we must consider linearity. The signal levels from astronomical sources will
be incredibly faint, so their intermodulation products are unimportant. Unfortunately,
radio frequency interference (RFI) can be terribly strong, wreaking havoc on our
science data. The impact of RFI can be categorized into three domains. First, if
the RFI is faint enough to generate intermodulation products beneath the power
of 𝑇Sys, all we must do is flag the carrier channels as contaminated. Second, the
RFI power could be strong enough to generate intermodulation products that also
contaminate the science band, implying we would need to flag more than the channel
of the RFI. Finally, the RFI could be so strong that we compress the amplifiers or
saturate the ADC, resulting in an unusable signal path. In the final case, there is
not much that can be done in ASP design, depending on what saturates first. If
everything were linear, this gives us ≈50 dB of headroom between the ADC noise
and the brightest RFI we can tolerate before the ADCs saturate. This motivates using
highly linear amplifiers after the LNA, such that we only need to worry about the
ADC. In the first and second cases, we can derive a constraint in the second and third
order intermodulation terms if we want the intermodulation power to be no more
than some fraction of the noise power in a channel.

If the signal chain has 61.7 dB of gain and the full-scale power of the ADC is
4.34 dBm, RFI will saturate the ADC at 𝑃RFI =−57.36 dB into the LNA. If we
constrain the linearity such that the ASP does not generate intermodulation products
higher than the noise level of 𝑃𝑁 =−93.48 dBm at the input, then we can compute
lower limits on the input second-order intercept as IIP2 = 2𝑃RFI − 𝑃𝑁=−21.23 dBm
and third-order intercept as IIP3 = (3𝑃RFI − 𝑃𝑁 )/2=−39.29 dBm. Referred to the
output under 61.7 dB of gain, these bounds are an OIP2 and OIP3 of 40.46 dBm and
22.4 dBm, respectively.

Cascade Analysis
To optimize the analog signal path, we compute the input-referred noise and total
cascaded linearity. Computing the total link noise follows from the Friis cascaded
noise equation

𝑇In = 𝑇LNA + 𝑇1
𝐺LNA

+ 𝑇2
𝐺LNA𝐺2

. . . , (4.30)

where each subsequent noise contributor is divided by the available gain of all the
components before it. Linearity, however, is again a bit tricky. As the intermodulation
powers are deterministic, they may be in-phase and add coherently. Following the
derivation in [9], we find the total OIP3 of a cascaded system with coherent products
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as

OIP3 (W) =
(

1
𝐺𝑛OIP3𝑛−1

+ 1
OIP3𝑛

)−1
, (4.31)

where 𝐺𝑛 is the gain of the 𝑛th component along with its OIP3𝑛 , OIP3𝑛−1 is the
cumulative OIP3 through the previous 𝑛 − 1 stages. All of these calculations are
performed in linear units. This equation is a worst-case estimate, assuming every
intermodulation product adds coherently. This will never be the case as there is a
relatively random distribution of cable lengths, interconnects, and component phase
delays. As such, we can approximate the phases between each stage to be random,
and compute the associated cascaded intercept point as

OIP3 (W) =
(

1
𝐺2
𝑛OIP32

𝑛−1
+ 1

OIP32
𝑛

)−1/2
. (4.32)

We can then input-refer these quantities by dividing by the accumulated gain as

IIP𝑛 = OIP𝑛/𝐺 . (4.33)

Stated another way, if we assume the intermodulation terms have random phase, then
their powers would add. The derivation for 2nd order distortion and cascade analysis
can be found in Appendix B.

Using these results, we compute the cascaded behavior for all the components along
the analog signal path, shown in Table 4.1. Our noise only increases by ≈0.7 K,
beneath our requirement of 1 K. The total gain is 74.7 dB, with adjustable attenuators
allowing for control. We set the attenuators to match our gain requirement and to
maximize dynamic range. Finally, the cascaded OIP2 and OIP3 are 45.83 dB and
33.57 dBm respectively, exceeding our requirements.
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Table 4.1: Cascade analysis of analog signal path. Included are coherent (Coh.) and random (Rand.) output intercept points. Noise at the
input LNA represents the entire system noise temperature. Laser noise is assuming a worst-case of 1 × 106 K. Laser linearity uses the
double-isolator result from Figure 4.15. Passive components are taken to have infinite linearity.

Component Cascaded

Description Part Number Gain Noise OIP2 OIP3 Acc. Gain Noise OIP3 Coh. OIP3 Rand. OIP2 Coh. OIP2 Rand.
(dB) (K) (dBm) (dBm) (dB) (K) (dBm) (dBm) (dBm) (dBm)

LNA ksWBLNAv2 35 25 22 16 35 25 16 16 22 22
Cable - -3 288.63 – – 32 25.09 13 13 18.99 19
Bias Tee Lumped -0.1 6.75 – – 31.9 25.10 12.9 12.9 18.88 18.9
BPF Lumped -2 169.62 – – 29.9 25.21 10.9 10.9 16.88 16.9
Amplifier PGA-105 15 170 49 39 44.9 25.38 25.69 25.89 30.75 31.82
External Filter - 0 0 – – 44.9 25.38 25.69 25.89 30.72 31.82
Attenuator F1958 -2 169.62 80 64 42.9 25.38 23.69 23.89 28.69 29.82
Amplifier PGA-105 15 170 49 39 57.9 25.38 35.83 37.44 39.93 43.41
Attenuator PAT-1220C -3 288.63 – – 54.9 25.39 32.83 34.44 36.87 40.41
Amplifier PGA-105 15 170 49 39 69.9 25.39 38.47 38.98 44.29 48.11
BFP Lumped -1 75.09 – – 68.9 25.39 37.47 37.98 43.17 47.1
Attenuator PAT-1220C -3 288.63 – – 65.9 25.39 34.47 34.98 40.08 44.1
Bias Tee Lumped -0.1 6.75 – – 65.8 25.39 34.37 34.88 39.89 44
RFoF Link - -25 1E6 20 0 40.8 25.66 -0.48 -0.02 11.06 16.46
Bias Tee Lumped -0.1 6.75 – – 40.7 25.66 -0.58 -0.12 10.95 16.36
Attenuator PAT-1220C -3 288.63 – – 37.7 25.68 -3.58 -3.12 7.95 13.36
Amplifier PGA-105 15 170 49 39 52.7 25.71 11.42 11.88 22.53 28.32
Attenuator F1958 -3 288.63 80 64 49.7 25.71 8.42 8.88 19.52 25.32
BPF Lumped -1 75.09 – – 48.7 25.71 7.42 7.88 18.51 24.32
Amplifier PGA-105 15 170 49 39 63.7 25.72 22.32 22.88 32.16 38.88
Attenuator PAT-1220C -3 288.63 – – 60.7 25.72 19.32 19.88 29.14 35.88
Amplifier PGA-105 15 170 49 39 75.7 25.72 33.05 34.57 40.21 46.83
AA Filter Distributed -1 75.09 – – 74.7 25.72 32.05 33.57 39.13 45.83
ADC AD9207
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FTX and FRX Boards

Figure 4.17: FTX and FRX PCBs

To implement the analog signal path, we designed two printed circuit boards, shown
in Figure 4.17. These boards are the fiber transmitter (FTX) at the antenna station
and the fiber receiver (FRX) at the central processing facility. Both of these boards
include monitor and control capabilities, measuring board currents and temperatures,
and controlling digital step attenuators and bias currents. This interface is achieved
via an I2C serial interface, whose digital lines are heavily filtered and will be disabled
during observations.

FTX

The FTX board consists of three stages of amplification with a collection of filters
and attenuators. The laser bias is provided by a controlled current source, whose
set point is controlled by a digital potentiometer. The laser’s anode is connected
to the case, which implies we must drive the laser using a negative supply voltage.
Controlled current sources that allow for this are uncommon, motivating a custom
design. The design allows for a current selection between 0 mA and 50 mA, covering
the full range of acceptable currents for the AGx laser.

In addition to the laser control, the FTX includes a connection point for an external
filter. In the current design stage, it is unclear if we will require much filtering
besides shaping the 1280-1530 MHz bandpass. In earlier stages of the project,
strong interference causing significant distortion was a top concern. The current RFI
environment of the DSA-2000 site seems to indicate that no additional filtering will
be required. Nevertheless, the option to add the filters will remain if this situation
changes.

The FTX board itself is housed inside an RFI-tight container, with feed-through
connections for the RF, digital, and power signals. The switching power supply for
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the board is housed on the outside of the enclosure to prevent switching noise from
leaking into the signal path. Each box contains electronics for both polarizations.

FRX

At the receiving side, the FRX module is a daughter board to the “radio camera
frontend” or RCF. The RCF is a larger card that hosts the ADCs and FPGA and
fits into a 10-unit Eurocard subrack. Two FRXes must then fit on a standard height
card (100 mm), with some gap for edge interfaces. The RF signals out of the FRXes
are connected to the digitizers on the RCF using a standard SMP board-to-board
connector. The FRXes are shielded with an aluminum cover that encloses the
modules and are electrically connected to a ground plane on the RCF PCB. The
signals are routed on inner layers of the RCF PCB, so the FRX boards are surrounded
by ground on all sides, except for a small slit that allows the fiber to exit. The fiber
pigtail is connected to the front panel of the card with a standard fiber interface.

The design of the FRX card was straightforward, with a standard assortment of filters
and amplifiers. Perhaps the most interesting component is the distributed low pass
antialiasing filter at the output. This filter is an inverse-Chebyshov low pass filter
that has been optimized in physical area. The center resonator was split in half and
folded inwards to minimize space.

4.3 LNA Improvements
As the project progresses, the DSA-2000 team has been charged with pushing the
performance even further, both in terms of what can be achieved before final design
review and as avenues for future upgrades. As the goal is to continue maximizing
survey speed, we want to exhaust all options to reduce system noise within our
budget.

For the current frequency range, there is very little we can do to improve the noise
from a circuit design perspective. The presented LNA from Chapter 3 is close to
the theoretical minimum noise of the transistor, with typical losses of the matching
network. While this design is optimal for room temperature operation, it could
benefit from cooling, as is the case for any transistor. The entire premise of the
ambient temperature LNA was to avoid cooling, but we can accomplish some cooling
using Peltier microcoolers without resorting to expensive cryogenics. Additionally,
the noise of the amplifier is dependent on the source impedance presented by the
feed. As such, the design of the LNA input matching network could be modified to
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provide a better match to the feed instead of to 50 Ω. The following section discusses
these two potential improvements.

Active Cooling
Thermoelectric cooling of LNAs is a well-known approach [13] for improving an
amplifier’s noise. However, most implementations of this strategy involve “bulk”
cooling, where the entire amplifier assembly is cooled. The power required for bulk
cooling to achieve reasonable noise improvements can be significant. Additionally,
the hot-side of the cooler would need a large heat sink and fan for thermal management,
adding size, weight, and power. An alternative for hybrid amplifiers is to cool only
the first-stage transistor, as that has the highest impact on the LNA’s noise. These
transistors are very small and low power, requiring significantly less cooler power
than what would be required to achieve the same noise improvement in bulk cooling.
Modern advancements in miniaturization of Peltier coolers for optoelectronics6 have
dramatically lowered cost and improved performance. As such, we have designed
an amplifier with an embedded microcooler for the first stage transistor to improve
the noise without significant impact to cost or power consumption. Variants on this
idea have been shown before [14], but have been limited to MMIC-based amplifiers,
which require a larger cold-side area and cooling capacity.

The potential noise gains, however, need to be weighed against the complications that
could arise due to creating a below-freezing point inside the amplifier. This presents
a formidable design challenge, as the goal for the project is to have an exceptionally
low mean-time-to-failure. If water vapor were to leak into the chassis, it would freeze
over the transistor and result in failures. To prevent this, we need to design an LNA
that is hermetically sealed, which adds complexity and cost. The improvement in
survey speed, however, could be substantial depending on what is achievable and
may outweigh the added engineering costs.

The current LNA design biases the transistor at a power of 8 mW (0.5 V at 16 mA
of drain current). Models for this transistor at 2 GHz indicate a minimum noise
temperature of 7 K at 300 K ambient and 0.6 K at 15 K ambient. This results in a
noise slope of about 1 K per 45 K change in ambient temperature. To improve our
amplifier by 1 K, we can integrate a small single-stage microcooler to generate the
45 K differential.

To fully estimate the heat load that we would need to cool, we must account for heat
6Typically used for lasers in high-speed digital communication
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introduced from the short wire bonds. We can compute this via

𝑄Wires = 𝑁𝐾
𝑆

𝐿
Δ𝑇 , (4.34)

where 𝑁 is the number of wires, 𝐾 is the wire material thermal conductivity, 𝑆 is the
wire cross-sectional area, 𝐿 is the wire length, and Δ𝑇 is the temperature differential.
If we require 𝑁 = 5, 20 µm diameter (𝑆 =2.54 × 10−10 m2) wire bonds (three for the
transistor and two for the thermistor) made of gold (𝐾 =314 W

m K) with an average
length of 𝐿 =500 µm across the Δ𝑇 of 45 K, we have an additional heat load of
36 mW. This implies that the bulk of the required cooling capacity comes from the
wire bonds and not the transistor.

As the Δ𝑇 produced by a Peltier cooler behaves non-linearly under different heat
loads, a bit of trial and error is required to estimate their performance properly.
Estimations from the manufacturer7 for their 1TC22-0044-25.H model predicts a
maximum Δ𝑇 of just beneath 30 K for 45 mW of heat. With this Δ𝑇 , however, the
cooling requirement will be smaller as the heat from the wire bonds is less due to the
lower temperature differential. In this scenario, we can compute a total wire bond
head load of 32 mW, which would induce a new Δ𝑇 closer to 40 K. This all implies
we can expect a measured Δ𝑇 of between 30 K and 40 K.

Figure 4.18: Bonded transistor on microcooler and constructed cooled amplifier

We constructed a copy of the amplifier described in Chapter 3, but with an embedded
microcooler. While this amplifier was not hermetically sealed, two holes were added
at either end, with dry nitrogen pumped through one side. Additionally, a hole and
7https://www.tec-microsystems.com/

https://www.tec-microsystems.com/
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microscope slide was added to the lid to observe the first stage transistor under
cooling to watch for ice formation. The microcooler was powered via an independent
supply, and a thermistor was mounted to the cold-stage, adjacent to the transistor to
monitor the temperature. Finally, we performed the precision noise measurement
described in Chapter 3. A close-up picture of the bonded transistor (center) and
thermistor (bottom right) on the microcooler and assembled amplifier is shown in
Figure 4.18. The transistor’s wire bonds from left to right are the gate, source, and
drain.

With zero power applied to the microcooler, we measured a thermistor temperature
of 30 C. With the cooler powered to its maximum current, we measured a thermistor
temperature of −10 C, for a Δ𝑇 of 40 C. The LNA noise temperature dropped by an
average of about 0.75 K, shown in Figure 4.20, which is very close to the predicted
0.89 K and well within the error for this measurement.

While the experiment was a success, eventually ice did start to form on the first
stage transistor, destroying the fragile air bridges. Work on this solid-state cooling
approach needs further investigation in environmental control, especially as it pertains
to mass-manufacture for the 4000 LNAs that would eventually need to be built.
Additionally, our original estimations of the heat load which influenced the sizing of
the microcooler did not include the heat load of the wire bonds. The manufacturer has
suggested a new custom part, 1TC22-0040-21.H, which should have a higher Δ𝑇
of about 50 K under our heat load of ≈40 mW. We could also investigate two-stage
coolers for significantly more cooling capacity, but with a downside of doubling
the cross-sectional area of the cold-stage. This would increase wire bond length
which would reduce the heat load, but add significant inductance which will alter our
matching network.
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Figure 4.19: Test setup for cooled amplifier noise measurements
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Figure 4.20: Measured noise temperature of cooled amplifier
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Optimization of LNA Input Matching Network to Feed Impedance
All our amplifier designs up to this point are intended to operate in a 50 Ω system,
but the impedance presented by the feed is not 50 Ω. The feed has return loss greater
than 10 dB over much of the band, but the mismatch at the band edges significantly
degrades the noise.

To reduce the effect of the feed impedance “pulling” the noise, we can design a
matching network that is optimized for the feed impedance. If the feed impedance
were a large deviation from 50 Ω, it would be difficult to validate performance in the
lab, as all the noise experiments are done in a 50 Ω system. However, as the feed
was intended to match to 50 Ω, we only have to compensate for a small difference
in impedance, leaving the 50 Ω bench test more than satisfactory for validating
performance.

Performing the co-optimization follows the work from Chapter 3, with a small
modification made to the definition of the noise goal in the cost expression. Before,
we were simply using 𝑆22 of the nonuniform input matching network as the source
reflection coefficient Γ𝑆 needed to compute the noise via Equation 2.3. Now, we take
measured 𝑆11 data of the feed and compute ΓOut via

ΓOut = 𝑆22 + 𝑆21𝑆12Γ𝑆
1 − 𝑆11Γ𝑆

, (4.35)

where Γ𝑆 is the measured feed 𝑆11 (assuming everything is normalized to the same
reference impedance).

The current feed design [15], [16], is a quad-ridge flared horn, following previous
work at Caltech [17]. This feed includes a dielectric lens and “cake pan” choke rings
to optimize the illumination of the DSA-2000 reflector. As the ridges form a balanced
transmission line, there is a shorted-pin balun that transitions from coax. This
transition is then brought to the edge of the feed structure to a standard microwave
connector. In the current design, the LNA is attached directly to this connector,
resulting in the feed and LNA as two separate line-replaceable units (LRUs).

While the separation of components is useful from a maintenance perspective, the
long coax pin that attaches the connector to the throat of the feed introduces additional
loss. An alternative design is to embed the LNA into the feed, using the ridge as
the enclosure for the LNA PCB. This sidesteps the need for the long coax pin and
allows us to start the matching network very close to the slotline transition. We can
accomplish this while maintaining two distinct LRUs by designing an LNA chassis
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that slots into the ridge and connects to a blind-mate pin. The new LNA chassis
has a silver-epoxied 50 Ω glass feed-through connector to connect to the internal
blind-mate pin. A lid gasket and hermetic output connector seal the assembly and
allow for solid-state cooling.

Figure 4.21: Cross-section of an LNA-embedded feed

Figure 4.22: Comparison of the co-optimized LNA (in a test chassis) and the previous
50 Ω design
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The results from the optimization were surprising, as the optimal nonuniform line
is significantly longer than the previous design. This seems to indicate a shift in
the optimum insertion loss versus noise match space. At its core, the nonuniform
matching approach requires long lines to successfully match complex loads [18]. As
discussed in Chapter 3, a well-matched, long line is at odds with the insertion loss of
the line itself, implying that there exists some optimum compromise between the
length of the line providing a quality noise match and the loss of the line. When
co-optimizing with the DSA-2000 feed, this optimum has shifted to favor longer
lines. In short, the design can tolerate the loss introduced from the longer line, as the
noise otherwise introduced due to mismatch at the band edges is so great.
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Figure 4.23: Simulated noise temperature of co-optimized and original LNA designs
given a simulated feed source impedance

The simulated equivalent noise temperatures for the previous design and the new de-
sign are presented in Figure 4.23. Although the difference in mean noise temperature
is small (≈1 K), the improvement in noise from 700 MHz to 800 MHz is massive. As
survey speed is ∝ 𝜆2, this improvement in the low frequency performance is huge.
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C h a p t e r 5

GREX: AN INSTRUMENT OVERVIEW AND NEW UPPER
LIMITS ON THE GALACTIC FRB POPULATION

[1] K. A. Shila, S. Niedbalski, L. Connor, et al., “GReX: An Instrument Overview
and New Upper Limits on the Galactic FRB Population.,” Publications of the
Astronomical Society of the Pacific, 2025, In Review. arXiv: 2504.18680
[astro-ph.HE],

We present the instrument design and initial results for the Galactic Radio Explorer
(GReX), an all-sky monitor for exceptionally bright transients in the radio sky. This
instrument builds on the success of STARE2 to search for fast radio bursts (FRBs)
from the Milky Way and its satellites. This instrument has deployments across
the globe, with wide sky coverage and searching down to 32 𝜇s time resolution,
enabling the discovery of new super giant pulses. Presented here are the details of
the hardware and software design of the instrument, performance in sensitivity and
other key metrics, and experience in building a global-scale, low-cost experiment.
We follow this discussion with experimental results on validation of the sensitivity
via hydrogen-line measurements. We then update the rate of Galactic FRBs based
on non-detection in the time since FRB 200428. Our results suggest FRB-like
events are even rarer than initially implied by the detection of a MJy burst from SGR
J1935+2154 in April 2020.

5.1 Introduction
Fast radio bursts (FRBs) are short-duration (≲ 100 ms), highly energetic (≳
1040 erg s−1) transients that have been detected between 100 MHz and 8 GHz [1],
[2]. Prior to April 2020, all FRBs were extragalactic and most were at cosmological
distances (𝑧 ≥ 0.1). The discovery of SGR 1935+2154 by both STARE2 and the
Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB) made a dramatic
connection between extragalactic FRBs and Galactic magnetars [3], [4]. While
FRB 200428 from SGR 1935+2154 was less luminous than all known extragalactic
FRBs, its proximity made it the highest fluence of any exosolar radio burst (∼MJy ms
at 1 GHz, compared to ≲ kJy ms at ∼1 GHz for high fluence extragalactic FRBs [5])
and enabled detection of the first prompt multi-wavelength emission [6].

https://arxiv.org/abs/2504.18680
https://arxiv.org/abs/2504.18680
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In the years since the FRB-like emission from SGR 1935+2154, the link between
young, energetic magnetars and the extragalactic FRB phenomenon has been muddied.
FRBs have been found in globular clusters [7], at the outskirts of elliptical galaxies
[8], [9], and may be underrepresented in low-mass star forming galaxies and the sites
of recent core-collapse supernovae [10]. In other words, if all FRBs are magnetars,
they are not all young remnants of CCSNe embedded in star-forming region, like
SGR 1935+2154. These facts motivate a blind search survey, rather than monitoring
known Galactic magnetars. The discovery of other new Galactic phenomena such
as long-period radio transients [11]–[13] further motivates blind searches in new
regions of parameter space.

The Galactic Radio Explorer is an international collaboration aimed at discovering
exceptionally bright bursts in the radio sky. Building off the success of STARE2 [4],
we are currently searching for FRBs emitted by Galactic sources as well as nearby
galaxies. We search down to a high time resolution of 32.768 𝜇s, saving raw
8.192 𝜇s voltage data to enable more in-depth analysis for interesting single-pulse
candidates. Additionally, the instrument has been designed to be easy to build and
reproduce, allowing collaborators to quickly bring up a functioning station. The
goal as mentioned in our original white paper [14] is to eventually have 4𝜋 steradian
coverage with increased exposure to the galactic plane to improve sensitivity to
galactic sources. As more sensitive aperture arrays for fast transient discovery come
online, such as BURSTT [15] in Taiwan and similar efforts in the US, Australia, and
Chile, the niche of GReX will be all-sky sensitivity to ultra-narrow, bright radio
bursts at 1.4 GHz. Each GReX terminal is fully self-contained and low-cost, serving
as a valuable pedagogical tool for the observatory or university operating it locally.

In this work, we describe the GReX instrument, and the current network of terminals
around the world. We also place new upper-limits on the rate of ultra-bright FRBs
based on non-detection.

5.2 Hardware Design
Analog Signal Path
The first major hardware improvement over STARE2 is the transition to a new,
higher performance low noise amplifier (LNA) [16] developed at Caltech for the
DSA-110 [17]. The new amplifier has a noise temperature of 7 K, versus the previous
amplifier’s noise temperature of ≈ 30 K, dramatically improving our system noise
temperature and sensitivity. The LNA achieves record-breaking noise at ambient
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temperature via the use of an exceptional low noise transistor from Diramics and a
low loss suspended stripline input matching network.

For the antenna, we use an improved version of the same “cake pan” antenna from
STARE2, also designed for the DSA-110. This is a waveguide horn antenna with
cake pans forming axial corrugations, enhancing the beam pattern. The antenna’s
full-width half-maximum (FWHM) is estimated to be 70° ± 5° at 1.4 GHz with very
little variation across our band of 1280 to 1530 MHz. We verify the estimation
of the beam width in Section 5.5 by fitting HI intensity data. As this is an all-sky
instrument, the large beam width trades sensitivity for field of view, matching our
science goals.

Frontend Module

Figure 5.1: Completed FEMs

The heart of the analog signal processing in GReX is the frontend module (FEM). In
STARE2, the analog processing was split between electronics at the antenna and in
the server room, with an RF over fiber (RFoF) link between the two sides. Instead of
RFoF, we digitize directly at the antenna, incorporating all the electronics into a single
enclosure to which the antenna is bolted. As RFoF links are typically quite nonlinear,
this section of the analog signal path could limit the linear dynamic range. To replace
the RFoF circuitry, we designed the FEM to perform the frequency downconversion,
filtering, and amplification needed to prepare the signal for digitization.
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Figure 5.2: Measured conversion gain of the FEM. Total system gain adds 40 dB
from the LNA and 15 dB from ADC preamplifiers

The FEM also contains digital control electronics using an RP2040 microcontroller.
This device controls the power for the LNAs connected to the FEM inputs, sets the
variable attenuators, and monitors temperatures and average RF power levels. We
wrote the firmware in the Rust programming language using the RTIC [18] framework
for real-time task-based concurrency. Monitoring and control is performed via a
simple serial connection.

The FEM enclosure is custom machined with channels that isolate the two polar-
izations from the digital electronics. This enclosure also acts as the heat sink, as it
is bolted directly to a large aluminum panel inside the box. The FEMs were fully
factory-assembled, with the total per-unit cost under $200 USD. The completed FEM
enclosure and PCB are shown in Figure 5.1. The conversion gain of the FEM is
shown in Figure 5.2.

The Box
The constructed telescope is contained in a single weatherproof aluminum box 20′′

tall, 16′′ wide, and 6′′ deep. This box contains a GPS timing system and oscillators,
the FEM, the FPGA digitizer, power supplies, a 10G Ethernet switch, and a Raspberry
Pi for monitor and control. As the box we chose had no inherent RFI shielding, we
added an aftermarket weatherproof RFI gasket. The FEM, synthesizer, GPS receiver,
and FPGA digitizer are bolted to a subpanel inside the box. The two polarization
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Figure 5.3: Inside a GReX box. The left panel contains the 10 GbE switch, two power
supply units (PSU), and the Raspberry Pi for monitor and control. The right half
contains the GPS timing receiver, frontend module (FEM), frequency synthesizer,
and SNAP digitizer.

connections and GPS antenna are connected via feedthrough connectors on the
bottom of the box. The optical fiber is routed through a waveguide cutoff pipe that is
attached to the bottom of the box, where it is internally terminated to a 10G SFP+
connector, attached to the Ethernet switch. The box has mounting points on the
outside for a stand or pipe and boltholes to mount the antenna. The antenna is bolted
on the top of the box with weatherproofing gasket material to prevent any water leaks.

Installation of the box is indented to be simple, requiring two single-mode fibers for
the Ethernet connection and mains AC power. Upon receiving a box, the operator
needs to bolt the antenna to the top with the weatherproofing compound, then mount
it to an appropriate place with a clear view of the sky. Ideally, the antenna should be
covered with RF-transparent material for weatherproofing, but we found any piece
of low-loss material such as a plastic trash can to be sufficient. A picture of an
assembled box is shown in Figure 5.3.
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5.3 Software Design
As this experiment is deployed globally, it is imperative that the software stack be easy
to build, install, and use, all with very little assistance from the project maintainers.
New members should be able to on-board their stations independently, just by
following online documentation1. As such, we developed the software stack for this
instrument with intense attention to these goals. As much as possible, software is
tested in continuous integration and written in a way to reduce the likelihood of
unexpected errors. Additionally, all the software for the project is freely accessible
and under an open-source license.

Digitization and Initial Processing
Following the analog signal path, the high-frequency signals are digitized by the
Smart Network ADC Processor (SNAP)2 board. This platform contains three
HMCAD1511 analog to digital converters (ADC) from Analog Devices and a
Kintex-7 160T field-programmable gate array (FPGA) from Xilinx. This platform is
supported by the CASPER [19] ecosystem, which we make use of here.

We wrote our gateware3 in a combination of Simulink and SystemVerilog using the
CASPER toolflow. To make maximum use of the available 10G connection, we
stream 8+8 bit complex data for each polarization, channelized to 2048 frequency bins.
As the FPGA core is clocked at 250 MHz, with the ADC clock running 500 MHz,
the F-engine processes two ADC samples every clock cycle. The channelization is
accomplished with a standard polyphase filterbank constructed via the combination
of a finite impulse response (FIR) filter and fast Fourier transform (FFT), both
making use of design blocks from the CASPER library. The FIR filter has 8 taps
and a Hamming windowing function to reduce inter-channel leakage and scalloping
loss [20]. To avoid overflows in the FFT, each stage is allowed to grow the number of
bits representing each channel. The output of the FFT block is 18+18 bit, fixed-point
complex numbers. If we attempted to stream these data directly, we would not have
the bandwidth on the 10G link. As such, these data are requantized to a lower
bit-depth of 8+8 bits to fit in a single 10G Ethernet payload. Finally, the resulting
channelized voltage data is packetized for transmission. The block of data includes a
64-bit packet counter header, allowing the downstream software to detect data loss
and re-ordering. These data were packed such that they match the layout of a C-struct,
1https://grex-telescope.github.io
2https://casper.berkeley.edu/wiki/SNAP
3https://github.com/GReX-Telescope/gateware

https://grex-telescope.github.io
https://casper.berkeley.edu/wiki/SNAP
https://github.com/GReX-Telescope/gateware
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Figure 5.4: FPGA gateware internals: yellow blocks represent CASPER-provided
interfaces to hardware, blue blocks are custom SystemVerilog, and green blocks are
CASPER-provided DSP logic. Solid lines represent high-speed data, dashed lines
represent slow monitor and control data. Reset lines and timing logic is not shown.

so no processing needs to be done to use the data downstream. The packetized data
is transmitted over the optical 10G Ethernet link to the server, making use of the
standard Ethernet block from CASPER. Every 2048 samples, a completed Ethernet
payload is transmitted, including the header, totalling 8200 bytes. This occurs every
8.192 us, implying a total data rate of just over 1 GB/s or 8 GiB/s.

In addition to the primary functionality of the gateware, there are a few added
utilities to assist in operation. First, there is an input multiplexer that allows the user
to connect to any input on the SNAP without reprogramming. Second, there is a
triggerable accumulator for Stokes I data that gives the user a snapshot view of the
spectra without running high-speed packet capture. Additionally, this accumulation is
performed on the raw output from the FFT block, providing insight into the required
digital gain setting for requantization. Finally, there are various registers that monitor
overflow conditions in both requatization, FFT bit growth, and raw ADC samples.
This primarily gives us an indication that the total power level into the SNAP board
is too high, or downstream digital gain is too high, either case being actionable via
the adjustable RF attentuators in the FEM or in the digital gain settings. A figure of
the data flow in the gateware is shown in Figure 5.4.

FPGA Software Interface
A critical piece of code in the project is the software interface to the running FPGA
gateware. During telescope operation, status registers and accumulators are read,
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variables are set, etc. For this project, we chose to write a new interface to CASPER
devices using the Rust programming language, casperfpga_rs4. The new library
generates compile-time checked interfaces to the various components in the running
FPGA design. As the generated code fully validates correctness at compile-time,
runtime errors are all but eliminated.

This new library allows for much higher confidence in the deployment of CASPER
designs. This library also contains unit tests against a mock interface, extensive
documentation, and is written in a modular nature to encourage other members of
the CASPER collaboration to add support for their hardware.

Server and First Stage Processing
After packets have been transmitted from the FPGA, they are captured and processed
by a single high-performance server. This server contains a 24-core AMD Ryzen
Threadripper Pro 5965WX with 128 GB of RAM. The server is also outfitted with an
NVIDIA GeForce RTX 3090 Ti GPU, used for the brute-force dedispersion search.
This system’s kernel parameters are tuned to support the “jumbo Ethernet frames”
emitted from the SNAP board. After the packets have been processed through the
kernel, user-space programs perform the remaining processing.

The majority of the effort in software development for this project was in the first stage
processing program, T0. This program performs the packet capture, computation of
Stokes I, time downsampling, and management of ring buffers of voltage data to be
written to disk on command. As this piece of software handles the raw voltage data,
it is the most timing sensitive and performance-critical.

At the top level, T0 consists of many independent threads, each performing a
processing step called a subtask. One thread is dedicated to the packet capture
subtask, one for time-downsampling, etc. We must use multithreading as the total
processing time is longer than the incoming packet cadence, so parts of the processing
need to be broken up and performed in parallel, i.e., pipelined. After each subtask
completes computation, it passes the result to the subsequent subtask across a thread
boundary.

Our implementation of this streaming processing pipeline is built off the inter-process
communication model of channels with allocation-reusing ring buffers, similar in
spirit to PSRDADA [21]. Unlike PSRDADA, the model is fully contained in a single
executable, allowing for much stronger guarantees around the data being passed
4https://github.com/kiranshila/casperfpga_rs

https://github.com/kiranshila/casperfpga_rs
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Packet Capture Pulse Injection Stokes I Downsampling Filterbank / PSRDADA

Voltage BufferMonitor and Control

Packet Statistics Injection Record

Dump Trigger

Figure 5.5: T0 subtasks and inter-thread communication. Solid lines represent
high-speed science data, dashed lines represent monitor and control.

around. Additionally, this model reduces the need for synchronization primitives
such as mutexes, improving performance.

The complete architecture of T0 is shown in Figure 5.5, with arrows showing
the channels that move data across the various threads. After program start and
timing synchronization (described in the Section 5.3), all the subtasks are spawned
simultaneously. The first subtask again is packet capture, where incoming data is read
from the network card. This subtask checks the value of the packet header against the
previous to test for packet loss or reordering. Metadata about the packet statistics is
transferred using a separate channel to the monitoring thread. The following subtask
performs fake pulse injection. As we want to ensure our pipeline is working properly,
we occasionally add synthetic data of various dispersion measures and fluence into
the real-time data stream. We write information about the injection into a SQLite
database, so downstream processing software can determine if a given candidate is
synthetic. The next subtask performs time downsampling. Downstream processing,
specifically brute-force dedispersion, has trouble handling exceptionally high time
resolution data. As such, we need to perform downsampling in time, in addition
to computing Stokes I as we will be performing incoherent dedispersion. Finally,
depending on launch arguments, the downsampled Stokes I data is written to either a
SIGPROC5 filterbank file (using a high-performance Rust implementation6 of the
file format) or to a PSRDADA7 ring buffer.

Running in parallel to the data processing pipeline, a thread is accumulating and
distributing monitor information. This data includes occasional queries to the FPGA
about overflow statistics, long-integration Stokes I spectra, and internal temperatures.
Moreover, it collects log messages produced by the program and statistics about
5https://sigproc.sourceforge.net/
6https://github.com/kiranshila/sigproc_filterbank
7https://psrdada.sourceforge.net/

https://sigproc.sourceforge.net/
https://github.com/kiranshila/sigproc_filterbank
https://psrdada.sourceforge.net/
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packet capture from the first subtask. The monitor subtask provides an HTTP API to
query the monitor information for a Prometheus8 time-series database. Log messages
and traces are ingested by an OpenTelemetry9 collector.

Data Loss
As the packets are transmitted over Ethernet with the UDP protocol, there is no
guarantee that they are received. We have taken special care to ensure the server’s
operating system can efficiently process incoming UDP data without data loss and T0
should be able to process incoming data in real time without issue. However, packet
loss still does occur, albeit rarely. For the Owens Valley station, the average packet
loss rate is 10−6% or one packet dropped per 108 packets processed. As our packet
cadence is one packet per 8.192 𝜇s, this works out to an average of one dropped
packet per 1000 s. This amount of data loss is to be expected and is inconsequential
to the performance of the telescope.

Timing and Synchronization
In the box, we include a GPS-discriminated 10 MHz oscillator. This device provides
a stable reference and emits a pulse-per-second (PPS) square wave, connected to a
general purpose digital input on the FPGA. The 10 MHz reference clock is used by a
Valon 5009a frequency synthesizer to produce the 500 MHz clock used by the ADC
and FPGA. Furthermore, this synthesizer is used to generate the 1030 MHz local
oscillator signal used in the FEM for downconversion.

In the FPGA gateware, the PPS signal is used to timestamp data. In T0 at program
start, we query a network timeserver to get the current local time within tens of
milliseconds. Then, the program waits until the next half second to “arm” the timing
system on the FPGA. Once the next rising edge of the PPS signal arrives in the FPGA
and starts the flow of data, we know that the very first voltage sample is coincident
with the next whole second.

As each packet has a 64 bit packet counter, and we know the timestamp of the first
packet and know the clock speed of the FPGA, we can work out the start time of
every packet. Specifically, we know that packet 𝑁 is exactly 𝑁 · 8.192 𝜇s past the
time of the first packet. This information is used in the metadata stored in voltage
dumps as well as in the candidate metadata.
8https://prometheus.io/
9https://opentelemetry.io/

https://prometheus.io/
https://opentelemetry.io/
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RFI Cleaning
Following T0, data is transferred to an RFI cleaning program, clean_rfi10 using
PSRDADA ring buffers. This program implements a multistep cleaning approach
following the implementation in CHIME/FRB [22].

For both T0 and clean_rfi, we needed a Rust interface to the PSRDADA C library, as
that is the only mechanism to stream data into the brute-force dedispersion program,
HEIMDALL [23]. While Rust has a robust interface to C programs and libraries,
they are all memory-unsafe by default, as there is no mechanism to guarantee Rust’s
invariants across the application binary interface (ABI) boundary. As such, we wrote
a high-level Rust wrapper library called psrdada_rs11. Much like casperfpga_rs, this
library adds a significant number of compile-time checks to guarantee correct usage
before runtime.

clean_rfi implements simple masking, variance-cut, and detrending algorithms to
iteratively remove RFI from a block of dynamic spectra. Specifically, we start with
a static mask of bad channels for frequencies that are consistently contaminated.
Then, we remove all samples that contain zeros, as the typical noise floor will be just
above zero and pure-zeros represent dropped packets. Next, we remove bandpass
variation by dividing each sample by the time-average frequency response. Finally,
we perform variance cuts in both the frequency and time axes by removing data
above some 𝜎 threshold. We perform these final variance cuts twice, with a higher
𝜎 in the second pass. Currently, the iterative variance cut process removes time
samples / frequency channels that are greater than 3𝜎 and then 5𝜎.

Real-Time Detection Pipeline
After the dynamic spectra data were cleaned, they are passed along to our fork12

of HEIMDALL. We use HEIMDALL, and the associated dedisp library, as the
implementation of the brute-force dedispersion search. Our fork removes the built-in
RFI cleaning routines, removes candidate clustering, adds a structured logging library,
and enables writing candidates to a network socket instead of a file. As we will be
running the search in real time, the included RFI cleaning and clustering routines
were too slow for our high time-resolution data.

HEIMDALL then writes lines of candidates over a local network socket to the
candidate filtering task, T2. This program is a fork of the T2 Python project written
10https://github.com/GReX-Telescope/clean_rfi
11https://github.com/kiranshila/psrdada-rs
12https://github.com/GReX-Telescope/heimdall-astro

https://github.com/GReX-Telescope/clean_rfi
https://github.com/kiranshila/psrdada-rs
https://github.com/GReX-Telescope/heimdall-astro
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Figure 5.6: Detection candidate for an injected burst.

Figure 5.7: Grafana dashboard monitoring system performance.

for DSA-110, modified to work with our data formats. This program ingests the
stream of candidates emitted by HEIMDALL, clusters them using HDBSCAN [24],
filters the clustered results in dispersion measure, SNR, and boxcar width to produce
candidates. Additionally, for every viable candidate, a message is sent to T0 to dump
the contents of the voltage ring buffer to disk.

T3 is the final stage in the pipeline, another fork from the DSA-110 project. This
program watches the directory where candidate files are written and generates
plots of the dedispersed, RFI-cleaned dynamic spectra. These candidate plots are
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then pushed to a Slack channel, where members of the collaboration get real-time
notifications. An example of this notification is shown in Figure 5.6. Eventually, T3
will perform machine learning-based candidate classification as well as inter-station
communication for coincidencing and localization.

The whole pipeline is orchestrated through a single bash script. This script launches
all the tasks sequentially using GNU Parallel [25], including the initial setup of the
PSRDADA buffers. The script has several launch modes, allowing the operator to
run the full processing pipeline, stream into a named PSRDADA buffer, stream into
a filterbank file, etc. Once the detection pipeline has sent a trigger, T0 writes a
self-describing NetCDF binary file of voltage data to disk where the candidate can
be processed offline.

Technosignature Searches
GReX units can also be used to carry out technosignature surveys. GReX’s large
field of view enables the constraining of upper limits on the prevalence of intelligent
life in the local galaxy. Presently, two technosignature pipelines can be deployed. A
high-spectral-resolution technosignature detection pipeline can be deployed to search
for drifting narrowband technosignatures. In the case of GReX, coincidence rejection
from two or more units can be used to mitigate non-terrestrial narrowband signals
[26]. Additionally, artificially dispersed signals can be searched for, as described in
[27], by deploying SPANDAK13 on GReX. The minimum power of a transmitter
that can be detected is given in terms of effective isotropic radiated power (EIRP),
for a narrowband signal, this is expressed as

EIRPmin,narrow( 𝑓 , 𝑙, 𝑏) = 𝜎 · 4𝜋𝑑2
★

2𝑘𝑏𝑇sys(𝑙, 𝑏)
𝐴𝑒 ( 𝑓 )

1√︁
𝑛𝑝𝑡obs𝛿𝜈

. (5.1)

Here, 𝜎 is the required signal-to-noise ratio (SNR), 𝛿𝜈 is the bandwidth of the
received signal, 𝑡obs is the observing integration time, 𝐴𝑒 ( 𝑓 ) effective area of the
telescope as function of frequency, 𝑇𝑠𝑦𝑠 (𝑙, 𝑏) system temperature as a function of
sky position, 𝑛𝑝 is the number of polarizations, and 𝑑★ is the distance between the
transmitter and receiver, i.e., the distance to the star. A value of 1 Hz is assumed for
𝛿𝜈𝑡 . For narrowband signals considered in Doppler searches. Similarly, an artificially
dispersed signal can be expressed as

EIRPmin,disp( 𝑓 , 𝑙, 𝑏) = 𝜎 · 4𝜋𝑑2
★

2𝑘𝑏𝑇sys(𝑙, 𝑏)
𝐴𝑒 ( 𝑓 )

1√︁
𝑛𝑝 𝛿𝜈 𝜏

. (5.2)

13https://github.com/gajjarv/PulsarSearch/

https://github.com/gajjarv/PulsarSearch/
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However, in this case 𝜏 represents the pulse duration of the dispersed burst where
1 ms is assumed. A technosignature emanated from Alpha Centauri (1.34 pc) would
require 1.2×1012 W/Hz and 4.9×1012 W/Hz for a dispersed burst and a narrowband
signal at an SNR of 10. Here the maximum effective area of GReX is used along with
a 𝑇𝑠𝑦𝑠 of 50 K. The wide FoV of GReX places it as a useful tool in characterization
of potential technosignatures enabling meaningful constraints in the observing band.

5.4 Deployment

Figure 5.8: Deployed GReX terminals from left to right: Hat Creek Radio Obser-
vatory (USA), Cornell University Space Sciences Building (USA), Owens Valley
Radio Observatory (USA), and Rosse Observatory (Ireland), and the Smithsonian
Astrophysical Observatory at Harvard University (USA).
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Figure 5.9: Mercator map with deployed and on-sky GReX stations (♦) along with
stations at various stages of deployment (♢).

At the time of writing, five GReX units are currently operating on-sky (Figure 5.8).
Their locations are shown in Figure 5.9, with two additional units planned for deploy-
ment at the Parkes Observatory in New South Wales, Australia and Gauribidanur,
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India. The first operational unit was deployed at Owens Valley, followed by Cornell,
Hat Creek, Birr, and Harvard. Details of each deployment, including installation
processes and site-specific considerations, are outlined below.

Owens Valley Radio Observatory
The deployment at the Owen’s Valley Radio Observatory took the place of the
previous STARE2 system in May 2024. We made use of the same location and
fiber optic connections. Installing at the site involved the final assembly of the box,
termination of fibers for the Ethernet connection, and testing. Once the box was
powered, we performed Y factor measurements to ensure we achieved our desired
sensitivity.

Cornell
The installment of the GReX terminal at Cornell University followed a three-stage
plan: site testing and preparation, debugging GReX hardware and software, and
site installation with first-light measurements. Full deployment of the system was
complete with the start of burst injections in early July 2024. The terminal has
remained on-sky at this site since this initial deployment.

Prior to receiving any hardware or software, we began a site-searching campaign
to identify an optimal site to host the GReX terminal. This site needs to meet four
primary requirements: (1) easy access to electricity and internet, (2) a weatherproof
and secure location to host the GReX server, (3) an unimpeded view of the sky
from the terminal, and (4) a minimal level of radio frequency interference (RFI)
within the observing band. To facilitate this search, we developed a portable device
for recording the RFI environment of a potential site. This device includes (i)
a chargeable battery-pack for power, (ii) a Siglent Spectrum Analyzer for signal
analysis, (iii) and a signal path consisting of a bias-T with 12-V power supply and a
1320-1580 MHz band pass filter14 all of which is contained within a (iv) portable
rack case. For consistency, we used the LNAs and cake pan antenna from the
GReX system, with the initial goal of identifying any extreme continuous RFI that
would immediately disqualify a potential site. We then ran follow-up measurements
spanning at least one day of collecting time at sites with acceptable RFI levels to
search for the presence of any intermittent RFI that was missed during the first survey.
Following this second batch of measurements, we computed Y-factors and equivalent
system temperatures (see Section 5.6 for details) for each of the remaining potential
14Mini-Circuits ZX75BP-1450-S+
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host sites. All sites showed roughly equivalent baseline system temperatures across
the observing band. The Space Sciences Building (SSB) roof on Cornell’s campus
is the lowest system temperature site of those surveyed that meets all four primary
site requirements. This, combined with the ease of access from having the GReX
terminal located in the middle of campus, has led to us selecting the roof of SSB as
the permanent Cornell GReX terminal location.

The second stage of deployment is characterized by the arrival of hardware (the
server and GReX terminal) on site and subsequent software setup and bug-fixes.
We received the servers and terminal box at Cornell at the end of June 2023. As
the second deployed GReX terminal, we spent a few months working closely with
team-members at Caltech on hardware and software bug fixes. This effort helped
develop the comprehensive GReX software guide15 for “ground up” installation,
from connecting the server to the Raspberry Pi and SNAP board in the terminal box
to running the full GReX real-time data capture pipeline.

With this bug-fixing period complete, we moved to setting up the terminal box on
our selected site Figure 5.8 (Center Left) and taking first-light data collection. This
included an initial collection of ADC RMS values and observation of the spectra
collected on site. To prevent overflowing or underflowing of the ADCs, we tuned
the adjustable gain in the terminal FEM. Two easy astrophysical signals to detect
on first light are the presence of the solar continuum (seen as an overall increase in
the spectrum as the sun enters the beam) and the HI emission line from Galactic
hydrogen centered near 1420.4 MHz. The absence of either of these signals indicates
that the terminal is not properly observing the sky and requires further fine-tuning,
usually either due to an inappropriate FEM gain or spectral leakage within the
LNAs. Once these checks are passed, we move on to carry out tests of the terminal
sensitivity (Section 5.6) which will give us estimates of the receiver gain, the system
temperature, and the resulting system equivalent flux density (SEFD).

Hat Creek Radio Observatory
The GReX deployment at HCRO Figure 5.8 (Left) was completed in June 2024. Before
installation, the box was first tested in a screened room using a spectrum analyzer
connected to an omnidirectional antenna and external amplifier. Measurements
were conducted with the GReX unit turned off for baseline measurements and then
powered on with the box both open and closed with RF absorbers placed inside the
15https://grex-telescope.github.io

https://grex-telescope.github.io
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enclosure. Steel wool was added to the fiber cable opening to enhance shielding.
These measurements (discussed in Section 5.4) show that the self-generated RFI
is stronger than expected, and necessitated installation at a more remote location
on-site to avoid interference with other experiments.

Rosse Observatory
The deployment of the GReX unit in Ireland was completed in December 2024 at
the radio observatory of Trinity College Dublin. The Rosse Observatory is situated
in Birr, in the relatively low population density Irish Midlands. The site already
hosts the Irish LOw Frequency Array (LOFAR) station [28], [29] and other smaller
experiments. As the GReX deployment was in close proximity to the LOFAR station,
any unintended emission from the GReX unit in the LOFAR band was measured in
the lab, prior to deployment, see Section 5.4. Due to the harsher weather conditions in
Ireland, the GReX unit underwent further waterproofing with extra sealant on the box
where all components are housed (see Figure 5.3). The most notable modification
is the use of a radome housing, as it is radio transparent and often used on marine
vessels to protect equipment from harsh outdoor elements Figure 5.8 (Right).

Self-Generated RFI
As GReX is intended to be hosted at radio observatories as well as universities, tests
of the self-generated RFI are critical to maintain spectrum purity at sensitive sites.
Lab tests of the box’s emission were performed at HCRO and Birr, but not at OVRO
due to lack of resources. Additionally, Stokes I data were taken using I-LOFAR at
Birr while GReX was operational. The lab tests of the closed box’s emission are
shown in Figure 5.10. The results from the tests at HCRO in the 300 − 6000 MHz
band indicate that GReX in its current form is not yet suitable for installation close
to sensitive telescopes observing in this band. We believe the RFI retrofitting of the
commercial enclosure used to house the electronics is primarily at fault. Further
experiments with other RFI gaskets and conductive tape show a marked improvement
in radiated power, but not totally acceptable for sensitive sites, especially at L-band.
However, Stokes I data from I-LOFAR (shown in Figure 5.11) show no appreciable
contamination. Additionally, the various ongoing experiments at OVRO such as the
DSA-110 and LWA have also not noticed any increase in local RFI.

While some mitigations have substantially improved the unit’s radiated power, the
box remains a moderate RFI source. The self-generated RFI has not proven to be
an issue for the FRB detection pipeline, nor has it interfered with experiments at
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operational radio observatories. However, the emission remains an open issue and
prevents installation at some sites. Further work is needed to identify problematic
components and improve shielding.
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Figure 5.10: Measured power spectrum from 10 − 6000 MHz of a closed GReX box.
The blue trace shows the spectrum when the unit is powered on, while the gray trace
represents the baseline measurement. The frequency range of 10 − 300 MHz was
measured at Birr in a lab and 300− 6000 MHz was measured at HCRO in a screened
room.

20 40 60 80
6

7

8

9

10

11

12
MAE: 0.094

On

Off

120 140 160 180

MAE: 0.017On

Off

210 220 230 240 250 260 270

MAE: 0.008On

Off

Frequency (MHz)

A
rb

.
U

n
it

s

Figure 5.11: 15-minute Stokes I spectra measured using I-LOFAR with the GReX
unit powered on and off, covering all observing modes from 10 − 270 MHz. The
mean absolute error (MAE) was calculated for each measurement, comparing the
powered-on spectrum to the baseline (powered-off) measurement.

5.5 Beam Modelling with Measurements of Galactic HI
The Hydrogen I (HI) emission line is an omnipresent and easily identifiable time-
varying signal within the GReX observing band, making it an ideal metric for
ensuring that a GReX terminal is observing the sky properly. Captured spectra in the
Prometheus database are accessed by Grafana to display estimates of the HI SNR in
real time at the top of all Grafana dashboard monitors. While the HI-line intensity
provides a useful sanity check that a terminal is properly observing the sky, its
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usefulness does not end there. In this section, we present the results of our method for
using the measured HI-line intensity at the OVRO and Cornell terminals to estimate
the FWHM (and corresponding solid angle) of the GReX antenna beam-response.

Following the prescription detailed in Section C.2, we use the Leiden/Argentine/Bohn
(LAB) all-sky survey of galactic neutral hydrogen [30] to simulate the expected
antenna temperature as seen by the terminal over one sidereal day (sampled every 10
minutes) for fifty different beams with 𝜃FWHMs ranging from 50◦ to 100◦. We query
HI-line observations from the Cornell and OVRO Prometheus databases with time
steps of ten minutes over a month. We only keep days where the data is continuous
across the day to consistently align the data and simulations according to the local
sidereal time (LST) before normalizing both such that the average temperature over
one day is a constant between all simulations and observations. For each time sample
across the sidereal day, we calculate the observed HI-line mean intensity and standard
deviation. Any samples that exceed a 3𝜎 deviation from the mean are considered to
be impacted by RFI and are ignored when calculating the root-mean squared (RMS)
residuals between observations and models. Any days with more than 5% of samples
above this threshold are fully ignored. After RFI mitigation, there are 23 and 11 days
remaining from the Cornell and OVRO measurements, respectively. With the data
aligned, normalized, and cleaned of RFI, we calculate the RMS error between each
day and each model. Figure 5.12 presents the aligned and normalized observed and
simulated HI-line (left) alongside the RMS errors of each day against all modeled
beam-shapes (right). While all RMS curves display consistent profiles which have
minima that are clustered around the average FWHM, there are some curves in
Figure 5.12 (d) that minimize at a higher RMS than is typical. We attribute this to
the presence of RFI-affected samples that did not get removed by our thresholding
process. The modeled 𝜃FWHMs corresponding to the RMS minimum for each day
are taken as the population of best-fit parameters. We determine the general best fit
model as the mean of this population, with a 1𝜎 uncertainty in the FWHM given
by the population standard deviation. Using this method, we determine that the
Cornell terminal has a beam response at 1420.4 MHz that is well-characterized as a
2D Gaussian with 𝜃CU

FWHM(1420.4 MHz) = 67.44◦ ± 0.99◦. The OVRO terminal is
similarly described by a 𝜃OVRO

FWHM(1420.4 MHz) = 64.29◦ ± 0.62◦.

Since all GReX terminals are outfitted with identical feeds, we consider the beam
response of a typical feed to be a good description for all feeds. This typical beam
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Figure 5.12: Observed data and corresponding simulations of the HI-line by the
Cornell University ((a) and (b)) and OVRO ((c) and (d)) GReX terminals are used
to fit the beam FWHM at 1420.4MHz. Simulations are rendered following the
prescription in Section C.2. The observed (colored step-function lines) and simulated
data (gray shaded region bounded by red and black curves) are aligned by local
sidereal time and samples overly affected by RFI are excluded when calculating the
RMS error. The population of FWHM values that minimize the RMS errors for each
terminal and each day are then used to determine the mean (black dashed line, (b)
and (d)) and standard deviation of each terminal FWHM. The characteristic FWHM
of a GReX terminal (Equation 5.3) is presented in (b) and (d) as a solid red line with
3𝜎 shading. We then scale the solid angle across the observing band according to
the relationship Ω𝐵 ∝ 𝑓 −2 in (e).

response at 1420.4 MHz is then characterized as

𝜃FWHM =

𝜃OVRO
FWHM
𝜎2

OVRO
+ 𝜃CU

FWHM
𝜎2

CU
1

𝜎2
OVRO
+ 1
𝜎2

CU

±
√√

1
1

𝜎2
OVRO
+ 1
𝜎2

CU

= 65.18◦ ± 0.53 (5.3)

with corresponding solid angle at that frequency of

Ω𝐵 =
∫
Ω
𝑑Ω exp

[
−4 ln 2

(
𝜃

𝜃FWHM

)2
]
= 1.36 ± 0.02 sr. (5.4)
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We use Ω𝐵 ∝ 𝑓 −2 to determine the solid angle as a function of frequency,

Ω𝐵 ( 𝑓 ) = 1931.7 ± 28.4
𝑓 2 sr MHz2. (5.5)

This functional relationship (and equivalent comparisons for the individual terminal
fits) is presented in Figure 5.12 (e). We determine from this relation that the
beam solid angle near our central frequency is Ω𝐵 (1400 MHz) = 1.40 ± 0.02 sr.
We also report the maximum effective area 𝐴0 of the receiver across the band as
𝐴0 = 328 ± 5 cm2 according to Equation C.6.

5.6 Sensitivity
Understanding the sensitivity of the GReX instrument to incoming signals is necessary
for defining the strength of those signals and being able to place them in an
astrophysical context.

The receiver gains and the system temperatures for the Cornell, OVRO, and Harvard
stations are shown in Figure 5.13, computed using a Y-factor test (Equation C.12).
Sky measurements are taken before daybreak or after sundown to ensure emission
from the sun does not enter the beam. This allows us to assume a constant sky
temperature of 5.5 K, with 2.7 K from the CMB, 1.9 K from atmospheric effects, and
0.9 K from galactic effects [31]. We placed a slab of ambient-temperature (nominally
290 K ± 5 K) radio-absorbent foam over the terminal antenna while taking hot data
for the Y-factor test. Data were saved in the Stokes I filterbank format for the hot
foam and cold sky states.

The system noise temperature for a GReX terminal is approximately 35 K, averaged
across the band. Obstructions in the beam such as buildings and trees will worsen
the noise, as well as the presence of strong RFI desensitizing the receiver. As such,
optimal placement and configuration of attenuation/gains is critical to maximizing
performance.

The second essential measure of system sensitivity is the forward gain (𝑔 𝑓 ) of the
receiver. This quantity depends primarily on the integrated beam response function
across the sky (Equation C.7, Equation C.6), since that is the value mediating
between the true brightness temperature integrated across the telescope beam and the
nominal effective temperature representing the observed temperature (Equation C.4,
Equation C.5). Applying the effective area of the terminal found in Section 5.5
to Equation C.7, we compute the forward gain as 𝑔 𝑓 = 84.2 kJy K−1 ± 1.3 kJy K−1.
Multiplying this value by the system temperature gives an SEFD of approximately
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Figure 5.13: System temperature and relative receiver gain measured for the GReX
terminals at Cornell, OVRO, and Harvard. Dashed lines show the median system
temperature with associated 16𝑡ℎ and 84𝑡ℎ quantile error bars.

3 MJy. When determining our detection threshold, we consider a proto-typical burst
that fills the band and lasts 1 ms. Our detectors are sensitive to an effective bandwidth
of 188 MHz (75% of the total bandwidth) and the use of matched-filtering with a
set of boxcars in the detection pipeline allows our integration time to match the
1 ms burst width. By averaging over these samples in frequency, time, and both
polarizations, we find that for an event to attain an SNR of 10 (chosen as a fiducial
value with a reasonable empirically-determined false-positive rate), it must have a
corresponding flux density of at least ∼ 50 kJy.

This is a minimum requirement, as the angular deviation of a source away from the
center of the detector beam at the time of observation increases the required flux
density necessary to detect the burst.

5.7 Upper Limit of Bright FRBs
We constrain the upper limit on FRBs at least as bright as our detection threshold by
estimating the number of detections over some time as a Poissonian process given
the single detection by STARE2 and, at present, zero detections by GReX. For this
analysis, we will only consider the time on sky at the OVRO site. The Poissonian
process has a probability distribution of

𝑝(𝑘 |𝜆, 𝜏) = (𝜆𝜏)
𝑘𝑒−𝜆𝜏

𝑘!
, (5.6)
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for 𝑘 events given the event rate 𝜆 and observation time 𝜏. To estimate the event rate
𝜆 with 𝑘 = 1 after time on sky of 𝜏1, we solve for 𝑝(𝜆 |𝑘 = 1, 𝜏1) via Bayes’ theorem
assuming a flat prior on 𝜆 where 𝑝(𝜆) ∝ 1 via

𝑝(𝜆 |𝑘 = 1, 𝜏1) = 𝑝(𝑘 = 1|𝜆, 𝜏1)𝑝(𝜆)
𝑝(𝑘 = 1) =

𝜆𝜏1𝑒
−𝜆𝜏1∫ ∞

0 𝑑𝜆𝜆𝜏1𝑒−𝜆𝜏1
= 𝜏2

1𝜆𝑒
−𝜆𝜏1 . (5.7)

This result is a gamma distribution with a scale of 2 and a rate parameter of 𝜏1.

Given our center-frequency beam solid angle of ∼ 1.5 sr from Equation 5.4, at any
given time the station is sensitive to only 12% of the sky. At the time of the STARE2
detection of FRB 200428, it had been observing for 448 days. Assuming a 75%
observational duty-cycle, we compute 𝜏1 = 1.23 yr × 0.12 sky × 0.75 = 0.11 sky yr.
STARE2 continued to observe after FRB 200428 until it was superseded by GReX
in May 2024. In total, a station at OVRO has now been observing for 6.3 years. We
then compute a new rate parameter of 𝜏1 = 6.3 yr × 0.12 sky × 0.75 = 0.567 sky yr.
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Figure 5.14: Posterior distribution of FRB event rate 𝜆 with associated dashed 95%
confidence upper limits.

Shown in Figure 5.14 are the probability distribution functions for the event rate 𝜆,
implied by the observation time at the detection of FRB 200428 and the current total
observation time. The STARE2 detection placed an upper limit on the rate parameter
of 43.13 sky−1 yr−1, with wide uncertainty due to the limited time on sky. Adding the
subsequent non-detection time significantly reduces this estimate to 8.37 sky−1 yr−1.
A more thorough analysis of the rate including overlapping sky and time, luminosity,
etc. will follow in a subsequent paper.



112

5.8 Conclusions and Outlook
We have described the Galactic Radio Explorer (GReX), a network of low-cost
1.4 GHz radio antennas searching for bright transients between 32.768 𝜇s and
1.024 ms. Terminals have been deployed at multiple sites around the world, though
most are currently in the US. Since the discovery of FRB 200428, GReX and an
upgraded STARE2 have more than quadrupled the total square degree hours devoted
to ultra-bright FRB searching. The improved system temperature of GReX LNAs
over the original STARE2 hardware results in ∼ twice the sensitivity, resulting in
a deeper search. We also search for extremely narrow bursts≪ 1 ms, which is not
possible at lower frequencies or in systems with a large number of beams. With
no detections, we update the all-sky rate of FRBs above ∼ 50 kJy to be no larger
than 8.37 sky−1 yr−1 at 95% confidence. This indicates that FRB-like emission from
Galactic sources is rare, and FRB 200428 was even more unusual than initially
thought.

The GReX boxes have proven to be replicable and stable. For example, the OVRO
GReX terminal did not require on-site human intervention for more than a year
of observation. Five sites are on-sky and continuously searching for bright FRBs.
These locations are OVRO in California, the Cornell GReX in Ithaca, New York,
Harvard GReX in Cambridge Massachusetts, Hat Creek GReX in California, and
an Ireland station in Birr. A box has been shipped and tested in New South Wales,
though not yet deployed. In the future, we hope to expand to multiple sites in
the Southern Hemisphere to improve exposure to the Galactic plane, where most
magnetars reside.
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A p p e n d i x A

AUTOMATIC DIFFERENTIATION

At its core, AD is the recursive application of the chain rule:

𝑑

𝑑𝑥
[ 𝑓 (𝑔 (𝑥))] = 𝑓 ′ (𝑔 (𝑥)) 𝑔′ (𝑥) . (A.1)

To apply the chain rule to computer programs, we must reinterpret the sequence of
instructions that a program performs as function composition. For a complicated
program with many steps, this is equivalent to nested composition 𝑓 (𝑔(ℎ(𝑤(...(𝑥))))).
For deep nesting, it may be more useful to imagine the flow of values through the
program as a computational graph. For the case of 𝑓 (𝑔(𝑥)), there are three “primal”
values: 𝑥, 𝑔(𝑥), and 𝑓 (𝑔(𝑥)). Correspondingly, there are two “tangent” values, 𝑔′(𝑥)
and 𝑓 ′(𝑔(𝑥)). This graph is shown in Figure A.1 with square nodes indicating start
and stop values, circular nodes indicating computation, and edges showing the flow
of values.

𝑥

𝑔

𝑓

𝑓 (𝑔(𝑥))

𝑡1 = 1 𝑝1 = 𝑥

𝑡2 = 𝑔′(𝑝1)𝑡1 𝑝2 = 𝑔(𝑝1)

𝑡3 = 𝑓 ′(𝑝2)𝑡2 = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥) 𝑝3 = 𝑓 (𝑝2) = 𝑓 (𝑔(𝑥))

Figure A.1: Computational graph of forward-mode evaluation of 𝑓 (𝑔(𝑥)).

The values flowing down the right side of the graph in Figure A.1 represent the
normal evaluation of the program. The values on the left represent the accumulated
tangents, with the initial value “seeded” as unity. Each primal computation relies on
the values that immediately precede it. Similarly, the tangent components rely on the
previous tangent and primal component. At the end of this graph, we have computed
both the primal result and the tangent. This accumulation of tangent values alongside
the primal values to build the resulting derivative is known as forward-mode AD.
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To extend forward-mode AD to multivariate functions, we set the tangent “seed”
value of the independent variable of interest to unity, with the remaining variables’
tangents set to zero. Consider this more complicated computer program:

Algorithm 1 Example differentiable program

𝑓 (𝑎, 𝑏):
𝑥 ← 𝑎2

𝑦 ← sin 𝑏
return 𝑥 ∗ 𝑦

Suppose we want to find 𝜕 𝑓 /𝜕𝑏. The graph of all operations, primals, and tangents
to do so is shown in Figure A.2.

𝑎 𝑏

𝑥2 sin

𝑡1 = 0
𝑝1 = 𝑎

𝑡2 = 1
𝑝2 = 𝑏

∗

𝑡3 = 2𝑝1𝑡1
𝑝3 = 𝑝2

1

𝑡4 = cos(𝑝2)𝑡2
𝑝4 = sin(𝑝2)

𝑓 (𝑎, 𝑏)

𝑡5 = 𝑝3𝑡4 + 𝑡3𝑝4 = 𝑎2 cos(𝑏) 𝑝5 = 𝑝3 ∗ 𝑝4 = 𝑎2 sin(𝑏)

Figure A.2: Computational graph of forward-mode evaluation of 𝑓 (𝑎, 𝑏), with the
tangent seeded on 𝑏.

To compute 𝜕 𝑓 /𝜕𝑎, we would set 𝑡1 to unity and 𝑡2 to zero and perform an additional
sweep. This generalizes to an approach for evaluating gradients for functions of the
form 𝑓 : R𝑛 → R𝑚. Requiring one pass per independent variable implies that gradient
evaluation in forward-mode has a complexity of O(𝑛) for an 𝑛-dimensional input. As
such, forward-mode performs well for 𝑓 : R→ R𝑛 but has no better complexity than
finite-differencing for 𝑓 : R𝑛 → R (while maintaining machine-precision accuracy).

While forward-mode is simple and is straightforward to implement, the linear
complexity poses a problem for high-dimensional functions such as large machine
learning models or highly parameterized circuit optimizations. A solution is to
change the manner in which we decompose the chain rule. Instead of computing
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the full derivative of each nested function recursively, we compute the derivate with
respect to each nested function recursively and work backwards. In practice, this
amounts to evaluating the primal trace of the function as before, but now collecting
all primal values and their partial derivatives with respect to each parent value.
Then, we seed the “adjoint” of the dependent variable (output) with unity and work
backwards through the graph, applying the chain rule utilizing the precomputed
partials. This is known as reverse-mode AD.

Looking again at our unary 𝑓 : R → R function of 𝑦 = 𝑓 (𝑔(𝑥)), we draw the
computational graph shown in Figure A.3.

𝑥

𝑔

𝑓

𝑦

𝑝1 = 𝑥 𝑎1 = 𝑎2
𝜕𝑝2
𝜕𝑝1

= 𝑎2𝑔
′(𝑝1) = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥)

𝑝2 = 𝑔 (𝑝1) 𝑎2 = 𝑎3
𝜕𝑝3
𝜕𝑝2

= 𝑎3 𝑓
′(𝑝2)

𝑝3 = 𝑓 (𝑝2) 𝑎3 = 1

Figure A.3: Graph of reverse-mode evaluation of 𝑓 (𝑔(𝑥)).

Here we again see the primal, normal program execution of the function on the left,
and then the reverse pass accumulation of the adjoints on the right. The resulting
adjoint, 𝑎1, is identical to the resulting forward-mode tangent 𝑡3 from Figure A.1. The
difference is that in this case, all the intermediate values and the partial derivatives
need to be stored, whereas in forward-mode, each step relies solely on the previous
tangent and primal values in the graph.

The procedure becomes more complicated with less trivial, multi-arity functions.
Consider the function example from Figure A.2, shown in Figure A.4 now in
reverse-mode.

Again, in the forward sweep, we collect primal values as well as partial derivates.
Then, in the reverse-mode, we collect adjoints down every branch by multiplying the
previous adjoint by the appropriate precomputed partial derivates. This offers several
advantages, the first of which is that in one pass, we have computed the full gradient.
Additionally, we have done so with fewer operations than in the forward-mode.
Often, this is a more efficient way of computing the gradient. However, the reverse
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𝑎 𝑏
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𝑝1 = 𝑎 𝑝2 = 𝑏

∗
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(b) Reverse Sweep

Figure A.4: Graph of reverse-mode evaluation of 𝑓 (𝑎, 𝑏).

sweep requires us to build the computation graph in memory and store intermediate
values and partials, while forward-mode only requires the previous tangents and
primals. This is a classic example of a memory-time complexity tradeoff. In
general, for functions of the form 𝑓 : R𝑛 → R𝑚 where 𝑚 ≫ 𝑛, forward-mode is
preferred. However, for general optimization problems, reverse-mode is typically
higher performance, as it solves 𝑓 : R𝑛 → R for a scalar cost function. Benchmarking
to choose the right approach is required when the input and output dimensions have
similar orders of magnitude.

Efficient implementations of these algorithms have become commonplace due to
their usage in training large machine learning models. For a more in-depth discussion
on the field of AD and implementation details, see [1].
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A p p e n d i x B

USEFUL RESULTS

B.1 Interferometer Survey Speed and Sensitivity
To derive the survey speed of a radio interferometer, we start with the radiometer
equation,

𝜎𝑇 =
𝑇Sys√
Δ𝜈𝜏

. (B.1)

For system noise temperature𝑇Sys, bandwidthΔ𝜈, and integration time 𝜏, we compute
the RMS error (in Kelvin). If we want to know the signal-to-noise ratio for an
observation of a point source, we define the ratio of the source’s induced antenna
temperature 𝑇𝑎 over this RMS noise level as

SNR =
𝑇𝑎
𝜎𝑇

=
𝑇𝑎
𝑇Sys

√
Δ𝜈𝜏 . (B.2)

Sources in the sky vary wildly in flux density, so to come up with a single metric, we
can pick some arbitrary, minimum source flux density to set our SNR, 𝑆𝜈. This point
source flux density induces an antenna temperature via

𝑇𝑎 =
𝑆𝜈𝐴𝑒
2𝑘𝐵

, (B.3)

where 𝐴𝑒 is the effective collecting area of the array and 𝑘𝐵 is Boltzmann’s constant.
For reflector-based antennas, the effective aperture is equal to the reflector’s physical
area, scaled by some aperture efficiency, 𝜂𝑎, typically in the 0.7-range. We then
multiply this by 𝑁 antennas to compute the total effective collecting area for the
entire array.

𝐴𝑒 =
𝑁𝜂𝑎𝜋𝐷

2

4
. (B.4)

Now, we find the integration time required to achieve an SNR of unity as

𝜏 =
1
Δ𝜈

[ 8𝑘𝐵𝑇Sys

𝑆𝜈𝑁𝜂𝑎𝜋𝐷2

]2
. (B.5)

As this is the time required to survey one portion of the sky, the last missing piece is
how much of the sky we surveyed in this pointing. Again, for reflectors, we could
use the full-width half-maximum in steradians, or the beam solid angle, Ω𝐵. For
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high-gain reflectors (as are used in radio astronomy), these are almost identical. For
any antenna, the beam solid angle is defined as

Ω𝐵 =
𝜆2

𝐴′𝑒
, (B.6)

where 𝐴′𝑒 here is the effective aperture (of the primary beam, not the total array). So,
we write

Ω𝐵 =
4𝜆2

𝜋𝜂𝑎𝐷2 . (B.7)

Finally, we can define survey speed as the time required to survey a given beam solid
angle to some fixed minimum point source flux density as

SS (sr/s) =
Ω𝐵

𝜏
= 𝜂𝑎𝜋Δ𝜈

[
𝜆𝑆𝜈𝑁𝐷

4𝑘𝐵𝑇Sys

]2
. (B.8)

If we take 𝑆𝜈 to be in Jy (1 × 10−26 W/Hz/m2) and convert to deg2 per hour, we can
approximate this as

SS (deg2/hr) ≈ 1.217𝜂𝑎Δ𝜈
[
𝜆𝑆𝜈𝑁𝐷

𝑇Sys

]2
. (B.9)

The important implications of this relation are the quadratic terms in 𝜆, 𝑁 , 𝐷, and
𝑇Sys, as these are all design parameters.

In addition to survey speed, we can recast Equation B.2 as a sensitivity metric. In
other words, we find what flux density (𝑆𝜈) we can measure at a 1𝜎𝑇 -level in some
fixed integration time 𝜏 via

𝑆𝜈 (W/m2/Hz) = 8𝑘𝐵𝑇Sys

𝜋𝜂𝑎𝐷2𝑁
√
Δ𝜈𝜏

. (B.10)

We can again simply this if we assume 𝜏 is one hour, our answer is in 𝜇Jy
(1 × 10−32 W/Hz/m2), and Δ𝜈 is in GHz, we can write

𝑆𝜈 (𝜇Jy @ 1 hr) ≈ 1852
𝑇Sys

𝜂𝑎𝐷2𝑁
√︁
Δ𝜈(GHz)

. (B.11)

If we use some typical DSA-2000 numbers of Δ𝜈 = 1.3 GHz, 𝐷 = 5 m, 𝑁 = 2 000,
𝜂𝑎 = 0.7, 𝑇Sys = 25 K, at a center wavelength 𝜆 of 22 cm, we find

SS (deg2/hr @ 2𝜇Jy) = 31.3 (B.12)

𝑆𝜈 (𝜇Jy @ 1 Hr) = 1.16 . (B.13)
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B.2 Intermodulation Products
Given a voltage transfer function of some nonlinear RF component

𝑣Out = 𝑓 (𝑣In) , (B.14)

we can find the Taylor (Maclaurin) series expansion of the nonlinear 𝑓 to give us

𝑣Out =
∞∑︁
𝑛=0

𝑓 (𝑛) (0)
𝑛!

𝑣𝑛In = 𝑎0 + 𝑎1𝑣In + 𝑎2𝑣
2
In + 𝑎3𝑣

3
In . . . , (B.15)

where the coefficients 𝑎0, 𝑎1, etc. are proportional to the 𝑛-th derivative of 𝑓 .
Consider an input 𝑣In composed of a sum of two tones close in frequency,

𝑣In = 𝑉0(cos𝜔1𝑡 + cos𝜔2𝑡) . (B.16)

Substituting into Equation B.15, we find

𝑣Out = 𝑎0 + 𝑎1𝑉0(cos𝜔1𝑡 + cos𝜔2𝑡) (B.17)

+ 𝑎2𝑉
2
0 (cos𝜔1𝑡 + cos𝜔2𝑡)2 (B.18)

+ 𝑎3𝑉
3
0 (cos𝜔1𝑡 + cos𝜔2𝑡)3 . . . (B.19)

Using trigonometric identities, we expand this to

𝑣Out = 𝑎0 + 𝑎1𝑉0(cos𝜔1𝑡 + cos𝜔2𝑡)

+ 𝑎2𝑉
2
0

2
(2 cos (𝜔1 + 𝜔2)𝑡 + 2 cos (𝜔1 − 𝜔2)𝑡)

+ 𝑎2𝑉
2
0

2
(cos 2𝜔1𝑡 + cos 2𝜔2𝑡 + 1)

+ 𝑎3𝑉
3
0

4
(cos 3𝜔1𝑡 + cos 3𝜔2𝑡 + 9 cos𝜔1𝑡 + 9 cos𝜔2𝑡)

+ 𝑎3𝑉
3
0

4
(3 cos (𝜔1 − 2𝜔2)𝑡 + 3 cos (2𝜔1 − 𝜔2)𝑡)

+ 𝑎3𝑉
3
0

4
(3 cos (𝜔1 + 2𝜔2)𝑡 + 3 cos (2𝜔1 + 𝜔2)𝑡) . . . (B.20)

Here, we see that increasing powers from the series expansion leads to sum and
difference frequencies of the form 𝑛𝜔1 ± 𝑚𝜔2 for positive integers 𝑚 and 𝑛. As
the input voltage in the two tones increases, so do these so called “intermodulation”
products. If the input power is small, these products will be well beneath the noise
floor. However, as the power increases, the output power of the fundamental (cos𝜔𝑛𝑡
increases linearly while the power in the intermodulation powers grow with the input
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voltage squared for the second-order terms and with the cube for the third-order
terms. If the amplifier did not saturate, eventually the power of these tones at the
output would intersect. The hypothetical power at which these intermodulation tones
intersect are the 𝑛-th order intercept points.

2nd Order Distortion
The total power delivered at either fundamental into a 1 Ω load is

𝑃𝜔1 =
1
2
𝑎2

1𝑉
2
0 , (B.21)

recalling that these voltage phasors are defined with peak magnitudes, and so power
is defined as 1/2𝑅𝑒{𝑉𝐼∗}. The total power delivered at one of the 2nd order mixing
terms (cos𝜔1 ± 𝜔2) is

𝑃𝜔1+𝜔2 =
1
2
𝑎2

2𝑉
4
0 . (B.22)

The definition of the intercept point is when the powers at the fundamental and the
intermodulation product are equal, given by

1
2
𝑎2

1𝑉
2
𝐼𝑃2 =

1
2
𝑎2

2𝑉
4
𝐼𝑃2 . (B.23)

Solving for 𝑉𝐼𝑃2 yields
𝑉𝐼𝑃2 =

𝑎1
𝑎2
. (B.24)

We define the output intercept point as the power at the fundamental which leads to
this intersection

OIP2 = 𝑃𝜔1 |𝑉0=𝑉𝐼𝑃2 =
1
2
𝑎2

1𝑉
2
𝐼𝑃2 =

𝑎4
1

2𝑎2
2
. (B.25)

Finally, we can find that the power of the output intermodulation product can be
rewritten in terms of the power of the fundamental and OIP2

𝑃𝜔1+𝜔2 =
1
2
𝑎2

2𝑉
4
0 =

(
1
2𝑎

2
1𝑉

2
0

)2

𝑎4
1(2𝑎2

2)−1
=
𝑃2
𝜔1

OIP2
, (B.26)

or

OIP2 (𝑊) = 𝑃2
𝜔1

𝑃𝜔1+𝜔2

(B.27)

OIP2 (dBm) = 2𝑃𝜔1 − 𝑃𝜔1+𝜔2 . (B.28)
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Cascaded Distortion
Given two components with power gains 𝐺1 and 𝐺2 with output nth-order output
intercept points OIP𝑛′ and OIP𝑛′′, we want to find the effect of combining their
distortions. As the tones are deterministic, the phase of the various intermodulation
product impact the output. As such, we need to work out the cascade in voltages.

Using the result from Equation B.26, we can compute the output voltage of the 2nd
order term as

𝑉 ′𝜔1+𝜔2 =
√︃
𝑃′𝜔1+𝜔2𝑍0 = 𝑃′𝜔1

√︂
𝑍0

OIP2′
. (B.29)

As the phase of these voltages is unknown, we can assume the worst-case of the
distortion products adding in-phase. Therefore, the total 2nd-order distortion voltage
at the output of the second component is

𝑉 ′′𝜔1+𝜔2 = 𝑃
′
𝜔1

√︂
𝐺2𝑍0
OIP2′

+ 𝑃′′𝜔1

√︂
𝑍0

OIP2′′
. (B.30)

As 𝑃′′𝜔1 = 𝐺2𝑃
′
𝜔1 , we have

𝑉 ′′𝜔1+𝜔2 =

( √
𝐺2

𝐺2
√

OIP2′
+ 1√

OIP2′′

)
𝑃′′𝜔1

√︁
𝑍0

=

(
1√︁

𝐺2OIP2′
+ 1√

OIP2′′

)
𝑃′′𝜔1

√︁
𝑍0 . (B.31)

The total output distortion power is

𝑃′′𝜔1+𝜔2 =

(
𝑉 ′′𝜔1+𝜔2

)2

𝑍0
=

(
1√︁

𝐺2OIP2′
+ 1√

OIP2′′

)2

(𝑃′′𝜔1)2 =
(𝑃′′𝜔1)2
OIP2

. (B.32)

Therefore the 2nd order intercept of the cascaded system with coherent products is

OIP2 =

(
1√︁

𝐺2OIP2′
+ 1√

OIP2′′

)−2

. (B.33)

Although the worst case is useful for putting a bound on the distortion, in practical
systems with many components, the phases between various stages may be randomly
distributed. In that case, we treat the contributions as incoherent and directly sum
the powers of the intermodulation products.

𝑃′′𝜔1+𝜔2 = 𝐺2
(𝑃′𝜔1)2
OIP2′

+ (𝑃
′′
𝜔1)2

OIP2′′
=

(
1

𝐺2OIP2′
+ 1

OIP2′′

)
(𝑃′′𝜔1)2 . (B.34)

Again solving for the total cascaded 2nd order intercept, incoherently combined gives

OIP2 =

(
1

𝐺2OIP2′
+ 1

OIP2′′

)−1
. (B.35)

The derivations for the 3rd order intercept can be found in [1].
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A p p e n d i x C

GREX ERRATA

C.1 Telescope Calibration
The factors of importance for determining the instrument sensitivity are three-fold:
(1) the telescope response to an incoming signal as a function of angle, (2) the gain of
the receiver, and (3) the system temperature of the instrument. Noise is added to an
incoming signal during its propagation through the amplifiers and other electronics
of the system. It is practical to begin by considering the specific intensity (𝐼𝜈) of a
signal, since it is a conserved quantity through empty space. However, the quantity
that describes the spectral power of the source received at the detector is the flux
density,

𝑆𝜈 =
∫
Ω
𝑑Ω [𝐼𝜈 (𝜃, 𝜙)𝐵(𝜃) cos 𝜃] . (C.1)

𝐵(𝜃) describes the response of the receiver to incoming radiation and is equivalent
to the normalized effective area 𝐴𝑒 (𝜃)/𝐴0, where 𝐴0 = 𝐴𝑒 (𝜃 = 0) = 𝐴𝑒,𝑚𝑎𝑥 . In
this notation, 𝜃 = 0 points along the normal vector of the telescope receiver and 𝜙
describes the azimuthal angle about that normal vector. The cos 𝜃 term in the integral
describes the effect of projecting the incoming spectral power across the detector at
different inclination angles. The beam size of a telescope is relatively small in most
cases, so 𝐵(𝜃) falls to zero rapidly and cos 𝜃 ≈ 1, but this approximation does not
hold for the GReX instrument. Since the behavior of the cos 𝜃 term describes the
Flux Density seen at the detector, it is absorbed into the beam response function 𝐵(𝜃).
It is standard practice to express the specific intensity (𝐼𝜈) of astrophysical signals
in terms of their equivalent brightness temperature (𝑇𝑏) using the Raleigh-Jeans
approximation:

𝐼𝜈 ≈ 2𝑘𝐵𝑇𝑏
𝜆2 . (C.2)

For a given distribution of brightness temperature on the sky (𝑇𝑏 (𝜃, 𝜙)), the detected
flux density is

𝑆𝜈 =
2𝑘𝐵
𝜆2

∫
Ω
𝑑Ω [𝑇𝑏 (𝜃, 𝜙)𝐵(𝜃)] . (C.3)

We can prescribe a constant effective temperature (𝑇𝑒 𝑓 𝑓 ) that gives the same flux
density as for an arbitrary brightness distribution:∫

Ω
𝑑Ω [𝑇𝑏 (𝜃, 𝜙)𝐵(𝜃)] = 𝑇𝑒 𝑓 𝑓

∫
Ω
𝑑Ω [𝐵(𝜃)] = 𝑇𝑒 𝑓 𝑓Ω𝐵.
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For a single-pixel instrument like GReX, this is equivalent to the antenna temperature
contributed by the source. If the source does have a constant brightness temperature
across the beam, then it is apparent that 𝑇𝑒 𝑓 𝑓 accurately describes the source
temperature. However, for sources covering a small patch of sky (𝑇𝑏 (𝜃, 𝜙) = 𝑇𝑏Δ′,
whereΔ′ ∼ 𝛿(𝜃 − 𝜃′, 𝜙 − 𝜙′)) centered at (𝜃′, 𝜙′) and with total solid angle ΩΔ, the
beam response and source brightness temperature are approximately constant and

𝑇𝑒 𝑓 𝑓 ≈
∫
Ω 𝑇𝑏 (𝜃, 𝜙)𝐵(𝜃)Δ′𝑑Ω

Ω𝐵
= 𝑇𝑏𝐵(𝜃′)ΩΔ

Ω𝐵
.

Since the flux density is related to the effective temperature like

𝑆𝜈 =
2𝑘𝐵Ω𝐵

𝜆2 𝑇𝑒 𝑓 𝑓 ,

a source at a distance 𝛿𝜃 from the center of the beam will have its flux density at the
receiver reduced by a factor 𝐵(𝛿𝜃) than if it were centered in the beam:

𝑆𝜈 (𝛿𝜃) ≈ 𝐵(𝛿𝜃)𝑆𝜈 (0).

While flux density is usually not used to describe extended sources with variable
brightness temperature, we do use it for calibration of the instrument as described in
Section 5.5 with measured and simulated values of the hydrogen I line brightness
temperature from diffuse Galactic gas. As such, we include an expression for the
antenna temperature for a well-known brightness distribution:

𝑇𝐴 =
∫
Ω
𝑑Ω

[
𝑇𝑏 (𝜃, 𝜙)𝐵̂(𝜃)

]
, (C.4)

where 𝐵̂ describes the normalized telescope response,

𝐵̂(𝜃) = 𝐵(𝜃)
Ω𝐵

. (C.5)

The effective area of the telescope has the intrinsic property that

⟨𝐴𝑒⟩Ω =

∫
Ω

4𝜋
=
𝜆2

4𝜋
.

Following from this, and 𝐵(𝜃) = 𝐴𝑒 (𝜃)/𝐴0, the maximum effective area is

𝐴0 =
𝜆2

Ω𝐵
. (C.6)

The forward gain (𝑔 𝑓 ) relates the antenna temperature to the source flux density as

𝑆𝜈 = 𝑔 𝑓𝑇𝑒 𝑓 𝑓 → 𝑔 𝑓 =
2𝑘𝐵Ω
𝜆2 ,



128

equivalent with
𝑔 𝑓 =

2𝑘𝐵
𝐴0

(C.7)

Since the forward gain relates the observed temperature of a source by the instrument
to the flux density of that source, it is a critical component for defining the sensitivity
of the instrument.

Due to the prevalence of describing observed signals in terms of 𝑇𝐴, it is convenient
to describe all sources that contribute additive power to the signal within the system
as a system temperature (𝑇𝑠𝑦𝑠), even though the noise is not necessarily thermal in
nature. While there are many sources that contribute to 𝑇𝑠𝑦𝑠, we focus on the thermal
noise within the receiver electronics (𝑇𝑟𝑒𝑐) and the background temperature of the
sky (𝑇𝑠𝑘𝑦). At any time, the total observed temperature by the system is

𝑇𝑜𝑏𝑠 = 𝑇𝑒 𝑓 𝑓 + 𝑇𝑠𝑦𝑠 = 𝑇𝑒 𝑓 𝑓 + 𝑇𝑟𝑒𝑐 + 𝑇𝑠𝑘𝑦 . (C.8)

However, GReX data is natively stored as linear intensities with arbitrary units (𝐼𝑎𝑟𝑏).
The receiver gain (𝐺, in 𝐾/𝑎𝑟𝑏) converts the linear intensities into Kelvin,

𝑇𝑜𝑏𝑠 = 𝐺𝐼𝑎𝑟𝑏 . (C.9)

Since 𝑇𝑠𝑘𝑦 is well characterized to account for atmospheric effects and background
radiation, our sensitivity analysis needs to account for 𝐺 and 𝑇𝑠𝑦𝑠 so that the effective
source temperature can be isolated as

𝑇𝑒 𝑓 𝑓 = 𝐺𝐼𝑎𝑟𝑏 − 𝑇𝑠𝑘𝑦 − 𝑇𝑟𝑒𝑐 . (C.10)

We determine 𝐺 and 𝑇𝑠𝑦𝑠 by performing a Y-factor test with two known values for
𝑇𝑠𝑘𝑦. We first take measurements of the unobscured sky with a GReX terminal before
collecting data again, this time with a slab of room-temperature radio-absorbent foam
covering the receiver. Under the assumption that there are no significant astrophysical
sources present in the data, we now have

𝐼1 =
𝑇𝑠𝑘𝑦 + 𝑇𝑟𝑒𝑐

𝐺
, 𝐼2 =

𝑇ℎ𝑜𝑡 + 𝑇𝑟𝑒𝑐
𝐺

. (C.11)

The Y-factor (𝑌 = 𝐼2/𝐼1) is then expanded according to the above equations and
rearranged to give the following expression for the receiver temperature,

𝑇𝑟𝑒𝑐 =
𝑇ℎ𝑜𝑡 − 𝑌𝑇𝑠𝑘𝑦

𝑌 − 1
. (C.12)

From this value, the receiver gain is trivially

𝐺 =
𝑇ℎ𝑜𝑡 + 𝑇𝑟𝑒𝑐

𝐼2
=
(𝑇ℎ𝑜𝑡 − 𝑇𝑠𝑘𝑦)
(𝐼2 − 𝐼1) . (C.13)
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Ideally, this receiver gain is roughly constant over observing epochs, but changes
in temperature and degradation of the electronics can cause slow changes in this
value. Of course, any changes to the programmable gain in the FEM of a GReX
terminal will require remeasuring the receiver gain. The more volatile value is the
system temperature, which can change depending on environmental effect such as
prevalence of RFI and accumulation of water in the feed, among other potential
issues. As such, it is useful to measure 𝑇𝑠𝑦𝑠 semi-regularly.

Once 𝐺 and 𝑇𝑠𝑦𝑠 are well characterized for the terminal, we compare the measured
𝑇𝑒 𝑓 𝑓 of a source to its known flux density to determine the forward gain. We utilize
all-sky maps of neutral galactic hydrogen to simulate the expected flux density as
seen by the GReX terminal and compare this with the measured 𝑇𝑒 𝑓 𝑓 of the HI line
by the instrument to calibrate 𝑔 𝑓 in Section 5.5. The conversion of temperature units
into flux densities is commonly applied to the system temperature of an instrument
to define its system equivalent flux density (SEFD),

SEFD = 𝑆𝜈,𝑠𝑦𝑠 = 𝑔 𝑓𝑇𝑠𝑦𝑠 . (C.14)

Since we are dealing with dynamic spectra that contain signals across multiple
frequency channels, time samples, and polarizations, it is helpful to consider the
power and temperature within the detector noise that limits the detectability of a
signal. A signal spanning a bandwidth Δ𝜈 with total integration time 𝜏 that is seen
in both polarizations of a dipole antenna will be present in 𝑁 = 2Δ𝜈𝜏 total samples.
The detectability of such a signal depends on the signal-to-noise ratio

SNR =
𝑇𝑠𝑟𝑐
𝑇𝑟𝑚𝑠

, (C.15)

where 𝑇𝑟𝑚𝑠 = 𝜎𝑇/
√
𝑁 describes the root-mean-squared noise in the system tempera-

ture. Assuming that the thermal noise contributing to 𝑇𝑠𝑦𝑠 is exponentially distributed
such that 𝑇𝑠𝑦𝑠 = 𝜇𝑇 = 𝜎𝑇 , then

𝑇𝑟𝑚𝑠 =
𝑇𝑠𝑦𝑠√
𝑁
.

We can then rewrite the signal-to-noise ratio as

SNR =
𝑇𝑠𝑟𝑐
𝑇𝑠𝑦𝑠

√
𝑁

The SNR is a useful measure since this ratio of temperatures is equivalent to the
corresponding ratios of native system intensity units and the ratios of Flux Density.
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Converting the above expression to flux densities gives

𝑆𝜈,𝑠𝑟𝑐 = SNR
SEFD√
𝑁

.

The flux density threshold for detection is then given by

𝑆𝜈,𝑚𝑖𝑛 = SNR𝑚𝑖𝑛 · NEFD,

where the NEFD (noise-equivalent flux density) is NEFD = 𝑔 𝑓𝑇𝑟𝑚𝑠 = SEFD/√𝑁 .

C.2 HI Line Simulation
The LAB data is an all-sky map of the brightness temperatures of neutral galactic
hydrogen binned into discrete velocity channels. These scalar velocities represent the
component of the motion of the neutral galactic hydrogen along the line of sight from
the solar system to the gas within the local standard of rest (LSR) frame. The original
data format for the LAB survey had a velocity channel spacing of ∼ 1.031 km/s and
a total velocity range of −450 km/s to +450 km/s, but this data was conglomerated
into wider bins with a spacing of 10 km/s. This was done by averaging the brightness
temperatures of the narrower bins into those respective larger bins. Thus, the LAB
all-sky map is stored in HEALPix [1] file format with separate files for the difference
wide velocity channels. Each HEALPix velocity-channel file has data stored in two
fields: the first is a TEMPERATURE field, which gives the brightness temperature
within the channel for each sky position pixel; the second is called the SIMULATION
field, which gives the number of original ∼ 1.031 km/s velocity channels that were
used in calculating that brightness temperature. From the TEMPERATURE field, we
construct a map of brightness temperature, 𝑇𝐻𝐼 (ℓ 𝑗 , 𝑏 𝑗 , 𝑣𝑘 ), where (ℓ 𝑗 , 𝑏 𝑗 ) describes
the central position of the 𝑗 𝑡ℎ pixel in galactic coordinates and 𝑣𝑘 gives the 𝑘 𝑡ℎ

velocity channel in the LSR frame. To construct an expected spectrum of HI from
this map for a specific terminal and observing time, we need to: (1) account for the
velocity, ®𝑣𝑜𝑏𝑠, and central pointing, (ℓ, 𝑏)𝑜𝑏𝑠, of the terminal in the LSR frame at that
time; (2) remove the velocity of the observer in LSR along the LoS to each pixel from
the neutral hydrogen velocity in LSR to get the gas velocity in the terminal’s frame;
(3) compute the angular deviation (𝛿𝜃) of each pixel from the central pointing of
the terminal feed and use that to construct a simulated 2D Gaussian beam response
𝐵(𝛿𝜃); (4) convert hydrogen velocity in the observer frame to HI line frequency
( 𝑓𝐻𝐼,0 = 1420.40575 MHz) and bin frequencies into observing channels; and (5)
for each frequency channel, integrate the brightness temperature map over the 4𝜋
steradians of sky modulated by the telescope beam response function (𝐵(𝛿𝜃, 𝑓 )) to
get the expected spectrum of brightness temperature of HI as seen from a GReX unit.
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To compute the velocity of neutral hydrogen in the reference frame of the GReX
terminal along the LoS to each LAB data pixel, we need to start with an expression
for the overall gas velocity in the observer frame:

®𝑣𝐻 , 𝑜𝑏𝑠(𝑡) = ®𝑣𝐻,𝐿𝑆𝑅 − ®𝑣𝑜𝑏𝑠,𝐿𝑆𝑅 (𝑡).

Then, the velocity of gas along the LoS to the 𝑗 𝑡ℎ data pixel is

𝑣𝐻,𝑜𝑏𝑠, 𝑗 (𝑡) = 𝑛̂ 𝑗 · (®𝑣𝐻,𝐿𝑆𝑅 − ®𝑣𝑜𝑏𝑠,𝐿𝑆𝑅 (𝑡)),

where 𝑛̂ 𝑗 is the unit vector pointing along that LoS. The scalar velocity channels of
the LAB data are already the gas velocity along the LoS, so our final expression is

𝑣𝐻, 𝑗,𝑘,𝑜𝑏𝑠 (𝑡) = 𝑣𝐻,𝑘,𝐿𝑆𝑅 − 𝑣𝑜𝑏𝑠, 𝑗 ,𝐿𝑆𝑅 (𝑡),

where 𝑣𝑜𝑏𝑠, 𝑗 ,𝐿𝑆𝑅 (𝑡) = 𝑛̂ 𝑗 · ®𝑣𝑜𝑏𝑠,𝐿𝑆𝑅 (𝑡) is the component of observer velocity along
the 𝑗 𝑡ℎ LoS. Astropy handles the conversion of sky positions and velocities between
different reference frames and coordinate systems to generate values for 𝑣𝑜𝑏𝑠, 𝑗 ,𝐿𝑆𝑅.
We begin by defining an EarthLocation object for the terminal in geodetic coordinates
(𝑥𝑜𝑏𝑠,𝑔𝑒𝑜 (lat, lon)), converting to a location in the barycentric celestial reference
system at a specific time (𝑡), which is then transformed directly into ICRS and
then LSR coordinates (𝑥𝑜𝑏𝑠,𝐿𝑆𝑅 (𝑥𝑜𝑏𝑠,𝑔𝑒𝑜, 𝑡)). Astropy then computes the Cartesian
differential of the EarthLocation object to determine the the GReX terminal velocity
within the LSR frame (®𝑣𝑜𝑏𝑠,𝐿𝑆𝑅 (𝑡)) in (x,y,z) coordinates. The LoS unit vector
𝑛̂ 𝑗 = 𝑛̂(ℓ 𝑗 , 𝑏 𝑗 ) that points from the observer towards the galactic coordinates ℓ 𝑗
and 𝑏 𝑗 is generated by converting an Astropy SkyCoord object at those galactic
coordinates into (x,y,z) to remain consistent with 𝑥𝑜𝑏𝑠,𝐿𝑆𝑅 and ®𝑣𝑜𝑏𝑠,𝐿𝑆𝑅 (𝑡). The
terminal’s velocity within the LSR frame along each LoS towards an individual LAB
data pixel is then computed as the dot product

𝑣𝑜𝑏𝑠, 𝑗 ,𝐿𝑆𝑅 (𝑡) = 𝑛̂ 𝑗 · ®𝑣𝑜𝑏𝑠,𝐿𝑆𝑅 (𝑡).

The frequency of the HI line as seen by the GReX terminal along the 𝑗 𝑡ℎ LoS and
from the 𝑘 𝑡ℎ LAB data velocity channel are computed from this scalar gas velocity
according to

𝑓𝐻𝐼, 𝑗 ,𝑘 = 𝛾 𝑗 ,𝑘 (1 − 𝛽 𝑗 ,𝑘 ) 𝑓𝐻𝐼,0,
where 𝛽 𝑗 ,𝑘 = 𝑣𝑜𝑏𝑠, 𝑗 ,𝐿𝑆𝑅/𝑐, 𝛾 𝑗 ,𝑘 = 1/

√︃
1 − 𝛽2

𝑗 ,𝑘 , where 𝑓𝐻𝐼,0 is the lab-frame fre-
quency of emission for neutral hydrogen gas. After applying these transformations,
our map of brightness temperature is formatted as 𝑇𝐻𝐼 (ℓ 𝑗 , 𝑏 𝑗 , 𝑓 𝑗 ,𝑘 ). To standardize
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the data, we consider a hypothetical observing frequency channelization scheme
labeled as 𝑓𝑖 such that channel edges directly abut one another. The temperature map
is then reconfigured such that

𝑇𝐻𝐼 (ℓ 𝑗 , 𝑏 𝑗 , 𝑓𝑖, 𝑡) =
∑︁
𝑘

𝑇𝐻𝐼 (ℓ 𝑗 , 𝑏 𝑗 , 𝑓 𝑗 ,𝑘 (𝑡)) | 𝑓 𝑗 ,𝑘 (𝑡) ∈ 𝑓𝑖 |,

and we now have an all-sky map of brightness temperature within each frequency
channel at each observing epoch.

The actual brightness temperature seen by a GReX terminal is found by integrating the
brightness temperature of your source over the normalized beam response function
of the feed:

𝑇𝐻𝐼 (𝑡, 𝑓 ) =
∫
Ω 𝑑Ω [𝑇𝐻𝐼 (ℓ, 𝑏, 𝑓 , 𝑡)𝐵(ℓ(𝑡), 𝑏(𝑡))]∫

Ω 𝑑Ω𝐵(ℓ(𝑡), 𝑏(𝑡))
.

In our case, we replace this integral with its numerical counterpart,

𝑇𝐻𝐼 (𝑡, 𝑓𝑖) ≈
∑︁
𝑗

ΔΩ
[
𝑇𝐻𝐼 (ℓ 𝑗 , 𝑏 𝑗 , 𝑓𝑖, 𝑡)𝐵̂(ℓ 𝑗 (𝑡), 𝑏 𝑗 (𝑡))

]
,

which requires that we compute the normalized beam response function for a GReX
terminal at each LAB pixel galactic coordinate as a function of time. We model the
normalized beam response as a two-dimensional Gaussian,

𝐵̂(𝜃, 𝜃FWHM) = Ω−1
𝐵 𝑒
−4 ln 2[𝜃/𝜃FWHM]2 ,

with a full-width at half maximum of 𝜃FWHM. It is important to note that the
Ω𝑏𝑒𝑎𝑚 ∝ 𝑓 −2 relationship according to the radiometer equation means that the
beam needs to be simulated for every frequency channel. We numerically integrate
over simulated beams across a range of different 𝜃FWHMand interpolate between
the resulting Ω𝐵 (𝜃FWHM). We consider a characteristic beam width Ω𝐵 ( 𝑓𝐻𝐼,0),
which can be scaled across the band according to the inverse squared frequency
dependence. We assume that Ω𝐵 ≈ Ω𝐵 ( 𝑓𝐻𝐼,0) in the ∼ 2MHz of band used in this
analysis. We parametrize the angle dependence of the beam response function into
galactic coordinates such that 𝜃 → 𝛿𝜃 (ℓ 𝑗 , 𝑏 𝑗 ) = 𝛿𝜃 𝑗 , where 𝛿𝜃 describes the off-axial
deviation of the 𝑗 𝑡ℎ data pixel coordinate from the beam central pointing (ℓ, 𝑏)𝑜𝑏𝑠.
Thus,

𝐵̂(𝜃, 𝜃FWHM) → 𝐵̂(𝛿𝜃 𝑗 , 𝜃FWHM( 𝑓 )) = Ω−1
𝐵 𝑒
−4 ln 2[𝛿𝜃 𝑗/𝜃FWHM ( 𝑓 )]2

The normalizing factor Ω𝐵 is found by numerically integrating the beam response
over the full 4𝜋 steradians of sky at the HEALPix data coordinates,

Ω𝐵 (𝜃FWHM( 𝑓 )) ≈
[
ΔΩ

∑︁
𝑗

𝑒
−4 ln 2

(
𝛿𝜃 𝑗

𝜃FWHM ( 𝑓 )
)2
]
.
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The central pointing of the GReX feed is needed to calculate 𝛿𝜃 𝑗 . We first define
an AltAz frame for the terminal at the appropriate EarthLocation and time, 𝑡 which
is then fed into a SkyCoord object with the corresponding altitude and azimuth
values for the feed (which should be 90◦ and 0◦, respectively). We then extract the
galactic coordinates that correspond to this SkyCoord object, which acts as the central
pointing of the feed, (ℓ, 𝑏)𝑜𝑏𝑠 (𝑡). The difference in angle (𝛿𝜃) between the 𝑗 𝑡ℎ data
point and the terminal pointing in galactic coordinates is calculated according to

cos 𝛿𝜃 𝑗 (𝑡) = cos [90◦ − 𝑏𝑜𝑏𝑠 (𝑡)] cos [90◦ − 𝑏 𝑗 ]+sin [90◦ − 𝑏𝑜𝑏𝑠 (𝑡)] sin [90◦ − 𝑏 𝑗 ] cos [ℓ 𝑗 − ℓ𝑜𝑏𝑠 (𝑡)] .

We include a small-angle approximation for numerical stability, which gives the
resulting angular distance as

𝛿𝜃 𝑗 (𝑡) =

√︁

2[1 − cos 𝛿𝜃 𝑗 (𝑡)], |1 − | cos 𝛿𝜃 𝑗 (𝑡) | | < 10−6

arccos [cos 𝛿𝜃 𝑗 (𝑡)], else
.

Using this definition for 𝛿𝜃 𝑗 (𝑡), we generate an all-sky map of the beam response at
each HEALPix data coordinate for all observing times and frequency channels,

𝐵𝜃FWMH,𝑐 , 𝑓𝑐 (ℓ 𝑗 , 𝑏 𝑗 , 𝑓𝑖, 𝑡) = exp

[
−4 ln 2

(
𝛿𝜃 𝑗 (𝑡)

𝜃FWHM( 𝑓𝑖)

)2
]
,

and compute the normalizing factor as Ω𝐵 (𝑡, 𝑓𝑖) = ΔΩ
∑
𝑗 𝐵𝜃FWHM,𝑐 , 𝑓𝑐 (ℓ 𝑗 , 𝑏 𝑗 , 𝑓𝑖, 𝑡).

Substituting the expressions for 𝜃FWHM( 𝑓 ) and 𝛿𝜃 𝑗 (𝑡) into the earlier expressions
for 𝐵 and Ω𝐵 yields the normalized beam response (𝐵̂) as a sky map at the HEALPix
galactic coordinates for each observing time and frequency channel.

We can now apply this set of simulated beam responses to the all-sky temperature
map (𝑇𝐻𝐼 (ℓ 𝑗 , 𝑏 𝑗 , 𝑓𝑖, 𝑡)) and sum over the 𝑗 data coordinates to generate the expected
observed spectrum of neutral galactic hydrogen in temperature units as seen from
the GReX terminal at each observing time:

𝑇 (𝑡, 𝑓𝑖) = ΔΩ
Ω𝐵 (𝑡, 𝑓𝑖)

∑︁
𝑗

[
𝑇𝐻𝐼 (ℓ 𝑗 , 𝑏 𝑗 , 𝑓𝑖, 𝑡)𝐵𝜃FWHM,𝑐 , 𝑓𝑐 (ℓ 𝑗 , 𝑏 𝑗 , 𝑓𝑖, 𝑡)

]
.

In Section 5.5, we use the method described above to generate the expected spectra
of the HI-line for terminals at OVRO and Cornell University. We find that integrating
across the spectrum at each observation time and comparing the total HI-line intensity
was sufficient for determining the size of the terminal beams.
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