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ABSTRACT

The holographic principle, which states that quantum gravity in a given spacetime
region admits an equivalent description in terms of a quantum system without
gravity on its boundary, is a very promising candidate to lay the foundations of
our understanding of quantum gravity. However, a precise general formulation of
this principle, as well as its domain of applicability, are yet to be understood. This
thesis explores the foundations of holography from a mathematical point of view. In
particular, the theory of von Neumann algebras is exploited to understand features
of the emergence of spacetime in holography, leveraging tools from quantum error
correction in infinite dimensions as well as results on harmonic analysis. Some
connections between hyperbolic geometry and recent developments in holography
are also elucidated, an approach to the factorization of holographic theories based
on Hopf algebras is developed, and a puzzle regarding the description of a closed
universe within the context of the AdS/CFT correspondence is put forward.
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discrete red points lie entirely within the green continuum. . . . . . . 290
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8.1 (a) The Araki–Woods construction of a type II von Neumann algebra
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𝛾𝐴, again ultimately leading to a type II von Neumann algebra for
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8.2 Turning a holographic tensor network into an encoding circuit. (a)
We take a small HaPPY code with four contracted perfect tensors
and consider a boundary bipartition into 𝐴 and 𝐴𝑐. From each
region, two logical qubits (red dots) can be recovered, forming the
“bulk regions” 𝑎 and 𝑎𝑐, separated by a cut 𝛾𝐴 through the tensor
network. (b) Using the property that the six-leg perfect tensor acts
as a unitary 𝑈 from any three legs to the remaining three, we can
reorganize the tensor network into a circuit from the logical qubits
in 𝑎 and 𝑎𝑐 to the physical qubits in 𝐴 and 𝐴𝑐. In this circuit, some
of the tensor contractions become insertions of maximally entangled
pairs into the circuit. Three of such pairs cross between 𝐴 and 𝐴𝑐,
leading to an entanglement entropy 𝑆𝐴 = log 3 + 𝑆𝑎. (c) The generic
holographic encoding circuit in terms of two unitaries𝑈𝐴 and𝑈𝐴𝑐 (or
equivalently, isometries 𝑉𝐴 and 𝑉𝐴𝑐 ), with resource states |𝜒𝑎⟩ and
|𝜒𝑎𝑐⟩ contributing only to entanglement within each subregion and
|𝜒𝛾⟩ contributing to the entanglement between 𝐴 and 𝐴𝑐. For HaPPY
codes, these resource states are copies of maximally entangled pairs. 404

8.3 Subregion algebra reconstruction in the HaPPY model. (a) A bound-
ary bipartition into 𝐴 and 𝐴𝑐 of the full {5, 4} HaPPY code. The
Ryu-Takayanagi cut 𝛾𝐴 separates the bulk into two wedges 𝑎 and
𝑎𝑐, logical qubits (red dots) in which are reconstructable (only) on
𝐴 and 𝐴𝑐 (white dots), respectively. (b) Mapping the full boundary
subregion algebra A𝐴 back into the bulk: Removing 𝑎𝑐 and bonds
corresponding to (one choice of) ancillas |𝜒𝑎⟩ turns the remaining
tensors into a unitary circuit (following Fig. 8.2). A𝐴 is unitarily
mapped to the bulk algebraA𝑎 (red), the wedge ancilla algebraA𝜒𝑎

(black), and the Ryu-Takayanagi algebra A𝛾𝐴 (gray). (c) With the
ancilla bonds removed, operator-pushing a logical operator (here �̄�
acting on one bulk qubit) follows a unique flow towards the boundary,
resulting in a unique boundary representation of the logical operator. 405
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8.4 Subregion algebra mapping with one layer of the HaPPY model. (a)
A single vertex inflation layer of the “opened-up” HaPPY code of
Fig. 8.3, acting as a unitary map from the subregion algebra AΛ

𝐴
at

layer Λ and the algebras of the degrees of freedom of the new layer,
the bulk algebra AΛ

𝛿𝑎
(red), wedge ancilla algebra AΛ

𝜒𝛿𝑎
(black), and

Ryu-Takayanagi algebra AΛ
𝛿𝛾𝐴

(gray) to the subregion algebra AΛ+1
𝐴

on the next layer. (b) The generic form of a layer of the HaPPY
code with ancillas, written as a circuit diagram with the two unitary
subregion maps𝑈Λ,Λ+1

𝐴
(highlighted in (a)) and𝑈Λ,Λ+1

𝐴𝑐
. . . . . . . . 412

8.5 Commutative diagram summarizing the structure required for an in-
ductive limit of codes. The sequence of logical Hilbert spaces and
their isometries is shown on the top diagram, while the sequence of
algebras and their operator pushing maps is shown on the bottom di-
agram. We ask that the arrows of the same color on the commutative
diagram satisfy the compatibility conditions (8.81) (for the red ones),
and (8.82) (for the blue and green ones). A similar diagram to the
bottom one must also hold for commutant algebras and maps. . . . . 421

8.6 (a) Two boundary regions 𝐴, 𝐴𝑐 with their respective entanglement
wedges and RT surface 𝛾RT and dimers carrying logical information
drawn with colored dashed lines. Note that there is one dimer for
each bulk qubit. (b) HaPPY code with different dimers in region
𝐴 colored. Green are dimers belonging to 𝐷𝛾, red are dimers that
belong to 𝐷𝐴

𝑎 and and dashed yellow are the logical dimers in 𝐷𝐴
𝑙
.

The parity of the dimers was neglected in this figure. (c) Dimers in
𝐴 after disentangling logical and auxiliary dimers by applying local
swap operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

8.7 Illustration that a dimer state in which an edge is connected to it-
self next to the pivot can be factorized into a qubit system and the
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8.8 The multi-scale entanglement renormalization ansatz (MERA) with
four layers. The MERA is a tensor network that maps coarse-grained
(IR) degrees of freedom to fine-grained (UV) ones, designed to de-
scribe the renormalization group flow of critical, gapless theories. It
is constructed from isometries 𝐼 (triangles) and unitary disentanglers
𝑈 (squares). As shown in the legend, 𝐼 can be rewritten as a unitary
map 𝑈𝐼 postselected onto a reference state |0⟩. Here we show the
MERA with periodic boundary conditions, denoted by dashed lines. 429

8.9 Bipartitions of MERA boundary sites. (a) A choice of a half-infinite
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port. The boundary of its preimage is marked as 𝛾𝐴. If one grows
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8.12 Illustration of 𝑍 strings that appear when exciting bulk qubits from
|0⟩ to |1⟩. (a) The RT surface 𝛾𝐴 is indicated by green edges and the
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the central qubit gets excited and a 𝑍 string, indicated by a red edge,
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8.13 (a) A corner piece which illustrates all situations that can occur in the
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the RT surface. (c) Logical dimers of 𝑇1, 𝑇2, 𝑇3 in dashed lines if the
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8.14 Illustration of a sequence of swap operations that disentangles the
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each step a set of swap operations was applied. Note that the parity
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C h a p t e r 1

INTRODUCTION

“Il en est qui, face à cela, se contentent de hausser les épaules d’un air désabusé et de
parier qu’il n’y a rien à tirer de tout cela, sauf des rêves. Ils oublient, ou ignorent, que

notre science, et toute science, serait bien peu de chose, si depuis ses origines elle n’avait
été nourrie des rêves et des visions de ceux qui s’y adonnent avec passion."

– Alexandre Grothendieck

Theoretical physics aims at understanding the laws of nature from simple principles.
For example, the principle of least action allows to unify classical mechanics into
one, united framework. Similarly, the equivalence principle lies at the core of
Einstein’s theory of general relativity, and Heisenberg’s uncertainty principle is the
foundational pillar of quantum mechanics.

One of the deepest contemporary questions in theoretical physics is to unify quan-
tum mechanics and general relativity into one fully coherent framework. These
two theories are extremely different: for example, time is a variable in quantum
mechanics, whereas it is a gauge symmetry in general relativity. Such a unification
is therefore a formidable challenge, and it is likely that in order to make progress,
we will need a new principle, which supersedes the ones mentioned above.

A leading candidate for such a principle is the holographic principle, which was
first proposed by ’t Hooft and Susskind [1, 429]. In a physicist’s words, it could be
stated as follows:

A quantum theory of gravity in a region 𝑅 of spacetime is equivalent to a somewhat
local theory without gravity on its boundary 𝜕𝑅, whose total number of degrees of
freedom is equal, in Planck units, to

𝑆 =
𝐴(𝜕𝑅)

4
, (1.1)

where 𝐴 denotes the area.

Very compelling theoretical evidence for such a principle has been found. First, the
equations of general relativity can be recast into a form that mimics thermodynamics
[43], in particular, in this reformulation, the area of the horizon of a black hole
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behaves like an entropy functional, suggesting a statistical interpretation. Later,
Bekenstein and Hawking obtained the formula (1.1) for the entropy of a quantum
black hole using a path integral over spacetime metrics. Strominger and Vafa [425]
were later able to show that for some supersymmetric black holes in string theory,
a microscopic counting of degrees of freedom was able to recover (1.1).

The first full-fledged realization of holography, which not only shows an area scaling
of microstates but also proposes a description of quantum gravity in a region of
spacetime in terms of a dual theory on its boundary, was given by Maldacena [319]
a few years later, through the discovery of the Anti-deSitter/Conformal Field Theory
(AdS/CFT) correspondence. The original version of AdS/CFT used open-closed
string duality to show that type IIB superstring theory on an 𝐴𝑑𝑆5 × 𝑆5 background
admits an equivalent description in terms of the N = 4 Super-Yang–Mills (SYM)
theory on R4, which is a superconformal field theory on the conformal boundary
of 𝐴𝑑𝑆5. This dual description in terms of N = 4 SYM theory therefore provides
a concrete realization of the holographic principle: it is a non-gravitational, local
theory on the boundary of the spacetime region of interest – here, 𝐴𝑑𝑆5.

The holographic principle goes against intuition: naively, semiclassical field theory
on a region of spacetime has a number of degrees of freedom that scales like volume
rather than area. This begs two questions:

1. If we start from effective field theory in a region of spacetime, new quantum
gravity effects must drastically reduce its number of degrees of freedom. In
other words, there must exist many states in the Hilbert space of of this region
which look different from the point of view of effective field theory, but which
only differ by a “null" state of zero norm in the non-perturbative description
of quantum gravity, so that the Hilbert space matches with the one of a local
theory in a reduced number of dimensions of spacetime. What is the nature
of these new null states from the point of view of the gravity theory?

2. Conversely, if we consider the Hilbert space of the boundary theory, we
must explain how the physics of effective field theory in a higher-dimensional
spacetime emerge in the limit where quantum gravity effects are turned off in
the bulk, which corresponds to the limit in which the number 𝑁 of degrees
of freedom of the boundary theory goes to infinity. Which properties of this
large 𝑁 limit are responsible for this emergent phenomenon?

The conceptual tension raised by Questions 1 and 2 is illustrated on Figure 1.1.
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Semiclassical physics
on bulk spacetime

Boundary quantum theory with
𝑁 degrees of freedom

Large 𝑁 limit

Null States

Figure 1.1: The conceptual tension of holography. The top arrow describes Question
1: how can the Hilbert space of a semiclassical field theory be modified so that so
many states become null in the nonperturbative quantum gravity regime that it
becomes the Hilbert space of a boundary theory? The bottom arrow describes
Question 2: how can semiclassical physics on a higher-dimensional spacetime
background emerge from a lower-dimensional quantum theory when its number of
degrees of freedom is taken to infinity?

The work undertaken in this thesis aims at approaching these two questions from the
perspective of a mathematician. As it is often the case in mathematical physics, it
will be necessary to invoke very different parts of mathematics to make progress. In
particular, Question 1 is about structure. In order to answer it, we must understand
the precise patterns of equivalences that lead to a drastic dimensional reduction of
the Hilbert space of effective field theory. In mathematics, algebra is the science
of structure. Therefore, in order to make progress on Question 1, we will need to
make use of mathematical fields pertaining to the world of algebra - Hopf algebras
will for example play an important role in the chapter of this thesis which is mainly
dedicated to this question. On the other hand, Question 2 is about the emergent
behavior that appears in a very intricate limit: the large 𝑁 limit of a quantum many-
body system. In mathematics, analysis is the science of limits. Therefore, in order
to study Question 2, we will need to use fields from analysis. In particular, the
theory of von Neumann algebras, which is a noncommutative analog of measure
theory, as well as harmonic analysis, will be prominently featured in this thesis.

Before moving on to describing the different chapters of this thesis in more detail,
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the following subsections introduce some of the main themes studied in this thesis,
and in particular how they fit into the larger goal of answering Questions 1 and 2.

Von Neumann algebras in holography
The first recurring mathematical subject in this thesis is the theory of von Neumann
algebras, which can be seen as a quantum analog of measure theory. The analogy
goes as follows. in measure theory, the basic object of study is the some measurable
space 𝑋 , equipped with some measure 𝜇 and some 𝜎-algebraA of measurable sets.
Then the usual observables one considers are the bounded, measurable functions
𝑓 ∈ 𝐿∞(𝑋), whose expectation values are given by

⟨ 𝑓 ⟩𝜇 :=
∫
𝑋

𝑓 𝑑𝜇. (1.2)

Constructing a quantum analog of classical measure theory is not completely
straightforward. In particular, in quantum mechanics the algebra of observables be-
comes noncommutative, and therefore has no chance of being expressible as 𝐿∞(𝑋)
for some measurable space 𝑋 , as this algebra is commutative for the pointwise prod-
uct of functions. The theory of von Neumann algebras axiomatizes properties of
noncommutative algebras that give them enough features in common with 𝐿∞(𝑋)
that a quantum analog of measure theory can be developed in these algebras. A
possible definition is:

Definition 1.0.1. A von Neumann algebra 𝑀 acting on a Hilbert space H is an
algebra of bounded operators on H which is stable under Hermitian conjugation,
contains the identity, and is closed for the weak operator topology.

The lesson to draw from this analogy with measure theory, in the context of holog-
raphy that we are interested in, is that von Neumann algebras are a field of analysis
that becomes relevant when one needs to deal with questions about quantum sys-
tems whose classical analog involves measure theory. In particular, we saw above
that Question 2 requires the understanding of a very subtle limit: the one where
the number of degrees of freedom of a quantum dynamical system goes to infinity.
This question obviously requires a resort to analysis, and is about the properties of
a dynamical system: the holographic quantum theory. Since the theory of classical
dynamical systems makes extensive use of measure theory, it is therefore legitimate
to expect that the correct mathematical language to explore this question is that of
von Neumann algebras.
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We will see that many subtle properties of the large 𝑁 limit of a holographic system
can be related to the change of type of von Neumann algebra that describes this
system. For example, as first discussed in [294, 295], at high temperature the type
of the von Neumann algebra of operators describing N = 4 SYM theory on a
compact space goes from I to III1. This has deep consequences for the emergence
of a black hole struture in the bulk.

The chapters of this thesis where von Neumann algebras are featured attempt to
shed light on the answer to Question 2, mainly by understanding the mathematical
properties of the large 𝑁 limit. In particular:

• Chapters 2 and 9 are concerned with studying the error-correcting structure
underlying the emergence of spacetime, which was long conjectured by physi-
cists in toy models, by using the language of von Neumann algebras.

• Chapter 3 takes the analogy between von Neumann algebras and measure
theory outlined in this introduction one step further, in order to draw a pre-
cise parallel between various notions of emergent spacetime and the ergodic
properties of the large 𝑁 limit.

• Chapter 4 uses the theory of von Neumann algebras to define a general notion
of emergent causal structure in string theory. The basic idea is to use some
algebraic constructions as well as results from harmonic analysis to understand
the inclusion structure of time band algebras in the holographic dual.

• Chapter 5 explicitly constructs von Neumann algebras for matrix models
whose large 𝑁 limit share some, but not all, of the properties required to
obtain an emergent spacetime.

• Finally, Chapter 8 studies the continuum limit of holographic tensor networks,
and shows that the local algebras obtained are type II rather than III, which
precisely distinguishes the limit of these networks form a bona fide quantum
field theory. No notion of large 𝑁 limit is present there, and this chapter
illustrates that von Neumann algebras are also relevant to understand the
short-scale behavior of quantum systems.

Hyperbolic geometry, from tensor networks to conformal field theory
Another mathematical theme in this thesis is that of hyperbolic geometry. This theme
inevitably shows up in holography, as the AdS/CFT correspondence, which has so
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far been our main theoretical laboratory to understand the holographic principle,
involves a spacetime with negative curvature.

• Chapter 6 uses some insight from conformal field theory, whose structure
is instrumental to the AdS/CFT correspondence, to provide new bounds on
spectral gaps of various hyperbolic surfaces with spin. The reason why
techniques from CFT, and more precisely from the conformal bootstrap, are
relevant is because the harmonic analysis of the group 𝑆𝑂 (2, 𝑑) is involved
both in the conformal bootstrap and in the study of hyperbolic surfaces.

• Chapter 7 constructs holographic error-correcting codes on exotic hyperbolic
geometries known as hyperbolic buildings. These discrete objects satisfy
many properties that are similar to those of tilings of the hyperbolic plane,
but are allowed to be more general – in particular their boundary at infinity is
allowed to have a non-integer dimension. These structures allow to shed light
on the answer to question 2 by studying the emergence of spacetime from
an exotic hologram which lives on a fractal, and to relate some features of
holography, like the Ryu–Takayanagi formula, to the Hausdorff dimension of
this fractal.

Implications of holography for spatially closed spacetimes
One last strand of ideas which permeates the later chapters of this thesis concerns
how one may be able to apply the lessons of holography to a universe without a
boundary at spatial infinity. Indeed in this case, the implications seem radical:
since the holographic principle states that the dimension of the Hilbert space of a
subregion scales like the area of its boundary, it seems that the only Hilbert space
which can describe a universe without boundary is a Hilbert space of dimension
one! Of course this is a strange puzzle, and it can be understood as a much stronger
version of the conceptual tension of Figure 1.1: while we were asking about the
emergence of a spacetime with more degrees of freedom from a quantum system with
fewer degrees of freedom, we now need to ask for all of spacetime to emerge from
seemingly zero degrees of freedom! While the full resolution of this puzzle, which
will probably involve explicitly taking into account the presence of an observer, is
beyond the scope of this thesis, Chapters 10 and 11 sharpen it in the following way.

• Chapter 10 gives a sketch, in a very simple toy model, of how string theory
may be able to collapse a naively large Hilbert space of states for a closed uni-
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verse into a one-dimensional Hilbert space of states, through an analogy with
perturbative renormalization. In the gravitational path integral, it appears that
the analog of the counterterms that cancel divergences in perturbative QFT be-
come nonlocal stringy contributions which drastically collapse the dimension
of the semiclassical Hilbert space. The underlying mathematical structure is
that of a combinatorial Hopf algebra, and can be seen as a realization of a
structure of null states similar to the one relevant to Question 1.

• Chapter 11 gives an argument that closed spacetimes cannot be reconstructed
within the context of the AdS/CFT correspondence, therefore suggesting that
a new paradigm which goes beyond AdS/CFT (and likely explicitly takes
into account the presence of gravitating observers), is necessary to describe
physics in a closed universe.

Contents of the thesis
Each chapter of this thesis corresponds to a paper written during my time at as a
Caltech student, and can be understood as attempts to make progress on Questions
1 and 2, or both at the same time.

Chapter 2 is a single-authored chapter from 2023, published in Communications in
Mathematical Physics. It derives an area/entropy formula from the error-correcting
properties of the large 𝑁 limit of holographic theories using the language of von
Neumann algebras, and interprets an ambiguity between area and bulk entropy
in the entropy formula in terms of the renormalization of Newton’s constant of
gravitation. It can be understood as making progress on Question 2, as it explains
the emergence of a geometric quantity in the bulk (the area) in terms of the large 𝑁
limit. The technical assumptions of the paper also include the presence of the null
states relevant to Question 1.

Chapter 3 is a single-authored paper from 2023, published in Physical Review D.
It puts forward a close parallel between the emergence of a holographic spacetime
in the large 𝑁 limit and the ergodic hierarchy of classical dynamical systems. It
provides a conceptual framework to think about Question 2.

Chapter 4 is a recent paper in collaboration with Hong Liu, submitted for publi-
cation. In this paper, by making use of the language of von Neumann algebras,
we provide a definition of an emergent holographic causal structure from a general
quantum many-body system which satisfies large 𝑁 factorization. This includes,
for example N = 4 SYM theory at all values of the ’t Hooft coupling 𝜆. What this
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definition does in the light of Question 2 is that it allows to make sense of the causal
structure of an emergent spacetime even when it is not fully local. For example, at
finite 𝜆, N = 4 SYM has been thought to give rise to an emergent “stringy geom-
etry," but it has been difficult to precisely define what this geometry is. Our work
ascribes a well-defined causal structure to this geometry.

Chapter 5 is a paper from 2024 in collaboration with Leonardo Santilli, published in
Advances in Theoretical and Mathematical Physics, where we completely explicitly
construct the large 𝑁 von Neumann algebras of a large class of matrix quantum
mechanical theories. These algebras have type III1, but do not carry any emergent
causal structure. They are placed at an interesting location in the ergodic hierarchy
presented in Chapter 2.

Chapter 6 is a paper from 2023 in collaboration with Sridip Pal, David Simmons-
Duffin and Yixin Xu, published in the Journal of the Association for Mathematical
Research. This paper makes an analogy between the conformal bootstrap, which is
instrumental to understanding the CFT side of AdS/CFT, and the hyperbolic geom-
etry of surfaces, to derive new bounds on their spectral gap. It can be understood as
an application of the structures that constrain the nonperturbative description of the
bulk theory in Question 1 to some problems in pure mathematics.

Chapter 7 is a paper from 2021 in collaboration with Matilde Marcolli and Sarthak
Parikh, published in the Journal of High Energy Physics. It constructs a general
mathematical theory of the geometries which can support tensor network toy models
of quantum gravity. The most well-known tensor networks simulating holographic
dualities are tilings of the hyperbolic plane, but in this paper we construct more
general geometries which can support holographic tensor networks which cannot
be embedded in the plane, and whose boundary is the fractal. We find that the
entanglement structure of the networks and its gravity interpretation are directly
related to the Hausdorff dimension of the boundary theory. This paper informs
Question 2 in that it provides emergent holographic geometries for exotic theories
on a space of non-integer dimension.

Chapter 8 is a paper from 2025 in collaboration with Wissam Chemissany, Alexan-
der Jahn, Daniel Murphy, and Leo Shaposhnik. It investigates the type of the locals
von Neumann algebras of various kinds of tensor networks when their size is taken
to infinity. We find that the type of the algebras at the boundary of the most standard
holographic codes is II∞, which is inconsistent with the type III1 local structure of
quantum field theory, making them incomplete models to give a full answer to study
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Questions 1 and 2.

Chapter 9 is a paper from 2021 in collaboration with Monica Jinwoo Kang, pub-
lished in Journal of Physics A: Mathematical and Theoretical. It derives a proof that
the entanglement wedge can be reconstructed for approximate holographic codes in
infinite dimensions. It explains some of the mechanisms underlying the emergence
of semiclassical physics in the large 𝑁 limit, therefore providing a contribution to
the resolution of Question 2.

Chapter 10 is a recent paper in collaboration with Matilde Marcolli and Jacob
McNamara, submitted for publication. It makes an analogy between the gravitational
path integral and perturbative renormalization in quantum field theory to find a Hopf
algebra structure which gives a systematic way of UV-completing a gravitational
path integral into a “stringy" theory compatible with the holographic principle. This
Hopf algebra can be seen as organizing the null states relevant to Question 1.

Chapter 11 is a recent paper in collaboration with Netta Engelhardt, submitted
for publication, which shows that the physics of a large class of closed cosmologies
cannot emerge from the large𝑁 limit of a conformal field theory without violating the
most basics principles of the AdS/CFT correspondence. There is a clear relevance
to Questions 1 and 2, in that the failure of the emergence of a closed universe in
AdS/CFT can be traced to the fact described above that the UV-complete description
of this closed universe is a one-dimensional Hilbert space. Therefore the outcome
is that the null states of Question 1 become too numerous to use the conventional
tools of AdS/CFT, and describing the emergence of a closed cosmology from this
fundamental description, which is what Question 2 is concernd with, seems to
require a new formulation of the holographic principle.
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C h a p t e r 2

LARGE 𝑁 VON NEUMANN ALGEBRAS AND THE
RENORMALIZATION OF NEWTON’S CONSTANT

This chapter is based on the work [192].

2.1 Introduction
The quantum extremal surface (QES) formula [401, 242, 296, 162, 225, 143] is
one of the most important results in holography. It is a powerful probe of the
emergent geometry of spacetime, as it relates the area of a surface in the bulk to the
entanglement entropy of the boundary dual region. More precisely, if 𝜌 is the state
of the boundary theory, it holds that

𝑆(𝜌) = 𝐴(Σ)
4𝐺𝑁

+ 𝑆𝑏𝑢𝑙𝑘 (𝜌), (2.1)

where 𝑆(𝜌) is the UV-complete entanglement entropy of the boundary state, 𝐴(Σ) is
the area of the quantum extremal surface associated to 𝜌,𝐺𝑁 is Newton’s gravitation
constant, and 𝑆𝑏𝑢𝑙𝑘 (𝜌) is the entanglement entropy of 𝜌 in the bulk effective theory.

As crucial as this result is, the precise definitions of the terms in the QES formula
remain elusive, and some paradoxes seem to arise. Namely:

• 𝑆𝑏𝑢𝑙𝑘 (𝜌) is divergent in the bulk effective theory. Indeed, it is a general prop-
erty of quantum field theory that the entanglement entropy of bulk subregions
diverges, and one needs to regulate it with a UV cutoff. A more abstract
formulation of this fact is that the von Neumann algebra of the bulk effec-
tive theory has type 𝐼 𝐼 𝐼1, or 𝐼 𝐼∞ if one includes perturbative corrections and
quantizes the ADM mass [294, 293, 457].1

• The smooth spacetime description of the bulk is only valid in the𝐺𝑁 = 0 limit.
In this limit, the area term also blows up and it is not clear what approximations
need to be made in the bulk to consider 𝐺𝑁 small but nonzero.

1Technically, the same kind of issue arises for the boundary entropy associated to a nontrivial
subregion. However, when considering two boundary theories in the thermofield double state, or in
a large class of more general entangled states, this kind of divergence does not occur, and this is less
of a serious problem in one wants to get to a conceptual understanding of holography. As a result, I
will mostly consider boundary regions that are dual to one side of a black hole, and ignore this extra
complication here.
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• The bulk effective theory seems to perform a calculation at 𝐺𝑁 = 0, or at
least perturbatively in𝐺𝑁 . However, on the boundary, the calculation of 𝑆(𝜌)
corresponds to a calculation in a conformal field theory at large but finite 𝑁 ,
so at small but finite 𝐺𝑁 , as 𝐺𝑁 ∼ 1

𝑁2 from the holographic dictionary. At
𝑁 = ∞, the left hand side actually also blows up, and the QES formula loses
its meaning.

In order to solve these puzzles, it seems that the crucial issue is to understand how
to deal with the finiteness of Newton’s constant on the boundary, as well as with
the UV cutoff of the bulk fields. An interesting proposal in the case of the exterior
region of a black hole, originally due to Susskind–Uglum [430], and developed in
an important body of work (see for example [267, 136, 252, 289, 181]), is that these
two issues are actually related. More precisely, the proposal is the following:

Conjecture 2.1.1 (Susskind–Uglum, [430]). The renormalization of the bulk en-
tropy due to the bulk UV cutoff exactly cancels out the renormalization of Newton’s
constant in the area term.

In other words, the choice of UV cutoff for the fields in the bulk is not independent
of the running of Newton’s constant, and the renormalization of one term of the QES
formula in the bulk exactly cancels out the renormalization of the other term, making
the right hand side of the QES formula only dependent on the value of Newton’s
constant (i.e., 𝑁) on the boundary, and not on the choice of UV cutoff in the bulk
EFT. For 𝑁 large enough, the effective description is then approximately valid below
the bulk cutoff, making it possible to obtain a well-defined, and cutoff-independent,
QES formula. The way that Susskind–Uglum originally argued for this proposal is
by resorting to string theory arguments and to the Euclidean path integral. These
arguments are not fully rigorous and only valid in specific cases.

A more modern way to understand the QES formula, which reduces to the formula
for black hole entropy considered by Susskind–Uglum in the case of a two-sided
black hole, is through the lens of quantum error correction in AdS/CFT [10, 225]. In
this context, the bulk term of the QES formula is reinterpreted as the entanglement
entropy of a state in a code subspace of the full UV-complete Hilbert space. The
area term then captures the entropy of the state which is not associated with encoded
observables, but instead, with other degrees of freedom in the CFT that do not
appear in the bulk fields. The interpretation is that it is the entanglement of these
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UV degrees of freedom that conspires to create a geometry in the bulk and make
spacetime emerge.

The early breakthroughs in holographic quantum error correction [372, 225, 130,
231] were mainly achieved in the context of toy models, that approximate the
full-fledged holographic situation in terms of qubits and finite-dimensional Hilbert
spaces. While these models already retain a lot of the important properties of
holography, their discreteness makes it difficult to tackle the continuous nature of
spacetime in the bulk EFT, the notion of large 𝑁 limit, and the infinite-dimensional
nature of the boundary Hilbert space. However, recent progress [270, 196, 164, 194,
168] has allowed to move past the finite-dimensional case by recasting holographic
quantum error correction in the language of infinite-dimensional von Neumann
algebras. In this more general language, it is now possible to precisely define the
aforementioned notions. The goal of this chapter is to show that this new language
is enough to construct a framework in which the Susskind–Uglum conjecture can
be formulated and proven.

The first task will be to understand how to obtain a formulation of holographic
quantum error correction in the context of the large 𝑁 limit of AdS/CFT, in a way
in which it is possible to derive an entropy formula. A first step towards this goal
has been taken by Faulkner and Li [168], and in particular, it has been shown that
it is possible to derive the JLMS formula and the correspondence between bulk and
boundary modular flows [254] in the large 𝑁 limit.

The new input of this work will be to note that while the notions of convergence
introduced in [168] allow to derive results like the JLMS formula in the large 𝑁
limit, they are too loose to define a notion of code subspace that is robust enough
to satisfy a formula that involves von Neumann entropies in the bulk, like the Ryu–
Takayanagi formula. For this latter purpose, the large 𝑁 bulk von Neumann algebra
instead needs to be regulated in order to isolate observables that contribute to the
bulk entropy in the large 𝑁 limit. More precisely, I will construct a family of
type 𝐼 von Neumann algebras which retain a finite amount of large 𝑁 bulk entropy.
These algebras will be nested inside one another and related through conditional
expectations, which will implement a renormalization group flow of code subspaces.

Once this new setup based on conditional expectations is introduced at the level of
the bulk theory at large 𝑁 , the next step will be to introduce the bulk-to-boundary
maps, which, along the same lines as [8], relate the semiclassical bulk theory to
finite 𝑁 boundary theories. Under physically motivated assumptions, I will show
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that this newly introduced family of codes satisfies an asymptotic entropy formula
when 𝑁 → ∞ on the boundary. An important ingredient will be the definition
of the area term for an approximate quantum error-correcting code proposed in
[8], in terms of the entropy of the Choi–Jamiolkowski state associated to the code.
Thanks to the regulation of the code subspace, each individual term of the formula
will be well-defined. The conditional expectations in the bulk will concretely
implement the renormalization group flow for bulk entropy, and the invariance of
the entropy formula under this flow will yield a rigorous proof of the Susskind–
Uglum conjecture.

For clarity, the main findings of the chapter are summarized below:

• This work provides a construction of a setup in which holographic entropy
formulae as well as a renormalization scheme for the code subspace can be
rigorously defined in the large 𝑁 limit of holography, and the Susskind–Uglum
conjecture can be proven.

• It clarifies some subtleties about the type of the bulk von Neumann algebras
at large 𝑁 . While the full, unregulated bulk algebra has type 𝐼 𝐼∞ or 𝐼 𝐼 𝐼1, the
pertinent algebras contributing to the bulk entropy in QES-like formulas have
type 𝐼 as long as this entropy is 𝑂 (1) in the large 𝑁 limit.

• The role of conditional expectations in holography will be clarified and fur-
ther extended. In particular, it will be shown that they can implement the
renormalization group flow for bulk degrees of freedom. This role is some-
what related to the original proposal of [164] that the boundary-to-bulk map
should be modelled by a conditional expectation. Here, I will argue that while
this original picture breaks down at finite 𝑁 because reconstruction becomes
approximate, it can still be made sense of at large 𝑁 , and that the possible code
subalgebras are related to each other inside the large 𝑁 algebra by conditional
expectations that implement a renormalization group flow.

• This work also puts forward an intimate relationship between the Susskind–
Uglum conjecture and the ER=EPR paradigm. In particular, the fact that the
entropy formula is invariant under RG flow can be interpreted as the fact that
depending on the choice of code subalgebra, some boundary entanglement
can be seen either as entanglement in the code subspace or as a contribution
to the area term without changing any of the physics. This shows a com-
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plete equivalence between entanglement and geometric contributions in this
context.

The exposition is organized as follows: in Section 2.2, the Hilbert space of large 𝑁
effective field theory in the bulk is introduced. After summarizing recent construc-
tions related to large 𝑁 von Neumann algebras [294, 293, 457] and asymptotically
isometric codes [168], it is argued that the large 𝑁 von Neumann algebras need to
be further regulated if one wants to be able to make sense of holographic entropy
formulae. In Section 2.3, a precise notion of code subspace renormalization is
constructed. UV-regulated bulk algebras and code subspaces at large 𝑁 are defined.
The renormalization group flow between the algebras is implemented by conditional
expectations. In Section 2.4, this RG flow of code subspaces is mapped into the
boundary theory in the case of finite-dimensional regulated algebras. It is shown
that under physically relevant assumptions for the bulk-to-boundary map, an entropy
formula is true for this family of codes, regardless of the choice of renormalization
scale in the bulk. This provides an explicit proof of the Susskind–Uglum conjecture,
and aligns with the ER=EPR proposal. In Section 2.5, the results of the previous
section are generalized to various more general cases, that amount to relaxing some
conditions on the dimensions of the various algebras considered. Section 2.6 com-
ments on various potential extensions of this work and further directions. Finally,
Appendix 2.7 gives infers the type 𝐼 of a von Neumann factor from a boundedness
condition on the entropy of some finite-dimensional subalgebras.

Technical warning: Unless specified otherwise, all von Neumann algebras intro-
duced here are hyperfinite and all Hilbert spaces are separable.

2.2 The Hilbert space of effective field theory
Much of the work on the error-correcting structure of holography has been focusing
on the subtle way in which the low-energy effective field theory in the bulk is
encoded in the unitary boundary CFT. The increasingly precise interpretation based
on quantum codes has proven to be very fruitful to understand delicate issues
about the semiclassical limit of gravity, such as the consistency between black hole
evaporation and unitarity [379, 7]. This section will review how bulk effective
theory emerges in the large 𝑁 limit of AdS/CFT, and the error-correcting properties
of the mappings of the 𝑁 = ∞ theory (or perturbation theory around it) into large
but finite 𝑁 theories. It will largely be based on the recent developments [294, 293,
457, 168].
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Large 𝑁 algebras and the crossed product
It has recently been argued by Leutheusser and Liu [294, 293] (see also [295] for
a more general version of this proposal) that in order to study the emergence of
spacetime in the large 𝑁 limit of AdS/CFT, one needs to consider the von Neumann
algebra generated by the single-trace operators of the gauge theory. More precisely,
at large 𝑁 , these operators behave like generalized free fields (i.e., their correlation
functions factorize but they do not satisfy any equation of motion). One can then
consider the GNS representation of the 𝐶∗-algebra of fields in a thermal state (i.e.,
the thermofield double Hilbert space), and define the corresponding large 𝑁 algebra
as the bicommutant of the GNS representation.

The main conjecture of [294, 293] is that the large 𝑁 von Neumann algebra changes
type across the Hawking–Page transition: if 𝑇𝐻𝑃 is the Hawking–Page temperature,
for 𝑇 < 𝑇𝐻𝑃, it has type 𝐼, and for 𝑇 > 𝑇𝐻𝑃, it has type 𝐼 𝐼 𝐼1. The change of type of
the large 𝑁 algebra is associated to the presence of a continuous Källén–Lehmann
density, which, in turn, can be related to the emergence of a black hole horizon, the
connectedness of the thermofield double state, and the lack of factorizability of the
large 𝑁 Hilbert space.

It is possible to take this idea one step further. The issue with type 𝐼 𝐼 𝐼1 algebras
is that they do not admit any faithful normal semifinite trace, so it is not possible
to define a good notion of entropy on them. It is therefore difficult to express the
usual holographic statements that involve entanglement entropy in the bulk. What
was shown in [457] is that adding perturbative 1

𝑁
corrections and quantizing an

extra mode corresponding to the ADM mass of spacetime amounts to deforming
the bulk algebra from a type 𝐼 𝐼 𝐼1 factor to a type 𝐼 𝐼∞ factor through a standard
construction known as the crossed product with the modular automorphism group.
Such a construction has proven to be very important in pure mathematics, in the
context of the classification of type 𝐼 𝐼 𝐼 factors [120].

In a type 𝐼 𝐼∞ factor, it is possible to define a one-parameter family of traces, but
there is no canonical choice of normalization. Instead, the traces are related to one
another by a scaling automorphism. The consequence is that in these algebras, von
Neumann entropy is only defined up to an overall constant [457]. The physical
meaning of this is that entropy in a type 𝐼 𝐼∞ factor is a renormalized version of
entropy, where an infinite amount of entanglement has been thrown away. How
much entanglement needs to be thrown away is arbitrary and cannot be fixed simply
by looking at the type 𝐼 𝐼∞ factor. This is in sharp contrast with the situation in a
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type 𝐼 algebra, which corresponds to the UV-complete description of the algebra
on one side of the thermofield double (in AdS/CFT, at finite 𝑁 any CFT algebra
has type 𝐼). In a type 𝐼 algebra, the trace is uniquely defined and there is only one
way to define entropy, because no infinity needs to be subtracted. What this tells us
is that entropy in the crossed product is a coarse-grained quantity that can only be
calculated up to an overall constant, whereas entropy in the UV-finite theory is of
course uniquely defined.

In [99], it was shown that entropy in the large 𝑁 crossed product algebra can be
identified with the generalized entropy of a quantum extremal surface, up to an
overall constant. The argument requires a formula [450] relating the generalized
entropy at late times to the one on a given time slice. This approach gives a
justification for the quantum extremal surface formula directly at the level of the
bulk theory in the large 𝑁 limit (including an extra mode corresponding to the ADM
mass). The focus of this chapter is different, as it will derive the holographic entropy
formula from the perspective of quantum error correction in the large 𝑁 limit of
holographic codes.

Embedding into UV-complete theories and quantum error correction
The perspective here will be to derive a family of Ryu–Takayanagi formulae in the
large 𝑁 limit of holography within the framework of quantum error-correction. A
quantum code is essentially the data of a code Hilbert space H𝑐𝑜𝑑𝑒, a boundary
Hilbert spaceH𝑝ℎ𝑦𝑠, and a bulk-to-boundary map 𝑉 : H𝑐𝑜𝑑𝑒 −→ H𝑝ℎ𝑦𝑠.

Recently, Faulkner and Li [168] observed that in order to study the large 𝑁 limit of
holography, one does not need to consider a single code, but rather, a sequence of
codes. More precisely, ifH𝑐𝑜𝑑𝑒 is the bulk Hilbert space at large 𝑁 (i.e., the Hilbert
space on which the large 𝑁 algebra is represented), then there exist an infinity of
boundary Hilbert spaces H𝑁 and bulk to boundary maps 𝑉𝑁 : one for each choice
of 𝑁 . These maps are required to be “asymptotically isometric": they are required
to approach the properties of an isometry, so that an exact quantum error-correcting
structure is recovered as 𝑁 goes to infinity. In particular, Faulkner and Li impose
the following conditions:

𝑉
†
𝑁
𝑉𝑁 − 𝐼𝑑 −→

𝑁→∞, 𝑤.𝑜.𝑡.
0, (2.2)

and for all 𝐴 ∈ 𝑀𝑐𝑜𝑑𝑒, where 𝑀𝑐𝑜𝑑𝑒 is the algebra to reconstruct,

𝛾𝑁 (𝐴)𝑉𝑁 −𝑉𝑁𝐴 −→
𝑁→∞, 𝑠.𝑜.𝑡.

0, (2.3)
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where 𝛾𝑁 is the reconstruction map and the subscripts w.o.t. and s.o.t. indicate that
the limits are respectively taken for the weak and strong operator topologies.

The weak and strong operator topologies does not coincide with the topology induced
by the operator norm in infinite dimensions. While this might seem like a technical
subtlety, this choice of topology actually carries a lot of physical meaning. The
two convergences described above mean that if one fixes two states |𝜓⟩ and |𝜑⟩
in H𝑐𝑜𝑑𝑒, then the matrix elements ⟨𝜓 |𝑉†

𝑁
𝑉𝑁 |𝜑⟩ converge towards ⟨𝜓 |𝜑⟩, and the

vectors (𝛾𝑁 (𝐴)𝑉𝑁 − 𝑉𝑁𝐴) |𝜓⟩ converge to zero. However, this convergence is not
required to be uniform in the choice of |𝜓⟩ and |𝜑⟩, or 𝐴.

This means that for each value of 𝑁 , no matter how large, there may (and do!) exist
states for which reconstruction fails dramatically. This makes sense physically: if
𝑁 is very large but fixed, the effective field theory picture will break down for some
operators that scale parametrically with 𝑁 , and the reconstruction map should not
be trusted anymore for such high energy excitations.

This is a first hint that if one wants to relate the entropy of a large but finite𝑁 boundary
theory to that of the bulk effective theory at large 𝑁 like the Ryu–Takayanagi formula
does, the full bulk von Neumann algebra may not be considered as a code subalgebra.
Rather, this algebra needs to be regulated, and only a subset of observables for which
one can require stronger reconstruction properties, must be singled out. In other
words, the large 𝑁 algebra must be renormalized. This introduces an arbitrary
choice of regularization. The next step is therefore to introduce a general method
to regulate the code subspace of a large 𝑁 code, and to introduce a renormalization
group flow between different choices of regulations.

2.3 Code subspace renormalization
It is now clear that no matter how large 𝑁 is chosen in the UV-complete boundary
theory, the mapping of the bulk effective theory into the boundary theory will
dramatically fail for some operators. It is then useful to define UV-regulated algebras
of observables in the bulk, that can be mapped into the boundary theory with good
precision for large enough, but fixed, values of 𝑁 . In this section, I introduce a new
notion of code subspace renormalization, that allows to define such algebras and
compare their respective cutoff scales.
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What should a consistent renormalization procedure be?
The first goal is to study which possible von Neumann subalgebras of the large 𝑁
algebra of observables can be chosen to match the bulk entropy term of the Ryu–
Takayanagi formula. At least as a first step, I will assume the standard scaling for
bulk entropy

𝑆𝑏𝑢𝑙𝑘 = 𝑂 (1), (2.4)

in the large 𝑁 limit. It turns out that the fact that a normal state on a von Neumann
algebra carries a finite amount of entropy strongly constrains its possible type.
Actually, it will be shown in Appendix 2.7 that a very mild finiteness of entropy
condition implies that the associated von Neumann algebra must have type 𝐼. This
can already be noticed from an intuitive point of view: in the type 𝐼 𝐼 and type
𝐼 𝐼 𝐼 cases, divergences of entropies imply that von Neumann entropy is either not
possible to define at all, or that the only possible equivalent throws away an infinite
amount of entanglement. Hence, it is natural, at least in the case in which one
requires the bulk entropy term to be uniformly bounded in 𝑁 , to associate it to a type
𝐼 von Neumann subalgebra of the large 𝑁 observables. Note that this is a somewhat
more abstract argument that shows that it is not right to consider the whole large 𝑁
algebra of observables in order to show something like a Ryu–Takayanagi formula.2

The crucial point of this chapter is that such a choice of algebra, and Hilbert subspace
on which it acts, is highly nonunique. There is a large amount of arbitrariness in
how one chooses the subalgebra of the effective bulk theory that will be considered
as the “code subalgebra" of the holographic code.

However, one cannot choose the reconstructible subalgebra and Hilbert subspace
completely arbitrarily. In order to show Ryu–Takayanagi formulae, it is indispens-
able that a good notion of complementary recovery remains. This implies that the
Hilbert subspaces of the large 𝑁 Hilbert space, and the von Neumann subalgebras,
must be chosen so that the commutant structures are compatible with the one of the
full large 𝑁 Hilbert space, and with one another.

The goal of the rest of this section will be to introduce a setup that defines such
possible choices of type 𝐼 subalgebras and relates them with each other in a way that
preserves complementarity. The idea is to construct a renormalization scheme by
considering a nested family of type 𝐼 factors that can be projected onto one another by

2If the bulk entropy were to diverge at large 𝑁 , one would still expect to be able to single out a
family of type 𝐼 subalgebras that carry an 𝑁-dependent amount of entropy.
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“integrating out some entanglement." These successive coarse-graining operations
can be interpreted as implementing a renormalization group flow. In an operator-
algebraic setting, projections of norm one are called conditional expectations. More
precisely:3

Definition 2.3.1. Let 𝑁 ⊂ 𝑀 be an inclusion of von Neumann algebras. A con-
ditional expectation 𝐸 : 𝑀 → 𝑁 is a linear map such that 𝐸 (𝐼𝑑) = 𝐼𝑑, and for
𝑛1, 𝑛2 ∈ 𝑁 and 𝑚 ∈ 𝑀 ,

𝐸 (𝑛1𝑚𝑛2) = 𝑛1𝐸 (𝑚)𝑛2. (2.5)

Hence, the right structure to look at is a family of conditional expectations E𝜆,
that project the observables of the large 𝑁 theory 𝑀 onto some type 𝐼 subalgebra
𝑀𝜆, for 𝜆 with values in a partially ordered set. The order in this set should be
understood as a fine graining direction, so I will assume that for every 𝜇 ≤ 𝜆,
there exists a faithful normal conditional expectation 𝐸𝜆𝜇 : 𝑀𝜆 → 𝑀𝜇. This
family of conditional expectations implements the renormalization group flow of
the holographic code. It then turns out that conditional expectations react very well
with commutant structures. This is essentially the content of Takesaki’s theorem
[435]. The idea will be to construct Hilbert spaces of states that are invariant under
the successive conditional expectations, and Takesaki’s theorem will guarantee that
these subspaces are compatible with the commutant structure.

Interestingly, the structure of conditional expectation has already been introduced
as a model of exact holographic codes in the past [164]. In retrospect, this is not
surprising, and reflects the fact that exact entanglement wedge reconstruction is
recovered (under this reinterpretation in terms of renormalization) in the large 𝑁
theory. Note that the link between conditional expectations and renormalization
group flow has also already been mentioned in [182].

Formal setup
More formally, the ideas presented above can be captured by the following definition
of a code subspace renormalization scheme:4

Definition 2.3.2. Let𝑀 be a von Neumann factor. A code subspace renormalization
scheme for 𝑀 is a datum (Λ, (𝑀𝜆)𝜆∈Λ, (E𝜆)𝜆∈Λ, (𝐸𝜆𝜇)𝜆,𝜇∈Λ, 𝜆≥𝜇, 𝜔), where:

3In some simple cases which will turn out to be relevant here, conditional expectations can be
expressed in a more explicit manner, see for example the discussion below Proposition 2.3.5.

4Assumptions relative to faithfulness made throughout the chapter are here essentially for con-
venience. The von Neumann algebras considered here are also all taken to be factors for simplicity.
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• Λ is a partially ordered set,

• The 𝑀𝜆 are type 𝐼 subfactors of 𝑀 ,

• The E𝜆 are faithful normal conditional expectations from 𝑀 onto 𝑀𝜆,

• The 𝐸𝜆𝜇 are faithful normal conditional expectations from 𝑀𝜆 onto 𝑀𝜇.

• For 𝜆 ≥ 𝜇 ≥ 𝜈, the following compatibility relations hold:

E𝜇 = 𝐸𝜆𝜇 ◦ E𝜆, (2.6)

𝐸𝜆𝜈 = 𝐸𝜇𝜈 ◦ 𝐸𝜆𝜇 . (2.7)

• 𝜔 is a faithful normal state on 𝑀 that is invariant under all the E𝜆.

The next step is to introduce a Hilbert space of states on which 𝑀 acts. A natural
choice, if one wants to think of a situation in which there are two boundary CFT’s
with a black hole in the center, is to think of the GNS representation of 𝑀 in the
state 𝜔, which carries a nontrivial commutant structure for 𝑀:

Definition 2.3.3. Let (Λ, (𝑀𝜆)𝜆∈Λ, (E𝜆)𝜆∈Λ, (𝐸𝜆𝜇)𝜆,𝜇∈Λ, 𝜆≥𝜇, 𝜔) be a code subspace
renormalization scheme. The unregulated code subspace associated to this scheme
is the GNS Hilbert spaceH of 𝑀 in the state 𝜔.

Note that as an alternative to constructing the Hilbert space directly from the GNS
procedure, one could also have defined the a code subspace renormalization scheme
directly from the action of a von Neumann algebra on a Hilbert space that contains
a cyclic separating vector whose restriction to the von Neumann algebra is invariant
under the conditional expectations. By uniqueness of the GNS representation, such
a construction is isomorphic to the one described above. The next step is to introduce
Hilbert subspaces associated to the regulated subalgebras 𝑀𝜆.5

Definition 2.3.4. Let (Λ, (𝑀𝜆)𝜆∈Λ, (E𝜆)𝜆∈Λ, (𝐸𝜆𝜇)𝜆,𝜇∈Λ, 𝜆≥𝜇, 𝜔) be a code subspace
renormalization scheme. The regulated code subspaces H𝜆 ⊂ H associated to the
von Neumann subalgebra 𝑀𝜆 are the Hilbert spaces spanned by the 𝑀𝜆 |Ω⟩, where
|Ω⟩ is the GNS vector associated to 𝜔 inH .

5Related Hilbert subspaces were introduced in [168] in the context of the proof of an asymptotic
information-disturbance tradeoff, although compatibility with a conditional expectation structure was
not assumed. For these subspaces, reconstruction assumptions involving finer than weak or strong
operator topologies can be assumed, in the same spirit as what will be done in the next section of
this chapter.
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The following proposition makes it explicit why the structure just introduced is
well-adapted to describe a renormalization scheme for entropy. In particular, it
identifies Hilbert spaces associated to states that are invariant under the conditional
expectations.

Proposition 2.3.5. Let (Λ, (𝑀𝜆)𝜆∈Λ, (E𝜆)𝜆∈Λ, (𝐸𝜆𝜇)𝜆,𝜇∈Λ, 𝜆≥𝜇, 𝜔) be a code sub-
space renormalization scheme, and let 𝜆 ≥ 𝜇. There exist decompositions of the
form

𝑀 = 𝑀𝜆 ⊗ 𝑀𝑐
𝜆 , (2.8)

and

𝑀 = 𝑀𝜇 ⊗ 𝑀𝜆𝜇 ⊗ 𝑀𝑐
𝜆 , (2.9)

where 𝑀𝜇 and 𝑀𝜆𝜇 are type 𝐼 factors. Moreover, the Hilbert spacesH𝜆 andH𝜇 are
isomorphic to the GNS Hilbert spaces of 𝑀𝜆 and 𝑀𝜇 in the state 𝜔, and there exist
Hilbert spacesH0

𝜆
,H0

𝜇 ,H0𝑐
𝜆

,H0𝑐
𝜇 such that

H = H0
𝜆 ⊗ H

0𝑐
𝜆 , (2.10)

and

H = H0
𝜇 ⊗ H0𝑐

𝜇 (2.11)

and states |𝜒𝜇⟩ ∈ H0𝑐
𝜇 , |𝜒𝜆⟩ ∈ H0𝑐

𝜆
such that

H𝜆 = H0
𝜆 ⊗ |𝜒𝜆⟩ , (2.12)

and

H𝜇 = H0
𝜇 ⊗ |𝜒𝜇⟩ . (2.13)

Moreover there exists a further decomposition

H0𝑐
𝜇 = H0

𝜆𝜇 ⊗ H
0𝑐
𝜆 , (2.14)

and a state |𝜒𝜆𝜇⟩ ∈ H0
𝜆𝜇

under which

|𝜒𝜇⟩ = |𝜒𝜆𝜇⟩ ⊗ |𝜒𝜆⟩ . (2.15)



22

Further, note that under the decomposition described by the above proposition, the
conditional expectations take a very simple form

E𝜆 = 𝐼𝑑B(H𝜆) ⊗ 𝜒𝜆, 𝐸𝜆𝜇 = 𝐼𝑑B(H𝜇) ⊗ 𝜒𝜆𝜇, (2.16)

where the linear functionals 𝜒𝜆, 𝜒𝜆𝜇 are the expectation value functionals induced
by the states |𝜒𝜆⟩, |𝜒𝜆𝜇⟩.

Proof. The first two factorizations follow from the fact that the𝑀𝜆 are type 𝐼 factors,
for a proof see paragraph 9.15 of [424]. With these factorizations in hand, Equation
4.10 of [164] guarantees that 𝜔, which is an invariant state under both E𝜆 and 𝐸𝜆𝜇
must have the form 𝜔𝜇 ⊗ 𝜔𝜆𝜇 ⊗ 𝜔𝑐𝜆. Hence its GNS vector has the form

|Ω⟩ = |𝜒𝜇⟩ ⊗ |𝜒𝜆𝜇⟩ ⊗ |𝜒𝑐𝜆⟩ . (2.17)

The result straightforwardly follows. □

The above factorizations make it possible to calculate von Neumann entropy very
explicitly for invariant states under the conditional expectations.

In the most explicit case in which it is possible to define a good additive notion of
von Neumann entropy on 𝑀 , for any state of the form |𝜓𝜆⟩ ⊗ |𝜒𝑐𝜆⟩, we have

𝑆( |𝜓𝜆⟩ ⊗ |𝜒𝜆⟩ , 𝑀) = 𝑆( |𝜒𝜆⟩ , 𝑀𝑐
𝜆) + 𝑆( |𝜓𝜆⟩ , 𝑀𝜆). (2.18)

The entanglement entropy therefore splits into two pieces: a UV piece, 𝑆( |𝜒𝜆⟩ , 𝑀𝑐
𝜆
),

which is generically divergent, and a (potentially) finite piece corresponding to the
regulated type 𝐼 algebra 𝑀𝜆.

Moreover, under the renormalization group flow, we have the further decomposition

𝑆( |𝜓𝜇⟩ ⊗ |𝜒𝜆𝜇⟩ ⊗ |𝜒𝜆⟩) = 𝑆( |𝜒𝜆⟩ , 𝑀𝑐
𝜆) + 𝑆( |𝜒𝜆𝜇⟩ , 𝑀𝜆𝜇) + 𝑆( |𝜓𝜇⟩ , 𝑀𝜇). (2.19)

The interpretation of the new term in the middle, 𝑆( |𝜓𝜆𝜇⟩ , 𝑀𝜆𝜇), is that it integrates
out some of the entropy associated to observables that are in 𝑀𝜆 but not in 𝑀𝜇, and
throws it into the UV piece of the entanglement of the state. This extra term will be
reinterpreted as a renormalization term for Newton’s constant in the next section.
Note, however, that importantly, even in the case in which it is no longer possible to
define the divergent term 𝑆( |𝜒𝜆⟩ , 𝑀𝑐

𝜆
) (or to give it a state counting interpretation),

it is still possible to talk about the entropy of the type 𝐼 subalgebras involved, so that
code subspace renormalization yields

𝑆( |𝜓𝜆⟩ , 𝑀𝜆) = 𝑆( |𝜒𝜆𝜇⟩ , 𝑀𝜆𝜇) + 𝑆( |𝜓𝜇⟩ , 𝑀𝜇). (2.20)
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Crucially, it is only this latter equality that will be necessary to prove an entropy
formula.

The other nice feature of the structure of code subspace renormalization scheme is
that it respects the commutant structures. More precisely, by Takesaki’s theorem,
the modular structures of 𝑀 , 𝑀𝜆 and 𝑀𝜇 are compatible. This implies:

Proposition 2.3.6. Let (Λ, (𝑀𝜆)𝜆∈Λ, (E𝜆)𝜆∈Λ, (𝐸𝜆𝜇)𝜆,𝜇∈Λ, 𝜆≥𝜇, 𝜔) be a code sub-
space renormalization scheme. For 𝜆, 𝜇 ∈ Λ, inH𝜆 andH𝜇,

𝑀′𝜆 = 𝐽𝑀𝜆𝐽, 𝑀′𝜇 = 𝐽𝑀𝜇𝐽, (2.21)

where 𝐽 is the modular conjugation of |Ω⟩ with respect to 𝑀 .

Proof. This is a direct consequence of Takesaki’s theorem, given that states in H𝜆
andH𝜇 are invariant under the corresponding conditional expectations. □

This fact guarantees the compatibility of the commutant structures along the renor-
malization group flow, and a nice nesting of all subspaces and subalgebras at hand.
In particular, then, there also exist faithful normal conditional expectations E′

𝜆
, E′𝜇

and 𝐸′
𝜆𝜇

, defined on 𝑀′ and 𝑀′
𝜆
, respectively, by

E′𝜆 (𝑋) := 𝐽E𝜆 (𝐽𝑋𝐽)𝐽, (2.22)

E′𝜇 (𝑋) := 𝐽E𝜇 (𝐽𝑋𝐽)𝐽, (2.23)

𝐸′𝜆𝜇 (𝑋) := 𝐽𝐸𝜆𝜇 (𝐽𝑋𝐽)𝐽. (2.24)

Note that the compatibility condition

E′𝜇 = 𝐸′𝜆𝜇 ◦ E′𝜆 (2.25)

is satisfied.

Figure 2.1 summarizes the structure of code subspace renormalization scheme, and
how the compatibility between conditional expectations and commutant structures
is realized, thanks to a commutative diagram.

It follows from the previous analysis that the structure of code subspace renormal-
ization scheme proposed here, and based upon nested type 𝐼 factors and Hilbert
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𝑀 𝑀′ H

𝑀𝜆 𝑀′
𝜆

H𝜆

𝑀𝜇 𝑀′𝜇 H𝜇

′

E𝜆 E′
𝜆

′

𝐸𝜆𝜇 𝐸 ′
𝜆𝜇

′

E𝜇 E′𝜇

Figure 2.1: A commutative diagram summarizing the structure of code subspace
renormalization. Here the full bulk von Neumann algebras 𝑀 and 𝑀′, which
are commutants of each other, are mapped to the subalgebras 𝑀𝜆 and 𝑀𝜇 and
their commutants, corresponding to different cutoff scales, through the conditional
expectations E𝜆, E𝜇 and E′

𝜆
, E′𝜇. The prime on the horizontal arrows denotes

the commutant structure implemented by modular conjugation. Given that the
states in H𝜆 and H𝜇 are invariant under the conditional expectations, Takesaki’s
theorem guarantees that the commutant structure is respected, and that the diagram
commutes.

spaces related to each other by conditional expectations, is a good choice in the
sense that it allows to completely decouple the contribution to the bulk entropy
of different subalgebras of the large 𝑁 theory, and most importantly, to preserve
complementarity. However, it does not provide a constructive way of defining these
algebras – the most naive attempt of considering low energy products of single trace
operators fails because such spaces are not closed under multiplication.

Instead, one should think of the type 𝐼 factors introduced here as something closer to
the type 𝐼 factors arising for subregions in theories that satisfy the split property. It
has been argued in the past (see for example [149]) that such algebras can be thought
of as UV-regulators for a quantum field theory. It is quite tempting to observe that
restricting observables to a type 𝐼 factor can be thought of as imposing a “brick
wall" cutoff in the bulk QFT in the spirit of [430], and it would be very interesting
to understand this better.

2.4 A proof of the Susskind–Uglum conjecture
Now that a renormalization scheme for the bulk effective theory has been defined, one
can ask how the UV-regulated algebras map into the boundary theory. In this section,
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Figure 2.2: The code in the case of two entangled CFT’s on a compact space. The
large 𝑁 algebras 𝑀𝐿 and 𝑀𝑅 need to be regulated in order for the map to the finite
𝑁 algebras B(H 𝐿

𝑁
) and B(H 𝑅

𝑁
) to allow the derivation of an entropy formula.

I show that for suitable values of 𝑁 and of the UV cutoff, the reconstruction map is
good enough that the code satisfies a Ryu–Takayanagi formula. The value of the UV
cutoff corresponds to a renormalization scale, and its choice is entirely arbitrary as
long as it remains within a suitable range. I show that the Ryu–Takayanagi formula
is invariant under the renormalization group flow. This provides an explicit proof
of the Susskind–Uglum conjecture.

The bulk to boundary map
The next step in this work is to map the effective theory at large 𝑁 in the bulk to
a finite 𝑁 theory on the boundary. In order to do this, one needs to introduce one
more object: the bulk-to-boundary map. This motivates the following definition of
a renormalizable large 𝑁 quantum error-correcting code, see Figure 2.2.6

Definition 2.4.1. A renormalizable large-𝑁 holographic quantum error correcting
code is defined by the data of a sequence of Hilbert spaces (H𝑁 )𝑁∈N, and a sequence
of contractive maps𝑉𝑁 : H −→ H𝑁 ⊗H𝑁 , whereH corresponds to the unregulated
Hilbert space of a code subspace renormalization scheme
(Λ, (𝑀𝜆)𝜆∈Λ, (E𝜆)𝜆∈Λ, (𝐸𝜆𝜇)𝜆,𝜇∈Λ, 𝜆≥𝜇, 𝜔).

In order to explicitly differentiate between the two sides of the code, the algebras 𝑀𝜆

will often be denoted 𝑀𝐿
𝜆

, and their commutants 𝑀𝑅
𝜆

, and similarly for the Hilbert
spacesH 𝐿

𝑁
andH 𝑅

𝑁
on the boundary.

6Once again note that here I will be mainly focusing on the case of two entangled CFT’s,
rather than the case of subregions of one CFT. This is because the latter case would require an
extra regulation procedure due to the infiniteness of the Ryu–Takayanagi surface, but this regulation
procedure would not teach us anything meaningful about the physics described here.
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It was argued above that for each finite value of 𝑁 , the holographic code drastically
fails to map some of the bulk states to the boundary with good precision. Hence,
one needs to renormalize the code subspace. The idea of this section will be to
use the framework of code subspace renormalization put forward above to define
UV-regulated subalgebras for which strong enough reconstruction properties can be
imposed. A Ryu–Takayanagi formula will then be proven. Moreover, under the
renormalization group flow, I will explicitly show that the corrections to the area
term and the bulk entropy term of the formula exactly compensate each other.

A technical remark is that in order to be able to control the von Neumann entropy
of states on the boundary, it will be necessary to impose strong reconstruction as-
sumptions on the states in regularized code subspaces (typically, a nonperturbatively
small error in the 1/𝑁 expansion, or at least, small enough that the polynomially
divergent factor in Fannes’ inequality does not spoil the conclusions). In order to be
able to impose such an assumption, one needs to include backreaction effects in the
code subspace that go beyond the strict large-𝑁 limit of Leutheusser–Liu, and may
introduce some 𝑁-dependence not only at the level of the boundary theory, but also
of the code subspace and its renormalization scheme. Different ideas exist to con-
struct code subalgebras allowing for perturbation theory in 1/𝑁 [457, 168]. While
it is beyond the scope of this chapter to attempt such a construction, I emphasize that
the results introduced here are still valid if the code subspace and its renormalization
scheme depend perturbatively on 𝑁 (and it would be interesting to find a systematic
way to interpolate between schemes with different values of 𝑁). For convenience,
the rest of this section (and of this chapter) will not make it explicit in its notations
that the code subspace renormalization scheme and its Hilbert spaces themselves
might depend on 𝑁 .

A Ryu–Takayanagi formula
This section will cover the simplest case in which the chosen bulk algebra 𝑀𝜆, as
well as the boundary algebra, are taken to be finite-dimensional. In this case, the
Ryu–Takayanagi formula can be derived by adapting the proof of a result of [8],
which introduces a framework in which it is possible to talk about area terms for
approximate and non-isometric codes. It generalizes to the approximate case the
notion of area term for quantum codes introduced in [225].

Let us first briefly recall the setup of [8], and especially, how one defines a good
notion of area term from the structure of the code in this context. The idea is to
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consider a map

𝑉 : K𝐿 ⊗ K𝑅 −→ H𝐿 ⊗ H𝑅, (2.26)

where K𝐿,𝑅 are left and right bulk Hilbert spaces (in the context considered here
where the bulk regions are associated to different sides of the black hole) and are
finite-dimensional, and introduce a reference Hilbert space

K𝑟𝑒 𝑓 := K𝑟𝑒 𝑓
𝐿
⊗ K𝑟𝑒 𝑓

𝑅
, (2.27)

where K𝑟𝑒 𝑓
𝐿

and K𝑟𝑒 𝑓
𝑅

have the same dimensions as K𝐿 and K𝑅 and are identified
with dual Hilbert spaces. One can then introduce the canonical maximally entangled
state

|𝑀𝐴𝑋⟩ ∈ K𝐿 ⊗ K𝑅 ⊗ K𝑟𝑒 𝑓 , (2.28)

which maximally entanglesK𝐿,𝑅 andK𝑟𝑒 𝑓
𝐿,𝑅

together in a basis-independent manner.
The Choi–Jamiolkowski state is then

|𝐶𝐽⟩ := (𝑉 ⊗ 𝐼𝑑) |𝑀𝐴𝑋⟩ ∈ H𝐿 ⊗ H𝑅 ⊗ K𝑟𝑒 𝑓 . (2.29)

The definition of area term for a subregion proposed in [8] (for example, associated
toH𝐿) is then given by:

Definition 2.4.2. In the code defined by the map 𝑉 , the area term of the region 𝐿 is
defined by

𝐴(K𝐿) := 𝑆( |𝐶𝐽⟩ ,B(H𝐿) ⊗ B(K𝑟𝑒 𝑓𝐿
)). (2.30)

Note that this definition is independent of the choice of state inK𝐿 ⊗K𝑅.7 However,
it does depend on the choice of code subspace K𝐿 ⊗ K𝑅. This point was not made
explicit in [8] as in their context, only one code subspace is considered. Here
however, in the novel framework of code subspace renormalization, the choice of
code subspace and code subalgebras becomes highly nonunique, and it will turn out
to be very important that the value of the area term does depend on the choice of
code subspace, even though it does not depend on the choice of a particular state
inside it.

The proof of the Ryu–Takayanagi formula in [8] heavily relies on the Fannes in-
equality, which turns out to become vacuous in the case of an infinite-dimensional

7In the context of this chapter,K𝐿 andK𝑅 are the regulated Hilbert spaces, and this independence
reflects the fact that the regulated algebras are assumed to not have a center.
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boundary Hilbert space. In conformal field theory, even at finite 𝑁 , the Hilbert
space is infinite-dimensional, and the boundary algebra is a type 𝐼∞ factor. However
it is usual to assume, as a first approximation, that the logarithm of the dimension
of H𝑁 grows polynomially in 𝑁 in order to obtain a proof of the Ryu–Takayanagi
formula. This is usually justified due to the fact that the boundary entropy grows
polynomially in 𝑁 . In Section 2.5, I will introduce an alternative to this assump-
tion, thanks to the use of an alternative to Fannes’ inequality due to Winter [454].
However I will simply make a finite-dimensional assumption in this section, as the
proof will be less technical and easier to follow for the reader who is content with
such a simplification.

Before stating and proving the theorem, let us introduce the statement of Fannes’
inequality for convenience (see for example [8]).

Proposition 2.4.3. Let 𝜌 and 𝜎 be subnormalized density matrices on a Hilbert
spaceH of finite dimension 𝑑. Suppose that for 0 < 𝜀 < 𝑒−1, ∥𝜌 − 𝜎∥1 ≤ 𝜀. Then,

|𝑆(𝜌) − 𝑆(𝜎) | ≤ 𝜀 log
(
𝑑

𝜀

)
. (2.31)

The theorem then reads:

Theorem 2.4.4. Let (Λ, (𝑀𝜆)𝜆∈Λ, (E𝜆)𝜆∈Λ, (𝐸𝜆𝜇)𝜆,𝜇∈Λ, 𝜆≥𝜇, 𝜔,𝑉𝑁 ) be a large 𝑁

quantum error-correcting code. Suppose that for some choice of 𝜆, 𝑀𝜆 is finite-
dimensional of dimension 𝑑2

𝜆
constant in 𝑁 . Suppose that there exists a polynomial

𝑃 in 𝑁 such that the dimension 𝑑𝑁 ofH𝑁 satisfies

log 𝑑𝑁 ≤ 𝑃(𝑁). (2.32)

Let |Ψ⟩ ∈ H𝜆 (normalized). Suppose that for all unitary operators 𝑈𝐿
𝜆
, �̂�𝐿

𝜆
and

𝑈𝑅
𝜆
, �̂�𝑅

𝜆
in 𝑀𝐿

𝜆
and 𝑀𝑅

𝜆
, there exist unitary operators �̃�𝐿

𝜆
and �̃�𝑅

𝜆
(chosen in a

measurable way) in B(H 𝐿
𝑁
) and B(H 𝑅

𝑁
) such that8

∥𝑉𝑁𝑈𝑅
𝜆𝑈

𝐿
𝜆 |Ψ⟩ − �̃�𝑅

𝜆 �̃�
𝐿
𝜆𝑉𝑁�̂�

𝑅
𝜆 �̂�

𝐿
𝜆 |Ψ⟩ ∥ ≤ 𝛿𝑁 , (2.33)

where 𝛿𝑁 decays faster than any polynomial in 𝑁 . Then,

|𝑆( |Ψ⟩ , 𝑀𝐿
𝜆 ) + 𝐴(H𝐿,𝜆) − 𝑆(𝑉𝑁�̂�𝑅

𝜆 �̂�
𝐿
𝜆 |Ψ⟩ ,B(H 𝐿

𝑁 )) | −→
𝑁→∞

0. (2.34)

8The �̂�’s are introduced essentially to match with the notations of [8]. The result shown here
implies that the choice of �̂�’s only changes boundary entropy by an amount that goes to 0 as 𝑁 →∞.
Also note that 𝛿𝑁 only needs to be smaller than all polynomials appearing in the proof.
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Proof. This theorem is essentially a translation of Theorem 5.5 of [8] in the present
setup, and this proof will closely follow the strategy used there.

The Hilbert space H𝜆 (once identified with the H0
𝜆

of the previous section) can
be written as H 𝐿

𝜆
⊗ H 𝑅

𝜆
, where the decomposition is consistent with B(H𝜆) =

B(H 𝐿
𝜆
) ⊗ B(H 𝑅

𝜆
) = 𝑀𝐿

𝜆
⊗ 𝑀𝑅

𝜆
. Construct an isometry

𝑊 𝐿
𝜆 :H𝜆 −→ 𝐿2(𝑈 (H 𝐿

𝜆 )) ⊗ H𝜆 (2.35)

|Ψ⟩ ↦−→
∫

𝑑𝑈𝐿 |𝑈𝐿⟩𝑈𝐿 ⊗ 𝑈𝐿 |Ψ⟩ . (2.36)

One can use the Peter–Weyl theorem (see [8], Lemma 4.4) to show that

𝑊 𝐿
𝜆 |Ψ⟩ = |Ψ⟩𝑎𝑅 ⊗ |𝑀𝐴𝑋⟩𝐿𝑟 , (2.37)

where 𝑎, 𝑟 are reference systems of dimensions equal to that of H 𝑅
𝜆

and H 𝐿
𝜆

and
correspond to the fundamental and antifundamental representations of the unitary
group. One defines the isometry𝑊𝑅

𝜆
in an exactly similar way. Then (see Equation

4.32 of [8]),

𝑆(𝑉𝑁𝑊 𝐿
𝜆𝑊

𝑅
𝜆 |Ψ⟩ , B(H 𝐿

𝑁 ⊗ H 𝑓 ⊗ H ∗𝑓 )) = 𝐴𝐿 (H
𝐿
𝜆 ) + 𝑆( |Ψ⟩ , B(H 𝐿

𝜆 )), (2.38)

where H 𝑓 and H ∗
𝑓

are the fundamental and antifundamental Hilbert spaces. Now,
introduce the operators𝑊 𝐿,𝑅

𝑁
, defined by

𝑊
𝐿,𝑅

𝑁
:=

∫
𝑑𝑈

𝐿,𝑅

𝜆
|𝑈𝐿,𝑅

𝜆
⟩ ⊗ �̃�𝐿,𝑅

𝜆
. (2.39)

Substituting inequality (2.33), one then obtains

∥𝑊 𝐿
𝑁𝑊

𝑅
𝑁𝑉𝑁�̂�

𝐿
𝜆 �̂�

𝑅
𝜆 |Ψ⟩ −𝑉𝑁𝑊 𝐿

𝜆𝑊
𝑅
𝜆 |Ψ⟩ ∥ ≤ 𝛿𝑁 . (2.40)

From this inequality, one can deduce a bound on the difference of entropies thanks
to Fannes’ inequality.9 First, recall that by the Peter–Weyl theorem,

𝐿2(𝑈 (H 𝐿
𝜆 )) =

⊕
𝜇

H𝜇 ⊗ H ∗𝜇 , (2.41)

where 𝜇 runs over the finite-dimensional irreducible representations of 𝑈 (H 𝐿
𝜆
).

What is shown in Lemma 4.4 of [8] is that the maps 𝑊 𝐿
𝜆
, 𝑊𝑅

𝜆
only have range on

9The bound derived in [8] misses some terms, and a few extra steps need to be taken care of in
order to get a consistent bound. I am grateful to Chris Akers and Geoff Penington for clarifying this
point.
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the component of the direct sum corresponding to the fundamental representation
of 𝑈 (H 𝐿

𝜆
). Similarly, the image ofH 𝐿

𝑁
by𝑊 𝐿

𝑁
sits insideH 𝐿

𝑁
⊗ 𝐿2(𝑈 (H 𝐿

𝜆
)). This

fact makes it natural to introduce the Hilbert space

H̃ 𝐿
𝑁 := H 𝑓 ⊗ H ∗𝑓 ⊗ H

𝐿
𝑁 +𝑊 𝐿

𝑁H 𝐿
𝑁 , (2.42)

where the subscript 𝑓 denotes the fundamental representation (the sum need not be
direct), and similarly the Hilbert space

H̃ 𝑅
𝑁 := H 𝑓 ⊗ H ∗𝑓 ⊗ H

𝑅
𝑁 +𝑊𝑅

𝑁H 𝑅
𝑁 . (2.43)

Note that

dim(H̃ 𝐿
𝑁 ) ≤ 𝑑𝑁 (𝑑2

𝜆 + 1). (2.44)

Moreover, states of both forms𝑊 𝐿
𝑁
𝑊𝑅
𝑁
𝑉𝑁�̂�

𝐿
𝜆
�̂�𝑅
𝜆
|Ψ⟩ and 𝑉𝑁𝑊 𝐿

𝜆
𝑊𝑅
𝜆
|Ψ⟩ are in H̃ 𝐿

𝑁
⊗

H̃ 𝑅
𝑁

. As the𝑊’s are isometries, one can also deduce:

𝑆(𝑉𝑁�̂�𝐿
𝜆 �̂�

𝑅
𝜆 |Ψ⟩ ,B(H 𝐿

𝑁 )) = 𝑆(𝑊 𝐿
𝑁𝑊

𝑅
𝑁𝑉𝑁�̂�

𝐿
𝜆 �̂�

𝑅
𝜆 |Ψ⟩ ,B(𝑊 𝐿

𝑁H 𝐿
𝑁 )) (2.45)

= 𝑆(𝑊 𝐿
𝑁𝑊

𝑅
𝑁𝑉𝑁�̂�

𝐿
𝜆 �̂�

𝑅
𝜆 |Ψ⟩ ,B(H̃ 𝐿

𝑁 )). (2.46)

On the other hand,

𝑆(𝑉𝑁𝑊 𝐿
𝜆𝑊

𝑅
𝜆 |Ψ⟩ ,B(H 𝐿

𝑁 ⊗ H 𝑓 ⊗ H ∗𝑓 )) = 𝑆(𝑉𝑁𝑊
𝐿
𝜆𝑊

𝑅
𝜆 |Ψ⟩ ,B(H̃ 𝐿

𝑁 )). (2.47)

Hence one can apply Fannes’ inequality the density matrices associated to these two
subnormalized states on B(H̃ 𝐿

𝑁
), whose 1-norm distance is smaller than 2𝛿𝑁 by

Lemma C.1 of [8]. This implies (for 𝑁 large enough):

|𝑆( |Ψ⟩ , 𝑀𝐿
𝜆 ) + 𝐴(H𝐿,𝜆) − 𝑆(𝑉𝑁�̂�𝑅

𝜆 �̂�
𝐿
𝜆 |Ψ⟩ ,B(H 𝐿

𝑁 )) | ≤ 2𝛿𝑁 log

(
𝑑𝑁 (𝑑2

𝜆
+ 1)

2𝛿𝑁

)
.

(2.48)

As log 𝑑𝑁 grows at most polynomially, 𝑑𝜆 is fixed here (see Section 2.5 for a setup
in which this assumption is relaxed), and 𝛿𝑁 decays faster than polynomially, this
expression goes to zero at large 𝑁 . □

Note that although the dimension of the code subspace was kept fixed here, it can also
be made to grow with 𝑁 as long as it grows slowly enough that issues related to state-
dependence and entanglement wedge jumps do not arise. In this more complicated
case, a setup more akin to the product unitary reconstruction assumption proposed
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in [8] must be used instead, as the entanglement wedge could then change depending
on the action of certain unitaries in the code subspace. These cases will be further
discussed in the next section.

Another remark can be made at this stage: it has been pointed out [457, 100] that
in the case where the bulk algebra is a type 𝐼 𝐼∞ factor, an entanglement entropy
associated to the entire, unregulated bulk algebra can be defined but only up to an
overall constant, which captures the fact that an infinite amount of entanglement
needs to be thrown out in order to obtain a finite answer, and that the part that
remains is arbitrary. Here, it is tempting to choose this constant in an 𝑁-dependent
fashion so that the entropy of the bulk state in the unregulated algebra matches
𝑆(𝑉𝑁�̂�𝑅

𝜆
�̂�𝐿
𝜆
|Ψ⟩ ,B(H 𝐿

𝑁
)). Then, the resulting statement can be seen as another

instance of the fact that bulk generalized entropy equals boundary entropy [100].

Invariance under renormalization group flow
Now that it has been shown that the Ryu–Takayanagi formula is true for any choice
of finite-dimensional 𝑀𝜆, the previous result, coupled to the framework of code
subspace renormalization introduced above, allows to very explicitly demonstrate
the validity of the Susskind–Uglum conjecture, and to isolate the counterterm that
gets reabsorbed into the area term under the renormalization group flow.

Theorem 2.4.5. Consider two choices of code subspace regularization 𝑀𝜆 and 𝑀𝜇,
such that 𝜆 ≥ 𝜇, and |Ψ⟩ ∈ H𝜇 (normalized). Then, under the assumptions of
Theorem 2.4.4 on 𝑀𝜆, for all unitaries �̂�𝐿

𝜇 , �̂�
𝑅
𝜇 ,

|𝑆( |Ψ⟩ , 𝑀𝜇) + 𝐴(H𝐿,𝜇) − 𝑆(𝑉𝑁�̂�𝐿
𝜇 �̂�

𝑅
𝜇 |Ψ⟩ ,B(H𝑁 )) | −→

𝑁→∞
0, (2.49)

and

|𝑆( |Ψ⟩ , 𝑀𝜇) + 𝑆( |Ψ⟩ , 𝑀𝜆𝜇) + 𝐴(H𝐿,𝜆) − 𝑆(𝑉𝑁�̂�𝐿
𝜇 �̂�

𝑅
𝜇 |Ψ⟩ ,B(H𝑁 )) | −→

𝑁→∞
0.

(2.50)

In particular,

|𝐴(H𝐿,𝜇) − (𝑆( |Ψ⟩ , 𝑀𝜆𝜇) + 𝐴(H𝐿,𝜆)) | −→
𝑁→∞

0. (2.51)

Proof. The proof is straightforward. From the previous result,

|𝑆( |Ψ⟩ , 𝑀𝜇) + 𝐴(H𝐿,𝜇) − 𝑆(𝑉𝑁�̂�𝐿
𝜇 �̂�

𝑅
𝜇 |Ψ⟩ ,B(H𝑁 )) | −→

𝑁→∞
0, (2.52)
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and

|𝑆( |Ψ⟩ , 𝑀𝜆) + 𝐴(H𝐿,𝜆) − 𝑆(𝑉𝑁�̂�𝐿
𝜇 �̂�

𝑅
𝜇 |Ψ⟩ ,B(H𝑁 )) | −→

𝑁→∞
0. (2.53)

The properties of code subspace renormalization (in particular, Equation (2.20))
imply the identity

𝑆( |Ψ⟩ , 𝑀𝜆) = 𝑆( |Ψ⟩ , 𝑀𝜇) + 𝑆( |Ψ⟩ , 𝑀𝜆𝜇), (2.54)

which immediately yields the result. □

The physical meaning of (2.54) is that the sum of the area term associated to 𝑀𝜆

and of the entanglement entropy contained in 𝑀𝜆𝜇 gives the area term associated
to 𝑀𝜇. In other words, under code subspace renormalization, what was previously
accounted for in the bulk entropy term now becomes part of the area term associated
to 𝑀𝜆. This is exactly the Susskind–Uglum prediction! Therefore, Theorem 2.4.5
can be seen as a rigorous statement of the Susskind–Uglum conjecture for the above
choice of code subspace renormalization scheme.

Susskind–Uglum as ER=EPR
It is now established that Theorem 2.4.5 provides a rigorous proof of the Susskind–
Uglum conjecture. I will now argue that, on top of providing a proof, it also implies
a reinterpretation of this conjecture in terms of the ER=EPR proposal.

The crucial point is that Theorem 2.4.4 is valid for all values of 𝜆. This implies that
when 𝜆 increases, the amount of information contained in the area term decreases,
whereas the amount of information contained in 𝑀𝜆 increases. This is possible
because the Choi–Jamiolkowski state depends on the choice of code subspace. In
particular, the Choi–Jamiolkowski state associated to a larger code subspace will be
associated to a smaller area term than the one associated to a smaller code subspace,
and will not correspond to a state on the smaller code subspace.

What does this mean physically? Recall that in this chapter’s approach (just like
in that of [8]), the entanglement structure of the Choi–Jamiolkowski state defines
the area term (including its quotienting by 4𝐺𝑁 ). The arbitrariness in the choice
of 𝜆 means that some amount of entropy contained in the area term of the Ryu–
Takayanagi formula for a given choice of cutoff 𝜆 can equivalently be seen as being
part of the code subspace entropy for another choice of 𝜆. This means that some
of the entanglement of the boundary state can equivalently be interpreted as bulk
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entanglement, or as a contribution to the area term. This concretely equates an
entanglement quantity to a contribution to a geometric term.

This type of equivalence between entanglement and geometry falls into the general
paradigm of ER=EPR [314]. Here, it is the choice of renormalization scale, which
is completely arbitrary, that underlies this equivalence. As a result, the theorem
proven in this chapter can be seen as extra evidence for the fact that entanglement
and geometry are two sides of the same coin in quantum gravity.

2.5 Generalizations
The proof of the previous section already carries all the essential physical ideas of
this chapter, and already demonstrates how all the salient features of the Susskind–
Uglum conjecture can be derived from the structure of large 𝑁 quantum error
correcting codes thanks to the notion of code subspace renormalization. However,
some technical simplifications were made that it would be nice to lift. It turns
out that trying to do so involves interesting mathematics. The goal of this rather
technical section is to generalize theorems 2.4.4 and 2.4.5 to more involved setups.
I start by introducing an infinite-dimensional analog of Fannes’ inequality due to
Winter [454], for which the dimension of the Hilbert space gets replaced by an
energy condition on the states, and use it to lift the finite-dimensional assumption
on the boundary Hilbert space (which was motivated above by the finiteness of
black hole entropy at finite 𝑁 , but is still a simplification). Also, Theorem 2.4.4
assumes that one is picking a finite-dimensional renormalized code subspace, of
constant dimension that does not grow with 𝑁 . However, there are some contexts
in which one would like to be able to make the dimension of the renormalized code
subspace grow with 𝑁 . In this section, I also describe possible generalizations of the
result to these more complicated cases. These generalizations require interesting
assumptions about the way in which the bulk theory is regulated, and it is an
important problem to understand better how they can be implemented directly at the
level of the large 𝑁 von Neumann algebras, along the lines of [168].

Infinite-dimensional boundary at finite 𝑁
In the finite-dimensional context of [8], it was necessary to suppose that the logarithm
of the dimension ofH𝑁 was polynomial in 𝑁 in order to obtain a proof of the Ryu–
Takayanagi formula. This is because the proof requires an application of Fannes’
inequality for the boundary Hilbert space, which explicitly involves its dimension.
Resorting to dimension arguments is not fully valid for CFT Hilbert spaces, which
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are infinite-dimensional even for finite values of 𝑁 . However, the energy of a thermal
state of a CFT does not grow too fast in 𝑁 , and I will show that this fact can be
used as an alternative to the finite-dimensional argument of [8]. The key technical
tool will be the machinery introduced in [454], which states an analog of Fannes’
inequality that involves an energy bound on the states rather than a dimension bound
on the Hilbert space. More precisely, one can define:

Definition 2.5.1. Let B(H) be a type 𝐼 factor. Let 𝐻 be a self-adjoint operator on
H such that for all 𝛽 > 0, 𝑒−𝛽𝐻 is trace-class. For 𝐸 > 0, let

𝛾(𝐸) :=
𝑒−𝛽(𝐸)𝐻

Tr (𝑒−𝛽(𝐸)𝐻)
, (2.55)

where 𝛽(𝐸) is the solution of the equation

Tr
(
𝑒−𝛽𝐻 (𝐻 − 𝐸)

)
= 0. (2.56)

The inequality of [454], which I will refer to as Winter’s inequality, then stipulates:

Proposition 2.5.2 ([454]). Let B(H) be a type 𝐼 factor, let 𝐻 be a self-adjoint
operator on H such that for all 𝛽 > 0, 𝑒−𝛽𝐻 is trace-class. Let 𝐸 > 0, let 𝜌 and 𝜎
be two normal states on B(H) such that

Tr(𝜌𝐻) ≤ 𝐸, Tr(𝜎𝐻) ≤ 𝐸, (2.57)

where the normal states are identified with their density operators. Let 𝜀 > 0 and
suppose that

1
2
∥𝜌 − 𝜎∥1 ≤ 𝜀 ≤ 1. (2.58)

Then,

|𝑆(𝜌) − 𝑆(𝜎) | ≤ 2𝜀𝑆(𝛾(𝐸/𝜀)) + ℎ(𝜀), (2.59)

where

ℎ(𝜀) = −𝜀 log 𝜀 − (1 − 𝜀)log(1 − 𝜀). (2.60)

The idea here is to use Winter’s inequality to replace the assumption on the finite-
dimensional nature of the boundary Hilbert space, and to adapt the proof of [8].
One then obtains the following result:
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Theorem 2.5.3. Let (Λ, (𝑀𝜆)𝜆∈Λ, (E𝜆)𝜆∈Λ, (𝐸𝜆𝜇)𝜆,𝜇∈Λ, 𝜆≥𝜇, 𝜔,𝑉𝑁 ) be a large 𝑁

quantum error-correcting code. Suppose that for some choice of 𝜆, 𝑀𝜆 is finite-
dimensional of dimension 𝑑2

𝜆
constant in 𝑁 . Suppose that

∥𝑉†
𝑁
𝑉𝑁 |H𝜆 − 𝐼𝑑 |H𝜆 ∥ ≤ 𝜇𝑁 , (2.61)

where 𝜇𝑁 decays faster than any polynomial in 𝑁 . Let |Ψ⟩ ∈ H𝜆 (normalized).
Suppose that for every unitary operator 𝑈𝐿

𝜆
, �̂�𝐿

𝜆
and 𝑈𝑅

𝜆
, �̂�𝑅

𝜆
in 𝑀𝐿

𝜆
and 𝑀𝑅

𝜆
, there

exist unitary operators �̃�𝐿
𝜆

and �̃�𝑅
𝜆

(chosen in a measurable way) in B(H 𝐿
𝑁
) and

B(H 𝑅
𝑁
) such that

∥𝑉𝑁𝑈𝑅
𝜆𝑈

𝐿
𝜆 |Ψ⟩ − �̃�𝐿

𝜆 �̃�
𝑅
𝜆𝑉𝑁�̂�

𝑅
𝜆 �̂�

𝐿
𝜆 |Ψ⟩ ∥ ≤ 𝛿𝑁 , (2.62)

where 𝛿𝑁 decays faster than any polynomial in 𝑁 . Also suppose that there exists a
self-adjoint operator �̃�𝑁 on H̃ 𝐿

𝑁
:= H 𝑓 ⊗ H ∗𝑓 ⊗ H

𝐿
𝑁
+𝑊 𝐿

𝑁
H 𝐿
𝑁

(with𝑊 𝐿
𝑁

defined as
in (2.39)) such that 𝑒−𝛽�̃�𝑁 is trace class for all 𝛽 > 0, and for all polynomials 𝑄
and all sequences (𝜉𝑁 ) decaying faster than polynomially:

𝜉𝑁𝑆(𝛾(𝑄(𝑁)/𝜉𝑁 )) −→
𝑁→∞

0, (2.63)

and that there exists a polynomial 𝑃 such that for the unitaries and isometries
introduced before, the density matrices 𝜌 of𝑊 𝐿

𝑁
𝑊𝑅
𝑁
𝑉𝑁�̂�

𝑅
𝜆
�̂�𝐿
𝜆
|Ψ⟩ and𝑉𝑁𝑊𝑅

𝜆
𝑊 𝐿
𝜆
|Ψ⟩

restricted to B(H̃ 𝐿
𝑁
) satisfy

Tr(𝜌�̃�𝑁 ) ≤ 𝑃(𝑁), (2.64)

and that the entropies of these density matrices are polynomially bounded in 𝑁 .
Then, for all |Ψ⟩ ∈ H𝜆,

|𝑆( |Ψ⟩ , 𝑀𝐿
𝜆 ) + 𝐴(H𝐿,𝜆) − 𝑆(𝑉𝑁�̂�𝑅

𝜆 �̂�
𝐿
𝜆 |Ψ⟩ ,B(H 𝐿

𝑁 )) | −→
𝑁→∞

0. (2.65)

Before turning to the proof of this theorem, first note that the trace-class nature of
𝑒−𝛽�̃�𝑁 and condition (2.63) deserve a bit more justification as they may look a bit
abstract at first sight. However, it seems reasonable to assume them in the case of a
nonabelian gauge theory at high temperature and of a code with good reconstruction
properties. What should at least be true is that there exists an 𝐻𝑁 satisfying such
a condition on H 𝐿

𝑁
: the Hamiltonian of the gauge theory. A heuristic justification

goes as follows: the trace-class condition follows from the fact that the finite 𝑁
algebras all have type 𝐼, and the quantity introduced in (2.63) can be estimated by
dimensional analysis. Specifically, in the high temperature limit of a 𝑑-dimensional
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holographic CFT on a sphere with 𝑂 (𝑁2) degrees of freedom, the temperature of
the Gibbs state of energy 𝐸 scales (see for example [271]) like10

𝑇 ∼
(
𝐸

𝑁2

) 1
𝑑

, (2.66)

and the entropy scales like

𝑆 ∼ 𝐸
𝑇
∼ 𝑁 2

𝑑 𝐸1− 1
𝑑 . (2.67)

This means that

𝜉𝑁𝑆(𝛾(𝑄(𝑁)/𝜉𝑁 )) ∼ 𝑁
2
𝑑𝑄(𝑁)1− 1

𝑑 𝜉
1
𝑑

𝑁
. (2.68)

As 𝜉𝑁 decays faster than any polynomial, this gives a heuristic justification for
assumption (2.63). Now arguably H̃𝑁 is a bit larger than H𝑁 , so this condition on
H̃𝑁 can be seen as requiring an extra strength of the code. It would be interesting to
see if this assumption can be improved. However, if one did not need to introduce
an extra reference system of square integrable functions on the unitary group, this
argument would provide a full justification of why of Fannes’ inequality can be
replaced by Winter’s inequality in the infinite-dimensional case, in the case of a
high temperature CFT.

Another remark is that one now needs to introduce the extra assumption (2.61)
compared to the previous case. The reason is that it does not seem trivial that
Winter’s inequality is still valid for non-normalized states, so one needs the norm of
the different states introduced to be very close to 1. It would be interesting to find
out whether there exists an analog of Winter’s inequality for non-normalized states.

Let us now see how under such an assumption, the previous proof can be adapted.

Proof. The proof of 2.4.4 can be adapted identically until Fannes’ inequality comes
into play. In the latter part of the proof, one needs to replace Fannes’ inequality with
Winter’s inequality.

Now denote by 𝑉𝑁�̂�𝐿
𝜆
�̂�𝑅
𝜆
|Ψ⟩𝑛𝑜𝑟𝑚 the normalized state associated to 𝑉𝑁�̂�𝐿

𝜆
�̂�𝑅
𝜆
|Ψ⟩,

and by 𝑉𝑁𝑊 𝐿
𝜆
𝑊𝑅
𝜆
|Ψ⟩𝑛𝑜𝑟𝑚 the normalized state associated to 𝑉𝑁𝑊 𝐿

𝜆
𝑊𝑅
𝜆
|Ψ⟩. By

the triangle inequality and assumption (2.61), there exists 𝛿′
𝑁

decaying faster than
polynomially such that

∥𝑊 𝐿
𝑁𝑊

𝑅
𝑁𝑉𝑁�̂�

𝐿
𝜆 �̂�

𝑅
𝜆 |Ψ⟩

𝑛𝑜𝑟𝑚 −𝑉𝑁𝑊 𝐿
𝜆𝑊

𝑅
𝜆 |Ψ⟩

𝑛𝑜𝑟𝑚 ∥ ≤ 𝛿′𝑁 . (2.69)
10I am grateful to David Simmons-Duffin for suggesting a reasoning based on dimensional

analysis.
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It is straightforward that the normalized states also have polynomially bounded
energy (by say a polynomial 𝑃𝑛𝑜𝑟𝑚 (𝑁)). Therefore applying Winter’s inequality
(and Lemma C.1 of [8]) yields

|𝑆(𝑊 𝐿
𝑁𝑊

𝑅
𝑁𝑉𝑁�̂�

𝐿
𝜆 �̂�

𝑅
𝜆 |Ψ⟩

𝑛𝑜𝑟𝑚 ,B(H̃ 𝐿
𝑁 )) − 𝑆(𝑉𝑁𝑊 𝐿

𝜆𝑊
𝑅
𝜆 |Ψ⟩

𝑛𝑜𝑟𝑚 ,B(H̃ 𝐿
𝑁 )) |

≤ 2𝛿′𝑁𝑆(𝛾(𝑃𝑛𝑜𝑟𝑚 (𝑁)/𝛿′𝑁 )) + ℎ(𝛿′𝑁 ). (2.70)

Since the norm differences ∥𝑉𝑁�̂�𝐿
𝜆
�̂�𝑅
𝜆
|Ψ⟩𝑛𝑜𝑟𝑚−𝑉𝑁�̂�𝐿

𝜆
�̂�𝑅
𝜆
|Ψ⟩ ∥ and ∥𝑉𝑁𝑊 𝐿

𝜆
𝑊𝑅
𝜆
|Ψ⟩𝑛𝑜𝑟𝑚−

𝑉𝑁𝑊
𝐿
𝜆
𝑊𝑅
𝜆
|Ψ⟩ ∥ decay faster than any polynomial in 𝑁 , the triangle inequality and

Winter’s inequality allow to obtain the result: indeed

|𝑆(𝑉𝑁�̂�𝐿
𝜆 �̂�

𝑅
𝜆 |Ψ⟩ ,B(H 𝐿

𝑁 )) − 𝑆(𝑉𝑁𝑊 𝐿
𝜆𝑊

𝑅
𝜆 |Ψ⟩ ,B(H̃ 𝐿

𝑁 )) |
≤ |𝑆(𝑉𝑁�̂�𝐿

𝜆 �̂�
𝑅
𝜆 |Ψ⟩ ,B(H 𝐿

𝑁 )) − 𝑆(𝑉𝑁�̂�𝐿
𝜆 �̂�

𝑅
𝜆 |Ψ⟩

𝑛𝑜𝑟𝑚 ,B(H 𝐿
𝑁 )) |

+|𝑆(𝑊 𝐿
𝑁𝑊

𝑅
𝑁𝑉𝑁�̂�

𝐿
𝜆 �̂�

𝑅
𝜆 |Ψ⟩

𝑛𝑜𝑟𝑚 ,B(H̃ 𝐿
𝑁 )) − 𝑆(𝑉𝑁𝑊 𝐿

𝜆𝑊
𝑅
𝜆 |Ψ⟩

𝑛𝑜𝑟𝑚 ,B(H̃ 𝐿
𝑁 )) |

+|𝑆(𝑉𝑁𝑊 𝐿
𝜆𝑊

𝑅
𝜆 |Ψ⟩

𝑛𝑜𝑟𝑚 ,B(H̃ 𝐿
𝑁 )) − 𝑆(𝑉𝑁𝑊 𝐿

𝜆𝑊
𝑅
𝜆 |Ψ⟩ ,B(H̃ 𝐿

𝑁 )) | .

(2.71)

The first and last term decay to zero, as 𝜇𝑁 decays faster than polynomially whereas
all involved entropies grow at most polynomially, while the middle term decays due
to Winter’s inequality coupled to the assumption on the dynamics. □

Type 𝐼∞ factors in the bulk
Another possible generalization of the previous result corresponds to the case where
the bulk algebra is infinite-dimensional. Of course, an infinite-dimensional code
subspace cannot be encoded well in the boundary theory at finite 𝑁 , but if one allows
the code subspace dimension to grow with 𝑁 , one can imagine a situation in which
this infinite-dimensional algebra is approximated increasingly well by bigger and
bigger subalgebras for each value of 𝑁 . The mildest possible case is that in which
the entropy associated to the bulk state is still 𝑂 (1) at large 𝑁 , but is carried by an
infinite-dimensional factor. As shown in Appendix 2.7, boundedness of entropy for
a finite-dimensional resolution of the bulk algebra implies that algebra in question
must have type 𝐼 - since it is here supposed to be infinite-dimensional, type 𝐼∞.
This is an important case as a potential choice of regulator for entanglement entropy
in the bulk effective theory could be provided by the split property [149], which
famously involves type 𝐼∞ factors. Type 𝐼∞ factors can be identified with B(H)
forH a separable Hilbert space, which means that in this case normal states can be
identified with density operators. In particular, they have a Schmidt decomposition.
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This allows to approximate states by finite-dimensional density matrices in a very
explicit way, and to define a set of “admissible states" for which these approximations
are strong enough that the Ryu–Takayanagi formula is still valid independently of
the choice of approximation.

The first step in this investigation of recovery for infinite-dimensional type 𝐼 factors
is to introduce a general approximation procedure for a type 𝐼∞ factor in terms of a
given faithful normal state and its Schmidt coefficients.

Definition 2.5.4. For𝑀 a type 𝐼∞ factor standardly represented on a Hilbert spaceK
and |Ψ⟩ a cyclic separating vector, write 𝑀 = B(H) for some infinite-dimensional
Hilbert spaceH . The restriction of |Ψ⟩ to 𝑀 is a trace-class density operator 𝜌 on
H , as it is a normal state on a type 𝐼 factor. Arrange the eigenvalues (𝜆1, . . . , 𝜆𝑖, . . . )
in decreasing order, and find a corresponding eigenbasis (𝑒1, . . . , 𝑒𝑖, . . . ). Now for
𝑑 ∈ N, decompose (𝑒1, . . . , 𝑒𝑖, . . . ) into 𝑑 families of the form (𝑒𝑚𝑑+𝑘 )𝑚∈N, with 𝑘
running from 1 to 𝑑. This induces a tensor product factorization of the form

H = H𝑑 ⊗ H ′𝑑 , (2.72)

withH𝑑 finite-dimensional. For this decomposition, define

𝑀𝑑 := B(H𝑑) ⊗ 𝐼𝑑, (2.73)

and the conditional expectation onto 𝑀𝑑

𝐸Ψ,𝑑 (𝑋 ⊗ 𝑌 ) := Ψ(𝐼𝑑 ⊗ 𝑌 ) (𝑋 ⊗ 𝐼𝑑). (2.74)

Note that

Ψ ◦ 𝐸Ψ,𝑑 = Ψ|𝑀𝑑 ⊗ Ψ|𝑀 ′
𝑑
. (2.75)

It is easy to show that Ψ ◦ 𝐸Ψ,𝑑 and Ψ become arbitrarily close in norm (and
so do their von Neumann entropies) for a state with finite entropy as 𝑑 goes to
infinity. However, the goal of approximating the boundary entropy of Ψ with that
of some Ψ ◦ 𝐸Ψ,𝑑 cannot in general be achieved by keeping 𝑑 fixed as 𝑁 grows.
Indeed, as 𝑁 goes to infinity Fannes’ inequality (or Winter’s inequality) introduces
a divergent factor that needs to be cancelled by an 𝑁-dependent improvement of
the approximation. I now introduce a class of states for which such a regulation is
possible.
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Definition 2.5.5. Let |Ψ⟩ ∈ H𝜆, cyclic separating with respect to 𝑀𝜆. Let (𝑒𝑖, 𝜆𝑖)
be a Schmidt basis and the Schmidt coefficients associated to |Ψ⟩, with Schmidt
coefficients in decreasing order. Let 𝜂 > 0, and let 𝑘 (𝜂) be the smallest integer such
that

∞∑︁
𝑖=𝑘 (𝜂)+1

𝜆𝑖 ≤ 𝜂. (2.76)

Let HΨ,𝜂 be the vector space spanned by the action of 𝑀 𝑘 (𝜂)
𝜆

on the vector repre-
sentative |Ψ𝜂

0⟩ of Ψ ◦ 𝐸Ψ,𝑘 (𝜂) in the natural cone of |Ψ⟩. Denote by 𝑀𝐿,𝑅,𝑘 (𝜂)
𝜆

the
algebra 𝑀 𝑘 (𝜂)

𝜆
and its commutant represented on HΨ,𝜂. The state |Ψ⟩ is said to be

admissible for the family of maps (𝑉𝑁 ) if it has finite entropy, and there exists a
sequence of thresholds (𝜂𝑁 )𝑁∈N such that √𝜂𝑁 decays faster than (log 𝑑𝑁 )−1, where
𝑑𝑁 is the dimension of H𝑁 , log 𝑘 (𝜂𝑁 ) grows at most polynomially, and for every
unitary operator 𝑈𝐿

𝜆
, �̂�𝐿

𝜆
and 𝑈𝑅

𝜆
, �̂�𝑅

𝜆
in 𝑀𝐿,𝑘 (𝜂𝑁 )

𝜆
and 𝑀𝑅,𝑘 (𝜂𝑁 )

𝜆
, there exist unitary

operators �̃�𝐿
𝜆

and �̃�𝑅
𝜆

in B(H 𝐿
𝑁
) and B(H 𝑅

𝑁
) such that

∥𝑉𝑁𝑈𝑅
𝜆𝑈

𝐿
𝜆 |Ψ

𝜂𝑁
0 ⟩ − �̃�

𝐿
𝜆 �̃�

𝑅
𝜆𝑉𝑁�̂�

𝑅
𝜆 �̂�

𝐿
𝜆 |Ψ

𝜂𝑁
0 ⟩ ∥ ≤ 𝛿𝑁 , (2.77)

where 𝛿𝑁 decays faster than any polynomial in 𝑁 .

Here, a few comments are in order. First, the bound given in Equation (2.99) of
the appendix of this chapter shows that if one allows for the dimension ofHΨ,𝜂𝑁 to
scale like the exponential of a polynomial in 𝑁 (assuming this is the scaling of the
dimension ofH𝑁 ), the restriction on the decay of 𝜂𝑁 is vacuous for states of bounded
entropy. However, allowing the code space to be exponentially large comes with its
own sets of problems, and requires new assumptions, as will soon be discussed. It
would be interesting to see if the bound (2.99) can be made more constraining by
imposing some kind of physical condition on the state. Without trying to do this,
one can however imagine an intermediate class of states, that are not invariant under
any conditional expectation onto a finite-dimensional subalgebra, but for which the
threshold 𝜂𝑁 is still saturated quickly enough (for example, polynomially in 𝑁). For
these states, it is reasonable to keep the same assumptions as before and prove a
closely related Ryu–Takayanagi formula, thanks to the following lemma.

Lemma 2.5.6. If 𝜌 is a density matrix on 𝑀 , for the previous factorization and for
𝑑 > 0,

∥𝜌 − 𝜌1 ⊗ 𝜌2∥1 ≤ 4
∞∑︁

𝑙=𝑑+1
𝜆𝑙 . (2.78)
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Proof. If 𝜆1, . . . , 𝜆𝑛, . . . are the Schmidt coefficients of 𝜌, for 𝑑 > 0, 1 ≤ 𝑘 ≤ 𝑑:

(𝜌1 ⊗ 𝜌2)𝑖𝑑+𝑘 =
©«
∞∑︁
𝑗=0
𝜆 𝑗 𝑑+𝑘

ª®¬
(
𝑑∑︁
𝑙=1

𝜆𝑖𝑑+𝑙

)
. (2.79)

Hence, for 1 ≤ 𝑘 ≤ 𝑑,

(𝜌1 ⊗ 𝜌2)𝑘 = ©«
∞∑︁
𝑗=0
𝜆 𝑗 𝑑+𝑘

ª®¬
(
𝑑∑︁
𝑙=1

𝜆𝑙

)
. (2.80)

We deduce,

| (𝜌1 ⊗ 𝜌2)𝑘 − 𝜌𝑘 | =

������©«
∞∑︁
𝑗=0
𝜆 𝑗 𝑑+𝑘

ª®¬
(
𝑑∑︁
𝑙=1

𝜆𝑙

)
− 𝜆𝑘

������ (2.81)

=

������©«
∞∑︁
𝑗=1
𝜆 𝑗 𝑑+𝑘

ª®¬
(
𝑑∑︁
𝑙=1

𝜆𝑙

)
− 𝜆𝑘

∞∑︁
𝑙=𝑑+1

𝜆𝑙

������ (2.82)

≤
∞∑︁
𝑗=1
𝜆 𝑗 𝑑+𝑘 + 𝜆𝑘

∞∑︁
𝑙=𝑑+1

𝜆𝑙 . (2.83)

Similarly, for 𝑖 ≥ 1:

| (𝜌1 ⊗ 𝜌2)𝑖𝑑+𝑘 − 𝜌𝑖𝑑+𝑘 | ≤ ©«
∞∑︁
𝑗=0
𝜆 𝑗 𝑑+𝑘

ª®¬
(
𝑑∑︁
𝑙=1

𝜆𝑖𝑑+𝑙

)
+ 𝜆𝑖𝑑+𝑘 . (2.84)

Hence,

∥𝜌 − 𝜌1 ⊗ 𝜌2∥1 ≤
𝑑∑︁
𝑘=1

∞∑︁
𝑗=1
𝜆 𝑗 𝑑+𝑘 +

𝑑∑︁
𝑘=1

𝜆𝑘

∞∑︁
𝑙=𝑑+1

𝜆𝑙 +
𝑑∑︁
𝑘=1

∞∑︁
𝑖=1

©«©«
∞∑︁
𝑗=0
𝜆 𝑗 𝑑+𝑘

ª®¬
(
𝑑∑︁
𝑙=1

𝜆𝑖𝑑+𝑙

)
+ 𝜆𝑖𝑑+𝑘ª®¬

(2.85)

≤ 4
∞∑︁

𝑙=𝑑+1
𝜆𝑙 .

(2.86)
□

The Ryu–Takayanagi formula for admissible states can then be formulated as follows:

Theorem 2.5.7. Let (Λ, (𝑀𝜆), (E𝜆), (𝐸𝜆𝜇), 𝜔,𝑉𝑁 ) be a renormalizable large-𝑁
quantum error-correcting code. Let |Ψ⟩ be a (normalized) state in H𝜆0 . Then, for
all 𝜆 ≥ 𝜆0 such that |Ψ⟩ is admissible for 𝑀𝜆, and for all 𝜀 > 0, there exists a
sequence of finite-dimensional Hilbert subspacesH 𝑓 𝑖𝑛

𝜆,𝑁
ofH𝜆 such that

|𝑆( |Ψ⟩ , 𝑀𝜆) + 𝐴(H 𝑓 𝑖𝑛

𝜆,𝑁
) − 𝑆(𝑉𝑁 |Ψ⟩ ,B(H𝑁 )) | −→

𝑁→∞
0. (2.87)



41

Proof. IfΨ𝜂𝑁
0 denotesΨ◦𝐸Ψ,𝑘 (𝜂𝑁 ) , by the standard continuity bound for the mapping

of this state onto the natural cone,

∥ |Ψ⟩ − |Ψ𝜂𝑁
0 ⟩ ∥ ≤ 2

√√√ ∞∑︁
𝑙=𝑘 (𝜂𝑁 )+1

𝜆𝑙 . (2.88)

Now, as 𝑉𝑁 is a contraction,

∥𝑉𝑁 |Ψ⟩ −𝑉𝑁 |Ψ𝜂𝑁
0 ⟩ ∥ ≤ 2

√√√ ∞∑︁
𝑙=𝑘 (𝜂𝑁 )+1

𝜆𝑙 . (2.89)

By Fannes’ inequality and Lemma C.1 of [8], it follows that

|𝑆(𝑉𝑁 |Ψ⟩ ,B(H𝑁 )) − 𝑆(𝑉𝑁 |Ψ𝜂𝑁
0 ⟩ ,B(H𝑁 )) | | ≤ 4

√
𝜂𝑁 log

(
𝑑𝑁

4√𝜂𝑁

)
. (2.90)

for 𝑁 large enough, and this goes to zero at infinity. Then the entropy of𝑉𝑁 |Ψ𝜂𝑁
0 ⟩ is

controlled by exactly the same technique as in the proof of Theorem 2.4.4. The only
places where one should worry are the ones where the dimension 𝑘 (𝜂𝑁 ) appears
because it now grows with 𝑁 , but since log 𝑘 (𝜂𝑁 ) grows at most polynomially,
the obtained bounds are still strong enough. Moreover the difference in entropy of
|Ψ𝜂𝑁

0 ⟩ on 𝑀 𝑘 (𝜂𝑁 )
𝜆

and of |Ψ⟩ on 𝑀𝜆 goes to zero, which concludes the proof. □

Also note that an analogous result could have been formulated for admissible states
for the case of an infinite-dimensional boundary Hilbert space, by introducing a
condition allowing to apply Winter’s inequality like in the previous subsection.
Another remark is that as noted earlier, the code subspace renormalization scheme
itself can depend on 𝑁 . In that case, the whole proof goes through, except the
last step in which it is assumed that the entropies of the regulated subalgebras get
asymptotically close to the one of the type 𝐼∞ factor, because now this 𝐼∞ factor
and the corresponding Schmidt coefficients are also 𝑁-dependent. One then needs
to add this condition by hand in the definition of admissible state.

Large codes and minimality
It is natural to try to generalize the methods developed in this chapter to codes
subspaces with faster, exponential growth in 𝑁 . This regime is also of great interest
in order to study black holes and their evaporation [231, 8, 7]. However, in this case,
some assumptions made before are no longer reasonable. In particular, supposing
that the map𝑉𝑁 is very close in norm to an isometry (which was necessary in order to
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use Winter’s inequality) no longer makes sense, because the code subspace becomes
too big and 𝑉𝑁 can get a kernel. Also, unitary reconstruction in the entanglement
wedge for all unitaries can no longer be true, as the code subspace can now carry
enough entropy to compete with the area term and macroscopically shift the position
of the Ryu–Takayanagi surface. The Ryu–Takayanagi formula then really needs to
become a quantum extremal surface formula.

Fortunately, the setup of [8] allows for such a generalization, by subdividing the
code subspace into a tensor product of further finite-dimensional subspaces, that are
then interpreted as local degrees of freedom, and only asking for the reconstruction
of product unitaries. It would be very interesting to understand how such a fac-
torization, or a similar regulation procedure, can be systematically implemented in
the large 𝑁 theory. Assuming such a refined structure for the renormalized code
subspace, that the boundary Hilbert space is finite-dimensional, and that the loga-
rithm of its dimension is polynomial in 𝑁 , the results of [8] can be applied in this
setup without any modification, including the result about minimality of generalized
entropy in the entanglement wedge.

A technical detail is that it is important that Fannes’ inequality also holds for
subnormalized states for the proof of [8] to work, as it is no longer an option to
assume that 𝑉𝑁 is very close to an isometry for a very large code subspace. It
would be interesting to figure out whether an analog of Winter’s inequality holds
for subnormalized states, and some result of this kind would become important in
this regime in order to drop the finite-dimension assumption onH𝑁 .

At any rate, large codes seem to require even more work than the ones discussed
before in order to concretely implement regularizations and a code subspace renor-
malization scheme that allow to formulate a family of quantum extremal surface
formulae that satisfy the Susskind–Uglum prescription. It is an important question
to understand how to implement such regularizations explicitly, first for small codes
and then for larger codes. Understanding perturbative 𝐺𝑁 corrections and the split
property in the framework of [168] seems to be a very promising first step in this
direction.

2.6 Discussion
In this chapter, I introduced a new derivation of the Ryu–Takayanagi formula in the
large 𝑁 limit of holography. This new setup makes it manifest that not all of the
large 𝑁 von Neumann algebra can be reconstructed satisfactorily at fixed 𝑁 on the
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boundary. Instead, it must be regulated (into a type 𝐼 algebra if one wants to retain a
finite amount of code subspace entropy in the large 𝑁 limit), and with this regulation
comes an arbitrary choice of UV cutoff.

I then argued that an appropriate way to define the renormalization group flow
between the different code subspaces (or subalgebras) is through conditional expec-
tations that integrate out some of the degrees of freedom. From such a family of
conditional expectations, one can then construct a nested family of code subspaces,
each of which contributes a different amount of entropy, that decreases when high
energy modes are integrated out. This nested structure reacts well with the com-
mutant structure, so that a good notion of complementary recovery can be defined
in a consistent way. It is interesting to note that the use of conditional expecta-
tions, which was previously proposed as a model of exact holography, finds a new
interpretation as a renormalization group flow in the limit where the code becomes
exact.

The next and last step was to prove a Ryu–Takayanagi formula: it was shown that
for a state in a regulated code subspace with admissible properties with respect
to the bulk-to-boundary map, the Ryu–Takayanagi formula is satisfied, with the
area term associated to the code space being identified with the entropy of a Choi–
Jamiolkowski state, along the lines of [8]. Then, as the bulk cutoff is changed,
the variation of the area term was proven to exactly compensate that of the bulk
entropy, therefore providing a full proof of the Susskind–Uglum proposal. In this
new framework of quantum error correction, this proposal can be reinterpreted as a
precise instance of the ER=EPR paradigm.

A few possible extensions of the result would be nice to obtain:

• It is not clear how to easily single out a UV-regulated type 𝐼 algebra at large
𝑁 . The most naive guess, which is to take products of single trace operators
capped off at some finite number of factors, fails because these operators do
not form an algebra. It would be nice to understand better how to extract type
𝐼 algebras carrying a finite amount of entropy from a large 𝑁 algebra. More
generally, it would be very interesting to embed the results of this chapter into
the framework of asymptotically isometric codes initiated in [168].

• It also seems important to extend the reasonings provided here to code sub-
spaces that are not made out of states that are invariant under a conditional
expectation, or that only are in some approximate way. This would probably
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be useful to better understand how area laws work in the examples of large 𝑁
sectors introduced in [168].

• Perhaps more ambitiously, one could try to generalize the results presented
here to the case of linear spaces of operators with no product structure.
Some preliminary attempts [202, 305] have been made in this direction in the
literature.

• In the proofs appearing in this chapter, either Fannes’ or Winter’s inequalities
provided bounds on the entropies of the boundary states. It would be inter-
esting to understand the assumptions required for the application of Winter’s
inequality better, and to derive them in explicit examples. It would also be
nice to understand to what extent Winter’s inequality generalizes to the case
of subnormalized states.

• This proof most closely mimics the case of one side of a two-sided holographic
black hole. It is also necessary to tackle the extra regularizations needed for
the case where one considers a subregion of a CFT, and the area of the quantum
extremal surface become infinite. Perhaps the canonical purification of [149]
can be used to define such regulations more precisely.

• One can also allow the code subspace entropy to diverge as 𝑁 becomes
large. Maybe one can identify some 𝑁-dependent regularizations of the code
subspace that asymptote to von Neumann algebras that have type 𝐼 𝐼 or 𝐼 𝐼 𝐼,
and it would be nice to understand this better.

• More generally, in the case of a large code, this chapter only scratched the
surface of the problem, by directly applying the setup of [8]. It is an interesting
problem to understand how to subdivide a large 𝑁 algebra into (𝑁-dependent)
local degrees of freedom in the bulk, so that conditions on product unitaries,
or an analog of them, can be formulated in a meaningful way. The case
of large codes is especially important to describe state-dependent black hole
reconstruction and black hole evaporation [231, 379, 194, 7], which makes it
a particularly interesting avenue of research.

• It also seems very important to see how the equivalence between large 𝑁
entanglement and areas contributions arises in explicit models of quantum
gravity. The SYK model [98], matrix quantum mechanics [340], or maybe



45

some supersymmetric field theories seem to be cases in which one could try to
implement a renormalization scheme akin to the one identified in this chapter.

2.7 Appendix: Bounded entropy implies type 𝐼
This work mainly considers the case in which the code subspace of the holographic
code contains a finite𝑂 (1) amount of entropy in the large 𝑁 limit. Of course, this is
impossible if the full algebra of observables in a region is taken into account due to
UV divergences, but as was stressed above, this calculation would not be physical
anyway because the code would break at a scale that is parametrically large in 𝑁 .
However, if one regulates the algebra of the EFT by simply considering one of its
subalgebras that carries finite entropy, it is possible to make sense of bulk entropy
in the large 𝑁 limit. The goal of this appendix is to characterize those algebras that
can carry a finite amount of entropy. The answer turns out to be that these algebras
must have type 𝐼. This can already be guessed at an intuitive level from the trace
structure of von Neumann algebras: the only algebras that have a non-renormalized
trace are type 𝐼 algebras.

A more precise result can be shown by adapting an argument formulated by Matsui
[331] in the context of the mathematical study of spin chains: if there is a cyclic
separating state on the Hilbert space whose entropy for a finite-dimensional resolu-
tion of 𝑀 is bounded, then 𝑀 has type 𝐼. The rest of this appendix is dedicated to
the proof of the following theorem:

Theorem 2.7.1. Let 𝑀 be a von Neumann factor acting on a Hilbert spaceH , and
let |Ψ⟩ ∈ H be cyclic separating with respect to 𝑀 . Suppose that there exists an
increasing sequence of finite-dimensional unital simple subalgebras (𝑀𝑛)𝑛∈N of 𝑀
such that

sup
𝑛∈N

𝑆( |Ψ⟩ , 𝑀𝑛) < ∞, (2.91)

and 𝑀 is the closure of the union of the 𝑀𝑛 for the weak operator topology. Then,
𝑀 has type 𝐼.

Proof. For this proof, it will be easier to recast the problem at the level of𝐶∗-algebras
and norm closures, which is the goal of this first lemma.

Lemma 2.7.2. Let A be the norm closure of the union of the 𝑀𝑛. Then, H
is isomorphic to the GNS representation of A ⊗ A𝑜𝑝11 in the state defined by
𝜓(𝑋 ⊗ 𝐽𝑌𝐽) := ⟨Ψ| 𝑋𝐽𝑌𝐽 |Ψ⟩.

11The opposite algebra is isomorphic to 𝐽A𝐽.
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Proof. The vector |Ψ⟩ is cyclic separating with respect to 𝑀 , so one can apply
Tomita–Takesaki theory to obtain the characterization of the commutant

𝑀′ = 𝐽𝑀𝐽, (2.92)

where 𝐽 is the modular conjugation associated to |Ψ⟩.

Now let A be the be the norm closure of the union of the 𝑀𝑛. The (nuclear) 𝐶∗-
algebraA⊗A𝑜𝑝 has a representation onH sending the operator 𝐴⊗ 𝐽𝐵𝐽 to 𝐴𝐽𝐵𝐽.
This representation coincides with the GNS representation of the state defined by the
composition of 𝜓 and this representation. The Hilbert space is isomorphic toH , and
the respective images ofA⊗ 𝐼𝑑 and 𝐼𝑑⊗A𝑜𝑝 are strong operator dense in 𝑀 and its
commutant, respectively, which makes the proof of the lemma straightforward. □

Now, the goal is to show that the state 𝜓 is quasiequivalent to a tensor product of the
form 𝜓𝑅 ⊗ 𝜓𝐿 on A ⊗ A𝑜𝑝. In order to do this, I will adapt a proof due to Matsui
[331] in the context of spin chains to the present case.

For 𝑛 ∈ N, 𝑀𝑛 is a type 𝐼 factor acting onH , so one can write (see [424], paragraph
9.15)

H = H𝑛 ⊗ H 𝑐
𝑛 , (2.93)

where

𝑀𝑛 = B(H𝑛) ⊗ 𝐼𝑑. (2.94)

With respect to this factorization, the state |Ψ⟩ admits a Schmidt decomposition

|Ψ⟩ =
𝑑𝑛∑︁
𝑗=1

√︃
𝜆
(𝑛)
𝑗
𝜉
(𝑛)
𝑗
⊗ 𝜂(𝑛)

𝑗
, (2.95)

with 𝜉 (𝑛)
𝑗
∈ H𝑛 and 𝜂(𝑛)

𝑗
∈ H 𝑐

𝑛 , 1 ≥ 𝜆(𝑛)1 ≥ · · · ≥ 𝜆
(𝑛)
𝑑𝑛
≥ 0, and

∑𝑑𝑛
𝑗=1 𝜆

(𝑛)
𝑗

= 1.

Let

𝑆 := sup
𝑛∈N

𝑆( |Ψ⟩ , 𝑀𝑛). (2.96)

Lemma 2.7.3. Let 1 > 𝜀 > 0. If 𝑘 is the integer defined by

𝑑𝑛∑︁
𝑗=𝑘

𝜆
(𝑛)
𝑗
≥ 𝜀 (2.97)
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and
𝑑𝑛∑︁

𝑗=𝑘+1
𝜆
(𝑛)
𝑗
< 𝜀, (2.98)

then

𝑘 ≤ exp
(
𝑆

𝜀

)
, (2.99)

and

𝜆
(𝑛)
1 ≥ exp

(
−𝑆
𝜀

)
. (2.100)

Proof. As the logarithm is an increasing function,

−𝜀 log𝜆(𝑛)
𝑘
≤ −

𝑑𝑛∑︁
𝑗=𝑘

𝜆
(𝑛)
𝑗

log𝜆(𝑛)
𝑘
≤ 𝑆. (2.101)

This already proves (2.100). Then it suffices to note that

𝑘𝜆
(𝑛)
𝑘
≤

𝑘∑︁
𝑗=1
𝜆
(𝑛)
𝑗
≤ 1 (2.102)

to obtain the other bound (2.99). □

Now, let us relabel the two tensor factors in A ⊗ A𝑜𝑝 by A𝑅 and A𝐿 . We have:

Lemma 2.7.4. Let 𝜓 (𝑛)
𝑗

be an extension of 𝜉 (𝑛)
𝑗

to A𝑅, and let 𝜑(𝑛)
𝑗

be an extension
of 𝜂(𝑛)

𝑗
to A𝐿 . Consider 𝜓𝑅, 𝑗 and 𝜑𝐿, 𝑗 , two weak-∗ limits of the sequences 𝜓 (𝑛)

𝑗
and

𝜑
(𝑛)
𝑗

. Up to passing to a subsequence one can also assume convergence of the 𝜆(𝑛)
𝑗

.
If lim
𝑛→∞

𝜆
(𝑛)
𝑗

is nonzero (which is the case for 𝜆1), then 𝜓𝑅, 𝑗 is quasi-equivalent to
Ψ𝑅, and 𝜑𝐿, 𝑗 is quasi-equivalent to Ψ𝐿 , where Ψ𝑅 and Ψ𝐿 are the restrictions of the
state |Ψ⟩ to the algebras A𝑅 and A𝐿 , respectively.

Proof. It suffices to note that on any 𝑀𝑛,

Ψ𝑅 =
∑︁

𝜆
(𝑛)
𝑗
𝜓
(𝑛)
𝑗
≥ 𝜆(𝑛)

𝑗0
𝜓
(𝑛)
𝑗0

(2.103)

for all 𝑗0. By going to the limit,(
lim
𝑛→∞

𝜆
(𝑛)
𝑗0

)
𝜓𝑅, 𝑗0 ≤ Ψ𝑅 . (2.104)

This inequality applied to lim
𝑛→∞

𝜆
(𝑛)
1 ≠ 0, together with the fact that the GNS represen-

tation associated to Ψ𝑅 is a factor by assumption, shows that the two representations
are quasi-equivalent. The same reasoning can be applied to A𝐿 . □
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We are now ready to show that Ψ is quasi-equivalent to Ψ𝐿 ⊗ Ψ𝑅. Lemma 2.7.4
shows that it is enough to demonstrate that it is quasi-equivalent to Ψ𝐿,1 ⊗Ψ𝑅,1. For
this last part of the proof, I will closely follow the notations of [331].

Let 1 > 𝜀 > 0, and let 𝐾 be defined as the largest integer smaller or equal to exp
(
𝑆
𝜀

)
.

Define the vectors (for notational simplicity, bra-ket notation is not explicitly used
for these)

Ω̃(𝑛) :=
𝐾∑︁
𝑗=1

√︃
𝜆
(𝑛)
𝑗
𝜉
(𝑛)
𝑗
⊗ 𝜂(𝑛)

𝑗
, (2.105)

and

Ω(𝑛) :=
Ω̃(𝑛)
∥Ω̃(𝑛)∥

. (2.106)

We then have that

0 < 1 − ∥Ω̃(𝑛)∥2 < 𝜀, (2.107)

1 − ∥Ω̃(𝑛)∥ < 𝜀

1 + ∥Ω̃(𝑛)∥
< 𝜀, (2.108)

and

∥Ω̃(𝑛) − |Ψ⟩ ∥2 < 𝜀. (2.109)

∥Ω(𝑛) − |Ψ⟩ ∥2 =

(
1

∥Ω̃(𝑛)∥
− 1

)2 ©«
𝐾∑︁
𝑗=1
𝜆
(𝑛)
𝑗

ª®¬ +
𝑑𝑛∑︁

𝑗=𝐾+1
𝜆
(𝑛)
𝑗

= (∥Ω̃(𝑛)∥ − 1)2 +
𝑑𝑛∑︁

𝑗=𝐾+1
𝜆
(𝑛)
𝑗
≤ 2𝜀.

(2.110)

Now consider 𝜔∞, a weak-∗ accumulation point of the 𝜔𝑛, linear functionals asso-
ciated to the Ω(𝑛). It follows that

∥𝜔𝑛 − Ψ∥ ≤ 2
√

2𝜀, (2.111)

and going to the limit,

∥𝜔∞ − Ψ∥ ≤ 2
√

2𝜀. (2.112)

Now, the Cauchy–Schwarz inequality gives on any 𝑀𝑛0 ⊗ A𝐿 , for 𝑛 ≥ 𝑛0,

𝜔𝑛 ≤
𝐾

1 − 𝜀

𝐾∑︁
𝑗=1
𝜆
(𝑛)
𝑗
𝜓
(𝑛)
𝑗
⊗ 𝜑(𝑛)

𝑗
. (2.113)
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Going once again to the limit (one can suppose that all the 𝜆(𝑛)
𝑗

converge), we get,
on a dense set and hence on the full A𝑅 ⊗ A𝐿 ,

𝜔∞ ≤
𝐾

1 − 𝜀

𝐾0∑︁
𝑗=1
�̄� 𝑗𝜓 𝑗 ,𝑅 ⊗ 𝜑 𝑗 ,𝐿 , (2.114)

where the �̄� 𝑗 are the 𝐾0 ≤ 𝐾 nonzero limits of the 𝜆(𝑛)
𝑗

. If one defines a state Ψ̃ such
that

𝐶Ψ̃ =
𝐾

1 − 𝜀

𝐾0∑︁
𝑗=1
�̄� 𝑗𝜓 𝑗 ,𝑅 ⊗ 𝜑 𝑗 ,𝐿 , (2.115)

for some constant 𝐶, then Ψ̃ is a linear combination of the 𝜓 𝑗 ,𝑅 ⊗ 𝜑 𝑗 ,𝐿 with nonzero
coefficients, so it is quasi-equivalent toΨ𝑅⊗Ψ𝐿 , by Lemma 2.7.4. As a consequence,
it is a factor state, and 𝜔∞ is quasiequivalent to it by Equation (2.114). Equation
(2.112), combined with Theorem 2.7 of [391], then implies by the triangle inequality
that Ψ is quasiequivalent to Ψ𝑅 ⊗ Ψ𝐿 .

From this last fact, one can deduce that the von Neumann algebra 𝑀 has type 𝐼.
Indeed, Ψ is pure so it is type 𝐼. It is quasiequivalent to the tensor product of Ψ𝑅

and Ψ𝐿 , which means that both must also be type 𝐼 (as a tensor product is type 𝐼 if
and only if both factors are type 𝐼). Now 𝑀 corresponds to a factor representation,
so every one of its subrepresentations is quasiequivalent to it. In particular, this is
true for the GNS representation of Ψ𝑅, which shows that 𝑀 has type 𝐼 (see Lemma
4.3 of [353]). □
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C h a p t e r 3

EMERGENT SPACETIME AND THE ERGODIC HIERARCHY

This chapter is based on the work [191].

3.1 Introduction
One of the main goals of quantum gravity is to understand the emergence of space-
time. While there exists a wide range of holographic theories, very few of them
have a semiclassical limit that recovers weakly coupled quantum fields on a classical,
smooth, gravitational spacetime in the dual description. It is therefore of central
importance to understand the conditions required for a holographic theory to possess
a “good" semiclassical limit of this kind. In the context of AdS/CFT [319], theories
with such a semiclassical limit in the bulk are the ones in which the ’t Hooft coupling
is strong and the gauge rank 𝑁 is taken to infinity. It makes sense to ask what is
special about these theories. It has long been realized that a diagnostic of bulk
locality is quantum chaos [413], but coming up with a fully satisfactory definition
of quantum chaos is still an open problem. While various diagnostics [59] exist and
capture different chaotic features of quantum systems, there is no clear overarching
picture.

On the other hand, the theory of chaos for classical dynamical systems is under much
better control. Thanks to pioneering work from the second part of the twentieth
century, various diagnostics of classical chaos have been firmly established. One of
the main upshots is that there is not a single way of diagnosing chaos in a classical
dynamical system, but instead, a full hierarchy of them [52]. Near the top of this
hierarchy sits the notion of Kolomogorov system (K-system) [451], which is a system
with complete memory loss.

It turns out that the ergodic theory of classical dynamical systems has a quantum
counterpart, although it does not capture all quantum chaotic phenomena. The
goal of this letter is to show that the quantum analog of the classical ergodic
hierarchy is surprisingly relevant to the emergence of time in holography. In this
hierarchy, the looser properties known as mixing properties encode the late time
decay of correlation functions, while stronger properties like the K-property and
the closely related Anosov property are closely tied to the emergence of horizons
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and information loss. Some “intrinsically quantum" diagnostics, like the type of
emergent von Neumann algebras [294, 293, 295, 457, 100, 183, 168, 192], also
fit nicely into this hierarchy. By better understanding the parallels between the
quantum ergodic hierarchy and the emergence of semiclassical physics, we may
discover new ways to characterize how to interpolate between quantum gravity and
its semiclassical limit.

A theme of central importance will be that of von Neumann algebras, as it is the
natural setting to formulate the quantum analog of measure theory, which lies at the
heart of the theory of dynamical systems. Interestingly, the emergence of nontrivial
types of von Neumann algebras has recently been identified as a diagnostic of the
appearance of a somewhat semiclassical bulk [293, 294, 295], and one of the goals
of this letter is to sharpen this connection.

Note added: The material presented here has been expanded upon in [367], after the
author explained it to one of the authors of [367] during a conference this summer.
We decided to coordinate our releases.

3.2 Ergodic classical systems and their hierarchy
The mathematical investigation of chaos in classical dynamical systems is well-
developed, and known as ergodic theory. It was realized in the second half of the
twentieth century that chaotic systems can be organized into a hierarchy of systems
satisfying stronger and stronger properties [180]. This section briefly recalls these
properties and gives some intuition on them.

Definition 3.2.1. A dynamical system is a triple (𝑋, 𝜇, 𝜎𝑡), where 𝑋 is a measurable
space, 𝜇 is a probability measure on 𝑋 , and 𝜎𝑡 is a measure-preserving flow on 𝑋 .1

Here, we want to find a way to quantify how chaotic a dynamical system is. It turns
out that there is a hierarchy of chaos in the theory of classical dynamical systems,
which consists of five increasingly strong levels of chaos. More precisely, there is
the chain of implications

Ergodic⇐Weakly Mixing⇐ Strongly Mixing⇐ Kolmogorov⇐ Bernoulli.

1The general discussion assumes that we are looking at systems with continuous time, but
discrete time can be defined completely analogously.
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Ergodicity and mixing
The weakest characterization of chaos is given by the notion of ergodicity. The
intuition behind this notion is that on average, the dynamics decorrelates events 𝐴
and 𝐵 and turns them into independent events. It is given by the following definition:

Definition 3.2.2. A classical dynamical system (𝑋, 𝜇, 𝜎𝑡) is ergodic if for all mea-
surable sets 𝐴, 𝐵 ⊂ 𝑋 ,

lim
𝑇→∞

1
2𝑇

∫ 𝑇

−𝑇
𝜇(𝜎𝑡 (𝐵) ∩ 𝐴)𝑑𝑡 = 𝜇(𝐵)𝜇(𝐴). (3.1)

The first way in which one can strengthen the property of ergodicity is by imposing
convergence to zero of the difference between the measure of the interesection of
the two events and their product, either on average or pointwise:

Definition 3.2.3. A classical dynamical system (𝑋, 𝜇, 𝜎𝑡) is weakly mixing if for all
measurable sets 𝐴, 𝐵 ⊂ 𝑋 ,

lim
𝑇→∞

1
2𝑇

∫ 𝑇

−𝑇
|𝜇(𝜎𝑡 (𝐵) ∩ 𝐴) − 𝜇(𝐵)𝜇(𝐴) |𝑑𝑡 = 0. (3.2)

Definition 3.2.4. A classical dynamical system (𝑋, 𝜇, 𝜎𝑡) is strongly mixing if for
all measurable sets 𝐴, 𝐵 ⊂ 𝑋 ,

lim
𝑡→∞

𝜇(𝜎𝑡 (𝐵) ∩ 𝐴) = 𝜇(𝐵)𝜇(𝐴). (3.3)

Kolmogorov systems
So far, the characterizations of chaos in dynamical systems have been fairly simple
and quantitative: they simply are a matter of limits. However, one can ask for
stronger properties of chaos, that are more algebraic in nature. In particular, another
way of thinking about chaos is that dynamics should make an observer lose all
possible information about the initial data. This is formalized by asking that there
are less and less measurable sets left in the 𝜎-algebra as time passes. The most
extreme version of the idea leads to the notion of K-system (Kolmogorov system)
[451], which asks for complete memory loss at infinite time.

Definition 3.2.5. Let (𝑋, 𝜇, 𝜎𝑡) be a classical dynamical system, and let Σ be the 𝜎-
algebra of measurable subsets of 𝑋 . (𝑋, 𝜇, 𝜎𝑡) is a Kolmogorov system (K-system)
if there exists a 𝜎-algebra Σ0 ⊂ Σ such that:

• For 𝑡 > 0, 𝜎𝑡 (Σ0) ⊂ Σ0,
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•
∨
𝑡∈R 𝜎𝑡 (Σ0) = Σ,

•
∧
𝑡∈R 𝜎𝑡 (Σ0) = {∅, 𝑋}.

Bernoulli systems
The notion of Bernoulli shift sits at the very top of the ergodic hierarchy. The idea of
such a system is that at each step, it completely forgets the previous one. A typical
example of such a system is a repeated coin toss. More formally:

Definition 3.2.6. Let (𝑋,A, 𝜇) be a probability space. Then a Bernoulli scheme is
(𝑋,A, 𝜇)Z. A Bernoulli scheme equipped with its shift automorphism is called a
Bernoulli dynamical system.

The Bernoulli property is the strongest property of chaos one can ask for in a
dynamical system, however, only few systems possess it. It will not be directly
relevant in our case.

Anosov systems
Although not part of the canonical ergodic hierarchy, the notion of Anosov system
is very important in the study of dynamical systems. The idea of an Anosov flow
requires a bit more structure, and it can be seen as a useful special case that often
displays a lot of the properties described in this letter. In the case of an Anosov
system, the underlying measured space is actually a manifold (at least in the most
basic case). The idea is then to split the tangent bundle of this manifold into
contracting and expanding directions under the flow under consideration. More
formally [382]:

Definition 3.2.7. Let 𝑀 be a smooth compact connected oriented manifold. Let
𝜙𝑡 be a nonsingular flow of class 𝐶𝑟 on 𝑀 . 𝜙𝑡 is an Anosov flow of class 𝐶𝑟 if
there exists a 𝜙𝑡-invariant continuous splitting of the tangent bundle of 𝑀 , given by
𝑇𝑀 = 𝐸𝑢 ⊕ 𝐸 𝑠 ⊕ 𝐸𝑇 , where 𝐸𝑇 is the line bundle tangent to 𝜙𝑡 and 𝐸𝑢 and 𝐸 𝑠

satisfy:

• There exist constants 𝐴 > 0, 𝜇 > 1 such that for 𝑡 ∈ R and 𝑣 ∈ 𝐸𝑢:

∥𝜙𝑡∗(𝑣)∥ ≥ 𝐴𝜇𝑡 ∥𝑣∥, (3.4)

• There exist constants 𝐵 > 0, 𝜆 < 1 such that for 𝑡 ∈ R and 𝑣 ∈ 𝐸 𝑠:

∥𝜙𝑡∗(𝑣)∥ ≤ 𝐵𝜆𝑡 ∥𝑣∥. (3.5)
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The splitting elements 𝐸𝑢 and 𝐸 𝑠 can be interpreted as expanding and contracting
directions for the flow 𝜙𝑡 . The presence of these expansions and contractions is
related to chaotic properties of the flow. This can be seen very explicitly in the case
of geodesic flow on a Riemann surface, as it will be explained in Section 3.2.

Under reasonable conditions, the Anosov property implies the K-property. In par-
ticular,

Theorem 3.2.8 ([93]). Any𝐶2 topologically mixing volume preserving Anosov flow
is a K-system (and even Bernoulli).

It will turn out that in the case of quantum modular automorphisms, one obtains an
even stronger link between the Anosov and K-properties, where to each K-system
can be associated an Anosov flow.

Example: Geodesic flow on a hyperbolic Riemann surface
The prototypical example of an Anosov system is geodesic flow on a compact
orientable Riemann surface of constant negative curvature. Any such surface can be
written as a quotient Σ = Γ\H, where Γ is a cocompact Fuchsian group. Consider
𝑄 � 𝑃𝑆𝐿 (2,R), the unit tangent bundle to the upper half-plane H. The geodesic

flow 𝜙𝑡 =

(
𝑒𝑡/2 0
0 𝑒−𝑡/2

)
, as well as the horocycle flows ℎ∗𝑡 =

(
1 𝑡

0 1

)
, ℎ𝑡 =

(
1 0
𝑡 1

)
define invariant flows on 𝑄, which descend to invariant flows on 𝑃, the unit tangent
bundle of Σ. Then one can decompose the tangent space 𝑇𝑃 = 𝐸+ ⊕ 𝐸0 ⊕ 𝐸−,
where 𝐸+ and 𝐸− are the expanding and contracting directions along the horocycle
flows, and 𝐸0 is the geodesic flow direction. One can show that this decomposition
satisfies the axioms of an Anosov system.

An important fact about this example is that the geodesic and horocycle flows satisfy
the commutation relations

𝑔𝑡ℎ
∗
𝑠 = ℎ

∗
𝑠𝑒−𝑡𝑔𝑡 , 𝑔𝑡ℎ𝑠 = ℎ𝑠𝑒𝑡𝑔𝑡 . (3.6)

These commutation relations will be the starting point of the definition of quantum
Anosov systems. Note that they are the same as the ones between boosts and null
translations in Rindler space, as will be explored in more detail in the next section.

3.3 Quantum chaotic dynamics: von Neumann algebras
One would like to define a similar hierarchy of chaos for the case of quantum
systems. Of course, this implies resorting to a quantum notion of dynamical system
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on which measure theory can be used. The language of von Neumann algebras
shows up naturally when one attempts to formulate a quantum analog of the notion
of classical dynamical system. The reason is the following.

In a quantum system, observables cannot be expressed as functions on a classical
phase space, and the best one can do is to consider such a noncommutative algebra
of observables more abstractly. However in order to have a suitable notion of
quantum dynamical system, one needs to find a quantum analog of the notion of
measure on phase space. Once again, since there no longer are any “points" on a
noncommutative configuration space, a measure itself cannot be defined. However,
a related notion still makes sense: that of taking the expectation value of a function
against a probability measure thanks to the formula

⟨ 𝑓 ⟩𝜈 =
∫
𝑋

𝑓 𝑑𝜈. (3.7)

If 𝜈 is a probability measure, this is a linear functional of norm one on the space of
functions. Thus it is natural to encode the notion of probability measure into that of
expectation value functional in the noncommutative case - and an expectation value
functional is nothing else than a quantum state. Hence, the quantum counterpart of
the measure in a classical dynamical system is simply a quantum state.

Finally dynamics is trivially generalized as a (strongly continuous) one-parameter
group of automorphisms of the von Neumann algebra𝑀 . This leads to the definition
of quantum dynamical systems that will be used in this letter:

Definition 3.3.1. A quantum dynamical system is a triple (𝑀,𝜔, 𝜏𝑡), where 𝑀 is
a von Neumann algebra, 𝜔 is a normal state on 𝑀 , and 𝜏𝑡 is a strongly continuous
one-parameter group of automorphisms of 𝑀 .

It is common to assume that 𝜔 ◦ 𝜏𝑡 = 𝜔.

In the quantum case, a new situation of interest appears that used to be trivial in the
classical case: if 𝜔 is also faithful then 𝜏𝑡 can be the modular automorphism group
of 𝜔. This is of particular interest given the central role played by modular flow in
the emergence of spacetime. It is then useful to define:

Definition 3.3.2. If the quantum dynamical system (𝑀,𝜔, 𝜏𝑡), with 𝜔 faithful, is
defined so that 𝜏𝑡 is the modular automorphism group of 𝜔, then (𝑀,𝜔, 𝜏𝑡) is said
to be a modular quantum dynamical system.
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One can summarize the relationship between von Neumann algebras and measured
spaces as indicated in Table 3.1.

Classical case Quantum case

𝐶0(𝑋) 𝐶∗-algebra

𝐿∞(𝑋, 𝜇) von Neumann algebra

Measure 𝜈 ≪ 𝜇 Normal state 𝜔

𝜎-algebra automorphism 𝜎𝑡 von Neumann algebra automorphism 𝜏𝑡

Dynamical system (𝑋, 𝜇, 𝜎𝑡) Dynamical system (𝑀,𝜔, 𝜏𝑡)

Table 3.1: The parallel between classical and quantum dynamical systems.

Ergodicity and mixing
The generalization of ergodicity and mixing to the quantum case is completely
straightforward now that we have a good definition of a quantum dynamical system.
We simply define:

Definition 3.3.3. The quantum dynamical system (𝑀,𝜔, 𝜏𝑡) is:

• Ergodic if for all 𝐴, 𝐵 ∈ 𝑀 ,

lim
𝑇→∞

1
2𝑇

∫ 𝑇

−𝑇
𝜔(𝜏𝑡 (𝐵)𝐴) = 𝜔(𝐵)𝜔(𝐴), (3.8)

• Weakly mixing if for all 𝐴, 𝐵 ∈ 𝑀 ,

lim
𝑇→∞

1
2𝑇

∫ 𝑇

−𝑇
|𝜔(𝜏𝑡 (𝐵)𝐴) − 𝜔(𝐵)𝜔(𝐴) |𝑑𝑡 = 0, (3.9)

• Strongly mixing if for all 𝐴, 𝐵 ∈ 𝑀 ,

lim
𝑡→∞

𝜔(𝜏𝑡 (𝐵)𝐴) = 𝜔(𝐵)𝜔(𝐴). (3.10)

Quantum Kolmogorov systems
It is also quite straightforward to transfer the notion of K-system to the quantum
case.
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Definition 3.3.4 ([357]). Let (𝑀, 𝜏𝑡) be a quantum dynamical system. 𝑀 is refining
if there exists a von Neumann subalgebra 𝑁 ⊊ 𝑀 such that for 𝑡 > 0, 𝜏𝑡 (𝑁) ⊂ 𝑁 . It
is a K-system if in addition,

∨
𝑡∈R
𝜏𝑡 (𝑁) = 𝑀 , and

⋂
𝑡∈R
𝜏𝑡 (𝑁) = C.

Quantum Anosov systems
There is also a good notion of Anosov flow for quantum systems, although one needs
to relax it appropriately to allow for the contracting and expanding transformations
to be non-invertible (only endomorphisms rather than automorphisms).

Definition 3.3.5 ([356]). Let (𝑀, 𝜏𝑡) be a quantum dynamical system, 𝜔 be an
invariant faithful normal state on 𝑀 , and H𝜔 be its GNS representation. The
system (𝑀, 𝜏𝑡) is Anosov if there exists a strongly continuous one-parameter group
of automorphisms 𝜎𝑠 ∈ AutB(H𝜔) such that for 𝑠 > 0, 𝜎𝑠 (𝑀) ⊊ 𝑀 , and for all
𝑠, 𝑡 ∈ R,

𝜏𝑡 ◦ 𝜎𝑠 = 𝜎𝑠𝑒−𝑡 ◦ 𝜏𝑡 . (3.11)

In the case of a modular quantum dynamical system, the Anosov and K-properties
are very closely related:

Proposition 3.3.6 ([356]). Let (𝑀, 𝜏𝑡 , 𝜔) be a modular quantum dynamical system.
Then (𝑀, 𝜏𝑡 , 𝜔) is refining if and only if it is Anosov.

Much more can be proven about Anosov/K-systems, see [356, 355, 358, 206].

Analogy with Rindler space
As it was hinted above, Rindler space is the stereotypical example of a modular
quantum K-system with continuous evolution. By the Bisognano–Wichmann theo-
rem [60], modular flow of the algebra of observables in the Rindler wedge coincides
with boosts along the Rindler horizon. If 𝜏𝑡 denotes modular flow and 𝜎±𝑠 denote
the two null translations along the horizon, they then satisfy the relation

𝜏𝑡 ◦ 𝜎±𝑠 ◦ 𝜏−𝑡 = 𝜎±𝑠𝑒±𝑡 , (3.12)

which matches with the Anosov relation (3.11), and is part of the relations corre-
sponding to the local Poincaré symmetry.

Moreover, one can note that denoting byM the algebra of the Rindler wedge, and
by N± := 𝜎±1 (M),

⋂
𝑡∈R
𝜏𝑡 (N±) = C [290]. In other words:
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Proposition 3.3.7 ([152]). The Rindler wedge is a quantum K-system with continu-
ous dynamics.

What we learn from this example is that the structure of half-sided modular inclu-
sion exactly fits into the definition of a modular K-system! Therefore there is an
interpretation of the nesting of algebras along the horizon in terms of chaos: as one
moves along the horizon there are less and less observables until there are none,
which is a signature of complete memory loss. It is also interesting to note that the
generators of null translations 𝐺± satisfy the commutation relations

[𝐻,𝐺±] = ±𝑖𝐺±, (3.13)

which were already related to some notion of maximal chaos in [134], where the
𝐺± referred to as “modular scrambling modes."

Table 3.2 compares the properties of the Rindler wedge to those of geodesic flow on
Riemann surfaces.

Geodesic flow on hyperbolic surfaces QFT in Rindler space

Geodesic flow Modular flow/boost

Horocycle flow Null translation

Refining property Half-sided modular inclusion

K-property Complete information loss

Table 3.2: The parallel between geodesic flow on hyperbolic surfaces and QFT in
Rindler spacetime.

3.4 Application to holography
This section uses the previously introduced formalism to summarize how the dif-
ferent elements of the ergodic hierarchy can be seen as various diagnostics of the
emergence of semiclassical features of the bulk of a holographic theory.

Mixing and information loss
The weakest properties of the ergodic hierarchy have to do with mixing, i.e. decay
of two-point functions. In holography, the late-time decay of the two-point function
at high temperature has been related to information loss at large 𝑁 [318, 171, 172,
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183]. It is also expected that the analytical properties of the large 𝑁 real time
two-point functions give information on the black hole interior and the singularity.
Therefore, one can interpret mixing as a signature of the emergence of at least some
stringy notion of spacetime. On the other hand, the late time decay of two-point
functions at high temperature is expected in weakly coupled gauge theories [171,
172], or even in vector models [246, 247], whose holographic duals are very far
from a usual local theory.

Emergent half-sided modular inclusions
In [294, 293, 295], it was pointed out that the emergence of a half-sided modular
inclusion in the large 𝑁 limit of a high temperature thermofield double state in
AdS/CFT is related to the emergence of a black hole horizon and of time in the black
hole interior, see Figure 3.1. The commutation relation between null translations
and boosts along the horizon in a half-sided modular inclusion is exactly (3.12),
which corresponds to a modular Anosov structure, and allows to recover some of
the Poincaré symmetry, following [134].

These emergent half-sided modular inclusions relate to the emergence of a thermo-
dynamic arrow of time in the bulk. Recalling the interpretation of the nesting of the
algebras inside a K/refining system, the fact that the algebra of observables becomes
smaller and smaller can be interpreted as some emergent form of information loss.

Remark on the role of type III1

In [294, 293, 295], it was pointed out that the emergence of type III1 factors in
the semiclassical limit of holography is a crucial feature in order to allow for the
emergence of spacetime. What is now easy to note is that while type III1 is necessary
(mixing can only happen in a type III1 factor [183]), it may not be sufficient on its
own to guarantee the emergence of a good notion of “horizon" physics. Indeed,
properties attached to half-sided modular inclusions, like the Anosov property and
the K-property, are analogs of strictly stronger properties from the ergodic hierarchy.

Some open questions
It would be very interesting to reverse the logic of this letter, and to ask whether
given a holographic theory the 𝐺𝑁 → 0 limit, some notions of horizons, emergent
times and local Poincaré symmetry appear in the bulk. It has been shown here that it
may be possible to make progress on such a question by studying where the𝐺𝑁 → 0
limit of the theory sits in the ergodic hierarchy.
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Figure 3.1: The half-sided modular inclusions of Leutheusser–Liu, which are rein-
terpreted here as quantum Anosov systems. The algebrasN+ andN− represent the
strict algebras of the right wedge algebraM of the thermofield double. They can
be obtained from null translations along the horizon which, together with modular
flow, give rise to an Anosov structure.

In the case of AdS/CFT, the relevant case is that of the large 𝑁 theory, which
corresponds to generalized free fields. It was shown in [236] and reinterpreted in
modern language in [183] that the absolute continuity of the spectral density of these
fields with respect to the Lebesgue measure guarantees that at finite temperature, the
dynamics is strongly mixing at the level of the von Neumann algebra. In particular,
this implies that the corresponding von Neumann algebra has type III1. But what
about the higher levels of the ergodic hierarchy introduced here? In particular:

• When is the K-property satisfied for generalized free fields at finite tempera-
ture?

• To what extent can the K-property characterize the semiclassical nature of a
bulk theory?

• Can the K-property be leveraged to obtain a notion of arrow of time, horizon
physics and black hole interiors even when the bulk theory is subject to strong
stringy effects? See [197].
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C h a p t e r 4

TOWARD STRINGY HORIZONS

This chapter is based on the work [197], in collaboration with Hong Liu.

4.1 Introduction
In the semiclassical gravity description,1 an event horizon is a boundary beyond
which events cannot affect an asymptotic observer. While originally defined in
terms of the causal structure of a spacetime, event horizons have also played crucial
roles in many other aspects of black hole physics, including the discovery of Hawking
radiation and black hole thermodynamics.

In string theory, the semiclassical gravity description serves as a low-energy effec-
tive theory, arising in the limit where Newton’s constant 𝐺𝑁 and the string length
ℓ𝑠 (or 𝛼′ = ℓ2

𝑠 ) both approach zero. At finite 𝐺𝑁 , spacetime fluctuations prevent
sharp definitions of geometric concepts such as event horizons, causal structure,
and spacetime subregions. It is natural to ask whether these concepts can still be
precisely formulated in the so-called “stringy regime,” where 𝐺𝑁 approaches zero
while 𝛼′ remains finite. In this regime, while there are no quantum gravitational
fluctuations, fundamental objects are one-dimensional strings, which probe space-
time very differently from point particles. In particular, sharp locality used in the
current formulations of these concepts may not be compatible with the intrinsic
non-locality brought by the finite size of these strings. Despite much progress in our
understanding of string theory, there have been very limited tools for approaching
this question.

In this chapter, we propose a definition of event horizons for holographic grav-
itational systems in the stringy regime in terms of their boundary duals. As a
prototypical example, consider N = 4 Super-Yang-Mills (SYM) theory with gauge
group 𝑆𝑈 (𝑁), which is dual to IIB string theory on AdS5 × 𝑆5. The semi-classical
regime of the bulk gravity theory corresponds to the 𝑁 → ∞ and 𝜆 → ∞ (𝜆 is the
’t Hooft coupling) limit of the SYM theory, while the stringy regime corresponds
to 𝑁 →∞ with 𝜆 kept finite. Suppose the SYM theory is in the thermofield double
state above the Hawking-Page temperature [230], which in the 𝑁 →∞ and 𝜆→∞

1By semiclassical gravity, we mean classical Einstein gravity (with possible higher derivative
corrections) and quantum field theory in a curved spacetime.
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limit is dual to an eternal black hole in AdS5 [455, 318]. Now consider the system at
finite 𝜆. We will argue that the bulk is described by a stringy black hole and provide
tools to explore the corresponding stringy horizon.

The starting point of our proposal is the subregion-subalgebra duality introduced
in [294, 295], which provides a new framework for understanding the emergence of
bulk spacetime from the boundary theory in the semi-classical regime. The duality
states that a bulk subregion 𝔬 can be described by a subalgebraM𝔬 of the boundary
theory.

M𝔬 includes all physical operations that can be performed by bulk observers in
the region 𝔬, and encodes its geometric, causal, and entanglement structures. For
example, the inclusion of one bulk spacetime region 𝔬1 in another region 𝔬2 is
described by inclusion of the corresponding dual boundary subalgebrasM𝔬1 ⊂ M𝔬2 .
That 𝔬1 and 𝔬2 are causally disconnected corresponds to the fact thatM𝔬1 andM𝔬2

commute. The entanglement structure of a region 𝔬 is reflected in thatM𝔬 is a type
III1 von Neumann algebra and associated algebraic properties.

Philosophically, subregion-subalgebra duality is reminiscent of Gelfand duality in
mathematics, where a topological space can be equivalently described by the alge-
bras of functions on that space. Here the collection of boundary subalgebras {M𝔬}
captures not only the geometric information on the bulk spacetime, but also all the
physics defined on it.

Now suppose the boundary subalgebraM𝔬 for a bulk subregion 𝔬 can be extended to
finite 𝜆. We can consider usingM𝔬 as a definition of the bulk region 𝔬 in the stringy
regime. If that can be shown to be sensible, the commutation relations among
different algebras can then be used to define the causal structure of the emergent
bulk spacetime in the stringy regime, which should in turn enable the definition of
an event horizon.

As an illustration, consider the algebra S𝐼 generated by single-trace operators local-
ized within a time band 𝐼 = (−𝑡0, 𝑡0) in the vacuum sector of the boundary theory2.
In the large 𝜆 limit, it has been argued [294, 295] to be dual to a spherical Rindler
region 𝔞 in empty AdS (see Fig. 4.1). The bulk diamond region 𝔟, which is the
causal complement of 𝔞 in the bulk, can be described by the boundary subalgebra
S′
𝐼
, the commutant of S𝐼 . It is then natural to use S𝐼 and S′

𝐼
at finite 𝜆 to define the

corresponding subregions 𝔞 and 𝔟 in the stringy regime.
2In the 𝑁 → ∞ limit, boundary operators at different times are independent, and the space of

states in the boundary theory splits into disjoint sectors associated with semi-classical states.
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Figure 4.1: A simple illustration of subregion/subalgebra duality in the vacuum
state of strongly coupledN = 4 Super-Yang–Mills theory. The region 𝔞, a spherical
Rindler region in the bulk, is dual to the algebra S𝐼 of large 𝑁 boundary observables
in the time band 𝐼 = (−𝑡0, 𝑡0). The bulk diamond 𝔟, which does not touch the
boundary, can be identified with the commutant of the algebra S𝐼 .

In the large 𝑁 limit, the bulk theory is free, and the boundary theory is a generalized
free field theory. The algebraM𝔬 dual to a bulk region 𝔬 is then recovered from
all the algebras generated by individual single-trace operators. This feature extends
to finite 𝜆. In particular, if we consider a specific spacetime field corresponding
to a stringy excitation, it should still be described by a free quantum field theory
in a curved spacetime. Similarly, on the boundary each single-trace operator is
still described by a generalized free field, and the discussion of operator algebras
associated with each single-trace operator goes exactly as that in the 𝜆→∞ limit.

There are, however, two possible complications in usingM𝔬 as a definition of 𝔬 in
the stringy regime:

1. In the semiclassical limit, all bulk fields in the Einstein gravity “see” the
same geometry, which is the statement of the “equivalence principle.” In
the stringy regime, the equivalence principle may be broken, indications of
which can already be seen perturbatively in 𝛼′ by including higher derivative
corrections. Due to such corrections, different bulk fields may “see” different
effective spacetime metrics3.

3An explicit example was given in [86], where adding the Gauss-Bonnet term to the Einstein
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Figure 4.2: A cartoon of how the notion of spacetime may break down in the
stringy regime. The bulk region “seen" by a boundary field or another from a
given boundary subregion may differ depending on the field - two such regions are
represented in blue and red. If these two fields interact, the difference between these
two spacetime geometries may become blurry.

Thus it can be that in the stringy regime, sharp definitions of subregions or
horizons can be given for each bulk free field, but the definitions differ for
different fields. That is, a universal definition that is common to all fields
may not exist. In particular, interactions among the fields may lead to a
nonlocal smearing of the boundaries or horizons of subregions, see Fig. 4.2
for a cartoon.

It may also happen in certain stringy spacetimes, sharp subregions in general
cannot be defined, but an event horizon universal to all stringy fields may still
be sharply defined.

In terms of boundary subalgebras, in the 𝜆 → ∞ limit, the equivalence
principle implies that properties of different factors in M𝔬 associated with
different single-trace operators should “conspire” to describe the same bulk
region 𝔬.

action leads to different effective metrics for different components of metric perturbations.
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Non-existence of a definition universal to all fields should then be reflected in
the breaking of this “conspiracy” among factors ofM𝔬 by finite 𝜆 effects.

2. There is a Hagedorn growth in the number of single-trace operators inM𝔬,
dual to stringy modes in the bulk. Given that the Hagedorn growth is what
distinguishes a string theory from a field theory with an infinite number of
fields4, it may be expected to have fundamental implications for the structure
ofM𝔬.

Despite the above possible complications,M𝔬 provides a framework and powerful
new tools where questions about bulk stringy geometry can be explored. For
example, identifying sharp signatures that algebras of different single-trace operators
“reconstruct” different bulk spacetime geometries may give insight into the nature
of stringy nonlocality, and lead to clues on how to characterize stringy geometry.

Motivated by the above considerations, we will use the structure of boundary alge-
bras to explore geometric aspects of the bulk in the stringy regime, and propose a
diagnostic for existence of stringy horizons. Here is a summary of the main results
of the chapter:

1. A causal depth parameter, which is also well-defined in the stringy regime, is
introduced to quantify the “depth” of the emergent radial direction.

In the large 𝑁 limit, the causal depth parameter can be calculated for each
single-trace operator by using its boundary spectral function. It measures
the depth of the bulk as probed by the bulk field dual to the single-trace
operator. Different values of the causal depth parameter for different single-
trace operators would be a direct signature that in the stringy regime different
fields “see” different bulk geometries.

We show that for a CFT in the vacuum state (dual to empty AdS), all bulk
fields have the same causal depth parameter. The same statement applies to
the thermofield double state below the Hawking-Page temperature.

The computation of the causal depth parameter exactly maps to a well-studied
problem from harmonic analysis, which is known as the exponential type
problem. In many physically relevant situations, this connection makes it

4IIB supergravity on AdS5 × 𝑆5 already has an infinite number of fields in AdS5 from the
Kaluza-Klein reduction on 𝑆5.
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possible to gain information about the causal depth parameter, in particular
whether it is finite or not, without knowing the specific form of the spectral
function.

2. We give a boundary diagnostic for the existence of stringy horizons using the
causal depth parameter and the existence of half-sided modular inclusions.

As an example, we argue that the thermofield double state of theN = 4 SYM
theory above the Hawking-Page temperature should have a stringy horizon
at finite (nonzero) 𝜆. In contrast, the IOP model [246] does not, despite
exhibiting information loss and type III1 algebras.

3. We introduce an algebra to characterize the structure of a stringy horizon (or
a stringy entangling surface), and discuss how to calculate the 𝑂 (𝑁0) part of
its generalized entropy.

4. We introduce a modular depth parameter which can be used quantify the
“depth” of the emergent radial direction using modular flows of boundary
subalgebras.

This makes it possible to explore an extension of entanglement wedge recon-
struction to the stringy regime, and gives a diagnostic for the corresponding
RT surfaces/QES [401, 242, 162]. Using the same techniques as the ones
developed in the case of event horizons, we define a QES algebra associated
to such stringy quantum extremal surfaces.

We also discuss to what extent the algebraic ER = EPR proposal [155] can be
extended to the stringy regime, and propose a possible resolution of a question
raised in [155] about spacetime connectivity for an evaporating black hole
before and after the Page time.

The plan of the chapter is as follows. In Sec. 4.2 we introduce the causal depth
parameter and give a criterion for the existence of a stringy horizon. We also
discuss some examples. In Sec. 4.3 we introduce the modular depth parameter and
discuss a diagnostic of stringy RT surface/QES. In Sec. 4.4 we conclude with some
implications of our results and future perspectives.
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Notations and conventions:

• Single-trace operator algebras associated to a field 𝜙 are denoted S𝜙.

• Unless mentioned otherwise, in this chapter an algebra always means a von
Neumann algebra of operators acting explicitly on a Hilbert space.

• The Fourier transform of a function 𝑓 (𝑡) is by default denoted by 𝑓 (𝜔).

• Without indication,
∫
𝑑𝑡 ≡

∫ ∞
−∞ 𝑑𝑡.

• 𝜃 (𝜔) is the Heaviside step function.

• In this chapter, all Hilbert spaces are separable.

• B(H) denotes the algebra of bounded operators on the Hilbert spaceH

• Throughout the text, we assume that all manipulated distributions satisfy the
conditions to be tempered. This allows us to take Fourier transforms without
ambiguity in our proofs.

4.2 Causal depth parameter and stringy horizons
In this section we motivate and define a new quantity, which we call causal depth
parameter, and use it to diagnose the emergence of a causal structure, a radial direc-
tion, and horizons in the bulk. We also introduce a horizon algebra to characterize
stringy horizons. We use N = 4 SYM theory on 𝑆3 as the prototypical example,
and work in the large 𝑁 limit throughout. For convenience we take the radius of the
boundary sphere to be 1.

Causal depth parameter and stringy horizons: the TFD state
Consider two copies of the boundary CFT in the thermofield double (TFD) state. In
the large 𝑁 limit (for all 𝜆), the system is believed to have a Hawking-Page transition
at some temperature 𝑇HP [5]. For 𝑇 < 𝑇HP, the free energy is of order 𝑂 (𝑁0). Fur-
thermore, thermal Euclidean two-point functions of single-trace operators are given
from the vacuum ones by summing over images in the Euclidean time circle [85],
which implies the thermal spectral function has a discrete spectrum. For 𝑇 > 𝑇HP,
the free energy is of order𝑂 (𝑁2), and thermal spectral functions for general single-
trace operators are believed to have a complete spectrum [172]. If we further take
the large 𝜆 limit, then the boundary system is dual to thermal AdS which consists of
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𝑡0

−𝑡0

𝔞𝔟

(a) The Penrose diagram of an AdS-
Schwarzschild two-sided black hole.
For all times 𝑡0, the bulk alge-
bra 𝔞 dual to the single trace alge-
bra S(−𝑡0,𝑡0 ) has a nontrivial relative
commutant 𝔟 in S𝑅. Topologically,
this means that the bulk never fills up
and there is a bifurcate horizon.

(b) A depiction of thermal AdS (right
copy). The left copy in the ther-
mofield double state is disconnected
and not shown. Contrary to the AdS-
Schwarzschild case, the region 𝔞1
dual to S(−𝑡1,𝑡1 ) for 𝑡1 < 𝜋

2 has a
nonempty relative commutant 𝔟1 in-
side S𝑅, but for 𝑡2 > 𝜋

2 , S(−𝑡2,𝑡2 ) is
equivalent to the full right copy, is
equal to S𝑅. This means that the
bulk “fills up" for 𝑡1 > 𝜋

2 , and there
is no bifurcate horizon.

Figure 4.3: Diagnosing the presence of a bifurcate horizon from the algebraic
structure of boundary time bands.

two copies of AdS (in an entangled state) for 𝑇 < 𝑇HP, and for 𝑇 > 𝑇HP to an eternal
black hole [318]. See Fig. 4.3.

The obvious geometric difference between thermal AdS and the eternal black hole is
that the black hole geometry is connected, with a bifurcate horizon separating the 𝑅
and 𝐿 regions of the black hole, whereas two copies of thermal AdS are disconnected.
We now would like to generalize the notions of connectedness and horizon to the
corresponding bulk dual at finite 𝜆where we no longer have a geometric description.
In order to do so, we will first provide an algebraic characterization of these geometric
features, after which the generalization to finite 𝜆 is immediate.

We denote the single-trace operator algebras for the CFT𝑅,𝐿 in the large 𝑁 limit
respectively by S𝑅 and S𝐿 . They are respectively dual to the bulk regions 𝑅 and 𝐿.
In particular, in the case of thermal AdS, the bulk 𝑅-region is simply the right copy
of AdS.

Consider an open time interval 𝐼 = (−𝑡0, 𝑡0) on the right boundary and the associated
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single-trace time band operator algebra S𝐼 . By definition we have S𝐼 ⊆ S𝑅. For the
bulk dual given by the black hole geometry, it has been argued that S𝐼 is equivalent
to the bulk algebra in the spherical Rindler region 𝔞 represented on Fig. 4.3 (a) [294,
295]. The existence of a horizon (or more coarsely, the fact that both sides of the
black hole are connected) implies the geometric statement that for any choice of 𝑡0,
𝔞 only covers a proper subset of the 𝑡 = 0 Cauchy slice of the 𝑅-region of the black
hole. In other words, when the two sides of the thermofield double are connected,
the 𝑅-region can never be “filled up” by spherical Rindler regions, no matter how
large 𝑡0 is. In contrast, consider the copy of thermal AdS represented on Fig. 4.3
(b). There, 𝔞 covers a full Cauchy slice of the 𝑅-region for 𝑡0 ≥ 𝜋

2 .

The above geometric statement can be rephrased algebraically by saying that for the
black hole geometry, the algebra S𝐼 is a strict subalgebra of S𝑅 for any 𝑡0. More
explicitly, the commutantS′

𝐼
is equivalent to the bulk causal complement of 𝔞, which

includes the red shaded region and the striped region 𝔟. The relative commutant of
S𝐼 in S𝑅 is given by S′

𝐼
∩ S𝑅 and is equivalent to the striped bulk region 𝔟. This

is to be contrasted with the thermal AdS case, where we have S′
𝐼
∩ S𝑅 = ∅ (or

equivalently S𝐼 = S𝑅) for 𝑡0 ≥ 𝜋
2 . Such algebraic statements are powerful, as they

do not refer to any geometry, and thus can immediately be generalized to diagnostics
of the presence or absence of a horizon in the stringy regime at finite 𝜆.

The above discussion motivates the following definition:

Definition 4.2.1. The two sides of the thermofield double are stringy-connected if
the algebra S(−𝑡0,𝑡0) is a strict subalgebra of S𝑅 for any finite value of 𝑡0.

In the case where the two sides of the thermofield double are not stringy-connected,
we can also probe the depth of the emergent radial direction thanks to the following:

Definition 4.2.2. The causal depth parameter T of a large 𝑁 thermofield double
state is the largest value of 2𝑡0 for which the algebra S(−𝑡0,𝑡0) is a strict subalgebra of
S𝑅.

From Definition 4.2.2, bulk geometry gives that in the 𝜆→∞ limit

T =


𝜋 𝑇 < 𝑇HP

∞ 𝑇 > 𝑇HP
. (4.1)

In Sec. 4.2, we will give a purely boundary argument for (4.1), and show that it
generalizes to finite 𝜆. Using Definition 4.2.2, Definition 4.2.1 can also be stated by
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Figure 4.4: A heuristic picture of the depth parameter in thermal AdS. In this case,
there is a point, depicted in red, which sits at the “center" of the bulk. The depth
parameter T can be seen as the boundary time interval that can be reached by
shooting light rays from this point. Here, T = 𝜋.

requiring that
T = ∞ . (4.2)

Intuitively, in the semi-classical limit, the depth parameter quantifies the depth of
the bulk 𝑅-region, by relating this depth to the time width of the boundary region
obtained by sending light rays from a bulk point. See Fig. 4.4. Note that when there
is a horizon, clearly by definition, T is infinite. In [153], such considerations were
in fact used to characterize the depth of the bulk geometry using the bulk causal
structure, and in [359], a quantum circuit model following the same line of thought
was constructed. Here we have given an intrinsic boundary definition in terms of
the commutant structure, which can in turn be used to characterize the bulk causal
structure in the stringy regime.

The depth parameter also has an interesting boundary interpretation. It is the mini-
mal width of a time interval such that the knowledge of the algebra of observables
localized in the interval is enough to determine the full algebra of the 𝑅-system.
For example, in the case of thermal AdS, S𝐼 = S𝑅 for 𝑡0 > 𝜋

2 , i.e., we already have
access to all the operations in the 𝑅-system given such an S𝐼 . But in the case of
a black hole, it is not possible to have access to the full S𝑅 for any 𝑡0. For the
theory at finite 𝑁 , access to the operator algebra on a single Cauchy slice suffices to
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determine its future evolution. But the large 𝑁 limit, such a property breaks down
as there are no equations of motion. This is related to the loss of determinism on the
boundary in the large 𝑁 limit. Hence there is a sense that the large 𝑁 limit leads to
information loss even in the vacuum sector, although in the end all the information
can be recovered by having access to the operator algebra for a time band with
finite 𝑡0 > 𝜋

2 . In the black hole sector, information loss is more drastic: one can
never recover all the information even with access to operator algebras of finite time
bands of arbitrary width. The causal depth parameter T can thus also be viewed as
quantifying the amount of information loss there is in the system. Whenever it is
nonzero, there is a loss of determinism. Under this interpretation, it is not only the
formation of black holes, but also the emergence of the whole radial direction, that
is related to information loss. It should also be mentioned that even systems with
T = 0 can have information loss, as we will see in an example later.

In the semiclassical regime, while an event horizon is defined through the causal
structure, it also has many other properties. For example, it is also a hypersurface of
infinite redshift, a property that plays an essential role for the existence of Hawking
radiation. In particular, it implies that quantum fields living outside the black
hole must have spectral support for arbitrarily small frequencies (in terms of the
Schwarzschild time). We would like to have a definition for a stringy black hole that
still retains this property. As we will discuss later in Sec. 4.2, Definition 4.2.1 does
not by itself imply that quantum fields living outside such a “horizon” have spectral
support for arbitrarily small frequencies. We will now formulate an additional
condition to ensure that.

An important property associated with a horizon in the semi-classical regime is the
existence of not only a bifurcation surface, but also half-sided modular inclusions
along the future or past horizon (see Fig. 4.5). In the TFD state, modular flow
coincides with time translation. The existence of a half-sided modular inclusion
then requires that the algebra of a semi-infinite time band is a strict subalgebra of
S𝑅. This a strictly stronger condition than Definition 4.2.1, as it involves semi-
infinite intervals and not only finite intervals. While it may not be immediately
intuitive, we will show in Sec. 4.2 that the emergence of a half-sided inclusion
ensures that the spectral support of bulk quantum fields includes arbitrarily small
frequencies. While Condition 1 captures some form of connectivity, it is only
Condition 2 that guarantees all the properties of horizons. We therefore propose the
definition:
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Definition 4.2.3. There is a stringy horizon in the thermofield double state if the
subalgebra S(0,∞) is a strict subalgebra of S𝑅.

Note that by invariance under time translation and time reversal, this definition
implies that S(𝑡0,∞) is a strict subalgebra of S𝑅, and similarly for S(−∞,𝑡0) , for all
values of 𝑡0.

Instead of imposing the condition of half-sided inclusion, we could imagine defining
the existence a stringy horizon by imposing the requirement that the system is
“chaotic.” There are various possible levels of chaos in a system [191, 367]. For
example, one possible requirement is that two-point functions cluster in time, i.e.,
decay with time. In particular, if 𝜌(𝑡) clusters exponentially fast, i.e., for some
constants 𝐶 > 0 and 𝛼 > 0,

|𝜌(𝑡) | ≤ 𝐶𝑒−𝛼𝑡 , (4.3)

then 𝜌(𝜔) is analytic on a strip, therefore it can only vanish on isolated points. We
will see in Sec. 4.2 that under mild assumptions, if 𝜌(𝜔) vanishes only at the origin,
we can show that there is an emergent half-sided modular inclusion in the system.
The condition (4.3) gives the weaker condition that 𝜌(𝜔) vanishes at an at most
countable number of points on the real axis. It would be interesting to see to what
extent a half-sided inclusion also emerges under this weaker assumption.

We also note that by definition
∨
𝑡0>0
S𝐼 = S𝑅, and thus even in the case T = ∞, we

have
⋂
𝑡0>0
(S′

𝐼
∩ S𝑅) = C. In particular if we want to define an algebra of operators

associated with the bifurcate horizon, it is not enough to consider
⋂
𝑡0>0
(S′

𝐼
∩ S𝑅).

One instead needs to perform a sequential construction which will be described in
Section 4.2.

We can similarly define a depth parameter and horizons using time band subalgebras
of S𝐿 . For the thermofield double state, there is an antiunitary operator 𝐽 that takes
S𝑅 to S𝐿 and vice versa. As a result, all the results presented here follow in an
exactly analogous manner for S𝐿 . In particular, as we will see in Sec. 4.2, there is a
precise sense in which the horizon defined using S𝐿 coincides with the one defined
using S𝑅.

Causal depth parameter and stringy horizons for general states
The definitions of causal depth parameter and stringy horizon in the thermofield
double state, as discussed above, can be readily generalized to general semi-classical
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N+

N−

Figure 4.5: Half-sided inclusions for future and past horizons. In the thermofield
double state at strong coupling and high temperature, the algebras N+ and N−,
which supported on future and past semi-infinite time intervals, are dual to the red
and blue wedges in the bulk, respectively. In particular, it is the fact that they are
inequivalent to the full algebra of right boundary observables that allows for the
emergence of nontrivial future and past half-sided modular inclusions, which we
will promote to a definition of a horizon in the TFD state in the stringy regime.

two-sided and single-sided states. Note, however, that we defer the generalization
of the notion of stringy connectivity until Section 4.3.

We refer to a state in the boundary theory as semi-classical if it has a semi-classical
bulk dual in the large 𝑁 and large 𝜆 limit. We would like to probe the corresponding
bulk dual in the stringy regime with a finite 𝜆.

First consider a general semi-classical two-sided state |Ψ⟩ in the 𝜆 → ∞ limit. See
Fig. 4.6 for some cartoon examples. Denote byM𝑅 the algebra of operators of the
𝑅-system in the large 𝑁 limit. In the case of TFD state we have S𝑅 =M𝑅, and time
translations coincide with modular flows. But in general we have S𝑅 ⊂ M𝑅 and the
state is not time translation invariant.5 Nevertheless, the definition of causal depth
parameter and the diagnostic of a horizon are largely not affected except that there is
no symmetry between left and right, and the depth parameter can be time-dependent.

Definition 4.2.4. The right causal depth parameter T𝑅 (𝑡) of a large 𝑁 two-sided
state is the largest value of 2𝑡0 for which the algebra S(𝑡−𝑡0,𝑡+𝑡0) is a strict subalgebra
of S𝑅.

5As we will discuss further in Sec. 4.3, there may be additional operators generated by modular
flows. Due to these complications that we will introduce a more general definition of stringy
connectivity in Sec. 4.3.
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(a) The “long black hole," a con-
nected two-sided geometry.

(b) A disconnected two-sided geom-
etry with bifurcate horizons.

(c) A disconnected two-sided geom-
etry without horizons.

(d) A disconnected two-sided geom-
etry with future horizons.

Figure 4.6: Cartoons for various types of two-sided states. These examples also
illustrate that the causal depth parameter does not allow to predict spacetime con-
nectivity in a general state. The cases (a) and (b) both have infinite causal depth
parameter, but (a) is connected whereas (b) is disconnected. Similarly, (b) and (c)
are both disconnected but (b) has infinite causal depth parameter while (c) has finite
causal depth parameter. Finally case (d) is disconnected but has a future horizon.

Definition 4.2.5. A large 𝑁 two-sided state has a right bifurcate horizon if semi-
infinite future and past time band algebras are proper subalgebras of S𝑅.

In fact, it is enough to show that the causal depth parameter T𝑅 (𝑡) is infinite for one
value of 𝑡, since then it is infinite for all values of 𝑡. Indeed, fix 𝑡′ ∈ R. For all
values of 𝑡0, the interval (𝑡′ − 𝑡0, 𝑡′ + 𝑡0) is included in some interval of the form
(𝑡 + 𝑇, 𝑡 − 𝑇) where we have chosen 𝑇 large enough. The algebra of that interval is
a strict subalgebra since T𝑅 (𝑡) = ∞, therefore, so is the algebra of (𝑡′ − 𝑡0, 𝑡′ + 𝑡0).

We can also diagnose the future and past horizons as

Definition 4.2.6. A large 𝑁 two-sided state has a nontrivial right future horizon
after time 𝜏 if the algebra S(𝜏,∞) is a strict subalgebra of S𝑅.

Definition 4.2.7. A large 𝑁 two-sided state has a nontrivial right past horizon before
time 𝜏 if the algebra S(−∞,𝜏) is a strict subalgebra of S𝑅.

There are parallel definitions for the 𝐿-system. Note that in the case of a state that is
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invariant under time translations such as the thermofield double, all three definitions
coincide.

When T𝑅 (𝑡) is finite, i.e., the 𝑅-region has a finite depth, the bulk geometry should
necessarily be disconnected. But as indicated in Fig. 4.6, T𝑅 (𝑡) being infinite does
not say anything whether the bulk geometry is connected or disconnected. To
diagnose whether the bulk geometry is connected requires the further developments
of Sec. 4.3 and will be discussed in Sec. 4.3.

The above definitions can also be straightforwardly adapted for a single-sided semi-
classical state (i.e., with only one boundary). We just need to change two-sided state
to single-sided state and remove the word “right” in various places. For example,

Definition 4.2.8. The causal depth parameter T (𝑡) of a large 𝑁 single-sided state is
the largest value of 2𝑡0 for which the algebra S(𝑡−𝑡0,𝑡+𝑡0) is a strict subalgebra of S.

Here S is the single-trace operator algebra for the full boundary.

The causal depth parameter from the spectral function
In this subsection we show that the causal depth parameter can be determined by the
spectral function of the boundary theory. In fact, it is equal6 to an invariant known
in harmonic analysis as the exponential type.

In the large 𝑁 limit, in a semi-classical state, correlation functions of single-trace
operators factorize into sums of products of two-point functions. Consequently, there
is a generalized free field theory around the state for each single-trace operator. We
can diagonalize two-point functions such that different operators do not mix, and
thus each generalized free field generates its own algebra. The full algebra is then
recovered from all the algebras associated to individual fields.

In this subsection, we will consider only one (Hermitian) generalized free field 𝜙
acting on the GNS Hilbert space of some semi-classical state |Ψ⟩, which can be
the TFD state, the vacuum or other two-sided/single-sided states. We will return
to the problem of assembling the results obtained for each individual field later in
this section. In the case of a two-sided state, 𝜙 should be understood as 𝜙𝑅, i.e., a
generalized free field in the CFT𝑅. For details on the setup, see Appendix 4.6. For
convenience we will assume |Ψ⟩ is time translation invariant and suppress possible
spatial directions for notational simplicity.

6Up to a technicality.
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Consider the commutator

𝜌(𝑡 − 𝑡′) ≡ ⟨Ψ| [𝜙(𝑡), 𝜙(𝑡′)] |Ψ⟩ (4.4)

which satisfies 𝜌∗(𝑡) = 𝜌(−𝑡) = −𝜌(𝑡). The Fourier transform of 𝜌(𝑡) is called the
spectral function and satisfies the properties

𝜌(−𝜔) = −𝜌(𝜔), 𝜖 (𝜔)𝜌(𝜔) ≥ 0 . (4.5)

In the TFD state 𝜌(𝜔) is related to the Wightman function as

𝐺+(𝜔) =
𝜌(𝜔)

1 − 𝑒−𝛽𝜔
, (4.6)

while in the vacuum state we have

𝐺+(𝜔) = 𝜃 (𝜔)𝜌(𝜔) . (4.7)

The algebra S𝜙 associated with the field 𝜙 is generated by the

𝜙( 𝑓 ) =
∫

𝑑𝑡 𝑓 (𝑡)𝜙(𝑡) (4.8)

with 𝑓 (𝑡) real and normalizable in terms of the inner product

⟨ 𝑓1, 𝑓2⟩𝛽 =
∫

𝑑𝜔

2𝜋
𝑓 ∗1 (𝜔) 𝜃 (𝜔)𝜌(𝜔) 𝑓2(𝜔) . (4.9)

In the above equation, 𝑓1(𝜔) is the Fourier transform of 𝑓1(𝑡), with 𝑓1(−𝜔) = 𝑓 ∗1 (𝜔).

For a general state (not equal to vacuum), normalizability for the inner product (4.9)
is too weak. On top of this normalizability, we need to impose the extra condition
that 𝑓 is in the domain of the operator of multiplication by 𝔟− defined in Eq. (4.70).
In the case of a thermal state which will be of most interest to us, this is equivalent
to the stronger normalizability condition

⟨ 𝑓1, 𝑓2⟩𝛽 =
∫

𝑑𝜔

2𝜋
𝑓 ∗1 (𝜔) 𝜃 (𝜔)

𝜌(𝜔)
1 − 𝑒−𝛽𝜔

𝑓2(𝜔) . (4.10)

Note that in order to make these inner products positive definite in the case in which
the support of 𝜌(𝜔) is not the full real line, the set of the admissible 𝑓 (𝑡) should
also be quotiented out by the functions that are supported only outside the support
of 𝜌.

The subalgebra S𝐼 ⊆ S𝜙 for the time band 𝐼 = (−𝑡0, 𝑡0) is generated by 𝜙( 𝑓𝐼) with
the support supp 𝑓𝐼 (𝑡) ⊂ 𝐼. We are interested in whether this inclusion is strict. For a
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generalized free field, this question can be shown to be equivalent to asking whether
the relative commutant of S𝐼 in S𝑅, i.e., S′

𝐼
∩ S𝑅, is nonempty (see Appendix 4.6).

The presence of a nontrivial relative commutant indicates the existence of a region
in the emergent dual stringy spacetime that is spacelike to the operators in the causal
wedge of 𝐼.

The (relative) commutant of S𝐼 can be shown to be generated by 𝜙(𝑔), for 𝑔 real-
valued, satisfying

[𝜙(𝑔), 𝜙( 𝑓𝐼)] = 0 → (𝑔, 𝑓𝐼) ≡
∫

𝑑𝑡𝑑𝑡′ 𝑔(𝑡)𝜌(𝑡 − 𝑡′) 𝑓𝐼 (𝑡′) = 0 . (4.11)

Equation (4.11) by itself only says that the subalgebra generated by 𝜙(𝑔) belongs to
the (relative) commutant of S𝐼 . That it in fact generates the full relative commutant
follows from a theorem by Araki, which we review in Appendix 4.6. Equation (4.11)
can also be stated as the fact that 𝜙(𝑔) lies in the symplectic complement of the
subspace spanned by 𝑓𝐼 , since (𝑔, 𝑓 ), as defined by (4.11), is a symplectic product.

Condition (4.11) can also be phrased as the requirement that the support of the
convolution

(𝑔 ∗ 𝜌) (𝑡′) =
∫

𝑑𝑡 𝑔(𝑡)𝜌(𝑡′ − 𝑡), (4.12)

lies in the complement of 𝐼. It is convenient to write (4.11) and (4.12) in frequency
space ∫

𝑑𝜔

2𝜋
𝑔∗(𝜔)𝜌(𝜔) 𝑓𝐼 (𝜔) = 0, (𝑔 ∗ 𝜌) (𝜔) = 𝑔(𝜔)𝜌(𝜔) . (4.13)

Thus the relative commutant is fully determined by the spectral function 𝜌(𝜔).

It turns out that our question maps to a well-studied problem in harmonic analysis,
known as the exponential type problem. The exponential type problem is at the core
of some very deep recent results in mathematics and can be formulated as follows:

Exponential type problem: Given a measure 𝜌(𝜔), what is the smallest value
of T for which the Fourier transforms of compactly supported distributions on
(−T/2,T/2) become dense in 𝐿2(𝜌)?

The answer to the exponential type problem applied to the spectral density is exactly7

the depth parameter T . In Appendix 4.7, we review the state of the art on the
exponential type problem. While the general case is difficult, it turns out to be quite

7Assuming that in the finite temperature case, the extra constraint of normalizability with respect
to the inner product (4.9) for 𝛽 finite instead of infinite does not change the answer.
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simple to obtain T for various cases of interest for holographic applications, which
we will discuss in Sec. 4.2.

It is amusing to note that the exponential type problem was first introduced in the
work of Kolmogorov and others on chaos in classical dynamical systems (see for
example [284]), where they asked how much time is necessary to observe a system
for in order to be able to predict its whole evolution. Our discussion provides a
holographic interpretation of such a question. In particular, this relationship to
dynamical systems is closely related to the notion of information loss in a large 𝑁
system, which we commented on earlier in Sec. 4.2.

General statements on T and half-sided inclusions
In Sec. 4.2, we introduced two different notions:

(i) the notion of stringy connectivity in the thermofield double (for which T = ∞);

(ii) stringy horizons, in terms of half-sided inclusions of semi-infinite time band
algebras.

We saw that (ii) implies (i). Here we further clarify the different physics behind
these two conditions. We will see that (i) is only concerned with large frequency
behavior of the boundary generalized free field theory, while (ii) is concerned with
both large and small frequency behavior.

The value of the causal depth parameter T can be obtained from the largest value of
𝑎 for which an 𝑎-uniform, or 𝑎-regular, sequence can be embedded into the spectral
density of the generalized free field under consideration. While we refer the reader
to Appendix 4.7 for a detailed explanation of these notions, here we give an intuitive
account of their physical meaning.

Roughly speaking, an 𝑎-uniform or 𝑎-regular sequence can be seen as a sequence
of points that are embedded in the support of the spectral function, and that become
equally spaced with spacing 1/𝑎 as 𝜔→ ±∞. In other words, it is a sequence (𝜆𝑛)
such that

𝜌(𝜆𝑛) ≠ 0, 𝜆𝑛 ≈
𝑛

𝑎
+ 𝑐±, 𝑛→ ±∞, (4.14)

where the precise meaning of the symbol≈ is clarified in Appendix 4.7. In particular,
only the behavior at large frequencies matters when deciding whether a sequence is
𝑎-uniform or not.
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Since the depth parameter T is encoded in the largest value of 𝑎 for which an
𝑎-uniform sequence can be embedded in the spectral density, we deduce that the
value of T (and whether or not it is infinite) is solely encoded in the large-frequency
behavior of the boundary spectral function. However, we stress that it is not how
𝜌(𝜔) grows or decays with a large 𝜔—usually characterized as the UV behavior—
that is important here. Rather, it is the average spacing between the points in the
support of 𝜌 that is required to determine T .

In the semi-classical regime, while an event horizon is defined by the causal structure,
it is also a hypersurface of infinite shift. This implies that spectral functions of
matter fields outside it are supported at arbitrarily small frequencies, which is in
turn important for the thermal interpretation. The condition T = ∞ can be viewed
as the algebraic counterpart of the causal definition for an event horizon. The above
discussion tells us that whether T = ∞ or not is not sensitive to the behavior of 𝜌(𝜔)
at small𝜔. For example, 𝜌(𝜔) can have a gap near𝜔 = 0 and still give T = ∞. This
may be interpreted as an indication that, in the stringy regime, the causal condition
no longer warrants the desired spectral behavior needed for interpreting the horizon
as being “thermal." Thus a stronger condition is needed.

We now show that the condition of half-sided inclusion does require that 𝜌(𝜔) is
supported at all frequencies. To see it, we can prove the following proposition:

Proposition 4.2.9. In a (0+1)-D generalized free field theory at finite temperature
carrying a half-sided modular inclusion, the spectral function cannot vanish on any
open interval.

Proof. Suppose that there exists a nonzero function 𝑓 , normalizable for the inner
product (4.9), in the relative commutant of a half-infinite interval. Then, the Fourier
transform of 𝑓 (𝜔)𝜌(𝜔) must vanish on a half-infinite interval (without loss of
generality, say the positive reals). Now we can invoke Beurling’s uniqueness theorem
[57], for example the version given in Theorem 4 of [48], which we recall here:
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Theorem 4.2.10 ([48]). Suppose that 𝑇 is a tempered distribution on R and that the
complement of the support of 𝑇 contains the disjoint union of closed intervals

∞⋃
𝑛=1
[𝑙𝑛 − 𝑎𝑛, 𝑙𝑛 + 𝑎𝑛],

0 < 𝑙1 < 𝑙2 < · · · < 𝑙𝑛 < · · · → ∞,

that
∞∑︁
𝑛=1

(
𝑎𝑛

𝑙𝑛

)2
= ∞,

and that the Fourier transform 𝑇 vanishes on an open interval. Then, 𝑇 = 0.

In our case we can choose the times 𝑙𝑛 = 𝑒𝑛 and 𝑎𝑛 = 𝑒𝑛−1/2, to deduce that
𝑓 (𝜔)𝜌(𝜔) does not vanish on any open interval. In particular, this implies that
𝜌(𝜔) does not vanish on any open interval. □

We now give two physical examples where the depth parameter may be infinite but
there is no half-sided modular inclusion.

The spectral function 𝜌(𝜔, ®𝑘) of a free scalar field of mass 𝑚 at zero temperature
has the form

𝜌(𝜔, ®𝑘) = 𝑓 (−𝑘2)𝜃 (−𝑘2 − 𝑚2) (𝜃 (𝜔) − 𝜃 (−𝜔)), 𝑘2 ≡ −𝜔2 + ®𝑘2 . (4.15)

The spectral function has a spectral gap at 𝜔 = 0 for any ®𝑘 , but has a continuous
spectrum beyond the gap. The depth parameter is infinite, but there is no half-sided
inclusion, as expected of a system at zero temperature.

Another interesting example is the one of the so-called “primon gas" or “Rieman-
nium," whose spectral function is supported at the logarithms of the prime numbers
[265]. We have:

Proposition 4.2.11. The depth parameter of the Riemannium satisfies T = ∞, but
there is no stringy horizon in the Riemannium at any temperature.

Proof. Denote the 𝑛𝑡ℎ prime number by 𝑝𝑛. We construct a subsequence of the
(ln 𝑝𝑛) that is 𝑑-uniform in the sense of Appendix 4.7 in the following way: consider
the sequence 𝐼𝑛 = [𝑛(𝑛 + 1)/2, (𝑛 + 1) (𝑛 + 2)/2]. The energy condition (4.87) is
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automatically satisfied. Moreover we can always find |𝑛|𝑑 logs of prime numbers
in this interval for |𝑛| large enough, as the number of logs of prime numbers in an
interval of the form 𝐼𝑛 grows exponentially with 𝑛. Picking such |𝑛|𝑑 representatives
furnishes a 𝑑-uniform subsequence. This being true for all 𝑑, we deduce from
Proposition 4.7.7 that T = ∞. However the support of the spectral density is
discrete which makes it impossible for there to be a half-sided modular inclusion
according to Proposition 4.2.9. □

In contrast to the zero-temperature example (4.15), the Riemannium example shows
that finite temperature systems can have T = ∞, but no half-sided inclusion. This
exemplifies well the point that T = ∞ is only concerned with the large-frequency
behavior. In particular, the Riemannium does not exhibit enough chaos for there
to be a half-sided inclusion. Indeed, it can be seen as an infinite noninteracting
superposition of oscillatory modes, with frequencies ln 𝑝 for all prime numbers 𝑝.
For each of these modes there is no late time decay of the thermal two point function.

Examples
Finding the depth parameter in a generalized free field theory amounts to solving the
exponential type problem for the spectral density. While this is difficult in general,
in various cases relevant to holography it is possible to deduce whether it is infinite
or finite from the qualitative behavior of the spectral function without the need of
knowing its explicit form.

Various results are summarized in Table 4.1:

Theory Depth parameter

N = 4 SYM, 0 ≤ 𝑇 < 𝑇𝐻𝑃 T = 𝜋

N = 4 SYM at 𝜆 > 0, 𝑇 > 𝑇𝐻𝑃 T = ∞

IOP model and its generalizations at 𝑇 > 0 T = 0

Table 4.1: The depth parameter in the thermofield double state for various theories.
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Evenly spaced spectral density

We first consider the vacuum state of a 𝑑-dimensional CFT on 𝑆𝑑−1. For general 𝜆,
the spectral function of a single-trace operator with given angular quantum numbers
on 𝑆𝑑−1 has the form

𝜌0(𝜔) =
∞∑︁
𝑛=0

𝑎𝑛 [𝛿(𝜔 − 2𝑛 − 𝜔0) − 𝛿(𝜔 + 2𝑛 + 𝜔0)] , (4.16)

for some 𝜔0 ∈ R. The above form is determined by the conformal symmetry which
also completely fixes all the coefficients 𝑎𝑛.

If 𝜔0 is equal to zero or an integer multiple of 2, it is be fairly straightforward to
show that T = 𝜋: the Fourier transform of any function multiplied by 𝜌(𝜔) is
periodic of period 𝜋, so if it vanishes on an interval of width 𝜋 then it vanishes
everywhere, which establishes T ≤ 𝜋. If we further assume the 𝑎𝑛 do not decay
faster than polynomially, we can further construct explicit multiples of 𝜌(𝜔) whose
Fourier transforms vanish on an interval of the form

(
− 𝜋2 + 𝜀,

𝜋
2 − 𝜀

)
for all 𝜀 > 0,

which establishes T = 𝜋. This construction is detailed in Appendix 4.7.

The general case, however, is more complicated, but the basic idea is that a shift by
𝜔0 of the spectral function should not alter the result too much, as indicated by our
discussion of Sec. 4.2. This is formalized by a result due to Poltoratski [387], see
Appendix 4.7 for more details and intuition on this result. Since 𝜌 is separated (i.e.,
there is a minimal spacing between its peaks), and∑︁

𝑛

|ln 𝑎𝑛 |
1 + 𝑛2 < ∞, (4.17)

we can apply Theorem 4 of [387]. The only value of 𝑎 for which the counting
function 𝑛𝜌 of 𝜌(𝜔) satisfies ∫

𝑛𝜌 (𝑥) − 𝑎𝑥
1 + 𝑥2 𝑑𝑥 < ∞ (4.18)

is 𝑎 = 1
2 , so that by Theorem 4 of [387],

T =
2𝜋
2

= 𝜋. (4.19)

Here the conclusion applies to all single-trace operators, and thus all bulk stringy
fields have the same causal depth.
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Theorem 4 of [387] is stated in a way that only considers summable spectral func-
tions, however, they still hold for our spectral functions, which have polynomial
growth [388].

Note that technically, the results of [387] only guarantee the existence of a complex-
valued test function 𝜑 such that 𝜑 ∗ 𝜌 vanishes on an interval of width 𝜋, whereas
we need a real-valued one. However, since 𝜌 takes imaginary values, we also have
that 𝜑∗ ∗ 𝜌 vanishes on an interval of width 𝜋, so (𝜑 + 𝜑∗)/2, which is real-valued
also vanishes on an interval of width 𝜋.

The above discussion also applies to the TFD state below the Hawking–Page tem-
perature since there the spectral density has the same form [85] as well, and the
normalizability condition (4.9) is equivalent to normalizability with respect to 𝜌

(without the temperature-dependent factor) for discretely supported spectral den-
sities. From the above, we deduce that in the vacuum state or in the TFD state
below the Hawking-Page transition, the depth parameter is independent of 𝜆. That
is, the geometric picture of empty AdS may extend to finite 𝜆. The statement may
not be surprising as empty AdS is the only geometry that is invariant under all the
conformal symmetries.

Compact spectral density

As our next case, suppose the spectral function 𝜌(𝜔) has compact support on the
frequency axis.

Proposition 4.2.12. If the spectral density is compactly supported, then T = 0.

Proof. From our discussion of last subsection, to find the (relative) commutant of
S(−𝑡0,𝑡0) we need to identify 𝑔(𝑡) such that (4.12) does not have support in (−𝑡0, 𝑡0).

Since 𝜌(𝜔) is compactly supported, so is 𝑔(𝜔)𝜌(𝜔). By Fourier inversion for
tempered distributions and the Schwartz–Paley–Wiener theorem, (𝑔 ∗ 𝜌) (𝑡) is an
entire function of 𝑡. If it vanishes on an open interval, then it has to be identically
zero. We thus conclude the (relative) commutant of S(−𝑡0,𝑡0) is trivial for any 𝑡0.
That is, T = 0. □

An explicit example of a compact supported spectral function is the IOP model [246],
which was proposed as a toy model of black hole information loss. It describes an
interacting 𝑁-dimensional vector 𝑎𝑖 coupled to a free 𝑁 × 𝑁 matrix. The dynamics
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of the vector is nontrivial, and exhibit information loss in the sense that thermal
two-point functions of 𝑎𝑖 decay to zero at late times. The corresponding spectral
function has a continuous spectrum, but is compactly supported. The continuous
spectrum means that the von Neumann algebra generated by 𝑎𝑖 (of the 𝑅 system) is
type III1 [137, 206, 183, 200].

T = 0 appears to indicate that there no stringy horizon, nor a sharply defined
emergent smooth radial direction. However, we should caution that in the IOP
model, vector 𝑎𝑖 is only a sector of the full system, in fact a subleading sector. So it
may make sense that this sector does not have a direct bulk geometric interpretation
by itself.

There are other matrix quantum mechanical systems in which a probe sector has a
spectral function which can be expressed in terms of a semicircle law like in [200],
and thus have a compact spectrum. For these systems, we again have T = 0, which
means no stringy black hole. Results suggestive of a same picture for non-singlets
in the 𝑐 = 1 matrix quantum mechanics were found in [55].

Spectral density with full support

Now consider the case of a spectral density 𝜌(𝜔) that has a complete support on
the real frequency axis. This case was long conjectured [171, 172] to be closely
related to the emergence of a stringy bifurcate horizon, here we make this idea
precise by showing that a spectral density with full support implies that it allows
half-sided modular inclusions in both directions (and hence that the depth parameter
is infinite).

Proposition 4.2.13. If the spectral density 𝜌(𝜔) is a continuous function that van-
ishes only at zero, is differentiable at 0 with continuous nonzero first derivative, and
decays at most polynomially, then T = ∞ and there is a stringy horizon.

Proof. We need to show that for any 𝑡0, it is possible to find 𝑔(𝑡) such that (𝑔 ∗ 𝜌) (𝑡)
does not have support in 𝐼 = (−∞, 𝑡0) or 𝐼 = (𝑡0,∞). For this purpose, take a
function 𝜑(𝑡) that is supported outside 𝐼. Let

𝑔(𝜔) = 𝜑(𝜔)
𝜌(𝜔) , (4.20)

which by construction 𝑔 ∗ 𝜌 = 𝜑 has support outside 𝐼. To make 𝑔(𝑡) real we need

𝑔∗(𝜔) = 𝑔(−𝜔) → 𝜑∗(𝜔) = −𝜑(−𝜔) (4.21)
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where we have used that 𝜌(𝜔) is a real, odd function of 𝜔. Since 𝜌(0) = 0, we also
need 𝜑(0) = 0 such that the ratio (4.11) is well defined at 𝜔 = 0. Normalizability of
𝑔(𝜔) requires that ∫ ∞

0

𝑑𝜔

2𝜋
𝜑∗(𝜔)𝜑(𝜔)
𝜌(𝜔) < ∞ . (4.22)

It is a classical result of Fourier analysis [250] that given a time band, one can always
choose a 𝜑 with support outside this time band (actually it can even be chosen to
have a compact support) such that

�̃�(𝜔) = 𝑂 (𝑒−|𝜔|1−𝛼) (4.23)

for 𝛼 > 0. This establishes the normalizability of 𝑔(𝜔) as long as 𝜌 decays at most
polynomially. □

It is curious to note that the symplectic complement of the union of two disjoint
half-infinite intervals may also be nontrivial. Consider, e.g., 𝐼 = (−∞, 𝑡0) ∪ (𝑡1, +∞)
with 𝑡1 > 𝑡0. We can then choose 𝜑(𝑡) in the above discussion to have support in
(𝑡0, 𝑡1).

In [172], it was argued that for a gauged quantum mechanical system with multiple
matrices (which includes N = 4 SYM theory on R × 𝑆3) in the large 𝑁 limit, the
spectral function of a generic single-trace operator exhibits a complete spectrum for
any nonzero ’t Hooft coupling above the Hawking-Page transition temperature.

For large 𝑞 SYK something more interesting happens: the spectral function has
complete spectrum but exponential decay [316],8 so equation (4.22) is generically
violated for a test function with asymptotics of the form (4.23). In order to construct
a nontrivial relative commutant for a half-infinite time band, we would need to find
stronger asymptotic bounds on the decay of �̃�(𝜔). The easiest would be for it to
have exponential decay, but this is never possible for a test function vanishing on a
half-infinite interval (because it is not holomorphic on any strip). Therefore it is not
clear whether a relative commutant exists in that case, and if it does its structure is
quite different from the one of a spectral density with decay slower than exponential.
We leave a more thorough analysis of that case to future work. More generally we
believe that our framework could be useful to investigate the SYK model away from
the maximally chaotic regime, for example it would be interesting to relate our
techniques to the recent results of [140].

8We thank Vladimir Narovlansky for communications on this point.



86

Systems with uncompact spatial directions

We now consider some examples of the boundary theory on R1,𝑑−1.

A simplest example is a free massive field with mass 𝑚 in the vacuum, whose
spectral function was given in (4.15). In this case, the spectral function has a gap
in the region |𝜔| < 𝑚 for all ®𝑘 . This means that the spectral function has a gap
around 𝜔 = 0. By Proposition 4.2.9, this implies that there is no stringy horizon
(in particular, the infinite redshift property is not satisfied). However, the results of
[387] (extended to polynomially growing spectral spectral density [388]), still imply
that the depth parameter T is infinite.

For a CFT in the vacuum state, the spectral function of a single-trace operator has
the form

𝜌(𝜔, ®𝑘) = 𝐶 (−𝑘2)𝜈𝜃 (−𝑘2) (𝜃 (𝜔) − 𝜃 (−𝜔)), 𝑘2 ≡ −𝜔2 + ®𝑘2 . (4.24)

For each given ®𝑘 , there is a gap in the spectrum for 𝜔2 < ®𝑘2. The gap vanishes in
the limit ®𝑘 → 0. In the case, the bulk is given by the Poincare patch of empty AdS.
There is a Poincare horizon there related to the vanishing of the gap in the ®𝑘 → 0
limit.

In AdS-Rindler, the spectral function at fixed momentum has the same form as the
one of BTZ, except now there is a continuum of momenta. Therefore the depth
parameter is infinite, as expected because the bulk is semiclassical.

Consider the spectral function of a scalar glueball in free Yang–Mills theory at finite
temperature. It is found in [229] that the spectral function is continuous and does
not vanish outside of an interval. Therefore, following [387], the depth parameter
should be infinite and there is a half-sided inclusion.

Another interesting case is the one of the large 𝑁 limit of symmetric product
orbifolds. The bulk theory is thought to be far from regular general relativity on a
fixed spacetime, however we were made aware of the work [46], which shows that
at least for some specific probes, spectral densities are the ones of the BTZ black
hole, suggesting an infinite depth parameter and an emergent stringy horizon. We
believe understanding this case in more detail could be particularly insightful.

Characterization of stringy connectivity: Einstein–Rosen algebra
We now focus the case of the thermofield double when T = ∞. In that case, there is
stringy connectivity between two sides. As we discussed earlier, with T = ∞ alone,
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what connects the left and right systems may not qualify as a bifurcate horizon. We
will thus refer to it as a stringy “Einstein-Rosen bridge.” In this section, we will
construct an algebra of observables associated with an Einstein-Rosen bridge.

We will need the extra assumption that to each open interval 𝐼 of R one can associate
not only a von Neumann algebra 𝑀𝐼 , but also a weak operator dense 𝐶∗-algebra
A𝐼 (this is clearly true in the case of generalized free fields, where one can simply
consider the Weyl 𝐶∗-algebra of operators constructed out of the real symplectic
structure on the one particle Hilbert space). Denoting A = AR, we also assume
that

⋃
𝑡 A(−𝑡,𝑡) is norm-dense in A. We now define a notion of Einstein–Rosen

sequence (ER sequence), which will allow us to define an algebra attached to a
stringy Einstein-Rosen bridge. We will call this algebra an Einstein-Rosen algebra
(ER algebra) or with a slight abuse of language, horizon algebra.

Definition 4.2.14. Let A be the 𝐶∗-algebra generated by single-trace operators of
one boundary and let (𝐴𝑛) be a sequence of operators in A. (𝐴𝑛) is said to be an
ER sequence if it is bounded in norm, and for all 𝑡 ∈ R, 𝐴𝑛 ∈ A′(−𝑡,𝑡) except for a
finite number of terms.

In order to define a good notion of ER algebra, we first need to introduce one piece
of machinery known as ultrapowers and central sequences.

Definition 4.2.15. The ultrapower algebraA𝜔 of a𝐶∗-algebraA at a free ultrafilter
𝜔 is defined to be the quotient of the space of bounded sequences valued inA by the
space of sequences valued in A that converge towards a central element (in norm).

Definition 4.2.16. A central sequence (𝑋𝑛) in a𝐶∗-algebraA is a bounded sequence
of operators (𝑋𝑛) satisfying, for all 𝐴 ∈ A,

∥ [𝑋𝑛, 𝐴] ∥ −→
𝑛→∞

0. (4.25)

We can now first show:

Proposition 4.2.17. ER sequences are central sequences.

Proof. Let 𝐴 ∈ A, let 𝜀 > 0. There exists 𝑇 ∈ R and 𝐴𝑇 ∈ A(−𝑇,𝑇) such that

∥𝐴 − 𝐴𝑇 ∥ < 𝜀. (4.26)
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Moreover for 𝑛 large enough 𝐴𝑛 commutes with 𝐴𝑇 , so that

∥ [𝐴𝑛, 𝐴] ∥ ≤ 2𝜀∥𝐴𝑛∥. (4.27)

Since (𝐴𝑛) is bounded in norm we conclude that (𝐴𝑛) is a central sequence. □

Of course, not all central sequences are ER sequences! For example, a sequence of
modular flowed operators in a strongly coupled large 𝑁 CFT would be central, but
not an ER sequence.

We now define the ER algebra as

Definition 4.2.18. Let 𝜔 be a free ultrafilter. The ER algebra is the (𝐶∗-closure of)
the algebra of ER sequences inside A𝜔, up to trivial ones.

By the above proposition, the ER algebra is a 𝐶∗-subalgebra of the 𝐶∗-algebra of
central sequences A𝜔 = A′ ∩ A𝜔. In principle, it depends on a choice of free
ultrafilter.

The reader can reasonably wonder at this stage why we chose to define the ER
algebra at the 𝐶∗-level rather than at the von Neumann algebra level. The reason
is that the analogous notion of central sequence at the von Neumann level which is
known as the asymptotic centralizer, is not compatible with the physics of our setup.
More precisely, given a normal state 𝜑 on a von Neumann algebra 𝑀 , a sequence
(𝑋𝑛) of observables in a 𝑀 is said to be part of the asymptotic centralizer of 𝜑 if

∥𝜑(𝑋𝑛·) − 𝜑(·𝑋𝑛)∥𝑀∗ →
𝑛→∞

0. (4.28)

The convergence in (4.28) must happen for the norm topology in the Banach space
of linear functionals on 𝑀 . What this means is that the rate of convergence of
𝜑(𝑋𝑛𝐴) − 𝜑(𝐴𝑋𝑛) towards zero must be independent of the choice of 𝐴. But this
is clearly not the case for a sequence 𝑋𝑛 of operators whose support approaches
ER bridge: the closer 𝐴 is to it, the longer it will take for 𝜑(𝑋𝑛𝐴) − 𝜑(𝐴𝑋𝑛) to
converge towards zero. Therefore we need a notion of central sequence that allows
for dependence on the operator 𝐴, and this is provided by the definition at the 𝐶∗-
level. The price to pay is that the ER algebra is only made of sequences of operators
that are in the 𝐶∗-closure of the space of local observables, rather than the von
Neumann closure which is larger.

Another question is whether the left and right ER algebras detect “the same geometric
object." One way to check this is to ask whether the commutant of the algebra
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𝑡0

−𝑡0

𝑡0

−𝑡0

Figure 4.7: Equivalence between the right and left definitions of the ER algebra in
the thermofield double state. The holographic duals of the left and right time bands,
represented in blue, are related to each other by modular conjugation. The relative
commutants of each time band inside the left and right algebras, each carrying red
dashed lines, generate the commutant of the two algebras, filled in red. As 𝑡0 →∞,
the three diamonds all collapse onto the bifurcate horizon.

generated by two boundary time bands shrinks to a trivial algebra as the width of
the time bands goes to infinity. If it does, then there are no observables between the
right and left ER bridges and they coincide. See Figure 4.7. We expect this to be
generically true in the thermofield double state, where the full algebra of a single
boundary in the large 𝑁 limit is generated by single-trace operators. In the next
section, we will see that in more general states however, there may be more large
𝑁 operators, such as modular flowed ones, and that the presence of these large 𝑁
operators can alter the definition of stringy connectivity.

Generalized entropy of a stringy horizon
So far, our framework allows to detect whether or not there is an emergent stringy
bifurcate horizon in the bulk, but it does not allow yet to talk about the “area" of this
horizon, or any related measure that it could be equipped with. A full resolution
of this problem is beyond the scope of this chapter, but here we make the remark
that it is at least possible to define the difference between the generalized entropy
of an excited state of the CFT and the general entropy of the thermofield double.
Indeed, by Wall’s proof of the generalized second law [450], we know that at strong
coupling, if |𝜓⟩ is an excitation of the TFD state |TFD⟩, the difference in generalized
entropies between the entropy of the full bulk subregion and the entropy at infinity
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is given by

𝑆𝑔𝑒𝑛 (∞) − 𝑆𝑔𝑒𝑛 (𝑏) = 𝑆(𝜓 |TFD), (4.29)

where the right hand side is the relative entropy. It is therefore natural to promote
this formula to a definition of the difference between the generalized entropy of our
state for the full subregion and its generalized entropy at infinity.

In the case in which the state |𝜓⟩ is a coherent excitation of |TFD⟩ of the form
𝑊 ( 𝑓 ) |TFD⟩ in a (0 + 1)-D GFF theory, where 𝑓 is in the one particle Hilbert space
and 𝑊 ( 𝑓 ) is the corresponding Weyl operator, there is an explicit formula due to
[108, 75], which gives:

𝑆(𝜓 |TFD) =
∫

𝑑𝜔𝜃 (𝜔) 𝜔

1 − 𝑒−𝛽𝜔
| 𝑓 (𝜔) |2. (4.30)

Violations of the equivalence principle in the stringy regime?
As discussed in the Introduction section, in the stringy regime, different bulk fields
may “see” different bulk geometries. The causal depth parameter T can be used to
probe this phenomenon.

In a large 𝑁 gauge theory like N = 4 SYM, there are infinitely many generalized
free fields. To each of these fields, one can associate a depth parameter. If there
is an emergent semiclassical bulk geometry, the large 𝑁 spectral densities must
somehow conspire so that the depth parameter associated to each large 𝑁 field is the
same. Any pair of fields whose depth parameters T1 and T2 are not equal cannot be
seen as living on the same bulk geometry, as the corresponding depths are different.
Therefore such a pair of fields can be seen as giving an obstruction to the validity
of the equivalence principle in the bulk.

In the case of empty AdS or thermal AdS, there is a quite general argument ensuring
that T is the same for all fields, as we have seen in Sec. 4.2. This means that there
is a somehow universal notion of “bulk depth" at large 𝑁 in the vacuum and a low
temperature thermofield double state, even at finite ’t Hooft coupling. However,
going away from the vacuum or the thermofield double, one can imagine more
general backgrounds in which the equivalence principle may be violated.

For the thermofield double state above the Hawking-Page temperature, we have
argued a bifurcate horizon exists for all generalized fields. However, do horizons
for different fields coincide? At the moment, we do not have a direct way to answer
this question, and will just make some general remarks. The thermofield double
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state has a left-right reflection symmetry, which enables us to establish in Sec. 4.2
that the left and right horizons for each field coincide. Therefore, if there is a notion
of stringy geometry for all fields (although the effective metric may be different for
different fields), then the horizons should sit in the middle of that spacetime, and
thus coincide.

Another possible avenue for probing the coincidence of the horizons is to examine
how the notion of a common horizon for all fields may become blurry due to
potential failures of the split property for algebras describing all bulk fields at finite
string length. Indeed, the presence of higher spin fields in the bulk theory leads
to nonlocalities that may be related to the failure of the split property [168], or
of the closely related modular nuclearity condition [90]. Perhaps relatedly, it is
known that when introducing interactions between the large 𝑁 fields, the notion of
entanglement wedge becomes blurry in the stringy regime where the out-of-time-
ordered correlator gets a submaximal Lyapunov exponent [97].

Finally, as it will be discussed more in the last section, given a spectral function, we
can in principle reconstruct the bulk geometry using methods from inverse scattering
theory. That may enable a direct comparison.

4.3 Algebraic diagnostic of QES
The definition of causal depth parameter and the algebraic diagnostic of an event
horizon discussed in the last section were motivated from the bulk causal structure
in the semi-classical gravity regime. We then used that data as inspiration to
probe/define the bulk causal structure in the stringy regime. In this section we
would like to generalize the discussion of the previous section by introducing an
algebraic diagnostic for the existence of Ryu-Takayanagi (RT) surfaces [401, 242]
or more generally quantum extremal surfaces (QES) [162].

The question becomes more difficult as QES are not directly related to the bulk
causal structure, which makes them harder to probe. However, the case of the
thermofield double, where the bifurcate horizon coincides with the RT surface for
the 𝑅 system, suggests a path forward.

For the thermofield double, the procedure discussed in Sec. 4.2 can also be viewed
as diagnosing the possible existence of a particular asymptotically invariant sub-
manifold under the modular flows of the boundary algebraM𝑅 = S𝑅 for the CFT𝑅,
represented with a red dot on Fig. 4.8.9 This manifold has the following properties

9It is an asymptotically fixed submanifold as operators localized on the bifurcate horizon do not
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in terms of modular data:

1. The Schwarzschild time flow becomes a boost near the bifurcation surface,
which leaves the surface invariant.

2. The Schwarzschild time flow is identified with the boundary time flow, which
is in turn identified with the modular flows.

3. While both the red and blue dots of Fig. 4.8 are asymptotically invariant
submanifolds of the boundary time flows, the ER sequences defined in Sec. 4.2
from the relative commutants of time bands only approach the red dot. Recall
that given any finite time band, except for a finite number of terms, an ER
sequence {𝐴𝑛} lies in its commutant. In contrast, this is not the case for any
sequence approaching the blue dots.

This perspective can now be used to diagnose the possible existence of a QES by
defining a QES as an asymptotically invariant submanifold under the modular flows
of the corresponding boundary algebra, in the sense captured by the three properties
above.

We can thus apply the constructions of Sec. 4.2 to construct a good notion of
QES in the stringy regime by simply replacing time bands by modular time bands.
Below we first review aspects of the algebraic formulation of entanglement wedge
reconstruction of [295] that will be used in our discussion. We then present our
proposal for an algebraic diagnostic of QES that can also be applied to the stringy
regime, and discuss some examples. In particular, the proposal gives a possible
solution to a question raised in [155] concerning evaporating black holes. We also
make comments on a possible generalization of the algebraic notion of ER=EPR
discussed in [155] to the stringy regime.

Modular depth parameter and QES from modular time bands
Before stating our proposal for diagnosing the presence of a QES for a boundary
subregion algebraically, we first review some elements of the algebraic formulation
of entanglement wedge reconstruction that are essential for our discussion.

For a system in a semi-classical state |Ψ⟩ describing some bulk geometry, entan-
glement wedge reconstruction says that physics in the entanglement wedge of a
belong to the boundary algebraM𝑅 = S𝑅 for the CFT𝑅. In fact, since operators always need to be
smeared in the time direction, there are no well defined operators localized on the bifurcate horizon.
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Figure 4.8: Fixed points of modular flow in the Penrose diagram of an AdS-
Schwarzschild two-sided black hole. The red dot denotes the QES and the blue dots
denote timelike infinity on the boundary. The algebraic difference between the red
dot and the blue dots is that the red dot is inside the commutant of all double-sided
time band algebras, which is not the case for the blue dots.

boundary spatial subregion 𝐴 can be fully described by observables in 𝐴. The en-
tanglement wedge is given by the domain of dependence �̂�𝐴 of a bulk co-dimension
one region 𝔟𝐴 satisfying 𝜙𝔟𝐴 = 𝛾𝐴 ∪ 𝐴 where 𝛾𝐴 denotes the QES for 𝐴. On the
boundary, denote the large 𝑁 limit of the local operator algebra B𝐴 in 𝐴 by X𝐴.
Entanglement wedge reconstruction can be stated algebraically as

M̃𝔟𝐴 = X𝐴 (4.31)

where M̃𝔟𝐴 is the bulk operator algebra for 𝔟𝐴. Equation (4.31) means that any
bulk operations in �̂�𝐴 can be expressed in terms of those inX𝐴. We assume that |Ψ⟩
is cyclic and separating with respect to B𝐴, and denote the corresponding modular
operator by Δ.

Some of our statements will be conditioned on the following assumptions, which all
hold in the semiclassical gravity regime:

1. The QES 𝛾𝐴 is an asymptotically invariant submanifold under modular flows
generated by Δ.

This statement comes from the expectation that near 𝛾𝐴 modular flows gener-
ated by Δ should act as local boosts.
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2. X𝐴 can be generated by single-trace operators in 𝐴 via modular flows. More
explicitly, X𝐴 is generated by large 𝑁 limits of operators of the form

𝜙(𝑠, ®𝑥) = Δ−𝑖𝑠𝜙(®𝑥)Δ𝑖𝑠, 𝑠 ∈ R, ®𝑥 ∈ 𝐴 (4.32)

where 𝜙 is a single-trace operator. This statement follows from the arguments
of [254, 166] in the strongly coupled regime.

3. Haag duality survives the large 𝑁 limit, i.e.,

X′𝐴 = X�̄�. (4.33)

This is guaranteed in the strongly coupled regime by entanglement wedge
reconstruction/complementary recovery [142].

Note that while we will use assumption 1 essentially as a definition for our notion
of stringy QES, assumptions 2 and 3 are not guaranteed to hold true in the stringy
regime. In particular, assumption 2 not being true would signal the existence of
more exotic large 𝑁 observables than large 𝑁 modular flows, while a breakdown of
assumption 3 would signal a breakdown of complementary recovery. We leave a
more thorough analysis of these assumptions to the future.

Consider an open modular time interval 𝐼 = (−𝑠0, 𝑠0), and denote the subalgebra
generated by 𝜙(𝑠, ®𝑥) of (4.32) with 𝑠 ∈ 𝐼 as X𝐼 . By definition, X𝐼 ⊆ X𝐴. We can
then define the modular depth parameter associated with 𝐴 as follows.

Definition 4.3.1. The modular depth parameter T𝑚 (𝐴) associated with a boundary
region 𝐴 is the largest value of 𝑠0 for which the algebra X(−𝑠0,𝑠0) has a nontrivial
relative commutant inside X𝐴.

We now would like to characterize the existence of a nonempty QES at the bound-
ary of the entanglement wedge. The existence of such a nonempty QES can be
understood as a statement of connectivity between the entanglement wedge and
its complement. Therefore it makes sense to reproduce the definition of stringy
connectivity proposed in Section 4.2:

Definition 4.3.2. Suppose 𝑅 and 𝐿 systems are in an entangled pure state with a large
𝑁 limit. We say that 𝑅 and 𝐿 are share a non-empty QES, or are stringy-connected,
if the corresponding modular depth parameters are infinite.
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Note that although this definition guarantees that the 𝑅 and 𝐿 systems have a QES,
it is not clear whether this QES is the same by only making assumption 1 above.
However, by adding assumptions 2 and 3 (i.e., that entanglement wedges can be
generated by large 𝑁 limits of modular flows and that Haag duality holds at large 𝑁
in the bulk), one can show that there are no operators localized in between the right
and the left QES, which means that they “coincide" in this sense. More formally:

Proposition 4.3.3. If 𝑅 and 𝐿 systems have a non-empty QES, and assumptions 1,
2 and 3 are satisfied, then ⋂

𝐼

(X𝐿𝐼 ∨ X𝑅𝐼 )′ = C. (4.34)

Proof. ∨
𝐼

(
X𝐿𝐼 ∨ X𝑅𝐼

)
= X𝐿 ∨ X𝑅 = B(H), (4.35)

so by going to the complement,⋂
𝐼

(X𝐿𝐼 ∨ X𝑅𝐼 )′ = C. (4.36)

□

The discussion of Sec. 4.2 can also be directly carried over by replacing 𝜙(𝑡) there by
𝜙(𝑠) of (4.32). The modular depth parameter and possible existence of a nontrivial
QES can then be deduced from the behavior of the modular spectral function in a
similar manner to the previous discussion. Note that just as before, this definition
staightforwardly extends to the stringy regime, where potentially, different fields
can see different entanglement wedges and quantum extremal surfaces. This could
lead to at best, field-dependence, and at worst, an inconsistency in the definition of
the entanglement wedge, and would be somewhat in line with hints [97] suggesting
difficulties in defining the entanglement wedge universally in the stringy regime. We
look forward to investigating the potential field-dependence of stringy entanglement
wedges in future work.

Now consider some simple examples.

Suppose 𝐴 is a proper subregion on a boundary Cauchy slice. The entanglement
wedge is a proper subregion in the bulk and has a nontrivial QES 𝛾𝐴. Given that
modular flows are expected to act as local boosts near 𝛾𝐴, we deduce that the “single-
particle” modular spectral function should have a complete spectrum, and from the
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discussion of Sec. 4.2, the modular depth parameter is ∞. We can generalize
this discussion to the stringy regime. Suppose the modular depth parameter for 𝐴
remains infinite at finite 𝜆, we can then say the QES survives finite 𝛼′ corrections.

Now consider a two-sided semi-classical state corresponding to the long wormhole
shown on Figure 4.6 (a). For simplicity, we will suppose that the bulk spacetime
is time-reflection symmetric, and consider 𝐴 to be the full right boundary on the
time-reflection symmetric Cauchy slice. By using nested time bands of single-trace
operator algebras defined in Sec. 4.2, we can probe the existence of the causal
horizon. In this case there is a nontrivial QES lying outside the horizon, which
can be probed by nested modular time bands. So in this case both the causal depth
parameter T𝑐 and the modular depth parameter T𝑚 are infinite. The fact that the
QES lies outside the horizon is reflected in the fact that S𝑅 has a nontrivial relative
commutant inside X𝑅. Thus the larger the algebra, the deeper we can probe into
the bulk, even though we cannot directly compare T𝑐 and T𝑚, and both are infinite.
At finite 𝜆, we can also use the time bands of S𝑅 and modular time bands of X𝑅 to
define the stringy horizons and QES. That one probes “deeper” than the other again
follows from the proper inclusion of one algebra into the other.

Algebraic ER=EPR in the stringy regime?
In [155], an algebraic version of ER=EPR was proposed in the semiclassical regime
to characterize spacetime connectivity with the algebras of the boundary theory.
Here we consider the possible extension of this proposal to the stringy regime. In
particular, we discuss the subtle relationship between the value of the modular depth
parameter and the type of the underlying von Neumann algebra.

Consider first the 𝜆 → ∞ limit, and a two-sided pure state with a classical dual
spacetime 𝑀 . Suppose X𝑅,X𝐿 are respectively operator algebras of CFT𝑅 and
CFT𝐿 in the large 𝑁 limit. Then the algebraic ER=EPR proposal says that 𝑀 is:

1. is disconnected iff X𝑅 and X𝐿 are both type I. (4.37)

2. has a classical wormhole connecting 𝑅 to 𝐿 iff X𝑅 and X𝐿 are both type III1.(4.38)

It would be desirable to generalize the proposal to the stringy regime.

In establishing (4.37)–(4.38) in the algebraic ER=EPR proposal for a classical
spacetime [155], it was assumed that the entanglement wedges of the 𝑅 and 𝐿

systems are themselves classical spacetime manifolds. Such an assumption can no
longer be made in the stringy regime. For example, in the case of the IOP model,
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we see that despite the boundary algebra being type III1, the depth parameter10

vanishes. While the IOP model may not be dual to a string theory,11 this example
highlights that in general type III1 by itself does not imply T𝑚 = ∞. Additional
physical inputs may be needed to specify what kind of boundary systems are dual
to a string theory.

We may also ask the converse mathematical question: does T𝑚 = ∞ imply type III1?

Again, the answer is no. The reason is that there are some exotic forms of the modular
spectral density that lead to an infinite depth parameter while the von Neumann
algebra still has type I. In the thermofield double state at inverse temperature 𝛽, a
necessary and sufficient condition for the large 𝑁 algebra to be type I is that the
operator 𝛾𝛽 on 𝐿2(R,Θ(𝜔)𝜌(𝜔)𝑑𝜔) defined by

𝛾𝛽 𝑓 (𝜔) := 𝑒−𝛽𝜔 𝑓 (𝜔) (4.39)

is trace-class [137, 200], i.e., that the support {𝜔𝑖} of 𝜌 is discrete and∑︁
𝑖

𝑒−𝛽 |𝜔𝑖 | < ∞. (4.40)

Theorem 3 of [387] shows that it is possible to have Equation (4.40) hold true while
having T = ∞. For an explicit example, we can again consider the “primon gas"
or “Riemannium" at low temperature, which we saw in 4.2 has depth parameter
T = ∞. It has an exponentially growing spectral support but still gives rise to a
type I von Neumann algebra at low enough temperature [74]. In this case,

Tr 𝛾𝛽 =
∑︁
𝑛

𝑒−𝛽 ln 𝑝𝑛 =
∑︁
𝑛

𝑝
−𝛽
𝑛 , (4.41)

where 𝑝𝑛 denote the 𝑛𝑡ℎ prime number. This series is convergent at low enough
temperature, for 𝛽 > 1. So at low enough temperature, we are in a case in which
even though the von Neumann algebra is type I, we have T = ∞.

Evaporating black holes: differentiating type III1 algebras before and after the
Page time
In this subsection we give another application of the modular depth parameter
by showing how a question raised in [155] about spacetime connectivity for an

10In that example, modular and causal depth parameters coincide.
11In particular it does not have the analogous 𝜆 → ∞ limit that is dual to the semi-classical

gravity regime.
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(a) An evaporating black hole shortly before the Page time. The
entanglement wedge of the bath of radiation, denoted in red, is
disconnected from the entanglement wedge of the black hole de-
noted in blue: they do not share any nontrivial quantum extremal
surface.

(b) An evaporating black hole shortly after the Page time. The
entanglement wedge of the bath of radiation, denoted in red,
is now connected to the entanglement wedge of the black hole
denoted in blue: they do share a quantum extremal surface rep-
resented by the purple dot.

Figure 4.9: An evaporating black hole shortly before and shortly after the Page
time. In both cases, the algebra of observables describing the interior has type III1,
however it is only after the Page time that a QES creates connectivity between the
entanglement wedge of the radiation and the entanglement wedge of the black hole.

evaporating black hole system can in principle be addressed using the techniques
developed in this chapter.

Consider an evaporating black hole system in AdS as discussed in [155]. Shortly
before the Page time, the QES for the boundary CFT (i.e., taking 𝐴 to be a full
boundary Cauchy slice) is empty and the black hole (𝐵) is seemingly disconnected
from the radiation (𝑅), whereas shortly after the Page time, the QES is nontrivial
and the black hole is classically connected with the radiation. See Fig. 4.9.
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On both sides of the Page time, the corresponding boundary algebra X𝐵 for the
black hole subsystem has been argued to be type III1. Thus it appears to provide a
counterexample to (4.38).

It is not a counterexample, as in this case the dual bulk spacetime is not classical,
but quantum volatile12—the volume of the black hole interior grows to infinity in
the 𝐺𝑁 → 0 limit. It was accordingly argued in [155] that, before the Page time, 𝐵
and 𝑅 are quantum connected. However, it was not clear how to distinguish directly
the classical connectivity after the Page time from the quantum connectivity before
the Page time intrinsically from the structure of the boundary algebra X𝐵.

We propose that the modular depth parameter can diagnose this change of connec-
tivity, with T𝑚 < ∞ before the Page time, and T𝑚 = ∞ after the Page time. That
T𝑚 = ∞ after the Page time follows simply from existence of a non-empty QES.
We now outline an argument for T𝑚 < ∞ before the Page time. Since currently we
cannot calculate the modular spectral function for X𝐵 explicitly, the argument we
present below should be only viewed as a plausibility argument.

Before the Page time, the entanglement wedge of the boundary includes the interior
of the black hole which has an infinite proper length in the 𝐺𝑁 → 0 limit. If it
were possible to probe this region using light rays, we would have concluded that
the depth parameter should be infinite. We now argue that in terms of the modular
depth parameter, it can in fact be finite.

To illustrate the main idea, we will use a simple model. Consider a (1 + 1)-
dimensional (nonrelativistic) free field theory of a scalar field Φ defined on an
infinite half line with boundary at 𝑥 = 0. Consider a localized excitation of the bulk,
say by a bump function 𝑓0 localized on a small interval of a one-dimensional time
slice 𝑡 = 0 (at infinite volume), of the form

Φ( 𝑓 ) =
∫ 0

−∞
𝑑𝑥 𝑓 (𝑥)Φ(𝑥), 𝑓 ∈ 𝐿2(R−) . (4.42)

Importantly, we allow 𝑓 to be complex-valued, so that 𝜙( 𝑓 ) is in general a lin-
ear combination of two selfadjoint fields that can be interpreted as position and
momentum. We have the commutation relation

[𝜙( 𝑓 ), 𝜙(𝑔)] = 𝑖 Im ⟨ 𝑓 , 𝑔⟩ 𝐼𝑑. (4.43)

12In a quantum volatile spacetime, one or both of the following are violated in the 𝐺𝑁 → 0 limit:
(i) fluctuations of diffeomorphism invariants go to zero as O(𝐺𝑎

𝑁
) for some 𝑎 > 0; (ii) spacetime

diffeomorphism invariants such as volumes, areas, and lengths do not scale as 𝑂 (𝐺−𝑎
𝑁
) with 𝑎 > 0.
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As a toy model, suppose that the bulk modular Hamiltonian can be modelled on
the one particle Hilbert space 𝐿2(R−) by some selfadjoint operator 𝐻. Then in the
second quantized picture, the operator 𝜙( 𝑓 ) is evolved at time 𝑡 into the operator
𝜙( 𝑓𝑡), where 𝑓𝑡 (𝑥) is the value of the solution 𝑓 (𝑥, 𝑡) to the Schrödinger equation

𝑖𝜕𝑡 𝑓 = 𝐻 𝑓 , (4.44)

with initial condition

𝑓 (𝑥, 0) = 𝑓0(𝑥). (4.45)

Out of this data, we can construct a generalized free field theory in 0+1 dimensions,
as follows. First, define an antisymmetric function of time

𝜌(𝑡) := ⟨[𝜙( 𝑓𝑡), 𝜙( 𝑓0)]⟩𝛽 = 𝑖 Im ⟨ 𝑓𝑡 , 𝑓0⟩ . (4.46)

Then construct a generalized free field theory at finite temperature in the same way
as in Section 4.2, from this spectral function. We want to show that for a physically
reasonable choice of Hamiltonian 𝐻, T < ∞.

As a toy example, we can choose𝐻 to be the Hamiltonian of a one-dimensional quan-
tum harmonic oscillator. Since the odd eigenfunctions of the harmonic oscillator
form a basis of 𝐿2(R−), for any choice of 𝑓0 ∈ 𝐿2(R−), we can decompose

𝑓0 =
∑︁

𝑛∈2N+1
𝜆𝑛𝜓𝑛, (4.47)

where the 𝜓𝑛 are the harmonic oscillator eigenfunctions of energy (𝑛 + 1
2 )𝜔0. As a

result, 𝜌(𝑡) is of the form

𝜌(𝑡) =
∑︁
𝑛∈Z

𝜇𝑛𝑒
𝑖(𝑛+ 1

2 )𝑡 , (4.48)

which means that in frequency space it is an evenly spaced linear combination of
Dirac deltas. Therefore it is periodic up to a phase, and we deduce that the depth
parameter T for this generalized free field is finite (and smaller than 2𝜋).

While modular flows are nonlocal, it may still sound surprising that it can give a
finite modular depth for an infinite proper length.

Heuristically, we do not expect the structure of modular flow outside the black hole
to significantly differ from the one of the thermofield double state. In the exterior
region, we expect that operators can be reconstructed from “simple" single trace
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operators on the boundary with good accuracy, and in particular that at least for rea-
sonably small time scales, the modular flows of these operators can be approximated
by boundary time evolution of these single trace operators. But modular flow on
operators in the interior significantly differs from a thermofield double. These oper-
ators are complex and cannot be reconstructed solely from boundary single traces:
we also need large 𝑁 limits of boundary modular flows. On these operators, modular
flow can potentially act very differently from boundary time evolution. Hence, out-
side the black hole we expect operators to propagate under modular flow following
(approximately) relativistic laws (in particular, with finite speed), but close enough
to the interior, modular flow is so different from any geometric transformation that
it could in principle allow for a modular Hamiltonian that is nonlocal enough that it
guarantees that the value of T is finite.

4.4 Discussion
In this chapter, we have taken a first step towards developing a new language to
describe causal structure, event horizons, and quantum extremal surfaces (QES) for
the bulk duals of boundary systems that extend beyond the standard Einstein gravity
regime. Here we comment on some future directions.

1. Connections between geometric concepts and the ergodic hierarchy/quantum
chaos

In this chapter we introduced the depth parameter T by considering the
inclusion structure of time band algebras on the boundary. We commented
earlier that the depth parameter has an interpretation in terms of ergodicity,
in the sense that it encodes how long one needs to wait in order to obtain full
information about the large 𝑁 theory.

We also defined horizons in terms of half-sided inclusion, which is related to
a stronger notion of ergodic or quantum chaotic behavior.

As recently discussed in [191, 367], there are various other possible levels of
ergodicity and chaos in a system, beyond those corresponding to the depth
parameter and half-sided modular inclusion. It would be interesting to under-
stand whether they can be associated with emergent bulk geometric structure.
Conversely, bulk geometric structures could give inspirations for formulating
a mathematical theory of quantum chaos, which is still at early stages.

2. Structure of higher-point functions
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The structures discussed in this chapter can be deduced with the knowledge
of boundary two-point functions. Exploring the structure of higher-point
functions could lead to new insights into the non-locality brought by possible
violation of equivalence principle mentioned earlier.

Furthermore, at the level of Einstein gravity, the presence of a black hole
event horizon leads to universal behavior in out-of-time-ordered correlators
(OTOCs) [413], and maximal value of the quantum Lyapunov exponent [315].
Going to the stringy regime, OTOCs involve exchanges of an infinite tower of
higher-spin stringy excitations, which gives rise to non-maximal chaos [414].
It would be interesting to understand whether such behavior can still be at-
tributed to a stringy horizon.

3. Connection to the inverse spectral problem

The question we are asking here is closely related to the so-called inverse
spectral problem. The basic idea is the following. In an asymptotically AdS
spacetime, the equation of motion for a free field reduces to a Schrödinger
equation in the radial variable, with some potential 𝑉 (𝑟) dictated by the
geometry. The standard formulation of the inverse scattering problem is to
ask, given the scattering data for the solutions of the Schrödinger equation,
how one may reconstruct the potential 𝑉 (𝑟).

In our context, the scattering data corresponds to the correlation functions of
the boundary generalized free fields, while the potential 𝑉 (𝑟) would corre-
spond to a “stringy geometry" in the bulk. There is a general approach to
the inverse spectral problem, due to Gelfand and Levitan [188], which allows
to recover quite explicit results on 𝑉 (𝑟) given the scattering data. Interest-
ingly, Gelfand–Levitan theory is intimately related to the exponential type
problem in harmonic analysis, which we saw that in our context, maps to the
determination of the depth parameter T . Therefore it is likely that the ideas
introduced here could find a very natural place within Gelfand–Levitan the-
ory, and that understanding how these ideas fit together could teach us more
about emergent stringy geometries, especially about modular Hamiltonians
of time bands, quasi-normal modes of stringy black holes, and maybe even a
description of stringy singularities. We hope to report on this connection in
the near future.

4. Towards a stringy QES formula



103

In this work, we were able to construct an algebra of sequences to describe
stringy bifurcate horizons. What we are still lacking is some notion of measure
on this algebra that could give us information on a stringy notion of “area"
of the bifurcate horizon. Coming up with such a notion would open a path
towards a possible derivation of a Ryu–Takayanagi/QES formula at nonzero
string length.

The operator algebraic language has already proven to be useful in order to
understand gravitational entropy, in particular the works [457, 100, 101, 261,
286] on the crossed product have allowed to define a type II entropy that
agrees with the semiclassical notion of generalized entropy up to an overall
constant. However, this semiclassical notion does not provide any meaningful
way of constructing an area term, as the type II entropy is only defined up to
a constant. So far, the only meaningful notion of area term in the operator
algebraic context have been formulated by mapping the large 𝑁 theory to
the finite 𝑁 theory through an approximate quantum error correcting code
[168, 192]. It is our hope that the methods introduced here may be relevant
to define a notion of area term directly at large 𝑁 , for arbitrary values of
the string length, that contributes to gravitational entropy together with the
entropy of bulk fields. We expect that such a setup could also provide new
insight into the exchange ambiguity between the bulk entropy term and the
area term [430, 192].

5. A new language for stringy spacetime?

Our results suggest that the algebraic framework is capable of retaining prop-
erties that one expects from an emergent spacetime even in a potentially very
stringy regime where this spacetime is not described by the usual notion
of smooth differentiable Lorentzian manifold. In particular, it appears that
the algebraic structure allows to describe the causal structure of this stringy
spacetime through the observables that live on some of its subregions.

The idea of describing geometric spaces through the objects that live on their
subregions has been extremely fruitful in mathematics, and is at the core
of most of modern geometry. In topology, this is exemplified by Gelfand
duality, which describes a space by its algebra of functions, while in algebraic
geometry this is for example achieved by the notion of sheaf (and actually
one can see many of the constructions in algebraic quantum field theory
through this lens). It would be very interesting to see how far this idea can
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be pushed in our context, and find whether one can define the subregions
of a stringy spacetime only through the algebras of observables that live on
its subregions and their embeddings. This way of defining a space directly
through the algebras that characterize its subspaces is somewhat reminiscent
of the notion of topos, due to Grothendieck. A hint that such an approach
to stringy geometry may be possible is that von Neumann algebras and their
commutants on a Fock space already come equipped with a structure: that of a
complemented complete lattice [137], which is reviewed in Appendix 4.6. In
particular we can construct a set of real symplectic subspacesV𝑖 of the large
𝑁 one particle Hilbert space, stable generation, intersection and symplectic
complement, and associated von Neumann algebrasM(V𝑖), such that

Theorem 4.4.1.

M(V1) =M(V2) iff V1 = V2, (4.49)

V1 ⊂ V2 ⇒M(V1) ⊂ M(V2), (4.50)

M
(∨
𝑖

V𝑖

)
=

∨
𝑖

M(V𝑖), (4.51)

M
(⋂
𝑖

V𝑖

)
=

⋂
𝑖

M(V𝑖), (4.52)

M (V)′ =M (V′) , (4.53)

andM (V) is a factor iffV ∩V′ = {0}.

This structure is ideal in order to retain a notion of causality, since the com-
mutant operation (or the symplectic complement at the one particle level) can
be understood as an operation mapping a region to its causal complement.
What now remains to be seen is how much geometric structure can be put on
top of this causal structure in the stringy regime – how close to a full-fledged
Lorentzian manifold can we get?

4.5 Appendix: Elements of distribution theory
In this first appendix, we recall the basic points of distribution theory that are being
used throughout the chapter. We particularly emphasize how one can take the
Fourier transform of a distribution, as Fourier theory is the central element of our
discussion.
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Distributions and tempered distributions
Informally, distributions are a generalized notion of function that only makes sense
dually. Consider the example of the real line. A natural space of functions on
R would be the space of square-integrable functions 𝐿2(R). However, in some
contexts one would like to be able to consider more general kinds of “functions" on
R, for example, discrete measures such as Dirac’s delta, or oscillatory functions like
𝑒𝑖𝜔𝑡 .

The issue is that such oscillatory functions, if defined at all, are definitely not square-
integrable. This issue is often encountered in quantum mechanics, for example
when considering a free particle in one dimension. One would like to diagonalize
the Hamiltonian in a “basis of Dirac deltas," but they are not part of the Hilbert
space of 𝐿2(R). The well-known solution to this problem, which is sometimes
referred to as “rigging" the Hilbert space, amounts to allow more general notions of
wavefunctions by passing to a space of distributions.

The idea is the following. By the Riesz representation theorem, the Hilbert space
H = 𝐿2(R) is reflexive, which means that it is isomorphic to its topological dual.
Therefore there are exactly as many continuous linear functionals on H = 𝐿2(R)
as there are elements of H = 𝐿2(R). Therefore, if one wants to find a space of
generalized functions that is larger than 𝐿2(R), a natural thing to do is to look at a
subspace of 𝐿2(R), so that there are more continuous linear functionals on it than
on 𝐿2(R).

The choice of such a subspace is nonunique, and leads to different notions of
distributions. The most obvious choice of dense subspace of 𝐿2(R) is the space
of compactly supported test functions D(R). It turns out that this space can be
equipped with a topology, called the inductive limit topology, such that for this
topology, the topological dual D′(R) of D(R) is strictly larger than D(R). In
particular it contains Dirac deltas, and a large family of continuous functions. The
space D′(R) is known as the space of distributions on R.
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Another interesting choice of dense subspace of 𝐿2(R) is the so-called Schwartz
space S(R), of functions whose derivatives all decay faster than polynomially at
infinity. There also exists a way to equip S(R) with a natural topology for which
𝐿2(R) ⊂ S′(R). In fact, we even have a stronger statement: as

D(R) ⊂ S(R) ⊂ 𝐿2(R), (4.54)

we have

𝐿2(R) ⊂ S′(R) ⊂ D′(R). (4.55)

Therefore one can see the notion of tempered distribution as a refined notion of
distribution, that is continuous on a larger space of test functions (all of Schwartz
space). One of the main reasons why tempered distributions are useful is because
they are the right kind of distribution to consider in order to take Fourier transforms,
as we now review.

Fourier transforms of distributions
The classical formula for the Fourier transform,

𝑓 (𝜔) :=
∫
R
𝑓 (𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡, (4.56)

is only well-defined on 𝐿1(R). However tempered distributions can be much more
general. For example any continuous function with subexponential growth defines a
tempered distribution. The point, however, is that the dual picture allows to define a
notion of Fourier transform for any tempered distribution. The reason why we need
the distributions to be tempered is because we need the space of test functions we
choose to be stable under Fourier transform. As we point out now, this is obviously
not true for compactly supported functions, but it is true for Schwartz space:

Proposition 4.5.1. The Schwartz space S(R) is stable under Fourier transform.

This result allows to write a definition for the Fourier transform of a general tempered
distribution.

Definition 4.5.2. Let 𝑇 be a tempered distribution on R. We define the Fourier
transform 𝑇 of the tempered distribution 𝑇 as follows. For 𝑓 ∈ S(R),

𝑇 ( 𝑓 ) := 𝑇 ( 𝑓 ). (4.57)
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In general, the Fourier transform of a tempered distribution is a general tempered
distribution, however, under some extra assumption on the tempered distribution,
one can say additional things about the regularity of the Fourier transform. There are
many results along this line, going from very easy ones to highly nontrivial results
in harmonic analysis like the Beurling–Malliavin theorem or solutions to the type
problem we will discuss in the next appendix. Here we give one of the most useful
“easier" results of this type, namely an important part of the Schwartz–Paley–Wiener
theorem:

Proposition 4.5.3. The Fourier transform of a compactly supported distribution
extends to an entire function on the complex plane.

Pointwise product and convolution of distributions
Most of the time in this work, we reason in Fourier space on tempered distributions
whose Fourier transforms are square integrable functions against a suitable measure,
hence, it is usually not a problem to pointwise multiply the Fourier transforms.
Nevertheless, it is worth pointing out that in general there is an obstruction to
performing a pointwise product of distributions. For example, two Dirac deltas
cannot be pointwise multiplied because they are all singular at the same point. It is
therefore useful to ask when, in general, it is possible to define the pointwise product
of distributions. It turns out that the answer relies on the notion of wavefront set,
which we now define.

Definition 4.5.4. Let Ω be an open set in R𝑛. Given a distribution 𝑇 ∈ D′(R𝑛), the
wavefront set𝑊𝐹 (𝑇) of 𝑇 is defined to be the complement of the union of all conic
subsets of 𝑇∗𝑈 on which 𝑇 is smooth.

This definition extends straightforwardly to the case of manifolds. We then have the
crucial property:

Proposition 4.5.5. The pointwise product of two distributions 𝑇1 and 𝑇2 is well-
defined unless there exists (𝑥, 𝑘) ∈ 𝑇∗𝑈 such that (𝑥, 𝑘) ∈ 𝑊𝐹 (𝑇1) and (𝑥,−𝑘) ∈
𝑊𝐹 (𝑇2).

Similarly, since the convolution of two distributions requires mutiplying them point-
wise, the notion of wavefront set is also relevant in order to define the convolution
product of two general distributions.
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4.6 Appendix: Generalized free field theory and review of a theorem of Araki
In this Appendix, we review the construction of the Hilbert space associated with
a generalized free field theory around a semi-classical state, and then discuss a
theorem of Araki [23] that is used in the main text.

Construction of a generalized free field theory
Consider a single-trace Hermitian operator 𝜙(𝑡) (again we suppress spatial depen-
dence for notational simplicity), with spectral function

𝜌(𝑡 − 𝑡′) = ⟨Ψ| [𝜙(𝑡), 𝜙(𝑡′)] |Ψ⟩, (4.58)

in a semi-classical state |Ψ⟩. For simplicity we will assume that |Ψ⟩ is time
translation invariant. 𝜌(𝑡) and its Fourier transform 𝜌(𝜔) have the properties

𝜌∗(𝑡) = 𝜌(−𝑡) = −𝜌(𝑡), 𝜌∗(𝜔) = 𝜌(𝜔) = −𝜌(−𝜔), 𝜃 (𝜔)𝜌(𝜔) ≥ 0 . (4.59)

Denote the Fourier transform of 𝜙(𝑡) as 𝜙𝜔, we have from (4.58) the commutation
relations

[𝜙𝜔, 𝜙𝜔′] = 𝜌(𝜔)2𝜋𝛿(𝜔 + 𝜔′), 𝜙−𝜔 = 𝜙†𝜔 . (4.60)

Introduce smeared operators

𝜙( 𝑓 ) =
∫

𝑑𝑡 𝑓 (𝑡)𝜙(𝑡) ≡
∫

𝑑𝜔

2𝜋
𝑓 (−𝜔)𝜙𝜔, 𝑓 (−𝜔) = 𝑓 ∗(𝜔), (4.61)

where 𝑓 (𝑡) is real such that 𝜙( 𝑓 ) is Hermitian. 𝜌(𝑡) can be used to define a
symplectic product (i.e., anti-symmetric between 𝑓 (𝑡) and 𝑔(𝑡)) in the space { 𝑓 (𝑡)}

( 𝑓 , 𝑔) = −𝑖⟨Ψ| [𝜙( 𝑓 ), 𝜙(𝑔)] |Ψ⟩ = −𝑖
∫

𝑑𝑡𝑑𝑡′ 𝑓 (𝑡)𝜌(𝑡−𝑡′)𝑔(𝑡′) = −𝑖
∫

𝑑𝜔

2𝜋
𝑓 (−𝜔)𝜌(𝜔)𝑔(𝜔) .
(4.62)

We can also associate a complex vector | 𝑓 ⟩ with ( 𝑓 (𝜔), 𝜔 > 0) and introduce an
inner product

⟨ 𝑓 , 𝑔⟩ = 2
∫

𝑑𝜔

2𝜋
𝑓 ∗(𝜔) 𝜃 (𝜔)𝜌(𝜔) 𝑔(𝜔) . (4.63)

Upon completion, the set of normalizable vectors then form a Hilbert space Z,
which is often referred to as the single-particle Hilbert space. Depending on the
state, we will need to restrict admissible test functions to the ones that sit in the
domain of a certain operator to be defined below. The spaceV of 𝑓 (i.e., the space
of 𝑓 (𝜔),∀𝜔) is a closed real subspace of Z, and the symplectic product (4.62) is
defined on this real subspace, with

( 𝑓 , 𝑔) = Im⟨ 𝑓 , 𝑔⟩ . (4.64)

We now consider several explicit examples.
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Vacuum state

For |Ψ⟩ to be vacuum state |Ω⟩, 𝜙𝜔 with 𝜔 > 0 is taken to be the annihilation
operators, i.e.,

𝜙𝜔 |Ω⟩ = 0, 𝜔 > 0 . (4.65)

The Fock space, usually denoted as Γ(Z), can then be obtained acting creation
operators 𝜙𝜔, 𝜔 < 0 on the vacuum.

TFD state

For |Ψ⟩ given by the TFD state, we take 𝜙 to be the operator 𝜙𝑅 in the CFT𝑅. There
is also a corresponding 𝜙𝐿 with the corresponding single-particle Hilbert space
denoted as Z̄. In this case no linear combinations of 𝜙𝑅 can annihilate the TFD
state. Instead, we have

𝜙
(𝑅)
𝜔 |TFD⟩ = 𝑒−

𝛽𝜔

2 𝜙
(𝐿)
−𝜔 |TFD⟩ . (4.66)

We can then introduce

𝑐
(𝑅)
𝜔 = 𝔟+𝜙

(𝑅)
𝜔 − 𝔟−𝜙(𝐿)−𝜔 , 𝑐

(𝐿)
𝜔 = 𝔟+𝜙

(𝐿)
𝜔 − 𝔟−𝜙(𝑅)−𝜔 , 𝔟± ≡

(
𝑒±

𝛽 |𝜔 |
2

2 sinh 𝛽 |𝜔 |
2

) 1
2

, (4.67)

with
𝑐
(𝑅)
𝜔 |TFD⟩ = 𝑐(𝐿)𝜔 |TFD⟩ = 0, 𝜔 > 0 . (4.68)

The Fock space Γ(Z ⊕ Z̄) can be generated by acting 𝑐(𝑅,𝐿)𝜔 , 𝜔 < 0 on |TFD⟩.

In order to define creation operators associated to a function in Z, we also must
require 𝑓 to be in the domain of the operator of multiplication by 𝔟−.

A quasi-free state

A quasi-free state |Ψ𝛾⟩ is a two-sided state defined as

𝜙
(𝑅)
𝜔 |Ψ𝛾⟩ = 𝛾

1
2 (𝜔)𝜙(𝐿)−𝜔 |Ψ𝛾⟩ . (4.69)

We can then introduce

𝑐
(𝑅)
𝜔 = 𝔟+𝜙

(𝑅)
𝜔 − 𝔟−𝜙(𝐿)−𝜔 , 𝑐

(𝐿)
𝜔 = 𝔟+𝜙

(𝐿)
𝜔 − 𝔟−𝜙(𝑅)−𝜔 , (4.70)

𝔟+ ≡
(

𝛾−
1
2

𝛾−
1
2 − 𝛾 1

2

) 1
2

= (1 + �̂�𝛾)
1
2 , 𝔟− ≡

(
𝛾

1
2 (𝜔)

𝛾−
1
2 (𝜔) − 𝛾 1

2 (𝜔)

) 1
2

= �̂�
1
2
𝛾 , �̂�𝛾 ≡

𝛾

1 − 𝛾 ,

(4.71)
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with
𝑐
(𝑅)
𝜔 |Ψ𝛾⟩ = 𝑐(𝐿)𝜔 |Ψ𝛾⟩ = 0, 𝜔 > 0 . (4.72)

The Fock space Γ(Z ⊕ Z̄) can be generated by acting 𝑐(𝑅,𝐿)𝜔 , 𝜔 < 0 on |Ψ𝛾⟩.

In order to define creation operators associated to a function in Z, we also must
require 𝑓 to be in the domain of the operator of multiplication by 𝔟−.

Symplectic complement and commutant
Consider a single particle Hilbert space W and the corresponding Fock space
Γ(W). For the examples discussed earlier, for the vacuum we haveW = Z, while
for the TFD and a general quasi-free state we haveW = Z ⊕ Z̄.

Introduce Weyl operators

𝑊 ( 𝑓 ) ≡ 𝑒𝑖𝜙( 𝑓 ) , 𝑓 ∈ W (4.73)

and define a von Neumann algebra

M(W) ≡ {𝑊 ( 𝑓 ), 𝑓 ∈ W}′′. (4.74)

It can be shown that
M(W) = B(Γ(W)) . (4.75)

That is, the algebra of bounded operators on Γ(W) is the Weyl algebra of operators
on the single-particle Hilbert space.

Now supposeV is closed real subspace ofW.

Definition 4.6.1. We define the symplectic complement ofV as

V′ = {𝑧 ∈ W, ∀𝑣 ∈ V, Im ⟨𝑧, 𝑣⟩ = 0}. (4.76)

Definition 4.6.2. We define the von Neumann algebraM(V) associated withV as

M(V) ≡ {𝑊 (𝑣), 𝑣 ∈ V}′′. (4.77)

The following theorem due to Araki [23] says that the commutant operation of the
von Neumann algebra and the symplectic complement operation are mapped to each
other.
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Theorem 4.6.3.

M(V1) =M(V2) iff V1 = V2, (4.78)

V1 ⊂ V2 ⇒M(V1) ⊂ M(V2), (4.79)

M
(∨
𝑖

V𝑖

)
=

∨
𝑖

M(V𝑖), (4.80)

M
(⋂
𝑖

V𝑖

)
=

⋂
𝑖

M(V𝑖), (4.81)

M (V)′ =M (V′) , (4.82)

andM (V) is a factor iffV ∩V′ = {0}.

This theorem is very useful, as it allows to translate algebraic statements on the full
Fock space to to statements about the one particle Hilbert space.

No nontrivial singular inclusions in a generalized free field theory
If we call a proper inclusion S(−𝑡0,𝑡0) in S𝑅 with empty relative commutant as a
singular inclusion, then for a generalized free field, singular inclusions do not exist.
This result seems standard in the algebraic QFT literature, in which significant effort
has been made to construct singular inclusions that do not come from generalized
free fields. For more discussion around this point see for example [128, 304].

4.7 Appendix: A review of the exponential type problem
We saw in the main text that for a generalized free field theory at finite temperature,
the value of the depth parameter was equal to the exponential type of the Kallen-
Lehmann measure. In general, it is difficult to compute the exponential type of
a measure, and there is a large body of mathematical work on this topic. The
goal of this appendix is to summarize this mathematical work. If one follows the
general intuition given by Heisenberg’s uncertainty principle, one expects that the
more porous the support of the spectral density, the least porous the support of the
Fourier transform of any function supported there can be. In particular, for porous
enough support of the spectral density, we expect there to be a maximal gap for any
distribution of the form 𝑓 ∗ 𝐸 with 𝑓 admissible.

Therefore, studying the triviality of large enough relative commutants of time bands
is closely related to the following analysis problem, which as we saw before, is
known as the exponential type problem.
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A review of the main results
The mathematical results on the exponential type problem (and a close relative
known as the gap problem), seem to culminate with the work of Poltoratski in 2012
[387], which gives an explicit answer to the gap problem for finite measures on
the real line. Earlier work includes important theorems due to Benedicks [47, 48],
Beurling and de Branges [82].

We start by stating the definition of the exponential type:

Definition 4.7.1. Let 𝜇 be a measure on R. We define the exponential type of 𝜇 as

𝑇𝜇 := sup
𝑡∈R
{𝑡 ∈ R, ∃ 𝑓 ∈ 𝐿2(𝜇), supp( �̃� 𝜇) ∩ (0, 𝑡) = ∅}. (4.83)

The exponential type problem consists in computing the value of 𝑇𝜇 for a measure
𝜇.

The type problem has been solved in various cases. In the examples given in the
main text, we showed that

• If 𝜇 is evenly spaced with spacing 𝑙 then 𝑇𝜇 ≤ 2𝜋/𝑙.

• If 𝜇 is compactly supported, then 𝑇𝜇 = 0.

• If 𝜇 is a continuous function with complete support (with a few extra technical
assumptions), then 𝑇𝜇 = ∞.

The most general solutions to the exponential type problem to date have been pro-
vided by Poltoratski in [387], where he introduced. The work of [387] is formulated
in the case where the measure 𝜇 has finite mass, or in the case of Poisson-summable
measures, i.e. measures for which∫

R

𝑑 |𝜇 | (𝑥)
1 + 𝑥2 𝑑𝑥 < ∞. (4.84)

However it can be straightforwardly extended to the polynomially growing case
[388].

The key ingredient of these results is the notion of 𝑑-uniform sequence. This notion
allows to capture “how concentrated" the support of a sequence is. The definition
is a bit technical, we recall it here:
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Definition 4.7.2. We say that the discrete sequence of real numbers Λ = (𝜆𝑛) is
𝑑-uniform if there exists a sequence of disjoint intervals 𝐼𝑛 = (𝑎𝑛, 𝑏𝑛], whose centers
go to ±∞ and widths go to∞ as 𝑛→ ±∞, such that:∑︁

𝑛

|𝐼𝑛 |2
1 + dist(0, 𝐼𝑛)2

< ∞, (4.85)

#(Λ ∩ 𝐼𝑛) = 𝑑 |𝐼𝑛 | + 𝑜( |𝐼𝑛 |), (4.86)

and ∑︁
𝑛

(#(Λ ∩ 𝐼𝑛))2log|𝐼𝑛 | − 𝐸𝑛
1 + dist(0, 𝐼𝑛)2

< ∞, (4.87)

where

𝐸𝑛 :=
∑︁

𝜆𝑘≠𝜆𝑙∈𝐼𝑛
log|𝜆𝑘 − 𝜆𝑙 |. (4.88)

Roughly speaking, Equation (4.85) means that the sequence of sampling intervals
𝐼𝑛 cannot cover too much of the real line. Equation (4.86) controls the density of the
elements of Λ inside the 𝐼𝑛, while Equation (4.87) ensures that the 𝜆𝑛 are reasonably
equally spaced inside the 𝐼𝑛, by introducing the term 𝐸𝑛, which can be thought of
as a repulsion term between the 𝜆𝑛, which looks similar to the ones that appear in
fermionic statistics.

The most general theorem of [387] is then:

Theorem 4.7.3. Let 𝜇 be a finite positive measure on R. Let 𝑎 > 0. Then 𝑇𝜇 ≥ 𝑎 if
and only if for all lower semi-continuous 𝑊 ∈ 𝐿1(𝜇) with limit ∞ at ±∞, and any
0 < 𝑑 < 𝑎, there exists a 𝑑-uniform sequence (𝜆𝑛)𝑛∈N in the support of 𝜇 such that∑︁

𝑛

log𝑊 (𝜆𝑛)
1 + 𝜆2

𝑛

< ∞. (4.89)

In practise, this theorem is not always easy to apply, in large part due to the fact that
the characterization it introduces needs to be verified for all weights 𝑊 . However,
there are some situations in which 𝑊 can be removed from the statement. For
example, in the case where the measure 𝜇 is discrete, we have a much more explicit
criterion. We first define the notion of 𝑎-regular and strongly 𝑎-regular sequence,
which is a sequence whose overall density in the reals is approximately 𝑎:
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Definition 4.7.4. A sequence Λ = (𝜆𝑛) is 𝑎-regular if for all 𝜀 > 0, if there is a
sequence 𝐼𝑛 of intervals such that for all 𝑛,����#(Λ ∩ 𝐼𝑛)|𝐼𝑛 |

− 𝑎
���� ≥ 𝜀, (4.90)

then ∑︁
𝑛

|𝐼𝑛 |2
1 + dist(0, 𝐼𝑛)2

< ∞. (4.91)

Definition 4.7.5. A sequence Λ = (𝜆𝑛) is strongly 𝑎-regular if∫
𝑛𝜆 (𝑥) − 𝑎𝑥

1 + 𝑥2 𝑑𝑥 < ∞, (4.92)

where 𝑛𝜆 (𝑥) is the counting function of the support of Λ.

The characterization of the exponential type is then:

Proposition 4.7.6. Let

𝜇 :=
∑︁
𝑛

𝑤(𝑛)𝛿𝜆𝑛 (4.93)

be a finite measure, where Λ = (𝜆𝑛) is a sequence of points such that for some 𝑐 > 0,
|𝜆𝑖 − 𝜆 𝑗 | > 𝑐. Let

𝐷 := sup

{
𝐷∗(Λ′), Λ′ ⊂ Λ,

∑︁
𝜆𝑛∈Λ′

log𝑤(𝑛)
1 + 𝑛2 > −∞

}
, (4.94)

where

𝐷∗(Λ′) = sup {𝑎 ≥ 0, Λ has a strongly 𝑎-regular subsequence}. (4.95)

Then,

𝑇𝜇 = 2𝜋𝐷. (4.96)

It is this characterization that we used to show that below the Hawking–Page tem-
perature, the depth parameter is equal to 𝜋. In cases where the sequence is not
separated, i.e., where there is no minimal distance separating its points, we have an
alternative result:
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Proposition 4.7.7. Let

𝜇 :=
∑︁
𝑛

𝑤(𝑛)𝛿𝜆𝑛 (4.97)

be a finite measure.

𝐷 := sup

{
𝑑, ∃ 𝑑 − uniformΛ′ ⊂ Λ,

∑︁
𝜆𝑛∈Λ′

log𝑤(𝑛)
1 + 𝑛2 > −∞

}
. (4.98)

Then,

𝑇𝜇 ≥ 2𝜋𝐷, (4.99)

and there is equality if ∫
𝑑𝑥

log( |𝑛Λ | + 1) (𝑥)
1 + 𝑥2 < ∞. (4.100)

There is also another useful result on the exponential type problem in the case of
some polynomially growing measures called Frostman measures [386]. These are
positive measures 𝜇 for which there exist 𝐶, 𝛼 > 0 such that for all intervals 𝐼 ⊂ R,

𝜇(𝐼) < 𝐶 |𝐼 |𝛼 . (4.101)

In particular, Frostman measures include bounded continuous functions. We then
have the following result:

Theorem 4.7.8. Frostman measures have exponential type 0 or∞.

In our language this means that if the spectral density of our theories at large 𝑁 is
a bounded continuous function in the TFD state, then either there is no emergent
radial direction at all, or there is stringy connectivity between both sides!

The techniques used to prove the results described above are far from elementary, and
make use of advanced theories in harmonic analysis, such as the theory of Toeplitz
operators. They are also related to other deep areas of mathematical analysis,
such as Beurling–Malliavin theory and the Gelfand–Levitan method, which we
believe should also play a role in the definition of stringy geometries. The relation
between these results and our physical setup shows that our depth parameter contains
highly nontrivial information. We also hope that the new physical relevance of
the exponential type found in this chapter encourages further developments in the
mathematical study of exponential type problems.
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An explicit computation in a simple case
Although the arguments of [387] to establish the results above are very involved
mathematically, in this appendix we offer an elementary argument to compute the
exponential type for a simple choice of spectral function 𝜌(𝜔). Namely we assume

𝜌(𝜔) =
∞∑︁
𝑛=0

𝑎𝑛 [𝛿(𝜔 − 2𝑛) − 𝛿(𝜔 + 2𝑛)] , (4.102)

which corresponds to the case (4.16) of the vacuum state of a 𝑑-dimensional CFT
on 𝑆𝑑−1 in the particular case 𝜔0 = 0. In this case it can be readily seen that the
depth parameter T is equal to 𝜋. More formally:

Proposition 4.7.9. If the 𝑎𝑛 are nonzero and decay at most polynomially, the
exponential type of the measure 𝜌(𝜔) is T = 𝜋.

Proof. We first establish that T ≤ 𝜋, and then establish that T ≥ 𝜋. First, T ≤ 𝜋.
Indeed, suppose that there exists a function 𝑓 with real-valued Fourier transform
such that the Fourier transform of 𝑓 (𝜔)𝜌(𝜔) (or 𝜌0(𝜔)) vanishes on an interval of
size larger than 𝜋. Introducing 𝑐𝑛 := 𝑓𝑛𝑎𝑛 and noticing that

𝑓 (𝜔)𝜌(𝜔) =
∞∑︁
𝑛=0

𝑐𝑛𝛿(𝜔 − 2𝑛) −
∞∑︁
𝑛=0

𝑐∗𝑛𝛿(𝜔 + 2𝑛), (4.103)

we obtain that ( 𝑓 ∗ 𝜌) (𝑡) is periodic of period 𝜋. So if it vanishes on an interval of
size larger than 𝜋, then it identically vanishes and 𝑓 = 0. Hence we have established
that

T ≤ 𝜋. (4.104)

Now, we show that T ≥ 𝜋 by explicitly exhibiting, for all 𝜀 > 0, test functions in
𝐿2(𝜌) such that the Fourier transform of 𝑓 (𝜔)𝜌(𝜔) vanishes on intervals of size
𝜋 − 𝜀. More precisely, suppose that T = 𝜋 − 𝜀 for some 𝜀 > 0. Then this means
that there is no function 𝑓 (𝜔) ∈ 𝐿2(𝜌) such that

( 𝑓 ∗ 𝜌) (𝑡) = 𝑖 (Π ∗ 𝐾) (𝑡), (4.105)

where Π is the Dirac comb and 𝐾 is a compactly supported smooth function of
support inside (− 𝜋2 ,

𝜋
2 ) but outside (− 𝜋2 +

𝜀
2 ,

𝜋
2 −

𝜀
2 )) (otherwise integration against

such a function would vanish for functions supported on (− 𝜋2 +
𝜀
2 ,

𝜋
2 −

𝜀
2 )). So in

Fourier space this means there are no functions 𝐾 and 𝑓 as defined before such that∑︁
𝑎±𝑛 𝑓±𝑛𝛿±2𝑛 =

∑︁
𝐾±𝑛𝛿±2𝑛. (4.106)
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But for any 𝐾 compactly supported in 𝑡, one can always find such an 𝑓 : simply
define 𝑓±𝑛 = 𝐾±𝑛/𝑎±𝑛. Since the 𝐾±𝑛 decay faster than polynomially (as 𝐾 is in
Schwartz space), this implies ∑︁ |𝐾±𝑛 |2

𝑎±𝑛
< ∞, (4.107)

so such an 𝑓 is in 𝐿2(𝜌), which is a contradiction. Therefore, in that case,

T = 𝜋. (4.108)

□



118

C h a p t e r 5

EXPLICIT LARGE 𝑁 VON NEUMANN ALGEBRAS FROM
MATRIX MODELS

This chapter is based on the work [200], in collaboration with Leonardo Santilli.

5.1 Introduction
In the past two decades, our understanding of the emergence of spacetime in quan-
tum gravity has immensely improved, in particular in the controlled setting of the
AdS/CFT correspondence. This progress is in large part due to the study of the inter-
play between the emergent geometry of spacetime in the bulk and the entanglement
structure of the boundary theory. Important developments include the discovery
of the Ryu–Takayanagi formula [401] and its covariant generalization [242], of the
quantum extremal surface formula [296, 162], of the quantum error-correcting prop-
erties of holography [10, 225], of the “island" prescription [13], and of the replica
wormhole configurations [377, 11]. Perhaps most famously, these developments
culminated in a derivation of the Page curve for black hole evaporation [379, 12].

This plethora of results clarifies the emergence of space in the bulk, as they relate
the entanglement entropy of subregions of the boundary theory to the area of
surfaces in the bulk. In contrast, the emergence of time in the bulk is much less
explored, especially inside the black hole interior. While time outside the black
hole can be directly mapped to the boundary time [254], interior time is much
more mysterious, and faces all sorts of paradoxes, including puzzles related to
diffeomorphism invariance [138] and an apparent incompatibility with the axioms
of conformal field theory [329]. Importantly, signatures of the black hole singularity
remain largely elusive.

A new approach to the emergence of time in the AdS/CFT correspondence was
recently put forward by Leutheusser and Liu [293, 294], where they argued that
the interior time could only be sharply understood in the large 𝑁 limit of the
boundary theory. After defining a von Neumann algebra of single trace operators at
𝑁 = ∞ in the thermofield double state |Ψ𝛽⟩, they argued that above the Hawking–
Page temperature, this algebra becomes type III1, and that this highly nontrivial
entanglement property between the two sides of the thermofield double is related to
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the emergence of a new interior time.

It was conjectured in [293, 294] that the sudden transition to type III1 can be diag-
nosed by the real-time two-point function of single trace operators in the boundary
theory. More precisely, given a single trace operator 𝜙:

𝐺+(𝑡) = ⟨Ψ𝛽 |𝜙(𝑡)𝜙(0) |Ψ𝛽⟩. (5.1)

The Fourier transform of (5.1) satisfies

𝐺+(𝜔) =
𝜌(𝜔)

1 − 𝑒−𝛽𝜔
, (5.2)

where 𝜌(𝜔) is the finite temperature Källén–Lehmann spectral function at inverse
temperature 𝛽. The conjecture of Leutheusser–Liu is then that the type of the von
Neumann algebra of each single trace operator at finite temperature is related to
the structure of the spectral density 𝜌(𝜔): if it consists in delta-functions, then the
von Neumann algebra is type I, whereas if it consists in a continuum,1 then the
von Neumann algebra is type III1 (and so is the von Neumann algebra of the full
theory). This conjecture therefore proposes to use each single trace operator as a
“probe", which, through its interactions with the whole system, will help diagnose
the emergence of spacetime. We will take a similar viewpoint in this chapter.

The presence of a phase transition with this sort of structural change in the spectral
function is expected in holographic theories, and it is associated to the emergence
of a black hole horizon in the bulk. In particular, the mixing properties associated
to the presence of a sharp horizon require that the two-point functions of single
trace operators must vanish at late times [171, 172]. This is related to apparent
information loss at large 𝑁 (see [171, 172]), and is only possible if the spectral
function is not discrete, and hence if there is an emergent type III1 algebra in the
large 𝑁 limit. The relation between the chaotic properties of the two-point function
and the type of the underlying von Neumann algebra was recently explored in [183],
which in particular used these methods to obtain the type III1 property from the
continuity (or measurability) of the spectral density of generalized free fields. Note
that type III1 is only a necessary condition for this horizon structure, but that it is
not obvious it is sufficient, in particular, there exists a whole hierarchy of chaotic
properties that are expected for black hole horizons and that are strictly stronger
than type III1 [191, 367].

1Originally the support was required to be the whole real axis, but we will show that this is not
necessary.
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In the phase in which the large 𝑁 gauge theory is characterized by a type III1 algebra,
it is argued in [293, 294] that there can exist a new, emergent notion of time defined
from the extension of a half-sided modular inclusion, which is the algebraic structure
encoding the presence of a horizon in the bulk at large 𝑁 . This extension allows to
take operators outside the horizon to operators in the black hole interior, and allows
to potentially ask sharp questions about the emergence of the interior and of the
singularity. It also gives yet another clue that interior time should be intrinsically
related to the large 𝑁 limit of the boundary theory.

The proposal in [293, 294] for the emergence of type III1 factors at large 𝑁 is
holographic in essence, and relies on subregion dualities as well as on the assumption
of smoothness of the dual bulk spacetime in the large 𝑁 limit. In particular, the
type III1 nature of the von Neumann algebras is argued for in a rather indirect
way, by resorting to results from algebraic quantum field theory. In this way an
algebraic structure of half-sided modular inclusion emerges, and it can be shown
that this structure only exists for type III1 von Neumann algebras. However, it is
less clear how the emergence of nontrivial algebras arises directly at the level of
the string/gauge theory of interest, and how the type of the algebra can be directly
inferred from a gauge theory calculation.

The purpose of this chapter is threefold:

• First, to explain how to explicitly construct large 𝑁 algebras from explicit
quantum mechanical theories and rigorously derive their type from consider-
ations related to the spectral function. In particular, a statement similar to,
but slightly different from, the conjectures of [293, 294], and that agrees with
the relevant results in [183] in the type III1 case, will be rigorously shown and
applied to our examples.

• Second, to propose a broad class of toy models inspired from gauge/string
duality, of which [246] constitutes a particularly simple instance, and apply
our formalism to them to show they give rise to an emergent type III1 von
Neumann algebra. This part, which is the most prominent both in terms of
length and of technical developments, involves mathematics related to random
matrix theory and combinatorial representation theory.

• In addition, we further elaborate on these examples and construct a family of
models that undergo a first order phase transition in the large 𝑁 limit. This is
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Symmetries and
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Quantum
mechanics

Spectral
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von Neumann
algebras

Figure 5.1: In this work we explore the implications of writing the finite temperature
partition function of a theory in terms of representations of the global symmetries.
We construct a quantum mechanics from these representations and determine the
large 𝑁 von Neumann algebra of operators.

a general result based on the study of the partition functions of the systems,
and the prescription we provide is independent of the considerations on von
Neumann algebras. Combining this with the analysis of the spectral density,
we show that these modified models carry an associated type III1 algebra only
above the critical temperature.

Our strategy for the first goal will be to apply standard techniques from algebraic
quantum field theory to associate a special kind of von Neumann algebra to any
quantum dynamical system of harmonic oscillators, under the assumption that cor-
relation functions factorize in the large 𝑁 limit. The von Neumann algebras describe
a generalized free field theory, can be systematically studied, and their type turns
out to be classified by the spectrum of an operator closely related to the spectral
density (these techniques should be compared to [183]).

The second goal will be met thanks to a general construction of quantum mechanical
systems whose partition function can be computed from matrix integrals of a kind
that often appears in the string theory literature. In this simple setup, we will be
able to calculate thermal correlation functions entirely explicitly. In particular, the
large 𝑁 value of these correlation functions can be expressed in terms of the saddle
point eigenvalue density of a discrete matrix ensemble. From this, we will be able
to rigorously derive the type of the von Neumann algebra describing these systems
at large 𝑁 . Figure 5.1 sketches the basic ideas.

Finally, we will meet the third goal by enlarging our quantum systems into a direct
sum of sectors that transform under different flavor symmetry groups. This will
have the effect of promoting the third order phase transition present in our initial
examples to a first order one, which will be sharp enough to induce a change at
the level of the large 𝑁 algebra depending on the temperature. This procedure
interestingly parallels and revisits early calculations in gauge theory [302].

Effective descriptions of gauge/string dualities in terms of matrix models have a long
history, and the incarnation we consider was pioneered in [427, 5]. A particularly
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appealing feature of such descriptions is that matrix models often admit character
expansions, which can be useful to carry calculations explicitly in a setup more akin
to bulk variables. The most precise statements along these lines have been made in
N = 4 super-Yang–Mills theory, in the case of half-BPS states [301], as well as in
the more recent giant graviton expansion [184, 291]. In our case, the states of the
systems we will study will be packaged into such character expansions.

𝑇𝐻

Type III1Type I

Z ∼ 𝑂 (1) Z ∼ 𝑂 (exp 𝑁2)

low 𝑇 high 𝑇

Figure 5.2: Below the Hagedorn temperature (𝑇 < 𝑇𝐻) the partition function is
finite and the algebra of single-trace operators is a type I von Neumann algebra.
Above the Hagedorn temperature (𝑇 > 𝑇𝐻), the partition function diverges and the
von Neumann algebra becomes type III1.

The main results of this work can be summarized as follows:

• Building on the foundational work on operator algebras [25, 27] summarized
in [137] and its relation to algebraic quantum field theory (see for example
[173]), we give a completely general and rigorous procedure to construct
large 𝑁 von Neumann algebras from quantum systems satisfying large 𝑁
factorization, and to determine their types. In particular, we show that a more
precise and entirely rigorous version of the conjecture of [293, 294] relating
the type of the von Neumann algebras to the support of the large 𝑁 spectral
function directly follows from these results (see also [183]).

• We put forward a general procedure to construct quantum systems with a third
order phase transition in the large 𝑁 limit, and an extension of these systems to
systems with a first order Hagedorn-like transition. An alternative description
of these systems is given in terms of unitary matrix models, which often have
a more direct gauge theory interpretation. This is ultimately a matrix model
result, potentially of independent interest.

• For our class of models, we introduce a general notion of probe operator,
analogous to a detector interacting with the gauge theory. We derive a univer-
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sal relation between the Källén–Lehmann spectral density associated to the
real-time two point functions of such probes, and the eigenvalue density of an
underlying matrix model.

• From this Källén–Lehmann density, we apply our general method to construct
an associated large 𝑁 von Neumann algebra. This algebra can be constructed
from the correlation functions of the probe only. We exploit the relation
between spectral density and eigenvalue density to understand the types of
our algebras (Figure 5.2).

• We illustrate our results by computing the partition functions and Källén–
Lehmann densities entirely explicitly in selected examples inspired by various
physical theories.

Organization
The contents of the chapter are organized in two main parts plus appendices. Part
5.1, which is more formal in nature, contains all general constructions, both of large
𝑁 algebras associated to quantum systems with large 𝑁 factorization, and of the
quantum systems of interest in this chapter. We introduce all the main theoretical
results in this part. Part 5.5 is dedicated to explicit examples, where the machinery
of Part 5.1 finds explicit realization. We tried to keep the two parts as independent
as possible, so that the busy reader interested only in concrete calculations can
directly jump to Part 5.5, while the more mathematically minded reader can content
themselves with the general and formal constructions of Part 5.1. Figure 5.3 contains
a sketch of the main concepts and ideas discussed in the text.

In Section 5.2, we begin with a brief review of the salient features of von Neumann
algebras and their relevance for the emergence of interior time in holography. Our
construction and results on von Neumann algebras are in Section 5.3. We explain
how to construct general von Neumann algebras associated to large 𝑁 factorizing
quantum systems, with a key role played by the Källén–Lehmann spectral density. In
Section 5.4 we change gears and introduce the class of systems we aim to study. The
operators required as input for the machinery developed in Section 5.3 are explicitly
constructed in Subsection 5.4. In Subsection 5.4 we calculate the real-time two-
point function of these operators using matrix models, and obtain the spectral density
𝜌(𝜔). This allows us to deduce the type of the associated von Neumann algebra.
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Figure 5.3: The steps through which this work associates von Neumann algebras to
quantum mechanical systems with large 𝑁 factorization.

Then, in Section 5.5, we extend the quantum systems by including a weighted sum
over the flavor rank. In Subsection 5.5 we investigate the asymptotic growth of the
partition function of these extended models and argue for the presence of a large 𝑁 ,
first order phase transition with Hagedorn behavior. Subsection 5.5 replicates the
analysis of the spectral density, and shows its different behavior on the two sides of
the Hagedorn transition. Combining the three steps therein leads to a jump in the
type of von Neumann algebra across the Hagedorn phase transition, which becomes
type III1, as indicated in Figure 5.2.

We then proceed to apply our construction to different examples of systems inspired
by gauge/string duality, and perform explicit calculations. This is the content of Part
5.5, consisting of Sections 5.6 to 5.9. In Section 5.6 we consider a generalization
of a model from [246] (see also [247, 337]) and unveil its connection with super-
symmetric QCD in 4d (SQCD4) as well as with Calabi–Yau varieties. We consider
a newly introduced ensemble based on a toy model of lattice QCD in 2d (QCD2)
[218] in Section 5.7. The third example, in Section 5.8, is the generating function
of Donaldson–Thomas invariants of the resolved conifold, and we comment on the
geometric meaning of our construction along the way. The final example is based
on the partition function of pure Yang–Mills theory in two dimensions, which also
recently appeared in the description of generic holographic systems with global
symmetry [272, 271], as reported in Section 5.9.

Section 5.10 contains a summary of our results and presents future research direc-
tions. The text is complemented by extensive appendices, of which 5.11 and 5.13
may be of independent interest. Appendix 5.11 formally generalizes the construc-
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tion of Section 5.3 to any bosonic or fermionic system made of free oscillators. We
discuss an effective matrix model for four-dimensional N = 4 super-Yang–Mills
theory [302, 150] in Appendix 5.12, which is amenable to be analyzed by the same
means as the examples in Part 5.5, even though we lack a quantum mechanical inter-
pretation. The scope of Appendix 5.12 is to showcase our techniques in a familiar
matrix model, without attempting any claim concerning N = 4 super-Yang–Mills
theory. Appendix 5.13 discusses unitary matrix models at large 𝑁 and puts forward
a general procedure to promote the characteristic third order phase transitions to
first order ones. Certain long proofs are gathered in Appendix 5.14.

Disclaimer on notation

In order to facilitate the reading and the retrieval of the main ingredients, the
fundamental steps in the derivation are framed as Theorems and Propositions. We
will also informally summarize the main achievements as Statements, referring to
the accompanying theorem for a precise version. Previously known results are
accompanied by citation of the original works or other standard references, while
propositions without citations are new. Besides, while aiming at a broad picture in
Part 5.1, we highlight with a symbol⋄ caveats that may obstruct the direct application
of certain steps to more involved physical models.

In order to make this work self-contained and easily reproducible for the black hole
inclined audience, we sketch the proofs of a handful of statements that are likely
known to the matrix model practitioner.

The speed-reader’s guide to the contents
Given the length of the chapter, we now point at some important parts that can be
looked at independently. We also emphasize that the two parts of this work can be
read largely independently, and that our examples can be understood without the
general theory.

• The reader interested in von Neumann algebras for systems with large 𝑁
factorization can directly look into Subsection 5.3. The classification result
is given in Subsection 5.3.

• For a hands-on definition of our quantum systems, we suggest looking at
(5.43), whose reinterpretation as a Hilbert space trace is explained in Subsec-
tion 5.4. Our definition of a probe and its interaction with the systems is in
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Subsection 5.4 — or one may jump to Corollary 5.4 and Statement 5.4.20 for
the properties of the large 𝑁 spectral density.

• The main technique to promote a third order transition to a first order one is
explained in Subsections 5.5 and 5.5. The results about the corresponding
new systems are summarized in Subsection 5.5.

• The reader interested in concrete examples may directly look at Part 5.5.
Example 1 in Section 5.6 displays all the features discussed abstractly in Part
5.1.
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The goal of this first part is to introduce all our main results in the most general
language possible. We will begin with a brief review of the increasingly important
role von Neumann algebras have been playing in holography in recent years. We
will then provide a general construction of von Neumann algebras capturing the
finite temperature correlations of systems with large 𝑁 factorization, as well as
an entirely explicit criterion to determine the type of these algebras based on the
support of the spectral function. Then, we will introduce our family of toy models,
their relationship to matrix integrals akin to those appearing in string theory, and a
general prescription to determine the support of the spectral function of our models
in terms of the asymptotic behavior of the underlying matrix integral. In particular,
this formula will be enough to determine the types of the large 𝑁 algebras of our
systems.

5.2 Von Neumann algebras in holography
The role of von Neumann algebras in holography is ubiquitous, and has become
increasingly important in the recent years (see also the earlier works [370, 371]).
They are especially relevant to make sense of statements related to quantum error
correction in AdS/CFT [270, 269, 196, 164, 194, 100, 168, 192], which are the
backbone of the quantum extremal surface formula [225]. They also appear in the
study of the emergence of the bulk radial direction, through the notion of modular
chaos [169, 134].

In this preliminary section, we will focus on one particular aspect of the appearance
of von Neumann algebras in holography, that is related to the emergence of time in
the black hole interior above the Hawking–Page temperature. We hence first review
the particular aspects of the theory of von Neumann algebras that are relevant to this
topic. Then, in Subsection 5.2, we summarize the construction of emergent times
due to Leutheusser–Liu [293, 294].

Classification of factors
Let us first recall the definition of a von Neumann algebra and of a factor on a Hilbert
space.

Definition 5.2.1. Let ℋ be a Hilbert space. The commutant 𝑀′ of an algebra of
bounded operators 𝑀 onℋ is the algebra of bounded operators onℋ that commute
with all elements of 𝑀 . The bicommutant 𝑀′′ := (𝑀′)′ of 𝑀 is the commutant of
the commutant of 𝑀 .



129

Definition 5.2.2. Let ℋ be a Hilbert space. An algebra of bounded operators 𝑀 on
ℋ is said to be a von Neumann algebra if it is closed under Hermitian conjugation
and is equal to its bicommutant. If the center of 𝑀 is reduced to multiples of the
identity, one says that 𝑀 is a factor.

It is an important problem to classify all von Neumann algebras up to isomorphism.
As any von Neumann algebra can be written as a direct integral of factors, this
problem reduces to the easier problem of classifying all factors.

In general, this problem is very hard, and still wide open. However, it has been solved
in a particular case by Connes [120] and Haagerup [215] in the 1970s, namely,
the case of hyperfinite factors, which can be approximated by finite-dimensional
algebras.

Definition 5.2.3. A von Neumann algebra 𝑀 is hyperfinite if there exists an in-
creasing sequence of finite-dimensional algebras (𝑀𝑛)𝑛∈N, such that 𝑀 is the weak
operator closure of

⋃
𝑛∈N

𝑀𝑛.

It turns out that hyperfinite von Neumann algebras are most often the ones that
appear in physics. In particular, under reasonable assumptions, one can show that
in quantum field theory, local algebras are hyperfinite [212].

The classification of von Neumann algebras relies on the structure of the set of
projections inside the algebras [435]. This structure does not necessarily give a lot
of physical insight for our purposes, and rather than studying it here, we will simply
enumerate the possible types of factors and their main properties.

I) Type I factors are isomorphic to the algebra of operators B(ℋ), where ℋ is a
separable Hilbert space. There is of course exactly one type I factor for each
dimension dim(ℋ) = 𝑛 ∈ N ∪ {∞}. This unique factor is said to have type
I𝑛.

II) Type II factors can no longer be written in the formB(ℋ), but they still possess
a tracial weight, namely a (potentially infinite) functional 𝜏 that satisfies

𝜏(𝑥𝑦) = 𝜏(𝑦𝑥). (5.3)

This trace is not the same as the trace in B(ℋ), and can be thought of as
a rescaled version of the trace, where an “infinite amount of entanglement”



130

between the algebra and the rest of the system is subtracted [457]. Type II
factors come in two types: type II1 factors for which the trace is finite on all
the algebra, and type II∞ factors, isomorphic to the tensor product of a type
II1 and a type I∞ factor, for which the trace is infinite on the identity. Both
types are unique up to isomorphism.

III) Type III factors are all those that remain.

The breakthrough of the work of Connes and Haagerup [120, 215] is the classification
of type III factors in the hyperfinite case, which seemed completely out of reach
beforehand. This classification was made possible by the modular theory of Tomita
and Takesaki [437], whose main result we now briefly recall.

Type III factors

Let 𝑀 be a type III factor. To any faithful, normal state 𝜑 on 𝑀 (weak-∗ continuous
linear functional of norm one which is nonzero on nonzero positive elements),
Tomita–Takesaki theory [437] associates an unbounded self-adjoint operator2 Δ𝜑

such that for all 𝑡 ∈ R,

Δ−𝑖𝑡𝜑 𝑀Δ𝑖𝑡𝜑 = 𝑀. (5.4)

This means that conjugation by imaginary powers ofΔ𝜑 gives rise to a one-parameter
automorphism group of 𝑀 , called the modular automorphism group. The state
𝜑 satisfies the KMS condition with respect to that group, which is an infinite-
dimensional version of a thermal equilibrium condition.

One fundamental difference between type III factors and the other factors is that in
the former case, there is no way of implementing modular automorphisms of the
algebra by conjugating by a unitary that pertains to the algebra. This means that
modular flow is an outer automorphism for type III factors, whereas it is inner in
the other cases.

The way type III factors are classified then is the following: introduce the Connes
invariant

𝑆(𝑀) :=
⋂
𝜑

Sp Δ𝜑, (5.5)

2In the physics literature, Δ𝜑 corresponds to the exponential of the (full) modular Hamiltonian
of the system.



131

where the intersection is taken over all faithful normal states 𝜑 on 𝑀 , and Sp denotes
the spectrum of an unbounded operator.

It turns out that the Connes invariant can take just a few values for type III factors.
Let 𝑀 be a type III factor,

• If 𝑆(𝑀) = {0, 1}, then 𝑀 is said to have type III0.

• If for 0 < 𝜆 < 1, 𝑆(𝑀) = {0} ∪ {𝜆𝑛, 𝑛 ∈ Z}, then 𝑀 is said to have type III𝜆.

• If 𝑆(𝑀) = [0,∞), then 𝑀 is said to have type III1.

From this, it is clear that the modular operator Δ𝜑 of the system has continuous
spectrum for all faithful normal states on 𝑀 if and only if 𝑀 has type III1. This is
a property that is expected from the modular Hamiltonian of black hole states on
one side of the horizon. It turns out that in the hyperfinite case, type is enough to
completely classify type III factors. More precisely, there is a unique hyperfinite
type III𝜆 factor for 0 < 𝜆 ≤ 1. The type III0 case is more subtle.

In quantum field theory, one of the main applications of Tomita–Takesaki theory is
the Bisognano–Wichmann theorem [212], which asserts that the modular automor-
phisms of local algebras associated to Rindler wedges implement Lorentz boosts
along the Rindler horizon. This can be seen as a statement of the Unruh effect,
which asserts that the QFT vacuum is thermal with respect to Lorentz boosts.

In fact, due to the horizon structure, the generator of null translations along a
Rindler horizon can also be reconstructed from modular theory. Null translations
of magnitude 𝑎 around the horizon are implemented by a semigroup of unitaries
𝑈 (𝑎). If we denote byM the algebra of the wedge, and byN the translated algebra
N := 𝑈 (1)M𝑈†(1), the following relations are satisfied in the vacuum state, for all
𝑡 ≥ 0:

Δ𝑖𝑡MNΔ−𝑖𝑡M ⊂ N ,
Δ𝑖𝑡M𝑈 (𝑎)Δ

−𝑖𝑡
M = Δ𝑖𝑡N𝑈 (𝑎)Δ

−𝑖𝑡
N = 𝑈 (𝑒−2𝜋𝑡𝑎),

𝐽N 𝐽M = 𝑈 (2),
Δ𝑖𝑡N = 𝑈 (1)Δ𝑖𝑡M𝑈

†(1).

(5.6)

This structure is known in algebraic quantum field theory under the name of half-
sided modular inclusion [453], and it is necessary to get a well-defined causal
structure in the emergent spacetime. It turns out that under reasonable conditions
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on the vacuum state, the only von Neumann algebras that are consistent with the
half-sided modular inclusion structure are hyperfinite factors of type III1. This
implies that in quantum field theory, local von Neumann algebras must have type
III1. This leads to the following result:

Theorem 5.2.4 ([212]). In a quantum field theory, the von Neumann algebras
associated to Rindler wedges are type III1 factors.

The Leutheusser–Liu half-sided modular inclusion
The recent, key insight of Leutheusser and Liu [293, 294] is that a von Neumann
algebra associated to a spacetime region outside of a general horizon should also
have type III1, even in the case of a black hole. The reason is that there is also a
half-sided modular inclusion along the black hole horizon.

This fact has strong consequences in holography. Consider two copies of strongly
interacting N = 4 super-Yang–Mills theory at large 𝑁 , in the thermofield double
state [318]. The AdS/CFT dictionary tells us that the bulk effective description of
the theory is a theory of fields on an asymptotically AdS spacetime. The boundary
theory admits a deconfinement phase transition at large 𝑁 [5], which is dual in the
bulk to the Hawking–Page phase transition [455], with the emergence of a wormhole
and a horizon on both sides of the thermofield double [318]. For extensive discussion
on Hagedorn, deconfinement and Hawking–Page transitions, see [5, 14].

The operator algebraic interpretation put forward in [293, 294] is the following:
the algebra of generalized free fields at large 𝑁 in the bulk is dual to the algebra
generated by (appropriately normalized) single-trace operators at 𝑁 = ∞. The
emergence of a black hole horizon then implies that the type of this algebra goes
from type I to type III1 at the Hawking–Page temperature.

Actually, even more can be said. What is shown in [293, 294] is that in the case where
the large 𝑁 algebra corresponds to a generalized free field, this half-sided modular
inclusion can be extended to positive values of the coordinate on the horizon. It is
this extension that allows to cross the horizon and construct a new, emergent time
inside the black hole. Therefore, the emergence of time in the black hole interior
is very closely related to the type III1 nature of the algebra of the exterior. This
emergent time should furthermore break down at a finite value of the parameter,
which would be a signature of the black hole singularity.

Let us note that these observations do not, in principle, rely on the strength of the ’t
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Hooft coupling on the boundary. While bulk physics is no longer approximated by
a supergravity theory in the weakly coupled regime, it has been argued [171, 172]
that the Källén–Lehmann spectral density is still continuous at weak (but nonzero)
coupling, which implies that the boundary algebra should still become type III1

above the Hawking–Page temperature. If one could still make sense of the notion of
half-sided modular inclusion in this regime, this would imply that there is a precise
notion of “stringy horizon" for holographic duals of weakly coupled gauge theories.

5.3 Von Neumann algebras for systems with large 𝑁 factorization
In this rather formal section, we describe a general procedure that allows to construct
a von Neumann algebra describing the correlation functions of any system satisfying
large 𝑁 factorization. In particular, this method would apply toN = 4 super-Yang–
Mills if we were able to compute the large 𝑁 two-point functions of single trace
operators rigorously. In order not to clutter the main body of the chapter too much,
and also because this will be the case in all our examples, we restrict the discussion
here to the case of bosonic systems, however, the fermionic counterpart of the
statements presented here can be derived in a completely analogous way thanks to
the fermionic algebras introduced in Appendix 5.11. More generally, Appendix 5.11
systematically introduces all the mathematical objects involved here in the language
of [137]. On top of this reference, this section also inspires itself from standard
techniques of algebraic quantum field theory, see for example [185, 173], as well as
[303] and [168, App.C] for recent discussions and comments.

The construction
Consider a sequence of quantum systems indexed by an integer 𝑁 , at finite inverse
temperature 𝛽. Let 𝐴 be an operator defined at each 𝑁 . We start by defining what
we mean by large 𝑁 factorization.

Definition 5.3.1. A self-adjoint operator 𝜙(𝑡) is said to satisfy (bosonic) large 𝑁
factorization if all its large 𝑁 , finite temperature correlation functions have a limit,
and these limits satisfy:

⟨𝜙(𝑡1) . . . 𝜙(𝑡2𝑚−1)⟩ = 0,

⟨𝜙(𝑡1) . . . 𝜙(𝑡2𝑚)⟩ =
∑︁

Wick pairing 𝜛

𝑚∏
𝑗=1
⟨𝜙(𝑡𝜛(2 𝑗−1))𝜙(𝑡𝜛(2 𝑗))⟩ ,

(5.7)

where the sum runs over pairings of operators that respect the ordering, with the
corresponding permutations of 2𝑚 objects denoted 𝜛.
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A quantum field theory at finite temperature is completely determined by its cor-
relation functions. In what follows, we shall be interested in quantum systems
containing some observables that satisfy large 𝑁 factorization. Equation (5.7) then
teaches us that for these observables, all-point functions can be recovered from the
datum of two-point functions. The question is now: how does one construct a net
of von Neumann algebras and an expectation value functional (i.e., a state on this
algebra) whose values reproduce the correlation functions of such a form (5.7), and
determine its type? It turns out that this problem can be answered by a standard
construction of operator algebra theory, namely, a representation of the canonical
commutation relations (CCR). Note that the algebra we construct here has no direct
definition in terms of the finite 𝑁 observables of the quantum mechanical theory.
The idea is to directly engineer it from the data of the correlation functions at large
𝑁 , in such a way that it recovers them.

CCR and Araki–Woods theory

More formally, we wish to construct an algebra of quantum fields in 0+1 dimensions,
and a state on this algebra, such that this state captures the correlation functions of
observables satisfying large 𝑁 factorization. There is a generic operator algebraic
construction that allows to describe the correlations of bosonic creation and an-
nihilation operators in states that factorize (often dubbed quasi-free states). This
construction is widely used in algebraic quantum field theory, and is precise enough
to know about the type of von Neumann algebra when the correlation functions
factorize, see for example [173] for a review. Here we will adapt the method of
algebraic quantum field theory to the format of [137], which is well-adapted to
compute the types of the algebras under consideration.

The algebra we will consider is given by a representation of the canonical com-
mutation relations (CCR algebra) over a one-particle Hilbert space. This Hilbert
space is a space of functions of spacetime: here we are in 0 + 1 dimensions, so it
simply is a space of functions of R, interpreted as the time direction. In this manner,
the one-particle Hilbert space knows about the creation of individual particles at
different times. Equivalently, it will be more convenient to think of the Hilbert
space as a space of functions indexed by the frequency 𝜔. More formally, recall the
definition of the Wightman function

𝐺+(𝑡) = ⟨𝜙(𝑡)𝜙(0)⟩𝛽 , (5.8)
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and of the Källén–Lehmann spectral density

𝜌(𝜔) := (1 − 𝑒−𝛽𝜔)𝐺+(𝜔). (5.9)

Throughout the chapter, to make contact with the sign conventions in [172], the
definition used for the Fourier transform is

�̃� (𝜔) :=
1

2𝜋

∫
R
𝑓 (𝑡)𝑒+𝑖𝜔𝑡𝑑𝑡. (5.10)

One can now introduce the following definition.3

Definition 5.3.2. The real Hilbert space 𝐿2(R, 𝜌) is the completion of the space
of rapidly decaying real-valued functions S(R) on R whose Fourier transform is
square-integrable against 𝜌, endowed with the inner product defined by

( 𝑓1, 𝑓2) :=
∫
R
𝑑𝜔 𝑓 ∗1 (𝜔) 𝑓2(𝜔)sgn(𝜔)𝜌(𝜔). (5.11)

This is a real inner product because it can be checked that 𝜌(𝜔) is an odd function of
𝜔, positive for positive 𝜔. Out of this Hilbert space and our inner product, we now
construct a representation of the CCR (see Appendix 5.11 for more details) through
a standard procedure known as the Araki–Woods construction. The first step is to
introduce the operation

j̃ 𝑓 (𝜔) := −𝑖 sgn(𝜔) 𝑓 ∗(−𝜔). (5.12)

This operation endows 𝐿2(R, 𝜌) with the structure of a real symplectic space, with
symplectic structure given by

𝜎( 𝑓1, 𝑓2) :=
∫
R
𝑑𝜔 𝑓 ∗1 (𝜔) j̃ 𝑓 2(𝜔)sgn(𝜔)𝜌(𝜔). (5.13)

Moreover, note that j squares to −1 (minus the identity operator) and j∗ = −j. This
implies that one can promote the structure of 𝐿2(R, 𝜌) to that of a complex Hilbert
space 𝑍 [173], on which −j implements the imaginary unit, with a sesquilinear inner
product given by

⟨ 𝑓1, 𝑓2⟩ :=
∫
R
𝑑𝜔 𝑓 ∗1 (𝜔) �̃�2(𝜔)sgn(𝜔)𝜌(𝜔) +

∫
R
𝑑𝜔 𝑓 ∗1 (𝜔) 𝑓

∗
2 (−𝜔)𝜌(𝜔) = ( 𝑓1, 𝑓2) + 𝑖( 𝑓1, j 𝑓2).

(5.14)
3We will assume 𝜌(𝜔)𝑑𝜔 is a measure on R that induces a tempered distribution. If 𝜌 is not

supported on the whole real axis, then one needs to quotient by the null space of the inner product:
functions whose support is included in the space where 𝜌 is zero.
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The construction is then given by the following procedure. Let 𝑍 be defined as
before, and let Γ be the bosonic Fock space over 𝑍 ⊕ �̄� . For 𝑓1, 𝑓2 in the image of
S(R) inside 𝐿2(R, 𝜌), we introduce the operators

𝑊 ( 𝑓1, 𝑓2) := 𝑒𝑖𝜙( 𝑓1, 𝑓2) , (5.15)

where

𝜙( 𝑓1, 𝑓2) =
1
√

2
(𝑎†( 𝑓1, 𝑓2) + 𝑎( 𝑓1, 𝑓2)), (5.16)

𝑎 and 𝑎† being the usual raising and lowering operators on the Fock space Γ.

We then introduce the operator 𝜌𝛽 (not to be confused with the spectral density
𝜌(𝜔) — we chose this notation for consistency with [137]), defined by

𝜌𝛽 := 𝛾𝛽 (1 − 𝛾𝛽)−1, (5.17)

where �(𝛾𝛽 𝑓 ) (𝜔) := 𝑒−𝛽 |𝜔| 𝑓 (𝜔). (5.18)

Note that 𝛾𝛽 is a self-adjoint operator satisfying 0 ≤ 𝛾𝛽 ≤ 1. Then, for 𝑓 ∈
Dom(𝜌

1
2
𝛽
), we can define two unitary operators𝑊𝛾,𝑙 and𝑊𝛾,𝑟 on Γ by

𝑊𝛽,𝑙 ( 𝑓 ) := 𝑊 ((𝜌𝛽 + 1) 1
2 𝑓 , �̄�

1
2
𝛽
𝑓 ), (5.19)

𝑊𝛽,𝑟 ( 𝑓 ) := 𝑊 (𝜌
1
2
𝛽
𝑓 , ( �̄�𝛽 + 1) 1

2 𝑓 ). (5.20)

It can then be shown that

Proposition 5.3.3 ([137]). The operators𝑊𝛽,𝑙 ( 𝑓 ) satisfy the canonical commutation
relations

𝑊𝛽,𝑙 ( 𝑓1)𝑊𝛽,𝑙 ( 𝑓2) = 𝑒−
𝑖
2 Im⟨ 𝑓1, 𝑓2⟩𝑊𝛽,𝑙 ( 𝑓1 + 𝑓2). (5.21)

Importantly, the algebra of operators generated by the 𝑊𝛽,𝑙 ( 𝑓 ) is not yet a von
Neumann algebra: it is only a formal algebra generated by unitary operators, with
no extra topological structure. The missing ingredient in order to obtain a von
Neumann algebra is to take its bicommutant on the Fock space Γ.

Definition 5.3.4. The large 𝑁 von Neumann algebra 𝑀 associated to the large 𝑁
spectral density 𝜌 is the bicommutant of the algebra generated by the operators𝑊𝛽,𝑙

on the Fock space Γ.
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Although this last step of taking the bicommutant might seem like a mere tech-
nicality, it is a crucial one: without it, the 𝑊𝛽,𝑙 ( 𝑓 ) do not know anything about
the underlying entanglement structure of the vacuum state. It is this last step that
“teaches" the algebra of the𝑊𝛽,𝑙 ( 𝑓 ) about the entanglement structure of the under-
lying Hilbert space. In particular, the different types that the von Neumann algebra
𝑀 can have arise due to this bicommutant operation.

The interest of the construction above is that the correlation functions in the vacuum
state |Ω𝛽⟩ of Γ exactly reproduce those of the system of interest. In particular, while
Dirac deltas are not necessarily in 𝐿2(R, 𝜌), one can still formally write down the
correlation functions of the operators associated to 𝛿(· − 𝑡) and 𝛿(·). Then, using
[137, Proposition 40, 1st point of item 4], one finds:

⟨Ω𝛽 | 𝜙(𝑡)𝜙(0) |Ω𝛽⟩ = Re ⟨(𝜌𝛽)𝛿(· − 𝑡), 𝛿(·)⟩ +
1
2
⟨𝛿(· − 𝑡), 𝛿(·)⟩

=

∫
R
𝑑𝜔 𝑒−𝑖𝜔𝑡sgn(𝜔)𝜌(𝜔)

(
𝑒−𝛽 |𝜔|

1 − 𝑒−𝛽 |𝜔|
+ 1

2

)
+ 1

2

∫
R
𝑑𝜔 𝑒−𝑖𝜔𝑡𝜌(𝜔)

=

∫
R
𝑑𝜔 𝑒−𝑖𝜔𝑡𝜌(𝜔)

(
1
2

coth
(
𝛽𝜔

2

)
+ 1

2

)
=

∫
R
𝑑𝜔𝑒−𝑖𝜔𝑡

𝜌(𝜔)
1 − 𝑒−𝛽𝜔

, (5.22)

which matches with the Wightman function 𝐺+(𝑡) by Fourier inversion. Similar
results can be found for correlations of two creation and/or annihilation operators.
Moreover, the correlation functions factorize (this is a consequence of the Araki–
Woods construction that directly follows from [137]), which shows that the algebra𝑀
satisfies the requirement of describing all correlation functions at finite temperature.

Type of large 𝑁 algebras
With this construction at hand, we can study the type of the von Neumann algebra
generated by the𝑊𝛾𝛽 ,𝑙 ( 𝑓 ) thanks to the following result summarized by Dereziński
[137]:

Theorem 5.3.5 ([137]). Let 𝑀 be the bicommutant of the Araki–Woods represen-
tation of the CCR defined above. If 𝛾𝛽 is trace-class, then 𝑀 has type I. If 𝛾𝛽 has
some continuous spectrum, then 𝑀 has type III1.

A more detailed justification of the type III1 part of this result based on the triviality
of the centralizer can for example be found in [206, 183]. Using (5.17), this theorem
implies in the context considered by Leutheusser–Liu (which will be enough for our



138

cases as well):

Type I if supp 𝜌 =
⊔ { isolated pts } and

∑
𝜔∈supp 𝜌 𝑒

−𝛽 |𝜔| < ∞ .
Type III1 if supp 𝜌 ⊆ R continuous .

(5.23)

This follows because if 𝜌 is a continuous function (non-constant equal to zero),
then 𝛾𝛽 is just the multiplication operator that multiplies admissible functions by
𝑒−𝛽 |𝜔|, and has continuous spectrum by continuity of 𝜌. For the type III1 case we
are assuming 𝜌 is a nonzero continuous function, so the preimage of every interval
around a point in the image of 𝑒−𝛽 |𝜔|, which contains an interval, has nonzero
measure.

The theory lurking behind the scenes here is that of quasi-free states on CCR/CAR
algebras. It is a very well-developed theory and an important tool in the proof
of many results of algebraic quantum field theory. Appendix 5.11 of this chapter
summarizes the main properties of quasi-free states, following [137].

Intermezzo: Comparison with Leutheusser–Liu

At this stage, it is useful to make a remark on the difference between our findings and
the conjecture of Leutheusser–Liu [294, 293]. This discrepancy was also recently
identified in [183]. The initial conjecture was that a type III1 algebra emerges
in the large 𝑁 limit if and only if the spectral density not only gets a continuous
support, but also gets a continuous support on the full real line. This is in slight
contradiction with our findings: as long as we are looking at a thermal state and
the spectral function of the theory has some continuous support, we find that the
type III1 property will be satisfied. The subtlety that explains this discrepancy is
that the argument given in [294, 293] for their conjecture was based on the fact
that the modular Hamiltonian of the thermal state needs to have support on the
whole real line in order for the algebra to have type III1. This is certainly true.
However, the spectral density considered here does not encode the spectrum of the
(full) modular Hamiltonian itself, but rather, the spectrum of its counterpart on the
one-particle Hilbert space. This means that there is no contradiction between the
modular spectrum having to be supported on the whole real line and our result as
long as the additive group generated by the one-particle spectrum is dense in R.
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This is clearly true if the one-particle spectrum has any continuous component.4

5.4 Quantum mechanical systems from matrix models
Now that a general construction of large 𝑁 algebras has been presented, we are
ready to introduce and investigate the basic properties of a large class of quantum
mechanical models, which will be the object of study in the rest of the work. These
models have the very convenient property of having a partition function which is a
unitary matrix integral, which matches the form of effective descriptions of gauge
theories on S𝑑−1 × S1

𝛽g
, where 𝛽g is the inverse temperature of the gauge theory. It

is the character expansion of the matrix integral that recasts it as a manifest finite
temperature partition function of a quantum system.

Alongside with the definition of our models, we introduce the main ingredients that
will play a part in our analysis. Our novel construction of a quantum mechanical
system from the representations of the flavor symmetry of the theory under consid-
eration, is laid out in Subsection 5.4. We then introduce a formal notion of probe
and its associated Hilbert space in Subsection 5.4, and use it to compute the spectral
densities in the quantum mechanics of interest in Subsection 5.4.

These ideas are the technical core of this work, and will be exploited at length in the
rest of the chapter. They will also be concretely realized in the examples we will
discuss in Part 5.5.

Gauge theories, flavor symmetries, representations
Before moving on to the construction of our models, we briefly review some im-
portant features of matrix integrals appearing in gauge theory, which will be instru-
mental in the rest of our analysis.

Gauge theories as unitary matrix models

Our starting point is the family of unitary one-matrix models:

ZUMM(𝑌,𝑌 ) :=
∮
𝑆𝑈 (𝑁+1)

[d𝑈] 𝑓 (𝑈,𝑈†;𝑌,𝑌 ). (5.24)

In this expression, [d𝑈] is the normalized Haar measure on the compact Lie group
𝑆𝑈 (𝑁 +1), and𝑌,𝑌 ∈ 𝑆𝑈 (𝐿 +1) or𝑌,𝑌 ∈ 𝑈 (𝐿) are matrices of parameters, whose
eigenvalues will play the role of fugacities for the flavor symmetry. Besides, 𝑓 is

4Similar arguments about the additive group generated by the one-particle spectrum can be found
in the algebraic QFT literature, see for example [174].
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some class function, whose details depend on the specifics of the model of interest.
Finally, the integration

∮
𝑆𝑈 (𝑁+1) projects the integrand onto its gauge-invariant part,

assuming the interpretation of 𝑆𝑈 (𝑁 + 1) as a gauge group holds. It is sometimes
referred to as Molien–Weyl projector.

An important aspect of (5.24) is that the above integral depends on two integer
parameters:

• 𝑁 , which is the rank of the gauge group of the theory, and

• 𝐿, which is (or scales with) the rank of the flavor symmetry group of the
theory.

In this section, we will be interested in the limit of this model when 𝐿 and 𝑁 both
become large with fixed ratio, cf. Definition 5.4.15 below.

⋄ For practical convenience, we will often assume that

(5.24) is invariant under (𝑈,𝑌 ) ←→ (𝑈†, 𝑌 ). (5.25)

In a motivating example in Section 5.6, this assumption will have the physical
meaning of requiring the theory to be free of chiral anomalies.

Models of the generic form (5.24) have a long history in gauge theory, and include
the prototypical Gross–Witten–Wadia model [211, 448, 449]. In some instances,
(5.24) is derived directly from a quantum gauge theory placed on the 𝑑-dimensional
cylinder geometry S𝑑−1×S1 [427, 5]. Denoting 𝑟𝑑−1 and 𝛽g the radii of S𝑑−1 and S1,
respectively, in the limit 𝑟𝑑−1/𝛽g ≪ 1 all the fields are heavy and can be integrated
out, except for the holonomy of the gauge field around the thermal S1. The model
reduces to an effective (0+1)-dimensional QFT, i.e., a Euclidean quantum mechanics
theory on S1. Denoting the gauge connection 𝐴 and

exp
∮
S1
𝐴 = 𝑈 ∈ 𝑆𝑈 (𝑁 + 1), (5.26)

one is left with a (fairly complicated) effective action depending on 𝑈,𝑈† and the
external parameters 𝑌,𝑌 [5]. Taking a further simplifying limit of very weak gauge
coupling, in which the contributions from massive modes attain a tractable form,
one arrives at the expression (5.24). It is in this class of the examples that (5.25)
will be related to a condition on the fields participating in the gauge theory.
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One well known feature of gauge theories is that their states come arranged into ir-
reducible representations of the global symmetry. This information can be naturally
extracted from the unitary matrix models (5.24), through their character expansion.
We now proceed to explain this procedure. This picture will become very explicit
in the concrete examples we will consider in Part 5.5.

We begin by stating useful generalities about 𝑆𝑈 (𝑁 + 1) representations (see, e.g.,
[312]) that we will use, and then move on to stating the result. The expert reader
can skip this brief review and move on to Subsection 5.4.

Intermezzo: Properties of irreducible representations

Irreducible representations of 𝑆𝑈 (𝑁 + 1) are in one-to-one correspondence with
Young diagrams of length at most 𝑁 . For example, the fundamental and adjoint
representations of 𝑆𝑈 (5) correspond to the Young diagrams:

fund : □, adj : . (5.27)

The diagrams, in turn, are in one-to-one correspondence with partitions of length at
most 𝑁:

𝑅 = (𝑅1, 𝑅2, . . . , 𝑅𝑁 ), 𝑅1 ≥ 𝑅2 ≥ · · · ≥ 𝑅𝑁 ≥ 0. (5.28)

The non-negative integers 𝑅𝑖 in the partition specify the rows of the diagram.

Definition 5.4.1. Let 𝑅 be an irreducible representation of 𝑆𝑈 (𝑁 + 1) and identify
it with a Young diagram 𝑅. The length of 𝑅 is the positive integer ℓ(𝑅) such that

𝑅ℓ(𝑅) > 0, 𝑅ℓ(𝑅)+1 = 0. (5.29)

If 𝑅 = ∅ is trivial, ℓ(∅) := 0.

We will also use the notation

|𝑅 | :=
∞∑︁
𝑖=1

𝑅𝑖 . (5.30)

The Lie group 𝑆𝑈 (𝑁 + 1) is endowed with an involution

C : 𝑈 ↦→ 𝑈† (5.31)

which has the physical meaning of charge conjugation. It acts on the irreducible
representations as C(𝑅) = 𝑅, with 𝑅 the complex conjugate representation. The
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Young diagram for 𝑅 is the complement to 𝑅 inside a rectangle of edge lengths
(𝑅1, 𝑁 + 1), rotated by 180◦. For example, the anti-fundamental of 𝑆𝑈 (5) is

fund : □ = . (5.32)

Another example is, in 𝑆𝑈 (4)

𝑅 = (5, 3, 1) =⇒ 𝑅 = (5, 4, 2) (5.33)

whereas the same diagram 𝑅 = (5, 3, 1) seen as an 𝑆𝑈 (5) representation of length
3 gives

𝑅 = (5, 3, 1) =⇒ 𝑅 = (5, 5, 4, 2). (5.34)

The Young diagram consisting of a column with 𝑁 + 1 boxes corresponds to the
determinant representation, which is isomorphic to the trivial representation of
𝑆𝑈 (𝑁 + 1).

Proposition 5.4.2 ([87]). The set of equivalence classes of 𝑆𝑈 (𝑁+1) representations
up to isomorphism, endowed with the direct sum ⊕ and tensor product ⊗, is a
commutative ring, called the representation ring of 𝑆𝑈 (𝑁 + 1). It is generated by
the set ℜ𝑆𝑈 (𝑁+1) of isomorphism classes of irreducible representations.

Unitary matrix models as ensembles of representations: Preliminaries

Character expansions are a widely used tool.5 We prove a general character ex-
pansion formula here in an abstract context, which encompasses the case-by-case
studies present in the literature. While the outcome will certainly be familiar to the
practitioners, to our knowledge a formulation of the character expansion at such a
level of generality has not appeared previously.

We list our setup and working assumptions and then derive Lemma 5.4.3. Let the
notation be as in (5.24), with 𝑓 a class function for both 𝑈 and 𝑈† separately. The
reason why this should be the case in a matrix model derived from a gauge theory
was explained in Subsection 5.4. The same reasoning applied to connections in
the flavor bundle tells us that 𝑓 should also be a class function with respect to

5Implications of characters expansions in 2d gravity have been explored in [275], and more
recently in [277, 56].
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𝑌,𝑌 . Physically, this is to require that the partition function of the theory does
not transform under flavor symmetry transformations (possibly up to an anomalous
phase, which plays no role in our discussion thus we neglect it).

Being 𝑓 a class function by hypothesis it admits a character expansion, that is, an
expansion in the basis of functions on 𝑆𝑈 (𝑁 + 1) invariant under the adjoint action
of the group. With the hypothesis just stated we write 𝑓 in the character basis as

𝑓 (𝑈,𝑈†;𝑌,𝑌 ) =
∑︁

𝑅∈ℜ𝑆𝑈 (𝑁+1)
𝑐𝑅𝜒𝑅 (𝑈)𝜒𝜑(𝑅) (𝑌 )

∑︁
�̃�∈ℜ𝑆𝑈 (𝑁+1)

𝑐 �̃�𝜒�̃� (𝑈†)𝜒�̃�(�̃�) (𝑌 )

(5.35)
(we allow the coefficients 𝑐, 𝑐 to be different in general). Let us unpack the notation.
The sums run over isomorphism classes of irreducible representations of 𝑆𝑈 (𝑁 +1).
The functions 𝜒𝑅 are the characters of the Lie group, in the representation 𝑅.
𝜑(𝑅) is a 𝑈 (𝐿) or 𝑆𝑈 (𝐿 + 1) representation, uniquely fixed by 𝑅 via an map
𝜑 : ℜ𝑆𝑈 (𝑁+1) → ℜ𝑈 (𝐿) (or→ ℜ𝑆𝑈 (𝐿+1)). The concrete form of 𝜑 depends on 𝑓 ,
hence on the specifics of the gauge theory under consideration. In many cases, 𝜑
is just the pullback of a map 𝑈 (𝐿) → 𝑆𝑈 (𝑁 + 1), seen as the natural embedding if
𝐿 ≤ 𝑁 and as a projection if 𝐿 > 𝑁 . Likewise, �̃�(�̃�) is a representation uniquely
determined by �̃� via a map �̃�. These maps will have very explicit realizations in the
examples.

The examples in Part 5.5 will manifestly satisfy these hypothesis. One may think of
(5.35) either as

• our working assumption on the matrix models (5.24); or

• as a physics-motivated requirement for (5.24) to be a valid approximation of
the gauge theory on S𝑑−1 × S1.

Unitary matrix models as ensembles of representations: Character expansion

Lemma 5.4.3. Consider the setup of Subsection 5.4. There exist a subset ℜ(𝑁)
𝐿
⊆

ℜ𝑈 (𝐿) (respectively ⊆ ℜ𝑆𝑈 (𝐿+1)) of irreducible 𝑈 (𝐿) (resp. 𝑆𝑈 (𝐿 + 1)) represen-
tations, a bijection 𝜙 : ℜ(𝑁)

𝐿
→ ℜ

(𝑁)
𝐿

and numbers 𝔡𝑅, �̃�𝑅 ∈ R labelled by elements
𝑅 ∈ ℜ(𝑁)

𝐿
, such that

ZUMM(𝑌,𝑌 ) =
∑︁

𝑅∈ℜ(𝑁 )
𝐿

𝔡𝑅�̃�𝑅𝜒𝑅 (𝑌 )𝜒𝜙(𝑅) (𝑌 ). (5.36)
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Proof. The function 𝑓 in (5.24) is a class function for both𝑈 and𝑈† separately, by
hypothesis, and we take its character expansion (5.35).

The character 𝜒𝜑(𝑅) (𝑌 ) in (5.35) vanishes if ℓ(𝜑(𝑅)) > 𝐿. This imposes a constraint
on the representations 𝑅 that contribute non-trivially to (5.24), which intertwines
the 𝑁- and 𝐿-dependence. Moreover, it may happen that the function 𝑓 is such
that some of the coefficients 𝑐𝑅 or 𝑐𝑅 vanish for certain representations 𝑅. We will
denote by ℜ

(𝑁)
𝐿
⊆ ℜ𝑈 (𝐿) (or ⊆ ℜ𝑆𝑈 (𝐿+1)) the subset of irreducible representations

that survive these selection rules.

Plugging (5.35) back into (5.24) and using the orthogonality of characters:∮
𝑆𝑈 (𝑁+1)

[d𝑈]𝜒𝑅 (𝑈)𝜒�̃� (𝑈†) = 𝛿𝑅�̃�, (5.37)

we arrive at

ZUMM(𝑌,𝑌 ) =
∑︁

𝑅∈𝜑−1
(
ℜ
(𝑁 )
𝐿

) 𝑐𝑅𝑐𝑅𝜒𝜑(𝑅) (𝑌 )𝜒�̃�(𝑅) (𝑌 ). (5.38)

The sum has been restricted to those 𝑅 that yield a non-trivial contribution. Changing
variables �̂� = 𝜑(𝑅), this is precisely (5.36), after the identification

𝔡�̂� := 𝑐𝜑−1 (�̂�) , �̃��̂� := 𝑐𝜑−1 (�̂�) , 𝜙 := �̃� ◦ 𝜑−1 (5.39)

(and eventually renaming �̂� ↦→ 𝑅). □

Below we list side remarks concerning formula (5.36):

• In practice, we will discuss models such that 𝑓 is invariant under the involu-
tions (5.25) and (5.31). This implies 𝑐𝑅 = 𝑐𝑅, and hence �̃��̂� = 𝔡�̂�.

• Moreover, applying (5.25) followed by (5.31), we have that the model remains
unchanged under the exchange 𝑌 ↔ 𝑌 , which also implies that

�̃� = 𝜑 or �̃� = C ◦ 𝜑. (5.40)

The partition function is insensitive to which of the two options is actually
realized.

• Note that, assuming invariance under the charge conjugation involution,

𝜙(𝑅) = 𝑅 ∀𝑅 or 𝜙(𝑅) = 𝑅 ∀𝑅. (5.41)
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• By construction, 𝜙 is the restriction to ℜ
(𝑁)
𝐿

of an isomorphism of the
Grothendieck ring ℜ𝑈 (𝐿) (or ℜ𝑆𝑈 (𝐿+1)).

• The character expansion extends to other choices of classical gauge group.
For integration over 𝑆𝑂 (𝑁 + 1) in (5.24), only representations of 𝑆𝑝(𝐿 + 1)
will enter in (5.36), and conversely for integration over 𝑆𝑝(𝑁 + 1) one gets ir-
reducible 𝑆𝑂 (𝐿+1) representations. The corresponding Young diagrammatic
techniques were pioneered in [281].

Before moving on, we introduce the unrefined version of the partition function
(5.24),

Z (𝑁)
𝐿
(𝑦) :=

∮
𝑆𝑈 (𝑁+1)

[d𝑈] 𝑓 (𝑈,𝑈†; diag(√𝑦, . . . ,√𝑦︸        ︷︷        ︸
𝐿

), diag(√𝑦, . . . ,√𝑦︸        ︷︷        ︸
𝐿

)).

(5.42)
We now apply the character expansion to (5.42).

cor. LetZ (𝑁)
𝐿

be as in (5.42). With the notation of Lemma 5.4.3, it holds that

Z (𝑁)
𝐿
(𝑦) =

∑︁
𝑅∈ℜ(𝑁 )

𝐿

𝑦 |𝑅 | 𝔡𝑅�̃�𝑅 (dim 𝑅) (dim 𝜙(𝑅)). (5.43)

If moreover the initial unitary matrix model is invariant under the involution (5.31),
then

Z (𝑁)
𝐿
(𝑦) =

∑︁
𝑅∈ℜ(𝑁 )

𝐿

𝑦 |𝑅 | 𝔡2
𝑅 (dim 𝑅)2. (5.44)

The gauge-invariant content of a gauge theory must be assembled into represen-
tations of the global symmetries, and one can restrict to irreducible ones without
loss of generality. The character expansion does the job, and provides us with an
ensemble directly in terms of representations, in which the requirement of gauge
invariance only appears through the constraint 𝑅 ∈ ℜ(𝑁)

𝐿
.

Expression (5.43) is then interpreted as an ensemble of gauge-invariant operators.
These are grouped into superselection sectors labelled by the pair (𝑅, 𝜙(𝑅)) of
irreducible representations of the flavor symmetry. The elementary gauge-invariant
operators of the theory are the generators of the pair (𝑅, 𝜙(𝑅)). We now proceed to
give an explicit construction of quantum mechanical systems based on this character
expansion.
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Quantum mechanics of flavor symmetry
Inspired from the general results above, we now construct quantum mechanical
systems whose partition functions are given by the character expansions of the
matrix models described above. We will very explicitly construct the Hilbert space
of these systems as well as their Hamiltonian.

Ensembles of representations as quantum systems

Let us now revisit and push forward the previous analysis. We set 𝑦 = 𝑒−𝛽 in (5.43),
so that 𝑦 |𝑅 | = 𝑒−𝛽 |𝑅 | is formally written as a Boltzmann factor. We give this hint
credit.

In this way, we are led to interpret (5.43) as the partition function of a quantum
mechanical system involving the elementary gauge-invariant states, organized into
irreducible representations, with Hamiltonian 𝐻 diagonalized in the representation
basis, with eigenvalues |𝑅 |. The flavor symmetry imposes that all the states belong-
ing to the same pair (𝑅, 𝜙(𝑅)) carry the same energy |𝑅 |. The degeneracy of all
these elementary states of equal energy is already resummed and is accounted for
by (dim 𝑅) (dim 𝜙(𝑅)) in (5.43).

It is important to note here that 𝛽 will be the inverse temperature of the effective
quantum mechanics describing the gauge-invariant states, which may be distinct
from the inverse temperature 𝛽g of the gauge theory from which the matrix integral
is derived. The two will be related, but possibly in non-trivial ways.

⋄ We henceforth assume 𝔡𝑅, �̃�𝑅 ∈ N. This allows us to think of them as addi-
tional degeneracy, due to quantum numbers that we are not taking into account.
This assumption holds in a vast list of examples of character expansions (even
well beyond the current scope, see, e.g., [408, 344, 343]), but we do not know
of a deeper mathematical justification.

Following this intuition, we now write down a quantum mechanical system whose
Hilbert space ℋ𝐿 is graded by (isomorphism classes of) irreducible representations
𝑅 of the flavor symmetry,

ℋ𝐿 =
⊕

𝑅∈ℜ𝑈 (𝐿)
ℋ𝐿 (𝑅) ⊗ℋ𝐿 (𝜙(𝑅)). (5.45)
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The vector space for given 𝑅 is spanned by

|𝑅, 𝑣a, 𝜆s⟩ ⊗ |𝜙(𝑅), �̃� ¤a, �̃� ¤s⟩,
for a = 1, . . . , dim 𝑅, ¤a = 1, . . . , dim 𝜙(𝑅), s = 1, . . . , 𝔡𝑅, ¤s = 1, . . . , �̃�𝑅 .

(5.46)
Throughout, we use undotted and dotted indices, respectively, to refer to the 𝑅 and
𝜙(𝑅) part of (5.45).

• The vectors |𝑅, 𝑣a⟩ are in one-to-one correspondence with the generators of
𝑅, and likewise for |𝜙(𝑅), �̃� ¤a⟩ with the generators of 𝜙(𝑅).

• The additional quantum numbers 𝜆s and �̃� ¤s account for the additional de-
generacy. We interpret them as associated to additional global symmetries
that have remained spectators in the character expansion, but which impose
additional selection rules.

The states (5.46) are in the canonical normalization

⟨𝑅′, 𝑣b, 𝜆r | ⊗ ⟨𝜙(𝑅′), �̃� ¤b , 𝜆 ¤b |𝑅, 𝑣a, 𝜆s⟩ ⊗ |𝜙(𝑅), �̃� ¤a𝜆 ¤s⟩
=⟨𝜙(𝑅′), �̃� ¤b , 𝜆¤r |𝜙(𝑅), �̃� ¤a, 𝜆 ¤s⟩ ⟨𝑅′, 𝑣b, 𝜆r |𝑅, 𝑣a, 𝜆s⟩ =

(
𝛿𝑅𝑅′𝛿ab𝛿𝜆s𝜆r

) (
𝛿𝜙(𝑅)𝜙(𝑅′)𝛿 ¤a ¤b𝛿𝜆 ¤s𝜆¤r

)
.

(5.47)
To reduce clutter, we introduce the notation

|𝑅, a, s; 𝜙(𝑅), ¤a, ¤s⟩ := |𝑅, 𝑣a, 𝜆s⟩ ⊗ |𝜙(𝑅), �̃� ¤a, �̃� ¤s⟩ (5.48)

and
∑

a,s, ¤a,¤s to indicate the sum over the elements of the basis (5.46) at given 𝑅.

The Hamiltonian acts as

𝐻 |𝑅, a, s; 𝜙(𝑅), ¤a, ¤s⟩ = |𝑅 | |𝑅, a, s; 𝜙(𝑅), ¤a, ¤s⟩ (5.49)

where we recall that |𝑅 | = ∑
𝑖≥1 𝑅𝑖. The fact that the eigenvalues are independent

of the generators of the representation 𝑅, producing degeneracy in the spectrum,
is imposed by the assumption of the existence of global symmetries in the gauge
theory.

Definition 5.4.4. Let ℜ(𝑁)
𝐿

be as in Subsection 5.4 and ℋ𝐿 as in (5.45). We define
the gauge-invariant Hilbert space to be

ℋ
(𝑁)
𝐿

:=
⊕
𝑅∈ℜ(𝑁 )

𝐿

ℋ𝐿 (𝑅) ⊗ℋ𝐿 (𝜙(𝑅)). (5.50)
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The definition is motivated as follows.

• Note thatℋ (𝑁)
𝐿

is not simply a vector space, but inherits a Hilbert space struc-
ture from ℋ𝐿 , where the completeness is a consequence of the discreteness of
the representation spectrum.

• The restriction to 𝑅 ∈ ℜ
(𝑁)
𝐿

stems from having a finite gauge rank 𝑁 in the
gauge theory with start with. We loosely refer to this constraint as stemming
from gauge invariance, with a slight abuse of notation.

Putting the pieces together, we have the following.

Theorem 5.4.5. Under the notation above, it holds that

Z (𝑁)
𝐿
(𝑒−𝛽) = Tr

ℋ
(𝑁 )
𝐿

(
𝑒−𝛽𝐻

)
. (5.51)

Proof. At any fixed 𝐿, we use (5.50) and take the trace in the energy eigenbasis
(5.46). This gives

Tr
ℋ
(𝑁 )
𝐿

(
𝑒−𝛽𝐻

)
=

∑︁
𝑅∈ℜ(𝑁 )

𝐿

∑︁
a,s, ¤a,¤s

⟨𝑅, a, s; 𝜙(𝑅), ¤a, ¤s|𝑒−𝛽𝐻 |𝑅, a, s; 𝜙(𝑅), ¤a, ¤s⟩

=
∑︁

𝑅∈ℜ(𝑁 )
𝐿

dim 𝑅∑︁
a=1

𝔡𝑅∑︁
s=1

dim 𝜙(𝑅)∑︁
¤a=1

�̃�𝑅∑︁
¤s=1

𝑒−𝛽 |𝑅 |

=
∑︁

𝑅∈ℜ(𝑁 )
𝐿

𝔡𝑅 dim(𝑅)�̃�𝑅 dim(𝜙(𝑅)) 𝑒−𝛽 |𝑅 | .

(5.52)
□

We emphasize that, despite the apparent simplicity of the Hamiltonian 𝐻, these
systems behave very differently from free systems. One major distinction is the
degeneracy factor dim 𝑅, which grows fast with the energy |𝑅 |.

Definition 5.4.6. Let6 ℋE
𝐿
,ℋW

𝐿
�ℋ𝐿 be two copies of ℋ𝐿 , and consider the tensor

product space ℋE
𝐿
⊗ℋW

𝐿
. We endow it with the canonical tensor product basis and

6We adopt the notation E (east) and W (west), instead of the more customary left and right, to
avoid confusion with the symbols 𝐿, 𝑅.
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promote the Hamiltonian 𝐻 on ℋ𝐿 to 𝐻 ⊗ 1 on ℋ
E
𝐿
⊗ℋW

𝐿
. The thermofield double

state of the system, at inverse temperature 𝛽, is

|Ψ𝛽⟩𝐿 :=
1√︃
Z (𝑁)
𝐿

∑︁
𝑅∈ℜ(𝑁 )

𝐿

∑︁
a,s, ¤a,¤s

𝑒−
𝛽

2 |𝑅 | |𝑅, a, s; 𝜙(𝑅), ¤a, ¤s⟩E ⊗ |𝑅, a, s; 𝜙(𝑅), ¤a, ¤s⟩W.

(5.53)

Of course, this definition only makes sense if Z (𝑁)
𝐿

is finite, which is expected at
finite 𝑁 but not at large 𝑁 . The usefulness of the thermofield double state is to
compute the thermal expectation values of any operator Ô, through the identity

𝐿 ⟨Ψ𝛽 |Ô |Ψ𝛽⟩𝐿 =
1
Z (𝑁)
𝐿

Tr
ℋ
(𝑁 )
𝐿

(
𝑒−𝛽𝐻 Ô

)
. (5.54)

The construction so far is summarized as:

Gauge + flavor symmetry Quantum mechanics
flavor rank 𝐿 ←→ choice of Hilbert space

flavor symmetry generators ←→ microscopic states
gauge rank 𝑁 ←→ constraint on allowed states

objects in representation ring ←→ superselection sectors

(5.55)

Global symmetry representations and meson-like formulation

In preparation for Subsection 5.4, we now proceed to reformulate the quantum
system in terms of more standard physical operators. This is an insightful rewriting,
although not strictly necessary for the construction.

We start with the trivial representation, which provides us with the vacuum |∅; ∅⟩.
We then identify the number |𝑅 | with the number of particles created on top of the
vacuum. On the other hand, |𝑅 | is total the number of boxes in the Young diagram
𝑅, thus

# of particles = |𝑅 | = # of boxes. (5.56)

All the one-particle states are obtained tensoring the vacuum with the representation
(□, 𝜙(□)). In this way we identify the state

|□, a; 𝜙(□), ¤a⟩, a = 1, . . . , dim□, ¤a = 1, . . . , dim 𝜙(□) (5.57)

with a meson-like state. We emphasize that, when 𝜙(𝑅) = 𝑅, |□, a;□, ¤a⟩ resembles
the standard meson, with one index a in the fundamental and the other index ¤a in
the anti-fundamental, combined in a gauge-invariant fashion.
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Iterating this procedure and tensoring with arbitrary symmetric powers of (□, 𝜙(□))
one ends up constructing all the necessary states, which is a consequence of the
isomorphism

∞⊕
𝑛=0

Sym𝑛 (□, 𝜙(□)) �
⊕

𝑅∈ℜ𝑆𝑈 (𝐿+1)
(𝑅, 𝜙(𝑅)), (5.58)

which holds as well replacing 𝑅 ∈ ℜ𝑆𝑈 (𝐿+1) with 𝑅 ∈ ℜ𝑈 (𝐿) on the right-hand side
and interpreting □ on the left-hand side as the fundamental representation of𝑈 (𝐿).

The partition function as a discrete matrix model

In Subsection 5.4, the character expansion has been used to repackage the gauge-
invariant operators into an ensemble of irreducible representations, or of Young
diagrams. We now proceed to rewrite this system as a matrix model in which the
eigenvalues live on the lattice N𝐿 , called discrete matrix models. This presentation
is more suitable for computations.

Proposition 5.4.7 ([397, 148]). For every 𝐿 ∈ N, there exists an injective map
𝜄 : ℜ

(𝑁)
𝐿
→ N𝐿+1 such that the equality holds:

Z (𝑁)
𝐿
(𝑦) = 𝑦− 𝐿

2
2

∑︁
®ℎ∈ℌ(𝑁 )

𝐿

𝑦
∑𝐿
𝑖=1(ℎ𝑖+ 1

2 )
𝐿!𝐺 (𝐿 + 2)2

𝔡2
®ℎ

∏
1≤𝑖< 𝑗≤𝐿+1

(ℎ𝑖 − ℎ 𝑗 )2, (5.59)

where𝐺 (·) is Barnes’s𝐺-function [38],ℌ(𝑁)
𝐿

:= 𝜄
(
ℜ
(𝑁)
𝐿

)
⊆ N𝐿 , ®ℎ = (ℎ1, . . . , ℎ𝐿 ,−1) ∈

N𝐿+1, and 𝔡®ℎ denotes the image of 𝔡𝑅 under 𝜄.

We have restricted to the case 𝜙(𝑅) = 𝑅 or 𝜙(𝑅) = 𝑅, but the argument can be
easily adapted to a more general situation. In that case, the discrete matrix model is
non-standard, because the squared Vandermonde factor gets modified.

Besides, (5.59) is stated for 𝑆𝑈 (𝐿+1), but the adaptation to𝑈 (𝐿) is straightforward,
the only difference residing in the value of dim 𝑅.

Proof. The equivalence passes through the change of variables

ℎ𝑖 = 𝑅𝑖 − 𝑖 + 𝐿, (5.60)

with the new variables ℎ𝑖 satisfying

ℎ1 > ℎ2 > · · · > ℎ𝐿 ≥ 0. (5.61)
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The map 𝜄 is thus specified by (5.60). Direct computation gives 𝐿2

2 +|𝑅 | =
𝐿
2 +

∑𝐿
𝑖=1 ℎ𝑖.

It remains to express dim 𝑅 as [312]

dim 𝑅 =
∏

1≤𝑖< 𝑗≤𝐿+1

(
𝑅𝑖 − 𝑅 𝑗 − 𝑖 + 𝑗

𝑗 − 𝑖

)
. (5.62)

The standard substitution (5.60) casts dim 𝑅 in terms of the Vandermonde determi-
nant:

dim 𝑅 =
1

𝐺 (𝐿 + 2)
∏

1≤𝑖< 𝑗≤𝐿+1
(ℎ𝑖 − ℎ 𝑗 ), (5.63)

where the Barnes’s 𝐺-function at integer argument satisfies 𝐺 (𝐿 + 2) = ∏𝐿
𝑛=1(𝑛!),

and with the understanding ℎ 𝑗>𝐿 = 0. For𝑈 (𝐿) representations we have

dim 𝑅 =
1

𝐺 (𝐿 + 1)
∏

1≤𝑖< 𝑗≤𝐿
(ℎ𝑖 − ℎ 𝑗 ). (5.64)

The last step of the proof is to notice that the summand is totally symmetric in
the variables ℎ𝑖, and vanishes whenever two are equal, due to the Vandermonde
determinant. Therefore, one can lift the restriction (5.61) and divide by the order of
the symmetric group of 𝐿 elements, i.e., 𝐿!, to remove the over-counting.

The proof we have given here is a generalization of the one in [148]. The result was
certainly known in the matrix model community, and our only contribution it to cast
it in a very general form. □

The discreteness of the matrix ensemble (5.59) and the presence of additional
constraints will generically induce large 𝑁 third order phase transitions. This is a
recurrent theme, initiated in [148]. This property is nothing but the mirror of the
ubiquitous third order phase transitions in the unitary one-matrix models we have
started with. We will see that, in several cases, passing to a larger ensemble will
promote the phase transition from third to first order, with Hagedorn-like behavior.
We elaborate on this comment in Subsection 5.5, and in Appendix 5.13 from the
point of view of the unitary matrix model.

The two-step dictionary that emerges, in going from the gauge theory to the discrete
matrix model passing through the ensemble of representations, is:

Gauge + flavor symmetry Discrete matrix model
gauge rank 𝑁 ←→ constraint on allowed configurations
flavor rank 𝐿 ←→ # of eigenvalues 𝐿

gauge-invariant state ←→ eigenvalue configuration
(5.65)
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Coupling to a probe
Now that the Hilbert space of our system and a Hamiltonian have been specified, we
recall our main objective: constructing a large 𝑁 von Neumann algebra of type III1.
As we have proven earlier in Section 5.3, one can do so by constructing observables
satisfying large 𝑁 factorization such that the spectral density has continuous support.
This is the goal of this subsection. The strategy will be to couple a probe operator
to the system and to explicitly calculate its real-time correlation functions. The
correlation functions of the probe will then be described by a large 𝑁 von Neumann
algebra of type III1. Importantly, constructing this large 𝑁 von Neumann algebra
will only require the correlation functions of the probe. The idea is that just like
in N = 4 super-Yang–Mills, the correlation functions of one single trace operator
allow to probe the emergence of spacetime, here the correlation functions of our
probe will give information on the emergent properties of the full quantum system
in the large 𝑁 limit.

Probe operators

Very schematically, the idea is to define an auxiliary object that creates a probe
excitation at time 0 and let it propagate until it is annihilated at a later time 𝑡 > 0.
The probe particle is a bosonic particle in the representation (□, ∅). Of course, the
alternative choice (∅,□) is equally valid and can be dealt with in exactly the same
manner. The probe is coupled to the system by tensoring the corresponding Hilbert
spaces.

Definition 5.4.8. Let

Γprobe :=
∞⊕
𝑛=0

Sym𝑛 (□, ∅) (5.66)

denote the bosonic Fock space of a probe in the fundamental representation. The
𝑛 = 0 component is the trivial vector space, consisting only of the vacuum. The
probe is said to be coupled to the system if ℋ (𝑁)

𝐿
is replaced with the total Hilbert

space
ℋ

tot
𝐿 := ℋ

(𝑁)
𝐿
⊗ Γprobe

�
[
ℋ
(𝑁)
𝐿
⊗ (∅, ∅)probe

]
⊕

[
ℋ
(𝑁)
𝐿
⊗ (□, ∅)probe

]
⊕ · · ·

(5.67)

Definition 5.4.9. The probe approximation consists in neglecting all terms in (5.67)
other than the one giving the first non-trivial contribution to the correlation functions.
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In practice, the probe approximation can be enforced by modifying the Hamiltonian
adding a large mass term on Γprobe. We will provide a more formal definition below,
in Definition 5.4.10.

The 𝑛 = 0 component of Γprobe consists only of the vacuum

|∅; ∅⟩probe � |0, . . . , 0︸   ︷︷   ︸
𝐿

; 0, . . . , 0︸   ︷︷   ︸
𝐿

⟩probe. (5.68)

Here and in what follows, the semicolon denotes the tensor product between the left
and the right for the probe, while the commas separate the occupation numbers of
the different modes in the one-particle Hilbert space. We define the creation and
annihilation operators 𝑐†𝑝, 𝑐𝑝 acting on the probe sector Γprobe. The lowest non-trivial
probe sector is the 𝑛 = 1 term in Γprobe, consisting of{(

𝑐†𝑝 ⊗ 1
)
|0, . . . , 0; 0, . . . , 0⟩probe, ∀𝑝 = 1, . . . , 𝐿

}
. (5.69)

The full Γprobe is built acting with 𝑐†𝑝 ⊗ 1 on the Fock vacuum of the probe. We
emphasize that 𝑐†𝑝, 𝑐𝑝 act on the probe sector rather thanℋ (𝑁)

𝐿
. We therefore indicate

them with a different letter. Nevertheless, the two sets of operators behave in the
same way when expressed in terms of 𝑆𝑈 (𝐿 + 1) representations.

In the composite system, in which the probe is coupled to the rest, the push-forward
of the creation operator is

(1 ⊗ 1) ⊗
(
𝑐†𝑝 ⊗ 1

)
probe

(5.70)

where the first parenthesis is the identity operator on ℋ𝐿 (or its restriction to the
subspace ℋ

(𝑁)
𝐿

), that decomposes into 1 ⊗ 1 on the 𝑅-graded terms ℋ𝐿 (𝑅) ⊗
ℋ𝐿 (𝜙(𝑅)) in (5.45).

Hamiltonian and interactions

The next step is to promote the Hamiltonian 𝐻 on ℋ𝐿 to a Hamiltonian 𝐻′ on
the combined Hilbert space ℋ𝐿 ⊗ Γprobe of the system coupled to the probe. This
Hamiltonian must necessarily contain a term 𝐻 ⊗ 1probe. We would also like to add
the tensor product of the identity on ℋ𝐿 and a large mass term acting only on Γprobe,
and add an interaction term between the probe and the rest of the system. In order
to be able to discuss possible interaction terms more precisely, we will make the
following assumption:
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⋄ In what follows, we assume (5.25), and moreover take 𝜙(𝑅) = 𝑅. The
situation with 𝜙(𝑅) = 𝑅 can easily be retrieved from the ensuing discussion,
with minor variations. The generic situation for arbitrary 𝜙(𝑅) can also be
worked out along the same lines, but is not immediate, as it requires a more
careful analysis of allowed interaction terms.

Recall the Hilbert space of the composite system of the probe and our quantum
theory in (5.67), given by

ℋ
tot
𝐿 = ℋ

(𝑁)
𝐿
⊗ Γprobe, (5.71)

where Γprobe is the Fock space of the probe. Define the free Hamiltonian operator
on Γprobe:

𝐻0,probe := 𝜇
𝐿∑︁
𝑝=1

(
𝑐†𝑝𝑐𝑝 ⊗ 1

)
probe

, (5.72)

where 𝜇 > 0 has the meaning of a mass for the probe, and we will later assume
𝜇 ≫ 1 (and also larger than all other relevant scales in the problem), which enforces
the probe approximation.

Then, without coupling the probe to the gauge theory, one can define the Hamiltonian
associated to the two systems as an operator on ℋ

tot
𝐿

:

𝐻decoupled := 1 ⊗ 𝐻0,probe + 𝐻 ⊗ 1, (5.73)

where 𝐻 is the Hamiltonian of our quantum mechanical theory from Subsection 5.4,
which satisfies 𝐻 (𝑅, 𝜙(𝑅)) = |𝑅 |, where 𝐻 (𝑅, 𝜙(𝑅)) denotes the restriction of 𝐻
to ℋ𝐿 (𝑅) ⊗ℋ𝐿 (𝜙(𝑅)).

Clearly, letting the system in ℋ
tot
𝐿

evolve with 𝐻decoupled is a trivial operation, as
the probe and the system do not talk to each other. In order to witness a non-trivial
behavior and the ensuing appearance of a large 𝑁 type III1 algebra, the probe must
interact with our quantum system. Hence the full Hamiltonian reads:

𝐻′ := 1 ⊗ 𝐻0,probe + 𝐻 ⊗ 1 + 𝐻int, (5.74)

where𝐻int is an interaction Hamiltonian that we now define directly inside the tensor
product Hilbert space ℋ

tot
𝐿

. If our models were derived top down in string theory,
𝐻int would be determined by the action on the probe brane. Instead, our construction
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of the quantum mechanics is bottom up, and we will introduce the interaction by
hand, selecting a tractable sample of all the possible interactions 𝐻int.

The idea is that in the original quantum Hilbert space (without adding the probe),
all pairs of representations appearing are of the form (𝑅, 𝜙(𝑅)). However, once
one tensors these with the symmetric powers of the fundamental representation of
𝑆𝑈 (𝐿 + 1), which corresponds to the one-particle Hilbert space of the probe, more
generic pairs of representations start appearing in the Hilbert space. This motivates
the definition of 𝐻int as an operator that is zero on pairs of the form (𝑅, 𝜙(𝑅)),
and nonzero on other pairs (𝑅1, 𝑅2) (upon identifying ℋ

tot
𝐿

with a Hilbert space
spanned by representations of the form (𝑅1, 𝑅2), where 𝑅2 is some 𝜙(𝑅), and 𝑅1 is
an irreducible representation that appears in the decomposition of the tensor product
of some symmetric power of the fundamental representation with 𝑅). It should also
respect 𝑆𝑈 (𝐿 + 1) symmetry.

With this in mind, one possible interaction term is

𝐻int(𝑅1, 𝑅2) =
𝑔

2
[𝑄(𝑅1) −𝑄(𝑅2)] , 𝑄(𝑅) := 𝐶2(𝑅) + (𝐿 + 1) |𝑅 |, (5.75)

where 𝐶2 is the quadratic Casimir. We will work with (5.75) in the rest of this part.
Of course, other similar choices can be made, for example by switching 𝑅 with
𝜙(𝑅), or by switching signs. For example, to ease the comparison with [246], we
will make a slightly different choice of interaction Hamiltonian in Section 5.6, see
(5.181).

The coupling 𝑔 sets the strength of the interaction. Coming from a matrix model,
it will be natural to consider a ’t Hooft limit with 𝑔 ∝ 1/𝐿 in the large 𝑁 and large
𝐿 limit. The choice of the factor 𝐿 |𝑅 | is merely to avoid some cumbersome shifts
in the ensuing expressions. Dropping it, or changing its coefficient, would not alter
the conclusions.

⋄ Higher Casimir invariants may be included in 𝐻int, as well as more sophisti-
cated interactions. We restrict ourselves to the simplest non-trivial interaction.
The choice is motivated by the sake of tractability and an analogy with [246].

Now that we have introduced the Hamiltonian, we can write down a more precise
version of Definition 5.4.9.
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Definition 5.4.10. Consider the C-valued map

Ô ↦→ trℋtot
𝐿

(
𝑒−𝛽𝐻

′ Ô
)
, Ô ∈ L

(
ℋ

tot
𝐿

)
(5.76)

and write the right-hand side in the form

trℋtot
𝐿

(
𝑒−𝛽𝐻

′ Ô
)
=

∑︁
®𝑛∈N𝐿+1

𝑒−𝛽𝜇 | ®𝑛| tr
ℋ
(𝑁 )
𝐿

(
probe⟨®𝑛; ∅|𝑒−𝛽(𝐻+𝐻int)Ô | ®𝑛; ∅⟩probe

)
(5.77)

where we have used dim□ = 𝐿 + 1 for 𝑆𝑈 (𝐿 + 1) and introduced the shorthand
notations

®𝑛 = (𝑛1, . . . , 𝑛𝐿+1), | ®𝑛; ∅⟩probe := |𝑛1, . . . , 𝑛𝐿+1; 0, . . . , 0⟩probe, | ®𝑛| :=
𝐿+1∑︁
𝑖=1

𝑛𝑖

(5.78)
and the Hamiltonian (5.74). The outer sum runs over all states in the probe sector.
The partition functions (5.77) and the ensuing correlation functions are treated as
series expansions in the parameter 𝑒−𝛽𝜇. The probe approximation consists in
discarding all contributions except the lowest order one.

This definition based on the series expansion in the parameter 𝑒−𝛽𝜇 formalizes the
physical intuition that a probe is an object with a large mass 𝜇 ≫ 1, so that the
excited states are not accessible. Note that the order of limits will be important later.
We first take 𝛽𝜇 ≫ 1 with every other parameter fixed. Then, when considering
the large 𝑁 limit, we will take 𝑁, 𝐿 ≫ 1 but assuming 𝜇 is still large enough with
respect to 𝐿. In the continuation we make two remarks on this definition.

• Notice that the probe approximation is a different concept than a cutoff at
energy scales 𝑂 (𝜇), and when the probe is decoupled from the system, the
latter is not affected.

• Retaining only the lowest order contribution to the correlation functions, as
per Definition 5.4.10, is not the same as setting ®𝑛 = (0, . . . , 0) in (5.77).
While this latter prescription will often work, it may happen that one needs to
compute correlation functions of the form

𝑒𝛽𝜇 trℋtot
𝐿

(
𝑒−𝛽𝐻

′ Ô
)

(5.79)

for some operator Ô that annihilates the probe vacuum. In such a scenario, the
contribution from ®𝑛 = (0, . . . , 0) trivializes, whereas the first excited states
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with | ®𝑛| = 1 will yield the first non-trivial contribution,

𝑒𝛽𝜇 trℋtot
𝐿

(
𝑒−𝛽𝐻

′ Ô
)

=𝑒𝛽𝜇 ·

0 + 𝑒−𝛽𝜇
∑︁
®𝑛∈N𝐿+1
| ®𝑛|=1

tr
ℋ
(𝑁 )
𝐿

(
probe⟨®𝑛; ∅|𝑒−𝛽(𝐻+𝐻int) Ô | ®𝑛; ∅⟩probe

)
+ 𝑂 (𝑒−2𝛽𝜇)


=

∑︁
®𝑛∈N𝐿+1
| ®𝑛|=1

tr
ℋ
(𝑁 )
𝐿

(
probe⟨®𝑛; ∅|𝑒−𝛽(𝐻+𝐻int) Ô | ®𝑛; ∅⟩probe

)
+ 𝑂 (𝑒−𝛽𝜇).

(5.80)

Correlation functions

We wish to calculate real-time two-point correlation functions of the probe. We now
introduce new operators whose correlations can be computed easily. They are related
to the 𝑐𝑝’s by a𝑈 (𝐿) rotation, and consequently, by flavor symmetry, the correlations
of these operators will be the same as the ones of any creation or annihilation operator
of the probe in a given basis. However it will be useful for computations to write
operators down in a form that treats all basis vectors democratically. With the
ingredients defined insofar, we hence introduce the operator

O𝐿 :=
1

√
𝐿 + 1

𝐿+1∑︁
𝑝=1
(1 ⊗ 1) ⊗

(
𝑐†𝑝 ⊗ 1

)
probe

(5.81)

onℋtot
𝐿

. Likewise, the annihilation operator isO†
𝐿
= 1√

𝐿+1
∑𝐿+1
𝑝=1(1⊗1)⊗

(
𝑐𝑝 ⊗ 1

)
probe.

As the Hamiltonian of the systems respects the flavor symmetry, it is clear that these
operators have correlation functions equal to the ones of any 𝑐†𝑝. They also satisfy
the commutation relations:[

𝑐𝑝, 𝑐
†
𝑞

]
= 𝛿𝑝,𝑞 =⇒

[
O†
𝐿
,O𝐿

]
= 1. (5.82)

The normalization by 1/
√
𝐿 + 1 in (5.81) ensures that the correlation functions are

properly normalized. The reason why we introduced the O†
𝐿

instead of calculating
correlation functions directly at the level of the 𝑐†𝑝 is because it will be useful to
have explicit sums over flavor indices in our calculations.

In order to lighten the notation, we will omit the subscript on the probe part, and
identify 𝑐†𝑝 with (𝑐†𝑝 ⊗ 1)probe, so to write

O𝐿 =
1

√
𝐿 + 1

𝐿+1∑︁
𝑝=1

1 ⊗ 𝑐†𝑝 . (5.83)
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The left operator in the tensor product acts on ℋ
(𝑁)
𝐿

and the right acts on Γprobe.

Equipped with the Hamiltonian 𝐻′ from (5.74), we generate the time evolution in
the Heisenberg picture of the operators in

End
(
ℋ

tot
𝐿

)
� End

(
ℋ
(𝑁)
𝐿
⊗ Γprobe

)
. (5.84)

What we will require is the time-evolved annihilation operator at time 𝑡:

O†
𝐿
(𝑡) = 𝑒𝑖𝑡𝐻′ ©« 1

√
𝐿 + 1

𝐿+1∑︁
𝑝=1

1 ⊗ 𝑐𝑝ª®¬ 𝑒−𝑖𝑡𝐻′ . (5.85)

The correlation functions of time-ordered products of operators O𝐿 ,O†𝐿 inserted at
different times provide well-posed observables of the quantum system. Observe that

• Correlation functions will be non-vanishing only if an equal number of O𝐿
and O†

𝐿
is taken. This is of course a consequence of the simplicity of the probe

operators, and differs from the more sophisticated models of, e.g., [457, 100].

• In the two-point functions, i.e. in the expectation values of operators

O†
𝐿
(𝑡)O𝐿 (0) =

1
𝐿 + 1

𝐿+1∑︁
𝑝,𝑞=1

𝑒𝑖𝑡𝐻
′ (

1 ⊗ 𝑐𝑞
)
𝑒−𝑖𝑡𝐻

′ (1 ⊗ 𝑐†𝑝) (5.86)

only terms with 𝑞 = 𝑝 will yield a non-vanishing contribution, by flavor
symmetry.

• We also notice the normalization by dim□ = 𝐿 + 1, that keeps the correlation
functions properly normalized. To work with𝑈 (𝐿) instead of 𝑆𝑈 (𝐿 + 1), one
lets 𝑝 run from 1 to 𝐿 and normalizes O𝐿 by 1/

√
𝐿.

We arrive at the following statement.

Lemma 5.4.11. The two-point function of a probe is computed by the finite tem-
perature expectation value of O†

𝐿
(𝑡)O𝐿 (0) ∈ L

(
ℋ

tot
𝐿

)
, evolved with Hamiltonian

(5.74). Explicitly:

O†
𝐿
(𝑡)O𝐿 (0) and

1
𝐿 + 1

𝐿+1∑︁
𝑝=1

𝑒𝑖𝑡𝐻
′ (

1 ⊗ 𝑐𝑝
)
𝑒−𝑖𝑡𝐻

′
(
1 ⊗ 𝑐†𝑝

)
(5.87)

have the same correlation functions.
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⋄ In the present discussion, we are neglecting the additional quantum numbers
𝜆𝑠, 𝜆 ¤𝑠 in the probe sector. They can be reinstated replacing 𝑐†𝑝 and 𝑐𝑝 with the
appropriate creation and annihilation operators that create a state decorated
with additional quantum numbers, but we do not sum over them.

Finally, to make contact with the conventions used in the study of von Neumann
algebras, we introduce the self-adjoint operator

𝜙𝐿 :=
1
√

2

(
O†
𝐿
+ O𝐿

)
. (5.88)

In terms of the probe creation and annihilation operators, 𝜙𝐿 reads

𝜙𝐿 =

𝐿+1∑︁
𝑝=1

𝑐𝑝 + 𝑐†𝑝√︁
2(𝐿 + 1)

. (5.89)

Intermezzo: On creation and annihilation operators

Let us clarify a subtlety about the creation and annihilation operators from the get
go. In the concrete models we have constructed, there are creation and annihilation
operators associated to a probe particle coupled to our quantum systems. It is
important to note that these operators, although closely related, are formally not the
same as the ones appearing in Section 5.3.

Indeed, in the case of Section 5.3, the one-particle Hilbert space is 𝐿2(R, 𝜌) and cor-
responds to functions of the time variable (or equivalently, their Fourier transforms),
whereas in our quantum systems the one-particle Hilbert space will be indexed by
the number of degrees of freedom of the theory. As this number goes to infinity,
we will see momentarily that the real-time correlation functions of the system will
factorize according to Wick’s theorem. What Section 5.3 tells us is that then, the
same correlation functions can be recovered by a quasi-free state on the CCR alge-
bra over 𝐿2(R, 𝜌). It is in that sense that the two sets of creation and annihilation
operators are related, and that one will be able to identify the von Neumann alge-
bras constructed in Section 5.3 and Appendix 5.11 with the large 𝑁 von Neumann
algebras of our quantum systems.

Spectral densities
We have shown in Subsection 5.3 that, in order to determine the type of the von
Neumann algebras, one needs to calculate the real-time Wightman function at finite
temperature, as well as its associated Källén–Lehmann spectral density 𝜌(𝜔). Here,
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we introduce appropriate Wightman functions for the class of models of Subsection
5.4, and derive general properties of the associated spectral density. These properties
will allow us to determine the type of the large 𝑁 von Neumann algebras constructed
in Section 5.3.

Definitions

We begin introducing the notation, and then proceed with the main statements.
Recall the quantum system of Subsection 5.4 and the correlation function of creation
and annihilation operators from Subsection 5.4. With these ingredients at hand, we
introduce the Wightman functions of the systems. Our conventions follow [172,
App.B].

Definition 5.4.12. The real-time, finite temperature Wightman function is

𝐺𝐿,+(𝑡) :=
1
Z (𝑁)
𝐿

trℋtot
𝐿

(
𝑒−𝛽𝐻

′
𝜙𝐿 (𝑡)𝜙𝐿 (0)

)
. (5.90)

The dependence on the parameter 𝑁 and 𝛽 is left implicit in the notation 𝐺𝐿,+(𝑡).

The importance of this quantity lies in its appearance in the right-hand side of (5.22).
Let 𝐺𝐿,+(𝜔) be the Fourier transform of 𝐺𝐿,+(𝑡). From (5.9), 𝐺𝐿,+(𝜔) is simply
related to the Källén–Lehmann spectral density 𝜌(𝜔), or spectral density for short,
through

𝐺𝐿,+(𝜔) =
𝜌(𝜔)

1 − 𝑒−𝛽𝜔
. (5.91)

There are related types of Wightman functions that are useful in practice for certain
computations [172, App.B].

Definition 5.4.13. With the definitions and prescription of Subsection 5.4, the
real-time, finite temperature, retarded and advanced Wightman functions are, re-
spectively,

𝐺𝐿,R(𝑡) := 𝑖𝜃 (𝑡) 1
Z (𝑁)
𝐿

Trℋtot
𝐿

(
𝑒−𝛽𝐻

′ [𝜙𝐿 (𝑡), 𝜙𝐿 (0)]
)
, (5.92)

𝐺𝐿,A(𝑡) := −𝑖𝜃 (−𝑡) 1
Z (𝑁)
𝐿

Trℋtot
𝐿

(
𝑒−𝛽𝐻

′ [𝜙𝐿 (𝑡), 𝜙𝐿 (0)]
)
, (5.93)

with 𝜃 (𝑡) the Heaviside step function.
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Definition 5.4.14. With the notation as in Subsection 5.4, let 𝐻int be as in (5.75)
and |Ψ𝛽⟩𝐿 be the thermofield double state (5.53). Besides, for every 𝑅 ∈ ℜ(𝑁)

𝐿
let

𝒥𝑅 := {𝐽 = 1} ∪ {𝐽 ∈ {2, . . . , 𝐿 + 1} : 𝑅𝐽−1 > 𝑅𝐽} (5.94)

and, ∀𝐽 ∈ 𝒥𝑅, denote by 𝑅 ⊔ □𝐽 the Young diagram obtained adding a box at the
end of the 𝐽 th row of 𝑅. Let also

𝐸 int
𝐽 := 𝐻int(𝑅 ⊔ □𝐽 , 𝜙(𝑅)), (5.95)

𝐸𝐽 (𝜇) := 𝐸 int
𝐽 + 𝜇. (5.96)

For the specific 𝐻int in (5.75) one gets

𝐸 int
𝐽 := 𝑔(𝑅𝐽 − 𝐽 + 𝐿 + 1). (5.97)

For every 𝜔 ∈ R, introduce the shifted variable 𝜔r defined as

𝜔r := |𝜔 | − 𝜇. (5.98)

Moreover, for 𝜙(𝑅) = 𝑅 or 𝜙(𝑅) = 𝑅, define G(𝜔) through

⟨𝑅, a, s; 𝜙(𝑅), ¤a, ¤s|G(𝜔) |𝑅, a, s; 𝜙(𝑅), ¤a, ¤s⟩ :=
1
𝐿

∑︁
𝐽∈𝒥𝑅

𝛿 (𝜔 − 𝐸𝐽 (𝜇))
(
dim(𝑅 ⊔ □𝐽)

dim 𝑅

)
(5.99)

and Ω(𝜔) through

⟨𝑅, a, s; 𝜙(𝑅), ¤a, ¤s|Ω(𝜔) |𝑅, a, s; 𝜙(𝑅), ¤a, ¤s⟩ = 1
𝐿

∑︁
𝐽∈𝒥𝑅

1
𝜔 − 𝐸𝐽 (𝜇)

dim(𝑅 ⊔ □𝐽)
dim 𝑅

.

(5.100)

For later reference, we introduce here the notion of Veneziano limit. It will have a
prominent role in the study of the planar limit of the unitary matrix models (5.42).

Definition 5.4.15. Consider a gauge theory with gauge rank 𝑁 and flavor rank 𝐿.
The Veneziano parameter is the ratio

𝛾 =
𝐿

𝑁
. (5.101)

The Veneziano limit is a large 𝑁 planar limit in which 𝛾 is kept finite.
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Main results on the spectral density

The following results are the linchpin of the subsequent derivation. For a cleaner
presentation, we have collected the proofs in Appendix 5.14. We encourage the
reader to consult that appendix to gain familiarity with the very explicit computations
in these models.

Theorem 5.4.16. With the notation as in Definition 5.4.14 and 𝜃 (𝜔) the Heaviside
step function, the identity

𝜌(𝜔) = 1
2 𝐿 ⟨Ψ𝛽 |𝜃 (𝜔)G(𝜔) − 𝜃 (−𝜔)G(−𝜔) |Ψ𝛽⟩𝐿 (5.102)

holds in the probe approximation.

Proof. The proof is instructive but lengthy, thus it is spelled out in detail in Appendix
5.14. It is based on writing 𝜌(𝜔) = (1 − 𝑒−𝛽𝜔)𝐺𝐿,+(𝜔), explicitly computing the
right-hand side and retaining the lowest order in 𝑒−𝛽𝜇. □

A few remarks on the theorem are in order.

• First, 𝜌(𝜔) is manifestly odd, as it should be.

• Second, notice that 𝜌(𝜔) really depends on 𝜔r in (5.98). Recall that the
variable 𝜔 measure differences in the energy levels. Due to the probe mass
term, the correlation functions are centered around 𝜇; that is, there is a uniform
shift by 𝜇 for every 𝑅. The physically meaningful variable, that probes the
interaction of the non-trivial quantum mechanics with the probe, is (5.98).

• Third, we are not including the additional quantum numbers 𝜆𝑠 in our probe
for simplicity. They can be reinstated by replacing 𝑐†𝑝 appropriately in the
definition of O𝐿 in Subsection 5.4. With an appropriate normalization, this
modification inserts a ratio 𝔡𝑅⊔□𝐽

𝔡𝑅
in the right-hand side of (5.99).

• Fourth, an interesting aspect of the proof of (5.102), given below, is that
the degeneracy factors remain spectators. As a consequence, several exten-
sions are automatically built-in in our formula, including: the replacement
(dim 𝑅)2 ↦→ (dim 𝑅)2−2g for an arbitrary integer g ∈ N, and refining (dim 𝑅)2

into a 𝑞-deformed or Macdonald measure [72].

Next, we give an equivalent characterization of (5.102). In practice we will use
Theorem 5.4.17 for the computations in Part 5.5.
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Theorem 5.4.17. With the notation as in Definition 5.4.14, it holds that

𝐺𝐿,R(𝜔 + 𝑖𝜀) = −
1
2 𝐿 ⟨Ψ𝛽 |Ω(𝜔 + 𝑖𝜀) +Ω(−𝜔 − 𝑖𝜀) |Ψ𝛽⟩𝐿 , (5.103)

𝐺𝐿,A(𝜔 − 𝑖𝜀) = −
1
2 𝐿 ⟨Ψ𝛽 |Ω(𝜔 − 𝑖𝜀) +Ω(−𝜔 + 𝑖𝜀) |Ψ𝛽⟩𝐿 . (5.104)

Proof. The proof is done in Appendix 5.14 by direct calculation. □

The crucial aspect of Theorem 5.4.17 is that, thanks to (5.22), we can equivalently
compute 𝜌(𝜔) via the discontinuity equation [172, Eq.(B.7)]

𝜌(𝜔) = −𝑖 lim
𝜀→0+

[
𝐺𝐿,R(𝜔 + 𝑖𝜀) − 𝐺𝐿,A(𝜔 − 𝑖𝜀)

]
. (5.105)

This expression relates the support of 𝜌(𝜔) to the branch cuts of 𝐺𝐿,R and 𝐺𝐿,A.

cor.

𝜌(𝜔) = 𝑖

2
lim
𝜀→0+

{
𝜃 (𝜔)

[
𝐿 ⟨Ψ𝛽 |Ω(𝜔 + 𝑖𝜀) −Ω(𝜔 − 𝑖𝜀) |Ψ𝛽⟩𝐿

]
−𝜃 (−𝜔)

[
𝐿 ⟨Ψ𝛽 |Ω(−𝜔 + 𝑖𝜀) −Ω(−𝜔 − 𝑖𝜀) |Ψ𝛽⟩𝐿

]}
.

(5.106)

Proof. It follows immediately from Theorem 5.4.17 and some rewriting. Noting
that the singularities of Ω(𝜔) are located on R>0, only the terms with +𝜔 will
contribute to the discontinuity if 𝜔 > 0 and only the terms with −𝜔 will contribute
if 𝜔 < 0. □

• We will crucially resort to Corollary 5.4 for the explicit calculation of the
eigenvalue density in all the examples.

• The relation between 𝜌(𝜔) and 𝐿 ⟨Ψ𝛽 |Ω(𝜔) |Ψ𝛽⟩𝐿 provided by Corollary 5.4
for each fixed sign(𝜔) is (up to a normalization by 𝜋) exactly the relation
between any density 𝜌(𝜔) and its Stieltjes transform. That is, 𝜋Ω(·) is the
resolvent for the spectral density 𝜌(𝜔).

We are now interested in the large 𝑁 limit. With the change of variables (5.60),
𝐺𝐿,R(𝜔), and similarly𝐺𝐿,A(𝜔), are in turn related via (5.103) to the planar resolvent
of the matrix model (5.59) in the Veneziano limit (Definition 5.4.15). It is a standard
fact that the branch cuts of the latter quantity determine the eigenvalue density of
the matrix ensemble. This chain of identities intertwines the two key quantities, the
spectral density 𝜌(𝜔) and the eigenvalue density, and implies the following result.
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cor. Consider the planar Veneziano limit 𝑁 →∞with 𝛾 = 𝐿/𝑁 and 𝜆 = 𝑔𝐿 fixed.
If the discrete matrix model Z (𝑁)

𝐿
in (5.59) has a continuous eigenvalue density,

lim𝑁→∞ supp 𝜌 ⊆ R is continuous.

From the perspective of the quantum mechanics of Subsection 5.4, and especially
of the matrix model (5.59), it is natural to consider a planar limit in which 𝑔 scales
as 1/𝐿, rather than 1/𝑁 . Insisting on the gauge theory origin of these models, one
may prefer to take 𝑁 as the reference scale. For the current section, our choice will
result in a more convenient normalization, but the other choice would have worked
equally well, simply differing by 𝜆 ↦→ 𝛾𝜆.

The discontinuity equation (5.105) establishes a direct correspondence between
the support of 𝜌(𝜔) to the branch cuts of 𝐺𝐿,R and 𝐺𝐿,A. The next Lemma
expresses these quantities using the eigenvalue densities of the matrix models (5.59).
Combining these two facts will lead to a proof of Corollary 5.4.

Lemma 5.4.18. Consider the discrete matrix model (5.59) in the Veneziano large
𝑁 limit. Assume it admits a non-trivial saddle point configuration and denote 𝜚∗(𝑥)
the corresponding saddle point eigenvalue density. Then, at leading order in the
planar limit,

𝐿 ⟨Ψ𝛽 |Ω(𝜔) |Ψ𝛽⟩𝐿 =
1
𝜆

[
−1 + exp

(∫
d𝑥

𝜚∗(𝑥)
𝜔−𝜇
𝜆
− 𝑥

)]
. (5.107)

A different definition of planar limit in which 𝜆 = 𝑔𝑁 is kept fixed, instead of our
choice 𝜆 = 𝑔𝐿, would simply result is a redefinition 𝜆 ↦→ 𝛾𝜆 in the formula.

Proof. The idea behind the proof of this lemma is to exploit Theorem 5.4.17 and
then use Cauchy’s theorem to write the Wightman function as a contour integral. In
the Veneziano limit, the integral can be evaluated by a saddle point approximation,
yielding (5.107). The reader can consult all the details in Appendix 5.14. □

Proof of Corollary 5.4. Let us start assuming that the matrix modelZ (𝑁)
𝐿

in (5.59)
admits a non-trivial saddle point, which means that lnZ (𝑁)

𝐿
shows the usual 𝑂 (𝑁2)

growth. Lemma 5.4.18 relates the Wightman functions 𝐺𝐿,R(𝜔), 𝐺𝐿,A(𝜔) to the
saddle point eigenvalue density. The formula has logarithmic branch cuts if 𝜔r

𝜆
∈
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supp 𝜚∗. Expressing 𝜚(𝜔) through the discontinuity equation (5.105), these branch
cuts will contribute to supp 𝜌 with a continuous interval in R, proving the claim.

□

If the matrix model does not possess a large 𝑁 scaling for the chosen values of the
parameters, the large 𝑁 argument that led to Lemma 5.4.18 does not apply. The
lack of a large 𝑁 scaling prevents the coalescence of the eigenvalues of the matrix
model, which do not form a continuum. It is certainly possible to take the inductive
limit over 𝑁 of the sequence of eigenvalue densities as 𝑁 →∞, but in this case the
limiting eigenvalue density 𝜚∗(𝑥) will be a distribution, i.e., an infinite sum of Dirac
deltas. Taking the inductive 𝑁 → ∞ limit of Theorem 5.4.16 still formally relates
the eigenvalue density 𝜚∗ to 𝜌, whenever the limit of the latter exists. This would
formally imply the discreteness of supp 𝜌 in the phase(s) in which the eigenvalues
do not coalesce in the planar limit, with the caveat that we are not proving existence
of the limit in this case.

Stated differently, we have shown that

supp 𝜚∗ continuous =⇒ supp 𝜌 continuous, (5.108)

and heuristically we expect the same implication for discrete support, but there may
be potential obstructions in taking the limit of Theorem 5.4.16 in the phase(s) that
do not satisfy the assumptions of Lemma 5.4.18.

In any case, discrete random matrix ensembles such as the ones considered through-
out this section typically have a continuous density of eigenvalues in the large 𝑁
limit. This is an extremely widespread property of these models, so that Corollary
5.4 generically applies. In Section 5.5 we will have to work harder and add extra
ingredients to get the situation without continuous eigenvalue density, at low tem-
perature. In particular, the third order transitions that typically appear in the discrete
ensembles, separate two phases both with continuous eigenvalue density.

Intermezzo: Comparison with IOP

We ought to stress that (5.103) is closely related to [246, Eq.(5.13)], which in fact
was a source of inspiration for the present analysis, especially in the choice of 𝐻int.
We have also chosen conventions for the probe vacuum energy that agree with [246].
Nevertheless, (5.103) remains valid for a wide class of models, and also incorporates
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the 𝑁-dependent constraint, which enriches the dynamics of the toy models. A more
detailed comparison is in Section 5.6.

Another difference with the treatment in [246] is that, while the probe approximation
works essentially in the same way, the shift 𝜔 ↦→ 𝜔 − 𝜇 due to the probe mass is
removed in [246] by adding a counterterm by hand. For consistency with the probe
approximation, we keep the shift by 𝜇. This has turned out to be important for
𝜌(𝜔) and the derivation of the von Neumann algebra, while this subtlety would
not be appreciated in the correlation functions of O†

𝐿
(𝑡)O𝐿 (0), which generalize the

computation of [246].

Large 𝑁 algebras
In order to make statements about large 𝑁 algebras, we need our systems to satisfy
large 𝑁 factorization, as defined in Subsection 5.3. In this short subsection, we
argue that it is the case and deduce the types of the large 𝑁 algebras.

Lemma 5.4.19. Consider the discrete matrix model (5.59) in the large 𝑁 Veneziano
limit, and assume it admits a non-trivial saddle point configuration. At leading
order, the 𝑛-point functions of 𝜙𝐿 (𝑡) satisfy the large 𝑁 factorization property of
Definition 5.3.1.

Proof. The proof is done explicitly for the four-point function and then by induction
on 𝑛. We relegate the lengthy details to Appendix 5.14. The basic idea goes as
follows.

(1) We first expand 𝜙𝐿 in terms of O𝐿 ,O†𝐿 , so that we reduce to study 𝑛-point
functions of these operators. Only combinations with an equal number of O𝐿
and O†

𝐿
give a non-vanishing contribution.

(2) We study the various non-trivial combinations by direct computation.

(3) We approximate the thermal ensemble of representations by its saddle point
approximation.

(4) We match the resulting terms with the ones predicted by the factorization prop-
erty (cf. Proposition 5.14.1), thus showing the lemma.

A few remarks on this proof:
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• A technical assumption in this factorization lemma is that the number 𝑛 of
operator insertions is given from the onset and kept fixed in the large 𝑁 limit.
This is a standard requirement, see for instance [370] for a neat discussion of
this and related matters.

• Theorem 5.4.16 shows that the two-point function 𝐿 ⟨Ψ𝛽 |O†𝐿 (𝑡2)O𝐿 (𝑡1) |Ψ𝛽⟩𝐿
behaves as the expectation value of a single-trace operator in the ensemble
of representations (5.43). The lemma morally follows from this fact and
the factorization properties of matrix models at large 𝑁 . However, there
are complications due to the time dependence, which make the proof more
technical and are dealt with in Appendix 5.14.

• We warn the reader of some subtleties to pass from (2) to (3), which are dealt
with in Appendix 5.14. The hypotheses of the planar limit and that the saddle
point corresponds to a representation of large size are both crucial.

• Let us mention that it should be possible to give a Feynman diagram derivation
of the factorization property. The models we consider generalize [246], and
one should be able to perform a computation of the correlation functions
through more standard QFT techniques, very much along the lines of [337],
and show that they factorize. Such a formulation is worth to be studied in
detail and is left as an open problem.

□

The results so far are succinctly summarized in the statement:

Statement 5.4.20 (Corollary 5.4 and Theorem 5.3.5). The correlation
functions of the probe operators in our quantum systems are reproduced
by large 𝑁 von Neumann algebras of Type III1.

The main technical achievements of this section are (5.105)-(5.107). Combining
these two, we immediately get Corollary 5.4, whose assumptions are generically
satisfied by the ensembles of representations (5.43). Combining this fact with
Theorem 5.3.5, we have that, generically, the quantum systems constructed and
studied in this section have an associated Type III1 von Neumann algebra.

We thus state the more precise version of the qualitative Statement 5.4.20.
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Theorem 5.4.21. Consider the quantum systems of Subsection 5.4, coupled to a
probe as detailed in Subsection 5.4. The Hilbert space is ℋ

tot
𝐿

(5.71) and the
Hamiltonian is 𝐻′ (5.74). Assume that the parameters entering the definition (5.43)
are such that the eigenvalue density of the discrete matrix model (5.59) has a saddle
point approximation 𝜚∗(𝑥) which coalesces to a continuum. Then, their large 𝑁
algebras of operators are von Neumann algebras of Type III1.

Additionally, the models based on the ensembles (5.138), (5.234), (5.273), (5.284)
satisfy the above hypothesis ∀ 0 < 𝛽 < ∞.

Proof. Corollary 5.4 holds by assumption. Moreover, the technical result of Lemma
5.4.19 shows that the hypotheses of Theorem 5.3.5 are satisfied. Combining the two
yields the first part of the result.

For the ensembles listed in the theorem, it is known in the literature and we will
show explicitly in Part 5.5 that they satisfy the hypothesis on the non-trivial saddle
point in the Veneziano limit. □

5.5 Systems with Hagedorn transitions

Gauge
theory

flavor
symmetry

Hagedorn
transition

Quantum
mechanics

Spectral
density

von Neumann
algebra

App.5.13

Subsec.5.4

Subsec.5.5

Subsec.5.5

Subsec.5.3

Figure 5.4: Chart of the main concepts explored in this section.

The initial inputs to derive the quantum systems of the previous section were unitary
matrix integrals. Such systems generically do not exhibit a sharp Hagedorn-like
behavior; rather, they tend to display a third order phase transition [211, 448, 449].
Mapping the models to a Hilbert space of states organized in representations of the
flavor symmetry, these third order phase transitions crop up in the discrete matrix
models and are due to the gauge constraint indexed by 𝑁 . In this section, we will
describe a general procedure to promote these systems to systems with a first order
Hagedorn-like transition. The basic idea, presented in Subsection 5.5, is to introduce
an extended Hilbert space with sectors indexed by the rank 𝐿 of the flavor symmetry
group.
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The central result of this work is to assign a quantum system to a matrix model and
determine the type of its von Neumann algebra of operators. It hinges upon three
main steps:

1. Show how the type of von Neumann algebra is encoded in the Källén–
Lehmann spectral density;

2. Obtain the planar limit of the quantum mechanical systems;

3. Compute the Källén–Lehmann spectral densities in the quantum systems.

In Section 5.3 we have already explained how the type of von Neumann algebra of
operators is determined by looking at the Källén–Lehmann spectral density. The
main outcome is (5.23). This section lies down the remaining two of the three main
steps.

2. In Subsection 5.5 we discuss the phase structure of our new class of models.
The outcome is summarized in (5.127).

3. In Subsection 5.5 we compute the spectral densities for our class of quantum
mechanical models, obtaining (5.135).

The three steps are put together in Subsection 5.5. The web of relations between the
various concepts is sketched in Figure 5.4. The take-home message of this central
section is that a type III1 algebra can only emerge above the Hagedorn temperature.

Extended quantum mechanical system
In this section we go one step beyond the unitary one-matrix models (5.42), and
construct models whose partition function takes the form:

Z(𝔮, 𝑦) :=
∑︁
𝐿≥0

𝔮𝐿
2Z (𝑁)

𝐿
(𝑦). (5.109)

We have introduced a weighted sum over the flavor symmetry rank 𝐿, with weight
𝔮𝐿

2 controlled by the free parameter 𝔮, which we will equivalently write

𝔮 = exp
(
− 1

2𝑎

)
, 𝑎 > 0. (5.110)

The idea will be to interpret (5.109) as the partition function of an extended quantum
system with sectors indexed by the flavor symmetry rank, and an extra “fugacity”
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𝔮 associated to these sectors.7 We stress that the sum is over the rank of the flavor
symmetry of the systems, while the integer 𝑁 , related to the rank of the gauge group,
is not summed. Thus 𝑁 remains as a genuine parameter of the extended systems.

To be precise, the convergence of (5.109) is not guaranteed in general, and a more
rigorous definition requires to truncate it to a large value 𝐿max. Our regularization is
as follows: we choose a very large number 𝛾max ≫ 1 and let 𝐿max(𝑁) := ⌊𝛾max𝑁⌋+1,
and define

Z(𝔮, 𝑦) :=
𝐿max (𝑁)∑︁
𝐿=0

𝔮𝐿
2Z (𝑁)

𝐿
(𝑦). (5.111)

This implies that the sum has linearly many terms in 𝑁 . We may let 𝛾max depend
on the inverse temperature 𝛽, in a convenient way depending on the specific model
of interest in each case. In practice, the idea is to wisely choose a regularization
scheme 𝛾max so that Z will not miss the interesting physical phenomena for a vast
range of temperatures.

It is shown in Appendix 5.13 that a common feature of the ensemble (5.109) is to
promote a unitary matrix model (5.42) with third order phase transition to a model
with first order, Hagedorn-like phase transition. This statement can equivalently
be argued for from the perspective of a discrete matrix model, using the rewriting
of Z (𝑁)

𝐿
from Subsection 5.4. This approach is presented in full generality in

Subsection 5.5, and exemplified in Part 5.5.

Definition 5.5.1. LetZ(𝔮, 𝑦) be as in (5.109). The parameter space of the model is

{0 < |𝔮 | < 1, 0 ≤ arg(𝔮) < 2𝜋} × {𝑦 > 0} . (5.112)

We will set arg(𝔮) = 0 throughout. The constant-𝔮 slice of the parameter space is
the region {𝑦 > 0} at a fixed real value 0 < 𝔮 < 1.

The Schur slice of the parameter space is the region 𝔮 =
√
𝑦 and we call the partition

function on the Schur slice the limit

Z(𝑦) := Z(√𝑦, 𝑦). (5.113)

For 𝑎 as in (5.110) and 𝑦 = 𝑒−𝛽, we restrict the parameter space to be the positive
quadrant (𝑎, 𝛽) ∈ R>0 ×R>0. The first kind of slice is a slice of constant 𝑎 > 0, and
the Schur slice is 𝑎 = 𝛽−1.

7Viewing Z (𝑁 )
𝐿

as a statistical ensemble of representations, the importance of considering
generating functions like (5.109) has been advocated for in the mathematical literature [54].
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• Note that the physical interpretation of the Schur slice is particularly natural,
as it amounts to adding a vacuum energy to each sector and considering a
thermal state with no other fugacity involved.

• The nomenclature Schur slice is chosen in (vague) analogy with the degen-
eration of the Macdonald polynomials into Schur polynomials when the two
fugacities are equal.

• In the constant-𝔮 slice we assume that 0 < 𝔮 < 1 is a given number and
describe the structure of the theory as a function of 𝑦 alone.

• Finally, note that Arg(√𝑦) is not a free parameter, because it can be reabsorbed
by a gauge transformation, equivalently in a change of variables in (5.42).

Now, the quantityZ(𝔮, 𝑦) can be identified with the partition function of a quantum
system living on the extended Hilbert space

ℋ
(𝑁) :=

⊕
0≤𝐿≤𝐿max (𝑁)

ℋ
(𝑁)
𝐿

=
⊕

0≤𝐿≤𝐿max (𝑁)

⊕
𝑅∈ℜ(𝑁 )

𝐿

ℋ𝐿 (𝑅) ⊗ℋ𝐿 (𝜙(𝑅)), (5.114)

where the second equality recalls the definition of the gauge-invariant Hilbert space
ℋ
(𝑁)
𝐿

from (5.50). More precisely, we have:

Proposition 5.5.2. With the notation as just explained, it holds that

Z(𝔮, 𝑒−𝛽) =
𝐿max (𝑁)∑︁
𝐿=0

𝔮𝐿
2

Tr
ℋ
(𝑁 )
𝐿

(
𝑒−𝛽𝐻

)
. (5.115)

Once again, note that in the case of the Schur slice, the new fugacity 𝔮 itself depends
on the temperature, in such a way that (5.115) can be interpreted as the partition
function of a quantum system at inverse temperature 𝛽 with a vacuum energy.

Hagedorn transition and partition function
In this subsection we establish the phase structure of the extended models (5.109)
at large 𝑁 .

Remember that the scope of the whole construction is to derive a tractable quantum
mechanical system from a gauge theory on S𝑑−1×S1, whenever the partition function
of the latter can be expressed in the form (5.24). We now proceed to show that,
passing to the extended systems introduced in Subsection 5.5, we generically obtain
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models with a first order phase transition, in which the partition function stays finite
at large 𝑁 for 𝛽−1 < 𝑇𝐻 and diverges like 𝑂 (𝑒𝑁2) when 𝛽−1 > 𝑇𝐻 , where 𝑇𝐻 is a
critical temperature to be determined in each case.

Physical significance

Before diving in the analysis of the phase structure, a disclaimer is in order. In a
realistic holographic model of a black hole, we expect the existence of two distinct
temperatures: 𝑇HP and 𝑇breakdown. At 𝑇 = 𝑇HP, the thermal AdS solution and the
black hole solution exchange their dominance, in a process known as Hawking–
Page transition. At 𝑇 = 𝑇breakdown ≥ 𝑇HP, the perturbative expansion around the
thermal AdS solution breaks down. Since the gauge theory interpretation of our
matrix models holds only at very weak gauge coupling [427, 5], it is expected that
𝑇breakdown ≈ 𝑇HP [5, 14]. In the light of this discussion we simply refer to the
transitions we observe as Hagedorn transitions [5, 14].

Hagedorn transitions from matrix models

The idea is schematically as follows. Consider the fixed-𝐿 unitary matrix model
(5.42) in the planar large 𝑁 limit, as a function of the Veneziano parameter 𝛾 (as
introduced in Definition 5.4.15). Assume it has a third order phase transition at a
critical curve 𝛾 = 𝛾𝑐 (𝛽) in the (𝛽, 𝛾)-plane. This phase transition is mapped to a
third order phase transition in the discrete matrix model (5.59).

Passing to (5.109) with 𝔮 = 𝑒−1/(2𝑎) , we write

Z(𝑒− 1
2𝑎 , 𝑒−𝛽) =

𝐿max (𝑁)∑︁
𝐿=0

exp
[
−𝑁2

(
𝛾2

2𝑎
− F (𝛾, 𝛽) + · · ·

)]
(5.116)

where the 𝑁2 scaling is the typical growth of matrix models, so thatF (𝛾, 𝛽) = 𝑂 (1),
or more precisely

lim
𝑁→∞

1
𝑁2 lnZ (𝑁)

𝐿
(𝑒−𝛽)

����
𝐿=𝛾𝑁

= F (𝛾, 𝛽), (5.117)

is finite and independent of 𝑁 , and the ellipses indicate sub-leading contributions.
Moreover, by assumption, we have

F (𝛾, 𝛽) =

F−(𝛾, 𝛽) 𝛾 ≤ 𝛾𝑐
F+(𝛾, 𝛽) 𝛾 > 𝛾𝑐,

(5.118)
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Figure 5.5: Illustration of a constant-𝑎 slice of the parameter space. The intersection
of the curves 𝛾𝑐 and 𝛾∗ produces a phase transition. The solution 𝛾∗ to (5.119) is
valid only for values of 𝛽 such that 𝛾∗ > 𝛾𝑐, on the left of the dashed vertical line.

with F− and F+ coinciding up to the second derivative at 𝛾𝑐, but distinct away from
the critical curve 𝛾𝑐 (𝛽).8

At large 𝑁 , the sum over 𝐿 effectively enforces an average over 𝛾. The leading planar
contribution toZ comes from the saddle points 𝛾∗ of the quantity 𝛾2/(2𝑎)−F (𝛾, 𝛽).
We can start by looking for the saddle point in the phase 𝛾 > 𝛾𝑐, for which 𝛾∗ is
determined by

𝜕

𝜕𝛾
F+(𝛾, 𝛽)

����
𝛾∗

=
𝛾∗
𝑎
. (5.119)

The solution is 𝛾∗ = 𝛾∗(𝛽, 𝑎). In each constant-𝑎 slice of the parameter space, 𝛾∗ is
moved as we dial the inverse temperature, and in the Schur slice 𝑎 = 𝛽−1 the saddle
point 𝛾∗ is uniquely determined as a function of 𝛽.

However, as we dial 𝛽, 𝛾∗ may cross 𝛾𝑐. At that precise value of 𝛽, F+ in (5.119)
is replaced by F−. The explicit form of the saddle point equation for 𝛾∗ changes.
Therefore, the value of 𝛾∗ jumps at that critical value of 𝛽, which we denote 1/𝑇𝐻 .

More precisely, in any fixed slice 𝑎 = 𝑎(𝛽) (possibly constant) of the (𝑎, 𝛽)-
parameter space, there are two curves

𝛾𝑐 (𝛽) and 𝛾∗(𝛽) ⊂ (𝛽, 𝛾)-plane. (5.120)

The curve 𝛾𝑐 (𝛽) is independent of 𝑎 and remains the same in every slice. The curve
𝛾∗(𝛽) is fibered in the parameter space over the 𝑎-direction R>0. Assume that, in
a chosen slice of the parameter space, the curve 𝛾∗(𝛽) obtained solving (5.119)
intersects 𝛾𝑐 (𝛽). Then, the solution is consistent only for values of 𝛽 such that
𝛾∗ > 𝛾𝑐, see Figure 5.5. Crossed that critical inverse temperature, namely 1/𝑇𝐻 , the
new branch of the curve 𝛾∗(𝛽) solves a different equation.

8Abstractly, F± are local functions on a two-dimensional manifold with local coordinates (𝛾, 𝛽),
whose 2-jets are equal at every point of a codimension-one submanifold parametrized by the embed-
ding 𝛽 ↦→ 𝛾𝑐 (𝛽).
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When 𝛽−1 crosses 𝑇𝐻 a new value 𝛾∗ becomes the saddle point. This discontinuity
will produce a phase transition in the ensemble (5.109) at a critical temperature 𝑇𝐻 .
The transition can in principle be first or second order. As we will show in examples
and further support with a general prescription in Appendix 5.13, a widespread
situation in this type of ensembles is that

𝛾∗(𝛽) = 0 if 𝛽−1 < 𝑇𝐻 . (5.121)

In fact, under mild assumptions,

F−(𝛾, 𝛽) = 𝛾2 𝑓−(𝛽) (5.122)

for some smooth function 𝑓− (cf. Lemma 5.13.1),9 whence the trivial saddle (5.121)
in the low temperature phase, valid for 1

2𝑎 > 𝑓−(𝛽).

The trivial saddle point kills the 𝑂 (𝑁2) growth of lnZ, leading to a first order10

phase transition at 𝑇𝐻 . When this is the case, Gaussian integration in the phase
1/𝛽 < 𝑇𝐻 leads, near the critical point, to

Z ∼ 1√︁
𝑇𝐻 − 𝛽−1

, (5.123)

which in turn is associated with Hagedorn behavior as the critical temperature 𝑇𝐻
is approached from below. Strictly at 𝑁 = ∞ we have Z(𝛽−1 < 𝑇𝐻) = 𝑂 (1) and
Z(𝛽−1 > 𝑇𝐻) = ∞, with lnZ diverging proportionally to 𝑁2.

More precisely, we have the following result:

Proposition 5.5.3. Assume that if 𝛽−1 < 𝑇𝐻 , there exist 𝑐0, 𝐾 > 0 independent of 𝐿
such that for all 𝑁 ,

𝑞𝐿
2Z (𝑁)

𝐿
(𝑒−𝛽) ≤ 𝐾𝑒−𝑐0𝐿

2
. (5.124)

Also assume that if 𝛽−1 > 𝑇𝐻 , there exist 𝐴, 𝐵, 𝑐1, 𝑐2 with 0 < 𝑐1 < 𝑐2, 𝐴 >

0, 𝐵 > 0, such that for all 𝑁 , the largest contribution to the sum is comprised in
[𝐴𝑒𝑐1𝑁

2
, 𝐵𝑒𝑐2𝑁

2]. Then,

lnZ(𝑒−𝛽) =

𝑂 (1) 𝛽−1 < 𝑇𝐻

𝑂 (𝑁2) 𝛽−1 > 𝑇𝐻 .
(5.125)

9Both the presence of a third order transition and the form ofF± are consistent with and supported
by [410], which studies QCD-like theories on S𝑑−1 × S1 in the Veneziano limit.

10Strictly speaking, “weakly” first order, because there is no coexistence of saddles.
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Proof. In the low temperature phase, the result is a simple consequence of domina-
tion by a convergent series. In the high temperature phase it suffices to bound the
sum by its largest term times the number of terms, and to notice that this number of
terms is very small compared to the largest contribution. Taking the logarithm on
both sides yields the desired result. □

To conclude, let us mention that it would be interesting to explore examples in which
𝛾2

2𝑎 − F+ develops new minima at some high temperature 1/𝛽 > 𝑇𝐻 .

Probing the Hagedorn transition with a Polyakov loop

Phase transitions are famously diagnosed by suitable order parameters. In the
present case, the transition can be probed at the level of the matrix model by looking
at a Polyakov loop. Inserting a Polyakov loop, it is not hard to show that is acquires
a non-trivial expectation value at 𝛽−1 > 𝑇𝐻 , indicating deconfinement. We state the
result here and defer the details to Appendix 5.13.

At the level of the matrix model, it holds that

⟨Polyakov loop⟩ = 0 if 𝑇 < 𝑇𝐻
⟨Polyakov loop⟩ ≠ 0 if 𝑇 > 𝑇𝐻 .

(5.126)

Summary: Hagedorn transition

The bottom line of our analysis is that a wide class of extended models (5.109)
undergoes a first order phase transition at a critical temperature 𝑇𝐻 , with

lnZ = 𝑂 (1) if 𝑇 < 𝑇𝐻
lnZ = 𝑂 (𝑁2) if 𝑇 > 𝑇𝐻 .

(5.127)

This feature of the quantum mechanical models is demonstrated explicitly in three
examples in Part 5.5. The transition (5.127) is obtained summing over the parameter
𝐿, which, from the point of view of the discrete ensemble, is the maximum length
of the Young diagrams 𝑅. The index 𝑁 , labelling the constraint, is kept fixed. The
phase transition is along a critical curve 𝑇𝐻 (𝑎) in the (𝑎, 𝑇)-plane, which projects
onto a unique point 𝑇𝐻 on the slice 𝑎 = 𝑇 .

It has been proposed that the algebras of single-trace operators are type I von
Neumann algebras in the phase 𝑇 < 𝑇𝐻 , and become type III1 factors at 𝑇 > 𝑇𝐻 .
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The main result of this work is to prove this expectation rigorously in the class of
models whose microscopic description has been given in Subsection 5.4. This is
done next, in Subsection 5.5.

Spectral densities
Coupling the extended quantum mechanics to a probe

Akin to Subsection 5.4, we now introduce the operators of interest in the extended
quantum mechanical systems of Subsection 5.5. Our take on (5.109) and the as-
sociated Hilbert space (5.114) is that each fixed-𝐿 sector describes a full-fledged
quantum system, and the sum over 𝐿 renders the whole ensemble closer to a holo-
graphic interpretation. Therefore, the prescription for the correlation function in the
systems of Subsection 5.5 is to

(i) couple a probe to each fixed-𝐿 system as prescribed in Subsection 5.4,

(ii) compute the correlation function, and

(iii) take the weighted sum over 𝐿 of the result.

A practical way of doing so is to promote ℋ (𝑁)
𝐿

to ℋ
tot
𝐿

as explained in Subsection
5.4, before summing over 𝐿 and defining (5.114). That is, we work with:

ℋ
tot :=

⊕
𝐿≥0

ℋ
tot
𝐿 . (5.128)

Alternatively, one may first define ℋ
(𝑁) according to (5.114), and then define a

probe on that space. To specify such a probe, we need in addition the choice of
sector 𝐿 to which it couples, and the choice must be fine-tuned to explore the regime
of interest in each case. We refrain from this definition and stick to the former
approach.

At this point, we promote the operators O𝐿 ,O†𝐿 of Subsection 5.4 to block-diagonal
operators on ℋ

tot,

O,O† ∈ L
(
ℋ

tot) � L (⊕
𝐿≥0

ℋ
(𝑁)
𝐿
⊗ Γprobe

)
, (5.129)

that act sector-wise as O𝐿 ,O†𝐿 for every 𝐿. Note that for each summand, the one-
particle Hilbert space inside Γprobe has a different dimension, equal to the flavor rank
𝐿.
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Spectral densities of the extended quantum mechanics

We now sketch the adaptation of the procedure of Subsection 5.4 to the new case
with the sum over 𝐿. The ingredients we need, as explained in Section 5.3, are the
finite temperature Wightman functions and the associated Källén–Lehmann spectral
density 𝜌(𝜔). The novelty in this section is the presence of a Hagedorn transition,
highlighted in Subsection 5.5. We will pay special attention to how the properties
of 𝜌(𝜔) change across the transition.

The obvious version of the Wightman function (5.90) for the ensemble (5.42) is:

Definition 5.5.4. The real-time, finite temperature Wightman function is

𝐺+(𝑡) :=
1
Z

𝐿max (𝑁)∑︁
𝐿=0

𝔮𝐿
2

trℋtot
𝐿

(
𝑒−𝛽𝐻

′ O†(𝑡)O(0)
)
. (5.130)

The dependence on the parameters 𝑁, 𝑎, 𝛽 is left implicit in the notation.

We need to prescribe the probe parameters in the same way as we did before. We
choose the mass 𝜇 to be the same in all sectors, and large enough that the probe
approximation can always be applied (so it is always large enough compared to
𝐿max(𝑁)). The coupling of the interaction in a given sector is scaled in a ’t Hooft
way.

Once again, in the case of the Schur slice 𝑎 = 𝛽−1, (5.130) is interpreted simply as a
thermal correlation function in an extended quantum system at inverse temperature
𝛽. The only difference between the right-hand side of (5.130) and its fixed-𝐿
counterpart (5.90) is the weighted sum over 𝐿 and the overall normalization by Z
instead ofZ (𝑁)

𝐿
. Let 𝐺+(𝜔) be the Fourier transform of 𝐺+(𝑡). Once again, 𝐺+(𝜔)

is simply related to the spectral density 𝜌(𝜔) through (5.91),

𝐺+(𝜔) =
𝜌(𝜔)

1 − 𝑒−𝛽𝜔
. (5.131)

We elaborate further on the properties of 𝜌(𝜔) and the probe approximation in the
case of summing over sectors in Subsection 5.5.

Theorems 5.4.16 and 5.4.17 go through, with the only modification of the weighted
sum over 𝐿 and the normalization byZ outside the sum, instead of normalizing by
Z (𝑁)
𝐿

. This fact can be easily checked directly, and it does not involve any large 𝑁
limit. To get an equivalent of Corollary 5.4, we will follow the extremization pro-
cedure over the Veneziano parameter 𝛾 explained in Subsection 5.5. The Corollary
holds using the eigenvalue density 𝜚∗ evaluated at the saddle point 𝛾∗.
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In slightly more detail, for every 𝑁 we can schematically write

Z =

𝐿max (𝑁)∑︁
𝐿=0

exp
[
−𝑁2S𝑁 (𝛾)

]
, (5.132)

where the dependence on 𝛽 and 𝔮 is left implicit to reduce clutter, and the dependence
on 𝛾 means that we replace 𝐿 ↦→ 𝑁𝛾 everywhere. The sequence {S𝑁 }𝑁∈N admits
a finite and well-defined point-wise limit lim𝑁→∞ S𝑁 (𝛾) = S(𝛾). Consider the
family of functions of the form 𝐹𝑁 ( ®𝜔)/Z, where

𝐹𝑁 ( ®𝜔) :=
𝐿max (𝑁)∑︁
𝐿=0

exp
[
−𝑁2S𝑁 (𝛾)

]
𝑓𝑁 ( ®𝜔, 𝛾), (5.133)

and the sequence 𝑓𝑁 is subject to the constraint

lim
𝑁→∞

ln 𝑓𝑁 ( ®𝜔, 𝛾)
𝑁2 = 0. (5.134)

Here ®𝜔 generically indicates variables in the domain of 𝑓𝑁 which do not appear in
the definition of Z. In the case of interest to us presently, there is just one variable
𝜔 ∈ C and we are looking at a correlation function given by Theorem 5.4.16 or
Theorem 5.4.17.

In the large 𝑁 limit, the saddle points of 𝐹𝑁 are entirely determined by S𝑁 , and
therefore are the same as for Z (since the correlation functions converge to a finite
value). In computing the ratios 𝐹𝑁 ( ®𝜔)/Z at leading order in the large 𝑁 limit, the
first non-trivial contribution is given precisely by 𝑓𝑁 ( ®𝜔, 𝛾) |saddle, i.e., the defining
function evaluated at the saddle point.

We therefore approximate 𝐺+(𝜔) by its value at the saddle point 𝛾∗ in the phase
in which the saddle point 𝛾∗ is non-trivial, and we deduce Corollary 5.4 with the
modification that we must evaluate the eigenvalue density, and in particular the
endpoints of its support, at 𝛾∗.11

We now explicitly relate the support of the spectral density 𝜌(𝜔) to the two phases
of the matrix model, as we did in Subsection 5.4. We observe that the factorization
Lemma 5.4.19 works in the high temperature phase, in which lnZ = 𝑂 (𝑁2). The
proof is identical, with the large 𝑁 limit being evaluated at the saddle point 𝛾∗.
Moreover, we showed that the spectral density there is continuous. In the low

11It is usual to approximate the large 𝑁 expectation value of observables with a saddle point
analysis, although proving a completely rigorous result here would require a study of the rate of
convergence to the saddle which is beyond the scope of this chapter.
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temperature phase, the assumption of a non-trivial saddle point in Lemma 5.4.19
fails. The partition function remains finite in this phase. If we scale the interaction
𝜆 between the probe and the system like 1/𝐿 (in a sector-dependent way), then
there is no large 𝑁 factorization and it does not really make sense to talk about the
spectral density. However, here, unlike in Section 5.4, 𝑁 and 𝐿 have fundamentally
inequivalent roles: only 𝑁 is a free parameter, while now 𝐿 is summed over. Then,
if we scale the interaction like 1/𝑁 (in a sector-independent way), given that the
partition function is finite the correlation function simply converges to its limit as
𝑁 →∞ with 𝐿 fixed, which is the limit in which the probe decouples from the rest
of the system. In this limit, in the probe approximation, the spectral function of the
probe reduces to delta functions at ±𝜇. Therefore, the large 𝑁 Hilbert space is that
of a free oscillator, and in particular the algebra of observables for the probe has
type I. Hence, for the choices of scaling of 𝜆 described in this paragraph:

supp 𝜌 =
⊔ { isolated pts } if lnZ = 𝑂 (1)

supp 𝜌 ⊆ R continuous if lnZ = 𝑂 (𝑁2)
(5.135)

and in the former case 𝑒−𝛽 |𝜔| is integrable on the support of 𝜌.

Comments on the probe approximation in the extended quantum mechanics

The probe approximation in the extended quantum mechanical systems can be
defined in the analogous fashion to Definition 5.4.10. Again we expand partition
functions and correlation functions as power series in the parameter 𝑒−𝛽𝜇. This time
the expansion is less trivial, because the probe sectors depend on 𝐿 and therefore
cannot be brought out of the sum over 𝐿. This does not change the strategy, and we
simply retain the term independent of 𝑒−𝛽𝜇 in the series expansion.

The comments about the mass of the probe in Subsection 5.4 apply identically to
this case. In particular, one may express everything in terms of the shifted 𝜔r as in
(5.98), which corresponds to neglecting the uniform shift of the energy levels given
by the probe mass. The latter is a contribution due to the probe alone, not directly
relevant for the quantum mechanical systems.
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Summary
The three main results in the planar limit so far are:

Result Section Crystallized in
1. von Neumann algebra type from supp 𝜌 Subsec. 5.3 Eq. (5.23)
2. growth of lnZ from Temperature Subsec. 5.5 Eq. (5.127)
3. supp 𝜌 from growth of lnZ Subsec. 5.5 Eq. (5.135)

Putting them together we arrive at the central result of our work:

Statement 5.5.5 ((5.23), (5.127) and (5.135)). In the saddle point ap-
proximation, the large 𝑁 von Neumann algebras associated to our probe
operators jump to type III1 above the Hagedorn temperature, in accordance
with the holographic picture of a Hawking–Page transition.

Temperature

𝑇𝐻 •

lnZ ∼ 𝑂 (𝑁2)

lnZ ∼ 𝑂 (1)

Type III1

Type I

jump in
von Neumann algebra

Figure 5.6: Illustration of Theorem 5.5.5. At the Hagedorn temperature 𝑇𝐻 , the
partition function starts diverging, and the von Neumann algebra experiences a
sharp transition from type I to type III1.

The content of this statement is represented pictorially in Figure 5.6. We now give a
more detailed and rigorous formulation of the qualitative claim of Statement 5.5.5.

Theorem 5.5.6. Consider a quantum mechanical system as defined in Subsection
5.5, coupled to a probe as detailed in Subsection 5.5, and such that the system at fixed
𝐿 satisfies the assumptions of Theorem 5.4.21. The Hilbert space is ℋtot (5.128).
Assume that (5.43) undergoes a third order phase transition, and that there exists
𝑇𝐻 (𝑎) > 0 such that (5.109) has the Hagedorn-like behaviour (5.127) in the planar
limit. Then, the large 𝑁 algebra of probe operators is a Type III1 von Neumann
algebra if and only if 𝑇 > 𝑇𝐻 .
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Additionally, the models (5.173) or (5.237) satisfy the above hypotheses ∀ 0 < 𝑎 <
∞.

Proof. The first part follows from combining the results of this section. As empha-
sized in Subsection 5.5, the construction is tailored so that, if (5.43) has a third order
phase transition, it is a generic feature that (5.109) satisfies (5.127) in the planar
limit.

The second part of the theorem follows from the explicit derivations in Part 5.5. □
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In this second part of the work we move on to apply the general principles of Part 5.1
to selected examples. We present in detail four case studies, where all the quantities
discussed in Part 5.1 are shown to display the desired properties.

5.6 Example 1: Variations on the IOP model
We begin in Subsection 5.6 by introducing a family of toy models that includes and
generalizes a model of holographic relevance from [246]. In detail, we will give
four equivalent characterizations of the system.

𝑖) It is a constrained version of a matrix model from [246, Sec.5]. We will refer
to this matrix model (and not to the underlying quantum mechanics) as IOP
model, and it will be the simplest instance of our broader family that we dub
constrained IOP model (cIOP for short), introduced in Subsection 5.6.

𝑖𝑖) It is the low energy theory of the chiral operators in four-dimensional super-
symmetric QCD, or SQCD4 for short. This perspective allows us to establish
a direct relation with Calabi–Yau varieties in Subsection 5.6. In this frame-
work, the Calabi–Yau attached to the original IOP model is just C𝐿2 , whereas
the cIOP model bears a connection with non-trivial Calabi–Yau varieties.

𝑖𝑖𝑖) It is a toy model of two-dimensional lattice QCD with bosonic quarks (Sub-
section 5.6).

𝑖𝑣) It is one-dimensional QCD with bosonic quarks.

To fit in the paradigm of Section 5.5, in Subsection 5.6 we consider the sum over an
integer 𝐿 ∈ N, which has the meaning of number of flavors in all the presentations.
In Subsections 5.6-5.6 and 5.6 we study the Veneziano limit of the theory without
and with sum over 𝐿, respectively. The spectral density 𝜌(𝜔) is computed in
Subsection 5.6.

Partition function of variations on IOP
Variations on IOP: Definition

Definition 5.6.1. Let 𝛽 > 0, 𝑦 = 𝑒−𝛽 and 𝐿 ∈ N. The IOP matrix model is

ZIOP(𝐿, 𝑦) =
∑︁
𝑅

𝑦 |𝑅 | (dim 𝑅)2, (5.136)

with the sum running over Young diagrams of length ℓ(𝑅) ≤ 𝐿.
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The sum over Young diagrams (5.136) was derived from a quantum mechanics in
[246, Sec.5], whence the nomenclature IOP. It is easy to prove that [312]

ZIOP = (1 − 𝑦)−𝐿2
. (5.137)

The IOP matrix model does not show a phase transition and lnZ = 𝑂 (𝐿2) at all
temperatures, however, it serves as inspiration for the subsequent discussion. For
any 𝑁 ∈ N, 𝑁 ≥ 𝐿, one can embed 𝑆𝑈 (𝐿 + 1) ↩→ 𝑆𝑈 (𝑁 + 1). This allows for a
generalization of (5.136).

Definition 5.6.2. Let 0 < 𝑦 < 1 and 𝐿, 𝑁 ∈ N. The constrained IOP matrix model
(cIOP) is

Z (𝑁)cIOP(𝐿, 𝑦) =
∑︁
𝑅

𝑦 |𝑅 | (dim 𝑅)2, (5.138)

with the sum running over Young diagrams of bounded length

ℓ(𝑅) ≤ min {𝐿, 𝑁} . (5.139)

Of course, for every 𝑁 ≥ 𝐿, the constraint (5.139) is immaterial and one recovers
(5.136). However, the presence of the constraint plays a role in the Veneziano limit

𝐿 →∞, 𝑁 →∞, with 𝛾 =
𝐿

𝑁
fixed. (5.140)

Indeed, the cIOP model undergoes a third order phase transition as a function of 𝛾
[29, 405].

It is convenient to adopt the change of variables ℎ𝑖 = 𝑅𝑖 − 𝑖 + 𝐿 introduced in (5.60)
and then use formula (5.62). With these expressions at hand, we write

ZIOP =
𝑦−𝐿

2/2

𝐺 (𝐿 + 2)2
∑︁

ℎ1>ℎ2>···>ℎ𝐿≥0
𝑦
∑𝐿
𝑗=1(ℎ 𝑗+ 1

2 )
∏

1≤𝑖< 𝑗≤𝐿+1
(ℎ𝑖 − ℎ 𝑗 )2, (5.141)

with 𝐺 (·) being Barnes’s 𝐺-function [38] and understanding ℎ𝐿+1 ≡ −1.

From cIOP to one-plaquette bosonic QCD2

Let us now introduce a unitary matrix model equal to the cIOP partition function.

Lemma 5.6.3 ([190]). For every 𝑦 ∈ C, |𝑦 | ≠ 1, and 𝐿, 𝑁 ∈ N it holds that

Z (𝑁)cIOP(𝐿, 𝑦) =
∮
𝑆𝑈 (𝑁+1)

[d𝑈]
[
det

(
1 − √𝑦𝑈

)
det

(
1 − √𝑦𝑈−1

)]−𝐿
. (5.142)
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With 𝑦 = 𝑒−𝛽, the right-hand side is a toy model for one-plaquette lattice QCD2 with
bosonic quarks, studied in [342, 406]. The interpretation of 𝐿 as the flavor rank and
𝑁 as the gauge rank of the gauge theory, put forward in Section 5.4, finds a neat
realization here. Comparing (5.142) and [55, Eq.(3.8)], we also observe thatZ (𝑁)cIOP
is the partition function of a gauged matrix quantum mechanics describing 1d QCD
with 𝐿 bosonic quarks, where again 𝑦 = 𝑒−𝛽 (note that [55] includes an additional
adjoint field).

Proof of Lemma 5.6.3. This lemma is well-known both in the mathematics and
physics literature, see for instance [91, 186] for overviews and generalizations. For
completeness, we provide one proof here. The so-called Cauchy identity states that
[312]

𝐿+1∏
𝑖=1

𝑁+1∏
𝑘=1

1
1 − 𝑦𝑖𝑧𝑘

=
∑︁
𝑅

𝜒𝑅 (𝑌 )𝜒𝑅 (𝑈), (5.143)

where on the right-hand side the sum runs over Young diagrams 𝑅 with bounded
length

ℓ(𝑅) ≤ min {𝐿, 𝑁} , (5.144)

exactly as in (5.139). 𝑌 and 𝑈 are special unitary matrices with eigenvalues {𝑦𝑖}
and {𝑧𝑘 }, respectively, and 𝜒𝑅 is the character of the group.

Setting 𝑦𝑖 =
√
𝑦 and using the property [312, Sec.3]12

𝜒𝑅 (diag(√𝑦, . . .√𝑦)) = √𝑦
∑
𝑖 𝑅𝑖 𝜒𝑅 (diag(1, . . . , 1)) = √𝑦 |𝑅 | dim 𝑅, (5.145)

(5.143) implies ∑︁
𝑅

√
𝑦
|𝑅 | dim 𝑅𝜒𝑅 (𝑈) = det

(
1 − √𝑦𝑈

)−𝐿
. (5.146)

Inserting this expression and its complex conjugate in the right-hand side of (5.142),
one gets∮
𝑆𝑈 (𝑁+1)
[d𝑈]

[
det

(
1 − √𝑦𝑈

)
det

(
1 − √𝑦𝑈−1

)]−𝐿
=

∑︁
𝑅,𝑅′

dim(𝑅) dim(𝑅′)√𝑦 |𝑅 |+|𝑅
′ |
∮
𝑆𝑈 (𝑁+1)
[d𝑈]𝜒𝑅 (𝑈)𝜒𝑅′ (𝑈−1).

(5.147)
12The first equality in (5.145) can be shown using the definition of 𝜒𝑅 as a ratio of determinants,

𝜒𝑅 (diag(𝑦1, . . . , 𝑦𝐿+1)) = det1≤ 𝑗<𝑘≤𝐿+1
[
𝑦
𝑅 𝑗+𝐿− 𝑗+1
𝑘

]
/det1≤ 𝑗<𝑘≤𝐿+1

[
𝑦
𝐿− 𝑗+1
𝑘

]
. Particularizing to

𝑦𝑘 =
√
𝑦, one pulls √𝑦 out of the determinants and simplifies between numerator and denominator

to get (5.145).
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Taking into account the orthogonality of characters:∮
𝑆𝑈 (𝑁+1)

[d𝑈]𝜒𝑅 (𝑈)𝜒𝑅′ (𝑈−1) = 𝛿𝑅𝑅′ , (5.148)

we obtain the identity (5.142). □

IOP: Veneziano limit

For completeness, we now rederive the large 𝐿 limit of the IOP and cIOP models,
in the presentation (5.141), so to directly compute the relevant quantities in our for-
malism and make the chapter self-contained. However, we omit the more technical
details and refer to the pertinent literature. We start with IOP, and explain how the
picture gets modified in the constrained models in Subsection 5.6.

To begin with, the restriction ℎ1 > · · · > ℎ𝐿 in (5.141) can be lifted using the
invariance of the summand under action of the Weyl group. This step introduces an
overall factor 1/𝐿!.

Equation (5.141) describes a discrete ensemble of 𝐿 variables with a hard wall at
ℎ𝑖 = 0. It is an easy task to solve its large 𝐿 limit, following for instance [148]. The
summand in (5.141) is rewritten in the form 𝑒−𝑆(ℎ1,...,ℎ𝐿) with

𝑆(ℎ1, . . . , ℎ𝐿) = 𝛽
𝐿∑︁
𝑖=1

ℎ𝑖 −
∑︁
𝑖≠ 𝑗

ln|ℎ𝑖 − ℎ 𝑗 |. (5.149)

At large 𝐿, we may assume a scaling of the eigenvalues

ℎ𝑖 = 𝐿
𝜂𝑥𝑖, (5.150)

for {𝑥𝑖} ∼ 𝑂 (1) and a power 𝜂 > 0 which we now determine. With the replacement
(5.150), the first term in (5.149) has a growth ∝ 𝐿1+𝜂, while the second term in
(5.149) yields a piece 𝜂𝐿 (𝐿 − 1) ln 𝐿, independent of the eigenvalues and thus
irrelevant for the sake of the saddle point analysis, and a piece ∝ 𝐿2. We only need
to focus on the two terms carrying a dependence on the eigenvalue. Demanding
that they compete, so to find a nontrivial equilibrium, imposes 1+ 𝜂 = 2, thus fixing
𝜂 = 1.

It is customary to introduce the density of eigenvalues

𝜚(𝑥) = 1
𝐿

𝐿∑︁
𝑖=1

𝛿(𝑥 − 𝑥𝑖), 𝑥 > 0, (5.151)
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which is normalized to 1 by definition. Furthermore, the discreteness of the ensemble
(5.141) imposes a minimal distance among any two eigenvalues, which translates
into the condition [148]

𝜚(𝑥) ≤ 1 ∀𝑥 > 0. (5.152)

With these definitions, 𝑆(ℎ1, . . . , ℎ𝐿) is a functional of 𝜚 and (5.149) becomes (up
to 𝑥-independent terms)

𝑆[𝜚] = 𝐿2
∫

d𝑥𝜚(𝑥)
[
𝛽𝑥 − P

∫
d𝑥′𝜚(𝑥′) ln|𝑥 − 𝑥′|

]
, (5.153)

where P
∫

stands for the principal value integral. We have thus expressed the sum-
mand in (5.141) as 𝑒−𝐿2 (··· ) , with the dots indicating a positive 𝑂 (1) term. At large
𝐿, the leading contributions come from the saddle points of (5.153). The saddle
point equation, also known as equilibrium equation, is

2P
∫

d𝑥′
𝜚∗(𝑥′)
𝑥 − 𝑥′ = 𝛽. (5.154)

Here 𝜚∗ is the eigenvalue density that extremizes the functional (5.153). It must be
looked for in the functional space subject to the constraints:∫ ∞

0
d𝑥𝜚(𝑥) = 1, 0 ≤ 𝜚(𝑥) ≤ 1, supp 𝜚 ⊆ [0,∞). (5.155)

While the derivation was standard so far, the IOP matrix model has two peculiar
features, encapsulated in (5.155):

• the discreteness of the ensemble, and

• the hard wall at 𝑥 = 0.

Matrix models with a hard wall typically have an inverse square root behavior near
the edge [175, 132], which in our case would produce

𝜚(𝑥) ∼ 1
√
𝑥
, 𝑥 → 0. (5.156)

Clearly, this is incompatible with the restriction (5.152). Following the seminal
work [148], we thus look for a “capped” eigenvalue density of the form

𝜚(𝑥) =


1 0 ≤ 𝑥 < 𝑥−
�̂�(𝑥) 𝑥− ≤ 𝑥 ≤ 𝑥+
0 𝑥 > 𝑥+

(5.157)
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Figure 5.7: Schematic representation of the eigenvalue density in presence of a hard
wall for the eigenvalues. Left: Continuous matrix models typically have a square
root singularity near the hard wall. Right: Discrete matrix models have eigenvalue
densities bounded above.

with �̂� a nontrivial function subject to the continuity conditions

�̂�(𝑥−) = 1, �̂�(𝑥+) = 0. (5.158)

The values of 𝑥± will be determined by normalization. See Figure 5.7 for a sketch.

To solve the saddle point equation (5.154) with the ansatz (5.157) is a standard
procedure, see, e.g., [148]. The non-trivial part to be determined lies on the domain
𝑥− ≤ 𝑥 ≤ 𝑥+. In this region, (5.157) leads to

P
∫ 𝑥+

𝑥−

d𝑥′
�̂�∗(𝑥′)
𝑥 − 𝑥′ =

𝛽

2
+ ln

(
𝑥

𝑥 − 𝑥−

)
. (5.159)

This is the standard equilibrium equation, now for the equilibrium measure �̂�∗(𝑥)d𝑥
supported on [𝑥−, 𝑥+] and with a modified effective potential

𝛽𝑥 ↦→ 𝛽𝑥 + 2𝑥 ln(𝑥) − (𝑥 − 𝑥−) ln(𝑥 − 𝑥−), (5.160)

to account for the term ln
(

𝑥
𝑥−𝑥−

)
on the right-hand side of (5.159). Therefore, we

have effectively reduced the problem of finding an eigenvalue density with a hard
wall which is bounded above, to the problem of finding the eigenvalue density �̂�∗,
at the price of trading the linear potential for a more complicated one. The latter
problem admits a solution via a standard procedure. We skip the more technical
details, and refer in particular to [115, Sec.5], where a very similar calculation is
performed.

In a nutshell, the textbook prescription consists in introducing a complex function,
called resolvent, supported on C \ [𝑥−, 𝑥+]. This function uniquely determines �̂�∗
and 𝑥±. Then, (5.159) is interpreted as a discontinuity equation for the resolvent,
which can be solved by complex analytic methods. Once the resolvent is found, one
extracts the eigenvalue density �̂�∗ and its support.
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Figure 5.8: Eigenvalue density of the IOP matrix model, shown at 𝛽 = 1.5.

Omitting the more technical part and jumping to the last step, we find (see also
[115])

�̂�∗(𝑥) =
2
𝜋

arctan
(√︂

𝑥−
𝑥+

√︂
𝑥+ − 𝑥
𝑥 − 𝑥−

)
(5.161)

with supp �̂�∗ = [𝑥−, 𝑥+] given by

𝑥− = tanh
(
𝛽

4

)
, 𝑥+ = coth

(
𝛽

4

)
. (5.162)

The full density of eigenvalues 𝜚∗(𝑥) is shown in Figure 5.8.

For completeness, we compare with the original derivation of [246, Sec.5]. There,
the large 𝐿 limit of ZIOP was addressed directly in the sum over Young diagrams
form (5.136). The result was encoded in a function 𝑓 (𝑥) capturing the shape of the
Young diagram 𝑅 that dominates in the limit. Notice that our conventions are such
that the flavor rank, denoted 𝐿 here, corresponds to 𝑁 of [246].

Comparing the definitions of 𝜚(𝑥) with that of 𝑓 (𝑥) using (5.60) to compare ℎ 𝑗 and
𝑅 𝑗 , we get the relation

�̂�∗(𝑥) =
1 − 𝑓 ′∗ (𝑥)

2
∀𝑥 ∈ R (5.163)

and our formulas agree with the existing literature using this substitution.

The remaining step is to evaluate the effective action (5.153) onto the solution 𝜚∗
that extremizes it. A direct computation gives

lnZIOP = −𝐿2 log
(
1 − 𝑒−𝛽/2

)
, (5.164)

reproducing the closed form evaluation (5.137).
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Variations on IOP: Veneziano limit

The IOP model is recovered from the constrained IOP in the region 𝑁 ≥ 𝐿, i.e.,
𝛾 ≤ 1 in the planar limit. In turn, the cIOP model has a third order phase transition
at 𝛾 = 𝛾𝑐, with

𝛾𝑐 =
1 + √𝑦

2√𝑦 . (5.165)

This can be proven along the lines of [115]. We therefore only sketch the main ideas
here.

In a nutshell, the difference between IOP and cIOP is not in the summand in the
discrete matrix models, but in the domain. This means that the effective matrix
model action for cIOP is again (5.149), thus leading to the exact same saddle point
equation (5.154) as in IOP. We can thus use the same solution for 𝜚∗ as long as
it belongs to the constrained functional space. In cIOP, the additional constraint,
yielding the additional parameter 𝛾, implies that the IOP solution is only valid for
certain values of 𝛾 (which in particular include 𝛾 ≤ 1), but fails to satisfy the
constraint when 𝛾 is large, leading to a phase transition.

Lemma 5.6.4. In the cIOP model, the saddle point eigenvalue density 𝜚∗ is the
same found in Subsection 5.6 for 𝛾 ≤

(
𝑒𝛽/2 + 1

)
/2.

Proof. The constraint in the cIOP model is formulated in the large 𝑁 limit as follows.

Let 0 ≤ 𝑠 ≤ 1 be the limiting value of the index 𝑗/𝐿 and denote 𝑥(𝑠) the limit of
ℎ 𝑗/𝐿. Then, when 𝑁 ≤ 𝐿, we have that 𝑅 𝑗 = 0 if 𝑗 > 𝑁 , which, by the change
of variables, implies ℎ 𝑗 = 𝐿 − 𝑗 if 𝑗 > 𝑁 . Hence, dividing both sides of the latter
equation by 𝐿, we find the constraint

𝑥(𝑠) = 1 − 𝑠 if 𝑠 > 𝛾−1. (5.166)

Inverting the relation using the inverse function theorem, we have 𝜚(𝑥) = −d𝑠(𝑥)
d𝑥 .

Therefore, the eigenvalue density of the cIOP model must be consistent with

𝜚(𝑥) = 1 if 0 ≤ 𝑥 < 1 − 𝛾−1. (5.167)

Recalling (5.157), we see that the solution derived in the unconstrained case has
𝜚(𝑥) = 1 if and only if 0 ≤ 𝑥 ≤ 𝑥−. Thus, it is inconsistent with the requirement
(5.167) if 𝑥− < 1 − 𝛾−1.
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We conclude that, if 𝑥− < 1 − 𝛾−1, we cannot simultaneously satisfy the defining
constraint on cIOP and (5.155). The solution breaks down at the value of 𝛾 = 𝛾𝑐 for
which 𝑥− = 1 − 𝛾−1

𝑐 . Substituting 𝑥− = tanh(𝛽/4) we obtain (5.165).

□

Beyond the critical point, we ought to determine a new density 𝜚∗ that belongs to the
restricted functional space (5.155) and moreover satisfies the additional constraint
(5.167) in the region 𝛾 > 𝛾𝑐. The computation is technical, but can be achieved
adapting from [115, Sec.5]. However, we omit it, because the only ingredients we
need to know are (i) whether supp 𝜚∗ is continuous, and (ii) the large 𝑁 expression
of the partition function.

The answer to (i) is affirmative, since the solution is a variation of the ansatz (5.157)
where we additionally impose (5.167). For later reference, we note that imposing
(5.167) together with the normalization of 𝜚(𝑥), implies that the non-constant part
of 𝜚∗(𝑥) bounds an area of 𝛾−1. Thus it always have finite support, which shrinks
as 𝛾 is increased at fixed temperature.

The answer to (ii) was computed in [405] by other methods, so it suffices to quote
the result therein. Defining

FcIOP := lim
𝑁→∞

1
𝑁2 lnZ (𝑁)cIOP, (5.168)

where the limit is understood to be the Veneziano limit, we have:

FcIOP =


−𝛾2 ln(1 − 𝑦) 𝛾 <

1+√𝑦
2√𝑦

−(2𝛾 − 1) ln(1 − √𝑦) − 1
4 ln 𝑦 + 𝐶 (𝛾) 𝛾 >

1+√𝑦
2√𝑦

(5.169)

where, in the second phase, the piece 𝐶 (𝛾) is independent of the temperature and is
explicitly given by

𝐶 (𝛾) = −𝛾2 ln
(
4𝛾(𝛾 − 1)
(2𝛾 − 1)2

)
+ (2𝛾 − 1) ln

(
2(𝛾 − 1)
2𝛾 − 1

)
− 1

2
ln (2𝛾 − 1) . (5.170)

This expression presents a discontinuity in the third derivative of FcIOP at 𝛾𝑐.
Obviously, for 𝛾 < 𝛾𝑐, the constraint is not active and (5.169) agrees with the
partition function of the IOP model.

Variations on IOP: Sum over flavor symmetries
The finite temperature partition function of the IOP matrix model can be evaluated
exactly. We are interested in summing over the integer 𝐿, which has the meaning of
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the rank of the flavor symmetry. We let 0 < 𝔮 = 𝑒−1/(2𝑎) < 1 and consider
∞∑︁
𝐿=0

𝔮𝐿
2ZIOP =

∞∑︁
𝐿=0

exp
[
−𝐿2

(
1

2𝑎
+ ln(1 − 𝑒−𝛽)

)]
, (5.171)

where the right-hand side follows from (5.137). This expression is only well-defined
and convergent for low temperatures, that is, for 𝛽 such that

1
2𝑎
+ ln(1 − 𝑒−𝛽) > 0. (5.172)

As it was discussed in Part 5.1, Section 5.5, to render the sum defined at every
temperature, we must therefore truncate it at a large value 𝐿max which, in the case
of cIOP, may depend on 𝑁 .

While this procedure is not especially enlightening for the IOP model, it already
highlights that the behavior of the partition function summed over the rank of
the flavor symmetry drastically changes at the critical temperature at which the
inequality (5.172) is saturated. We now move on and consider the richer cIOP
model. We will show how the interplay between the third order phase transition
present in cIOP and the sum over 𝐿 leads to an interesting Hagedorn-like behavior.

Variations on IOP: Flavor sum and planar limit

The cIOP model has a third order phase transition with lnZ (𝑁)cIOP = 𝑂 (𝑁2) on both
sides. We now proceed to promote it to a first order transition with our “sum over
flavors” prescription.

Theorem 5.6.5. With the notation as in (5.138) and 𝑦 = 𝑒−𝛽, 𝔮 = 𝑒−1/(2𝑎) , let

ZEx1(𝔮, 𝑦) =
𝐿max (𝑁)∑︁
𝐿=0

𝔮𝐿
2Z (𝑁)cIOP(𝐿, 𝑦). (5.173)

∀ 𝑎 > 0 there exists 𝑇𝐻 > 0 such that, in the large 𝑁 limit, (5.173) has a first order
phase transition at 1/𝛽 = 𝑇𝐻 . Moreover,

lnZEx1 =


𝑂 (1) 1

𝛽
< 𝑇𝐻

𝑂 (𝑁2) 1
𝛽
> 𝑇𝐻 .

(5.174)

The free energy lnZEx1 as a function of the temperature𝑇 = 1/𝛽 at fixed 𝑁 is shown
in Figure 5.9. Likewise, plotting a numerical evaluation of lnZEx1 at various 𝑁 ,
one may check that the trend is consistent with the analytic prediction that it remains
small and approximately constant for 𝑇 < 𝑇𝐻 and it shows a polynomial growth in
𝑁 if 𝑇 > 𝑇𝐻 .
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Figure 5.9: Plot of lnZEx1(𝑦) as a function of the temperature 𝑇 = −1/ln(𝑦) at
𝑁 = 4. The sum over 𝐿 in (5.173) has been truncated at 𝐿 ≤ 20. A change in
behavior around 𝑇 ≈ 1 is already visible at such low value of 𝑁 , although the sharp
phase transition is smoothed by finite 𝑁 effects. The plot is taken in the Schur slice
𝑎 = 𝑇 , but the qualitative behavior is the same in other slices.

Proof. The details of the proof of Theorem 5.6.5 are essentially identical to the
calculations in Subsection 5.7 below, thus we omit them. The basic idea is that,
introducing the weighted sum over 𝐿, the large 𝑁 limit is taken in two steps:

(𝑖) ExtremizeZ (𝑁)cIOP in the Veneziano limit as a function of 𝛾 and 𝑦;

(𝑖𝑖) Evaluate the resulting effective action at the saddle point 𝛾 = 𝛾∗.

Step (𝑖) has been sketched in Subsection 5.6, and the result we need is expression
(5.169).

To set up step (𝑖𝑖), we define

ScIOP
𝛽,𝑎 (𝛾) :=

1
𝑁2 lnZ (𝑁)cIOP(𝐿, 𝑒

−𝛽) − 𝛾
2

2𝑎
(5.175)

and write

ZEx1(𝔮, 𝑒−𝛽) =
𝐿max (𝑁)∑︁
𝐿=0

exp
{
𝑁2ScIOP

𝛽,𝑎

(
𝛾 =

𝐿

𝑁

)}
. (5.176)

At large 𝑁 , ScIOP
𝛽,𝑎
(𝛾) approaches a function of continuous variable 𝛾 ≥ 0, and

the leading contribution comes from its maximum, located at 𝛾∗. The function to
extremize is

ScIOP
𝛽,𝑎 (𝛾) = FcIOP −

𝛾2

2𝑎
, (5.177)

with the first summand written explicitly in (5.169). We see that, if 𝛾 < 𝛾𝑐 := 1+𝑒−𝛽/2
2𝑒−𝛽/2 ,

then ScIOP
𝛽,𝑎
(𝛾) is quadratic, and moreover if

1
2𝑎
≥ − ln(1 − 𝑒−𝛽), (5.178)
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Figure 5.10: Plot of ScIOP
𝛽,𝛽−1 (𝛾) as a function of 𝛾 for different values of 𝛽. Left:

𝛽 = 0.96. Center: 𝛽 = 0.85. Right: a comparison for 𝛽 slightly above (gray),
at the critical point (blue), and slightly below (black). The absolute maximum is
𝛾∗ = 0 if 𝛽 > 1/𝑇𝐻 , while ScIOP

𝛽,𝛽−1 (𝛾) attains a positive absolute maximum at 𝛾∗ > 0
if 𝛽 < 1/𝑇𝐻 .

the partition function ZEx1 is Gaussian and damped at 𝛾 > 0. We denote 1/𝑇𝐻 the
value of 𝛽 for which the inequality (5.178) is saturated and ScIOP

𝛽,𝑎
(𝛾) flips sign. For

example, if 𝑎 = 1/𝛽, 𝑇𝐻 ≈ 1.039.

Step (𝑖𝑖) is akin to Subsection 5.7 — especially Figure 5.19, and the discussion
around (5.256). Here we discuss explicitly only the case 𝑎 = 1/𝛽, but the case of
constant 𝑎 independent of 𝛽 can be dealt with in exactly the same manner, similarly
to Subsection 5.7. Studying the maximum of (5.177) as a function of 𝛾, for different
ranges of values of 𝛽, we find the following:

• ScIOP
𝛽,𝑎

is non-negative definite with a global maximum at 𝛾∗ = 0 if 𝛽 > 1/𝑇𝐻;

• ScIOP
𝛽>𝑇−1

𝐻
,𝑎
(0) = 0.

• At 𝛽 < 1/𝑇𝐻 we ought to look for a different saddle point;

• By direct inspection of ScIOP
𝛽,𝑎

, we observe that it has a global maximum at a
certain 𝛾∗ > 0 if 𝛽 < 1/𝑇𝐻; examples at fixed 𝛽 are shown in Figure 5.10.

• At this value, ScIOP
𝛽<𝑇−1

𝐻
,𝑎
(𝛾∗) > 0, with strict inequality.

• The two saddle points do not coexist and exchange dominance exactly at
𝛽 = 1/𝑇𝐻 .

Next, we have to evaluate (5.177) on the saddle point, to obtain the leading order
of lnZEx1. In the phase 𝛽−1 < 𝑇𝐻 , we have seen that the leading term trivializes,
leaving behind a 𝑂 (1) correction. In the high temperature phase 𝛽−1 > 𝑇𝐻 , on the
other hand, we have a strictly positive leading order, accompanied by the overall
factor 𝑁2. Accordingly, lnZEx1 has a jump from 𝑂 (1) to 𝑂 (𝑁2) at 𝑇𝐻 .
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While we have performed the computation explicitly for 𝑎 = 𝛽−1, one can plot
(5.177) for other choices, in particular on constant-𝑎 slices, and check that the same
behaviour holds. We stress that

• The precise value of 𝑇𝐻 depends on 𝑎, and in the Schur slice 𝑎 = 1/𝛽 we find
𝑇𝐻 ≈ 1;

• Nevertheless, the existence of a jump in the saddle point value 𝛾∗ holds for all
𝑎 > 0.

Moreover, the Gaussian integration over fluctuations around the saddle point, in the
low temperature phase, produces a universal factor

ZEx1 ∝
(
𝑦 − 𝑒−1/𝑇𝐻

)−1/2
, (5.179)

which gives rise to Hagedorn behavior of the Laplace transform ofZEx1 as 𝛽−1 → 𝑇𝐻

from below. The behavior of this model is analogous to the one observed in the
matrix model for N = 4 super-Yang–Mills [302, 150]. □

Spectral density of variations on IOP
We now analyze the spectral density 𝜌(𝜔) in the variations of the IOP model.
As above, we construct from IOP, and eventually pass to the model summed over
the number of flavors, which fits in the overarching formalism of Section 5.5.
The definition of Wightman functions and their relation with 𝜌(𝜔) is taken from
Subsection 5.4. We do not discuss explicitly the microscopic operators O, but take
the general expressions for the Wightman functions in Subsection 5.4 as our starting
point.

Intermezzo: Comparison with IOP

For the sake of comparison, let us notice that the space of states generated by the
adjoint fields 𝐴𝑖 𝑗 in the notation of [246] agrees with our Hilbert space. The funda-
mental field in [246] is the analogue of our probe, and in the SQCD4 language (cf.
Subsection 5.6) it is an auxiliary, massive chiral field without anti-chiral counterpart.
Both our cIOP generalization and the map to SQCD4 yield an embedding of the IOP
model in broader setups.

To compare the Wightman functions, one should be aware of the following differ-
ences: our conventions for the Fourier transform are such that𝜔 ↦→ −𝜔 with respect
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to [246]; moreover, the interaction Hamiltonian differs by an overall sign, and our
representations are allowed to be (𝑅, 𝑅) or (𝑅, 𝑅), which differ by a renaming from
the basis (𝑅, 𝑅) considered in [246]. To more easily relate our expressions to the ex-
isting literature, throughout this example we fix 𝜙(𝑅) = 𝑅 and deform the definition
of the Hamiltonian 𝐻′ according to

𝐻 (𝑅1, 𝑅2) = |𝑅2 |; (5.180)

𝐻int(𝑅1, 𝑅2) =
𝑔

2
[
𝑄(𝑅2) −𝑄(𝑅1)

]
; (5.181)

𝑄(𝑅) = 𝐶2(𝑅) + (𝐿 + 1) |𝑅 |. (5.182)

• The choice of letting (5.180)-(5.181) depend on 𝑅 instead of 𝑅 is adapted so
that (5.185) below matches the conventions of [246, Sec.5].

• The redefinition of 𝐻 does not affect the partition function, which is invariant
under charge conjugation 𝑅 ↦→ 𝑅.

• In the definition of 𝐻int,

𝐶2(𝑅) =
𝐿∑︁
𝑖=1

𝑅𝑖 (𝑅𝑖 − 2𝑖 + 𝐿) (5.183)

is the quadratic Casimir of 𝑅, and in 𝑄(𝑅) we use (𝐿 + 1) |𝑅 | because 𝑅 are
representations of 𝑆𝑈 (𝐿 + 1).

In this way, our explicit computations of the Wightman functions differ by [246,
Sec.5] only by the shift by 𝜇, which was removed “by hand” with a counterterm in
[246, Eq.(2.2)] (be aware that 𝐿 here was denoted 𝑁 in [246]).

The IOP spectral density

Recall the general formula

𝜌(𝜔) = lim
𝜀→0+

{
𝑖

2
[
𝐿 ⟨Ψ𝛽 |Ω(𝜔 + 𝑖𝜀) −Ω(𝜔 − 𝑖𝜀) |Ψ𝛽⟩𝐿

]
− 𝑖

2
[
𝐿 ⟨Ψ𝛽 |Ω(−𝜔 + 𝑖𝜀) −Ω(−𝜔 − 𝑖𝜀) |Ψ𝛽⟩𝐿

]}
,

(5.184)

derived in Corollary 5.4, where

⟨𝑅, a; 𝜙(𝑅), ¤a|Ω(𝜔) |𝑅, a; 𝜙(𝑅), ¤a⟩ = 1
(𝐿 + 1)

∑︁
𝐽∈𝒥𝑅

1
𝜔 − 𝜇 − 𝐸 int

𝐽

dim(𝑅 ⊔ □𝐽)
dim 𝑅

.

(5.185)
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Here
𝐸 int
𝐽 =

𝜆

2(𝐿 + 1)
[
𝐶2(𝑅) − 𝐶2(𝑅 ⊔ □𝐽) + 𝐿 + 1

]
(5.186)

with 𝜆 = 𝑔(𝐿 + 1) the ’t Hooft coupling for the interaction Hamiltonian (5.181). We
henceforth set 𝜆 = 1 without loss of generality, and it can be reinserted at any point
by multiplying the Wightman functions by 1/𝜆 and replacing 𝜔 − 𝜇 ↦→ (𝜔 − 𝜇)/𝜆.

𝑅=(4,3,1,1,0,0) 𝑅=(4,4,3,3,1,0) 𝑅⊔□3=(4,3,2,1,0,0) 𝑅\□4=(4,4,3,2,1,0)

𝑅=(4,3,1,1,0,0) 𝑅=(4,4,3,3,1,0) 𝑅⊔□1=(5,3,1,1,0,0) 𝑅\□6=(5,5,4,4,2,0)

Figure 5.11: Appending a box at row 𝐽 and taking the conjugate, exemplified for
𝑆𝑈 (6) representations, 𝐿 = 5. The Young diagram 𝑅 = (4, 3, 1, 1, 0, 0) is shown in
white, 𝑅 = (4, 4, 3, 3, 1, 0) in gray, the added box □𝐽 in cyan and the removed box
□𝐿−𝐽+2 in orange. Above: 𝐽 = 3. Below: 𝐽 = 1. In this case, 𝑅 gains a whole new
column at the beginning, shown is darker blue in the two rightmost diagrams.

We first change variables 𝑅′ = 𝑅 and use the property dim 𝑅 = dim 𝑅, and also(
𝑅′ ⊔ □𝐽

)
= 𝑅′ \ □𝐿−𝐽+2, (5.187)

where the right-hand side is the conjugate to the Young diagram with the last box
of the (𝐿 − 𝐽 + 2)th row removed. Expression (5.187) is valid for 𝐽 = 2, . . . , 𝐿 + 1.
To address the case 𝐽 = 1 we observe that

𝑅′ = (𝑅′1, 𝑅
′
2, . . . , 𝑅

′
𝐿 , 0) � (𝑅′1 + 1, 𝑅′2 + 1, . . . , 𝑅′𝐿 + 1, 1), (5.188)

where the two expressions yield isomorphic 𝑆𝑈 (𝐿 + 1) representation with same
dimensions, although their |𝑅′| is shifted by 𝐿. The representation 𝑅′⊔□1 is obtained
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deleting the last box from the right-hand side of (5.188). We can therefore let 𝑅′ run
over non-empty Young diagrams with 𝑅′

𝐿+1 ∈ {0, 1}, which is equivalent to declare
that the conjugate of 𝑅 = ∅ is the determinant representation of 𝑆𝑈 (𝐿 + 1), which is
trivially true representation theoretically and is most suited for dealing with Young
diagrams. For instance:

∅ ⊔ □1 = □ =
(
□
)
= (1, . . . , 1︸   ︷︷   ︸

𝐿

, 0) = (1, . . . , 1︸   ︷︷   ︸
𝐿+1

) \ □𝐿+1. (5.189)

These observations imply that we are allowed to simply use (5.187) with the un-
derstanding that 𝑅′ cannot be empty but can have at most one box in its (𝐿 + 1)th

row.13

Finally, we rename the summation index 𝐼 = 𝐿 + 2 − 𝐽 and use the fact that

dim(𝑅′ \ □𝐼) = 0 if − 𝐼 + 𝐿 + 2 ∉ 𝒥
𝑅′ (5.190)

to let the sum run over 𝐼 ∈ {1, . . . , 𝐿 + 1}.

We stress that there is nothing wrong with 𝐽 = 1, and this digression is just to explain
what it means by deleting a box from the row 𝐼 = 𝐿 + 1: it means to first shift the
Young diagram by one column using (5.188), and then delete the unique box in the
𝐼 th = (𝐿 + 1)th row so to get a valid 𝑆𝑈 (𝐿 + 1) representation. This is manifest in
Figure 5.11.

In this way we get

𝐿 ⟨Ψ𝛽 |Ω(𝜔) |Ψ𝛽⟩𝐿 =
1
ZcIOP

∑︁
𝑅′
𝑒−𝛽 |𝑅

′ | (dim 𝑅′)2 1
(𝐿 + 1)

𝐿+1∑︁
𝐼=1

1
𝜔 − 𝜇 − 𝐸′

𝐼

dim(𝑅′ \ □𝐼)
dim 𝑅′

(5.191)
where now

𝐸′𝐼 =
𝜆

(𝐿 + 1) (𝑅
′
𝐼 − 𝐼 + 𝐿) (5.192)

descends from 𝐸 int
𝐽

after the various rearrangements. With the change of variables
(5.60),

𝐸′𝐼 =
𝜆

(𝐿 + 1) ℎ𝐼 . (5.193)

We drop the ′ from now on. We have thus recovered the formula of [246, Eq.(5.13)]
as a particular case of the framework developed in Part 5.1.

13Strictly speaking, this would only be true if we compensate the shift in |𝑅′ | with a factor 𝑒𝛽𝐿𝛿𝐽,1
in the right-hand side of (5.185). This factor does not change in any way the ensuing discussion thus
we omit it.
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The proof of the spectral density of the IOP model relies on the following technical
result, which is a particular case of Lemma 5.4.18.

Lemma 5.6.6 ([246]). The asymptotic behavior of 𝐿 ⟨Ψ𝛽 |Ω(𝜔± 𝑖𝜀) |Ψ𝛽⟩𝐿 of the IOP
model in the planar limit is

𝐿 ⟨Ψ𝛽 |Ω(𝜔 ± 𝑖𝜀) |Ψ𝛽⟩𝐿 ≈ 1 − exp
(∫ 𝑥+

0
d𝑥

𝜚∗(𝑥)
𝑥 + 𝜇 − 𝜔 ∓ 𝑖𝜀

)
. (5.194)

Proof. The proof is essentially identical to Appendix 5.14 up to certain signs, and we
simply sketch the main ideas here. By direct computation, the ratio of dimensions
in (5.191) yields

dim(𝑅 \ □𝐼)
dim 𝑅

=
∏
𝑗≠𝐼

(
1 − 1

ℎ𝐼 − ℎ 𝑗

)
. (5.195)

For every (𝐿 + 1)-tuple ®ℎ = (ℎ1, . . . , ℎ𝐿 ,−1) and 𝜉 ∈ C, we define the function (it
slightly differs from Appendix 5.14 to make contact with the sign conventions of
[246] in this example)

Φ®ℎ (𝜉) :=
𝐿+1∏
𝑗=1

(
1 − 1

𝜉 − ℎ 𝑗

)
, (5.196)

and also denote Ω®ℎ the right-hand side of (5.185) after substituting (5.193). Thanks
to the residue theorem we equate

Ω®ℎ (𝜔 ± 𝑖𝜀) = −
1

(𝐿 + 1)𝑔

∮
C

d𝜉
2𝜋𝑖

Φ®ℎ (𝜉)
𝜔±𝑖𝜀−𝜇

𝑔
− 𝜉

, (5.197)

with the integration contour C = C(®ℎ) encircling the points ℎ𝐼 and leaving outside
the point (𝜔 ± 𝑖𝜀 − 𝜇)/𝑔 (compared to Appendix 5.14, here the residues pick a
minus sign due to the slight redefinition of Φ®ℎ (𝜉), and we will see that our present
computation will reproduce [246, Eq.(5.38)]). From now on we set 𝐿𝑔 = 𝜆 = 1
without loss of generality. By contour deformation we get

Ω®ℎ (𝜔 ± 𝑖𝜀) = 1 −Φ®ℎ ((𝐿 + 1) (𝜔 ± 𝑖𝜀 − 𝜇)) , (5.198)

see Appendix 5.14 for the details. Writing

Φ®ℎ ((𝐿 + 1) (𝜔 ± 𝑖𝜀 − 𝜇)) = exp


𝐿+1∑︁
𝑗=1

ln
©«1 − 1

(𝐿 + 1)
(
𝜔 ± 𝑖𝜀 − 𝜇 − ℎ 𝑗

𝐿+1

) ª®®¬


(5.199)
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and approximating at leading order in the planar limit ln
(
1 − 𝑐

𝐿+1
)
≈ − 𝑐

𝐿+1 , we get

Ω®ℎ (𝜔 ± 𝑖𝜀)
��
saddle point = 1 − exp

(∫
d𝑥

𝜚∗(𝑥)
𝑥 + 𝜇 − (𝜔 ± 𝑖𝜀)

)
. (5.200)

The claim follows from the usual asymptotics

𝐿 ⟨Ψ𝛽 |Ω(𝜔 ± 𝑖𝜀) |Ψ𝛽⟩𝐿 ≈ Ω®ℎ (𝜔 ± 𝑖𝜀)
��
saddle point . (5.201)

□

Theorem 5.6.7. The spectral density of the IOP model is

𝜌(𝜔) = (1 − 𝑦)
2𝜔r

[
𝜃 (𝜔 − 𝜇)

√︁
(𝜔r − 𝑥−) (𝑥+ − 𝜔r) − 𝜃 (−𝜔 − 𝜇)

√︁
(𝜔r − 𝑥−) (𝑥+ − 𝜔r)

]
(5.202)

with compact support

supp 𝜌 = [−𝑥+ − 𝜇,−𝑥− − 𝜇]∪[𝑥− + 𝜇, 𝑥+ + 𝜇] ⊂ R, 𝑥± = [coth(𝛽/4)]±1 .

(5.203)

cor. The large 𝑁 correlation functions of the IOP model are described by a von
Neumann algebra of type III1.

The positive branch of the square roots is taken in (5.202), and the signs in front are
adjusted accordingly, and we have used the definition 𝜔r = |𝜔| − 𝜇 from (5.98) to
shorten the expressions.

Proof of Theorem 5.6.7. To reduce clutter, we define the shorthand

ΔΩ(±𝜔, 𝑖𝜀) := 𝐿 ⟨Ψ𝛽 |Ω(±𝜔 + 𝑖𝜀) −Ω(±𝜔 − 𝑖𝜀) |Ψ𝛽⟩𝐿 (5.204)

and hence our ultimate goal is to compute

𝜌(𝜔) = lim
𝜀→0+

[
𝑖

2
ΔΩ(𝜔, 𝑖𝜀) − 𝑖

2
ΔΩ(−𝜔, 𝑖𝜀)

]
. (5.205)

We use Lemma 5.6.6 to write

ΔΩ(𝜔, 𝑖𝜀) ≈ exp
(∫ 𝑥+

0
d𝑥

𝜚∗(𝑥)
𝑥 + 𝜇 − 𝜔 + 𝑖𝜀

)
− exp

(∫ 𝑥+

0
d𝑥

𝜚∗(𝑥)
𝑥 + 𝜇 − 𝜔 − 𝑖𝜀

)
,

(5.206)
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and then plug the eigenvalue density (5.157) and integrate on the interval [0, 𝑥−],
where 𝜚∗ is constant. We get

ΔΩ(𝜔, 𝑖𝜀) ≈
(√
𝜔 − 𝜇 − 𝑥− − 𝑖𝜀

)2(√
𝜔 − 𝜇 − 𝑖𝜀

)2 exp
[∫ 𝑥+

𝑥−

d𝑥
�̂�∗(𝑥)

𝑥 − 𝜔 + 𝜇 + 𝑖𝜀

]
− (𝑖𝜀 ↦→ −𝑖𝜀).

(5.207)
We use the substitution (5.163), which we recall is 𝜚∗(𝑥) | [𝑥− ,𝑥+] =

1
2 −

𝑓 ′∗ (𝑥)
2 , and

integrate the constant 1
2 on [𝑥−, 𝑥+]:

ΔΩ(𝜔, 𝑖𝜀) ≈
√︁
(𝜔 − 𝜇 − 𝑥− − 𝑖𝜀)

√︁
(𝜔 − 𝜇 − 𝑥+ − 𝑖𝜀)(√

𝜔 − 𝜇 − 𝑖𝜀
)2 exp

[
1
2

∫ 𝑥+

𝑥−

d𝑥
𝑓 ′∗ (𝑥)

𝜔 − 𝜇 − 𝑥 − 𝑖𝜀

]
(5.208)

− (𝑖𝜀 ↦→ −𝑖𝜀),

which is analogous to [246, Eq.(5.38)]. Reading the integral off from there, and
denoting momentarily 𝑥± := 𝑥± + 𝜇 to lighten the expressions, one finds

ΔΩ(𝜔, 𝑖𝜀) ≈ (1 − 𝑦)
2(𝜔 − 𝜇 − 𝑖𝜀)

[
−1 +

√︁
𝜔 − 𝑖𝜀 − 𝑥−

√︁
𝜔 − 𝑖𝜀 − 𝑥+

]
− (𝑖𝜀 ↦→ −𝑖𝜀).

(5.209)
The expression for ΔΩ(−𝜔, 𝑖𝜀) is obtained with the obvious replacement 𝜔 ↦→ −𝜔.

To evaluate the spectral density of the IOP model, we use the discontinuity equation
(5.205). The pieces (1−𝑦)

2(𝜔−𝜇±𝑖𝜀) are smooth in the limit 𝜀 → 0+, therefore they cancel
in (5.205) and do not contribute to 𝜌(𝜔). The pieces√︁

𝜔 ± 𝑖𝜀 − 𝑥−
√︁
𝜔 ± 𝑖𝜀 − 𝑥+ (5.210)

in ΔΩ(𝜔, 𝑖𝜀) have branch cuts on [𝑥−, 𝑥+] in the limit 𝜀 → 0+, thus contribute
non-trivially to (5.205) only if 𝜔 ∈ [𝑥−, 𝑥+]. Likewise, the corresponding pieces in
ΔΩ(−𝜔, 𝑖𝜀) have branch cuts along [−𝑥+,−𝑥−].

Formula (5.205) instructs us to assemble these building blocks into 𝑖
2ΔΩ(𝜔, 𝑖𝜀) −

𝑖
2ΔΩ(−𝜔, 𝑖𝜀). Let us omit the smooth prefactor for a moment.

(i) Note that the signs combine to give, schematically,[
− 𝑖

2

(√︁
−(𝜔 + 𝑖𝜀 − 𝑥−) (𝑥+ − 𝜔 − 𝑖𝜀) −

√︁
−(𝜔 − 𝑖𝜀 − 𝑥−) (𝑥+ − 𝜔 + 𝑖𝜀)

)
(5.211)

+ 𝑖
2

(√︁
−(𝜔 + 𝑖𝜀 − (−𝑥+)) (−𝑥− − (𝜔 + 𝑖𝜀)) −

√︁
−(𝜔 − 𝑖𝜀 − (−𝑥+)) (−𝑥− − (𝜔 − 𝑖𝜀))

)]
,
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where the first (respectively second) line account for the contribution from
ΔΩ(𝜔, 𝑖𝜀) (respectively ΔΩ(−𝜔, 𝑖𝜀)).

(ii) Note also that the first (respectively second) square root in each parenthesis
approaches the branch cut from above (respectively below) as 𝜀 → 0+, see
Figure 5.12.

(iii) Hence the first (respectively second) square root in each parenthesis produces
a factor 𝑒𝑖𝜋/2 (respectively 𝑒−𝑖𝜋/2).

Figure 5.12: The branch cut that contributes to the spectral density of IOP. There is
a second branch with 𝜔 replaced by −𝜔.

Combining these observations we get
− 𝑖2

(
𝑒𝑖𝜋/2 − 𝑒−𝑖𝜋/2

) √︁
(𝜔 − 𝑥−) (𝑥+ − 𝜔) if 𝜔 ∈ [𝑥−, 𝑥+]

+ 𝑖2
(
𝑒𝑖𝜋/2 − 𝑒−𝑖𝜋/2

) √︁
((−𝜔) − 𝑥−) (𝑥+ − (−𝜔)) if − 𝜔 ∈ [𝑥−, 𝑥+]

(5.212)

which, after simplifications, leaves a plus sign in front when 𝜔 ∈ [𝑥−, 𝑥+] and a
minus sign in front when −𝜔 ∈ [𝑥−, 𝑥+]. We have observed in Subsection 5.4 that
Ω is a resolvent for the density 𝜌(𝜔), and this analysis of the overall sign reproduces
the standard sign conventions, with lim𝜀→0+ 𝑖Δ(𝜔, 𝑖𝜀) giving a positive 𝜌(𝜔) if
𝜔 ∈ [𝑥−, 𝑥+] and vanishing otherwise.

Altogether we obtain (5.202). In particular, 𝜌(𝜔) has compact support

𝜔r ∈ [𝑥−, 𝑥+] , (5.213)

where recall from Subsection 5.6 that 𝑥± = [coth(𝛽/4)]±1. The support thus extends
to the whole real axis in the infinite temperature limit 𝛽→ 0. □

Spectral density and von Neumann algebra of cIOP

Theorem 5.6.8. The large 𝑁 von Neumann algebra of the quantum mechanical
system associated to the cIOP model is of type III1.
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Proof. According to the prescription from Subsection 5.3, we need to show that
supp 𝜌 is continuous. On one side of the third order phase transition, namely
𝛾 < 𝛾𝑐, the 𝛾-dependent constraint is inactive and the proof is identical to that of
Theorem 5.6.7. We remark that inverting the relation 𝛾𝑐 (𝛽) tells us that, for fixed 𝛾,
at low enough temperature 𝛽 > 2 ln(2𝛾 − 1) we recover the IOP solution, for which
we know the spectral density in closed form from Theorem 5.6.7.

At 𝛾 > 𝛾𝑐, the eigenvalue density 𝜚∗ is determined as highlighted in Subsection 5.6.
Even without having supp 𝜚∗ in closed form, we know from Subsection 5.6 that it is
compact and continuous on R≥0. To prove this, it suffices to recall that the constraint
imposes 𝜚∗(𝑥) = 1 for all 0 ≤ 𝑥 ≤ 1 − 𝛾−1. In particular, that part of the support
extends as 𝛾 is increased for given 𝛽, while supp 𝜚∗ also stretches along R≥0 as the
temperature is increased, for fixed 𝛾.

Lemma 5.6.6 still holds but now we need to use the form of 𝜚∗ in the new phase.
We arrive at expression (5.208), except that now 𝑓 ′∗ will be a different function,
namely the shape of the (different) representation that dominates the planar limit in
the phase 𝛾 > 𝛾𝑐. The non-trivial contribution stems from the non-constant part
of 𝜚∗, which, as discussed in Subsection 5.6, always exists and has compact and
continuous support. The integrals are more involved, but the upshot is that they have
branch cuts along ± supp 𝜚∗ shifted by 𝜇. By (5.205), this is sufficient to conclude
that 𝜌(𝜔) has compact support on R. □

Spectral density of cIOP with sum over flavor symmetries

Theorem 5.6.9. The spectral density 𝜌(𝜔) associated to the matrix modelZEx1 has
compact, continuous support at 1/𝛽 > 𝑇𝐻 .

Proof. In the high temperature phase, 1/𝛽 > 𝑇𝐻 , lnZEx1 has a large 𝑁 growth and
the saddle point argument applies. Lemma 5.6.6 goes through, except that now
𝐺R(𝜔) is still given by (5.194), but with 𝜚∗ the eigenvalue density of the cIOP
model in the planar limit, and further evaluated at the saddle point 𝛾 = 𝛾∗.

Due to the lack of knowledge of 𝛾∗ as an explicit function of the inverse temperature
𝛽 and the control parameter 𝑎, we did not manage to write down supp 𝜚∗ in closed
form in the phase 𝛽−1 > 𝑇𝐻 . Nevertheless, for our purposes it suffices to observe that
supp 𝜚∗ ⊂ R≥0 is compact and non-trivial. This claim stems from the combination
of the facts proven in previous subsections:
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• The analysis of Subsection 5.6 shows that the eigenvalue density of cIOP in
the phase 𝛾 > 𝛾𝑐 > 1 has compact and continuous support; moreover, there
exists a finite compact interval on which 𝜚∗ is non-constant and subtends a
finite area 𝛾−1;

• In the high temperature phase of ZEx1, the saddle point is an absolute maxi-
mum located at 𝛾∗ > 1, as shown in the proof of Theorem 5.6.5.

Therefore, supp 𝜚∗ at 𝛾∗ is a finite interval.

From the branch cut of 𝐺R(𝜔) and 𝐺A(𝜔) we still obtain

supp 𝜌 ⊂ R>0 compact and continuous. (5.214)

This result follows from the knowledge of the branch cuts, although without a general
expression in closed form.

In the low temperature phase, however, Lemma 5.6.6 fails. The 𝛿 functions in the
definition of the spectral density do not coalesce in this phase, and 𝜌(𝜔) becomes
trivial as the probe decouples from the rest of the system. □

Temperature lnZEx1 Algebra type
𝛽−1 < 𝑇𝐻 𝑂 (1) I
𝛽−1 > 𝑇𝐻 𝑂 (𝑁2) III1

cIOP, SQCD4, and Calabi–Yau
Before moving on to the next example, we make a few comments in this independent
subsection on the link between the different variants of the IOP model and the Hilbert
series of some Calabi–Yau varieties appearing in the analysis of SQCD4.

From bosonic QCD2 to SQCD4

Unitary matrix integrals such as (5.142) appear in the computation of Hilbert series
of algebraic varieties [417], and play a prominent role in determining the moduli
spaces of vacua of supersymmetric gauge theories [50, 210].

The basic idea is that supersymmetric gauge theories admit moduli spaces of vacua.
These are complex algebraic varieties carved out by the vacuum equations modulo
gauge transformations, and typically carry additional structure imposed by super-
symmetry. As usual, the algebraic varieties can be specified in terms of their
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generators, which are certain gauge-invariant operators, and relations among them.
Physical information is encoded in these data of the moduli space of vacua, and in
particular in their Hilbert series, defined below.

Lemma 5.6.10 ([210]). The Hilbert series of the moduli space of vacua of four-
dimensional supersymmetric QCD (SQCD4) with

𝑁colors = 𝑁 + 1, 𝑁flavors = 𝐿 (5.215)

equals (5.142).

In Section 5.4 we have built quantum mechanical systems out of gauge-invariant
operators. Here we are seeing this feature emerging cleanly in SQCD4. Furthermore:

• The working assumption (5.25) here corresponds to demand that SQCD4 is
free from chiral anomalies.

• The Hilbert space ℋ
(𝑁)
𝐿

is constructed by the meson operators in SQCD4,
with the 𝑅-part and 𝑅-part arising, respectively, from chiral and anti-chiral
indices.

• From the SQCD4 perspective, the partition function enumerates generators of
the ring of gauge-invariant operators (this statement is a rephrasing of Lemma
5.6.12 below). To compare with IOP, it suffices to note that, when 𝐿 < 𝑁 ,
the spectrum of this ring is simply C𝐿

2 . Besides, the collection of gauge-
invariant operators is identified with the span of the operators denoted 𝐴𝑖 𝑗 in
the quantum mechanical model of IOP [247, 246].

Calabi–Yau variations on IOP

Definition 5.6.11. Let ℜ =
⊕

𝑛≥0 ℜ𝑛 be a Noetherian graded commutative ring
over C, and denote 𝑋 = Spec(ℜ). The Hilbert series of 𝑋 in the indeterminate 𝑦 is

HS𝑦 (𝑋) =
∞∑︁
𝑛=0

dim(ℜ𝑛)𝑦𝑛 ∈ Z[[𝑦]] . (5.216)

The Noetherian assumption guarantees that ℜ is finitely generated and [417]

dim(ℜ𝑛) < ∞ ∀𝑛 ≥ 0. (5.217)
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Lemma 5.6.12 ([210]). There exists a toric Calabi–Yau manifold 𝑋 (𝑁)
𝐿

, with

dim
(
𝑋
(𝑁)
𝐿

)
=


𝐿2 𝑁 ≥ 𝐿

2𝐿 (𝑁 + 1) − 𝑁 (𝑁 + 2) 𝑁 < 𝐿,
(5.218)

such that the identity
Z (𝑁)cIOP(𝐿, 𝑦) = HS𝑦

(
𝑋
(𝑁)
𝐿

)
(5.219)

holds. Moreover, 𝑋 (𝑁)
𝐿≤𝑁 = C𝐿

2 and 𝑋𝑁+1,𝑁 is a hypersurface in C𝑁
2+2𝑁+3.

Proof. The statement follows from comparison with [210, Sec.4.3], with (𝑁𝑐, 𝑁 𝑓 )
therein replaced by (𝑁 + 1, 𝐿). The second part follows essentially by the definition
of the Hilbert series for a freely generated complex algebraic variety, cf. also [210,
Eq.(3.6)]. □

This lemma explains geometrically that the constrained IOP model carries a richer
structure than the original IOP model.

Theorem 5.6.13. The states of the IOP model are in one-to-one correspondence
with elements in the ring of functions on C𝐿

2 . The states in the cIOP model are in
one-to-one correspondence with elements in the ring of functions on a non-trivial
Calabi–Yau variety 𝑋 (𝑁)

𝐿
.

The Hilbert series approach to the cIOP model allows to introduce yet another
characterization, corresponding to a simple model of bosons.

Consider a square lattice of 𝐿2 sites, labelled by (𝑖, 𝑗) ∈ Z𝐿 × Z𝐿 , with bosonic
particles at its lattice sites. Generate a random configuration of energy levels{
𝑒𝑖 𝑗 + 1

2
}
𝑖, 𝑗
⊂ ( 12 + N)

𝐿2 . By taking bosons, we allow two or more particles to
occupy the same energy level. See Figure 5.13 for an illustration.

𝑒𝑖 𝑗

𝑖
𝑗

•

•

•

•

Figure 5.13: Free bosons on a square lattice. 𝐿 = 2 in this example.
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The partition function of the free system simply corresponds to summing over all
such configurations, weighted by the Boltzmann factor:

Z(free)
𝐵

=
∏

(𝑖, 𝑗)∈Z𝐿×Z𝐿

∞∑︁
𝑒𝑖 𝑗=0

𝑒−𝛽(𝑒𝑖 𝑗+ 1
2 ) = (2 sinh(𝛽/2))−𝐿2

, (5.220)

It is convenient to introduce 𝛼 = (𝑖, 𝑗) and define a lexicographic order on the set of
pairs, so that 𝛼 ∈ Z𝐿2 . To enrich the model, we impose a constraint on this system,
forbidding certain energy levels. We thus define

Z (𝑁)
𝐵

=

𝐿2−1∏
𝛼=0

∞∑︁
𝑒𝛼=0

𝑑
(𝑁)
{𝑒𝛼} 𝑒

−𝛽∑
𝛼(𝑒𝛼+ 1

2 ) , 𝑑
(𝑁)
{𝑒𝛼} ∈ {0, 1} . (5.221)

Whenever a coefficient 𝑑 (𝑁){𝑒𝛼} is taken to vanish, the corresponding configuration
{𝑒𝛼} of 𝐿2 particles is forbidden. As in Section 5.4, we are imposing a constraint
indexed by 𝑁 ∈ N.

Proposition 5.6.14. There exists a choice of collection{
𝑑
(𝑁)
{𝑒𝛼}, 𝑒𝛼 ∈ N, 𝛼 = 0, 1, . . . , 𝐿2 − 1

}
(5.222)

such that
Z (𝑁)
𝐵

= 𝑒−
𝛽

2 𝐿
2Z (𝑁)cIOP. (5.223)

Proof. We may introduce a refined Hilbert series as follows. Let ®𝑦 = (𝑦1, . . . , 𝑦𝐿)
and define 𝑦𝛼 := √𝑦𝑖𝑦 𝑗 , with 𝛼 = (𝑖, 𝑗), 𝛼 ∈ Z𝐿2 . We have

HS𝑦 (𝑋) =
∑︁
{𝑒𝛼≥0}

𝑑{𝑒𝛼}
(
𝑋
(𝑁)
𝐿

) 𝐿2−1∏
𝛼=0

𝑦𝑒𝛼𝛼 , (5.224)

where 𝑑{𝑒𝛼} are non-negative integers such that

dim(ℜ𝑛) =
∑︁

{𝑒𝛼≥0 | ∑
𝛼 𝑒𝛼=𝑛}

𝑑{𝑒𝛼}
(
𝑋
(𝑁)
𝐿

)
. (5.225)

Lemma 5.6.12 still holds, upon replacement[
det

(
1 − √𝑦𝑈

) (
1 − √𝑦𝑈−1

)]−𝐿
−→

𝐿∏
𝑖=1

det
(
1 − √𝑦𝑖𝑈

) (
1 − √𝑦𝑖𝑈−1

)
(5.226)
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in (5.142). Unrefining the series, 𝑦𝑖 → 𝑦 ∀𝑖 = 1, . . . , 𝐿, we get the combinatorial
identity

Z (𝑁)cIOP(𝐿, 𝑦) =
𝐿2−1∏
𝛼=0

∞∑︁
𝑒𝛼=0

𝑑{𝑒𝛼}
(
𝑋
(𝑁)
𝐿

)
𝑦
∑
𝛼 𝑒𝛼 . (5.227)

We now use the fact that 𝑑{𝑒𝛼}
(
𝑋
(𝑁)
𝐿

)
∈ {0, 1} for 𝑋 (𝑁)

𝐿
a toric Calabi–Yau variety

[50]. In particular, 𝑑{𝑒𝛼}
(
C𝐿

2
)
= 1 for all sets {𝑒𝛼}𝛼=0,...,𝐿2−1, while some of the co-

efficients 𝑑{𝑒𝛼}
(
𝑋
(𝑁)
𝐿

)
will vanish if 𝐿 > 𝑁 , corresponding to imposing constraints,

called syzygys, on the generators of the ring ℜ. With this fact, multiplying (5.227)
by 𝑒−𝛽

∑𝐿2−1
𝛼=0

1
2 = 𝑒−𝛽𝐿

2/2 proves the claim. □

Flavor sum: Calabi–Yau ensembles

We finish this investigation of the relationship between the IOP matrix model and
Hilbert series by looking at the sum over 𝐿 through the lens of our Calabi–Yau
varieties.

Proposition 5.6.15. Let 𝑁 ∈ N, 0 < 𝑦 < 1 andZEx1 as in (5.173). It holds that

ZEx1(𝔮 = 1, 𝑦) = 1 + HS𝑦

(⊔
𝐿≥1

𝑋
(𝑁)
𝐿

)
. (5.228)

Proof. Let O
𝑋
(𝑁 )
𝐿

be the sheaf of functions over 𝑋 (𝑁)
𝐿

. For any 𝐿, 𝐿′ ∈ N we have
the short exact sequence

0 −→ O
𝑋
(𝑁 )
𝐿′
−→ O

𝑋
(𝑁 )
𝐿
⊔𝑋 (𝑁 )

𝐿′
−→ O

𝑋
(𝑁 )
𝐿

−→ 0. (5.229)

Additivity of the Hilbert series states that

HS𝑦
(
𝑋
(𝑁)
𝐿

)
+ HS𝑦

(
𝑋
(𝑁)
𝐿′

)
= HS𝑦

(
𝑋
(𝑁)
𝐿
⊔ 𝑋 (𝑁)

𝐿′

)
. (5.230)

Starting with 𝐿 = 1, 𝐿′ = 2 and iterating this identity in combination with Lemma
5.6.12 gives formula (5.228). The latter is understood as an inductive limit on 𝐿max,
with the sum over 𝐿 inZEx1 truncated at 𝐿 ≤ 𝐿max. □

In summary, the cIOP model with Gaussian sum over flavors becomes a generating
function of Hilbert series of Calabi–Yau varieties. It points toward a categorification,
in which the structure rings of Calabi–Yau of different dimensions are assembled in
a direct sum weighted by 𝔮𝐿

2 .
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As a side remark, notice that summing over moduli spaces of different dimensions
is not unfamiliar in string theory. In fact, in the path integral of 2d gravity, one
integrates over the moduli space of genus g surfaces, and eventually sums over
g ∈ N.

Summary: Calabi–Yau variations on IOP

In Theorem 5.6.13 we have pointed out a correspondence between the space of states
in the cIOP model, which inherits the ring structure from the ring of representations
of the flavor symmetry, and the ring of functions on a certain Calabi–Yau variety
𝑋
(𝑁)
𝐿

. The partial dictionary so far is:

Quantum mechanics Calabi–Yau
IOP ←→ trivial, C𝐿2

cIOP ←→ non-trivial, 𝑋 (𝑁)
𝐿

constraint 𝑅 ∈ ℜ(𝑁)
𝐿

←→ syzygys
(unweighted) flavor sum ←→ disjoint union

⊔
𝐿 𝑋
(𝑁)
𝐿

The role of Calabi–Yau varieties, especially when summing over 𝐿, remains to be
elucidated. We hope to report on this topic in the future.

5.7 Example 2: Matrix model of QCD2

Motivated by the properties evidenced in the previous example, we introduce another
similar model that illustrates the paradigm of Part 5.1. The corresponding matrix
integral is an extremely streamlined low energy toy model of QCD2. In Subsection
5.7 we extend the model according to Section 5.5, by including a sum over the
number of flavors with Gaussian weight. Once again, the sum over flavors will
promote a third order phase transition to a first order one. The corresponding
spectral density is analyzed in Subsection 5.7.

Partition function of QCD2 matrix model
We introduce a matrix model that captures the behaviour of thermal QCD2 with
𝑁 + 1 colors and 𝐿 flavors [218] (further explored and generalized in [405, 406]).
Its partition function is

Z (𝑁)QCD2
(𝐿, 𝑦) =

∮
𝑆𝑈 (𝑁+1)

[d𝑈]
[
det

(
1 + √𝑦𝑈

)
det

(
1 + √𝑦𝑈−1

)] 𝐿
(5.231)
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with parameter 0 < 𝑦 < 1. In the QCD interpretation, 𝐿 ∈ N has the meaning of the
number of quarks.14 We have the identification 𝑦 = 𝑒−𝛽𝑚, with 𝑚 the quark mass.
To avoid clutter, we simply redefine 𝑚𝛽 ↦→ 𝛽.

The matrix model (5.231) admits other interpretations:

(i) Comparing with [342], it is a simplified model of one-plaquette lattice QCD2

[406].

(ii) A unitary matrix model that generalizes (5.231) was examined in [55], in
the context of a black hole phase in AdS2/CFT1. The authors of [55] also
considered correlation functions of operators similar to but distinct from our
O𝐿 (𝑡).

Lemma 5.7.1 ([190]). For every 𝐿, 𝑁 ∈ N, letZ (𝑁)QCD2
be as in (5.231) with 𝑦 = 𝑒−𝛽.

Let also 𝔥
(𝑁)
𝐿
⊂ N𝐿 denote the set

𝔥
(𝑁)
𝐿

=
{
(ℎ1, . . . , ℎ𝐿) ∈ N𝐿 : 𝑁 + 𝐿 − 1 > ℎ1 > ℎ2 > · · · > ℎ𝐿 ≥ 0

}
. (5.232)

It holds that

Z (𝑁)QCD2
(𝐿, 𝑒−𝛽) = 𝑒𝛽𝐿

2/2

𝐺 (𝐿 + 1)2
∑︁

(ℎ1,...,ℎ𝐿)∈𝔥(𝑁 )𝐿

∏
1≤𝑖< 𝑗≤𝐿

(ℎ𝑖 − ℎ 𝑗 )2 𝑒−𝛽
∑𝐿
𝑗=1(ℎ 𝑗+ 1

2 ) .

(5.233)

Proof. The proof is very similar to the one of Lemma 5.6.3. The change of variables
(5.60) rewrites the right-hand side of (5.233) as a sum over Young diagrams:∑︁

𝑅⊆(𝑁)𝐿
𝑦 |𝑅 | (dim 𝑅)2. (5.234)

Here we have used formula (5.62) for dim(𝑅). The sum is restricted to Young
diagrams that fit inside a rectangular tableau of 𝐿 rows and 𝑁 columns. For
instance:

𝐿 = 4 and 𝑁 = 4,
𝑅 = (3, 2) ⊂ (4, 4, 4, 4).

On the other hand, we apply the so-called dual Cauchy identity [312]
𝐿∏
𝑖=1

𝑁+1∏
𝑗=1
(1 + 𝑦𝑖𝑧 𝑗 ) =

∑︁
𝑅⊆(𝑁)𝐿

𝜒𝑅 (𝑌 )𝜒𝑅⊤ (𝑈) (5.235)

14For simplicity, the matrix model corresponds to the low energy limit (equivalently, it takes
the approximation of large quark mass 𝑚) of the matrix model in [218], since the more general
expression would not add anything new to our discussion.
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and its complex conjugate to (5.231), where 𝑅⊤ is the transpose partition to 𝑅. We
set 𝑌 to have 𝐿 eigenvalues all equal to √𝑦. Using the orthogonality of characters,
as done to get (5.136), one finds (5.234). This proves the relation (5.233). □

Comparison with cIOP

The matrix model (5.231) is closely related to the cIOP matrix model (5.142), the
difference residing in the plus signs in front of the fugacity √𝑦 and in front of the
power 𝐿. Because the sign in front of 𝐿 appears in the exponent, it changes the
geometric series (1 − √𝑦𝑧𝑎)−𝐿 into polynomials in 𝑧𝑎 of degree 𝐿, {𝑧𝑎}𝑎=1,...,𝑁+1
being the eigenvalues of the random matrix 𝑈. This is reflected in the different
constraints appearing in the two character expansions, where in particular Z (𝑁)QCD2

includes a sum over only a finite number of representations.

The distinction between the two models becomes starker if one compares their
massless limits, which send √𝑦 → 1. The limit is ill-posed in the cIOP model, due
to the integrand developing a singularity. On the other hand, (5.231) is finite and
well-defined in the limit √𝑦 → 1. As observed in [406], these behaviors reflect
the expected singularity and lack thereof in massless bosonic versus fermionic
QCD2. Furthermore, the latter model admits a closed form solution in the limit
[76], expressed entirely with Barnes’s 𝐺-functions:

lim
𝑦→1
Z (𝑁)QCD2

(𝐿, 𝑦) = 𝐺 (𝐿 + 1)2𝐺 (𝑁 + 1)𝐺 (2𝐿 + 𝑁 + 1)
𝐺 (2𝐿 + 1)𝐺 (𝐿 + 𝑁 + 1)2

. (5.236)

Schubert cells and quantum mechanics

From (5.234), the states of the quantum mechanical model read off fromZ (𝑁)QCD2
are

associated with Young diagrams that fit into the 𝑁 × 𝐿 rectangle (𝑁)𝐿 . In turn,
these Young diagrams are in one-to-one correspondence with the Schubert cells of
the decomposition of the Grassmannian Gr(𝐿, 𝑁 + 𝐿). Thus, while we have seen
Calabi–Yau varieties emerging from the cIOP model in Subsection 5.6, the relevant
algebraic geometry in the current example is that of Schubert varieties.

The appearance of the Grassmannian and its Schubert cells is of course consistent
with a QCD-type interpretation of the model.

Partition function of QCD2 with sum over flavor symmetries
According to our paradigm, we want to enrich the model by introducing a Gaussian
weight and summing over the flavor rank in QCD2.
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Definition 5.7.2. Let 0 < 𝑦, 𝔮 < 1, 𝐿, 𝑁 ∈ N and Z (𝑁)QCD2
as in (5.231). The QCD2

matrix model with sum over flavors is

ZEx2(𝔮, 𝑦) =
𝐿max (𝑁)∑︁
𝐿=0

𝔮𝐿
2Z (𝑁)QCD2

(𝐿, 𝑦). (5.237)

Note that in the Schur slice 𝔮 =
√
𝑦, the factor 𝔮𝐿2 in (5.237) cancels the 𝑦−𝐿2/2 from

(5.233).

Planar limit of QCD2 with sum over flavor symmetries

Theorem 5.7.3. Let ZEx2 be as in (5.237), with 𝑦 = 𝑒−𝛽 and 𝔮 = 𝑒−1/(2𝑎) . ∀𝑎 > 0,
there exists 𝑇𝐻 > 0 such that ZEx2 undergoes a first order phase transition in the
planar limit at 1

𝛽
= 𝑇𝐻 , with

lnZEx2 =


𝑂 (1) 1

𝛽
< 𝑇𝐻

𝑂 (𝑁2) 1
𝛽
> 𝑇𝐻 .

(5.238)

Moreover, in the Schur slice 𝑎 = 𝛽−1, 𝑇𝐻 ≈ 1.039.

0.5 1.0 1.5 2.0
T

10

20

30

40

50lnZEx2

𝑁=10

Figure 5.14: Plot of lnZEx2(𝔮, 𝑦) as a function of the temperature 𝑇 = −1/ln(𝑦)
at 𝑁 = 10. The sum over 𝐿 in (5.237) has been truncated at 𝐿 ≤ 20. A change
in behavior around 𝑇 ≈ 1 is already visible at small 𝑁 , although the sharp phase
transition is smoothed by finite 𝑁 effects. The plot is taken in the Schur slice 𝑎 = 𝑇 ,
but the qualitative behavior is the same in all 𝑎-slices of the parameter space.

Theorem 5.7.3 argues that, passing to the ensemble (5.237), the third order phase
transition experienced by ZQCD2 in the Veneziano limit is promoted to a first order
one, at a critical temperature𝑇𝐻 . The function lnZEx2 at fixed 𝑁 is plotted in Figure
5.14. It is also possible to evaluate numerically lnZEx2 at fixed 𝑇 for various 𝑁 , and
check that the plot is consistent with an approximately constant behavior if 𝑇 < 𝑇𝐻
and a polynomial shape if 𝑇 > 𝑇𝐻 . In Appendix 5.13 we re-derive the first order
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phase transition from the unitary matrix model expression (5.231) for Z (𝑁)QCD2
, and

argue that it is accompanied by Hagedorn-like behavior.

In conclusion, Theorem 5.7.3 derives a first order transition with the desired holo-
graphic properties from the ingredients:

𝑖) A simple quantum system built out of representations of the flavor symmetry;

𝑖𝑖) A constraint on the states descending from gauge invariance;

𝑖𝑖𝑖) A Gaussian sum over the number of quarks;

in accordance with the general prescription of Part 5.1.

Proof of Theorem 5.7.3. The proof is done in two steps.

(1) First we solve the planar Veneziano limit ofZ (𝑁)QCD2
, with

𝐿 →∞, 𝑁 →∞, 𝛾 =
𝐿

𝑁
fixed. (5.239)

(2) Second, we plug the result inZEx2 and extremize over 𝛾.

Step (1). Most of the procedure for the large 𝐿 limit of (5.233) goes through exactly
as in the cIOP matrix model, see Subsection 5.6. In particular, the discrete matrix
models have same summand. Writing it in the form 𝑒−𝐿

2𝑆(··· ) and extremizing the
effective action, we we get the same saddle point equation (5.154). However, the
main difference here is that the discrete matrix model we deal with has two hard
walls: at ℎ 𝑗 = 0 and ℎ 𝑗 = 𝐿 + 𝑁 − 1. In the large 𝑁 limit, the second hard wall for
the scaled eigenvalues 𝑥 is placed at

𝐿 + 𝑁 − 1
𝐿

≈ 1 + 𝛾−1. (5.240)

In the planar limit, the eigenvalue density 𝜚(𝑥) is subject to the constraints∫ ∞

0
d𝑥𝜚(𝑥) = 1, 𝜚(𝑥) ≤ 1, supp 𝜚 ⊆ [0, 1 + 𝛾−1] . (5.241)

That is, compared to the cIOP model, there is an additional hard wall at 𝑥 = 1+ 𝛾−1.
This will play a role later. This discrete matrix model was first solved in [115]. For
the explicit comparison with [115], the dictionary is:

[115] 𝑟 𝑠 𝑅 𝛼 𝐼𝑟,𝑠

here 𝑁 + 𝐿 𝐿 1 + 𝛾−1 𝑒−𝛽 𝑒−𝛽𝐿
2/2Z (𝑁)QCD2
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Figure 5.15: Schematic representation of the eigenvalue density in presence of two
hard walls for the eigenvalues. Left: The hard wall on the right is not active, the
eigenvalue density is capped only at the left edge. Right: Both hard walls are active,
the eigenvalue density is capped at left and right edges.

We thus find again a solution (5.157), with the same 𝜚(𝑥) as in the IOP model, as
long as 𝑥+ < 1 + 𝛾−1. When 𝑥+ hits the hard wall, we ought to find a new solution.
This takes place at

𝑥+(𝛾𝑐) = 1 + 1
𝛾𝑐

=⇒ 𝛾𝑐 =
1 − √𝑦

2√𝑦 . (5.242)

As a function of the inverse temperature, 2𝛾𝑐 = 𝑒𝛽/2 − 1.

Because of the square root singularity at the second hard wall, we replace the ansatz
(5.157) with an eigenvalue density “capped” both on the left and on the right edges:

𝜚(𝑥) =


1 0 ≤ 𝑥 < 𝑥−
�̂�(𝑥) 𝑥− ≤ 𝑥 ≤ 𝑥+
1 𝑥+ < 𝑥 ≤ 1 + 𝛾−1.

(5.243)

See Figure 5.15 for a schematic view. In this new scenario, the nontrivial part of the
eigenvalue density is [115]

�̂�∗(𝑥) = 1 + 2
𝜋

arctan
(√︂

𝑥−
𝑥+

√︂
𝑥+ − 𝑥
𝑥 − 𝑥−

)
− arctan ©«

√︄
1 + 𝛾−1 − 𝑥−
1 + 𝛾−1 − 𝑥+

√︂
𝑥+ − 𝑥
𝑥 − 𝑥−

ª®¬


(5.244)
with

𝑥± =
1

2(1 + √𝑦)

[(
2 + 𝛾−1

)1/2
± 𝑦1/4𝛾−1/2

]2
. (5.245)

Computing

FQCD2 =
1
𝑁2 lnZ (𝑁)QCD2

����
saddle point

(5.246)

with this eigenvalue density we get

FQCD2 =


−𝛾2 ln(1 − 𝑦) 𝛾 <

1−√𝑦
2√𝑦

(1 + 2𝛾) ln
(
1 + √𝑦

)
− 1

4 ln 𝑦 + 𝐶 (𝛾) 𝛾 >
1−√𝑦
2√𝑦

(5.247)
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where, in the second phase, 𝐶 (𝛾) is the 𝑦-independent term

𝐶 (𝛾) = −𝛾2 ln
(

4𝛾
𝛾 + 1

)
+ 2𝛾(𝛾 + 1) ln

(
1 + 2𝛾
𝛾 + 1

)
− 1

2
ln

(
(𝛾 + 1)2
1 + 2𝛾

)
− 𝛾 ln 4 − ln 2.

(5.248)

Step (2). We express the summands inZEx2 as functions of the Veneziano parameter
𝛾 = 𝐿/𝑁 and approximate them for 𝑁 ≫ 1:

ZEx2(𝑒−𝛽) ≈
𝐿max (𝑁)∑︁
𝐿=0

exp
{
𝑁2S𝛽,𝑎 (𝛾)

}
, (5.249)

S𝛽,𝑎 (𝛾) := FQCD2 −
𝛾2

2𝑎
. (5.250)

In the phase 𝛾 < 𝛾𝑐, the partition function takes the Gaussian form

ZEx2(𝑒−𝛽) ≈
𝐿max (𝑁)∑︁
𝐿=0

exp
{
−𝑁2𝛾2

[
1

2𝑎
+ ln(1 − 𝑒−𝛽)

]}
. (5.251)

The saddle point is 𝛾∗ = 0, valid in the low temperature region (see Figure 5.16)

1
2𝑎
+ ln(1 − 𝑒−𝛽) > 0. (5.252)

a) In every constant-𝑎 slice of the parameter space {(𝑎, 𝛽) ∈ R>0 ×R>0}, the
trivial saddle 𝛾∗ = 0 holds if

𝛽 > 𝛽𝑐 = − ln
(
1 − 𝑒−1/(2𝑎)

)
, (5.253)

equivalently 0 < 𝑦 < 1 − 𝔮. For instance:

𝛽𝑐
��
𝑎=1/2 ≈ 0.459, 𝛽𝑐

��
𝑎=2 ≈ 1.509. (5.254)

b) In the Schur slice 𝑎 = 𝛽−1, i.e., 𝔮 =
√
𝑦, the trivial saddle 𝛾∗ = 0 holds if

(Figure 5.16)

𝛽

2
+ ln(1 − 𝑒−𝛽) > 0 =⇒ 𝛽 > 𝛽𝑐 ≈ 0.962. (5.255)

Notice that 0 < 𝛽𝑐 < ∞ exists and is finite ∀𝑎 > 0, so that the features we describe
are valid for every choice of the parameter 𝑎.

Beyond this value, 𝛽 < 𝛽𝑐, the exponent in (5.249) changes sign and we have to
look for the maximum of S𝛽,𝑎 (𝛾). Let us start with the assumption that 𝛾 > 𝛾𝑐. By
direct inspection, we find that
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Figure 5.16: The saddle point 𝛾∗ = 0 is valid at low temperature, 𝛽 > 𝛽𝑐. Left:
slice of constant 𝑎. Right: Schur slice 𝑎 = 𝛽−1.
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Figure 5.17: The absolute maximum 𝛾peak (black) and 𝛾𝑐 (purple) in the region
𝛽 ≤ 𝛽𝑐. Left: Slice 𝑎 = 1/2. Center: Slice 𝑎 = 2. Right: Schur slice 𝑎 = 𝛽−1.

• S𝛽,𝑎 has an absolute maximum at a value 𝛾peak > 0;

• The saddle 𝛾peak exists for all 𝛽 ≤ 𝛽𝑐;

• 𝛾peak > 𝛾𝑐 for all 𝛽 < 𝛽𝑐 and 𝛾peak
��
𝛽=𝛽𝑐

= 𝛾𝑐
��
𝛽=𝛽𝑐

.

This situation is plotted in Figure 5.17. From the last point it follows that

S𝛽=𝛽𝑐 ,𝑎 (𝛾 ≤ 𝛾𝑐) = 0, S𝛽=𝛽𝑐 ,𝑎 (𝛾 > 𝛾𝑐) < 0. (5.256)

We thus find a positive saddle point value which is compatible with 𝛾 > 𝛾𝑐 at all
temperature above 𝛽−1

𝑐 . This is thus the saddle point 𝛾∗ that we are looking for, and
we set 𝛾∗ = 𝛾peak.

We also plot S𝛽,𝑎 (𝛾) as a function of 𝛾 at different values of 𝛽 in Figure 5.18, and a
zoom-in close to the transition point is in shown Figure 5.19. The behavior shown
is agreement with the analytic calculation: the maximal contribution to S𝛽,𝑎 is from
𝛾∗ = 0 if 𝛽 > 𝛽𝑐 (low temperature phase), whilst S𝛽,𝑎 has a global maximum at
which is is strictly positive if 𝛽 < 𝛽𝑐 (low temperature phase).

To conclude the proof it suffices to notice that, when 𝛽 < 𝛽𝑐, 𝛾∗ > 0 and the saddle
point value of lnZEx2 grows with coefficient 𝑁2, whilst at 𝛽 > 𝛽𝑐 we have 𝛾∗ = 0,
the 𝑂 (𝑁2) growth is cancelled and one is left with the remnant 𝑂 (1) contributions.
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Figure 5.18: Plot of S𝛽,𝑎 (𝛾) as a function of 𝛾 for 𝛽 > 𝛽𝑐 (gray), 𝛽 = 𝛽𝑐 (blue)
and 𝛽 < 𝛽𝑐 (black). Left: Slice 𝑎 = 1/2. Center: Slice 𝑎 = 2. Right: Schur
slice 𝑎 = 𝛽−1. At high temperature, S𝛽,𝑎 has a global maximum at 𝛾∗ > 0 with
S𝛽,𝑎 (𝛾∗) > 0 (black curve). Decreasing the temperature until the critical value (blue
curve), S𝛽,𝑎 (𝛾∗) = 0. Below that value, S𝛽,𝑎 is non-positive definite and vanishes
at 𝛾 = 0, which is the new global maximum (gray curve).
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Figure 5.19: Plot of S𝛽,𝑎 (𝛾) as a function of 𝛾 for 𝛽 > 𝛽𝑐 (gray), 𝛽 = 𝛽𝑐 (blue)
and 𝛽 < 𝛽𝑐 (black). Left: Slice 𝑎 = 1/2. Center: Slice 𝑎 = 2. Right: Schur slice
𝑎 = 𝛽−1. These plots are analogous to Figure 5.18, but showing a narrow window
around the critical temperature.

The exchange of dominance of saddle points at 𝛽 = 𝛽𝑐 yields a first order transition
at temperature

𝑇𝐻 = 𝛽−1
𝑐 . (5.257)

This is analogous to what happens in N = 4 super-Yang–Mills in four dimensions
at finite temperature [302].

□

Spectral density of QCD2 with sum over flavor symmetries
We now apply the technology of Subsection 5.5 to QCD2 with the sum over flavors.
The computation is essentially the same as in the model of Subsection 5.6, and the
structure of the branch cuts of the Fourier transformed Wightman functions is very
similar. Let us first consider the simpler case without summing over 𝐿, and return
to the sum over flavor below.
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Spectral density of QCD2: no sum

Proposition 5.7.4. Consider the quantum mechanical system with partition function
given by the matrix model Z (𝑁)QCD2

in (5.231). The associated spectral density has
compact, continuous support on R.

Proof. On both sides of the third order phase transition we have an explicit formula
for 𝜚∗ and its support. In the phase in which the constraint is not active, the model
behaves exactly as cIOP and IOP. In particular has the same eigenvalue density
and, by Lemma 5.4.18, has the same Fourier transformed Wightman functions
𝐺𝐿,R(𝜔), 𝐺𝐿,R(𝜔). It follows immediately that the spectral density 𝜌(𝜔) is the
same as cIOP in that phase.

Beyond the third order transition, i.e., 𝛾 > 𝛾𝑐, 𝜚∗ is supported on [0, 1 + 𝛾−1] and
is non-constant on [𝑥−, 𝑥+], as given in (5.245). It is clear that the open interval
𝑥− < 𝑥 < 𝑥+ is non-empty if 𝛾𝑐 < 𝛾 < ∞. Applying again Lemma 5.4.18,
we obtain the branch cuts of 𝐺𝐿,R(𝜔), 𝐺𝐿,R(𝜔) along [𝑥− + 𝜇, 𝑥+ + 𝜇] if 𝜔 > 𝜇,
and along [−𝑥+ − 𝜇,−𝑥− − 𝜇] if 𝜔 < −𝜇. In contrast, the regions 0 < 𝑥 < 𝑥−

and 𝑥+ < 𝑥 < 1 + 𝛾−1 where 𝜚∗ is constant contribute to the smooth part of
𝐺𝐿,R(𝜔), 𝐺𝐿,R(𝜔). Using the relation (5.105) between the spectral density 𝜌(𝜔)
and the Fourier transformed Wightman functions, we conclude

supp 𝜌 = [−𝑥+ − 𝜇,−𝑥− − 𝜇] ∪ [𝑥− + 𝜇, 𝑥+ + 𝜇], (5.258)

explicitly known as a function of 𝑦 = 𝑒−𝛽 and of the Veneziano parameter 𝛾, cf.
(5.245). □

Spectral density of QCD2: sum over flavor symmetries

Let us now reintroduce the sum over flavors. The argument in the high temperature
phase is analogous to the one just shown. We again use

𝜌(𝜔) = lim
𝜀→0+

[
𝐺R(𝜔 + 𝑖𝜀) − 𝐺A(𝜔 − 𝑖𝜀)

]
(5.259)

and the fact that, for 𝛽−1 > 𝑇𝐻 , 𝐺R(𝜔), 𝐺A(𝜔) have branch cuts along ± supp 𝜚∗,
which is the saddle point eigenvalue density obtained in (5.243) and further evaluated
at 𝛾 = 𝛾∗. Lacking an explicit formula for 𝛾∗ as a function of 𝛽, we are unable to
provide 𝜌(𝜔) in closed form. However, computing 𝛾∗ at a given temperature, e.g.,
numerically, one simply needs to plug that number in (5.245).
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The knowledge of the branch cuts in the high temperature phase, as well as the
knowledge that the eigenvalues do not condensate in a continuum spectrum in the
low temperature phase (both facts shown in Theorem 5.7.3) are sufficient to argue
for the structure of supp 𝜌.

Theorem 5.7.5. The spectral density 𝜌(𝜔) associated to the matrix modelZEx2 has
compact, continuous support at 1/𝛽 > 𝑇𝐻 .

Combining this statement with the general recipe of Section 5.3, we conclude that
the QCD2 model summed over the number of flavors with Gaussian weight carries
a type III1 factor above 𝑇𝐻 , and trivially, a type I factor below 𝑇𝐻 .

Temperature lnZEx1 Algebra type
𝛽−1 < 𝑇𝐻 𝑂 (1) I
𝛽−1 > 𝑇𝐻 𝑂 (𝑁2) III1

5.8 Example 3: Conifold Donaldson–Thomas partition function
The next example we consider does not fully fit in our general discussion because
it neither undergoes a phase transition, nor has a flavor symmetry indexed by 𝐿

which we can sum over. It nevertheless fits in the prescription to derive a quantum
mechanical system from a matrix model. It turns out that the resulting quantum
system has probe correlation functions characterized by a type III1 von Neumann
algebra at every temperature in the large 𝑁 limit.

Consider the family of matrix models

Z (𝑁) (𝑄,𝑌 ) =
∮
𝑆𝑈 (𝑁+1)

[d𝑈] exp
{
tr ln (1 + 𝑌 ⊗ 𝑈) − tr ln

(
1 +𝑄𝑌 ⊗ 𝑈†

)}
,

(5.260)
where 𝑄 ∈ C is a scalar parameter, 𝑌 is a square matrix, possibly of infinite size,
with real eigenvalues (𝑦1, 𝑦2, . . . ), and the trace is over both𝑈- and 𝑌 -indices (i.e.,
tr in this formula means the trace in the tensor product).

Setting

𝑄 = 1, 𝑦𝑖 =


𝑒−𝛽/2 1 ≤ 𝑖 ≤ 𝐿

0 𝑖 > 𝐿
(5.261)

we get a hybrid model between the two previous examples. It can be studied by the
methods above and we omit this analysis.15

15The phase diagram of matrix models interpolating between the three cases was obtained in
[406].
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We consider instead the specialization

0 < |𝑄 | < 1, 𝑦𝑖 = 𝑞
𝑖− 1

2 ∀𝑖 ≥ 1 (5.262)

for a fugacity 𝑞 with |𝑞 | < 1. The constraint |𝑄 | ≠ 1 is to avoid singularities and we
restrict for concreteness to the interior of the punctured unit disk without substantial
loss of generality. We then define

Z (𝑁)conifold(−𝑄, 𝑞) := Z (𝑁) (𝑄,𝑌 )
���
(𝑄,𝑌 ) as in (5.262)

. (5.263)

The minus sign convention in the argument −𝑄 on the left-hand side is just to reduce
clutter in later expressions. The matrix model with these parameters reads

Z (𝑁)conifold(−𝑄, 𝑞) =
∮
𝑆𝑈 (𝑁+1)

[d𝑈]
∞∏
𝑗=1

det
(
1 + 𝑞 𝑗− 1

2𝑈

)
det

(
1 +𝑄𝑞 𝑗− 1

2𝑈†
) , (5.264)

with the determinant taken over 𝑆𝑈 (𝑁+1). Up to an overall factor given byM(−𝑞)2,
whereM is the MacMahon function

M(−𝑞) :=
∞∏
𝑗=1

(
1 − (−𝑞) 𝑗

)− 𝑗
, (5.265)

the matrix model (5.264) is the generating function of Donaldson–Thomas (DT)
invariants of the resolved conifold [364, 432] (here we follow [432]). More precisely,
(5.264) is a truncation of the full generating function of DT invariants, which is
recovered at 𝑁 → ∞. This is the limit we are interested in. For definition and
generalities on DT invariants and their generating functions we refer to [332].

The parameter 𝑄 ∈ C is such that − ln𝑄 is the (complexified) Kähler parameter
of the exceptional rational curve in the resolution of the conifold, and 𝑞 = 𝑒

−𝑔string .
Therefore:

• The point𝑄 → 0 is usually referred to as large volume point, and it is possible
to extract DT invariants from a Taylor expansion of (5.264) around this point;

• The singularity of the matrix model at𝑄 = 1 = 𝑞 signals the singularity at the
conifold point of the Kähler moduli space, where the rational curve is blown
down.

Explicitly, let ZDT
CY3(𝑄, 𝑞) denote the generating function of DT invariants of any

Calabi–Yau threefold. The contribution from degree 0 sub-schemes (D0-branes in
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the string theory parlance) of a Calabi–Yau with topological Euler characteristic
𝜒(CY3) is [332, 298]

ZDT
CY3(𝑄, 𝑞)

��
degree 0 =M(−𝑞)𝜒(CY3) , (5.266)

independent of 𝑄. A reduced generating function of DT invariants was introduced
and studied by Maulik–Nekrasov–Okounkov–Pandharipande [332].

Definition 5.8.1. The reduced generating function of DT invariants of a Calabi–Yau
threefold isZDT

CY3 with the generating function of degree 0 sub-schemes stripped off,

ZDT
CY3(𝑄, 𝑞)/Z

DT
CY3(𝑄, 𝑞)

��
degree 0 . (5.267)

Moreover we have [432]

ZDT
conifold(𝑄, 𝑞) =M(−𝑞)

2 lim
𝑁→∞

Z (𝑁)conifold(−𝑄, 𝑞). (5.268)

Comparing the expressions and using 𝜒(conifold) = 2, we conclude that

Lemma 5.8.2 ([364, 432]). Z (𝑁)conifold(−𝑄, 𝑞) is a truncation of the reduced generat-
ing function of DT invariants of the resolved conifold.

To derive a quantum mechanical interpretation along the lines of Part 5.1, we write
down the character expansion of (5.264) and set −𝑄 = 𝑒−𝛽. That is, the Kähler
parameter in the resolution of the conifold and the inverse temperature are related
through

inverse temperature 𝛽 ←→ Kähler parameter 𝛽 − 𝑖𝜋.

Lemma 5.8.3. With the notation above, the equality

Z (𝑁)conifold(𝑒
−𝛽, 𝑞) =

∑︁
𝑅 : ℓ(𝑅)≤𝑁

(
𝑒−𝛽

𝑞

) |𝑅 |
𝜒𝑅

(
diag(𝑞, 𝑞2, 𝑞3, . . . )

)
𝜒𝑅⊤

(
diag(𝑞, 𝑞2, 𝑞3, . . . )

)
(5.269)

holds, where 𝑅⊤ denotes the transpose partition to 𝑅.

Proof. Applying the Cauchy identity (5.143) to the denominator of (5.264) gives:
∞∏
𝑗=1

det
(
1 +𝑄𝑞 𝑗− 1

2𝑈†
)
−1

=
∑︁

�̃� : ℓ(�̃�)≤𝑁

𝜒�̃�

(
diag(−𝑄𝑞 1

2 ,−𝑄𝑞 3
2 ,−𝑄𝑞 5

2 , . . . )
)
𝜒�̃� (𝑈†)

=
∑︁

�̃� : ℓ(�̃�)≤𝑁

(
−𝑄𝑞− 1

2

) |�̃� |
𝜒�̃�

(
diag(𝑞, 𝑞2, 𝑞3, . . . )

)
𝜒�̃� (𝑈†).

(5.270)



222

Applying the dual Cauchy identity (5.235) to the numerator of (5.264) gives:
∞∏
𝑗=1

det
(
1 + 𝑞 𝑗− 1

2𝑈

)
=

∑︁
𝑅 : ℓ(𝑅⊤)≤𝑁

𝜒𝑅

(
diag(𝑞 1

2 , 𝑞
3
2 , 𝑞

5
2 , . . . )

)
𝜒𝑅⊤ (𝑈)

=
∑︁

𝑅 : 𝑅1≤𝑁

(
𝑞−

1
2

) |𝑅 |
𝜒𝑅

(
diag(𝑞, 𝑞2, 𝑞3, . . . )

)
𝜒𝑅⊤ (𝑈).

(5.271)

Combining the two expressions, the integration over 𝑆𝑈 (𝑁 + 1) yields 𝛿𝑅⊤,�̃�. We
thus obtain the character expansion

Z (𝑁)conifold(−𝑄, 𝑞) =
∑︁

𝑅 : 𝑅1≤𝑁

(
−𝑄
𝑞

) |𝑅 |
𝜒𝑅

(
diag(𝑞, 𝑞2, 𝑞3, . . . )

)
𝜒𝑅⊤

(
diag(𝑞, 𝑞2, 𝑞3, . . . )

)
.

(5.272)
We relabel 𝑅′ = 𝑅⊤ (and drop the prime) to rewrite the sum over representations
restricted to those of length at most 𝑁 . Finally we set −𝑄 = 𝑒−𝛽. □

The model (5.269) belongs to the family of 𝑞-ensembles and it can be shown that
it possesses a single phase in the large 𝑁 limit. We do not study it explicitly here,
but discuss a related, albeit simpler, model in Appendix 5.13. The large 𝑁 limit of
Z (𝑁)conifold can be analyzed along the same lines.

Here, instead, we are interested in reading off a quantum mechanical system from
the character expansion (5.269). The presence of the fugacity 𝑞 prevents us from
interpreting the terms 𝜒𝑅 as accounting for degeneracy. To overcome this difficulty,
we work in the limit 𝑞 → 1, which in the string theory picture means 𝑔string → 0+.

A few technical comments:

• In this simplified regime the MacMahon function is singular, but the reduced
generating function is well-defined.

• It is an intriguing fact that, despite our character expansion and ensuing
construction need not know anything about a string theory origin of the
matrix models, to have a quantum mechanical interpretation requires us to
send 𝑔string → 0+.

• Being interested in the quantum mechanical interpretation, we stick to the
limit 𝑞 → 1, which unrefines the DT partition function. This should not be
confused with the “decategorification” limit 𝑞 → −1 sometimes considered
in enumerative geometry.
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We therefore consider

ZEx3(𝑒−𝛽) := lim
𝑞→1
Z (𝑁)conifold(𝑒

−𝛽, 𝑞) =
∑︁

𝑅 : ℓ(𝑅)≤𝑁
𝑒−𝛽 |𝑅 | dim(𝑅) dim(𝑅⊤). (5.273)

Let us summarize the enumerative meaning ofZEx3.

Proposition 5.8.4. LetZEx3 be as in (5.273). The large𝑁 limit lim𝑁→∞ZEx3(𝑒−𝛽)
yields the reduced, unrefined generating function of Donaldson–Thomas invariants
of the resolved conifold, as a function of the Kähler parameter 𝛽 − 𝑖𝜋.

To emphasize the difference with the previous models, let us remind the reader that
the representation 𝑅⊤ is (generically) not isomorphic to 𝑅 nor to 𝑅. For instance,
assume 𝑁 = 4 and 𝑅 = (3, 3, 1, 0), which gives 𝑅⊤ = (3, 2, 2, 0):

𝑅 = (3, 3, 1, 0) =⇒ 𝑅⊤ = (3, 2, 2, 0) . (5.274)

By formula (5.62), the two have different dimensions as 𝑆𝑈 (5) representations,

dim(3, 3, 1, 0) = 60, dim(3, 2, 2, 0) = 36. (5.275)

Another well-known example is when 𝑅 is the rank-𝑘 antisymmetric representation,
then 𝑅⊤ is the rank-𝑘 symmetric representation,

𝑅 = (1, . . . , 1︸   ︷︷   ︸
𝑘

, 0, . . . , 0) =⇒ 𝑅⊤ = (𝑘, 0, . . . , 0), (5.276)

and the two are not isomorphic unless 𝑘 = 1.

Let us focus on the quantum mechanical interpretation of (5.273), where now all
the pieces are consistent with our general analysis in Section 5.4. In this example
we have 𝜙(𝑅) = 𝑅⊤, which requires minor edits to the interaction Hamiltonian 𝐻int

compared to the case 𝜙(𝑅) = 𝑅. We suitably adjust 𝐻int so that the interaction
energy 𝐸 int

𝐽
is as in the general discussion in Subsection 5.4, possibly up to 1/𝑁

terms.

To study the large 𝑁 limit of ZEx3 we adopt the method of IOP [246]. After
appropriate rescaling, the Young diagram 𝑅 can be represented by a piece-wise
linear function as follows. One sets the (𝑥, 𝑦)-axes rotated by −135◦ with respect
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Figure 5.20: Coordinate system for Young diagrams, exemplified for 𝑁 = 4 and
𝑅, 𝑅⊤ as in (5.274). Left: Orientation of the (𝑥, 𝑦)-axes with respect to 𝑅. Center:
The shape function 𝑓 (𝑥) is shown in orange. Right: The shape function 𝑓 ⊤(𝑥) of
the transposed diagram 𝑅⊤ is shown in cyan.

to the diagram 𝑅 and with the 𝑥-axis flipped, as shown in Figure 5.20 (left). The
origin of the (𝑥, 𝑦)-plane is chosen so that the top-left corner of 𝑅 has coordinates
(1, 0), and the length of the axis is scaled by 1/𝑁 , so that the constraint ℓ(𝑅) ≤ 𝑁
becomes the requirement 𝑅 is entirely contained in the positive quadrant. Then the
shape of 𝑅 is the graph of a piece-wise linear function 𝑓 (𝑥) with

𝑓 (𝑥) ≥ |𝑥 − 1|, 𝑓 (𝑥) = −𝑥 + 1 if 𝑥 ≤ 0 (5.277)

and there exists 𝑥1 ≥ 1 such that 𝑓 (𝑥) = 𝑥 −1 if 𝑥 > 𝑥1. The conventions are chosen
to match with [246, Sec.5].

In this coordinate system, transposition 𝑅 ↦→ 𝑅⊤ sends 𝑓 ↦→ 𝑓 ⊤ and it acts as a
reflection about the vertical axis 𝑥 = 1. Therefore

𝑓 ⊤(𝑥) = 𝑓 (2 − 𝑥) (5.278)

as shown in Figure 5.20 (right).

Writing (5.273) as

ZEx3(𝑒−𝛽) =
∑︁

𝑅 : ℓ(𝑅)≤𝑁
exp

{
−1

2
[𝛽 |𝑅 | − 2 ln dim(𝑅)] − 1

2
[
𝛽 |𝑅⊤ | − 2 ln dim(𝑅⊤)

]}
,

(5.279)
expressing the right-hand side in terms of the shape function 𝑓 and comparing with
the setup of [246, Sec.5], we have

ZEx3(𝑒−𝛽) =
∑︁

𝑅 : ℓ(𝑅)≤𝑁
exp

{
−𝑁

2

2
(
SIOP [ 𝑓 ] + SIOP [ 𝑓 ⊤]

)}
(5.280)
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where SIOP [ 𝑓 ] is the effective action that appears in the IOP model. The saddle
point equation (derived analogously to [246, Sec.5.2]) is:

𝛽 − 2 ln(𝑥) +
∫ ∞

−∞
d𝜉 ln|𝑥 − 𝜉 |

(
𝑓 ′′(𝜉) + 𝑓 ′′(2 − 𝜉)

2

)
= 0 (5.281)

for 0 < 𝑥 < 𝑥1. While we do not solve this problem explicitly, one checks that
the terms with positive and negative signs compete, exactly as in the IOP model,
yielding a non-trivial saddle point. We conclude that lnZEx3 = 𝑂 (𝑁2) in the large
𝑁 limit.

An alternative way to argue for the same result without inspecting the details of the
saddle point equation is that the typical 𝑆𝑈 (𝑁 + 1) representation at large 𝑁 has
all rows of length 𝑂 (𝑁) and ln dim(𝑅) = 𝑂 (𝑁2). The only difference between this
example and the IOP model of Section 5.6 is the appearance of dim(𝑅) dim(𝑅⊤)
instead of dim(𝑅)2. For typical 𝑅, ln dim(𝑅⊤) = 𝑂 (𝑁2) as well, and moreover
there are no other negative signs that may produce cancellations. The saddle point
shape 𝑓∗ is thus expected to be similar to the IOP solution.

Concretely, in the low temperature limit we approximate

tanh
(
𝛽

4

)
≈ 1 − 2𝑒−𝛽/2, coth

(
𝛽

4

)
≈ 1 + 2𝑒−𝛽/2, (5.282)

and the IOP limit shape is supported on [1 − 2𝑒−𝛽/2, 1 + 2𝑒−𝛽/2] and symmetric
about the vertical axis 𝑥 = 1. Therefore at low temperature, 𝑓∗ in this example
agrees with the IOP limit shape, and it is deformed away from the IOP shape as the
temperature is increased (𝛽 is decreased), but in a continuous way, for which the
property lnZEx3 = 𝑂 (𝑁2) persists.

Yet another way to show that the saddle point eigenvalue density 𝜚∗ of this model is
a continuous function, would be to study directly the unitary matrix model. In that
case it is easier to work in a ’t Hooft limit

𝑔string → 0+, 𝑁 →∞, with 𝜆string := 𝑁𝑔string fixed, (5.283)

and take the unrefined limit 𝜆string → 0 at the end of the computation. The procedure
is rather cumbersome and we do not present it here. However, one observes that it
admits a solution consistent with the large 𝑁 growth lnZEx3 = 𝑂 (𝑁2) and moreover
we have not found any phase transition as a function of 𝛽, supporting the picture
advocated for using typical representations.
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Constructing the Wightman functions as explained in Subsection 5.4, this obser-
vation is enough to deduce that 𝜌(𝜔), the spectral density of the quantum system
coupled to a probe, has continuous support. We conclude that these correlation
functions are those of a von Neumann algebra of type III1.

Temperature lnZEx3 Algebra type
∀𝛽 𝑂 (𝑁2) III1

5.9 Example 4: Systems with a Casimir Hamiltonian
Consider a system with 𝑈 (𝐿) global symmetry, and assume its finite temperature
partition function takes the form

ZYM2 (𝐿, 𝑒−𝛽) =
∑︁

𝑅∈ℜ𝑈 (𝐿)
(dim 𝑅)2 𝑒−

𝛽

𝑏
𝐶2 (𝑅) , (5.284)

where the sum is over all isomorphism classes of irreducible𝑈 (𝐿) representations,
and

𝐶2(𝑅) =
𝐿∑︁
𝑖=1

𝑅𝑖 (𝑅𝑖 − 2𝑖 + 𝐿 + 1) (5.285)

is the quadratic Casimir invariant. The number 𝑏−1 > 0 is interpreted as a coupling
constant.

The inspiration to write down this system is twofold:

• Take a two-dimensional gravity system with gauge group 𝑈 (𝐿), dual to an
ensemble of boundary theories with global 𝑈 (𝐿) symmetry. It was shown in
[272] that the partition function of the random matrix ensemble with global
symmetry decomposes according to (5.284).

• Take any unitary CFT in 𝑑 ≥ 2 spacetime dimensions, with 𝑈 (𝐿) global
symmetry, at finite temperature 𝑇 . In [271] it was found that the probability
of a state to be in the irreducible representation 𝑅, in the high temperature
limit, is given by

Prob(𝑅) =
(

4𝜋
𝑏𝑇 𝑑−1

) 𝐿2
2

(dim 𝑅)2 exp
(
− 1
𝑏𝑇 𝑑−1𝐶2(𝑅)

)
. (5.286)

The 𝑅-independent coefficient is just a normalization. Up to the overall
coefficient, summing over all the states we get (5.284), with identification

𝛽 =
1

𝑇 𝑑−1 . (5.287)
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In particular, for a two-dimensional CFT, we have the identification between
the quantum mechanical 𝛽 and the inverse temperature 𝑇−1 of [271].

When (5.284) stems from a large 𝑁 gauge theory, the parameter 𝑏 encodes the
dependence on the gauge rank 𝑁 . Here we need not necessarily assume any concrete
𝑁-dependence. In order to obtain a nontrivial scaling limit, we will instead scale 𝑏
with 𝐿 in the following way:

Definition 5.9.1. For every 𝐿 ∈ N, 𝛽 > 0, 𝑏 > 0, the planar limit of the ensemble
(5.284) is the limit 𝐿 →∞ with

�̃� =
𝐿

𝑏
fixed. (5.288)

Regardless of the origin of (5.284), the scaling limit with 𝐿
𝑏

fixed is necessary at the
level of the matrix model, to have a non-trivial large 𝐿 limit.

Quantum mechanics from ensembles with Casimir Hamiltonian
Example (5.284) slightly differs from our general discussion in Section 5.4, because
we do not start from a unitary matrix model. Besides, and related, the Hamiltonian
of the quantum mechanical system is quadratic in 𝑅, as opposed to the Hamiltonian
linear in 𝑅 considered in Section 5.4. This modification does not spoil the argument,
which can be run without changes.

We henceforth take (5.284) as our starting point, and interpret it as the partition
function of a system at inverse temperature 𝛽. This defines our toy model. The
Hilbert space of the system decomposes into

ℋ𝐿 =
⊕

𝑅∈ℜ𝑈 (𝐿)
ℋ𝐿 (𝑅) ⊗ℋ𝐿 (𝑅), (5.289)

and the Hamiltonian 𝐻 acts diagonally on the representation basis with eigenvalues

𝐻 |𝑅, a⟩ ⊗ |𝑅, ¤a⟩ = (𝐶2(𝑅)/𝑏) |𝑅, a⟩ ⊗ |𝑅, ¤a⟩ ∀a, ¤a = 1, . . . , dim 𝑅. (5.290)

We will assume the system is coupled to a probe as explained in Subsection 5.4.

Theorem 5.9.2. Let 𝐿 ∈ N and 𝛽 > 0, and consider ZYM2 (𝐿, 𝑒−𝛽) as given in
(5.284), interpreted as the partition function of a quantum mechanical system with
global symmetry 𝑈 (𝐿). Consider the planar limit of Definition 5.9.1. The von
Neumann algebra associated to the system is of type III1.
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Crucially, (5.284) equals the partition function of two-dimensional Yang–Mills
theory on the sphere [339, 398], with 𝑈 (𝐿) interpreted as a gauge group in that
context. The planar limit of Definition 5.9.1 is nothing but the standard ’t Hooft
planar limit of 2d pure Yang–Mills. The large 𝐿 planar limit of (5.284) has been
addressed in [148], which lays the groundwork for Theorem 5.9.2.

Lemma 5.9.3 ([148]). LetZYM2 be the matrix model (5.284), at arbitrary 𝛽 > 0. In
the planar limit, lnZYM2 = 𝑂 (𝐿2), and it undergoes a third order phase transition
at �̃� = 𝜋2

2𝛽 . Moreover, the density of eigenvalues has compact and continuous support
on the real axis, which enhances as 𝛽→ 0.

Proof. This lemma is part of the classical result of [148]. We briefly sketch the main
ideas for completeness, and refer to [148] (and subsequent work) for the details.

The starting point is to rewrite (5.284) in a form akin to (5.59). The change of
variables

ℎ𝑖 = 𝑅𝑖 − 𝑖 +
𝐿 + 1

2
(5.291)

recasts the ensemble of representations into

ZYM2 (𝐿, 𝑒−𝛽) =
𝑒

𝛽

12𝑏 𝐿 (𝐿
2−1)

𝐺 (𝐿 + 1)2
∑︁

(ℎ1,...,ℎ𝐿)∈Z𝐿
ℎ1>ℎ2>···>ℎ𝐿

𝑒−
𝛽

𝑏

∑𝐿
𝑖=1 ℎ

2
𝑖

∏
1≤𝑖< 𝑗≤𝐿

(ℎ𝑖 − ℎ 𝑗 )2 (5.292)

where we have used the properties of the 𝑈 (𝐿) representations. Similar to the
previous examples, the matrix model effective action is

𝑆(ℎ1, . . . , ℎ𝐿) =
𝛽

𝑏

𝐿∑︁
𝑖=1

ℎ2
𝑖 −

∑︁
𝑖≠ 𝑗

ln|ℎ𝑖 − ℎ 𝑗 |. (5.293)

Inserting the scaled variable 𝑥, defined through ℎ𝑖 = 𝐿𝜂𝑥𝑖 for some 𝜂 > 0 to
be determined momentarily, we define the density of eigenvalues 𝜚(𝑥) exactly as
above. Using the definition of the parameter �̃�, we arrive at

𝑆(ℎ1, . . . , ℎ𝐿) = 𝐿2
∫

d𝑥𝜚(𝑥)
[
𝐿2𝜂−2𝛽�̃�𝑥2 − P

∫
d𝑥′𝜚(𝑥′) ln|𝑥 − 𝑥′|

]
. (5.294)

In the large 𝐿 limit, this action admits a non-trivial saddle point if 𝜂 = 1. We arrive
at the saddle point equation

P
∫

d𝑥′
𝜚∗(𝑥′)
𝑥 − 𝑥′ = 𝛽�̃�𝑥, (5.295)
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where the saddle point eigenvalue density 𝜚∗ is to be looked for in the restricted
functional space subject to the conditions [148]∫ ∞

0
d𝑥𝜚(𝑥) = 1, 0 ≤ 𝜚(𝑥) ≤ 1. (5.296)

So far, the derivation is analogous to Subsection 5.6, except for the quadratic depen-
dence on 𝑥 in the action. The solution to (5.295) is given by the Wigner semicircle
law

𝜚∗(𝑥) =
𝛽�̃�

𝜋

√︄
2
𝛽�̃�
− 𝑥2, supp 𝜚∗ =

[
−

√︄
2
𝛽�̃�
,

√︄
2
𝛽�̃�

]
. (5.297)

The solution satisfies 𝜚∗(𝑥) ≤ 1 on the entire support if 2𝛽�̃� < 𝜋2. We interpret
this bound as a critical value for �̃� at arbitrary 𝛽 > 0. Raising �̃� above the threshold,
one must replace the Wigner semicircle with a “capped” solution of the form [148]

𝜚(𝑥) =


1 0 ≤ 𝑥 < 𝑥−
�̂�(𝑥) 𝑥− ≤ 𝑥 ≤ 𝑥+
0 𝑥+ < 𝑥

(5.298)

with �̂� satisfying the continuity conditions �̂�(𝑥−) = 1, �̂�(𝑥+) = 0. The solution in
this phase is more involved, and can be found in [148].

Focusing on the high temperature regime, i.e., the Cardy limit 𝛽 → 0, the critical
value for �̃� is moved to large positive values. The system remains in the first phase
for �̃� fixed and 𝛽→ 0, and supp 𝜚∗ has width proportional to 𝛽−1/2, thus spreads on
the whole real axis in the high temperature limit. □

Proof of Theorem 5.9.2. Given the saddle point eigenvalue density of [148], the
result follows from it and the general result of Subsection 5.4.

It is important to note that, although the Hamiltonian 𝐻 has changed, and the
eigenvalues are now 𝐶2(𝑅), we are still using the interaction Hamiltonian (5.75).
The eigenvalues of 𝐻 determine the eigenvalue density 𝜚∗, whereas the Hamiltonian
𝐻int enters in the Fourier transform of the correlation functions. For this reason, the
expressions for the Wightman functions — and hence for the spectral density 𝜌(𝜔)
— derived in Subsection 5.4 remain valid, as can be immediately checked walking
through the same steps. What changes is the form of 𝜚∗ used for the evaluation of
𝜌(𝜔) at large 𝑁 . □
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As a concluding remark, we stress once again that we are not making claims about
the nature of the von Neumann algebra of the holographic CFTs considered in
[271]. We find that, given the toy quantum mechanical model built out of (5.284),
its correlation functions are captured by a type III1 von Neumann algebra. We do
not claim any implication for the holographic systems of [272, 271]. While the ideas
developed here might prove useful, to rigorously establish the type of von Neumann
algebra for those holographic systems is beyond the scope of the present work.

Ensembles with a sum over flavor symmetries
We now consider the extension of the matrix model (5.284), and of the corresponding
quantum system, by introducing the sum over the rank 𝐿 of the global symmetry:

ZEx4(𝔮, 𝑒−𝛽) =
∞∑︁
𝐿=0

𝔮𝐿
2 ∑︁
𝑅∈ℜ𝑈 (𝐿)

(dim 𝑅)2 𝑒−
𝛽

𝑏
𝐶2 (𝑅) . (5.299)

In this situation, the dependence on the parameter 𝑏 replaces the dependence on the
gauge rank 𝑁 , simply because it is the only other parameter we have at hand besides
𝛽.

Proposition 5.9.4. In the limit 𝑏 →∞, the matrix model (5.299) behaves as

lnZEx4 = 𝑂 (𝑏2) (5.300)

for every 𝛽 > 0.

Proof. As before, we write 𝔮 = 𝑒−1/(2𝑎) . Besides, we consider two choices of slice in
the parameter space: (i) the fixed-𝑎 slice, in which 𝑎 is a given number independent
on the other parameters; and (ii) the Schur slice 𝑎 = 𝛽−1.

To begin with, we rewrite

lnZEx4 ≈ ln
∫ ∞

0
d�̃� exp

[
−𝑏2

(
�̃�2

2𝑎
− �̃�2FYM2 (𝛽�̃�)

)]
(5.301)

where
FYM2 = lim

𝐿→∞

1
𝐿2 lnZYM2 (5.302)

which, by definition, only depends on the product 𝛽�̃�. In the limit 𝑏 →∞ we ought
to look for the saddle points �̃�∗ of (5.301). Assuming that the system is in the first
phase, we have [148]

FYM2

��
�̃�< 𝜋2

2𝛽
=
𝛽�̃�

12
− 1

2
ln(2𝛽�̃�). (5.303)



231

4 6 8

1

a

0.05

0.10

0.15

0.20

0.25

0.30

β γ*

Figure 5.21: Plot of the saddle point value 𝛽�̃�∗ in the constant-𝑎 slice, shown as a
function of 𝑎−1.

In the constant-𝑎 slice, in which 𝑎 is taken independent of 𝛽, the saddle point �̃�∗of
the integrand in (5.301) is

𝛽�̃�∗ = −4ProductLog
(
−𝑒
− 1

2−
1
𝑎

8

)
, (5.304)

where ProductLog(𝑧) denotes the function that gives the principal solution for 𝑤
to the equation 𝑧 = 𝑤𝑒𝑤. The saddle point is plotted in Figure 5.21. The most
important point is that it is a positive, monotone function of 𝑎 > 0 which satisfies

lim
𝑎→0

𝛽�̃�∗ = 0, lim
𝑎→∞

𝛽�̃�∗ ≈ 0.3293. (5.305)

That is to say,

0 < 𝛽�̃�∗ <
𝜋2

2
∀0 < 𝑎 < ∞. (5.306)

On the other hand, expanding FYM2 in the phase �̃� > 𝜋2

2𝛽 near the critical point,
there is no saddle point. Evaluating (5.301) at �̃�∗ we obtain lnZEx4 = 𝑂 (𝑏2) at all
temperatures.

Let us now consider the slice 𝑎 = 𝛽−1. Due to the simple way in which the
dependence on 𝑎 appears, it turns out that the saddle point is simply given by
(5.304) with 𝑎−1 = 𝛽. Once again, this saddle point is positive and valid at all
temperatures, thus yielding lnZEx4 = 𝑂 (𝑏2) at all temperatures. □

cor. The von Neumann algebra associated to quantum system constructed from the
ensemble (5.299) with a sum over the rank of the global symmetry is of type III1 for
every 𝛽 > 0.

5.10 Conclusions and outlook
In this work we obtained a general construction of large 𝑁 von Neumann algebras
applicable to observables satisfying large 𝑁 factorization, and constructed quantum
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Figure 5.22: Main results in a nutshell.

systems with an emergent type III1 von Neumann algebra at large 𝑁 . These quantum
systems, which vastly generalize the IOP model introduced in [246], are able to
implement some kind of gauge constraint, and have a partition function that is
expressible in terms of a matrix model. Their Hilbert space can be explicitly
constructed from the character expansion of the matrix integral.

We showed that when a heavy probe is coupled to our systems, the Källén–Lehmann
spectral density at finite temperature becomes continuously supported, which is a
hallmark of type III1 structure. Furthermore, upon introducing an extended Hilbert
space with sectors carrying different flavor symmetries, we showed that our systems
are generically promoted to systems with a Hagedorn transition. Upon definition of
an appropriate notion of probe, we showed that below the Hagedorn temperature,
the partition function is convergent, while above the Hagedorn transition, the large
𝑁 algebras once again satisfy large 𝑁 factorization and have type III1.

Our main findings in Part 5.1 are summarized in Figure 5.22.

Our construction can be applied to a large class of examples, as was demonstrated
very explicitly in the second part of this work. In particular, we introduced examples
inspired from the IOP model [246], as well as from a toy model of QCD2 [218]. We
also analyzed a system constructed from the generating function of DT invariants
of the conifold, even though a complete understanding of the possible geometric
meaning of the type III1 von Neumann algebra remains an open question. We
have then analyzed a matrix model describing holographic systems with global
symmetries [271].
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The aim of this work was to lay the groundwork to explicitly set up a quantum system
given any gauge theory with continuous flavor symmetry, and to assign a large 𝑁
von Neumann algebra to it. There are several interesting questions that future work
could address.

The most obvious and most ambitious avenue for future research is to embrace
more realistic models of holography, possibly applying the techniques and results
herein to the Hilbert series of these models. Maybe without studying full-fledged
holographic examples, a desirable feature that the IOP model does not possess [337],
nor do our models, would be that they exhibit maximal chaos. It would be interesting
to see whether one can find maximally chaotic models and study their large 𝑁 von
Neumann algebra by extending the methods developed here to more complicated
systems. Large 𝑁 chaos is likely to have a nice interpretation in the language of
modular flow [134, 168], and more generally, the algebraic properties of a local bulk
spacetime are closely related to mathematical definitions of chaos in von Neumann
algebras [191, 367].

A complementary question to ask is whether the examples presented here, which
are only known to possess some of the weaker chaotic properties of [191, 367],
can still have a bulk description that is geometric in some sense. In particular, the
compactness of the spectral density of the models of this chapter seems to make
their putative dual description very stringy. It would be interesting to understand
whether for such models, one can still make sense of a notion of dual geometry
that, in particular, displays some kind of connectedness between the two sides of
the thermofield double. Another feature that we would like to eventually remove is
the introduction of an external probe, which would be absent in a fully holographic
system, where the relevant correlation functions should correspond to operators
directly within the gauge theory.

Another question that remains open is a first principles understanding of the sum over
flavors. Posing this question from the bulk side of the holographic correspondence,
it would be very interesting to establish a connection with other recent proposals
entailing averaging procedures in black hole physics.

One collateral observation (cf. Appendix 5.13) is that, for the very special case of
N = 4 super-Yang–Mills in the Cardy limit, our sum over 𝐿 descends to a sum over
the Riemann sheets of [95]. It remains to be seen whether there is a general lesson
to be learnt from this comment.
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It may also be interesting to study these systems in other states that are not thermal,
like, for instance, some microcanonical versions of the thermofield double akin to
the ones considered in [100]. Other types of von Neumann algebras are supposed to
appear in that case, and it would be interesting to check the proposal in our matrix
model context.

A related issue would be to study the crossed product of our large 𝑁 algebras
with their modular automorphism group, as well as perturbative 1/𝑁 corrections
to our calculations. Moreover, including both perturbative and non-perturbative
corrections to the large 𝑁 correlation functions computed here is expected to give
a von Neumann algebra of type I. It would be interesting to see explicitly how this
happens in examples, deploying the non-perturbative techniques of, e.g., [325, 323,
327, 326].

Finally, it is also worthwhile to ask to what extent our criterion sheds light on partial
deconfinement. The partial deconfinement proposal [222, 51, 223] argues for an
intermediate coexistence phase in the Hagedorn transition. Passing to the micro-
canonical ensemble at energies 1 ≪ 𝐸 ≪ 𝑁2, the first order deconfinement transi-
tion in the gauge theory is smoothed into a phase in which only a𝑈 (𝑁eff) ⊂ 𝑈 (𝑁) is
deconfined, with 𝑁2

eff ∝ 𝐸 . On the bulk side, this supposes the identification of the
small black hole phase with the long string phase [51]. A direct application of our
formula would give a type III1 von Neumann algebra also in this intermediate region,
in agreement with the proposed picture. A mathematically rigorous treatment of the
partially deconfined phase is a problem that we leave for future work.

5.11 Appendix: General construction of von Neumann algebras for factoriz-
ing systems

In this slightly more formal appendix, we introduce a general procedure that allows to
construct von Neumann algebras associated to factorizing systems. This procedure
heavily relies on the rigorous mathematical results of [137]. We comment on how
this construction can be generically applied to study large 𝑁 algebras in AdS/CFT.

Bosonic case: Canonical commutation relations
In order to study bosonic factorizing systems in terms of operator algebras, the
right object to introduce is a representation of the canonical commutation relations
(CCR).

Definition 5.11.1. Let 𝑌 be a real vector space and 𝜔 be an antisymmetric form on



235

𝑌 . Let ℋ be a Hilbert space. A map 𝑦 ↦→ 𝑊 (𝑦) is said to be a representation of the
CCR over 𝑌 in ℋ if for 𝑦1, 𝑦2 ∈ 𝑌 , it satisfies the relation

𝑊 (𝑦1)𝑊 (𝑦2) = 𝑒−
𝑖
2𝜔(𝑦1,𝑦2)𝑊 (𝑦1 + 𝑦2). (5.307)

In this chapter, we are interested in states that factorize in the large 𝑁 limit. These
states are known as quasi-free states in the operator-algebraic language. We now
define this notion.

Definition 5.11.2. Let 𝑦 ↦→ 𝑊 (𝑦) be a representation of the CCR on a Hilbert space
ℋ. A vector |Ψ⟩ ∈ ℋ is said to be quasi-free if it is cyclic, and there exists a
quadratic form 𝜂 in ℋ such that for all 𝑦,

⟨Ψ|𝑊 (𝑦) |Ψ⟩ = 𝑒− 1
4𝜂(𝑦,𝑦) . (5.308)

As the form 𝜂 is quadratic, the fields can be treated as Gaussian, which implies that
the correlation functions satisfy Wick’s theorem.

An alternative definition of quasi-free states can be formulated thanks to the fac-
torization property of correlation functions. More precisely, we have the following
result.

Proposition 5.11.3 ([137]). Let |Ψ⟩ be a vector in a strongly continuous represen-
tation of the CCR 𝑊 (𝑦) = 𝑒𝑖𝜙(𝑦) . |Ψ⟩ is quasi-free if and only if for all 𝑦1, ...𝑦𝑛,
|Ψ⟩ ∈ Dom(𝜙(𝑦1) . . . 𝜙(𝑦𝑛)), and

⟨Ψ| 𝜙(𝑦1) . . . 𝜙(𝑦2𝑚−1) |Ψ⟩ = 0, (5.309)

⟨Ψ| 𝜙(𝑦1) . . . 𝜙(𝑦2𝑚) |Ψ⟩ =
∑︁

𝜛Wick pairing

𝑚∏
𝑗=1
⟨Ψ| 𝜙(𝑦𝜛(2 𝑗−1))𝜙(𝑦𝜛(2 𝑗)) |Ψ⟩ .

(5.310)

The theory of quasi-free states of the CCR is well-studied, and there is a generic
procedure that allows for the construction of most quasi-free representations. It is
formalized by the notion of Araki–Woods representation, which we now introduce.

Let 𝑍 be a Hilbert space, and let Γ be the bosonic Fock space over 𝑍 ⊕ �̄� . We equip
the space Re(𝑍 ⊕ �̄� ⊕ (𝑍 ⊕ �̄�)) with the symplectic form

𝜔((𝑥, 𝑥), (𝑦, �̄�)) := 2Im(𝑥, 𝑦). (5.311)
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Then, there is a canonical representation of the CCR given by

𝑊 (𝑧1, 𝑧2) := 𝑒𝑖𝜙(𝑧1,𝑧2) , (5.312)

where

𝜙(𝑧1, 𝑧2) =
1
√

2
(𝑎†(𝑧1, 𝑧2) + 𝑎(𝑧1, 𝑧2)), (5.313)

𝑎 and 𝑎† being the usual raising and lowering operators.

The Araki–Woods representations [25] of the CCR are parameterized by an operator
𝜌, defined by

𝜌 := 𝛾(1 − 𝛾)−1, (5.314)

where 𝛾 is a self-adjoint operator satisfying 0 ≤ 𝛾 ≤ 1. Then, for 𝑧 ∈ Dom(𝜌 1
2 ), we

can define two unitary operators𝑊𝛾,𝑙 and𝑊𝛾,𝑟 on Γ by

𝑊𝛾,𝑙 (𝑧) := 𝑊 ((𝜌 + 1) 1
2 𝑧, �̄�

1
2 𝑧),

𝑊𝛾,𝑟 (𝑧) := 𝑊 (𝜌 1
2 𝑧, ( �̄� + 1) 1

2 𝑧).
(5.315)

The von Neumann algebras generated by the 𝑊𝛾,𝑙 (𝑧) (resp. 𝑊𝛾,𝑟 (𝑧)) are called
the left (resp. right) Araki–Woods algebras associated to the operator 𝜌. Note, in
particular, that one can recover the operator 𝜌 entirely from the two-point functions
of fields and creation and annihilation operators, for example we have the identity

(𝑧2, 𝜌𝑧1) = ⟨Ω| 𝑎†𝛾,𝑙 (𝑧1)𝑎𝛾,𝑙 (𝑧2) |Ω⟩ , (5.316)

where the creation and annihilation operators 𝑎†
𝛾,𝑙

and 𝑎𝛾,𝑙 are defined by

𝑎
†
𝛾,𝑙
(𝑧) := 𝑎†((𝜌 + 1) 1

2 𝑧, 0) + 𝑎(0, �̄� 1
2 𝑧),

𝑎𝛾,𝑙 (𝑧) := 𝑎((𝜌 + 1) 1
2 𝑧, 0) + 𝑎†(0, �̄� 1

2 𝑧),
(5.317)

and |Ω⟩ is the vacuum of the Fock space of the Araki–Woods representation.

The power of Araki–Woods representations comes from the fact that, under mild
assumptions, any quasi-free representation of the CCR is isomorphic to an Araki–
Woods representation. In particular, the following result, due to Dereziński, holds:

Theorem 5.11.4 ([137]). Let 𝑦 ↦→ 𝑊 (𝑦), 𝑦 ∈ 𝑌0, be a quasi-free representation
of the CCR in a Hilbert space ℋ, with a cyclic quasi-free vector |Ψ⟩ satisfying
⟨Ψ|𝑊 (𝑦) |Ψ⟩ = 𝑒− 1

4𝜂(𝑦,𝑦) , where 𝜂 is a nondegenerate inner product. Let 𝑌 be the
real Hilbert space completion of 𝑌0 for 𝜂, and 𝜔 be the bounded extension of the
antisymmetric form associated to 𝑌0 to 𝑌 . Assume 𝜔 is nondegenerate on 𝑌 . Then,
𝑊 is unitarily equivalent to an Araki–Woods representation of the CCR.
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The interest of knowing that most quasi-free representations of the CCR are isomor-
phic to Araki–Woods representations is that there exist simple sufficient conditions
to determine the type of their bicommutant.

Theorem 5.11.5 ([137]). Let 𝑀 be the bicommutant of an Araki–Woods representa-
tion of the CCR, and 𝛾 the associated operator defined as above. If 𝛾 is trace-class,
then 𝑀 has type I. If 𝛾 has some continuous spectrum, then 𝑀 has type III1.

It is this statement that, applied to our context in Section 5.3, allows us to conclude
about the type of the von Neumann algebras on both sides of the Hagedorn phase
transitions.

Fermionic case: Canonical anticommutation relations
We can perform an entirely analogous analysis for fermionic oscillators. The starting
point is now the algebra of the canonical anticommutation relations (CAR).

Definition 5.11.6. Let 𝑌 be a real vector space and 𝛼 be an positive inner product
on 𝑌 . Let ℋ be a Hilbert space. A map 𝑦 ↦→ 𝜙(𝑦) is said to be a representation of
the CAR over 𝑌 in ℋ if its range only contains bounded self-adjoint operators, and
for 𝑦1, 𝑦2 ∈ 𝑌 , it satisfies the relation

{𝜙(𝑦1), 𝜙(𝑦2)} = 2𝛼(𝑦1, 𝑦2). (5.318)

In the same way as before, we can define the notion of quasi-free state of the CAR.

Definition 5.11.7. Let 𝑦 ↦→ 𝑊 (𝑦) be a representation of the CAR on a Hilbert space
ℋ. A vector |Ψ⟩ ∈ℋ is said to be quasi-free if it is cyclic, and for all 𝑦𝑖,

⟨Ψ| 𝜙(𝑦1) . . . 𝜙(𝑦2𝑚−1) |Ψ⟩ = 0, (5.319)

and

⟨Ψ| 𝜙(𝑦1) . . . 𝜙(𝑦2𝑚) |Ψ⟩ = (−1)
𝑚(𝑚−1)

2
∑︁

𝜛Wick pairing
sgn(𝜛)

𝑚∏
𝑗=1
⟨Ψ| 𝜙(𝑦𝜛( 𝑗))𝜙(𝑦𝜛( 𝑗+𝑚)) |Ψ⟩ .

(5.320)

Now, closely following the bosonic case, we introduce a generic procedure to
construct a large class of quasi-free representations of the CAR and classify them.
These representations are called Araki–Wyss representations [27].
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Let 𝑍 be a Hilbert space, and let Γ be the fermionic Fock space on 𝑍 ⊕ �̄� . We see
the space Re(𝑍 ⊕ �̄� ⊕ (𝑍 ⊕ �̄�)) as a real Hilbert space. Then, there is a canonical
representation of the CAR given by

𝜙(𝑧1, 𝑧2) =
1
√

2
(𝑎†(𝑧1, 𝑧2) + 𝑎(𝑧1, 𝑧2)), (5.321)

𝑎 and 𝑎† being the usual fermionic raising and lowering operators.

Similarly to the Araki–Woods representations of the CCR, the Araki–Wyss repre-
sentations of the CAR are parameterized by an operator 𝜌, defined by

𝜌 := 𝛾(1 − 𝛾)−1, (5.322)

where 𝛾 is a self-adjoint operator satisfying 0 ≤ 𝛾 ≤ 1. Then, for 𝑧 ∈ Dom(𝜌 1
2 ), we

can define the fields 𝜙𝛾,𝑙 and 𝜙𝛾,𝑟 on Γ by

𝜙𝛾,𝑙 (𝑧) := 𝜙((1 − 𝜌) 1
2 𝑧, �̄�

1
2 𝑧),

𝜙𝛾,𝑟 (𝑧) := 𝜙(𝜌 1
2 𝑧, (1 − �̄�) 1

2 𝑧).
(5.323)

The von Neumann algebras generated by the 𝜙𝛾,𝑙 (𝑧) (resp. 𝜙𝛾,𝑟 (𝑧)) are called the left
(resp. right) Araki–Wyss algebras associated to the operator 𝜌. Note, in particular,
that one can recover the operator 𝜌 entirely from the two-point functions of fields
and creation and annihilation operators, for example we have the identity

(𝑧2, 𝜌𝑧1) = ⟨Ω| 𝑎†𝛾,𝑙 (𝑧1)𝑎𝛾,𝑙 (𝑧2) |Ω⟩ , (5.324)

where the creation and annihilation operators 𝑎†
𝛾,𝑙

and 𝑎𝛾,𝑙 are defined by

𝑎
†
𝛾,𝑙
(𝑧) := 𝑒

𝑖 𝜋
2 N(N−1)

[
𝑎†(0, (1 − �̄�) 1

2 𝑧) + 𝑎(𝜌 1
2 𝑧, 0)

]
𝑒
𝑖 𝜋
2 N(N−1) ,

𝑎𝛾,𝑙 (𝑧) := 𝑒
𝑖 𝜋
2 N(N−1)

[
𝑎(0, (1 − �̄�) 1

2 𝑧) + 𝑎†(𝜌 1
2 𝑧, 0)

]
𝑒
𝑖 𝜋
2 N(N−1) ,

(5.325)

where N is the number operator. Also in the fermionic case, any reasonable quasi-
free representation of the CAR is isomorphic to an Araki–Wyss representation.

Theorem 5.11.8 ([137]). Let 𝑦 ∈ 𝑍0 ↦→ 𝜙(𝑦) be a quasi-free representation of
the CAR on a Hilbert space ℋ, with a cyclic quasi-free vector |Ψ⟩. Let 𝜔 be the
antisymmetric form defined by

𝜔(𝑦1, 𝑦2) :=
1
𝑖
⟨Ψ| [𝜙(𝑦1), 𝜙(𝑦2)] |Ψ⟩ , (5.326)

and suppose that the kernel of𝜔 is even or infinite-dimensional. Then,𝑊 is unitarily
equivalent to an Araki–Wyss representation of the CAR.
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Sufficient results are also available to determine the type of the bicommutant of an
Araki–Wyss representation of the CAR.

Theorem 5.11.9 ([137]). Let 𝑀 be the bicommutant of an Araki–Wyss representa-
tion of the CAR, and 𝛾 the associated defined as above. If 𝛾 is trace-class, then 𝑀
has type I. If 𝛾 has some continuous spectrum, then 𝑀 has type III1.

5.12 Appendix: Exotic example: Effective N = 4 super-Yang–Mills
The model discussed in this appendix is an effective description of four-dimensional
N = 4 super-Yang–Mills theory [427, 5]. We exploit a result of [150] to cast this
example in the formalism of discrete matrix models, akin to Subsection 5.4. N = 4
super-Yang–Mills does not possess an integer 𝐿, analogous to the number of flavors,
to sum over. However, a certain summation is built-in in the formulation of [150].
This model will therefore be somewhat exotic, not fully of the type introduced in
Section 5.5, but it is nonetheless instructive to explore this example. We thus mostly
reviews old results and rephrases them in our overarching framework.

We stress that we content ourselves with discussion on the toy quantum mechanics,
and do not claim implications for the spectral density of full-fledged N = 4 super-
Yang–Mills.

Consider four-dimensional 𝑆𝑈 (𝑁 +1) N = 4 super-Yang–Mills theory placed on the
compact Euclidean space S3 × S1

𝛽SYM
, with radius of the thermal circle the inverse

temperature 𝛽SYM. Deep in the weak ’t Hooft coupling regime, the partition function
reduces to [427, 5]

ZN=4(𝑎) =
∮
𝑆𝑈 (𝑁+1)

d𝑈 exp
{𝑎

2
tr (𝑈) tr

(
𝑈−1

)}
, (5.327)

with 𝑎 = 𝑎(𝛽SYM) a function of the inverse temperature. Here we have discarded
contributions that become irrelevant near the transition point, see Appendix 5.13 for
more details. This matrix model undergoes a first order phase transition at 𝑎 = 2
[302], reviewed in Appendix 5.13.

An alternative derivation of the first order phase transition in (5.327) was given
in [150]. The authors of [150] started by uncovering the equivalent description
of (5.327) in a free fermion formalism. This latter approach rewrites (5.327) as a
discrete matrix ensemble, of the type we have considered in Subsection 5.4.
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Lemma 5.12.1 ([150]). For every 𝑎 > 0, letZN=4(𝑎) be as in (5.327). Besides, let
𝔖𝐿 denote the symmetric group of 𝐿 elements and 𝑑𝑅 (𝔖𝐿) denote the dimension of
the representation 𝑅 of 𝔖𝐿 . It holds that

ZN=4(𝑎) =
∞∑︁
𝐿=0

𝑎𝐿

2𝐿𝐿!

∑︁
𝑅 : |𝑅 |=𝐿
ℓ(𝑅)≤𝑁

𝑑𝑅 (𝔖𝐿)2. (5.328)

The inner sum runs over irreducible representations 𝑅 of 𝔖𝐿 , which are in one-to-
one correspondence with Young diagrams of 𝐿 boxes, restricted to have length at
most 𝑁 .

Proof. The derivation of this identity is in [150, Sec.3], to which we refer for the
details. The proof is conceptually very similar to the character expansion of the other
examples, although slightly more involved. It is based on the character expansion
of the integrand in (5.327), and applying the orthogonality of characters to remove∮
𝑆𝑈 (𝑁+1) . □

The inner sum in (5.328) can be rephrased as running over irreducible representations
𝑅 of 𝑆𝑈 (𝑁 + 1), which are in one-to-one correspondence with Young diagrams of
length at most 𝑁 . Namely

𝑅 = (𝑅1, 𝑅2, . . . , 𝑅𝑁 ) with 𝑅1 ≥ 𝑅2 ≥ · · · ≥ 𝑅𝑁 ≥ 0. (5.329)

Importantly, the sum is restricted to diagrams consisting of |𝑅 | = ∑𝑁
𝑖=1 𝑅𝑖 = 𝐿 boxes.

The quantity 𝑑𝑅 (𝔖𝐿) stands for the dimension of 𝑅 as a representation of 𝔖𝐿 . It
differs from the dimension of 𝑅 viewed as a 𝑆𝑈 (𝑁 + 1) representation, customarily
denoted by dim 𝑅:

𝑅 : |𝑅 | = 𝐿 and ℓ(𝑅) ≤ 𝑁 =⇒ 𝑅 ∈ { 𝑆𝑈 (𝑁 + 1) reps } ∩ { 𝔖𝐿 reps }
dim 𝑅︸︷︷︸

𝑅 is 𝑆𝑈 (𝑁 + 1) rep

≠ 𝑑𝑅 (𝔖𝐿)︸   ︷︷   ︸
𝑅 is 𝔖𝐿 rep

. (5.330)

Finally, the outer sum in (5.328) runs over all the sizes of the symmetric group.

With the customary change of variables (5.60), and using the Frobenius–Weyl
formula for 𝑑𝑅 (𝔖𝐿) [312], (5.328) becomes

ZN=4(𝑎) =
∞∑︁
𝐿=0

(𝑎
2

)𝐿 ∑︁
ℎ1>···>ℎ𝑁≥0

𝐿!∏𝑁
𝑗=1(ℎ 𝑗 !)2

∏
1≤𝑖< 𝑗≤𝑁

(ℎ𝑖 − ℎ 𝑗 )2𝛿
(
| ®ℎ | − 𝐿 − 𝑁 (𝑁 − 1)

2

)
,

(5.331)
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Figure 5.23: The inverse temperature 𝛽 of the toy model quantum mechanics is a
function of the inverse temperature 𝛽SYM of N = 4 super-Yang–Mills.

where we are using a shorthand notation | ®ℎ | := ∑𝐿
𝑗=1 ℎ 𝑗 .

It is also possible to remove the ordering of the eigenvalues ℎ 𝑗 and sum over
unordered 𝑁-tuples ®ℎ ∈ N𝑁 , cancelling the 𝐿! in the summand.

To complete the analogy with the formalism of Sections 5.4-5.5, we may write

𝑎 = 2 exp (−𝛽) , (5.332)

where 𝛽 is the inverse temperature of the microscopic system. This should not
be confused with the inverse temperature 𝛽SYM of N = 4 super-Yang–Mills. 𝛽 =

− ln 𝑎(𝛽SYM)
2 is a monotonically increasing function of 𝛽SYM > 0, as shown in Figure

5.23.

The dependence on 𝑎 is then interpreted as the Boltzmann factor of the quantum
system: (𝑎

2

)𝐿
= 𝑒−𝐿𝛽 = 𝑒

−𝛽
(
| ®ℎ|− 𝑁 (𝑁−1)

2

)
. (5.333)

The partition function in this formalism reads

ZN=4(2𝑒−𝛽) = 𝑒
𝛽

2 𝑁 (𝑁−1)
∞∑︁
𝐿=0

∑︁
ℎ1>···>ℎ𝑁≥0

𝑒−𝛽 |
®ℎ | 𝐿!∏𝑁

𝑗=1(ℎ 𝑗 !)2
∏

1≤𝑖< 𝑗≤𝑁
(ℎ𝑖 − ℎ 𝑗 )2

(5.334)

× 𝛿

(
| ®ℎ | − 𝐿 − 𝑁 (𝑁 − 1)

2

)
.

We emphasize that the discrete matrix model (5.334) is closely related to but falls
outside of the framework of Section 5.5.

• The identification (5.332) is really 𝑎/2 = 𝑦, with 𝑦 a fugacity for the conserved
charge 𝐻 in the simplified quantum system. Let us mention that (5.331) is
derived for 𝑎 > 0, and in particular it is continuous. The resulting system is
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thus defined for arbitrary real inverse temperature 𝛽 ∈ R, as a consequence of
the constraint on the total energy.

• Here the roles of 𝑁 and 𝐿 are partly exchanged: 𝐿 constrains the allowed
configurations ®ℎ, and the total number of eigenvalues is 𝑁 . Moreover, the
constraint | ®ℎ | − 𝑁 (𝑁−1)

2 = 𝐿 does not directly bound the allowed states, but
rather fixes the total energy of the quantum mechanical system. Schematically:

Section 5.4 Appendix 5.12
𝑁 constraint on configurations # of eigenvalues
𝐿 # of eigenvalues constraint on configurations

fixed-𝐿 quantum system microcanonical ensemble
weight 𝔮𝐿

2 1/𝐿!

Proposition 5.12.2 ([150]). For every 𝑎 > 0, let ZN=4(𝑎) be as in (5.334). In the
large 𝑁 limit, it undergoes a first order phase transition at 𝑎 = 2, with

lnZN=4(𝑎) =

𝑂 (1) 𝑎 < 2

𝑂 (𝑁2) 𝑎 > 2.
(5.335)

Proof. We only review here the salient features of [150, Sec.4] and reformulate
some steps in uniformity with the rest of the work. One begins by rewriting the
summand in (5.331) in the form 𝑒−𝑆(

®ℎ;𝐿) , where

𝑆(®ℎ; 𝐿) = 2
𝑁∑︁
𝑖=1

ln(ℎ𝑖!) −
∑︁
𝑖≠ 𝑗

ln
��ℎ𝑖 − ℎ 𝑗 �� − 𝐿 ln

(𝑎
2

)
− ln(𝐿!). (5.336)

In the large 𝑁 limit, it is convenient to interpret the 𝛿 function as constraining the
value of 𝐿, for any given configuration (ℎ1, . . . , ℎ𝑁 ). Defining

ℓ :=
𝐿

𝑁2 , (5.337)

we have the constraint

ℓ =
1
𝑁2

𝑁∑︁
𝑖=1

ℎ𝑖 +
𝑁 − 1

2𝑁
. (5.338)

One advantage of this approach is that, now, the configurations ®ℎ are unconstrained,
and hence the numbers ℎ 𝑗 grow linearly in 𝑁 .
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We can in fact fix the precise scaling with 𝑁 by requiring the existence of an
equilibrium solution at large 𝑁 . Define the scaled variables 𝑥𝑖 through

ℎ𝑖 = 𝑁
𝜂𝑥𝑖, (5.339)

for some 𝜂 > 0 and 𝑥𝑖 being 𝑂 (1) at large 𝑁 . Introduce the eigenvalue density

𝜚(𝑥) = 1
𝑁

𝑁∑︁
𝑖=1

𝛿(𝑥 − 𝑥𝑖). (5.340)

We must look for 𝜚(𝑥) satisfying∫
d𝑥𝜚(𝑥) = 1 𝜚(𝑥) ≤ 1 supp 𝜚 ⊂ [0,∞). (5.341)

At large 𝑁 , we arrive at

𝑆

𝑁2 = 2𝑁𝜂−1
∫

𝑥 ln(𝑥)𝜚(𝑥)d𝑥−
∫

𝜚(𝑥)d𝑥 P
∫

d𝑦𝜚(𝑦) ln|𝑥−𝑦 |−ℓ ln
(𝑎

2

)
−ℓ ln(ℓ)+· · ·

(5.342)
where P

∫
stands for the principal value integral and the dots include constant terms

as well as terms that are sub-leading in 𝑁 . We do not need them. We see that, in
order to obtain a non-trivial equilibrium configuration, we must have 𝜂 = 1, so that
positive and negative contributions to 𝑆 are of the same order in 𝑁 and compete.

From here, we must find 𝜚∗(𝑥), subject to (5.341), that extremizes 𝑆. The saddle
point equation (i.e., equilibrium equation) reads

2P
∫

d𝑦
𝜚∗(𝑦)
𝑥 − 𝑦 = 2 ln(𝑥) − ln

(𝑎
2
ℓ

)
, (5.343)

and the equality (5.338) fixing ℓ is

ℓ =

∫
𝑦𝜚∗(𝑦)d𝑦 −

1
2
. (5.344)

The solution was found in [150] and reads

𝜚∗(𝑥) =
2
𝜋

arccos

(
𝑥 + 𝜉 − 1

2

2
√
𝑥𝜉

)
, (5.345)

supp 𝜚∗ = [𝑥−, 𝑥+], 𝑥± :=
√︁
𝜉 ± 1
√

2
.

The parameter 𝜉 is a function of 𝑎 defined through

𝜉2 =
𝑎

2
ℓ. (5.346)
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Because ℓ depends on 𝜚, and hence on 𝜉 and 𝑎, this condition only fixes 𝜉 implicitly.

The solution (5.345) ceases to satisfy 𝜚(𝑥) ≤ 1 ∀𝑥 at 𝜉 = 1
2 . At this value, the left

edge 𝑥− hits the hard wall at 𝑥 = 0. We then ought to look for a different solution.
It was found in [150] that the solution in this case reduces to the uniform density on
the interval [0, 1], leading to a trivial saddle point configuration. Translated in the
Young diagram language, the large 𝑁 limit in this phase is dominated by the trivial
representation 𝑅 = ∅, and lnZN=4 remains 𝑂 (1). □

Double scaling of the effective N = 4 super-Yang–Mills

A double scaling regime for the matrix model effective description ofN = 4 super-
Yang–Mills on S3 × S1

𝛽SYM
was envisioned by Liu [302]. It consists in

𝑁 →∞, 𝑎 → 2, 𝑁
4
3

(𝑎
2
− 1

)
fixed. (5.347)

For the sake of completeness, we sketch here how to derive it from the discrete
ensemble. Consider the high temperature phase 𝑎 > 2. 𝜚 is supported on

𝑥− ≤ 𝑥 ≤ 𝑥+ 𝑥± :=
√︁
𝜉 ± 1
√

2
(5.348)

with the parameter 𝜉 given in (5.345). We know from above that the critical regime
corresponds to 𝑎 → 2 and 𝜉 → 1

2 . We thus define the double scaling parameters 𝑎𝑠
and 𝜉𝑠 according to

𝑎

2
− 1 =

𝑎𝑠

𝑁4/3 , 𝜉 − 1
2
=
𝜉𝑠

𝑁𝜈
, (5.349)

where the exponent of 𝑁 in 𝑎 was determined in (5.347), while the exponent 𝜈 will
be fixed momentarily by consistency. Recall that 𝜉 is an implicit function of 𝑎. Here
we will invert the relation and dial 𝜉𝑠 to go into the double scaling regime, with 𝑎𝑠
implicitly fixed by the inverse function theorem (applied locally near 𝑎𝑠 ≈ 0) as a
function of 𝜉𝑠.

The edges of the eigenvalue distribution become

𝑥− ≈
𝜉𝑠√
2𝑁𝜈

, 𝑥+ ≈
√

2. (5.350)

In order to explore the critical regime, we zoom in close to the left edge. Stated
more formally, we introduce the doubly scaled variable 𝑥𝑠 as

𝑥 − 𝑥− =
𝑥𝑠

𝑁𝜈2
, (5.351)
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for some power 𝜈2 uniquely fixed by 𝜈. With all these substitutions into the eigen-
value density (5.345), we determine the scaling exponents 2𝜈2 = 𝜈 = 2

3 . Using this
into the condition 𝜉2 = ℓ 𝑎2 and approximating ℓ = 1

4 +
ℓ𝑠
𝑁𝜈3 we find

𝜉𝑠 =
√
𝑎𝑠 = ℓ𝑠 (5.352)

and 𝜈3 = 𝜈. Altogether we introduce the doubly scaled eigenvalue density

𝜚𝑠 (𝑥𝑠) := 𝜚∗
(√︂

𝑎𝑠

2
𝑁−2/3 + 𝑥𝑠𝑁−1/3

)
≈ 2
𝜋

arccos

[(
𝜉𝑠

2

)−1/4
𝑥𝑠

]
supp 𝜚𝑠 =

[𝑎𝑠
2
𝑁−1/3,

√
2𝑁1/3

]
.

(5.353)

supp 𝜚∗ tends to the positive real axis in the double scaling limit.

The double scaling limit (5.347) has been translated in the discrete matrix model to
a limit probing the left edge of the distribution, where the first order transition is
taking place. This is not a genuinely new result, but a consequence of mapping the
result in [302] to the language of [150]. Here we have limited ourselves to perform
the computation explicitly.

5.13 Appendix: Hagedorn transitions in holographic matrix models
From third to first order phase transitions in unitary matrix models
We consider a generic unitary one-matrix model, with integration domain𝑈 (𝑁):

ZUMM(𝜎, ®𝑔) =
∮
𝑈 (𝑁)
[d𝑈] exp

{
𝜎

∞∑︁
𝑛=1

𝑔𝑛

𝑛
Tr (𝑈𝑛 +𝑈−𝑛)

}
(5.354)

where [d𝑈] is the Haar measure and ®𝑔 = (𝑔𝑛)𝑛≥1 is an arbitrary collection of
interaction coefficients, which satisfy the conditions [433]

∞∑︁
𝑛=1

𝑔𝑛

𝑛
< ∞,

∞∑︁
𝑛=1

𝑔2
𝑛

𝑛
< ∞. (5.355)

• For later convenience, we have factored out an overall coefficient 𝜎 ∈ R.
Several cases of interest in fact possess a Z2 symmetry 𝜎 ↦→ −𝜎, which
reduces the parameter space to 𝜎 ≥ 0.

• Besides, we have restricted our attention to systems that are symmetric under
the involution C : 𝑈 ↦→ 𝑈−1, which corresponds to charge conjugation in a
𝑈 (𝑁) QFT. This assumption may be dropped, and the coefficients of Tr𝑈−𝑛

could be generically different from those of Tr𝑈𝑛. This generalization does
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not add to the central theme of this work, thus we consider models with
C-symmetry for clarity.

• We have moreover considered integration over 𝑈 (𝑁), instead of 𝑆𝑈 (𝑁 + 1)
considered in the main text. This change is to lighten the expressions and, as
we are only interested in 𝑁 →∞, the difference is negligible.

The unitary matrix model (5.354) belongs to the family (5.24) investigated in the
main text. The exponential in the integrand is a class function, thus it admits an
expansion in characters of 𝑈 (𝑁). This establishes the relation with the quantum
mechanics discussed in Section 5.4.

Diagonalizing the unitary matrix 𝑈 ∈ 𝑈 (𝑁), (5.354) becomes an integral over
eigenvalues:

ZUMM(𝜎, ®𝑔) =
1
𝑁!

∫
[−𝜋,𝜋]𝑁

∏
1≤𝑎<𝑏≤𝑁

(
2 sin

(
𝜃𝑎 − 𝜃𝑏

2

))2 𝑁∏
𝑎=1

𝑒2𝜎
∑∞
𝑛=1

𝑔𝑛
𝑛

cos(𝑛𝜃𝑎) d𝜃𝑎
2𝜋

.

(5.356)
In the planar large 𝑁 limit, i.e., with ’t Hooft scaling

𝜎 = 𝑁𝛾, 𝛾 fixed, (5.357)

the model (5.354) has an intricate phase structure as a function of the parameters
𝛾, ®𝑔. This is more directly visible in the form (5.356). Typically, these phase
transitions are third order. We refer to the pertinent literature, see, e.g., [396] for a
review and [211, 448, 449, 266, 322, 259, 106, 407, 399, 411] for a partial list of
works that address phase transitions fitting in our paradigm.

The next lemma is an extension of Szegő’s theorem to the planar limit.

Lemma 5.13.1 ([433, 407]). LetZUMM be as in (5.356) and

FUMM(𝛾, ®𝑔) := lim
𝑁→∞

1
𝑁2 lnZUMM (𝑁𝛾, ®𝑔) . (5.358)

Assume that {𝑔𝑛}𝑛≥1 satisfy
∞∑︁
𝑛=1

𝑔𝑛+1𝑧
𝑛 =

𝑃®𝑔 (𝑧)
𝑄 ®𝑔 (𝑧)

(5.359)

for some polynomials 𝑃®𝑔, 𝑄 ®𝑔. Then, there exists 𝑟 = 𝑟 ( ®𝑔) > 0 such that

FUMM(𝛾, ®𝑔) = 𝛾2
∞∑︁
𝑛=1

1
𝑛
𝑔2
𝑛, ∀0 ≤ |𝛾 |< 𝑟 ( ®𝑔). (5.360)
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Proof. This lemma asserts that, for 𝛾 small enough, (5.354) always admits a phase
in which FUMM is quadratic in 𝛾. This was proven by direct computation in [407],
but can also be argued for by analytic continuation of Szegő’s theorem [433].

The condition (5.359) guarantees that the functions appearing in the saddle point
equation have at most poles. If 𝑧𝑝 is a double zero of 𝑄 ®𝑔 (𝑧), it can be regularized
by splitting it into simple poles at 𝑧𝑝 ± 𝑖𝜀, sending 𝜀 → 0 at the end. We can thus
assume without loss of generality that at most simple poles appear in the saddle
point equation, possibly with the prescribed regularization. □

In the notation of Lemma 5.13.1, 𝑟 ( ®𝑔) is the smallest value in the set of critical
points. Assume that (5.354) has a phase transition at a critical curve

𝛾 = 𝛾𝑐 ( ®𝑔). (5.361)

For concreteness, we assume the transition is third order, as is typical for unitary
matrix models, but the argument works also for second order transitions.

Inspired by [302], we argue for a way to promote such third order transition to a first
order one, which moreover shows Hagedorn behavior. We enforce an average over
the coupling 𝜎, with Gaussian weight of standard deviation 𝑎 > 0. The model we
consider is:

Zholo(𝑎, ®𝑔) =
∫ ∞

0
d𝜎𝑒−

𝜎2
2𝑎 ZUMM(𝜎, ®𝑔) (5.362)

= 𝑁

∫ ∞

0
d𝛾 exp

{
−𝑁2

[
𝛾2

2𝑎
− FUMM(𝛾, ®𝑔)

]}
. (5.363)

If (5.354) is not invariant under 𝜎 ↦→ −𝜎, the integration range is from −∞ to
∞. The holographic interpretation of unitary matrix models with average over the
couplings was advocated in [352], although it was implemented in a different way.

In passing, let us notice that we can refine the additional integration in (5.362) into

Zholo(𝑎, ®𝑔) =
∫ ∞

0
d𝜎 𝑓 (𝜎) 𝑒− 𝜎

2
2𝑎 ZUMM(𝜎, ®𝑔) (5.364)

for an arbitrary function 𝑓 (𝜎) such that

lim
𝑁→∞

1
𝑁2 ln 𝑓 (𝑁𝛾) = 0. (5.365)

This condition ensures that the refinement will not affect the phase structure of the
model, and hence does not alter the ensuing discussion.
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The integrand in (5.363) at large 𝑁 is dominated by the saddle points in the variable
𝛾. Consider first the region 𝛾 < 𝛾𝑐, so that the integrand is Gaussian:

exp

{
−𝑁2𝛾2

[
1

2𝑎
−
∞∑︁
𝑛=1

1
𝑛
𝑔2
𝑛

]}
. (5.366)

Its maximum is located at 𝛾 = 0 if

𝑎 < 𝑎𝑐, 𝑎𝑐 :=
1
2

( ∞∑︁
𝑛=1

𝑔2
𝑛

𝑛

)−1

. (5.367)

In this case, the overall growth of (5.363) with 𝑁 is cancelled, and we ought to seek
an 𝑂 (1) solution.

However, when 𝑎 is larger than the threshold 𝑎𝑐, the integrand (5.366) becomes
exponentially large for large values of 𝛾. We thus need to look for a new saddle
point, for strictly positive 𝛾. In the region 𝛾 > 𝛾𝑐, the saddle point equation reads

𝛾

𝑎
=
𝜕

𝜕𝛾
FUMM(𝛾, ®𝑔). (5.368)

If there exists a value 𝛾∗ > 𝛾𝑐 (with 𝛾∗ = 𝛾∗(𝑎, ®𝑔) given in terms of the external
parameters) that solves the equilibrium condition (5.368), then

lnZholo(𝑎, ®𝑔) ≈ 𝑁2
[
FUMM(𝛾∗, ®𝑔) −

𝛾2
∗

2𝑎

]
. (5.369)

For consistency, one should check that

𝛾∗(𝑎, ®𝑔) > 𝛾𝑐 ( ®𝑔). (5.370)

This inequality is understood as defining a region in the 𝑎 > 0 parameter space,
because 𝛾∗ depends (in general) explicitly on 𝑎 and ®𝑔, and 𝛾𝑐 only depends on ®𝑔. Let
us assume the inequality is of the form 𝑎 ≥ 𝑎★ for some function 𝑎★( ®𝑔). Depending
on the values of 𝑎𝑐 and 𝑎★, three scenarios disclose.

(i) 𝑎★ < 𝑎𝑐. The two phases coexists for 𝑎★ < 𝑎 < 𝑎𝑐 and a first order phase
transition takes place when the dominance of the saddles is exchanged. We
think of this phase transition as a function of the control parameter 𝑎 at fixed
couplings ®𝑔.

(ii) 𝑎★ = 𝑎𝑐. There is no coexistence of phases, and a first order transition takes
place at 𝑎 = 𝑎𝑐 (= 𝑎★). This situation is sometimes referred to as a weakly first
order transition.
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(iii) 𝑎★ > 𝑎𝑐. There is a region 𝑎𝑐 < 𝑎 < 𝑎★ which admits no saddle point.
One should look for the local maxima (5.363) and check how the behavior in
this intermediate region matches at the junction points 𝑎 = 𝑎𝑐 and 𝑎 = 𝑎★.
Typically, the solution to lnZholo in the intermediate region is 𝑂 (𝑁2), thus
yielding a first order transition at 𝑎 = 𝑎𝑐. There may or may not be an
additional (second or higher order) phase transition at 𝑎 = 𝑎★. The details
should be checked on a case-by-case basis.

The dependence may in principle be more general than 𝑎 ≥ 𝑎★, for instance,
restricting 𝑎 to a union of intervals. The upshot of the forthcoming analysis is
unchanged, although the phase structure would be more involved.

Hagedorn phase transition
In all the scenarios discussed above, the modification of the one-matrix model
(5.354) into (5.362) led to a first order phase transition, in which the free energy
jumps as

lnZholo =


𝑂 (1) 𝑎 < 𝑎𝐻

𝑂 (𝑁2) 𝑎 > 𝑎𝐻 .
(5.371)

Here we are generically denoting 𝑎𝐻 the value of 𝑎 at which the transition takes
place. It will be a function of the coupling ®𝑔 that characterize the model, and
oftentimes it is 𝑎𝐻 = 𝑎𝑐 as defined in (5.367).

Other gauge groups

While we focus on 𝑈 (𝑁) matrix models, our analysis extends straightforwardly
to 𝑆𝑂 (𝑁) and 𝑆𝑝(𝑁) gauge groups, due to the universality of the large 𝑁 limit.
The extension of Szegő’s theorem to these groups was given by Johansson [262],
from which a version of Lemma 5.13.1 is directly worked out. Our algorithm goes
through unchanged, except for numerical coefficients in lnZholo. The result (5.371)
holds. See, e.g., [380, App.S2] for explicit calculations of the large 𝑁 limit ofZUMM

with gauge group 𝑆𝑂 (𝑁) or 𝑆𝑝(𝑁).

Polyakov loop expectation value

We have claimed in (5.126) that the expectation value of the Polyakov loop is an
order parameter detecting the first order transition. We now prove the claim.
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The starting point is that, in the fixed-𝐿 matrix model (5.42), the Polyakov loop
corresponds to insert 1

𝑁
Tr𝑈 in the matrix ensembleZ (𝑁)

𝐿
. Our derivation based on

the unitary matrix model is an extension of [5, 302].

Theorem 5.13.2. LetP denote the expectation value of a Polyakov loop in the matrix
model (5.109). Assume the matrix model has the Hagedorn transition described
above. Then 

P = 0 if 𝛽−1 < 𝑇𝐻 ,

P ≠ 0 if 𝛽−1 > 𝑇𝐻 ,
(5.372)

signalling a first order phase transition at 𝑇𝐻 .

Proof. Let𝑈 ∈ 𝑆𝑈 (𝑁 +1) and 𝑒𝑖𝜃𝑎 be its eigenvalues. Denote by d𝜎∗(𝜃) the saddle
point measure, normalized to 1. That is, d𝜎∗(𝜃) is the equilibrium measure of the
matrix model Z (𝑁)

𝐿
(that depends on the Veneziano parameter 𝛾) evaluated at the

saddle point 𝛾∗. The expectation value of the Polyakov loop is

P = ⟨ 1
𝑁

Tr𝑈⟩, (5.373)

with ⟨·⟩ meaning expectation value in the matrix model. A standard large 𝑁

computation shows that

P =

∫ 𝜋

−𝜋
𝑒𝑖𝜃d𝜎∗(𝜃). (5.374)

It automatically vanishes if the equilibrium measure is uniform on the circle,
d𝜎∗(𝜃) = d𝜃

2𝜋 for all −𝜋 < 𝜃 ≤ 𝜋, which is true in the phase 𝛽−1 < 𝑇𝐻 .

In the phase 𝛽−1 > 𝑇𝐻 the unitary matrix model is, by construction, in a phase in
which the eigenvalues 𝑒𝑖𝜃𝑎 are not spread on the whole circle. The non-triviality of
𝛾∗ in the phase 𝛽−1 > 𝑇𝐻 guarantees that this remains true after the integration over
the Veneziano parameter. More precisely, there exist 𝜃±, with −𝜋 < 𝜃− < 𝜃+ < 𝜋

such that d𝜎∗(𝜃) ≠ 0 for 𝜃− < 𝜃 < 𝜃+ and vanishes otherwise. Measures of this
type give a non-vanishing expectation value of Tr𝑈, thus P ≠ 0.

Before concluding the proof, we ought to comment on a subtlety in our computation.
This remark is meant for experts, and is a generalization of a remark in [5].

In a deconfined phase, these models should possess a Z𝑁+1 one-form symmetry
from the center of 𝑆𝑈 (𝑁 + 1). We thus should obtain a collection of saddle point
configurations permuted under the Z𝑁+1 symmetry. We have only accounted for
one of them, namely the one with eigenvalues centered around 0. Accounting



251

for all the saddle configurations, their contributions sum up to zero. Naively, the
Polyakov loop would have trivial expectation value at 𝑇 > 𝑇𝐻 as well. However,
this is exactly the same technical issue that one would encounter when trying to
compute the order parameter in the Ising model, with vanishing external field. It is
well-known that one should instead do the computation of the order parameter in
an external field of modulus 𝜀, and send 𝜀 → 0 at the end. In this way, one finds
two different limiting values, depending on the temperature. The same resolution
applies here. We implicitly assume a small perturbation of the action that breaks
the Z𝑁+1 symmetry explicitly and favours one saddle (without loss of generality, we
select the one centered at 0). It is straightforward to repeat the computation at finite
𝜀 > 0 and, turning off the perturbation at the end, we find P ≠ 0 if 𝑇 > 𝑇𝐻 . □

Example 1: Variations on the IOP model
Recall the unitary matrix model cIOP partition function in (5.142), which we rewrite
here:

Z (𝑁)cIOP(𝜎, 𝑦) =
∮
𝑈 (𝑁)
[d𝑈]

[
det

(
1 − √𝑦𝑈

)
det

(
1 − √𝑦𝑈−1

)]−𝜎
. (5.375)

For consistency with the rest of the appendix, we have replaced the discrete number
of flavors 𝐿 ∈ N with a continuous parameter 𝜎 > 0. Likewise, we introduce its
averaged version by integrating over 𝜎 with Gaussian weight:

ZcIOP(𝑦) =
∫ ∞

0
d𝜎 𝑦

𝜎2
2 Z (𝑁)cIOP(𝜎, 𝑦). (5.376)

For simplicity, we work in what we have denoted as Schur slice, in which 1/𝛽 =

−1/ln(𝑦) plays the role of 𝑎.

Theorem 5.13.3. Let 𝑦 = 𝑒−𝛽. There exists 𝑇𝐻 > 0 such that, in the large 𝑁 limit,

lnZcIOP =


𝑂 (1) 1

𝛽
< 𝑇𝐻

𝑂 (𝑁2) 1
𝛽
> 𝑇𝐻 .

(5.377)

Proof. The proof is done in two steps:

(𝑖) take the large 𝑁 planar limit ofZ (𝑁)cIOP;

(𝑖𝑖) insert the result in (5.376) and extremize.
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The Veneziano limit of the unitary matrix model (5.375) was addressed in [29,
405] (see also [106]). The computation of step (𝑖𝑖) is almost identical to the one
performed in the next subsection, thus we omit it. Suffice it here to note that (5.375)
is related to (5.379) through the map

(√𝑦, 𝜎) ↦→ (−√𝑦,−𝜎). (5.378)

In particular, it also shows a third order phase transition that can be promoted to a
first order one by integrating over 𝜎. See Appendix 5.13.

□

Example 2: Matrix model of QCD2

The take-home lesson of this appendix is that, by introducing an extra integration
with Gaussian weight, unitary one-matrix models with a third order phase transition
are promoted to have a first order one, with Hagedorn behavior near the transition
point.

We now exemplify this in the toy model for QCD2 [218] discussed in Section 5.7.
In the notation of Appendix 5.13 it reads

ZQCD2 (𝜎, 𝑦) =
∮
𝑈 (𝑁)
[d𝑈]

[
det

(
1 + √𝑦𝑈

)
det

(
1 + √𝑦𝑈−1

)]𝜎
(5.379)

=

∮
𝑈 (𝑁)
[d𝑈] exp

{
𝜎Tr

[
ln

(
1 + √𝑦𝑈−1

)
+ ln

(
1 + √𝑦𝑈−1

)]}
=

∮
𝑈 (𝑁)
[d𝑈] exp

{
𝜎

∞∑︁
𝑛=1

𝑦𝑛/2

𝑛
Tr (𝑈𝑛 +𝑈−𝑛)

}
. (5.380)

From (5.380), the model manifestly belongs to the family (5.354) with 𝑔𝑛 =
√
𝑦
𝑛.

Here we have relaxed the QCD interpretation, replacing the number of quarks 𝐿 ∈ N
with 𝜎 > 0.

Lemma 5.13.4 ([218]). The quantity

FQCD2 (𝛾, 𝑦) := lim
𝑁→∞

1
𝑁2 lnZQCD2 (𝑁𝛾, 𝑦) (5.381)

shows a third order phase transition at the critical curve

𝛾𝑐 (𝑦) =
1 − √𝑦

2√𝑦 , (5.382)

with

FQCD2 (𝛾, 𝑦) =

−𝛾2 ln(1 − 𝑦) 𝛾 <

1−√𝑦
2√𝑦

−(2𝛾 + 1) ln
(
1 + √𝑦

)
+ 1

4 ln 𝑦 + 𝐶 (𝛾) 𝛾 >
1−√𝑦
2√𝑦 .

(5.383)
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In the second phase, 𝐶 (𝛾) is the 𝑦-independent term

𝐶 (𝛾) = −𝛾2 ln
(
4𝛾(𝛾 + 1)
(2𝛾 + 1)2

)
+ 1

2
ln (1 + 2𝛾) + (1 + 2𝛾) ln

(
2(𝛾 + 1)
1 + 2𝛾

)
. (5.384)

Proof. See [218] for the original proof, or [405] for a uniform treatment of this case
and the model appearing in Appendix 5.13. □

According to the general discussion, we want to integrate over the external field 𝜎,
and show that this produces the Hagedorn behavior (5.371). For consistency with
the rest of the appendix, here we consider:

ZQCD2
(𝑦) =

∫ ∞

0
d𝜎 𝑦

𝜎2
2 ZQCD2 (𝜎, 𝑦)

=

∫ ∞

0
d𝜎 𝑦

𝜎2
2

∮
𝑈 (𝑁)
[d𝑈] exp

{
𝜎Tr

[
ln

(
1 + √𝑦𝑈−1

)
+ ln

(
1 + √𝑦𝑈−1

)]}
.

(5.385)
Again we work in the analogue of the Schur slice, in which the Gaussian weight
in the measure for 𝜎 is 𝑦𝜎2/2. We might have taken a different Gaussian weight
𝑒−𝜎

2/(2𝑎) , but the reader can check that the conclusions are unchanged in the more
general case. Besides, in the planar limit, one can check numerically that, in this
and the previous example, the difference between summing over 𝐿 or integrating
over 𝜎 is sub-leading in 𝑁 . Hence, ZQCD2

and ZEx2 of Section 5.7 will have the
same properties.

Theorem 5.13.5. LetZQCD2
be as in (5.385), with 𝑦 = 𝑒−𝛽. In the large 𝑁 limit, it

undergoes a first order phase transition at 1
𝛽
= 𝑇𝐻 , where 𝑇𝐻 ≈ 1.039. Moreover,

lnZQCD2
=


𝑂 (1) 1

𝛽
< 𝑇𝐻

𝑂 (𝑁2) 1
𝛽
> 𝑇𝐻 .

(5.386)

Proof. As in the proof of Theorem 5.7.3 in Subsection 5.7, we divide the computa-
tion in two steps. Step (𝑖) consists in maximizing the inner matrix modelZQCD2 in
the planar large 𝑁 limit. The solution is in Lemma 5.13.4.

The discussion in step (𝑖𝑖) in the proof of Theorem 5.7.3 goes through identically at
this stage. Let us recall the situation we have found in Subsection 5.7:

• There exists a trivial saddle point 𝛾 = 0, valid for 𝛽 > 𝛽𝑐;

• There exists a nontrivial saddle point 𝛾∗ > 0, valid for 𝛽 < 𝛽𝑐;
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• There is no coexistence phase and the two saddles exchange dominance pre-
cisely at 𝛽 = 𝛽𝑐.

Therefore, this case corresponds to scenario (ii). The direct inspection in the proof
of Theorem 5.7.3 can be repeated here and tells us that a phase transition kicks
in at 𝑇𝐻 = 1/𝛽𝑐. Putting everything together, we finally arrive at the first order,
Hagedorn-like phase transition (5.386) with Hagedorn temperature

𝑇𝐻 =
1
𝛽𝑐
≈ 1.039. (5.387)

□

Example 3: Effective N = 4 super-Yang–Mills
The reasoning of Appendix 5.13 was inspired by and extended a result of Liu [302]
on the effective description of N = 4 super-Yang–Mills theory on S3 × S1

𝛽SYM
, with

radius of the thermal circle the inverse temperature 𝛽SYM = 1/𝑇 . It was shown in
[427, 5] that the partition function in the weak ’t Hooft coupling limit reduces to:

ẐN=4( ®𝑎) =
∮
𝑈 (𝑁)

d𝑈 exp

{∑︁
𝑛≥1

𝑎𝑛

𝑛
tr (𝑈𝑛) tr (𝑈−𝑛)

}
. (5.388)

The coefficients (𝑎𝑛)𝑛≥1 ⊂ R are functions of the inverse temperature 𝛽SYM. The
leading contribution at large 𝑁 comes from the reduced matrix model [5, 14]

ZN=4(𝑎) =
∮
𝑈 (𝑁)

d𝑈 exp
{𝑎

2
tr (𝑈) tr

(
𝑈−1

)}
. (5.389)

We have denoted
𝑎 := 2𝑎1 =

4𝑒−𝛽SYM (3 − 𝑒−𝛽SYM/2)
(1 − 𝑒−𝛽SYM/2)3

. (5.390)

Proposition 5.13.6 ([302]). The matrix model (5.389) undergoes a first order phase
transition at 1

𝛽SYM
= 𝑇𝐻 , where

𝑇𝐻 =
1

2 ln
(
2 +
√

3
) . (5.391)

Besides, it has the behavior (5.371).

Proof. Using a Hubbard–Stratonovich transformation [302], (5.389) can be recast
in the form (5.362):

ZN=4(𝑎) =
∫ ∞

0
𝜎d𝜎 𝑒−

𝜎2
2𝑎

∮
𝑈 (𝑁)

d𝑈 exp
{𝜎

2
tr

(
𝑈 +𝑈−1

)}
. (5.392)
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The inner integral

𝑒𝑁
2FGWW (𝜎/𝑁) =

∮
𝑈 (𝑁)

d𝑈 exp
{𝜎

2
tr

(
𝑈 +𝑈−1

)}
(5.393)

is the famous Gross–Witten–Wadia (GWW) model [211, 448, 449], and belongs to
the family (5.354) with 𝑔1 = 1

2 , 𝑔𝑛>1 = 0. In the planar limit, with scaling 𝜎 = 𝑁𝛾,
it undergoes a third order phase transition at 𝛾 = 1:

FGWW(𝛾) =

𝛾2

4 𝛾 ≤ 1

𝛾 − 1
2 ln 𝛾 − 3

4 𝛾 > 1.
(5.394)

Plugging this result back into (5.392), the large 𝑁 limit is dominated by the saddle
point 𝛾∗ that solves

𝛾∗
𝑎

= F ′GWW(𝛾∗). (5.395)

In the region 𝛾 ≤ 1, the solution is 𝛾∗ = 0, which is the absolute minimum if

1
2𝑎
− 1

4
> 0 =⇒ 𝑎 > 2. (5.396)

Inspecting the region 𝛾 > 1, the solution to (5.395) is the saddle point

𝛾∗ =
1
2

[
𝑎 +

√︁
𝑎(𝑎 − 2)

]
. (5.397)

This solution is valid in the region 𝑎 ≥ 2. Computing the free energy, one finds a
first order phase transition at 𝑎𝐻 = 2.

We are in the scenario (ii) described above, and the transition manifests the Hagedorn
behavior (5.371), expected in this effective description of N = 4 super-Yang–Mills
[302]. Using the relation (5.390) and 𝛽SYM = 1/𝑇 , one in facts finds out the expected
behavior

lnZN=4(𝑎(𝑇)) =

𝑂 (1) 𝑇 < 𝑇𝐻

𝑂 (𝑁2) 𝑇 > 𝑇𝐻 ,
(5.398)

with Hagedorn temperature

𝑇𝐻 =
1

2 ln
(
2 +
√

3
) ≈ 0.380. (5.399)

□
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Counterexample: 𝑞-ensemble and effective Chern–Simons theory
Our procedure to upgrade a third order phase transition to a first order one relies on
Lemma 5.13.1. In practice, it boils down to the existence of a phase in which the
eigenvalues 𝜃𝑎 of the random matrix in ZUMM fill the whole interval [−𝜋, 𝜋]. For
the sake of completeness, here we provide a counterexample to our procedure, based
on violating the assumption (5.359) in Lemma 5.13.1. We will also explain that the
lack of a first order phase transition in this case is expected on physical grounds.

Let P(𝑥) = ∏
𝑚≥1(1 − 𝑥𝑚) be the generating function of partitions and 𝜗(𝑧; 𝑞)

denote the Jacobi theta function. Consider the following 𝑞-ensemble [363, 394,
432]:

ZCS(𝑞) =
1

P(𝑞2)𝑁!

∫
[−𝜋,𝜋]𝑁

∏
1≤𝑎<𝑏≤𝑁

(
2 sin

(
𝜃𝑎 − 𝜃𝑏

2

))2 𝑁∏
𝑎=1

𝜗(𝑒𝑖𝜃𝑎 ; 𝑞) d𝜃𝑎
2𝜋

.

(5.400)
At 𝑞 = 𝑒𝑖2𝜋/𝑘 , 𝑘 ∈ Z, this unitary one-matrix model computes the partition function
of topological 𝑈 (𝑁)𝑘 Chern–Simons theory on S3 [394], and is understood as the
analytic continuation of the Chern–Simons level for 0 < |𝑞 | < 1. Throughout, we
will set

𝑞 = 𝑒−1/2𝜎, 𝜎 > 0, (5.401)

which is the usual 𝑞-parameter in passing from Chern–Simons theory to the associ-
ated topological string theory. The Jacobi triple product identity implies that

𝜗(𝑧; 𝑞)
P(𝑞2)

=

∞∏
𝑚=0
(1 + 𝑧𝑞2𝑚+1) (1 + 𝑧−1𝑞2𝑚+1)

= exp

[ ∞∑︁
𝑚=0

(
ln(1 + 𝑧𝑞2𝑚+1) + ln(1 + 𝑧−1𝑞2𝑚+1)

)]
= exp

[ ∞∑︁
𝑛=1

(𝑧𝑛 + 𝑧−𝑛)
𝑛

(−1)𝑛+1
∞∑︁
𝑚=0

𝑞𝑛(2𝑚+1)
]

= exp

[ ∞∑︁
𝑛=1

(𝑧𝑛 + 𝑧−𝑛)
𝑛

(
(−1)𝑛+1 𝑞𝑛

1 − 𝑞2𝑛

)]
. (5.402)

Using (5.401) we immediately identify the coefficients

�̂�𝑛 =
(−1)𝑛+1

2 sinh
(
𝑛

2𝜎
) , ∀𝑛 ≥ 1. (5.403)

Here we are using �̂�𝑛 to stress that they differ from 𝑔𝑛 in (5.354) in that they are not
normalized by an overall 𝜎. We consider the ’t Hooft limit 𝑁 →∞ with 𝜎 = 𝛾𝑁 , 𝛾
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fixed. In this regime, in which (5.400) matches with the topological string partition
function on 𝑇∗S3 [324], we have

�̂�𝑛 ≈ (−1)𝑛+1𝜎
𝑛
, (5.404)

which reduces to the form (5.354). Moreover,
∞∑︁
𝑛=1

�̂�𝑛

𝑛
𝑧𝑛 ≈ −𝜎Li2(−𝑧),

∞∑︁
𝑛=1

�̂�𝑛

𝑛
≈ 𝜋

2

12
𝜎,

∞∑︁
𝑛=1

�̂�2
𝑛

𝑛
≈ 𝜁 (3)𝜎, (5.405)

where Li2 is the polylogarithm of order 2. Matrix models involving polylogarithmic
potentials are relevant in holography and have appeared before in [15].

The relation

d
d𝑧
(−𝜎Li2(−𝑧)) = −𝜎 ln(1 + 𝑧) =⇒

∞∑︁
𝑛=1

�̂�𝑛+1𝑧
𝑛 ≈ −𝜎 ln(1 + 𝑧) (5.406)

implies the violation of condition (5.359). In practice, 𝜃 = 𝜋 is a branch point for
the current model, bringing a branch cut into the saddle point equation. Denoting
𝜚(𝜃) the density of eigenvalues, a phase in which supp 𝜚 = [−𝜋, 𝜋] is ruled out by
the presence of the branch cut, invalidating the argument used though the rest of this
appendix. The appearance of the logarithm in the saddle point equation is indeed a
trademark of Chern–Simons theory on S3 [324].

The solution of (5.400) in the ’t Hooft large 𝑁 limit is a unitary matrix model
version of the computation in [324]. The upshot is that only one phase exists, with
eigenvalue density 𝜚(𝜃) supported on an arc, supp 𝜚 ⊂ [−𝜋, 𝜋], which shrinks as 𝛾
is increased. Averaging over 𝜎 with Gaussian weight,

ZCS(𝑎) =
∫ ∞

0
d𝜎 𝑒−

𝜎2
2𝑎ZCS(𝑒−1/2𝜎), (5.407)

we always find a non-trivial saddle point 𝛾∗ > 0, which is moved to the right as
𝑎 > 0 is increased. This behavior is due to the higher than second order dependence
of ZCS := lim𝑁→∞

1
𝑁2 lnZCS on 𝛾, obtained by solving the saddle point equation

explicitly adapting [324]. In conclusion, (5.407) is always in a phase in which
lnZCS = 𝑂 (𝑁2).

Chern–Simons theory from the Cardy limit of N = 4 super-Yang–Mills

The outcome of our analysis agrees with the physics of the problem, as we now
explain.
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The partition function of Chern–Simons theory on S3 appears in the Cardy limit
of the superconformal index of N = 4 super-Yang–Mills [22]. In particular, for
𝑞 near a root of unity, one gets 𝑈 (𝑁)ℓ𝑁 Chern–Simons theory, with ℓ specifying
the root of unity [22]. Upon analytic continuation of the coupling, the factor of 𝑁
matches precisely with our choice of scaling for 𝜎, with 𝛾 playing the role of the
Wick-rotated ℓ. The Cardy limit drivesN = 4 super-Yang–Mills deep in the regime
in which the black hole entropy is large, thus

• no phase transition is expected, and

• the partition function should grow as 𝑒𝑁2 ,

consistent with our findings.

The dictionary between our computation and [22] implies that our integral over
𝛾 should correspond to a sum over ℓ ∈ N in the 𝑈 (𝑁)ℓ𝑁 Chern–Simons theory.
This observation hints at an interpretation of the averaging procedure (5.407) in
terms of summing over the Riemann sheets of the superconformal index of N = 4
super-Yang–Mills, in the Cardy limit.

It would be interesting to see whether a neat holographic interpretation emerges, in
connection with the work [95].

5.14 Appendix: Proofs
This appendix contains the derivation of the statements in Subsections 5.4-5.4,
which build up the spine of our main result about von Neumann algebras: Theorem
5.4.21.

Throughout the main text we have worked with representations 𝑅 whose Young
diagram has ℓ(𝑅) ≤ 𝐿, and interpreted them as 𝑆𝑈 (𝐿 +1) representations. This has
the unfortunate drawback of having all the expressions normalized by 𝐿 + 1, rather
than 𝐿. To reduce clutter throughout this (already long and technical) appendix, we
adopt the shorthand notation

�̃� := 𝐿 + 1. (5.408)

Explicit form of the Wightman functions
This appendix contains the proofs of Theorems 5.4.16 and 5.4.17.
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A caveat is that we stick to the conventions of [172] for the ±𝑖𝜀. In particular, this
entails defining the Fourier transform

�̃� (𝜔) =
∫ ∞

−∞
d𝑡𝑒𝑖𝑡𝜔 𝑓 (𝑡). (5.409)

To compare with other references, one might need to redefine 𝜔 ↦→ −𝜔 and some
signs in intermediate expressions will be opposite. The final answers for physical
quantities such as 𝜌(𝜔) are of course the same.

Proof of Theorem 5.4.16. We divide the proof of (5.102) in four steps:

(1) We decompose the problem into the evaluation of two simpler pieces;

(2) We evaluate the first piece and show that it contributes only if 𝜔 > 0;

(3) We evaluate the second piece and show that it contributes only if 𝜔 < 0;

(4) We sum the two pieces, being careful with the probe approximation and the
factors of 𝑒−𝛽𝜇.

Step (1). We plug the definition of 𝜙𝐿 into (5.90):

𝐺𝐿,+(𝑡) =
1
Z (𝑁)
𝐿

tr
ℋ
(𝑁 )
𝐿
⊗Γprobe

[
𝑒−𝛽𝐻

′ 1
2

(
𝑒𝑖𝑡𝐻

′O†
𝐿
𝑒−𝑖𝑡𝐻

′O𝐿 + 𝑒𝑖𝑡𝐻
′O𝐿𝑒−𝑖𝑡𝐻

′O†
𝐿

)]
,

(5.410)
where we have used the fact that O𝐿 (𝑡)O𝐿 (0) has vanishing thermal expectation
value. We define

𝐺O𝐿 (𝑡) :=
1
Z (𝑁)
𝐿

tr
ℋ
(𝑁 )
𝐿
⊗Γprobe

[
𝑒−𝛽𝐻

′
𝑒𝑖𝑡𝐻

′O†
𝐿
𝑒−𝑖𝑡𝐻

′O𝐿
]
, (5.411)

so that 𝐺O†
𝐿

(𝑡) is the same but with O†
𝐿

and O𝐿 exchanged, and

𝐺𝐿,+(𝑡) =
𝐺O𝐿 (𝑡) + 𝐺O†

𝐿

(𝑡)
2

. (5.412)

For later convenience we also introduce the Fourier transform of this quantity,

𝐺𝐿,+(𝜔) =
𝐺O𝐿 (𝜔) + 𝐺O†

𝐿

(𝜔)
2

. (5.413)

Our goal is to compute

𝜌(𝜔) = (1 − 𝑒
−𝛽𝜔)

2

[
𝐺O𝐿 (𝜔) + 𝐺O†

𝐿

(𝜔)
]
. (5.414)
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We thus need to evaluate the two terms on the right-hand side.

Step (2). We now focus on the evaluation of 𝐺O𝐿 (𝜔).

We let the probe operators act on the system in the probe approximation 𝜇 ≫ 1, with
𝜇 the mass term in the probe Hamiltonian, to neglect excited states of the probe.
Besides, we omit the subscript from the probe sectors to reduce clutter. We now
analyze the right-hand side of (5.90). By direct computation we get∑︁

a,s, ¤a,¤s
⟨𝑅, a, s; 𝜙(𝑅), ¤a, ¤s| ⊗ ⟨0, . . . , 0| 𝑒−𝛽𝐻′

× 1
�̃�

�̃�∑︁
𝑝=1

[
𝑒𝑖𝑡𝐻

′ (1 ⊗ 𝑐𝑝)𝑒−𝑖𝑡𝐻
′ (1 ⊗ 𝑐†𝑝)

]
|𝑅, a, s; 𝜙(𝑅), ¤a, ¤s⟩ ⊗ |0, . . . , 0⟩

=
𝑒(−𝛽+𝑖𝑡)𝐻

′ (𝑅,𝜙(𝑅))

�̃�
Tr⊕

𝐽 ℋ(𝑅⊔□𝐽 )⊗ℋ(𝜙(𝑅)) (𝑒
−𝑖𝑡𝐻′) (5.415)

=
1
�̃�

∑︁
�̂�=𝑅⊔□

𝑒−𝛽𝐻
′ (𝑅,𝜙(𝑅))−𝑖𝑡 [𝐻′ (�̂�,𝜙(𝑅))−𝐻′ (𝑅,𝜙(𝑅))] 𝔡2

𝑅 dim(�̂�) dim(𝜙(𝑅)). (5.416)

The sum is over the representations �̂� obtained in the Clebsch–Gordan expansion
of the tensor product 𝑅 ⊗ □, whose Young diagrams are obtained by adding a box
to that of 𝑅 in all possible consistent ways. Here and in the following we denote
𝐻′(𝑅1, 𝑅2) the eigenvalue of the Hamiltonian acting on a state inℋ𝐿 (𝑅1) ⊗ℋ𝐿 (𝑅2),
and likewise for 𝐻int(𝑅1, 𝑅2).

Recall from the construction in Subsection 5.4 that the Hamiltonian 𝐻′ acts on
the composite system ℋ

tot
𝐿

, i.e., on the quantum mechanics coupled to the external
probe. The time evolved operator is 𝑒𝑖𝑡𝐻′ (1 ⊗ 𝑐𝑝)𝑒−𝑖𝑡𝐻

′ . We have then used that the
number operator on the probe Fock space vanishes in the state |0, . . . , 0⟩. The probe
approximation is important here in discarding the contributions from the excited
states of the probe.

Let us take a closer look at the sum in the last line of (5.416). Due to the ordering
restriction �̂� 𝑗 ≥ �̂� 𝑗+1, not all the ways to add a box to 𝑅 give an allowed Young
diagram �̂�. The set of rows of 𝑅 to which a box can be appended is specified by the
set 𝒥𝑅 in (5.94). Then, the sum over �̂� = 𝑅⊔□ is more rigorously expressed as (the
symbols 𝛿(·) are Kronecker delta 𝛿·,0)

∑︁
�̂�=𝑅⊔□

=
∑︁
𝐽∈𝒥𝑅

∑︁
�̂�∈ℜ𝑆𝑈 ( �̃�)

𝛿
(
�̂�𝐽 − 𝑅𝐽 − 1

) �̃�∏
𝑗=1
𝑗≠𝐽

𝛿
(
�̂� 𝑗 − 𝑅 𝑗

)
. (5.417)
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We then sum (5.416) over 𝑅 ∈ ℜ
(𝑁)
𝐿

and, denoting 𝑅 ⊔ □𝐽 the Young diagram
obtained by adding a box at the end of the 𝐽 th row of 𝑅, we expand the resulting
expression as∑︁
𝑅∈ℜ(𝑁 )

𝐿

1
�̃�

∑︁
𝐽∈𝒥𝑅

𝑒−𝛽𝐻
′ (𝑅,𝜙(𝑅))−𝑖𝑡 [𝐻′ (𝑅⊔□𝐽 ,𝜙(𝑅))−𝐻′ (𝑅,𝜙(𝑅))] 𝔡2

𝑅 dim(𝑅 ⊔ □𝐽) dim(𝜙(𝑅)).

(5.418)
The 𝑗 th row of the diagram 𝑅 ⊔□𝐽 has length 𝑅 𝑗 if 𝑗 ≠ 𝐽 and 𝑅𝐽 + 1 if 𝑗 = 𝐽, which
only makes sense for 𝐽 ∈ 𝒥𝑅.

Recall from the definition (5.74) that we have

𝐻′ = 𝐻 ⊗ 1 + 1 ⊗ 𝐻0,probe + 𝐻int, (5.419)

with, by construction, 𝑒−𝛽𝐻′ |v⟩ = 𝑒−𝛽𝐻 |v⟩, for every |v⟩ ∈ ℋ𝐿 (𝑅) ⊗ℋ𝐿 (𝜙(𝑅)) ⊗
|0, . . . , 0⟩probe. The term 1 ⊗ 𝐻0,probe is simply a large mass enforcing the probe
approximation. On the other hand, we restrict our attention to the interaction (5.75),
which gives

𝐻int(𝑅 ⊔ □𝐽 , 𝜙(𝑅)) − 𝐻int(𝑅, 𝜙(𝑅)) = 𝑔(𝑅𝐽 + �̃� − 𝐽) =: 𝐸 int
𝐽 (5.420)

for 𝜙(𝑅) = 𝑅 or 𝑅. More general choices of 𝜙(𝑅) are treated analogously and yield
to similar definitions of 𝐸 int

𝐽
. The time dependence only appears through

𝑒−𝑖𝑡 [𝐻
′ (𝑅⊔□𝐽 ,𝜙(𝑅))−𝐻′ (𝑅,𝜙(𝑅))] = 𝑒−𝑖𝑡𝐸

int
𝐽
−𝑖𝑡𝜇, (5.421)

and hence, taking the Fourier transform, the dependence on 𝜔 is through

𝛿

(
𝜔 − 𝐸 int

𝐽 − 𝜇
)

(5.422)

in each summand. Notice that the uniform shift 𝐸 int
𝐽
↦→ 𝐸 int

𝐽
+ 𝜇 induced by the

probe mass is expected, because the correlation functions we are considering are
tailored to probe energies of the scale of the first excitation.

Putting all together, we obtain∑︁
𝑅∈ℜ(𝑁 )

𝐿

1
�̃�

∑︁
𝐽∈𝒥𝑅

𝑒−𝛽 |𝑅 | 𝛿
(
𝜔 − 𝜇 − 𝐸 int

𝐽

)
𝔡2
𝑅 dim(𝑅 ⊔ □𝐽) dim(𝜙(𝑅)). (5.423)

The additional quantum numbers 𝜆𝑠 are not involved in our definition of probe, and
this is the reason we get 𝔡2

𝑅
in the right-hand side, instead of, say, 𝔡𝑅𝔡𝑅⊔□𝐽 .

We arrive at an expression for 𝐺O𝐿 (𝜔) which is precisely (5.99). We also observe
that
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• (5.423) vanishes if 𝜔 < 0, because 𝜇 > 0 and 𝐸 int
𝐽
> 0 ∀𝐽, and so the 𝛿 is

never satisfied.

• For 𝜔 > 0, expression (5.423) depends on 𝜔r.

Step (3). We repeat the procedure to evaluate 𝐺O†
𝐿

(𝜔).

Now the operator O†
𝐿

acts first, thus annihilating the probe vacuum. The first non-
trivial term comes from O†

𝐿
acting on the first probe excited state. Namely, the

lowest order in 𝑒−𝛽𝜇 contribution comes from the terms schematically of the form

⟨□; ∅| ⊗ 𝐿 ⟨𝑅; 𝜙(𝑅) |𝑒−𝛽𝐻′𝑒𝑖𝑡𝐻′O𝐿𝑒−𝑖𝑡𝐻
′O†

𝐿
|𝑅; 𝜙(𝑅)⟩𝐿 ⊗ |□; ∅⟩. (5.424)

A computation analogous to Step (2) gives∑︁
𝑅∈ℜ(𝑁 )

𝐿

1
�̃�

∑︁
𝐽∈𝒥𝑅

𝑒−𝛽𝐻
′ (𝑅⊔□𝐽 ,𝜙(𝑅))+𝑖𝑡 [𝐻′ (𝑅⊔□𝐽 ,𝜙(𝑅))−𝐻′ (𝑅,𝜙(𝑅))] 𝔡2

𝑅 dim(𝑅⊔□𝐽) dim(𝜙(𝑅)).

(5.425)
The difference with respect to Step (2) lies in the reflection 𝑡 ↦→ −𝑡 and in the fact
that exp (−𝛽𝐻′) acting on its left produces exp (−𝛽𝐻′(𝑅 ⊔ □𝐽 , 𝜙(𝑅))). Compared
to the function in Step (2), the action on a probe state different from the vacuum
introduces the additional factor

exp
(
−𝛽𝜇 − 𝛽𝐸 int

𝐽

)
(5.426)

in each summand. Higher powers of 𝑒−𝛽𝜇 are neglected by the definition of probe.
Taking the Fourier transform, we are therefore led to∑︁
𝑅∈ℜ(𝑁 )

𝐿

1
�̃�

∑︁
𝐽∈𝒥𝑅

𝑒−𝛽(𝜇+𝐸 int
𝐽 ) 𝑒−𝛽 |𝑅 | 𝛿

(
−𝜔 − 𝜇 − 𝐸 int

𝐽

)
𝔡2
𝑅 dim(𝑅 ⊔ □𝐽) dim(𝜙(𝑅)).

(5.427)
This is analogous to (5.423), except for the additional weight (5.426) in front of
each summand and for the reflection 𝜔 ↦→ −𝜔. For the same reason as above, i.e.,
that the energy spectrum is positive, the latter expression vanishes if 𝜔 > 0. Once
again, it can be written as a function of 𝜔r.

Step (4). We now wish to put the terms together. Let us take a closer look at (5.414).

(4.i) From (5.423) we know that 𝐺O𝐿 (𝜔) = 0 unless 𝜔 − 𝜇 > 0. By the probe
approximation, we have

(1 − 𝑒−𝛽𝜔)𝐺O𝐿 (𝜔) = 𝜃 (𝜔 − 𝜇)𝐺O𝐿 (𝜔) +𝑂 (𝑒−𝛽𝜇). (5.428)
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(4.ii) Likewise, 𝐺O†
𝐿

(𝜔) = 0 unless 𝜔 + 𝜇 < 0, which in the probe approximation
gives

(1 − 𝑒−𝛽𝜔)𝐺O†
𝐿

(𝜔) = −𝜃 (−𝜔 − 𝜇)𝑒−𝛽𝜔𝐺O†
𝐿

(𝜔) +𝑂 (𝑒−𝛽𝜇), (5.429)

where we have used 𝑒−𝛽𝜔 ≫ 1 if 𝜔 < −𝜇 ≪ 0. By the computation in Step
(3), cf. (5.427), we have that the latter expression is non-vanishing precisely
when 𝑒−𝛽𝜔 cancels the piece (5.426) in 𝐺O†

𝐿

(𝜔). Simplifying, we get

−𝑒−𝛽𝜔𝐺O†
𝐿

(𝜔) = −𝐺O𝐿 (−𝜔), if 𝜔 ≤ −𝜇. (5.430)

(4.iii) Writing 𝐺O𝐿 (±𝜔) in the form (5.99) and summing the two contributions, we
prove the statement.

□

Proof of Theorem 5.4.17. Most of the details are identical to the proof of Theorem
5.4.16, so we will be sketchy. We divide the proof in various steps:

(1) We decompose the problem into the evaluation of four simpler pieces;

(2) We evaluate each piece;

(3) We take the Fourier transform;

(4) We sum the pieces, being careful with the probe approximation and the factors
of ±𝑖𝜀.

Step (1). As in the proof of Theorem 5.4.16, we start by decomposing 𝜙𝐿 (𝑡) into the
operators O𝐿 ,O†𝐿 . We have

[𝜙(𝑡), 𝜙(0)] = 1
2

(
Y1(𝑡) + Y2(𝑡) − Y†1 (𝑡) − Y

†
2 (𝑡)

)
+ · · · , (5.431)
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where the dots include all the terms that vanish when taken inside the correlation
functions, and the four pieces are:

Y1(𝑡) :=
1
�̃�

�̃�∑︁
𝑝=1

𝑒𝑖𝑡𝐻
′
𝑐𝑝 𝑒

−𝑖𝑡𝐻′ 𝑐†𝑝; (5.432)

Y2(𝑡) :=
1
�̃�

�̃�∑︁
𝑝=1

𝑒𝑖𝑡𝐻
′
𝑐†𝑝 𝑒

−𝑖𝑡𝐻′ 𝑐𝑝; (5.433)

Y†1 (𝑡) :=
1
�̃�

�̃�∑︁
𝑝=1

𝑐𝑝 𝑒
𝑖𝑡𝐻′ 𝑐†𝑝 𝑒

−𝑖𝑡𝐻′ ; (5.434)

Y†2 (𝑡) :=
1
�̃�

�̃�∑︁
𝑝=1

𝑐†𝑝 𝑒
𝑖𝑡𝐻′ 𝑐𝑝 𝑒

−𝑖𝑡𝐻′ . (5.435)

(recall that �̃� = 𝐿 + 1 = dim□).

Step (2). We compute the thermal expectation value of the four terms above. Each
of them is essentially identical to Steps (2)-(3) in the proof of Theorem 5.4.16. For
Y1 the answer was given in (5.416), and for Y2 in (5.425):

⟨Ψ𝛽 |Y1(𝑡) |Ψ𝛽⟩ =
1
Z (𝑁)
𝐿

∑︁
𝑅∈ℜ(𝑁 )

𝐿

𝑒−𝛽 |𝑅 |𝔡2
𝑅 dim(𝑅) dim(𝜙(𝑅))

[ ∑︁
𝐽∈𝒥𝑅

𝑒−𝑖𝑡𝐸𝐽 (𝜇)
dim(𝑅 ⊔ □𝐽)
�̃� dim(𝑅)

]
(5.436)

⟨Ψ𝛽 |Y2(𝑡) |Ψ𝛽⟩ =
1
Z (𝑁)
𝐿

∑︁
𝑅∈ℜ(𝑁 )

𝐿

𝑒−𝛽 |𝑅 |𝔡2
𝑅 dim(𝑅) dim(𝜙(𝑅))

[ ∑︁
𝐽∈𝒥𝑅

𝑒(−𝛽+𝑖𝑡)𝐸𝐽 (𝜇)
dim(𝑅 ⊔ □𝐽)
�̃� dim(𝑅)

]
.

(5.437)

where 𝐸𝐽 (𝜇) := 𝐸 int
𝐽
+ 𝜇 is a shorthand notation. The analogous computation for

the other two terms gives:

⟨Ψ𝛽 |Y†1 (𝑡) |Ψ𝛽⟩ =
1
Z (𝑁)
𝐿

∑︁
𝑅∈ℜ(𝑁 )

𝐿

𝑒−𝛽 |𝑅 |𝔡2
𝑅 dim(𝑅) dim(𝜙(𝑅))

[ ∑︁
𝐽∈𝒥𝑅

𝑒𝑖𝑡𝐸𝐽 (𝜇)
dim(𝑅 ⊔ □𝐽)
�̃� dim(𝑅)

]
(5.438)

⟨Ψ𝛽 |Y†2 (𝑡) |Ψ𝛽⟩ =
1
Z (𝑁)
𝐿

∑︁
𝑅∈ℜ(𝑁 )

𝐿

𝑒−𝛽 |𝑅 |𝔡2
𝑅 dim(𝑅) dim(𝜙(𝑅))

[ ∑︁
𝐽∈𝒥𝑅

𝑒(−𝛽−𝑖𝑡)𝐸𝐽 (𝜇)
dim(𝑅 ⊔ □𝐽)
�̃� dim(𝑅)

]
.

(5.439)
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Step (3). We now take the Fourier transform of each term. From the definitions
(5.92)-(5.93) we have

2𝐺𝐿,R(𝑡) = 𝑖𝜃 (𝑡)⟨Ψ𝛽 |Y1(𝑡) + Y2(𝑡) + Y†1 (𝑡) + Y
†

2 (𝑡) |Ψ𝛽⟩, (5.440)

2𝐺𝐿,A(𝑡) = −𝑖𝜃 (−𝑡)⟨Ψ𝛽 |Y1(𝑡) + Y2(𝑡) + Y†1 (𝑡) + Y
†

2 (𝑡) |Ψ𝛽⟩, (5.441)

so that we have to compute the Fourier transform of±𝑖𝜃 (±𝑡)Y(𝑡) forY ∈
{
Y1,Y2,Y†1 ,Y

†
2

}
,

evaluated at 𝜔 ± 𝑖𝜀, with the sign ± in front of 𝑖𝜀 being the same as in 𝜃 (±𝑡). The
only time-dependent part in Y(𝑡) is the exponential 𝑒∓𝑖𝑡𝐸𝐽 (𝜇) . We thus get the
contributions of Y1,Y†1 to 2𝐺𝐿,R(𝜔 + 𝑖𝜀):

𝑖𝜃 (𝑡)𝑒−𝑖𝑡𝐸𝐽 (𝜇) ↦→ − 1
𝜔 + 𝑖𝜀 − 𝐸𝐽 (𝜇)

(5.442)

−𝑖𝜃 (𝑡)𝑒𝑖𝑡𝐸𝐽 (𝜇) ↦→ 1
𝜔 + 𝑖𝜀 + 𝐸𝐽 (𝜇)

(5.443)

and likewise for the contributions of Y1,Y†1 to 2𝐺𝐿,A(𝜔 − 𝑖𝜀):

−𝑖𝜃 (−𝑡)𝑒−𝑖𝑡𝐸𝐽 (𝜇) ↦→ − 1
𝜔 − 𝑖𝜀 − 𝐸𝐽 (𝜇)

(5.444)

+𝑖𝜃 (−𝑡)𝑒𝑖𝑡𝐸𝐽 (𝜇) ↦→ 1
𝜔 − 𝑖𝜀 + 𝐸𝐽 (𝜇)

. (5.445)

The same expressions coming from Y1 (respectively Y†1 ) appear in the Fourier
transform of Y†2 (respectively Y2).

Step (4). Denoting Ω(𝜔) the operator that is diagonal in the representation basis
with eigenvalues ∑︁

𝐽∈𝒥𝑅

dim(𝑅 ⊔ □𝐽)
�̃� dim(𝑅)

1
𝜔 − 𝐸𝐽 (𝜇)

(5.446)

as defined in (5.100), we see that 2𝐺𝐿,R(𝜔 + 𝑖𝜀) receives contributions from

−Ω(𝜔 + 𝑖𝜀) −Ω(−𝜔 − 𝑖𝜀), (5.447)

while 2𝐺𝐿,A(𝜔 − 𝑖𝜀) receives contributions from

−Ω(𝜔 − 𝑖𝜀) −Ω(−𝜔 + 𝑖𝜀). (5.448)

Putting all the pieces together we arrive at:

𝐺𝐿,R(𝜔 + 𝑖𝜀) = −
1
2
⟨Ψ𝛽 |Ω(𝜔 + 𝑖𝜀) +Ω(−𝜔 − 𝑖𝜀) |Ψ𝛽⟩ +𝑂 (𝑒−𝛽𝜇) (5.449)

𝐺𝐿,A(𝜔 − 𝑖𝜀) = −
1
2
⟨Ψ𝛽 |Ω(𝜔 − 𝑖𝜀) +Ω(−𝜔 + 𝑖𝜀) |Ψ𝛽⟩ +𝑂 (𝑒−𝛽𝜇). (5.450)

□
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Wightman functions in the Veneziano limit
This appendix contains the proof of Lemma 5.4.18, which evaluates the Wightman
functions in the Veneziano limit using a saddle point approximation. We still use
the shorthand �̃� = 𝐿 + 1 from (5.408).

Proof of Lemma 5.4.18. Consider𝐺𝐿,R(𝜔) as given by Theorem 5.4.17. The change
of variables (5.60) recasts the sum over 𝑅 into a sum over �̃�-tuples ®ℎ = (ℎ1, . . . , ℎ�̃�−1,−1).
The ordering 𝑅 𝑗 ≥ 𝑅 𝑗+1 becomes ℎ 𝑗 > ℎ 𝑗+1, but the appearance of the Vandermonde
squared factor and the total symmetry of the Hamiltonian allow us to remove this
restriction. The set of indices 𝒥𝑅 becomes

𝒥®ℎ =
{
𝐽 ∈

{
1, . . . , �̃�

}
: ℎ𝐽 + 1 ≠ ℎ 𝑗 , ∀ 𝑗 ≠ 𝐽

}
. (5.451)

Notice that the presence of a sum over a restricted set of indices does not spoil
the total symmetry of the summand in the variables ℎ 𝑗 , because, for those indices
𝑗 ∉ 𝒥®ℎ, the Vandermonde determinant after adding a box to 𝑅 vanishes. One can
thus safely include them (add finitely many zeros) and sum over all indices.

With the change of variables (5.60),

𝐸 int
𝐽 = 𝑔(ℎ𝐽 + 1) (5.452)

and, subdividing ∏
1≤𝑖< 𝑗≤�̃�

=
∏

1≤𝑖< 𝑗≤�̃�
𝑖≠𝐽, 𝑗≠𝐽

·
∏

1≤𝑖≤𝐽−1
𝑗=𝐽

·
∏

𝐽+1≤ 𝑗≤�̃�
𝑖=𝐽

(5.453)

in formula (5.64), we express the ratio

dim(𝑅 ⊔ □𝐽)
dim 𝑅

=

𝐽−1∏
𝑖=1

(
1 − 1

ℎ𝑖 − ℎ𝐽

)
·

�̃�∏
𝑗=𝐽+1

(
1 − 1

ℎ 𝑗 − ℎ𝐽

)
=

∏
𝑗≠𝐽

(
1 − 1

ℎ 𝑗 − ℎ𝐽

)
.

(5.454)
The right-hand side of (5.100) evaluated at 𝜔 ± 𝑖𝜀 reads

1
�̃�

∑︁
𝐽∈𝒥𝑅

1
𝜔 ± 𝑖𝜀 − 𝐸 int

𝐽
− 𝜇

dim(𝑅 ⊔ □𝐽)
dim 𝑅

=
1
�̃�

�̃�∑︁
𝐽=1

1
𝜔 ± 𝑖𝜀 − 𝑔(ℎ𝐽 + 1) − 𝜇

∏
𝑗≠𝐽

(
1 − 1

ℎ 𝑗 − ℎ𝐽

)
.

(5.455)
Let us repeat that, although the sum should be restricted to 𝐽 ∈ 𝒥®ℎ, the right-hand
side of (5.455) vanishes for 𝑗 such that ℎ 𝑗 = ℎ𝐽 + 1, so that the extra contributions
that we include in the sum are trivial.
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Let us introduce some notation. First, we redefine

�̃�± = 𝜔 ± 𝑖𝜀 − 𝜇 − 𝑔. (5.456)

We are eventually interested in the planar limit 𝑁 → ∞ with 𝑔 = 𝜆/𝑁 and 𝜆 fixed,
so that the shift by 𝑔 drops out, whereas ℑ�̃�± = ±𝜀. We denote the expression in
the right-hand side of (5.455) Ω®ℎ (𝜔 ± 𝜀) for short.

For every �̃�-tuple ®ℎ ∈ N�̃� (the ones of interest to us have ℎ�̃� ≡ −1), we define the
auxiliary function

Φ®ℎ (𝜉) :=
�̃�∏
𝑗=1

(
1 − 1

ℎ 𝑗 − 𝜉

)
, 𝜉 ∈ C. (5.457)

The residue theorem instructs us that

Ω®ℎ (𝜔 ± 𝑖𝜀) =
1
�̃�

∮
C

d𝜉
2𝜋𝑖

Φ®ℎ (𝜉)
�̃�± − 𝑔𝜉

, (5.458)

with the integration contour C = C(®ℎ) encircling the points ℎ𝐽 and leaving outside
the point �̃�±/𝑔. This is exemplified in Figure 5.24. Let us remark that, had we
restricted the sum on 𝐽 ∈ 𝒥®ℎ, we could take a contour that leaves outside the points
ℎ𝐽 for 𝐽 ∉ 𝒥®ℎ. Then, deforming such contour into C, we pick the poles with
vanishing residues, obtaining (5.458).

Figure 5.24: Integration contour C.

Deforming the contour C to infinity, the Cauchy integral (5.458) picks up the pole
at 𝜉 = �̃�±/𝑔, and one is left with a residual integration over the circle at infinity.
Using that Φ®ℎ (𝜉) → 1 as 𝜉 →∞, the residual integration evaluates to

1
�̃�

∮
|𝜉 |≫1

d𝜉
2𝜋𝑖

Φ®ℎ (𝜉)
(−𝑔𝜉) = −

1
�̃�𝑔
. (5.459)

Conveniently expressing (5.458) as

�̃�𝑔 Ω®ℎ (𝜔 ± 𝑖𝜀) =
∮
C

d𝜉
2𝜋𝑖

Φ®ℎ (𝜉)
�̃�±
𝑔
− 𝜉

, (5.460)
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we arrive at
�̃�𝑔 Ω®ℎ (𝜔) = Φ®ℎ (�̃�±/𝑔) − 1. (5.461)

We write16 �̃�±
𝑔

=
�̃��̃�±
𝜆

and

Φ®ℎ (�̃�±/𝑔) = exp

�̃�∑︁
𝑗=1

ln

(
1 − 1

ℎ 𝑗 − �̃��̃�±
𝜆

)
= exp


1
�̃�

�̃�∑︁
𝑗=1

�̃� ln ©«1 + 1
�̃�
· 1
�̃�±
𝜆
− ℎ 𝑗

�̃�

ª®¬


= exp


1
�̃�

�̃�∑︁
𝑗=1

1
�̃�±
𝜆
− ℎ 𝑗

�̃�

+𝑂 (1/�̃�)


≈ exp

[∫
d𝑥𝜚(𝑥) 1

�̃�
𝜆
− 𝑥

]
(5.462)

with the last step holding in the planar limit. In the second-to-last step, we have
expanded the logarithm in power series in �̃�−1, and in the last step we have discarded
the sub-leading terms. At the same time, we have plugged the eigenvalue density
𝜚(𝑥) for the matrix model (5.59), defined in the standard way

𝜚(𝑥) :=
1
�̃�

�̃�∑︁
𝑖=1

𝛿

(
𝑥 − ℎ𝑖

�̃�

)
, 𝑥 ∈ R. (5.463)

No assumption on 𝜚(𝑥) is made at this stage, and its definition uses the fact that
ℎ 𝑗/�̃� attains a finite value in the planar limit, ∀ 𝑗 . The linear growth of ℎ 𝑗 with 𝐿 is a
standard result on discrete matrix models, or equivalently on the combinatorics of the
distribution of partitions of length 𝐿; it is a known result that transcends the models
of interest to us. The fact that this is the leading contribution in the Veneziano limit,
and does not trivialize, is encoded in the assumption of the existence of a non-trivial
saddle point. Therefore, in the planar limit we find that (5.461) becomes

𝜆Ω®ℎ (𝜔 ± 𝑖𝜀) ≈ −1 + exp

[∫
d𝑥𝜚(𝑥) 1

�̃�±
𝜆
− 𝑥

]
. (5.464)

At leading order, we perform a saddle point approximation and evaluate this expres-
sion at the saddle point eigenvalue density 𝜚∗(𝑥). We thus arrive at

Ω®ℎ (𝜔 ± 𝑖𝜀)
��
saddle point =

1
𝜆

[
−1 + exp

(∫
d𝑥

𝜚∗(𝑥)
𝜔±𝑖𝜀−𝜇

𝜆
− 𝑥

)]
, (5.465)

16In this appendix and Section 5.4 we define the ’t Hooft coupling 𝜆 = 𝑔𝐿. The procedure for ’t
Hooft coupling 𝑔𝑁 is identical up to rescaling �̃�± appropriately.
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where we have reinserted the appropriate variable �̃�± = 𝜔 ± 𝑖𝜀 − 𝜇 +𝑂 (1/𝑁) in the
planar limit. Notice that this expression only holds under the assumption that the
saddle point is non-trivial. This hypothesis is crucial, but no further assumptions
are made. By the standard large 𝑁 argument, under the mentioned hypothesis, the
eigenvalues coalesce and form a continuum, and we get

𝐿 ⟨Ψ𝛽 |Ω(𝜔) |Ψ𝛽⟩𝐿 ≈ Ω®ℎ (𝜔)
��
saddle point , (5.466)

which concludes the proof. □

Large 𝑁 factorization lemma
This appendix contains a justification for the factorization Lemma 5.4.19. We will
very explicitly show that the four-point function factorizes, and then give a general
argument that extends more easily to the general case.17 The two key hypotheses
are:

(H1) The partition function admits a non-trivial saddle point for large 𝑁;

(H2) 𝐻int respects the flavor symmetry.

We will work explicitly with 𝐻int given in (5.75), but a direct generalization of the
argument holds as long as the second assumption holds.

Step 0: Lighten the notation

The approach in this appendix is based on explicit direct calculation, which will
produce cumbersome equations. To lighten the expressions, we introduce shorthand
notations used throughout this subsection.

Recall from Subsection 5.4 that the representation basis is given by the vectors

|𝑅, a, s; 𝜙(𝑅), ¤a, ¤s⟩, a = 1, . . . , dim 𝑅, ¤a = 1, . . . , dim 𝜙(𝑅) (5.467)

and s, ¤s running over possible additional degeneracies. The indices s, ¤s do not
play any role in the ensuing discussion, thus we will mute them. Likewise, by
construction the probe interacts with the 𝑅-sector, and 𝜙(𝑅) only appears through

17An elegant proof of large 𝑁 factorization for permutation invariant observables in Hermitian
matrix models with a symmetric group symmetry was given in [39], based on combinatorial tech-
niques. While our method is based on a direct evaluation of the terms, it seems plausible that the
techniques of [39, 40] can be adapted and applied to the present context to establish a proof that only
relies on the symmetries of the operators, and not their explicit form.
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the interaction Hamiltonian. Since the state |𝜙(𝑅), ¤a⟩ is not affected by the action
of the probe operators, we will omit it from the notation as well. Every sum over a
will implicitly be accompanied by a sum over ¤a.

Furthermore, we will further contract the notation for tensor product with a probe
state and write:

|𝑅, a⟩⟩ for |𝑅, a, s; 𝜙(𝑅), ¤a, ¤s⟩ ⊗ |0, . . . , 0⟩probe

|𝑅, a; 𝑗⟩⟩ for |𝑅, a, s; 𝜙(𝑅), ¤a, ¤s⟩ ⊗ |0, . . . , 1︸︷︷︸
𝑗 th

, . . . , 0⟩probe (5.468)

and so on.

We recall that 𝐻′ is the total Hamiltonian, 𝐻′ = 𝐻 + 𝐻probe + 𝐻int. As in the main
text, we will denote by 𝑅 ⊔ □𝐽 the Young diagram obtained by appending a box at
the end of the 𝐽 th row, and

𝐸𝐽 (𝜇) := 𝐻′(𝑅 ⊔ □𝐽 , 𝜙(𝑅)) − 𝐻′(𝑅, 𝜙(𝑅)). (5.469)

We use indices a, b to run over the generators of 𝑅, hatted indices â, b̂ to run over
the generators of 𝑅 ⊔ □ (𝑅 with one box added), and checked indices č to run over
the generators of 𝑅 ⊔ □ ⊔ □ (𝑅 with two boxes added).

We will use the symbol ≈ to indicate that the two sides are equal up to terms that
vanish in the planar limit, and also sometimes abbreviate 𝑡 𝑗 𝑘 := 𝑡 𝑗 − 𝑡𝑘 . Finally, we
continue using the abbreviation �̃� = 𝐿 + 1 from (5.408).

Step 1: Identify the non-trivial contributions

Recall that the goal of this appendix is to compute four-point functions

𝐿 ⟨Ψ𝛽 |𝜙𝐿 (𝑡3)𝜙𝐿 (𝑡2)𝜙𝐿 (𝑡1)𝜙𝐿 (𝑡0) |Ψ𝛽⟩𝐿 (5.470)

in the planar limit, and show that (5.470) equals

𝐿 ⟨Ψ𝛽 |𝜙𝐿 (𝑡3)𝜙𝐿 (𝑡2) |Ψ𝛽⟩𝐿 · 𝐿 ⟨Ψ𝛽 |𝜙𝐿 (𝑡1)𝜙𝐿 (𝑡0) |Ψ𝛽⟩𝐿
+𝐿 ⟨Ψ𝛽 |𝜙𝐿 (𝑡3)𝜙𝐿 (𝑡1) |Ψ𝛽⟩𝐿 · 𝐿 ⟨Ψ𝛽 |𝜙𝐿 (𝑡2)𝜙𝐿 (𝑡0) |Ψ𝛽⟩𝐿
+𝐿 ⟨Ψ𝛽 |𝜙𝐿 (𝑡3)𝜙𝐿 (𝑡0) |Ψ𝛽⟩𝐿 · 𝐿 ⟨Ψ𝛽 |𝜙𝐿 (𝑡2)𝜙𝐿 (𝑡1) |Ψ𝛽⟩𝐿 .

(5.471)

We expand (5.470) using the definition of 𝜙𝐿 (𝑡) in terms of the operatorsO𝐿 (𝑡),O†𝐿 (𝑡).
After elementary calculations, we
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(i) discard all terms except those with two O𝐿 and two O†
𝐿
; and then

(ii) discard all the terms in which the rightmost operator in an annihilation operator
or the leftmost operator is a creation operator.

The contributions discarded in (i) vanish exactly, while those discarded in (ii) are
𝑂 (𝑒−𝛽𝜇), thus negligible in the probe approximation. We are therefore left with

𝐿 ⟨Ψ𝛽 |𝜙𝐿 (𝑡3)𝜙𝐿 (𝑡2)𝜙𝐿 (𝑡1)𝜙𝐿 (𝑡0) |Ψ𝛽⟩𝐿 =
1
4 𝐿
⟨Ψ𝛽 |O†𝐿 (𝑡3)O𝐿 (𝑡2)O

†
𝐿
(𝑡1)O𝐿 (𝑡0) |Ψ𝛽⟩𝐿

(5.472)

+ 1
4 𝐿
⟨Ψ𝛽 |O†𝐿 (𝑡3)O

†
𝐿
(𝑡2)O𝐿 (𝑡1)O𝐿 (𝑡0) |Ψ𝛽⟩𝐿 .

We claim

Proposition 5.14.1. The first term on the right-hand side of (5.472) yields the first
line in (5.471), and the second term on the right-hand side of (5.472) yields the
second and third lines in (5.471).

The rest of this appendix is devoted to show this statement.

We plug the definition of O𝐿 as a sum of probe creation operators in the right-hand
side of (5.472). We also set 𝑡0 = 0 without loss of generality. We are then interested
in four-point functions of the form

𝐺
(1)
𝑖 𝑗 𝑘𝑙
(𝑡1, 𝑡2, 𝑡3) := 𝐿 ⟨Ψ𝛽 |𝑐𝑖 (𝑡3)𝑐†𝑗 (𝑡2)𝑐𝑘 (𝑡1)𝑐

†
𝑙
(0) |Ψ𝛽⟩𝐿 , (5.473)

𝐺
(2)
𝑖 𝑗 𝑘𝑙
(𝑡1, 𝑡2, 𝑡3) := 𝐿 ⟨Ψ𝛽 |𝑐𝑖 (𝑡3)𝑐 𝑗 (𝑡2)𝑐†𝑘 (𝑡1)𝑐

†
𝑙
(0) |Ψ𝛽⟩𝐿 , (5.474)

and then sum over the flavor indices 𝑖, 𝑗 , 𝑘, 𝑙 ∈
{
1, . . . , �̃�

}
with the overall normal-

ization by 1/�̃�2. The idea is to evaluate these correlation functions in a particular
sector (𝑅, 𝜙(𝑅)) for a fixed irreducible representation 𝑅 appearing in the thermal
ensemble, and then to apply a saddle point argument.

Intermezzo: Useful formulas

Throughout we will make extensive use of the Clebsch–Gordan isomorphism

ℋ(𝑅 ⊗ □) �
⊕
𝐽∈𝒥𝑅

ℋ(𝑅 ⊔ □𝐽). (5.475)

The normalization of the two bases are related as follows. Consider the identities
�̃�∑︁
𝑗=1

dim 𝑅∑︁
a=1
⟨⟨𝑅, a; 𝑗 |𝑅, a; 𝑗⟩⟩ = �̃� dim 𝑅 =

∑︁
𝐽∈𝒥

dim(𝑅⊔□𝐽 )∑̂︁
a=1

⟨𝑅 ⊔ □𝐽 , â|𝑅 ⊔ □𝐽 , â⟩ (5.476)
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and insert the resolution of the identity on the left-most part, expressed in the
representation basis. We have the normalization:

�̃�∑︁
𝑗=1

dim 𝑅∑︁
a=1
|⟨⟨𝑅 ⊔ □𝐽 , â|𝑅, a; 𝑗⟩⟩|2 = 1 =

∑︁
𝐽∈𝒥

dim(𝑅⊔□𝐽 )∑̂︁
a=1

|⟨𝑅 ⊔ □𝐽 , â|𝑅, a; 𝑗⟩⟩|2. (5.477)

To write the result of the calculations in factorized form, we will use the properties:

𝐻int(𝑅 ⊔ □𝐽 ⊔ □𝐾) − 𝐻int(𝑅 ⊔ □𝐽) ≈ 𝐻int(𝑅 ⊔ □𝐾) − 𝐻int(𝑅) (5.478)
dim(𝑅 ⊔ □𝐽 ⊔ □𝐾)

dim(𝑅 ⊔ □𝐽)
≈ dim(𝑅 ⊔ □𝐾)

dim 𝑅
. (5.479)

Step 2: First correlation function

Let us start with𝐺 (1)
𝑖 𝑗 𝑘𝑙
(𝑡1, 𝑡2, 𝑡3), and consider the contribution to the thermal expec-

tation value for a given representation 𝑅. By the flavor symmetry of the interaction
between the probe and the system (and ignoring potential antisymmetric terms that
vanish when summed over) we have∑︁

a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐†𝑗 (𝑡2)𝑐𝑘 (𝑡1)𝑐

†
𝑙
(0) |𝑅, a⟩⟩ = 𝛿𝑖 𝑗𝛿𝑘𝑙

∑︁
a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐†𝑖 (𝑡2)𝑐𝑘 (𝑡1)𝑐

†
𝑘
(0) |𝑅, a⟩⟩

(5.480)

+ 𝛿𝑖𝑙𝛿 𝑗 𝑘
∑︁

a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐†𝑗 (𝑡2)𝑐 𝑗 (𝑡1)𝑐

†
𝑖
(0) |𝑅, a⟩⟩

− 𝛿𝑖 𝑗 𝑘𝑙
∑︁

a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐†𝑖 (𝑡2)𝑐𝑖 (𝑡1)𝑐

†
𝑖
(0) |𝑅, a⟩⟩.

Averaging over 𝑖, 𝑗 , 𝑘, 𝑙, in the large 𝐿 limit only the third term is suppressed and
we get

1
�̃�2

∑︁
𝑖 𝑗 𝑘𝑙

∑︁
a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐†𝑗 (𝑡2)𝑐𝑘 (𝑡1)𝑐

†
𝑙
(0) |𝑅, a⟩⟩ ≈ 1

�̃�2

∑︁
𝑖𝑘a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐†𝑖 (𝑡2)𝑐𝑘 (𝑡1)𝑐

†
𝑘
(0) |𝑅, a⟩⟩

(5.481)

+ 1
�̃�2

∑︁
𝑖 𝑗a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐†𝑗 (𝑡2)𝑐 𝑗 (𝑡1)𝑐

†
𝑖
(0) |𝑅, a⟩⟩.

We now proceed to show the following:

Lemma 5.14.2. The first term in the right-hand side of (5.481) factorizes into the
product of two-point functions, and the second term is sub-leading.
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Proof. Inserting a resolution of the identity in the representation basis, the first term
is rewritten as
1
�̃�2

∑︁
𝑖𝑘a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐†𝑖 (𝑡2)𝑐𝑘 (𝑡1)𝑐

†
𝑘
(0) |𝑅, a⟩⟩ = 1

�̃�2

∑︁
𝑖𝑘ab
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐†𝑖 (𝑡2) |𝑅, b⟩⟩⟨⟨𝑅, b|𝑐𝑘 (𝑡1)𝑐

†
𝑘
(0) |𝑅, a⟩⟩

=
∑︁
ab

(
⟨⟨𝑅, a| 1

�̃�

∑︁
𝑖

𝑐𝑖 (𝑡3)𝑐†𝑖 (𝑡2) |𝑅, b⟩⟩
) (
⟨⟨𝑅, b| 1

�̃�

∑︁
𝑘

𝑐𝑘 (𝑡1)𝑐†𝑘 (0) |𝑅, a⟩⟩
)
(5.482)

The inner products in the last line eventually produce 𝛿ab, and the flavor symmetry
further implies that ⟨⟨𝑅, a| 1

�̃�

∑
𝑖 𝑐𝑖 (𝑡 + 𝛿𝑡)𝑐†𝑖 (𝑡) |𝑅, a⟩⟩ is actually independent of a.

The last line of (5.482) is thus equal to

(dim 𝑅)
(

1
�̃� dim 𝑅

tr𝑅⊗□
(
𝑒−𝑖𝑡32𝐻

′
)) (

1
�̃� dim 𝑅

tr𝑅⊗□
(
𝑒−𝑖𝑡1𝐻

′
))

=(dim 𝑅)
(

1
�̃� dim 𝑅

∑︁
𝐽∈𝒥𝑅

tr𝑅⊔□𝐽
(
𝑒−𝑖𝑡32𝐻

′
)) (

1
�̃� dim 𝑅

∑︁
𝐾∈𝒥𝑅

tr𝑅⊔□𝐾
(
𝑒−𝑖𝑡1𝐻

′
))

=(dim 𝑅)
( ∑︁
𝐽∈𝒥𝑅

𝑒−𝑖(𝑡3−𝑡2)𝐸𝐽 (𝜇)
dim(𝑅 ⊔ □𝐽)
�̃� dim(𝑅)

) ( ∑︁
𝐾∈𝒥𝑅

𝑒−𝑖𝑡1𝐸𝐾 (𝜇)
dim(𝑅 ⊔ □𝐾)
𝐿 dim(𝑅)

)
.

(5.483)

Additionally, when summing over the spectator index ¤a the expression will acquire
a factor dim 𝜙(𝑅). Altogether it manifestly factorizes into the desired product of
two-point functions.

The second term in (5.481) is suppressed by 1/𝐿. Indeed, inserting successive
resolutions of the identity, we obtain:

1
�̃�2

∑︁
𝑖 𝑗a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐†𝑗 (𝑡2)𝑐 𝑗 (𝑡1)𝑐

†
𝑖
(0) |𝑅, a⟩⟩

=
1
�̃�2

∑︁
𝑖 𝑗a

∑︁
𝐽,𝐾∈𝒥𝑅

∑︁
âb̂

exp {𝑖𝑡3𝐻′(𝑅, 𝜙(𝑅)) − 𝑖𝑡32𝐻
′(𝑅 ⊔ □𝐾 , 𝜙(𝑅)) − 𝑖𝑡1𝐻′(𝑅 ⊔ □𝐽 , 𝜙(𝑅)}

×⟨⟨𝑅 ⊔ □𝐽 , â|𝑅, a; 𝑖⟩⟩⟨⟨𝑅, a; 𝑖 |𝑅 ⊔ □𝐾 , b̂⟩⟩⟨⟨𝑅 ⊔ □𝐾 , b̂|𝑐†𝑗𝑒
−𝑖𝑡21𝐻

′
𝑐 𝑗 |𝑅 ⊔ □𝐽 , â⟩⟩.

(5.484)

In this expression â = 1, . . . , dim(𝑅 ⊔ □𝐽) and b̂ = 1, . . . , dim(𝑅 ⊔ □𝐾). In the
last line, the first two inner products together impose 𝛿𝐽𝐾𝛿âb̂. We can then use the
normalization formula (5.477) and simplifying, we obtain the expression

1
�̃�2

∑︁
𝐾

∑︁
𝑗 b̂

𝑒𝑖(𝑡3−𝑡2+𝑡1) [𝐻
′ (𝑅,𝜙(𝑅))−𝐻′ (𝑅⊔□𝐾 ,𝜙(𝑅))] ⟨⟨𝑅 ⊔ □𝐾 , b̂|𝑐†𝑗𝑐 𝑗 |𝑅 ⊔ □𝐾 , b̂⟩⟩.

(5.485)
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The innermost sum evaluates to dim(𝑅 ⊔□𝐾), and the overall factor is 1/�̃�2, which
means that the contribution is suppressed compared to a two-point function that has
an overall factor 1/�̃�. This is consistent with the fact that the two-point function
⟨𝑐†
𝑗
(𝑡2)𝑐 𝑗 (𝑡1)⟩ is zero in the probe approximation. □

cor. The first term on the right-hand side of (5.472) equals in the planar limit the
first line in (5.471).

Proof. By hypothesis, the correlator𝐺 (1)
𝑖 𝑗 𝑘𝑙
(𝑡1, 𝑡2, 𝑡3) localizes on a large saddle in the

large 𝐿 limit, so we can use the previous computation to conclude that it factorizes.
After summing terms that are identically zero, we get that the first term on the
right-hand side of (5.472) reduces to 𝐺 (1)

𝑖 𝑗 𝑘𝑙
(𝑡1, 𝑡2, 𝑡3) which, by formula (5.483) in

the previous lemma, yields in the planar limit the first line in (5.471), as claimed. □

Intermezzo: Bosonic statistic and symmetric representation

By definition, the two-particle probe state lives in the symmetric representation,

𝑐
†
𝑖
𝑐
†
𝑗
|0⟩probe =

|𝑖, 𝑗⟩probe + | 𝑗 , 𝑖⟩probe√
2

∈ . (5.486)

For simplicity of notation, here we assume 𝑖 ≠ 𝑗 , and the neglected term is sup-
pressed by 1/𝐿, thus safely discarded at later steps. The state |𝑅, a⟩⟩ is tensored with
the latter probe state, not with | 𝑗 , 𝑖⟩probe ∈ □ ⊗ □.

Hence, we will denote

𝑅 ⊔ (𝐽𝐾) ⊂ (𝑅 ⊔ □𝐽) ⊔ □𝐾 ⊕ (𝑅 ⊔ □𝐾) ⊔ □𝐽 (5.487)

the symmetrization of the ways of appending two boxes, one at the end of the 𝐽 th row
and the other at the end of the 𝐾 th row, to the Young diagram for 𝑅. This notation
is to insist on the fact that the bosonic statistics of the probe forces the resulting
state to live in the Hilbert space sector ℋ(𝑅 ⊗ ), rather than generically in
ℋ(𝑅 ⊗ □ ⊗ □). At the level of Hilbert spaces we have a generic state

|𝑅 ⊔ (𝐽𝐾) , č⟩⟩ =
𝜉
√

2
[| (𝑅 ⊔ □𝐽) ⊔ □𝐾 , č⟩⟩ + |((𝑅 ⊔ □𝐾) ⊔ □𝐽) , č⟩⟩] , (5.488)

for all č = 1, . . . , dim(𝑅 ⊔ □𝐽 ⊔ □𝐾), and 𝜉 is a phase, see around Equation (5.507)
for a more detailed justification. Note that the dimension is manifestly insensitive
to the order in which the boxes are appended to the rows, thus the definition is well
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posed. Likewise, the Hamiltonian is insensitive to the ordering, so we can simply
write 𝐻′(𝑅 ⊔ □𝐽 ⊔ □𝐾).

In the calculation of the second correlation function, we will repeatedly use the
notation on the left-hand side of (5.488) to signify the result of tensoring with the
symmetric probe state.

Step 3: Second correlation function

We now turn to the second expression 𝐺 (2)
𝑖 𝑗 𝑘𝑙
(𝑡1, 𝑡2, 𝑡3). Similarly, for any given

representation 𝑅 (ignoring potential antisymmetric terms),∑︁
a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐 𝑗 (𝑡2)𝑐†𝑘 (𝑡1)𝑐

†
𝑙
(0) |𝑅, a⟩⟩ = 𝛿𝑖𝑘𝛿 𝑗 𝑙

∑︁
a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐 𝑗 (𝑡2)𝑐†𝑖 (𝑡1)𝑐

†
𝑗
(0) |𝑅, a⟩⟩

(5.489)

+ 𝛿𝑖𝑙𝛿 𝑗 𝑘
∑︁

a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐 𝑗 (𝑡2)𝑐†𝑗 (𝑡1)𝑐

†
𝑖
(0) |𝑅, a⟩⟩

− 𝛿𝑖 𝑗 𝑘𝑙
∑︁

a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐𝑖 (𝑡2)𝑐†𝑖 (𝑡1)𝑐

†
𝑖
(0) |𝑅, a⟩⟩.

Just like before, averaging over 𝑖, 𝑗 , 𝑘, 𝑙 in the large 𝐿 limit only the first two terms
are not suppressed and we obtain

1
𝐿2

∑︁
𝑖 𝑗 𝑘𝑙

∑︁
a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐 𝑗 (𝑡2)𝑐†𝑘 (𝑡1)𝑐

†
𝑙
(0) |𝑅, a⟩⟩ ≈ 1

�̃�2

∑︁
𝑖 𝑗a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐 𝑗 (𝑡2)𝑐†𝑖 (𝑡1)𝑐

†
𝑗
(0) |𝑅, a⟩⟩

(5.490)

+ 1
�̃�2

∑︁
𝑖 𝑗a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐 𝑗 (𝑡2)𝑐†𝑗 (𝑡1)𝑐

†
𝑖
(0) |𝑅, a⟩⟩.

Unlike the previous case, both terms give a nonzero contribution in the probe
approximation.

Lemma 5.14.3. Both terms in the right-hand side of (5.490) factorize into the
product two two-point functions.

Proof of the first term in (5.490). Inserting successive resolutions of the identity,
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the first term on the right-hand side of (5.490) gives

1
�̃�2

∑︁
𝑖 𝑗a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐 𝑗 (𝑡2)𝑐†𝑖 (𝑡1)𝑐

†
𝑗
(0) |𝑅, a⟩⟩

=
∑︁

𝐽,𝐾∈𝒥𝑅

∑︁
(𝑀𝑃)∈𝒥 (2)

𝑅

𝑒𝑖𝑡3𝐻
′ (𝑅,𝜙(𝑅))−𝑖𝑡32𝐻

′ (𝑅⊔□𝐾 ,𝜙(𝑅))−𝑖𝑡1𝐻′ (𝑅⊔□𝐽 )−𝑖𝑡21𝐻
′ (𝑅⊔□𝑀⊔□𝑃)

× 1
�̃�2

∑︁
𝑖 𝑗a

∑︁
âb̂

⟨⟨𝑅, a|𝑐𝑖 |𝑅 ⊔ □𝐾 , b̂⟩⟩⟨⟨𝑅 ⊔ □𝐽 , â|𝑐†𝑗 |𝑅, a⟩⟩

×
∑̌︁

c
⟨⟨𝑅 ⊔ □𝐾 , b̂|𝑐 𝑗 |𝑅 ⊔ (𝑀𝑃) , č⟩⟩⟨⟨𝑅 ⊔ (𝑀𝑃) , č|𝑐†𝑖 |𝑅 ⊔ □𝐽 , â⟩⟩,

(5.491)

where the indices are â = 1, . . . , dim(𝑅 ⊔ □𝐽), b̂ = 1, . . . , dim(𝑅 ⊔ □𝐾) and
č = 1, . . . , dim(𝑅 ⊔ □𝑀 ⊔ □𝑃). In this expression, (𝑀𝑃) ∈ 𝒥

(2)
𝑅

stands for the
symmetrization of the ways of appending two boxes at the end of the 𝑀 th and 𝑃th

rows, as explained above in Subsection 5.14 — cf. the prescription (5.488).

Letting 𝑐 𝑗 act on the right and 𝑐†
𝑖

act on the left, we note that the last line of (5.491)
vanishes unless 𝐾 ∈ {𝑀, 𝑃} and 𝐽 ∈ {𝑀, 𝑃}. Moreover, as we now show in more
detail, the leading contribution comes from the case in which 𝐾 = 𝑀 and 𝐽 = 𝑃 or
𝐽 = 𝑀 and 𝐾 = 𝑃, while the other cases, which require 𝐽 = 𝐾 , are sub-leading in
the planar limit.

To formalize the previous sentence, let us fix 𝐽, 𝐾, 𝑀, 𝑃 and introduce the projections
onto 𝑅 ⊔ □𝐽 and 𝑅 ⊔ □𝐾 , denoted Π𝐽 and Π𝐾 , respectively. The last two lines of
(5.491) can be recombined in such a way to remove the sums over a, â, b̂, and we
get

1
�̃�2

∑︁
𝑖 𝑗

∑̌︁
c
⟨⟨𝑅 ⊔ (𝑀𝑃) , č|𝑐†𝑖 Π𝐽𝑐

†
𝑗
𝑐𝑖Π𝐾𝑐 𝑗 |𝑅 ⊔ (𝑀𝑃) , č⟩⟩

=
1
�̃�2

∑︁
𝑖 𝑗

∑̌︁
c

[
⟨⟨𝑅 ⊔ (𝑀𝑃) , č|𝑐†𝑖 Π𝐽𝑐𝑖𝑐

†
𝑗
Π𝐾𝑐 𝑗 |𝑅 ⊔ (𝑀𝑃) , č⟩⟩ (5.492)

− 𝛿𝑖 𝑗 ⟨⟨𝑅 ⊔ (𝑀𝑃) , č|𝑐†𝑖 Π𝐽Π𝐾𝑐 𝑗 |𝑅 ⊔ (𝑀𝑃) , č⟩⟩
]
.

If 𝐽 = 𝐾 , these two terms cancel at leading order in the large 𝐿 limit and the
contribution is suppressed. If 𝐽 ≠ 𝐾 , then the second term vanishes, and the first
term is nonzero if and only if the sets {𝑀, 𝑃} and {𝐽, 𝐾} are equal. In that case,
we insert a resolution of the identity for the basis of 𝑅 ⊗ between 𝑐𝑖 and 𝑐†

𝑗
,
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obtaining∑̌︁
c

1
�̃�2

∑︁
𝑖 𝑗

⟨⟨𝑅 ⊔ (𝐽𝐾) , č|𝑐†𝑖 Π𝐽𝑐𝑖𝑐
†
𝑗
Π𝐾𝑐 𝑗 |𝑅 ⊔ (𝐽𝐾) , č⟩⟩

=
∑̌︁

c

∑︁
(𝑀 ′𝑃′)∈𝒥 (2)

𝑅

∑̌︁
d

⟨⟨𝑅 ⊔ (𝐽𝐾) , č|
1
�̃�

∑︁
𝑖

𝑐
†
𝑖
Π𝐽𝑐𝑖 |𝑅 ⊔ (𝑀 ′𝑃′) , ď⟩⟩ (5.493)

× ⟨⟨𝑅 ⊔ (𝑀 ′𝑃′) , ď|
1
�̃�

∑︁
𝑗

𝑐
†
𝑗
Π𝐾𝑐 𝑗 |𝑅 ⊔ (𝐽𝐾) , č⟩⟩,

with symmetrization over the added boxes, as explained around (5.488).

Similar to the computation in step 2, the non-vanishing contributions come from
{𝑀′, 𝑃′} = {𝐽, 𝐾} and ď = č, and all the summands have the same value. We can
therefore rewrite the expression as

1
dim(𝑅 ⊔ □𝐽 ⊔ □𝐾)

∑̌︁
c
⟨⟨𝑅 ⊔ (𝐽𝐾) , č|

1
�̃�

∑︁
𝑖

𝑐
†
𝑖
Π𝐽𝑐𝑖 |𝑅 ⊔ (𝐽𝐾) , č⟩⟩

×
∑̌︁

d

⟨⟨𝑅 ⊔ (𝐽𝐾) , ď|
1
�̃�

∑︁
𝑗

𝑐
†
𝑗
Π𝐾𝑐 𝑗 |𝑅 ⊔ (𝐽𝐾) , ď⟩⟩

=
1

�̃�2 dim(𝑅 ⊔ □𝐽 ⊔ □𝐾)
©«
∑︁
𝑖,â,č
|⟨⟨𝑅 ⊔ (𝐽𝐾) , č|𝑐†𝑖 |𝑅 ⊔ □𝐽 , â⟩⟩|

2ª®¬
× ©«

∑︁
𝑗 ,b̂,ď

|⟨⟨𝑅 ⊔ (𝐽𝐾) , ď|𝑐†𝑗 |𝑅 ⊔ □𝐾 , b̂⟩⟩|
2ª®¬ . (5.494)

Acting with the creation operator 𝑐†
𝑖

in the first bracket we get the state |𝑅⊔□𝐽 , â; 𝑖⟩⟩,
to be contracted with ⟨⟨𝑅 ⊔ (𝐽𝐾) , č|. Could we forget about the symmetrization
and replace 𝑅⊔ (𝐽𝐾) with 𝑅⊔□𝐽 ⊔□𝐾 , then we would simply apply the left-hand
side of (5.477), with 𝑅 there replaced by 𝑅 ⊔ □𝐽 and labels ( 𝑗 , 𝐽) there replaced
by (𝑖, 𝐾). Doing the residual sum over č, we would conclude that the first bracket
contributes dim(𝑅 ⊔ □𝐽 ⊔ □𝐾). The same applies to 𝑐†

𝑗
|𝑅 ⊔ □𝐾 , b̂⟩⟩.

Let us now track more carefully the effect of the symmetrization due to the bosonic
nature of the probe.

(i) Throughout this analysis, we neglect the probe states in which the two particles
are created in the same index, i.e., states |𝑘, 𝑙⟩ are assumed to have 𝑘 ≠ 𝑙. We
are thus neglecting 𝑂 (1/𝐿) contributions, and our claims are valid at large 𝐿.

(ii) The state in the bra (both in the first and second line of (5.494)) comes from
the Clebsch–Gordan expansion of states of the form |𝑅, a⟩⟩ ⊗ |𝑘,𝑙⟩probe+|𝑙,𝑘⟩probe√

2
.



278

(iii) We can now expand the state by tensoring with each of the two summands.
From (5.488), we write schematically

|𝑅 ⊔ (𝐽𝐾) , č⟩⟩ =
𝜉
√

2
[| (𝑅 ⊔ □𝐽) ⊔ □𝐾 , č⟩⟩ + |((𝑅 ⊔ □𝐾) ⊔ □𝐽) , č⟩⟩] ,

(5.495)

with 𝜉 a phase. Here we have traded the symmetrization over the probe indices
to an exchange of the order of the projectors on the boxes — see around
Equation (5.507) for a rigorous justification.

We observe that the projection onto the symmetric representation that
appears in the Clebsch–Gordan decomposition of □ ⊗ □ induces a projector
onto ℋ(𝑅 ⊗ ) from ℋ(𝑅 ⊗ □ ⊗ □), for all 𝑅. In the following, we denote
by Πsym this projection acting on the Hilbert space.

(iv) The 1/
√

2 becomes a weight 1/2 in the sum due to the absolute value square.
After contraction, it cancels against a factor of 2 produced from the ket, yielding
1.

(v) The state in the ket of the first line of (5.494) is in (𝑅 ⊔ □𝐽) ⊗ □, indexed by
the pair (â, 𝑖); likewise, the state in the ket of the second line of (5.494) is in
(𝑅 ⊔ □𝐾) ⊗ □, indexed by the pair (b̂, 𝑗).

(vi) Contracting with the bra, using the projectors on the ket, and the orthogonality
relations for the basis of 𝑅 ⊗ □ ⊗ □, we conclude that only one of the states
labelled by (â, 𝑖) (respectively (b̂, 𝑗)) in the first (respectively second) line of
(5.494) contributes non-trivially, with weight 1.

The conclusion of this argument is reliable in the saddle point approximation, in
which the sum over 𝑅 localizes onto a large Young diagram.

In this way, we obtain a total contribution of

1
�̃�2

dim(𝑅 ⊔ □𝐽 ⊔ □𝐾) =
1
�̃�2
· dim(𝑅 ⊔ □𝐽 ⊔ □𝐾)

dim(𝑅 ⊔ □𝐾)
· dim(𝑅 ⊔ □𝐾)

dim(𝑅) · dim(𝑅)

≈ dim 𝑅

(
dim(𝑅 ⊔ □𝐽)
�̃� dim(𝑅)

) (
dim(𝑅 ⊔ □𝐾)
�̃� dim(𝑅)

)
. (5.496)
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In the second line we have used the planar approximation (5.479) for the ratio of
dimensions. The latter formula implies that (5.491) asymptotes to∑︁

𝐽,𝐾∈𝒥𝑅
𝑒𝑖𝑡3𝐻

′ (𝑅,𝜙(𝑅))−𝑖𝑡32𝐻
′ (𝑅⊔□𝐾 ,𝜙(𝑅))−𝑖𝑡1𝐻′ (𝑅⊔□𝐽 )−𝑖𝑡21𝐻

′ (𝑅⊔□𝐽⊔□𝐾 )

× dim 𝑅

(
dim(𝑅 ⊔ □𝐽)
�̃� dim(𝑅)

) (
dim(𝑅 ⊔ □𝐾)
�̃� dim(𝑅)

)
. (5.497)

Using (5.478) and reinserting the 𝜙(𝑅)-dependence, that produces dim 𝜙(𝑅), we
obtain a term that factorizes into the product of two-point functions in the large
𝐿 limit (under the assumption of a non-trivial saddle point for the ensemble of
representations). □

Proof of the second term in (5.490). Now we treat the second term in a similar way.
In this case, we obtain an analogous formula by inserting successive resolutions of
the identity:

1
�̃�2

∑︁
𝑖 𝑗a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐 𝑗 (𝑡2)𝑐†𝑗 (𝑡1)𝑐

†
𝑖
(0) |𝑅, a⟩⟩

=
∑︁

𝐽,𝐾∈𝒥𝑅

∑︁
(𝑀𝑃)∈𝒥 (2)

𝑅

𝑒𝑖𝑡3𝐻
′ (𝑅,𝜙(𝑅))−𝑖𝑡32𝐻

′ (𝑅⊔□𝐾 ,𝜙(𝑅))−𝑖𝑡1𝐻′ (𝑅⊔□𝐽 )−𝑖𝑡21𝐻
′ (𝑅⊔□𝑀⊔□𝑃)

× 1
�̃�2

∑︁
𝑖 𝑗a

∑︁
âb̂

⟨⟨𝑅, a|𝑐𝑖 |𝑅 ⊔ □𝐾 , b̂⟩⟩⟨⟨𝑅 ⊔ □𝐽 , â|𝑐†𝑖 |𝑅, a⟩⟩

×
∑̌︁

c
⟨⟨𝑅 ⊔ □𝐾 , b̂|𝑐 𝑗 |𝑅 ⊔ (𝑀𝑃) , č⟩⟩⟨⟨𝑅 ⊔ (𝑀𝑃) č|𝑐†𝑗 |𝑅 ⊔ □𝐽 , â⟩⟩.

(5.498)

This is only nonzero if 𝐾 = 𝐽. In this case, the inner sum further simplifies as∑︁
𝑗 ,â,č
|⟨⟨𝑅 ⊔ (𝑀𝑃) , č|𝑐†𝑗 |𝑅 ⊔ □𝐽 , â⟩⟩|

2, (5.499)

which is nonzero only if 𝑀 = 𝐽 or 𝑃 = 𝐽 (without loss of generality one can
suppose 𝑀 = 𝐽). By the same argument used after (5.494), the piece (5.499) can
be approximated by dim(𝑅 ⊔□𝐽 ⊔□𝑃). From here together with (5.479) we readily
find that expression (5.498) asymptotes to

1
�̃�2

dim(𝑅 ⊔ □𝐽)
(
dim(𝑅 ⊔ □𝐽 ⊔ □𝑃)

dim(𝑅 ⊔ □𝐽)

)
≈ dim 𝑅

(
dim(𝑅 ⊔ □𝐽)
�̃� dim(𝑅)

) (
dim(𝑅 ⊔ □𝑃)
�̃� dim(𝑅)

)
.

(5.500)



280

Similarly, reinserting into the sum over 𝐽, 𝐾 with the various Kronecker 𝛿𝑀𝐽 and so
on, we obtain a term that factorizes into the product of two-point functions in the
planar limit. □

cor. The second line on the right-hand side of (5.472) reproduce in the planar limit
the second and third line on the right-hand side of (5.471).

Proof. Upon adding to 𝐺 (2)
𝑖 𝑗 𝑘𝑙
(𝑡1, 𝑡2, 𝑡3) terms that are identically zero (correlation

functions of mismatching number of creation and annihilation operators), we get
the second piece on the right-hand side of (5.472). On the other hand, the explicit
computation in the previous lemma shows that 𝐺 (2)

𝑖 𝑗 𝑘𝑙
(𝑡1, 𝑡2, 𝑡3) reduces in the planar

limit to (5.490).

Comparing the expressions we see that the two lines on the right-hand side of
(5.490) reproduce in the planar limit the second and third line on the right-hand side
of (5.471). □

Final step: Summing the contributions

Corollary 5.14 equates the first term on the right-hand side of (5.472) with the first
line in (5.471), and Corollary 5.14 equates the second term on the right-hand side
of (5.472) with the second and third line on the right-hand side of (5.471).

Summing the two concludes the derivation of Proposition 5.14.1.

Complete argument for the large 𝑁 factorization

We now show that our models have factorizing correlation functions at large 𝑁
for any 2𝑛-point function, using a different method than extends to higher point
functions more directly. For concreteness we study the four-point function here,
and it should be clear how this method straightforwardly generalizes to higher point
functions.

Let us focus on the term
1
𝐿2

∑︁
𝑖 𝑗 𝑘𝑙a
⟨⟨𝑅, a|𝑐𝑖 (𝑡3)𝑐 𝑗 (𝑡2)𝑐†𝑘 (𝑡1)𝑐

†
𝑙
(0) |𝑅, a⟩⟩

=
1
𝐿2

∑︁
𝐽∈𝒥𝑅
𝐾∈𝒥𝑅

∑︁
(𝑀𝑃)∈𝒥 (2)

𝑅

𝑒𝑖𝑡3𝐻 (𝑅,𝜙(𝑅))+(𝑖𝑡2−𝑖𝑡3)𝐻 (𝑅⊔□𝐾 ,𝜙(𝑅))−𝑖𝑡1𝐻 (𝑅⊔□𝐽 )+(𝑖𝑡1−𝑖𝑡2)𝐻 (𝑅⊔□𝑀⊔□𝑃)

×
∑︁
a𝑖 𝑗 𝑘𝑙
⟨⟨𝑅, a|𝑐𝑖Π𝐾𝑐 𝑗Π(𝑀𝑃)𝑐†𝑘Π𝐽𝑐

†
𝑙
|𝑅, a⟩⟩. (5.501)
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Here, just like above, the various Π𝑋 denote the Young projections onto the rep-
resentation 𝑅 with the boxes 𝑋 adjoined to it. By flavor invariance, each of the
inner products in the innermost sum can be nonzero only if the representations in
the projectors differ by exactly one box. This is only possible if either 𝐾 = 𝐽 = 𝑀 ,
or if 𝐽 = 𝑀 and 𝐾 = 𝑃. In the first case, the inner sum on the third line of (5.501)
can be rewritten as ∑︁

a𝑖 𝑗 𝑘𝑙
⟨⟨𝑅, a|𝑐𝑖Π𝐾𝑐 𝑗Π(𝐾𝑃)𝑐†𝑘Π𝐾𝑐

†
𝑙
|𝑅, a⟩⟩. (5.502)

For 𝑖 a fundamental index, let 𝛼†
𝑖

be the operator that tensors a representation with
a copy of the fundamental in the state 𝑖. On the 𝑛-particle bosonic Hilbert space, 𝑐†

𝑖

acts as
√
𝑛Πsym𝛼

†
𝑖
, where Πsym is the symmetrization projector, explicitly realized

in accordance with (5.495). With this notation, (5.502) can be rewritten as

2
∑︁
a𝑖 𝑗 𝑘𝑙
⟨⟨𝑅, a|𝛼𝑖Π𝐾𝛼 𝑗ΠsymΠ(𝐾𝑃)Πsym𝛼

†
𝑘
Π𝐾𝛼

†
𝑙
|𝑅, a⟩⟩. (5.503)

Now, ΠsymΠ(𝐾𝑃)Πsym = Π(𝐾𝑃) , so we can rewrite the expression as

2
∑︁
a𝑖 𝑗 𝑘𝑙
⟨⟨𝑅, a|𝛼𝑖Π𝐾𝛼 𝑗Π(𝐾𝑃)𝛼†𝑘Π𝐾𝛼

†
𝑙
|𝑅, a⟩⟩. (5.504)

Here, it is useful to pause and understand the meaning of Π𝐾 and Π(𝐾𝑃) in more
detail. They are projectors on the irreducible representations 𝑅⊔□𝐾 and 𝑅⊔ (𝐾𝑃) ,
respectively. The representation 𝑅 ⊔ (𝐾𝑃) is to be understood as the (unique)
copy of the representation 𝑅⊔ (𝐾𝑃) in the tensor product 𝑅⊗ ( ). It is a linear
combination of the form

𝑅 ⊔ (𝐾𝑃) = 𝛾1(𝑅 ⊔ □𝐾 ⊔ □𝑃) ⊕ 𝛾2(𝑅 ⊔ □𝑃 ⊔ □𝐾), (5.505)

with |𝛾1 |2+ |𝛾2 |2 = 1. (𝑅⊔□𝐾 ⊔□𝑃) and (𝑅⊔□𝑃⊔□𝐾) are the respective images of
𝑅 ⊗ □ ⊗ □ by the Young projectors with the two last indices at position 𝐾 then 𝑃 or
𝑃 then 𝐾 . Note that in general, Young projectors are not mutually orthogonal when
the tableau shape is the same [419], however here we have a small number of added
boxes compared to the size of the tableau, so most of them actually are (for example
here they always are when only two boxes are added at different nonadjacent rows
to a given Young diagram), and we can neglect this subtlety.

Lemma 5.14.4. 𝛾1 = 𝛾2, hence |𝛾𝑖 |2 = 1
2 for 𝑖 = 1, 2.
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Proof. We now show that the 𝛾𝑖 are equal. Let us consider a vector of the form

1
√

2
( |𝑅, a; 𝑖 𝑗⟩⟩ + |𝑅, a; 𝑗𝑖⟩⟩) . (5.506)

We can safely assume that the boxes are added to different rows, as in this way the
neglected contributions are suppressed in the large𝑁 limit. Then, the representations
(𝑅 ⊔□𝐾) ⊔□𝑃 and (𝑅 ⊔□𝑃) ⊔□𝐾 with 𝑃 ≠ 𝐾 are orthogonal to each other, and we
can write:

⟨⟨𝑅 ⊔ (𝐾𝑃) , č|
1
√

2
( |𝑅, a; 𝑖 𝑗⟩⟩ + |𝑅, a; 𝑗𝑖⟩⟩) = 1

√
2
⟨⟨(𝑅 ⊔ □𝐾) ⊔ □𝑃, č| ( |𝑅, a; 𝑖 𝑗⟩⟩ + |𝑅, a; 𝑗𝑖⟩⟩)

(5.507)

+ 1
√

2
⟨⟨(𝑅 ⊔ □𝑃) ⊔ □𝐾 , č| ( |𝑅, a; 𝑖 𝑗⟩⟩ + |𝑅, a; 𝑗𝑖⟩⟩) .

We want to show the two terms on the right-hand side are equal. It is therefore
useful to compute their difference. Multiplying by

√
2 and expanding it we obtain:

⟨⟨(𝑅 ⊔ □𝐾) ⊔ □𝑃, č| ( |𝑅, a; 𝑖 𝑗⟩⟩ + |𝑅, a; 𝑗𝑖⟩⟩) − ⟨⟨(𝑅 ⊔ □𝑃) ⊔ □𝐾 , č| ( |𝑅, a; 𝑖 𝑗⟩⟩ + |𝑅, a; 𝑗𝑖⟩⟩)
=⟨⟨(𝑅 ⊔ □𝐾) ⊔ □𝑃, č|𝑅, a; 𝑖 𝑗⟩⟩ − ⟨⟨(𝑅 ⊔ □𝑃) ⊔ □𝐾 , č|𝑅, a; 𝑗𝑖⟩⟩
+⟨⟨(𝑅 ⊔ □𝐾) ⊔ □𝑃, č|𝑅, a; 𝑗𝑖⟩⟩ − ⟨⟨(𝑅 ⊔ □𝑃) ⊔ □𝐾 , č|𝑅, a; 𝑖 𝑗⟩⟩. (5.508)

Going back to (5.501), the two terms in the second line are equal by definition of
the representations (𝑅 ⊔ □𝑃) ⊔ □𝐾 and (𝑅 ⊔ □𝐾) ⊔ □𝑃, respectively, and the same
goes for the two terms in the third line. Therefore, we obtain that any element of
𝑅⊗ ( ) has equal overlap with (𝑅⊔□𝑃)⊔□𝐾 and (𝑅⊔□𝐾)⊔□𝑃, up to corrections
negligible in the large 𝑁 limit. In particular 𝛾1 = 𝛾2, and |𝛾𝑖 |2 is constant equal to
1/2. □

When 𝛼†
𝑗

acts on 𝑅 ⊔ □𝐾 in (5.504), the only nonzero term after acting with Π(𝐾𝑃)

comes from its 𝑅 ⊔ □𝐾 ⊔ □𝑃 component (where 𝐾 and 𝑃 are not symmetrized). By
the above, the previous expression then becomes

2
2

∑︁
a𝑖 𝑗 𝑘𝑙
⟨⟨𝑅, a|𝛼𝑖Π𝐾𝛼 𝑗Π𝐾𝑃𝛼†𝑘Π𝐾𝛼

†
𝑙
|𝑅, a⟩⟩. (5.509)

One can then further remove the intermediate projections (since we are using Young
projectors [419]) and find the large 𝑁 contribution∑︁

a𝑖 𝑗 𝑘𝑙
⟨⟨𝑅, a|𝛼𝑖𝛼 𝑗Π𝐾𝑃𝛼†𝑘𝛼

†
𝑙
|𝑅, a⟩⟩ ≈Tr𝑅⊗□⊗□(Π𝐾𝑃) = dim(𝑅 ⊔ □𝐾 ⊔ □𝑃). (5.510)
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This is consistent with the factorization shown above. The second term (𝐽 = 𝑀, 𝐾 =

𝑃) works in a similar way: we obtain∑︁
a𝑖 𝑗 𝑘𝑙č

⟨⟨𝑅, a|𝛼𝑖𝛼 𝑗 |𝑅 ⊔ □𝐽 ⊔ □𝐾 , č⟩⟩⟨⟨𝑅 ⊔ □𝐾 ⊔ □𝐽 , č|𝛼†
𝑘
𝛼
†
𝑙
|𝑅, a⟩⟩ (5.511)

=
∑︁

a𝑖 𝑗 𝑘𝑙č
⟨⟨𝑅, a|𝛼𝑖𝛼 𝑗 |𝑅 ⊔ □𝐽 ⊔ □𝐾 , č⟩⟩⟨⟨𝑅 ⊔ □𝐽 ⊔ □𝐾 , č|𝛼†

𝑙
𝛼
†
𝑘
|𝑅, a⟩⟩. (5.512)

We then find the contribution at large 𝑁∑︁
a𝑖 𝑗 𝑘𝑙
⟨⟨𝑅, a|𝛼𝑖𝛼 𝑗Π𝐾𝑃𝛼†𝑙 𝛼

†
𝑘
|𝑅, a⟩⟩ ≈Tr𝑅⊗□⊗□(Π𝐾𝑃) = dim(𝑅 ⊔ □𝐾 ⊔ □𝑃). (5.513)

It is a tedious but straightforward exercise to check that this method extends to higher
point functions and different orders of 𝑐𝑖 and 𝑐†

𝑖
, yielding large 𝑁 factorization.
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C h a p t e r 6

BOUNDS ON SPECTRAL GAPS OF HYPERBOLIC SPIN
SURFACES

This chapter is based on the work [201], in collaboration with Sridip Pal, David
Simmons-Duffin and Yixin Xu.

6.1 Introduction
In this chapter, we derive new upper bounds on the first nonzero eigenvalue of
Laplace and Dirac operators on compact orientable hyperbolic surfaces and orbifolds
with spin. Our approach is inspired by a technique known in high energy physics as
the conformal bootstrap [393, 415, 282, 384, 383]. Bootstrap methods have already
been successfully applied to bound the first nonzero eigenvalue of the Laplace
operator on hyperbolic surfaces [283, 67, 68] and hyperbolic 3-manifolds [71], see
also [70, 69]. A remarkable achievement of [283, 67] is that for several low genera, it
improves on the Yang–Yau bounds [460] and its successors [248, 395, 273], as well
as the bounds of [245], which collectively had been the strongest bounds available
for decades. (In the large genus limit, [245] gives the optimal bound, as was recently
shown in [239].)

Recently, [79] used linear programming methods and the Selberg trace formula
(STF) to obtain new bounds on Laplacian eigenvalues and other geometric quantities
for hyperbolic surfaces. These bounds are stronger than the ones of [283] for genus
𝑔 > 6. However, the technique of [79] cannot immediately be extended to the Dirac
operator due to a lack of positivity in the STF with spin. Furthemore, [79] treats
orbifolds and manifolds on a separate footing, while [283] treats them uniformly. In
this chapter, we follow the methods of [283].

The basic idea of [283] is to leverage the fact that the orthonormal frame bundle of
any compact orientable hyperbolic surface or orbifold can be written asΓ\PSL(2,R),
where Γ is a cocompact Fuchsian group. Constraints on spectra come from combin-
ing the associativity of pointwise multiplication of functions on Γ\PSL(2,R) with
the representation theory of PSL(2,R). By decomposing functions into irreducible
representations of PSL(2,R), and imposing associativity of their pointwise prod-
ucts, one obtains an infinite set of constraint equations on the eigenvalues of the
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Laplace operator. Linear programming techniques applied to these equations yield
bounds on the spectrum.

We adapt this method to study surfaces and orbifolds with spin structure as follows.
Two operators are relevant in this context: the Laplace operator, which is insensitive
to the spin structure, and the Dirac operator, which depends on the spin structure. In
group-theoretic language, adding a spin structure amounts to considering a quotient
of the form Γ̃\SL(2,R), where Γ̃ is a lift of the cocompact Fuchsian group Γ to
SL(2,R). Each lift corresponds to a spin structure. We can then study the inter-
play between associativity of pointwise multiplication of functions on Γ̃\SL(2,R)
and the representation theory of SL(2,R). By decomposing functions into irre-
ducible representations of SL(2,R), and imposing associativity of their pointwise
products, we derive spectral identities, which are amenable to linear/semidefinite
programming.

Our bounds depend on the number of linearly-independent modular forms of various
weights possessed by a surface. For forms of weight 2 or higher, the Riemann–Roch
theorem determines their number from purely topological information: the genus
and the orders of orbifold points. The situation is different for weight 1 forms (which
correspond to harmonic spinors): the number of weight 1 forms can be different for
surfaces with the same topology but different geometries. For example, except in
genus 4 and 6, a surface carries the maximal possible number of weight 1 modular
forms if and only if it is hyperelliptic. This allows us to obtain stronger bounds for
hyperelliptic surfaces.

Among our results, we prove the following theorems:

Theorem 6.1.1 (Universal upper bound on Laplacian eigenvalue: I). Given a com-
pact orientable hyperbolic spin orbifold 𝑋 , the first non-zero eigenvalue of the
Laplacian operator, 𝜆(0)1 (𝑋) satisfies

𝜆
(0)
1 (𝑋) < 12.137980 .

Remark 6.1.2. The above bound is nearly saturated by [0; 3, 3, 5], a genus 0 orbifold
with three orbifold singularities of order 3, 3 and 5. We have 𝜆(0)1 ( [0; 3, 3, 5]) ≈
12.13623.1

1See Appendix 6.8 for the estimate of the interval [𝑎1, 𝑏1], which contains 𝜆 (0)1 ( [0; 3, 3, 5]).
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Theorem 6.1.3 (Universal upper bound on Laplacian eigenvalue: II). Given a
compact orientable hyperbolic spin orbifold 𝑋 admitting a harmonic spinor, the
first non-zero eigenvalue of the Laplacian operator, 𝜆(0)1 (𝑋) satisfies

𝜆
(0)
1 (𝑋) < 4.763782 .

Remark 6.1.4. The above bound is nearly saturated by the most symmetric point
(see fig. 6.1) of the moduli space of [1; 3] i.e a torus with one orbifold singularity
of order 3. Let us call the orbifold [1; 3]𝑠𝑦𝑚. Using FreeFEM++, we learn that
𝜆
(0)
1 ( [1; 3]𝑠𝑦𝑚) ≈ 4.7609.

Figure 6.1: A fundamental domain of Γ drawn on the Poincaré disc where Γ is a
subgroup of PSL(2,R) isomorphic to the fundamental group of the most symmetric
point in the moduli space of [1; 3]. This fundamental domain is a hyperbolic
quadrilateral symmetric under reflections against the two dashed lines.

More generally, we obtain two types of bounds. The first type are exclusion plots
in a two-dimensional parameter space, labelled by the first nonzero eigenvalues of
the Laplace and Dirac operators. We use 𝜆(0)1 to denote the first non-zero Laplacian
eigenvalue. For the first non-zero Dirac eigenvalue 𝑡 (1/2)1 , we use the variable
𝜆
(1/2)
1 := 1/4 + (𝑡 (1/2)1 )2 in the plots. Examples of such plots are given on Figures

6.2, 6.8 and 6.10. Let us focus on Figure 6.2. For any hyperbolic spin orbifold
𝑋 , equipped with a spin structure such that there is no harmonic spinor, the pair
(𝜆(0)1 (𝑋), 𝜆

(1/2)
1 (𝑋)) must lie in the union of the pink-shaded and yellow-shaded

regions. If the hyperbolic spin orbifold 𝑋 has genus 1 or more and is equipped with
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a spin structure admitting one or more harmonic spinors, then (𝜆(0)1 (𝑋), 𝜆
(1/2)
1 (𝑋))

must lie in the pink shaded region. The yellow shaded region as well as the pink
one has a kink at rightmost corner. Exclusion plots with kinks are abundant in the
conformal bootstrap literature. Often, one can identify the object that lives near the
kink. Here a similar phenomenon is true. Indeed, the corner point in the yellow-
shaded region is very close to (𝜆(0)1 ( [0; 3, 3, 5]), 𝜆(1/2)1 ( [0; 3, 3, 5])). See Figure 6.7
for a zoomed-in version of the exclusion plot. For the pink shaded region, the corner
point is close to (𝜆(0)1 (𝑋), 𝜆

(1/2)
1 (𝑋)), where 𝑋 is the most symmetric point of the

moduli space of [1; 3], equipped with the odd spin structure. See Table 6.8 in
Appendix 6.8 for the numerical estimates of the eigenvalues corresponding to these
nearly saturating examples.

We can derive more specific theorems from the exclusion plot. For example, we
prove

Theorem 6.1.5 (Conditional upper bound on Dirac eigenvalue). Given any compact
orientable hyperbolic spin orbifold 𝑋 such that the first non-zero eigenvalue of the
Laplacian operator satisfies 𝜆(0)1 (𝑋) > 1.5, we have

𝜆
(1/2)
1 (𝑋) < 55.9 .

Here 𝜆(1/2)1 (𝑋) = 1/4+ 𝑡2 and |𝑡 | is the lowest non-zero positive eigenvalue of Dirac
operator on 𝑋 .

To estimate the Laplace and Dirac eigenvalues of a given surface and compare them
with our bounds, we use a numerical method based on the STF, described in [300].
Using this method, we can populate the exclusion plots as shown on Figure 6.2.
We also derive more specific exclusion plots, for example Figures 6.10 and 6.11,
which describe the bound applicable to all compact orientable hyperbolic genus 2
spin orbifolds. As we can see, (𝜆(0)1 (𝑋), 𝜆

(1/2)
1 (𝑋)), where 𝑋 is the Bolza surface

with odd spin strcuture, sit very close to the boundary, see the table 6.8 in Appendix
6.8 for the numerical estimates.

The second type of bound is obtained from the first type, by noticing that the first
nonzero eigenvalue of the Dirac operator corresponds to 𝜆(1/2)1 (𝑋) > 1/4. This
leads to upper bounds on the first nonzero eigenvalue of the Laplace operator for
a given choice of spin structure, admitting a given number of weight 1 modular
form. These upper bounds are collected in Table 6.1. Interestingly, when the
spin structure allows for enough harmonic spinors, the upper bounds become more
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Figure 6.2: For any compact orientable hyperbolic spin orbifold 𝑋 , equipped with
a spin structure such that there is no harmonic spinor, (𝜆(0)1 (𝑋), 𝜆

(1/2)
1 (𝑋)) must lie

in the union of the pink-shaded and yellow-shaded regions. Note that, even though
it is not shown explicitly, we have 𝜆1/2

1 > 1/4. If the hyperbolic spin orbifold 𝑋
has genus 1 or more and is equipped with a spin structure admitting one or more
harmonic spinors, then (𝜆(0)1 (𝑋), 𝜆

(1/2)
1 (𝑋)) must lie in the pink shaded region. The

red dot in the corner corresponds to (𝜆(0)1 ( [0; 3, 3, 5]), 𝜆(1/2)1 ( [0; 3, 3, 5])). The other
red dots come from the eigenvalues corresponding to various hyperbolic triangles
while the blue dots come from the eigenvalues corresponding to the Bolza surface,
equipped with various spin structures. The purple dot in the corner of the pink
shaded region corresponds to (𝜆(0)1 ( [1; 3]𝑠𝑦𝑚), 𝜆(1/2)1 ( [1; 3]𝑠𝑦𝑚)), where [1; 3]𝑠𝑦𝑚 is
equipped with an odd spin structure. See the remark 6.1.4. The other purple dot
lying on the boundary of the pink shaded region corresponds to [1; 3]𝑠𝑦𝑚, equipped
with an even spin structure. See the table 6.8 in Appendix 6.8 for the numerical
estimates of these eigenvalues. Here the origin is at (1.5, 0).

stringent. In particular, this leads to improved upper bounds on the first Laplace
eigenvalue for hyperelliptic surfaces compared to [283]. As a warmup, we can use
a small number of spectral identities to derive a very simple analytical bound for
genus 𝑔 hyperelliptic surfaces by using the fact that they can be equipped with a spin
structure, admitting ⌊ 𝑔+12 ⌋ harmonic spinors.
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𝑔 ℓ1/2 𝜆
(0)
1 (𝑔, ℓ1/2) KMP [283] FP [79]

2 0,1 3.8388976481 3.8388976481 4.625307

3 0,1 2.6784823893 2.6784823893 2.8164272 1.9497673318∗

4 0,1 2.1545041334 2.1545041334 2.1738062 1.9497673318∗

5 0,1,2 1.8526509456 1.8526509456 1.8367663 1.18275751∗

6 0,1,2 1.654468363 1.654468363 1.6255963 1.386265630∗

7
0,1,2 1.51326783

1.51326783 1.4800083 1.38626563∗
4 0.9160143∗

8
0,1,2 1.40690466

1.40690466 1.3728043 1.38626563∗
4 1.0443114∗

9
0,1,2,3 1.32348160

1.32348160 1.2890244 1.148493243∗
5 0.78690∗

10
0,1,2,3 1.25602193

1.25602193 1.2221894 1.148493243∗
5 0.85292∗

Table 6.1: Table of upper bounds on the Scalar-Laplacian gap as a function of
genus and the number of harmonic spinors. For comparison, we also tabulate the
spinor-independent bounds from [283] and [79]. We note that bounds from [79] are
only applicable to manifolds while the bounds from [283] and the bounds in this
chapter are applicable to both manifolds and orbifolds. For 2 ⩽ 𝑔 ⩽ 10, the bounds
here coincide with the ones from [283], except when, given the genus 𝑔, the surface
admits a spin structure such that number of harmonic spinors is strictly more than
⌈ℓ𝑀𝑎𝑥/2⌉, where ℓ𝑀𝑎𝑥 = ⌊(𝑔 + 1)/2⌋ is the maximal number of harmonic spinors
allowed for that genus. In that case, the bounds are more restrictive; we mark them
with *.

Theorem 6.1.6. Given a genus 𝑔 ≥ 3 compact hyperbolic hyperelliptic surface 𝑋 ,
we must have

𝜆
(0)
1 (𝑋) ≤

⌊ 𝑔+12 ⌋
⌊ 𝑔+12 ⌋ − 1

. (6.1)

Remark 6.1.7. For a given numerical value of 𝑔, it is possible to achieve a much
stronger bound using computer assistance. This is evident from table 6.1, upon
using the fact that the hyperelliptic surfaces can be equipped with a spin structure
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Figure 6.3: Pictorial description of Conjecture 6.1.8: The green color denotes the
set of 𝜆(0)1 (𝑋), as 𝑋 runs over all compact orientable hyperbolic orbifolds. The red
color denotes the set of 𝜆(0)1 (𝑋), as 𝑋 runs over all compact orientable hyperbolic
orbifolds equipped with a spin structure. The red continuum comes from the moduli
space of [1; 3] and [0; 3, 3, 3, 3] while the green continuum comes from the moduli
space of [0; 2, 2, 2, 3]. This conjecture is a refinement of Conjecture 4.2 in [283]
as one can see that the red continuum along with 3 discrete red points lie entirely
within the green continuum.

which admits ℓ1/2 = ⌊ 𝑔+12 ⌋.

Using the STF, we can compute the location of 𝜆(0)1 (𝑋) for many orbifolds. Com-
bining these numerical data, we also put forward the following conjecture:

Conjecture 6.1.8. Let 𝜆(0)1 (𝑋) be the first non-zero eigenvalue of the Laplacian
on an hyperbolic orbifold 𝑋 . Let 𝐸spin ⊂ R>0 be the set of 𝜆(0)1 (𝑋) as 𝑋 runs
over all compact hyperbolic spin orbifolds. Then 𝐸spin is the union of the interval(
0, 𝜆[3,3,9]1

]
with the finite set

{
𝜆
[3,3,5]
1

}
∪

{
𝜆
[3,5,5]
1

}
∪

{
𝜆
[3,3,7]
1

}
. When 𝑋 is an orbifold

with signature [0; 𝑘1, 𝑘2, 𝑘3], we write 𝜆[𝑘1,𝑘2,𝑘3]
1 to denote 𝜆(0)1 ( [0; 𝑘1, 𝑘2, 𝑘3]). See

Figure 6.3.

Remark 6.1.9. The above conjecture is a refinement of Conjecture 4.2 in [283],
where the relevant set 𝐸 ⊂ R>0 was the set of 𝜆(0)1 (𝑋) as 𝑋 runs over all orbifolds.
We believe that this conjecture can partially be proven by bootstrapping the spectral
identities as done for Conjecture 4.2 in [283].

To put the above results in context, let us make some historical remarks. The
Dirac operator (in particular, the twisted Dirac operator, i.e., Dirac operator in
presence of a gauge connection) plays numerous interesting roles in physics. An
upper bound on the spectral gap of such a twisted Dirac operator was found for the
first time in the context of QCD in a chapter by Vafa and Witten [442], followed
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by a chapter by Atiyah [28]. These two chapters prove a uniform upper bound
(uniform with respect to the gauge connection) on the 𝑛th nontrivial eigenvalue of
the twisted Dirac operator on a compact Riemannian spin manifold in any dimension
𝐷. Similar methods were used to arrive at further specialized bounds in [42] in
terms of a smooth map from the manifold to the sphere. They further derived bounds
for surfaces with positive sectional curvature. Ref.[4] derived extrinsic bounds on
Dirac eigenvalues for isometrically immersed surfaces inside R3 in terms of mean
curvature and a smooth function from the surface to R, as well as intrinsic bounds
for genus 0 and genus 1 surfaces. Finally, lower bounds for the first nonzero Dirac
eigenvalue have also been studied for various kinds of spin manifolds [35], for
general manifolds of positive curvature [178, 37], as well as in the case of surfaces
depending on some geometric parameters including the choice of spin structure [34,
16]. For a general discussion on the spectrum of the Dirac operator on various
kinds of Riemannian manifolds, we refer the readers to [179] for a review, or [36]
for details on the hyperbolic case.

Our bounds have a different flavor from these results, and it is not straightforward
to directly compare them. In particular, our method encodes interesting interplays
between eigenvalues of Laplacian operator and eigenvalues of Dirac operator on a
hyperbolic spin orbifold, for example, see Theorem 6.1.5 or Figure 6.2.

Organization of the chapter
The rest of this chapter is organized as follows. In Section 6.2, we introduce the
basic notions of spectral geometry that we will need. In Section 6.3, we derive
our constraint equations from associativity and harmonic analysis. In Section 6.4,
we use the Selberg trace formula to develop a numerical technique to estimate the
Dirac and Laplace spectra of an orbifold of interest. In Section 6.5, we derive
our main bounds and exclusion plots. In Section 6.6, we discuss a few possible
future directions that our results suggest. In Appendix 6.7, we relate the number
of harmonic spinors a surface of low genus can carry to its geometrical properties.
In Appendix 6.8 we tabulate the numerical estimates of 𝜆(0)1 and 𝜆(1/2)1 for various
surfaces and orbifolds.

We emphasize that while the search for functionals in our linear/semidefinite pro-
gramming algorithm necessitates computer assistance, the output can be rationalized
in such a way that one can explicitly exhibit the required properties of the rational-
ized functionals leading to the bounds (such verifications of bounds coming from
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linear/semidefinite programming using rational arithmetic appear in many contexts,
for example in sphere packing [111] and in ref. [283]). Consequently, the proofs of
our theorems are completely rigorous and the computer is only used as an oracle. It
is only in Section 6.4 that our individual estimates, which are independent from the
theorems, are numerical and not proven at a mathematical level, although it should
also be possible to do so.

Technical note: Unless specified otherwise, all surfaces or orbifolds considered in
this chapter are connected, compact and orientable.

6.2 Spectral geometry on a spin-surface
Dirac operator and Automorphic Laplacian
Let us consider a 𝑑-dimensional orientable connected Riemannian manifold (𝑋, 𝑔)
and the orthonormal frame bundle over 𝑋 , (𝑄, 𝜋, 𝑋; 𝑆𝑂 (𝑑)); here 𝑄 is the total
space, 𝜋 : 𝑄 → 𝑋 is the projection map. We will often suppress 𝜋 and write the
shorthand𝑄(𝑋) to mean the orthonormal frame bundle over 𝑋 . A spin structure on
this principal bundle 𝑄 is a pair (𝑃,Λ) such that 𝑃 is a Spin(𝑑)-principal bundle
and there exists a principal bundle morphism Λ : 𝑃 → 𝑄, that is equivariant with
respect to the double covering Spin(𝑑) → 𝑆𝑂 (𝑑). A spin structure on 𝑄 exists if
and only if the second Stiefel-Whitney class of the 𝑆𝑂 (𝑑) principal bundle vanishes.

To set the stage, we restrict our attention to the upper half-plane H ≔ {(𝑥, 𝑦) ∈ R2 :
𝑦 > 0}. The metric 𝑔 is given by the Poincaré metric, i.e.,

𝑑𝑠2 =
𝑑𝑥2 + 𝑑𝑦2

𝑦2 . (6.2)

There exists a unique spin structure on the orthonormal frame bundle over H (which
is an 𝑆𝑂 (2) principal bundle). The corresponding Spin(2) principal bundle is trivial
and given by 𝑃 = H × Spin(2). If 𝜌 is the representation of Spin(2) on its Clifford
module C2, then the bundle 𝑆 associated with 𝜌,

𝑆 ≔ 𝑃 ×𝜌 C2, (6.3)

is the spinor bundle over the upper half-plane. The sections of this spinor bundle
are spinor fields defined on H. In particular, we will be interested in ℭ∞(𝑆), the
space of smooth sections of the spinor bundle 𝑆.
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Definition 6.2.1 (Dirac operator on H). The Dirac operator /𝐷 : ℭ∞(𝑆) → ℭ∞(𝑆)
is given by2

/𝐷 ≔ 𝑖

[
0 𝑖𝑦𝜕𝑥 + 𝑦𝜕𝑦 − 1

2
−𝑖𝑦𝜕𝑥 + 𝑦𝜕𝑦 − 1

2 0

]
. (6.4)

Remark 6.2.2. By restricting the domain of /𝐷 to ℭ∞𝑐 (𝑆), the space of smooth
compactly supported sections of the spinor bundle 𝑆, one can construct a pre-
Hilbert space, which can then be promoted to a Hilbert space in the standard way:
first, we define the inner product of 𝑓 , 𝑔 ∈ ℭ∞𝑐 (𝑆) by

⟨ 𝑓 , 𝑔⟩ ≔
∫
H
⟨ 𝑓 (𝑧), 𝑔(𝑧)⟩C2 𝑑𝜇(𝑧), (6.5)

where 𝜇 is the hyperbolic measure on H and then complete ℭ∞𝑐 (𝑆) into a Hilbert
space ℌ(𝑆) using the induced norm. The space ℭ∞𝑐 (𝑆) is dense inside ℌ(𝑆).

Remark 6.2.3. The Dirac operator is elliptic and essentially self-adjoint on ℭ∞𝑐 (𝑆),
which in particular implies that its spectrum is real [66].

A compact connected orientable hyperbolic surface Σ can be thought of as Γ\H,
where Γ is a cocompact Fuchsian group, a discrete subgroup of PSL(2,R). More
precisely, the cocompact Fuchsian group Γ acts properly discontinuously on H. If

𝛾 = ±
(
𝑎 𝑏

𝑐 𝑑

)
∈ Γ, the action is defined by

Γ × H −→ H
(𝛾, 𝑧) ↦−→ 𝑎𝑧+𝑏

𝑐𝑧+𝑑 .
(6.6)

The above induces an action on the orthonormal frame bundle 𝑄(H) � PSL(2,R),
which is simply the action by left multiplication:

Γ × PSL(2,R) −→ PSL(2,R)
(𝛾, 𝑔) ↦−→ 𝛾 · 𝑔. (6.7)

The double cover of the bundle 𝑄 is 𝑃(H) � SL(2,R).

Definition 6.2.4. Let Γ ⊂ PSL(2,R) be a cocompact Fuchsian group. Let 𝑝 :
SL(2,R) → PSL(2,R) be the canonical projection. We define the Γ̄ := 𝑝−1(Γ).

2For more details on defining the Dirac operator on a 𝑑-dimensional oriented connected Rie-
mannian manifold (𝑋, 𝑔), see Section 3 of [44].
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In order to describe spin structures more directly in terms of the action of Γ, it is
convenient to apply the following result to our context:

Proposition 6.2.5 (Ref.[347]). Spin structures on Σ are in one-to-one correspon-
dence with lifts to SL(2,R) of the action by left multiplication of Γ on PSL(2,R).
In other words, the spin structures on Γ\H are in one-to-one correspondence with
the possible right splittings of the short exact sequence:

1 Z2 Γ̄ Γ 1.𝜄

𝜒

𝑝

𝜌

(6.8)

The number of right splittings 𝜌 (i.e., 𝜌 for which 𝑝 ◦ 𝜌 = 𝐼𝑑) of this exact sequence
is equal to the number of left splittings 𝜒, for which 𝜒 ◦ 𝜄 = 𝐼𝑑, which amounts
to imposing the constraint 𝜒(−𝐼𝑑) = −1. A natural way to establish a one-to-one
correspondence between the two is to characterize 𝜒 by Ker 𝜒 = Im 𝜌. As a result,
we obtain:

Proposition 6.2.6. Spin structures on a compact orientable smooth Riemann surface
Σ can be labelled by homomorphisms 𝜒 : Γ̄→ Z2 satisfying 𝜒(−𝐼𝑑) = −1.

Remark 6.2.7. In the language of automorphic forms, 𝜒 is a multiplier which allows
the existence of nontrivial odd weight automorphic forms.

Remark 6.2.8. There is also a geometric interpretation of the morphism 𝜒. If
�̃� ∈ Γ̄, 𝜒(�̃�) gives the holonomy of the spin bundle along the corresponding closed
geodesic.

This new characterization of spin structure in terms of a homomorphism 𝜒 : Γ̄→ Z2

such that 𝜒(−𝐼𝑑) = −1 has the very convenient feature of easily generalizing to the
case in which the cocompact Fuchsian group Γ has some elliptic elements, in
particular, to the case of orbifolds which will be of particular interest to us. We
hence define:

Definition 6.2.9. Let Γ be a general cocompact Fuchsian group. A spin structure
on Γ\PSL(2,R) is a group homomorphism 𝜒 : Γ̄→ Z2 such that 𝜒(−𝐼𝑑) = −1.

Remark 6.2.10. Unlike Riemann surfaces, not every orbifold admits a spin structure.
In particular, if there exists an element of order 2 in Γ, the injectivity of 𝜌 implies
that this element must be mapped to −Id ∈ Γ̄, which lies in the image of 𝜄, hence
the kernel of 𝑝. This is inconsistent with the fact that 𝑝 ◦ 𝜌 = Id, thus there does not
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exist any right splitting of the exact sequence (6.8), which, by the splitting lemma,
implies that there does not exist any left splitting 𝜒. Hence even order orbifold
points are obstructions to the existence of a spin structure.

Remark 6.2.11. The geometric interpretation of 𝜒 naturally extends to the case of
orbifolds. In the case of elliptic elements, it gives the holonomy around orbifold
singularities.

Proposition 6.2.12 (Ref. [187], Theorem 3). On a smooth Riemann surface of genus
𝑔, there are 22𝑔 spin structures. An orbifold admits a spin structure if and only if
all its orbifold points have odd order, and then the number of spin structures is also
given by 22𝑔.

To define the Dirac operator for Σ, we need to restrict the domain of the /𝐷, the
Dirac operator on the upper half-plane to special sets of sections (since the bundle
is trivial, they are actually functions on H to C2) that satisfy the right automorphic
properties under Γ.

Definition 6.2.13 (Automorphy factor). For 𝛾 =

(
𝑎 𝑏

𝑐 𝑑

)
∈ Γ , and 2𝑘 ∈ N, let us

define the automorphy factor 𝑗𝛾 : H × 1
2N→ C and 𝐽𝛾 : H × 1

2N→ C2 as

𝑗𝛾 (𝑧, 𝑘) ≔
(𝑐𝑧 + 𝑑)𝑘
(𝑐𝑧 + 𝑑)𝑘

, 𝐽𝛾 (𝑧, 𝑘) ≔
(
𝑗𝛾 (𝑧, 𝑘) 0

0 𝑗𝛾 (𝑧, 𝑘 − 1)

)
, (6.9)

where the choice of square roots in the definitions of the numerator and denominator
of 𝑗𝛾 (𝑧, 𝑘) are chosen to be complex conjugate.

Definition 6.2.14. Let Γ be a cocompact Fuchsian group, and let 𝜒 be a multiplier
of weight 2𝑘 ∈ N on Γ̄ (𝜒(−Id) = (−1)2𝑘 ). We define the space 𝔉(Γ, 𝑘, 𝜒) as the
space of functions Ψ : H→ C2 that satisfy

Ψ(𝛾𝑧) = 𝜒(𝛾)𝐽𝛾 (𝑧, 𝑘)Ψ(𝑧) , ∀ 𝛾 =

(
𝑎 𝑏

𝑐 𝑑

)
∈ Γ . (6.10)

If these functions are asked to be smooth (resp. 𝐿2 over the fundamental domain of
Γ), the corresponding space is denoted ℭ∞(Γ, 𝑘, 𝜒) (resp. 𝔏2(Γ, 𝑘, 𝜒)).

It can be checked that /𝐷 leaves the space ℭ∞(Γ, 1/2, 𝜒) invariant and thus we have

Definition 6.2.15 (Dirac operator on Σ). The Dirac operator associated to Σ is
defined to be the restriction of /𝐷 to ℭ∞(Γ, 1/2, 𝜒).
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Under a slight abuse of notation, we will continue calling /𝐷 this Dirac operator with
restricted domain. ℭ∞(Γ, 1/2, 𝜒) is dense inside 𝔏2(Γ, 1/2, 𝜒). Compactness of
the surface implies that the spectrum of /𝐷 is discrete.

Definition 6.2.16. Let Γ be a cocompact Fuchsian group, and let 𝜒 be a multiplier
of weight 2𝑘 on Γ̄ (𝜒(−Id) = (−1)2𝑘 ). We define the space F (Γ, 𝑘, 𝜒) as the space
of functions 𝜓 : H→ C that satisfy

𝜓(𝛾𝑧) = 𝜒(𝛾) 𝑗𝛾 (𝑧, 𝑘)𝜓(𝑧) , ∀ 𝛾 =

(
𝑎 𝑏

𝑐 𝑑

)
∈ Γ . (6.11)

If these functions are asked to be smooth (resp. 𝐿2 over the fundamental domain of
Γ), the corresponding space is denoted C∞(Γ, 𝑘, 𝜒) (resp. 𝐿2(Γ, 𝑘, 𝜒)).

Definition 6.2.17. Define the weight 2𝑘 automorphic LaplacianΔ𝑘 : C∞(Γ, 𝑘, 𝜒) →
C∞(Γ, 𝑘, 𝜒) as

Δ𝑘 ≔ 𝑦2(𝜕2
𝑥 + 𝜕2

𝑦 ) − 2𝑖𝑘𝑦𝜕𝑥 . (6.12)

Remark 6.2.18. The square of the Dirac operator, /𝐷2 : ℭ∞(Γ, 1/2, 𝜒) → ℭ∞(Γ, 1/2, 𝜒)
is given by

/𝐷2
=

(
−Δ1/2 − 1

4 0
0 −Δ−1/2 − 1

4

)
. (6.13)

Δ1/2 is also called 1-Laplacian.

Now the following key proposition relates the spectrum of /𝐷 to that of Δ1/2.

Proposition 6.2.19. If Ψ =

(
𝜓1
𝜓2

)
is an eigenform of − /𝐷 with eigenvalue 𝑡, then

𝜓1 is an eigenform of −Δ1/2 with eigenvalue 𝜆 = 1/4 + 𝑡2. Conversely, if 𝜓 is an

eigenform of −Δ1/2 with eigenvalue 𝜆 = 1/4 + 𝑡2, then Ψ =

(
𝑡𝜓

𝑖

(
𝑖𝑦𝜕𝑥 − 𝑦𝜕𝑦 + 1

2

)
𝜓

)
is an eigenform of − /𝐷 with eigenvalue 𝑡.

Proof. See Proposition 1 of [66] and its proof. □

Thus bounding the Dirac spectrum associated to a given surface Σ amounts to
bounding the spectra ofΔ±1/2 onΣ. Another important feature of the Dirac spectrum
is that it has two important symmetries. First, the spectrum of the Dirac operator is
symmetric with respect to the origin:
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Proposition 6.2.20. If

(
𝜓1
𝜓2

)
is an eigenvector of /𝐷 with eigenvalue 𝑡, then

(
𝜓1
−𝜓2

)
is an eigenvector of /𝐷 with eigenvalue −𝑡. In particular, the spectrum of /𝐷 is
symmetric with respect to the origin.

The Dirac operator enjoys one more symmetry leading to what is called Kramers
degeneracy (degeneracy is a synonym of multiplicity in the physics literature).
This implies that all non-zero eigenvalues of the Dirac operator are at least doubly
degenerate,

Proposition 6.2.21 (Kramers degeneracy). Let 𝐶 be the complex conjugation oper-

ator, and 𝜎2 :=

(
0 −𝑖
𝑖 0

)
. If Ψ is an eigenvector of /𝐷 with eigenvalue 𝑡, then so is

(𝑖𝜎2𝐶)Ψ.

In quantum field theory, the operator implementing Kramers degeneracy is usually
interpreted as the time reversal operator. In Section 6.4, we will use Kramers
degeneracy in our algorithm to estimate the spectra of Dirac operator on orbifolds
and surfaces. More precisely, we will note that since all the non-zero eigenvalues of
the Dirac operator are degenerate, we can use Proposition 6.4.5 instead of Proposition
6.4.4, and look for the first nonzero value of 𝑡 for which 𝐼𝑟 (𝜆) = 2, instead of the
first nonzero value of 𝑡 for which 𝐼𝑟 (𝜆) = 1.

Holomorphic Modular forms and spin structure
A spin structure determines the definition of holomorphic modular forms of odd
weight on the surface. Let us recall that for even weights, holomorphic modular
forms on a Riemann surface Σ are defined independently from any choice of spin
structure. More precisely:

Definition 6.2.22. Let Γ be a cocompact Fuchsian group. A holomorphic Γ-modular
form of weight 2𝑘 ∈ 2N is a holomorphic function 𝑓 : H −→ C, such that for all
𝛾 : 𝑧 ↦→ 𝑎𝑧+𝑏

𝑐𝑧+𝑑 in Γ,

𝑓 (𝛾(𝑧)) = (𝑐𝑧 + 𝑑)2𝑘 𝑓 (𝑧), (6.14)

Note that since 2𝑘 is an even number, (𝑐𝑧+𝑑)2𝑘 has the same value on the two possible
lifts of 𝛾 inside SL(2,R), which ensures that the above definition is unambiguous.
This changes for odd powers of 𝑐𝑧 + 𝑑, because the automorphy factor differs by a
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sign depending on the choice of lift. Instead, one must use the spin structure 𝜒 as
an input to define a modular form of odd weight:

Definition 6.2.23. Let 𝜒 : Γ̄ → Z2 be a group homomorphism (or equivalently, a
choice of spin structure on Σ). A holomorphic modular form of weight 𝑘 for Γ̄ is a
holomorphic function 𝑓 : H −→ C, such that for all 𝛾 : 𝑧 ↦→ 𝑎𝑧+𝑏

𝑐𝑧+𝑑 in Γ,

𝑓 (𝛾(𝑧)) = 𝜒(𝛾)𝑘 (𝑐𝑧 + 𝑑)𝑘 𝑓 (𝑧). (6.15)

In the case of 𝑘 even, this definition reduces to the previous one and does not depend
on the choice of 𝜒, but this is no longer true for 𝑘 odd.

Our approach will use the number of linearly independent holomorphic modular
forms of a given (even or odd) weight as an input to the set of consistency conditions,
i.e., bootstrap constraints. Therefore, it is important to understand what moduli
space of surfaces and orbifolds supports a given number of linearly independent
holomorphic modular forms of a given (even or odd) weight. Apart from the case of
modular forms of weight 1, this is determined by purely topological data, as shown
by the Riemann–Roch theorem, which we now review.

The Riemann–Roch theorem comes from algebraic geometry, and allows to count
the number of linearly independent holomorphic modular forms of weight ⩾ 2 on
Σ only from the information about its topology.

Theorem 6.2.24 (Riemann–Roch for orbifolds). Let 𝑛 ⩾ 2 and 𝑛 ∈ Z. If an orbifold
of genus 𝑔 with elliptic points 𝑝1, . . . , 𝑝𝑟 of orders 𝑘1, . . . , 𝑘𝑟 admits a spin structure,
then it possesses

ℓ𝑛/2 = (𝑛 − 1) (𝑔 − 1) +
𝑟∑︁
𝑖=1

⌊
𝑛

2

(
1 − 1

𝑘𝑖

)⌋
+ 𝛿𝑛,2 (6.16)

holomorphic modular forms of weight 𝑛 (regardless of the choice of multiplier), and
in particular 𝑔 holomorphic modular forms of weight 2.

Remark 6.2.25. Note that when 𝑛 is odd, there can be cases in which there is no spin
structure on the space under consideration (if it is an orbifold). The Riemann–Roch
theorem requires the existence of a spin structure for odd 𝑛.

Remark 6.2.26. The Riemann–Roch theorem will be the central tool that we will
use in order to apply our bootstrap techniques. The number of modular forms
of a certain weight will be used as an input in our symmetry constraints, and the
Riemann–Roch theorem will enable us to characterize the class of Σ supporting
enough modular forms in order for our constraints to apply.
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Harmonic spinors
Calculating the number of modular forms of a given weight is straightforward thanks
to the Riemann–Roch formula for 𝑛 ⩾ 2: it is a topological invariant of the surfaces
or orbifolds under consideration. However, the case 𝑛 = 1 is particularly tricky. In
particular, for compact orientable smooth surfaces of genus 2 or more, this number
is not topologically invariant, and actually carries some nontrivial information about
the surface’s geometry and the spin structure on it.

Remark 6.2.27. The fact that the 𝑛 = 1 case behaves differently is most easily
understandable in terms of sheaf cohomology. In this language, the Riemann–
Roch formula involves the dimension of the zeroth and first cohomology groups
of the sheaf under consideration, which is a power of the canonical line bundle
determined by 𝑛 (see for example Theorem 16.9 of [176]). It is the dimension
of the zeroth cohomology group that gives the number of linearly independent
holomorphic modular forms of weight 𝑛. If 𝑛 > 1, the first sheaf cohomology group
automatically vanishes, which allows to directly compute the number of linearly
independent holomorphic modular forms from the Riemann–Roch formula. It is no
longer right to ignore the term coming from the first sheaf cohomology group for
𝑛 = 1, which explains why the situation is more complicated.

What remains true in the 𝑛 = 1 case is that the genus gives an upper bound on the
number of harmonic spinors:

Proposition 6.2.28 (Ref. [240]). The number ℓ1/2 of harmonic spinors on a compact
orientable smooth Riemann surface of genus 𝑔 with a spin structure satisfies

ℓ1/2 ⩽
⌊
𝑔 + 1

2

⌋
. (6.17)

The natural next step is to ask when this upper bound is saturated. Here the answer
is interesting, and requires the following definition:

Definition 6.2.29. Let Σ be a (smooth) Riemann surface. Σ is hyperelliptic if it can
be realized as a branched double cover Σ→ C𝑃1.

Remark 6.2.30. Hyperelliptic surfaces enjoy particularly nice properties, for exam-
ple, they can always be described by an algebraic equation of the form

𝑦2 = 𝐹 (𝑥), (6.18)
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where 𝐹 is a polynomial with distinct roots. At genus 1 and 2, every surface is
hyperelliptic. However, at genus higher than or equal to 3, the moduli space of
hyperelliptic surfaces is not the entire moduli space and hence is interesting to
study.

For our purposes, the following result is relevant:

Proposition 6.2.31 (Ref. [330]). Given Σ, a smooth surface of genus different from
4 or 6, there exists a spin structure on Σ for which the bound (6.17) is saturated if
and only if Σ is hyperelliptic.

This shows that apart from the case of genus 4 and the case of genus 6,3 we can
use the existence of a maximal number of harmonic spinors to write down the set
of consistency conditions, leading to bounds on Laplacian spectra for a genus 𝑔
hyperelliptic surface. These bounds are refined (and consequently, as we will see
later, they are stronger as well), in contrast with the bounds obtained in [283], which
are valid for all surfaces of genus 𝑔.

The upper bound on the gap of the Laplacian on some appropriately chosen moduli
space of surfaces is likely to be saturated on surfaces with a large automorphism
group (i.e., a locally maximal automorphism group). The classification of hyperel-
liptic surfaces with large automorphism groups is achieved in Table 1 of [351]. More
generally, it is interesting to ask for a geometric description of the space of surfaces
of a given genus that can carry a given number of harmonic spinors. As we saw,
all surfaces of genus 1 and 2 are hyperelliptic so such an endeavor is trivial there,
but from genus 3 onwards, the answer starts to give nontrivial information about
the geometry of the surfaces. The classification of Riemann surfaces in terms of
the possible dimensions of their spaces of harmonic spinors is still open in general,
however, for genus 3 ≤ 𝑔 ≤ 6, precise results are available. In Appendix 6.7, we
summarize these explicit classifications in low genus. The results collected in this
appendix are condensed in Table 6.2.

6.3 Spectral identities for hyperbolic surfaces from associativity
The aim of this section is to derive the spectral identities which we will eventu-
ally bootstrap to bound the Laplacian and Dirac spectra on a compact connected

3It is intriguing to note that these genera are precisely the ones for which bootstrap bounds[283]
for Laplace spectra are weaker than the Yang–Yau bounds [460].
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𝑔 ℓ𝑀𝑎𝑥1/2 Moduli space Most symmetric surface Automorphism group

2 1 All Bolza surface 𝐺𝐿 (2, F3)

3
1 Non-hyperelliptic Klein quartic PSL(2, F7)

2 Hyperelliptic 𝑦2 = 𝑥8 + 14𝑥4 + 1 Z2 × 𝑆4

4
1 Non-hyperelliptic with

smooth canonical quadric Bring surface 𝑆5

2 Hyperelliptic or non-hyperelliptic
with singular canonical quadric 𝑧3𝑦2 = 𝑥(𝑥4 + 𝑦4) Order 72

5
1 or 2 Non-hyperelliptic 𝑥2

1 + 𝑥
2
2 + 2𝑥2

4 = 𝑥2
4 (𝑥

2
2 + 𝑥

2
4) − 𝑥

4
3 = 0 Order 192

3 Hyperelliptic 𝑦2 = 𝑥(𝑥10 + 11𝑥5 − 1) Z2 × 𝐴5

6
1 or 2 Non-hyperelliptic and

not a smooth quintic Wiman sextic 𝑆5

3 Hyperelliptic or
smooth quintic Fermat quintic Order 150

Table 6.2: Table of the moduli spaces of surfaces, satisfying each genus/spin con-
straint, and of the most symmetric surfaces in each of these moduli spaces. Here 𝑔
is the genus and ℓ𝑀𝑎𝑥1/2 is the maximal number of harmonic spinors that a surface can
carry.

orientable hyperbolic surfaces and orbifolds. A compact connected orientable hyper-
bolic orbifold4 can be thought of as Γ\PSL(2,R)/𝑃𝑆𝑂 (2), where Γ is a cocompact
Fuchsian group. For a spin orbifold with a given spin structure, there exists Γ̄, a
subgroup of SL(2,R), such that Γ ≃ Γ̄/Z2. This means that Γ can be consistently
embedded inside Γ̄ such that the embedding does not have −𝐼𝑑. We will denote this
embedding as Γ̃. As a set, we have

Γ̄ = Γ̃ ⊔
(
−Γ̃

)
, (6.19)

and Γ̃ is isomorphic to Γ. Proposition 6.2.6 implies that 𝜒(�̃�) = ±1 for �̃� ∈
±Γ̃, respectively. In other words, different spin structures correspond to different
homomorphisms 𝜒 : Γ̄→ Z2, which amounts to saying that (6.19), and in particular
Γ̃, depends on the spin structure. We stress that even though Γ is isomorphic to Γ̃,
by choosing the embedding Γ̃, we have already committed to a spin structure. Thus
it is important to distinguish between Γ and Γ̃ even though they are isomorphic.

4We are following the convention that the manifolds are orbifolds with no orbifold-singularity
unless otherwise mentioned.
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The upshot of the above is that a compact connected orientable hyperbolic spin
orbifold 𝑋 , with a given spin structure can be thought of as Γ̃\SL(2,R)/Spin(2).
The total space for the spin bundle, i.e. 𝑃(𝑋), is given by Γ̃\SL(2,R). We formulate
the spectral problem for the Laplacian and Dirac operator on these hyperbolic spin
orbifolds with a spin structure using the harmonic analysis on 𝐿2(Γ̃\𝐺), where
𝐺 := SL(2,R). Evidently, a key role is played by irreducible unitary representations
of SL(2,R).

Representation theory of SL(2,R)

Theorem 6.3.1 (See [279]). The unitary irreducible representations of SL(2,R)
are given up to equivalence by:

1. the trivial representation,

2. the complementary series C𝑠 for 𝑠 ∈ (0, 1
2 ),

3. the principal series P±
𝑖𝜈

for 𝜈 ∈ R, except for P−0 ,

4. the holomorphic discrete series D𝑛/2 and anti-holomorphic discrete series
D̄𝑛/2, 𝑛 ≥ 2, 𝑛 ∈ Z,

5. the limits of discrete series D 1
2
, D̄ 1

2
.

The only equivalence between the representations listed above is the following:
P±
𝑖𝜈
≃ P±−𝑖𝜈.

Proposition 6.3.2. The complexified Lie algebra 𝔰𝔩2(C) is generated by 𝐿0, 𝐿±1 and
we have [𝐿𝑚, 𝐿𝑛] = (𝑚 − 𝑛)𝐿𝑚+𝑛. For unitary representations, we have 𝐿†𝑛 = 𝐿−𝑛.

Proposition 6.3.3. The quadratic Casimir 𝐶2 takes the form

𝐶2 := 𝐿2
0 −

1
2
(𝐿−1𝐿1 + 𝐿1𝐿−1) .

To explicitly construct the irreps, we find it convenient to recall that SL(2,R) can

be mapped to 𝑆𝑈 (1, 1) by conjugation within SL(2,C). If 𝑔 =

(
𝑎 𝑏

𝑐 𝑑

)
∈ SL(2,R),

it gets mapped to 𝑢 ∈ 𝑆𝑈 (1, 1); explicitly we have

𝑢 =

(
1 𝑖

𝑖 1

)−1 (
𝑎 𝑏

𝑐 𝑑

) (
1 𝑖

𝑖 1

)
∈ 𝑆𝑈 (1, 1) if

(
𝑎 𝑏

𝑐 𝑑

)
∈ SL(2,R) . (6.20)
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Under the Möbius transformation induced by the matrix,(
1 𝑖

𝑖 1

)−1

=
1
2

(
1 −𝑖
−𝑖 1

)
the upper half-plane gets mapped to the unit disk D = {𝑧 : |𝑧 | < 1}. In what follows,
we denote the elements of 𝑆𝑈 (1, 1) by 𝑢, where

𝑢 :=

(
𝛼 𝛽

𝛽 �̄�

)
, 𝛼�̄� − 𝛽𝛽 = 1 , 𝛼, 𝛽 ∈ C . (6.21)

Then, 𝑆𝑈 (1, 1) acts on 𝑧 ∈ C as

𝑢 · 𝑧 :=
𝛼𝑧 + 𝛽
𝛽𝑧 + �̄�

, (6.22)

Remark 6.3.4. The irreps of PSL(2,R) are already reviewed in detail in [283].
For 𝑛 ∈ Z, D𝑛 can be realized as antiholomorphic functions living on the unit
disk D = {𝑧 : |𝑧 | < 1} or holomorphic functions on D′ := {𝑧 : |𝑧 | > 1} ∪ {∞}.
D̄𝑛 can be realized as holomorphic functions living on the unit disk D. The
complementary series C𝑠 and the principal series 𝑃+

𝑖𝜈
can be realized as functions

living on 𝜕D = {𝑧 : |𝑧 | = 1}. All these functions belong to an 𝐿2 space with respect
to an appropriate 𝐺-invariant measure. The new ingredients that we are going to
use are P−

𝑖𝜈
and D𝑛, D̄𝑛 with 𝑛 ∈ 1/2 + Z. Hence, we will be brief in explaining the

construction of irreps, often referring the readers to section 3 of [283] for details,
and only highlight the parts that are new to this chapter.

Definition 6.3.5 (Antiholomorphic discrete series D̄𝑛/2). The explicit realization of
antiholomorphic discrete series D̄𝑛/2 (𝑛 ∈ Z+) is achieved by holomorphic functions
𝑓 (𝑧) on D such that the action of 𝑢 ∈ 𝑆𝑈 (1, 1) is given by

𝑢 · 𝑓 (𝑧) =
(
−𝛽𝑧 + 𝛼

)−𝑛
𝑓

(
𝑢−1 · 𝑧

)
, (6.23)

In particular, the nontrivial element of the center of SL(2,R), given as in (6.21) by
𝛼 = −1, 𝛽 = 0, acts nontrivially iff 𝑛 is odd. The norm of a vector 𝑓 inside D̄𝑛/2 is
given by

| | 𝑓 | |D̄1/2
= sup

0≤𝑟<1

∫ 2𝜋

0
𝑑𝜃 | 𝑓 (𝑟𝑒𝑖𝜃) |2 ,

| | 𝑓 | |D̄𝑛/2 =
∫
D
𝑑𝑧 (1 − |𝑧 |2)𝑛−1 | 𝑓 (𝑧) |2 , 𝑛 > 1 .

(6.24)
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Remark 6.3.6. We note that

D̄𝑛/2 ≃
⊕

𝑘∈−𝑛/2−Z≥0

𝑉𝑘 ,

where the 𝑉𝑘 are the one-dimensional irreducible representations of Spin(2). This
amounts to saying that the 𝐿0 spectrum of such an irrep is given by {−𝑛/2− 𝑘 : 𝑘 ∈
Z≥0}. The eigenvalue of the quadratic Casimir corresponding to the irrep D̄𝑛/2 is
−𝑛/2(1 − 𝑛/2).

Definition 6.3.7 (Holomorphic discrete series D𝑛/2). The holomorphic discrete
seriesD𝑛/2 with 𝑛 ∈ Z+ is realized by the space of antiholormorphic functions 𝑓 on
D such that the action of 𝑢 ∈ 𝑆𝑈 (1, 1) is given by

𝑢 · 𝑓 (𝑧) = (−𝛽𝑧 + �̄�)−𝑛 𝑓
(
𝑢−1 · 𝑧

)
, (6.25)

In particular, the nontrivial element of the center of SL(2,R), given as in (6.21) by
𝛼 = −1, 𝛽 = 0, acts nontrivially iff 𝑛 is odd. The norm of a vector 𝑓 inside D𝑛/2 is
given by

| | 𝑓 | |0,D1/2 = sup
0≤𝑟<1

∫ 2𝜋

0
𝑑𝜃 | 𝑓 (𝑟𝑒𝑖𝜃) |2 ,

| | 𝑓 | |0,D𝑛/2 =
∫
D
𝑑𝑧 (1 − |𝑧 |2)𝑛−1 | 𝑓 (𝑧) |2 , 𝑛 > 1 .

(6.26)

However as explicitly worked out in [283], it is easier to consider another realization
by holomorphic functions 𝐹 on D′ = {𝑧 : |𝑧 | > 1} ∪ {∞}, where

𝐹 (𝑧) := 𝑧−𝑛 𝑓 (𝑧−1) , (6.27)

and the norm of 𝐹 is given by

| |𝐹 | |D𝑛/2 = | | 𝑓 | |0,D𝑛/2 . (6.28)

The functions 𝐹 transform exactly in the same way as given by eq.(6.23). Again the
action of the center is nontrivial iff 𝑛 is odd.

Remark 6.3.8. We note that

D𝑛/2 ≃
⊕

𝑘∈𝑛/2+Z≥0

𝑉𝑘 ,

where the 𝑉𝑘 are the one-dimensional irreducible representations of Spin(2). This
amounts to saying that the 𝐿0 spectrum of such an irrep is given by {𝑛/2 + 𝑘 : 𝑘 ∈
Z≥0}. The eigenvalue of the quadratic Casimir corresponding to the irrep D𝑛/2 is
−𝑛/2(1 − 𝑛/2).
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Definition 6.3.9 (Principal series P+
𝑖𝜈

). They are realized in the space of equivalence
classes of square integrable functions on 𝜕D = {𝑧 : |𝑧 | = 1} such that the action of
𝑢 ∈ 𝑆𝑈 (1, 1) is given by

(𝑢 · 𝑓 ) (𝑧) = | − 𝛽𝑧 + �̄� |−1−2𝑖𝜈 𝑓 (𝑢−1 · 𝑧). (6.29)

In particular, the nontrivial element of the center of SL(2,R), given as in (6.21) by
𝛼 = −1, 𝛽 = 0, acts trivially. The norm of 𝑓 is given by

| | 𝑓 | |P+
𝑖𝜈
=

∫ 2𝜋

0
𝑑𝜃 | 𝑓 (𝑒𝑖𝜃) |2. (6.30)

Remark 6.3.10. We have
P+𝑖𝜈 ≃

⊕
𝑘∈Z

𝑉𝑘 ,

where the 𝑉𝑘 are the one-dimensional irreducible representations of Spin(2). The
spectrum of 𝐿0 for vectors inside P+

𝑖𝜈
consists of all integers and each integer appear

exactly once. A basis for functions living inside P+
𝑖𝜈

is given by 𝑓 𝑗 (𝑧) = 𝑧 𝑗 with
𝑗 ∈ Z. The eigenvalue of the quadratic Casimir corresponding to the irrep P+

𝑖𝜈
is

−(1/4 + 𝜈2).

Definition 6.3.11 (Principal seriesP−
𝑖𝜈

). They are realized in the space of equivalence
classes of square integrable functions 𝑓 on 𝜕D such that the action of 𝑢 ∈ 𝑆𝑈 (1, 1)
is given by

(𝑢 · 𝑓 ) (𝑧) = sgn
(
−𝛽𝑧 + 𝛼

)
| − 𝛽𝑧 + �̄� |−1−2𝑖𝜈 𝑓 (𝑢−1 · 𝑧). (6.31)

In particular, the nontrivial element of the center of SL(2,R), given as in (6.21) by
𝛼 = −1, 𝛽 = 0, acts nontrivially and gives a minus sign. The norm of 𝑓 is given by
(𝑧 = 𝑒𝑖𝜃)

| | 𝑓 | |P−
𝑖𝜈
=

∫ 2𝜋

0
𝑑𝜃 | 𝑓 (𝑒𝑖𝜃) |2. (6.32)

Remark 6.3.12. We have
P−𝑖𝜈 ≃

⊕
𝑘∈1/2+Z

𝑉𝑘 ,

where 𝑉𝑘 are the one-dimensional irreducible representations of Spin(2). The
spectrum of 𝐿0 for vectors inside P−

𝑖𝜈
consists of all half-integers, and each half-

integer appears exactly once. A basis for functions inside P−
𝑖𝜈

is given by 𝑓 𝑗 (𝑧) = 𝑧 𝑗

with 𝑗 ∈ Z (see sections 8.2 and 8.3 of [299] for a pedagogical exposure). The
eigenvalue of the quadratic Casimir corresponding to the irrep P−

𝑖𝜈
is −(1/4 + 𝜈2).
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Definition 6.3.13 (Complementary series C𝑠). They are realized in the space of
equivalence classes of square integrable functions on 𝜕D such that the action of
𝑢 ∈ 𝑆𝑈 (1, 1) is given by

(𝑢 · 𝑓 ) (𝑧) = | − 𝛽𝑧 + �̄� |−1−2𝑠 𝑓 (𝑢−1 · 𝑧). (6.33)

In particular, the nontrivial element of the center of SL(2,R), given as in (6.21) by
𝛼 = −1, 𝛽 = 0, acts trivially. The norm of 𝑓 is given by (𝑧 = 𝑒𝑖𝜃)

| | 𝑓 | |C𝑠 =
∫ 2𝜋

0
𝑑𝜃

∫ 2𝜋

0
𝑑𝜙

| 𝑓 (𝑒𝑖𝜃) |2
|𝑒𝑖𝜃 − 𝑒𝑖𝜙 |2−2Δ , Δ = 1/2 + 𝑠. (6.34)

Remark 6.3.14. We have
C𝑠 ≃

⊕
𝑘∈Z

𝑉𝑘 ,

where 𝑉𝑘 are the one-dimensional irreducible representations of Spin(2). The
spectrum of 𝐿0 for vectors inside C𝑠 consists of all integers and each integer appears
exactly once. The eigenvalue of the quadratic Casimir corresponding to the irrep C𝑠
is −1/4 + 𝑠2.

Coherent States
We now construct the coherent states, these are functions living inside the irrep
D𝑛/2 or D̄𝑛/2. The construction of these states mimics the one presented in [283],
extended in the present chapter to the case when 𝑛 is an odd integer.

Definition 6.3.15. The coherent state O𝑛/2(𝑧) for 𝑧 ∈ D is identified with a holo-
morphic function 𝑓 on D′, i.e.,

O1/2(𝑧) (𝑤) :=
√︂

1
2𝜋
(𝑧 − 𝑤)−1 ,

O𝑛/2(𝑧) (𝑤) =
√︂
𝑛 − 1
𝜋
(𝑧 − 𝑤)−𝑛 , 𝑛 > 1 ,

(6.35)

where 𝑤 ∈ D′.

Definition 6.3.16. The coherent state Õ𝑛/2(𝑧) for 𝑧 ∈ D′ is identified with a holo-
morphic function 𝑓 on D. Explicitly we have, for 𝑧 ∈ D′ and 𝑤 ∈ D,

Õ1/2(𝑧) (𝑤) :=
√︂

1
2𝜋
(𝑧 − 𝑤)−1 ,

Õ𝑛/2(𝑧) (𝑤) =
√︂
𝑛 − 1
𝜋
(𝑧 − 𝑤)−𝑛 , 𝑛 > 1 .

(6.36)
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Proposition 6.3.17. The inner products of coherent states are given by(
O𝑛/2(𝑧1),O𝑛/2(𝑧2)

)
D𝑛/2 = (1 − 𝑧1𝑧2)−𝑛 ,(

Õ𝑛/2(𝑧1), Õ𝑛/2(𝑧2)
)
D̄𝑛/2

= (𝑧1𝑧2 − 1)−𝑛 .
(6.37)

Proof. See [283] for the case when 𝑛 is an even integer. The extended version for
𝑛 ∈ Z+ follows from the definition of the inner product for D𝑛/2 and D̄𝑛/2, □

For a unitary representation 𝑅 of 𝐺 we write 𝑅∞ for its Fréchet space of smooth
vectors. We borrow the following propositions from [283], which will be useful for
our purposes:

Proposition 6.3.18 (Proposition 3.3 [283]). The coherent statesO and Õ take values
in D∞

𝑛/2 and D̄∞
𝑛/2, respectively. They are holomorphic as functions D→ D∞

𝑛/2 and
D′ → D̄∞

𝑛/2. The span of the coherent states O(𝑧) ∈ D𝑛/2 for 𝑧 ∈ D is dense in
D𝑛/2. The span of the coherent states Õ(𝑧) ∈ D̄𝑛/2 for 𝑧 ∈ D′ is dense in D̄𝑛/2.

Remark 6.3.19. (See the proof of Proposition 3.3 of [283] and the references
therein.) The reproducing kernel for D̄𝑛/2 is given by

𝐾𝑤 (𝑧) :=

𝑛−1
𝜋
(1 − �̄�𝑧)−𝑛 , 𝑛 > 1

1
2𝜋 (1 − �̄�𝑧)

−1 , 𝑛 = 1
,

i.e., for 𝑤 ∈ D and 𝑓 ∈ D̄𝑛/2, we have

(𝐾𝑤, 𝑓 ) = 𝑓 (𝑤).

Thus, the coherent states are related to the reproducing kernel

𝐾𝑤 =


√︃
𝑛−1
𝜋
(�̄�)−𝑛 Õ𝑛/2((�̄�)−1) , 𝑛 > 1√︃

1
2𝜋 (�̄�)

−1 Õ𝑛/2((�̄�)−1) , 𝑛 = 1
,

and D̄𝑛/2 is a reproducing kernel Hilbert space. Similar statements apply to D𝑛/2.

Proposition 6.3.20 (Propostion 3.4 [283]). We have 𝐿2(Γ̃\𝐺)∞ = 𝐶∞(Γ̃\𝐺).

Finally we define coherent states inside continuous series irreps.
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Definition 6.3.21 (See section 3.4 of [283]). The coherent states inside 𝑅𝑘 where
𝑅𝑘 = P+

𝑖𝜈
with 𝜆(0)

𝑘
= 1/4 + 𝜈2 or 𝑅𝑘 = C𝑠 with 𝜆(0)

𝑘
= 1/4 − 𝑠2 are defined as

𝑅∞
𝑘

-valued distributions on 𝐶∞(𝜕D) by

O( 𝑓 ) := 𝑁 (0)
Δ𝑘
𝑓 , 𝑓 ∈ 𝐶∞(𝜕D), (6.38)

where 𝑁 (0)
Δ𝑘

> 0 is chosen to ensure 𝑁 (0)
Δ𝑘
| |1| |𝑅𝑘 = 1.

Definition 6.3.22. The coherent states inside P−
𝑖𝜈

with 𝜆(1/2)
𝑘

= 1/4 + 𝜈2 are defined
as 𝑅∞

𝑘
-valued distributions on 𝐶∞(𝜕D) by

O( 𝑓 ) = 𝑁 (1/2)
Δ𝑘

𝑓 , 𝑓 ∈ 𝐶∞(𝜕D), (6.39)

where 𝑁 (1/2)
Δ𝑘

> 0 is chosen to ensure 𝑁 (1/2)
Δ𝑘
| |𝑧 | |𝑅𝑘 = 1.

Spectrum of 𝐿2(Γ̃\𝐺)
The space Γ̃\𝐺 is the spin bundle over the compact orbifold 𝑋 . We would like
to study the space 𝐿2(Γ̃\𝐺), consisting of equivalence class of square integrable
functions 𝐹 : 𝐺 → C such that 𝐹 (�̃�𝑔) = 𝐹 (𝑔) for all �̃� ∈ Γ̃ and 𝑔 ∈ 𝐺. We
normalize the Haar measure on 𝐺 in a way such that 𝜇(Γ̃\𝐺) = 1. Subsequently,
we define the inner product as

(𝐹1, 𝐹2) =
∫
Γ̃\𝐺

𝑑𝑔 ¯𝐹1(𝑔)𝐹2(𝑔) . (6.40)

The inner product induces the following norm on 𝐹 ∈ 𝐿2(Γ̃\𝐺):

| |𝐹 | |2 := (𝐹, 𝐹) . (6.41)

We can turn 𝐿2(Γ̃\𝐺) into a representation of SL(2,R) by defining the following
𝐺-action: �̃� ∈ 𝐺 acts on elements of 𝐿2(Γ̃\𝐺) as

[�̃� · 𝐹] (𝑔) := 𝐹 (𝑔�̃�) . (6.42)

It is easy to verify that the norm of 𝐹, | |𝐹 | | ≡ (𝐹, 𝐹) is 𝐺 invariant and thus
𝐿2(Γ̃\𝐺) indeed becomes a representation of𝐺. Recalling the 𝑁𝐴𝐾 decomposition
of SL(2,R):

𝑔(𝑥, 𝑦, 𝜃) =
(
1 𝑥

0 1

) (√
𝑦 0

0 1√
𝑦

) (
cos 𝜃2 − sin 𝜃

2
sin 𝜃

2 cos 𝜃2

)
,

we will often write the functions 𝐹 (𝑔) as 𝐹 (𝑥, 𝑦, 𝜃).
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Proposition 6.3.23. The elements of the complexified Lie algebra corresponding to
SL(2,R) act on 𝐹 ∈ 𝐿2(Γ̃\𝐺) as follows:

𝐿0𝐹 (𝑥, 𝑦, 𝜃) = 𝑖𝜕𝜃𝐹 (𝑥, 𝑦, 𝜃) ,
𝐿1𝐹 (𝑥, 𝑦, 𝜃) = 𝑒−𝑖𝜃

[
𝑦(𝜕𝑥 + 𝑖𝜕𝑦) + 𝜕𝜃

]
𝐹 (𝑥, 𝑦, 𝜃) ,

𝐿−1𝐹 (𝑥, 𝑦, 𝜃) = −𝑒𝑖𝜃
[
𝑦(𝜕𝑥 − 𝑖𝜕𝑦) + 𝜕𝜃

]
𝐹 (𝑥, 𝑦, 𝜃).

(6.43)

The quadratic Casimir 𝐶2 := 𝐿2
0 −

1
2 (𝐿−1𝐿1 + 𝐿1𝐿−1) acts as

𝐶2𝐹 (𝑥, 𝑦, 𝜃) =
[
𝑦2(𝜕2

𝑥 + 𝜕2
𝑦 ) − 2𝑦𝜕𝑥𝜕𝜃

]
𝐹 (𝑥, 𝑦, 𝜃) . (6.44)

Proof. The above follows the transformation law, given by eq. (6.42) and 𝑁𝐴𝐾

decomposition of SL(2,R). □

Proposition 6.3.24. For a cocompact Γ̃ ⊂ SL(2,R), such that −𝐼𝑑 ∉ Γ̃, we have
a discrete decomposition of 𝐿2(Γ̃\𝐺) in terms of irreducible representations. In
particular we have

𝐿2(Γ̃\𝐺) = C ⊕
∞⊕
𝑛=1

(
𝒟𝑛/2 ⊕𝒟𝑛/2

)
⊕
∞⊕
𝑘=1

𝒞
𝜆
(0)
𝑘

⊕
∞⊕
𝑘=1

𝒫
−
𝜆
(1/2)
𝑘

. (6.45)

Remark 6.3.25. The group action is transitive, hence the trivial irrep C appears
exactly once. This corresponds to the constant functions on 𝑋 .

Remark 6.3.26. 𝒟𝑛/2 is unitarily isomorphic to Cℓ𝑛/2 ⊗ D𝑛/2, where ℓ𝑛/2 is the
number of times D𝑛/2 appears inside 𝐿2(Γ̃\𝐺). The 𝒟𝑛/2 is unitarily isomorphic
to Cℓ𝑛/2 ⊗ D̄𝑛/2, where ℓ𝑛/2 is the number of times D̄𝑛/2 appears inside 𝐿2(Γ̃\𝐺).

Proposition 6.3.27. ℓ𝑛/2 is the number of independent normalized holomorphic
modular forms of weight 𝑛. The number of independent normalized antiholomorphic
modular forms of weight 𝑛 is also given by ℓ𝑛/2.

Proof. Consider a lowest weight vector 𝐹𝑛/2,𝑎 inside 𝒟𝑛/2. Clearly, 𝐹𝑛/2,𝑎 ∈ 𝑉𝑛/2
and 𝑒𝑖𝑛𝜃/2𝐹𝑛/2,𝑎 is independent of 𝜃. Hence, one can define

ℎ𝑛,𝑎 (𝑥, 𝑦) := 𝑦−𝑛/2𝑒𝑖𝑛𝜃/2𝐹𝑛/2,𝑎 (𝑥, 𝑦, 𝜃). (6.46)

The Γ̃ invariance of 𝐹 implies that ℎ̃𝑛,𝑎 (𝑧) := ℎ𝑛,𝑎 (Re(𝑧), Im(𝑧)) transforms like
a holomorphoic modular form of weight 𝑛 for 𝛾 ∈ Γ̃. Recalling eq. (6.19) and
Proposition 6.2.6, this action can be naturally extended to Γ̄ by using 𝜒. The fact
that 𝐹𝑛/2,𝑎 is a lowest weight vector translates to 𝐿1𝐹𝑛/2,𝑎 = 0, which implies ℎ̃𝑛,𝑎 (𝑧)
is holomorphic. A similar proof holds for 𝒟𝑛/2 by considering the highest weight
vector, belonging to 𝑉−𝑛/2. Hence the proposition follows. □
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Remark 6.3.28. 𝒞
𝜆
(0)
𝑘

is unitarily isomorphic to

1. C𝑑𝑘 ⊗ C𝑠 with 𝑠 :=
√︃

1/4 − 𝜆(0)
𝑘

if 𝜆(0)
𝑘
< 1/4,

2. C𝑑𝑘 ⊗ P+
𝑖𝜈

with 𝜈 :=
√︃
𝜆
(0)
𝑘
− 1/4 if 𝜆(0)

𝑘
≥ 1/4,

where 𝑑𝑘 is the number of times C𝑠 or P+
𝑖𝜈

appears inside 𝐿2(Γ̃\𝐺).

Proposition 6.3.29. 𝑑𝑘 is the degeneracy of 𝜆(0)
𝑘

, an eigenvalue of the Laplace
operator on 𝑋 .

Proof. Recall
𝒞
𝜆
(0)
𝑘

≃ C𝑑𝑘 ⊗
⊕
𝑘∈Z

𝑉𝑘 .

Consider a vector inside 𝑉0, it gets mapped to a vector 𝐹 inside 𝒞
𝜆
(0)
𝑘

. Since

𝑖𝜕𝜃𝐹 = 𝐿0𝐹 = 0, we can define 𝜙(𝑥, 𝑦) := 𝐹 (𝑥, 𝑦, 𝜃) and it follows 𝜙(𝑥, 𝑦) is a Γ̃

invariant function on 𝑋 . Furthermore, we have

𝐶2𝜙(𝑥, 𝑦) = 𝑦2(𝜕2
𝑥 + 𝜕2

𝑦 )𝜙(𝑥, 𝑦). (6.47)

On the other hand, 𝐶2 of 𝒞
𝜆
(0)
𝑘

is 𝜆(0)
𝑘

. Hence, 𝜙(𝑥, 𝑦) is a Γ̃ invariant eigenfunction

of the Laplace operator, i.e., 𝑦2(𝜕2
𝑥 + 𝜕2

𝑦 ), with eigenvalue 𝜆(0)
𝑘

, and the proposition
follows. □

Remark 6.3.30. 𝒫−
𝜆
(1/2)
𝑘

is unitarily isomorphic toC𝑑′𝑘 ⊗P−
𝑖𝜈

with 𝜈 :=
√︃
𝜆
(1/2)
𝑘
− 1/4

and 𝜆(1/2)
𝑘

> 1/4, where 𝑑′
𝑘

is the number of times P−
𝑖𝜈

appears inside 𝐿2(Γ̃\𝐺).

Proposition 6.3.31. 𝑑′
𝑘

is the degeneracy of 𝜆(1/2)
𝑘

, an eigenvalue of the weight-1
automorphic Laplace operator (see defn.6.2.17) on 𝑋 .

Proof. Recall
𝒫
−
𝜆
(1/2)
𝑘

≃ C𝑑
′
𝑘 ⊗

⊕
𝑘∈1/2+Z

𝑉𝑘 .

Consider a vector inside 𝑉1/2, it gets mapped to a vector Ψ(𝑥, 𝑦, 𝜃) inside 𝒫
−
𝜆
(1/2)
𝑘

.

Define 𝜓(𝑥, 𝑦) := 𝑒𝑖𝜃/2Ψ(𝑥, 𝑦, 𝜃). Since 𝑖𝜕𝜃Ψ = 𝐿0Ψ = 1/2, it follows that 𝜓(𝑥, 𝑦)
is a Γ̃-equivariant form on 𝑋 . Furthermore, we have

𝐶2𝜓(𝑥, 𝑦) =
[
𝑦2(𝜕2

𝑥 + 𝜕2
𝑦 ) − 𝑖𝑦𝜕𝑥

]
𝜓(𝑥, 𝑦). (6.48)
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On the other hand,𝐶2 of𝒫−
𝜆
(1/2)
𝑘

is𝜆(1/2)
𝑘

. Hence,𝜓(𝑥, 𝑦) is a Γ̃-equivariant eigenform

of the weight-1 automorphic Laplacian operator, i.e, 𝑦2(𝜕2
𝑥 + 𝜕2

𝑦 ) − 𝑖𝑦𝜕𝑥 . Therefore,
the proposition follows. □

Now let us identify the coherent states inside 𝐿2(Γ̃\𝐺).

Definition 6.3.32 (Coherent States inside𝒟∞
𝑛/2 and𝒟

∞
𝑛/2 ). Recall Proposition(6.3.24)

and Remark 6.3.26 that 𝒟𝑛/2 and 𝒟𝑛/2 are unitarily isomorphic to Cℓ𝑛/2 ⊗ D𝑛/2 and
Cℓ𝑛/2 ⊗ D̄𝑛/2, respectively.

Following [283], we choose an isomorphism 𝜏𝑛/2 : Cℓ𝑛/2 ⊗D𝑛/2 → 𝒟𝑛/2 and define

𝒪𝑛/2,𝑎 (𝑧) := 𝜏𝑛/2 (𝑒𝑎 ⊗ O(𝑧)) ∈ 𝒟∞𝑛/2 ⊂ C
∞(Γ̃\𝐺) . (6.49)

Here 𝑒𝑎 for 𝑎 = 1, 2, · · · ℓ𝑛/2 is the standard basis for Cℓ𝑛/2 . We further define
𝜏𝑛/2 : Cℓ𝑛/2 ⊗ D̄𝑛/2 → 𝒟𝑛/2 as

𝜏𝑛/2(𝑣 ⊗ 𝑓 ) = 𝜏𝑛/2(�̄� ⊗ �̃� ) , �̃� (𝑧) := 𝑧−𝑛 𝑓 (𝑧−1) , (6.50)

and
𝒪𝑛/2,𝑎 (𝑧) := 𝜏𝑛/2

(
𝑒𝑎 ⊗ Õ(𝑧)

)
∈ 𝒟∞𝑛/2 ⊂ C∞(Γ̃\𝐺) , (6.51)

Proposition 6.3.33 ([283]). The generators of the complexified Lie algebra 𝔰𝔩2(C)
act on coherent states as follows:

𝐿−1 ·𝒪𝑛/2,𝑎 (𝑧) = 𝜕𝑧𝒪𝑛/2,𝑎 (𝑧), 𝐿−1 ·𝒪𝑛/2,𝑎 (𝑧) = 𝜕𝑧𝒪𝑛/2,𝑎 (𝑧),
𝐿0 ·𝒪𝑛/2,𝑎 (𝑧) = (𝑧𝜕𝑧 + 𝑛/2)𝒪𝑛/2,𝑎 (𝑧), 𝐿0 ·𝒪𝑛/2,𝑎 (𝑧) = (𝑧𝜕𝑧 + 𝑛/2)𝒪𝑛/2,𝑎 (𝑧),

𝐿1 ·𝒪𝑛/2,𝑎 (𝑧) =
(
𝑧2𝜕𝑧 + 𝑛𝑧

)
𝒪𝑛/2,𝑎 (𝑧), 𝐿1 ·𝒪𝑛/2,𝑎 (𝑧) =

(
𝑧2𝜕𝑧 + 𝑛𝑧

)
𝒪𝑛/2,𝑎 (𝑧).

(6.52)

Proposition 6.3.34 ([283]). We have the following identity:(
𝒪𝑛/2,𝑎 (𝑧)

)
= (𝑧)−𝑛𝒪𝑛/2,𝑎

(
(𝑧)−1

)
.

Correlators of smooth functions on 𝐺

Definition 6.3.35. We consider smooth functions 𝐹1, 𝐹2, · · · 𝐹𝑛 on Γ̃\𝐺. Their
correlator is defined as

⟨𝐹1𝐹2 · · · 𝐹𝑛⟩ :=
∫
Γ̃\𝐺

𝑑𝑔 𝐹1(𝑔)𝐹2(𝑔) · · · 𝐹𝑛 (𝑔) . (6.53)
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Since the functions 𝐹𝑖 are smooth and Γ̃\𝐺 is compact, the correlator is well-defined
and finite.

Proposition 6.3.36. The correlator ⟨· . . . ·⟩ :
(
C∞(Γ̃\𝐺)

)𝑁
→ C is a 𝐺 invariant

functional.

Proposition 6.3.37. The two-function correlator is given by

⟨𝒪𝑚,𝑖 (𝑧1)𝒪𝑛, 𝑗 (𝑧2)⟩ =
𝛿𝑚,𝑛𝛿𝑖, 𝑗

(𝑧2 − 𝑧1)2𝑛
, where 2𝑚, 2𝑛 ∈ Z+ (6.54)

Proof. Using Proposition 6.3.34 alongside with orthogonality of the decomposition
given in Proposition 6.3.24, we find

⟨𝒪𝑚,𝑖 (𝑧1)𝒪𝑛, 𝑗 (𝑧2)⟩ = 𝑧−2𝑛
2

(
𝒪𝑛, 𝑗 (𝑧−1

2 ),𝒪𝑚,𝑖 (𝑧1)
)
= 𝛿𝑚,𝑛𝛿𝑖, 𝑗 𝑧

−2𝑛
2

(
O𝑛 (𝑧−1

2 ),O𝑛 (𝑧1)
)
,

and then we use Proposition 6.3.17. □

Proposition 6.3.38. Define 𝑧𝑖 𝑗 = 𝑧𝑖 − 𝑧 𝑗 . The three-function correlator between
vectors inside 𝒟𝑘 ,𝒟𝑙 and 𝒟𝑚 with 2𝑘, 2𝑙, 2𝑚 ∈ Z+ is given by〈

𝒪𝑘,𝑎 (𝑧1)𝒪𝑙,𝑏 (𝑧2)𝒪𝑚,𝑐 (𝑧3)
〉
=

𝑓
𝑚;𝑐
(𝑘;𝑎) (𝑙;𝑏)

𝑧𝑘+𝑙−𝑚21 𝑧𝑘+𝑚−𝑙31 𝑧𝑙+𝑚−𝑘32
, (6.55)

for some constants 𝑓 𝑚;𝑐
(𝑘;𝑎) (𝑙;𝑏) .

Proof. The result follows from using the same steps involving𝐺-invariance to prove
a similar result in [283] for 𝑘, 𝑙, 𝑚 ∈ Z. □

Remark 6.3.39. We recall that

𝒪𝑘,𝑎 (0) = 𝐹𝑘,𝑎 , 𝒪𝑙,𝑏 (0) = 𝐹𝑙,𝑏 , lim
𝑧→∞

𝑧2𝑚
𝒪𝑚,𝑐 (𝑧) = �̄�𝑚,𝑐 . (6.56)

Thus we have

𝑓
𝑘+𝑙,𝑐
(𝑘;𝑎) (𝑙;𝑏) =

∫
Γ̃\𝐺

𝑑𝑔 𝐹𝑘,𝑎𝐹𝑙,𝑏 �̄�𝑘+𝑙,𝑐 =
1

vol(𝑋)

∫
𝑋

𝑑𝑥 𝑑𝑦 𝑦2(𝑘+𝑙−1)ℎ𝑘,𝑎ℎ𝑙,𝑏 ℎ̄𝑚,𝑐 .

(6.57)
Here the second equality follows from the definition of ℎ, as given by eq.(6.46).

Definition 6.3.40. The𝐺-invariant cross-ratio (denoted as 𝑧) for four points 𝑧1, 𝑧2, 𝑧3, 𝑧4

is given by
𝑧 :=

𝑧12𝑧34
𝑧13𝑧24

, 𝑧𝑖 𝑗 := 𝑧𝑖 − 𝑧 𝑗 . (6.58)
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In what follows, we will often suppress the degeneracy index 𝑎 in 𝒪(𝑛,𝑎) and write it
as 𝒪𝑛 for notational brevity.

Proposition 6.3.41. Let 2𝑛1, 2𝑛2, 2𝑛3, 2𝑛4 ∈ Z+.

⟨𝒪𝑛1 (𝑧1)𝒪𝑛2 (𝑧2)𝒪𝑛3 (𝑧3)𝒪𝑛4 (𝑧4)⟩ =
1

𝑧
𝑛1+𝑛2
12 𝑧

𝑛3+𝑛4
34

(
𝑧24
𝑧14

)𝑛1−𝑛2 (
𝑧14
𝑧13

)𝑛3−𝑛4

𝑔{𝑛1,𝑛2,𝑛3,𝑛4} (𝑧) ,

(6.59)
for some function 𝑔{𝑛1,𝑛2,𝑛3,𝑛4} of the cross-ratio 𝑧.

Proof. The proof mimics the one appearing in [283] for 𝑛1 = 𝑛2 = 𝑛 ∈ Z. The
main idea is that 𝐺-invariance implies that the 4-function correlator can be written
in terms of a single variable function of the cross-ratio 𝑧. □

Product expansion

𝐹1𝐹2 = 𝑃C(𝐹1𝐹2)+
∞∑︁
𝑛=1

[
𝑃𝒟𝑛/2 (𝐹1𝐹2) + 𝑃𝒟𝑛/2

(𝐹1𝐹2)
]
+
∞∑︁
𝑘=1

𝑃𝒞
𝜆
(0)
𝑘

(𝐹1𝐹2)+
∞∑︁
𝑘=1

𝑃𝒫−
𝜆
(1/2)
𝑘

(𝐹1𝐹2) .

(6.60)
Here 𝑃𝐻 refers to the orthogonal projection onto the irrep 𝐻.

We choose 𝐹𝑖 from the irrep 𝐻𝑖. Now the key point is that given an irrep 𝐻𝑚,
𝐺-invariance constrains the dependence of 𝑃𝐻𝑚 (𝐹1𝐹2) on 𝐹1 and 𝐹2 upto finitely
many constants. And those finitely many constants are related to triple product
integrals between elements of 𝐻1, 𝐻2 and 𝐻𝑚. The spectral identities come from
the associativity constriants, i.e.,

((𝐹1𝐹2)𝐹3) = (𝐹1(𝐹2𝐹3)) . (6.61)

In what follows we will take 𝐹1 = 𝒪𝑛1 , 𝐹2 = 𝒪𝑛2 , 𝐹3 = 𝒪𝑛3 . A convenient way to
encode these constraints is to consider 4 point functions of the form ⟨𝒪𝑛1𝒪𝑛2𝒪𝑛3𝒪𝑛4⟩.

Now we introduce some lemmas which are relevant to the product expansion of
coherent states.

Lemma 6.3.42. 𝑃𝐻
(
𝒪𝑛1 (𝑧1)𝒪𝑛2 (𝑧2)

)
= 0 unless 𝐻 = 𝒟𝑝 with 𝑝 − 𝑛1 − 𝑛2 ∈ Z≥0.

If 𝒪𝑛1 = 𝒪𝑛2 with 𝑛1 = 𝑛2, we further have 𝑝 − 2𝑛 = 0(mod 2).

Proof. The proof is similar to that of Lemma 3.9 of [283] with minor modifications
to include the cases when 𝑛1 or 𝑛2 are half-integers and possibly different. □
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Proposition 6.3.43.

𝒪𝑛1,𝑎1 (𝑧1)𝒪𝑛2,𝑎2 (𝑧2) =
∑︁

𝑝−𝑛1−𝑛2∈Z≥0

ℓ𝑝∑︁
𝑎=1

𝑓
𝑝;𝑎
(𝑛1;𝑎1) (𝑛2;𝑎2)𝜏𝑝

(
𝑒𝑎 ⊗ 𝐶𝑝 (𝑧1, 𝑧2)

)
. (6.62)

Here 𝐶𝑝 (𝑧1, 𝑧2) ∈ D𝑝 is defined as

𝐶𝑝 (𝑧1, 𝑧2) (𝑧3) :=
√︂

2𝑝 − 1
𝜋

1
𝑧
𝑛1+𝑛2−𝑝
12 𝑧

𝑛1+𝑝−𝑛2
13 𝑧

𝑛2+𝑝−𝑛1
23

, (6.63)

and 𝑓
𝑝;𝑎
(𝑛1;𝑎1) (𝑛2;𝑎2) are some constants. If 𝑛1 = 𝑛2 = 𝑛, 𝑓 𝑝;𝑎

(𝑛1;𝑎1) (𝑛2;𝑎2) vanishes for
𝑝 = 2𝑛 + 1.

Proof. The proof is similar to that of Lemma 3.10 of [283]. The key step is to use
the fact that D𝑝 is a reproducing kernel Hilbert space to relate 𝐶𝑝 (𝑧1, 𝑧2) (𝑧) with
the three function correlator ⟨𝒪𝑛1,𝑎1 (𝑧1)𝒪𝑛2,𝑎2 (𝑧2)𝒪𝑝,𝑎 (𝑧)⟩, followed by the use of
proposition 6.3.38. □

Lemma 6.3.44. 𝑃𝐻
(
𝒪𝑛 (𝑧1)𝒪𝑛 (𝑧2)

)
= 0 unless 𝐻 = C or 𝐻 = 𝒞𝜆0

𝑘
.

Proof. The proof is similar to that of Lemma 3.11 of [283] with minor modifications.
𝒫
−
𝑖𝜈

does not appear since the center of SL(2,R) acts trivially on𝒪𝑛 (𝑧1)𝒪𝑛 (𝑧2) while
the center acts nontrivially on vectors inside 𝒫−

𝑖𝜈
. □

Lemma 6.3.45. Let 𝑛1 > 𝑛2 such that 2(𝑛1+𝑛2) = 0 (mod 2). 𝑃𝐻
(
𝒪𝑛1 (𝑧1)𝒪𝑛2 (𝑧2)

)
=

0 unless 𝐻 = 𝒞
𝜆
(0)
𝑘

or 𝐻 = 𝒟𝑚 with 1 ≤ 𝑚 ≤ 𝑛1 − 𝑛2 and 𝑚 ∈ Z.

Proof. The proof is similar to that of Lemma 3.11 of [283], with minor modifications
like in the previous lemma. □

Lemma 6.3.46. Let 𝑛1 < 𝑛2 such that 2(𝑛1+𝑛2) = 0(mod 2). 𝑃𝐻
(
𝒪𝑛1 (𝑧1)𝒪𝑛2 (𝑧2)

)
=

0 unless 𝐻 = 𝒞
𝜆
(0)
𝑘

or 𝐻 = �̄�𝑚 with 1 ≤ 𝑚 ≤ 𝑛2 − 𝑛1 and 𝑚 ∈ Z.

Proof. The proof is similar to the above. □

Proposition 6.3.47 (See Lemma 3.12 of [283]). Let 𝑛2 − 𝑛1 ∈ Z and 𝑛1 + 𝑛2 ∈ Z.
We have

𝑃𝒞
𝜆
(0)
𝑘

(
𝒪𝑛1,𝑎 (𝑧1)𝒪𝑛2,𝑏 (𝑧2)

)
=

𝑑𝑘∑︁
𝑟=1

𝑐
𝑘;𝑟
(𝑛1;𝑎) (𝑛2;𝑏)𝜅

(0)
𝑘

(
𝑒𝑟 ⊗ 𝐶 (0)𝑘 (𝑧1, 𝑧2)

)
, (6.64)
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for some constants 𝑐𝑘;𝑟
(𝑛1;𝑎) (𝑛2;𝑏) . Here 𝜅

(0)
𝑘

is the unitary isomorphism between
C𝑑𝑘 ⊗ 𝑅𝑘 and 𝒞

𝜆
(0)
𝑘

, where 𝑅𝑘 = P+
𝑖𝜈

with 𝜆
(0)
𝑘

= 1/4 + 𝜈2 or 𝑅𝑘 = C𝑠 with

𝜆
(0)
𝑘

= 1/4 − 𝑠2. Furthermore, 𝐶 (0)
𝑘
(𝑧1, 𝑧2) ∈ 𝑅𝑘 , and is given by

𝐶
(0)
𝑘
(𝑧1, 𝑧2) (𝑧0) :=

𝑁𝑘 𝑧
−2𝑛2
2 𝑧

𝑛2−𝑛1
0(

1 − 𝑧1𝑧
−1
2

)𝑛1+𝑛2−Δ𝑘 (
1 − 𝑧1𝑧

−1
0

)𝑛1−𝑛2+Δ𝑘 (
1 − 𝑧−1

2 𝑧0

)𝑛2−𝑛1+Δ𝑘
, |𝑧0 | = 1.

Here 𝑁𝑘 ∈ C is a constant such that the constant function equal to 𝑁𝑘 has unit norm
in 𝑅𝑘 .

Proposition 6.3.48. Let 𝑛1 > 𝑛2 such that 2(𝑛1 + 𝑛2) = 0(mod 2). We have for
𝑝 ≤ 𝑛1 − 𝑛2 and 𝑝 ∈ Z≥0,

𝑃𝒟𝑝

(
𝒪𝑛1,𝑎1 (𝑧1)𝒪𝑛2,𝑎2 (𝑧2)

)
=

ℓ𝑝∑︁
𝑎=1

𝑓
𝑛2;𝑎2
(𝑛1;𝑎1) (𝑝;𝑎)𝜏𝑝

(
𝑒𝑎 ⊗ 𝐶𝑝 (𝑧1, 𝑧2)

)
. (6.65)

Here 𝐶𝑝 (𝑧1, 𝑧2) ∈ D𝑝 is defined as

𝐶𝑝 (𝑧1, 𝑧2) (𝑧3) :=
√︂

2𝑝 − 1
𝜋

1
𝑧
𝑛1+𝑛2−𝑝
13 𝑧

𝑛1+𝑝−𝑛2
12 𝑧

𝑛2+𝑝−𝑛1
32

. (6.66)

Remark 6.3.49. The structure constant 𝑓 𝑛2;𝑎2
(𝑛1;𝑎1) (𝑝;𝑎) appearing here is the same as

the one appearing in ⟨𝒪𝑛1,𝑎1 (𝑧1)𝒪𝑝,𝑎 (𝑧3)𝒪𝑛2,𝑎2 (𝑧2)⟩.

Remark 6.3.50. A similar statement can be made for 𝑛1 < 𝑛2.

Lemma 6.3.51. Let 𝑛1 ∈ N/2 and 𝑛2 ∈ N/2. Further assume that 𝑛1 < 𝑛2 ( or
𝑛1 > 𝑛2 ) such that 2(𝑛1 + 𝑛2) = 1(mod 2). 𝑃𝐻

(
𝒪𝑛1 (𝑧1)𝒪𝑛2 (𝑧2)

)
= 0 unless

𝐻 = 𝒫
−
𝜆
(1/2)
𝑘

or 𝐻 = �̄�𝑚 (𝒟𝑚) with 1/2 ≤ 𝑚 ≤ |𝑛2 − 𝑛1 | and 𝑚 ∈ 1/2 + Z.

Proof. C and𝒞
𝜆
(0)
𝑘

do not appear because the center acts nontrivially on𝒪𝑛1 (𝑧1)𝒪𝑛2 (𝑧2)
for 2(𝑛1 + 𝑛2) = 1(mod 2). The rest of the proof is similar to that of Lemma 3.11
of [283]. □

Proposition 6.3.52. Let 𝑛1 ∈ N/2 and 𝑛2 ∈ N/2 be such that 2(𝑛1+𝑛2) = 1(mod 2).

𝑃𝒫−
𝜆
(1/2)
𝑘

(
𝒪𝑛1,𝑎 (𝑧1)𝒪𝑛2,𝑏 (𝑧2)

)
=

𝑑′
𝑘∑︁

𝑟=1
𝑠
𝑘;𝑟
(𝑛1;𝑎) (𝑛2;𝑏)𝜅

(1/2)
𝑘

(
𝑒𝑟 ⊗ 𝐶 (1/2)𝑘

(𝑧1, 𝑧2)
)
, (6.67)
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for some constants 𝑠𝑘;𝑟
(𝑛1;𝑎) (𝑛2;𝑏) . Here 𝜅 (1/2)

𝑘
is the unitary isomorphism between

C𝑑
′
𝑘 ⊗ P−

𝑖𝜈
and 𝒫

−
𝜆
(1/2)
𝑘

, where 𝜆(1/2)
𝑘

= 1/4 + 𝜈2 and 𝐶 (1/2)
𝑘
(𝑧1, 𝑧2) ∈ P−𝑖𝜈 is given by

𝐶
(1/2)
𝑘
(𝑧1, 𝑧2) (𝑧0) :=

𝑁
(1/2)
𝑘

𝑧
−2𝑛2
2 𝑧

𝑛2−𝑛1+1/2
0(

1 − 𝑧1𝑧
−1
2

)𝑛1+𝑛2−Δ𝑘 (
1 − 𝑧1𝑧

−1
0

)𝑛1−𝑛2+Δ𝑘 (
1 − 𝑧−1

2 𝑧0

)𝑛2−𝑛1+Δ𝑘
.

(6.68)
Here 𝑁 (1/2)

𝑘
∈ C is a constant such the constant function equal to 𝑁 (1/2)

𝑘
has unit

norm in P−
𝑖𝜈

.

Proof. The proof is similar to that of Lemma 3.12 of [283]: here we need to perform
projections onto the P−

𝑖𝜈
rather than the P+

𝑖𝜈
and the C𝑠, but the techniques are exactly

the same. □

Proposition 6.3.53. Let 𝑛1 > 𝑛2 such that 2(𝑛1 + 𝑛2) = 1(mod 2). We have for
𝑝 ≤ 𝑛1 − 𝑛2 and 𝑝 ∈ 1/2 + Z≥0

𝑃𝒟𝑝

(
𝒪𝑛1,𝑎1 (𝑧1)𝒪𝑛2,𝑎2 (𝑧2)

)
=

ℓ𝑝∑︁
𝑎=1

𝑓
𝑛2;𝑎2
(𝑛1;𝑎1) (𝑝;𝑎)𝜏𝑝

(
𝑒𝑎 ⊗ 𝐶𝑝 (𝑧1, 𝑧2)

)
. (6.69)

for some constants 𝑓 𝑛2;𝑎2
(𝑛1;𝑎1) (𝑝;𝑎) . Here 𝐶𝑝 (𝑧1, 𝑧2) ∈ D𝑝 is defined as

𝐶𝑝 (𝑧1, 𝑧2) (𝑧3) :=
√︂

2𝑝 − 1
𝜋

1
𝑧
𝑛1+𝑛2−𝑝
13 𝑧

𝑛1+𝑝−𝑛2
12 𝑧

𝑛2+𝑝−𝑛1
32

, 𝑝 > 1/2

𝐶1/2(𝑧1, 𝑧2) (𝑧3) :=
√︂

1
2𝜋

1
𝑧
𝑛1+𝑛2−1/2
13 𝑧

𝑛1+1/2−𝑛2
12 𝑧

𝑛2+1/2−𝑛1
32

.

(6.70)

Equipped with the above lemmas, we can study correlators of the form ⟨𝒪𝑛1𝒪𝑛2𝒪𝑛2𝒪𝑛1⟩.
They are studied in [283] for 𝑛 ∈ Z+. They can easily be extended for half-integer
𝑛𝑖. In particular we have

Theorem 6.3.54 (Theorem 2.3 [283]: Extended). Let 𝑔0(𝑧) := 𝑔{𝑛1,𝑛2,𝑛2,𝑛1} (𝑧) be
as in eq. (6.59) and 𝑛𝑖 𝑗 := 𝑛𝑖 − 𝑛 𝑗 .

1. 𝑔0(𝑧) has the following expansion, known as the 𝑠-channel expansion:

𝑔0(𝑧) =
∞∑︁

𝑝=𝑛1+𝑛2

ℓ𝑝∑︁
𝑎=1
| 𝑓 𝑝,𝑎𝑛1,𝑛2 |

2G𝑝 (𝑛1, 𝑛2, 𝑛2, 𝑛1; 𝑧) , (6.71)
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where

G𝑝 (𝑛1, 𝑛2, 𝑛3, 𝑛4; 𝑧) := 𝑧𝑝2𝐹1 (𝑝 − 𝑛12, 𝑝 + 𝑛34, 2𝑝, 𝑧) . (6.72)

The 𝑠-channel sum and its derivatives converge uniformly on compact subsets
of C \ (1,∞). Furthermore, 𝑓 𝑝,𝑎𝑛1,𝑛2 ∈ C and satisfies

𝑓
𝑝
𝑛,𝑛 = 0 , if 𝑝 − 2𝑛 = 1(mod 2). (6.73)

2. 𝑔0(𝑧) has the following expansion, known as the 𝑡-channel expansion:

𝑔0(𝑧) =
𝑧𝑛1+𝑛2

(1 − 𝑧)2𝑛2

(
1 +

∞∑︁
𝑘=1

𝑑𝑘∑︁
𝑎=1

𝑐𝑘;𝑎
𝑛1,𝑛1𝑐

𝑘;𝑎
𝑛2,𝑛2HΔ

(0)
𝑘

(𝑛1, 𝑛2, 𝑛2, 𝑛1; 𝑧)
)
, (6.74)

where
HΔ (𝑛1, 𝑛2, 𝑛2, 𝑛1; 𝑧) := 2𝐹1

(
Δ, 1 − Δ, 1, 𝑧

𝑧 − 1

)
, (6.75)

and 𝑐𝑘;𝑎
𝑛𝑖 ,𝑛𝑖 ∈ R, Δ(0)

𝑘
= 1

2 + 𝑖
√︃
𝜆
(0)
𝑘
− 1/4. The 𝑡-channel sum and its derivatives

converge uniformly on compact subsets of C \ (1,∞).

Proof. The proof of Theorem 6.3.54 goes exactly the same way as that of Theorem
2.3 in [283], by allowing 𝑛1 and 𝑛2 to take different values. □

Theorem 6.3.55 (Theorem 2.3 [283]: Extended). Let 𝑔1(𝑧) := 𝑔{𝑛1,𝑛2,𝑛1,𝑛2} (𝑧) be
as in eq.(6.59) with 𝑛1 > 𝑛2 and 𝑛1 ∈ Z+, 2𝑛2 = 1(mod 2). Define 𝑛𝑖 𝑗 := 𝑛𝑖 − 𝑛 𝑗 .

1. 𝑔1(𝑧) has the following expansion, known as the 𝑠-channel expansion:

𝑔1(𝑧) =
∞∑︁

𝑝=𝑛1+𝑛2

ℓ𝑝∑︁
𝑎=1
(−1)𝑝−𝑛1−𝑛2 | 𝑓 𝑝,𝑎𝑛1,𝑛2 |

2G𝑝 (𝑛1, 𝑛2, 𝑛1, 𝑛2; 𝑧) , (6.76)

where G𝑝 (𝑛1, 𝑛2, 𝑛3, 𝑛4; 𝑧) is defined in (6.72).

The 𝑠-channel sum and its derivatives converge uniformly on compact subsets
of C \ (1,∞). Furthermore, 𝑓 𝑝,𝑎𝑛1,𝑛2 ∈ C and satisfies

𝑓
𝑝
𝑛,𝑛 = 0 , if 𝑝 − 2𝑛 = 1(mod 2) . (6.77)

2. 𝑔1(𝑧) has the following expansion, known as the 𝑡-channel expansion:

𝑔1(𝑧) =
𝑧𝑛1+𝑛2

(1 − 𝑧)𝑛1+𝑛2

( ∞∑︁
𝑘=1

𝑑′
𝑘∑︁

𝑎=1
|𝑠𝑘;𝑎
𝑛1,𝑛2 |

2H
Δ
(1/2)
𝑘

(𝑛1, 𝑛2, 𝑛1, 𝑛2; 𝑧) +

+
∑︁

0<𝑚≤𝑛1−𝑛2

ℓ𝑚∑︁
𝑎=1
| 𝑓 𝑛1
𝑛2,(𝑚;𝑎) |

2H𝑚 (𝑛1, 𝑛2, 𝑛1, 𝑛2; 𝑧)
)
,

(6.78)
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where

HΔ (𝑛1, 𝑛2, 𝑛1, 𝑛2; 𝑧) := (1 − 𝑧)𝑛12 2𝐹1

(
Δ + 𝑛21, 1 − Δ + 𝑛21, 1,

𝑧

𝑧 − 1

)
,

(6.79)
and 𝑠𝑘;𝑎

𝑛1,𝑛2 , 𝑓
𝑛1
𝑛2,(𝑚;𝑎) ∈ C, Δ(1/2)

𝑘
= 1

2 + 𝑖
√︃
𝜆
(1/2)
𝑘
− 1/4. The 𝑡-channel sum and

its derivatives converge uniformly on compact subsets of C \ (1,∞).

Proof. The proof of Theorem 6.3.55 is similar to that of Theorem 2.3 in [283] with
some modifications.

For the part (1), we derive

𝑔1(𝑧) =
∞∑︁

𝑝=𝑛1+𝑛2

ℓ𝑝∑︁
𝑎=1

𝑓
𝑝,𝑎
𝑛1,𝑛2

¯𝑓 𝑝,𝑎𝑛2,𝑛1 G𝑝 (𝑛1, 𝑛2, 𝑛1, 𝑛2; 𝑧) ,

in the same way we derive (6.71). In other words, we can derive the above by
swapping the labels 𝑛1 and 𝑛2 in the discrete antiholomorphic coherent states in the
correlator appearing in the theorem 6.3.54, leading to a similar swap in the R.H.S
of (6.71). We then use Proposition 3.37 to deduce

𝑓
𝑝,𝑎
𝑛2,𝑛1 = (−1)𝑝−𝑛1−𝑛2 𝑓

𝑝,𝑎
𝑛1,𝑛2 ,

to arrive at (6.76).

For the part (2), we note that the lemma 6.3.51 implies that in the R.H.S of (6.78), P−
𝑖𝜈

(instead of P+
𝑖𝜈

) and the discrete series representations appear. The rest of the proof
involves deriving the expression for the 𝑡 channel conformal blockH , the derivation
goes in a similar way as in the proof of the theorem 6.3.54 with appropriate swapping
of the labels. □

Spectral Identities and Linear Programming

Definition 6.3.56. Define 𝑟 := 1−𝑚−𝑛1−𝑛2, �̃�𝑖 := 1−𝑛𝑖, andΔ := 1/2+𝑖
√︁
𝜆 − 1/4.

We further define

F (𝑛1,𝑛2,𝑛3,𝑛4)
𝑚 (𝜆) :=∮
𝑧=0

𝑑𝑧

2𝜋𝑖
𝑧−2G𝑟 (�̃�1, �̃�2, �̃�3, �̃�4; 𝑧) 𝑧𝑛1+𝑛2

(1 − 𝑧)𝑛2+𝑛3
HΔ(𝑛1, 𝑛2, 𝑛3, 𝑛4; 𝑧) .

(6.80)

Definition 6.3.57. We define 𝑆𝑝;(𝑛1,𝑛2) :=
∑ℓ𝑝

𝑎=1 | 𝑓
𝑝,𝑎
𝑛1,𝑛2 |2.
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Each four function correlator gives rise to a consistency condition by equating the
𝑠 and 𝑡 channel expansions. We can then obtain infinitely many conditions by
Taylor expanding the original consistency condition around 𝑧 = 0 and collecting the
coefficient of 𝑧𝑚 for each 𝑚 ∈ Z⩾0.

Proposition 6.3.58. Let 𝑚 ∈ Z≥0. The consistency conditions, one for each 𝑚,
coming from the four function correlator, ⟨𝒪𝑛1 (𝑧1)𝒪𝑛2 (𝑧2)𝒪𝑛2 (𝑧3)𝒪𝑛1 (𝑧4)⟩ are given
by

𝑆𝑛1+𝑛2+𝑚;(𝑛1,𝑛2) =

(
F (𝑛1,𝑛2,𝑛2,𝑛1)
𝑚 (0) +

∞∑︁
𝑘=1

[
𝑑𝑘∑︁
𝑎=1

𝑐𝑘;𝑎
𝑛1,𝑛1𝑐

𝑘;𝑎
𝑛2,𝑛2

]
F (𝑛1,𝑛2,𝑛2,𝑛1)
𝑚 (𝜆(0)

𝑘
)
)
.

(6.81)

Proof. We recall Theorem6.3.54 and equate the 𝑠-channel and 𝑡-channel expansions
and integrate against G𝑟 introduced in 6.3.56, followed by exchanging the sum and
integral using uniform convergence of the expansion. The proposition will follow
from the orthogonality condition∮

𝑧=0

𝑑𝑧

2𝜋𝑖
𝑧−2G1−𝑚1−𝑛1−𝑛2 (�̃�1, �̃�2, �̃�3, �̃�4; 𝑧)G𝑚2+𝑛1+𝑛2 (𝑛1, 𝑛2, 𝑛3, 𝑛4) = 𝛿𝑚1,𝑚2 ,

(6.82)

where �̃�𝑖 = 1 − 𝑛𝑖. To prove (6.82), first note that G𝑝 (𝑛1, 𝑛2, 𝑛3, 𝑛4) satisfies the
eigenvalue equation

𝐷{𝑛𝑖}G𝑝 (𝑛1, 𝑛2, 𝑛3, 𝑛4; 𝑧) = 𝑝(1 − 𝑝)G𝑝 (𝑛1, 𝑛2, 𝑛3, 𝑛4; 𝑧), (6.83)

where the differential operator 𝐷{𝑛𝑖} is given by

𝐷{𝑛𝑖} = 𝑧
2(𝑧 − 1) 𝜕

2

𝜕𝑧2 + (1 − 𝑛12 + 𝑛34)𝑧2 𝜕

𝜕𝑧
− 𝑛12𝑛34𝑧. (6.84)

By integrating by parts, one can show that 𝐷{𝑛𝑖} satisfies∮
𝑧=0

𝑑𝑧

2𝜋𝑖
𝑧−2𝐹 (𝑧) (D{𝑛𝑖}𝐺 (𝑧)) =

∮
𝑧=0

𝑑𝑧

2𝜋𝑖
𝑧−2(D{�̃�𝑖}𝐹 (𝑧))𝐺 (𝑧) (6.85)

for any functions 𝐹 (𝑧) and𝐺 (𝑧) holomorphic in an annulus around 𝑧 = 0. Thus, for
the left-hand side of (6.82) to be nonzero, the eigenvalues ofG1−𝑚1−𝑛1−𝑛2 (�̃�1, �̃�2, �̃�3, �̃�4; 𝑧)
and G𝑚2+𝑛1+𝑛2 (𝑛1, 𝑛2, 𝑛3, 𝑛4) with respect to 𝐷{�̃�𝑖} and 𝐷{𝑛𝑖}, respectively, must be
equal, which implies 𝑚1 = 𝑚2. Finally, when 𝑚1 = 𝑚2, the left-hand side of (6.82)
can be evaluated by residues, picking up the contribution of the simple pole at 𝑧 = 0
with residue 1. □
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Proposition 6.3.59. Let 𝑚 ∈ Z≥0, 𝑛1 ∈ N and 2𝑛2 = 1(mod 2). The consistency
condition coming from ⟨𝒪𝑛1 (𝑧1)𝒪𝑛2 (𝑧2)𝒪𝑛1 (𝑧3)𝒪𝑛2 (𝑧4)⟩ is given by

(−1)𝑚𝑆𝑛1+𝑛2+𝑚;(𝑛1,𝑛2) =

( ∞∑︁
𝑘=1


𝑑′
𝑘∑︁

𝑎=1
|𝑠𝑘;𝑎
𝑛1,𝑛2 |

2
 F (𝑛1,𝑛2,𝑛1,𝑛2)

𝑚 (𝜆(1/2)
𝑘
)+

+
∑︁

1/2≤𝑞≤𝑛1−𝑛2
𝑞∈1/2+Z≥0

ℓ𝑞∑︁
𝑎=1
| 𝑓 𝑛1
𝑛2,(𝑞;𝑎) |

2F (𝑛1,𝑛2,𝑛1,𝑛2)
𝑚 (𝑞(1 − 𝑞))

)
.

(6.86)

Proof. It follows from Theorem 6.3.55. The proof is similar to that of Proposition
6.3.58. □

In what follows, we consider a hyperbolic spin orbifold supporting homolomorphic
modular forms of weight 𝑛 and 2𝑛 such that 𝑛 = 1(mod 2). If ℓ𝑛/2 > 1 and/or
ℓ𝑛 > 1, we choose a particular 𝒪𝑛 and a particular 𝒪𝑛/2 such that 𝑓 𝑛

𝑛/2,𝑛/2 ≠ 0.
One can always consider a bigger system correlator using explicitly the value of
ℓ𝑛 and ℓ𝑛/2, however, in order to find out a universal bound irrespective of ℓ𝑛 and
ℓ𝑛/2, we choose not to do so. This leads us to consider the system of following
correlators ⟨𝒪𝑛𝒪𝑛𝒪𝑛𝒪𝑛⟩ , ⟨𝒪𝑛

2
𝒪𝑛

2
𝒪𝑛

2
𝒪𝑛

2
⟩ , ⟨𝒪𝑛𝒪𝑛

2
𝒪𝑛

2
𝒪𝑛⟩ and ⟨𝒪𝑛𝒪𝑛

2
𝒪𝑛𝒪𝑛

2
⟩, where we

have suppressed the degeneracy index 𝑎 in (𝑛, 𝑎) and so on. The explicit crossing
equations read



321

Proposition 6.3.60. Let 𝑚 ∈ Z≥0, 𝑛 ∈ N. We have

𝑆2𝑛+2𝑚;(𝑛,𝑛) =

(
F (𝑛,𝑛,𝑛,𝑛)2𝑚 (0) +

∞∑︁
𝑘=1

[
𝑑𝑘∑︁
𝑎=1

(
𝑐𝑘;𝑎
𝑛,𝑛

)2
]
F (𝑛,𝑛,𝑛,𝑛)2𝑚 (𝜆(0)

𝑘
)
)
,

0 =

(
F (𝑛,𝑛,𝑛,𝑛)2𝑚+1 (0) +

∞∑︁
𝑘=1

[
𝑑𝑘∑︁
𝑎=1

(
𝑐𝑘;𝑎
𝑛,𝑛

)2
]
F (𝑛,𝑛,𝑛,𝑛)2𝑚+1 (𝜆(0)

𝑘
)
)
,

𝑆𝑛+2𝑚;(𝑛/2,𝑛/2) =

(
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚 (0) +

∞∑︁
𝑘=1

[
𝑑𝑘∑︁
𝑎=1

(
𝑐
𝑘;𝑎
𝑛/2,𝑛/2

)2
]
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚 (𝜆(0)

𝑘
)
)
,

0 =

(
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚+1 (0) +

∞∑︁
𝑘=1

[
𝑑𝑘∑︁
𝑎=1

(
𝑐
𝑘;𝑎
𝑛/2,𝑛/2

)2
]
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚+1 (𝜆(0)

𝑘
)
)
,

𝑆3𝑛/2+𝑚;(𝑛,𝑛/2) =

(
F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (0) +

∞∑︁
𝑘=1

[
𝑑𝑘∑︁
𝑎=1

𝑐
𝑘;𝑎
𝑛/2,𝑛/2𝑐

𝑘;𝑎
𝑛,𝑛

]
F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (𝜆(0)

𝑘
)
)
,

(−1)𝑚𝑆3𝑛/2+𝑚;(𝑛,𝑛/2) =

( ∞∑︁
𝑘=1


𝑑′
𝑘∑︁

𝑎=1
|𝑠𝑘;𝑎
𝑛,𝑛/2 |

2
 F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚 (𝜆(1/2)

𝑘
)+

+
∑︁

0<𝑞≤𝑛/2

ℓ𝑞∑︁
𝑎=1
| 𝑓 𝑛
𝑛/2,(𝑞;𝑎) |

2F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚 (𝑞(1 − 𝑞))
)
.

Proof. This follows from Propositions 6.3.58 and 6.3.59 by choosing appropriate
values of 𝑛1 and 𝑛2. □

Based on the above crossing equations, let us formulate the following linear pro-
gramming problems.

Notation: Given a hyperbolic spin orbifold 𝑋 , we consider the Laplacian spectra
{0} ∪ {𝜆(0)

𝑘
(𝑋) : 𝜆(0)

𝑘
(𝑋) > 0, 𝑘 ∈ N}, and the weight-1 automorphic Laplacian

spectrum (not including the eigenvalue corresponding to a harmonic spinor if there is
any) {𝜆(1/2)

𝑘
(𝑋) : 𝜆(1/2)

𝑘
(𝑋) > 1/4, 𝑘 ∈ N}. Furthermore, without loss of generality,

let us assume 𝜆(0)
𝑘+1(𝑥) > 𝜆

(0)
𝑘
(𝑋) and 𝜆(1/2)

𝑘+1 (𝑋) > 𝜆
(1/2)
𝑘
(𝑋) for all 𝑘 ∈ N.

Linear Program 1 (Spectral bound on Laplacian). Given Λ ∈ N, 𝜆(0)∗ ∈ R+ and
a hyperbolic spin orbifold with a holomorphic modular form of weight 𝑛 such that
𝑛 = 1(mod2), if there exists 𝛼 ∈ RΛ+1 with such that

1. 𝛼2𝑚 ≤ 0 , ∀ 𝑚 ∈ Z≥0,
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2.
∑Λ
𝑚=0 𝛼𝑚F

(𝑛/2,𝑛/2,𝑛/2,𝑛/2)
𝑚 (0) = 1,

3. ∀ 𝜆(0)
𝑘
≥ 𝜆(0)∗ we have

Λ∑︁
𝑚=0

𝛼𝑚F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (𝜆(0)
𝑘
) ≥ 0 , (6.87)

we must have 𝜆(0)1 < 𝜆
(0)
∗ .

Proof. We consider the third and the fourth equation of the ones appearing in the
proposition6.3.60 and write them below.

𝑆𝑛+2𝑚;(𝑛/2,𝑛/2) =

(
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚 (0) +

∞∑︁
𝑘=1

[
𝑑𝑘∑︁
𝑎=1

(
𝑐
𝑘;𝑎
𝑛/2,𝑛/2

)2
]
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚 (𝜆(0)

𝑘
)
)
,

0 =

(
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑝+1 (0) +

∞∑︁
𝑘=1

[
𝑑𝑘∑︁
𝑎=1

(
𝑐
𝑘;𝑎
𝑛/2,𝑛/2

)2
]
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑝+1 (𝜆(0)

𝑘
)
)
.

Here we renamed the variable 𝑚 to 𝑝 to write down the second equation.

For a given 𝑚 ∈ Z⩾0 and 𝑝 ∈ Z⩾0, we multiply the first equation above with 𝛼2𝑚,
the second equation above with 𝛼2𝑝+1, and add them together. Now we sum over 𝑚
and 𝑝 such that 2𝑚 ⩽ Λ and 2𝑝 + 1 ⩽ Λ. Then we use the trivial identity∑︁

0⩽2𝑚⩽Λ
𝛼2𝑚F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚 (𝜆(0)

𝑘
) +

∑︁
0⩽2𝑝+1⩽Λ

𝛼2𝑝+1F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑝+1 (𝜆(0)
𝑘
)

=

Λ∑︁
𝑞=0

𝛼𝑞F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑞 (𝜆(0)
𝑘
) ,

and the property (2) of 𝛼 to finally obtain the following:

∞∑︁
𝑘=1

©«
[
𝑑𝑘∑︁
𝑎=1

(
𝑐
𝑘;𝑎
𝑛/2,𝑛/2

)2
]

Λ∑︁
𝑞=0

𝛼𝑞F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑞 (𝜆(0)
𝑘
)ª®¬ = −1 +

⌊ Λ2 ⌋∑︁
𝑚=0

𝛼2𝑚𝑆𝑛+2𝑚;(𝑛/2,𝑛/2) .

Now using the properties of 𝛼, we show that the R.H.S of the above is strictly
negative. Therefore the L.H.S is strictly negative. Using (6.87), the proposition
follows. □

Semidefinite Program 1 (Spectral bound on Laplacian and Dirac: I). Let us con-
sider a hyperbolic spin orbifold ,for which, ∃ 𝑛 ∈ N with 𝑛 = 1(mod 2) such that the
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orbifold does not support any holomorphic modular form of weight strictly below 𝑛

and does support a (at least one) holomorphic modular form of weight 𝑛.

Given Λ ∈ N, 𝜆(0)∗ , 𝜆
(1/2)
∗ ∈ R+, if there exists 𝛼𝑖 ∈ RΛ+1 with 𝑖 = 1, 2, 3, 4 such that

1. 𝛼1;2𝑚 ≤ 0 , ∀ 𝑚 ∈ Z≥0,

2.
∑Λ
𝑚=0

(
𝛼1;𝑚F (𝑛,𝑛,𝑛,𝑛)𝑚 (0) + 𝛼2;𝑚F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (0) + 𝛼3;𝑚F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (0)

)
=

1,

3. 𝛼2;2𝑚 ≤ 0 , ∀ 𝑚 ∈ Z≥0 ,

4. 𝛼3;𝑚 + (−1)𝑚𝛼4;𝑚 ≤ 0 , ∀ 𝑚 ∈ Z≥0 ,

5.
∑Λ
𝑚′=0 𝛼4;𝑚′F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚′

(
𝑛
2 (1 −

𝑛
2 )

)
≥ 0 , ∀ 𝑚 ∈ Z≥0 ,

6. ∀ 𝜆(1/2)
𝑘
≥ 𝜆(1/2)∗ , we have

Λ∑︁
𝑚=0

𝛼4;𝑚F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚 (𝜆(1/2)
𝑘
) ≥ 0, (6.88)

7. ∀ 𝜆(0)
𝑘
≥ 𝜆(0)∗ we have

𝑀 (𝜆(0)
𝑘
) :=

( ∑Λ
𝑚=0 𝛼1;𝑚F (𝑛,𝑛,𝑛,𝑛)𝑚 (𝜆(0)

𝑘
) 1

2
∑Λ
𝑚=0 𝛼3;𝑚F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (𝜆(0)

𝑘
)

1
2
∑Λ
𝑚=0 𝛼3;𝑚F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (𝜆(0)

𝑘
) ∑Λ

𝑚=0 𝛼2;𝑚F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (𝜆(0)
𝑘
)

)
⪰ 0,

(6.89)

we must have either 𝜆(0)1 < 𝜆
(0)
∗ or 𝜆(1/2)1 < 𝜆

(1/2)
∗ .

Proof. The proof is similar to the proof of the Linear Program 1 and involves taking
appropriate linear combination of equations appearing in (6.3.60). To be concrete,
let us define

𝑆2𝑛+2𝑚+1;(𝑛,𝑛) = 0 , 𝑆2𝑛+2𝑚+1;(𝑛/2,𝑛/2) = 0 , 𝑚 ∈ Z⩾0 (6.90)
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and rewrite the equations appearing in proposition (6.3.60) in the following form:

𝑆2𝑛+𝑚;(𝑛,𝑛) =

(
F (𝑛,𝑛,𝑛,𝑛)𝑚 (0) +

∞∑︁
𝑘=1

[
𝑑𝑘∑︁
𝑎=1

(
𝑐𝑘;𝑎
𝑛,𝑛

)2
]
F (𝑛,𝑛,𝑛,𝑛)𝑚 (𝜆(0)

𝑘
)
)
,

𝑆𝑛+𝑚;(𝑛/2,𝑛/2) =

(
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (0) +

∞∑︁
𝑘=1

[
𝑑𝑘∑︁
𝑎=1

(
𝑐
𝑘;𝑎
𝑛/2,𝑛/2

)2
]
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (𝜆(0)

𝑘
)
)
,

𝑆3𝑛/2+𝑚;(𝑛,𝑛/2) =

(
F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (0) +

∞∑︁
𝑘=1

[
𝑑𝑘∑︁
𝑎=1

𝑐
𝑘;𝑎
𝑛/2,𝑛/2𝑐

𝑘;𝑎
𝑛,𝑛

]
F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (𝜆(0)

𝑘
)
)
,

(−1)𝑚𝑆3𝑛/2+𝑚;(𝑛,𝑛/2) =

( ∞∑︁
𝑘=1


𝑑′
𝑘∑︁

𝑎=1
|𝑠𝑘;𝑎
𝑛,𝑛/2 |

2
 F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚 (𝜆(1/2)

𝑘
)+

+
∑︁

0<𝑞≤𝑛/2

ℓ𝑞∑︁
𝑎=1
| 𝑓 𝑛
𝑛/2,(𝑞;𝑎) |

2F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚 (𝑞(1 − 𝑞))
)
.

For the orbifold under consideration, there does not exist a holomorphic modular
form of weight strictly below 𝑛. Hence, the sum appearing in the last line of the
fourth equation appearing above collapses to a single term corresponding to 𝑞 = 𝑛/2.

For each value of 𝑚, there are four crossing equations above. We multiply the 𝑖-th
one with 𝛼𝑖;𝑚. Then we sum over the indices 𝑖 and 𝑚 such that 1 ⩽ 𝑖 ⩽ 4 and
0 ⩽ 𝑚 ⩽ Λ. Finally, we use (6.90) and property (2) of 𝛼 to obtain:
∞∑︁
𝑘=1

𝑑𝑘∑︁
𝑎=1

(
𝑐
𝑘;𝑎
𝑛,𝑛 , 𝑐

𝑘;𝑎
𝑛/2,𝑛/2

)
𝑀 (𝜆(0)

𝑘
)
(
𝑐
𝑘;𝑎
𝑛,𝑛

𝑐
𝑘;𝑎
𝑛/2,𝑛/2

)
+
∞∑︁
𝑘=1


𝑑′
𝑘∑︁

𝑎=1
|𝑠𝑘;𝑎
𝑛,𝑛/2 |

2


Λ∑︁
𝑚=0

𝛼4;𝑚F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚 (𝜆(1/2)
𝑘
)

= −1 +
⌊ Λ2 ⌋∑︁
𝑚=0

(
𝛼1,2𝑚𝑆2𝑛+2𝑚;(𝑛,𝑛) + 𝛼2;2𝑚𝑆𝑛+2𝑚;(𝑛/2,𝑛/2)

)
−

−

ℓ𝑛/2∑︁
𝑎=1
| 𝑓 𝑛
𝑛/2,(𝑛/2;𝑎) |

2


Λ∑︁
𝑚′=0

𝛼4;𝑚′F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚′

(𝑛
2

(
1 − 𝑛

2

))
+

+
Λ∑︁

𝑚′=0

(
𝛼3;𝑚′ + (−1)𝑚′𝛼4;𝑚′

)
𝑆3𝑛/2+𝑚′;(𝑛,𝑛/2) .

Now using the properties of 𝛼, we show that the R.H.S of the above is strictly
negative. Therefore the L.H.S is strictly negative. Using (6.88) and (6.89), the
proposition follows. □

Remark 6.3.61. When ℓ𝑛 = ℓ𝑛/2 = 1, the structure constant
∑ℓ𝑛/2
𝑎=1 | 𝑓

𝑛
𝑛/2,(𝑛/2;𝑎) |

2

appearing in the 𝑡-channel expansion in the last equation of (6.3.60) is exactly same
as 𝑆𝑛;(𝑛/2,𝑛/2) . Thus we can formulate a stronger SDP problem, which we state below.
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Semidefinite Program 2 (Spectral bound on Laplacian and Dirac: II). Let us con-
sider a hyperbolic spin orbifold , for which, ∃ 𝑛 ∈ N with 𝑛 = 1(mod 2) such that the
orbifold does not support any holomorphic modular form of weight strictly below
𝑛. Finally, assume that the multiplicity of holomorphic modular forms of weight 𝑛
and 2𝑛 are respectively given by ℓ𝑛/2 = 1 and ℓ𝑛 = 1.

Given Λ ∈ N, 𝜆(0)∗ , 𝜆
(1/2)
∗ ∈ R+, if there exists 𝛼𝑖 ∈ RΛ+1 with 𝑖 = 1, 2, 3, 4 such that

1. 𝛼1;2𝑚 ≤ 0 , ∀ 𝑚 ∈ Z≥0

2.
∑Λ
𝑚=0

(
𝛼1;𝑚F (𝑛,𝑛,𝑛,𝑛)𝑚 (0) + 𝛼2;𝑚F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (0) + 𝛼3;𝑚F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (0)

)
=

1

3. 𝛼2;2𝑚 − 𝛿2𝑚,0
∑Λ
𝑚′=0 𝛼4;𝑚′F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚′

(
𝑛
2 (1 −

𝑛
2 )

)
≤ 0 , ∀ 𝑚 ∈ Z≥0 ,

4. 𝛼3;𝑚 + (−1)𝑚𝛼4;𝑚 ≤ 0 , ∀ 𝑚 ∈ Z≥0 ,

5. ∀ 𝜆(1/2)
𝑘
≥ 𝜆(1/2)∗ , we have

Λ∑︁
𝑚=0

𝛼4;𝑚F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚 (𝜆(1/2)
𝑘
) ≥ 0, (6.91)

6. ∀ 𝜆(0)
𝑘
≥ 𝜆(0)∗ we have

𝑀 (𝜆(0)
𝑘
) :=

( ∑Λ
𝑚=0 𝛼1;𝑚F (𝑛,𝑛,𝑛,𝑛)𝑚 (𝜆(0)

𝑘
) 1

2
∑Λ
𝑚=0 𝛼3;𝑚F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (𝜆(0)

𝑘
)

1
2
∑Λ
𝑚=0 𝛼3;𝑚F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (𝜆(0)

𝑘
) ∑Λ

𝑚=0 𝛼2;𝑚F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (𝜆(0)
𝑘
)

)
⪰ 0,

(6.92)

we must have either 𝜆(0)1 < 𝜆
(0)
∗ or 𝜆(1/2)1 < 𝜆

(1/2)
∗ .

Proof. The proof involves taking the same linear combinations of equations appear-
ing in (6.3.60), as done in the proof of Semidefinite Program 1 and further using the
fact ℓ𝑛/2 = 1, leading to

ℓ𝑛/2∑︁
𝑎=1
| 𝑓 𝑛
𝑛/2,(𝑛/2;𝑎) |

2 = 𝑆𝑛;(𝑛/2,𝑛/2) .
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In this way, we obtain

∞∑︁
𝑘=1

𝑑𝑘∑︁
𝑎=1

(
𝑐
𝑘;𝑎
𝑛,𝑛 , 𝑐

𝑘;𝑎
𝑛/2,𝑛/2

)
𝑀 (𝜆(0)

𝑘
)
(
𝑐
𝑘;𝑎
𝑛,𝑛

𝑐
𝑘;𝑎
𝑛/2,𝑛/2

)
+
∞∑︁
𝑘=1

𝑑′
𝑘∑︁

𝑎=1
|𝑠𝑘;𝑎
𝑛,𝑛/2 |

2
Λ∑︁
𝑚=0

𝛼4;𝑚F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚 (𝜆(1/2)
𝑘
)

= −1 +
⌊Λ/2⌋∑︁
𝑚=0

(
𝛼1,2𝑚𝑆2𝑛+2𝑚;(𝑛,𝑛) +

(
𝛼2;2𝑚 − 𝛿2𝑚,0

Λ∑︁
𝑚′=0

𝛼4;𝑚′F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚′

(𝑛
2

(
1 − 𝑛

2

)) )
×

× 𝑆𝑛+2𝑚;(𝑛/2,𝑛/2)

)
+

Λ∑︁
𝑚=0

(
𝛼3;𝑚 + (−1)𝑚𝛼4;𝑚

)
𝑆3𝑛/2+𝑚;(𝑛,𝑛/2) .

Now using the properties of 𝛼, we show that the R.H.S of the above is strictly
negative. Therefore the L.H.S is strictly negative. Using (6.91) and (6.92), the
proposition follows. □

In what follows, we will use 𝒪𝑛 and 𝒪𝑛/2 and assume that there is no holomorphic
modular form of weight strictly below 𝑛 on the orbifold under consideration. This
is clearly true for 𝑛 = 1. Furthermore, we will use a clever trick introduced in [283]
to reduce the size of the problem. The idea is to consider the correlators and do a
Haar integral over𝑈 (ℓ𝑛) and𝑈 (ℓ𝑛/2).

Proposition 6.3.62. For a unitary group𝑈 (ℓ), we have∫
𝑈 (ℓ)

𝑑𝑈 𝑈
𝑎′1
𝑎1 (�̄�)

𝑎′2
𝑎2 =

1
ℓ
𝛿𝑎1,𝑎2𝛿𝑎′1,𝑎

′
2
,∫

𝑈 (ℓ)
𝑑𝑈 𝑈

𝑎′1
𝑎1𝑈

𝑎′2
𝑎2 (�̄�)

𝑎′3
𝑎3 (�̄�)

𝑎′4
𝑎4 =

1
ℓ2 − 1

(
𝛿𝑎1,𝑎3𝛿𝑎2,𝑎4𝛿

𝑎′1,𝑎
′
3𝛿𝑎

′
2,𝑎
′
4 + 𝛿𝑎1,𝑎4𝛿𝑎2,𝑎3𝛿

𝑎′1,𝑎
′
4𝛿𝑎

′
2,𝑎
′
3

)
− 1
ℓ(ℓ2 − 1)

(
𝛿𝑎1,𝑎3𝛿𝑎2,𝑎4𝛿

𝑎′1,𝑎
′
4𝛿𝑎

′
2,𝑎
′
3 + 𝛿𝑎1,𝑎4𝛿𝑎2,𝑎3𝛿

𝑎′1,𝑎
′
3𝛿𝑎

′
2,𝑎
′
4

)
.

Next the idea is to consider the symmetrized set of correlators:

Definition 6.3.63. The symmetrized correlators are defined by

⟨𝒪𝑛𝒪𝑛𝒪𝑛𝒪𝑛⟩SYM :=
∫
𝑈 (ℓ𝑛)

𝑑𝑈 𝑈
𝑎′1
𝑎1𝑈

𝑎′2
𝑎2 (�̄�)

𝑎′3
𝑎3 (�̄�)

𝑎′4
𝑎4 ⟨𝒪𝑛,𝑎1𝒪𝑛,𝑎2𝒪𝑛,𝑎3𝒪𝑛,𝑎4⟩,

⟨𝒪𝑛
2
𝒪𝑛

2
𝒪𝑛

2
𝒪𝑛

2
⟩SYM :=

∫
𝑈 (ℓ𝑛/2)

𝑑𝑈 𝑈
𝑏′1
𝑏1
𝑈
𝑏′2
𝑏2
(�̄�)𝑏

′
3
𝑏3
(�̄�)𝑏

′
4
𝑏4
⟨𝒪𝑛

2 ,𝑏1𝒪
𝑛
2 ,𝑏2𝒪

𝑛
2 ,𝑏3𝒪

𝑛
2 ,𝑏4⟩,

⟨𝒪𝑛𝒪𝑛
2
𝒪𝑛

2
𝒪𝑛⟩SYM :=

∫
𝑈 (ℓ𝑛)

𝑑𝑈 𝑈
𝑎′1
𝑎1 (�̄�)

𝑎′2
𝑎2

∫
𝑈 (ℓ𝑛/2)

𝑑𝑈 𝑈
𝑏′1
𝑏1
(�̄�)𝑏

′
2
𝑏2
⟨𝒪𝑛,𝑎1𝒪

𝑛
2 ,𝑏1𝒪

𝑛
2 ,𝑏2𝒪𝑛,𝑎2⟩,

⟨𝒪𝑛𝒪𝑛
2
𝒪𝑛𝒪𝑛

2
⟩SYM :=

∫
𝑈 (ℓ𝑛)

𝑑𝑈 𝑈
𝑎′1
𝑎1 (�̄�)

𝑎′2
𝑎2

∫
𝑈 (ℓ𝑛/2)

𝑑𝑈 𝑈
𝑏′1
𝑏1
(�̄�)𝑏

′
2
𝑏2
⟨𝒪𝑛,𝑎1𝒪

𝑛
2 ,𝑏1𝒪𝑛,𝑎2𝒪

𝑛
2 ,𝑏2⟩.

(6.93)
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Definition 6.3.64. Let us define the following quantities:

S𝑝;𝑛 :=
1

ℓ𝑛 (ℓ𝑛 + 1)

ℓ𝑝∑︁
𝑖=1

ℓ𝑛∑︁
𝑎1,𝑎2=1

1
4

��� 𝑓 (𝑝;𝑖)
(𝑛;𝑎1),(𝑛;𝑎2) + 𝑓

(𝑝;𝑖)
(𝑛;𝑎2),(𝑛;𝑎1)

���2 ,
A𝑝;𝑛 :=

1
ℓ𝑛 (ℓ𝑛 − 1)

ℓ𝑝∑︁
𝑖=1

ℓ𝑛∑︁
𝑎1,𝑎2=1

1
4

��� 𝑓 (𝑝;𝑖)
(𝑛;𝑎1),(𝑛;𝑎2) − 𝑓

(𝑝;𝑖)
(𝑛;𝑎2),(𝑛;𝑎1)

���2 ,
T𝑘;𝑛 :=

1
ℓ2
𝑛 − 1

𝑑𝑘∑︁
𝑖=1

ℓ𝑛∑︁
𝑎1,𝑎2=1

[
𝑐
(𝑘;𝑖)
(𝑛;𝑎1),(𝑛;𝑎2)𝑐

(𝑘;𝑖)
(𝑛;𝑎1),(𝑛;𝑎2) −

1
ℓ𝑛
𝑐
(𝑘;𝑖)
(𝑛;𝑎1),(𝑛;𝑎1)𝑐

(𝑘;𝑖)
(𝑛;𝑎2),(𝑛;𝑎2)

]
,

Q𝑘;𝑛 :=
1
ℓ𝑛

𝑑𝑘∑︁
𝑖=1

𝑐
(𝑘;𝑖)
(𝑛;𝑎),(𝑛;𝑎) ,

B𝑝;(𝑛1,𝑛2) :=
1

ℓ𝑛1ℓ𝑛2

ℓ𝑝∑︁
𝑖=1

ℓ𝑛1∑︁
𝑎=1

ℓ𝑛2∑︁
𝑏=1
| 𝑓 (𝑝;𝑖)
(𝑛1;𝑎),(𝑛2;𝑏) |

2,

P𝑘;(𝑛1,𝑛2) :=
1

ℓ𝑛1ℓ𝑛2

𝑑𝑘∑︁
𝑖=1

ℓ𝑛1∑︁
𝑎=1

ℓ𝑛2∑︁
𝑏=1
|𝑠(𝑘;𝑖)
(𝑛1;𝑎),(𝑛2;𝑏) |

2.

(6.94)

Let 𝜌𝑛 denote the fundamental representations of 𝑈 (ℓ𝑛) and 𝜌∗𝑛 its complex conju-
gate. The quantities S𝑝;𝑛,A𝑝;𝑛,T𝑘;𝑛 and Q𝑘;𝑛 label different trivial representations in
the decomposition of (𝜌⊗2

𝑛 ) ⊗ (𝜌∗𝑛)⊗2. S𝑝;𝑛 is the element in the trivial representation
which arises from Sym2(𝜌𝑛) ⊗ Sym2(𝜌∗𝑛) and A𝑝;𝑛 is from ∧2(𝜌𝑛) ⊗ ∧2(𝜌∗𝑛). The
tensor product 𝜌𝑛 ⊗ 𝜌∗𝑛 decomposes into a symmetric traceless representation and a
trivial representation. T𝑘;𝑛 and (Q𝑘;𝑛)2 come from the tensor product of these two
representations, respectively. Similarly, B𝑝;(𝑛1,𝑛2) and P𝑘;(𝑛1,𝑛2) are 𝑈 (ℓ𝑛1) ×𝑈 (ℓ𝑛2)
invariants from (𝜌𝑛1 × 𝜌𝑛2) ⊗ (𝜌∗𝑛1 × 𝜌

∗
𝑛2)

Remark 6.3.65. Except for Q𝑘;𝑛, all quantities defined above are positive semi-
definite combinations of the OPE coefficients.

Proposition 6.3.66. Given a hyperbolic spin orbifold, for which, ∃ 𝑛 ∈ N with
𝑛 = 1(mod 2) such that the orbifold does not support holomorphic modular forms
with weight strictly smaller than 𝑛, and it supports ℓ𝑛 ≠ 0 different holomorphic
modular forms with weight 2𝑛 and ℓ𝑛/2 ≠ 0 different holomorphic modular forms
with weight 𝑛, the spectral identities derived from the set of symmetrized correlators
defined above are given by:
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∀𝑚 ∈ Z⩾0 :

S2𝑚+2𝑛;𝑛 =

∞∑︁
𝑘=1

T𝑘;𝑛F (𝑛,𝑛,𝑛,𝑛)2𝑚 (𝜆(0)
𝑘
),

−A2𝑚+1+2𝑛;𝑛 =

∞∑︁
𝑘=1

T𝑘;𝑛F (𝑛,𝑛,𝑛,𝑛)2𝑚+1 (𝜆(0)
𝑘
),

S2𝑚+2𝑛;𝑛 = F (𝑛,𝑛,𝑛,𝑛)2𝑚 (0) +
∞∑︁
𝑘=1

(
Q2
𝑘;𝑛 −

1
ℓ𝑛

T𝑘;𝑛

)
F (𝑛,𝑛,𝑛,𝑛)2𝑚 (𝜆(0)

𝑘
),

A2𝑚+1+2𝑛;𝑛 = F (𝑛,𝑛,𝑛,𝑛)2𝑚+1 (0) +
∞∑︁
𝑘=1

(
Q2
𝑘;𝑛 −

1
ℓ𝑛

T𝑘;𝑛

)
F (𝑛,𝑛,𝑛,𝑛)2𝑚+1 (𝜆(0)

𝑘
),

S2𝑚+𝑛;𝑛/2 =

∞∑︁
𝑘=1

T𝑘;𝑛/2 F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚 (𝜆(0)
𝑘
),

−A2𝑚+1+𝑛;𝑛/2 =

∞∑︁
𝑘=1

T𝑘;𝑛/2 F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚+1 (𝜆(0)
𝑘
),

S2𝑚+𝑛;𝑛/2 = F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚 (0) +
∞∑︁
𝑘=1

(
Q2
𝑘;𝑛/2 −

1
ℓ𝑛/2

T𝑘;𝑛/2

)
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚 (𝜆(0)

𝑘
),

A2𝑚+1+𝑛;𝑛/2 = F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚+1 (0) +
∞∑︁
𝑘=1

(
Q2
𝑘;𝑛/2 −

1
ℓ𝑛/2

T𝑘;𝑛/2

)
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚+1 (𝜆(0)

𝑘
),

B𝑚+3𝑛/2;(𝑛,𝑛/2) = F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (0) +
∞∑︁
𝑘=1

Q𝑘;𝑛Q𝑘;𝑛/2 F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (𝜆(0)
𝑘
),

(−1)𝑚B𝑚+3𝑛/2;(𝑛,𝑛/2) =
∞∑︁
𝑘=1

P𝑘;(𝑛,𝑛/2) F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚 (𝜆(1/2)
𝑘
)

+
ℓ𝑛/2 + 1
ℓ𝑛

S𝑛;𝑛/2 F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚

(𝑛
2

(
1 − 𝑛

2

))
.

Proof. The first four equations above come from ⟨𝒪𝑛𝒪𝑛𝒪𝑛𝒪𝑛⟩SYM. The idea is
to expand the integrand, appearing in the definition (6.93), in 𝑠 and 𝑡-channel;
then exchange the sum and the Haar integral, followed by performing the Haar
integral using the second equation in proposition 6.3.62. These are exactly same
as the ones in [283]. The 5th to the 8th equations are derived from considering
⟨𝒪𝑛/2𝒪𝑛/2𝒪𝑛/2𝒪𝑛/2⟩SYM and following similar steps. The 9th and the 10th equations
are coming from considering ⟨𝒪𝑛𝒪𝑛

2
𝒪𝑛

2
𝒪𝑛⟩SYM and ⟨𝒪𝑛𝒪𝑛

2
𝒪𝑛𝒪𝑛

2
⟩SYM, respectively. In

short, the unsymmetrized consistency conditions imply the symmetrized consistency
conditions just by averaging over all possible bases of the relevant eigenspaces. □
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Semidefinite Program 3 (Spectral bound on Laplacian and Dirac: III). Let us
consider a hyperbolic spin orbifold which supports ℓ𝑛 ≠ 0 different holomorphic
modular forms with weight 2𝑛 and ℓ𝑛/2 ≠ 0 different holomorphic modular forms
with weight 𝑛. Assume that the orbifold does not support any holomorphic modular
form with weight strictly smaller than 𝑛.

Given Λ ∈ N, 𝜆(0)∗ , 𝜆
(1/2)
∗ ∈ R+, if there exist 𝛼𝑖 ∈ RΛ+1 with 𝑖 = 1, 2, 3, 4, 5, 6 such

that

1.
∑Λ
𝑚=0 𝛼2;𝑚 F (𝑛,𝑛,𝑛,𝑛)𝑚 (0) +𝛼4;𝑚 F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (0) +𝛼5;𝑚 F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (0) = 1,

2. 𝛼1;2𝑚 + 𝛼2;2𝑚 ⩽ 0, ∀𝑚 ∈ Z⩾0, 2𝑚 ⩽ Λ,

3. 𝛼3;2𝑚 + 𝛼4;2𝑚 − 𝛿𝑚,0
ℓ𝑛/2+1
ℓ𝑛

∑Λ
𝑚′=0 𝛼6;𝑚′ F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚′

(
𝑛
2
(
1 − 𝑛

2
) )

⩽ 0,
∀𝑚 ∈ Z⩾0, 2𝑚 ⩽ Λ,

4. 𝛼2;2𝑚+1 − 𝛼1;2𝑚+1 ⩽ 0, ∀𝑚 ∈ Z⩾0, 2𝑚 + 1 ⩽ Λ,

5. 𝛼4;2𝑚+1 − 𝛼3;2𝑚+1 ⩽ 0, ∀𝑚 ∈ Z⩾0, 2𝑚 + 1 ⩽ Λ,

6. 𝛼5;𝑚 + (−1)𝑚𝛼6;𝑚 ⩽ 0, ∀𝑚 ∈ Z⩾0, 𝑚 ⩽ Λ,

7.
Λ∑︁
𝑚=0

(
𝛼1;𝑚 −

1
ℓ𝑛
𝛼2;𝑚

)
F (𝑛,𝑛,𝑛,𝑛)𝑚 (𝜆(0)

𝑘
) ⩾ 0, ∀𝜆(0)

𝑘
⩾ 𝜆

(0)
∗ , (6.95)

8.
Λ∑︁
𝑚=0

(
𝛼3;𝑚 −

1
ℓ𝑛/2

𝛼4;𝑚

)
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (𝜆(0)

𝑘
) ⩾ 0, ∀𝜆(0)

𝑘
⩾ 𝜆

(0)
∗ , (6.96)
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9.
Λ∑︁
𝑚=0

𝛼6;𝑚 F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚 (𝜆(1/2)
𝑘
) ⩾ 0, ∀𝜆(1/2)

𝑘
⩾ 𝜆

(1/2)
∗ , (6.97)

10. ∀𝜆(0)
𝑘

⩾ 𝜆
(0)
∗ ,

𝑀′(𝜆(0)
𝑘
) :=

( ∑Λ
𝑚=0 𝛼2;𝑚F (𝑛,𝑛,𝑛,𝑛)𝑚 (𝜆(0)

𝑘
) 1

2
∑Λ
𝑚=0 𝛼5;𝑚F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (𝜆(0)

𝑘
)

1
2
∑Λ
𝑚=0 𝛼5;𝑚F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (𝜆(0)

𝑘
) ∑Λ

𝑚=0 𝛼4;𝑚F (𝑛,𝑛,𝑛,𝑛)𝑚 (𝜆(0)
𝑘
)

)
⪰ 0,

(6.98)

then at least one of the following statements must be true:

1. 𝜆(0)1 < 𝜆
(0)
∗ ,

2. 𝜆(1/2)1 < 𝜆
(1/2)
∗ .

Proof. The proof is similar in nature to the ones appearing before for the semidefinite
linear programs. Let us define

𝑉1;𝑚 :=


S𝑚+2𝑛;𝑛 , 𝑚 = 0(mod 2)

−A𝑚+2𝑛;𝑛 , 𝑚 = 1(mod 2)
, 𝑉2;𝑚 := (−1)𝑚𝑉1;𝑚

𝑉3;𝑚 :=


S𝑚+2𝑛;𝑛/2 , 𝑚 = 0(mod 2)

−A𝑚+2𝑛;𝑛/2 , 𝑚 = 1(mod 2)
, 𝑉4;𝑚 := (−1)𝑚𝑉3;𝑚

𝑉5;𝑚 := B𝑚+3𝑛/2;(𝑛,𝑛/2) , 𝑉6;𝑚 := (−1)𝑚𝑉5;𝑚 .

(6.99)
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Using these, we rewrite the equations appearing in (6.3.66):

𝑉1;𝑚 =

∞∑︁
𝑘=1

T𝑘;𝑛F (𝑛,𝑛,𝑛,𝑛)𝑚 (𝜆(0)
𝑘
) ,

𝑉2;𝑚 = F (𝑛,𝑛,𝑛,𝑛)𝑚 (0) +
∞∑︁
𝑘=1

(
Q2
𝑘;𝑛 −

1
ℓ𝑛

T𝑘;𝑛

)
F (𝑛,𝑛,𝑛,𝑛)𝑚 (𝜆(0)

𝑘
) ,

𝑉3;𝑚 =

∞∑︁
𝑘=1

T𝑘;𝑛/2 F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (𝜆(0)
𝑘
)

𝑉4;𝑚 = F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (0) +
∞∑︁
𝑘=1

(
Q2
𝑘;𝑛/2 −

1
ℓ𝑛/2

T𝑘;𝑛/2

)
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (𝜆(0)

𝑘
) ,

𝑉5;𝑚 = F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (0) +
∞∑︁
𝑘=1

Q𝑘;𝑛Q𝑘;𝑛/2 F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (𝜆(0)
𝑘
),

𝑉6;𝑚 =

∞∑︁
𝑘=1

P𝑘;(𝑛,𝑛/2) F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚 (𝜆(1/2)
𝑘
)

+
ℓ𝑛/2 + 1
ℓ𝑛

S𝑛;𝑛/2 F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚

(𝑛
2

(
1 − 𝑛

2

))
.

For a given 𝑚 ∈ Z⩾0, there are six crossing equations above. We multiply the 𝑖-th
equation by 𝛼𝑖;𝑚 and sum them up. Then we take linear combination by summing
over 𝑚 such that 𝑚 ⩽ Λ. At this point, we write the variable 𝑉 in terms of the
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original variable S, A, B to obtain:

⌊Λ/2⌋∑︁
𝑚=0

[
(𝛼1;2𝑚 + 𝛼2;2𝑚)S2𝑚+2𝑛;𝑛

+
(
𝛼3;2𝑚 + 𝛼4;2𝑚 − 𝛿2𝑚,0

ℓ𝑛/2 + 1
ℓ𝑛

×
Λ∑︁

𝑚′=0
𝛼6;𝑚′F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚′

(𝑛
2
(1 − 𝑛

2
)
) )

S2𝑚+𝑛;𝑛/2
]

+
⌊ Λ−1

2 ⌋∑︁
𝑚=0

[
(𝛼2;2𝑚+1 − 𝛼1;2𝑚+1)A2𝑚+1+2𝑛;𝑛 + (𝛼4;2𝑚+1 − 𝛼3;2𝑚+1)A2𝑚+1+𝑛;𝑛/2

]
+

Λ∑︁
𝑚=0

(
𝛼5;𝑚 + (−1)𝑚𝛼6;𝑚

)
B𝑚+3𝑛/2;(𝑛,𝑛/2)

−
Λ∑︁
𝑚=0

(
𝛼2;𝑚 F (𝑛,𝑛,𝑛,𝑛)𝑚 (0) + 𝛼4;𝑚 F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (0) + 𝛼5;𝑚 F (𝑛,𝑛/2,𝑛/2,𝑛)𝑚 (0)

)
=

Λ∑︁
𝑚=0

∞∑︁
𝑘=1

[
T𝑘,𝑛

(
𝛼1;𝑚 −

1
ℓ𝑛
𝛼2;𝑚

)
F (𝑛,𝑛,𝑛,𝑛)𝑚 (𝜆(0)

𝑘
)

+ T𝑘;𝑛/2

(
𝛼3;𝑚 −

1
ℓ𝑛/2

𝛼4;𝑚

)
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)𝑚 (𝜆(0)

𝑘
)

+ P𝑘;(𝑛,𝑛/2) 𝛼6;𝑚 F (𝑛,𝑛/2,𝑛,𝑛/2)𝑚 (𝜆(1/2)
𝑘
) +

(
Q𝑘;𝑛 Q𝑘;𝑛/2

)
𝑀′(𝜆(0)

𝑘
)
(

Q𝑘;𝑛
Q𝑘;𝑛/2

) ]
.

Now using the properties of 𝛼, the L.H.S of the above identity is strictly negative.
Therefore the R.H.S is strictly negative. Using (6.95) , (6.96), (6.97), (6.98), the
proposition follows. □

Remark 6.3.67. The Semidefinite Program 3 and its proof explicitly show that
analyzing the symmetrized correlators is sufficient to derive a bound.

6.4 Estimates of spectral gaps from the Selberg trace formula
In this section, we use the Selberg trace formula to estimate the spectral gap of a
given surface 𝑋 . The standard approach for numerically computing the operator
spectrum on a hyperbolic surface is the finite element method. Thanks to the
FreeFEM++ package, the spectrum of Laplacian operator, with periodic and twisted
periodic boundary conditions (see supplementary material of [313]), is known for
many surfaces. For our purposes, we look at a different approach to compute the
gaps of the Laplacian and the Dirac operator of explicit orbifolds and surfaces.
This will allow us to compare these spectra to the previously established bootstrap
bounds. The key idea is to use the Selberg trace formula, with the geodesic spectrum
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as an input, to rule out points on the real line that are not in the eigenvalue spectrum.
Our algorithm can be divided into three steps:

• Find a Dirichlet domain for the surface of interest and explicit generators for
the fundamental group.

• Use this Dirichlet domain to produce a complete non-redundant list of conju-
gacy classes of geodesics on the surface whose length is bounded by a given
value 𝐿.

• Choose a compactly supported test function that yields an estimate of the first
eigenvalue of the Laplace/Dirac spectrum when substituted into the Selberg
trace formula.

Note that the first two steps of this algorithm work in the same way in order to
produce the Laplace and Dirac spectra. Only the explicit form of the Selberg trace
formula used in the last step differs.

Step 1: Constructing the Dirichlet domain
We start by reviewing some basic definitions.

Definition 6.4.1. (Dirichlet domain of a Fuchsian group) Let Γ be a Fuchsian group
and let 𝑥 ∈ H be a point not fixed by any element of Γ other than the identity. A
Dirichlet domain with base point 𝑥 is the set

𝐷 (𝑥) := {𝑝 ∈ H | ∀𝛾 ∈ Γ\{𝑒}, 𝑑 (𝑥, 𝑝) < 𝑑 (𝑥, 𝛾𝑝)} . (6.100)

For a cocompact Fuchsian group, its Dirichlet domain is a hyperbolic polygon with
finite area. The boundary of this hyperbolic polygon consists of finitely many
geodesic segments. We will denote this set of geodesic segments by 𝑆(𝐷) and it
satisfies the property [447] that for every 𝑠 ∈ 𝑆(𝐷), there exists a unique 𝑠′ ∈ 𝑆(𝐷)
and a unique 𝛾𝑠 ∈ Γ such that 𝑠′ = 𝛾𝑠 𝑠. This is known as the side-pairing property.
The segment 𝑠 is the perpendicular bisector of the geodesic between 𝑥 and 𝛾𝑠 𝑥. The
set 𝐺 (𝑆) := {𝛾𝑠 |𝑠 ∈ 𝑆(𝐷)} is a generating set for Γ and we will refer to its elements
as side-paring generators. See [447] for a systematic algorithm computing 𝐺 (𝑆)
and its application to arithmetic Fuchsian groups.

Definition 6.4.2. (Maximin edge distance of the Dirichlet domain) Let Γ be a
cocompact Fuchsian group with Dirichlet domain 𝐷 (𝑥) where 𝑥 is the base point.
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Let 𝑆(𝐷) be the set of geodesic segments forming the boundary of 𝐷 (𝑥). The
maximin edge distance 𝑅(𝐷) is defined as the maximum over all the domain’s edges
of the minimum distance from the edge to the base-point 𝑥:

𝑅(𝐷) := max
𝑠∈𝑆(𝐷)

(
inf
𝑝∈𝑠
𝑑 (𝑥, 𝑝)

)
. (6.101)

We briefly summarize the Dirichlet domain and the corresponding side-paring
generators for surfaces and orbifolds relevant to us:

1. Hyperbolic triangles:
As shown on Figure 6.4, the Dirichlet domain of a genus-0 hyperbolic triangle
[0; 𝑝, 𝑞, 𝑟] consists of two geodesic triangles Δ(𝑝, 𝑞, 𝑟) with the four vertices
located at 𝑠(1/𝑝, 1/𝑞, 1/𝑟; 0), 𝑠(1/𝑝, 1/𝑞, 1/𝑟; 1) and ±𝑠(1/𝑝, 1/𝑞, 1/𝑟;∞),
where 𝑠(1/𝑝, 1/𝑞, 1/𝑟; 𝑧) is the rescaled Schwarz function [228]

𝑠(𝛼, 𝛽, 𝛾; 𝑧) = 𝜈𝑠(𝛼, 𝛽, 𝛾; 𝑧), 𝑠(𝛼, 𝛽, 𝛾; 𝑧) = 𝑧𝛼 2𝐹1(𝑎′, 𝑏′, 𝑐′; 𝑧)
2𝐹1(𝑎, 𝑏, 𝑐; 𝑧)

, (6.102)

𝜈 =

√︄
cos(𝜋𝛼 + 𝜋𝛽) + cos(𝜋𝛾)
cos(𝜋𝛼 − 𝜋𝛽) + cos(𝜋𝛾) ·

cos(𝜋𝛼 − 𝜋𝛽 − 𝜋𝛾) + 1
cos(𝜋𝛼 + 𝜋𝛽 + 𝜋𝛾) + 1

· Γ (𝑎
′) Γ (𝑏′)
Γ (𝑐′) · Γ(𝑐)

Γ(𝑎)Γ(𝑏) ,

(6.103)

with

𝑎 =
1 − 𝛼 − 𝛽 − 𝛾

2
, 𝑏 =

1 − 𝛼 + 𝛽 − 𝛾
2

, 𝑐 = 1 − 𝛼, (6.104)

and

𝑎′ =
1 + 𝛼 − 𝛽 − 𝛾

2
, 𝑏′ =

1 + 𝛼 + 𝛽 − 𝛾
2

, 𝑐′ = 1 + 𝛼. (6.105)

2. The Bolza surface:
The Dirichlet domain of the Bolza surface is a regular octagon. The side-
paring generators are 𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾

−1
1 , 𝛾−1

2 , 𝛾−1
3 , 𝛾−1

4 with

𝛾𝑘 = ±
(

cosh (𝑙/2) 𝑒
i𝜋𝑘

4 sinh (𝑙/2)
𝑒−

i𝜋𝑘
4 sinh (𝑙/2) cosh (𝑙/2)

)
, 𝑙 = 2 cosh−1

(
cot

(𝜋
8

))
.

(6.106)

Here we used “±” to stress the fact that 𝛾𝑘 ’s are elements in PSU(1, 1). The
sign ambiguity will be removed once the surface is given a spin structure.
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3. The most symmetric point in the moduli space with signature [1;3]:
The Dirichlet domain for the one-punctured torus is an octagon with side-
paring generators being 𝛾1, 𝛾2, 𝛾1𝛾2, 𝛾2𝛾1, 𝛾

−1
1 , 𝛾−1

2 , 𝛾−1
1 𝛾−1

2 , 𝛾−1
2 𝛾−1

1 where

𝛾1 =

©«
1−𝑥2𝑦2√

(1−𝑥2) (1−𝑦2) (𝑥2𝑦2+1)
−𝑥(1−𝑦2)+i(1−𝑥2)𝑦√
(1−𝑥2) (1−𝑦2) (𝑥2𝑦2+1)

−𝑥(1−𝑦2)−i(1−𝑥2)𝑦√
(1−𝑥2) (1−𝑦2) (𝑥2𝑦2+1)

1−𝑥2𝑦2√
(1−𝑥2) (1−𝑦2) (𝑥2𝑦2+1)

ª®®®®¬
, (6.107)

𝛾2 =

©«
1−𝑥2𝑦2√

(1−𝑥2) (1−𝑦2) (𝑥2𝑦2+1)
𝑥(1−𝑦2)+i(1−𝑥2)𝑦√
(1−𝑥2) (1−𝑦2) (𝑥2𝑦2+1)

𝑥(1−𝑦2)−i(1−𝑥2)𝑦√
(1−𝑥2) (1−𝑦2) (𝑥2𝑦2+1)

1−𝑥2𝑦2√
(1−𝑥2) (1−𝑦2) (𝑥2𝑦2+1)

ª®®®®¬
, (6.108)

with

𝑥 = tanh
[
1
2

cosh−1
(

cos (𝜋/9)
sin (𝜋/18)

)]
, 𝑦 = tanh

[
1
2

cosh−1
(
cos (𝜋/18)
sin (𝜋/9)

)]
.

(6.109)

We conclude this subsection with a few comments on generalizations to hyperbolic
surfaces with higher genus. We will sketch a general method for constructing a
fundamental domain and to look for explicit expressions of the generators. The
surfaces or orbifolds that are most likely to saturate the numerical bounds are
conjectured to always possess a large number of symmetries, as we already observed
in genus 1 and genus 2. For these special surfaces, the following result holds:

Proposition 6.4.3 ([351]). Let Σ be a compact hyperbolic Riemann surface of genus
𝑔 > 1. Σ realizes a local maximum of the number of automorphisms on the moduli
space of Riemann surfaces of genus 𝑔 if and only if it is isomorphic to a quotient of
the upper half-plane by a torsion-free normal subgroup of a cocompact Fuchsian
triangle group.

This result means that in the relevant cases for our purposes, all fundamental domains
can be constructed from gluing geodesic triangles Δ(𝑝, 𝑞, 𝑟)5 together. Hence, the
very general problem of finding an explicit fundamental domain for a given Riemann
surface maps to a much simpler one in our case: the problem of

5The geodesic triangles are also the fundamental domains of the triangle group 𝑇 (𝑝, 𝑞, 𝑟) =〈
𝑎, 𝑏, 𝑐 | 𝑎2 = 𝑏2 = 𝑐2 = (𝑎𝑏) 𝑝 = (𝑏𝑐)𝑞 = (𝑐𝑎)𝑟 = 1

〉
. The generators 𝑎, 𝑏, 𝑐 are reflections against

the three edges.
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1. Constructing a tiling of the hyperbolic plane by triangles of given angles, and

2. Gluing geodesic triangles to obtain fundamental domains of the surface/orbifold
of interest.

(a) (b)

(c)

Figure 6.4: (A) The Dirichlet domain for the hyperbolic triangle [0; 3, 3, 5]. It
consists of two geodesic triangles Δ(3, 3, 5) (B) The Dirichlet domain for the Bolza
surface. Each side of the Dirichlet domain is labeled by the corresponding side-
pairing generator. (C) The Dirichlet domain of the most symmetric point in the
moduli space of one punctured torus with signatrue [1;3]. Each side of the Dirichlet
domain is labeled by the corresponding side-pairing generator. The red dots in the
figures are the corresponding base points.

To find explicit expressions for the generators, the simplest method would be to
directly search for a presentation of a normal subgroup 𝑁 of the triangle group
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𝑇 (𝑝, 𝑞, 𝑟) such that

Aut(Σ) � 𝑇 (𝑝, 𝑞, 𝑟)/𝑁. (6.110)

This can in principle be done using the GAP software, although there could be
cases in which there is more than one possible choice. We reserve a more careful
examination of this problem to future work.

Once this subgroup is found, one can construct a fundamental domain by singling
out one representative triangle per coset in 𝑇/𝑁 and taking the union of all such
representatives. Note that the obtained fundamental domain is made of exactly
|Aut(Σ) | triangles.

Step 2: Enumerating the closed geodesics of length bounded by 𝐿
For this second step, we will mostly adapt the method proposed in [241] to our case.
Before stating the algorithm, we first summarize the ideas behind it:

• In every hyperbolic conjugacy class, there is at least one representative whose
axis6 passes within a distance 𝑅(𝐷) of the basepoint, where 𝑅(𝐷) is the
maximin edge distance of the Dirichlet domain. (See Propositions 3.2 and 3.3
from [241].)

• Working with such representatives, it is intuitive to see that we only need
to tile the Poincaré disk D up to a certain radius in order to exhaust all
hyperbolic conjugacy classes below a certain length cutoff. This radius
depends both on the length cutoff and the size of the Dirichlet domain
𝐷. To be more precise, it suffices to find all translates 𝛾𝐷 such that
𝑑 (𝑥, 𝛾𝑥) ⩽ 2 cosh−1(cosh 𝑅(𝐷) cosh 𝐿

2 ). (see Proposition 3.5 of [241].)

• If two hyperbolic elements with geodesic length 𝐿 are conjugate to each other
and both of their axes pass within a distance 𝑅(𝐷) from the base point, then the
conjugating element 𝛾 must satisfy 𝑑 (𝑥, 𝛾𝑥) ⩽ 2 cosh−1(cosh 𝑅(𝐷) cosh 𝐿

4 )
(see Proposition 3.7 of [241].)

With these basic ideas in mind, we state the algorithm:

1. (Initialize) Set 𝑇 and 𝑇ℎ to be two empty lists. Given a spin structure, write
all side-paring generators �̃�𝑖 of Γ̃ as 2 × 2 matrices .

6Recall that a hyperbolic element 𝛾 can be specified by the geodesic it fixes. This geodesic is
known as the axis of 𝛾.
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2. (Enumerate translates) Let𝑇𝑛 be the list of irreducible 𝑛-letter words formed by
the �̃�𝑖. Remove from𝑇𝑛 all elements 𝜏 such that 𝑑 (𝑥, 𝜏𝑥) > 2 cosh−1(cosh 𝑅(𝐷) cosh 𝐿

2 ).
Here 𝑥 is the base point of the Dirichilet domain. If 𝑇𝑛 becomes an empty
list, terminate this step. Otherwise append 𝑇𝑛 to 𝑇 . To generate 𝑇𝑛+1, multiply
every element in 𝑇𝑛 by side-paring generators �̃�𝑖 and remove the redundant
matrices that are already in𝑇 .7 This procedure terminates after a finite number
of steps.

3. (Count hyperbolic conjugacy classes) Given the list 𝑇 , let 𝑇ℎ be the subset of
hyperbolic elements whose axis passes within a distance 𝑅(𝐷) from the base
point. Group 𝑇ℎ by geodesic length (or equivalently, absolute value of the
traces of the corresponding 2 × 2 matrices):

𝑇ℎ =
⊔
𝑙

𝑇
(𝑙)
ℎ
, 𝑇

(𝑙)
ℎ

= {�̃� ∈ 𝑇ℎ | 2 cosh−1 ( |Tr (�̃�) |/2) = 𝑙}. (6.111)

For all sublists of 𝑇ℎ sharing the same geodesic length 𝑙, select all 𝜏 ∈ 𝑇 such
that 𝑑 (𝑥, 𝜏𝑥) ⩽ 2 cosh−1(cosh 𝑅(𝐷) cosh 𝑙

4 ):

𝐶𝑙 :=
{
𝜏 ∈ 𝑇

��� 𝑑 (𝑥, 𝜏𝑥) ⩽ 2 cosh−1
(
cosh 𝑅 cosh

𝑙

4

)}
, (6.112)

and use these elements to partition the sublist into conjugacy classes:

Orb𝑙 (�̃�) := {�̃�′ ∈ 𝑇 (𝑙)
ℎ
| ∃𝜏 ∈ 𝐶𝑙 , 𝜏�̃�𝜏−1 = ±�̃�′}, 𝑇

(𝑙)
ℎ

=
⊔
𝑖

Orb𝑙 (�̃�𝑖).

(6.113)
Note that if the orbifold Γ\H is spin, the traces of all matrices in the same
conjugacy class should share the same sign. This sign is exactly the multiplier
𝜒 that enters the sum over hyperbolic elements in the Selberg trace formula
for the 1-Laplacian.

4. (Compute the winding) Compute the winding number of each conjugacy class
by checking whether it could be powers of other classes.

Step 3: Applying the Selberg trace formula to a well-chosen test function
Now that our algorithm can find all the geodesics up to a certain length, we can
plug them into the geometric side of the Selberg trace formula. The Selberg trace

7The enumeration procedure would fail if there exist some translate 𝛾𝐷 such that 𝛾𝑥 is closer to
𝑥 than all of its neighboring tiles, but this will not happen if we work with Dirichlet domain instead
of an arbitrary fundamental domain. See Proposition 3.1 of [241].
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formulae for the Laplacian and the squared Dirac operator (which is related to 1-
Laplacian, see Remark 6.2.18) are respectively (see Theorem 5.1 of Chapter 3 of
[233] and Equation 6.56 of Chapter 9 of [234]):

∞∑︁
𝑛=0

ℎ̂(𝑡 (0)𝑛 ) =
𝑉 (Σ)

4𝜋

∫ ∞

−∞
𝑡 ℎ̂(𝑡)tanh(𝜋𝑡)𝑑𝑡 +

∑︁
{𝛾ℎ}

𝑙 (𝛾ℎ;0)
2 sinh(𝑙 (𝛾ℎ)/2)

ℎ(𝑙 (𝛾ℎ))

+
∑︁
{𝛾𝑒}

𝑖𝑒−𝑖𝜃

4𝑀𝛾𝑒sin𝜃

∫ ∞

−∞

ℎ(𝑢)𝑒− 𝑢2 (𝑒𝑢 − 𝑒2𝑖𝜃)
cosh𝑢 − cos(2𝜃) 𝑑𝑢,

and
∞∑︁
𝑛=0

ℎ̂(𝑡 (1/2)𝑛 ) = 𝑉 (Σ)
4𝜋

∫ ∞

−∞
𝑡 ℎ̂(𝑡) sinh(2𝜋𝑡)

cosh(2𝜋𝑡) − 1
𝑑𝑡 +

∑︁
{𝛾ℎ},Tr 𝛾ℎ>2

𝜒(𝛾ℎ)𝑙 (𝛾ℎ;0)
2 sinh(𝑙 (𝛾ℎ)/2)

ℎ(𝑙 (𝛾ℎ))

+
∑︁

{𝛾𝑒},𝜋>𝜃 (𝛾𝑒)>0

𝑖𝜒(𝛾𝑒)
4𝑀𝛾𝑒sin𝜃

∫ ∞

−∞

ℎ(𝑢) (𝑒𝑢 − 𝑒2𝑖𝜃)
cosh𝑢 − cos(2𝜃) 𝑑𝑢.

Let us explain the notations in these formulas:

• ℎ is an acceptable even compactly supported test function such that ℎ̂ is even.

• The 𝑡 (0)𝑛 and 𝑡 (1/2)𝑛 are equal to the
√︃
𝜆
(0)
𝑛 − 1/4 and

√︃
𝜆
(1/2)
𝑛 − 1/4, where

the 𝜆(0)𝑛 and 𝜆
(1/2)
𝑛 are the eigenvalues of the Laplacian and 1-Laplacian,

respectively.

• 𝑉 (Σ) is the volume of Σ.

• The sum over {𝛾ℎ} is a sum over conjugacy classes of hyperbolic elements in
𝜋1(Σ), or of its double cover in SL(2,R) in the case of the 1-Laplacian.

• For a given hyperbolic element 𝛾ℎ, 𝑙 (𝛾ℎ) = 2 cosh−1( |Tr (𝛾ℎ) |/2) is the length
of the corresponding geodesic.

• For a given hyperbolic element 𝛾ℎ, 𝛾ℎ;0 denotes the primitive hyperbolic
element associated with 𝛾ℎ, that is, 𝛾ℎ;0 is the element with shortest geodesic
length such that 𝛾ℎ can be expressed as a power of 𝛾ℎ;0.

• The sum over {𝛾𝑒} is a sum over conjugacy classes of elliptic elements in
𝜋1(Σ), or of its double cover in SL(2,R) in the case of the 1-Laplacian.

• For a given elliptic element 𝛾𝑒, 𝑀𝛾𝑒 is the order of 𝛾𝑒.
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• 𝜒 is a multiplier on the double cover of 𝜋1(Σ) in SL(2,R) implementing a
choice of spin structure.

• 𝜃 (𝛾𝑒) is the angle of the rotation matrix 𝛾𝑒.

• A hat denotes a Fourier transform.

Our strategy will closely follow the reference [300]. The idea is to apply the Selberg
trace formula to functions whose Fourier transform that appears on the geometric
side of the Selberg trace formula has compact support – so that only a finite number
of terms contribute to the sum over hyperbolic elements, and that we can find all of
them using the procedure outlined in the previous subsection.

Let ℎ1, . . . , ℎ𝑛 be such test functions with support in [−𝑟, 𝑟] and𝜆𝑖 be the eigenvalues
of the operator of interest (it can be the Laplacian or the squared Dirac operator).
It will also be useful to introduce extra parameters 𝑡𝑖, related to the eigenvalues
through

𝜆𝑖 :=
1
4
+ 𝑡2𝑖 . (6.114)

Define a matrix 𝐴 whose entries are given by

𝐴𝑎𝑏 =
∑︁
𝑗

ℎ̂𝑎 (𝑡 𝑗 ) ℎ̂𝑏 (𝑡 𝑗 ). (6.115)

If 𝑐𝑡 is the column vector

𝑐𝑡 =


ℎ̂1(𝑡)
...

ℎ̂𝑛 (𝑡)

 , (6.116)

let

𝐼𝑟 (𝜆) := inf
⟨𝑐𝑡 ,𝑥⟩=1

⟨𝐴𝑥, 𝑥⟩ . (6.117)

𝐼𝑟 (𝜆) can be calculated by introducing a Lagrange multiplier, and is equal to

𝐼𝑟 (𝜆) =
1

⟨𝐴−1𝑐𝑡 , 𝑐𝑡⟩
. (6.118)

This quantity can be evaluated explicitly using the geometric side of the Selberg
trace formula applied to the functions ℎ𝑎 ∗ ℎ𝑏. One can then prove (see [300]):
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Proposition 6.4.4. If 𝐼𝑟 (𝜆) < 1, then 𝜆 is not an eigenvalue of the operator of
interest.

Proof. A test function ℎ with support on [−𝑟, 𝑟] is called admissible if ℎ̂ ≥ 0 and
the Selberg trace formula of interest can be applied to it. For 𝑡 ∈ [−𝑟, 𝑟], define the
quantity

𝐼•𝑟 (𝜆) := inf
ℎ admissible

supp ℎ⊂[−𝑟,𝑟]
ℎ̂(𝑡)=1

∑︁
𝑗

ℎ̂(𝑡 𝑗 ). (6.119)

Then, if there exists 𝑗0 such that 𝑡 = 𝑡 𝑗0 , then for any test function ℎ̂, we have

1 = ℎ̂(𝑡) ≤
∑︁
𝑗

ℎ̂(𝑡 𝑗 ). (6.120)

This is just because a sum is larger than or equal to all of its summands if the
summands are non-negative. Hence,

𝐼•𝑟 (𝜆) ⩾ 1. (6.121)

By contrapositive, we deduce that if 𝐼•𝑟 (𝜆) < 1, then 𝑡 cannot be one of the 𝑡 𝑗 . All
that now remains to be shown is that for all 𝑡, 𝐼•𝑟 (𝜆) ≤ 𝐼𝑟 (𝜆). Now, 𝐼𝑟 (𝜆) can itself
be reexpressed as an infimum: let

𝑆 :=
{
ℎ ∗ ℎ, supp ℎ ⊂

[
−𝑟

2
,
𝑟

2

]
, ℎ =

∑︁
𝑥𝑖ℎ𝑖 for 𝑥𝑖 ∈ R

}
. (6.122)

We have

inf
𝐻=ℎ∗ℎ∈𝑆
ℎ̂(𝑡)=1

∑︁
𝑗

𝐻 (𝑡 𝑗 ) = 𝐼𝑟 (𝜆). (6.123)

But now, 𝐼•𝑟 (𝜆) is also an infimum, over a larger set of functions. We deduce

𝐼•𝑟 (𝜆) ≤ 𝐼𝑟 (𝜆), (6.124)

which completes the proof of the proposition. □

There is a straightforward generalization of the proof of the above result to the case
in which the eigenvalue of the operator of interest is degenerate:

Proposition 6.4.5. Let 𝑘 ∈ N. If 𝐼𝑟 (𝜆) < 𝑘 , then𝜆 is not an eigenvalue of multiplicity
𝑘 or higher of the operator of interest.
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These results provide a method to numerically estimate a lower bound on the gap
of the Laplace and Dirac operators on a hyperbolic surface or orbifold. The method
works as follows:

1. Calculate the matrix 𝐴𝑎𝑏 for some compactly supported test functions ℎ𝑎 and
ℎ𝑏 using the Selberg trace formula and the geodesic spectrum generated in
the previous step.

2. Deduce the value of 𝐼𝑟 (𝜆) as a function of 𝑡 =
√︃
𝜆 − 1

4 .

3. For Laplace operators, find the first interval [𝑎1, 𝑏1] ⊂ R+ such that 𝐼𝑟 (𝜆) ≥ 1
when 𝜆 ∈ [𝑎1, 𝑏1]. This interval [𝑎1, 𝑏1] provides an estimate for 𝜆(0)1 of the
surface or orbifold under consideration . In the case of the 1-Laplacian, all
eigenvalues above 1/4 must have even multiplicity due to Kramers degeneracy,
see Proposition 6.2.21. Hence, the interval containing𝜆(1/2)1 is the first interval
[𝑐1, 𝑑1] ∈ R+ such that 𝐼𝑟 (𝜆) ≥ 2 when 𝜆 ∈ [𝑐1, 𝑑1].

The accuracy of our method is dependent on the choice of test functions ℎ𝑘 . In
order to get a good bound, we need to slightly modify the choices of test functions
made in [300]. We now explain in more detail how we choose these test functions.

For our application, we define our test functions ℎ𝑎 in terms of three parameters :
𝑛, 𝑚 and 𝐿. Let

𝛿 =
𝐿

2𝑚 + 2𝑛
, (6.125)

introduce

ℎ :=
(

1
2𝛿
1[−𝛿,𝛿]

)∗𝑚
. (6.126)

Then our test functions ℎ𝑎 are defined for 𝑎 = 1, . . . , 𝑛 by

ℎ𝑎 (𝑥) :=
1
2
(ℎ(𝑥 + 𝑎𝛿) + ℎ(𝑥 − 𝑎𝛿)). (6.127)

In this formula:

• 𝐿 is the length of the longest geodesic that appears on the right hand side of the
Selberg trace formula. Numerically, we observe that when 𝐿 gets larger, 𝐼𝑟 (𝜆)
gets more and more relatively sharp peaks, that is, there are more intervals
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[𝑎𝑖, 𝑏𝑖] and [𝑐𝑖, 𝑑𝑖] such that 𝑏𝑖 − 𝑎𝑖 < 𝜖 , 𝑑𝑖 − 𝑐𝑖 < 𝜖 where 𝜖 is a parameter
characterising the precision of the estimation. The more information we
have on the geodesic spectrum, the more eigenvalues we can estimate with a
reasonably high precision.

• 𝑛 is the size of the 𝐴 matrix. Numerically, we observe that increasing 𝑛
makes the peaks of 𝐼𝑟 (𝜆) sharper. However, the integral following 𝑉 (Σ)/4𝜋
on the geometric side of the Selberg trace formulae needs to be evaluated
numerically. A very large value of 𝑛 produces very fast oscillations in the
integrand, making the numerical integration difficult to handle.

• 𝑚 is the number of convolutions. Increasing it also makes the peaks of 𝐼𝑟 (𝜆)
sharper, but we face a similar problem related to fast oscillations.

Figure 6.6 shows the results given by this method when applied to the case of the
[0; 3, 3, 5] orbifold. In Appendix 6.8 we tabulate the numerical estimates of 𝜆(0)1
and 𝜆(1/2)1 for various surfaces and orbifolds.

20 40 60 80 100

0.5

1.0

1.5

2.0

Figure 6.5: The spectral exclusion plot for the Laplacian spectrum of the hyperbolic
triangle [0;3,3,5] with 𝑚 = 4, 𝑛 = 24 and 𝐿 = 10.9. The dashed vertical lines
correspond to the first few eigenvalues computed using the finite element method.

Remark 6.4.6. The rigorous result that Figure 6.5 and similar plots can show is a
lower bound on the first eigenvalue. 𝐼𝑟 (𝜆(0)) remaining lower than 1 on a certain
interval starting at the origin shows rigorously that there is no eigenvalue in that
interval. Our algorithm does not show rigorously that 𝐼𝑟 (𝜆(0)) being larger than 1
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Figure 6.6: (A) Spectral exclusion plot for the 1-Laplacian spectrum of the hyper-
bolic triangle [0;3,3,5] with𝑚 = 4,𝑛 = 24 and 𝐿 = 10.9. The leftmost peak does not
imply the existence of any eigenvalues. The curve is below 1 at 𝜆(1/2) = 1/4 there-
fore it does not indicate the existence of a harmoinc spinor. The peak is also below
2 and by Kramers degeneracy it does not represent a non-harmonic eigenfunction.
(B) Spectral exclusion plot for the 1-Laplacian spectrum of the hyperbolic triangle
[0;3,3,5] zoomed into the interval from 0 to 1. The dashed vertical line is located at
𝜆(1/2) = 1/4.
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implies the presence of a new eigenvalue. However, we observe that the curve in
the figure 6.5 and similar plots are well converged numerically, i.e., the maximum
value of 𝐼𝑟 (𝑥) with 𝑥 in that interval stays larger than 1, even with the inclusion
of more geodesic-length data. This indicates that the interval should contain an
eigenvalue. It is possible to make this claim completely rigorous by using a similar
algorithm (see section 5.4 of [71] and the reference therein), which certifies that
a given interval contains an eigenvalue. We do not pursue that here because our
goal is to saturate the upper bounds that we obtain from the bootstrap equations.
Therefore what matters to us is to find a lower bound for a given candidate orbifold
that is close to the upper bound provided by the bootstrap. Similar statements apply
to 𝐼𝑟 (𝜆(1/2)1 ) as well.

6.5 Results: bounds from semi-definite programming
In this section we present the proofs of the theorems mentioned earlier, as well as
write down further bounds that we obtain using linear and semidefinite program-
ming.

Proofs of theorems using Semi definite programming

Proof of Theorem 6.1.1. For genus 1 or more, the above bound follows the results
in [283]. For genus 0 hyperbolic spin orbifold, we use the fact ℓ1/2 = 0. Since it is
a spin orbifold, the orbifold orders are odd, i.e., 𝑘𝑖 ≥ 3 and there has to be at least
3 orbifold points for the surface to be spin. Using Riemann-Roch, we then deduce
ℓ3 ≥ 1 and ℓ3/2 ≥ 1. Furthermore, we have 𝜆(1/2) ≥ 1/4 for all spin orbifolds. Now
we leverage SDP(1) with 𝑛 = 3 and choosing 𝜆(1/2)∗ = 1/4. We have verified the
bound using rational arithmetic as done in [283]. □

Proof of Theorem 6.1.3. We note that for a hyperbolic spin orbifold 𝑋 admitting
harmonic spinor, we have ℓ1/2 ≥ 1 and hence ℓ1 ≥ 1. Furthermore, we have
𝜆(1/2) ≥ 1/4 for all spin orbifolds. Now we leverage SDP(1) with 𝑛 = 1 and
choosing 𝜆(1/2)∗ = 1/4. We have verified the bound using rational arithmetic as done
in [283]. □

Proof of Theorem 6.1.5. We leverage SDP(1) with 𝑛 = 3 and choosing 𝜆(0)∗ = 3/2.
□

Proof of Theorem 6.1.6. Given a compact orientable hyperbolic hyperelliptic spin
manifold 𝑋 of genus 𝑔 > 2, we have ℓ1/2 = ⌊(𝑔 + 1)/2⌋ > 1. We consider the
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spectral identities derived from ⟨𝒪𝑛
2
𝒪𝑛

2
𝒪𝑛

2
𝒪𝑛

2
⟩SYM with 𝑛 = 1. They are given by (see

Proposition 6.3.66)

S2𝑚+𝑛;𝑛/2 =

∞∑︁
𝑘=1

T𝑘;𝑛/2 F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚 (𝜆(0)
𝑘
),

−A2𝑚+1+𝑛;𝑛/2 =

∞∑︁
𝑘=1

T𝑘;𝑛/2 F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚+1 (𝜆(0)
𝑘
),

S2𝑚+𝑛;𝑛/2 = F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚 (0) +
∞∑︁
𝑘=1

(
Q2
𝑘;𝑛/2 −

1
ℓ𝑛/2

T𝑘;𝑛/2

)
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚 (𝜆(0)

𝑘
),

A2𝑚+1+𝑛;𝑛/2 = F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚+1 (0) +
∞∑︁
𝑘=1

(
Q2
𝑘;𝑛/2 −

1
ℓ𝑛/2

T𝑘;𝑛/2

)
F (𝑛/2,𝑛/2,𝑛/2,𝑛/2)2𝑚+1 (𝜆(0)

𝑘
),

(6.128)
To proceed, we consider the set of identities coming from 𝑚 = 0, from which we
can derive

0 = F (1/2,1/2,1/2,1/2)0 (0) +
∞∑︁
𝑘=1

(
Q2
𝑘;𝑛/2 −

(
1 + 1

ℓ1/2

)
T𝑘;1/2

)
F (1/2,1/2,1/2,1/2)0 (𝜆(0)

𝑘
)

0 = F (1/2,1/2,1/2,1/2)1 (0) +
∞∑︁
𝑘=1

(
Q2
𝑘;𝑛/2 +

(
1 − 1

ℓ1/2

)
T𝑘;1/2

)
F (1/2,1/2,1/2,1/2)1 (𝜆(0)

𝑘
).

(6.129)

Plugging in the values of F , we obtain from the above

0 =

∞∑︁
𝑘=1

[
𝜆
(0)
𝑘

Q2
𝑘;𝑛/2 +

(
𝜆
(0)
𝑘

(ℓ1/2 − 1)
ℓ1/2

− 1
)

T𝑘;1/2

]
. (6.130)

The above implies that

𝜆
(0)
1 <

ℓ1/2
ℓ1/2 − 1

. (6.131)

Plugging in ℓ1/2 = ⌊(𝑔 + 1)/2⌋, the theorem follows. □

Theorem 6.5.1. Given a compact orientable hyperbolic spin 2-orbifold 𝑋 of genus 𝑔
admitting ℓ1/2 > 0 harmonic spinors, the first non-zero eigenvalue of the Laplacian
operator, 𝜆(0)1 (𝑋) satisfies the bound, recorded in Table 6.1.

Proof of theorem 6.5.1. On a hyperbolic spin orbifold 𝑋 of genus 𝑔, we have ℓ1 = 𝑔

and ℓ1/2 ≤ ⌊(𝑔 + 1)/2⌋. We use the fact that 𝜆(1/2) ≥ 1/4 for all spin orbifolds.
We use SDP (3) with 𝑛 = 1 and 𝜆(1/2)∗ = 1/4. We have verified these bounds using
rational arithmetic as done in [283]. □
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Exclusion plots
As mentioned in the introduction, an exclusion plot refers to a region 𝐷 ⊂ (0,∞) ×
(1/4,∞) such that (𝜆(0)1 (𝑋), 𝜆

(1/2)
1 (𝑋)) ∉ 𝐷, where 𝑋 can be any compact connected

orientable hyperbolic spin surface or orbifold. We may also choose to consider
choices of 𝑋 with prescribed additional properties like genus, number of harmonic
spinors it can carry etc. Here 𝜆(0)1 (𝑋) is the first nontrivial eigenvalue of the
Laplace operator on the compact hyperbolic spin orbifold, while 𝜆(1/2)1 (𝑋) is the
first nontrivial eigenvalue of the weight-1 automorphic Laplacian. In order to obtain
the exclusion plots, we perform the following algorithm:

1. Use SDP (1) or (2), pick a value for 𝜆(1/2)∗ and search for a functional with
the desired properties, leading to a bound 𝜆(0)1 < 𝜆

(0)
∗ subject to the condition

𝜆
(1/2)
1 > 𝜆

(1/2)
∗ ;

2. Repeat the above step for various values of 𝜆(1/2)∗ ;

or the following one:

1. Use SDP (1) or (2), pick a value for 𝜆(0)∗ and search for a functional with the
desired properties, leading to a bound 𝜆(1/2)1 < 𝜆

(1/2)
∗ subject to the condition

𝜆
(0)
1 > 𝜆

(0)
∗ ;

2. Repeat the above step for various values of 𝜆(0)∗ .

Using the aforementioned algorithm involving SDP, we find the disallowed region
𝐷, which is everything except the shaded region (yellow or pink) in the exclusion
plots. We obtain Figure 6.2 by using SDP (1) with 𝑛 = 3 (for the union of the
pink and yellow shaded region) and 𝑛 = 1 (for the pink shaded region). The
corner point of the yellow shaded region is approximately at (12.13629, 19.67),
while the corner point of the pink-shaded region is at (4.7611, 8.28), both these
points being disallowed. Now, using the Selberg trace formula, we can compute
(𝜆(0)1 (𝑋), 𝜆

(1/2)
1 (𝑋)) for 𝑋 = [0; 3, 3, 5] (this orbifold has ℓ3/2 = ℓ3 = 1). It is given

by (12.1362327 ± 10−7, 19.669 ± 0.03). This point is depicted in red on Figure
6.2 and evidently, lies very close to the kink. Figure 6.7 zooms onto the kink and
shows that the red dot is in the allowed region (up to uncertainty, predicted by the
Selberg trace formula). Similarly, using the Selberg trace formula, we can compute
(𝜆(0)1 (𝑋), 𝜆

(1/2)
1 (𝑋)) for 𝑋 = [1; 3]𝑠𝑦𝑚, the most symmetric point in the moduli
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space of [1; 3], equipped with an odd spin structure such that ℓ1/2 = ℓ1 = 1. In
particular we find that 𝜆(0)1 ∈ (4.7609, 4.7654) and 𝜆(1/2)1 ∈ (8.255, 8.298). See the
table in Appendix 6.8 for a refined interval. For the Laplacian eigenvalue, we can
use FreeFEM++ as well, this provides the estimate 𝜆(0)1 ( [1; 3]𝑠𝑦𝑚) ≈ 4.7609.

Figure 6.8 is obtained by using SDP (2) with 𝑛 = 3. Here we restrict to the case
where ℓ3 = ℓ3/2 = 1, as opposed to using SDP (1) with 𝑛 = 3, where ℓ3 ≥ 1, ℓ3/2 ≥ 1.
While Figure 6.8 looks almost similar to Figure 6.7, zooming near the kink reveals
the differences. Figure 6.9 is Figure 6.8, zoomed in near the kink. The corner point
is approximately at (12.13623353125, 19.673) and disallowed.

Finally, Figure 6.10 is obtained by using a simplified version of SDP (3) with 𝑛 = 1,
ℓ1 = 2, but ℓ1/2 = 1. The red dot here corresponds to the Bolza surface, equipped
with an odd spin structure. See the table in Appendix 6.8 for the precise coordinates
of the red dot. Figure 6.11 is the zoomed version of the above.

12.13622 12.1363 12.1364 12.1365 12.1366
19.60

19.62

19.64

19.66

19.68

19.70

Figure 6.7: Bounds from the ℓ3/2 ≥ 1, ℓ3 ≥ 1 system; zooming onto the kink.
Everything except the shaded region is disallowed. The red dot near the corner
corresponds to [0; 3, 3, 5].

6.6 Discussion
In this chapter, we applied linear programming techniques to constrain the first
nonzero eigenvalue of the Laplace and Dirac operators on a compact connected
orientable hyperbolic surface or orbifold with a spin structure. The essential tool is
the spectral identities coming from the associativity of the product of functions on
Γ\SL(2,R). It is the analog of the associativity of the operator product expansion in
conformal field theory, which lies at the heart of the conformal bootstrap program.
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Figure 6.8: Bounds from the ℓ3/2 = ℓ3 = 1 system. Everything except the yellow
shaded region is disallowed for hyperbolic spin orbifolds with ℓ3/2 = ℓ3 = 1. The
red dot in the corner corresponds to [0; 3, 3, 5].
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Figure 6.9: Bounds from the ℓ3/2 = ℓ3 = 1 system; zooming onto the kink. Every-
thing except the shaded region is disallowed. The red dot near the corner corresponds
to [0; 3, 3, 5].

Our approach is closely related to that of Bernstein and Reznikov [53], who in-
vestigated the consistency constraints arising from the spectral decomposition of
integrals involving a quadruple product of functions within the principal series in
𝐿2(Γ\𝐺). See also [409, 338, 360]. In our current study, we have demonstrated
that integrating these consistency constraints with linear programming techniques,
especially when applied to the discrete series, can yield almost optimal bounds on
Laplace and Dirac spectra. There is a close analogy of the above with the analytical
bootstrap in CFT, in particular, the approach of Bernstein and Reznikov is akin to
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Figure 6.10: Bounds from the ℓ1/2 = 1, ℓ1 = 2 system. Everything except the
yellow-shaded region is disallowed. The red dot in the corner corresponds to Bolza
surface with odd spin structure.
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Figure 6.11: Bounds from ℓ1/2 = 1, ℓ1 = 2 system, zooming onto the
kink.Everything except the shaded region is disallowed.The red dot corresponds
to Bolza surface with odd spin structure.

asymtptotic analysis involving Tauberian theorems, leading to universal behavior of
various physical quantities in CFTs [392, 350, 349, 369].

Several points could be analysed further. In particular:

1. It is interesting to note that the bounds we obtain, for example on Laplace
eigenvalues, do not always become more stringent as the number of harmonic
spinors or genus increases. For example, Table 6.1 shows that the bound at
genus 5 with 3 harmonic spinors is less restrictive than the bound at genus 6
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with 3 harmonic spinors. We contrast this scenario with that of [283] where
the bound for orbifolds with genus 𝑔1 is not weaker compared to that of genus
𝑔2 whenever 𝑔1 > 𝑔2. The origin of monotonicity in the context of [283] is
the fact that the functional used in linear programming for genus 𝑔2 can easily
be promoted to a functional that is appropriate for genus 𝑔1. However, unlike
the spectral identities of [283], the spectral identities that we bootstrap in this
chapter have discrete series irreps appearing in the 𝑡 channel. This constitutes
an obstruction to the previous argument. It would be interesting to understand
the origin of this non-monotonicity directly and analytically at the level of the
spectral identities.

2. In terms of the Dirac spectrum, it is curious that on the exclusion plot of Figure
6.8, the allowed values of 𝜆(1/2) seem to blow up quickly as 𝜆(0) approaches
zero. This raises the question whether our methods could be improved to
obtain better bounds in this region of parameter space, and maybe even a
universal upper bound on 𝜆(1/2) .

3. It would also be interesting to study Dirac spectra in higher dimensions using
similar spectra identities originating from associativity. In particular the
three-dimensional case is quite accessible, extending the work of [71].

One can see the results of this chapter as a new contribution to an emerging program,
started in [283], to apply techinques originating from conformal field theory to
questions relevant to analytic number theory and hyperbolic geometry. Already in
our case, as well as in the three-dimensional case [71], these techniques have been
very fruitful. Natural extensions of this work on spinors would be to allow fractional
spin structures, or to investigate the case of super-Riemann surfaces. More generally,
it would be very interesting to push this program towards quotients of Lie groups of
higher rank (for example, SL(3,R) seems to be a natural next step), as well as the
study of non-Archimedean geometries over Q𝑝.

Perhaps the most striking feature of our findings is that at least in the cases displayed
on Figures 6.7 and 6.10, the most symmetric surfaces (i.e., the [0; 3, 3, 5] orbifold,
[1; 3]𝑠𝑦𝑚 and the Bolza surface, respectively) sit almost exactly at the boundary,
or even the kink, of the allowed region in parameter space. The fact that hyper-
bolic surfaces seem to know about the boundary of the exclusion plot, which purely
comes from the constraint equations, seems to suggest that the space of solutions
to the constraint equations is closely related to the space of quotients of the form
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Γ\SL(2,R), where Γ is a cocompact lattice. There are well-known results estab-
lishing a one-to-one correspondence between abelian algebras and various kinds of
geometric spaces. For example, the Gelfand–Naimark theorem [189] shows that
each commutative 𝐶∗-algebra can be thought of as an algebra of continuous func-
tions on a locally compact Hausdorff space. There is an analog of this theorem for
von Neumann algebras and measured spaces [436, 373], and more recently, Connes
showed in his reconstruction theorem [119] that for every spectral triple (A,H , 𝐷),
with A commutative, and a few extra conditions, one can realize A as 𝐶∞(𝑋),
where 𝑋 is a smooth oriented compact spin𝑐 manifold, and that all such manifolds
can be decribed by such a spectral triple. It would be interesting to see whether
such reconstruction theorems hold for commutative algebras on which various Lie
groups act. The existence of such theorems would likely help understand how
closely the space of solutions to the constraint equations described here, and the
space of 2-dimensional compact orientable spin-orbifolds, are related.

Finally, we remark on the relevance of our work in context of physics, in particular,
conformal field theory. In the present chapter, the key role is played by the positivity
of the measure of Γ̃\SL(2,R). On a similar note we expect that in the context of
path integral formulation of conformal field theories, the existence of a SO(1, 𝑑)
invariant positive measure along with associativity might lead to the discovery of
new constraints on such theories. Additionally, our framework provides a systematic
approach for analyzing the de Sitter bootstrap numerically as suggested recently in
[426, 306, 307, 375], and for extending this program to include fermions.

6.7 Appendix: Dimension of the space of harmonic spinors in low genus
In this work, we obtained bounds on the Laplace and Dirac spectra on a surface
or orbifold based on the number of modular forms of various weights on this
geometric object. A particularly interesting case has been that of harmonic spinors
(i.e., modular forms of weight one), as they carry more than only topological
information at genus 𝑔 ≥ 3. In this appendix, we summarize the state of the art
in the classification of Riemann surfaces of genus 𝑔 ≥ 3 in terms of the number
of harmonic spinors they can carry. A key role is played by hyperelliptic surfaces,
which are branched double covers of the Riemann sphere. Note that in genus
up to 2, every Riemann surface is hyperelliptic, which informs why the space of
harmonic spinors can only retain nontrivial geometric information at genus 𝑔 ≥ 3.
This appendix cross-references the general results of [92] with explicit examples of
surfaces with many automorphisms from the literature.
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Genus 3
In genus 3, the situation is particularly nice: either the surface is hyperelliptic, or it
admits a representation as a regular quartic in CP2.

The two cases are defined as follows:

• If the surface is hyperelliptic, there exists a choice of spin structure for which
the upper bound of two independent harmonic spinors is saturated.

• If the surface is a regular quartic, then the maximum number of harmonic
spinors is 1, and it is realized by exactly the odd spin structures on the surface.

In genus 3, the automorphism group of a hyperelliptic surface that has the largest
order is Z2 × 𝑆4. The corresponding surface, given in [351], has affine equation

𝑦2 = 𝑥8 + 14𝑥4 + 1. (6.132)

The other candidate special surfaces have automorphism groups 𝑈6, 𝑉8 (following
the notations of [412]), and Z14, see [351] for more details.

On the other hand, the automorphism group of a non-hyperelliptic surface of genus
3 can be much larger [41]. In particular, there exists a non-hyperelliptic surface of
genus 3 with isometry group PSL(2, F7), that has 168 elements. This surface is
called the Klein quartic, and has equation

𝑧3𝑥 + 𝑥3𝑦 + 𝑦3𝑧 = 0. (6.133)

The complete classification of possible automorphism groups of genus 3 surfaces is
given in [41].

Genus 4
In order to understand the situation in genus 4, we need to introduce the notion of
canonical embedding.

Definition 6.7.1. Let Σ be a Riemann surface, and let {𝜔1, . . . , 𝜔𝑔} be a basis of
holomorphic differentials on Σ. The canonical embedding of Σ into CP𝑔−1 is the
map

𝜎 ↦−→ [𝜔1(𝜎), . . . , 𝜔𝑔 (𝜎)] . (6.134)
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Note that the canonical embedding depends on the choice of basis of holomorphic
differentials, however, a change of basis simply amounts to a projective transforma-
tion in CP𝑔−1. We have the following general result:

Proposition 6.7.2 ([354]). The canonical embedding of Σ is injective if and only if
Σ is not hyperelliptic.

In genus 4, we have the additional fact:

Proposition 6.7.3 ([92]). The canonical model of a non-hyperelliptic surface of
genus 4 is the intersection of a unique quadric and a cubic in CP3. Moreover, the
quadric is either smooth or a cone.

It turns out [92] that this classification in terms of canonical models is the right one
to consider to classify the possible dimensions of harmonic spinors. More precisely:

• If the surface is hyperelliptic, there exist spin structures for which the surface
admits 2 harmonic spinors.

• If the surface is not hyperelliptic and the quadric supporting its canonical
embedding is a cone, then it admits a unique spin structure with 2 harmonic
spinors.

• If the surface is not hyperelliptic and the quadric supporting its canonical
embedding is a smooth, then the maximum number of harmonic spinors is 1,
and it is realized by exactly the odd spin structures on the surface.

In genus 4, still with the notations of [412], the automorphism group of a hyperelliptic
surface that has the largest order is 𝑉10. The corresponding surface, given in [351],
has affine equation

𝑦2 = 𝑥10 − 1. (6.135)

The other candidate special surfaces have automorphism groups SL(2, F3),𝑈8, and
Z18, see [351] for more details.

In a similar fashion to the case of genus 3, there exist non-hyperelliptic surfaces of
genus 4 with much larger automorphism groups. These surfaces are enumerated in
[139]. The surface with the largest automorphism group is Bring’s surface, with
120 automorphisms. However, the quartic associated to Bring’s surface is smooth.
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If we want to impose that the canonical embedding of the surface lies on a cone, the
largest possible automorphism group has order 72. The corresponding surface has
equation

𝑧3𝑦2 = 𝑥(𝑥4 + 𝑦4). (6.136)

A large number of other large groups (but of smaller order) arise, they are described
in detail in [139].

Genus 5
In genus 5, a surface can carry a maximal number of harmonic spinors if and only
if it is hyperelliptic. The automorphism group of a hyperelliptic surface that has the
largest order (120) is Z2 × 𝐴5. The corresponding surface, given in [351], has affine
equation

𝑦2 = 𝑥(𝑥10 + 11𝑥5 − 1). (6.137)

The other candidate special surfaces have automorphism groups 𝑊2, 𝑈10, 𝑉12 and
Z22 [412], see [351] for more details.

If one drops the requirement of hyperellipticity, there is a surface that has more
automorphisms: its order is 192. This surface is described in [117, 139].

Genus 6
In the case of genus 6, there are once again special surfaces with the maximal (3)
number of harmonic spinors but that are not hyperelliptic. More precisely,

• If the surface is hyperelliptic, there exist spin structures for which the surface
admits 3 harmonic spinors.

• If the surface is a smooth plane quintic, then it admits a unique spin structure
with 3 harmonic spinors.

• If the surface is neither hyperelliptic nor a plane quintic, then there are at most
2 harmonic spinors per spin structure.

Note that the classification of the remaining cases is subtle. It is known, however
[92], that trigonal surfaces cannot have more than 1 harmonic spinor per spin
structure.



356

In genus 6, the automorphism group of a hyperelliptic surface that has the largest
order is 𝑉14 (following the notations of [412]). The corresponding surface, given in
[351], has affine equation

𝑦2 = 𝑥14 − 1. (6.138)

The other candidate special surfaces have automorphism groups𝑈12,𝐺𝐿 (2, F3) and
Z26, see [351] for more details.

Once again, there exist non-hyperelliptic surfaces of genus 6 with much larger
automorphism groups. These surfaces are enumerated in [92]. The surface with the
largest automorphism group is Fermat’s quintic [92], with 150 automorphisms. It
is a smooth plane quintic of equation

𝑥5 + 𝑦5 = 𝑧5, (6.139)

so interestingly, it also can carry three harmonic spinors.

The surface of genus 6 that cannot carry 3 harmonic spinors and has the largest
automorphism group is the Wiman sextic, described for example in [139]. Its auto-
morphism group is isomorphic to 𝑆5, which means that it has 120 automorphisms.

6.8 Appendix: Numerical estimate of 𝜆(0)1 and 𝜆(1/2)1 for various orbifolds and
surfaces

In this appendix, we present the table 6.3, showing the intervals [𝑎1, 𝑏1] and [𝑐1, 𝑑1]
containing the𝜆(0)1 and the𝜆(1/2)1 , respectively. Note that we can rigorously only show
that the intervals [0, 𝑎1) and [0, 𝑐1) does not contain 𝜆(0)1 and 𝜆(1/2)1 , respectively.
So the intervals presented in the table 6.3 are the ones, potentially containing the
first eigenvalue. However, from the numerics we observe that these intervals contain
the first non-trivial eigenvalue, see the remark 6.4.6.
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Signature Interval containing 𝜆(0)1 ; [𝑎1, 𝑏1] Interval containing 𝜆(1/2)1 ; [𝑐1, 𝑑1]
[0;3,3,5] [12.13623266082, 12.13623279684] [19.62850299650, 19.70606979308]
[0;3,3,7] [6.622512981830, 6.62251303689] [14.58137931985, 14.70308279925]
[0;3,3,9] [4.760935531772, 4.760935540974] [13.04476106136, 13.20743304307]
[0;3,3,11] [3.817638624612, 3.817638645376] [12.31511817207, 12.56227388521]
[0;3,3,13] [3.243870176473, 3.243870434758] [11.89945757571, 12.22641050708]
[0;3,3,15] [2.856060123567, 2.856061719363] [11.66435497067, 12.00545171009]
[0;3,3,17] [2.575237981382, 2.575242811203] [11.50074150836, 11.87999680844]
[0;3,3,19] [2.361748257939, 2.372476650392] [11.23045200383, 11.84361592566]
[0;3,3,21] [2.193498651071, 2.195285976813] [11.19103656533, 11.78223049525]
[0;3,3,23] [2.057131576807, 2.057705367329] [11.11887135826, 11.73877352328]
[0;3,3,25] [1.944123693427, 1.950822253982] [11.06202801296, 11.70678314765]
[0;3,5,5] [5.873575959007, 5.873576043568] [10.26823286914, 10.46485970804]
[0;3,5,7] [4.105916028717, 4.105919429281] [8.807322253657, 9.080333571881]
[0;3,5,9] [3.240661780680, 3.240671025102] [8.255608604384, 8.583931161697]
[0;3,5,11] [2.734102690099, 2.735649379604] [7.907206673453, 8.351477142335]
[0;3,5,13] [2.400941404204, 2.475085745560] [7.726023042016, 8.311960209309]
[0;3,5,15] [2.163736742483, 2.379780806385] [7.585768436685, 8.286345064939]
[0;3,7,7] [3.253194157760, 3.263120231408] [7.649577360853, 8.068585239517]

[1; 3]sym [4.760933182368, 4.765358782461] [8.255418967910, 8.297252909660]∗
[3.108229958351, 3.190576244169]

Bolza surface [3.838886940769, 3.842772834639]
[2.246498128260, 2.259880718024]∗
[1.188383272199, 1.192003537383]

[0.8970133121437, 0.8975387540243]

Table 6.3: 𝜆
(0)
1 and 𝜆

(1/2)
1 for various hyperbolic spin surfaces and spin orb-

ifolds.Orbifolds with signature [1;3] have 4 different spin structures but for the
most symmetric point on the moduli space, there are only two different sets of
spectra for the Dirac operator. Similarly, the Bolza surface has 16 different spin
structures but there are only three different Dirac spectra. The intervals marked with
∗ correspond to spin structures that support a harmonic spinor.
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C h a p t e r 7

HOLOGRAPHIC TENSOR NETWORKS FROM HYPERBOLIC
BUILDINGS

This chapter is based on the work [199], in collaboration with Matilde Marcolli and
Sarthak Parikh.

7.1 Introduction
Holographic tensor networks are one of the main tools to model the emergence
of spacetime in the AdS/CFT correspondence, and the associated error-correcting
structure. Since the discovery of the HaPPY code [372], a plethora of examples
have shown that holographic tensor networks make it possible to model numerous
aspects of holography, in particular, the Ryu–Takayanagi formula [401, 167] and
quantum error correction [225].

Most holographic tensor networks realize an exact or approximate quantum error-
correcting code, in the sense that they (almost) isometrically map a Hilbert space of
semiclassical bulk degrees of freedom, modelled by qudits associated to dangling
legs, to a boundary Hilbert space, which represents the Hilbert space of the boundary
conformal field theory, and is modelled by qudits on the boundary of the tensor
network. For well-chosen boundary regions, the tensor network satisfies the quantum
Ryu–Takayanagi formula [372]. This means that the entanglement entropy of the
restriction to a given boundary region of a state in the code subspace equals the
sum of the entanglement entropy of that state in the bulk and an area contribution
proportional to the number of internal legs of the tensor network cut by the Ryu–
Takayanagi surface of the region. The latter is defined as the surface delimiting the
region attainable from the boundary by the greedy algorithm [372]. Complementary
recovery is then achieved when the greedy algorithm reaches complementary bulk
regions from complementary parts of the boundary.

Holographic tensor networks have an interesting geometric structure, which ranges
from tesselations of the hyperbolic plane [372] or higher-dimensional spaces [280]
to 𝑝-adic spaces [238] (see [105] for a complimentary perspective). Although it is
often briefly mentioned that hyperbolic tesselations have to do with Coxeter systems
[280], the interplay between holographic tensor networks and hyperbolic geometry
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has been left largely unexplored.1 The goal of this chapter is to investigate this link
in more detail, and show the pertinence of the language of Gromov-hyperbolicity
and building theory to talk about holographic tensor networks.

More precisely, one can ask the following questions:

• What are the geometric structures that underlie the construction of holographic
tensor networks?

• How can we know when a graph makes a good holographic quantum error-
correcting code?

• Can we construct tensor networks that model holographic dualities where the
boundary is not homeomorphic to a sphere?

• How can we predict which boundary regions satisfy complementary recovery?

• How do we take an infinite-dimensional limit of holographic tensor networks?

• What are some insights that the geometry of holographic tensor networks can
provide for studying full AdS/CFT?

In this chapter, we will provide an answer to these questions in the case of networks
constructed out of perfect tensors, utilizing the framework of Gromov hyperbolicity
and hyperbolic buildings. It will turn out that known examples of holographic tensor
networks can all be described by the notion of hyperbolic building. Buildings, which
can have different geometric structures (hyperbolic, Euclidean, spherical) are a
geometric construct originally introduced by Jacques Tits [3] aimed at geometrizing
some aspects of group theory. In order to do geometry on hyperbolic buildings,
the right toolkit is provided by Gromov’s theory of hyperbolicity, which studies
metric spaces whose distance has a particular property that can be viewed as a
more abstract formulation of the concept of negative curvature. On such spaces, a
notion of boundary at infinity, the Gromov boundary, can be defined. In our context,
holographic dualities will be between semiclassical theories living on a hyperbolic
building and theories living on its Gromov boundary. Tensor networks will contain
bulk dangling legs in the chambers of the buildings, and boundary legs at a certain

1However, see [58] for tensor network constructions in terms of tessellations of the hyperbolic
plane inspired by Coxeter systems and [280] for a geometric condition for a tiling to define an
isometry.
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cutoff of the building. These boundary legs can be thought of as a coarse-grained
approximation to the Gromov boundary.

One striking feature of this approach is that, unlike the case of the HaPPY code
or similar tessellations, the Gromov boundary of most hyperbolic buildings is not
isomorphic to a sphere – rather, it is often isomorphic to a fractal, which has a
much more intricate geometric structure. Thus, our holographic dualities provide
examples of dualities where the boundary theory lives on a sphere (or more generally
a homology sphere) of any dimension, but also where it lives on more complicated
spaces of non-integer dimension. Moreover, as we shall see, there is a close analog
of conformal invariance for these theories, and it exhibits a behavior closely related
to that of a CFT.

Using the more general point of view of hyperbolic buildings also allows us to
reflect on some features of known holographic tensor networks, like complementary
recovery. While this property is supposed to hold for arbitrary boundary regions
up to nonperturbative errors in 𝐺𝑁 in AdS/CFT [143], it does not hold for all
regions of the HaPPY code [372]. While this fact may seem puzzling, it has a very
natural explanation in terms of hyperbolic buildings: their global symmetry groups
are smaller than the conformal group, hence only regions which are well-adapted
to these symmetry groups will satisfy complementary recovery. In particular, we
will provide a systematic construction of regions in the network that do satisfy
complementary recovery, and applies to all networks with perfect tensors.

For these regions, we will show that a Ryu–Takayanagi formula holds, and that for
ball-shaped boundary regions the number of links on the Ryu–Takayanagi surface
follows a logarithmic law in the radius when the boundary time slice has dimension
1, and a power law in the radius, with exponent the Hausdorff dimension of the
boundary minus one when the boundary time slice has dimension greater than 1.
This recovers known results for the scaling of entanglement entropy in traditional
conformal field theory, and introduces some new scalings that are very suggestive:
the Ryu–Takayanagi surfaces see the fractal structure of the boundary! It is then
of course very tempting to speculate that networks with fractal boundary simulate
conformal field theories on fractal spaces.

Another interesting aspect of our approach is that the Gromov boundary lives at in-
finity, and makes it very natural to define an infinite-dimensional limit of holographic
tensor networks. This problem has already been touched upon in [195, 196], and
more generally, the question of describing holographic quantum error-correction in
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the language of infinite-dimensional operator algebras is an active research program
[270, 196, 164, 194]. Here we will see that there is an appropriate way to take the
limit of our holographic codes such that they give a net of holographic conditional
expectations. This structure has been recently shown to capture essential aspects of
bulk reconstruction in AdS/CFT [164].

We now give the main results of this work:

• A general framework for the construction of holographic tensor networks with
perfect tensors is given in terms of building theory and Gromov hyperbolic
spaces.

• This allows us to recover all known constructions, and gives examples of
holographic tensor networks in all integer dimensions.

• A lot of tensor networks fitting into that framework also have a fractal bound-
ary, hinting at new holographic dualities where the boundary theory lives on
a fractal.

• A condition for our networks to be isometric is given, as well as a construction
of regions that satisfy complementary recovery. This construction can be
applied to all the buildings examined in this chapter.

• A Ryu–Takayanagi formula is proven, showing that boundary entanglement
entropy for ball-shaped regions follows a logarithmic law in the radius when
the boundary has dimension 1, and a power law in the radius when the bound-
ary has higher Hausdorff dimension, where the exponent is the Hausdorff
dimension of the boundary minus one.

• A general technique is given to construct an infinite-dimensional limit of our
networks in the language of operator algebras. This limit gives rise to a net
of holographic conditional expectations.

• All our results can be applied to known examples of holographic tensor
networks with perfect tensors, such as the HaPPY code.

The rest of the chapter is organized as follows: In Section 7.2, we recall the basics of
the theory of Gromov-hyperbolic spaces and their boundaries, as well as the notions
of hyperbolic groups and buildings. In Section 7.3, we focus for clarity on a particular
case: that of Bourdon buildings, which can be understood as HaPPY codes with
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branching. These buildings have a boundary homeomorphic to a fractal Menger
sponge, and we show that the resulting tensor networks satisfy complementary
recovery for nice regions, a Ryu–Takayanagi formula with the expected scaling in
terms of the Hausdorff dimension of the boundary. We also construct an infinite-
dimensional limit for these tensor networks. In Section 7.4, we extrapolate the
methods of the previous section to define holographic quantum error correcting
codes on a much larger class of higher-dimensional hyperbolic buildings. We give
some explicit examples, including ones where the boundary is a homology-sphere
of arbitrary integer dimension. In Section 7.5, we briefly comment on the results
and discuss some potential future directions. In Appendix 7.6 we present an explicit
example of a Bourdon building, and in the slightly more technical Appendix 7.7
we summarize relevant results from Patterson-Sullivan theory which help formalize
aspects of conformal field theories on fractal spaces.

7.2 Gromov-hyperbolic spaces, hyperbolic groups and buildings
In this section, we introduce the general notion of Gromov-hyperbolic space, which
will be underlying our choices of bulk spaces. We focus on two types of Gromov-
hyperbolic spaces, hyperbolic groups and hyperbolic buildings, which will be the
ones we will use in order to construct our examples of holographic duality.

General definitions
Gromov-hyperbolic spaces naturally generalize the setup in which one usually con-
siders holographic dualities. We begin with a definition of the Gromov product,
which is the crucial ingredient in the definition of Gromov-hyperbolic spaces (see
[127]):

Definition 7.2.1. For (𝑋, 𝑑) a metric space, the Gromov product of two points
𝑦, 𝑧 ∈ 𝑋 with respect to 𝑥 ∈ 𝑋 is given by

(𝑦, 𝑧)𝑥 :=
1
2
(𝑑 (𝑥, 𝑦) + 𝑑 (𝑥, 𝑧) − 𝑑 (𝑦, 𝑧)).

From there, a Gromov-hyperbolic space is defined by the following condition:

Definition 7.2.2. Let 𝛿 > 0. (𝑋, 𝑑) is said to be 𝛿-hyperbolic if for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋,

(𝑥, 𝑧)𝑤 ≥ min((𝑥, 𝑦)𝑤, (𝑦, 𝑧)𝑤) − 𝛿.

𝑋 is then Gromov-hyperbolic if it is 𝛿-hyperbolic for some 𝛿 > 0.
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For our purposes, one of the main interesting features of Gromov-hyperbolic spaces
is that they are endowed with a natural notion of boundary, which will make it
possible for us to formulate a bulk-to-boundary correspondence. We first need to
formulate a notion of geodesics in Gromov-hyperbolic spaces.

Definition 7.2.3. Fix an origin 𝑂 ∈ 𝑋 . A geodesic ray in 𝑋 is an isometry 𝑟 :
[0, +∞) −→ 𝑋 such that

𝑟 (0) = 𝑂

and for all 𝑡 > 0, 𝑟 ( [0, 𝑡]) is the shortest path from 𝑂 to 𝑟 (𝑡) in X. Two geodesic
rays 𝑟1 and 𝑟2 are said to be equivalent if there exists 𝐾 > 0 such that for all 𝑡 > 0,

𝑑 (𝑟1(𝑡), 𝑟2(𝑡)) ≤ 𝐾.

The Gromov boundary 𝜕𝑋 of 𝑋 is defined to be the set of equivalence classes of
geodesic rays starting at 𝑂.

𝑋 ∪ 𝜕𝑋 is then endowed with a natural topology: a basis is given by the sets of the
form

𝑉 (𝑝, 𝜌) := {𝑞 ∈ 𝜕𝑋, there exist geodesic rays 𝑟1, 𝑟2 ending at 𝑝, 𝑞 such that

(7.1)

lim
𝑡1,𝑡2→+∞

(𝑟1(𝑡1), 𝑟2(𝑡2))𝑂 ≥ 𝜌.}

(7.2)

A convenient feature of the Gromov boundary 𝜕𝑋 is that one can construct a natural
metric on it [126]. In what follows, we shall fix a base point 𝑂 for 𝑋 . For 𝑥 ∈ 𝑋 ,
define

|𝑥 | := 𝑑 (𝑥, 𝑂).

Then for 𝑎 > 1, define

|𝑥 − 𝑦 |𝑎 := inf
𝑟 path from 𝑥 to 𝑦

∫
𝑟

𝑎−|𝑥 |𝑑𝑥.

One can then prove [126] that there exists 𝑎0 > 1 such that for 1 < 𝑎 < 𝑎0, 𝑋∪𝜕𝑋 is
homeomorphic to the completion of 𝑋 for the metric | · |𝑎. Moreover, the metric | · |𝑎
is very well-controlled by the Gromov product of 𝑋 (we shall see explicit examples
of this in what follows). In particular, there exists a constant 𝜆 which only depends
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on 𝛿 and 𝑎 such that if 𝜉 and 𝜂 are on 𝜕𝑋 , for 𝑥 and 𝑦 in small enough neighborhoods
of 𝜉 and 𝜂, we have [126]:

𝜆−1𝑎−(𝑥,𝑦)𝑂 ≤ |𝜉 − 𝜂 |𝑎 ≤ 𝜆𝑎−(𝑥,𝑦)𝑂 . (7.3)

Hence | · |𝑎 is a natural metric, called visual metric, on 𝜕𝑋 . From here on, we will
consider the choices of the base point 𝑂 and of a given 𝑎 > 1 as implicit and we
will drop the explicit notation unless needed.2

Most of the Gromov-hyperbolic spaces we will consider here can be interpreted in
terms of hyperbolic groups. Here we give a general definition of a hyperbolic group,
of which we will consider specific explicit examples in the subsequent sections.

Definition 7.2.4. Let 𝐺 be a finitely generated group, and 𝑋 be its Cayley graph.
𝐺 is said to be a hyperbolic group if 𝑋 , endowed with its graph metric, is Gromov-
hyperbolic.

Hyperbolic buildings
In this chapter, the main setup will be that of hyperbolic buildings. We will also
encounter their isometry groups, which will turn out to be hyperbolic groups. The
theory of buildings is a rich and fruitful mathematical framework, first introduced
by Tits [3], whose goal is to geometrize notions of group theory. Here we introduce
the basic terminology associated to this theory, which will be utilized in our chapter.
We will mostly follow the presentation of [439], which the interested reader can
consult for a more thorough introduction.

The simplest examples of buildings are Coxeter systems:

Definition 7.2.5. A Coxeter group is a group 𝑊 that admits a presentation of the
form

𝑊 = ⟨𝑠 ∈ 𝑆 | (𝑠𝑡)𝑚𝑠𝑡 = 1 for 𝑠, 𝑡 ∈ 𝑆⟩ ,

with 𝑆 a finite set, 𝑚𝑠𝑠 = 1 for 𝑠 ∈ 𝑆, 𝑚𝑠𝑡 a (possibly infinite) integer ≥ 2 for 𝑠 ≠ 𝑡.
The pair (𝑊, 𝑆) is then called a Coxeter system.

A particularly nice class of Coxeter systems is given by the right-angled ones, which
correspond to the case where the 𝑚𝑠𝑡 for 𝑠 ≠ 𝑡 are either 2 or∞.

Many interesting Coxeter systems arise from regular tessellations of 𝑛-spheres,
𝑛-Euclidean space, or 𝑛-hyperbolic spaces. In this case, the Coxeter group is

2For instance, from here on we will drop the subscript 𝑎 in the metric | · |𝑎.
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Figure 7.1: The right-angled pentagon tiling of the hyperbolic plane H2 used in the
construction of the HaPPY code.

generated by reflections with respect to the sides of the basic polyhedron. This
is for example the case for the HaPPY code, which corresponds to a right-angled
Coxeter system generated by a right-angled regular pentagon in the hyperbolic plane
(see Figure 7.1). More generally, a convex polyhedron in X𝑛 (which can be the 𝑛-
sphere, the 𝑛-Euclidean space or the 𝑛-hyperbolic space), with all dihedral angles
submultiples of 𝜋 is called a Coxeter polytope. These three possible cases for X𝑛

are, respectively, referred to as spherical, Euclidean, and hyperbolic buildings.

Another important notion in order to define a building is that of polyhedral complex.
Without going into too much generality, they are constructed by gluing polyhedra
in spheres, Euclidean space or hyperbolic space, using isometries along the faces.
The main object of interest in a polyhedral complex is its link at each vertex 𝑥: it
is the (𝑛 − 1)-dimensional polyhedral complex obtained by intersecting the given
polyhedral complex with an 𝑛-sphere of sufficiently small radius centered at 𝑥. For
example, for a 2-complex, the link at vertex 𝑥 is a graph whose edges correspond to
the faces adjacent to 𝑥, and whose vertices correspond to the edges incident on 𝑥.

We are now ready to define a hyperbolic building, utilizing the notions of Coxeter
polytopes and polyhedral complexes.

Definition 7.2.6. Let 𝑃 be a hyperbolic Coxeter polytope, and let (𝑊, 𝑆) be the
associated Coxeter system. A hyperbolic building of type (𝑊, 𝑆) is a polyhedral
complex Δ with a maximal family of subcomplexes, called apartments, such that
they each are isometric to a tessellation of H𝑛 by copies of 𝑃 called chambers, and
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• Any two chambers of Δ are contained in a common apartment.

• Between any two apartments, there exists an isometry that fixes their intersec-
tion.

In the case of a hyperbolic building, 𝑊 , called the Weyl group of the building, is
a hyperbolic discrete subgroup of the isometry group of H𝑛. It is also possible
to show that the link of an 𝑛-dimensional hyperbolic building at each vertex is an
(𝑛 − 1)-dimensional spherical building. The link structure of our buildings will be
crucial for our proof of complementary recovery.

Remark 7.2.7. The condition that the apartments are tessellations of H𝑛 can be
relaxed to include a larger class of hyperbolic buildings, where the apartments are
certain polyhedral complexes (Davis–Moussong complexes) with a hyperbolic struc-
tures, which are not tessellations of a single hyperbolic space. This generalization
makes it possible to obtain hyperbolic buildings in arbitrary dimension, and we will
discuss it in Section 7.4.

7.3 Holography on Bourdon buildings
Our first example of building holography is given by the case where the bulk space
is the Bourdon building 𝐼𝑝,𝑞 [77], whose boundary is a Menger sponge, which is
universal among topological spaces of topological dimension 1, in the sense that all
of them are homeomorphic to a subset of the Menger sponge. When interpreted
as a holographic tensor network, we will see that our bulk space gives rise to the
expected properties of holographic codes and states: complementary recovery, and a
Ryu–Takayanagi formula involving the Patterson–Sullivan measure on the boundary.

Bourdon buildings
We start by defining the building 𝐼𝑝,𝑞, for 𝑝 ≥ 5 and 𝑞 ≥ 3, closely following [77].
For the case 𝑞 = 2 see Remark 7.3.2 below.

Definition 7.3.1. Let 𝑝, 𝑞 be two integers with 𝑝 ≥ 5 and 𝑞 ≥ 3. The Bourdon
building 𝐼𝑝,𝑞 is the only simply connected cellular 2-complex such that its 2-cells
are isometric to a regular 𝑝-gon, are attached by their edges and vertices, two 2-cells
share at most one edge or one vertex, and the link of each vertex is the bipartite
graph 𝐾 (𝑞, 𝑞).
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Figure 7.2: An example of a subset of a Bourdon building with the associated link,
from [78].

The existence and uniqueness of such a building is proven in [77]. Let Γ𝑝,𝑞 be the
hyperbolic group defined by its presentation

Γ𝑝,𝑞 := ⟨𝑠1, ..., 𝑠𝑝 | 𝑠𝑞𝑖 = 1, [𝑠𝑖, 𝑠𝑖+1] = 1⟩.

Then Γ𝑝,𝑞 acts simply transitively on the set of chambers of 𝐼𝑝,𝑞. In particular,
if one fixes a zero chamber in 𝐼𝑝,𝑞, then the chambers of 𝐼𝑝,𝑞 can be seen as the
words formed by Γ𝑝,𝑞 up to the relations in the group presentation, where each letter
applies a group transformation to the chamber.

Remark 7.3.2. In the case where 𝑞 = 2, Γ𝑝,𝑞 is just a tesselation of the hyperbolic
plane by 𝑝-gons (and the Gromov boundary is a circle). In particular, whenever
this tessellation gives rise to an isometric network of perfect tensors, it can be
interpreted as a form of HaPPY tiling. We refer to these tessellations as the 𝑝-gon
HaPPY tilings, with 𝑝 ≥ 5.

For 𝑞 ≥ 3, the Gromov boundary changes, and becomes a Menger sponge. The
Bourdon building then has branching: each tile branches out into 𝑞 − 1 tiles at
each edge. Nevertheless, the building still possesses a HaPPY-like structure, as
its apartments are now tilings of the hyperbolic plane by 𝑝-gons. The 𝑞 = 2
case corresponds to when the building only has one apartment. This nice apartment
structure will greatly simplify our analysis of tensor networks on Bourdon buildings,
as it will enable us to transpose a lot of useful error-correcting properties of the
HaPPY code to the Bourdon case.
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Bourdon tensor networks
We now define our Bourdon tensor network. The idea is to extend the HaPPY
construction to the more general case of the building 𝐼𝑝,𝑞. In the rest of this section,
we will consider the case of holographic codes with a nontrivial code subspace, and
we will hence suppose for simplicity that 𝑝 is odd, in order for our bulk tensors to
always have an even number of legs, independently of 𝑞.

Definition 7.3.3. The 𝐼𝑝,𝑞 tensor network is constructed in the following way:

• Insert a perfect tensor in the chambers of the building.

• Perform an index contraction between every two chambers sharing an edge.

• Add 𝑞 − 1 dangling legs for each tensor.

• Choose a central tile, and cut the building at a finite distance Λ from this
central tile.

As usual for holographic quantum error correcting codes, the bulk Hilbert space
is identified with the tensor product of the bulk dangling leg Hilbert spaces, while
the boundary Hilbert space is identified with the tensor product of the boundary leg
Hilbert spaces.

Remark 7.3.4. The existence of perfect tensors that work for any given choice of 𝑝
and 𝑞 in the range of Definition 7.3.1 follows from [243], see also [244].

Remark 7.3.5. We could have allowed for different types of tensor networks. In
particular, when 𝑝 increases, we could have introduced 𝑘 (𝑞 − 1) dangling legs in
the bulk with 𝑘 ≤ 𝑝 − 4 (as long as the total number of legs is even), while still
satisfying the isometry and entanglement wedge reconstruction properties proven in
the next sections.

Bulk-to-boundary isometry
We first prove that our network defines an isometry at each layer.

Theorem 7.3.6. At each layer, the Bourdon tensor network of Definition 7.3.3
determines an isometry from the code subspace to the physical Hilbert space.

Proof. In this proof, we will freely use the fact that the 𝑝-gon HaPPY tilings define
an isometry from the bulk to the boundary. For a proof, see [372]. This being
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said, our strategy will be to introduce an acyclic orientation on the edges of the
network such that each tensor has at least as many outgoing links as incoming links
(including bulk nodes). We will do this by induction on the layer number 𝑛. At the
first layer, only the bulk node is introduced. We assign an outgoing orientation to all
the edges, and the condition is clearly satisfied. Now suppose that up to layer 𝑛, the
network determines an isometry. Take a chamber of the building at layer 𝑛+ 1. This
chamber can be included in an apartment, which looks like a HaPPY tiling. Inside
this apartment, there are more tiles touching our chamber that are part of layer 𝑛 + 2
than there are that are part of layer 𝑛 or 𝑛 + 1. By symmetry of the building, for a
given tile at layer 𝑛 + 2, there are 𝑞 − 2 other tiles which are also at layer 𝑛 + 2 and
share the same edge with our chamber. We therefore define an orientation on the
network in the following way: if two chambers share an edge, and one is in a higher
layer than the other, then define the orientation of the network from the one in the
lower layer to the one in the higher layer. Then collect all adjacent tiles that are in
the same layer, and define any acyclic orientation on the corresponding subgraph.
This gives a well-defined orientation that gives an explicit isometric interpretation
to the tensor network. □

We focused here on the case where we have a nontrivial code subspace, for which
the isometry condition can be stated. One can also consider similarly the case where
we just have a single holographic state.

Entanglement wedges
Just like in the HaPPY code, only certain bulk regions in the Bourdon tensor network
will satisfy complementary recovery, and hence the Ryu–Takayanagi formula. This
has to do with the fact that the isometry group of the tensor network is not quite the
whole conformal group. Here, we give a description of two nice families of such
regions, thanks to the notion introduced in [77] of tree-wall in the bulk as well as
the link structure of the Bourdon building.

Let us summarize the tree-wall construction of [77].

Definition 7.3.7. A wall in 𝐼𝑝,𝑞 is a bi-infinite geodesic contained in the 1-skeleton
of 𝐼𝑝,𝑞. One can then define an equivalence relation on the 1-skeleton of 𝐼𝑝,𝑞: two
edges are equivalent if they share a wall. The equivalence classes are 𝑞-valent
homogeneous trees: they are the tree-walls of the building.
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In practice, in order to construct a tree-wall, one can perform the following con-
struction.

Lemma 7.3.8. A tree-wall is obtained by the following steps:

• Choose an edge in the 1-skeleton of 𝐼𝑝,𝑞.

• Add to the tree-wall, on both sides of the chosen edge, the 𝑞 − 1 neighboring
edges (distance one in the building) that are at distance 2 from this edge in
the graph of the link.

• Repeat the process.

Proof. The link of 𝐼𝑝,𝑞 is the bipartite graph 𝐾 (𝑞, 𝑞), so in this bipartite graph, 𝑞−1
vertices (which correspond to 𝑞−1 edges of the building) are diametrically opposed
to our edge (i.e., at distance 2 of it on the link’s graph).

□

Remark 7.3.9. Note that tree-walls cut the building (and hence its boundary) into
𝑞 connected components. These connected components will be suitable boundary
regions to study entanglement entropy, and the bulk tree-walls will be the analogues
of Ryu–Takayanagi surfaces for the Bourdon building. Hence we shall call these
connected components entanglement wedges.

There is another way to look at the tree-wall construction, in terms of the Coxeter
system of the building.

Lemma 7.3.10. Consider a given chamber 𝐶 of the Bourdon building, and pick one
of its edges, say 𝐸 . The entanglement wedge with tree-wall boundary associated to
the choice of 𝐶 and 𝐸 is obtained by considering, in all apartments containing 𝐶,
the portion that is on the same side as 𝐶 with respect to the hyperplane determined
by 𝐸 .

Proof. In any apartment containing 𝐶, 𝐸 defines a reflection with respect to a given
hyperplane of this apartment. The intersection of the entanglement wedge defined
by 𝐶 and 𝐸 with the apartment then corresponds to the portion of the apartment
on the same side of the hyperplane as 𝐶. By applying this construction to all
apartments containing𝐶, we recover the same entanglement wedge, with a tree-wall
boundary. □
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The following procedure describes another geometric method for the construction
of valid entanglement wedges in 𝐼𝑝,𝑞.

Lemma 7.3.11. The following construction defines a valid entanglement wedge in
𝐼𝑝,𝑞.

• Choose a vertex 𝑉 in the building.

• Look at the link around the chosen vertex and pick an edge in this link, which
corresponds to a chamber 𝐶 in 𝐼𝑝,𝑞.

• In a given apartment 𝐴, consider the set 𝑆(𝐶,𝑉, 𝐴) of tiles defined by the
chamber 𝐶 and the vertex 𝑉 as the set of tiles containing 𝐶 and delimited by
the two hyperplanes which are edges of the chamber and intersect at 𝑉 .

• Define the entanglement wedge associated to 𝐶 and 𝑉 as the union of all
𝑆(𝐶,𝑉, 𝐴), for 𝐴 containing 𝐶.

In this case, the entanglement wedge is delimited by two half-tree-walls attached to
each other.

Figure 7.3 shows the intersection of the two types of entanglement wedges described
in this section with an apartment of the Bourdon building.

Complementary recovery and a Ryu–Takayanagi formula
We now show that for an entanglement wedge defined in one of the previous manners,
complementary recovery is satisfied in the Bourdon tensor network.

Proposition 7.3.12. Complementary recovery holds for an entanglement wedge in
𝐼𝑝,𝑞 constructed as in Lemmas 7.3.8 and 7.3.11.

Proof. By symmetry, we will assume without loss of generality, both in the case
defined by the intersection of two tree-walls and the case defined by a single tree-wall,
that the considered entanglement wedges are on the opposite side of the tree-walls
from the center of the building. These regions can be identified with regions in
the network that are spanned by semi-infinite geodesics that start from the center
and pass through a given chamber 𝐶 (see Remark 7.3.15). As shown in [372],
complementary recovery amounts to showing that the greedy algorithm reaches the
surface which delimits the entanglement wedge, both starting from the boundary of
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Figure 7.3: The intersections of the two types of entanglement wedges described
here with an apartment of the Bourdon building. Each geodesic should be seen as a
portion of a tree-wall in the full building.

the entanglement wedge (i.e., the subset of the Gromov boundary of 𝐼𝑝,𝑞 that can be
reached by geodesics inside the entanglement wedge), and its complement. Then,
our proof amounts to showing that at layer 𝑛, the chambers inside the entanglement
wedge share an edge with at least as many chambers at layer 𝑛 + 1 as at layer 𝑛
or 𝑛 − 1. This comes from the apartment structure of the Bourdon building: each
chamber can be included in an apartment which is isomorphic to a regular tiling of
the hyperbolic disk, and for which each tile at layer 𝑛 is in contact with at least as
many at layer 𝑛 + 1 as at layer 𝑛 or 𝑛 − 1. By symmetry of the branching, the other
tiles sharing the same edge will also be at layer 𝑛 + 1, which finishes the proof of
the fact that it is possible to reconstruct the entanglement wedge on its boundary.

Now, it is also possible to reconstruct the complement of the entanglement wedge on
the complementary boundary region. In the case in which the entanglement wedge
corresponds to a region delimited by a tree-wall, the 𝑞 connected components
are symmetric with respect to the tree-wall, and thus it is possible to achieve
reconstruction on the 𝑞 − 1 connected components by symmetry.

Similarly, edges in the link (corresponding to chambers in the building) around a
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given vertex have entanglement wedges that form a partition of the bulk, and satisfy
recovery. Thus, the complement of the entanglement wedge defined by a given
chamber and a link vertex also satisfies recovery. □

Proposition 7.3.13. The Ryu–Takayanagi formula holds for entanglement wedges
in 𝐼𝑝,𝑞 constructed as in Lemmas 7.3.8 and 7.3.11.

Proof. Given the previous Proposition 7.3.12, the Ryu–Takayanagi formula directly
follows from the argument of [372]: since the entanglement wedge satisfies com-
plementary recovery, the entanglement entropy of a boundary state will satisfy

𝑆𝑝ℎ𝑦𝑠 (𝜌) = 𝑁𝑐𝑢𝑡 log 𝑑 + 𝑆𝑐𝑜𝑑𝑒 (𝜌),

where 𝑁𝑐𝑢𝑡 is the number of links that are cut by the boundary of the entanglement
wedge and 𝑑 is the bond dimension. □

Ball entanglement wedges

We now turn our attention to entanglement wedges that correspond to ball-shaped
regions on the boundary. Their construction goes as follows.

Lemma 7.3.14. The following procedure gives an entanglement wedge construction
in 𝐼𝑝,𝑞.

• Fix a chamber 𝐶 in 𝐼𝑝,𝑞 and the central chamber 𝑂.

• The “ball entanglement wedge" defined by 𝐶 and 𝑂 is then given by the set
of semi-infinite geodesics on the tensor network starting from 𝐶 that can be
extended to a semi-infinite geodesic starting from 𝑂.

Remark 7.3.15. Note that ball entanglement wedges are particular cases of the
entanglement wedges defined in Subsection 7.3, and can be defined by a chamber
and either an edge or a vertex depending on where the tile is in the building. In
particular, the wedges we use in the proof of Theorem 7.3.12 can be described in
terms of ball entanglement wedges.

There is a nice way to estimate 𝑁𝑐𝑢𝑡 in terms of the radius of the ball which is the
boundary of our entanglement wedge.
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Proposition 7.3.16. Let Λ be the layer of the network at which the code is cut off.
Consider a bulk ball entanglement wedge 𝑅 starting at a point 𝑧, and let 𝑔 be the
distance of the point 𝑧 to 𝑂 (note that 𝑔 is the Gromov product of any two ends of
the boundary of the entanglement wedge on the tensor network.) Then, if 𝑞 ≥ 3, the
number of tile edges in 𝑅 at layer less than Λ which are contained in 𝜕𝑅 equals

𝑁𝑡𝑖𝑙𝑒𝑠 =
2

𝑞 − 2
((𝑞 − 1)Λ−𝑔+1 − 1) − 1

if the entanglement wedge is delimited by a tree-wall, and

𝑁𝑡𝑖𝑙𝑒𝑠 =
2

𝑞 − 2
((𝑞 − 1)Λ−𝑔+1 − 1)

if the entanglement wedge is delimited by two half-tree-walls.

Proof. This is a direct consequence of the tree structure of the boundary of the
entanglement wedge. □

At each of these tiles, 𝑞 − 1 links are cut. Therefore,

𝑁𝑐𝑢𝑡 = (𝑞 − 1)
(

2
𝑞 − 2

((𝑞 − 1)Λ−𝑔+1 − 1) − 1
)
,

or
𝑁𝑐𝑢𝑡 = (𝑞 − 1) 2

𝑞 − 2
((𝑞 − 1)Λ−𝑔+1 − 1).

Hence,

𝑁𝑐𝑢𝑡 ∼
2

𝑞 − 2
(𝑞 − 1)Λ+2
(𝑞 − 1)𝑔 .

We now follow arguments of [77] to obtain a precise Ryu–Takayanagi formula for
ball-shaped regions of the boundary.

Let us consider the case 𝑞 > 2. Let Hdim 𝜕𝐼𝑝,𝑞 denote the Hausdorff dimension
Hdim 𝛿𝑥 of Theorem 1.1 and 1.2a of [77] (see Lemma 3.1.4 of [77]).

Theorem 7.3.17. The Ryu–Takayanagi formula holds for ball entanglement wedges
in 𝐼𝑝,𝑞, as in Lemma 7.3.14, with

𝐶−1𝑟 𝛽 ≤ 𝑁𝑐𝑢𝑡

(𝑞 − 1)Λ
≤ 𝐶𝑟 𝛽, (7.4)

for a constant 𝐶 > 0 (independent of the boundary region), and with

𝛽 = Hdim 𝜕𝐼𝑝,𝑞 − 1, (7.5)

with 𝑟 the radius of the boundary ball.
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Proof. In [77], it is proven that there exists a visual metric 𝛿𝑥 of parameter 𝑒𝜏(𝑝,2) on
the boundary of the Bourdon building, where 𝜏(𝑝, 2) is the growth rate of the Weyl
group of the building. By definition of the distance 𝛿𝑥 , the radius of a boundary ball
is controlled by 𝑎−𝑔 = 𝑒−𝑔𝜏(𝑝,2) .3 Note that then,

𝑁𝑐𝑢𝑡

(𝑞 − 1)Λ
∼ 1
(𝑞 − 1)𝑔 ∼ 𝑟

𝛽, (7.6)

where
𝛽 =

log(𝑞 − 1)
𝜏(𝑝, 2) . (7.7)

For this specific choice of 𝑎 = 𝑒𝜏(𝑝,2) , it can be shown [126] that

𝛽 = Hdim 𝛿𝑥 − 1. (7.8)

This is because in the case of the Bourdon building, we have [77]

Hdim 𝛿𝑥 =
𝜏(𝑝, 𝑞)
𝜏(𝑝, 2) , (7.9)

and
𝜏(𝑝, 𝑞) = 𝜏(𝑝, 2) + log(𝑞 − 1). (7.10)

□

Remark 7.3.18. This proof implies, among other things, that this choice of 𝛿𝑥
realizes the conformal dimension of the boundary of the Bourdon building [126].
This is an important result from the point of view of geometric group theory.

This result is quite striking: it tells us that entanglement entropy in our tensor
network knows about the Hausdorff dimension of the boundary! It is also nice to
realize that this behavior is in agreement with cases of holographic CFTs whose
Cauchy slice dimension is an integer strictly larger than 1: in this case it is known
that CFT entanglement entropy scales as a power law in the radius, where the
exponent is dictated by the dimension of the time slice of the boundary minus one.
Therefore, it seems like our tensor network is simulating a conformal field theory
on a fractal! Ryu–Takayanagi surfaces in the network are given by rooted trees, and
the entanglement entropy for corresponding ball-shaped regions are given by our
power law.

3One can make this statement more rigorous by using Sullivan’s shadow lemma, described in
Appendix 7.7, to relate the geometry of the group Γ to that of the Bourdon building itself. See also
Section 3.2 of [77].
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The case of HaPPY-like tilings
The case 𝑞 = 2 corresponds to a Fuchsian tiling of the hyperbolic plane, i.e., to
a 𝑝-gon HaPPY tiling. In this case, it is easier to link 𝑁𝑐𝑢𝑡 with the size of the
boundary ball. Indeed, we have

𝑁𝑡𝑖𝑙𝑒𝑠 = 𝑁𝑐𝑢𝑡 = 2(Λ − 𝑔) + 1,

and the size 𝑟 of the boundary region satisfies

−𝑔 ∼ log 𝑟.

Hence
𝑁𝑐𝑢𝑡 ∼ log

𝑟

𝜀
,

where
𝜀 = 𝑒−

Λ
𝛼

for some 𝛼 > 0. This approximately reproduces the logarithmic behavior of entan-
glement entropy on the boundary.

The infinite-dimensional limit: Hilbert spaces and nets of local algebras
One of the advantages of our construction is that it provides us with a large family of
nets of infinite-dimensional exact quantum error-correcting codes with complemen-
tary recovery. It is therefore an explicit example of nets of conditional expectations,
as introduced by Faulkner in [164].

Let us first associate an infinite-dimensional code and a physical Hilbert space to
our tensor network. The idea will be to take a direct limit of Hilbert spaces, both in
the bulk and on the boundary.

Proposition 7.3.19. There is an injection HΛ
𝑐𝑜𝑑𝑒
→ HΛ+1

𝑐𝑜𝑑𝑒
of Hilbert spaces from

the truncated network at layer Λ to level Λ + 1 compatible with the maps 𝑢Λ :
HΛ
𝑐𝑜𝑑𝑒
→HΛ

𝑝ℎ𝑦𝑠
through commutative diagrams. These maps define as direct limits

the infinite dimensional Hilbert spaces

H𝑐𝑜𝑑𝑒 = lim−−→
Λ

HΛ
𝑐𝑜𝑑𝑒 and H𝑝ℎ𝑦𝑠 = lim−−→

Λ

HΛ
𝑝ℎ𝑦𝑠 (7.11)

with an induced isometry 𝑢 : H𝑐𝑜𝑑𝑒 →H𝑝ℎ𝑦𝑠.

Proof. For the bulk Hilbert space, define a reference state for the dangling qudits.
Let us denote it by |ref⟩. IfHΛ

𝑐𝑜𝑑𝑒
denotes the code subspace of the truncated network
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at layer Λ, we define an injection HΛ
𝑐𝑜𝑑𝑒
→ HΛ+1

𝑐𝑜𝑑𝑒
by tensoring the state of HΛ

𝑐𝑜𝑑𝑒

with qudits in the state |ref⟩ at layer Λ + 1.4 In order to construct a map fromHΛ
𝑝ℎ𝑦𝑠

toHΛ+1
𝑝ℎ𝑦𝑠

, we simply take the state at layer Λ, and map it through the tensor network
from layer Λ to layer Λ + 1, with all dangling bulk nodes fixed in the state |ref⟩. If
𝑢Λ denotes the map fromHΛ

𝑐𝑜𝑑𝑒
toHΛ

𝑝ℎ𝑦𝑠
, we then obtain a commutative diagram of

the form

H1
𝑐𝑜𝑑𝑒

→ H2
𝑐𝑜𝑑𝑒

→ · · ·
↓ ↓
H1
𝑝ℎ𝑦𝑠

→ H2
𝑝ℎ𝑦𝑠

→ · · · ,

(7.12)

where the horizontal arrows denote the bulk-to-bulk maps and boundary-to-boundary
maps, and the vertical arrows denote the isometries 𝑢Λ. We can then take the direct
limit of this diagram and define

H𝑐𝑜𝑑𝑒 = lim
−→
Λ

HΛ
𝑐𝑜𝑑𝑒,

and
H𝑝ℎ𝑦𝑠 = lim

−→
Λ

HΛ
𝑝ℎ𝑦𝑠,

as well as an isometry
𝑢 : H𝑐𝑜𝑑𝑒 →H𝑝ℎ𝑦𝑠

as in (7.11). □

Now, we are interested in studying a net of local observables on the boundary, and
assigning an entanglement wedge to each of them.

Theorem 7.3.20. For a given entanglement wedge associated to a tile 𝑇 as before,
there are 𝐶∗-algebras A𝑐𝑜𝑑𝑒 and A𝑝ℎ𝑦𝑠, obtained as direct limits of entanglement
wedge algebrasAΛ

𝑐𝑜𝑑𝑒
at layersΛ and their bulk-to-boundary maps. They are related

by a unital isometric ★-homomorphism 𝜄 : A𝑐𝑜𝑑𝑒 → A𝑝ℎ𝑦𝑠, which is compatible
with the isometry 𝑢 : H𝑐𝑜𝑑𝑒 → H𝑝ℎ𝑦𝑠 of Proposition 7.3.19 in the sense that
𝜄(𝐴)𝑢 = 𝑢𝐴.

Proof. For this, consider a bulk tile𝑇 , and define an entanglement wedge associated
to this tile as in Subsection 7.3. On top of each bulk qudit, we introduce a finite-
dimensional algebra M𝑑 (C). The entanglement wedge algebra AΛ

𝑐𝑜𝑑𝑒
at layer Λ

4These maps have a few shortcomings, like the fact that they do not create an entangled bulk
state. See [195] for another possible choice of Hilbert space maps. However, our maps here have
good functorial properties at the level of operators, and will be enough for our purposes.
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is given by the tensor product of all bulk dangling legs, and the map from AΛ

to AΛ+1 is given by tensoring with the identity on qudits at layer Λ + 1. Recall
that there is a well-defined bulk-to-boundary map 𝜄Λ at the level of operators, by
successively tensoring with the appropriate number of identities and conjugating by
perfect tensor unitaries [372],5 and that by the previous subsections, this map has a
range contained on the boundary of the entanglement wedge defined by𝑇 . Moreover,
one can define a map from the complement algebra to the complement boundary
region, by complementary recovery. We can use the 𝜄Λ to define a boundary-to-
boundary map at the level of algebras: just add one more layer of tensor network,
and conjugate an operator by the perfect tensor isometries with identitity matrices
on the new bulk nodes, following the map given by 𝜄Λ+1. We then obtain another
commutative diagram of the form

A1
𝑐𝑜𝑑𝑒
(𝑇) → A2

𝑐𝑜𝑑𝑒
(𝑇) → · · ·

↓ ↓
A1
𝑝ℎ𝑦𝑠
(𝑇) → A2

𝑝ℎ𝑦𝑠
(𝑇) → · · · ,

(7.13)

where the horizontal arrows are the bulk-to-bulk and boundary-to-boundary maps,
and the vertical arrows are the 𝜄Λ. Like in the previous case, we can take the direct
limit 𝐶∗-algebra, and we obtain two 𝐶∗-algebras A𝑐𝑜𝑑𝑒 and A𝑝ℎ𝑦𝑠, related by a
unital isometric ∗-homomorphism

𝜄 : A𝑐𝑜𝑑𝑒 → A𝑝ℎ𝑦𝑠 .

Moreover we can see A𝑐𝑜𝑑𝑒 and A𝑝ℎ𝑦𝑠 as acting on H𝑐𝑜𝑑𝑒 and H𝑝ℎ𝑦𝑠, and by
construction of 𝜄, for 𝐴 ∈ A𝑐𝑜𝑑𝑒,

𝜄(𝐴)𝑢 = 𝑢𝐴,

and similarly for the complementary algebras. □

Note that this construction depends on our choice of map 𝜄, which is not always
unique. For example, it is not unique in the case of the pentagonal HaPPY code.
This breaks the symmetry of the network, but it still gives rise to a net of holographic
conditional expectations in the sense of [164] (with the difference that we left the
construction here at the level of 𝐶∗-algebras).

5This map is not unique.
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7.4 The general case: holographic tensor networks on hyperbolic buildings
Our construction for the case of Bourdon buildings can be generalized to a much
larger class of buildings in various integer bulk dimensions and non-integer boundary
Hausdorff dimension. We first give a set of sufficient conditions for our construction
to easily generalize. We then introduce a few interesting examples of tensor networks
that satisfy these conditions.

A class of tensor networks
We want to extend our construction to a well-chosen class of hyperbolic buildings.
In order for the same method to work, we need to check the following conditions:

• The tensor network still defines an isometric map at each layer.

• Complementary recovery still works for well-chosen entanglement wedges.

• The Ryu–Takayanagi scaling of the entanglement entropy for well-chosen
boundary balls still follows a power law of exponent 𝛽 − 1, where 𝛽 encodes
the dimension of the boundary time slice, if 𝛽 > 1, or a logarithmic behavior
if 𝛽 = 1.

First, in order to show that the tensor network defines an isometric map at each layer,
we had to use the fact that, given a central chamber and a fixed apartment containing
it, any chamber of that apartment is adjacent to more outgoing tiles further away
from the center than tiles closer or equidistant to the center. Thus, our argument only
used the apartment structure. We are therefore reduced to finding a condition of the
Weyl group of our building that guarantees that it maps the bulk to the boundary
Hilbert spaces isometrically. An explicit sufficient condition on the Coxeter system
has been found by Kohler and Cubitt (see Section 6.1.2 of [280]), and we use it here:

Definition 7.4.1. Let 𝐵 be a building of Weyl group𝑊 with Coxeter system (𝑊, 𝑆).
Let F := {𝐽 ⊂ 𝑆,𝑊𝐽 is finite}. We will say that 𝐵 satisfies the isometry condition
if for all 𝐽 ∈ F ,

|𝐽 | ≤ 𝑡 − 2
2
,

where 𝑡 is the number of indices of the perfect tensor, divided by the branching.

Lemma 7.4.2. The isometry condition is always satisfied for a right-angled hyper-
bolic building.
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Proof. Indeed, in that case the Coxeter system associated to the building has matrix
entries 2 and ∞. Hence, the subsets 𝐽 of 𝑆 for which 𝑊𝐽 is finite can only contain
elements for which the Coxeter matrix elements for each pair are 2. These must
then be adjacent faces in the basic chamber of the building. Now, a hyperbolic
polytope can be right angled iff it has more faces than a hypercube. This means
that a maximal set of adjacent faces will always have less elements than half of the
number of faces of the polytope. Identifying Coxeter generators with the faces of
the polytope, and recalling that there is always at least one dangling leg inside the
perfect tensors, we obtain the isometry condition. □

Remark 7.4.3. When the isometry condition is satisfied on top of our other condi-
tions, a slight adaptation of the argument of [372] shows that our building defines
an isometry from the bulk to the boundary at all layers.

The second point that needs to be confirmed is complementary recovery for well-
chosen entanglement wedges.

Lemma 7.4.4. The entanglement wedge constructions of Section 7.3 extend to
arbitrary hyperbolic buildings satisfying the isometry condition and satisfy comple-
mentary recovery.

Proof. This is guaranteed by the building structure of our networks. More precisely,
consider a link in the building, and an (𝑛−1)-polytope 𝑃 on that link corresponding
to a given tensor in the network. Embed 𝑃 into a given apartment of the network.
This apartment is isomorphic to a hyperbolic Coxeter system, hence we can repeat
the construction of the previous section and use the link to construct a partition of
the bulk into reconstructable regions. The other definition in terms of one single
hyperplane (generalization of the tree-wall) is even more straightforward. □

The third and last point is probably the most subtle one: our argument on the
Hausdorff dimension scaling required calculating the Hausdorff dimension of the
Bourdon building for a specific visual metric. A full study is out of the scope of this
chapter, but in order to be able to generalize it, we want our building chambers to
each connect to the same number of edges through a wall, and to use the transitivity
of the action of the isometry group of 𝑋 on the set of apartments that contain it,
to reproduce the proof of the Ryu–Takayanagi scaling. This requires 𝐵 to contain
a chamber whose fixator in the isometry group of 𝑋 acts transitively on the set of
apartments that contain it. We now obtain the following result:
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Theorem 7.4.5. Let 𝐵 be an 𝑛-dimensional hyperbolic building such that:

• The Weyl group of 𝐵 satisfies the isometry condition.

• The link at each point is the same, and each (𝑛 − 1)-polytope of the link is
𝑞-valent (in the sense that it touches 𝑞 other (𝑛 − 1)-polytopes) for some 𝑞.

• 𝐵 contains a chamber whose fixator in the isometry group of 𝑋 acts transitively
on the set of apartments that contain it.

Then, 𝐵 defines a quantum error-correcting code with complementary recovery for
well-chosen bulk regions, and in a large class of these tensor networks, for these
regions, the size of the Ryu–Takayanagi surface scales like 𝑟 𝛽−1, where 𝑟 is the
radius of the associated boundary ball, and 𝛽 is the scaling dimension of 𝜕𝐵.

Remark 7.4.6. Note that in this theorem, the Ryu–Takayanagi formula scales like
the scaling dimension (self-similarity dimension, see Chapter 4 of [374]) of the
boundary, but not necessarily like the Hausdorff dimension of a given visual metric.
This is because in order for these two dimensions to be equal, one needs to show
the existence of a visual metric with such a Hausdorff dimension, and this existence
property is not always guaranteed. In the case of the Bourdon building, it was
shown [77] that this could be done by explicitly constructing a visual metric with
parameter 𝑎 equal to the growth rate of the Weyl group of the building, that realizes
the conformal dimension. However, it is a difficult and important problem in
geometric group theory to understand when such a metric can be constructed in
higher dimension. In particular, we expect this question to be related to subtle
rigidity properties of the buildings. Even in order to show a matching of the scaling
dimensions, one needs to have some nice formula that relates the growth rates of the
building and of its apartments. See for example [110], where some partial answers
to these questions are given in the case of right-angled buildings, particularly in
three dimensions. We leave a more precise study of the scaling properties of the RT
surfaces in higher-rank buildings, as well as of these issues related to the comparison
of Hausdorff, scaling and conformal dimensions, to future work.

Higher dimensional examples
We now show that our techniques can be adapted to construct holographic codes in ar-
bitrary integer dimensions (as well as non-integer boundary Hausdorff dimensions).
This will be done through an explicit construction, due to Davis–Moussong, of an
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interesting class of hyperbolic buildings in any given dimension. This construction
is slightly more technical than the rest of the chapter, the main takeaway being that
holographic codes exist in all integer bulk dimensions, and that the Ryu–Takayanagi
formula and entanglement wedge reconstruction for well-chosen regions, carry over
to these more general cases.

We have focused primarily on the Bourdon buildings, which are the primary example
of hyperbolic buildings. More generally, it is known that hyperbolic buildings are
more difficult to obtain than Euclidean ones. Indeed, if one takes as part of the
definition of buildings the requirement that they are polyhedral complexes where
apartments are (in the hyperbolic case) polyhedrally isometric to a tesselation of the
𝑛-dimensional hyperbolic space, then there are strong restrictions on the dimension
of hyperbolic buildings. There is a bound 𝑛 ≤ 29 on the dimension of a compact
convex hyperbolic Coxeter polytope [446]. In particular, Theorem 7.4.5, as stated,
only applies in this range.

In the case of the Bourdon buildings, as we have seen, a useful property is the
fact that they are right-angled buildings. In general, a Coxeter system (𝑊, 𝑆) is
right-angled if all the 𝑚𝑖 𝑗 with 𝑖 ≠ 𝑗 in the relations are equal to 2 or ∞. With
this further requirement, it is known that right-angled Coxeter polytopes can only
exist in dimension 𝑛 ≤ 4 [390]. Thus, right-angled hyperbolic buildings (with the
definition as above) can only exist in dimension 𝑛 ≤ 4.

This seems to limit the range of validity of the general setting we introduced above for
the construction of holographic tensor networks on hyperbolic buildings. However,
it is in fact possible to relax slightly the definition of buildings in such a way that
right-angled hyperbolic buildings will be available in arbitrary dimension. This was
done in [260] by considering geometries where the apartments are Davis–Moussong
complexes of the Coxeter group𝑊 , instead of copies of hyperbolic space tessellated
by the action of𝑊 . In general, the Davis–Moussong complex associated to a Coxeter
system (𝑊, 𝑆) is a piecewise Euclidean (non-positively curved) polyhedral complex
with a properly discontinuous cocompact action of𝑊 , see [133, 348].

The construction of the Davis–Moussong complex 𝐾 (𝑊, 𝑆) is obtained in the fol-
lowing way [348]. Given a Coxeter system, the associated nerve 𝑁 (𝑊, 𝑆) is the
simplicial complex with one vertex for each element of 𝑆, with subset𝑇 ⊂ 𝑆 defining
a simplex of 𝑁 (𝑊, 𝑆) if the subgroup 𝑊𝑇 ⊂ 𝑊 generated by 𝑇 is finite. Let 𝑁′ be
the barycentric subdivision of 𝑁 = 𝑁 (𝑊, 𝑆) and let𝐶𝑁′ be the cone of 𝑁′. For each
𝑠 ∈ 𝑆 let 𝑋𝑠 be the closed star of the vertex 𝑠 in 𝑁′. The collection 𝑀 = {𝑋𝑠}𝑠∈𝑆 of
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closed subspaces of 𝑋 = 𝐶𝑁′ is called the set of panels. For 𝑥 ∈ 𝑋 one also sets
𝑆(𝑥) := {𝑠 ∈ 𝑆 | 𝑥 ∈ 𝑋𝑠}. There is an associated a universal 𝑊-space 𝑈 (𝑊, 𝑋, 𝑀),
with a CW complex structure, given by the quotient of 𝑊 × 𝑋 by the equivalence
relation (𝑤, 𝑥) ∼ (𝑤′𝑥′) if 𝑥 = 𝑥′ and 𝑤−1𝑤′ ∈ 𝑊𝑆(𝑥) . This space is universal with
respect to maps 𝑓 : 𝑋 → 𝑌 with 𝑠 𝑓 (𝑥) = 𝑓 (𝑥) for 𝑥 ∈ 𝑋𝑠: each such map uniquely
extends to a continuous 𝑊-equivariant map 𝑓 : 𝑈 → 𝑌 . The Davis–Moussong
complex is 𝐾 (𝑊, 𝑆) = 𝑈 (𝑊,𝐶𝑁′, 𝑀). It is contractible with 𝐾 (𝑊, 𝑆)/𝑊 ≃ 𝐶𝑁′.

There is a characterization of hyperbolic Coxeter groups, in terms of the presence
of a hyperbolic structure on the Davis–Moussong complex 𝐾 (𝑊, 𝑆). The Coxeter
group is hyperbolic iff it contains no subgroup isomorphic to Z ⊕ Z. This condition
is in turn equivalent to the condition that there is no subset 𝑇 ⊂ 𝑆 with𝑊𝑇 an affine
Coxeter system of rank ≥ 3 and there are no pairs 𝑇1, 𝑇2 of disjoint subsets of 𝑆
for which 𝑊𝑇1 and 𝑊𝑇2 commute and are infinite, see Theorem 17.1 of [348]. This
last condition in turn implies that 𝐾 (𝑊, 𝑆) can be given a hyperbolic structure by
considering for each𝑇 ⊂ 𝑆 with𝑊𝑇 finite a hyperbolic spaceH𝑛𝑇 with 𝑛𝑇 = #𝑇 . The
building blocks of 𝐶𝑁′ are the 𝐶𝑁 (𝑊𝑇 , 𝑇)′ for 𝑇 ⊂ 𝑆 with𝑊𝑇 finite. Each of these
building blocks is homeomorphic to a combinatorial 𝑛𝑇 -cube 𝐵(𝑊𝑇 )𝜖 ⊂ H𝑛𝑇 , for
some 𝜖 > 0 (see [348] for more details). These building blocks are glued together
according to the relations of subsets 𝑇 ⊂ 𝑆 into a decomposition of 𝐾 (𝑊, 𝑆). The
condition above on the hyperbolicity of the Coxeter group𝑊 ensures that, with this
hyperbolic structure on the blocks 𝐶𝑁 (𝑊𝑇 , 𝑇)′, the complex 𝐾 (𝑊, 𝑆) itself has a
the structure of a hyperbolic complex.

The difference with the usual apartments of buildings in the more restrictive sense
is that here the contractible manifolds 𝐾 (𝑊, 𝑆) are in general not homeomorphic
to Euclidean space (hence not tessellated copies of H𝑛). Indeed, the boundary at
infinity of 𝐾 (𝑊, 𝑆) is not necessarily simply connected, but it has the topology of a
generalized (𝑛 − 1)-dimensional homology sphere, see [133] and [260].

The construction of [260] of higher dimensional right-angled hyperbolic buildings
with Davis–Moussong complexes as apartments is obtained via complexes of groups.

A complex of groups is an assignment of groups and compatible maps to a simplicial
complex that reflects the properties of the orbit space of a group action on a cell
complex, see [129]. It generalizes the Bass–Serre construction of graphs of groups.

A complex of groups𝐺 (𝐾) consists of combinatorial CW complex 𝐾 (namely a CW
complex that is either simplicial or that can be subdivided into simplicial complexes),
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with a group 𝐺𝑒𝛼 assigned to each cell 𝑒𝛼 and monomorphisms 𝜙𝛼,𝛽 : 𝐺𝑒𝛼 → 𝐺𝑒𝛽

for each cell 𝑒𝛽 in the boundary of 𝑒𝛼. Boundary inclusions 𝑒𝛾 ⊂ 𝑒𝛽 ⊂ 𝑒𝛼 give
𝐴𝑑 (𝑔)𝜙𝛼,𝛾 = 𝜙𝛽,𝛾 ◦ 𝜙𝛼,𝛽, for some 𝑔 ∈ 𝐺𝑒𝛾 acting by conjugation. For our purposes
we can assume that 𝐾 is a polyhedral complex (or a simplicial complex after passing
to barycentric subdivision).

The complex of groups associated to a simplicial action of a group on a combinatorial
cell complex has finite stabilizer groups attached to the cells, with monomorphisms
of stabilizers contravariantly associated to inclusions of cells. A complex of groups
is developable if it is the complex of groups associated to a simplicial action of
a group on a simply connected combinatorial cell complex. Not all complexes of
groups are developable, but developability is implied by a non-positively curved
condition [84].

The construction via complexes of groups of a right-angled building with apartments
shaped as Davis–Moussong complexes 𝐾 (𝑊, 𝑆) is obtained as follows. Start with a
right-angled Coxeter system (𝑊, 𝑆) that satisfies the hyperbolicity condition above,
so that 𝐾 (𝑊, 𝑆) has a hyperbolic structure. Take as additional datum a set {𝑞𝑠}𝑠∈𝑆
of integers 𝑞𝑠 ≥ 2, and let 𝐺𝑠 be a group of order 𝑞𝑠. As above, vertices of 𝐶𝑁′

has type some 𝐽 ⊂ 𝑆 with 𝑊𝐽 finite. Let 𝐺 (𝐾) be the complex of groups that
assigns to a vertex of type 𝐽 the group given by the direct product 𝐺𝐽 = ⨿𝑠∈𝐽𝐺𝑠,
with maps given by inclusions. This complex of groups is developable with cover a
right-angled building. As above let 𝑋𝑠 be the closed star of the vertex 𝑠 in 𝑁′. Each
copy of 𝑋𝑠 is contained in 𝑞𝑠 chambers in this building, with each chamber given
by a copy of 𝐶𝑁′.

The existence in any dimension of this type of hyperbolic buildings with Davis–
Moussong apartments is then proved in [260] by showing the existence in any
dimension of a right-angled Coxeter system (𝑊, 𝑆) satisfying the hyperbolicity
condition, i.e., containing no subgroup isomorphic to Z ⊕ Z.

This class of buildings satisfy our conditions for tensor networks with good holo-
graphic properties.

Theorem 7.4.7. The hyperbolic buildings built using Davis–Moussong complexes
and with all the 𝑞𝑠 = 𝑞, satisfy the isometry condition and have complementary
recovery.

Proof. The isometry condition is still satisfied: as shown in [348], the girth of the
links is strictly greater than 2𝜋, which means that if one fixes a vertex of a chamber
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of the building, as the chamber is right-angled, more faces of the chamber will not
touch that vertex than touch it, and 𝑊𝐽 can be finite only if 𝐽 only contains faces
that touch the same vertex. This same argument allows us to prove complementary
recovery for well-chosen regions (generalizations of either tree-walls or vertex-based
entanglement wedges). The third condition formulated in Theorem 7.4.5 is satisfied
by construction: the Davis–Moussong complex can be seen as the quotient of the
building by the action of the group developed by the complex of stabilizers. So
by acting on an apartment by all the group elements that stabilize a given cell
(which makes sense because the action is simplicial), one can obtain all apartments
containing that cell. □

Remark 7.4.8. In the proof, we also included a discussion of the third condition of
Theorem 7.4.5, and it should also be possible to formulate a nice statement about
of the area of the Ryu–Takayanagi surfaces in terms of the scaling, Hausdorff or
conformal dimensions of the boundary. This question should also be interesting
from the point of view of geometric group theory.

In particular, this shows the existence of tensor networks with good holographic
properties in arbitrary dimension.

7.5 Discussion
In this chapter, we explained how one could construct a large class of holographic
tensor networks from hyperbolic buildings. The language of buildings and Gromov-
hyperbolicity allows to recover the usual properties of hyperbolic tensor networks
and to describe them in a unified way. In particular, our buildings:

• Contain a large class of bulk regions that satisfy complementary recovery.
These regions admit an explicit description in terms of building theory.

• Satisfy the Ryu–Takayanagi formula. For ball-shaped boundary regions of
Hausdorff dimension strictly greater than 1, the entanglement entropy of
holographic states follows a power law in the radius of the ball, with exponent
given by the Hausdorff dimension of the boundary minus one, in a large
number of cases including the one of Bourdon buildings. If the boundary has
dimension 1, we recover the logarithmic scaling of the HaPPY code.

• Exist for boundaries of all integer dimensions, and therefore provide explicit
examples of holographic codes in all integer dimensions.
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• Recover all known holographic codes constructed out of networks of perfect
tensors as particular cases. In particular, the HaPPY code as well as the
higher-dimensional examples of [280] can be studied through the lens of our
construction.

Several future directions can be envisioned. First, we only considered holographic
codes made out of perfect tensors in this chapter, but it would be nice to study
holographic codes made out of random tensors in our context.

It would also be interesting to understand the situation for disconnected boundary re-
gions better. Our explicit entanglement wedge constructions all involve a connected
boundary region, and it would be nice to understand whether similar descriptions
based on building theory hold for disconnected boundary regions.

Another question is whether the fact that the entanglement entropy of ball-shaped
regions sees the fractal dimension of the boundary means that it could be possible
to define theories that resemble conformal field theory on a fractal background (see
[81] for a related attempt in one dimension).

It is also interesting to ask if more general objects than hyperbolic buildings are
well-adapted to the construction of holographic codes. In particular, it would be
interesting to understand if quotients of our buildings can be taken in order to describe
nontrivial bulk topologies in the spirit of the BTZ-like topologies constructed in
[238]. We expect that the setup of latin square designs [116] might be helpful to
think about this kind of problem.

Finally, this chapter showed that the theory of Gromov hyperbolicity can be very use-
ful to show geometric results about the bulk, such as the Ryu–Takayanagi formula.
One can then wonder whether the notions of Gromov product and of hyperbolicity
can also be utilized in the continuum, to understand the geometric structure of the
bulk in full AdS/CFT.

7.6 Appendix: An example: the building 𝐼5,3
In this appendix, we explicitly compute the various quantities and regions described
in the bulk of the chapter in the case of the simplest Bourdon building: the building
𝐼5,3.

We first describe explicitly the structure of the building 𝐼5,3.
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• Apartment structure: The apartments of the building 𝐼5,3 are HaPPY tes-
sellations of the hyperbolic plane: regular, right-angled tessellations by pen-
tagons. Their Schläfli symbols are {5, 4}. Their Coxeter group is generated
by five reflections 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5 such that (𝑟𝑖𝑟𝑖+1)2 = 1 (where the index is
understood modulo 5).

• Link: The link is the bipartite complete graph 𝐾 (3, 3). This means that at
each vertex of the building, six edges concur. These six edges can be split
into two groups of three. Each edge shares a face only with the three edges of
the opposite group.

Then, we introduce the growth rates of the Weyl group and the isometry group of
the building [77]:

• Growth rate of the Weyl group: The growth rate of the Weyl group is equal
to

𝜏(5, 2) = Arccosh
(
3
2

)
. (7.14)

• Growth rate of the isometry group: The growth rate of the isometry group
is equal to

𝜏(5, 3) = Arccosh
(
3
2

)
+ log 2. (7.15)

In the case of the Bourdon building, it is possible to show [77] that there exist visual
metrics on 𝜕𝐼5,3 whose Hausdorff dimension realizes the conformal dimension of
the building, and is equal to the ratio of the growth rate of the isometry group by the
growth rate of the Weyl group. We then have:

Hdim(𝜕𝐼𝑝,𝑞) = 1 + log 2

Arccosh
(

3
2

) . (7.16)

The second term on the right hand side corresponds to the exponent of the scaling
of entanglement entropy.

Finally, we describe “ball entanglement wedge" bulk regions that satisfy comple-
mentary recovery in the building 𝐼5,3. They are delimited either by a tree-wall or by
the intersection of two tree-walls. In the case of 𝐼5,3, a tree-wall divides the building
into three valid entanglement wedges (see Figure 7.4).
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Figure 7.4: A tree-wall in 𝐼5,3 and its intersection with an apartment. The tree-wall
coincides with a geodesic in the HaPPY apartment, but at every tile, it divides
into two branches due to the link structure of 𝐼5,3. In the end, we end up with a
homogeneous trivalent tree.

7.7 Appendix: Quasi-conformal measures and Patterson–Sullivan theory
In this slightly more technical appendix, we elaborate on the idea that our networks
describe some features of an approximate conformal field theory on a fractal space.
The idea is that for any visual metric of the boundary of a Gromov hyperbolic group
(such as the isometry group of the Bourdon building, which can be identified with its
chambers), one can define a privileged measure that behaves “almost conformally"
under isometries. This measure is called the Patterson–Sullivan measure, and we
review its construction here. We begin with a few definitions:

Definition 7.7.1. Let 𝑟 be a geodesic ray in 𝑋 . The Busemann function associated
to 𝑟 is the map

ℎ : 𝑋 −→ R

𝑥 ↦−→ lim
𝑡→+∞

( |𝑥 − 𝑟 (𝑡) | − 𝑡).

Note that this function is well-defined by the triangle inequality.

Definition 7.7.2. Let Γ be a group of isometries of 𝑋 , let 𝛾 ∈ Γ. For 𝜉 ∈ 𝜕𝑋 ,
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choose a geodesic ray arriving at 𝜉, let ℎ be its Busemann function, and define

𝑗𝛾 (𝜉) := 𝑎Δ(𝜉) ,

where
Δ(𝜉) = ℎ(𝑂) − ℎ(𝛾−1𝑂).

Let 𝜇 be a regular Borel measure on 𝜕𝑋 , of finite nonzero total mass. Then, define

𝛾∗𝜇 := 𝜇 ◦ 𝛾.

The measure 𝜇 is said to be Γ-quasiconformal of dimension 𝐷 if all the 𝛾∗𝜇 are
absolutely continuous with respect to each other6 for 𝛾 ∈ Γ, and there exists 𝐶 ≥ 1
such that

𝐶−1 𝑗𝐷𝛾 ≤
𝑑𝛾∗𝜇

𝑑𝜇
≤ 𝐶 𝑗𝐷𝛾 ,

𝜇-almost everywhere.7

One can view a Γ-quasiconformal measure as a measure on 𝜕𝑋 for which Γ “behaves
like a conformal group." Under a reasonable assumption on Γ, there exists a generic
construction of such a Γ-quasiconformal measure, due to Patterson and Sullivan
[126].

Let 𝑌 be the orbit of 𝑂 under Γ. For 𝑅 ≥ 0, let 𝑛𝑌 (𝑅) be the number of points of 𝑌
within a distance 𝑅 of 𝑂.

Definition 7.7.3. We define the base-𝑎 critical exponent of Γ as

𝑒𝑎 (Γ) := limsup
𝑅→+∞

log𝑎𝑛𝑌 (𝑅)
𝑅

.

For 𝑠 ≥ 0, we define the Poincaré series

𝑔𝑌 (𝑠) :=
∑︁
𝑦∈𝑌

𝑎−𝑠 |𝑦 | .

One can then prove [126] that this series is divergent for 𝑠 < 𝑒𝑎 (Γ) and convergent
for 𝑠 > 𝑒𝑎 (Γ). Then, one can construct a sequence (𝑠𝑛) of limit 𝑒𝑎 (Γ), with
𝑠𝑖 > 𝑒𝑎 (Γ). Consider the sequence of measures

𝜇𝑛 :=
1

𝑔𝑌 (𝑠𝑛)
∑︁
𝑦∈𝑌

𝑎−𝑠𝑛 |𝑦 |𝛿𝑦,

6This means that they have the same zero-measure sets.
7That is, the inequality holds everywhere except for a set of measure zero as measured with

respect to 𝜇.
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where 𝛿𝑦 is the Dirac measure at 𝑦. As 𝑋 ∪ 𝜕𝑋 is compact, one can then extract
a weakly convergent subsequence of (𝜇𝑛). The limit 𝜇 of this subsequence is
called a Patterson–Sullivan measure for Γ and one can prove (up to some technical
refinements on the sequence (𝜇𝑛) in the case where the Poincaré series converges at
𝑒𝑎 (Γ)):

Proposition 7.7.4 ([126]). If 𝑒𝑎 (Γ) is finite, then the Patterson–Sullivan measure 𝜇
is Γ-quasiconformal of exponent 𝑒𝑎 (Γ). Moreover, its support is the limit set of Γ,
denoted Λ.

Under the extra assumption of Γ being quasi-convex cocompact [126], more can be
said about the space of Γ-quasiconformal measures on 𝜕𝑋:

Proposition 7.7.5 ([126]). If Γ is a quasi-convex cocompact group acting on 𝑋

such that 𝑒𝑎 (Γ) is finite, then, Λ has Hausdorff dimension 𝑒𝑎 (Γ), and the associated
Hausdorff measure is Γ-quasiconformal of dimension 𝑒𝑎 (Γ). Moreover, if 𝜇 is
another Γ-quasiconformal measure whose support is contained in Λ, then it has
dimension 𝑒𝑎 (Γ) and it is of the form 𝜓H , where H is the Hausdorff measure
of Λ and 𝜓 ∈ 𝐿∞0 (H). Reciprocally, all such measures are Γ-quasiconformal of
dimension 𝑒𝑎 (Γ) with support contained in Λ.

A lot of results in Patterson–Sullivan theory rely on Sullivan’s shadow lemma. We
state it here in its most general form, see also Lemma 8 of [462] for a useful variant:

Proposition 7.7.6 ([126], Proposition 6.1). Let 𝜇 be a Γ-quasiconformal measure of
dimension 𝐷 on 𝜕𝑋 . If 𝑂 (𝑥, 𝑑) is the intersection with 𝜕𝑋 of the set of all geodesic
rays starting at 𝑂 and passing at a distance smaller than 𝑑 of 𝑥, then there exist
constants 𝐶 ≥ 1 and 𝑑0 ≥ 0 such that for all 𝑑 ≥ 𝑑0 and 𝛾 ∈ Γ,

𝐶−1𝑟𝐷 ≤ 𝜇(𝑂 (𝑥, 𝑑)) ≤ 𝐶𝑟𝐷𝑎2𝐷𝑑 ,

where we have chosen 𝑥 = 𝛾−1𝑂, for the chosen base point 𝑂 and 𝑟 = 𝑎−|𝑥 |. The set
𝑂 (𝑥, 𝑑) is called the shadow on 𝜕𝑋 of the ball centered on 𝑥 with radius 𝑑.
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C h a p t e r 8

ON INFINITE TENSOR NETWORKS, COMPLEMENTARY
RECOVERY AND TYPE II FACTORS

This chapter is based on the work [102], in collaboration with Wissam Chemissany,
Alexander Jahn, Daniel Murphy and Leo Shaposhnik.

8.1 Motivation and setting
Tensor networks have become an ubiquitous tool in modern physics, ranging from
the description of ground states of many-body quantum-mechanical systems and
topological phases of matter [83, 109] to the study of quantum information aspects
of holographic dualities [431, 32, 33, 31, 258, 345, 88]. Despite their success in
describing physical systems, discussions of the continuum limit of finite dimen-
sional tensor networks have usually been limited to investigations of the limiting
correlation functions of local operators [381, 109] and a precise formulation of the
continuum limit in terms of a concrete Hilbert space and operators acting on it is
often left implicit. Although some models of continuum tensor networks, such as
continuous matrix product states (cMPS), can be understood in terms of a contin-
uum limit [443] from a lattice-based model, other more heuristic models, such as
the continuous multiscale entanglement renormalization ansatz (cMERA), do not
directly correspond to such a limit [217]. Based on wavelet models, the convergence
to a free quantum field theory of certain lattice models was shown in [459, 423, 366],
where an explicit realization of such a limit in terms of a MERA circuit was given in
[459]. However, tools to analyze the limits of more general tensor networks remain
limited; in particular, the operator algebras of subsystems are poorly understood.

In this work, we investigate such operator algebras in infinitely large tensor networks
for a class of layered tensor networks that can be associated with quantum error-
correcting codes, using tools from the theory of inductive systems and the description
of the observables of the system using local algebras, borrowing the language of
algebraic quantum field theory [213]. The use of inductive limits as a mathematical
tool to rigorously formulate the continuum limit of tensor networks has been inspired
by analogous studies in the context of Banach spaces and operator algebras [308].
This perspective has direct parallels with the layered tensor networks discussed
here, particularly in how local algebras and Hilbert spaces grow iteratively to form
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a limiting theory. Similar constructions were given in [365, 269, 195, 199, 196]
which focused on the formulation of the limiting systems and assignment of the
limiting Hilbert space but, with the exception of [269], did not discuss the type
of the resulting algebras. Furthermore, in [346, 422, 423, 459] similar methods
were used to prove convergence of certain lattice systems of free quantum field
theories based on wavelet models. In contrast to these studies aiming to obtain
quantum field theories that always have local algebras of type III1, we focus on
tensor networks on finite-dimensional Hilbert spaces that implement holographic
quantum error-correcting codes that a priori do not have to converge to a quantum
field theory. In particular, our goal is to determine the type of local algebra for these
networks from an entanglement-based perspective. We are able to compute the type
because we restrict ourselves to a very specific class of networks, namely networks
that implement quantum error-correcting codes with complementary recovery, also
known as holographic quantum error-correcting codes [10]. We will focus primarily
on the Harlow-Pastawski-Preskill-Yoshida (HaPPY) code model, which achieves
complementary recovery with a hyperbolic tensor network of perfect tensors [372].
As we will describe in the following, this property gives us strong control over the
structure of the state of the network during the iteration process and allows for a
direct mapping to the standard form of hyperfinite factors, the Araki-Woods-Powers
factors [26, 391], a possibility that was not made manifest in earlier studies of limits
of infinitely large instances of such codes [195, 199, 196].

The main result of our work concerns the appearance of type II von Neumann alge-
bras associated to boundary regions of the infinitely large HaPPY code that contain
infinite entanglement with their complementary region, but whose underlying entan-
glement pattern has the structure of maximally entangled Einstein-Podolski-Rosen
(EPR) pairs (Fig. 8.1(a)). These algebras famously allow for the definition of a trace
and reduced density matrices, notions which become ill-defined in systems with
more complicated entanglement divergences, such as the type III algebras found in
causally complete subregions of quantum field theories. As we shall show, type
II algebras appear naturally in the scaling limits of layered tensor networks with a
property known as complementary recovery. These were first considered in ten-
sor networks that model holographic bulk/boundary dualities and act as encoding
isometries of quantum error-correcting codes, known as holographic codes [10,
372, 257, 385]. As visualized in Fig. 8.1(b), holographic codes provide an isometric
map from a bulk to a boundary Hilbert space, and we consider those with a layered
structure such that the dimension of both Hilbert spaces diverges in the scaling
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EPR

(a) (b) (c)

Figure 8.1: (a) The Araki–Woods construction of a type II von Neumann algebra
A. One constructs an infinite series of maximally entangled pairs of qubits (EPR
pairs), one side of which constitutes a subsystem 𝐴 (with complement 𝐴𝑐) on
which operators in A act. (b) A layered tensor-network code forms an isometric
map between bulk qubits (red) and boundary qubits (white). Layers can be added
iteratively until both the number of bulk and boundary qubits become infinite.
The tensor network contraction (black connecting lines) itself acts as a projection
onto EPR pairs. (c) For a holographic tensor-network code with complementary
recovery, a bipartition of the boundary qubits induces a clean bipartition of the bulk
qubits along a Ryu-Takayanagi surface 𝛾𝐴. Adding more layers increases EPR-
like entanglement across 𝛾𝐴, again ultimately leading to a type II von Neumann
algebra for operators acting on 𝐴 in the limit of infinitely many layers, provided that
boundary states contain only finite bulk entanglement.

limit of infinitely many layers. Complementary recovery ensures that a bipartition
of the “physical” boundary qubits into the 𝐴 and 𝐴𝑐 subregions induces a clean
bipartition among the “logical” bulk qubits (Fig. 8.1(c)). Given this property, the
tensor network also splits into two parts connected by a contraction (projection onto
EPR pairs) that contributes to the entanglement between 𝐴 and 𝐴𝑐. By analogy
with continuum holography, this tensor network cut is commonly referred to as a
(discrete) Ryu-Takayanagi (RT) surface [401]. An operator-algebraic formulation
of complementary recovery for the finite-dimensional type I setting has already
been established in [225], with the appearance of 𝐶★ and von Neumann algebras
in the scaling limit studied in subsequent works [269, 196, 164, 168, 192]. The
contribution of our work is to show the precise decomposition of these algebras in
holographic codes in the inductive limit and how the “geometrical” entanglement
in these models leads to a type II von Neumann algebra.

The starting point of our work are tensor networks with a layered structure, i.e.,
iterative maps

|Ψ1⟩ ↦→ |Ψ2⟩ ↦→ |Ψ3⟩ ↦→ . . . (8.1)

between states of the network at different layers, each described by finite dimensional
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Hilbert spaces
H1 →H2 →H3 → . . . (8.2)

We assume that each of these Hilbert spaces spaces at layer Λ can be written as a
bipartition

HΛ = HΛ
𝐴 ⊗ H

Λ
𝐴𝑐 , (8.3)

which can be thought of as a decomposition of the space into “local” subsystems.
The sequences of networks are obtained by taking the network at layer Λ and
contracting it with a new layer of the network, which we encode by an isometric
operator 𝛾Λ,Λ+1 : HΛ →HΛ+1, such that

|ΨΛ+1⟩ = 𝛾Λ,Λ+1 |ΨΛ⟩ . (8.4)

𝛾Λ,Λ+1 has to be isometric, so we map normalized states to normalized states. The
collection of Hilbert spacesHΛ together with the maps 𝛾Λ,Λ+1 defined by the tensor
network is called an inductive system. As described later, this allows one to define
a limiting Hilbert space H that can intuitively be thought of as having a vacuum
described by a reference state of the infinite tensor network, together with states that
arise from acting with a local operator on a subregion of the tensor network during
the iteration procedure. Additionally, we demand of our network that, together with
the isometry 𝛾Λ,Λ+1 that translates between states at different layers, we can identify
a bounded operator 𝑂Λ ∈ B(HΛ) at layer Λ with an operator in the next layer. We
denote this identification as an operator-pushing map 𝜙Λ,Λ+1

𝑂Λ+1 = 𝜙Λ,Λ+1(𝑂Λ). (8.5)

and we demand that these are unital ∗-homomorphisms, i.e., they are linear maps
mapping the identity to the identity that respect multiplication of operators and
satisfy 𝜙Λ,Λ+1(𝑂†) = 𝜙Λ,Λ+1(𝑂)†, so that they preserve the algebraic structure.
Note that one might be tempted to implement 𝜙Λ,Λ+1 by a conjugation with isometry
𝛾Λ,Λ+1, which may appear natural in the tensor network but will not allow for good
reconstruction properties to study the inductive limit, as we shall see below. Instead,
we will define 𝜙Λ,Λ+1 in the HaPPY code as a conjugation with a unitary

𝜙Λ,Λ+1(𝑂) = 𝑈†(𝑂 ⊗ 11)𝑈†, (8.6)

where the unitary exists in an enlarged space on which the additional identity acts.1

We think of a subsystem at layer Λ as given by a subset of the legs 𝐴 of the tensor
1In the context of entanglement renormalization, such maps between layers are often referred to

as ascending superoperators [445].
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network state |ΨΛ⟩ with decomposition (8.3) and a global algebra

B(HΛ) = B(HΛ
𝐴 ) ⊗ B(H

Λ
𝐴𝑐 ), (8.7)

so that the operators belonging to 𝐴 are represented as elements of the local algebra

AΛ
𝐴 = B(HΛ

𝐴 ) ⊗ 11HΛ
𝐴𝑐
. (8.8)

Using the operator pushing map (8.5), we can push the whole algebraAΛ
𝐴

to the next
layer, thus also obtaining an inductive system of algebras (AΛ

𝐴
, 𝜙Λ,Λ+1). Therefore,

we can define its inductive limit A𝐴 which is an abstract 𝐶★-algebra that defines
the operators that are associated to 𝐴 in the limit Λ → ∞. This algebra can be
represented on the limiting Hilbert space H and the image can be completed to
a von Neumann algebra. The collection of all such von Neumann algebras then
defines a net of algebras N . We define the limiting theory to then be given by the
tuple (H ,N ,Ψ), where Ψ is the state of the infinite-dimensional tensor network
that, given operators 𝑂Λ that exist at layer Λ, is defined by

Ψ(𝑂) := ⟨ΨΛ |𝑂Λ |ΨΛ⟩ . (8.9)

and by a limiting procedure for more general operators.2 Performing this con-
struction and an analysis of the local algebras for tensor networks that represent
holographic quantum error-correcting codes is the main goal of this chapter. In
particular, we demonstrate that for the HaPPY code, the von Neumann algebras
associated to boundary subregions that satisfy complementary recovery are type II∞
factors. We begin by providing a recap of von Neumann algebras and inductive
limits in Sec. 8.2. In Sec. 8.3, we take the inductive limit of the HaPPY code and
show that II∞ factors emerge for subregions satisfying complementary recovery.
Then in Sec. 8.4 we provide a summary of our construction in the general case and
explain more generally how to determine the von Neumann algebra type. In Sec.
8.5, we discuss examples and generalizations of this construction, including other
tensor networks such as the MERA and those based on Majorana dimers. We end
with a general discussion in Sec. 8.6.

8.2 Background and preliminaries
We begin by laying the theoretical foundations for our analysis. This includes an
overview of von Neumann algebras, tensor networks, and the basics of the theory
of inductive limits.

2Note that this definition only makes sense if the operator pushing map is compatible with the
isometry, so that the value is independent of the layer at which one evaluates the state. We comment
further on this below.



396

A von Neumann algebra primer
In this section, we provide a brief introduction to the key concepts of von Neumann
algebras necessary to understand the following sections.

General von Neumann Algebras

To define a von Neumann algebra, one needs to first introduce 𝐶★-algebras. A
𝐶★-algebra A is built on a vector space over the complex numbers together with a
norm ∥.∥, a multiplication, an addition, and an involution † : 𝑎 → 𝑎†. The algebra
has to be complete for the norm, i.e., every Cauchy sequence 𝑎𝑛 ∈ A with respect
to ∥.∥ has a limit inA. A sequence (𝑎𝜇)∞1 is called a Cauchy sequence if, for every
𝛿, there exists an 𝑀 ∈ N such that for all 𝜇, 𝜈 ≥ 𝑀 , ∥𝑎𝜇 − 𝑎𝜈∥ < 𝛿. The involution
is an antilinear map that additionally satisfies

𝑎 = (𝑎†)† , (𝑎𝑏)† = 𝑏†𝑎† . (8.10)

Elements of a 𝐶★-algebra satisfy the usual rules of addition and multiplication, but
additionally the norm satisfies the condition

∥𝑎𝑎†∥ = ∥𝑎∥2. (8.11)

The simplest example is the set of bounded linear operators B(H) acting on a
Hilbert space H .3 In the following, we fix a Hilbert space H and restrict our
analysis to unital algebras, i.e., those that contain the identity 11. Defining a von
Neumann algebra involves introducing the commutant of a subset 𝑆 ⊂ B(H), which
is defined as the set of bounded operators that commute with all of 𝑆, i.e.,

𝑆′ := {𝑎 ∈ B(H) : [𝑎, 𝑠] = 0 ∀𝑠 ∈ 𝑆}. (8.12)

A von Neumann algebra is then defined as a subalgebra of B(H) that is closed
under Hermitian conjugation and equal to its double commutant, i.e.,

A = A′′. (8.13)

Now, given a self-adjoint subset 𝐴 ⊂ B(H), the double commutant

A := 𝐴′′ (8.14)

is always a von Neumann algebra, and is called the von Neumann algebra generated
by 𝐴. Von Neumann’s double commutant theorem [436, 428] establishes that this

3In general, a 𝐶★- algebra can be defined without making an explicit reference to an underlying
Hilbert space.
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is equivalent to the algebra A being closed in the weak operator topology (WOT).
This means that for a sequence 𝑎𝑛 ∈ A, there exists a bounded operator 𝑎 with

lim
𝑛→∞
⟨𝜉 |𝑎𝑛 |𝜓⟩ = ⟨𝜉 |𝑎 |𝜓⟩ (8.15)

for all states |𝜉⟩ and |𝜓⟩, then 𝑎 ∈ A. This implies that a von Neumann algebra is
automatically a 𝐶★-algebra, where the norm refers to the usual operator norm. This
is because if a sequence of operators converges in the operator norm, then it also
converges in the weak operator topology. Finally, a von Neumann algebra is called
a factor if

A ∩A′ = C11. (8.16)

A simple example of a factor can be found in a bipartite system whose Hilbert space
H takes on the form

H = H𝐴 ⊗ H𝐵. (8.17)

Consider the algebra
A = B(H𝐴) ⊗ 11, (8.18)

whose commutant reads
A′ = 11 ⊗ B(H𝐵), (8.19)

and is therefore clearly a factor.

Layered tensor networks
The main object of study in this chapter are limits of tensor networks that can be
constructed by an iteration across layers. Roughly speaking, given a Hilbert space
H that has the form H =

⊗𝑁

𝑖=1H𝑖, a tensor network is a representation of a state
|Ψ⟩ ∈ H that has a graph Γ associated to it. The graph has a set of vertices 𝑉
and edges 𝐸 , where 𝐸 is subdivided into a set of “bond” edges 𝐵 that connect two
vertices and “physical” edges 𝑃 that are only attached to one vertex. We associate a
Hilbert spaceH(𝑒,𝑣) to each edge 𝑒 ∈ 𝐸 adjacent to a vertex 𝑣 ∈ 𝑉 , i.e., for each bond
edge we have two Hilbert spaces, one for each vertex it connects to. We assume that
for any bond 𝑏 that connects vertices 𝑣1, 𝑣2, the Hilbert spaces H(𝑏,𝑣1) � H(𝑏,𝑣2)

are isomorphic, so that their dimensions match. The physical Hilbert spacesH𝑖 are
attached to physical edges in 𝑃. To obtain a tensor network state |Ψ⟩ one associates
to each vertex 𝑣 a state

|𝜓⟩𝑣 ∈
⊗
{(𝑒,𝑣)}

H(𝑒,𝑣) , (8.20)
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where the product runs over all edges connected to 𝑣. Given a collection of such
states for each vertex, one obtains the tensor network state by projecting the states
on the two sides of each bond edge 𝑏 ∈ 𝐵 onto the maximally entangled state,
which contracts the tensors characterizing the state at the vertex 𝑣 along the indices
associated to the bond, i.e., for any 𝑏 ∈ 𝐵 we define

|𝜒⟩𝑏 =
∑︁
𝑘

1√︁
dim(H𝑏)

|𝑘⟩𝑣1 ⊗ |𝑘⟩𝑣2 ∈ H(𝑏,𝑣1) ⊗ H(𝑏,𝑣2) , (8.21)

where |𝑘⟩𝑣𝑖 is an orthonormal basis for H(𝑏,𝑣𝑖) . Then the tensor network state |Ψ⟩
is given by

|Ψ⟩ =
⊗
𝑏∈𝐵
⟨𝜒 |𝑏

(⊗
𝑣

|𝜓⟩𝑣
)
. (8.22)

In a graphical representation, each of the above states lives on the node of a graph,
where the edges connecting two nodes represent the maximally entangled state
contracted into the states of the respective vertex and the open edges represent the
information associated to the “physical” Hilbert spaces H𝑖. For more details see
[83]. Using the isomorphism between linear maps 𝑂 : H → H ′ between finite-
dimensional Hilbert spaces and states |𝑂⟩ ∈ H ′ ⊗ H ∗, whereH ∗ is the dual space,
we can also represent linear maps as tensor networks. Here we will be interested in
layered tensor networks, where we consider a sequence of tensor network states

|Ψ1⟩ → |Ψ2⟩ → . . . (8.23)

that are connected via isometries

|ΨΛ+1⟩ = 𝛾Λ,Λ+1 |ΨΛ⟩ , (8.24)

where the isometries are themselves given by tensor networks. One can think of it
as a graph that is built in an iterative procedure where in each iteration the open
edges of the previous step are contracted with edges of another graph. Furthermore,
we consider networks where to each isometry 𝛾Λ,Λ+1 one assigns a layer-to-layer
operator pushing map 𝜙Λ,Λ+1 (which is a unital ★-homomorphism) that associates
to each operator living at layer Λ an operator that lives at layer Λ + 1 such that
expectation values

⟨ΨΛ+1 |𝜙Λ,Λ+1(𝑂Λ) |ΨΛ+1⟩ = ⟨ΨΛ |𝑂Λ |ΨΛ⟩ (8.25)

are preserved and the identity is mapped to the identity.
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Complementary recovery
As we will explain in Sec. 8.4, we focus on layered tensor networks which satisfy
an inductive version of complementary recovery, which is a fundamental property
of holographic quantum error-correcting codes [225] that gives us control over the
entanglement pattern in the network. Complementary recovery can be defined as
follows. Let 𝑉 be an isometry 𝑉 : Hbulk → Hbdy, that maps from a “bulk” to a
“boundary” Hilbert space in the language of holography or from a “logical” to a
“physical” Hilbert space in the language of quantum error correction. Now consider
a subalgebraA𝑎 of B(Hbulk). If the boundary has a bipartitionHbdy = H𝐴 ⊗ H𝐴𝑐 ,
we say that A𝑎 is recoverable from 𝐴 if ∀O ∈ A𝑎 there exists an operator 𝜄(𝑂𝑎) ∈
B(H𝐴) ⊗ 11𝐴𝑐 such that for all |𝜓⟩ ∈ Hbulk one has

𝜄(𝑂𝑎)𝑉 |𝜓⟩ = 𝑉𝑂𝑎 |𝜓⟩ . (8.26)

We assume furthermore that the map 𝜄 : A𝑎 → B(H𝐴) ⊗ 11 is a faithful, unital
★-homomorphism. We call such a map 𝜄 a bulk-to-boundary operator pushing map.
Note that we have assumed thatH manifestly factorizes into 𝐴 and its complement.
A slightly more general perspective is to consider instead an abstract boundary
subalgebra A𝐴 such that 𝜄(A𝑎) ⊂ A𝐴 and eq. (8.26) hold. This way one removes
oneself from the geometric picture and in case that A𝐴 is a factor recovers the
geometric decomposition after a suitable isomorphism. Now we say that the code
𝑉 satisfies complementary recovery for A𝑎 in the boundary region 𝐴 if A𝑎 is
recoverable from 𝐴 and its commutant A′𝑎 is recoverable from 𝐴𝑐. A bulk region
𝑎 anchored in a boundary region 𝐴 that satisfies complementary recovery is called
an entanglement wedge. Note that the above does not assume that A𝑎 is a factor
but in the following we will usually restrict to factors, i.e., thatH = H𝑎 ⊗ H𝑎𝑐 and
A𝑎 = B(H𝑎) ⊗11. Now Harlow proved [225] that if𝑉 is a code with complementary
recovery for A𝑎 and one considers a product state |𝑖 𝑗⟩, where |𝑖⟩ ∈ H𝑎, | 𝑗⟩ ∈ H𝑎𝑐 ,
that there exist a pair of local unitaries𝑈𝐴,𝑈𝐴𝑐 in 𝐴, 𝐴𝑐 such that

𝑉 |𝑖 𝑗⟩ = 𝑈𝐴𝑈𝐴𝑐
(
|𝑖 𝑗⟩ ⊗ |𝜒⟩

)
, (8.27)

where the state |𝜒⟩, independent of |𝑖 𝑗⟩, determines the entanglement between 𝐴
and 𝐴𝑐. We will refer to this statement in the following as Harlow’s theorem. Note
that we have here presented an algebraic view on operator reconstruction. This does
not have to fit into a geometric picture where A𝑎 is a “set of bulk qubits” and A𝑎𝑐

is the complementary set of bulk qubits as in the HaPPY code. The mathematical
reason is that, if one considers A𝑎 to be the operators that act on a “set of bulk
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qubits” it automatically is a factor. We see that ifA𝑎 is not a factor, such a geometric
picture has to break down. An explicit example of such a situation is given in [418]
where the entanglement wedges of boundary regions do not have a simple geometric
picture. On the other hand, if A𝑎 is a factor, one can always find a unitary 𝑈 such
that

H = 𝑈 (H𝑎 ⊗ H𝑎𝑐 ), A𝑎 = 𝑈
(
B(H𝑎) ⊗ 11

)
𝑈†, (8.28)

so that with respect to the decomposition induced by 𝑈, the reconstruction is “geo-
metric."

Inductive limits
Inductive limits provide a mathematical framework for constructing infinite-dimensional
structures from sequences of finite-dimensional ones, which we employ to construct
the limiting system of a tensor network as the inductive limit of 𝐶★-algebras and
Hilbert spaces induced by the tensor network. For 𝐶★-algebras, this involves a
directed system (A𝑛, 𝜙𝑚𝑛), where A𝑛 are 𝐶★-algebras and

𝜙𝑚𝑛 : A𝑛 → A𝑚 (8.29)

are ★-homomorphism for 𝑛 ≤ 𝑚, satisfying compatibility conditions [63] defined
below. The inductive limit algebraA is then a𝐶★-algebra that encodes the structure
of the entire sequence. Similarly, for Hilbert spaces, an inductive system consists
of a sequence of Hilbert spaces {H𝑛} and isometric embeddings {𝜄𝑛𝑚} [63]. In the
following, we present an overview of inductive limits. We begin by describing the
limits of general vector spaces, which will directly translate to the limiting Hilbert
spaces generated by tensor networks, and then proceed to describe limits of algebras,
laying the groundwork for our later discussion of von Neumann algebras.

Inductive Limits of Vector spaces

Here we provide an introduction to inductive limits [63, 268, 311, 89] in the category
of Banach spaces, i.e., normed, complete vector spaces. 𝐶★-algebras and Hilbert
spaces carry the structure of a Banach space so it serves as an example for inductive
limits that illustrates the procedure. To obtain limits in the category of 𝐶★-algebras
and Hilbert spaces, one has to define an additional structure such as a multiplication
and adjoint for 𝐶★-algebras and an inner product for Hilbert spaces, which modify
the exact construction. Since the main steps, up to the additional structure, are
conceptually the same, we describe the procedure for Banach spaces here.
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Assume that we have a sequence of normed vector spaces V𝑖, indexed by some set
Ω, such as the Hilbert spaces H𝑖 in which a layered tensor network lives at each
level, and linear maps 𝜙𝑖 𝑗 : V𝑗 →V𝑖 that are contractive, i.e.,

∥𝑣∥V𝑖 ≥ ∥𝜙𝑖 𝑗 (𝑣)∥V𝑗 , (8.30)

and are compatible between the indices in the sense that

𝜙𝑖 𝑗 = 𝜙𝑘 𝑗 ◦ 𝜙𝑖𝑘 ,∀𝑖 ≤ 𝑘 ≤ 𝑗 . (8.31)

One can then identify vectors between the layers via their image under the maps 𝜙𝑖 𝑗 ,
i.e., we identify two vectors 𝑣𝑖 ∈ V𝑖, 𝑣 𝑗 ∈ V𝑗 , where we assumed 𝑗 ≥ 𝑖, if 𝑣 𝑗 is the
image of 𝑣𝑖 under the embeddings 𝜙𝑖 𝑗 :

𝑣𝑖 ∼ 𝑣 𝑗 ⇔ 𝜙𝑖 𝑗 (𝑣𝑖) = 𝑣 𝑗 . (8.32)

We denote the equivalence class of 𝑣𝑖 as [𝑣𝑖]. A family of examples is the actual
tensor networks we consider in this chapter: The state they represent at layer 𝑖 is
identified with the state at layer 𝑗 ≥ 𝑖. We denote the set of such equivalence
classes of vectors by 𝑉 . Given 𝑉 , we can define sums of its elements directly via
representatives, i.e., if 𝑗 ≥ 𝑖 then we define

[𝑣𝑖] + [𝑣 𝑗 ] := [𝜙𝑖 𝑗 (𝑣𝑖) + 𝑣 𝑗 ] . (8.33)

and multiplication via scalars

𝛼[𝑣] := [𝛼𝑣], ∀𝛼 ∈ C. (8.34)

This definition does not depend on the choice of representative and promotes the set
of equivalence classes to a vector space. Because the maps 𝜙𝑖 𝑗 are contractive, we
can define the norm of [𝑣𝑖] via

∥ [𝑣𝑖] ∥ = lim
𝑗→∞
∥𝜙𝑖 𝑗 (𝑣𝑖)∥. (8.35)

This extends (𝑉, +, ∥.∥) to a normed vector space. Now taking the completion with
respect to this norm defines a Banach space V. V is what we call the inductive
limit of the inductive set (V𝑖, 𝜙𝑖 𝑗 ) and we write it as

V = lim−−→𝑉𝑖 . (8.36)
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Inductive Limits of Hilbert spaces and Algebras in Layered Tensor Networks

The above discussion defines the inductive limit of Banach spaces. This already
allows us to associate a limiting object with both the tensor network and the local
algebras, i.e., given the isometry 𝛾Λ,Λ+1 that embeds the network at layer Λ into the
network at layer Λ+ 1, we define equivalence classes for states via the identification

𝛾Λ,Λ+1 |ΨΛ⟩ ∼ |ΨΛ⟩ . (8.37)

The set of equivalence classes again defines an inductive limit V. However, we
have not equippedV with the structure of a Hilbert space, namely a scalar product.
We now explain how to do so. We first define an inner product between equivalence
classes: For two equivalence classes [ΨΛ], [ΨΛ′],Λ ≤ Λ′ we define the inner
product as

⟨[ΨΛ] | [ΦΛ′]⟩ = ⟨𝛾Λ,Λ′ (ΨΛ) |ΦΛ′⟩ , (8.38)

where we defined the multi-layer isometry

𝛾Λ,Λ
′
= 𝛾Λ

′−1,Λ′ ◦ 𝛾Λ′−2,Λ′−1 ◦ . . . ◦ 𝛾Λ+1,Λ+2 ◦ 𝛾Λ,Λ+1. (8.39)

This inner product is defined on a dense set of vectors inV and since the embeddings
𝛾Λ,Λ

′ are isometries, the norm defined by the inner product coincides with the norm
of the representatives. Therefore, one can extend the scalar product to all vectors in
V, which extendsV (upon completion) to a Hilbert spaceH . Having constructed
the limiting Hilbert space, we want to identify operators, or more generally, operator
algebras that arise from algebras at finite layers and survive the limiting procedure.
Having the operator pushing map 𝜙Λ,Λ+1 associated to the layered network at hand,
we define equivalence classes of operators in which we identify an operator 𝑂 that
lives at layer Λ with its image under the pushing map

𝜙Λ,Λ+1(𝑂) ∼ 𝑂. (8.40)

This step is why we demanded in the introduction that the operator pushing map
be unital, so that the identity of a given layer will be identified with the identity of
the next. Later on in Sec. 8.4 we will need the unitality of 𝜙 also to have a good
decomposition of the Hilbert space between layers that preserves the structure of the
previous layers. Similarly, we can consider a local subalgebraAΛ

𝐴
= B(HΛ

𝐴
) ⊗ 11𝐴𝐶

of HΛ at layer Λ that corresponds to the bounded operators of a subset 𝐴 of the
open legs of the network at layer Λ. We can similarly identify it with its image in
the next layer

AΛ
𝐴 ∼ 𝜙

Λ,Λ+1(AΛ
𝐴). (8.41)
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When mapping between layers, the local algebraAΛ
𝐴

will be mapped to a subalgebra
of the lightcone of 𝐴, where the lightcone 𝐽+(𝐴) is defined as the set of qubits on
which 𝜙Λ,Λ+1(𝐴) is supported. Note that we define the lightcone through the map
𝜙, which defines it in the sense of the connectivity of the underlying network rather
that in a sense of time evolution. We therefore obtain a sequence of algebras
AΛ
𝐴
,AΛ+1

𝐽+ (𝐴) , ... that together with the operator pushing map between layers 𝜙Λ,Λ+1

again form an inductive system. For this inductive system we also take the inductive
limit and obtain a lightcone C★-algebra Â𝐴, i.e.,

Â𝐴 = lim
−→
AΛ
𝐽+ (𝐴) . (8.42)

This will be an abstract 𝐶★-algebra because the embedding 𝜙 is implemented by
an isometry. We represent this algebra on the Hilbert space we just constructed by
defining it on a dense set of states for each operator 𝑂Λ that is representable at a
finite layer Λ using

𝜋( [𝑂Λ]) | [ΨΛ′]⟩ :=

| [𝜙Λ,Λ′ (𝑂Λ)ΨΛ′]⟩ if Λ ≤ Λ′,

| [𝑂Λ𝛾Λ
′,Λ(ΨΛ′)]⟩ if Λ′ ≤ Λ,

(8.43)

and extending the representation to all of Â𝐴 by continuity. Note that for this
definition to be well defined, the operator pushing map 𝜙Λ,Λ+1 has to be compatible
with the Hilbert space isometry 𝛾Λ,Λ+1 in the sense that if one considers an operator
𝑂Λ at layer Λ that is also the image of an operator 𝑂Λ = 𝜙Λ

′,Λ(𝑂Λ′) at a lower layer
Λ′ and the same holds for the state, then both cases of eq. (8.43) have to coincide,
i.e.,

𝑂Λ𝛾Λ
′,Λ |ΨΛ′⟩ = 𝜙Λ′,Λ(𝑂Λ′)𝛾Λ′,Λ |ΨΛ′⟩ !

= 𝛾Λ
′,Λ |𝑂Λ′ΨΛ′⟩ . (8.44)

Here we have for convenience let the layer associated to the operator𝑂Λ′ be the same
as for the state ΨΛ′ . This requirement can be straightforwardly generalized when
these differ, the main point being that operator pushing and the isometry between
Hilbert spaces have to be compatible. We then define the von Neumann algebra

A𝐴 := 𝜋(Â𝐴)′′. (8.45)

Our main objective in this chapter is to determine the type of the von Neumann
algebra A𝐴 for layered tensor networks. A recap of the type classification suitable
for our needs is provided in Appendix 8.7. Next we will provide the main intuition
behind our study on the example of the HaPPY code.
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Figure 8.2: Turning a holographic tensor network into an encoding circuit. (a)
We take a small HaPPY code with four contracted perfect tensors and consider a
boundary bipartition into 𝐴 and 𝐴𝑐. From each region, two logical qubits (red dots)
can be recovered, forming the “bulk regions” 𝑎 and 𝑎𝑐, separated by a cut 𝛾𝐴 through
the tensor network. (b) Using the property that the six-leg perfect tensor acts as a
unitary 𝑈 from any three legs to the remaining three, we can reorganize the tensor
network into a circuit from the logical qubits in 𝑎 and 𝑎𝑐 to the physical qubits
in 𝐴 and 𝐴𝑐. In this circuit, some of the tensor contractions become insertions of
maximally entangled pairs into the circuit. Three of such pairs cross between 𝐴 and
𝐴𝑐, leading to an entanglement entropy 𝑆𝐴 = log 3+𝑆𝑎. (c) The generic holographic
encoding circuit in terms of two unitaries 𝑈𝐴 and 𝑈𝐴𝑐 (or equivalently, isometries
𝑉𝐴 and 𝑉𝐴𝑐 ), with resource states |𝜒𝑎⟩ and |𝜒𝑎𝑐⟩ contributing only to entanglement
within each subregion and |𝜒𝛾⟩ contributing to the entanglement between 𝐴 and 𝐴𝑐.
For HaPPY codes, these resource states are copies of maximally entangled pairs.

8.3 Intuition from the HaPPY code
HaPPY codes at a fixed layer
In this section we provide intuition behind the direct limit construction of the
previous section using holographic tensor network codes. We use the code structure
of the network to identify operators between layers, allowing us to rigorously treat
the inductive limit of the algebras. In particular, we demonstrate that the network
can be written as a unitary map by opening contracted legs in the network, which
enables us to find a decomposition of boundary subregion algebras by considering
their analogous bulk decomposition. We focus on the family of HaPPY codes [372],
built from perfect tensors with an even number of legs, one of which is associated
with an encoded logical qubit. Such tensors mediate maximal entanglement between
any bipartition into two sets of legs, thereby forming an isometry from the smaller
set to the larger. In particular, any bipartition into equally many legs yields a unitary
map. For the case of six-leg tensors (one bulk leg and five “planar” legs) and
qubits associated with each leg (i.e., bond dimension 𝜒 = 2), such a perfect tensor
is given by the encoding isometry of the five-qubit Laflamme code [288], which
can correct one single-qubit error. As we show in Fig. 8.2, one can use the perfect
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Figure 8.3: Subregion algebra reconstruction in the HaPPY model. (a) A boundary
bipartition into 𝐴 and 𝐴𝑐 of the full {5, 4} HaPPY code. The Ryu-Takayanagi cut
𝛾𝐴 separates the bulk into two wedges 𝑎 and 𝑎𝑐, logical qubits (red dots) in which
are reconstructable (only) on 𝐴 and 𝐴𝑐 (white dots), respectively. (b) Mapping the
full boundary subregion algebra A𝐴 back into the bulk: Removing 𝑎𝑐 and bonds
corresponding to (one choice of) ancillas |𝜒𝑎⟩ turns the remaining tensors into a
unitary circuit (following Fig. 8.2). A𝐴 is unitarily mapped to the bulk algebra A𝑎

(red), the wedge ancilla algebra A𝜒𝑎 (black), and the Ryu-Takayanagi algebra A𝛾𝐴

(gray). (c) With the ancilla bonds removed, operator-pushing a logical operator
(here �̄� acting on one bulk qubit) follows a unique flow towards the boundary,
resulting in a unique boundary representation of the logical operator.

tensor property to decompose any bipartition (𝐴, 𝐴𝑐) of the open boundary legs
of the full HaPPY code into a unitary circuit that prepares the physical boundary
state starting from the logical bulk state and some maximally entangled ancillary
states.4 While some of the ancillae contribute to the entanglement between 𝐴 and
𝐴𝑐, others act only within one of the two regions. The latter type is necessary
for the tensor network code to provide meaningful quantum error correction under
bipartition: otherwise, the encoding unitary 𝑈𝐴 for a subregion 𝐴 (see Fig. 8.2(c)
following [225]) would merely mix 𝑛 logical qubits and 𝑚 additional qubits that
are maximally entangled with 𝐴𝑐 into 𝑛 + 𝑚 physical qubits. This would imply
that each operator O𝑎 acting on the logical qubits in 𝑎 has only one representation
on 𝐴, making it highly susceptible to errors. Introducing additional ancillae |𝜒𝑎⟩
and |𝜒𝑎𝑐⟩ into the circuit allows one to apply “gauge” operators on them, leading
to different physical representations of O𝑎. We have two natural ways to encode a
bulk operator Obulk in the boundary. The first is to conjugate it with the isometries
for each bulk entanglement wedge 𝑎 and 𝑎𝑐: 𝑉𝐴 = 𝑈𝐴 |𝜒𝑎⟩ , 𝑉𝐴𝑐 = 𝑈𝐴𝑐 |𝜒𝑎𝑐⟩, where

4As noted in Ref. [372], such a clear decomposition can fail for a small subset of boundary
regions for which the bulk bipartition is not exactly complementary. Here we do not consider these
cases.
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𝑈𝐴,𝑈𝐴𝑐 are the opened-up networks, so that

Obdy = 𝑉𝐴𝑉𝐴𝑐 |𝜒𝛾⟩ Obulk ⟨𝜒𝛾 |𝑉†𝐴𝑉
†
𝐴𝑐
, (8.46)

which can be checked to have the correct action on code states 𝑉 |𝑖 𝑗⟩, where 𝑉 =

𝑉𝐴𝑉𝐴𝑐 |𝜒𝛾⟩, essentially because of the isometric property 𝑉†𝑉 = 11. However, these
representations Obdy act as projectors onto the codespace. Rather than including
the physical identity acting on 𝐴, they only include a logical identity that acts as an
identity on states within the codespace. For our purposes, a more suitable operator
map is the natural operator pushing map defined by the perfect tensors, whose
stabilizers allow one to replace operators acting on a subset of 𝑘 ≤ 2 physical qubits
by equivalently-acting operators on the other 5 − 𝑘 qubits [372]. In the notation
where we have opened up some of the internal legs of the tensor network to extend
the isometry 𝑉𝐴 into a unitary𝑈𝐴, this takes the form

Obdy = 𝜄(O) := 𝑈𝐴𝑈𝐴𝑐 O𝑈†𝐴𝑈
†
𝐴𝑐
, (8.47)

which is the bulk-to-boundary map of Fig. 8.2(c), where one encodes an operator
O = Obulk ⊗ 11𝛾 ⊗ 11𝜒𝑎 ⊗ 11𝜒𝑎𝑐 (here, 𝜒 refers to ancilla degrees of freedom while 𝛾
refers to degrees of freedom on the RT surface). For a bulk operatorObulk = O𝑎⊗11𝑎𝑐
that only has support in the entanglement wedge 𝑎 of 𝐴, this further simplifies into
a boundary operator O𝐴 that only has support on 𝐴:

O𝐴 = tr𝐴𝑐 Obdy = 𝑈𝐴O𝑎𝑈†𝐴 . (8.48)

We thus find that the operator map 𝜄(O) also satisfies complementary recovery.
Note that our construction of 𝑈𝐴 and 𝑈𝐴𝑐 is non-unique [199], as one may open
different pairs of contracted legs to construct such unitaries from the isometries
𝑉𝐴 and 𝑉𝐴𝑐 . These different choices of unitaries lead to different bulk-to-boundary
maps 𝜄, related to different logical representations that we discuss further below.

In the language of quantum error correction, O𝐴 is a logical operator Obulk that acts
on a subset of the qubits of a physical state. As dimH𝑎 < dimH𝐴, the boundary
algebra generated by encoding with (8.47) every element of the wedge algebra A𝑎

(operators acting on the logical qubits in 𝑎) is only a subalgebra of the full algebra
A𝐴 of all boundary operators. What are the other subalgebras? We find the answer
by conjugating the unitary𝑈𝐴, which acts on the Hilbert spaces

𝑈
†
𝐴

: H𝐴 →H𝑎 ⊗ H𝜒𝑎 ⊗ H𝛾𝐴 , (8.49)
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whose algebras are visualized in Fig. 8.3(b). Operators acting on the last piece of
the tensor product form the Ryu-Takayanagi algebraA𝛾𝐴. For the standard HaPPY
code where |𝜒𝛾⟩ is a set of EPR pairs, these operators act equivalently on H𝛾𝐴
and H𝛾𝐴𝑐 . The second piece of the tensor product is acted upon by the so-called
wedge ancilla algebra A𝜒𝑎 . The geometric setting for this mapping of algebras
in the HaPPY code is shown in Fig. 8.3. By conjugating operators belonging to
these algebras by𝑈𝐴,𝑈𝐴𝑐 we again obtain their respective boundary representations.
Note that the above discussion gives a concrete realization of the bulk-to-boundary
operator pushing map, usually denoted by 𝜄, which maps logical bulk operators to a
boundary operator by explicit conjugation by an unitary (8.53). Repeating the same
discussion for the complementary region, we find that

H � H𝑎 ⊗ H𝜒𝑎 ⊗ H𝛾𝐴 ⊗ H𝑎𝑐 ⊗ H𝜒𝑎𝑐 ⊗ H𝛾𝐴𝑐 , (8.50)

for the full boundary Hilbert spaceH .

Ancilla algebras and stabilizers
In our construction of the operator pushing map 𝜄, we have extended the isomet-
ric map furnished by the HaPPY tensor network into a unitary. We now briefly
comment on the nonuniqueness of such an extension and its relationship to quan-
tum error correction. In a quantum code, we map logical states to a subspace of the
physical space, called codespace, allowing different physical operators to have equal
action on states in the codespace. We call such different but logically equivalent
operators representations of a logical operator. In a stabilizer code [208], we can
switch between different representations of logical operators by applying stabilizer
operators, the +1 eigenspace of which forms the codespace. The HaPPY code on a
hyperbolic pentagon tiling is an example of a qubit stabilizer code. By opening some
legs of the tensor network to extend the isometries 𝑉𝐴 and 𝑉𝐴𝑐 into unitaries 𝑈𝐴
and 𝑈𝐴𝑐 , we have effectively fixed all logical operators to a unique representation,
or equivalently, fixed the operator-pushing flow from bulk to boundary (see Fig.
8.3(c)). Suppose that there are three ways to extend this construction to produce
different representations:

1. Act on the fixed representation with stabilizer operators, which act as identities
on codestates.

2. Open different legs of the tensor network that lead to different unitaries 𝑈𝐴
and𝑈𝐴𝑐 .
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3. Set a different operator-pushing flow to map bulk to boundary operators.

We now show that approach 2 and 3 are equivalent and form a special case of
approach 1, in which we take a particular choice of𝑈𝐴 and𝑈𝐴𝑐 (and correspondingly
opened legs), which projected onto ancilla states within each bulk region form the
isometries 𝑉𝐴 = 𝑈𝐴 |𝜒𝑎⟩ and 𝑉𝐴𝑐 = 𝑈𝐴𝑐 |𝜒𝑎𝑐⟩. Any bulk state |𝜓⟩ in H𝑎 ⊗ H𝑎𝑐 is
then mapped to the logical state

|�̄�⟩ ≡ 𝑉𝐴𝑉𝐴𝑐 |𝜓⟩ |𝜒𝛾⟩ . (8.51)

We now try to find an operator O = O𝑎O𝜒𝑎O𝜒𝛾𝐴 (omitting identities on 𝑎𝑐 and 𝜒𝑎𝑐 )
that is mapped to a logical operator O with support only on 𝐴 that acts as a stabilizer
11, i.e., leaves any |�̄�⟩ invariant. We find

Ō |�̄�⟩ = 𝑈𝐴O𝑎O𝜒𝑎O𝜒𝛾𝐴𝑈
†
𝐴
𝑉𝐴𝑉𝐴𝑐 |𝜓⟩ |𝜒𝛾⟩

= 𝑈𝐴𝑉𝐴𝑐 (O𝑎 |𝜓⟩)(O𝜒𝑎 |𝜒𝑎⟩)(O𝜒𝛾𝐴 |𝜒𝛾⟩) . (8.52)

For this expression to reduce to |�̄�⟩, we require three conditions

O𝑎 ⊗ 11𝑎𝑐 |𝜓⟩ = |𝜓⟩ , (8.53a)

O𝜒𝑎 |𝜒𝑎⟩ = |𝜒𝑎⟩ , (8.53b)

O𝜒𝛾𝐴 ⊗ 11𝛾𝐴𝑐 |𝜒𝛾⟩ = |𝜒𝛾⟩ , (8.53c)

where we have restored identity operators. To fulfill the first condition for a general
|𝜓⟩, we require O𝑎 = 11𝑎. For the HaPPY code, where |𝜒𝑎⟩ and |𝜒𝛾⟩ are sets of
EPR pairs, solutions of the second and third condition are given by O𝜒𝛾𝐴 = 11𝛾𝐴 and
such operators O𝜒𝑎 that act equivalently on both ends of each EPR pair, e.g., Paulis
𝑋 ⊗ 𝑋 for a 2-qubit EPR pair. The stabilizers with support on 𝐴 are thus found
by considering all such operators O𝜒𝑎 and unitarily mapping them to the boundary
using 𝜄. Now consider approach 2, which fixes the input operator O = O𝑎11𝜒𝑎11𝜒𝛾𝐴
and instead changes which legs to open up to define 𝜄, i.e., changing the sites on
whichA𝜒𝑎 acts. In the operator-pushing picture, opening up the legs fixes the local
stabilizer on each tensor that can be used to push an operator from one layer to
the next. Changing which leg is opened up is equivalent to changing which local
stabilizer to push with, which shows the equivalence between approach 2 and 3.
What is the operator that maps from a boundary representation of a logical operator
that is pushed along one leg rather than another? We find that this is exactly an
operator that fulfills (8.53c), acting on both of the newly opened legs with a pair
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of conjugate operators. An example for the Pauli stabilizers of the Laflamme code
used in the HaPPY model: Here valid stabilizers are cyclic permutations of either
𝑋𝑍𝑍𝑋𝐼,𝑌𝑋𝑋𝑌 𝐼, or 𝑍𝑌𝑌𝑍𝐼 (the products of elements of any one set yield the other
two). If we consider the first qubit as an input (part of H𝑎) and “open” the tensor
leg corresponding to the last qubit (part of H𝜒𝑎), we can operator-push an input 𝑋
by applying 𝑋𝑍𝑍𝑋𝐼, thus mapping 𝑋𝐼𝐼 𝐼 𝐼 ↦→ 𝐼𝑍𝑍𝑋𝐼. More specifically, consider
three pentagon tensors that jointly form a unitary map 𝜄 from three incoming physical
legs, three logical legs, and a pair of legs formed by opening up a contraction. For
the central pentagon, operator-pushing 𝑋 can then be visualized as

=

= , (8.54)

where we used the stabilizer 𝑋𝑍𝑍𝑋𝐼 on the central pentagon and 𝐼𝑍𝑌𝑌𝑍 on the
right-most pentagon. However, we could have also turned this contraction of three
pentagon tensors into a unitary map by instead opening up the contraction between
the central and the right-most pentagon. In that case, operator-pushing 𝑋 would
take the form

=

= . (8.55)

On the “boundary” (the legs on the bottom), these two representations differ by

(𝐼 𝐼 𝐼𝑋𝑍𝑌𝑌𝑍) (𝑍𝑌𝑌𝑍𝑋𝐼𝐼 𝐼) = 𝑍𝑌𝑌𝑌𝑌𝑌𝑌𝑍 , (8.56)

which acts as a stabilizer on the full code. We can see that applying this stabilizer
corresponds to changing the operator-pushing flow of 𝑋 from the right to the left
(and vice-versa). We can also generate this stabilizer term for a fixed operator
pushing map 𝜄 (and associated opened legs) by pushing the operator corresponding
to the product of the two stabilizers applied to the central qubit in both situations,

(𝑋𝑍𝑍𝑋𝐼) (𝑋𝐼𝑋𝑍𝑍) = 𝐼𝑍𝑌𝑌𝑍 , (8.57)
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which is another stabilizer of the five-qubit code. It acts trivially on the first qubit,
thus not performing any logical operation on H𝑎. This is equivalent to operator-
pushing a pair of 𝑍 operators applied on the newly-opened legs:

=

= , (8.58)

which yields the stabilizer (8.56). Note that this pair of 𝑍s would cancel each other
out if we contracted both legs (turning the unitary map into an isometry), which
confirms that (8.56) acts as a logical identity under the encoding isometry of the full
code. We can explicitly construct the map between the two operator pushing maps 𝜄
and 𝜄′ (given by the tensor networks in (8.54) and (8.55), respectively) from the tensor
network construction. Consider a logical operator O in one configuration and O′ in
the other, which are assumed to map to the same boundary operator 𝜄(O) = 𝜄′(O′).
As each operator pushing map is associated with a unitary transformation𝑈 and𝑈′,
we find

O′ = 𝑈′†𝑈 O𝑈†𝑈′ , (8.59)

resulting in a transformation by another unitary𝑈′†𝑈 defining a unitary superoper-
ator S(•) = 𝑈′†𝑈 • 𝑈†𝑈′ acting on bulk operators, mapping between the logical
representations corresponding to different operator-pushing flows. The unitary map
can again be expressed as a tensor network:

𝑈′†𝑈 = = . (8.60)

Here the lower row of tensors form the adjoint 𝑈′†, which is simply a mirrored
version of the original tensors of the Laflamme code (which has a real-valued tensor
representation). In the last step we used the perfect tensor property to reduce
two tensor pairs into products of identities (in general, the non-reducible part will
consist of tensors stretching between the two choices of ancilla openings). Using
operator pushing with this extended map shows how ancilla-free operators in one
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configuration of opened legs get mapped to operators with nontrivial ancilla support
in the other, e.g.,

= = , (8.61)

which reproduces the 𝑍𝑍 ancilla insertion we showed in (8.58).

Let us summarize the relationship between the three approaches discussed above.
The second and third approach both amount to setting a unique operator-pushing
flow that associates a unique boundary operator to a bulk operator O𝑎O𝜒𝑎O𝜒𝛾𝐴
acting on a subregion 𝑎. Crucially, the resulting operator-pushing map 𝜄 is always
unital, i.e.,

𝜄(11𝑎11𝜒𝑎11𝜒𝛾𝐴 ) = 11𝐴 . (8.62)

Similarly, in the stabilizer code picture we consider boundary operators logically
equivalent if they differ only by a product with an operator 𝜄(11𝑎O𝜒𝑎11𝜒𝛾𝐴 ) where
O𝜒𝑎 |𝜒𝑎⟩ = |𝜒𝑎⟩. However, changing the operator-pushing flow does not simply cor-
respond to taking the product of every logical operator with a fixed stabilizer, which
would not preserve 11𝐴. Instead, as we have seen above, the new operator pushing
flow is equivalent to applying specific stabilizers on specific logical operators, which
can be implemented as a tensor network map such as (8.60). Incidentally, the role of
the RT algebra A𝛾𝐴 can be understood in a similar vein as the ancilla algebra A𝜒𝑎 :
By pushing a pair of conjugate operators, such as two copies of a Pauli operator,
from the RT surface 𝛾𝐴 to both 𝐴 and 𝐴𝑐, we obtain the stabilizers that map between
logical representations in either region. The existence of such exact stabilizers is an
algebraic way of identifying EPR-like entanglement between 𝐴 and 𝐴𝑐.

Throughout the rest of this chapter, we consider a fixed configuration of opened
bulk legs in the tensor network, leading to a unique operator map 𝜄. This simplifies
the construction of the inductive limit, where we consider the image of all operators
acting on the subregion, i.e., H𝑎 ⊗ H𝜒𝑎 ⊗ H𝛾𝐴. The algebra of operators acting
on H𝜒𝑎 then includes both the stabilizers and their conjugate error operators, i.e.,
those that anti-commute with at least one stabilizer. While this includes operators
𝑂𝜒𝑎 that do not preserve the codespace, the choice of including or excluding such
operators will not affect the algebra type in our setting of finitely-entangled bulk
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states. This is because we may think of the Hilbert spaceH𝜒𝐴 simply as additional
bulk qubits in our entanglement wedge 𝑎 that encode degrees of freedom beyond
the codespace.

(a) (b)

Figure 8.4: Subregion algebra mapping with one layer of the HaPPY model. (a)
A single vertex inflation layer of the “opened-up” HaPPY code of Fig. 8.3, acting
as a unitary map from the subregion algebra AΛ

𝐴
at layer Λ and the algebras of

the degrees of freedom of the new layer, the bulk algebra AΛ
𝛿𝑎

(red), wedge ancilla
algebra AΛ

𝜒𝛿𝑎
(black), and Ryu-Takayanagi algebra AΛ

𝛿𝛾𝐴
(gray) to the subregion

algebra AΛ+1
𝐴

on the next layer. (b) The generic form of a layer of the HaPPY
code with ancillas, written as a circuit diagram with the two unitary subregion maps
𝑈

Λ,Λ+1
𝐴

(highlighted in (a)) and𝑈Λ,Λ+1
𝐴𝑐

.

Mapping algebras layer by layer
In Sec. 8.3 we studied the HaPPY code at a fixed number of layers Λ. We found
that after splitting the boundary into subsystems 𝐴, 𝐴𝑐, we can further divide it into
three subsystems associated to the entanglement wedge algebra 𝐴𝑎, the 𝑅𝑇 algebra
𝐴𝛾𝐴 and the wedge ancilla algebra 𝐴𝜒𝑎 . This division is implemented by an unitary
𝑈
†
𝐴
. Now we can grow the HaPPY code that consists of Λ layers by contracting it

with another layer of the tensor network. Here we will repeat the procedure and
push operators of layer Λ through to layer Λ + 1. We will from now on indicate
the layer at which a given object lives by the superscript Λ. We will also refer to
the process of mapping operators at layer Λ to layer Λ + 1 as operator pushing, but
one should be aware that this layer-to-layer pushing, indicated by the map 𝜙Λ,Λ+1, is
different from the bulk-to-boundary pushing 𝜄 as it maps the whole boundary of a
given layer to the next, not just the bulk operator to the boundary. We can represent
the tensor network of the outermost layer again as an unitary map

𝑈
Λ,Λ+1
𝐴

: HΛ
𝐴 ⊗ H

Λ+1
𝛿𝑎 ⊗ HΛ+1

𝜒𝛿𝑎
⊗ HΛ+1

𝛿𝛾𝐴
→HΛ+1

𝐴 (8.63)
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that takes the boundary HΛ
𝐴

at layer Λ, the logical information of the next layer
HΛ+1
𝛿𝑎

and further auxiliary and RT degrees of freedomHΛ+1
𝜒𝛿𝑎
⊗ HΛ+1

𝛿𝛾𝐴
and embeds

them into the next layer. This induces the isometric map 𝛾Λ,Λ+1 we discussed in
the context of inductive systems. Following the discussion of the previous section,
we could also consider 𝛾Λ,Λ+1 to be made from the isometry 𝑉Λ,Λ+1 = 𝑈

Λ,Λ+1
𝐴

|𝜒𝛿𝑎⟩
as again arising from the contraction of some auxiliary entangled pairs into the
unitary but keeping the unitary picture is convenient for the following discussion as
it provides an direct decomposition of the boundary algebra of 𝐴 at any layer. We
will comment on this more in Sec. 8.4. We remind the reader that the boundary
subregion 𝐴 is chosen such that its successive mappings under operator pushing
have a support that satisfies complementary recovery. Because of this, we will not
distinguish between 𝐴, the subregion of the boundary we considered at layer Λ and
its lightcone 𝐽+(𝐴) at later layers and collectively denote the subregion as 𝐴, where
the respective lightcone is implicit by the layer-label Λ. Since we rephrased the
growing of the network as a unitary embedding of the old network with additional
degrees of freedom corresponding to the added layer, it is clear that we have an
embedding of algebras

𝑈
Λ,Λ+1
𝐴

AΛ
𝐴𝑈

Λ,Λ+1†
𝐴

⊂ AΛ+1
𝐴 . (8.64)

Now we have to decide how the state grows. We will suppress the layer index Λ for
degrees of freedom that are added by the new layer. For the bulk, we choose that the
bulk qubits are, at each layer, put in reference states where there is no entanglement
between the bulk entanglement wedges 𝑎 and 𝑎𝑐, so that at each layer the "new" bulk
qubits come in product states |𝑖𝛿𝑎⟩ , | 𝑗𝛿𝑎𝑐⟩. We note that this is an arbitrary choice we
made and one could also consider states with bulk entanglement. Then one would
have to be more careful about the structure of the entanglement to compute the type.
In addition, the network representing the bulk-to-boundary isometry at layer Λ + 1
is obtained by projecting additional Bell pairs |𝜒𝛿𝑎⟩ |𝜒𝛿𝑎𝑐⟩ onto the open legs of
𝑈

Λ,Λ+1
𝐴

𝑈
Λ,Λ+1
𝐴𝑐

that were opened up to generate the unitaries, as well as additional
Bell pairs |𝜒𝛿𝛾𝐴⟩ into the legs that extend the RT surface from layer Λ by a new
bond. Therefore, the state onHΛ+1 is

|𝜓⟩Λ+1 = 𝑈
Λ,Λ+1
𝐴

𝑈
Λ,Λ+1
𝐴𝑐

|𝜓⟩Λ |𝑖𝛿𝑎⟩ | 𝑗𝛿𝑎𝑐⟩ |𝜒𝛿𝑎⟩ |𝜒𝛿𝑎𝑐⟩ |𝜒𝛿𝛾𝐴⟩ (8.65)

and defines the same state on the image of B(HΛ) as the state of the previous layer,
i.e., for

𝑂Λ+1 = 𝑈
Λ,Λ+1
𝐴

𝑂Λ𝑈
Λ,Λ+1†
𝐴

, 𝑂Λ ∈ B(HΛ
𝐴 ) (8.66)
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we have
⟨𝜓 |Λ+1𝑂Λ+1 |𝜓⟩Λ+1 = ⟨𝜓 |Λ𝑂Λ |𝜓⟩Λ . (8.67)

This only works because𝑈Λ,Λ+1
𝐴

is a unitary. Note that, because of this preservation
of the state of the previous layer, as well as having a unitary embedding, the algebra
of the previous layer is preserved into the next, i.e.,

AΛ+1
𝐴 � AΛ

𝐴 ⊗ 𝛿A
Λ+1
𝐴 , (8.68)

so the algebra of the new layer decomposes into the algebra of the previous layer
together with addititional degrees of freedom 𝛿AΛ+1

𝐴
. In summary, we obtain a

sequence of algebras {AΛ
𝐴
}Λ∈N and a sequence of states on each algebra {|𝜓⟩Λ}Λ∈N,

where we have an embedding 𝜙Λ,Λ+1(AΛ
𝐴
) ⊂ AΛ+1

𝐴
implemented by the unitary

transformation (8.66). We see that, due to the unitary nature of the embedding, we
can at each layer decompose AΛ

𝐴
into the tensor product

AΛ
𝐴 ∼ A

Λ
𝑎 ⊗ AΛ

𝜒𝑎
⊗ AΛ

𝛾𝐴
⊗ 11𝐴𝑐 (8.69)

with its commutant
AΛ
𝐴𝑐 ∼ 11𝐴 ⊗ AΛ

𝛾𝐴𝑐
⊗ AΛ

𝑎𝑐 ⊗ AΛ
𝜒𝑎𝑐

(8.70)

on which the tensor network state takes the form

|ΨΛ⟩ ∼ |𝑖⟩𝑎 ⊗ |𝜒𝑎⟩ ⊗ |𝜒𝛾⟩ ⊗ | 𝑗⟩ ⊗ |𝜒𝑎𝑐⟩ , (8.71)

where 𝑖( 𝑗) is the bulk logical state in 𝑎(𝑎𝑐), 𝜒𝑎(𝑎𝑐) is the state of the internal
auxiliary degrees of freedom in the entanglement wedge 𝑎(𝑎𝑐) and 𝜒𝛾 is the maximal
entangled state that comes from the contraction of the two sides of the tensor network
along the RT surface 𝛾. This decomposition is preserved between layers via Eq.
(8.68). We note that all the entanglement entropy of the two boundary sides 𝐴, 𝐴𝑐

comes from 𝜒, if the bulk state |𝑖 𝑗⟩𝑎𝑎𝑐 is pure. Because we rewrote the construction
of the network through opening the legs associated to 𝜒𝑎, 𝜒𝑎𝑐 , this split of the
boundary state is obvious.

Limit algebras
We can now take the inductive limit of the procedure defined above. It is clear that, as
we grow the network, due to the unitary nature of the embedding, the boundary state
always decomposes as in 8.71 at every layer and one has essentially the same setup
as in the Araki-Woods-Powers factors described in Appendix 8.7 just with tensor
products between the different kinds of spin chains and that the decomposition
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is manifestly true only after the application of local unitaries 𝑈𝐴,𝑈𝐴𝑐 . Note that
one has unentangled logical and auxiliary degrees of freedom |𝑖 𝑗⟩ , |𝜒𝑎⟩ , |𝜒𝑎𝑐⟩
corresponding to the type I case and a maximally entangled state for the algebra
A𝛾 as in the type II1 case. We therefore expect that, as we increase the number
of layers to infinity, given a pure bulk-input state |𝑖 𝑗⟩, the algebra A𝐴 in the direct
limit Hilbert space becomes type II∞, because it reduces to the algebra of the form
𝐵(H) ⊗ II1 for H encoding the Hilbert space built out of auxiliary and wedge
degrees of freedom in 𝑎 and the II1 factor acting on the RT surface 𝛾.

Let us now make this statement precise. We can first consider the inductive-limit
algebra A𝛾𝐴. Let 𝐴Λ, 𝐵Λ ∈ AΛ

𝛾𝐴
. The state 𝜒𝐴 is maximally mixed on AΛ

𝛾𝐴
, so that

⟨𝜒𝐴 | [𝐴Λ, 𝐵Λ] |𝜒𝐴⟩ = 0. (8.72)

Since

Â𝛾𝐴 = lim−−→A
Λ
𝛾𝐴
, (8.73)

we deduce by continuity that | [𝜒Λ𝛾𝐴]⟩ induces a tracial state on Â𝛾𝐴. Now | [ΨΛ
𝛾𝐴
]⟩,

which restricts to | [𝜒Λ𝛾𝐴]⟩ on Â𝛾𝐴, is a state on the inductive-limit Hilbert space, so
it is normal on A𝛾𝐴 = 𝜋( �̂�𝛾𝐴)′′. Moreover, it is tracial on a weak-operator dense
subalgebra of A𝛾𝐴, so it extends by continuity for the weak operator topology to a
tracial normal state on A𝛾𝐴. From this we deduce:

Theorem 8.3.1. The inductive-limit RT von Neumann algebra A𝛾𝐴 has type II1.

By an exactly similar reasoning, since the states | [𝜒𝑎]⟩ and | [𝑖]⟩ are pure on A𝜒𝑎

and A𝑎, we deduce

Theorem 8.3.2. The inductive-limit ancilla and bulk von Neumann algebras A𝜒𝑎

and A𝑎 have type 𝐼.

We can then deduce the type of full boundary algebra from the following observation
(see for example [308]): the algebra Â𝐴 can be decomposed as

Â𝐴 = Â𝑎,𝜒𝑎 ⊗ Â𝛾𝐴, (8.74)

where the tensor product of 𝐶∗-algebras is unambiguously defined because all
considered algebras are nuclear. We then have

A𝐴 = A𝑎,𝜒𝑎⊗A𝛾𝐴 . (8.75)

Since the first tensor factor has type I and the second tensor factor has type II1, we
deduce
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Theorem 8.3.3. The boundary subregion algebra A𝐴 has type II∞.

A useful way of seeing this result in view of the next section is that we have de-
composed A𝐴 (using unitary equivalence) into an infinite tensor product of finite-
dimensional factors, where the tensor network state is pure on some of them (corre-
sponding to bulk inputs and ancillas), whereas it is maximally entangled on others
(the RT degrees of freedom). The Araki–Woods classification of infinite tensor
products then tells us that the algebra A𝐴 has type II∞. Note that the above results
will also hold if the bulk state |𝑖 𝑗⟩ carries an O(1) amount of entanglement, where
the counting parameter is the number of layers Λ. If the bulk state carries a di-
vergent amount of entanglement, it will be able to change the type of the resulting
bulk algebra, depending on its entanglement structure. We note that the geometrical
entanglement of the RT surface will always lead to a type II factorA𝛾 associated to
the RT surface due to maximal entanglement in the state that glues the two wedges
𝑎 and 𝑎𝑐.

In the next section we will explain how our discussion extends to a more general class
of tensor networks with a layered structure that satisfy complementary recovery.

8.4 An abstract perspective
In the previous discussion, we focused on the HaPPY code that we could open
up to write the operator pushing from bulk to boundary and between layers as an
explicit conjugation by a unitary. In this section, we identify the mathematical
barebones of our construction. In the first section, we explain, following [164, 199,
168, 192] that the structure of a holographic code with complementary recovery
can be formalized as a code subspace-preserving conditional expectation. We then
show that this conditional expectation structure can be leveraged to define a general
notion of inductive system of codes, for which results akin to the ones derived in the
previous section hold.

Codes and conditional expectations
Holographic tensor networks truncated at a finite layer number form holographic
codes with complementary recovery. Throughout this section, we will denote the
bulk “code” Hilbert space by H . Specifying the local algebra and Hilbert space
associated with a bulk subregion 𝑎 (at a finite cutoff) will be done by the labelsH𝑎
andA𝑎. We will label boundary “physical” Hilbert spaces withK and we will label
the boundary algebra with AK . Choosing a boundary subregion 𝐴, we will label
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the local Hilbert space and algebra with K𝐴 and A𝐴. No subscripts will denote the
full boundary or bulk objects.

The bulk-to-boundary isometry of a code will be labeled𝑉 : H → K. Given a sub-
region 𝐴 on the boundary, there exists a region 𝑎 in the bulk, the entanglement wedge
of 𝐴 such that A𝑎,A′𝑎 are recoverable in A𝐴 and A′

𝐴
, respectively. This supplies

us with operator pushing maps 𝜄𝑎, 𝜄′𝑎, which are faithful unital ★-homomorphisms
𝜄𝑎 : A𝑎 → A𝐴, 𝜄′𝑎 : A′𝑎 → A′𝐴. Defining 𝛼 : A → O by 𝛼(𝑥) = 𝑉†𝑥𝑉 , the map
𝜄𝑎 ◦ 𝛼 : A𝐴 → 𝜄𝑎A𝑎 is a conditional expectation fromA𝐴 onto the image of 𝜄𝑎, i.e.
a linear map with 𝐸 (11) = 11 and

𝐸 (𝑎𝑏𝑐) = 𝑎𝐸 (𝑏)𝑐,∀𝑎, 𝑐 ∈ N , 𝑏 ∈ M . (8.76)

Other work on the connection of error-correcting codes with conditional expectations
appeared in [164, 168, 182, 192]. Similarly, the map 𝜄′𝑎◦𝛼 is a conditional expectation
onto 𝜄′𝑎A′𝑎. Furthermore, we assume that all algebras involved are factors. The
existence of a conditional expectation guarantees that A𝐴 � 𝜄𝑎 (A𝑎) ⊗ 𝜄𝑎 (A𝑎)𝑐

[424], where we use � to denote unitary equivalence and where the second term
denotes the relative commutant in A𝐴,

𝜄𝑎 (A𝑎)𝑐 := 𝜄(A𝑎)′ ∩ A𝐴. (8.77)

The first term in A𝐴 is the set of those operators acting on the Hilbert space of
logical states, and the second term is the operators acting onH𝐴 which do not affect
the logical degrees of freedom. Since, in the case of finite layers, all the above
algebras are Type I factors, the existence of a conditional expectation guarantess,
see Sec. 9.15 in [424], that

K𝐴 � H𝑎 ⊗ K𝑐, (8.78)

where K𝑐 denotes the space on which the relative commutant acts, i.e., 𝜄𝑎 (A𝑎)𝑐 =
B(K𝑐). These unitary equivalences can be seen as an algebraic version of Harlow’s
theorem 8.27 that appears if the operator pushing map is unital. In the language
of the previous section, this isomorphism is implemented by the conjugation of
operators inA𝐴 with𝑈𝐴. As before, we now assume that a particular isomorphism
has been chosen at every layer. We can write down the subsystem decomposition
for the full physical space

K � H𝑎 ⊗ H𝑎 ⊗ K𝑐 ⊗ K𝑐 (8.79)

A � A𝑎 ⊗ A𝑎 ⊗ A𝑐 ⊗ A𝑐 (8.80)



418

The conditional expectations 𝜄𝑎 ◦ 𝛼, 𝜄′𝑎 ◦ 𝛼 project A𝐴 onto A𝑎 and A′
𝐴

onto A′𝑎,
respectively. States in the code subspace are invariant under these conditional
expectations, i.e., they can be written as |𝜓⟩𝑐𝑜𝑑𝑒 ⊗ |𝜒⟩, where |𝜓⟩𝑐𝑜𝑑𝑒 ∈ K𝑎 ⊗ K𝑎
and |𝜒⟩ is one, fixed reference state on K𝑐 ⊗ K𝑐. The analog of |𝜒⟩ in the case of
the HaPPY code at one fixed layer truncation is the tensor product of the RT state
and the ancilla state.

We will now show how to study the growth of such a system once suitable inductive
maps are defined.

Inductive systems of codes
We now explain how to take the inductive limit of a family of exact holographic
codes. The data we want are:

1. A sequence of logical Hilbert spacesHΛ, which should be seen as the Hilbert
spaces of bulk logical legs for a network truncated at layer Λ.

2. A sequence of physical Hilbert spacesKΛ, which should be seen as the Hilbert
spaces of boundary legs for a network truncated at layer Λ.

3. Bulk-to-boundary isometries 𝑉Λ for each truncation at layer Λ. They are the
usual holographic maps defined by holographic tensor networks.

4. Bulk-to-bulk isometries 𝛾Λ,Λ+1H . They correspond to enlarging the bulk Hilbert
spaces with more bulk qubits put in a (usually disentangled) reference state.

5. Boundary-to-boundary isometries 𝛾Λ,Λ+1K . They correspond to enlarging the
boundary Hilbert spaces by acting with one layer of the tensor network, the
bulk qubits being each put in the same reference state as the one chosen for
the bulk-to-bulk maps.

6. A sequence of logical algebrasAΛ
𝑎 ,A′Λ𝑎 which should be seen as the operators

acting on of bulk logical legs on either side of the RT surface for a network
truncated at layer Λ.

7. A sequence of physical algebras AΛ
𝐴
, A′Λ

𝐴
, which should be seen as the

operators acting on the boundary on either side of the RT surface for a network
truncated at layer Λ.

8. Bulk-to-boundary ★-homomorphisms 𝜄Λ for each truncation at layer Λ. They
are the usual operator pushing maps defined by holographic tensor networks.
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9. Bulk-to-bulk ★-homomorphisms 𝜙Λ,Λ+1H and 𝜙
′Λ,Λ+1
H for each truncation at

layer Λ. They correspond to tensoring bulk operators with identities on the
next layer on either side of the RT surface.

10. Boundary-to-boundary ★-homomorphisms 𝜙Λ,Λ+1K and 𝜙′Λ,Λ+1K for each trun-
cation at layer Λ. They correspond to pushing boundary operators at layer Λ
through one layer of the tensor network on either side of the RT surface, the
bulk qubits being each put in the same reference state as the one chosen for
the bulk-to-bulk maps.

We also require compatibility of the operator reconstruction maps with the bulk-
to-boundary isometries, and of the layer-to-layer isometries and operator pushing
maps between each other, i.e., for 𝑂 ∈ AΛ

H , 𝑂
′ ∈ A′ΛH ,

𝑉Λ𝑂 = 𝜄Λ(𝑂)𝑉Λ, 𝑉Λ𝑂
′ = 𝜄′Λ(𝑂

′)𝑉Λ, (8.81)

and for 𝑂 ∈ AΛ
H ,K , 𝑂

′ ∈ A′ΛH ,K ,5

𝛾
Λ,Λ+1
H ,K 𝑂 = 𝜙

Λ,Λ+1
H ,K (𝑂)𝑉Λ, 𝛾

Λ,Λ+1
H ,K 𝑂′ = 𝜙′Λ,Λ+1H ,K (𝑂

′)𝑉Λ. (8.82)

The above structure is summarized by the commutative diagram in Figure 8.5. All
these operator equations are also assumed to hold on commutant algebras. First,
Equation (8.81) implies that

𝑉Λ |𝜑⟩ � |𝜑⟩ ⊗ |ΨΛ⟩ , (8.83)

where ΨΛ is a reference state which is identified in the case of the HaPPY code with
the RT and auxiliary Bell pair degrees of freedom at layer Λ. Second, Equation
(8.82) implies that the layer-to-layer maps also implement error-correcting codes
with complementary recovery, both at the level of the bulk and at the level of the
boundary. We therefore deduce from the inherited conditional expectation structure
that in the bulk,

HΛ+1 � HΛ ⊗ 𝛿HΛ, (8.84)

and
𝛾
Λ,Λ+1
H |𝜓⟩ � |𝜓⟩ ⊗ |ΩΛ⟩ ∈ HΛ+1, (8.85)

with |ΩΛ⟩ fixed. Similarly on the boundary,

KΛ+1 � KΛ ⊗ 𝛿KΛ,

𝛾
Λ,Λ+1
K |𝜓⟩ � |𝜓⟩ ⊗ |ΘΛ⟩ ∈ KΛ+1.

(8.86)

5Strictly speaking, this last equation is not required to have a well-defined inductive limit code,
but it allows to keep track of the RT and auxiliary Bell pair degrees of freedom added at each step.
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This choice fits the structure of the HaPPY code, where |ΘΛ⟩ corresponds to the
extra bulk qubits and |ΘΛ⟩ corresponds to the extra RT- and auxiliary Bell pairs. We
can say more about this structure by recognizing that because of the compatibility of
operator pushing between layers and bulk-to boundary operator pushing combined
with the compatibility of operator pushing with the layer-to-layer Hilbert space
isometries (8.81),(8.44) we also have a conditional expectation that decomposes

𝛿KΛ � 𝛿HΛ ⊗ 𝛿K̄Λ (8.87)

such that
|ΘΛ⟩ � |ΩΛ⟩ ⊗ |ΨΛ⟩ , (8.88)

where |Ψ⟩ are all “new” degrees of freedom that come from growing the code, such
as the extra RT-pairs and auxiliary degrees of freedom in the HaPPY code.

Limit algebras
With this structure, we define the inductive sequence of bulk and boundary Hilbert
spaces {HΛ, 𝛾

Λ,Λ+1
H }, {KΛ, 𝛾

Λ,Λ+1
K }, and algebras

{AΛ
𝑎 , 𝜙

Λ,Λ+1
H }, {AΛ

𝐴
, 𝜙

Λ,Λ+1
K }, {A′Λ𝑎 , 𝜙′Λ,Λ+1H }, {A′Λ

𝐴
, 𝜙
′Λ,Λ+1
K }. The choice of how to

grow the inductive system is fully contained in the choice of |ΩΛ⟩ , |ΘΛ⟩. For
example, if we consider the HaPPY code and choose the |ΩΛ⟩ to be just the |0⟩ state
on the additional bulk legs, one can think of the inductive limit of the bulk as the
Hilbert space of bulk states which are asymptotically in the |0⟩ state. To construct
the inductive limit bulk and boundary Hilbert spaces and algebras from the Λ-layer
Hilbert spaces, we now take the direct limit accordingly:

H ≡ lim−−→H
Λ, K ≡ lim−−→K

Λ, (8.89)

and similarly for the algebras of observables. The above compatibility relations
ensure that these algebras of observables have a valid representation on the inductive
limit Hilbert space, so that one can take their bicommutant and construct an inductive
limit von Neumann algebra. Moreover, the bulk-to-boundary maps 𝜄Λ and 𝜄′

Λ
also

extend to the inductive limit, and can be extended by continuity to unital normal
★-homomorphisms, so that the conditional expectation structure is preserved in the
limit. If the states |ΘΛ⟩ and |Ω⟩Λ have a similar structure to the HaPPY code, we can
compute the types of the various algebras appearing in this section in a similar way,
by essentially reducing the calculation of the type to an Araki–Woods-like situation,
where the |ΩΛ⟩ and |ΘΛ⟩ lead to a decomposition into an infinite tensor product
of finite density matrices. In the case of the HaPPY code, we found that the |ΩΛ⟩
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were pure, while the |ΘΛ⟩ had a maximally entangled part, which led to the type II∞
structure. In more general cases, the entanglement properties of the |ΩΛ⟩ and |ΘΛ⟩
similarly lead to the type of the algebra through the Araki–Woods classification.

KΛ KΛ+1

. . . . . .

HΛ HΛ+1

AΛ
𝐴

AΛ+1
𝐴

. . . . . .

AΛ
𝑎 AΛ+1

𝑎

𝛾
Λ,Λ+1
K

𝑉Λ

𝛾
Λ,Λ+1
H

𝑉Λ+1

𝜙
Λ,Λ+1
K

𝜄Λ

𝜙
Λ,Λ+1
H

𝜄Λ+1

Figure 8.5: Commutative diagram summarizing the structure required for an induc-
tive limit of codes. The sequence of logical Hilbert spaces and their isometries is
shown on the top diagram, while the sequence of algebras and their operator pushing
maps is shown on the bottom diagram. We ask that the arrows of the same color
on the commutative diagram satisfy the compatibility conditions (8.81) (for the red
ones), and (8.82) (for the blue and green ones). A similar diagram to the bottom
one must also hold for commutant algebras and maps.

8.5 Examples
HaPPY code from Majorana dimers
Here we describe a specific instance of the HaPPY code in terms of Majorana dimers
as described in [256]. Although it does not add any new conclusions to the type of
boundary algebras in the HaPPY code, we develop techniques that can be applied
to analyze the algebras of other networks that are not based on perfect tensors but
arise from the contraction of dimer states. Additionally, this provides us with a
graphical understanding of the codespace and local algebras on the boundary of the
HaPPY code. In short, Majorana dimer states are states in qubit systems that have
a graphical representation in terms of graphs, where each edge corresponds to a
single qubit and has two nodes on it, which represent Majorana operators. Each
node is connected to a different node by a dimer, which indicates that a fermionic
annihilation operator build of the Majorana operators associated to the two nodes
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annihilates the state. As we demonstrate below, one can associate a single qubit to
such a pair of nodes connected by a dimer. A review of Majorana dimers is given
in Appendix 8.8. We use the following encoded representation of logical states as
dimer states

|0̄⟩5 =

1 2

3

4

5

67

8

9

10

(8.90)

|1̄⟩5 =

1 2

3

4

5

67

8

9

10

(8.91)

In the following, we will describe how one can interpret the previous considerations
explicitly in the dimer picture of the HaPPY code by giving a graphical interpretation
of the unitaries𝑈𝐴,𝑈𝐴𝑐 of Harlow’s theorem (8.27).

Disentangling the bulk

As a first step in the explicit construction of 𝑈𝐴 of equation (8.49), we need to
identify how the bulk logical information is encoded in the boundary state. For this
we note that each dimer originates originally from some bulk qubit. For each bulk
qubit of 𝑎, we will have some dimers coming from the local tensor that pierce the
RT surface and some dimers that stay in the subgregion, thus they begin and end in
𝐴. We want to associate some particular dimer that stays in 𝐴 with the information
carried by this bulk qubit. To do so, we note the following.

Theorem 8.5.1. In the HaPPY code represented by Majorana dimers on a {5, 4}
tiling of the hyperbolic plane, there exists a collection of dimers beginning and
ending in 𝐴 of which the parities are different between any two basis states of the
codespace, that differ only in bulk qubits in the entanglement wedge of our subregion,
independent of the state in the complementary wedge.

This theorem is proven in Appendix 8.8. Note that we do not mean that given just
the parities of the logical dimers, the bulk logical state can be trivially read of, i.e.,



423

we do not mean that if a particular bulk is in state |1⟩ that the associated logical
dimer will have its parity inverted compared to the state |0⟩ but that the collection
of parities of logical dimers is in one-to-one correspondence with the logical state.
This theorem states that there is a collection of dimers that stand in one-to-one
correspondence with the logical state of the entanglement wedge, independent of
what the state is in the complementary wedge, an example of a collection of such
logical dimers is shown in Fig. 8.6 (a).

(a) (b)

(c)

Figure 8.6: (a) Two boundary regions 𝐴, 𝐴𝑐 with their respective entanglement
wedges and RT surface 𝛾RT and dimers carrying logical information drawn with
colored dashed lines. Note that there is one dimer for each bulk qubit. (b) HaPPY
code with different dimers in region 𝐴 colored. Green are dimers belonging to 𝐷𝛾,
red are dimers that belong to 𝐷𝐴

𝑎 and and dashed yellow are the logical dimers in
𝐷𝐴
𝑙
. The parity of the dimers was neglected in this figure. (c) Dimers in 𝐴 after

disentangling logical and auxiliary dimers by applying local swap operations.

Following Theorem 8.5.1 we have a set of dimers which we can associate with
information in the entanglement wedge. What we want to do now is to construct a
unitary 𝐶𝐴

𝑖
that distills this information from the codespace state | ¯𝑖 𝑗⟩, where 𝑖 is the

logical state in 𝑎 and 𝑗 the logical state in 𝑎𝑐. To achieve this, we use the following
corollary.

Lemma 8.5.2. Given the above setup, there exists a local unitary �̃�𝐴 ⊗ 11 : H𝐴 ⊗
H𝐴𝑐 →H𝐴 ⊗ H𝐴𝑐 such that for any bulk input | 𝑗⟩ ∈ H𝑎𝑐 :

�̃�𝐴 | ¯𝑖 𝑗⟩ = |𝑖⟩ |𝜒𝑎⟩ |𝜒𝛾, 𝑗 ⟩ , (8.92)
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where 𝑖 is the logical state written out in a set of qubits that are associated to
the logical dimers in theorem 8.5.1, 𝜒 𝑗 is a 𝑗- dependent state that carries the
entanglement that comes from the dimers associated to the RT surface and the
complementary and |𝜒𝑎⟩ is an arbitrary fixed state of an additional set of qubits that
come from dimers that do not belong to either the logical or RT dimers. Furthermore,
there exists a local unitary in 𝐴𝑐 that satisfies Eq. (8.92) if one swaps 𝑖 with 𝑗 and
𝑎 with 𝑎𝑐 on the r.h.s. Their combined action satisfies Harlow’s theorem (8.27)

�̃�𝐴𝑐�̃�𝐴 | ¯𝑖 𝑗⟩ = |𝑖⟩ | 𝑗⟩ |𝜒𝑎⟩ |𝑐𝑎𝑐⟩ |𝜒𝛾⟩ , (8.93)

where now | 𝑗⟩ is associated to logical dimers of the complementary region, |𝜒𝑎𝑐⟩
comes from auxilliary dimers in the complementary region and |𝜒𝛾⟩ is a maximally
entangled state made up from all the dimers that cross the RT surface and connected
region 𝐴 with 𝐴𝑐.

Sketch of Proof. The full proof can be found in 8.8. We give a sketch of it since
it conveys the conceptual action of the unitaries 𝑈𝐴. One begins by grouping all
dimers ending in region 𝐴 into groups 𝐷𝐴

𝑙
of logical dimers, dimers 𝐷𝛾 that cross

the RT surface and the remaining dimers 𝐷𝑎, as illustrated in Fig. 8.6(b). Then,
independently of the bulk input, one can perform swap operations S𝐴 that are local
unitaries in 𝐴 and move the logical and auxiliary dimers so that after the swaps, each
dimer will start and end at the same edge, as illustrated in Fig. 8.6 (c). As shown
in [256], whenever a dimer starts and ends at the first edge after the pivot, the state
factorizes as illustrated in Fig. 8.7, where the parity of the dimer that factorizes can
be directly translated into whether 𝜓 is in the state |0⟩ or |1⟩.

Figure 8.7: Illustration that a dimer state in which an edge is connected to itself next
to the pivot can be factorized into a qubit system and the remaining dimer state.

By aligning all the logical and auxiliary information on the edges directly following
the pivot, one ends up with a state that has the form

S𝐴 | ¯𝑖 𝑗⟩ = |𝜓𝑖⟩𝑎 |𝜒𝑖,𝑎⟩𝜒𝑎 |𝜒 𝑗 ⟩𝛾 , (8.94)

where 𝜓𝑖, 𝜒𝑖,𝑎 are states in qubit Hilbert spaces that depend only on the bulk state in
𝛼 and |𝜒 𝑗 ⟩𝛾 is the part of the state associated to the dimers in the complementary
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entanglement wedge and the RT dimers. Now we can apply state dependent unitaries
X𝐴
𝑖

made out of 𝑋-operators acting on the factorized qubits6 via

X𝐴𝑖 |𝜓𝑖⟩𝑎 |𝜒𝑖,𝑎⟩𝜒𝑎 = |𝑖⟩ |𝜒𝑎⟩ , (8.95)

i.e., they extract the original bulk state 𝑖 in 𝑎 and safe it in the qubits associated
to logical dimers and set the qubits associated to auxiliary dimers into a fixed
reference 𝜒𝑎. This state dependent unitaries can be combined into a fixed unitary
�̃�𝐴 that applies the correct transformation depending on the bulk input. A similar
transformation can be applied in the complementary region, which can be made
local by first shifting the pivot as described in the appendix to the leftmost edge
of the complementary region 𝐴𝑐 and repeating the same logic of disentangling via
swaps, factorization of logical and auxiliary dimers and subsequent state dependent
flipping via a unitaryX𝐴𝑐

𝑗
. This will also comprise a unitary �̃�𝐴𝑐 that acts analogous

as �̃�𝐴. The combined action of �̃�𝑎�̃�𝐴𝑐 will result in a state

�̃�𝐴�̃�𝐴𝑐 | ¯𝑖 𝑗⟩ = |𝑖⟩ | 𝑗⟩ |𝜒𝑎⟩ |𝜒𝑎𝑐⟩ |𝜒′⟩ , (8.96)

where 𝜒′ is a fixed maximally entangled state between 𝐴 and 𝐴𝑐 made from dimers
that cross the RT surface. □

In the last step 𝜒′ is just a maximally entangled state and it is a priori unclear
that the associated algebra of operators acting on it factorizes into a simple tensor
product. However, all the operators acting on this state originate, as discussed above,
from operators that can act on the edges of the tensor network that cross the RT
surface and were mapped unitarily to the boundary. The preceding arguments can
be summarized in

cor. In the Majorana dimer version of the HaPPY code, there exist local unitaries
𝑈𝐴,𝑈𝐴𝑐 such that the full boundary algebra 𝐵(H𝐴) ⊗ 11 is mapped to

𝑈𝐴𝑈𝐴𝑐
(
𝐵(H𝐴) ⊗ 11𝐴𝑐

)
(𝑈𝐴𝑈𝐴𝑐 )† =

𝐵(H𝑎) ⊗ 𝐵(H𝜒𝑎) ⊗ 𝐵(H𝑎,𝛾) ⊗ 11𝐴𝑐 , (8.97)

6At this stage we treat dimers and qubits in a hybrid setting, where we relabeled the Jordan-
Wigner transformation in such a way that only the qubits that did not factorize in the previous steps,
i.e., the dimers associated to the RT surface and the complementary wedge 𝑎𝑐, participate in the
Jordan-Wigner transformation and the factorized ones are excluded and we treat them as regular
qubits with Pauli operators acting on them. However, a single factorized dimer represents a qubit,
so we can think of the factorized qubits graphically also in terms of dimers having each their own
Jordan-Wigner transformation associated to them.
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whereH𝑎 is a Hilbert space made out of qubits that are formed from dimers that are
the logical dimers from Thm. 8.5.1,H𝜒𝑎 are the auxiliary dimers andH𝑎,𝛾 are the
qubits associated to Bell-pairs that originate from dimers that cross the RT surface
and in particular each of the 𝐵(H𝑖) can be written as a tensor product of algebras
that act on tensor products of C2 or, as in the case of 𝐵(H𝑎,𝛾), it can be written
as the tensor product of algebras that act on the tensor product of Bell-pairs that
originate from dimers that cross the RT surface.

The preceding theorem makes it clear that in the case of the Majorana dimer version
of the HaPPY code, all one has to keep track of, when growing the network to
understand how the algebras are mapped between layers, is what happens to the
logical, RT and auxiliary dimers. Furthermore the fact that growing the network
corresponds to feeding the network at layer Λ into a unitary together with extra Bell-
pairs now becomes evident from the fact that a logical dimer at layerΛ still is a logical
dimer at layer Λ + 1 and the same holds for auxiliary and RT dimers. Accordingly
the operators that correspond to operators acting on the logical, auxiliary and RT
dimers stay of this kind, when embedding them in the next layer, because the
unitaries𝑈Λ+1

𝐴
,𝑈Λ+1

𝐴𝑐
will again disentangle them in such a way that their image acts

on a qubit that is associated to the same dimer as in the previous layer.

Dimerized networks
We now consider general tensor networks built out of contraction of dimer states
that have a similar structure as the HaPPY code: In the HaPPY code, we considered
sequences of subregions 𝐴, 𝐽+(𝐴), . . . with their associated algebraA1

𝐴
,A2

𝐽+ (𝐴) , . . .

where the full algebra A𝐴 was mapped completely to a subalgebra of A2 when
growing the network. This is most evident from the circuit picture (c) 8.2, where all
that connects the two subsystems is the maximally entangled state |𝜒𝛾⟩ of the RT
surface whose one-sided algebra gets completely mapped to 𝐴. In the dimer picture,
this was visible by the fact that all dimers that ended in 𝐴 at layer Λ were extended
to 𝐽+(𝐴) when growing the network and all that changed was that additional dimers
were added, i.e., no dimers left the region 𝐴. We saw that we could then decompose
the full algebra into operators that act on pairs of dimers that connect 𝐴 with its
complement 𝐴𝑐 and dimers that remain completely in 𝐴 and that this decomposition
is respected by the embedding because under growing the network, dimers just get
extended to the larger region and do not leave it. This is the dimer version of
complementary recovery. We can repeat the analysis of the previous section for any



427

network generated by contracting dimer states that has this property and find that
the total algebra decomposes into

B(HΛ) = B(HΛ
𝐴 ) ⊗ (B(H

Λ
𝐴,𝛾) ⊗ B(H

Λ
𝐴𝑐 ,𝛾)) ⊗ B(H

Λ
𝐴𝑐 ), (8.98)

where HΛ
𝐴(𝐴𝑐) denotes the Hilbert space of dimers that begin and end in 𝐴(𝐴𝑐)

and HΛ
𝐴,𝛾

the Hilbert space of dimers that connect 𝐴 with 𝐴𝑐. By an analogous
derivation as in the previous section, we can then construct disentangling unitaries
𝑈𝐴,𝑈

Λ
𝐴𝑐

that decompose the total state |ΨΛ⟩ of the network at layer Λ into

𝑈Λ
𝐴𝑈

Λ
𝐴𝑐 |Ψ

Λ⟩ = |𝜉𝐴⟩ |𝜒𝛾⟩ |𝜉𝐴𝑐⟩ , (8.99)

where 𝜒𝛾 is maximally entangled and 𝜉𝐴, 𝜉𝐴𝑐 are the states of the dimers building
HΛ
𝐴(𝐴𝑐) . Since we assume that the network does not make dimers leave the subregion

under growing of the network, each additional layer will again just add maximal
entangled pairs to 𝜒𝛾 or dimers that remain in 𝐴, so that again, growing a layer just
amounts to the addition of Bell pairs to 𝛾 or unentangled reference states to 𝜉𝐴. We
can therefore conclude again that the inductive limit of the algebra of 𝐴 decomposes
into

A𝐴 = B(H𝜉) ⊗ A𝐴,𝛾 ⊗ 11𝐴𝑐 , (8.100)

where A𝐴,𝛾 is the hyperfinite type II1 factor. Depending on, whether H𝜉 is finite
or infinite dimensional, we see again that the resulting algebra either has type II1 or
type II∞.

Type II factors and the absence of magic
Dimer states, as well as the image of bulk states |𝑖 𝑗⟩ in the boundary of the HaPPY
code built out of perfect tensors, are called stabilizer states, which are states that
can be obtained from a unitary circuit 𝑈 applied to |0⟩, where the circuit 𝑈 is
made out of Clifford gates. This is a subset of all unitary gates that can be efficiently
simulated by a classical computer using the Gottesman-Knill theorem [209]. Clifford
gates are defined as the stabilizer of the Pauli group, i.e., all unitaries that map
Pauli operators to Pauli operators under conjugation. States that are prepared by
circuits containing gates that do not belong to the Clifford group are said to have
magic and their properties are tightly linked to the efficiency of quantum compared
to classical computation. We saw above several examples of inductive limits of
stabilizer states that lead to type II factors. We suspect that this is a general
feature of stabilizer circuits and subregions that with respect to the circuit satisfy
complementary recovery, that is, that the state prepared by a layered Clifford circuit
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will generate local algebras that are at most type II, but never type III. An intuitive
reason for that is that a generating set for Clifford circuits is given by the Pauli group
together with the CNOT and Hadamard gate, of which the latter two satisfy

𝐶𝑁𝑂𝑇 (𝐻 ⊗ 11) |00⟩ = 1
√

2
( |11⟩ + |00⟩), (8.101)

i.e., they naturally generate maximally entangled states. One can more generally
argue that the bipartite entanglement spectrum of stabilizer states only contains
inverse powers of 2, so that one can decompose the state into maximally entangled
pairs and unentangled states and one cannot achieve the submaximal entanglement
spectrum necessary for a type III factor. It is tempting to conjecture that the
requirement for complementary recovery causes the possible circuits to be of the
form 8.2 so that again all the entanglement comes from gluing the two halves
together by maximal entangled pairs. In light of this, we formulate the heuristic
Magic is necessary for type III algebras which appears to provide a different point
of view on recent observations concerning magic in quantum field theory [452, 94]
as local algebras in quantum field theory are type III1 factors. In a system with
complementary recovery, the information of both halves does not get mixed under
the induction step, and one can hope to provide an analogous decomposition into
entangled pairs and unentangled local pieces as in the dimer picture. A more precise
form of our conjecture is The inductive limits of local algebras of tensor networks
that are prepared by Clifford circuits and are associated with regions that satisfy
complementary recovery are never type III. A detailed investigation of this claim is
left for future work [61].

MERA
The multi-scale entanglement renormalization ansatz (MERA) is a tensor network
ansatz for the discretized renormalization group flow of critical, gapless theories. As
shown in Fig. 8.8, it can map operators and states between coarse-grained “infrared”
(IR) and fine-grained “ultraviolet” (UV) degrees of freedom. This ansatz has been
shown to include good approximations of grounds state correlation functions of
simple critical theories and the spectrum of their primary operators [381, 464]. Its
geometry also mimics the path integral of a conformal field theory [341, 464], which
appear in the continuum limit of certain discrete critical models. Assuming that the
MERA, given instances with suitable input parameters on their two types of tensors,
can well-approximate states of a (conformal) field theory in its infinite scaling limit,
it should then be expected that the local subregion algebra of such instances is
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IR

UV

Figure 8.8: The multi-scale entanglement renormalization ansatz (MERA) with four
layers. The MERA is a tensor network that maps coarse-grained (IR) degrees of
freedom to fine-grained (UV) ones, designed to describe the renormalization group
flow of critical, gapless theories. It is constructed from isometries 𝐼 (triangles) and
unitary disentanglers 𝑈 (squares). As shown in the legend, 𝐼 can be rewritten as a
unitary map 𝑈𝐼 postselected onto a reference state |0⟩. Here we show the MERA
with periodic boundary conditions, denoted by dashed lines.

described by a type III von Neumann algebra. Like the HaPPY code, the MERA has
been proposed as a model of a holographic bulk-to-boundary map [431]; if it leads to
type III instead of type II algebras, then the MERA must possess qualitative features
that deviate from our discussion of holographic codes so far. As we will briefly
show now, this is due to a breakdown of complementary recovery, which allows
for nontrivial entanglement spectra between two sides of a bipartition to appear.
To understand the algebras of half-infinite systems associated with the MERA, it is
convenient to extend the isometry tensors into unitaries by adding a bulk leg to each
tensor, with a projection of this leg onto a reference state |0⟩ recovering the initial
isometry (see legend in Fig. 8.8). This extension is always possible and allows us to
turn the entire tensor network into a unitary map and consider the pre-image of any
boundary subalgebra. Now we want to determine the type of the algebra associated
to half-infinite systems in this network. For this we have essentially two choices: At
a given layer, one can either split the systems between two disentanglers as in Fig.
8.9(a), or at a disentangler as in Fig. 8.9(c). Both choices for the subregion 𝐴 have the
property that adding a new layer to the network results in a nontrivial overlap of the
lightcones of 𝐴 and 𝐴𝑐, thus breaking complementary recovery. For concreteness,
let us now fix the choice to (a). The effect of the breaking of complementary
recovery is that for operators inA𝐴 that are in the image of operators that act on the
RT surface 𝛾𝐴, the state prepared by the tensor network is not necessarily maximally
entangled anymore. This is visible in the circuit picture 8.9(b) from the fact that the
state |𝜒𝛾𝐴⟩ does not merely connect to the input legs of the unitaries 𝑈𝐴, 𝑈𝐴𝑐 , and
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〉

(a) (b) (c) (d)

Figure 8.9: Bipartitions of MERA boundary sites. (a) A choice of a half-infinite
system 𝐴 that only contains both legs of any disentangler in its support. The
boundary of its preimage is marked as 𝛾𝐴. If one grows the network by an additional
layer, this algebra is completely embedded into a set of bulk legs at the next layer
but its image does have spatial overlap with the image of 𝐴𝑐, so that it breaks
complementary recovery. The bulk separates into three regions 𝑎 (between 𝐴 and
𝛾𝐴), 𝑎𝑐 (between 𝐴𝑐 and 𝛾𝐴𝑐 ), and the “thick” RT region 𝛾 (between 𝛾𝐴 and 𝛾𝐴𝑐 ).
(b) A circuit representation of the previous setup. Here |0𝑎⟩ , |0𝑎𝑐⟩ , |0𝛾⟩ are the
auxiliary bulk states that are fed into each unitary defining an isometry tensor in
each bulk region, and |0𝑖,𝑎⟩ , |0𝑖,𝑎𝑐⟩ , |0𝑖,𝛾⟩ are the input states at the bottom layer.
The bottom circuit shows a parallel implementation with maximally entangled input
pairs |𝜒𝛾𝐴⟩ and |𝜒𝛾𝐴𝑐 ⟩, along with post-selection, highlighting the difference from
the holographic encoding circuit in Fig. 8.2(c). (c) Another choice of bi-partitioning
the MERA into half-infinite subsystems that splits the output qubits of a disentangler,
also breaking complementary recovery. (d) Circuit representations of (c).

𝑈𝛾 but connects input and output legs. This gives rise to a “thick” Ryu-Takayanagi
(RT) surface 𝛾 in Fig. 8.9(a) that consists of several tensors between the cuts 𝛾𝐴
and 𝛾𝐴𝑐 that bound the causal past of 𝐴 and 𝐴𝑐. While the algebrasA𝑎 andA𝑎𝑐 of
each bulk region above these cuts are unitarily mapped to 𝐴 and 𝐴𝑐, respectively,
the algebra A𝛾 of bulk operators in 𝛾 (acting on the extended isometries) is shared
between both boundary regions. In contrast to the HaPPY code, where 𝛾𝐴 and
𝛾𝐴𝑐 typically coincide and A𝛾 lives in the center of A𝐴 and A𝐴𝑐 , complementary
recovery is therefore not a feature of a general MERA. Even asymptotically, there is
generally no complementary recovery, as each iterative step of growing the tensor
network adds more tensors and algebra elements to 𝛾. The choice of subregions
in Fig. 8.9(a) leads to a further complication that the cut 𝛾𝐴𝑐 is not stable under
such an iteration, as tensors near the boundary that belonged to 𝑎𝑐 become part of
𝛾 in the next iteration step. This can be ameliorated by the subregion choice of
Fig. 8.9(c), but does not solve the problem that operators with support entirely on
𝐴 or 𝐴𝑐 in one step can have overlapping support on both in the next. In terms of
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entanglement between 𝐴 and 𝐴𝑐, the breakdown of complementary recovery then
allows for complicated non-bipartite entanglement, potentially approximating the
entanglement spectra of QFT subregions. In the scaling limit, one may then recover
the type III factors expected from such a QFT [177]. We note that we can still
associate type 𝐼 sub-factors to each of the half-infinite systems that arise from the
operators acting on bulk and input legs for which MERA network just prepares the
state |0𝑎⟩ ⊗ |0𝑖,𝑎⟩ which has no intrinsic entanglement.

There is an additional issue in any one of the above algebras that makes them
unsuitable to fit into the structure of a quantum field theory. By the Reeh-Schlieder
Theorem [456], for any local algebra the vacuum state |Ω⟩ is cyclic and separating,
where cyclic means that every state in the Hilbert space can be approximated by
states of the form 𝑂 |Ω⟩, where 𝑂 is an operator in the local algebra and separating
means that |Ω⟩ is not annihilated by any operator in the local algebras that is not
identically zero. That the state prepared by MERA is not separating for the local
algebra can be seen as follows: One can push the operator |1⟩ ⟨1| that acts on any of
the input states |0⟩ through the network and obtain an operator that is localized in the
region 𝐴 or 𝐴𝑐 and thus belongs to the local algebra, but this operator by construction
annihilates the state of the MERA. We see that each of the local algebras has a large
set of operators that annihilates the state represented by the MERA, breaking the
separability. This feature is also true in the HaPPY code, where bulk projections
pushed to the boundary can annihilate the boundary state but here it is essential to
deal with it, if one wants to recover a quantum field theory. It thus seems evident
that to recover a quantum field theory, one has to make further restrictions on the
allowed operators.

8.6 Discussion
Our exploration of infinite, layered tensor networks has revealed a link between
features of quantum error-correcting codes implemented by such tensor networks,
in particular the property of complementary recovery, and the classification of hy-
perfinite factors as introduced by Araki-Woods and Powers [26, 391]. A particular
focus and practical example of our studies has been the HaPPY code [372], a tensor
network model of holographic quantum error correction in which complementary re-
covery naturally appears. Generalizing to layered tensor network codes, we showed
that these lead to the emergence of von Neumann algebras associated to boundary
subregions, with complementary recovery further restricting these algebras to type
II factors.
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Summary
Employing the theory of inductive limits of Hilbert spaces and 𝐶★-algebras, we
developed a framework that enables us to identify local algebras in infinitely large
tensor networks. This binds together tensor network states and operator algebras,
allowing for a systematic examination of emergent features. A major finding is that
the subregion algebras in the HaPPY code form the unique hyperfinite type II∞ factor,
a conclusion that extends to any exact quantum error-correcting tensor network with
complementary recovery between layers and between the Ryu-Takayanagi (RT)
surfaces that glue the complementary regions of the network together. This stems
from the unitary equivalence between the network state, the Araki-Woods-Powers
construction, and the subregion algebra. The type II nature is inherited from maximal
entanglement across the bulk RT surface.

In addition to the HaPPY code, we studied networks under a spin-to-fermion equiv-
alence via the Jordan-Wigner transformation, finding that those built from a con-
traction of Majorana dimer tensors [256] also generically lead to type II factors,
provided the network satisfies complementary recovery. We commented on similar
observations for algebras for subsystems of Clifford circuits that appear to be fixed
to type II or type I factors. We discussed how the MERA network [444], due to the
appearance of a “thick” RT surface, breaks complementary recovery, thus allowing
for more complicated entanglement patterns than in the simple Araki-Woods-Powers
factors. We conjectured that the type III algebras that are associated with half-infinite
subsystems in quantum field theory, which is a widely expected limit of the MERA
for a suitable choice of tensors, might arise from this thick RT surface. We also
argued that it appears reasonable that our usage of all operators is too relaxed and
that one should employ the possibility in the MERA to define an operator pushing
map using the superoperator. This would allow for the restriction to operators made
of primary fields as already suggested in [381]. Based on this, the approach of [346]
of using the GNS construction and focus on more complicated inductive maps seems
like a better avenue to study the limit of the MERA. The presumably most useful
observation stemming from our work concerns the connection between the notion
of complementary recovery and the Araki-Woods-Powers factors, which allows for
strong control of the entanglement structure of the state of the network as it is grown
layer by layer.



433

Outlook
Multiple open directions emerge. First, our analysis centers upon networks with
maximal entanglement in link states, intrinsically favoring type II factors. Examin-
ing networks with submaximal entanglement [107] may result in type III algebras.
In particular, random tensor networks [232] in the limit of large bond dimension
are made out of approximately perfect tensors. So, an extension of our method to
random networks might be a fruitful next step to understand operator algebras in
holographic systems, at least in a probabilistic or average sense. The absence of
complementary recovery in MERA networks suggests that its “RT algebra” allows
for more complicated entanglement patterns that might lead to type III algebras. A
better understanding of the thick RT surfaces could deepen our understanding of the
role of tensor networks in approximating CFTs. Furthermore, our conjecture on the
appearance of type II factors from systems prepared by Clifford circuits provides a
new perspective on the interplay of operator algebras with quantum computation.
Understanding the relation of this line of thought to recent work [310, 309] on von
Neumann algebras in many-body quantum systems and the operational perspective
on the type classification that the authors provide seems like a natural extension of
our work. From the perspective of holography, it seems interesting that the type
II nature of HaPPY code subregions arises from maximal entanglement across the
RT surface, as observed in fixed-area states in quantum gravity [141]. We want
to mention a direct parallel to the construction by Soni [416] which considered a
similar system based on the notion of holographic codes or gauge-invariant Hilbert
spaces in lattice gauge theories that also carry maximal entanglement across the
subsystem boundary [146, 147, 21]. However, in contrast to our choice of fixing the
bulk of the HaPPY code to finitely-entangled states so that the associated algebras
are type I, Soni considered a limit where the bulk logical algebras are type III and
the resulting limit mimics the gravitational crossed product that was used in [457,
101] in the context of perturbative quantum gravity to obtain local algebras of type
II, which has been studied extensively in recent years [100, 261, 278, 286, 103, 207,
287, 135, 9] motivated by the discovery of type transitions in holographic dualities
[294]l. A more concrete realization of this limit within our framework might be
useful to gain intuition on the appearance of the crossed product. It would be in-
teresting to understand whether this entanglement-induced structure of the algebra
underlies type II factors in gravity, as could be made possible by thinking of the RT
degrees of freedom as gravitational edge modes that contribute to the area operator,
which in turn contributes to the entropy. The idea to connect edge modes with black
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hole entropy can be found at several places in the literature [225, 278, 216]. In [182]
a framework for connecting error-correcting codes and conditional expectations to
the real-space version of the renormalization group were made and it would appear
as a natural consideration to apply our results in this context. By exploring these
questions, future work can further clarify the interplay between tensor networks,
operator algebras and their role in quantum field theory and quantum gravity.



435

8.7 Appendix: The type classification and entanglement
In this section, we summarize the classification of types of von Neumann algebras
through the lens of spin systems, drawing on the description by Witten [456]. This
presents a physicist’s perspective on the factors introduced by Powers [391] and
later expanded upon by Araki and Woods [26]. Consider a system consisting of an
infinite collection of pairs of qubits; formally, we have the infinite tensor product
[361]

Ĥ =

∞⊗
𝑖=1

C2 ⊗ C2. (8.102)

This space is non-separable, and care needs to be taken to determine which vectors
actually belong to it. To compute inner products, one must consider infinite products
of numbers, which introduces complications. As a result, this space falls outside the
typical scope of physics [361]. To obtain a separable Hilbert space, i.e., a space with
a countable basis, we have to choose a vacuum or reference state within this large
Hilbert space and consider finite excitations placed on top of it. This will provide a
toy example of layered tensor networks. We consider the sequence of Hilbert spaces

C2 ⊗ C2 → (C2 ⊗ C2)⊗2 → (C2 ⊗ C2)⊗3 → . . . , (8.103)

where each step adds a pair of qubits. The layered tensor network is replaced by a
sequence of states

|𝜓 (0)⟩ → |𝜓 (0)⟩ ⊗ |𝜓 (1)⟩ → . . . , (8.104)

where, at each level, a new state of a qubit-pair is tensored in. In the language of
the main body of the text, this is equivalent to a layered tensor network with the
isometry

|ΨΛ+1⟩ = 𝛾Λ,Λ+1 |ΨΛ⟩ = |ΨΛ⟩ ⊗ |𝜓 (Λ+1)⟩ . (8.105)

Similarly, the operator pushing map between layers is then

𝜙Λ,Λ+1(𝑂) = 𝑂 ⊗ 11 (8.106)

so that the operator becomes the identity on the additional qubits. Following the
inductive limit procedure described in Sec. 8.2, we consider the sequence of states
ΨΛ and Hilbert spaces with the isometries 𝛾Λ,Λ+1 as an inductive system with an
limiting Hilbert spaceHΨ that contains a reference vacuum state |Ψ⟩ that represents
the state

|Ψ⟩ =
∞⊗
Λ=1
|𝜓Λ⟩ . (8.107)
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As a subregion, we consider the algebra of operators that act only on one qubit of
each qubit pair 7. These algebras again form an inductive system with inductive
limit A that can be represented on the limiting Hilbert space HΨ induced by the
sequence |ΨΛ⟩ and define a von Neumann algebra AΨ. Note that the Hilbert space
isometries and the operator pushing maps are compatible in the sense of eq. (8.44).
Now consider the specific states

|𝜓 (𝑖)
𝜆
⟩ := |𝜓𝜆⟩ =

1
√

1 + 𝜆2
( |↑↑⟩ + 𝜆 |↓↓⟩). (8.108)

so that the chain of states is homogeneous between the levels. We denote the
resulting one-sided von Neumann algebras by A𝜆 and the Hilbert spaces by H𝜆.
With this setup one has

(I) If 𝜆 = 0, the underlying state is unentangled, and one can show that the
resulting Hilbert space takes the form

H0 = H𝐴 ⊗ H𝐵, (8.109)

where H𝐴 and H𝐵 are separable, infinite-dimensional Hilbert spaces. In
particular, one has

A0 = B(H𝐴) ⊗ 11. (8.110)

This is a particular case of a more general situation: a von Neumann algebra
that can be represented as the bounded operators of a Hilbert space is called
a type I∞ factor, with the subscript ∞ denoting the infinite dimensionality of
the Hilbert space. If the Hilbert space is finite dimensional they are called
type I𝑛 factors.

(II) If 𝜆 = 1, the state |𝜓1⟩ is a maximally entangled Bell pair. As a result, the
reference state |Ψ⟩ ∈ HΨ satisfies

⟨Ψ|𝑎𝑏 |Ψ⟩ = ⟨Ψ|𝑏𝑎 |Ψ⟩ , ∀𝑎, 𝑏 ∈ A1. (8.111)

This is the defining property of a tracial state. In particular, since equivalence
classes [𝑎] in the inductive limit algebra that come from finite-level operators
act only on finitely many qubit-pairs, the number 8.111 has a finite value on
each [𝑎], and by extension, on each element of A1. Therefore, A1 allows

7Because the locality here is ambiguous, we just make an arbitrary choice which of the two qubits
we consider at each layer, since due to the embedding (8.105) both choices are valid to consider as
lightcones.



437

for a normal8 state that is tracial on each element of A1. This is the defining
property of a von Neumann algebra of type II1.

(III) For 0 < 𝜆 < 1, one can show that none of the above holds, so A𝜆 can not be
represented as B(H) for some Hilbert space, and it does not allow for a finite
trace. Specifically, every function that could be cyclic on A𝜆 must take the
values 0 or ∞, a property usually referred to as A𝜆 being a properly infinite
factor9. Such an algebra is said to have type III𝜆.

(IV) As a generalization, one can consider, instead of a fixed Ψ𝜆, an alternating
sequence

|Ψ𝜆1⟩ → |Ψ𝜆1⟩ |Ψ𝜆2⟩ → |Ψ𝜆1⟩ |Ψ𝜆2⟩ |Ψ𝜆1⟩ , (8.112)

where 𝜆1
𝜆2

is not a rational number. This leads to an entanglement spectrum
between the two sides which becomes continuous in the limit of infinitely
many levels. The one-sided von Neumann algebra A then has type III1 and
neither admits representations as B(H) nor a tracial state. These algebras
describe causally complete subregions in quantum field theory [177].

All of the von Neumann algebras listed above are referred to as hyperfinite factors,
meaning that they are the weak operator closure of an increasing union of finite-
dimensional subalgebras. Another type of algebra that is relevant to us in the
following is the hyperfinite factor of type II∞, which can be shown to be isomorphic
to an algebra acting on a Hilbert space of the form

H = H𝐴 ⊗ H𝐵, (8.113)

and the algebra being of the form

A = B(H𝐴) ⊗ II1, (8.114)

where the notation indicates that it is a II1 factor on H𝐵 multiplied with B(H𝐴),
where H𝐴 is a separable, infinite dimensional Hilbert space. These algebras do
allow for a trace but are not finite, as the trace ofH1 maps the identity to∞.

8Normal means that the state behaves well with limits of sequences of operators.
9In contrast to case (II) which is a finite factor.
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8.8 Appendix: Majorana dimers
Here we introduce a basic description of states represented by Majorana dimers,
which are heavily used in Sec. 8.5. This can be applied whenever one has a Hilbert
space of the form

H =

𝑁⊗
𝑖=1

C2. (8.115)

Instead of considering the Hilbert space in this “spin picture” as a tensor product
of local qubit Hilbert spaces, one performs a Jordan-Wigner transformation [264]
to obtain a “Majorana picture” of the Hilbert space and operators. In particular, we
define

𝛾2𝑘−1 = 𝑍1𝑍2 . . . 𝑍𝑘−1𝑋𝑘 , (8.116)

𝛾2𝑘 = 𝑍1𝑍2 . . . 𝑍𝑘−1𝑌𝑘 , (8.117)

where 𝑘 ∈ {1, . . . 𝑁}, 𝑁 being the number of spins, and 𝑍𝑖, 𝑋𝑖 denoting the respective
Pauli operator acting on the 𝑖-th spin. These represent Majorana operators that satisfy
{𝛾𝑙 , 𝛾𝑚} = 2𝛿𝑙,𝑚. We can then define fermionic creation and annihilation operators
via

𝑓
†
𝑘

:=
1
2
(𝛾2𝑘−1 − i 𝛾2𝑘 ). (8.118)

Given any state

|𝜓⟩ =
1∑︁

𝑖1,...,𝑖𝑁=0
𝑇𝑖1...𝑖𝑁 |𝑖1 . . . 𝑖𝑁⟩ , (8.119)

we can associate a fermionic representation of 𝜓 via

|𝜓⟩ 𝑓 =
1∑︁

𝑖1,...,𝑖𝐿=0
𝑇𝑖1...𝑖𝑁 ( 𝑓

†
1 )
𝑖1 . . . ( 𝑓 †

𝑁
)𝑖𝑁 |Ω⟩ , (8.120)

where |Ω⟩ is the fermionic vacuum, which coincides with the |0⟩⊗𝑁 state in the
spin/qubit picture. The fermionic vacuum satisfies

𝑓𝑖 |Ω⟩ =
1
2
(𝛾2𝑖−1 + i 𝛾2𝑖) |Ω⟩ = 0, 𝑖 ∈ {1, . . . , 𝑁}. (8.121)

This provides 𝑁 conditions of the form

(𝛾𝑘 + i 𝑝𝑘,𝑙𝛾𝑙) |𝜓⟩ = 0, (8.122)

where for the vacuum state 𝜓 = Ω, 𝑝𝑘,𝑙 = 1, 𝑙 = 𝑘 + 1, 𝑘 = 2𝑚, 𝑚 ∈ {1, . . . , 𝑁}. A
state satisfying (8.122) for 𝐿 pairs that are mutually exclusive is called a Majorana
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dimer state and the numbers 𝑝𝑘,𝑙 are the dimer parities. The contraction of two
states 𝜓, 𝜙 along the say third and fourth index is then a new state in a bigger system,
i.e., we define

|𝐶 (𝜓, 3, 𝜙, 4)⟩ :=
∑︁
𝑖𝑘 , 𝑗𝑚

(𝑇𝜓
𝑖1𝑖20𝑖3𝑖4𝑖5𝑇

𝜙

𝑗1 𝑗2 𝑗30 𝑗5 (8.123)

+ 𝑇𝜓
𝑖1𝑖21𝑖3𝑖4𝑖5𝑇

𝜙

𝑗1 𝑗2 𝑗31 𝑗5) |𝑖1𝑖2𝑖3𝑖5 𝑗1 𝑗2 𝑗3 𝑗5⟩ . (8.124)

It was shown in [256] that if the individual tensors 𝑇𝜙, 𝑇𝜓 give a dimer state in the
dimer representation, the contracted tensor does so as well. Since the logical basis
states 0̄ and 1̄ of the five-qubit Laflamme code are themselves represented by dimer
states, the encoding of a bulk basis state via the full HaPPY code is itself a dimer
state on the boundary.

Dimer calculus
Given a dimer state, we can represent it using a simple graphical representation, as for
the following two logical basis states of the five-qubit code (each qubit represented
as the edge of a pentagon):

|0̄⟩5 =

1 2

3

4

5

67

8

9

10

(8.125)

|1̄⟩5 =

1 2

3

4

5

67

8

9

10

(8.126)

Here a blue arrow from e.g. 1 to 6 in |0̄⟩ indicates that the state is annihilated
by the operator 𝛾1 + i 𝛾6. The orange arrow from 1 to 6 in |1̄⟩ indicates that the
corresponding state is annihilated by 𝛾1 − i 𝛾6 and so on. One can check that
application of a Majorana operator 𝛾𝑖 has the effect of flipping the parity of the
dimer associated to 𝛾𝑖, i.e., if

𝛾 𝑗 + i 𝛾𝑖 |𝜓⟩ = 0 , (8.127)



440

then

(𝛾 𝑗 − i 𝛾𝑖)𝛾𝑖 |𝜓⟩ = 𝛾𝑖 (−𝛾 𝑗 − i 𝛾𝑖) |𝜓⟩
= −𝛾𝑖 (𝛾 𝑗 + i 𝛾𝑖) |𝜓⟩
= 0 . (8.128)

Therefore, we can think of the application of a Majorana operator on a dimer state
in the pictorial representation as a flip of the respective color of the dimer. Also we
can swap dimers by applying the swap operator

𝑃 𝑗 ,𝑘 =
Ptot√

2
(𝛾 𝑗 − 𝛾𝑘 ), (8.129)

the effect of which is just the exchange of the dimer connected to the point 𝑗
to become connected to the point 𝑘 and vice-versa. Here Ptot is the total parity
operator

Ptot =
∏
𝑖=1

𝑍𝑖 . (8.130)

An example is given in Fig. 8.10. Given two such states, we can contract the
corresponding tensors to a new state as in the following picture
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(8.131)

i.e, if neighboring edges (here edge 5 and 6) are contracted, the neighboring dimers
are extended and the resulting dimer parities are the product of the dimer parities of
the dimers that were contracted. Here it is important that one contracts neighboring
edges. In particular if one wants to contract the HaPPY code, one has to first choose
an orientation of the local pentagons. This comes with choosing a pivot, i.e., an edge
at which one starts counting the dimers and that implicitly defines the starting point
of the Jordan-Wigner transformation. To be able to contract neighboring edges with
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non-consecutive indices, one first has to rotate the local dimers so that their pivots
align upon contraction. As explained in [256], for parity-even states10 a rotation
does not do anything except changing the order. For parity-odd states, the rotation of
a dimer amounts to the insertion of a 𝑍 string along the path of the pivot, which has
the effect of flipping all dimer parities that are traversed by the pivot when moving
from the old position to the new one. These 𝑍 strings have to be taken into account
when performing the full contraction.

Figure 8.10: Representation of swap operation between node 1 and 2.

Z strings
Here we describe the use of 𝑍 strings in the proof of theorem 8.5.1. The 𝑍 strings
appear when one changes the Jordan-Wigner transformation by a cyclic permutation
of the spin indices when performing the transformation (8.116), which visually
corresponds to “rotating the pivot.” This is used when one wants to align the
edges during the contraction of two dimer states such that the edges contracted are
consecutive edges 𝑘, 𝑘 + 1, for which the rules for contracting dimer states from
the previous section apply. As described in [256], if the dimer state has even total
parity, a cyclic permutation does not generate any change in the individual dimer
parities, but if the state has odd total parity, then the parity of every dimer whose
endpoint is passed by the pivot is flipped (if the pivot passed over both endpoints, the
dimer parity is preserved). An example of the logical state 1̄ for a single pentagon
is given in Fig. 8.11 where the pivot is rotated over one edge. When contracting the
whole network for the HaPPY code the appearance of Z strings can be thought of as
follows: If one starts out with the bulk vacuum |0̄ 0̄ . . . 0̄⟩ no 𝑍 strings appear during
the contraction since the total state is parity-even and all dimers in the resulting state
have positive parity. If a single bulk qubit is instead in the 1̄ state, the corresponding
pentagon has to be rotated during contraction, and this rotation will produce a 𝑍

10Parity-even dimer states are those where the number of parity-odd dimers times (−1)𝑁𝑐 , 𝑁𝑐
being the number of dimer crossing points, is even
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Figure 8.11: Demonstration of the generation of a 𝑍 string as an effect of rotating
the Pivot by one edge.

string. As described in [256], the 𝑍 string will stretch from the initial pivot of the
pentagon to the pivot of the complete state representing the fully contracted network,
as demonstrated in Fig. 8.12 (b) and (c). In the following, we place the pivot of the
contracted network at the end of the rightmost edge of the RT surface of a boundary
subregion, as indicated in Fig. 8.12.(a). In this situation, any 𝑍 string that arises
when flipping a bulk qubit in layer 𝑛 can be located only on the edges that connect
the layer 𝑛 with the layer 𝑛 − 1 until it hits the RT surface as demonstrated in Fig.
8.12(c). Thinking of 𝑍 strings in this way makes it clear that the effect of flipping
any qubit in layer 𝑛 will flip only dimers that state 1̄ from state 0̄ or dimers that
connect layer 𝑛 with layer 𝑛 − 1 or with the complementary entanglement wedge
via the RT surface. For this reason, in the proof of Theorem 8.5.1 we can focus on
dimers that connect the layer 𝑛 to itself, since all other dimers were considered in
the previous layers.

(a) (b) (c) (d)

𝛾𝐴

Figure 8.12: Illustration of 𝑍 strings that appear when exciting bulk qubits from
|0⟩ to |1⟩. (a) The RT surface 𝛾𝐴 is indicated by green edges and the pivot at the
rightmost edge of the RT surface by a blue dot. (b) Only the central qubit gets
excited and a 𝑍 string, indicated by a red edge, stretches from its pivot to the global
pivot located on the boundary. (c) A qubit in the second layer gets excited and the
corresponding 𝑍 string goes along the edge that connects the first with the second
layer. (d) A qubit in the first and second layer get excited. Both 𝑍 strings from (b)
and (c) appear such that a edge is contained in two individual 𝑍 strings that cancels
out, leading to a 𝑍 string connecting the pivots of the individual pentagons.
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Proof of Theorem 4
Proof. We will prove the theorem for every layer individually, where we count the
layers according to how the tensor network is grown, i.e., some pentagons directly at
the RT surface are the deepest in the bulk and come from the same layer of growing
the tensor network, such as the central pentagon in Fig. 8.6. These pentagons
comprise the layer 𝑛 = 1. The pentagons immediately surrounding the 𝑛 = 1
pentagons form the layer 𝑛 = 2 and so on. We will now show that for any 𝑛 we can
make a consistent choice of logical dimers that does not depend on the choice of
the previous layer. In our setup, we assume that the pivot is located at the rightmost
edge of our subregion, so the node nearest to the RT surface is node 1. If we now
perform a logical operation in the layer 𝑛 on a single bulk qubit, we will flip 3 dimers
that distinguish the logical 0 from the logical 1 state. Additionally, as explained in
Appendix 8.8, there will be a 𝑍 string stretching from the pivot of the bulk qubit to
the pivot of the subregion 𝐴. This 𝑍 string only passes edges that lie between layer
𝑛 and 𝑛 + 1, therefore only flipping dimers that existed at layer 𝑛. Therefore, if we
can make a consistent choice for logical dimers in layer 𝑛 that do not arise from the
previous layer, we can make this selection at each layer separately. For the code on
the {5, 4} tiling, one can see a consistent choice considering a corner, as illustrated
in Fig. 8.13(a). Each layer consists of a chain of tensors like 𝑇1, 𝑇2 aligned along a
chain.

(a) (b) (c)

Figure 8.13: (a) A corner piece which illustrates all situations that can occur in the
{5, 4} tiling of the hyperbolic plane. The lower three pentagons are representing
layer 𝑛. Every layer consists of pentagons contracted as the bottom three pentagon.
(b) Logical dimers of the two leftmost pentagons in dashed lines if the rightmost
pentagon does not border the RT surface. (c) Logical dimers of 𝑇1, 𝑇2, 𝑇3 in dashed
lines if the 𝑇3 does border the RT surface indicated by a green edge.

Regardless of whether 𝑇1 borders the RT surface, as long as 𝑇3 does not border the
RT surface, logical dimers can be chosen as in Fig. 8.13(b) for the pentagons 𝑇1, 𝑇2.
This choice can be repeated as one goes to the right through the layer. Note that
these dimers are flipped independently of where the pivot of 𝑇1 or 𝑇2 is located, as
can be seen from the representation of the logical states in dimer form (8.91).
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If 𝑇3 borders the RT surface, then logical dimers can be chosen as in Fig. 8.13(c).
The only difference between these two configurations is that in the case that the
RT surface borders the rightmost pentagon, one cannot choose the dimers as in Fig.
8.13(b) because this would make the logical dimers cross the RT surface. If however,
the RT surface borders the corner Pentagon that is not connected with the previous
layer, then one can go for the logical dimers as in 8.13(c) by not coloring the logical
dimer of the neighboring pentagon that lies in the complementary entanglement
wedge. □

Proof of Lemma 1
Proof. As established previously, we divide the dimers that end in region 𝐴 into
three sets: Logical dimers 𝐷𝐴

𝑙
as established by Thm. 8.5.1, dimers that cross the RT

surface 𝐷𝛾 and the remaining dimers that are not logical but start and end in region
A as the auxilliary dimers 𝐷𝑎. We think of the state | ¯𝑖 𝑗⟩ as a state where all the bulk
qubits which are in the |1⟩ state as the result of applying the respective logical 𝑋
operators on the bulk state in which all qubits are in the |0⟩ state. Furthermore, we
locate the pivot on the rightmost edge of the RT surface as indicated in Fig. 8.12.
We will construct𝑈𝐴 by defining a state-dependent unitary𝐶𝐴

𝑖
for each logical state

|𝑖⟩ in the entanglement wedge 𝑎 that implements the action of 𝑈𝐴 just on this state
and then combine each of the 𝐶𝐴

𝑖
together to the unitary 𝑈𝐴. For a fixed state |𝑖⟩ in

the entanglement wedge 𝑎, 𝐶𝐴
𝑖

will have the action

𝐶𝐴
𝑖 | ¯𝑖 𝑗⟩ = |𝑖⟩ |𝜒𝑎⟩ |𝜒𝛾, 𝑗 ⟩ , (8.132)

so that |𝜒𝑎⟩ is a fixed reference state of the auxilliary dimers 𝐷𝑎 and |𝜒𝛾, 𝑗 ⟩ is a
state such that if | 𝑗⟩ = |0⟩, the RT dimers have a fixed parity. Given the state | ¯𝑖 𝑗⟩
we explicitly construct 𝐶𝐴

𝑖
as follows: First, we recall [256] that a state that has a

dimer connecting the same edge factorizes with the rest, as demonstrated in Fig.
8.7. If the dimer has positive parity |𝜓⟩ = |0⟩, if it has negative parity |𝜓⟩ = |1⟩.
The first action that we want to implement is to achieve the factorization of 8.132
by applying swaps on the logical and auxilliary dimers, so that the resulting state
factorizes between the respective qubits. A selection of logical, RT and auxilliary
dimers is illustrated in Fig. 8.6(b). We will now apply swap operations (For more
information on swaps, see Appendix 8.8).

𝑃 𝑗 ,𝑘 =
P𝑡𝑜𝑡√

2
(𝛾 𝑗 − 𝛾𝑘 ), (8.133)

to the dimers in 𝐷𝐴
𝑙
, 𝐷𝑎, 𝐷𝛾 to put them in a configuration that can be used with

the rule illustrated in Fig. 8.7 to obtain a logical and auxiliary system that factorizes
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with the rest. The swap 𝑃 𝑗 ,𝑘 has the effect of swapping the dimers beginning or
ending at 𝑗 , 𝑘 to now begin or end at 𝑘, 𝑗 . We produce the desired state by swapping
the position of the endpoint of any dimer in 𝐷𝐴

𝑙
, 𝐷𝑎 so that it is located on the same

edge as it begins, thus providing a factorizing state. This disentangling procedure
is illustrated in Fig. 8.14.

Figure 8.14: Illustration of a sequence of swap operations that disentangles the
logical from the RT and the auxiliary degrees of freedom. Between each step a
set of swap operations was applied. Note that the parity of dimers was neglected.
The colors are used to show the logical affiliation of each dimer, dashed and yellow
being in 𝐷𝐴

𝑙
, red being in 𝐷𝑎 and green dimers are in 𝐷𝛾. The boundary region 𝐴 is

indicated in pink and its complement 𝐴𝑐 in blue. The RT surface 𝛾𝐴 is also drawn
in green to fit the respective dimers.

In addition, we will swap the RT dimers so that dimers that cross the RT surface at
the same edge also end at the same edge in 𝐴. After we have done this, we will end
up only with RT dimers connecting 𝐴 to the edges of 𝐴𝑐 and a piece that factorizes
with the rest. In total, we get a system that, after applying the factorization rule of
Fig. 8.7, has the formH = H𝑎 ⊗H𝜒𝑎 ⊗H𝛾,𝐴𝑐 as in Eq. (8.92), so we have a product
state between the three Hilbert spaces that has the form

S𝐴 | ¯𝑖 𝑗⟩ = |𝜓𝑖⟩ |𝜙𝑖,𝑎⟩ |𝜒𝑖 𝑗 ⟩ (8.134)

where 𝜒𝑖 𝑗 is the state of the dimers in 𝐷𝛾, |𝜓𝑖⟩ the state of the logical dimers and
|𝜙𝑖,𝑎⟩ the state of the auxilliary dimers. Here, we have denoted the sequence of swap
operations by S𝐴. This map is independent of |𝑖⟩ because the dimers of the logical
0 and 1 state differ only in parity, not in connectivity as provided by Thm. 8.5.1.
Therefore, to get to the factorized form we have to apply the same swaps for any
bulk input. This swap can be made unitary because one has 𝑃†

𝑖, 𝑗
= 𝑃−1

𝑖, 𝑗
= −𝑃𝑖, 𝑗 . So

if we needed to apply an odd number of swaps to get to the factorizing state, we can
just apply an additional swap on an edge carrying a logical or auxiliary dimer which
will only change its parity. We end up with an even number of swaps 𝑆𝐴 that is a
local unitary operation. We will now abuse notation and go into a hybrid between
dimer and qubit language, where we will talk about operators that act on H𝛾,𝐴𝑐 in
dimer language and we will talk about operators that act on the, now disentangled
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dimers, in qubits language because the set of disentangled dimers is just a system of
qubits, where each dimer represents a single qubit. Another way of thinking about
it is that we define a Jordan-Wigner transformation only on the Hilbert spaceH𝛾,𝐴𝑐
without involving the disentangled dimers.
In Eq. (8.134) the state of the dimers of 𝐷𝑎, 𝐷𝛾 is still 𝑖-dependent. To remove
this dependence, we define a local unitary X𝐴

𝑖
that will remove the 𝑖-dependence.

First, the state 𝜙𝑖,𝑎 is a state described by zeros and ones because it comes from
disentangled dimers in 𝐷𝑎. We can apply 𝑋 operators to put them into the |0⟩
state. This sequence of 𝑋’s forms a unitary X𝑖,𝑎. Furthermore, if the state in the
complementary wedge is | 𝑗⟩ = |0⟩, the parity of the RT dimers only depends on the
state 𝑖. We will now apply a product of majorana operators 𝛾 that act on these RT
dimers and set all their parities to be positive, if | 𝑗⟩ = |0⟩. This comprises a local
unitaryX𝑖,𝛾. At last, we can apply 𝑋 operators on the logical dimers to transform the
sequence of zeros and once in 𝜓𝑖 into the state |𝑖⟩ where the logical dimer associated
to each bulk qubit in 𝑎 is in the state the corresponding bulk qubit is in. This last
step is not necessary, we could just continue to work with 𝜓𝑖 but for concreteness
sake we will also perform such an respective application of 𝑋’s via a unitary X𝑖,𝑙 .
We then define

X𝐴𝑖 = X𝑖,𝑙X𝑖,𝑎X𝑖,𝛾 . (8.135)

We now define
𝐶𝐴
𝑖 = X𝐴𝑖 S𝐴. (8.136)

This unitary will satisfy (8.132) by construction where |𝜙𝑎⟩ = |0⟩. We can repeat
the same construction for the complementary region to obtain a unitary𝐶𝐴𝑐

𝑗
. 11 The

connectivity of the state 𝐶𝐴
𝑖
𝐶𝐴𝑐

𝑗
| ¯𝑖 𝑗⟩ is represented graphically in Fig. 8.15. Note

that we constructed S𝐴,S𝐴𝑐 such that pairs of RT dimers that crossed the same edge
on the RT surface also begin and end on the same edge. We can also choose them
such that the dimers associated to one RT edge do not cross each other. As was
shown in [256], such dimer pairs give maximally entangled states. We defined X𝑖,𝛾
such that if | 𝑗⟩ = |0⟩ all the RT dimers have positive parity in 𝐶𝐴

𝑖
| ¯𝑖0⟩. Because of

this, all the maximally entangled pairs associated to each edge will be in the same
state with the same parities for any bulk state |𝑖 𝑗⟩, because if going from |0̄0⟩ to |𝑖0⟩
a pair of RT dimers flipped their parities, then X𝑖,𝛾 will reverse this parity change.
The same parity-flip reversal takes place from |X𝑗 ,𝛾⟩ when the dimers change their
parity when going from |0̄0⟩ to |0̄ 𝑗⟩, so that the combined action X𝑗 ,𝛾X𝑖,𝛾 will flip

11Note that we have to move the pivot to the rightmost edge of the complementary region 𝐴𝑐 so
that the swap operators one has to apply are local unitaries.
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the parity of these RT dimers twice, so that their parity is the same as in the |0̄0⟩
state, namely positive.

Figure 8.15: Dimers after full disentangling. All RT dimers begin and end in pairs
at the same edge to form maximally entangled pairs.

Figure 8.16: Fully disentangled codestate without indication of parities.

By construction we then have

𝐶𝐴
𝑖 𝐶

𝐴𝑐

𝑗 | ¯𝑖 𝑗⟩ = |𝑖⟩ | 𝑗⟩ |𝜒𝑎⟩ |𝜒𝑎𝑐⟩ |𝜒⟩ , (8.137)

where |𝜒𝑎⟩ = |0⟩ , |𝜒𝑎𝑐⟩ = |0⟩ and |𝜒⟩ is a collection of maximally entangled pairs
between 𝐴 and 𝐴𝑐, one for each edge in the RT surface and that is independent of
the bulk logical state | ¯𝑖 𝑗⟩ Now that we can disentangle each state | ¯𝑖 𝑗⟩ individually,
we construct the unitaries𝑈𝐴,𝑈𝐴𝑐 . We can now define projectors

𝑃𝐴𝑖 = (𝐶𝐴
𝑖 )† |𝑖⟩ ⟨𝑖 |𝐶𝐴

𝑖

𝑃𝐴
𝑐

𝑗 = (𝐶𝐴𝑐

𝑗 )† | 𝑗⟩ ⟨ 𝑗 |𝐶𝐴𝑐

𝑗 ,
(8.138)

where |𝑖⟩ ⟨𝑖 | = |𝑖⟩ ⟨𝑖 | ⊗ 11H𝜒𝑎 ⊗ 11H𝛾,𝐴 ⊗ 11𝐴𝑐 , so that the identities act on the space of
auxilliary, RT dimers and the complementary region 𝐴𝑐. In the following we will
omit these identities. The projction 𝑃𝐴

𝑖
projects on the dimer states in which the

logical dimers of region 𝐴 have the same parity as they have in the codestate |𝑖⟩ but
independent of what parities the other dimers have. These are mutually orthogonal
because in their product

𝑃𝐴𝑖 𝑃
𝐴
𝑗 = (𝐶𝐴

𝑖 )† |𝑖⟩ ⟨𝑖 |𝐶𝐴
𝑖 (𝐶𝐴

𝑗 )† | 𝑗⟩ ⟨ 𝑗 |𝐶𝐴
𝑗 , (8.139)

we have
𝐶𝐴
𝑖 (𝐶𝐴

𝑗 )† = X𝐴𝑖 S𝑎S†𝑎 (X𝐴𝑗 )† = X𝐴𝑖 (X𝐴𝑗 )† (8.140)
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in (8.139) we will thus end up withX†
𝑗

flipping the spins in | 𝑗⟩ to the parities that the
corresponding dimers have in the original dimer picture and a analogous operation
will be done by ⟨𝑖 | X𝐴

𝑖
. Here it is that Thm. 8.5.1 is important, namely it forces the

operator |𝑖⟩ ⟨𝑖 | X𝐴
𝑖

to multiply to zero withX†
𝑗
( | 𝑗⟩ ⟨ 𝑗 | if 𝑖 ≠ 𝑗 because the application

of X𝐴
𝑖

on |𝑖⟩ ⟨𝑖 | will flip the spins in such a way that the parities are the same as
one had in the initial HaPPY state for the dimers that built up the logical |𝑖⟩. These
parities (or effectively this collection of ones and zeros) will differ at least in one
spin from the state one gets by computing X†

𝑗
( | 𝑗⟩ ⟨ 𝑗 | ⊗ 11) exactly because this is

the content of proposition 8.5.1 – the parities of logical dimers differ between any
two distinct codestates. Therefore we have

𝑃𝐴𝑖 𝑃
𝐴
𝑗

= 𝛿𝑖 𝑗 (𝐶𝐴
𝑖 )† |𝑖⟩ ⟨𝑖 | X𝐴𝑖 (X𝐴𝑖 )† |𝑖⟩ ⟨𝑖 |𝐶𝐴

𝑖

= 𝛿𝑖 𝑗 (𝐶𝐴
𝑖 )† |𝑖⟩ ⟨𝑖 |𝐶𝐴

𝑖 = 𝑃𝑖𝛿𝑖 𝑗 ,

(8.141)

Furthermore, 𝑃𝐴
𝑖

is by construction local in 𝐴 and thus commutes with all 𝑃𝐴𝑐
𝑖

.
We now define the operators

𝑈𝐴 :=
∑︁
𝑖

𝐶𝐴
𝑖 𝑃

𝐴
𝑖 =

∑︁
𝑖

|𝑖⟩ ⟨𝑖 | X𝐴𝑖 S𝐴,

𝑈𝐴𝑐 :=
∑︁
𝑗

𝐶𝐴𝑐

𝑗 𝑃
𝐴𝑐

𝑗 =
∑︁
𝑖

|𝑖⟩ ⟨𝑖 | X𝐴𝑐𝑖 S𝐴𝑐 .
(8.142)

Lastly, we want to show that these are unitaries. We compute

𝑈𝐴𝑈
†
𝐴
=

∑︁
𝑖 𝑗

|𝑖⟩ ⟨𝑖 | X𝐴𝑖 S𝐴S
†
𝐴
X†
𝑗
( | 𝑗⟩ ⟨ 𝑗 |

=
∑︁
𝑖 𝑗

|𝑖⟩ ⟨𝑖 | X𝐴𝑖 (X𝐴𝑗 )†( | 𝑗⟩ ⟨ 𝑗 |

=
∑︁
𝑖

|𝑖⟩ ⟨𝑖 | X𝐴𝑖 (X𝐴𝑖 )† |𝑖⟩ ⟨𝑖 |

=
∑︁
𝑖

|𝑖⟩ ⟨𝑖 | = 11.

(8.143)

Here we used the unitarity of S𝐴 in the second line, the argument of orthogonality
following from proposition 8.5.1 as in the proof of the pairwise orthogonality of
𝑃𝐴
𝑖

and in the end that |𝑖⟩ ⟨𝑖 | is an orthonormal basis for the logical Hilbert space.
Similarly, we have

𝑈
†
𝐴
𝑈𝐴 =

∑︁
𝑖 𝑗

S†
𝐴
(X𝐴𝑗 )† | 𝑗⟩ ⟨ 𝑗 | |𝑖⟩ ⟨𝑖 | X𝐴𝑖 S𝐴

=
∑︁
𝑖

S†
𝐴
(X𝐴𝑖 )† |𝑖⟩ ⟨𝑖 | X𝐴𝑖 S𝐴 =

∑︁
𝑖

𝑃𝑖 = 11.
(8.144)
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Here, we used the fact that 𝑃𝑖 is summing to the identity, which follows from a
dimension-counting argument. The 𝑃𝑖’s are mutually orthogonal and there are as
many of them as we have bulk qubit states. Each of them projects onto a subspace
that has the dimensionality Dim(H)/2𝑛𝑏𝑢𝑙𝑘 , where 𝑛𝑏𝑢𝑙𝑘 is the number of bulk qubits
andH is the full boundary Hilbert space. Since we have 2𝑛𝑏𝑢𝑙𝑘 of those orthogonal
subspaces, the sum of them must be the total Hilbert space, so the projections must
sum to the identity. □



450

C h a p t e r 9

NONPERTURBATIVE GRAVITY CORRECTIONS TO BULK
RECONSTRUCTION

This chapter is based on the work [194], in collaboration with Monica Jinwoo Kang.

9.1 Introduction
Understanding the holographic principle and the theory of quantum gravity has
been a constant focus and desire in modern theoretical physics, and much progress
has been achieved within the last decade utilizing the framework of quantum error
correction. In the context of the AdS/CFT correspondence, the semi-classical limit
can be interpreted as a quantum error correcting code and this perspective has
provided new tools to understand the emergence of spacetime [142, 224, 193] and
the Page curve analysis [368, 13, 379].

The first hint of the error correcting structure of the semiclassical limit of AdS/CFT
lies within the Ryu–Takayanagi formula [401, 400]. More precisely, each region 𝐴
of the boundary CFT in a given state that possesses a semiclassical dual corresponds
to a bulk region called the entanglement wedge, whose geometry and field content
are encoded solely in 𝐴. Given the bulk geometry, the entanglement wedge for
a given boundary region is determined through a minimization procedure: it is
delimited by a quantum extremal surface homologous to the boundary region, and
has the property of being an extremum of the generalized entropy of the boundary
state. More formally, it is the bulk surface (𝑎) homologous to the boundary region
that extremizes the quantity

𝑆𝑔𝑒𝑛 :=
1

4𝐺𝑁

Area(𝑎) + 𝑆𝑎 (𝜌𝑏𝑢𝑙𝑘 ), (9.1)

where 𝜌𝑏𝑢𝑙𝑘 is the state that describes the system in the semiclassical theory (i.e.,
the code subspace).

It is important to note that the entanglement wedge can be much larger than the
causal wedge, which is the bulk region that is reconstructible through the Hamilton–
Kabat–Lifschytz–Lowe protocol [220, 219]. For example, this is possible in the case
of disconnected subregions of the boundary. In this aspect, entanglement wedge
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reconstruction is a highly nontrivial and unexpected property of the semiclassical
limit of AdS/CFT.

The validity of the Ryu–Takayanagi formula is equivalent to several other claims
including complementary recovery [142]. If the boundary theory is in a pure state
and 𝑎 is the entanglement wedge of a boundary region 𝐴, then semiclassical operators
in 𝑎 can be reconstructed from operators in 𝐴 and semiclassical operators in the bulk
complement 𝑎 can be reconstructed from the boundary complement 𝐴. This is the
key ingredient needed for establishing the connection between entanglement wedge
reconstruction and the Ryu–Takayanagi formula in the context of finite-dimensional
Hilbert spaces. In this setting, together with the relative entropy equivalence between
bulk and boundary derived by Jafferis–Lewkowycz–Maldacena–Suh (JLMS) [254],
it has been proven that entanglement wedge reconstruction, the Ryu–Takayanagi
formula, and the JLMS formula are all equivalent [225].

Formulating a rigorous analog of the Ryu–Takayanagi formula in the context of
infinite-dimensional Hilbert spaces is hard, as it needs to be regulated, and the
absence of tracial states on certain von Neumann algebras makes it particularly
tricky to even define von Neumann entropy. However, its equivalent counterparts,
namely, complementary recovery and the conservation of relative entropy (and
modular flow) between the bulk and the boundary, can still be formulated in the
context of infinite-dimensional Hilbert spaces, and are shown to be equivalent under
some assumptions in [270]. The required assumptions for this exact relation to hold
have been extended to more settings in [196, 164]. It is important to note that this
exact relation between entanglement wedge reconstruction and the relative entropy
equivalence between bulk and boundary in infinite-dimensional Hilbert spaces is
relevant for the case of an actual boundary conformal field theory, utilizing an
operator-algebraic perspective.

The analysis in [270] relies on von Neumann algebras acting on Hilbert spaces. The
code subspace and the physical Hilbert space are embedded into one another via
an isometry. The fundamental objects of the theory then become the algebra of
CFT observables in a certain boundary region 𝑀𝑝ℎ𝑦𝑠 acting on the physical Hilbert
space, and an algebra of effective field theory observables 𝑀𝑐𝑜𝑑𝑒 acting on the code
subspace. It has recently been shown that the underlying structure associated to exact
entanglement wedge reconstruction was that of a net of conditional expectations
between boundary and bulk local algebras [164]. In this context, the equivalence
between the conservation of modular flows and complementary recovery for a state
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in the code subspace naturally arises as a consequence of Takesaki’s theorem.

A striking feature of the entanglement wedge is that it is a state-dependent object.
This is due to the presence of the bulk entropy term in the quantum extremal
surface formula. In the case of two almost equally contributing local extrema of the
generalized entropy [6], or of a large amount of semiclassical entanglement in the
bulk [231], this bulk entropy term may become dominant and create large variations
of the entanglement wedge, even within the same code subspace. This can happen
in situations when the bulk contains a black hole such that there exist enough bulk
entropy giving rise to such entanglement wedge jumps. In such cases, the JLMS
formula [254] has to be corrected to include the difference in generalized entropies
of the two bulk states in their relative entanglement wedges [142].

There is an important subtlety in studying some crucial features of the emergence
of the bulk in AdS/CFT: the quantum extremal surface formula can only be approx-
imate, albeit to nonperturbative order in 𝐺𝑁 [231]. This subtlety is essential for
resolving some apparent paradoxes in AdS/CFT, such as aspects of the informa-
tion paradox [379] and non-additivity of entanglement wedges [276]. For studying
black holes in the 𝐺𝑁 → 0 limit, we allow the code subspace to have an arbitrarily
large dimension. In this setting, given a boundary region, a code subspace operator
can only be reconstructed in a state-independent manner if it is in its entanglement
wedge for both pure and mixed states in the code subspace [231]. The intersection
of all these entanglement wedges is called the reconstruction wedge. In particular,
the black hole interior, which lies outside of the reconstruction wedge, can only be
reconstructed in a state-dependent manner.

Subtleties about approximate recovery that include non-perturbative gravitational
errors have thus far only been considered in finite-dimensional toy models [231];
however, we eventually need to deal with the case of local algebras on an infinite-
dimensional boundary Hilbert space. Here, we intend to formulate an approximate
version of infinite-dimensional holographic recovery. We first focus on the case of
the reconstruction wedge. More specifically, we prove that if a quantum extremal
surface formula with an inclusion of non-pertubative gravitational errors can be true
in all entanglement wedges, then the bulk algebra of the reconstruction wedge is
reconstructable from the boundary up to small nonperturbative gravitational cor-
rections. Putting everything together, we present Theorem 9.1.1 that captures the
precise result. We note that we use a modified-JLMS formula that adapts the state-
ment of relative entropy conservation to the case in which the quantum extremal
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surface jumps, by adding generalized entropy terms. Here B(H) denotes bounded
operators on a Hilbert space, 𝑆𝜌,𝜔 (𝑀) denotes the relative entropy of the states 𝜌
and 𝜔 on the algebra 𝑀 , and 𝑅 is interpreted a reference system.

Theorem 9.1.1. Let H𝑐𝑜𝑑𝑒 and H𝑝ℎ𝑦𝑠 be two Hilbert spaces, 𝑉 : H𝑐𝑜𝑑𝑒 → H𝑝ℎ𝑦𝑠

be an isometry, and H ∗
𝑐𝑜𝑑𝑒

be any finite-dimensional Hilbert space of dimension
smaller or equal to the one ofH𝑐𝑜𝑑𝑒. Let 𝑀𝐴 be a von Neumann algebra onH𝑝ℎ𝑦𝑠.
To each normal state𝜔 inB(H𝑐𝑜𝑑𝑒 ⊗H ∗𝑐𝑜𝑑𝑒)∗, we associate two entanglement wedge
von Neumann algebras 𝑀𝐸𝑊 (𝜔,𝐴) and 𝑀

𝐸𝑊 (𝜔,𝐴∪𝑅) of operators on H𝑐𝑜𝑑𝑒 ⊗ H ∗𝑐𝑜𝑑𝑒
such that 𝑀

𝐸𝑊 (𝜔,𝐴∪𝑅) ⊂ 𝑀
′
𝐸𝑊 (𝜔,𝐴) . Let

𝑀𝑎 :=
⋂
𝜔

𝑀𝐸𝑊 (𝜔,𝐴) ⊂ B(H𝑐𝑜𝑑𝑒)

be the reconstruction wedge von Neumann algebra onH𝑐𝑜𝑑𝑒, and suppose that 𝑀𝑎′ ,
the commutant of 𝑀𝑎 in B(H𝑐𝑜𝑑𝑒), is a product of type 𝐼 factors. Suppose that for
all choices of H ∗

𝑐𝑜𝑑𝑒
and all pairs of states 𝜌, 𝜔 in B(H𝑐𝑜𝑑𝑒 ⊗ H ∗𝑐𝑜𝑑𝑒)∗ such that

𝑆𝜌,𝜔 (𝑀𝐸𝑊 (𝜔,𝐴∪𝑅)) is finite, we have the following modified-JLMS condition:

|𝑆𝜌◦(E𝑐⊗𝐼𝑑),𝜔◦(E𝑐⊗𝐼𝑑) (𝑀′𝐴 ⊗ B(H
∗
𝑐𝑜𝑑𝑒)) − 𝑆𝜌,𝜔 (𝑀𝐸𝑊 (𝜔,𝐴∪𝑅))

+𝑆𝑔𝑒𝑛 (𝜌, 𝐸𝑊 (𝜌, 𝐴 ∪ 𝑅)) − 𝑆𝑔𝑒𝑛 (𝜌, 𝐸𝑊 (𝜔, 𝐴 ∪ 𝑅)) | ≤ 𝜀,

where E and E𝑐 refer to the respective restrictions of 𝐴 ↦→ 𝑉†𝐴𝑉 to 𝑀𝐴 and 𝑀′
𝐴
,

and the function 𝑆𝑔𝑒𝑛 (𝜌, 𝐸𝑊 (𝜔, 𝐴 ∪ 𝑅)) depends only on the restrictions of 𝜌 and
𝜔 to 𝑀𝑎′ ⊗ B(H ∗𝑐𝑜𝑑𝑒). Then, there exists a quantum channel R : 𝑀𝑎 → 𝑀𝐴 such
that

∥E ◦ R − 𝐼𝑑𝑀𝑎 ∥𝑐𝑏 ≤ 2(2𝜀) 1
4 .

We then move on to the state-dependent case, and explain how to extend the
state-dependent 𝛼-bit reconstruction of the black hole interior [231] to the infinite-
dimensional case. We also compare our approach through complementary recovery
to the recent extension [170] of the twirled Petz map [130] to the infinite-dimensional
case. While the twirled Petz map provides an explicit recovery channel, the approx-
imate recovery it gives is only controlled by a bound involving the operator norm,
rather than the completely bounded norm that we get from our approach. Moreover,
it is unclear whether the twirled Petz map still provides a valid reconstruction at
subleading order in 𝐺𝑁 , whereas the error in our approach is nonperturbative.
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Building on this operator algebraic framework [270, 269, 164, 170, 165, 225, 196,
193, 195, 456] on understanding bulk reconstruction, modular structure, and relative
entropy equivalence between bulk and boundary, our results expand the dictionary
between holography and operator algebras. We summarize this in Table 9.1, which
also captures the emerging quantum error correcting structure.

At the end of the chapter, we expand on how our algebraic approach enables us to
capture nontrivial features of the bulk, and propose some future research directions.
In particular, we comment on the possibility of bridging the quantum error correction
approach to the semiclassical limit of the bulk, with the recent advances involving
averaged theories and gravitational path integrals. We further analyze the modified-
JLMS condition required for our theorem in more detail and show how our result
can be relevant to the case of an evaporating black hole.

The remaining parts of the chapter are organized as follows. In Section 9.2, we first
provide a toolkit of relevant mathematical concepts for the purpose of this chapter,
including conditional expectations, modular flow, relative entropy from Araki’s
perspective, the Petz map, and basic Tomita–Takesaki theory. In Section 3, we
provide background on existing results for exact entanglement wedge reconstruction
in infinite dimensions. In Section 4, we introduce the notions of approximate privacy
and correctability for quantum channels, as well as a fundamental result that relates
them. In Section 5, we utilize this result to prove that an approximate modified-JLMS
formula implies approximate complementary recovery in the reconstruction wedge.
In Section 6, we move on to the state-dependent case, beyond the reconstruction
wedge. We describe the properties of black hole 𝛼-bits in the case of an infinite-
dimensional boundary Hilbert space, and we study the fundamental differences
between our framework and the use of a universal recovery channel. In particular,
we find that our framework, although non-constructive, is more robust, and valid
up to nonperturbative errors in 𝐺𝑁 . In Section 7, we explain how this perspective
can help understanding various physical settings from our result, and provide some
promising research directions. In particular, we explain how to connect our algebraic
approach with the gravitational path integral and probing averages over theories. We
study in detail the modified-JLMS condition, which we utilized as an assumption
to our main theorem, and show the relevance of our framework in the case of an
evaporating black hole.
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9.2 Preliminaries: algebraic perspective
In this section, we describe various mathematical objects that are used in this chapter
for studying entanglement wedge reconstruction. We also give some important
properties of these objects.

Conditional expectations
For holographic theories, the algebra of observables of quantum field theory on a
fixed spacetime geometry is usually described as a von Neumann algebra acting on
a Hilbert space, which is then isometrically embedded in a bigger Hilbert space onto
which a bigger von Neumann algebra acts.

Motivated by this picture, we want to have an appropriate way to project any element
of a von Neumann algebra onto a smaller one. The right object to consider for such
an operation is a conditional expectation, which can be defined as the following.

Definition 9.2.1. Let 𝑀 be a von Neumann algebra and 𝑁 be a von Neumann
subalgebra of 𝑀 . A conditional expectation from 𝑀 to 𝑁 is a positive linear map

𝐸 : 𝑀 → 𝑁

satisfying, for 𝐴 ∈ 𝑀 and 𝐵,𝐶 ∈ 𝑁 ,

𝐸 (𝐼𝑑) = 𝐼𝑑, 𝐸 (𝐵𝐴𝐶) = 𝐵𝐸 (𝐴)𝐶.

One should think of a conditional expectation as the abstract equivalent of “tracing
out degrees of freedom." It takes into account the fact that an observer may only
have an access to part of the information contained in a quantum system - in our
case, the code subalgebra.

The properties of conditional expectations, and how they interact with the states of
the theory, will be at the heart of our discussion on entanglement wedge reconstruc-
tion. Indeed, as we will shortly see, in the exact picture, the holographic map can
be identified with a conditional expectation [164].

Tomita–Takesaki theory and modular flow
Tomita–Takesaki theory is fundamental in the theory of von Neumann algebras.
We briefly define the main objects appearing in this theory, and state the Tomita–
Takesaki theorem. We utilize these concepts for our purposes to study relative
entropies and the modular flow.
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Definition 9.2.2. A vector |Ψ⟩ ∈ H is cyclic with respect to a von Neumann algebra
𝑀 acting on a Hilbert spaceH when the vectors O |Ψ⟩ for O ∈ 𝑀 form a dense set
inH .

Definition 9.2.3. A vector |Ψ⟩ ∈ H is separating with respect to a von Neumann
algebra 𝑀 when O |Ψ⟩ = 0 =⇒ O = 0 for O ∈ 𝑀 .

It is important to note that a cyclic and separating state can be interpreted as a
state that sufficiently entangles the observables of the algebra 𝑀 with the rest of the
system. In finite-dimensions, a state being cyclic and separating for a given algebra
boils down to its restriction to the algebra being a thermal density matrix.

We remind the reader that states on von Neumann algebras can be defined as norm-
continuous positive linear functionals of norm 1 directly.

Definition 9.2.4. A state 𝜔 on a von Neumann algebra 𝑀 is normal if for any
uniformly bounded, monotone, increasing net of positive operators 𝐻𝛼 ∈ 𝑀 ,

𝜔(sup
𝛼

𝐻𝛼) = sup
𝛼

𝜔(𝐻𝛼).

The predual 𝑀∗ of the von Neumann algebra 𝑀 is then spanned by the normal states.

Definition 9.2.5. A state 𝜔 on a von Neumann algebra 𝑀 is faithful if for 𝐴 ∈ 𝑀 ,

𝜔(𝐴∗𝐴) = 0 =⇒ 𝐴 = 0.

It is easy to see that a separating vector for the von Neumann algebra 𝑀 induces a
faithful state on 𝑀 .

With these refined properties of states formulated in an algebraic manner, we now
further define (relative) modular operators, first on a certain subset of the Hilbert
space.

Definition 9.2.6. Let |Ψ⟩ , |Φ⟩ ∈ H and 𝑀 be a von Neumann algebra. The relative
Tomita operator is the closure of the operator 𝑆Ψ|Φ defined by

𝑆Ψ|ΦO |Ψ⟩ := O† |Φ⟩

for O ∈ 𝑀 .

If |Ψ⟩ is cyclic and separating with respect to the von Neumann algebra 𝑀 , the
relative Tomita operator can be defined on a dense subset of the Hilbert space.



457

Theorem 9.2.7 ([263], p.94). Let |Ψ⟩ , |Φ⟩ ∈ H be cyclic and separating vectors
with respect to a von Neumann algebra 𝑀 . Let 𝑆Ψ|Φ and 𝑆′

Ψ|Φ be the relative Tomita
operators respectively defined with respect to 𝑀 and its commutant 𝑀′. Then

𝑆
†
Ψ|Φ = 𝑆′

Ψ|Φ, 𝑆
′ †
Ψ|Φ = 𝑆Ψ|Φ. (9.2)

Definition 9.2.8. Let 𝑆Ψ|Φ be the relative Tomita operator for two vectors |Ψ⟩ , |Φ⟩ ∈
H , which are cyclic and separating with respect to a von Neumann algebra 𝑀 . The
relative modular operator is

ΔΨ|Φ := 𝑆†
Ψ|Φ𝑆Ψ|Φ.

When |Ψ⟩ and |Φ⟩ are the same vector, the relative Tomita operator specializes into
a Tomita operator as follows.

Definition 9.2.9. Let 𝑀 be a von Neumann algebra on H and |Ψ⟩ be a cyclic and
separating vector for 𝑀 . The Tomita operator 𝑆Ψ is

𝑆Ψ := 𝑆Ψ|Ψ,

where 𝑆Ψ|Ψ is the relative modular operator defined with respect to 𝑀 . The modular
operator ΔΨ = 𝑆

†
Ψ
𝑆Ψ and the modular conjugation 𝐽Ψ are the operators that appear

in the polar decomposition of 𝑆Ψ such that

𝑆Ψ = 𝐽ΨΔ
1/2
Ψ
.

We note that the modular operator given by a state defined by a thermal density
matrix in finite-dimensions has a simple expression: it is just the thermal density
matrix itself. In particular, its logarithm coincides with the familiar notion of
modular Hamiltonian.

The Tomita–Takesaki theorem is a powerful tool to study properties of von Neumann
algebras, which is given as the following.

Theorem 9.2.10 (Tomita–Takesaki [434]). Let 𝑀 be a von Neumann algebra onH
and let |Ψ⟩ be a cyclic and separating vector for 𝑀 . Then

• 𝐽Ψ𝑀𝐽Ψ = 𝑀′.

• Δ𝑖𝑡
Ψ
𝑀Δ−𝑖𝑡

Ψ
= 𝑀 ∀𝑡 ∈ R.
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This theorem shows that, associated to each cyclic separating state, there is a canon-
ical “time evolution" given by the modular flow. This flow can be defined through
conjugating an algebra element by imaginary powers of the modular operator, and
its physical interpretation is that the restriction of the state |𝜓⟩ to 𝑀 is at ther-
mal equilibrium with respect to its modular flow [118]. In quantum field theory,
the Bisognano–Wichmann theorem [213] shows that the modular flow of the vac-
uum generates boosts for Rindler wedges. The fact that the vacuum is at thermal
equilibrium with respect to these boosts is then related to the Unruh effect.

We do not require any additional structure in our main results. However, our setup
can be applied to more structured particular cases as well where there exists a more
general definition of modular objects for non-cyclic and non-separating vectors; see
for example [96].

The Connes cocycle and Araki’s relative entropy
Based on the notion of modular flow, we can now define the Connes cocycle of two
states 𝜓 and 𝜑, with 𝜑 faithful and normal.

Definition 9.2.11. Let 𝜓 and 𝜑 be two states on a von Neumann algebra 𝑀 , with 𝜑
faithful and normal. The Connes cocycle of 𝜓 and 𝜑 is defined as

[𝐷𝜓 : 𝐷𝜑]𝑡 := Δ𝑖𝑡
𝜓 |𝜑Δ

−𝑖𝑡
𝜑 .

It is a highly nontrivial result that the Connes cocycle of two states on 𝑀 is always
in 𝑀 . In other words, the difference between modular flows of two states is always
an inner automorphism. The Connes cocycle has a nice geometric interpretation in
AdS/CFT [80], and it would be nice to understand it in more detail in the context of
our framework.

Another useful quantity to define from Tomita–Takesaki theory is Araki’s relative
entropy, which is provided in Definition 9.2.12.

Definition 9.2.12 (Araki [24]). Let |Ψ⟩ , |Φ⟩ ∈ H and |Ψ⟩ be cyclic and separating
with respect to a von Neumann algebra𝑀 . LetΔΨ|Φ be the relative modular operator.
The relative entropy with respect to 𝑀 of |Ψ⟩ is

SΨ|Φ(𝑀) = − ⟨Ψ| logΔΨ|Φ |Ψ⟩ .
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It is important to note that Araki’s relative entropy can be obtained from the Connes
cocycle by the following formula:

𝑆(𝜔, 𝜑) = 𝑖 lim
𝑡→0+

𝑡−1(𝜔( [𝐷𝜑 : 𝐷𝜔]𝑡) − 1). (9.3)

This formula shows that Araki’s relative entropy can be thought of as a sort of
derivative of an expectation value of the Connes cocycle flow.

Araki’s notion of relative entropy will be the main tool coming from Tomita–
Takesaki theory that we will require in this chapter. Indeed, the equivalence of
relative entropies between the bulk and the boundary is one of the equivalent char-
acterizations of exact entanglement wedge reconstruction, as well as the starting
point of our theorem, which tackles approximate recovery settings that include
nonperturbative gravity corrections.

It is important to remind the readers that there exists a generalization of the notion
of relative entropy that allows to define it even for non-cyclic and non-separating
states, and satisfies the Pinsker inequality. The details can be found in [362].

The Petz map from Tomita–Takesaki theory
A map that is often used in the context of entanglement wedge reconstruction is the
Petz map [130, 104]. This map has a particularly nice property as a natural map
between a von Neumann algebra and a von Neumann subalgebra leaving a given
state 𝜑 invariant.

Definition 9.2.13. Let 𝑀𝑐𝑜𝑑𝑒 ⊂ 𝑀𝑝ℎ𝑦𝑠 be two von Neumann algebras acting on
a Hilbert space H . Let |Φ⟩ be a cyclic separating vector for 𝑀𝑝ℎ𝑦𝑠, and 𝐽 the
associated modular conjugation. Similarly, let 𝐽0 be the modular conjugation for
𝑀𝑐𝑜𝑑𝑒 acting on 𝑀𝑐𝑜𝑑𝑒 |Φ⟩. Let 𝑃 be the orthogonal projection onto 𝑀𝑐𝑜𝑑𝑒 |Φ⟩.
Then, the Petz map 𝐸𝜑 associated to |Φ⟩ is given by

𝐸𝜑 (𝐴) := 𝐽0𝑃𝐽𝐴𝐽𝑃𝐽0,

and can be seen as the dual of the von Neumann algebra embedding.

It is important to note that this 𝐸𝜑 is a map from 𝑀𝑝ℎ𝑦𝑠 to 𝑀𝑐𝑜𝑑𝑒 and satisfies

𝜑 ◦ 𝐸𝜑 = 𝜑. (9.4)
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However, nothing tells us that the Petz map will follow the axioms of a conditional
expectation!1 In fact, we explain a necessary and sufficient condition for it to be
a conditional expectation in Section 9.3 via a theorem of Takesaki. We want to
emphasize this aspect as the cases where the Petz map is a conditional expectation
will coincide with the cases of exact entanglement wedge reconstruction in our
discussion. When taking into account corrections from gravitational effects that
are nonperturbative in 𝐺𝑁 , the “exact" entanglement wedge reconstruction breaks
down. In this scenario with gravitational corrections, the situation will be much
more subtle and the Petz map will no longer be a good description of entanglement
wedge reconstruction in general, although we will briefly comment on the efficacy
of the twirled version of the Petz dual of a noisy channel in Section 9.6.

9.3 Exact infinite-dimensional entanglement wedge reconstruction
We review the code subspace formalism for the exact correspondence between en-
tanglement wedge reconstruction and relative entropy equivalence. This perspective
is first introduced in [225], later extended to infinite-dimensional settings in [270,
269, 164], and this technology has even been further expanded to state-dependent
contexts in [196]. Combining these results together in our setting, we provide a
summarizing theorem that describes the mathematical structure underlying this for-
malism, including conditional expectations, the Petz map, and Takesaki’s theorem.

Entanglement wedge reconstruction in the code subspace formalism
The Ryu–Takayanagi formula, which relates the generalized entropy of a semi-
classical bulk state of AdS/CFT to the entanglement entropy of the corresponding
boundary state, is equivalent to relative entropy conservation between bulk and
boundary [254] and the quantum error correcting structure of the semiclassical limit
of AdS/CFT, which allows us to see the space of states that represent effective field
theory on a fixed curved background in the bulk as a code subspace of the space of
boundary states.

In the modern information-theoretic formalism, this code subspace of the theory
is seen as a vector space isometrically embedded into the physical Hilbert space
of quantum gravity. In this setup, bulk reconstruction is seen as the existence of
operators acting on the physical Hilbert space that reproduce the action of operators
acting on the code subspace. The equivalence between complementary recovery and

1One should approach with caution the misleading terminology “𝜑-conditional expectation" for
the Petz map, which is often used in the mathematical literature.
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the conservation of relative entropy (in the context of infinite-dimensions) has been
proven in increasingly general cases [270, 269, 196, 164]. Here, we give a summary
theorem that combines these results in the context of von Neumann algebras.

Theorem 9.3.1. Let 𝑢 : H𝑐𝑜𝑑𝑒 →H𝑝ℎ𝑦𝑠 be an isometric map of Hilbert spaces, let
𝑀𝑝ℎ𝑦𝑠 be a von Neumann algebra onH𝑝ℎ𝑦𝑠 and 𝑀𝑐𝑜𝑑𝑒 be a von Neumann algebra on
H𝑐𝑜𝑑𝑒. Suppose that there exists |𝜓⟩ ∈ H𝑐𝑜𝑑𝑒 such that 𝑢 |𝜓⟩ is cyclic and separating
with respect to 𝑀𝑝ℎ𝑦𝑠. Consider two following statements:

(i) There exist unital normal injective ∗-homomorphisms 𝜄 : 𝑀𝑐𝑜𝑑𝑒 → 𝑀𝑝ℎ𝑦𝑠 and
𝜄′ : 𝑀′

𝑐𝑜𝑑𝑒
→ 𝑀′

𝑝ℎ𝑦𝑠
such that for 𝑂,𝑂′ ∈ 𝑀𝑐𝑜𝑑𝑒, 𝑀

′
𝑐𝑜𝑑𝑒

,

𝑢𝑂 = 𝜄(𝑂)𝑢, 𝑢𝑂′ = 𝜄′(𝑂′)𝑢.

(ii) If |𝜑⟩ and |𝜓⟩ are two vectors inH𝑐𝑜𝑑𝑒, then

𝑆𝜓,𝜑 (𝑀𝑐𝑜𝑑𝑒) = 𝑆𝑢𝜓,𝑢𝜑 (𝑀𝑝ℎ𝑦𝑠), 𝑆𝜓,𝜑 (𝑀′𝑐𝑜𝑑𝑒) = 𝑆𝑢𝜓,𝑢𝜑 (𝑀
′
𝑝ℎ𝑦𝑠). (9.5)

Then, (𝑖) ⇒ (𝑖𝑖).

If we further assume that the set of cyclic and separating vectors with respect to
𝑀𝑐𝑜𝑑𝑒 is dense inH𝑐𝑜𝑑𝑒 and 𝑢 maps cyclic and separating states for 𝑀𝑐𝑜𝑑𝑒 to cyclic
and separating states for 𝑀𝑝ℎ𝑦𝑠, then (𝑖) ⇔ (𝑖𝑖).

Note that in [270], it is not explicitly shown that 𝜄 and 𝜄′ define unital, normal,
injective ∗-homomorphisms. However, it is a straightforward consequence of the
fact that 𝑢 |𝜓⟩ is cyclic and separating with respect to 𝑀𝑝ℎ𝑦𝑠 and 𝑀′

𝑝ℎ𝑦𝑠
: the sepa-

rating property directly implies homomorphism properties as well as unitality and
injectivity, while normality follows from Proposition 2.5.11 of [17].

In the next subsection, we show how Theorem 9.3.1 is deeply related to some
well-explored concepts in the theory of von Neumann algebras, such as conditional
expectations and an important theorem of Takesaki [435].

Link to conditional expectations and Takesaki’s theorem
Under the assumptions Theorem 9.3.1, we can infer that the reconstruction operators
𝜄(𝑂) form a von Neumann subalgebra of 𝑀𝑝ℎ𝑦𝑠. We suppose that the assumptions
of Theorem 9.3.1 are satisfied. Utilizing this setup, we now turn to constructing a
conditional expectation from 𝑀𝑝ℎ𝑦𝑠 onto 𝜄(𝑀𝑐𝑜𝑑𝑒).
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In the proofs of the various results available on exact entanglement wedge reconstruc-
tion in infinite-dimensions [270, 164], a crucial lemma showed that if 𝑂 ∈ 𝑀𝑝ℎ𝑦𝑠,
then 𝑢†𝑂𝑢 ∈ 𝑀𝑐𝑜𝑑𝑒. It follows that the map

𝐸 : 𝑂 ↦−→ 𝜄(𝑢†𝑂𝑢) (9.6)

is well-defined from 𝑀𝑝ℎ𝑦𝑠 to 𝜄(𝑀𝑐𝑜𝑑𝑒) and satisfies the conditional expectation
property. Indeed, we see that the identity is preserved under this map,

𝐸 (𝐼𝑑) = 𝜄(𝑢†𝑢) = 𝐼𝑑, (9.7)

and if 𝐴 ∈ 𝑀𝑝ℎ𝑦𝑠 and 𝐵,𝐶 ∈ 𝑀𝑐𝑜𝑑𝑒,

𝐸 (𝜄(𝐵)𝐴𝜄(𝐶)) = 𝜄(𝑢†𝜄(𝐵)𝐴𝜄(𝐶)𝑢) = 𝜄(𝐵𝑢†𝐴𝑢𝐶) = 𝜄(𝐵)𝜄(𝑢†𝐴𝑢)𝜄(𝐶) = 𝜄(𝐵)𝐸 (𝐴)𝜄(𝐶).
(9.8)

Moreover, 𝐸 leaves any state of the form 𝑢 |𝜑⟩ invariant, if |𝜑⟩ is cyclic and separating
forM𝑐𝑜𝑑𝑒. For such cases, we see that 𝑢 |𝜑⟩ is cyclic and separating forM𝑝ℎ𝑦𝑠 and,
for 𝐴 ∈ 𝑀𝑝ℎ𝑦𝑠,

⟨𝜑 | 𝑢†𝐸 (𝐴)𝑢 |𝜑⟩ = ⟨𝜑 | 𝑢†𝑢𝑢†𝐴𝑢 |𝜑⟩ = ⟨𝜑 | 𝑢†𝐴𝑢 |𝜑⟩ . (9.9)

This remark directs us towards a more conceptual understanding of entanglement
wedge reconstruction. Indeed, the isometry 𝑢 provides us with a conditional expecta-
tion, that projects 𝑀𝑝ℎ𝑦𝑠 onto 𝜄(𝑀𝑐𝑜𝑑𝑒) and preserves the states in the code subspace.
This is the definition of a sufficient von Neumann algebra inclusion, which is the
cornerstone of the framework of exact entanglement wedge reconstruction.

Interestingly, this structure can be interpreted as a theorem of Takesaki in [435]. In
fact, this theorem shows the equivalence between the existence of a state-preserving
conditional expectation, from a von Neumann algebra onto one of its subalgebras,
and the stabilization of this subalgebra under the modular flow of the state. We
rephrase this theorem as Theorem 9.3.2.

Theorem 9.3.2 (Takesaki [435]). Let 𝜑 be a faithful normal state on a von Neumann
algebra 𝑀 , and let 𝑁 be a von Neumann subalgebra of 𝑀 . Then, there exists a
faithful normal conditional expectation 𝐸 : 𝑀 → 𝑁 such that 𝜑 ◦ 𝐸 = 𝜑 if and only
if 𝜎𝑡 (𝑁) ⊂ 𝑁 , where 𝜎𝑡 is the modular flow associated to 𝜑 for the von Neumann
algebra 𝑀 . Moreover, the conditional expectation 𝐸 which realizes the sufficiency
condition is unique, and coincides with the Petz map of 𝜑.
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From this perspective, in the code subspace formalism, all states of the form 𝑢 |𝜓⟩,
with 𝜓 ∈ H𝑐𝑜𝑑𝑒, are preserved under the conditional expectation 𝐸 . Then, in
particular, 𝐸 corresponds to the Petz map of these states, and the algebra 𝜄(𝑀𝑐𝑜𝑑𝑒)
is preserved under modular flow. Under the conditions of Takesaki’s theorem, it is
then possible to prove the following: for all faithful normal states 𝜔, 𝜑 on 𝑀𝑝ℎ𝑦𝑠

induced by vectors of the form 𝑢 |𝜔⟩ , 𝑢 |𝜑⟩ ∈ H𝑝ℎ𝑦𝑠 with |𝜔⟩ , |𝜑⟩ ∈ H𝑐𝑜𝑑𝑒 [362],

(i) Connes cocycles are conserved:

[𝐷𝜔 : 𝐷𝜑]𝑡 = [𝐷𝜔|𝜄(𝑀𝑐𝑜𝑑𝑒) : 𝐷𝜑|𝜄(𝑀𝑐𝑜𝑑𝑒)]𝑡 . (9.10)

(ii) Relative entropies are conserved:

𝑆𝜔,𝜑 (𝑀𝑝ℎ𝑦𝑠) = 𝑆𝜔| 𝜄(𝑀𝑐𝑜𝑑𝑒) ,𝜑| 𝜄(𝑀𝑐𝑜𝑑𝑒) (𝜄(𝑀𝑐𝑜𝑑𝑒)). (9.11)

(iii) Petz maps coincide:

𝐸𝜑 = 𝐸𝜔. (9.12)

Limitations of the exact approach
We briefly comment on how the exact approach is insufficient to capture some crucial
aspects of entanglement wedge reconstruction in AdS/CFT. First, one has to bear in
mind that the AdS/CFT duality is a large 𝑁 statement from a CFT perspective: as 𝑁
is taken to be large but finite, there will be quantum corrections obstructing the ideal
picture of a reconstruction through a conditional expectation, and this will make the
picture break down. In other words, making Newton’s constant 𝐺𝑁 finite breaks the
exact quantum error correcting code structure. This is not a mere technicality and
it has been pointed out in [276, 231, 379] that handling approximation is crucial
for understanding the semiclassical limit of AdS/CFT and accounts for important
physical aspects of the correspondence. In particular,

• The redundancy in the bulk-to-boundary encoding can only be consistent
with the Reeh-Schlieder theorem on the boundary if entanglement wedge
reconstruction is approximate (with an error that may be nonperturbative in
𝐺𝑁 ) [276].

• For a state-independent recovery to be possible in the approximate setting, a
local bulk operator has to be in the entanglement wedge of all pure and mixed
states of the corresponding boundary region (this is called the reconstruction
wedge) [231]. This feature cannot be seen through an exact approach.
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• The presence of nonperturbative errors in bulk reconstruction is crucial to the
resolution of the black hole information paradox [379].

Our goal is then to generalize, to an approximate setting, the relation between
entanglement wedge reconstruction and the relative entropy equivalence between
bulk and boundary. In turn, this requires borrowing and extending the concept
of approximate complementary recovery, introduced in the context of AdS/CFT in
[231]. In the remainder of the chapter, we combine this toolkit and the operator-
algebraic perspective to extend the results from [270, 269, 196] to an approximate
setting.

In order to reach this objective, we first need to introduce some vocabulary regarding
correctability and privacy for infinite-dimensional von Neumann algebras, as well
as an important result due to Crann–Kribs–Levene–Todorov [131], which will be
at the heart of our proof, and can be seen as an infinite-dimensional generalization
of the information-disturbance tradeoff theorem [285]. We will present and utilize
this machinery to derive an approximate relation between entanglement wedge
reconstruction and relative entropy conservation between bulk and boundary.

9.4 Private and correctable algebras and complementary recovery
The strongest argument for entanglement wedge reconstruction is the argument
of Dong–Harlow–Wall in [142], which derives entanglement wedge reconstruc-
tion from the modified-JLMS formula. As demonstrated in [231], there are many
subtleties related to the problem of generalizing the argument of [142] to the ap-
proximate case; in particular, an operator can be reconstructed on the boundary in a
state-independent way only if it is in the entanglement wedge of all pure and mixed
states in the code subspace. If indeed this is the case, then the main ingredient for
proving that the modified-JLMS formula implies approximate reconstruction is the
information-disturbance tradeoff [285].

Here, we introduce a framework which will allow us to generalize this notion to
the case of an infinite-dimensional boundary Hilbert space for the CFT, as expected
in any quantum field theoretic setting. The main ingredients for constructing this
Hilbert space setting involve the notions of completely bounded norm, (approxi-
mately) private and correctable algebras, as well as a theorem by Crann, Kribs,
Levene, and Todorov [131]. In particular, we take the norm to be the completely
bounded norm, as it is the one appropriate for state-independent recovery. In fact,
the completely bounded norm takes into account an extra tensor factor representing
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an auxiliary system, and that is crucial for recreating all pure and mixed states on the
code subspace. As such, a completely bounded norm bound will quantify the quality
of a recovery quantum channel with respect to all states at the same time. We expect
the completely bounded norm to be bounded whenever the we can perform a recov-
ery in a state-independent fashion. We utilize a region called reconstruction wedge
to describe the appropriate geometric region of the semi-classical gravitational dual
where state-independent recovery is possible.

The completely bounded norm, privacy, and correctability
In order to utilize a von Neumann algebra construction for our setup, we need to
introduce a new norm for bounded linear maps, which is called completely bounded
norm.

Definition 9.4.1. Let 𝜑 : 𝑀 → 𝑁 be a bounded linear map between two von
Neumann algebras. We define the completely bounded norm of 𝜑 as

∥𝜑∥𝑐𝑏 := sup𝑘∈N∥𝜑 ⊗ 𝐼𝑑M𝑘 (C) ∥.

If this quantity is finite, then we say that 𝜑 is completely bounded.

In particular, one can prove that a quantum channel (i.e., a normal, unital, completely
positive map) is always completely bounded. Another nice property (called Smith’s
lemma) is that if 𝑁 is of the formM𝑛 (C), then the supremum in the definition can
be only taken for 𝑘 ≤ 𝑛.

The completely bounded norm is the “Heisenberg picture" equivalent of the notion
of diamond norm, which appears more often in the quantum information literature.
However, the completely bounded norm is more natural in our operator-algebraic
setting, and also reacts better with the conditional expectation-like structure we will
use.

We now give the definition of a private algebra with respect to a quantum channel
(i.e., a normal, unital, completely positive map).

Definition 9.4.2. Let H be a Hilbert space, 𝑀 be a von Neumann algebra, and
E : 𝑀 → B(H) a quantum channel. A von Neumann algebra 𝑁 ⊂ B(H) is said
to be private for E if E(𝑀) ⊂ 𝑁′. For 𝜀 > 0, 𝑁 is said to be 𝜀-private for E if there
exists another quantum channel P : 𝑀 → B(H) such that 𝑁 is private for P and
∥E − P∥𝑐𝑏 ≤ 𝜀.
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The interpretation of a private algebra for a given quantum channel is that none of
the information it contains is accessible from the domain of the quantum channel.
For instance, in an exact idealization of AdS/CFT, if 𝐴 is a boundary region with
entanglement wedge 𝑎, then the bulk algebra of 𝑎 is private with respect to the
complement of 𝐴 for the usual boundary to bulk map. We will show that a similar
statement holds in the approximate case, in a somewhat smaller region called the
reconstruction wedge.

The “dual" notion of privacy is that of correctability, which is given by the following
definition:

Definition 9.4.3. Let H be a Hilbert space, 𝑀 be a von Neumann algebra, and
E : 𝑀 → B(H) a quantum channel. A von Neumann algebra 𝑁 ⊂ B(H) is said
to be correctable for E if there exists a quantum channel R : 𝑁 → 𝑀 such that
E ◦R = 𝐼𝑑𝑁 . For 𝜀 > 0, 𝑁 is said to be 𝜀-correctable for E if there exists a quantum
channel R : 𝑁 → 𝑀 such that ∥E ◦ R − 𝐼𝑑𝑁 ∥𝑐𝑏 ≤ 𝜀.

In the exact setting, correctability of the entanglement wedge 𝑎 of region 𝐴 corre-
sponds to the existence of the ∗-homomorphism 𝜄 between the algebra 𝑀𝑐𝑜𝑑𝑒 and
𝑀𝑝ℎ𝑦𝑠, respectively, corresponding to 𝑎 and 𝐴.

Note that both in the definition of a private algebra and in the definition of a
correctable algebra, we have resorted to the completely bounded norm, rather than
the usual operator norm. Such a distinction is crucial in order for the next theorem
to work, and can be traced back to the fact that state-independent reconstruction of
a bulk operator is only possible if it is in the entanglement wedge of both pure and
mixed states in the code subspace.

A duality between privacy and correctability
IfH is a Hilbert space, 𝑀 a von Neumann algebra, and E : 𝑀 → B(H) a quantum
channel, recall that by the Stinespring dilation theorem [421], there exist a Hilbert
space K, a representation 𝜋 of 𝑀 on K and an isometry 𝑉 : H → K such that for
𝐴 ∈ 𝑀 ,

E(𝐴) = 𝑉†𝜋(𝐴)𝑉. (9.13)

Following [131], we call the datum (𝜋,𝑉,K) a Stinespring triple for E. Given a
Stinespring triple, it is natural to define the complementary channel of a channel E
on the commutant of 𝜋(𝑀), which we give below as Definition 9.4.4.
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Definition 9.4.4. Let H be a Hilbert space, 𝑀 be a von Neumann algebra, and
E : 𝑀 → B(H) a quantum channel. Let (𝜋,𝑉,K) be a Stinespring triple for E. We
define the complementary channel for the triple (𝜋,𝑉,K), E𝑐 : 𝜋(𝑀)′ → B(H),
by

E𝑐 (𝐴) := 𝑉†𝐴𝑉.

With this definition in hand, we now have the tools to describe the main theorem
of this section, which is the crucial ingredient of our discussion of approximate
recovery in the reconstruction wedge, by Crann, Kribs, Levene, and Todorov:

Theorem 9.4.5 (Crann–Kribs–Levene–Todorov[131]). Let H be a Hilbert space,
𝑀 be a von Neumann algebra on a Hilbert spaceK, and E : 𝑀 → B(H) a quantum
channel. If a von Neumann subalgebra 𝑁 ⊂ B(H) is 𝜀-private (resp. 𝜀-correctable)
for E, then it is 2

√
𝜀-correctable (resp. 8

√
𝜀-private) for any complementary channel

to E.

This result is far from trivial, and states that there is an equivalence between being
approximately private (i.e., almost no information in the bulk region is accessible
from the boundary region), and having an approximately correctable commutant
(i.e., almost all information in the bulk region can be reconstructed in the comple-
mentary boundary region), in a Stinespring representation.

We now pause for a moment to consider the specific case of 𝜀 = 0, before moving
on to the approximate case. The case 𝜀 = 0 shows that being exactly private for
a given quantum channel implies being exactly correctable for any complementary
channel. In holographic settings, we retrieve the result of Dong–Harlow–Wall for
the case of finite-dimensional Hilbert spaces [142]. This provides a check on our
infinite-dimensional construction as a natural generalization of the gravitational
recovery.

Indeed, in the code subspace formalism, consider a von Neumann algebra 𝑀𝐴

acting on H𝑝ℎ𝑦𝑠, and its commutant 𝑀′
𝐴
. Introduce the code subspace injection

𝑉 : H𝑐𝑜𝑑𝑒 → H𝑝ℎ𝑦𝑠. Then we denote 𝑀𝑎 and 𝑀′𝑎 as the bulk entanglement wedge
algebras that correspond to 𝐴 and its complement. Since relative entropy has to be
conserved, for any two normal states 𝜌 and 𝜑 with finite relative entropy in the code
subspace,

𝑆𝜌◦E𝑐 , 𝜑◦E𝑐 (𝑀′𝐴) = 𝑆𝜌,𝜑 (𝑀
′
𝑎). (9.14)
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Now suppose that there exists a normal norm-one projection P𝑎′ from B(H𝑐𝑜𝑑𝑒)
onto 𝑀′𝑎. In particular, for 𝜑 = 𝜌 ◦ P𝑎′ , the relative entropy conservation formula
gives

𝑆𝜌◦E𝑐 , 𝜌◦P𝑎′◦E𝑐 (𝑀
′
𝐴) = 0. (9.15)

This implies that for all normal states 𝜌,

𝜌 ◦ E𝑐 = 𝜌 ◦ P𝑎′ ◦ E𝑐 . (9.16)

This being true independently of the choice of 𝜌, we deduce

E𝑐 = P𝑎′ ◦ E𝑐 . (9.17)

This implies that the algebra 𝑀𝑎 is private for the quantum channel E𝑐, so it is
correctable for the quantum channel E. The same argument holds for 𝑀′𝑎 as long
as there exists a normal norm one projection P𝑎 onto 𝑀𝑎.2 Thus, we have proven
complementary recovery, in an operator-algebraic way that closely echoes the Dong–
Harlow–Wall argument [142]. We thus obtain an exact result on exact holographic
recovery in Theorem 9.4.6. This new exact theorem is similar to Theorem 9.3.1 but
now it is in a setting that can be naturally generalized to include nonperturbative
gravity corrections to give rise to Theorem 9.1.1.

Theorem 9.4.6. Let𝑉 : H𝑐𝑜𝑑𝑒 →H𝑝ℎ𝑦𝑠 be an isometry, let𝑀𝑐𝑜𝑑𝑒 be a von Neumann
algebra on H𝑐𝑜𝑑𝑒 and 𝑀𝑝ℎ𝑦𝑠 be a von Neumann algebra on H𝑝ℎ𝑦𝑠. Let E be the
quantum channel 𝑉†(·)𝑉 on 𝑀𝑝ℎ𝑦𝑠. Suppose that there exists a normal norm one
projection P𝑐𝑜𝑑𝑒 : B(H𝑐𝑜𝑑𝑒) → 𝑀′

𝑐𝑜𝑑𝑒
, and that for all normal states 𝜌 and 𝜑 on

𝑀′
𝑐𝑜𝑑𝑒

,
𝑆𝜌◦E𝑐 , 𝜑◦E𝑐 (𝑀′𝑝ℎ𝑦𝑠) = 𝑆𝜌,𝜑 (𝑀

′
𝑐𝑜𝑑𝑒).

Then 𝑀𝑐𝑜𝑑𝑒 is exactly correctable from 𝑀𝑝ℎ𝑦𝑠.

In particular, when conservation of relative entropy and the existence of a normal
norm one projection are satisfied for both 𝑀𝑝ℎ𝑦𝑠 and 𝑀′

𝑝ℎ𝑦𝑠
, exact complementary

recovery can be realized.
2We will see that this is equivalent to 𝑀 ′𝑎 being a product of type 𝐼 factors.



469

9.5 State-independent approximate recovery in the reconstruction wedge
With the theorems and results of Section 9.4 at hand, we have all the ingredients
needed to derive a new result incorporating nonperturbative gravitational effects
to the recovery. This requires the setting of approximate recovery with respect to
reconstruction of bulk operators in the reconstruction wedge. This can be viewed
both as a direct extension of infinite-dimensional exact recovery [196] to a precise
approximate recovery setup, that includes nonperturbative gravitational errors, and
an infinite-dimensional generalization of finite-dimensional approximate recovery
[231].

Setup
We consider a time slice of a CFT on the boundary of some asymptotically AdS
spacetime, which we divide into two subregions 𝐴 and 𝐴. We associate to 𝐴 and 𝐴
von Neumann algebras 𝑀𝐴 and 𝑀

𝐴
acting on the CFT Hilbert spaceH𝑝ℎ𝑦𝑠, and we

suppose that Haag duality [213] is valid on the boundary:

𝑀
𝐴
= 𝑀′𝐴. (9.18)

We consider a bulk Hilbert spaceH𝑐𝑜𝑑𝑒, as well as an isometry

𝑉 : H𝑐𝑜𝑑𝑒 →H𝑝ℎ𝑦𝑠 . (9.19)

In what follows, we are interested in the quantum channel E given by

E : 𝑀𝐴 −→ B(H𝑐𝑜𝑑𝑒),
𝐴 ↦−→ 𝑉†𝐴𝑉,

(9.20)

for this isometry 𝑉 , as well as its complementary channel E𝑐 for the same isometry
𝑉 as

E𝑐 : 𝑀′𝐴 −→ B(H𝑐𝑜𝑑𝑒),
𝐴 ↦−→ 𝑉†𝐴𝑉.

(9.21)

Note that in the exact setting, these maps composed with their recovery channels
would correspond to the holographic conditional expectation, and they would exactly
map 𝑀𝐴 to the bulk algebra 𝑀𝑎 of its entanglement wedge, and 𝑀

𝐴
to the bulk

algebra 𝑀𝑎 of its entanglement wedge.

In our new setup, the situation will be slightly more complicated; however, one can
still associate a bulk algebra𝑀𝑎 to the reconstruction wedge of 𝐴, which corresponds
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to the intersection of the entanglement wedges of 𝐴 with respect to all mixed states
in the code subspace, i.e., mixed with respect to B(H𝑐𝑜𝑑𝑒).3 In order to take these
mixed states into account (and to give them a physical interpretation), the easiest
resolution is to introduce a copy of the code subspaceH ∗

𝑐𝑜𝑑𝑒
and consider the doubled

Hilbert spaceH𝑐𝑜𝑑𝑒 ⊗ H ∗𝑐𝑜𝑑𝑒. This doubled Hilbert space can be obtained from the
GNS representation of any faithful normal (i.e., KMS) state on B(H𝑐𝑜𝑑𝑒), and it is
also often identified with the standard form Hilbert space of B(H𝑐𝑜𝑑𝑒).4 The maps
E and E𝑐 can then be canonically extended such that

E −→ E ⊗ 𝐼𝑑 on 𝑀𝐴 ⊗ B(H ∗𝑐𝑜𝑑𝑒), (9.22a)

E𝑐 −→ E𝑐 ⊗ 𝐼𝑑 on 𝑀′𝐴 ⊗ B(H
∗
𝑐𝑜𝑑𝑒). (9.22b)

Furthermore, any normal mixed state on B(H𝑐𝑜𝑑𝑒) has a vector purification on
H𝑐𝑜𝑑𝑒 ⊗ H ∗𝑐𝑜𝑑𝑒. For technical reasons associated to the definition of the completely
bounded norm and subtleties regarding tensor products of operator algebras in
infinite-dimensions, in the case in which H𝑐𝑜𝑑𝑒 is infinite-dimensional, we will
choose H ∗

𝑐𝑜𝑑𝑒
to be finite-dimensional of arbitrarily large dimension. This will not

change the physics: being able to adjoin an arbitrarily large reference system to
H𝑐𝑜𝑑𝑒 will be enough to guarantee state-independent approximate recovery. In fact,
this amounts to giving an arbitrarily precise approximation to an infinite-dimensional
copy ofH𝑐𝑜𝑑𝑒.

Main result
Utilizing the setup of Section 9.5, we now prove our main theorem regarding
approximate recovery in the reconstruction wedge for infinite-dimensional Hilbert
spaces, which will be coming from the correctability and privacy correspondence.
We start by applying the modified-JLMS formula (which we assume here) to two
well-chosen code states. Let 𝑎 denote the reconstruction wedge of 𝐴 and 𝑎′ denote
its complement in the bulk. Let P𝑎′ denote a normal projection of norm one from
B(H𝑐𝑜𝑑𝑒) onto 𝑀𝑎′ . Before we set up further structures, it is important to note
that such a projection will not exist for all possible types of von Neumann algebras.
While we do not need further restrictions on the boundary von Neumann algebra,
the bulk algebra cannot be completely general. The right assumption to guarantee
the existence of such a projection is to suppose that

𝑀𝑎′ is purely atomic,
3The necessity to resort to the reconstruction wedge rather than the entanglement wedge in order

to obtain a state-independent reconstruction was first pointed out by Hayden and Penington in [231].
4For more on this technology, please see [196].
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i.e., a product of type I factors [62]. This is slightly more restrictive than just asking
for 𝑀𝑎′ to have type I, as not every direct integral of type I factors can be written
as a product. However, finite-dimensional von Neumann algebras, as well as every
finite or countable direct sum of type I factors, will satisfy this property. We expect
this to be enough to model the bulk algebras in physically relevant situations.

Let 𝜌 be a normal state on B(H𝑐𝑜𝑑𝑒 ⊗ H ∗𝑐𝑜𝑑𝑒). Then, we note that 𝜌 ◦ (E𝑐 ⊗ 𝐼𝑑) is
a state on 𝑀

𝐴
⊗ B(H ∗

𝑐𝑜𝑑𝑒
) = 𝑀′

𝐴
⊗ B(H ∗

𝑐𝑜𝑑𝑒
).5 We will apply the modified-JLMS

formula for relative entropy to the two states 𝜌 and 𝜌 ◦ (P𝑎′ ⊗ 𝐼𝑑):

|𝑆𝜌◦(E𝑐⊗𝐼𝑑),𝜌◦(P𝑎′⊗𝐼𝑑)◦(E𝑐⊗𝐼𝑑) (𝑀
′
𝐴 ⊗ B(H

∗
𝑐𝑜𝑑𝑒)) − 𝑆𝜌,𝜌◦(P𝑎′⊗𝐼𝑑) (𝑀𝐸𝑊 (𝜌◦(P𝑎′⊗𝐼𝑑),𝐴∪𝑅))

+𝑆𝑔𝑒𝑛 (𝜌, 𝐸𝑊 (𝜌, 𝐴 ∪ 𝑅)) − 𝑆𝑔𝑒𝑛 (𝜌, 𝐸𝑊 (𝜌 ◦ (P𝑎′ ⊗ 𝐼𝑑), 𝐴 ∪ 𝑅)) | ≤ 𝜀,
(9.23)

where 𝜀 is nonperturbatively small in𝐺𝑁 . Indeed, while we can naively assume that
the highest order correction to this inequality is of order 𝐺𝑁 , the quantum extremal
surface prescription ensures that only strictly non-zero nonperturbative gravitational
errors persist in entanglement wedge reconstruction, with a lower bound [231]

𝜀 ∼ 𝑒−𝜅/𝐺𝑁 , 𝜅 > 0. (9.24)

These nonperturbative gravitational errors share their origin with the derivation
of the Page curve [379]: saddles with nontrivial topologies can only appear when
nonperturbative effects are taken into account in the gravitational path integral. This
is in contrast with the (H)RT prescription, which is only valid up to 𝑂 (1).

As we shall show, the second term of the left hand side of equation (9.23) is zero;
henceforth, this term is finite, which allows us to apply this formula. Now we
analyze the second, third, and fourth terms of this equation (9.23). In the second
term, 𝐸𝑊 (𝜌 ◦ (P𝑎′ ⊗ 𝐼𝑑), 𝐴 ∪ 𝑅) denotes the entanglement wedge of the boundary
region 𝐴 and the reference system 𝑅 in the bulk state 𝜌 ◦ (P𝑎′ ⊗ 𝐼𝑑). Recall that
the region 𝑎′ in the bulk is the complement of the intersection of all entanglement
wedges in pure and mixed states for 𝐴. It follows that no matter how 𝜌 is chosen,
𝐸𝑊 (𝜌 ◦ (P𝑎′ ⊗ 𝐼𝑑), 𝐴 ∪ 𝑅) is always contained in 𝑎′ ∪ 𝑅. Hence, the states 𝜌 and
𝜌 ◦ (P𝑎′ ⊗ 𝐼𝑑) coincide on it. Thus, we can conclude that the second term is zero.

The third and fourth terms correspond to the generalized entropies, i.e., the sum
of the area term and the bulk correction, for the two states 𝜌 and 𝜌 ◦ (P𝑎′ ⊗ 𝐼𝑑).

5Note that defining the tensor product of von Neumann algebras is subtle, and that there are a lot
of different ways to do so. Here, we do not expand on these subtleties, asH ∗

𝑐𝑜𝑑𝑒
is finite-dimensional,

and all definitions coincide in this case.
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This may naively pose a problem as we do not know yet how to define a suitable
regularization for these generalized entropies in the infinite-dimensional setting.
Luckily, however, it does not matter here: as the states 𝜌 and 𝜌 ◦ (P𝑎′ ⊗ 𝐼𝑑) always
coincide on the entanglement wedge of 𝐴 ∪ 𝑅 for all states, they give rise to the
same quantum extremal surface, and the third and last terms of the equation (9.23)
cancel out.

Incorporating these results into the equation (9.23), we obtain a much simpler
identity:

|𝑆𝜌◦(E𝑐⊗𝐼𝑑),𝜌◦(P𝑎′⊗𝐼𝑑)◦(E𝑐⊗𝐼𝑑) (𝑀
′
𝐴 ⊗ B(H

∗
𝑐𝑜𝑑𝑒)) | ≤ 𝜀. (9.25)

By Pinsker’s inequality [362, Proposition 5.23], this yields

∥𝜌 ◦ (E𝑐 ⊗ 𝐼𝑑) − 𝜌 ◦ (P𝑎′ ⊗ 𝐼𝑑) ◦ (E𝑐 ⊗ 𝐼𝑑)∥ ≤
√

2𝜀. (9.26)

For convenience, we define the difference in the quantum channelE𝑐 and its projected
quantum channel P𝑎′ ◦ E𝑐 as

E𝑑𝑖 𝑓 𝑓 ≡ E𝑐 − P𝑎′ ◦ E𝑐 (9.27)

such that equation (9.26) can be rewritten as

∥𝜌 ◦ (E𝑑𝑖 𝑓 𝑓 ⊗ 𝐼𝑑)∥ ≤
√

2𝜀. (9.28)

We now utilize the following proposition, which we come back to and prove after
the main theorem: Theorem 9.1.1.

Proposition 9.5.1. Let 𝑀 and 𝑁 be two von Neumann algebras and let Φ : 𝑀 → 𝑁

be a ∗-preserving normal map. Then,

∥Φ∥𝑐𝑏 = sup
𝑛∈N

sup
𝜌𝑛

∥𝜌𝑛 ◦ (Φ ⊗ 𝐼𝑑𝑀𝑛)∥, (9.29)

where 𝜌𝑛 varies over normal states on 𝑁 ⊗ 𝑀𝑛 (C).

Given that H ∗
𝑐𝑜𝑑𝑒

can be chosen to have an arbitrarily high dimension if H𝑐𝑜𝑑𝑒 is
infinite-dimensional, in that case this can be rewritten using the completely bounded
norm:

∥E𝑑𝑖 𝑓 𝑓 ∥𝑐𝑏 = ∥E𝑐 − P𝑎′ ◦ E𝑐∥𝑐𝑏 ≤
√

2𝜀. (9.30)
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This is exactly what we want! By definition of P𝑎′ , the von Neumann algebra 𝑀𝑎 is
private for the quantum channel P𝑎′ ◦ E𝑐, so in turn, it is

√
2𝜀-private for E𝑐.

As the last step, by the correctability and privacy duality as presented in Theorem
9.4.5, it follows that the von Neumann algebra 𝑀𝑎 is 2(2𝜀) 1

4 -correctable for the
quantum channel E. In other words, there exists a channel R : 𝑀𝑎 → 𝑀𝐴 such that

∥E ◦ R − 𝐼𝑑𝑀𝑎 ∥𝑐𝑏 ≤ 2(2𝜀) 1
4 . (9.31)

Note that the precise statement of Proposition 9.5.1 cannot be used in the case where
H𝑐𝑜𝑑𝑒 is finite-dimensional, as H ∗

𝑐𝑜𝑑𝑒
is only allowed to have dimension up to that

of H𝑐𝑜𝑑𝑒, which means that the supremum can only be taken over 𝑛 ≤ dimH𝑐𝑜𝑑𝑒.
After the proof of 9.5.1, we will show that this assumption can actually be made in
the case of a finite-dimensionalH𝑐𝑜𝑑𝑒.

We can then likewise utilize the privacy-correctability correspondence for the finite-
dimensional case, and we conclude that this setup gives rise to approximate recovery.
More formally, our result can be summed up and presented as Theorem 9.1.1 below.

Theorem 9.1.1. Let H𝑐𝑜𝑑𝑒 and H𝑝ℎ𝑦𝑠 be two Hilbert spaces, 𝑉 : H𝑐𝑜𝑑𝑒 → H𝑝ℎ𝑦𝑠

be an isometry, and H ∗
𝑐𝑜𝑑𝑒

be any finite-dimensional Hilbert space of dimension
smaller or equal to the one ofH𝑐𝑜𝑑𝑒. Let 𝑀𝐴 be a von Neumann algebra onH𝑝ℎ𝑦𝑠.
To each normal state𝜔 inB(H𝑐𝑜𝑑𝑒⊗H ∗𝑐𝑜𝑑𝑒)∗, we associate two entanglement wedge
von Neumann algebras 𝑀𝐸𝑊 (𝜔,𝐴) and 𝑀

𝐸𝑊 (𝜔,𝐴∪𝑅) of operators on H𝑐𝑜𝑑𝑒 ⊗ H ∗𝑐𝑜𝑑𝑒
such that 𝑀

𝐸𝑊 (𝜔,𝐴∪𝑅) ⊂ 𝑀
′
𝐸𝑊 (𝜔,𝐴) . Let

𝑀𝑎 :=
⋂
𝜔

𝑀𝐸𝑊 (𝜔,𝐴) ⊂ B(H𝑐𝑜𝑑𝑒)

be the reconstruction wedge von Neumann algebra onH𝑐𝑜𝑑𝑒, and suppose that 𝑀𝑎′ ,
the commutant of 𝑀𝑎 in B(H𝑐𝑜𝑑𝑒), is a product of type 𝐼 factors. Suppose that
for all choices ofH ∗

𝑐𝑜𝑑𝑒
and all pairs of states 𝜌, 𝜔 in B(H𝑐𝑜𝑑𝑒 ⊗ H ∗𝑐𝑜𝑑𝑒)∗ such that

𝑆𝜌,𝜔 (𝑀𝐸𝑊 (𝜔,𝐴∪𝑅)) is finite, we have the following modified-JLMS condition:

|𝑆𝜌◦(E𝑐⊗𝐼𝑑),𝜔◦(E𝑐⊗𝐼𝑑) (𝑀′𝐴 ⊗ B(H
∗
𝑐𝑜𝑑𝑒)) − 𝑆𝜌,𝜔 (𝑀𝐸𝑊 (𝜔,𝐴∪𝑅))

+𝑆𝑔𝑒𝑛 (𝜌, 𝐸𝑊 (𝜌, 𝐴 ∪ 𝑅)) − 𝑆𝑔𝑒𝑛 (𝜌, 𝐸𝑊 (𝜔, 𝐴 ∪ 𝑅)) | ≤ 𝜀,

where E and E𝑐 refer to the respective restrictions of 𝐴 ↦→ 𝑉†𝐴𝑉 to 𝑀𝐴 and 𝑀′
𝐴
,

and the function 𝑆𝑔𝑒𝑛 (𝜌, 𝐸𝑊 (𝜔, 𝐴 ∪ 𝑅)) depends only on the restrictions of 𝜌 and
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𝜔 to 𝑀𝑎′ ⊗ B(H ∗𝑐𝑜𝑑𝑒).
6 Then, there exists a quantum channel R : 𝑀𝑎 → 𝑀𝐴 such

that

∥E ◦ R − 𝐼𝑑𝑀𝑎 ∥𝑐𝑏 ≤ 2(2𝜀) 1
4 .

In Theorem 9.1.1, the von Neumann algebra𝑀𝑎 corresponds to the observables in the
reconstruction wedge of the boundary region 𝐴. Depending on this boundary region
𝐴, we defined the reconstruction wedge, as the notion required for nonperturbative
gravitational effects, to be the intersection of all entanglement wedges of pure and
mixed states on 𝐴. Then, what this theorem entails physically is that utilizing this
new reconstruction wedge we can guarantee state-independent reconstruction. On
the contrary, observables that are outside the reconstruction wedge but inside a
specific entanglement wedge, cannot be reconstructed on this region 𝐴 in a state-
independent manner.

There often exists a macroscopic difference between a fixed entanglement wedge in
a code subspace and the reconstruction wedge associated to this code subspace, due
to the bulk term in the quantum extremal surface formula that relates the boundary
entanglement entropy to the bulk generalized entropy of the entanglement wedge.
This bulk term can sometimes be dominant in the presence of a large amount of
bulk entropy. This shows the importance of jumps of the entanglement wedge in the
presence of gravity; it further suggests that the reconstruction wedge is an important
object in the holographic dictionary.

We want to emphasize that this remains true in a generic Hilbert space formalism,
both finite and infinite dimensional cases, for the bulk and boundary construction.
As the reconstruction wedge is a natural object to consider in the context of quantum
extremal surfaces, it would be interesting to determine the boundary dual of the area
of the reconstruction wedge.

We further note that the proof of Theorem 9.1.1 remains unchanged if we consider
some von Neumann algebra 𝑁′ containing 𝑀𝑎′ , instead of 𝑀𝑎′ . Even if 𝑀𝑎′ itself
is not purely atomic, any purely atomic algebra 𝑁′ containing 𝑀𝑎′ will have a
reconstructable commutant. This loosens the assumptions of Theorem 9.1.1, but
this particular algebra 𝑁 would not necessarily correspond to a geometric region
in the bulk. If we consider a finite-dimensional code subspace, all algebras are
purely atomic, but if the code subspace becomes infinite-dimensional, we expect

6We note that this assumption summarizes restriction conditions associated to any specific
entanglement wedge, of the form 𝑀

𝐸𝑊 (𝜔,𝐴∪𝑅) , into one single condition.
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the existence of such relevant subalgebras to be related to whether or not something
like the split property is valid in the bulk. Indeed, the split property [213] provides
us with type 𝐼 factors that approximate local regions in the bulk. Whether the split
property is valid in the bulk effective theory is not entirely clear at this stage, as it
can sometimes fail for generalized free field theories due to violations of nuclearity
bounds. It is an important question to understand better whether something like the
split property can be valid in the bulk effective field theory, or perhaps some version
of it with perturbative gravity implemented.

We now prove Proposition 9.5.1, which is essential to complete the proof of Theorem
9.1.1.7 We first recall Proposition 9.5.1.

Proposition 9.5.1. Let 𝑀 and 𝑁 be two von Neumann algebras and let Φ be a
∗-preserving normal map. Then,

∥Φ∥𝑐𝑏 = sup
𝑛∈N

sup
𝜌𝑛

∥𝜌𝑛 ◦ (Φ ⊗ 𝐼𝑑𝑀𝑛)∥, (9.32)

where 𝜌𝑛 varies over normal states on 𝑁 ⊗ 𝑀𝑛 (C).

We first prove the two following lemmas that lead to proving this propostition.

Lemma 9.5.2. Let 𝑀 be a von Neumann algebra and 𝜔 be a normal ∗-preserving
linear functional on 𝑀 . Then, 𝜔 attains its norm on a self-adjoint element.

Proof. Let 𝐴 ∈ 𝑀 on which 𝜔 attains its norm. 𝐴 exists by the Hahn–Banach
theorem because 𝑀 is the dual of 𝑀∗. Let 𝜉 a complex number of modulus 1 such
that

|𝜔(𝐴) | = 𝜉𝜔(𝐴). (9.33)

Now let

𝐻 :=
𝜉𝐴 + 𝜉𝐴†

2
. (9.34)

By the triangle inequality, 𝐻 is Hermitian of norm smaller or equal to that of 𝐴.
Moreover, as 𝜔 is ∗-preserving,

𝜔(𝐻) = |𝜔(𝐴) |. (9.35)

This concludes the proof that 𝜔 attains its norm on self-adjoint elements. □
7We thank Vern Paulsen for communicating ideas of this proof.
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Lemma 9.5.3. Let Φ : 𝑀 −→ 𝑁 be a normal map between von Neumann algebras.
Then,

∥Φ∥𝑐𝑏 = sup
𝑛∈N
∥Φ ⊗ 𝐼𝑑𝑀𝑛 ∥𝑠𝑎,

where ∥ · ∥𝑠𝑎 means that the supremum in the definition of the norm is restricted to
self-adjoint elements of 𝑀 ⊗ 𝑀𝑛 (C).

Proof. Let 𝐴 ∈ 𝑀 , and define

𝐵 :=

(
0 𝐴

𝐴† 0

)
∈ 𝑀 ⊗ 𝑀2(C). (9.36)

Then, 𝐵 is self-adjoint and ∥𝐵∥ = ∥𝐴∥. Moreover,

∥(Φ ⊗ 𝐼𝑑𝑀2) (𝐵)∥ = max(∥Φ(𝐴)∥, ∥Φ(𝐴†)∥). (9.37)

This last equality shows that we have the upper and lower bounds

∥Φ∥ ≤ ∥Φ ⊗ 𝐼𝑑𝑀2 ∥𝑠𝑎 ≤ ∥Φ ⊗ 𝐼𝑑𝑀2 ∥. (9.38)

Iterating the tensor product with 𝐼𝑑𝑀2 and taking the supremum, we get

∥Φ∥𝑐𝑏 = sup
𝑛∈N
∥Φ ⊗ 𝐼𝑑𝑀𝑛 ∥𝑠𝑎 . (9.39)

□

With these two lemmas in hand, we are ready to prove Proposition 9.5.1. By Lemma
9.5.3, for 𝑛 ∈ N, we have that

∥Φ∥𝑐𝑏 = sup
𝑛∈N

sup
𝐴𝑛 self-adjoint, ∥𝐴𝑛∥=1

∥(Φ ⊗ 𝐼𝑑𝑀𝑛) (𝐴𝑛)∥. (9.40)

We note that the (Φ⊗ 𝐼𝑑𝑀𝑛) (𝐴𝑛) are all self-adjoint (as Φ is ∗-preserving), and that
the norm of a self-adjoint operator in a von Neumann algebra can be obtained by
taking the supremum of its values against normal states. Hence, we have

∥Φ∥𝑐𝑏 = sup
𝑛∈N

sup
𝐴𝑛 self-adjoint, ∥𝐴𝑛∥=1

sup
𝜌𝑛

|𝜌𝑛 ((Φ ⊗ 𝐼𝑑𝑀𝑛) (𝐴𝑛)) |. (9.41)

This precisely yields

∥Φ∥𝑐𝑏 = sup
𝑛∈N

sup
𝜌𝑛

∥𝜌𝑛 ◦ (Φ ⊗ 𝐼𝑑𝑀𝑛)∥𝑠𝑎 . (9.42)
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We now use Lemma 9.5.2 to drop the self-adjoint condition on the right hand side:

∥Φ∥𝑐𝑏 = sup
𝑛∈N

sup
𝜌𝑛

∥𝜌𝑛 ◦ (Φ ⊗ 𝐼𝑑𝑀𝑛)∥, (9.43)

which concludes the proof of Proposition 9.5.1.

Note that in the case in whichH𝑐𝑜𝑑𝑒 is finite-dimensional, this proof only allows us
to take the supremum over 𝑛 ≤ 2 dimH𝑐𝑜𝑑𝑒, which is slightly more restrictive than
the assumption dimH ∗

𝑐𝑜𝑑𝑒
≤ dimH𝑐𝑜𝑑𝑒. Here we adapt an argument from [251] to

our setting to show that the factor of 2 can in fact be removed: it is enough to take
the supremum over

𝑛 ≤ dimH𝑐𝑜𝑑𝑒 . (9.44)

In the case ofH𝑐𝑜𝑑𝑒 finite-dimensional, the previous proof shows that there exists a
state 𝜌 on B(H𝑐𝑜𝑑𝑒) ⊗ B(𝐾), with dim𝐾 = 2 dimH𝑐𝑜𝑑𝑒, such that

∥Φ∥𝑐𝑏 = ∥𝜌 ◦ (Φ ⊗ 𝐼𝑑B(𝐾))∥. (9.45)

By the triangle inequality, we can assume without loss of generality that 𝜌 is a pure
state, i.e., that there exists a vector |𝑦⟩ ∈ H𝑐𝑜𝑑𝑒 ⊗ 𝐾 such that

𝜌(𝐴) = ⟨𝑦 | 𝐴 |𝑦⟩ . (9.46)

We let H ∗
𝑐𝑜𝑑𝑒

be isomorphic to H𝑐𝑜𝑑𝑒. We can consider an orthogonal projection
Π ∈ B(𝐾) such that

rkΠ = dim(H ∗𝑐𝑜𝑑𝑒), |𝑦⟩ = 𝐼𝑑H𝑐𝑜𝑑𝑒 ⊗ Π |𝑦⟩ . (9.47)

Then, there exists a linear isometric map 𝜎 : H ∗
𝑐𝑜𝑑𝑒
→ 𝐾 such that |𝑦⟩ = 𝐼𝑑H𝑐𝑜𝑑𝑒 ⊗

𝜎𝜎∗ |𝑦⟩. We are now able to introduce a state

|𝑥⟩ := 𝐼𝑑H𝑐𝑜𝑑𝑒 ⊗ 𝜎∗ |𝑦⟩ . (9.48)

Then we can show that |𝑥⟩ realizes the completely bounded norm:

∥𝜌 ◦ (Φ ⊗ 𝐼𝑑B(𝐾))∥ = sup∥𝐴∥=1 ⟨𝑦 | (Φ ⊗ 𝐼𝑑B(𝐾)) (𝐴) |𝑦⟩
= sup∥𝐴∥=1 ⟨𝑥 | (𝐼𝑑H𝑐𝑜𝑑𝑒 ⊗ 𝜎∗) (Φ ⊗ 𝐼𝑑B(𝐾)) (𝐴) (𝐼𝑑H𝑐𝑜𝑑𝑒 ⊗ 𝜎) |𝑥⟩
= sup∥𝐴∥=1 ⟨𝑥 | (Φ ⊗ 𝐼𝑑B(H ∗𝑐𝑜𝑑𝑒)) (𝐴) |𝑥⟩ = ∥(|𝑥⟩ ⟨𝑥 |) ◦ (Φ ⊗ 𝐼𝑑B(H ∗𝑐𝑜𝑑𝑒))∥.

(9.49)

We then deduce that there exists a state 𝜑 on B(H𝑐𝑜𝑑𝑒 ⊗ H ∗𝑐𝑜𝑑𝑒) such that

∥Φ∥𝑐𝑏 = ∥𝜑 ◦ (Φ ⊗ 𝐼𝑑B(H ∗
𝑐𝑜𝑑𝑒
))∥. (9.50)

This proves that it is actually enough to consider a reference system H ∗
𝑐𝑜𝑑𝑒

of
dimension smaller or equal to that ofH𝑐𝑜𝑑𝑒 in the finite-dimensional case.
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9.6 State-dependent recovery beyond the reconstruction wedge
The reconstruction result we derived thus far is completely state-independent: op-
erators inside the reconstruction wedge are inside the entanglement wedge of any
pure or mixed state, and we saw that infinite-dimensional privacy/correctability du-
ality allowed to derive state-independent bounds on correctability from a modified
version of the JLMS formula.

However, some observables that reach deeper than the reconstruction wedge (for
example, the black hole interior), cannot be reconstructed in such a state-independent
fashion [370, 371]. Instead, their boundary representatives are state-dependent, and
this feature has been at the center of many discussions, including understandings
of finite [231] to infinite-dimensional [196] Hilbert space settings. In particular, it
provides a lot of tools for the resolution of the information paradox [379].

𝛼-bits
Discussions on state-dependence are rooted in the works of Papadodimas–Raju [370,
371], but here we will focus on the modern approach to the problem by Hayden–
Penington, through the notion of 𝛼-bits [231]. The main idea is that only subspaces
whose dimension grows like a certain power of the dimension of the whole code
subspace can be recovered inside a black hole.

We first recall the setup of [231], and show how the arguments can be generalized
to infinite-dimensions. The idea is to consider a finite-dimensional code subspace,
that factorizes into a black hole and an exterior piece

H = H𝐵𝐻 ⊗ H𝑒𝑥𝑡 , (9.51)

with the area-dependence given by

lim
𝐺𝑁→0

𝐺𝑁 log 𝑑𝐵𝐻 =
A0
4
, (9.52)

where A0 is the black hole area. Then, two bulk regions are considered, both
anchored in the same boundary region 𝐴, of respective areas A1 and A2. The
region A1 corresponds to the entanglement wedge of 𝐴 for a pure boundary state
and contains the black hole, whereas the regionA2 corresponds to the entanglement
wedge of a thermal boundary state and does not contain the black hole. We then
assume that

𝛼 :=
A2 − A1
A0

(9.53)
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is strictly smaller than 1. We also assume that the geometric and matter contributions
are small outside of the black hole, then it is argued in [231] that there are only 2
possible quantum extremal surfaces for the entanglement wedge, of respective areas
A1 and A2. In order to be able to get a state-independent recovery for the black
hole, one then needs the quantum extremal surface containing the black hole to
always be dominant: this is the case when the dimension of the subspace we wish
to decode satisfies

𝑑 ≤ 𝑒𝛼
A0

4𝐺𝑁 , (9.54)

which is strictly less than the dimension of the black hole Hilbert space. Hence,
the previous reasoning only shows that the black hole interior reconstruction is only
possible in a state-dependent way. It turns out this 𝑑 ≤ 𝑒𝛼

A0
4𝐺𝑁 is the best possible

bound for the dimension of a subspace whose reconstruction can be achieved in a
state-independent manner [231].

Let us generalize this argument to the case of an infinite-dimensional boundary
Hilbert space. Suppose that the black hole Hilbert space is entangled with a Hilbert
spaceH𝑟 of dimension 𝑑′ given by

𝑑′ = 𝑒
𝛼′
A0

4𝐺𝑁 , for 𝛼′ > 𝛼. (9.55)

This Hilbert spaceH𝑟 corresponds to a reference system that takes into account all
the degrees of freedom the black hole can be entangled to - for example, Hawking
radiation. We can then, by our previous reasoning, construct a subspace

H𝑆 ⊂ H𝑐𝑜𝑑𝑒 ⊗ H𝑟 (9.56)

such that the algebra 𝑀𝑏 of observables on H𝑆 located in a region 𝑏 that contains
the black hole, can be reconstructed from 𝑀′

𝐴
⊗ B(H𝑟) up to nonperturbative error.

Indeed, perturbing outside of the black hole but still between the two candidate
quantum extremal surfaces cannot change the quantum extremal surface, so it suffices
to perturb in such a way around a state which is maximally entangled between the
black hole and the reference system in order to construct a subspace of states whose
entanglement wedge contains the black hole. Note that if the dimension of H𝑆

is chosen to be small enough, this is still true even for states that are entangled
with a second reference system whose dimension equals the one of H𝑆. In other
words, following the proof of Theorem 5.1, 𝑀𝑏 is 𝛿-correctable for 𝑀′

𝐴
⊗ B(H𝑟)

for some nonperturbatively small 𝛿 > 0, and also 𝛿′-private for 𝑀𝐴 ⊗ 𝐼𝑑 for some
nonperturbatively small 𝛿′ > 0 by privacy/correctability duality. This shows the
impossibility to recover the black hole interior for any 𝛼′ > 𝛼.



480

Universal recovery channel
It is proven in a finite-dimensional context that a universal recovery channel, known
as the twirled Petz map, can be used to recover any state in a subspace for which the
JLMS formula is satisfied [130]. This statement was later extended to the infinite-
dimensional case by Faulkner, Hollands, Swingle, and Wang [170, 165]. We use
their ideas and rephrase it in the following form for our purposes.

Theorem 9.6.1. Let E : 𝑀 −→ 𝑁 be a unital quantum channel between two von
Neumann algebras 𝑀 and 𝑁 . Let 𝜌, 𝜔 be two normal states on 𝑁 such that 𝜔 is
faithful. Then, there exists a channel 𝛼 : 𝑁 −→ 𝑀 , that just depends on 𝜔 and E
such that

𝑆𝜌,𝜔 (𝑁) − 𝑆𝜌◦E,𝜔◦E (𝑀) ≥
1
4
∥𝜌 ◦ E ◦ 𝛼 − 𝜌∥2. (9.57)

We first explain how this Theorem 9.6.1 is relevant to our context, without going
into details. For our setup, the von Neumann algebras 𝑀 and 𝑁 act respectively on
the boundary Hilbert space and on the code subspace, and E represents a boundary-
to-bulk map for operators. Note that the analog of a key step in [130] is that if the
left hand side of this inequality is small, then it means that the twirled Petz map
𝛼 is a good choice of recovery channel. This is true when the JLMS condition is
satisfied; we emphasize a crucial subtlety that this is different from the modified-
JLMS condition. Hence, the twirled Petz map will be a good choice of recovery
map only for states that have the same entanglement wedge, for example when the
entanglement wedge does not jump and coincides with the reconstruction wedge, or
in 𝛼-bit spaces.

Hence, Theorem 9.6.1 shows that we may be able to use the twirled Petz map
to decode bulk operators in AdS/CFT, both for the reconstruction wedge (with an
appropriate choice of 𝜔), and for 𝛼-bit subspaces of the code subspace. However,
it is important to emphasize that while the privacy/correctability duality provides
a robust proof of bulk reconstruction with nonperturbatively small error in 𝐺𝑁

in the reconstruction wedge, it is still unclear whether an argument based on the
twirled Petz map will be exact at all orders in perturbation theory [231]. Moreover,
the bound we get is only in terms of the operator norm, and not in terms of the
completely bounded norm. Thus, this type of approximate reconstruction is much
weaker than the one we derived through privacy/correctability duality.
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9.7 Discussion
We developed in this chapter an operator algebraic framework that includes nonper-
turbative gravity corrections to entanglement wedge reconstruction. We described
it by first formulating the exact entanglement wedge reconstruction via Theorem
9.3.1 that summarizes known results, and investigated the conditional expectation
structure of the exact holographic map before introducing the approximate setting
of entanglement wedge reconstruction.

While the exact setting has multiple shortcomings due to gravitational aspects, the
approximate nature of bulk reconstruction has many important implications. It is
therefore crucial to generalize the infinite-dimensional picture [269, 196, 164] to
the approximate setting. We achieve this as portrayed in Theorem 9.1.1, which
shows that under a modified-JLMS assumption for the code subspace tensored with
a reference system, the local algebra of the reconstruction wedge of a boundary
region can be approximately reconstructed in a state-independent and dimension-
independent manner, as long as its bulk complement is a product of type 𝐼 factors.
In particular, this is the case for finite-dimensional code subspaces.

Within this framework, we considered situations beyond the state-independent set-
tings, which requires going beyond the reconstruction wedge. As shown in [231],
reconstruction beyond the reconstruction wedge may only be state-dependent, as
only the 𝛼-bits of the black hole can be reconstructed on the boundary. We showed
that our formalism is still enough to account for state-dependent reconstructions
with an infinite-dimensional boundary, by resorting to privacy/correctability duality
and our main theorem. Furthermore, we pointed out that the universal recovery
channel known as the ‘twirled Petz map’ achieves approximate recovery whenever
the (original) JLMS formula is valid, but only at the order 𝐺0

𝑁
and in the sense of

the operator norm rather than the completely bounded norm.

On top of formulating new approximation results both in the state-dependent and in
the state-independent case for an arbitrary boundary Hilbert space, this chapter can
also be seen as containing most known results on exact and approximate entangle-
ment wedge reconstruction as particular cases. Here, we intended to present their
most general formulation, which would be useful in the case of an actual CFT on the
boundary. This allowed us to construct an exhaustive dictionary between physical
notions relevant to holography and operator-algebraic concepts.

We expect our results to be physically relevant at least whenever the boundary theory
can be reasonably well-described in terms of algebraic quantum field theory (AQFT).
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This approach, based on the Haag–Kastler axioms [214], has several shortcomings,
but has proven to be quite useful, in particular for modelling 2d Lorentzian conformal
field theories, thanks to the framework of conformal nets [274]. In examples of
AdS3/CFT2 where the boundary is described by conformal nets, our results should in
particular apply. We also expect that in higher-dimensional examples of holography,
at least some of the structures and basic mechanisms uncovered here should survive.
We hope to make these statements more precise in the future.

Another interesting place to test out this operator algebraic formulation would be in
(limits of) random tensor networks, where error-correction becomes approximate.
This, however, would require extending our theorem to the case of non-isometric
maps, which we leave to future research.

We emphasize that proving entanglement wedge reconstruction results in AdS/CFT
within this operator-algebraic framework would increase the level of rigor of cur-
rent derivations, which rely on the Euclidean gravitational path integral. In low
dimensions, the Euclidean path integral is surprisingly powerful in capturing a lot
of the UV physics of the CFT, and proving results such as the quantum extremal
surface formula or the island prescription. However, this path integral is thought
to capture the physics of an average of gravitational theories, rather than a single
one. Hence, if we want to rigorously show entanglement wedge reconstruction for
a single boundary theory, we will need to tackle the problem directly within this
operator-algebraic setup. Moreover, in dimension 4 or higher, it is unclear whether
the gravitational path integral will be a good enough tool to capture the effects de-
scribed in this chapter. Even more so in that context, it is a very important problem
to understand the relation between the semiclassical effective field theory and the
UV complete one directly at the level of the operator algebras describing the CFT.

Further, we hope to draw a precise link between our operator-algebraic framework
and geometry, and to maybe be able to derive the bulk Einstein equation in the spirit
of [297]. In particular, recent work [80] has shown that the Connes cocycle, a purely
operator-algebraic quantity on the boundary, has a precise geometric interpretation
in the bulk as a kink transform. Given that in the exact framework, the Connes
cocycle is preserved under the holographic conditional expectation, it would be
interesting to study it in our approximate setting, and try to formulate a more
precise correspondence between operator algebraic quantities on the boundary and
geometric data in the bulk. In particular, this could allow one to understand the bulk
dynamics and the bulk Lorentzian structure.
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Another interesting research direction is to try to study in detail how some apparent
paradoxes raised by the framework of exact entanglement wedge reconstruction are
resolved by going to the approximate case. This was done in finite-dimensions
by Penington [379] in the case of the information paradox, but for instance, the
tension between the lack of additivity of entanglement wedges and the boundary
Reeh-Schlieder theorem, first uncovered by Kelly [276] and precisely stated in the
operator-algebraic context by Faulkner [164], still seems quite mysterious, and can
only be treated in an infinite-dimensional setting. Ultimately, we hope that our
approximate statements for infinite-dimensional boundary Hilbert spaces will be a
first step towards a fully consistent formulation of the emergence of the bulk from
the entanglement structure of the CFT.

We now conclude our analysis by giving a more detailed interpretation of our
modified-JLMS condition, and explaining how our results are related to the recent
progress on the information paradox.

Generalized entropies for quantum extremal islands
Considering two states in the same code subspace, we know that their entanglement
wedges may be different [142]. In other words, there is a difference in the term
regarding generalized entropy which effectively imposes changes in the original
JLMS formula, that corresponds to the reconstruction of a single entanglement
wedge. To take these contributions into account, we consider instead the modified-
JLMS condition.

For the modified-JLMS formula, not only did we have to assume the relative entropy
conservation between the bulk and the boundary, but we also needed the formula to
hold for the states supported on the reference systemH ∗

𝑐𝑜𝑑𝑒
. In fact, this is because

we had to define the map E𝑐 ⊗ 𝐼𝑑 in our proof. We use the privacy and correctability
duality theorem in our proof which can only hold for the completely bounded norm,
whose use requires adding an extra reference system.

Due to this setup with an extra reference system, we can apply our framework
to various different physical settings. The entanglement wedge of H ∗

𝑐𝑜𝑑𝑒
can be

nontrivial and significantly change our description of bulk reconstruction. In some
cases, though not always, this auxiliary system can be identified with the space of
semiclassical states of the Hawking radiation or of another boundary.

The idea that black hole interior degrees of freedom can be encoded in an auxiliary
system traces back to the identification between wormholes and thermofield double
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states [317], which is a well suited model to think about holographic entanglement.
In this setup with the auxiliary system, the black hole interior simply becomes the
other side of a Lorentzian wormhole. It follows that the entanglement wedge of
the second boundary corresponds to what would be the black hole interior from the
viewpoint of the first boundary. In particular, the modified-JLMS formula will be
valid for states, in the code subspace, supported on both boundaries.

The necessity to consider the reconstruction wedge and state-dependence only ap-
pears when nonperturbative gravitational corrections to entanglement wedge re-
construction are taken into account. These nonperturbative corrections, although
individually insignificant, may pile up in the presence of a nontrivial amount of
gravitational corrections until they significantly alter the encoding of bulk informa-
tion. This is, for example, what happens for black hole interior reconstruction from
the Hawking radiation after the Page time. Taking into account a conformal field
theory bath, it is possible to have nontrivial nonperturbative effects from replica
wormholes form quantum extremal islands in the semiclassical bulk. Then, the
interior of an island is encoded in the early Hawking radiation of the black hole and
the entropy of the radiation is computed from the quantum island formula, which
generalizes the quantum extremal surface prescription. Applying this formula leads
to a coherent semiclassical derivation of the Page curve.

Replica wormhole calculations [11, 377] considerably strengthen the evidence for
the validity of such an island formula. It would be very interesting to derive a
justification for it directly within the boundary theory, without resorting to the
gravitational path integral.

Application to the information paradox
In this chapter, we explained how to formulate approximate entanglement wedge
reconstruction for an infinite-dimensional boundary Hilbert space in the case where
the boundary is divided into two regions 𝐴 and 𝐴. We obtained that in the case
where there is a black hole in the bulk, the quantum extremal surface associated
to the boundary region 𝐴 experiences jumps between pure and mixed states. This
allows a state-dependent reconstruction of the interior.

As outlined in [379], one can perform a similar analysis in the case of an evaporating
black hole, whose semiclassical description is encoded in part in the CFT and in
part in a bath of Hawking radiation collected during evaporation. In order to do this,
one must be able to collect Hawking radiation by imposing transparent boundary
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conditions on the AdS boundary.

In this case, the whole boundary plays the role of the boundary region 𝐴, while the
Hawking radiation plays the role of 𝐴. It can be shown that after the Page time, the
radiation bath contains enough information so that a quantum extremal surface that
contains most of the black hole interior appears, allowing the interior to be inside the
entanglement wedge of the bath. However, the reconstruction of interior operators
is state-dependent for a sufficiently later time after the Page time, as the quantum
extremal surface disappears when the bulk system is in an overall mixed state. It
would be interesting to apply our framework to the setting where the UV-complete
dual contains a bath of Hawking radiation in addition to the CFT. We expect the
difficulty comes from the fact that the bulk-to-boundary map is only approximately
an isometry after the Page time.

The gravitational path integral and quantum error-correction
The most convincing argument for the Page curve in holographic theories in the
literature has been derived through the use of the Euclidean gravitational path
integral, by including contributions coming from nontrivial topologies [11, 377].
Even for the regular quantum extremal surface formula, the Euclidean path integral
is our best justification [143]. However, it is still not completely understood why
the Euclidean path integral knows so much about the UV degrees of freedom
of the theory. Recent calculations in two and three dimensions have put forward a
possible interpretation, which can be made rigorous in the case of Jackiw–Teitelboim
gravity [403] or Narain CFTs [321]: the Euclidean path integral would only allow
to calculate averaged quantities over a moduli space of dual theories, rather than
quantities in a single unitary theory. For example, this interpretation may provide a
resolution to the factorization problem.

However, it is still very important to understand how semiclassical calculations
work in a single unitary holographic theory. Indeed, if we are to describe a non-
self-averaging observable in the bulk, it will be sensitive to the specific features of
individual theories that compose the ensemble of boundary theories; importantly,
calculating the gravitational path integral will not likely suffice. Moreover, in four
or higher dimensions, it is unclear whether the gravitational path integral will be as
successful, and even if it is possible to think of an ensemble of boundary theories
at all. For instance, N = 4 super Yang–Mills is thought to be a unique boundary
theory.
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The operator algebraic approach does not a priori rely on any kind of averaging
procedure or any explicit path integral formula, but on a bulk-to-boundary map be-
tween the code subspace and the boundary Hilbert space. In that sense, it allows for
an understanding of the semiclassical limit of a single unitary holographic theory.
With our approximation theorem in hand, this approach can also handle the nonper-
turbative corrections that appear through nontrivial topologies in the gravitational
path integral. In particular, we showed that even in infinite dimensions, which is the
relevant setting for quantum field theories, approximate recovery is possible inside
the reconstruction wedge. For local operators that are in the entanglement wedge of
a given state, but not contained in all entanglement wedges of pure and mixed states,
reconstruction can only be performed in a state-dependent manner. The fact that this
reconstruction wedge is strictly smaller than some entanglement wedges shows that
gravity affects some large region of the bulk that we tackle in our operator-algebraic
framework.

The relationship between the gravitational path integral and ensembles has recently
been investigated in detail, and given a new interpretation through the notion of
Hilbert space of closed universes. This is relevant to considering the bulk with multi-
boundaries. This Hilbert space describes possible nucleations of baby universes in
the bulk, which correspond to new asymptotic boundaries [328, 193]. In this
approach, the Euclidean path integral becomes dependent on the state of these baby
universes, which are described by a commutative algebra of observables at infinity.
In the Hartle–Hawking state of baby universes, the Euclidean path integral is dual
to an ensemble of boundary theories, while in some very specific baby universe
states, known as 𝛼-states, which correspond to the basic superselection sectors of
the theory, it actually computes observables in a single member of the dual ensemble.

It is then interesting to ask whether this distinction between 𝛼-states and ensemble
averaging can be understood within the operator-algebraic framework of quantum
error-correction, and more generally, how the notion of ensemble averaging can
be encoded within our approach. Such a result would clarify the link between the
Euclidean path integral and unitary theories, and explain why the Euclidean path
integral works so well to understand some subtle features of gravity. Moreover, it
should shed light on the Lorentzian structure of the bulk, as the operator-algebraic
framework can be well-adapted to Lorentzian signature. We hope to return to these
questions in future work.
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Holography Operator Algebras
Physical operators Von Neumann algebras 𝑀𝑝ℎ𝑦𝑠

Logical operators Von Neumann algebra 𝑀𝑐𝑜𝑑𝑒

Projection onto the logical operators Conditional expectation
Exact bulk reconstruction Invariance under conditional expectation

JLMS formula Takesaki theorem
Petz map Generalized conditional expectation

State-independent bound Completely bounded norm bound
(Approximate) complementary recovery (𝜀-) privacy/correctability duality

Twirled Petz map Faulkner–Hollands map

Table 9.1: A dictionary between concepts in holography and their operator algebraic
counterparts. This chapter extends the dictionary to the approximate case, which is
covered by the last three entries.
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C h a p t e r 10

WORMHOLE RENORMALIZATION: THE GRAVITATIONAL
PATH INTEGRAL, HOLOGRAPHY, AND A GAUGE GROUP

FOR TOPOLOGY CHANGE

This chapter is based on the work [198], in collaboration with Matilde Marcolli and
Jacob McNamara.

10.1 Introduction
Should the path integral of quantum gravity include a sum over topologies? There
are good reasons to think it must: quantum mechanics instructs us to sum the
amplitudes for all allowed processes, and gravity is supposed to be a theory of
dynamical spacetime manifolds of arbitrary topology. However, it has been known
for quite some time that the sum over topologies leads to deep structural issues [420,
1, 114, 204, 203]. These issues have been sharpened into the Factorization Paradox
[458, 320], a direct conflict between the holographic principle and a gravitational
path integral over topologies. The holographic principle asserts that quantum gravity
defines a local quantum field theory (QFT) living on the boundary of spacetime.1

However, the space of configurations in the gravitational path integral, given by
the set of bulk spacetimes with fixed boundary, is not local to the boundary.2

In particular, while the holographic principle requires that correlation functions
defined with a disconnected boundary must factorize, there are non-factorizing
configurations in the gravitational path integral, otherwise known as spacetime
wormholes.

There is essentially only one possible resolution to the Factorization Paradox: in
a complete, holographic theory of quantum gravity, the net sum of all wormholes
in the gravitational path integral must exactly vanish [328, 335, 404, 402, 64].3

1Strictly speaking, this is likely only exactly true in the context of AdS/CFT. While some much
more general form of holography is expected to be true, the details are still far from clear.

2Mathematically, the Factorization Paradox is the fact that the configuration space in the gravi-
tational path integral, given by the set of spacetime manifolds, does not define a sheaf over the space
of boundaries.

3A trivial way to achieve factorization would be give a description of the theory that manifestly
factorizes. For example, we could attempt to excludes wormholes by fiat, as envisioned in [420,
1]. Alternatively, we could retreat to the holographically dual description in terms of a local path
integral on the boundary. The puzzle of the Factorization Paradox is to understand how a holographic
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This cancelation of all wormholes has been demonstrated in a few very special-
ized corners of string theory, such as a particular tensionless limit [151] or when
computing supersymmetric indices [249].4 Importantly, these examples involve
supersymmetric localization, and the necessary cancelations occur simply, between
nearby wormhole configurations related by the action of supersymmetry. In more
generic contexts, we should not expect any simple cancelation between wormholes
beyond what is required by holography. Thus, even if we know the final answer
must vanish, it is not obviously clear how to organize the sum over wormholes in
the absence of a complete theory of quantum gravity.

In [404, 402, 64], a useful organizing principle has been proposed. The idea is to
view the Factorization Paradox through the lens of effective field theory (EFT), and
group all non-factorizating configurations in our complete theory into two collec-
tions: those which can be described in the EFT as smooth, geometric wormholes,
and those which cannot. We will refer to the second class as stringy wormholes,
which could be Planckian, non-geometric, or something even wilder. While the
net sum of all geometric and stringy wormholes vanishes by assumption, the sum
over geometric wormholes on its own need not vanish. Thus, in order to define an
effective gravitational path integral that matches the microscopics, we must include
additional non-localities beyond the geometric wormholes in order to parametrize
the effects of stringy wormholes that have been excluded from our effective descrip-
tion.

In this chapter, we propose a tight formal analogy between these additional non-
localities, which we dub counter-wormholes, and the counterterms needed to cancel
ultraviolet (UV) divergences in the perturbative calculation of QFT observables.5 If
we attempted to use finite, effective coupling constants to directly evaluate Feynman
graphs, we would obtain physically unreasonable answers involving UV divergences
from the integration over high-energy modes of our EFT fields. Analogously, if we
attempted to define a gravitational path integral including only those wormholes
visible in the EFT, we would obtain physically unreasonable answers involving non-
factorization or ensembles arising from wormhole contruibutions in our effective

theory could still admit a description in terms of a gravitational path integral which seems to include
wormholes and does not manifestly factorize.

4See also [49] for a related mechanism involving the gauging of a bulk global symmetry.
5Our original motivation for this analogy was the observation that loop divergences arise from

shrinking a loop to zero size, and thus inherently involve topology change on the particle worldline.
See also, e.g., [18, 389] for recent discussions of a possible analogy between topology change and
perturbative quantum field theory.
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gravitational path integral.

In both cases, these physically unreasonable answers should not be taken too seri-
ously. They are not an inconsistency of the theory, but rather signal the importance
of some UV effects we have incorrectly ignored in our effective description.6 In
the case of perturbation theory, the resolution is to modify our naive action by the
addition of UV divergent counterterms which precisely cancel against the UV diver-
gences in Feynman graphs. If we then calculate using a renormalized perturbation
theory that includes the counterterms, we obtain finite answers for physically observ-
able quantities which can be matched to our effective description. Analogously, we
view the prescriptions of [404, 402, 64] as instances of a renormalized gravitational
path integral, where we have modified the naive sum over smooth spacetimes by the
addition of counter-wormholes in order to obtain physically reasonable, factorizing
answers for disconnected correlation functions.

This approach to the Factorization Paradox has mainly been studied on a case-by-case
basis. Our goal in proposing an analogy with perturbative renormalization is to look
for precise gravitational analogs of well-known structures that control the systematics
of renormalization. In particular, the perturbative calculation of counterterms is
controlled by an algebraic structure, the Connes-Kreimer Hopf algebra HCK [121,
122, 123], which formalizes the recursive Bogoliubov-Parasiuk-Hepp-Zimmermann
(BPHZ) procedure [65, 235, 463].7 This Hopf algebra efficiently encodes the
combinatorial structure of divergences in Feynman graphs, taking into account the
possibility of sub-divergences: sub-graphs of a given graph which are independently
divergent, and which are already renormalized by a local counterterm at an earlier
stage of the recursive procedure.

In an extremely simple gravitational path integral [328], we explain how the cal-
culation of counter-wormholes is controlled by an analogous Hopf algebra, which
turns out to be the well-known Faà di Bruno Hopf algebra HFdB. We show how
HFdB efficiently encodes the combinatorics of multi-boundary wormholes and sys-
tematizes the construction of a factorizing renormalized gravitational path integral.
The analogs of sub-divergences are sub-wormholes: embedded submanifolds of
a given spacetime which are themselves wormholes, and which might already be
canceled by counter-wormholes at an earlier stage of the gravitational analog of the

6See [237] for further comments on the relationship between spacetime wormholes and the
coarse-graining of UV-complete theories.

7See Section 10.2 or [124] for a review.
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BPHZ procedure.8 While the toy model we consider is quite simple, our hope is
to identify algebraic structures that might serve as useful organizing structures for
understanding factorization in more realistic theories.

One immediate upshot of this result is the existence of a symmetry group of the
renormalized gravitational path integral. In the case of perturbative renormalization,
the group 𝐺CK = Spec(HCK) dual to the Connes-Kreimer Hopf algebra acts as a
group of symmetries of renormalized perturbation theory, reorganizing the sum over
Feynman diagrams and counterterms.9 Analogously, the group𝐺FdB = Spec(HFdB)
acts as a symmetry of the gravitational path integral, reorganizing the sum over
spacetime manifolds and counter-wormholes. One instance of this group action is
the integration out of microscopic wormholes into non-local effects as desribed by
Coleman, Giddings, and Strominger [114, 204, 203]. Another is the cancelation of
microscopic, stringy wormholes against smooth, geometric wormholes, which can
be interpreted as a form of ER = EPR [317].10

More generally, we view the action of 𝐺FdB as realizing the gravitational gauge
redundancies of [255, 328] in our toy model, illustrating explicitly that the different
gauge fixings described in [328] are related by the action of 𝐺FdB. These gravita-
tional gauge redundancies between spacetimes of distinct topology go hand in hand
with the cancelation of non-factorizing contributions,11 and seem to be essential
to the resolution of the Factorization Paradox.12 In most cases, these gravitational
gauge redundancies have been described rather abstractly via the existence of null
states. We find it intriguing that in a toy model these gauge redundancies are realized
concretely by a group action, and hope this structure persists in general.

The rest of this chapter is organized as follows. In Section 10.2, we review the
BPHZ approach to perturbative renormalization and its formalization in terms of
the Connes-Kreimer Hopf algebra, highlighting the physical and mathematical struc-
tures relevant for our analogy. In Section 10.3, we describe the very simple toy model

8A very similar recursive algorithm was used in [64] in order to achieve all-order factorization.
9Recall that the spectrum Spec(𝐴) of a commutative C-algebra 𝐴 is the set of algebra homomor-

phisms 𝐴 → C. See 10.5.2 for the definition of the group structure on Spec(H) for a commutative
Hopf algebraH .

10See [333] for further comments on the meaning of ER = EPR in spacetime, as opposed to
merely in space, and its role in gauge fixing the sum over topologies.

11In general, gauge redundancies and detailed cancelations are closely related: a gauge redun-
dancy implies the cancelation of anything non-gauge-invariant, and conversely, a cancelation suggests
the existence of a gauge fixed description in which the cancelations are made manifest.

12These gauge redundancies also plays a key role in understanding how bulk EFT could remain
valid in a restricted sense behind old black hole horizons [7].
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of [328] and explicitly carry out the gravitational analog of the BPHZ procedure.
We also show that the algebraic structure of this gravitational BPHZ is captured by
the Faà di Bruno Hopf algebra HFdB and its dual group 𝐺FdB. Finally in Section
10.4, we comment on the lessons that may be drawn from our results, and discuss
some possible extensions and applications.

The analogy drawn in this chapter between the gravitational path integral and per-
turbative renormalization is summarized in Table 10.1.

Gravity Renormalization

Multiboundary partition functions 1PI effective action

Semiclassical wormholes Divergent Feynman diagrams

Sub-wormholes Sub-divergences

Stringy wormholes Counterterms

Faà di Bruno Hopf algebra Connes–Kreimer Hopf algebra

Table 10.1: The analogy between the gravitational path integral and perturbative
renormalization.

10.2 Review of perturbative renormalization
In this section, we briefly review the BPHZ approach to perturbative renormalization
[65, 235, 463] and its algebraic formalization [121, 124] in terms of the Connes-
Kreimer Hopf algebra, with an eye towards our analogy with the gravitational path
integral.13 First, in Section 10.2, we recall the basic idea of renormalization. Next, in
Section 10.2, we review the BPHZ procedure for handling sub-divergences. Finally,
in Section 10.2, we review the formalization of perturbative renormalization in terms
of the Connes-Kreimer Hopf algebra.

Divergences and counterterms
The starting point of perturbative renormalization is a 𝐷-dimensional local action
functional of some dynamical fields 𝜙:

𝑆(𝜙) =
∫

d𝐷𝑥 L(𝜙). (10.1)
13We assume the reader is somewhat familiar with the basics of perturbative renormalization.

For a comprehensive review, see [124].
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For notational simplicity we consider a single scalar field 𝜙. We take the Lagrangian
L(𝜙) to be of the form

L(𝜙) = 1
2
(𝜕𝜙)2 − 1

2
𝑚2𝜙2 + Lint(𝜙). (10.2)

The interaction Lagrangian Lint(𝜙) is assumed to be a polynomial (or power series)
in 𝜙 and its derivatives. For example, we might consider 𝜙3 theory, defined by

Lint(𝜙) =
1
3!
𝑔𝜙3. (10.3)

Each possible monomial in the interaction Lagrangian comes with a coupling con-
stant, such 𝑔 above, which we view as tunable parameters defining the theory.14

The action functional 𝑆(𝜙) defines a (Euclidean) QFT through the formal path
integral

Z =

∫
D𝜙 𝑒−𝑆(𝜙)/ℏ. (10.4)

Physical observables are computed perturbatively in ℏ via a sum over Feynman
graphs Γ, whose edges are labeled by particle species and whose vertices are labeled
by monomials in the interaction Lagrangian Lint. Each Feynman graph Γ defines
an integral

𝑈 (Γ) (𝑝1, . . . , 𝑝𝑁 ) =
∫

d𝐷𝑘1

(2𝜋)𝐷
· · · d𝐷𝑘𝐿
(2𝜋)𝐷

𝐼Γ (𝑝1, . . . , 𝑝𝑁 , 𝑘1, . . . , 𝑘𝐿), (10.5)

over unconstrained loop momenta 𝑘𝑖, refered to as the unrenormalized Feynman
integral of the graph Γ. Here 𝑁 is the number of external legs of Γ and 𝐿 is the
loop number (first Betti number) of Γ. The integrand 𝐼Γ is computed via truncated
Feynman rules, which assign a propagator to each internal edge and an interaction
term to each vertex. Our convention is that the powers of ℏ and the couplings 𝑔𝑖 are
excluded from the integrals𝑈 (Γ), for reasons that will be important later; to recover
the more standard values assigned to a Feynman graph Γ, we must multiply 𝑈 (Γ)
by appropriate powers of the ℏ and the couplings, as in (10.7) below. For example,
in 𝜙3 theory (10.3), the Feynman graph Γ illustrated in Figure 10.1 represents the
integral

𝑈 (Γ) (𝑝) =
∫

d𝐷𝑘
(2𝜋)𝐷

(
1

𝑘2 + 𝑚2

) (
1

(𝑝 + 𝑘)2 + 𝑚2

)
. (10.6)

14For field strength and mass renormalization, we must include the possibility of quadratic terms
in Lint (𝜙).
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𝑝

𝑝 + 𝑘

𝑘

𝑝

Figure 10.1: A simple Feynman diagram Γ in 𝜙3 theory presented in [124], whose
unrenormalized Feynman integral 𝑈 (Γ) is given by (10.6). The integration is over
the internal momentum 𝑘 that runs through the loop.

An efficient way to encode all physical observables of our QFT at once is through
the effective action 𝑆eff (𝜙), computed via a sum over all one-particle irriducible
(1PI) Feynman graphs as

𝑆eff (𝜙) = 𝑆(𝜙) −
∑︁
Γ∈1PI

ℏ𝐿 (−𝑔𝐼)𝑛𝐼
𝑈 (Γ) (𝜙)
𝜎(Γ) . (10.7)

There are various things to explain in this equation. First of all, for a given graph Γ,
𝐿 is the loop number and 𝑛𝐼 = (𝑛1, 𝑛2, . . . ) are the numbers of vertices associated
to couplings 𝑔𝑖. We have further abbreviated (−𝑔𝐼)𝑛𝐼 =

∏
𝑖 (−𝑔𝑖)𝑛𝑖 for the product

of all couplings associated to vertices in Γ. The minus signs in (10.7) arise from
the minus sign in the path integral (10.4). The symmetry factor 𝜎(Γ) is the order
of Aut(Γ) defined holding external legs fixed. Finally, the functional 𝑈 (Γ) (𝜙) is
defined in terms of the momentum-space fields 𝜙(𝑝) by

𝑈 (Γ) (𝜙) = 1
𝑁!

∫
∑
𝑝𝑖=0

d𝐷 𝑝1

(2𝜋)𝐷
· · · d𝐷 𝑝𝑁
(2𝜋)𝐷

𝜙(𝑝1) · · · 𝜙(𝑝𝑁 ) 𝑈 (Γ) (𝑝1, . . . , 𝑝𝑁 ).

(10.8)
An important note is that the relevant notion of 1PI Feynman graph for the sum in
(10.7) excludes trees, since the first term 𝑆(𝜙) can be interpreted as the contribution
of tree graphs to the effective action 𝑆eff (𝜙). The benefit of the effective action is that
it reproduces, at tree-level, the full perturbative expansion of physical observables
computed from 𝑆(𝜙) at all loops.

Famously, if we naively take our coupling constants in the action 𝑆(𝜙) to be finite
numbers, the integrals𝑈 (Γ) will contain UV divergences from the integration over
large values of the loop momenta 𝑘𝑖. These UV divergences will show up in the cal-
culation of the effective action 𝑆eff (𝜙), producing unreasonable answers for physical
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observables. The basic idea of renormalization is that the bare coupling constants
appearing in the path integral are not directly observable. Thus, demanding that they
be finite is a mis-application of the relevant physical condition: the couplings that
need to be finite are the effective couplings in 𝑆eff (𝜙), not the bare couplings. We
are free to take the bare couplings to be divergent, if doing so allows us to produce
finite answers to physically meaningful questions.

Suppose, then, that we are given an action functional 𝑆(𝜙) with finite couplings,
and we seek to use it to produce a physically sensible theory. Rather than directly
using 𝑆(𝜙) to define a path integral as in (10.4), we must first modify our action
by the addition of UV divergent counterterms to define a bare action 𝑆bare(𝜙).15

These counterterms must be precisely tuned so that the UV divergences they produce
exactly cancel against every UV divergence arising from loops. Once appropriate
counterterms are chosen, we may then define a path integral using the bare action,
and derive a finite effective action as in (10.7) by using the Feynman rules of 𝑆bare(𝜙).

Practically speaking, to compute appropriate counterterms, one must first choose a
regularization scheme, say dimensional regularization (dimreg), in order to regulate
the divergences in loop integrals. This yields finite values for the unrenormalized
Feynman integrals𝑈 (Γ) at the cost of dependence on an unphysical cutoff parameter
𝜀, which must be taken to zero at the end of the calculation. The counterterms are
also taken to be functions of 𝜀, and the goal is to choose counterterms such that
the physical observables computed with counterterms included yield finite values
in the limit 𝜀 → 0. To make this choice of counterterms, we must first choose a
subtraction scheme, such as minimal subtraction (MS), that specifies the “divergent
part” of any regulated loop integral.

Sub-divergences and the BPHZ procedure
The essential insight of the BPHZ procedure is that counterterms, like physical
observables, can be computed perturbatively via a sum over Feynman graphs. To
each 1PI Feynman graph Γ, we associate a counterterm 𝐶 (Γ) which is chosen in

15A possible point of contention is whether the counterterms are something to be added or whether
they were always there in the first place. As discussed in the introduction, the physically meaningful
answer is that they must have always been there, as the counterterms represent unknown UV physics
needed to render the theory sensible. However, our starting point here is more formal, given by
the problem of defining a sensible physical theory out of an action principle with finite couplings.
This will be analogous to the formal problem of defining a physically sensible theory out of a given
gravitational path integral.
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Figure 10.2: A simple example of diagram with sub-divergences in 𝜙3 theory. This
diagram has loops nested inside other loops, which is the source of the recursive
nature of the BPHZ procedure.

order to precisely cancel UV divergences in 𝑈 (Γ).16 Each counterterm defines a
functional 𝐶 (Γ) (𝜙), which is normally required to be local. The bare action is then
defined via the addition of the counterterms for every 1PI graph Γ, as follows.

𝑆bare(𝜙) = 𝑆(𝜙) −
∑︁
Γ∈1PI

ℏ𝐿 (−𝑔𝐼)𝑛𝐼
𝐶 (Γ) (𝜙)
𝜎(Γ) . (10.9)

Note the similarity to the calculation of the effection action (10.7).

An essential complication is the possibility of sub-divergences: sub-graphs 𝛾 ⊂ Γ

of a given Feynman graph which are divergent on their own. Figure 10.2 presents
a simple example of Feynman graph with a sub-divergence. While the divergent
subgraph 𝛾 will certainly contribute to the divergences in𝑈 (Γ),17 these divergences
will already be taken into account by the counterterm𝐶 (𝛾) we have chosen to cancel
the divergence in 𝑈 (𝛾). If we were to include this divergence when computing
𝐶 (Γ), we would overcount the divergences, and fail in defining finite physical
observables. Thus, even in dimreg with minimal subtraction, the counterterm 𝐶 (Γ)
will not merely be given by the divergent piece of𝑈 (Γ) when Γ contains a divergent
subgraph.

Instead, to compute the counterterm for any given Feynman graph Γ, we must
follow the BPHZ procedure [65, 235, 463], a recursive algorithm for computing
counterterms while taking sub-divergences into account. To compute𝐶 (Γ), we first
identify all divergent subgraphs 𝛾 ⊂ Γ,18 and recursively compute their counterterms
𝐶 (𝛾) via the BPHZ procedure. Then, we compute a prepared Feynman integral

16As with the unrenormalized Feynman integrals 𝑈 (Γ), our convention is that 𝐶 (Γ) excludes
powers of ℏ and the couplings, which must be reintroduced to obtain the more conventional values
of the counterterms.

17In fact, it will contribute in a severe way: the divergent piece will be a non-local functional of
the external momenta in Γ which could not be canceled by any local counterterm 𝐶 (Γ) (𝜙).

18The subgraph 𝛾 is assumed to be a non-empty, proper subgraph. However, 𝛾 can be discon-
nected. If this happens, we define𝑈 (𝛾) and𝐶 (𝛾) to be the product of their values on each connected
component of 𝛾.
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𝑅(Γ) by summing all relevant contracted graphs Γ/𝛾 weighted by the previously
computed counterterms.19

𝑅(Γ) = 𝑈 (Γ) +
∑︁
𝛾⊂Γ

𝐶 (𝛾)𝑈 (Γ/𝛾). (10.10)

The prepared Feynman integral 𝑅(Γ) may still be divergent, but will only include
those divergences in Γ that do not arise from any subgraph. We may then compute
the counterterm 𝐶 (Γ) to be the divergent piece of 𝑅(Γ), as determined by our
subtraction scheme, so that the renormalized Feynman integral

𝑅(Γ) = 𝑅(Γ) + 𝐶 (Γ) = 𝐶 (Γ) +𝑈 (Γ) +
∑︁
𝛾⊂Γ

𝐶 (𝛾)𝑈 (Γ/𝛾), (10.11)

is finite.

Once we have computed counterterms via the BPHZ procedure, we now have three
distinct yet equivalent ways to incorporate them into the calculation of physical
observables.

First approach: The first, most direct approach is to replace the unrenormalized
Feynman integrals𝑈 (Γ) with the renormalized ones 𝑅(Γ) when calculating physical
observables. In particular, we can replace 𝑈 (Γ) with 𝑅(Γ) in (10.7), in order to
compute a physically reasonable effective action directly from 𝑆(𝜙):

𝑆eff (𝜙) = 𝑆(𝜙) −
∑︁
Γ∈1PI

ℏ𝐿 (−𝑔𝐼)𝑛𝐼
𝑅(Γ) (𝜙)
𝜎(Γ) . (10.12)

This approach has the benefit of making the cancelation of UV divergences man-
ifest, since each renormalized value 𝑅(Γ) is independently finite. However, it has
the downside of seeming a bit arbitrary. We have modified the way we evaluate
Feynman diagrams, only including some finite piece of the Feynman integrals in
our calculation.

Second approach: The second approach is to add the counterterms 𝐶 (Γ) to the
action, in order to define a bare action as in (10.9). We then forget where the bare
action came from, and recompute physical observables using the “unrenormalized
Feynman integrals” 𝑈 (Γ) computed with the Feynman rules derived from 𝑆bare.
Graph by graph, we will encounter UV divergences which will cancel out of any

19In (10.10), each connected Feynman graph with 𝑁 external legs should be equipped with the
data of a specific monomial of degree 𝑁 in the fields 𝜙, and the sum over subgraphs includes a sum
over this data. The vertices in the contracted graph Γ/𝛾 obtained by contracting a component of 𝛾
are labeled by the monomial chosen for 𝛾.
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physical observable, seemingly miraculously. While this approach obscures the
cancelation of UV divergences, it makes manifest that we are playing the same
sort of game as before: our theory is defined via the path integral by some local
action functional, which simply happens to have UV divergent couplings. Notably
in this approach, the cancelation occurs between Feynman diagrams of different
loop orders.

Third approach: The third approach is somewhere between the first two, and
consists of enlarging the set of Feynman graphs we include in our perturbative
expansion. In addition to vertices labeled by interaction terms in 𝑆(𝜙), we now have
additional vertices labeled by the counterterms. Now, each Feynman diagram will
still be individually divergent, but the combinatorics of formula (10.11) will be more
readily visible, since we can keep track of the contributions of each counterterm.

Crucially, while these three approaches organize the perturbative expansion dif-
ferently, they produce exactly equal answers for physical observables. The only
difference is whether to group the counterterms 𝐶 (Γ) with the graphs Γ from which
they arise, add them all to the action, or leave them as an explicit, additional type of
contribution to the perturbative expansion. This redundancy in how we organize the
perturbative expansion is a form of gauge redundancy (or duality): we have multiple,
exactly equivalent descriptions of the same physics. To see this redundancy more
explicitly, we turn now to the algebraic formalization of renormalized perturbation
theory.

The Connes–Kreimer Hopf algebra
In the algebraic formalization of renormalization, the BPHZ procedure described
above is efficiently packaged in terms of the Connes-Kreimer Hopf algebra HCK,
a commutative Hopf algebra over C. As reviewed in Appendix 10.5, a com-
mutative Hopf algebra H defines a dual group 𝐺 = Spec(H), whose group
law ★ : 𝐺 × 𝐺 → 𝐺 is defined in terms of the coproduct on H . The group
𝐺CK = Spec(HCK) is precisely the group underlying the multiple descriptions of
renormalized perturbation theory described in the previous section, and allows one
to effortlessly pass between them.

In order to motivate the definition of HCK, let us examine a formula that appeared
at multiple points in the discussion above. In (10.7), (10.9), and (10.12), we have
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seen transformations of the form

𝑆(𝜙) → 𝑆(𝜙) −
∑︁
Γ∈1PI

ℏ𝐿 (−𝑔𝑆𝐼 )
𝑛𝐼
𝐹 (Γ) (𝜙)
𝜎(Γ) , (10.13)

where 𝐹 (Γ) is some functional on the set of 1PI graphs and the couplings 𝑔𝑆
𝐼

are
those in the action 𝑆. The goal of this section is to interpret (10.13) as the action
of 𝐹 ∈ 𝐺CK on the space of action functionals. In terms of this group action, the
results of the previous section can be summarized via a commutative diagram:

𝑆 𝑆bare

𝑆eff

𝐶

𝑅
𝑈 (10.14)

In other words, as described above, we can obtain 𝑆eff in three ways: by acting on 𝑆
with 𝑅, by acting on 𝑆bare by𝑈, or by acting on 𝑆 first with 𝐶 and then with𝑈.

Our goal, then, is to define HCK such that 𝑅,𝐶, and 𝑈 are elements of the dual
group 𝐺CK of algebra homomorphisms out ofHCK, and further such that we have

𝑅 = 𝐶 ★𝑈, (10.15)

under the group law of 𝐺CK.20 We have already seen how 𝑅,𝐶 and 𝑈 are related
in (10.11): in order to evaluate 𝑅 on a Feynman graph Γ, we extract all possible
subgraphs 𝛾 ⊂ Γ, and evaluate 𝐶 and 𝑈 on the subgraphs and quotient graphs,
respectively. This motivates the following definition.

Definition 10.2.1. For a given QFT, the Connes–Kreimer Hopf algebraHCK is the
free commutative algebra over C generated by the set of 1PI Feynman graphs Γ

(excluding trees),21 equipped with counit 𝜀 : HCK → C and coproduct Δ : HCK →
HCK ⊗ HCK defined on algebra generators Γ by 𝜀(Γ) = 0 and

Δ(Γ) = Γ ⊗ 1 + 1 ⊗ Γ +
∑︁
𝛾⊂Γ

𝛾 ⊗ Γ/𝛾, (10.16)

and extended multiplicatively.

Proposition 10.2.2 ([122]). As defined above,HCK is a Hopf algebra.
20The order of multiplication is chosen so that the action of𝐺CK on the space of action functionals

(10.13) is a right action.
21As in Footnote 19, each Feynman graph Γ with 𝑁 external legs must be equipped with a choice

of a monomial of degree 𝑁 in the fields 𝜙. This data is summed over in (10.16). We will not keep
careful track of this data in our exposition; for details, see [124].
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Proof. We follow the proof of [124, Theorem 1.27]. By definition, 𝜀 and Δ are
algebra homomorphisms, and it is immediate from equation (10.16) that 𝜀 is a
two sided counit for Δ. For coassociativity, observe that both (Δ ⊗ Id) (Δ(Γ)) and
(Id ⊗ Δ) (Δ(Γ)) can be written as a sum over nested subgraphs,

Δ2(Γ) =
∑︁

𝛾⊂𝛾′⊂Γ
𝛾 ⊗ 𝛾′/𝛾 ⊗ Γ/𝛾′, (10.17)

where now the sum includes both empty and improper subgraphs and we interpret
the empty graph as the unit 1 ∈ HCK.

We have shown thatHCK is a bialgebra. The existence of an antipode follows from
Proposition 10.5.3 upon noting thatHCK is a connected graded bialgebra, where the
grading of a generator Γ is its loop number. □

Definition 10.2.3. The Connes–Kreimer group𝐺CK is the spectrum Spec(HCK) (see
[121, 124]). The multiplication of two elements 𝐹, 𝐺 ∈ 𝐺CK (given by arbitrary
maps from the set of 1PI Feynman graphs to C) is defined by

(𝐹 ★𝐺) (Γ) = 𝐹 (Γ) + 𝐺 (Γ) +
∑︁
𝛾⊂Γ

𝐹 (𝛾)𝐺 (Γ/𝛾), (10.18)

as in (10.11) for the product 𝑅 = 𝐶 ★𝑈.

Proposition 10.2.4 ([123]). The formula (10.13) defines a right action of 𝐺CK on
the space of action functions 𝑆(𝜙).

Proof. Clearly, the identity element 1 ∈ 𝐺CK given by the counit 𝜀 : HCK → C acts
trivially, since 𝜀(Γ) = 0 for all 1PI graphs Γ. Now, for 𝐹, 𝐺 ∈ 𝐺CK, we have that

(𝑆 · (𝐹 ★𝐺)) (𝜙) = 𝑆(𝜙) −
∑︁
Γ∈1PI

ℏ𝐿 (−𝑔𝑆𝐼 )
𝑛𝐼
(𝐹 ★𝐺) (Γ) (𝜙)

𝜎(Γ) . (10.19)

Expanding 𝐹 ★𝐺, we obtain

(𝑆 · (𝐹 ★𝐺)) (𝜙) = 𝑆(𝜙) −
∑︁
Γ∈1PI

∑︁
𝛾⊂Γ

ℏ𝐿 (−𝑔𝑆𝐼 )
𝑛𝐼
𝐹 (𝛾) (𝜙)𝐺 (Γ/𝛾) (𝜙)

𝜎(Γ) , (10.20)

where to alleviate notations compared to Equation (10.18), we have included the
cases 𝛾 = ∅ and 𝛾 = Γ in the sum. This sum can be rewritten as

(𝑆 · (𝐹 ★𝐺)) (𝜙) = 𝑆(𝜙) −
∑︁

Γ′∈1PI
ℏ𝐿 (−𝑔𝑆·𝐹𝐼 )

𝑛𝐼
𝐺 (Γ′) (𝜙)
𝜎(Γ′) , (10.21)
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where
𝑔𝑆·𝐹𝐼 = 𝑔𝐼 −

∑︁
𝛾∈1PI

ℏ𝐿 (−𝑔𝑆𝐼 )
𝑛𝐼
𝐹 (𝛾) (𝜙)
𝜎(𝛾) , (10.22)

are the coupling constants appearing in 𝑆 · 𝐹. But (10.21) is simply the expression
for ((𝑆 · 𝐹) · 𝐺) (𝜙). □

Note that in the proof of Proposition 10.2.4, it was important that the action of
𝐺 on 𝑆 · 𝐹 involved the shifted coupling constants 𝑔𝑆·𝐹

𝐼
appearing in the action

functional 𝑆 · 𝐹. This is the reason why we excluded the coupling constants from
our definitions of the functionals 𝑈,𝐶, 𝑅 ∈ 𝐺CK above, as elements of 𝐺CK must
be defined independently from the coupling constants in the action functionals on
which they act.

10.3 A gravitational BPHZ procedure
In the previous section, we summarized the BPHZ procedure underlying perturbative
renormalization, and described the underlying Hopf algebraic structure discovered
by Connes and Kreimer. We now turn to formulating an analogous procedure to
systematically restore factorization in simple two-dimensional topological theories
of gravity by the addition of counter-wormholes, explicit non-localities in the bulk
action.

We will first review a topological theory based on a gravitational path integral due to
Marolf and Maxfield [328] which fails to factorize due to the presence of spacetime
wormholes. We will then show that this theory can be systematically corrected into
a factorizing theory by introducing counter-wormholes, following a precise analog
of the BPHZ procedure underlying perturbative renormalization. This procedure is
quite similar to that considered in [64]; our goal here is to illuminate the algebraic
structures controlling this approach to resolving the Factorization Paradox.

Marolf–Maxfield theory
In [328], Marolf and Maxfield introduced an exactly solvable topological theory
of gravity in two dimensions. The observables of this theory are the 𝑛-boundary
correlation functions ⟨𝑍𝑛⟩, defined via a discrete path integral over the set V𝑛 of
(diffeomorphism classes of) oriented smooth surfaces Σ with 𝑛 labeled circular
boundaries:

⟨𝑍𝑛⟩ = ℨ−1
∑︁
Σ∈V𝑛

𝜇(Σ)𝑒𝑆0 �̃�(Σ) . (10.23)
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Here, ℨ is a normalizing factor, �̃�(Σ) = 𝜒(Σ) + 𝑛 is a modified Euler characteristic
of Σ, and 𝜇(Σ) is a symmetry factor, defined by

𝜇(Σ) = 1∏
𝑔 𝑚𝑔!

, (10.24)

where the 𝑚𝑔 are the numbers of closed universes (connected components of Σ with
no boundary) of genus 𝑔. The modified Euler characteristic �̃�(Σ) is independent
of the number of boundaries of Σ, since adding a boundary decreases 𝜒(Σ) by one
while increasing 𝑛 by one.

Following [328], we may simplify (10.23) by integrating out all higher genus surfaces
and closed universes. For a given connected component of Σ, summing over genus
gives a contribution 𝜆 to the path integral, where

𝜆 =

∞∑︁
𝑔=0

𝑒−𝑆0 (2−2𝑔) =
𝑒2𝑆0

1 − 𝑒−2𝑆0
. (10.25)

Moreover, the sum over closed universes exponentiates into an overall prefactor
𝑒𝜆, which can be absorbed by choosing ℨ = 𝑒𝜆. All that remains is to sum over
the possible genus zero surfaces Σ connected to the boundary. LetW𝑛 denote the
subset of V𝑛 consisting of genus zero surfaces with 𝑛 boundaries with no closed
components. We have

⟨𝑍𝑛⟩ =
∑︁

Σ∈W𝑛

𝜆𝑘Σ , (10.26)

where 𝑘Σ is the number of connected components of Σ. Note that an element ofW𝑛

is uniquely specified by a partition of the set of boundary components, so we may
equivalently write (10.26) as a sum over partitions of 𝑛.

Evaluating (10.26) as in [328] gives

⟨𝑍𝑛⟩ = 𝐵𝑛 (𝜆), (10.27)

where 𝐵𝑛 is the Bell polynomial of order 𝑛. See Figure 10.3 for an illustration of the
computation of ⟨𝑍3⟩ in a Marolf–Maxfield theory. Notably, Marolf–Maxfield theory
is not factorizing, and we do not have ⟨𝑍𝑛⟩ = ⟨𝑍⟩𝑛. This is unsurprising, as Marolf–
Maxfield theory contains spacetime wormholes that contribute nonzero amplitudes
to the multi-boundary correlation functions ⟨𝑍𝑛⟩, with no stringy wormholes to
possibly cancel against. The interpretation given in [328] is that (10.26) does not
define a single quantum theory of gravity, but instead an ensemble of theories,
where 𝑍 defines a Poisson random variable of mean 𝜆, whose moments are given
by (10.27).
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Figure 10.3: The computation of the spacetime amplitude ⟨𝑍3⟩ in a Marolf–Maxfield
theory. The first topology has 1 connected component so it contributes 𝜆, the second
topology has 2 connected components so it contributes 𝜆2 with multiplicity 3, and
the last topology has 3 connected component so it contributes 𝜆3. We then recover
the 𝑛 = 3 case of Equation (10.27).

In this chapter, we pursue a complementary interpretation motivated by perturbative
renormalization, in which we view (10.26) as defining only a low energy gravi-
tational EFT. This EFT is good for answering some questions, but breaks down
when pushed to answer more detailed questions like the factorization of multi-
boundary correlation functions. We assume that this EFT correctly computes the
single boundary partition function ⟨𝑍⟩ = 𝜆,22 which can be interpreted as the parti-
tion function of a holographically dual topological quantum mechanics. However,
we will modify the calculation of multi-boundary correlation functions by adding
additional counter-wormholes which parameterize the unknown stringy wormholes
needed to guarantee factorization.

Note that the single boundary partition function ⟨𝑍⟩ already includes contributions
from wormholes in the form of higher-genus surfaces in the sum (10.25), which can
be understood as a renormalization of the parameter 𝑒2𝑆0 to 𝜆 = 𝑒2𝑆0 (1+ O(𝑒−2𝑆0)).
In a more complete treatment, we should also modify the calculation of the single-
boundary partition function by counter-wormholes, leading to the simultaneous
consideration of the renormalization of 𝑒2𝑆0 and the breakdown of factorization.
We will ignore this issue in our treatment to simplify the algebra, taking (10.26)
to be the definition of Marolf–Maxfield theory and considering only genus zero
surfaces and their associated counter-wormholes. See [64] for a complete treatment
of wormholes and higher-genus surfaces at the same time.

Renormalizing Marolf–Maxfield
Now that the stage is set for Marolf–Maxfield theory, we would like to use the
intuition gained in Section 10.2 to introduce and motivate an analogy between the
Factorization Paradox and perturbative renormalization.

22We do not require 𝜆 ∈ N. We will comment on this further in Sections 10.3 and 10.4.
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The first step in making our analogy is to identify the gravitational analogs of
tree-level and loop-level Feynman diagrams in the Marolf–Maxfield theory (10.26).
As stated above, we assume that (10.26) correctly computes the single boundary
partition function ⟨𝑍⟩ = 𝜆, arising from the bulk manifold Σ given by a single disk.
In any correlation function ⟨𝑍𝑛⟩, we always have a term 𝜆𝑛 arising from 𝑛 disks, and
we may rewrite (10.26) as

⟨𝑍𝑛⟩ = 𝜆𝑛 +
∑︁

Σ∈Wwh
𝑛

𝜆𝑘Σ , (10.28)

whereWwh
𝑛 is the subset ofW𝑛 such that at least one component of Σ is a wormhole,

i.e., has more than one boundary. We view the first term in (10.28) as “tree-level,”
requiring no renormalization, and the rest as “loop-level,” requiring renormalization
due to their failure to factorize. Thus, the analog of loop-level Feynman diagrams
are spacetimes that include wormholes.

In the case of perturbative renormalization, we saw that the physically meaningful
observables can be efficiently summarized via effective coupling constants, com-
puted perturbatively from the tree-level couplings via (10.7). Analogously, we view
(10.28) as defining an effective bulk action functional arising from integrating out
wormholes. In particular, the observables of Marolf–Maxfield theory can repro-
duced from a “tree-level” calculation involving only spacetimes without wormholes,
provided we assign the value 𝐵𝑘Σ (𝜆) to a spacetime consisting of 𝑘Σ disconnected
disks rather than merely 𝜆𝑘Σ . In the case of perturbative renormalization, the ef-
fective coupling constants differ from the bare coupling constants only by terms
subleading in ℏ, the loop-counting parameter. Here, we see that the role of ℏ is be-
ing played by 𝜆−1, as 𝐵𝑘Σ (𝜆) agrees with 𝜆𝑘Σ up to terms subleading in 𝜆−1 arising
from spacetime wormholes.

In perturbative renormalization, we know that if we naively take the microscopic
coupling constants defining our QFT to be finite numbers, then the physically
observable effective couplings constants will suffer UV divergences from loops.
Here, we see a direct analog: if we take the bulk action functional 𝑒−𝑆(Σ) = 𝜆𝑘Σ

to factorize on disconnected bulk spacetimes, then the physically observable multi-
boundary correlation functions ⟨𝑍𝑛⟩ = 𝐵𝑛 (𝜆), analogous to the effective coupling
constants, will fail to factorize due to wormholes.

Motivated by [64], we claim that factorization can be restored if we modify the bulk
action functional 𝑒−𝑆(Σ) = 𝜆𝑘Σ of Marolf–Maxfield theory, allowing it to become a
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non-local functional of Σ which we denote 𝑒−𝑆bare (Σ) . This is the analog of passing
to a bare action in perturbative renormalization, where we allow coupling constants
to be divergent. Schematically, we expect this “bare bulk action” to take the form

𝑒−𝑆bare (Σ) = 𝜆𝑘Σ + Non-local corrections. (10.29)

These non-local corrections should be precisely tuned such that the modified gravi-
tational path integral

⟨𝑍𝑛⟩ = 𝑒−𝑆bare (𝑛 disks) +
∑︁

Σ∈Wwh
𝑛

𝑒−𝑆bare (Σ) , (10.30)

produces factorizing answers, i.e., ⟨𝑍𝑛⟩ = 𝜆𝑛, due to cancellations between non-
localities in the first, “tree-level” term, and non-factorizations arising from the sum
over wormhole contributions. As in the unmodified Marolf–Maxfield theory (10.26),
we make the simplifying assumption that 𝑒−𝑆bare (Σ) is independent of the number of
boundaries of Σ and depends only on the number 𝑘Σ of connected components.23

As described in the Introduction, we view the non-local corrections in (10.29) as
arising from having already integrated out microscopic, stringy wormholes in a UV
complete theory, whose role is to cancel against the geometric wormholes described
by the EFT. With this expectation in mind, we will make the ansatz

𝑒−𝑆bare (𝑛 disks) = 𝜆𝑛 +
∑︁

Σ∈Wwh
𝑛

𝜆𝑘Σ𝐶 (Σ), (10.31)

where 𝐶 (Σ) is some functional of the set of spacetime manifolds, defined to be
multiplicative on connected components.24 Each term𝜆𝑘Σ𝐶 (Σ) in (10.31) represents
the contribution of a counter-wormhole (see Figure 10.4) associated to the wormhole
Σ. The factors𝐶 (Σ) must be chosen to precisely cancel the non-factorization arising
from Σ in the gravitational path integral. Crucially, the wormhole contributions in
(10.30) are computed using the modified action functional 𝑒−𝑆bare (Σ) , rather than the
unmodified Marolf–Maxfield action, which themselves include counter-wormhole
contributions. Thus, the problem of choosing appropriate counter-wormhole factors
𝐶 (Σ) in order to guarantee factorization is inherently recursive. Now, due to the
simplicity of Marolf–Maxfield theory, we could directly solve this recursive problem
by hand, in order to obtain 𝑒−𝑆bare (Σ) . However, as our goal is to highlight algebraic

23This assumption is merely for convenience: relaxing it would not change anything of conceptual
consequence but would require keeping track of much more data.

24Note that 𝑒−𝑆bare (Σ) for more generalΣ is defined to be equal to 𝑒−𝑆bare (𝑘Σ disks) , by our assumption
that 𝑒−𝑆bare (Σ) depends only on the number of components 𝑘Σ of Σ.
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Figure 10.4: A schematic notation for a contribution including a counter-wormhole,
represented as a dashed blue line, going between two connected components of
spacetime.

Figure 10.5: An example of sub-wormhole. The pair of pants Σ has an embedded
cylinder 𝜎 ⊂ Σ which itself leads to a wormhole contribution.

structures that may exist in more general gravitational theories, let us instead describe
the conceptual root of this recursive subtlety.

In the case of perturbative renormalization, we saw that the BPHZ procedure was
needed in order to handle the possibility of divergent subgraphs 𝛾 ⊂ Γ. What are
the gravitational analogs of subd-ivergences? Inside a given spacetime manifold Σ

defining a wormhole contribution to the gravitational path integral, we might have
embedded submanifolds 𝜎 ⊂ Σ which are, themselves, spacetime wormholes (see
Figure 10.5).

Presumably, at an earlier stage of the recursive procedure, we would have chosen a
counter-wormhole factor𝐶 (𝜎) to cancel against the non-factorizations arising from
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Figure 10.6: The construction of the manifold Σ/𝜎, when Σ is a pair of pants and
𝜎 an embedded cylinder. We excise the embedded cylinder and fill each hole with
a disk, so that we are left with the disjoint union of a disk and a cylinder.

𝜎. Thus, not all of the non-factorization in the unmodified contribution of Σ to the
gravitational path integral is new: some of it must be ascribed to the sub-wormhole
𝜎 ⊂ Σ. As a result, 𝐶 (Σ) should not be chosen merely to cancel the contribution
of Σ to the gravitational path integral, but only the part of its contribution which
cannot be ascribed to any sub-wormhole.25

To handle the possibility of sub-wormholes, we would like to construct a gravita-
tional analog of the BPHZ formula (10.11). We first need to determine what the
analog of the unrenormalized Feynman integrals 𝑈 (Γ) are. These will be given by
unrenormalized wormhole factors 𝑈 (Σ), defined to be equal to 1 for all Σ, so that
we may rewrite the Marolf–Maxfield path integral (10.28) as

⟨𝑍𝑛⟩ = 𝜆𝑛 +
∑︁

Σ∈Wwh
𝑛

𝜆𝑘Σ𝑈 (Σ). (10.32)

With the somewhat trivial functional 𝑈 (Σ) defined, we can now define a prepared
wormhole factor for a connected surface Σ via an analog of (10.10)

𝑅(Σ) = 𝑈 (Σ) +
∑︁
𝜎⊂Σ

𝐶 (𝜎)𝑈 (Σ/𝜎), (10.33)

where Σ/𝜎 denotes the surface obtained by excising 𝜎 from Σ and gluing in disks
along the new boundaries (see Figure 10.6).

25If our theory were not topological, we might want to especially focus on the contribution of
metrics on Σ where the sub-wormhole 𝜎 ⊂ Σ is becoming very small. An interesting point of
comparison is the definition of 𝑛-point interaction vertices in closed string field theory: the 𝑛-point
vertex is not merely the 𝑛-point string amplitude, but involves subtracting off some part corresponding
to the sewing of lower-point interaction vertices with propagators arising from a neighborhood of
the degeneration limits in moduli space [465].
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We extend 𝑅(Σ) to disconnected Σ multiplicatively. The intuition behind (10.33)
is that for each sub-wormhole 𝜎 ⊂ Σ, we subtract off the counter-wormhole factors
associated to 𝜎, in order to quantify the non-factorization arising from Σ that cannot
be ascribed to a sub-wormhole. A precise definition of the set of (proper, non-empty)
sub-wormholes 𝜎 ⊂ Σ over which we sum in (10.33) is as follows.

Definition 10.3.1. Let Σ𝑛 denote a connected genus zero surface with 𝑛 circular
boundaries. The set of proper, non-empty sub-wormholes over which we sum
in (10.33) is the set of (mapping class group equivalence classes of) connected26

embedded submanifolds 𝜎 ⊂ Σ𝑛 such that 𝜎 � Σ𝑘 for some 2 ≤ 𝑘 < 𝑛 and such
that the surface Σ𝑛/𝜎 � Σ𝑛1 ⊔ · · · ⊔ Σ𝑛𝑘 for some partition 𝑛 = 𝑛1 + · · · + 𝑛𝑘 of the
set of boundaries of Σ𝑛 into 𝑘 non-empty parts. Note that a sub-wormhole 𝜎 ⊂ Σ𝑛

is uniquely specified (up to the action of the mapping class group) by the partition
it induces on the set of 𝑛 boundaries.

With the prepared wormhole factors 𝑅(Σ) defined, we now define the counter-
wormhole factors 𝐶 (Σ) recursively by 𝐶 (Σ) = −𝑅(Σ) for all wormholes Σ, so that
the renormalized wormhole factors

𝑅(Σ) = 𝐶 (Σ) + 𝑅(Σ) = 𝐶 (Σ) +𝑈 (Σ) +
∑︁
𝜎⊂Σ

𝐶 (𝜎)𝑈 (Σ/𝜎) (10.34)

vanish for all wormholes, 𝑅(Σ) = 0. As 𝑅(Σ𝑛) only involves wormhole factors
𝐶 (Σ𝑘 ) for 𝑘 < 𝑛, this recursive process terminates. We will refer to this recursive
definition of 𝐶 (Σ) as the gravitational BPHZ procedure.

Now that we have defined the counter-wormhole factors 𝐶 (Σ) for all wormholes
Σ, we can use them to construct a renormalized, factorizing gravitational path
integral in three different ways, directly analogous to the three approaches to defining
renormalized perturbation theory described in Section 10.2:

First approach: The first, most direct approach is to replace the unrenormalized
wormhole factors 𝑈 (Σ) with the renormalized ones 𝑅(Σ) in the gravitational path
integral (10.32), obtaining

⟨𝑍𝑛⟩ = 𝜆𝑛 +
∑︁

Σ∈Wwh
𝑛

𝜆𝑘Σ𝑅(Σ). (10.35)

26The requirement that the sub-wormholes 𝜎 ⊂ Σ𝑛 be connected is a bit artificial, and is chosen
only to simplify the algebraic structure. As with the case of higher-genus surfaces, see [64] for a
treatment that does not make this restriction.
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Since we have set 𝑅(Σ) = 0 for all wormholes Σ, this reduces to removing all
wormholes by hand in the sum over topologies, and we are left with

⟨𝑍𝑛⟩ = 𝜆𝑛, (10.36)

a factorizing result. While somewhat tautological, excluding wormholes by hand
does have the benefit of making factorization manifest, just as the first approach to
defining renormalized perturbation theory in Section 10.2 makes the cancelation of
UV divergences manifest. However, this approach involves dramatically changing
the rules of the game by hand, which obscures the meaning of the many useful
semiclassical computations that include summing over wormholes.

Second approach: The second approach is to use 𝐶 (Σ) to define a non-local bare
action functional 𝑒−𝑆bare (Σ) as in (10.31). We then forget where this bare action
functional came from, and compute using the unrenormalized wormhole factors
𝑈 (Σ) = 1, but now with the contribution of a surface Σ being given by 𝑒−𝑆bare (Σ)

rather than 𝜆𝑘Σ , obtaining (10.30), which we can rewrite here as

⟨𝑍𝑛⟩ = 𝑒−𝑆bare (𝑛 disks) +
∑︁

Σ∈Wwh
𝑛

𝑒−𝑆bare (Σ)𝑈 (Σ). (10.37)

While it may not be obvious yet, if the counter-wormhole factors 𝐶 (Σ) are chosen
recursively through the gravitational BPHZ procedure, then this second approach
will agree with the first, and yield ⟨𝑍𝑛⟩ = 𝜆𝑛, as desired. In this approach, we
perform a nontrivial sum over wormhole contributions, but the non-localities in the
bare action functional will conspire to cancel against the wormholes and lead to
factorization. While this approach obscures factorization, it makes manifest that
we are still performing a sum over the same topologies as in the semiclassical
Marolf–Maxfield theory, with non-local rules for the contribution of a spacetime
depending on its number of connected components. It is worth pointing out that
the non-localities in 𝑒−𝑆bare (Σ) are all subleading in 𝜆−1, so we may view these as
non-local corrections to the Marolf–Maxfield EFT, suppressed by 𝜆−1.

Third approach: The third approach consists of enlarging the set of topologies we
include in our gravitational path integral, by explicitly including counter-wormhole
topologies. In this approach, each wormhole or counter-wormhole contribution
will still be individually non-factorizing, but the combinatorics of formula (10.34)
will be more readily visible, since we can keep track of the contributions of each
counter-wormhole individually.
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Figure 10.7: A graphical representation of the counter-wormholes contributing to
the renormalized value of a pair of pants. In order to restore factorization, we
derive the contributions of the counter-wormholes recursively by asking that the
renormalized values of all nontrivial wormholes are zero.

A few explicit examples
We now show how the gravitational BPHZ procedure implemented by (10.34)
implements factorization for the first few correlation functions ⟨𝑍2⟩ , ⟨𝑍3⟩. In
addition, we will show explicitly that the three approaches for incorporating the
counter-wormhole factors 𝐶 (Σ) discussed above are equivalent.

Before being able to apply any of these approaches, we first need to compute the
factors 𝐶 (Σ2), 𝐶 (Σ3) associated to the cylinder Σ2 and the pair of pants Σ3. For the
cylinder Σ2, there are two terms in Equation (10.34), which reads

𝑅(Σ2) = 𝐶 (Σ2) +𝑈 (Σ2). (10.38)

Since we want to impose 𝑅(Σ2) = 0, and we have that𝑈 (Σ2) = 1, we learn that

𝐶 (Σ2) = −1. (10.39)

In other words, the counter-wormhole associated to the cylinder exactly compensates
the contribution of the cylinder, as there are no nontrivial sub-wormholes to consider.

Let us move on to the next order. For the pair of pants Σ3, Equation (10.34) reads

𝑅(Σ3) = 𝐶 (Σ3) +𝑈 (Σ3) + 3𝐶 (Σ2)𝑈 (Σ2 ⊔ Σ1), (10.40)

arising from the three topologically distinct sub-wormholes Σ2 ⊂ Σ3 associated
to the three partitions of the set {1, 2, 3} into two non-empty parts. By imposing
𝑅(Σ3) = 0 and inserting the previously computed value 𝐶 (Σ2) = −1, we obtain:

𝐶 (Σ3) = −𝑈 (Σ3) − 3𝐶 (Σ2)𝑈 (Σ2 ⊔ Σ1) = −1 − 3(−1) = 2. (10.41)

This last computation is illustrated on Figure 10.7.

Let us now implement the three methods described above to these first two steps of
the gravitational BPHZ procedure.
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Figure 10.8: A graphical representation of all the counter-wormholes getting re-
summed into the contribution 𝑒−𝑆bare (3 disks) of a spacetime with three connected
components (here taken to be three disks). After resumming the counter-wormholes,
this contribution is no longer 𝜆3: the counter-wormholes introduce non-localities.

First approach: The above computations of the counterterms guarantee that
𝑅(Σ2) = 𝑅(Σ3) = 0. Therefore all wormholes become excluded from the grav-
itational path integral by hand, and we simply calculate

⟨𝑍2⟩ = 𝜆2, ⟨𝑍3⟩ = 𝜆3, (10.42)

which is of course consistent with factorization.

Second approach: We first compute 𝑒−𝑆bare (Σ) for 𝑘Σ = 2, 3, using (10.31). For
𝑘Σ = 2 we obtain:

𝑒−𝑆bare (2 disks) = 𝜆2 + 𝜆𝑘Σ2𝐶 (Σ) = 𝜆2 − 𝜆, (10.43)

and for 𝑘Σ = 3 we obtain

𝑒−𝑆bare (3 disks) = 𝜆3 + 3𝜆𝑘Σ2⊔Σ1𝐶 (Σ2) + 𝜆𝑘Σ3𝐶 (Σ3) = 𝜆3 − 3𝜆2 + 2𝜆. (10.44)

As an explicit illustration, the computation of 𝑒−𝑆bare (3 disks) is represented on Figure
10.8.

Now we can compute the values of ⟨𝑍2⟩ and ⟨𝑍3⟩ using Equation (10.30):

⟨𝑍2⟩ = 𝑒−𝑆bare (Σ1⊔Σ1) + 𝑒−𝑆bare (Σ2) = (𝜆2 − 𝜆) + 𝜆 = 𝜆2, (10.45)

and

⟨𝑍3⟩ = 𝑒−𝑆bare (Σ1⊔Σ1⊔Σ1) + 3𝑒−𝑆bare (Σ2⊔Σ1) + 𝑒−𝑆bare (Σ3) (10.46)

= (𝜆3 − 3𝜆2 + 2𝜆) + 3(𝜆2 − 𝜆) + 𝜆 = 𝜆3, (10.47)

which explicitly shows that once again, factorization is restored.
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Figure 10.9: The systematic expansion of the gravitational path integral with two
boundaries, including the counterterm 𝐶 (Σ2) represented here with a dashed line.

+3 +
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Figure 10.10: The sum of all wormholes and counter-wormholes contributing to the
spacetime amplitude ⟨𝑍3⟩. The way we constructed counter-wormhole contributions
recursively ensures that this sum leads to a factorizing answer.

Third approach: In this method, we represent each term of the expanded forms of
Equations (10.45) and (10.47) as a topology of its own, including counter-wormholes
explicitly, as shown on Figures 10.9 and 10.10. This corresponds to adding more
topologies to the gravitational path integral, which make it explicit that we have
included additional wormhole-like contributions to the gravitational path integral.

The Faà di Bruno Hopf Algebra
Now that we have gained some intuition on how the gravitational BPHZ proce-
dure leads to factorization for the first few multi-boundary correlation functions,
we are ready to describe the abstract algebraic structure controlling this recursive
process. We will define a Hopf algebraHFdB that underlies the gravitational BPHZ
algorithm, analogous to the Connes-Kreimer Hopf algebra HCK that underlies the
BPHZ algorithm in perturbative renormalization. In addition, we will be able to
interpret the group of characters 𝐺FdB of this Hopf algebra as a group of gauge
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equivalences or dualities which interpolate between equivalent prescriptions for the
gravitational path integral, and in particular, between the first, second, and third
approaches described above.

In the case of perturbative renormalization, we saw that many transformations of
the form (10.13). In the case of gravity, many of the key equations (such as (10.31),
(10.32), (10.35), or (10.37)) were of the form

𝐵𝑛 = 𝐴𝑛 +
∑︁

Σ∈Wwh
𝑛

𝐴𝑘Σ𝐹 (Σ)., (10.48)

where 𝐴𝑛, 𝐵𝑛 are sequences of values assigned to spacetimes with 𝑛 ≥ 1 components
(for instance, 𝜆𝑛, 𝐵𝑛 (𝜆), or 𝑒−𝑆bare (𝑛 disks)), and 𝐹 (Σ) some functional on the set of
wormholes that is multiplicative on disjoint connected components.

We wish to interpret the transformation (10.48) as the right action of a group
𝐺FdB. Functionals 𝐹 (Σ) will define elemnts of 𝐺FdB, and we aim to summarize the
discussion in Section 10.3 in terms of a commutative diagram

𝜆𝑛 𝑒−𝑆bare (𝑛 disks)

⟨𝑍𝑛⟩ = 𝐵𝑛 (𝜆) ⟨𝑍𝑛⟩ = 𝜆𝑛

𝐶

𝑅
𝑈 𝑈 . (10.49)

In this diagram, the vertical arrows𝑈 use a sequence 𝐴𝑛 to compute an unrenormal-
ized gravitational path integral

⟨𝑍𝑛⟩ = 𝐴𝑛 +
∑︁

Σ∈Wwh
𝑛

𝐴𝑘Σ , (10.50)

the diagonal arrow 𝑅 computes a tautological “renormalized gravitational path
integral”

⟨𝑍𝑛⟩ = 𝐴𝑛 +
∑︁

Σ∈Wwh
𝑛

𝐴𝑘Σ𝑅(Σ) = 𝐴𝑛, (10.51)

and the horizontal arrow 𝐶 sums over counter-wormhole contributions according
to the ansatz (10.31). The three approaches to the gravitational BPHZ procedure
correspond to different ways of reaching the lower right hand corner, and result in
equivalent physical theories.

As in the case of Connes-Kreimer, we can motivate the group law ★ on 𝐺FdB by
observing that we should have 𝑅 = 𝐶★𝑈, and extrapolating from (10.34) to define:

(𝐹 ★𝐺) (Σ) = 𝐹 (Σ) + 𝐺 (Σ) +
∑︁
𝜎⊂Σ

𝐹 (𝜎)𝐺 (Σ/𝜎), (10.52)
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Figure 10.11: The coproduct of a pair of pants wormhole. In the second line we
have made it manifest that disks get identified with the unit of the Faà di Bruno
algebra.

where 𝜎 runs over the set of sub-wormholes 𝜎 ⊂ Σ specified in Definition 10.3.1.
Dually, we can define the Hopf algebra HFdB dual to 𝐺𝐹𝑑𝐵, which turns out to be
isomorphic to a well-known Hopf algebra called the Faà di Bruno Hopf algebra (as
proven below in Proposition 10.3.4):

Definition 10.3.2. The Faà di Bruno algebraHFdB is the free commutative algebra
C[Σ2, Σ3, . . . ] generated by the set of (diffeomorphism classes of) connected genus
zero surfaces Σ with 𝑛 ≥ 2 circular boundaries, equipped with counit 𝜀 : HFdB → C

and coproduct Δ : HFdB → HFdB ⊗ HFdB defined on algebra generators Σ by
𝜀(Σ) = 0 and

Δ(Σ) = Σ ⊗ 1 + 1 ⊗ Σ +
∑︁
𝜎⊂Σ

𝜎 ⊗ Σ/𝜎, (10.53)

and extended multiplicatively. The sum in (10.53) runs over all sub-wormholes
𝜎 ⊂ Σ as specified in Definition 10.3.1 (see Figure 10.11), and we identify the
disjoint union of surfaces with the free algebra structure onHFdB. We further define
𝐺FdB to be the spectrum Spec(HFdB), consisting of algebra homomorphisms 𝐹 :
HFdB → C. The coproduct Δ defines a multiplication law★ : 𝐺FdB×𝐺FdB → 𝐺FdB

given by (10.52).

Proposition 10.3.3. The coproduct Δ equips HFdB with the structure of a Hopf
algebra.

Proof. This proof could be circumvented by using the following Proposition 10.3.4
that 𝐺FdB is isomorphic to a well-known group. Nevertheless, we present a more
direct proof along the lines of the proof of Proposition 10.2.2 because it is valuable
for intuition.
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By definition, 𝜀 and Δ are algebra homomorphisms, and it is immediate that 𝜀 is a
two sided counit for Δ. For coassociativity, observe that for connected surface Σ,
both (Δ ⊗ Id) (Δ(Σ)) and (Id ⊗ Δ) (Δ(Σ)) can be written as

Δ2(Σ) =
∑︁

𝜎⊂𝜎′⊂Σ
𝜎 ⊗ 𝜎′/𝜎 ⊗ Σ/𝜎′, (10.54)

where the sum runs of nested subwormholes𝜎 ⊂ 𝜎′ ⊂ Σ and further includes empty
and improper subwormholes, where we identify the disk Σ1 with the unit 1 ∈ HFdB.

This shows that HFdB is a bialgebra. Equipped with the grading |Σ𝑛 | = 𝑛 − 1, we
see thatHFdB is connected graded, so it a Hopf algebra by Proposition 10.5.3, with
the antipode defined recursively through the formula

𝑆(Σ) = 1 − Σ −
∑︁
𝜎⊂Σ

𝑆(𝜎)Σ/𝜎. (10.55)

□

cor. (𝐺FdB, ★) is a group.

Proof. This follows from Proposition 10.5.2. □

We now introduce another presentation of 𝐺FdB that makes some of its algebraic
structure more manifest, and will greatly simplify the calculations in a lot of cases.
Indeed, while the presentations of the Faà di Bruno Hopf algebra and its associated
group given above are the most natural ones from the point of view of the gravita-
tional theories at hand, they are isomorphic to objects that may look more familiar to
the reader. In particular, the group 𝐺FdB can be identified with the group of formal
power series with zero constant term and unit linear term, equipped with a much
more familiar law: the law ◦ of composition. More precisely, we have:

Proposition 10.3.4. The map

(𝐺FdB, ★) −→ (𝑡 + 𝑡2C[[𝑡]], ◦)
𝐹 ↦−→ �̂� (𝑡) = 𝑡 +∑

𝑘≥2 𝐹 (Σ𝑘 ) 𝑡
𝑘

𝑘! ,
(10.56)

where Σ𝑘 denotes the genus zero topological surface with 𝑘 boundaries, is an
isomorphism of groups.

Proof. Let 𝐹, 𝐺 ∈ 𝐺FdB. We have that

�(𝐹 ★𝐺) (𝑛) (𝑡) = (𝐹 ★𝐺) (Σ𝑛) = ∑︁
𝑘1+···+𝑘 𝑝=𝑛

𝐹 (Σ𝑝)
(
𝑝∏
𝑖=1

𝐺 (Σ𝑘𝑖 )
)
= (�̂� ◦ �̂�) (𝑛) (𝑡),

(10.57)
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by Faà di Bruno’s formula for the 𝑛𝑡ℎ derivative of the composition of two formal
power series. Thus, 𝐹 ↦→ �̂� is a group homomorphism. Moreover it admits
an inverse, defined by setting 𝐹 (Σ𝑘 ) = �̂� (𝑘) , so it defines an isomorphism of
groups. □

Remark 10.3.5. Proposition 10.3.4 justifies the name of the Faà di Bruno Hopf
algebra: the combinatorics underlying our gravitational path integral are the same
as the ones underlying the composition of formal power series (as is already evident
in [328]), which leads to the Faà di Bruno formula for the 𝑛𝑡ℎ derivative of a
composite function. Both cases involve a sum over partitions of 𝑛, which in our case
correspond to all the possible wormhole configurations between 𝑛 boundaries.

Remark 10.3.6. The inverse law of the group 𝑡 + 𝑡2C[[𝑡]] under composition is
given by the well-known Lagrange inversion formula:

�̂�−1(𝑡) =
∞∑︁
𝑛=1

1
𝑛!

d𝑛−1

d𝑠𝑛−1

(
�̂� (𝑠)
𝑠

)−𝑛 ����
𝑠=0
𝑡𝑛. (10.58)

To define the action of𝐺FdB on the space of possible gravitational action functionals,
we make the following definition.

Definition 10.3.7. The space of bulk action functionals is the space of formal power
series

𝐴(𝑡) = 1 +
∑︁
𝑘>0

𝐴𝑘
𝑡𝑘

𝑘!
, (10.59)

with constant term 1. We interpret the power series 𝐴(𝑡) as the gravitational action
functional that assigns the value 𝑒−𝑆(Σ) = 𝐴𝑘Σ to any spacetime manifold Σ with 𝑘Σ
connected components.

Example 10.3.8. The bulk action functional for Marolf–Maxfield theory is

𝐴MM(𝑡) =
∑︁
𝑘≥0

𝜆𝑘
𝑡𝑘

𝑘!
= 𝑒𝜆𝑡 , (10.60)

while the effective bulk action functional after integrating out wormholes is

𝐴eff
MM(𝑡) =

∑︁
𝑘≥0

𝐵𝑘 (𝜆)
𝑡𝑘

𝑘!
= 𝑒𝜆(𝑒

𝑡−1) , (10.61)

to be compared with [328, Section 3.2].

Proposition 10.3.9. Equation (10.48) defines a right action of the group 𝐺FdB on
the set of bulk action functionals 𝐴(𝑡) = 1 +∑

𝑘≥1 𝐴𝑛𝑡
𝑘/𝑘!.
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Proof. For 𝐹 ∈ 𝐺FdB, define the right action

(𝐴 · 𝐹) (𝑡) = 𝐴(𝑡) +
∑︁

Σ∈Wwh

𝐴𝑘Σ𝐹 (Σ)
𝑡𝑛Σ

(𝑛Σ)!
, (10.62)

where the sum runs over the setWwh =
∐
𝑛Wwh

𝑛 of wormhole spacetimes Σ with
any number of boundaries 𝑛Σ. Note that the 𝑛th component (𝐴 · 𝐹) (𝑛) (𝑡) of (10.62)
is precisely given by (10.48). Applying Faà di Bruno’s formula to (10.62), we have
that

(𝐴 · 𝐹) (𝑡) = (𝐴 ◦ �̂�) (𝑡), (10.63)

using the isomorphism constructed in Proposition 10.3.4. Acting by precomposition
is manifestly a right action. □

Factorization at all orders
Leveraging the algebraic framework developed in the previous section, we can now
compute appropriate counter-wormhole factors 𝐶 (Σ𝑛) to restore factorization in
the Marolf–Maxfield path integral at all orders. In particular, the constraint that
𝑅(Σ) = 0 for all Σ ensures that 𝑅 = 𝜀, and so 𝑅 is simply the unit of 𝐺FdB. Thus,
the equation 𝑅 = 𝐶 ★𝑈 tells us that 𝐶 is simply given by the inverse of𝑈 under the
group law: we have 𝐶 = 𝑈 ◦ 𝑆, where 𝑆 is the antipode onHFdB.

The easiest way to compute 𝐶 is through the isomorphic presentation of 𝐺FdB as
a group of formal power series under composition provided by Proposition 10.3.4.
Note that the image of𝑈 under this isomorphism is the formal power series

�̂� (𝑡) = 𝑡 +
∑︁
𝑘≥2

𝑡𝑘

𝑘!
= 𝑒𝑡 − 1. (10.64)

Thus, it is straightforward to compute �̂� (𝑡) as the compositional inverse of �̂� (𝑡),
given by

�̂� (𝑡) = log(1 + 𝑡). (10.65)

By Taylor expanding this expression, we obtain:

Proposition 10.3.10. The counter-wormhole factors for Marolf–Maxfield theory to
all orders are given by

𝐶 (Σ𝑛) = (−1)𝑛+1(𝑛 − 1)! (10.66)

We can now recast the three approaches to defining a renormalized gravitational
path integral in terms of the identity

𝑒𝜆𝑡 = (𝐴MM · 𝐶 ·𝑈) (𝑡), (10.67)
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where the left hand side is the exponential generating function of the factoriz-
ing multi-boundary correlation functions ⟨𝑍𝑛⟩ = 𝜆𝑛. More precisely, the three
approaches to incorporating counter-wormholes differ in the order in which we
perform the operations and the subsequent simplifications performed.

First approach: First perform the group multiplication 𝑅 = 𝐶 ★ 𝑈, so that we
obtain

𝑒𝜆𝑡 = (𝐴MM · 𝑅) (𝑡), (10.68)

where �̂�(𝑡) = 𝑡. This amounts to giving a zero contribution to all spacetimes
with wormholes inside the gravitational path integral, and simply reading off space-
time amplitudes by evaluating the Marolf–Maxfield action on only disconnected
spacetimes.

Second approach: First act with 𝐶 to define

𝐴bare
MM(𝑡) = (𝐴MM · 𝐶) (𝑡) = 1 +

∑︁
𝑘≥1

𝑒−𝑆bare (𝑘 disks) 𝑡
𝑘

𝑘!
. (10.69)

to define a bare action, leaving us with

𝑒𝜆𝑡 = (𝐴bare
MM ·𝑈) (𝑡). (10.70)

This approach corresponds to resumming the counter-wormholes into non-local
spacetime actions 𝑒−𝑆bare (Σ) for the contribution of a spacetime Σ with multiple
connected components, and then doing an ordinary sum over topologies with this
new action functional. In particular, we can easily compute

𝐴bare
MM(𝑡) = (𝐴MM ◦ �̂�) (𝑡) = (1 + 𝑡)𝜆. (10.71)

Expanding in powers of 𝑡 and extracting coefficients, we deduce that a factorizing
bare action functional for Marolf–Maxfield theory is given by

𝑒−𝑆bare (Σ) = 𝜆(𝜆 − 1) . . . (𝜆 − 𝑘Σ + 1). (10.72)

As described in [328], something special happens when𝜆 ∈ N : the Taylor expansion
of (10.71) terminates, and 𝑒−𝑆bare (Σ𝑛) = 0 whenever 𝑛 > 𝜆. This means that the sum
over counter-wormholes for Marolf–Maxfield theory for 𝜆 ∈ N enforces the non-
local constraint that only topologies with 𝜆 connected components or fewer may
contribute! The difference between this description and the one given in [328] for
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an 𝛼-sector with 𝛼 = 𝜆 ∈ N is that they fix the number of connected components
to be exactly 𝛼, while we have not allowed for closed universes so can only set an
upper bound on the number of connected components. In our presentation, there is
nothing to stop us from taking 𝜆 ∉ N, as we have not imposed reflection positivity
or the existence of a well defined Hilbert space.

The formula (10.72) also has the interpretation as a gravitational “exclusion rule"
as described in [404, 402]. To see this, imagine that in the first approach (where
wormholes are excluded by hand), the path integral counts 𝜆many microstates of the
bulk quantum gravity theory on each disk (which could be interpreted as states of
half-wormholes or end-of-the-world branes). Then, to reintroduce wormholes, we
take any configuration where multiple connected components are in the same mi-
crostate, and glue them into a connected topology (this is the “diagonal = wormhole”
principle of [404, 402]). Thus, if one takes this second approach, and sums both dis-
connected topologies and wormholes in the gravitational path integral, states where
distinct connected components lie in the same microstate need to be subtracted by
hand in order to avoid double counting, leading to the formula (10.72).

Third approach: Perform none of the compositions in (10.67), and merely expand
out all three terms 𝐴MM, 𝐶, and𝑈. This amounts to adding more topologies into the
gravitational path integral, which corresponds to all the counter-wormholes being
explicitly spelled out.

Remark 10.3.11. The identity (10.67) makes it very clear that the Faà di Bruno
group 𝐺FdB has an interpretation as a group of gauge transformations (or dualities)
involving topology change inside the gravitational path integral. Indeed, we can
choose arbitrary elements 𝜃1, 𝜃2 ∈ 𝐺FdB and insert a product 1 = 𝜃−1

𝑖
𝜃𝑖 in between

two operations of (10.67). We obtain:

𝑒𝜆𝑡 = (𝐴MM · 𝜃−1
1 · 𝜃1 · 𝐶 · 𝜃−1

2 · 𝜃2 ·𝑈) (𝑡). (10.73)

The interpretation of 𝜃1 is that it trades counter-wormhole contributions for non-
localities in the rules for sums over topologies. This can be understood as an instance
of the phenemenon described by Coleman, Giddings, and Strominger [114, 204,
203], whereby we integrate out wormholes into non-local effects. The difference
is that here, we are integrating out not the geometric wormholes visible in the
EFT, but instead integrating out microscopic, stringy wormholes as parametrized
by the counter-wormholes. In contrast, the interpretation of 𝜃2 is that it implements
the cancelation of counter-wormholes against geometric wormholes, which can be
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viewed as an example of ER = EPR for spacetime wormholes [317, 333]. In general,
the gauge transformations (10.73) allow us to interpolate between infinitely many
equivalent ways of organizing the gravitational path integral, including but not
limited to the three approaches described above. For example, choosing 𝜃1 = 𝐶−1

allows us to switch between the second and third approaches.

10.4 Discussion
Despite the (extreme) simplicity of the toy model considered here, we believe that
the structures outlined in this chapter are likely to exist in some form in much
more general gravitational path integrals. In this last section, we mention several
natural possible extensions of our work, and reflect on the lessons that might be
drawn from our analogy between the gravitational path integral and perturbative
renormalization.

More complicated toy models
This work focused on the simplest possible example that allowed us to make a precise
analogy: a topological theory of gravity on surfaces of genus zero with nonempty
boundary, even simpler than the model of [328]. In this context, the Hopf algebra
underlying the gauge redundancies of the sum over topologies is the Faà di Bruno
Hopf algebra. It would obviously be interesting to consider more complicated sums
over topologies. In particular, finding a similar algebraic structure to incorporate
genus insertions and end of the world branes seems to be a natural extension, in
order to formalize the full analysis of [64]. In higher dimension, an interesting case
study could be to try to restore factorization in the tensor models of [45, 253].

The mathematics of more complicated algebraic objects associated to topology
change is likely to also contain some extra features that are absent in our model.
For example, our gravitational path integrals only contain finitely many terms. In
renormalization, the sums over Feynman diagrams are usually infinite due to the
possibility of nesting arbitrarily many loops, and this is one of the reasons why the
Connes–Kreimer Hopf algebra has a richer structure than the Faà di Bruno Hopf
algebra. Such infinite sums are usually handled through combinatorial Dyson–
Schwinger equations (see for example [461]), which have a rich interplay with the
Hochschild cohomology of the algebra. We expect such structures to play a key role
in more complete gravitational path integrals.

In our simple model, the renormalized wormhole factor 𝑅(Σ) was given by the
counit of the Hopf algebra, which sets 𝑅(Σ) = 0 for all wormholes Σ, so that the
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first approach to defining a renormalized path integral was to simply exclude all
wormholes. In perturbative renormalization, we only aim to subtract off the diver-
gent part of loop integrals, leaving behind a finite piece. We would like to understand
whether there is a possibility for an analogous “factorizing piece” of the wormhole
contribution, so that the first approach is less tautological. Mathematically, the
way that the finite piece is extracted from the divergent loop integral is through a
Rota–Baxter structure and the associated Birkhoff factorization [121, 124]. It would
be interesting to see whether a nontrivial Rota–Baxter structure could control the
extraction of a factorizing piece of the wormhole contribution in a more complicated
toy model.

Geometric models and interplay with bulk EFT
Another obvious generalization would be to go beyond topology and include ge-
ometry and dynamical fields in our bulk gravitational theory. In such a context, a
crucial possibility is that the introduction of counter-wormholes and ordinary bulk
EFT counterterms may not be completely independent. In particular, the effect
of including counter-wormholes would likely be to introduce multi-local terms in
our bulk effective action, which could be viewed as multi-local counterterms that
supplement the ordinary local counterterms included to regulate bulk loop integrals.

In addition, a geometric theory contains a natural hierarchy of wormhole configu-
rations, organized according to their geometric size. In our simple topological toy
model, the integration over geometric wormholes was done in a single step. In more
realistic, geometric theories, it might be more reasonable to consider integrating
out all wormholes smaller than a given scale. In this way, the counter-wormholes
at each scale would only be chosen to cancel against the remaining geometric
wormholes larger than our cutoff, and so the counter-wormholes factors would be
scale-dependent. This would lead to a natural modification of the rules of bulk
effective field theory and renormalization group flow.

Bootstrapping a UV complete theory
On a more ambitious note, we might hope to find the gravitational analog of a UV
complete QFT, wherein we are allowed to take the cutoff to be arbitrarily high. In
a UV complete QFT, as opposed to an EFT, we no longer view the counterterms
as placeholders for unknown UV physics, and instead view them as part of the
fundamental definition of a complete theory. In the gravitational context, this would
mean defining a UV complete, factorizing gravitational path integral by introducing
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appropriate counter-wormholes at arbitrarily high scales. These counter-wormholes
would no longer be viewed as a substitute for the “stringy” physics that resolves
factorization; they would be that stringy physics.

For one example of this idea, the giant graviton expansion of supersymmetric gauge
theories [184, 292] describes the giant graviton branes required in the bulk theory in
order to correctly match the trace relations present at finite 𝑁 . These giant graviton
brane contributions have a similar algebraic structure to the counter-wormholes
discussed in this chapter, and it would be very interesting to this connection more
precise.

Factorization in higher codimension
Another interesting question is that of factorization in higher codimension. The only
observable quantities we considered in this chapter were multi-boundary partition
functions ⟨𝑍𝑛⟩, as we only considered manifolds with boundary and no corners.
However, a theory of quantum gravity contains more data than just partition func-
tions, which are associated to asymptotic boundary conditions of higher codimen-
sion. For example, it should be possible to associate Hilbert spaces to spatial slices
of the boundary.27 The locality of the holographic dual requires not only that parti-
tion functions factorize, but that these Hilbert spaces (as well as higher-codimension
data) factorize as well.28 In particular, factorization of Hilbert spaces is the original
context in which gauge equivalences like ER = EPR wre originally considered, in
order to explain how a spatial wormhole state could fit inside a tensor-factorized
Hilbert space [318, 317].

In order to incorporate factorization of Hilbert spaces into our setup, one would
need to formulate an analog of the Hopf algebraic approach presented here for
a space of topological surfaces with corners.29 We expect that the appropriate
analog of a Hopf algebra in order to study factorization of Hilbert spaces would
be an algebra of a higher-categorical nature, since the data of a Hilbert space can

27For a definition of these Hilbert spaces given only a reflection positive partition function, see
for example [112, 113].

28See e.g. [226, 112, 113, 73]. This has been dubbed the “factorisation” paradox [376] (note the
spelling), as suggested by Henry Maxfield. We avoid this naming convention, as there are additional
factorization paradoxes in higher codimension as well (for instance, the factorization of the category
of boundary conditions), and we would quickly run out of letters!

29The Hilbert spaces associated to manifolds with corners in the toy model we consider were
discussed in [328]. The existence of such a Hilbert space is one way to see that the partition function
⟨𝑍⟩ assigned to a single boundary circle must be a natural number, as it is the dimension of a
finite-dimensional vector space.
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be understood as the categorification of the data of a partition function. It would
be interesting to determine the appropriate higher-categorical algebra required to
introduce appropriate counter-wormholes in order to guarantee factorization in all
codimensions.

The resolution of these higher factorization paradoxes would also likely require
the introduction of additional tools from algebraic topology. In particular, the
Swampland Cobordism Conjecture [336, 335] was originally introduced in order to
address these failures of factorization [334], and suggests that one should always be
able to get rid of the sum over topologies in string theory by performing successive
surgeries via ER = EPR [333]. It seems promising to try to use the framework
described in this chapter to understand what such a procedure could look like.

One quick guess as to the possible answer is that the counter-wormholes needed to
guarantee factorization in higher codimension would likely induce non-localities of
a more general form, such as integrals over higher dimensional cycles as opposed to
merely multi-local contact interactions. The reason is that these counter-wormholes
would be needed to cancel against spacetime topologies with handles of higher
dimension, which attach along higher dimensional cycles as opposed to a discrete set
of points. These non-local contributions could potentially arise from the response
of the worldvolume QFTs living on higher-dimensional branes which have been
integrated out. These branes can be viewed as providing the microstates of the
higher-dimensional handles via geometric transition.

A cosmic Galois group for quantum gravity?
As a final speculation, note that in this chapter, note that we studied one very
simple gravitational theory with wormholes, and showed that the gravitational BPHZ
procedure was described by a particular Hopf algebra HFdB, as well as its dual
group 𝐺FdB. In the case of perturbative renormalization, there is one Connes-
Kreimer group 𝐺CK per quantum field theory. However the story does not end
there. Indeed, it was shown in [125] that there is a unique theory-independent group
U which acts on the space of couplings of all QFTs and can be seen as a universal
group of symmetries for perturbative quantum field theory. This group also allows
to systematically implement the renormalization group flow [125]. The group U

has very interesting number theoretic properties and is related to motivic Galois
theory (see [124] for a review). In reference to Pierre Cartier’s conjecture that the
renormalization group is closely related to the absolute Galois group Gal(Q/Q), the
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group U has been referred to as a “cosmic Galois group."

Thus, it is tantalizing to ask whether a similar picture holds when it comes to the
sum over topologies in quantum gravity. We put forward the following conjecture:

Conjecture 10.4.1. There exists a gravitational cosmic Galois group that underlies
the gauge redundancies associated with topology change in all quantum gravity
theories.

The existence of a gravitational cosmic Galois group underlying topology change
in all quantum gravity theories fits very nicely with the conjuectural uniqueness of
UV complete quantum gravity [336]. We look forward to applying our setup to
more complex models, and searching for a unified algebraic description of topology
change in quantum gravity.

10.5 Appendix: Basic facts about Hopf algebras
The main mathematical result in this text is that there is a Hopf algebra structure
underlying the sum over topologies in the gravitational path integral. In this ap-
pendix, we review a few standard facts about Hopf algebras that have been useful in
the main text.

Definition 10.5.1. A bialgebra (H , 𝜇,Δ, 𝜂, 𝜀) over a field 𝑘 is a 𝑘-algebraH (with
multiplication operation 𝜇 : H ⊗ H → H and unit 𝜂 : 𝑘 → H ) equipped with
additional algebra homomorphisms Δ : H → H ⊗ H , called the coproduct, and
𝜀 : 𝐻 → 𝑘 , called the counit, which are coassociative and counital, i.e., such that
the following diagrams commute:

H H ⊗ H

H ⊗ H H ⊗ H ⊗ H

H H ⊗ H

H ⊗ H H

Δ

Δ Id⊗Δ

Δ⊗Id

Id

Δ

𝜀⊗Id

Δ Id⊗𝜀

Intuitively, one can think of the coproduct Δ as a decomposition operation, just as
one may think of the product 𝜇 as a composition operation. In the case of Feynman
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diagrams, the coproduct (10.16) on the HCK extracts all possible sub-divergences;
in the case of wormholes, the coproduct (10.53) on HFdB extracts all possible
sub-wormholes.

A Hopf algebra (H , 𝜇,Δ, 𝜂, 𝜀) is a bialgebra equipped with an additional 𝑘-linear
map 𝑆 : H → H called the antipode such that the following diagram commutes:

H ⊗ H H ⊗ H

H 𝑘 H

H ⊗ H H ⊗ H

𝑆⊗Id

𝜇Δ

𝜀

Δ

𝜂

Id⊗𝑆

𝜇

When it exists, the antipode is uniquely determined by the bialgebra structure onH .

In this chapter, all Hopf algebras considered are commutative but not co-commutative.
Under the standard duality between commutative rings and their spectra, commuta-
tive Hopf algebras are dual to groups:

Proposition 10.5.2. Let (H , 𝜇, 𝜂) be a commutative algebra over a field 𝑘 . Then
the structure of a coproduct Δ, a counit 𝜀, and an antipode 𝑆 makingH into a Hopf
algebra endows the spectrum 𝐺 = Spec(H) with a group structure, called the dual
group of H . Under this equivalence, the unit 1 ∈ 𝐺 is defined to be the counit 𝜀,
the group law ★ : 𝐺 × 𝐺 → 𝐺 is defined in terms of the coproduct Δ by

(𝑔1 ★ 𝑔2) (𝑋) = (𝑔1 ⊗ 𝑔2) (Δ(𝑋)), (10.74)

and the inverse map (·)−1 : 𝐺 → 𝐺 is defined in terms of the antipode 𝑆 by

𝑔−1(𝑋) = 𝑔(𝑆(𝑋)). (10.75)

In both of these formulas, 𝑋 represents a Hopf algebra element 𝑥 ∈ H , and group
elements 𝑔, 𝑔1, 𝑔2 are defined to be algebra homomorphismsH → 𝑘 .

In the main text, 𝐺CK and 𝐺FdB are the dual groups of the Hopf algebras HCK and
HFdB, respectively. In both cases, it is essential that 𝐺CK and 𝐺FdB are groups,
in which every element is invertible, due to the existence of antipodes on HCK

and HFdB. In the case of perturbative renormalization, the antipode relates the
divergences to the counterterms, and in the case of gravity the antipode relates the
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wormholes to the counter-wormholes. In both cases, the antipode can be defined
recursively through one or the other version of the BPHZ procedure. Mathematically,
such a recursive construction is possible whenever we have a connected graded
bialgebra:

Proposition 10.5.3 ([438]). LetH be a connected graded bialgebra over a field 𝑘:
i.e., a bialgebra H =

⊕
𝑛≥0H𝑛 such that 𝜇,Δ, 𝜂 and 𝜀 respect the grading, and

such thatH0 = 𝑘 . ThenH admits an antipode 𝑆, so it is a Hopf algebra.

Proof. From the axioms for 𝑆, we must have 𝑆(1) = 1. Now, for 𝑛 > 0, let 𝑋 ∈ H𝑛
be a homogenous element of degree 𝑛. Noting that 𝜀 is the projection ontoH0 and
applying counitality, we must have

Δ(𝑋) = 𝑋 ⊗ 1 + 1 ⊗ 𝑋 +
∑︁

𝑋′ ⊗ 𝑋′′, (10.76)

where 𝑋′, 𝑋′′ are elements of strictly lower degree than 𝑛. We define 𝑆(𝑋) recur-
sively by the formula

𝑆(𝑋) = −𝑋 −
∑︁

𝑆(𝑋′)𝑋′′. (10.77)

This formula defines an abstract version of the BPHZ procedure. □
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C h a p t e r 11

FURTHER EVIDENCE AGAINST A SEMICLASSICAL BABY
UNIVERSE IN ADS/CFT

This chapter is based on the work [154], in collaboration with Netta Engelhardt.

11.1 Introduction
Recent work on black hole information starting with the calculations of the Page
curve [12, 378] has clearly demonstrated that the entanglement wedge of the radiation
of an old black hole includes a spatially large compact region in the black hole
interior. As the black hole shrinks, the holographic encoding map becomes non-
isometric [7], taking a large Hilbert space in the effective description of the system
into a much smaller Hilbert space of the fundamental theory. In the limit that the
black hole evaporates fully, the interior resembles a closed baby universe with a
singularity that pinches off. The most natural extension of the holographic map into
this regime suggests that this singular closed universe has a one-dimensional Hilbert
space [13, 377].

This is a radical implication: without some additional degrees of freedom (as sug-
gested in, e.g., [227, 2]), a one-dimensional Hilbert space results in large fluctuations
in observables, inconsistent with the local physics experienced in the universe: the
baby universe cannot admit a semiclassical description. While it is tempting to dis-
miss the original argument due to potential failure of the QES prescription [162] at
the evaporation point, other arguments against semiclassicality of the baby universe,
using different tools, have appeared in [328, 335, 145, 440, 441, 227]. For instance,
Ref. [441] argued that if a CFT dual to the Euclidean preparation of a state via the
Maldacena-Maoz wormhole [320] exists in Lorentzian time, the resulting boundary-
less geometry cannot be semiclassical. This approach does not suffer from the black
hole singularity endpoint issue, but it does involve an unconventional application of
the AdS/CFT map to a spacetime that in Lorentzian signature has no AdS boundary.
Other arguments have used the QES formula in a smooth baby universe to argue that
the Hilbert space of the baby universe must be one-dimensional [13]. This approach
requires an application of the QES formula to a setting in which the latter has not
traditionally been applied.



528

Within the context of the AdS/CFT correspondence, there is a sense, spelled out
in a tensor network toy model in [144], in which a closed universe must have a
one-dimensional Hilbert space: the CFT Hilbert space is defined via the boundary
conditions, and in the absence of a boundary, the CFT Hilbert space must be one-
dimensional. This was explored in the general context of the swampland program
in [335].

However, an important subtlety must be pointed out at this stage. Indeed, it may
be that even though in the fundamental description of quantum gravity there are no
closed universe degrees of freedom, effective semiclassical physics in a closed uni-
verse connected component could still somehow be encoded, via some unusual map,
into a UV-complete theory that sits at an asymptotic boundary that is disconnected
from the closed universe (see, e.g., [144] for a discussion in a tensor network toy
model). This would be in some sense the most extreme possible version of nonlo-
cality, where the physics of a connected component of spacetime would be encoded
in a different component of spacetime disconnected from the former. However, the
holographic map can be indeed be extremely nonlocal: the entanglement wedge of a
boundary region can reach much deeper into the bulk than its causal wedge and even
be disconnected from it1, a feature that was crucial for the holographic realization
of the Page curve [12, 379]. It is therefore not inconceivable in principle that the
entanglement wedge of a boundary subregion could reach so far out that it includes
a disconnected manifold.

In this article, we show, without making use of toy models or assumptions about
AdS/CFT behind horizons, that at least in many cases, including a semiclassical
closed universe in the entanglement wedge of a boundary region is too nonlocal,
even for the holographic map. In particular, we construct an O(1) complexity
boundary operator whose expectation value has the power to determine whether a
semiclassical baby universe exists or not. Using this operator, we find that in a large
class of semiclassical geometries, the most fundamental features of AdS/CFT force
the Hilbert space of a closed universe to be one-dimensional even in the semiclassical
description. Our construction requires nothing more than the AdS/CFT extrapolate
dictionary applied to the standard causal wedge of an asymptotically AdS region
with O(1) energy. This argument uses the baby universe state preparation of
Antonini-Rath (AR) [19, 20], which we review in detail Sec. 11.2. We also provide
a generalization beyond the AR construction to a class of high energy states at the

1Here we mean as a region rather than as a manifold.
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cost of some additional assumptions about the AdS/CFT correspondence.

Let us briefly explain the gist of the argument. In the AR construction, a two-
boundary CFT state |Ψ⟩𝐴𝐵 is prepared in a partially entangled state at some tem-
perature below the Hawking-Page transition[20]. AR show that the path integral
preparation of this state results in two disconnected asymptotically AdS regions
with no horizons and a baby universe. AR then argue that this state can also be
represented by an O(1) number of operators of low conformal dimension acting on
the vacuum; such states are of course simply dual to low energy perturbations of
pure AdS [30]. The AR puzzle arises from the fact that there are now two apparent
bulk geometries – one with a baby universe and one without – which are dual to the
same CFT state. They propose three possible resolutions: (1) ensemble averaging;
(2) invalidity of AdS/CFT: that CFT is not, in fact, dual to AdS;2 (3) that the baby
universe is not semiclassical. Another possible resolution would be that the two
descriptions are somehow “gauge-equivalent," although it is not exactly clear in
what sense such a statement could be made.

Here we find that (3) is the correct option. Using only the extrapolate dictionary
in the causal wedge, we construct the aforementioned simple boundary operator S𝜕
whose expectation value ⟨S𝜕⟩ conclusively distinguishes between a bulk that has
the baby universe

⟨S𝜕⟩if bulk dual has baby universe ≈ 𝑒− log dimHbaby universe (11.1)

and a bulk that does not

⟨S𝜕⟩if bulk dual has no baby universe = 1. (11.2)

We compute the expectation value of this operator and find that it agrees exactly
with the case in which the baby universe is absent. The only way in which it can also
agree with the path integral preparation of the state that includes the baby universe
is if the latter has an effective Hilbert space of dimension one. This provides a new
argument that uses only the oldest and most conventional aspect of the AdS/CFT
correspondence to conclude that the baby universe must have a one-dimensional
Hilbert space. Any modification of AdS/CFT which would include a larger Hilbert
space for the baby universe would need to give up on the extrapolate dictionary.

2In v3 of [19], this was changed to “beyond AdS/CFT,” suggesting that the CFT would need to
be supplemented with extra information. This essentially reduces to the statement that, on its own,
the CFT is not dual to a unique bulk.
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This argument can be extended to a more general setup than the precise AR con-
struction: it clearly applies to any spacetime with a baby universe in which the
fine-grained entropy is bounded from above by O(1) and which can be approxi-
mately truncated to a microcanonical window of energy O(1). To generalize even
further to states with energy that scales with 𝑁 , we consider states that have (1)
no nontrivial QESs in the bulk that are homologous to the complete asymptotic
boundary3 and (2) can be represented as an O(1) number of local but possibly
heavy operators acting on a state of O(1) energy. We show that any such CFT state
with a putative baby universe in its entanglement wedge can effectively be reduced
to the AR setup: thus in all such constructions, which include AR as a special case,
the baby universe is not semiclassically emergent from the CFT.

To summarize:

1. We give a concrete proof that the semiclassical baby universe in AR is in-
consistent with the extrapolate dictionary. We do this by showing that there
must exist operators with duals localized in the causal wedge whose expecta-
tion values are inconsistent with the existence of more than one semiclassical
baby universe state. In particular we explicitly exhibit one such operator S𝜕 .
This also manifestly excludes the possibility of equivalence of semiclassical
descriptions 1 and 2.

2. We prove that the baby universe can only be consistent with the extrapolate
dictionary if it has a one-dimensional Hilbert space.

3. We give a test for any putative supplementation of AdS/CFT to include a
semiclassical baby universe: it would have to correctly match the operator
S𝜕 .

4. We generalize all of these arguments to arbitrary states with the structure
described above.

The chapter is structured as follows. In Sec. 11.1 we state some global assumptions
and conventions; assumptions that are necessary in only part of the chapter will be
stated when needed. Sec. 11.2 reviews in the AR puzzle in a convenient framework.
Sec. 11.3 constructs the operator S𝜕 and proves that the AR baby universe cannot

3A sufficient (but not necessary) condition that guarantees this from the CFT side is that the
simple entropy [160, 159] is O(1).
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be semiclassical. We extend our argument to more general states with no nontrivial
QESs in Sec. 11.4 and conclude in Sec. 11.5.

Assumptions and Conventions
We will make only the following assumptions about the AdS/CFT correspondence:

1. The extrapolate dictionary. The algebra of boundary operators A𝜕𝑀 ob-
tained as limits (or via the timelike tube theorem) of bulk operators in 𝑀 is
contained in the algebra of operators of the dual CFT in the large-𝑁 limit.

2. Isometric Encoding in the Causal Wedge: In the simple setting in which
there are no event horizons in the bulk, the low energy EFT states and operators
are encoded into the dual CFT via a map that is an application of the HKLL
map [220, 219, 221] followed by the extrapolate dictionary. We assume that
the HKLL map works (up to small corrections in 𝑁) as a reconstruction map
at sufficiently large but finite-𝑁 , as explained in [10]; in particular, that the
HKLL map is approximately identical at large but finite 𝑁 on bulks that limit
to the same complete causal wedge large-𝑁 geometry. In discretizations of
the bulk (e.g., tensor networks) the algebra of any subregion is type I, and the
encoding map 𝑊 : Hbulk → HCFT is an isometry [225]. In the continuum
limit, the encoding map is asymptotically isometric [168]: its action on states
|𝜙⟩ and |𝜓⟩ in the code subspace of low energy perturbations limits to an
isometry in the infinite-𝑁 limit:

lim
𝑁→∞

⟨𝜓 |𝑊†
𝑁
𝑊𝑁 |𝜙⟩ = ⟨𝜓 |𝜙⟩ . (11.3)

A similar statement holds for operators in the causal wedge. We refer readers
looking for additional details on asymptotic encoding to [168, 192]. The
encoding map𝑊 without a subscript 𝑁 is the limiting operator of the sequence
of operators described above.

Other assumptions that are not required throughout the chapter will only be stated
when needed.

11.2 The Antonini-Rath Puzzle
We now review the Antonini-Rath (AR) puzzle in language that will be convenient
for our subsequent argument. AR consider the setup of [20], which takes two CFTs
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Figure 11.1: Ref. [20]’s path integral preparation of the baby universe, as used by
AR in their presentation of the puzzle. There are two asymptotic boundaries 𝐴
and 𝐵 at different temperatures, both below Hawking-Page, and a heavy operator
insertion O in Euclidean time. In Lorentzian time there are three disconnected bulk
regions: 𝑎, 𝑖, 𝑏.

in a thermal state at a temperature below the Hawking-Page transition and inserts a
heavy operator in Euclidean time:

|Ψ⟩𝐴𝐵 =
1
√
𝑍

∑︁
𝑚,𝑛

𝑒−
1
2 (𝛽𝐴𝐸𝑛+𝛽𝐵𝐸𝑚)𝑂𝑚,𝑛 |𝐸𝑛⟩ |𝐸𝑚⟩ . (11.4)

To maintain control over tails and fringe effects, AR truncate to a large but O(1)
microcanonical energy window; we will comment on any possible errors that this
may introduce in the next section. At 𝛽𝐴, 𝛽𝐵 > 𝛽𝐻𝑎𝑤𝑘𝑖𝑛𝑔−𝑃𝑎𝑔𝑒 in this microcanonical
window where black holes are very atypical, the entropy of Ψ𝐴 (and correspondingly
of Ψ𝐵) is large but O(1).4 The Euclidean preparation and Lorentzian continuation
are illustrated in Fig. 11.1.

Let |𝜓 (1)⟩𝑎𝑖𝑏 be the state of the bulk quantum fields prepared via the Euclidean path
integral as in Fig. 11.1. By construction:

𝑆vN [𝜓 (1)𝑖 ] = 𝑆vN [𝜓 (1)𝑎𝑏 ] = 𝛼, (11.5)

for some large 𝛼 that does not scale with 𝑁 .
4This is the low temperature version of the partially entangled state construction of [205].
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AR now consider a rewriting of the CFT state |Ψ⟩𝐴𝐵 in a different basis. For
simplicity they consider a bulk theory with a single scalar 𝜙 whose boundary dual is
just a single trace operator Φ. Via the state-operator correspondence in the CFT, AR
write down a decomposition of |Ψ⟩𝐴𝐵 in terms of local operators of low conformal
dimension acting on the vacuum:

|Ψ⟩𝐴𝐵 =
∑︁
𝐴𝑖𝐵 𝑗

𝑐𝐴𝑖𝐵 𝑗Φ𝐴𝑖Φ𝐵 𝑗 |0⟩𝐴 |0⟩𝐵 ≡
∑︁
𝐴𝑖𝐵 𝑗

𝑐𝐴𝑖𝐵 𝑗 |𝐴𝑖⟩ |𝐵 𝑗 ⟩ . (11.6)

Let us now introduce some notation for the holographic encoding map. Define:

𝑊𝑎 : H𝑎 →H𝐴

𝑊𝑏 : H𝑏 →H𝐵 (11.7)

𝑉 : H𝑎𝑏 →H𝐴𝐵

so that 𝑉 = 𝑊𝑎 ⊗ 𝑊𝑏. These are the holographic encoding maps from 𝑎, 𝑏, and
𝑎𝑏 into 𝐴, 𝐵, and 𝐴𝐵. These in particular are the limiting operators in a sequence
of operators in 𝑁 that, when acting on states in the code subspace, asymptotically
preserve inner products, expectation values, etc.

Recall now that as initially shown in [30], there is a bijection between the states
|𝐴𝑖⟩, |𝐵 𝑗 ⟩ obtained by acting with the primaries and descendants of the single trace
operator Φ and the states obtained by acting with our local bulk quantum field 𝜙 on
the AdS vacuum. AR use this to rewrite:

|Ψ⟩𝐴𝐵 =
∑︁
𝑖, 𝑗

𝑐𝐴𝑖𝐵 𝑗𝑊𝑎 ( |𝑎𝑖 (𝐴𝑖)⟩)𝑊𝑏 ( |𝑏 𝑗 (𝐵 𝑗 )⟩) (11.8)

= 𝑉

(∑︁
𝑖, 𝑗

𝑐𝐴𝑖𝐵 𝑗 |𝑎𝑖⟩ |𝑏 𝑗 ⟩
)
. (11.9)

This shows that under the standard holographic encoding map, |Ψ⟩𝐴𝐵 is dual to a
single pure state on 𝑎𝑏 which we shall call 𝜓 (2)

𝑎𝑏
, in apparent contradiction with the

fact that it was obtained by Euclidean path integral construction from a bulk that has
a mixed state (with large but O(1) entropy) on 𝑎𝑏. AR float several possibilities as
possible explanations of this apparent puzzle:5

5It is tempting to suggest that there is some problem with the path integral preparation itself,
but [205] showed that such states above the Hawking-Page transition are completely conventional
and reasonable states in AdS/CFT. It is difficult to see why lowering the temperature to be just below
the Hawking-Page transition should all of a sudden make the state illegal.
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1. Ensemble averaging. We will not consider this option here as it cannot
resolve the tension in higher dimensions (and it is not clear that it can resolve
the tension even in 1+1 dimensions).

2. AdS ≠ CFT, or equivalently, additional information is needed to determine
which asymptotically AdS spacetime is semiclassically emergent from the
CFT.

3. 𝑖 is not semiclassical.6 The extent of the semiclassical spacetime that is
described by the CFT is just the causal wedge 𝑎 ∪ 𝑏. For example, this is the
case if the emergent baby universe Hilbert space is one-dimensional.

We now give an argument that there is a definitive dual to the CFT, and that the
baby universe can only be part of that dual if it has a trivial Hilbert space. We will
do this by finding a concrete operator localized in the causal wedge that diagnoses
the presence of the baby universe. Any putative supplementation of AdS/CFT to
include a semiclassical baby universe must pass the test of correctly computing the
expectation value of this operator. Once we give the argument in the AR setup, we
will generalize it to a larger class of baby universes.

11.3 Swapping Causal Wedges
Our main tool will be the bulk swap operator.7 Let us briefly review the definition
of this operator. In a quantum system with Hilbert spaceH , the swap operator S is
a map on pairs of states:

S :H ⊗ H → H ⊗ H
|𝜓⟩ ⊗ |𝜙⟩ → |𝜙⟩ ⊗ |𝜓⟩ .

Similarly, when applied to density matrices onB(H), S maps 𝜌⊗𝜎 to 𝜎⊗ 𝜌. Since
in the AR setup none of the bulk quantities scale with 𝑁 , this is an O(1) complexity
operator in the bulk effective field theory, whose expectation value can used as a
distinguisher between states. That is, if 𝜌 and 𝜎 are density matrices, then

⟨S⟩ = tr [𝜌𝜎] . (11.10)

So, in particular, if 𝜌 = 𝜎 are identical states ⟨S⟩ = tr[𝜌2].
6By semiclassical, we would mean that bulk effective field theory is valid up to small corrections

in 𝐺.
7Not to be confused with the boundary swap operator, which was studied in the holographic

context in [163].
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Figure 11.2: The action of the swap operatorS on the semiclassical states𝜓 (1)⊗𝜓 (1)
(left panel) and 𝜓 (2) ⊗ 𝜓 (2) (right panel). This figure represents a time slice of the
doubled semiclassical geometries. In both cases the original boundary system is the
red system, and the doubled system is the blue system. On the left panel, S swaps
𝑎𝑏 with 𝑎′𝑏′, but not 𝑖 with 𝑖′. On the right panel, there is no closed universe so S
swaps the whole bulk 𝑎𝑏 with the whole bulk 𝑎′𝑏′.

To apply S to our setup, we consider two copies of the 𝑎𝑏 system, which we shall
label as 𝑎𝑏 and 𝑎′𝑏′. We shall similarly consider two copies of our boundary system
𝐴𝐵, which we shall label as 𝐴𝐵 and 𝐴′𝐵′.

We define S to be the swap operator that swaps 𝑎𝑏 with 𝑎′𝑏′: thus S has support
exclusively in the causal wedge of 𝐴𝐵𝐴′𝐵′. It has no support on the baby universe.
The action of S on 𝜓 (1) ⊗ 𝜓 (1) and 𝜓 (2) ⊗ 𝜓 (2) is represented on Figure 11.2. We
can compute the expectation value of S in both 𝜓 (1)

𝑎𝑏
and 𝜓 (2)

𝑎𝑏
:8

⟨S⟩
𝜓
(1)
𝑎𝑏
⊗𝜓 (1)

𝑎′𝑏′
= tr

[(
𝜓
(1)
𝑎𝑏

)2
]
∼ 𝑒−𝑆[𝜓

(1)
𝑖
] (11.11)

⟨S⟩
𝜓
(2)
𝑎𝑏
⊗𝜓 (2)

𝑎′𝑏′
= tr

[(
𝜓
(2)
𝑎𝑏

)2
]
= 1, (11.12)

where in the first equation we have used the fact that 𝜓 (1)
𝑎𝑏

is highly entangled with 𝑖
over the code subspace.

Thus we find that there exists an O(1) complexity bulk EFT operator localized
purely in the causal wedge, which can distinguish between 𝜓 (1)

𝑎𝑏
and 𝜓 (2)

𝑎𝑏
. One may

attempt to argue that perhaps S breaks entanglement in a way that results in large
energy gradients and that it thus cannot be an EFT operator; however, there is only

8Restricting the action ofS to 𝑎𝑏 does not change its expectation value as it only acts nontrivially
on the causal wedge.
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at most O(1) entanglement between 𝑎𝑏 and 𝑖, and this entanglement is not UV
entanglement: we are only ever swapping complete disconnected universes.

Since S is localized to the causal wedge 𝑎𝑏𝑎′𝑏′, there is no ambiguity on whether
it admits a boundary dual or not: it does. In addition, there is no ambiguity about
how to represent S on the boundary: since S is a causal wedge operator of O(1)
complexity, it can be represented on the boundary using the standard causal wedge
encoding map. Here we leave open the possibility that the encoding map is somehow
unusual or different for the baby universe: becauseS is a causal wedge operator, that
possibility is irrelevant to our argument; this is why in Sec. 11.1 our assumptions
about the encoding map were exclusively about its action on the causal wedge. The
encoding map 𝑉 ⊗ 𝑉 yields a representation S𝜕 of S in the CFT on 𝐴𝐵𝐴′𝐵′ such
that 9

S𝜕 (𝑉 ⊗ 𝑉) = (𝑉 ⊗ 𝑉)S. (11.13)

We now compute the expectation value of S𝜕 in |Ψ⟩𝐴𝐵. Because 𝑉 is an isometry,
if ⟨S𝜕⟩ = 1, |Ψ⟩𝐴𝐵 must be dual to description 2, whereas if ⟨S𝜕⟩ ≪ 1, the dual
must be description 1.

Recall now that during our review of AR’s work, we established that

Ψ𝐴𝐵 = 𝑉𝜓
(2)
𝑎𝑏
𝑉†. (11.14)

Thus

⟨S𝜕⟩Ψ𝐴𝐵⊗Ψ𝐴′𝐵′ = ⟨S𝜕⟩𝑉𝜓 (2)
𝑎𝑏
𝑉†⊗𝑉𝜓 (2)

𝑎′𝑏′𝑉
† = ⟨S⟩𝜓 (2)

𝑎𝑏
⊗𝜓 (2)

𝑎′𝑏′
= 1, (11.15)

where we have used the fact that the encoding of the causal wedge is isometric, and
isometries preserve expectation values. We remind the reader that S𝜕 is not the
boundary swap operator, so Eq. 11.15 does not just follow from purity of |Ψ⟩𝐴𝐵 but
rather from the purity of 𝜓 (2)

𝑎𝑏
.

There is thus no ambiguity in the dual of |Ψ⟩𝐴𝐵. We found a boundary operator
S𝜕 whose dual operator S is localized in the causal wedge, and this S definitively
distinguishes between the bulk state with the baby universe and the bulk state without
it. We have computed the expectation value of the corresponding CFT operator S𝜕
and found that it conclusively agrees with the state in which the baby universe is
absent.

9Note that the resulting boundary operator is not identical to the boundary swap operator.
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We thus find that AdS/CFT has a definitive answer about the dual, assuming (a)
the extrapolate dictionary, and (b) isometricity of the encoding map localized to
the causal wedge in the absence of horizons. These two aspects of AdS/CFT are
arguably the most well-established aspects of the duality.

How, then, are we to understand 𝜓
(1)
𝑎𝑖𝑏

and consistency of the gravitational path
integral picture? If we insist on validity of the path integral approach, we must have

𝑒−𝑆[𝜓
(1)
𝑖
] ∼ ⟨S⟩

𝜓
(1)
𝑎𝑏
⊗𝜓 (1)

𝑎′𝑏′
= ⟨S⟩

𝜓
(2)
𝑎𝑏
⊗𝜓 (2)

𝑎′𝑏′
= 1, (11.16)

which is only possible if |H𝑖 | = 1. If we were to apply an encoding map to 𝑎𝑖𝑏,
the only way in which we could obtain an answer that is consistent with ⟨S𝜕⟩ = 1
is if the baby universe is not semiclassical: that is, the holographic encoding map
must throw out the baby with the bathwater. In particular, our results show that any
attempts to create an emergent semiclassical baby universe by modifying or altering
AdS/CFT would need to find a way of matching the expectation value of S𝜕 without
destroying the extrapolate dictionary or the isometric encoding map of the causal
wedge.

It is tempting to try to find a loophole in this argument by recalling that the state in
Eq. 11.4 required a truncation of the tails to a microcanonical window. This suggests
a potential way out: that in computing ⟨S⟩

𝜓
(1)
𝑎𝑏

from the boundary, we would find

the correct answer of 𝑒−𝑆vN [𝜓 (1)𝑖 ] if we had just included the tail. However, this
cannot be the case: recall the exact expression of the finite 𝑁 state prepared by the
gravitational path integral in Eq. 11.4:

|Ψ⟩𝐴𝐵 =
1
√
𝑍

∑︁
𝑚,𝑛

𝑒−
1
2 (𝛽𝐴𝐸𝑛+𝛽𝐵𝐸𝑚)𝑂𝑚,𝑛 |𝐸𝑛⟩ |𝐸𝑚⟩ . (11.17)

The energy E = 𝐸𝐿 + 𝐸𝑅 of the two-sided state is then described by a random
variable of expectation value 𝐸0 = O(1). Let us choose Δ0 ≫ 𝐸0 but still O(1). By
Markov’s inequality,

P(E > Δ0) ≤
𝐸0
Δ0
. (11.18)

This means that
1
𝑍

∑︁
𝐸𝑛+𝐸𝑚>Δ0

𝑒−(𝛽𝐴𝐸𝑛+𝛽𝐵𝐸𝑚) |𝑂𝑚,𝑛 |2 ≤
𝐸0
Δ0
, (11.19)

and so we deduce
1
𝑍

∑︁
𝐸𝑛>Δ0 or 𝐸𝑚>Δ0

𝑒−(𝛽𝐴𝐸𝑛+𝛽𝐵𝐸𝑚) |𝑂𝑚,𝑛 |2 ≤
𝐸0
Δ0
. (11.20)
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If we denote, like in [19], by 𝑃Δ0,(𝐿,𝑅) the projections onto the microcanonical
windows of size Δ0 on the left and on the right, respectively, we obtain that

∥ |Ψ𝐴𝐵⟩ − 𝑃Δ0,𝐿𝑃Δ0,𝑅 |Ψ𝐴𝐵⟩ ∥2 ≤
𝐸0
Δ0
, (11.21)

and can therefore be made arbitrarily small since we are free to choose Δ0 as large
as we want as long as it is O(1). Now, by the triangle inequality and the Cauchy–
Schwarz inequality, if 𝑋 is a two-sided boundary observable,

|tr((Ψ𝐴𝐵 − 𝑃Δ0,𝐿𝑃Δ0,𝑅Ψ𝐴𝐵𝑃Δ0,𝐿𝑃Δ0,𝑅)𝑋) | ≤ 2∥ |Ψ𝐴𝐵⟩ − 𝑃Δ0,𝐿𝑃Δ0,𝑅 |Ψ𝐴𝐵⟩ ∥∥𝑋 ∥

(11.22)

≤ 2
√︂
𝐸0
Δ0
∥𝑋 ∥. (11.23)

This shows that for Δ0 chosen large enough (but O(1)),

∥Ψ𝐴𝐵 − 𝑃Δ0,𝐿𝑃Δ0,𝑅Ψ𝐴𝐵𝑃Δ0,𝐿𝑃Δ0,𝑅∥1 ≪ 1. (11.24)

Thus the untruncated and truncated states are close in 1-norm. Since reconstruction
of the causal wedge is isometric, and the 1-norm cannot grow on the preimage of an
isometry, this means that if the states corresponding to the untruncated and truncated
boundary states are 𝜓 (1)

𝑎𝑏
and 𝜓 (2)

𝑎𝑏
, they must also be close in 1-norm:

| |𝜓 (1)
𝑎𝑏
− 𝜓 (2)

𝑎𝑏
| |1 ≪ 1. (11.25)

We now prove that this is not possible given the expectation value of the swap
operator in the two different states. By Holder’s Inequality:

|tr [(𝜌 − 𝜎) S] | ≤ ||𝜌 − 𝜎 | |1 | |S| |∞, (11.26)

where | | · | |∞ refers to the operator norm, which is 1 for S, 𝜌 = 𝜓
(1)
𝑎𝑏
⊗ 𝜓 (1)

𝑎𝑏
, and

𝜎 = 𝜓
(2)
𝑎𝑏
⊗ 𝜓 (2)

𝑎𝑏
. This shows:

|⟨S⟩
𝜓
(1)
𝑎𝑏
⊗𝜓 (1)

𝑎𝑏

− ⟨S⟩
𝜓
(2)
𝑎𝑏
⊗𝜓 (2)

𝑎𝑏

| ≤ | |𝜌 − 𝜎 | |1. (11.27)

We thus find:

| |𝜓 (1)
𝑎𝑏
⊗ 𝜓 (1)

𝑎𝑏
− 𝜓 (2)

𝑎𝑏
⊗ 𝜓 (2)

𝑎𝑏
| |1 ≳ 1 − 𝑒−𝑆vN [𝜓 (1)𝑖 ] . (11.28)

The triangle inequality, together with the fact that the 1-norm is a cross norm, then
yields the necessary result:

| |𝜓 (1)
𝑎𝑏
− 𝜓 (2)

𝑎𝑏
| |1 ≥

1
2
| |𝜓 (1)

𝑎𝑏
⊗ 𝜓 (1)

𝑎𝑏
− 𝜓 (2)

𝑎𝑏
⊗ 𝜓 (2)

𝑎𝑏
| |1 ≳

1
2
(1 − 𝑒−𝑆vN [𝜓 (1)𝑖 ]). (11.29)
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Therefore it is not possible that any small differences between the state in Eq. 11.4
prior to truncation to the microcanonical window and the state in Eq. 11.6 could
account for the large discrepancy in the expectation values of the swap operator. For
both 𝜓 (1) and 𝜓 (2) to have CFT duals, there are only two options: (1) the duals are
nearly orthogonal, or (2) the entropy of the baby universe is bounded from above
by 0. Since the duals are the same state up to a truncation of the thermal tails, we
conclude option (2): if it is to be encoded into the CFT, the baby universe cannot be
semiclassical.

We note here that while our operator ⟨S𝜕⟩ acts on two copies of the state |Ψ⟩𝐴𝐵 ⊗
|Ψ⟩𝐴′𝐵′ , it must be the case that there exists another operator with the same ability
to distinguish 𝜓 (1)

𝑎𝑏
from 𝜓

(2)
𝑎𝑏

but which only acts on a single copy. To see this, we
use Fannes’ Inequality:

|𝑆(𝜓 (1)
𝑎𝑏
) − 𝑆(𝜓 (2)

𝑎𝑏
) | ≤ 1

2
| |𝜓 (1)

𝑎𝑏
− 𝜓 (2)

𝑎𝑏
| |1 logΔ0 +

1
𝑒

(11.30)

where Δ0 sets the dimension of the code subspace. Since 𝜓 (1)
𝑎𝑏

is by construction
approximately maximally entangled within this code subspace, 𝑆(𝜓 (1)

𝑎𝑏
) ∼ logΔ0.

We thus find that
| |𝜓 (1)

𝑎𝑏
− 𝜓 (2)

𝑎𝑏
| |1 ≥ 2 − O(1/logΔ0), (11.31)

Recall now that:

| |𝜓 (1)
𝑎𝑏
− 𝜓 (2)

𝑎𝑏
| |1 = sup

∥𝑋 ∥=1

���tr [
𝑋 (𝜓 (1)

𝑎𝑏
− 𝜓 (2)

𝑎𝑏
)
] ��� . (11.32)

Thus we find that there is an operator that can definitively distinguish between 𝜓 (1)
𝑎𝑏

and 𝜓 (2)
𝑎𝑏

even given just one copy of the system. Since this operator is localized
to 𝑎𝑏 – i.e., the causal wedge – it can be encoded into the CFT via an isometry,
which will preserve expectation values. Thus there exists an operator on 𝐴𝐵 that
can conclusively ascertain if the state |Ψ⟩𝐴𝐵 is dual to 𝜓 (1)

𝑎𝑖𝑏
or 𝜓 (2)

𝑎𝑏
. This does not,

however, provide a construction of such an operator, and one could worry that this
operator somehow destroys the EFT. Moreover, finding an explicit causal wedge op-
erator whose expectation values drastically differ in the two descriptions is valuable
in the sense that one can then precisely ask how to restore a consistent expectation
value for this operator in the presence of a semiclassical baby universe. We will
further comment on this in Section 11.5. For this reason we have opted to present
our arguments in terms of the explicit operator S𝜕 . Let us briefly note an additional
consequence of Eq. 11.32: there is a distinguishing operator if 𝑆vN [𝜓 (1)𝑎𝑏 ] > 0 can
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be made to scale like log Δ0. On the other hand, if the baby universe Hilbert space
is one-dimensional, there is no distinguisher.

This concludes our argument for the baby universe in the AR construction. We now
proceed to a more general picture that does not rely on a path integral construction.

11.4 Baby universes simply cannot result from simple black holes
Our argument in the previous section relied very essentially on the absence of a
QES homologous to the complete asymptotic boundary with generalized entropy
larger than O(𝐺0). It turns out that at the cost of one additional standard AdS/CFT
assumption, we obtain the same result in any putative AdS/CFT baby universe
construction in which there is no QES with generalized entropy larger than O(𝐺0).
We now provide the argument, starting with the following assumption:

Assumption: the simple entropy construction [161, 159, 156], which iteratively
removes all sources that result in non-stationarity of horizons, applies when the
horizon changes topology to the empty set. For readers unfamiliar with the simple
entropy, we now briefly review this result. The primary observation is that horizons
are only non-stationary due to matter (or gravitational radiation) falling across them
from the asymptotic region. Thus if we can turn off the appropriate sources at ℐ,
we would remove the infalling or outgoing matter, resulting in a stationary horizon.
In a spacetime with no nontrivial QESs homologous to the complete asymptotic
boundary, this removes horizons altogether. The work of [156] proved this in the
absence of such topological transitions, but asserted that the result should continue
to hold under such topological transitions. We will operate under the assumption
that it does indeed continue to hold. This is certainly true in, e.g., Vaidya thin-shell
collapse: turning off the heavy operator sourcing the shell restores the spacetime
to pure AdS. We could also act on the AR state with heavy operators in Lorentzian
time; that would also satisfy this assumption.

Note that we did not need to make this assumption in the AR setup as we had started
with a horizonless geometry and an explicit state.

We now proceed to state the argument. Consider a bulk spacetime with the following
properties:

1. A connected asymptotically AdS piece, which we shall call 𝑎. We are agnostic
about how many asymptotic boundaries 𝑎 has. (In the previous section, we
denoted each complete connected bulk region with its own letter, e.g., 𝑎, 𝑏
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Figure 11.3: The state |Ψ⟩𝐴 = O1O2 |Ψ(𝑐)⟩𝐴. Turning off the sources removes the
event horizon.

etc; here to maintain full generality we will use 𝑎 to refer to all regions with
an asymptotic boundary.)

2. A disconnected, boundaryless baby universe, which we shall call 𝑖.

3. No nonempty QESs that are homologous to the asymptotic boundary(ies) 𝐴.

Let |Ψ⟩𝐴 be a CFT state dual to this geometry with some bulk state on it. We
make one further assumption, which is that |Ψ⟩𝐴 can be represented as an O(1)
number of simple (but possibly heavy) operators acting on a state of O(1) energy.
This is always true for a black hole formed from fast collapse. Even though the
minimal QES is always the empty set, the entanglement wedge of |Ψ⟩𝐴 depends on
the entanglement of the bulk state: if the bulk state has entanglement between 𝑎
and 𝑖, the entanglement wedge of the pure state |Ψ⟩𝐴 includes 𝑖. Otherwise, we will
argue that it does not.

If 𝑎 has event horizons, we will remove them using the protocol of [156]: we turn
on sources that (on some timefold) propagate locally from the AdS boundary and
push any event horizons to the outermost QES. Since there are no nonempty QESs,
this protocol removes all horizons from 𝑎.10 We will denote by |Ψ(𝑐)⟩𝐴 the CFT
state that has been acted on in this way to reveal all of the AdS region as a causal
wedge. See Fig. 11.3. We emphasize that the sources involved propagate causally
from the boundary: they cannot act on the baby universe or change its state.

By our assumption on |Ψ⟩𝐴, |Ψ(𝑐)⟩𝐴 has O(1) energy. Now we use our proof from
Sec. 11.3 that the truncation of a state with O(1) energy to a microcanonical window

10In the language of [197], this turns a state with an infinite causal depth parameter into a state
with finite causal depth parameter.
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of size O(1) cannot result in a new state that has a large trace distance from the
untruncated state, at least in the infinite-𝑁 limit. This means that |Ψ(𝑐)⟩𝐴 is well
approximated by a state in microcanonical window of O(1), which we shall call
|Ψ(𝑐)′⟩𝐴.

Thus far our discussion has been independent of the exact state of the bulk. We
now consider a low energy bulk state |𝜓⟩𝑎𝑖, where there is entanglement between
the AdS region and the baby universe.

Let us now introduce a second copy of 𝑎, which we shall term 𝑎′. We define, as in
the previous section, the bulk swap operator S to swap bulk states on 𝑎 and 𝑎′. It
immediately follows from Sec. 11.3 that

⟨S⟩
𝜓
(1)
𝑎 ⊗𝜓 (1)𝑎′

∼ 𝑒−𝑆vN [𝜓 (1)𝑎 ] . (11.33)

We recall that a CFT state at large-𝑁 in an O(1) microcanonical window admits
a decomposition in terms of operators of low conformal dimension acting on the
vacuum. Once again invoking [30], the dual of such a state is simply a low energy
perturbation of AdS: no baby universe included. The expectation value ⟨S𝜕⟩ = 1,
and we find that the entanglement wedge of |Ψ(𝑐)′⟩𝐴 does not contain the baby
universe unless |H𝑖 | = 1, and then the baby universe cannot be semiclassical.

Can |Ψ(𝑐)⟩𝐴 contain the baby universe in its entanglement wedge? The answer is no:
because |Ψ(𝑐)′⟩𝐴 and |Ψ(𝑐)⟩𝐴 are close in trace distance, ⟨S𝜕⟩must be approximately
the same for the two states.

Can the original state prior to turning on simple sources, |Ψ⟩𝐴, contain a semi-
classical baby universe in its entanglement wedge? Once again, no: the locally
propagating sources in question do not act on the baby universe and do not modify
bulk entanglement of the state in the causal wedge. We thus arrive at the same
conclusion as we did in the previous section: if there are no nontrivial QESs homol-
ogous to 𝐴, then under the stated assumptions the CFT definitively picks the state
without a baby universe – unless the baby universe is contentless: |H𝑖 | = 1, and 𝑖 is
not semiclassical.

11.5 Discussion
In this chapter, we constructed a simple boundary operator whose bulk dual has
support exclusively in the causal wedge, which can conclusively diagnose if a
semiclassical baby universe is encoded in the CFT. In a large class of semiclassical
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geometries with a closed universe, including the one of [19], the verdict is definitive:
the closed universe cannot emerge in the AdS/CFT correspondence. Our argument
only relies on the most basic features of the holographic dictionary: the extrapolate
dictionary and the (asymptotically) isometric encoding of the causal wedge. While
it is reassuring that as decades of research have shown, AdS does indeed equal CFT,
failure of semiclassicality of closed universes is of course a very embarrassing state
of affairs, given that we may well live in a closed cosmology. Even without worrying
about our own world, this conclusion makes it very challenging to think about the
interior of small black holes in the bulk of AdS at late times from the point of view
of the CFT.

Recent developments [2, 227] have suggested that one way to recover semiclassical
physics in a closed universe is to explicitly include an observer in the range of
the holographic map [227, 2]. It would be very interesting to understand how the
calculation performed in this chapter, and in particular the expectation value we
found for the swap operator S𝜕 , is affected by conditioning on the presence of an
observer inside the closed universe. It would also be interesting to understand what
happens to these arguments in the presence of a Python’s Lunch [88, 156, 157, 158],
which violates the assumptions of Sec. 11.4. We leave further investigations of the
implications of the bulk swap operator’s encoding on the boundary to future work.
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