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ABSTRACT

Spontaneous symmetry breaking occurs when the vacuum state is not pre-
served under (a subset of) symmetries in the theory. Instead, the symme-
try is non-linearly realized by the associated massless degrees of freedom, the
Nambu-Goldstone bosons. At the level of on-shell observables, the non-linearly
realized symmetry is manifested as a universal structure of scattering am-
plitudes in the so-called soft limit, which means sending the momenta of a
Nambu-Goldstone modes to zero.

In this dissertation, we further explore the link between spontaneous symme-
try breaking and infrared dynamics of massless scalars. First, we derive soft
theorems for theories with spontaneously broken Poincaré symmetries, corre-
sponding to effective field theories for condensed matter systems such as solids,
fluids, superfluids, and framids. We also implement a bootstrap in which the
enhanced vanishing of amplitudes in the soft limit is taken as an input, thus
sculpting out a subclass of exceptional solid, fluid, and framid theories.

Next, we consider spontaneous breaking of higher symmetries. We derive a new
sub-leading double soft pion theorem in theories with a spontaneously-broken
continuous 2-group global symmetry, which intertwines amplitudes with dif-
ferent numbers of pions and photons. We also provide a novel derivation of
the leading soft photon theorem from the Ward identity of an emergent 1-form
global symmetry in effective field theories where antiparticles are integrated
out.

Finally, we turn to universal features in low-energy dynamics of generic effec-
tive field theories. We extend the scalar geometric soft theorem by allowing
the massless scalar to couple to other scalars, fermions, and gauge bosons. The
soft theorem keeps its geometric form, but where the field-space geometry now
involves the full field content of the theory. As a bonus, we also present novel
double soft theorems with fermions, which mimic the geometric structure of
the double soft theorem for scalars.
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C h a p t e r 1

INTRODUCTION

The discovery of the Standard Model—our current theoretical description of
elementary particles, tested to a high precision—was largely guided by the
search for symmetries of the underlying fundamental interactions. Histori-
cally, one of the key insights to the Standard Model puzzle was provided by
Nambu and Goldstone, who showed that spontaneous breaking of continu-
ous symmetries mandates a presence of massless scalars in the spectrum, the
Nambu-Goldstone (NG) bosons [1]–[3].

Spontaneous symmetry breaking refers to a scenario in which the vacuum state
is not invariant under the full set of symmetries of the underlying Lagrangian.
For the case of spontenously broken internal symmetries, there is a NG mode
corresponding to each broken generator, which transforms non-linearly under
the full symmetry. In turn, the low-energy dynamics of NG bosons is con-
strained by the algebra of spontaneously broken currents associated with the
symmetries of the theory.

At the level of on-shell observables, the non-linearly realized symmetry dictates
the form of a soft theorem—a universal behavior of NG amplitudes in the
so-called soft limit, as we send a momentum of a gapless mode to zero and
perform an expansion of the amplitude in the soft momenta. For a flagship
example of such a relation, consider the non-linear sigma model (NLSM) which
describes the interactions of massless pions, the NG bosons of spontaneously
broken SU(N) axial symmetry. As shown by Adler [4], the conservation of the
axial current implies that an amplitude with n pions vanishes as we send the
momentum of one of the pions to zero (single soft limit).

In fact, the algebra of non-abelian currents can be accessed from amplitudes
with multiple soft pions; see [5]–[7] for early work on multiple-pion emission.
In NLSM, in the simultaneous double soft limit (two of the pion momenta are
sent to zero at the same rate) the amplitudes do not vanish; instead they have
a universal structure, which can be expressed as a kinematic soft operator
multiplying a lower point amplitude [8]. The form of a soft operator in the
double soft theorem is controlled by the commutator of broken axial currents.
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However, such underlying simplicity of the low-energy dynamics is often hard
to diagnose just by looking at a particular form of the effective field theory
(EFT) Lagrangian with non-linearly realized symmetry. First of all, the form
of the Lagrangian is not unique, as we can perform field redefinitions which
do not change the physical content of the theory.1 Secondly, going back to
the NLSM example, the pion Lagrangian contains a tower of two-derivative
interactions, and so it is not clear that the amplitudes should vanish in the sin-
gle soft limit. In fact, the Adler zero condition requires cancellations between
different n-point interaction terms. Thus, for a systematic study of EFTs with
“special” soft behavior, it is much more convenient to work at the level of
scattering amplitudes, which is known as the soft bootstrap program [9]–[12].

The example of pion amplitudes revealed that the structures appearing in soft
theorems are dictated by the spontaneous breaking of internal symmetry. How-
ever, such relation between non-linearly realized symmetries and low-energy
on-shell observables should, of course, hold more generally. In particular, in
this dissertation we explore three different directions in the study of how the
spontaneous symmetry breaking pattern is encoded in the soft amplitudes. To
this end, we derive soft theorems for massless scalars in

(i) a broad class of nonrelativistic EFTs with spontaneous breaking of space-
time symmetries (Chapter 2);

(ii) an example of an EFT with spontaneous breaking of higher-group sym-
metry (Chapter 3), where the set of Goldstone modes includes both
spin-zero and spin-one particles;

(iii) general relativistic EFTs coupled to particles with higher spin, without
assuming an internal symmetry structure (Chapter 4). This paper builds
upon the work of [13], which developed a framework of geometric soft
theorems for scalars.

We will now discuss each of these points in turn.
1The geometric approach to EFTs—which we will discuss in Chapter 4—exploits this

fact to organize the EFT data into structures according to their transformations under field
redefinitions.
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1.1 Spontaneous breaking of spacetime symmetries

Famously, models with spontaneous spacetime symmetry breaking are relevant
in cosmology, such as the proposed EFTs for inflation [14]–[16]. Specifically,
in the limit as gravity decouples from inflation [17], the scalar metric mode
interactions are captured by flat-space amplitudes of NG bosons for sponta-
neously broken time diffeomorphisms. Indeed, the first on-shell soft theorem
for non-linearly realized boosts was derived in this context [18]. In fact, the
same symmetry breaking pattern EFT describes superfluids [14], which brings
us to another important class of models with spontaneous spacetime symme-
try breaking, namely EFTs corresponding to condensed matter systems in the
continuum limit [16], [19], [20].

Depending on the way spacetime symmetry is spontaneously broken, the num-
ber of NG bosons can be less than the number of broken symmetry generators
[21]–[25]. An example of such scenario is the spontaneous breaking of trans-
lational and rotational symmetries in solids, yielding only phonon degrees of
freedom associated with broken translations.

The coset construction, a standard procedure for deriving Lagrangians with
spontaneous symmetry breaking [26]–[28], can be augmented to take that into
account via the so-called inverse Higgs constraints [21], [29]. Using this “top-
down” method, the authors of [19] obtained general Lagrangians for phases of
matter classified by their possible symmetry breaking pattern. Such general
considerations yielded—in addition to phases of matter found in nature—a toy
model characterizing a framid, which only breaks boost invariance.

In Chapter 2, we present the soft theorems for a class of non-relativistic EFTs
appearing in [19], which correspond to various condensed matter systems, such
as solids and perfect fluids, as well as framids. As we will see, the form of
the soft theorem encodes the symmetry braking pattern. In particular, in
some cases only a subset of terms in the soft amplitude obeys a soft theorem,
meaning that it can be expressed as a soft operator acting on lower point
amplitudes in a given theory.2

Next, we apply soft bootstrap techniques to non-relativistic condensed matter
EFTs to find theories with the enhanced soft limits—that is, vanishing in the

2The remaining terms in the soft amplitude also possess a universal structure, as dictated
by the geometric soft theorem (see Chapter 4). However, that universal form involves a
derivative acting on the space of couplings in the EFT, and so we will not discuss it here.
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soft limit faster than naively expected from derivative counting—signaling a
presence of additional “hidden” non-linearly realized symmetry.

In some special cases, knowing the soft limit of scattering amplitudes provides
enough information to obtain higher-point amplitudes in the theory directly
using on-shell methods [9], [30], [31]. For instance, NLSM amplitudes can be
constructed in this “bottom-up” way, imposing Adler zero condition. Simi-
larly, a non-vanishing soft theorem can be used as additional input. For the
case of framids, requiring that the soft theorem is satisfied allows us to boot-
strap higher-point interactions, bypassing the redundancies in the Lagrangian
construction.

1.2 Spontaneous breaking of higher symmetries

Recent years have witnessed numerous developments in the field of generalized
symmetries, motivated by extending—in several different ways—the standard
notion of group-like symmetry acting on local objects; for a review, see [32], [33]
and references therein. In particular, one can consider higher-form symmetries
which act on non-local operators (ie., p-form symmetries act on p-dimensional
objects). Crucially, associated charge operators always commute; therefore,
higher-form symmetries are necessarily abelian. Furthermore, different p-form
symmetries can mix in a non-trivial way, giving rise to a higher-group structure.
In Chapter 3, we will focus on 1-form symmetries, which act on Wilson lines,
and can mix with an ordinary (0-form) symmetry to form a 2-group.

Just like in the case of ordinary symmetry, higher-form symmetries can also be
spontaneously broken. The higher-form analogue of the NG theorem [34]–[36]
states that, for instance, the NG mode of spontaneously broken continuous
1-form symmetry is a massless spin-one boson. Consequently, one can identify
the photon in pure Maxwell theory as a NG boson associated with sponta-
neously broken 1-form symmetry [34]. Given the link between soft theorems
and spontaneous symmetry breaking, some immediate questions arise: is it
possible to recast the Weinberg soft photon theorem [37], [38] as following
from spontaneously broken 1-form symmetry? Also, are there any new soft
structures associated to higher symmetries that we can discover?

At first glance, reinterpreting soft photon theorems with higher-form sym-
metry seems to be obstructed by the fact that charged matter breaks 1-form
symmetry explicitly. However, in Chapter 3, we will argue that in the soft limit
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there is an emergent 1-form symmetry. The associated 1-form Ward identities
provide constraints which allow us to derive the Weinberg soft photon theorem
at leading order. Therefore this framework provides a unified picture for soft
theorems for pions and photons, and moreover suggests that there are new soft
structures as dictated by the spontaneously broken higher-group symmetries,
which can intertwine NG bosons of different p-form symmetries.

For a non-trivial example of a new soft theorem, we consider a theory with a
2-group structure, which encodes a non-trivial mixing between non-abelian 0-
form and U(1) 1-form symmetry. In particular, the 2-group structure constant
appears in a modification of the 0-form current algebra, which could affect the
form of the double soft limit of 0-form NG bosons.

Concretely, we consider a theory with spontaneously broken 2-group symmetry
discussed in [39], namely the NLSM with gauged vector U(1) symmetry cor-
responding to baryon number. We show that the NLSM double soft theorem
at leading order in soft momenta is not modified, but the sub-leading order
has an additional contribution sensitive to the 2-group structure. Finally, we
illustrate the new double soft theorem in explicit examples of soft amplitudes.

1.3 Soft theorems and field-space geometry

The intuition built from theories with non-linearly realized symmetries im-
plies that the soft limit of amplitudes probes the neighborhood of the vacuum
expectations value (VEV) of the spontaneously broken theory. For pions, a
vanishing single-soft limit reveals there is an underlying moduli space of vacua
in the unbroken phase, whereas double soft limit corresponds to different paths
in moduli space [8]. In turn, this suggests that in a general EFT without inter-
nal symmetry, a soft limit of a massless scalar should reflect the EFT structure
in the neighborhood of the VEV [13].

Parametrizing scalar EFTs using field-space geometry [28], [40]–[44] provides a
suitable framework to address this question. In this setup, a multiplet of scalar
fields can be viewed as functions from spacetime to a target scalar manifold,
which encodes the EFT data.

In general, as we discussed above, a theory can be described by a family
of Lagrangians that map into each other under field redefinitions. Choosing
a field basis corresponds to picking a particular coordinate system for the
underlying target manifold, yielding a set of couplings dependent on that basis.
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In turn, a field redefinition with no derivatives3 corresponds to a coordinate
transformation, with associated mapping of couplings to a new basis.

With this insight, we can group higher-dimensional operators with a fixed
number of derivatives into compact geometrical structures, which map onto
themselves under field redefinitions. Clearly, physical observables such as scat-
tering amplitudes depend only on geometrical data of the target manifold, such
as Riemann curvature and its derivatives, and not on a choice of a particular
basis. Organizing EFT data in the Lagrangian in such a way proved to be a
practical tool for streamlining calculations [40], [46], [55]–[64] and also allows
us to study infrared dynamics of scalars in theories with no internal symmetry.

Generally speaking, the scalar geometric soft theorem [13] relates a soft limit
of a (n + 1)-point amplitude to a field-space covariant derivative of n-point
amplitude, which acts in the space of couplings. In other words, to apply the
soft theorem, one needs to know the couplings in the amplitude as functions
of the VEV. However, in the presence of non-linearly realized symmetry, the
covariant derivative in the soft theorem can be expressed in terms of soft
operators acting on lower-point amplitudes, recovering the familiar form of
soft theorems for spontaneous symmetry breaking. Moreover, recently the
geometric soft theorem has been extended to one-loop order [65].

Given the computational advantages of the geometric scalar construction, one
would like to extend this framework to incorporate particles with higher spin.
There are different approaches to this question [47], [66]–[69]; perhaps a mini-
mal extension is dictated by considering field redefinitions depending on scalar
fields only. Similarly, in Chapter 4, we extend the geometric soft theorem of
[13] to include scalars coupling to fermions and gauge bosons. We employ
the existing formulations of field-space geometry for fermions [66] and gauge
bosons [69] and derive a general soft theorem for massless scalars coupled to
particles with higher spin.

We find that the soft theorem still acts as a covariant derivative, but now
in the full field-space accommodating scalars, fermions, and gauge bosons.
Including massive fermions and gauge bosons gives rise to additional terms
in soft theorem, which are in closely related to analogous terms for massive
scalars. In addition, we derive a double soft theorem for both soft scalars and

3For extensions of field-space geometry to accommodate field redefinitions with deriva-
tives, see [45]–[54].
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soft fermions. Last but not least, we discuss several examples of geometric
EFTs coupled to fermions and gauge bosons (with and without masses) and
verify the validity of the new soft theorems explicitly.
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C h a p t e r 2

SOFT PHONON THEOREMS

C. Cheung, M. Derda, A. Helset, and J. Parra-Martinez, “Soft phonon
theorems,” JHEP, vol. 08, p. 103, 2023. doi: 10.1007/JHEP08(2023)
103. arXiv: 2301.11363 [hep-th].

2.1 Introduction

The seminal work of Nambu and Goldstone [1]–[3] revealed a deep connection
between spontaneously broken internal symmetries and a corresponding set of
gapless degrees of freedom. These Nambu-Goldstone bosons (NGBs) parame-
terize a continuous degeneracy of vacua and transform nonlinearly under the
broken symmetries. Notably, spontaneous symmetry breaking often mandates
universal features in scattering, as perhaps best illustrated by the Adler zero
[4], which refers to the vanishing of certain NGB amplitudes in the soft limit.

As is well-known, similar statements apply to the spontaneous breaking of
spacetime symmetries [70]–[74], albeit with a fewer number of NGBs than
naively expected [21]–[24]. More recently, it has also been suggested that
spontaneous breaking of Poincaré invariance is not merely a calling card of
certain condensed matter systems, but can actually be elevated to an organiz-
ing principle for these theories [19]. In this approach, nonrelativistic effective
field theories (EFTs) are classified by their spacetime symmetry breaking pat-
tern, yielding a rich array of physical systems corresponding to the phonon
excitations at zero temperature of perfect solids and fluids, as well as modes
of a superfluid. The authors of [19] also discovered some exotic, yet-to-be-
experimentally-realized systems which include the framid, whose correspond-
ing framon degree of freedom exhibits the minimal nonlinear realization of
spontaneous Lorentz symmetry breaking.

In this paper we study the soft behavior of scattering amplitudes of NGBs
arising from the spontaneous breaking of spacetime symmetries. Our analysis
focuses on the nonrelativistic EFTs classified in [19] by the symmetry breaking
pattern corresponding to solids, fluids, superfluids, and framids. In all of these
systems, the group of spatial rotations is preserved at low energies, so the

https://doi.org/10.1007/JHEP08(2023)103
https://doi.org/10.1007/JHEP08(2023)103
https://arxiv.org/abs/2301.11363
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NGBs reside in a linear representation of SO(3). For example, the superfluid
phonon is described by a scalar field π, while solid and fluid phonons and
framons are described by a three-vector field πi.1 In general, the latter NGBs
nonlinearly realize the underlying broken spacetime symmetries via

πi → πi + αi + βi
jπ

j + · · · , (2.1.1)

for parameters α and β, which are in general position-dependent, and where
the ellipses denote terms higher order in the field. In our analysis, we focus
primarily on the case in which the broken spacetime symmetry generators are
translations or boosts, but also consider the case of broken spatial diffeomor-
phisms in a fluid.

Following the logic of [18], we use current conservation to derive a broad class
of soft theorems applicable to NGBs arising from the spontaneous breaking
of any symmetry. Technically, our results apply to any symmetry breaking
pattern involving spacetime or internal symmetries or both.2 The schematic
form of our soft theorem is

lim
q→0

α[An+1] ∼ − lim
q→0

α
[∑

V3∆An

]
−
∑

β[An] , (2.1.2)

where the soft limit q → 0 corresponds to sending the energy and momentum
components of the soft leg to zero. Here both sides of eq. (2.1.2) are O(q0)

in the soft momentum, which is to say that terms O(q1) or higher have been
dropped. The summations above run over all external legs in An, which are
assumed to be hard.

Since α and β are in general functions of spacetime, they act as differential
operators on the external momenta. In particular, in eq. (2.1.2), α acts on the
soft energy or momentum, while β acts on the energy or momenta of each hard
leg in An. Depending on the differential degree of α and β, they will extract
different powers in the soft expansion of the amplitudes. For example, if α is

1Throughout, we use Greek letters µ, ν, ρ, · · · , to denote four-vector indices, late Latin
letters i, j, k, · · · , to denote three-vector indices, and early Latin letters a, b, c, · · · , to denote
external particle labels. For products of three-momenta we will sometimes employ the
shorthand, p · q = piqi.

2While the present work focuses solely on theories which preserve SO(3) rotation sym-
metry, this is actually not required for our soft theorem. In particular, our results apply
to any symmetry breaking pattern that preserves some version of spacetime translations in
the broken phase such that energy and momentum are well-defined. We leave an analysis
of more drastic symmetry breaking patterns for later work.
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a constant, then eq. (2.1.2) extracts the O(q0) piece of An+1, while if α is a
single derivative with respect to the soft energy or momentum, then it probes
the O(q1) piece of An+1.

eq. (2.1.2) is an on-shell soft theorem because both the left- and right-hand
sides are operations acting on the on-shell amplitudes An+1 and An. Fur-
thermore, as required of any physical on-shell scattering, the soft theorem in
eq. (2.1.2) is satisfied irrespective of the choice of field basis. This feature is ac-
tually rather miraculous when one considers that eq. (2.1.2) depends explicitly
on the off-shell three-point vertex V3, which is field basis dependent along with
the symmetry parameter β. However, as we will later argue, any change of
field basis that sends V3 and β to an alternative choice of V ′3 and β′ necessarily
cancels in the soft theorem. The fact that the soft theorem is on-shell makes
our results distinct from the soft theorems for correlation functions derived in
[75]–[79].

The structure of this paper is as follows. In Sec. 2.2 we state the general soft
theorem and present a proof as well as a discussion of its invariance under
changes of field basis. We then turn to concrete examples of theories that
satisfy the soft theorem: superfluids in Sec. 2.3, solids in Sec. 2.4, fluids in
Sec. 2.5, and framids in Sec. 2.6. In Sec. 2.7 we discuss a soft bootstrap for
nonrelativistic theories, and we conclude in Sec. 2.8.

2.2 Soft Theorem

2.2.1 Degrees of Freedom

In this work we focus on nonrelativistic theories describing a NGB arising
from a spontaneously broken spacetime symmetry.3 For concreteness, let us
consider here the case of an SO(3) vector field πi, which transforms linearly
under

spatial rotations: πi → Ri
jπ

j , (2.2.1)

for a constant orthogonal matrix R. Here we emphasize that πi does not
describe a gauge theory in the conventional sense, since all three of its com-
ponents are physical: they correspond to one longitudinal and two transverse
modes of the NGB, which we describe in terms of one-particle states, |ω, p, L⟩

3For simplicity, we focus on the case of NGBs of type I with a linear dispersion relation.
While we do not explicitly analyze NGBs of type II with quadratic dispersion relations (see
[23], [25], [80]–[86]), all of our results, including the general soft theorem, should apply more
generally.
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and |ω, p, T ⟩, respectively. These states overlap with the πi field according to

⟨0|πi(t, x)|ω, p, L⟩ = eiL(p)e
−iωt+ip·x ,

⟨0|πi(t, x)|ω, p, T ⟩ = eiT (p)e
−iωt+ip·x .

(2.2.2)

Here ω and p are the energy and three-momentum of the particle. Depending
on the particle type, these quantities obey the dispersion relations,

ω2 − c2Lp
2 = 0 or ω2 − c2Tp

2 = 0 , (2.2.3)

where cL and cT are the speeds of sound for the longitudinal and transverse
modes, respectively. The polarization vectors in eq. (2.2.2) satisfy

pie
i
T = 0 and ϵijkp

jekL = 0 . (2.2.4)

This implies that eL encodes the single longitudinal mode while eT encodes the
two transverse modes. For explicit calculations, we will use the unit normalized
longitudinal polarization,

eiL =
cLp

i

ω
. (2.2.5)

We can think of eq. (2.2.3) and eq. (2.2.4) as the on-shell conditions for the
kinematic variables that characterize the phonon modes.

Here it will be convenient to define the projection operators,

Πij
L (p) =

pipj

p2
,

Πij
T (p) = δij − pipj

p2
,

(2.2.6)

which leave the polarizations invariant, so

Πij
L (p)eLj = eiL and Πij

T (p)eTj = eiT . (2.2.7)

In terms of these projectors, the phonon propagator is

∆ij(ω, p) =
Πij

L (p)

ω2 − c2Lp
2
+

Πij
T (p)

ω2 − c2Tp
2
, (2.2.8)

whose inverse, ∆−1ij (ω, p), is the two-point Lagrangian term in momentum
space.

To define the n-point scattering amplitude of phonons we define a set of ex-
ternal particles labelled by a = 1, · · · , n, whose corresponding momenta are
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pµa = (ωa, p
i
a), with speed of sound ca and polarization vector eia which is cho-

sen to be either longitudinal or transverse. The n-point scattering amplitude
is

Ai1···in
n (p1, · · · , pn) = ⟨0|

(
|ω1, p1⟩i1 · · · |ωn, pn⟩in

)
, (2.2.9)

where we have defined a shorthand for a state |ω, p⟩i that carries an arbitrary
polarization and is related to the physical longitudinal and transverse states
defined previously by |ω, p, L⟩ = eiL|ω, p⟩i and |ω, p, T ⟩ = eiT |ω, p⟩i, respec-
tively.

The quantity Ai1···in
n is simply the amputated correlation function of phonon

fields, which can be computed straightforwardly using Feynman diagrams.
To compute the physical amplitude we simply dot this object into external
polarization vectors. Note that we have used a schematic notation in which
Ai1···in

n is written as a function of just the three-momenta p1, · · · , pn. However,
since we are interested in on-shell kinematics, momenta and energies can be
interchanged freely. So in explicit calculations, our actual amplitudes may be
functions of energies as well as the three-momenta.

2.2.2 Proof of Theorem

To begin, recall that the NGB of spontaneous spacetime symmetry breaking
transforms nonlinearly under the broken symmetry transformations,

πi → πi + δπi . (2.2.10)

In general, the nonlinearly realized symmetry transformation may also involve
changes of coordinates, but this will not be important for our analysis. In
addition, we will assume that the Lagrangian does not depend on the second
and higher derivatives of fields. The statement that the Lagrangian is invariant
implies that

L→ L+ δL , (2.2.11)

where the Lagrangian variation is

δL = ∂µ

(
δπi δL

δ∂µπi

)
− δπiEi = ∂µK

µ . (2.2.12)

Here K describes any shift of the Lagrangian by a total derivative, as would
often appear in a spacetime symmetry transformation. Meanwhile, E denotes
the equation of motion,

Ei = ∂µ

(
δL

δ∂µπi

)
− δL

δπi

on-shell
= 0 , (2.2.13)
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which vanishes on the support of on-shell, physical field configurations. Re-
calling the definition of the conserved current,

Jµ = δπi δL

δ∂µπi
−Kµ , (2.2.14)

which satisfies the conservation equation,

∂µJ
µ = δπiEi

on-shell
= 0 , (2.2.15)

for on-shell configurations of fields. In order to derive our soft theorem we
evaluate matrix elements of the above equation, keeping contributions up to
O(q1) in the soft limit.

For later convenience, let us define a bracket that acts on a local field operator
O(t, x) via

⟨O⟩δ4(p1 + · · ·+ pn) = lim
q→0

∫
dtd3x e−iωteiq·x⟨0|O(t, x)

(
|ω1, p1⟩i1 · · · |ωn, pn⟩in

)
,

(2.2.16)
which is the matrix element obtained by sandwiching the operator between a
set of on-shell physical states with arbitrary polarizations. By construction,
the field operator itself is imparted with energy ω and three-momentum q

which are taken to zero, yielding a soft limit. Throughout, we assume that an
on-shell momentum flows through the operator, so ω also scales as q and is
implicitly sent to zero in the soft limit.

To derive a soft phonon theorem we evaluate eq. (2.2.15) as an operator equa-
tion sandwiched between on-shell physical states. To this end, let us define a
general parameterization of the infinitesimal shift of the NGB field,

δπi = αi + βi
jπ

j + · · · , (2.2.17)

where α and β are spacetime-dependent in general and the ellipses denote
terms that are higher order in the field. Meanwhile, the equation of motion
takes the general form,

Ei = V2ijπ
j + 1

2
V3ijkπ

jπk + · · · , (2.2.18)

where V2ij and V3ijk correspond to the two- and three-point Lagrangian terms.
Going to momentum space, the Feynman propagator and three-point Feynman
vertex are equal to ∆ij = V −12ij and V3ijk, all multiplied by i.
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a An

O(q)

Figure 2.1: Diagrams computing the contribution from operator insertions on
the external legs.

The classical conservation of the current in eq. (2.2.15) uplifts to the operator
statement,

0 = ⟨∂µJµ⟩ = ⟨δπiEi⟩ = ⟨(αi + βi
jπ

j + · · · )((∆−1)ikπk + 1
2
V3iklπ

kπl + · · · )⟩ .
(2.2.19)

To derive the soft theorem we must calculate the matrix elements in each
term in eq. (2.2.19). In principle one should evaluate all possible insertions of
each operator, both on internal and external lines. However, many terms can
be neglected since we are only interested in terms at O(q0) but not higher.
In particular, since the first equality in eq. (2.2.19) implies that the matrix
element is automatically equipped with an overall factor of q, any contributions
to ⟨Jµ⟩ which are analytic in q will only generate O(q1) contributions to the
matrix element. Conversely, O(q0) contributions only arise from terms in
⟨Jµ⟩ that go as O(q−1). Such terms appear due to soft pole contributions
from q-dependent propagators, which in turn only arise from insertions of the
operator on external legs (see Fig. 2.1). On the other hand, operator insertions
on internal legs and terms of O(π3) or higher yield terms that are analytic in
q and thus vanish in the q → 0 soft limit. Thus we can drop all such terms in
the evaluation of the right-hand side of eq. (2.2.19).

Shuffling around terms in eq. (2.2.19), we arrive at

⟨αi(∆
−1)ijπj⟩ = −⟨1

2
αiV

ijk
3 πjπk + β j

i πj(∆
−1)ikπk⟩ext + · · · , (2.2.20)

where the ellipses denote irrelevant O(π3) contributions and the “ext” sub-
script instructs that the matrix element should be evaluated with the operator
inserted only on external legs. As described above, all insertions of the op-
erator on internal legs are subleading in the soft limit and can be neglected.
Importantly, each of the terms in eq. (2.2.20) can be recast in terms of on-shell
scattering amplitudes.

As a warmup, let us consider the matrix element

⟨(∆−1)ijπj⟩ = − lim
q→0

Ai1···ini
n+1 (p1, · · · , pn, q) , (2.2.21)
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where as before, we use an abbreviated notation where we write out explic-
itly the three-momentum dependence of functions, but implicitly there is also
energy dependence everywhere. eq. (2.2.21) simply says that the matrix ele-
ment of the one-point function of an amputated field is precisely the ampu-
tated (n + 1)-point amplitude. In the case where the operator includes the
spacetime-dependent factor α, we obtain

⟨αi(∆
−1)ijπj⟩ = − lim

q→0
αi(i

∂
∂ω
,−i ∂

∂q
)
[
Ai1···ini

n+1 (p1, · · · , pn, q)
]
. (2.2.22)

Note that in transforming to momentum space, the dependence of α on time
t and position x becomes dependence on i ∂

∂ω
and −i ∂

∂q
, respectively.

Meanwhile, the terms involving β are written in terms of amplitudes as

⟨β j
i πj(∆

−1)ikπk⟩ ext = −
n∑

a=1

βia
ja
(i ∂

∂ωa
,−i ∂

∂pa
)
[
Ai1···ja···in

n (· · · , pa, · · · )
]
,

(2.2.23)
which corresponds to the sum over β acting on each external leg in the n-point
amplitude. Last but not least, the term ⟨1

2
αiV

ijk
3 πjπk⟩ext is

− lim
q→0

n∑
a=1

αi(i
∂
∂ω
,−i ∂

∂q
)
[
V i ia
3 ja

(q, pa)∆
ja
ka
(pa + q)Ai1···ka···in

n (· · · , pa + q, · · · )
]
.

(2.2.24)

Here the propagator and n-point amplitude on the right-hand side are evalu-
ated at shifted external energy and three-momentum, ωa+ω and pa+q, where
we have suppressed the dependence on the former in the various expressions
for ease of notation. At low orders in the soft expansion we can express this
alternatively as (1 + ω ∂

∂ωa
+ qi ∂

∂pia
) acting on these objects.

As noted earlier, the n-point amplitude is in general a function of three-
momenta as well as energies—which is expected since these are generally in-
terchangeable due to the on-shell conditions. Thus, the energies and three-
momenta in the n-point amplitude should both be shifted. We will discuss
later on how this shift is explicitly implemented in order to maintain the on-
shell conditions.

In conclusion, each term in eq. (2.2.20) can be expressed in terms of differential
operators acting on the (n+1)-point and n-point scattering amplitudes. Hence,
eq. (2.2.20) implies that

lim
q→0

αi(i
∂
∂ω
,−i ∂

∂q
)
[
Ai1···ini

n+1 (p1, · · · , pn, q)
]
=
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− lim
q→0

n∑
a=1

αi(i
∂
∂ω
,−i ∂

∂q
)
[
V i ia
3 ja

(q, pa)∆
ja
ka
(pa + q)Ai1···ka···in

n (· · · , pa + q, · · · )
]

−
n∑

a=1

βia
ja
(i ∂

∂ωa
,−i ∂

∂pa
)
[
Ai1···ja···in

n (· · · , pa, · · · )
]
, (2.2.25)

which is our final expression for the soft theorem after dropping terms O(q1)

or higher.

Let us comment on several subtle aspects of eq. (2.2.25). First of all, the
limit q → 0 with all other momenta unchanged will not, in general, preserve
the on-shell conditions. Hence, a strict soft limit of this kind is not actually
well-defined. The same is true for the shift of energy and momenta on the
right-hand side of eq. (2.2.25). For these reasons, all of the amplitudes in
eq. (2.2.25) should be evaluated in a minimal basis of kinematic invariants,
which we will describe in great detail in Appendix A.4 With this prescription,
the amplitudes will be on-shell for any value of q and any value of pa, so the
soft limit and the shift of momentum are both well-defined on-shell operations.

2.2.3 Field Basis Independence

Next, we show how the soft theorem in eq. (2.2.25) is invariant under changes of
field basis. To begin, we clarify that there are actually two physically distinct
senses in which a soft theorem can be considered field basis invariant.

The first sense is simply the statement that the soft theorem is valid irrespec-
tive of which field basis the quantities β and V3 are defined in, which enter
explicitly into eq. (2.2.25). If we transform to a different field basis, these
quantities will change to β′ and V ′3 . But crucially, all of the manipulations in
the previous section still hold. Hence the soft theorem will still apply, so its
validity is field basis independent.

The second sense is more nontrivial, and it is the statement that the on-shell
amplitudes An+1 and An can be computed in different field bases and the soft
theorems will still be satisfied. As is well-known, changes of field basis induce
new terms which always vanish on-shell in the amplitudes. However, since our
soft theorems involve differential operators in energy and momentum, one can
worry whether these vanishing terms end up contributing to the soft theorems

4Throughout, we assume complex kinematics, as commonly used in the study of gauge
theory amplitudes.
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anyway. We consider this possibility now, and show that such terms have no
effect.

Concretely, we will now show how terms that vanish due to on-shell conditions
in Ai1···in

n will always cancel automatically in the soft theorem in eq. (2.2.25).
Thus, the soft theorem in eq. (2.2.25) commutes with the on-shell condition,
ensuring the field basis independence of the soft theorem. We assume cL ̸= cT .
The case where the transverse and longitudinal speeds of sound are equal is
simpler, since then we don’t need the projection operators.

A key relation we will need to show this cancellation comes from the symmetry
transformation in eq. (2.2.17). Since this is an invariance of the Lagrangian,
this symmetry transformation relates the inverse propagator and three-point
vertex,

lim
q→0

αi[V
i ia
3 ja

(q, pa)] + βia
ka
[∆−1(pa)

ka
ja
] = 0 , (2.2.26)

which is even satisfied off-shell. In the following, we will assume that α and
β are linear operators, which is indeed the case for all the examples we will
discuss in this paper.

There are two types of off-shell contributions that will vanish on-shell. The first
is the dispersion relation for a specific external particle a. Consider corrections
to the amplitude of the form

δAi1···in
n = (ω2

a − c2ap
2
a)Π

a(pa)
ia
ja
Oi1···ja···in

n , (2.2.27)

where we have inserted a projector Πa that enforces that leg a has the correct
corresponding longitudinal or transverse polarization, thus making the on-shell
condition manifest. By construction, δAi1···in

n vanishes on-shell. Next, we apply
the right-hand side of the soft theorem in eq. (2.2.25) to the above expression
and then apply the on-shell conditions, yielding

− Πa(pa)
ia
ja

[
lim
q→0

αi

(
V i ja ka
3

)
+ βja ka

(
ω2
a − c2ap

2
a

) ]
Πa(pa)ka laOi1···la···in

n ,

(2.2.28)
at the relevant order in the soft expansion. To show that eq. (2.2.28) vanishes,
we sandwich eq. (2.2.26) between two projectors for particle a. Suppressing
the indices, we obtain the relation

Πa

[
lim
q→0

α(V3)

]
Πa = −Πa[β(∆−1)]Πa

= −Πa
[
β
(
(ω2 − c2ap

2)Πa + (ω2 − c2āp
2)Πā

) ]
Πa

= −Πa[β(ω2 − c2ap
2)]Πa ,

(2.2.29)
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where ā denotes the mode orthogonal to a. To obtain the last line in eq. (2.2.29),
we have used that ΠaΠā = 0 and Πa[β(Πa)]Πa = Πa[β(Πā)]Πa = 0. This can
be seen from

Πa[β(Πb)]Πa = Πa[β(Πb2)]Πa = Πa
[
Πbβ(Πb) + β(Πb)Πb

]
Πa , (2.2.30)

which vanishes both when b = a and b = ā. Hence the sum of field basis
dependent contributions in eq. (2.2.28) vanishes.

The second off-shell contribution we consider, when the speeds of the two types
of modes are different, cL ̸= cT , is

δAi1···in
n = Πā(pa)

ia
ja
Oi1···ja···in

n , (2.2.31)

corresponding to contributions that vanish due to the projectors coming from
the choice of external polarizations. As before, ā denotes the mode orthogo-
nal to a, so δAi1···in

n again vanishes on-shell. First applying the soft theorem
followed by the on-shell condition, we obtain

− Πa(pa)
ia
ja

[
lim
q→0

αi

(
V i ja ka
3

)
∆ā(pa)ka la + βja ka (Πā(pa)ka la)

]
Oi1···la···in

n .

(2.2.32)
To show that these terms vanish, we sandwich eq. (2.2.26) between Πa and
∆ā, which yields

Πa

[
lim
q→0

α(V3)

]
∆ā = −Πa[β(∆−1)]∆ā

= −Πa
[
β
(
(ω2 − c2ap

2)Πa + (ω2 − c2āp
2)Πā

) ]
∆ā

= −Πa
[
(ω2 − c2ap

2)β(Πa) + (ω2 − c2āp
2)β(Πā)

]
∆ā ,

(2.2.33)
where again we have used ΠaΠā = 0 to get to the third line in eq. (2.2.33).
The first term in the square brackets in the third line in eq. (2.2.33) vanishes
on-shell. Hence we obtain

Πa

[
lim
q→0

α(V3)

]
∆ā = −Πaβ[Πā]Πā , (2.2.34)

so that the off-shell terms in eq. (2.2.32) cancel out. This shows that the
soft theorem in eq. (2.2.25) commutes with the on-shell conditions, thereby
guaranteeing the field basis independence of the soft theorem.
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2.3 Superfluids

To start, we will consider the soft theorems for superfluids corresponding to
nonlinearly realized time translations and Lorentz boosts. These constrain
the O(q0) and O(q1) terms in the amplitude in the soft limit, respectively.
Note that the latter was exhaustively studied in the interesting recent work
of [18] in the context of single field inflation, which in the flat space limit
is described by the superfluid EFT [14]. For completeness, we recapitulate
results for superfluids here even though the important insights on this theory
were discussed already in [18].

2.3.1 Setup

The superfluid EFT arises from spontaneous symmetry breaking an internal
U(1) symmetry where the phase degree of freedom ϕ has a time-dependent
vacuum expectation value (VEV),5

⟨ϕ⟩ = t . (2.3.1)

The VEV spontaneously breaks U(1) symmetry and time translations down
to a diagonal subgroup. Lorentz symmetry is also spontaneously broken. The
fluctuations around the VEV are described by a field π, so

ϕ = t+ π . (2.3.2)

Under time translations and Lorentz boosts, the field π transforms nonlinearly,

time translations: π(x) → π′(x′) = π(x) + T , (2.3.3)

Lorentz boosts: π(x) → π′(x′) = π(x) + vix
i + vi

(
xi∂t + t∇i

)
π(x) ,

(2.3.4)

where T and v are constant parameters.

As is well-known, the superfluid Lagrangian can be written in terms of the
spacetime translation and Lorentz invariant combination,

X = −1

2
(∂µϕ∂

µϕ+ 1) = π̇ − 1

2
∂µπ∂

µπ = π̇ +
1

2
π̇2 − 1

2
(∂iπ)

2 . (2.3.5)

5Equivalently, the VEV of the field transforming linearly under internal U(1) is ⟨eiµϕ⟩ =
eiµt, where µ is the chemical potential.
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Considering terms with the fewest possible derivatives per field, we write down
the leading terms in the superfluid EFT Lagrangian,

Lsuperfluid =M1X +
M2

2
X2 +

M3

3!
X3 + · · ·

=M1π̇ +
M1 +M2

2
π̇2 − M1

2
(∂iπ)

2 +
M3

3!
π̇3 +

M2

2
π̇(π̇2 − (∂iπ)

2) + · · ·

= c2π̇ +
1

2
(π̇2 − c2(∂iπ)

2) +
g3
3!
π̇3 +

c−2 − 1

2
π̇(π̇2 − c2(∂iπ)

2) + . . . ,

(2.3.6)
where c is the speed of sound, g is the coupling in the three-point on-shell
amplitude, and the canonically normalized Lagrangian parameters are

M1 = c2 , M2 = 1− c2 , M3 = g3 + 3
(1− c2)2

c2
. (2.3.7)

As is common for spontaneously broken spacetime symmetries, the interactions
are related to the speed of sound by symmetry.

The Feynman rules for the superfluid are trivial to derive from the Lagrangian
in eq. (2.3.6). The propagator for the superfluid scalar is

∆(p) =
1

ω2 − c2p2
. (2.3.8)

Given the convention defined in eq. (2.2.18), the cubic interaction vertex is

V3 = ig3ω1ω2ω3 + i(c−2 − 1)
(
ω1(ω2ω3 − c2p2 · p3) + cyclic

)
. (2.3.9)

2.3.2 Amplitudes

For completeness, let us summarize here some amplitudes describing the scat-
tering of superfluid modes. For example, the three-point scattering amplitude
is

A3 = ig3ω1ω2ω3 . (2.3.10)

For later convenience, let us define the kinematic variables

ω2
ab = (ωa + ωb)

2 ,

sab = (ωa + ωb)
2 − c2(pa + pb)

2 ,
(2.3.11)

where sab reduces to the familiar Mandelstam variables for c = 1. The four-
point amplitude is

A4 =− g23

(
ω2
12

s12
+
ω2
13

s13
+
ω2
14

s14

)
ω1ω2ω3ω4 +

1− c2

4c4
(s212 + s213 + s214) (2.3.12)
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+
g3
2c2

(ω2
12s12 + ω2

13s13 + ω2
14s14) + g4ω1ω2ω3ω4 ,

where g4 = M4 − 14g3(1 − c2)/c2 − 15(1 − c2)3/c4. Note that the coefficient
of the first term in A4 is fixed by factorization. Naively, the coefficients of
(s212 + s213 + s214) and (ω2

12s12 + ω2
13s13 + ω2

14s14) could have been independent
contact terms. Nevertheless, the nonlinearly realized boost symmetry relates
them to the speed of sound c and the tree-point coupling g3.

2.3.3 Soft Theorem

As noted earlier, the superfluid exhibits the spontaneous breaking of time
translations as well as Lorentz boosts. Let us now derive the soft theorems
correspond to each of these broken symmetries. To achieve this, we take the
general form of the soft theorem in eq. (2.2.25), plug in the cubic interaction
vertex V3 for the superfluid, and then insert the α and β parameters corre-
sponding to either time translations or Lorentz boosts. These will constrain
the O(q0) and O(q1) terms in the amplitudes, respectively.

2.3.3.1 Time Translations

For the case of time translations, we see by inspection from eq. (2.3.3) that
the symmetry transformation parameters α and β defined in eq. (2.2.17) are
simply

α = T and β = 0 . (2.3.13)

Hence, the corresponding soft theorem is

lim
q→0

An+1(p1, · · · , pn, q) = − lim
q→0

n∑
a=1

V3(q, pa)∆(pa + q)An(p1, · · · , pa + q, · · · , pn)

=
1

2

n∑
a=1

igωω2
a

ωωa − c2 q · pa
An(p1, · · · , pn) .

(2.3.14)
To derive the second line in eq. (2.3.14) we have used that

∆(pa + q) =
1

(ωa + ω)2 − c2(pa + q)2
=

1

2(ωωa − c2q · pa)
, (2.3.15)

and that the three-point interaction vertex with two legs on-shell,

V3(q, pa) = −igωωa(ωa + ω) + 2i(c−2 − 1)(ωa + ω)(ωωa − c2q · pa)
q→0
= −igωω2

a + 2i(c−2 − 1)ωa(ωωa − c2q · pa) ,
(2.3.16)
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where in the second line we have taken the soft limit. Plugging the above
expression to eq. (2.3.14), we see that the first term persists while the to-
tal contribution from the second term, after cancellations with corresponding
propagators, vanishes due to energy conservation

∑
a ωa = 0.

2.3.3.2 Lorentz Boosts

Next, we consider the soft theorem arising from the spontaneously broken
Lorentz boosts. The parameters in eq. (2.2.17) are identified by comparing
with eq. (2.3.4), giving

α = vix
i and β = vi

(
xi∂t + t∇i

)
. (2.3.17)

By specifying to the values in eq. (2.3.17) for the general soft theorem in
eq. (2.2.25), we get

lim
q→0

∂
∂qi

[An+1(p1, · · · , pn, q)] =

− lim
q→0

∂
∂qi

n∑
a=1

[V3(q, pa)∆(pa + q)An(· · · , pa + q, · · · )]

−
n∑

a=1

i
(
ωa

∂
∂pai

+ pia
∂

∂ωa

)
[An(p1, · · · , pn)] , (2.3.18)

where the propagator and three-point vertex are those in eqs (2.3.8) and (2.3.9)
respectively, and we have stripped the constant vector v.

Our derivation of this soft theorem only differs from that in [18] in the field
basis chosen, which changes the form of V3 and β. The basis chosen in [18] is
related to ours by

π → π − (c−2 − 1)ππ̇ . (2.3.19)

In such basis the three-point vertex is

V ′3 = igω1ω2ω3 , (2.3.20)

and the symmetry transformation is

α′ = vix
i and β′ = vi

(
c−2xi∂t + t∇i

)
, (2.3.21)

so the soft theorem is as derived in [18]

lim
q→0

∂
∂qi

[An+1(p1, · · · , pn, q)] =



23

− lim
q→0

∂
∂qi

n∑
a=1

[V ′3(q, pa)∆(pa + q)An(· · · , pa + q, · · · )]

−
n∑

a=1

i
(
c−2ωa

∂
∂pai

+ pia
∂

∂ωa

)
[An(p1, · · · , pn)] . (2.3.22)

The above version of the soft theorem features a boost operator that is non-
relativistic, whereas the one in eq. (2.3.18) is relativistic. The former has the
advantage that it annihilates the on-shell condition ω2

a−c2p2a = 0, thus making
invariance under field redefinitions more manifest. Nevertheless, as explained
in Sec. 2.2.3, the soft theorem can be written in any basis.

2.4 Solids

2.4.1 Setup

The Lagrangian description for solids utilizes a three-vector field which ac-
quires a vacuum expectation value,

⟨ϕi⟩ = xi , (2.4.1)

which spontaneously breaks part of the Poincaré symmetry. Fluctuations of
this field are the NGBs for symmetry breaking, defined via

ϕi = xi + πi , (2.4.2)

where π is the phonon field. Under spatial translations, the phonon transforms
as

spatial translation: πi(x) → π′i(x′) = πi(x) + wi , (2.4.3)

for a constant vector w. At the same time, the phonon transforms nonlinearly
under boosts as

Lorentz boost: πi(x) → π′i(x′) = πi(x) + vit+ vj
(
xj∂t + t∇j

)
πi(x) ,

(2.4.4)
for a constant vector v. Here the first term on the right-hand side arises
because π transforms under boosts exactly like spatial position, as implied
by eq. (2.4.2). The second term on the right-hand side arises because the
spacetime argument of the phonon field actively transforms under boosts also.

To construct a Lagrangian that is invariant under nonlinearly realized boosts,
we follow the procedure of [16], [19] and define

Bij = ∂µϕ
i∂µϕj − δij = ∇iπj +∇jπi + ∂µπ

i∂µπj . (2.4.5)
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In three spatial dimensions, the only independent scalar components of this
matrix are [B], [B2], and [B3], where the square brackets denote a trace over
spatial indices. Hence, the general Lagrangian for the phonon is

L solid =
∞∑
i=0

∞∑
j=0

∞∑
k=0

λijk[B]i[B2]j[B3]k , (2.4.6)

corresponding to the modes of a solid.

The three components of the phonon can be further decomposed into a single
longitudinal mode and two transverse modes via

πi = πi
L + πi

T where ∇iπ
i
T = 0 and ϵijk∇jπk

L = 0 . (2.4.7)

By expanding the Lagrangian to quadratic order, we learn that the longitudinal
and transverse speeds of sound, cL and cT , are related to the coupling constants
via

λ010 =
1
4
(1− c2T ) and λ200 = −1

8
(1 + c2L − 2c2T ) . (2.4.8)

Otherwise, the couplings are completely unfixed by the spontaneous symmetry
breaking pattern.6

The soft theorem in eq. (2.2.25) depends on the propagator and cubic vertex,
∆ and V3. Let us briefly present expressions for these quantities in the case
of a solid. The propagator for the phonons of the solid is given in eq. (2.2.8).
From the solid Lagrangian in eq. (2.4.6), we also compute the cubic interaction
vertex,

V i1i2i3
3 (p1, p2, p3) =− i

2
(1 + c2L − 2c2T )

(
(ω2ω3 − p2 · p3)pi11 δi2i3

)
+ i(1− c2T )

(
(ω2ω3 − p2 · p3)(pi31 δi1i2 + pi21 δ

i1i3)
)

− 2iλ001
(
pi21 p

i3
2 p

i1
3 + 3(p2 · p3)pi21 δi1i3)

)
− 4iλ110

(
pi11 p

i3
2 p

i2
3 + (p2 · p3)pi11 δi2i3)

)
− 8iλ300p

i1
1 p

i2
2 p

i3
3 + permutations ,

(2.4.9)

which we can freely rewrite on the support of total momentum conservation.

2.4.2 Amplitudes

Next, let us briefly describe some explicit phonon amplitudes. The three-point
scattering amplitudes for various combinations of longitudinal and transverse

6In general, there will be further thermodynamic constraints on the couplings, depending
on the physical system of interest.
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polarizations are

ALLL = −i 3
c3L

((1− c2L)
2 + 16(λ001 + λ110 + λ300)

)
ω1ω2ω3 ,

ATTT = −i 1
c2T

(
(1− c2T )

2 + 6λ001
)
ω3(ω1 − ω2)(e1 · e2)(p2 · e3) + cyclic ,

ALLT = i
ω2
1 − ω2

2

2c2Lc
2
Tω1ω2

(p1 · e3)
(
2c2Lc

2
T

(
(c2T − c2L)(ω

2
1 + ω2

2) + ω1ω2(c
2
T − 3c2L)

)
+
(
2− c2T − 3c2L + 8(2λ110 + 3λ001)

)(
(c2T − c2L)(ω

2
1 + ω2

2)− 2c2Lω1ω2)
))

,

ATTL = −i(p2 · e1)(p1 · e2)
cLc2Tω3

(
2c2T (1− c2T + 4λ110 + 9λ001)ω

2
3

− c2L
(
(1− c4T + 6λ001)(ω

2
1 + ω2

2) + 4c2T (1− c2T )ω1ω2

))
+ i

e1 · e2
2c3Lc

4
T

ω3

(
c2Lc

2
T

(
(c2T − c2L)(ω

2
1 + ω2

2) + 2c2T (1− c2L + c2T )ω1ω2

)
+ c2L

(
(1− c2T )

2 + 6λ001
)(
(c2L − c2T )(ω

2
1 + ω2

2)− 2c2Lω1ω2

)
+ c2T

(
c2T + 8λ110 + 6λ001

)(
c2L(ω

2
1 + ω2

2)− c2Tω
2
3

))
,

(2.4.10)
where we have eliminated pi · pj using the minimal on-shell kinematic basis
defined in eq. (A.0.7). As noted in [87], for real on-shell kinematics the external
three-momenta are necessarily collinear, so the three-point amplitudes with
an odd number of transverse polarizations are zero. However, collinearity is
avoided in the case of complex kinematics.

2.4.3 Soft Theorem

Next, to evaluate eq. (2.2.25) we must specify α and β which depend on which
symmetry is spontaneously broken. In what follows, we consider the case of
spatial translations and Lorentz boosts, respectively.

2.4.3.1 Spatial Translations

By inspection, we see that the nonlinearly realized spatial translation in eq. (2.4.4)
corresponds to eq. (2.2.17) by identifying

αi = wi and βi
j = 0 . (2.4.11)
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Plugging this into eq. (2.2.25), we obtain the soft theorem corresponding to
spatial translations of a phonon in a solid,

lim
q→0

Ai1···ini
n+1 (p1, · · · , pn, q) =

− lim
q→0

n∑
a=1

V i ia
3 ja

(q, pa)∆
ja
ka
(pa + q)Ai1···ja···in

n (· · · , pa + q, · · · ) ,

where we have stripped off the constant translation vector wi, leaving a free i
index.

We have explicitly evaluated eq. (2.4.12) for the case of four- and three-point
amplitudes and verified its validity. Here A3 and A4 should be evaluated in
the minimal kinematic bases defined in eq. (A.0.7) and eq. (A.0.10). Also,
to evaluate the above expression one must, in the end, contract the polariza-
tion indices of the hard particles, i1, i2, i3, with explicit polarizations which
are either longitudinal or transverse. The on-shell conditions for those legs
should also correlate with the choice of polarizations, since the longitudinal
and transverse speeds of sound are in general different. By computing all pos-
sible combinations of longitudinal and transverse combinations for the external
legs, we have verified that the above formula holds.

Note that in general for the soft limit of An with n > 4 we do not encounter
the fractional soft limits of [87]. In that setup, the authors assume real kine-
matics, for which taking the soft limit from four- to three-point yields collinear
momenta for the latter. For five- and higher-point amplitudes the soft limit
does not yield collinear kinematics in the amplitudes on the right-hand side of
the soft theorem. Moreover, as noted earlier, we assume complex kinematics
throughout, as is common in the study of gauge theory amplitudes.

2.4.3.2 Lorentz Boosts

Next, we consider the soft theorem corresponding to spontaneously broken
Lorentz transformations. Comparing the nonlinearly realized Lorentz boost
of the phonon in eq. (2.4.4) to eq. (2.2.17), we see that the transformation
parameters are

αi = vit and βi
j = vk

(
xk∂t + t∇k

)
δij . (2.4.12)
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Inserting eq. (2.4.12) into eq. (2.2.25), we obtain the soft theorem correspond-
ing to Lorentz boosts of a phonon in a solid,

lim
q→0

∂
∂ω

[
Ai1···ini

n+1 (p1, · · · , pn, q)
]
=

− lim
q→0

n∑
a=1

∂
∂ω

[
V i ia
3 ja

(q, pa)∆
ja
ka
(pa + q)Ai1···ja···in

n (· · · , pa + q, · · · )
]

−
n∑

a=1

i
(
ωa

∂
∂pai

+ pia
∂

∂ωa

) [
Ai1···ia···in

n (p1, · · · , pa, · · · , pn)
]
,

(2.4.13)
where the propagator ∆ and cubic vertex V3 are defined in eq. (2.2.8) and
eq. (2.4.9), respectively. As before, we have stripped off the constant Lorentz
boost vector vi, leaving a free i index.

We have verified by explicit calculation that the soft theorem relating the
four-point and three-point amplitudes is satisfied. As before, in order to verify
this soft theorem it is important to go to the minimal kinematic bases for A3

and A4 in eq. (A.0.7) and eq. (A.0.10). Furthermore, we must contract with
explicit longitudinal or transverse polarizations for the hard external states.
Performing this for all combinations, we find that the above soft theorem is
indeed satisfied.

2.5 Fluids

2.5.1 Setup

As emphasized in [19], fluids are nothing more than solids with an enhanced
symmetry. In particular, the Lagrangian for fluids is the same as the one for
solids except with couplings constrained to exhibit an additional invariance
under infinitesimal volume-preserving diffeomorphisms,

diffeomorphism: ϕi → ϕ′i = ϕi + ξi(ϕ) . (2.5.1)

The volume-preserving condition implies that ∂iξi = 0. In terms of the physical
phonon field this corresponds to

diffeomorphism: πi → π′i = πi + ξi(x+ π) = πi + ξi(x) + ∂jξ
i(x)πj + · · · ,

(2.5.2)
expanded to linear order in the phonon field.

Invariance under volume-preserving diffeomorphisms implies that the fluid La-



28

grangian can only depend on the combination

detB′ = det(1 +B) =1 + [B] +
1

2

(
[B]2 − [B2]

)
+

1

3!

(
[B]3 − 3[B][B2] + 2[B3]

)
,

and thus it takes the form

Lfluid = −1

2
detB′ + τ0 detB′2 + τ1 detB′3 + τ2 detB′4 + · · · , (2.5.3)

where τ0 = (1 − c2L)/8. This implies that fluid dynamics are obtained by
imposing the following constraints on the solid Lagrangian,

λ010 =
1
4
,

λ001 = −1
6
,

λ200 = −1
8
(1 + c2L) ,

λ020 =
1
32
(1− c2L) ,

λ101 =
1
12
(1− c2L) ,

λ110 =
1
8
(1 + c2L) ,

λ210 = − 3
16
(1− c2L)− 3

2
τ1 ,

λ300 =
1
24
(1− 3c2L) + τ1 ,

λ400 =
7
96
(1− c2L) +

3
2
τ1 + τ2 ,

(2.5.4)

where τ1 and τ2 are residual free parameters of the fluid Lagrangian.

As emphasized in [19], [20], the fluid EFT is peculiar because the transverse
speed of sound is vanishing, so cT = 0. Consequently, the transverse modes
lack a gradient kinetic term and the corresponding degrees of freedom are not
localized particles in any conventional sense.7 Instead, we will consider the
fluid case as a mathematically well-defined limit of small cT → 0. While strict
vanishing may be ill-defined, the limit is a straightforward way to regulate the
corresponding solid amplitudes on the approach to fluid dynamics.

7We will not shed any new insight on this particular problem, though there has been re-
cent progress making sense of perfect fluids in two dimensions by recasting volume-preserving
diffeomorphisms as SU(N) transformations as N → ∞ [88]. Curiously, a similar construc-
tion yields a nonperturbative formulation double copy relating scalar EFTs in two dimensions
[89]. This double copy structure also arises in certain non-Abelian generalizations of the
Navier-Stokes equations [90].
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2.5.2 Amplitudes

Next, we record explicit fluid phonon amplitudes. The three-point scattering
amplitude of longitudinal modes is

ALLL = −i τ̃1
c3L
ω1ω2ω3 , (2.5.5)

where τ̃1 = 3((1− c2L)
2 + 16τ1), whereas the four-point amplitude is

ALLLL = − τ̃
2
1

c6L

(
ω2
12

s12
+
ω2
13

s13
+
ω2
14

s14

)
ω1ω2ω3ω4 +

1− c2L
4c2L

(s212 + s213 + s214)

+
τ̃1
2c4L

(ω2
12s12 + ω2

13s13 + ω2
14s14) +

τ̃2
c6L
ω1ω2ω3ω4 ,

(2.5.6)
where τ̃2 = 3c2L

(
128τ2 − 5(1− c2L)

3
)
+ τ̃1

(
3τ̃1 + 10c2L(1− c2L)

)
.

2.5.3 Soft Theorem

2.5.3.1 Diffeomorphisms

In order to verify the soft theorem in eq. (2.2.25), we must compute the trans-
formation parameters α and β for volume-preserving diffeomorphisms, and the
propagator and cubic vertex ∆ and V3 for the fluid.

To begin, let us series expand a general volume-preserving diffeomorphism in
powers of the space coordinate,

ξi(x) =
∞∑
a=1

ξij1···jax
j1 · · ·xja where ξij1···i···ja = 0 . (2.5.7)

Here we will be interested in verifying the leading nontrivial component of the
diffeomorphism, which is linear in the space coordinate

ξi(x) = ξi jx
j where ξii = 0 . (2.5.8)

Recasting this leading diffeomorphism in terms of the parameters in eq. (2.2.17),
we find that

αi = ξi jx
j and βi

j = ξij . (2.5.9)

Next, to obtain ∆ and V3 we simply take the expressions in eq. (2.2.8) and
eq. (2.4.9) for the solid and insert eq. (2.5.4).
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Putting this all together, we learn that the soft theorem in eq. (2.2.25) applied
to the leading volume-preserving diffeomorphisms of a fluid is

lim
q→0

∂
∂qj

[
Ai1···ini

n+1 (p1, · · · , pn, q)
]
=

− lim
q→0

n∑
a=1

∂
∂qj

[
V i ia
3 ja

(q, pa)∆
ja
ka
(pa + q)Ai1···ja···in

n (· · · , pa + q, · · · )
]

−
n∑

a=1

iδiiaδjja
[
Ai1···ja···in

n (p1, · · · , pa, · · · , pn)
]

+ terms proportional to δij ,
(2.5.10)

where we have stripped off the constant diffeomorphism parameter ξij, leaving
free i and j indices. Thus we see that the terms proportional to δij are pro-
jected out when the left- and right-hand sides are contracted into ξij, which is
by construction traceless.

To verify the above soft theorem we compute the three- and four-point ampli-
tudes for fluid phonons by imposing the conditions on coupling constants in
eq. (2.5.4) on our amplitudes for solid phonons. By explicit computation we
have verified the validity of the above soft theorem relating the four- and three-
point amplitudes. As before, this check requires going to minimal kinematic
basis for A3 and A4. Furthermore, to avoid pathologies involving transverse
polarizations of external states, we restrict to the case where all external po-
larizations are longitudinal.

Note that in principle, one can also derive soft theorems for high-order dif-
feomorphisms. In particular, we could consider the next-to-leading diffeomor-
phism defined by

αi = 1
2
ξi jkx

jxk and βi
j = ξijkx

k , (2.5.11)

where ξi ik = ξi ki = 0. In this case, the corresponding soft theorem will involve
the action of the differential operator, αi = −1

2
ξi jk

∂
∂qj

∂
∂qk

. This effectively ex-
tracts O(q2) terms from the amplitude. The general soft theorem in eq. (2.2.25)
applies for any spontaneously broken symmetry, including next-to-leading dif-
feomorphism. We do not explicitly construct and evaluate the soft theorem
for next-to-leading diffeomorphism in this paper, but it is straightforward to
do so by inserting eq. (2.5.11) into eq. (2.2.25).
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2.6 Framids

2.6.1 Setup

The framid theory exhibits a minimal field content needed to represent the
spontaneous breaking of Lorentz symmetry. The setup centers on a four-vector
field whose vacuum expectation value,

⟨Aµ(x)⟩ = δ0µ , (2.6.1)

spontaneously breaks Lorentz symmetry. Fluctuations about this value are
parameterized by framon fields which are the NGBs of boosts,

Aµ = exp(iπjKj)
ν

µ δ0ν , (2.6.2)

where Ki is a three-vector parameterizing Lorentz boosts. Expanding in pow-
ers of the fields, we obtain explicit formulas for the four-vector field,

A0 = 1 + 1
2
π2 + · · · ,

Ai = πi(1 +
1
6
π2 + · · · ) .

(2.6.3)

By construction, boosts are nonlinearly realized as constant shifts of the fra-
mon field,

Lorentz boost: πi(x) → π′(x′) = πi(x) + vi + vj
(
xj∂t + t∇j

)
πi(x) ,

(2.6.4)
where, as before, the last term on the right-hand side appears because the
spacetime position of the framon is boosted in the transformation. Note that
the framon does not nonlinearly realize translation symmetries.

The leading order boost invariant Lagrangian for the framon is

Lframid = −1
2
M2

3 (∂µA
µ)2 − 1

2
M2

2 (∂µAν)
2 − 1

2
(M2

2 −M2
1 )(A

ρ∂ρAµ)
2 . (2.6.5)

As before, we can expand to quadratic order in the framons in order to express
some of the couplings in terms of the speeds of sound of the longitudinal and
transverse modes,

c2T =
M2

2

M2
1

and c2L =
M2

2 +M2
3

M2
1

. (2.6.6)

In order to evaluate the soft theorem in eq. (2.2.25) we must compute the
propagator ∆ and cubic vertex V3 of the framid theory. Conveniently, the
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framon has an identical dispersion relation to the phonon, so ∆ is defined as
in eq. (2.2.8).

Meanwhile, the cubic interaction vertex is straightforwardly extracted from
Lframid, yielding

V i1i2i3
3 (p1, p2, p3) =− (1− c2T )

(
ω1(δ

i1i2pi32 + δi1i3pi23 )
)

− (c2T − c2L)
(
ω1(δ

i1i2pi33 + δi1i3pi22 )
)
+ cyclic .

(2.6.7)

As noted in [19], in the relativistic limit of cL = cT = 1, the framid coincides
with the nonlinear sigma model (NLSM), which is why V3 vanishes in this case.

2.6.2 Amplitudes

The three-point on-shell scattering amplitudes for framons are

ALLL =
(1− c2L)

cL
(ω2

1 + ω2
2 + ω2

3) ,

ATTT = (1− c2T )(ω1 − ω2)(e1 · e2)(p1 · e3) + cyclic ,

ALLT = ω1

(
(c2L−c

2
T )

c2T

ω2
3

ω1ω2
+ (1− c2L)

)
(p1 · e3) + (1 ↔ 2) ,

ATTL = 3cL(1− c2T )(p2 · e1)(p1 · e2) +
( (c2L−c2T )(1−3c2T )

2cLc
2
T

ω2
3 −

2cL(1−c2T )

c2T
ω1ω2

)
(e1 · e2) .
(2.6.8)

2.6.3 Soft Theorem

2.6.3.1 Lorentz Boosts

Comparing eq. (2.2.17) to eq. (2.6.4), we see that the transformation param-
eters corresponding to the nonlinearly realized Lorentz boosts of the framon
are

αi = vi and βi
j = vk

(
xk∂t + t∇k

)
δij . (2.6.9)

Combining this with eq. (2.2.25), we obtain

lim
q→0

Ai1···ini
n+1 (p1, · · · , pn, q) =

−
n∑

a=1

V i ia
3 ja

(q, pa)∆
ja
pa(pa + q)Ai1···ja···in

n (· · · , pa + q, · · · )

−
n∑

a=1

(
ωa

∂
∂pai

+ pia
∂

∂ωa

) [
Ai1···ia···in

n (p1, · · · , pa, · · · , pn)
]
,

(2.6.10)

which is the soft theorem corresponding to boosts in the framid.
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By explicit calculation, we have verified the framon soft theorem at five-,
four-, and three-point, by using a minimal kinematic basis and plugging in all
possible combinations of longitudinal or transverse polarizations for the hard
external legs.

2.7 Soft Bootstrap

Our analysis thus far has focused on incarnations of the soft theorem in
eq. (2.2.25), which relate nonzero expressions involving the (n+ 1)-point and
n-point amplitudes. However, in the special circumstance where soft limits
vanish—also known as Adler zeros—the corresponding theories typically ex-
hibit enhanced symmetry structures. Concretely, the Adler zero stipulates
that

lim
q→0

An+1(p1, · · · , pn, q) = O(q1) , (2.7.1)

which is the case for, e.g., amplitudes of pions in the NLSM [4]. In special
circumstances, scalar EFTs can exhibit an enhanced Adler zero,

lim
q→0

An+1(p1, · · · , pn, q) = O(q2) . (2.7.2)

This is the case for Dirac-Born-Infeld (DBI) theory and the Galileon. Remark-
ably, the NLSM, DBI, and the Galileon exhibit a soft behavior of amplitudes
that is enhanced beyond what is naively expected simply from counting the
number of derivatives per interaction vertex. Hence, by writing an ansatz and
imposing eq. (2.7.1) or eq. (2.7.2) as constraints, one can bootstrap these the-
ories from first principles [9], [91]–[93]. These resulting theories have highly
constrained interactions, and were dubbed exceptional scalar EFTs. The soft
bootstrap has also been extended to broader classes of theories, including theo-
ries with vectors or fermions [10], [30], [31], [94]–[105] as well as nonrelativistic
theories [11], [12], [106].

In the context of spacetime symmetry breaking, it is natural to ask: Are there
exceptional nonrelativistic EFTs? Are there exceptional theories of phonons
and framons?

2.7.1 Exceptional Phonons

We start by considering effective theories of phonons, i.e., corresponding to
spacetime symmetry breaking pattern of solids, fluids, and superfluids, which
all have interaction vertices with one derivative per field. First, we want
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to establish the Adler zero for these theories, i.e., the requirement that the
amplitudes vanish as O(q1) in the soft limit.

For a theory with one derivative per field, all interaction vertices involving
the soft particle will scale as O(q1). This suggests that the on-shell ampli-
tudes should also scale as O(q1), thus exhibiting an Adler zero. However, as
is well-known, this reasoning fails in the presence of three-point interaction
vertices, which generically induce O(q−1) soft poles. These contributions can,
in principle, conspire with O(q1) contributions from the interaction vertex to
give an amplitude that scales as O(q0).

In relativistic theories of derivatively coupled scalars, there are no such soft
poles because there are no on-shell three-point amplitudes. The only nonzero
three-point amplitude for relativistic scalars is a constant arising from a cubic
potential term, which is absent by definition for derivatively coupled scalars.
The absence of relativistic three-point scalar amplitudes implies the existence
of a field basis where the corresponding three-point vertex is zero and thus
there are no singular terms in the soft limit.

In contrast, nonrelativistic theories can have nontrivial three-point amplitudes,
even in theories with interaction vertices with one derivative per field. Thus,
the Adler zero is not automatic. A sufficient condition for having an Adler zero
for such nonrelativistic theories is to demand that all three-point amplitudes
vanish.

2.7.1.1 Solids

Let us begin by imposing an Adler zero for phonons in a solid. The three-point
solid amplitudes are given in eq. (2.4.10). Demanding that all of these vanish
for any choice of external modes, transverse or longitudinal, implies a universal
speed of sound, 8

cT = cL = c , (2.7.3)

in addition to the constraints

6λ001 = −8λ110 = 48λ300 = −(1− c2)2 . (2.7.4)
8Note that this constraint is not compatible with thermodynamic constraints imposed

by bulk stability in ordinary solids [107].
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Given the restrictions in Eqs. (2.7.3) and (2.7.4), the following field redefini-
tion,

πi → πi + (1− c2)πj∂jπ
i , (2.7.5)

sets the three-point vertex to zero. In this basis the soft theorem for spon-
taneously broken spatial translations in Eq. (2.4.12) with V3 = 0 shows the
existence an Adler zero for n-point amplitudes.

One might ask whether such restrictions on the solid couplings are technically
natural. In other words, do the choices of couplings in Eqs. (2.7.3) and (2.7.4)
enhance the symmetries of the solid EFT? Unfortunately, the answer is no.
While the vanishing of the three-point amplitude and a relativistic dispersion
relation suggest a possible emergent Lorentz symmetry, this is trivially broken
by higher-point amplitudes.

Next, it is natural to further impose the condition that the O(q1) term in
the amplitude vanishes, yielding an enhanced O(q2) soft limit. A necessary
condition for this is given by the soft theorem for spontaneously broken boosts.
In the basis where the three-point vertex is zero it takes the form

lim
q→0

∂
∂ω

[
Ai1···ini

n+1 (p1, · · · , pn, q)
]
=

−
n∑

a=1

i
(
ωa

∂
∂pai

+ c2pia
∂

∂ωa

) [
Ai1···ia···in

n (p1, · · · , pn)
]
.

(2.7.6)

Interestingly, the enhanced Adler zero requires choosing couplings in the solid
EFT such that the theory has an emergent boost symmetry with respect to
the speed of sound c.

The boost soft theorem in eq. (2.4.13) does not capture all terms of O(q) in the
soft expansion of the solid amplitude. Hence, the emergence of a relativistic
symmetry is not sufficient to guarantee an enhanced Adler zero. By explicitly
imposing the enhanced Adler zero on the four- and five-point scattering am-
plitudes of longitudinal phonons in a solid, we constrain the couplings in the
solid Lagrangian in eq. (2.4.6) according to

252λ101 = 672λ020 = 1152λ400 = −224λ210 = 21(1− c2)3 ,

192λ310 = 320λ120 = −240λ201 = −120λ011 = −768λ500 = 5(1− c2)4 .
(2.7.7)

These conditions must be imposed in addition to the constraints in Eqs. (2.7.3)
and (2.7.4) which are needed to ensure the ordinary Adler zero. We find
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that the five-point scattering amplitude vanishes identically for this choice of
couplings.

This bootstrap suggests that there should exist a solid with an enhanced Adler
zero. To investigate this possibility, we generalize to a solid in arbitrary space-
time dimension while including all [Bn] operators in the Lagrangian. Remark-
ably, we find that the three-, four-, and five-point scattering amplitudes for a
solid with the constraints in Eqs. (2.7.3), (2.7.4), and (2.7.7) agree with the
scattering amplitudes derived from a physically equivalent Lagrangian,

Lexc. solid =
1

κ

√
− det

(
ηµν + κ

(
∂′µπi∂

′
νπ

i
))
, (2.7.8)

with a coupling constant κ = −(1 − c2), where we introduced ∂′µ such that
∂′µ∂

′µ = −∂2t +c2∂2i . In addition, we have verified that the theory in eq. (2.7.8)
yields a six-point amplitude that vanishes as O(q2) in the soft limit.9

Since the phonon indices in eq. (2.7.8) are only contracted with each other, they
effectively label an internal symmetry. Moreover, eq. (2.7.8) clearly describes a
theory that linearly realizes the Lorentz symmetry with respect to the speed of
sound c in eq. (2.7.6). Note that the coupling κ vanishes when c = 1, yielding
a free theory. Thus, we have arrived at the Lagrangian for multiple relativistic
DBI fields. The enhanced soft limit we have encountered is not surprising in
light of the results of [9], [92], [93], which show that the only relativistic theory
of single derivatively coupled scalar with an enhanced soft limit is DBI.

2.7.1.2 Fluids

Let us now attempt to construct an exceptional fluid theory. As noted earlier,
we only consider the longitudinal external states. That makes the fluid case
different from the solid case. The only condition for the fluid comes from
requiring ALLL in eq. (2.4.10) to vanish, subject to the fluid constraints in
eq. (2.5.4). That fixes the free coupling in the fluid amplitude in terms of the
speed of sound for the longitudinal modes,

τ1 = − 1
16
(1− c2L)

2 . (2.7.9)
9Since eq. (2.7.8) is expressed in terms of a determinant over spacetime indices, one must

impose kinematics in a specific dimension in order to verify the enhanced soft theorem. In
this case, the on-shell identities in Appendix A must be supplemented with dimensionally
specific Gram determinant constraints.
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As for the solid, this is sufficient to ensure an Adler zero thanks to the soft
theorem for spontaneously broken spatial translations in eq. (2.4.12). Simi-
larly, the soft theorem for spontaneously broken boosts in eq. (2.4.13) shows
that an enhanced Adler zero requires an emergent relativistic symmetry.

Next we demand that the four-point amplitude for all longitudinal polariza-
tions has an enhanced Adler zero. Imposing the constraints in Eqs. (2.5.4) and
(2.7.9), we find that the four-point amplitude is

ALLLL = − 3

c4L

(
5(1− c2L)

3 − 128τ2
)
ω1ω2ω3ω4 +

1− c2L
4c2L

(s212 + s213 + s214) ,

(2.7.10)
where sab was defined in eq. (2.3.11) and here c = cL. In the soft limit, the first
term scales as O(q) and the second as O(q2). Imposing the enhanced Adler
zero constraints the coupling to be

τ2 =
5

128
(1− c2L)

3 . (2.7.11)

From the choice of coefficients in Eqs. (2.7.9) and (2.7.11) it is easy to guess
the pattern for the exceptional fluid Lagrangian

Lexc. fluid =
1

1− c2L

√
1 + (1− c2L)detB′ − 1

1− c2L
(2.7.12)

=− 1

2
detB′ +

1

8
(1− c2L)detB′2 − 1

16
(1− c2L)

2detB′3 (2.7.13)

+
5

128
(1− c2L)

3detB′4 + · · · .

Although not obvious, can we identify a different Lagrangian which repro-
duces exactly these fluid amplitudes which have an enhanced soft limit. That
Lagrangian takes the form

L′exc. fluid =
1

κ′

√
1 + κ′ (π̇2 − c2L(∂iπ

i)2) . (2.7.14)

The coupling constant is κ′ = −(1−c2L)/c2L. As it turns out, this Lagrangian is
tree-level equivalent to relativistic DBI with the longitudinal phonon playing
the role of the DBI scalar. To understand why this is so, we simply expand
the phonon field in terms of its longitudinal and transverse components as in
eq. (2.4.7), yielding

L′exc. fluid =
1

κ′

√
1 + κ′ (π̇2

T + π̇2
L − c2L(∂iπ

i
L)

2) . (2.7.15)
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Crucially, since πT enters quadratically, it can only be pair-produced. Thus,
for tree-level amplitudes with all external legs with longitudinal polarizations,
the transverse modes decouple completely. Hence, the resulting Lagrangian is
equivalent to that of DBI for the longitudinal phonon mode at tree level.

2.7.1.3 Superfluids

A similar analysis was carried out for the superfluid in [18], [108]. In order to
have an Adler zero, one demands that the tree-point amplitude in eq. (2.3.10)
vanishes, which imposes g3 = 0. Then the soft theorem in eq. (2.3.22) shows
that an enhanced Adler zero requires an emergent boost symmetry. From
directly requiring the O(q2) vanishing of the soft limits of higher-point ampli-
tudes it follows that the only such theory is

Lexc. superfluid =
1

c

√
1 + (1− c2) (∂µϕ∂µϕ) , (2.7.16)

written in terms of the field ϕ defined in eq. (2.3.2). This superfluid DBI
Lagrangian corresponds to one of the symmetric superfluid theories in [108],
found by considering all possible new symmetries that form a consistent alge-
bra with Poincaré and U(1) shift symmetries.

As before, we can identify a classically equivalent Lagrangian

L′exc. superfluid =
1

κ′′

√
1 + κ′′ (φ̇2 − c2(∂iφ)2) , (2.7.17)

with κ′′ = −(1− c2)/c4, which also follows from the emergent boost symmetry
and the results in Refs. [9], [92], [93]. This Lagrangian describes a brane
moving with constant velocity in an extra dimension [109].

A more general soft bootstrap for nonrelativistic theories with a single scalar
was also performed in [106], including the case of NGB with quadratic disper-
sion relations. By imposing the enhanced Adler zero for a theory with a single
scalar with one derivative per field—such as the superfluid—the resulting the-
ory was also found to be effectively relativistic.

2.7.2 Exceptional Framons

The analysis of enhanced soft limits for framids is slightly different. Framon
interactions, unlike phonons, do not involve one derivative per field. This is
analogous to what happens in the relativistic NLSM, where at leading order
in the derivative expansion the interactions have the structure πn(∂µπ)

2.
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The framon soft theorem in eq. (2.6.10) shows that an Adler zero requires the
vanishing of the three-point amplitude. This is achieved for

cT = cL = 1 , (2.7.18)

corresponding to a genuine relativistic dispersion relation for all modes. With
this choice the soft theorem still yields

lim
q→0

Ai1···ini
n+1 (p1, · · · , pn, q) = −

n∑
a=1

(
ωa

∂
∂pai

+ pia
∂

∂ωa

) [
Ai1···ia···in

n (· · · , pa, · · · )
]
,

(2.7.19)
so an Adler zero requires full boost symmetry of the framon amplitudes. This
is indeed a consequence of the choice in eq. (2.7.18) which corresponds to the
Lagrangian

L exc. framid = −1
2
M2

2 (∂µAν)
2 , (2.7.20)

at the leading order in the EFT derivative expansion. Note that the derivative
indices are independent from the Lorentz indices of Aµ. Thus, this theory
simply describes a relativistic NLSM realizing the spontaneous breaking of an
internal SU(2) symmetry corresponding to the boosts of Aµ. That such choice
of couplings at this order corresponds to the relativistic NLSM was already
pointed out in [19]. Here we have derived this condition from the bottom up as
a necessary condition for an Adler zero. Furthermore, since our soft theorem
is a consequence of symmetry it is valid to all orders in the EFT derivative
expansion.

2.7.3 Alternative Bootstraps

Given the soft theorem in eq. (2.2.25), can we extend the approach of on-
shell soft bootstrap to theories with nonzero soft limits? Immediately, we see
an obstruction: as we have noted, the soft theorem in eq. (2.2.25) contains
field basis dependent terms: the off-shell three-point vertex V3 and the field
transformation under the symmetry β. If we do not know these beforehand,
how can we initiate a bootstrap procedure?

Despite this apparent lack of data, such a bootstrap is actually possible in
some circumstances, e.g., for the framid. Suppose we want to find theories
with two derivatives per interaction vertex which spontaneously break Lorentz
boosts. Let us start with the general soft theorem in eq. (2.2.25), together with
eq. (2.6.4) for the framons. For this particular case, the soft theorem for the
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on-shell three-point amplitude encodes enough information to constrain all
couplings in V3. Then, imposing the soft theorem on higher point amplitudes
recursively, we obtain a set of constraints on the couplings in a Lagrangian
ansatz with only rotational symmetry. We find that the only solution at the
two-derivative order coincides with the expansion of the framid Lagrangian in
[19], which was constructed using the top-down approach.

Similarly, higher-derivative deformations of the framid Lagrangian can be ob-
tained either from the top-down or the bottom-up construction (by adding
higher dimensional operators to the Lagrangian ansatz). The two methods
are complementary, however the bottom-up on-shell approach allows us to by-
pass the field-dependent redundancies of the Lagrangian and directly obtain
the on-shell framid amplitudes.

2.8 Conclusions

In this paper we have initiated a systematic analysis of the soft behavior
of scattering amplitudes in a broad class of condensed matter systems. The
common thread linking these theories is that their gapless modes are the NGBs
of spontaneously broken spacetime symmetries. As per the classification of
[19], the dynamics of superfluids, solids, fluids, and framids can all be derived
from universal principles governing nonlinearly realized symmetries.

Using current conservation equation, we have derived the general soft theorem
in eq. (2.2.25), which encodes the action of broken symmetry generators on
the NGBs. The ingredients entering the soft theorem are the parameters of
the broken symmetry transformation, α and β, together with the propagator
and cubic vertex of the theory, ∆ and V3. While β and V3 are generally de-
pendent on the field basis, and thus not individually invariant, they enter into
eq. (2.2.25) in a way that is field basis independent. Furthermore, eq. (2.2.25)
should be viewed as a soft theorem because it is an operation relating on-shell
scattering amplitudes.

Applying this construction to various EFTs, we present and check a broad
array of soft theorems, including those corresponding to temporal translations
and Lorentz boosts of the superfluid, spatial translations and Lorentz boosts of
the solid, volume-preserving diffeomorphisms of the fluid, and Lorentz boosts
of the framid.

Last but not least, we have applied a soft bootstrap approach to these con-
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densed matter systems. In this analysis we take as input the assumption of an
enhanced Adler zero condition for soft NGBs. While we have identified excep-
tional theories of the solid and fluid with these enhanced infrared properties,
they are all closely related in structure to relativistic DBI.

Our analysis leaves a number of directions for future work. For example,
as noted earlier, our soft theorem does not actually require SO(3) rotation
invariance in the broken phase. Indeed, the only requirement is that symmetry
breaking preserves some notion of a conserved energy and momentum. For
this reason one can in principle study condensed matter systems with even
less rotational symmetry. It would be interesting to classify these theories and
their corresponding soft theorems.

Throughout this paper we have focused on scattering induced by the self-
interactions of phonons. However, the interactions of phonons with other
degrees of freedom, e.g., crystal defects or vortices are also of interest for many
condensed matter systems. As long as these other modes can be incorporated
consistently into the EFT of spontaneous spacetime symmetry breaking, it
should be possible to mechanically derive new soft theorems for scattering
processes involving these other degrees of freedom.

Another avenue for exploration is more elaborate variations of the soft boot-
strap. In particular, it should be possible to assume a general ansatz for the
broken symmetry parameters α and β, as well as a general ansatz for the
propagator and cubic vertex, ∆ and V3. Sculpting out the space of amplitudes
satisfying our soft theorem might offer insight into new condensed matter sys-
tems of interest.

Finally, it would be interesting to understand whether the geometric perspec-
tive on soft theorems presented in [13], [47] extends to a nonrelativistic setting.
A geometric description of the corresponding EFTs has already been described
in [85], so generalizing to this case should be relatively straightforward.
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C h a p t e r 3

SOFT THEOREMS FROM HIGHER SYMMETRIES

J. Berean-Dutcher, M. Derda, and J. Parra-Martinez, “Soft Theorems
from Higher Symmetries,” 2025. arXiv: 2505.03566 [hep-th].

3.1 Introduction

Symmetry is one of the cornerstones of our understanding of nature at all
scales, from the world of fundamental particles to the physics of phase transi-
tions and the early universe. Perhaps the most striking consequence of global
symmetry in quantum field theory (QFT) is the existence of massless scalar
particles, predicted by Nambu [1] and Goldstone [2], [3], when such symmetry
is continuous and spontaneously broken. Beyond their existence, the dynamics
of such Nambu-Goldstone bosons (NGB) is weakly coupled and heavily con-
strained by the broken symmetry. This allows a detailed effective field theory
(EFT) description of their long-distance interactions, which lets us understand
a variety of systems: from ferromagnetic materials to the dynamics of pions
in low-energy quantum chromodynamics (QCD) [110]–[112].

A direct implication of spontaneously broken symmetry in the dynamics of
NGB are soft theorems, which govern the universal behavior of the scattering
amplitudes of NGB in the limit in which some of their momenta are taken
to zero. An early example is the so-called Adler zero [4] in the low-energy
dynamics of pions, and its generalizations [5], [6] including to multi-soft pion
limits, [7], [8], [94], [97], [113], subleading [97], [114], [115], higher-derivative
corrections [116], and other theories of NGB [18], [40], [117]–[119]. Soft limits
are not limited to scalar NGB, and are found to be universal for other massless
particles, including scalar moduli [13], [47], [65], [120], photons [37], [38], [121],
[122], gluons [123]–[125] and gravitons [37], [38], [118], [126], [127]. However,
our traditional description of such soft theorems often requires going beyond
the language of spontaneous symmetry breaking or ordinary symmetries, and
utilizes notions of asymptotic symmetries [128]–[139], or other considerations
[127], [140].

Recently, there has been a leap in our understanding of what constitutes a

https://arxiv.org/abs/2505.03566
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symmetry in QFT. Beyond the familiar textbook symmetries that act on local
operators and whose charges are carried by particles, there exists a zoo of so-
called generalized symmetries or higher symmetries (for references, see [33]).
These include higher-form symmetries, which act on lower-codimension oper-
ators (lines, surfaces, etc.), and are carried by extended excitations (strings,
membranes, etc.), higher-group symmetries [141]–[148], which mix symmetries
of various ranks, and even non-invertible symmetries [149]–[154]. A simple ex-
ample of these is the (electric) 1-form symmetry of Maxwell theory, which acts
on Wilson lines and has as current the electromagnetic field-strength, con-
served by the vacuum Maxwell’s equations. From this modern perspective,
non-scalar massless particles, such as the photon, can often be interpreted as
the NBG (or pseudo-NGB) associated with the higher symmetry [34], [155],
[156]. These novel symmetries have found wide application in high-energy and
condensed-matter physics [33], [157], but their consequences on the on-shell
S-matrix describing scattering processes remain largely unexplored (with a few
notable exceptions [158]–[160]).

In this paper we argue that these new notions of symmetry enable the unifi-
cation of our understanding of soft theorems for the various kinds of NGB. In
particular, we will explain that the familiar soft photon theorem can be derived
as a consequence of 1-form symmetries which act on line operators and as a
shift symmetry on the electromagnetic field. Such symmetry is emergent in
the limit where particle production is suppressed, which can be made precise
using the language of heavy-particle effective theories such as Heavy Quark
EFT (HQET) [161], [162]. Furthermore we will derive a new double soft pion
theorem, in theories with a spontaneously broken continuous 2-group symme-
try, wherein the current algebra of ordinary (or 0-form, in modern parlance)
symmetry is intertwined with that of a 1-form symmetry. This double soft the-
orem includes contributions which change particle species—between NGB of
the 0-form symmetry (pions) and of the 1-form symmetry (photons)—thereby
reflecting the intertwined current algebra. As an example, we focus on the
low-energy effective theory of QCD with massless quarks and with gauged
U(1)V vector symmetry corresponding to Baryon number, which shows that
such structure is far from exotic.

The rest of this paper is organized as follows: in section 3.2 we review the
familiar understanding of scalar NGB, which henceforth we call pions, and the
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derivation of their single and double soft theorems from the current algebra
of 0-form symmetry. In section 3.3 we review the modern perspective on the
photon as a NGB and show that leading soft photon theorems follow from
the Ward identities of emergent 1-form symmetries. Finally in section 3.4
we derive the new double soft pion theorem for theories with spontaneously
broken continuous 2-group symmetry using its current algebra, and illustrate
it with some examples at tree level. Finally, in an appendix we provide some
technical details for the current algebra proof of the known sub-leading double
soft pion theorem (which is presented here for the first time).

Conventions: This paper deals with scattering amplitudes, so we work in
Lorentzian signature with a mostly-minus metric (+ , − , − , −). This is in
contrast to most of the literature on generalized symmetries which uses Eu-
clidean signature. Our scattering amplitudes are defined with all external
momenta taken to be outgoing.

3.2 Review: Soft pions from ordinary symmetry

In this section we will review the spontaneous breaking of continuous 0-form
symmetry and the associated soft theorems for the scattering amplitudes of
pions. This is all textbook material, which we choose to collect here with the
purpose of highlighting the similarities with our discussion of 1-form symmetry
in Section 3.3, and to provide the background for our new double soft theorem
in Section 3.4. The only novelty here is the current algebra derivation of
the known sub-leading double soft pion theorem, whose technical details are
collected in Appendix B.

Continuous 0-form symmetries have conserved currents

∂µjaµ(x) = 0 , (3.2.1)

which we can integrate over codimension-1 cycles, ΣD−1 to define an associated
conserved charges:

Qa(ΣD−1) =

∫
ΣD−1

dd−1x n̂µjaµ . (3.2.2)

Here n̂ is a unit normal vector to ΣD−1. These conserved charges are in one-
to-one correspondence with the Lie algebra generators of G, ta, satisfying

[ta, tb] = ifabctc . (3.2.3)
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Local operators may be charged under 0-form symmetries. Given a 0-form
symmetry with group G, an operator transforming under G with representa-
tion R will satisfy the Ward identity,

∂µjaµ(x)OR(y) = δ(4)(x− y)taROR(y) , (3.2.4)

where ta are the generators of G. If such a local operator develops a vacuum
expectation value

⟨OR(y)⟩ ∼ va . (3.2.5)

the symmetry is spontaneously broken down to a subgroup H which is gen-
erated by the charges {T a} ⊂ {ta} that leave the vacuum expectation value
invariant [va, T a] = 0. The rest of the generators, Xa, form a coset G/H.
This implies the following decomposition of the commutation relations for the
generators of G,

[T a, T b] = ifabc
T T c , (3.2.6)

[Xa, Xb] = iF abcT c , (3.2.7)

[T a, Xb] = ifabc
X Xc . (3.2.8)

The fabc
T , fabc

X , and F abc are structure constants which satisfy the appropriate
Jacobi identities, and coincide in the case of the chiral symmetry breaking in
QCD. Here we have assumed that the coset G/H is a symmetric space, i.e.,
that it has the additional symmetry Xa → −Xa, sometimes called G-parity.

Goldstone’s theorem [3] implies that the spectrum contains a massless NGB
– a pion πa – for every broken generator Xa. More concretely, there exists
conserved currents J a

µ (x) corresponding to the broken generators, which in-
terpolate the pion,

⟨πb(p)|J a
µ (x)⟩ = ifπpµδ

abeip·x. (3.2.9)

Here fπ is the dimensionful pion decay constant. The interpolation property
implies that this current contains a contribution that is linear in the pion field,

J a
µ (x) = fπ∂µπ

a(x) +O(π3) . (3.2.10)

Thus, the symmetry is non-linearly realized and at leading order acts as a
constant shift of the pion field

πa(x) → πa(x) + ca + · · · , with ∂µc
a = 0 . (3.2.11)
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In contrast, the πa transform as the broken generators, that is, in a linear
representation of the unbroken subgroup H, which infinitesimally takes

πa(x) → πa(x)− fabc
X πb(x)λc . (3.2.12)

The associated symmetry current then has the form

V a
µ (x) = fabc

X πb(x)∂µπ
c(x) +O(π4). (3.2.13)

The symmetry structure furnished by eq. (3.2.8) implies the following set of
operator equations for the currents,

∂µV a
µ (x)V

b
ν (y) = ifabc

T δ(4)(x− y)V c
ν (y) (3.2.14)

∂µJ a
µ (x)J b

ν (y) = iF abcδ(4)(x− y)V c
ν (y) (3.2.15)

∂µJ a
µ (x)V

b
ν (y) = ifabc

X δ(4)(x− y)J c
ν (y) . (3.2.16)

From this point on we will focus on theories possessing a chiral 0-form global
symmetry G = GL × GR which is spontaneously broken down to a vector
subgroup H = GV , so we will refer to J a

µ (x) as the axial current, and to V a
µ (x)

as the vector current. In the example of the chiral effective theory of pions
describing (massless) QCD at low energies, G = SU(Nf )L × SU(Nf )R and is
broken down to the vector subgroup, SU(Nf )V .

An effective theory for these pion NGB can be written in terms of the charged
operator

U(x) = exp

(
2i

fπ
π(x)ata

)
, (3.2.17)

parameterizing fluctuations of the vacuum expectation value in Eq. (3.2.5),
where we choose the normalization Tr

(
tatb
)
= 1

2
δab. The effective Lagrangian

for a general 0-form spontaneous symmetry breaking pattern GL ×GR → GV

is given by [26], [27], [41], [110], [163]–[165]

L =
f 2
π

4
Tr
(
∂µU∂

µU †
)
+ · · · . (3.2.18)

where the dots include higher derivative terms. This is the famous non-linear
sigma model (NLSM).
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3.2.1 Pion Adler zero

It follows from eq. (3.2.9) that momentum-space form factors describing the
overlap of the axial current with an on-shell scattering state of n-many outgo-
ing pions, |α⟩, admit a decomposition

⟨α|J a
µ (q)⟩ =− fπqµ

q2
⟨α + πa(q)|0⟩+ ⟨α|JH

a
µ(q)⟩ . (3.2.19)

The first term carries the single-pion pole, whose coefficient is the matrix ele-
ment corresponding to the amplitude with a additional pion with momentum
q

⟨α + πa(q)|0⟩ = iAn+π(q) . (3.2.20)

where we leave a momentum-conserving delta function implicit. The second
term contains the ‘hard part of the current’ JH

a
µ, which includes the infinite

number of higher-order contributions that make up the axial current. The
axial current is conserved in the correlation function on the LHS of the above
equation since there are no other insertions of charged operators in the corre-
lator. Conservation then implies the relation

An+π(q) = −i 1
fπ
qµ⟨α|JH

a
µ(q)⟩ . (3.2.21)

Taking the limit q → 0 of this equation yields the soft theorem known as the
Adler zero [4],

lim
q→0

An+π(q) = 0 +O(q) , (3.2.22)

where we have assumed that ⟨α|JH
a
µ(q)⟩ is regular in this limit. This regularity

follows from spontaneous symmetry breaking, and is realized in the theory by
the lack of any cubic coupling for the pions.

In summary, we have seen that the Adler zero follows from the spontaneously
broken symmetry as a consequence of Goldstone’s theorem and the conserva-
tion of the axial current.

3.2.2 Double soft pion theorem

Now we will discuss the double soft pion theorem [5], [7] which encodes the
non-abelian current algebra described by the operator equations in eqs. (3.2.14)
to (3.2.16). Several different derivations of the double soft theorem for pions
exist in the literature, for example in [8], [113]. The sub-leading contribution
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for flavor-dressed amplitudes was first derived in [97], [114], [115] at tree-level
or using diagrammatic arguments. Here we follow Ref. [94] and extend the
analysis to emphasize how the leading and sub-leading theorem are a direct
consequence of current algebra.

The starting point is the momentum-space correlator with two axial current
operator insertions, which satisfies the Ward identity eq. (3.2.15) in either of
the currents. For the current with momentum q1 we have

qµ1 ⟨α|J a
µ (q1)J b

ν (q2)⟩ = F abc⟨α|V c
ν (q1 + q2)⟩ , (3.2.23)

and there is an analogous Ward identity for current with momentum q2. Hence
we can write the RHS of eq. (3.2.23) in the manifestly symmetric form

qµ1 q
ν
2⟨α|J a

µ (q1)J b
ν (q2)⟩ = −1

2
F abc(q1 − q2)

µ⟨α|V c
µ (q1 + q2)⟩ . (3.2.24)

On the other hand, decomposing axial currents according to eq. (3.2.19) yields

qµ1 q
ν
2⟨α|J a

µ (q1)J b
ν (q2)⟩ =− f 2

π⟨α + πa(q1)π
b(q2)|0⟩

+ ifπq
µ
1 ⟨α + πb(q2)|JH

a
µ(q1)⟩

+ ifπq
ν
2⟨α + πa(q1)|JH

b
ν(q2)⟩

+ qµ1 q
ν
2⟨α|JH

a
µ(q1)JH

b
ν(q2)⟩ , (3.2.25)

which with the help of eq. (3.2.21) we can rewrite as

qµ1 q
ν
2⟨α|J a

µ (q1)J b
µ(q2)⟩ = f 2

π⟨α + πa(q1)π
b(q2)|0⟩+ qµ1 q

ν
2⟨α|JH

a
µ(q1)JH

b
ν(q2)⟩.
(3.2.26)

The first term on the RHS of eq. (3.2.26) contains a scattering amplitude of
(n+ 2)-many pions. Combining eq. (3.2.24) and eq. (3.2.26) we obtain

f 2
π⟨α + πa(q1)π

b(q2)|0⟩ =− 1

2
F abc(q1 − q2)

µ⟨α|V c
µ (q1 + q2)⟩

− qµ1 q
ν
2⟨α|JH

a
µ(q1)JH

b
ν(q2)⟩ . (3.2.27)

To arrive at the double soft theorem we take the simultaneous limit q1, q2 → 0

of this expression. In Appendix B we derive the applicable soft limits of
the two form factors on the RHS which are shown to be related to n-point
scattering amplitudes of the remaining n hard pions πai(pi) in the state ⟨α|.
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More concretely we find that at sub-leading order the soft vector current form
factor is given by

lim
q→0

⟨α|V c
µ (q)⟩ =

n∑
i=1

faaid

(
(2pi + q)µ
(pi + q)2

− iqνLiµν

(pi · q)

)
Aa1...d...an

n , (3.2.28)

where the angular momentum operator Lµν
i is defined as

Lµν
i = i

(
pµi

∂

∂pνi
− pνi

∂

∂pµi

)
. (3.2.29)

Meanwhile, the hard axial currents form factor at leading order in soft mo-
menta is

lim
q1q2→0

⟨α|JH
a
µ(q1)JH

b
ν(q2)⟩ =

n∑
i=1

(F aaief ebd
X +F baief ead

X )
ηµν

2pi · (q1 + q2)
Aa1···d···an

n .

(3.2.30)
Combining these results we obtain for an (n+ 2)-particle amplitude with soft
particles πa(q1) and πb(q2) and n hard particles πai(pi),

lim
q1,q2→0

An+πa(q1)πb(q2) =
(
S(0) + S(1)

)
An , (3.2.31)

where we scale both soft momenta to zero simultaneously. The leading soft
factor is

S(0)An = − 1

f 2
π

n∑
i=1

F abcf caid
X

pi · (q1 − q2)

2pi · (q1 + q2)
Aa1...d...an

n , (3.2.32)

and the sub-leading soft factor is1

S(1)An =− 1

f 2
π

n∑
i=1

(F aaicf cbd
X + F baicf cad

X )
(q1 · q2)

2pi · (q1 + q2)
Aa1...d...an

n

+
1

f 2
π

n∑
i=1

F abcf caid
X

(q1 · q2)(pi · (q1 − q2))

2(pi · (q1 + q2))2
Aa1...d...an

n

+
1

f 2
π

n∑
i=1

F abcf caid
X

iqµ1 q
ν
2Liµν

pi · (q1 + q2)
Aa1...d...an

n , (3.2.33)

with the angular momentum operator Lµν
i given by eq. (3.2.29).

1The sub-leading order soft factor is modified in the presence of four-derivative operators
in the chiral Lagrangian; see [116] for a full expression. It also receives loop corrections that
will be explored elsewhere.
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3.3 Soft photons from higher-form symmetry

In this section we will discuss photons as NGB for 1-form global symmetries.
We will show how the development of the previous section for 0-form NGB
is suitably generalized and how the familiar soft photon theorems derive from
corresponding Ward identities.

3.3.1 Photons as Nambu-Goldstone bosons

Let us begin by quickly reviewing some basic facts about continuous 1-form
symmetries, and the modern perspective of the photon as a NGB. We aim
to be pedagogical and to stress the similarities with our discussion of 0-form
symmetry breaking in the previous section. This discussion can (and probably
should) be skipped by the experts.

Continuous 1-form symmetries have conserved currents which are antisymmet-
ric rank-2 tensors

Jµν(x) = J[µν](x) , with ∂µJµν(x) = 0 . (3.3.1)

The corresponding conserved charges are integrals over codimension-2 cycles,
ΣD−2

Q(ΣD−2) =

∫
ΣD−2

dSµνJµν (3.3.2)

and, as such, are always commuting. Hence, 1-form symmetries are always
abelian, and are in correspondence with group elements of U(1) when the
symmetry is continuous.

Local operators are not charged under 1-form symmetries, since they trivially
commute with charges of the form eq. (3.3.2). Line operators, however, can be
charged under a 1-form symmetry U(1)(1)2. Consider a line operator, WQ(C),
with charge Q supported on a curve C, then the corresponding Ward identity
is

∂µJµν(x)WQ(C) = Qδ(3)ν (x− C)WQ(C). (3.3.3)

where we have defined a higher-codimension delta function,

δ(3)ν (x− C) =

∫
ds
dyν
ds

δ(4)(x− y(s)) , (3.3.4)

2Henceforth, we use a superscript (1) to denote 1-form symmetry.
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with y(s) a given parameterization of the curve C, such that its integral over
any cycle intersecting the curve equals one. This is analogous to the contact
term in the Ward identity of eq. (3.2.4) for local operators charged under a
0-form symmetry. The Ward identity of eq. (3.3.3) constitutes a non-trivial
constraint on correlation functions involving the line operators WQ(C). We
will show momentarily that it also implies the familiar soft photon theorem
for scattering amplitudes in quantum electrodynamics.

1-form symmetries can be spontaneously broken if a charged operator develops
a vacuum expectation value [34]

⟨WQ(C)⟩ ∼ 1 . (3.3.5)

This is equivalent to the perhaps more familiar “perimeter law” for a Wilson
loop ⟨WQ(C)⟩ ∼ e−aL(C), where L(C) is the length of the loop, by a scheme
choice in which a local counterterm on the line is added and tuned to cancel
the perimeter scaling. Eq. (3.3.5) indeed indicates a deconfined phase, and a
version of Golstone’s theorem [34], [36] implies that the current must overlap
with a one-photon state, which for helicity h and momentum p yields3

⟨γh(p)|Jµν(x)⟩ = i

g
(pµεν∗h − pνεµ∗h ) eip·x , (3.3.6)

where g is the gauge coupling and εµh is the corresponding polarization vector,
which satisfies the on-shell and normalization conditions

ε · q = 0 , ε · ε = 0 , ε · ε∗ = 1 . (3.3.7)

This is in precise correspondence with eq. (3.2.9).

Eq. (3.3.6) implies that the current must contain a contribution linear in the
NGB field,

Jµν(x) =
1

g2
(∂µAν − ∂νAµ) + · · · , (3.3.8)

where the dots denote possible higher-order contributions. Thus under U(1)(1)

the photon transforms by a shift analogous to that of πa in eq. (3.2.11)

Aµ(x) 7→ Aµ(x) + λµ(x) , with ∂[µλν](x) = 0 . (3.3.9)

3The polarization vector appears complex conjugate because the current creates an
incoming photon.
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Note that λµ(x) are the components of a closed, but not exact 1-form, so this
is not equivalent to a small gauge transformation Aµ → Aµ + ∂µα.

As in eq. (3.2.17) the charge operators can be constructed by exponentiating
the NGB field

WQ(C) = exp

(
iQ

∫
C

Aµdx
µ

)
, (3.3.10)

so the NGB parameterizes fluctuations of the vacuum expectation value. In
the present case, these are of course the familiar expressions for the Wilson
line operators, and by combining Eqs. (3.3.2) and (3.3.8) their 1-form charges
simply correspond to the electric flux.

Finally, we must discuss the fate of the 1-form symmetry in the presence of
electrically charged matter. Indeed this induces the explicit breaking of the
1-form symmetry. The current for the 1-form symmetry is no longer conserved:

∂µJµν(x) = jν(x) , (3.3.11)

where jν is the electromagnetic current.

Physically, the presence of electric charges allows the vacuum to polarize by
pair production with the result that Wilson lines are screened and do not
induce a non-trivial electric flux. Thus they cannot carry a 1-form charge.
This is closely related to the fact that the Wilson lines can now have endpoints
on local charged operators, so the putative 1-form symmetry charges would
act trivially on them.

3.3.2 Soft photon theorems

The famous soft photon theorem [37], [38], [121], [122] concerns scattering
amplitudes with charged particles. It states that the leading term in the soft
expansion of an amplitude in the photon’s momentum, q, is given by

lim
q→0

An+γ(q) = g
∑
i

Qi
ε · pi
q · pi

An (3.3.12)

where Qi and pi are the charges and momenta of the hard particles.

In light of our discussion of breaking of 1-form symmetry by charged matter,
it might naively seem that it is not possible to interpret eq. (3.3.12) using this
language. We are then forced to ask: is there any limit in which the 1-form
symmetry re-emerges and explains the soft theorem? We will explain below
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that the answer to this question is positive, but let us begin by making some
general comments that might give us hope that this is the case.

From the modern viewpoint, the masslessness of the photon is a consequence of
the spontaneously broken 1-form symmetry and not of gauge invariance. From
this perspective, one might also wonder why the photon remains massless even
in the presence of charged particles. The answer is that 1-form symmetries are
robust in the sense that they cannot be broken by adding any local operators to
the effective action, as these are not charged under the symmetry. Incidentally,
this also implies that when 1-form symmetries emerge in some limit they are
exact. This robustness protects the masslessness of the photon (though not
completely, as it could be Higgsed by the charged matter). More generally, the
breaking of the 1-form symmetry is universal: it can only happen by adding
charged degrees of freedom and in the form of eq. (3.3.11). One might expect
that this universality is the moral reason for the existence of the soft photon
theorems. In the rest of this section we will try to sharpen this perspective.

3.3.2.1 A photon Adler zero

Let us first consider a trivial limit in which the 1-form symmetry is emergent.
If we consider charged particles with mass m, then the scattering of photons
with momenta k ≪ m is described by an effective theory à la Euler-Heisenberg
[166], in which the charged matter is integrated out. This results in the non-
linear Lagrangian

L = − 1

4g2
F µνFµν +

c1
m4

(FµνF
µν)2 +

c2
m4

(FµνF
νσFσρF

ρµ) +O
(

1

m6

)
.

(3.3.13)

where Fµν = ∂µAν − ∂νAµ is the usual field strength, and ci are dimensionless
Wilson coefficients which depend on the details of the matter that is integrated
out. This theory has an exact electric 1-form symmetry U(1)(1)e with current

Jµν
e =

1

g2
F µν +O(F 3), (3.3.14)

conserved by the equations of motion derived from (3.3.13). It also has a
magnetic U(1)(1)m 1-form global symmetry with the current

Jµν
m =

1

4π
ϵµναβFαβ , (3.3.15)
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conserved by the Bianchi identity and which measures magnetic flux. The
NGB associated to U(1)(1)m is a dual photon which does not appear explicitly
in eq. (3.3.13) but likewise transforms non-linearly by a shift under U(1)(1)m .
This symmetry will play an important role in section 3.4, but not in our current
discussion.

Let us now follow the steps analogous to the derivation of the pion Adler zero.
We separate the single-photon and hard contributions in the form factor for
the 1-form symmetry current within a multi-photon state |α⟩,

⟨α|Jµν
e (q)⟩ =1

g

(qµεν∗ − qνεµ∗)

q2
⟨α + γ(q)|0⟩+ ⟨α|Jµν

eH(q)⟩ . (3.3.16)

On the RHS we have left a sum over helicities implicit. The coefficient of the
pole is simply related to the scattering amplitude with an additional photon
with momentum q

⟨α + γ(q)|0⟩ = iAn+γ(q) . (3.3.17)

Then the conservation of the 1-form current implies the relation

An+γ(q) = −ig qµεν⟨α|Jµν
eH(q)⟩ , (3.3.18)

where we made use of eq. (3.3.7). Taking the soft limit we find that the RHS
vanishes, since as before, the hard current contributions are regular in the soft
limit due to the shift symmetry of the NGB implying that there is no cubic
coupling. Thus we find an Adler zero for photon amplitudes in this theory

lim
q→0

An+γ(q) = 0 (3.3.19)

This is in exact analogy with Eqs. (3.2.21) and (3.2.22) in the previous section.

Such a zero is perhaps an unsurprising statement, since the effective theory in
eq. (3.3.13) is derivatively coupled with at least one derivative by field, that
is, it is a theory of abelian NGB. This soft photon theorem is, nevertheless, a
direct consequence of the electric 1-form symmetry of the theory.

3.3.2.2 Low’s soft photon theorem

By integrating out the charged matter we have seemingly thrown away the
baby with the bathwater, and have only been able to reproduce eq. (3.3.12) in
the case where the scattering amplitude involves no external charged particles.
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However there is a middle way in which we can keep both external charged
states and see the 1-form symmetry emerge.

Consider a scattering amplitude involving n massive charged particles with
‘hard’ momenta, pi. In the limit that all hard momenta are neighboring the
mass shell of either external particle or anti-particle states, we can write ℓµi =

pµi + kµ with pi on-shell and ki ≪ pi. Expanding in this limit, the scattering
amplitude will be given by a correlation function of Wilson lines plus a hard
(local) operator insertion, OH ,

iAn ∼ ⟨WQ1(C1) · · ·WQn(Cn)OH⟩ (3.3.20)

where ∼ denotes that the equality holds up to corrections in inverse powers
of the masses. The Wilson lines are extended from the origin to infinity along
trajectories with four-velocities vµi = pµi /mi (that is, Ci : y

µ
i (s) = svµi ) with

s ∈ [0,∞], and carry the corresponding charges, Qi,

WQi
(Ci) = exp

(
iQi

∫ ∞
0

ds vµi Aµ(sv)

)
(3.3.21)

The hard operator OH is inserted at the origin. Its form will not be important
in what follows.

We claim that the electric 1-form symmetry emerges in this limit. We will show
that this is the case momentarily, but first let us consider the consequence of
the Ward identity eq. (3.3.3) upon the correlation function appearing in the
expanded amplitude eq. (3.3.20)

∂µ⟨Jµν
e (x)

∏
i

WQi
(Ci)OH⟩

=

(∑
i

Qi

∫
ds
dyνi
ds

δ(4)(x− yi(s))

)
⟨
∏
i

WQi
(Ci)OH⟩ . (3.3.22)

We will contract this equation with a polarization εν(q), and Fourier transform
in x. On the one hand, the LHS yields,

εν

∫
d4x e−iq·x∂µ⟨Jµν

e

∏
i

WQi
(Ci)OH⟩ (3.3.23)

= − i

g
⟨γh(q)|

∏
i

WQi
(Ci)OH⟩+ iqµεν⟨Jµν

eH(q)
∏
i

WQi
(Ci)OH⟩ ,

(3.3.24)
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where the the derivative operator has effected an amputation of an external
photon γh(q). The first term is then identified with the amplitude with an
additional external photon

⟨γ(q)|
∏
i

WQi
(Ci)OH⟩ ∼ iAn+γ(q) (3.3.25)

On the RHS of eq. (3.3.22) we just need to compute the Fourier transform of
the contact terms∫

d4x e−iq·x
(
Qi

∫ ∞
0

ds ε · viδ(4)(x− vs)

)
= Qiε · vi

∫ ∞
0

ds eisq·v

= iQi
ε · vi
q · vi

(3.3.26)

which shows that the the RHS of the Ward identity gives∑
i

Qi
ε · vi
q · vi

⟨
∏
i

WQi
(Ci)OH⟩ ∼

∑
i

Qi
ε · pi
q · pi

An (3.3.27)

Putting all together yield the relation

An+γ(q) = g
∑
i

Qi
ε · pi
q · pi

An + igqµεν⟨Jµν
eH(q)

∏
i

WQi
(Ci)OH⟩ . (3.3.28)

In the soft limit the matrix element of the hard current can only give terms
which are at most singular as O(q−1), so taking the small q limit of this relation
gives the soft theorem in eq. (3.3.12).

3.3.3 Emergent higher-form symmetry in heavy-particle EFT

Above we have claimed that in the limit where the soft photon leaves particles
(or antiparticles) close to the mass shell there is an emergent 1-form symmetry,
which we then used to derive the soft photon theorem. Let us now make this
precise using the language of effective field theory. The manipulations in this
section are not new, and very familiar in the context of HQET [161], but we
will describe them emphasizing the physics of the emergence of the 1-form
symmetry.

We begin by considering a charged massive particle associated to a field ϕ(x)
interacting with the photon. In order to manifest the excitations close to the
mass shell we perform a field redefinition which pulls out the large part of the
momentum

ϕ(x) =
eimv·x
√
2m

(φ+
v + φ−v ) (3.3.29)
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where vµ = pµ/m with p on-shell, and we have also separated the field into pos-
itive and negative frequency modes corresponding to the particle and antipar-
ticle.4 This field redefinition turns large derivatives of the field ∂ϕ ∼ pϕ ∼ mϕ

into manifest couplings, and leaves only small derivatives ∂φ ∼ kφ ≪ mφ in
the effective Lagrangian

L = − 1

4g2
F µνFµν + iφ+∗

v (v ·D)φ+
v + iφ−∗v (v ·D+ 2m)φ−v +O

( 1

m

)
, (3.3.30)

where Dµ = ∂µ + iAµ is the usual covariant derivative. Thus we see that
the positive frequency φ+

v fields describe excitations close to the particle mass
shell, and φ−v describe antiparticle excitations which have a large gap k ∼ 2m.
This is illustrated in Fig. 3.1. We can integrate out the antiparticle excitations
to get an effective theory describing only particles

L = iφ∗v(v ·D)φv + φ∗v
D2
⊥

2m
φv + dφ∗v

FµνM
µν

4m
φv + · · · . (3.3.31)

Here we have kept terms only up to subleading power in 1/m, including the
kinetic energy written in terms of Dµ

⊥ = Dµ − vµ(v · D); and the magnetic
dipole moment operator with Wilson coefficient d, written using the Lorentz
generator, Mµν , in the appropriate representation.

At this point an astute reader might guess that this theory has an emergent
1-form symmetry. As explained above, the explicit breaking of 1-form symme-
tries by charged matter is closely related to the phenomenon of pair creation
or vacuum polarization. However in constructing this effective theory we have
integrated out the antiparticles, so such processes cannot occur. A further con-
sequence of this is that the coupling constant g does not run in the EFT and
is frozen at the matching scale, m, which makes the current Jµν = 1

g2
F µν + · · ·

well-defined.

The symmetry can be made manifest by performing one further field redefini-
tion (due to BPS [167]) which strips a Wilson line from the particle fields

φv = WQ(C)φ̃v = exp
(
iQ

∫ ∞
0

vµAµ(sv)

)
φ̃v . (3.3.32)

This justifies our claim in eq. (3.3.20) that the amplitude of charged particles
can be related to a correlation function of Wilson lines. Furthermore, by the

4These can be extracted using projection operators φ±
v = P±ϕ which depend on the

spin of the particle. For instance, for scalars P± ∝ (iv · D ± m) and for Dirac fermions
P± ∝ 1± vµγ

µ.



58

ℓ0

|ℓ⃗|

pµ
kµ

ℓµ

φ−v

φ+
v

p 2
= m 2

Figure 3.1: Illustration of the decomposition of a momentum ℓµ = pµ + kµ,
as a large component on the mass shell, pµ, and a small component kµ ≪ pµ.
The field φ+

v describes small fluctuations around the mass shell in the shaded
region, whereas all modes outside this region are integrated out in the effective
theory.

identity5

Dµφv = WQ(C)

(
∂µ +

1

v · ∂
Fµνv

ν

)
φ̃v , (3.3.33)

it removes the dependence on bare gauge fields without derivatives in the
effective Lagrangian

L = φ̃∗v(v · ∂)φ̃v + φ̃∗v
1

2m

(
∂⊥µ +

1

v · ∂
Fµνv

ν

)2

φ̃v + dφ∗v
FµνM

µν

4m
φv + · · · ,

(3.3.34)
which now manifestly exhibits the shift symmetry in the gauge field eq. (3.3.9),
as it only depends on field strengths. In fact, this observation is not restricted
to the leading powers in the k/m ≪ 1 limit, but holds to all orders. We
have shown that, as expected, the one-form symmetry emerges as an exact
symmetry in the heavy-particle limit, which is dual to the soft photon limit,
justifying our analysis of soft photon theorems.

While we have focused here on the case of emergent U(1) 1-form symmetries
in theories with an abelian gauge field, we expect this to be a generic feature of
theories in which anti-particle production is suppressed and Wilson lines play

5The notation with 1/(v ·∂) is shorthand for operator insertions on the Wilson line, e.g.,

1

v · ∂
Fµν(x) =

∫ ∞

0

dsFµν(x+ sv) .
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a significant role. For instance, we think it is likely that the discrete 1-form
symmetries of pure Yang-Mills theory emerge as symmetries of HQET or of
the ultrasoft sector of Soft Collinear Effective Theory (SCET) [168].

3.4 New soft theorem from higher-group symmetry

The fact that higher-form symmetries are always abelian means that the opera-
tor equations satisfied by their currents do not contain non-trivial contributions
at coincident points,6 and hence there are no interesting double soft theorems
for the associated NGB. However there exists a generalized symmetry struc-
ture known as higher-group global symmetry which mixes global symmetries
of different rank in a non-trivial way [39], [141], [144], [169]–[171]. We will
focus on the case of 2-group symmetry and show that, when spontaneously
broken, such structure leads to interesting double soft theorems.

The hallmark of a continuous 2-group symmetry is an additional contact term
in the Ward identity of 0-form currents which depends on the 1-form symmetry
current

∂µjaµ(x)j
b
ν(y) ⊃ i

κ

2π
δab∂λδ(4)(x− y)Jνλ(y), (3.4.1)

where κ is a quantized constant. The 2-group symmetry is denoted by G ×κ

U(1)(1), where G is generated by the ja and U(1)(1) is a 1-form symmetry
generated by J . Due to the form of the Ward identity the 0-form currents do
not form a closed subalgebra, so the group G does not label a 0-form symmetry.
One might think of the 2-group as a non-trivial extension of the 0-form G by
the 1-form U(1)(1).7

Intuitively, one might think of κ as an fabc structure constant in which one
of the indices points in the 1-form “direction”. Hence, when the symmetry
is spontaneously broken one can expect that the double soft theorem will
describe mixing of the 0-form NGB (pions) and the 1-form NGB (photons).
Furthermore, the fact that the contact term in eq. (3.4.1) has an additional
derivative suggests that the 2-group structure will be visible at the sub-leading
order. We will see that this is precisely correct.

6’t Hooft anomalies are, of course, the exception to this rule.
7The 0-form analog of this is the fact that a coset G/H need not be a subgroup of G,

but one can think of G as an extension of G/H by H.
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3.4.1 2-group double soft pion theorem

In what follows we focus on a theory possessing a 2-group global symmetry,

(GL ×GR)×κ U(1)
(1)
m . (3.4.2)

where GL × GR is a non-abelian chiral group, and U(1)
(1)
m a magnetic 1-form

symmetry. When this 2-group symmetry structure is spontaneously broken to
GV , the low-energy dynamics are universally described at low energies by a
theory of NGB featuring pions πa associated to GL ×GR, as well as a photon
associated to the U(1)(1)m , and currents

J a
µ (x) = fπ∂µπ

a(x) + · · · and Jµν(x) =
1

4π
ϵµναβF

αβ(x) , (3.4.3)

as well as a vector current V a
µ (x) quadratic in the fields. The 2-group is encoded

in the structure of the Ward identities

∂µV a
µ (x)V

b
ν (y) = ifabc

T δ(4)(x− y)V c
ν (y) (3.4.4)

∂µJ a
µ (x)J b

ν (y) = iF abcδ(4)(x− y)V c
ν (y) (3.4.5)

∂µJ a
µ (x)V

b
ν (y) = ifabc

X δ(4)(x− y)J c
ν (y) + i

κ

2π
δab∂λδ(4)(x− y)Jνλ(y) . (3.4.6)

The new term appearing in eq. (3.4.6) contains the symmetry current associ-
ated to magnetic 1-form symmetry U(1)(1)m and the quantized constant κ.

The effective Lagrangian realizing such symmetry breaking pattern[39] is,

L =
f 2
π

4
Tr
[
∂µU∂

µU †
]
− 1

4g2
FµνF

µν (3.4.7)

− iκ

24π2
ϵµναβAµTr

[
(iU †∂νU)(iU

†∂αU)(iU
†∂βU)

]
+ · · · ,

Comparing to the action for 0-form spontaneous breaking eq. (3.2.18), we have
added a dynamical U(1) gauge field – a photon – and a term which couples
it to the pion. One consequence of this coupling is to explicitly break the
putative 1-form U(1)

(1)
e symmetry associated to the photon. However U(1)(1)m

is the 1-form symmetry participating in the 2-group eq. (3.4.2). This means
that strictly speaking the photon is a pseudo-NGB and the dual photon is a
NGB.

The pions are uncharged under the U(1) gauge group, however the pion-photon
interaction term in eq. (3.4.7) is a coupling of the photon to a topological
symmetry current,

Bµ = i
κ

24π2
ϵµναβTr

[
(iU †∂νU)(iU

†∂αU)(iU
†∂βU)

]
. (3.4.8)
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In the absence of a dynamical photon, and hence in the absence of the 2-group
global symmetry, the current Bµ would generate a topological 0-form U(1)

global symmetry.

This theory is far from exotic, as for GL × GR = SU(Nf )L × SU(Nf )R it
describes the low-energy limit of massless QCD with gauged U(1)V vector
symmetry corresponding to Baryon number, which acts diagonally on quarks.8

Such symmetry, with current (3.4.8), is associated to the non-trivial homotopy
group π3(SU(Nf )) = Z, and the field configurations where Bµ integrates to
a non-trivial winding number are identified with baryons [172]. In fact, the
photon-pion coupling term was first suggested in [173], where it was introduced
as an anomalous contribution to the baryon current in the chiral effective
theory.9 As explained in [144], 2-group global symmetries may arise from
gauging a 0-form global symmetry with a mixed anomaly. This is possible,
for example, when the original theory possesses a mixed ’t Hooft anomaly
which is quadratic in a non-abelian G and linear in a U(1) symmetry, which is
then gauged. Indeed this is the case in massless QCD where there is a mixed
anomaly between the U(1)V and SU(Nf )L × SU(Nf )R which gives rise to the
2-group structure.

Let us comment on the discrete symmetries of this theory. In the absence of
the pion-photon interaction term the theory has four distinct Z2 symmetries:
parity, P0 : xi 7→ −xi for i = 1, 2, and 3, charge conjugation of the photon
C1 : Aµ 7→ −Aµ, charge conjugation of the chiral field C2 : U 7→ UT , and pion
number mod-2 (−1)Nπ : U 7→ U−1 (or πa → −πa). The pion-photon interac-
tion breaks one of these, leaving the (Z2)

3 discrete symmetry associated to the
combinations [39]

P = P0(−1)nπ , C = C1C2, C̃ = C1(−1)nπ , (3.4.9)

which include a new parity, P , and charge conjugation C, as well as pion +

photon number mod-2, C̃. We see that the 2-group theory allows, for example,
scattering amplitudes involving an odd-number of pions so long as there is also
an odd-number of photons such that C̃ is conserved.

8Technically, one must also add a Wess-Zumino-Witten term to match the various ’t
Hooft anomalies in the chiral symmetry, but we drop this here for simplicity.

9Note that our photon is not the usual photon of electromagnetism, which arises from
gauging a linear combination of U(1)V and a U(1) subgroup of SU(Nf )V . An easy way to
see this is that the pions in our effective theory are not charged under U(1)V .
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The main result of this paper is a new double soft pion theorem for amplitudes
with nπ + 2 pions and nγ photons stemming from the continuous 2-group
symmetry, which takes the form

lim
q1,q2→0

A(nπ+πa(q1)πb(q2),nγ) =
(
S(0) + S(1) + S(1)

κ

)
A(nπ ,nγ) (3.4.10)

where the S(i) are those given in eq. (3.2.33) and

S(1)
κ A(nπ ,nγ) =

iκ

2f 3
ππ

2

nπ∑
i=1

∑
h

fabai
ϵ(q1q2piε

∗
ih)

2pi · (q1 + q2)
Aa1...ai−1ai+1...an

(nπ−1,nγ+1)

− iκ

2f 3
ππ

2

nγ∑
j=1

fabd ϵ(q1q2kjεj)

2kj · (q1 + q2)
Ada1...an

(nπ+1,nγ−1) , (3.4.11)

where in the first line we sum over helicities of internal photons and we in-
troduced the notation ϵ(abcd) = ϵµνρσaµbνcρdσ. This new soft factor S(1)

κ is
the consequence of the spontaneously broken 2-group global symmetry. Its
salient feature is that it is odd under parity and thus allow for external pions
‘rotating’ into photons and vice versa. As we will see, the presence of those
terms is required precisely by the appearance of the new term with the 1-form
symmetry current in the 2-group Ward identities in eq. (3.4.6). We also note
that the non-trivial 2-group soft factor depends on the antisymmetric non-
abelian structure constant of the 0-form group, and thus at this order we do
not expect an analogous non-trivial 2-group soft factor for abelian 2-groups
[32].

3.4.2 Proof

We will now explain how the derivation of the double soft theorem is aug-
mented by the 2-group. We emphasize that since the proof uses current alge-
bra it is valid to all loop orders. As in section 3.2, our starting point is the
following consequence of the Ward identity

qµ1 q
ν
2⟨α|J a

µ (q1)J b
µ(q2)⟩ = −1

2
F abc(q1 − q2)

µ⟨α|V c
µ (q1 + q2)⟩. (3.4.12)

Notice that this relation is unmodified by the 2-group current algebra, since
the Ward identity involving two axial currents is unmodified. Thus, the inter-
mediate relation eq. (3.2.27) follows in the new theory,

f 2
π⟨α + πa(q1)π

b(q2)|0⟩ =− 1

2
F abc(q1 − q2)

µ⟨α|V c
µ (q1 + q2)⟩

− qµ1 q
ν
2⟨α|JH

a
µ(q1)JH

b
ν(q2)⟩ .
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Next, we need to analyze additional contributions to form factors ⟨α|V c
µ (q)⟩

and ⟨α|JH
a
µ(q1)JH

b
ν(q2)⟩ in the new theory.

3.4.2.1 Soft vector form factor

We follow the same strategy as in the case of spontaneous 0-form symmetry
breaking (see Appendix B.1) and insert a complete set of states into the form
factor, where ⟨α| now denotes a state with n pions and m photons. The
dominant contribution in the soft limit comes from single-particle states. We
have

lim
q→0

⟨α|V a
µ (q)⟩ =

n+m∑
i=1

∑∫
X

⟨Xi|V a
µ (q)|X⟩∆X⟨X + α̂i|0⟩ , (3.4.13)

where by α̂i we denote the state α with the i-th particle Xi removed, |X⟩
stands for a single-particle state of either pions or photons, and ∆X is the
corresponding propagator.

The ⟨πb(p)|V a
µ (q)|πc(k)⟩ form factor is the same as in the 0-form case de-

rived in Appendix B.1. Since there is no flavor-structure corresponding to
⟨γh(p)|V a

µ (q)|γh′(k)⟩, the form factor vanishes. Thus the only additional form
factor we need is ⟨πb(p)|V a

µ (q)|γh(k)⟩, which at leading order in soft momentum
can be parametrized as

⟨πb(p)|V a
µ (q)|γh(k)⟩ = A(p, q)Babϵµνρσq

νpρε∗σh +O(q2) , (3.4.14)

where k = q+p, A(p, q) is a Lorentz-invariant structure function and Bab is an
arbitrary flavor-structure. Here we have specialized to a parity-odd ansatz for
the form factor. As discussed above, the theory is invariant under the product
of any two of the four Z2 transformations: C1, C2, P0, and (−1)Nπ . It follows
that the form factor eq. (3.4.14) must be parity-odd. We can constrain the
coefficient in the ansatz by considering a related object ⟨J b

ν (p)V
a
µ (q)|γh(k)⟩

and its axial current decomposition.

We write an ansatz for ⟨J b
ν (p)V

a
µ (q)|γh(k)⟩ and impose the Ward identity for

the axial current

pν⟨J b
ν (p)V

a
µ (q)|γh(k)⟩ = i

κ

2π
δabpν⟨Jµν(p+ q)|γh(k)⟩ , (3.4.15)

where we used the fact that ⟨Jµ(p + q)|γh(p + q)⟩ = 0. Similarly, we require
that the Ward identity for the vector current is satisfied. Those two conditions
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allow us to constrain the correlator at the leading order in soft momentum

⟨V a
µ (q)J b

ν (p)|γh(k)⟩ =δab
iκ

8π2fπ

(
ϵµνσλ(p+ q)λ − 2pν

p2
ϵµλρσq

λpρ
)
ε∗σh

+O(q2, p2) , (3.4.16)

which in turn implies, using eq. (3.2.19), that

⟨πb(p)|V a
µ (q)|γh(k)⟩ = −δab κ

4π2fπ
ϵµνρσq

νpρε∗σh +O(q2) . (3.4.17)

Finally, putting everything together we arrive at the soft limit of the vector
current in the theory with a 2-group global symmetry,

lim
q→0

⟨α|V a
µ (q)⟩ =

nπ∑
i=1

faaid

(
(2pi + q)µ
(pi + q)2

− iqνLiµν

(pi · q)

)
Aa1...d...anπ

(nπ ,nγ)

− iκ

4π2fπ

nπ∑
i=1

∑
h

δaai
ϵµνρσq

νpρi ε
∗σ
i

2pj · q
Aa1...ai−1ai+1...anπ

(nπ−1,nγ+1)

+
iκ

4π2fπ

nγ∑
j=1

δaai
ϵµνρσq

νkρj ε
σ
j

2kj · q
Ada1...anπ

(nπ+1,nγ−1) , (3.4.18)

where ⟨α| again denotes a state with nπ pions and nγ photons. The first line
of eq. (3.4.18) is the contribution from the GL × GR symmetry as derived in
Appendix B.1.

3.4.2.2 Soft axial-axial hard current form factor

Repeating the same analysis for the soft axial-axial hard current form fac-
tor ⟨α|JH

a
µ(q1)JH

b
ν(q2)⟩ we see that the new relevant form factor we need is

⟨πc(p)|JH
a
µ(q1)JH

b
ν(q2)|γh(k)⟩,10 which can be obtained from the 2-group cur-

rent algebra. As is consistent with the discrete Z2 symmetry structure of the
theory, we start with the parity-odd ansatz

⟨πc(p)|JH
a
µ(q1)JH

b
ν(q2)|γh(k)⟩ = A(p, q1, q2)B

abcϵµνρσp
ρε∗σh +O(q1, q2) ,

(3.4.19)

where A(p, q1, q2) is a Lorentz-invariant structure function and Babc is an ar-
bitrary flavor-structure. We consider a related object,

⟨J c
λ (p)J a

µ (q1)J b
ν (q2)|γh(k)⟩ ,

10The form factor ⟨γh|JH
a
µJH

b
ν |γh′⟩ is suppressed in the soft limit, as can be deduced from

an analogous bootstrap argument imposing Ward identities. One can also explicitly perform
a perturbative check and see that the loop diagrams contributing to ⟨γh|JH

a
µJH

b
ν |γh′⟩ are

suppressed in the soft limit.
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πa πb

πai

(a)

πa πb

γj

(b)

Figure 3.2: Graphical representation of the singular contributions comprising
the 2-group soft factor S(1)

κ in eq. (3.4.10) and eq. (3.4.11).

which we constrain using the Ward identity

pλ⟨J c
λ (p)J a

µ (q1)J b
ν (q2)|γh(k)⟩ =F cae⟨V e

µ (p+ q1)J b
ν (q2)|γh(k)⟩

+ F cbe⟨J a
µ (q1)V

e
ν (p+ q2)|γh(k)⟩ , (3.4.20)

where the RHS can be evaluated using the result from the previous section
eq. (3.4.16). As before, from axial current decomposition we can deduce at
leading order in soft momenta

⟨πc(p)|JH
a
µ(q1)JH

b
ν(q2)|γh(k)⟩ = −F abc κ

4π2fπ
ϵµνρσp

ρε∗σh +O(q1, q2) . (3.4.21)

Therefore we have the 2-group soft axial-axial remnant theorem

lim
q1q2→0

⟨α|JH
a
µ(q1)JH

b
ν(q2)⟩ =

nπ∑
i=1

(F aaief ebd
X + F baief ead

X )
ηµν

2pi · (q1 + q2)
Aa1...d...an

(nπ ,nγ)

− iκ

4π2fπ

nπ∑
i=1

F abai
ϵµνρσp

ρ
i ε
∗σ
i

2pi · (q1 + q2)
Aa1...ai−1ai+1...an

(nπ−1,nγ+1)

+
iκ

4π2fπ

nγ∑
j=1

F abd
ϵµνρσk

ρ
j ε

σ
j

2kj · (q1 + q2)
Ada1...an

(nπ+1,nγ−1) ,

(3.4.22)

where again ⟨α| denotes a state with nπ pions and nγ photons. The first line
of eq. (3.4.22) is the contribution from the GL × GR symmetry as derived in
Appendix B.2.

Finally, plugging in eq. (3.4.18) and eq. (3.4.22) into eq. (3.4.13), we obtain the
full double soft theorem eq. (3.4.10). The 2-group contributions in eq. (3.4.11)
are represented graphically in Fig. 3.2.

3.4.3 Examples

Here we provide some examples of tree-level amplitudes in the theory in
eq. (3.4.7). We have verified the double soft theorem in all amplitudes with up
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to six external particles, with any allowed combinations of pions and photons.
We only present explicit checks in some simple cases.

The first nontrivial amplitudes appear at 4-point, A(4,0) and A(3,1), and all
other 4-point tree-level amplitudes vanish. The four pion amplitude is the
same as in the NLSM eq. (3.2.18) for spontaneous 0-form symmetry break-
ing. The amplitude with three pions (with momenta p1, p2, p3) and a photon
(momentum p4) is

Aa1a2a3
(3,1) (p1, p2, p3, p4) = iKfa1a2a3ϵ(p1p2p4ε4) , K =

κ

2π2f 3
π

, (3.4.23)

where we used K to denote a common combination of constants.

To illustrate the double soft theorem in a simple example, we consider an
amplitude with four pions (momenta p1, . . . , p4) and two photons (momenta
p5 and p6) given by

Aa1a2a3a4
(4,2) =fa1a2cf ca3a4K2

[
ϵ(p1p2p5ε5)ϵ(P125p3p6ε6)

s12 + s15 + s25
+
ϵ(p1p2p6ε6)ϵ(P126p3p5ε5)

s12 + s16 + s26

]
+ (1 ↔ 3) + (2 ↔ 3) , (3.4.24)

where P µ
ijk = pµi +p

µ
j +p

µ
k and we introduced Mandelstam variables sij = 2pi ·pj.

Taking the double soft limit of two pions, p1 → 0 and p2 → 0, we obtain

lim
p1,p2→0

Aa1a2a3a4
(4,2)

= fa1a2cf ca3a4K2

[
ϵ(p1p2p5ε5)ϵ(p5p3p6ε6)

s15 + s25
+
ϵ(p1p2p6ε6)ϵ(p6p3p5ε5)

s16 + s26

]
,

(3.4.25)

which is at next-to-leading order O(pi) in soft momenta.

Now we evaluate the double soft limit of A(4,2) using the soft theorem in
eq. (3.4.10). Note that since A(2,2) and A(1,3) vanish, we only get non-trivial
contributions from the soft operator in eq. (3.4.11) acting on external photons

S(1)
κ A(2,2) =− iKfa1a2c

[
ϵ(q1q2p5ε5)

s15 + s25
Aca3a4

(3,1) (p5, p3, p4, p6)

+
ϵ(q1q2p6ε6)

s16 + s26
Aca3a4

(3,1) (p6, p3, p4, p5)

]
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=K2fa1a2cf ca3a4

[
ϵ(q1q2p5ε5)

s15 + s25
ϵ(p5p3p6ε6) +

ϵ(q1q2p6ε6)

s16 + s26
ϵ(p6p3p5ε5)

]
,

(3.4.26)

where in the second line we plugged in for the amplitudes using eq. (3.4.23).
This recovers the soft limit obtained in eq. (3.4.25), showing that the double
soft theorem is satisfied.

Next, consider the 6-point pion amplitude, which decomposes into a NLSM
part and Aκ

(6,0) denoting terms with two separate color-structures

A(6,0) = ANLSM
(6,0) +Aκ

(6,0) . (3.4.27)

The contribution Aκ
(6,0) is a sum over ten factorization channels with different

color-structures. Writing the (123)(456) channel explicitly, we have

Aκ
(6,0) =

fa1a2a3fa4a5a6K2

8(s12 + s13 + s23)

[
s34(−s15s23 + s13s25) + s35(−s13s24 + s14s23)

+ s12s34(s25 − s15) + s12s35(s14 − s24)

+ (s13 + s23)(s15s24 − s14s25)
]
+ · · · , (3.4.28)

where the dots denote the other nine channels, which can be obtained by
permutation.

Now we consider the double soft limit of the six pion amplitude in eq. (3.4.27)
and keep the terms to sub-leading order. The ANLSM

(6,0) satisfies the NLSM
double soft theorem; here we focus on Aκ

(6,0). Clearly, the double soft limit
of eq. (3.4.28) vanishes at leading order in soft momenta O(q0). At next-to-
leading order, only the terms with a soft pole survive, and so four channels
contribute. Again, focusing on the (123)(456) channel, the double soft limit
yields

lim
p1,p2→0

Aκ
(6,0) =

1

8

fa1a2a3fa4a5a6K2

s13 + s23

[
s34(−s15s23 + s13s25) + s35(−s13s24 + s14s23)

]
+ (3 ↔ 4) + (3 ↔ 5) + (3 ↔ 6) , (3.4.29)

where we used that the second and third lines in eq. (3.4.28) are higher order
in soft momenta.

On the other hand, we can evaluate the new contributions to the double soft
limit using the soft theorem in eq. (3.4.11), which is a sum of soft operator
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acting on all external particles. For instance, when the soft operator acts on
the pion with momentum p3, we have

S(1)
κ (p3)A(4,0) =iK

∑
spins

fa1a2a3ϵ(p1p2p3ε
∗
3)

s13 + s23
Aa4a5a6

(3,1) (p4, p5, p6, p3) , (3.4.30)

which we can evaluate using eq. (3.4.23). Hence we obtain

S(1)
κ (p3)A(4,0) = −K2

∑
spins

fa1a2a3ϵ(p1p2p3ε
∗
3)

s13 + s23
fa4a5a6ϵ(p4p5p3e3)

= −K2f
a1a2a3fa4a5a6

s13 + s23

1

8

[
s34(s15s23 − s13s25) + s35(s13s24 − s14s23)

]
(3.4.31)

which agrees with eq. (3.4.29). Repeating the same steps for the other three
channels, we see explicitly that the double soft theorem holds for the 6-point
pion amplitude.

3.5 Conclusions

In this paper, we explored the implications of spontaneously broken higher
symmetries for the soft behavior of scattering amplitudes. Our principal result
was the derivation of a new double soft theorem for NGB in theories possessing
a spontaneously broken continuous 2-group global symmetry. This structure is
characterized by a current algebra which mixes 0-form and 1-form symmetry
currents. We showed that the corresponding Ward identities imply a universal
subleading soft factor acting on lower point amplitudes. This soft factor con-
tains terms where particles in the lower point amplitude change species, from
the 0-form NGB pion to the 1-form NGB photon, and vice versa. We have
also illustrated the new soft theorem with explicit examples of amplitudes in
theories with such symmetry.

Along the way, we presented a unified picture for soft theorems from sponta-
neously broken symmetries. This allowed us to recast well-known results, such
as the leading-order soft photon theorem as a consequence of 1-form symmetry
emergent in the soft limit. In this limit, the energy of a soft NGB is much
smaller than the energies of massive particles. The leading soft behavior of
the amplitude is then captured by an EFT with Wilson lines of charged par-
ticles treated as background insertions, similar to those familiar from particle
physics such as HQET [161], SCET [168], and their relatives. Our analysis
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shows that higher-form symmetries can generically emerge as accidental sym-
metries of such EFTs. It would be interesting explore the connections between
this observation to factorization phenomena, and derive the associated soft
theorems or selection rules on matrix elements. We expect that such an EFT
perspective will also be useful in extending our analysis to sub-leading soft
theorems.

Throughout the paper, we carried out the derivations of all soft theorems
without making reference to diagrammatics or perturbation theory, and in-
stead using the Ward identities of currents which take the form of ordinary
local operators in spacetime. We have not attempted to connect our analysis
to the derivation of soft theorems from asymptotic symmetries [128], [131],
[133]. This seems a worthwhile exercise, which is left for the interested reader.

While our analysis of soft theorems focused on soft pions and photons, we
expect that it will extend to other interesting cases. For instance, it is natural
to consider the free gluons of non-abelian gauge theories at weak coupling as
the (pseudo-)NGB of emergent 1-form symmetries in the zero-coupling limit,
around which point their scattering amplitudes are well-defined (see [174], [175]
for related observations). Hence, one can likely derive their soft theorems using
analogous symmetry arguments. One might also wonder if a similar picture
holds for soft gravitons, perhaps in connection to the symmetries in Refs. [176]–
[179].

Finally, we believe that further soft theorems might be discovered using higher
symmetry as a guiding principle, perhaps in connection to higher-rank or more
exotic symmetries in other dimensions, as well as non-invertible symmetries
[150], [151], [154], [180]–[185] which might be related to the existence of mass-
less (or light) particles. We leave such explorations for another time.
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C h a p t e r 4

SOFT SCALARS IN EFFECTIVE FIELD THEORY

M. Derda, A. Helset, and J. Parra-Martinez, “Soft scalars in effective
field theory,” JHEP, vol. 06, p. 133, 2024. doi: 10.1007/JHEP06(2024)
133. arXiv: 2403.12142 [hep-th].

4.1 Introduction

Low-energy modes are often related to the symmetry properties of a theory. In
scattering amplitudes, this connection takes the form of a soft limit, where the
momentum of a particle is sent to zero. If this limit exhibits a universal pattern,
we declare it a soft theorem. Salient examples of such relations are the pion
soft theorem—the Adler zero [4]—which is a consequence of the spontaneously-
broken chiral symmetry, the soft theorem for gauge theories [37], [121], [122],
which follows from charge conservation, and the graviton soft theorem [37],
due to energy-momentum conservation. In general, a theory with a nonlin-
early realized symmetry manifests this fact in scattering amplitudes through
soft theorems. Also in condensed matter systems, such as solids, fluids, and
superfluids, phonon soft theorems are direct consequences of spontaneous sym-
metry breaking [18], [119]. Finally, there is a close connection between soft
theorems and asymptotic symmetries [128]–[138] (see also ref. [186] and refer-
ences therein).

However, symmetry is not the only possible origin of these universal relations
between scattering amplitudes. A geometric soft theorem for scalar effective
field theories was derived solely as a consequence of the geometry of field
space [13], which did not rely on any symmetry of the theory. In the simplest
case with no potential, the geometric soft theorem takes the form

lim
q→0

An+1 = ∇iAn, (4.1.1)

where An is an n-particle scattering amplitude, ∇i is the field-space covari-
ant derivative with respect to the vacuum expectation value (VEV), and i is
the flavor index of the soft scalar. Mathematically, as explained in ref. [13],
scattering amplitudes of scalars take values in the tangent bundle of the field-
space manifold and the soft theorem is described by the familiar Levi-Civita

https://doi.org/10.1007/JHEP06(2024)133
https://doi.org/10.1007/JHEP06(2024)133
https://arxiv.org/abs/2403.12142
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connection on the tangent space. This geometric picture is general for any ef-
fective field theory and manifests the invariance of scattering amplitudes under
changes of field basis.1

In this paper, we extend the geometric soft theorem for a massless scalar by
allowing the scalar to couple to fermions and gauge bosons. The geometry
must be extended to include the full field content of the theory, since we can
perform field redefinitions for any field in our theory. Remarkably, this is
precisely what we need to complete the geometric soft theorem, which takes a
form similar to eq. (4.1.1) but with the upgrade

∇ → ∇̄ = ∂ + Γs + Γf + Γg , (4.1.2)

i.e., the covariant derivative for the full field-space geometry which includes a
connection for scalars, Γs, fermions, Γf , and gauge bosons, Γg. More precisely,
the additional fields take values in a vector bundle over the field space, with
an associated connection which features in the soft theorem.

We can also reverse this logic and use the new geometric soft theorem as
justification for the extension of the geometric picture to include particles
with spin. For example, the scalar soft theorem for a theory of scalars and
fermions involves the connection Γ̄p

ir, where i is a scalar flavor index and p, r

are fermion flavor indices. This shows that the definition of a scalar-fermion
geometry is not simply a formal exercise but that it has physical consequences
manifested in the soft scalar limit.

The geometric soft theorems have wide applicability and are realized in many
theories of interest. For instance, when the massless scalars are Nambu-
Goldstone bosons (NGBs), they generalize the Adler zero and describe the
coupling of NGBs to other species. They also describe the dependence of am-
plitudes in supersymmetric theories on the VEV of scalar moduli [187]–[191].
Furthermore, they provide a vast generalization of the well-known low-energy
theorems for a light Higgs (see, e.g., ref. [192], [193]). This is, of course, not
an exhaustive list.

The paper is organized as follows. First, we review the geometry of field space
for scalars, fermions, and gauge bosons. Then we derive the geometric soft
theorem, valid for any effective field theory with a massless scalar. We present

1The geometric soft theorem has also found an interpretation in the context of celestial
holography [135], [136].
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the geometric soft theorem in three parts: first with only scalars, then with
fermions, and last with gauge bosons. In the following section, we present a
novel double soft theorem, where the momenta of two scalars are sent to zero.
In this case, the soft theorem involves the curvature of the full field-space
geometry, including components for fermions and gauge bosons. Then we
present new double-soft theorems for fermions. These soft theorems are almost
identical to the double-scalar soft theorem, up to the simple replacement of a
kinematic factor. Numerous examples are listed in section 4.5. We end with
a discussion and outlook.

4.2 Geometry of Field Space

We consider an effective theory that includes scalars, fermions, and gauge
bosons. To low orders in the derivative expansion, the Lagrangian is

L =
1

2
hIJ(ϕ)(Dµϕ)

I(Dµϕ)J − V (ϕ) + i
1

2
kp̄r(ϕ)(ψ̄

p̄γµ
↔
Dµψ

r)

+ iωp̄rI(ϕ)(ψ̄
p̄γµψ

r)(Dµϕ)I − ψ̄p̄M(ϕ)p̄rψ
r + cp̄rs̄t(ϕ)(ψ̄

p̄γµψ
r)(ψ̄s̄γµψt)

− 1

4
gAB(ϕ)F

A
µνF

Bµν + dp̄rA(ϕ)(ψ̄
p̄σµνψr)FA

µν + . . . , (4.2.1)

where we allow for higher-derivative operators and operators with more fermion
fields, but do not list them explicitly. To keep the discussion simple, we omit
the CP-odd scalar–gauge-boson couplings, −1

4
g̃AB(ϕ)F

A
µνF̃

Bµν , but all results
generalize straightforwardly when they are present. We group all fields with
the same spin into multiplets, with scalar indices I, J, . . . , fermion indices
p, p̄, . . . , and gauge indices A,B, . . . The functions hIJ(ϕ), V (ϕ), kp̄r(ϕ) etc.,
are functions of the scalar fields. By introducing these functions, we group
infinite families of higher-dimensional operators into compact structures [58].
This grouping of operators underlies the geometric construction. The scalars
ϕI and fermions ψr can be charged under the gauge symmetry through the
covariant derivative, which we describe in more detail below.

As in any effective field theory, the number of independent operators is less
than the number of possible composite operators consistent with the symme-
tries of the theory. This is because integration-by-parts relations and field
redefinitions can be used to write the Lagrangian in a form with a mini-
mal number of operators, i.e., a nonredundant operator basis. This freedom
of redefining the fields (at least when the field redefinition does not involve
derivatives) takes on a geometric meaning, paralleling coordinate changes in
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differential geometry. The field-space geometry for scalars is by now a stan-
dard quantum-field-theory technique. See refs. [28], [41]–[44] for some early
works on the connection between differential geometry and field redefinitions
and refs. [40], [46], [55]–[64] for modern applications of the scalar geometry
in effective field theories. Recently, this geometric picture has been extended
to include both fermions and gauge bosons [47], [66], [67], [69], and several
proposals attempt to extend the geometric description to accommodate field
redefinitions with derivatives [47]–[52].

4.2.1 Scalars

The geometry of the scalar field space is dictated by the metric hIJ . From this
metric, we can derive the Christoffel symbol

ΓI
JK =

1

2
hIL (hJL,K + hLK,J − hJK,L) , (4.2.2)

where hIJ,K = ∂KhIJ , and the Riemann curvature

RIJKL = hIM
(
∂KΓ

M
LJ + ΓM

KNΓ
N
LJ − (K ↔ L)

)
. (4.2.3)

The covariant derivative ∇I uses the connection in eq. (4.2.2). The field-space
geometry for scalars captures field redefinitions of the form ϕ → F (ϕ), where
F ′(v) ̸= 0 at the VEV vI , and was used to describe the geometric soft theorem
for scalar effective field theories [13].

The scalar field in the Lagrangian, ϕI , can be used as an interpolating field
between the vacuum and a one-particle state,

⟨pi|ϕI(x)|0⟩ = eIi (v)e
ip·x, (4.2.4)

where the momentum is on the mass shell, p2 = m2
i (v), and eIi (v) is the tetrad,

which is defined from the metric

hIJ(v) = eIi(v)e
i
J(v). (4.2.5)

The tetrad is the wavefunction factor in the LSZ reduction formula. Its role is
to canonically normalize and rotate between the flavor-eigenstate fields in the
Lagrangian and the mass eigenstates used in scattering amplitudes. Therefore,
a scattering amplitude is a tensor with lowercase tetrad indices. Further details
on the geometric construction for scalars can be found in ref. [13].



74

4.2.2 Fermions

We follow the setup in ref. [66] to describe fermions geometrically. A similar
approach, but with certain differences in the technical steps, is described in
refs. [67], [68]. The main novelty for the fermion geometry compared with
the scalar geometry discussed above is that we now must accommodate anti-
commuting fields into the geometric picture. This can be conveniently done
by replacing the Riemannian manifold with a supermanifold, which involves
Grassmann coordinates [194]. Note that the notion of a supermanifold is
distinct from supersymmetry, and we do not require our theories to possess
supersymmetry.

The fermion geometry is defined by the metric2

ḡij =

 hIJ (ψ̄ω−)rI (ω+ψ)r̄I

−(ψ̄ω−)pJ 0 kr̄p + cr̄p

−(ω+ψ)p̄J −kp̄r − cp̄r 0

 , (4.2.6)

where ω±p̄rI = ωp̄rI ± 1
2
kp̄r,I . The scalar indices I, J, . . . and the fermion indices

p, p̄, . . . are unified in the indices i, j, . . . . The metric and descendant quantities
are denoted with a bar to distinguish them from the corresponding quantities
in the scalar geometry.

Four-fermion operators were not included in the geometric construction in
ref. [66]. We include them in the metric in eq. (4.2.6) through the term
cp̄r = 4(cp̄rs̄t + cp̄ts̄r)ψ

tψ̄s̄. There are several reasons why this construction
is sensible. First, the four-fermion operators transform as tensors under redef-
initions of the fermion fields that depend on the scalar fields. Thus, they are
fine objects to add to the metric, as they do not spoil any of the transformation
properties used to bootstrap the metric for the two-fermion sector. Second,
the other operators which make up the scalar-fermion metric are combinations
of two scalar currents or one scalar current and one fermion current. Thus, it
is natural to expect that operators with two fermion currents can also reside in
the metric. Lastly, in the supersymmetric nonlinear sigma model, the coeffi-
cient of the four-fermion operator is the Riemann curvature. Therefore, these
operators must be included in the metric even for a general theory without

2Following the conventions of ref. [194], the metric should be written as iḡj, and shifting
the indices to the right will pick up additional signs, ḡij = (−1)i iḡj. Here, we exclusively
deal with the metric and allow ourselves to abuse the notation by having the indices on the
right from the start.
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supersymmetry, since the supersymmetric theory should be obtainable from
the general theory by picking the correct field content and tuning the coeffi-
cients. The virtue of this definition will be apparent when we consider single
and double soft theorems of scalars and fermions.

From this metric we can also calculate the Christoffel symbol and the curva-
ture, but with the definitions appropriate for a supermanifold. In particular,
the relevant connection coefficients are [66]

Γ̄K
IJ = ΓK

IJ , (4.2.7)

Γ̄p
Ir = kps̄ω+

s̄rI , (4.2.8)

Γ̄p̄
Ir̄ = −ω−r̄sIk

sp̄, (4.2.9)

and the corresponding curvatures are

R̄p̄rIJ = ωp̄rJ,I + ω−p̄sIk
st̄ω+

t̄rJ − (I ↔ J), (4.2.10)

R̄p̄rs̄t = 4(cp̄rs̄t + cp̄ts̄r), (4.2.11)

all evaluated at the VEV. The covariant derivative ∇̄ uses the connections in
eqs. (4.2.7) to (4.2.9). For our purposes, where we analyze the geometric struc-
ture of scattering amplitudes, we only need the geometric quantities evaluated
at the VEV. Other applications, such as background-field calculations [61],
[64], [66], also use the geometric information away from the VEV.

Similar to the scalars above, the flavor-basis field ψ̄R̄ sandwiched between the
one-particle fermion state and the vacuum is

⟨pr̄|ψ̄R̄(x)|0⟩ = ū(p)eR̄r̄ (v)e
ip·x. (4.2.12)

Note that we here used capital indices for the flavor-basis field ψ̄R̄ to distinguish
them from the lowercase indices mass-eigenstate basis. However, for esthetic
reasons, we used lowercase indices in the Lagrangian in eq. (4.2.1). Hopefully,
this slight abuse of notation will not cause confusion. The tetrad, which is
derived from the metric, will implicitly be used to transform between the two
bases, (

0 kRP̄

−kP̄R 0

)
= ep̄

P̄

(
0 δrp̄

−δp̄r 0

)
erR, (4.2.13)

where δp̄r is the Kronecker delta. The fermions are canonically normalized and
rotated to the mass-eigenstate basis via the tetrad. The tetrad shows up in
the LSZ reduction formula for the fermions as the wavefunction factor, exactly
as for the scalars.
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4.2.3 Gauge bosons

There is a larger freedom in how to construct a geometric field space which
includes gauge bosons. One option is to use the geometry-kinematics map
[47], where essentially the gauge bosons act like scalars, and all the geometric
quantities in the scalar field space get upgraded to depend on both the scalars
and the gauge fields. As an added bonus, the geometry-kinematics duality
allows all higher-derivative operators to be placed on the same footing as the
two-derivative operators, thus providing a geometric understanding of deriva-
tive field redefinitions. The advantage of using the geometry-kinematics map
is that statements which hold for scalar effective field theories immediately get
upgraded to statements which hold for general bosonic effective field theory.
This includes the geometric soft theorem. Some drawbacks of this approach
are that the notation is rather compact and that there are some ambiguities
in the initial choice for the metric.

Another option is to treat the gauge fields separately from the scalar fields.
One such formulation was introduced in ref. [69]. By using a geometric gauge
fixing [57], the metric takes the form

ḡαβ =

(
ḡij 0

0 gAB

)
, (4.2.14)

where we also include the fermions via the metric in eq. (4.2.6). For a theory
without fermions, we simply replace ḡij → hIJ in eq. (4.2.14). We have stripped
off a factor (−ηµν) compared to the metric in ref. [69]. This factor can be triv-
ially reinstated with the replacement gAB → −gABηµAµB

. The indices α, β, . . .
include all scalar and fermion indices, as well as the gauge-field indices A,B, . . .
Here we slightly abuse the notation by denoting the full scalar–fermion–gauge-
boson metric with a bar, as we did in the scalar-fermion metric in eq. (4.2.6).
If we included the CP-odd scalar–gauge-boson couplings, −1

4
g̃AB(ϕ)F

A
µνF̃

Bµν ,
the metric in eq. (4.2.14) would change to gAB → g±AB = gAB ± g̃AB for posi-
tive/negative helicity gauge fields. This is analogous to how positive/negative
helicity fermions couple through the vertex ω±p̄rI . For simplicity, we omit the
CP-odd couplings in the gauge metric.

In this paper, we opt for using eq. (4.2.14) for concreteness. This cleanly
separates the particles of different spin. However, we will in passing mention
how our results change when using the geometry-kinematics map. Intrigu-
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ingly, both definitions of the gauge-boson metric lead to a new geometric soft
theorem. These soft theorems are equivalent but differ in form.

With this choice of metric, we can calculate the connection [69],

Γ̄a
bi =

1

2
gac(∇igcb), (4.2.15)

and the curvature,

R̄aijb =
1

2
∇i∇jgab −

1

4
(∇jgac)g

cd(∇igdb). (4.2.16)

Next, we need to relate the gauge field to the scattering state. The gauge field
creates a one-particle state,

⟨pb, ϵ|AB
µ (x)|0⟩ = ϵ∗µ(p)e

B
b (v)e

ip·x. (4.2.17)

The polarization vector ϵµ encodes the two degrees of freedom for a massless
gauge field, or the three degrees of freedom for a massive gauge field. Some-
times, we combine the polarization vector and the tetrad, which is defined
as gAB(v) = eAa(v)e

a
B(v), into a new polarization tensor, ϵBbµ(v) = ϵµe

B
b (v),

which carry the tetrad indices. The scattering amplitude is multilinear in
these polarization vectors, and it will be a tensor with gauge-boson indices in
the mass-eigenstate basis.

We also consider massive gauge bosons which get their mass through the Higgs
mechanism. As is well known (and reviewed in ref. [13]), a global symmetry in
the scalar sector is associated with a set of Killing vectors, tIA(ϕ), such that

ϕI → ϕI + cA tIA(ϕ) (4.2.18)

leaves the Lagrangian invariant for any cA. The Killing vectors satisfy com-
mutation relations

tJA(ϕ)∂Jt
I
B(ϕ)− tJB(ϕ)∂Jt

I
A(ϕ) = fAB

CtIC(ϕ) (4.2.19)

corresponding to a Lie algebra3. When this symmetry is gauged, the covariant
derivative which describes the coupling of the scalars to gauge bosons is

(Dµϕ)
I = ∂µϕ

I + tIB(ϕ)A
B
µ , (4.2.20)

3Note that we use a convention different from the usual one in the amplitudes literature
([tA, tB ] =

√
2fAB

CtC , see, e.g., ref. [195]), so our gauge-boson amplitudes carry additional
factors of

√
2 in comparison.
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where tIA(ϕ) is a Killing vector of the scalar field-space manifold. The gauge
bosons can acquire mass through the Higgs mechanism. Some of the scalar
fields then take on a nonvanishing VEV, which spontaneously breaks the gauge
symmetry. In this case, some of the Killing vectors are nonzero at the VEV,
tIA(v) ̸= 0. The mass of a gauge boson is generally given by the square of the
Killing vectors evaluated at the VEV,

m2
ab(v) = tIa(v)tIb(v) . (4.2.21)

However, if the gauge group is not broken, then the Killing vectors vanish
at the VEV, tIA(v) = 0, and the gauge bosons remain massless. We will not
commit to either case, and allow for having both charged and neutral scalars
as well as massless and massive gauge bosons in our effective field theory.

For later reference, it is useful to quote the Goldstone boson equivalence the-
orem in the geometric notation:

lim
p1→∞

Aa1···(1L · · · ) =
ti1a1(v)

ma

Ai1···(1scalar · · · ) , (4.2.22)

where the left-hand side is the amplitude of a longitudinal massive gauge
boson, and the right-hand side is the amplitude of the “would-be” NGB scalar
which is eaten in the Higgs mechanism.

4.3 Geometric Soft Theorem

Below, we present the geometric soft theorem for a massless scalar in a general
effective field theory with other (possibly massive) scalars, fermions, and gauge
bosons. The derivation of this result is analogous to the derivation for scalar
effective field theories [13]. We first review the case for scalars before also
including fermions and gauge bosons. The general soft theorem is the union
of these results.

4.3.1 Scalars

The geometric soft theorem for scalars was derived in ref. [13]. We reproduce
it here. It involves the covariant derivative in field space acting on either the
lower-point amplitude or the mass matrix of the external particles. The index
j on the covariant derivative corresponds to the index of the particle with
momentum q, whose momentum is sent to zero. In full, the geometric soft
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theorem is

lim
q→0

An+1,i1···inj =∇jAn,i1···in +
n∑

a=1

∇jV
ja

ia

(pa + q)2 −m2
ja

(
1 + qµ

∂

∂pµa

)
An,i1···ja···in ,

(4.3.1)

where Vij ≡ V;ij. The first term in the soft theorem acts on all coupling
constants and masses in the amplitude, which are viewed as functions of the
VEV. The second term is essential to be consistent with the on-shell conditions
for all particles.

This geometric soft theorem unifies the Adler zero for Nambu-Goldstone bosons
on a symmetric coset [4], soft theorems for more general Nambu-Goldstone
bosons [117], and the dilaton soft theorem [118], [196]–[198]. For illustration,
we have listed in section 4.5 examples of scattering amplitudes for four and
five scalar particles and shown how they are connected through the geometric
soft theorem.

4.3.2 Fermions

Next, we add fermions to the mix. The geometric soft theorem for a mass-
less scalar in the presence of both scalars and fermions is new. It bears stark
resemblance to the soft theorem above. The geometric soft theorem again de-
pends on the covariant derivative in field space, but this time for the combined
scalar-fermion geometry defined through the metric in eq. (4.2.6). This covari-
ant derivative ∇̄i is denoted with a bar to indicate that it is also sensitive to
fermionic flavor indices.

The full scalar-fermion soft theorem is

lim
q→0

An+1,i1···inj = ∇̄jAn,i1···in

+
∑

a∈{scalar}

∇̄jV
ja

ia

(pa + q)2 −m2
ja

(
1 + qµ

∂

∂pµa

)
An,i1···ja···in

+
∑

b∈{fermion}

∑
spin

∇̄jMrb
pb
(ū(p+ q)u(p))

(pb + q)2 −m2
rb

(
1 + qµ

∂

∂pµb

)
An,i1···rb···in

+
∑

b∈{anti-fermion}

∑
spin

∇̄jM r̄b
p̄b (−v̄(p)v(p+ q))

(pb + q)2 −m2
rb

(
1 + qµ

∂

∂pµb

)
An,i1···r̄b···in ,

(4.3.2)

where M is the fermion mass matrix. Let us unpack this soft theorem. We
take all momenta to be incoming and write the amplitude with lowered flavor
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indices. Note that the tetrads are implicitly included for both scalars and
fermions, although we use the same index for the fermion flavors in the am-
plitude as in the Lagrangian. The tetrads canonically normalize and rotate
the states to the mass-eigenstate basis, where the mass matrix is diagonal.
Another thing we have kept implicit is the label for the spin component of
the fermion wave functions. The spin is summed over for the external fermion
wavefunction in the n-point amplitude and the shifted spinor in the prefactors.

The first line in eq. (4.3.2) is similar to the scalar soft theorem in eq. (4.3.1),
with the replacement ∇i → ∇̄i, while the second and third lines are the
covariant derivative acting on the external fermion propagators. The last
three terms can be unified to the covariant derivative of a single mass matrix,
where the indices run over both scalar and fermion flavors, but we choose to
write out all the terms explicitly for clarity.

The geometric soft theorem in eq. (4.3.2) holds at tree level. However, in
the case where the potential and fermion mass matrix vanish, V (ϕ)=0 and
M(ϕ) = 0, we believe the soft theorem holds at all loop orders, for the same
reasons as in the soft scalar theorem [13].

For this soft theorem to have a sensible on-shell interpretation, it must com-
mute with the on-shell conditions. Consider the action of the soft theorem on
the on-shell condition for an incoming fermion,

(/psδ
r
s −Mr

s)u(ps) = 0 . (4.3.3)

The covariant derivative shifts the mass matrix,

∇̄j(/psδ
r
s −Mr

s)u(ps) = −(∇̄jMr
s)u(ps), (4.3.4)

and the third term in eq. (4.3.2) acts on the spinor,∑
spin

∇̄jMt
s(ū(ps + q)u(ps))

(ps + q)2 −m2
r

(
1 + qµ

∂

∂pµs

)
(/pδ

r
t −Mr

t)u(ps)

=
∑
spin

∇̄jMt
s(ū(ps + q)u(ps))

(ps + q)2 −m2
r

((/ps + /q)δ
r
t −Mr

t)u(ps + q) = (∇̄jMr
s)u(ps),

(4.3.5)

where we have used that the sum over spins is∑
spin

u(p)ū(p) = (/p+m). (4.3.6)
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Clearly, eqs. (4.3.4) and (4.3.5) cancel, which means that the soft theorem
does not spoil the on-shell conditions for incoming fermions and can therefore
be applied unambiguously to scattering amplitudes.

The soft theorem also commutes with the on-shell condition for incoming anti-
fermions. In this case, the cancellation happens between the covariant deriva-
tive and the fourth term in eq. (4.3.2), where we now have to use that the sum
over spins is ∑

spin

v(p)v̄(p) = (/p−m). (4.3.7)

Perhaps the most well-known case of low-energy dynamics for relativistic
scalars is the theory of pions. The soft limit of pion–pion scattering vanishes,
known as the Adler zero [4]. In contrast, the soft limit of a pion scattering off
nucleons does not vanish. However, this limit is universal and can be derived
using current algebra methods. The nonzero soft limit of pion-nucleon scatter-
ing is related to the coupling in the so-called gradient-coupling theory [199].
This is nothing but the couplings ω±, which enter the geometric soft theorem
through the covariant derivative ∇̄. Thus, the pion-nucleon soft theorem is a
special case of the geometric soft theorem [199]–[202]. Another special case of
the geometric soft theorem is the low-energy limit of the η′ particle in large-N
QCD described long ago by Witten [203]. This is a pseudoscalar NGB for the
axial U(1) symmetry of QCD which remains unbroken in the planar limit. Its
soft limit computes derivatives of scattering amplitudes with respect to the
QCD θ angle, or equivalently the η′ VEV. More generally, the leading term in
the soft limit goes as 1/(p · q) and comes from the covariant derivative acting
on the scalar potential V (ϕ) or the fermion mass matrix M(ϕ). This universal
soft behavior of scalars is analogous to the leading soft limit of photons and
gravitons, and it follows from similar polology considerations [204], [205].

The derivation of the geometric soft theorem in eq. (4.3.2) is analogous to the
derivation for a scalar effective field theory in ref. [13]. We will here highlight
the main novelties compared to the scalar case. The derivation begins by using
the Euler-Lagrange equations,

∂µJ µ
I = ∂IL, (4.3.8)

where

J µ
I =

δL

δ(∂µϕI)
and ∂IL =

δL

δϕI
. (4.3.9)
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⟨O⟩ext =
n∑

a=1

a An

O(q)

Figure 4.1: Diagrams computing ⟨O⟩ext, which sums over the insertion of an
operator O on each external leg a of the n-particle amplitude. This figure is
directly reproduced from ref. [13].

Since the scalar field ϕI is expanded around the VEV vI , their appearance in
the Lagrangian is identical, and we can equivalently calculate the variation of
the Lagrangian with respect to the VEV to obtain ∂IL.

The only terms that will affect the soft theorem are operators that are at most
cubic in the field. We split the contributions coming from scalar and fermion
operators. We find that

J µ
I =(J µ

I )scalar + iωp̄rI(v)(ψ̄
p̄γµψr) + . . . , (4.3.10)

∂IL =(∂IL)scalar +
1

2
ikp̄r,I(v)(ψ̄

p̄
↔
/∂ψr)−Mp̄r,I(v)(ψ̄

p̄ψr) + . . . (4.3.11)

We now collect the contributions from the fermion operators, and insert them
on external fermion lines,

⟨∂IL− ∂µJ µ
I ⟩ext. fermion =− ⟨(ψ̄ω−)tI(iδt r /∂ −Mt

r)ψ
r⟩ext

− ⟨ψ̄p̄(iδ t̄
p̄

←
/∂ +M t̄

p̄ )(ω
+ψ)t̄I⟩ext

− ⟨∇̄IMp̄rψ̄
p̄ψr⟩ext , (4.3.12)

where the notation is defined in fig. 4.1. By evaluating these operator in-
sertions, we find that the first line in eq. (4.3.12) either vanishes due to the
on-shell condition, or it cancels a propagator and becomes a local term mul-
tiplying the amplitude. These local terms are −Γ̄p

Ir or −Γ̄p̄
Ir̄, depending on

whether the operator is inserted on an incoming fermion or anti-fermion line.
This is precisely the fermion connections in eqs. (4.2.8) and (4.2.9), and when
combined with the scalar contributions, they complete the covariant deriva-
tive ∇̄I in the soft theorem in eq. (4.3.2). What is left is the insertion of the
operator in the second line in eq. (4.3.12), which becomes the second and third
lines of the soft theorem in eq. (4.3.2).

In section 4.5 we will check some examples of the soft theorem for an effective
field theory with scalars and fermions.
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4.3.3 Gauge bosons

The last particle to make an appearance is the gauge boson. In this case,
we use the geometric construction in eq. (4.2.14). Due to the block-diagonal
structure of the metric, the fermions and gauge bosons do not couple directly
through the geometry, and we can simply ignore the fermions for the moment.

The soft theorem for a massless scalar in a theory with scalars and gauge
bosons is

lim
q→0

An+1,α1···αnj =∇̄jAn,α1···αn

+
∑

a∈{scalar}

∇jV
ja

ia

(pa + q)2 −m2
ja

(
1 + qµ

∂

∂pµa

)
An,α1···ja···αn

+
∑

a∈{scalar}

∑
spin

i
(2∇jtia B)(ϵ

Bb∗ · q)
(pa + q)2 −m2

b

An,α1···b···αn

+
∑

b∈{gauge}

i
(2∇jt

ja
B)(ϵ

B
b · q)

(pb + q)2 −m2
ja

An,α1···ja···αn

−
∑

b∈{gauge}

∑
spin

(∇̄jm
2
BA)(ϵ

B
b · ϵAa∗)

(pb + q)2 −m2
a

(
1 + qµ

∂

∂pµa

)
An,α1···a···αn .

(4.3.13)

Note that the covariant derivative ∇̄i now uses the connections derived from
the metric in eq. (4.2.14) and sees the gauge group indices of the gauge bosons.
Here, the spin is summed over for the external gauge-boson polarization vector
in the n-point amplitude and the polarization vector in the prefactors ϵAa∗(p+

q), evaluated at shifted momentum.

As a first check, we act the soft theorem on the on-shell condition for the gauge
boson,

(p2bgAB −m2
AB)ϵ

Bb
µ = 0. (4.3.14)

The covariant derivative picks up the variation of the mass matrix,

∇̄j(p
2
bgAB −m2

AB)ϵ
Bb
µ = −(∇̄jm

2
AB)ϵ

Bb
µ . (4.3.15)

The first term vanishes due to metric compatibility, ∇̄g = 0.

Then we contract the on-shell condition with the last term of the soft theorem,

−
∑
spin

(∇̄jm
2
BC)(ϵ

B
b · ϵCc∗)

(pb + q)2 −m2
c

(
1 + qµ

∂

∂pµb

)
(p2bgAC′ −m2

AC′)ϵC
′

cµ
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= −
∑
spin

(∇̄jm
2
BC)(ϵ

B
b · ϵCc∗)

(pb + q)2 −m2
c

((pb + q)2gAC′ −m2
AC′)ϵC

′

cµ = +(∇̄jm
2
BA)ϵ

B
bµ.

(4.3.16)

We see that eqs. (4.3.15) and (4.3.16) cancel, which means that the soft theo-
rem commutes with the on-shell conditions.

Note that there are no terms of the form ∇m2 in the soft theorem for massless
gauge bosons since

∇Km
2
ab(v) = ∇K

(
tIa(v) tIb(v)

)
= ∇Kt

I
a(v) tIb(v) + tIa(v)∇KtIb(v), (4.3.17)

and in the unbroken phase, one has tIa(v) = 0, so

∇Km
2
ab(v) = 0. (4.3.18)

This means that the gauge boson masses vanish even in an infinitesimal neigh-
borhood of the unbroken VEV.

To fully understand the form of the soft theorem, we need to consider the inter-
play between longitudinal gauge bosons and Goldstone bosons. We will show
how different representations of the soft theorem are linked via the Goldstone
boson equivalence theorem. Consider the second and third lines in eq. (4.3.13).
In unitary gauge, the Goldstone boson decouples, and we only exchange mas-
sive gauge bosons

+ i
(2∇jt

b
ia)(q

µ)

2pa · q
(−1)

(
ηµν − pµap

ν
a

m2
a

)
An,α1···bν···αn . (4.3.19)

In Rξ gauge, we instead get

+ i
(2∇jt

b
ia)(q

µ)

(pa + q)2 −m2
a

(−1)

(
ηµν − (1− ξ)

pµap
ν
a

p2a − ξm2
a

)
An,α1···bν···αn

+ i
(2∇jt

ja
B)(ϵ

B
b · q)

(pb + q)2 − ξm2
a

An,α1···ja···αn

=+ i
(2∇jt

b
ia)(q

µ)

2pa · q
(−1)

(
ηµν − pµap

ν
a

m2
a

)
An,α1···bν···αn

+ i
(2∇jt

b
ia)(q

µ)

(pa + q)2 − ξm2
a

(−1)

(
pµap

ν
a

m2
a

)
An,α1···bν···αn

+ i
(2∇jt

ja
B)(ϵ

B
b · q)

(pb + q)2 − ξm2
a

An,α1···ja···αn . (4.3.20)
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If we identify the longitudinal polarization with the momentum ϵµL → pµ/m,
then the last two terms in eq. (4.3.20) cancel, and we end up with the same re-
sult as in eq. (4.3.19). This is due to the Goldstone boson equivalence theorem
in eq. (4.2.22). Here, instead of taking the high-energy limit for the longitu-
dinal gauge boson, we take the soft limit for a scalar. These limits yield the
same result because the longitudinal gauge boson has a large energy relative
to the soft scalar.

Incidentally, if we instead used the geometry-kinematics map, the soft theorem
would take the form

lim
q→0

An+1,α1···αnj =∇′jAn,α1···αn . (4.3.21)

This coincides with the first term in eq. (4.3.13), but the greater freedom
in the mapping also puts the nonlocal terms into the covariant derivative as
extensions of the connection. Ref. [47] showed that this soft theorem also
captures the leading and subleading soft photon theorem.

The proof of the geometric soft theorem with gauge bosons is completely anal-
ogous to that for scalars and vectors, so we will not describe it here. Instead,
we will directly check the soft theorem in various examples in section 4.5.

4.4 Double Soft Theorems

Another way to study scattering amplitudes is to send the momenta of multiple
particles to zero. If we do so in a consecutive order, we simply need to apply
the geometric soft theorem multiple times. However, if the momenta are sent
to zero simultaneously, we will discover a genuinely new geometric structure in
the scattering amplitudes: the curvature. This demonstrates the non-abelian
nature of pion scattering [7].

To ease the presentation, we turn off all couplings which appear in the nonlocal
terms in the geometric soft theorem, i.e., the scalar potential V (ϕ), the fermion
mass matrix M(ϕ), and we make the particles neutral, i.e., t = 0 and ∇t = 0.
This avoids multiple soft poles in the expressions.

First, we consider the double soft limit where the momenta of two scalars are
taken to zero at the same rate. This will be an extension of the double soft
theorem in a scalar effective field theory [13]. Then, we change the protagonists
and consider the double soft limit where the momenta of two fermions of
opposite helicity are sent to zero at the same rate. This new double soft
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fermion theorem has striking similarities to the double soft scalar theorem.
Here, all momenta are outgoing.

4.4.1 Scalars

The double scalar soft theorem is identical to the form derived in ref. [13],
when using the appropriate geometric extensions when fermions and gauge
bosons are present. Here, the potential and other terms singular in the soft
limit are neglected. The simultaneous double soft theorem is

lim
q1,q2→0

An+2,α1···αnj1j2 =∇̄(j1∇̄j2)An,α1···αn

+
1

2

n∑
a=1

pa · (q1 − q2)

pa · (q1 + q2)
R̄ βa

j1j2 αa
An,α1···βa···αn . (4.4.1)

The particles with flavor labels {α1, · · · , αn} can be any combination of mass-
less scalars, fermions, or gauge bosons. Remarkably, the same double soft
theorem holds regardless of whether the scalars couple to fermions, gauge
bosons, or other scalars; the various interactions are captured by the combined
curvature R̄j1j2αaβa . We present several examples of soft limits of scattering
amplitudes in section 4.5, where the double scalar soft theorem can be checked.

4.4.2 Fermions

We can also consider the soft limit of two fermions with opposite helicities. For
convenience, let us use the spinor-helicity formalism (following the conventions
in ref. [195]). The result is

lim
q1,q2→0

An+2,α1···αnr̄1r2 =
1

2

{
lim
q1→0

, lim
q2→0

}
An+2,α1···αnr̄1r2

+
1

2

n∑
a=1

[q1|pa|q2⟩
pa · (q1 + q2)

R̄ βa
r̄1r2 αa

An,α1···βa···αn . (4.4.2)

The double fermion soft theorem is equal to the double scalar soft theorem
under the replacement pa · (q1 − q2) → [q1|pa|q2⟩, as first noted in ref. [206]
for supersymmetric theories. The proof is diagrammatic and the same as for
two soft scalars (see ref. [13, sec. 6.2]). The first term in eq. (4.4.2) is written
in terms of the anticommutator of two consecutive soft limits, rather than as
covariant derivatives acting on the lower-point amplitude. This is because we
do not have a geometric way of writing the soft limit of a single fermion in terms
of lower-point amplitudes. However, the single soft fermion limit vanishes in
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many instances, and then we end up with the simpler form of eq. (4.4.2),

lim
q1,q2→0

An+2,α1···αnr̄1r2 =
1

2

n∑
a=1

[q1|pa|q2⟩
pa · (q1 + q2)

R̄ βa
r̄1r2 αa

An,α1···βa···αn . (4.4.3)

The curvature that enters the double soft theorem depends on the other par-
ticles in the theory. In the presence of scalar particles, the mixed scalar-
fermion curvature R̄r̄1r2ij controls the nonlocal term, whose expression is given
in eq. (4.2.10). For fermion-fermion interactions, the four-fermion curvature
R̄r̄1r2r̄3r4 in eq. (4.2.11) enters the double soft theorem. Even though the kine-
matic expressions that come with these different curvature components in scat-
tering amplitudes are very different, they reduce to the exact same term in the
double soft limit.

4.4.3 Other simultaneous soft limits

Now, the door is open to consider even more exotic simultaneous soft limits.
Take, as an example, the simultaneous soft limit of one scalar and one fermion.
Concretely, we take a positive-helicity fermion with a holomorphic soft scaling,
in spinor-helicity variables (λ, λ̃) → (zλ, λ̃), with z small. Rather than deriving
the double soft theorem as we did above, let us try to guess the answer from
the intuition we have accrued. A natural guess for the double soft limit is

lim
q1,q2→0

An+2,α1···αnr̄1j2 = lim
q1→0

∇̄j2An+1,α1···αnr̄1

+
1

2

n∑
a∈{fermion}

[q1|q2|pa⟩
pa · (q1 + q2)

R̄ ja
r̄1ra j2

An,α1···ja···αn

+
1

2

∑
a∈{scalar}

[q1|q2|pa⟩
pa · (q1 + q2)

R̄ s̄a
r̄1 iaj2

An,α1···s̄a···αn .

(4.4.4)

This mixed double soft theorem can be derived via a diagrammatic approach
analogous to the double scalar and fermion soft theorems. We have verified in
the examples in section 4.5 that this mixed double soft theorem indeed holds.
Again, the soft theorem is identical in form to the double scalar and double
fermion soft theorem, up to a simple replacement of a kinematic factor. The
first term in eq. (4.4.4) is written in terms of the single soft limit of a lower-
point amplitude rather than as ∇̄(r̄1∇̄i2)An,α1···αn . The single soft limit of
a fermion is hard to interpret in terms of scattering amplitudes because it
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would involve the derivative of a would-be amplitude with an odd number of
fermions4.

Based on this, we expect that any double soft limit will be universal. It will
involve the curvature in field space, accompanied by an appropriate kinematic
factor to account for the helicity weight of the soft particles. Indeed, we know
that this is true for double soft limits involving gauge bosons, through the
geometry-kinematics map. In this case, the double soft limit will be identical
to eq. (4.4.1), with replacements ∇ → ∇′ and R → R′. The kinematic factors
that carry the helicity weights are folded into the geometry, which now also
depends on the kinematics.

One can also consider more soft particles. The case with three soft scalars
was analyzed in ref. [13]. As one might have guessed, the triple soft theorem
involves various terms with ∇3, R∇, and ∇R acting on the lower-point ampli-
tude. We expect that the generalization of multiple soft limits with a mixture
of particles will be the natural generalizations of the scalar case, but where
the kinematic factors are replaced and the geometry is extended. We will not
explore this direction further here.

4.5 Examples

We now present tree-level scattering amplitudes for scalars, fermions, and
gauge bosons. With these amplitudes, we can check the single and double soft
theorems. All momenta are outgoing, and we use the spinor-helicity conven-
tions for massless and massive particles in refs. [195], [209], [210].

4.5.1 Scalars

We start by listing some scattering amplitudes for scalars with two-derivative
interactions. The corresponding Lagrangian is

L =
1

2
hIJ(ϕ)(∂µϕ)

I(∂µϕ)J . (4.5.1)

The scattering amplitudes for four and five particles are

A4,i1i2i3i4 =Ri1i3i2i4s34 +Ri1i2i3i4s24, (4.5.2)

A5,i1i2i3i4i5 =∇i3Ri1i4i2i5s45 +∇i4Ri1i3i2i5s35 +∇i4Ri1i2i3i5s25

+∇i5Ri1i3i2i4s34 +∇i5Ri1i2i3i4(s24 + s45), (4.5.3)
4The exception is for supersymmetric theories, where the soft fermion theorem is related

to a soft boson theorem (e.g., for Goldstinos [207] or photinos [208]).
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where sij = (pi+pj)
2. We will use these amplitudes to illustrate the geometric

soft theorem for scalar effective field theories in eq. (4.3.1). For more examples
and the original derivation, see ref. [13].

Take the limit p4 → 0 of eq. (4.5.2),

lim
p4→0

A4,i1i2i3i4 = 0. (4.5.4)

This adheres to the geometric soft theorem, because the scalar three-particle
amplitude is zero when the potential is absent.

Next, look at the limit p5 → 0 of eq. (4.5.3):

lim
p5→0

A5,i1i2i3i4i5 = ∇i5Ri1i3i2i4s34 +∇i5Ri1i2i3i4s24 = ∇i5A4,i1i2i3i4 . (4.5.5)

This is precisely the statement of the geometric soft theorem with no potential:
the soft limit of the amplitude is equal to the covariant derivative acting on the
lower-point amplitude. This is the cleanest illustration of the geometric soft
theorem. However, the soft theorem is valid for general scalar effective field
theories, including potential and higher-derivative interactions. Additional
examples can be found in Ref. [13].

4.5.2 Fermions

Next, we look at scattering amplitudes with fermions and scalars, coming from
the one-derivative fermion bilinear operators and scalar operators with two
derivatives as well as from the four-fermion operators. These are the operators
which appear in the scalar-fermion metric in eq. (4.2.6). The Lagrangian is

L =
1

2
hIJ(ϕ)(∂µϕ

I)(∂µϕJ) + i
1

2
kp̄r(ϕ)(ψ̄

p̄
↔
/∂ψr) + iωp̄rI(ϕ)(ψ̄

p̄γµψ
r)(∂µϕI)

(4.5.6)

+ cp̄rs̄t(ϕ)(ψ̄
p̄γµψ

r)(ψ̄s̄γµψt).

The scattering amplitude with two fermions and one scalar vanishes. The
scattering amplitudes with two, three, or four scalars are

A4,r̄1r2i3i4 =− [1|p4|2⟩R̄r̄1r2i3i4 , (4.5.7)

A5,r̄1r2i3i4i5 =− [1|p4|2⟩∇̄i5R̄r̄1r2i3i4 − [1|p5|2⟩∇̄i4R̄r̄1r2i3i5 , (4.5.8)

A6,r̄1r2i3i4i5i6 =

{
−[1|p4|2⟩

(
1

4
∇̄i5∇̄i6R̄r̄1r2i3i4 +

1

6
R̄ j

r̄1r2i3
R̄i4i5i6j
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− 1

4
R̄r̄1si3i5R̄

s
r2i4i6

− (3 ↔ 4) + (5 ↔ 6)

− (3 ↔ 4, 5 ↔ 6)

)
+ cycl(456)

}
+

{
[1|(p5 − p6)P234(p3 − p4)|2⟩

16s234
R̄r̄1si5i6R̄

s
r2i3i4

+ perm(3456)

}
+

{
[1|p6|2⟩
3s345

R̄ j
r̄1r2i6

[
s34(R̄i3i4i5j − 2R̄i3i5i4j)

+ s35(R̄i3i5i4j − 2R̄i3i4i5j)

+s45(R̄i3i4i5j + R̄i3i5i4j)
]
+ cycl(3456)

}
.

(4.5.9)

Here, sijk = (pi + pj + pk)
2 and P µ

ijk = pµi + pµj + pµk , and we sum over all or
cyclic permutations denoted by perm() or cycl().

The scattering amplitudes with four or six fermions but no scalars are

A4,r̄1r2r̄3r4 =[13]⟨42⟩R̄r̄1r2r̄3r4 , (4.5.10)

A6,r̄1r2r̄3r4r̄5r6 =

(
− [5|(p1 + p3)|2⟩[13]⟨64⟩

s123
R̄r̄1r2r̄3

s̄R̄s̄r4r̄5r6 + cycl(135)
)

+ cycl(246). (4.5.11)

Let us now check the new geometric soft theorem in the presence of fermions.
First, the limit p4 → 0 for the two scalar, two fermion amplitude is

lim
p4→0

A4,r̄1r2i3i4 = 0, (4.5.12)

which is consistent with the soft theorem in eq. (4.3.2).

A more nontrivial example is the p5 → 0 soft limit of the five-particle ampli-
tude,

lim
p5→0

A5,r̄1r2i3i4i5 = −[1|p4|2⟩∇̄i5R̄r̄1r2i3i4 = ∇̄i5A4,r̄1r2i3i4 . (4.5.13)

This is the scalar-fermion soft theorem in eq. (4.3.2) with the potential and
fermion mass matrix turned off. Structurally, it is identical to the geometric
soft theorem for scalars, but with the crucial difference that ∇i → ∇̄i. The
geometric soft theorem depends on the combined scalar-fermion geometry dic-
tated by the metric in eq. (4.2.6).
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Next, consider the limit p6 → 0 of the six-particle amplitude in eq. (4.5.9),

lim
p6→0

A6,r̄1r2i3i4i5i6 = −[1|p4|2⟩∇̄i6∇̄i5R̄r̄1r2i3i4 − [1|p5|2⟩∇̄i6∇̄i4R̄r̄1r2i3i5

= ∇̄i6A5,r̄1r2i3i4i5 . (4.5.14)

This example showcases an intricate cancellation between local R2 terms and
R2 terms with factorization channels which become localized in the soft limit.

We can also study these amplitudes in the double soft limit. Take the simul-
taneous soft limit p5, p6 → 0 of the six-particle amplitude in eq. (4.5.9),

lim
p5,p6→0

A6,r̄1r2i3i4i5i6 =− [1|p4|2⟩∇̄(i5∇̄i6)R̄r̄1r2i3i4

+
(s15 − s16)R̄

s̄
i5i6r̄1

2(s15 + s16)

(
−[1|p4|2⟩R̄sr2i3i4

)
+

(s25 − s26)R̄
s

i5i6r2

2(s25 + s26)

(
−[1|p4|2⟩R̄r̄1si3i4

)
−

(s35 − s36)R̄
j

i5i6i3

2(s35 + s36)

(
−[1|p4|2⟩R̄r̄1r2ji4

)
−

(s45 − s46)R̄
j

i5i6i4

2(s45 + s46)

(
−[1|p4|2⟩R̄r̄1r2i3j

)
= ∇̄(i5∇̄i6)A4,r̄1r2i3i4 +

1

2

4∑
a=1

pa · (p5 − p6)

pa · (p5 + p6)
R̄ βa

i5i6 αa
A4,...βa... .

(4.5.15)

This novel double soft theorem is again structurally similar to the correspond-
ing double soft theorem for scalar theories, but with the uplifts ∇i → ∇̄i and
R → R̄.

With these amplitudes in hand, we can ask a different question. What happens
when the momenta of two fermions are sent to zero? Take two fermions with
opposite helicity and democratically scale their spinors in the soft limit. The
double fermion soft limit of the six-particle amplitude in eq. (4.5.9) is

lim
p1,p2→0

A6,r̄1r2i3i4i5i6 =
1

2

[1|p6|2⟩
p6 · (p1 + p2)

R̄ j
r̄1r2 i6

A4,i3i4i5j + cycl(3456). (4.5.16)

This agrees with eq. (4.4.3), since the single soft fermion limit vanishes.

As a last example, we take the double fermion soft limit of the six-fermion
amplitude in eq. (4.5.11), which gives

lim
p1,p2→0

A6,r̄1r2r̄3r4r̄5r6 =
[1|p3|2⟩R̄ s̄

r̄1r2r̄3

s13 + s23

(
[35]⟨64⟩R̄s̄r4r̄5r6

)
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+
[1|p4|2⟩R̄ s

r̄1r2r4

s14 + s24

(
[35]⟨64⟩R̄r̄3sr̄5r6

)
+

[1|p5|2⟩R̄ s̄
r̄1r2r̄5

s15 + s25

(
[35]⟨64⟩R̄r̄3r4s̄r6

)
+

[1|p6|2⟩R̄ s
r̄1r2r6

s16 + s26

(
[35]⟨64⟩R̄r̄3r4r̄5s

)
. (4.5.17)

Again, this agrees with eq. (4.4.3).

4.5.3 Gauge bosons

Third, we consider the scattering of scalars and gauge bosons. For the sake
of illustration, we take the scalars to be neutral and massless. The relevant
Lagrangian is

L =
1

2
hIJ(ϕ)(∂µϕ)

I(∂µϕ)J − 1

4
gAB(ϕ)F

A
µνF

Bµν . (4.5.18)

The scattering amplitudes for two positive-helicity gauge bosons and one, two,
or three scalars are

A3,a1a2i3 =[12]2
1

2
∇i3ga1a2 , (4.5.19)

A4,a1a2i3i4 =[12]2
1

2
∇̄i4∇i3ga1a2 , (4.5.20)

A5,a1a2i3i4i5 =[12]2
1

2
∇̄(i4∇̄i5∇i3)ga1a2

+

{
(∇i5ga1b1)g

b1b2(∇i4gb2b3)g
b3b4(∇i3gb4a2)

s15s23

×
[
1

8
[1|p5p3|2]2 −

1

24
s15s23[12]

2

]
+ perm(345)

}
+

[12]2∇jga1a2
6s345

[
s34(R̄i3i4i5j − 2R̄i3i5i4j) + s35(R̄i3i5i4j − 2R̄i3i4i5j)

+s45(R̄i3i4i5j + R̄i3i5i4j)
]
. (4.5.21)

Note that the amplitudes do not vanish due to metric compatibility, ∇̄g = 0,
because the connection in the covariant derivative ∇i is for the scalar bundle,
i.e., ∇igab = gab,i. However, for the four-particle amplitude the connection for
the full scalar–gauge-boson geometry is in play:

∇̄i4∇i3ga1a2 = ∇i4∇i3ga1a2 − Γ̄b
a1i4

∇i3gba2 − Γ̄b
a2i4

∇i3ga1b. (4.5.22)

Now we can study the single soft limit, starting with p4 → 0 in the four-particle
amplitude,

lim
p4→0

A4,a1a2i3i4 =[12]2
1

2
∇̄i4∇i3ga1a2 = ∇̄i4A3,a1a2i3 . (4.5.23)
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A more involved example is the soft limit p5 → 0 for the five-particle amplitude,

lim
p5→0

A5,a1a2i3i4i5 =[12]2
1

2
∇̄i5∇̄i4∇i3ga1a2

+ [12]2
1

6

(
R̄ j

i4i5i3
∇jga1a2 + R̄ b

i4i5a1
∇i3gba2 + R̄ b

i4i5a2
∇i3ga1b

)
+ [12]2

1

6

(
R̄ j

i3i5i4
∇jga1a2 + R̄ b

i3i5a1
∇i4gba2 + R̄ b

i3i5a2
∇i4ga1b

)
+

{
(∇i5ga1b1)g

b1b2(∇i4gb2b3)g
b3b4(∇i3gb4a2)

[
− 1

24
[12]2

]
+ perm(345)

}
+

{
(∇i4ga1b1)g

b1b2(∇i5gb2b3)g
b3b4(∇i3gb4a2)

[
1

8
[12]2

]
+ (3 ↔ 4)

}
+

[12]2∇jga1a2
6

[
(R̄i3i4i5j − 2R̄i3i5i4j)

]
=[12]2

1

2
∇̄i5∇̄i4∇i3ga1a2 = ∇̄i5A4,a1a2i3i4 . (4.5.24)

Here again there are intricate cancellations between local curvature terms and
curvature terms coming from factorization channels which localize in the soft
limit.

As a last example for the scalar–gauge-boson theory, let us send the momenta
of two scalars to zero. For the five-particle amplitude, where p4, p5 → 0, we
get

lim
p4,p5→0

A5,a1a2i3i4i5 = [12]2
1

2
∇̄(i4∇̄i5)∇i3ga1a2

+ [12]2
1

12

(
R̄ j

i3i4i5
∇jga1a2 + R̄ b

i3i4a1
∇i5gba2 + R̄ b

i3i4a2
∇i5ga1b

)
+ [12]2

1

12

(
R̄ j

i3i5i4
∇jga1a2 + R̄ b

i3i5a1
∇i4gba2 + R̄ b

i3i5a2
∇i4ga1b

)
+

{
(∇i5ga1b1)g

b1b2(∇i4gb2b3)g
b3b4(∇i3gb4a2)

[
− 1

24
[12]2

]
+

(∇i5ga1b1)g
b1b2(∇i4gb2b3)g

b3b4(∇i3gb4a2)

s15s23

[
1

8
[1|p5p3|2]2

]
+ perm(345)

}
+

[12]2∇jga1a2
6s345

[
s34(R̄i3i4i5j − 2R̄i3i5i4j) + s35(R̄i3i5i4j − 2R̄i3i4i5j)

]
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= [12]2
1

2
∇̄(i4∇̄i5)∇i3ga1a2

− (s34 − s35)

2(s34 + s35)
R̄ j

i4i5i3

[
[12]2

1

2
∇jga1a2

]
− (s14 − s15)

2(s14 + s15)
R̄ b

i4i5a1

[
[12]2

1

2
∇i3gba2

]
− (s24 − s25)

2(s24 + s25)
R̄ b

i4i5a2

[
[12]2

1

2
∇i3ga1b

]
= ∇̄(i4∇̄i5)A3,a1a2i3 +

1

2

3∑
a=1

pa · (p4 − p5)

pa · (p4 + p5)
R̄ βa

i4i5 αa
A3,···βa···.

(4.5.25)

This is the double soft theorem in eq. (4.4.1) where the scalars interact with
gauge bosons.

4.5.4 Scalars, fermions, and gauge bosons

In this example, we will combine scalars, fermions, and gauge bosons in the
same scattering amplitude. The relevant Lagrangian is

L =
1

2
hIJ(ϕ)(∂µϕ)

I(∂µϕ)J + i
1

2
kp̄r(ϕ)(ψ̄

p̄
↔
/∂ψr) + iωp̄rI(ϕ)(ψ̄

p̄γµψ
r)(∂µϕ)I

− 1

4
gAB(ϕ)F

A
µνF

Bµν +
−1

2
√
2
dp̄rA(ϕ)(ψ̄

p̄σµνψr)FA
µν , (4.5.26)

where the fermions and gauge bosons couple through the dipole term dp̄rA. The
normalization for the dipole term is chosen for later convenience. The scatter-
ing amplitudes with two negative-helicity fermions, one negative-helicity gauge
boson, and zero, one, or two scalars are

A3,r̄1r2a3 =⟨13⟩⟨23⟩dr̄1r2a3 , (4.5.27)

A4,r̄1r2a3i4 =⟨13⟩⟨23⟩∇̄i4dr̄1r2a3 , (4.5.28)

A5,r̄1r2a3i4i5 =⟨13⟩⟨23⟩∇̄(i5∇̄i4)dr̄1r2a3

+

(
⟨13⟩⟨23⟩p1 · (p4 − p5)

2p2 · p3
+

⟨1|p4p5 − p5p4|3⟩⟨23⟩
4p2 · p3

)
R̄ s̄

i4i5r̄1
ds̄r2a3

+

(
⟨13⟩⟨23⟩p2 · (p4 − p5)

2p1 · p3
+

⟨2|p4p5 − p5p4|3⟩⟨13⟩
4p1 · p3

)
R̄ s

i4i5r2
dr̄1sa3

+

{
dr̄1r2bg

bc(∇i5gcd)g
de(∇i4gea3)×

[
⟨23⟩⟨13⟩s34 − s35 − s45

8s345

+ (⟨25⟩⟨31⟩+ ⟨23⟩⟨51⟩) s345 + s34 − s35
8s345s34

⟨34⟩[54]
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− (⟨24⟩⟨51⟩+ ⟨25⟩⟨41⟩) ⟨34⟩⟨35⟩[45]
2

8s345s34

]
+ (4 ↔ 5)

}
.

(4.5.29)

Here we see the interplay between the various sectors in the full field-space
geometry. Consider the four-particle amplitude. It depends on the covariant
derivative of the dipole coupling, which is

∇̄idp̄ra = ∂idp̄ra − Γ̄s̄
ip̄ds̄ra − Γ̄s

irdp̄sa − Γ̄b
iadp̄rb. (4.5.30)

Recall from eqs. (4.2.8), (4.2.9) and (4.2.15) that

Γ̄p
Ir = kps̄ω+

s̄rI , (4.5.31)

Γ̄p̄
Ir̄ = −ω−r̄sIk

sp̄, (4.5.32)

Γ̄a
ib =

1

2
gac(∇igcb) . (4.5.33)

Now we can investigate the soft limits of these amplitudes. Taking the soft
limit p4 → 0 in the four-particle amplitude in eq. (4.5.28), we immediately
land on the covariant derivative of the three-particle amplitude in eq. (4.5.27).

The soft limit p5 → 0 of the five-particle amplitude is a bit more involved. By
collecting all the terms, we find that

lim
p5→0

A5,r̄1r2a3i4i5 =⟨13⟩⟨23⟩
(
∇̄(i5∇̄i4)dr̄1r2a3

)
+ ⟨13⟩⟨23⟩1

2

(
R̄ s̄

i4i5r̄1
ds̄r2a3 + R̄ s

i4i5r2
dr̄1sa3 − R̄ b

i4i5a3
dr̄1r2b

)
=⟨13⟩⟨23⟩∇̄i5∇̄i4dr̄1r2a3 = ∇̄i5A4,r̄1r2a3i4 . (4.5.34)

This is the geometric soft theorem.

Finally, we look at the double soft limit of the five-particle amplitude. The
scalar double soft limit is

lim
p4,p5→0

A5,r̄1r2a3i4i5 =⟨13⟩⟨23⟩∇̄(i5∇̄i4)dr̄1r2a3

+

(
⟨13⟩⟨23⟩ p1 · (p4 − p5)

2p1 · (p4 + p5)

)
R̄ s̄

i4i5r̄1
ds̄r2a3

+

(
⟨13⟩⟨23⟩ p2 · (p4 − p5)

2p2 · (p4 + p5)

)
R̄ s

i4i5r2
dr̄1sa3

−
(
⟨13⟩⟨23⟩ p3 · (p4 − p5)

2p3 · (p4 + p5)

)
R̄ b

i4i5a3
dr̄1r2b
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=∇̄(i4∇̄i5)A3,a1a2i3 +
1

2

3∑
a=1

pa · (p4 − p5)

pa · (p4 + p5)
R̄ βa

i4i5 αa
A3,···βa···.

(4.5.35)

This agrees with eq. (4.4.1).

4.5.5 Massive gauge bosons

Lastly, we will consider an example with massive gauge bosons. To keep the
expressions manageable, we restrict to a flat field-space geometry for the gauge
fields with the Lagrangian

L =
1

2
hIJ(ϕ)(Dµϕ)

I(Dµϕ)J − V (ϕ)− 1

4
δABF

A
µνF

Bµν . (4.5.36)

Furthermore, we assume the following spectrum: scalars with arbitrary masses
mj (could be either massive or massless) and massive gauge bosons with mass
m. The three- and four-point amplitudes for massive gauge bosons and mass-
less scalars are

A3,a1a2i3 =
∇i3m

2
a1a2

m2
⟨12⟩[21] , (4.5.37)

A3,a1i2i3 = −i
√
2∇i3ta1i2

⟨1|p3|1]
m

, (4.5.38)

A4,a1a2i3i4 =
1

m2
∇i4∇i3m

2
a1a2

⟨12⟩[21] +
∑
j

∇i4Vi3
j

s34 −m2
j

∇jm
2
a1a2

m2
⟨12⟩[21]

+
1

m2

[
1

s14 −m2
∇i4m

2
a1

b1∇i3m
2
a2b1

(
⟨12⟩[21] +

1

2m2
⟨1|p4|1]⟨2|p3|2]

)
+
∑
j

2∇i4ta1
j⟨1|p4|1]

s14 −m2
j

∇i3ta2j⟨2|p3|2] + (1 ↔ 2)

]
.

(4.5.39)

Note that in eq. (4.5.39) we allow for the exchange of scalars of arbitrary
masses mj.

We will verify the soft theorem for the four-point amplitude in eq. (4.5.39).
Sending the momentum of the massless scalar p4 to zero, we obtain in the soft
limit

lim
p4→0

A4,a1a2i3i4 =
1

m2
∇i4∇i3m

2
a1a2

⟨12⟩[21]

+
∇i4Vi3

j

2p3 · p4
∇jm

2
a1a2

m2
⟨12⟩[21]
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+
1

m2

[
∇i4m

2
a1

b1

2p1 · p4
∇i3m

2
a2b1

(
⟨12⟩[21] +

1

2m2
⟨1|p4|1]⟨2|p3|2]

)
+

2(∇i4ta1I)ϵ
Ij⟨1|p4|1]

2p1 · p4
∇i3ta2j⟨2|p3|2] + (1 ↔ 2)

]
.

(4.5.40)

On the other hand, the soft limit is given by the soft operator in eq. (4.3.13)
acting on the lower-point amplitude. Note that this requires a choice for
the off-shell continuation of A3,a1a2i3 . As discussed in section 4.3.3, the soft
theorem is independent of that particular choice, as we will see later on.

In our example, it is convenient to write the normalization of polarization
vectors in terms of momenta |pi| =

√
p2i in eq. (4.5.37). Evaluating the soft

theorem for this case, we find that

lim
p4→0

A4,a1a2i3i4 = (4.5.41)

∇i4

(∇i3m
2
a1a2

|p1||p2|
⟨12⟩[21]

)
+

∇i4Vi3
j

2p3 · p4

(
1 + pµ4

∂

∂pµ3

)(∇jm
2
a1a2

|p1||p2|
⟨12⟩[21]

)
+

[
−
∑
spin

(∇i4m
2
i1A

)

2p1 · p4
⟨1|ϵ∗Ab1|1⟩

m

(
1 + pµ4

∂

∂pµ1

)(
∇i3m

2
a2B

⟨2|ϵBb1|2]
|p2|

)

+
2i(∇i4ta1I)ϵ

Ij

2p1 · p4
⟨1|p4|1]√

2m

(
−i

√
2∇i3ta2j

⟨2|p3|2]
|p2|

)
+ (1 ↔ 2)

]
.

(4.5.42)

Comparing the two expressions, we see that first, second and fourth lines in
eq. (4.5.40) match with eq. (4.5.41). Next, we need to implement the soft-
momentum-shift operator acting on the lower-point amplitude in terms of the
spinors (see ref. [211]). One such option of a shift by soft momentum q is given
by

⟨p| → ⟨p|+ ⟨p|pq
2m2

,

|p] → |p] + qp|p]
2m2

. (4.5.43)

Applying the above shift with soft p4 to hard momentum p1, we obtain(
1 + pµ4

∂

∂pµ1

)⟨21⟩[12]
|p1||p2|

→⟨21⟩[12]
|p1||p2|

− ⟨1|p4|1]
2p21

⟨2|p1|2]
|p1||p2|

+O(p24)
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=
⟨21⟩[12]
m2

+
⟨1|p4|1]
2m2

⟨2|p3|2]
m2

+O(p24) , (4.5.44)

where we used that in the soft limit, ⟨2|p3|2] = −⟨2|p1|2] + O(p4). This
matches with the third line in eq. (4.5.40). Hence, we have verified that the
soft limit of A4,a1a2i3i4 is given by the soft theorem in the presence of massive
gauge bosons.

Let us briefly comment on a different choice of an off-shell continuation of the
lower-point amplitude. Suppose we chose to evaluate the soft limit by directly
applying the soft operator to eq. (4.5.37), instead of using eq. (4.5.41). We see
that the covariant derivative ∇̄A3 will now pick up additional terms. At the
same time, the soft shift eq. (4.5.43) acting on A3 will also have extra terms.
Those two contributions precisely cancel, as required, and the soft theorem
again agrees with eq. (4.5.40).

All these examples demonstrate that the universal behavior of the soft limits
for massless scalars is captured by the geometric soft theorem.

4.6 Conclusion

Scattering amplitudes in any effective field theory have a universal feature;
they are invariant under changes of field basis. This invariance is manifest
when we express all couplings in the theory as geometric structures, such as
the Riemann curvature in field space. This was initially appreciated for scalars,
and now this geometric picture has been extended to both fermions and gauge
fields.

The geometry also exposes new relations between scattering amplitudes. The
geometric soft theorem for scalar effective field theories [13] relates scattering
amplitudes with different number of particles via the covariant derivative. In
this paper, we complete this story by extending the geometric soft theorem to
generic effective field theories with scalars, fermions, and gauge bosons. The
more general soft theorem is still linked to the covariant derivative but now
for the full field space.

Soft theorems in effective field theories can be leveraged to recursively calcu-
late higher-point scattering amplitudes from lower-point amplitudes. The bad
high-energy behavior of effective-field-theory amplitudes can be ameliorated
via an appropriate subtraction which uses the knowledge of the soft behavior
[9], [10], [30], [31], [92]–[95], [101], [104], [105]. This also applies to general
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massless scalars using the geometric soft theorem in ref. [13]. Of course, in the
latter case there is no free lunch. Information about higher-point contact terms
is encoded in the Riemann curvature, which appears in the four-point ampli-
tude when viewing the curvature as a function of the VEV. Using the more
general geometric soft theorems presented here we can enroll many additional
effective field theories (e.g., eq. (4.5.6)) in the list of on-shell constructible
theories, whose amplitudes satisfy recursion relations. We look forward to
studying such recursion relations in future work.

Even though the field-space geometry has proven valuable for understanding
effective field theories, there is still a larger landscape of invariances which
is not accounted for. Namely, field redefinitions with derivatives also leave
the scattering amplitudes unchanged. A full geometric explanation of this in-
variance is a topic of current investigations [47]–[52]. However, any extension
of the geometric picture to accommodate such field redefinitions will not af-
fect the geometric soft theorem because the derivative deformations needed to
accomplish this would vanish in the soft limit.

A natural question to ask is whether there is a version of the geometric soft
theorem that holds beyond tree level. In the simpler case where singular terms
in the soft limit are absent, we believe that the soft theorem remains valid at
all loop orders, perhaps even non-perturbatively. In this case, the derivation is
nearly identical to one derivation of the Adler zero for pions, or the geometric
soft theorem for scalar effective field theories. It will be instructive to find a
rigorous proof of this, and also to investigate the fate of the geometric soft
theorem at loop-level when the singular terms are present.
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A p p e n d i x A

NONRELATIVISTIC KINEMATICS

Our analysis will require a careful treatment of on-shell kinematics for scat-
tering amplitudes with nonrelativistic dynamics. For the n-point amplitude,
An, we define the four-momenta of the n hard legs to be

pµa = (ωa, p
i
a) , (A.0.1)

where the external particle index is an integer in the range 1 ≤ a ≤ n.

It will be crucial to define the notion of a minimal on-shell basis of kinematic
invariants. A priori, the n-point amplitude is an SO(3) invariant quantity
that is a function of the energies ωa and all inner products of three-momenta,
pa · pb for 1 ≤ a ≤ b ≤ n. A minimal on-shell basis defines a set of kinematic
variables for which all on-shell constraints are automatically imposed.

To achieve this, we first eliminate the energy and three-momentum of some
leg, chosen here to be leg n, so

ωn = −
n−1∑
a=1

ωa and pin = −
n−1∑
a=1

pia . (A.0.2)

The elimination of the energy ωn and three-momentum pin of leg n via the
above equations then automatically enforces total momentum conservation.
Second, we impose the on-shell conditions for the external legs, allowing us to
eliminate the kinematic invariants

p2a =
ω2
a

c2a
for 1 ≤ a ≤ n− 1 , (A.0.3)

where ca is the speed of sound for the corresponding leg. For example, for
phonons it would be the longitudinal or transverse speeds of sound, cL or cT .
The above condition allows us to eliminate p2a for 1 ≤ a ≤ n − 1. However
since we have already eliminated pin by momentum conservation, for the case
of a = n the on-shell condition imposes a more elaborate constraint,

p2n =

(
n−1∑
a=1

pa

)2

=
1

c2n

(
n−1∑
a=1

ωa

)2

, (A.0.4)
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which should can be used to eliminate one more kinematic invariant, which
we can choose to be pn−2 · pn−1 without loss of generality. In summary, the
minimal kinematic basis is comprised of the variables

ωa for 1 ≤ a ≤ n− 1 ,

pa · pb for 1 ≤ a < b ≤ n− 2 and 1 ≤ a ≤ n− 3, b = n− 1 ,

(A.0.5)
with all other kinematic variables fixed by on-shell conditions.

With the inclusion of external polarization vectors, eia for 1 ≤ a ≤ n, similar
logic applies. Without assuming any special properties of the external polar-
izations, for example whether they are longitudinal or transverse, we simply
eliminate all invariants involving pin. Hence, we obtain

ea · eb for 1 ≤ a < b ≤ n ,

pa · eb for 1 ≤ a ≤ n− 1, 1 ≤ b ≤ n ,
(A.0.6)

for the elements of the minimal kinematic basis involving polarizations.

Let us also write down the explicit minimal kinematic basis for three-point
scattering,

basis for A3 : ω1, ω2 ,

p1 · e1, p1 · e2, p1 · e3, p2 · e1, p2 · e2, p2 · e3 ,

e1 · e2, e1 · e3, e2 · e3 .

(A.0.7)

The utility of these variables is that we can freely change them while remaining
on the kinematic surface that defines on-shell configurations. From here on,
we will write all on-shell quantities in terms of these minimal bases.

Finally, to evaluate the amplitude for a specific configuration of external
modes, we plug in explicit longitudinal or transverse polarizations. The trans-
verse conditions put additional constraints on the minimal basis

pa · ea = 0 for 1 ≤ a < n ,

pn−1 · en = −
n−2∑
a=1

pa · en .
(A.0.8)

For our analysis, we will be interested in how the soft limit of the (n+1)-point
amplitude, An+1, can be expressed in terms of the n-point amplitude, An. For
this reason, we define legs 1, · · · , n to be hard, since they are present in both
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An+1 and An. On the other hand, leg n+1, with external polarization ei, will
be taken soft, so we parameterize it with a special four-momentum

qµ = (ω, qi) . (A.0.9)

To be very explicit, An+1 is a function of p1, · · · , pn, q while An is a function
of , · · · , pn. Both should be evaluated in a minimal kinematic basis in which
the energy ωn, the three-momentum pin, and the invariant pn−2 · pn−1 have
been eliminated. Consequently, for any values of the soft momentum q, the
amplitudes remain on-shell. This ensures that the soft limit is taken while
maintaining all on-shell conditions. The minimal basis for four-point scattering
is then

basis for A4 : ω, ω1, ω2, q · p1, q · p2, q · e, q · e1, q · e2, q · e3 ,

p1 · e, p1 · e1, p1 · e2, p1 · e3, p2 · e, p2 · e1, p2 · e2, p2 · e3 ,

e · e1, e · e2, e · e3, e1 · e2, e1 · e3, e2 · e3 .
(A.0.10)

By construction, the minimal basis for A4 in eq. (A.0.10) reduces to the min-
imal basis for A3 in eq. (A.0.7) in the soft limit, q → 0.

While the above approach is somewhat convoluted, we emphasize that any
definition of the soft limit of an on-shell amplitude requires something anal-
ogous. In general, simply changing the momentum q of a leg to be soft will
not maintain on-shell conditions. For the case of on-shell soft recursion [30],
[93], [212], [213], the soft limit of a given leg must always be compensated by
a slight shift of one of the hard legs. The minimal basis construction we have
described above achieves this automatically.
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A p p e n d i x B

SELECT FORM FACTOR SOFT LIMITS

In this appendix we provide the technical details for the derivation of the soft
behavior of the correlators ⟨α|V c

µ (q)⟩ and ⟨α|JH
a
µ(q1)JH

b
ν(q2)⟩ which appeared

in eq. (3.2.27) of the main text.

B.1 Soft vector current

Consider the behavior of the following matrix element where an off-shell vector
current is inserted into a scattering amplitude of on-shell NGB,

⟨πa1(p1) . . . π
ai(pi) . . . π

an(pn)|V a
µ (q)⟩. (B.1.1)

In [94] the leading order soft behavior of eq. (B.1.1) was proven. Here we
will extend that proof to the sub-leading order in the soft momentum q. This
extension will closely follow the development appearing in [127], wherein sub-
leading soft theorems are proven for photons, gluons and gravitons.

In the soft limit, the singular behavior of eq. (B.1.1) will derive from processes
in which a propagating single particle state is created. Such a pole structure
will be generated for each of the outgoing NGB states ⟨πai(pi)|. We insert a
complete set of states 1 =

∑∫
X
|X⟩⟨X| between the soft current operator V a

µ (q)

and the rest of the process,∑∫
X

n∑
i=1

⟨πai(pi)|V a
µ (q)|X⟩∆X⟨X + πa1(p1) . . . π̂ai(pi) . . . π

an(pn)|0⟩ (B.1.2)

=
n∑

i=1

⟨πai(pi)|V a
µ (q)|πc(pi + q)⟩∆cd(pi + q)⟨πa1(p1) . . . π

d(pi + q) . . . πan(pn)|0⟩

with π̂ai denoting the omission of the corresponding particle. Where |X⟩ is a
multi-particle state, the kinematics in the soft limit will not produce singular
behavior. The singular behavior will receive contributions from only those
|X⟩ which are single-particle NGB states, where ∆cd(pi + q) is the associated
propagator.

To obtain the sub-leading contribution we begin from the decomposition,

lim
q→0

⟨πa1(p1) . . . π
ai(pi) . . . π

an(pn)|V a
µ (q)⟩
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=
n∑

i=1

faaid
X

(2pi + q)µ
(pi + q)2

⟨πa1(p1) . . . π
d(pi + q) . . . πan(pn)|0⟩

+Raa1...an
µ (q; p1, . . . , pn). (B.1.3)

Here the first term is the result from [94] without having expanded the prop-
agator pole, and the second, remnant term, parameterizes insertions of the
current which do not contain said pole. The entire matrix element satisfies
the Ward identity,

0 = qµ⟨πa1 · · · πan|V a
µ (q)⟩

=
n∑

i=1

faaid
X ⟨πa1(p1) . . . π

d(pi + q) . . . πan(pn)|0⟩+ qµRaa1...an
µ (q; p1, . . . , pn).

(B.1.4)

Expanding around q = 0, we have

0 =
n∑

i=1

faaid
X

(
1 + qµ

∂

∂pµi

)
⟨πa1(p1) . . . π

d(pi) . . . π
an(pn)|0⟩

+ qµRaa1...an
µ (0; p1, . . . , pn) +O(q2). (B.1.5)

This produces a set of relations for each order in q. At leading order we have,

0 =
n∑

i=1

faaid
X ⟨πa1(p1) . . . π

d(pi) . . . π
an(pn)|0⟩, (B.1.6)

which is a consequence of invariance under the unbroken subgroup H, and was
demonstrated in [94]. At the next order we have

n∑
i=1

faaid
X qµ

∂

∂pµi
⟨πa1(p1) . . . π

d(pi) . . . π
an(pn)|0⟩ = −qµRaa1...an

µ (0; p1, . . . , pn).

(B.1.7)

This relation determines the remnant Raa1...an
µ (0; p1, . . . , pn) up to potential

terms that are separately vanishing under the Ward identity. Furthermore,
the requirement that such terms be local in q implies that they must also be
at least linear in q. Therefore these terms would be suppressed in the soft
expansion. We can remove the qµ contracted with both sides of eq. (B.1.7),
leaving

n∑
i=1

faaid
X

∂

∂pµi
⟨πa1(p1) . . . π

d(pi) . . . π
an(pn)|0⟩ = −Raa1...an

µ (0; p1, . . . , pn).

(B.1.8)
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Inserting this into the decomposition eq. (B.1.3) completes the sub-leading
theorem,

lim
q→0

⟨πa1 · · · πan|V a
µ (q)⟩

=
n∑

i=1

faaid

(
(2pi + q)µ
(pi + q)2

− iqνLiµν

(pi · q)

)
Aa1...d...an

n (p1, . . . , pn) +O(q) , (B.1.9)

where as before Liµν is the angular momentum operator defined as

Lµν
i = i

(
pµi

∂

∂piν
− pνi

∂

∂piµ

)
. (B.1.10)

B.2 Soft axial-axial remnant

We will proceed with a similar analysis for the matrix element:

⟨πa1(p1) . . . π
ai(pi) . . . π

an(pn)|JH
a
µ(q1)JH

b
ν(q2)⟩. (B.2.1)

We will follow the same line of reasoning as for the soft vector current V a
µ (q)

in the matrix element eq. (B.2.1). The singular behavior of eq. (B.2.1) will
derive from contributions of the form,

n∑
i=1

⟨πai(pi)|JH
a
µ(q1)JH

b
ν(q2)|πc(pi + q1 + q2)⟩

×∆cd(pi + q1 + q2)⟨πa1(p1) . . . π
d(pi + q1 + q2) . . . π

an(pn)|0⟩,
(B.2.2)

which are generated by the propagation of single particle NGB states.

The isolated form factor ⟨πai(pi)|JH
a
µ(q1)JH

b
ν(q2)|πc(pi + q1 + q2)⟩ can be de-

termined to leading order. The effective theory is invariant under parity in-
versions, thus we consider a parity-even ansatz,

⟨πai(pi)|JH
a
µ(q1)JH

b
ν(q2)|πc(pi + q1 + q2)⟩

= A1(pi, q1, q2)B
aiabc
1 ηµν + A2(pi, q1, q2)B

aiabc
2 piµpiν +O(q1, q2), (B.2.3)

where Ai(pi, q1, q2) are Lorentz-invariant structure functions and Baiabc
i are

arbitrary flavor-structures. The JH
a
µ operators appearing in this form factor

do not satisfy any Ward identities, but we can instead consider the Ward
identity,

pαi ⟨J ai
α (pi)J a

µ (q1)J b
ν (q2)|πc(pi + q1 + q2)⟩ (B.2.4)
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= F aiad⟨V d
µ (pi + q1)J b

ν (q2)|πc(pi + q1 + q2)⟩

+ F aibd⟨J a
µ (q1)V

d
ν (pi + q2)|πc(pi + q1 + q2)⟩ .

Through a procedure of writing analogous ansätze for the correlators on the
RHS of the Ward identity eq. (B.2.4), imposing the subsequent Ward identi-
ties these correlators in turn satisfy, and finally matching the contained pole
structures with our initial ansatz eq. (B.2.3), we arrive at

⟨πai(pi)|JH
a
µ(q1)JH

b
ν(q2)|πc(pi + q1 + q2)⟩

= i(F aiaef ebc
X + F aibef eac

X )ηµν + A2(pi, q1, q2)B
aiabc
2 piµpiν +O(q1, q2) . (B.2.5)

The product A2(pi, q1, q2)B
aiabc
2 cannot be fixed by current algebra. This re-

flects the fact that the sub-leading double soft limit is sensitive to higher-
derivative operators in the effective field theory, which was studied in [116],
and also one loop corrections. For simplicity, we will ignore these.

At tree-level, we can conclude the soft behavior,

lim
q1q2→0

⟨α|JH
a
µ(q1)JH

b
ν(q2)⟩

=
n∑

i=1

(F aaief ebd
X + F baief ead

X )
ηµν

2pi · (q1 + q2)
Aa1···d···an

n +O(q0) . (B.2.6)

Combining the results eq. (B.2.6) and eq. (B.1.9) in eq. (3.2.27), we arrive at
the NLSM double soft theorem eq. (3.2.31) in the main text.
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