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ABSTRACT

Modern technological achievements in robotics, machine learning, and control
promise an exciting future where autonomous robots are a useful part of everyday
life, from automated manufacturing and driverless cars to robotic healthcare and
autonomous delivery drones. However, as robots are deployed in increasingly com-
plex, uncertain, and human-interactive environments, safety becomes paramount;
we cannot deploy these systems at scale unless we are rigorously assured of their
safety. Despite the capabilities of modern robotics, practical real-world safety is
often achieved through conservative hardware designs, confining deployment regu-
lations, or restrictive assumptions that severely limit a robot’s capabilities.

The goal of this thesis is to develop methods for achieving dynamic safety: formal
safety guarantees that preserve system performance and remain valid under uncer-
tainty. To this end, this thesis advances the theory and practice of control barrier
functions (CBFs), a leading framework for enforcing safety constraints on dynamical
systems. While CBF-based methods offer strong theoretical guarantees, they do so
by relying on several restrictive assumptions. Namely, they assume that the safety
requirement and the system dynamics are compatible and that the dynamics model
and state are perfectly known. These assumptions rarely hold in real-world settings
and can result in false confidence and catastrophic safety failures when violated.
This thesis addresses these gaps by systematically relaxing these assumptions and
developing new theory to retain rigorous, deployable guarantees.

By leveraging structural properties of several relevant classes of system dynamics,
Chapter 3 presents a myriad of constructive synthesis methods that make CBF design
feasible for a wide range of robots. Chapter 4 then develops robust control methods
that retain their rigorous safety guarantees in the presence of bounded dynamics and
measurement uncertainty. However, despite the utility of these methods in guar-
anteeing safety, they often lead to highly conservative behavior that compromises
system performance. Thus, to mitigate this conservatism, Chapter 5 integrates
machine learning techniques to reduce uncertainty and determine desired levels
of robustness. While this unification of machine learning techniques with safety-
critical control may sacrifice formal guarantees, it enables safe and performant
behavior. Moreover, the robust CBF framework developed in Chapter 4 provides a
valuable degree of interpretability absent from typical end-to-end approaches.
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Next, seeking a middle ground between conservative absolute guarantees and
capable-but-heuristic methods, Chapter 6 adopts a probabilistic notion of safety
that provides risk-based guarantees in the presence of unbounded disturbances. In
particular, by illustrating the fundamental connection between DCBFs and super-
martingales, it develops new theoretical guarantees and proposes several algorithms
to achieve safety in the presence of stochastic uncertainty. Chapter 7 then de-
ploys these methods on several complex systems experiencing significant uncer-
tainty, including a quadrotor robot with a slung payload, a humanoid robot walking
in unstructured environments, and multiple robots performing dynamic collision
avoidance. To achieve this, we use generative modeling techniques to capture the
necessary understanding of the uncertainty distribution. Here, we also forego the
traditional CBF-based safety filter paradigm and show the performance and safety
improvements that can be gained through the unification of CBFs and horizon-based
methods such as model predictive control (MPC).

Together, the contributions of this thesis represent an advancement towards dynamic,
safe, and capable robotic autonomy under uncertainty. The risk-aware, robust safety-
critical control methods proposed here help close the gap between theoretical safety
guarantees and the demands of real-world deployment.
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C h a p t e r 1

INTRODUCTION

Safety is a fundamental requirement for real-world robotic systems, spanning a wide
array of modern application domains including autonomous vehicles and assistive
devices to medical and industrial robotics [1]. As these technologies continue to
advance, we stand at the brink of their widespread integration into society. Yet,
despite their potential, the impact of robotics on everyday life remains limited,
largely due to safety concerns.

Today, real-world safety is often achieved through conservative designs: kill-
switches, mechanical limits, low-powered actuators, and strict environmental con-
straints like cordoned-off workspaces (e.g., robots in cages) [2]. While effective,
these strategies constrain a robot’s capabilities and limit its utility, rendering it
unable to fluently engage with complex, dynamic, human-filled environments. Al-
ternatively, a small but growing class of high performance systems, such as au-
tonomous vehicles, are beginning to move beyond these limitations to achieve broad
public impact by incorporating safety directly into their control algorithms. These
systems aim to achieve dynamic safety: avoiding harm through real-time decision
making without requiring mechanical or regulatory limitations on the robot or its
environment. This goal of dynamic safety would allow the robot to retain its full
actuation capabilities and operate freely in the real world.

In his fictional Handbook of Robotics, 56th Edition, 2058 A.D. [3], science fiction
author Isaac Asimov envisioned a future where robots followed a hard-coded set
of rules for dynamic safety. His “Three Laws of Robotics” offer a vision of this
behavior-based understanding of safety:

Definition 1.0 ([3]). Asimov’s 3 Laws of Robotics are:

1. A robot may not injure a human being, or through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given to it by human beings except where such
orders would conflict with the First Law.
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3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Law.

Unlike mechanical safety mechanisms or restrictive environmental limitations, Asi-
mov’s laws make the robot responsible for safety, requiring that it reason about the
consequences of its actions in real time. His stories do not prescribe this safety
framework as a panacea, but instead explore the deep philosophical complexities
that arise when machines are expected to make ethical decisions. Crucially however,
whatever the correct codified safety rules may be, Asimov makes the assumption
that the robots can and will follow them.

This thesis takes the opposite approach. Rather than assuming compliance with a
given set of laws, I ask: if robots must satisfy a set of safety criteria, how can we
endow them with the reasoning capabilities to actually do so? I investigate how
dynamic, algorithmic guarantees of safety can be rigorously achieved in practice,
even under the significant uncertainty and complexity that come with real-world
robot deployment. My goal is to develop the foundational tools that will allow
robots to safely, performantly, and responsibily follow the safety regulations of the
future.

Safety-Critical Control and Control Barrier Functions
To enforce this understanding of dynamic safety, this thesis will consider safety-
critical approaches for synthesizing controllers that provide theoretical guarantees
of safety.

In order to make these guarantees we must first define precisely what we mean
by “safety.” As is common in both control theory and robotics, we formalize our
understanding of safety as the forward invariance of a user-defined safe set. That is,
the user specifies a set of safety criteria (e.g., positions and configurations that avoid
collisions) that define safe states, and we consider the closed-loop system “safe” as
long as, starting in the safe set ensures that it stays there for all time.

Several frameworks have been developed to enforce this notion of forward invariance
including Hamilton-Jacobi (HJ) backwards reachability [4], state constraints in
model predictive control (MPC) [5], and control barrier functions (CBFs) [6]. This
thesis will primarily focus on CBFs due to their relative computational simplicity
and suitability real-time control. However, I will also explore connections to HJ and
MPC approaches, especially with respect to how HJ methods study the important
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problem of safe-set synthesis (a.k.a., viability kernel synthesis [7], [8]) which is
often ignored in the context of CBFs and how MPC methods offer a principled
framework for integrating performance objectives alongside safety constraints.

CBFs are a safety-critical control framework [9], [10] that were developed as a gen-
eralization of Lyapunov stability methods, particularly control Lyapunov functions
(CLFs) [11], [12]. While Lyapunov methods study system stability through changes
to a scalar quantity (e.g., the potential and kinetic energy of an inverted pendulum),
CBFs analogously study system safety by encoding it as a scalar quantity that must
remain non-negative. To guarantee this they then regulate how this safety value can
change as a function of time, ultimately relying on Nagumo’s theorem [13] which
provides sufficient conditions for the forward invariance of sets.

Theoretically, CBFs are general and powerful tools for achieving guarantees of
safety [6]. Furthermore, they display converse properties with forward invariance
[14], where under certain conditions, the ability to keep a system safe (i.e., forward
invariant) and the existence of a CBF are equivalent statements.

The practical utility of CBFs is, in part, enabled by their ability to create safety filters
[15] which can be evaluated at rapid real-time speeds (e.g., hundreds to thousands of
Hz). In particular, CBFs are often deployed in the form of a CBF quadratic program
(CBF-QP) safety filter where a potentially unsafe action is filtered and minimally
adjusted in a point-wise fashion to guarantee safe behavior, enabling their broad
deployment as a modular “safety layer” in conjunction that adds theoretical guar-
antees to other control methods including CLFs [16] and learned controllers [17].
Furthermore, due to their underlying assumptions on the system dynamics, CBF
methods generally yield computationally tractable convex optimization problems
that often have closed-form solutions [18], facilitating their real-time deployment
on robotic systems.

These advantages have led to successful hardware demonstrations across a diverse
array of robotic platforms, including automobiles [19], robot swarms [20], aerial
robots [21]–[23], robotic arms [24], quadrupedal robots [25], wheeled robots [26],
and bipedal robots [27] among many others.

Robust Safety
Despite their demonstrated practical utility, CBF-based methods generally rely on
mathematically convenient assumptions such as perfectly known dynamics, exact
state measurements, and accurate perception models, that rarely hold in robotics.
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As a result, their theoretical guarantees often fail to translate to systems effected by
real-world uncertainty.

This thesis strives to bridge that gap, creating robust theoretical guarantees that
remain valid in the presence of real-world uncertainty.

The robustness guarantees in this thesis can be divided into two main forms: (1)
worst-case robustness, where safety is guaranteed in the presence of bounded un-
certainties, and (2) stochastic robustness, where a probabilistic notion of safety is
guaranteed in the presence of potentially unbounded uncertainties drawn from a
probability distribution.

The first type of guarantee echos traditional control theoretic robustness frameworks
[28]–[30] where safety is ensured for any possible disturbance up to a certain bound.
In the context of CBFs this form of robustness is often encoded via the input-to-
state safety (ISSf) property [31], [32], which describes how a bounded disturbance
will cause a bounded expansion to the safe set. While these methods provide
robust guarantees in the face of uncertainty, they often result in highly conservative
behavior [15], [33], [34], limiting their practical utility. In contrast, the second
framework embraces a more nuanced perspective that builds on stochastic stability
theory [35] to handle a wider class of potential uncertainties and allow for tunable
risk levels that can enable improved performance.

Performance Improvements
While safety filters and robustness guarantees can be useful in ensuring system safety,
to successfully deploy robots at scale, we need them to be capable of simultaneously
achieving safety and their performance goals. Unfortunately, robust safety-critical
control methods often introduce significant conservatism to the system [32], which
can assure system safety, but also render it ineffective. To overcome this, we turn to
learning and horizon-based methods, both of which display significant capabilities
in improving system performance.

Data-driven machine learning techniques have displayed immense capabilities in
modern robotics [36]–[38]. In the context of CBF-based safety-critical control,
learning methods have been used to improve upon safety-critical control techniques
by reducing the dynamics uncertainty [39], [40], by generating safe sets from expert
data [41], or coupling CBFs with reinforcement learning [42], [43], resulting in im-
proved system performance alongside safety assurances. Although these methods
generally compromise the theoretical safety guarantees, they can lead to high prac-
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tical success, producing desirable closed-loop behaviors that safely achieve their
performance goals.

Additionally, even without added robustifications, CBF-based safety filters can gen-
erate undesirable, stable equilibria (similar to artificial potential fields [44]) where
there is deadlock between the safety constraint and the performance metric. This
is caused by the continuity requirements of CBF-based controllers and the myopic,
pointwise optimization performed by the safety filter [16]. Alternatively, horizon-
based methods such as model predictive control [5] or reinforcement learning (via
rollouts in the training process) [43] can produce significantly improved closed-
loop behavior by optimizing for horizon-long performance given safety constraints.
In particular, this thesis will focus on MPC methods due to its model-based in-
terpretability. Prior work has combined MPC and CBFs in a layered architecture
[25], [45] or by modifying the discrete-time constraint safety in the MPC [46], [47].
While these formulations exhibit improved performance when compared to standard
CBF methods, limited work has been done to understand their robustness properties
or the utility of the discrete-time CBF constraint in the MPC program.

1.1 Chapter Outline
The goal of this thesis is to fill these gaps in the literature and provide methods by
which theoretical guarantees of safety can be made for robotic systems in a way that
retains their performance and utility. To this end, I present the following results and
their organization in this thesis.

Chapter 2 presents the necessary theoretical background required for the remain-
der of the thesis. This includes preliminary exposition regarding continuous time
dynamical systems, stability, safety, Lyapunov functions, control barrier functions,
and robustness frameworks like input-to-state stability and input-to-state safety.

Chapter 3 explores a critical assumption that the safety criteria for a system is com-
patible with its dynamics, i.e., that the safety constraints define a control invariant
set. Since this assumption does not generally hold and is hard to verify in practice,
I present methods for several classes of systems that enable the practical synthesis
of CBFs and control invariant sets. This chapter includes contributions originally
published in [48]–[50].

Chapter 4 introduces several robustifying methods that provide rigorous safety
guarantees in the presence of bounded uncertainty that can stem from a variety of
sources including measurement uncertainty, model mismatch, and actuation error.
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This chapter includes contributions originally published in [51]–[54].

Chapter 5 presents several examples of how machine learning can be used to
improve the performance capabilities beyond what is possible with the theoretical
robustness guarantees of Chapter 4. In particular, I present methods for improving
models in the case of uncertain dynamics and inaccurate sensor models and for
learning intangible properties critical for safety like desired robustness levels and
social responsibility. This chapter includes contributions originally published in
[27], [53], [55], [56].

Chapter 6 adopts a different theoretical paradigm and reframes safety in the context
of stochastic systems. I begin by providing the necessary theoretical background for
this reframing and then present several methods for using CBFs to achieve proba-
bilistic safety guarantees. This chapter includes contributions originally published
in [57], [58].

Chapter 7 works to realize the probabilistic safety methods of the previous chapter
on hardware. Generative modeling techniques and horizon-based optimization are
employed to capture the real-world uncertainties and jointly optimize performance
alongside safety. This chapter includes contributions originally published in [17],
[59], [60].

Chapter 8 provides concluding remarks and proposes several exciting directions for
future work.
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C h a p t e r 2

BACKGROUND

“A rose by any other name would smell as sweet” - William Shakespeare,
Romeo and Juliet

“Is a hotdog a sandwich? Is a calzone a dumpling?? Is a toaster a
robot???”

As Shakespeare points out, a name does not change the fundamental nature of a
thing. And yet, we, as humans, love naming and categorizing things, from hotdogs
to robots. In control theory, these names and definitions are critical in describing
desirable properties and outlining entire subfields of study.

This chapter introduces the system models, properties, and mathematical definitions
that form the foundation for this thesis. These names and concepts provide a
conceptual lens through which we can understand the fundamental nature of safety
and stability. Specifically, I present the theoretical background on continuous-time,
deterministic nonlinear systems that underpins the contributions in the first half of
this thesis in Chapters 3, 4, and 5. I begin with a review of nonlinear dynamics and
a Lyapunov-based perspective on stability, control, and robustness, using control
Lyapunov functions (CLFs) as tools to enforce convergence. I then build on this
framework to introduce a control-theoretic notion of safety and present control
barrier functions (CBFs) as a natural extension of CLFs that enable the synthesis of
controllers with closed-loop safety guarantees.

2.1 Nonlinear Dynamics
We begin by considering control-affine dynamical systems of the form:

ẋ = f(x) + g(x)u, (2.1)

where x ∈ Rnx is the system state and u ∈ Rnu is the control input1. The system
dynamics depend affinely on u, with drift dynamics f : Rnx → Rnx and actuation

1For ease of exposition, we present the concepts in this chapter while assuming the general state
space x ∈ Rnx and unbounded inputs in u ∈ Rnu . Future chapters will relax this assumption,
including by considering a bounded input u ∈ U ⊂ Rnu .
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matrix g : Rnx → Rnx×nu that we assume are locally Lipschitz on Rnx . This
control-affine structure is general and captures a wide range of real-world robotic
systems; in particular, any system described by rigid-body Euler-Lagrange dynamics
(3.5–3.6) can be written in this form.

Given a control-affine system in this form we seek to synthesize controllers k :

Rnx → Rnu which render the following closed-loop dynamics safe:

Applying a locally Lipschitz continuous state-feedback controller k : Rnx → Rnu

to the open-loop dynamics (2.1) creates the closed-loop system:

ẋ = fcl ≜ f(x) + g(x)k(x). (2.2)

Since the functions f , g, and k are locally Lipschitz continuous on Rnx , the closed-
loop dynamics fcl are also locally Lipschitz. This then implies that, for any initial
condition x0 ∈ Rnx , there exists a maximal time interval I(x0) = [0, tmax(x0)) and
a unique, continuously differentiable solution φ : I(x0)→ Rnx satisfying

φ̇(t) = f(φ(t)) + g(φ(t))k(φ(t)), φ(0) = x0, (2.3)

for all t ∈ I(x0) [61]. Reflecting the behavior of physical robotic systems, we
assume the system is forward complete2, i.e., solutions exist for all t ≥ 0 and
I(x0) = R≥0 For notational convenience, we will often write x(t) = φ(t) to denote
the system trajectory.

2.2 Stability
Traditional work in nonlinear control has largely focused on synthesizing controllers
that ensure the stability of these closed-loop systems. In this section, we provide a
rigorous background on standard notions of stability and introduce Lyapunov-based
methods for as tools for describing system stability and synthesizing stabilizing
controllers. This background also will serve as the foundation for control barrier
function (CBF)–based safety-critical control, which will later be introduced as a
generalization of these Lyapunov-based stability methods.

Stability properties describe the regulation of the system to an equilibrium point x∗,
which is a point where, if the system starts there, it will remain there for all time:

Definition 2.1 (Equilibrium Point [61]). A point x∗ ∈ Rnx is an equilibrium point
for the closed-loop system (2.2) if ẋ = fcl(x

∗) = 0.
2Forward completeness is not guaranteed for arbitrary nonlinear systems, but it typically holds

for real-world robotic systems due to their inherently bounded inputs and well-behaved physical
dynamics.
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We can then define the exponential stability of an equilibrium point3 x∗ as:

Definition 2.2 (Exponential Stability [61]). Let x∗ = 0 ∈ Rnx be an equilibrium
point of the closed-loop system (2.2). The closed-loop system (2.2) is said to be
locally exponentially stable with respect to x∗ if there exists positive constants
M,λ ∈ R>0 and δ ∈ (0,∞] such that:

∥x0∥ ≤ δ =⇒ ∥x(t)∥ ≤M∥x0 − x∗∥e−λt (2.4)

for all t ∈ R≥0.

This definition captures the idea that the system state will converge, or “stabilize,”
to the equilibrium point over time.

While Definition 2.2 provides a concrete formulation of exponential stability, our
goal is to adopt a more general framework that will serve as the foundation for
our formal discussion of safety. To this end, we introduce class K and class KL
comparison functions, which allow us to express stability and robustness properties
in a more flexible and general form.

Definition 2.3 (Class K functions [61, Def. 4.2]). A continuous function α :

[0, a) → [0,∞) with a ∈ R>0 is said to belong to class K (denoted α ∈ K) if it
is strictly increasing and α(0) = 0. Additionally, it is said to belong to class K∞

(denoted α ∈ K∞) if a =∞ and α(r)→∞ as r →∞.

ClassK functions display the useful properties of invertibility (the inverse of a Class
K function exists and is also Class K) and composability (the composition of two
Class K functions is also Class K), and a useful category of Class K∞ functions is
scaling by a positive constant, e.g., α(r) = ρr for some ρ > 0.

We can now extend class K functions to include a notion of convergence, captured
by class KL functions:

Definition 2.4 (Class KL functions [61, Def. 4.3]). A continuous function β :

[0, a) × [0,∞) → [0,∞) with a ∈ (0∞) is said to belong to class KL (denoted
β ∈ KL) if, for each fixed s ∈ [0,∞), the mapping r 7→ β(r, s) belongs to class K,
and for each fixed r, the mapping s 7→ β(r, s) is decreasing and satisfies β(r, s)→ 0

as s→∞.
3We can assume to be x∗ = 0 without loss of generality by translating the system.
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These comparison functions allow us to define more general notions of stability:

Definition 2.5 (General Notions of Stability [61, Def. 4.5]). The equilibrium point
x∗ = 0 of the closed-loop system (2.2) is:

Stable, if there exists α ∈ K and δ ∈ (0,∞] such that:

∥x0∥ < δ =⇒ ∥x(t)∥ ≤ α(∥x0∥), ∀t ≥ 0, (2.5)

Asymptotically stable, if there exists β ∈ KL and δ ∈ (0,∞] such that:

∥x0∥ < δ =⇒ ∥x(t)∥ ≤ β(∥x0∥, t), ∀t ≥ 0, (2.6)

Exponentially stable, if there exist constants M,λ ∈ R>0 and δ ∈ (0,∞] such that:

∥x0∥ < δ =⇒ ∥x(t)∥ ≤Me−λt∥x0∥, ∀t ≥ 0. (2.7)

The exponential stability condition corresponds to the specific class KL function
β(r, s) =Me−λsr as in Definition 2.2.

These definitions formalize both the convergence of trajectories to equilibrium points
and the invariance of bounded sets under the system dynamics. In the next section,
we introduce Lyapunov methods as a tool for verifying and synthesizing controllers
that achieve these forms of stability in the closed-loop system (2.2).

2.3 Lyapunov Stability

Figure 2.1. A visualization of a tra-
jectory x(t) descending down the Lya-
punov surface towards an equilibrium
point.

Next we introduce Lyapunov methods as a means
of verifying these stability properties and syn-
thesizing controllers that render the closed-loop
system (2.2) stability.

A Lyapunov perspective on stability can be
viewed as a generalization of classical energy-
based arguments. In both cases, a scalar func-
tion is used to characterize the system’s behavior
over time. For example, an asymptotically sta-
ble mechanical system will dissipate potential
and kinetic energy as it evolves. Analogously, an asymptotically stable system will
admit a Lyapunov function that decreases over time along system trajectories.
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Intuitively, convergence to an equilibrium point can be visualized as a system state
“sliding down” with the Lyapunov function defining the height of the surface, as
illustrated in Figure 2.1. While this energy-like metaphor provides useful intuition,
we will now formalize the conditions under which such functions certify stability.

Theorem 2.6 (Lyapunov Stability [61, Thm.s 4.9 and 4.10]). Let x∗ = 0 be an
equilibrium point for the closed-loop system (2.2) and let V : Rnx → R≥0 be a
continuously differentiable function satisfying:

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), (2.8)

V̇ (x) = LfV (x)︸ ︷︷ ︸
∂V
∂x

f(x)

+LgV (x)︸ ︷︷ ︸
∂V
∂x

g(x)

k(x) ≤ −α3(∥x∥) (2.9)

for all x ∈ Rnx where α1, α2, α3 ∈ K∞, then x∗ is asymptotically stable, and if
αi(∥x∥) = ki∥x∥c for ki, c > 0 and i ∈ {1, 2, 3}, then x∗ is exponentially stable.

Here we use the Lie derivative notation LfV (x) ≜ ∂V
∂x

f(x) and LgV (x) ≜ ∂V
∂x

g(x)

which capture the interaction of the system drift and actuator dynamics with the
surface defined by V .

This stability theorem also comes with a converse result that establishes the existence
of Lyapunov functions that reflect the appropriate stability properties of a system
under relatively general regularity assumptions [61, Thms. 4.14 and 4.16].

Importantly, Lyapunov methods are not just a tool for analyzing the stability of
closed-loop systems, but they can also be used for control synthesis. In particu-
lar, this takes the form of the control Lyapunov function (CLF) which were first
introduced in [11]:

Definition 2.7 (Control Lyapunov Function4 (CLF) [62]). For the nonlinear, control-
affine system (2.1), a control Lyapunov function (CLF) is a continuously differen-
tiable function V : Rnx → R≥0 satisfying the following conditions:

k1∥x∥2 ≤ V (x) ≤ k2∥x∥2, (2.10)

inf
u∈Rnu

LfV (x) + LgV (x)u < −k3∥x∥2 (2.11)

for all x ∈ Rnx \ {x∗} with positive constants k1, k2, k3 ∈ R>0.
4We note that Def. 2.7 were originally called “exponentially stabilizing CLFs” due to the

exponential stability that they enforce. While alternative constraints can be used to establish stability
or asymptotic stability using CLFs, we will focus on the exponential case with c = 2 due to its
simplicity and broad utility.
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Unlike the previous stability notions which apply to the closed-loop system (2.2),
Definition 2.7 applies to the open-loop system, enabling constructive controller
design5. In this way, CLFs serve as functions that signify whether a system could
be stabilized. In particular, the inequality in (2.11) defines a point-wise set of
exponentially stabilizing control actions at each state x ∈ Rnx defined as:

KCLF(x) ≜ {u ∈ Rnu | LfV (x) + LgV (x)u ≤ −k3∥x∥2}. (2.12)

This set is nonempty at every state x ∈ Rnx if V is a valid CLF. We can check if
this set is empty by verifying that the following implication holds:

∥LgV (x)∥ = 0 =⇒ LfV (x) ≤ −k3∥x∥2, (2.13)

i.e., if the control input has no immediate influence on the Lyapunov function, then
the drift dynamics must naturally satisfy the exponential decay condition.

We can now use the notion of CLFs to stabilize the open-loop system (2.1) by
choosing locally Lipschitz controllers that select inputs from the stabilizing set
KCLF(x) at each x ∈ Rnx:

Theorem 2.8 (CLF Stability [18]). If there exists a CLF for the open-loop system
(2.1), then for every locally Lipschitz continuous feedback controllerk : Rnx → Rnu

that satisfiesk(x) ∈ KCLF(x) for allx ∈ Rnx , the originx∗ of the closed-loop system
(2.2) is exponentially stable.

While CLFs signal the existence of a control action, they do not explicitly choose that
action from KCLF(x). One framework for choosing a stabilizing control input is the
CLF-QP controller which selects inputs from K (x) that minimize the input norm in
a point-wise fashion through the following constrained optimization problem called
a CLF Quadratic Program (CLF-QP) with some k3 > 0:

kCLF-QP(x) = argmin
u∈Rnu

1

2
∥u∥22 (2.14)

s.t. LfV (x) + LgV (x)u ≤ −k3V (x). (2.15)

Assuming unbounded inputs, this controller enforces the Lyapunov stability condi-
tion directly as a constraint and is itself is a convex quadratic program [64] with the

5Definition 2.7 also differs from the function V in Theorem 2.6 in that the second inequality
(2.11) is now strict. This reflects the original definition in [11, Thm. 4.1] and more recent definitions
as in [63, Def. 1]. This strict inequality ensures that controllers synthesized from the CLF can
exhibit desired local Lipschitz continuity properties [63, Thm. 1].
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following simple closed-form solution:

kCLF-QP(x) =




0, LfV (x) ≤ −k3∥x∥2,
− LgV (x)⊤

∥LgV (x)∥2 (LfV (x) + k3∥x∥2), LfV (x) > −k3∥x∥2.
(2.16)

Robust Stability
Systems that are asymptotic or exponentially stable in the sense of Lyapunov also
display favorable robustness properties. In particular, they are input-to-state stable
(ISS), a property originally introduced in [65] that characterizes the how stability
degrades in the presence of uncertainty.

To discuss robust stability we now consider systems with disturbances d : R≥0 →
Rnd where the disturbance enters the system in one of two forms:

Matched Disturbance: ẋ = f(x) + g(x)(k(x) + d(t)), (2.17)

Unmatched Disturbance: ẋ = f(x) + g(x)k(x) + d(t). (2.18)

A matched disturbance is one that matches the input insofar as it can be treated
as an additive disturbance to the input and can be directly negated directly if it is
known. Alternatively, unmatched disturbances are generally harder to overcome as
the input is added directly to the drift dynamics and may not align with the actuatable
directions of g(x).

Since d(t) is not known exactly, we assume that instead we know a worst-case
upper bound on ∥d∥ that holds for all time. This is generally a conservative upper-
bound, but can be used to make guarantees of robustness even when the disturbance
behaves adversarially. We characterize the bound on the signal d using its essential
supremum over timewhich we assume is bounded uniformly by some value d ∈ R≥0:

∥d∥∞ ≜ ess sup
t∈R≥0

∥d(t)∥ ≤ d. (2.19)

Given this bounded d, it is generally impossible to choose a single input that ensures
the convergence of the system to an equilibrium point regardless of which value
d takes on. Instead we consider a notion of how this asymptotic or exponential
stability can degrade as the bound d grows. This provides a very powerful paradigm
for understanding how real-world uncertainties affect a closed-loop system.

Definition 2.9 (Input-to-State Stability (ISS) [29]). Let x∗ = 0 be an equilibrium
point of the undisturbed closed-loop system (2.2). The closed-loop system with a
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matched (2.17) or unmatched (2.18) disturbance is said to be Input-to-State Stable
(ISS) with respect to x∗ if there exists an a ∈ R>0, β ∈ KL and γ ∈ K such that:

∥x0∥ < a =⇒ ∥x(t)∥ ≤ β(∥x0∥, t) + γ
(
d
)

(2.20)

for all t ≥ 0 and disturbance signals d : R≥0 → Rnd that are piecewise continuous
on R≥0 and satisfy ∥d∥∞ ≤ d.

While ISS does not guarantee the stability of x∗ in the present of disturbances,
it does guarantee the attractivity and forward invariance of a region of the origin
whose size grows monotonically with the disturbance bound.

We can also use the Lyapunov framework to prove that a system is ISS:

Theorem 2.10 (Lyapunov Characterization of ISS [65, Def. 2.2, Thm. 1]). Let
x∗ = 0 be an equilibrium point of the closed-loop system (2.17) (or (2.18)) with
bounded uncertainty ∥d∥∞ < d for some d ∈ R≥0. If there exists a continuously
differentiable function V : Rnx → R≥0 that satisfies:

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), (2.21)

∥x∥ ≥ α4(d) =⇒ V̇ (x) ≤ −α3(∥x∥), (2.22)

for all x ∈ Rnx , where α1, α2, α3, α4 ∈ K, then the closed-loop system (2.17) (or
(2.18)) is ISS.

This is a very useful property in capturing the natural robustness of stable systems.
For example, exponentially stable systems exhibit the ISS property when exposed
to unmatched disturbances:

Proposition 2.11. If the undisturbed closed-loop system (2.2) is exponentially stable
tox∗ = 0 and has continuously differentiable dynamics fcl with a bounded Jacobian,
then system (2.18) with an unmatched disturbance d : R≥0 → Rnx where ∥d∥∞ ≤ d

for some d ∈ R≥0 is ISS.

Proof. The exponential stability of (2.2) and the assumptions on fcl ensure that an
exponential Lyapunov function exists via the converse Lyapunov theorem [61, Thm.
4.14]. This Lyapunov function ensures the bounds:

V̇ (x) = LfV (x) + LgV (x)k(x) +
∂V

∂x
d(t) ≤ −k3∥x∥2 +

∂V

∂x
d(t), (2.23)

≤ −k3∥x∥2 +
∥∥∥∥
∂V

∂x
d(t)

∥∥∥∥ ≤ −k3∥x∥2 +
∥∥∥∥
∂V

∂x

∥∥∥∥ ∥d(t)∥ , (2.24)

≤ −k3∥x∥2 + k4∥x∥∥d(t)∥ ≤ −k3∥x∥2 + k4∥x∥d, (2.25)
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for k3, k4 > 0. Using this inequality, we find that: ∥x∥ ≥ 2k4
k3
d =⇒ V̇ (x) ≤

−k3
2
∥x∥2 where Theorem 2.10 establishes that this system is ISS.

In line (2.25) of the proof a portion of the exponentially stability of the nominal
system −k3∥x∥2 can be used to cancel the disturbance k4∥x∥d. Thus, the naturally
stability of the system provides robustness without requiring any knowledge of the
disturbance itself.

Alternatively, for system systems with matched disturbances (2.17), we can be
actively reduce the effect of the disturbance by tightening the CLF constraint as in
the following theorem, similar to the use of ISS-CLFs for controller design in [66,
Thm. 2]. In this paper we will consider the following notion of ISS-CLFs which
reflects the notion of ISSf-CBFs to be defined in the next section.

Definition 2.12 (Input-to-State Stable Control Lyapunov Functions (ISS-CLFs)).
For the nonlinear, control affine system (2.17) where f(0) = 0, an input-to-state
stable CLF (ISS-CLF) is a functionV : Rnx → R satisfying the following conditions:

k1∥x∥2 ≤ V (x) ≤ k2∥x∥2, (2.26)

inf
u∈Rnu

LfV (x) + LgV (x)u+
1

ϵ
∥LgV (x)∥2 < −k3∥x∥2 (2.27)

for all x ∈ Rnx and positive constants k1, k2, k3, ϵ > 0.

Here the standard CLF constraint (2.11) is tightened by 1
ϵ
∥LgV (x)∥2. We note that

since u is unbounded in (2.11) and (2.27), any CLF must also be an ISSf-CLF.

The addition of this robustifying term 1
ϵ
∥LgV (x)∥2 results in the following property

where the effect of the disturbance can be reduced via the choice of ϵ:

Theorem 2.13 (ISS-CLF [67, Thm. 13]). If V is an ISS-CLF for system (2.17)
with a matched disturbance, and k : Rnx → Rnm is a locally-Lipschitz state
feedback controller satisfying the ISS-CLF constraint (2.27), then the system satisfies
∥x(t)∥ ≤M∥x0∥e−λt + ϵd

2

4
.

These robustness properties expand a stable equilibrium point to a stable set and it is
precisely this set stability/invariance from which we will construct our understanding
of safety.
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2.4 Forward Invariance and Safety
To define safety, we start with the human-understandable definition:

A system is safe if it does not cause harm to itself or its environment.

In order to encode this as a mathematical statement, we consider a region of the
state space that satisfies this safety requirement, i.e.,

x ∈ C0 ⊂ Rnx =⇒ the system is not currently harming itself or its environment.
(2.28)

Examples of safety criteria which can be used to define C0 include things like geo-
fences for racing drones [22], foot-placement for walking robots traversing stepping
stones [25], [27], or collision avoidance [17].

In general, the field of safety-critical control seeks to ensure that the system never
exists this user-defined set C0. In other words, we seek to ensure the forward-
invariance of C0.

Definition 2.14 (Forward-Invariance and Safety [6, Def. 1]). A set C0 ⊂ Rnx

is forward-invariant for the closed-loop dynamics (2.2) if x0 ∈ C0 implies that
x(t) ∈ C0 for all t ≥ 0. The system (2.2) is said to be “safe” with respect to the set
C0 if the set C0 is forward invariant.

Unfortunately, for general nonlinear systems it may be impossible to render C0
forward invariant since there may exist states in C0 from which the system will
eventually become unsafe regardless of the control actuation (e.g., a “don’t hit the
ground” safety requirement for a rock thrown off a cliff). This is because the safety
requirement may be incompatible with the system dynamics. Thus, we will instead
look for subsets C ⊆ C0 where there exist inputs that can render the smaller set C
forward invariant and thus keep the system trajectory safely inside of C0.

We call a set that can be can be rendered forward invariant by some controller a
control invariant set:

Definition 2.15 ( Control Invariant Sets6 [68]). A set C ⊂ Rnx is control invariant
if there exists a controller k : C → Rnu such that C is forward invariant.

6Blanchini originally called these sets “controlled-invariant” [68]. We opt for the term “control
invariant” as in [5] for flow.
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The problem of synthesizing control invariant sets C ⊂ C0 from open-loop dynamics
(2.1) is studied in [68], [69] where the largest control invariant subset of a safety
criteria set is called a viability kernel. Unfortunately, finding a viability kernel is
generally a very computationally complex and requires solving a backwards reach-
ability problem. This becomes particularly difficult with increasing nonlinearity of
the dynamics and dimensions of the system [4].

Instead of solving for the viability kernel, Chapter 3 of this thesis is dedicated to
synthesizing safe sets for special classes of systems using computationally tractable
methods. For now, we assume that the safety requirement defines a control invariant
set, i.e., C = C0.

Control Barrier Functions
After we have obtained a control invariant subset of the safety requirement, we still
need to find a controller which achieves that forward invariance. Control barrier
functions (CBFs) are a useful tool for this controller synthesis process.

To synthesize these controllers, we connext the Lyapunov stability concepts pre-
sented in Sections 2.3 and 2.3 to our understanding of safety. Just as Lyapunov
functions analyze the stability of a system using a scalar value V (x), we will ana-
lyze safety using a scalar value.

To do this, consider a continuously differentiable function h : Rnx → R. In the case
of a Lyapunov function, V (x) > 0 indicates that the system is some distance away
from the equilibrium and V (x) = 0 indicates that the system has reached it. For
safety, we extend this understanding by adopting the paradigm that the system is if
h(x) is nonnegative, on the boundary of the C if h(x) = 0, and unsafe if h(x) is
negative. This relates to the safe set C ⊆ C0 ⊂ X through the following structure:

C ≜ { x ∈ Rnx | h(x) ≥ 0 }, (2.29)

∂C ≜ { x ∈ Rnx | h(x) = 0 }, (2.30)

Int(C) ≜ { x ∈ Rnx | h(x) > 0 }, (2.31)

where we assume that zero is a regular value7 of h and that C is non-empty and has
no isolated points, that is, h(x) = 0 =⇒ ∂h

∂x
(x) ̸= 0, Int(C) ̸= ∅, and Int(C) = C.

Since h(x) can take on negative values where V (x) could not, we must also extend
our notion of class K functions to admit negative arguments:

7The value c ∈ R is a regular value of a continuously differentiable function h : Rnx → R if
h(x) = c =⇒ ∂h

∂x ̸= 0.
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Definition 2.16 (Extended Class K Functions [6]). Let a, b ∈ R>0. A function
α : (−b, a) → R that is continuous on (−b, a) is said to be an extended class K
function (denoted α ∈ Ke) if α is strictly monotonically increasing over (−b, a) and
α(0) = 0. This function α is an extended class K∞ function (denoted α ∈ Ke∞) if
a = b =∞, limr→∞ α(r) =∞, and limr→−∞ α(r)→ −∞.

Again, we find that the standard linear scaling α(r) = ρr for some ρ > 0 is a
class Ke∞ function. While other class Ke∞ could be used in theory, this thesis will
predominately use these linear scalings.

Now we can introduce the preliminary notion of a barrier functions as a tool for
verifying the safety of a closed loop system (2.2), similar to how the Lyapunov
functions can be used to verify stability (Thm. 2.6):

Definition 2.17 (Barrier Function [6]). Let C ⊂ Rnx be the 0-superlevel set of a
continuously differentiable function h : Rnx → R with 0 as a regular value. The
function h is a Barrier Function (BF) for the closed-loop system (2.2) if there exists
an α ∈ Ke∞ such that:

ḣ(x) =
∂h

∂x
(x)f(x)

︸ ︷︷ ︸
Lfh(x)

+
∂h

∂x
(x)g(x)

︸ ︷︷ ︸
Lgh(x)

k(x) ≥ −α(h(x)), (2.32)

for all8 x ∈ Rnx .

The inequality in Definition 2.17 shows a direct connection to the Lyapunov con-
vergence inequality in (2.6). In the Lyapunov case, inequality (2.9) ensures that the
convergence towards the equilibrium point is upperbounded by a negative number,
forcing the system down level sets of the Lyapunov function and towards the equi-
librium point. However, in the case of safety, when x ∈ C, the converge rate down
towards the boundary of the safe set (h(x) = 0) is lower bounded by a negative
number, thus the system can decay towards the boundary, but must slow down as it
approaches.

The utility of barrier functions in verifying safety is formalized in the following
theorem:

8Note that in order to achieve safety, the barrier function inequality (2.32) is only required to
hold for all x ∈ C. The stronger assumption that it holds for all x ∈ Rnx is presented here for
convenience and will be used in study of the ISSf robustness property (Def. 2.22)
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Theorem 2.18 ([18]). If h : Rnx → R is a barrier function for the closed loop
system (2.2) and the set C ⊂ Rnx , then (2.2) is safe with respect to C.

This result was established in [18] where the safety guarantee was achieved by
applying Nagumo’s theorem [13] under the assumption that h has 0 as a regular
value. Later [70][Thm. 1] proved that h does not need to have 0 as a regular value,
as long as α ∈ Ke∞ and (2.32) holds for x ∈ Rnx \ C. A detailed discussion of this
is provided in [70], however, for this work we will make the assumption that 0 is a
regular value of h since it is not a significantly limiting assumption.

Similar to the converse results for Theorem 2.6, converse results have been proven
for barrier functions under a variety of relatively general assumptions [14].

We can now generalize barrier functions to the setting of controller synthesis in a
format similar to CLFs:

Definition 2.19 (Control Barrier Function (CBF)[6]). Let C ⊂ Rnx be the 0-
superlevel set of a continuously differentiable function h : Rnx → R with 0 a
regular value. The function h is a control barrier function (CBF)9 for the open-loop
system (2.1) if there exists an α ∈ Ke∞ such that for all x ∈ Rnx:

sup
u∈U

ḣ(x) ≜
∂h

∂x
(x)f(x)

︸ ︷︷ ︸
Lfh(x)

+
∂h

∂x
(x)g(x)

︸ ︷︷ ︸
Lgh(x)

u > −α(h(x)). (2.33)

Although this definition can be rescricted to C instead of X , the feasibility of the
CBF constraint (2.33) over the larger domain will be useful for providing ensure the
robust safety and set atractivity properties of C.

Intuitively, as with the barrier function constraint (2.32), the CBF constraint (2.33)
requires that the system slow down as it approaches the boundary of C.

As with the CLFs, the CBF inequality (2.33) defines the point-wise set of safe
control actions:

KCBF(x) =
{
u ∈ Rnu | ḣ(x,u) ≥ −α(h(x))

}
, (2.34)

and KCBF(x) input set is non-empty at x ∈ Rnx if :

Lgh(x) = 0 =⇒ Lfh(x) > −α(h(x)) (2.35)

9As in the CLF Definition (Def. 2.7), the strict inequality appears in (2.33) to enable the synthesis
of locally Lipschitz controllers [63]; this strictness also implicitly requires that h has 0 as a regular
value.
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and h is a CBF if this implication holds for all x ∈ Rnx .

A main result in [10], [33] relates CBFs to the forward invariance of C of the
closed-loop system (2.2):

Theorem 2.20 (CBF Safety [6]). Given a set C ⊂ Rnx defined as the 0-superlevel
set of a continuously differentiable function h : Rnx → R, if h is a CBF for
(2.1), then any locally Lipschitz continuous controller k : Rnx → Rnu , such that
k(x) ∈ KCBF(x) for allx ∈ C, renders the closed-loop system (2.2) safe with respect
to C.

Similar to CLFs, a common controller used to achieve this is the control barrier
function quadratic program (CBF-QP) (2.36). This safety-filter is a point-wise
optimal controller that minimally adjusts a desired (but not necessarily safe) locally
Lipschitz controller kdesired : Rn → Rm in order to satisfy the CBF inequality (2.33).

kCBF-QP(x) = argmin
u∈Rnu

1

2
∥u− kdes(x)∥22 (2.36)

s.t. Lfh(x) + Lgh(x)u︸ ︷︷ ︸
d
dt
h(x,u)

≥ −α(h(x)).

Remark 2.21 (On the performance of CBF-based controllers). The performance of
the CBF-QP safety-filter towards achieving a particular goal (such as stabilizing
to a point) is indirectly achieved using the desired controller kdes. An alternative
method called the CLF-CBF-QP [6] enforces a slackened form of the CLF constraint
alongside the CBF constraint with a cost function that minimizes the input norm
and the slack variable. However, in both cases it is common for the point-wise
minimization in both controllers to result in locally stable undesirable equilibria
[16], resulting in a closed-loop system that is unable to achieve its performance
goals. Section 7.4 will explore modification to this controller that remove these
obstructions and better incorporate performance goals by for performance over a
horizon, instead of through point-wise minimization.

As with the CLF-QP, the CBF-QP with no input constraints admits a closed-form
solution:

kCBF-QP(x) = kdes(x) +
−Lgh(x)

⊤

∥Lgh(x)∥22




0, a(x) ≥ 0

a(x), a(x) < 0
(2.37)

where a(x) = Lfh(x) + Lgh(x)kdes(x) + α(h(x)).
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Since all of the component functions of this controller can be easily and analytically
computed, the CBF-QP controller and similar CBF-based controllers can be imple-
mented on hardware systems at real-time speeds with significant successes for the
real-time control of robotic systems as will be seen throughout this thesis.

Before discussing robust safety, I would like to end with a warning that motivates
a large portion of this thesis: be very careful when assuming that h is a CBF a
known α this a very strong assumption, that is stronger than assuming that C is
control invariant. This process of synthesizing CBFs, as studied in Chapter 3, is
often considered the greatest challenge of CBF-based approaches.

Input-to-State Safety
To consider the problem of safety for real-world systems, we must additionally
analyze the effect of uncertainty on our safety guarantees.

Although Theorem 2.20 generates rigorous safety guarantees for controllers like
the CBF-QP, it makes several critical assumptions which are not generally valid
in practice. One of which is perfect model knowledge: to effectively implement
controllers which satisfy the constraints of Theorem 2.20, one is required to have an
exact model of the open-loop system dynamics f(x) and g(x). However, in reality
we likely have a simplified model of the system that may ignore complexities like
drag, motor viscosity, flexibility of internal components, and more. Although this
simplified model may be very useful, it introduces error which can invalidate the
safety guarantees of Theorem 2.20.

As with robust stability, we consider systems with matched (2.17) or unmatched
(2.18) disturbances. In stability, we saw that the ISS property captured the idea
that, in the presence of bounded disturbances, convergence to an equilibrium point
became convergence to a set. We will see a similar property for systems with
attractive safe sets. Essentially, convergence to a set becomes convergence to an
expanded set in the face of bounded disturbances, with the size of the expansion
depending on the disturbance bound. This property is captured in the Input-to-State
Safety property of CBFs:

Definition 2.22 (Input-to-State Safety [31]). The closed loop system with matched
(2.17) or unmatched (2.18) disturbances is Input-to-State Safe (ISSf) with respect to
C if there exists γ ∈ K∞ such that for all d ∈ R≥0 and disturbances d : R≥0 → Rnd
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satisfying ∥d∥∞ ≤ d, the set Cδ ⊂ Rnx defined as:

Cδ ≜ {x ∈ Rnx | h(x) ≥ −δ = −γ(d)} (2.38)

is forward invariant.

To obtain the ISSf property from barrier functions a small modification to (2.32) is
needed in the general case as presented in [31, Def. 4]. However, in the simplified
case where h has a bounded gradient and α is a linear classKe∞ function, we have the
following relationship between barrier functions and ISSf systems with unmatched
disturbances:

Proposition 2.23. Let C ⊂ Rnx be the 0-superlevel set of a function h : Rnx → R
that is continuously differentiable on Rnx . If h is a barrier function for the nominal
system (2.2) with a bounded gradient

∥∥∂h
∂x

∥∥ ≤ bh for all x ∈ Rnx and some bh > 0,
and an α ∈ Ke∞ such that α(r) = ρr for some ρ > 0, then the closed-loop system
with an unmatched disturbance (2.18) is ISSf with respect to Cδ for δ = bhd

ρ
.

Proof. Since h is a barrier function for the closed-loop system (2.2) with a bounded
gradient and α(r) = ρr, the following inequalities hold for the system with an
unmatched disturbance (2.18):

ḣ(x) = Lfh(x) + Lgh(x)k(x) +
∂h

∂x
d(t) ≥ −ρh(x) + ∂h

∂x
d(t), (2.39)

≥ −ρh(x)−
∥∥∥∥
∂h

∂x

∥∥∥∥ ∥d(t)∥ ≥ −ρh(x)− bhd = −ρ
(
h(x)− bhd

ρ

)
. (2.40)

Since d
dt

(
h(x)− bhd

ρ

)
= dh

dt
, we have that hδ ≜ h(x) − bhd

ρ
is a barrier function

for system with an unmatched disturbance (2.18) that guarantees the safety of the
expanded set Cδ for δ = bhd

ρ
.

In this proof, we see that the set attractivity property of the barrier function, i.e.,
−ρh(x) when h(x) < 0, is used to counteract the effect of the disturbance and form
an expanded safe set in the presence of the unmatched disturbance. This reflects how
the stability component of the Lyapunov function is used to cancel the disturbance
in the proof of Proposition 2.11.

As with ISS-CLFs, we can robustify the CBF constraint to control this expansion in
the presence of matched disturbances:
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Definition 2.24 (ISSf-CBF [32, Def. 3]). A continuously differentiable function
h : Rnx → R with 0 a regular value is said to be an input-to-state safe control
barrier function (ISSf-CBF) for (2.1) on C as in (2.29) if there exists α ∈ Ke∞ and
ϵ > 0 such that for all x ∈ X :

sup
u∈Rnu

Lfh(x) + Lgh(x)u > −α(h(x)) +
1

ϵ
∥Lgh(x)∥2. (2.41)

ISSf-CBFs include the robustifying term 1
ϵ
∥Lgh(x)∥2 to mitigate the impact of

disturbances while providing practical safety guarantees [32]. Note that if h satisfies
(2.33), then it also satisfies (2.41) as robustness is only added when control actuation
would immediately effect safety (i.e., when ∥Lgh(x)∥ ̸= 0). Thus, (2.41) increases
the robustness of safety to disturbances while retaining feasibility.

More precisely, this results in the following ISSf property:

Theorem 2.25 (ISSf-CBF Safety [32, Thm. 2]). Let C ⊂ Rnx be the 0-superlevel
set of an ISSf-CBF h with α ∈ Ke∞ and ϵ > 0 for the closed-loop system with a
matched disturbance (2.17). If the disturbance is bounded ∥d∥ ≤ d for some d ≥ 0,
then for any Lipschitz continuous controller that satisfies the (2.41) for all x ∈ X
the closed-loop system (2.17) is safe with respect to Cδ with δ = α−1

(
− ϵd

2

4

)
. Thus,

the system is ISSf with respect to C.

Thus, the ISSf-CBF constraint ensures that the expanded set Cδ is kept safe and the
exact size of this expansion can be controlled by the tuning parameter ϵ, providing
both a theoretical lens through which to view the graceful degradation of safety
in the presence of uncertainty and also a practically useful control technique for
mitigating these effects.

With this background understanding of nonlinear control, Lyapunov methods, and
CBFs, we can now move on to the main contributions of this thesis that will tackle
the problems of safe set synthesis, robustness to additional forms of uncertainty, and
the problem of achieving high performance behavior alongside safety guarantees,
with example hardware demonstrations provided on robotic systems.
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C h a p t e r 3

SAFE SET SYNTHESIS

“An experimentalist and a theoretician are stranded on a desert island
with sealed cans of food. The experimentalist suggests smashing the
cans open or heating them until they burst. Unimpressed, the theoreti-
cian says, ‘Why don’t we just assume that we have a can opener?’”

“I can prove that, if unicorns existed, they’d be nice.”

These quotes capture a common failure of safety-critical control: it can often provide
elegant theoretical results that rely on strong assumptions that are difficult to satisfy.
While CBFs offer compelling infinite-horizon safety guarantees, they rely on the
assumption that the user has already constructed a control invariant safe set, an
assumption akin to assuming the theoretician has a can opener.

This chapter tackles that missing step by focusing on the construction and verification
of control invariant safe sets, which are essential for deploying CBFs with practical
guarantees.

Abstract
Control barrier functions (CBFs) have emerged as a powerful framework for enforc-
ing safety guarantees, offering infinite-horizon guarantees and input-to-state safety
robustness properties. However, these theoretical guarantees rely on strong assump-
tions that often fail to hold in practice. In particular, they assume the knowledge of
functions h(x) and α for which the CBF condition (2.33) holds. This requirement
is more restrictive than assuming that the safe set C is control invariant and, when
it is violated, can lead to systems that were thought to be safe to have catastrophic
failures. Thus, verifying or constructing control invariant safe sets is essential for
deploying CBFs with real-world meaningful guarantees.

Unfortunately, verifying control invariance or synthesizing such sets is often com-
putationally intractable for complex, nonlinear, or high-dimensional systems. This
chapter addresses that challenge by presenting constructive safe-set synthesis meth-
ods for a variety of system classes including hierarchical systems with tracking
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controllers, feedback linearizable systems, dual relative degree systems, and sys-
tems with verified backup controllers. By relying on structural properties of the
dynamics, these methods present computationally tractable solutions for generating
CBFs and control invariant sets.

Published content: This chapter is adapted from previously published work in
[48]–[50], [52].

3.1 Introduction
The provable guarantees of safety-critical control and CBFs are attractive for
robotics, where safety is paramount in real-world deployment. However, one of
the confounding factors that has limited the general application of CBFs lies in
determining a “valid” CBF, i.e., a function h0 that satisfies Definition 2.19. It may
be easy to create a function h0 whose 0-superlevel set describes the system’s safety
requirements, but it is generally very difficult to assure that that function defines a
control invariant set or is actually a CBF as discussed in Chapter 2.

In general, the construction of control invariant sets is a difficult problem that is made
computationally intractable for large systems by the “curse of dimensionality” [4],
[71], [72]. Several methods have been developed, to overcome this computational
difficulty and rigorously assure control invariance. For example, this is achieved in
[8], [73] using reachibility methods for simple linear systems. It is achieved in [5] by
computing a small control invariant set and then expanding it using horizon-based
planning. In the CBF literature, it is common to construct valid CBFs by hand [74]
although this method scales poorly with system complexity. Alternatively, methods
like exponential [75] and higher-order [76]–[78] CBFs have attempted to solve this
control invariance problem indirectly by instead solving the relative degree problem,
where the effect of the input might not appear in the first derivative of h(x). While
these extension methods can improve feasibility of the CBF condition, they can still
result in safety failures as noted in [79]. Other CBF synthesis methods include
data-driven approaches like [41] which, while practically useful, require collection
of expert data and generally do not enable the same rigorous safety guarantees
as other CBF-based methods, and backstepping methods which require significant
assumptions on the structure of the full-order system dynamics [80].

As an alternative to synthesizing controlled invariant sets and valid CBFs for the
whole system, several works have simplified the problem by instead constructing
CBFs for a reduced-order model (ROM) of their system, whose validity can be



26

more easily verified. This is inspired by the many robotics successes that rely
on ROM-based controller synthesis [81], including single integrator models used
for multi-robot applications [20], [82], [83] or quadrotor applications [84] and
unicycle models for wheeled robots [85], [86]. While the naive application of this
idea without consideration of the full-order system dynamics suffers from model-
mismatch between the ROM and the true system [84], recent work has explored
the use of hierarchical control methodologies to guarantee safety with respect to
the full-order system [48], [87], [88]. This results in a simpler ROM-based CBF
synthesis problem, but generally does so at the cost of system performance as any
deviation between the ROM and the full-order system is considered a disturbance.

This chapter will address safe set and CBF synthesis from a variety of perspectives,
offering tools for several classes of systems. In general these methods leverage
an underlying structure of the system to guarantee convergence to a set, point, or
trajectory. Using this convergence guarantee, we can then convert safe sets for the
ROM to safe sets for the full-order system. These methods span a variety of system
types including partially feedback linearizable, robotic, and dual relative degree
systems. The remainder of this chapter introduces a new synthesis method in each
section.

Section 3.2 leverages the connection between CBFs and CLFs to construct control
invariant sets and valid CBFs from existing CLFs. Then, Section 3.3 introduces a
model-free CBF approach where velocity tracking controllers are used to implicitly
synthesize valid CBFs. Next, Section 3.4 presents a CBF synthesis method for
partially feedback linearizable systems, inspired by [80], that explicitly synthesizes
full-order CBFs for underactuated robotic systems. This method is then expanded on
in Section 3.5 where we generalize beyond partially feedback linearizable systems
to a new class of systems, termed dual relative degree, that have inputs appearing
at two different relative degrees, similar to the translational and rotational inputs of
unicycle and quadrotor systems. Finally, in Section 3.6 we consider the backup set
CBF method, originally presented in [26], that leverages a finite horizon to expand
a smaller, known “backup” safe set. These methods provide a compendium of tools
for rapid CBF and/or control invariant set synthesis for a wide variety of relevant
systems. We additionally provide hardware-based robot examples throughout to
demonstrate the utility of these methods.
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3.2 Synthesizing CBFs from CLFs
As presented in Chapter 2, CBFs can be viewed as a generalization of CLFs,
extending Lyapunov theory from stabilization to set invariance. This relationship
naturally motivates the construction of CBFs using CLFs.

In this case, since a CLF guarantees asymptotic stabilization, each of its sublevel
sets is control invariant. Consequently, these sublevel sets can be used to define
CBFs.

Theorem 3.1 (CBFs from CLFs). If V : Rnx → R is a CLF (Def. 2.7) for the
open-loop system (2.1), then h(x) ≜ C − V (x) is a CBF with α(r) = k3

k2
r ∈ Ke∞

for system (2.1) for any C > 0.

Proof. Since V is a CLF, it is a continuously differentiable function that satisfies
the CLF inequality (2.11):

sup
u∈Rnu

LfV (x) + LgV (x)u ≤ −k3∥x∥2 ≤ −
k3
k2
V (x). (3.1)

With h : Rnx → R defined as h(x) ≜ C−V (x), this inequality can be equivalently
rewritten as:

sup
u∈Rnu

−Lfh(x)− Lgh(x)u ≤ −
k3
k2

(C − h(x)), (3.2)

inf
u∈Rnu

Lfh(x) + Lgh(x)u ≥ −
k3
k2
h(x) +

k3
k2
C ≥ −k3

k2
h(x). (3.3)

Thus, h satisfies the CBF inequality (2.33) with α(r) = k3
k1
r ∈ Ke∞.

Line (3.3) reveals that the stabilization condition imposed by the CLF is stronger
than the CBF condition required for forward invariance. In particular, the positive
term k3

k1
C is dropped to yield the CBF inequality. Therefore, if a CLF is known and

its sublevel sets lie within the safety requirement C0, this method produces valid
CBFs for control-invariant subsets C = {x ∈ Rnx | C − V (x) ≥ 0} ⊆ C0. This
process is visualized in Fig. 3.1.

However, this method has several limitations. The resulting sets C are constrained
to be sublevel sets of V , which are typically compact and centered around an
equilibrium point. More significantly, the method requires a pre-existing CLF.
While CLF synthesis has been extensively studied, general methods such as sum-of-
squares programming [89] remain computationally expensive for high-dimensional
nonlinear systems.
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Figure 3.1. A visualization of the connection between Lyapunov and barrier functions that shows
how a CBF can be constructed as a sub-level set of a Lyapunov function.

In contrast, synthesizing CLFs is straightforward for systems that are full-state
feedback linearizable. This connection motivates the following definition and will
serve as the basis for several generalizations later in this chapter.

Definition 3.2 (Full-State Feedback Linearizability1 [61, Def. 13.1 and Sec. 13.3]).
The open-loop control system (2.1) is full-state feedback linearizable if there exist a
diffeomorphism Φ : Rnx → Rnx that enables the change of coordinates η = Φ(x)

and a controller k : Rnu × Rnu such that:

η̇ = DΦ(x)(f(x) + g(x)k(x,v))
∣∣
x=Φ−1(η)

= Aη +Bv (3.4)

where A ∈ Rnx×nx and B ∈ Rnx×nu .

For example, if the actuation matrix g(x) is globally invertible, then the system is
full-state feedback linearizable via the identity transformation η = Φ(x) = x and
the controller k(x,v) = g(x)−1(−f(x) + v), where A = 0 and B = I.

Once linearized, if the pair (A,B) is controllable, tools from linear systems theory
can be used to design stabilizing feedback controllers for v [90]. The existence
of such a controller guarantees the existence of a CLF via the converse Lyapunov
theorem [61, Thm. 4.14], which can then be used to construct the CBF h(x) = C−
V (Φ(x)), whereV is a CLF inη-coordinates andΦ is the coordinate transformation.

1I make several simplifying changes regarding the locality of this definition and the structure of
the linear system. Please see [61, Def. 13.1] for a more nuanced definition.
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Then, if the equilibrium point of the CLF is in Int(C0), we can choose C > 0 to find
a control invariant set C ⊂ C0.

Although this approach requires strong assumptions, including feedback lineariz-
ability and controllability, it produces a valid CBF satisfying Definition 2.19 with a
known α ∈ Ke∞. The remainder of this chapter generalizes this method in several
ways. In Section 3.3, we replace the constant C with an arbitrary safety function h0
and relax the assumption of convergence to an equilibrium by considering Lyapunov
stability with respect to safe trajectories. In Sections 3.4 and 3.5, we extend this
approach to partially feedback linearizable systems and dual relative degree systems,
respectively. Finally, in Section 3.6, instead of choosing C by hand, we consider an
implicit method for expanding a known Lyapunov sub-level set.

3.3 Model-Free CBF Synthesis
In this section, I present a model-free CBF synthesis method that relies on a hi-
erarchical control structure. Inspired by layered architectures that are common in
robotics, we divide the system into two components: (1) the configuration space for
which the safety requirement is defined and (2) higher-order terms that determine
the ability to track configuration-space trajectories.

By dividing the system into these subcomponents, we enable CBF synthesis through
a process similar to that in Section 3.2 where a CLF that establishes the exponential
tracking of safe configuration trajectories is used to synthesize a valid CBF, this
can be thought of as a formalization of the approach in [84] where safety was
achieved in a practical setting by synthesizing and tracking safe velocities. Since
the safety criteria relies only on the configuration space, this approach is agnostic
to the application domain as long as an underlying tracking controller exists for the
system. In general the existence of velocity tracking controllers is well-established
in robotics and are available for many robot platforms [91]. Once sufficient tracking
capabilities are established, enforcing safety does not require further consideration
of the high-fidelity model, thus only the safety criteria and the tracking certificate
are required. A pictorial description of this method can be seen in Figure 3.2.

The contributions of this section are as follows:

• A proof of model-free CBF synthesis and safety guarantees for complex
robotic systems that use tracking controllers to execute model-free safe be-
haviors.
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• Demonstrations of the broad applicability of this method on a wheeled robot
in simulation and flying and legged robots on hardware.

The text for this section is adapted from:

T. G. Molnar, R. K. Cosner, A. W. Singletary, W. Ubellacker, and A. D.
Ames, “Model-free safety-critical control for robotic systems,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 944–951, 2022, issn:
2377-3766, 2377-3774. doi: 10.1109/LRA.2021.3135569,

A video for this section can be found at [48].

Model-Free Motivation and Problem Setting
For this section we consider robotic systems in generalized coordinates q ∈ Q ⊆ Rn

with Euler-Lagrange dynamics given by:

D(q)q̈+C(q, q̇)q̇+G(q) = B(q)u. (3.5)

Here, q̇ ∈ Rnq is the generalized velocity, D(q) ∈ Rnq×nq denotes the positive
definite and symmetric inertia matrix, C(q, q̇) ∈ Rnq×nq denotes the Coriolis
matrix, G(q) ∈ Rnq represents gravitational and other potential effects, B(q) ∈
Rnq×nu is the actuation matrix, and u ∈ Rnu is the control input. This robotic
system model can then rewritten as a control-affine system in the form of (2.1):

d

dt

[
q

q̇

]

︸ ︷︷ ︸
ẋ

=

[
q̇

−D−1(q)(C(q, q̇)q̇+G(q))

]

︸ ︷︷ ︸
f(x)

+

[
0

D−1(q)B(q)

]

︸ ︷︷ ︸
g(x)

u. (3.6)

Next, we assume that we have knowledge of a user-defined safety requirements
represented by the set q ∈ C0 ⊂ Rnq defined on the configuration coordinates, that
we would like our system to stay within.

Assumption 3.3. The safe criteria set C0 ⊂ Rnq is defined as the 0-superlevel set of
a continuously differentiable function h0 : Q → R:

C0 = {q ∈ Q : h0(q) ≥ 0}, (3.7)

where the gradient ofh0 is bounded, i.e., there exists bh0 ∈ R>0 such that
∥∥∂h0
∂x

∥∥ ≤ bh0

for all q ∈ C0. That is, safety depends on the configuration q only and h0 is inde-
pendent of q̇.

https://doi.org/10.1109/LRA.2021.3135569
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Figure 3.2. The model-free control method in Section 3.3 and its execution on hardware. While
the safety-critical controller does not rely on the full dynamical model of the robot, it controls the
motion in a provably safe manner.

The rest of this section will then focus on solving the following problem:

Problem 3.4. For the robotic system (3.6), design a controller k : Q×Rnx → Rnu

that establishes the forward invariance of C0 in (3.7) under certain conditions on
q̇0. Furthermore, construct a CBF for this system that defines a control invariant
set C ⊆ C0.

Following [84], we will solve this problem by generating safe trajectories in con-
figuration space and tracking them with an underlying velocity tracking controller.
This reduces the complexity of safety-critical control significantly by allowing us to
directly use the safety requirement h0 in conjunction with widely available velocity
tracking controllers [91].

In particular, we synthesize a safe velocity q̇s ∈ Rnq that satisfies:

∂h0
∂q

(q)q̇s ≥ −αh0(q), (3.8)

which is the CBF safety condition (2.33) for a single integrator system, for some
α ∈ R>0 to be selected later. The safe velocity q̇s depends on the configuration
q. Note that (3.8) is a kinematic condition that does not depend on the full dy-
namics (3.6). We consider this inequality to be “model-free” since it is a single
integrator description of safety.

To track these safe velocity, we define the tracking error:

ė = q̇− q̇s. (3.9)
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and assume the existence of a velocity tracking controller k(q, q̇) that is able to
drive the error ė to zero exponentially2.

Assumption 3.5. The velocity tracking controller k(q, q̇) achieves exponentially
stable tracking: ∥ė(t)∥ ≤M∥ė0∥e−λt for some M,λ ∈ R>0. That is, if ė is dif-
ferentiable (i.e., ë, q̈s exist3 ), there exists a continuously differentiable Lyapunov
function V : Q× Rnq → R≥0 such that ∀(q, ė) ∈ Q× Rnq :

k1∥ė∥ ≤ V (q, ė) ≤ k2∥ė∥, (3.10)

for some k1, k2 ∈ R>0, and there exists λ ∈ R>0 such that ∀(q, ė, q̇, q̈s) ∈ Q ×
Rnq × Rnq × Rnq the closed-loop system (2.2) with the state-feedback controller
k(q, q̇) satisfies the Lyapunov stability condition:

V̇ (q, ė, q̇, q̈s,u) ≤ −λV (q, ė). (3.11)

For exposition’s sake, below we assume q̈s exists.

Model-Free Safety Guarantees and CBF Synthesis
In what follows, the main result of this section proves that tracking a safe velocity
achieves safety for the full dynamics if parameter α is selected to be small enough
and we show how this method generates an implicit CBF and control invariant set for
the system. Specifically, for tracking controllers satisfying Assumption 3.5 stability
translates into safety for the full system (3.6) if λ > α. As this result is agnostic to
the application domain given this assumption4 we refer to this method as model-free
safety-critical control.

The following theorem summarizes the safety guarantees provided by tracking the
safe velocity and produces an implicit control invariant set C ⊂ C0 and an implicit
CBF h.

Theorem 3.6 (Model-Free Safety). Consider system (3.6), safe set (3.7), safe
velocity satisfying (3.8), and velocity tracking controller satisfying (3.11). If λ > α,

2In this thesis, we will focus on scenarios with exponential tracking convergence. The case where
the tracking controller may be unable to achieve complete exponential converge of the tracking error
is further explored in [48, Sec. III.C].

3The error ė is assumed to be differentiable in Assumption 3.5 only for exposition’s sake.
Theorem 3.6 can be extended to non-differentiable signals satisfying ∥ė(t)∥ ≤M∥ė0∥e−λt. The
proof relies on the fact that ḣ(q, q̇) ≥ −αh(q) − bh0

M∥ė0∥e−λt holds, and by the comparison
lemma with ẏ(t) = −αy(t)−bh0

M∥ė0∥e−λt, y(0) = h(q0) one can show that h(q(t)) ≥ y(t) ≥ 0.
4We recognize that constructing velocity tracking controllers is, however, very model-dependent

and provide a compendium of these controllers for a variety of systems in [48, Sec. III.D].
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safety is achieved such that (q0, ė0) ∈ C ⇒ q(t) ∈ C0, ∀t ≥ 0, where:

C ≜ {(q, ė) ∈ Q× Rnx : h(q, ė) ≥ 0},
h(q, ė) ≜ −V (q, ė) + αeh0(q),

(3.12)

with αe = (λ− α)k1/bh0 > 0 and bh0 , k1 defined at (3.7, 3.10). Additionally, this
h(q, ė0) is a CBF for (3.6).

Proof. Since V (q, ė) ≥ 0, the implication h(q, ė) ≥ 0 ⇒ h0(q) ≥ 0 holds. Thus,
h(q(t), ė(t)) ≥ 0, ∀t ≥ 0 is sufficient to prove that h0(q(t)) ≥ 0, ∀t ≥ 0. We prove
this by noticing that the initial conditions satisfy h(q0, ė0) ≥ 0 and we also have:

ḣ(q, ė, q̇, q̈s,u) = −V̇ (q, ė, q̇, q̈s,u) + αe
∂h0
∂q

(q)q̇, (3.13)

≥ λV (q, ė) + αe
∂h0
∂q

(q)q̇s + αe
∂h0
∂q

(q)ė ≥ λV (q, ė)− αeαh(q) + αe
∂h0
∂q

(q)ė,

≥ (λ− α)V (q, ė)− αe

∥∥∥∥
∂h0
∂q

(q)

∥∥∥∥ ∥ė∥ − αh(q, ė), (3.14)

≥ (λ− α)k1∥ė∥ − αebh0∥ė∥ − αh(q, ė) ≥ −αh(q, ė). (3.15)

Here we used the following properties in the six steps of the inequality: (1) defini-
tion (3.12) of h, (2) stability condition (3.11) and definition (3.9) of ė, (3) condi-
tion (3.8) on the safe velocity, (4) definition (3.12) of h and the Cauchy-Schwartz
inequality, (5) lower bound of V in (3.10) and upper bound bh0 of

∥∥∥∂h0∂q
(q)
∥∥∥, (6)

definition of αe. This guarantees h(q(t), ė(t)) ≥ 0, ∀t ≥ 0 by Theorem 2.20. Addi-
tionally, this chain of inequalities verifies thath satisfies CBF inequality in Definition
2.19.

Intuitively, condition λ > α means the controller tracks the safe velocity faster than
the speed at which safety is allowed to decay. In practice, one can simply pick a
small enough α for a given velocity tracking controller, for example, by gradually
increasing α from 0. Note that there is a trade-off: for smaller α the system generally
results in more conservative closed-loop behavior.

Theorem 3.6 requires initial conditions to satisfy (q0, ė0) ∈ C ⇐⇒ h0(q0) ≥
V (q0, ė0)/αe. This is a stricter condition than q0 ∈ C0 ⇐⇒ h0(q0) ≥ 0 since we
must also take into account the higher-order states and how they affect the system’s
ability to regulate h0(q). The additional conservatism that is introduced by this
restriction is reduced when the initial tracking error ė0 is smaller (since V (q0, ė0)

is smaller) and when the tracking is faster, i.e., λ− α is larger (since αe is larger).
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Applications to flying and legged robots
Next, we executed the obstacle avoidance task on two fundamentally different hard-
ware platforms: a quadrotor drone and quadruped; see Fig. 3.3. The obstacle
locations were known a priori, sensing measurements from were used to determine
the robots’ position only. We performed two classes of experiments by synthesizing
safe velocities based on the single integrator d

dt
q = q̇s and the unicycle model:



ẋ

ẏ

ψ̇


 =



cosψ 0

sinψ 0

0 1



[
vs

ωs

]
, (3.16)

respectively. For the multiple obstacles in these experiments, we considered the
closest one at each time. This results in a nonsmooth CBF which has been analyzed
in [92]. A video of the experiments can be found at [93].

Example 3.7 (Quadrotor and Quadruped Safety using a Single-Integrator Model).
First, we considered the single integrator model and we tracked the associated safe
velocity with the quadrotor and quadrupedal robots by platform-specific tracking
controllers. We used the CBF:

h0(q) = ∥q− qobs∥ − r, (3.17)

where r ∈ R>0 is the combined radius of the obstacle and the robot, and safe
velocity generated by the CBF-QP:

argmin
q̇s∈R2

∥q̇s − q̇d∥2

s.t.
(q− qobs)

∥q− qobs∥
⊤

q̇s ≥ −α(h0(q)).
(3.18)

The desired velocity was q̇d = −KP(q− qgoal) with saturation for the goal location
qgoal ∈ Q.

The quadrotor drone was a custom-built robot [22], shown in Fig. 3.3(a). It has 6
degrees of freedom and 4 actuators. The state of the robot (position, orientation and
corresponding velocities) were measured by IMU and an OptiTrack motion capture
system. State estimation and control action computation ran at 400 Hz. The safe
velocity was commanded to the drone wirelessly from a desktop computer, while
velocity tracking was done using an on-board betaflight flight controller and the
geometric control scheme presented in [94]. The safe velocity was calculated with
KP = 0.7 s−1 and α = 0.2 s−1. Fig. 3.3(a) shows the quadrotor reaching the goal
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Figure 3.3. Hardware experiments using the proposed model-free safety-critical control method.
An obstacle avoidance task is accomplished by two fundamentally different robots: a custom-made
quadrotor (top) and a Unitree A1 quadruped (bottom). (a) The quadrotor is tracking a safe velocity
determined based on single integrator model. (b) The quadruped is tracking a safe velocity based on
single integrator model via side-stepping and (c) based on unicycle model via turning. Both robots
executed the task with guaranteed safety. A video of the experiments can be found at [93].

safely, as guaranteed by Theorem 3.6 since α was selected small enough for the
available tracking performance. The value of α was chosen based on the simulated
response of the single integrator.

The quadruped was a Unitree A1 robot, shown in Fig. 3.3(b), which has 18 degrees of
freedom and 12 actuators. Its position was measured based on odometry assuming
the feet do not slip, while joint states were available via built-in encoders. An
ID-QP walking controller was realized at 1 kHz loop rate on this robot to track
a stable walking gait with prescribed forward and lateral velocities and yaw rate,
designed using the concepts in [95]. Individual commands were tracked via the
motion primitive framework described in [96]. In the single integrator experiments,
the yaw rate was set to zero, while the safe velocity (3.18) with KP = 0.1 s−1 and
α = 0.2 s−1 was tracked by forward- and side-stepping. The quadruped executed the
task safely similar to the quadrotor (see Fig. 3.3(b)), although it has fundamentally
different full-order dynamic behavior. This indicates the application-agnostic nature
of our model-free approach.

Finally, we used the unicycle model (3.16) to achieve safety on the quadruped:
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Example 3.8 (Quadruped Safety using a Unicycle Model). The safety requirements
for this system were described as:

h(q) = ∥(xobs − x, yobs − y)∥ − r − δ cos(ψ − θ), (3.19)

where θ = arctan((yobs − y)/(xobs − x)) is the angle towards the obstacle, r is the
combined radius of the robot and the obstacle, and δ ∈ R>0 is a tunable parameter.

We again use a CBF-QP framework to generate the safe velocities and set the desired
forward velocity and yaw rate µd = (vd, ωd) based on the distance dgoal = ∥(xgoal −
x, ygoal − y)∥ to the goal as vd = Kvdgoal and ωd = −Kω(sinψ − (ygoal − y)/dgoal).

The safe forward velocity and yaw rate were tracked by the same ID-QP walking
controller. Fig. 3.3(c) shows the quadruped traversing the obstacle course with
Kv = 0.08 s−1, Kω = 0.4 s−1, α = 0.2 s−1, δ = 0.5m and R = 0.5m. While safety
is maintained, the quadruped performs the task with different behavior than in
the previous experiment: it walks forward and turns instead of forward- and side-
stepping. Still, safety is provably guaranteed in a model-free fashion.

Conclusion
This section considered a model-free safety-critical control paradigm with wide ap-
plication to a variety of robots. Safety and CBF synthesis is achieved in Theorem 3.6
and deployed in the provided examples through the use of a hierarchical approach
that generates safe velocities and tracks them using a platform-specific tracking con-
troller. Here the exact CBF h is constructed implicitly using the safety requirement
h0 and a Lyapunov function guaranteeing the exponential velocity tracking of the
system. In the application of this method, the exact CBF h is not used directly and
serves only as an implicit, theoretical tool for guaranteeing safety. Instead, the safety
criteria is used to directly synthesize safe velocities in a model-free fashion.

While this method proves to be incredibly useful, it presents a conservative, implicit
method for safe-set synthesis as we rely indirectly on a tracking controller to attain
safety instead of directly modifying the low-level control actions. The following
two sections will explore how the proof method for Theorem 3.6 can instead be used
to generate explicit CBFs for the full-order system.

3.4 Synthesizing CBFs for Partially Feedback Linearizable Systems
This section considers methods for explicitly constructing CBFs when the system
exhibits a partially feedback linearizable structure. This generalizes the results of



37

Section 3.2 by extending from fully to partially feedback linearizable systems. It
also differs from the approach in Section 3.3 by directly leveraging the structure
of the output tracking dynamics to construct a closed-form CBF for the full-order
system.

We demonstrate how feedback linearization techniques [97] facilitate CBF synthesis,
with particular attention to applications in underactuated robotics. Unlike previous
work that either uses a Lyapunov function directly (as in Sections 3.2 and 3.3) or
treats the safety constraint as an output function [74], [76], we instead define outputs
based on the states relevant to safety, and then use output feedback linearization to
construct tracking controllers that guarantee invariance of the corresponding safe
set similar to [80]. Specifically, we show that if a system is input-output linearizable
with respect to a smooth output function, then under mild regularity conditions, any
smooth safety criteria (expressed as an inequality constraint) on the output can be
extended to be a valid CBF for the full-order system.

The contributions of this section are as follows:

• A constructive framework for synthesizing CBFs for high-dimensional and
underactuated systems, with explicit characterization of the required system
properties. In particular, we establish the existence of the smooth controller
required for the initial step in the CBF backstepping procedure.

• Numerical examples demonstrating the design of CBFs for a variety of under-
actuated robotic systems, including the first hardware demonstration of CBF
backstepping.

The text for this section was adapted from:

M. H. Cohen, R. K. Cosner, and A. D. Ames, “Constructive safety-
critical control: Synthesizing control barrier functions for partially feed-
back linearizable systems,” IEEE Control Systems Letters, pp. 2229–
2234, 2024. doi: 10.1109/LCSYS.2024.3412003,

A video for this section can be found at [98].

Contructing CBFs for Feedback Linearizable Systems
The objective of this section is to systematically construct CBFs using methods from
feedback linearization [97]. Central to our approach is the notion of relative degree:

https://doi.org/10.1109/LCSYS.2024.3412003
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Definition 3.9 (Relative Degree [97]). A smooth function yout : Rnx → Rny is said
to have relative degree5 r ∈ N with respect to (2.1) on an open set E ⊆ Rnx if for
all x ∈ E:

i) LgL
i
fyout(x) = 0, ∀i ∈ {0, . . . , r − 2}, (3.20)

ii) rank(LgL
r−1
f yout(x)) = ny. (3.21)

Given a smooth output yout : Rnx → Rny that has relative degree r ∈ N on E ⊆ Rnx ,
we can define:

η =




η1

...
ηr


 ≜




yout(x)
...

Lr−1
f yout(x)


 ∈ Rnyr, (3.22)

noting that the output dynamics are then given by:

η̇ =




η̇1

...
η̇r−1

η̇r



=




η2

...
Lr−1
f yout(x)

Lrfyout(x) + LgL
r−1
f yout(x)u



. (3.23)

The problem that we tackle in this section for this system with outputs of relative
degree r is:

Problem 3.10. Consider a safety requirement defined using a smooth function
ψ : Rny → R on the outputs yout as

C0 ≜ {x ∈ Rnx : ψ(yout(x)) = h0(x) ≥ 0}, (3.24)

where h0(x) is then defined as the composition of ψ(·) and yout(·). Since C0 is
not necessarily control invariant and h0 is not necessarily a CBF, our goal is to
construct a CBF h that defines a safe subset C ⊆ C0 so that enforcing forward
invariance of C leads to satisfaction of the safety requirement.

To accomplish this we first establish that, when the open-loop dynamics (2.1) are
partially feedback linearizable with respect to a yout then, under mild regularity
conditions, one may construct the desired CBF to solve Problem 3.10. The following
lemma outlines the regularity conditions that ψ must satisfy.

5A vector-valued output may have different relative degrees for each of its components. For
simplicity of notation, we focus on outputs whose components share the same relative degree
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Lemma 3.11. Let ψ : Rny → R be a smooth function defining a set Cy ⊂ Rny as:

Cy ≜ {yout ∈ Rny : ψ(yout) ≥ 0}. (3.25)

Let Dy ⊃ Cy be an open set and suppose that ψ satisfies the regularity condition:

∂ψ

∂yout
(yout) ̸= 0, ∀yout ∈ Dy \ Int(Cy). (3.26)

Then, for any smooth α ∈ Ke∞ there exists a smooth ky : Dy → Rny such that for
all yout ∈ Dy:

∂ψ

∂yout
(yout)ky(yout) > −α(ψ(yout)). (3.27)

The full proof of this Lemma can be found in [49, Lemma 1].

The conditions in Lemma 3.11 are equivalent to the statement that ψ is a CBF for a
single integrator ẏout = u, a very mild requirement similar to that required for the
model-free results of the previous section. Notably, unlike [76] this does not require
x 7→ ψ(yout(x)), i.e., h0(x)), to have a uniform relative degree on C0 , which would
be overly restrictive6. Instead, we require that the output yout have a relative degree,
which is less restrictive7. More intuitively, the outputs defining safety need to have
a relative degree, not the value of safety itself.

Next consider the output dynamics (3.23) which are in strict feedback form and
are thus amenable to backstepping-based designs. Following the backstepping
procedure in [80], we propose the CBF candidate:

h(x) ≜ψ(yout(x))−
r−1∑

i=1

1
2µi
∥Lifyout(x)− ki(ζi(x))∥2,

=ψ(η1)−
r−1∑

i=1

1
2µi
∥ηi+1 − ki(ζi)∥2,

(3.28)

where ψ defines Cy ⊂ Rny as in (3.25), µi ∈ R>0 for i ∈ {1, . . . , r − 1}, ζj ≜
(η1,η2, . . . ,ηj) ∈ Rnyj , ky : Dy → Rny is any smooth function satisfying (3.27)

6Indeed, the gradient of relevant safety constraints often vanish at points in Int(C) [78], [87],
[99].

7That is, yout(x) may have a relative degree even when ψ(yout(x)) does not. A simple example
illustrating this point is the double integrator with state x = (x1, x2) ∈ R2, output yout(x) = x1,
and constraint ψ(yout(x)) = 1−x21. This phenomenon is also present in the following examples and
may arise when Cy from (3.25) is a compact set (cf. [87, Footnote 4]).
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for all η1 ∈ Dy ⊃ Cy for a smooth globally Lipschitz α ∈ Ke∞, and:

k2(ζ2) ≜k̇1(ζ2) + µ1
∂ψ

∂η1

(η1)
⊤ − λ1

2
(η2 − k1(η1))

ki+1(ζi+1) ≜k̇i(ζi+1)− µi(ηi − ki−1(ζi−1))−
λi
2
(ηi+1 − ki(ζi)),

(3.29)

for each i ∈ {2, . . . , r − 2} and where λi > 0 for i ∈ {1, . . . , r − 2}. The CBF
candidate in (3.28) defines a set C as in (2.29), which satisfies C ⊂ C0. Before
proceeding, it will be useful to define Dx ≜ {x ∈ Rnx : yout(x) ∈ Dy}, where
Dy ⊂ Rny is defined as in Lemma 3.11. We now illustrate that when yout has a
relative degree on C and ψ satisfies (3.26), then (3.28) is a CBF for system (2.1).

Theorem 3.12. Consider the open-loop system (2.1) with smooth output yout :

Rnx → Rny , the output constraint ψ : Rny → R defining a constraint set C0 ⊂ Rnx

as in (3.24), and the CBF candidate h : Rnx → R from (3.28) defining a set C ⊂ C0
as in (2.29). If ψ satisfies (3.26) on a set Dy ⊃ Cy, with Cy ⊂ Rny as in (3.25),
yout has relative degree r on a set E ⊃ C satisfying E ⊆ Dx, and λi ≥ Lα for each
i ∈ {1, . . . , r−2}, whereLα is a Lipschitz constant ofα ∈ Ke∞ from (3.27), then h is
a CBF for (2.1) on C. Moreover, any locally Lipschitz controller k : E → Rnu that
renders C forward invariant for the closed-loop system (2.1) ensures that x(t) ∈ C0
for all t ∈ I(x0).

Proof. The proof follows a similar argument to that of [80, Thm. 5]. Since yout

has relative degree r on E , the matrix LgL
r−1
f yout(x) ∈ Rny×nu has rank ny and is

thus right pseudo-invertible for each x ∈ E . Now, note that since C ⊂ E ⊆ D and
η1 7→ ky(η1) satisfies (3.27) for all η1 ∈ Dy, x 7→ ky(yout(x)) satisfies (3.27) for
all x ∈ E ⊆ D, where ky exists since ψ satisfies the conditions of Lemma 3.11. It
then follows that since λi ≥ Lα for each i ∈ {1, . . . , r − 2}, each ki satisfies the
same conditions as those in the proof of [80, Thm. 5], which implies that the CBF
candidate h in (3.28) satisfies the same conditions as those in [80, Sec. IV]. Hence,
by following the same steps as in the proof of [80, Thm. 5], one may show that the
smooth feedback controller:

k(x) ≜ LgL
r−1
f yout(x)

†
[

k̇r−1(η(x))− Lrfyout(x) (3.30)

− µr−1

(
ηr−1(x)− kr−2(ζr−2(x))

)

− λr−1

2

(
ηr(x)− kr−1(ζr−1(x))

) ]
,
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where (·)† denotes the right psuedo-inverse and λr−1 ≥ Lα, satisfies ḣ(x,k(x)) >
−α(h(x)) for all x ∈ E , where α is from (3.27). Thus, for all x ∈ E , the CBF
inequality (2.33) holds:

sup
u∈Rnu

ḣ(x,u) ≥ ḣ(x,k(x)) > −α(h(x)),

therefore h is a CBF for (2.1) on C ⊂ E . Since C ⊂ C0 any locally Lipschitz
controller enforcing the forward invariance of C ensures that x(t) ∈ C0 for all
t ∈ I(x0) as well.

Theorem 3.12 highlights the interplay between the output yout, the output safety
criteria ψ, the system’s actuation capabilities, and the ability to construct CBFs. By
ensuring that yout has a relative degree on E ⊃ C, (2.1) may be partially transformed
into a strict feedback system (3.23) on E , enabling the application of backstepping
[80] to construct a CBF. Theorem 3.12 characterizes the requirements on ψ, C0,
and yout for such techniques to be applicable to general control affine systems (2.1),
complimenting the ideas introduced in [80]. Theorem 3.12 is, to our knowledge,
the first to make the explicit connection between more general outputs and the
constructions of CBFs. This connection has important practical implications as
it enables the application of such ideas to a broader class of systems than those
originally considered in [80]. Moreover, by not treating ψ as an output directly this
construction overcomes the restrictive uniform relative degree requirements on ψ
present in most high relative degree CBF techniques.

Constructing CBFs for Underactuated Robotic Systems
Next we apply this feedback-linearization-based method for CBF synthesis to under-
actuated robotic systems with the structured Euler-Lagrange rigid body dynamics
as introduced in (3.5) and (3.6).

First, consider a twice continuously differentiable output yout : Q → Rny , which is
used to define an output constraint ψ : Rny → R and safety criteria set:

C0 ≜ {q ∈ Q : ψ(yout(q)) ≥ 0}, (3.31)

defined in the configuration space Q of (3.5). Differentiating the output yout twice
leads to ÿout = L2

fyout(q, q̇) +
∂yout
∂q

(q)D(q)−1B(q)u. Importantly, we see that the
ny × nu “decoupling” matrix:

A(q) ≜ LgLfyout(q) =
∂yout

∂q
(q)D(q)−1B(q), (3.32)
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depends only on the configuration q, implying that the relative degree depends only
on the configuration. When yout has relative degree 2, as is often the case for robotic
systems, the CBF candidate from (3.28) simplifies to:

h(x) = ψ(yout(q))−
1

2µ

∥∥∥∥
∂yout

∂q
(q)q̇− kψ(yout(q))

∥∥∥∥
2

, (3.33)

where µ > 0 and kψ : Dy → Rny is any continuously differentiable function
satisfying (3.27) for all yout(q) ∈ Dy ⊃ Cy. The following corollary illustrates that
(3.33) is a CBF for (3.6) provided ψ satisfies (3.26) and (3.32) has full row rank on
a set containing C.

Corollary 3.13. Consider the robotic system (3.6) with twice continuously differ-
entiable output yout : Q → Rny , the configuration safety criteria ψ : Rny → R
defining a set C0 ⊂ Q as in (3.31), and the CBF candidate h : Rnx → R as in
(3.33) defining a set C ⊂ C0 × Rnx as in (2.29). Provided that ψ satisfies (3.26) on
a set Dy ⊃ Cy, with Cy ⊂ Rny as in (3.25), rank(A(q)) = ny for all q ∈ E1 ⊃ C0
with E ≜ E1×Rnx ⊆ D, then h is a CBF for (3.6). Moreover, any locally Lipschitz
controller k : E → Rnu that renders C forward invariant for the closed-loop system
(2.2) ensures that q(t) ∈ C0 for all t ∈ I(x0) when h(x0) ≥ 0.

Proof. As rank(A(q)) = ny for all q ∈ E1, yout has relative degree 2 on E and since
C ⊂ C0 × Rnx and C0 ⊂ E1, we have C ⊂ E . Finally, since E ⊆ D the conditions of
Theorem 3.12 hold, implying that h as in (3.33) is a CBF for (3.6) on C.

Finally, we demonstrate our method on a real-world quadrotor robot that, to the best
of our knowledge, constitutes the first hardware demonstration of CBF backstepping
techniques.

Example 3.14 (Quadrotor Hardware Experiments). The quadrotor hardware plat-
form is described in [59] and is modeled as a control affine system (2.1) with state
x = (p, q,v) ∈ R3×S3×R3 representing the position p, orientation q (represented
as a quaternion), and velocity v, and control input u = (ω, τ) ∈ R3 × R, where
ω is the angular rate and τ is the thrust. A full expression of the dynamics can
be found in [59]. Our control objective is to keep the quadrotor’s height above
zmin, where p = (x, y, z) and z denotes the quadrotor’s height. To this end, we
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Figure 3.4. Experimental results for Example 3.14 illustrating the evolution of the quadrotor’s height
(blue) and CBF (red).

choose our output8 as yout(x) = (z, qx, qy), where qx and qy are components of
the quaternion such that q = qw + qxi + qyj + qzk. Given this output, we define
ψ(yout(x)) = z − zmin − λ(2q2x + 2q2y) where λ > 0. This constraint ensures that
ψ(yout(x)) ≥ 0 =⇒ z ≥ zmin and requires the quadrotor’s orientation to remain
level when z = zmin. Leveraging the constructions in Theorem 3.12, this leads to
the CBF candidate:

h(x) = ψ(yout(x))− 1
2
∥Lfyout(x)− k1(yout(x))∥2,

where ky : R3 → R3 is defined using Sontag’s “universal” controller [12] (see
[49] for additional details). This CBF is used to construct a safety filter as in (2.36),
where kdes corresponds to commands given via joystick that lift the quadrotor up
before lowering it to the ground. Applying this safety filter to the system produces
the results in Fig. 3.4, where z remains above zmin and h remains positive for all
time.

A video of these experiments can be found in [98].

Conclusion
This section proposed a method for CBF construction that generalizes the feedback-
linearization and Lyapunov-based methods of Section 3.2 by considering partial
feedback linearizability, system outputs, and relative degree, resulting in a construc-
tive method where we build a CBF (3.33) using the safety requirement alongside

8For the model described in [59], the first component of yout has relative degree two whereas
the second and third have relative degree one. Theorem 3.12 can be modified to account for such
a situation at the expense of additional notation by transforming the output dynamics into a mixed
relative degree cascaded system or a dual relative degree system as will be discussed in Section 3.5.,
but a formal presentation of such results is omitted here in the interest of space.
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a negative definite function that characterizes stability, similar to the methods in
Section 3.2 and 3.3. However, the results of this section differ substantially in that
they incorporate the safety criteria directly and provide an explicit construction of
the full-order CBF which can be directly used to modify the low-level control input.

3.5 Synthesizing CBFs for Dual Relative Degree Systems
In many robotics applications, safety is specified with respect to position outputs
in Euclidean space [48], [84]. Yet, these outputs often fail to capture the full state
dependencies relevant to safety, particularly in systems with orientation-dependent
dynamics. For example, in the example in the previous section (Ex. 3.14), the safety
requirement set C0 must be carefully constructed to account for system orientation.
This limitation is common when safety constraints are expressed in terms of po-
sitional outputs, but the underlying system requires coordination between position
and orientation for safe execution.

To address this issue, this section introduces a new method for synthesizing CBFs for
a special but highly relevant class of systems that exhibit dual relative degree—that
is, systems in which different components of the input affect the output at different
orders of differentiation. This structure appears in many underactuated robotic
systems, including unicycles and quadrotors. We extend the explicit CBF synthesis
approach from the previous section to this class of systems by leveraging tracking
controllers similar to those used for differentially flat systems. These controllers
provide certificates of the system’s ability to stabilize its orientation, playing a role
analogous to the velocity-tracking guarantees used in Section 3.3.

The contributions of this section are as follows:

• A definition of the dual relative degree property.

• A constructive framework for synthesizing CBFs for these systems.

• In-depth case studies demonstrating the utility of this CBF synthesis method,
including hardware demonstrations on quadrupeds and quadrotors.

The text for this section is adapted from:

G. Bahati, R. K. Cosner, M. H. Cohen, R. M. Bena, and A. D.
Ames, “Control barrier function synthesis for nonlinear systems with
dual relative degree,” submitted to the 2025 IEEE 64th Conference



45

on Decision and Control (CDC), 2025. [Online]. Available: https:
//arxiv.org/pdf/2504.00397,

A video for this section can be found at [100].

Dual Relative Degree Systems
This section will leverage the same relative degree properties (Def. 3.9) and output
dynamics (3.23) as in Section 3.4. However, we now consider systems that do not
have a valid relative degree and instead satisfy a dual relative degree property that
captures the situation in which inputs can influence the outputs at two different
orders of differentiation.

Before defining dual relative degree we note that, given an output yout : Rnx → Rny

with relative degree r as in Definition 3.9, the output dynamics can be written as:

d

∆t

η(x) =

[
0 Iny(r−1)

0 0

]

︸ ︷︷ ︸
A

η(x)+

[
0

Iny

]

︸ ︷︷ ︸
B

v (3.34)

v ≜ Lrfyout(x) + LgL
r−1
f yout(x)u, (3.35)

where (3.35) is viewed as an input to (3.34). Withv as the input, the output dynamics
in (3.34) are a chain of integrators and techniques such as [101] may be employed
to construct CBFs. Importantly, when yout has relative degree r, any controller
v = k̂(η) designed for (3.34) may be transferred back to (2.1) via:

u = LgL
r−1
f yout(x)

†
[
k̂(η(x))− Lrfyout(x)

]
, (3.36)

where the right psuedo-inverseLgL
r−1
f yout(x)

† exists given (3.21). When the output
coordinates η are physically relevant to the original safety specification for the open-
loop system (2.1), the method in Section 3.4 can be employed to synthesize CBFs for
this system. In general, however, the outputs relevant to the safety specification for
(2.1) may not have a valid relative degree, precluding the ability to directly transfer
inputs from the output integrator system (3.34) back to the nonlinear system (2.1)
via the controller transformation (3.36). This motivates our analysis of dual relative
degree systems that provides a framework for relating inputs of the output integrator
system (3.34) to those of the nonlinear system (2.1) under weaker conditions than
relative degree (Def. 3.9) and which allows us to synthesize of CBFs for practically
relevant systems.

https://arxiv.org/pdf/2504.00397
https://arxiv.org/pdf/2504.00397
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To facilitate our approach, we assume that the open-loop system dynamics (2.1) has
multiple control inputs, i.e., nu ≥ 2, and thus may be written as:

ẋ = f(x) + g1(x)u1 + g2(x)u2︸ ︷︷ ︸
g(x)u

, (3.37)

where u1 ∈ Rnu2 , u2 ∈ Rnu2 such that nu = nu1 + nu2 with u = (u1,u2),
while g1 : Rnx → Rnx×nu1 and g2 : Rnx → Rnx×nu2 decompose g as g(x) =[
g1(x) g2(x)

]
. Given these dynamics and an output yout : Rnx → Rny for (3.37),

the inputs affect these outputs via:

LgL
i
fyout(x)︸ ︷︷ ︸
ny×nu

=
[
Lg1L

i
fyout(x)︸ ︷︷ ︸

p×nu1

Lg2L
i
fyout(x)︸ ︷︷ ︸

p×nu2

]
. (3.38)

Rather than requiring yout to have a relative degree, we will require it to have a dual
relative degree, defined as follows:

Definition 3.15. (Dual Relative Degree) A multi-input system (3.37) with smooth
output yout : Rnx → Rny is said to have dual relative degree (r, q) ∈ N × N if
(3.20) holds and for all x ∈ Rnx:

Lg2L
r−1
f yout(x) = 0, (3.39)

rank(Lg1L
r−1
f yout(x)) = nu1, (3.40)

rank(Lg2L
q−1
f Lg1L

r−1
f yout(x)) = nu2. (3.41)

Dual relative degree systems characterize those whose inputs influence the output
at two different levels of differentiation9, and capture systems such as unicycles and
quadrotors.

When yout has relative degree r, the controller (3.36) can be used to apply the
controller k̂ : Rnyr → Rny to the linearized output dynamics. However, when yout

does not have a relative degree, there does not exist a one-to-one correspondence
between inputs of (3.36) and (3.37). Despite this, if (3.37) has a dual relative
degree, then given the desired controller k̂ : Rnyr → Rny for the linearized output
dynamics, we can find the input u1 which actuates the outputs in the manner closest
to that of k̂ via least-squares minimization:

k1(x) := argmin
u1∈Rnu1

∥∥∥Lrfyout(x) + Lg1L
r−1
f yout(x)u1 − k̂(η(x))

∥∥∥
2

=Lg1L
r−1
f yout(x)

†
[
k̂(η(x))− Lrfyout(x)

]
, (3.42)

9While we will not explicitly leverage (3.41), it is often implicit in our other assumptions (e.g.,
on the existence of a tracking control Lyapunov function in Def. 3.16) and is thus included to better
characterize the systems to which our approach applies.



47

where Lg1L
r−1
f yout(x)

† is the left pseudo-inverse, which exists under the rank as-
sumption (3.40) from Def. 3.15. Taking u1 = k1(x) produces the partial closed-
loop system dynamics:

ẋ = f(x) + g1(x)k1(x) + g2(x)u2 =: f1(x) + g2(x)u2. (3.43)

Although k1(x) produces inputs closest to k̂(η(x)), it may not be able to completely
eliminate the error between the output actuation v in (3.35) and the desired linear
actuation k̂(η(x)). We write this error explicitly as:

e(x) := Lrfyout(x) + Lg1L
r−1
f yout(x)k1(x)− k̂(η(x)), (3.44)

=
(
Lg1L

r−1
f yout(x)Lg1L

r−1
f yout(x)

† − I
)
(k̂(η(x))− Lrfyout(x))

which we will compensate for using Lyapunov-based techniques.

Definition 3.16 (Tracking Control Lyapunov Function). A continuously differen-
tiable function V : Rnx → R≥0 is a tracking control Lyapunov function (CLF) for
a control affine system (2.1) with respect to error function e : Rnx → Rnu1 if there
exists β, λ > 0 such that for all x ∈ Rnx:

V (x) ≥β∥e(x)∥2 and (3.45)

inf
u∈Rnu

LfV (x)+LgV (x)u ≤ −λV (x). (3.46)

We will use this notion of a tracking CLF to ensure convergence of our error e(x)
to zero for the partial closed-loop system (3.43).

CBF Synthesis for Dual Relative Degree Systems
We now demonstrate how we can synthesize safety-critical controllers for dual
relative degree systems. For this, we consider a dual relative degree system of the
form (3.37) with an output yout : Rnx → Rny and output dynamics (3.34,3.35). We
then consider a desired safe set on the output coordinates η:

C0 := {x ∈ Rnx |h0(x) = hη(η(x)) ≥ 0}, (3.47)

and suppose that hη : Rnyr → R is a CBF for the linear system (3.34) with v

viewed as a “virtual" input, similar to the ψ function of previous section and Lemma
3.11. We further assume the existence of a smooth10 controller k̂ : Rnyr → Rny

10As discussed in [87], the existence of CBF (or ISSf-CBF) satisfying (2.33) with a strict
inequality actually guarantees the existence of a controller, as smooth as the dynamics and CBF,
satisfying the corresponding barrier condition. Thus, if hη is a CBF for (3.34), we may, without
loss of generality, construct a smooth feedback controller k̂ satisfying (3.48), with examples of such
controllers available in [87].
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enforcing the ISSf-CBF condition [79]:

∂hη
∂η

(η)
[
Aη +Bk̂(η)

]
> −γhη(η) +

1

ϵ

∥∥∥∥
∂hη
∂η

(η)B

∥∥∥∥
2

, (3.48)

for all η ∈ Rnyr for some γ, ϵ > 0. While hη is a CBF for (3.34) with relative degree
r, it is not necessarily a CBF for (3.37) with dual relative degree (r, q), and it may
be impossible to apply k̂ to (3.37) directly.

In a method similar to the hierarchical approach of Section 3.3, we synthesize a
CBF for the system with dual relative degree (3.37) by augmenting hη with a scaled
tracking CLF, −1

µ
V (x) for some µ > 0, to account for the error e(x) between k1

and k̂. We formally define this construction as:

Definition 3.17 (Dual Relative Degree CBF (DRD-CBF)). Consider system (3.37)
with dual relative degree (r, q). If hη : Rnx → R is a CBF for the linear system
(3.34) with degree r, k̂ : Rnx → Rny is a continuously differentiable function
satisfying (3.48) for some γ, ϵ > 0, and V : Rnx → R≥0 is a tracking control
Lyapunov function for (3.43) with respect to error function (3.44) for some β, λ > 0,
then the function:

h(x) := hη(η(x))−
1

µ
V (x) (3.49)

with µ > 0 such that λ ≥ γ +
ϵµ

4β
, (3.50)

is a dual relative degree CBF (DRD-CBF) for (3.37).

The condition in (3.50) dictates the relationship between the convergence rate λ of
the tracking CLF, the safety of hη (determined by k̂) via γ and the ISSf constant
ϵ, and the scaling parameters µ and β. Intuitively, the condition (3.50) can be
satisfied by increasing the error tracking speed of V by increasing λ, increasing the
conservatism of k̂ by decreasing γ and ϵ, or by balancing the scaling of hη and V
via µ or balancing the scaling V and e via β.

Next, in Theorem 3.18, we prove that all DRD-CBFs are valid CBFs for system
(3.37) by showing that the existence of control actions derived from k̂ and the
tracking CLF certifies that (3.49) satisfies the CBF constraint (2.33). Thus, we show
that DRD-CBFs are a special class of CBFs for dual relative degree systems that can
be directly synthesized using a CBF, hη, for a linear integrator system (3.34) and a
tracking CLF, V .
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Theorem 3.18. Consider a system of the form (3.37) with dual relative degree
(r, q). If h : Rnx → R is a DRD-CBF for (3.37) as in (3.49), then it is also a
CBF and any locally Lipschitz continuous controller satisfying (2.33) for h renders
C = {x ∈ Rnx | h(x) ≥ 0} ⊂ C0 safe.

Proof. Computing the time-derivative of hη and bounding (omitting dependencies
on x for brevity) we obtain:

ḣη =
∂hη
∂η

(η) [Aη +Bv] =
∂hη
∂η

(η)
[
Aη +Bk̂(η)

]
+
∂hη
∂η

(η)B
[
v − k̂(η)

]
,

(3.51)

>− γhη(η) +
1

ϵ

∥∥∥∥
∂hη
∂η

(η)B

∥∥∥∥
2

−
∥∥∥∥
∂hη
∂η

(η)B

∥∥∥∥
∥∥∥v − k̂(η)

∥∥∥ , (3.52)

≥− γhη(η)−
ϵ

4

∥∥∥v − k̂(η)
∥∥∥
2

, (3.53)

=− γhη(η)−
ϵ

4

∥∥∥Lrfyout + Lg1L
r−1
f k1 − k̂(η)

∥∥∥
2

, (3.54)

≥− γhη(η)−
ϵ

4β
V = −γh−

(
γ

µ
+

ϵ

4β

)
V. (3.55)

In the above expression, (3.51) follows directly from the linear output dynamics
(3.34) and then by adding zero. Next, (3.52) is obtained by using the assumption
that k̂ enforces the ISSf-CBF inequality (3.48) for (3.34) and then by applying the
Cauchy-Schwartz inequality11. We then complete the square to achieve (3.53), and
then use the definition of v in (3.35) to rewrite (3.53) as (3.54). Next, we select k1

provided in (3.42) and use (3.45) to bound (3.54) using V . Finally, we use (3.49) to
express hη in terms of h and V to yield (3.55).

Since V is a tracking CLF for (3.43), for each x ∈ Rnx there exists a u2 ∈ Rnu2 s.t.:

Lf1V (x) + Lg2V (x)u2 ≤ −λV (x). (3.56)

Now, computing the time derivative of hwith u1 = k1(x) from (3.42) and bounding
at each x ∈ Rnx using the above expression, we obtain:

ḣ = ḣ0 −
1

µ
V̇ = ḣ0 −

1

µ

∂V

∂x
[f + g1k1 + g2u2] (3.57)

= ḣ0 −
1

µ

∂V

∂x
[f1 + g2u2] ,≥ ḣ0 +

λ

µ
V > −γh+

1

µ

(
λ− γ − ϵµ

4β

)
V ≥ −γh,

(3.58)

11Given |a⊤b| ≤ ∥a∥∥b∥ for all a,b ∈ Rnx , ∥ · ∥ :− ∥ · ∥2. Setting b=−c gives −a⊤c ≤
|− a⊤c|≤∥a∥∥−c∥=∥a∥∥c∥=⇒ a⊤c ≥ −∥a∥∥c∥.
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where we used the partial closed-loop dynamics (3.43) to rewrite ḣ in (3.57).
We then select u2 that satisfies (3.56) and substitute the bound obtained in (3.55)
for ḣη to obtain the first two bounds in (3.58). Finally, applying the inequality
(3.50) for λ yields the last bound in (3.58). Given that this choice of u guarantees
ḣ(x,u) > −γ(h(x)) for all x ∈ Rnx , h is a valid CBF12 for (3.37). Furthermore,
since h is a CBF for (3.37), any Lipschitz continuous controller that satisfies (2.33)
renders C safe [18, Cor. 2], and since V (x) ≥ 0, the safe set C is contained in the
desired safe set C0, C ⊂ C0, so trajectories that are safe with respect to C also remain
in the desired safe set C0.

The preceding result requires the existence of a global CLF. Due to various factors
(e.g., topological obstructions to continuous stabilization [102, Ch. 4]), such a CLF
may not exist for a given system of interest (e.g., that with states evolving on a
differentiable manifold), and (3.46) may only hold on a set D ⊂ Rnx . While global
stabilization in such a situation may not be possible, enforcing safety is still possible,
as demonstrated in the following result:

Corollary 3.19. (Global Safety) Let the conditions of Theorem 3.18 hold, but sup-
pose that (3.46) only holds on a set D ⊂ Rnx . Define E := Rnx \ D. Provided that
for all x ∈ E:
{
Lg1hη(η(x)) =

1

µ
Lg1V (x)

}
=⇒

{
Lfhη(η(x))−

1

µ
LfV (x) ≥ −γh(x)

}
,

(3.59)

then h is a CBF for (3.37).

Please see [50, Cor. 1] for the proof which mirrors the implication in (2.35).

Given h in (3.49), Theorem 3.18 and the above Corollary allow for synthesizing
an optimization-based controller as in (2.36) for any given γ ∈ R>0 and nominal
controller knom.

Hardware Demonstrations
Next we provide hardware examples of the CBF construction methods and theoretical
safety guarantees for dual relative degree systems.

We begin by considering the unicycle system with drift:
12Implicit in the fact that h satisfies (2.33) with a strict inequality is that ∂h

∂x (x) ̸= 0 for all
x ∈ ∂C, a regularity condition needed to apply standard CBF results regarding forward invariance
[18].
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Example 3.20 (Quadruped on a Treadmill Demonstration). Consider a system with
unicycle dynamics and an additional drift term:

d

∆t



x

y

θ


 =



dx

dy

0




︸ ︷︷ ︸
f(x)

+



cos(θ)

sin(θ)

0




︸ ︷︷ ︸
g1(x)

v +



0

0

1




︸︷︷︸
g2(x)

ω, (3.60)

where the state x = (x, y, θ) ∈ R2 × S1 defines the planar position and heading
angle. The control input u = (u1,u2) = (v, ω) ∈ R2 represents the linear and
angular input velocities. The values dx, dy ∈ R represent constant drift, motivated
by the unicycle operating on a treadmill (e.g., Fig. 3.5). Our control objective is
to constrain the position of the unicycle. Thus, we take our outputs as yout(x) =

(x, y) ∈ R2, which do not have a valid relative degree in the sense of Def. 3.9.
However, the unicycle with this choice of outputs has dual relative degree (r, q) =

(1, 1) as one may verify that Lg1yout(x) = [cos(θ) sin(θ)]⊤ and Lg2Lg1yout(x) =

[− sin(θ) cos(θ)]⊤, which both have rank 1.

We consider a safety requirement that ensures the unicycle remains within an ellipse
centered at yc

out = [xc, yc]
⊤ ∈ R2:

hη(η(x)) = 1− (yout(x)− yc
out)

⊤P (yout(x)− yc
out), (3.61)

where P = diag(p1, p2) ∈ R2×2 is a diagonal matrix and p1, p2 ∈ R>0 are the
weights corresponding to the lengths of the major and minor axes of the ellipse.
The output coordinates η(x) = yout(x) yield a single-integrator system of the form
(3.34). We design a differentiable controller k̂ := [k̂x, k̂y]

⊤ : R2 → R2 satisfying
(3.48) for the single integrator using the methods in [79]. We then leverage the
single integrator controller k̂ to generate a safe linear velocity v = k1(x) as in
(3.42) for the unicycle.

Next we let k̃(x) := k̂(η)− Lfyout = [k̂x(η)− dx, k̂y(η)− dy]⊤ and consider the
tracking CLF:

V (x) =
∥k̃(x)∥2

2
tr
(
I2×2 −R(θdes(x))

⊤R(θ)
)
, (3.62)

where for ∥k̃(x)∥ ̸= 0, the direction of the vector k̃(x) provides the desired safe
heading angle (i.e., safe yaw) as θdes(x) = atan2(k̂y(η(x))− dy, k̂x(η(x))− dx),
while if ∥k̃(x)∥ = 0, then V (x) = 0, making θdes(x) a free parameter that may be
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Figure 3.5. Quadruped on a treadmill demonstration. (top left) The quadrupedal robot (top right)
The yaw, θ, of the quadruped in blue and the desired yaw, θdes, from the desired safe controller
for the linear system k̂(η) in orange. (bottom left) (x, y) trajectories of the robot in blue with the
drift velocity shown using green arrows and the boundary of C0 (3.47) shown as a black dotted line.
Notably, the trajectories stay in this set and satisfy our safety criterion as desired. (bottom right)
Our DRD-CBF h in blue and the safety requirement h0 in orange. Notably, h0 remains above zero.
The robot is initialized with an unsafe yaw θ, causing h to be initially negative (i.e., outside the safe
set C (2.29)). We demonstrate that the geometric tracking CLF (3.62) incorporated in h leads to the
convergence of θ to a safe yaw θdes yielding a positive h, enforcing attraction to C. The video of this
experiment can be found at [100].

assigned arbitrarily. The term R ∈ SO(2) is a 2D rotation matrix, so (3.62) can
be rewritten as:

V (x) = ∥k̃(x)∥2(1− cos(θ − θdes(x))), (3.63)

which satisfies (3.45) as shown in the appendix of [50].

We now consider the DRD-CBF as in (3.49), which we show is a CBF for (3.60).
We first find that Lg2V (x) = 0 =⇒ θ ∈ {θdes(x), θdes(x) + π}. Let µ = 0.06 and
k̂(η(x)) = −ρP 1

2yout(x) with ρ = 0.16, then Lg1h(x) ̸= 0 when θ − θdes(x) = π

for all x ∈ C0 defined in (3.47). Thus, Collorary 3.19 applies. Note that this does
not imply global stability of θ on S1 with a continuous controller, but that there
exists inputs for each x ∈ C0 satisfying the CBF condition (2.33), ensuring safety
but not necessarily stability of θ = θdes(x).
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Finally, we demonstrate the effectiveness of our proposed CBF (3.49) in ensuring
safety for system (3.60) in simulation and hardware. Using the safety specification
(3.61), we synthesize a safe controller as in (2.36) with the h defined in (3.49) for
(3.60) with drift terms dx = 0.35m/s and dy = 0. For the hardware demonstration,
we apply this controller to a Unitree GO2 quadruped for which the unicycle may
serve as a ROM13. On hardware, the drift is applied by placing the quadruped on a
treadmill moving at a constant velocity of 0.35m/s. The simulated and real-world
trajectories can be seen ensuring safety in Fig. 3.5 with a nominal controller of
zero linear and angular velocity.

Next, we deploy our method on a quadrotor drone.

Example 3.21 (Hardware Quadrotor Demonstration). We use an OptiTrack motion
capture system to provide the drone with real-time position measurements and a
VectorNav VN-200 IMU for attitude state estimation. All state estimation and
control computations are performed onboard at 750 Hz using a Jetson Orin NX.
The drone model used is a simplified version of the dynamics in [94] with thrust
and desired angle rate inputs as in [59]. The desired angle rates are tracked by a
Betaflight flight controller and ESC at 8 kHz.

To demonstrate the performance of our DRD-CBF (3.49), we command the quadro-
tor to track a sinusoidal reference yd

out(t) = [− sin (0.4πt), 0.0, 1.0]⊤ in Eu-
clidean space. We then define an x-coordinate geofence as the 0-superlevel set of
hgeo(η(x)) = xgeo−x,where xgeo ∈ R is the x-position of the geofence [22]. For this
particular experiment xgeo = 0.2 m. Using a high order CBF [75], [76], we extend
hgeo to get hη, a CBF for the quadrotor double-integrator translational dynamics.
By enforcing forward invariance of the safe-set defined by hη(η(x))≥0, we ensure
the x-coordinate of the quadrotor never exceeds the value of xgeo, irrespective of the
commanded reference. Select data are presented in Fig. 3.6 utilizing the DRD-CBF
(3.49) with the tracking CLF (3.62) for 3D orientation in SO(3).

From Fig. 3.6a and Fig. 3.6b, it is clear that the quadrotor drone effectively tracks
the sinusoidal reference as long as it stays inside the safe set. However, once the
commanded position crosses the geofence, the safety filter intercedes, preventing the
drone from violating its safety specification.

13The velocity commands generated by our controller are then tracked by Unitree’s onboard
velocity tracking controller. In general, such an approach will lead to ISSf of the closed-loop system
as analyzed in [48].
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Figure 3.6. 3D quadrotor demonstration. (top) A composite image showing the position of the
quadrotor drone over the course of the geofencing experiment. (bottom left) Thex-position reference,
which passes beyond the geofence, and the actual x-position, which deviates from the reference to
maintain safety. (bottom right) The value of the DRD-CBF (3.49), which stays positive throughout
the flight, confirming that safety is maintained. The video of this experiment can be found at [100].

Please see [50, Sec. IV and V] for an additional demonstrations on a quadruped
without drift and on a simulated planar quadrotor.

Conclusion
This section presents a constructive framework for explicitly synthesizing CBFs and
safety-critical controllers for nonlinear systems where output are used to specify
safety requirements for dual relative degree systems, a generalization beyond the
partially feedback linearizable systems of Section 3.4.

As in all the methods presented throughout this chapter, we see that this involves
a safety requirement that defines a set that is potentially not control invariant (e.g.,
C0) that is then extended to a valid control invariant set using the structure of the
system and a tracking assumption to ensure convergence to safe trajectories of the
simplified system.
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3.6 Safe-Set Synthesis using Back-up Controllers
The prior methods in this chapter have generally synthesized CBFs by shrinking
the safety requirement set C0 according to some metric of the system’s ability to
track safe trajectories, thus producing a CBF h and a control invariant set C ⊂ C0.
This final section takes a drastically different approach where, instead of shrinking
the safety requirement set C0, we assume the existence of a smaller back-up set
CB ⊂ C0 and expand it to some implicit set CI using a known backup controller and
model-based prediction over a finite horizon.

This approach expands a known invariant set in a similar way to model predictive
control [5], but does so using a fixed controller (instead of optimizing control
actions), allowing to to be calculated at very high frequencies [52], [103]. This
method also significantly differs from the previous methods in that it allows for the
inclusion of input constraints in the synthesis of the safe set. On the other hand, it
generally more computationally taxing and only produces an implicit understanding
of the safe set CI and does not directly produce a CBF for this set.

This section does not contain a novel contribution, but instead re-introduces a result
from [103] and provides necessary background for Section 4.2.

The text for this section is adapted from:

R. K. Cosner, A. W. Singletary, A. J. Taylor, T. G. Molnar, K. L.
Bouman, and A. D. Ames, “Measurement-robust control barrier func-
tions: certainty in safety with uncertainty in state,” 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2021. doi: 10.1109/IROS51168.2021.9636584,

Implicit control invariant Sets
Here we consider the desired safety requirement set C0 ⊂ Rnx defined as the 0-
superlevel set of the continuously differentiable function h0 : Rnx → R as in
(2.28) which is not necessarily control invariant. We then assume that there exists
a set CB ⊂ C0, defined as the 0-superlevel set of a continuously differentiable
function hB : Rnx → R, which is known a priori to be control invariant14 and
can be rendered forward invariant by a known locally Lipschitz continuous backup

14For CB , if the backup controllers are simple (such as linear state freedback controllers designed
for the linearization of a system) it is possible to find analytical expressions of regions of attraction
which can serve as this backup set CB . Alternatively, numerical tools such as Sums-of-Squares
(SOS) may be used to synthesize control invariant sets [104].

https://doi.org/10.1109/IROS51168.2021.9636584
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controller kB : Rnx → Rnu . The goal of this method is to expand the backup set
CB to find a larger control invariant subset of C0.

We extend the backup set CB to the larger implicit control invariant set CI ⊂ Rnx ,
satisfying CB ⊆ CI ⊆ C, by considering the backup trajectory over a finite and fixed
time horizon T ∈ R>0 as follows. We first assume that, for any x ∈ Rnx , there
exists a unique solution φ : [0, T ]→ Rnx satisfying:

d

dτ
φ(τ) = f(φ(τ)) + g(φ(τ))kB(φ(τ)), φ(0) = x. (3.64)

The solution φ is the predicted evolution of the system over the interval [0, T ]
from a state, x, under the backup controller kB . We denote this prediction as
ϕkb
τ (x) ≜ φ(τ) which predicts the flow of the trajectory forward τ seconds from

the current state, x, under the backup controller kB.

Using this notation, we define the set CI ⊆ C0 as:

CI ≜





h0(ϕ
kB
τ (x)) ≥ 0,∀τ ∈ [0, T ]

x ∈ C0 and
hB(ϕ

kB
T (x)) ≥ 0




. (3.65)

Figure 3.7. A visualization of the sets CB ⊆ CI ⊆
C0 in (3.65).

The first inequality implies that the sys-
tem would remain in C0 for T seconds if
it followed the backup controller from
its current position (i.e., ϕkB

τ (x) ∈ C0
for all τ ∈ [0, T ]), and the second in-
equality implies that the system would
reach the control-invariant set CB by
time T if it followed the backup con-
troller (ϕkB

T (x) ∈ CB). Thus, this safe-
set synthesis method also relies on a
convergence assumption, in this case of,
the backup set CB. Notably, once the system reaches CB, the backup controller would
render that set safe by assumption. The set CI is thus control invariant as there exists
at least one controller, kB, which renders it forward invariant. Furthermore, CI is
control invariant even in the presence of input bounds as long as kB is constrained
to satisfy those input bounds and still renders CB forward invariant. A visualization
of these set can be found in Fig. 3.7.
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Thus, although we may not be able to render the desired safe set C0 safe, we can
render its subset CI safe, and every trajectory that is safe with respect to CI also
remains in C0. While CI is not necessarily the largest control invariant subset of C
(i.e., it may not be the viability kernel, [7]), this method provides a computationally
tractable method for finding an implicit definition of a control invariant set.

Using Implicit Safe Sets for Safety-Critical Control
Next, for notational simplicity, we define the continuously differentiable functions
hτ : Rnx → R and hB : Rnx → R as:

hτ (x) ≜ h0(ϕ
kB
τ (x)), hB(x) ≜ hB(ϕ

kB
T (x)). (3.66)

Given these definitions, the necessary CBF inequalities (2.33) can then be specified
for the set CI at a point x ∈ CI as:

Lfhτ (x) + Lghτ (x)u ≥ −α(hτ (x)), ∀τ ∈ [0, T ],

LfhB(x) + LghB(x)u ≥ −α(hB(x)).
(3.67)

Any locally Lipschitz continuous controller that takes values satisfying (3.67) for
all x ∈ CI will keep the system (2.2) safe with respect to CI ; see [26, p. 6].

We note that enforcing the first inequality in (3.67) requires that we enforce an
infinite number of constraints since it must hold for all τ ∈ [0, T ]. To resolve
this, we reduce these infinite constraints to a finite collection of more conservative
constraints through constraint tightening (see [103, Thm. 1]). A controller renders
CI safe using a finite number of tightened constraints is given by the Backup Set
Quadratic Program (BS-QP), similar to the CBF-QP safety filter 2.36:

k(x) = argmin
u∈Rnu

1

2
∥u− kdes(x)∥22 (BS-QP)

s.t. Lfhτj(x) + Lghτj(x)u ≥ −α(hτj(x)− µ), ∀τj ∈ {0,∆t, . . . , T}
LfhB(x) + LghB(x)u ≥ −α(hB(x)),

where ∆t ∈ R>0 is a time-step such that T/∆t ∈ N and µ ∈ R>0, which is used to
overcome the time-discretization, satisfies:

µ ≥ ∆t

2
Lh0 sup

x∈C0
∥f(x) + g(x)kB(x)∥2, (3.68)

where Lh0 ∈ R>0 a Lipschitz constant for h0 on C0 and this bound captures the
worst-case effect of the intersample dynamics on safety under a sampled-data im-
plementation of the backup controller.
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Thus, this method provides a way to approximate the largest control invariant subset
of a desired safety requirement set C0 whose safety can then be ensured by the joint
enforcement of the CBF condition on hB and hτj for a finite number of τj . This
method was used to enforce safety of a segway robot in [52] where the predictive
element was critical to overcome the non-minimum phase nature of that system
enabling the simultaneous enforcement of safety criteria that required the system to
both remain upright and remain within a certain spatial region. See Section 4.2 for
more experimental details and a discussion of how measurement uncertainty affects
this system.

Conclusion
Unlike the other methods which shrink the safety requirement set C0 according to
some convergence capability, the method in this section expands an assumed control-
invariant subset of C0 using a backup controller similar to how MPC approaches
expand a terminal safe set. This method enables the explicit incorporation of input
bounds and produces an implicit control invariant set, but does not directly construct
a CBF for CI , instead using several other CBF-like functions as proxies. In doing so
this method can introduce additional computational complexity and discretization
error. Despite these drawbacks, this method for ensuring safety has proven to be
very highly effective [26], [105] and future work should explore its connections to
MPC and its relative benefits and drawbacks.

3.7 Conclusion
This chapter discussed the standard assumption in CBF theory that h0 satisfies
the CBF conditions in Definition 2.19 and that the associated α ∈ Ke∞ is known.
This synthesizing functions that are “valid CBFs” is general considered the greatest
challenge of CBF-based methods and the fundamental assumption upon which they
rely.

To tackle this problem in a general and computationally tractable way, this chapter
presented a collection of methods which enable the construction of control invariant
sets and CBFs from safety requirements encoded as a function h0 : Rnx → R.
These methods leveraged system structure and convergence properties of the entire
system in Section 3.2, of the system to safe velocities in Section 3.3, of the system’s
outputs relevant to safety in Section 3.4, of the system’s outputs relevant to safe
control actuation in Section 3.5, and finally of an a priori known control invariant
set for the system under a backup control policy in Section 3.6. Since each of these
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methods allows for different forms of safe set and/or CBF synthesis under different
structural system assumptions, they all may apply in different circumstances, and
serve as a arsenal of tools to tackle safe set synthesis for a large variety of relevant
systems.

Ultimately, however, each of these methods is an approximation for finding the
viability kernel of the safety criterion set C0 for the open-loop dynamics (2.1).
Future work should consider the effect of bounded inputs on these methods as this
is critical to the ability of real-world systems to achieve control invariance and it
should explore how computational improvements and new algorithms may improve
our ability to find the viability kernel.

Additionally, these methods assume that C0 is known. I believe that this work
establishes the foundation for future work on rapidly synthesizing CBFs for real-
world systems when C0 is not known a priori and must instead be determined
online from environmental sensors. Where prior work has generally used hand-
crafted CBFs that require a strong a priori understanding of the environment, recent
methods like those in [106] have begun to synthesize safety criterion sets C0 and
functions h0 directly from environment models built from sensors. By combining
those methods with the methods of this chapter, I believe that we will be able to
rapidly synthesize control invariant sets and safety constraints in novel environments.
I see this as a fruitful open area of research that can explore the human-interpretable
meanings of safety and link them with safety-critical control and safety guarantees
using safe-set synthesis methods like those presented in this chapter.
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C h a p t e r 4

SAFETY UNDER BOUNDED UNCERTAINTY

“To simplify analysis we begin by assuming that the cow is a perfect
sphere of uniform density in a vacuum.”

“In theory, there is no difference between theory and practice.” - Yogi
Berra

Theoretical guarantees of safety are powerful tools that can inspire confidence in the
deployment of robotic systems, particularly in safety-critical settings. However, that
confidence can be dangerously misplaced when built on simplifying assumptions
that fail to hold in practice (e.g., perfectly known dynamics, exact measurements,
flawless actuation, or spherical cows).

This chapter addresses the mismatch between idealized assumptions and the messy
reality of real-world robotics. Specifically, we consider scenarios in which the un-
certainties are bounded and we propose methods for retaining meaningful, rigorous
safety guarantees despite these deviations from the idealized assumptions of theory.

Abstract

As a tool for achieving robot safety, control barrier functions (CBFs) provide rigor-
ous theoretical guarantees but, to do so, they make several simplifying assumptions.
For example, they assume that the dynamics and state are known perfectly, and that
the control action is applied exactly as intended. Unfortunately, these strict assump-
tions are impossible to meet for real-world systems and thus, CBF-based methods
can lead to practical safety failures despite the perceived theoretical guarantees.

This chapter addresses this gap by introducing methods for achieving robust safety
under bounded uncertainty. I present three core contributions: (1) measurement
robust control barrier functions (MRCBFs) that maintain safety despite state mea-
surement error; (2) the tunable robust optimization program (TROP) safety filter
that integrates robustness to multiple sources of uncertainty within a single con-
trol framework; and (3) the theory of CBF-compliancy that ensures the safety of
data-driven controllers with bounded learning-error.
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Published content: The MRCBF discussion is adapted from [51] and [52]. The
discusion of the TROP safety filter that combines all three forms of robustness was
originally presented in [53]. Finally, the CBF compliancy result was originally
presented in [54].

4.1 Introduction
The background developed in Chapter 2 introduced robust control concepts such
as input-to-state stability (ISS, Def. 2.9 [29], [65]) and input-to-state safety (ISSf,
Def. 2.24 [31], [32]), along with associated controllers designed to regulate the
effect of disturbances. These and related robust control techniques—such as
Hamilton-Jacobi backward reachability [73] and tube-based model predictive con-
trol (MPC) [30], [107]—achieve their guarantees by assuming a worst-case distur-
bance bound and using this bound to predict the impact on safety or stability.

While accounting for disturbances in the dynamics is critical, modern robotic sys-
tems also face additional sources of uncertainty that can significantly affect safety.
For instance, contemporary robots often rely on complex perception pipelines or
data-driven components which introduce uncertainty in both state estimation and
control execution. It is therefore essential to develop controllers that preserve safety
despite these real-world uncertainties.

Measurement Uncertainty
It is common in safety-critical control to assume that CBF-based controllers have
access to perfect state measurements [32], [39], [42], [108]. However, this assump-
tion rarely holds in real-world systems, where measurements are corrupted by sensor
noise and errors in the measurement model. Moreover, while systems often exhibit
ISS or ISSf robustness to disturbances in the dynamics, similar guarantees do not
generally apply for state uncertainty where a bounded error in the state estimate does
not necessarily imply a bounded impact on safety [109].

Thus, in the first section of this chapter, we begin by considering the case where the
state of our system is not known exactly, x̂ ̸= x. Specifically, we consider the case
where the measurement x̂ is within some error radius re ≥ 0 of the true state x, i.e.,

x̂ ∈ Bre(x). (4.1)

While this chapter considers this form of bounded state uncertainty, safety guarantees
in the presence of measurement noise has also been explored from a stochastic
perspective [110], [111] and will be addressed in the latter parts of this thesis.
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Since the true state is not known, we seek to provide safety guarantees for the system
where the measured state x̂ is used to generate the control actions in the form:

ẋ = f(x) + g(x)k(x̂). (4.2)

Combined Measurement and Dynamics Uncertainty
In Section 4.3, we extend the previous results by developing a unified approach to
safety under both measurement uncertainty and dynamics disturbances. Specifi-
cally, we combine the measurement robustness techniques introduced earlier in this
chapter with the ISSf-CBF formulation from Section 2.3 and the hierarchical safe
set synthesis framework from Section 3.3.

The result is the Tunable Robust Optimization Program (TROP)—a convex quadratic
program that acts as a safety filter, providing formal guarantees under multiple forms
of uncertainty. The TROP controller introduces tunable parameters that can be
adjusted to reflect varying levels of uncertainty in the system. While this chapter
focuses on the safety properties of the TROP controller, Section 5.4 will examine
how these parameters can be effectively tuned to achieve a desired trade-off between
robustness and performance.

Bounded Imitation Learning Error
Finally, in Section 4.4, we study the case of imitation learning (IL), where a controller
is trained to imitate a robust expert policy. IL is a highly effective paradigm in
which a policy is learned to mimic expert behavior [112], and it has demonstrated
impressive performance across domains including video games [113], humanoid
robotics [114], and autonomous driving [115], [116]. However, these methods have
largely emphasized performance, with safety typically enforced through fallback
mechanisms such as backup controllers [117], [118] or human supervision [116].

While IL-based controllers have achieved safe behavior via training on safe demon-
strations [119], we extend this idea by developing theoretical conditions that guaran-
tee the safety of the learned policy. By leveraging a worst-case bound on the imitation
learning error, we show that it is possible to transfer safety guarantees from the ex-
pert to the learned controller—thereby enabling robust, end-to-end learned control
with formal safety assurances.
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4.2 Safety Under Measurement Uncertainty
In this section, we address the challenge of achieving safe control when the system
state is not directly observed. Motivated by vision-based control systems [115],
[120], [121], we consider the common setting in which state information is acquired
through a complex sensing pipeline (e.g., a camera), and an inverse mapping (e.g.,
a convolutional neural network) is used to estimate the underlying state. While
perception frameworks of this form are ubiquitous in robotics, the standard approach
is to make the measurement-to-state mapping as accurate as possible and then design
controllers that ignore any remaining error. For linear systems, the separation
principle justifies this design strategy by allowing the observer and stabilizer to be
constructed independently [90]. However, for nonlinear systems, rigorous analysis
of the effects of state estimation error on safety has only recently begun to emerge.

In this section, we introduce measurement-robust control barrier functions (MR-
CBFs) as a tool for providing formal safety guarantees under bounded measurement
uncertainty. These methods extend classical CBF-based control to explicitly ac-
count for uncertainty in the estimated state, enabling robust safety in settings where
the true state cannot be directly observed.

The contributions of this section are as follows:

• We define Measurement-Robust Control Barrier Functions (MRCBFs), which
extend the standard CBF framework to account for bounded error in measure-
ment models.

• We present a convex optimization-based controller that incorporates MRCBFs
and can be solved efficiently in real time.

• We integrate MRCBFs with the backup-controller-based safe set synthesis
method introduced in Section 3.6, enabling provable safety guarantees under
measurement uncertainty.

• We demonstrate the practical effectiveness of MRCBFs through hardware
experiments, achieving safe control of a segway robot using onboard camera-
based state estimation. This constitutes the first hardware deployment of
MRCBFs.

The text for this section is adapted from:
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S. Dean, A. J. Taylor, R. K. Cosner, B. Recht, and A. D. Ames,
“Guaranteeing safety of learned perception modules via measurement-
robust control barrier functions,” Proceedings of the 2020 Conference
on Robot Learning, vol. 155, pp. 654–670, 2021. [Online]. Available:
https://proceedings.mlr.press/v155/dean21a.html,

And

R. K. Cosner, A. W. Singletary, A. J. Taylor, T. G. Molnar, K. L.
Bouman, and A. D. Ames, “Measurement-robust control barrier func-
tions: certainty in safety with uncertainty in state,” 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2021. doi: 10.1109/IROS51168.2021.9636584,

Videos for this section can be found at [122], [123].

Measurement-Robust Control Barrier Functions
In this section we explore the impact of measurement uncertainty on safety guaran-
tees, and propose the notion of MRCBFs as a modified CBF that is robust to such
errors.

In many practical applications, the state x is not directly available to the controller,
but instead we have access to a state-dependent sensor measurement:

y = pm(x), (4.3)

where pm : Rnx → Rny is assumed to be locally Lipschitz continuous. We assume
the relationship between the measurement and the true state is deterministic, with
stochastic notions considered later in this thesis in Chapters 6 and 7. We further
assume that there exists a locally Lipschitz continuous function qm : Rny → Rnx

such that for all x ∈ Rnx , we can reconstruct the system state as qm(pm(x)) = x.
This assumption implies that the state can be uniquely determined from any given
measurement. This bĳective relationship would allow the measurements to be
redefined as the state of the system if the function pm was known, but that is often
not the case in many modern control applications (such as when using computer
vision).

While the function pm is often determined by the physical attributes of a system and
its environment, a locally Lipschitz continuous estimate of the function qm, given
by q̂m : Rny → Rnx , is often constructed to destimate the state from a given mea-
surement, x̂ = q̂m(pm(x)). For notational simplicity we define the measurement

https://proceedings.mlr.press/v155/dean21a.html
https://doi.org/10.1109/IROS51168.2021.9636584
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estimate function v̂ : Rnx → Rny ×Rnx such that v̂(x) = (pm(x), q̂m(pm(x)). We
also define the set pm(C) ⊂ Rny as the image of the safe set under the measurement
function, the set q̂m(pm(C)) ⊂ Rnx as the image of the safe set for state estimates,
and v̂(C) as the image of the safe set for the measurement estimates.

The function q̂m is constructed either via system and measurement models, or from
data using learning methods, and thus its accuracy in estimating qm degrades with
imperfections in sensor fabrication and integration, or imperfections in learning
models and training data. Thus we assume that our state estimate is related to the
true state as follows:

x̂ ≜ q̂m(y) = x+ e(x), (4.4)

for an unknown function e : Rnx → Rnx that is defined implicitly via q̂m. In practice,
the function e can often be characterized via upper bounds on model uncertainty or
via data-driven arguments for learning models. In particular, we assume that while
e(x) is not known for a particular value of x, it is known that e(x) ∈ E(y) for a
measurement dependent, compact pointwise set E(y). This leads to the definition
of the following two pointwise sets:

Ŝ(x) ≜ {x̂ ∈ Rnx | ∃ e ∈ E(p(x)) s.t. x̂ = x+ e} , (4.5)

S(y) ≜ {x ∈ Rnx | ∃ e ∈ E(y) s.t. x̂ = x+ e} . (4.6)

The first of these two pointwise sets can be interpreted as all possible state estimates
corresponding to a particular state, with uncertainty generated by the possible error
dictated by e ∈ E(p(x)). While Ŝ(x) is not directly computable without knowledge
of p, this set will play an important conceptual role in arguing about how data can
be used to determine error bounds. The second pointwise, on the other had, may be
computed since we have access to y and this set consists of all potential states that
may yield a (measurement, state estimate) pair, v̂.

Since a controller enforcing the CBF condition (2.33) requires exact knowledge of
the state x, we propose an alternative condition which depends on only the set S(y)
and the state estimate x̂. To ensure safety with a CBF, it is sufficient for the following
condition to hold for all y ∈ pm(C):

sup
u∈Rnu

inf
x∈S(y)

∂h

∂x
(x)(f(x) + g(x)u) + α(h(x)) ≥ 0 . (4.7)

This condition implies that there exists a control input that renders the system safe
for all possible states corresponding to a given state estimate. Verifying that this
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condition holds can be difficult for an arbitrary CBF, and it is not easily (or possibly)
enforced in a convex-optimization based controller. To resolve these problems, we
introduce the following definition:

Definition 4.1 (Measurement-Robust Control Barrier Function (MRCBF)). Let C ⊂
Rnx be the 0-superlevel set of a continuously differentiable function h : Rnx → R
with 0 a regular value. The function h is a Measurement-Robust Control Barrier
Function (MRCBF) for the open-loop system (2.1) on C with parameter function
(a, b) : Rny → R2

≥0 if there exists α ∈ Ke∞ such that for all (y, x̂) ∈ v̂(C):

sup
u∈Rnu

Lfh(x̂) + Lgh(x̂)u− (a(y) + b(y)∥u∥2) > −α(h(x̂)). (4.8)

I recognize that directly verifying this condition over v̂(C) may not be possible, and
point the interested reader to [51, Sec. 4] where we used the set Ŝ(x) to provide
sufficient conditions under which (4.8) is met.

The above definition of MRCBFs introduces the non-positive term −(a(y) +
b(y)∥u∥2) to the CBF condition, requiring that a stronger degree of safety be
enforced compared to the typical CBF condition (2.33). Furthermore, the norm of
the input appears in this term, indicating that for large values of b, large inputs can
lead to unsafe behavior.

The MRCBF condition (4.8) is equivalently stated as:

∥Lgh(x̂)∥2 ≤ b(y) =⇒ Lfh(x̂) > −α(h(x̂)) + a(y), ∀(y,x) ∈ v̂(C). (4.9)

In contrast to the implication in (2.35), the size of set for which the antecedent
in (4.9) is met may be larger, requiring the natural dynamics to be safe (Lfh(x̂) >

−α(h(x̂))+a(y)) in a larger region. Given a MRCBFh for (2.1) on C with parameter
function (a, b) and a corresponding α ∈ Ke∞, we can consider the point-wise set of
all control values that satisfy (4.8):

KMRCBF(y, x̂) (4.10)

≜ {u ∈ Rnu | Lfh(x̂) + Lgh(x̂)u− (a(y) + b(y)∥u∥2) ≥ −α(h(x̂))} ,

for (y, x̂) ∈ v̂(C). Given this construction, we have the following result relating
the existence of a MRCBF to safety under the presence of measurement model
uncertainty:

Theorem 4.2 (MRCBF Safety). Let a set C ⊂ Rnx be defined as the 0-superlevel
set of a continuously differentiable function h : Rnx → R. Assume the functions
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Lfh : Rnx → R, Lgh : Rnx → Rnu , and α ◦ h : Rnx → R are Lipschitz
continuous on C with Lipschitz coefficients LLfh, LLgh, and Lα◦h, respectively.
Further assume there exists a locally Lipschitz function ϵm : Rny → R≥0, such that
maxe∈E(y) ∥e∥2 ≤ ϵm(y) for all y ∈ pm(C). If h is a MRCBF for (2.1) on C with
parameter function (ϵm(y)(LLfh + Lα◦h), ϵm(y)LLgh), then any locally Lipschitz
continuous controller k : Rny ×Rnx → Rnu , such that k(y, x̂) ∈ KMRCBF(y, x̂) for
all (y, x̂) ∈ v̂(C), renders the system (4.2) safe with respect to the set C.

Proof. Define the function c : Rnx × Rnu → R as

c(x,u) =
∂h

∂x
(x)

(
f(x) + g(x)u

)
+ α(h(x)) = Lfh(x) + Lgh(x)u+ α(h(x)).

This proof will follow from Theorem 2.20, in that for any x ∈ C, with (y, x̂) = v̂(x),
we will show:

c(x,k(y, x̂)) ≥ 0. (4.11)

To show that (4.11) is true, consider a measurement-state estimate pair (y, x̂) ∈
v̂(C). A sufficient condition for (4.11) to hold is given by:

inf
x∈S(y)

c(x,k(y, x̂)) ≥ 0 . (4.12)

Recalling that we define x̂ = x+ e(x), we have:

inf
x∈S(y)

c(x,k(y, x̂)) = inf
e∈E(y)

c(x̂− e,k(y, x̂)),

= c(x̂,k(y, x̂)) + inf
e∈E(y)

c(x̂− e,k(y, x̂))− c(x̂,k(y, x̂)),

≥ c(x̂,k(y, x̂))− sup
e∈E(y)

|c(x̂− e,k(y, x̂))− c(x̂,k(y, x̂))|.

The assumption on Lipschitz continuity ofLfh, Lgh, and α◦h enables the following
bound:

|c(x′,u)− c(x,u)| (4.13)

= |Lfh(x
′)− Lfh(x) + Lgh(x

′)u− Lgh(x)u+ α(h(x′))− α(h(x))|, (4.14)

≤ |Lfh(x
′)− Lfh(x)|+ |Lgh(x

′)u− Lgh(x)u|+ |α(h(x′))− α(h(x))|,
(4.15)

≤ LLfh∥x′ − x∥2 + ∥Lgh(x
′)− Lgh(x)∥2∥u∥2 + Lα◦h∥x′ − x∥2, (4.16)

≤ (LLfh + LLgh∥u∥2 + Lα◦h)∥x′ − x∥2. (4.17)
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Therefore, using the definition of ϵm(y) we have:

sup
e∈E(y)

|c(x̂− e,k(y, x̂))− c(x̂,k(y, x̂))| (4.18)

≤ sup
e∈E(y)

(LLfh + LLgh∥k(y, x̂)∥2 + Lα◦h)∥e∥2, (4.19)

≤ (LLfh + LLgh∥k(y, x̂)∥2 + Lα◦h)ϵm(y). (4.20)

Thus:

inf
x∈S(y)

c(x,k(y, x̂)) ≥ c(x̂,k(y, x̂))− (LLfh + LLgh∥k(y, x̂)∥2 + Lα◦h)ϵm(y).

By the MRCBF condition and the design of k we have that:

c(x̂,k(y, x̂))− ϵm(y)(LLfh + Lα◦h)− ϵm(y)LLgh∥k(y, x̂)∥2 ≥ 0, (4.21)

implying the condition (4.11).

To more clearly see how the upper bound on the estimate error, ϵm(y), manifests in
the MRCBF condition, we note the particular condition that must be satisfied for
this theorem is given by:

sup
u∈Rnu

Lfh(x̂)+Lgh(x̂)u− ϵm(y)(LLfh+Lα◦h+LLgh∥u∥2) > −α(h(x̂)). (4.22)

Thus as ϵm(y) becomes smaller, the level of robustness required by an MRCBF
approaches that of a regular CBF for the same set C, and recovers the original CBF
condition with no estimate error. Furthermore, smaller values of ϵm(y) can be
interpreted as leading to an enlarging of the region over which the condition (4.9)
holds.

While this approach introduces significant conservatism due to the use of several
Lipschitz constants and the worst-case upper bound ϵm(y) on the effect of e(y), one
major advantage of this approach is that the constraint in (4.10) remains convex,
facilitating real-time robotics applications. This constraint can then be directly
integrated into an optimization based controller as:

k(y, x̂) = argmin
u∈Rnu

1

2
∥u− kd(x̂)∥22 (MR-OP)

s.t. Lfh(x̂)− (LLfh + Lα◦h)ϵm(y) + Lgh(x̂)u

− LLghϵm(y)∥u∥2 ≥ −α(h(x̂)).
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This problem is in fact a second-order cone program (SOCP), with an explicit
conversion to standard form provided in [51, Appx. B].

To ensure feasibility, a slack variable, δ, is often added in practice. This relaxation
is penalized in the cost with a large coefficient p ∈ R>0:

k(y, x̂) = argmin
(u,δ)∈Rnu×R

1

2
∥u− kd(x̂)∥22 + pδ2 (R-MR-OP)

s.t. Lfh(x̂)− (LLfh + Lα◦h)ϵm(y) + Lgh(x̂)u− LLghϵm(y)∥u∥2
≥ −α(h(x̂))− δ.

While this relaxed controller does not necessarily enforce the conservative desired
MRCBF safety constraint, if δ remains small the impact on safety can be understood
through the notion of projection-to-state safety [108] a variant of the ISSf property
discussed in (2.3). Furthermore, this relaxation ensures that the resulting controller
is locally Lipschitz continuous as made explicit in [51, Appendix C].

MRCBF Demonstration: Simulation
Next we present simulation results using MRCBFs and data-driven learning models
on a simulated robotic segway platform.

Example 4.3. The segway can be seen in Figure 4.1, and is modeled with system
dynamics derived using the unconstrained Euler-Lagrange equations [15]. The
system is constrained to planar motion by providing identical input torques about
both wheels. The resulting degrees of freedom are the segway’s horizontal position
r, horizontal velocity ṙ, pitch angle θy, and pitch rate θ̇y. The nominal controller kd
is a simple proportional-derivative (PD) controller as in [108].

The safe set was defined as C = {x ∈ R7 : h1(x) ≥ 0, h2(x) ≥ 0} with:

h1(x) = −θ̇y + αe(c− θy + θ⋆y), h2(x) = θ̇y + αe(c+ θy − θ⋆y), (4.23)

where c ∈ R>0, αe ∈ R>0, and θ⋆y is the pitch angle at equilibrium. The MR-OP
Filter constraint in (MR-OP) was applied simultaneously to both safety functions
(4.23) and was then implemented using the ECOS SOCP solver [124]. The Lipschitz
constants in this constraint were estimated by sampling LLfh, LLgh and α ◦ h on a
set of gridded values around the system’s equilibrium point by taking the maximum
of the slopes between any two adjacent grid points. As a baseline comparison, a



70

−0.50 −0.25 0.00 0.25 0.50
θy − θ∗y

−1

0

1

θ̇ y

x, MR-OP

x, CBF-QP

C

Figure 4.1. Simulated segway demonstration (Left) The segway model used in simulation from
the perspective of the fixed virtual camera used to estimate its state. (Right) Simulation results for
worst-case measurement model uncertainty of ϵm = 0.2 subtracted from the true pitch angle θy when
measured. A state trajectory generated using the Standard CBF Filter (red) and the MR-OP Filter
(blue) are shown as projections onto their pitch angle and pitch rate components. The safe set is
plotted in green. Given the same initial condition, the MR-OP filter ensured safety of the trajectory
whereas the Standard CBF Filter did not.

CBF-QP Filter (2.36) was also implemented and applied using both safety functions
(4.23). We considered the two following testing scenarios:

1. Worst-Case Synthetic Measurement Model Uncertainty: In this testing scenario
we assumed that direct measurements of the pitch angle θy were offset by a constant
factor of ϵm > 0, such that θ̂y = θy − ϵm. Implementing the MR-OP Filter for
ϵm > 0 ensures safety for this worst-case error of up to ϵm. The result of this type
of worst-case measurement model uncertainty in the segway system with a standard
CBF-QP Filter and an MR-OP Filter can be seen in Figure 4.1.

2. Data-Driven Sensor Calibration: In this scenario a more realistic form of mea-
surement model uncertainty is introduced through the use of a learned model to
estimate the position r and pitch angle θy from camera images. In simulation, a vir-
tual camera and lighting source were implemented to provide a 15 Hz video feed with
a fixed perspective, an example of which can be seen in Figure 4.1. The labels for
this supervised-learning problem were noisy measurements of the position and pitch
angle generated by the system’s inertial measurement unit, corrupted by Gaussian
noise with standard deviation 0.1. We use sklearn’s Kernel Ridge Regression with
radial basis functions [125] trained using a set of 800 labeled images associated
with a gridded range of position and pitch angle values to ensure dense coverage.
The hyperparameter values α = 0, γ = 5.4 × 10−8 were selected to minimize the
average error on an 80% - 20% random train-test split.

The result of the learning-induced errors in the segway system with a standard CBF
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Figure 4.2. Simulation results demonstrating the ability of the MR-OP Filter to mitigate the impact
of imperfect learned perception models on safety. (Left) The state trajectory generated using the
Standard CBF Filter (red) and MR-OP Filter (blue) are shown as projections onto their pitch angle and
pitch rate components. Given the same initial condition, the MR-OP Filter generated a safe trajectory
whereas the Standard CBF-QP Filter did not. The state estimates for each trajectory had a maximum
error of 0.183 and 0.201, respectively. (Right) The Boolean composition, hb = min{he1, he2} =
he1 ∧ he2 as defined in [20], is plotted for the CBF-QP Filter and MR-OP Filter trajectories for the
true and estimated states, x (solid line) and x̂ (dotted line). The safety violation of the Standard
CBF-QP Filter can be seen where hb(x) crosses 0.

Filter and an MR-OP Filter with ϵm = 0.2 can be seen in Figure 4.2. In the left
panel, the safe set C is shaded according to the upper bound on error ϵ̄m(x) under
which feasibility is guaranteed. As the errors in the learned map do not exceed
this value empirically, the set C is rendered invariant. The expression for ϵ̄m(x) in
this experimental scenario is presented in [51, Appx. E], along with an empirical
validation of learned model errors.

For futher experimental details, such as proofs of MR-OP feasibility for all x ∈ C
and additional details regarding the simulation please see the appendix in [51].

MRCBFs as Backup Set CBFs
In order to demonstrate the utlity of MRCBFs on hardware, we unify the robustness
of Theorem 4.2 with the back-up CBF safe-set synthesis method outlined in Section
3.6 to create measurement-robust safe sets that realize practically useful safety
behavior on the segway system, namely that it both remains upright and within a
desired translational region.

To unify the backup-set method for implicit safe-set synthesis of Section 3.6 with
the MRCBFs of Theorem 4.2, we alter the conditions of the implicit backup safe set
CI given in 3.65 using the MRCBF condition (4.8) so that the finite, discretized set
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of constraints imposed in the BS-QP become:

Lfhτj(x̂) + Lghτj(x̂)u− (aτj(y) + bτj(y)∥u∥2) ≥ −α(hτj(x̂)− µ),
LfhB(x̂) + LghB(x̂)u− (aB(y) + bB(y)∥u∥2) ≥ −α(hB(x̂)),

(4.24)

with parameter functions:

aτj(y) = (LLfhτj
+ LαLhτj

)ϵm(y), bτj(y) = LLghτj
ϵm(y),

aB(y) = (LLfhB
+ LαLhB)ϵm(y), bB(y) = LLghB

ϵm(y),
(4.25)

for all τj ∈ {0,∆t, . . . , T} where T ∈ R>0 is the length of the time horizon and
∆t ∈ [0, T ) is the time discretization, and where L represents the Lipschitz constant
of its subscripted function on Rnx . The unification of these constructions enables
the following definition:

Definition 4.4 (Measurement-Robust Implicit Safe Set). The set CI ⊆ C ⊆ Rnx

defined as in (3.65) is a Measurement-Robust Implicit Safe Set (MRISS) for the error
bound ϵm : Rny → R≥0 with parameter functionsa0, b0, a∆t , b∆t , . . . , aT , bT , aB, bB :

Rny → R≥0 if:

• the functions {h0, h∆t , . . . , hT , hB}, their Lie derivatives, and α are Lipschitz
continuous on CI ,

• the constant µ ∈ R≥0 satisfies the worst-case discretization error bound in
(3.68),

• and for all x ∈ CI there exists u ∈ Rnu satisfying (4.24).

Using this definition the safety of such sets can be made robust to measurement
model uncertainty as formalized in the following theorem:

Theorem 4.5 (MRISS safety). Given a MRISS CI , if k : Rny × Rnx → Rnu is a
Lipschitz continuous controller that satisfies (3.68) with parameter functions (4.25)
for all x ∈ CI with y = pm(x) and x̂ = q̂m(y), then the closed loop system with
measurement uncertainty (4.2) is safe with respect to CI .

Proof. For any function h ∈ {h0, h∆t , . . . , hT , hB} let

c(x,k(y, x̂)) = Lfh(x) + Lgh(x)k(y, x̂) + α(h(x)− ν), (4.26)
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where we choose ν = µ if h = hτj and ν = 0 if h = hB. It follows by Lipschitz
continuity that:

∥Lfh(x̂)− Lfh(x)∥2 ≤ LLfh
ϵm(y), (4.27)

∥α(h(x̂)− ν)− α(h(x)− ν)∥2 ≤ LαLhϵm(y), (4.28)

∥Lgh(x̂)− Lgh(x)∥2∥k(y, x̂)∥2 ≤ LLgh
ϵm(y)∥k(y, x̂)∥2. (4.29)

As k satisfies (3.68), we have that:

c(x,k(y, x̂)) = c(x̂,k(y, x̂)) + c(x,k(y, x̂))− c(x̂,k(y, x̂)), (4.30)

≥ c(x̂,k(y, x̂))− (a(y) + b(y)∥k(y, x̂)∥2) ≥ 0. (4.31)

Since c(x,k(y, x̂)) ≥ 0 and µ satisfies (4.24), we have that the system (4.2) is safe
with respect to CI by [103, Lemma 2].

This result allows us to present an alternative to the BS-QP controller which adds
the measurement-robustness of MRCBFs. The constraints (3.68) can be directly
integrated into a Measurement-Robust Backup Set Optimization Program controller
MR-BS-OP as:

k(y, x̂) = argmin
u∈Rnu

1

2
∥u− kdes(x̂)∥22 (MR-BS-OP)

s.t. Lfhτj(x̂) + Lghτj(x̂)u− (aτj(y) + bτj(y)∥u∥2) ≥ −α(hτj(x̂)− µ),
LfhB(x̂) + LghB(x̂)u− (aB(y) + bB(y)∥u∥2) ≥ −α(hB(x̂))

for all τj ∈ {0,∆t, . . . , T}, where again this controller is a second-order cone
program (SOCP). Notably, the conservative nature of the method scales with the
bound on the measurement-model error ϵm(y) and the MR-BS-OP reduces to the BS-
QP when ϵm(y) = 0. We remark that the feasibility of MR-BS-OP for all x̂ ∈ Rnx

can be ensured by adding a slack variablez to the optimization problem as in the
slackened R-MR-OP controller.

Experimental Results
We demonstrated the efficacy of the proposed MR-BS-OP controller on a modified
Ninebot E+ Segway platform in a hardware experiment.

We consider the same segway model and simulation used in Example 4.3. The
backup set method of Section 3.6 for generating control invariant sets is particularly
relevant for this system due to its non-minimum phase dynamics [90] which make it
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Figure 4.3. Simulation results for a measurement model of x̂ = x − 0.4 m and constant desired
velocity of 1 m/s. (Left) An image of the simulated Segway model. (Center) Trajectories generated
using the BS-QP. Solid line represents the true state, dashed line shows the estimated state, and green
region indicates the safe set C. The true trajectory fails to be safe and exits the safe set at t = 3
s. (Right) Trajectories generated using the MR-BS-OP. An additional robustness region is plotted
in blue to indicate the set of of true states which the control input renders safe. Both the true and
measured trajectories are safe demonstrating the robustness of the MR-BS-OP when compared to
the BS-QP.

difficult to synthesize control invariant sets that bound both the system position and
angle.

The desired safe set was chosen empirically to be the set of states with position less
than 2m from the origin, i.e., C0 = {x ∈ Rnx : x ≤ 2} and h0(x) = 2 − x. The
backup controller was an LQR controller on the system dynamics linearized about
the upright position and the backup set was an estimate of the region of attraction of
the LQR controller to the upright equilibrium state, given by a quadratic Lyapunov
function. This set is then translated to match the current position of the Segway,
while not allowing it to exceed the set boundary. The functions hτ , τ ∈ [0, T ] were
converted into four CBFs hτj via the discretization ∆t = T/3. Lastly, the Lipschitz
constants for hτj were found explicitly by inspection of the Segway dynamics and
the Lipschitz constants for hB were found by sampling the state space in simulation
and taking the largest numerical gradient.

This method was first validated in simulation in a ROS-based environment. Mea-
surement uncertainty was injected by artificially adding a constant error of −0.4m
to the true state. The simulated scenario involved using a desired controller kdes

that drove the Segway forward with a constant desired velocity of 1m/s. As seen in
Figure 4.3, the MR-BS-OP provided robustness to this error. Importantly, without
measurement-robustness, the system would be unsafe due to uncertainty in the state.

The MR-BS-OP was then implemented on hardware. State estimates for the velocity,
pitch, and pitch rate were found using wheel incremental encoders and a VectorNav
VN-100 IMU. The position estimate for x was obtained from an Intel RealSense
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Figure 4.4. Experimental results using SLAM from the onboard Intel RealSense T265 and constant
desired velocity of 1 m/s. These experiments can be seen in the supplementary video [126]. The
notation and color schemes are the same as in Fig. 4.3. (Left) An image of the Segway platform.
(Center) Trajectories generated using the BS-QP. The true trajectory exits the safe set at t = 6.7 s.
The measurement error is plotted in blue. (Right) Trajectories generated using the MR-BS-OP. Both
the true and measured trajectories are safe demonstrating the robustness of the MR-BS-OP when
compared to the BS-QP.

T265 onboard camera. Onboard computation was performed by a Jetson TX2
which computes control actions and relays them to the low-level motor controllers.
The TX2 concurrently runs Linux with ROS, enabling external communication
and logging, and the ERIKA3 real-time operating system, which enables real-time
low-level communication and computation of the control action.

As the state estimates provided by the encoders and IMU are highly accurate, we
focus on making the system robust to measurement error in its vision-based position
estimate x̂. An OptiTrack motion capture system was used in laboratory experiments
to provide x estimates which are considered true. These closely matched the encoder
position estimates for short trials, so the encoder x estimates were considered true
in the outdoor experiments. This data was used to determine the error bound ϵm(y)

that appears in the MRCBF constraint when using the onboard camera.

The value ϵm(y) = 0.4was chosen as an estimated upper bound on the measurement
error for all y ∈ pm(C). The MR-BS-OP was implemented at the embedded level
in the ERIKA3 operating system using the ECOS SOCP solver [124]. The desired
controller kdes was a proportional-derivative controller tracking user velocity inputs.
The backup trajectory ϕkB

τ (x̂) and its partial derivatives were approximated via
Euler integration using a time step of ∆t = 5 ms and the time used to expand the
backup set CB to CI was T = 1 s. The MR-BS-OP ran at 250 Hz with 5 decision
variables, 4 linear constraints, and 6 second order cone constraints and with inputs
saturated at ±20 Nm.

To demonstrate the method, a simple scenario is executed on the Segway in which
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Figure 4.5. Images from the experiment using the MR-BS-OP controller. The Segway is piloted
towards a wall of yellow boxes and the controller ensures that it remains safe, i.e., that it does not crash
into the boxes. (Top) Time lapse of the Segway trajectory. (Bottom) Camera images taken from the
perspective of the Segway throughout the experiment. The images are displayed in chronological
order from left to right. A video can be found at [123].

it is driven forward at a desired velocity of 1 m/s. This scenario is performed with
both the BS-QP and the MR-BS-OP. The results of these experiments can be found
in Figure 4.4, images from the experiment can be seen in Figure 4.5, and a video
can be found at [123]. With the BS-QP controller the estimated state x̂ remains
safe, but the true state x becomes unsafe whereas with the MR-BS-OP controller
both the estimated and the true state are kept safe. This highlights the importance of
providing robustness against measurement uncertainty, as achieved by Theorem 4.5.

Conclusion
In this section, we presented MRCBFs as tools for ensuring safety in the presence
of measurement error. The resulting safety condition required by a MRCBF can be
directly incorporated into an optimization based controller as a second order cone
constraint, preserving the convexity of typical CBF-based controllers and facilitating
control implementations on edge computers like the Jetson Tx2 at real-time speeds
like 250 Hz. By unifying the robustness of the MRCBFs in Theorem 4.2 with the
backup set-based safe set synthesis method of Section 3.6, we deploy our robust
safety method on a segway robot with vision-based, inaccurate state estimation,
demonstrating the utility and necessity of this robustness paradigm when compared
to standard methods.

Later components of this thesis will discuss the case of unbounded measurement
uncertainty (Chp. 6), but interesting future work remains in the discovering how
measurement model errors can improve from targeted data acquisition and how the
real-time utility of these methods can be retained while reducing the conservatism
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introduced by the worst-case bounds.

4.3 Safety Under Real-World Uncertainties
So far in this thesis, we have introduced methods for dealing with bounded dis-
turbances through the ISSf framework in Section 2.3, measurement uncertainty
through the MRCBF framework in Section 4.2, and safe set synthesis in the context
of bounded velocity tracking convergence rates in Section 3.3. In each case, the
theoretical approaches successfully achieved safety guarantees in the presence of
these real-world complications. Here we show that these methods can be combined
to create a general control paradigm that is simultaneously robust to all of these
real-world complexities.

The contributions of this section are as follows:

• We combine the robustness properties of MRCBFs [51] with those of ISSf-
CBFs [31] and model-free safety-critical control [48] to achieve provable
safety guarantees in the presence of measurement and dynamics uncertainty
using reduced-order safe set synthesis. This is the first time that these methods
have been combined.

The text for this section is adapted from:

R. K. Cosner, M. Tucker, A. J. Taylor, K. Li, T. G. Molnar, W. Ubel-
lacker, A. Alan, G. Orosz, Y. Yue, and A. D. Ames, “Safety-aware
preference-based learning for safety-critical control,” Proceedings of
The 4th Annual Learning for Dynamics and Control Conference, Pro-
ceedings of Machine Learning Research, vol. 168, pp. 1020–1033,
2022. [Online]. Available: https://proceedings.mlr.press/
v168/cosner22a.html,

General Robust Safety-Critical Control
Here we present the theoretical unification of the worst-case CBF robustification
methods of sections 2.3, 3.3, and 4.2 which will provide a theoretical framework
for general real-world safety-critical control that is robust to errors in the state-
measurement model, uncertainties in the system dynamics model, and reduced-order
model-based safe set synthesis.

https://proceedings.mlr.press/v168/cosner22a.html
https://proceedings.mlr.press/v168/cosner22a.html
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Specifically, we start by considering the system with state and matched dynamic
uncertainty:

ẋ = f(x) + g(x)(v + d(t)) (4.32)

where x ∈ Rnx represents states of the system model and v ∈ Rnv is the reduced-
order control input to the model. Here v is not necessarily the true input to the
system and consider the case when there may be higher-order unmodeled dynamics
that effect the ability of the system to track v as in the model-free discussion in
Section 3.3.

Concisely, the following theorem summarizes the safety results achieved with with
various CBF methods for a control-invariant safe set C:

Theorem 4.6. Consider the set C defined in (2.29).

1. Standard CBF: If h is a CBF for (4.32) on C, d(t) = 0 for t ∈ R≥0 and
x̂ = x, then there exists a controller v = k(x̂) such that (4.32) is safe with
respect to C.

2. ISSf-CBF: If h is an ISSf-CBF (Def. 2.24) for the system (4.32) on C with
parameter1 φ ∈ R>0 and x̂ = x, then there exists a controller v = k(x̂)

such that (4.32) is ISSf with respect to C with γ(d) = −α−1(−d2/(4φ)) where
α−1 ∈ Ke

∞.

3. MRCBF: Assume Lfh, Lgh, and α ◦ h are Lipschitz continuous on their
domains, and assume that ∥x̂ − x∥ ≤ ϵm for some ϵm ∈ R≥0. Then there
exists a, b ∈ R≥0 such that if h is an MRCBF for (4.32) on C with parameters
a, b ∈ R≥0 satisfying a ≥ a and b ≥ b, and d(t) = 0 for t ∈ R≥0, then there
exists a controller v = k(x̂) such that (4.32) is safe with respect to C.

Next, we propose a design paradigm that combines these guarantees to achieve
general robust safety guarantees in the presence of real-world uncertainties for a
multi-layered control system.

Combined Robust CBFs
We now combine the robustness properties of MRCBFs and ISSf-CBFs alongside
the model-free safe-critical control method, to account for measurement uncertainty

1Unlike the original definition of ISSf-CBFs in Section 2, we use φ = 1
ϵ here for notational

convenience.
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and matched disturbances allowing us to make robust safety guarantees for the full
system (4.32). This is formalized in the following theorem:

Theorem 4.7. Given the set C defined in (2.29), the dynamics (4.32), and α ∈ Ke∞,
suppose the functions Lfh, Lgh, ∥Lgh∥2, and α ◦ h are Lip assumed to be Lipschitz
continuous on their domains, and assume that ∥x̂ − x∥ ≤ ϵm for some ϵm ∈ R≥0.
Given these assumptions, there exists a, b ∈ R≥0 such that, if h satisfies:

sup
v∈Rnu

Lfh(x̂) + Lgh(x̂)v − φ∥Lgh(x̂)∥2 − a− b∥v∥ > −α(h(x̂)), (4.33)

for all x ∈ Rnx and some φ ∈ R>0 and a, b ∈ R≥0 satisfying a ≥ a and b ≥ b, then
there exists a controller k : Rnx → Rnu such that (4.32) is ISSf with respect to C
with γ(d) = −α−1

(
− d

2

4φ

)
were α−1 ∈ Ke∞.

Proof. First, we show that satisfying (4.33) for a particular set of a, b implies
satisfaction of the ISSf-CBF constraint (2.41). For this we choose:

a = ϵ(LLfh + Lα◦h + Lφ∥Lgh∥2), b = ϵmLLgh, (4.34)

where L indicates the Lipschitz coefficient of the subscripted function with respect
to argument x. Let us define the function c : Rnx × Rnv → R such that:

c(x,v) ≜ Lfh(x) + Lgh(x)v − φ∥Lgh(x)∥2 + α(h(x)). (4.35)

We then use this definition to construct the following bound on c(x,v) which holds
for any v ∈ Rnv :

c(x,v) = c(x,v) + c(x,v)− c(x,v), (4.36)

≥ c(x,v)− ϵm(LLfh + Lα◦h + Lφ∥Lgh∥2)︸ ︷︷ ︸
a

− ϵLLgh︸ ︷︷ ︸
b

∥v∥ (4.37)

≥ c(x,v)− a− b∥v∥. (4.38)

Above we added zero in (4.36) and used the Lipschitz coefficients and the worst-case
uncertainty ϵ to achieve the bound in (4.37). Since supv∈Rnv c(x,v)− a− b∥v∥ >
0 holds based on (4.33), inequality (4.38) implies that (2.41) holds for the true
parameters, ρ. Since (2.41) holds, the conditions of Theorem 4.6 point 2 are
satisfied and thus C is ISSf with γ(δ) = −α−1(−δ2/(4φ)) where α−1 ∈ Ke

∞.

As in [15], (4.33) can be incorporated as a constraint into a safety filter on a locally
Lipschitz continuous desired nominal controller knom : Rnx → Rnv . We call this
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filter the Tunable Robustified Optimization Program (TR-OP) (4.39) with tunable
parameters ρ, φ ∈ R>0 and , a, b ∈ R≥0. We refer to this as tunable because
these parameters can be tuned to account for the required robustness with respect
to k(x̂) tracking convergence (ρ ↓ as tracking gets worse as discussed in Section
3.3), dynamics disturbance (φ ↑ as the disturbance bound grows), and measurement
uncertainty (a, b ↑ as measurement accuracy degrades).

kT(x) = argmin
v∈Rnv

∥v − kdes(x̂)∥2 (4.39)

s.t. Lfh(x̂) + Lgh(x̂)v − φ∥Lgh(x̂)∥2 − a− b∥v∥ ≥ −ρh(x̂).

Here we use a linear class Ke
∞ function α(r) = ρr with coefficient ρ ∈ R>0. As

with the MR-OP controller, this safety filter is a convex second-order cone program
(SOCP) [64] for which an array of solvers exist [124].

Conclusion
This section provides a theoretical method for overcoming several sources of poten-
tial real-world uncertainty, providing a controller that can be tuned to account for
hierarchical systems in the presence of measurement and dynamics model errors.
It does so by introducing conservatism from several sources through the use of
worst-case bounds uncertainty, convergence, and Lipschitz bounds. Due to this in-
creased conservatism, we leave practical application of this controller to Section 5.4
where we will use preference-based learning to tune the parameters of the TR-OP
controller (4.39) to desired required levels of conservatism and realize safe desirable
real-world behavior.

4.4 End-to-End Safety for Learned Controllers
The previous sections of this chapter presented frameworks for robust safety-critical
control under various bounded real-world complexities, including measurement
uncertainty and matched disturbances. This constructions of this section most
closely match the robustness methods for dynamics disturbances, but do so for the
case of controller error, when the desired control action is not the one applied to the
system.

In particular, this section generates guarantees in the case imitation learning where
the is a bounded discrepancy between (a) an ideal, expert controller known to be
robustly safe, and (b) the controller that is actually implemented, which may be
a complex, end-to-end, learning-based policy. Using the robustification methods
of this chapter, we find that, if the expert controller satisfies certain worst-case
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robustness conditions, then its safety guarantees can be formally transferred to the
learned controller, based on the worst-case deviation between the two.

The contributions of this section are as follows:

• The definition of CBF-compiant controllers, which characterize sufficient
conditions for the learned controller to retain safety guarantees.

• Formal guarantees of safety (in an ISSf sense) where properties of the imitation
learning problem directly affect the corresponding robust safe set.

• Simulated demonstrations of an inverted pendulum and a vehicle driving
around a track using a vision-based end-to-end (i.e., perception-to-control)
framework.

The text for this section is adapted from:

R. K. Cosner, Y. Yue, and A. D. Ames, “End-to-end imitation learning
with safety guarantees using control barrier functions,” 2022 IEEE 61st
Conference on Decision and Control (CDC), pp. 5316–5322, 2022. doi:
10.1109/CDC51059.2022.9993193,

Imitation Learning
Imitation learning (IL) is a common learning framework in which a mapping be-
tween observations and actions is trained using expert demonstrations. Common
methodologies in IL include behavioral cloning (a form of supervised learning) and
inverse reinforcement learning (IRL) [127] which learns a cost function such that the
action or action sequence with minimal cost agrees with the expert demonstrations.
We will present our method in the context of behavioral cloning, but note that our
method is not specific to this form of IL and can be generalized to provide safety
guarantees for IRL since the theory developed in this work depends on the learned
controller itself and not the learning framework used to produce it.

For end-to-end IL we model sensor measurements as:

y = pm(x) (4.40)

where y ∈ Rny represents the system observations and pm : Rnx → Rny represents
the system’s sensors which we assume to be locally Lipschitz as in Section 4.2. In

https://doi.org/10.1109/CDC51059.2022.9993193
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the context of computer vision y may be a vector representation of image data and
pm may be the camera sensor which maps from the state to an image.

In order to train an end-to-end controller, we collect a dataset of observation-input
pairs using the expert controller k : Rnx → Rnu:

D = {Di}nx
i=1, Di = (pm(xi),k(xi)) ∈ Rny × Rnu (4.41)

for N ∈ N samples2. Given a nonlinear function class H : Rny → Rnu and a loss
function L : Rnu ×Rnu → R, the learning problem can be expressed as optimizing
the parameters θ of the function kθ ∈ H via empirical risk minimization:

min
kθ∈H

1

N

nx∑

i=1

L (kθ(pm(xi)),k(xi)) . (4.42)

This optimization problem attempts to minimize the difference between the learned
and expert controllers, producing a hopefully small bound, which we can then use
to produce robust control guarantees by treating the difference between the learned
and expert controllers as a matched disturbance. The theoretical contribution of
this section is can be summarized as ensuring that the generalization of this error
bound between controllers does not outpace the expansion of Cδ when extrapolating
beyond the data set D.

Robust Safety and Continuity Properties
Behavioral cloning as in (4.42) suffers from compounding errors in the resulting
trajectories [113]. However, since our goal is to transfer safety guarantees from the
expert controller to the learned controller rather than to exactly mimic the expert
behavior, we show that forward-invariance can be achieved despite compounding
errors if the expert controller enforces robust forward-invariance.In order to intro-
duce this form of required robustness, we must first introduce a required continuity
property of the non-zero level sets of h, defining the potentially expanded sets Cδ as
in (2.38).

To do this, we define the c-level set of h using the preimage h−1 : R⇝ P(Rnx),

h−1(c) = {x ∈ Rnx | h(x) = c} (4.43)

where c ∈ R and P(Rnx) denotes the power set of Rnx .

One useful continuity property of point-to-set maps is upper semi-continuity (USC):
2As in [116], we assume the expert controller has access to the true state.
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Definition 4.8 (Upper Semi-Continuity (USC) [69]). A set valued function map
h−1 : R⇝ P(Rnx) is upper semi-continuous at c ∈ R if and only if for any ϵ > 0,
there exists η > 0 such that c′ ∈ Bη(c) =⇒ h−1(c′) ⊂ h−1(c)⊕ Bϵ(0).

where Bη(c) is the Euclidean ball of radius η centered at point c, and ⊕ indicates
the Minkowski sum.

It was established in [70, Prop. 6] that, under common assumptions for CBFs, the
level sets h−1 are USC as stated in:

Proposition 4.9 (Upper Semi-Continuity of CBF Level Sets [70, Prop. 6]). Let
h−1 : R ⇝ P(Rnx) be the preimage (4.43) representing the c-level set of some
continuously differentiable function h : Rnx → R. If 0 is a regular value of h and
Λ := {x ∈ Rnx | − δ ≤ h(x) ≤ δ} is compact for all δ ≥ 0, then h−1 is upper
semi-continuous at 0.

This proposition relates the regularity of h to the upper semi-continuity of its level
sets. In essence, the regularity of h at 0 ensures that small changes in the value
defining the level set has a small effect on the level set itself.

Theoretical Result
Next we present the main result of this section that relates the supervised training of
end-to-end controllers to intput-to-state safety. For this we consider the following
closed loop system:

ẋ = f(x) + g(x)kθ(pm(x)). (4.44)

Next we assume that the expert controller is a TR-OP safety filter (4.39) as in
the previous section which provides additional robustness to matched disturbances,
measurement uncertainty, and hierchical safe-set synthesis methods. The practical
use case for which could involve generating the expert data in D by using the TR-OP
safety filter to modify human actions, thus adding robustness to the human’s control
inputs.

With the robust controller kT as the expert controller, we define the properties of
CBF-compliancy which will allow us to transfer safety guarantees to the system
under the end-to-end learned controller kθ as in (4.44).
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Definition 4.10 (CBF-Compliancy). The learned controller kθ : Rny → Rnu is
CBF-compliant for h : Rnx → R with measurement function pm : Rnx → Rny if

min
x∈D
∥x1 − x∥ ≤ r1, ∀x1 ∈ ∂C, (4.45)

∥kT (x2)− kθ(pm(x2))∥ ≤Me, ∀x2 ∈ D, (4.46)

∥kθ(pm(x3))− kθ(pm(x4))∥ ≤ Lkθ◦pm∥x3 − x4∥, ∀x3,x4 ∈ ∂C ⊕ Br2(0),
(4.47)

where r1, r2 ∈ R>0, Lkθ
,Me ∈ R≥0, and kT : Rnx → Rnu is a 4.39 controller for

h with parameters φ, a, b ∈ R≥0 and α ∈ Ke∞.

Intuitively, r1 in (4.45) is a parameter that indicates the sample density of the data set
D near the boundary of the safe set. Me in (4.46) represents the maximum amount
of matched disturbance error between the expert and learned controllers on the data
set. Finally, (4.47) is a requirement on the smoothness of the learned controller
which constrains how it can generalize away from data points near the boundary of
the safe set.

Next, we use the USC property of h to relate the existence of a CBF-compliant
controller to the ISSf property of system (4.44).

Theorem 4.11. Let C ⊂ Rnx be the 0-superlevel set of a function h : Rnx → R
which satisfies the Proposition 4.9. There exist φ, a, b ∈ R≥0 such that, if

• kθ : Rny → Rnu is a CBF-compliant controller on C for parameters φ ≥
φ, a ≥ a, b ≥ b, α ∈ Ke∞ with constants r1, r2 > 0

• and Lfh, Lgh, ∥Lgh∥2, and α ◦ h are Lipschitz continuous on ∂C ⊕Br2(0),

then the closed loop system (4.44) is ISSf with respect to C and safe with respect to

Cδ =
{
x ∈ Rnx

∣∣∣∣h(x) ≥ α−1

(−1
2φ

(Lkθ◦pmr3 +Me)
2

)}
(4.48)

where r3 ≜ r2 + r1.

The proof of this theorem formalizes the following idea: sufficient sampling of ∂C
and upper semi-continuity of h ensure that the points in ∂Cδ remain sufficiently close
to ∂C to limit extrapolation error, thus producing control inputs that are accurate
enough to ensure the forward invariance of Cδ and prevent the cascading failure
mode that is typical of behavioral cloning.
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Proof. Consider some state x3 ∈ ∂C ⊕ Br2(0). Given x3, there must exist some
x2 ∈ ∂C such that ∥x2 − x3∥ ≤ r2. Additionally, since kθ is a CBF-compliant
controller with the appropriate parameters, there must be some x1 ∈ D such that
∥x1 − x2∥ ≤ r1 and so ∥x1 − x3∥ ≤ r3 by the triangle inequality.

The function h satisfies Proposition 4.9 by assumption so by the definition of upper
semi-continuity we can bound the expansion of the safe set:

∃η > 0 s.t. c ∈ Bη(0) =⇒ h−1(c) ⊂ h−1(0)⊕ Br2(0). (4.49)

Thus we can choose φ > 0 large enough such that for any φ ≥ φ the expansion
remains in a r2 expansion of the original boundary ∂Cδ ⊂ ∂C ⊕ Br2(0) for Cδ as in
(4.48). Next, we choose the remaining parameter bounds to be:

a ≥ a = r3(LLfh + Lα◦h + Lφ∥Lgh∥2), (4.50)

b ≥ b = r3LLgh. (4.51)

whereL represents the Lipschitz constant of the subscripted function on ∂C⊕Br2(0).

Using kθ we can bound the time derivative of the CBF at x3 ∈ C ⊕ Br2(0) as:
d

dt
h(x3,kθ(pm(x3))) (4.52)

= Lgh(x1)kT (x1) +
d

dt
h(x3,kθ(pm(x3)))− Lgh(x1)kT (x1),

≥ Lfh(x3)− Lfh(x1) + r3LLfh + α(h(x3))− α(h(x1)) + r3Lα◦h, (4.53)

+ φ∥Lgh(x1)∥2 − φ∥Lgh(x3)∥2 + r3Lφ∥Lgh∥2 ,

+ Lgh(x3)kT (x1)− Lgh(x1)kT (x1) + r3LLgh∥kT (x1)∥,
− α(h(x3)) + φ∥Lgh(x3)∥2 + Lgh(x3)(kθ(pm(x3))− kT (x1)).

We can now bound the first three lines of the lower bound in (4.53) using the assumed
Lipschitz constants. For example,

Lfh(x3)− Lfh(x1) + r3LLfh ≥ −∥Lfh(x3)− Lfh(x1)∥+ r3LLfh, (4.54)

≥ LLfh(r3 − ∥x1 − x2 + x2 − x3∥) ≥ LLfh(r3 − ∥x1 − x2∥ − ∥x2 − x3∥) ≥ 0

since ∥x1 − x2∥ ≤ r1 and ∥x2 − x3∥ ≤ r2.

Applying these Lipschitz-based bounds for Lfh, Lgh, α ◦ h, and φ∥Lgh∥2 in (4.53)
yields:

d

dt
h(x3,kθ(pm(x3))) ≥− α(h(x3)) + φ∥Lgh(x3)∥2 (4.55)

+ Lgh(x3)(kθ(pm(x3))− kT (x1)).
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Additionally we can lower bound the final term using properties (4.46) and (4.47)
of CBF-compliant controller as:

Lgh(x3)(kθ(pm(x3))− kT (x1))

≥ Lgh(x3)(kθ(pm(x3))− kθ(pm(x1)) + kθ(pm(x1))− kT (x1)), (4.56)

≥ −∥Lgh(x3)∥
(
∥kθ(pm(x3))− kθ(pm(x1))∥+ ∥kθ(pm(x1))− kT (x1)∥

)
,

≥ −∥Lgh(x3)∥(Lkθ◦pmr3 +Me). (4.57)

Using (4.57) to lower-bound (4.55) results in:

d

dt
h(x3,kθ(pm(x3))) (4.58)

≥ −α(h(x3)) + φ∥Lgh(x3)∥2 − ∥Lgh(x3)∥(Lkθ◦pmr3 +Me), (4.59)

≥ −α(h(x3))−
1

2φ
(Lkθ◦pmr3 +Me)

2, (4.60)

where the final bound is achieved by completing the square and removing the positive
term.

To achieve forward invariance of Cδ we note that

h(x3) = α−1

(
− 1

2φ
(Lkθ

r3 +Me)

)
=⇒ d

dt
h(x3,kθ(x3)) ≥ 0. (4.61)

Since the bound (4.60) holds for all x3 ∈ ∂C ⊕ Br2(0) and φ was chosen such that
∂Cδ ⊂ ∂C ⊕ Br2(0) it is true that d

dt
h(x4,kθ(x4)) ≥ 0 for all x4 ∈ ∂Cδ. Thus by

Nagumo’s theorem [13] the set Cδ is forward invariant and C is ISSf.

We recognize that finding and using the exact Lipschitz constants may be impractical,
but note that due to their conservatism the CBF-compliant controller may be capable
of achieving safety with far smaller values as will be later demonstrated in simulation.

The learned controller kθ developed in Theorem 4.11 has mathematical guarantees
of safety, but may result in behaviors significantly different than the expert controller
in the interior of the safe set Int(C) when the system is far from the boundary ∂C,
since the sampling assumption (4.45) is only required to hold on ∂C. Therefore
we present a corollary which generally results in significantly improved behavioral
cloning on the interior of C due to increased sampling. The safety guarantees of this
corollary follow immediately from Theorem 4.11.
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Corollary 4.12. Let the dataset D satisfy the inequality

min
x∈D
∥x1 − x∥ ≤ r1, ∀x1 ∈ C (4.62)

in place of (4.45) for some r1 > 0 . Let the remaining assumptions of Theorem
4.11 hold, then the closed loop system (4.44) is ISSf with respect to C and safe with
respect to Cδ (4.48).

Proof. C is a closed set so ∂C ⊆ C, thus (4.62) =⇒ (4.45) and the conditions of
Theorem 4.11 are met.

Simulation Results
Next we discuss the simulation results that demonstrate safe vision-based end-to-
end control of an inverted pendulum and a simplified car using CBF-compliant
controller. In both cases the convolutional neural network used for end-to-end
learning was MobileNetV2 [128] with an additional fully-connected layer added to
generate control inputs of the proper dimension. The full network has approximately
3.4 million parameters. Training was performed using the ADAM optimizer, an ℓ2
loss with ℓ2 weight decay, and batched training. The frequency of the observations
was chosen to be 100 Hz and 60 Hz for the pendulum and car, respectively. The sim-
ulations were conducted using zero-order-hold control inputs of the same frequency
with no latency.

Inverted Pendulum with Image Feedback: We first consider an inverted pendulum

system with the states x =
[
θ θ̇

]⊺
with torque inputs τ ∈ R as shown in Fig. 4.6.

The dynamics and observation function of this system are given as:

ẋ =

[
θ̇

sin θ

]
+

[
0

τ

]
, y = pm(x) =

[
Img(x)
θ̇

]
(4.63)

where Img(x) represents the image of the system at state x as seen from a camera
facing the inverted pendulum. A example images can be found in Figure 4.6. The
learned controller is a function of the current image and velocity of the system, so
an additional fully connected layer was added to incorporate the velocity into the
end-to-end controller.

The safe set for the inverted pendulum is chosen to be:

h(x) = c− x⊺pmx, C = {x ∈ Rnx | h(x) ≥ 0} (4.64)
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System Diagram Expert Controller Learned Controller
CBF Values 

for Learned Controller

Figure 4.6. Results for the inverted pendulum. Left: A diagram of the system where the green
represents the safe set C. Center Left: One second long trajectories generated by the expert controller
kT are shown in yellow and plotted for several initial conditions represented by blue triangles. The
green ellipse marks the boundary ∂C. Center Right: One second long trajectories generated by the
learned controller kθ are shown in yellow and plotted for several initial conditions represented by
blue triangles. in The green ellipse marks the boundary ∂C. Right: CBF values h(x(t)) achieved
by the learned controller. Note all are greater than zero indicating safety of the system. The darker
blue trajectory begins at the initial condition marked by the red circle in the plot of the learned
controller. Bottom: Images spanning the safe set C that are used by kθ for end-to-end control of
the system.

where pm ∈ R2×2 is such that x⊺pmx is a control Lyapunov function derived from
the continuous time algebraic Ricatti equation using feedback linearization and c is
chosen such that maxθ∈C |θ| = π/4. This safe set is visualized in Fig. 4.6.

The expert controller is the TR-OP controller (4.39) with parameters φ = 2,
α(c) = c, and a and b chosen as the Lipschitz constants of (Lfh(x) + α(h(x)) +

φ∥Lgh(x)∥2)) and Lgh(x), respectively, over the compact set ∂C multiplied by
the minimum sampling distance r1 = 0.01. The nominal controller is knom(x) =

−0.75θ which provides some torque to counteract gravity, but fails to stabilize the
pendulum. The boundary of the safe set, ∂C, is gridded and sampled uniformly with
a minimum distance r1 to create the training dataset D.

Simplified Race Car with Image Feedback: Next we consider a simplified car given
by the unicycle dynamics and observation function:

ẋ =



cos θ 0

sin θ 0

0 1



[
v

ω

]
, y = pm(x) = Img(x) (4.65)

where the state x =
[
x y θ

]⊺
is the planar position and heading angle and the

input u =
[
v ω

]⊺
is the forward and angular velocities and Img(x) represents

the driver’s first-person-view from the car at position x. A series of example first-
person-view images can be seen in Figure 4.7.
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The safe set for the car is chosen to be the 0-superlevel set of the functionmin{h1, h2}
where:

hi(x) = δn̂⊺d̂i + ψi ·





ρ2i −
((
x− ℓ

2

)2
+ y2

)
, x ≥ ℓ

2

ρ2i −
((
x+ ℓ

2

)2
+ y2

)
, x ≤ −ℓ

2

ρ2i − y2, else

where ρ1 = (ℓ/π + w), ψ1 = 1, ρ2 = ℓ/π, and ψ2 = −1. Additionally, δ = 0.1,
n̂ is the unit vector in the car’s heading direction, d̂1 is the unit vector pointing
perpendicularly inward from the outer boundary of the track through the car’s
position, d̂2 is the unit vector point perpendicularly outward from the inner boundary
of the track through the car’s position, ℓ is the length of the straight portions of the
track, w is the width of the track. An annotated diagram of the track can be found in
Figure 4.7. Given these functions, the safe set C = {x ∈ R3 | min{h1(x), h2(x)} ≥
0} is a subset of the track with an angle dependence where positions with heading
angles pointed towards the center line are considered safer.

The expert controller is the TR-OP controller (4.39) with the constraint simultane-
ously enforced for both h1 and h2 with parametersφ = 0.5, a = 10−2, b = 10−4, and
α(c) = 10c. ∂C was gridded and sampled uniformly with distance of r1 = 0.1 to
generate D. We use Theorem 4.11 to guide the choice of these constants, but due to
the difficulty of estimating the Lipschitz constants and the likely over-conservatism
of the resulting controller we choose parameters which are likely much smaller than
those required to sufficiently guarantee safety mathematically but we nonetheless
succeed in demonstrating safety experimentally.

The nominal controller used in the 4.39 controller is:

knom =

[
Kp|r − rmid|+ F

Kr(r − rmid) +Kdir(n̂
⊺êmid)

]
(4.66)

where Kp, F,Kr, Kdit ∈ R>0, r = ∥[x, y]∥, rmid is the distance from the origin
to the middle the track along a line passing through the car, êmid is the unit vector
from the vehicle to middle line of the track. This nominal controller is capable of
circumnavigating the track, but is unsafe.

Learning and Results: For both the inverted pendulum and the car, the learned con-
troller kθ is trained until convergence to minimize (4.42) where the (4.39) controller
is the expert controller.
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Learned ControllerExpert ControllerSystem Diagram
and Example Trajectories
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Figure 4.7. Results for the car. Left: Three 15 second long trajectories are shown starting from the
same initial condition, the nominal controller generates the unsafe red trajectory, the 4.39 controller
generates the safe green trajectory, and the learned controller generates the safe blue trajectory.
Center Left: 3 second long trajectories starting at several initial conditions are shown for the
expert controller kT . The blue triangles represent initial conditions and are all within the safe set.
The yellow lines represent the trajectories of the car beginning at a blue triangle. Center Right:
3 second long trajectories for starting at several initial conditions shown for the learned controller
kθ. Right: CBF values min{h1(x(t)), h2(x(t))} achieved by the learned controller. Note all
are greater than zero. The darker blue trajectory begins at the initial condition indicated by the red
circles in each plot. Bottom: Images used by kθ for end-to-end control. From left to right, the
first-person view of the trajectory indicated using the red circles starting at time t = 0 seconds and
increasing by 0.25 seconds.

The safe set for both systems was gridded with initial conditions and simulated
forward for 1 second for the inverted pendulum and 3 seconds for the car. For
the car, θ = 0 was held constant for each initial condition and the interior of the
track was sampled. The trajectories can be seen in Figures 4.6 and 4.7. For each
trajectory, the 4.39 controller renders the system safe and this safety is transferred to
the learned controller despite having different closed-loop behavior. The minimum
of h achieved for the inverted pendulum example was 0.028 and the smallest value
of min{h1(x), h2(x)} achieved by the car for all initial conditions was 0.030,
indicating safety of both systems.

Even though the system deviates significantly from the expert trajectories, the
learned controller successfully keeps the system inside of the safe set. Thus,
although additional sampling can be performed to improve the learned behavior,
sampling on the boundary of the safe set is sufficient to render it forward invariant.

Conclusion
This section provides a guarantee of robust safety for end-to-end, learning-based
controllers by bounding the deviation between an expert and a learned control
policy. Rather than requiring precise models or measurements, we assume a worst-
case bound on this deviation and establish conditions under which safety can be
formally transferred to the learned controller.
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The definition of CBF-compliancy and Theorem 4.11 provide a lens through which to
view safety-critical imitation learning. Specifically, they emphasize the importance
of sampling near the boundary of the safe set, regularizing learned policies to ensure
smoothness, minimizing imitation error, and ensuring that the safe set function h is
sufficiently regular.

4.5 Conclusion
This chapter presented robustified control methods which can be used to achieve
rigorous, mathematical guarantees of safety despite the presence of significant un-
certainty arising from realistic sources such as measurement uncertainty, dyanmics
uncertainty, and imperfect learning methods.

The unifying tools used by these and many other robust control methods [4], [28],
[107] are worst-case bounds of the uncertainty and/or worst-case slope bounds (i.e.,
Lipschitz constants) of the relevant functions. These two bounds can then be used
to translate between the true, unknown value of a function and a the predicted value
plus the worst-case effect of the uncertainty. This allows us to analytically bound
the worst-case affect of uncertainty which we can then use to generate robust inputs.

Unfortunately, these methods are overly conservative due to their reliance on these
worst-case bounds. In general, real-world uncertainties will not take on this sort
of adversarial behavior and the true functions do not uniformly follow their slope
bounds. Thus, although the guarantees of this section are robust, they are often result
in large sacrifices in performance to obtain unnecessary robustness. The following
chapters of this thesis will seek to improve performance without sacrificing safety
during deployment.
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C h a p t e r 5

LEARNING-BASED IMPROVEMENTS

“The safest way to avoid crashing your car is to never drive it.”

“Perfect is the enemy of good” - Voltaire

“All models are wrong, but some are useful.” - George Box

Robust safety guarantees typically rely on worst-case over approximations. As
discussed in Chapter 4, these powerful guarantees enable formal assurances of
safety even in the face of real-world uncertainty. However, they often achieve this by
sacrificing performance. After all, the safest car is one that never leaves the garage.

This chapter addresses the conservatism of robust safety methods by leveraging tools
from machine learning to generate preferable good behavior in place of perfect safety
guarantees with poor performance. In particular, we explore how learning can (1)
improve the underlying model by reducing the amount of required robustness, and
(2) quantify intangible safety parameters like human-tolerable risk or responsibility
levels.

Abstract

Robust safety-critical control offers a principled framework for ensuring safety in
the presence of complex uncertainty and has enabled the deployment of safety
guarantees on real-world robotic systems. Unfortunately, despite this utility, they
often rely on worst-case over-approximations of uncertainty, resulting in highly
conservative behaviors and significant compromises to system performance.

This chapter presents several learning-based approaches to reduce such conser-
vatism. Since robust formulations typically aim to bound the difference between
a model and the real world, a straightforward paradigm to improve performance
is simply to improve the model itself. With this goal in mind, Section 5.2 de-
velops an episodic learning method that models uncertainty’s effect on safety to
enable safe bipedal locomotion over stepping stones and Section 5.3 introduces a
self-supervised online learning method for estimating environment-dependent per-
ception uncertainty in a stereo vision system. Alternatively, the second half of
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the chapter leverages the mathematical structure of robust safety-critical control in
conjunction with data-driven techniques to endow controllers with an understand-
ing of intangible, human-centered concepts like desirable robustness-performance
tradeoffs (Section 5.4) and social responsibility (Section 5.5) which are key in
characterizing desired closed-loop behavior. The methods presented in this chapter
forego the theoretical guarantees of robust safety-critical control and instead use
these formulations as a tunable foundation for achieving robot behavior that is both
safe and performant.

Published content: The text for this chapter is predominately adapted from four
works: the stepping-stone discussion is adapted from [27], the stereo-vision text is
adapted from [55], the preference-based learning work is adapted from [53], and the
responsibility-learning work is adapted from [56].

5.1 Introduction
Although robust CBF-based methods have seen considerable success in maintain-
ing theoretical safety guarantees under various real-world uncertainties, such as
measurement error [51], [52], dynamics disturbances [31], [32], hierarchical con-
trol [48], [87], and sampled-data implementations [129], these approaches generally
rely on assumed bounds on uncertainty and select control actions that are robust
to worst-case, adversarial uncertainties. While some alternative methods have re-
laxed this boundedness assumption and retained theoretical guarantees by pursuing
probabilistic guarantees [21], [130], [131], we defer a more in-depth exploration
of robust probabilistic safety guarantees to Chapter 6 and instead, in this chapter,
focus on improving the performance of deterministic, bound-based methods using
machine learning techniques.

Although safety is paramount in real-world systems, overly conservative controllers
that fail to achieve performance goals are often not practically useful. As a result,
a significant body of work has moved away from formal robustness guarantees in
favor of achieving more desirable real-world behavior. In particular, many recent ap-
proaches use learning-based techniques to enable safe and performant closed-loop
behavior, even when relying on black-box function approximators. For instance,
machine learning has been used to augment model predictive control (MPC) to im-
prove performance while satisfying safety constraints under uncertainty [88], [132],
and has also been combined with control barrier functions (CBFs) to model system
uncertainty more accurately [39], reducing reliance on worst-case assumptions.
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This chapter adopts this paradigm of using machine learning to address real-world
uncertainties and extends prior methods in two key directions: (1) by learning
improved uncertainty models for high-dimensional dynamics and measurement sys-
tems, either in an episodic or online fashion, with applications to new use cases;
and (2) by learning mathematical representations of human-centered concepts that
are critical for safe and effective behavior, such as risk-performance tradeoffs and
responsibility allocation in multi-agent systems.

To explore these directions, this chapter presents four representative examples. First,
in Section 5.2, we consider a planar bipedal robot tasked with traversing a set of
stepping stones under significant model uncertainty. We apply an episodic learning
method to reduce the safety impact of that uncertainty, enabling the robot to complete
the task safely and effectively. In Section 5.3, we address measurement uncertainty
in stereo vision. We develop an online learning method that estimates the effect of
image features on the error distribution of a vision-based estimator which enables
safe operation in scenarios where general worst-case bounds would prevent effective
operation.

In Sections 5.4 and 5.5, we move beyond learning improvements to existing models
and instead focus on learning intangible, human-centered quantities. First, we apply
a Preference-Based Learning (PBL) method to tune a conservative safety filter (the
TR-OP controller, Eq. 4.39) to achieve improved performance without compromis-
ing safe behavior. Then, we consider the case of autonomous vehicles operating
in decentralized multi-agent environments with humans, and propose a method for
learning context-dependent safety constraints that reflect social responsibility while
still enabling effective system behavior.

Together, the methods in this chapter build on the robust safety frameworks devel-
oped in earlier chapters to achieve both safety and performance despite significant
real-world uncertainty. While they depart from the formal guarantees of the previ-
ous chapters, they retain the structure and interpretability of robust safety-critical
control theory. This approach allows learned models to remain meaningful and
grounded, even as they enable practical, high-performance robotic behavior under
real-world uncertainty.

5.2 Learning Dynamics Uncertainty
I first present our work on achieving safe bipedal locomotion over complex terrain.
In particular we focus on the “stepping-stone problem” where the robot’s feet must
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be placed in precise locations at each step, a difficult task made even more difficult
by the significant uncertainties in the robot’s dynamics which can lead to safety
failures unless properly accounted for.

This stepping-stone task is a historical benchmark for evaluating the safety-critical
control of biped platforms [133] that, requires dynamic gaits, due to the underac-
tuated nature of the bipedal robot. During such dynamic motion, satisfaction of
dynamic safety constraints is predicated on having perfect model information, a
requirement that impossible to meet for real-world systems. However, simply being
robust to a worst-case bound on this uncertainty would likely leave the system unable
to complete task, thus suggesting the need for model uncertainty reduction.

To attenuate the impact of model uncertainty on safety, we consider a machine
learning approach. However, one challenge in applying learning methods to robotics
is the need for diverse data capturing system behavior. While it is possible to collect
high-coverage data sets in simulated environments that accurately represent how
inputs affect the evolution of the system, collecting such data on real physical
systems may be prohibitively costly or damaging to the system. The lack of this data
can lead to challenges with under-determination in supervised learning problems
that seek to preserve the underlying structure of dynamic systems [39]. This data
sparsity leads to models with low training loss, but poor closed-loop performance
when deployed on the real system.

In this section we present an approach that overcomes these model uncertainty and
data-sparsity problems by the learning the effect of model uncertainty on safety
episodically over several rollouts. This allows us to improve the understanding of
the uncertainty iteratively across each episode, sampling the data most relevant to
the closed-loop control problem.

The contributions of this section are as follows:

• An episodic learning framework for iteratively reducing the impact of distur-
bances on the safety-critical behavior of a system.

• The first experimental demonstration of CBFs for safety-critical control on a
bipedal robot.

The text for this section is adapted from:
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N. Csomay-Shanklin, R. K. Cosner, M. Dai, A. J. Taylor, and A. D.
Ames, “Episodic learning for safe bipedal locomotion with control bar-
rier functions and projection-to-state safety,” Proceedings of the 3rd
Conference on Learning for Dynamics and Control, vol. 144, pp. 1041–
1053, 2021. [Online]. Available: https : / / proceedings . mlr .
press/v144/csomay-shanklin21a.html,

A video for this section can be found at [134].

Model Uncertainty and Projection-to-State Safety
In practice, the system dynamics (2.1) are not known during control design process
due to parametric error and unmodeled dynamics. Instead, a nominal model of the
system is utilized:

̂̇x = f̂(x) + ĝ(x)u, (5.1)

where f̂ : Rnx → Rnx and ĝ : Rnx → Rnx×nu are assumed to be Lipschitz
continuous on Rnx . By adding and subtracting the right hand side of (5.1) to (2.1),
the dynamics of the system are:

ẋ = f̂(x) + ĝ(x)u+

d(x,u)︷ ︸︸ ︷
f(x)− f̂(x)︸ ︷︷ ︸

b(x)

+(g(x)− ĝ(x))︸ ︷︷ ︸
A(x)

u, (5.2)

where the unknown disturbance d(x,u) = b(x) + A(x)u is assumed to be time
invariant, but depends on the state and input to the system. If the function h : Rnx →
R is a CBF for the nominal model (5.1) on C, the uncertainty in the dynamics directly
manifests in the time derivative of h:

ḣ(x,u) =
∂h

∂x
(x)(f̂(x) + ĝ(x)u)

︸ ︷︷ ︸̂̇
h(x,u)

+
∂h

∂x
(x)b(x)

︸ ︷︷ ︸
b(x)

+
∂h

∂x
(x)A(x)

︸ ︷︷ ︸
a(x)⊤

u. (5.3)

Given that h is a CBF for (5.1) on C, let k : Rnx → Rnu be a Lipschitz continuous
state-feedback controller such that ̂̇h(x,k(x)) ≥ −α(h(x)). Defining the projected
disturbance as:

dh(x) ≜ ḣ(x,k(x))− ̂̇h(x,k(x)) = b(x) + a(x)⊤k(x), (5.4)

yields:
ḣ(x,k(x)) ≥ −α(h(x))− dh(x). (5.5)

https://proceedings.mlr.press/v144/csomay-shanklin21a.html
https://proceedings.mlr.press/v144/csomay-shanklin21a.html
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Assuming that dh is essentially bounded in time (there exists M ∈ R, dh > 0,
such that ∥dh∥∞ ≜ ess supt≥0 ∥dh(x(t))∥ < dh), we may make use of the following
definition:

Definition 5.1 (Projection-to-State Safety (PSSf) [108, Def. 6]). Given a feedback
controller k, the closed-loop system (2.2), ẋ = f̂(x) + ĝ(x)k(x) + d(x) with
d(x) = b(x) + A(x)k(x), is projection-to-state safe (PSSf) on C with respect to
the function h and projected disturbances dh : Rnx → R if there exists dh > 0 and
γ ∈ K∞ such that the expanded set Cδ ⊃ C,

Cδ ≜ {x ∈ Rnx : h(x) ≥ −γ(∥dh∥∞)} , (5.6)

is forward invariant for all dh satisfying ∥dh∥∞ ≤ dh.

PSSf captures the fact that in the presence of model uncertainty, satisfying the CBF
condition (2.33) for the estimated time derivative ̂̇h is not sufficient for safety of C,
as the projected disturbance dh appears in the lower bound on true time derivative of
h as in (5.5). This results in a larger forward invariant set, given by Cdh , that grows
with the magnitude of the projected disturbance.

Learning Projected Disturbances
Next we explore how an estimate of the projected disturbance dh can be learned
episodically from data and incorporated into control synthesis to improve PSSf
behavior.

As in (5.5) the projected disturbance dh appears in the time derivative of the CBF
ḣ, and potentially leads to unsafe behavior since it compromises the CBF condition
(2.33). If an upper bound dh on ∥dh∥∞ is known (or determined heuristically), it
could be directly incorporated into the inequality enforced in the controller:

k(x) = argmin
u∈Rnu

1

2
∥u− kd(x)∥22 (dh-CBF-QP)

s.t. ̂̇h(x,u)− dh ≥ −α(h(x)).

While this will enforce safety of the original set C, it can be exceedingly conservative
if dh is larger than the actual projected disturbance. Furthermore, as the projected
disturbance is a function of the state, its magnitude (and possibly sign) may change
along a trajectory, leading to additional conservatism in this approach.

Instead, we consider a learning approach to resolve the impact of dh. To motivate
such an approach, consider the following setting: in an experiment, the system is
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allowed to evolve forward in time from a particular initial condition and under a
given state-feedback controller. During this experiment, data is collected which
provides a discrete-time history of the CBF, h. This time history is smoothed and
numerically differentiated to compute an approximate time history of the true value
of the time derivative of the CBF, ḣ. This yields a collection of input-output pairs:

Di = ((xi,k(xi)), ḣi) ∈ (Rnx × Rnu)× R (5.7)

whereby a dataset D = {Di}ndata
i=1 can be constructed. Given a nonlinear function

classH : Rnx → R and a loss function L : R× R→ R, a learning problem can be
specified as finding a function d̂θ ∈ H with parameters θ ∈ Rnθ to estimate dh via
empirical risk minimization:

inf
d̂θ∈H

1

N

ndata∑

i=1

L
(̂̇h(xi,k(xi)) + d̂θ(xi), ḣi

)
. (ERM)

A controller can then be synthesized which incorporates d̂θ as follows:

k(x) = argmin
u∈Rnu

1

2
∥u− kdes(x)∥22 (d̂θ-CBF-QP)

s.t. ̂̇h(x,u) + d̂θ(x) ≥ −α(h(x)).

Note that compared with the CBF-QP (2.36), the extended safe set generated by
d̂θ-CBF-QP shrinks from (5.6) to

{
x ∈ Rnx : h(x) ≥ −γ(∥dh − d̂θ∥∞)

}
. (5.8)

To implement this controller we build upon the episodic learning framework from
[39], [135] by seeking to learn dh. Our approach is outlined in Algorithm 5.2. In
each episode, the algorithm runs the current controller to collect data, learns a new
d̂θ using the newly collected data, and synthesizes a new controller. In this prior
work, which was applied to less complex dynamical systems, the collected data
was rich enough to determine a control affine structure. In many contexts, such
as bipedal robots, such a degree of diversity is infeasible without damaging the
system. We instead directly learn dh as a function of the previous controller k via
a recursive relationship, as updating the estimator leads to the definition of a new
projected disturbance d′h = b(x) + a(x)⊤k′(x). This yields a projected disturbance
dh learned iteratively by modifying d̂θ over the course of multiple episodes.
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Algorithm 5.2: Projected Disturbance Learning (PDL)

input: CBF h, CBF derivative estimate ̂̇h, model classH, loss function L,
nominal state-feedback controller k0, number of episodes T , initial condition
x0

output: Augmented Controller kT
for j = 1, . . . , T do

Dj ←experiment(x0,kj−1) // Execute experiment

d̂θ ←ERM(H,L,Dj,
̂̇h0) // Fit estimator

̂̇hj ← ̂̇h0 + d̂θ // Update derivative estimator

kj ← d̂θ-CBF-QP ( ̂̇hj) // Synthesize new controller

Bipedal Robotics: Dynamics
Next we specify the notion of learning projected disturbances to the setting of
bipedal locomotion. We briefly introduce the theory of bipedal locomotion and then
describe the barrier function formulations which allow us to achieve safe bipedal
locomotion across stepping-stones. A deeper exploration of this material may be
found in [136].

The bipedal robotic system we consider is the AMBER-3M robotic platform seen
in Figure 5.1, modeled as an underactuated, planar five-link robot with point feet
[137] whose physical parameters are reported in [138, Table 1]. The configuration
coordinates q ∈ Q ⊂ R5 are given by q = [qsf , qsk, qsh, qnsh, qnsk]

⊤, with stance
foot angle qsf , stance knee angle qsk, stance hip angle qsh, non-stance hip angle qnsh
and non-stance knee angle qnsk. The continuous-time equations of motion, derived
from the Euler-Lagrange equations as in (3.5), are given by:

D(q)q̈+C(q, q̇)q̇+G(q) = Bu, (5.9)

where D(q) ∈ S5
++ is the positive definite mass-inertia matrix, C(q, q̇) ∈ R5×5

contains the centrifugal and Coriolis forces, G(q) ∈ R5 contains the gravitational
forces,B ∈ R5×4 is the actuation matrix, andu ∈ U ⊂ R4 is the input. For AMBER-
3M, the number of inputs is one fewer than the degrees of freedom, meaning the
system has one degree of underactuation.

Taking pv : Q → R to represent the vertical position (height) of the swing foot, the
admissible states are given by the domain D = {(q, q̇) ∈ TQ | pv(q) ≥ 0}. The
switching surface on which the impact events occur, also known as the guard, is
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defined by:

S = {(q, q̇) ∈ TQ | pv(q) = 0, ṗv(q, q̇) < 0} ⊂ D. (5.10)

With the full system state given by x = (q, q̇) ∈ TQ, the impact dynamics [139] are
defined by a reset map ∆ : S → D relating pre-impact states x−(t) ≜ limτ↗t x(τ)

and post-impact states x+(t) = limτ↘t x(τ) via x+(t) = ∆(x−(t)). Combining
these concepts and rearranging (5.9) into control affine form yields the following
hybrid control system:

HC =




ẋ = f(x) + g(x)u x− ∈ D \ S,
x+ = ∆(x−) x− ∈ S.

(5.11)

Bipedal Robotics: Control
Our control scheme for the planar AMBER-3M bipedal robot centers around a
phasing variable, τ : Q → [0, 1], given by:

τ(q) =
δhip(q)− δ+hip
δ−hip − δ+hip

, (5.12)

where δhip : R5 → R defined as δhip(q) = [−lt− lf , −lf , 0, 0, 0]q is the linearized
hip position with lt and lf the length of the robot’s tibia and femur, respectively. The
constants δ+hip and δ−hip are the linearized hip positions at the beginning and the end
of a step, ensuring that τ(q) increases monotonically in time within a step. Desired
trajectories resulting in walking gaits for the robot can be rapidly synthesized via a
hybrid zero dynamics framework [62], [136]. We are now well equipped to define
the relative degree 2 (see Def. 3.9) outputs y : Q → R4 as the difference between
the actual output ya and the desired output trajectory yd:

y(q,α) ≜ ya(q)− yd(τ(q),α), (5.13)

with α being the coefficients of a Bézier polynomial coming from the trajec-
tory generation step. The actual output is given by the actuated coordinates:
ya(q) =

[
04×1 I4×4

]
q. The nominal controller for this system is then given

by the proportional-derivative controller kd(x) = kPD(x) ≜ −KPy(q)−KDẏ(q)

with positive definite proportional gain matrices KP ∈ S4
++ and derivative gain

KD ∈ S4
++.
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Robot schematic and stepping stone definition.
Figure 5.1. (Left): Schematic diagram of the AMBER-3M robot with position coordinates. (Cen-
ter): Schematic of the foot placement in the stepping-stone problem. The boundaries of virtual
stepping-stones are captured via the blue and orange vertical lines. (Right): Virtual stepping stone
width as function of the phase variable τ(q).

Stepping-Stone CBFs
The stepping-stone problem is encodd through the use of virtual stepping-stones,
which shrink over the course of a step to confine foot placement to a safe region
defined on a targeted stone as in [25]. The safety criteria used to specify these foot
position constraints are given by:

h1(q) = R(τ(q))− (Ox − Fx(q)), (5.14)

h2(q) = R(τ(q)) + (Ox − Fx(q)), (5.15)

whereFx(q) is the horizontal position of the swing foot andOx > 0 is the horizontal
position of the center of stepping-stone. The virtual stone width is given by the
function R : R→ R:

R(τ(q)) =
ar − 1

1 + ar(e−m(τ(q)−1) − 1)
+ 1 + r (5.16)

wherem > 0 determines the decay rate of the barrier function, (1+a)r is half of the
targeted stone width, and 1+r defines the half the width of the virtual stepping-stone
when τ = 0. These functions are visualized in Figure 5.1. The safety constraints can
be interpreted as keeping the swing foot horizontal position in an interval centered
at the middle of the stepping-stone, where the interval shrinks as τ increases. As
this formulation of CBFs is position-based and therefore relative degree two, we
employ the exponential control barrier function (ECBF) extension technique [75] to
both CBFs to attain the relative degree 1 CBFs: he,i(x) ≜ Lfhi(x) + αehi(q).

Combining the episodic learning frame work and the stepping stone CBFs with f̂

and ĝ being the nominal model in (5.11), the final Stepping Stone QP (SS-QP)
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controller combines the robustifying term of (d̂θ-CBF-QP) with the stepping-stone
ECBF extensions of (5.14) and (5.15):

k(x) = argmin
u∈Rnu

1

2
∥u− kPD(x)∥22 (SS-QP)

s.t. L2
f̂
h1(x) + LĝLf̂h1(x)u+ αeLf̂h1(x) + d̂θ,1(x) ≥ −α(he,1(x))

L2
f̂
h2(x) + LĝLf̂h2(x)u+ αeLf̂h2(x) + d̂θ,2(x) ≥ −α(he,2(x)).

We assume that this SS-QP is feasible and we encountered no infeasibilities in
simulation or experimentation.

Simulation and Experimental Validation
Next, we apply our episodic learning framework (Algorithm 5.2) to the AMBER-3M
platform in both simulation with injected model uncertainty and on hardware with
the model error inherent to real-world systems. In each instance the estimator d̂θ
was implemented as a neural network with two hidden layers of 50 hidden units
using the ReLU activation function. The network was trained minimizing mean
absolute error using mini-batch gradient descent. Mean absolute error was chosen
over other loss functions for its robustness to outliers. The same controller (SS-QP)
was deployed in the RaiSim [140] simulation environment and on the AMBER-3M
hardware platform, as seen in the supplementary video [134].

Simulation: The controllers and learning algorithm were first validated in simulation.
Model error was introduced by increasing the inertia of all limbs on the true model
by a factor of ten while maintaining constant mass. Due to the underactuated nature
of the robot and the relationship between step length and zero dynamics stability,
not every set of stepping stones is navigable, even if safety is perfectly enforced
with respect to the CBFs. Therefore, a feasible stepping stone configuration was
first generated for the robot to traverse with stones of 4 cm in width. Without
knowledge of the modified model (d̂θ,1(x) = d̂θ,2(x) = 0), the controller did not
satisfy the stepping-stone safety criteria (5.14-5.15), with a maximum violation at
foot placement of 2.0 cm, causing the robot to miss the stepping stone and fall
over. Three episodes of the PDL algorithm were run, after which the maximum
violation was reduced to be 0.3 cm, only 15% of the original violation. Additionally,
the dh-CBF-QP controller was implemented, which ensured safety but resulted in
extremely conservative behavior, resulting in poor qualitative walking, i.e., harsh
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Figure 5.2. Simulation (S) and Hardware (H) data where model mismatch causes violations. (Far-
Left): Simulation where the barrier functions h1 (solid blue) and h2 (solid orange) are enforced via
a 2.36. The dh-CBF-QP is also shown for dh1 (dashed blue) and dh2 (dashed orange), which results
in more conservative behavior over many steps. (Mid-Left): After three episodes of learning the
SS-QP in simulation, the maximum barrier violation decreases from 2.0 to 0.3 cm. (Mid-Right):
Hardware where the barrier functions h1 (blue) and h2 (orange) enforced via a 2.36. (Far-Right):
After two episodes of learning on hardware, the maximum barrier violation decreases from 9.2 to
1.9 cm via the SS-QP.

foot strikes and an over-bending torso. A comparison of the barrier functions h1
and h2 over the steps with these controllers can be seen in Figure 5.2.

Hardware: The same nominal model for the robot was used in the hardware exper-
iments as in simulation, with model uncertainty resulting from significant friction
in the joints, imperfect mass and inertia measurements, and several other sources.
Algorithm 5.2 was implemented on the AMBER-3M robot across a sequence of
two episodes. The controllers ran on an off-board i7-6700HQ CPU @ 2.6GHz with
16 GB RAM, which computed desired torques and communicated them with the
ELMO motor drivers on the 137 cm tall, 22 kg robot. The motor driver communi-
cation ran at 2kHz, and the SS-QP ran at 1kHz. The stepping stone configuration
was specified to the controller with stones of 8 cm in width. As with simulation, the
CBF-QP resulted in a maximum violation of the barriers of 9.2 cm due to model
error. After running the PDL algorithm for two episodes, the maximum violation
of the barriers was 1.9 cm, only 21% of the original violation, as depicted in Figure
5.2. Gait tiles for this improved traversal of the stepping stones are shown in Figure
5.3.

Conclusion
Here, instead of trying to add robustness to all possible disturbances as in Chapter
4, we presented an episodic learning approach for reducing the impact of model
uncertainty on safety-critical control using CBFs. Our method is able to learn
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Figure 5.3. Gait tiles for Episode 2 of learning showing the AMBER-3M robot safely traversing a
set of stepping stones. Notice the change in step width and added lean of the torso induced by the
barrier functions.

a projected disturbance and incorporate the learned model information into an
optimization-based controller, as demonstrated in both a high-fidelity simulation
and on the AMBER-3M planar bipedal robot hardware platform. Although Algo-
rithm 5.2 improved the safety and performance in our experiments, future work
involves analyzing the theoretical convergence properties of this algorithm to ensure
that trajectories remain close to previously-seen data points to reduce the effect of
generalization error.

5.3 Learning Measurement Uncertainty
Next, I present our work on achieving safe behavior in unstructured environments
by estimating measurement uncertainty a computer vision module using online,
self-supervised learning.

Computer vision has become an important tool in robotics for sensing environ-
ments and identifying obstacles. Despite its utility and ubiquity in robotics, using
vision sensors to achieve robust safety is difficult due to the complex environment-
dependent error that they generate. For example, error patterns are highly correlated
with the textures and appearance of a scene. Supervised methods can identify and
model error as it affects safety [27], [39]; however, supervised approaches require
ground-truth training data that may be difficult or impossible to obtain for the diver-
sity of potential environments that a robot could experience during deployment.

To overcome these problems of environment-dependent measurement uncertainty,
we develop an online, self-supervised learning method [141], inspired by successful
demonstrations of online learning in robotics [142]–[144], that is capable of captur-
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ing and accounting for the environment-dependent uncertainty during closed-loop
deployment. By actively capturing the effects of the current environment, we can
significantly reduce the conservatism by only requiring robustness with respect to
the current environment, not with respect to all possible environments.

The contributions of this section are as follows:

• An online, self-supervised method for characterizing the uncertainty of dis-
parity errors generated by stereo vision algorithms in novel environments.

• A robustified CBF-based control method which utilizes this error estimate for
obstacle avoidance.

• Demonstrations of the proposed methods of error estimation and obstacle
avoidance on a quadrupedal robot operating in real time.

The text for this section is adapted from:

R. K. Cosner, I. D. J. Rodriguez, T. G. Molnar, W. Ubellacker, Y. Yue,
A. D. Ames, and K. L. Bouman, “Self-supervised online learning for
safety-critical control using stereo vision,” 2022 International Confer-
ence on Robotics and Automation (ICRA), pp. 11 487–11 493, 2022.
doi: 10.1109/ICRA46639.2022.9812183,

A video for this section can be found at [145].

Stereo Vision Uncertainty Quantification
We begin by reviewing stereo vision, a popular tool for determining depth from
images. These methods compute a disparity: the shift observed in an object’s
projection onto two camera planes. Using a geometric understanding of the camera
setup, pixel-based disparity maps can be converted to depth maps. Errors in the
final depth-map result from a combination of pixel-mismatch in disparity estimation
and error in the camera parameters used to convert from disparity to depth. The
errors in the intrinsic and extrinsic parameters of the camera are usually small and
their effect on the resulting depth distribution is easy to compute. On the other
hand, pixel-matching errors are much larger and are the result of a much more
complicated stereo matching procedure whose effect on the resulting disparity is
difficult to quantify and heavily environment-dependent.

https://doi.org/10.1109/ICRA46639.2022.9812183
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For standard stereo vision we adopt the model from [146] for two cameras (left
and right) and assume that they are perfectly rectified, vertically aligned and evenly
spaced with known distance b ∈ R>0 between each camera. Pixel coordinates
within an image are given by the tuple p ≜ (u, v) ∈ K, where K ≜ {0, . . . ,W} ×
{0, . . . , H} for image width W ∈ N>0 and image height H ∈ N>0.

Stereo algorithms such as block matching, semi-global block matching, and effi-
cient large-scale stereo [147] compute disparities by determining the discrete pixel
distance between matching regions of two images. Since the disparity represents a
shift between pixels of two images, the measured disparity d̂must be a finite integer
value. Assuming that the true disparity d is a finite integer implies that the error
e ≜ d̂− d must also be a finite integer1.

To learn the error in disparity, we introduce a three-camera multibaseline stereo
system which produces multiple disparity maps that are related through simple
functions; deviations from the ideal relationship indicate error in the estimated
disparities. By analyzing the correlation of image contents with these errors, a
function that estimates disparity error from appearance is learned and used to specify
state error-bounds in real-time for use in a robustified CBF.

We introduce a three-element camera system, whose central camera is assumed to
be perfectly rectified and vertically aligned with the other two cameras. This third
camera is placed between the left and right cameras such that it has a baseline of b/2
with both. The three cameras produce a time-synchronized grayscale image triple
(I1, I2, I3) where Ii ∈ NW×H for i ∈ 1, 2, 3 and 1, 2, 3 correspond with left, center,
and right, respectively. The disparity between any image pair (Ii, Ij) for i < j is
obtained using the stereo-vision algorithm Disp : NW×H × NW×H → ΓW×H , so
that d̂i,j = Disp(Ii, Ij). Here, Γ ⊂ N≥0 is the set of possible disparity values.

Given the measurement d̂i,j , the error appears as d̂i,j = di,j + ei,j with error dis-
tribution ei,j ∼ P(Ii, Ij) and true disparity di,j ∈ ΓW×H . We model this error
as a discrete random variable with probability P(Ii, Ij) on ΓW×H . This model of
disparity errors contrasts sharply with other common error models, such as punc-
tual observation, uniform observation, and Gaussian observation [146], in that it
accounts for the discrete nature of stereo-pixel matching algorithms. If ground-
truth knowledge of di,j is obtainable, then supervised learning methods can be
implemented to directly estimate this error term. However, it is often the case that

1Prior work has been done to interpolate disparities for non-integer subpixel accuracy [148];
however, we restrict our attention to integer disparity values to highlight the error in pixel-matching.
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ground-truth knowledge is unavailable; particularly when a domain transfer must
occur during operation. Thus we seek a general method to estimate ei,j andP(Ii, Ij)
as functions of the input image for any black-box disparity algorithm without the
need for ground-truth data.

We leverage the known geometric relationships between the three cameras to learn
a mapping between image appearance and disparity error distribution that can adapt
during operation in new environments. Given a multibaseline stereo system, if one
ignores occlusions, it is possible to completely reconstruct each disparity map from
the other two maps. The relationship to reconstruct d̂1,3 from d̂1,2 and d̂2,3 is shown
in Algorithm 5.3; we denote this reconstruction2 as d1,3 ≜ d̂1,2 ⊕ d̂2,3.

Algorithm 5.3: Disparity Reconstruction: d1,3 = d̂1,2 ⊕ d̂2,3
d1,3 ← 0H×W
for v ∈ [1, ..., H] do

for u ∈ [1, ...,W ] do
û← n+ d̂1,2(u, v)

d1,3(u, v)← d̂1,2(u, v) + d̂2,3(u, v̂)

We use the reconstructed disparity d1,3 to learn the parameters θ of a functionPθ that
approximates the error distribution P (refer to Algorithm 5.4). Since this method
does not require ground truth information, Algorithm 5.4 can be run online during
operation to adapt Pθ to new visual environments; however its lack of ground truth
information means that this algorithm cannot learn constant bias in the error and
assumes that the uncertainty distribution is zero-mean.

Recall that the disparity error, e1,3 is discrete in nature. Therefore, the pixel-wise
reconstruction error re(p) ≜ ∥d̂p1,3 − d

p

1,3∥1 will also be discrete. For this reason,
optimizing the loss L in Alg. 5.4 reduces to a pixel-wise classification problem
similar to image segmentation. Thus, as is done in image segmentation, we use
pixel-wise cross entropy as the loss function. This method is shown in Algorithm
5.4.

In algorithm 5.4, for each pixel p of the disparity d̂1,3 the corresponding reconstruc-
tion error is computed. The loss function in algorithm 5.4 is then equivalent to

2I recognize that this is an abuse of notation with the Minkowski sum. In this thesis ⊕ indicates
the Minkowski sum between sets and Algorithm 5.3 between disparity maps.
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Algorithm 5.4: Self-Supervised Stereo Error Estimation Adaptation
L← 0
while robot is running do

(I1, I2, I3)← Capture Current Frame
(d̂1,2, d̂2,3, d̂1,3)← (Disp(I1, I2),Disp(I2, I3),Disp(I1, I3))
d1,3 ← d̂1,2 ⊕ d̂2,3
re(p)←

∣∣∣d̂p1,3 − d
p

1,3

∣∣∣
L← − 1

H×W
∑

p E1(re(p))[logPθ(Ii, Ik)]
θt+1 ← θt − η ∂L∂θ

the expected negative log likelihood of each pixel under the proposed model Pθ.
An example visualization of lines 3 − 8 can be found in Fig. 5.4. Although this
algorithm focuses on the reconstructed disparity d1,3, it can be easily extended to
similar reconstructions of d1,2 and d2,3.

This approach of estimating the uncertainty distribution on the measurement error
is similar to that of [149], but does not require ground truth information and instead
requires a zero-mean assumption on the uncertainty distribution.

Safe Stereo Vision-Based Control
Next, we propose a CBF-based control strategy that relies directly on the measure-
ments of the stereo system and which incorporates the proposed self-supervised
error estimates to enforce robust safety.

First, we construct CBFs for safe vision-based control. Let ρp ∈ R3 represent the
true three-dimensional position of the portion of the scene which generated pixel p.
Using this, we can define a CBF h : Rn×R3 → R that relies on both the state x and
three dimensional pixel position ρp. The pixel position is a geometric function of
the true disparity, ρp = T(x, r(p, dp1,3)) where r : N2 × N is the stereo reprojection
function and T : Rn × R3 → R3 is the transformation mapping from the robot’s
state and relative pixel position to global pixel position.

In order to relate the output of the stereoscopic sensor with safety, we assume that
the environment is static and that it is sufficient to enforce safety with respect to the
currently measured pixel locations ρp for all p ∈ K.

To combine the pixel-wise constraints, we apply Boolean composition to each CBF
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Figure 5.4. Lines 3-8 of algorithm 5.4 illustrated from left to right. Starting from three time-
synchronized images three pairwise disparities are computed as shown in the middle column. Two of
these disparities are used to build a reconstruction of the third disparity shown in the top right which
can then be used to estimate the pixel-wise error of the stereo algorithm shown in the bottom right
image. These steps of the algorithm correctly identify that the back of the closest chair is a high-error
region without using ground truth information. This information is used to learn a correspondence
between visual features and error distributions.

h to produce a single nonsmooth CBF hns,

hns(x) ≜ min
p∈K

h(x, ρp), (5.17)

and simply enforce the CBF constraint associated with the pixels whose CBFs have
the smallest value [92]. In particular, to achieve safety it is sufficient to enforce only
the constraints whose indices appear in the locally-encapsulating index set:

Λ = {p ∈ K : h(x, ρp) ≤ hns(x) + δ}, (5.18)

for some δ > 0, as stated formally in [92, Prop. III.6]. For our application, this
proposition indicates that enforcing the CBF condition only for the “least safe" pixel
is sufficient to ensure safety.

Robustness to Vision-based Uncertainty
Error in the disparity propagates to the controller in the form of the measured 3D
pixel position ρ̂p. The measured value ρ̂p lies in a neighborhood Ep of the true value
ρp, which is characterized by the error distribution P(Ii, Ij). We assume that the
distribution P(Ii, Ij) is zero-mean and symmetric about the measured value and
define the pixel-wise uncertainty set:

Ep ≜
{
ρ ∈ R3

∣∣∣∣
ρ = T(x, r(p, ξ)), ξ ∈ Γ

Pθ{e1,3(p) < |ξ − d̂(p)|; I1, I3} ≥ σ

}
(5.19)

where σ > 0 is a parameter defining the desired uncertainty robustness.
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To achieve safety, one must determine which pixels are safety-critical given Ep and
then enforce robust safety with respect to those pixels. The safety-critical pixels can
be determined by expanding the index set Λ using the uncertainty:

Λ ⊆
{
p ∈ K

∣∣∣∣h(x, ρp) ≤ max
ρp∈Ep

min
p∈K

h(x, ρp) + δ

}
. (5.20)

This can further be expanded to an easily calculable index set Λ̂ ⊇ Λ by minimizing
the left-hand-side of the inequality condition and using the max-min inequality [64]:

Λ̂ =

{
p ∈ K

∣∣∣∣ min
ρp∈Ep

h(x, ρp) ≤ min
p∈K

max
ρp∈Ep

h(x, ρp) + δ

}
. (5.21)

This expanded index set Λ̂ accounts for uncertainty and indicates which pixels are
safety-critical and which constraints must be enforced to achieve safety given the
pixel-wise uncertainty sets Ep.

Measurement-Robust Control Barrier Functions (MRCBFs) as outlined in [51] and
Section 4.2 of this thesis are a general method for accounting for state uncertainty
in CBFs. We can use this method for each pixel p ∈ Λ̂ to ensure that the safety
constraint is satisfied despite the uncertainty. The resulting constraint is:

Lfh(x, ρ̂p) + Lgh(x, ρ̂p)u −
(
LLfh + Lγ◦hns + LLgh∥u∥2

)
ϵp ≥ −γ(hns(x)),

(5.22)

for all p ∈ Λ̂ where L is the Lipschitz constant of the subscripted function and

ϵp ≥ max
ρp∈Ep

∥ρp − ρ̂p∥2 (5.23)

is a quantile bound on the pixel position error. Since Λ ⊆ Λ̂ and the MRCBF
condition implies the CBF condition (2.33), satisfying (5.22) also satisfies the CBF
condition for each pixel providing safety of the system if σ = 1 and Pθ = P .

Application to Quadruped Obstacle Avoidance
We evaluate our approach on a Unitree A1 quadruped. With these experiments we
aim to demonstrate: 1) our method is capable of keeping the system safe in a simple
do-not-collide task, and 2) our method can adapt online to measurement uncertainty
in different environments without ground-truth data.

For the hardware experiments we designed a custom camera array with three equally
spaced inexpensive CMOS, global shutter, time-synchronized Arducam cameras.
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An Nvidia Jetson Nano is used to capture, downsize, and greyscale the stereo
images. The images are then sent to an external computer that receives the images
and outputs the filtered control input at a frequency of at least 10 Hz. The robot
receives virtual inputs of velocity and angle rate, u =

[
v ω

]⊺
and uses a 1 kHz

Inverse Dynamics Quadratic Program (ID-QP) walking controller designed using
the concepts in [95] to track these virtual inputs. Stereo pixel-matching calculations
were performed using Efficient LArge-scale Stereo (ELAS) [147].

The architecture of the model used to estimate Pθ is a modified version of the
Hierarchical Multi-Scale Attention for Semantic Segmentation introduced in [150];
this model is relatively lightweight, consisting of only 196 thousand parameters.
The robustness threshold used was σ = 0.99 and the online learning rate was 0.001.
We pretrain the model until convergence on a dataset of 6000 stereo image triples
collected by manually moving the camera array through a variety of environments.

In order to control the system we consider a reduced-order model of the system
dynamics given by the standard unicycle model (3.16). A formal analysis of CBFs
which utilize reduced-order velocity input models is described in Section 3.3 and
[48].

For this system we consider the pixel-wise CBFs,

h(x, ρp) =
1

2



∥∥∥∥∥

[
x

y

]
−
[
ρp,x

ρp,y

]∥∥∥∥∥

2

2

− c2

 (5.24)

where ρp,x and ρp,y indicate the global real-world x and y positions of pixel p. This
function characterizes safety as remaining a planar distance c > 0 from ρp. This
can be thought of as buffering surfaces in the environment by a radius c.

To illustrate the efficacy of our method we use two controllers in our experiments.
A standard, unrobustified controller:

kcbf(x) = argmin
u∈R2

1

2
∥kdes(x)− u∥22 (5.25)

s.t. −
[
1 0 0

]⊺
r(p, d̂p)v

︸ ︷︷ ︸
ḣ

≥ −γ(min
p∈K

h(x, ρ̂p)), ∀p ∈ Λ
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and a robustified controller:

k∗
cbf(x) = argmin

u∈R2

1

2
∥kdes(x)− u∥22 (5.26)

s.t. − v ≥ −γ(minp∈K h(x, ρ
∗
p))[

1 0 0
]⊺
r(p, d∗p)

, ∀p ∈ Λ̂,

where kdes : Rm → Rn is a desired controller, d∗ is the maximum disparity for any
ρp ∈ Ep, and ρ∗p is pixel location associated with d∗p.

Controller (5.26) is obtained by first replacing the index set Λ with the Λ̂. Next
we note that

[
1 0 0

]⊺
r(p, d̂p) is strictly positive. After dividing by this quantity,

the constraint in (5.25) is robustified to account for the worst-case error as is done
with MRCBFs. Experimentally, this controller was implemented with δ = 0 and a
maximum of 4000 constraints.

The system was run in 4 different environments (see Fig. 5.5). The CBF (5.24)
was used with a safe radius of c = 0.33 m. The intended obstacle in the 4 different
environments were (A) a tree, (B) a backpack, (C) a chair, (D) and a glass window. A
desired constant forward velocity v = 0.2 m/s was used in each experiment and the
robot was started approximately 1.3 m away from the obstacle. Since ground-truth
measurements were unavailable, we use a yellow line on the ground to indicate the
true location of the barrier.

For each environment three different tests were performed. First, controller (5.25)
was used. Since this did not consider measurement uncertainty it failed to achieve
safety in every environment; in all experiments the stereo vision overestimated the
distance to objects at some point during the run and the quadruped ran directly
into the obstacles. Second, the controller (5.26) was used with an error estimate
computed through a fixed, pretrained error distribution estimate Pθ; this succeeded
in providing safety, but was found to be overly conservative and did not allow the
quadruped to approach the obstacle as desired. Third, the controller (5.26) was used
with a Pθ that adapted to the environment according to Algorithm 5.4. In this case,
safety of the system was generally maintained and over time the system was able to
approach the boundary of the safe set. Even when small safety violations occurred,
the system eventually corrected and came to rest at a safe steady-state. These results
can be seen in Figure 5.5. A video of the experiments can be found at [145].
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Figure 5.5. Demonstration of our method in a variety of environments. From left to right the
goal is to maintain a safe distance from (A) a tree, (B) a backpack, (C) a chair, (D) and a glass
window. The distance to the barrier is measured and marked on the floor with a yellow tape for
visualization purposes – we emphasize this tape is not used for depth estimation. Notice that the
barrier is assumed to be a sphere around an obstacle but in the case on the glass, this sphere
degenerates into a plane. The quadrupedal robot is given a desired control input of 0.2 m/s. In
all cases, a naive barrier implementation that simply takes the noisy measurements from a stereo
vision system fails to keep the system safe. The robustified controller (5.26) with a pretrained model
consistently shows overly conservative behavior. Finally, with online learning, the robot converges
to the barrier without exhibiting conservative behavior, except for the glass environment where the
robot is overly conservative and walks away from the barrier due to the perceived uncertainty. The
(A-D) corresponding plots below show the control input filtered by the barrier in each of the three
robustification cases.

Conclusion
In this section, we presented a framework for achieving safety of a stereo vision-based
system using self-supervised online uncertainty estimation and robustified CBFs.
Refining the uncertainty estimate model online was shown to achieve significantly
better performance than when a worst-case bound was used that was required to
hold for all environments. We validated our approach across several environments
and successfully achieved robust safety with minimal violations and conservatism.
While the method in this chapter had limited applications to stereo vision systems,
I believe that this method of determining environment-dependent error bounds is
a useful way forward to achieve behavior that achieves performances goals while
being sufficiently robust when the environment demands it.
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5.4 Learning Preferred Robustness
Despite the utility of the uncertainty-learning methods of the previous two sections,
these approaches assume the existence of reasonably accurate models. However, in
many robotics applications, “preferred” behavior and “preferred” levels of robust-
ness are difficult to define mathematically and are intangible concepts for which we
do not have a priori models. In such cases, rather than reducing model inaccuracies,
it may be more appropriate to learn behavior improvements directly from human
preferences.

With the goal of identifying user preferences, preference-based learning (PBL)
has shown to be a powerful tool for converting subjective user preferences into
quantitative adjustments to design parameters. When used in an online, episodic
fashion, PBL is capable of interactively inferring a user’s latent utility function using
only subjective feedback such as pairwise preferences and ordinal labels [151]–
[153]. For applications with actions that may be classified as safe or unsafe, safety-
critical PBL algorithms have been demonstrated to prevent unsafe actions from being
sampled [154], [155]. However, these safety-critical algorithms require worst-case
approximations which may cause performant and safe actions to be characterized
as catastrophically unsafe. Thus, we seek to formulate a safety-aware approach to
PBL that generally avoids unsafe actions without being overly conservative.

In this section we, we use PBL to determine the desirable parameter values for robust
safety-critical control using the TR-OP controller (4.39), thus creating an algorithm
that is able to identify the user-preferred behavior of the closed-loop system by
iteratively adjusting its robustness levels.

The contributions of this section are as follows:

• The Safety-Aware LineCoSpar (SA-LineCoSpar), a modified version of Line-
CoSpar [156] capable of high-dimensional preference-based Bayesian opti-
mization while also accounting for safety in the learning process.

• Demonstrations of Safety-Aware LineCoSpar in conjunction with the TR-OP
controller (4.39) (the contribution of Section 4.3) to achieve safety-critical
control of a quadrupedal robot in simulation and hardware in laboratory and
outdoor settings.

• The first use of PBL to tune a CBF controller.

The text for this section is adapted from:
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R. K. Cosner, M. Tucker, A. J. Taylor, K. Li, T. G. Molnar, W. Ubel-
lacker, A. Alan, G. Orosz, Y. Yue, and A. D. Ames, “Safety-aware
preference-based learning for safety-critical control,” Proceedings of
The 4th Annual Learning for Dynamics and Control Conference, Pro-
ceedings of Machine Learning Research, vol. 168, pp. 1020–1033,
2022. [Online]. Available: https://proceedings.mlr.press/
v168/cosner22a.html,

A video for this section can be found at [126].

Safety-Aware LineCoSpar
Preference-Based Learning (PBL) provides an approach for searching complex pa-
rameter spaces via subjective feedback, without an explicitly defined reward func-
tion. This is particularly relevant for safety-critical systems and tuning the robust-
ness parameters of the TR-OP controller (4.39), as quantifying the user-preferred
trade-off between robustness and performance is difficult. Moreover, poorly de-
fined reward functions often result in “reward hacking” [157], in which undesirable
actions achieve high rewards. Here, we propose Safety-Aware LineCoSpar (SA-
LineCoSpar), outlined in Algorithm 5.5. This is a modification of the LineCoSpar
algorithm [156], which iteratively selects actions to query the user for subjective
feedback and updates its belief of the user’s underlying utility function via Bayesian
inference.

Problem Setup: Let a denote an action, such as a collection of l parameters used
in a feedback controller, that takes values in a finite search space A ⊂ Rl. We
assume that each action a ∈ A has an unknown utility to the user, defined by a
function r : A→ R. These utilities are given by rA = [r(a1), . . . , r(a|A|)]

⊤ ∈ R|A|.
In each iteration, s ∈ N actions are sampled from A and executed. Then, the
user is queried for two forms of feedback: pairwise preferences and ordinal labels,
describing performance and safety, respectively. This feedback is collected into
dataset D.

Modeling the Utility Function: Since collecting an exhaustive dataset to estimate
the unknown utility rA is expensive for non-trivial action spaces, we use Bayesian
optimization (BO), a sampling efficient paradigm for identifying the optimizer. In
BO, rA is modeled as a Gaussian process with priorN (0,Σpr), where each element
of the covariance matrixΣpr ∈ S|A|×|A|

≻0 is computed asΣpr
ij = k(ai, aj)with a kernel

function k : A×A→ R and ai ∈ A denoting the ith action in A. We select k to be

https://proceedings.mlr.press/v168/cosner22a.html
https://proceedings.mlr.press/v168/cosner22a.html
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the squared exponential kernel, yielding a prior given by the multivariate Gaussian:

P(rA) =
1

(2π)|A|/2|Σpr|1/2 exp
(
−1

2
r⊤A(Σ

pr)−1rA

)
. (5.27)

Given a dataset D, the posterior is proportional to the likelihood and the prior by
Bayes’ theorem, i.e., P(rA | D) ∝ P(D | rA)P(rA). We denote the maximum
a posteriori (MAP) estimate of the posterior by r̂A ∈ R|A|, which is defined as
r̂A ≜ argmaxrA∈R|A|P(rA | D), noting that r̂A is equivalent to the minimizer of
S(rA) = − ln(P(D | rA)) + 1

2
rTA (Σ

pr)−1 rA. As is common in BO, we model the
posterior as a multivariate Gaussian centered at r̂A with the covarianceΣA ∈ S|A|×|A|

≻0

defined as ΣA = (∂
2S
∂r2A

(r̂A))
−1 [158]3. Additionally, we can improve tractability of

calculating r̂A by reducing the action space A to a subset S ⊂ A, forming a
partial characterization of the utilities denoted by P(rS | D) ≈ N (r̂S,ΣS), with
rS, r̂S ∈ R|S|.

Preference Likelihood Function: A pairwise preference is defined as a relation be-
tween two actions a1, a2 ∈ A, where a1 ≻ a2 if action a1 is preferred to a2. Since
user preferences are expected to be corrupted by noise, we model individual pairwise
preferences via a likelihood function:

P(a1 ≻ a2|r(a1), r(a2)) = gp

(
r(a1)− r(a2)

cp

)
, (5.28)

where gp : R → [0, 1] is any monotonically-increasing link function, and cp ∈
R>0 accounts for preference noise. We select gp to be the sigmoid function, i.e.,
gp(x) = 1/(1 + e−x). Assuming conditional independence, the likelihood function
for a collection of K ∈ N preferences, Dp, can be modeled as the product of each
individual preference likelihood:

P(Dp|r(a11), r(a12), · · · , r(aK2)) =
K∏

k=1

P(ak1 ≻ ak2|r(ak1), r(ak2)), (5.29)

where ak1, ak2 ∈ A are the preferred and non-preferred actions, respectively, in the
kth preference.

Ordinal Likelihood Function: We partition the action space into “unsafe” and “safe”
actions by leveraging the ordinal nature of these definitions (i.e., unsafe actions
are always considered worse than safe actions). A user provides this feedback as

3This is known as the Laplace approximation of the distribution P(rA | D), i.e., P(rA | D) ≈
N (r̂A,ΣA).
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an ordinal label, which assigns an action to a discrete ordered category such as
“bad” and “good” [159]. While ordinal labels can be generalized to any number of
ordinal categories (c.f. [160]), we utilize just two categories to represent “unsafe”
and “safe.” In this case, the action space is decomposed into two disjoint sets,
A = O1 ∪ O2, with a ∈ O1 if r(a) < β and a ∈ O2 if r(a) ≥ β, with the ordinal
threshold β ∈ R. As with preferences, we assume that ordinal label feedback is
corrupted by noise and is modeled as:

P(a ∈ O1 | r(a)) = go

(
β − r(a)

co

)
, P(a ∈ O2 | r(a)) = 1− go

(
β − r(a)

co

)
,

(5.30)

where go : R→ [0, 1] is any monotonically-increasing link function and co quantifies
the noise in the ordinal label feedback. Again, we select go to be the sigmoid function
go(x) = 1/(1 + e−x). Assuming conditional independence of ordinal label queries,
the likelihood function for a collection ofM ∈ N ordinal labels, Do, can be modeled
as the product of each individual ordinal likelihood:

P(Do | r(a1), · · · , r(ak)) =
M∏

k=1

P
(
ak ∈ Oo(k) | r(ak)

)
, (5.31)

where ak ∈ A refers to the action corresponding to the kth ordinal label, o(k) ∈
{1, 2}. For our simulation and experiments, the hyperparameters cp, co, β are
determined in advance. Lastly, assuming conditional independence of the feedback
mechanisms, the combined likelihood function is calculated as the product of the
individual likelihoods, P(D | r) = P(Dp | r)P(Do | r).

Sampling New Actions: In the first iteration (i = 1), s ∈ N actions are sampled ran-
domly from A, recorded as the set of visited actions V1 = {a(1)

1 , . . . , a
(s)
1 }, executed

on the system, and the preferences and ordinal labels are collected into a dataset D1.
In each subsequent iteration (i > 1), s new actions are sampled using Thompson
sampling, which is shown to have desirable regret minimization properties [161].
Ideally, Thompson sampling draws s samples from the posterior P(rA | Di−1), i.e.,
r(j) ∼ P(rA | Di−1) for j ∈ {1, . . . , s}, and the action a

(j)
i ∈ A maximizing each

r(j) is selected to execute on the system. These sampled actions {a(1)
i , . . . , a

(s)
i }

are concatenated with Vi−1 to produce Vi, executed on the system, and the resulting
preferences and ordinal labels are concatenated with Di−1 to produce Di. However,
since it is intractable to approximate P(rA | D) for high-dimensional action spaces,
we utilize a dimensionality-reduction technique introduced in [156] that instead
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updates the posterior over a subset Si ⊂ A. Motivated by [162], we construct the
subset as Si = Li ∪ Vi−1, where Li ⊂ A is the collection of ne ∈ N actions in A
closest to a randomly drawn line ℓi ⊂ Rl. This line is drawn to intersect with the
believed best action, computed as â∗

i−1 = argmaxa∈Vi−1
r̂Vi−1

(a) where r̂Vi−1
is the

MAP estimate of the posterior P(rVi−1
| Di). See [156] for more details.

Figure 5.6. A comparison of SA-LineCoSpar and
standard LineCoSpar on a synthetic utility func-
tion (drawn from the Gaussian prior) averaged over
50 runs with standard error shown by the shaded
region. The safety-aware criteria reduces the num-
ber of sampled unsafe actions with a minimal effect
on the prediction error, defined as |â∗i − a∗| with
â∗i ≜ argmaxar̂Si

and a∗ ≜ argmaxar(a).

Safety-Aware Sampling: It is important
to avoid unsafe actions during sequen-
tial decision making in certain appli-
cations, such as learning robotic con-
trollers on hardware, where low-reward
actions might lead to physical damage
of the platform. Prior safe exploration
algorithms [155], [163] considered the
setting where actions below a prespec-
ified safety threshold are catastrophic
and must be avoided at all cost. In
our work, we rely on the natural con-
servatism of robust control methods like
the TR-OP controller (4.39) and adopt
a more optimistic learning approach
called safety-aware. In this case, ac-
tions labeled by a human as “unsafe” are
not catastrophic but undesirable. Thus,
the algorithm avoids these actions; whereas the safe exploration algorithms guaran-
tee that no such actions are sampled which can be sometimes exceedingly conser-
vative in settings like ours.

To achieve this safety-awareness, we leverage the approach introduced in [160],
which uses ordinal labels to identify a region of interest (ROI) in A. In this work,
the ROI is defined to be the actions labeled as “safe.” In each iteration i we estimate
an ROI within the set Si as:

SROI
i = {a ∈ Si | r̂Si

(a) + λσSi
(a) > β}, (5.32)

where r̂Si
(a) andσSi

(a) are the posterior mean and standard deviation, respectively,
evaluated at the action a ∈ Si. The variable λ ∈ R determines how conservative the
algorithm would be in estimating the safety region, as illustrated in Figure 5.6. We
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Figure 5.7. An overview of the Safety-Aware Preference-Based Learning design paradigm. Safety-
Aware LineCoSpar is used to generate actions which are rolled out in experiments as parameters of
the CBF-based safety filter to obtain user preferences and safety ordinal labels which are then used
to update the user’s estimated utility and generate new actions.

see that lower (negative) values of λ result in fewer unsafe actions being sampled,
with only a slight effect on sample-efficiency. The restriction to SROI

i is added to
LineCoSpar by only considering actions in SROI

i during Thompson sampling. We
refer to this as Safety-Aware LineCoSpar (SA-LineCoSpar), with the full algorithm
outlined in Algorithm 5.5.

Algorithm 5.5: Safety-Aware LineCoSpar
input: s uniform random actions (V1 ⊂ A), corresponding feedback (D1),
for i = 2, . . . , N do

Update posterior over Vi−1

â∗
i−1 ← argmaxa∈Vi−1

r̂Vi−1
(a)

Li ← New linear subspace intersecting â∗
i−1

Construct subspace Si = Li ∪ Vi−1

Update the model posterior over Si
Determine region of interest SROI

i

for j = 1, . . . , s do
r(j) ∼ N (r̂Si

,ΣSi
)

a
(j)
i ← argmaxa∈SROI

i
r(j)

Deploy {a(1)
i , . . . a

(s)
i } on system

Vi ← Vi−1 ∪ {a(1)
i , . . . a

(s)
i }

Di ← Di−1 ∪ new preferences ∪ new ordinal labels

Integrating Learning to Tune the Control Barrier Function: The parameter selec-
tion process of the TR-OP controller (4.39) is particularly important, since the
parameters a and b guaranteed to exist by Theorem 4.7 are worst-case approxi-
mations of the uncertainty’s effect on safety. Such approximations often lead to
undesired conservatism and may render the system incapable of performing its goal
(as seen in Figure 5.8). Thus, as illustrated in Figure 5.7, we propose utilizing SA-



120

Conservative

Action

S
im

u
latio

n
 Iteratio

n
 N

u
m

b
er

H
ar

d
w

ar
e 

It
er

at
io

n
 N

u
m

b
er

Figure 5.8. Preference-based learning Experiment plots. (Left) Actions sampled during simulation
in 30 iterations with 3 new actions in each iteration. The preferred action, â30 = (3, 0.6, 0.5, 0.015),
is shown in black and white. A conservative action, a = (2, 0.5, 0.0651, 0.485), is indicated by
the black circle, where a and b were determined by estimating the Lipschitz coefficients present
in the proof of Theorem 4.7. The conservative action fails to progress whereas SA-LineCoSpar
provides an action which successfully navigates between obstacles. (Center) The minimum value of
h that occurred in each iteration. Triangles, diamonds, and squares represent actions that are sampled
randomly, by PBL in simulation and on hardware in an indoor setting, respectively. Colors correlate to
iteration number. The lower bound− d

2

4αφ for the expanded set Cδ = {x ∈ Rnx | h(x) ≥ − d
2

4αφ}with
d = 1 is plotted. The preferred actions for simulation and hardware experiments are circled. (Right)
Seven additional iterations of 3 actions executed indoors. The preferred action, â∗37 = (4, 0.6, 0.4, 0),
successfully traverses between the obstacles.

LineCoSpar to identify user-preferred parameters of the TR-OP controller. This
relaxes the worst-case over-approximation to experimentally realize performant and
safe behavior. This design paradigm relies on the tunable construction of the TR-OP
controller (4.39), allowing us to define the actions for SA-LineCoSpar to the param-
eters a = (α, φ, a, b) of the TR-OP controller (4.39). We note that the construction
of the tunable parameters in Theorem 4.7 assures that unsafe actions are not neces-
sarily catastrophic, as any α, φ, a, b > 0 endows the system with a non-zero degree
of robustness to disturbances and measurement error. This assurance allows us
to utilize a safety-aware approach where unsafe actions are considered undesirable
as opposed to more conservative safety-critical approach to learning where unsafe
actions are considered catastrophic.

If we wish to enforce multiple safety constraints, such as in obstacle avoidance with
several obstacles, ρ̂i can be used to indicate the measured parameters of the ith

obstacle, withNo ∈ N being the total number of obstacles. Enforcing this constraint
for No > 1 can be viewed as Boolean composition of safe sets [20].

Experimental Results
We applied the proposed design paradigm to a perception-based obstacle avoidance
task with a Unitree A1 quadrupedal robot (Figure 5.7) in simulation and on hardware



121

hyperparameter value
λ −0.5
β 0

name min. max. ∆
α 0.5 5 0.5
φ 0 1 0.1
a 0 1 0.1
b 0 0.05 0.005

Table 5.1. The safety-aware hyperparameters, and action space bounds (min. and max.) with dis-
cretizations ∆. (Left) Safety-aware region of interest parameters. (Right) TR-OP tunable parameters
and discretizations that define the action space.

for both indoor and outdoor environments (see video: [126]). The action space A
and hyperparameters of PBL are defined in Table 5.1. We used the unicycle model
with disturbance as our simplified model with the desired, nominal controller kdes:


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ẋ

ẏ
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
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[
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ω

]
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v

+d(t)


 , (5.33)

kdes(x) =

[
Kvdg + C

−Kω(sinψ − (yg − y)/dg)

]
, (5.34)

where (x, y) is the planar position of the robot, ψ is the yaw angle, (xg, yg) is the goal
position of the robot, dg = ∥(xg−x, yg−y)∥ is the distance to the goal, andKv, Kω,
and C are positive constants. Obstacle avoidance is encoded via the 0-superlevel set
of the function:

h(x) = dobs,i − robs − ζ cos(ψ − θi), (5.35)

where the state x is extended by the ith obstacle location ρi = [xobs,i, yobs,i] which is
assumed to contain all of the measurement uncertainty, dobs,i = ∥(xobs,i− x, yobs,i−
y)∥ and θi = arctan((yobs,i − y)/(xobs,i − x)) are the distance and angle from
the ith obstacle, robs is the sum of the radii of the obstacle and robot, and ζ > 0

determines the effect of the heading angle on safety. The controller used to drive
the system is the 4.39 controller with the nominal controller knom from (5.33) and
(5.34). In practice, infeasibilities of this safety filter were considered unsafe and the
inputs were saturated such that v ∈ [−0.2, 0.3]m/s and ω ∈ [−0.4, 0.4] rad/s. The
velocity command v is computed at 20 Hz and error introduced by this sampling
scheme is captured by the tracking error d(t). Tracking of v is performed by an
inverse dynamics quadratic program (ID-QP) walking controller designed using the
concepts in [95], which realizes a stable walking gait for (4.2) at 1 kHz.

Simulation results: We simulated the quadruped executing the proposed controller
with parameters provided by SA-LineCoSpar. The resulting trajectories and the
position of the obstacles are shown in Figure 5.8. We ran 30 iterations, with 3 new
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Figure 5.9. The preferred action, â∗40 = (5, 0.1, 0.4, 0.02), after simulation, indoor experiments,
and 3 additional iterations of 3 actions in an outdoor environment is shown alongside views from the
onboard camera.

actions sampled in each iteration (s = 3), and obtained user preferences and ordinal
labels in between each set of actions. To simulate perception error, the measurements
of the obstacles were shifted by−0.1m in the y-direction. The parameters found with
SA-LineCoSpar allow the robot to navigate between obstacles. For comparison, a
conservative action is also shown, which is safe but fails to progress towards the goal.
SA-LineCoSpar eliminates this conservatism with only minor safety violations and
determines a parameter set which is both safe and performant, foregoing the rigorous
theoretical guarantees to instead find desireable closed-loop behavior.

Hardware results: After the simulation experiments, we continued the learning
process on hardware in a laboratory setting for 7 additional iterations until the user
was satisfied with the experimental behavior. The robot and obstacle positions
were estimated using Intel RealSense T265 and D415 cameras to perform SLAM
and segmentation. Centroids of segmented clusters in the occupancy map were
used as the measured obstacle positions ρ̂i. The true robot and obstacle positions
were obtained for comparison using an OptiTrack motion capture system. The
results of these experiments can be seen in Figure 5.8. Afterwards, three additional
iterations were conducted outdoors on grass until again the user was satisfied with
the experimental behavior. The resulting best trajectory which safely satisfied the
safety and performance goals can be seen in Figure 5.9. The preferred action was
also tested on a variety of other obstacle arrangements to confirm its generalizability.
The performance of the final preferred action for these obstacle configurations can
be seen in the supplementary video [53].

Conclusion
In this section we proposed a design paradigm for control systems in which the
robust safety requirements of a provably safe, but conservative controller are relaxed,
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and controller parameters are instead chosen using a safety-aware preference-based
learning algorithm called SA-LineCoSpar. Using our algorithm, we were able to
learn a set of parameters that leads to user-preferred balance between safety and
robustness on a quadrupedal robot platform.

While robust safety-critical control methods can be highly conservative, they show
incredible utility in identifying tunable parameters that can be adjusted to produce
robust behaviors. Their underlying theoretical proofs, establishes an interpretable
understanding to the effect of tuning any particular parameter as discussed of the
TR-OP controller’s paraters 4.39 in Section 4.3.

5.5 Learning Responsibility
In this section we consider the context of decentralized multi-agent systems, like
humans driving on a crowded street, where it is impractical if not impossible for a
single agent to assume responsibility for the whole system’s safety. Being robust to
every possible action of every other agent would make driving impossible. Instead,
drivers have a duty to exercise reasonable care when interacting with other road users
[164]. The assumption that other road users will exercise responsible behaviors
enables everyone to maintain safety without explicit coordination.

To safely and fluently interact with other agents, it is critical to understand how
much responsibility any particular agent must take for achieving safety, and to pro-
vide robots with mathematical or algorithmic representations of this responsibility.
Unfortunately, most existing techniques make strong assumptions about how other
agents will act which often results in defensive or erratic behavior [165]–[167];
while these assumptions allow for strong theoretical guarantees, they are often im-
practical as they result in infeasible planning problems or induce overly conservative
behaviors. Therefore, a key challenge is developing safety controllers that are simul-
taneously robust to decentralized multi-agent uncertainty while also being capable
of accounting for context-dependent social norms that effect how agents should
implicitly coordinate.

Unfortunately, social responsibility is a complex, intangible concept that is often
shared asymmetrically and whose allocation is highly dependent on context and
social norms. Given the strong situational dependence of responsibility, we will
focus on learning it in the case of autonomous driving, for which there is a large
amount of high quality data [168] and for which the robot (in the form of an
autonomous vehicle (AV)) is generally expected to behave similarly to a human
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agent.

To tackle this challenge, many works focus on modeling and estimating drivers’
social preferences to synthesize socially-aware driving behaviors. For instance,
[169] estimates the “social value orientation” of other drivers and formulates a
game-theoretic planner and [170] crafts a planning reward function that incentivizes
an AV to be more cooperative. While these approaches demonstrate that accounting
for social preferences can lead to more human-like AV behaviors, they do not provide
any assurances or quantification of AV safety. This limitation inspired several works
[171]–[173] that investigate collision-avoidance responsibility using safety-critical
control techniques. However, these methods consider either centralized control
or centrally-defined social preferences, which does not apply to the autonomous
driving setting where the social preferences of other agents are not known precisely
and cannot be assigned.

To design systems that behave in accordance with intangible, context-dependent no-
tions of responsibility, we propose combining safety-critical control with data-driven
learning. While previous learning-based safety methods [41], [174]–[176] focus on
learning safety constraints from data, we introduce a framework that starts from
a centralized, multi-agent safety specification and then derives decentralized con-
straints that encode an individual agent’s social responsibility from human driving
data.

We formalize this framework as Responsibility-Aware Control Barrier Functions
(RACBFs). RACBFs enable AVs to reason about and enforce safety in a manner
that is both decentralized and grounded in context-sensitive social responsibility,
allowing for safe, interpretable, and human-aligned behavior in multi-agent envi-
ronments.

The contributions of this section are as follows:

• The concept of Responsibility-Aware Control Barrier Functions (RACBFs)
which extends the standard CBF to account for asymmetric sharing of respon-
sibility between multiple agents.

• A data-driven constraint-learning algorithm to infer the responsibility allo-
cations modeled in the RACBF formulation. A simulated demonstration of
the utility of RACBFs and their learned responsibility allocations in safe
closed-loop AV control.
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The text for this section is adapted from:

R. K. Cosner, Y. Chen, K. Leung, and M. Pavone, “Learning re-
sponsibility allocations for safe human-robot interaction with appli-
cations to autonomous driving,” 2023 IEEE International Conference
on Robotics and Automation (ICRA), pp. 9757–9763, 2023. doi: 10.
1109/ICRA48891.2023.10161112,

Responsibility-aware Decentralized Multi-agent Safety
In this section, we extend the CBF framework to a decentralized multi-agent setting
and introduce additional terms to account for asymmetrically shared responsibility.

We extend the open-loop nonlinear control-affine system dynamics (2.1) to multiple
agents:

ẋi = fi(xi) + gi(xi)ui (5.36)

where xi ∈ Rnx,i , ui ∈ Ui ⊂ Rmu,i , fi : Rnx,i → Rnx,i , gi : Rnx,i → Rmu,i represent
the state, input, drift, and actuation matrix of agent i. For the entire system of

N ∈ N agents, let x =
[
x⊤
1 · · · x⊤

N

]⊤
∈ Rnx denote the concatenated state and

the dynamics for x be denoted as in (2.1):

ẋ =




f1(x1)
...

fN(xN)




︸ ︷︷ ︸
f(x)

+




g1(x1)
...

gN(xN)




︸ ︷︷ ︸
g(x)




u1

...
uN




︸ ︷︷ ︸
u

. (5.37)

If the multi-agent system is governed by a centrallized controller, the CBF inequal-
ity (2.33) can be checked directly and used as a constraint in an optimization-based
controller to obtain safe inputs [10]. However, centralized control is often unrealiz-
able for AVs due to communication and scalability issues as well as the presence of
human actors. Thus, we focus on a decentralized variant of the CBF inequality and
assume that each agent can measure the states of the other agents, but independently
generates its own input according to some controller unknown to the other agents.

One common method for retaining safety guarantees in the context of decentralized
control, is to ensure robustness with respect to all possible actions of the other agents
(including the worst-case inputs) as in [166]. In this case, the CBF constraint (2.33)

https://doi.org/10.1109/ICRA48891.2023.10161112
https://doi.org/10.1109/ICRA48891.2023.10161112
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from the perspective of agent i becomes:

sup
ui∈Ui

inf
uj∈Uj ,
j ̸=i

Lfh(x) + Lgh(x)u ≥ −α(h(x)). (5.38)

This is a conservative constraint which ensures the safety of the system even when
other agents act adversarially.

Despite their safety-guarantees, worst-case constraints like (5.38) are highly con-
servative and prevent the system from achieving performant closed-loop behaviors
[53]. It is therefore desirable to find a less conservative safety constraint that is more
cognizant of the social interactions between agents even when the controllers of the
other agents are unknown. For this purpose, we consider a novel CBF framework
that models social responsibility.

Responsible-Aware Control Barrier Functions
In multi-agent systems of human actors, the responsibility for maintaining safety
is typically shared among several people. For example, humans exhibit social
behavior in crowd navigation and driving where the burden of maintaining safety
is distributed between everyone [169], [177]. Equipped with the notion that agents
share the responsibility for maintaining safety, we move away from worst-case
behavioral assumptions, and instead, learn the responsibility allocation from data.
First, we define responsibility allocation functions:

Definition 5.6 (Responsibility Allocation Function). A function γr : N× Rnx → R
is a responsibility allocation function for N ∈ N if for all x ∈ Rnx:

N∑

i=1

γr(i,x) ≥ 0. (5.39)

For agent i in a multi-agent system at state x, γr(i,x) > 0 indicates increased
responsibility, γr(i,x) = 0 indicates evenly shared responsibility, and γr(i,x) < 0

indicates decreased responsibility. The sum of γr(i,x) is lower bounded by zero to
ensure that the total allocated responsibility must be greater than or equal to that of
even sharing.

Using these responsibility allocation functions we can present our definition of
Responsibility-Aware Control Barrier Functions (RACBFs) which consider respon-
sibility allocation in their decentralized multi-agent safety constraint:
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Definition 5.7 (Responsibility-Aware Control Barrier Function4). Let C ⊂ Rnx be
the 0-superlevel set of some continuously differentiable function h : Rnx → R with
0 a regular value. Additionally, let γr : N×Rnx → R be a responsibility allocation
function for N ∈ N. The function h is a Responsibility-Aware CBF for the system
(5.37) and responsibility allocation function γr if there exists an extended class K∞

function α such that for all x ∈ C and all i ∈ {1, . . . , N} :

sup
ui∈Ui

ci(x,u)≜︷ ︸︸ ︷
Lgih(x)ui +

1

N

(
α(h(x)) + Lfh(x)

)
−γr(i,x)

︸ ︷︷ ︸
RACBF Constraint(i,x,u,γr)≜

≥ 0. (5.40)

With this definition we can now make safety guarantees for the multi-agent system
assuming that all of the agents agree on a single responsibility allocation function
γr.

Theorem 5.8 (Responsibility-Aware Safety). Given a set C ⊂ Rnx defined as the
0-superlevel set of a continuously differentiable function h : Rnx → R with 0 a
regular value, if h is an RACBF for (5.36) and the responsibility allocation function
γr : N× Rnx → R for N ∈ N, then any locally Lipschitz controller k : Rnx → Rm

that satisfies (5.40) for all x ∈ C and i ∈ {1, . . . , N}, can be used with the dynamics
(5.36) to make a safe closed-loop system with respect to C.

Proof. First let ci(x,k(x)) ≜ Lgi
h(x)ki(x) +

1
N

(
α(h(x)) + Lfh(x)

)
for all i ∈

{1, . . . , N}. Since the ki satisfies (5.40),

0 ≥ −ci(x,k(x)) + γr(i,x) ≥ −
∑

i∈{1,...,N}

ci(x,k(x)) +
∑

i∈{1,...,N}

γr(i,x), (5.41)

≥ −
∑

i∈{1,...,N}

ci(x,k(x)). (5.42)

The second in inequality (5.41) follows from the decentralized constraint (5.40) for
all i and (5.42) holds since γr is a responsibility allocation function for N . Since
the final inequality (5.42) is equivalent to the centralized CBF constraint (2.33),
Theorem 2.20 implies the safety of system (2.2) with respect to C.

4For generality, RACBFs are presented forN agents but in practice it is common to enforce CBF
constraints between each pair of agents where the number of constraints enforced on agent i’s input
grows linearly with the number of agents [92]. In this case there would be several pairwise RACBF
constraints with N = 2. We take this approach in our application of RACBFs.
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In summary, instead of considering the worst-case inputs from other agents, our
RACBF approach uses γr(i,x) to allow agent i’s required contribution to decentral-
ized multi-agent safety to vary depending on the state x of all of the agents in the
scene. Also, instead of explicitly considering the uncertainty in the other agents’
actions, one perspective of the responsibility allocation function is that it models a
bound on the projection [108] of the other agents’ inputs onto the CBF time deriva-
tive. Thus we can learn the effect of the other agents’ actions as a scalar adjustment
to dh

dt
as opposed to predicting their exact trajectories.

Our responsibility model is similar to that of [171] which instead uses a multiplicative
term and is limited to driftless systems (i.e., systems where f(x) ≡ 0). By using
an additive term, our model is generally applicable to control affine systems and
is capable of accounting for the effect of responsibility even when the unforced
dynamic are unsafe, i.e., α(h) + Lfh(x) ≤ 0.

Learning Responsibility Allocations
In this section we formalize the problem of learning responsibility allocation func-
tions γr(i,x) from data and describe our method for learning γr from expert demon-
strations, given a known safe set C and associated CBF h.

We assume that agent i strives to minimize some unknown functionQi : Rnx,i×mu,i →
R and does so according to a constrained optimal control policy:

ki(x) = argmin
ui∈Ui

Qi(xi,ui) (5.43)

s.t. RACBF Constraint(i,x,u, γr) ≥ 0

where Qi(xi,ui) represents agent i’s cost for input ui at state xi. Although the
cost function is unknown, we assume that all agents obey the RACBF constraint for
some γr that we seek to learn, thus framing the problem of learning responsibility
allocations as constraint learning.

Next let D = {uk,xk}Nd
k=1 be a dataset of state-input pairs gathered from expert

(human) demonstrations where Nd ∈ N represents the total number of data points
collected. Since the cost function Qi can vary during data collection, it is possible
for a state to have several associated expert inputs.

Our goal is find some responsibility allocation function γr such that the RACBF
constraint is satisfied for all state-input pairs in the expert demonstrations D. This
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can be written as the constrained optimization problem:

γ∗r = argmin
γr

∥γr∥ (5.44)

s.t. RACBF Constraint(i,x,u, γr) ≥ 0, ∀i ∈ {1, ..., N},
∑

i∈{1,...,N}

γr(i,x) ≥ 0, for all (x,u) ∈ D,

where the constraints enforce satisfaction of the RACBF and ensure that γr is a
responsibility allocation function.

To find an approximate solution to this problem we take inspiration from prior
CBF and Lyapunov learning methods [41], [175] and relax (5.44) to the following
unconstrained loss function:

L(D, γr) =∥γr∥+ λ1
∑

(x,u)∈D

nx∑

i=1

[
− ci(x,u) + γr(i,x)

]

+

(5.45)

+ λ2
∑

(x,u)∈D

[
nx∑

i=1

−γr,i(i,x)

]

+

where λ1, λ2,∈ R≥0 are hyperparameters which adjust the constraint relaxations and
[ · ]+ ≜ max{·, 0}. This loss function can then be used find approximate solutions
to (5.44):

γ∗r ≈ argmin L(D, γr). (5.46)

Responsibility Regularization
However, the loss function used in the unconstrained optimization (5.46) is insuf-
ficient since, as in Inverse Reinforcement Learning, the problem of learning the
constraint in (5.43) is poorly defined since the optimal input generated by (5.43)
is a function of both the unknown cost function Qi and unknown responsibility
allocation function γr. Intuitively, this is because we cannot answer the question
“did the agent act that way because it wanted to (i.e., cost minimization) or because
it had to (i.e., safety constraint satisfaction)?" To better define the constraint learning
problem we take an approach similar to [178] and regularize γr by maximizing the
likelihood that it was used in (5.43) to generate the expert demonstrations D.

Following the maximum entropy model presented in [127] with the variant for
continuous-time nonlinear systems presented in [179] we wish to solve the opti-
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mization problem:

γ∗r,reg = argmax
∑

(x,u)∈D

P(u | x, γr). (5.47)

We approximate the probability of a given u, by choosing disc(U) to be a finite
discretization of the bounded input set U such as disc(U) = {u ∈ U | δ⌊u/δ⌉} for
some δ > 0 where ⌊·⌉ rounds each component to the nearest integer. Mimicking
the forms presented in [178], [179], the approximate probability of an input u ∈ U
given the system state x and responsibility allocation γr is:

P(u | x, γr) =
eR(x,u)

Zγr

1γr(x,u), Zγr =
∑

υ∈disc(U)

eR(x,υ)1γr(x,υ) (5.48)

where Zγr is the partition function, R : Rnx × Rm → R is the reward function, and
1γr (x,u) 7→ {0, 1} indicates satisfaction of the RACBF constraints given x, u, γr.

To maximize the likelihood of the demonstration we minimize the number of feasible
inputs while retaining the feasibility of the expert demonstrations. We note the total
number of feasible inputs in disc(U) decreases as γr(i,x) increases, regardless ofR,
so we can maximize P(u|x, γr) without knowledge of the agents’ reward functions
by maximizing γr while maintaining feasibility of the expert demonstrations. This
can be expressed as the optimization problem:

γ∗r, reg ≈ argmaxγr

∑

(x,u)∈D

nx∑

i=1

γr(i,x) (5.49)

s.t. RACBF Constraint(i,x,u, γr) ≥ 0,

for all i ∈ {1, . . . , N} and (x,u) ∈ D.

Since constraint feasibility onD is already accounted for in (5.45), this regularization
can be added to the loss as:

Lreg(D, γr) ≜ L(D, γr) + λ3
∑

(x,u)∈D

nx∑

i=1

−γr(i,x) (5.50)

with hyperparamterλ3 ∈ R≥0 which can be used in the final regularized optimization
problem to estimate γr:

γ∗r = argmin Lreg(D, γr). (5.51)



131

Application to Autonomous Driving
In this section we apply our RACBF and responsibility allocation learning method
to urban driving using the Boston Seaport data in the nuScenes dataset [168].

We assume that all agents in the scene are vehicles (i.e., there are no pedestrians)
and we model each agent as:




ẋi

ẏi

v̇i

θ̇




︸ ︷︷ ︸
ẋi

=




vi cos(θi)

vi sin(θi)

0

0




︸ ︷︷ ︸
fi(xi)

+




0 0

0 0

1 0

0 1




︸ ︷︷ ︸
gi(xi)

[
ai

ωi

]

︸︷︷︸
ui

, (5.52)

where (xi, yi) ∈ R2, vi, θi, ai, ωi ∈ R represent the position, velocity, yaw, acceler-
ation, and yaw rate5 of vehicle i.

Safe Set Synthesis: To define the safety criterion function h0 : Rnx → R, we begin
by assuming all vehicles must maintain a minimum inter-vehicle distance d > 0.
With this in mind, let dmin : R4 × R4 → R be the minimum distance between two
agents. We can then define the pairwise safe set between agents i and j to be:

Cij0 =
{
x ∈ Rnx | dmin(xi,xj)− d︸ ︷︷ ︸

hij(x)≜

≥ 0
}
. (5.53)

However this function is of relative degree 2 w.r.t. ai (i.e., dh0
dt

is not directly affected
by the inputs ai or ωi) and describes safety by only considering the instantaneous
current position.

In order to incorporate a temporal aspect and ensure that the time derivative of hij0
is affected by both vehicles’ acceleration and angle rate we take inspiration from the
backup set safe set synthesis method of [103] and Section 3.6 and forward project
the current state using the backup controller kB : R4 → R2 over a time interval
[0, T ] for T ∈ R>0. By assumption, for any xi(t) ∈ R4 there exists a unique solution
ϕ : [0, T ]→ R4 satisfying:

d

dt
ϕ(τ) = fi(ϕ(τ)) + gi(ϕ(τ))kB(ϕ(τ)), (5.54)

ϕ(0) = xi(t). (5.55)

5Bezier curves are fit to position and yaw data and then differentiated to obtain velocity, accel-
eration, and yaw rate. The code repository for learning the responsibility allocation function γr can
be found https://github.com/rkcosner/learning_responsibility_allocation.

https://github.com/rkcosner/learning_responsibility_allocation
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The solution ϕ starting at xi(t) is the flow under kB, and is denoted as φτ (xi) ≜

ϕ(τ). Similar ideas of forward projection are also seen in Velocity Obstacles [180],
Safety Force Fields [165], and Responsibility-Sensitive Safety [167].

Using the flow φ and the distance function dij we can find the minimum distance
that would be achieved during the interval [t, T + t] if kB were the controller for
both vehicles:

hφij(x) = min
τ∈[0,T ]

dmin(φτ (xi),φτ (xj))− d, (5.56)

which has the associated safe set Cφij ⊆ Cij ⊂ Rnx

Cφij =
{
x ∈ Rnx | hφij(x) ≥ 0

}
. (5.57)

To compute hφij the interval [0, T ] was discretized at 100 Hz as in [52], [103] and soft
minimum functions were used to ensure differentiability. It is shown in [181] that
the CBF hφij constructed from the backup controller is guaranteed to be of relative
degree 1 under mild assumptions.

For the backup controller we choose kB(xi) = 0 which approximates idling. Unlike
other methods [167], [182] which assume maximum braking for their predictors, we
choose an idling controller since it better approximates nominal driving behavior
and does not introduce worst-case assumptions.

Given these pairwise safe sets Cφij , we can define the a global safe set Cφ ⊆ Cφij ⊆ Cij
for all i ̸= j as:

Cφ =
⋂

i̸=j

Cφij with h(x) = min
i̸=j

hφij(x). (5.58)

The intersection of safe sets has been studied in [183] and safety of such sets can be
achieved by enforcing the safety constraint for all i ̸= j.

Learning Setup: The inputs of the responsibility allocation function are an image
with semantic labels as see in Figure 5.10 and the relative vehicle states of agents i
and j. The image is processed by ResNet-18 [184] and the 256 dimensional output is
concatenated to the vehicle states and processed by a multi-layer perceptron (MLP)
with 2 hidden layers of size 128 and a single dimensional output.

The hyperparameters chosen were λ1 = 1, λ2 = 10, λ3 = 0.01, α = 0.5, T = 1,
d = 0.4, ℓ1 = 0.1, ℓ2 = 0.01 and θmax = 100◦ where ℓ1 and ℓ2 were the negative
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Figure 5.10. The learned responsibility allocation surface is visualized for a range of velocities and
relative positions. Scene 1: the ego vehicle (yellow) is driving on a two lane road. In all cases,
γr(ego,x) > 0 indicating a degree of conservative driving. Generally, γr(ego,x) is larger when the
other agent (red) is in front of the ego vehivlethan when behind, indicating increased responsibility
when driving behind another vehicle. Scene 2: The ego vehicle is stopped at a four-way intersection
with the other vehicle (green) ahead or behind it (and no blue agent). Again the ego vehicle (yellow)
is more responsible when the green vehicle is in front of it than when it is behind it. Scene 3: The
ego vehicle (yellow) is stopped at a four-way intersection with the other vehicle (blue) crossing from
top to bottom (and no green agent). γr(ego,x) is large for all positions and velocities of the blue
vehicle showing that the ego agent takes is more responsible in this situation.

slopes of the MLP’s leaky ReLU activation functions and θmax is used to filter
the dataset such that only interactions between vehicles whose headings are within
±θmax are considered. The parameter θmax is necessary since our data does not
include lane direction annotation. We note that this does limit the applicability of
this network and plan to include lane direction information in future work.

The network was trained on the NuScenes Boston Seaport dataset. Example respon-
sibilities generated by our learned model can be found in Fig. 5.10. These figures
show that our model conforms to the general intuition that the vehicle behind is
more responsible than the vehicle in front for avoiding collisions between them, and
the vehicle stopped at an intersection is responsible for not interfering with a vehicle
already crossing the intersection.

Closed-Loop Testing: We use our RACBF framework with a learned responsibility
allocation function as a safety-filter in closed-loop control and simulate human-like
driving using the Bi-Level Imitation for Traffic Simulation (BITS) model [185]. The
ego agent follows (5.43) where Qi(xi,ui) = ∥k+

bits(xi)− ui∥2 and k+
bits is the BITS

controller with an additional 1 m
sec2 acceleration added to generate irresponsible

desired behavior that must be filtered to ensure safety. The RACBF constraint is
applied for each pairwise vehicle j and slack variables are used to ensure feasibility.
We compare our method to the same controller with two other baseline constraints:
(i) “Worst-Case” constraint (5.38), and (ii) “Even-Sharing” constraint which is the
RACBF constraint with γr(i,x) ≡ 0.

The closed-loop system was run in 120 scenarios sampled from NuScenes for 10
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Closed-Loop Simulation Results

Worst-Case Even-Split Our Method
Validation Constraint Violation 43.99% 8.13% 9.51%
Closed-Loop Safety Violation 0.833% 2.50% 0.833%

Time Spent Off Road 1.48% 0.59% 0.54%
Distance Covered Metric 290.21 309.21 307.84

Table 5.2. Results for the closed-loop experiments.

seconds at 10 Hz. Table 5.2 contains metrics comparing the controllers. The Worst-
Case controller has the fewest safety violations (as expected), but worse compatibility
with the expert demonstrations as indicated by the large constraint violation, smallest
distance covered, and significant amount of time off of drivable surfaces. The Even-
Sharing controller has fewer constraint violations on the validation data and the
most distance covered, but allows for more closed-loop collisions. Our method
has a slightly higher number of constraint violations on the validation data set and
slightly less distance covered, but achieves a better trade-off between performanc
(distance covered) and closed-loop safety.

Conclusion
This section presented Responsibility-Aware Control Barrier Functions (RACBFs)
as a framework to synthesize safe actions with an understanding of multi-agent social
responsibility. RACBFs are designed to capture the asymmetric sharing of respon-
sibility between multiple (human) agents and we present a method to learn context-
dependent responsibility allocations from data. We then demonstrated the efficacy
and utility of our method by training on human data and deploying in a closed-loop
driving simulation. This work enables various exciting future directions which in-
clude incorporating explicit traffic rules into our responsibility-learning paradigm,
comparing how responsibility allocations vary across geographical regions, and
exploring other application domains such as crowd navigation.

5.6 Conclusion
The contributions in this chapter extend robust safety-critical control techniques by
incorporating learning-based methods. Specifically, I presented strategies that (1)
reduce system uncertainty through learned models of dynamics and perception, and
(2) enable controllers to reason about abstract, human-centered concepts that are
essential for safe and effective behavior, such as preferred risk-performance tradeoffs
and social responsibility in multi-agent environments.

These methods build on the formal safety tools developed in earlier chapters by
introducing learning-tuned adaptations that reduce conservatism to levels that are
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practically, even if not formally, sufficient. By reducing uncertainty and operating
below the worst-case theoretical thresholds, these systems gain the flexibility needed
to achieve high-performance behavior while still practically achieving safety. In
doing so, this chapter merges theoretical and end-to-end approaches in a way that
preserves a level of interpretability and safety-awareness while also enabling more
capable behavior and adaptive behavior.

The methods and philosophies introduced here point to several promising directions
for future research, where robust safety-critical control frameworks are embedded
within, combined with, or applied to learning systems to create high-performance
solutions that are deployable in safety-critical settings and which are capable of learn-
ing across their lifetime. Exciting work in safe learning [155], safe reinforcement
learning [42], [43], learning with safety guarantees [40], and out-of-distribution
detection in human-robot interaction [186] demonstrates the field’s momentum in
this direction [187].
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C h a p t e r 6

STOCHASTIC ROBUSTNESS

“What do you mean you have safety guarantees? Do they still hold if
the sky starts falling and aliens attack?”

“It is far better to foresee even without certainty than not to foresee at
all.” - Henri Poincaré

“In Pokémon, no one every really catches them all. That’s the slogan,
but it’s not really the point of the game.” - Andrew J. Taylor

Robust theoretical guarantees of safety can be incredibly motivating and useful: if
we can guarantee that our system is safe, then we can deploy it with confidence.
However, as discussed in the previous chapters, traditional robust guarantees that
rely on worst-case bounds of uncertainty can be difficult to translate to real world
systems. After all, how can we bound all uncertainty? What’s the bounded effect
of the sky falling or aliens invading?

Some events are so unlikely that it probably is not worth being robust to them. This
realization motivates an alternative, more flexible perspective on safety: one based
on probability. In this chapter, we move beyond worst-case guarantees to introduce a
stochastic approach to safety. Instead of guarantees that hold with 100% certainty, we
explore the more nuanced understanding of probabilistic safety, acknowledging that
maybe robustifying against all possible uncertainties, like catching all the Pokémon,
is not really the point.

Abstract

Our world is inherently chaotic and unpredictable. While worst-case guarantees
from robust safety-critical control provide confidence in the face of uncertainty,
they inherently fail to capture the randomness of the real world. If we wish to
retain meaningful guarantees under unbounded disturbances, we must relinquish
the notion of absolute certainty and adopt a more nuanced understanding of safety.
By reasoning about the distribution of uncertainty, we can construct probabilistic
safety guarantees that remain valid even without conservative worst-case bounds.
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This chapter presents a stochastic approach to safety, risk-based robust controllers,
and rigorous theoretical guarantees that hold in this context. Since the mathe-
matical tools for reasoning about stochastic processes differ substantially from the
background developed in Chapter 2, we begin by introducing the necessary theoreti-
cal preliminaries. Section 6.3 then establishes a connection between control barrier
functions (CBFs) and martingales (a well-studied class of stochastic processes) and
uses this connection to construct rigorous guarantees and practical algorithms for
CBF-based controllers under unbounded uncertainty. In Section 6.4, we explore
an alternative approach based on a different martingale concentration inequality
that yields tighter probability bounds on safety in certain cases. The methods
present a markedly different approach than those introduced in the prior chapters
of this thesis. Instead of conservatively enforcing worst-case guarantees (Chp. 4)
or foregoing those guarantees in search of data-driven performance (Chp. 5), this
chapter provides a middle ground, where we achieve performance improvements
while retaining theoretical guarantees by tolerating some closed-loop risk.

Published content: The text for this chapter is adapted from [57] and [58].

6.1 Introduction
This chapter diverges methodologically from the previous contributions of this thesis
and adopts a stochastic, discrete-time perspective on robot safety. Here I present
several methods that provide theoretical guarantees of safety despite stochastic and
potential unbounded disturbances. In lieu of the absolute certainty provided by the
worst-case bounds of Chapter 4, this chapter generates risk-based safety guarantees
which allow a controls engineer to modulate the acceptable risk in robot deployment,
providing additional nuance and allowing for increased flexibility and performance
based on risk-tolerance.

The probabilistic bounds of this chapter are particularly useful for real-world robotic
systems where disturbances are often modeled as continuous random variables with
unbounded support (e.g., zero-mean, additive Gaussian noise). For such systems, it
is impossible to give an absolute bound on the disturbance magnitude, so the results
of Chapter 4 do not directly apply. Alternatively, a wide variety of stochastic safety
methods exist that do tackle this problem including: stochastic reachability-based
methods [188], [189], constrained coherent risk measures [190], sampling-based
general risk measures [191], and martingale-based methods [131], [192] among
many others. In this work, we will focus on martingale-based methods due to their
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ability to generate trajectory-long guarantees, their relative simplicity as a method
which relies primarily on only a distribution’s first-moment, and their inherent
connections to CBFs. In particular we will focus on the discrete-time stochastic
safety filter, a controller type which has recently begun to gain popularity [57],
[131] and which differs significantly from many of the previous methods which
assumed the presence of a nominally safe, stabilizing controller [192].

In order to best represent the uncertainty that might appear from sources such
as discrete-time perception errors or sampled-data modeling errors, this chapter fo-
cuses on generating probabilistic bounds of safety and stability for discrete-time (DT)
stochastic systems. While, continuous-time stochastic safety methods have success-
fully achieved strong probabilistic safety guarantees [35], [130], [193], [194], they
generally require controllers with functionally infinite bandwidth, a strong assump-
tion for real-world systems with discrete-time sensing and actuation. Alternatively,
discrete-time methods have achieved success while also capturing the sampled-data
complexities of most real-world systems [57], [192], [195], [196]. Although CBFs
are normally applied in continuous time, they admit a discrete-time counterpart
(discrete time CBFs (DCBFs)) that were first introduced in [197] and have gained
popularity due to their compatibility with planners based on model predictive control
(MPC) [46], [198], [199], reinforcement learning (RL) [43], and Markov decision
processes [200].

Previous work has studied martingale-based techniques to establish safety guarantees
[192], [195], yet these works have limited utility when analyzing the safety of
discrete-time CBF-based controllers. In particular, the “c-martingale” condition
used in [192] does not admit a multiplicative scaling of the barrier function, and
therefore, at best, provides a weak worst-case safety bound for CBF-based controllers
that grows linearly in time. The work of [195], which builds upon [35], is largely
focused on offline control synthesis to achieve a desired safety bound (as opposed to
the online, optimization-based control studied in this work). Also, this method can
only generate controllers for affine barriers, which severely limits its applicability to
general safety requirements. Both [192] and [195] depend on sum-of-squares (SoS)
programming [89] for control synthesis/system verification, thereby requiring an
offline step that scales poorly with the state dimension. The goal of this chapter is
to extend the results of [35] in a different direction, and thereby enable the synthesis
of online controllers that can be realized on robotic systems to achieve probabilistic
safety guarantees in practice.
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To develop these probabilistic guarantees and stochastic controllers, we begin by
introducing relevant background material in Section 6.2, including the notion of
discrete-time control barrier functions (DCBFs) and the definition of K-step exit
probability, the notion of safety that we will adopt in the case of stochastic uncer-
tainty. Next, in Section 6.3, we introduce a probabilistic safety guarantee that builds
on the stochastic Lyapunov results in [35] and which holds in the presence of un-
bounded uncertainty. We additionally provide practical, computationally tractable
methods for enforcing this guarantee through DCBF-based safety filters. While the
theoretical results of Section 6.3 are compelling, they are also quite loose, relying on
weak martingale-based concentration inequality (i.e., Ville’s inequality [201]). To
improve upon this, Section 6.4 proposes the use of an alternative, stronger martingale
concentration inequality (i.e., Freedman’s inequality [202]) to generate probabilistic
safety guarantees. While the assumptions required for this alternative safety guar-
antee to hold are more restrictive, it results in generally tighter, better-calibrated risk
bounds.

6.2 Background on Discrete-time Safety and Stochastic Safety
First, we provide the mathematical preliminaries for the remainder of this thesis. In
particular, we shift from a continuous-time framework to a discrete-time one and
introduce discrete-time control barrier functions (DCBFs). Next, we discuss prob-
ability spaces, disturbance distributions, martingales, and martingale concentration
inequalities from which we will construct stochastic safety guarantees.

Robotics Motivation for Discrete-time Stochastic Systems

When discussing stochastic control processes, I choose to work in a discrete-time
framework because it better reflects the reality of practical robotics implementations.
For example, several authors have achieved arbitrarily good safety probabilities
when working with continuous-time stochastic differential equations (SDEs) [110],
[130], [193]; however, this takes advantage of the fact that SDEs allow for infinite
controller bandwidth and have covariances over infinitesimal time intervals that
are instantaneously zero. While the sampled-data approximation for deterministic
systems generally leads to small errors [129], [203], that approximation can be
much worse for sampled-data stochastic systems. For example, while authors can
guarantee safety with 100% probability for SDEs, similar guarantees cannot be
generally made for discrete-time systems:
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Example 6.1 ([204, Sec. IV]). Consider the system: xk+1 = uk + dk, where
x ∈ R,u ∈ R,d ∼ N (0, 1), and C = {x ∈ R | |x| < 1}. At every step
P{xk+1 ∈ C | xk} is maximized with uk = 0, but then even over a single discrete
step, there is at least a 30% chance of failure. As time continues, this constant risk
of failure at every step makes infinite horizon guarantees impossible to achieve for
this system.

While a full exploration of safety for sampled-data stochastic systems is an interesting
direction for future work, this example motivates our decision to study discrete-time
stochastic system which better capture the realities of robotic systems with stochastic
uncertainties and limited controller bandwidth.

Discrete-time Control Barrier Functions

We begin by introducing the traditional notion of discrete-time control barrier func-
tions (DCBFs) in the deterministic setting as first introduced in [197].

For this, we consider discrete-time systems of the form:

xk+1 = F0(xk,uk), (6.1)

with the state xk ∈ Rnx , input uk ∈ Rnu , time index k ∈ N0, and dynamics
F0 : Rnx × Rnu → Rnx which capture discrete updates in the system. This
discrete-time model can be generated for the continuous-time system (2.1) with a
zero-order-hold, sampled-data controller implementation using piecewise solutions
to the flow (2.3) over the sampling interval.

As with continuous time systems (2.1,2.2), we can add a state-feedback controller,
k : Rnx → Rnu to yield a discrete-time closed-loop system of the form,

xk+1 = F0(xk,k(xk)), (6.2)

and we can define deterministic safety as the forward invariance of this system:

Definition 6.2 (Discrete-time Forward Invariance and Safety1). ] A set C ⊂ Rnx is
forward invariant for the system (6.2), if x0 ∈ C implies that xk ∈ C for all k ∈ N.
In this case, we call the system (6.2) safe with respect to C.

1With this discrete-time definition of safety (Def. 6.2) it is possible that a sampled-data robotic
system would experience inter-sample safety failures. Since samples times are usually very fast and
inter-sample failures usually quite small, the remainder of this thesis we will focus on the safety
exclusively at samples times as in [197] and [203]. We refer to [129] for an analysis of CBF-based
intersample safety.
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The CBF definition (Def. 2.19) can then be modified to produce its discrete-time
variant:

Definition 6.3 (Discrete-time Control Barrier Functions (DCBFs) [197]). Let C ⊂
Rnx be the 0-superlevel set of a function h : Rnx → R. The function h is a discrete-
time control barrier function (DTCBF) for (6.2) on C if there exists an α ∈ [0, 1]

such that for each x ∈ Rnx , there exists a u ∈ Rnu such that:

h(F0(x,u)) ≥ αh(x). (6.3)

For DCBFs, the CBF assumption that α ∈ Ke∞ is replaced with the assumption that
α ∈ [0, 1] for simplicity.

DTCBFs differ from their continuous-time counterparts in that they satisfy an in-
equality constraint on their finite difference instead of their derivative2. On the
other hand, they are similar in their ability to create safety filters for desired nominal
controllers kdes : Rnx × Z→ Rnu of the form:

k(x) = argmin
u∈Rnu

∥u− kdes(x, k)∥2 (6.4)

s.t. h(F0(x,u)) ≥ αh(x).

Assuming feasibility, the controller in (6.4) guarantees safety for the closed-loop
system (6.2) by selecting inputs that satisfy (6.3) as formalized in:

Theorem 6.4 (DCBF safety, [197, Prop. 4]). . Let C ⊂ Rnx be the 0-superlevel
set of a function h : Rnx → R. If h is a DTCBF for (6.2) on C, then the set

KCBF(x) = {u ∈ Rnx | h(F0(x,u)) ≥ αh(x)} (6.5)

is non-empty for all x ∈ Rnx and, for any state-feedback controller k with k(x) ∈
KCBF(x) for all x ∈ Rnx , the closed-loop system (6.2) is safe with respect to C.

Proof. h(xk) ≥ αkh(x0) is lower-bounded by 0, thus ensuring the safety of C.

Remark 6.5. If (6.4) is infeasible, a slack variable can be added to recover feasibility
and its effect on safety can be analyzed using a discrete-time variant the ISSf
framework [31]. Additionally, unlike the affine inequality constraint that arises

2The standard continuous-time CBF condition ḣ(x) ≥ −γh(x) for γ > 0 becomes h(xk+1)−
h(xk) ≥ −γh(xk) for γ ∈ [0, 1] in discrete-time; defining α = 1 − γ recovers the condition
h(xk+1) ≥ αh(xk).
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with continuous-time CBFs (2.33), the optimization problem (6.4) is not necessarily
convex. To ameliorate this issue, it is often assumed that h ◦ F0 is concave with
respect to u [46], [197], [205].

Remark 6.6. As a safety filter on kdes, the closed-loop performance of system (6.2)
using the controller (6.4) is indirectly achieved through the nominal controller. If
the safety constraint and the performance objective of the nominal controller do not
conflict, then the desired nominal controller allows the system to achieve its perfor-
mance goal. However, if they do conflict, then myopic pointwise modifications are
made to the nominal controller that enforce safety but may destroy the performance
capabilities of the system [16].

Stochastic Preliminaries

Next we introduce mathematical background for our stochastic understanding of
safety. For this, let (Ω,F ,P) be a probability space and let F0 ⊂ F1 ⊂ · · · ⊂ F

be a filtration of F and consider discrete-time dynamical systems of the form:

xk+1 = F(xk,uk,dk), ∀k ∈ N0 (6.6)

where xk ∈ Rnx is the state, uk ∈ Rnu is the input, dk is an Fk+1 measurable
random disturbance which takes values in Rnd , and F : Rnx × Rnu × Rnd → Rnx

is the discrete update dynamics. Throughout this work we assume that all random
variables and functions of random variables are integrable.

To create a closed-loop system, we add a state-feedback controller k : Rnx → Rnu:

xk+1 = F(xk,k(xk),dk), ∀k ∈ N0 (6.7)

The goal of the remainder of this thesis will be to provide probabilisic safety
guarantees for this closed-loop system.

For deterministic systems, infinite-horizon safety guarantees like those of Theorem
6.4 are common. However, for discrete-time stochastic systems, when the distur-
bance is bounded, infinite-horizon guarantees fail to capture the nuances of variable
risk levels and, when the disturbance is unbounded, infinite-horizon guarantees can
be impossible to achieve as outlined in Example 6.1. In order to provide an achiev-
able risk-based guarantee we choose to analyze finite-time safety probabilities as in
[35], [131], [192], [194] instead of infinite-time safety guarantees. In particular we
consider the K-step exit probabilities of the safe set C:
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Definition 6.7 (K-step Exit Probability). For any K ∈ N1 and initial condition
x0 ∈ Rnx , the K-step exit probability of the set C for the closed-loop system (6.2)
is:

Pu(K,x0) = P {xk /∈ C for some k ≤ K} . (6.8)

This describes the probability that the system will leave the safe set C within K
time-steps given that it started at x0.

In the remainder of this thesis, we will generate bounds onK-step exit probabilities
using martingale-based concetration inequalities. Martingales are a class of stochas-
tic processes that satisfy an expectation-based relationship between their mean and
previous value.

Definition 6.8 (Martingale [206], [192]). Let (Ω,F ,P) be a probability space
with a filtration {F0,F1, . . . ,F}. A stochastic process Wk that is adapted to the
filtration and is integrable at each k is a martingale if

E[Wk+1 |Fk ] = Wk, ∀k ∈ N0, (a.s.). (6.9)

Furthermore, if Wk satisfies:

E[Wk+1 |Fk ] ≤ Wk + c, ∀k ∈ N0, (a.s.), (6.10)

with c = 0 then it is a supermartingale and if it satisfies (6.10) with c ≥ 0 then it is
a c−martingale.

Many concentration inequalities can be used to bound the spread of a martingale
over time. One particularly useful bound that will be used to generate stochastic
safety guarantees is Ville’s inequality [201] which bounds the probability that a
supermartingale Wk rises above a threshold λ > 0.

Lemma 6.9 (Ville’s Inequality [201]). IfWk is a nonnegative supermartingale, then
for all λ > 0,

P
{
sup
k∈Z

Wk > λ

}
≤ E[W0]

λ
. (6.11)

Ville’s inequality is a direct application of Markov’s inequality [206, Chp. 7.2, Lem.
7] in conjunction with martingale stopping-times [206, Chp. 12.4, Def 1.]. A proof
of Ville’s inequality is provided in [207, Appx. A].
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Lastly, as we will see that when synthesizing safety-critical controllers in the pres-
ence of stochastic disturbances, we will need to enforce conditions on the expectation
of a DCBF. In doing so, we will need to relate the expectation of the next DCBF
value, h(xk+1), to the expectation of the next state, xk+1. This will be achieved
using Jensen’s inequality:

Theorem 6.10 (Jensen’s Inequality [208]). Consider a continuous function h :

Rnx → R and a random variable x that takes values in Rnx with E[∥x∥] <∞. We
have that: 




if h is convex, then E[h(x)] ≥ h(E[x]),

if h is concave, then E[h(x)] ≤ h(E[x]).
(6.12)

6.3 Stochastic Safety Guarantees using DCBFs
In order to generate bounds on the safety probability, represented by K−step exit
probability (Def. 6.7), we provide a theoretical connection between DCBFs and
supermartingales and show how they can be used to achieve safety for stochastic and
potentially unbounded disturbances. This understanding will allow us to provide
nuanced theoretical guarantees that incorporate a tunable understanding of risk (i.e.,
tolerable failure probability).

The contributions of this section are as follows:

• A translation of the stochastic Lyapunov stability result in [35] to a safety
setting.

• A new, more intuitive and complete proof of the result in [35] with connections
to existing ISSf results [31] for bounded-uncertainty.

• An algorithmic method based on Jensen’s inequality to account for the effects
of process noise on a DCBF-based controller.

• Applications of this method to a variety of systems in simulation to analyze
the tightness of our bound and demonstrate its utility.

The text for this section is adapted from:

R. K. Cosner, P. Culbertson, A. J. Taylor, and A. D. Ames, “Robust
safety under stochastic uncertainty with discrete-time control barrier
functions,” Proceedings of Robotics: Science and Systems, 2023. doi:
10.15607/RSS.2023.XIX.084,

https://doi.org/10.15607/RSS.2023.XIX.084
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Ville’s-based DCBF Safety Guarantees
Our first result is a reframing of the stochastic invariance theorems in [35], [195]
using the standard formulation of DCBFs. Additionally, we produce a probability
bound for both C (defined as the 0-superlevel set of h) and all non-positive superlevel
sets of h (i.e., Cδ (2.38)) resulting in a discrete-time stochastic variant of the ISSf
property [31].

Theorem 6.11 (DCBF Safety using Ville’s-inequality). Let h : Rnx → R be a
continuous, upper-bounded function with upper bound B ∈ R>0. Suppose there
exists an α ∈ (0, 1) and c ≤ B(1 − α) such that the closed-loop system (6.7)
satisfies:

E[ h(F(x,k(x),d)) | x ] ≥ αh(x) + c, (6.13)

for all x ∈ Rnx , with d ∼ D. For any K ∈ N and γ ∈ R≥0, if c < −γ(1− α), we
have that:

Pu ≤
(
N − h(x0)

B + γ

)
αK +

M(1− α)− c
B + γ

K∑

i=1

αi−1. (6.14)

Alternatively if c ≥ −γ(1− α), then:

Pu ≤ 1− h(x0) + γ

B + γ

(
Bα + γ + c

B + γ

)K
. (6.15)

Remark 6.12. The upper bound c ≤ B(1 − α) is relatively non-restrictive, as not
only is c typically negative, but it must hold such that, in expectation, h(xk+1)

cannot rise above the upper bound B on h. The switching condition between (6.14)
and (6.15) of c = γ(1 − α) corresponds to whether, in expectation, the one-step
evolution of the system remains in the set Cγ = {x ∈ Rnx | h(x) ≥ −γ} when it
begins on the boundary of Cγ .

The full proof of Theorem 6.11 is provided in my publication [57, Thm. 5]. For
simplicity, this thesis presents a simplified version of this theorem and proof which
have a slightly more limited application, but use a similar structure and which I
believe are more useful for developing intuition regarding the proof method.

For this simplification of Theorem 6.11, consider the case where h(xk) is upper
bounded by B ∈ R>0 and satisfies one of the following expectation conditions:

E[ h(F(xk,k(xk),dk)) |Fk ] ≥ αh(xk), (6.16)

E[ h(F(xk,k(xk),dk)) |Fk ] ≥ h(xk)− c, (6.17)
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for some α ∈ (0, 1) or c ≥ 0, where an expectation-based version of the DCBF
condition (6.3) for stochastic dynamics. This results in the following probability
bound3:

Corollary 6.13 (Simplified DCBF Safety using Ville’s-inequality4, [35], [57], [131],
[192]). If, for some B > 0 and K ∈ N1, the function h : Rnx → R satisfies:

h(x) ≤ B, for all x ∈ Rnx , (6.18)

then: Pu(K,x0) ≤ 1− λ

B
, (6.19)

where λ =




αKh(x0), if (6.7) satisfies (6.16) ∀k ≤ K

h(x0)− cK, if (6.7) satisfies (6.17) ∀k ≤ K.

Proof. We prove the two cases separately:

Case 1:

We first prove the case when the constraint (6.16) is satisfied. Let Wk ≜ Bα−K −
α−kh(xk). This is a nonnegative supermartingale for k ≤ K:

Wk = α−KB − α−kh(xk) ≥ α−k(B − h(xk)) ≥ 0 (6.20)

E[Wk+1|Fk] = α−KB − α−(k+1)E[h(xk+1)|Fk] (6.21)

≤ α−KB − α−kh(xk) = Wk. (6.22)

Apply Ville’s inequality (Lem. (6.9)) to Wk to find:

P
{
max
k≤K

Wk > λ

}
≤ E[W0]

λ
. (6.23)

Next note that the implication:

∃k ≤ K s.t. h(xk) < 0 =⇒ ∃k ≤ K s.t. Wk > α−KB (6.24)

ensures thatPu(K,x0) ≤ P
{
maxk≤KWk > α−K}. Choose λ = α−KB to achieve:

Pu(K,x0) ≤
α−KB − h(x0)

α−KB
= 1− h(x0)

B
αK . (6.25)

3We note that the result in Corollary 6.13 is a special case of Theorem 6.11.
4See [58, Appx. C] for a discussion of notational differences between this presentation of Cor.

6.13 and that in [195] and [192].
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Case 2: Next we prove the case when (6.17) is satisfied. Let W c
k ≜ B − h(xk) +

(K − k)c. This is a non-negative supermartingale for k ≤ K:

W c
k = B − h(xk) + (K − k)c ≥ 0, (6.26)

E[W c
k+1 |Fk] = B − E[h(xk+1) |Fk] + (K − k − 1)c, (6.27)

≤ B − h(xk) + c+ (K − k − 1)c, (6.28)

= B − h(xk) + (K − k)c = W c
k . (6.29)

Apply Ville’s inequality (6.9) to W c
k to find:

P
{
max
k≤K

W c
k > λ

}
≤ E[W c

0 ]

λ
. (6.30)

Next note that the implication:

∃k ≤ K s.t. h(xk) < 0 =⇒ ∃k ≤ K s.t. W c
k > B (6.31)

ensures that Pu(K,x0) ≤ P{maxk≤KW
c
k > λ}. Choose λ =M to achieve:

Pu(K,x0) ≤
B − h(x0) +Kc

B
= 1− h(x0)−Kc

B
. (6.32)

This theorem and corollary summarize the results of several works, namely [35],
[57], [131], [192], in the context of DCBFs. They guarantee that the risk of the
becoming unsafe is upper bounded by a function which decays to 1 with time
and which depends on the system’s initial safety “fraction,” h(x0)/B where safety
increases with α and decreases with c.

Practical Considerations for Enforcing Stochastic DCBFs
Theorem 6.11 allows us to reason about the finite-time safety probabilities of systems
governed by DCBFs. To utilize the results of this theorem in a control setting, we
aim to use DCBFs to synthesize which enforce the expectation condition:

E[h(Fd(xk,uk,dk)) | xk] ≥ αh(xk). (6.33)

If such a condition can be enforced, then the result of Theorem 6.11 can be directly
applied to provide probabilistic bounds on the system’s safety. However, since the
composition of system dynamics with the disturbance in (6.2) may make computing
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this expectation difficult, we instead focus on systems with additive disturbances of
the form:

xk = Fa(xk,uk) + dk, (6.34)

where dk takes values in Rnx and the expectation-based DCBF condition (6.16) for
Theorem 6.11 becomes,

E[h(Fa(xk,uk) + dk) | xk] =≥ αh(xk). (6.35)

Like the deterministic DCBF controller in (6.4), we apply this constraint in an
optimization-based controller that enforces safety while achieving pointwise mini-
mal deviation from a desired nominal controller kdes : Rnx ×N0 → Rnu in the form
of an Expectation-based DCBF (6.36) controller:

kED(xk) = argmin
u∈Rnu

∥u− kdes(xk, k)∥2 (6.36)

s.t. E[h(Fa(xk,u) + dk) | xk] ≥ αh(xk).

The expectation in (6.36) adds complexity that is not generally considered in the
application of deterministic DCBFs. More commonly, CBF-based controllers solve
“certainty-equivalent” optimization programs, like this Certainty-Equivalent DCBF
CED controller (6.37) , that replaces the expected barrier value E[h(xk+1) | xk]
with the barrier evaluated at the expected next state, h(E[ xk+1 | xk ]):

kCED(xk) = argmin
u∈Rnu

∥u− knom(xk, k)∥2 (6.37)

s.t. h(Fa(xk,u) + E[dk]) ≥ αh(xk),

where E[Fa(xk,uk)|xk] = F(xk,uk) and E[dk|xk] = E[dk]. This constraint is
often easier to evaluate than (6.33) since it allows control actions to be selected
with respect to the expected disturbance E[dk] without needing to model the full
disturbance distribution D. If the disturbance is zero-mean, then this form of the
constraint is implicitly enforced by DCBF controllers such as those presented in
[46], [197]. However, when replacing the 6.36 controller with (6.37) it is important
to consider the effect of Jensen’s inequality in Theorem 6.10.

If the “certainty-equivalent” constraint in (6.37) is strictly concave5, then we can
apply the results of Theorem 6.11 directly since Jensen’s inequality tightens the con-
straint and ensures satisfaction of the expectation condition (6.13). Unfortunately,

5The constraint h(xk + u) ≥ αh(xk) is concave in u when h is convex and it is convex in u
when h is concave.
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using such a controller is a non-convex optimization program which can be imprac-
tical to solve at real-time speeds. If, instead, the constraint is convex, then (6.37) is a
convex program, but does not necessarily enforce the expectation condition (6.13) in
Theorem (6.11) due to the gap introduced by Jensen’s inequality. While the impact
of this gap on safety can be analyzed using the additive c term in Thm. 6.11, we
instead seek to directly compensate for Jensen’s inequality.

In order to apply the results of Theorem 6.11 to controllers of the form (6.37) with
convex constraints, we must first provide a bound on the gap introduced by Jensen’s
inequality. In particular, for any concave function h : Rnx → R and random
variable d ∼ D, we seek to determine a value ψJ ∈ R≥0 such that, for all x ∈ Rnx

and u ∈ Rnu:

E[h(Fa(x,u) + d) | x] ≥ h(Fa(x,u) + E[d])− ψJ, (6.38)

thus quantifying the gap introduced by Jensen’s inequality (Thm. 6.10).

A large body of work has studied methods for finding the smallest possible ψJ that
satisfies (6.38). Here we adapt a result in [209] to achieve a relatively loose, but
straightforward bound:

Lemma 6.14. Consider a twice-continuously differentiable, concave function h :

Rnx → R with supx∈Rnx ∥∇2h(x)∥2 ≤ λmax for some λmax ∈ R≥0, and a random
variable x that takes values in Rnx with E[∥x∥] <∞ and ∥cov(x)∥ <∞. Then we
have that:

E[h(x)] ≥ h(E[x])− λmax

2
tr(cov(x)). (6.39)

The proof can be found in [57, Appx. B]. We note that although this value
of ψJ = λmax

2
tr(cov(x)) is easy to interpret, tighter bounds exist which have less

restrictive assumptions than a globally bounded Hessian [208]. We also note that
one could also use sampling-based methods to approximately satisfy the constraint
(6.38) by estimating ψJ empirically.

Next, we present a controller which combines the mean-based control of the “cer-
tainty equivalent” (6.37) while also accounting for Jensen’s inequality. This Jensen-
Enhanced DCBF Controller (JED) includes an additional control parameter cJ ≥ 0

to account for Jensen’s inequality:

kJED(xk) = argmin
u∈Rnu

∥u− knom(xk, k)∥2 (6.40)

s.t. h(Fa(xk,uk) + E[dk])− cJ ≥ αh(xk).
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Given this controller and a method for bounding ψJ, we can now apply Theorem
6.11 while accounting for (or analyzing) the effects of Jensen’s inequality on the
6.40 controller:

Theorem 6.15. Consider the system (6.34) and let h : Rnx → R be a twice-
continuously differentiable, concave function such that supx∈Rnx h(x) ≤ B for
B ∈ R>0 and supx∈Rnx ∥∇2h(x)∥2 ≤ λmax for λmax ∈ R≥0. Suppose there exists
an α ∈ (0, 1) and a cJ ∈ [0, λmax

2
tr(cov(d)) +B(1− α)] such that:

h(Fa(x,k(x)) + E[d])− cJ ≥ αh(x), (6.41)

for all x ∈ Rnx with d ∼ D. Then we have that:

E[ h(Fa(x,k(x)) + d) | x ] ≥ αh(x) + c, (6.42)

for all x ∈ Rnx with d ∼ D and c = cJ − λmax
2

tr(cov(dk)).

Proof. Given x ∈ Rnx , Lemma 6.14 ensures that:

0 ≤ h(Fa(x,k(x)) + E[d])− cJ − αh(x) (6.43)

≤ E[h(Fa(x,k(x)) + d) | x] + ψJ − cJ − αh(x) (6.44)

where ψJ = λmax
2

tr(cov(d)). Letting δ = cJ − λmax
2

tr(cov(d)) yields the desired
result.

Thus, the JED controller compensates for Jensen’s inequality using the cJ and ensures
that the results of Theorem 6.11 apply, resulting in rigorous probabilistic guarantees
of safety for stochastic systems (6.34) controlled by the JED controller.

Example Simulations
Next, to demonstrate the utility of this approach, we consider a variety of simulation
examples that highlight the key features of our approach.

We begin by with a simple example using a linear 1D system:

Example 6.16 (Linear 1D System). Here we analyze our bounds by considering the
case of unbounded i.i.d. disturbances dk ∼ N (0, 1) for the one dimensional system
(x, u,∈ R) and safe set:

xk+1 = xk + 2 + uk + σdk, C = {x | 1− x2 ≥ 0}. (6.45)
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Figure 6.1. The dashed lines represent the theoretical probability bounds for the system as in Theorem
6.11. The solid lines represent the Monte Carlo (MC) estimated Pu across 500 experiments.

The Jensen gap for this system and DCBF is bounded by ψJ = σ2. For simulation,
we employ the 6.40 controller with cJ = σ2, α = 1 − σ2, and nominal controller
knom(xk, k) = 0. Figure 6.1 shows the results of 500 one second long trials run
with a variety of σ ∈ [0, 0.2] and also displays how the bound on Pu decreases as γ
increases.

Next, we consider an inverted pendulum about its upright equilibrium point with
the discrete dynamics:

Example 6.17 (Simple Pendulum). Consider the dynamics:
[
θk+1

θ̇k+1

]
=

[
θk +∆tθ̇k

θ̇k +∆t sin(θk)

]
+

[
0

∆tu

]
+ dk, (6.46)

with time step∆t = 0.01 sec, i.i.d disturbancesdk ∼ N (02,Diag([0.0052, 0.0252]]),
and6 safe set:

C =
{
x ∈ Rnx

∣∣∣∣ 1−
62

π2
x⊤

[
1 3−

1
2

3−
1
2 1

]
x

︸ ︷︷ ︸
hpend(x)

≥ 0

}
(6.47)

which is constructed using the continuous-time Lyapunov equation as in [203]
and for which |θ| ≤ π/6 for all x ∈ C. Figure 6.2 shows the results of 500
one second long trials for each x0 ∈ C using the 6.40 controller with parameters
α = 1−ψJ, cJ = ψJ, whereψJ =

λmax
2

tr(cov(dk)). This figure highlights the influence
of x0 and shows how the bound on Pu increases as h(x0) decreases.

We also consider the problem of controlling a planar system with unit-mass double-
integrator dynamics to remain inside a convex polytope (in particular, a unit square
centered at the origin).
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Figure 6.2. Stochastic pendulum example. (Top Left) System diagram of the inverted pendulum.
(Top Right) 500 one second long example trajectories starting at x0 = 0. (Bottom Left) Monte
Carlo estimates ofPu for γ = 0 using 500 one second long trials for each initial conditions represented
by a black dot. (Bottom Right) Our (conservative) theoretical bounds on Pu from Theorem 6.11

Example 6.18 (Planar Double Integrator). Consider the discrete-time dynamics:

xk+1 =

[
I2 ∆t I2

02 I2

]
xk +

[
∆t2

2
I2

∆tI2

]
uk + dk, (6.48)

≜ Axk +Buk + dk, (6.49)

where ∆t is the integration time step and dk ∼ N (04,Q) is a zero-mean Gaussian
process noise added to the dynamics. Here we use ∆t = 0.05 sec, and Q = BBT ,
which corresponds to applying a disturbance force fk ∼ N (0, I2) to the system at
each timestep.

To keep the system inside a convex polytope, we seek to enforce the affine in-
equalities Cx ≤ w for C ∈ Rnc×nx ,w ∈ Rnc . Thus, we define our barrier
h(x) = −max(Cx − w), where max(·) defines the element-wise maximum,
and h(x) ≥ 0 if and only if the constraint Cx ≤ w holds. Implementing the
6.36 controller for this system is non-trivial, since the expectation of h(x) for a
Gaussian-distributed x does not have a closed form. Similarly, implementing the
6.40 controller to account for Jensen’s inequality is non-trivial since h is not twice
continuously differentiable. We instead choose to enforce a conservative approxi-
mation of the barrier condition (6.33) using the log-sum-exp function. [57, Appx.

6Diag: Rnx → Rn×n generates a square diagonal matrix with its argument along the main
diagonal.
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Figure 6.3. Simulation results for double integrator over 500 trials. (Top left): Planar (x, y)
trajectories for the approximated 6.36 controller, with the safe set (a unit square) plotted in green.
(Top right): Planar (x, y) trajectories for a CED controller (6.37) . (Bottom left): The h(xk) for
both controllers, with the max and min values shaded. (Bottom right): Percent of trajectories that
have remained safe over time. We also plot our (conservative) bound (6.15) on the unsafe probability
Pu.

C] shows how this approximation yields an analytic lower bound (derived using the
moment-generating function of Gaussian r.v.s) on E[h(xk+1)] which can be imposed
via a convex constraint.

Figure 6.3 plots the results of 500 simulated trajectories for the double integrator
system using the proposed 6.36 controller, and the certainty equivalent CED con-
troller (6.37) that neglects the presence of process noise. Both controllers have a
nominal controller kdes(x) = [50, 0] which seeks to drive the system into the right
wall. All trajectories start from the origin. We note the proposed controller is indeed
more conservative than the CED controller (6.37) , yielding both fewer and smaller
violations of the safe set. In the bottom right, we also plot our bound as a function of
the time horizon, which we note is quite conservative compared to our Monte Carlo
estimate of the safety probability, motivating future work.

Finally, we consider the problem of controlling a simulated quadrupedal robot
locomoting along a narrow path.

Example 6.19 (Simulated Quadruped). The simulation is based on a Unitree A1
robot as shown in Figure 6.4 which has 18 degrees of freedom and 12 actuators. with
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Figure 6.4. Safety of a simulated quadrupedal robot locomoting on a narrow path for a variety of
controllers. (Top Left) The safe region that the quadruped is allowed to traverse. (Bottom Left) A
system diagram depicting the states of the quadruped

[
x, y, θ

]⊤. (Top Right) 50 trajectories for 3
controllers: one without any knowledge of safety (knom), one with a standard DTCBF safety filter
(6.4), and finally our method which accounts for stochasticity (6.40). (Bottom Right) Plots of h(x),
a scalar value representing safety. The system is safe (i.e., in the green safe region) if h(x) ≥ 0.

configuration space coordinates q ∈ R18, the full state is given by x = (q, q̇) ∈ R36.
For simulated walking, a no-slip condition, c(q) = 0 ∈ Rnc , is enforced on the feet
where nc depends on the number of feet in contact with the ground. As discussed
in [96], when c(q) is differentiated twice, D’Alembert’s principle applied to the
constrained Euler-Lagrange equations yields the robotic system dynamics:

D(q)q̈+H(q, q̇) = Bu+ J(q)⊤λ, (6.50)

J(q)q̈+ J̇(q, q̇)q̇ = 0, (6.51)

where D(q) ∈ R18×18 is the mass-inertia matrix, H(q, q̇) ∈ R18 contains the
Coriolis and gravity terms,B ∈ R18×12 is the actuation matrix, J(q) = ∂c(q)/∂q ∈
Rc×18 is the Jacobian of the holonomic constraints, and λ ∈ Rc is the constraint
wrench. These full-system dynamics including ground contacts were used in our
simulations.

In order to represent the error caused by uncertain terrain, zero mean Gaussian
disturbances are added to the quadruped’s (x, y) body position and velocity at
1kHz with variances of 2.25×10−6 and 0.01, respectively. This noise was chosen to
qualitatively match the rough-terrain walking that we have observed in experiments;
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a video comparing our simulated walking to rough-terrain walking can be found at
[210].

For joint-level torque control, an ID-QP controller designed using concepts in [95]
and implemented at 1kHz is used with dynamics (6.50, 6.51) to track center-of-mass
velocities and angle rates with swing legs following a Reibert-style trajectory in a
diagonal walking gait using the motion primitive framework in [96]. We simulate
the entire quadruped’s dynamics (6.50, 6.51), but follow a similar reduced-order-
modeling methodology to [48] and consider the following simplified discrete-time
single-integrator system for DCBF-based control:

xk+1 = xk +∆t



cos θk − sin θk 0

sin θk cos θk 0

0 0 1






vxk
vyk
θk


+ dk. (6.52)

where xk =
[
xk, yk, θk

]⊤
and ∆t = 0.05 seconds. Here the i.i.d. random

process dk models the random disturbances introduced to the planar (x, y) position
and velocity as well as the dynamics-mismatch between the full-order quadrupedal
dynamics (6.50, 6.51) and the simplified model (6.52).

Using the motion primitive framework presented in [96], the quadruped is com-
manded to stand and then traverse a 7 meter path that is 1 meter wide, with the
safe set C = {x ∈ Rnx | 0.52 − y2 ≥ 0}. For this simulation, three controllers are

compared: a simple nominal controller knom(x) =
[
0.2, 0, −θ

]⊤
with no under-

standing of safety, the nominal deterministic DCBF controller (6.4) with α = 0.99,
and our proposed JED controller (6.40) with α = 0.99 and cJ = ψJ using the
mean and covariance estimates, E[dk] ≈

[
−0.0132, −0.0034, −0.0002

]⊤
and

tr(cov(dk)) ≈ ψJ = 0.000548, which were estimated using 15 minutes of 20 Hz
walking data controlled by kdes and which characterize the effect of both the planar
disturbances and the model-mismatch between (6.50, 6.51) and (6.52).

The results of 50 trials for each controller can be seen in Figure 6.4. As expected,
kdes generated the largest safety violations and JED (6.40) the smallest and fewest
safety violations.

Conclusion
In this section, we developed a bound for the finite-time safety of stochastic discrete-
time systems by connecting DCBFs to existing work in martingale and stochastic
process theory. Additionally, we presented a method for practically implementing
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convex optimization-based controllers that satisfy this bound by accounting for or
analyzing the effect of Jensen’s inequality. We presented several examples which
demonstrate the efficacy of our bound and our proposed 6.36 and JED 6.40 con-
trollers. This theoretical lens, and the CED controller in particular, also presents
a useful perspective through which to view the inherent probabilistic robustness
properties of all DCBF methods, even when stochastic uncertainty is not explicitly
accounted for.

6.4 Tightened Stochastic Safety Guarantees
The Ville’s based bound of the previous section is notably weak as can be seen in
Figures 6.1 and 6.3. This is in part due to the generality of the guarantee which used
a worst-case bound on the Hessian of h and very little information regarding the
disturbance distribution. This section extends the work of the previous section on
martingale-based safety guarantees by replacing Ville’s inequality (Lem. 6.9) with
an alternative concentration inequality (Freedman’s inequality, Lem. 6.23) to obtain
tighter safety probability bounds. By additionally assuming that the martingale
differences and predictable quadratic variation are bounded, this inequality relaxes
the nonnegativity assumption required by Ville’s inequality while also providing
generally tighter bounds. Since a worst-case bound is assumed, the results of this
section also have a direct relationship to the worst-case bound results of ISSf (Sec.
2.3) and we find that the results of this section provide additional risk-based nuance
in the context of these worst-case bounds.

The contributions of this section are as follows:

• Novel Freedman-based safety probabilities for DCBFs and c-martingales.

• A characterization of the range of parameter values for which the Freedman-
based safety bound is tighter than existing discrete-time martingale-based
safety results.

• A comparison of the Freedman-based bound with traditional ISSf safety.

• An application of our theoretical result to a simulated bipedal obstacle avoid-
ance scenario (Fig. 6.7), using a reduced-order model of the step-to-step
dynamics.

The text for this section is adapted from:
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R. K. Cosner, P. Culbertson, and A. D. Ames, “Bounding stochastic
safety: Leveraging freedman’s inequality with discrete-time control
barrier functions,” IEEE Control Systems Letters, pp. 193 7 –1942,
2024. doi: 10.1109/LCSYS.2024.3409105,

Safety Guarantees using Freedman’s Inequality
Here we present K-step exit probability bounds for DCBFs and c-martingales gen-
erated using Freedman’s inequality7, a particularly strong martingale concentration
inequality. After presenting this result, this section explores comparisons with the
previously introduced Ville’s-based safety and ISSf methods.

Before presenting Freedman’s inequality, we must define the predictable quadratic
variation (PQV) of a process which is a generalization of variance for stochastic
processes.

Definition 6.20 (Predictable Quadratic Variation (PQV) [206]). The PQV of a
martingale Wk at K ∈ N1 is:

⟨W ⟩K ≜
∑K

i=1 E[(Wi −Wi−1)
2 |Fi−1]. (6.53)

Unlike Ville’s inequality, Freedman’s inequality does not require nonnegativity of
the martingale Wk, thus removing the upper-bound requirement (6.18) on h. In
place of nonnegativity, we require two alternative assumptions:

Assumption 6.21 (Upper-Bounded Differences). We assume that the martingale
differences are upper-bounded by 1 (i.e., Wk+1 − Wk ≤ 1, similar to Azuma-
Hoeffding methods [206]).

Assumption 6.22 (Bounded PQV). We assume that the PQV is upper-bounded by
ξ2 ∈ R>0.

Given the PQV of the process, Freedman’s inequality provides the following bound:

Lemma 6.23 (Freedman’s Inequality [202, Thm. 4.1]). If, for some K ∈ N1 and
ξ > 0, Wk is a supermartingale with W0 = 0 such that:

(Wk −Wk−1) ≤ 1 for all k ≤ K, (Assumption 6.21)

⟨W ⟩K ≤ ξ2, (Assumption 6.22)

7For this we use the simpler historical version as presented by Freedman [202]; see [211] for
historical context and a new, tighter alternative which could also be used.

https://doi.org/10.1109/LCSYS.2024.3409105
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then, for any λ ≥ 0,

P {maxk≤KWk ≥ λ} ≤ H(λ, ξ) ≜
(

ξ2

λ+ξ2

)λ+ξ2
eλ. (6.54)

See [207, Appx. D] for a restatement of the proof of this lemma.

We can now use Freedman’s inequality to create probabilistic safety guarantees that
reflects the structure of Corollary 6.13 for systems that satisfy the expectation-based
DCBF (6.16) or c-martingale (6.17) conditions.

Theorem 6.24 (DCBF Safety using Freedman’s Inequality). If, for some K ∈
N1, σ > 0, and δ > 0, the following bounds8 on the difference9 between the
true and predictable update (6.55) and the conditional variance (6.56) hold for all
k ≤ K:

E[ h(xk) |Fk−1 ]− h(xk) ≤ δ, (6.55)

Var( h(xk+1) |Fk ) ≤ σ2, (6.56)

then the K-step exit probability is bounded as:

Pu(K,x0) ≤ H
(
λ
δ
, σ

√
K
δ

)
, (6.57)

where λ =




αKh(x0), if (6.7) satisfies (6.16) ∀k ≤ K,

h(x0)− cK, if (6.7) satisfies (6.17) ∀k ≤ K.

To apply Freedman’s inequality (Lem. 6.23) to achieve Theorem 6.24 we follow
this proof structure: (Step 1) normalize h and use it to construct a candidate
supermartingale Wk, (Step 2) verify that Wk is indeed a supermartingale with
W0 = 0, (Step 3) use Doob’s decomposition [206, Thm 12.1.10] to produce a
martingale Mk from Wk in order to remove the negative effect of safe, predictable
jumps from the PQV, (Step 4) verify that Mk satisfies Assumptions 6.21 and 6.22,
(Step 5) choose λ ≥ 0 such that a safety failure implies {maxk≤KWk ≥ λ} as in
(6.54), and (Step 6) specialize to specific values of α and c for each case.

Proof. (Step 1) Consider the case, for α̃ ∈ (0, 1] and c̃ ≥ 0, where

E[h(xk+1)|Fk] ≥ α̃h(xk)− c̃, for all k ≤ K. (6.58)

8Only upper-bounds on δ and σ2 are required for (6.57) to hold and this guarantee is robust
to changes in distribution that still satisfy (6.55) and (6.56). For real-world systems, distribution-
learning will be explored in the next chapter.

9See [207, Appx. G] for a constructive method for determining δ and σ.
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First, define the normalized safety function η(x) ≜ h(x)
δ

to ensure that the martingale
differences will be bounded by 1. Next, use η to define the candidate supermartin-
gale10

Wk ≜ −α̃K−kη(xk) + α̃Kη(x0)−
∑k

i=1 α̃
K−i c̃

δ
. (6.59)

(Step 2) This satisfies11 W0 = 0 and is a supermartingale:

E[Wk+1|Fk] = −α̃K−(k+1)E[η(xk+1)|Fk] + α̃Kη(x0)−
∑k+1

i=1 α̃
K−i c̃

δ
, (6.60)

≤ −α̃K−kη(xk) + α̃Kη(x0)−
∑k

i=1 α̃
K−i c̃

δ
= Wk, (6.61)

which can be seen by applying the bound from (6.58).

(Step 3) The martingale from Doob’s decomposition is:

Mk ≜ Wk +
∑k

i=1(Wi−1 − E[Wi|Fi−1]), (6.62)

= Wk +
∑k

i=1
α̃K−i

δ
(E[h(xi)|Fi−1]− α̃h(xi−1) + c̃)︸ ︷︷ ︸

≥0

≥ Wk (6.63)

where the bound comes from (6.58) and positivity of α̃ and δ.

(Step 4) Furthermore, we can show that Mk satisfies Assp. 6.21:

Mk −Mk−1 = Wk − E[Wk|Fk−1], (6.64)

= α̃K−k(E[η(xk)|Fk−1]− η(xk)) ≤ α̃K−k δ
δ
≤ 1, (6.65)

since we assume in (6.55) that E[h(xk) |Fk−1]− h(xk) ≤ δ.

Next, α̃ ∈ (0, 1] and (6.56) ensure that Mk satsifes Assp. 6.22:

⟨M⟩K =
∑K

i=1 E[α̃2(K−i)(η(xi)− E[η(xi)|Fi−1])
2|Fi−1],

=
∑K

i=1
α̃2(K−i)

δ2
Var(h(xi)|Fi−1) ≤

∑K
i=1 α̃

2(K−i) σ2

δ2
≤ σ2K

δ2
. (6.66)

(Step 5) Now, to relate the unsafe event {mink≤K h(xk) < 0} to our martingaleMk

we consider the implications:

mink≤Kh(xk) < 0 =⇒ mink≤K h(xk) ≤ 0 (6.67)

⇐⇒ max
k≤K
−α̃K−kη(xk) ≥ 0, since α̃ > 0, δ > 0 (6.68)

⇐⇒ max
k≤K

Wk ≥ α̃Kη(x0)−
∑k

i=1 α̃
K−i c̃

δ
(6.69)

=⇒ max
k≤K

Mk ≥ α̃Kη(x0)−
∑k

i=1 α̃
K−i c̃

δ
(6.70)

=⇒ max
k≤K

Mk ≥ α̃Kη(x0)−
∑K

i=1 α̃
K−i c̃

δ
, (6.71)

10We use the “empty sum” convention that
∑0

i=1 ρ = 0 for any ρ ∈ R.
11W0 = 0 since x0 is known and randomness first enters through d0.
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where (6.68) is due to multiplication by a value strictly less than zero, (6.69) is due to
adding zero, (6.70) is due to Mk ≥ Wk as in (6.62), and (6.71) is due to k ≤ K and
the nonnegativity of α, δ, and c̃. Thus, the unsafe event satisfies the containment:

{
min
k≤K

h(xk) < 0

}
⊆
{
max
k≤K

Mk ≥ α̃Kη(x0)−
K∑

i=1

α̃K−i c̃

δ

}
.

Since Mk satisfies M0 = 0, Mk −Mk−1 ≤ 1 ∀k ≤ K , and ⟨M⟩K ≤ σ2K
δ2

, we can
apply Thm. 6.23 (Freedman’s Ineq.) with λ =

α̃Kh(x0)−
∑K

i=1 α̃
K−ic̃

δ
to achieve the

probability bound12: Pu(K,x0) ≤ H
(
α̃Kh(x0)−

∑K
i=1 α̃

K−ic̃

δ
, σ

√
K
δ

)
.

(Step 6) If the system (6.7) satisfies the expectation-based DCBF condition (6.16),
then (6.58) holds with (α̃ = α, c̃ = 0) so the desired bound is achieved with
λ = αKh(x0)/δ and if the system (6.7) satisfies the c−martingale condition (6.17),
then (6.58) holds with (α̃ = 1, c̃ = c) so the desired bound is achieved with
λ = h(x0)/δ −Kc.

Bound Tightness Comparisons
We now relate the Freedman-based safety of Theorem 6.24 to the Ville’s-based
safety of Theorem 6.11 and Corollary 6.13. For systems where the results of both
theorems apply, i.e., those with an upper-bounded h (6.18), a lower-bounded error
(6.55), and a bounded conditional variance (6.56), we provide a range of values for
σ, δ,K,B, and λ for which Theorem 6.24 provides a tighter bound. The following
proposition provides a direct theoretical comparison (after changing notation) to the
Ville’s-based bounds in [35], [57], [131], [192].

Proposition 6.25. For someσ, δ, B > 0, λ ≥ 0 andK ∈ N1, consider the conditions

λδ ≥ σ2K, λ ≤ B − δ
φ
, (6.72)

where φ = 2 ln(2)− 1. If these conditions hold, then

H
(
λ
δ
, σ

√
K
δ

)
≤ 1− λ

B
. (6.73)

Proof of this proposition is is provided in [207, Appx. E].

Intuitively, conditions (6.72) stipulate that the conditional variance σ2 and number
of steps K must be limited by λδ, which is a function of the initial condition times

12The proof can end after Step 5 and can be applied to any system satisfying (6.58). We specialize
to DCBFs and c-martingales for clarity.
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Illustration and Comparison of Bounds in Prop. 1 and Thm. 1

Figure 6.5. Comparison for Prop. 6.25 with B = 10,K = 100, δ = 1, and varying σ and λ. The
Freedman-based bounds are shown in green when the conditions of Prop. 6.25 hold and blue when
they do not. The Ville’s-based bound is shown in red. Code to reproduce this plot can be found at
[212].

the maximum single-step disturbance to h(xk). Additionally, the initial condition
must be less than the maximum safety bound B by an amount proportional to δ.
The exact value of φ is a result of the first assumption (λδ ≥ σ2K) and alternative
values can be found by changing this assumption; for clarity of presentation, we
leave exploration of these alternative assumptions to future work. The safety bounds
for various λ and σ are shown in Fig. 6.5 where it is clear that these conditions
provide a conservative set of parameters over which this proposition holds.

Additionally, since Thm. 6.24 assumes that h has lower-bounded errors (6.55),
we can directly compare our method with Input-to-State Safety (ISSf) [31], which
provides almost-sure safety guarantees.

In the context of our stochastic, discrete-time problem setting, the ISSf property
over finite-time can be reformulated as:

Proposition 6.26 (Finite-time Input-to-State Safety). If the closed-loop system (6.2)
satisfies the expectation-based DCBF condition (6.16) and the bounded-jump con-
dition (6.55) (a.s) for some α ∈ [0, 1) and δ > 0, then h(xk) ≥ αkh(x0)−

∑k−1
i=0 α

iδ

for all k ≥ 0 and

Cδ =
{
x ∈ Rn | h(x) ≥ −δ

1− α

}
(6.74)

is safe (a.s.).

Proof. By combining the bounds (6.16) and (6.55):

h(xk+1) ≥ E[h(xk+1) |Fk]− δ ≥ αh(xk)− δ (a.s.). (6.75)
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Thus, for all k ∈ N1, we have the lower-bound h(xk) ≥ αkh(x0) −
∑k−1

i=0 α
iδ

(a.s). Furthermore, for all time, h(xk) ≥ −δ
1−α =⇒ h(xk+1) ≥ −δ

1−α , so Cδ is safe
(a.s.).

To compare with ISSf’s worst-case safe set Cδ, we wish to use Theorem 6.24 to
bound the probability that our system leaves some expanded safe set Cϵ = {x ∈
Rn|h(x) ≥ −ϵ} with ϵ ≥ 0 in finite time.

Corollary 6.27. If the hypotheses of Theorem 6.24 are satisfied and the closed-
loop dynamics (6.7) satisfy the expectation-based DCBF condition (6.16) for some
α ∈ (0, 1), then for any value ϵ ≥ 0 and any K ∈ N1,

P

{
min
k≤K

h(xk) < −ϵ
}
≤ H

(
λ, σ

δ

(
1−α2K

1−α2

) 1
2

)
1{−ϵ≥αKh(x0)−

∑K−1
i=0 αiδ} (6.76)

where λ = αK

δ
(h(x0) + ϵ).

Proof. The expectation-based DCBF condition (6.16) ensures that, for any ϵ ≥ 0:

E[ h(xk+1) + ϵ |Fk ] ≥ α(h(xk) + ϵ) + ϵ(1− α) ≥ α(h(xk) + ϵ). (6.77)

We apply the same proof as for Theorem 6.24 starting at (6.59) with (η(xk) =
h(xk)+ϵ

δ
, α̃ = α, c̃ = 0). Choosing λ = αKη(x0) and bounding13 ⟨M⟩K ≤∑K

i=1 α
2(K−i) σ2

δ2
= σ2(1−α2K)

δ2(1−α2)
as in (6.66) yields the desired bound without the

indicator function by applying Theorem. 6.23. The indicator function is a re-
sult of applying the lower bound on the safety value from Proposition 6.27, i.e.,
h(xk) ≥ αkh(x0)−

∑k−1
i=0 α

iδ (a.s.) for k ∈ N0.

Next, we perform a simulated comparison of Corollary 6.27 and Proposition 6.26
for various ϵ and distributions (truncated normal, categorical): 14

Example 6.28 (Prop. 6.26 and Cor. 6.27 Comparison Simulations). Consider the
simple system:

xk+1 = αxk + dk (6.78)

13This bound on ⟨M⟩K uses the finite geometric series identity and can also be applied for a
tighter Thm. 6.24 and Prop. 6.25.

14Code for these simulations can be found at https://github.com/rkcosner/freedman.git

https://github.com/rkcosner/freedman.git
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Figure 6.6. Probability that the system is unsafe: our bound from Cor. 6.27 (blue), ISSf bound (red).
The x-axis is the level set expansion −ϵ and the y-axis is the failure probability (lower is better).
The plots from left to right indicate safety for K = 1, 100, 200, 300, and 400 steps. Simulations
where E[h(xk)|Fk−1] = αh(xk) and approximate probabilities from 1000 samples are shown for
simulations where h(xk) is sampled from 3 different conditional distributions: uniform (pink),
truncated Gaussian (green), and a categorical (yellow) all which satisfy Cor. 6.27. Code for these
plots is can be found at [212].

for x ∈ R1, α = 0.99, and zero-mean disturbances dk sampled from a variety of
distributions for up toK = 400 steps. This system naturally satisfies the expectation-
based DCBF constraint (6.16):

E[h(xk+1)|Fk] ≥ αh(xk) with h(x) = x, (6.79)

so we seek to provide guarantees of its inherent safety probabilities. In particular,
in three different experiments we consider dk sampled from one of three zero-mean
distributions that all satisfy |d| ≤ 1 and σ ≤ 1

3
: a uniform distribution U[−1,1], a

standard normal distribution truncated at −1 and 1, and a categorical distribution
where P{d = −1} = 1

6
and P{d = 1

5
} = 5

6
to ensure 0 mean.

The results of these simulations are shown in Figure 6.6 where we can see that
our method successfully upper-bounds the sampled safety probabilities with risk-
sensitive guarantees that are much less conservative than the worst-case bounds
provided by ISSf.

These simulations also show that, although our method is conservative compared to
the Monte Carlo approximations, it provides useful risk-based safety probabilities
for a variety of Cϵ level sets whereas ISSf only provides a worst-case almost-surely
bound.

Finally, we apply our method to a simplified model of a bipedal walking robot.

Example 6.29 (Simulated Bipedal Robot). In this example we use the Hybrid Linear
Inverted Pendulum (HLIP) model [213] which approximates a bipedal robot as an
inverted pendulum with a fixed center of mass (COM) height z0 ∈ R>0. Its states
are the planar position, relative COM-to-stance foot position, and COM velocity
p, c,v ∈ R2. The step-to-step dynamics are linear and the input is the relative
foot placement, uk ∈ R2. The matrices A ∈ R6×6 and B ∈ R6×2 are determined
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Figure 6.7. Safety results for a bipedal robot navigating around an obstacle using our method.
(Top) Visualization of the Hybrid Linear Inverted Pendulum (HLIP) model. Yellow indicates the
center-of-mass (COM), blue is the stance foot, and red is the swing foot. The states xk are the global
COM position, the relative COM position, and COM velocity, and the input is the relative position of
the feet at impact. (Bottom) A table with variable maximum disturbance value (dmax) and controller
parameter (α) shows our (dashed lines) theoretical bound on safety failure from Thm. 6.24, (dotted
lines) the shortest first-violation time based on the worst-case disturbance approximation, and (solid
lines) approximated probabilities from 5000 trials (lower is safer). On the left, the trajectories of the
COM are shown walking from bottom left towards the top right while avoiding the obstacle with
each color corresponding to a different dmax. The robot attempts to avoid the obstacle (black).

by z0 and gait parameters including the stance and swing phase periods. The
HLIP model with an added disturbance matrix D ∈ R6×4 and disturbance d ∈ R4

affecting position and velocity is:

xk+1 = Axk +Buk +Ddk, dk ∼ D,

where xk =
[
p⊤
k c⊤k v⊤

k

]⊤
. We augment the standard HLIP model and assume

that d enters linearly andD is a 4-dimensional, 0-mean uniform distribution15 with
∥d∥ ≤ dmax.

We define safety for this system as avoiding a circular obstacle of radius r > 0

located at (x, y) = ρ ∈ R2, so safety can be defined using the signed-distance
function h(x) = ∥p − ρ∥2 − r. Notably, this function has no upper bound and
therefore the Ville’s-based Cor. 6.13 does not apply.

15See [207, Appx. H] for bounds for δ and σ given this problem structure.
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Since h(x) is not convex, we use a conservative halfspace convexification instead:

h(xk+1) ≥ ê(pk)
⊤ (pk+1 − ρ)− r ≜ h̄(xk+1), (6.80)

where ê(p) = (p−ρ)
∥p−ρ∥ and we apply the controller:

u∗ = min
u∈R2

∥u− knom(xk)∥ (6.81)

s.t. E
[
h̄(xk+1) |Fk

]
≥ αh̄(xk)

with α ∈ (0, 1] and where knom tracks a desired velocity.

We ran 5000 trials with 3 steps per second and compared against the theoretical
bound from Thm. 6.24. Those values and planar pose trajectories can be seen in
Fig. 6.7.

Despite the relative tightness guarantee of Proposition 6.25, the probability guar-
antees of our method are still not necessarily tight, as can be seen in Fig. 6.6.
Optimization of h without changing C as in [192] through methods such as sum-of-
squares is a promising direction further tightening.

6.5 Conclusion
This section presented methods for generating robust guarantees of safety and stabil-
ity in the presence of stochastic and potentially unbounded uncertainty. This work
extends the worst-case robustness methods of Chapter 4 to provide guarantees when
those do not hold (when the uncertainty is unbounded) and to provide additional
nuance when both results hold.

The stochastic results of this section represent a middle middle ground between
the robust theoretical results of Chapter 4 and the data-driven performant robotic
demonstrations of Chapter 5. Here we retain theoretical guarantees and the level
of tolerable risk can be explicitly tuned16, retaining guarantees, but allowing for
performance improvements.

The theoretical results in this chapter rely on a structural connection between Lya-
punov methods, like CBFs and CLFs, and martingales. This connection is predicated
on the self-referential property of these Lyapunov methods where the next value is
bounded by a function of the previous value. This constraint allows for the con-
struction of a supermartingale and the subsequent application of martingale-based

16As opposed to the indirect tuning of the PBL method in Section 5.4. In this case, we consider
risk to be exactly the K-step exit probability.
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concentration inequalities to generate probabilistic safety guarantees, with additional
applications to robust stability explored in [35], [204].

This method does have its limitations. Although it produces trajectory-long safety
guarantees, these results remain very conservative and future work should investigate
calibration methods for generating more-accurate probabilistic bounds that generate
controllers that can still be deployed in real-time applications. Interesting recent
work has explored set-erosion with sub-Gaussian disturbances as an interesting
future direction for potential tightened guarantees [189].

Additionally, one significant limitation of the work presented in this chapter is
that, in order to deploy these controllers, one must have some understanding the
underlying disturbance distribution since this is used to calculate the disturbances’s
mean and covariance used in several of the controllers in this chapter. To remove
this limitation, the next chapter will discuss methods for modeling these disturbance
distributions using generative modeling techniques. Together with the methods in
this chapter, this will allow us to deploy these controllers on real-world hardware
systems.
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C h a p t e r 7

DEPLOYING RISK-AWARE DYNAMIC SAFETY

“Real artists ship.” - Steve Jobs

“Build it, break it, fix it.” - Marc Raibert

“Theory is cheap, show me the experiments.” - Magnus Egerstedt

In addition to theoretical generality and mathematical guarantees, a roboticist must
also focus on practical deployment. The true test of a control algorithm is in its
ability to “ship,” i.e., to be deployed reliably and effectively on dynamic, real-world
systems.

This chapter focuses on the real-world deployment of the stochastic control algo-
rithms introduced in the previous chapter. Moving beyond theory and simulation,
we present hardware demonstrations showcasing how these methods can achieve
performant, safety-critical behavior under significant uncertainty.

Abstract

Safety-critical control frameworks such as Control Barrier Functions (CBFs) pro-
vide a powerful foundation for achieving robust safety guarantees in robotics. Re-
cent work has extended CBFs to handle a wide range of uncertainties, including
worst-case bounded disturbances (Chapter 4) and potentially unbounded stochas-
tic disturbances (Chapter 6). While stochastic CBF methods can more accurately
reflect real-world uncertainty, they have been generally constrained to theory and
simulation with limited practical demonstrations. Two key challenges contribute
to this gap: (1) incorporating stochastic robustness often increases computational
complexity, hindering real-time implementations; and (2) these methods require
a priori knowledge about the disturbance distribution, which is rarely known in
practice.

This chapter addresses these limitations by demonstrating real-world deployment of
the stochastic discrete-time CBF (DCBF) framework from Chapter 6. In Sections 7.2
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and 7.3, we deploy these methods on quadrotor and bipedal robot platforms, respec-
tively, operating under substantial uncertainty. We leverage generative modeling to
learn disturbance distributions and develop computationally tractable DCBF con-
trollers capable of real-time closed-loop deployment. Section 7.4 then discusses the
problem of achieving desirable closed-loop behavior, beyond just practical safety
guarantees. This section shows that a horizon-based, model predictive control
(MPC) approach that incorporates a stochastic DCBF constraint can lead to both
probabilistic safety guarantees and performance improvements. This result is then
validated through hardware experiments on both quadrupedal and quadrotor robots
performing vision-based dynamic obstacle avoidance. In the quadrotor experiments,
we focus on the real-world deployment of this method with the computer vision,
obstacle estimation, and control algorithms running exclusively on an onboard edge
computer.

Published content: The text for this chapter is adapted from [17], [59], [60].

7.1 Introduction
The theoretical developments of the previous chapter present a promising direction
for achieving guarantees of safety in the face of real-world, stochastic uncertainty.
However, hardware demonstrations of these methods are rare, in part because of the
a priori uncertainty knowledge required to implement controllers like (6.40).

Learning Disturbance Distributions
The first two sections of this chapter will engage directly with this challenge of
unknown disturbance distributions when implementing the guarantees of Chapter 6
on hardware systems.

In general, it is not uncommon for theoretical stochastic control methods to assume
significant prior knowledge such as the value at risk (VaR) or conditional value at
risk (CVaR) of h(xk+1) [205] or some statistics of the disturbance distribution [57],
[214]. While this assumption is markedly different than the global upper bound
assumption common in deterministic robust control [4], [32], [52], [65], it is still
unrealistic to assume perfect, a priori knowledge relating to the disturbance before
operating the system, and impractical / unprincipled to estimate these values by hand.
To address these issues, we propose the use of generative modeling techniques to
learn a state-dependent conditional distribution of the dynamics residuals from data.

In particular, Sections 7.2 and 7.3 of this chapter deploy the probabilistic guaran-



169

tees and control methods of the previous chapter by using deep generative models
(DGMs) [215]–[217] which approximate the disturbance distributions. DGMs are
a broad class of methods that use neural networks to approximate the probabil-
ity distribution underlying a given dataset. These models can be used for density
estimation, which provides a likelihood model for the data, or to sample (i.e., “gen-
erate”) new data points from the approximated distribution. Beyond their traditional
applications, like generating image [218] and text [219] data, these models have been
applied to a broad range of robotics tasks including SLAM [220], imitation learn-
ing [221], motion planning [222], anomaly detection [186], and dynamics learning
[223].

For the work in this chapter, we chose to employ conditional variational autoencoders
(CVAEs) [224] which are a class of DGMs and a generalization of variational
autoencoders (VAEs) that allow one to condition the generating process on a context
variable (e.g., the current state x). CVAEs have been used to recreate hand-written
images of numbers given the desired digit [224] or to predict trajectories given state
and environment understanding [225]. Since the generative process for a CVAE
only requires two neural network forward passes and normal distribution samples,
they are computationally efficient and particularly well suited for real-time robotics
applications [226].

The first section of this chapter, Section 7.2, unifies DCBF and CVAE methods in
the form of the Online Risk-Informed Optimization (ORIO) controller, a risk-based
safety framework that learns to ensure safety in the presence of stochastic dynamics
uncertainty and we provide demonstrations of ORIO on a quadrotor drone carry a
slung mass attached with a flexible cable. Section 7.3 then extends this idea to the
context of hierarchical control, in an architecture similar to [48] and Section 3.3,
where we generate safe reference signals that are then tracked by a complex full-
order system, such as a humanoid robot with a reinforcement learning (RL)-based,
velocity-tracking locomotion controller. The main difference here is that we treat the
difference between the reduced-order model (ROM) and the full-order system as a
history-dependent stochastic disturbance instead of assuming tracking convergence.
This idea is formally presented as the SHIELD (Safety on Humanoids via CBFs
In Expectation on Learned Dynamics) safety filter paradigm which leverages the
stochastic safety-critical control methods of the previous chapter to improve tracking
and achieve safe collision avoidance of a humanoid robot.
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Improving Performance Alongside Safety
Additionally, in order to achieve dynamic safety, it critical that, whenever possible,
robots retain the ability to accomplish their task; they should not generally forego
all performance metrics in favor of safety1.

In general, the common methodologies for safety-critical control take very different
approaches to achieve desirable performance. DCBF-based methods [31] gener-
ally take a myopic, pointwise approach; state-constrained model predictive control
(MPC) [5] jointly optimizes for safety and performance over a finite horizon; and
backwards Hamilton-Jacobi (HJ) methods like [73] optimize a plan and ensure safety
of a tracking controller separately. While HJ methods provide strong guarantees
of safety, they often have limited applications to high-dimensional and/or nonlinear
systems due to their computational complexity [4], even when used in conjunction
with simplified planners. Alternatively, despite more restrictive theoretical assump-
tions required for their implementation, widespread experimental success has been
achieved for both MPC [227], [228] and CBF-based [19], [22] methods by enforcing
computationally simple safety constraints while optimizing for tractable proxies of
performance.

By optimizing performance over a receding horizon, MPC methods generally
achieve significantly better performance than CBF methods which often encounter
undesirable conflict between safety and performance goals [16]. On the other hand
DCBF-based safety constraints display desirable robustness guarantees, as illus-
trated in the previous chapter, that do not generally hold for MPC methods. To
unify the horizon-based performance benefits of MPC with the robustness of CBFs,
many combinations of these two approaches have been proposed that involve hi-
erarchical multi-rate paradigms [25], [228] and extended discrete-time predictions
[229]. Our discussion in Section 7.4 aligns most closely with the combinations pre-
sented in [46], [47], [198], [230] which apply the DCBF condition as a constraint in
the MPC’s finite-time optimal control problem (FTOCP). Section 7.4 significantly
extends these works by considering the closed-loop feasibility improvements and
robustness properties (both worst-case and probabilistic) of a unified MPC+DCBF
controller with demonstrations of dynamic obstacle avoidance on quadrupedal and
quadrotor robots.

1For example, see how Asimov’s second law supersedes the third in Definition 1.0.
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7.2 Risk-Aware Control of a Quadrotor with a Slung Mass
In this section, we explore how deep generative models [215]–[217] can be used to
approximate dynamics uncertainty distributions and thus enable the deployment of
the stochastic control methods of Chapter 6.

In particular, this section studies the problem of safe flight for a quadrotor robot ex-
perience significant dynamics uncertainty including ground effects and unmodeled
payloads attached via flexible cables. We find that in the case of large, difficult to
predict disturbances, the unification of generative modeling and stochastic DCBF-
based controllers enables safe and performant flight. The work in this section on
modeling dynamics residuals is similar to [40] and can be thought of as a proba-
bilistic generalization.

The contributions of this section are as follows:

• The Online Risk-Informed Optimization (ORIO) controller: a unified frame-
work for dynamics distribution learning and deployment of DCBF-based
stochastic safety.

• Simulation and hardware demonstrations of the real-time application of ORIO
on a quadrotor robot with a slung load for safe flight.

The text for this section is adapted from:

R. K. Cosner, I. Sadalski, J. K. Woo, P. Culbertson, and A. D. Ames,
“Generative modeling of residuals for real-time risk-sensitive safety
with discrete-time control barrier functions,” 2024 IEEE International
Conference on Robotics and Automation (ICRA), 2024. doi: 10.1109/
ICRA57147.2024.10611355,

A video for this section can be found at [231].

In this work, we consider applications of safe control in the presence of unmodeled
disturbances. Specifically, we consider systems with discrete-time dynamics of the
form:

xk+1 = Fa(xk,uk) + dk, ∀k ∈ N (7.1)

with state xk ∈ Rnx , input uk ∈ Rnu , unmodeled residual dynamics dk that take
values in Rnd and are sampled from some unknown, state-dependent distribution

https://doi.org/10.1109/ICRA57147.2024.10611355
https://doi.org/10.1109/ICRA57147.2024.10611355
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p(d|x), and modeled dynamics Fa : Rnx×Rnu → Rnx . A state-feedback controller
k : Rnx → Rnu yields the discrete-time closed-loop system:

xk+1 = Fa(xk,k(xk)) + dk, ∀k ∈ N. (7.2)

This is a simplification of the general stochastic dynamics uncertainty model of
(6.2) where here we assume that the dynamics residuals are input-independent and
additive. This is a common structure often assumed in robust control theory for
discrete-time systems [232]–[234].

Generative Modeling using Conditional Variational Autoencoders (CVAEs)
To account for the unmodeled disturbances, we first seek a generative model that can
approximate the conditional distribution p(d|x) given a dataset D = {(xi,di)}nx

i=1.
We do this by fitting a parametric distribution to D which attempts to maximize the
likelihood of the observed data with respect to the learned distribution.

While there exist many (learning- and learning-free) methods for generative mod-
eling, in this section, we look to Conditional Variational Autoencoders (CVAEs)
[224], a variant of Variational Autoencoders (VAEs) [235] that allows the learned
models to be conditioned on observations, x. CVAEs assume there exists a latent
variable zwhich captures the “unobserved” information explaining any non-random
variation in the data distribution. For example, in the setting of robot safety, the
latent codes z could represent state-dependent modeling errors, or other hidden vari-
ables (e.g., higher-order dynamics, time delays) that could influence the difference
between the observed next state xk+1, and the modeled dynamics Fa(xk,uk).

Specifically, CVAEs represent the conditional distributions pθ(d|x, z) and qφ(z|x,d),
and the latent prior pϕ(z|x) as multilayer perceptions (MLPs) with corresponding
parameters θ, φ, ϕ, and seek to optimize these parameters such that the learned data
likelihood pθ,ϕ(d|x) is maximized. Traditionally qφ is called an “encoder,” since
it maps states x and disturbances d to distributions over the latent codes z, and
similarly pθ is called a “decoder,” since it decodes latent codes z and states x into
disturbance distributions d. While maximizing pθ,ϕ(d|x) directly is intractable, we
can instead optimize it by maximizing the evidence lower bound (ELBO) as a proxy:

log pθ,ϕ(d|x) ≥ Eqφ [log pθ(d|x, z)]−KL
(
qφ(z|x,d)∥pϕ(z|x)

)
(7.3)

where KL is the Kullback-Liebler divergence [206]. In practice, each network rep-
resents its corresponding distribution as a conditional Gaussian, e.g., pθ(d|x, z) =
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N (d;µθ(x, z),Σθ(x, z)), where N (· ;µ,Σ) is the probability density function of
a multivariate Gaussian with mean µ and covariance Σ, and µθ,Σθ are neural
networks parameterized by θ that represent the parameters of the distribution.

Once trained, a CVAE can be used to estimate the disturbance’s conditional likeli-
hood, generate new samples, or approximate the mean and covariance of the true
distribution.

In particular, the risk-sensitive DCBF-based controller (6.40) requires an approxi-
mation of the mean and covariance of the disturbance distribution d. To do this, we
use the following estimatorfor pθ,ϕ(d|x) :

pθ,ϕ(d|x) ≈
1

S

S∑

s=1

pθ(d|x, z(s)) =
1

S

S∑

s=1

N
(
d ; µθ(x, z

(s)),Σθ(x, z
(s))
)

(7.4)

where z(s) ∼ pϕ(z|x) is one of S samples drawn from the prior distribution. Since
this approximation is a Gaussian mixture model (GMM) we can obtain its mean and
expectation in closed form as:

Epθ,ϕ [d|x] ≈
1

S

S∑

s=1

µθ(x, z
(s)) ≜ µ(θ,ϕ)(x), (7.5)

covpθ,ϕ(d|x) ≈
1

S

(∑S
s=1Σθ(x, z

(s)) + µθ(x, z
(s))µθ(x, z

(s))T
)
,

− µ(θ,ϕ)(x)µ(θ,ϕ)(x)
⊤ ≜ Σ(θ,ϕ)(x). (7.6)

To demonstrate the capabilities of CVAEs to learn complex dynamics residuals, we
consider the following example using a simple double integrator system:

Example 7.1 (Residual Dynamics Modeling of a Double Integrator Example). Con-
sider the dynamics:

xk+1 =

[
x

v

]

k+1

=

[
1 ∆t

0 1

][
x

v

]

k

+∆tdk (7.7)

with a state-dependent Gaussian residual distribution, dk ∼ p(dk|xk) with mean
and covariance:

µ(x) =
[
0, sin(x)

]⊤
, Σ(x) =

1

2

[
2 + cos(x) exp(−|x|)
exp(−|x|) 2 + sin(x)

]
.

The system was initialized atx0 = 0with∆t = 0.01 and simulated for 35 five-second
trials to collect data. Then a CVAE was trained to approximate the distribution. The
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Figure 7.1. Learning heteroschedastic disturbance of double integrator system using 3 minutes of
data at 100 Hz (36 five second long trajectories). The approximated mean and covariance values are
scaled by the time step and plotted against the true values in black using the CVAE in blue, diffusion
model in yellow, and MLP (mean only) in green.

CVAE accurately learns the nonlinear heteroschedastic disturbance with a relatively
small amount (3 minutes of simulation time) of data, as can be seen in Fig. 7.1.

We compare the CVAE to two baselines: a conditional diffusion model [236], which
is a another popular generative model that has recently seen interest as a policy
representation for robotics [221], and a simple MLP trained to map the state x to a
fixed, deterministic disturbance d(x). The results of this are shown in Fig. 7.2 and
Table 7.1. There we can see that the MLP, despite being significantly faster, tends
to overfit to the noise causing higher mean error. Alternatively, the diffusion model
accurately learns the distribution, but is nearly two orders of magnitude slower than
the CVAE. Additionally, two approximation methods are used for the CVAE: the
GMM-based estimator in (7.5, 7.6) and a simple two-step sampling estimator using
the population mean and covariance calculations from samples of pθ,ϕ(d|x). The
GMM-based method is shown to be slightly faster and results in less average error
and variance.

The Online Risk-Informed Optimization (ORIO) Controller
The Ville’s inequality-based theoretical guarantees of the previous chapter, specifi-
cally Corollary 6.13 and Theorem 6.15, can be combined and restated as:

Theorem 7.2 (Probabilistic Safety Guarantees with Tractable DCBF Constraints).
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Figure 7.2. Comparing generative models. (Top) Mean error ∥Epθ,ϕ
[d|x]−Etrue[d|x]∥ vs. state for

GMM-based CVAE sampling method (blue), MLP (green), diffusion model sampling mean estimate
(yellow). One standard deviation estimated from 100 samples per state x is plotted around the CVAE
and diffusion model curves. (Middle) Covariance error ∥covpθ,ϕ

(d|x)− covtrue(d|x)∥2 vs. state for
GMM-based CVAE method (blue) and diffusion model sampling-mean estimate (yellow) both using
10,000 samples is shown with one standard deviation. (Bottom) Evaluation time for each model
(time in log scale). Calculations were performed on a desktop computer with a Nvidia 3090Ti GPU
with S = 10, 000 for the stochastic methods.

Consider the system (7.2) and let h : Rnx → R be a twice-continuously dif-
ferentiable, concave function such that supx∈Rnx h(x) ≤ B for B ∈ R>0 and
supx∈Rnx ∥∇2h(x)∥2 ≤ λmax for λmax ∈ R≥0. If there exists an α ∈ (0, 1] such
that:

h(Fa(x,k(x)) + E[d|x])− λmax

2
tr(cov(d|x)) ≥ αh(x) (7.8)

for all x ∈ C with d ∼ p(d|x), then for anyK ∈ N1 the following probability bound
holds on the K−step exit probability (Def. 6.7):

Pu(K,x0) ≜ P {xk /∈ C for some k ≤ K} ≤ 1− h(x0)

B
αK . (7.9)

This theorem provides a practical method for enforcing the probabilistic guaran-
tees of Section 6.3 when the conditional mean and covariance of the disturbance
distribution are known and we can then use a CVAE to approximate these values.
This unification, which we call the ORIO (Online Risk-Informed Optimization) con-
troller, provides a tractable way for enforcing the probabilistic safety of Theorem



176

µ Err. Avg. ±2σ Σ Err. Avg. ±2σ
GMM 0.04512 ± 0.00433 0.09518 ± 0.00296

Sampling 0.04604 ± 0.00989 0.09710 ± 0.01419
Diffusion 0.05866 ± 0.00942 0.1025 ± 0.01363

Table 7.1. The statistics for the mean and covariance estimates of each estimation method obtained
from 100 estimates at 201 states. The average error is similar for each model, but the GMM-based
method has smaller variance which is important when using its outputs in closed-loop control.
Estimates for each method are calculated using S = 10, 000.

7.22:

k(x) = argmin
u∈Rnu

∥u− knom(x)∥2 (7.10)

s.t. h
(
Fa(x,u) + µ(θ,ϕ)(x)

)
− λmax

2
tr
(
Σ(θ,ϕ)(x)

)
≥ αh(x).

Here the true values of E[d|x] and cov(d|x) are approximated using the outputs,
µ(ϕ,θ)(x) and Σ(ϕ,θ)(x), of the CVAE and then are used to enforce the DBCF
constraint (7.8). In the remainder of this section we will see how this controller can
be used to achieve risk-aware safety on robots with limited compute resources and
large, chaotic disturbances.

Safety for Quadrotor Drone: Theory and Experiments
Next we show the utility of the ORIO controller (7.10) in achieving safe flight on a
quadrotor drone, and evaluated in both simulation and hardware.

Quadrotor Dynamics Model: We consider a quadrotor drone and model its continuous-
time dynamics as:

d

dt



p

q

v




︸ ︷︷ ︸
ẋ

=




v

0

−ezg


+




0

ω
1
m
R(q)ezτ


 (7.11)

where the state x = (p ∈ R3, q ∈ S3,v ∈ R3) represents the position, orientation,
and velocity, g is gravity, m is the drone mass, and the system has inputs of angular
rate ω ∈ R3 and thrust force τ ∈ R. Here ez is a unit vector in the z direction
and R : S3 → SO(3) maps the quaternion representation of orientation to the
respective rotation matrix. For simulation, these dynamics are approximated in

2We note that in order for the ORIO controller (7.10) to provide the theoretical guarantees of
Theorem 7.2 we additionally require that the CVAE perfectly model the disturbance distribution.
In practice this may not be true and an interesting direction for future work involves analyzing the
accuracy and confidence in the predictions of these generative models.
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discrete-time using Euler integration on manifolds and for the DCBF standard Euler
integration (denoted FEul(x,u)) is used for ease of computation, [203] shows that
this approximation is theoretically well justified for DCBFs with short time steps.

Quadrotor DCBF Synthesis: The safety criteria for our quadrotor is to avoid col-
lisions with the ground or roof. We can encode this safety criterion using the
Lyapunov-based CBF synthesis method similar to that of Section 3.2:

hdes(x) = C − ζ⊤Pζ (7.12)

for some C > 0 where ζ =
[
z − z0, vz

]⊤
and V (ζ) = ζ⊤Pζ is a Lyapunov

function generated by the Discrete-time Algebraic Ricatti Equation (DARE) for
discrete-time double integrator dynamics. However, this is not necessarily a DCBF
since the quadrotor’s orientation may render it unable to track double integrator
trajectories.

To avoid this issue, we add an penalty term to ensure correct orientation at the
boundary of the desired safe set:

h(x) = hdes(x)− λ(1− ezR(q)ez), with λ > 0. (7.13)

This DCBF is motivated by differential flatness of the quadrotor dynamics [237] and
the system’s ability to track double integrator trajectories. Additionally, this DCBF
synthesis method inspired the DRD-CBF synthesis method presented in Section 3.5.

Importantly, (7.13) is a valid DCBF for the Euler-approximated dynamics and there
are bounds for µ(θ,ϕ) and λmax

2
tr(Σ(θ,ϕ)(x)) such that the ORIO controller (7.10) is

feasible for all x ∈ C = {x ∈ Rnx | h(x) ≥ 0}. This is formally stated and proved
in [238, Thm. 4].

Controllers under Consideration: For comparison, we implement several controllers
in addition to ORIO (7.10). Each controller has the structure:

k(x) = argmin
u∈Rnu

∥u− kNom(x, k)∥2 (7.14)

s.t. h(FEul(x,u) +m(x))− c(x) ≥ αh(x)

with the following ablations:

• Standard: where m(x) = 0 and c(x) = 0. This is the standard DCBF
controller [197] where the modeled dynamics are assumed to be correct.



178

ORIO

JED

True

Standard

MLP

Pbound MLP Standard JED True ORIO
0.82 0.69 0.56 0.00 0.32 0.11

Figure 7.3. Quadrotor simulation results. (Figure) The mean of 100 trajectories for each controller
is plotted with 1/2 standard deviation around it. (Table) The K−step probability bound for the
2 second long trial from Thm. 6.15 and the approximated K−step probability experienced on in
simulation over 100 trials.

• JED (6.40): where m(x) is the constant sample mean of the training dataset
D and c(x) is the trace of the sample covariance times supx∈Rnx ∥∇2h(x)∥2.
This is the JED controller from section (6.40) from Section 6.3.

• MLP: where m(x) is an MLP that is trained on the dataset D to approximate
the dynamics residuals and c(x) = 0.

• True: where m(x) is the true dynamics residual mean and c(x) is the trace of
the true covariance times supx∈Rnx ∥∇2h(x)∥2.

Simulation Results: For simulation, we use the dynamics residual model:

p(d|x) = N (d; 09︸︷︷︸
µ(x)

, I9 × (1 + 50e−30z2)× 10−5

︸ ︷︷ ︸
cov(x)

) (7.15)

where the disturbance grows as the drone approaches the ground to approximate
complicated ground effects.

To collect training data (13,320 data points), we flew the drone in simulation using
an SE(3) stabilization controller [94] from 1 meter in the air to the ground 20
times for 2 seconds each with a control and data collection frequency of 333Hz.
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Figure 7.4. Mean and one standard deviation of h(x) for the “drop” test case in hardware, which
drops the drone with knom = 0 from a height of roughly two meters. We compare our proposed
controller (7.10) with three ablations: a deterministic MLP, a simple mean and covariance estimation
across all trajectory data (JED), and a standard DCBF controller. All controllers except the standard
DCBF satisfy the safety constraint h(x) ≥ 0, where the standard DCBF fails due to the inaccurately
modelled dynamics. While the residual dynamics include complex aerodynamic effects, in this case
they are low-variance, so the MLP and 7.10 to perform similarly as expected.

Each controller was simulated for 100 two-second long trajectories at 333Hz with
α = 0.9975. Results for these simulations are shown in Fig. 7.3. The looseness
of the probability bound is in part due to the fact that the covariance is small for a
large portion of the trajectory, which is not leveraged by the martingale-based bound
for additional bound-tightness. Despite the loose risk probability bound, (7.10)
produces behavior which is similar to (True) and which is less conservative than
(JED) while still being more robust than (Standard) and (MLP).

Hardware Platform: Next, we deploy our ORIO controller (7.10) on a quadrotor
drone flying aggressively near the ground. For all tests, we use a motion capture
system to provide the drone with real-time position measurements. For onboard
computation, the drone is equipped with an Nvidia Jetson Tx2 that is used to perform
all neural network forward passes and evaluate the optimization-based controllers.
The mean and covariance of the dynamics residuals are approximated using the
CVAE with S =200 samples at 100 Hz and the ORIO optimization problem in
(7.10) is an SOCP that is solved using an embedded conic solver [124] at 300 Hz.
Approximately 2 minutes of training data was collected via human-operated flight
for both experiments.

Hardware Experiment 1: Ground Effects Our first experiment is a “drop test” where
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Figure 7.5. Slung mass quadrotor experiments. (Top) The drone is dropped from the top left and
moves to the right as it falls while carrying an orange payload. The left shows a failure case when
controlled by the MLP controller and the right shows a success from the same initial condition
when controlled by the ORIO controller. (Bottom) The average of 14 trajectories is plotted with
one standard deviation shading. The ORIO controller successfully keeps the system safe while the
MLP-based controller results in safety failures. The video of these experiments can be found at
[231].

we drop the drone from a hover at approximately 2m and enforce the barrier con-
straint (7.13) with α = 0.9975 for positions above the ground; this case has low
noise but requires accurate estimation of the quadrotor’s thrust / ground effects for
the barrier to be effective in preventing ground collision. Figure 7.4 plots the mean
barrier value h(x) over 50 trials for each ablation of our method, with one standard
deviation shaded around the mean. All controllers except the standard CBF (which
nearly immediately becomes unsafe due to the inaccurate modeling) exhibit safe
behavior. Of particular interest is the extremely similar behavior of the simple MLP
and CVAE methods; this result is intuitive since the low-variance disturbance allows
the MLP to accurately capture the unmodeled dynamics. This provides an inter-
esting insight: learning residual dynamics via simple regression, as in [37], [40],
[239], is well-posed for systems subject to deterministic, low-variance disturbances,
and can yield safe, performant behavior without reasoning about stochasticity.

Hardware Experiment 2: Slung Mass In our second test, the quadrotor is carrying a
slung, unmodeled load of 0.55kg attached via a flexible cable, which induces large,
chaotic disturbances that are not uniquely determined by the current state of the
drone x.Here we again define safety using (7.13) which is adjusted to prevent the
slung mass from contacting the ground3 and we implement the controllers with a
heuristically chosen α = 0.995.

3To define safety using (7.13) for the hardware experiments with the slung payload, we assume
the length of the cable and the payload are known a priori, but we do not assume that the payload
mass is known.
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For this test, since the state of the slung load is unknown and since its motion is
chaotic, the disturbances appear to be random and high variance when conditioned
on only the drone’s current state. Here we compare only our proposed method (7.10)
and the MLP; as expected, in this noisy case the our CVAE-based method performs
significantly better as seen in Fig. 7.5, and has no safety violations, whereas the
MLP controller leads to safety failures. Supplementary videos of the experiments
can be found at [231]. This experiment demonstrates the CVAE’s ability to learn a
sufficiently accurate stochastic model of very noisy dynamics (including trajectories
where the slung load reached nearly 90 degree angles) and also the importance of
accounting for stochasticity to ensure safety in scenarios where uncertainties are
large.

Conclusions
In this section, we presented a unified framework for risk-sensitive control that
combines CVAEs, which learn stochastic dynamics residual models from trajectory
data, with DCBFs, which provide probabilistic safety guarantees for stochastic
systems. We demonstrate the real-time utility of this framework by running the full
pipeline (after training) at 100Hz onboard a quadrotor drone performing aggressive
flight, including a free fall and flight with a slung payload.

7.3 Obstacle Avoidance Using a Humanoid with RL-based Locomotion
Next, we extend the ideas of the pervious section to the problem of collision avoid-
ance for a humanoid robot.

As learning-based controllers achieve remarkable success in complex robotic tasks
such as legged locomotion [36], [38], [240] they bring with them a fundamental ten-
sion: the black-box, data-driven nature of many learning-based controllers, which
enables their robust performance, simultaneously obscures our ability to provide
formal safety guarantees or modify their constraints without expensive retraining.
As more roboticists begin to deploy controllers trained using strategies like rein-
forcement learning (RL), developing ways to flexibly and adaptively constrain their
behavior online to ensure safety remains an open problem [187]. Solving this prob-
lem is especially critical for humanoid robots, which have many human-interactive
use cases.

With the successful deployment of the probabilistic safety methods of Chapter 6 in
the previous section, we look to use a similar approach to achieve safe behavior on a
humanoid robot operating in complex environments with an RL-based locomotion
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controller.

To tackle this problem, this section presents SHIELD (Safety on Humanoids via
CBFs In Expectation on Learned Dynamics), a layered safety framework that en-
ables safety for hierarchical systems with signifcant uncertainty by: (1) training a
generative, stochastic dynamics residual model using real-world data from hardware
rollouts of a nominal, RL-based locomotion controller, capturing system behavior
and uncertainties; and (2) adding a safety layer on top of the nominal controller
that leverages this model via a stochastic discrete-time CBF formulation enforcing
safety constraints in probability. We then deploy this method on a Unitree G1 hu-
manoid robot to enable safe navigation (obstacle) avoidance through varied indoor
and outdoor environments using an RL-based locomotion controller and onboard
perception.

The contributions of this section are as follows:

• The SHIELD (Safety on Humanoids via CBFs In Expectation on Learned
Dynamics) paradigm for improved tracking and guaranteed safety of stochas-
tic, hierarchical robotic systems.

• Experimental demonstrations of this framework on a Unitree G1 Humanoid
robot conducting comprehensive obstacle avoidance experiments, including in
unstructured environments, that show distinct improvements over traditional
DCBF safety methods.

The text for this section is adapted from:

L. Yang, B. Werner, R. K. Cosner, D. Fridovich-Keil, P. Culbertson,
and A. Ames, “Shield: Safety on humanoids via cbfs in expectation
on learned dynamics,” submitted to the 2025 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2025. [Online].
Available: https://arxiv.org/pdf/2505.11494,

A video for this section can be found at [241].

This section introduces SHIELD, a novel paradigm for guaranteeing safety in robotic
systems that bridges the gap between data-driven and model-based safety methods.
SHIELD is specifically designed for systems with complex, robust, but ultimately
stochastic, low-level controllers, such as RL policies used by humanoid robots for

https://arxiv.org/pdf/2505.11494
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locomotion. Unlike traditional safety filters [26], SHIELD functions as a safety
layer that sits “above” the nominal learning-based controller in the autonomy stack,
modulating the reference signal rather than directly filtering control outputs, an
approach similar to the model-free safety of Section 3.3.

SHIELD is constructed through a three-step process:

Step 1: Constraint specification. The user specifies a safety requirement on a subset
of the robot states (e.g., the pose of the robot torso). The low-level policy does
not need to be trained to satisfy this constraint but can instead be designed to track
general reference commands provided to the reduced-order model (as is typical for
RL [36], [242]).

Step 2: Dynamics residual learning. The user collects real-world data of the low-
level policy being executed and trains a conditional variational autoencoder (CVAE)
to model the difference between the desired motion of the reduced-order model, and
the closed-loop system’s real-world tracking of these commands.

Step 3: Safety-aware reference generation. The learned residual distribution from
the CVAE is used to compute reference commands that reduces the difference
between the desired and executed motion while also satisfying a stochastic discrete-
time control barrier function (DCBF) [59], [131] constraint. The result is improved
tracking (Fig. 7.6) and risk-aware safe behavior (Fig. 7.7).

Reduced-Order Model and Safety Goal
In this section we consider robots whose full-order model is given by a discrete-time
dynamical systems of the form:

sk+1 = Φ(sk, ak) (7.16)

where sk ∈ Rns is the state of the system and a ∈ Rna is the system input. This
may be the high-dimensional representation of the system where s includes global
pose, joint angles, joint angular velocities, etc., and a may be joint torques, voltages,
desired joint positions, etc. For this complex system, we assume that we have some
controller π : Rns × Rnu → Rna that takes the current system state s and user
command u ∈ Rnu to produce full-order system inputs a. Using this controller
yields:

sk+1 = Φ(sk,π(sk,uk)). (7.17)
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For navigation purposes, we consider a reduced-order representation of the system
x ∈ Rnx where nx < ns and x = p(s) for some projection p : Rns → Rnx that
projects the full-order state s onto the reduced-order state x. Here x may be the
outputs of the system that are considered in safety and navigation, such as its center
of mass position, similar to the model-free safe-set synthesis approach of Section
3.3 or the output-based back-stepping aproach of Section 3.4.

We can then represent the discrete-time dynamics of this reduced-order state of the
system as:

xk+1 = p(Φ(sk,π(sk,uk))), (7.18)

≈ FR(xk) +GR(xk)uk + dk (7.19)

where FR(xk)+GR(xk)uk represents a simplified model of the system and d is the
difference between the full-order model and this reduced-order model, also called
the dynamics residual. To capture the complexities of the full-order dynamics Φ

and the controller π, we consider dk to be a random disturbance sampled from a
distribution D(sk:0, ak:0) that is dependent on the history of full states and from
time 0 through k, denoted as sk:0 and ak:0, respectively, that define the filtration
Fk ≜ {sk, sk−1, ..., s0, ak, ak−1, ..., a0} ⊂ Fk+1 ⊂ · · · ⊂ F .

This represents a specific instantiation of the discrete-time stochastic system (6.7)
considered throughout Chapters 6 and 7 where the model of the discrete-time model
is control affine and the disturbances are a function of the mismatch between the
full-order system with state s and the reduced-order representation with state x.

For this system, we will again consider K−step exit probability (Def. 6.7) as our
safety metric over a finite horizon of length K ∈ N1.

In particular, this work will seek to realize the probabilistic DCBF safety bound
based on Freedman’s inequality of Section 6.4, Theorem 6.24 on a bipedal system
of the form (7.19).

To apply this theorem, we require two assumptions: first, a bound on the safety
variance as in (6.56); second, a bound on the difference between the true safety
value h(xk) and the expected value as in (6.55). The first assumption is not very
restrictive and allows for a large class of potential functions h, dynamics, and
disturbance distributions. The second assumption is more restrictive, but generally
applies in our setting, as the worst-case falling behavior would lead to a bounded
difference between the commanded and true reduced-order-model behavior.
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Disturbance Learning
While theoretical safety guarantees such as those in Chapter 6 provide powerful
methods for analyzing and synthesizing risk-aware controllers, their guarantees fun-
damentally depend on accurate characterization of the disturbance distribution D.
Rather than assuming that this distribution is known a priori or constrained to a
simplified parametric form (e.g., additive Gaussian noise), we use a data-driven
approach, similar to Section 7.2, that leverages generative modeling to learn these
distributions directly from empirical trajectories of the system. This approach
enables us to capture complex, non-Gaussian, and state-dependent uncertainty dis-
tributions that more faithfully represent the actual disturbances encountered during
hardware operation.

To account for these dynamics residuals, we seek to first train a generative model to
approximate their distribution. To do this, we collect a dataset of state, command,
and disturbance tuples D = {(xi,ui,di)}Nsamples

i=1 . We then train a Conditional
Variation Autoencoder (CVAE) [224] on this dataset, which yields a generative
disturbance model pθ(dk|xk:k−N ,uk:k−N). In contrast to the previous section, the
model is conditioned on a context window of length N ∈ N, this was found to
be crucial to allow the model to capture temporal effects such as higher-order
state derivatives or time delays. We find that providing this context greatly boosts
modeling accuracy for a complex, hierarchical systems of the form (7.18,7.19).

We note that any class of generative disturbance model (e.g., diffusion [236], flow
matching [243], etc.) can be used with our proposed safety framework. For SHIELD
we choose to use CVAEs due to their expressivity and fast inference time, as shown
empirically in the previous section (and [59]).

Stochastic Tracking and Safety with Learned Disturbances
The proposed method of this section, SHIELD, distinguishes itself from conven-
tional safety layers through how it modulates control signals. While traditional
approaches [6], [10], [59] operate by modifying low-level signals (such as joint
torques or raw actuation commands) to maintain safety, SHIELD instead modulates
higher-level signals, i.e., the reference commands provided to the reduced-order
model. This architecture is similar to that of a reference governor [244], which
modulates reference or command signals into the controller/plant; the key differ-
ence is we modulate these signals with a CBF and without knowledge of the actual
controller and plant dynamics. This modification enables the definition of safety
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constraints on simpler, more semantically meaningful states, making the system
both more interpretable and manageable.

SHIELD recognizes that the ultimate objective is to achieve the intended system
behavior, meaning the system should accurately track the reduced-order model’s
intended trajectory. To derive this “best-tracking” control, we define the optimal
reference command u∗

k as the one that minimizes the expected difference between
the next state of the reduced-order model under the desired command and the next
state of the actual system:

u∗
k = argmin

uk∈U
E[||xk+1 − (FR(xk) +GR(xk)uk + dk)||2|Fk] (7.20)

where xk+1 is the desired next position. Assuming pseudo-invertibility of GR(xk),
the optimal u is4:

u∗
k = G†

R(xk)(−FR(xk) + xk+1 − E[dk|Fk]). (7.21)

However, since we do not have access to the true expectation E[dk|Fk], we approx-
imate this with the learned expectation computed from samples generated by the
CVAE:

u∗
k = G†

R(xk)(−FR(xk) + xk+1 − Epθ [dk|xk:k−N ,uk:k−N ]). (7.22)

This u∗
k uses the learned disturbance distribution to select the command which

reduces the mean squared error to the desired next state xk.

In addition to using the learned dynamics residual to improve tracking, we can
also use it to enforce safety. To do this, we select a maximum allowable risk level
P ∈ (0, 1). Given the horizon length K ∈ N1, the initial safety value h(x0),
the step-wise bound δ from assumption (6.55), and the variance bound σ from
assumption (6.56) we can solve for the α that will result in the desired risk level
bound Pr ∈ (0, 1):

α = L(Pr, K, h(x0), δ, σ). (7.23)

In practice, we approximateL : (0, 1)×N×R>0×R>0×R>0 → (0, 1) numerically
due to the complexity of the analytic solution.

4The derivation of this follows from the equality E[||xk+1 − (FR(xk) + GR(xk)uk +
dk)||2|Fk] = ||xk+1−(FR(xk)+GR(xk)uk+E[dk|Fk])||2+E[∥d∥2|Fk]−∥E[d|Fk]∥2. Since
this is true, it suffices to find the optimal u for ||xk+1 − (FR(xk) + GR(xk)uk + E[dk|Fk])||2
which is (7.20).
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Figure 7.6. SHIELD improves tracking performance by correcting learned disturbances. After
applying the SHIELD correction as shown by the blue dashed lines, the robot’s tracking of the user’s
intended velocities (shown as a black dashed lines) improves.

Next to apply Theorem 6.24 to our application, we address each assumption, (6.56)
and (6.55). Firstly, for assumption (6.56), the variance bound σ2 is approximated
from the sampled dataset D. Secondly, for assumption (6.55), we derive a bound
from our application to bipedal robots and bound the difference between the true
and predicted update for h(xk) based upon the maximum step distance which can
be measured in practice:

δ ≜ 2(h(xfootstep k)− h(xfootstep k+1)). (7.24)

In addition to meeting assumptions (6.56) and (6.55), we must also enforce the
expectation-based DCBF inequality (6.16) inequality, which we incorporate, for
concave and continuously-differentiable h with bounded second derivative (i.e.,
supx∈Rnx ∥∇2h(x)∥2 ≤ λmax for some λmax ∈ R≥0), as a constraint in the safety
filter using the alternative, lower-bounding condition from Theorem 6.15:

u∗
safe = argmin

u∈U
∥u− u∗

k∥ (7.25)

s.t. h(FR(xk) +GR(xk)uk + Epθ [dk|xk:0,uk:0])

− λmax

2
tr(covpθ(dk|xk:0,uk:0) ≥ αh(xk),

where we can approximate E[dk|Fk] and cov(dk|Fk) using the learned dynamics
residual distribution pθ(dk|xk:0,uk:0).

In summary, SHIELD uses the learned dynamics residual distribution from the
CVAE to compute two distinct quantities: (1) the optimal reference command (7.22)
that minimizes the expected tracking error between the true system and desired next
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state, and (2) a minimally adjusted safe reference command (7.25) that enforces
probabilistic safety constraints. We emphasize that these components are fully
modular. The tracking-optimized input can be used independently to reduce the
sim-to-real gap, while the safety adjustment can be applied separately to enhance
real-world safety guarantees. Alternatively, both components can be combined
sequentially to simultaneously improve tracking performance and safety assurance,
providing flexibility for different application requirements.

Dynamic Obstacle Avoidance on Stochastic Reduced-Order Models
Next, we detail our approach to improve tracking and safety under random uncer-
tainty with a stochastic reinforcement learning-based controller π. In particular,
we use a PPO Actor-Critic learned controller πPPO. This takes into account histo-
ries of proprioceptive and extereoceptive states s and a commanded velocity vector
u = (vx, vy, ω) using an LSTM and uses those to generate joint positions, a.

To characterize the stochasticity of this controller, we use a CVAE to learn the
distribution of the dynamics residual d conditioned on the last four5 system states
and commands, i.e., (xk:k−3,uk:k−3). Specifically, we use a single integrator system
with an additive disturbance as our simplified model:



px

py

θ




k+1︸ ︷︷ ︸
xk+1

=



px

py

θ




k︸ ︷︷ ︸
FR(xk)

+ ∆tI3︸︷︷︸
GR(xk)



vx

vy

ω




k︸ ︷︷ ︸
uk

+∆t



dx

dy

dθ




︸ ︷︷ ︸
dk

(7.26)

where px, py ∈ R, θ ∈ [0, 2π), and ∆t > 0 represent the x and y position, the yaw
angle, and the state-update period and where dk is a random disturbance that models
the difference between the simplified model and the true dynamics.

The tracking improvement method (7.22) leads us to the optimal tracking command:

uadjusted =
xk+1 − xk

∆t

− Epθ [d|xk:k−3,uk:k−3] (7.27)

where Epθ [d|xk:k−3,uk:k−3] is the mean disturbance learned by the CVAE. After
modifying the command velocity with the predicted dynamics residual to improve
tracking, we apply our safety filter which minimally modifies that command to
enforce our safety constraint. For application, we consider obstacle avoidance with

5In practice, we condition on the last N = min(k, 4) states and commands for the algorithm to
run at start time.
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respect toNobs ∈ N obstacles as characterized by the signed distance function (sdf):

sdf(x) = min
i∈{1,...N}

∥∥∥∥∥

[
px

py

]
− ρi

∥∥∥∥∥−Ri (7.28)

where ρi ∈ R2 is the planar position of obstacle i and Ri > 0 is the robot radius
plus the obstacle radius. The SDF is then used to produce the function defining the
safety requirement:

hsmooth(xk) = λ(1− e−γsdf(xk)) (7.29)

where λ > 0, γ > 0 are positive constants controlling the maximum magnitude and
smoothness of safety.

Since we are only considering the closest obstacle, we make the following concave
approximation:

ĥ(x) = λ
(
1− e−γ((p−ρi)

T ei−Ri)
)

(7.30)

h̃(x) =




ĥ(x), if (p− ρi)

⊤ei ≥ 0

∇xĥ(x) + λ(1− eγRi), else
(7.31)

where p ≜ [px, py]
T and ei ∈ R2 with ||ei||2 = 1 is the unit direction towards the

closest obstacle from the previous timestep, i.e., (pk − ρi)/∥pk − ρi∥.

In the case of a single obstacle, we provide the following inequality which will allow
us to build conditions that enforce a bound on the K−step failure probability in
practice:

Proposition 7.3 (Single-Obstacle Avoidance with Concave Barrier Functions). Con-
sider the function h̃ as in (7.31) with N = 1 and a random variable x that takes
values in Rnx with E[∥x∥2] <∞ and ∥cov(x)∥ <∞. This function h̃ and random
variable x satisfy:

E
[
h̃(x)

]
≥ h̃(E[x])− λmax

2
eT1 cov(x)e1. (7.32)

Please see the appendix of the extended version of this paper for the proof [17].

This allows us to enforce the expectation-based DCBF constraint (6.16) for concave,
continuously differentiable h indirectly by instead enforcing the tightened constraint:

h(FR(xk) +GR(xk)uk + Epθ [dk|xk:k−3,uk:k−3]) (7.33)

− λmax

2
eTi covpθ(dk|xk:k−3,uk:k−3)ei ≥ αh(xk)
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where we can approximate E[dk|Fk] and cov(dk|Fk) using the learned dynamics
residual distribution pθ(dk|xk:k−3,uk:k−3). In practice, we find that the utility of
SHIELD generalizes to multiple obstacles; however, we leave a rigorous theoretical
analysis of the nonconcave h̃ with multiple obstacles for future work.

Algorithm 7.4: SHIELD: Deployment Phase
Initialize k ← 0,x← x0

Initialize P, δ, α
while true do

obstacles← {ρ1, ...,ρM}
hk ← mini h̃(x,ρi), i∗ ← argmini h̃(x,ρi)
if k modulo K = 0 then

Σ← covpθ(d|xk:k−N ,uk:k−N)
α← L(K,hk, P, δ,Σ)

Get ucmd as input
uadjusted ← ucmd − Epθ [d|xk:k−3,uk:k−3]

e← pk−ρobs,i∗

||pk−ρobs,i∗ ||
, λ← λmax(ρ, e)

u∗
safe ← minu ∥u− uadjusted∥2

s.t. h̃(F(x) +G(x)u)− λ
2
eTΣe ≥ αhk

Apply command u∗
safe, xk ← xk+1, k ← k + 1

To determine the appropriate α for a particular risk level, we use the L function in
(7.23). To calculate α, a desired risk level Pr is chosen, the current safety value is
noted as h(xk), the worst-case δ is approximated as in (7.24), and the covariance σ
is set to the maximum value experienced in the experimental data. Furthermore, to
extend the guarantee beyond K steps, we recalculate α every K steps. Thus, each
successive K steps satisfies the bound in Theorem 6.15 and they can be connected
using the union bound:

P
{
mink∈[0,K×F ] h(xk) < 0

}
≤∑F

i=0 P
{
mink∈[Ki,K(i+1)] h(xk) < 0

}

where F ∈ N1 is the number of K-step intervals in the experiment. We show
the SHIELD deployment stage with combined tracking and safety improvements in
Algorithm 7.4.

Experimental Deployment: Bipedal Obstacle Avoidance
Finally, we demonstrate the validity of SHIELD on a Unitree G1 humanoid robot,
to show the method’s adaptable conservativeness, performance, and robustness.
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Figure 7.7. SHIELD enforces safety in collision avoidance with adaptive conservatism. The A*
planner path is not necessarily safe even it does not cross the obstacle, thus naively following the
path would result in collisions or scrapes. Nominal CBF, due to not accounting for the inaccurate
reduced-order model, would also result in collisions or be extremely conservative.

Hardware Setup The Unitree G1 humanoid robot has a height of 1.32 meters and
weighs approximately 40kg, with 23 actuated degrees of freedom. We employ an
onboard Jetson Orin NX for computation, a Livox Mid-360 LiDAR for sensing the
environment, and an Intel T265 to localize the robot. Euclidean clustering [245] is
applied to the LiDAR pointcloud to locate obstacles of interest in the scene.

To test the generalization of SHIELD in deployment, we conduct experiments with
two different walking controllers: (1) built-in: the Unitree built-in controller [246]
and (2) custom: a custom RL locomotion controller trained in IsaacLab [247] using
standard rewards from [248].

Approximately 6 minutes of training data are collected for each controller to train
the CVAE for both the built-in and custom controllers. We query the CVAE to
update the mean and covariance of the disturbance distribution at 0.83Hz, and we
filter the command velocity at 100Hz.

Hardware: Learned Tracking Improvements We first test the velocity tracking capa-
bilities of the SHIELD framework. In these experiments, we send a pre-set sequence
of velocity commands through the framework to the controller and compare our re-
sulting velocities to the command sequence. We achieve noticeable improvements
in tracking as shown in Fig. 7.6.
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Figure 7.8. SHIELD enables real-world pedestrian avoidance with a humanoid robot, using a
“general-purpose” RL policy. Top: Our robot safely walks among pedestrians using SHIELD’s
stochastic safety framework. Bottom: The robot relies solely on onboard perception to detect and
avoid obstacles. Experimental video of this experiment can be found at [241].

Hardware: Laboratory Obstacle Avoidance First, we conduct controlled experi-
ments with fixed obstacles. We define success as the robot walking past obstacles
without making contact. We model the detected obstacles as cylinders of radius
0.3m and the robot to have a safety margin of 0.38m from the center of mass. To nav-
igate, we first use A* [249] to first plan a path through free space, we then generate
nominal velocities by directing the robot from its current position to the next node
on the path and filter the commanded velocities with SHIELD. We present both
single-obstacle and multi-obstacle cases. In single-obstacle experiments, naively
following the A* path alone does not completely avoid obstacles due to state track-
ing errors. The nominal DCBF filter, being unaware of the dynamics residual,
either collides into the obstacle or exhibits extremely conservative behavior with
α = 0.99. However, SHIELD enables the robot to completely bypass the obstacle.
We observe similar behavior in multi-obstacle scenarios, where SHIELD is able
to adjust conservativeness online to only enforce maximum safety conditions when
needed, resulting in more dynamic behavior. The results of these experiments can
be seen in Fig. 7.7. We do not however, that the probability bound of Theorem 6.24
is not well-calibrated for this scenario and instead functions best as a “tuning knob”
to encourage riskier behavior at the cost of a higher chance of collision (though still
far below the target percentage).

Hardware: Outdoor Obstacle Avoidance We also perform experiments in unstruc-
tured outdoor environments for further validation. In these tests, a user provides
joystick inputs to the robot for safety reasons and would either control the robot
to walk directly towards people or provide no input and let the robot stay in place
unless people encroach on its safety boundary. These experiments can be seen in
Fig. 7.8 and in the experimental video [241].
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Conclusion
This section presented SHIELD: a safety layer that leverages stochastic DCBFs
to achieve risk-aware safety. Importantly, SHIELD can be added to an existing
autonomy stack, wherein the dynamics of the full-order system including the nominal
reference-tracking controller can be learned as the residual on a simplified model.
SHIELD then filters the nominal reference commands to produce safe inputs using
the expectation-based DCBF condition (6.16). This framework is instantiated on a
humanoid robot in the context of collision avoidance, where it is shown to outperform
a nominal safety filter in hardware experiments on the Unitree G1 humanoid.

7.4 Dynamic Obstacle Avoidance
In this section, to study the problem of realizing performant risk-aware safety,
we consider the problem of achieving collision avoidance with highly dynamic
obstacles. While this problem appears to be a natural extension of the safety
problems studied throughout the previous two sections of this work, this section
will demonstrate that naive implementations of DCBF safety-filtering methods will
quickly lead to practical safety failures due to the myopia of the DCBF-OP safety
filters (6.4).

To overcome this shortfall, we combine the robust safety guarantees of DCBF
methods with the horizon-based planning and optimization of model predictive
control (MPC) to find that the unification of these methods results in mutual benefits
and inherent robustness properties beyond the capabilities of either method alone.
Critically, switching from the strict state-constraints typical of MPC to the decay-
based constraint of DCBFs provides inherent robustness to stochastic uncertainty
which will be proved in this section. On the other hand, switching from the myopic
optimization of the DCBF-OP safety filter (6.4), improves the closed-loop behavior
by allowing the robot to generate plans that avoid getting stuck states that are only
marginally safe or from which it will eventually become unsafe.

We demonstrate benefits of the unification of these two techniques on the prac-
tical example of quadrupedal and quadrotor robots performing dynamic obstacle
avoidance.

The contributions of this section are as follows:

• Improved guarantees of closed-loop feasibility (despite reduced pointwise
feasibility) of the MPC-DCBF controller when compared to traditional MPC
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methods.

• Demonstrations of the improved convergence properties of the MPC+DCBF
and its ability to overcome the stable undesired equilibria that arise with naive
DCBF-based safety filters (6.4).

• Risk-based guarantees naturally arising from the MPC-DCBF framework that
extend beyond the prior work presented in Chapter 6 to consider state uncer-
tainty.

• Examples of the MPC+DBCF controller achieving dynamic obstacle avoid-
ance on quadrupedal and quadrotor robots, with the quadrotor example being
performed with all computer vision, obstacle state estimation, and controller
algorithms being performed entirely onboard.

The text for this section is adapted from:

R. K. Cosner, R. M. Bena, and A. D. Ames, “Unified mpc+cbf con-
trol for performant safety: Mutual benefits and inherent robustness
properties,” submitted to IEEE Transactions on Robotics, 2025. [On-
line]. Available: http://www.rkcosner.com/assets/files/
dodgeball_paper.pdf,

A video for this section can be found at [250].

Related Work
The stochastic safety guarantees of this section diverge significantly from the stan-
dard quantile-based methods of the MPC literature [214], [251]–[253] and lever-
age the safety-decay property of the DCBF constraint to create simpler-to-enforce
martingale-based guarantees as in [35], [57], [58], [192], but which extends their
utility to scenarios with state uncertainty and improves their performance through
the addition of a planning horizon. Notably, the methods in this chapter assume
the existence of a nominal or a priori learned models of the obstacle dynamics.
Alternatively, see [214], [254] for a data-driven method that develops a model of
the obstacle dynamics during deployment given noisy obstacle measurements.

The experimental demonstrations of quadrotor-based dynamic obstacle avoidance
provided in this paper are similar to previous learning + event cameras [255], ar-
tificial potential fields + event cameras [256], and MPC + motion capture [257]

http://www.rkcosner.com/assets/files/dodgeball_paper.pdf
http://www.rkcosner.com/assets/files/dodgeball_paper.pdf
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works on collision avoidance, but with onboard RGBd camera-based obstacle de-
tection and improved theoretical safety guarantees and horizon-based optimization.
In comparison with [254], we leverage onboard, vision-based sensing to estimate
the obstacle state, employ a simpler Kalman filter-based state estimator that assumes
a noisy ballistic trajectory, and use a higher-order model (3rd vs. 1st order) in the
planning problem, which together allow for significantly more dynamic hardware
demonstrations, despite less generality in the possible obstacle dynamics.

Model Predictive Control and Safety
We begin by introducing the MPC and MPC+DCBF control frameworks and, before
generalizing to uncertain systems, we consider them in the context of deterministic
discrete-time as discussed in Section 6.2 in equations (6.1, 6.2).

MPC is a a control methodology which leverages a model-based prediction of the
system dynamics along a finite-horizon to compute control actions. In MPC, at
each time-step k the controller plans a sequence of open-loop control actions to
minimize a cost function and then the first action is applied to the system. The
plan of actions is then recalculated using the updated state, and the new first control
action is applied, creating a state-feedback controller.

In MPC, to calculate the plan of control actions, the following discrete, finite-time
optimal control problem (FTOCP) is solved at each time-step k:

min
ξ0:N∈Rnx

ν0:N−1∈Rnu

N−1∑

i=0

c(ξi,νi) + V (ξN) (FTOCP)

s.t. ξi+1 = F(ξi,νi), ∀i ∈ {0, . . . , N − 1}
ξi ∈ C, νi ∈ U , ∀i ∈ {0, . . . , N − 1}
ξ0 = xk, ξN ∈ CN

whereU ⊂ Rnu represents the input constraint set (e.g., torque limits), c : Rnx×U →
R≥0 is the stage cost, and V : Rnx → R≥0 is the terminal cost used to approximate
the infinite-horizon optimal control problem. Here we use the variables ξi ∈ Rnx

and νi ∈ Rnu to represent the planned sequence of states and inputs given the current
state xk, i.e., if the dynamics and the state are known exactly then using uk = ν0

results in the plan being precisely executed so that xk+1 = ξ1 for the ξ1 generated
at xk.

In the FTOCP, the first constraint incorporates the discrete time model of the system
(6.1) along the horizon of length N ∈ N1, the state constraint ξi ∈ C (equivalently
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h(x) ≥ 0) ensures that each state in the plan is safe, the input constraint νi ∈ U
ensures that the inputs are realizable on the system, the initial condition constraint
ξ0 = xk aligns the plan with the current state, and the terminal state constraint
ξN ∈ CN ⊂ C is used to achieve recursive feasibility of the feedback controller. In
general it is assumed that CN is a safe, control invariant set for the inputs u ∈ U ,
in which case the MPC controller can be thought of as a domain-of-attraction
expander for CN , similar to the backup set safe-set synthesis method of Section 3.6.
For additional discussion this FTOCP, please see [5].

To generate the MPC input, the optimal plan of inputs for the FTOCP is computed
as [ν∗

0(xk), . . . ,ν
∗
N−1(xk)] and then the first action is applied to the system, defining

the MPC controller:

kMPC(xk) = ν∗
0(xk). (MPC)

By enforcing safety in the form of a state constraint, ξi ∈ C, in the FTOCP, kMPC(x)

selects control actions which ensures the safety of the system at each discrete update
of the closed-loop dynamics (6.2).

As an alternative to the standard safety constraint, a DCBF can instead be enforced
along the MPC horizon. The main theoretical focus of this section is to consider the
safety, performance, and robustness properties of this unified controller generated
from the FTOCP+DCBF problem:

min
ξ0:N∈Rnx

ν0:N−1∈Rnu

N−1∑

i=0

c(ξi,νi) + V (ξN) (FTOCP+DCBF)

s.t. ξi+1 = F(ξi,νi), ∀i ∈ {0, . . . , N − 1}
h(ξi+1) ≥ αh(ξi), ∀i ∈ {0, . . . , N − 1}
νi ∈ U , ∀i ∈ {0, . . . , N − 1}
ξ0 = xk

where we replace the state constraint ξi ∈ C (i.e., h(ξi) ≥ 0) with the DCBF
constraint (6.3) for some α ∈ [0, 1] and we remove the terminal constraint ξN ∈ CN .

As with MPC, we can then derive a controller from the FTOCP+DCBF by using the
first input of the open-loop plan:

kMPC+DCBF(xk) = ν∗
0(xk). (MPC+DCBF)
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Figure 7.9. Closed-loop trajectories from several initial conditions (black dots) for the system in Ex.
7.5 using kMPC+DCBF (blue) and using the DCBF safety filter (6.4) (red). Here we see that kMPC+DCBF

is far better at avoiding the undesired equilibrium point and reaching the goal at (0,0) shown as a
yellow star.

Improvements to Undesirable Equilibrium
Although the DCBF-based safety filters introduced so far in this thesis provide valu-
able safety guarantees and stochastic robustness properties, they handle performance
only indirectly by modifying a nominal controller as little as possible to satisfy the
safety constraint. While this safety-filtering approach is powerful, it can lead to
undesired behavior when the nominal input is unsafe, often resulting in convergence
to safe but undesirable equilibrium points [16]. Since we seek closed-loop systems
that are both safe and performant, it is beneficial to jointly optimize for performance
while enforcing safety, as done in the MPC+DCBF controller.

These undesirable stable equilibria can be seen in the discrete-time variant of the
example from [16, Ex. 5.4]. In the following, we demonstrate how the kMPC+DCBF

controller can mitigate such equilibria by optimizing for performance metrics along-
side safety.

Example 7.5. Consider a two dimensional single integrator system with the dy-
namics xk+1 = xk + ∆tuk, nominal controller knom(x) = −x, and safety de-

fined as h(x) = −b4 + ∥x − r1∥2∥x − r2∥2 for α = e−1∆t , r1 =
[
a c2

]⊤
, and

r2 =
[
a −c2

]⊤
with a = 3, b = 1.05a, c2 = 4, and ∆t = 0.05.

We implement the DCBF safety filter (6.4) by linearizing the constraint at each step
and we implement thekMPC+DCBF controller using sequential quadratic programming
where the first solution is initialized to either a semicircle on the left or the right
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of the obstacle depending on the sign of the x component of x0 + ρ where ρ ∼
unif(−0.01, 0.01) is sampled from a 2D normal distribution. The results are shown
in Fig. 7.9.

We find that all trajectories generated by the kMPC+DCBF controller are safe and
reach the goal location at (0, 0) while avoiding the undesirable equilibrium point
that captures many of the trajectories generated by the DCBF safety filter.

We note that although the DCBF safety filter maintains safety, many trajectories
stabilize to a point on the boundary of C, leaving no robustness margin. This
marginally safe behavior often leads to safety failures on real-world systems, where
the robot settles in states with little to no tolerance for disturbances. This issue will
be illustrated in the following quadruped and quadrotor examples.

Improved Feasibility Guarantees
Next, we begin our exploration of the robustness properties of the MPC and
MPC+DCBF controllers by considering the problem of controlled invariance. Triv-
ially, if h is a DCBF for system (6.1) under the input constraints u ∈ U , then
the corresponding safe set C is control invariant. In this case, both the MPC con-
troller (with CN = C) and the MPC+DCBF controller are recursively feasible6.
However, as discussed in Chapter 3, generating control invariant sets is a difficult
problem. Therefore, we will now explore the recursive feasibility of the MPC and
MPC+DCBF controllers when C is not control invariant.

Since the DCBF constraint (6.3) is a tightening of the standard MPC state constraint
when x ∈ C, there are less states in C for which kMPC+DCBF is feasible than for
which kMPC is feasible. Where other works have sought to improve this pointwise
feasibility by allowing α to vary [47] or by only enforcing the DCBF constraint on
the first step of the horizon [230], we instead take an entirely different approach
and show that the reduced pointwise feasibility can actually improve closed-loop
feasibility.

To do this we consider the case where, for all x ∈ C we assume that:

∀u ∈ U , ∆h(x,u) ≥ −δ (7.34)

∀ζ ∈ [ϵ, δ], ∃u ∈ U s.t. ∆h(x,u) = −ζ (7.35)

6The recursive feasibility of the MPC problem follows from [5, Thm. 12.1], and that of the
MPC+DCBF follows from the infinite-horizon guarantees of Thm. 6.4.
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where δ ≥ ϵ > 0. The first assumption (7.34) captures the idea that, given bounded
inputs and dynamics, the system can only decrease its safety by at most −δ within
a single step. The second assumption (7.35) captures the idea that the system
can only improve its safety degradation by so much over a single step. Notably,
proving infinite-horizon safety or feasibility guarantees using these assumptions is
impossible so we instead seek to guarantee feasibility and safety over the longest
possible finite horizon.

To this end we have the following feasibility guarantee for the kMPC controller:

Proposition 7.6. If the closed loop system (6.2) satisfies (7.34) and (7.35), its initial
safety is h(x0) > 0, and it attempts to enforce constraint (6.3) with α = 0 over a
horizon of length N ∈ N for u ∈ U , then the FTOCP will be feasible for all:

k ≤ h(x0)−Nϵ
δ

+ 1. (7.36)

The proof of Proposition 7.6 is provided in [60, Appx. A] .

Next, we present a closed loop feasibility guarantee for kMPC+DCBF that can provide
a longer guarantee of feasibility:

Proposition 7.7. If the closed loop system (6.2) satisfies (7.34) and (7.35), its initial
safety is h(x0) > 0, and it attempts to enforce the constraint (6.3) for α ∈ (0, 1)

over a horizon of length N ∈ N for u ∈ U and the parameters of the system satisfy:

1

1− α ≥
δ + (N − 2)ϵ

δ + ϵ
, (7.37)

then the FTOCP+DCBF will be feasible ∀k ≤ kδ + kϵ where:

kδ = max

{⌊
h(x0)

δ
− 1

1− α

⌋
, 0

}
, kϵ = logα

(
ϵ
(

1
1−α +N − 1

)

h(x0)− kδδ

)
+ 1. (7.38)

The proof of Proposition 7.7 is provided in [60, Appx. B].

Figure 7.10 illustrates the relative feasibility guarantees of Propositions 7.6 and 7.7
across various values of ϵ and α. As the system’s ability to maintain safety improves
(i.e., ϵ→ 0), higher α values reduce pointwise feasibility but simultaneously extend
guaranteed closed-loop feasibility. This mirrors the trade-off seen in tube-based
MPC, where sacrificing pointwise feasibility can yield stronger recursive feasibility
guarantees [258]. Even when C is not a control-invariant set, the decay condition
imposed by the DCBF constraint can make the system safer for longer.
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Figure 7.10. Plots demonstrating the minimum number of guaranteed feasible solutions for the
closed-loop application of the MPC+DCBF controller for varying α according to Prop. 7.6 (α = 0)
and Thm. 7.7 (α ∈ (0, 1)). The y axis is shown using a squared scale to better capture the range
of possible outputs. The minimum number of feasible steps is plotted for the state constraint (i.e.,
α = 0) in green and for the MPC+DCBF controller for varying α ∈ (0, 1) in blue. The other
parameters used to generate this plot include: h(x0) = 10, δ = 1, and N = 25. The plots from
left to right show the minimum number of feasible steps for varying minimum safety decay values ϵ.
As the minimum safety decay value goes to zero, the minimum number of guaranteed feasible steps
generated by the MPC+DCBF can dramatically outperform the state constraint-based feasibility
guarantee despite the pointwise reduction in feasibility with respect to state. This is due to the
closed-loop properties of applying the more conservative MPC+DCBF controller.

MPC+DCBF Deterministic Robustness
Next, we explore the benefits of the unified kMPC+DCBF controller under bounded
dynamics uncertainty.

To perform this analysis, we now consider the discrete-time dynamical system (6.1)
subject to additive dynamics uncertainty:

xk+1 = F(xk,uk) + dk, ∀k ∈ N. (7.39)

This uncertainty is represented by dk which we assume is bounded by some δ ≥
∥dk∥ ≥ 0 for all k ≥ 0.

As with the undisturbed system (6.1), a controller can be added to generate the
closed loop dynamical system:

xk+1 = F(xk,k(xk)) + dk, ∀k ∈ N. (7.40)

Next we consider the robust safety properties of this closed-loop system.

In achieving robust safety, the feedback of the current safety value used in the DCBF
constraint (6.3) results in the ISSf property which was introduced in Proposition
6.26 and which is dependent on the α ∈ [0, 1) parameter.

The ISSf property ensures that, under a bounded additive disturbance, the DCBF
condition (6.3) for α ∈ [0, 1) can still generate guarantees of set invariance with
respect to some larger set Cδ ⊃ C even when the original safe set C is not invari-
ant. This robustness result differs from those generated by tube MPC [30], [107]
approaches since the controller design does not require an a priori knowledge of the
disturbance size.
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Given this understanding of ISSf, we now compare the robustness of the kMPC+DCBF

controller for varying α ∈ [0, 1), where α = 0 encodes the typical MPC state
constraint. Importantly, α has the following effect on the system safety depending
on whether x is inside or outside of C:

• x ∈ C, larger α results in a tighter constraint that bounds the maximum rate
that h(x) can decrease to 0,

• x /∈ C, larger α results in a looser constraint that bounds the minimum rate at
which h(x) must increase to 0.

Notably, the size of the expanded safe set Cδ (as defined in Prop. 6.26) increases
monotonically with α. However, α > 0 may still be desirable since it gracefully
brings the system back towards C via geometric decay of h(x) whereas α = 0 will
force the system to return to C in a single step, a behavior that will likely result in
infeasibility or overly aggressive behavior as can be seen in the following example:

Example 7.8. To demonstrate the effect of α on the ISSf property and the associated
inputs, we consider a one-dimensional, discrete-time double integrator system with
∆t = 10−3:

[
xk+1

vk+1

]

︸ ︷︷ ︸
xk+1

=

[
1 ∆t

0 1

][
xk

vk

]

︸ ︷︷ ︸
xk

+

[
1
2
∆t

∆t

] [
ak

]

︸︷︷︸
uk

, (7.41)

with a safety condition that conflicts with the goal location:

h(x) = 1− x, xgoal =
[
2, 0

]⊤
. (7.42)

We simulate the system with bothα = 0 andα = e−∆t for both a constant disturbance
and an impulsive disturbance:

dconstant =
[
0.1∆t

]
dimpulse =

[
10∆ts

]
. (7.43)

The results of these simulations can be seen in Fig. 7.11.

Although α > 0may lead to larger safety violations, it also results in much smoother
trajectories and requires significantly smaller inputs (by approximately an order of
magnitude) because constraint (6.3) enforces geometric convergence back to the set
whereas the state constraint (α = 0) requires the system to return to C in a single
step.
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Figure 7.11. Plots displaying the state (x, vx) trajectories for the double integrator system (top),
MPC+DCBF inputs (ax) for α = e−∆t (middle) and the state constrained problem where α = 0
(bottom). On the left, trajectories are shown for a constant additive disturbance of dconstant =[
0.1∆t, 0

]⊤ which occurs at every step with ∆ = 10−3. In this case both trajectories cross the
safety boundary (gray dashed line). The trajectory with α > 0 has a larger violation of safety but
still achieves safety of Cδ whose boundary is shown as the blue dashed line. On the right, a single
impulse disturbance of dimpulse =

[
10∆t, 0

]⊤ occurs at k = 500 causing both trajectories to violate
safety. Importantly, although the state constraint may result in smaller violations in some cases, it
requires very large inputs, approximately an order of magnitude larger than those for the CBF, which
may cause problem infeasibility when U is bounded.

Here we find that the DCBF inequality (6.3) results in a smooth degradation of
safety as the disturbance size increases and that, if the system becomes unsafe, the
DCBF facilitates a graceful recovery of safety through its decay-based constraint.
Alternatively, the step-wise safety requirement of the MPC controller requires the
system to become safe again immediately, which can lead to overly aggressive
behavior and infeasible safety requirements. In practice, we see this manifest on
hardware when the true system and the model used in the FTOCP differ, which
can lead to safety failures when either the FTOCP becomes infeasible or requires
inputs which exceed the real-world bounds. These phenomena will be seen in both
experimental demonstrations in this section.

Quadruped Experiments
To demonstrate the utility of the MPC+DCBF method and compare it to the effec-
tiveness of other methods, we apply the proposed control algorithms to a dynamic
collision avoidance scenario using a Unitree Go2 quadruped.

Example 7.9 (Quadruped Experiments). For the deployment of the MPC+DCBF
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method on the Unitree Go2 quadruped, we leverage a reduced-order model (ROM)
hierarchical control framework [48] based on a two-dimensional single-integrator
high-level control interface enabling the assignment of safe translational velocity
commands without modification of the low-level locomotion controller.

To generate the function h defining safety, we first perceive the experimental space
using a fixed overhead RGB camera, which provides a persistent global image
stream of the robot’s 2D environment at 60 fps. This video stream is passed to
the efficient Track-Anything-Model (efficientTAM) [259] image segmenter, a high-
speed distillation of the Meta SAM2 segmentation model [260]. By segmenting
the environment to detect predefined obstacles, we build a 2D occupancy map of
the space. The occupancy map is buffered by the physical geometry of the Go2
quadruped, enabling safety of the robot to be defined via its centroid. Next, to
produce h we use the Poisson-based algorithm developed in [106]. This method
yields a single continuous h for the entire experimental environment, which can
be queried during autonomous operation. The velocity of the obstacle is estimated
using optical flow [261] on the segmented images and incorporated as a time-varying
component in h. Additionally, an overhead OptiTrack motion capture system is used
to estimate the translational and rotational states of the robot.

We employ this function h in the kMPC+DCBF controller, producing safe velocities
which the quadrupedal system tracks. The result of the model mismatch between
the true quadrupedal system and the single integrator dynamics used by kMPC+DCBF

controller can be modeled as a disturbance to the system and the recursive feasibility
of the system can be analyzed in a way similar to Propositions 7.6 and 7.7 or through
the lens of ISSf, in which case the kMPC+DCBF controller may produce extended
periods of recursive feasibility and graceful safety degradation whereas the MPC
controller may result in earlier and more catastrophic safety failures.

To highlight safety-critical performance, the robot task is to hold a fixed reference
coordinate (1.75m, 2.75m) while staying in the safe set. We then roll a dodgeball
into the environment along a path that requires the robot to move in order to maintain
safety using a fixed-height ramp to produce a repeatable dynamic collision avoidance
scenario. Across trials, safety was enforced via the three aforementioned methods:
1) kMPC+DCBF, 2) state-constrained kMPC with α = 0 – the naive MPC approach,
and 3) the DCBF safety filter (6.4) using a proportional nominal controller. The
resulting data for a single set of comparison experiments can be seen in Fig. 7.12.



204

DCBF-OP

D
C

B
F

-O
P

0

1

2

3

t = 0.00

0

1

2

3

t = 0.25 t = 0.50 t = 0.75 t = 1.00 t = 1.25 t = 1.50

M
P

C
-D

C
B

F

0

1

2

3

S
ta

te
 C

on
st

ra
in

t

0 2 0 2 0 2 0 2 0 2 0 2 0 2

MPC-DCBF State Constraint

Figure 7.12. Quadrupedal robot dynamic obstacle avoidance experiments for the 6.4 in red, state-
constrained MPC (i.e., MPC+DCBF with α = 0) in green, and the MPC+DCBF controller in blue.
(Top) Time series plots of the safety value h(x) for each controller. The MPC+DCBF successfully
maintains safety during the experiment while the state-constrained MPC and the 6.4 both result
in safety failures. (2nd Row) Overhead images with the dynamic obstacle highlighted in green
and contour plots of h(x) through time (left to right: t = 0 to t = 1.5) for the MPC+DCBF
experiments. The quadruped successfully moves out of the way to avoid the dynamic obstacle. (3rd
Row) Overhead images and safety contour plots for the 6.4 controller which is unable to plan around
the obstacle and gets squeezed in between the wall and the dynamic obstacle until a failure occurs
and the quadruped steps out of the safe region at t = 1.0 second. (4th Row) Overhead images and
safety contour plots for the MPC controller which reacts too late and a safety failure and collision
occur at approximately t = 0.75 sec. (Bottom) A colorbar showing the meaning of the colors in the
h(x) contour plots.

By examining the top plot in the figure, it is immediately apparent that the MPC
+DCBF method successfully enforces safety throughout the duration of the exper-
iment. Meanwhile, state-constrained MPC and the DCBF safety filter both result
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in safety violations. Furthermore, the overhead camera images highlight key dif-
ferences in how the quadruped attempts to avoid the dynamic obstacle. Due to its
increased robustness and the incorporation of a planning horizon, the MPC+DCBF
controller begins to command its avoidance maneuver significantly earlier than
the other two methods. Although the decay of h for all three methods appears the
same until 0.55 seconds, the MPC+DCBF begins to command motion before 0.25
seconds, moving along level sets of h to attain a more optimal position for future
actions. This is a direct result of the tightening of the constraints of the underlying
optimization problem since α > 0, which forces the DCBF constraint to activate
sooner. Conversely, the state-constrained MPC controller reacts too late, com-
manding a large input to the single-integrator ROM which could not be tracked by
the low-level locomotion controller. This inevitably led to a safety failure (t = 0.75

sec). Similarly, the small lateral gradients of h(x) in the x direction cause the
DCBF safety filter (6.4) to be unable to effectively “flow" around the obstacle given
the real-time sampeld-data nature of the hardware experiment, eventually causing
a safety failure as quadruped left the rectangular safe region (t = 1.05 seconds).

These experimental results were highly repeatable, as can be seen in the videos
at the link in [250]. In fact, under these particular experimental conditions, the
MPC+DCBF method maintained a 100% success rate, while the state-constrained
MPC and 6.4 methods each had 0% success rates.

Probabilistic Safety with Dynamics Uncertainty
With that introduction to the benefits of the MPC+DCBF formulation, we now return
to the context of stochastic uncertainty and show its stochastic robustness properties.

Critically, we note that the stochastic guarantees of Thms. 6.13 and 6.24 rely on
α ∈ (0, 1) and cannot be used to provide guarantees when α = 0. The self-
referential, safety-feedback property of the DCBF constraint is critical in creating
the necessary supermartingale relationship to invoke the concentration inequalities,
and when α increases toward 1, these bounds guarantee a lower risk of safety
failure. Alternatively, when α = 0, as in the typical state-constraint formulation
in MPC, these methods can no longer be used to make probabilistic guarantees
and return vacuous probability bounds. Thus, the methods of the Chapter 6 can be
used to produce probabilistic safety guarantees for a expectation-based MPC+DCBF
controller, but not for the standard MPC implementation.

As in the deterministic case, to benefit from the horizon based planning of MPC and
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the inherent robustness properties of stochastic DCBFs, we propose unifying them
in the form of a stochastic Model-Aware Risk-Informed Optimization (MARIO)
optimization problem:

min
ξ0:N∈Rnx

ν0:N−1∈Rnu

E

[
N−1∑

i=0

c(ξi,νi) + V (ξN)

∣∣∣∣Fk

]
(MARIO)

s.t. ξi+1 = F(ξi,νi,di), ∀i ∈ {0, . . . , N − 1}
E[h(ξi+1)|Fk] ≥ αh(ξi), ∀i ∈ {0, . . . , N − 1}
νk ∈ U , ∀i ∈ {0, . . . , N − 1}
di ∼ D(xk:0)
ξ0 = xk

with the MARIO controller kMARIO(xk) = [ν∗
0(xk)].

In the reformulation of FTOCP+DCBF to MARIO, we replaced the determinis-
tic DCBF constraint (6.3) with the expectation-based condition (6.16) across the
horizon:

E[h(F(ξi,νi,di))|Fk] ≥ αh(ξi), ∀i ∈ {0, . . . , N}. (7.44)

Importantly this reformulation is always conditioned on Fk for all prediction steps
i. Thus, the planner’s understanding of the uncertainty distribution at each step is
only dependent on the current state history, D(xk:0), making this controller causal
and realizable.

Since this controller enforces the expectation-based DCBF constraint (6.16) at the
first step, the closed-loop system (6.7) under this controller satisfies the expectation-
based DCBF condition required for Thms. 6.13 and 6.24. Thus, the kMARIO

controller, which can be considered as a stochastic formalization of the kMPC+DCBF,
immediately benefits from inherent robustness guarantees of Thms. 6.13 or 6.24
which do not apply to the stochastic reformulation of the kMPC controller withα = 0.
Instead, most stochastic MPC methods rely on a quantile-based chance constraint
[251], [262] which can require significantly more distribution information than
the supermartingale methods which are based on the first-moment. Additionally,
because the supermartingale methods rely on an inequality on the expectation,
they can be thought of as distributionally robust, since the guarantees hold for all
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distributions which satisfy the first-moment property. This robustness is achieved
by sacrificing tightness of the probability bound.

Notably, enforcing the expectation-based DCBF constraint (6.16) may require ad-
ditional consideration since the dynamics and safety function h may reshape the
disturbance distribution. In this case, sampling-based methods may be used to
approximate the expectation constraint, or the Jensen-gap bounding methods of
Section 6.3 and Theorem 6.15 can be applied.

We recognize that practically implementing thekMARIO controller may be difficult, as
it requires propagation of compounding uncertainty through the dynamics, cost, and
the DCBF h. We note that, since only the first constraint along the planning horizon
of the MARIO FTOCP is leveraged at each time-step to produce the trajectory long
guarantees of Thms. 6.13 and 6.24, further simplifications can be made for i > 1

to ease the computational burden. While this may reduce the optimality of the
kMARIO controller, it will still maintain its probabilistic guarantees. Additionally, the
following discussion will consider a computationally tractable version of the kMARIO

controller that also incorporates state uncertainty.

Probabilistic Safety with Dynamics and State Uncertainty
We now consider systems with stochastic dynamic uncertainty as in (6.7) where we
do not have direct access to the state. Instead we only have indirect access through
noisy measurements:

yk = M(xk,vk), vk ∼ V(xk:0) (7.45)

where, yk ∈ Rny is a system measurement, vk is a Fk+1-measurable random
variable taking values in Rnv that represents the measurement noise, and M :

Rnx ×Rnv → Rny is the system’s measurement function that obtains measurement
yk given the state xk; for example, M could be a camera that produces a noisy image
yk given the current position xk and the noise vk.

In the context of real-world robotics and control systems, we never have access to
the true state of the system due to uncertainties in our measurements. Because of
this inability to access the true state, the state evolution of xk becomes a partially
observable Markov decision process (POMDP), and it is common to seek guarantees
on the belief-state distribution instead of guarantees on the true state [21], [200]. In
this work we will first seek a bound on the belief space safety and then extend this
to the true state through a union bounding method.
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Since we are considering systems where we do not know the true state xk, we now
discuss a filtration generated by the σ−algebra over only the observations, yk; that
is, we consider Gk = σ(yk:0) which is contained in the filtration Fk, i.e., Gk ⊂ Fk.
Since the inputs are selected based on the system measurements, the input vector
uk is also Gk-measurable. On the other hand, since the true state of the system xk is
not Gk-measurable, we turn our attention to the expectation of the state conditioned
on the measurement-based filtration Gk. We will use the previously introduced
martingale constructions to make safety guarantees with respect to the expected
value of the belief state:

x̂k|k−1 ≜ E[ xk | Gk−1 ], x̂k|k ≜ E[ xk | Gk ], (7.46)

where, as in a Kalman filter [263], x̂k|k−1 is the expected value of the predicted
belief state at the next step and x̂k|k is the expected value of the updated belief state
after a new measurement has been taken.

Next, we seek to produce risk-based bounds on the K-step exit probability of the
expected value of the belief state:

Pu(K, x̂0|0) ≜ P{ x̂k|k /∈ C for some k ≤ K }, (7.47)

where the dynamics for x̂k|k include both the system dynamics for the prediction
propagation to x̂k+1|k and the system measurement update step to obtain x̂k+1|k+1

once yk+1 is measured.

To bound (7.47) we consider the following condition on h(x̂k+1|k+1) in order to
generate stochastic guarantees:

E[ h(x̂k+1|k+1) | Gk ] ≥ αh(x̂k|k), (7.48)

for some α ∈ (0, 1) where the expectation-based DTCBF condition in (6.16) is now
applied to the expected value of the updated belief state.

To practically implement constraint (7.48) to generate probabilistic safety guaran-
tees, we assume that the dynamics and measurements are linear:

xk+1 = Axk +Buk + dk (7.49)

yk = Cxk + vk (7.50)

and that the disturbance dk and noise vk are sampled from zero-mean distributions7.
7To prove Thm. 7.10 we assume zero mean, but any bias can also be accounted for by modeling

it and including it as a part of the nominal dynamics and measurement model.
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To construct an FTOCP for this system, instead of constraining the initial state in the
plan to be the current state ξ0 = xk, which we do not have access to, we constrain it
to the current expected belief state ξ0 = x̂k|k. Using this adjustment and the linear
dynamics assumption we have the State-Uncertain Probabilistic Model-Aware Risk
Informed Optimization (SUP-MARIO) optimization problem:

min
ξ0:N∈Rnx

ν0:N−1∈Rnu

N−1∑

i=0

c(ξi,νi) + V (ξN) (SUP-MARIO)

s.t. ξi+1 = Aξi +Bνi, ∀i ∈ {0, . . . , N − 1}
h(ξi+1) ≥ αh(ξi), ∀i ∈ {0, . . . , N − 1}
νk ∈ U , ∀i ∈ {0, . . . , N − 1}
ξ0 = x̂k|k

for someα ∈ (0, 1)which can be used as before to define the SUP-MARIO controller
kSUP-MARIO(xk) = [ν∗

0(xk)].

Notably, whereas kMARIO may be difficult to implement, the implementation of
kSUP-MARIO is straightforward. This is because kSUP-MARIO relies on the expected-
value of the state to implement the FTOCP+DCBF problem8. It therefore does not
require the uncertainty distributions be propagated across the planning horizon.

Next, we show that this simple-to-implement controller still satisfies the DCBF
condition in expectation (7.48). In particular, the kSUP-MARIO controller satisfies
the desired DCBF constraint on the safety of the belief state (7.48) which allows
it to leverage Thm. 6.13 and/or Thm. 6.24 to provide bounds on the K−step exit
probability of the belief state (7.47).

Theorem 7.10. For systems with linear dynamics (7.49), linear measurements
(7.50), and zero-mean disturbance dk and measurement noise vk, if h : Rnx → R is
convex9, then the closed-loop system (6.7) with the kSUP-MARIO controller satisfies:

E[ h(x̂k+1|k+1) | Gk ] ≥ αh(x̂k|k) (7.51)

A proof of Thm. 7.10 can be found in [60, Appx. C].
8The relationship between the FTOCP+DCBF and SUP-MARIO is similar to that between a

linear quadratic regulator (LQR) and a linear quadratic guassian (LQG) controller.
9When h is concave, the method in Theorem 6.15 can be used. Alternatively, sampling-based

methods can be used to approximate E[h(x)] from h(E[x]) for general h.
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Since the kSUP-MARIO satisfies condition (7.48), Thms. 6.13 and 6.24 can be used
to guarantee bounds on the K-step exit probability of x̂k|k when their respective
hypotheses regarding bounds on h or step-wise and predictable quadratic variation
(PQV) bounds are satisfied.

Finally, to analyze the safety achieved by thekSUP-MARIO controller with respect to the
true state x, we can leverage tail-bounding methods like Cantelli’s inequality [206]
(one-sided Chebychev’s inequality) in conjunction with the union bound (Boole’s
inequality) to extend beyond the K−step exit probability bounds on x̂k|k.

Using Cantelli’s inequality we can extend a safety guarantee on the expected belief
state x̂k|k to a safety guarantee on the true state xk.

Theorem 7.11. Assume that the variance of safety is bounded as Var(h(xk)) ≤ σh

for some σh > 0, all xk, and all k ≤ K and that h is convex. If the system achieves
the K-step exit probability Pu(K, x̂0) ≤ ϵ for the belief state x̂k|k, then failure
probability for the CδC = {x ∈ Rnx |h(x) ≥ −δC} for the true state x and some
δC ≥ 0 is bounded as:

P{h(xk) < −δC for some k ≤ K} ≤ ϵ+ (1 +K)

(
σ2
h

σ2
h + δ2C

)
.

This final theorem allows us to place theoretical guarantees on the probability that
the true state of the system will be safe despite indirect knowledge of x due to noisy
measurements. Its proof can be found in Appx. [60, Appx. D].

Quadrotor Experiments
Next we apply the kSUP-MARIO controller to a quadrotor robot to achieve dynamic
obstacle avoidance. To do this we consider the same quadrotor model as in (7.11).

To control the quadrotor robot we use a hierarchical control scheme that consists of
three layers. At the lowest layer we use an opensource Betaflight controller to track
commanded thrust and angle rates at 8 kHz. At the mid-layer, we implement the
geometric tracking controller presented in [94] at 800 Hz to generate thrust and angle
rate commands based on desired position trajectories. Finally, at the highest-layer
we generate twice continuously differentiable position outputs using the kSUP-MARIO

controller at 20 Hz, where the linear model used in the SUP-MARIO FTOCP is:
[
pk+1

vk+1

]

︸ ︷︷ ︸
ξk+1

=

[
I ∆tI

0 I

][
pk

vk

]

︸ ︷︷ ︸
ξk

+

[
∆2

t

2
I

∆t

] [
ak

]

︸︷︷︸
νk

. (7.52)
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To limit the angle rate commands produced by the tracking controller and ensure
smoother flight, we add a constraint on the system jerk by bounding the difference
between the current and next acceleration inputs in the FTOCP and SUP+MARIO
problems. Furthermore, to avoid infeasibility during flight, we implement these
finite-difference-based jerk bounds as soft constraints with slack variables.

The geometric tracking controller can be used to establish the differential flatness
of the quadrotor system [237] that ensures the (almost everywhere) tracking of
the desired trajectories and any remaining error in the model that occurs transiently
due to initial condition error, angle-rate convergence, or lack of smoothness between
solution updates can be analyzed through the deterministic and stochastic robustness
frameworks presented in this section.

For safety, we consider collision avoidance between our quadrotor drone and a
dynamic projectile obstacle. Mathematically we define this safety using the function:

h0(x) = ∥p̃x:y∥ − r (7.53)

where p̃ represents the relative position of the quadrotor with respect to the obstacle,
the subscript indices indicate the extraction of the first two elements of p̃, and r is the
radius of the obstacle, which accounts for the maximum dimension of the quadrotor.
The 0-superlevel set of h0 functionally defines safety for our quadrotor system as
staying outside the planar (x, y) region containing the obstacle. To implement
the horizon-based planning of the MPC and SUP-MARIO controllers, we use a
constant-velocity model of the dynamic obstacle.

While h0(x) is used in the implementations of the kMPC with state constraints, we
instead use a higher-order CBF (HOCBF) extension [75] to implement the kDCBF-OP

and kSUP-MARIO controllers:

h(x) =
p̃⊤
x:y

∥p̃x:y∥
˙̃px:y

︸ ︷︷ ︸
ḣ0(x)

+γh0(x) (7.54)

for a γ > 0. This is a relative degree 1 DCBF designed for the double integrator
model used in the kSUP-MARIO controller. While the use of h as in (7.54) in place of
h0 is not theoretically necessary, and in fact moves from a convex h0 to a non-convex
h, we find that it provides better closed-loop system behavior.

An additional DCBF constraint was also implemented in the kMPC and kSUP-MARIO

controllers to avoid collisions with the ground.
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Figure 7.13. Simulated demonstrations of the kMPC, kDCBF-OP, and kSUP-MARIO controllers per-
forming a dynamical obstacle avoidance task. (Top) The planar (x, y) trajectories for the obstacle
(black), DCBF-OP (red), MPC+DCBF (blue), and MPC with state constraints (green). (Middle)
The distance to the goal through time for each controller. (Bottom) The signed-distance function
representing collision between the drone and the obstacle. Aided by their planning horizons, the
kMPC controller with state constraints and the kSUP-MARIO controller both produce trajectories with
relatively small deviations away from the goal point (0, 0). Meanwhile, the kDCBF-OP and kSUP-MARIO

controllers manage to avoid collisions, but the kMPC controller results in a safety failure due to a the
model-mismatch and lack of robustness. Here the DCBF-OP achieves safety during the scenario, but
its myopic, pointwise optimization does so by moving in the same direction as the obstacle whereas
the kSUP-MARIO controller optimizes performance while achieving safety by moving in a direction
which is predominantly orthogonal to the obstacle’s velocity. Videos of these simulations can be
found at [250].

Simulation Experiments: In simulation we compare the effectiveness of the kDCBF-OP

from (6.4), kMPC, and kSUP-MARIO controllers10 at achieving dynamic collision avoid-
ance for the quadrotor system (7.11). The results of this comparison simulation can
be seen in Fig. 7.13.

To approximate real-world uncertainty, random noise was added to both the state and
obstacle values and measurements and Kalman filters were implemented to estimate

10To practically implement the kDCBF-OP we added the ISSf-CBF term [31] from Def. (2.24) to
account for model uncertainty. This term was not added in the implmentation of the kSUP-MARIO

controller.
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Figure 7.14. Experimental demonstration of the kSUP-MARIO controller on a quadrotor drone with
onboard dynamic obstacle detection, state estimation, and avoidance. (Top) The top two rows show
the scene through time from the perspective of an external camera. The drone starts in the top left
and a red ball moves towards it. The drone then moves back and to the side to avoid a collision.
(Middle) The middle two rows show the scene from the robot’s perspective. The obstacle mask, as
seen by the robot, is shown in yellow and can be seen to have significant noise with an innacurate
mask at t = 0.58, significant motion blur, and missing detections at t = 0.90 and 0.98. (Bottom)
The bottom plots show the system’s safety value h(x) in orange (which never drops below zero), the
drone position, the commanded acceleration, and the obstacle’s estimated position and velocity. The
different components of these vectors are shown as x in red, y in green, and z in blue. The maximum
velocity of the obstacle during the experiment was measured using a motion capture system to be
6.24 m/s. The video of this experiment can be found at the link in [250].

both the robot and obstacle states. The goal position for each controller was (0, 0)
which the MPC and SUP-MARIO controllers tracked using a quadratic receding
horizon cost. The DCBF controller tracked the goal position using a proportional-
derivative nominal controller which was pointwise modified to enforce safety. The
obstacle was a sphere with radius robs = 0.15 m that tracked a trajectory that passed
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through (0, 0) which was both the robot’s initial and goal position.

While the kDCBF-OP and kSUP-MARIO controllers both achieve safety, the myopia of
the DCBF-OP safety filter causes it to produce trajectories that are safe but highly
suboptimal by moving in the same direction as the obstacle, resulting in signifi-
cant departure from the goal position. The kMPC controller with state constraints
achieves performant behavior by planning a trajectory that moves perpendicular to
the obstacle path; however, it lacks sufficient robustness resulting in a safety fail-
ure in simulation. Finally, the kSUP-MARIO controller combines the benefits of both
methods and achieves safe and performant behavior, effectively side-stepping with
sufficient margin to avoid collision.

The simulations were performed in a ROS-based simulation environment which
models the full-robot multi-layer control and communication system.

Hardware Setup: The quadrotor hardware platform is the same as in Section 7.2, but
with the addition of an Intel RealSense D455 depth camera and with the Nvidia Jet-
son Tx2 replaced with the more powerful Nvidia Jetson Orin Nx onboard computer.
We utilize the IMU and its internal Kalman filter for orientation state estimation,
and we use an OptiTrack motion capture system for global position measurements
from which velocities are also estimated via finite-difference and a low-pass filter.
A diagram of the quadrotor is provided in Fig. 7.15.

The environment sensing system utilizes an RGBd video stream (4 channels: 3 color
channels and 1 depth channel) generated by the Intel Realsense D455 stereo depth
camera. To ensure time alignment between the color and depth images, the stereo
image used to calculate the depth is simultaneously used as the RGB image, and
the active infrared projector is disabled. To segment the obstacle within an image
and track it between frames, we utilize the efficient Track-Anything-Model (effi-
cientTAM) [259], a distillation of Meta’s Segment-Anything-Model [260], which
achieves faster than 11 Hz image segmentation and tracking on the Jetson Orin NX.
To identify obstacles, we initialize the efficientTAM model with prompts (mouse
clicks on an image) which identify key points in the image. For the obstacle we
predominately used the red ball shown in Figs. 7.16 and 7.14, but the experimental
video found at the link in [250] and Fig. 7.17 also show a demonstration of the
SUP-MARIO controller dodging a green turtle shell.

Once a segmentation mask is obtained for an RGBd image, the intrinsic camera
matrix and the geometry of the robot are used to generate 3D vectors representing
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Robot POV

Figure 7.16. A dynamic avoidance maneuver generated by the MPC+DCBF controller. The bottome
row shows the first-person-view (FPV) masked image used for state estimation. A video of these
experiments can be found at the link in [250].

the relative position of the pixelized masked image contents from the robot body
reference frame. We then perform a weighted averaging of those vectors based on
their distance to the center of the mask to estimate the relative position of the obstacle
centroid with respect to the camera frame. This relative position is converted to a
global frame using the time-synchronized drone state. Given this position estimate,
a Kalman filter for a double integrator system is used to estimate the relative obstacle
position p̃ and velocity ˙̃pwhich relate to system safety viah0 in (7.53) andh in (7.54).
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Figure 7.15. A diagram of the quadro-
tor robot used in the dynamical obstacle
avoidance experiments and Figs. 7.16
and 7.14.

Finally, thekSUP-MARIO controller is implemented
at 20 Hz with a horizon length of N = 20 and
a ∆t = 0.05 sec, for a total real-time horizon
length of 1 second. To solve the non-convex op-
timization problem we use a sequential quadratic
programming (SQP) method in a real-time iter-
ation (RTI) implementation [264]. The DCBF-
OP and MPC controllers were not demonstrated
on hardware due to practical safety concerns
with the simulated trajectories in Fig. 7.13. Re-
sults from these experiments can be seen in Figs. 7.16 and 7.14 and a video can be
found at the link in [250] where the quadrotor drone successfully avoids dynamic
projectile obstacles over several trials. For the experiment shown in Fig. 7.14,
motion capture markers were added to the obstacle to provide ground truth state
information, but this ground truth was not used for real-time collision avoidance.
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Figure 7.17. The quadrotor robot avoiding a collision with the toy turtle shell.

These ground truth measurements only used to obtain the true obstacle velocities,
and from this we know that the quadrotor robot successfully dodged obstacles mov-
ing at upwards of 6.24 m/s, overcoming the significant uncertainty resulting from
the noisy, low-frame-rate (11 Hz) environmental perception and from its uncertain,
reduced-order-model of its dynamics.

Conclusion
In this section we studied the combination of two predominant control techniques:
model predictive control (MPC) and control barrier function (CBF)-based safety
filters. By combining the cost function and horizon-based planning of the MPC
problem with the DCBF-based safety constraint, we found both practical and the-
oretical benefits in nominal operation, operation under bounded uncertainty, and
operation under (potentially unbounded) stochastic state and dynamic uncertainty,
that extend the capabilities beyond either of the individual methods. We show
that the unified MPC+DCBF controller displays favorable safety, performance, and
closed-loop feasibility properties, and we demonstrate the utility of this controller
via quadrupedal and quadrotor experiments for dynamic obstacle avoidance.

7.5 Conclusion
This chapter provided several examples of DCBF methods achieving robust safety-
critical control for robots operating under significant real-world uncertainty, with
practical examples of (1) a quadrotor robot operating safely with chaotic disturbances
caused by unmodeled masses attached with flexible cables in Section 7.2, (2) a
humanoid robot safely navigating complex environments in Section 7.3, and (3) a
quadruped and a quadrotor robot achieving highly dynamic obstacle avoidance in
Section 7.4.

To realize these behaviors, Sections 7.2 and 7.3 leveraged generative modeling
techniques to capture the effects of disturbances on the system and Section 7.4
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improved its real-world safety and performance using horizon-based planning.

The contributions of this chapter open up several avenues for future work. Firstly,
although we can create probabilistic guarantees of safety using real-time controllers,
these probability bounds are very loose. Future work will examine extensions be-
yond martingale concentration, Cantelli’s, and Boole’s inequalities that improve
theoretical guarantees without sacrificing real-time capabilities. Secondly, signif-
icant work should be invested in defining the functions h given sensor output,
developing methods for converting sensor information to scene understanding and
safety requirements while optimizing them to yield improved probability bounds.
Thirdly, since the distributions used to implement the controllers11 are not the true
uncertainty distributions, the guarantees of Chapter 6 do not necessarily hold. Fu-
ture work will explore how these guarantees can be retained in the context of learned
models.

11The controllers of Sections 7.2 and 7.3 were implemented by using CVAEs to approximate the
disturbance distribution and the controller in Section 7.4 was implemented assuming the standard
zero-mean process and measurement noise of a Kalman filter.
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C h a p t e r 8

CONCLUSION

This thesis explored the problem of achieving dynamic safety for robots facing real-
world uncertainties. Based on control-theoretic foundations, this thesis presented:
proof techniques for achieving robust safety guarantees in the face of uncertainty, al-
gorithms for improving the performance of these systems while achieving safety, and
hardware demonstrations of these methods achieving safe and performant behaviors.

Two main theoretical paradigms for robust safety were considered, namely, worst-
case safety bounds and probabilistic safety guarantees. In both cases, we consid-
ered various sources of uncertainty including both model mismatch and measure-
ment/state uncertainty and develop practical control algorithms for achieving those
guarantees that we deploy on hardware systems.

Contributions
The main contributions of this thesis are:

• Safe-Set Synthesis Methods: Chapter 3 tackled the challenge of synthesiz-
ing control invariant sets based on user-defined safety criteria and provided
constructive methods for several highly relevant classes of systems that enable
CBF synthesis.

• Robustness Guarantees with Bounded Uncertainty: Chapter 4 presented
several techniques for achieving robust guarantees in the presence of a va-
riety of bounded uncertainty including measurement uncertainty, dynamics
uncertainty, and errors in imitation learning. The contributions of this chap-
ter constituted the first theoretical analysis and hardware deployment of the
MRCBF method with guaranteed robustness to measurement uncertainty.

• Learning-based Performance Improvements: Chapter 5 presented several
methods for improving the closed-loop behavior of safety-critical systems by
learning improved models of dynamics and perception systems or by learning
intangible concepts like desired robustness and social responsibility. These
learned components are critical for safety and enabled significant performance
improvements. This chapter included the first hardware demonstrations of
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CBFs on a bipedal robot and the first use of preference-based learning in
conjunction with CBFs.

• Stochastic Safety Guarantees: Chapter 6 presented several novel proofs
providing probabilistic guarantees of safety for DCBF-based control. It also
provided practical considerations for realizing these controllers and novel
martingale-based proofs of probabilistic safety.

• Deployment of Stochastic Guarantees: Chapter 7 presented novel frame-
works for deploying the stochastic control methods of Chapter 6 by unifying
them with generative modeling techniques, resulting in dynamic safety for a
quadrotor and humanoid robot operating under significant uncertainty; these
results constituted the first demonstrations of the martingale-based DCBF
safety paradigm on hardware. This chapter also demonstrates the horizon-
based performance improvements and the inherent robustness guarantees that
come with DCBF-based methods.

Limitations and Directions for Future Work
The results of this thesis present several interesting directions for future work.

1. Improved Stochastic Guarantees: I believe that the stochastic results of Chapter
6 provide a solid foundation from which build improved guarantees. In particular,
interesting directions for future work include bridging the continuous-time models
of the first portion of this thesis with the distrete-time stochastic analysis of the
second half by analyzing a sampled-data formulation of the SDEs and CBF-based
guarantees in [110], [130], [193].

Additionally, while the stochastic guarantees of this thesis proved useful for the
hardware deployment in Chapter 7, the use of a generative model in place of the
true distribution results in a gap between the theoretical and practical deployment.
I believe that there are fruitful research opportunities in analyzing the distribution
shift between the true and learned uncertainties and the distributional robustness of
the martingale-based DCBF methods considered in this thesis.

Furthermore, the represent here our notion of probabilistic safety (Def. 6.7) is based
simply on the finite-horizon probability that h(x) will taken on a negative value.
An interesting direction for future work is to merge the analysis and controllers of
Chapters 6 and 7 with more nuanced understanding of risk, such as coherent risk
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measures like CVaR [265]. I believe that our martingale-based methods provide a
natural paradigm from which we can generalize to coherent risk measures.

Finally, the stochastic guarantees considered here are quite loose. While the general-
ity of the martingale framework allows these methods to be implemented in real-time
with relatively little a priori distribution knowledge, it also results in poorly cal-
ibrated, highly conservative probability bounds whose utility is often more as a
guiding tool in choosing α than in directly prescribing a value. Future research
directions should consider methods for improving the calibration of these bounds,
potentially by reconsidering the source of uncertainty in the model, considering
multi-model safety constraints, and/or by applying sampling-based methods such as
[266]–[268].

2. Safe Learning: While the learning methods introduced in this thesis in both
Chapters 5 and 7 resulted in desirable closed-loop behavior, they compromised the
theoretical guarantees and often required a priori data collection. Safe learning
and particularly safe online learning [187], where safety guarantees are retained
during learning and models are improved performed during deployment, represent
an important future direction for this work with ultimate goal of achieving safe
lifelong learning. A fruitful research area may be in combining the results of robust
adaptive control with safety-aware learning [99] and sampling-based verification
methods [266].

Additionally, I believe that the generative modeling of dynamics residuals in Chapter
7 also produces several interesting directions for future work in closing the sim-to-
real gap. As demonstrated with SHIELD (Sec. 7.3), these techniques have utility in
modeling uncertain dynamics to achieve improvements in both trajectory tracking
and safety. This ability can further help close the sim-to-real gap by improving
simulations of highly uncertain systems and by making real-world systems behave
more like simulated ones, similar to the residual modeling in [269]. Furthermore,
the CVAE methods shown here has difficulties representing truly multi-modal dis-
tributions [225] and, with improvements in computational capabilities, we may be
able to use more capable generative modeling techniques such as diffusion models
[221] in high-frequency components of the robot’s control system.

3. Bridging Control-theoretic and Human Understandings of Safety: Chapter 1 mo-
tivated the study of safety with Asimov’s Three Laws of Robotics, a human-
interpretable description of dynamic safety. Meanwhile, the safety-critical control
tools introduced in Chapter 2 and used throughout the rest of this thesis assume
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the existence of predefined safety criteria. I believe that this difference reveals an
important direction for future work that involves bridging this gap between human-
interpretable safety descriptions and control theoretic ones. Extending the safe-set
synthesis methods of Chapter 3, this work will additionally require methods that
allow for the rapid synthesis of semantically meaningful safety criteria, replacing
the need for a “user-defined safe set C,” potentially from logic specifications [270]
or directly from data [271].

This also introduces interesting new directions that involve extending definitions
of safety beyond collision avoidance to consider more nuanced understandings that
cannot be neatly divided into binary safe/not-safe states. While the probabilistic
safety guarantees of Chapter 6 begin to provide an understanding of the importance
of the value of h(x) beyond just its sign and rate of change, future directions should
develop an understanding of relative degrees of safety and the importance of the
value of h(x) in how it can be used to modulate risk and how it relates to human
understandings of safety. This more nuanced understand of safety and the value of
h(x) will enable the future co-optimization of safety and performance.

4. Computationally Accelerated Safe Set Synthesis: Although Chapter 3 presented
several methods for rapid generation of CBFs or control invariant sets, it relied
on several assumptions regarding the system structure. Reachability methods [4],
[8] present a more complete solution to this problem, but have historically been
limited by their computational complexity. As technology improves, I believe that
this problem will likely be worth revisiting as we may be able to rapidly solve, or
at least approximately solve, these reachability problems with improved compute or
learning-based methods.
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