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Abstract
Neutron stars are exceptional astrophysical objects, harboring likely the densest
matter in the universe outside of black holes. However, uncertainty in the properties
of matter at the densities achieved inside of neutron stars means that the structure
of neutron stars cannot be fully understood from first principles. Modern statistical
and computational tools however, along with cutting-edge observational strategies
have enabled the properties of neutron stars to be constrained using astrophysical
data. In this thesis, I will discuss work I have carried out examining what can be
learned about neutron stars, and the dense matter inside of them, using electro-
magnetic and gravitational-wave observations of neutron stars. In particular, I will
discuss constraints on nonparametric models of the dense-matter equation of state,
and why nonparametric models are an effective strategy for faithfully representing
uncertainty. I will also discuss the interplay between understanding the astrophysi-
cal channels for forming neutron stars, and the neutron-star matter equation of state,
including how we can use our understanding of dense matter to classify objects. Fi-
nally, I will discuss some considerations for simulating astrophysical neutron stars,
which is necessary in order to interpret the full range of astrophysical observations
of merging neutron stars, such as the neutron star merger GW170817.
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variables simultaneously. . . . . . . . . . . . . . . . . . . . . . . . 33
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2.5 Similar to Fig. 2.1 but with a mock constraint injected directly into
𝑝(𝜌 = 2𝜌nuc) for each EoS prior process. The posterior after the
simulated constraint is included (“astro+mock") is overplotted on the
posterior with all current data (“astro"), and in a darker color. The
constraint at a single density affects the parametric posteriors over a
much wider range of density scales than the nonparametric one. The
inset focuses around 𝜌 = 2𝜌nuc. The two black straight lines provide
an estimate of the constraints imposed by causality (𝑐2

𝑠 < 1) and
thermodynamic stability (𝑐2

𝑠 > 0.1) around 𝜌 = 2𝜌nuc, subject to the
heavy pulsar measurements. The nonparametric posterior quickly
“fills" more of the physically available region after satisfying the
mock constraint, while the parametric posteriors do not.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6 Inferred posterior for 𝑅1.4 and 𝑀max using the nonparametric model

and the spectral model and mock x-ray-radio (blue and orange dashed
line, respectively) and GW (blue and orange solid line, respectively)
observations. All posteriors also include all current astrophysical
data. The vertical and horizontal red lines show the injected value of
𝑅1.4 and 𝑀max. The 𝑀max posterior is only weakly informed by the
GW data as they typically cannot lead to a definitive identification of
a > 2𝑀⊙ object as a NS, and it is thus similar to that of Fig. 2.2. . . 41

2.7 Marginal one- and two-dimensional prior and posterior distributions
for the parameters of the spectral model, 𝛾𝑖, as well as the maximum
NS mass, 𝑀max, and the radius, 𝑅1.4. We show the default prior as
well as reweighted results that upweight more extreme values of 𝛾𝑖. In
both cases, 𝑀max and 𝑅1.4 have very similar posteriors, showing that
the reweighting does not efficiently extend the coverage of the prior
toward the causality threshold in the 𝑀max-𝑅1.4 plane. Additionally,
extending the prior ranges for 𝛾𝑖 is unlikely to change the results as
the posteriors are not limited by the prior ranges. . . . . . . . . . . . 44
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2.8 Example EoS draws from the nonparametric prior plotted in terms
of the pressure 𝑝 vs the density 𝜌 (top), the mass 𝑀 vs the radius 𝑅
(middle), and the speed of sound 𝑐𝑠 vs the density 𝜌 (bottom). We
only draw EoS with non-negligible contribution to the posterior. For
reference, we also plot the 90% symmetric credible intervals for the
posterior using only heavy pulsar observations and all astrophysical
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.9 Comparison between using strictly causal (𝑐2
𝑠 < 𝑐

2) parametric EoS
with each model (gray) and the headline results allowing some viola-
tion of the causal limit (𝑐2

𝑠 < 1.1𝑐2). When restricting to only causal
EoS, the issues of model dependence and insufficient coverage of the
physically allowed 𝑀max-𝑅1.4 space are more severe, especially for
the piecewise-polytrope. . . . . . . . . . . . . . . . . . . . . . . . . 51

2.10 Symmetric 90% credible region for the pressure 𝑝 at each density 𝜌
in units of the nuclear saturation density (left) and the radius 𝑅 as a
function of the mass 𝑀 . From top to bottom we show results with the
spectral, piecewise-polytrope, and speed-of-sound parametric mod-
els. At each panel we overplot the corresponding nonparametric
result for comparison. The spectral 𝑝-𝜌 panel is identical to Fig. 2.1,
but we show it for completeness. As in Fig. 2.1 we show results with
all astrophysical data (labeled “astro," solid lines) and restricting to
the heavy pulsars only (labeled “psr," dashed lines). . . . . . . . . . 53

2.11 The speed of sound squared as a function of baryon density in the
spectral (top), piecewise-polytrope (middle) models, and speed-of-
sound (bottom) models, compared to our nonparametric model. . . . 54

2.12 Similar to Fig. 2.2 but for the piecewise-polytrope (top panels) and
the speed-of-sound (bottom panels) models. As with the spectral
case, we find that the parametric model leads to tighter posteriors for
𝑀max compared to the nonparametric model. The two-dimensional
plots show that this is again due to model-dependent correlations in
𝑀max-𝑅1.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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3.1 Constraints on the NS mass-radius relation. Shaded regions enclose
the 90% symmetric credible intervals for the radius for each value of
the mass. The top panel shows the effect of the J0740+6620 radius
constraint by comparing the prior (black), and results with (with-
out) the J0740+6620 radius in blue (turquoise). The bottom panel
presents cumulative constraints on the mass-radius relation as each
type of data set is analyzed. In black we again show the prior. The
turquoise region shows the posterior after including the mass mea-
surement of the two heavy pulsars (including the updated J0740+6620
mass estimate). The green region correspond to constraints obtained
after adding the GW data. Finally, the blue region correspond to con-
straints after further adding the J0030+0451 and J0740+6620 mass
and radius constraints from NICER. In the last case we remove the
J0740+6620 mass constraint from the list of radio constraints so as
to avoid double-counting. . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Prior and posterior distributions of the radius at 1.4 M⊙ (𝑅1.4) and
2.0 M⊙ (𝑅2.0), the maximum mass (𝑀max), the dimensionless tidal
deformability at 1.4 M⊙ (Λ1.4) and 2.0 M⊙ (Λ2.0), and the pressure
at twice (𝑝2) and six times (𝑝6) the saturation density, such that
𝑝2/𝑐2, and 𝑝6/𝑐2 have units g/cm3. Contours in the 2D distributions
correspond to the 90% level. Black lines denote the prior, while blue
(turquoise) lines correspond to results with (without) the J0740+6620
radius constraint. The prior includes numerous EoSs that do not
support massive NSs, in which case we report quantities assuming
black holes, corresponding to the sharp peak at Λ = 0 in the prior. . . 73

3.3 Estimates for the radius of J0740+6620 using only NICER+XMM
observations (black) and all astrophysical observations (red), both
conditioned on our nonparametric EoS representation. Contours
correspond to the 68% and 90% credible levels. The primary impact
of other astrophysical observations is to lower the inferred radius of
J0740+6620 from 13.24+2.25

−1.93 km to 12.41+0.93
−1.16 km at 90% credibility.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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3.4 Same as Fig. 3.1 but for the pressure-density relation. In the left
panel, magenta contours give the 50% and 90% level of the central
pressure-density posterior for J0740+6620 inferred from all available
data. In the right panel, red contours give the 50% and 90% level of
the central pressure-density posterior for the maximum-mass NS.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5 Same as Figs. 3.1 and 3.4 but for the central baryon density (in units of

saturation density) as a function of NS mass. Magenta (red) contours
in the left (right) panel show the 50% and 90% credible level for the
mass-central density posterior for J0740+6620 (maximum-mass NS). 81

3.6 Similar to the left panels of Figs. 3.1, 3.4, and 3.5 but for the speed of
sound inside NSs. The horizontal black line denotes the conformal
limit 𝑐2

𝑠/𝑐2 = 1/3 and the red contour corresponds to the 50% and
90% inferred speed of sound and central density for the maximum-
mass NS.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.7 One- and two-dimensional marginalized prior and posterior of the

maximum 𝑐2
𝑠/𝑐2 encountered inside the NS and the density at which

this happens. We show the prior in black and the posterior with
(without) the J0740+6620 radius measurement in blue (turquoise).
The vertical line denotes the conformal limit of 𝑐2

𝑠/𝑐2 = 1/3. . . . . 83
3.8 Dependence of the pressure-density posterior on the number of stable

branches in the EoS. The blue region shows the full posterior, the
green shaded regions show the posterior when restricting to EoSs
with multiple stable branches, and the gold dashed lines denote the
posterior region when restricting to a single stable branch. . . . . . . 85

3.9 Two-dimensional posterior for the radius difference Δ𝑅 ≡ 𝑅2.0 −𝑅1.4

against the maximum speed of sound squared reached in the NS. We
show results with all EoSs (blue) as well as only EoSs with one (gold)
and multiple (green) stable branches. . . . . . . . . . . . . . . . . . 88
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3.10 Corner plot for the transition mass 𝑀t corresponding to the most
massive hadronic NS in EoSs with multiple stable branches, the
transition density 𝜌t corresponding to the central density of a star
with mass 𝑀t, 𝑅1.4, 𝑅2.0, 𝑀max, and Δ𝑅 ≡ 𝑅2.0 − 𝑅1.4. Contours
in the 2D distributions denote the 90% credible level. Black lines
denote the prior, while blue (turquoise) lines correspond to results
with (without) the J0740+6620 radius constraint. . . . . . . . . . . 90

3.11 Corner plot for various macroscopic and microscopic parameters of
interest broken down by number of stable branches. Contours in
the 2D distributions denote the 90% level and we plot the same
quantities as in Fig. 3.2. Blue lines denote the full posterior, while
gold (green) lines correspond to results with EoSs with one (multiple)
stable branches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.12 Corner plots of 𝑀max versus 𝑅1.4 for the three assumptions about
the J0740+6620 mass prior illustrated above. (black) our EoS prior.
(brown) Assumption 1: J0740+6620 could be either a NS or a BH.
(orange) Assumption 2: a hypothetical formation channel does not
produce NSs with𝑚 > 2.3 M⊙, which limits the effects of the Occam
penalty. (blue) Assumption 3: only the EoS limits 𝑀upper, and EoS
that support the largest masses incur the full Occam penalty. We see
the expected ordering in the tail of the𝑀max distribution; assumptions
that introduce larger Occam penalties result in suppressed tails. . . . 99

4.1 (left) one-dimensional 90% symmetric marginal posterior credible
regions for the radius as a function of mass conditioned on current
data. We show results with only pulsar masses (denoted PSR) and
pulsar masses, GW observations, and NICER X-ray pulse profiling
(denoted PGX). We additionally show maximum-likelihood EoSs
from subsets of the prior conditioned on the size of the latent energy
per particle Δ(𝐸/𝑁) of phase transitions that overlap with the central
densities of NSs between 1.1–2.3 M⊙ (small: Δ(𝐸/𝑁) ≤ 10 MeV
and large: Δ(𝐸/𝑁) ≥ 100 MeV). (right) Correlations between the
radius at two reference masses: 𝑀 = 1.4 and 2.0 M⊙. While the
one-dimensional marginal distributions are similar, EoSs with small
Δ(𝐸/𝑁) show stronger correlations between 𝑅1.4 and 𝑅2.0 than EoSs
with large Δ(𝐸/𝑁). This is because the radius can change rapidly
when Δ(𝐸/𝑁) is large, as is evident in the maximum-likelihood EoS. 116
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4.2 Examples of CSS EoSs based on DBHF [56] with a causal extension
(𝑐𝑠 = 𝑐) beyond the end of the phase transition. We show examples
with (top) weak and (bottom) strong phase transitions, defined by
whether there are multiple stable branches. For each EoS, we show
(top left) the pressure and (bottom left) the sound-speed as a function
of baryon density, (top center) the moment of inertia and (bottom cen-
ter) the novel feature introduced in Sec. 4.2 (Eq. (4.2)) as a function
of gravitational mass, and (top right) the 𝑀–Λ and the (bottom right )
𝑀–𝑅 relations. Stable (unstable) branches are shown with dark solid
(light dashed) lines. Each curve is labeled with connections between
macroscopic phenomenology and microphysical features. (black an-
notations) The maximum mass of cold, non-rotating stars (𝑀TOV)
and, where relevant, the beginning and end of stable branches. (red
annotations) The beginning and end of features as identified by the
procedure in Sec. 4.2. (red shading) The extent of the identified
features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Analogous to Fig. 4.2 but for more complicated phase transition
phenomenology associated with mixed phases (Gibbs construction)
from Han et al. [42], obtained by implementing specific hadronic and
quark models.. Again, the features introduced in Sec. 4.2 correctly
identify the beginning and end of the phase transition even though
there is no discontinuity in 𝑐𝑠 at the onset and the phase transition
corresponds to a wide range of masses. The broad extent of the
phase transition is not readily apparent from the macroscopic prop-
erties alone, which show a sharp feature only at the end of the phase
transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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4.4 The feature extraction algorithm: (left) the sound-speed as a function
of baryon density and (right) arctan(D 𝐼

𝑀
) (Eq. 4.2) as a function

of the gravitational mass. The algorithm progresses from top to
bottom, first with the identification of local minima in arctan(D 𝐼

𝑀
)

and then pairing each with a corresponding running local maximum
in 𝑐𝑠. The number of features reported corresponds to the number
of unique running local maxima in 𝑐𝑠 selected; in this case 1. The
multiplicity of each feature corresponds to the number of local minima
in arctan(D 𝐼

𝑀
) that are paired with the same running local max in

𝑐𝑠, in this case 3. For demonstration purposes, we show how the
algorithm would progress if we had 𝑅𝑐2

𝑠
> 1.7. If the threshold on

the drop in the sound-speed 𝑅𝑐2
𝑠

was ≤ 1.7, the algorithm would
accept the first pairing (second row) and instead report two features:
one at lower densities with multiplicity two and one at higher densities
with multiplicity one. This would be the case for the main results
presented in Secs. 4.3 and 4.4, which use a threshold 𝑅𝑐2

𝑠
> 1.1. . . . 121

4.5 Correlations between the divergence between macroscopic properties
caused by a phase transition Δ ln 𝐼 − ⟨Δ ln 𝐼⟩ and the latent energy per
particle of the associated phase transition Δ(𝐸/𝑁) for all transitions
that begin at masses greater than 0.7 M⊙. Color indicates the prox-
imity of the phase transition’s end to 𝑀TOV. Large divergences in
macroscopic properties can only be caused by phase transitions with
large Δ(𝐸/𝑁), but not all phase transitions with large Δ(𝐸/𝑁) cause
large divergences in macroscopic properties. . . . . . . . . . . . . . 125

4.6 Marginalized (unshaded) priors and (shaded) posteriors for parame-
ters that characterize phase transitions based on current astrophysical
data from pulsar masses, GWs, and X-ray mass-radius measurements.
For each EoS we report the properties of the transition with the largest
Δ(𝐸/𝑁) that overlaps with each mass interval. We report (left to
right), the latent energy (Δ(𝐸/𝑁)), the onset energy density (𝜀𝑡), the
onset pressure (𝑝𝑡), the energy density at the end of the transition
(𝜀𝑒), and the onset mass scale (𝑀𝑡) for three mass-overlap regions:
0.8–1.1 M⊙, 1.1–1.6 M⊙, and 1.6–2.3 M⊙. . . . . . . . . . . . . . . 128
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4.7 Ratios of probabilities conditioned on different numbers of features.
Compare to Table 4.1; see Eqs. (4.3) and (4.4) for an explicit defini-
tions of our notation. (left) Distributions over the number of stable
branches and (right) distributions over the number of D 𝐼

𝑀
features for

EoSs with Δ(𝐸/𝑁) ≥ 10, 50, and 100 MeV, respectively for different
mass-overlap regions: (top) 0.8–1.1 M⊙, (middle) 1.1–1.6 M⊙, and
(bottom) 1.6–2.3 M⊙. We show the ratio of maximum likelihoods
(black dots) and the posterior divided by the prior (circles and x’s).
As in Table 4.1, we consider (PGX, red circles) the ratio of the poste-
rior conditioned on PSR masses, GW coalescences, and X-ray timing
and compare it to our nonparametric prior as well as (blue x’s) the
posterior conditioned on only PSR masses. Error bars approximate
1-𝜎 uncertainties from the finite size of our prior sample. In general,
a single stable branch without strong D 𝐼

𝑀
features is preferred. . . . 132

4.8 Bayes factors vs. catalog size comparing (left-most column) multiple
stable branches vs. a single stable branch and (right three columns)
at least one D 𝐼

𝑀
feature vs. no D 𝐼

𝑀
features. We consider features

that overlap with three mass ranges: (top row) 0.8–1.1 M⊙, (middle
row) 1.1–1.6 M⊙, and (bottom row) 1.6–2.3 M⊙. We also show three
different injected EoSs: (blue, no phase transition) DBHF, (orange,
weak phase transition at ∼ 1.9 M⊙) DBHF_3504, and (green, strong
phase transition at ∼ 1.5 M⊙) DBHF_2507. Shaded regions denote
1-𝜎 uncertainties from the finite size of our Monte Carlo sample
sets. Different realizations of catalogs will also produce different
trajectories; these should only be taken as representative. . . . . . . 136
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4.9 Sequences of one-dimensional marginal posteriors for Λ(𝑀) at (left
to right) 1.2, 1.4, 1.6, 1.8, and 2.0 M⊙ for different simulated EoSs:
(top, blue) DBHF, (middle, orange) DBHF_3504 (phase transition
at ∼ 1.9 M⊙) and (bottom, green) DBHF_2507 (phase transition at
∼ 1.5 M⊙). These posteriors show the distributions of Λ(𝑀) > 0
(i.e., they only consider EoSs with 𝑀TOV ≥ 𝑀). These posteriors
are conditioned only on simulated GW events (no real observations),
and a line’s color denotes the number of simulated GW events within
the catalog (light to dark : fewer to more events) along with the true
injected values (vertical black lines). The prior is shown for reference
(grey shaded distributions). For very small Λ, primarily associated
with DBHF_2507 at high masses, the true value falls near the lower
bound in the prior. The primary effect of additional observations is to
reduce support for larger values of Λ. While significant uncertainty
in Λ(𝑀) remains after 100 events, the nonparametric prior is able
to correctly infer Λ(𝑀) at all 𝑀 simultaneously, including sharp
changes in Λ(𝑀) over relatively small mass ranges. . . . . . . . . . 137

4.10 Joint posteriors for Δ(𝐸/𝑁) and transition onset mass (𝑀𝑡) inferred
from simulated GW catalogs for (top, blue) DBHF and (bottom,
green) DBHF_2507. Grey curves denote the (reweighed) prior, color
denotes the size of the catalog, and contours in the joint distribution
are 50% highest-probability-density credible regions. Solid lines
denote the true parameters for DBHF_2507; there are no such lines
for DBHF because it does not contain a phase transition. As in
Fig. 4.6, extracted parameters correspond to the feature with the
largest Δ(𝐸/𝑁), but here we only require features to overlap the
broad range 0.8–2.3 M⊙. . . . . . . . . . . . . . . . . . . . . . . . 139

4.11 Stellar sequences for incompressible two-phase Newtonian stars with
𝜌𝐿 = 2𝜌nuc = 5.6 × 1014g/cm3, 𝑝𝑇 = 5 × 1034dyne/cm2, and var-
ious values of 𝜌𝐻 . We plot (top) the 𝑀-𝐼 relation and (bottom)
arctan(D 𝐼

𝑀
) as a function of the stellar mass. Stable branches are

shown with solid lines, and unstable branches are shown with dot-
ted lines. The bottom panel inset focuses near the discontinuity for
curves with; ticks on the y-axis correspond to the values in Eq. 4.17. 149
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4.12 An additional example of the impact of thresholds within the fea-
ture extraction algorithm with an EoS realization with a relatively
short correlation length. (top) trivial thresholds Δ arctan(D 𝐼

𝑀
) =

0.0, R𝑐2
𝑠
= 1.0; (middle) threshold on the size of Δ arctan(D 𝐼

𝑀
),

Δ arctan(D 𝐼
𝑀
) = 0.15, R𝑐2

𝑠
= 1.0; (bottom) threshold on the amount

𝑐2
𝑠 must decrease, Δ arctan(D 𝐼

𝑀
) = 0.0 R𝑐2

𝑠
= 1.5 (analogous to

Fig. 4.4). The rapid oscillations in 𝑐2
𝑠 are identified when select-

ing based on R𝑐2
𝑠

but they are rejected when selecting based on
Δ arctan(D 𝐼

𝑀
); their relatively small Δ(𝐸/𝑁) do not produce signif-

icant changes in the 𝑀-𝐼 relation. . . . . . . . . . . . . . . . . . . . 150
4.13 The effective number of EoS samples from the posterior process as a

function of catalog size for (solid) catalogs comprised of only mock
GW observations and (dashed) catalogs that include real pulsar mass
measurements in addition to mock GW observations. For each of
the three true EoS considered in Sec. 4.4, we find an approximately
exponential decrease of the number of effective samples with the
catalog size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.14 Distributions of radii and tidal deformabilities at reference masses as
well as 𝑀TOV conditioned on current data. These distributions de
facto exclude EoSs with 𝑀TOV < 2 M⊙ by requiring Λ2.0 > 0 (en-
forced through the logarithmic scale). As in Fig. 4.1, there are much
weaker correlations between low-mass and high-mass observables. . 155

4.15 An additional example of an EoS with mixed phases (Gibbs construc-
tion) from Han et al. [42], analogous to Fig. 4.3. . . . . . . . . . . . 156

4.16 Several realizations from our nonparametric prior, each with a single
stable branch but with different numbers of phase transitions. . . . . 162

4.17 Additional realizations from our nonparametric prior, each with mul-
tiple stable branches. Typically, we always identify a phase transition
associated with the loss of stability between stable branches, even if
the stable branches are small (bottom row). . . . . . . . . . . . . . . 163
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5.1 The astrophysically-informed posterior distributions for 𝑅1.4, Λ1.4,
and 𝑝2.0 when using nonparametric (blue) and spectral (orange) EoSs.
Astrophysical distributions are conditioned on pulsar mass, mass-
radius, and mass-tidal deformability measurements; see Sec. 5.2.
The spectral EoS result shows less variability in 𝑅1.4 at a fixed value
of Λ1.4 than the nonparametric one. This suggests that the degree of
EoS-independence in 𝑅1.4–Λ1.4 is linked to the flexibility of the EoS
model. Similar conclusions hold for 𝑝2.0. . . . . . . . . . . . . . . . 176

5.2 Top, each panel: EoSs drawn from nonparametric mixed-composition
EoS distribution conditioned on all astrophysical data (in blue), along
with the best-fits (black dashed). From left to right we display the
I-Love, I-Q, and Q-Love relations. Bottom, each panel: Residuals
of the fit relative to each of the sampled EoSs. This represents a
measure of the “error” of using the particular relation with the given
EoS set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.3 The same as Fig. 5.2 but with the spectral EoS distribution con-
ditioned on all astrophysical data. We use identical axes ranges
between the two figures. Worst-case residuals are of order 10 times
smaller than the nonparametric mixed-composition distribution seen
in Fig. 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.4 The costs shown in Table 5.2. The spectral costs are in general the
lowest, especially for more equal-mass binaries. . . . . . . . . . . . 190

5.5 Similar to Fig. 5.2. Left: The Binary-Love relation fitted, along
with all EoSs for the nonparametric EoS distribution with mixed
composition when conditioning on all astrophysical data. We plot
each fit for three different mass ratios, 𝑞 = 0.55, 𝑞 = 0.75, and
𝑞 = 0.9. Right: The same for the spectral EoS distribution. . . . . . . 191
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5.6 The Binary-Love fit to the mixed nonparametric, astrophysically-
informed EoS distribution when applying a modified tolerance factor
that favors better fits at low-Λ values. The best fit line is in dashed
black, plotted over draws from the nonparametric distribution in blue.
For comparison, we plot in dashed red the best-fit line for the uniform
tolerance factor fit to the same distribution, the same as Fig. 5.5. We
shade the 𝜎(Λ𝑠)/2 area away from best fit 𝑞 = 0.9 curve in pink for
the uniform tolerance factor, and in gray for the modified, constant
relative tolerance factor. The fit requires better agreement at low Λ𝑎

in order to achieve low cost, and therefore it appears better by eye
than the fit in Fig. 5.5, especially on a log-log plot. . . . . . . . . . . 192

5.7 Left: The C–Love relation fitted along sampled EoSs for the non-
parametric EoS distribution with mixed composition when condi-
tioning on all astrophysical data. Right: The same for the spectral
parametrization. Relative errors are larger for the C–Love relation
than for the I–Love–Q relation, and the nonparametric mixed distri-
bution shows greater variability than the spectral distribution. . . . . 195

5.8 Similar to Fig. 5.2 but for the 𝛼𝑐–𝐶 relation. Left: the relations
between 𝛼𝑐 and 𝐶 for the nonparametric EoS model with mixed
composition conditioned on all astrophysical data. Right: the same
for the spectral parametrization, conditioned on all astrophysical data. 198

5.9 The same as Fig. 5.2, but with the hadronic nonparametric distribution
conditioned on all astrophysical data. . . . . . . . . . . . . . . . . . 204

5.10 The same as Fig. 5.2 but with the piecewise-polytrope EoS distribu-
tion conditioned on all astrophysical data. . . . . . . . . . . . . . . . 204

5.11 The same as Fig. 5.5, but with the hadronic nonparametric EoS
distribution on the left, and the piecewise-polytrope distribution on
the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.12 The same as Fig. 5.7, but with the hadronic nonparametric EoS
distribution on the left, and the piecewise-polytrope EoS distribution
on the right. Both distributions are conditioned on all astrophysical
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.13 Left: The same for the nonparametric EoS distribution, conditioned
on all astrophysical data. Right : The same for the piecewise-
polytrope parametrization, conditioned on all astrophysical data.
Same as Fig. 5.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
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6.1 The 𝑚 −Λ relation for draws from the EoS posterior from [55] (gray
lines). A red dashed line denotes the SLY9 EoS. An orange solid line
indicates the Λ ∝ 𝑚−6 trend. The posteriors of the masses and tidal
deformabilties of the primary and secondary component of a BBH
simulated signal are shown in light blue and dark blue, respectively.
Despite poorer tidal constraints, the secondary is less consistent with
the EoSs, suggestive of a BH. While this demonstration does not
capture the full four-dimensional mass-Λ correlations, it sketches the
main classification idea. . . . . . . . . . . . . . . . . . . . . . . . . 222

6.2 Relevant frequencies for late-inspiral signals: merger (peak strain,
tan) and contact (orbital separation corresponding to objects touch-
ing, light blue) of NSs in equal-mass systems as a function of com-
ponent mass. Shaded regions correspond to marginalization over
the EoS posterior from [76]. Colored lines correspond to the SLy9
EoS [40, 60], which we use to simulate data. Lastly, we display an
approximation for the plunge frequency of a comparable mass BBH
𝑓6𝑀 with a black dash-dot line. . . . . . . . . . . . . . . . . . . . . 224

6.3 One- and two-dimensional marginalized source-frame mass posteri-
ors for the 𝑞 ≡ 𝑚2/𝑚1 = 1 signals. Same-color lines denote systems
with varying total mass 𝑀 with true values marked. For a given
mass, varying line styles denote BBH, NSBH, and BNS systems.
Contours represent two-dimensional 2-𝜎 regions. Given a simulated
mass, similar posteriors across source types shows the subdominant
effect of tides on the inferred masses. . . . . . . . . . . . . . . . . . 227

6.4 Two-dimensional marginal posteriors for select parameters for sys-
tems with 𝑞 = 1, with each column referring to a different simulated
total mass. Blue, yellow, and magenta lines outline the 2-𝜎 contours
of the posterior for the BBH, NSBH, and BNS systems, respectively.
We omit the BHNS configuration as it is identical to NSBH for equal-
mass simulations. The left (right) halves of the third row plots are the
posterior of the primary (secondary), and include draws from the EoS
distribution [55] for reference. A decreasing total mass increases the
tidal signature and correspondingly affects all posteriors. . . . . . . . 228
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6.5 Similar to Fig. 6.3 but for systems with the same simulated total mass
𝑀 = 2𝑀⊙, with each column referring to a different simulated the
mass ratio. When relevant, we also include BHNS configurations in
green. The posteriors of all parameters are, weakly sensitive to the
true mass ratio, with the exception of the BHNS cases. . . . . . . . . 229

6.6 Base-10 logarithm of the odds ratio for each system containing at
least one BH. Monte-Carlo errors for the odds ratios are too small
to be visible in the scale of the figure. Panels correspond to the
system source-frame masses and colors correspond to source type.
The equal-mass panels do not contain BHNS systems as they are
identical to the NSBH ones. Dots (crosses) denote signals with SNR
20(12). Points above log10(OHasBH

BNS ) = 0 (red dashed line) denote
support for the presence of at least one BH in the binary. . . . . . . 231

6.7 Similar to Fig. 6.6 but for the odds ratio for each system containing
at least one NS. Points above log10(OHasNS

BBH ) = 0 (red dashed line)
denote support for the presence of at least one NS in the binary.
Triangular markers indicate that the odds ratio lies somewhere above
the y-axis limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.8 Similar to Fig. 6.6 but for the odds ratio for each system containing
exactly two NSs versus one NS. We only present results for systems
with evidence of at least one NS in Fig. 6.7 which includes all NS-
containing systems. Points above log10(OBNS

OneNS) = 0 (red dashed
line) correspond to systems that are more likely to have two NSs than
one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6.9 Marginal posterior (in brown) for tidal parameters from the BNS
signal with (𝑚1, 𝑚2) = (1.1, 0.9) 𝑀⊙. (Left) Tidal parameters Λ̃

and 𝛿Λ̃, with the prior plotted in grey. (Right) Component tidal
deformabilties Λ1 and Λ2. In both panels, the turquoise distribution
corresponds to the posterior assuming that there is no information
about 𝛿Λ̃. We find that information about 𝛿Λ̃ is nonnegligible, though
insufficient to break the degeneracy between Λ1 and Λ2. . . . . . . . 254
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7.1 Posterior on the mass distribution of the GW BNS (orange) and the
galactic NS (blue) population. We plot the median and 90% highest-
probability credible regions. The EM population is constrained to
much better precision than the GW one due to the low number of
GW BNS detections. With the caveat that they correspond to the as-
trophysical BNS and observed galactic NS distributions respectively,
we find that the two distribution are inconsistent, in agreement with
Ref. [10]. Faint lines are random draws from the GW mass distribu-
tion, illustrating the bimodal uncertainties in the mass distribution. . . 266

7.2 Marginalized posterior for the power-law slope 𝛼 and maximum mass
𝑀pop,GW of the GW population. The slope 𝛼 is poorly constrained
and thus its posterior rails against the upper prior bound, in turn
affecting the 𝑀pop,GW posterior. . . . . . . . . . . . . . . . . . . . . 267

7.3 One- and two-dimensional posteriors for select EoS macroscopic
and microscopic parameters: the TOV mass, 𝑀TOV, the radius and
tidal deformability of a canonical 1.4𝑀⊙ NS, 𝑅1.4 and Λ1.4 respec-
tively, the radius of a 1.8𝑀⊙ NS, 𝑅1.8, and the log-base-10 pressure
(divided by the speed of light squared) at twice and six times nu-
clear saturation, 𝑝2.0 and 𝑝6.0 respectively, when measured in g/cm3.
Two-dimensional contours denote the boundaries of the 90% credi-
ble regions. We show the prior (black), the posterior from the main
analysis that marginalizes over the mass distribution (blue), and the
analogous posterior that arises from additionally including the mass-
radius measurement of J0437-4715 in the analysis of Ref. [70]. . . . 269

7.4 Mass-radius inference, we show the 90% symmetric credible region
for the radius at each mass. We plot the prior (black), posterior from
the main analysis that marginalizes over the mass distribution (blue),
and posterior from Ref. [70] that fixes the mass distribution to flat and
does not include J0437-4715. The upper limit on the radius decreases
by ∼ 0.5 km for all masses. . . . . . . . . . . . . . . . . . . . . . . 270
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7.5 Mass-central density inference, we show the 90% symmetric credible
region for the NS mass at each value of the central density 𝜌𝑐. We plot
the prior (black), posterior from the main analysis that marginalizes
over the mass distribution (blue), and posterior from Ref. [70] that
fixes the mass distribution to flat and does not include J0437-4715.
Vertical lines denote multiples of the nuclear saturation density. Ma-
roon and red contours mark 1 and 2-𝜎 credible regions, respectively,
for the joint posterior on 𝜌𝑐-𝑀TOV. . . . . . . . . . . . . . . . . . . 271

7.6 Speed of sound-density inference, we show the 90% symmetric credi-
ble region for the speed of sound squared, 𝑐2

𝑠 at each rest-mass density
𝜌. We plot the prior (black), posterior from the main analysis that
marginalizes over the mass distribution (blue), and posterior from
Ref. [70] that fixes the mass distribution to flat and does not include
J0437-4715. Vertical lines denote multiples of the nuclear saturation
density. The speed of sound increases by ∼ 5% around densities 2−3
times saturation density. . . . . . . . . . . . . . . . . . . . . . . . . 272

7.7 Marginalized posterior for the maximum speed of sound squared
inside a stable NS. We plot the prior (black), posterior from the
main analysis that marginalizes over the mass distribution (blue), and
posterior from Ref. [70] that fixes the mass distribution to flat and
does not include J0437-4715. The 90% lower limit on the maximum
speed of sound, marked by dashed vertical lines, increases from∼0.51
to ∼0.59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.8 One-and two-dimensional posteriors for 𝑀TOV and the maximum
astrophysical mass 𝑀pop for the galactic NSs (blue) and the merging
BNSs (orange). The black dashed line represents 𝑀pop = 𝑀TOV,
which is imposed in our analyses as we assume that all objects are
NSs. The TOV mass is consistent with the astrophysical maximum
mass for both populations. Contours are drawn at 50% and 90%
levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
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7.9 One- and two-dimensional posteriors for the mass distribution slope
and maximum mass from 23 simulated BNSs. We plot mass-only
population inference (grey) which defaults to the individual-event-
inference prior on the tidal deformability, joint mass-EoS inference
using the lower-dimensional EoS model (green) and the full mass-
EoS joint inference with the GP EoS model (red). The reweighting
scheme corrects the bias from inferring the mass distribution alone. . 281

7.10 One- and two-dimensional posteriors for recovered EoS properties
𝑀TOV and 𝑅1.4 from 23 simulated BNSs. We plot the prior (black)
and the result from reweighting to a full mass-EoS joint inference
with the GP EoS model (red). The reweighting method is able to
recover the true EoS (blue). . . . . . . . . . . . . . . . . . . . . . . 282

7.11 The effect of NICER constraints on EoS inference. We plot the
prior (grey) and posterior for 𝑅1.4, the radius of a 1.4𝑀⊙ NS with
different subsets of NICER data: all three pulsars (blue; main text
analysis), excluding J0030+0451 (pink), excluding J0437-4715 (red),
and excluding all NICER observations (purple). . . . . . . . . . . . . 283

7.12 Impact of the EM population mass modeling on EoS inference. We
plot the prior (black), the posterior from the full analysis (blue; same
as Fig. 7.3), and the posterior when the EM mass distribution is
uniform and independent of the EoS for J0030+0451 and J0437-
4571 and uniform up to the TOV maximum mass of the EoS for
J0740+6620 and J0348+0432. The posteriors are similar. . . . . . . . 284

7.13 Similar to Fig. 7.8 but with a low-spin assumption for GW190425 of
< 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
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8.1 In gray/black, we show 𝑀-𝑅 curves of fair draw EoS from RMFT-
agnostic hybrid distributions which transition at various densities,
shown by subplot titles. Stars fully informed by the RMFT are shown
in black, while stars with cores that have transitioned to the agnostic
model are shown in gray. In cyan, we display the EoS used to generate
simulated observations. In red/orange, we show samples from the
posterior. In this case, points in orange are stars fully described
by the RMFT, while points in red represent stars with cores that
have transitioned to the agnostic model. On the right y-axis of each
panel, we display a gray bar from 𝑀 ∈ (𝑀⊙, 𝑀TOV) where 𝑀TOV is
the TOV maximum mass of the simulation EoS. This represents the
approximate range of NS masses used in astrophysical inference. . . 311

8.2 Inference with the RMFT prior itself. Same as Fig. 8.1, but with
the set of RMFT EoS samples with uniform probability used as prior
distribution. Since the RMFT EoSs are informed by the RMFT at
all densities, we color the posterior orange and the prior black for all
neutron stars, in analogy with Fig. 8.1. . . . . . . . . . . . . . . . . . 312

8.3 The Bayes factor of hybrid RMFT-agnostic GPs with various tran-
sition pressures compared to the “agnostic model” with a transition
pressure of 1011g/cm3. Points show Monte-Carlo estimates, with er-
ror bars showing ±1-𝜎 error in the estimate from the limited sample
size of the EoSs. The 1-𝜎 region for the Bayes factor of the RMFT
prior itself relative to the agnostic model is shown as a gray bar. There
is an overall trend toward higher transition densities, but there is no
conclusive preference for any transition pressure. The simulated data
are consistent with all hybrid priors. . . . . . . . . . . . . . . . . . 314
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8.4 Prior (dashed) and posterior (solid) for the symmetry energy 𝐿 and
the slope of the symmetry energy 𝐽 at saturation for various EoS
priors. In light blue is the result from using the set of RMFT EoSs
directly as a prior. In maroon and orange are results on the symmetry
parameters (as estimated using Eq. 8.6) inferred using GP-priors
which transitioned from RMFT-informed to model agnostic kernels
at 1013 and 1014 g/cm3 respectively. For the GP EoS distributions
(𝑝t/𝑐2 = 1013 and 𝑝t/𝑐2 = 1014 g/cm3), the prior distributions are
effectively identical, since both follow the same RMFT-informed GP
at saturation density. Therefore, we mark the prior for the 𝑝t/𝑐2 =

1013 g/cm3 with a dotted line to increase visibility. . . . . . . . . . . 315
8.5 Same as Fig. 8.1, but for a simulated EoS that undergoes a phase

transition from an RMFT EoS to a constant speed of sound model,
shown in cyan. The RMFT description of the EoS holds only up
to pressures slightly higher than the transition pressure (∼ 1.8 ×
1013g/cm3, which appears as a “kink” in the injected EoS). We plot
200 fair draws from the posterior and 1000 from the prior. We sample
with replacement; if the same EoS from the posterior is sampled more
than once (which happens generically if the posterior has few effective
samples), the opacity of that EoS is proportional to the multiplicity of
that sample. The gray bar has the same interpretation as in Fig. 8.1,
except in this case the simulation EoS maximum mass is higher, so
the bar extends to higher mass. . . . . . . . . . . . . . . . . . . . . 316

8.6 Same as Fig. 8.5, but for the RMFT prior distribution (same as
Fig. 8.2). The RMFT is unable to recover the non-RMFT simula-
tion EoS. There is only one posterior EoS displayed as the posterior
contains only a single effective sample. . . . . . . . . . . . . . . . . 317

8.7 Same as Fig. 8.3, but for a simulated EoS with a strong phase tran-
sition to a constant speed-of-sound near 1.5 times saturation density
(red vertical line). . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

8.8 Same as Fig. 8.4 but with a simulation EoS which transitions to a
constant speed of sound EoS. . . . . . . . . . . . . . . . . . . . . . 320

8.9 Same as Fig. 8.1, but with real astrophysical data instead of simulated
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
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8.10 Prior (dashed) and posterior (solid) distributions for select parame-
ters when transitioning from the RMFT-conditioned to the model-
agnostic EoS prior at 3 × 1013 g/cm3 (maroon) and 1014 g/cm3 (or-
ange). Lines mark 90% credible regions. We show: the radius
(𝑅1.4, 𝑅1.8) and dimensionless tidal deformability (Λ1.4, Λ1.8) of 1.4
and 1.8𝑀⊙ neutron stars respectively and the maximum TOV mass
(𝑀t𝑂𝑉 ) of a neutron star. . . . . . . . . . . . . . . . . . . . . . . . . 322

8.11 Same as Fig. 8.3, but using astrophysical observations rather than
simulated data. We find no strong preference for any transition pressure.323

8.12 The inferred symmetry parameters using astrophysical observations,
same as Fig. 8.4. The prior for the model which transitions at
1013 g/cm3 (maroon dashed) is essentially the same as the posterior
and the prior which transitions at 1014 g/cm3 (same as in Fig. 8.4),
and therefore we mark it with a dotted line to increase contrast. . . . 325

8.13 Speed-of-sound squared 90% credible intervals using current astro-
physical data, along with fair draws for the prior transitioning to
agnostic at 1013 g/cm3 and 1014 g/cm3. Transition pressures are
marked by black vertical lines. A gray bar shows the approximate
range of pressures at saturation density for the RMFT EoSs. . . . . . 326

8.14 The ratio of evidences (i.e. Bayes factor), between models assuming
a transition from an RMFT informed model at 𝑝/𝑐2 = 1014 g/cm3

and at 𝑝/𝑐2 = 3 × 1013 g/cm3. The top panel is for the case of
an RMFT injection, whereas the bottom panel is for the case of an
RMFT that transitions to a constant speed-of-sound EoS. We plot the
Bayes Factor as a function of the number of events analyzed. On the
top x-axis of each figure, we include the SNR of the event added to
the catalog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335



xxxiv

9.1 Results of a fit to an EoS drawn from a Gaussian process with the
enthalpy parametrization. We plot various thermodynamic quantities
as a function of 𝑧. The fit parameters are 𝜌min = 𝜌nuc, 𝜌max = 7𝜌nuc,
𝜌0 = 0.5𝜌nuc, 𝑘 = 𝜋/(log(7)), and 𝑖max = 𝑗max = 10. Top Panel:
The tabulated EoS ℎ (solid, orange) and the total fit ℎ∗ (solid, light
blue). We also plot the polynomial fit to the EoS ℎ𝑝 (dashed, indigo).
Both the total and the polynomial fit are indistinguishable from the
tabulated EoS by eye. Second Panel: The residuals of the total
fit ℎ − ℎ∗. In this metric, the fit demonstrates excellent agreement
relative to ℎ−1 = 𝑝/𝜌+𝜖 ≳ 1×10−2 Third Panel: The trigonometric
fit ℎ𝑟 = ℎ − ℎ𝑝. Fourth Panel: (1/ℎ)𝑑ℎ/𝑑𝑧 = 𝑐2

𝑠 , for both the
tabulated EoS and the total fit. Heuristically, the speed of sound has
a comparable number of plateaus to the number of obvious peaks in
ℎ𝑡 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

9.2 Radius error in fitting Gaussian Process-generate EoSs conditioned
on 𝜒-EFT [43, 46] with the enthalpy parametriation. We plot two
hadronic-conditioned draws, two quark-conditioned draws, and two
hyperonic draws. This indicates the draws are from processes con-
ditioned on EoS models of the given type, so that e.g. the hadronic
process is consistent with known hadronic EoSs. Nonetheless the
processes use “agnsotic” kernels which lead to very compatible dis-
tributions on EoSs for each of the three cases [70, 44]. A problem
with stitching stability affected multiple of the fits at 𝑗max = 3, so we
exclude these. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

9.3 Fitting SLy1.35 (a spectral model of SLy) with the enthalpy parametriza-
tion, expressed through the difference in pressure divided by the
density. The SLy1.35 EoS value for 𝑝(𝜌)/𝜌 is marked by a ma-
roon dashed line for comparison to the residuals. The 𝑗max = 5 and
𝑗max = 2 fit residuals are marked in light blue and indigo. The vertical
blue dashed line marks the stitching density between the enthalpy and
the spectral parametrizations, while the vertical red dot-dashed line
marks the central density of the NS we simulate in Sec. 9.4. The solid
red horizontal line marks an error level of 3 × 10−3 for comparison
with fits in Sec. 9.4; errors below 3 × 10−3 at (1, 3)𝜌nuc serve as a
heuristic for a good fit. . . . . . . . . . . . . . . . . . . . . . . . . . 365
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9.4 Radius error Δ𝑅 as a function of mass for the SLy1.35 EoS and the
𝑗max = 10 and 𝑗max = 5 enthalpy parametrization fits. We mark the
mass of the stars with central density 𝜌𝑐 ∼ 3.04𝜌nuc, (simulated in
Sec. 9.4), with dashed-dot lines. Consistently with the microscopic
comparison of Fig. 9.3, the enthalpy fit can reproduce macroscopic
quantities with excellent agreement. The error decreases with more
trigonometric terms, but always remains small compared to 200 m
grid resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

9.5 NS central density as a function of time (top panel) and its spectrum
(bottom panel) for SpECTRE simulations with SLy1.35 (red dashed)
and its 𝑗max = 10 enthalpy fit (blue solid). These runs are labeled
spectral-sly-mc-220 and enthalpy-sly-mc-220 in Table 9.2. In both
plots the curves are nearly indistinguishable. We plot times in both
milliseconds (ms), and dynamical times (𝑡dyn ≡ 1/√𝜌c) . . . . . . . . 369

9.6 Same as Fig. 9.3 but for the DBHF nuclear EoS model and two
enthalpy fits that are stitched to a spectral parametrization at 𝜌nuc

(low-stitch, light blue) and 2.5𝜌nuc (high-stitch, indigo). We also plot
the tabulated DBHF model 𝑝(𝜌)/𝜌 in dashed-teal for reference. The
vertical dashed lines denote the stitching densities. We also mark the
value Δ𝑝/𝜌 = 3 × 10−3 as a solid red horizontal line for reference.
We mark the central density of the star we simulate in Sec. 9.4 with
a vertical red, dot-dash line. . . . . . . . . . . . . . . . . . . . . . . 371

9.7 The NS mass-radius relation but for the DBHF nuclear model and
two enthalpy fits that are stitched to a spectral parametrization at
𝜌nuc (low-stitch, light blue) and 2.5𝜌nuc (high-stitch, indigo). We
find visibly improved fits to the 𝑀–𝑅 relation when the enthalpy
parametrization extends down to lower densities. Red dots mark the
NSs we evolve in Sec. 9.4. . . . . . . . . . . . . . . . . . . . . . . . 372

9.8 NS central density spectrum for SpECTRE simulations with enthalpy
fits to the DBHF nuclear EoS that are stitched to the spectral parametriza-
tion at 𝜌nuc (low-stitch, blue solid) and 2.5𝜌nuc (high-stitch, red
dashed). These runs are labeled enthalpy-dbhf-mc-130 and spectral-
dbhf-mc-130 respectively in Table 9.2. The simulated star has a
central density of ≈ 2.2𝜌nuc; it is marked in Figs. 9.6 and 9.7. In the
red case, the NS is completely described by the spectral EoS as its
central density is below 2.5𝜌nuc. . . . . . . . . . . . . . . . . . . . . 373
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9.9 Same as Figs. 9.6 & 9.7 but for the DBHF_2507 EoS. The procedure
by which the low- and high-stitch EoSs of Sec. 9.4 are extended
through the phase transition is described in Sec. 9.4. Consistent
with Fig. 9.7, the low-stitch case can more accurately reproduce the
parameters of the phase transition, though caution must be exercised
when comparing to tabulated models as differences in interpolation
in this case can be substantial. See the text of Sec. 9.4. In the top
panel, the black vertical dashed line marks the onset of the phase
transition. The red dot-dashed line in the top panel and the red dots
in the bottom panel mark the NSs we use in subsequent simulations,
analogous to Figs. 9.6 & 9.7 respectively. . . . . . . . . . . . . . . . 376

9.10 Normalized NS central density as a function of time (top panel) and
its spectrum (bottom panel) for SpECTRE simulations with enthalpy
fits to the DBHF_2507 nuclear EoS that are stitched to the spectral
parametrization at 𝜌nuc for two different choices of finite-difference
reconstruction schemes. The adapative order reconstructor is marked
in blue and the monotonized central reconstructor is marked in red.
Run details are listed as enthalpy-pt-ppao-70 and enthalpy-pt-mc-70
respectively in Table 9.2. The simulated star has a central density of
∼ 4.67𝜌nuc; it is marked in Fig. 9.9. We find excellent agreement on
mode frequencies but slight differences in power distribution. . . . . 377
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9.11 Rest-mass density profile relative to the initial profile Δ𝜌 ≡ 𝜌(𝑟, 𝑡) −
𝜌(𝑟, 0) as a function of radius for a hybrid star described with
DBHF_2507 (left panel; details in Sec. 9.4) and a simple polytrope
with Γ = 2 (right panel; details in App. 9.8) for different times (top
to bottom). We denote the NS surface with a vertical solid gray
line in each panel and the quark-hadronic boundary with a vertical
red line in the left panel. We show snapshots of the density at four
different times in order to examine the dynamical behavior of the den-
sity oscillations. For the hybrid star (left) density perturbations are
partially transmitted and reflected at the quark-hadronic boundary,
while for the polytrope (right) the wave smoothly propagates back
and forth within the NS interior. Small black arrows highlight the
wave packet and its traveling direction. The hybrid star snapshots
are from the run enthalpy-pt-ppao-70 and the polytrope snapshots
are from a simulation with identical domain, finite-difference recon-
struction scheme, and central density, but a polytropic EoS (9.33) in
place of DBHF_2507. See polytropic-polytrope-mc-130 for details
of a lower-resolution polytropic simulation. . . . . . . . . . . . . . . 378

9.12 NS rest mass density (colorbar, units of 𝑀−2
⊙ ) on the 𝑦 − 𝑧 plane

at 𝑡 = 100𝑀⊙ for the run enthalpy-pt-ppao-70. Red marks subdo-
main elements where finite-difference is used. The finite-difference
cells are confined near the NS surface (outer circle, white solid line)
and the phase transition layer (inner circle) where discontinuities are
expected. The majority of the star is still evolved with the more
computationally efficient discontinuous-Galerkin method. . . . . . . 380

9.13 Same as Fig. 9.6 but for the smoothed version of DBHF_2507 con-
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C h a p t e r 1

INTRODUCTION

Background
The earliest notion of a neutron star was introduced by Carl Baade and Fritz Zwicky
in 1934 [9], almost immediately after the discovery of the neutron by James Chad-
wick based originally on experiments performed by Irène Joliot-Curie and Frédéric
Joliot, and theoretical motivation provided by Ernest Rutherford [25]. The idea was
simple: the core of a massive star could collapse to a very compact form by protons
and electrons merging into neutrons. The resulting object would be stabilized by
degeneracy pressure of the resulting neutrons. Such an object was quickly termed a
neutron star or alternatively a neutron core. Calculations by J. Robert Oppenheimer
and George Volkoff, however, soon showed that barring a strong repulsive force
between neutrons at high densities, the maximum mass allowed for such a neutron
star in general relativity would be near 0.7 𝑀⊙, substantially less than the maximum
mass of a white dwarf (an analogous object supported by pressure from degenerate
electrons). Therefore, it was unclear how a neutron star could even form, as the
only plausible formation scenario for such an object would be the rapid collapse
of a stellar core which would presumably be halted by electron degeneracy well
before nuclear interactions were relevant. In fact, in their 1939 paper [61], Oppen-
heimer and Volkoff explicitly state “it seems unlikely that neutron cores can play
any significant part in stellar evolution”.

Indeed, if it had turned out that the effective strong force was either not dynamically
relevant, or mildly attractive in the cores of neutron stars, then very likely no neutron
stars would exist. In that case we would know very little about the properties of matter
above the densities of atomic nuclei. However, the discovery of pulsars by Jocelyn
Bell Burnell provided nearly incontrovertible evidence of the existence of neutron-
star like objects. Despite advances in nuclear physics, quantum chromodynamics is
generically intractable because it is a strongly coupled quantum field theory [75],
so the properties of neutron stars still are not computable from first principles.
Nonetheless certain advancements such as chiral effective field theory [81] represent
systematically improvable, perturbative approaches to the problem of interacting
hadrons and mesons. On the other hand, phenomenological models of dense matter,
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which are necessary for describing neutron star cores, do not typically have well-
controlled uncertainties. In this sense, neutron star observations represent the
most robust strategy for constraining the property of matter at high densities, since
uncertainty in our observations can be controlled effectively. In summary, it appears
that the extent to which the properties of dense matter can be predicted robustly from
theory, it can only be possible at low densities (less than two times the density of
atomic nuclei) where particle energies are small compared to the fundamental energy
scale of QCD [35].

Neutron stars are therefore exceptional in astrophysics. On one hand, they were
predicted well before they were discovered. On the other hand, the current picture of
neutron stars we hold cannot be derived theoretically from first principles. Instead,
our understanding of neutron stars comes somewhat from dense-matter physics
informing our understanding of astrophysics, and somewhat from astrophysical
observations informing our understanding of dense matter. From the framework of
modern statistics, the properties of neutron stars and the properties of the equation
of state are treated as unknown variables, which are inferred from observations
and experiments. This problem is technically challenging because we do not fully
understand the relevant particles (or degrees of freedom) in neutron star cores.

Technical Preliminaries
I will now lay out some of the groundwork for modern neutron star physics. Though
many of the derivations are elementary, I will where possible point to the key points
which connect dense-matter physics to astrophysics. In this, I will point to some
open problems and connect these problems to certain research directions.

Neutron stars can be viewed from essentially two different and philosophically in-
compatible frameworks: first, as nearly Newtonian objects, which are subject to
some relativistic corrections (which are considered “small” in this approach), or
as nearly black holes with some corrections due to the presence of matter (which
are likewise considered “small”). The first of these approaches is widely used
when considering perturbations to neutron star matter, for example nearly all de-
formations of neutron stars are most easily computed in an approximate Newtonian
framework [59]. On the other hand, from a gravitational point of view, neutron stars
most nearly resemble black holes. This can be seen in, for example, universal rela-
tions for higher multipoles which at sufficiently high compactness begin to approach
black hole values [84]. However, it is also the case that the sequence of neutron stars
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at increasing masses is disconnected from black holes (when measured in terms of
higher gravitational multipoles).

Neutron star inspirals are very interesting when viewed in this framework. Early
on, when the binary separation is large compared to the neutron star radius (𝑅) and
Schwarzschild radius (𝑅𝑠 = 2𝐺𝑀/𝑐2, with 𝑐 the speed of light and 𝐺 Newton’s
gravitational constant), the system can be treated effectively as two black holes
inspiraling in a nearly Keplerian orbit. However, as the orbit shrinks, the dynam-
ics become more relativistic, while at the same time the internal structure of the
neutron stars becomes more important [47]. This leads to (perhaps paradoxically)
the fundamentally Newtonian effect of tidal deformation becoming important along
with the details of general relativity very near the merger. Upon merger, the sys-
tem is well modeled by neither a perturbed Newtonian star nor a perturbed black
hole. Therefore, analyzing binary neutron star mergers holds incredible promise for
understanding the physics of neutron stars and dense matter, but is also incredibly
challenging because it requires fully-relativistic simulations.

Isolated neutron stars

The basic picture of neutron stars which was formulated in the 1930’s and persists
to this day is a self-gravitating sphere of mostly neutrons. Because of their high
compactness, or alternatively because of the large interaction energy of neutrons, the
relativistic stellar structure equations, the Tolman-Oppenheimer-Volkoff (TOV) [79,
61] must be used. The system that is solved is the Einstein’s equations for a perfect
fluid.

𝐺𝜇𝜈 ≡ 𝑅𝜇𝜈 −
1
2
𝑅𝑔𝜇𝜈 =

1
𝑐4 8𝜋𝐺𝑇𝜇𝜈, (1.1)

where 𝐺𝜇𝜈 is called the Einstein tensor, 𝑅𝜇𝜈 is the Ricci tensor, and 𝑅 is the Ricci
scalar. 𝑇𝜇𝜈 is the stress energy tensor, which in this case is

𝑇
𝜇
𝜈 = ℎ𝜌𝑢𝜇𝑢𝜈 + 𝑃𝛿𝜇𝜈 =

©«
−𝑒 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

ª®®®®®¬
, (1.2)

where 𝑢𝜇 is the four-velocity, 𝑒 is the energy density, 𝑝 is the pressure, 𝜌 is the
rest-mass density of baryons, and ℎ = (𝑒 + 𝑝)/𝜌 is the specific enthalpy. “−𝑒”
is a consequence of choosing the −, +, +, + metric convention. Because we seek
solutions for static, spherically symmetric stars, 𝑢𝜇 can be written as (1, 0, 0, 0)𝑇
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and all quantities depend only on a single radial coordinate 𝑟; the form of Eq. (1.2)
reflects this choice. In the case of an isolated neutron star which has reached chem-
ical equilibrium, the temperature is taken to be zero and the relevant conserved
quantity is baryon number. Chemical equilibrium here means that all necessary
reactions to reach the lowest-energy state are allowed to proceed to completion, in
practice this means that these reactions are fast compared to the relevant macro-
scopic timescale (time for a binary to merge, for example). Generally, the slowest
reaction is the emission of leptons via Urca processes; therefore the charged-lepton
fraction, or where it is equivalent, the charge fraction, electron fraction, or proton
fraction, is usually the most likely quantity to be away from equilibrium. This
equilibrium is called 𝛽−equilbrium, and is maintained by weak interactions which
control the electron (or charged lepton) fraction via neutrino emission.1 However,
if the temperature is small, and the charge fraction is close to its equilibrium value,
the equation of state can be treated as one dimensional, and can be written as 𝑝(𝑒),
for example. This assumption is not strictly necessary; however, if the equation of
state is multidimensional, further equations will need to be supplied to close the
system. A variety of possible coordinate systems are possible for solving the TOV
equations, for simplicity I will use the ones originally introduced by Oppenheimer
and Volkoff (OV), but will also point out that so-called isotropic coordinates are
in many ways preferable [12]. In particular, in isotropic coordinates Christoffel
symbols are continuously differentiable across the surface of the star, whereas in the
OV coordinates they are not. Nonetheless, we take the metric to be

𝑑𝑠2 = −𝑒2𝜈(𝑟)𝑑𝑡2 + 𝑒2𝜆(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) (1.3)

where 𝜈(𝑟) and 𝜆(𝑟) are functions of the radial coordinate 𝑟. Generally 𝑒−𝜆(𝑟) is
further taken to be

𝑒−2𝜆(𝑟) = 1 − 2𝑀 (𝑟)
𝑟

, (1.4)

where 𝑀 (𝑟) can be thought of as the enclosed gravitational mass inside a shell of
coordinate radius 𝑟; it agrees with the Schwarzschild mass at the surface of the star.
From here on out we will work in units where 𝑐 = 1 and 𝐺 = 1. The Einstein
equations then furnish 3 nontrivial relations, although we only use two of them. The
first is the 𝑡𝑡 component of the Einstein equations, which gives

𝑑𝑀

𝑑𝑟
= 4𝜋𝑟2𝑒(𝑟). (1.5)

1In proto-neutron stars formed from supernovae, both thermal and out-of-equilibrium effects
may be relevant.
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The second is the 𝑟𝑟 component of the Einstein equations, which gives

𝑑𝜈

𝑑𝑟
=

1
𝑟2

(
𝑀 (𝑟) + 4𝜋𝑟3𝑝

1 − 2𝑀 (𝑟)/𝑟

)
. (1.6)

Finally, we use the 𝑟 component of the conservation of the stress-energy tensor
(which follows from (1.1))

∇𝛼𝑇𝛼𝛽 = 0, (1.7)

which gives2
𝑑 ln ℎ
𝑑𝑟

= −𝑑𝜈
𝑑𝑟
. (1.8)

Almost always, the equation Eq. (1.6) is solved with a matter variable on the LHS
using Eq. (1.8) to eliminate the 𝑑𝜈/𝑑𝑟 term. However, it is worthwhile to pause and
note that Eq. (1.8) can be integrated to ln ℎ + 𝜈 = 𝐶, where 𝐶 = ln(1− 2𝑀 (𝑅)/𝑅) is
a constant determined by stitching the metric to the exterior Schwarzschild solution.
This also makes it very clear that if ln ℎ is not small, then 𝜈 must be substantially
less than zero. The statement that ln ℎ is not small is a criteria for matter to be
relativistic (since it implies internal energy is comparable to the rest-mass density),
while the statement that 𝜈 < 0 is an indicator that General relativistic effects, like
time dilation, are important. This is a very rudimentary, but nonetheless precise
example of the following maxim: In general relativity, the spacetime of a star is
extreme if and only if the matter inside the star is extreme.

The TOV equations are a coupled system of ordinary differential equations. While
the system is solvable, there are numerical considerations that make it unappealing.
In particular, the surface of the star 𝑟 = 𝑅 is not known ahead of time. Instead it
is preferable to rewrite the equations in the form of Lindblom [58]. This involves
making the coordinate transformation 𝑢 ≡ 𝑟2, 𝑣 ≡ 𝑀 (𝑟)/𝑟, and treating ln ℎ as the
independent variable (which has known boundary values, ln ℎ𝑐, the central value,
and ln ℎ0 the boundary value, which is often taken to be zero3). The equations

2Implicit here is the identity 𝑑 ln ℎ = 𝑑𝑝/(𝑒 + 𝑝).
3This is possible because the rest-mass density of baryons is defined as 𝜌 ≡ 𝑚𝐵𝑛𝐵, where 𝑚𝐵 is

the mass of a baryon and 𝑛𝐵 is the number density of baryons. By varying the mass of a baryon, the
total baryon ”rest-mass” varies as well, and can be made to agree with the energy density of matter
as the density goes to zero. Microphysically, matter is bound at low densities in its ground state, so
the internal energy 𝑒 − 𝜌 is slightly negative. Astrophysically, at least for static systems, the only
observables are 𝑒 and 𝑝, so changes to the overall scaling of 𝜌 are not physically meaningful, as long
as ℎ also changes so that ℎ𝜌 = 𝑝 + 𝑒 stays fixed.
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become

𝑑𝑢

𝑑 ln ℎ
= −(2𝑢) 1 − 2𝑣

4𝜋𝑝𝑢 + 𝑣 (1.9)

𝑑𝑣

𝑑 ln ℎ
= −(4𝜋𝑒𝑢 − 𝑣) 1 − 2𝑣

4𝜋𝑝𝑢 + 𝑣 . (1.10)

These variables are also preferable because they approach zero linearly at the center
of the star, the solution goes like

4𝜋𝑒𝑢(𝛿 ln ℎ) = 6𝛿 ln ℎ
1 + 3𝑤

+ O(𝛿 ln ℎ)2 (1.11)

𝑣(𝛿 ln ℎ) = 2𝛿 ln ℎ
1 + 3𝑤

+ O(𝛿 ln ℎ)2, (1.12)

where w = 𝑝/𝑒 and 𝛿 ln ℎ = ln ℎ𝑐 − ln ℎ. The system is solved from the center to the
surface, but because the system is singular at the center of the star, in practice the
system is solved from some finite 𝛿𝑙𝑛ℎ to the surface4. The radius is then found by
taking 𝑅 =

√︁
𝑢(ln ℎ = ln ℎ0) and 𝑀 = 𝑅𝑣(ln ℎ = ln ℎ0).

For each equation of state, we can produce a family of solutions to the TOV equations
parametrized by central density. This family is often represented by the mass-radius
relation of the equation of state.

While the approximation that neutron stars are spherically symmetric is often good,
it is violated when neutron stars are rotating. In this case, no exact solutions to
the Einstein equations coupled to stress-energy conservation are known5. Nonethe-
less, strategies for constructing arbitrarily good initial data for rotating perfect-fluid
neutron stars are known [31]. Before this, however, it was known how to construct
approximate initial data for rotating neutron stars by expanding metric components
to leading order in the rotation (angular) freqeuncy, Ω. This is the objective of the
so-called Hartle-Thorne metric [44], and serves as a reasonable approximation as
well as providing valuable insights about spacetimes with matter. This approach
also allows for the construction of tidally perturbed neutron stars, the important point
being that in both cases the leading order corrections to the matter in the star are
given by ℓ = 2 spherical harmonics. This statement is as true in Newtonian physics
as it is in general relativity. However, in general relativity there is an additional

4An interesting application of this form of the equations is that the expansion suggested in
Eq. (1.11) can be carried out to higher order. Empirically, even at just second order in 𝛿 ln ℎ, the
overall structure of the entire star is well-resolved, at least when the system is only mildly relativistic
(𝑣, 𝑤 ≪ 1).

5With the exception of rotating black hole solutions, no astrophysically relevant and exact
solutions are known for rotating objects in general relativity.
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Figure 1.1: Examples of the mass radius relation for various equations of state.
Shown are Bsk22 [41], QMC-RMF-3 [7], SFHo [46], and an equation of state
composed purely of degenerate, non-interacting neutrons (similar to the one used
by [62]). Different strategies for constructing the equation of state are discussed
in Sec. 1, but for now, it is enough to recognize the extreme difference between
neutron star models. Neutron star solutions with mass increasing as a function of
central density (or enthalpy) are stable. There are no equilibrium solutions with
masses above a certain mass (the maximum TOV mass), but this mass depends on
the equation of state. Determining this mass is a key goal of nuclear astrophysics.

correction at lower order in the spin which is responsible for “frame-dragging”. We
can therefore write down the most generic perturbed, stationary fluid solution at
leading order.

Following the approach laid out in [84], we write the metric

𝑑𝑠2 = −𝑒2𝜈(𝑟) [
1 + 2𝜖2ℎ2(𝑟)2𝛼𝑌2𝑚 (𝜃, 𝜙)

]
𝑑𝑡2+

𝑒2𝜆(𝑟)
[
1 + 2

2𝜖2𝑚2(𝑟)2𝛼𝑌2𝑚 (𝜃, 𝜙)
𝑟 − 2𝑀 (𝑟)

]
𝑑𝑟2+

+ 𝑟2 [
1 + 2𝜖2𝐾2(𝑟)2𝛼𝑌2𝑚 (𝜃, 𝜙)

]
×(

𝑑𝜃2 + sin2 𝜃
[
𝑑𝜙 − 𝜖

[
Ω∗ − 𝜔1(𝑟)𝑃′1(cos(𝜃))𝑑𝑡

]2
] )

(1.13)

where 𝜖 is a bookkeeping parameter, ℎ2(𝑟), 𝑚2(𝑟), and 𝐾2(𝑟) are functions which
correspond to deformations of the star, and 𝛼 is a constant (which can be absorbed
into the definition of the spherical harmonics,𝑌ℓ,𝑚). The function𝜔1(𝑟) corresponds
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to the impact of the angular velocity Ω∗ on the spacetime. The function 𝑃′1(cos(𝜃))
is the derivative of the 1st Legendre polynomial.

Importantly, the perturbation expansion cannot be carried out in these coordinates,
because the pressure perturbation is not small compared to the pressure near the
boundary of the star (where the pressure may be zero in the unperturbed star).
Instead, the radial coordinate is transformed to 𝑟 = 𝑟′ + 𝜖2𝜉2(𝑟′)𝛼𝑌2𝑚 (𝜃, 𝜙), so that
𝜌(𝑟 (𝑟′, 𝜃, 𝜙)) = 𝜌(𝑟′) = 𝜌(0) (𝑟). Put another way, this guarantees that at a fixed
coordinate value 𝑟′ the density is unchanged under the perturbation. The net result of
this procedure is that the perturbed metric is set equal to the perturbed stress energy
tensor, which is the stress-energy of a rotating perfect fluid. This gives equations for
all of the unknown metric functions inside the star, which are matched to external
solutions at the surface. The key insight is that in the exterior of the star, the solution
for each metric component will contain an undetermined constant, which will need
to be fixed by matching to the interior solution. These constants can be matched to
Newtonian expressions for properties for bulk properties of the star; see Table 1.1
for a summary of the relevant properties.

Newtonian property metric functions at leading order order of first contribution
Mass 𝑀 𝑀 (𝑟) or 𝜆(𝑟), 𝜈(𝑟) 𝜖0

Moment of inertia 𝐼 𝜔1(𝑟) 𝜖1

Quadrupole moment 𝑄, ℎ2(𝑟), 𝐾2(𝑟) 𝜖2

Table 1.1: Bulk properties of stars in the Hartle-Thorne metric, the metric functions
which are used to compute these properties, and the order at which this quantity
can first be computed. Note that if the mass is defined via an analogy to Newtonian
multipole moments, it receives additional corrections at second order in 𝜖 . Addition-
ally, both tidal and rotational quadrupole moments are determined by the 𝜖2 term,
although the calculation of the tidal Love number as presented in Ref. [84] requires
𝜔1 = 0, so it’s not immediately clear if this approach can be used for rotating, tidally
deformed stars. See [53] for details.

One key result of this calculation is that the quadratic corrections to the metric have
undetermined constants that cannot be determined at lower order. A Kerr black hole,
on the other hand has only two relevant parameters (up to translations, boosts, and
rotations), mass 𝑀 , and spin angular momentum ®𝑆, which determine the metric at
all orders in spin. Therefore, to a distant observer measuring only the gravitational
field, neutron stars can be mistaken for black holes at zeroth or first order in epsilon,
though at second order it is clear that stars are not black holes. Also crucially, the
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quadrupole moment of a neutron star depends on the internal structure of the star,
and therefore also the equation of state.

Neutron Star formation
The vast majority of neutron stars are expected to be formed in core-collapse “type
II, Ib, and Ic” supernovae (see [19] for a review.). The key ingredient in forming a
neutron star is collecting sufficient mass in an electron-degenerate core that it sur-
passes the Chandrasekhar mass, destabilizes, and after sufficient electron captures,
implodes. This process is in some sense generic in the lifespans of massive stars,
and is expected to occur in stars with masses greater than about 8𝑀⊙. Two key
factors frustrate the formation of neutron stars in this case, first, some astrophysical
process may prevent the collection of the necessary ingredients in the core. A prime
example of this is mergers of carbon-oxygen white dwarfs, which in principle could
satisfy the above criteria for neutron star formation, but in practice explode as type
Ia supernovae6. The second factor that prevents neutron star formation is that once
the baryons have arrived in a neutron star configuration, there may be no stable
long-term neutron star allowed by the equation of state and general relativity. This
is the case when, for example, the amount of mass deposited on a proto-neutron
star after a supernova exceeds the TOV maximum mass. In this case the object
will almost certainly form a black hole. From first principles, it is not obvious that
both criteria should be satisfiable simultaneously, the first is generally alleviated by
stronger gravity, but the second is made worse by it. If not tuned correctly, the
only possible endstates of massive stars are white dwarfs, black holes, or nuclear
detonations which disperse large fractions of stars matter7.

Nevertheless, some fraction of collapsing electron-degenerate cores do form neutron
stars. In fact neutron stars are abundant in galaxy, observed as radio pulsars, x-ray

6It’s not a coincidence that these two phenomena share a common name, historically Baade
and Zwicky proposed the core-collapse mechanism first, but were in practice observing degenerate
explosions. The reason why the observed energies of these two explosions are comparable, even
though the energy released in the core-collapse case ∼ 𝑀2

Chandra/𝑅NS ∼ .1𝑀Chandra is dozens of times
larger than released in the detonation 𝑀Chandra𝜖bind (where 𝑀Chandra is the Chandrasekhar mass (the
approximate mass of the degenerate precursor), and 𝜖bind ≲ .002 is the binding energy per unit mass
released in the nuclear reactions). This is because the vast majority of energy in a core collapse
supernova is released as neutrinos, and only a few percent is transferred to the matter. More generally,
this is an indication that only the strong nuclear force is capable of producing energies per particle
comparable to those found highly compact objects.

7The white dwarf remnant of SN 1181, which is surmised to have been an underluminous type
Iax supernova that exploded away some fraction of its mass, is observationally very similar to a Wolf-
Rayet (i.e. high mass) star [63]. Understanding white dwarf dynamics is one key to disentangling
the astrophysical origins of neutron stars.
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sources, and in some cases (such as the Crab), across the entire electromagnetic
spectrum [18]. Observations of pulsars in binaries imply a characteristic mass of ∼
1.35𝑀⊙ for typical neutron stars [8], but with a nonnegligible tail of sources at higher
masses. The location of the maximum mass of the galactic pulsar distribution [8]
is relevant for equation of state physics, since the equation of state must be at least
stiff enough to support the most massive observed pulsar. Despite likely having
very different formation properties, a similar mass distribution is observed for EM-
dark compact objects identifiable with neutron stars from Gaia astrometry [10, 11].
Observed in the galaxy as well are neutron stars in binaries with other neutron
stars [49, 86]. Neutron stars in these binaries seem to, more than generic galactic
neutron stars, have masses closely clustered near ∼ 1.35 𝑀⊙. Interestingly, the
observation of merging neutron stars in GW170817 [4] by both gravitational waves
and electromagnetic sources points to the system of two neutron stars consistent
with this mass. However, the second supposed binary neutron system observed
by gravitational waves is not consistent with both compact objects being near ∼
1.35 𝑀⊙ [3], though both objects are likely below the TOV maximum mass.

Untangling the exact neutron star mass distribution, and the physical processes
which explain it will certainly be helped by more observations of neutron stars.
However, even then, the details of how neutron stars form in supernovae is incredibly
complicated, and expensive to simulate [20]. Improved understanding of the dense
matter equation of state will be key here as well, as greater precision in the equation
of state allows us to rule out configurations ahead of evolution. Nonetheless, results
are still largely qualitative, and extensive studies of supernovae in 3D which vary
the equation of state have not yet been performed.

Neutron Stars in Binaries
The problem of merging neutron stars is in many ways similar to the problem of
supernovae. Physically, both involve the release of large amounts of gravitational
energy to bind a compact object. Computationally, these problems are similar as
well, as they both require simulating the behavior of dense matter in a changing
relativistic gravitational field. Nonetheless, because of the particular details of the
binary problem (in particular, the post-Newtonian expansion), to some extent the
problem is easier to approach. Already, merging neutron stars have been used
to constrain the equation of state [2], and more generally, merging neutron stars
represent a remarkable opportunity to study dense matter and extreme gravity in
a single astrophysical experiment. The overarching mechanism which allows the
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neutron stars to merge is gravitational radiation. Post-Newtonian calculations imply
that the energy is carried away from a merging binary of two point masses [67] at a
rate of

𝐿GW =
𝑑𝐸

𝑑𝑡
= −32

5
𝑚2

1𝑚
2
2(𝑚1 + 𝑚2)
𝑟5 (1 + O(𝑒2)) (1.14)

where 𝑚1 and 𝑚2 are the masses of the two objects, and 𝑟 is the semimajor axis
of the orbit, and 𝑒 is the orbital eccentricity. This quantity can be compared to the
gravitational energy in a Keplerian orbit, which is

𝐸orb = −𝑚1𝑚2
2𝑟

(1.15)���� 𝐸orb
𝐿GW

���� = 5
64

𝑟4

𝑚1𝑚2(𝑚1 + 𝑚2)
=

5
64
𝑟

𝑟3

𝑚1𝑚2(𝑚1 + 𝑚2)
. (1.16)

This is an exceptionally long timescale (when compared to the orbital timescale√︁
𝑟3/(𝑚1 + 𝑚2) = 𝑟

√︁
𝑟/(𝑚1 + 𝑚2) ) when 𝑟 ≫ 𝑚1, 𝑚2, though is not unfathomably

long when 𝑟 ∼ 𝑅N𝑆 ∼ 6𝑀 . Because of this, at merger (when 𝑟 ∼ 𝑅N𝑆), the timescale
for gravitational radiation is comparable to the dynamical timescale of the star. This
is unlike the case of white dwarfs, which even though they are brought to merger
by gravitational radiation, once the merger commences, gravitational radiation is
negligible.

The characteristic quantity (𝑚1 + 𝑚2)/𝑟 is called the post-Newtonian parameter.
This is a dimensionless number which is less than 1. For a quasi-circular orbit,

𝑚1 + 𝑚2

𝑟3 = 𝜔2, (1.17)

so the post-Newtonian parameter is (𝑀𝜔)2/3
8.

Despite this, it is not obvious that the calculation performed in Ref. [67] is valid,
because the stars are not point masses. For neutron stars for example, the binding
energy is of order 𝑀2

N𝑆/𝑅N𝑆 ∼ 1/6𝑀NS. The linearized calculation of gravitational
waves, however, assumes the gravitational binding energy is small compared to the
rest mass energy. Remarkably, up to 3rd post-Newtonian order, nonrotating neutron
stars are treatable as point particles with mass given by the gravitational mass of the
star, at 3rd post-Newtonian order, the situation is unclear [82]. For rotating neutron
stars the situation is different; since the spin-induced quadrupole moment of neutron
stars is not the same as that of a BH of the same mass and spin, the dynamics of

8Note 𝜔 is the binary angular frequency, the gravitational wave frequency 𝑓 satisfies 2𝜋 𝑓 = 2𝜔,
the post-Newtonian parameter is often taken to be (𝜋𝑀 𝑓 )2/3.
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the binary are different. This correction is relevant at leading 2nd post-Newtonian
order, although the size of this correction is not exceptionally important at current
sensitivity, in particular because neutron star spins are expected to be small.

Naturally, the next question to ask, given the framework above is “what is the impact
of the tidally-induced quadrupole?”. This quadrupole moment appears at a higher
post-Newtonian order, because rather than being sourced by rotation, it is sourced
by the tidal gravitational field of the companion star. This field scales like 𝑚2/𝑟3, if
we are interested in the primary object (object 1). In turn, object 1 will respond by
deforming, which will produce a quardupolar correction to the metric component
which falls off like 1/𝑟3. Collectively, the net effect will scale like

𝑚2

𝑟3 × 1
𝑟3 ∝ 1

𝑟6 . (1.18)

This term enters at 5th post-Newtonian order; however, the coefficient on the term
scales like (𝑅1/𝑚1)5, which becomes larger at low masses and high-radii, unlike
relativisitic corrections. In fact, this term is not relativistic, but is fully Newtonian in
origin 9. Therefore the high post-Newtonian order of this term is a matter of overall
scaling, rather than a question of how deep exceedingly relativistic this term is.
This is crucial, because the tidal deformability is measurable late in the inspiral not
because the system is relativistic, but actually despite the fact that the system is highly
relativistic. The tidal deformability, in gravitational-wave astronomy is typically
given by a dimensionless number Λ, which appears directly in the gravitational
waveform. See, for example [47, 28]. In order for the conventional picture of
neutron star inspirals to be useful for precise calculations, expansions in both true
“post-Newtoninan” effects and perturbations of the neutron stars away from spherical
symmetry must be under control. The first could break down simply because the
post-Newtonian expansion is not converging to the correct point-particle description
of general relativity [83]. The second may break down because of dynamical or
nonlinear tides, in particular the resonant excitation of modes; see for example [85].
However, it’s also possible that while analytical expressions given by post-Newtonian
theory break down, that the form of the expansion is still useful if the coefficients in
the expansion are calibrated to, e.g. numerical simulations [34].

Eventually, both of these expansions must break down completely. At the very latest,
when the two neutron stars contact, the system will no longer be well described by

9This additional quadrupole moment leads to two effects, one is a change in the binding energy
at a particular frequency, which is truly Newtonian, and the other is enhanced gravitational-wave
emission from the quadrupole. The second is a relativistic effect, but it is smaller than the first
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a pair of nearly spherical neutron stars. Beyond this point, truly quantitative predic-
tions are very difficult to produce, though qualitatively the postmerger dynamics are
somewhat well understood; for review see [70, 30]. From the point of view of the
final matter distribution at long times (compared to the characteristic time ∼ 𝑀rem,
the mass of the remnant) there are essentially two possible outcomes for the merger
scenario. First, the object could form a stable remnant, which would be another
neutron star. If the object exceeds the maximum TOV mass, but is stable because
of rigid rotation, it is called a supermassive neutron star. Such a remnant may be
slowed by magnetic dipole radiation, and may collapse on an arbitrary timescale. 10

It’s also possible that on the timescale of the remnant it collapses to a black hole.
An interesting case is the case that the remnant survives for ∼ 100 − 1, 000 dynam-
ical times, stabilized by differential rotation. This object is called a hypermassive
neutron star. Once the differential rotation is removed, by some combination of
gravitational radiation and fluid instabilities, the star collapses. Despite appearing
fine-tuned, depending on exactly the equation of state (in particular, but not exclu-
sively the maximum mass), it may be the case that so-called “typical” mergers of
two ∼ 1.35 ∼ 𝑀⊙ neutron stars have a hypermassive neutron star remnant. In the
case that the remnant collapses on a dynamical time, the outcome is called prompt
collapse.11

The equation of state of dense matter in neutron stars.
Neutron stars are so extreme that the matter inside of them will, on astrophysical time
scales (e.g. the inspiral timescale of a binary ≳ 106 years), reach the ground state of
matter of the standard model (for reference see, e.g. Shapiro and Teukolksy [74]).
This is to say that except for baryon number, there are no other nonzero conserved
quantities with finite chemical potential, and the temperature will be effectively
zero. This situation simplifies substantially the study of neutron stars, because the
equation of state is determined by a single parameter. A corollary of this is all
neutron stars with the same central density have the same macroscopic properties.

10The collapse of such an object may lead to electromagnetic transients, which may also allow
tests of general relativity in the strong field [60].

11The question of to what extent gravitational-wave emission from the prompt collapse is de-
termined by the details of the hydrodynamics of the neutron star versus the “no-hair” properties of
the remnant black hole is interesting. Some authors identify excess power that is identified as a
black-hole quasi-normal mode in neutron star postmerger simulations [33], while others consider it
likely to be a hydrodynamic mode associated with the collapse of the star (e.g. [78]). Investigations
by a SURF student, Lana Alabassi lead me to believe the latter explanation, but the problem is
certainly not settled. This question also has interesting analogues with regards to electromagnetic
transient behavior [50].
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In practice, neutron stars freshly born from supernovae, or created in neutron star
mergers will not satisfy these criteria, but nonetheless, understanding the equation
of state of cold, equilibrated neutron stars is a crucial step in understanding neutron
star physics holistically.

The general picture of neutron star interiors is somewhat analogous to Earth’s
interior. Each has a crust, likely an atmosphere, and various layers inside which
correspond to different phases of matter. However, here is where the similarities
end. While the Earth has a characteristic density of ∼ 5 g/cm3, neutron stars have a
characteristic density of ∼ 5 × 1014 g/cm3, which is a bit larger than the density of
atomic nuclei. Much can be learned about the matter inside of neutron stars simply
from knowing their bulk properties. For example, the virial theorem indicates that
the internal energy of matter in the star should be the same order of magnitude as the
gravitational binding energy of the matter. In particular, the gravitational binding
energy per unit mass is of order 𝐺𝑀/𝑅 ∼ 1/6, so the internal energy per unit mass
(which we call the specific internal energy) should also be of order 1/6. In contrast,
the binding energy of even the most tightly bound atomic nuclei is less than 1% its
rest mass. More careful accounting shows it is also at least a factor of two larger
than the predicted specific internal energy of a noninteracting degenerate neutron
gas. Therefore, an additional repulsive interaction must be present in neutron star
interiors; this repulsion is ultimately provided by strong interactions. Fitting their
name, these interactions are, in the cores of neutron stars, potentially the strongest
interactions anywhere in the universe when measured by specific internal energy.

The above picture could have in principle been laid out with no reference to the
standard model of particle physics, though in practice the discovery of neutron stars
and the development of the standard model were nearly contemporaneous. It is clear
from the current understanding of QCD that neutron stars will contain strongly in-
teracting neutrons and protons, but also plausibly strange-quark containing hadrons
(called hyperons), and potentially deconfined quarks, or other exotic states of matter.
Nonetheless, because the theory of the strong interaction, QCD, is strongly coupled
at neutron star densities it is not possible to use the theory itself to perturbatively
compute the dense-matter equation of state. Lattice QCD calculations are currently
infeasible for matter inside neutron star cores because of the large baryon chemical
potential [Ratti:2018ksb]. Furthermore, it is not clear which particles will become
relevant at which densities, and therefore which degrees of freedom should be in-
cluded in such a calculation in the first place. Therefore, various effective theories
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and phenomenological models have been used to model matter inside of neutron
stars.

One of the core principles of these models is that they should be able to self-
consistently explain the properties of atomic nuclei, such as nuclear binding energies
and scattering cross sections as well as neutron-rich matter. Historically, the earliest
model of nuclear matter was the liquid-drop model [39], which treated the nucleus
a liquid drop and modeled all possible contributions to the energy that could arise
between nucleons within this “drop”. Nonetheless, this model was classical, and
obvious deficiencies such as remarkably strong binding at particular neutron and
proton numbers (so-called magic numbers) required the nuclear shell model [23].
In general, each model has certain advantages and naturally makes certain correct
predictions. To this day, measurements of masses [66], and collisions of heavy
nuclei [21] continue to push forward the field of nuclear physics 12.

The general approach is to write down the relevant degrees of freedom for the
particular model that is being used, and then include some number of relevant
interactions. In nonrelativistic models, the many-body Schrödinger equation is then
solved, while in relativistic models, the equations of motion are solved and the
energy is computed from the stress-energy. In both cases, the state of most interest
for neutron stars is homogeneous nuclear matter in the ground (minimum energy)
state. The result is the energy as a function of particle density, from which all
thermodynamic quantities can be computed. In general, the model written down
will have parameters which are not known, and these parameters must be fit to data
or guessed. Further, approximations generically must be made to render the system
tractable. In relativistic calculations the mean-field approximation, which treats
mesons as classical fields is often employed. The energy will depend on the choice
of interactions, particles, and approximations, and also in most phenomenological
models there is no robust way to estimate the systematic error associated with these
different choices [69].

Historically, nonrelativistic models 13 were developed first, and were found to satis-
factorily describe certain properties of atomic nuclei. Arguably, in the outer crust
nonrelativistic calculations are sufficiently accurate that often the EoS there is con-
sidered “known”. Approaches such as the Wigner-Seitz approximation ( [26] and
references therein) are used to compute the properties of the outer crust. Such

12And, increasingly, the equation of state of dense nuclear matter [77].
13Note that nonrelativistic here applies to hadronic degrees of freedom, electrons in neutron stars

are almost everywhere highly relativistic (𝐸 ≫ 𝑚𝑒, the electron mass).



16

approaches treat the crust as a lattice of nuclei immersed in an electron gas, for
example, below neutron drip, the energy density is given by [13]

𝑛𝑁 (𝑊𝑁 (𝐴, 𝑍) +𝑊𝐿) + 𝜖𝑒 (𝑛𝑒) (1.19)

Where 𝑛𝑁 is the number density of nuclei, 𝑊𝑁 (𝐴, 𝑍) is the energy of a nucleus
with atomic number 𝐴 and charge 𝑍 , and 𝑊𝐿 is the lattice energy per nucleus
(depends only on the charge of the nucleus and the lattice spacing), and 𝜖𝑒 (𝑛𝑒) is
the energy density of electrons, at electron number density 𝑛𝑒. The electrons are
effectively noninteracting, so the energy density is that of a free Fermi gas. Beyond
a certain density, it is no longer favorable for additional baryons to reside in nuclei,
but rather in a continuum of states outside the lattice. Ref. [13] finds this value to
be 4.3× 1011 g/cm3, well below the average densities of most astrophysical neutron
stars. Therefore, the bulk of the crust of the neutron star is identified as the “inner
crust”, at densities beyond neutron drip. Here calculations are still possible, but
more prone to systematic uncertainties. In general, calculations contain parameters
which must be calibrated by matching to nuclear data, either experiments or ab
initio calculations (see the discussion on chiral effective field theory below). In
this region, nonrelativistic calculations are phenomenological; for example Skyrme
interactions [76] build a Hamiltonian consisting of momentum dependent “contact
potentials” have been used to build models such as SLy4 [24], and BSk22 [41].
Nonetheless, nonrelativistic models have drawbacks. At sufficiently high densities
nucleons are relativistic, neglecting knowledge of relativity for example means EoSs
need not remain causal in the sense that the sound speed

√︁
(𝑑𝑝/𝑑𝑒) remains less

than the speed of light.

Relativistic models of the equation of state naturally solve certain problems, and for
example automatically incorporate spin effects that would have to be explicitly added
to a nonrelativistic model. One particular model, the relativistic mean field model
is commonly used. In this case, nucleons are treated as Dirac fields, and mesons
are treated “classically”, see [71]. Other approaches include relativistic (or Dirac)
Brueckner-Hartree-Fock methods [17] in which the Dirac equation for nucleons is
solved, with the nucleons “dressed” by one-boson exchange potentials. Nonethe-
less, these approaches are in some sense more complicated then nonrelativistic
approaches, and like nonrelativistic approaches are not fundamentally connected to
QCD. Therefore, the choice of either nonrelativistic or relativistic models entails
some approximation and some (potentially difficult to quantify) systematic error.
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However, one approach, chiral perturbation theory or chiral effective field theory
(chiral EFT) is an effective field theory approach to computing the low-energy
interactions of nucleons and mesons [81] (though see [35] for a modern review).
This approach involves writing down all interactions consistent with the approximate
chiral symmetry of QCD. The relevant particles at low energy are neutrons, protons,
and pions; significant progress has been made in computing the energy of this system
up to higher and higher order in the fundamental interaction strengths. Below ∼ 2
times nuclear saturation density, these calculations can be considered robust [36].
At higher densities, additional mesons, and potentially other hadrons will become
relevant, however. Even without these terms, uncertainty in the the interactions
lead to substantial growth in the uncertainty near 1.5 − 2 times saturation density.
Therefore, while chiral EFT is incredibly useful for constraining low-density matter,
it is not capable of predicting the properties of dense matter in neutron star cores.
See Fig. 1.2.

Figure 1.2: Several candidate equations of state plotted in pressure vs rest mass
density. Chiral EFT uncertainities are shaded in blue; many equations of state are
inconsistent with chiral EFT. Figure reproduced from Ref. [45].

Finally, the dense-matter equation of state is in fact known at sufficiently high
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densities around 40× nuclear saturation density [51]. In this regime the Lagrangian
of QCD is perturbative, with the total energy being expandable around the energy
of a noninteracting fermi gas of quarks. Therefore, the substantial uncertainty in
the equation of state of matter inside neutron stars is somewhat surprising. If the
density of neutron stars had been an order of magnitude larger, or smaller, then this
problem would essentially be solved, up to perturbative calculations.

As it stands, however, we do not know the equation of state of matter in neutron
stars, nor do we know the relevant particles or interactions for physics in neutron
star cores. This is problematic, even from an astrophysical point of view (and even if
we resolve only to concern ourselves with order-of-magnitude), because many real
astrophysical phenomena lie at the boundary of qualitatively completely different
behavior depending on the details of the equation of state. Do typical neutron
stars “plunge” before merger, or is the merger interrupted by contact of the surfaces
before the plunge? Do typical neutron star mergers form black holes or neutron
star remnants? Can any neutron star mergers form long-lived, highly magnetized,
neutron star remnants? These and many more are astrophyical questions related to
thresholds that depend of the nuclear equation of state (although not all could be
answered simply by knowing it). To make this problem more salient, it’s important to
recognize that choosing the wrong model for the equation of state, and proceeding
without caution could lead one to make qualitatively incorrect predictions about
astrophysics.

Outline of this thesis
The situation we find ourselves in is therefore both a remarkable challenge and a
remarkable opportunity. On one hand, we do not know even the correct heuristic
model of matter in the cores of neutron stars, much less the parameters of the
model. We do not know what particles are relevant and densities greater than about
twice the density of atomic nuclei, if there is a strong phase transition to additional
species, or if as in quark-gluon plasma, the transition is a “crossover” (i.e. not
associated with a discontinuity in any derivative of the thermodynamic potentials).
I will discuss in this thesis how nonparametric methods provide a path toward
robust inference of the dense matter equation of state. In particular I will discuss in
Chapter 2 how nonparametric approaches empower us to carefully understand the
distinction between modeled, and model-agnostic approaches to these problems. In
connection, I will discuss in Chapter 3 constraints placed on the equation of state
using the NICER observation of the very high mass pulsar J0740+6620. I will also
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discuss, in Chapter 4, how in particular data driven models can be used to search
for phase transitions in dense matter absent any model of the underlying hadronic
or quark phase.

Related to project of nonparametric EoS constraints, I will discuss what has been
learned by using model-agnostic equation of state approaches in understanding the
physics of neutron stars in Chapter 5. For example, some relations between neutron
star properties seem to be almost independent of the given equation of state. These
so-called equation of state-independent relations (also called universal relations)
may, however, simply be features of the underlying nuclear physics which are built
into the equation of state models against which the relation is tested. This can be
discerned by comparing to a variety of nonparametric equations of state, and seeing
which relations remain “independent” even under prescriptions of dense matter very
far from simple parametrizations. Additionally, I will discuss how our knowledge
of the equation of state can be used to inform our understanding of astrophysical
phenomena. In particular, I will discuss how combining knowledge of the dense
matter equation of state would very likely allow us to classify objects with less than a
solar mass detected by gravitational waves in binaries in Chapter 6. This is possible
because of the very strong impact of matter effects on merging binaries when the
compactness is small.

Continuing, in Chapter 7, I will discuss how uncertainty in the astrophysical popu-
lation of neutron stars and black holes is crucial for understanding the dense matter
equation of state. Further, I will discuss how astrophysics and nuclear physics must
be understood together in the context of neutron stars.

In Chapter 8, I will discuss hybridization of modeled and model-agnostic approaches
to infer the properties of model breakdown, which is useful, in particular, in cases
where there is no theoretical strategy known for computing a given theories break-
down scale (as is the case for most phenomenological models of dense matter).
As a part of this, I will connect current models of nuclear theory to the larger
problem of EoS parametrization and discuss how having modeled correlations can
be extremely powerful, even if large components of the theory (such as interaction
strengths), cannot be computed from first principles.

Finally in Chapters 9, and 10, I will discuss my contributions to simulations of
neutron stars, in particular toward the goal of efficient and flexible representations
of the dense matter equation of state. I will also discuss challenges with simulations
that currently prevent certain insights in the behavior of dense matter from being
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easily accessible.
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C h a p t e r 2

COMPARING NONPARAMETRIC AND PARAMETRIC
INFERENCE STRATEGIES FOR THE EQUATION OF STATE

[1] Isaac Legred et al. “Implicit correlations within phenomenological para-
metric models of the neutron star equation of state”. In: Phys. Rev. D 105.4
(2022). I led this study which compared parametric to nonparametric meth-
ods of inferring the equation of state. I developed a substantial amount of
software, ran the analysis, and co-wrote the manuscript., p. 043016. doi:
10.1103/PhysRevD.105.043016. arXiv: 2201.06791 [astro-ph.HE].

Abstract
The rapid increase in the number and precision of astrophysical probes of neutron
stars in recent years allows for the inference of their equation of state. Observations
target different macroscopic properties of neutron stars which vary from star to star,
such as mass and radius, but the equation of state allows for a common description
of all neutron stars. To connect these observations and infer the properties of
dense matter and neutron stars simultaneously, models for the equation of state are
introduced. Parametric models rely on carefully engineered functional forms that
reproduce a large array of realistic equations of state. Such models benefit from
their simplicity but are limited because any finite-parameter model cannot accurately
approximate all possible equations of state. Nonparametric methods overcome this
by increasing model freedom at the cost of increased complexity. In this study, we
compare common parametric and nonparametric models, quantify the limitations of
the former, and study the impact of modeling on our current understanding of high-
density physics. We show that parametric models impose strongly model-dependent,
and sometimes opaque, correlations between density scales. Such interdensity
correlations result in tighter constraints that are unsupported by data and can lead to
biased inference of the equation of state and of individual neutron star properties.

https://doi.org/10.1103/PhysRevD.105.043016
https://arxiv.org/abs/2201.06791
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2.1 Introduction
The equation of state (EoS) of the dense matter inside neutron stars (NSs) is uncertain
at densities near and beyond nuclear saturation, 𝜌nuc = 2.8 × 1014g/cm3, because it
cannot be precisely constrained by theoretical calculations or terrestrial experiments
[47, 61, 60, 12, 55, 39, 15]. Astronomical observations [5, 21, 58, 72, 57, 73, 11, 2,
64] target the macroscopic properties of NSs, such as their mass 𝑀 , radius 𝑅, and
dimensionless tidal deformability Λ, which in turn can be used to constrain the EoS
at densities greater than nuclear saturation [46, 51, 52].

A set of observations of different systems can be used to constrain a shared underlying
property through a hierarchical inference scheme. The hierarchical formalism is
derived in the context of combining data from different sources while faithfully
incorporating their uncertainties and potential observational selection effects [54];
see, e.g., Refs. [15, 44]. In the context of NS structure, the main objective is to obtain
a posterior for the EoS as a shared variable among many astrophysical observations.
The prior corresponding to this posterior is not necessarily straightforward to define
because the space of potential EoS (i.e., the space of possible functions obeying basic
physical constraints) that relate the pressure 𝑝 and the baryon density 𝜌, 𝑝 = 𝑝(𝜌),
is infinite dimensional.1

The simplest way to define such a prior is through a parametrization of the EoS,
which is a functional form of 𝑝(𝜌) that typically depends on a few parameters.
Common phenomenological models such as piecewise-polytrope [68], spectral [52,
53] and speed-of-sound [36] parametrizations have been used to effectively sample
candidate EoS for use in inference. The simplicity of a closed-form parametric
expression comes at the cost, though, of being unable to faithfully represent many
of the possible degrees of freedom in the true EoS. While many of these models
can accurately represent most EoS derived from effective nuclear interactions [52,
68], it is not always clear how to extend these parametrizations toward more general
behavior in the EoS that may arise from phase transitions or new physics. This
limitation of phenomenological parametric models has been recognized from the
outset [68]. However, in this study we investigate another way that they may
artificially restrict the inferred EoS.

Parametric models use only a few parameters, which means that the values of 𝑝(𝜌)
at different densities are often correlated. These correlations represent a source of

1We can equivalently use 𝑝(𝜀), with 𝜀 the internal energy density. In the zero-temperature limit,
𝑑𝜀/𝑑𝜌 = (𝑝(𝜌) + 𝜀(𝜌)) /𝜌.
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model dependence in the inference, which is undesirable insofar as it does not reflect
true prior knowledge of the EoS at those densities. That is, the correlations induced
by the choice of parametrization can constitute strong, unintentional prior beliefs
about the EoS. This unwanted model dependence is a natural consequence of the
phenomenological nature of the parametric models.

An alternative method for constructing a prior on the space of EoS, which we call
nonparametric in what follows, targets more model flexibility by making use of
Gaussian processes (GPs) [43]. This approach produces a multivariate Gaussian
distribution for the function 𝜙 = log

(
(𝑐/𝑐𝑠)2 − 1

)
, where 𝑐𝑠 is the speed of sound

and 𝑐 is the speed of light. By conditioning the prior only weakly on existing
nuclear-theory models, we generate a model-agnostic prior process for EoS. The
chosen correlations between 𝜙(𝑝𝑖) and 𝜙(𝑝 𝑗 ), or equivalently between the values of
the EoS at different densities, are set by a kernel function, which is in turn described
by a few parameters. Following Ref. [26], we consider a variety of possible kernel
parameters to probe a range of different correlations and thus maximize model
freedom. This approach allows us, in principle, to model any function 𝑝(𝜌), and
furthermore to probe a wide range of interdensity correlations and high-density EoS
behavior.

Of course, completely unrestricted freedom in the EoS is neither desirable nor
realistic, as certain physical constraints should be encoded into the EoS prior. For
example, an EoS must be causal,

𝑑𝑝

𝑑𝜀
= 𝑐2

𝑠 < 𝑐
2, (2.1)

and thermodynamically stable,

𝑑𝑝

𝑑𝜀
= 𝑐2

𝑠 > 0. (2.2)

Imposing these constraints in the prior is desirable as it excludes unphysical models
from the analysis.2

In this paper, we examine common parametric and nonparametric EoS models
to determine the extent to which each prior’s assumptions impact inference of
the EoS and NS properties. We find that the three parametric models we study
(spectral, piecewise polytrope, and speed of sound) build additional interdensity
correlations into the EoS beyond what can be attributed to causality and stability.

2Some analyses allow the EoS to be slightly acausal at times; see Appendix 2.11 for more
discussion.
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These correlations between densities typically lead to more stringent constraints
than are strictly supported by the data. On the other hand, the nonparametric model
demonstrates the largest degree of model independence, restricted primarily only by
causality and thermodynamic stability. We demonstrate that these strong, model-
dependent interdensity correlations have already impacted inferred microscopic and
macroscopic NS properties. Such effects are expected to become more severe as
statistical uncertainties decrease with more data that probe different NS densities.

The remainder of the paper is organized as follows. In Sec. 2.2, we describe our
inference methods and our approach to investigating model dependence. In Sec. 2.3,
we examine the EoS and NS properties inferred with current data and show that they
are influenced by correlations in the EoS prior. In Sec. 2.4, we illustrate the main
limitations of parametric EoS inference with a toy model. In Sec. 2.5, we quantify
the implicit EoS correlations and demonstrate that the nonparametric model displays
the largest degree of model independence. In Sec. 2.6, we study the correlations’
potential impact on upcoming EoS inference using mock astrophysical measure-
ments. In Sec. 2.7, we demonstrate that the limitations identified in parametric
models cannot be resolved by making small modifications to the prior distributions.
Finally, in Sec. 3.5 we discuss our conclusions.

2.2 Methods and Models
The posterior for the EoS depends on two elements: (i) the prior EoS process, and (ii)
the data. Our goal in this study is to assess the effect of the prior as generated from
different parametric and nonparametric models for the EoS. We therefore always
employ the same data, which we briefly describe in Sec. 2.2. The hierarchical
likelihood corresponding to this data is described in Refs. [44, 48]. The EoS priors
are described in detail in Sec. 2.2, where we discuss the different EoS models and
parameter priors that generate each EoS prior process.

EoS prior
We wish to establish a prior process over candidate EoS. By this, we mean a proba-
bilistic measure on the space of potential EoS. To do this, we use several models of
the EoS. We distinguish parametric models, which provide a functional form for the
EoS, from nonparametric models which do not impose such a functional form. We
use three different phenomenological parametric models, a piecewise-polytrope [68]
parametrization, a spectral parametrization [52], and a direct parametrization of the
speed of sound [36]. The spectral and piecewise-polytrope parametrizations use a
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polytropic form for the EoS, so that

𝑝(𝜌) = 𝐾𝜌Γ.

In the piecewise-polytrope case, the polytropic index Γ is a piecewise-constant func-
tion of the pressure, while in the spectral case, log(Γ) is expanded as a polynomial in
pressure. In the speed of sound parametrization, the speed of sound is expressed as
a constant plus a Gaussian and a logistic curve which asymptotes to 𝑐2/3. Following
past practice [14], we slightly relax the causality threshold and consider EoS with
𝑐2
𝑠 < 1.1𝑐2 for all parametric models. See Appendix 2.11 for more details about

each model and its implementation.

To establish a prior process, we must additionally supply a joint prior probability
distribution on the parameters of each model from which a draw is a realization of
the parameters and therefore a candidate EoS. For example, in the spectral model,
the parameters are coefficients in the spectral expansion. In the piecewise polytrope,
the parameters are the value of the polytropic index itself. For our headline results,
we use standard priors for the parametric models [14, 81], except for the speed-of-
sound model, which we adapt to increase access to astrophysically relevant EoS;
again, see Appendix 2.11 for details.

We compare the prior processes generated by the parametric models to a prior
process from a nonparametric model [43]. While our nonparametric implementation
does not assume a specific functional form for the EoS, it does parametrize the
correlations between the sound speed at different densities. These correlations are
described by a kernel function. In practice, we choose a large set of points, 𝑝𝑖, and
then the variable 𝜙(𝑝𝑖) is sampled from a multivariate Gaussian distribution. By
changing the kernel’s parameters and conditioning on different nuclear models, we
can generate a range of GPs. We choose a model-agnostic prior, which is to say
we average over multiple GPs with different correlations, each loosely informed by
nuclear-theory models [43]. We do this to maximize the freedom of the model. See
Appendix 2.10 for more details.

Due to its construction, the GP itself has parameters which control correlations.
Such parameters have been termed hyperparameters [43], though we avoid this
terminology here in order to avoid potential confusion with the term’s use in hier-
archical inference. In addition, the parametric models also have parameters which
control the prior process; in general, such details are unique to each model. We
instead focus primarily on the prior process induced by each EoS model with its
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chosen prior, returning to the subject of parameter distributions briefly in Sec. 2.7.
For now, we simply note that our model implementations are typical of those used
in the literature [69, 52, 14, 42, 36]. Lastly, we stress that our distinction between
parametric and nonparametric models lies not in the existence of parameters but in
the specification of a functional form for the EoS. In particular, we compare models
with small, fixed numbers of parameters that are commonly used in the literature.
For these models, the choice of functional form significantly impacts the range of
EoS that can be represented.

Data and likelihood
Unless otherwise stated, all analyses in this paper make use of the same astronomical
data as Ref. [48]. Specifically, we include two mass-tidal deformability measure-
ments from gravitational wave (GW) detections of merging NSs [1, 3], one heavy
pulsar mass measurement with radio data [10], and two x-ray observations of NS
masses and radii [58, 72, 57, 73]. In the latter case, we also use the up-to-date radio
mass measurement of the pulsar J0740+6620 [33]. Given these data 𝑑, the posterior
probability density of a particular EoS 𝜀 is

𝑃(𝜀 |𝑑,I) = 𝑃(𝑑 |𝜀,I)
𝑃(𝑑 |I) 𝑃(𝜀 |I), (2.3)

whereI is any additional information we may have about the system, e.g., knowledge
that the data originate from a NS, as is the case for the pulsar observations but not
for the GWs. Here 𝑃(𝜀 |𝑑,I) is the posterior probability of the EoS given the
data, 𝑃(𝑑 |𝜀,I) is the likelihood of the astrophysical data given the EoS, 𝑃(𝜀 |I)
is the prior probability of the EoS, and 𝑃(𝑑 |I) =

∫
𝑃(𝑑 |𝜀,I)𝑃(𝜀 |I)D𝜀 is the

total probability of observing this data marginalized over all EoS in the prior, often
called the evidence. For general astrophysical data, 𝑃(𝑑 |𝜀,I) must be computed
by marginalizing over the astrophysical distribution of masses, spins, sky locations,
and distances for individual events, which remains poorly constrained [9, 31, 17, 32,
6, 45, 30]. For the full expression, see Refs. [44, 15].

The different datasets we use primarily inform the EoS at different densities. The
heaviest pulsar mass measurements serve to downweight EoS which cannot support
the observed NS masses; these constraints tend to most significantly impact inference
near ∼ (4-6)𝜌nuc and typically favor a stiffer EoS. The x-ray data provide constraints
on the NS radius, and constraints so far have given information about the EoS mainly
in the region ∼ (1-4)𝜌nuc [57, 44, 48, 66]. The GW observations provide constraints
on the tidal deformabilities of the binary components, which are dominated by the
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Figure 2.1: Symmetric 90% credible region for the pressure 𝑝 at each density 𝜌
in units of the nuclear saturation density using the nonparametric and spectral prior
processes. We show results including all astrophysical data (labeled “astro," solid
lines) and restricting to the heavy pulsars only (labeled “psr," dashed lines). The
latter choice ensures that prior choices on the 𝑀max supported by each model are
irrelevant. Other parametric models are shown in Fig. 2.10. In all cases, we find that
the 𝑝-𝜌 posterior depends on the EoS model even when identical data and inference
schemes are employed.

loudest event observed so far, GW170817 [5, 44]. In terms of densities, the relevant
scale constrained by this measurement is ∼ (1-3)𝜌nuc [44, 48]. Future constraints
with GWs are likely to lie in this density range, as the fractional uncertainty inΛwill
be smallest for lower-mass NSs with less dense cores and larger tidal deformabilities.
In principle, nuclear experiments or calculations could also be included in such an
analysis, and would mainly constrain the EoS near or below 𝜌nuc [27, 28, 62, 13,
66]. However, we do not incorporate any in this work.

2.3 Impact of EoS model on current EoS constraints
Following the above prescription, we analyze the existing data using the four different
EoS priors and plot the resulting marginal posteriors for 𝑝(𝜌) across a wide range
of densities. Figure 2.1 compares the spectral and nonparametric models; similar
plots for the other parametric models can be found in Appendix 2.12. The posteriors
differ in their predictions for the EoS. For instance, the spectral posterior is stiffer
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Figure 2.2: Prior (dashed) and posterior (solid) for the radius of a 1.4𝑀⊙ NS, 𝑅1.4,
and maximum mass, 𝑀max, of a NS for two choices of the marginal 𝑀max prior:
default (left) and flat (right). We show results with the nonparametric and spectral
EoS models, and contours denote 90% credible regions. The black line in the two-
dimensional plot represents a maximally stiff 𝑀-𝑅 curve [71] stitched to a fiducial
low density EoS [40]. Due to the low-density stitching, this “causality" line should
be interpreted as a fuzzy boundary and not a sharp line. Both panels demonstrate that
the spectral and nonparametric EoS models produce different 𝑀max posteriors and
that these differences cannot be attributed to the marginal priors. They are instead
caused by correlations between low and high densities (equivalently, between 𝑀max
and 𝑅1.4) imposed by the models. The correlations in the nonparametric case are
due to causality, while the spectral case exhibits additional correlations and model
dependence.
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on average than the nonparametric one, especially above 4𝜌nuc. Similar differences
have also been pointed out in Refs. [36, 57, 66], where multiple EoS models were
employed under identical analysis settings. Our goal here is to understand the origin
of these discrepancies.

Since it is difficult to glean information about interdensity correlations from envelope
plots like Fig. 2.1, we turn our attention to two macroscopic NS properties that
roughly correspond to the EoS behavior at high and low densities: the maximum
mass, 𝑀max, and the radius of a 1.4𝑀⊙ NS, 𝑅1.4. In Fig. 2.2 (left panel), we plot
the one- and two-dimensional marginal prior and posterior for 𝑀max and 𝑅1.4. As
expected, the marginal posteriors differ, but so do the marginal priors. Indeed,
the 𝑀max plot shows that both the spectral prior and posterior seem to have more
support for 𝑀max around 2.2 − 2.5𝑀⊙ than the nonparametric case. However,
this trend is reversed above 2.6𝑀⊙. This observation suggests that the difference
between the nonparametric and spectral posteriors cannot be trivially assigned to
different marginal priors. To further demonstrate this, in the right panel we plot the
same variables, but now reweighted to a flat marginal 𝑀max prior. As expected, the
two posteriors differ, with the spectral model producing a narrower posterior.

To understand this discrepancy, we revisit the possible reasons 𝑀max is constrained
on the high side. Though an upper limit on 𝑀max has been proposed based on the
analysis of the counterpart of GW170817 [56], our analysis does not make use of it.
Excluding an origin due to data, the upper limit on 𝑀max must be the result of the
EoS prior. The two-dimensional 𝑀max-𝑅1.4 panel indeed shows that the upper limit
on 𝑀max is related to the upper limit on 𝑅1.4 [5, 1]; the 𝑀max-𝑅1.4 prior does not
cover the entire available region for either model, with larger 𝑀max requiring stiffer
EoS and larger 𝑅1.4.

The fact that larger 𝑀max requires large values of 𝑅1.4 is not unexpected from
causality considerations. Indeed, the causality condition and the pressure at twice
saturation, 𝑝2.0, set an upper limit on the value of pressure at five times saturation,
𝑝5.0. Since 𝑝2.0 and 𝑝5.0 correlate with 𝑅1.4 and 𝑀max, respectively [46], any causal
EoS model should limit 𝑀max for certain low 𝑅1.4 configurations [71]. To quantify
this, we overplot the limiting 𝑀max-𝑅1.4 relation given by Ref. [40]: each point on
the line represents a soft low-density EoS stitched to an EoS with 𝑐2

𝑠 = 1 at different
densities. This curve should be interpreted approximately, as the exact causality
threshold depends on the details of the low-density EoS [22].

Nonetheless, the right panel shows that in the nonparametric case the prior fills more
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of the physically allowable 𝑀max-𝑅1.4 parameter space compared to the spectral
prior. This indicates that the nonparametric prior has non-negligible support in the
entire physically allowed region even if specific marginal priors might downweight
some regions (left panel). The same is not true for the spectral model which
cannot access certain regions of the 𝑀max-𝑅1.4 plane.3 This demonstrates that the
correlation between 𝑀max-𝑅1.4 that appears in the spectral model is not entirely due
to causality considerations, but it is also affected by the specifics of the model. The
nonparametric model, however, is able to produce EoS which fall near the causality
limit, indicating physics rather than modeling artifacts are the primary limitation
to model freedom. Figure 2.12 presents a qualitatively similar conclusion for the
piecewise-polytrope and speed-of-sound models. The piecewise polytrope exhibits
behavior similar to the spectral model, while the speed-of-sound parametrization
exhibits the opposite problem: its prior does not include low 𝑀max for large 𝑅1.4

values.

Crucially, the correlations we see in these corner plots are only those that are
apparent from the two-dimensional marginalized posteriors. They do not reveal the
many hidden correlations within the parametric EoS models that are not as easily
detected. It is possible for implicit correlations within the EoS prior to bias the
inference in ways that are not obvious in low-dimensional projections.

2.4 Impact of interdensity correlations: Toy Model
To better understand the effect of such implicit correlations, we first consider a
simple toy model that demonstrates several of the issues with parametric models
and introduce our techniques for diagnosing them.

We consider several simple linear parametrizations of the pressure as a function of
energy density 𝑝(𝜀). This allows us to examine the prior processes induced by the
assumption of linearity from various perspectives. We contrast this to a GP prior
process in the same context, finding particularly striking differences in the effect
of a precise measurement of the pressure at one density on our uncertainty in the
pressure at other densities.

We begin with the simple parametric model of a linear relationship between the
pressure and the energy density

𝑝(𝜀) = 𝑝𝑎 + 𝑐2
𝑠 (𝜀 − 𝜀𝑎), (2.4)

3Figure 2.2 shows 90% contours. If we plotted 99% contours instead, the nonparametric model
accesses even more of the allowed space, while the spectral model remains restricted.
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parametrized by the pressure at 𝑝𝑎 = 𝑝(𝜀𝑎) and the slope 𝑐2
𝑠 . Ignoring causality

constraints, we choose what appear to be uninformative priors

𝑝𝑎 ∼ N(𝜇𝑎, 𝜎2
𝑎 ), 𝑐2

𝑠 ∼ N(𝜇𝑐2
𝑠
, 𝜎2

𝑐2
𝑠
), (2.5)

and refer to this as the point+slope process. The top panel of Fig. 2.3 shows the
envelope plot for this prior process, i.e., the marginal distributions of the pressure
at each energy density.

The envelope plot appears reasonable. That is, the prior process assigns approxi-
mately equal uncertainty to each pressure. However, the envelope plot only shows
the marginal distributions at each density. Figure 2.4 shows the correlations be-
tween pressures at different densities. From this we see that the prior process
actually imposes strong correlations between all pressures. We quantify this cor-
relation between 𝑝𝑎 and the pressure at some other density 𝑝𝑏 ≡ 𝑝(𝜖𝑏) with the
mutual information [20], defined as

𝐼 (𝑝𝑎, 𝑝𝑏) ≡
∫

𝑑𝑝𝑎𝑑𝑝𝑏 𝑃(𝑝𝑎, 𝑝𝑏) ln
(
𝑃(𝑝𝑎, 𝑝𝑏)
𝑃(𝑝𝑎)𝑃(𝑝𝑏)

)
, (2.6)

where 𝑃(𝑝𝑎) =
∫
𝑑𝑝𝑏 𝑃(𝑝𝑎, 𝑝𝑏) is the marginal distribution. For the point+slope

parametrization, we compute

𝐼 (𝑝𝑎, 𝑝𝑏) =
1
2

ln ©«1 +
𝜎2
𝑎

𝜎2
𝑐2
𝑠

(𝜀𝑎 − 𝜀𝑏)2
ª®¬ . (2.7)

The mutual information between 𝑝𝑎 and 𝑝𝑏 can be made arbitrarily small only in
the limit 𝜎𝑎 ≪ 𝜎𝑐2

𝑠
|𝜀𝑏 − 𝜀𝑎 |; however, this limit corresponds to vanishingly small

marginal uncertainty for 𝑝𝑎. We conclude that the assumption of a linear functional
form can produce what seems to be a reasonable envelope plot in Fig. 2.3, but
nevertheless induces model-dependent correlations between the pressure at different
densities in Fig. 2.4.

In an attempt to remove the correlation between 𝑝𝑎 and 𝑝𝑏, we consider the alter-
native parametrization

𝑝(𝜀) = 𝑝𝑎 +
𝑝𝑏 − 𝑝𝑎
𝜀𝑏 − 𝜀𝑎

(𝜀 − 𝜀𝑎), (2.8)

described by the pressures at the two reference densities. We assume priors

𝑝𝑎 ∼ N(𝜇𝑎, 𝜎2
𝑎 ), 𝑝𝑏 ∼ N(𝜇𝑏, 𝜎2

𝑏 ), (2.9)
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Figure 2.3: 68% (± 1-𝜎) marginal credible regions for the pressure at each density
under the point+slope (top, green), two-point (middle, red), and GP (bottom, blue)
prior processes. Shaded regions correspond to marginal distributions induced by the
prior process at each energy density (light colors) and conditioned distributions for
𝑝(𝜀) given a precise observation of 𝑝𝑐 (dark colors). Only the GP process “fills the
prior volume” rapidly as one moves away from the observation point 𝜀𝑐. Compare
to Fig. 2.5.
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and refer to this as the two-point process. Figures 2.3 and 2.4 show envelope and
marginal distributions, respectively.

By construction, 𝐼 (𝑝𝑎, 𝑝𝑏) = 0 for the two-point prior process, as also seen in
Fig. 2.4. However, the envelope plot shows that the marginal prior actually tightens
for pressures between the reference densities. That is, we are able to remove the
correlation between two pressures only at the expense of asserting greater prior
knowledge about other pressures. Additionally, Fig. 2.4 shows that there are still
correlations between (𝑝𝑎, 𝑝𝑏) and other pressures. This hints at the fact that,
when one assumes a specific functional form, it may be possible to remove the
correlations between a small number of statistics, but it is generally difficult to make
all correlations vanish simultaneously or to avoid making strong assumptions about
specific values of the function.

In order to consider this effect more quantitatively, we introduce a generalization of
the mutual information that considers three pressures [20]

𝐼 (𝑝𝑎, 𝑝𝑏, 𝑝𝑐)

≡
∫

𝑑𝑝𝑎𝑑𝑝𝑏𝑑𝑝𝑐 𝑃(𝑝𝑎, 𝑝𝑏, 𝑝𝑐) ln
(

𝑃(𝑝𝑎, 𝑝𝑏, 𝑝𝑐)
𝑃(𝑝𝑎)𝑃(𝑝𝑏)𝑃(𝑝𝑐)

)
=

∫
𝑑𝑝𝑎𝑑𝑝𝑏 𝑃(𝑝𝑎, 𝑝𝑏)

∫
𝑑𝑝𝑐 𝑃(𝑝𝑐 |𝑝𝑎, 𝑝𝑏) ln

(
𝑃(𝑝𝑐 |𝑝𝑎, 𝑝𝑏)

𝑃(𝑝𝑐)

)
+ 𝐼 (𝑝𝑎, 𝑝𝑏). (2.10)

Even if one can choose parametrizations and priors such that 𝐼 (𝑝𝑎, 𝑝𝑏) vanishes,
there is another term when considering mutual information for three pressures.
In fact, for both the point+slope and two-point prior processes, the integral over
𝑝𝑐 diverges as 𝑃(𝑝𝑐 |𝑝𝑎, 𝑝𝑏) is a delta function (determined by the closed-form
parametrization), while 𝑃(𝑝𝑐) is a Gaussian with finite width. We conclude that the
assumption of a linear relationship between the pressure and the density implies an
infinite amount of information about the allowed relationships between variables.
One cannot undo all these correlations at the same time by a clever choice of
marginal prior distributions, although it may be possible to undo some of them. The
failure of this reparametrization scheme anticipates the results of our investigation
of alternative parametric priors in Sec. 2.7.

In general, the only way to undo all correlations simultaneously is to add more model
freedom into the prior process. For example, one may add more reference densities
to an existing model and generate a piecewise linear prior process. However, there
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will always be some densities between the (finite number of) reference densities,
regardless of how many reference densities are chosen. In each of those regions,
the piecewise-linear model is equivalent to our two-point prior process, and the
strong correlations remain. One is then left with the question of how to extend the
parametrization to remove all correlations in a scalable way. We show that a GP is
a natural solution.

A GP, defined in terms of a mean function and a covariance kernel, describes our
uncertainty in the infinitely many degrees of freedom in a function. With the as-
sumption of Gaussianity, we can easily marginalize away uninteresting degrees of
freedom, in our case retaining only the pressures on a dense grid of energy densi-
ties, and the GP reduces to a high-dimensional multivariate Gaussian distribution.
Specifically, we consider the joint distribution induced over 𝑝𝑎, 𝑝𝑏, and 𝑝𝑐 by a GP

®𝑝 ∼ N( ®𝜇, Σ), (2.11)

with mean ®𝜇 and covariance Σ, with matrix elements defined by a covariance kernel

Σ𝑖 𝑗 = Cov(𝑝𝑖, 𝑝 𝑗 ) = 𝐾 (𝜀𝑖, 𝜀 𝑗 ). (2.12)

A common choice is the squared-exponential kernel

𝐾se(𝜀𝑖, 𝜀 𝑗 ) = 𝜎2 exp

(
−
(𝜀𝑖 − 𝜀 𝑗 )2

𝑙2

)
, (2.13)

although more complicated kernels are also used [26].4

Figures 2.3 and 2.4 show a GP assuming a squared-exponential kernel with param-
eters chosen to match the marginal distribution of the two-point prior process and
𝑙 ≪ |𝜀𝑎 − 𝜀𝑏 |. We also obtain

𝐼 (𝑝𝑎, 𝑝𝑏) = −1
2

ln

(
1 −

𝜎4
𝑎𝑏

𝜎2
𝑎𝑎𝜎

2
𝑏𝑏

)
= −1

2
ln

{
1 − exp

[
−2(𝜀𝑎 − 𝜀𝑏)2

𝑙2

]}
, (2.14)

which vanishes as exp[−2(𝜀𝑎 − 𝜀𝑏)2/𝑙2] in the limit |𝜀𝑎 − 𝜀𝑏 | ≫ 𝑙. Furthermore,
𝑃(𝑝𝑐 |𝑝𝑎, 𝑝𝑏) is a normal distribution, and the generalization of the mutual informa-
tion in Eq. (2.10) no longer diverges. If 𝑙 ≪ |𝜀𝑏 − 𝜀𝑐 |, |𝜀𝑎 − 𝜀𝑐 |, then Σ𝑖 𝑗 → 𝜎2𝛿𝑖 𝑗

4It is worth noting that linear regression is a special case of a GP. That is, a GP can reproduce
the linear model with an appropriate choice of covariance kernel: 𝐾 (𝜀𝑖 , 𝜀 𝑗 ) ∝ 𝜀𝑖𝜀 𝑗 .
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and 𝑃(𝑝𝑐 |𝑝𝑎, 𝑝𝑏) → 𝑃(𝑝𝑐) ∀ (𝑝𝑎, 𝑝𝑏). Therefore, if 𝑙 ≪ |𝜀𝑏 − 𝜀𝑎 | as well,
𝐼 (𝑝𝑎, 𝑝𝑏, 𝑝𝑐) → 0. We conclude, then, that the GP prior process can be made to
simultaneously produce reasonable envelope plots (broad marginal distributions for
all pressures) while retaining vanishingly small correlations between (reasonably
separated) pressures. This is in stark contrast to the parametrized prior processes,
where this is, in general, not possible.

We demonstrate one more useful diagnostic in this toy model through the conditioned
distribution

𝑃(𝑝𝑖 |𝑝 𝑗 ) =
𝑃(𝑝𝑖, 𝑝 𝑗 )
𝑃(𝑝 𝑗 )

(2.15)

which shows how our knowledge of 𝑝𝑖 depends on 𝑝 𝑗 . Figure 2.3 shows the envelope
plots for the conditioned distributions corresponding to each of our prior processes
when we condition on 𝑝𝑐. We see that a constraint at 𝜀𝑐 is broadcast to nearby
densities in all cases, but the Gaussian process fills up the prior volume from the
unconditioned marginal distributions the fastest. This is a visual manifestation of
the correlations quantified by the mutual information. Indeed

𝐼 (𝑎, 𝑏) =
∫

𝑑𝑎𝑃(𝑎)
∫

𝑑𝑏 𝑃(𝑏 |𝑎) ln
𝑃(𝑏 |𝑎)
𝑃(𝑏) , (2.16)

is just the Kullback–Leibler divergence𝐷KL (𝑃(𝑏 |𝑎) | |𝑃(𝑏)) from the unconditioned
marginal to the conditioned marginal averaged over the possible 𝑎 ∼ 𝑃(𝑎).

In the case of realistic EoS inference, we have to consider even higher-dimensional
spaces. A natural measure of correlations, then, is a generalization of the mutual
information (sometimes called the total correlation, multivariate constraint, or multi-
information [20])

𝐼 (𝑥1, · · · , 𝑥𝑁 ) ≡ −𝐻 (𝑥1, · · · , 𝑥𝑁 ) +
𝑁∑︁
𝑖=1

𝐻 (𝑥𝑖) (2.17)

where 𝐻 (𝑥) = −
∫
𝑑𝑥𝑃(𝑥) ln 𝑃(𝑥) is the entropy of the distribution 𝑃(𝑥). Larger

𝐻 imply broader distributions. We will consider this statistic in the context of
real astrophysical constraints on the EoS in Sec. 2.5. In general, one can make 𝐼
small but still allow for very little model freedom (small 𝐻). We therefore seek
prior processes with both large 𝐻 (𝑥1, · · · , 𝑥𝑁 ) and small 𝐼 (𝑥1, · · · , 𝑥𝑁 ). This is
sometimes captured in the variation of information, defined as 𝐻 − 𝐼, but we find it
more useful to consider 𝐻 and 𝐼 separately.
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2.5 Impact of interdensity correlations: idealized measurement
Our toy model illustrates the potential impact of implicit correlations within EoS
models on the results of EoS inference. In order to quantify the sensitivity of
the parametric and nonparametric models to such model-dependent correlations be-
tween density scales, we now consider simulated NS observations. The macroscopic
NS properties that astronomical observations target (masses, radii, and tides) are
determined by a range of NS densities, it is therefore not straightforward to disen-
tangle the effect of the data and the model dependence in the constraint that a single
astronomical observation imposes on the EoS. Consequently, we begin with the
same setup as Sec. 2.4: an idealized direct measurement of 𝑝(𝜌) at a single density,
while keeping in mind that a realistic astronomical measurement would correspond
to a combination of many such constraints correlated across many densities.5

We consider a tight Gaussian constraint at 𝑝2.0 with mean of 3.20 × 1034 dyn/cm2

based on a candidate EoS drawn from our GP prior that is consistent with all current
parametric posteriors near 2𝜌nuc. We arbitrarily choose the standard deviation,
2.61 × 1033 dyn/cm2 (∼ 8% relative uncertainty). We then plot the corresponding
envelope for 𝑝(𝜌) with this mock constraint and all other real astronomical data for
each model in Fig. 2.5. In the nonparametric case, imposing this constraint pinches
the 𝑝-𝜌 envelope around 2𝜌nuc, but the uncertainty in the 𝑝(𝜌) curve is unaffected
beyond ≈ ±0.5𝜌nuc. All the parametric models, though, change across several 𝜌nuc,
indicating that the EoS at many scales is informed significantly by the EoS near
2𝜌nuc.

In each panel, the inset zooms in around the 𝜌 = 2𝜌nuc region; to guide the eye the two
black lines provide a rough estimate of the maximally causal (𝑐2

𝑠 = 1) and minimally
stable (𝑐2

𝑠 = 0.1) EoS that can support the heavy pulsar observations (see Fig. 2 of
Ref. [44]) around 𝜌 = 2𝜌nuc. The two lines were obtained by combining 𝑑𝑝/𝑑𝜀 = 𝑐2

𝑠

and the first law of thermodynamics with the approximation that 𝜀2.0 = 𝑐2𝜌2.0. The
nonparametric prior process contains EoS draws that approach this limiting behavior
near the constraint. Comparing the four panels, the nonparametric model fills more
of the physically available space. The parametric models, on the other hand, are
clearly subject to additional correlations between pressures besides causality and
stability.

To quantify these correlations, we follow Sec. 2.4 and compute the total correlation
5An example of how one may obtain direct constraints on the pressure from nuclear experiments

is demonstrated in Refs. [27, 28].
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Table 2.1: Total correlation (𝐼) and entropy (𝐻) of the joint distributions over
ln 𝑝1.0, ln 𝑝1.5, ln 𝑝2.0, ln 𝑝3.0, and ln 𝑝4.0 induced by several processes as well
as the entropy of the marginal distribution over only ln 𝑝2.0 (𝐻 (ln 𝑝2.0)). The
nonparametric processes consistently have smaller 𝐼 and (much) larger 𝐻 than any
parametric process, implying much more model freedom. This is the case even
though the entropy of the marginal distributions for ln 𝑝2.0 can be comparable.

𝐼 𝐻 𝐻 (ln 𝑝2.0)
PSR Astro +𝑝2.0 PSR Astro +𝑝2.0 PSR Astro +𝑝2.0

Nonparametric 3.7 3.1 2.9 0.7 -1.0 -2.5 1.0 0.5 -1.1
Spectral 6.6 5.5 4.7 -4.2 -5.5 -7.6 0.5 0.0 -1.1

Polytrope 5.7 4.6 3.8 -1.6 -3.6 -5.7 0.9 0.2 -1.1
Speed of sound 5.0 4.7 4.3 -2.6 -4.3 -7.1 1.0 0.6 -1.1

between the pressures at several reference densities. Table 2.1 shows the total
correlation (𝐼) and joint entropy (𝐻) between ln 𝑝1.0, ln 𝑝1.5, ln 𝑝2.0, ln 𝑝3.0, and
ln 𝑝4.0 induced by the posterior process conditioned on the astrophysical data as
well as the astrophysical data and the mock constraint on 𝑝2.0.6 We consider these
pressures as the central density of 𝑀max stars may be as low as 4𝜌nuc [48], and
therefore we focus on pressures that are confidently relevant for NSs. Although the
precise values of 𝐼 and 𝐻 can be difficult to interpret, we notice some trends.

Overall, the nonparametric process consistently has the largest joint entropy and
smallest total correlation, as desired. The value of I is approximately equal for all of
the parametric processes, which are larger than the nonparametric process by≳ 1 nat.
Additionally, the change in 𝐼 when we additionally condition on a mock constraint
on 𝑝2.0 is much smaller for the nonparametric than for the parametric processes.
This can be interpreted as the constraint on 𝑝2.0 removing some correlations from
the parametric processes by approximately fixing the value of 𝑝2.0.

What is more, the parametric processes have much smaller joint entropies than the
nonparametric process in all cases. This is a manifestation of the reduced model
freedom in the parametric processes as the nonparametric process explores more
combinations of pressures than any parametric process. Although not exact, the
exponential of the difference in entropies is an estimate of the ratio of the effective
number of pressure combinations supported in each distribution: the nonparametric
contains between 10 and 100 times as many possible pressure combinations as the

6We estimate the entropies via Monte Carlo sums over kernel density estimates (KDEs) of the
associated distributions. As such, the actual correlations may be smoothed by the KDE, which may
act as upper limits on the estimates of the mutual information in some cases.
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parametric processes.

Additionally, the constraint on 𝑝2.0 removes more entropy from each parametric
processes than from the nonparametric process. While we expect the joint entropy to
be smaller in all cases after measuring 𝑝2.0 precisely, the additional entropy lost in the
parametric processes is associated with the correlations between pressures. That is,
knowledge of 𝑝2.0 decreases our uncertainty in other pressures within the parametric
processes, something that does not happen as strongly in the nonparametric process.
This is apparent in Fig. 2.5 as well.

As a final note, Table 2.1 also reports the entropy of the marginal distributions over
ln 𝑝2.0. We see smaller differences between these one-dimensional (1D) distribu-
tions, reinforcing the conclusion that the differences between the nonparametric and
parametric processes arise mainly from correlations between multiple pressures.

2.6 Impact of interdensity correlations: Mock astrophysical observations
Different astronomical probes provide information about different density scales,
and therefore interdensity correlations are likely to matter even more for realistic
EoS inference than in the idealized case considered above. Implicit correlations in
EoS models could artificially give the appearance of tension between observations of
NSs or nuclear matter made via different channels. This has already been shown to be
relevant in comparisons of nuclear experiments with astrophysical observations [27,
28]. To investigate this possibility, we now repeat the previous sections’ analysis for
a simulated set of astronomical observations.

We choose a candidate EoS with 𝑀max = 2.54 M⊙ and 𝑅1.4 = 12.0 km. This EoS is
relatively soft at low densities and stiff at high densities, but is consistent with the
90% 1D marginal pressure constraints for all of our models at all densities, except
the speed-of-sound parametrization above 4𝜌nuc. The combination of macroscopic
parameters lies outside the spectral 90% credible region in Fig. 2.2, motivating its
use in studying how tension appears in an analysis when such a mismatch arises.7 We
simulate three measurements of pulsar masses and radii with comparable uncertainty
to the recent measurement for J0740+6620 [57, 73]. This observation incorporated
radio data to constrain the pulsar mass [33] and constrained the radius with x-ray
data. We also simulate 20 GW detections of binary NS mergers at A+ detector
sensitivity [4]. Note, however, that we do not impose prior knowledge of the NS

7Due to the broad prior of the nonparametric model, finding a physically valid EoS with no
support in the nonparametric macroscopic or microscopic priors is much more challenging.
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Figure 2.6: Inferred posterior for 𝑅1.4 and 𝑀max using the nonparametric model and
the spectral model and mock x-ray-radio (blue and orange dashed line, respectively)
and GW (blue and orange solid line, respectively) observations. All posteriors also
include all current astrophysical data. The vertical and horizontal red lines show the
injected value of 𝑅1.4 and 𝑀max. The 𝑀max posterior is only weakly informed by
the GW data as they typically cannot lead to a definitive identification of a > 2𝑀⊙
object as a NS, and it is thus similar to that of Fig. 2.2.

nature of the components in our inference. The simulated pulsars are drawn from a
uniform-in-central-density distribution, while the simulated binary NSs come from
a uniform-in-mass distribution, under the condition that the NS masses lie below
𝑀max.

We analyze each dataset separately, folding the simulated measurements of each
type onto all current astrophysical data. We plot the inferred posteriors in Fig. 2.6.
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We find that the nonparametric posterior for 𝑅1.4 is centered on the correct value
(12 km) with either x-ray or GW data. In the spectral case, though, while the GW
measurements are consistent with the correct value, the x-ray posterior is in tension
at 90% credibility. Moreover, the GW and x-ray posteriors are less consistent with
each other, an observation that could lead to the erroneous conclusion of tension
between different EoS probes.

We can understand this as follows. We expect GW measurements of high-mass
NSs (≥ 1.7M⊙) to be less informative than lower-mass NSs, as the absolute impact
of tidal parameters on the signal is weaker for more compact stars. In general,
high-mass NSs will most likely be indistinguishable from black holes until the
advent of next-generation detectors [19, 48]. As such, high-mass systems offer little
information for either 𝑀max or 𝑅1.4, and thus the GW data primarily probe only
the low-mass/low-density part of the EoS. Indeed, Fig. 2.6 shows that each mock-
GW 𝑀max posterior is similar to the respective posterior of Fig. 2.2, indicating that
additional GW observations inform 𝑀max only weakly.

On the other hand, x-ray measurements have already proven capable of bounding
the radius of high-mass NSs [57, 73]. Additionally, x-ray detection of pulsations in
a compact object proves it is a NS, and thus its mass offers information about 𝑀max.
Depending on the mass distribution of observed events, x-ray probes could thus
probe the EoS at both low and high densities. Our mock x-ray dataset contains one
such NS with mass 2.50𝑀⊙. Figure 2.6, then, shows that when we use a parametric
model to fit all the x-ray data, biases can arise as no EoS in the prior process can
simultaneously reproduce the correct values for both 𝑀max and 𝑅1.4. The bias is
smaller in the GW-based results as the data there probe a narrower density range,
resulting in the appearance of mild tension between the two datasets. By extension, a
newly observed GW signal for a 1.4𝑀⊙ NS would be in tension with the x-ray-based
results, despite no real astrophysical inconsistency. Recent concerns of tensions
between PREX-II [70] and astrophysical predictions may be influenced by a similar
mechanism, as noted in Refs. [27, 28].

2.7 Impact of parametric prior choices
These investigations show that the parametric EoS prior processes include model-
dependent interdensity correlations that influence the resulting inference. Such prior
processes are constructed based on two ingredients: (i) a functional form for 𝑝(𝜌)
(or an equivalent quantity) and (ii) a prior for the parameters of the function. The
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former may be carefully engineered, while the latter can be changed more easily.
As in Sec. 2.4, it is therefore reasonable to wonder if we can change the nature of
the interdensity correlations by a trivial change in the parameter prior, or whether
the correlations are inherent to the functional form. Below we argue for the latter,
as also demonstrated in Sec. 2.4.

First, adding parameters does not necessarily always increase model freedom.
Adding a parameter to any model we have shown so far will require choosing a
distribution for that parameter, and a reasonable range will strongly depend on the
functional form. For the piecewise-polytrope model, this process is somewhat eas-
ier, as additional adiabatic indices for new segments have clear physical meaning.
Therefore reasonable ranges can be chosen. For the spectral model, with the addition
of a new spectral component, there is no obvious mapping of parameter values to
physics, and so tuning parameter ranges is much harder.

Second, of the existing parameters in the models, we typically find that only a few are
meaningfully constrained. For example, the speed-of-sound model has only a single
Gaussian bump, and thus current astrophysical data tightly constrain this bump to be
at densities low enough to produce pulsars consistent with, e.g., Refs. [58, 72, 44].
This severely limits the flexibility of the model, as the logistic term is, by itself, not
strong enough to support realistic NSs. In practice 𝑎1 and 𝑎2 are overconstrained
in this model and 𝑎4 and 𝑎5 are underconstrained. As a result, the speed-of-sound
model is the least flexible (and leads to the most stringent constraints) even though
it has the most parameters. We find similar behavior in the spectral and piecewise-
polytrope models, suggesting that the effective number of parameters in the models
is fewer than what is nominally stated.

Third, due to the fine-tuning of the parametric models, attempting to redefine priors
on parameters is generally not an efficient way to expand model freedom. As an
example, we consider the spectral EoS where we find that EoS candidates have
a priori strong correlations between parameters in order to satisfy causality and
stability. These correlations were noted in Ref. [81] and are also shown in Fig. 2.7.
We find that the 𝛾𝑖 are alternately strongly correlated or anticorrelated with each
other. It is possible that other distributions, in particular distributions that upweight
EoS further from the line of strongest correlation, reduce the strength of interdensity
correlations.

We test this by upweighting more extreme 𝛾𝑖 values. The reweighting procedure
does indeed change the posterior distribution of 𝛾𝑖 parameters, although the inferred
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Figure 2.7: Marginal one- and two-dimensional prior and posterior distributions for
the parameters of the spectral model, 𝛾𝑖, as well as the maximum NS mass, 𝑀max,
and the radius, 𝑅1.4. We show the default prior as well as reweighted results that
upweight more extreme values of 𝛾𝑖. In both cases, 𝑀max and 𝑅1.4 have very similar
posteriors, showing that the reweighting does not efficiently extend the coverage
of the prior toward the causality threshold in the 𝑀max-𝑅1.4 plane. Additionally,
extending the prior ranges for 𝛾𝑖 is unlikely to change the results as the posteriors
are not limited by the prior ranges.
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distribution in 𝑀max-𝑅1.4 is effectively unchanged. Moreover, the 𝑀max-𝑅1.4 prior
does not significantly extend into the previously excluded region closer to the stability
threshold. We find similar results with a different reweighting of 𝛾𝑖 that instead
favors for central values. Figure 2.7 also shows that extending the prior range on 𝛾𝑖
will not extend the reach of the spectral model as the parameter posteriors are not
significantly affected by the prior cutoffs. We reach similar conclusions with the
piecewise polytrope.

Overall, while it was possible to remove correlations between only a subset of
pressures within our toy models in Sec. 2.4, it is generally difficult to do even that
with real parametrized EoS models.

2.8 Conclusions
All models of the dense-matter EoS should contain some correlations between
density scales due to causality and thermodynamic stability requirements. However,
in this study we show that phenomenological parametric models such as the spectral,
piecewise-polytrope, and speed-of-sound models impose even stronger correlations
a priori. As a result, NS properties are constrained more tightly in parametric
models than in nonparametric ones in ways that are not supported by the data.
Regardless of whether these tighter constraints end up being compatible with the
true EoS, their emergence is attributable to what are effectively model-dependent
prior assumptions dictated by the phenomenological nature of the parametrizations.
Viewed in this way, they deserve the same scrutiny as other prior choices imposed
by the analyst.

The concerns about implicit correlations are alleviated by GP-based nonparametric
models that enjoy extensive model freedom, restricted only by causality and ther-
modynamic stability. They allow us to generate, with no additional modeling effort,
candidate EoS with complex phenomenology that could be associated with, e.g., a
transition to quark matter in the cores of NSs. For example, Refs. [77, 78] study EoS
with complex speed-of-sound phenomenology, while Refs. [38, 18, 37, 23, 49, 22]
consider strong first-order phase transitions that result in a discontinuity in the speed
of sound and multiple stable branches. The GP prior process is able to recreate such
behaviors generically.

The parametric models are relatively easier to implement. However this might
come at the cost of fine-tuning which makes it harder to sample from the prior
as many draws are unphysical. Extension to more complex phenomenology, such
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as phase transitions, is less straightforward and might need tailored parametric
models [8, 7, 39] unless the parametrization supports such behavior inherently.
The piecewise polytrope specifically, as implemented here, can lead to priors and
posteriors with “kinks" [14, 42], while Refs. [65, 74] discuss its behavior in cases
where the observed NSs do not reach high enough densities to probe all polytropic
segments. More complicated parametric models exist (see Appendix 2.11), but
as we argue in Sec. 2.7, improving parametric models by adding parameters or
extending the priors ranges is not always straightforward or efficient. However,
extreme extensions to these models (for example a O(1000) parameter extension to
the piecewise polytrope) could exhibit behavior that is closer to the nonparametric
results than the few-parameter models they generalize.

In conclusion, commonly used parametric models of the EoS are hampered by
built-in and often opaque correlations between density scales. These correlations
already affect inferences based on these models, and these effects will only become
more severe with additional astrophysical data. The impact of the EoS model on
inference acts as an additional systematic error that must be addressed to achieve
highly informative EoS constraints [24, 35, 16, 63, 41, 25]. Our work shows that the
nonparametric GP-based model addresses this EoS model systematic and restores
model freedom by forgoing the use of specific functional forms for the EoS itself
and instead parametrizing a wide range of possible correlations directly.
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2.10 Description of the nonparametric EoS model
Our GP is tailored to incorporate a variety of possible correlation lengths, established
by the form of the kernel function. Each GP draw is a realization of a multivariate
Gaussian distribution, which is loosely conditioned on nuclear models. The GP
from which EoS candidates are sampled has a covariance which is governed by a
kernel function through the parameters 𝜎 and ℓ that control the strength and length
of the correlations respectively [26]. The EoS prior process includes EoS drawn
from multiple underlying GPs with different parameters: log𝜎 ∈ 𝑈 (1, 10) and
ℓ ∈ 𝑈 (0.1, 0.9). However, our GPs’ kernels contain additional terms as well. See
Ref. [26] for more details. In total we use ∼ 2 × 106 draws, of which ∼ 3 × 105

contribute to the prior nontrivially.

In Ref. [57], a single GP is used to generate EoS realizations using the same method.
This single GP is more tightly bound to the mean realization and nuclear models than
corresponding piecewise-polytrope and spectral models due to the values of 𝜎 = 1
and ℓ = 1 chosen. Such values correspond to stronger correlations and over larger
length scales than any GP we employ here. This demonstrates that although the GP
model is flexible, it is not necessarily agnostic. This can be useful, for example, to
examine the validity of a set of related nuclear models given astrophysical data [29].

Figure 2.8 shows example draws from our prior process plotted on top of posteriors
for various parameters. The candidate EoS exhibit a wide range of behavior as is
perhaps most evident in the bottom panel.

2.11 Description of the parametric EoS models
Piecewise-polytrope parametrization
In the piecewise-polytrope approach, consistent with Refs. [68, 14], the polytropic
exponent is a piecewise constant function, which changes value at two predetermined
densities

𝑝(𝜌) =


𝐾1𝜌

Γ1 : 𝜌 < 𝜌1

𝐾2𝜌
Γ2 : 𝜌1 < 𝜌 < 𝜌2

𝐾3𝜌
Γ3 : 𝜌2 < 𝜌.

(2.18)
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Figure 2.8: Example EoS draws from the nonparametric prior plotted in terms of
the pressure 𝑝 vs the density 𝜌 (top), the mass 𝑀 vs the radius 𝑅 (middle), and the
speed of sound 𝑐𝑠 vs the density 𝜌 (bottom). We only draw EoS with non-negligible
contribution to the posterior. For reference, we also plot the 90% symmetric credible
intervals for the posterior using only heavy pulsar observations and all astrophysical
data.
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EoS prior process Parameter Prior

Spectral

𝑟0 U(-4.37722, 4.91227)
𝑟1 U(-1.82240, 2.06387)
𝑟2 U(-0.32445, 0.36469)
𝑟3 U(-0.09529, 0.11046)

Piecewise-polytrope

log 𝑝1 U(33.6, 35.4)
Γ1 U(1.9, 4.5)
Γ2 U(1.1, 4.5)
Γ3 U(1.1, 4.5)

Speed-of-sound

𝑎1 U(0.5, 1.5)
𝑎2 U(1.3, 5)
𝑎3 U(0.05, 3)
𝑎4 U(1.5, 21)
𝑎5 U(0.1, 1)

Table 2.2: List of parameters and corresponding priors on which each parametric
EoS prior process depends.

Here 𝜌1 = 1014.7g/cm3 and 𝜌2 = 1015g/cm3 are fixed via an optimization for a set of
candidate EoS following from nuclear models [68]. The parameter 𝐾1 is chosen to
give some value 𝑝1 ≡ 𝑝(𝜌1), and 𝐾2 and 𝐾3 are then fixed by continuity. Therefore
{Γ1, Γ2, Γ3, 𝑝1} are the parameters in this model. Their corresponding priors are
given in Table 2.2. Extensions to this model with more polytropic segments or
allowing the transition densities to vary are proposed in Refs. [76, 75, 67, 59].

When {Γ1, Γ2, Γ3, 𝑝1} are sampled from a uniform distribution then the resulting
total EoS will be neither necessarily causal or stable. Therefore, we have to enforce
these constraints after the fact; specifically, we sample a set of parameters, compute
the corresponding EoS, and save it only if it obeys causality and stability.8 Overall,
we retain ∼ 1.6 × 105 EoS. We verified that this number is enough to efficiently
characterize the posterior by confirming that we get consistent results with half
as many draws. For the computation of the 𝑝(𝜌), and 𝜀(𝑝) relations, we used
LALSimulation, a subsection of LALSuite [50]. For checks of NS properties
such as causality, we used LALInference [50, 80]. Our priors are slightly more
restrictive than those used in Ref. [42] due to computational problems that arise for
candidates with the highest Γ2, Γ3, which tend to represent acausal EoS candidates
anyway.

8In practice, we impose a weaker causality constraint (𝑐𝑠 ≤ 1.1𝑐) for our parametric models.
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Spectral parametrization
In the spectral approach, the polytropic exponent is expanded in a series of basis
functions. Following the conventions of Ref. [52] which introduced the spectral
parameterization, we take 𝑥 ≡ 𝑝/𝑝0 where 𝑝0 is the smallest pressure where the
spectral parametrization will be used; the parametrization is matched to some other
EoS at this density which serves as the low-density crust [34]. Then we set

𝑝(𝜌) = 𝜌Γ(𝑥) (2.19)

with

Γ(𝑥) =
𝑛∑︁
𝑖=0

𝛾𝑖 (log(𝑥))𝑖 . (2.20)

In most of the literature, and for our purposes 𝑛 is set to 3. Note that the overall scal-
ing of 𝑝(𝜌) is fixed by 𝛾0, and again we have four total parameters {𝛾0, 𝛾1, 𝛾2, 𝛾3}.
In practice sampling individual parameters is impractical because generic combi-
nations of parameters produce unphysical EoS, even if the parameter ranges are
chosen carefully. Instead, following Ref. [81], we sample in a different parameter
space 𝑟 = (𝑟0, 𝑟1, 𝑟2, 𝑟3) and under an affine map construct samples in 𝛾. The prior
on 𝑟 is given in Table 2.2. Our analysis uses a total of ∼ 1.9 × 105 draws from
the spectral model. We again use the LALSuite components LALSimulation
and LALInference [50, 80], with particular spectral components implemented by
Ref. [14]. The spectral EoS is stitched to a model of the SLy EoS just below
0.5𝜌nuc [14] (see Fig. 2.1).

Speed of sound parametrization
In this approach, the speed of sound is parametrized as a function of energy density.
Taking 𝑧 ≡ 𝜀/(𝜌nuc𝑐

2), we write

𝑐2
𝑠 (𝑧)
𝑐2 = 𝑎1𝑒

− 1
2 (𝑧−𝑎2)2/𝑎2

3 + 𝑎6 +
1
3 − 𝑎6

1 + 𝑒−𝑎5 (𝑧−𝑎4)
(2.21)

with 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 real parameters, and 𝑎6 fixed by matching to a low-density
crust. In Ref. [36], the matching is done to a chiral effective field theory at ∼ 𝜌nuc

with limits based on Fermi liquid theory enforced up to a density of 1.5𝜌nuc. Since
we do not wish to use more nuclear theory information for this model than others,
we instead stitch to SLy at a density of 0.6𝜌nuc, comparable to the stitching density
of the spectral model. Because of this, the parameter ranges in our implementation
must be adjusted to generate realistic EoS candidates. The prior on each parameter
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Figure 2.9: Comparison between using strictly causal (𝑐2
𝑠 < 𝑐2) parametric EoS

with each model (gray) and the headline results allowing some violation of the
causal limit (𝑐2

𝑠 < 1.1𝑐2). When restricting to only causal EoS, the issues of model
dependence and insufficient coverage of the physically allowed 𝑀max-𝑅1.4 space are
more severe, especially for the piecewise-polytrope.

is given in Table 2.2. Our analysis uses a total of ∼ 1.6×105 draws from this model.
A similar model based on the speed of sound is presented in Ref. [79].

Causality in parametric models
Because of the relatively large uncertainties, we follow Ref. [14] in not excluding
parametric EoS until they have a large violation of the speed of sound 𝑐𝑠 > 1.1𝑐.
This is the standard criteria used in LALinference for the piecewise-polytrope and
spectral models as part of determining if an EoS is physical. For consistency we
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extend it to the speed-of-sound parametrization as well. The primary motivation
for this is to allow a possibly acausal EoS to represent another, causal EoS which is
not modeled effectively by the prior on EoS [14]. In addition, the LALinference
implementation of the spectral and piecewise-polytrope models enforces this crite-
rion only up to the central density of the maximum mass NS. In the speed-of-sound
model, we require the EoS to be causal (or approximately causal) everywhere. The
nonparametric model obeys exact causality (𝑐𝑠 ≤ 𝑐) at all densities.

These choices were made for consistency with past work [14, 1], but we still find that
this extra model freedom does not enable to spectral and piecewise-polytropic mod-
els to fill in the physically available 𝑀max-𝑅1.4 space up to the causality threshold.
Figure 2.9 shows that excluding the acausal models minimally affects the spectral
and speed-of-sound results. However, the piecewise-polytrope results are notice-
ably tighter, and the 𝑀max − 𝑅1.4 allowed parameter space is covered significantly
less. This also explains why the nominal piecewise-polytrope prior supports larger
pressures than the nonparametric prior in Fig. 2.10.

2.12 Further results with the parametric models
Most results presented the main body of this paper were obtained using the spectral
EoS model. In this appendix we present similar results with the piecewise-polytropic
and the speed-of-sound models. Figure 2.10 shows the pressure-density and mass-
radius posteriors for all EoS models. As expected, we find that the posteriors differ
due to the different models. Figure 2.11 shows the posteriors for the speed of sound
as a function of the density where again the nonparametric case results in the less
constrained results as an outcome of larger model flexibility.

Figure 2.12 shows the equivalent of Fig. 2.2 for the piecewise-polytrope and the
speed-of-sound models. We again find that both parametric models lead to tighter
constraints on 𝑀max for high values. The two-dimensional plots show that model-
dependent correlations between the maximum mass and the radius (equivalently low
and high densities) exclude certain regions of the 𝑀max-𝑅1.4 space in the parametric
marginal priors. As with the spectral model, there is a gap between the piecewise-
polytrope prior and the approximate causality threshold. The corresponding plots for
the speed-of-sound parametrization show the opposite behavior: the prior reaches
the causality threshold, but it fails to produce EoS with large 𝑅1.4 and small 𝑀max.
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Figure 2.10: Symmetric 90% credible region for the pressure 𝑝 at each density 𝜌 in
units of the nuclear saturation density (left) and the radius 𝑅 as a function of the mass
𝑀 . From top to bottom we show results with the spectral, piecewise-polytrope, and
speed-of-sound parametric models. At each panel we overplot the corresponding
nonparametric result for comparison. The spectral 𝑝-𝜌 panel is identical to Fig. 2.1,
but we show it for completeness. As in Fig. 2.1 we show results with all astrophysical
data (labeled “astro," solid lines) and restricting to the heavy pulsars only (labeled
“psr," dashed lines).
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Figure 2.11: The speed of sound squared as a function of baryon density in the
spectral (top), piecewise-polytrope (middle) models, and speed-of-sound (bottom)
models, compared to our nonparametric model.
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C h a p t e r 3

CONSTRAINTS ON THE EQUATION OF STATE USING THE
X-RAY MILLISECOND PULSAR J0740+6620

[1] Isaac Legred et al. “Impact of the PSR J0740 + 6620 radius constraint on
the properties of high-density matter”. In: Phys. Rev. D 104 (6 Sept. 2021).
I led this study on the impact of the the NICER mass-radius constraint
on the mllisecond x-ray pulsar J0740+6620 on nonparametric equation of
state constraints. I developed software, some of which was contributed by
other collaborators from previous projects, ran the analysis, and co-wrote
the manuscript., p. 063003. doi: 10.1103/PhysRevD.104.063003. url:
https://link.aps.org/doi/10.1103/PhysRevD.104.063003.

Abstract
X-ray pulse profile modeling of PSR J0740+6620, the most massive known pul-
sar, with data from the NICER and XMM-Newton observatories recently led to
a measurement of its radius. We investigate this measurement’s implications for
the neutron star equation of state (EoS), employing a nonparametric EoS model
based on Gaussian processes and combining information from other x-ray, radio,
and gravitational-wave observations of neutron stars. Our analysis mildly disfavors
EoSs that support a disconnected hybrid star branch in the mass-radius relation, a
proxy for strong phase transitions, with a Bayes factor of 6.9. For such EoSs, the
transition mass from the hadronic to the hybrid branch is constrained to lie outside
(1, 2) M⊙. We also find that the conformal sound-speed bound is violated inside
neutron star cores, which implies that the core matter is strongly interacting. The
squared sound speed reaches a maximum of 0.75+0.25

−0.24 𝑐
2 at 3.60+2.25

−1.89 times nuclear
saturation density at 90% credibility. Since all but the gravitational-wave observa-
tions prefer a relatively stiff EoS, PSR J0740+6620’s central density is only 3.57+1.3

−1.3
times nuclear saturation, limiting the density range probed by observations of cold,
nonrotating neutron stars in 𝛽-equilibrium.

https://doi.org/10.1103/PhysRevD.104.063003
https://link.aps.org/doi/10.1103/PhysRevD.104.063003


64

3.1 Introduction
The properties and composition of matter at the highest densities achieved in neutron
star (NS) cores remain uncertain [80, 98, 95, 18]. The main observational constraints
on the equation of state (EoS) of NS matter at densities ≳ 3 𝜌nuc, where 𝜌nuc =

2.8 × 1014g/cm3 is the nuclear saturation density, come from radio measurements
of the masses of the heaviest known pulsars [37, 59, 15, 36, 58]. These observations
place the maximum nonspinning NS mass above 2 M⊙, which limits the softness
of the high-density EoS and tends to decrease the probability of exotic degrees of
freedom that reduce the pressure within NS matter.

Other probes of NS matter are typically less informative about these high densities.
Nuclear calculations and experiments constrain the EoS respectively around [41,
125, 40, 42, 49] and below [54, 107, 10, 48, 21] 𝜌nuc. Recent measurements of the
neutron skin thickness of 208Pb suggest a stiff EoS for densities ≲ 𝜌nuc [107, 10],
though uncertainties are still large and there is potential tension with other labo-
ratory probes [116, 107, 48]. Gravitational wave (GW) observations by LIGO [1]
and Virgo [9] provide information about the tidal properties of merging NSs [57,
67, 28], and have thus far set an upper limit on the stiffness at ∼ 2 𝜌nuc. How-
ever, they are intrinsically less informative for larger NS masses. Tidal effects are
quantified through the dimensionless tidal deformability Λ, which scales roughly as
(𝑅/𝑚)6 [132] for a NS of mass 𝑚 and radius 𝑅, implying that the most massive—
and thus most compact—NSs exhibit inherently weaker tidal interactions. As a
result, the very nature of some ∼ 2–3 M⊙ compact objects observed with GWs, such
as the primary in GW190425 [3] and the secondary in GW190814 [8], cannot be
determined beyond a reasonable doubt [124, 45, 38, 126, 55, 22]. In the same den-
sity regime as the GWs, the electromagnetic counterpart to GW170817 may bound
the EoS stiffness from below [104, 34, 103, 35], though it is subject to significant
systematic modeling uncertainty [71, 16].

Another means of probing dense matter is x-ray emission from hotspots on the
surface of rotating NSs. Identifying and modeling modulations in the hotspot
lightcurve can be used to measure NS radii. Initial results obtained by NICER [25,
26, 24] for PSR J0030+0451 [89, 111] complement the tidal measurements from
GW170817 [7, 4, 2], as they constrain the EoS at 1-2 𝜌nuc [79], disfavoring the
softest EoSs [77]. This ensemble of theory, experiment and observation has helped
to establish an overall picture of NS matter in the last few years [68, 101, 39, 77,
23], which is nonetheless still unresolved at high densities.
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Recently, a measurement of the radius of the 2.08 M⊙ pulsar PSR J0740+6620 [36,
58] using x-ray data from NICER and XMM-Newton was reported by two inde-
pendent analyses [90, 112]. This radius constraint presents a rare glimpse of the
properties of the most massive NSs, and a golden opportunity to obtain observa-
tional information about the maximum NS mass, 𝑀max, as well as potential phase
transitions in NS cores. In the context of the preferred hotspot model in each
analysis, [90] finds 13.7+2.6

−1.5 km and [112] obtains 12.4+1.3
−1.0 km for J0740+6620’s

radius (medians and symmetric 68% credible intervals). For context, the inference
reported in [77] predicts the radius of 2.08 M⊙ NSs to be 12.08+0.79

−0.98 km at the 68%
confidence level.

Observations of the most massive NSs, such as J0740+6620, have important im-
plications beyond the EoS. They inform the NS mass distribution [99, 72, 14, 53,
51, 129, 29, 56], the classification of the heaviest NS candidates observed with
GWs [45], our understanding of the proposed mass gap between NSs and black
holes [73, 52], and the characteristics of NS merger remnants [20] that influence
electromagnetic counterpart emission [87, 17]. The properties of the high-density
EoS are also connected to the properties at other density scales through correlations
shaped by causality considerations [110, 69].

To determine the implications of J0740+6620’s radius measurement for NS matter,
we employ a nonparametric model for the NS EoS based on Gaussian processes
(GPs), which offers us the flexibility of an analysis that (i) is not tightly linked to
specific nuclear models, (ii) can account for phase transitions, including strong first-
order phase transitions that result in disconnected stable branches in the mass-radius
relation, and (iii) is not subject to the systematic errors that arise with parametrized
EoS families described by a finite set of parameters. Additionally, the nonparametric
EoS model allows us to probe a wider range of intra-density correlations in the EoS
than parametric models, something especially relevant for the current data set, which
targets a wide range of NS densities [81].

We find that the new J0740+6620 observation pushes the inferred radii and maxi-
mum mass for NSs to larger values: we obtain 𝑅1.4 = 12.56+1.00

−1.07 km for the radius of
a 1.4 M⊙ NS and 𝑀max = 2.21+0.31

−0.21 M⊙ for the maximum nonrotating NS mass (we
quote medians and 90% highest-probability-density credible regions unless other-
wise noted). Despite significant statistical uncertainties, the inferred NS radii are
consistent with being equal over a broad mass range, with a radius difference of
Δ𝑅 ≡ 𝑅2.0 − 𝑅1.4 = −0.12+0.83

−0.85 km between 2.0 M⊙ and 1.4 M⊙ NSs. This con-
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clusion rules out a large reduction in the radius for massive NSs, a feature that is
sometimes characteristic of strong phase transitions in the mass regime of typical
NSs. Further, we find that EoSs with at least one disconnected hybrid star branch
in their mass-radius relation are disfavored compared to those with a single stable
branch by a factor of approximately 6.9. This supports the current consensus that
all dense-matter observations can be accommodated by a standard hadronic EoS,
although the possibility of a phase transition remains viable; only the strongest first-
order phase transitions produce more than one stable sequence of compact stars.
If, on the other hand, the mass-radius relation has multiple stable branches, the
heaviest star on the first stable branch is either ≲ 1 M⊙ or ∼ 2 M⊙. Our results
disfavor a transition mass in the intermediate mass regime, suggesting that either all
NSs observed to date contain exotic cores, or virtually all are purely hadronic.

We also find support for a violation of the conjectured conformal bound on the
sound speed 𝑐𝑠 in NS matter, 𝑐2

𝑠 ≤ 𝑐2/3 [75, 32, 19], where 𝑐 is the speed of
light. Such a violation indicates that the sound speed does not rise monotonically
to the perturbative QCD limit (𝑐2

𝑠 → 𝑐2/3) at asymptotically high densities [125]
and signals the presence of strongly interacting matter in NS cores [77]. The
stiff high-density EoS required by the massive pulsar observations already put the
conformal bound in jeopardy [19, 125, 88, 14, 106], but the softer low-density
behavior favored by GWs and the NICER radius measurements help reach a Bayes
factor of 1000 ± 340 (mean and standard deviation from Monte Carlo uncertainty),
securely in favor of a violation. We infer that 𝑐2

𝑠 reaches a maximum of 0.75+0.25
−0.24 at

a density of 1.01+6.3
−5.3 × 1014 g/cm3 (3.60+2.25

−1.89 𝜌nuc) in NS matter.

Our results are comparable to other analyses of the new J0740+6620 radius mea-
surement. Reference [90] examined the pressure-density relation, the NS radius,
and 𝑀max using the same set of observational data as we do but did not comment
on the possibility of phase transitions in the EoS. They adopted three different
models for the EoS(including a simple, more restricted implementation of a GP)
which each yielded different but overlapping constraints on the EoS. EoS models
informed by chiral effective field theory (𝜒EFT) at low densities and GW170817’s
electromagnetic counterpart were considered in Refs. [102, 100]; the latter analy-
sis also disfavors EoSs with strong first-order phase transitions, while the former
compared two parametric EoS models, finding some model-dependence in their
results. A hybrid nuclear parameterization and piecewise polytrope EoS model
was employed in [21], which also accounted for the recent PREX-II measurement
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of the neutron skin of 208Pb [10]. Compared to these studies, our less restrictive
treatment of the EoS model broadly results in both qualitative and quantitative agree-
ment. Nonetheless, it allows us more freedom to investigate the consequences of
the J0740+6620 radius measurement for NS matter microphysics, including phase
transitions, the conformal sound-speed bound, and the inferred stiffness of the EoS.

The remainder of the paper describes the details and results of our analysis. In
Sec. 3.2 we briefly describe the methodology we employ as well as the relevant
data sets. In Sec. 3.3 we present the results of our inference for macroscopic NS
properties. In Sec. 3.4 we discuss the constraints that can be placed on microscopic
EoS properties in terms of the sound speed in NS matter and phase transitions.
We conclude and discuss other studies of J0740+6620’s EoS implications in the
literature in more detail in Sec. 3.5.

3.2 Equation of state inference
Our analysis methodology closely follows that of [77]; here we briefly summarize
the main features and discuss the updated treatment of J0740+6620.

Hierarchical inference
In order to combine information from multiple data sets that include statistical
uncertainties, we use hierarchical inference [85]. The relevant formalism and equa-
tions are described in detail in Sec. III B of [77]. The marginal likelihood of
each observation (for example, a GW tidal measurement) for a given EoS model is
obtained by marginalizing over the relevant parameters for individual events (in the
GW case, the binary masses and tidal parameters) assuming some prior distribution
(i.e., population model) for the nuisance parameters (in the GW case, the binary
masses). Similar to [77], we assume a fixed population for all observations given the
relatively low number of observations to date. This simplification also makes the
EoS likelihood independent of selection effects [86]. However, as the size of each
data set increases (for example through the observation of additional GW signals),
we will need to simultaneously fit the population in order to avoid biases in the EoS
inference [11, 129].

In the absence of knowledge of the true compact object mass distribution, we choose
a uniform population model that extends beyond the maximum mass of all EoSs
we consider. For a given EoS model, we further assume that all objects with
𝑚 ≤ 𝑀max are NSs. In other words, we assume that it is the EoS, and not the
astrophysical formation mechanism, that limits the maximum NS mass. Then, for
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observations of objects known a priori to be NSs (such as J0740+6620, but unlike
the components of the GW events), the normalization of the mass prior mildly
penalizes EoSs that predict a maximum mass larger than all observed NS masses.
This is an Occam penalty that favors EoSs that occupy a smaller prior volume and
do not predict unobserved data in the form of very massive NSs, all else being equal.
If, instead, we truncated the NS mass distribution below 𝑀max—e.g., because we
had knowledge of an astrophysical process that limits the maximum NS mass—all
EoSs with 𝑀max greater than the largest population mass would be assigned equal
marginal likelihood. However, such a choice would have to be accompanied by an
arbitrary choice of the truncation mass, given our lack of prior knowledge about the
upper limit of the astrophysical NS mass distribution.

The distinction between these scenarios is important for any analysis of J0740+6620,
given its high mass. We employ a uniform mass distribution with a lower limit of
0.5 M⊙; hence, an EoS with 𝑀max = 3 M⊙ is disfavored in our inference compared
to an EoS with 𝑀max = 2.5 M⊙ by a factor of (3 − 0.5)/(2.5 − 0.5) = 1.25. In the
results presented in later sections, for example Fig. 3.2, this contributes to the fact
that the tail of our 𝑀max posterior is slightly tighter than the prior. More details and
a quantitative assessment of the effect of the mass prior are given in the appendix.

Nonparametric EoS model
The procedure outlined above requires a model that describes the NS EoS and can
be used to compute all relevant macroscopic NS properties, such as masses, radii,
and tidal deformabilities [96, 127, 66]. Following [77], we use a nonparametric
EoS model constructed through GPs conditioned on existing dense-matter EoS
models available in the literature; see [76, 46, 77] for more details. While the GP
never assumes a specific functional form for the EoS, unlike parametric analyses,
it does assume probabilistic knowledge about correlations within the EoS. Each
GP is constructed with different hyperparameters that specify a covariance kernel,
which in turn controls the scale and strength of correlations between the sound
speed at different pressures. The specific model employed here is described in detail
in [46]. It is constructed as a mixture of ∼ 150 individual GPs with a broad set of
hyperparameters, allowing us to probe a wide range of EoS models with different
intra-density correlations.

The nuclear models on which the process is conditioned contain EoSs with different
degrees of freedom, including purely hadronic, hyperonic, and quark models. We
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intentionally condition only loosely on these models, resulting in the process termed
model-agnostic in [46].1 As a result, our EoS prior contains a large variety of EoS
behavior, including phase transitions at different density scales and of different
strengths; see for example Fig. 1 of [46]. This nonparametric approach offers
two further advantages over more traditional parametric models [105, 84, 61]:
it avoids (i) systematic errors and (ii) strong (and perhaps opaque) intra-density
correlations [81] that arise from restricting the EoS to a specific functional form
with finite parameters, which will inevitably not match the correct EoS.

To that end, Ref. [90] also employed a GP EoS model, citing the same benefits
we point out here. However, [90] used a single GP with a single set of hyperpa-
rameters (compared to ∼ 150 GPs we consider) and chose those hyperparameters
to approximate the variability observed within tabulated EoSs from the CompOSE
database [33]. Therefore, the GP prior explored in [90] is more reminiscent of
the model-informed prior considered in [76, 46] than the model-agnostic prior con-
sidered here and in [76, 46, 77, 49, 48]. In fact, the hyperparameters used in [90]
assume less variance (smaller𝜎) and stronger correlations between pressures (larger
𝑙) than any of the allowed hyperparameters within our hyperprior (see [46] for more
details). Our results, therefore, intentionally explore broader ranges of possible
EoS behavior and intra-density correlations than [90], particularly at high densities
where the GP model in [90] forces the sound speed to approach the speed of light
a priori. Their more closely tailored GP design may explain why Fig. 10 of [90]
shows that their GP analysis leads to more stringent EoS constraints than parametric
EoS inferences.

Data
The data we use are similar to [77, 78], with the addition of the new constraints on the
mass and radius of J0740+6620. Specifically, we make use of different combinations
of (i) the radio mass measurements for J0348+0432 [15] and J0740+6620 [36, 58],
(ii) the GW mass and tidal deformability measurements from GW170817 [7, 4,
83] and GW190425 [3, 82], and (iii) the x-ray mass and radius constraints from
J0030+0451 [89, 111] and J0740+6620 [90, 112]. For J0030+0451, we follow [77]
and select the 3-spot model from [89, 91], though one can obtain very similar bounds
with the J0030+0451 results from [111, 113] instead (see [77]). As before, we do
not assume that any of the binary components of GW170817 and GW190425 were
NSs a priori.

1We emphasize that model-agnostic does not mean model-independent.
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One notable difference compared to [77] is that J0740+6620 now appears in the
list of both radio and x-ray observations. As described in [90, 112], the measured
mass of J0740+6620 is still dominated by the radio observations [58]. The most
recent mass estimate of 2.08+0.07

−0.07 M⊙ is slightly lower than the originally reported
value of 2.14+0.10

−0.09 M⊙ [36] (68% confidence level), making it more consistent with
other Galactic NS mass measurements [51]. To avoid double-counting, we include
J0740+6620 either through its updated mass estimate in the radio list or through its
mass and radius estimate in the x-ray list. The difference gives an estimate of the
impact of the radius constraint alone on the NS EoS.

When treating J0740+6620 as either a radio or an x-ray observation, we explicitly
account for the normalization of the mass prior in Eqs. (9) and (11) of [77], in
accordance with our choice of fixed population model.2 For the J0740+6620 x-ray
data, we use either the NICER+XMM samples from [90, 92] or the ST-U samples
from [112, 114]. Both sets of samples already incorporate the updated mass estimate
from [58], though [90] inflates the uncertainty in this measurement by ±0.02 M⊙

out of concern for systematic uncertainties. For our analysis, we choose to revert
back to the published result from [58] and remove the additional uncertainty of
0.04 M⊙. In practice, we use the posterior samples from [90, 92] but weight each
sample by N(2.08 M⊙, 0.07 M⊙)/N (2.08 M⊙, 0.09 M⊙), the ratio of the inferred
mass estimate from [58] to the inflated mass estimate used in [90]. This allows
for a more direct comparison between the results of [90] and [112]. We find a
negligible effect on our results when we repeat our analysis with the increased mass
uncertainty. Table 3.1 summarizes the mass and radius data we use for J0740+6620.

Measurement 𝑚 [M⊙] 𝑅 [km]

Radio [58] 2.08+0.11
−0.11 -

x-ray NICER+XMM [90] 2.07+0.11
−0.12 14.30+4.33

−2.97

x-ray NICER+XMM [112] 2.07+0.11
−0.11 12.34+1.89

−1.67

Table 3.1: Measurements of PSR J0740+6620’s mass and radius used in our
inference. Medians and 90% highest-probability credible intervals are given. For
the Miller et al. [90] measurement we remove the inflated mass uncertainty and
convert to a flat-in-radius prior.

2Unlike in [77], where we assumed the population of NICER targets ended at masses well below
𝑀max, we assume the population of NICER targets extends well beyond 𝑀max and include the proper
normalization for the mass prior for both J0030+0451 and J0740+6620.
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Figure 3.1: Constraints on the NS mass-radius relation. Shaded regions enclose the
90% symmetric credible intervals for the radius for each value of the mass. The top
panel shows the effect of the J0740+6620 radius constraint by comparing the prior
(black), and results with (without) the J0740+6620 radius in blue (turquoise). The
bottom panel presents cumulative constraints on the mass-radius relation as each
type of data set is analyzed. In black we again show the prior. The turquoise region
shows the posterior after including the mass measurement of the two heavy pulsars
(including the updated J0740+6620 mass estimate). The green region correspond to
constraints obtained after adding the GW data. Finally, the blue region correspond to
constraints after further adding the J0030+0451 and J0740+6620 mass and radius
constraints from NICER. In the last case we remove the J0740+6620 mass constraint
from the list of radio constraints so as to avoid double-counting.
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Unlike J0030+0451, the two independent analyses of J0740+6620 arrive at slightly
different values for its radius, even if one accounts for their different priors (flat in
mass-radius [112] vs. flat in mass-compactness [90]) and their different treatments of
the uncertainty in the mass estimate from [58]. Accounting for the prior differences
increases the discrepancy between the two results, as the flat-in-compactness prior
disfavors large radii. Miller et al. [90] use the nominal XMM-Newton calibration
uncertainty, while Riley et al. [112] use a larger uncertainty. The main effect of the
XMM-Newton data is to provide an estimate of the pulsar count rate, which aids in
the determination of the relative modulation depth of the x-ray pulse profile, which
is essential for placing an upper limit on J0740+6620’s compactness. Consequently,
the larger calibration uncertainty of [112] results in a less stringent lower bound
on the radius. We focus on results based on the analysis in [90], since it uses
the nominal calibration uncertainty, although we provide select comparisons to the
results of [112].

Nonetheless, we stress that hierarchical EoS constraints are unaffected by the choice
of prior for the J0740+6620 radius measurement; any discrepancies are solely due
to systematic differences between the two analyses, such as the choice of XMM-
Newton calibration uncertainty or issues of convergence within sampling algorithms
(see the discussion in Sec. 4.6 of [90]).

3.3 Neutron star mass and radius
We apply our analysis to the combined radio, GW, and x-ray data and present
the resulting constraints for macroscopic NS properties, notably masses, radii, and
tidal deformabilities. In what follows, whenever we refer to results without the
J0740+6620 radius measurement, we still use its updated mass estimate from [58]
within the inference. Unless otherwise stated, all results make use of the Miller et
al. [90] mass and radius constraints without the inflated mass uncertainty.

We infer the NS mass-radius relation shown in Fig. 3.1, which plots the 90%
symmetric credible region for 𝑅 as a function of 𝑚.3 The top panel focuses on the
effect of the new J0740+6620 radius measurement: it tightens the 90% credible
constraint on the radius from the low side by 0.57 km at 1.4 M⊙ and 0.71 km at
2.0 M⊙. The bottom panel shows cumulative constraints on the mass-radius relation
as the different data sets (radio, GW, x-ray) are added one at a time. As discussed
in [77], the radio and x-ray observations tend to drive the lower bound on the NS

3Fig. 3.1 shows credible regions for 𝑅(𝑚) restricted to those EoSs with 𝑀max ≥ 𝑚. That is, we
show the bounds for stable NSs only.
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Figure 3.2: Prior and posterior distributions of the radius at 1.4 M⊙ (𝑅1.4) and
2.0 M⊙ (𝑅2.0), the maximum mass (𝑀max), the dimensionless tidal deformability at
1.4 M⊙ (Λ1.4) and 2.0 M⊙ (Λ2.0), and the pressure at twice (𝑝2) and six times (𝑝6)
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2D distributions correspond to the 90% level. Black lines denote the prior, while
blue (turquoise) lines correspond to results with (without) the J0740+6620 radius
constraint. The prior includes numerous EoSs that do not support massive NSs, in
which case we report quantities assuming black holes, corresponding to the sharp
peak at Λ = 0 in the prior.
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radius, while the GW data and causality set the upper bound. This is because
the GW measurements mainly constrain Λ ∼ (𝑅/𝑚)6 from above, while the x-ray
measurements primarily set an upper bound on the compactness 𝑚/𝑅 and therefore
a lower bound on 𝑅. The J0740+6620 radius measurement reinforces this picture
of complementary constraints.

One- and two-dimensional marginalized priors and posteriors for various macro-
scopic and microscopic parameters are given in Fig. 3.2, while Table 3.2 presents
medians and 90% highest-probability-density credible regions for these and other
quantities of interest. Like the left panel of Fig. 3.1, we compare the prior and pos-
terior with and without the J0740+6620 radius constraint. However, we no longer
restrict the prior to EoSs that support stable NSs at a given mass scale: it includes
EoSs with 𝑀max significantly smaller than 1 M⊙, such that, for example, the prior
on Λ1.4 peaks at the black hole value of zero. This distinction is less relevant for the
posterior, as the data significantly disfavor EoSs that do not support 𝑀max ≳ 2 M⊙.
Nonetheless, it explains the shape of some priors in Fig. 3.2.

On the whole, we find that the J0740+6620 radius constraint increases support for
stiffer EoSs with larger radii and tidal deformabilities. Our inferred 𝑀max is also
slightly increased. This is because J0740+6620’s radius is no smaller than that
of a lower-mass NS, indicating that the turning point in the mass-radius relation
occurs above the pulsar’s mass. As discussed above, the tail of the 𝑀max posterior
is slightly lower than its prior. This is driven by two factors: first the bound on
𝑅1.4 provided by GW170817 that limits 𝑀max via causality considerations, and
second, our assumption that the maximum NS possible is determined by the EoS
and not NS formation mechanisms, resulting in EoSs that predict very heavy (and
unobserved) NSs being disfavored. An upper limit on𝑀max ≲ 2.2−2.6 M⊙ has been
proposed by assuming that the electromagnetic counterpart to GW170817 suggests
that the merger remnant collapsed to a BH shortly after merger [87, 121, 117, 109,
120, 6]. We do not employ this upper limit here (nor any other information from
the GW170817 counterpart), and thus our inferred 𝑀max extends to higher values.
Indeed the data sets we use can only stringently constrain 𝑀max from below. The
effect of folding in such an upper limit is demonstrated in [100].

Based on Fig. 3.2, we also see that 𝑅2.0 is more strongly correlated with the pressure
at 2 𝜌nuc than at 6 𝜌nuc [79, 43]. Additionally, J0740+6620’s radius measurement
from [90] eliminates the bimodality in the posterior on Λ1.4 [4], now favoring
the (initially subdominant) upper mode at ∼ 500 rather than the dominant one at
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∼ 200. This suggests that the EoS lies on the stiff side of the constraints established
by GW170817 at intermediate densities. We expand on this and quantify the
implications for NS central densities in Sec. 3.4.

The general trend in favor of stiffer EoSs also increases the lower bound of the 90%
highest-probability-density credible region for Λ1.4 (respectively, Λ2.0) from 168
(7) to 265 (14). Setting the tidal deformability equal to this lower limit, we can
obtain a conservative estimate of the signal-to-noise ratio (SNR) required for a GW
observation to confidently detect tidal effects, i.e., bound Λ away from zero. The
measurement uncertainty in Λ was ∼ 700 at an SNR of ∼ 33 for GW170817 [4].
Assuming that this measurement is typical and that uncertainties scale inversely
with the SNR [128], a back-of-the-envelope estimate suggests that tidal effects can
be measured to within 265 (14) for a binary with masses of 1.4 M⊙ (2.0 M⊙) with
SNR of 44 (770). The threshold SNR for Λ1.4 is within reach of current advanced
detectors [5], although the SNR for Λ2.0 will require next-generation detectors,
consistent with the findings of [31].

The full EoS inference also allows us to obtain an updated radius estimate for
J0740+6620 informed by all the data, as plotted in Fig. 3.3. We find 12.41+0.93

−1.16 km
at the 90% level, compared to 13.24+2.25

−1.93 km when using only the J0740+6620
x-ray data conditioned on our nonparametric EoS model. For reference, the
J0740+6620 measurement from [90] is 14.30+4.33

−2.97 km at 90% credibility when
adjusted to remove the 0.04 M⊙ systematic error estimate and intrinsic flat-in-
compactness prior. The radius uncertainty for J0740+6620 at the 90% level is
reduced by 3.12 km by conditioning on our EoS prior and further by 2.09 km when
additionally including all our astrophysical data. Most of this improvement comes
from the exclusion of large radii due to two reasons: (i) the EoS prior model favors
realistic EoSs and a radius below ∼ 17 km, see prior in Fig. 3.1, and (ii) the GW
data are inconsistent with large radii above ∼ 13 − 14 km. The updated radius
estimate is consistent with the constraint of 12.28+0.60

−0.68 km from [90] (68% level)
after conditioning on other data and their EoS prior.

We also investigate how our results change if we use the J0740+6620 data from [112]
in place of the data from [90]. The two sets of inferred NS properties are compared
in Table 3.2. Because of their more conservative treatment of calibration error,
the Riley et al. [112] data place a less constraining lower bound on J0740+6620’s
radius and therefore result in a more modest shift towards stiff EoSs. Out of the
∼ 0.8 km difference between the lower bounds of the 68% credible intervals on
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the pulsar’s radius obtained by the two analyses, [90] attributes 0.55 km to the
calibration difference and choices of prior boundaries. Our hierarchical analysis
is immune to the prior difference, and after conditioning on all the observational
data we find an overall difference of 0.4 km (respectively, 0.29 km) in the lower
bound of the 90% credible interval on 𝑅1.4 (𝑅2.0) due to other systematic differences
between [90] and [112].4

3.4 Properties of dense matter
We now turn our attention to the properties of dense matter and examine the im-
plications of the J0740+6620 radius constraint. We begin in Fig. 3.4 with the
inferred pressure-density relation. In the left panel, we show the effect of the new
J0740+6620 radius constraint: it restricts the low-pressure side of the EoS at den-
sities of 2-3 𝜌nuc. This is comparable, but a bit lower, than the central density of
J0740+6620, denoted by the magenta contours. In the right panel, we show the cu-
mulative constraints that result from adding the different data sets sequentially. Red
contours here denote the central pressure-density posterior for the maximum-mass
NS.

The central density of J0740+6620 is 10.0+3.5
−3.6 × 1014g/cm3 ∼ 3.57+1.3

−1.3 𝜌nuc, as
inferred from all available data under our EoS model. The relatively low inferred
central density for a ∼ 2 M⊙ NS is indicative of a relatively stiff EoS at densities
∼ 1-2 𝜌nuc; see, e.g., Table III of [63] for a comparison between two representa-
tive hadronic models. However, our analysis intentionally does not closely follow
specific nuclear theoretic predictions. At low densities (up to ∼ 2 𝜌nuc), theoretical
predictions from 𝜒EFT may place an upper limit on the pressure, which would tend
to increase the central density of J0740+6620, although the most recent measure-
ment of the neutron skin thickness of 208Pb [10] may suggest a relatively stiff EoS
below and around 𝜌nuc; see [48] for more discussion.5

We further investigate the NS central densities in Fig. 3.5, which shows the mass-
central density posterior inferred using all the data. The central density of the
maximum-mass NS is 1.5+0.3

−0.4 × 1015g/cm3 ∼ 5.4+1.1
−1.4 𝜌nuc, corresponding to the

4The overall difference we find is smaller than the one quoted in [90] as we report 90% and
not 68% levels. The radius distribution for J0740+6620 is fairly asymmetric, so quoting a smaller
credible level tends to inflate discrepancies.

5Fig. 2 of [60] depicts the central densities obtained by extrapolating the realistic two- and
three-nucleon interactions predicted by microscopic theory to higher densities. The central values
of pressure at around 2 𝜌nuc inferred from our analysis (see Table 3.2) point to the stiffest EoS
compatible with low-density chiral effective-field-theory (𝜒EFT) [40, 42, 43, 102, 100].
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Figure 3.4: Same as Fig. 3.1 but for the pressure-density relation. In the left
panel, magenta contours give the 50% and 90% level of the central pressure-density
posterior for J0740+6620 inferred from all available data. In the right panel, red
contours give the 50% and 90% level of the central pressure-density posterior for
the maximum-mass NS.
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maximum matter density that can be probed with observations of cold, nonspinning
NSs. Table 3.2 also gives the central densities for NSs of 1.4 M⊙ and 2.0 M⊙.
In general, we can understand the trends in the central densities within the same
context as Figs. 3.1 and 3.4. Typically, the central density remains low (stiff EoS)
until masses are ≳ 2 M⊙. Beyond this limit, set primarily by J0740+6620, the EoS
can soften appreciably and the central density can increase considerably. Indeed, the
density range explored by NSs above 2 M⊙ could be a factor of two times larger than
what is explored by canonical 1.4 M⊙ stars. High-mass NSs may yet have surprises
in store for future measurements.

Speed of sound
We examine the speed of sound inside NSs in Figs. 3.6 and 3.7. Figure 3.6 shows
the speed of sound squared (𝑐2

𝑠) as a function of density with and without the
J0740+6620 radius measurement. Already in [77], we concluded that the conformal
limit of 𝑐2

𝑠/𝑐2 = 1/3 is likely violated inside NSs, primarily due to the combination
of a soft low-density and a stiff high-density EoS and in agreement with [19, 125,
88, 14, 106]. We here find that the lower limit on the J0740+6620 radius agrees
with this picture and pushes the maximum of the marginal 90% lower limit for 𝑐2

𝑠 to
lower densities. In other words, the pressure needs to increase more rapidly at even
lower densities in order to accommodate the relatively large radius of J0740+6620.
The red contours corresponds to the central speed of sound and central density of the
maximum-mass NS, again bounding the densities that can be probed observationally.
The central speed of sound is essentially unconstrained, which means that, for some
EoSs, the speed of sound sharply decreases after it reaches its maximum value.

Figure 3.7 shows the maximum 𝑐2
𝑠 inside NSs and the density at which it is reached.

For each EoS, we maximize 𝑐2
𝑠 over all densities smaller than the central density

of the maximum-mass stellar configuration (i.e., a different range for each EoS).
Comparing the posterior to the conformal limit, we again find that the latter is
violated inside NSs with a maximum 𝑐2

𝑠/𝑐2 of 0.75+0.25
−0.24 achieved at a density of

1.01+6.3
−5.3 × 1014g/cm3 (3.60+2.25

−1.89 𝜌nuc). Compared to results without J0740+6620,
the maximum speed of sound is slightly lower and occurs at slightly lower densities,
as also seen in Fig. 3.6. This behavior was also observed for J0030+0451 [77].
Since both J0030+0451 and J0740+6620 data place a lower limit on the NS radius
we interpret the reduced value for the maximum speed of sound as follows: the
preference for a stiffer EoS at ∼ 2𝜌nuc means that the stiff EoS at ∼ 5𝜌nuc can be
achieved with a milder pressure-density slope and thus a smaller speed of sound.
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Figure 3.5: Same as Figs. 3.1 and 3.4 but for the central baryon density (in units
of saturation density) as a function of NS mass. Magenta (red) contours in the
left (right) panel show the 50% and 90% credible level for the mass-central density
posterior for J0740+6620 (maximum-mass NS).
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Figure 3.6: Similar to the left panels of Figs. 3.1, 3.4, and 3.5 but for the speed
of sound inside NSs. The horizontal black line denotes the conformal limit
𝑐2
𝑠/𝑐2 = 1/3 and the red contour corresponds to the 50% and 90% inferred speed of

sound and central density for the maximum-mass NS.

The strongest support for a large speed of sound comes from the combination of
GW and heavy pulsar data that point to a soft low-density and stiff high-density EoS
respectively, thus necessitating a steep slope in between. Figure 3.7 also shows our
prior on the maximum 𝑐2

𝑠 and, even though it is consistent with the conformal limit,
it certainly disfavors it.

To further assess the impact of data on the conformal limit in relation to the prior,
Table 3.3 compares the evidence for EoSs that violate the conformal limit (max 𝑐2

𝑠 >

𝑐2/3) with those that obey the conformal limit within nonrotating NSs through the
corresponding Bayes factor:

B𝑐2
𝑠>𝑐

2/3
𝑐2
𝑠≤𝑐2/3

≡
𝑝(data| max 𝑐2

𝑠 > 𝑐
2/3)

𝑝(data| max 𝑐2
𝑠 ≤ 𝑐2/3)

. (3.1)

We find strong support that the conformal limit is violated: B𝑐2
𝑠>𝑐

2/3
𝑐2
𝑠≤𝑐2/3

≳ 103. Al-
though our prior is consistent with EoSs that obey the conformal limit, it includes
relatively few realizations that do so. As such, our Bayes factors are subject to
sizeable sampling uncertainty from the finite number of Monte Carlo samples we
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𝑠/𝑐2 = 1/3.
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Data maxL𝑛>1
𝑛=1 B𝑛>1

𝑛=1 maxL𝑐2
𝑠>𝑐

2/3
𝑐2
𝑠≤𝑐2/3

B𝑐2
𝑠>𝑐

2/3
𝑐2
𝑠≤𝑐2/3

w/PSRs 1.00 0.120 ± 0.002 1.0 10.2 ± 0.5
w/o J0740+6620 0.97 0.220 ± 0.007 50.8 2220 ± 790

w/J0740+6620 Miller+ 0.60 0.146 ± 0.005 26.7 1000 ± 340
Riley+ 0.94 0.185 ± 0.006 72.7 2450 ± 1820

Table 3.3: Ratios of the maximum likelihoods and marginal likelihoods (Bayes
factors) comparing EoSs for which the sound speed violates the conformal limit vs.
those for which it is satisfied [maxL𝑐2

𝑠>𝑐
2/3

𝑐2
𝑠≤𝑐2/3

and B𝑐2
𝑠>𝑐

2/3
𝑐2
𝑠≤𝑐2/3

, Eqs. (3.1) and (3.2)], and
comparing EoSs with multiple stable branches vs. a single stable branch in their
mass-radius relation [B𝑛>1

𝑛=1 and maxL𝑛>1
𝑛=1 , Eqs. (3.3) and (3.4)]. We report point

estimates and standard deviation from Monte Carlo sampling uncertainty. Data sets
are labeled in the same way as in Table 3.2.

employ, making it hard to conclude whether support for the violation of the confor-
mal limit increases or decreases due to J0740+6620. Nonetheless, we recover large
Bayes factors, even considering this sampling uncertainty, and typically find that
B𝑐2

𝑠>𝑐
2/3

𝑐2
𝑠≤𝑐2/3

> 1 at the 3𝜎 level.

Similarly, we report the ratio of the maximum likelihood observed for each type of
EoS:

maxL𝑐2
𝑠>𝑐

2/3
𝑐2
𝑠≤𝑐2/3

=

max
max 𝑐2

𝑠>𝑐
2/3

𝑝(data|EoS)

max
max 𝑐2

𝑠≤𝑐2/3
𝑝(data|EoS) . (3.2)

This measures how well each type of EoS is able to fit the observed data, and
Table 3.3 shows that EoSs that violate the conformal limit are typically favored over
those that obey it by between a factor of 40–110.

Strong first-order phase transitions
We now turn our attention to the implications of J0740+6620 for strong phase
transitions. Figure 3.8 compares the pressure-density posterior inferred with EoSs
that support different numbers of stable branches in the mass-radius relation, used
here as a proxy for strong phase transitions. While strong first-order phase transitions
can lead to EoSs with multiple stable branches and possibly even “twin stars”, i.e.,
stars with roughly the same mass but very different radii [119], the converse is not
necessarily true. Only the strongest phase transitions lead to disconnected branches,
and so what follows concerns only the most extreme phase transitions. Typically,
strong phase transitions and multiple branches result in a large decrease in the
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Figure 3.8: Dependence of the pressure-density posterior on the number of stable
branches in the EoS. The blue region shows the full posterior, the green shaded
regions show the posterior when restricting to EoSs with multiple stable branches,
and the gold dashed lines denote the posterior region when restricting to a single
stable branch.

radius between subsequent branches [13, 12, 64, 30]. The lower limit on the radius
of J0740+6620 constrains such a sudden decrease.

Indeed, we find that the full posterior is similar (though not identical) to the one
obtained from restricting to EoSs with only a single stable branch. This suggests
that the full posterior marginalized over the number of branches is dominated by
EoSs with a single stable branch, though this is also true of the prior. Table 3.3
reports the evidence ratios for EoSs with different numbers of stable branches:

B𝑛>1
𝑛=1 ≡ 𝑝(data|num branches > 1)

𝑝(data|num branches = 1) . (3.3)

We find a Bayes factor of 6.9 in favor of a single stable branch, compared to < 5
without the J0740+6620 radius measurement. Astrophysical data generally disfavor
the existence of multiple stable branches, driven primarily by the requirement that
the EoS supports ∼ 2 M⊙ stars. As expected, the lower limit on the J0740+6620
further reduces the evidence for multiple stable branches. However, even the most
extreme preference for a single stable branch only suggest a Bayes factor of ≃ 8.
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Just as with the EoSs that obey vs. violate the conformal limit, we also report ratios
in the maximum likelihood observed with EoSs that have a single stable branch vs.
those with multiple stable branches:

maxL𝑛>1
𝑛=1 =

max
𝑛>1

𝑝(data|EoS)

max
𝑛=1

𝑝(data|EoS) . (3.4)

Similar to B𝑛>1
𝑛=1 , we find a preference for EoSs with a single stable branch, but it is

small (at most a factor of ≲ 2).

Previous work reported B𝑛>1
𝑛=1 additionally conditioned on the existence of massive

pulsars a priori [77], equivalent to dividing any B𝑛>1
𝑛=1 by the result using only the

massive pulsar observations. This amounts to examining whether the GW and x-ray
data are consistent with multiple stable branches, after we have already assumed the
existence of ∼ 2 M⊙ stars. If we follow suit, we obtain B𝑛>1

𝑛=1 ∼ 1.2 conditioning
on the existence of massive PSRs a priori and including the x-ray observations of
J0740+6620, compared to ∼ 1.8 reported in [77]. As such, we again find that x-ray
observations of J0740+6620 lower the evidence in favor of multiple stable branches.
Our conclusions are generally consistent with those reported in [100] (B𝑛>1

𝑛=1 ∼ 0.2),
although our results disfavor multiple stable branches slightly more strongly. A
direct comparison is difficult as [100] do not quote uncertainties in their estimates.
However, the observed differences could easily be due to priors (e.g., our priors
allow for more model freedom and therefore contain more EoSs with multiple stable
branches that are not forced a priori to support massive stars) or by how exactly
phase transitions are defined (here we define them in terms of stable branches).

Several caveats should be kept in mind when interpreting our Bayes factors. Most
importantly, it is well documented that Bayes factors are affected by the prior cover-
age of each model under consideration, particularly if they span regions of parameter
space without any support a posteriori. That is to say, the marginal likelihoods that
appear in, e.g., Eqs. (3.1) and (3.3) are averages of the likelihood over each prior;
if priors span large regions of parameter space with small likelihood values, their
marginal evidence will be smaller even if they achieve the same maximum likeli-
hood (match the data just as well) as other, more compact priors.6 Indeed, this is
why we additionally report maxL𝑐2

𝑠>𝑐
2/3

𝑐2
𝑠≤𝑐2/3

and maxL𝑛>1
𝑛=1 . In particular, differences

in the prior support are thought to be a driving factor behind the Bayes factors’ ap-
parent preference for EoSs with a single stable branch (multiple-branch EoSs span

6For more discussion in a related context, see [45] for a discussion of why posterior odds can be
more useful than Bayes factors.
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a broader range of behavior, comparing maxL𝑛>1
𝑛=1 and B𝑛>1

𝑛=1 in Table 3.3) as well as
the preference for 𝜒EFT models over more agnostic EoS priors [49, 47]. While this
type of Occam factor is desirable in many cases (see, e.g., discussion in Sec. 3.2),
one needs to take care when drawing conclusions based on such effects. Although
not guaranteed, we generally find that prior choices of this kind shift our Bayes
factor by only a factor of a few, typically much smaller than the variability due to
different realizations of experimental noise [118], which can be as large as factors
of O(10). It is therefore always prudent to check both the priors and posteriors for
the behavior in question, for example checking both Fig. 3.7 and Table 3.3 when
considering the conformal limit.

In the case of an EoS with multiple stable branches, we find a pressure-density
envelope that is morphologically similar to the one in Fig. 4 of [77] (obtained
without the J0740+6620 radius data). These plots show that, if the EoS has multiple
stable branches, then the pressure is higher below nuclear saturation and lower at
2-3 𝜌nuc, hinting towards a phase transition in this density regime and suggesting that
all observed NSs may already contain an exotic core. Besides such a low-density
phase transition, another possibility is a phase transition at higher densities. Such
an effect is expected to lead to a reduction in the radius of no more than ∼ 3 km [64,
30, 63, 43] for the most massive NSs compared to 𝑅1.4, which would have been
undetectable before the J0740+6620 radius lower limit.

To further explore the implications of a sudden decrease in the radius, in Fig. 3.9 we
plot the posterior for the radius difference Δ𝑅 ≡ 𝑅2.0 − 𝑅1.4 and the maximum 𝑐2

𝑠 ,
broken down again by the number of stable branches. A large negative value for Δ𝑅
suggests a strong phase transition at low densities, a scenario tightly constrained by
the lower limit on the J0740+6620 radius. We find Δ𝑅 = −0.12+0.83

−0.85 km, consistent
with zero although with large uncertainties, as also demonstrated in [90, 112]. This
effectively rules only out the most extreme case of phase transitions that lead to a
≳ 2 km decrease in radii [30] but still remains consistent with milder or smooth
phase transitions [63, 122]. In the case of multiple stable branches, we find that the
maximum 𝑐2

𝑠 is higher than the single-branch case, though this does not seem to
affect Δ𝑅.

The larger speed of sound is consistent with previous work that suggests that, in the
case of sharp phase transitions, the post-transition speed of sound in general needs
to be larger in order to compensate for the intrinsic softening induced by the phase
transition [64]. Indeed, as previously studied in [43], the absolute bounds on NS
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radii assuming an EoS with a constant sound speed at high densities is very sensitive
to the assumed value of max

{
𝑐2
𝑠/𝑐2}. The lower (upper) radius bound decreases

(increases) as max
{
𝑐2
𝑠/𝑐2} increases. This is in agreement with Fig. 3.9. The

absolute lower bound on NS radii derived in [43] corresponds to the most negative
value of Δ𝑅 induced by the strongest possible phase transition (limited by 𝑐2

𝑠 ≤ 𝑐2

at high densities) compatible with 𝑀max. On the other hand, a positive Δ𝑅 suggests
weaker phase transitions, progressing towards the absolute upper bound on NS radii.
We also note that for various physical models of hadronic matter (with or without a
smooth crossover to exotic matter), Δ𝑅 ≳ −1.5 km is typical, although a few exhibit
an increase from 𝑅1.4 to 𝑅2.0 [65, 63, 131].

To further explore this, in Fig. 3.10 we plot the posterior for the transition mass 𝑀t,
defined as the largest mass of the first stable EoS branch, and the transition density
𝜌t, defined as the central density at the transition mass, and select macroscopic
quantities. Fig. 3.10 also considers only EoSs with multiple stable branches. We
plot 𝑅1.4, 𝑅2.0, and 𝑀max, which roughly represent the main observables from GWs,
the two NICER pulsars, and the radio mass observations. We find that, if the EoS
has multiple stable branches, the transition from the first branch probably happens
for masses ≲ 1 M⊙ or ∼ 2 M⊙. The corresponding transition density is ≲ 2.2 𝜌nuc or
∼ 4.5 𝜌nuc. High-density phase transitions would be the most challenging to detect,
as they could result in small changes in the radius and thus be indistinguishable from
EoSs without a phase transition [13].

The posteriors also indicate that transition mass 𝑀t and the radius difference Δ𝑅

are anticorrelated. If the transition mass is very low, then the entire star is mostly
composed of exotic matter. As expected for quark stars, we find that Δ𝑅 is closer to
zero and can even be positive, i.e., the most massive star is bigger (as expected for
self-bound configurations). This is similar to the behavior of the two brown curves
in Fig. 1 of [30]. As the transition mass increases, Δ𝑅 becomes more negative.
This is similar to the purple and red curves from Fig. 1 of [30] that result in stars
that are hadronic in the outer layers but possess a large quark core. If future GW
detections place further upper limits on 𝑅1.4, then large negative values for Δ𝑅 will
be further constrained, thus pushing 𝑀t even lower.

The current data disfavor phase transitions that lead to multiple stable branches
occurring in the mass range ∼ (1-2) M⊙, suggesting that the majority of NSs we
observe belong in a single branch: if the true EoS has multiple stable branches,
either all sub-2 M⊙ contain exotic material or none do. The two-dimensional 𝑀t-
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Figure 3.10: Corner plot for the transition mass 𝑀t corresponding to the most
massive hadronic NS in EoSs with multiple stable branches, the transition density
𝜌t corresponding to the central density of a star with mass 𝑀t, 𝑅1.4, 𝑅2.0, 𝑀max, and
Δ𝑅 ≡ 𝑅2.0 − 𝑅1.4. Contours in the 2D distributions denote the 90% credible level.
Black lines denote the prior, while blue (turquoise) lines correspond to results with
(without) the J0740+6620 radius constraint.

𝑀max plot reveals that this is due to the requirement that 𝑀max ≳ 2 M⊙, which
disfavors 𝑀t ∼ 1.5 M⊙ a priori and “splits” the 𝑀t posterior into two modes [12].
This behavior is expected, for example, from Fig. 3 of [64] which shows that an
𝑀max measurement constrains the intermediate values of the transition pressure.
We leave extraction of further characteristics of the phase transition (such as the
transition strength) and EoSs with phase transitions that do not lead to multiple
stable branches to future work [44].
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Finally, Fig. 3.11 shows distributions of the same variates as Fig. 3.2, but separates
the EoSs with one and multiple stable branches. We find that all posteriors are con-
sistent with each other, though EoSs with multiple stable branches are on average
consistent with a softer EoS at low densities around 1-2 𝜌nuc and a stiffer high-
density EoS than single-branch EoSs. This is expressed through a slightly higher
maximum mass and pressure at 6 𝜌nuc, but slightly lower radii, tidal parameters,
and pressure at 2 𝜌nuc. The trend towards a stiffer high-density EoS agrees with the
maximum speed of sound of Fig. 3.9. Similarly, the softer low-density EoS agrees
with the pressure-density curves of Fig. 3.8.

Overall, we find that the data mildly disfavor multiple stable branches, though they
do not rule out their presence. However, if the true EoS indeed has multiple branches,
then this would suggest that some extra softening in the EoS, ostensibly due to a
phase transition, has already taken place at densities below ∼ 2.2 𝜌nuc. Currently,
of all the available astronomical data sets, the GW data dominate the upper limits
on the stiffness or pressure of EoS around 2 𝜌nuc. Should further GW observations
continue to push in the same direction, then the evidence for the presence of a
strong phase transition in the relevant density region could be strengthened. To
this end, astrophysical observations have limited constraining power at very low
densities [49, 48], and improved theoretical calculations or terrestrial experiments
will likely determine whether the pressure is small or large near 𝜌nuc (see, e.g., [10,
116]).

3.5 Discussion
In summary, the new radius measurement for J0740+6620 refines our inference of
the EoS by tightening the constraint on the pressure at densities ∼ 2–3 𝜌nuc. Like
NICER’s previous observation of J0030+0451, this constraint comes mainly from
the soft side, as the x-ray pulse-profiling available to date primarily bounds NS
radii, tides, and pressures from below. We infer that all observed NSs have the same
radius to within ∼ 2 km. This picture is consistent with other recent studies of
J0740+6620 [90, 102, 100]. Our analysis draws three further principal conclusions:
(i) the sound speed in NS cores very likely exceeds the conformal bound; (ii) the lack
of a large radius difference between high- and low-mass NSs renders the existence
of a separate stable branch in the mass-radius relation less likely; and (iii) the stiff
EoS around 2 𝜌nuc implied by the ensemble of observations results in a relatively
low central density of 3.57+1.3

−1.3 𝜌nuc for J0740+6620, capping the density range that



92

9
10
11
12
13
14
15
16

R
1
.4

[k
m

]

10

11

12

13

14

R
2
.0

[k
m

]

200

400

600

800

Λ
1
.4

20
40
60
80

100
120
140

Λ
2
.0

13.0
13.2
13.4
13.6
13.8
14.0
14.2
14.4

lo
g

1
0

(p
2
/c

2
)

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

Mmax [M�]

14.2
14.4
14.6
14.8
15.0
15.2
15.4

lo
g

1
0

(p
6
/c

2
)

9 10 11 12 13 14 15 16

R1.4 [km]

10 11 12 13 14

R2.0 [km]

20
0

40
0

60
0

80
0

Λ1.4

20 40 60 80 10
0

12
0

14
0

Λ2.0

13
.0

13
.2

13
.4

13
.6

13
.8

14
.0

14
.2

14
.4

log10 (p2/c
2)

14
.2

14
.4

14
.6

14
.8

15
.0

15
.2

15
.4

log10 (p6/c
2)

Marginalized Composition
1 Branch

2+ Branches

Figure 3.11: Corner plot for various macroscopic and microscopic parameters of
interest broken down by number of stable branches. Contours in the 2D distributions
denote the 90% level and we plot the same quantities as in Fig. 3.2. Blue lines denote
the full posterior, while gold (green) lines correspond to results with EoSs with one
(multiple) stable branches.



93

astronomical observations of nonrotating NSs can probe to date. However, the fact
that the radius of J0740+6620 is comparable to 𝑅1.4 suggests that J0740+6620 at
∼ 2.08 M⊙ might not be at the turning-point of the mass-radius curve and more
massive NSs are possible; the inferred central density of the maximum-mass NS is
5.4+1.1

−1.4 𝜌nuc.

Our main results are based on the J0740+6620 mass-radius constraint from [90],
mainly due to the fact that this analysis uses the nominal relative NICER/XMM-
Newton calibration uncertainty. Nonetheless, we find broadly consistent results
when using the data from [112] instead. The larger calibration uncertainty assumed
by [112] results in a weaker lower bound on the radius of J0740+6620, and after
conditioning on all the observational data this translates to a 0.4 km difference in the
lower limit of the 90% credible interval we extract for 𝑅1.4. Our conclusions about
strong phase transitions and the violation of the conformal sound-speed bound are
unaltered when the data from [112] is used. Prior differences in the two analyses
(flat-in-compactness [90] vs. flat-in-radius [112]) do not affect results within the
hierarchical inference formalism.

A direct numerical comparison between our results and [90, 102, 100, 21] must
be done with care due to the different data sets used and other assumptions. For
example, [102, 100] include GW170817 counterpart models, which we omit here due
to concerns about systematic errors, and they assume a priori that GW190425 was
a binary neutron star merger, which informs the 𝑀max inference because of its large
primary mass. Nonetheless, with those caveats in mind, we can compare posterior
constraints on the radius of a 1.4 M⊙ NS and the maximum NS mass. Ref. [90] finds
𝑅1.4 = 12.63+0.48

−0.46 km and𝑀max = 2.23+0.24
−0.15 M⊙ at the 68% credible level for their GP

model, in very close agreement with our results. Ref. [100] finds 𝑅1.4 = 12.03+0.77
−0.87

km and 𝑀max = 2.18+0.15
−0.15 M⊙ at the 90% credible level, which are smaller and

more tightly constrained than our corresponding estimates, using a 𝜒EFT-informed
parametric EoS model. Besides the aforementioned caveats, this difference can be
partly attributed to the fact that Ref. [100] reports the radius with respect to a flat
prior, whereas we report it, like all our constraints, with respect to the prior informed
by our nonparametric EoS model. Both of these results refer to the J0740+6620 data
from [90] and can therefore be compared to the second-last column in Table 3.2.
Meanwhile, Ref. [102] reports 𝑅1.4 = 12.33+0.76

−0.81 km and 𝑀max = 2.23+0.14
−0.23 M⊙ at

the 95% credible level based on piecewise polytropes informed by 𝜒EFT at low
densities, and Ref. [21] obtains 𝑅1.4 = 12.61+0.36

−0.41 km at the 68% credible level and
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a maximum mass of ∼ 2.2 M⊙ using a nuclear parameterization for the EoS with a
piecewise polytrope extension. These numbers can be compared to the last column
in Table 3.2 as they are based on the J0740+6620 data from [112]. The results from
[102] in particular match our inferred values very closely, though our uncertainties
are broader, which we attribute to the larger model freedom inherent in our GP
prior. All these results are further broadly consistent with radius estimates from
x-ray observations of NSs in low-mass x-ray binaries during quiescent or bursts
phases [123, 94, 93, 97, 74], though these are subject to considerable modeling
uncertainties.

This comparison of our results with the existing literature [90, 112, 102, 100]
brings forward the issue of model dependence in EoS constraints obtained from
observations, experiments, and calculations that span many orders of magnitude in
density. By design, the GP EoS prior used in [90] does not allow for as much model
freedom as our model-agnostic process due to the strong intra-density correlations
it assumes a priori. This is especially true at high densities. Another approach
to nonparametric inference is to use neural networks, as in [62], though the model
constructed in that study deliberately seeks to closely reproduce the behavior of
a handful of tabulated EoSs from the literature. In this sense, the nonparametric
models used in [62] and [90] are more analogous to the model-informed GP prior
from [46] that makes relatively strong prior assumptions about correlations within
the EoS. Parametric EoS models, such as piecewise polytropes [105], the spectral
decomposition [84], and the speed-of-sound parameterization [61, 125], impose
even more restrictive assumptions on EoS morphology by virtue of specifying the
functional form of the EoS with a finite number of parameters to describe an infinite-
dimensional function space. Examples of such model dependence are given in Fig.
10 of [90] and the variation between the two models presented in [102].

These considerations pose the problem of the degree to which EoS constraints are
driven by the data, rather than by correlations between different densities imposed
by the EoS model. Under that light, it is interesting to consider the effect of
folding nuclear theoretic calculations into the inference of the EoS. Figure 3.4
shows that the J0740+6620 radius measurement does not inform the EoS below
𝜌n𝑢𝑐, something also confirmed by [90]. References [49, 48] further show that
our GP EoS prior is designed with no strong correlations between low-density
information and high-density physics by explicitly showing that the same results are
obtained at high densities regardless of whether the EoS is conditioned on 𝜒EFT
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at low densities or not. As such, we do not expect the J0740+6620 radius data
to offer new insights about 𝜒EFT predictions within its regime of applicability,
i.e. ≲ 1 − 2𝜌n𝑢𝑐, nor do we expect 𝜒EFT predictions to influence our conclusions
about NS matter at high densities. In contrast, the parametric EoS inference in [102]
is sensitive to the 𝜒EFT calculations they condition on up to 1.1 𝜌nuc even at the
highest densities probed. Figure 7 of [102] shows that the NS radii and pressures
they infer with both of their parametric EoS models have some dependence on
which 𝜒EFT calculation is assumed. This suggests that statements both about the
validity of nuclear calculations based on astrophysical data and the inference of
NS properties after assuming a specific low-density calculation must take care to
avoid introducing unwanted systematic modeling assumptions through the choice of
high-density EoS representation.

In addition to 𝜒EFT and other theoretical models, several terrestrial experiments
probe the EoS at densities up to 𝜌nuc. In particular, the PREX collaboration recently
measured the neutron skin thickness of lead 𝑅208Pb

skin [10], which is tightly correlated
with the density dependence of the nuclear symmetry energy (the difference in the
energy per particle for matter that contains only neutrons and matter that contains
an equal number of neutrons and protons) and therefore the pressure at 𝜌nuc [27,
115, 107]. Using a model-agnostic nonparametric analysis similar to ours, Ref. [48]
found no strong correlation between the results of several low-density experiments
and high-density NS observables. Claims to the contrary [107, 21], therefore, are
driven by specific modeling assumptions, which may not be justified. Nevertheless,
the large 𝑅208Pb

skin reported in [10] suggests a relatively stiff EoS at low densities,
although there are other low-energy experiments (e.g., [116, 50, 130]) and alternative
interpretations of the data [108] that favor softer EoSs.7 A stiff EoS at low densities
may increase the evidence in favor of multiple stable branches, but we expect
the effect to be small with current experimental uncertainties. Given the slight
tension between nuclear experiments and the fact that additional constraints at low
densities will not strongly influence our conclusions from J0740+6620’s radius
measurement, we omit nuclear experimental data from our current analysis and
leave such investigations to future work.

Nevertheless, the growing number of constraints on the NS EoS is progressively
sharpening our picture of dense matter. The radius measurement for J0740+6620 is
a reminder of how different observations, experiments, and theoretical calculations

7All current bounds on the symmetry energy agree to within 2-𝜎.
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complement each other by targeting different density scales inside NSs. Joint
analyses of this ensemble of data require models for the EoS that span many orders
of magnitude in pressure and density. As a result, it is important to understand
how different EoS models, both parametric and nonparametric, correlate different
densities to distinguish data-driven features from those driven by the prior. The
nonparametric model we use is deliberately constructed to emphasize flexibility
in EoS morphology and impose few correlations between high and low densities
besides those dictated by the physical requirements of causality and thermodynamic
stability. The intra-density correlations introduced by different parametric and
nonparametric EoS models will be investigated in quantitative detail in upcoming
work [81].
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3.7 Appendix: Choosing a Mass Prior
Substantial uncertainty persists in the distribution of compact-object masses, includ-
ing the question of whether the NS and BH mass distributions overlap. However, any
hierarchical analysis of the EoS needs to assume a compact-object mass distribution
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to specify the mass prior for a given EoS.8 The full framework was laid out in Sec.
III B of [77] where the likelihood for an EoS model 𝜀 was written in terms of the
compact-object mass distribution 𝑃(𝑚 |𝜀). In the current study and [77], we assume
a uniform mass distribution, such that the mass prior takes the general form

𝑃 (𝑚 |𝜀) =
Θ(𝑀lower ≤ 𝑚)Θ(𝑚 ≤ 𝑀upper)

𝑀upper − 𝑀lower
. (3.5)

However, a choice still needs to be made for the lower and upper limits, 𝑀lower and
𝑀upper. We set 𝑀lower = 0.5 M⊙, but 𝑀upper is subject to three possible assumptions.

Assumption 1: The compact object might not be a NS
The first option accounts for the possibility that the compact object in question is
a BH, rather than a NS. If we do not have definite prior knowledge that it is a NS,
our mass prior does not require its mass to be below the maximum NS mass. In
this case, 𝑀upper is the maximum formation mass for the relevant type of compact
object. If 𝑚 > 𝑀max(𝜀), with 𝑀max(𝜀) the TOV mass of EoS 𝜀, the radius and
tidal deformability of the compact object are set to their Schwarzschild BH values,
2𝐺𝑚/𝑐2 and 0, respectively. If 𝑚 ≤ 𝑀max(𝜀), the compact object is a NS, and
its properties are set by the EoS 𝜀. The mass prior itself is independent of the
EoS 𝜀 in this scenario. This is the assumption we employ for both GW170817
and GW190425. While it is the most agnostic assumption possible, it is clearly
erroneous for compact objects detected as pulsars, such as J0740+6620.

Assumption 2: The astrophysical formation mechanism limits the maximum
possible mass
In the second scenario, the compact object under consideration is assumed to be a
NS, but astrophysical formation mechanisms (for example, supernovae) are known
a priori not to produce NSs above a certain mass, 𝑀pop. This upper limit might be
comparable to 𝑀max(𝜀) for some EoSs. In this case,

𝑀upper = min
(
𝑀pop, 𝑀max(𝜀)

)
. (3.6)

While it is plausible that there may be an astrophysical limit to the mass of NSs, in
practice this assumption comes at the expense of a completely arbitrary choice for

8Another common equivalent choice is to work with a prior on the central density of NSs instead
of the mass, see for example [102]. Given an EoS, there is a one-to-one mapping between the NS
mass and central density; this appendix’s discussion consequently applies to these works as long as
the central density distribution includes an upper and/or lower limit.
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𝑀pop, given the current state of compact-object population knowledge. As such, we
do not employ it for any of the compact objects analyzed in the main body of the
paper. Nonetheless, Fig. 3.12 compares the impact of one possible choice of 𝑀pop

against the other two assumptions.

Assumption 3: The EoS limits the maximum possible mass
Under the third assumption, the compact object under consideration is known to
be a NS, and astrophysical formation mechanisms can produce NSs as heavy as
the EoS can support. Thus, 𝑀upper = 𝑀max(𝜀). In this case, the prior depends on
the EoS both through the upper limit (which rejects any masses above 𝑀max) and
the normalization (which constitutes an Occam penalty against EoSs that predict
masses larger than have been observed). Stated differently, an EoS with 𝑀max(𝜀)
slightly above the most massive known pulsar will be favored compared to an EoS
that predicts the existence of much more massive NSs that have not been observed.
We employ this assumption for all pulsars in our main study, including both radio
and x-ray observations. To the best of our understanding, the same assumption is
employed in [102, 21, 90].

The advantage of this assumption is that it does not rely on an explicit choice of𝑀pop.
The disadvantage is that the lack of observations of more massive NSs is attributed
to (and therefore informs) the EoS, while other factors (astrophysical conditions
and selection effects) are ignored, even as potential higher-mass NS candidates have
been identified [70]. A simultaneous inference of the compact-object population
and the EoS would obviate the need for choosing between Assumptions 2 and 3;
instead, it would select the appropriate case as a function of the population model
realization within the inference. This is possible because Assumption 3 is really just
a special case of Assumption 2 in which 𝑀pop ≥ 𝑀max(𝜀) for all viable EoSs.

In order to quantitatively assess the impact of assumptions about the mass prior
on J0740+6620, we repeat the main analysis with the alternative assumptions. In
Assumption 1, we effectively assume that J0740+6620 could be a BH. In Assump-
tion 2, we arbitrarily select 𝑀pop = 2.3 M⊙, motivated by the approximate upper
limit of the inferred J0740+6620 mass posterior [58]. In Assumption 3 (same as
the main body of the text), we assume 𝑀pop = 3.0 M⊙, which is larger than 𝑀max

for the vast majority of EoSs in our prior. In Fig. 3.12, we plot the 2-dimensional
and 1-dimensional 𝑀max − 𝑅1.4 marginalized prior and posterior under these three
assumptions. We find that the different mass prior choices only affect the inferred
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Figure 3.12: Corner plots of 𝑀max versus 𝑅1.4 for the three assumptions about
the J0740+6620 mass prior illustrated above. (black) our EoS prior. (brown)
Assumption 1: J0740+6620 could be either a NS or a BH. (orange) Assumption 2:
a hypothetical formation channel does not produce NSs with 𝑚 > 2.3 M⊙, which
limits the effects of the Occam penalty. (blue) Assumption 3: only the EoS limits
𝑀upper, and EoS that support the largest masses incur the full Occam penalty. We see
the expected ordering in the tail of the 𝑀max distribution; assumptions that introduce
larger Occam penalties result in suppressed tails.
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value of the maximum mass. Even then, the effect is small compared to current
statistical uncertainties. Quantities determined at lower density scales, such as 𝑅1.4,
are essentially unaffected.
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C h a p t e r 4

SEARCHING FOR PHASE TRANSITIONS IN THE EQUATION
OF STATE USING NONPARAMETRIC MODELS

[1] Reed Essick et al. “Phase transition phenomenology with nonparametric
representations of the neutron star equation of state”. In: Phys. Rev. D 108.4
(2023). I contributed substantially to this study which used nonparametric
methods to constrain phase transitions in a nonparametric model of the
equation of state. I performed the simulation analyses, developed several
diagnostic statistics, and wrote large parts of the text., p. 043013. doi:
10.1103/PhysRevD.108.043013. arXiv: 2305.07411 [astro-ph.HE].

Abstract
Astrophysical observations of neutron stars probe the structure of dense nuclear
matter and have the potential to reveal phase transitions at high densities. Most
recent analyses are based on parametrized models of the equation of state with
a finite number of parameters and occasionally include extra parameters intended
to capture phase transition phenomenology. However, such models restrict the
types of behavior allowed and may not match the true equation of state. We
introduce a complementary approach that extracts phase transitions directly from
the equation of state without relying on, and thus being restricted by, an underlying
parametrization. We then constrain the presence of phase transitions in neutron
stars with astrophysical data. Current pulsar mass, tidal deformability, and mass-
radius measurements disfavor only the strongest of possible phase transitions (latent
energy per particle ≳ 100 MeV). Weaker phase transitions are consistent with
observations. We further investigate the prospects for measuring phase transitions
with future gravitational-wave observations and find that catalogs of 𝑂 (100) events
will (at best) yield Bayes factors of ∼ 10 : 1 in favor of phase transitions even when
the true equation of state contains very strong phase transitions. Our results reinforce
the idea that neutron star observations will primarily constrain trends in macroscopic
properties rather than detailed microscopic behavior. Fine-tuned equation of state
models will likely remain unconstrained in the near future.

https://doi.org/10.1103/PhysRevD.108.043013
https://arxiv.org/abs/2305.07411
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4.1 Introduction
Recent astronomical data, such as gravitational waves (GWs) from coalescing neu-
tron star (NS) binaries [6, 3] observed by LIGO [1] and Virgo [9], X-ray pulse
profiles from hotspots on rotating NSs observed by NICER [77, 90, 78, 91], and
mass measurements for heavy radio pulsars [20, 34, 44], have advanced our un-
derstanding of matter at supranuclear densities [2, 68, 84, 87, 88, 24, 62, 36, 69].
Nonetheless, there is still considerable uncertainty in the equation of state (EoS) of
cold, dense matter, which relates the pressure 𝑝 to the energy density 𝜀, or rest-mass
density 𝜌. The data favor a sound speed 𝑐𝑠 =

√︁
𝑑𝑝/𝑑𝜀 that exceeds the conjectured

conformal bound of
√︁

1/3 expected for weakly interacting ultra-relativistic parti-
cles [23, 76, 68, 69]. The potential violation of this bound at high densities may
point to a state of matter with strongly coupled interactions.

Such strong couplings call into question the accuracy of perturbative expansions of
interactions between neutrons, protons, and pions at high densities, and raise the
possibility that other degrees of freedom may be a more natural description. Theoret-
ical studies have investigated whether the smooth crossover from hadron resonance
gas to quark-gluon plasma observed with lattice quantum chromodynamics (QCD)
at low baryon chemical potential and high temperature implies the existence of a
critical endpoint in the QCD phase diagram [22] and how EoS calculations at low
density and temperature connect to perturbative QCD (pQCD) calculations at high
densities (∼ 40 times nuclear saturation 𝜌nuc) [64, 52, 99]. Other work predicts a
variety of phase transitions stemming from a range of microphysical descriptions
for dense matter [96, 50, 95, 13, 106, 61, 49, 22, 76, 15].

Many theorized phase transitions in NS matter are characterized by a softening
of the EoS, i.e., a decrease in 𝑐𝑠. This occurs because the NS is supported by
degeneracy pressure, and additional degrees of freedom (e.g., hyperons or quarks)
initially do not contribute significantly to the pressure due to their low number
density 𝑛. This manifests as an interval of nearly constant pressure (small 𝑐𝑠) over
a density range in which the new degrees of freedom first appear. A decrease
in pressure support relative to an EoS without a phase transition leads to more
compact NSs. Such compactification can lead to bends or kinks in the relation
between macroscopic observables, such as the gravitational mass 𝑀 , radius 𝑅, tidal
deformability Λ, and moment of inertia 𝐼. The strongest phase transitions can
even give rise to disconnected sequences of stable NSs separated by a range of
central densities for which no stable NSs exist. This manifests as, e.g., two or more
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disconnected branches in the 𝑀-𝑅 relation and twin stars with the same mass but
different radii [72, 94, 97, 96, 14, 16, 59, 80]. Moreover, the relative loss of pressure
support from the phase transition often reduces the maximum mass (𝑀TOV) for cold,
non-rotating NSs.

Current observational evidence for a sudden softening in the EoS is inconclusive.
Both the PREX neutron skin measurement [10] and the existence of 2 M⊙ pul-
sars [44] suggest a relatively stiff EoS (near 𝜌nuc and above ∼ 3𝜌nuc, respectively).
In contrast, the relatively small tidal deformability of GW170817 points to a moder-
ately soft EoS around ∼ 2𝜌nuc [2, 69]. While this stiff–soft–stiff sequence resembles
the morphology of a phase transition, the actual statistical evidence for or against this
scenario remains inconclusive [69, 84, 54]. Furthermore, while observations favor a
violation of the conformal bound around ∼ 3𝜌nuc, they do not strictly rule out EoSs
with 𝑐𝑠 ≤

√︁
1/3 at higher densities [69]. Additionally, the CREX collaboration’s

neutron skin measurement favors lower pressures near 𝜌nuc than PREX [11]. At
present, consistency between ab initio theoretical models, laboratory experiments,
and astrophysical data within statistical uncertainties does not require a phase tran-
sition [40, 39].

Several features of NSs’ macroscopic properties have been proposed as a way to
identify a phase transition in NS matter with forthcoming GW observations. During
a compact binary’s inspiral (before the objects touch), the relevant observable is the
(adiabatic or static) tidal deformability [43, 104, 28], which is strongly correlated
with the radius. Both are expected to be smaller for NSs with exotic cores than
their nucleonic counterparts. Chen, Chesler, and Loeb [31] leveraged this fact to
search for phase transitions via a change in the slope of the inferred 𝑀–𝑅 relation,
parametrized as a piecewise linear function. Chatziioannou and Han [29] pursued a
related method, modeling the detected binary merger population hierarchically and
searching for a subpopulation with smaller radii. Parametrizing the 𝑀–Λ relation
itself, Landry and Chakravarti [66] sought to identify twin stars in the binary
NS population based on gaps in the joint distribution of masses and binary tidal
deformabilities. Proposals for identifying phase transitions based on the presence
of disconnected stable branches in the 𝑀–𝑅 or 𝑀–Λ relation, independently of
a parametrization, have also been investigated [38, 84, 69]. However, approaches
that directly model macroscopic observables cannot easily enforce physical precepts
like causality and thermodynamic stability, nor do they offer an obvious pathway to
microscopic EoS properties. At best, one can constrain proxies for microphysical
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phase transitions, such as the difference between radii at different masses, e.g.,
Δ𝑅 ≡ 𝑅1.4−𝑅2.0 [37, 84, 88, 69]. Moreover, macroscopic signatures test a sufficient,
but not necessary, condition for exotic phases. A phase transition may not be strong
enough to leave a measurable imprint on NS observables. This ambiguity is known
as the masquerade problem [13].

An alternative approach is to directly model the EoS and connect it to macroscopic
NS observables by solving the Tolman-Oppenheimer-Volkoff (TOV) equations [103,
83]. A plethora of phenomenological EoS parametrizations adapted to phase tran-
sitions have been proposed [14, 54, 101]. For example, Pang et al. [85] modeled the
EoS as a piecewise polytrope, including a segment with vanishing adiabatic index
(𝑐𝑠 = 0) to represent the phase transition. They performed model selection on a
catalog of simulated GW observations to test whether they favored the presence of a
phase transition. Tan et al. [101] performed a similar analysis with a more complex
parametric EoS model, which nonetheless retained the characteristic morphology
of regions of large 𝑐𝑠 bracketing a range of densities with small 𝑐𝑠. We discuss these
and other approaches at length in Sec. 9.5.

However, it is also possible to model the EoS directly without introducing a
parametrization. Flexible nonparametric models, such as the Gaussian process
(GP) representation introduced in Refs. [67, 38, 68], avoid the ad hoc correlations
across density scales that are inevitable in parametric representations with a finite
number of parameters [70]. While some interdensity correlations are desirable (e.g.,
those dictated by causality, thermodynamic stability, or predictions from nuclear the-
ory), phenomenological parametric models implicitly impose much stronger prior
assumptions by virtue of their chosen functional form. Nonparametric models need
not impose such correlations. They can also provide a faithful representation of
theoretical uncertainty at low densities without sacrificing model flexibility at high
densities [41, 40, 39]. However, the lack of phenomenological parameters can make
it difficult to map features in the EoS to underlying microphysics. In order to address
this, a generic mapping from the EoS to a set of physically interpretable microscopic
parameters is needed.

We develop such a mapping: a phenomenological approach to identifying physically
meaningful properties of phase transitions via softening in the EoS. We show that
a nonparametric model’s lack of obvious physically interpretable parameters does
not fundamentally limit its utility for inferences about phase transitions in NSs. We
propose and test model-independent features that characterize a broad range of phase
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Figure 4.1: (left) one-dimensional 90% symmetric marginal posterior credible
regions for the radius as a function of mass conditioned on current data. We show
results with only pulsar masses (denoted PSR) and pulsar masses, GW observations,
and NICER X-ray pulse profiling (denoted PGX). We additionally show maximum-
likelihood EoSs from subsets of the prior conditioned on the size of the latent energy
per particleΔ(𝐸/𝑁) of phase transitions that overlap with the central densities of NSs
between 1.1–2.3 M⊙ (small: Δ(𝐸/𝑁) ≤ 10 MeV and large: Δ(𝐸/𝑁) ≥ 100 MeV).
(right) Correlations between the radius at two reference masses: 𝑀 = 1.4 and
2.0 M⊙. While the one-dimensional marginal distributions are similar, EoSs with
small Δ(𝐸/𝑁) show stronger correlations between 𝑅1.4 and 𝑅2.0 than EoSs with
large Δ(𝐸/𝑁). This is because the radius can change rapidly when Δ(𝐸/𝑁) is large,
as is evident in the maximum-likelihood EoS.

transition phenomenology. Our procedure goes beyond existing nonparametric
tests based on the number of distinct stable NS sequences in the 𝑀–𝑅 (or 𝑀–
Λ) relation [38, 68, 69] and enables us to directly extract information about the
onset and strength of both large and weak phase transitions that respectively do
and do not create multiple stable branches. As such, it provides an alternative
to parametric phase transition inferences, whose inflexible parametrizations may
introduce systematic biases if they do not closely match the true EoS [73, 55, 27,
70].

We introduce our methodology in Sec. 4.2. Section 4.2 reviews the basic phe-
nomenology of phase transitions and, motivated by these considerations, Sec. 4.2
proposes novel features that can be used to identify the presence of a phase transition
and extract physically relevant properties without the need for a direct parametriza-
tion. Our new features are based on the mass dependence of the moment of inertia
(𝐼) and the density dependence of the speed of sound, although similar features can
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also be derived from other macroscopic observables. We apply our methodology to
current astrophysical data in Sec. 4.3. Current astrophysical data (Fig. 4.1) disfavor
the strongest of possible phase transitions, but only when those transitions occur
within NSs between ∼ 1–2 M⊙. Even the presence of multiple stable branches can-
not be unambiguously ruled out, although they are disfavored compared to EoS with
a single branch and smaller phase transitions. Section 4.4 examines the prospects for
detecting and characterizing phase transitions with large catalogs of simulated GW
detections. We obtain Bayes factors of ∼ 10 : 1 in favor of phase transitions with
𝑂 (102) events, a larger catalog than is likely [5] within the lifetime of advanced
LIGO [1] and Virgo [9]. We discuss our conclusions in the context of previous
studies in the literature as well as possible future research in Sec. 9.5.

4.2 Phenomenological identification of phase transitions
We begin by reviewing the basic phenomenology of phase transitions from mi-
croscopic and macroscopic perspectives in Sec. 4.2 and then introduce our novel
model-independent features in Sec. 4.2. We discuss our ability to identify phase
transitions in the context of the masquerade problem in Sec. 4.2.

Phase Transition Morphology
The basic phenomenology associated with the phase transitions we consider is a
softening of the EoS over some density range. The following microscopic picture
is often invoked. Consider two species of degenerate, noninteracting fermions with
light (𝑚𝑙) and heavy (𝑚ℎ > 𝑚𝑙) rest masses, respectively. At zero temperature,
the system will fill all states up to the Fermi energy (𝐸𝐹) choosing between light
and heavy fermions to balance their chemical potentials. The partial pressure
contributed by each fermion will be determined by their respective number densities.
The relation between 𝐸𝐹 and the fermion rest masses then determines the system’s
composition.

If 𝐸𝐹 < 𝑚ℎ, only light fermions exist. As the density increases, the pressure must
increase as additional light fermions are added to high-momentum states. However,
if 𝐸𝐹 ≥ 𝑚ℎ, heavy fermions in low-momentum states can become energetically
favorable. These heavy fermions contribute to the rest-mass (and energy) density
but have a much lower partial pressure due to their relatively low number density. The
total pressure, then, remains nearly constant at the pressure set by the light fermions
at 𝐸𝐹 . This will continue until enough heavy fermions appear that a significant
fraction of additional particles are light fermions (to balance the chemical potential
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Figure 4.2: Examples of CSS EoSs based on DBHF [56] with a causal extension
(𝑐𝑠 = 𝑐) beyond the end of the phase transition. We show examples with (top)
weak and (bottom) strong phase transitions, defined by whether there are multiple
stable branches. For each EoS, we show (top left) the pressure and (bottom left) the
sound-speed as a function of baryon density, (top center) the moment of inertia and
(bottom center) the novel feature introduced in Sec. 4.2 (Eq. (4.2)) as a function of
gravitational mass, and (top right) the 𝑀–Λ and the (bottom right ) 𝑀–𝑅 relations.
Stable (unstable) branches are shown with dark solid (light dashed) lines. Each
curve is labeled with connections between macroscopic phenomenology and mi-
crophysical features. (black annotations) The maximum mass of cold, non-rotating
stars (𝑀TOV) and, where relevant, the beginning and end of stable branches. (red
annotations) The beginning and end of features as identified by the procedure in
Sec. 4.2. (red shading) The extent of the identified features.
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Figure 4.3: Analogous to Fig. 4.2 but for more complicated phase transition
phenomenology associated with mixed phases (Gibbs construction) from Han et al.
[60], obtained by implementing specific hadronic and quark models.. Again, the
features introduced in Sec. 4.2 correctly identify the beginning and end of the phase
transition even though there is no discontinuity in 𝑐𝑠 at the onset and the phase
transition corresponds to a wide range of masses. The broad extent of the phase
transition is not readily apparent from the macroscopic properties alone, which show
a sharp feature only at the end of the phase transition.

of heavy fermions) or the partial pressure of the heavy fermions becomes comparable
to that of the light fermions. At that point, the pressure will once again increase
with density.

The actual microphysics in a NS is complicated by interactions between particles,
but the expected softening based on this heuristic picture is often present in more
complicated models. Fig. 4.2 shows the typical behavior of a first-order phase
transition with examples constructed from a hadronic model (DBHF [56]) at low
densities and a constant sound-speed (CSS) extension [14] to higher densities.
These EoSs have a sharp boundary separating the two different phases (Maxwell
construction); 𝜀 is discontinuous across the boundary and 𝑐𝑠 vanishes within the
transition. The EoS in Fig. 4.3 employs a mixed phase (Gibbs) construction that
exhibits more complicated sound-speed behavior [60], taking into account global
charge neutrality (valid for small surface tension between the two phases [51]) when
hadronic and quark matter coexist. The sound-speed decreases across the phase
transition, but does not necessarily drop all the way to zero. The EoS also shows
an approximately density-independent sound speed towards high densities (due to
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the specific vMIT model for the pure quark phase), which can be well represented
by the generic CSS parametrization. In both figures, 𝑐𝑠 initially increases at low
densities, then suddenly decreases across the density range corresponding to the
phase transition before recovering and plateauing at a value set by the CSS extension
(Maxwell case) or by the microscopic model describing the high-density pure phase
(Gibbs case).

While the microscopic details of the phases and their interface may vary, the phase
transitions can be characterized phenomenologically by a few parameters, such as
the onset density (or pressure) at which the phase transition begins, the density at
which it ends, and the latent energy of the transition. We consider the difference in
energy per particle across the phase transition

Δ(𝐸/𝑁) ≡
(𝜀
𝑛

)
end

−
(𝜀
𝑛

)
onset

. (4.1)

We compute the energy per particle from the energy density 𝜀 and rest-mass density
𝜌 assuming a typical nucleonic mass of 𝑚𝑛 = 938.5 MeV via 𝐸/𝑁 = 𝑚𝑛 (𝜀/𝜌).

We wish to associate these microscopic properties of the phase transition with the
behavior of macroscopic observables (such as the masses and radii of NSs) that can
be probed astronomically. Strong phase transitions can produce sharp features, such
as bends or kinks, in the 𝑀–𝑅 relation. Figs. 4.1 and 4.2 show examples. However,
EoSs with less abrupt phase transitions, such as the example in Fig. 4.3, may not
have a perceptible impact on NS properties. Moreover, even if a bend or kink is
readily apparent in, e.g., the 𝑀–𝑅 relation, it is not immediately clear how to best
extract the relevant microphysical parameters of the phase transition.

Phase Transition Feature Extraction
We now introduce a set of statistics to identify phase-transition-like behavior in
nonparametric EoS realizations. These statistics are motivated by common features
observed in EoSs with phase transitions, such as the ones in Figs. 4.2 and 4.3, and
nonparametric EoS realizations with multiple stable branches. Our statistics com-
prise both macroscopic and microscopic features of the EoS and are not tied to an
underlying parametrization. A key macroscopic feature associated with phase tran-
sitions is the presence of bends or kinks in the 𝑀-𝑅, 𝑀-Λ, and 𝑀-𝐼 relations.1 We
consider the 𝑀–𝐼 relation, but our procedure also works with other NS observables.

We now describe the algorithm for identifying moment of inertia features.
1A feature in one of these relations is accompanied by a similar feature in the others.
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Figure 4.4: The feature extraction algorithm: (left) the sound-speed as a function
of baryon density and (right) arctan(D 𝐼

𝑀
) (Eq. 4.2) as a function of the gravitational

mass. The algorithm progresses from top to bottom, first with the identification of
local minima in arctan(D 𝐼

𝑀
) and then pairing each with a corresponding running

local maximum in 𝑐𝑠. The number of features reported corresponds to the number
of unique running local maxima in 𝑐𝑠 selected; in this case 1. The multiplicity of
each feature corresponds to the number of local minima in arctan(D 𝐼

𝑀
) that are

paired with the same running local max in 𝑐𝑠, in this case 3. For demonstration
purposes, we show how the algorithm would progress if we had 𝑅𝑐2

𝑠
> 1.7. If the

threshold on the drop in the sound-speed 𝑅𝑐2
𝑠
was ≤ 1.7, the algorithm would accept

the first pairing (second row) and instead report two features: one at lower densities
with multiplicity two and one at higher densities with multiplicity one. This would
be the case for the main results presented in Secs. 4.3 and 4.4, which use a threshold
𝑅𝑐2

𝑠
> 1.1.
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1. Identify all local minima in arctan(D 𝐼
𝑀
). In this example there are three with

𝑀 ≳ 1M⊙. Each local minimum is associated with the end of a candidate
phase transition.

2. For each local minimum, find the preceding running local maximum in 𝑐𝑠.
This is the start of the candidate phase transition. Compute the fraction
by which 𝑐2

𝑠 decreases from the running local maximum to the smallest 𝑐2
𝑠

observed within the candidate phase transition (𝑅𝑐2
𝑠
).

3. If 𝑅𝑐2
𝑠

is sufficiently large, accept the candidate onset density. Proceed to the
next local minimum in arctan(D 𝐼

𝑀
).

4. Otherwise, reject the candidate’s running local maximum 𝑐𝑠 and proceed to
the next largest running local maximum. Compute the new 𝑅𝑐2

𝑠
and compare

to the threshold. Repeat until 𝑅𝑐2
𝑠

is large enough or there are no remaining
running local maxima in 𝑐𝑠. If 𝑅𝑐2

𝑠
never passes the threshold, reject this local

minimum in arctan(D 𝐼
𝑀
) entirely.

5. Repeat for remaining local minima. This EoS has three local minima that pair
with the same running local maximum to produce 𝑅𝑐2

𝑠
≥ 2 (larger than the

threshold used in our main results).

We identify phase transitions by looking for characteristic behavior in the derivative
of the moment of inertia along a NS sequence. Specifically, we examine the
logarithmic derivative

D 𝐼
𝑀 ≡ 𝑑 log 𝐼/𝑑 log 𝑝𝑐

𝑑 log𝑀/𝑑 log 𝑝𝑐
, (4.2)

where 𝑝𝑐 is the central pressure. To aid in categorization, we map the loga-
rithmic derivative to a finite interval by considering its arctangent.2 For exam-
ple, if | arctan(D 𝐼

𝑀
) | > 𝜋/2, then 𝑑𝑀/𝑑𝑝𝑐 < 0 and the NS is unstable. If

| arctan(D 𝐼
𝑀
) | < 𝜋/2, then 𝑑𝑀/𝑑𝑝𝑐 > 0 and the NS is stable. Importantly, the

logarithmic derivative is typically constant for EoSs not undergoing a phase transi-
tion, but it varies rapidly across the density interval associated with rapid changes in
compactness. Sudden changes in compactness can be caused by a phase transition
or the final collapse to a black hole (BH) near 𝑀TOV. Appendix 4.7 provides a
simple example of this behavior with an incompressible Newtonian star.

2Technically, we consider arctan2(𝑑 log 𝐼/𝑑 log 𝑝𝑐, 𝑑 log𝑀/𝑑 log 𝑝𝑐) which preserves infor-
mation about the relative signs of the numerator and denominator within Eq. (4.2).
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A phase transition is identified by a sharp decrease in arctan(D 𝐼
𝑀
). The change can

be discontinuous, but need not be. Similarly, arctan(D 𝐼
𝑀
) may decrease enough

that the star loses stability, but it does not have to. One can often identify a feature
in arctan(D 𝐼

𝑀
) regardless of the exact behavior of 𝑐𝑠 or whether there are multiple

stable branches. Thus, it can identify both weak or strong phase transitions, including
those with mixed phases.

More concretely, Fig. 4.4 demonstrates our algorithm for one EoS drawn from our
nonparametric prior process. We implement the following scheme for identifying
phase transitions in arbitrary EoS realizations:

(1) Identify candidate ends of phase transitions as local minima in arctan(D 𝐼
𝑀
).

We first search for local minima in arctan(D 𝐼
𝑀
) bracketed by stable NSs. This

excludes the sudden decrease in arctan(D 𝐼
𝑀
) associated with the collapse to a BH

above 𝑀TOV. Each such feature is associated with a phase transition, and the density
at which this D 𝐼

𝑀
feature occurs is taken to be the end of the phase transition (𝜀𝑒).

In the absence of a suitable local minimum, we deem the EoS to have no phase
transition.

(2) Identify a candidate onset density for an end point. We then associate each
local minimum in arctan(D 𝐼

𝑀
) with the largest local maximum in 𝑐𝑠 that precedes

it (i.e., occurs at lower densities). Specifically, we select a running maximum in 𝑐𝑠,
defined as the local maximum that is larger than all preceding local maxima. The
density at which this 𝑐𝑠 feature occurs becomes the candidate for the onset density
𝜀𝑡 . If there is no preceding local maximum in 𝑐𝑠, then we deem the EoS to have no
phase transition.

(3) Repeat step (2) until an acceptable onset density is found. We require the
minimum 𝑐2

𝑠 between the candidate onset and end densities to be at least 10%
smaller than 𝑐2

𝑠 at the onset. If this threshold on the fractional change (𝑅𝑐2
𝑠
) is

not met, the candidate onset density is rejected, and the preceding running local
maximum is considered in its place. This procedure is repeated until 𝑅𝑐2

𝑠
is large

enough (candidate is accepted) or there are no more local maxima in 𝑐2
𝑠 (candidate

phase transition is rejected). See Appendix 4.8 for more discussion of thresholds
within the feature selection process.

(4) Repeat steps (2-3) for remaining local minima in arctan(D 𝐼
𝑀
). We identify

exactly one onset density for each end density.

If there is more than one local minimum in arctan(D 𝐼
𝑀
), several of them may be
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associated with the same onset density. In that case, we define the multiplicity of the
phase transition as the number of local minima in arctan(D 𝐼

𝑀
) associated with the

same running local maximum in 𝑐𝑠. We use the multiplicity of the phase transition
as a proxy for the complexity of the phase transition morphology. For example, the
complexity of the sound speed’s behavior within the phase transition could indicate
the (dis)appearance of (new) species of particles within the system or be related to
inflection points in the particle fractions. See, e.g., examples of the equilibrium
sound speed profiles in Constantinou et al. [33, 32] exploring various conditions.
Complementarily, the number of selected running local maxima in 𝑐2

𝑠 defines the
number of D 𝐼

𝑀
features within the EoS. These basic counting exercises provide a

classification scheme for simple (multiplicity 1) and complex (multiplicity > 1) 𝑐𝑠
structure within the phase transition along with the number of transitions.

After this procedure, each phase transition is characterized by an onset density (or
pressure or stellar mass) and an end density (largest density of all local minima in
arctan(D 𝐼

𝑀
) associated with the onset). Based on these points, we define various

properties of the phase transition. We focus on Δ(𝐸/𝑁) in Secs. 4.3 and 4.4.

Of course, the points identified by the above procedure are only proxies for the
true onset and end of the phase transition. While the correspondence is excellent
for Maxwell constructions (Fig. 4.2), it may not be perfect for more complicated
models. See, e.g., Fig. 4.15. Moreover, because the feature identification hinges on
the presence of local minima in arctan(D 𝐼

𝑀
), we sometimes cannot identify phase

transitions that occur near 𝑀TOV, i.e., that terminate in collapse to a BH. As such,
it may be difficult to determine whether NSs collapse to BHs because of a sudden
decrease in 𝑐𝑠 at high densities or whether 𝑐𝑠 remains large and the NS’s self-gravity
wins without assistance. Empirically, we find a correlation between the sharpness
of the bend in arctan(D 𝐼

𝑀
) near the collapse to a BH and the existence of a phase

transition at those densities, but we leave further investigations of this to future work.

Additionally, the specific onset, end, and latent energy values we extract for the
phase transition are sensitive to the threshold on 𝑅𝑐2

𝑠
. A lower threshold would

favor the identification of a greater number of weaker phase transitions at the risk of
selecting small upward fluctuations in 𝑐𝑠 (unconstrained by current data) as the onset
even if more plausible features in 𝑐𝑠 exist at lower densities. A higher threshold
would retain only the strongest phase transitions. In what follows, we choose to
ignore phase-transition-like features with 𝑅𝑐2

𝑠
< 1.1 as an attempt to balance these

extremes, but the exact choice is ad hoc. See Appendix 4.8 for more discussion.
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Figure 4.5: Correlations between the divergence between macroscopic properties
caused by a phase transition Δ ln 𝐼 − ⟨Δ ln 𝐼⟩ and the latent energy per particle
of the associated phase transition Δ(𝐸/𝑁) for all transitions that begin at masses
greater than 0.7 M⊙. Color indicates the proximity of the phase transition’s end to
𝑀TOV. Large divergences in macroscopic properties can only be caused by phase
transitions with largeΔ(𝐸/𝑁), but not all phase transitions with largeΔ(𝐸/𝑁) cause
large divergences in macroscopic properties.

Connections between Macroscopic and Microphysical Behavior: the Masquer-
ade Problem
We expect Δ(𝐸/𝑁) to be related to phase transition’s impact on macroscopic prop-
erties. However, this mapping is complicated because the same Δ(𝐸/𝑁) can lead to
very different changes in NS properties depending on the onset density and pressure.
In order to explore this relation, we consider how much the phase transition causes
the macroscopic properties to diverge from what they would have been without
it. This provides a natural interpretation to the masquerade problem, as it will be
difficult to distinguish between two nearby 𝑀–𝐼 curves that never diverge from each
other without extremely precise observations.

While it is not trivial to construct such a divergence without an underlying parametriza-
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tion (one cannot just “turn off” the phase transition), Fig. 4.5 shows an example: the
difference between the change in the (logarithm of the) moment of inertia across the
phase transition and what it would have been if the transition was not present. We
measure the actual Δ ln 𝐼 directly from the identified onset and end of a transition,
and approximate what it would have been without a phase transition via the follow-
ing observation. In the absence of phase-transition-like behavior, D 𝐼

𝑀
is roughly

constant:
〈
D 𝐼
𝑀

〉
. Appendix 4.7 shows that

〈
D 𝐼
𝑀

〉
= 5/3 for incompressible Newto-

nian stars, and we empirically find values near
〈
D 𝐼
𝑀

〉
∼ 1.7 for general EoSs in full

General Relativity. Therefore, we approximate the change in the moment of inertia
that would have occurred without the phase transition as ⟨Δ ln 𝐼⟩ =

〈
D 𝐼
𝑀

〉
Δ ln𝑀 ,

where Δ ln𝑀 is again defined by the onset and end of the transition.

Figure 4.5 shows Δ ln 𝐼 − ⟨Δ ln 𝐼⟩ as a function of the phase transition’s latent
energy per particle. We see that large |Δ ln 𝐼 − ⟨Δ ln 𝐼⟩ | are only possible with large
Δ(𝐸/𝑁), but large Δ(𝐸/𝑁) do not always lead to large divergences. Again, this
demonstrates the masquerade problem: large microphysical changes may not always
manifest as observable features within macroscopic NS observables. Additionally,
large Δ(𝐸/𝑁) tend to produce end masses (NS mass with central density at the
end of the phase transition) close to 𝑀TOV. This is because large phase transitions
imply very compact stellar cores (due to relatively low pressures at high densities),
which are likely to collapse to BHs if even a small amount of additional matter is
added. Similarly, transitions with very large Δ(𝐸/𝑁) may lead to direct collapse
to a BH. Because our identification algorithm (Sec. 4.2) struggles to detect features
that cause the stellar sequence to collapse to a BH, this may cause a selection in the
maximum Δ(𝐸/𝑁) for which we can identify D 𝐼

𝑀
features in Fig. 4.5. Empirically,

we only identify Δ(𝐸/𝑁) ≲ 300 MeV.

4.3 Constraints with Current Astrophysical Observations
Equipped with the procedure defined in Sec. 4.2, we now turn to current astro-
physical observations. Following Legred et al. [69], we consider GW observations
(GW170817 [6, 4] and GW190425 [3]) assuming that all objects below (above)
𝑀TOV are NSs (BHs), NICER observations of pulsar hotspots (J0030+0451 [77] and
J0740+66203. [78]), and radio-based mass measurements of pulsars (J0348+0432 [20]
and J0740+6620 [34, 44]).

We use a model-agnostic nonparametric EoS prior, which by construction includes
3We use the headline results from Miller et al. [78] rather than Riley et al. [91] because the

former implements the measured cross-calibration between NICER and XMM. See also [93]
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little information from either nuclear theory or experiment at any density beyond the
requirements of thermodynamic stability and causality. See e.g., Essick, Landry,
and Holz [38]. This prior allows us to isolate the impact of astrophysical obser-
vations on the high-density EoS (≳ 𝜌nuc) without introducing modeling artifacts,
as are common in phenomenological parametric models [70]. Compared to other
nonparametric efforts [57, 78, 52], our nonparametric prior was constructed with
the goal of maximizing model freedom. It therefore already contains many EoS re-
alizations that exhibit characteristics of phase transition phenomenology, including
EoSs with multiple stable branches. While additional theoretical and/or experimen-
tal low-density information could be considered (see, e.g. Refs. [41, 40, 39]) we
leave those to future work and focus on astrophysical observations. Similarly, we do
not incorporate pQCD calculations at high densities [64, 52] as initial explorations
indicated that these constraints are model-dependent.4

Current observations span masses roughly between 1.2-2.1 M⊙.5 What is more,
the answer to questions such as, “how many phase transitions does the EoS have?”
depends on the mass or density range considered, and we do not wish to confound
our inference with the presence of D 𝐼

𝑀
features that occur at masses below the

smallest observed NS. As such, we divide the prior into multiple sets defined by
whether or not the EoS has a D 𝐼

𝑀
feature that overlaps with a specific mass range.

That is, whether the range of densities spanning the feature overlaps with the range
of central densities for stellar models within a specified mass interval. We consider
three mass ranges:

• 𝑀 ∈ [0.8, 1.1) M⊙: features that occur below the current observed set of
NSs.

• 𝑀 ∈ [1.1, 1.6) M⊙: features that could influence observed NSs, particularly
in the peak of the distribution of known galactic pulsars [17, 42].

• 𝑀 ∈ [1.6, 2.3) M⊙: features that may influence observed NSs, but at high
enough masses that individual GW systems are unlikely to confidently bound
the tidal deformability away from zero.

4Specifically, when evaluating the pQCD likelihood at 10𝜌nuc we find that pQCD results influence
NS near𝑀TOV in agreement with [52]. However, those constraints are weaker when we use the central
density of stars with 𝑀 = 𝑀TOV, in agreement with [99]. The robustness of the procedure to connect
pQCD calculations to lower densities is therefore still an open question.

5The smallest observed mass we consider is likely the secondary in GW190425 [3], although there
is considerable uncertainty in the event’s mass ratio. The largest observed mass is J0740+6620 [44].
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Individual EoSs may belong to multiple sets if they have multiple or large D 𝐼
𝑀

fea-
tures or just happen to straddle a boundary.

Table 4.1 presents ratios of maximized and marginal likelihoods conditioned on
different datasets. The ratio of maximized likelihoods for all astrophysical data
(pulsars (P), GWs (G), and X-ray observations (X)) for different subsets of our prior
(𝐴 and 𝐵) is

maxL𝐴
𝐵 (PGX) =

max
𝜀∈𝐴

𝑝(PGX|𝜀)

max
𝜀∈𝐵

𝑝(PGX|𝜀) , (4.3)

where the maximization is over different EoSs 𝜀. The Bayes factor is the ratio of
marginal likelihoods

B𝐴
𝐵 (GX|P) = 𝑝(GX|P; 𝐴)

𝑝(GX|P; 𝐵) , (4.4)

where, for example,

𝑝(GX|P; 𝐴) =
∫

D𝜀 𝑝(GX|𝜀)𝑝(𝜀 |P, 𝐴) , (4.5)

and
𝑝(𝜀 |P, 𝐴) = 𝑝(P|𝜀)𝑝(𝜀 |𝐴)∫

D𝜀 𝑝(P|𝜀)𝑝(𝜀 |𝐴)
. (4.6)

We report these statistics for both the number of stable branches and the number
of D 𝐼

𝑀
features, conditioned on several minimum Δ(𝐸/𝑁) thresholds. We present

both statistics because each has its relative strengths and weaknesses. While Occam
factors may be important for Bayes factors, they do not affect the ratio of maximized
likelihoods. At the same time, the maximized likelihoods may correspond to an
extremely rare EoS, whereas the Bayes factors provide an average over typical EoS
behavior. We therefore should trust statements about which both statistics broadly
agree.

Overall, we expect stronger constraints on features that overlap with the observed
mass range. In Figs. 4.6, 4.7, and Table 4.1, we indeed find the strongest constraints
on phase transitions that occur in NSs less massive than 1.6 M⊙, although constraints
for 𝑀 ∈ [0.8, 1.1) M⊙ and 𝑀 ∈ [1.1, 1.6) M⊙ are comparable. Indeed, in Fig. 4.6
the posterior for the latent energy is more constrained with respect to the prior for
masses below 1.6 M⊙. Furthermore, Table 4.1 shows that the Bayes factor using all
astrophysical data disfavors the presence of largeD 𝐼

𝑀
features (Δ(𝐸/𝑁) ≥ 100 MeV)

at low and medium masses (0.8–1.1 and 1.1–1.6 M⊙) approximately three times as
strongly as at high masses (1.6–2.3 M⊙).
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As shown in Legred et al. [69], all NS observations are consistent with a single
radius near ∼ 12.5 km. We therefore expect the data to disfavor the existence of
strong phase transitions and place an upper limit on Δ(𝐸/𝑁). Fig. 4.6 bears this
out. It shows posterior distributions on the properties of the D 𝐼

𝑀
feature with

the largest Δ(𝐸/𝑁) that overlaps with the specified mass range (i.e., features with
larger Δ(𝐸/𝑁) may exist in the EoS, but they do not overlap with the mass range).
Astrophysical data place an upper limit on the largest phase transition within an
EoS, but are less informative about weaker phase transitions.

Figure 4.6 shows the onset energy density and pressure as well as the energy density
at the end of the phase transition. Beyond limiting the possible size of D 𝐼

𝑀
features,

astrophysical data also disfavor phase transitions with large onset densities and
pressures. This likely corresponds to the observation that the sound-speed must
increase rapidly around 3𝜌nuc in order to support∼ 2 M⊙ pulsars against gravitational
collapse while remaining compatible with observations at lower densities, primarily
from GW170817 [69]. The peak in the posteriors for the onset parameters is likely
due to a combination of the (peaked) prior and these upper limits. This trend is
also encountered in the behavior of the 𝑝–𝜀 bounds for EoSs with multiple stable
branches. That is, Fig. 8 in Legred et al. [69] suggests it is more likely for phase
transitions to begin below 𝜌nuc than above it when the EoS supports multiple stable
branches.

Figure 4.1 provides an additional perspective on current constraints by showing
one-dimensional symmetric credible regions for the radius as a function of the grav-
itational mass. While current astrophysical data generally disfavor EoSs with large
Δ(𝐸/𝑁), Fig. 4.1 nevertheless shows that there are EoSs with large Δ(𝐸/𝑁) that
are consistent with observations. In particular, the maximum-likelihood draw from
the full PGX posterior conditioned on Δ(𝐸/𝑁) ≥ 100 MeV places a sharp feature
in the 𝑀–𝑅 curve at high masses, just above J0740+6620’s observed mass. Such
behavior maximizes the likelihood from the PSR masses due to the assumption that
the EoS itself is what limits the largest observed NS mass. See discussions in [68,
79]. Furthermore, the maximum-likelihood EoS favors smaller radii at low masses
(in line with GW170817) and larger radii at high masses (in line with J0740+6620).
Notably, the model-agnostic nonparametric prior was not designed to favor this
specific behavior, which instead emerges from the data without direct supervision
or fine-tuning.

We quantify the degree to which data prefer EoSs with different numbers and types
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of features in Table 4.1 and Fig. 4.7. Table 4.1 shows the ratio of maximized
likelihoods as well as the ratio of marginal likelihoods for EoSs with different
numbers of features. We compare EoSs with a single stable branch against EoSs with
multiple stable branches, as well as EoSs with and without at least one D 𝐼

𝑀
feature

above a certain Δ(𝐸/𝑁). Generally, these statistics are consistent with Fig. 4.6:
the astrophysical data disfavor large phase transitions (multiple stable branches or
large Δ(𝐸/𝑁)) more strongly than weaker ones. However, the statistical evidence
is still weak, and further observations are required to definitively rule out even the
presence of multiple stable branches.

Figure 4.7 expands on Table 4.1 by examining the preference for different numbers
of features, rather than just their absence or presence. That is, Table 4.1 in effect
provides a summary of Fig. 4.7 by marginalizing over all EoS with more than one
stable branch or at least one D 𝐼

𝑀
feature. Overall, although current astrophysical

observations cannot rule out the presence of a phase transition, they more strongly
disfavor the presence of multiple features. The astrophysical posterior strongly
disfavors EoSs with more than two stable branches and less strongly disfavor EoSs
with more than one large D 𝐼

𝑀
feature. This suggests that one may not need to

consider arbitrarily complicated EoS in order to model the observed population of
NSs, or at least that there is a limit to how exotic astrophysical NSs are.

Finally, current astrophysical data carries little information about the multiplicity of
any phase transitions, should they exist. Conditioning on the presence of a phase
transition, we find Bayes factors between ∼0.8–1.5 in favor of multiplicity > 1
compared to multiplicity 1 for the feature with the largest Δ(𝐸/𝑁) within each EoS,
even for the strongest phase transitions. This should be expected. We cannot yet
confidently determine whether a phase transition exists, and it would therefore be
surprising if we could already identify even basic features of the phase transition.

4.4 Future Prospects with Gravitational Wave Observations
Building upon current data, we now consider future prospects from GW observations
of inspiraling compact binaries. Section 4.4 explores the prospects for detecting
the presence of phase transitions, and Sec. 4.4 considers our ability to characterize
them. In brief, we find that we will not be able to confidently detect the presence
of even relatively extreme phase transitions with catalogs of 100 events. Rather,
we will need at least 200 events or more. However, we will be able to rule out
the presence of multiple stable branches at low mass scales with 100 GW events.
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Nevertheless, we will be able to infer the correct Λ(𝑀) for all 𝑀 simultaneously
regardless of what the true EoS is, and obtain ∼ 6% (50%) relative uncertainty in
Λ1.2 (Λ2.0) after 100 GW detections.

To explore a range of potential behavior, we simulate catalogs of GW events assum-
ing a few representative CSS EoSs based on DBHF [56]. We consider

• DBHF [56]: a hadronic EoS without phase transitions.

• DBHF_3504: a modification to DBHF with a weak phase transition at ∼
1.9 M⊙ and a causal CSS extension at higher densities.

• DBHF_2507: a modification to DBHF with a strong phase transition at
∼ 1.5 M⊙ and a causal CSS extension at higher densities. This is the Strong
Maxwell CSS example in Fig. 4.2.

These EoSs are not drawn from our nonparametric prior, and in fact their sharp
features are relatively extreme examples of possible EoS behavior. As such, we
expect them to be rigorous tests of the inference framework.

The simulated catalogs assume a network signal-to-noise ratio (S/N ) detection
threshold of 12, and they approximate measurement uncertainty in the masses
and tidal parameters according to the procedure described in Landry, Essick,
and Chatziioannou [68]. We inject a population of non-spinning NSs uniform
in component masses between 1.0 M⊙ and 𝑀TOV. Injections are drawn assuming
𝑝(S/N) ∼ (S/N)−4, consistent with a uniform rate per comoving volume at low
redshift. We assume the mass, spin, and redshift distributions are known exactly
and therefore ignore selection effects. For more details, see Refs. [68, 69].

For computational expediency, we consider the ability of GW observations alone to
constrain phase transition phenomenology. That is, we do not impose lower bounds
on 𝑀TOV from pulsar masses in order to retain a large effective sample size within
the Monte Carlo integrals. We do assume, however, that all objects below 𝑀TOV are
NSs, and, therefore, placing a lower limit on Λ(𝑀) from GW observations will de
facto place a lower limit on 𝑀TOV. See Appendix 4.9 for more discussion.

Prospects for Detecting Phase Transitions
We first consider detection of a phase transition with a catalog of GW events. Fig. 4.8
shows the statistics from Table 4.1 for various simulated catalog sizes for injected
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EoSs both with and without a phase transition. Generally speaking, we recover the
expected behavior: confidence in the presence (or absence) of a phase transition
grows as the catalog increases. Moreover, when a phase transition is present,
evidence grows the most in the mass range where the phase transition occurs.

The Number of Stable Branches

We begin by considering the number of stable branches, with the left panels of
Fig. 4.8 showing Bayes factors for multiple stable branches (𝑛 > 1) vs. a single
stable branch (𝑛 = 1). As none of the injected EoSs have a phase transition at low
masses and GW observations should be able to confidently bound Λ ≫ 0 at low
masses, we quickly obtain relatively high confidence that there is only a single stable
branch within 0.8–1.1 M⊙. We find Bayes factors as large as ∼ 100 : 1 in favor of a
single branch after 100 events.

For moderate masses (1.1–1.6 M⊙), we again see the expected evidence in favor of
a single stable branch for both DBHF (no phase transition) and DBHF_3504 (phase
transition at ∼ 1.9 M⊙). The Bayes factors are only ∼ 10 : 1 after 100 events, but
nonetheless the trend is clear. In contrast, DBHF_2507 (phase transition at∼ 1.5 M⊙

and multiple stable branches) exhibits a notably different pattern. Although a strong
preference is not developed either way, Bayes factors begin to (correctly) favor
multiple stable branches after 100 events.

Finally, we are not able to confidently distinguish between EoSs with a single stable
branch or multiple stable branches in the mass range 1.6–2.3 M⊙. This is because
the individual events’ uncertainties on Λ are much larger than the true Λ in this
mass range.6 It will therefore take the combination of many GW events to be able
to precisely resolve the true value of Λ at high masses.

The Number and Properties of D 𝐼
𝑀

Features

The remaining panels of Fig. 4.8 show similar trends for D 𝐼
𝑀

features. We show
Bayes factors for at least one D 𝐼

𝑀
feature (𝑛 > 0) vs. no D 𝐼

𝑀
features (𝑛 = 0). In

general, the strongest preference for a D 𝐼
𝑀

feature is for DBHF_2507, which has the
largest phase transition among the three EoSs we consider. The evidence in favor of
at least one D 𝐼

𝑀
feature is nevertheless smaller for the largest Δ(𝐸/𝑁) (≥ 100 MeV)

compared to more moderate values (≥ 50 MeV). This is true for all mass ranges,
6Λ typically scales as Λ ∝ 𝑀−5 and rapidly decreases at high masses.
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Figure 4.9: Sequences of one-dimensional marginal posteriors for Λ(𝑀) at (left to
right) 1.2, 1.4, 1.6, 1.8, and 2.0 M⊙ for different simulated EoSs: (top, blue) DBHF,
(middle, orange) DBHF_3504 (phase transition at ∼ 1.9 M⊙) and (bottom, green)
DBHF_2507 (phase transition at∼ 1.5 M⊙). These posteriors show the distributions
of Λ(𝑀) > 0 (i.e., they only consider EoSs with 𝑀TOV ≥ 𝑀). These posteriors
are conditioned only on simulated GW events (no real observations), and a line’s
color denotes the number of simulated GW events within the catalog (light to dark
: fewer to more events) along with the true injected values (vertical black lines).
The prior is shown for reference (grey shaded distributions). For very small Λ,
primarily associated with DBHF_2507 at high masses, the true value falls near the
lower bound in the prior. The primary effect of additional observations is to reduce
support for larger values of Λ. While significant uncertainty in Λ(𝑀) remains
after 100 events, the nonparametric prior is able to correctly infer Λ(𝑀) at all 𝑀
simultaneously, including sharp changes in Λ(𝑀) over relatively small mass ranges.

suggesting that we will be able to constrain a feature’s Δ(𝐸/𝑁) more easily than
we may be able to constrain the mass range over which it occurs. Additionally, we
will need very large catalogs to confidently detect the presence of a D 𝐼

𝑀
feature.

At best, we find Bayes factors of ∼ 10 : 1 after 100 events. This matches previous
estimates, which place the required number of events between 200-400 [29, 85, 66].
See Sec. 9.5 for more discussion. Furthermore, while there will not be unambiguous
statistical evidence in favor of a D 𝐼

𝑀
feature at high masses (1.6–2.3 M⊙), we do see

an upward trend for DBHF_3504. This suggests that, even though our individual-
event uncertainties on tidal parameters are large at these masses, we will nevertheless
eventually be able to detect small phase transitions at high masses given enough
events.
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Occam factors are readily apparent in these results, causing systematic shifts of
comparable magnitude for all three injected EoSs. These tend to favor the presence
of D 𝐼

𝑀
features, as it is likely that very stiff EoSs at intermediate densities (unlikely

to have D 𝐼
𝑀

features) are quickly ruled out by GW observations. As such, some
fraction of the prior is ruled out after only a few detections reducing the evidence
even though there are still many EoSs without D 𝐼

𝑀
features that match the data

well. Furthermore, selecting EoSs with at least one feature at high masses requires
𝑀TOV to be at least as high as the lower-edge of this mass range because of how
our D 𝐼

𝑀
feature extraction algorithm works. Such EoSs are better matches to the

data for all the true EoSs considered. Even a few detections can quickly rule out
𝑀TOV ≪ 1.6 M⊙, which penalizes EoSs for which our algorithm did not detect a
D 𝐼
𝑀

feature above 1.6 M⊙ because the EoS’s𝑀TOV was below 1.6 M⊙. Nevertheless,
these Ocaam factors are typically ≲ 2, implying that large Bayes factors can still be
interpreted at face value.

Finally, it may be difficult to completely rule out the presence of D 𝐼
𝑀

features even if
the true EoS does not have any phase transitions. Fig. 4.8 shows a possible exception
at the lowest masses considered, but even there the Bayes factors are only ∼ 0.5 after
100 events. This is yet another manifestation of the masquerade problem: EoSs
with and without D 𝐼

𝑀
features can produce similar 𝑀–𝐼 relations, even for relatively

large Δ(𝐸/𝑁).

Prospects for Characterizing Phase Transitions
In addition to detecting the presence of a phase transition, we wish to determine
its properties should it exist. Fundamental to this is the ability to infer the correct
𝑀–Λ relation. That is, to infer the correct Λ(𝑀) for all 𝑀 simultaneously. Fig. 4.9
demonstrates that our nonparametric inference is capable of this, regardless of the
true EoS used to generate injections. This is often not the case for parametric models
of the EoS (see [85, 66] and discussion in Sec. 9.5). Fig. 4.9 shows one-dimensional
marginal posteriors for Λ(𝑀) at 𝑀 = 1.2, 1.4, 1.6, 1.8, and 2.0 M⊙ for different
catalog sizes and each of the three injected EoSs. We find that the low-density (low-
mass) EoS is relatively well measured. Λ1.2 will have a relative uncertainty (standard
deviation divided by the mean) between 6% (DBHF_3504) and 7% (DBHF_2507) at
𝑀 = 1.2 M⊙ after 100 detections. However, it will generally take more events before
we can confidently resolve features at higher masses, even without the presence of a
phase transition. With catalogs of 100 events, we are only able to constrain Λ2.0 to
between 40% (DBHF_3504) and 55% (DBHF_2507). In agreement with Fig. 4.8,
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Figure 4.10: Joint posteriors for Δ(𝐸/𝑁) and transition onset mass (𝑀𝑡) inferred
from simulated GW catalogs for (top, blue) DBHF and (bottom, green) DBHF_2507.
Grey curves denote the (reweighed) prior, color denotes the size of the catalog,
and contours in the joint distribution are 50% highest-probability-density credible
regions. Solid lines denote the true parameters for DBHF_2507; there are no such
lines for DBHF because it does not contain a phase transition. As in Fig. 4.6,
extracted parameters correspond to the feature with the largest Δ(𝐸/𝑁), but here
we only require features to overlap the broad range 0.8–2.3 M⊙.
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it is likely to take more than 100 events to unambiguously distinguish between EoSs
with and without phase transitions. For example, the Λ2.0 posterior for DBHF_2507
still has nontrivial support at the location of the DBHF’s Λ2.0, and vice versa, even
with the full catalog of 100 events.

Even though we identify phase transition features from macroscopic relations, we
expect the inferred microscopic properties to be robust given the one-to-one mapping
between 𝑝–𝜀 and, e.g., 𝑀–𝑅 [71]. Fig. 4.10 shows how constraints on the onset
mass (𝑀𝑡) and Δ(𝐸/𝑁) evolve with the catalog size for DBHF (no phase transition)
and DBHF_2507 (strong phase transition). In order to highlight constraints on the
transition mass, Fig. 4.10 additionally reweighs the posterior so that it corresponds
to a (as much as possible) uniform prior in the transition mass. It only shows EoSs
that have at least one identified D 𝐼

𝑀
feature that overlaps with 0.8–2.3 M⊙.

Characterizing onset properties is challenging because of the wide variability in
softening behavior during the course of the phase transition. That is, the onset
density as identified by a running local maximum in 𝑐𝑠 may not correspond to any
immediately obvious features in macroscopic relations, as is the case in Fig. 4.3.
Therefore, we may expect a long tail towards low onset masses even if the end of
the transition is well determined.

Additionally, we sometimes observe unintuitive behavior when we condition on the
presence of features that do not exist (left panel). For example, the marginal posterior
for 𝑀𝑡 (conditioned on the existence of at least one feature) peaks at 𝑀𝑡 ≳ 1.6 M⊙

for DBHF. Transitions that begin at these masses are difficult to detect with GW
observations alone; see Figs. 4.8 and 4.9. Therefore, these EoSs are not strongly
constrained by observations, particularly compared to EoSs that have transitions that
begin at lower masses. This explains why the posterior tends to disfavor low 𝑀𝑡 ,
and the peak at higher masses should be interpreted primarily as a lower limit.

However, transitions that begin at very high masses (𝑀𝑡 ≳ 1.8 M⊙) are also disfa-
vored by the data. This is unintuitive, as we expect very weaker tidal constraints for
high mass systems. However, by conditioning on the presence of at least one identi-
fied D 𝐼

𝑀
feature, which in turn are only identified by our algorithm if the EoS does

not collapse to a BH as part of the transition, we de facto require EoSs with large
onset masses to be rather stiff. That is, only the stiffest EoS can have an D 𝐼

𝑀
feature

begin at high mass and not collapse directly to a BH. At the same time, these EoSs
are ruled out by observations at smaller masses, which favor more compact stars
and soft EoSs. Therefore, a high 𝑀𝑡 is disfavored by low-mass observations and the
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correlation induced within the prior by requiring at least one identified D 𝐼
𝑀

feature
at high mass.

We contrast this with DBHF_2507, in which there is a phase transition near 1.5 M⊙

(right panel). Here, we find a similar peak in the one-dimensional marginal posterior
for 𝑀𝑡 , but there is additional information in the joint posterior for 𝑀𝑡 and Δ(𝐸/𝑁).
The joint posterior for DBHF mostly follows the prior, particularly for 𝑀𝑡 ∼ 1.6 M⊙,
whereas for DBHF_2507 it is shifted relative to the prior towards the injected
values and disfavors large Δ(𝐸/𝑁). These considerations highlight the fact that
low-dimensional marginal posteriors conditioned on specific, sometimes ad hoc,
features will require care to interpret correctly. It may be better, then, to consider
sets of marginal distributions for macroscopic observables, such as Fig. 4.9, at the
same time. At the very least, the latter can provide context for inferred constraints
on proxies for microphysical properties.

4.5 Discussion
We summarize our main conclusions in Sec. 4.5 before comparing them to existing
work in the literature in Sec. 4.5. We conclude by discussing possible extensions to
our study in Sec. 4.5.

Summary
We introduced a new algorithm to identify phase transitions within the EoS of dense
matter based on NS properties and the underlying 𝑐𝑠 behavior. This algorithm
does not rely on a parametrization, and as such works for both parametric and
nonparametric representation of the EoS. Our approach improves upon previous
studies by demonstrating that physically meaningful density scales can be extracted
directly from NS observables. We further demonstrated that nonparametric EoS
inference can recover the correct macroscopic properties, such as Λ(𝑀), at all
masses simultaneously. As such, we suggest that extracting physical quantities from
nonparametric EoS draws is preferable to directly modeling of the 𝑝–𝜀 relation with
ad hoc parametric functional forms, as different choices for the parametrization can
introduce strong model-dependence on the conclusions [70].

This approach is similar in spirit to efforts to constrain the nuclear symmetry en-
ergy and its derivatives (slope parameter: 𝐿) with nonparametric EoSs [40, 39].
Studies based on parametric EoS models described in terms of 𝐿 have suggested
tension between terrestrial experiments and astrophysical observations [89, 25, 24].
Refs. [40, 39] instead extracted 𝐿 from nonparametric EoS realizations by imposing
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𝛽-equilibrium at 𝜌nuc without relying on an explicit parametrization far from 𝜌nuc.
They demonstrated that any apparent tension was due to model assumptions rather
than the data, as nonparametric models were able to accommodate both terrestrial
constraints on 𝐿 and astrophysical observations of NSs.

Returning to this work, we showed that current astrophysical data disfavor only the
strongest phase transitions and the presence of multiple phase transitions. However,
the data are still consistent with two stable branches and/or one moderate phase
transition. We also showed that we will not be able to confidently detect the
presence of a phase transition with catalogs of ≤ 100 GW events. Although we do
not directly estimate how many events will be needed for computational reasons,
extrapolating Fig. 4.8 suggests that we may need several hundred events to reach
Bayes factors ≳ 100, often taken as a rule-of-thumb for confident detections [63].
We can, however, expect to confidently rule out the presence of multiple stable
branches at low masses after 100 events. While the exact rates of NS coalescences
and future GW-detector sensitivities are still uncertain, it is unlikely that we will
obtain a catalog of this size within the lifetime of the advanced LIGO and Virgo
detectors [5].

Comparison to other work
As discussed briefly in Sec. 5.1, several authors have proposed tests based on
features in the distribution of macroscopic observables. Chen, Chesler, and Loeb
[31] investigated a piecewise linear fit of the 𝑀–𝑅 relation with two segments
that captures phase transitions through a change in the slope. However, beyond
possible systematics associated with the simplicity of the piecewise linear model,
quantitative conclusions hinge on the assumption that the measurement uncertainty
on 𝑅 from GW events is roughly the same for all masses. This is unrealistic for
massive systems in which the relative uncertainty in the tidal deformability grows
quickly. Chatziioannou and Han [29] pursued a related method that models the
population of detections hierarchically and searches for a second population with
significantly different radii at high masses.7 They found that phase transitions could
be identified with O(100) events if hybrid stars emerge at ∼ 1.4 M⊙. Landry and
Chakravarti [66] introduced a method for identifying the presence of twin stars,
which can arise due to strong first-order phase transitions, in the population of

7Chen and Chatziioannou [30] proposed a similar technique to distinguish between binary NS
and NS-BH systems. In this case, a reduced inferred radius is attributed to the presence of a BH in
the binary (which does not exhibit tidal effects) rather than a softening in the EoS.
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merging binary NSs based on gaps in the joint distribution of masses and binary
tidal deformabilities. However, these and related approaches that directly model the
𝑀-Λ relation [35, 12] offer no obvious pathway to microscopic EoS properties nor
the ability to enforce physical precepts such as causality and thermodynamic stability.
What is more, not all microscopic models that contain phase transitions produce
macroscopic observables with this phenomenology (the masquerade problem), and
this phenomenology might be caused by other effects, such as a mix of binary NS
and NS-BH binaries at the same masses [30] or even dark matter [92].

Alternative approaches involve modeling the 𝑝–𝜀 relation directly. Several authors
have attempted this with parametric models of varying complexity. Pang et al. [85]
introduced a piecewise-polytropic model for first-order phase transitions and carried
out model selection between models that do and do not support phase transitions,
respectively. They concluded that a strong phase transition could be identified with
12 GW events, each with signal-to-noise ratio S/N > 30.8 However, in addition to
technical issues associated with their Bayes factor calculation, their results appear
to be affected by model systematics within their EoS parametrization. They arrive
at counterintuitive conclusions: weaker phase transitions are detected more easily
than stronger ones (their Fig. 5), and the inference precision is largely unaffected by
the observation of more events (their Fig. 9).9 We speculate that the cause is the fact
that their parametric EoS model does not closely reproduce either of their injected
EoSs, leading to model systematics [70]. If systematic issues are less severe for the
injected EoS with a weak phase transition than the one with a strong transition, the
former could be more easily distinguished from EoSs without phase transitions.

Two other recent studies have looked at the astrophysical evidence for or against
the presence of phase transitions. Both Tan et al. [101] and Mroczek et al. [82]
constructed EoS models by adding features to the speed of sound such as spikes, dips,
and plateaus. As explained in Tan et al. [101], these features are motivated by specific
theoretical expectations of phase transition phenomenology. Mroczek et al. [82]
employs underlying EoS realizations drawn from a few simple GP priors, resulting
in what they call a modified Gaussian Process. In comparison, our nonparametric
prior inherently generates broad ranges of phase transition morphology without the

8Assuming merging binaries are uniformly distributed in volume within a Euclidean universe, the
S/N is distributed as 𝑝(S/N) ∝ (S/N)−4. This means that to observe 12 events with S/N > 30
requires a total of > 187 events above the detection threshold used in Sec. 4.4 (S/N = 12) and 324
events above the more realistic detection threshold S/N = 10 [8, 7].

9For most parameters, statistical uncertainty roughly scales as 𝑁−1/2, where 𝑁 is the number of
detections. Systematic uncertainty is independent of 𝑁 .
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need to modify realizations post hoc. Mroczek et al. [82] must add features by
hand because their original GP was constructed with long correlation lengths and
small variances. As such, it only produces smooth EoSs without phase-transition-
like features by itself. Additionally, Mroczek et al. [82] report a Bayes factor
for models with or without such features, finding no strong evidence either way.
Though this generally agrees with our conclusions, the quantitative comparison
might be affected by the fact that their prior is first “pruned” by rejecting EoSs that
do not fall within broad boundaries that represent realistic EoS. Inevitably, these
boundaries carry information about current astrophysical observations. Therefore, it
may not be surprising that subsets of different priors (each chosen to resemble current
astrophysical data) predict the current observed data with comparable frequency,
which is what is implied by a Bayes factor ∼ 1.

Several other authors have investigated models intended to test specifically for the
presence of deconfined quarks in NS cores, e.g. [100, 18, 19]. Many of these
studies base the evidence for the presence of quark matter on the behavior of
the polytropic index (𝛾 = 𝑑 log 𝑝/𝑑 log 𝜀) in addition to using various parametric
and nonparametric representations of the EoS and approximations to astrophysical
likelihoods. For example, Annala et al. [19] present approximate ranges for 𝛾,
𝑐𝑠, and other statistics and propose that massive NS cores likely contain matter
displaying approximate conformal symmetry, which may be indicative of a transition
to deconfined quarks. These studies typically focus on the composition of matter
at the highest densities possible within NSs (near 𝑀TOV). Some studies have even
claimed evidence for the presence of deconfined quark matter based on 𝛾 at high
densities. Our D 𝐼

𝑀
features are more agnostic about the composition of new matter

and are sensitive over a broad range of masses. They should therefore provide
a complementary approach to direct modeling based on assumptions about NS
composition and microphysical interactions.

Finally, several other authors have introduced EoS models with many parameters
and increased model freedom, some of which are implemented as neural networks
of varying complexity [47, 46, 45, 57, 58]. Our conclusions based on current
observations are broadly consistent with these other approaches, and therefore we
only remark that our D 𝐼

𝑀
feature could be extracted from any EoS, regardless of the

underlying model (or lack thereof). It should be straightforward to investigate phase
transition phenomenology with realizations from any EoS prior in the literature,
although this is beyond the scope of our current study.
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Future work
Finally, we discuss possible extensions and the impact that additional assumptions
may have on our analysis.

As mentioned in Sec. 4.3, we intentionally condition our nonparametric prior on
very little information from nuclear theory or experiment beyond causality and
thermodynamic stability. It would be of interest to better understand how terrestrial
experiments or ab initio theoretical calculations such as chiral EFT at low densities
may impact our conclusions. For example, Fig. 3 from Essick et al. [41] shows
that improved constraints at very low densities (≲ 𝜌nuc/2) can improve uncertainty
in the pressure at higher densities (∼ 3𝜌nuc) when combined with astrophysical
data. Furthermore, theoretical calculations suggest a moderate value of 𝐿, which
would remove even the hint that a phase transition may occur at low densities found
in Essick et al. [39] when they assumed 𝐿 was large.

At the other extreme, it is worth clarifying the impact of pQCD calculations. Several
conflicting reports exist in the literature, suggesting that the pressures at very high
densities (∼ 40𝜌nuc) limit the pressures achieved in the highest-mass NS [52, 53],
while other studies point out that these conclusions depend on the details of how the
densities relevant for NSs are extrapolated to the pQCD regime [99]. Indeed, the
current proposal for mapping pQCD calculations to lower densities [64] maximizes
the likelihood over the extrapolation rather than marginalizing over the EoS within
the extrapolation region, although Gorda et al. [53] marginalize over a nonparametric
extrapolation based on GPs for at least part of the extrapolation region (up to
∼ 10𝜌nuc but not all the way to ∼ 40𝜌nuc). The fact that the conclusions depend
on the choice of where the extrapolation begins suggests that they could depend
strongly on the prior assumptions for EoS behavior within the (unobserved and
unobservable) extrapolation region between the central density of 𝑀TOV stars and
the pQCD regime.

Additional information about the EoS will be imprinted in post-merger signals from
coalescing NS systems. An extensive literature exists (e.g., Refs. [81, 21]) mostly
focusing on the ability to resolve the dominant frequency of the post-merger emission
thought to be associated with the fundamental 2-2 mode of the massive remnant.
Additional work will be needed to connect our nonparametric inference based on
tides observed during the GW inspiral to the complicated physics at work during
the post-merger. See, e.g., Wĳngaarden et al. [105] for a way to model the full
GW signal. This may include extending our nonparametric EoS representation to
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include finite-temperature effects [26].

In addition to incorporating more information within the inference, we may be able
to dig deeper into features of the current data. As mentioned in Sec. 4.2, our
procedure does not identify phase transitions that results in the direct collapse to
a BH, although we do find that the sharpness of the final decrease in arctan(D 𝐼

𝑀
)

may correlate with whether the collapse was due to only self-gravity or assisted by
a sudden decrease in 𝑐𝑠. Future work may develop additional features targeting this
phenomenology, as it could have implications for the behavior of merger remnants
that may or may not power electromagnetic counterparts depending on how long
the remnant survives [75, 98, 65].

Assuming a phase transition is identified, an open challenge is to extend the inference
to determine the order of the phase transition (e.g., first- vs. second-order). A smooth
crossover from hadronic to quark matter may, for example, be mimicked by either a
weak first-order phase transition or a second-order one [48]. Condensation of pions
or kaons may also give rise to a second-order phase transition [86]. Our feature is
able to detect a variety of possible morphologies, but additional statistics will need
to be developed to further categorize the 𝑐𝑠 behavior within the phase transition’s
extent.

Finally, we would also be remiss if we did not remind the reader that our feature
specifically targets phenomenology associated with decreases in 𝑐𝑠 and associated
increase of compactness. If, instead, a smooth crossover as realized in, e.g., quarky-
onic matter [49, 22, 76] only manifests as a sudden increase in the speed of sound,
the features introduced here will not detect it. Additional features targeting such be-
havior would need to be developed. To that end, it may be of general interest to more
carefully study the types of correlations between 𝑐𝑠 at different densities that are
preferred by astrophysical data. In the future, we will interrogate our nonparametric
posteriors to not only constrain 𝑐𝑠 but also how quickly 𝑐𝑠 can vary. For example,
we do not expect periodic, extremely rapid oscillations in 𝑐𝑠 to have a significant
impact on NS properties, and therefore they may only be very weakly constrained
by the data. See, e.g., Tan et al. [101] for more discussion. However, this will likely
require more advanced sampling techniques to efficiently draw representative sets
from our nonparametric processes. See Appendix 4.9.
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4.7 Incompressible Newtonian Stars with Two Phases
We examine the feature extraction procedure laid out in Sec. 4.2 within a simpler
context: incompressible stars with two phases in Newtonian gravity. Despite its
simplicity, this demonstrates the main features of more realistic stars while greatly
simplifying the mathematics.

We consider incompressible stars with a piecewise constant density 𝜌 as a function
of the pressure 𝑝 separated by a transition pressure 𝑝𝑇

𝜌(𝑝) =
{
𝜌𝐿 if 𝑝 ≤ 𝑝𝑇

𝜌𝐻 if 𝑝 > 𝑝𝑇
. (4.7)

We combine this EoS with the Newtonian equations of stellar structure
𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌 , (4.8)

𝑑𝑝

𝑑𝑟
= −𝐺𝑚𝜌

𝑟2 , (4.9)

and a central pressure 𝑝𝑐, where 𝑚 is the enclosed mass up to radius 𝑟.

For 𝑝𝑐 ≤ 𝑝𝑇 , the solution is trivial as the star is described by a single fluid:

𝑅 =

√︄
3𝑝𝑐

2𝜋𝐺𝜌2
𝐿

, (4.10)

𝑀 =
4𝜋
3
𝜌𝐿𝑅

3 , (4.11)

𝐼 =
2
5
𝑀𝑅2 , (4.12)

for the radius 𝑅, mass 𝑀 , and moment of inertia 𝐼. In this case, the star is always
stable as 𝑑𝑀/𝑑𝑝𝑐 > 0 and D 𝐼

𝑀
= 𝑑 log 𝐼/𝑑 log𝑀 = 5/3 is constant.

For 𝑝𝑐 > 𝑝𝑇 , the star contains a core of high-density matter with radius

𝑅𝑐 =

√︄
3(𝑝𝑐 − 𝑝𝑇 )

2𝜋𝐺𝜌2
𝐻

. (4.13)

The entire star’s macroscopic properties are then implicitly determined by

𝑝𝑇 =
4𝜋𝐺𝜌𝐿 (𝜌𝐻 − 𝜌𝐿)𝑅3

𝑐

3

(
1
𝑅𝑐

− 1
𝑅

)
+

2𝜋𝐺𝜌2
𝐿

3

(
𝑅2 − 𝑅2

𝑐

)
, (4.14)

𝑀 =
4𝜋
3

[
(𝜌𝐻 − 𝜌𝐿)𝑅3

𝑐 + 𝜌𝐿𝑅3] , (4.15)

𝐼 =
8𝜋
15

[
(𝜌𝐻 − 𝜌𝐿)𝑅5

𝑐 + 𝜌𝐿𝑅5] , (4.16)
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Figure 4.11: Stellar sequences for incompressible two-phase Newtonian stars with
𝜌𝐿 = 2𝜌nuc = 5.6 × 1014g/cm3, 𝑝𝑇 = 5 × 1034dyne/cm2, and various values of 𝜌𝐻 .
We plot (top) the 𝑀-𝐼 relation and (bottom) arctan(D 𝐼

𝑀
) as a function of the stellar

mass. Stable branches are shown with solid lines, and unstable branches are shown
with dotted lines. The bottom panel inset focuses near the discontinuity for curves
with; ticks on the y-axis correspond to the values in Eq. 4.17.
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Figure 4.12: An additional example of the impact of thresholds within the feature
extraction algorithm with an EoS realization with a relatively short correlation
length. (top) trivial thresholds Δ arctan(D 𝐼

𝑀
) = 0.0, R𝑐2

𝑠
= 1.0; (middle) threshold

on the size of Δ arctan(D 𝐼
𝑀
), Δ arctan(D 𝐼

𝑀
) = 0.15, R𝑐2

𝑠
= 1.0; (bottom) threshold

on the amount 𝑐2
𝑠 must decrease, Δ arctan(D 𝐼

𝑀
) = 0.0 R𝑐2

𝑠
= 1.5 (analogous to

Fig. 4.4). The rapid oscillations in 𝑐2
𝑠 are identified when selecting based on R𝑐2

𝑠

but they are rejected when selecting based on Δ arctan(D 𝐼
𝑀
); their relatively small

Δ(𝐸/𝑁) do not produce significant changes in the 𝑀-𝐼 relation.
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In this case, the star can become unstable (𝑑𝑀/𝑑𝑝𝑐 < 0) if 𝜌𝐻 is much larger than
𝜌𝐿 . Regardless of stability, D 𝐼

𝑀
is discontinuous whenever 𝜌𝐻 ≥ 𝜌thr ≡ 3𝜌𝐿/2.

Fig. 4.11 shows that

lim
𝑝𝑐→𝑝+

𝑇

𝑑 log 𝐼
𝑑 log𝑀

=


+5/3 if 𝜌𝐻 < 𝜌thr

+5/4 if 𝜌𝐻 = 𝜌thr

−5/3 if 𝜌𝐻 > 𝜌thr

. (4.17)

Similar threshold behavior is encountered in other parameters combinations, for ex-
ample the mass, radius or tidal deformability, as also shown for relativistic polytropic
NSs with 1st-order phase transitions [72].

4.8 The role of thresholds within feature extraction
As part of the feature identification algorithm introduced in Sec. 4.2, we included a
threshold on the amount the sound-speed must decrease within a candidate D 𝐼

𝑀
fea-

ture. We now discuss the motivation for and impact of this and other thresholds in
more detail.

We represent our uncertainty in the EoS as a random process for 𝑐𝑠 as a function of
pressure with support for every possible causal and thermodynamically stable EoS.
We can therefore think of the behavior of our feature extraction algorithm in terms
“fluctuations” in 𝑐𝑠 under different realizations of this random process. Specifically,
by selecting the running local maximum, we de facto set a threshold on 𝑐𝑠 that
subsequent local maxima must pass if they are to be associated with the start of a
phase transition. This means that small fluctuations in the height of subsequent local
maxima, either above or below the previous running local maximum, can change the
features extracted. These changes can sometimes be dramatic, as the proxy for the
onset density selected may jump to a much lower density. By imposing a threshold
on 𝑅𝑐2

𝑠
, we make this type of selection explicit within the algorithm. Although this

does not remove the issue of small fluctuations qualitatively changing the estimated
onset density, it at least provides a more concrete way to control the types of features
selected. Fig. 4.4 demonstrates the impact of a large threshold on 𝑅𝑐2

𝑠
for one EoS

realization.

Although not used within our main analysis, we implement an additional threshold
on the change in arctan(D 𝐼

𝑀
) observed within the candidate phase transition. That

is, we define Δ arctan(D 𝐼
𝑀
) as the difference between the maximum arctan(D 𝐼

𝑀
) for

any density between the onset and end points and the local minimum in arctan(D 𝐼
𝑀
)

that defines the end point. If this value is small, it will likely be difficult to detect
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Figure 4.13: The effective number of EoS samples from the posterior process
as a function of catalog size for (solid) catalogs comprised of only mock GW
observations and (dashed) catalogs that include real pulsar mass measurements in
addition to mock GW observations. For each of the three true EoS considered in
Sec. 4.4, we find an approximately exponential decrease of the number of effective
samples with the catalog size.

such a feature from macroscopic properties of NSs. One may wish to remove them at
the time of extracting features. In practice, though, we choose to record all features,
regardless of how small Δ arctan(D 𝐼

𝑀
) is, and then filter them post hoc by selecting

subsets of features with different Δ(𝐸/𝑁).

Fig. 4.12 shows the impacts of threshold on both 𝑅𝑐2
𝑠

and Δ arctan(D 𝐼
𝑀
) for an EoS

realization with rapid oscillations in 𝑐𝑠. Our main results require Δ arctan(D 𝐼
𝑀
) ≥ 0

(satisfied axiomatically) and 𝑅𝑐2
𝑠
≥ 1.1.

4.9 Computational Challenges
As discussed in Sec. 4.4, our current nonparametric sampling methods (i.e., direct
Monte Carlo sampling) may not scale to catalogs of ≳ 100 detections. This is
perhaps not surprising. That is, the total likelihood becomes increasingly peaked
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with more detections, and the majority of realizations from the nonparametric prior
will have vanishingly small likelihoods. As such, they do not contribute to the
posterior. With our current set of ∼ 310, 000 prior samples, we retain ∼ 19, 300
effective samples in the posterior conditioned on real astrophysical data. Heavy
pulsar mass measurements alone rule out the largest portion of our prior, about
80%. See, e.g., Fig. 4 of Essick et al. [41].

The number of effective samples is substantially higher in our simulation campaigns
if we do not include massive pulsars (Fig. 4.13). Since our main goal is to ex-
plore how well GWs can constrain phase transitions, we only consider catalogs of
simulated GW events in Sec. 4.4 and do not include the heavy pulsars.

Although the existing set of EoS realizations from the nonparametric prior process
will be sufficient for the catalog sizes expected over the next few years (current data
and an additional 𝑂 (10) GW detections [68]), analyzing larger simulated catalogs
might be challenging. Fig. 4.13 shows the number of effective EoS samples in the
posterior as a function of the simulated GW catalog size and for different simulated
EoS. Solid lines only include simulated GW events; dashed lines include both
heavy pulsars and simulated GW events. Although there are differences between
the injected EoS, we observe an approximately exponential decay in the number of
effective posterior samples with the size of the catalog. This implies we will need
exponentially more draws from the current prior in order to analyze larger catalogs,
which is computationally untenable in the long run.

However, given the expected rate of detections over the next few years, brute force
may still be sufficient in the short run. That is, given the low computational cost of
producing additional EoS realizations, we may be able to draw more samples from
the existing prior processes, solve the TOV equations, and compute the correspond-
ing astrophysical weights fast enough to keep up. With the current implementation,
this takes 𝑂 (10) sec/EoS, which is tractable compared to the expected rate of GW
detections of 𝑂 (few)/year.

However, this approach will not work indefinitely. We would be much better off
spending (finite) computational resources in regions of the (infinite dimensional)
vector-space of EoS with significant posterior support. This is one motivation for
sampling from the posterior using a Monte Carlo Markov Chain (MCMC) rather
than direct Monte Carlo sampling. Some authors in the broader GP literature have
investigated implementations of GPs within MCMC schemes. These typically in-
volve evolving a handful of reference points used to model the GP’s mean function
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along with the hyperparameters of the covariance kernel (see, for example, Titsias,
Rattray, and Lawrence [102]). This de facto parametrizes the EoS prior with a
handful of hyperparameters, at which point standard techniques for sampling from
parametric distributions in hierarchical inference can be employed. Other authors
have suggested neural networks as a computationally efficient way to generate EoS
proposal, but many (if not all) of these proposal are also de facto parametric repre-
sentations of the EoS itself or uncertainty in the EoS, which are then sampled with
standard techniques [47, 46, 45, 57, 58].

An alternative method to focus computational efforts in high-likelihood region is to
use the posterior from initial analyses with small catalogs to draw additional EoS
proposals for future (larger) catalogs, similar to simulated annealing [74]. The rate
of detection is likely to be slow enough that new posteriors could be periodically
developed (along with emulators to efficiently draw more samples) without the
need for extensive automation. As long as the noise at the time of each event is
independent, this may be a computationally efficient path forward. However, we
leave exploration of such methods for future work.

4.10 Additional Representations of Current Astrophysical constraints
Here we present additional representations of the constraints on phase transition
phenomenology with current astrophysical data. Similar to Fig. 4.1, Fig. 4.14
shows posteriors for macroscopic observables conditioned on EoSs with either small
(Δ(𝐸/𝑁) ≤ 10 MeV) or large (Δ(𝐸/𝑁) ≥ 100 MeV) phase transitions for masses
between 1.1–2.3 M⊙. In general, we see that there are weaker correlations between
macroscopic properties at low masses (1.4 M⊙) and high masses (2.0 M⊙) for EoSs
with large phase transitions than for EoSs with small phase transitions, even though
the marginal uncertainty for each is approximately the same. Notable exceptions are
that EoS with small Δ(𝐸/𝑁) can support smaller 𝑅1.4 and larger 𝑀TOV than EoS
with large Δ(𝐸/𝑁).

Tables 4.2–4.5 show additional detection statistics for different types of features con-
ditioned on different subsets of the data, analogous to Table 4.1. We report different
combinations of (P) pulsar mass measurements, (G) GW tidal measurements, and
(X) X-ray pulse profiling with NICER. Tables 4.2 and 4.3 report the evidence for
multiple stable branches. Tables 4.4 and 4.5 report the evidence for D 𝐼

𝑀
features.

Note that one can compute additional Bayes factors for different combinations of
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Figure 4.15: An additional example of an EoS with mixed phases (Gibbs construc-
tion) from Han et al. [60], analogous to Fig. 4.3.

the data based on these numbers. For example,

B(𝐺𝑋 |𝑃) = B(𝐺𝑋𝑃)
B(𝑃) . (4.18)

4.11 Additional Examples of Phase Transition Phenomenology
This appendix includes additional examples of phase transition phenomenology
using both EoSs with known microphysical descriptions (Fig. 4.15) as well as
realizations from our nonparametric prior (Figs. 4.16 and 4.17).

Fig. 4.15 shows an EoS with mixed phases, analogous to Fig. 4.3. The more compli-
cated structure in 𝑐𝑠 demonstrates two shortcomings of the new feature introduced
in Sec. 4.2. The feature does not always identify the correct beginning and end of
the phase transition; the microphysical model used to construct this transition has
the mixed phase extend beyond the end of the identified region. The true end of the
phase transition occurs near 𝜌 ∼ 1015 g/cm3 and 𝑀 ∼ 1.5 M⊙. Also, some features
may be difficult to identify as they are overwhelmed by the final collapse to a BH,
which often means there is no local minimum in arctan(D 𝐼

𝑀
). This is the case for

the true end of this transition.

Figs. 4.16 and 4.17 show a few realizations from our nonparametric prior with par-
ticularly complex behavior, such as multiple strong phase transitions leading to three
disconnected stable branches. These demonstrate that our D 𝐼

𝑀
feature identifies and

classifies a broad range of behavior, some of which may not have been anticipated
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with parametric descriptions. For example, Tan et al. [101] and Mroczek et al.
[82] introduced a variety of parametric features in the sound-speed and attempted
to classify which types of features led to observable effects within macroscopic
relations. Our procedure can identify relevant density scales associated with these
behaviors and others without access to the underlying parametric construction.

This flexibility is due to the fact that our nonparametric prior contains support for
multiple different correlation length scales and marginal variances in the speed of
sound, particularly compared to some others in the literature, e.g., Refs. [82, 53,
78]. This is achieved by marginalizing over covariance-kernel hyperparameters
as described in Essick, Landry, and Holz [38] so that the overall prior process
contains𝑂 (150) different GPs, each of which generates different types of correlation
behavior.
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Figure 4.16: Several realizations from our nonparametric prior, each with a single
stable branch but with different numbers of phase transitions.
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Figure 4.17: Additional realizations from our nonparametric prior, each with
multiple stable branches. Typically, we always identify a phase transition associated
with the loss of stability between stable branches, even if the stable branches are
small (bottom row).
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C h a p t e r 5

UNIVERSAL RELATIONS IN LIGHT OF MODEL-AGNOSTIC
EOS DESCRIPTIONS.

[1] Isaac Legred et al. “Assessing equation of state-independent relations for
neutron stars with nonparametric models”. In: Phys. Rev. D 109.2 (2024).
I co-led this project on analyzing the goodness of fit of universal rela-
tions to nonparametric equations of state, along with Oscar Sy-Garcia who
performed a substantial amount of the analyses as a SURF student. This
included development of the project, writing the manuscript, and running
final analyses., p. 023020. doi: 10.1103/PhysRevD.109.023020. arXiv:
2310.10854 [astro-ph.HE].

Abstract
Relations between neutron star properties that do not depend on the nuclear equation
of state offer insights on neutron star physics and have practical applications in data
analysis. Such relations are obtained by fitting to a range of phenomenological or
nuclear physics equation of state models, each of which may have varying degrees of
accuracy. In this study we revisit commonly-used relations and re-assess them with
a very flexible set of phenomenological nonparametric equation of state models that
are based on Gaussian Processes. Our models correspond to two sets: equations of
state which mimic hadronic models, and equations of state with rapidly changing
behavior that resemble phase transitions. We quantify the accuracy of relations under
both sets and discuss their applicability with respect to expected upcoming statistical
uncertainties of astrophysical observations. We further propose a goodness-of-fit
metric which provides an estimate for the systematic error introduced by using
the relation to model a certain equation-of-state set. Overall, the nonparametric
distribution is more poorly fit with existing relations, with the I–Love–Q relations
retaining the highest degree of universality. Fits degrade for relations involving the
tidal deformability, such as the Binary-Love and compactness-Love relations, and
when introducing phase transition phenomenology. For most relations, systematic
errors are comparable to current statistical uncertainties under the nonparametric
equation of state distributions.

https://doi.org/10.1103/PhysRevD.109.023020
https://arxiv.org/abs/2310.10854
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5.1 Introduction
While most neutron star (NS) properties depend sensitively on the unknown equa-
tion of state (EoS) of dense nuclear matter, some properties are interrelated in an
approximate EoS-independent way [87]. The impact of EoS-independent relations
ranges from enhancing our understanding of NS physics [45, 92, 91, 10, 71] to
practical applications in analyses of data. For example, relations between the NS
multiple moments [61, 91, 74, 23] have led to a generalization of the no-hair the-
orem for black holes to the three-hair relations for Newtonian NSs [74], while the
so-called “I–Love–Q” relations [89, 90] have been attributed to the self-similarity
of isodensity contours [92]. On the data analysis side, EoS-independent relations
reduce the number of degrees of freedom [86, 22, 93, 19, 84] and enable consistency
tests [90, 72, 73, 82, 16].

EoS-independent relations may include static or dynamic and macroscopic or mi-
croscopic quantities. One of the earliest proposed such relation is the one between
the (complex) NS modes and their mass and radius, which can be used to translate
gravitational wave (GW) observations from isolated NSs to constraints on the ra-
dius [7, 6, 79, 12, 46]. Additionally, relations including the NS tidal parameters can
simplify analysis of GW data. In general, the signal emitted during the coalescence
of two NSs depends on a list of tidal deformability parameters and the rotational
quadrupole moment of each star. Relations between the different tidal parameters
and the quadrupole moment [85, 86, 89, 90] reduce the number of free parameters to
one per star, typically the so-called dimensionless tidal deformability Λ𝑖, 𝑖 ∈ {1, 2}.
A relation betweenΛ1 andΛ2 (and the binary mass ratio) further reduces the number
of free parameters to just one [88, 22, 1, 63, 27, 13].

EoS-independent relations are typically constructed empirically by fitting a large
number of EoS models, obtained either through phenomenological or theoretical
nuclear models. Their applicability is therefore limited to the nuclear physics
represented in the set of EoSs, while deviations from the relations may be a sign
of new (relevant) physics. For example, an observed deviation from the relation
between the frequency content of the post-merger GW signal from a NS coalescence
and the tidal properties of the pre-merger signal that hold for hadronic matter [9, 76,
10, 14, 33, 49] can signal the presence of quark matter in the merger remnant [11,
56, 82, 16]. The breakdown of universal behavior in a catalog of observations can
further be used to identify outliers that can be attributed to quark matter [21] or
NS-black hole binaries [25].
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Beyond relations breaking down outside their regime of validity, EoS-independent
relations display different degrees of independence even within it, which furthermore
varies across the NS parameter space. The set of EoSs the relation is fitted to
sensitively impacts the degree of EoS-independence. A potential choice of such a
set is EoS candidates from nuclear theory, and corresponds to evaluating the degree
of independence present in existing nuclear models [89, 88, 60]. Nonetheless, the
extent to which current nuclear models cover the entire range of possible behaviors
of matter at high densities is unclear.

More extended sets of EoSs can be obtained by considering phenomenological mod-
els, designed to mimic nuclear theory while maintaining some degree of flexibility
at high densities. Examples of such phenomenological models include piecewise
polytropes [68, 58] and spectral representations [50, 51, 52]. This approach leads
to large sets of EoSs and statistical distributions on the EoS which can further be
conditioned on astrophysical observations. Such studies directly quantify the im-
pact of astrophysical constraints on the degree of EoS-independence compared to
fully agnostic nuclear behavior. For example, Carson et al. [18] considered spectral
EoSs that have been conditioned on GW170817 [4, 3] and found that the degree
of EoS-independence can be improved by more than 50% compared to an agnostic
EoS set. Similar improvements have been reported in [35, 36, 57].

Though more generic than a set of selected nuclear models, parametric EoS rep-
resentations are still limited in flexibility by the functional form of the EoS, which
is usually not determined from first principles. This can lead to strong correla-
tions between the EoS at different densities that are not an outcome of nuclear
insight, but of the arbitrary functional form of the representation [48]. These cor-
relations effectively cause many EoSs in the fitting set to share similar macroscopic
and microscopic features, mimicking or strengthening true EoS-independence [48].
Figure 5.1 shows an example of such emerging EoS-independence in the radius 𝑅1.4

and dimensionless tidal deformability Λ1.4 of a 1.4𝑀⊙ NS, and the pressure at twice
saturation1 𝑝2.0. The 𝑅1.4–Λ1.4 relation is an outcome of the so called C–Love rela-
tion [53, 87] (discussed more later), while a correlation with 𝑝2.0 has been observed
in several theoretical models [45], is analogous to the C–𝛼𝑐 relation described later.
Using the spectral parameterization, perfect knowledge of Λ1.4 would give a 𝑅1.4

uncertainty of ∼ 1 km, consistent with the error in the C–Love relation computed
in [18].2

1We define the saturation density as 2.8 × 1014 g/cm3.
2When computing the compactness (and throughout unless otherwise stated), we use units with
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Figure 5.1: The astrophysically-informed posterior distributions for 𝑅1.4, Λ1.4, and
𝑝2.0 when using nonparametric (blue) and spectral (orange) EoSs. Astrophysical
distributions are conditioned on pulsar mass, mass-radius, and mass-tidal deforma-
bility measurements; see Sec. 5.2. The spectral EoS result shows less variability
in 𝑅1.4 at a fixed value of Λ1.4 than the nonparametric one. This suggests that
the degree of EoS-independence in 𝑅1.4–Λ1.4 is linked to the flexibility of the EoS
model. Similar conclusions hold for 𝑝2.0.
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Figure 5.1 also shows the same relations obtained with a more flexible set of non-
parametric EoSs based on Gaussian Processes [41, 29] that is only minimally in-
formed by nuclear physics. The nonparametric EoSs are drawn from a collection
of Gaussian Processes and explore a wide rage of intra-density correlations lengths
and strengths. As shown in Legred et al. [48], this EoS set is extremely agnostic
and intra-density correlations are only imposed by physical considerations such as
causality and thermodynamic stability. Due to its flexibility, the set also inherently
includes EoSs with phase-transition-like behavior, including nonmonotonic behav-
ior in the speed of sound and multiple stable branches [30]. As expected, under the
nonparametric EoSs, perfect knowledge of Λ1.4 yields an increased uncertainty in
𝑅1.4 of ∼ 2 km, larger than the nominal error of the 𝐶-Love relation.

In this work and motivated by Fig. 5.1, we revisit common EoS-independent relations
and assess them under nonparametric EoSs. Following Ref. [18], we evaluate EoS-
independent relations separately against hadronic EoS sets as well as mixed hadronic
and hybrid EoSs. Because of the difficulty in fitting the relation over an unstable
branch of the 𝑀–𝑅 relation, we only study EoSs with a single stable branch, thus
restricting to weak phase transitions. We also consider EoSs that are only required
to be consistent with the existence of massive pulsar measurements, contrasted with
a set required to be consistent with additional GW and X-ray measurements [47].

With a focus on the applicability of EoS-independent relations, we further revisit
the issue of EoS-independence across the parameter space. In general, relations
are most useful in the regions of parameter space where data are most informative,
since tight constraints on some parameters can be interpreted as constraints on other
parameters. A higher degree of EoS-independence in these regions will therefore
expand their applicability. For example, the relations that link the dimensional
tidal deformabilities of two NSs in a binary to each other are most useful for NS
with masses ≲ 1.7𝑀⊙ as GW observations are largely uninformative about the
tidal properties of more massive NSs [2, 24]. In Sec. 5.2, we propose a statistic
to measure the goodness-of-fit of an EoS-independent relation, by comparing to a
tolerance factor which is chosen based on the application. Fitting via optimization
of this metric allows more control over the precision of the EoS-independent relation
as a function of NS mass.

With the extended EoS set and goodness-of-fit metric in hand, we revisit the follow-
ing relations in Sec. 7.4 :

𝐺 = 𝑐 = 1.
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• I–Love–Q [89, 90], Sec. 5.3: a relation between the (normalized) moment of
inertia 𝐼, the tidal deformability Λ, and the rotational quadrupole moment 𝑄
of a NS. The I–Love–Q relations remain highly universal, likely useful even
with sensitivies more than ten times current GW detectors.

• C–Love [53, 87], Sec. 5.3: a relation between the compactness 𝐶 = 𝑚/𝑅
and the tidal deformability Λ of a NS. Its main applicability is in translating
GW tidal constraints to radii, given the NS mass 𝑚. The C–Love relation
is relatively non-universal; for nonparametric EoS distributions, it leads to
systematic errors of ∼ 30% compared to statistical uncertainties at current
sensitivity. This holds true for EoSs both with and without strong phase
transitions.

• Binary-Love [88], Sec. 5.3: a relation between the dimensionless tidal de-
formabilities of two NSs in a binary Λ1 and Λ2 given the mass ratio 𝑞. Its
main applicability is in reducing the number of parameters in GW analyses on
NS binaries, though its EoS-independence breaks down for EoSs with phase
transitions [78, 18]. The binary-Love relation is similarly non-universal under
the nonparametric EoS distribution with systematic errors ∼ 50% of current
statistical uncertainties. The Binary-Love relation universality is further de-
graded for EoSs with phase transitions.

• 𝑅1.4-Love [63, 27, 93], Sec. 5.3: a relation between the NS radius and the chirp
mass and chirp tidal deformability of a NS binary, essentially combining the
C–Love and Binary-Love relations above. 𝑅1.4-Love likely would introduce
bias before the advent of next-generation detectors, with systematic errors
becoming comparable to statistical uncertainties for a GW170817-like but
O(3 − 5) times louder.

• 𝛼𝑐-C [71], Sec. 5.3: a relation between the EoS stiffness measure 𝛼𝑐 ≡ 𝑝𝑐/𝜖𝑐
where 𝑝𝑐 and 𝜖𝑐 are the central pressure and energy density respectively, and
the compactness. The 𝛼𝑐 − 𝐶 relation is a very poor fit to the nonparametric
mixed distribution with systematic errors greater than or equal to current
statistical uncertainties. The relation is somewhat better fit by the parametric
and hadronic nonparametric distributions.
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5.2 Goodness-Of-Fit and Quantifying EoS-independence
In this section we formalize the discussion of EoS-independent relations by quanti-
fying EoS-independence through a goodness-of-fit metric in Sec. 5.2, introducing a
tolerance factor for the fit in Sec. 5.2, and describing the EoS sets we use in Sec. 5.2.

In general, an individual NS is characterized by an EoS 𝜖 and the NS central density
𝜌𝑐. Given two NS properties 𝐹 (𝜖, 𝜌𝑐) and𝐺 (𝜖, 𝜌𝑐) which are each one-to-one3 with
𝜌𝑐, we define their relation 𝐺 (𝜖, 𝐹 (𝜖, 𝜌𝑐)). Remarkably, for a number of property
pairs the induced function 𝐺 (𝜖, 𝐹 (𝜖, 𝜌𝑐)) is nearly independent of 𝜖 . These are
so-called universal, or EoS-independent relations.

Defining a goodness-of-fit metric
Following [90], we fit an analytic phenomenological approximant to the EoS-
independent relation

�̃� (𝐹;θ) ≈ 𝐺 (•, 𝐹 (•, 𝜌𝑐)) , (5.1)

where • in place of the EoS 𝜖 indicates this should hold regardless of the EoS and
θ are fitting parameters. Given a functional form for �̃� (𝐹;θ) (typically in terms of
simple functions such as polynomials and logarithms) and a particular EoS 𝜖 , we
select θ such that a goodness-of-fit metric is minimized. A least-squares metric is4

𝜒2
𝜖 (θ) ≡

𝑁∑︁
𝑖

[
�̃� (𝐹𝑖;θ) − 𝐺 (𝜖, 𝐹𝑖 (𝜖, 𝜌𝑐,𝑖))

]2

𝜎2
𝑖

, (5.2)

where 𝑖 iterates over individual stellar solutions (i.e., central densities), 𝜎𝑖 is a
tolerance factor for the goodness-of-fit of data point 𝑖, and 𝑁 represents the number
of central densities the relations are evaluated at. In what follows we use 𝑁 = 200
which ensures smooth relations and that 𝜒2/(𝑁−𝑁𝑝), the 𝜒2 per number of degrees
of freedom (with 𝑁𝑝 the number of parameters of the fit), is independent of 𝑁 .

Unless otherwise stated, we fit each relation on a grid of NS central densities. We
build a linear grid for each EoS in the central rest-mass density, 𝜌𝑐, for 1.0𝑀⊙ to
𝑀max, the maximum TOV mass. We use only EoSs with a single stable branch in
the 𝑀 − 𝑅 relation. Both the choice of grid used, and the truncation are inputs and

3If 𝐹 is not one-to-one with 𝜌𝑐 (for example the mass 𝑚(𝜖, 𝜌𝑐) for EoSs with multiple stable
branches and twin stars), then this construction works on each monotonic branch.

4Though this metric is not strictly a 𝜒2 statistic, as there is no statistical interpretation of the
scatter which induces the 𝜒2, we use familiar notation since many conventional intuitions hold. For
instance, 𝜒2/𝑁dof = 1 is a threshold for a good fit, and any value significantly smaller than 1 would
be regarded as overfitting [62]. In our case, we expect the EoS-independent relations to overfit the
“data”, 𝜒2/𝑁dof ≪ 1. A large value would be considered a poor fit.
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represent a de facto choice of relative significance weighting between mass scales,
which may or may not be realistic depending on the true distribution of NS masses
(equivalently, given an EoS, the distribution of central densities). For most EoSs, the
spacing of central density favors higher masses; given the uncertainty in populations
of NSs, we do not attempt to modify this distribution substantially. Implications of
this choice are discussed further in Sec. 9.5.

The tolerance factor 𝜎𝑖 can be freely chosen and, as its name suggests, quantifies
the degree of deviation from EoS-independence we tolerate. Different choices for
𝜎𝑖 will result in different best-fit θ parameters and goodness-of-fit estimates. We
discuss the tolerance factor extensively in the next section.

Beyond a single EoS 𝜖 , we consider a (normalized) distribution on EoSs 𝑃(𝜖),
potentially conditioned on observations. The distribution-dependent goodness-of-
fit is then defined as the distribution average of 𝜒2

𝜖 over 𝑃(𝜖),

𝜒2(θ) ≡
∫

𝜒2
𝜖 (θ)𝑃(𝜖)𝑑𝜖 =

∑︁
𝜖

𝑃𝜖 𝜒
2
𝜖 (θ) , (5.3)

where 𝑃𝜖 is the weight of each EoS in the distribution 𝑃(𝜖). EoSs are sampled for
the Monte Carlo sum by directly sampling an EoS prior set for each distribution;
we use the same prior distributions as [48]. In Eq. (5.3) the fitting parameters θ

are shared among and fitted with all 𝜒2
𝜖 (θ) –this is equivalent to seeking a set of

parameters which are EoS-independent over 𝑃(𝜖). In practice, we sample EoSs
uniformly from the approximate support of 𝑃𝜖 , i.e. {𝜖 |𝑃𝜖 > 𝑃𝑡ℎ} for some threshold
𝑃𝑡ℎ, and weigh each EoS draw by 𝑃𝜖 . This allows us to better resolve the “tails” of
the EoS distribution where 𝜒2

𝜖 may be large. W sample 1000 draws from the given
EoS set in order to approximate the integral, as we found reasonable convergence
of the total 𝜒2 was achieved by this point for all EoS distributions (see Sec. 5.2).

Role of the tolerance factor
Setting 𝜎𝑖 = 1 would be sufficient to uniquely specify a fitting problem for θ if
the goal is simply to obtain a fit. However, in this case, no information about
goodness-of-fit is contained in Eq. (5.3), because rescaling 𝜎𝑖 → 𝛼𝜎𝑖 changes
𝜒2 → 𝜒2/𝛼2; any level of goodness-of-fit could be achieved by rescaling. In fact,
no specific fit corresponds in any sense to the “best fit” possible as a different
(non-constant) 𝜎𝑖 would produce a different fit. This is analogous to a nonlinear
change of variables producing a different fit. We instead select 𝜎𝑖 by considering the
tolerance we have for error in the EoS-independent relation. This results in a 𝜒2(θ)
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that is simultaneously used during the fitting procedure and whose (dimensionless)
numerical value can be interpreted as a goodness-of-fit.

To clarify, we dig further into a common application of EoS-independent relations
in inference, namely the computation of certain NS properties from others without
knowledge of the EoS. The Binary-Love relations [88, 87] facilitate the computation
of the tidal deformability of one NS Λ1 from that of another Λ2 given their mass
ratio 𝑞 [22]. The systematic error in the estimation of Λ1 due to the relation’s error
is 𝛿Λ𝑠𝑦𝑠. Whether this systematic error is tolerable in a GW analysis depends on the
statistical measurement uncertainty 𝛿Λ𝑠𝑡𝑎𝑡 . If 𝛿Λ𝑠𝑦𝑠 ≳ 𝛿Λ𝑠𝑡𝑎𝑡 , then the application
of the relation introduces an uncertainty comparable to the statistical uncertainty,
which is undesirable. If, however, 𝛿Λ𝑠𝑦𝑠 ≪ 𝛿Λ𝑠𝑡𝑎𝑡 , then the relation may be useful
as the statistical uncertainty dominates. This consideration motivates choosing the
tolerance factor 𝜎𝑖 to be the approximate measurability of the quantity of interest. In
doing do, the goodness-of-fit 𝜒2(θ) is a direct check of the relation between 𝛿Λ𝑠𝑦𝑠
and 𝛿Λ𝑠𝑡𝑎𝑡 . Unless otherwise stated, throughout this work we use a fiducial estimate
of 𝛿Λ𝑠𝑡𝑎𝑡 = 210, a constant motivated by the tidal measurement of GW170817
and rescaling the symmetric 90% region to 1-𝜎 [1]. Improvements in detector
sensitivity mean that a GW170817-like event observed today would have a lower
statistical uncertainty; per Eq. (5.2), halving the statistical uncertainty in Λ would
increase the 𝜒2 (i.e., decrease the goodness-of-fit) by a factor of 4.

In certain cases the measurability of NS tidal deformability is a very poor estimate
for the measurability of other NS properties. For example, for higher-mass NSs,
the compactness will likely be better measured by non-GW techniques, such as
X-ray pulse-profile modeling. In such cases, we approximate statistical uncertainty
by assuming that the compactness, 𝐶 (𝑀), can be measured to within 𝛿𝐶 = 0.02,
a constant representing the uncertainty from X-ray observations [15, 69, 70, 54,
55]. See Secs. 5.3 and 5.3 for more details of how we simultaneously incorporate
separate estimates of NS measurability.

Generically, the 𝜒2 value represents how poorly fit the relation is to the EoS distri-
bution. Per Eq. (5.2), 𝜒2

𝜖 represents the square error in the quantity predicted by the
relation relative to the tolerance factor. Given a value for 𝜒2, the typical error in the
underlying variable is

Δ𝐺 ∼ 𝜎(𝐹)
√︃
𝜒2/𝑁dof . (5.4)

Here, 𝜎(𝐹) represents the tolerance factor on the quantity 𝐹 used in evaluating the
fit. This is to be taken as an order of magnitude estimate, and is useful for quickly
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diagnosing the error expected from applying an EoS-independent relation. For
example, if 𝜎(𝐹) represents statistical measurement uncertainty, then a 𝜒2 value of
10−4 indicates that systematic errors in parameters are of order 0.01 = 1% statistical
uncertainties.

An alternative choice for the tolerance factor would be

𝜎(𝐹) = 𝐺 (𝐹) . (5.5)

This corresponds to constant tolerance for the fractional error in the fit. This
tolerance factor is independent of measurement uncertainty, and so the best fit
bears a different interpretation. In many cases a constant relative tolerance may be
preferred, especially when an observable varies over orders of magnitude. We give
an example of a fit where a constant fractional error tolerance gives a seemingly
better fit in Sec. 5.3. The 𝜒2 in this case is a measure of the total fractional deviation
in the relation.

Nonetheless, there are subtleties to interpretation of the 𝜒2 value within the fractional
uncertainty approach. For example, assume we decided to try to identify EoS-
independent relations for 𝑅(𝑀) or Λ(𝑀). Since 𝑅(𝑀) is approximately constant
for a large class of EoSs, we adopt a constant fit:

𝜒2 =
∑︁
𝑖

(𝑅(𝑀𝑖) − �̂�)2

�̂�2
0

, (5.6)

with �̂� the universal predictor and �̂�0 = 12km a crude estimate of �̂�. Since 𝑅(𝑀) ∈
[10, 14] km for the majority of astrophysical EoSs, we would find 𝜒2/𝑁dof ∼
(2/10)2 = 0.04. On the other hand, Λ(𝑀) varies over orders of magnitude,
and Λ1.4 ∈ [200, 800], see Fig. 5.1. Then the goodness-of-fit will average to
𝜒2/𝑁dof ∼ (300/500)2 ∼ 0.36. The radius is relatively EoS-independent by this
metric under a fractional uncertainty approach; this contrasts with the use of mea-
surement uncertainty as the tolerance factor, where both relations would be compa-
rably poor. Therefore, the choice of tolerance factor sensitively impacts what the
resulting goodness-of-fit represents. This is true even when only the fit parameters
are of interest, as those will also depend on the tolerance.

The tolerance factors we use are coarse heuristics for potentially better-motivated
choices. For example, a complete GW simulation study would allow a precise
estimate of 𝜎Λ for a range of binary parameters and detector sensitivities. There
are additional choices for the tolerance factor that we do not investigate, such as
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𝜎Λ = 𝛼𝛿Λ
𝛽
𝑠𝑡𝑎𝑡 , for some (potentially dimensionful) constant 𝛼 and exponent 𝛽.

Additionally, the tolerance factor may be designed to be agnostic to errors of the
fit in certain mass ranges; if for example, sub-solar mass NSs cannot be formed
astrophysically, then it is not necessary that the relation is well fit below 𝑀⊙. This
choice is degenerate, however, with a choice of which NSs the 𝜒2 is marginalized
over; see the discussion in Sec. 9.5.

EoS set
The final ingredient of the EoS-independent relation fits is the EoS set and its
distribution 𝑃(𝜖). Since our goal is to assess EoS-independence for flexible EoS
sets, we use the model-agnostic prior of Ref. [29], constructed to minimize the
impact of nuclear theory input5. EoSs are drawn from multiple Gaussian Processes
sampling a range of covariance kernels (correlation scale and strength) between
different densities. Each EoS is stitched to a low-density representation of the SLy4
EoS [28] at low densities. The final EoS prior predicts NSs with a very wide
range of 𝑅 ∈ (8, 16) km. We condition this set against radio data [8, 26, 32] for the
maximum NS mass, and refer to this as the pulsar-informed set. We also consider an
astrophysically-informed set, obtained in [47] by further conditioning on X-ray [54,
55, 69, 70] and GW [4, 2] data6.

Due to its flexible construction, both the pulsar-informed and the astrophysically-
informed sets contain EoSs with phase transitions, both strong and weak. We
therefore further split each set in EoSs without (referred to as the hadronic set)
and with (referred to as the mixed-composition set) phase transitions. In order to
identify EoSs with phase transitions, we use the moment-of-inertia-based feature
extraction procedure from [30]. This procedure can identify both strong and weak
phase transitions, including phase transitions that do not result in multiple stable
branches or have a large impact on the macroscopic observables. We set a high
threshold for phase transitions, requiring a change in internal energy per particle
of Δ(𝐸/𝑁) ≥ 30MeV; see Ref. [30]. As before, we also only use EoSs with
a single stable branch in the 𝑀–𝑅 relation. Including EoSs with multiple stable
branches would require choices in the construction of the 𝜒2 to weight each branch
and exclude unstable branches, but would likely decrease the goodness-of-fit of the

5Though certain EoS models are used to condition the process, the final EoS distribution depends
only weakly on those EoSs which are used for conditioning; see [41, 29].

6The astrophysical data we use are independent of any choice of the EoS and do not use any
EoS-independent relations. Therefore the inclusion of additional data will only improve the quality
of fits if the data explicitly favor a set of EoSs which are well fit by the relations.
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relations to the mixed composition EoS set.

Finally, for comparison, we repeat the same fits with piecewise-polytropic and
spectral EoSs, using the pulsar-informed and astrophysically-informed distributions
from Ref. [48]. We use a 4-parameter piecewise-polytrope parametrization [68],
with 2 fixed stitching densities, 3 sampled polytropic indices, and one sampled
overall pressure scaling. For the spectral EoS, we use a 4 parameter EoS (i.e.
4 basis functions in the spectral exponent) [50], and the parameter distribution
given by Ref. [83], which reduces the range of parameter space sampled while
significantly improving the fraction of EoS samples which are physically viable. In
both cases, we stitch to a low-parameter representation of the Sly4 EoS, as described
in Ref. [17]. We follow Ref. [17] in allowing the EoS prior to extend up to 𝑐𝑠 ≤ 1.1,
in order to allow an acausal model to represent a potential causal model which is not
representable by the parametrization. In Legred et al. [48], this choice was found
to affect the distribution on the piecewise-polytrope EoS; it may additionally affect
EoS-independence by allowing additional (unphysical) variation in the EoS.

5.3 EoS-independent relations
We fit a set of proposed EoS-independent relations to different EoS distributions
and evaluate their universality. Throughout, unless otherwise stated, we use a fixed
tolerance factor value of 𝜎Λ = 210.7 When Λ is not predicted by the fit but it is
the independent variable of the relation, we propagate the uncertainty through the
relation to the dependent quantity. For example

𝜎𝐼 (Λ) =
𝑑𝐼 (Λ, θ 𝑓 )

𝑑Λ

���
Λ
𝜎Λ , (5.7)

where θ 𝑓 are fiducial parameters of the fit, and 𝐼 is the EoS-independent predictor
of 𝐼 from Λ which depends on Λ via the derivative of the predictor. When nei-
ther the independent or dependent variable are Λ, we use a different strategy; see
Secs. 5.3 and 5.3. For relations where Λ is indeed the dependent quantity and the
tolerance factor is constant, this strategy results in optimization problems which
are mathematically identical to previous work, e.g. [18]. Crucially though, now
the goodness-of-fit statistic can be interpreted as a measure of EoS-independence
relative to observations.

In this section we show plots for the nonparametric-mixed and spectral astrophysically-
informed EoS distributions. We display additional plots for the piecewise-polytrope

7Simulations suggest that measurement uncertainty in Λ is approximately independent of the
value of Λ (equivalently, the NS mass) and inversely proportional to the signal strength [81].
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and hadronic-nonparametric EoS distributions as well as fit parameters in Ap-
pendix 5.6.

I–Love–Q
We begin with the I–Love–Q relations [90] for the dimensionless quadrupole mo-
ment 𝑄, moment of inertia 𝐼, and tidal deformability Λ of a NS. The existence of
such relations, at least approximately, may not be surprising. In Newtonian grav-
ity, for example, the quadrupole moment can be computed from the moment of
inertia exactly. In GR, however, the definitions of these quantites do not coincide,
which is to say the relationship of angular momentum, angular velocity, and the
second multipole of the gravitational field is nontrivial for slowly-spinning compact
objects [37].

We use a slightly modified form for the I–Love–Q relations compared to Ref. [90],
which was shown by Ref. [18] to produce better behavior in the Newtonian limit:

𝐼 (Λ; 𝑎, 𝑏, 𝐾𝑦𝑥) = 𝐾𝑦𝑥Λ𝛼
1 + ∑3

𝑖=1 𝑎𝑖Λ
−𝑖/5

1 + ∑3
𝑖=1 𝑏𝑖Λ

−𝑖/5
, (5.8)

�̂�(Λ; 𝑎, 𝑏, 𝐾𝑦𝑥) = 𝐾𝑦𝑥Λ𝛼
1 + ∑3

𝑖=1 𝑎𝑖Λ
−𝑖/5

1 + ∑3
𝑖=1 𝑏𝑖Λ

−𝑖/5
, (5.9)

𝐼 (𝑄; 𝑎, 𝑏, 𝐾𝑦𝑥) = 𝐾𝑦𝑥𝑄𝛼
1 + ∑3

𝑖=1 𝑎𝑖𝑄
−𝑖/5

1 + ∑3
𝑖=1 𝑏𝑖𝑄

−𝑖/5
. (5.10)

Here, 𝑎𝑖, 𝑏𝑖, and 𝐾𝑦𝑥 are free parameters which are fit. These forms ensure that
when 𝑎𝑖 and 𝑏𝑖 are zero, these relations limit to the Newtonian form. We display
best-fit parameters in Table 5.6.

We solve the TOV equations in the slow-rotation limit up to second order [37]
to compute the dimensionless moment of inertia, quadrupole moment, and tidal
deformability8. We then fit the parameters of each relation using a nonlinear least
squares algorithm. We display the loss, i.e., best fit 𝜒2/𝑁dof value, of each fit for
each EoS distribution in Table 5.1. In this context 𝑁dof represents the number of
degrees of freedom in the data, which is the number of points fit (200) minus the
number of fitted parameters. The loss measures the residuals in the fit relative to
𝜎Λ = 210, as described in Sec. 5.2.

The I–Love–Q relations hold independent of EoS distribution to very high precision,
with loss values less than 3 × 10−3 for almost all relations. In particular 𝐼 (𝑄), with

8We thank Victor Guedes for the use of code to solve the TOV equations in the slow-rotation
limit up to second order.
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𝜒2/𝑁dof

EoS Dist.
Relation

𝐼 (Λ) 𝐼 (𝑄) 𝑄(Λ)

GP-hadronic (astro) 4.6 × 10−5 2.9 × 10−7 6.9 × 10−4

GP-hadronic (psr) 5.3 × 10−4 6.2 × 10−7 8.9 × 10−3

GP-mixed (astro) 1.5 × 10−4 5.0 × 10−7 2.0 × 10−3

GP-mixed (psr) 2.6 × 10−3 7.9 × 10−7 3.9 × 10−2

SP (astro) 5.9 × 10−7 8.4 × 10−8 3.3 × 10−5

SP (psr) 3.1 × 10−6 1.2 × 10−7 1.0 × 10−4

PP (astro) 4.2 × 10−6 2.7 × 10−7 2.1 × 10−4

PP (psr) 4.1 × 10−5 1.3 × 10−6 4.2 × 10−3

Table 5.1: Table 𝜒2/𝑁dof for the I–Love–Q relations for several EoS distribu-
tions. Here GP represents the nonparametric (Gaussian Process) distributions, SP
represents the spectral distributions, and PP represents the piecewise-polytrope dis-
tributions. We show results for each of the pulsar-informed distributions (psr), and
fully astrophysically-informed distributions (astro).

5

10

15

20

25

30

I

spectral (astro)

101 102 103 104

Λ

0.0

0.1

0.2

|∆
I
|

5

10

15

20

25

30

I

spectral (astro)

5 10 15
Q

0.0

0.1

0.2

|∆
I
|

2

4

6

8

10

12

14

Q

spectral (astro)

101 102 103 104

Λ

0.00

0.05

0.10

|∆
Q
|

Figure 5.3: The same as Fig. 5.2 but with the spectral EoS distribution conditioned
on all astrophysical data. We use identical axes ranges between the two figures.
Worst-case residuals are of order 10 times smaller than the nonparametric mixed-
composition distribution seen in Fig. 5.2.
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losses of ≲ 10−5 indicates that even with O(10) improvement in GW detector sensi-
tivity, the systematic error of the relation will still be at sub-percent level compared
to statistical uncertainties. Nonetheless, the parametric EoS distributions display
moderately better EoS-independence than the corresponding nonparametric distri-
butions, typically by a factor of 3-10. Similarly, the hadronic nonparametric distri-
bution is typically a factor of 2-3 better than the corresponding mixed-composition
distributions. In all cases, the fits to pulsar-informed distributions show higher losses
than the ones conditioned on all astrophysical data. For the spectral distributions,
the difference is marginal, about a factor of 2, whereas for the nonparametric mixed
distribution the difference is almost a factor of 20 for the relations involving Λ.

We display the fits for the nonparametric mixed-composition, and spectral EoS
distributions in Figs. 5.2 and 5.3 respectively; again each distribution conditioned
on all astrophysical data. For other distributions, see Appendix 5.6. The higher
degree of EoS-independence in the spectral fit is apparent in the residuals, which
are several times smaller than the nonparametric residuals.

The 𝐼–𝑄 relation shows the smallest loss in EoS-independence (by a factor of
10) when moving from the spectral pulsar-informed distribution to the equivalent
nonparametric distribution. This indicates that the 𝐼–𝑄 relation is fundamentally
more EoS-independent than relations involving Λ. This is potentially related to the
discussion of emergent symmetries in Ref. [92], which demonstrated that the 𝐼–𝑄
relation is indeed EoS-independent under the elliptical isodensity approximation,
which is nearly true in astrophysically relevant NSs [92].

Binary-Love
The Binary-Love relation allows us to estimate the tidal deformability of one NS in a
binary given its NS companion’s deformability. The expression is given in terms of
the symmetric deformabilityΛ𝑠 ≡ (Λ1+Λ2)/2 and the antisymmetric deformability,
Λ𝑎 = (Λ2 − Λ1)/2 where Λ1 and Λ2 are the deformabilities of two NSs [88]:

Λ𝑎 (Λ𝑠, 𝑞; 𝑏, 𝑐) = 𝐹𝑛 (𝑞)Λ𝑠
1 + ∑3

𝑖=1
∑2
𝑗=1 𝑞

𝑗𝑏𝑖 𝑗Λ
−1/5
𝑠

1 + ∑3
𝑖=1

∑2
𝑗=1 𝑞

𝑗𝑐𝑖 𝑗Λ
−1/5
𝑠

. (5.11)

Here 𝑏𝑖 𝑗 , and 𝑐𝑖 𝑗 are parameters which are fit. For the Binary-Love relation, we use
a NS distribution truncated at 0.8𝑀⊙ rather than 1.0𝑀⊙, this is necessary to allow
the relationship to be evaluated over a wider range of mass ratios 𝑞. Fit coefficients
for the astrophysically-informed EoS sets are given in Table 5.7. Here, and in the
rest of the paper, we solve the TOV equations only to first order in the small spin
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parameter using the approach from [42]. We display the fit losses in Table 5.2, and
additionally plot them in Fig. 5.4.

The losses are noticeably higher than any of the I–Love–Q relations for correspond-
ing EoS sets, indicating the relation is less EoS-independent. The use of lower mass
cutoff inevitably leads to an increase in loss for the relation, as low-mass NSs have
larger tidal deformabilities; however, raising the mass cutoff to 𝑀min = 0.9 lowers
losses by only a factor of ∼ 2 − 3. This indicates that the fits are indeed worse than
the I–Love–Q relations.

Nonetheless, the spectral EoS distribution fits are ∼50 times better than the non-
parametric and piecewise-polytrope distributions. The better fit to the spectral
distribution might be due to large correlations between density scales. Such correla-
tions may reduce the variation in Λ across mass scales, making the relation between
Λ(𝑚1) and Λ(𝑚2) more EoS-independent. The astrophysically-informed fits show
improvement over pulsar-informed fits, with typical loss values 3-5 times better.
The piecewise polytrope is by far the most improved distribution upon inclusion
of more data, with losses decreasing by factors of more than 10. In all cases the
hadronic distributions give improved fits relative to the mixed composition distribu-
tions, typically by a factor of 10 in loss. For the worst-fit case, the nonparametric
pulsar-informed mixed distribution, the fit quality (𝜒2/𝑁dof = 2.6 × 10−1) may be
poor enough to pose challenges for current-generation GW detectors, as it indicates
systematic errors of order 60% in the predicted value of Λ𝑎 relative to statistical
uncertainties. Figure 5.5 shows nonparametric mixed and spectral fits relative to
sampled EoSs. The larger variation of the nonparametric EoS set relative to the
spectral set is apparent.

The large differences in fit quality for nonparametric distribution with mixed compo-
sition and hadronic composition are consistent with observations of the Binary-Love
relation (as presented here) failing to describe effectively EoSs with phase transi-
tions [18, 78]. This could potentially lead to analyses using Binary-Love relations
artificially downranking EoSs which support hybrid stars. This effect will likely be
smaller than an e-fold in likelihood for any individual event, but such effects may
multiply in a hierarchical analysis, leading to large errors after many events.

Changing fit quality with the tolerance factor

The deteriorating quality of the fit at low values of Λ𝑠 is apparent in Fig. 5.5,
left panel. This is because assuming a constant tolerance factor for Λ upweights
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𝜒2/𝑁dof

EoS Dist.
Relation

𝑞 = 0.55 𝑞 = 0.75 𝑞 = 0.9

GP-hadronic (astro) 6.6 × 10−3 1.8 × 10−2 9.1 × 10−3

GP-hadronic (psr) 2.7 × 10−2 1.0 × 10−1 8.5 × 10−2

GP-mixed (astro) 1.0 × 10−2 5.2 × 10−2 4.9 × 10−2

GP-mixed (psr) 5.5 × 10−2 2.6 × 10−1 2.2 × 10−1

SP (astro) 3.3 × 10−3 6.5 × 10−3 2.0 × 10−3

SP (psr) 6.7 × 10−3 1.0 × 10−2 2.9 × 10−3

PP (astro) 3.5 × 10−3 1.6 × 10−2 1.1 × 10−2

PP (psr) 6.2 × 10−2 2.2 × 10−1 9.6 × 10−2

Table 5.2: Table 𝜒2/𝑁dof for the Binary-Love relations for several distributions on
the EoS and binary mass ratios.

q = .55 q = .75 q = .9
Mass Ratio
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ss
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SP(psr)

GP-mixed(astro)

GP-mixed(psr)

GP-hadronic(astro)

GP-hadronic(psr)

Figure 5.4: The costs shown in Table 5.2. The spectral costs are in general the
lowest, especially for more equal-mass binaries.
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Figure 5.5: Similar to Fig. 5.2. Left: The Binary-Love relation fitted, along with
all EoSs for the nonparametric EoS distribution with mixed composition when
conditioning on all astrophysical data. We plot each fit for three different mass
ratios, 𝑞 = 0.55, 𝑞 = 0.75, and 𝑞 = 0.9. Right: The same for the spectral EoS
distribution.

relative errors where Λ is large, i.e. the regime where small relative differences
lead to very large 𝜒2 values. It is possible to use the tolerance factor to improve
the fit quality at low Λ. Instead of choosing an observational value for the tolerance
factor 𝜎(Λ𝑠), we set 𝜎(Λ𝑠) = Λ𝑎 (Λ𝑠). Such a fit may be useful for tidal analyses
of binaries containing a massive NS, as it gives constant relative uncertainty and
therefore tolerates only small errors in Λ𝑎 when Λ𝑎 itself is small. We plot the fit
achieved in Fig. 5.6, scaling the uncertainty by a factor of 0.5 for display purposes.
We additionally plot the region encompassed by ±𝜎(Λ𝑠) and shade the region in
between for the 𝑞 = 0.9 fit. This demonstrates the role of tolerance factors and the
flexibility they offer.

C–Love
Another established EoS-independent relation relates compactness to tidal deforma-
bility [53, 90]. This relation is useful for determining the radii of NS with measured



192

101

102

103

104

Λ
a

q = 0.90

101 102 103 104

Λs

100

101

102

|∆
Λ
a
|

Figure 5.6: The Binary-Love fit to the mixed nonparametric, astrophysically-
informed EoS distribution when applying a modified tolerance factor that favors
better fits at low-Λ values. The best fit line is in dashed black, plotted over draws
from the nonparametric distribution in blue. For comparison, we plot in dashed red
the best-fit line for the uniform tolerance factor fit to the same distribution, the same
as Fig. 5.5. We shade the 𝜎(Λ𝑠)/2 area away from best fit 𝑞 = 0.9 curve in pink for
the uniform tolerance factor, and in gray for the modified, constant relative tolerance
factor. The fit requires better agreement at low Λ𝑎 in order to achieve low cost, and
therefore it appears better by eye than the fit in Fig. 5.5, especially on a log-log plot.
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tidal deformabilities and masses from GW observations. Such a relation is plausible:
radius and tidal deformability are linked by definition

Λ =
2
3
𝑘2(𝑚) (𝑅/𝑚)5 =

2
3
𝑘2𝐶

−5 , (5.12)

though a truly EoS-independent description would require 𝑘2, the tidal Love number,
to be either independent of the EoS or expressible only as a function of 𝐶.

The relation is given as follows, again using a fitting form from Ref. [18]

𝐶 = 𝐾𝐶Λ
1 + ∑3

𝑖=1 𝑎𝑖Λ
−𝑖/5

1 + ∑3
𝑖=1 𝑏𝑖Λ

−𝑖/5
. (5.13)

Similar to the I-Love-Q case, 𝑎𝑖, 𝑏𝑖, and 𝐾𝐶Λ are parameters to be fit. As before,
we propagate a constant Λ uncertainty to a 𝐶 uncertainty. However, for high-
compactness stars, GWs are expected to be weakly informative probe, leading to
poor fits for the high-compactness part of the relation. Moreover, X-ray probes
of compactness can provide complementary constraints [69, 54]. We therefore
hybridize two tolerance factors:

𝜎−2
𝐶 = 𝜎−2

𝐶,x−ray + 𝜎
−2
𝐶,GW . (5.14)

The X-ray uncertainty 𝜎−2
𝐶,x−ray is negligible for𝐶 ≲ 0.16, while the GW uncertainty

𝜎𝐶,GW is negligible for 𝐶 ≳ 0.2. This corresponds to a transition from X-ray to GW
data dominating constraints near Λ = 200 − 500. The total tolerance factor is not
representative of any particular measurement, but rather provides a holistic picture
of the statistical uncertainty.

Results are shown in Table 5.3. We find the fit qualities to be ∼ 100 times poorer
than for the I–Love–Q relations, even for the parametric distributions. Contrary
to the Binary-Love case, the C–Love goodness-of-fit is relatively independent of
conditioning on additional data, with the loss changing by ≲ 2 in all cases when
additional astrophysical data are included. Also, for the nonparametric EoSs, the
C–Love relation is not appreciably better fit to the hadronic distribution than to the
mixed distribution. Similarly to the Binary-Love relations, the mixed-composition
nonparametric distribution conditioned only on heavy pulsar mass measurements
shows a loss of 3.6 × 10−1, indicating systematic errors are already comparable to
statistical uncertainties. The same holds true for the piecewise-polytrope distribu-
tion, though the piecewise-polytrope loss decreases by almost a factor of 10 upon the
introduction of additional astrophysical data, while the nonparametric distribution
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𝜒2/𝑁dof

EoS Dist.
Relation

𝐶 (Λ)

GP-hadronic (astro) 7.2 × 10−2

GP-hadronic (psr) 2.2 × 10−1

GP-mixed (astro) 1.2 × 10−1

GP-mixed (psr) 3.6 × 10−1

SP (astro) 1.6 × 10−2

SP (psr) 2.6 × 10−2

PP (astro) 6.4 × 10−2

PP (psr) 4.7 × 10−1

Table 5.3: Table 𝜒2/𝑁dof for the C–Love relations for several distributions on the
EoS.

decreases by only a factor of 3. This is consistent with the discussion in Sec. 5.3, and
indicates that the large variance in the piecewise-polytrope distribution that leads to
large losses is not consistent with current astrophsyical data from x-ray pulsars and
gravitational waves.

Finally, we also display the fits to the nonparametric mixed-composition and spectral
EoS distributions conditioned on all astrophysical data in Fig. 5.7. The nonparamet-
ric EoSs have residuals larger by about a factor of 2, as in the previous examples.
Fit parameters are given in Table 5.8.

The relatively large losses in the𝐶–Love relation are consistent with the existence of
doppelgangers [64, 65]: EoSs with similar Λ across the parameter space, ΔΛ < 30,
but different 𝑅, Δ𝑅 up to 0.5 km. This phenomenon is due to variability in the EoS
at densities below 2𝜌nuc; the nonparametric EoS prior contains a wide range of low-
density behaviors and thus produces EoSs with similar features. Approximating the
nonparametric EoS distribution with this relation may result in errors in compactness
Δ𝐶 ∼ 0.02 , although typical errors are Δ𝐶 ≲ 0.01. Choosing a fiducial NS radius
of 10.5 km, and a fiducial mass of 1.4𝑀⊙, this error can be translated to maximal
radius uncertainty of ∼ 1km, with typical errors half that, in line with Refs. [64,
65]. The presence of these features is additionally consistent with Fig. 5.1; the
nonparametric EoS distribution shows a less EoS-independent relations between 𝑅
and Λ. This indicates that independent radius and tidal deformability measurements
will be required in order to effectively constrain the EoS at intermediate (∼ 1−2𝜌nuc)
densities.
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Figure 5.7: Left: The C–Love relation fitted along sampled EoSs for the nonparamet-
ric EoS distribution with mixed composition when conditioning on all astrophysical
data. Right: The same for the spectral parametrization. Relative errors are larger for
the C–Love relation than for the I–Love–Q relation, and the nonparametric mixed
distribution shows greater variability than the spectral distribution.

𝑅1.4–Λ̃
An additional relation between NS tidal properties and the radius has been proposed
by Refs. [27, 63, 93]. The relation leverages the relative insensitivity of Λ̃, the leading
order tidal parameter in the post-Newtonian expansion of the GW phase [31, 81] as
a function of 𝑞, and the relation given in Eq. (5.12): Λ̃(𝑅1.4,M𝑐). That is, we write
the tidal deformability as a EoS-independent function of typical star radius and the
chirp mass, M𝑐 ≡ (𝑚1𝑚2)3/5/(𝑚1 + 𝑚2)1/5, of the binary.

The relation is given, following Ref. [93], by

𝑎

Λ̃

(
𝑅1.4
M𝑐

)6
= 1 . (5.15)

For it to be useful, it should hold for some (perhaps narrow) range of mass ratios,
chirp masses, and for a wide range of EoSs for some constant 𝑎. In practice, the
relation is used to infer 𝑅1.4 so we use this to define the uncertainty in this case
(unlike all other examples), we can no longer only propagate uncertainty from Λ

measurements because the chirp mass is also uncertain. We assume a fiducial
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uncertainty of Δ𝑅1.4 = 1.0 km, which represents a ∼ ±8% measurement of the
radius of a NS and use a typical 𝑅1.4 value of 12 km; we select a fiducial grid of
M𝑐 for each EoS, induced by requiring both components to be below 𝑀max and
above 1.05𝑀⊙. We find that additionally by fixing the chirp mass, the loss of the fit
may decrease by a factor of 5 for the spectral distribution, but by only a factor of 2
for the nonparametric distribution, and a factor of 1.5 for the piecewise-polytropic
distribution. The 𝜒2 in this case is then

𝜒2(𝑎) =
∑︁
𝑖

∑︁
𝑗

𝑃(𝜖𝑖)

(
1
𝑎
Λ̃

1/6
(𝑖) M

( 𝑗)
𝑐 − 𝑅(𝑖)

1.4

)2

Δ𝑅2
1.4

; (5.16)

where 𝑅(𝑖)
1.4 depends on the EoS(𝜖𝑖), and Λ̃(𝑖, 𝑗) depends on the EoS and the binary

parameters, but 𝑅1.4, the fiducial radius value, is independent of both EoS and
binary parameters. In this case the optimal solution can be obtained analytically by
differentiating the cost with respect to 1/𝑎. The loss is then given by 𝜒2(𝑎∗), with
𝑎∗ the optimal solution, as shown in Table 5.4. Fit parameters are given in Table 5.9.

𝜒2/𝑁dof

EoS Dist.
Relation

𝑅1.4–Λ̃

GP-hadronic (astro) 1.2 × 10−1

GP-hadronic (psr) 1.3 × 10−1

GP-mixed (astro) 1.4 × 10−1

GP-mixed (psr) 1.7 × 10−1

SP (astro) 2.5 × 10−2

SP (psr) 1.8 × 10−2

PP (astro) 7.7 × 10−2

PP (psr) 1.4 × 10−1

Table 5.4: Table 𝜒2/𝑁dof for the 𝑅1.4 − Λ̃ relations for several distributions on the
EoS.

The spectral EoS distributions again show greater levels of EoS-independence than
the nonparametric distribution, indicating a tighter relationship between 𝑅1.4 and Λ

in the spectral model, consistent with Fig. 5.1. However, fits are typically poorer
relative to the I–Love–Q relations and more consistent with the Binary-Love rela-
tions. Similar to the Binary-Love case, the nonparametric and piecewise-polytrope,
pulsar-informed distributions show nearly identical loss, ∼ 1.3 − 1.7 × 10−1. The
mixed composition distribution shows marginally worse fits, with losses about 1.3
times worse for the pulsar-informed distributions. When conditioning on additional
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astrophysical data, the piecewise-polytrope distribution is better fit with the relation,
improving by a factor of 2, while the nonparametric distributions improve by less
than 25%. This distinction is likely due to relatively strong correlations between
∼ 𝜌nuc and higher densities in the piecewise-polytrope distribution, which are absent
in the nonparametric EoS distribution. See, e.g., Fig. 5 of [48]. These correlations
cause astrophysical measurements to be highly informative at and below nuclear
densities in the piecewise-polytrope case, and therefore likely rule out many of the
configurations which lead to “doppleganger”-like behavior [64, 65]. This leads to
less variation in the relation between 𝑅 and Λ and therefore improves the quality
of the fit. By contrast, there is still a range of low-density behavior within the
nonparametric posterior [48], which likely increases the range of behaviors seen in
the Λ − 𝑅 relations of nonparametric EoSs. This variability would be associated
with a lower degree of EoS-independence in the 𝑅1.4–Λ̃ relation.

𝛼𝑐–𝐶
A EoS-independent relation between 𝛼𝑐 ≡ 𝑝𝑐/𝜖𝑐 and compactness 𝐶 was proposed
by Ref. [71]. The quantity 𝛼𝑐 is most sensitive to the EoS only at the highest
densities in a star, while the compactness depends on the all densities in the star.
Therefore we would expect EoS parametrizations which impose strong inter-density
correlations to be most consistent with the relation. The expression to be fit is [71]

ln(𝛼𝑐) =
5∑︁
𝑗=0
𝑎 𝑗 ln(𝐶)5 . (5.17)

The parameters to be fit are 𝑎 𝑗 . We define a tolerance factor for this relation by
propagating the uncertainty in Λ through the C–Love relation, and then through the
𝛼𝑐–𝐶 relation, using fiducial parameters for the C–Love relation given by [18] and
for the 𝛼𝑐–𝐶 relation given by [71]. In Fig. 5.8 we display the fit and residuals
of this relation to our nonparametric, mixed composition, astrophysically-informed
EoS distribution, and to the corresponding astrophysically-informed spectral EoS
distribution. Fit coefficients are given in Table 5.10.

We show in Table 5.5 the losses for this relation for all of the distributions studied.
This relation, like all others studied, shows higher losses than the I–Love–Q relations.
Also similar to other relations, the nonparametric distributions show higher losses
than the parametric distributions, typically by orders of magnitude. Likewise the
hadronic nonparametric distributions show improvements in loss compared to the
mixed distributions, though effects are less than an order of magnitude.
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Figure 5.8: Similar to Fig. 5.2 but for the 𝛼𝑐–𝐶 relation. Left: the relations between
𝛼𝑐 and 𝐶 for the nonparametric EoS model with mixed composition conditioned on
all astrophysical data. Right: the same for the spectral parametrization, conditioned
on all astrophysical data.

𝜒2/𝑁dof

EoS Dist.
Relation

𝛼𝑐 (𝐶)

GP-hadronic (astro) 2.7 × 10−1

GP-hadronic (psr) 1.8 × 100

GP-mixed (astro) 1.4 × 100

GP-mixed (psr) 5.8 × 100

SP (astro) 2.9 × 10−2

SP (psr) 7.2 × 10−2

PP (astro) 1.5 × 10−1

PP (psr) 2.9 × 10−1

Table 5.5: Table 𝜒2/𝑁dof for the 𝛼𝑐−𝐶 relations for several distributions on the EoS.
The quality of the fit decreases for all distributions except the piecewise-polytrope
upon incorporating more astrophysical data, unlike the bulk of all the relations we
study.

In contrast to the other relations, however, the 𝛼𝑐–𝐶 relations show losses greater
than one for the nonparametric EoS distributions. This indicates that systematic
errors are likely greater than statistical uncertainties for this relation. Additionally
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the large errors for the piecewise-polytrope and spectral distributions relative to
other relations demonstrate that, even for these distributions, the EoS independence
is questionable. The tolerance factor we use is conservative, though removing the
component which models X-ray mass-radius measurability still gives loss values
greater than one, which indicates this relation very poorly models the nonparametric
EoS distributions even for just the purposes of GW observations.

The appearance of EoS independence in, e.g., the spectral model, even though it
is weak, is likely due to model-dependent correlations. Under the spectral distri-
bution, strong correlations appear between density scales which can lead to, e.g.,
the compactness (a function of the entire matter profile of the star) being corre-
lated with the central pressure-energy density. These correlations are not present
for the nonparametric EoS distributions, and are present to a weaker extent in the
piecewise-polytropic EoS distributions.

5.4 Discussion
In this paper, we tested the EoS-independence of relations between NS properties
under multiple EoS models, including parametric and nonparametric distributions.
In particular, we used a nonparametric EoS distribution, and evaluated the goodness-
of-fit of the relations both to subsets mimicking hadronic EoSs or mixed-composition
EoSs. We found that effectively all relations are better fit by parametric models.
Additionally within the nonparametric distributions, relations are better satisfied by
EoSs which do not show signs of phase transitions.

The I–Love–Q relation is qualitatively better than other proposed relations, with
typical loss values of 10−3 or below. In particular, the 𝐼–𝑄 relation is very well fit
by all EoS distributions. This could be expected based on Ref. [92], which indicated
that the 𝐼–𝑄 relation should indeed be mostly EoS independent due to the near
self-similarity of isodensity contours and near EoS independence of the elliptcity
profile of NSs. In fact, the best-fit relations we studied are 𝐼–𝑄 relations under
the spectral distributions, with prediction errors of |Δ𝐼 |/𝐼 ∼ |Δ𝑄 |/𝑄 ∼ 0.001, in
line with Refs. [18, 90]. The piecewise-polytrope and nonparametric distributions
are worse fit, especially for relations involving Λ. Nonetheless even the worst-fit
relation, 𝑄(Λ), still has prediction errors at percent level (Δ𝑄/𝑄 ≲ 0.1). For the
piecewise-polytrope model, this is qualitatively similar to the findings of Ref. [13].
Systematic errors of ∼ 1 − 10% are comparable to systematic errors from many
other factors, such as detector calibration [75] and waveform modeling [40, 34, 38,
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20, 67].

At a comparable precision to the errors presented here, the quality of numerical
solutions to the TOV equations may become important for stars containing sharp
phase transitions [77]. Because the speed of sound of Gaussian process draws is
analytically greater than zero, we are not subject to this concern, we do not have
truly sharp transitions, and therefore standard techniques for computing the tidal
Love numbers is sufficient. Nonetheless, improved accuracy in TOV solutions will
likely be important in future analyses with much improved detector sensitivities.

In contrast, the other relations involving tidal deformability show worse fits, espe-
cially among nonparametric EoSs not informed by all astrophysical measurements.
All of the C–Love, Binary-Love, and 𝑅1.4–Λ̃ relations show losses of order 10−1

or more for the mixed-composition nonparametric EoS distribution. This indicates
systematic errors from these relations are already of order the statistical uncertain-
ties. All relations, though, do improve with the inclusion of additional astrophysical
data, which indicates that data have ruled out some EoS candidates inconsistent with
the relations posed.

In fitting the Binary-Love relation, the inclusion of phase transition EoSs appreciably
worsens the fit to the nonparametric EoS distribution, increasing losses by a factor
of 10 in the astrophysically-informed case. This is consistent with Ref. [18] which
found that hybrid EoSs are poorly modeled with a Binary-Love relation. In particular,
Carson et al. [18] found that hybrid EoSs would likely have residuals of order
Λ𝑎 ∼ 50 at Λ𝑠 ∼ 100, which is consistent with the worst-case residuals we find in
Fig. 5.5. However, the mixed-composition distributions are not universally worse-fit
among relations, the C–Love fit sees comparable losses among the two distributions,
indicating this relation is essentially insensitive to the presence of a phase transition.

On the other hand, the 𝛼𝑐–𝐶 relation is the only relation we studied with loss
values greater than 1 for the nonparametric EoS distribution. A similar near total-
loss of universality was observed for modes in hybrid stars [66], which could be
a useful target for future work. The loss values for the nonparametric distribution
are almost 100 times worse for the nonparametric distributions than for the spectral
distributions, indicating that modeling systematics are likely responsible for the
appearance of EoS independence in this relation. Nonetheless, the improvement of
EoS independence in the hadronic nonparametric case, especially upon the inclusion
of additional astrophysical data, may indicate that this relation does hold universally
for certain classes of EoSs (e.g. hadronic EoSs), under certain assumptions (such as
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astrophysically reasonable compactness-mass-radii) relations. For this reason, even
relations which are not truly EoS independent may still be useful, depending on the
use cases intended.

The goodness-of-fit improvement seen when using parametric models rather than
nonparametric models is not surprising. The parametric models have fixed func-
tional forms which forces consistency across EoS samples within each of these sets.
Contrarily, the nonparametric EoS distribution produces EoSs with no fixed func-
tional form and therefore no guarantee of displaying any particular phenomenology.
Therefore, we expect a much larger variety of EoS behaviors from the nonparametric
distribution compared to the parametric distributions.

These results are all dependent on the choice of tolerance factor; it is difficult to
chose a completely realistic representation when many different potential sources
of NS measurements exist. Nonetheless, certain conclusions, such as the relatively
poor fits to the nonparametric mixed distribution relative to the spectral distribu-
tion, are independent of choice of tolerance factor. Additionally the distribution
of points (NSs) that the relations are evaluated with cannot be prescribed univer-
sally. A potentially more physical choice that uniform-in-central-density would be
a distribution which is consistent with the known population of NS sources:

𝜒2 =

∫
𝑃(𝜖)𝜋(𝑚)𝜒2(𝐺; 𝐹, 𝜖)𝑑𝑚𝑑𝜖, (5.18)

where 𝜋(𝑚) is the distribution of NS masses, and 𝐹 is a generic NS property which
serves as the independent variable for a relation and 𝐺 is the dependent variable of
the relation. A mapping from 𝐹 (𝑚), 𝐺 (𝑚) must be chosen in the case that EoSs
with multiple stable branches in the 𝑀–𝑅 relation are used. Then the loss would
be equal to the expected failure of the EoS-independent relation to correctly model
the next NS source detected. However, the population of NSs observable via GWs
is still poorly known [5, 43]. Mathematically, such modifications to the analysis
are equivalent to changes to the tolerance factor, though they have different physical
interpretation.

It is important to recognize the sensitivity of the loss to choices such as the distri-
bution of NSs used in evaluating each EoS 𝜒2 and in the tolerance factor chosen
for each NS. As seen in, e.g., Fig. 5.5, the highest 𝜒2 contributions appear at high
Λ values for relations involving Λ, equivalent to larger residuals there (under the
constant uncertainty model). There may not exist merging BNSs with symmetric
tidal deformabilities as high as 104, or they may be exceedingly rare. However,
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Fig. 5.5 also demonstrates that at Λ ∼ 103, deviations from the EoS-independent
relation of order 100 or larger are still possible within the nonparametric model.
Therefore, we expect variation in the loss based on choices in the truncation of the
population, though we do not expect the relationship between losses for the various
models to change appreciably under different assumptions. Additionally, assessing
the EoS independence of relations when matter is not in cold 𝛽-equilibrium, or when
NSs are not isolated and nonspinning [44], may be challenging. In particular, NS
merger remnants may be highly spinning, hot, and dynamically perturbed, so the
cold relations explored here, and the strategy used to evaluate them, will likely have
to be extended. Longer-term EoS independence tests will likely have to carefully
examine all of these factors in order to determine, with higher fidelity, the usefulness
of EoS-independent relations to our understanding of NSs and the nuclear EoS.
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5.6 Additional Figures and Tables
In this appendix we display results for the piecewise-polytrope and nonparametric
hadronic EoS distributions, in similar form as the main text results for the spectral
and nonparametric mixed distributions. The 𝜒2 values for each fit are given in
the main text tables. We use the astrophysically-informed EoS distributions, again



203

Coefficient
𝛼

𝐾𝑦𝑥
𝑎1
𝑎2
𝑎3
𝑏1
𝑏2
𝑏3

GP-mixed (astro)
𝐼 (Λ) 𝑄(Λ) 𝐼 (𝑄)
2/5 1/5 2

0.5356 0.0072 0.0072
1.7583 11.1589 11.1589
1.3883 -37.6926 -37.6926
-5.6089 42.7718 42.7718
-0.7071 -2.5557 -2.5557
-0.9748 2.3251 2.3251
0.5105 -7.3937 -7.3937

SP (astro)
𝐼 (Λ) 𝑄(Λ) 𝐼 (𝑄)
2/5 1/5 2

0.5139 0.0052 0.0052
2.0486 12.1774 12.1774
0.8249 -37.0504 -37.0504
6.7629 43.0395 43.0395
-1.0615 -2.6161 -2.6161
2.2034 2.4074 2.4074
-0.9326 -7.6697 -7.6697

PP (astro)
𝐼 (Λ) 𝑄(Λ) 𝐼 (𝑄)
2/5 1/5 2

0.4192 0.0007 0.0007
2.2881 30.3545 30.3545
-3.7192 -16.5079 -16.5079
72.9633 48.3485 48.3485
-3.5874 -2.7902 -2.7902
16.8924 2.6775 2.6775
-7.6431 -8.7651 -8.7651

Table 5.6: Table of coefficients for the I–Love–Q relations for the nonparametric
mixed-composition, spectral, and piecewise-polytrope astrophysical posterior EoS
distributions. See Eqs. (5.8), (5.9), and (5.10) respectively.

because we do not find significant differences modulo improvements of order no
more than 10 to the fit quality upon conditioning.

For the I–Love–Q relation, we display the fits for the hadronic nonparametric dis-
tribution in Fig. 5.9, and for the piecewise-polytrope EoS distribution in Fig. 5.10.
𝐼–𝑄 is still the best fit EoS-independent relation. We also give fitting coefficients in
Table 5.6.

We display the fits for the Binary-Love relation for the hadronic nonparametric
distribution and piecewise-polytrope distribution in Fig. 5.11. We display the best-
fit coefficients in Table 5.7.

We display the fits for the C–Love relation for the hadronic nonparametric distri-
bution and piecewise-polytrope distribution in Fig. 5.12. We display the best-fit
coefficients in Table 5.8.

For the Λ̃–𝑅1.4 relation we display the value for the coefficient 𝑎 for all of the EoS
sets in Table 5.9.
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Figure 5.9: The same as Fig. 5.2, but with the hadronic nonparametric distribution
conditioned on all astrophysical data.
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Figure 5.10: The same as Fig. 5.2 but with the piecewise-polytrope EoS distribution
conditioned on all astrophysical data.
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Coefficient
𝑏11
𝑏12
𝑏21
𝑏22
𝑏31
𝑏32
𝑐11
𝑐12
𝑐21
𝑐22
𝑐31
𝑐32

GP-mixed (astro)
𝑞 = .55 𝑞 = .75 𝑞 = .9

-13.6363 -13.0286 -35.8727
16.6082 11.9352 38.1073
60.9451 49.595 17.3353
-22.4131 -15.7433 -10.7606
-132.7392 -95.409 -85.2499
-35.1957 -33.9646 66.3908
-36.1830 -121.3958 20.9222
62.3338 157.5113 -24.9027
60.2142 57.6574 44.7671
-27.5988 -38.6213 -42.4961
-132.3099 -89.4668 -25.8278
-18.1968 -6.9804 4.5299

SP (astro)
𝑞 = .55 𝑞 = .75 𝑞 = .9
89.3902 -114.1202 -13.7126

-199.4862 153.6543 14.5353
137.5437 65.0962 30.3579
-97.1215 -86.1626 -36.4909
-227.1308 -150.6500 -21.6415
-12.4604 -37.6394 20.1071
-34.3331 -17.6402 -1.2833
49.3492 30.3484 0.9211
69.5378 -46.8838 34.3594
24.7469 2.4981 -43.3557

-193.2270 -145.6506 -29.3931
-43.5078 142.7302 36.7860

PP (astro)
𝑞 = .55 𝑞 = .75 𝑞 = .9
-13.318 -16.0181 -14.2241
14.5180 13.5785 14.6087
60.5649 60.5607 29.9721
-17.0596 -9.8172 -33.4993
-125.4819 -117.0661 -22.0825
-31.7949 -50.6147 20.6718
-27.6276 -79.3091 -14.3035
43.9329 99.8593 15.0504
63.5022 62.0146 35.7453
-30.8961 -31.4480 -43.0991
-125.3372 -101.7505 -28.5082
-11.8738 -18.4297 35.8010

Table 5.7: Table of coefficients for the Binary-Love relations for the nonparametric
mixed-composition, spectral, and piecewise-polytrope posterior EoS distributions.
See Eq. (5.11).
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Figure 5.11: The same as Fig. 5.5, but with the hadronic nonparametric EoS
distribution on the left, and the piecewise-polytrope distribution on the right.

Coefficient
𝐾𝑦𝑥
𝑎1
𝑎2
𝑎3
𝑏1
𝑏2
𝑏3

GP-mixed (astro)
𝐶 (Λ)
0.0833

-529.6368
666.1701

-1119.5632
-84.2438
144.0589
-2.7723

SP (astro)
𝐶 (Λ)
1.9392

-96.4366
-69.8059
-191.0251
-360.1569
152.5207

-1702.2789

PP (astro)
𝐶 (Λ)
3.5446

-28.1750
-127.7955
-43.2623
-191.1053
-433.2343
-1318.6131

Table 5.8: Table of coefficients for the C–Love relations for the nonparametric
mixed-composition, spectral, and piecewise-polytrope astrophysical posterior EoS
distributions. See Eq. (5.13).

Coefficient GP-mixed (astro) SP (astro) PP (astro)
𝑎 3.6387 3.7867 3.8086

Table 5.9: Table of coefficients for the 𝑅1.4–Λ̃ relation. See Eq. (5.15).
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Figure 5.12: The same as Fig. 5.7, but with the hadronic nonparametric EoS
distribution on the left, and the piecewise-polytrope EoS distribution on the right.
Both distributions are conditioned on all astrophysical data.

Coefficient
𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5

GP-mixed (astro)
𝛼𝑐 (𝐶)

-7.3477
88.5223

-591.4298
1960.4713
-2799.1485
1215.7415

SP (astro)
𝛼𝑐 (𝐶)

-5.1067
49.9461

-379.9054
1729.6551
-3988.1116
3783.0214

PP (astro)
𝛼𝑐 (𝐶)

-4.7738
45.8993

-389.7208
2051.4967
-5396.4668

5.6082

Table 5.10: Table of coefficients for the 𝛼𝑐–𝐶 relation for the nonparametric mixed-
composition and Spectral posterior EoS distributions. See Eq.(5.17).

We display the fits to the 𝛼𝑐–𝐶 EoS-independent relation for the nonparametric
hadronic, and piecewise-polytrope distribution both conditioned only on mass mea-
surements of heavy pulsars, and conditioned on all astrophysical data in Fig. 5.13.
The piecewise-polytropic distribution is the only one which is better fit by the 𝛼𝑐–𝐶
relation after the inclusion of GW mass-tidal deformability and X-ray mass-radius
measurements. This can be attributed to a priori large values of 𝛼𝑐 in the cores of
the most massive neutron stars under the piecewise-polytrope models.
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Figure 5.13: Left: The same for the nonparametric EoS distribution, conditioned on
all astrophysical data. Right : The same for the piecewise-polytrope parametrization,
conditioned on all astrophysical data. Same as Fig. 5.8.
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C h a p t e r 6

DISTINGUISHING LOW-MASS COMPACT BINARIES SEEN IN
GRAVITATIONAL WAVES USING KNOWLEDGE OF THE

EQUATION OF STATE

[1] Jacob Golomb et al. “Using equation of state constraints to classify low-mass
compact binary mergers”. In: Phys. Rev. D 110.6 (2024). I co-led this study
with Jacob Golomb examining whether subsolar mass neutron stars could
be reliably distinguished from subsolar mass black holes with current LIGO
detectors. I performed the equation of state inference step, and co-wrote the
manuscript, p. 063014. doi: 10.1103/PhysRevD.110.063014. arXiv:
2403.07697 [astro-ph.HE].

Abstract
Compact objects observed via gravitational waves are classified as black holes or
neutron stars primarily based on their inferred mass with respect to stellar evolu-
tion expectations. However, astrophysical expectations for the lowest mass range,
≲ 1.2𝑀⊙, are uncertain. If such low-mass compact objects exist, ground-based
gravitational wave detectors may observe them in binary mergers. Lacking astro-
physical expectations for classifying such observations, we go beyond the mass and
explore the role of tidal effects. We evaluate how combined mass and tidal inference
can inform whether each binary component is a black hole or a neutron star based
on consistency with the supranuclear-density equation of state. Low-mass neutron
stars experience a large tidal deformation; its observational identification (or lack
thereof) can therefore aid in determining the nature of the binary components. Us-
ing simulated data, we find that the presence of a sub-solar mass neutron star (black
hole) can be established with odds ∼ 100 : 1 when two neutron stars (black holes)
merge and emit gravitational waves at signal-to-noise ratio ∼ 20. For the same
systems, the absence of a black hole (neutron star) can be established with odds
∼ 10 : 1. For mixed neutron star-black hole binaries, we can establish that the
system contains a neutron star with odds ≳ 5 : 1. Establishing the presence of a
black hole in mixed neutron star-black hole binaries is more challenging, except for
the case of a ≲ 1𝑀⊙ black hole with a ≳ 1𝑀⊙ neutron star companion. On the
other hand, classifying each individual binary component suffers from an inherent

https://doi.org/10.1103/PhysRevD.110.063014
https://arxiv.org/abs/2403.07697
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labeling ambiguity.
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6.1 Introduction
Astronomical observations have revealed a diversity in compact objects with masses
≲ 3𝑀⊙. Classifying these observations as black holes (BHs), neutron stars (NSs),
or white dwarfs (WDs), requires identifying observational signatures that are unique
to each type. For example, pulsars are identified as NSs [56], while unique elec-
tromagnetic spectrum or emission signatures can distinguish between NSs and BHs
even if the mass is unknown, as is the case for accreting X-ray binaries [95, 42,
110]. On the gravitational-wave (GW) side, classification is simplified by the fact
that ground-based GW detectors are only sensitive to objects that do not disrupt or
collide before reaching the detector sensitive band ≳ 10 Hz. For example, a pair of
maximum compactness WDs each with mass 1.3𝑀⊙ and radius 1700 km collide at
a GW frequency of ≈ 1 Hz, see App. 6.8 for calculation details. However, even after
excluding WDs, distinguishing between NSs and BHs is challenging because, un-
like electromagnetic emission, their GW emission is more similar, as it is primarily
determined by the object’s mass.

GW mass measurements in conjunction with astrophysical and nuclear physics
can lead to preliminary classification indications. Causality limits NS masses ≲
3𝑀⊙ [97, 69]; more massive objects observed in GWs must be BHs. Astronomical
and nuclear constraints suggest that NSs do not reach this theoretical maximum,
however. Estimates of the maximum mass of stable nonrotating NSs [111, 88]
range 2.0 − 2.5𝑀⊙ [76, 96, 38, 90, 94, 54]; rigidly rotating NS can be ∼ 20%
more massive [32]. Based on these constraints, Refs. [3, 43, 10] argued that the
GW190425 [3] primary was likely a NS, while the GW190814 [10] secondary was
a BH. However, it is unclear if stellar evolution creates NSs up to the maximum
mass allowed by nuclear physics; little evidence for or against this scenario is
observationally available [11].

Switching to the full mass distribution, Galactic observations indicate that the
observed NS population is strongly peaked at ∼ 1.4𝑀⊙, with a lower (upper)
truncation near 1.1(2.0) 𝑀⊙ [16, 49]. The Galactic BNS population is narrower and
peaked at 1.4𝑀⊙ [16, 101], though the impact of selection effects on these results is
unclear. Neither result is consistent with the GW-observed NS mass distribution that
displays no prominent peak at 1.4𝑀⊙ [27, 73, 11]. Electromagnetic observations
suggest a scarcity or even absence of sub-5𝑀⊙ BHs [89, 70, 50, 102], though
candidates, subject to debate [62, 109, 19], exist [108, 68]. The 2.6𝑀⊙ secondary
in GW190814 [10] as well as galactic observations [20, 29] indicate that if a mass
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gap between NSs and BHs does exist, it is not empty [11]. In the absence of
unambiguous classification for ∼ 2 − 3𝑀⊙ objects, Refs. [52, 11, 48] modeled the
mass distribution of all sub-10𝑀⊙ objects and identified a feature at ∼ 2.4𝑀⊙.
Under the assumption of nonoverlapping NS and BH distributions, such a feature
could signal the transition from the NS to the BH population.

In contrast to these astrophysics- and nuclear physics-informed considerations about
the high end of the NS mass range, the low end remains uncharted. No widely-
accepted astrophysical process results in stellar remnants of either type with masses
≲ 1.2𝑀⊙ [106, 74, 75], although physically cold NSs remain stable down to
O(10−1) 𝑀⊙ [74, 75].1 Radio and X-ray observations have led to NS candidates with
masses ∼ 1.17𝑀⊙ [79] and ∼ 0.8𝑀⊙ [39]. Additionally, masses and eccentricities
of Gaia binaries suggest the existence of ∼ 1𝑀⊙ NSs [101]. As for BHs, while sub-
1𝑀⊙ BHs do not form through stellar collapse, early-universe density fluctuations
and sufficiently dissipative dark matter could collapse into primordial BHs with
masses in this range [25, 86]. Searches for subsolar mass compact objects with
GWs have as of yet yielded no detections [12, 13, 85]. If such BHs do exist, they
may be detectable by current and future GW detectors, and properties such as their
masses and spins may be measurable [116, 83].

Given these uncertainties, classification of potential sub-1.2𝑀⊙ GW candidates re-
quires an additional unique signature: matter effects.2 GWs from mergers involving
NSs carry the imprint of tidal interactions in the signal phase evolution [26, 65, 53].
To leading order3, the effect is quantified by the dimensionless tidal deformability
which depends on the nuclear equation of state (EoS) (𝑐 = 𝐺 = 1):

Λ ≡ 2
3
𝑘2𝐶

−5 , (6.1)

where 𝑘2 is the quadrupole tidal love number, and 𝐶 = 𝑚/𝑅 is the compactness,
the ratio of the NS mass 𝑚 to its radius 𝑅. Tidal interactions enter the GW phase
to leading 5𝑡ℎ Post-Newtonian (PN) order [53, 51] through Λ̃, a mass-weighted
combination of the component tidal deformabilities. BHs in General Relativity

1The minimum mass of a hot proto-NS is however likely larger than that of a cold NS [103, 75,
105].

2On the electromagnetic side, matter effects manifest as counterparts, such as with
GW170817 [4], proving the presence of at least one NS and a 10:4 preference for two [63, 33,
34]. Absence of a counterpart does not necessarily rule out NSs, as detectability may be limited by
beaming or prompt collapse [3].

3Higher-order effects, such as dynamical tides [64, 92, 55], also affect the waveform and can aid
in distinguishing NSs and BHs.
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have vanishing 𝑘2, making Λ a unique signature of the compact object nature [21,
31] 4. Tidal information has previously suggested the presence of at least one NS
in GW170817 based on disfavoring zero tides [5], EoS-independent relations [9],
and consistency of the tidal measurement with EoS inference [44]. Furthermore,
Ref. [30] showed that lack of tidal signature can be used to identify ∼ 1 − 2𝑀⊙ BHs
if they exist, though distinguishing between NSBHs and BBHs is more challenging
if the BH has a higher mass [23].

Tidal deformability becomes an increasingly better discriminator between BHs and
NSs as the object’s mass decreases. For 𝑚 ≳ 1𝑀⊙, 𝑘2 scales as 𝑘2 ∼ 𝑚−1 [119],
resulting in Λ(𝑚) ∼ 𝑚−6 (see Fig. 6.1) assuming an approximately constant radius.5
The lowest-mass NSs therefore exhibit the strongest tidal signatures and differ the
most from BHs [36], with Λ ∼ O(104) for 𝑚 ∼ 1𝑀⊙, compared to Λ ∼ O(10) for
𝑚 ⪆ 2𝑀⊙.

In this work, we leverage the expected large tidal deformabilities of low-mass NSs,
combined with astrophysically-informed EoS constraints to classify compact objects
as either NSs or BHs. Our classification is based on the fact that a compact object’s
tidal deformability must be consistent with the EoS prediction if it is a NS (see the
𝑚 − Λ relation in Fig. 6.1) or zero if it is a BH. While the true EoS is unknown,
astronomical observations have placed constraints, giving independent predictions
for the tidal deformability of a NS of a given mass, e.g., [38, 72, 76, 90, 94]. This
method expands upon efforts to identify NSs through a Λ̃ > 0 condition [5], as
we additionally require Λ to be consistent with predictions from the dense-matter
EoS, similar to the GW170817 classification of [44]. In other words, our analysis
combines the discriminatory power of two conditions: BHs are consistent with
Λ = 0 and NSs are consistent with Λ = Λ(𝑚) as predicted by the EoS.

We test our classification approach with simulated data from low-mass sources with
signal-to-noise ratios (SNRs) of 20 and 12 at advanced detector sensitivity. Lower
(upper) limits on Λ allow us to rule out a BH-BH (NS-NS) origin when at least
one of the binary components is a NS (BH). Figure 6.1 shows a demonstration
of this idea in the BH-BH case. Though this plot is restricted to two dimensions
and does not capture the strong correlations between Λ1 and Λ2, c.f., Fig. 6.3, the
full-dimensional posterior structure is leveraged in the classification scheme laid out
in Sec. 6.2. In systems with sufficiently unequal masses, 𝑚2/𝑚1 ≲ 0.8, it might be

4Beyond static tides and Λ, Kerr BHs have nonvanishing dynamical tides [91].
5This is a good approximation excluding EoSs with phase transitions [59, 74].
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Figure 6.1: The 𝑚 − Λ relation for draws from the EoS posterior from [76] (gray
lines). A red dashed line denotes the SLY9 EoS. An orange solid line indicates
the Λ ∝ 𝑚−6 trend. The posteriors of the masses and tidal deformabilties of the
primary and secondary component of a BBH simulated signal are shown in light
blue and dark blue, respectively. Despite poorer tidal constraints, the secondary
is less consistent with the EoSs, suggestive of a BH. While this demonstration
does not capture the full four-dimensional mass-Λ correlations, it sketches the main
classification idea.

possible to conclude that there is only a single NS. We also discuss an ambiguity in
labeling individual objects that makes it difficult to identify the NS in a single-NS
system.

The rest of the paper is organized as follows. In Sec. 6.2, we overview the parameter
estimation methodology and source classification procedure. We present parameter
estimation results on simulated signals in Sec. 6.3. Using these results, we quantify
the evidence of BHs and NSs in Secs. 6.4 and 6.5, respectively. We conclude in
Sec. 7.5.

6.2 Methods
In this section, we describe the classification procedure and the methods for demon-
strating its effectiveness. In Sec. 6.2, we describe the simulated low-mass signals
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and parameter estimation. In Sec. 6.2, we fold in EoS information to quantify the
probability of each source type.

Classification-agnostic Parameter Estimation
We simulate data for binaries with all unique configurations of source-frame masses
(𝑚1, 𝑚2) ∈ {0.8, 0.9, 1.0, 1.1, 1.2}𝑀⊙ with 𝑚1 ≥ 𝑚2 and source type NS-NS,
BH-NS, NS-BH, and BH-BH, where the first (second) initial corresponds to the
primary (secondary). The lower mass is selected both for computational reasons
and because distinguishability is easier for even lower-mass systems. This results
in 55 total configurations.6 For brevity, we refer to BH-BH as BBH and NS-NS as
BNS. We simulate sources with no spins and two network SNRs, one high-SNR set
with 𝜌net ≈ 20 and another lower-SNR set with 𝜌net ≈ 12. The former corresponds
to an optimistic detection scenario, although still quieter than GW170817 [8], while
the latter is representative of the bulk of detections. Further details are provided in
App. 6.9. BHs are simulated with vanishing Λ. For NSs, we assign Λ(𝑚) according
to their mass 𝑚 and the EoS SLY9 [60], chosen as a representative EoS that is
consistent with current astronomical data [76]; see Fig. 6.1. We adopt standard
priors for all parameters, detailed in App. 6.9. We remain agnostic on source type
and adopt a uniform prior between 0 and 20 × 103 for the tidal deformabilities for
all simulated signals.

We simulate data observed by the LIGO-Virgo detector network [6, 1, 14] with a zero
noise realization, corresponding to a geometric mean of many noise realizations [84].
For the noise Power Spectral Densities (PSDs), we use the LIGO O4 low-sensitivity
and O3 Virgo noise curves [6, 24, 15]. Signals are simulated and modeled with
IMRPhenomXAS_NRTidalv3 [2], a phenomenological, frequency-domain wave-
form model for the dominant GW emission from the coalescence of BNS mergers
with aligned spin components. The model is based on a BBH GW model [93],
which is then augmented with a closed-form tidal expression [37, 2]. The model
incorporates dynamical tidal effects [64] and is calibrated to a suite of numerical-
relativity simulations. Two of these simulations are unequal-mass systems with a
subsolar mass secondary (0.98𝑀⊙ and 0.90𝑀⊙, with tidal deformabilities ∼ 2600
and ∼ 4600, respectively). The model has also been compared against an unequal-
mass system with a subsolar mass component ∼ 0.94𝑀⊙ and a tidal deformability
of ∼ 9300 [112]. Its reliability has been checked within 𝑚1,2 ∈ [0.5, 3.0] 𝑀⊙ and

6The total number of possible systems is 100. Enforcing 𝑚1 > 𝑚2 and taking into account that
equal-mass NS-BH and BH-NS systems are identical reduces this to 55.
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Figure 6.2: Relevant frequencies for late-inspiral signals: merger (peak strain, tan)
and contact (orbital separation corresponding to objects touching, light blue) of NSs
in equal-mass systems as a function of component mass. Shaded regions correspond
to marginalization over the EoS posterior from [76]. Colored lines correspond to
the SLy9 EoS [40, 60], which we use to simulate data. Lastly, we display an
approximation for the plunge frequency of a comparable mass BBH 𝑓6𝑀 with a
black dash-dot line.

Λ1,2 ∈ [0, 20000], a range well-suited for our study.

For illustrative purposes, we show relevant frequencies around the binary merger as
a function of mass in Fig. 6.2, see App. 6.8 for a detailed definition. We include
the merger frequency, defined as the frequency of peak strain [58], the contact
frequency, defined from a binary separation equal to the sum of the components’
radii, and 𝑓6𝑀 ≡ (63/2(𝑚1+𝑚2))−1/(2𝜋), an approximation for the plunge frequency
of BBHs. In the mass range of interest, all frequencies are between ∼ 1 − 3 kHz.

Classifying Compact Binaries using EoS Information
The possible source classes for each detected binary are (𝑇1, 𝑇2) one of
{(BH,BH), (NS,BH), (BH,NS), (NS,NS)}, where 𝑇1 and 𝑇2 refer to the source
type (BH or NS) of the primary (more massive) or secondary (less massive) object,
respectively. For each event, the likelihood given an EoS 𝜖 and source type 𝑇1, 𝑇2 is
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obtained by marginalizing over the binary masses and tidal deformabilities:

L(𝑑 |𝜖, 𝑇1, 𝑇2) =
∫

𝑑𝑚1 𝑑𝑚2 𝑑Λ1 𝑑Λ2 L(𝑑 |𝑚1, 𝑚2,Λ1,Λ2)

× 𝜋(𝑚1, 𝑚2)𝜋(Λ1,Λ2 |𝜖, 𝑚1, 𝑚2, 𝑇1, 𝑇2) ,
(6.2)

where L(𝑑 |𝑚1, 𝑚2,Λ1,Λ2) is the GW likelihood over the masses and tidal de-
formabilities, 𝜋(𝑚1, 𝑚2) is the prior on masses, and 𝜋(Λ1,Λ2 |𝜖, 𝑚1, 𝑚2, 𝑇1, 𝑇2) is
the prescription for computing the tidal deformabilities. For EoSs with a single
stable branch7

𝜋(Λ𝑖 |𝜖, 𝑚𝑖, 𝑇𝑖) =

𝛿(Λ𝑖 − Λ(𝑚𝑖 |𝜖)) , if 𝑇𝑖 = NS

𝛿(Λ𝑖) , if 𝑇𝑖 = BH
. (6.3)

Equation (6.3) corresponds to the following prior on Λ𝑖: under the 𝑇𝑖 = NS hypoth-
esis, Λ𝑖 is determined by the EoS 𝜖 and 𝑚𝑖, whereas under the 𝑇𝑖 = BH hypothesis,
the object has a vanishing tidal deformability. Equation (6.2) is independent of the
prior on Λ𝑖 and 𝑚𝑖 used in the original single-event analysis of Sec. 6.2 as it only
depends on the single-event likelihood. The Λ𝑖 prior in Eq. (6.2) is instead the
EoS-informed prior of Eq. (6.3).

The mass prior is encoded in 𝜋(𝑚1, 𝑚2), which is selected to be uniform in the
joint source-frame component mass space, with 𝑚1, 𝑚2 ∈ [0.5, 1.8] 𝑀⊙. This
uniform prior is chosen for simplicity, as no constraints exist on the mass distribution
of ≤ 1.2𝑀⊙ NSs and BHs. It is nonetheless consistent with constraints on the
∼ 1 − 2𝑀⊙ mass distribution [73, 11]. If a population of low-mass binaries were
discovered, the mass prior would also be inferred via an extension of Eq. (6.2),
e.g, [57, 117].

Whereas Eq. (6.2) is conditioned on a single EoS 𝜖 , the true EoS is unknown. We
instead marginalize over the EoS and compute the likelihood for each classification:

𝑃(𝑑 |𝑇1, 𝑇2) =
∫

L(𝑑 |𝜖, 𝑇1, 𝑇2)𝜋(𝜖 |𝑑aux)𝑑𝜖 , (6.4)

where 𝜋(𝜖 |𝑑aux) is a distribution over EoSs informed by auxiliary data 𝑑aux. We
adopt the posterior from Ref. [76] computed using a model-agnostic prior on the
EoS based on a Gaussian process [71, 44, 77] and informed by radio-pulsar mea-
surements [54, 17], X-ray pulse-profile [80, 98, 81, 99], and GW observations [8,

7If there are multiple stable branches we use a prior 𝜋(Λ𝑖) =
∑𝑁

𝑗=0
1
𝑁
𝛿(Λ𝑖 −Λ(𝑚𝑖 |𝜖, 𝑗)), where

𝑗 indexes stable branches and Λ(𝑚𝑖 |𝜖, 𝑗) is the tidal deformability on the 𝑗−th branch. A NS of a
given mass is equally likely to be formed on any stable branch.
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5, 3]. The EoS posterior is consistent with chiral effective field theory calculations
at densities ≲ 1.5 𝜌nuc (where 𝜌nuc is nuclear saturation density) [115, 61, 107, 41],
comparable to the central densities of ∼ 1–1.5𝑀⊙ NSs, though it does not explicitly
incorporate this information [45]. It is also consistent with the existence of strong
phase transitions [47].

The main physically relevant questions are

1. whether a source contains at least one BH,

2. whether a source contains at least one NS,

3. and, if so, whether it contains two NSs.

Due to the lack of constraints on the merger rates of different source types in the
relevant mass range we assign equal prior probability on three hypotheses H : (i)
the system has two NSs (BNS), (ii) the system has exactly one NS (OneNS), and
(iii) the system has no NSs (BBH).

The marginal likelihood8 ofH is obtained by integrating over the relevant constituent
source types:

ZH ≡
∫

𝑝(𝑑 |𝑇1, 𝑇2)𝜋(𝑇1, 𝑇2 |H) 𝑑𝑇1 𝑑𝑇2 , (6.5)

where 𝑝(𝑑 |𝑇1, 𝑇2) is given in Eq. (6.4), and 𝜋(𝑇1, 𝑇2 |𝐻) is the normalized prior on
the source types. The hypotheses H = BNS and H = BBH contain a single source
type each, with the trivial priors 𝜋(NS,NS |BNS) = 1, and 𝜋(BH,BH |BBH) = 1
respectively. The hypothesis H = OneNS encompasses two source types, NSBH
and BHNS, which we take to be equally likely a priori, 𝜋(NS,BH |OneNS) =

𝜋(BH,NS |OneNS) = 1/2.

The marginal likelihood for whether the system contains at least one NS (“HasNS”)
is then

ZHasNS = ZOneNS 𝜋(OneNS|HasNS)
+ ZBNS 𝜋(BNS|HasNS) , (6.6)

where 𝜋(OneNS|HasNS) = 𝜋(BNS|HasNS) = 1/2, meaning under the assumption
the system has at least one NS, we assign an equal prior probability that it has one

8The marginal likelihood is also commonly referred to as the “evidence”, though we use this
term in its colloquial meaning.
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Figure 6.3: One- and two-dimensional marginalized source-frame mass posteriors
for the 𝑞 ≡ 𝑚2/𝑚1 = 1 signals. Same-color lines denote systems with varying total
mass 𝑀 with true values marked. For a given mass, varying line styles denote BBH,
NSBH, and BNS systems. Contours represent two-dimensional 2-𝜎 regions. Given
a simulated mass, similar posteriors across source types shows the subdominant
effect of tides on the inferred masses.

or two NSs. The marginal likelihood for whether the system contains at least on BH
(“HasBH”) is Eq. (6.6), with BNS → BBH.

In what follows, we present odds ratios between two hypotheses H1 and H2:

OH1
H2

=
ZH1

ZH2

𝜋(H1)
𝜋(H2)

, (6.7)

where 𝜋(H) is the prior on the hypothesis H , with 𝜋(HasNS) = 𝜋(HasBH) =

2𝜋(BNS) = 2/3.

6.3 Measuring the Masses and Tides of Low-mass Compact Binaries
In this section, we present posteriors from simulated signals. We do not assume
we know whether each component is a NS or BH a priori. Throughout, we present
results from simulations with 𝜌 = 20.

The dominant intrinsic feature of a GW signal is the mass. In Fig. 6.3, we present
marginal posteriors for the source-frame masses for select equal-mass systems.
Measurement uncertainties are consistent with those of Ref. [116], c.f., their Figs. 1
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Figure 6.4: Two-dimensional marginal posteriors for select parameters for systems
with 𝑞 = 1, with each column referring to a different simulated total mass. Blue,
yellow, and magenta lines outline the 2-𝜎 contours of the posterior for the BBH,
NSBH, and BNS systems, respectively. We omit the BHNS configuration as it is
identical to NSBH for equal-mass simulations. The left (right) halves of the third
row plots are the posterior of the primary (secondary), and include draws from the
EoS distribution [76] for reference. A decreasing total mass increases the tidal
signature and correspondingly affects all posteriors.

and 2, at the same SNR. Same-color lines denote systems with the same total mass,
while varying line styles denote simulated source types. Same-mass signals result
in similar mass posteriors, regardless of the source type, with a minor trend for
longer tails as the tidal effects increase. This is due to the fact that the mass is
primarily measured by the long inspiral phase (thousands of cycles), while tidal
effect are relevant for the last ∼ 20 cycles. We obtain qualitatively similar posteriors
for non-equal mass signals.

Having established that the presence of tides does not strongly impact mass inference,
we now turn to tidal inference. Figures 6.3 and 6.5 show marginal posteriors for
systems with fixed 𝑞 and 𝑀 , respectively, with colors denoting the source type. The
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Figure 6.5: Similar to Fig. 6.3 but for systems with the same simulated total mass
𝑀 = 2𝑀⊙, with each column referring to a different simulated the mass ratio.
When relevant, we also include BHNS configurations in green. The posteriors of
all parameters are, weakly sensitive to the true mass ratio, with the exception of the
BHNS cases.

top rows show the marginal 𝑞 − Λ̃ posteriors. All posteriors are consistent with
the true (simulated) values. Within each panel, i.e., for configurations of the same
mass, the posterior moves to higher values as the system contains more NSs and tidal
effects become stronger. The posteriors further show a positive correlation between
𝑞 and Λ̃ which becomes stronger as Λ̃ increases in value, consistent with [5]. An
outcome of the increasing correlation strength is that the uncertainty also increases
as the posterior is more extended both in the 𝑞; see also Fig. 6.3, and Λ̃ directions.

The 𝑞 − Λ̃ posterior offers the first evidence about the presence/absence of tides
and thus source classification. For all mass configurations, the BBH signals are
consistent with the true value Λ̃ = 0, and the posteriors are similar for different
masses, c.f., blue contours in Figs. 6.3 and 6.5, left to right. For NS-containing
systems, the posteriors move away from Λ̃ = 0, signaling the presence of tides. As
expected, signals from lower-𝑀 systems can rule out Λ̃ = 0 with higher credibility
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due to their higher true Λ̃ value, c.f., yellow and magenta contours in Fig. 6.3, left
to right. At a fixed 𝑀 , the dependence of Λ̃ on the mass ratio is less pronounced,
resulting in similar posteriors and thus ability to detect tides, c.f., yellow, green, and
magenta contours in Fig. 6.5, left to right.

Going beyond Λ̃, we turn to the tidal deformability of the individual binary com-
ponents. The second row of Figs. 6.3 and 6.5 shows posteriors for Λ1 − Λ2. The
posteriors span much of the prior and show a strong anticorrelation consistent
with [28, 5, 7]. The direction of the anticorrelation is approximately a constant Λ̃
suggesting that almost all tidal information comes from measuring Λ̃, with limited
higher-order information [114, 51]. This is further demonstrated in App. 6.10. Con-
sequently, Λ1 − Λ2 (second row) does not offer much additional information about
the source type beyond 𝑞− Λ̃ (first row): exclusion of Λ̃ = 0 amounts to exclusion of
Λ1 = Λ2 = 0. Crucially for source classification, all component tidal deformabilities
are individually consistent with Λ𝑖 = 0.9 Effectively, a Λ̃ measurement is “spread”
between Λ1 and Λ2 and the posterior for both parameters is consistent with high
values when either parameter has a high true value.

In the final row of Figs. 6.3 and 6.5, we show the componentΛ𝑖−𝑚𝑖 posteriors, where
gray lines are draws from the EoS posterior. As expected from the second row, even
in cases where Λ̃ = 0 is confidently ruled out, the posteriors are consistent with Λ𝑖 =

0. More information can however be obtained by comparing the upper limit on Λ𝑖 to
EoS expectations at the relevant mass. As expected, all BNS posteriors (magenta)
are consistent with the EoS draws in both (𝑚1,Λ1) and (𝑚2,Λ2). Switching to
the NSBH signals (yellow), the primary is always consistent with being a NS: for
all masses nearly all the EoS draws fall within the yellow posteriors. In contrast
and again for all mass configurations, about half the EoS draws fall within the
posterior for the secondary binary component, indicating decreasing support for a
NS interpretation. Interestingly, this is despite the fact that the upper limit on Λ1 is
lower than that ofΛ2. The expected tidal deformability increases so rapidly for lower
masses that Λ1 is more consistent with the EoSs than Λ2. The BHNS posteriors
(green contours in Fig. 6.5) fully overlap with the EoS draws for all masses. This is
because BHNSs have a larger Λ̃ than NSBHs for the same mass, pushing all upper
limits to high enough values that are consistent with EoS predictions.

Finally, for BBH signals the posteriors for both components show some tension with
9The only seeming exception is the lowest-mass BNS in Fig. 6.3 but this is due to a posterior

railing against the prior upper bound.
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Figure 6.6: Base-10 logarithm of the odds ratio for each system containing at least
one BH. Monte-Carlo errors for the odds ratios are too small to be visible in the
scale of the figure. Panels correspond to the system source-frame masses and colors
correspond to source type. The equal-mass panels do not contain BHNS systems
as they are identical to the NSBH ones. Dots (crosses) denote signals with SNR
20(12). Points above log10(OHasBH

BNS ) = 0 (red dashed line) denote support for the
presence of at least one BH in the binary.

EoS draws, which decreases with the total mass, c.f., blue contours of Fig. 6.3, left
to right. For the lowest mass configuration, c.f., left-most panel of Fig. 6.3, neither
binary component overlaps with hardly any EoS draw. In these cases, the GW data
can constrain the tides to values that are too low compared to viable EoSs. The
binary mass ratio, on the other hand, does not strongly impact the overlap between
the posterior and the EoSs, c.f., blue contours in Fig. 6.5, left to right. This is
because the Λ𝑖 posterior does not strongly depend on the system mass; what changes
is the EoS prediction, which is a strong function of the total mass.
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6.4 Determining if a System Contains a Black Hole
Astronomical observations and nuclear physics considerations cannot directly mo-
tivate the nature of potential ≲ 1.2𝑀⊙ GW detections such as the ones studied in
Sec. 6.3. We undertake signal classification with the fundamental question: does
the signal provide evidence for the presence of a BH, thus establishing the existence
of BHs below the expected astrophysical minimum mass?

We quantify this with the odds ratio OHasBH
BNS , where the “HasBH” hypothesis consists

of the BBH, NSBH, and BHNS source types with equal prior probabilities. The
alternative hypothesis is that the system is a BNS and thus the inferred masses and
tides of both objects must be consistent with the EoS. In practice, the test comes
down to whether the upper bound on the tidal effects is constraining enough to be
in tension with the EoS prediction. We present the base-10 logarithm of the odds
ratio, log10 OHasBH

BNS in Fig. 6.6 for the 𝜌 = 20 (solid dots) and the 𝜌 = 12 signals
(crosses). Below we focus on the 𝜌 = 20 results; we obtain qualitatively similar
though weaker constraints when 𝜌 = 12.

The BBH signals (blue) show evidence for the presence of a BH, with odds ≳10:1
for all masses. The evidence is stronger for lower-mass systems, with the odds
ratio increasing from 10:1 to 100:1 between masses 1.2− 1.2𝑀⊙ and 0.8− 0.8𝑀⊙.
This can be understood in the context of the EoS predictions; even though the Λ

posteriors are similar for all masses, c.f., blue contours in Fig. 6.3, bottom row,
right to left, the EoS predicts that less massive NSs have much higher Λ values.
As the mass decreases, the EoS predictions move away from the (𝑚,Λ) posterior
support; this brings the data from less massive systems into more tension with the
BNS hypothesis.

NSBH signals (yellow) result in odds ranging between a few to ∼ 10 : 1. For
a given 𝑚2, as 𝑚1 increases (left to right), the odds ratio increases and we can
more confidently infer the presence of a BH. This happens because both the true and
inferred value of Λ̃ are smaller as𝑚1 increases. BothΛ1 andΛ2 are thus inferred to be
smaller, but the estimate for 𝑚2 is essentially unchanged; therefore, the secondary
becomes more consistent with being a BH as the primary mass increases. This
contrasts with the case of increasing the total mass at constant mass ratio (bottom
left to top right) where the inferred value of Λ2 decreases and the inferred value of
𝑚2 increases, so consistency with EoS predictions remains unchanged.

Turning to the BHNS signals (green), we obtain near-equal odds for the presence
of a BH for all masses. This is likely due to the larger tidal effects compared to the
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NSBH case (since now the secondary is a NS) and the corresponding higher upper
limits on tidal parameters, c.f., Fig. 6.5, allowing both objects to agree with the EoS
predictions. The odds for the presence of a BH decrease as the primary (BH) mass
increases (left to right), as BHs and NSs become less distinguishable.

Finally, BNSs (magenta) always yield evidence against the presence of a BH, which
decreases with the mass.

6.5 Determining the Neutron Star Content of a System
The complementary question is whether a system contains at least one NS and if
yes, whether it contains two. Here, the evidence comes from both consistency of
each object with EoS predictions and the exclusion of Λ̃ = 0.

Does the System Contain a Neutron Star?
The evidence for whether there is at least one NS in a system is quantified with
the odds ratio OHasNS

BBH , Eq. (6.7). This is not equivalent to solely determining if the
binary contains any matter; we further require the inferred tidal deformabilities to
be consistent with the EoS.

In Fig. 6.7, we show log10 OHasNS
BBH . We again focus on the 𝜌 = 20 results as 𝜌 = 12

gives qualitatively similar, though less constraining, conclusions. The log odds
ratios for BBHs are negative, indicating that the data favor the absence of any NSs.
As the mass decreases, so does the odds ratio from OHasNS

BBH ≈ 1/50 for 1.2–1.2𝑀⊙ to
≈ 2/3 for 0.8–0.8𝑀⊙. It becomes less plausible for the lowest-mass BBH systems
to contain a NS as the signals lack the strong tidal signature that the EoSs predict
for these masses (c.f., blue contours in Fig. 6.3 bottom left compared to bottom
right panel). All NS-containing systems yield log10 OHasNS

BBH > 0 though again the
evidence decreases as the NS mass increases. For example, the odds ratio for
𝑚1 = 1.2𝑀⊙, 𝑚2 = 0.8𝑀⊙ is OHasNS

BBH ≈ 4, much lower than the 𝑚1 = 𝑚2 = 0.8𝑀⊙

case which has OHasNS
BBH > 100. At all masses, there is more evidence for a NS in

BHNSs than NSBHs. This is because the predicted tidal deformability of the primary
is smaller than for the secondary, and thus a NS primary is more indistinguishable
from a BH than a NS secondary. For systems containing exactly one ≲ 1𝑀⊙ NS,
we obtain OHasNS

BBH ⪆ 10. The strongest evidence is obtained for the presence of a
NS in the BNS systems, all of which have log10 OHasNS

BBH ⪆ 2. This is consistent with
the BNS posteriors of Fig. 6.3 and 6.5 that always rule out Λ̃ = 0.
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Does the System Contain Two Neutron Stars?
Having established the presence of a NS, the next question is whether the source is
a BNS or it contains only one NS. We compare these two hypotheses with the odds
ratio OBNS

OneNS.

We show results in Fig. 6.8, restricting to systems with evidence for at least one NS
in Fig. 6.7 which in practice is all the NS-containing systems and a few BBHs with
marginal evidence. We again focus on the 𝜌 = 20 results. BNS signals (pink) favor
the presence of two NSs for all masses. As before, this evidence is stronger for less
massive systems with odds ⪆ 10 : 1 when both components are ≲ 1𝑀⊙. NSBHs
(yellow) provide stronger evidence against the presence of two NSs than BHNSs.
This is again because determining the nature of the secondary (least massive) is
easier than primary (most massive) component.

However, neither BHNS nor NSBH signals result in odds greater than 10:1 against
the BNS hypothesis; the strongest evidence is obtained for the 1.2–0.8𝑀⊙ NSBH
binary with OBNS

OneNS ∼ 1/8. The reason refers back to the posteriors in Figs. 6.3
and 6.5. The BNS hypothesis requires that the EoS draws overlap with both the
(𝑚1,Λ1) and (𝑚2,Λ2) posteriors. The bottom row of Figs. 6.3 and 6.5 show that
the EoS draws completely overlap the primary posterior for all NSBH (yellow) and
BHNS (green) signals. What is more, the posterior for the secondary is also fully
(BHNS; green) or partially (NSBH; yellow) consistent with the EoS draws.

If the System Contains One Neutron Star, is it the primary or the secondary?
Though establishing the presence of exactly one NS is challenging at current sen-
sitivity, we look forward to higher-SNR signals and consider how to identify which
binary component it is. Most analyses label objects based on relative mass, e.g., pri-
mary and secondary, hence the most straightforward approach is to examine whether
the primary is a NS or a BH:

ONSBH
BHNS =

ZNSBH
ZBHNS

. (6.8)

However, this suffers from a labeling ambiguity. For example, an equal-mass NSBH
system is equally-well described by assigning the tides on either component. This is
due to the ambiguity in distinguishing binary components based on a property that
is symmetric, i.e., the mass, and also plagues the component spins [22].

This ambiguity can be resolved by instead labeling the binary components with a
unique property of each object that breaks this symmetry. For example, labeling
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binary components based on their tidal deformability would allow us to explore the
properties of the stiffer and softer objects that reflect the NS and BH, respectively.
Such an approach is of course only applicable for systems with measurable tidal
asymmetry. For example, for BNSs, this approach would identify a “stiff” and a
“soft” component, even if the tidal deformabilities are similar. More generally,
there is no guarantee that objects are in fact distinguishable, e.g., an equal-mass
and nonspinning BBH; there is thus no generic strategy for extracting individual
component properties.

6.6 Conclusions
We have explored source classification for low-mass, ≤ 1.2𝑀⊙ compact binary
mergers based on the GW signal they emit and external information about the dense-
matter EoS. The classification is based on the fact that the inferred component mass
and tidal deformability must be consistent with EoS expectations if the object is a
NS. A tidal measurement that is inconsistent with EoS predictions provides evidence
that the object is not a NS, while Λ = 0 provides evidence for the object being a BH.
The method’s distinguishing power increases with decreasing mass, due to the fact
that EoS predictions are a steep function of the mass, Λ ∼ 𝑚−6, and NSs become
indistinguishable to BHs as the mass increases. Similarly, distinguishability is easier
if the true EoS is stiffer as it would predict larger NS tidal deformabilities for all
masses; here we have considered SLy9 that is consistent with the astrophysical data
we employ.

We generally find it is easier to confirm the presence of a BH or NS than to
refute it. For systems with subsolar-mass BHs, their presence can be identified at
SNR 𝜌 = 20. In contrast, BNSs strongly disfavor the presence of a BH, with the
evidence growing with decreasing masses. Complimentarily, signals from ≲ 1𝑀⊙

NS-containing binaries can reveal the NS presence based on compatibility of the
mass-tidal measurement with EoS predictions. In contrast, if the binary does not
contain a NS, its presence is disfavored with the evidence again growing as the
mass decreases. Finally, identifying which object in a binary is a NS (or a BH)
is subject to a labeling ambiguity that could be mitigated by labeling components
based on relative tides rather than mass. Higher-SNR signals due to detector
upgrades [6] or tighter EoS predictions thanks to future data will further strengthen
distinguishability.

If subsolar-mass binaries exist and merge, combined mass and tidal information can
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aid in identifying the component nature and lead to constraints on primordial BH
and NS physics. This prospect further motivates numerical simulations [78] and
developing waveform models that can faithfully capture the large tidal effects of
low-mass NSs. It further motivates studies of alternative possibilities to BHs and
standard NSs such as dark matter admixed NSs with lower tidal deformability [66].
Tidal-based classification, as previously explored for higher-mass objects such as
GW170817 [5, 44, 9], is especially promising for sub-solar mass objects whose
nature is not otherwise astrophysically informed.

As this study was nearing completion, a preprint [35] that reached similar con-
clusions about the distinguishability of sub-solar mass BNS systems from BBHs
appeared. Our methods differ in a few ways. The authors of [35] use Fisher ma-
trix estimates (complemented with select full parameter estimation) and a modified
TaylorF2 approximant to account for NS disruption, as compared to our use of full
parameter estimation (with priors that keepΛ1 andΛ2 positive) with the NRTidalv3
waveform that includes appropriate termination conditions. Classification also dif-
fers: while Ref. [35] compares the upper limits on tidal inference to a fixed NS EoS,
we form relevant hypotheses and marginalize over current uncertainty in the EoS to
compute odds ratios. Additionally, we consider mixed NS-BH binaries, as opposed
to only BNS and BBH systems. On the other hand, Ref. [35] also considers exotic
compact objects. Regardless, both studies find that we can tell apart a sub-solar
mass BBH from a BNS at SNR ≳ 12.
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Software: bilby [18, 100], dynesty [104], scipy [113], numpy [87], matplotlib [67],
lwp [46].

6.8 Limiting Frequencies
Compact binary inspirals terminate when the objects merge, disrupt each other, or
their surfaces contact. In this appendix, we quantify how compact binary compo-
nents need to be in order to avoid disruption and contact and thus emit GWs in the
sensitive band of ground-based detectors; see, e.g., [118] for a similar calculation.

The onset of merger is not precisely defined, but a separation of 𝑟 = 6𝑀 = 6(𝑚1+𝑚2)
gives an order-of-magnitude estimate and a Keplerian frequency

𝑓6𝑀 =
1
𝜋

√︄
𝑀

(6𝑀)3 , (6.9)

plotted in Fig. 6.2; for 𝑚1 = 𝑚2 = 1𝑀⊙, 𝑓6𝑀 ∼ 2 kHz. Solar-mass compact objects
therefore enter the LIGO-Virgo sensitive band before merger.

However, finite sizes might terminate the inspiral earlier if the objects contact each
other before reaching 𝑟 = 6𝑀 . For objects with radii 𝑅1 and 𝑅2, contact 𝑟 = 𝑅1 +𝑅2

occurs at a Keplerian frequency

𝑓cont =

√︄
𝐺 (𝑚1 + 𝑚2)

4𝜋2(𝑅1 + 𝑅2)3 , (6.10)

also plotted in Fig. 6.2. For a BNS with 𝑚1 = 𝑚2 = 1𝑀⊙ and 𝑅1 = 𝑅2 = 12 km,
𝑓cont ∼ 1.5 kHz. But for a NS-WD binary with an Earth-sized WD, 𝑓cont ∼ 0.2 Hz,
two orders of magnitude below the relevant frequency band.

Another possibility that prematurely ends an inspiral is disruption. The Newtonian
tidal force felt by the secondary binary component due to the primary is

𝐹21 =
𝐺𝑚1𝑚2(𝑟out − 𝑟in) (𝑟out + 𝑟in)

(𝑟out𝑟in)2 , (6.11)

where 𝑟in = 𝑟 − 𝑅2/2 and 𝑟out = 𝑟 + 𝑅2/2 correspond to the distance between the
primary and the outer and inner edge of the secondary, respectively. In the limit of
wide orbital separation, 𝑟 ≫ 𝑅2, Eq. (6.11) simplifies to

𝐹21 ≈ 2𝐺𝑚1𝑚2𝑅2

𝑟3 . (6.12)

The secondary disrupts when 𝐹21 is comparable to its gravitational binding (self-)
force

𝐹21 ≈
𝐺𝑚2

2

𝑅2
2
, (6.13)



240

which occurs at

𝑟 ≈
(
2
𝑚1𝑅

3
2

𝑚2

)1/3

, (6.14)

corresponding to a Keplerian orbital frequency of

𝑓dis ≈
√︄
𝐺𝑚2(𝑚1 + 𝑚2)

8𝜋2𝑚1𝑅
3
2

. (6.15)

Therefore, (
𝑓dis
𝑓cont

)2
=
𝑚2(𝑅1 + 𝑅2)3

2𝑚1𝑅
3
2

. (6.16)

For compact objects with comparable radii and masses, 𝑓dis ≈ 2 𝑓cont and thus the
binary contacts before disruption. For a highly compact primary, for example a
NS-WD binary with 𝑅1 ≪ 𝑅2, 𝑓dis < 𝑓cont and thus the binary disrupts before
contact. In any case, for binaries involving WDs, both of these frequencies are well
below the LIGO sensitive band.

6.9 Injection Properties
In this appendix we provide more details for the parameter estimation analysis of
Sec. 6.2. In Table 6.9 we list the extrinsic parameters of the simulated signals. We
select the luminosity distance unique to each system by scaling it to reach a target
SNR, either 20 or 12.

For the single-event analyses, we sample the parameter posterior using Dynesty [104]
as implemented in Bilby [18, 100], with a prior that is uniform in component
detector-frame masses and aligned spin components. We adopt standard isotropic
priors for position and inclination parameters, and a luminosity distance prior that
is uniform in comoving volume [100]. The prior on the component tidal deforma-
bilities is uniform and ranges from Λ = 0 to Λ = 20000, the maximum value the
waveform was validated on [2]. In some cases, the Λ posterior distribution rails
against this upper limit, but the simulated values for Λ are always within in the prior
bounds.

We use a multibanding likelihood [82] and analyze 512 or 256 s of data (depending
on the mass) at 8 kHz with lower and upper frequency cutoffs of 20 Hz and 3.5 kHz,
respectively. The upper cutoff is above the inherent waveform termination [2, 58].
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Parameter Label Value

Phase at 20 Hz 𝜙 0.24 rad
Right Ascension 𝛼 0.18 rad

Declination 𝛿 0.62 rad
Inclination 𝜄 2.7 rad

Polarization Angle 𝜓 0.58 rad
Merger time at geocenter 𝑡𝑐 0 sec (GPS)

Table 6.1: Values for extrinsic parameters used for simulating the data.

6.10 Impact of measurements of 𝛿Λ̃
In order to constrain the component tidal deformabilities, measurement of an addi-
tional parameter beyond Λ̃, such as 𝛿Λ̃, is required. The parameter 𝛿Λ̃ represents
the tidal contributions to the frequency-domain phase which appear at 6PN and
are not proportional to Λ̃; intuitively it is a measure of the asymmetry in the tidal
contributions from the two components [114]. We examine the impact of the con-
straints on 𝛿Λ̃ in the tidal parameters from the (𝑚1, 𝑚2) = (1.1, 0.9) 𝑀⊙ BNS signal
in Fig. 6.9. In the left panel, we present the induced prior, see Sec. 6.2, and the
recovered marginal posterior for Λ̃ and 𝛿Λ̃. We obtain a symmetric 90% credible
interval for Λ̃ ∈ (1804, 4131) with respect to a prior that covers 0 < Λ̃ ≲ 26000.
In order to break the degeneracy between Λ1 and Λ2, we must measure additional
parameters. However, 𝛿Λ̃ is relatively poorly measured at current sensitivity. The
left panel of Fig. 6.9 shows that, even though the 1-d marginal posterior for 𝛿Λ̃ (red)
appears to be well constrained relative to the prior (gray), this is primarily driven by
Λ̃, c.f., the 2 − 𝑑 marginal posterior.

In order to investigate how information about 𝛿Λ̃ impacts the component tidal
deformabilities, we approximate an inference where no information about 𝛿Λ̃ exists.
We draw (𝑞, Λ̃) samples from the full posterior and combine them with samples
of 𝛿Λ̃ from its effective prior implied by the given (𝑞, Λ̃), subject to the condition
Λ𝑖 (𝑞, Λ̃, 𝛿Λ̃) > 0. We display the marginal distribution in the left panel panel of
Fig. 6.9 (teal). We compare this to the full marginal posterior on Λ1 − Λ2 (red).
We find that while knowledge of 𝛿Λ̃ does change the distribution on Λ1–Λ2, this
information does not substantially change the correlation structure. As expected for
a well-measured parameter, this procedure leaves the Λ̃ posterior unaffected (left).
The measurement of 𝛿Λ̃ itself favors higher values of 𝛿Λ̃ (left), which correspond
to higher values of Λ2 and lower values for Λ1 (right).
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Figure 6.9: Marginal posterior (in brown) for tidal parameters from the BNS signal
with (𝑚1, 𝑚2) = (1.1, 0.9) 𝑀⊙. (Left) Tidal parameters Λ̃ and 𝛿Λ̃, with the prior
plotted in grey. (Right) Component tidal deformabilties Λ1 and Λ2. In both panels,
the turquoise distribution corresponds to the posterior assuming that there is no
information about 𝛿Λ̃. We find that information about 𝛿Λ̃ is nonnegligible, though
insufficient to break the degeneracy between Λ1 and Λ2.
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C h a p t e r 7

THE CONNECTION BETWEEN THE DENSE MATTER
EQUATION OF STATE AND THE ASTROPHYSICAL

POPULATION OF COMPACT OBJECTS

[1] Jacob Golomb et al. “The interplay of astrophysics and nuclear physics
in determining the properties of neutron stars”. In: (Oct. 2024). I co-led
this study with Jacob Golomb studying how astrophysical and dense-matter
physics can be disentangled via hierarchical analysis. I performed equation of
state analyses, and co-wrote the text of the manuscript. arXiv: 2410.14597
[astro-ph.HE].

Abstract
Neutron star properties depend on both nuclear physics and astrophysical processes,
and thus observations of neutron stars offer constraints on both large-scale astro-
physics and the behavior of cold, dense matter. In this study, we use astronomical
data to jointly infer the universal equation of state of dense matter along with two
distinct astrophysical populations: galactic neutron stars observed electromagneti-
cally and merging neutron stars in binaries observed with gravitational waves. We
place constraints on neutron star properties and quantify the extent to which they
are attributable to macrophysics or microphysics. We confirm previous results indi-
cating that the galactic and merging neutron stars have distinct mass distributions.
The inferred maximum mass of both galactic neutron stars, 𝑀pop,EM = 2.05+0.11

−0.06 𝑀⊙

(median and 90% symmetric credible interval), and merging neutron star binaries,
𝑀pop,GW = 1.85+0.39

−0.16 𝑀⊙, are consistent with the maximum mass of nonrotating
neutron stars set by nuclear physics, 𝑀TOV = 2.28+0.41

−0.21 𝑀⊙. The radius of a 1.4𝑀⊙

neutron star is 12.2+0.8
−0.9 km, consistent with, though ∼ 20% tighter than, previous

results using an identical equation of state model. Even though observed galactic
and merging neutron stars originate from populations with distinct properties, there
is currently no evidence that astrophysical processes cannot produce neutron stars
up to the maximum value imposed by nuclear physics.

https://arxiv.org/abs/2410.14597
https://arxiv.org/abs/2410.14597
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7.1 Introduction
The properties of neutron stars (NSs) depend on both the dense-matter physics that
governs their interiors and the astrophysical context in which they form, evolve, and
are observed [69, 82, 29, 31]. This interplay is driven by an apparent coincidence:
the mass scale of maximally-compact matter in its ground state is comparable to
the Chandrasekhar mass. The NS characteristic compactness (defined as 𝑀/𝑅
with 𝑀 the mass and 𝑅 its radius) is just below the black-hole (BH) limit of 1/21.
This implies 2𝑀/𝑅 ∼ 𝑐2

𝑠 ∼ 1 [96], where 𝑐2
𝑠 is the characteristic speed of sound

squared in the body. In the standard model, cold matter can only achieve such
sound-speeds at densities greater than an atomic nucleus, 𝜌nuc ∼ 2.8 × 1014g/cm3

at high neutron-to-proton ratio. This requirement fixes both the compactness and
density of such a near-maximally compact object, and therefore its mass and radius
scales to 𝑀 ∼ 1𝑀⊙ and 𝑅 ∼ 10 km respectively. The former is remarkably close
to the Chandrasekhar mass, ∼1.4𝑀⊙, the maximum mass that can be supported by
electron degeneracy. As NSs form from cores that are too massive to be supported
by electron degeneracy, this sets another characteristic mass scale for NSs [33].

Substantial uncertainties in the details of NS formation and dense-matter physics
mean it is not immediately clear which of the two drives the distribution of NS
masses. For example, general relativity and the dense-matter equation of state
(EoS) set a maximum mass for nonrotating NSs, the Tolman-Oppenheimer-Volkoff
(TOV) limit 𝑀TOV [103, 81]. Originally speculated to be near 0.7𝑀⊙, 𝑀TOV is
now understood to be ∼2−3𝑀⊙ [89, 62, 68, 84, 86, 70, 77], but it is unknown
whether astrophysical formation mechanisms can produce NSs up to this mass.
Moreover, NSs form in a variety of ways, including in core-collapse supernovae
and binary mergers, each of which likely results in different natal mass and spin
distributions. Even after formation, NSs are modified via binary interactions: for
instance, “spider” pulsars [92] may achieve large masses and spins via accretion.

galactic observations have constrained the masses of dozens of NSs in binaries via
pulsar timing [25]. The mass distribution of galactic NSs with a mass measurement
includes a primary peak at ∼1.35𝑀⊙ preferred at 3:1 over a secondary peak at
∼1.8𝑀⊙ [17, 15, 49]. The observed cutoff in the distribution above ∼2𝑀⊙ [15,
49] may correspond to the TOV mass, or to a different maximum mass imposed
by astrophysical processes; the most general interpretation of the cutoff identifies
it as an astrophysical maximum mass that may differ from 𝑀TOV. The galactic NS

1In units where 𝐺 = 𝑐 = 1, which we use unless otherwise stated.
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population is broadly consistent with the masses of NS-like compact objects in wide-
period binaries revealed by Gaia astrometry [19, 20]. However, this inferred mass
distribution does not account for selection effects in the various surveys, and lumps
together NSs in different astrophysical systems, e.g., NS–NS binaries (BNS) and
NS–WD binaries, that may have different inherent distributions. Indeed, the known
galactic BNSs are all contained within the ∼1.35𝑀⊙ component of the bimodal
distribution [51].

A subset of galactic millisecond pulsars [74] show persistent pulsed X-ray emission
originating from surface hotspots. Detailed modeling of the hotspot emission has
placed constraints on the mass and radius of three pulsars using NICER and XMM-
Newton [76, 90, 77, 91, 32], two of which are in binaries and thus have radio-based
mass constraints. Since two of the NICER targets are known radio pulsars, they
are commonly treated as part of the galactic NS population. For example, the
properties of PSR J0740+6620, one of the most massive known pulsars [36, 55],
have been inferred simultaneously with the galactic population [50]. Requiring PSR
J0740+6620 to hail from the bimodal galactic NS mass distribution revises its mass
downward to 2.03+0.14

−0.11 𝑀⊙ [50].

A different population consists of NSs in merging compact binaries with NSs or
black holes (BHs) observed with gravitational waves (GWs) [10]. Among BNSs,
GW170817 [5] is consistent with the galactic BNS population with a total mass
of ∼2.7𝑀⊙. GW190425, at a total mass of ∼3.4𝑀⊙ [6], is however an outlier.
Attempts to explain this discrepancy include selection effects [94, 97] and non-BNS
interpretations [59, 54]. Regardless, this discrepancy suggests that the galactic and
merging BNS distributions should be treated separately. The distribution of all
NSs observed in merging binaries to date, including both BNSs and likely NSBH
systems [9, 2], is relatively flat with no prominent peak at ∼1.35𝑀⊙ [67, 10].
The population of NSs in BNSs and NSBHs might, however, be different owing
to different formation and evolutionary histories [10, 22]. NS spins are ignored
from these constraints due to large measurement uncertainties [23]; it is therefore
unknown how merging NS spins relate to the well-measured spins of galactic NSs.
GW-based NS observations (primarily GW170817) also drive constraints on the
EoS through mass and tidal deformability constraints [5, 3, 4].

The picture is much simpler when it comes to the nuclear physics and the EoS
of NSs. Even when originating from different formation mechanisms, cold NSs
are expected to be described by the same universal EoS. This expectation has been
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widely utilized to combine mass, radius, and tidal deformability measurements from
various observations to place constraints on the EoS, e.g. [3, 78, 85, 40, 66, 58, 77,
86, 84, 70, 48, 24]. Even then, assumptions about NS masses have to be made.

Such assumptions typically include a uniform mass distribution, and whether astro-
physical mechanisms create NSs up to the TOV mass or up to a different predeter-
mined value [66, 70].

In this paper, we study the properties of NSs in binaries with a focus on separating
the impact of nuclear physics and astrophysics. We use radio, X-ray, and GW data
to jointly infer the dense-matter EoS and the NS mass distribution, each with their
own maximum mass. We go beyond considering a single mass distribution for all
NSs that terminates at the TOV mass [24, 48] and separately infer the populations
of galactic NSs and merging BNSs. Moreover, rather than the TOV mass, we
allow the possibility of the astrophysical mass distribution terminating at a different
“astrophysical maximum mass” that is lower than the TOV mass. Our model and
inference set up allow us to begin to answer whether the maximum mass of NSs in
various subpopulations is limited by the EoS or by astrophysical processes. Beyond
access to such questions, simultaneous inference mitigates biases that can arise
with as few as O(10) GW detections when inferring either the EoS or the mass
distribution alone while making improper assumptions about the other [108, 57].
We also account for GW selection effects, which cause the detected population to be
biased towards higher masses; as the selection effects in the electromagnetic surveys
are unknown, we do not consider them.

The subpopulations, datasets, and models are described in Sec. 7.2. The EoS is
modeled with a mixture of Gaussian processes (GPs) [65, 44], which allows for a
wide range of EoS morphologies including phase transitions [47] and imposes min-
imal intra-density correlations that hamper the flexibility of parametric models [71].
We consider two subpopulations:

1. The galactic NS population is modeled with a bimodal distribution with a
maximum mass cutoff [15, 17]. The relevant datasets include radio, optical,
and X-ray observations of pulsars in binaries [15] and X-ray pulse-profile ob-
servations of pulsars J0030+0451 [76, 90], J0740+6620 [77, 91], and J0437-
4715 [32].

2. The merging BNS population observed with GWs is modeled with a power-
law with a maximum mass cutoff. The dataset consists of GW170817 [5] and
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GW190425 [6], both assumed to be BNSs.

Joint inference on the EoS and mass subpopulations is performed with a reweighting
scheme that is described in Sec. 7.3 and Appendix 7.7.

Our results are presented in Sec. 7.4. We find no evidence that the maximum mass of
the two subpopulations is different than the TOV mass. The difference between the
maximum galactic NS (merging BNS) mass and the TOV mass is less than 0.53𝑀⊙

(0.73𝑀⊙) at 90% credibility, with zero difference consistent with the posteriors.
Even though the maximum masses are consistent, we confirm previous results that
the mass distributions of galactic NSs and merging BNSs are different. The latter
possesses no prominent peak at 1.35𝑀⊙, indicating that the two distributions should
be modeled separately in an inference framework and have the freedom to differ from
one another.

For the NS EoS, we infer a sound-speed profile that exceeds the conformal bound
of 1/

√
3 for weakly interacting nucleonic matter [21], in line with a previous study

using the same EoS model [70]: the 90% lower bound on the maximum speed
of sound squared anywhere inside the NS is 0.59. We constrain the radius of a
canonical NS, a proxy for the stiffness of the EoS, to 𝑅1.4 = 12.2+0.8

−0.9 km, and the
TOV mass to 𝑀TOV = 2.28+0.41

−0.21 𝑀⊙. Uncertainties are lower than Legred et al.
[70] due to the recent NICER observation of PSR J0437-4715 and the impact of
the ensemble of galactic NS mass measurements via the updated treatment of the
maximum mass.

We conclude in Sec. 7.5.

7.2 Modeling the Equation of State and the mass distribution
In this section we describe the data, as well as the EoS and astrophysical populations
we model them with.

Data
The observations that inform the joint inference of the NS EoS and astrophysi-
cal population come from three sources: radio/optical pulsar mass measurements
(PSR), X-ray pulse profile modeling for pulsar masses and radii (NICER), and GW
constraints on BNS masses and tidal deformabilities (GW).

The PSR dataset includes the 74 galactic pulsars with a mass measurement from
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Ref. [15], minus PSR J0437–4715, which is counted as part of the NICER dataset.2
The PSR observations are heterogeneous, including NSs in various types of binaries
and several different mass determination methods.

The NICER dataset consists of the observations of PSR J0030+0451 [78, 90], PSR
J0740+6620 [77, 91], and PSR J0437–4715 [32]. The constraints on the masses
and radii of these pulsars are sensitive to the details of the X-ray pulse profile
modeling, such as the assumed hotspot geometry and the stochastic sampling of the
multidimensional parameter posterior; thus different interpretations of the NICER
data exist. Here we use results from the three-hotspot model of Ref. [78] for
J0030+0451, the combined NICER-XMM Newton analysis with the two-hotspot
model from Ref. [77] for J0740+6620, and the CST+PDT model from Ref. [32] for
J0437–4715. As the NICER analyses for J0740+6620 and J0437–4715 incorporate
pre-existing radio-based mass estimates, we exclude them from the PSR dataset
to avoid double-counting. In Appendix 7.10 we quantify the sensitivity of our
inference to alternative data selection choices for the NICER observations.

For the GW dataset, we consider compact binary coalescences from the third Gravi-
tational Wave Transient Catalog [8] of the LIGO-Virgo-KAGRA network [1, 11, 14]
with source-frame chirp massM ≲ 2.176𝑀⊙, corresponding to equal-mass compo-
nent masses below 2.5𝑀⊙. This leaves us with GW170817 [5] and GW190425 [6]
as the only events consistent with BNS mergers. We do not consider the recent
observation of GW230529_181500 [2], which is potentially a BNS merger ac-
cording to this criterion, as sensitivity estimates for the fourth observing run do
not exist. For GW170817, we generate new posterior samples with the waveform
approximant IMRPhenomPv2_NRTidal, which includes spin-precession and tidal
effects [39], using the parameter estimation package bilby [18, 93] and the nested
sampler dynesty [99]. We fix the source location to the host galaxy NGC4993
and adopt spin priors that are isotropic in orientation and uniform in dimensionless
magnitude up to 0.05, motivated by the spin distribution of pulsars in binary systems
expected to merge within a Hubble time [112]. For GW190425, we use the publicly
released parameter estimation samples [72] for the IMRPhenomPv2_NRTidalwave-
form. Since GW190425’s total mass is inconsistent with those of galactic BNSs,
we allow for dimensionless spin magnitudes up to 0.4, roughly corresponding to a
1 ms spin period [60]. Appendix 7.12 investigates the impact of a spin-magnitude
upper limit of 0.05 for both GW170817 and GW190425.

2While J0437–4715 is in the NICER dataset, we use its radio mass measurement to inform the
mass distribution.
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EoS model
The dense-matter EoS, i.e., the pressure-density relation, is described with a model-
agnostic Gaussian process [65, 44], which builds a prior EoS process via a mixture of
GP hyperparameters probing a large range of correlation scales and strengths. This
procedure produces an EoS distribution that is relatively insensitive to the nuclear
models it is conditioned on [44] and imposes minimal model-dependent correlations
between the low- and high-density EoS [71]. The GP flexibility is particularly
important for our goal of disentangling the maximum TOV mass 𝑀TOV and the
maximum astrophysical mass. Less flexible parametric EoS models implicitly
correlate the radius or tidal deformability and 𝑀TOV [71] which in turn translate to
model-dependent correlations between 𝑀TOV and the astrophysical parameters. All
NSs are assumed to be described by the same EoS. For efficiency, we restrict the
prior to EoSs with 𝑀TOV > 1.8𝑀⊙.

Astrophysical population models
For the astrophysical mass distribution we use parametric distributions with hy-
perparameters 𝜂. We consider two classes of observations modeled with separate
distributions: galactic NSs observed via electromagnetic (EM) radiation as part
of the PSR and NICER datasets, and NSs in merging BNSs observed via GWs
constituting the GW dataset.

We restrict to the NS masses while ignoring spins and assume that all objects are
NSs.

Galactic neutron stars with radio and X-rays

Motivated by Refs. [17, 15, 50], we model the galactic NS masses 𝑚 as a mixture
of two Gaussians:

𝜋(𝑚 |𝜂EM) = 𝑓N(𝜇1, 𝜎1) + (1 − 𝑓 )N (𝜇2, 𝜎2) , (7.1)

for 𝑚 ∈ [𝑀min, 𝑀pop,EM], and where N(𝜇, 𝜎) is a truncated normal distribu-
tion with mean 𝜇 and standard deviation 𝜎, and 𝑓 is the mixture weight. Fol-
lowing Ref. [15], we fix 𝑀min = 1𝑀⊙ and infer the hyperparameters 𝜂EM =

{𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝑓 , 𝑀pop,EM}with flat priors: 𝑀pop,EM ∈ (1.8, 3.0) 𝑀⊙, 𝜇1 ∈ (1, 2) 𝑀⊙,
𝜇2 ∈ (𝜇1, 2.5) 𝑀⊙, 𝑓 ∈ (0, 1), and 𝜎1,2 ∈ (0.05, 1) 𝑀⊙. Since all analyzed objects
are NSs, we impose𝑀pop,EM < 𝑀TOV.3 This prior restriction leads to a marginal pri-

3We ignore the impact of pulsar spin on the maximum mass. Using approximate relations to
fourth order in spin magnitude [79, 27], we estimate that the maximum allowed mass will differ from
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ors on𝑀pop,EM and the EoSs that are not uniform, although the full multidimensional
prior is flat within its domain of support.

Although the PSR and NICER datasets include NSs in different astrophysical
settings, i.e. in binaries with various companions, or in isolation in the case of
J0030+0451, and could in principle hail from different subpopulations, we model
these NSs as a single population for consistency with previous results and due to
the lack of selection effect estimates. (We are not aware of any established methods
to account for selection effects in radio surveys or for NICER’s target selection
procedure [26].) Given the lack of selection effect estimates for the PSR and
NICER datasets, we simply assume the observed mass distribution to be equivalent
to the astrophysical distribution.4 We quantify the impact of this assumption in
Appendix 7.11, where we present results with a fixed uniform mass distribution in
place of Eq. (7.1).

Merging neutron stars with gravitational waves

We model BNS masses with a truncated power-law for both binary components 𝑚1

and 𝑚2:
𝜋(𝑚1, 𝑚2 |𝜂GW) ∝ 𝑚𝛼1𝑚

𝛼
2 , (7.2)

for 𝑚 ∈ [𝑚min, 𝑀pop,GW] and random pairing between 𝑚1 and 𝑚2 in the two-
dimensional space. We again fix 𝑚min = 1𝑀⊙ and infer the hyperparameters 𝜂GW =

{𝛼, 𝑀pop,GW} with flat priors 𝛼 ∈ (−5, 5), 𝑀pop,GW ∈ (1.6, 2.5) 𝑀⊙. Since we
assume that both GW170817 and GW190425 are BNSs, we again impose𝑀pop,GW <

𝑀TOV.

GW selection effects are well understood, and we incorporate them in our inference.
Because the GW data selection procedure involves identifying events as BNSs based
on a component mass cut at 2.5𝑀⊙, our analysis only places constraints on the mass
distribution below 2.5𝑀⊙. The GW selection modeling is described in Sec. 7.3.

7.3 Joint inference via reweighting
The joint mass-EoS model is a combination of EoS draws from the GP prior process
and the parametric mass models of Eqs. (7.1) and (7.2). While the joint posterior
could be sampled with standard stochastic sampling methods with pre-computed

𝑀TOV by ≲ 1% compared to statistical uncertainties ∼20 − 30% for the range of pulsar periods in
our dataset, 𝑃 ≳ 2 ms.

4This procedure can result in a bias even for the detected population [42]. Such a bias however is
expected to be small. For example, Fig. 4 of [42] shows the bias for∼800 simulated GW observations.
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GP draws, we instead use a multi-stage reweighting scheme and the GP draws from
Ref. [70].

The reweighting scheme includes the following steps, with technical details relegated
to the Appendices:

1. Use standard stochastic sampling to infer the mass population and the EoS
using Eqs. (7.1) and (7.2) for the mass distribution and a simplified, low-
dimensional EoS model. Details about the EoS model are given in Ap-
pendix 7.8. The EoS model is included here to mitigate potential biases of a
mass-only inference [57].

2. Treat the inferred mass distribution as a proposal distribution. For each
sample from the distribution of 𝜂 = {𝜂EM, 𝜂GW}, calculate the likelihood for
each pre-computed GP draw. The likelihood form depends on the dataset
considered [67] and is described in Secs. 7.3 and 7.3 for the GW and EM data
respectively.

3. With these likelihoods, calculate weights from the proposal mass distribution
to the target joint mass-GP EoS distribution as described in Appendix 7.7.

4. Combine the new posterior distributions for each dataset. This procedure
allows us to obtain weighted samples from the joint posterior of the mass dis-
tribution and the GP EoS. We validate the reweighting scheme in Appendix 7.9
with simulated GW observations.

Each of the datasets considered (GW, NICER, and PSR) results in unique constraints
and thus requires a unique formulation of the likelihood [67, 29]. Below we dis-
cuss each dataset likelihood noting that the full likelihood is the product over the
individual datasets.

GW likelihood
Given 𝑁GW independent events, the likelihood for the EoS 𝜀 and population hyper-
parameters 𝜂GW is5 [107, 101, 75]

LGW(𝑑 |𝜀, 𝜂GW) ∝ 𝑝det(𝜂GW)−𝑁GW×
𝑁GW∏
𝑖

∫
L(𝑑𝑖 |𝑚1, 𝑚2, 𝜀)𝜋(𝑚1, 𝑚2 |𝜂GW)𝑑𝑚1𝑑𝑚2 ,

(7.3)

5This expression assumes a 1/𝑅 prior on the event rate 𝑅 and marginalizes over it [75, 53].
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where 𝜋(𝑚1, 𝑚2 |𝜂GW) is the model of Eq. (7.2) and

L(𝑑𝑖 |𝑚1, 𝑚2, 𝜀) = L(𝑑𝑖 |𝑚1, 𝑚2,Λ(𝑚1, 𝜀)Λ(𝑚2, 𝜀)) , (7.4)

is the 𝑖th individual-event GW likelihood (e.g., [52, 104]) marginalized over all
binary parameters other than the component masses𝑚1, 𝑚2 and tidal deformabilities
Λ1,Λ2. Consistency with the EoS is ensured by calculating the likelihood for
Λ1 = Λ(𝑚1, 𝜀),Λ2 = Λ(𝑚2, 𝜀), i.e., the EoS prediction for the tidal deformability
given the mass. We estimate the individual-event likelihood from the posterior
samples for the source-frame masses and tidal deformabilities using a Gaussian
mixture model [57], and the integral in Eq. (7.3) is computed as a Monte Carlo sum.

The term 𝑝det(𝜂GW) encodes the selection effect which characterizes how parts of
the parameter space are over-represented in a catalog of GW events, as determined
by the sensitivity of the detectors. Defining 𝑝det(𝑑) as the probability that search
algorithms detect a significant signal in data 𝑑 results in

𝑝det(𝜂GW) ≡
∫

D𝑑
∫

𝑑𝜃 𝑝(𝑑 |𝜃)𝜋(𝜃 |𝜂GW)𝑝det(𝑑)

=

∫
𝑑𝜃 𝜋(𝜃 |𝜂GW)𝑝det(𝜃) ,

(7.5)

where we identify 𝑝det(𝜃) ≡
∫
D𝑑 𝑝(𝑑 |𝜃)𝑝det(𝑑) as the probability of detecting

an event with parameters 𝜃, marginalized over possible realizations of data 𝑑. For
example, neglecting the specifics of the noise-generating process, the sensitivity
to an event increases with its chirp mass ∼M5/6

𝑐 and decreases inversely with its
distance. We then further marginalize over possible realizations from the population
𝜃 ∼ 𝜋(𝜃 |𝜂GW). The presence of 𝑝det(𝜂GW) in Eq. (7.3) ensures that the final result
reflects the true astrophysical population rather than the observed population. In
practice, 𝑝det(𝜂GW) might also depend on the EoS, but Ref. [37] showed that the
effect is negligible except for very stiff EoSs and low-mass NSs: there is a ≲ 2%
change in the match between a template that sets Λ = 0 and the true waveform.

We compute 𝑝det(𝜂GW) by reweighting recovered simulated signals in data from the
first three observing runs, using standard techniques [10, 49, 102].

NICER likelihood
Given 𝑁NICER observations, the likelihood for the EoS 𝜀 and population hyperpa-
rameters 𝜂EM is obtained by marginalizing over the pulsar mass

𝑝NICER(𝑑 |𝜀, 𝜂EM) =
𝑁NICER∏
𝑖

∫
L(𝑑𝑖 |𝑚, 𝜀)𝜋(𝑚 |𝜂EM)𝑑𝑚 , (7.6)
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where 𝑖 indexes the NICER observations, 𝜋(𝑚 |𝜂EM) is the mass distribution of
Eq. (7.1), and

L(𝑑𝑖 |𝑚, 𝜀) = L(𝑑𝑖 |𝑚,𝐶 (𝑚, 𝜀)) , (7.7)

is the individual-pulsar likelihood marginalized over all NICER parameters other
than the mass𝑚 and compactness𝐶, which is again evaluated on the EoS prediction.
The likelihoods are described in the publications associated with each observation
[32, 76, 77]. We use a Gaussian mixture model [57] to evaluate Eq. (7.7), and a
Monte Carlo sum for the integral in Eq. (7.6).

The NICER analysis of PSR J0437-4715 in Ref. [32] uses a prior that is flat in
radius, rather than flat in compactness (or inverse compactness) like the analyses
of PSR J0030-0451- [76] and PSR J0770+6620 [77]. We correct for this with the
appropriate Jacobian term to obtain a likelihood function in mass and compactness.
Unlike Eq. (7.3) for the GW observations, the NICER likelihood ignores selection
effects per the discussion in Sec. 7.2.

PSR likelihood
Finally, the likelihood for 𝑁PSR pulsar mass measurements is

𝑝PSR(𝑑 |𝜀, 𝜂EM) =
𝑁PSR∏
𝑖

∫
L(𝑑𝑖 |𝑚)𝜋(𝑚 |𝜂EM)𝑑𝑚 , (7.8)

where 𝑖 indexes the pulsars and 𝜋(𝑚 |𝜂EM) is the mass distribution of Eq. (7.1). The
form of L(𝑑𝑖 |𝑚) for each observation is prescribed analytically in Refs. [15, 50],
depending on whether the measurement constrains the pulsar mass, the binary mass
function and the total mass, or the binary mass function and the mass ratio. Like the
NICER likelihoods, the PSR likelihoods do not account for selection effects, and
we evaluate the integral in Eq. (7.8) via Monte Carlo.

7.4 Implications of joint mass-EoS inference
In this section, we present results from the joint inference over the EoS and the
mass distribution of two NS populations. We begin with mass-specific and EoS-
specific results in Secs. 7.4 and 7.4 respectively, before contrasting their impact on
NS properties in Sec. 7.4.

Constraints on astrophysical populations
Figure 7.1 shows the inferred mass distribution of merging BNSs observed with
GWs (modeled with a truncated power-law) and the observed distribution of galactic
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Figure 7.1: Posterior on the mass distribution of the GW BNS (orange) and the
galactic NS (blue) population. We plot the median and 90% highest-probability
credible regions. The EM population is constrained to much better precision than
the GW one due to the low number of GW BNS detections. With the caveat that
they correspond to the astrophysical BNS and observed galactic NS distributions
respectively, we find that the two distribution are inconsistent, in agreement with
Ref. [10]. Faint lines are random draws from the GW mass distribution, illustrating
the bimodal uncertainties in the mass distribution.

NSs observed with EM (modeled with a truncated Gaussian mixture). The BNS
population is consistent with being flat and has large uncertainties due to the now
number of events (a total of 4 NSs). The smallest uncertainty is at ∼1.4𝑀⊙,
corresponding to the relatively well-measured masses on GW170817, while there
is vanishing support for masses above ∼2.2𝑀⊙ with 𝑀pop,GW = 1.85+0.39

−0.16 𝑀⊙.
This shape is broadly consistent with the results of Refs. [10, 67] that additionally
considered the two NSs in the NSBH binaries GW200105 and GW200115 and did
not model the EoS. The seemingly “bimodal” shape with peaks at high and low
masses at the 90% level is model-dependent: it is an outcome of the fact that the
distribution is well-measured at ∼1.4𝑀⊙ and we model it with a truncated power-
law. Figure 7.2 indeed shows that the power-law index 𝛼 and the maximum mass,
𝑀pop,GW, are correlated and the upper limit on 𝑀pop,GW depends on the 𝛼 prior. In
particular, while the one-dimensional posterior peaks at 𝛼 ≈ 0, 𝛼 ≳ 4 cannot be
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Figure 7.2: Marginalized posterior for the power-law slope 𝛼 and maximum mass
𝑀pop,GW of the GW population. The slope 𝛼 is poorly constrained and thus its
posterior rails against the upper prior bound, in turn affecting the 𝑀pop,GW posterior.

ruled out but is only consistent with 𝑀pop,GW ≲ 2.0𝑀⊙.

The observed EM population is comparatively better constrained as it is based on
a total of 74 pulsar mass measurements. We find consistent results with Refs. [15,
50] that used the same pulsar mass data but did not infer the EoS with 𝜇1 =

1.35+0.02
−0.02 𝑀⊙ and 𝜇2 = 2.01+0.43

−0.27 𝑀⊙, 𝑓 = 0.65+0.11
−0.13, and 𝜎1 = 0.07+0.02

−0.02 𝑀⊙ and
𝜎2 = 0.39+0.37

−0.22 𝑀⊙. The maximum mass is 𝑀pop,EM = 2.05+0.11
−0.06 𝑀⊙, compared to

2.12+0.12
−0.17 𝑀⊙ in [15] and 2.25+0.82

−0.26 𝑀⊙ in [50]. Our estimate is lower due to the fact
that we simultaneously infer the EoS and impose 𝑀pop,EM < 𝑀TOV.

Assuming that the three NICER pulsars are part of the general galactic NS pop-
ulation leads to updated mass inference. The original mass estimates quoted in
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Refs. [76, 77, 32] refer to flat mass priors, while our analysis effectively updates
the prior to be the population distribution [50].6 The mass for each NICER target
under a population-informed (flat) prior is 1.37+0.22

−0.11 (1.44+0.25
−0.23) 𝑀⊙ for J0030+0451,

1.39+0.08
−0.05 (1.42+0.06

−0.06) 𝑀⊙ for J0437-4715, and 2.01+0.08
−0.09 (2.07+0.11

−0.12) 𝑀⊙ for J0740+6620.
The J0740+6620 result is somewhat larger than the value in Farr and Chatziioannou
[50], 2.03+0.17

−0.14 𝑀⊙. The effect is most stark for J0030+0451 whose mass is poorly
measured from the X-ray data alone, but now resides in the dominant peak of the
mass distribution.

Constraints on EoS quantities
Figure 7.3 shows the prior and posterior for various macroscopic and microscopic
EoS properties: the TOV mass, 𝑀TOV, the radius and tidal deformability of a
canonical 1.4𝑀⊙ NS, 𝑅1.4 and Λ1.4 respectively, the radius of a 1.8𝑀⊙ NS, Λ1.8,
and the pressure at twice and 6 times nuclear saturation, 𝑝2.0 and 𝑝6.0 respectively.
We infer Λ1.4 = 438+224

−166 and 𝑅1.4 = 12.2+0.8
−0.9 km. For comparison, we also plot

the corresponding analysis from Legred et al. [70] that fixes all mass distributions
to uniform. To isolate the effect of the mass distribution inference, we repeat the
analysis of Ref. [70] while adding the X-ray mass-radius measurement of J0437-
4715 such that the two analyses use the same NICER and GW data. We obtain
largely consistent results: mass-marginalization leads to mild changes in 𝑅1.4 and
Λ1.4, while including spider pulsars in the analysis and introducing an EoS-limited
astrophysical maximum mass leads to a mild increase in the inferred value of 𝑀TOV.

These results are consistent with previous estimates. Legred et al. [70] used the GP
EoS model with the same GW dataset, the first two NICER objects, J0030+0451
and J0740+6620, and the mass of J0348+0432 (all with a fixed flat mass prior) to
find 𝑅1.4 = 12.6+1.0

−1.1 km and 𝑀TOV = 2.21+0.31
−0.21 𝑀⊙. Our updated radius estimate has

a ∼0.4 km lower median due to the new J0437-4715 data that favor softer EoSs and
a ∼20% smaller uncertainty due to the fact that we use more NICER and massive
pulsar data. Our updated 𝑀TOV estimate of 2.28+0.41

−0.21 𝑀⊙ is marginally larger than
the value found in Legred et al. [70], which can be attributed to the spider pulsars,
and the removal of the EoS Occam penalty for massive pulsar measurements; see
the Appendix of Ref. [70].

The full mass-radius inferred relation is shown in Fig. 7.4 which plots the 90%
symmetric credible region for the radius at each mass. We include the prior and the

6The same is true for the two GW events, but the effect is minimal as the mass distribution
uncertainty is wide and consistent with flat which was the inference prior to begin with.
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Figure 7.3: One- and two-dimensional posteriors for select EoS macroscopic and
microscopic parameters: the TOV mass, 𝑀TOV, the radius and tidal deformability of
a canonical 1.4𝑀⊙ NS, 𝑅1.4 and Λ1.4 respectively, the radius of a 1.8𝑀⊙ NS, 𝑅1.8,
and the log-base-10 pressure (divided by the speed of light squared) at twice and six
times nuclear saturation, 𝑝2.0 and 𝑝6.0 respectively, when measured in g/cm3. Two-
dimensional contours denote the boundaries of the 90% credible regions. We show
the prior (black), the posterior from the main analysis that marginalizes over the
mass distribution (blue), and the analogous posterior that arises from additionally
including the mass-radius measurement of J0437-4715 in the analysis of Ref. [70].
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Figure 7.4: Mass-radius inference, we show the 90% symmetric credible region for
the radius at each mass. We plot the prior (black), posterior from the main analysis
that marginalizes over the mass distribution (blue), and posterior from Ref. [70] that
fixes the mass distribution to flat and does not include J0437-4715. The upper limit
on the radius decreases by ∼ 0.5 km for all masses.

posterior from our analysis, and compare against the posterior from Legred et al.
[70], i.e., without J0437-4715. While the radius lower limit is broadly consistent
with Ref. [70], we obtain a lower radius upper limit for all masses by ∼500 m,
which we attribute to the new data for the J0437-4715 radius. We additionally plot
credible regions for the relation between the NS mass 𝑚 and its central density 𝜌𝑐 in
Fig. 7.5. The upper limit on the mass of a NS with central density 4 times the nuclear
saturation density (𝜌nuc) increases from ∼2.55𝑀⊙ to ∼2.69𝑀⊙, primarily due to
the removal of the Occam penalty and the inclusion of spider pulsars. The central
density of the maximum mass star is inferred to be 5.53+1.07

−1.24 𝜌nuc (red contours).

We examine the EoS microscopic properties and specifically the speed of sound as
a function of density in Fig. 7.6 and the maximum speed of sound inside NSs in
Fig. 7.7.

Compared to Legred et al. [70], our analysis favors a larger speed of sound around
2 − 4𝜌nuc and a larger maximum speed of sound throughout. The 90% lower limit
on the maximum speed of sound increases from ∼ 0.51 in Ref. [70] to ∼ 0.59
for our analysis. This higher maximum speed of sound is necessary to explain
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Figure 7.5: Mass-central density inference, we show the 90% symmetric credible
region for the NS mass at each value of the central density 𝜌𝑐. We plot the prior
(black), posterior from the main analysis that marginalizes over the mass distribution
(blue), and posterior from Ref. [70] that fixes the mass distribution to flat and does
not include J0437-4715. Vertical lines denote multiples of the nuclear saturation
density. Maroon and red contours mark 1 and 2-𝜎 credible regions, respectively,
for the joint posterior on 𝜌𝑐-𝑀TOV.

the high mass of certain galactic pulsars which, though poorly measured, can have
exceptionally large median values, e.g., J01748-2021B with an estimated mass of
2.74+0.21

−0.21 𝑀⊙ [56] at 68% credibility. The addition of the NICER radius mea-
surement J0437-4715 also marginally impacts the inferred maximum sound speed;
removing the radius measurement of J0437-4715 (Appendix 7.10) leads to a maxi-
mum 𝑐2

𝑠 value of 0.8+0.19
−0.31.

Joint constraints on the population and EoS
The joint EoS-mass inference allows us to separate the TOV mass, 𝑀TOV, from
the maximum astrophysical mass in the two subpopulations, 𝑀pop,EM and 𝑀pop,GW.
Figure 7.8 shows the joint posterior for 𝑀TOV and the two population maximum
masses, denoted collectively as 𝑀pop. The limit 𝑀TOV = 𝑀pop is marked with a
dashed line; points near the line correspond to maximum population masses that are
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Figure 7.6: Speed of sound-density inference, we show the 90% symmetric credible
region for the speed of sound squared, 𝑐2

𝑠 at each rest-mass density 𝜌. We plot
the prior (black), posterior from the main analysis that marginalizes over the mass
distribution (blue), and posterior from Ref. [70] that fixes the mass distribution to
flat and does not include J0437-4715. Vertical lines denote multiples of the nuclear
saturation density. The speed of sound increases by ∼ 5% around densities 2 − 3
times saturation density.

equal to the TOV mass. As also evident in Fig. 7.1, the two population maximum
masses are consistent with each other within their statistical uncertainties. The
difference between the maximum mass in the EM (GW) population and 𝑀TOV is
less than 0.53𝑀⊙ (0.73𝑀⊙) at 90% credibility.

We therefore have no evidence that the maximum mass of neutron stars formed
astrophysically is different than the maximum mass possible from nuclear physics.

7.5 Conclusions
As a first step toward untangling the properties of NSs that depend on nuclear
physics versus astrophysics, in this study we presented a joint inference of the dense
matter EoS and the NS mass distribution. We considered two subpopulations of NSs
corresponding to merging BNSs observed with GWs and galactic NSs observed with
EM. All NSs share the same universal EoS modeled with a flexible GP mixture.
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Figure 7.7: Marginalized posterior for the maximum speed of sound squared in-
side a stable NS. We plot the prior (black), posterior from the main analysis that
marginalizes over the mass distribution (blue), and posterior from Ref. [70] that
fixes the mass distribution to flat and does not include J0437-4715. The 90% lower
limit on the maximum speed of sound, marked by dashed vertical lines, increases
from ∼0.51 to ∼0.59.

Our results are consistent with existing EoS-only or mass-only inference where
applicable [70, 50, 10]. However, the joint inference scheme allows us to begin
addressing the interplay between nuclear physics and astrophysics in determining
NS observational properties. Focusing on NS masses, we find no evidence that
the maximum mass of NSs observed with either EM or GWs is different than the
maximum mass allowed by nuclear physics. Moreover, we updated the estimates
of the canonical NS radius and the TOV mass to 𝑅1.4 = 12.2+0.8

−0.9 km and 𝑀TOV =

2.28+0.41
−0.21𝑀⊙, respectively.

Past work
Our results are broadly consistent with comparable studies. Whereas we model the
EoS phenomenologically as a GP, Rutherford et al. [95] used a piecewise-polytropic
EoS model and the same data as Legred et al. [70] plus the radius measurement
of J0437-4715; they found 𝑅1.4 = 12.3+0.5

−0.8 km. Our result has a ∼30% larger
uncertainty likely due to the more flexible EoS model.
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Figure 7.8: One-and two-dimensional posteriors for 𝑀TOV and the maximum astro-
physical mass 𝑀pop for the galactic NSs (blue) and the merging BNSs (orange). The
black dashed line represents 𝑀pop = 𝑀TOV, which is imposed in our analyses as we
assume that all objects are NSs. The TOV mass is consistent with the astrophysical
maximum mass for both populations. Contours are drawn at 50% and 90% levels.
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Fan et al. [48] simultaneously inferred the mass distribution and the EoS, though
they assumed the same mass distribution for all NSs, and that the upper truncation
mass for the NS population is 𝑀TOV. They used the same data as our study except
the radius measurement of J0437-4715, and included ∼50 additional pulsar mass
measurements. They used a variety of parameteric and nonparametric EoS models,
but recovered similar values of 𝑅1.4 and 𝑀TOV for all models, indicating their non-
parametric models may have limited flexibility (analogous to the “model-informed
prior” of [65, 44]). They further incorporated information from perturbative quan-
tum chromodynamics (pQCD) at high densities, and chiral perturbation theory at
low densities, both of which strongly informed the estimate of 𝑀TOV due to the
choice of modeling of correlations. They found 𝑀TOV = 2.25+0.08

−0.07 𝑀⊙.

Biswas and Rosswog [24] also simultaneously inferred the population and the EoS,
similarly requiring the NSs to form a single population which is truncated by 𝑀TOV.
For the EoS they used a piecewise-polytropic parameterization, hybridized with a
low-density prescription constrained by chiral effective field theory. They analyzed
the same data as Fan et al. [48], and additionally the PREX-II [12] and CREX [13]
measurements of the neutron skin thickness of 208Pb and 48Ca respectively.

They found 𝑅1.4 = 12.5+0.3
−0.3 km, and 𝑀TOV = 2.27+0.08

−0.09 𝑀⊙. These uncertainties are
substantially lower than our results. The radius constraint can at least in part be
attributed to information from chiral perturbation theory, while the EoS parameteri-
zation also results in tighter inference throughout due to less modeling flexibility [45,
71]. Moreover, the use of a single mass distribution places a very strong prior on
the masses of the GW events, with the mass of GW170817 for example likely
tightly constrained to be within the primary peak of the bimodal mass distribution.
Such improved mass measurement will translate to tighter tidal and hence EoS con-
straints. The impact of pQCD information [63] remains unclear [98, 64], though
the prescription used in that analysis is likely informative of 𝑀TOV.

Other studies have obtained multimessenger constraints on the EOS by combining
GW, gamma-ray burst, and kilonova observations surrounding GW170817 with
fits to the EM emission from BNS simulations [87, 34, 35, 83]. While there are
systematic and statistical uncertainties in the models and observations, these studies
infer 𝑅1.4 and Λ1.4 broadly consistent with our results.
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Caveats
Our findings depend on several analysis choices and assumptions. In the appendices,
we examine their impact, and here we summarize our conclusions.

In our main analysis, we assume that selection biases in the radio and X-ray surveys
are negligible. In Appendix 7.11 we consider the impact that modeling all galactic
NSs with the same bimodal distribution without taking selection effects into account
has. Compared to an analysis that fixes the pulsar mass distribution to uniform up
to 𝑀TOV [70], inference of the mass distribution leads to an EoS that is marginally
softer at low densities and marginally stiffer at high densities. As a consequence,
the evidence for a violation of the conformal limit 𝑐2

𝑠 = 1/3 increases and the lower
limit on the maximum speed of sound increases by ∼10%.

Data selection further influences our results. In particular, different interpretations
of the NICER observations exist in the literature. Given systematic studies on
the impact of analysis assumptions on NICER measurements [41, 105] we present
results without J0030+0451 and/or J0437-4715 in Appendix 7.10. Excluding J0437-
4715 leads to a stiffer inferred EoS with 𝑅1.4 = 12.5+1.0

−0.9 km and consistent results
with Ref. [70]. Excluding J0030+0451 results in a substantially reduced value of
𝑅1.4 = 11.6+1.3

−0.9 km. However, all results are consistent with each other at 90%
credibility; see Fig. 7.11 in Appendix 7.10.

Additionally, our main results assume a fixed spin distribution, extending in mag-
nitude up to 0.05 for GW170817 and 0.4 for GW190425. Assumptions about the
spin affect mass inference through the mass-spin correlation [38] and hence mass
population inference. We explore the impact of restricting the spin of GW190425
further in Appendix 7.12. Imposing an upper limit of 0.05 results in a tighter con-
straint on its mass ratio and a lower primary mass, which correspondingly reduces
the value of 𝑀pop,𝐺𝑊 . Consistency between 𝑀pop,GW and 𝑀TOV is reduced with
their difference less than 0.77𝑀⊙ at 90% credibility. Therefore we still find no
strong evidence that the TOV and the maximum astrophysical mass are different.
Simultaneous inference of the spin distribution [23], along with the EoS and mass
distribution, is reserved for future work.

Finally, in this study, we restricted to two subpopulations of NSs: GW observations
of BNSs and galactic NSs from radio or X-ray surveys. As a consequence, our
mass distribution inference is only predictive below 2.5𝑀⊙, which we took to be
the (fixed) demarcation between NSs and BHs. Extending to higher masses would
require simultaneously classifying GW events as BNSs, NSBHs, or BBHs within the
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analysis framework [43, 30], while introducing a third NS subpopulation associated
with the NSBH mergers. This would allow us to treat other GW discoveries, such as
GW230529_181500 [2] and GW190814 [7], whose nature is ambiguous. These and
further extensions to the joint inference methodology presented here will become
necessary to fully explore the interplay between nuclear physics and astrophysics
on the properties of NSs as our catalog of informative NS observations increases in
size.
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7.7 Reweighting scheme for the joint posterior
The joint posterior for the GP EoS 𝜀 and the population hyperparameters 𝜂 =

{𝜂GW, 𝜂EM} is [66, 29]

𝑝(𝜀, 𝜂 |𝑑) = L(𝑑 |𝜀, 𝜂)𝜋(𝜀, 𝜂)
𝑝(𝑑) , (7.9)

where 𝑑 is the data, L(𝑑 |𝜀, 𝜂) is the likelihood, 𝜋(𝜀, 𝜂) is the prior, and 𝑝(𝑑) is the
evidence. We choose a prior of 𝜋(𝜀, 𝜂) = 𝜋(𝜀)𝜋(𝜂)Θ(𝑀TOV − 𝑀pop,EM)Θ(𝑀TOV −
𝑀pop,GW), where 𝜋(𝜖), is the model agnostic prior defined in Refs. [65, 44] (uni-
form over GP draws), and 𝜋(𝜂) is the prior on the population hyperparameters, as
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described in the main text (uniform over all parameters). Since the GW and EM
datasets are independent, the total likelihood factors into individual likelihoods

L(𝑑 |𝜀, 𝜂) = LGW(𝑑 |𝜀, 𝜂GW)LNICER(𝑑 |𝜀, 𝜂EM)LPSR(𝑑 |𝜀, 𝜂EM) ,

given in Eqs. (7.3), (7.6), and (7.8) respectively.

We evaluate the likelihood L(𝑑 |𝜀, 𝜂) with a reweighting scheme based on a simpler
lower-dimensional EoS model 𝜀0, details about which are given in Appendix 7.8.
We first obtain samples from the joint posterior for 𝜀0 and 𝜂 using standard stochastic
sampling [18].

𝑝0(𝜀0, 𝜂 |𝑑) =
L0(𝑑 |𝜀0, 𝜂)𝜋0(𝜀0, 𝜂)

𝑝0(𝑑)
. (7.10)

We then use the marginal mass distribution posterior

𝑝0(𝜂 |𝑑) =
∫

𝑝0(𝜀0, 𝜂 |𝑑)𝑑𝜀0 , (7.11)

as a proposal distribution to rewrite Eq. (7.9) as

𝑝(𝜀, 𝜂 |𝑑) ∝ L(𝑑 |𝜀, 𝜂)
𝜋(𝜂)Θ(𝑀TOV − 𝑀pop)

𝑝0(𝜂 |𝑑)
𝑝0(𝜂 |𝑑)𝜋(𝜀) , (7.12)

where we have dropped the normalization 𝑝(𝑑) and defined Θ(𝑀TOV − 𝑀pop) ≡
Θ(𝑀TOV − 𝑀pop,EM)Θ(𝑀TOV − 𝑀pop,GW). Reweighting includes

1. Compute a Kernel Density Estimate (KDE) of 𝑝0(𝜂 |𝑑) so that we can directly
evaluate the density for each value of 𝜂.

2. Draw samples 𝐸𝑜𝑆 ∼ 𝜋(𝜀) and 𝜂 ∼ 𝑝0(𝜂 |𝑑). If 𝑀TOV < 𝑀pop,EM or
𝑀TOV < 𝑀pop,GW, reject the sample.

3. For accepted (𝜀, 𝜂) samples compute the weight

𝑤 = L(𝑑 |𝜀, 𝜂) 𝜋(𝜂)
𝑝0(𝜂 |𝑑)

. (7.13)

The term 𝑝0(𝜂 |𝑑) is computed with the KDE from step #1 and the likelihood
L(𝑑 |𝜀, 𝜂) is computed with a Monte Carlo sum over individual-event posterior
samples.

4. Each sample (𝜀, 𝜂) is a weighted draw from the joint posterior 𝑝(𝜀, 𝜂 |𝑑) with
weight 𝑤.
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In practice, we consider the EM likelihood for the two EM datasets

L(𝑑EM |𝜀, 𝜂EM) = L(𝑑NICER |𝜀, 𝜂EM) × L(𝑑PSR |𝜀, 𝜂EM) , (7.14)

and the combined likelihood

L(𝑑 |𝜀, 𝜂) = L(𝑑EM |𝜀, 𝜂EM) × L(𝑑GW |𝜀, 𝜂GW) , (7.15)

from Eq. (7.12). In order to calculate the likelihood for the GW population param-
eters 𝜂GW, we approximate

L(𝑑 |𝜂GW) =∫
L(𝑑EM |𝜂EM, 𝜀)L(𝑑GW |𝜂GW, 𝜀)𝜋(𝜂EM, 𝜀)𝑑𝐸𝑜𝑆 𝑑𝜂EM

(7.16)

with the Monte Carlo sum:

L(𝑑 |𝜂GW) ≈
∑︁

𝐸𝑜𝑆∼𝜋(𝜀)
L(𝑑GW |𝜂GW, 𝜀)×[ ∑︁

𝜂EM∼𝑝0 (𝜂EM)

L(𝑑EM |𝜂EM, 𝜀)
𝑝0(𝜂EM |𝑑) 𝜋(𝜂EM |𝜀)

]
.

(7.17)

The likelihood for the EM population parameters is obtained by by swapping GW ↔
EM in Eq. (7.17).

Similarly, we compute the likelihood for the EoS 𝜀 as

L(𝑑 |𝜀) ≈
∑︁

𝜂GW∼𝑝0 (𝜂GW)

L(𝑑GW |𝜂GW, 𝜀)
𝑝0(𝜂GW |𝑑) 𝜋(𝜂GW |𝜀)×∑︁

𝜂EM∼𝑝0 (𝜂EM)

L(𝑑EM |𝜂EM, 𝜀)
𝑝0(𝜂EM |𝑑) 𝜋(𝜂EM |𝜀) .

(7.18)

7.8 Approximate lower-dimensional EoS model
The reweighting scheme of Appendix 7.7 utilizes a lower-dimensional EoS model
𝜀0 that gets marginalized away in Eq. (7.11), solely for constructing an efficient
proposal distribution for the hyperparameters 𝜂. The goal of including 𝜀0 in the
first place is to avoid potential systematic biases in 𝑝0(𝜂 |𝑑) if inferred without
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any reference to an EoS [57]. Such biases would make it an ineffective proposal
distribution for the reweighting of Eq. (7.12). Our requirement for 𝜀0 is therefore that
it can be evaluated efficiently and that it roughly captures typical EoS behaviors.
Existing parametric models such as the piecewise-polytropic [88], spectral [73],
or speed-of-sound [100, 58] models could play this role. However, we find that
something even simpler suffices.

We take advantage of the simple relation between the NS moment-of-inertia 𝐼 and
mass 𝑚 [111, 47] for hadronic EoSs. For EoSs without rapid changes in the speed
of sound [47],

𝑑 ln 𝐼
𝑑 ln𝑚

∼ 1.6 ± O(10−2) . (7.19)

We therefore define 𝜀0 with a linear relationship between ln 𝐼 and ln𝑚:

ln 𝐼 = 𝑎 ln𝑚 + 𝑏 , (7.20)

where the free parameters 𝑎 and 𝑏 define a specific EoS. From the 𝐼 (𝑚) relation we
can obtain Λ(𝑚) (used for analyzing GW data) and 𝑅(𝑚) (used for analyzing X-ray
data) with the 𝐼-Love [110] and 𝐶-Love [109, 28] universal relations respectively.
Since the model does not have a miscrophysics interpretation, it does not self-
consistently lead to a maximum-mass solution. Instead we define its TOV mass as
Λ(𝑀TOV) = Λthresh = exp(1.89) which empirically produces reasonable values for
𝑀TOV,

We find that this model is inexpensive to sample and accurate enough that that it
leads to an improved reweighting efficiency. However, it would not be a reliable
model for EoS inference due to its simplistic nature.

7.9 Method validation
We demonstrate the validity of the reweighting scheme described in Appendix 7.7
with simulated GW data. We simulate BNS observations from a uniform mass
distribution with 𝛼 = 0 between 1𝑀⊙ and 𝑀pop,𝐺𝑊 = 2.25𝑀⊙, assigning positions
and orientations isotropically, and distances according to a merger rate uniform in
the frame of the source across redshifts. Spins are distributed isotropically with
uniform magnitudes up to 0.05. Tidal deformabilities are simulated according to a
pre-selected EoS from the GP prior with𝑀TOV = 2.34𝑀⊙ and 𝑅1.4 = 12.5 km. After
filtering for events that pass a detectability threshold of signal-to-noise ratio above
8, we obtain posterior samples using bilby [18]. We then follow the procedure of
Appendix 7.7 to compute the joint posterior for the mass distribution and the EoS.
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Figure 7.9: One- and two-dimensional posteriors for the mass distribution slope
and maximum mass from 23 simulated BNSs. We plot mass-only population
inference (grey) which defaults to the individual-event-inference prior on the tidal
deformability, joint mass-EoS inference using the lower-dimensional EoS model
(green) and the full mass-EoS joint inference with the GP EoS model (red). The
reweighting scheme corrects the bias from inferring the mass distribution alone.
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from reweighting to a full mass-EoS joint inference with the GP EoS model (red).
The reweighting method is able to recover the true EoS (blue).

In Fig. 7.9 we show the inferred population hyperparameters under three analyses.
The first (black) models only the mass distribution, which effectively means that the
EoS model defaults to the tidal deformability prior used during sampling. This is
selected to be uninformative to avoid restricting the posterior: flat between 0 and
1.5 × 103. Since this is not in reality how the tidal deformabilities of the analyzed
objects are distributed, i.e., they follow a single EoS, mass inference is slightly
biased [57]. The second analysis (green) corresponds to Eq. (7.11) that infers the
mass distribution together with the lower-dimensional EoS model of Appendix 7.8.
The inclusion of even this simple EoS model in the inference reduces the bias
compared to the true parameters. This posterior is then used as a proposal to
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Figure 7.11: The effect of NICER constraints on EoS inference. We plot the prior
(grey) and posterior for 𝑅1.4, the radius of a 1.4𝑀⊙ NS with different subsets
of NICER data: all three pulsars (blue; main text analysis), excluding J0030+0451
(pink), excluding J0437-4715 (red), and excluding all NICER observations (purple).

reweight to the final mass-EoS inference with the GP EoS model (red), which again
agrees with the injected values. Figure 7.10 further shows that this procedure can
infer the EoS parameters.

7.10 Effect of NICER observations
In this appendix we quantify the impact of NICER observations on our inference.
Specifically, we study the impact of J0030+0451 for which there is no concur-
rent radio-based mass measurement and the hotspot model has a large impact on
inference [105] and J0437-4715 for which only one independent analysis is avail-
able [32]. We show results for 𝑅1.4 in Fig. 7.11. Removing any NICER pul-
sars leads to an increased uncertainty and a shift to lower radii (when removing
J0030+0451) or larger radii (when removing J0437-4715). However, all results are
consistent with each other at the 90% credible level. Using no NICER data leads to
𝑅1.4 = 11.9+1.7

−1.6 km, no J0030+0451 data to 𝑅1.4 = 11.6+1.3
−0.9 km, and no J0437-4715

data to 𝑅1.4 = 12.5+1.0
−0.9 km.
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7.11 Uniform pulsar population
Since selection effects for pulsar radio surveys are not well quantified, it is not clear
how the observed distribution of NS masses differs from the true distribution. To
examine the impact of the observed EM population inference, we repeat the analysis
using the approach of Ref. [70] for the EM population: it depends only on the
EoS, and not on additional population hyperparameters. The GW population is still
modeled with a truncated powerlaw per Sec. 7.2. We neglect all pulsars that do
not contribute directly to the EoS (due to low mass) as well as spider pulsars for
consistency with Ref. [70]. The EM data now include only J0030+0451 and J0437-
4715 [76, 32] with a uniform mass distribution in [1.0−1.9] 𝑀⊙, and J0740+6620
and J0438+0432 [77, 16] with a uniform mass distribution in [1.0−𝑀TOV] 𝑀⊙, with
𝑀TOV given by the EoS model. This choice corresponds to a uniform distribution
up to the maximum mass allowed by the EoS. Because of this choice, EoSs that
predict a larger TOV mass are penalized by an Occam penalty for the two high-mass
pulsars.

Results are shown in Fig. 7.12, where we find small changes to the inferred EoS
quantities. In particular, 𝑀TOV is relatively unchanged, 𝑀TOV = 2.27+0.41

−0.20 𝑀⊙

under the fixed population, which we attribute to the cancellation of two effects.
One the one hand, the Occam penalty favors lower values of 𝑀TOV under a fixed
population. On the other hand, under the fixed-population scheme, the mass of
the heaviest pulsars is not informed by lower-mass pulsars, and therefore ends up
higher, which in turn results in a higher 𝑀TOV. The effect of the Occam penalty
and the population-informed mass estimates in practice cancel out. The radius and
tidal deformability change somewhat more, 𝑅1.4 = 12.2+0.9

−1.0 km, with a ∼10% larger
uncertainty than the inferred-population case, and Λ1.4 = 450+247

−175 being slightly
larger than the inferred-population case.

Overall, inferring the EM mass distribution leads to marginally higher 𝑀TOV and
lower 𝑅1.4. Put differently, the high-density EoS is marginally stiffer and the low-
density EoS is marginally softer. As a consequence, the maximum sound-speed is
higher in order to connect the soft(er) low-density EoS to a stiff(er) high-density EoS.
This leads to increased support for violation of the conformal limit, 𝑐2

𝑠 > 1/3. The
natural logarithm of the Bayes factor in favor of conformal violation is lnB𝑐2

𝑠>1/3
𝑐2
𝑠<1/3

=

5.85 ± 0.30 for the fixed population model, and lnB𝑐2
𝑠>1/3
𝑐2
𝑠<1/3

= 7.39 ± 0.52 when the
mass distribution of EM pulsars is inferred.
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7.12 Low spin assumption for GW190425
Assumptions about the spin of GW190425 have an effect on the inferred component
masses [6]. In the main text, we assume that the NSs in GW190425 can have
dimensionless spin magnitudes up to 0.4. However, other studies assume NSs have
spins 0.05, motivated by the spin distribution of pulsars in binary systems expected
to merge within a Hubble time [112]. In Fig. 7.13, we present results with a low-
spin assumption for GW190425, enforcing the same assumption in the sensitivity
estimates as well. We find 𝑀TOV = 2.26+0.39

−0.21 𝑀⊙ and 𝑀pop,𝐺𝑊 = 1.79+0.32
−0.1 𝑀⊙.

As GW190425 is not the main observation informing 𝑀TOV, it values is consistent
with the main analysis. However, as the low-spin restriction lowers the estimated
masses of GW190425 due to the mass-spin correlation, we obtain a lower value for
𝑀pop,𝐺𝑊 , though still consistent with 𝑀TOV.
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C h a p t e r 8

SEARCHING FOR BREAKDOWN OF A NUCLEAR THEORY
USING NONPARAMETRIC METHODS

[1] Isaac Legred et al. “Nonparametric extensions of nuclear equations of state:
probing the breakdown scale of relativistic mean-field theory”. In: (May
2025). I led this study which examines how nonparametric models of the
equation of state can be used to extend nuclear calculations. I developed the
project idea, developed software, performed analyses, and wrote the bulk of
the manuscript. arXiv: 2505.07677 [nucl-th].

Abstract
Phenomenological calculations of the properties of dense matter, such as relativistic
mean-field theories, represent a pathway to predicting the microscopic and macro-
scopic properties of neutron stars. However, such theories do not generically have
well-controlled uncertainties and may break down within neutron stars. To faithfully
represent the uncertainty in this breakdown scale, we develop a hybrid representa-
tion of the dense-matter equation of state, which assumes the form of a relativistic
mean-field theory at low densities, while remaining agnostic to any nuclear theory
at high densities. To achieve this, we use a nonparametric equation of state model
to incorporate the correlations of the underlying relativistic mean-field theory equa-
tion of state at low pressures and transition to more flexible correlations above some
chosen pressure scale. We perform astrophysical inference under various choices
of the transition pressure between the theory-informed and theory-agnostic models.
We further study whether the chosen relativistic mean-field theory breaks down
above some particular pressure and find no such evidence. Using simulated data
for future astrophysical observations at about two-to-three times the precision of
current constraints, we show that our method can identify the breakdown pressure
associated with a potential strong phase transition.

https://arxiv.org/abs/2505.07677
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8.1 Introduction
Uncovering the equation of state (EoS) of dense matter is central to understand-
ing neutron stars, bridging nuclear physics and astrophysics [86, 93, 74, 79, 29].
While the EoS is in principle determined entirely by the standard model, in practice,
there is currently no perturbative or exact approach to compute the properties of
matter in the densest regions of neutron star cores. Therefore, for the purposes
of interpreting macroscopic astronomical observables such as neutron star masses
and radii, “model-agnostic” representations of the EoS minimize phenomenological
model-dependence [72, 47, 78]. However, fully-agnostic approaches can overesti-
mate uncertainties in regions where calculations from models of nuclear matter are
reliable, for example, near nuclear saturation density (𝑛0), where a description of
matter with nucleon degrees of freedom is applicable. In addition, extracting detailed
microphysical information from model-agnostic approaches is not straightforward,
because it is not usually clear what exact microscopic interaction is responsible for
determining the EoS at different densities. Certain quantities are not accessible
at all, such as the single-particle energies required to compute transport properties
[97]. In contrast with model-agnostic strategies, a variety of approaches have been
used to model dense matter up to very high densities, but these come with varying
degrees of (often difficult to quantify) systematic uncertainty [35, 67, 24, 17, 43].

Chiral effective field theory [111] (𝜒EFT) provides constraints on neutron-rich
matter that are systematically improvable, but calculations cannot be extended to the
cores of astrophysical neutron stars [104, 41, 106]. 𝜒EFT’s nature as an effective
theory allows us to systematically write down a series of interaction terms and
compute an associated truncation uncertainty. However, its validity is limited to
densities ≲ 2 𝑛0, which does not extend to neutron star cores. Relativistic mean-field
theories (RMFTs), in contrast, are usable at densities and temperatures relevant in
neutron stars and their mergers [109, 21, 99, 62, 43]. RMFTs are phenomenological,
microphysical theories of dense matter based on meson-exchange Lagrangians. We
refer to a specific Lagrangian function as a single RMFT. By specifying a set of
interaction constants within the RMFT, we generate a particular RMFT model that
can be used to compute the corresponding EoS.

Once the functional form of the Lagrangian and the nucleon-meson and meson-
meson coupling constants are determined through fits to, e.g., properties of fi-
nite nuclei, nuclear matter, and astrophysical observations, e.g. Refs. [54, 103,
11], no further parameters are needed to obtain finite-temperature [12] or out-of-
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equilibrium [9, 10] properties. The EoS obtained from an RMFT model is also
thermodynamically consistent and causal. An RMFT model thus allows us to relate
the microscopic properties of dense matter to astrophysical observables of neutron
stars such as their masses and radii.

Despite these major advantages, every RMFT also comes with limitations that could
lead to a breakdown of the theory, i.e., where the RMFT is no longer a plausible
description of nature. RMFTs are not obtained by a controlled expansion and thus
do not have an intrinsic breakdown scale and a well-defined error. Furthermore, they
rely on the mean-field approximation and describe nucleons as point-like interacting
particles. Thus, while an RMFT can be used at arbitrary densities, it might not
describe nature above a certain scale. Interpreting neutron star data assuming that
the whole EoS (from the star surface to the core) is described by the RMFT model
can lead to systematic biases both in macroscopic and microscopic quantities.

We employ the methodology introduced in Essick et al. [50, 49, 48] as a way to
avoid such biases and infer the breakdown scale with astrophysical observations.
Although we focus on a specific RMFT in this paper, this method is generic and
can be applied to any nuclear framework that is expected to become less reliable
with increasing density. The key element is the flexibility to choose how model
information from the RMFT EoS is used in constructing an EoS prior with which
to analyze the data. We achieve this by incorporating information from an RMFT
EoS into an otherwise model-agnostic approach for representing the EoS based on
Gaussian Processes (GPs). The means and covariances of the GP are modified such
that they closely follow RMFT EoSs generated using different choices of model
parameters up to some value for the pressure. That pressure corresponds to a choice
of a scale up to which we trust the RMFT to describe the properties of dense matter.
Beyond that pressure, the GP smoothly transitions from an RMFT-informed kernel
to a model-agnostic one. We construct multiple GPs for different choices of this
transition pressure. The specific RMFT EoSs we use are fit to 𝜒EFT calculations.
Therefore, when we incorporate nuclear theory information, the assumptions we
make are strictly stronger than those of Refs. [50, 49, 48].

If the true EoS can be described by an RMFT at certain densities but not up to
arbitrarily high densities, then we expect this to be discernible using astrophysi-
cal observations of neutron stars. We consider gravitational-wave observations of
masses and tidal deformabilities [3, 4], X-ray observations of masses and radii [84,
94, 83, 95, 30], and pulsar timing observations of heavy stars [14, 32, 56]. We use a
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hierarchical inference scheme to infer the EoS under a variety of hypotheses about
the breakdown scale of the RMFT framework. We consider both simulated and
real astrophysical data, and study the extent to which we can infer the breakdown
scale from astrophysical data alone. We find that with current astrophysical con-
straints, there is no strong evidence in favor of a breakdown of the studied RMFT.
Nonetheless, we also find that a breakdown can be approximately identified using
observations at around three times the currently available measurement precision if
such a breakdown is associated with, e.g., a strong, first-order phase transition.

Using an array of different astrophysical observables targeting different mass ranges
is crucial. The primary difference between modeled and model-agnostic approaches
is that the former imposes significantly stronger correlations between density scales,
which might restrict its ability to fit observations [78]. For example, an RMFT EoS
might not be capable to simultaneously explain observations of stars with a typical
mass of (∼ 1.4𝑀⊙) and the highest mass (≳ 2𝑀⊙) if a strong first-order phase
transition causes massive stars to have large, exotic cores. On the other hand, the
model-agnostic GP can produce EoSs with very short correlation lengths, able to
model arbitrary causal and stable EoSs, including those with phase transitions [78,
51].

The rest of the paper is organized as follows. In Sec. 8.2, we discuss the RMFT
EoSs we use in constructing a hybrid agnostic-informed analysis, the construction
of model-agnostic and RMFT-informed GP priors, and the details of the hierarchical
inference scheme. In Sec. 8.3, we demonstrate that the constructed EoS distributions
allow us to identify a breakdown of the RMFT using sufficiently many simulated
astrophysical observations. In Sec. 8.4, we discuss the current constraints. We do
not find evidence against an RMFT description for the EoS because the uncertainties
are substantial. We conclude in Sec. 9.5.

8.2 Methods
We now describe how we construct our hybrid RMFT-informed, model-agnostic GP
prior, and infer the EoS using astrophysical data. In Sec. 8.2 we describe how the
RMFT EoSs used in this study are generated. In Sec. 8.2 we review the GP EoS
prior. In Sec. 8.2 we describe the process of building the hybrid RMFT-informed,
model-agnostic GP kernel. Finally, in Sec. 8.2 we discuss intricacies of model
selection relevant to the breakdown scale study.
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The RMFT EoS set
Like any nuclear model, a specific RMFT depends on a number of ingredients.
Firstly, if we choose a model with only nucleons and leptons as fundamental degrees
of freedom, the RMFT will not show the appearance of or the transition to new
degrees of freedom unless we explicitly construct a transition to a different theory
or adjust the particle composition. For example, we can extend an existing theory
with neutrons and protons to include strange baryons, delta resonances, or N(1535)
resonances [61, 35, 69]. A transition to a completely different theory is also possible,
for example, to model a phase of deconfined quark matter [23]. Secondly, the choice
of the Lagrangian, including the meson fields that model the strong interaction, is
somewhat arbitrary. In principle, there are an infinite number of meson interaction
terms that can be included in an RMFT [98]. To avoid overfitting, we choose a widely
used Lagrangian density with the least number of coupling constants (seven) that
can make predictions consistent with low-energy nuclear physics and, in principle,
with astrophysical observations of neutron star structure. We choose a Lagrangian
with a functional form identical to the IU-FSU model with seven undetermined
coupling constants [54].

Commonly, an RMFT is further constrained by astrophysical observables. However,
we do not want to make such an assumption a priori, as we would potentially use
observations of matter that might not be composed of nucleons at all. Thus, we do
not require the RMFT EoSs to support ∼ 2 𝑀⊙ stars. Since in our hybrid approach
the RMFT description only holds at low densities, the resulting hybrid EoSs might
still be able to produce high mass NSs (see e.g. Ref. [23]).

Even in the absence of a phase transition, at densities a few times nuclear saturation
density (𝑛0 ≈ 0.16 fm−3), a description of dense matter in terms of point-like nucle-
ons is no longer plausible [110]. Since the RMFT does not include, e.g., short-range
correlations between the nucleons, this effect can not be captured. Other potential
breakdown scenarios of the RMFT include the appearance of inhomogeneous phases
like chiral density waves, although this can be modeled with RMFTs [33, 88], or
a breakdown of the mean-field approximation where approaches such as Ref. [57]
may be needed. In this paper, we focus on nuclear matter consisting of neutrons,
protons, and electrons. While muons could be added to the theory, they affect the
total pressure at the one percent level [11].

We produce 1109 EoSs using the method described in Ref. [11]. All EoSs come
from the same RMFT Lagrangian density with different nucleon-meson and meson-
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meson coupling constants. The variation in these seven couplings is due to a fit to the
𝜒EFT energy per nucleon uncertainty band in neutron matter. All EoSs are causal,
consistent with the saturation properties of isospin-symmetric nuclear matter, and
consistent with 𝜒EFT at next-to-next-to leading order (N2LO) up to 1.5 𝑛0 [106].
Of the 1109 EoSs, only 90 predict neutron stars with 𝑀 ≥ 2 M⊙. This set serves as
a fiducial representation of RMFT EoSs. We will occasionally refer to the RMFT
EoS set as a “prior”, by which we mean taking all EoSs from the set to be equally
likely. More details are provided in Appendix 8.7.

The GP EoS prior
The GP EoS distribution is designed to be sufficiently flexible to incorporate infor-
mation from the RMFT at low pressures while representing a fully model-agnostic
EoS distribution at higher pressures. A GP achieves this flexibility by tuning cor-
relations in the EoS between different scales, which are controlled directly by the
covariance kernel. As in Refs. [72, 47, 50, 49, 48], we construct a prior which is a
mixture of GPs on the variable

𝜙(log 𝑝) = ln
(

1
𝑐2
𝑠

− 1
)
, (8.1)

where log 𝑝 is the natural logarithm of the pressure and 𝑐𝑠 is the zero-temperature,
beta-equilibrated sound-speed (with 𝑐 = 1). To generate an EoS, we sample a GP
from the mixture model’s mixing fractions and then draw 𝜙 from the corresponding
GP (in practice, we use a finite number of pressure collocation points)

𝜙(log 𝑝𝑖) ∼ N (𝜇𝑖, 𝐶𝑖) , (8.2)

where 𝜇𝑖 and 𝐶𝑖 are the mean and covariance associated with the 𝑖-th component
of the mixture model. For different choices of mean and covariance, each pair
gives a prior 𝜋(𝜖 |M), with 𝜖 the EoS and M the underlying choice of model, which
corresponds to different assumptions about the EoS distribution. The base EoS prior
is “agnostic” in the sense that we use a mixture of many different wide covariances
with short correlation lengths. While these distributions are conditioned on nuclear
models [72, 47], the choice of EoSs used in the conditioning does not strongly
impact the EoS prior [78].

Constructing an RMFT-informed GP prior and hybridization with a model-
agnostic GP
We construct EoS priors conditioned on the RMFT EoS distribution up to several
maximum (or “transition”) pressures as was done in Refs. [50, 49, 48] for 𝜒EFT.



304

However, unlike 𝜒EFT, the RMFT is not automatically equipped with theoretical
uncertainty estimates. That is, the distribution of RMFT EoSs introduced in Sec. 8.2
does not include any estimate of systematic uncertainty from the fact that the RMFT
Lagrangian includes a subset of all the possible terms. In contrast, 𝜒EFT systematic
uncertainties are constructed from estimates of the truncation error introduced by
only retaining terms up to a certain order in the EFT expansion. Therefore, at
densities greater than saturation, the RMFT EoS distribution depends on the strategy
we use to generate coupling constants from fitting inferred experimental results and
ab initio calculations; see Sec. 8.2.

With these caveats in mind, we adopt the distribution of RMFT EoSs from Sec. 8.2
and extend them with flexible, model-agnostic EoS representations above the tran-
sition pressure. The marginal pressure distribution from the RMFT EoS is signif-
icantly skew-right and, therefore, is not well-modeled by a single GP. Instead we
emulate the RMFT EoS set with a mixture of three GPs. Specifically, we sepa-
rate the RMFT EoS set into three populations based on the marginal distribution
of pressures at high densities; individual RMFT EoS tend to approach a constant
𝑐𝑠 and therefore naturally separate into different populations at high densities and
pressures. For each of these populations, we construct a separate GP using the
sample mean and covariance of the RMFT EoSs. As a result, each GP contains
strong intra-density correlations which are representative of the underlying subset
of the RMFT EoS distribution it emulates; these correlations enforce smoothness
in the resulting EoS realizations. A mixture over subpopulations is constructed by
weighting each subpopulation’s GP based on the number of RMFT EoS that belong
to the corresponding subpopulation. Compared to Refs. [50, 49, 48], the distribu-
tion of RMFT EoS is more complicated and therefore requires a mixture of GPs
instead of a single GP. Readers who are interested in other approaches to emulate
EoS models with GPs may also be interested in Refs. [41, 42].

Equipped with a GP emulator for the RMFT EoS distribution, we then construct
priors that closely follow the RMFT EoS distribution at low pressures but transition
to more flexible model-agnostic priors above a transition pressure. References [50,
49, 48] achieved a similar effect by conditioning a model-agnostic prior on a 𝜒EFT
emulator as if the emulator was an additional (noisy) observation. Nevertheless, we
modify the approach here. Instead of conditioning an agnostic GP on the RMFT
EoS emulator as if it was an additional observation, we instead construct a GP that
exactly follows the RMFT EoS emulator at low pressures and then condition the
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Table 8.1: Transition pressures for the hybrid RMFT-agnostic GPs in two different
units.

𝑝t/𝑐2 [g/cm3] 1011 1012 3 × 1012 1013 3 × 1013 1014

𝑝t/𝑐2 [MeV/fm3] 0.056 0.56 1.7 5.6 17 56

agnostic GP at higher pressures. The new procedure guarantees that the resulting GP
will only support smooth functions at low densities if the RMFT EoS emulator only
supports smooth functions at low densities. It can be shown that the two approaches
are equivalent if the (co)variance in the RMFT EoS emulator is very small compared
to the (co)variance in the agnostic GP. See Appendix 8.8 for details.

For emulators and agnostic priors that are mixture models of GPs (with 𝑁 and 𝑀
elements, respectively), we construct a new GP for each of the 𝑁 × 𝑀 pairs of
GPs from the emulator and agnostic processes. We form a mixture model over all
possible combinations with weights equal to the product of the individual weights
within the emulator and agnostic mixtures. See Appendix 8.8 for more discussion.
An implementation of this procedure is publicly available [44].

Using this procedure, we construct several priors that follow the RMFT EoS emulator
up to different transition pressures, 𝑝t. We consider six transition pressures at values
given in Table 8.1. The two largest transition pressures correspond to approximately
the central pressures of 0.6 and 1.4𝑀⊙ stars respectively (see, e.g., Fig. 8.1’s bottom
two panels.). For each transition pressure, we generate 30,000 samples from the GP
prior, composed of three sets of 10,000 EoS each drawn from GPs conditioned on
hadronic, quarkyonic, and hyperonic EoSs [72, 47].

One advantage of using a low-density model which derives from microphysics is that
it is possible to extract information about the underlying nuclear physics. We adopt
the method of extracting the symmetry parameters of isospin-symmetric nuclear
matter near saturation density from Refs. [49, 48]. We consider the symmetry
energy at saturation 𝐽 = 𝑆(𝑛0), and the so-called slope of the symmetry energy
𝐿 = 3𝑛0𝑑𝑆/𝑑𝑛|𝑛0 . The nuclear energy per particle is expanded locally around
nuclear saturation density in terms of proton-neutron asymmetry (𝑛𝑛 − 𝑛𝑝)/(𝑛𝑛 +
𝑛𝑝) = (1 − 2𝑌𝑝) with 𝑌𝑝 the proton fraction1 and the baryon number density 𝑛:

𝐸nuc
𝐴

(𝑛,𝑌𝑝) =
𝐸SNM(𝑛)

𝐴
+ 𝑆(𝑛) (1 − 2𝑌𝑝)2 , (8.3)

1The proton fraction is also (in our case) the charge fraction and the electron fraction as we assume
the only charged leptons are electrons. We do not expect the addition of muons to substantially alter
the recovered parameters [49, 48].
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where 𝐸SNM is the energy of symmetric nuclear matter, which we additionally
expand as

𝐸SNM(𝑛) = 𝐸bind + 𝐾0

(
𝑛 − 𝑛0

3𝑛0

)2
. (8.4)

We sample 𝐸bind, 𝐾0, and 𝑛0 from Gaussian distributions with mean and variance
fit from the RMFT EoS set and given in Table 8.2. The nuclear energy per particle
is equal to the total energy minus the contribution from electrons, which is known
given the baryon number density and proton fraction

𝐸nuc
𝐴

(𝑛,𝑌𝑝) =
𝜀(𝑛,𝑌𝑝) − 𝜀𝑒 (𝑛,𝑌𝑝)

𝑛
, (8.5)

where 𝜀 and 𝜀𝑒 are the total and electron energy densities respectively. In particular,
if 𝑌𝑝 is taken to be the beta-equilibrium charge fraction (𝑌 𝛽𝑝 ), then 𝜀(𝑛,𝑌 𝛽𝑝 ) is
precisely the beta-equilibrium energy density, which is computed for each GP draw.
Therefore, if the beta-equilibrium charge fraction were known, then 𝐸nuc(𝑛,𝑌 𝛽𝑝 )
would also be known, as would (rearranging Eq. (8.3))

𝑆(𝑛) =
(
𝐸nuc
𝐴

(𝑛,𝑌 𝛽𝑝 ) −
𝐸SNM
𝐴

(𝑛)
)
/(1 − 2𝑌 𝛽𝑝 )2 . (8.6)

The beta-equilibrium charge fraction can be found from setting 𝜇𝑛 = 𝜇𝑝 + 𝜇𝑒
(assuming a zero neutrino chemical potential); see Refs. [65, 49, 48] for details.
From this we compute

𝐽 ≡ 𝑆(𝑛0) , (8.7)

𝐿 ≡ 3𝑛0
𝑑𝑆(𝑛)
𝑑𝑛

���
𝑛=𝑛0

, (8.8)

𝐾sym ≡ 9𝑛2
0
𝑑2𝑆(𝑛)
𝑑𝑛2

���
𝑛=𝑛0

, (8.9)

for each GP draw. We additionally verify that for our set of RMFT EoS draws,
this procedure produces reasonable estimates for the (already known) symmetry
parameters.

The Hierarchical Inference Scheme
Given an EoS prior and astrophysical data, we infer the EoS following Refs. [47, 73,
26]. In this subsection, we provide a brief overview and discuss considerations in
interpreting Bayes factors. The key ingredients are

• 𝜋(𝜖 |M): The prior on EoS 𝜖 , which depends upon the model M.
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Table 8.2: Mean and standard deviation of the parameters of symmetric matter
used in computing the symmetry energy and its derivatives. These represent the
mean and standard deviation of the corresponding parameters from our RMFT EoS
distribution.

Parameter 𝜇 𝜎

𝑛0 [fm−3] 0.1568 0.0017
𝐸bind [MeV] -15.983 0.046
𝐾0 [MeV] 228 25

• L(𝑑𝑖 |𝜖): The likelihood, which is the probability of receiving astrophysical
data 𝑑𝑖 given an EoS 𝜖 .

The posterior probability of a given EoS is

𝑃(𝜖 |{𝑑𝑖},M) =
∏
𝑖 L(𝑑𝑖 |𝜖)𝜋(𝜖 |M)
Z({𝑑𝑖}|M) , (8.10)

where 𝑑𝑖 represents the set of all observed data, and

𝑍 ({𝑑𝑖}𝑖 |M) =
∫

𝜋(𝜖 |M)
∏
𝑖

L(𝑑𝑖 |𝜖)𝑑𝜖 , (8.11)

is the evidence for modelM. In this work 𝑑𝑖 could stand for data resulting from X-ray
pulse profile measurements of neutron star mass-radii, pulsar timing observations
of heavy neutron star masses, and gravitational-wave observations of neutron star
masses and tidal deformabilities. Given two models M1 and M2, the Bayes factor
compares their relative fit to the data

BM1
M2

=
Z({𝑑𝑖}|M1)
Z({𝑑𝑖}|M2)

. (8.12)

The Bayes factor is the average likelihood of one model relative to another, where
the average is taken over the entire prior volume of each model. A model whose
prior includes regions with a low likelihood will have a low Bayes factor relative
to a model that excludes such regions. Nonparametric, model-agnostic models are
explicitly designed to explore such regions in the name of flexibility. Indeed, most
samples from a model-agnostic GP prior will have very low likelihood. To minimize
this effect, we compute Bayes factors after conditioning the EoS prior distributions
on heavy pulsar observations. This effectively removes EoSs that have too low a
maximum mass, and provides a proxy for only including “astrophysically plausible”
EoSs within the prior.
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Table 8.3: The saturation and symmetry parameters of nuclear matter for the RMFT
EoS we use to generate simulated data. 𝐸𝐵 is the binding energy per nucleon in
isospin-symmetric nuclear matter at saturation density, 𝑛0; 𝜅 is the incompressibility
of nuclear matter at 𝑛0; 𝐽 is the symmetry energy, the difference between the
binding energy per nucleon of neutron matter and isospin-symmetric nuclear matter,
evaluated at 𝑛0; 𝐿 characterizes how the symmetry energy varies with density; 𝑚∗

is the Dirac in-medium nucleon mass at 𝑛0.

𝑛0 [fm−3] 𝐸𝐵 [MeV] 𝜅 [MeV] 𝐽 [MeV] 𝐿 [MeV] 𝑚∗ [MeV]
0.158 -16 244 34 52.9 685

Excluding these EoSs prevents conclusions from being driven mainly by EoSs with
masses much less than 2𝑀⊙, instead targeting the likelihood of astrophysically
plausible EoSs sampled from each model [50, 77, 51, 85].

8.3 Verification with simulated astrophysical observations
We demonstrate our methodology by using simulated astrophysical observations to
infer the EoS, and in tandem, infer the breakdown scale of the underlying RMFT.

Simulated Data
We verify the hybrid RMFT-agnostic GPs with simulated data. To do this, we
generate simulated observations using two EoSs. The first EoS is consistent with
the distribution of RMFT EoSs at all density scales [11]; its saturation parameters
are listed in Table 8.3. The second EoS is constructed to be inconsistent with the
RMFT EoSs. At an energy density of 𝜀/𝑐2 = 1.7𝑚𝑁𝑛0 ≈ 260 MeV, a strong phase
transition with a latent heat of Δ𝜀/𝜀 = 0.4 is inserted, after which there is a constant
speed of sound 𝑐2

𝑠 = 0.8. This transition happens at a baryon density of about 1.5 𝑛0,
and a pressure of ∼ 12 MeV/fm3.

We generate simulated data that represent potential observations via radio pulsar
timing, x-ray pulse-profile modeling, and gravitational-wave observations. Starting
with radio timing, we assume that pulsars are formed with masses up to the Tolman-
Oppenheimer-Volkoff (TOV) maximum mass [86, 107], and the mass distribution is
uniform. We simulate radio timing observations [100, 19], assuming a factor of ∼ 2
reduction in uncertainty compared to current constraints [34, 14, 32]. See Table 8.4
for the masses and uncertainties for the RMFT EoS and Table 8.5 for the phase-
transition case. In particular, we assume two heavy pulsars with well-measured
masses.

For X-ray data, we simulate four sources. We assume that uncertainties are un-
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correlated and Gaussian on the mass and radius, which is reasonable for sources
with independently measured masses from radio timing, such as J0740+6620 [83,
95] and J0437-4715 [30]. This assumption further improves as more photon counts
and better background estimates are included, [39, 96], indicating that for future
observations nearly-Gaussian uncertainties are plausible. We sample the uncertain-
ties on mass and radius from a uniform distribution. The uncertainties in the most
optimistic cases are ∼ 2-3× smaller than current measurements. See Table 8.4 for
the simulated X-ray sources for the EoS consistent with the RMFT and Table 8.5 for
the EoS with a phase transition.

Table 8.4: Simulated neutron star observations for the RMFT EoS. Values given
represent mean and 90% credible intervals.

Neutron Star Mass (𝑀⊙) Radius (km)

Radio 1 2.10 ± 0.03 NA
Radio 2 2.08 ± 0.13 NA

X-ray 0 1.20 ± 0.04 12.29 ± 1.25
X-ray 1 1.37 ± 0.11 12.26 ± 0.25
X-ray 2 1.45 ± 0.45 12.24 ± 0.69
X-ray 3 1.96 ± 0.43 11.77 ± 1.10

Table 8.5: Simulated neutron star observations for the phase-transition EoS; values
given represent mean and 90% credible intervals.

Neutron Star Mass (𝑀⊙) Radius (km)

Radio 1 2.42 ± 0.06 NA
Radio 2 2.44 ± 0.07 NA

X-ray 0 1.20 ± 0.35 11.63 ± 1.08
X-ray 1 1.37 ± 0.02 11.70 ± 0.15
X-ray 2 1.45 ± 0.43 11.73 ± 0.94
X-ray 3 1.96 ± 0.00 11.93 ± 1.31

For gravitational waves, we perform full parameter estimation, because even at mod-
erate signal-to-noise ratio (SNR) it is empirically not straightforward to construct
an analytic expression for the posterior distribution on the relevant parameters (e.g.
the distributions on the effective tidal deformability and mass ratio, Λ̃ and 𝑞 are not
approximately Gaussian [5, 6]). We recover posterior distributions on the quantities
𝑚1, 𝑚2,Λ1,Λ2, the primary and secondary masses, and primary and secondary tidal
deformabilities, respectively. We then choose two sources sampled randomly from
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the set of recovered sources. We display these parameters for the RMFT EoS injec-
tion in Table 8.6. The second source is very similar to GW170817, both in terms of
parameters and in terms of measurement precision. We display the corresponding
parameters for the RMFT-PT EoS injections in Table 8.7. Further gravitational-
wave injections are used in Appendix 8.9, which also includes a detailed description
of simulation study.

Table 8.6: Simulated gravitational wave parameters including mass (𝑚1 and 𝑚2),
tidal deformability (Λ1 and Λ2), and SNR, for the RMFT EoS.

Binary 𝑚1 [𝑀⊙] 𝑚2 [𝑀⊙] Λ1 Λ2 SNR

GW 0 1.5 1.18 266.6 1139.45 15.0
GW 1 1.49 1.17 273.1 1189.81 32.5

Table 8.7: Simulated gravitational wave parameters from the phase-transition EoS.
Same as Table 8.6.

Binary 𝑚1 [𝑀⊙] 𝑚2 [𝑀⊙] Λ1 Λ2 SNR

GW 0 1.26 1.09 473.89 1011.61 10.7
GW 1 1.23 1.2 542.88 613.32 26.5

Simulated inference results
Recovering an RMFT EoS

We begin with the case of an EoS that is consistent with the RMFT EoSs. We display
the RMFT EoS used for the simulations and 200 fair draws from the posterior
for prior distributions at four values of the transition pressures in Fig. 8.1. We
additionally plot 1000 fair draws from each prior distribution. First, looking at
the prior distributions, as more information from the underlying RMFT model is
included, moving from lower to higher transition pressure (left to right and top
to bottom panels), the EoS distribution is much smoother and narrower below the
transition pressure. Conversely, above the transition, the prior is wider and less
regular, with rapid changes to the radius with mass being much more common.

Moving on to the posteriors, for all transition pressures, the simulated EoS (light
blue) is recovered correctly, with an uncertainty that increases for lower transition
pressures. This is expected because priors with lower transition pressure incorpo-
rate less information from the underlying RMFT and its strong model constraints.
This effect is most severe where the simulated astrophysical observations are least
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Figure 8.1: In gray/black, we show 𝑀-𝑅 curves of fair draw EoS from RMFT-
agnostic hybrid distributions which transition at various densities, shown by subplot
titles. Stars fully informed by the RMFT are shown in black, while stars with cores
that have transitioned to the agnostic model are shown in gray. In cyan, we display
the EoS used to generate simulated observations. In red/orange, we show samples
from the posterior. In this case, points in orange are stars fully described by the
RMFT, while points in red represent stars with cores that have transitioned to the
agnostic model. On the right y-axis of each panel, we display a gray bar from
𝑀 ∈ (𝑀⊙, 𝑀TOV) where 𝑀TOV is the TOV maximum mass of the simulation EoS.
This represents the approximate range of NS masses used in astrophysical inference.

informative, for example, at very high and low neutron star masses. The uncertainty
in radius of a 2𝑀⊙, for instance, is ∼ 1.25 km with the model agnostic prior at 90%
credibility.

For comparison, we analyze the same data with the RMFT EoS prior set itself and
display the results in Fig. 8.2. Comparing to Fig. 8.1, and in particular the bottom
right panel which shows the distribution that carries the most RMFT information,
we see that the overall structure of the RMFT EoS distribution is well captured by the
GP emulator. This includes a “bimodality” in the mass-radius relation distribution
for the RMFT EoS set. This bimodality arises because of the choice of initial fitting
parameters, as multiple combinations of the RMFT parameters are able to effectively
reproduce the properties of symmetric and pure neutron matter, which have very
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Figure 8.2: Inference with the RMFT prior itself. Same as Fig. 8.1, but with the set
of RMFT EoS samples with uniform probability used as prior distribution. Since
the RMFT EoSs are informed by the RMFT at all densities, we color the posterior
orange and the prior black for all neutron stars, in analogy with Fig. 8.1.

different behavior at high density; see Appendix 8.7.

For each transition pressure, 𝑝t, we compute the evidence Z({𝑑𝑖}|M = 𝑝t). This is
to say, each GP conditioned at a different transition pressure forms a model M, and
we take a transition pressure of 𝑝/𝑐2 = 1011g/cm3 as a fiducial “agnostic value”
since this incorporates the least information from the underlying RMFT. We then
compute each model’s Bayes factor relative to the agnostic model and plot them in
Fig. 8.3. There is a general preference for transitioning from RMFT to the more
flexible GP at higher pressure, but it is weak with Bayes factors of 2-4. Under the
RMFT EoS prior, the Bayes factor relative to the agnostic model is higher, ∼ 11.
This is a consequence of our choice to condition the Bayes factors on the existence
of heavy pulsars. EoSs with 𝑀t𝑂𝑉 ≳ 2.0 effectively all appear in the posterior.
Therefore, conditioned on the existence of heavy pulsars, the RMFT is more highly
preferred than any agnostic model. In contrast, at 𝑝t/𝑐2 = 3 × 1013 g/cm3 there is
a dip in the evidence. This is because at this transition pressure, EoSs with low
values of 𝑅1.4 ∼ 11.5 km, which are inconsistent with the radius of the injected EoS
(𝑅1.4 ∼ 12.5 km) are able to stiffen to reach 𝑀t𝑂𝑉 ≳ 2.1𝑀⊙. Therefore low-radius
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EoSs are common even after conditioning on the existence of massive pulsars in this
case, and their marginal likelihood is lower. If we remove this conditioning, then
the RMFT is no longer substantially preferred relative to the agnostic model, and
conditioning at 𝑝𝑡/𝑐2 = 1014 g/cm3 is actually disfavored relative to the agnostic
model despite the fact that the simulation EoS is itself an RMFT EoS.

The above discussion highlights the large dependence of Bayes Factors on relatively
minor analysis choices, which is why we deem Bayes Factors of O(10) as incon-
clusive. Nonetheless, the features of Fig. 8.3 are still meaningful; for example,
the trend of increasing Bayes factor with transition pressure can be attributed to
removing prior volume that is inconsistent with the RMFT, and will be assigned
low-likelihood. If two models can describe the data equally well but one has less
prior volume than the other (e.g., a model with a low transition pressure vs. a model
whose prior is more tightly concentrated around the RMFT), the former is preferred.
The Bayes factor for such a preference, though, is a fixed number, even in the limit
of infinite measurement precision, since it is determined by the ratio of the proba-
bility density functions of each of the EoS priors at the simulation EoS. Therefore,
depending on what this value is, we may or may not ever have decisive evidence in
favor of the RMFT over the agnostic model.

Finally, we consider the symmetry energy parameters. We compute the posterior for
𝐽 and 𝐿, the symmetry energy at saturation and the slope of the symmetry energy
at saturation, respectively, and display the results in Fig. 8.4. The true symmetry
parameters are comfortably recovered at 90% credibility regardless of the choice of
transition pressure. As we increase the transition pressure, the prior and posterior
become narrower and approach the result of using the RMFT EoS set itself. This
is consistent with strengthening correlations between symmetry parameters and
astrophysical observables as the RMFT is trusted to higher and higher pressures.
These posteriors all incorporate the same data and have very similar marginal priors
on the symmetry parameters. Therefore differences between them are driven solely
by differences in the higher-dimensional EoS prior distributions, as also observed
in Refs. [49, 48, 78].

Inferring a phase-transition EoS

We now switch to the case of a simulated EoS which is not derived from an RMFT
model, and repeat the analysis of Sec. 8.3 using the phase-transition EoS described
in Sec. 8.3. We display fair draws from the prior and posterior distributions on the
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Figure 8.3: The Bayes factor of hybrid RMFT-agnostic GPs with various transition
pressures compared to the “agnostic model” with a transition pressure of 1011g/cm3.
Points show Monte-Carlo estimates, with error bars showing ±1-𝜎 error in the
estimate from the limited sample size of the EoSs. The 1-𝜎 region for the Bayes
factor of the RMFT prior itself relative to the agnostic model is shown as a gray
bar. There is an overall trend toward higher transition densities, but there is no
conclusive preference for any transition pressure. The simulated data are consistent
with all hybrid priors.

mass-radius relation in Fig. 8.5. The priors are the same as in Fig. 8.1. We find that
as long as the transition pressure is sufficiently low, near or below the pressure at
which the simulation EoS undergoes a phase transition (𝑝t/𝑐2 ∼ 2.3× 1013 g/cm3),
the EoS is recovered effectively. By this, we mean that the mass-radius curves
sampled from the posterior are reflective of the simulation EoS. For astrophysical
neutron stars 𝑀 ∈ (∼ 1, 𝑀t𝑂𝑉 ), the radius is near the center of the distribution.

The phase-transition EoS represents a point of low prior probability in all EoS
priors. This leads to poorer sampling resolution than in the case of recovering an
EoS without a phase transition, particularly for the maximally agnostic cases.2 For
example, for the case of 𝑝t = 1013 g/cm3 and 3 × 1013 g/cm3 we have ∼ 20 and

2See also Appendix C of Ref. [51].
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Figure 8.4: Prior (dashed) and posterior (solid) for the symmetry energy 𝐿 and the
slope of the symmetry energy 𝐽 at saturation for various EoS priors. In light blue
is the result from using the set of RMFT EoSs directly as a prior. In maroon and
orange are results on the symmetry parameters (as estimated using Eq. 8.6) inferred
using GP-priors which transitioned from RMFT-informed to model agnostic kernels
at 1013 and 1014 g/cm3 respectively. For the GP EoS distributions (𝑝t/𝑐2 = 1013

and 𝑝t/𝑐2 = 1014 g/cm3), the prior distributions are effectively identical, since both
follow the same RMFT-informed GP at saturation density. Therefore, we mark the
prior for the 𝑝t/𝑐2 = 1013 g/cm3 with a dotted line to increase visibility.
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Figure 8.5: Same as Fig. 8.1, but for a simulated EoS that undergoes a phase
transition from an RMFT EoS to a constant speed of sound model, shown in cyan.
The RMFT description of the EoS holds only up to pressures slightly higher than
the transition pressure (∼ 1.8×1013g/cm3, which appears as a “kink” in the injected
EoS). We plot 200 fair draws from the posterior and 1000 from the prior. We sample
with replacement; if the same EoS from the posterior is sampled more than once
(which happens generically if the posterior has few effective samples), the opacity
of that EoS is proportional to the multiplicity of that sample. The gray bar has the
same interpretation as in Fig. 8.1, except in this case the simulation EoS maximum
mass is higher, so the bar extends to higher mass.

∼ 46 effective samples,3 respectively. Despite this, macroscopic observables are
well recovered. In the cases above, 𝑅1.4 = 11.76+0.09

−0.11 km, and 𝑅1.4 = 11.73+0.12
−0.14 km

for 𝑝t = 1013 g/cm3 and 3 × 1013 g/cm3, respectively (quoted at 90% credibility),
consistent with the simulated value 𝑅1.4 = 11.72 km. For the case of a transition
pressure 𝑝/𝑐2 = 1014g/cm3, however, the EoS is no longer recovered in that the
posterior no longer reflects the simulation EoS within uncertainties. The maximum
mass of all EoSs in the posterior is below the simulation EoS maximum mass.
Furthermore, the posterior has only ∼ 2 effective samples.

For comparison, we display the result of the identical inference using the RMFT EoS
3We define the number of effective samples 𝑛eff ≡ exp(𝑆), where 𝑆 is the entropy of the

underlying probability distribution 𝑝(𝑥), 𝑆 ≡ −∑
𝑖 𝑝(𝑥𝑖) ln 𝑝(𝑥𝑖).
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Figure 8.6: Same as Fig. 8.5, but for the RMFT prior distribution (same as Fig. 8.2).
The RMFT is unable to recover the non-RMFT simulation EoS. There is only one
posterior EoS displayed as the posterior contains only a single effective sample.

set as a prior in Fig. 8.6. The result is, in effect, the same as the result for the hybrid
RMFT-informed model-agnostic posterior which transitions at 𝑝/𝑐2 = 1014g/cm3,
as there are too few effective samples from the analysis to even form a reasonable
estimate for the posterior. We therefore conclude that the RMFT EoS prior, like
the hybrid prior transitioning at 1014 g/cm3, is effectively inconsistent with the
simulated data.

Figure 8.7 shows the Bayes factor for each model with a different transition den-
sity. Most Bayes factors represent inconclusive evidence in favor of the RMFT
description, with this evidence becoming stronger at higher transition pressures.
This makes sense, as the low-density EoS is indeed well-described by the RMFT.
For transition pressures that favor the RMFT-informed EoS over model-agnostic
EoS, we find larger Bayes factors than the corresponding values in Fig. 8.3. This
is due to two factors. First, one particular simulated x-ray measurement is highly
informative (phase transition injection “X-ray 1”, in Tab. 8.5), and more precise than
the most informative RMFT EoS injection by about a factor of 40%. This, however,
is not sufficient to explain the very large difference in evidence. Removing this event
leaves maximum Bayes factors of order ∼ 10, still larger than those of Fig. 8.3.



318

The second cause of the large Bayes factors is the unusual location of the phase-
transition EoS relative to all of the EoS priors used. Because the phase-transition
EoS is “unusual” among both model-agnostic and RMFT EoSs, it lies at the margins
of all of the prior distributions on the EoS. At these margins, small changes to the
prior will lead to large changes in the (log) likelihood of the bulk of EoSs, analogous
to how small changes in the z-score dramatically change the (log) probability of
a Gaussian far from the mean. These large changes in evidence lead directly to
large Bayes factors. These Bayes factors are indicative that the RMFT is the correct
underlying description of the low-density EoS, but (comparing to Fig. 8.3), the size
of the Bayes factors are due to the details of the prior construction and the location
of simulation EoS.

For transition pressure 𝑝t/𝑐2 = 1014 g/cm3, we recover strong evidence against
an RMFT description. While uncertainties are large, the Bayes factor for the
𝑝t/𝑐2 = 1014 g/cm3 model relative to the agnostic model is less than 10−4 at 90%
credibility. This quantifies the statement that the RMFT-informed EoS prior is
unable to produce candidate EoSs that closely mimic the simulation EoS, leading to
few (or no) EoSs that are consistent with all astrophysical observations. Further, this
confirms that if there is a strong phase transition, then we can identify the associated
breakdown of the RMFT using our procedure given sufficient astrophysical data.

Finally, we show the inferred symmetry parameters in Fig. 8.8 for different transition
pressures and when using the set of RMFT EoSs itself. Because we use the same
RMFT parameters for the low-density EoS, the simulation EoS’s symmetry param-
eters are the same as in Fig. 8.4. Moreover, since we use the same EoS priors, the
marginal priors on 𝐽 and 𝐿 are consistent with the simulation EoS’s values. Nonethe-
less, using the RMFT EoS set or the hybrid prior with 𝑝t/𝑐2 ∼ 1014 g/cm3 does
not recover the correct symmetry parameters. The correct symmetry parameters are
recovered only for the GP EoS distribution that transitions at a lower pressure. This
is because at low transition pressures, the marginal distribution on the symmetry
parameters is effectively unchanged by the inclusion of astrophysical observations,
indicating that astrophysical observations carry little information about the symme-
try parameters under these models [49, 48]. When the RMFT description is trusted
to higher pressures, however, the inclusion of astrophysical data renders the marginal
distribution on the symmetry parameters inconsistent with the simulation EoS. This
is reasonable, as the astrophysical properties of neutron stars with the simulation
EoS are primarily determined by the “quark matter” (constant speed of sound EoS),
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Figure 8.7: Same as Fig. 8.3, but for a simulated EoS with a strong phase transition
to a constant speed-of-sound near 1.5 times saturation density (red vertical line).

not the low-density RMFT (hadronic) EoS. As such, inferring the properties of the
hadronic EoS assuming it holds up to high pressures will lead to a bias.

8.4 Constraints on RMFT-breakdown with current astrophysical data
We finally turn to current astronomical data: radio timing observations of J0348+0432 [14],
NICER x-ray pulse profile observations of J0030+0451 [82], J0740+6620 [83], and
J0437-4715 [30], and gravitational-wave events GW170817 [5] and GW190425 [6].
We display fair draws from the prior and posterior for various choices of the tran-
sition pressure in Fig. 8.9. The posteriors are wider than in the simulation studies,
since the current data are not as constraining. We find larger uncertainties at lower
transition pressures, consistent with expectations that the RMFT-informed distribu-
tion imposes tighter constraints a priori than the model-agnostic GP. This, however,
depends on mass, as 𝑅1.4 is less variable between models than 𝑅1.0, for example.

In Fig. 8.10 we show the prior and posterior distributions on various astrophysi-
cal quantities under different assumptions on the transition density. Trusting the
RMFT to higher pressures favors a larger value of 𝑅1.4 and Λ1.4. For example,



320

30 35
J [MeV]

20

40

60

L
[M

eV
]

pt/c
2 = 1014 g/cm3

pt/c
2 = 1014 g/cm3 (prior)

RMFT

RMFT (prior)

pt/c
2 = 1013 g/cm3

pt/c
2 = 1013 g/cm3 (prior)

Figure 8.8: Same as Fig. 8.4 but with a simulation EoS which transitions to a
constant speed of sound EoS.

𝑅1.4 = 11.80+0.92
−0.64 km for the model that transitions at 3 × 1013 g/cm3, whereas

𝑅1.4 = 12.51+0.34
−1.21 km for the model transitioning at 1014 g/cm3. This difference is

a consequence of stronger correlations between lower and higher densities, which
translates to stronger correlations between 𝑅1.4 and 𝑀t𝑂𝑉 under the RMFT. Under
the assumption of a transition density of 1014 g/cm3, values of 𝑀t𝑂𝑉 greater than
∼ 2.2𝑀⊙ are inconsistent with small neutron star radii (e.g. 𝑅1.4 ≲ 12 km) a priori.
This is not true for a lower transition pressure. Therefore, similar 𝑀TOV posteriors
result in different 𝑅1.4 posteriors due to these correlations between high and low
densities.

On the other hand, Λ1.8 is inferred to be very similar between the two models. This
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Figure 8.9: Same as Fig. 8.1, but with real astrophysical data instead of simulated
data.

is because the tidal deformability is a strongly decreasing (Λ ∼ 𝑚−6 [66, 112])
function of the mass. Therefore, EoS differences are much suppressed in Λ1.8.
This convergence does not happen for 𝑅1.8, however, which shows qualitatively the
same picture as 𝑅1.4. Therefore, even at constant fractional uncertainty in tidal
parameters (which requires much louder gravitational wave signals), we expect
neutron star mergers will be much better probes of RMFT breakdown at low masses
than at high masses. Radius constraints, on the other hand, are similarly constraining
at all masses.

In Fig. 8.11, we show the Bayes factors of each transition pressure compared to
the lowest transition pressure. We generally find a preference for higher transition
pressure with a mild decrease in evidence at the highest transition pressure, although
the Bayes factors are all 2-3. Therefore, we do not find evidence against an RMFT
description of the astrophysical EoS up to 𝑝/𝑐2 ∼ 1014 g/cm3 using current astro-
physical data. We additionally do not find strong evidence for the RMFT, though as
discussed in Sec. 8.3, we do not necessarily expect such evidence if RMFT is the
correct underlying model.

The symmetry energy and its slope at saturation are shown in Fig. 8.12 for the RMFT
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Figure 8.10: Prior (dashed) and posterior (solid) distributions for select parameters
when transitioning from the RMFT-conditioned to the model-agnostic EoS prior
at 3 × 1013 g/cm3 (maroon) and 1014 g/cm3 (orange). Lines mark 90% credible
regions. We show: the radius (𝑅1.4, 𝑅1.8) and dimensionless tidal deformability
(Λ1.4, Λ1.8) of 1.4 and 1.8𝑀⊙ neutron stars respectively and the maximum TOV
mass (𝑀t𝑂𝑉 ) of a neutron star.
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Figure 8.11: Same as Fig. 8.3, but using astrophysical observations rather than
simulated data. We find no strong preference for any transition pressure.

EoS set and hybridized priors transitioning at 𝑝t/𝑐2 = 1013 g/cm3 and 1014 g/cm3.
The posteriors are largely consistent with each other, though for higher transition
pressures, and for the RMFT EoS set itself, the values of both 𝐿 and 𝐽 are better
constrained. We find, for example, that 𝐿 = 37.03+16.37

−14.42 MeV when we transition
at 1013 g/cm3, and 𝐿 = 47.87+11.15

−14.04 MeV when transitioning at 1014 g/cm3. The
recovered value of 𝐿 is both larger and better constrained when we trust the RMFT
up to higher densities, likely due to correlations between the large inferred maximum
mass of neutron stars and the stiffness of matter near saturation under these models.
Trusting the RMFT up to only 𝑝t/𝑐2 = 1013 g/cm3, which corresponds to a density
∼ 1.5 𝑛0, we find no meaningful constraints on the symmetry parameters relative to
the priors. This is an indication that under the model-agnostic prior, the properties
of matter near saturation are not strongly correlated with the matter in the cores of
astrophysical neutron stars [49, 48].

The recovered values are consistent with existing results on the symmetry param-
eters, although they represent matter which is marginally softer near saturation
than other studies. Reference [41], using constraints from 𝜒EFT at N3LO, finds
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𝐽 = 31.7 ± 1.1 MeV and 𝐿 = 59.8 ± 4.1 MeV at 1𝜎 uncertainty. Additionally, per
Fig. 2 of Ref. [41] (based partly on Refs. [75, 76]) this range is also found to be
largely consistent with a broad range of theoretical, experimental, and observational
constraints of the nuclear symmetry energy. Our results are also consistent with
values implied by PREX-II [8], though we do not consider that data here. For
instance, Ref. [92] used PREX-II results to infer 𝐿 = 106±61 MeV at 90% credibil-
ity. Combining PREX-II and low-density 𝜒EFT information in the GP framework
yields 𝐿 = 53+14

−15 MeV [49, 48]. Using a less flexible EoS model, though with a
wider range of astrophysical and nuclear data including PREX-II, Ref. [18] found
𝐿 = 54+10

−10 MeV at 90%.

Even though both the GPs which transition at 1013 g/cm3 and 1014 g/cm3 are de-
scribed by the same RMFT framework near saturation density, we recover different
posteriors on the EoS in this region. This is because correlations with the well-
constrained high-density EoS are different under the two choices of model. To
further show this, in Fig. 8.13 we display the inferred sound speed as a function
of density under different choices of the transition pressure. The sound speed at
saturation density is markedly different for the two posteriors, even though both
of the distributions are closely emulating the underlying RMFT at that density and
therefore have very similar prior distributions on 𝑐2

𝑠 . This happens because higher-
density observations can more strongly inform low-density physics when the RMFT
description is trusted up to higher densities.

8.5 Discussion
We have constructed hybrid models of the dense-matter EoS informed by an RMFT
at low pressures and model-agnostic above a certain transition pressure. We com-
pare multiple models with different transition pressures to astrophysical data, and
probe the scale up to which a specific RMFT EoS is able to describe the dense-
matter EoS. We first explore how inference behaves under simulated data. If the true
EoS is consistent with the RMFT description, evidence will remain inconclusive,
unable to rule out the RMFT at any scale. This behavior is expected from prior
volume arguments. If the true EoS is inconsistent with any RMFT EoS, for example
due to a phase transition, we recover strong evidence (Bayes factors ≳ 104) against
models that are informed by the RMFT beyond the pressure of the phase transi-
tion. We further demonstrate that a breakdown can be identified with sufficiently
many gravitational-wave observations in App. 8.9, within expectations of upcoming
observing campaigns.
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Figure 8.12: The inferred symmetry parameters using astrophysical observations,
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1014 g/cm3 (same as in Fig. 8.4), and therefore we mark it with a dotted line to
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lines. A gray bar shows the approximate range of pressures at saturation density for
the RMFT EoSs.

Applying our models to real astrophysical observations, we find no evidence against
RMFT EoSs up to arbitrarily high densities. Nonetheless, the inferred macroscopic
neutron star properties differ depending on the pressure up to which the RMFT is
trusted. This behavior elucidates how the breakdown pressure can be constrained
with future data. For example, the inferred radius of a 1.4 𝑀⊙ star depends on what
pressure the RMFT is trusted up to. Conditioning up to a pressure of 1×1014 g/cm3,
we find 12 ≲ 𝑅 ≲ 13 km at ∼ 90% credibility, while conditioning up to only
3× 1013 g/cm3, yields 11− 12.5 km. This suggests that future constraints should be
more informative about the breakdown scale if they reach ∼ 0.5 km precision and
𝑅1.4 ∼ 11.5 km. Finally, as a note of caution, it is possible that biases emerge before
evidence against a model appears. Therefore it is still important to consider other
models of the EoS, including fully agnostic analyses.

If an RMFT-informed analysis is deemed inconsistent with astrophysical data, then
the RMFT EoSs have broken down. Possible reasons and remedies are listed in the
introduction. Our method not only yields evidence for the breakdown, but can also
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quantify the breakdown pressure. For example, if the breakdown occurs at∼2−3 𝑛0,
then it is possibly due to hyperon degrees of freedom [108]. Alternatively, if the
breakdown happens at ∼4 − 6 𝑛0, then it is likely that the treatment of nucleons as
point-like particles is insufficient as the average distance of the nucleons becomes
smaller than their expected size [110]. More generally, understanding the regime
where the RMFT has broken down can be challenging and comparing multiple
models will likely be necessary.

Further observables, such as the post-merger gravitational wave signal [101, 89,
16, 22, 36], an electromagnetic counterpart [38, 113, 25, 31], or the lifetime of the
remnant [81, 102], may also indicate that the breakdown is due to a strong phase
transition. In that case, a range of approaches, both modeled and model-agnostic,
can be used to constrain its properties [87, 28, 13, 51, 85]. We do not find evidence
for a breakdown, and thus a strong phase transition, and therefore, our results are
consistent with Refs. [87, 28, 13, 51, 85]. We do not explicitly use information
from perturbative QCD [70, 71], unlike Ref. [13], which argues against EoSs that
are hadronic up to very high densities. Our analysis is therefore broadly consistent
with the existing literature, where such comparisons are possible.

Finally, we reiterate that our hybrid agnostic-informed formalism can be applied
to any nuclear model that can make predictions about the EoS at supranuclear
densities. However, the identification of a breakdown scale is only meaningful if
the theory is somewhat trustworthy below some pressure/density scale. Therefore,
constraints from experiments and ab initio calculations will be crucial to constrain
and validate such theories near saturation density, while astrophysics will be essential
for searching for their breakdown at the densities reached in neutron star cores.
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8.7 Constructing the RMFT EoS distribution
In this appendix, we discuss how we construct the distribution of RMFT EoSs.
More details are available in Ref. [11]. We construct a particular RMFT EoS
by making a choice for the RMFT nucleon-meson and meson-meson coupling
constants; we choose these constants (which we will here refer to as parameters)
so that the resulting EoS is consistent with the properties of isospin-symmetric
nuclear matter and neutron matter near saturation. Since there is uncertainty in
the properties of neutron matter, we sample these properties according to ab initio,
𝜒EFT, predictions. We then fit the RMFT parameters using a nonlinear, least-
squares procedure, which allows us to produce a set of RMFT parameters which are
consistent with the empirical saturation properties of symmetric nuclear matter, and
ab initio constraints of neutron matter near saturation (0.5 − 1.5 𝑛0). Therefore, we
produce a distribution on the EoS where the only explicit uncertainty comes from
uncertainty in the properties of neutron-rich matter near saturation.

We first describe the phenomenological model for symmetric matter, and then the
neutron matter constraints, but in practice, the fitting is performed simultaneously.
We fit the binding energy of isospin-symmetric nuclear matter from baryon density
𝑛𝐵 = 0.8 𝑛0 to 𝑛𝐵 = 1.4 𝑛0. We evaluate the binding energy at 12 density points
using the standard empirical power series,

E(𝑛𝐵) = (𝐸𝐵 +
𝜅

2!
𝛿2 + · · · ) , (8.13)

where 𝛿 ≡ (𝑛𝐵 − 𝑛0)/(3𝑛0). Here 𝐸𝐵 is the binding energy at saturation density
and 𝜅 is the incompressibility of nuclear matter. The parameter values for isospin-
symmetric matter that we fit to are

𝐸𝐵 = −16 MeV , (8.14)

𝑛0 = 0.16 fm−3 , (8.15)

𝜅 = 240 MeV . (8.16)

In contrast with isospin-symmetric matter, neutron matter is not self-bound and
therefore cannot be probed in a lab, so we do not have analogous empirical con-
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straints. Therefore, instead, we fit to ab initio 𝜒EFT calculations of neutron mat-
ter [106]. The 𝜒EFT calculation we use is based on local 𝜒EFT interactions at
N2LO that were constructed in Refs. [60, 59, 105, 80]. We choose this 𝜒EFT
calculation because, compared to 𝜒EFT calculations at higher order like Refs. [40,
68], Ref. [106] employs a more conservative estimate of the error band. The 𝜒EFT
results are used over the density range 0.5 𝑛0 to 1.5 𝑛0, i.e., above the crust-core
transition and where 𝜒EFT is reliable [106, 42].

We sample the 𝜒EFT uncertainty band by creating a set of representative 𝜒EFT
neutron matter EoSs using the Gandolfi-Carlson-Reddy (GCR) parametrization [58],
which expresses the binding energy per nucleon E of neutron matter in the form

E𝜒EFT(𝑛𝐵) = 𝑎(𝑛𝐵/𝑛0)𝛼 + 𝑏(𝑛𝐵/𝑛0)𝛽 . (8.17)

We sample 200,000 EoSs generated from a wide range of GCR parameters (𝑎, 𝑏, 𝛼, 𝛽),
keeping the 1,109 EoSs that remain completely within the 𝜒EFT uncertainty band
between 𝑛𝐵 = 0.5 𝑛0 and 𝑛𝐵 = 1.5 𝑛0. For each 𝜒EFT EoS, we fit the RMFT
coupling constants, evaluating the 𝜒EFT EoS at 16 density points. A simultaneous
fit to these points and the 12 density points of the phenomenological model for
symmetric nuclear matter determines the RMFT coupling constants.

The mass-radius relation from the resulting RMFT EoSs is shown in Fig. 8.2; the
multimodality in the RMFT EoSs is driven by a corresponding multimodality in
the fit RMFT parameters. This multimodality is in turn driven by the existence
of multiple regions of RMFT parameter space that fit the properties of symmetric
and neutron-rich matter comparably well. For these EoSs we find that the choice
of initial guess in the fitting procedure will impact the “optimal” value for the fit
parameters. In particular, the choice of initial guess for the RMFT parameters we
use in this work lead to some RMFT EoSs (∼ 8%) with𝑀 ≥ 2𝑀⊙. Using a different
set of initial guesses, the multimodality vanishes, but we no longer generate RMFT
EoSs with 𝑀 ≥ 2𝑀⊙. Since we are mainly interested in the range of models that the
Lagrangian can produce, and since all RMFT models we generate are consistent with
nuclear theory and experiment, we use the broader (i.e. multimodal) distribution.

Since the distribution of RMFT EoSs is influenced by the choice of initial guesses
in the fitting procedure, the distribution we present here may not represent the full
range of viable models consistent with low-energy nuclear physics for the chosen
model Lagrangian. Nonetheless, the bulk of fit RMFT EoSs have maximum TOV
masses below 2.0𝑀⊙ regardless of the initial guess for the RMFT parameters.
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Therefore, we do not expect the bulk features of the RMFT EoS distribution to
change based on the choice of initial guess, though the distribution of EoSs which
exceed 2.0𝑀⊙ is likely much more sensitive to this choice. Strategies to achieve
particular distributions of RMFT EoSs are left to future work.

8.8 Efficiently Conditioning high-density GPs on Low-Density Theory
The following is implemented within Ref. [44] and was first published there as a
technical note alongside the source code. The description is technical, providing
a complete record of the procedure of Sec. 8.2. In particular, we describe here
the process necessary for modifying the model-agnostic GP so that at particular
pressures it follows the distribution given by the RMFT EoSs. However, this
procedure is generic, and therefore can be applied to modify any GP to strictly obey
a particular covariance at particular entries.

Assume we have an existing GP that defines a measure for two vectors ( 𝑓𝑎 and 𝑓𝑏

with 𝑁𝑎 and 𝑁𝑏 elements, respectively) and can be written as

𝑝O( 𝑓𝑎, 𝑓𝑏) ∼ N
(
[𝜇𝑎, 𝜇𝑏],

[
𝐶𝑎𝑎 𝐶𝑎𝑏

𝐶𝑏𝑎 𝐶𝑏𝑏

])
, (8.18)

with mean vectors 𝜇𝑎, 𝜇𝑏 and covariance matrix 𝐶 decomposed into 𝐶𝑎𝑎 (𝑁𝑎 × 𝑁𝑎
elements), 𝐶𝑎𝑏 (𝑁𝑎 × 𝑁𝑏), 𝐶𝑏𝑎 (𝑁𝑏 × 𝑁𝑎), and 𝐶𝑏𝑏 (𝑁𝑏 × 𝑁𝑏). We note that

𝐶𝑎𝑎 = 𝐶
T
𝑎𝑎 , (8.19)

𝐶𝑎𝑏 = 𝐶
T
𝑏𝑎 , (8.20)

𝐶𝑏𝑏 = 𝐶
T
𝑏𝑏 . (8.21)

We wish to update this process so that the marginal distribution for 𝑓𝑏 follows
another process, namely

𝑝E( 𝑓𝑏) = N (𝑦𝑏, Σ𝑏𝑏) , (8.22)

while maintaining the rest of the covariance structure encoded in 𝐶. We do this by
constructing a new process

𝑝N( 𝑓𝑎, 𝑓𝑏) = 𝑝O( 𝑓𝑎 | 𝑓𝑏)𝑝E( 𝑓𝑏) , (8.23)

where 𝑝O( 𝑓𝑎 | 𝑓𝑏) can be derived from 𝑝O( 𝑓𝑎, 𝑓𝑏) in the usual way [90] as

𝑝O( 𝑓𝑎 | 𝑓𝑏) =

N
(
𝜇𝑎 + 𝐶𝑎𝑏𝐶−1

𝑏𝑏 ( 𝑓𝑏 − 𝜇𝑏), 𝐶𝑎𝑎 − 𝐶𝑎𝑏𝐶
−1
𝑏𝑏𝐶𝑏𝑎

)
. (8.24)
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Expanding the contractions, grouping like terms, and dropping those that do not
depend on either 𝑓𝑎 or 𝑓𝑏, we obtain a Gaussian in both 𝑓𝑎 and 𝑓𝑏, and we obtain
direct relations for the new mean vectors and (inverse) covariance defined by

𝑝N( 𝑓𝑎, 𝑓𝑏) = N ©«[𝑚𝑎, 𝑚𝑏],
[
Γ𝑎𝑎 Γ𝑎𝑏

Γ𝑏𝑎 Γ𝑏𝑏

]−1ª®¬ , (8.25)

as follows:

Γ𝑎𝑎 =

(
𝐶𝑎𝑎 − 𝐶𝑎𝑏𝐶−1

𝑏𝑏𝐶𝑏𝑎

)−1
, (8.26)

Γ𝑎𝑏 = −
(
𝐶𝑎𝑎 − 𝐶𝑎𝑏𝐶−1

𝑏𝑏𝐶𝑏𝑎

)−1
𝐶𝑎𝑏𝐶

−1
𝑏𝑏 , (8.27)

Γ𝑏𝑏 = 𝐶
−1
𝑏𝑏𝐶𝑏𝑎

(
𝐶𝑎𝑎 − 𝐶𝑎𝑏𝐶−1

𝑏𝑏𝐶𝑏𝑎

)−1
𝐶𝑎𝑏𝐶

−1
𝑏𝑏 + Σ−1

𝑏𝑏 , (8.28)

and

𝑚𝑎 = 𝜇𝑎 + 𝐶𝑎𝑏𝐶−1
𝑏𝑏 (𝑦𝑏 − 𝜇𝑏) , (8.29)

𝑚𝑏 = 𝑦𝑏 . (8.30)

Finally, we can solve for

𝛾 = Γ−1 =

[
𝛾𝑎𝑎 𝛾𝑎𝑏

𝛾𝑏𝑎 𝛾𝑏𝑏

]
, (8.31)

by recognizing that [
𝛾𝑎𝑎 𝛾𝑎𝑏

𝛾𝑏𝑎 𝛾𝑏𝑏

] [
Γ𝑎𝑎 Γ𝑎𝑏

Γ𝑏𝑎 Γ𝑏𝑏

]
= I . (8.32)

Further simplification yields

𝛾𝑎𝑎 =
[
Γ𝑎𝑎 − Γ𝑎𝑏Γ

−1
𝑏𝑏Γ𝑏𝑎

]−1
, (8.33)

𝛾𝑎𝑏 = 𝐶𝑎𝑏𝐶
−1
𝑏𝑏Σ𝑏𝑏 , (8.34)

𝛾𝑏𝑎 = Σ𝑏𝑏𝐶
−1
𝑏𝑏𝐶𝑏𝑎 , (8.35)

𝛾𝑏𝑏 = Σ𝑏𝑏 , (8.36)

where we have left 𝛾𝑎𝑎 in terms of Γ because of the length of the expression but have
substituted and simplified the rest of the terms. Note that the marginal distribution
𝑝N( 𝑓𝑏) = N(𝑦𝑏, Σ𝑏𝑏) = 𝑝E( 𝑓𝑏), as desired. On the other hand, the distribution of
𝑦𝑎 is modified from its original form in Eq. (8.18). In our case, this is an indication
that the conditioning process modifies the EoS distribution even at pressures which
we did not explicitly require the distribution to follow RMFT.



332

Modifications for numerical stability
In general, 𝑚𝑎 and 𝛾𝑎𝑎 can suffer from issues associated with numerical stability.
This is because they involve the inversion of (possibly) high-dimensional matrices
that may be ill-conditioned. While the preceding is exact, we therefore implement
two additional approximations to help better control the calculations.

Damping 𝐶𝑎𝑏, 𝐶𝑏𝑎, and 𝐶𝑏𝑏 to make them easier to invert

One issue we have found is that strong correlations in 𝐶𝑏𝑏 can make numerical
inversion difficult. Given that we wish to replace 𝐶𝑏𝑏 with Σ𝑏𝑏 anyway, and really
only wish there to be a relatively smooth transition between 𝑓𝑏 and 𝑓𝑎, we modify
𝐶𝑎𝑏, 𝐶𝑏𝑎, and 𝐶𝑏𝑏 in order to damp the off-diagonal elements (and therefore make
them easier to invert).

Specifically, we define a squared-exponential damping term

𝐷 (𝑥𝑖, 𝑥 𝑗 ) = exp

(
−
(𝑥𝑖 − 𝑥 𝑗 )2

𝑙2

)
, (8.37)

and a white noise contribution that modify 𝐶 so that

(𝐶𝑎𝑏)𝑖 𝑗 → (𝐶𝑎𝑏)𝑖 𝑗𝐷 (𝑥𝑖, 𝑥 𝑗 ) , (8.38)

(𝐶𝑏𝑏)𝑖 𝑗 → (𝐶𝑏𝑏)𝑖 𝑗𝐷 (𝑥𝑖, 𝑥 𝑗 ) + 𝜎2
W𝛿𝑖 𝑗 . (8.39)

We then use these modified 𝐶𝑎𝑏 and 𝐶𝑏𝑏 within the expressions in the previous
section.

This modifies the original process, but as long as 𝑙 is relatively large and 𝜎W is
relatively small, the modifications will be minor over the transition between 𝑓𝑏 and
𝑓𝑎. Empirically, we find that 𝑙 = 5.0 and 𝜎W = 0.01 work well when updating our
our model-agnostic priors.

Approximation for 𝛾𝑎𝑎 when Σ𝑏𝑏 is small

Finally, it will often be the case that Σ𝑏𝑏 will be much smaller than𝐶𝑏𝑏 (with respect
to an appropriate matrix norm). That is, we wish to update a process to restrict the
marginals of certain covariates to be more tightly constrained than they otherwise
would be.

By repeated use of the approximation

(𝐴 + 𝑋)−1 ≈ 𝐴−1 − 𝐴−1𝑋𝐴−1 , (8.40)
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we can see that this limit corresponds to

Γ−1
𝑏𝑏 ≈ Σ𝑏𝑏 − Σ𝑏𝑏𝐶

−1
𝑏𝑏𝐶𝑏𝑎

(
𝐶𝑎𝑎 − 𝐶𝑎𝑏𝐶−1

𝑏𝑏𝐶𝑏𝑎

)−1
𝐶𝑏𝑎𝐶

−1
𝑏𝑏Σ𝑏𝑏 , (8.41)

and (retaining terms linear in Σ𝑏𝑏)

𝛾𝑎𝑎 ≈ 𝐶𝑎𝑎 − 𝐶𝑎𝑏𝐶−1
𝑏𝑏𝐶𝑏𝑎 + 𝐶𝑎𝑏𝐶

−1
𝑏𝑏Γ

−1
𝑏𝑏𝐶

−1
𝑏𝑏𝐶𝑏𝑎

≈ 𝐶𝑎𝑎 − 𝐶𝑎𝑏𝐶−1
𝑏𝑏𝐶𝑏𝑎 + 𝐶𝑎𝑏𝐶

−1
𝑏𝑏Σ𝑏𝑏𝐶

−1
𝑏𝑏𝐶𝑏𝑎

≈ 𝐶𝑎𝑎 − 𝐶𝑎𝑏𝐶−1
𝑏𝑏 (𝐶𝑏𝑏 − Σ𝑏𝑏)𝐶−1

𝑏𝑏𝐶𝑏𝑎 . (8.42)

This makes sense in two limiting cases

• Σ𝑏𝑏 = 0 : we know 𝑓𝑏 exactly and obtain the standard expression for the
covariance for 𝑓𝑎 | 𝑓𝑏,

• Σ𝑏𝑏 = 𝐶𝑏𝑏: we do not update the original process, and as such we obtain
𝛾𝑎𝑎 = 𝐶𝑎𝑎.

Finally, we offer one more interpretation of this expression. If we considered the
standard expression for 𝑓𝑎 | 𝑓𝑏 with some covariance for 𝑓𝑏, say C𝑏𝑏, we would obtain

𝛾𝑎𝑎 = 𝐶𝑎𝑎 − 𝐶𝑎𝑏C−1
𝑏𝑏𝐶𝑏𝑎 , (8.43)

and therefore, by matching this to our approximation, we see that

C𝑏𝑏 = 𝐶𝑏𝑏 (𝐶𝑏𝑏 − Σ𝑏𝑏)−1𝐶𝑏𝑏

≈ 𝐶𝑏𝑏
(
𝐶−1
𝑏𝑏 + 𝐶

−1
𝑏𝑏Σ𝑏𝑏𝐶

−1
𝑏𝑏

)
𝐶𝑏𝑏 = 𝐶𝑏𝑏 + Σ𝑏𝑏 . (8.44)

In this limit, then, we can interpret updating the marginal distribution as equivalent
to the standard procedure of conditioning the process for 𝑓𝑎 on a noisy observation
of 𝑓𝑏 with observed values 𝑦𝑏 and measurement uncertainty Σ𝑏𝑏. Historically, this
is what was actually done in Refs. [50, 49, 48], and we now see why it provided a
decent approximation.

8.9 Inferring a breakdown with gravitational-wave signals and pulsar timing
measurements alone

In this appendix, we consider the question of how many gravitational-wave ob-
servations (when paired with existing heavy pulsar mass measurements) will be
required to determine the breakdown of an RMFT. We do this to explicitly evalu-
ate the prospect of developments of future gravitational-wave detectors. With next
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generation detectors such as Cosmic Explorer [52, 64], or Einstein Telescope [2],
in principle hundreds to thousands of informative binary neutron star mergers could
be identified within a handful of years of operation [52, 2]. In contrast, there
are a limited number of plausible x-ray timing targets with which to constrain the
EoS [20].

We start with more details on the gravitational-wave injections. We use a binary
population that is consistent with observations of merging neutron stars, sampling
50 sources from a representative population model which is uniform in component
masses from 1.0 to 2.0𝑀⊙.4 We simulate signals corresponding to the sampled
sources into Gaussian noise at the level of A+ detector sensitivity [1], placing the
sources uniformly in comoving volume from 1 to 300 Mpc, which we expect to
produce a substantial fraction of “informative” GW signals. Simulated neutron stars
are spinning slowly, with dimensionless component spins isotropically distributed
with magnitudes | ®𝜒 | < 0.05. We analyze all sources that are recovered with optimal
signal-to-noise ratio (SNR) > 10.0 using the bilby parameter estimation code [15]
using the IMRPhenomPV2_NRTidalv2 waveform [37].5 We then downsample the
total set of analyzed sources in order to produce variable catalog sizes.

In Fig. 8.14, we show the Bayes factor between models transitioning from RMFT-
informed to model-agnostic priors at 𝑝/𝑐2 = 1014 g/cm3 and 3 × 1013 g/cm3, re-
spectively. We consider two cases: inferring an RMFT EoS (top panel, see Sec. 8.3)
and an RMFT EoS which has a phase transition to a constant speed of sound (bottom
panel, see Sec. 8.3) at 𝑝/𝑐2 = 2.3 × 1013 g/cm3. As in the main text, we find no
strong evidence either for or against in the case of an RMFT injection. In this case,
all models can describe the data, so the Bayes factors essentially reflect the priors.
In the case of the phase transition, we find that meaningful evidence (B ≲ 10−3)
against an RMFT description up to high pressure after ∼ 7 events,6 with most of

4This is less than the TOV maximum mass for the EoSs we use for simulated data, assuming
that the population of merging NSs is not limited by the TOV maximum mass; see e.g., Ref. [63] for
a discussion. We assume this because high-mass neutron star mergers are essentially uninformative
with respect to the EoS, and more importantly, high mass NSs are generally not distinguishable from
black holes anyway in gravitational waves [53, 55, 46]

5In general, selecting events based on the optimal SNR can induce biases [45]. However, we do
not change the population, and the EoS contributes negligibly to selection effects.

6This is a plausible estimate for the number of detections of neutron star binaries with LIGO A+
sensitivity given current rate estimates [7]. Future detectors will produce far more detections, which
will lead to sampling challenges [51], and far louder detections [27], which will lead to systematic
biases due to waveform mismodeling [91]. Collectively these considerations make projection with
next-generation detectors using our methodology technically challenging, we therefore restrict to
A+.
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Figure 8.14: The ratio of evidences (i.e. Bayes factor), between models assuming
a transition from an RMFT informed model at 𝑝/𝑐2 = 1014 g/cm3 and at 𝑝/𝑐2 =

3 × 1013 g/cm3. The top panel is for the case of an RMFT injection, whereas the
bottom panel is for the case of an RMFT that transitions to a constant speed-of-sound
EoS. We plot the Bayes Factor as a function of the number of events analyzed. On
the top x-axis of each figure, we include the SNR of the event added to the catalog.
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the evidence accruing from a handful of informative events. For reference, the
mass of the lowest mass neutron star with a core undergoing the phase transition
(the “transition mass”) is ∼ 0.6𝑀⊙, well below any of the simulated neutron stars.
Therefore all simulated neutron stars have substantial quark cores. The highest SNR
event in the phase transition EoS case is also the most informative (SNR of 43, 6th
event in the catalog). However, certain events even with large SNR (≳ 30) are not
necessarily informative, usually because their masses are too large and therefore
lack a measurable tidal signature. Nonetheless, these results indicate that upcoming
gravitational wave data could lead to stronger constraints on the RMFT breakdown
scale.
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C h a p t e r 9

SIMULATIONS OF NEUTRON STARS WITH FLEXIBLE
EQUATIONS OF STATE

[1] Isaac Legred et al. “Simulating neutron stars with a flexible enthalpy-based
equation of state parametrization in spectre”. In: Phys. Rev. D 107.12 (2023).
I led this project building a flexible equation of state model, implementing
it in the SpECTRE code, and running relativistic simulation of neutron
stars. I developed the project idea, constructed the equation of state model,
implemented it, and ran analyses. I also wrote the bulk of the text in the
manuscript., p. 123017. doi: 10.1103/PhysRevD.107.123017. arXiv:
2301.13818 [astro-ph.HE].

Abstract
Numerical simulations of neutron star mergers represent an essential step toward
interpreting the full complexity of multimessenger observations and constraining
the properties of supranuclear matter. Currently, simulations are limited by an array
of factors, including computational performance and input physics uncertainties,
such as the neutron star equation of state. In this work, we expand the range of
nuclear phenomenology efficiently available to simulations by introducing a new
analytic parametrization of cold, beta-equilibrated matter that is based on the rel-
ativistic enthalpy. We show that the new enthalpy parametrization can capture a
range of nuclear behavior, including strong phase transitions. We implement the
enthalpy parametrization in the SpECTRE code, simulate isolated neutron stars, and
compare performance to the commonly used spectral and polytropic parametriza-
tions. We find comparable computational performance for nuclear models that are
well represented by either parametrization, such as simple hadronic EoSs. We show
that the enthalpy parametrization further allows us to simulate more complicated
hadronic models or models with phase transitions that are inaccessible to current
parametrizations.

https://doi.org/10.1103/PhysRevD.107.123017
https://arxiv.org/abs/2301.13818
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9.1 Introduction
Multimessenger observations of the gravitational wave event GW170817 [4, 3] have
highlighted the role of neutron star binaries (BNS) in probing the physics of dense
matter, e.g., [35, 23, 92]. In addition, further astronomical observations [4, 2, 27,
49, 82, 81, 106, 107, 12] and terrestrial nuclear experiments [5, 6] have facilitated
new insights into the equation of state (EoS) of NS matter [1, 43, 90, 90, 95, 96,
71, 74, 82, 81]. Nonetheless significant uncertainty exists about the properties of
dense matter above nuclear saturation density1, 𝜌nuc ≡ 2.8 × 1014g/cm3, which
translates to uncertainty in the properties of astrophysical NSs whose densities can
reach ∼ 7𝜌nuc [90, 74].

The merger phase of a BNS coalescence carries the largest imprint of nuclear matter
and strong gravity and it can only be studied numerically. Numerical relativity (NR)
simulations of BNS coalescences through merger require solving the equations
of general relativistic magnetohydrodynamics (GRMHD) simultaneously with the
Einstein field equations and, possibly, the Boltzmann equations for neutrino radiation
transport [11, 50, 17]. The system of equations is closed with a nuclear EoS. See
e.g. [15, 97, 52, 67, 104] for reviews of the field. Such simulations have been used
to interpret existing signals, e.g. [79, 98, 111, 65, 10, 20], and targeted simulations
will likely be an essential tool for understanding future observations.

The most generic strategy for representing the nuclear EoS numerically is piecewise,
i.e., using independent expressions in different density or pressure intervals. For
example, interpolated tables of thermodynamic quantities such as pressure and
internal energy at every value of the density and composition offer access to the
widest range of nuclear behavior. However, the temperature- and composition-
dependent tables currently used, e.g. [117], have a significant memory footprint and
evaluation requires computationally expensive operations such as constant access to
the table and interpolation [112]. The latter may also be inaccurate (at low order)
or prone to unphysical oscillations for EoSs with discontinuities or underresolved
features (at high order). A related approach makes use of piecewise parametrizations
such as a piecewise-polytrope [102], which is effectively a sparsely sampled table
for the polytropic exponent. Though it can capture a range of high-density behavior,
discontinuities in derivatives of thermodynamic quantities can degrade simulation
accuracy [53, 101].

1The saturation density of atomic nuclei is determined via theory and experiments [38]; here we
fix a value for convenience.
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A different strategy is based on functional representations of the EoS that stay smooth
across density scales, such as a single-polytropic or spectral parametrization [77,
55, 53, 101]. Such parametrizations typically cannot fully represent nuclear EoS
models, as they are restricted to a finite number of parameters in the density range
of interest [55, 53]. On top of this, smoothness across density scales fails to capture
nuclear models that contain nuclear transitions to exotic degrees of freedom.

In this study, we propose a new parametrization of the nuclear EoS that bridges
smooth and discontinuous models while balancing accuracy and computational
efficiency.2 We parametrize the relativistic enthalpy [76] via a combination of
analytic polynomials and trigonometric functions. Unlike pressure, the difference
in enthalpy at densities [𝜌nuc, 3𝜌nuc] for two EoSs is typically small compared to
the enthalpy of either. The enthalpy can thus be effectively written as a “baseline”
part plus small corrections. We capitalize on this in order to write the enthalpy
as a polynomial, typically capturing ∼ 99% of the EoS, plus small trigonometric
corrections, bringing the fit accuracy to 1 in 105. Such a decomposition can capture
a wide range of phenomenology with modest changes to the relevant parameters.
In addition, further thermodynamic quantities such as the pressure can be evaluated
efficiently and analytically.

We implement this parametrization in SpECTRE [33, 63], a scalable next-generation
multiphysics computational astrophysics code that uses task-based parallelism [60].
A primary science target for SpECTRE is fast and accurate GRMHD simulations of
BNS coalescences. We use SpECTRE to test the enthalpy parametrization on isolated
NSs in the Cowling approximation, i.e. we do not evolve the spacetime [26], while
evolving the ideal GRMHD equations [17] with a discontinuous Galerkin-finite
difference (DG-FD) hybrid scheme [31, 30]. Though these simulations assume a
static spacetime, they still allow us to evaluate the role of the enthalpy parametriza-
tion in questions of convergence, efficiency, and resolvability of nuclear physics in
simulations.

We show that the enthalpy parametrization is able to effectively represent a wide
range of nuclear behavior, while incurring small additional computational costs
relative to simpler parametrizations. After reviewing the general requirements a
parametrization must meet in Sec. 9.2, we introduce the enthalpy parametrization
in Sec. 9.3. We demonstrate that it can faithfully fit various nuclear models rang-

2We use the term “model” to refer to a nuclear-theoretic prediction and “parametrization” for a
functional form for the EoS.
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ing from smooth EoSs to phase transitions in Sec. 9.4. We perform numerical
simulations with SpECTRE and find that for resolutions of at least 130 m, the EoS
evaluation cost is subdominant to other simulation components. We also simulate
hybrid stars with quark cores and find that such simulations can be carried out stably
with better-than-expected runtime scaling properties under increasing resolution.
We conclude with discussions in Sec. 9.5.

9.2 EoS Parametrizations for Relativistic Simulations
General requirements
We begin with a general discussion of the requirements phenomenological parametriza-
tions of the nuclear EoS must meet for efficient use in numerical simulations. These
include (i) faithful representation of target nuclear models, (ii) parametric exten-
sibility, and (iii) computational performance related to smoothness (to the extent
allowed by the underlying nuclear physics) and/or a fully analytic formalism.

The first requirement is that the parametrization is generic enough that it can faith-
fully represent the target nuclear physics. While no standard faithfulness metrics
exist, a common test is the 𝐿2 difference of quantities of interest [77, 102]. Nonethe-
less it is unclear how different metrics relate, for example the 𝐿2 difference of the
local polytropic indices and that of the mass-radius curve [78, 53]. One particu-
lar challenge to smooth parametrizations is modeling strong phase transitions [57,
91]. In general we would like a parametrization where, whatever the metric, we
can improve the fit via iterative approximation. In principle this is available to
any parametrization by adding more parameters and smoothly changing parameter
values. In practice, however, the functional form of the parametrization may limit
the accessible parameter space, as shown in [124] for the spectral parametrization.

The second requirement is that the parametrization allows us to parametrically
explore a wide range of possible high-density behavior. This entails continuously,
and without significant fine-tuning, extending the parametrization to produce EoSs
that might differ from existing nuclear models. An example of such an extension
would be a parameter which controls the pressure at a particular density and thus
allows us to isolate the effect of this density scale on macroscopic observables.
Another benefit of such continuous extensibility is that it allows us to construct
a map from the EoS to observables, e.g. [89]. This approach has already been
successfully used in the case of binary black hole mergers to produce accurate
surrogates of the map of binary configurations to gravitational waves [18, 120].
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A similar methodology could be used to construct a surrogate for the post-merger
gravitational-wave signature of BNS mergers, whose EoS dependence is not well
captured by a small number of parameters [122, 19].

At the same time, we consider practical requirements in terms of computational
performance: speed and accuracy of the relevant evaluations, and smoothness of
the thermodynamic quantities where possible. A fully analytic form for the EoS and
all the relevant thermodynamic quantities is a sufficient (but perhaps not necessary)
condition. Tabulated EoSs, while guaranteeing maximal flexibility, fail in this
regard. Consider, for example, primitive variable recovery. Numerical simulations
evolve the components of the stress-energy tensor which are nonlinear functions of
primitive variables such the rest-mass baryon density 𝜌, pressure 𝑝, and specific
internal energy 𝜖 . This process involves inverting the relation between the stress-
energy tensor and the primitive variables with root-finding routines during which
the EoS, for example 𝑝(𝜖), is evaluated repeatedly. For tabulated EoSs this includes
computing the temperature 𝑇 from 𝜖 via another root-find and then computing 𝑝(𝑇)
via a table lookup and interpolation. The EoS tables are typically too large to store
in the CPU caches and so the nested root-finding routines require repeated loading
of data from main memory, causing significant overhead that dominates simulation
cost [112].

Another advantage of fully analytical parametrizations is that they enable efficient
computation of all necessary thermodynamic quantities in a consistent way. Besides
tabulated EoSs, this also applies to certain parametrizations that require interpolation
or numerical integration. For example, the spectral parametrization allows for
analytic evaluation but not integration of 𝑑𝜖/𝑑𝜌. Then, 𝜖 (𝜌) is computed via a
computationally expensive numerical integral as high accuracy is required to avoid
thermodynamic inconsistency during primitive variable recovery. Even if tables
are used in simulations, ensuring smoothness and consistency requires building
higher-order interpolants (or sampling very densely). This effectively amounts
to constructing local parametrizations of the EoS which satisfy some stitching
constraints. Therefore, even the use of tables in NR simulations stands to gain from
understanding fully analytic representations of the nuclear EoS.

Existing parametrizations of the EoS
The simplest parametrization of cold, beta-equilibrated, dense matter is a single
polytrope that prescribes a relationship between the rest-mass baryon density 𝜌 and
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the pressure 𝑝
𝑝(𝜌) = 𝐾𝜌Γ , (9.1)

where Γ is the the polytropic exponent and 𝐾 is the polytropic constant; both are
independent of 𝜌. For example, a degenerate neutron gas would obey a polytropic
relation with Γ = 5/3. Polytropes have a long history in NS simulations, e.g., [110,
48, 14, 40], and more recent code tests, e.g., [99, 28, 30], due to their simplicity,
low computational cost, and the fact that they allow for analytic evaluation of
pressure, internal energy, specific enthalpy, and rest-mass density. Nonetheless,
their simplicity makes polytropes incompatible with realistic EoS nuclear models,
either hadronic (for example, polytropes do not satisfy the same universal relations
as hadronic models [125]) or hybrid ones that include multiple degrees of freedom.

Piecewise-polytropes [103] extend single-polytropes to multiple polytropic seg-
ments at different densities, thereby decoupling low- and high-density behavior.
With enough piecewise segments, piecewise-polytropes can also fit EoSs with
strong phase transitions [118]. While piecewise-polytropes retain some of the
computational simplicity of the single-polytrope and have been employed in BNS
mergers [58, 69, 36, 34], the lack of smoothness across stitching boundaries tends
to increase the computational cost and decrease the accuracy [53, 101]. Extensions
to continuous polytropic indices [86, 101] guarantee differentiability of the pres-
sure; however, it is unclear how to extend the parametrization to guarantee further
derivatives of the pressure exist at the stitching point. Generically stitching two
C𝑛 functions to form a globally C𝑛 function requires matching 𝑛 + 1 derivatives,
which may require the introduction of functions to the parametrization of 𝑝(𝜌) for
example, which make it difficult to solve for 𝑒(𝜌) analytically.

Finally, the spectral parametrization [77] accurately reflects a broad range of nuclear
models while maintaining smoothness across density scales. The parametrization
has a similar form to a polytrope

𝑝(𝜌) = 𝐾𝜌Γ(𝜌) , (9.2)

but now Γ(𝜌) is expanded in a basis of smooth functions, typically a polynomial.
The spectral parametrization can successfully reproduce hadronic nuclear models
with a comparable number of parameters as polytropes, though it cannot capture
sharp changes in the speed of sound that are associated with phase transitions [77,
53]. Compared to piecewise polytropes and other EoS with discontinuities, the
spectral parametrization can lead to reduced computational cost in simulations [53]
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for a given accuracy requirement, while remaining more computationally intensive
than pure polytropes. Our current implementation of the spectral EoS balances
faithfulness to nuclear models and computational efficiency by expressing Γ(𝜌)
as a a polynomial in log 𝜌 [53]. More complex basis functions could improve
faithfulness, but they would come at the cost of computational efficiency since
computation of the internal energy requires a numeric integral whose accuracy
depends on how rapidly Γ(𝜌) varies.

The above discussion highlights the role of balancing faithfulness and computational
efficiency in selecting EoS parametrizations for numerical simulations. While the
single-polytrope is computationally efficient, it is too restrictive in terms of nuclear
physics. Piecewise-polytropes expand the range of nuclear models accessible, but at
the cost of longer runtimes and loss of accuracy due to non-smoothness at the stitch-
ing boundaries. The spectral parametrization strikes some balance, but performs
optimally when few parameters are used; it is therefore restricted to simple nuclear
models. Ultimately, we would prefer an EoS parametrization which is able to fit to
a problem-specific precision, matching the level of other errors in simulations at the
lowest possible cost. This motivates the introduction of a new parametrization with
increased flexibility to model a wider range of nuclear EoSs without considerable
performance losses.

9.3 enthalpy parametrization of the EoS
In this section we introduce a new enthalpy parametrization with a flexible number
of degrees of freedom that expands the range of microscopic physics we are able to
represent in numerical simulations. In the following, we work in geometric units:
𝑐 = 1, 𝐺 = 1.

Parametrizing the enthalpy
The specific enthalpy of a system ℎ is defined as the enthalpy per unit mass. In
relativistic contexts it represents the energy required to inject a unit of rest mass
into the system while remaining in thermodynamic equilibrium. The first law of
thermodynamics requires that at zero temperature 𝑇 and in 𝛽−equilibrium,

ℎ(𝜌) ≡
(
𝜕𝑒

𝜕𝜌

)
𝑇,𝛽

=
𝑑𝑒

𝑑𝜌
=
𝑝(𝜌) + 𝑒(𝜌)

𝜌
, (9.3)

where 𝑒 and 𝑝 are the energy density and pressure, while 𝜌 is the rest-mass energy
density of baryons.
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We choose to directly parameterize the enthalpy for three primary reasons. First, the
enthalpy is a monotonically-increasing and slowly-varying function of the baryon
density, which is numerically beneficial. Second, the enthalpy can be intuitively
interpreted as a measure of the stiffness of the EoS: a larger enthalpy corresponds
to higher pressure and energy density. Third, and importantly for hydrodynamic
simulations, the enthalpy in cold, beta-equibrilated matter is related to other ther-
modynamic quantities by linear operations, which facilitates analytic calculations
and avoids interpolation or numerical integration.

From the first law, we have

𝑑ℎ

𝑑 log 𝜌
=
𝑑𝑒

𝑑𝜌
+ 𝑑𝑝
𝑑𝜌

− ℎ (9.4)

=
𝑑𝑝

𝑑𝜌
=
𝑑𝑝

𝑑𝑒

𝑑𝑒

𝑑𝜌
(9.5)

= ℎ𝑐2
𝑠 , (9.6)

Equation (9.5) suggests that 𝑑𝑝/𝑑𝜌 is zero if and only if 𝑑ℎ/𝑑𝜌 is zero. Equa-
tion (9.6) provides the motivation for our parametrization choices. Consider, for
example, a constant speed of sound 𝑐𝑠 = 𝑐𝑠,0. Then

𝑐2
𝑠,0 = 𝑐2

𝑠 =
𝑑𝑝

𝑑𝑒
=⇒ 𝑝 = 𝑝0 + 𝑐2

𝑠,0Δ𝑒 , (9.7)

with 𝑝0 = 𝑝(𝑒0) and Δ𝑒 ≡ 𝑒 − 𝑒0. In this special case Eq. (9.6) becomes

ℎ(log 𝜌) ∝ exp
(
𝑐2
𝑠,0 log 𝜌

)
≈ 𝜌0

[
1 + 𝑐2

𝑠,0 log (𝜌/𝜌0) + . . .
]
, (9.8)

where 𝜌0 is some fiducial density. Equation (9.8) suggests that if 𝑐2
𝑠 is slowly

varying,3 the enthalpy can be approximated as exponential in log 𝜌. Moreover, a
smaller 𝑐2

𝑠 accelerates the convergence of the series of Eq. (9.8), though this also
depends on the choice of density scale 𝜌0. We therefore choose the Taylor expansion
in Eq. (9.8) as the starting point of the enthalpy parametrization.

We further select log 𝜌/𝜌0, as the independent variable of the parametrization.
This choice enables us to better resolve the low-density EoS. Equation (9.8) further
suggests that ℎ(log 𝜌) ∝ exp(𝑐2

𝑠,0 log 𝜌) is analytically and computationally simpler
than ℎ(𝜌) ∝ 𝜌

𝑐2
𝑠,0 as the Taylor expansion of 𝜌𝑐

2
𝑠,0 converges more slowly than the

expansion of exp(𝑐2
𝑠,0 log 𝜌) for non-integer 𝑐𝑠,0.

3In general, causality and stability bound 0 ≤ 𝑐2
𝑠 ≤ 1.
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Lastly, a desirable property of the specific enthalpy is that it is continuous across
first-order phase transitions. This can be seen from Eq. (9.5) where maintaining a
constant pressure across the transition guarantees that the enthalpy will be constant
as well. This indicates that across certain weak transitions the enthalpy can be
expanded in a basis of continuous functions, unlike, for example, a local polytropic
exponent.

Decomposition
Motivated by Eq. (9.8), we introduce a parametrization of ℎ(log 𝜌). Given an EoS
in some density region 𝜌min ≤ 𝜌 ≤ 𝜌max we select a density scaling parameter 𝜌0 ≤
𝜌min such that 𝑧 ≡ log(𝜌/𝜌0) is positive in the relevant density range. Importantly,
𝜌0 is not necessarily equal to 𝜌min, thus introducing an additional parameter. We
then write

ℎ(𝑧) ≈ ℎ𝑝 (𝑧) ≡
𝑖max∑︁
𝑖=0

𝛾𝑖𝑧
𝑖 , (9.9)

where ℎ(𝑧) is the target enthalpy and ℎ𝑝 (𝑧) is its approximation. This polynomial
decomposition is motivated by the previous observation that ℎ(𝑧) is approximately
exponential in 𝑧 for nearly constant speeds of sound, corresponding to 𝛾𝑖 ∼ 𝑐2𝑖

𝑠,0/𝑖!.
The rapid convergence of the 𝛾𝑖 sequence indicates that the 𝑖 > 𝑖max terms will be
small provided that the speed of sound is slowly varying.

Given that ℎ(𝑧) is positive and increasing and 𝑧𝑖 > 0, catastrophic floating point
cancellation in numerical calculations can be avoided by restricting to 𝛾𝑖 ≥ 0. This
guarantees that each term 𝛾𝑖𝑧

𝑖 is a small and positive correction to previous terms.
Furthermore, the polynomial expansion of Eq. (9.9) can be efficiently and stably
evaluated with Horner’s method [94]. Allowing for more general 𝛾𝑖 is possible, but
this comes at a risk of oscillatory behavior and cancellation of large terms which
make convergence predictions difficult. The implications and rationale behind the
choice to set 𝛾𝑖 ≥ 0 are further discussed in App. 9.9.

A consequence of setting 𝛾𝑖 ≥ 0 is that Eq. (9.9) is unable to model certain EoSs,
for example the case where 𝑑ℎ/𝑑𝑧 = ℎ𝑐2

𝑠 is not strictly increasing, even with
𝑖max → ∞. Such a non-monotonic speed of sound could be encountered for com-
plicated hadronic models or more generically if non-hadronic degrees of freedom
are introduced [80, 116, 61, 57]. We therefore augment Eq. (9.9) by decomposing
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ℎ𝑡 (𝑧) ≈ ℎ(𝑧) − ℎ𝑝 (𝑧) as a Fourier series

ℎ𝑡 (𝑧) ≡
𝑗max∑︁
𝑗=1
𝑎 𝑗 sin( 𝑗 𝑘𝑧) + 𝑏 𝑗 cos( 𝑗 𝑘𝑧) , (9.10)

where 𝑘 sets the “wavelength scale” of the fit. In a Fourier series 𝑘 is typically fixed
to

𝑘 = 𝑘𝐹 ≡ 2𝜋
𝑧max − 𝑧min

=
2𝜋

log(𝜌max/𝜌min)
, (9.11)

but here we vary it and find that 𝑘 ⪆ 𝑘𝐹 leads to good fits. The effect of perturbing
𝑘 around 𝑘𝐹 is small, as we explore in App. 9.7. The trigonometric expansion of
Eq. (9.10) can also serve as a low-pass filter to remove high-frequency oscillations
from the tabulated EoS data that may not be physical or computationally resolvable.
In summary, the enthalpy parametrization is

ℎ∗(𝑧) ≡ ℎ𝑡 (𝑧) + ℎ𝑝 (𝑧) ≈ ℎ(𝑧) . (9.12)

In Fig. 9.1 we demonstrate the enthalpy parametrization fit of Eq. (9.12) and its
polynomial, Eq. (9.9), and trigonometric, Eq. (9.10), components for a phenomeno-
logical EoS drawn from a Gaussian process prior [72, 44]. The polynomial fit alone
is accurate to about O(1%), while the total fit is good to about one part in 105. For
reference, we also plot 𝑐2

𝑠 = (1/ℎ)𝑑ℎ/𝑑𝑧, as a measure of the complexity of the
EoS. Even though 𝑐2

𝑠 is not globally nearly constant, it is slowly varying and nearly
monotonic.

Given the generic form of the enthalpy parametrization, there is no guarantee that a
particular fit will satisfy stability 𝑐2

𝑠 ≥ 0 and causality 𝑐2
𝑠 ≤ 1. If ℎ𝑡 (𝑧) = 0, the fit is

guaranteed to be stable, and a sufficient but not necessary condition for causality is
𝛾𝑖 ≤ 𝛾𝑖−1/𝑖, which becomes necessary and sufficient in the case of a constant sound
speed. If ℎ𝑡 (𝑧) is nonzero, then ℎ∗(𝑧) can oscillate, changing on scales of order the
most quickly varying Fourier mode. Therefore, both conditions must be checked on
a grid of spacing

𝛿𝑧 ≲
1

𝑗max𝑘
, (9.13)

where, as above, 𝑗max is the index of the fastest varying “Fourier” mode.

While an unstable fit to the EoS cannot be tolerated in a numerical simulation, an
acausal fit may be used if it is very nearly causal (i.e. if

√︁
𝑐2
𝑠 − 1 is small compared

to the velocity resolution of the simulation). In practice, however, fits typically are
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Figure 9.1: Results of a fit to an EoS drawn from a Gaussian process with the enthalpy
parametrization. We plot various thermodynamic quantities as a function of 𝑧. The
fit parameters are 𝜌min = 𝜌nuc, 𝜌max = 7𝜌nuc, 𝜌0 = 0.5𝜌nuc, 𝑘 = 𝜋/(log(7)), and
𝑖max = 𝑗max = 10. Top Panel: The tabulated EoS ℎ (solid, orange) and the total fit ℎ∗
(solid, light blue). We also plot the polynomial fit to the EoS ℎ𝑝 (dashed, indigo).
Both the total and the polynomial fit are indistinguishable from the tabulated EoS
by eye. Second Panel: The residuals of the total fit ℎ − ℎ∗. In this metric, the fit
demonstrates excellent agreement relative to ℎ−1 = 𝑝/𝜌+𝜖 ≳ 1×10−2 Third Panel:
The trigonometric fit ℎ𝑟 = ℎ − ℎ𝑝. Fourth Panel: (1/ℎ)𝑑ℎ/𝑑𝑧 = 𝑐2

𝑠 , for both the
tabulated EoS and the total fit. Heuristically, the speed of sound has a comparable
number of plateaus to the number of obvious peaks in ℎ𝑡 .

neither acausal nor unstable; if they are it is often a sign that the fit to the EoS is
poor and more parameters should be used.

Computing thermodynamic quantities
Given the expansion of Eq. (9.12), we can analytically compute the thermodynamic
quantities needed for GRMHD evolution as formulated in SpECTRE [33, 30], or
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similar codes [83]. For example, the energy density is

𝑑𝑒

𝑑𝑧
= 𝜌

𝑑𝑒

𝑑𝜌
= 𝜌0 exp (𝑧) ℎ(𝑧) ⇒

𝑒(𝑧) = 𝜌0

∫ 𝑧

𝑧0

exp (𝑧′) ℎ(𝑧′)𝑑𝑧′ + 𝑒(𝑧0) . (9.14)

Since ℎ(𝑧) is expressed in terms of sines, cosines, and polynomials, the integral of
Eq. (9.14) can be computed using the following identities∫

exp (𝑧) sin(𝑛𝑘𝑧)𝑑𝑧

= exp (𝑧) sin(𝑛𝑘𝑧) − 𝑛𝑘 cos(𝑛𝑘𝑧)
1 + 𝑛2𝑘2 + 𝐶 , (9.15)∫

exp (𝑧) 𝑧
𝑛

𝑛!
𝑑𝑧

= exp (𝑧) 𝑧
𝑛

𝑛!
−

∫
𝑧𝑛−1

(𝑛 − 1)! exp (𝑧) 𝑑𝑧 = . . . , (9.16)

where the ellipses indicate that integration by parts can be repeated until the integral
becomes trivial. Equation (9.16) is also a gamma function, but it is typically
incomplete. Nonetheless, all integrals can be evaluated analytically and 𝑒(𝑧) has an
expansion of the form

𝑒(𝑧) = exp(𝑧)×(∑︁
𝑖

𝛾′𝑖 𝑧
𝑖 +

∑︁
𝑗

𝑎′𝑗 sin(𝑘 𝑗 𝑧) + 𝑏′𝑗 cos(𝑘 𝑗 𝑧)
)

+ 𝑒∗ , (9.17)

where the constant 𝑒∗ is determined by setting 𝑒(𝑧min) = 𝑒min and the coefficients
satisfy

𝛾′𝑖 =
1
𝑖!

∑︁
𝑖max≥ℓ≥𝑖

(−1)𝑖max−ℓℓ!𝛾ℓ , (9.18)

𝑎′𝑗 =
𝑎 𝑗

1 + 𝑗2𝑘2 +
𝑏 𝑗 𝑗 𝑘

1 + 𝑗2𝑘2 , (9.19)

𝑏′𝑗 =
𝑏 𝑗

1 + 𝑗2𝑘2 −
𝑎 𝑗 𝑗 𝑘

1 + 𝑗2𝑘2 . (9.20)

The pressure 𝑝(𝑧) can also be evaluated analytically with a similar expansion given
that

𝑝(𝑧) = 𝜌0ℎ(𝑧) exp (𝑧) − 𝑒(𝑧) = ℎ𝜌 − 𝑒 . (9.21)
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This equation showcases the benefits of setting 𝛾𝑖 ≥ 0 in Eq. (9.9) to avoid cancel-
lations in the enthalpy expansion. The pressure is computed as the difference of two
relatively large quantities, each typically 1–3 orders of magnitude larger than the
pressure itself in the relevant density interval. If the expansion of ℎ(𝑧) additionally
had large coefficients (i.e. much larger than the enthalpy) terms of 𝑒(𝑧) will be
computed by sums of alternating large numbers, which is numerically undesirable.
However, because 𝛾ℓ ∼ 1/ℓ! for EoSs with slowly varying speed of sound, the terms
in Eq. (9.18) are of comparable size, and about the same size as corresponding
terms of ℎ(𝑧). Thus the terms of 𝑝(𝑧) are computed to comparable precision as the
terms of 𝑒(𝑧) and ℎ(𝑧). We find this holds more broadly, even when the speed of
sound is not slowly varying, as 𝛾ℓ is typically decreasing even if it is not decreasing
exponentially as in the constant-𝑐2

𝑠 case.

Lastly, we can also analytically compute
𝑑𝑝

𝑑𝜌
=
𝑑ℎ

𝑑𝑧
, (9.22)

through
𝑑ℎ

𝑑𝑧
=

∑︁
𝑖

𝑖𝛾𝑖𝑧
𝑖−1

+
∑︁
𝑗

𝑗 𝑘
[
𝑎 𝑗 cos( 𝑗 𝑘𝑧) − 𝑏 𝑗 sin( 𝑗 𝑘𝑧)

]
. (9.23)

As can be seen from Eqs. (9.17) and (9.23), parameters that enter linearly in the
original expansion of ℎ(𝑧) also appear linearly in all relevant thermodynamic quan-
tities.

Low-Density Stitching
The enthalpy parametrization is best suited for high-density regions where pressure
and energy density are comparable. Low-density regions with 𝑝 ≪ ℎ𝜌 ∼ 𝑒 might
be better fit by direct parametrizations of the pressure. We therefore combine the
enthalpy parametrization with a simpler low-density parametrization below 𝜌min.
Incidentally, this density region coincides with the region of validity of nuclear
theory calculations [115, 39, 47] and terrestrial experiments [5, 6, 108, 45, 46]. The
low-density EoS is therefore better constrained and thus there is reduced need for
flexibility in the EoS parametrization. Moreover, the low-density EoS has a reduced
impact on NS observables, especially if the simulation resolution is low, such that
(𝑑𝑝/𝑑𝑟)Δ𝑟 > 𝛿𝑝, where Δ𝑟 is the grid spacing and 𝛿𝑝 is the difference induced by
EoS mismodeling.
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A number of options exist for the low-density EoS, including direct parametrizations
of nuclear models [115] or chiral effective field theory(𝜒-EFT) results [114, 90].
Here we select the existing spectral parametrization implementation [53], as it is
more flexible than single-polytropes, but smoother than piecewise-polytropes and
tabulated EoSs. In certain cases, we explore extending the spectral parametrization
up to relatively high densities ∼ 2𝜌nuc if it can fit the target EoS well-enough in this
density regime. Due to the low number of parameters in the spectral parametrization,
all degrees of freedom are determined by requiring differentiability of the pressure
and continuity of the internal energy at the stitching points. We verify this stitching
maintains C1 smoothness; see App. 9.7.

Free parameters and fitting
The number of free parameters needed to achieve good fits of arbitrary EoSs will im-
pact the simulation cost. Indeed, the cost of evaluating any EoS-dependent quantity
is proportional to the number of coefficients used for the enthalpy parametrization.
Therefore it is prudent to use only as many terms as necessary to achieve an accurate
fit; accuracy in the context of numerical simulations is measured relative to other
simulation errors. There is no definitive metric for EoS mismodeling error, as the
relevant error will depend on the application. For example, in applications to BNS
inspirals, the relevant errors are in GW phase, matter hydrodynamic variables, and
magnetic field variables. When considering the fitness of an EoS parametrization
for use in simulations, all these factors should be taken into consideration.

Nonetheless, it is pragmatically necessary to define surrogate goodness-of-fit statis-
tics in order to both fit the enthalpy parametrization to data and determine approxi-
mately if such a fit is good. We describe the fitting procedure of the parametrization
to a tabulated model that we employ in App. 9.7. Briefly, we fit the specific enthalpy
ℎ(𝑧) on a linear grid in 𝑧 but with variable precision, requiring higher precision at
lower densities to achieve equal cost across density scales. However, fitting is not the
only way to extract coefficients for use in the enthalpy parametrization; for example,
coefficients to approximate a polytropic EoS are derived in App. 9.8 using a Taylor
expansion of the specific enthalpy. Nonetheless, for realistic nuclear models, fitting
the specific enthalpy is usually necessary.

One convenient benchmark is to examine the error in radius of a typical neutron star
induced by using a enthalpy parametrization fit as compared to a tabulated model.
In order to demonstrate the general requirements for fitting, we fit a collection of
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realistic nuclear theoretic EoSs, compute the error in the radius of a 1.4𝑀⊙ NS
(Δ𝑅typ) and display the results in Table 9.1. These fits are all carried out with
𝑖max = 12, and 𝑗max ≤ 5, and have typical NS radius error of less than 70 m. EoS
modelling error would therefore likely not be limiting in simulations with∼ 70 meter
resolution; this is a conservative choice of error measure as realistic simulation errors
will likely dominate static errors. Additionally, we fit phenomenolgical EoSs drawn
from a Gaussian process-mixture model priors [70, 44]. We examine two cases:
the first is draws from a model-agnostic prior, which are only loosely informed by
nuclear theory calculations, the second class is Gaussian process draws conditioned
on 𝜒-EFT up to 1.5𝜌nuc [43, 46]. Both nuclear-theoretic and phenomenological
EoSs show comparable fit quality, indicating that the enthalpy parametrization is
able to reproduce a wide range of EoS models.

We list 𝑗max in Table 9.1 as we expect that the number of trigonometric terms
is the leading-order driver of cost to evaluate the parametrization. We quantify
this further in Sec. 9.4. Contrarily we expect little dependence of evaluation cost of
𝑖max because evaluation of polynomials using Horner’s method is extremely efficient.
For realistic EoSs, fine-tuning of low-density stitching and nonlinear parameters can
reduce the number of trigonometric correction terms that are required to achieve
a good fit. Even when no fine-tuning is required, typically good fits are achieved
with 𝑗max ∼ 4. We quantify this in Fig. 9.2 by showing the error in the radius of
a typical star for six different 𝜒-EFT informed Gaussian process draws, when no
fine tuning of nonlinear or low-density parameters is performed. The fits are better
when more trigonometric correction terms are included, all falling below 100 m
error by 𝑗max = 4. These errors are often due to the EoS at low-densities, and
so typically fine-tuning of certain parameters, such as the low density polytropic
index, or the energy density of EoS at the stitching density, must be carried out to
achieve ∼ 10-meter-error fits. In practice, though, this may not be necessary as
quantities such as the tidal deformability are determined by the bulk of the matter,
interior to the crust, therefore crust modeling errors may be less significant then
predicted by using the radius as a metric. These considerations will be especially
important for BNS simulations where GW emission is predominately determined
by tidal deformability, and other sources of error may overshadow EoS modeling
error.

Use cases
The primary function of the enthalpy parametrization is to represent EoS models
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Table 9.1: A list of EoS fits with the enthalpy parametrization to nuclear theoretic
and phenomenological EoS. Theoretic EoSs are listed according to the conventions
of [102]. Phenemenological EoSs are drawn from Gaussian process priors. The
EoSs gp1 and gp2 are drawn from a model agnostic Gaussian process prior [70,
44]. EoSs gp𝜒eft1, gp𝜒eft3, and gp𝜒eft5 are drawn from Gaussian process priors
conditioned on 𝜒-EFT predictions at low densities. These three EoSs represent
draws from hadronic, hyperonic, and quarkyonic conditioned GPs, respectively.

EoS 𝑅typ [km] Δ𝑅typ [km] Δ𝑀max [𝑀⊙] 𝑗max Ref.
alf2 12.968 -0.028 -0.003 3 [8]

bsk19 10.763 -0.006 -0.001 5 [93]
ap4 10.595 -0.02 0.001 3 [7]
H4 12.931 0.01 0.001 3 [68]

bbb2 11.442 -0.05 -0.008 5 [16]
eng 12.306 -0.071 -0.009 2 [41]

mpa1 11.696 -0.062 -0.003 5 [85]
ms1 14.223 -0.015 -0.007 5 [84]

qmc700 11.942 -0.008 -0.002 5 [105]
sly 11.873 -0.053 -0.003 5 [37]

wff2 10.373 -0.049 -0.002 5 [123]
gp1 12.302 -0.02 -0.007 4 [70]
gp2 12.345 -0.024 0.001 4 [70]

gp𝜒eft1 10.496 -0.052 0.001 5 [43]
gp𝜒eft3 10.509 -0.049 0.001 5 [43]
gp𝜒eft5 10.789 -0.057 -0.002 5 [43]

for use in numerical simulations containing dense matter. Given the wide range of
models of nuclear matter, the enthalpy parametrization is intentionally very flexible.
Existing parametrizations of the nuclear EoS typically have a handful of parameters,
and extending them might be nontrivial. In contrast, well-interpolated tables have
many “parameters”, or tabulation points, some of which we would prefer not to
resolve in simulations (such as artificially rapid changes in some pressure derivative).
The enthalpy balances these requirements in such a way that the maximal level of
flexibility can be found without introducing extraneous parameters. This allows us
to resolve EoSs from nuclear theory (Sec. 9.4) as well as EoSs which extend or
modify nuclear models (Sec. 9.4). Such flexibility is crucial for determining the
observational implications of new degrees of freedom at arbitrary density scales.

Furthermore, the requirements laid out in Sec. 9.2 are tailored for a specific ap-
plication of EoS parametrizations, namely numerical simulations involving NSs.
These requirements are domain specific and need not necessarily lead to efficient
parametrizations for different applications, for example EoS inference using as-
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Figure 9.2: Radius error in fitting Gaussian Process-generate EoSs conditioned on
𝜒-EFT [43, 46] with the enthalpy parametriation. We plot two hadronic-conditioned
draws, two quark-conditioned draws, and two hyperonic draws. This indicates the
draws are from processes conditioned on EoS models of the given type, so that
e.g. the hadronic process is consistent with known hadronic EoSs. Nonetheless
the processes use “agnsotic” kernels which lead to very compatible distributions on
EoSs for each of the three cases [70, 44]. A problem with stitching stability affected
multiple of the fits at 𝑗max = 3, so we exclude these.

trophysical data. Besides the general faithfulness and computational efficiency
considerations, EoS parametrizations employed in inference need to satisfy an addi-
tional requirement: they must provide a reliable path from the observed data to the
EoS constraints. Specifically, the data must be the primary driver of inference while
the impact of the EoS parametrization itself must be either minimal or driven by first
principles and nuclear theory. Parametrizations that impose a functional form for
the EoS in terms of a finite number of parameters may fail this requirement [55, 22].
Specifically, the spectral, piecewise-polytropic, and speed-of-sound parametriza-
tions impose additional phenomenological correlations between different densities
that are not guided by nuclear theory but instead by the arbitrary functional form of
the parametrization itself [75]. Though we have not repeated the analysis of [75],
we expect that the enthalpy parametrization has the same pitfall as it possesses many
nearly-irrelevant degrees of freedom that are not constrained by current observa-



364

tions and will generically impart correlations between density scales. We therefore
caution against using it for inference purposes.

9.4 Parametrization Verification and simulations
In this section, we look in depth at fitting nuclear and phenomenological models
with the enthalpy parametrization and perform numerical simulations. First, we use
SLy1.35 [53], a spectral fit to the SLy EoS [37, 102] with a low-density polytropic
exponent of 1.35962. This represents a nuclear EoS which has been effectively
simplified by being fit with a spectral EoS. Therefore, this test allows us to ana-
lyze the performance of the enthalpy parametrization on a problem where lower
dimensional parametrizations are applicable, in terms of both accuracy and compu-
tational performance. We next consider a tabulated DBHF [56] EoS, derived from
relativistic, ab initio calculations of protons and neutrons dressed via interactions
with one-boson exchange potentials.4 It is relatively stiff, with a typical NS radius
of ∼ 13.5km. This allows us to assess the accuracy with which we can fit realistic
nuclear models. We then modify the DBHF EoS using a constant-speed-of-sound
parametrization [9] to construct a model with a strong phase transition, DBHF_2507.
With this we assess the ability of the enthalpy parametrization to augment realistic
low-density models with phenomenological extensions inspired by nuclear theory.

Using the three models presented above, we study the evolution of isolated NSs by
numerical simulation. As in Ref. [30], we work with SpECTRE within the Cowling
approximation and examine NS modes that are sourced by density perturbations
due to numerical noise. We neglect spacetime dynamics and magnetic fields, which
will likely be most relevant in crust physics where magnetic and matter pressure
are comparable. We run each simulation for 40,000 CFL-limited time steps [25].
For the DG-FD hybrid solver of SpECTRE we use a sixth-order (P5) discontinuous
Galerkin scheme where each element uses 63 Gauss-Lobatto points on the mesh. If
an element switches its mesh from discontinuous Galerkin to finite difference, we
use 113 uniformly spaced grid points for finite difference cells. The finite difference
solver needs to compute the solution (in our case 𝜌, 𝑝, and 𝑊𝑣𝑖, where 𝑊 is
the Lorentz factor and 𝑣𝑖 the spatial velocity) at cell interfaces (halfway between
grid points). We compute these using two different reconstruction schemes: the
widely employed monotonized central [119] and a positivity-preserving adaptive
order scheme which was recently implemented in SpECTRE [29]. In the 𝑛-th order
adaptive scheme, we first try reconstructing the finite-difference interface values with

4The EoS we use has employed the Bonn A potential defined in Ref. [56].
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Figure 9.3: Fitting SLy1.35 (a spectral model of SLy) with the enthalpy parametriza-
tion, expressed through the difference in pressure divided by the density. The
SLy1.35 EoS value for 𝑝(𝜌)/𝜌 is marked by a maroon dashed line for comparison
to the residuals. The 𝑗max = 5 and 𝑗max = 2 fit residuals are marked in light blue
and indigo. The vertical blue dashed line marks the stitching density between the
enthalpy and the spectral parametrizations, while the vertical red dot-dashed line
marks the central density of the NS we simulate in Sec. 9.4. The solid red horizontal
line marks an error level of 3 × 10−3 for comparison with fits in Sec. 9.4; errors
below 3 × 10−3 at (1, 3)𝜌nuc serve as a heuristic for a good fit.

a degree 𝑛−1 polynomial without any limiting procedure. If the reconstructed values
are (i) not positive or (ii) trigger a certain oscillation-detecting criterion, we repeat
the reconstruction with progressively lower-order methods. In this work we use the
fifth-order adaptive scheme which first tries reconstruction with a quartic polynomial
and switches to monotonized central if the reconstructed values fail to satisfy the
conditions described above. Finally, if the monotonized central reconstruction did
not produce positive values at the interface, first-order reconstruction is used.
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Figure 9.4: Radius error Δ𝑅 as a function of mass for the SLy1.35 EoS and the
𝑗max = 10 and 𝑗max = 5 enthalpy parametrization fits. We mark the mass of the
stars with central density 𝜌𝑐 ∼ 3.04𝜌nuc, (simulated in Sec. 9.4), with dashed-dot
lines. Consistently with the microscopic comparison of Fig. 9.3, the enthalpy fit can
reproduce macroscopic quantities with excellent agreement. The error decreases
with more trigonometric terms, but always remains small compared to 200 m grid
resolution.

SLy1.35
SLy1.35: fit results

We fit SLy1.35 with the enthalpy parametrization and show the error in pressure
divided by density as a function of density in Fig. 9.3. We vary the number of
trigonometric terms in Eq. (9.10) and show results with 𝑗max = 2 and 𝑗max = 5. The
𝑗max = 5 fit shows exceptional agreement; the error measure, Δ𝑝/𝜌, is near or below
1 × 10−4 over essentially the entire domain. The 𝑗max = 5 fit shows increased error,
though Δ(𝑝/𝜌) remains near or below 3 × 10−3 above 𝜌nuc. We stitch to a spectral
parametrization below 𝜌nuc, marked in the Fig. 9.3 as a vertical dashed blue line.
Even though the low-density behavior of the EoS is a spectral EoS fitting a spectral
EoS, it is not guaranteed the low-density fit is good, because we prioritize smooth
stitching to the enthalpy solution above accurate low-density EoS modeling; see
App. 9.7. In line with this, we see a significantly better low-density fit for 𝑗max = 5.
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Parametrization
Evaluation Cost (ns)

𝑝(𝜌) 𝜖 (𝜌)

enthalpy, 𝑗max = 5 224 225
enthalpy, 𝑗max = 2 120 120
spectral 62 315

Table 9.3: Evaluation cost in nanoseconds for the spectral and two different enthalpy
fits to SLy1.35 for the pressure and internal energy evaluated at 𝜌 = 5 × 10−4𝑀2

⊙.
The spectral parametrization has a shorter (longer) pressure (internal energy) eval-
uation time. The enthalpy evaluation cost further increases with the number of
trigonometric terms employed.

SLy1.35: Relativistic simulations

We carry out simulations directly with SLy1.35 using the defining spectral expan-
sion [53] as well as the 𝑗max = 5 enthalpy parametrization fit; details are given
in Table 9.2. We evolve a NS with an initial central density of ∼ 3.04𝜌nuc which
has a Tolman-Oppenheimer-Volkoff (TOV) [88] mass of about 1.4𝑀⊙ and a radius
of about 11.5 km; see Figs. 9.3 and 9.4. The simulation resolution corresponds
approximately to a 220 m finite difference grid spacing. We plot the central density
as a function of time and its spectrum

𝜌c(𝜔) =
∫ 𝑇

0
𝜌c(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 , (9.24)

in Fig. 9.5 and find essentially identical evolution between the spectral and enthalpy
fits, in line with expectations from the static tests of Sec. 9.4. This demonstrates
that the enthalpy parametrization is able to faithfully reproduce results from lower-
dimensional parametrizations.

With regards to computational cost, the enthalpy parametrization results in an overall
15% increase in total runtime compared to the spectral parametrization on similar
hardware. To isolate the EoS evaluation cost, we benchmark the 𝑝(𝜌) and 𝜖 (𝜌)
evaluation in Table 9.3. The two parametrizations have comparable evaluation
times though exact numbers are sensitive to the number of trigonometric terms
in the enthalpy case. While 𝑝(𝜌) evaluation is in general faster with the spec-
tral parametrization, the opposite is true for 𝜖 (𝜌). This is because the spectral
parametrization needs to perform a quadrature to calculate 𝜖 (𝜌); see Sec. 9.2. In the
enthalpy parametrization, trigonometric terms cause slowdowns, although even with
2× 𝑗max = 10 terms the 𝑝(𝜌) cost does not exceed a factor of 4. Further studies with
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Figure 9.5: NS central density as a function of time (top panel) and its spectrum
(bottom panel) for SpECTRE simulations with SLy1.35 (red dashed) and its 𝑗max = 10
enthalpy fit (blue solid). These runs are labeled spectral-sly-mc-220 and enthalpy-
sly-mc-220 in Table 9.2. In both plots the curves are nearly indistinguishable. We
plot times in both milliseconds (ms), and dynamical times (𝑡dyn ≡ 1/√𝜌c)
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single-polytropic nuclear EoSs suggest that this disadvantage effectively disappears
if 𝑗max = 0; see App. 9.8.

DBHF
DBHF: Fitting a tabulated nuclear model

We fit the tabulated DBHF EoS with the enthalpy parametrization and further
explore the effect of low-density stitching to the spectral parametrization by probing
two different stitch densities: 𝜌nuc and 2.5𝜌nuc; these fits are referred to as “low-
stitch” and “high-stitch” in what follows. In the high-stitch case we use 𝑗max = 10
trigonometric terms, while we find that 𝑗max = 5 is enough for the low-stitch one.
See App. 9.7 for more details. We examine the microscopic and macroscopic
performance of both fits in Figs. 9.6 and 9.7. On the microscopic side, the low-stitch
fit achieves higher accuracy above 1.1𝜌nuc, but worse accuracy below.

The macroscopic side presents a clearer picture. When we use the enthalpy
parametrization to describe the EoS down to a density of 𝜌nuc, we obtain excellent
agreement with the tabulated EoS, with radius differences O(1) m for astrophysi-
cally relevant NS masses. However, when we stitch to the spectral parametrization at
2.5𝜌nuc the radius error increases to O(100) m at 1.4𝑀⊙. The improved agreement
between the 2.5𝜌nuc and the 𝜌nuc stitching fits can be attributed to the high accuracy
of the enthalpy parametrization in the range 𝜌nuc to 2.5𝜌nuc, as seen in Fig. 9.6. The
difference in the two errors is particularly pronounced near 2𝜌nuc, consistent with
the observed strong correlation between the pressure at twice saturation density and
radius of a 1.4𝑀⊙ star [73]. This further establishes the importance of the enthalpy
parametrization as a flexible EoS parametrization at nuclear saturation and above, in
this case it appears errors in 𝑝/𝜌 must be at most 3× 10−3 to achieve high-precision
reproduction of astrophysical observables. However, this is not an indication that the
spectral parametrization cannot fit DBHF well, it just cannot fit DBHF well while
maintaining C1 pressure smoothness at the high-density transition to the enthalpy
parametrization and the low density transition to the crust; see App. 9.7.

DBHF: Relativistic simulations

We next turn to SpECTRE simulations using the DBHF fits from the previous section.
Since the low- and high-stitch fits predict O(100) m differences for 𝑅1.4, we target a
resolution at that level in order to resolve their effect. We select a NS central density
of 2.21𝜌nuc that lies between the two stitching densities of 𝜌nuc and 2.5𝜌nuc; see
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Figure 9.6: Same as Fig. 9.3 but for the DBHF nuclear EoS model and two enthalpy
fits that are stitched to a spectral parametrization at 𝜌nuc (low-stitch, light blue) and
2.5𝜌nuc (high-stitch, indigo). We also plot the tabulated DBHF model 𝑝(𝜌)/𝜌 in
dashed-teal for reference. The vertical dashed lines denote the stitching densities.
We also mark the value Δ𝑝/𝜌 = 3× 10−3 as a solid red horizontal line for reference.
We mark the central density of the star we simulate in Sec. 9.4 with a vertical red,
dot-dash line.

Figs. 9.6 and 9.7. Run details and settings are given in Table 9.2. As a consequence,
the NS resulting from the high-stitch EoS is fully described by the spectral part of
the EoS. In the low-stitch EoS, the NS is described with the enthalpy parametrization
out to 𝑟/𝑅 ≈ 7/8, about two-thirds of the coordinate volume of the star.

While the high-stitch EoS does represent a spectral fit to the DBHF EoS, the
spectral parameters are selected by the requirement that the spectral parametrization
reproduces the correct low-density behavior of DBHF and is smoothly stitched to
the enthalpy parametrization. It is important to note that a better spectral fit to any
particular astrophysical quantity, such as 𝑅1.4 may be possible, but the fit accuracy is
typically lower than in the enthalpy parametrization case. Even if the few degrees of
freedom in the spectral model are fit to minimize errors in astrophysical observables,
fixing the low-density behavior of the EoS often results in 𝑅(𝑀) deviations of 50 m
or more [53]. In what follows, we leverage the mismatch of Fig. 9.7 to examine
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Figure 9.7: The NS mass-radius relation but for the DBHF nuclear model and two
enthalpy fits that are stitched to a spectral parametrization at 𝜌nuc (low-stitch, light
blue) and 2.5𝜌nuc (high-stitch, indigo). We find visibly improved fits to the 𝑀–𝑅
relation when the enthalpy parametrization extends down to lower densities. Red
dots mark the NSs we evolve in Sec. 9.4.

how well we can resolve EoSs with ∼ 100 m radius differences in simulations
with similar resolution. Since the high-stitch NS is fully described by the spectral
parametrization, this test also serves as a comparison of runtimes between the
spectral and enthalpy parametrizations. We do not utilize the tabulated version
of DBHF because SpECTRE currently cannot perform GRMHD simulations using
tables.

We carry out simulations as detailed in Table 9.2 and plot the spectrum of the
central density of each star in Fig. 9.8. The two spectra disagree both in the
location of the NS modes and their strength, a consequence of the EoS mismodeling
shown in Figs. 9.6 and 9.7. In particular, the fundamental radial modes disagree
by nearly 3.5%, a difference of ∼ 130 Hz in this case. Table 9.2 further shows
the simulation runtime which is comparable in the 130 m resolution case; each run
took about a day on ∼ 70 processing elements. Based on the benchmarking results
of Sec. 9.4, total EoS evaluation time should be comparable for the two runs, as
the spectral parametrization evalautes the pressure about twice as quickly as the
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Figure 9.8: NS central density spectrum for SpECTRE simulations with enthalpy
fits to the DBHF nuclear EoS that are stitched to the spectral parametrization at
𝜌nuc (low-stitch, blue solid) and 2.5𝜌nuc (high-stitch, red dashed). These runs are
labeled enthalpy-dbhf-mc-130 and spectral-dbhf-mc-130 respectively in Table 9.2.
The simulated star has a central density of ≈ 2.2𝜌nuc; it is marked in Figs. 9.6
and 9.7. In the red case, the NS is completely described by the spectral EoS as its
central density is below 2.5𝜌nuc.

enthalpy parametrization, but evaluates the internal energy about three times slower.
Since the number of pressure and internal energy evaluations throughout the entire
simulation is not known a priori, we cannot preemptively conclude which should
run faster, though it is likely the difference would be small. This is reflected in the
runtime; differences of 10% are found, with the enthalpy parametrization running
slightly faster. Nonetheless, this could be due to an array of confounding factors
such as task allocation efficiency, and hardware differences. We therefore conclude
that the enthalpy parametrization, despite having more flexibility, is not slower than
lower dimensional parametrizations at these resolutions for practical problems.

DBHF_2507: Phase transitions
We now turn our attention to EoS with strong phase transitions and study both smooth
and non-smooth (i.e., piecewise) EoSs. We base our studies on DBHF_2507 which
is constructed by combining DBHF with the constant-speed-of-sound phenomeno-
logical parametrization for strong phase transitions [9]. We select a transition density
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of 𝜌𝑡 = 2.5𝜌nuc and latent heat ratio Δ𝑒/𝑒 = 0.7 [57, 24]. The pressure remains
constant during the phase transition, while above that it has a constant speed of
sound with 𝑐2

𝑠 = 1. The induced phase transition causes a second stable branch to
appear in the 𝑀–𝑅 relation above masses ∼ 1.6𝑀⊙.

DBHF_2507: piecewise parametrization

In its original form described above, DBHF_2507 is piecewise smooth, and it can
be represented effectively by a piecewise version of the enthalpy parametrization.
Below the phase transition we use either the low- or high-stitch fits from Sec. 9.4, and
transition to a new enthalpy segment after the transition. In the high-stitch case, the
hadronic part of the EoS is completely described with the spectral parametrization.
During the transition, DBHF_2507 possesses a formally constant pressure as a
function of density; however, constructing TOV solutions using the method of
Lindblom [76]—the TOV method implemented in SpECTRE—requires 𝑑ℎ/𝑑𝑧 =

𝑑𝑝/𝑑𝜌 to be strictly positive. Therefore, in the transition region we modify the EoS
to exhibit 𝑑ℎ/𝑑𝑧 = 𝛿, where 𝛿 is some quantity large enough to guarantee that ℎ(𝑧)
is numerically invertible, but still small enough to have a small impact on the TOV
solution relative to the target resolution.5 After the end of the phase transition, ℎ(𝑧)
is given by a constant speed of sound form, (see Eq. (9.8)); this is similar to the
procedure demonstrated in [54].

The advantage of the enthalpy parametrization in this problem is that it is able
to model constant-speed-of-sound matter (see App. 9.8 for the polytropic case)
efficiently and with no fine-tuning. Compare this to polytropic (or spectral) models,
which can only model constant-speed-of-sound matter well when

Γ ≡ 𝜌

𝑝

𝑑𝑝

𝑑𝜌
=
𝜌

𝑝
ℎ𝑐2

𝑠 =
𝑝 + 𝑒
𝑝

𝑐2
𝑠 (9.25)

is slowly varying. This is typically not true until some density greater than the phase
transition, where 𝑝 = 𝑝0 + 𝑐2

𝑠Δ𝑒 ≈ 𝑐2
𝑠Δ𝑒, especially if 𝑐2

𝑠 is small compared to 1,
such as models where 𝑐2

𝑠 = 1/3 in the core [66, 116]. In contrast, the enthalpy
parametrization can model constant-speed-of-sound matter to arbitrary precision,
and benchmarking results demonstrate that in such cases it can even outperform
polytropic EoSs by up to 25%.

5At a central density of 5.07𝜌nuc, the difference in radius induced by using 𝛿 = 1 × 10−4 instead
of 𝛿 = 1 × 10−3 is less than 5 m.
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We plot the 𝑀–𝑅 curve in Fig. 9.9, using the low-stitch and high-stitch fits for the
hadronic part of the EoS as discussed in Sec. 9.4. The low-stitch EoS shows better
agreement with DBHF_2507, consistent with previous results; see Fig. 9.7. The
transition mass and radius for the low-stitched model are functionally identical to
the tabulated values with errors of ≲ 0.01𝑀⊙ and ≲ 1 m. In the high-stitch case
the errors increase to 0.05𝑀⊙ and ∼ 100 m. Nonetheless, errors decrease with
increasing central density and the maximum mass 𝑀max is consistent to ∼ 0.01𝑀⊙

for both fits. This indicates that the enthalpy parametrization can produce effective
EoS fits at high densities even when extending a (relatively) poor low-density fit.6

DBHF_2507: Relativistic simulations

We perform SpECTRE simulations with both the high- and low-stitch EoSs and NSs
with central density of 𝜌𝑐 = 4.67𝜌nuc, above the transition density from nuclear
to quark matter; see the red dots in Fig. 9.9. Preliminary results with low spatial
resolutions demonstrated that for such 𝜌𝑐 > 𝜌t, the NS undergoes strong density
oscillations that are quickly damped. Given that the fundamental mode is long-
lived [64], this short damping timescale is probably related to numerical dissipation.
Therefore we perform and compare simulations at various grid resolutions to ensure
convergence, increasing the number of computational elements while the number
of grid points inside each element is fixed. The main results presented below
correspond to a ∼ 70 m resolution. We also restrict to the low-stitch fit since the
differences between the low- and high-stitch fits are likely resolvable for < 130 m
resolution; see Fig. 9.9.

We plot the central density and the spectrum in the top and bottom panels of
Fig. 9.10 for both reconstruction schemes. We find good agreement in the frequency
and damping time of the density modes, though the monotonized central scheme
predicts more than double the power of the adaptive order method below ∼ 80 kHz.
Interestingly, we find that the presence of a quark core in the NS changes the
spectrum qualitatively, c.f., Fig. 9.8. The spectrum is now dominated by modes
in the O(10) kHz range, an order of magnitude higher than the hadronic NS case

6Such comparisons to tabulated models might be difficult to interpret, as a 1% interpolation
inconsistency in 𝜌(𝑝) can lead to differences of O(100 m) on the second stable branch. This problem
is more pronounced here as the DBHF_2507 construction requires computing 𝜌(𝑒) = 2.5𝜌nuc via
table-based root finding, a procedure that depends on the interpolation strategy and, in turn, affects the
transition mass and radius. For hadronic EoSs this issue is suppressed, as differences in interpolation
are smoothed over by the integration of the TOV equations. The enthalpy parametrization, having
an analytic expression for 𝑒(𝜌), does not face this issue.
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Figure 9.9: Same as Figs. 9.6 & 9.7 but for the DBHF_2507 EoS. The procedure by
which the low- and high-stitch EoSs of Sec. 9.4 are extended through the phase tran-
sition is described in Sec. 9.4. Consistent with Fig. 9.7, the low-stitch case can more
accurately reproduce the parameters of the phase transition, though caution must be
exercised when comparing to tabulated models as differences in interpolation in this
case can be substantial. See the text of Sec. 9.4. In the top panel, the black vertical
dashed line marks the onset of the phase transition. The red dot-dashed line in the
top panel and the red dots in the bottom panel mark the NSs we use in subsequent
simulations, analogous to Figs. 9.6 & 9.7 respectively.
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Figure 9.10: Normalized NS central density as a function of time (top panel)
and its spectrum (bottom panel) for SpECTRE simulations with enthalpy fits to the
DBHF_2507 nuclear EoS that are stitched to the spectral parametrization at 𝜌nuc
for two different choices of finite-difference reconstruction schemes. The adapative
order reconstructor is marked in blue and the monotonized central reconstructor is
marked in red. Run details are listed as enthalpy-pt-ppao-70 and enthalpy-pt-mc-70
respectively in Table 9.2. The simulated star has a central density of ∼ 4.67𝜌nuc; it
is marked in Fig. 9.9. We find excellent agreement on mode frequencies but slight
differences in power distribution.

of Fig. 9.8. The spacing of the modes, about 16 kHz, is of order 𝑐/2𝑅core, where
𝑅core ∼ 6 km is the radius of the quark core. We attribute this to density perturbations
that are confined to the quark core and are only weakly coupled to the bulk behavior
of the star across the transition. In order to confirm this, we plot the density profile
of the star extracted from the run enthalpy-pt-ppao-70 as a function of radius in
Fig. 9.11 at different times. Most of the oscillation power sourced in the quark
core is reflected back into the core at the quark-hadronic boundary, with only a
small fraction getting transmitted into the hadronic region. The reflected pulse gets
inverted (fixed-end reflection); this is consistent with theoretical expectations since
the sound speed changes from 𝑐2

𝑠 = 1 in the quark core to 𝑐2
𝑠 ∼ 0.3 in the hadronic

region at the boundary.

The initial perturbation needed to drive these modes is provided by numerical noise
near the transition, with O(50 − 100kHz) being the scale of the sound crossing
frequency of a computational element of our domain. High frequency modes, in
particular 𝑝-modes being primarily confined to the core of the star is in line with
expectations for radial modes [109].

Simulation runtimes are provided in Table 9.2. We find that the adaptive-order
simulation (enthalpy-pt-ppao-70) has a ∼ 20% longer runtime than the monotonized
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Figure 9.11: Rest-mass density profile relative to the initial profile Δ𝜌 ≡ 𝜌(𝑟, 𝑡) −
𝜌(𝑟, 0) as a function of radius for a hybrid star described with DBHF_2507 (left
panel; details in Sec. 9.4) and a simple polytrope with Γ = 2 (right panel; details
in App. 9.8) for different times (top to bottom). We denote the NS surface with
a vertical solid gray line in each panel and the quark-hadronic boundary with a
vertical red line in the left panel. We show snapshots of the density at four different
times in order to examine the dynamical behavior of the density oscillations. For
the hybrid star (left) density perturbations are partially transmitted and reflected
at the quark-hadronic boundary, while for the polytrope (right) the wave smoothly
propagates back and forth within the NS interior. Small black arrows highlight
the wave packet and its traveling direction. The hybrid star snapshots are from the
run enthalpy-pt-ppao-70 and the polytrope snapshots are from a simulation with
identical domain, finite-difference reconstruction scheme, and central density, but a
polytropic EoS (9.33) in place of DBHF_2507. See polytropic-polytrope-mc-130
for details of a lower-resolution polytropic simulation.

central (enthalpy-pt-mc-70) simulation, which is expected. Turning to the EoS and
comparing enthalpy-pt-mc-130 and enthalpy-dbhf-mc-130 at identical resolutions,
number of CPUs, and reconstruction schemes, we find a O(40%) increase in runtime
for DBHF_2507 as compared to DBHF. We do not attribute this runtime slowdown
to increased EoS evaluation time, as the enthalpy EoS employed beyond the phase
transition uses no trigonometric correction terms, and thus is nearly computationally
identical to the polytrope profiled in Table 9.4. This indicates that individual EoS
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evaluations (above the transition) are actually somewhat cheaper than in either of
the fits to DBHF, discussed in Sec. 9.4 (below the transition they are identical).
Instead, we attribute the slowdown to the non-smoothness of this EoS; 𝑝(𝜌) is
not analytically C1 across the phase transition, and 𝜌(𝑝) is an incredibly sensitive
function near the transition. Since our default primitive recovery scheme requires
root-finding to determine 𝜌(𝑝) [62], this can result in significant slowdowns.

Comparing the simulations enthalpy-pt-mc-130 and enthalpy-pt-mc-70, we also find
that refining the grid resolution from 134 m to 67 m results in only a 4-fold increase
in runtime, compared to the expected (134/67)3 = 8.7 We attribute this lower-
than-expected increase to the DG-FD hybrid scheme [31]. At higher resolutions
each cell is smaller, therefore finite-difference cells are more tightly concentrated in
regions with discontinuities. This results in a lower fraction of the NS reverting to
the slower finite-difference scheme from the faster discontinuous Galerkin scheme.
We display a slice of the NS for enthalpy-pt-ppao-70 in Fig. 9.12, and mark the cells
which have reverted to finite-difference in red. The majority of the NS interior is
indeed using the discontinuous Galerkin method, with finite difference being used
only at the phase-transition and surface interfaces.

Smooth transitions

Due to its flexibility, the enthalpy parametrization can also be used to model smoother
transitions in the EoS, such as those that may arise from a crossover transition. To
demonstrate this, we begin with DBHF_2507 and average the speed of sound at
nearby points over the entire EoS. This is distinct from the small perturbation added
to the EoS in in Sec. 9.4, as in this case we expect the resulting EoS to be well
described by a smooth interpolant. To demonstrate this, we fit this new smoothed
EoS with 𝑗max = 4 trigonometric terms and display the fit in Fig. 9.13. We find
sub-1% agreement in the 1 − 2𝜌nuc density region which most directly affects
macroscopic observables. Relative errors are typically higher below the enthalpy-
spectral transition point (set to 𝜌nuc here). This is because smoothing the EoS is done
by locally averaging the speed of sound, so that after averaging the speed of sound
is locally close to being constant. For polytropic and nearly polytropic EoSs the
speed of sound is not nearly constant at low densities, so a spectral parametrization
cannot effectively fit the smooth 𝑐2

𝑠 EoS.

We expect simulating NSs with EoSs displaying smooth but rapidly varying speeds
7Since we run simulations with the fixed number of time steps, refining the grid does not lead to

any major slowdown from time stepping. This would not be the case if we ran to a fixed final time.
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Figure 9.12: NS rest mass density (colorbar, units of 𝑀−2
⊙ ) on the 𝑦 − 𝑧 plane at

𝑡 = 100𝑀⊙ for the run enthalpy-pt-ppao-70. Red marks subdomain elements where
finite-difference is used. The finite-difference cells are confined near the NS surface
(outer circle, white solid line) and the phase transition layer (inner circle) where
discontinuities are expected. The majority of the star is still evolved with the more
computationally efficient discontinuous-Galerkin method.

of sound to be slower. This is for two primary reasons. First, fitting EoSs to some
fixed degree of precision for more complicated EoSs typically requires adding more
parameters, increasing evaluation time. Second, EoSs with rapid changes in 𝑑𝑝/𝑑𝜌
tend to slow down primitive recovery, as the function 𝜌(𝑝) must be evaluated by
root-finding. Even though the EoS in this case is analytically smooth, root-finding
algorithms require more evaluations if the function is quickly varying.

We perform a run with identical central density, 𝜌 ∼ 4.67𝜌nuc for 10,000 CFL
limited time steps, in order to bound performance decreases. We display the results
in Table 9.2 as enthalpy-smoothpt-170 . We find that the EoS presented in Fig. 9.13
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Figure 9.13: Same as Fig. 9.6 but for the smoothed version of DBHF_2507 con-
structed in Sec. 9.4. The enthalpy parametrization achieves sub-1% errors in the
most relevant region, 1 − 2𝜌nuc.

requires a comparable time per evolution step to enthalpy-dbhf-mc-130 indicating
the EoS is sufficiently smooth to not induce a large slowdown at this resolution.
We further plot the oscillations of the central density of both the smooth-transition
DBHF_2507 model (smooth) and enthalpy-pt-mc-130 (sharp) in Fig. 9.14. We find
that the smoothed fit does not lead to the characteristic decoupling of core modes,
meaning that such a model would be a poor representation of the true DBHF_2507
EoS, even if it is able to reproduce other characteristics of DBHF_2507, such as a
small radius near 𝑀max.

In general, we expect smooth EoSs to be most effectively represented by globally
smooth parametrizations, while EoSs with discontinuities will be better modeled
by piecewise parametrizations. In addition, nonsmoothness can lead to a loss of
accuracy in simulations [53], so an additional trade-off may exist between accuracy
and performance in the choice to use a smooth versus a piecewise representation.
The enthalpy parameterization is flexible enough to be effective in both the piecewise
EoS and the smooth EoS cases.
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Figure 9.14: NS central density as a function of time for the run enthalpy-smoothpt-
170 (blue, solid) and enthalpy-pt-mc-130 (red, dashed). The smooth fit poorly
reflects the mode structure of the true DBHF_2507 EoS, even though the behavior
of the microscopic EoS is qualitatively similar.

9.5 Discussion
We introduced a new enthalpy-based parametrization for the cold nuclear EoS that
can capture a wide range nuclear models and their phenomenological extensions
using polynomials and trigonometric terms. The enthalpy parametrization em-
phasizes flexibility, as it is able to effectively model both smooth and non-smooth
nuclear models, and computational performance as its evaluation cost scales with
the number of parameters used. For example, it displays comparable performance
to single-polytrope parametrizations for the case of polytropic EoSs, while the com-
putational cost scales with the number of fit parameters for more complex (such
as non-smooth) models. This trade-off between computational performance and
flexibility allows us to tune EoS fits to the resolution requirements of the problem
at hand.

Computational performance is achieved by inexpensive evaluation of the various
thermodynamic quantities. The 𝑝(𝜌) evaluation cost does not exceed O(4) times
that of a polytropic EoS for any case we investigated, even when many trigono-
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metric terms are used. In cases where this slowdown is significant, the enthalpy
parametrization may be sped up significantly by using Clenshaw’s method [94]. We
obtain faster evaluation of 𝜖 (𝜌) than the existing spectral parametrization in all cases,
as the latter evaluates 𝜖 numerically, while the enthalpy parametrization computes
all thermodynamic quantities analytically. Overall, the additional computational
cost of the enthalpy parametrization on top of other existing parametrizations is
always smaller than the cost of other simulation components.

With the caveat that quantifying EoS fitting accuracy is subtle and depends on the
parameters one compares, we overall find that the enthalpy parametrization is able
to successfully fit nuclear models. In principle and in the context of numerical simu-
lations, EoS parametrizations need only fit the nuclear EoS as well as the simulation
resolution. Nonetheless, even subpercent errors in the pressure near 𝜌nuc − 2𝜌nuc

can lead to ∼ 100 m differences in NS radii. In contrast to lower-dimensional or less
flexible parametrizations, we show that the enthalpy parametrization is able to fit
tabulated and phenomenological nuclear models to effectively arbitrary precision by
using additional parameters. The optimal number of parameters is then determined
by balancing accuracy and computational cost for a given numerical resolution.

The enthalpy parametrization’s flexibility allows us to efficiently and with little
fine tuning represent both smooth and non-smooth nuclear models. The latter may
correspond to models with strong phase transitions that we can fit and numeri-
cally evolve using SpECTRE. Our simulations demonstrate that we can stably evolve
such stars in the Cowling approximation. However, studying the evolution of hy-
brid hadronic-quark NSs away from an unstable EoS branch that falls between the
hadronic and the quark branches [42] hinges on full metric evolution coupled to
GRMHD. SpECTRE’s hybrid DG-FD scheme is crucial for the computational per-
formance of these simulations. The DG-FD scheme allows phase transitions to be
modeled with lower-order finite-difference methods while continuing to use higher-
order discontinuous-Galerkin methods throughout the individual hadronic and quark
regions. This leads to better computational scaling than might be expected upon
mesh refinement, as better resolution of boundaries (such as the quark-hadronic
matter boundary) within the star reduces the amount of the domain which uses the
slower finite-difference approach.

The enthalpy parametrization is a step toward ensuring that numerical simulations
can efficiently represent a wide range of nuclear phenomenology. Accurate simula-
tions of NSs will continue being crucial for the interpretation of new astrophysical



384

and experimental data. Even with current EoS constraints, the space of potential
BNS phenomenology is large, and many questions remain regarding the impact of
magnetic fields, instabilities, temperature effects [21, 100], and transport physics.
Future steps include extending the applicability of the enthalpy parametrization be-
yond cold, beta-equilibrated nuclear matter, and incorporating more physical effects
in SpECTRE simulations.

The simulations presented here were performed with SpECTRE commit hash
2df19579a84385b3d5ab4663e3da7e33012e0355. The earliest release of SpECTRE
with this commit is version 2023.01.13 [32]. Input files for the runs performed,
including enthalpy fit parameters for each EoS studied, are available on Github [113].
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9.7 Fitting the enthalpy parametrization
In this appendix we provide details about the procedure with which we fit some
tabulated EoS data with the enthalpy parametrization which includes the following
parameters:
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Figure 9.15: Cost, Eq 9.26, in arbitrary units, of the fit to the phenomenological
EoS of Fig. 9.1 as a function of 𝑘 . The minimum occurs at 𝑘 slightly larger than 𝑘𝐹 ,
in this case near 𝑘 = 1.4𝑘𝐹 .

• The upper 𝜌max and lower 𝜌min density limits are chosen based on the densities
of interest. For NS simulations, reasonable values are 𝜌min = 𝜌nuc, 𝜌max =

7𝜌nuc, but the upper limit depends on the maximum density expected in the
simulation.

• The scaling parameters 𝜌0 and the wavenumber of the trigonometric correction
terms 𝑘 are not fit, but rather fixed. When we extend a model via a constant
speed of sound (Sec. 9.4) the choice of 𝜌0 is determined by the modeling
problem. When the EoS is fit, 𝜌0 is chosen 𝜌0 ∈ (0, 𝜌min], so that 𝑧max =

log(𝜌max/𝜌0) ≲ 𝑖max; see Sec. 9.9. We find 𝜌0 = 𝜌min/2 is generally a
robust choice. Analogous to how 𝜌0 controls the scale of polynomial terms,
𝑘 controls the scale of trigonometric oscillations. As described in Sec. 9.3,
typically 𝑘 ≈ 𝑘𝐹 is a good choice, but small perturbations 𝑘 ∈ [𝑘𝐹/2, 2𝑘𝐹]
may improve the fit quality for certain problems, depending on the details
of the EoS. Figure 9.15 shows that the effect of varying 𝑘 is small for the
particular test problem displayed in Fig. 9.1.

• The parameters 𝑖max and 𝑗max determine the number of polynomials and



386

trigonometric terms respectively; see Eq. (9.9) and Eq. (9.10). The quality of
the fit is a strong function of 𝑖max and 𝑗max, but increasing 𝑗max above ∼ 10
comes at a considerable computational cost even at low resolutions. On the
other hand the cost of increasing 𝑖max is small, typically of order 2% or less
of the total cost of the 𝑝(𝜌) evaluation per additional polynomial term.

• The coefficients of the polynomial 𝛾𝑖, Eq. (9.9), and the trigonometric 𝑎 𝑗 , 𝑏 𝑗 ,
Eq. (9.10), expansion are fit through a linear least-squares approach.

• The energy density of the EoS at the stitching point, 𝑒min = 𝑒(𝑧min). This is
the integration constant associated with solving 𝑑𝑒/𝑑𝑧 = 𝜌ℎ. This parameter
is constrained by 𝜌minℎmin − 𝑒min = 𝑝min ≥ 0. In principle 𝑒(𝑧min) can be
computed from EoS tables, but in practice EoS tables may be too coarsely
tabulated, or may contain violations of the first law of thermodynamics at
levels which significantly affect the computed value of 𝜖 . For example, a
fractional error of 1 × 10−3 in 𝑒min will often translate to a fractional error of
∼ 1×10−1 in 𝜖 , which therefore shifts the value of 𝑝(𝑧) by 10%, as ℎ𝜌 = 𝑝+ 𝜖
is fixed by the parametrization. Therefore in certain cases it is more effective
to treat 𝑒min as a free parameter, and further use it to optimize the values
of 𝑝(𝜌). In practice 𝑒min is set by the low-density EoS parametrization to
guarantee thermodynamic consistency.

Given a target EoS with enthalpy ℎ(𝑧𝑖) at discrete densities 𝑧𝑖, the linear fit is based
on minimizing the cost function

𝐶 (𝑎 𝑗 , 𝑏 𝑗 , 𝑐𝑖) =
∑︁
𝑘

(
ℎ∗(𝑧𝑘 ; 𝑎 𝑗 , 𝑏 𝑗 , 𝑐𝑖) − ℎ(𝑧𝑘 )

𝜎(𝑧)

)2
, (9.26)

where ℎ∗ is given in Eq. (9.12). The factor 𝜎(𝑧) is the fit tolerance which can
be chosen such that the fit is optimal at different density regions. We choose to
target similar relative uncertainty on the non-rest-mass component of the enthalpy
density (ℎ − 1)𝜌 = 𝑝 + 𝜖 𝜌 across density scales: 𝜎(𝑧) ∝ 𝜌(𝑧) ∝ exp(𝑧). Overall,
the tolerance scales as 1/𝜌, so the fit is relatively better (with respect to ℎ) at low
densities. The energy density at the stitching point is then selected; if the tabulated
EoS is sufficiently high-resolution, it can be computed by, e.g., the trapezoidal rule.
Otherwise, there is no canonical choice for this value, we choose it to maximize
agreement with tabulated 𝑝(𝜌) at high densities.

Finally, the EoS fit is completed by stitching to some other EoS parametrizaton at
𝜌stitch = 𝜌min. In the majority of cases this is the spectral parametrization, though
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we also explore another enthalpy segment in Sec. 9.4 and a polytrope in App. 9.8.
The low-density spectral EoS itself transitions to a lower-density polytrope at some
fixed reference density 𝜌𝑟 . Following Ref. [53], we define 𝑥 ≡ log(𝜌/𝜌𝑟) and write
the spectral pressure as

𝑝𝑠 (𝑥) =

𝑝0 exp [Γ0𝑥] 𝑥 ≤ 0 ,

𝑝0 exp
[∑3

𝑖=0
1
𝑖+1Γ𝑖𝑥

𝑖+1] 𝑥 > 0 ,
(9.27)

where 𝑝0 controls the overall pressure, and Γ0, Γ𝑖 are the spectral coefficients.
The low-density behavior fixes Γ0, while requiring a C1 transition to the enthalpy
parametrization, i.e., continuity in pressure, energy density, and pressure derivative
fixes three more parameters. In practice because 𝑒min = 𝑒stitch is an integration
constant in the enthalpy parametrization, we can freely set it to the value computed
for 𝑒stitch from the low-density parametrization, guaranteeing exact consistency.

The remaining 1 degree of freedom is selected by either maximizing smoothness
across the lower-density transition to the polytrope or maximizing accuracy of the
low-density EoS. Smoothness is prioritized when the stitching density is below the
core density of typical NS. Then, we set Γ1 = 0.0 [53], guaranteeing that Eq. (9.27)
is C2 across the transition 𝜌𝑟 . This typically produces good fits to the overall 𝑀–𝑅
curve for the entire EoS. If the spectral parametrization is stitched to the enthalpy
parametrization at a higher density (near the core density of astrophysical NSs as
is the case in the high-stitch fit of Sec.9.4) we instead allow Γ1 to vary, choosing
it to maximize the agreement of the total parametrized EoS with the target. Both
strategies typically result in machine-precision level C1-stitching to the enthalpy
parametrization, with residuals much smaller than mismodeling in the low-density
regime.

9.8 Approximating a single polytrope
As an example of the strategy for fitting a target EoS with the enthalpy parametriza-
tion, we consider a single-polytrope. In this case, the enthalpy coefficients can
be computed analytically. The general goal is to express the EoS in the form of
Eq. (9.8), i.e., compute the enthalpy as a function of log-density.

The polytropic exponent is defined as

Γ(𝑧) ≡ 𝑑 log 𝑝
𝑑 log 𝜌

=
𝜌

𝑝

𝑑ℎ

𝑑𝑧
=
𝜌

𝑝

𝑑

(
1
𝜌
𝑑𝑒
𝑑𝑧

)
𝑑𝑧

. (9.28)
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For a constant polytropic exponent Γ(𝑧) = Γ0 and using the identity

𝑝(𝑧) = ℎ(𝑧)𝜌(𝑧) − 𝑒(𝑧) = 𝑑𝑒

𝑑𝑧
− 𝑒(𝑧) , (9.29)

Eq. (9.28) becomes
𝑑2𝑒

𝑑𝑧2 − (Γ0 + 1) 𝑑𝑒
𝑑𝑧

+ Γ0𝑒 = 0 . (9.30)

The solution to this differential equation is

𝑒(𝑧) = (𝑒0 − 𝜌0) exp(Γ0𝑧) + 𝜌0 exp(𝑧) , (9.31)

where we have enforced 𝑒(𝑧 = 0) = 𝑒0 and 𝑒(𝑧 → −∞) → 𝜌(𝑧)8 and the enthalpy
is

ℎ(𝑧) = 1
𝜌

𝑑𝑒

𝑑𝑧
=
𝑒0 − 𝜌0
𝜌0

Γ0 exp [(Γ0 − 1)𝑧] + 1 . (9.32)

Comparing with Eq. (9.9) the polynomial coefficients of the enthalpy expansion are
𝛾𝑖 = ℎ0 (Γ0 − 1)𝑖 /𝑖!, with ℎ0 = Γ0 (𝑒0 − 𝜌0) /𝜌0, if 𝑖 ≠ 0, and 𝛾0 = ℎ0 (Γ0 − 1) +
1. In practice, evaluating the polynomial expansion of Eq. (9.9) requires many
floating point operations. Nonetheless, this computation is not necessarily slower
than evaluating a simple polytrope if Γ0 is not an integer, because floating-point
exponentiation typically at least an order of magnitude slower than multiplication
and addition.

We use this enthalpy parametrization of the polytrope model to compare against the
direct single-polytrope SpECTRE implementation and verify the predicted Cowling-
approximation NS modes [51, 30]. The low-density EoS in the enthalpy parametriza-
tion case is stitched to the exact polytropic expression

𝑃(𝜌) = 100
𝑀−2.0

⊙
𝜌2.0 . (9.33)

We evolve a NS with central density 1.28 × 10−3𝑀−2
⊙ ≈ 2.84𝜌nuc, which is the

same as the stars evolved in Refs. [51, 30]. The number of terms necessary in the
polynomial expansion depends on the desired accuracy. For a resolution of 130 m
we find that 𝑖max = 8 is more than sufficient. This is consistent with theoretical
expectations, as the first neglected term, is of order 1/9! ≈ 2 × 10−6, indicating
errors should be of this scale or smaller. Results are shown in Fig. 9.16 where

8This is equivalent to assuming the specific internal energy 𝜖 is 0 in ordinary, low-density cold
matter. This can be done by defining the baryon “rest” mass to be the average mass of a baryon in
the outer crust of a NS (despite the fact these baryons may be bound in, e.g. iron and therefore differ
from the mass of a free neutron/proton by up to 1%).
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Parametrization
Evaluation Cost (ns)

𝑝(𝜌) 𝜖 (𝜌)

enthalpy 43 44
polytrope 57 58

Table 9.4: Performance (in nanoseconds) of the enthalpy and single-polytropic fits to
a single polytrope in evaluating the pressure and internal energy at 𝜌 = 5.0×10−4𝑀2

⊙.
The enthalpy parametrization outperforms then polytrope in both cases.

the enthalpy fit to the polytrope and the direct single-polytropic parametrization
return essentially identical results. We display the run details in Table 9.2, as
enthalpy-polytrope-mc-130 and polytropic-polytrope-mc-130.

We find effectively no difference in the runtime for the simulations using each of
the polytropic and enthalpy parametrizations. Examining the cost of individual
EoS calls in Table 9.4, we find the enthalpy parametrization is somewhat faster
in both 𝑝(𝜌) and 𝜖 (𝜌) evaluation, indicating that in this case, EoS evaluation
time is not a significant contribution to runtime. This speedup is also expected to
extend to constant-speed-of-sound matter, which has an identical functional form
to a polytropic EoS when expanded in the enthalpy / parametrization, the only
difference being the values of the coefficients.

The reason the polytropic EoS evaluation is not faster despite having a very simple
analytic expression is the inefficiency of floating-point exponentiation. In the case
of our test problem the floating point exponent 2.0 is only known during runtime,
and so the compiler cannot optimize EoS calls. If the exponent is known to be an
integer at compile time, the calls can be evaluated using repeated multiplication.
We implement this improvement for this particular test problem, and find the cost
of polytropic 𝑝(𝜌) evaluations to be 10 ns on identical hardware, indicating a 5-
fold improvement. Nonetheless, this speedup is not reflected in the total evolution
runtime for resolutions of at least∼ 120 m as the EoS evaluation cost is subdominant
to other simulation components.

9.9 Numerical considerations for enthalpy coefficients
Here we expand upon numerical considerations for choices of polynomial, coeffi-
cients 𝛾𝑖. The choice, 𝛾𝑖 ≥ 0 in Eq. (9.9) effectively bounds the number of terms
in the polynomial expansion which can be practically used. To see this, consider
𝑧max ≡ log (𝜌max/𝜌0). Coefficients 𝛾𝑖 must satisfy 𝛾𝑖𝑧𝑖max ≲ O(𝛾0) ∼ 1, otherwise
they would be larger than the total enthalpy in this region, which is typically also of
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Figure 9.16: NS central density as a function of time (top panel) and its spectrum
(bottom panel) for SpECTRE simulations with an enthalpy fit to a single polytrope
with Γ0 = 2.0 (blue) and a direct single-polytropic parametrization (red, dashed).
Known Cowling frequencies [51] are marked as dashed vertical lines. The spectra
are identical by eye.
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this scale. With this in mind, we consider 𝑖 as “too large” if 𝑖 ≫ 𝑧max, as any term
which satisfies 𝛾𝑖𝑧𝑖max ≲ 𝛾0 has

𝛾𝑖𝑧
𝑖

𝛾𝑖𝑧
𝑖
max

=

(
𝑧

𝑧max

) 𝑖
, (9.34)

small except when 𝑧 is nearly 𝑧max. That is, the degree of freedom is only relevant
at the highest densities, and this density region shrinks as 𝑖 gets larger. For typical
scales, such as 𝜌0 = 0.5𝜌nuc, 𝜌min = 𝜌nuc, and 𝜌max = 7𝜌nuc, then 𝑧max ∼ log(14) ≈
2.6.

One can decrease 𝜌0 to increase the relevant value of 𝑧max, but this requires adding
more parameters, which may not be desirable, since many of them may be irrelevant,
or degenerate. One way to view this, is that in the Taylor expansion of the exponential
function (equivalently the expansion of ℎ(𝑧) in a constant speed of sound case), the
term 𝑧𝑖/𝑖! is the largest term on 𝑧 ∈ (𝑖−1, 𝑖), and is generally decreasing in relevance
away from this region relative to other terms. Therefore the 𝑖th term of this expansion
is most relevant near 𝑧 ≲ 𝑖, and is unimportant far from this region. This implies
that flexibility is essentially equidistributed in log(𝜌) for this approximation (the
same argument applies to the spectral parametrization), and that higher polynomial
terms cannot resolve features at low densities. Instead, we choose to switch to a new
function basis at this point, optimized to capture the largest scale features at lowest
order of approximation.
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C h a p t e r 10

INITIAL DATA FOR BINARY NEUTRON STAR MERGERS IN
SPECTRE

10.1 Intro
This is a technical discussion of the solver for binary neutron star initial data as
implemented in SpECTRE. In particular, I discuss the solver for hydrostatic equilib-
rium which is based on the method proposed in Baumgarte and Shapiro [1], and
implemented in SpECTRE using the DG elliptic solver described in Ref. [2]. The
principle goal of this solver is to produce a self-consistent distribution of matter,
given by it’s density and velocity, which is locally unchanging when viewed in a
corotating reference frame. In practice, this situation is complicated by the fact that
the system is relativistic, so rather than a “corotating refernece frame”, a (timelike)
killing vector is identified, which is called the “rotational killing vector”. The re-
quirement that the system be (1) mass conserving, (2) momentum conserving, and
(3) constant under the action of this timelike killing vector, when coupled with a
barotropic equation of state, leave a system which is surprisingly simple for the
velocity distribution of the matter.

10.2 Conventions
ℎ is the specific enthalpy.
𝜌 is the rest mass density.
𝑒 is the energy density.
𝑝 is the pressure.
The EoS is barotropic, so knowing any of the above quantities is equivalent to
knowing all of them.
𝑢𝑎 is the four velocity.
𝑃𝑎
𝑏
= 𝛿𝑎

𝑏
− 𝑛𝑎𝑛𝑏 is the spatial projection operator. 𝑢𝑖 is the spatial four velocity, i.e.

𝑢𝑖 = 𝑃𝑖𝑎𝑢
𝑎.

The problem consists of solving for the initial distribution of enthalpy ℎ and four
velocity of the fluid 𝑢𝑎 (although it suffices to know the spatial part 𝑢𝑖 = 𝑃𝑎

𝑖
𝑢𝑎).

There are two special cases Corotational Stars and Irrotational Stars. In both cases
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we decompose the four-velocity as

𝑢𝑎 = 𝑢𝑡
(
𝜉𝑎ℎ +𝑉

𝑎
)
, (10.1)

Where 𝜉ℎ is a (timelike) helical killing vector that represents the approximate rota-
tional symmetry of the initial data. I.e. L𝜉ℎ𝑢

𝑎 = 0, L𝜉ℎ𝜌 = 0, and 𝑉𝑎 is spatial.
Therefore 𝜉0

ℎ
= 1. We also define

�̂�𝑖 ≡ 𝛾𝑖𝑎ℎ𝑢𝑎 . (10.2)

10.3 Equations
With these variables, the conservation of momentum and rest mass density become
([1] 15.42, 15.43)

𝐷𝑖

(
ℎ

𝑢𝑡
+ �̂� 𝑗𝑉 𝑗

)
+𝑉 𝑗

(
𝐷 𝑗 �̂�𝑖 − 𝐷𝑖�̂� 𝑗

)
= 0, (10.3)

and
𝐷𝑖 (𝛼𝑢𝑡𝜌0𝑉

𝑖) = 0. (10.4)

10.4 Corotational Stars
This is the easy but astrophysically less interesting case of stars which are tidally
locked. We take𝑉 𝑖 = 0. Now rest-mass conservation is satisfied identically, and the
momentum equation can be integrated to

ℎ

𝑢𝑡
= 𝐶; (10.5)

with 𝐶 a constant. Therefore the only problem that remains is finding a killing
vector 𝜉𝑎

ℎ
. The spatial velocity is given by [1] (15.13).

𝑘 𝑖 = Ω 𝑗𝑥𝑘𝜖
𝑖 𝑗 𝑘 (10.6)

in Cartesian coordinates. There’s an exercise that has the reader express 𝑢𝑡 in terms
of the rotation parameters, coordinates, metric variables, and enthalpy,

ℎ

{
𝛼2 − 𝜓4

(
(Ω𝑦 − 𝛽𝑥)2 + (Ω𝑥 + 𝛽𝑦)2 + (𝛽𝑧)

)2
}1/2

= 𝐶. (10.7)

This completely determines the matter distribution.

𝑣𝑖 := ⟨Ω𝑦,−Ω𝑥, 0⟩ (10.8)

ℎ := 𝐶
{
𝛼2 − 𝜓4

(
(Ω𝑦 − 𝛽𝑥)2 + (Ω𝑥 + 𝛽𝑦)2 + (𝛽𝑧)

)2
}−1/2

(10.9)

Rotational velocity is set by Ω, and the central density of the star is set by 𝐶. There
are no PDEs to be solved, but it may still be useful to have a corotational binary
XTCS initial data somehow.
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10.5 Irrotational Stars
In this case, the total velocity field (rather, the enthalpy four-current) is given as the
gradient of a scalar potential.

ℎ𝑢𝑎 = ∇𝑎Φ. (10.10)

This makes the second term in Eq. (10.3) vanish (as �̂�𝑖 = 𝐷𝑖Φ ), so the momentum
equation becomes

𝐷𝑖

(
ℎ

𝑢𝑡
+𝑉 𝑗𝐷 𝑗Φ

)
= 0, (10.11)

which can be integrated to
ℎ

𝑢𝑡
+𝑉 𝑗𝐷 𝑗Φ = 𝐶. (10.12)

The rest-mass continuity equation gives

∇𝑎 (𝜌/ℎ∇𝑎Φ) = 0 (10.13)

Defining all the relevant variables[1].

𝑡𝑎 ≡ ∇𝑎𝑡 (10.14)

𝑘𝑎 ≡ 𝜉𝑎ℎ − 𝑡
𝑎 (10.15)

𝐵𝑎 ≡ 𝑘𝑎 + 𝛽𝑎 (10.16)

𝐵𝑎 =
𝑡=𝛼𝑛+𝛽

𝜉𝑎ℎ − 𝛼𝑛
𝑎 (10.17)

𝑉 𝑖 =
shuffle defs

1
𝑢𝑡ℎ

𝐷𝑖Φ − 𝐵𝑖 (10.18)

𝛼𝑢𝑡 =
norm

(
1 + ℎ−2𝐷𝑖Φ𝐷

𝑖Φ

)1/2
(10.19)

𝛼𝑢𝑡 =
(10.12)+above

1
𝛼ℎ

(
𝐶 + 𝐵𝑖𝐷𝑖Φ

)
. (10.20)

The big point is that we need an equation for the velocity potential (which will
be furnished by the continuity equation), and one for the enthalpy (which will
come from the integrated momentum equation). The equation for enthalpy involves
manipulating the above equations

ℎ2 =
1
𝛼2

(
𝐶 + 𝐵𝑖𝐷𝑖Φ

)2 − 𝐷𝑖Φ𝐷𝑖Φ. (10.21)

This equation depends on the integration constant (which will again determine (or
be determined by) the central density), 𝐵𝑖 which depends on the shift and the initial
spatial velocity of the stars, and 𝐷𝑖Φ which we can now write down an equation for.
First, we expand the continuity equation:

𝐷𝑖
(
𝛼𝜌/ℎ𝐷𝑖Φ

)
− 𝐷𝑖

(
𝛼𝑢𝑡𝜌𝐵𝑖

)
= 0. (10.22)
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The first term represents the “dynamical” divergence which will become the princi-
ple part of the PDE, while the second term represents the “background” flow.

𝐷𝑖𝐷
𝑖Φ − 𝐷𝑖

(
𝐶 + 𝐵 𝑗𝐷 𝑗Φ

𝛼2 𝐵𝑖
)
=

(
𝐶 + 𝐵 𝑗𝐷 𝑗Φ

𝛼2 𝐵𝑖 − 𝐷𝑖Φ
)
𝐷𝑖 ln

𝛼𝜌

ℎ
. (10.23)

We’ll return to the discussion of the boundary conditions needed at the stellar
surface. Some manipulations need to be done to put this into the form we need it,
i.e. [2] Eq. (1),

�̂�𝑖 ≡ 𝐷𝑖Φ = ℎ𝑢𝑖 . (10.24)

We define the flux F 𝑖

F 𝑖 = �̂�𝑖 −
𝐵 𝑗 �̂� 𝑗

𝛼2 𝐵𝑖 . (10.25)

The continuity equation is now

𝐷𝑖F 𝑖 = −F 𝑖𝐷𝑖 ln
𝛼𝜌

ℎ
+ 𝐷𝑖

𝐶

𝛼2𝐵
𝑖 + 𝐶

𝛼2𝐵
𝑖𝐷𝑖 ln

𝛼𝜌

ℎ
, (10.26)

which must be supplemented with the boundary condition

F 𝑖𝐷𝑖𝜌 |stellar surface =
𝐶

𝛼2𝐵
𝑖𝐷𝑖𝜌 |stellar surface. (10.27)

Note that because the EoS is barotropic, if we define the stellar surface via an
isodensity contour than 𝐷𝑖𝜌 ∝ 𝑛𝑖 at the surface, so we can replace 𝐷𝑖𝜌 → 𝑛𝑖 in
Eq. (10.28). Which gives

F 𝑖𝑛𝑖 |stellar surface =
𝐶

𝛼2𝐵
𝑖𝑛𝑖 |stellar surface, (10.28)

which is a Neumann boundary condition.

So fluxes + field-containing sources for the primal variable is

F 𝑖
Φ = F 𝑖 (10.29)

SΦ = −F 𝑖𝐷𝑖 ln
𝛼𝜌

ℎ
− Γ𝑖𝑖 𝑗F 𝑗 (10.30)

Sfixed
Φ = −𝐷𝑖

𝐶

𝛼2𝐵
𝑖 − 𝐶

𝛼2𝐵
𝑖𝐷𝑖 ln

𝛼𝜌

ℎ
. (10.31)

In the fixed sources, we note that

𝐷𝑖
𝐶

𝛼2𝐵
𝑖 = −2

𝐶

𝛼3𝐵
𝑖𝐷𝑖𝛼 + 𝐶

𝛼2𝐷𝑖𝛽
𝑖 . (10.32)
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I guess this form shoves under the rug the fact that ℎ is a nonlinear function of 𝑈𝑖,
but to zeroth order this decomposition is correct. This is maybe fine if we have a
loop structure

1. 𝑘𝑖 := . . . , 𝐶 = . . .

2. a) compute ℎ, compute the domain maps needed for the PDE solve

b) i. Solve the linear PDEs (10.41)

ii. return to 2.

I would expect this to work because we can get good guess for ℎ(𝑟) and 𝐷𝑖Φ from
the TOV equations + boosts.

Limiting properties of the equations.
We can, as an example, compute the quantities above in the trivial case of a NS in
a binary with an infinitely long period (e.g. Ω = 0). In this case the bulk of terms
are trivial, for example, assuming 𝛽𝑖 = 0, then 𝐵𝑖 = 0, 𝑢𝑖 = 0, although certain
equations, such as ℎ2 = 𝐶2/𝛼2 are not completely trivial. Moving on to the case of
very small rotation Ω ≪

√︃
𝑀NS/𝑅3

NS, the equations are linear and homogeneous in
the small rotation, we thus analyze the system solely in terms of the “background”
terms acting as coefficients. Because 𝐵𝑖 and 𝐷𝑖Φ both receive corrections at order
Ω, however, terms such as 𝐵𝑖𝐷𝑖Φ vanish to leading order, and F 𝑖 = �̂�𝑖. The
term 𝐷𝑖 ln (𝛼𝜌/ℎ) can be split into 𝐷𝑖 ln (𝛼/ℎ) + 𝐷𝑖 ln 𝜌, which is useful because
in a TOV star 𝐷𝑖 ln (𝛼) = −2𝐷𝑖 ln (ℎ), though 𝐷𝑖 ln 𝜌 is still cannot be explicitly
expressed as a derivative of ln𝛼 generically without knowledge of the equation of
state. Therefore

𝐷𝑖 ln ℎ 1-D eos
= 𝑐2

𝑠𝐷𝑖 ln 𝜌
in TOV
=⇒ 𝐷𝑖 ln 𝜌 = −1

2
1
𝑐2
𝑠

𝐷𝑖 ln𝛼 (10.33)

Where 𝑐2
𝑠 is the speed of sound squared in the fluid, which is determined by the

equation of state. Therefore, in a TOV star

𝐷𝑖 ln
(𝛼𝜌
ℎ

)
= 𝐷𝑖 ln𝛼

(
3 − 1

2𝑐2
𝑠

)
. (10.34)

Finally, in a polytropic fluid, 𝑐2
𝑠 → ln(ℎ)/𝑛 at low values of the enthalpy, and the

TOV equations prescribe that near the surface (since 𝑃 ≪ 𝑀/𝑅3)

𝑑 ln ℎ
𝑑𝑟

= −𝑀
𝑟2

(
1 − 2𝑀

𝑟

)−1/2
. (10.35)
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Taking 𝑟 = 𝑅 − 𝛿𝑟

ln ℎ ≈ 𝑀

𝑅2

(
1 − 2𝑀

𝑅

)−1/2
𝛿𝑟. (10.36)

Therefore the enthalpy approaches zero linearly as one approaches the surface of
a TOV star from the inside. However, on the outside of the star the enthalpy is
identically zero, so the solution is not analytic at the boundary. This appears to
be a numerical challenge more broadly, as in the generic case of a deformed star
we do not know where the boundary is. Therefore, caution has to be exercised to
only solve the equations inside the star, as the use of any spectral method across the
surface of the star immediately leads to very large errors.

10.6 Rotating Case
Note: This is not yet implemented in SpECTRE, however because of the ultimate form
of the equations, it could be implemented merely as an additional initial data for
the BNS initial data system. The easiest way to get rotating NSs is just to add some
rotational component to the velocity which is solved for, which is in principle like
perturbing the case of an irrotational star,

�̂�𝑖 = 𝐷𝑖Φ +𝑊 𝑖 . (10.37)

𝑊 𝑖 is something like
𝑊 𝑖 = ℎ𝜖 𝑖 𝑗 𝑘𝜔 𝑗 (𝑥 − 𝑥NS)𝑘 . (10.38)

Exactly what metric should be used for 𝜖 𝑖 𝑗 𝑘 seems to be unclear, with Ref. [3]
suggesting using the conformal metric. In general it seems like an arbitrary rotation
profile could be used, and will likely work as long as the rotation is sufficiently
small.

The energy equation changes quite predictably

ℎ2 =
1
𝛼2

(
𝐶 + 𝐵𝑖 (𝐷𝑖Φ +𝑊𝑖)

)2 − (𝐷𝑖Φ +𝑊𝑖) (𝐷𝑖Φ +𝑊 𝑖). (10.39)

Because the continuity equation is linear in the velocity potential, all of additional
terms involving to 𝑊 𝑖 appear as fixed sources proportional to 𝑊 𝑖, therefore the
overall structure of the system is little changed by the inclusion of the additional
rotational velocity.



409

𝐷𝑖 (𝐷𝑖Φ +𝑊 𝑖) − 𝐷𝑖
(
𝐶 + 𝐵 𝑗 (𝐷 𝑗Φ +𝑊 𝑗 )

𝛼2 𝐵𝑖
)
=(

𝐶 + 𝐵 𝑗 (𝐷 𝑗Φ +𝑊 𝑗 )
𝛼2 𝐵𝑖 − (𝐷𝑖Φ −𝑊 𝑖)

)
𝐷𝑖 ln

𝛼𝜌

ℎ
. (10.40)

Therefore, the modified fluxes and sources are

F 𝑖
Φ = F 𝑖 (10.41)

SΦ = −F 𝑖𝐷𝑖 ln
𝛼𝜌

ℎ
− Γ𝑖𝑖 𝑗F 𝑗 (10.42)

Sfixed
Φ = −𝐷𝑖

𝐶

𝛼2𝐵
𝑖 − 𝐶

𝛼2𝐵
𝑖𝐷𝑖 ln

𝛼𝜌

ℎ
+ 𝐷𝑖

(
𝑊 𝑖 −

𝐵 𝑗𝑊 𝑗𝐵
𝑖

𝛼2

)
−

(
𝑊 𝑖 −

𝐵 𝑗𝑊 𝑗𝐵
𝑖

𝛼2

)
𝐷𝑖 ln

𝛼𝜌

ℎ
.

(10.43)
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C h a p t e r 11

CONCLUSIONS AND FUTURE DIRECTIONS

Neutron star physics currently faces two primary challenges: first, insufficient data,
and second, insufficient theory. I have attempted in this thesis to outline some of
the ways that considering careful estimates of both observational and theoretical
uncertainty can serve to clarify these challenges. Nonetheless, neutron stars have a
number of properties that make projections difficult.

Arguably the most troublesome of these features is just that neutron stars are very
small. The incredible compactness of neutron stars makes them nearly indistin-
guishable from black holes (or in some cases white dwarfs, e.g. [11]) in many
observational scenarios. It also leads to many science objectives being particularly
challenging. For example the tidal deformability of compact objects scaling with
radius to the 5th power means that the tidal properties of merging neutron stars are
barely detectable in gravitational-wave observations [47, 29]. Similarly, the rela-
tively small size of the neutron star moment of inertia (which scales like the radius to
the second power), makes relativistic measurements challenging [54, 48]1. Neutron
star luminosity in thermal emission is generally also small because of their small size
(since the surface are also scales like 𝑅2). In some cases though, young or accreting
neutron stars can be quite visible though because of their high temperatures [52,
65].

On the other hand, the incredible compactness of neutron stars also in some cases
allows remarkable physics to be possible which give new windows to understanding.
A prototypical example of this is the possibility of constraining the neutron star mass
and radius by using the gravitational lensing of thermal x-rays [15]. Pulsars, and
in particular pulsar timing represent a tremendous source of data about neutron
stars [14, 73]. Pulsars are only possible because of the extreme astrophysical
environment provided by neutron stars [68] (in particular such a strong magnetic
field as is found in pulsars must be anchored to incredibly dense matter). Finally,
neutron stars high density is the only reason they merge at frequencies visible to
ground based gravitational-wave detectors [40, 5].

1For example, moment of inertia such measurements are now possible for at least one white
dwarf in a white dwarf-neutron star binary [48], though constraints on neutron star moments of
inertia will likely not be possible until the 2030’s.
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In my work, I have developed robust requirements for equation of state constraints
given the substantial systematic uncertainty in equation of state models. While we
face challenges due to the tiny target that is the neutron star, we have demonstrated
that we can rule out particular microphysics with sufficient observations [56, 37].
Related to this, but from another point of view, I have worked to determine exactly
how sensitive relativistic simulations are to the details of dense matter [57]. A
question for the future remains “can we afford to fully distinguish microphysical
scenarios in relativistic simulations?”. One way to address the huge diversity of
possible merger scenarios is to constrain the equation of state. Simply, fewer
possible equations of state means more complete parameter space coverage with
fewer expensive simulations. Nonetheless, thermal and out-of-equilibrium effects
are relevant in neutron star mergers and supernova, and likely these targets will
be substantially more difficult to constrain because they leave weaker impacts on
observables.

I have also not discussed, to any satisfactory degree, many aspects of neutron star
physics which are to varying degrees well-understood (or at least partially well-
understood). These include things such as the extreme electrodynamics of neutron
star magnetospheres [43], including the remarkable physics of radio pulsars [68]. I
have also not discussed the exceptional state of the inner neutron star crust, including
the delightfully-named “pasta” phases of dense matter [22]. Importantly, I have
also neglected to discuss superfluidity and superconductivity [27], and the related
studies of neutron star cooling [64]. Further, I have also not discussed the details of
highly impressive observational strategies used to infer neutron star properties [16].
Nonetheless, it would be an understatement to say that new observational techniques
lie at the heart of future neutron star science. Such approaches themselves represent
very diverse and interesting physics. For example pulsar timing [14], which has been
used to precisely measure the masses of neutron stars(e.g. [32]), has also been used
recently to observe a nanohertz gravitational wave background [6]. Nevertheless, the
abundance of interesting physics in neutron stars is also challenging, as often poorly
understood aspects of one domain can limit precision in another. For example, in
NICER’s observations of neutron stars, poorly understood aspects of the neutron
star magnetosphere and atmosphere directly lead to increased uncertainty in the
equation of state [80, 72]. Finally, the extreme nature of neutron stars means that
many even speculative factors may be relevant, such as deviations from general
relativity, or the existence of dark matter halos or cores in neutron stars. Many
of these questions will be addressed by future instruments; here I point to next-
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generation gravitational-wave detectors Cosmic Explorer, and Einstein Telescope as
observatories which could substantially increase our understanding of neutron star
physics [38, 1].

Therefore, the path to the future of neutron star science is promising, but also
formidable. Constraints on dense matter coming from nuclear theory, experiment,
and astrophysical observations will lay the groundwork for better models of neutron
stars, which more nearly reflect the true astrophysical neutron stars we encounter
in nature. Finally, I would expect that a healthy dose of humility will be required
in the coming years; it remains a distinct possibility that the correct understanding
of the matter in neutron star cores has not yet been developed. Whatever future
experiments and observations show, it seems likely that neutron stars will continue
to drive nuclear, gravitational, and extreme electromagnetic physics in the years to
come.
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