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ABSTRACT

While short read RNA-seq dominated the field for decades, long read RNA-seq is
particularly useful for isoform-level expression analysis, genome annotation, detect-
ing novelly splicing transcripts, identifying exact breakpoints in gene fusions, and
discovering chimeric RNAs. Long read RNA-seq has rapidly scaled to the point
of producing terabytes of data from a single set of experiments. Technological
advances in RNA and DNA sequencing library preparation, chemistry used in the
Oxford nanopores, and basecalling algorithms have reduced long read sequencing
error rates to sub-1% error. Further, the cost of long read sequencing has dropped
to about one hundred US dollars per human genome. These two factors have lead
to the mass production of high-throughput, long read, and single-cell RNA-seq
data. While recent tools for long read RNA-seq have been developed, they have
not kept pace in scalability and accuracy with long read RNA-seq in the fashion
that short read RNA-seq tools have met computational scalability and accuracy
challenges. To address this, in this thesis, we leverage long k-mers and pseudoalign-
ment for mapping and quantifying long reads in the novel algorithm implemented
within lr-kallisto, which yields both efficiency and higher accuracy for long
read mapping and quantification than previous tools. We demonstrate that long read
RNA-seq has reached sufficient depth and accuracy to yield accurate quantification
of isoform-level expression for differential expression analysis. Furthermore, we
explore the feasibilty of also utilizing long k-mers and pseudoalignment in both
transcript discovery in dn-kallisto and gene fusion and immune receptor sequence
discovery with fugi with measured success. Thus, our tools will enable a more
complete, accurate, and scalable analysis of single-cell and bulk RNA-seq than has
hitherto been possible in both quantifications and differential expression analysis
as well as investigation of gene fusions, chimeric RNAs, and immune receptor
sequences without bias.
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NOMENCLATURE

next generation sequencing (NGS). RNA-sequencing technologies that lead to the
highly parallel, high throughput era of RNA sequencing allowing the capture
of gene- and transcript-level expression and dynamics.

RNA-seq. sequencing of the RNA (ribonucleic acid) which is the transcribed DNA
(deoxyribonucleic acid) from your genome at the time of sampling.

Sanger sequencing. The first form of DNA sequencing which made way for the
first sequencing of the human genome..

third generation sequencing (TGS). DNA- and RNA-sequencing technologies that
allow for long and ultra-long sequencing from hundreds to hundreds of thou-
sands of basepairs in one read.
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C h a p t e r 1

OUTLINE, BACKGROUND, AND INTRODUCTION

1.1 Outline
This thesis is organized into six chapters. We outline the chapters below:

Chapter I We introduce the thesis, provide an outline, and give a conceptual
background in both biology and computer science.

Chapter II We describe lr-kallisto, a scalable and accurate tool for long read RNA-
sequencing quantification, as well as a benchmark of this method.

Chapter III We introduce unpublished, preliminary work demonstrating the use-
fulness of lr-kallisto for transcriptome discovery using long read RNA.

Chapter IV We provide the detailed workflow for single-cell lr-kallisto.

Chapter V We introduce the challenges in gene fusion and immune cell receptor
sequence discovery and annotation and provide a solution for these
aforementioned challenges with fugi, a fusion gene and immune cell
receptor sequence discovery and annotator tool.

Chapter VI We provide a review of thesis topics, conclusions, and future avenues
of interest with these newly developed tools.

1.2 Background
Genomics
On April 14, 2003, the Human Genome Project announced the sequencing of
a first draft of the human genome with 92% coverage for $2.7 billion after 13
years (National Human Genome Research Institute, 2003)1. Advances in DNA and
RNA sequencing over the last two decades have dramatically reduced the time and
cost of sequencing genomes, and today genome sequencing is routine. Moreover,
with Oxford Nanopore Technologies’ long-read sequencing, "telomere-to-telomere"
genomes can now be sequenced and in 2021 a complete genome only missing 0.3%
was released (NCBI, 2021)2, which was then improved to create a gapless genome
in 2022 (NCBI, 2022)3. Today, a human genome can be sequenced at high fidelity
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for a few hundred dollars. The advances in sequencing of DNA and RNA are
leading us into a new age of discovery and medical care, but several technological
and computational challenges remain. In this thesis we focus on the computational
challenges and present solutions to some key problems. We begin by providing a
brief background of the relevant biology and then introduce the topics of this thesis.

DNA sequencing history and methods
The first genome was sequenced almost entirely with Sanger sequencing technol-
ogy, a tedious process often called "chain termination", where dideoxynucleotides
(ddNTPs) are used to stopped DNA replication. When ddNTPs terminate the chains
in enough successive rounds of heating and cooling, there is a near guarantee that a
fragment of each subsequence length capped with a ddNTP is contained within the
experiment sample, which can then be passed through a capillary gel electrophore-
sis. The capillary gel performs the size sorting of the fragments, as the shortest
fragments get read off first and one basepair longer fragments are read off succes-
sively, resulting in a chromatogram readoff of the basepairs of the sequence. While
this approach to sequencing is accurate, it is slow and much more expensive than
next generation and third generation sequencing methods, which also provide more
information for genome annotation (Sanger, Nicklen, and Coulson, 1977).

In the 1990s, microarrays became a popular technology for sequencing both DNA
and RNA via an approach called "sequencing by hybridization". However, microar-
rays rely on predetermined DNA probes and can depend on bias-prone hybridization
of these probes with DNA fragments. Moreover, although microarrays provided a
method for gathering gene expression information that was not possible with the
low throughput of Sanger sequencing, this method could not provide exon-level or
most transcript-level expression information.

While the idea of next generation RNA-sequencing (RNA-seq) was suggested in
2002 (Consortium and RIKEN Genome Exploration Research Group Phase I &
II Team, 2002), the first applications to bulk tissue sequencing was in 2008 (Mor-
tazavi et al., 2008). RNA-seq is very similar in methodology to Sanger sequencing;
however, instead of being limited to the sequencing of a single fragment per cap-
illary gel, next generation sequencing (NGS) allows for massively parallel, high
throughput gene and transcript-level analysis that makes novel discoveries of both
transcripts, genes, and expression patterns possible. This is enabled by "sequencing
by synthesis" where cycles of additions of nucleotides and reagents can be imaged
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in realtime as the RNA strand is synthesized. Furthermore, because of its compara-
tively low cost and high throughput, NGS RNA-seq allows for the study of the highly
dynamic transcriptome. Thus, RNA-seq has become highly useful for studying both
the mechanisms of healthy organisms, disease, and drug impacts.

PacBio and Oxford Nanopore Technologies have now introduced and greatly ad-
vanced third generation sequencing (TGS) technologies. When these technologies
came on the market, their sequencing error rates were in the neighbourhood of
15-20% error rates (Sahlin, Baudeau, et al., 2023). Thus, while they provided help-
ful insights for transcript discovery when paired with short read RNA-seq, there
were significant difficulties in using them for building genome annotations and
the throughput was too low for transcript-level quantification. In recent years, the
sequencing error rate has dropped to sub 1% sequencing error (even to .01-.1%
sequencing error) and the throughput has increased massively, this has paved the
way for the first time to attempt a complete transcript annotation of genomes as
well as high resolution transcript-level quantification of expression and studying
transcript-level expression dynamics (Amarasinghe et al., 2020; Pardo-Palacios et
al., 2023; Reese et al., 2023). However, the current long-read tools for transcript
quantification and discovery have been found to both lack in accuracy and produce
exons in transcript models from data that are unjustified in the data used to create
them (Pardo-Palacios et al., 2023). Thus, in this thesis, we seek to address these
challenges and make new discoveries with TGS.

RNA transcription
RNA (ribonucleic acid) transcription is the process by which RNA molecules are
read out from the DNA (deoxyribonucleic acid) of the genome. There are three
stages of transcription: initiation, elongation, and termination. Initiation alone
has many components at play from transcription factors, promoters and inhibitors.
These include not only protein transcription factors, but also RNA transcription
factors, such as a whole collection of non-coding RNA which bind to RNA, DNA,
and protein molecules to regulate transcription. When binding occurs in such a
manner as to promote RNA polymerase binding to the specific DNA region called
the promoter, the synthesis of the RNA can commence. Second, the stage of
elongation begins where the RNA polymerase unzips the DNA double helix and
synthesizes the new RNA molecule from base nucleotides using one of the strands of
DNA as a template. Finally, as soon as the RNA polymerase reaches a termination
sequence in the DNA, the transcription of the new molecule of RNA is complete
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and released by the RNA polymerase.

Figure 1.1: RNA Polymerase synthesizes the full RNA sequence from the start
sequence to the termination sequence, including all exons and introns. Following
synthesis, the RNA can be alternatively spliced by the spliceosome into different
mature RNA. These mature RNA either are non-coding RNA or are translated by
the ribosome into amino acid sequences which fold into proteins.

RNA splicing
The spliceosome is a large protein and RNA complex which is made up of 5 small
nuclear ribonucleoproteins (snRNPs). These snRNPs bind to intronic regions and
remove them by folding them and bringing the exons together in a single splice event
or recursively removing long intronic regions. There are different sets of 5 snRNPs
that have different properties, leading them to bind at different 5’-end and 3’end
locations, thereby creating even more splicing diversity than is creating by different
removal and retention of exons. Furthermore, trans-splicing is an event where two
RNA are spliced and their exons joined from different genes, creating a chimeric
RNA. This event has been found to occur both between endogenous and exogenous
RNA as well as endogenous only RNA. Differential splicing and mis-splicing is
implicated in many functions, and mis-splicing has been found to be important in
the context of disease (Landrith et al., 2020).



5

Figure 1.2: a) graphical depiction of DNA recombination with crossover. A cut
occurs at the crossover between the pink and light blue at the two X’s followed
by DNA repair to join the light blue and light pink into the drawn positions. b)
graphical depiction of fusion of Gene A and Gene B into GeneA/B.

RNA to protein translation and functional RNA
The ribosome is then responsible for converting the RNA sequence into its cor-
responding protein by recruiting the amino acids and forming them into a amino
acid chain. This chain of amino acids then folds into a protein. Importantly, not
every mature RNA is translated into a protein. Some mature RNA remain as RNA
until they degrade and are highly functional in various mechanisms, including gene
regulation and chromosome structure.

DNA recombination
The diversity of eukaryotic organisms is due to a large degree on the genetic recombi-
nation that occurs during meiosis of germ cells. During recombination homologous
regions of DNA are broken and repaired joining regions of homologous DNA ei-
ther from other chromosomes where there are homologous regions, referred to as
interchromosomal recombination, or from paired chromosomes from the merged
germ cell, intrachromosomal recombination (Figure 1.2a). Recombinases are key
enzymes catalyzing recombination and DNA repair proteins, such as RAD51 and
DMC1, are essential for meiotic recombination. While recombination typically
occurs between homologous regions, it can also occur between DNA with no ho-
mology, leading to chromosomal translocation, which is sometimes cancer causing.

Immune cell receptor sequences
Adaptive immune response is a complex and amazing feat of biology where a specific
population of T-cell receptors (TCRs) respond to an immune stimulus creating a
TCR clonal expansion through genomic rearrangement. Prolific recombination
along with the transmembrane structure of protein heterodimers are responsible for



6

immune cell receptors incredible level of diversity. In the case of T-cell receptor
(TCR) diversity, there are 𝛼𝛽 and 𝛿𝛾 heterodimers. Though there are only four
genes TCR𝛼, TCR𝛽, TCR𝛿, and TCR𝛾, each of these genes are recombined in
many, many ways to form different TCR proteins through what is called Variable
(V) Diversity (D) Joining (J), V(D)J, recombination, where all four TCR genes have
variable and joining regions and TCR𝛽 and TCR𝛿 also have diversity regions. Due
to the many variable segments and the "random" recombination of these segments
that occurs, one TCR gene can produce many amino acid sequences to create many
different TCR protein complexes. These four TCR genes have been estimated
to produce millions of distinct molecules. Thus, in response to immune stimuli,
TCRs have the ability to randomly rearrange through clonal expansion into the
correct configuration to fight the pathogenic invaders and, as these TCRs are more
successful, they reproduce and fight the infection. Thus, examining TCR diversity,
TCR lineage, and the specific V(D)J recombinations provides key insights into the
immune system response. Historically, TCR sequences were not amenable to Sanger
sequencing (Robins et al., 2009), but we now can use NGS to study the immune cell
repertoire. Through study of the TCR reperoire and divergence between peripheral
and within cancers or diseased tissue, immune response to cancers and disease can
be monitored and may be useful biomarkers for monitoring and predicting outcomes
to treatment (Sims et al., 2016) (Page et al., 2016) (Postow et al., 2015) (Robert
et al., 2014).

DNA translocation
DNA translocation is simply the movement of a portion of one chromosome to a
different chromosome. This often occurs as the result of DNA double-stranded
breakage and a misrepair of this breakage. The repair is typically mediated by a
mechanism called non-homologous end joining, as the name implies the fidelity of
this does not rely on homologous regions and so error in the repair is much more
likely than other DNA repair mechanisms. The outcomes of translocation may
include gene fusions (Figure 1.2b), changes in gene regulation, and chromosome
structural imbalances (Gingeras, 2009).

Gene fusions and chimeric RNAs
Gene fusions, which are created by DNA translocations, were previously used as a
method for early cancer detection. However, we now know that gene fusions are not
always cancerous, but may sometimes be benign or even beneficial. Chimeric RNAs,
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which can sometimes be the result of a gene fusion and other times the result of
a non-canonical splicing event such as trans-splicing or cis-splicing, similarly have
been found to be functionally important in cellular mechanisms (Gingeras, 2009). To
date, there has not been a thorough effort to catalogue the profundity of gene fusions
and chimeric RNAs in the healthy context as well as in the diseased/atypical status
(Mertens et al., 2015). However, it is known that there are significant implications
of fusions creating pathogenic behaviors in cancer as well as fusions which give
rise to immunotherapies for cancers (Stransky et al., 2014) (Y. Wang et al., 2021).
Recently, high quality datasets have been created that are fit to fully delve into these
questions; however, the workflows for analysis of this data are lagging with CTAT-
LR Fusion being one of the only options, which relies on minimap2 for alignment
(Qin et al., 2025). Thus, here we present fusion gene detection software (fugi) and
an analysis of IGVF data with fugi, which instead uses kallisto as its base reducing
memory and computational demands for processing.

Biology obfuscated
The standard methods of RNA sequencing which utilized fragmented RNA molecules
and the analysis methods which focused completely on the gene-level analysis rather
than the transcript-level analysis has obscured at best and misdirected or blatantly
falsified at worse the true dynamics. For instance, a gene that is called as differen-
tially expressed when looking at gene-level counts between two samples will often
no longer be called as differentially expressed when considering the transcript-level
counts between the two samples. Further, we now know that transcripts within the
same gene may have significantly different functionality within the cell. Without
high depth and without long read RNA sequencing, transcript differential expres-
sion, transcript switching, gene fusions, and immune cell receptor information are
all tentative at best and simply wrong at worst.

transcript deBruijn Graphs (t-DBG)
transcript deBruijn Graphs (t-DBG) are colored de Bruijn graphs that are built from
the transcriptomes and colored by the corresponding transcripts. Each node of the
t-DBG is a k-mer, which is colored for each transcript that contains it. Contigs are
then formed by linear stretches of the t-DBG sharing the same coloring, giving us
that all k-mers within the contig share the same transcript compatibility set. Once
the t-DBG is constructed with all of its composing contigs, a hash table is created
mapping each k-mer to the contig and position within the contig which contains the
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k-mer. This is how kallisto’s index is constructed.

Alignment methods
Conventional alignment methods often employ seed, extend, and chaining with a
weighting metric to penalize and reward different properties of the chain, i.e. longer
chains with smaller gaps is a "better" alignment than a shorter chain with larger
gaps. The seed from an RNA-seq read, a subsequence of the read, can be extended
along the reference for as far as it matches in both directions. The regions that map
and extend within the reference then can be chained together into longer regions
of mapping with some gaps. These "chains" must then be ranked by a scoring or
weighting function to determine the best mapping.

Quantification approaches
Many quantification methods for short reads have adopted length normalization
approaches. However, for long read RNA-seq quantification, many quantification
methods simply perform a counting of best alignments. The usefulness of length
normalization in long reads is explored in Chapter 2 of this thesis.

1.3 Introduction
Overview of current tools and methods for long read sequence analysis, excerpt
with modifications from lr-kallisto (Chapter 2)
Advances in long-read RNA sequencing are changing the paradigm of transcript
discovery, annotation improvements, and detection of isoform switching, thanks to
reductions in cost and decreasing error rates as the fundamental technologies of
long read sequencing mature (Amarasinghe et al., 2020; Pardo-Palacios et al., 2023;
Reese et al., 2023). Specifically, long-read RNA-seq can now readily detect gene
fusion transcripts as well as their exact breakpoints, chimeric RNAs, and other ex-
pressed rearrangements in cancer (Sakamoto, Sereewattanawoot, and Suzuki, 2020),
and isoform switching of biological consequence across development and disease
(Chaoyang Wang et al., 2024; Penter et al., 2024). In translational genomics, pre-
cision medicine workflows are increasingly including gene and transcript ontology,
as we now know gene ontology is not sufficient due to the sometimes differential
functioning of transcripts form the same gene. These capabilities depend, in part,
on accurate annotation of the genomes and transcriptomes of human and model
organisms, though they remain incomplete (Zhang et al., 2020; Frankish et al.,
2021). Improvements in long-read sequencing now allow for much needed refine-
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ment of annotations for human and model organisms, coupled with rapid generation
of genomes and annotations for non-model organisms (Warburton and Sebra, 2023).
Importantly, while annotation is mainly facilitated by transcript discovery, quantifi-
cation of isoforms is critical for filtering and thresholding steps that are prerequisites
for resolving locus structure and quantifying their expression products (Cook et al.,
2019).

Figure 1.3: Motivation: Comparison of kallisto vs lr-kallisto on PacBio 1.4% error
simulation.

While recent increases in affordability and sequence quality are bringing full-isoform
quantification within reach, the long-read platforms are still rapidly changing and
less mature than short-read technologies (Pardo-Palacios et al., 2023). For example,
Oxford Nanopore Technology (ONT) sequencing has evolved over many versions
of chemistry in the library preparation kits, pores, and signal processing algorithms.
This has resulted in a range of ONT data with various error profiles and error distri-
butions within the sequences. Of the quantification tools that have been developed
so far (Tang et al., 2020; Tian et al., 2021; Wyman et al., 2019; Lienhard et al., 2023;
Chen et al., 2023; Jousheghani and Patro, 2024; Prjibelski et al., 2023; Yang et al.,
2017; Kabza et al., 2023), many are optimized for performance with a given gener-
ation of long-read data and are now antiquated, in both accuracy and efficiency, for
processing the low error rate ONT data currently being produced. Moreover, many
methods are based on the assumption of near uniform distribution of sequencing
error along reads; we found, as have others (H. Li, 2018), that this does not hold in
practice. Furthermore, some ONT sequencing biases have now been described, in-
cluding non-uniformly distributed sequencing error and sequence influenced error,
such as higher GC content and repeat regions increasing sequencing/base calling
error (Delahaye and Nicolas, 2021).
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Many approaches have been applied to RNA-seq quantification from classical
alignment approaches to pseudoalignment paired with likelihoods and expectation-
maximization (EM). Due to its speed, efficiency, and accuracy, pseudoalignment
with likelihoods and EM has been widely adopted for the mapping of short read
RNA-seq. However, for long-read RNA-seq, minimap2 has become the standard
for aligning long-reads. Minimap2 follows the standard genome alignment method-
ology of seed-chain-align (H. Li, 2018). It creates a reference index in the form
of hashing minimizers into keys for a reference hash table storing the list of ge-
nomic/transcriptomic locations of the minimizer. For each read, minimap2 uses
read minimizers as seeds matching these to the reference hash table and identifies
the optimal collinear chain(s) of matches. While this method is accurate and has
been developed to be highly efficient for the alignment strategy used, it is still time
and resource expensive with high memory storage demands.

lr-kallisto, building on the existing framework of kallisto and adapting the pseu-
doalignment and expectation-maximization algorithm for long-reads, gives an ac-
curate, fast, and low resource solution for mapping long-reads. The main technical
challenge of long-reads lies in the higher sequencing error rates, though others in-
clude the differing rates of substitutions, deletions, and insertions between long-read
sequencing technologies, sequencing length, repetitive regions, and concatemers.
To address the challenge of higher sequencing error, different methods, including
minimap2 (H. Li, 2018), uLTRA (Sahlin and Mäkinen, 2021), and STAR (Dobin et
al., 2013) have utilized various approaches to long-read alignment. Minimap2 uses
a small k-mer size of 14 and 15 for long-reads, while uLTRA employs a two-pass
chaining algorithm to improve alignment accuracy. Strobemers have been suggested
using fuzzy k-mers that allow error tolerance (Sahlin, 2021). In lr-kallisto, we, in-
stead, propose a long k-mer length and “chaining” pseudoalignment for addressing
the challenges of long-read alignment.

Pseudoalignment methods
Instead of directly performing global alignments, pseudoalignment uses indexing of
subsequences of length k, termed k-mers, of the reference to their matching sets of
compatible transcripts. This is further excelerated by using a hashing map where
the key is the k-mer and the map contains an integer corresponding to the transcript
compatibility set that the k-mer belongs to. To find the best alignment for each
read, we can then take the intersection of the transcript compatibility sets that the
k-mers within a read map to. Furthermore, there are several optimizations that are
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implemented within the pseudoalignment. For example, when a k-mer from a read
maps the match is extended along the read to identify the full length of the matching
region with the read to that same transcript compatibility set. Other optimizations
are also performed for high accuracy reads, which have been modified for good
performance on higher sequencing error and longer reads. To better understand how
this pseudoalignment works we give a brief description of the data structure that is
used as the index for the transcriptome, the transcript de Bruijn Graph.

Challenges for long read sequence analysis
Long read RNA sequencing has evolved over the past two decades from a very high
sequencing error rate of up to around 20% sequencing error to a sequencing error
rate of sub-1%. While this is an monumental improvement that allows for new
applications of long read sequencing, the sequencing error rate as well as the length
of the sequences themselves still present challenges to RNA and DNA mappers
and expression quantifiers both in the domain of accuracy and efficieny. Long read
RNA sequences create high memory usage demands in the current standard soft-
ware for alignment and quantification as well as long run-times. Furthermore, the
historically high error rates, which have recently significantly decreased while still
being about 100-fold higher than short read sequencing, have created challenges.
Here, we present two tools which successfully shorten run time and require similar
memory usage to the most efficient short read alignment and quantification tools,
while increasing mapping and quantification accuracy with lr-kallisto in Chapters
2, 3 (application to discovery), and 4 (application to single-nuclei data) and pro-
viding the first unbiased, selection free detection and annotation of immune cell
receptor sequences (Chapters 5 and 6, which also includes fusion gene detection
and applications).

Discoveries with long read sequences
Long read RNA sequencing provides the ability to confidently address biology
obfuscation that short reads created, including improving genome annotations, ac-
curately acquiring transcript-level expression and dynamics, accurately detecting
gene fusions, and characterizing immune cell receptor sequences. Each of these
individually bares significant potential contributions to the study of developmen-
tal and mechanisms of biology, cancers and other diseases, and drug development
paradigm. In particular, with
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• lr-kallisto:

– kb count with its pseudoalignment and quantification algorithms pro-
vide a tractable and accurate new approach for mapping and transcript-
level expression from TGS reads

– the discovery framework provides a simple, unbiased framework for
exploring transcript models

• fugi:

– fusion detection is directly useful for studying both nominally healthy
gene fusions and detecting possible cancer-related gene fusions

– the immune cell receptor sequence identification and annotation provide
an unbiased method for building expression databases of resident T-cells
in different states of healthy and diseased tissues and beginning to seive
through their possible healthy and unhealthy responses.
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C h a p t e r 2

LONG READ SEQUENCING TRANSCRIPTOME
QUANTIFICATION WITH lr-kallisto

Loving, Rebekah K et al. (2024). “Long-read sequencing transcriptome quantifica-
tion with lr-kallisto”. In: bioRxiv v1, pp. 2024–07.

2.1 Abstract
RNA abundance quantification has become routine and affordable thanks to high-
throughput “short-read” technologies that provide accurate molecule counts at the
gene level. Similarly accurate and affordable quantification of definitive full-length,
transcript isoforms has remained a stubborn challenge, despite its obvious biological
significance across a wide range of problems. “Long-read” sequencing platforms
now produce data-types that can, in principle, drive routine definitive isoform quan-
tification. However some particulars of contemporary long-read datatypes, together
with isoform complexity and genetic variation, present bioinformatic challenges. We
show here, using ONT data, that fast and accurate quantification of long-read data
is possible and that it is improved by exome capture. To perform quantifications
we developed lr-kallisto, which adapts the kallisto bulk and single-cell RNA-seq
quantification methods for long-read technologies.

2.2 Introduction
Advances in long-read RNA sequencing are facilitating transcript discovery, annota-
tion improvements, and detection of isoform switching, thanks to reductions in cost
and decreasing error rates as the technologies mature (Amarasinghe et al., 2020;
Pardo-Palacios et al., 2023; Reese et al., 2023). Specifically, long-read RNA-seq
can readily detect gene fusion transcripts and other expressed rearrangements in
cancer (Sakamoto, Sereewattanawoot, and Suzuki, 2020), and isoform switching of
biological consequence across development (Chaoyang Wang et al., 2024; Penter
et al., 2024). In translational genomics, precision medicine workflows are increas-
ingly including gene and transcript ontology. These capabilities depend, in part,
on accurate annotation of the genomes and transcriptomes of human and model
organisms, though they remain incomplete (Zhang et al., 2020; Frankish et al.,
2021). Improvements in long-read sequencing now allow for much needed refine-
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ment of annotations for human and model organisms, coupled with rapid generation
of genomes and annotations for non-model organisms (Warburton and Sebra, 2023).
Importantly, while annotation is mainly facilitated by transcript discovery, quantifi-
cation of isoforms is critical for filtering and thresholding steps that are prerequisites
for resolving locus structure and quantifying their expression products (Cook et al.,
2019).

Figure 2.1: Motivation: Comparison of kallisto vs lr-kallisto on PacBio 1.4% error
simulation.

While recent increases in affordability and sequence quality are bringing full-isoform
quantification within reach, the long-read platforms are still rapidly changing and
less mature than short-read technologies (Pardo-Palacios et al., 2023). For example,
Oxford Nanopore Technology (ONT) sequencing has evolved over many versions
of chemistry in the library preparation kits, pores, and signal processing algorithms.
This has resulted in a range of ONT data with various error profiles and error distri-
butions within the sequences. Of the quantification tools that have been developed
so far (Tang et al., 2020; Tian et al., 2021; Wyman et al., 2019; Lienhard et al.,
2023; Chen, Sim, et al., 2023; Jousheghani and Patro, 2024; Prjibelski et al., 2023;
Yang et al., 2017; Kabza et al., 2023), many are optimized for performance with
a given generation of long-read data and are now antiquated, in both accuracy and
efficiency, for processing the low error rate ONT data currently being produced.
Moreover, many methods are based on the assumption of near uniform distribu-
tion of sequencing error along reads; we found, as have others (H. Li, 2018), that
this does not hold in practice. Furthermore, some ONT sequencing biases have
now been described, including non-uniformly distributed sequencing error and se-
quence influenced error, such as higher GC content and repeat regions increasing
sequencing/base calling error (Delahaye and Nicolas, 2021).
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Figure 2.2: lr-kallisto demonstrates high concordance between Illumina and ONT.
(a) Experimental overview for comparison of exome capture vs. non-exome capture
LR-Split-seq libraries. (b) Kernel density estimations for read length distributions
by capture strategy. (c) Percentage of demultiplexed reads by number of exons
in each read between exome and non-exome capture. (d-g) Each point is a hexbin
representing the number of transcript in the bin with expression in log2(TPM) with x-
coordinate quantified from long reads and y-coordinate quantified from short reads.
Total number of points is the total number of annotated transcripts in the reference
transcriptome. CCC is a measure of how close the data is to 𝑥 = 𝑦, while Pearson
R and Spearman 𝜌 are measures of correlation between x and y. (d) lr-kallisto
pseudobulk quantifications of exome capture for the C57BL/6J sample. (e) lr-kallisto
pseudobulk quantifications of exome capture for the CAST/Eij sample. (f) lr-kallisto
pseudobulk quantifications of non-exome capture for the C57BL/6J sample. (g) lr-
kallisto pseudobulk quantifications of non-exome capture for the CAST/Eij sample.
Concordance Correlation Coefficient (CCC), Pearson, and Spearman correlations
are shown for each comparison. Created with https://BioRender.com

By contrast, several accurate and efficient tools have been developed for short read
RNA-seq preprocessing (Kaminow, Yunusov, and Dobin, 2021; Sullivan, Min, et
al., 2023; Melsted et al., 2021; Bray et al., 2016; Sarkar et al., 2020; Patro et al.,
2017). However, even with the recent significant reduction in the long-read RNA-seq
error rates to ∼0.5%, sequencing errors remain informatically problematic and are
comparatively much higher than the∼0.01% in short-read RNA-seq. This makes the
application of the fastest pseudoalignment methods (Bray et al., 2016; Patro et al.,
2017) to long-reads nontrivial (Figure 2.1). Our approach, which builds on kallisto
(Bray et al., 2016; Hjörleifsson et al., 2022; Sullivan, Min, et al., 2023; Melsted et al.,
2021) and which we term lr-kallisto, demonstrates the feasibility of pseudoalignment

https://BioRender.com
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for long-reads; we show via a series of results on both biological and simulated data
that lr-kallisto retains the efficiency of kallisto thanks to pseudoalignment, and is
accurate on long-read data. Furthermore, we show that lr-kallisto is robust to error
rates, making it suitable also for the analysis of previously published older long-read
sequencing data.

2.3 Results
To assess the accuracy of lr-kallisto with respect to data from the current Oxford
Nanopore Technologies platform (see Materials and Methods) we generated a deep
coverage, high fidelity dataset using long-read sequence and an Illumina short-read
sequence SPLiT-Seq nuclei of the left cortices of two mouse strains as part of the
IGVF consortium (Consortium, 2023). Specifically, four biological replicates (two
males and two females) were assayed from both C57BL6/J and CAST/EiJ mice, all
at ten weeks of age, with libraries generated with and without targeted exome capture
of all mouse protein coding exons using the Twist Biosciences Mouse exome panel of
215,000 probes (Figure 2.2a; see Methods). Thus our exome capture transcriptome
will be enriched for reads overlapping one or more coding exons in the same cell.
This platform and experimental design was chosen to produce starting data with a
highly relevant sequencing error profile for two very well characterized genomes
whose natural genetic variation between strains is similar to that found within
individual human genomes. This also sets the stage for using lr-kallisto to study
natural genetic variation.

We found no effective difference in read lengths with reads generated from exome
capture as opposed to non-exome capture libraries (Figure 2.2b), though the exome
capture library showed a smaller fraction of mono-exonic reads (Figure 2.2c). This
indicated that exome capture is an effective approach to increasing the transcriptome
complexity of libraries. The Illumina and ONT sequenced libraries displayed high
transcript abundance concordance after quantification with lr-kallisto (Figure 2.2d-
g), showing that lr-kallisto accurately quantifies transcripts from long-reads, as
well as demonstrating that deeply sequenced ONT libraries are suitable for high
accuracy quantification. The concordance correlation coefficients (CCC), which
measure how close the ONT and Illumina quantifications are to being identical,
were high for both the exome capture and non-exome capture libraries (0.95 and
0.96, respectively). Importantly, when comparing all long-reads that were subject
to exome capture versus those that were not, we observed a three-fold increase in the
percentage of spliced reads aligning (Figure 2.3). Thus, we find that exome capture
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reads help overcome the limitations of RNA sampling in the nucleus, including
expected reads from unspliced precursor transcripts. The effect, as others have
noted (Landrith et al., 2020) is to provide more informative reads to study full-
length, spliced transcript isoform usage at lower cost. Furthermore, lr-kallisto
outperforms Bambu (Chen, Sim, et al., 2023), IsoQuant (Prjibelski et al., 2023),
and Oarfish (Jousheghani and Patro, 2024) with respect to CCC, Pearson correlation,
and Spearman correlation (Figure 2.4). In particular, the lr-kallisto CCC is 0.95
versus 0.82 for the recently published Oarfish long-read quantification tool. We
found that lr-kallisto also outperforms Bambu (CCC = 0.86) and IsoQuant (CCC =
0.78) (Figure 2.4), which have previously been shown to outperform other long-read
quantification methods (Pardo-Palacios et al., 2023; Dong et al., 2023). In addition
to being more accurate than other methods, lr-kallisto is also more computationally
efficient (Figure 2.5). Note that the dramatic difference in time scales between
PacBio and ONT is due to the number of reads in the ONT datasets being much
higher, in general. We further benchmarked walltime and maximum resident set
size of bambu, IsoQuant, lr-kallisto, and oarfish on the exome capture data, showing
that lr-kallisto is 3-10x more memory efficient than oarfish, 18-50x more memory
efficent than bambu, and 15-46x more memory efficient than IsoQuant (Table 2.1).

Importantly, lr-kallisto can be used for both high-throughput bulk RNA-seq as well as
single-cell or single-nuclei RNA-seq datasets (Figure 2.6-2.8), and is not only faster
than other tools, but also benefits from the low-memory requirements of kallisto
(Sullivan, Min, et al., 2023; Hjörleifsson et al., 2022) (Table 2.1). For single-nuclei
RNA-seq processing, we used splitcode (Sullivan and Pachter, 2024) to extract
nuclei barcodes, umis, and reads from the raw ONT reads and then pseudoaligned
and quantified the reads with lr-kallisto (see Methods). 100% of barcodes from
the ONT reads that passed filtering were also found in Illumina sequenced reads
(Figure 2.6). Increased UMI depth per nucleus yields higher Spearman correlations,
indicating that with deeper sequencing depth, short and long read correlations will
only improve (Figure 2.6I). To assess the observed correlations between Nanopore
and Illumina, we evaluated random oligo vs 3’ priming in Illumina sequenced reads
and ONT sequenced reads separately, in the same fashion, finding lower correlations
(majority of nuclei having a Spearman 𝜌 between 0.10 and 0.30) than between ONT
sequenced reads and Illumina sequenced reads (Figure 2.6II-III). We expect that with
increased depth of ONT sequencing (i.e. a comparable number of error corrected
barcodes) we would achieve a near 100% overlap of barcodes.
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Figure 2.3: Comparison of the percent of reads mapping as spliced vs. unspliced
reads with and without exome capture.

Figure 2.4: Quantifications of the C57BL/6J exome capture samples with Bambu,
IsoQuant, and Oarfish.

We also examined the concordance between the exome capture and non-exome
capture in both long and short reads, and found it to be only CCC = 0.88, highlighting
the distortion resulting from the coupling of exome capture with a mix of 3’-end
and randomly primed read sequencing that is characteristic of Parse (Figure 2.7).
We further explored the difference in 3’-end and randomly primed read sequencing
by looking at the mean transcript-level expression of 3’-end (polyT) reads in a
cell in ONT vs Illumina, in randomly primed (randO) reads in a cell in ONT vs
Illumina, and when reads from the two priming methods are merged for a cell.
We found that randomly primed reads in a cell exhibit greater correlation to the
corresponding randomly primed reads in Illumina in the highest mean expressed
100 transcripts in ONT than with 3’-end reads in a cell exhibit (Figure 2.8). We
found that the expression of long non-coding RNAs (lnc-RNAs) is significantly
different between the exome capture and non-exome capture with 8,392 lnc-RNAs
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Figure 2.5: Runtime performance comparisons for lr-kallisto, IsoQuant, Bambu,
and Oarfish.

with non-exome capture expression greater than 150% of exome capture expression,
which combined with the difference in 3’-end and randomly primed reads highlights
the bias of 3’-end reads, neglecting the non-trivial existence of functional internally
priming transcripts.

The lr-kallisto quantification results are corroborated when comparing its perfor-
mance to other tools on previously published data that is less deeply sequenced. In a
comparison of Illumina and ONT on the HCT116 cancer cell line dataset generated
by SG-NEx ( (Chen, Davidson, et al., 2021)), we found that lr-kallisto could accu-
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Tool Max RSS hh:mm:ss % Aligned % Unique Total # of Reads
lr-kallisto
(d-list,
pseudobam)

1.8 Gb 1:30:19 56.0% 19.6% 105,591,654

lr-kallisto
(no d-list,
pseudobam)

5.3 Gb 2:50:46 75.7% 28.4% 105,591,654

lr-kallisto
quant-only
(d-list)

1.8 Gb 0:02:03 — — 105,591,654

lr-kallisto
quant-only (no
d-list)

5.3 Gb 0:01:47 — — 105,591,654

IsoQuant (post
minimap2)

≥84.3 Gb 8:59:12 — — 105,591,654

bambu (post
minimap2)

95.1 Gb 3:37:11 — — 105,591,654

minimap2+oarfish 17.9 Gb 5:09:36 — — 105,591,654
minimap2
(transcriptome)

5.3 Gb 4:29:15 90.3% 17.1% 105,591,654

oarfish (post
minimap2)

17.9 Gb 0:40:21 — — 105,591,654

kallisto
(Illumina)

— — 64.2% 15.7% 158,034,313

kallisto
(Illumina, nac)

— — 92.4% 29.1% 158,034,313

Table 2.1: Comparison of tools on memory usage, runtime, alignment rate, and
uniquely aligned reads.

rately quantify isoform level expression, in performance comparisons constituting
two replicates of direct cDNA and direct RNA (Figure 2.9). The CCC performance
of lr-kallisto exceeded that of Oarfish, evaluated on this data in ( (Jousheghani and
Patro, 2024)). Spearman correlations were lower overall in this dataset, indicating
poor data quality, perhaps due to the lower coverage and higher sequencing error
rate. We also compared lr-kallisto’s performance on direct RNA to direct cDNA
(Figure 2.10). We also found better performance with direct cDNA versus direct
dRNA in replicate 4, and hypothesize that this is likely due to ∼4 times the depth of
coverage for replicate 4 in direct cDNA (7,656,893 reads) vs the direct RNA repli-
cate 4 (1,896,643 reads), whereas replicate 3 direct cDNA (873,077 reads) vs direct
RNA (1,185,183 reads) does not have the increased depth of coverage. We also
compared lr-kallisto to Bambu, IsoQuant, and Oarfish on a previously sequenced
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Figure 2.6: Barcode calling analysis and single-nuclei quantifications between Illu-
mina vs ONT. I. i. Venn diagram of barcodes in ONT and Illumina. ii. Number
of ONT UMI/nucleus vs Spearman correlation between ONT and Illumina single-
nucleus gene level counts. II. i. Venn diagram of barcodes in Illumina random oligo
(randO) and Illumina poly dT. ii. Number of randO UMI/nucleus vs Spearman
correlation between Illumina randO and Illumina polydT single-nucleus gene level
counts. III. i. Venn diagram of barcodes in ONT random oligo (randO) and ONT
poly dT. ii. Number of randO UMI/nucleus vs Spearman correlation between ONT
randO and ONT polydT single-nucleus gene level counts.

mouse cortex PacBio dataset (Figure 2.11). On this dataset ( (Leung et al., 2021;
Castanho et al., 2020)), which has an error rate of 12.4% (see Methods) and a differ-
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Figure 2.7: Contrast of non-exome vs exome capture in Illumina and ONT.

Figure 2.8: Contrast of priming methods in exome capture in Illumina vs. ONT.

ent error profile with errors more uniformly distributed along transcripts, we found
similar performance between programs with lr-kallisto slightly outperforming other
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tools in CCC. Further, since we use kallisto for the quantification of the short read
Illumina data across these benchmarks, we highlight that kallisto, salmon, and other
short read quantification tools are highly concordant. We demonstrate this with
this dataset ( (Leung et al., 2021; Castanho et al., 2020)) as we are able to perform
analogous mapping and quantification with kallisto and salmon on the paired-end
Illumina data. Here we observe a slightly higher CCC (.822 vs .81, .797 vs .78,
.801 vs .80) in lr-kallisto, IsoQuant, and bambu, respectively and a slightly lower
CCC (.806 vs .81) in Oarfish when comparing PacBio transcript expressions to Il-
lumina transcript expressions with kallisto vs with salmon (Figure 2.11). However,
with Parse single-nuclei short read data, there is not a truly analogous processing
in salmon for the pseudoalignment and quantification. Since standard single-end
bulk data significantly differs from Parse single-nuclei short read data, as it uses
a combination of polyA priming and random hexamer priming. Therefore, with
kallisto, we pseudobulked the counts without length normalization, which would
not be appropriate for this priming chemistry, yielding comparable quantifications
to the single-nuclei quantifications as this strategy avoids adding methodological
bias in alignment, counting, and disambiguating multi-mapping reads.

We benchmarked lr-kallisto’s stability and robustness compared to other long-
read quantification tools across species, platforms, and protocols, by evaluating
lr-kallisto’s performance, along with Bambu, IsoQuant, and Oarfish using the LR-
GASP’s challenge 2 benchmark (Pardo-Palacios et al., 2023) of long-read quan-
tification tools (Figure 2.12a-b). For our benchmarking, we chose to focus on the
Mouse ES data, as it had lower sequencing error rates across 3 out of the 4 proto-
col/platform combinations, thereby serving as the closer proxy for current long-read
data. Further, we also used LRGASP Human WTC11 to enable an analysis of
lr-kallisto’s relative performance on SIRV Set 4, which provides a benchmarking of
ability to quantify complex and difficult transcript sets. The SIRV-Set 4 synthetic
transcripts provide a useful control. This set includes the SIRV isoforms, the long
SIRV isoforms, and the External RNA Controls Consortium (ERCC) transcripts.
The SIRV-Set 4 isoforms include seven genes (SIRV1 through SIRV7) comprised of
69 fabricated human isoforms. SIRV1 through SIRV7 transcript isoforms were con-
structed to include mono-exon transcripts, single- and multi-exon skipping events,
alternative start/stop sites, as well as antisense transcripts. ERCC transcripts range
from 250 to 2000 bp in length, mimicking natural eukaryotic mRNAs. The long
SIRVs (SIRV10 through SIRV12) includes 15 RNA transcripts of 4000 to 12,000
bp. All together this synthetic control provides a helpful benchmark across tools
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Figure 2.9: Performance of lr-kallisto on ONT sequenced direct cDNA libraries
from the HCT116 cell line, where panel A is with Oarfish v0.3.1 and panel B is
with Oarfish v0.5.1.

accuracy and sensitivity across transcript complexity within PacBio and ONT se-
quencing protocols and platforms. We found that Bambu, IsoQuant, lr-kallisto, and
Oarfish all achieved reasonably high CCCs between replicates, both with respect
to abundance estimates (Figure 2.12a), and variability between isoforms (Figure
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Figure 2.10: Comparison of lr-kallisto on ONT sequenced HCT116 cell line libraries
generated with directRNA and direct cDNA between two replicates in each.

2.12b). With SIRV Set 4 analysis, we show both lr-kallisto and Oarfish lag in
median relative difference (MRD) and outstrip across all platforms and protocols in
Spearman Correlation Coefficient (SCC) compared to IsoQuant and Bambu, while
for Normalized Root Mean Squared Error (NRMSE) lr-kallisto and Oarfish out-
perform IsoQuant and Bambu in PacBio, while underperforming IsoQuant in ONT
(Figure 2.12c). Moreover, lr-kallisto and Oarfish are both high performing in the
metrics of percent expressed transcripts (PET) across all three categories of tran-
script sets (SIRV, SIRV long transcripts, and ERCC), indicating higher detection
accuracy even at low expression rates and for complex and long transcripts (Figure
2.12d). Furthermore, in a sequencing error free simulation with uniform expression
of SIRV Set 4, we found that lr-kallisto detected all isoforms (with the exception
of SIRV311, one of the mono-exonic isoforms, while maintaining detection of the
other three mono-exonic isoforms: SIRV206, SIRV512, SIRV618) and was per-
fectly accurate in quantifying 88% of SIRV Set 4 isoforms. For completeness, we
also compared the performance of lr-kallisto to Bambu, IsoQuant, Oarfish using the
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Figure 2.11: Evaluation of Bambu, IsoQuant, lr-kallisto, and Oarfish on mouse
cortex high-depth PacBio data.

metrics of the LRGASP paper (Figure 2.13). Resolution Entropy (RE) is a measure
of how well a tool uniformly quantifies at different expression levels. Irreproducibil-
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ity Measure (IM) is a measure of how reproducibly the tool quantifies expression
across replicates, i.e., whether the coefficient of variation between replicates is low.
Consistency Measure (CM) is a measure of how consistent the tool is at detecting
expressed transcripts, assuming that transcripts should be expressed simultaneously
across replicates, and ACVC is the Area under the Coefficient of Variation Curve,
which again assumes that for a given mean expression level across replicates the
coefficient of variation should be low. We found that lr-kallisto performs as well as
other programs on these stability and robustness measures. The variability that we
found in quantifications of replicates can be explained by variable depth of sequenc-
ing between the replicates and between the protocols and platforms (Pardo-Palacios
et al., 2023). The notable difference in ONT cDNA is due in part to a sequencing
error rate of ∼12%, which is characteristic of data obtained in earlier ONT platform
versions (Goodwin et al., 2015).

We assessed the performance of lr-kallisto using simulated data across a range of
sequencing error profiles, and compared with results on the same simulated data
for five other widely used or recently published programs. We used simulations
generated by (Prjibelski et al., 2023) who used the IsoSeqSim simulator (see Data
and Code Availability) to generate PacBio reads (6 million Mus musculus reads
with ∼1.6% sequencing error rate), and NanoSim (Yang et al., 2017) to generate
ONT.R10.4 reads (30 million Mus musculus reads with ∼2.8% sequencing error
rate). The PacBio IsoSeqSim Simulation (Figure 2.14a) demonstrates lr-kallisto’s
high accuracy compared to the currently leading benchmarked long-read quantifica-
tion tools Bambu, IsoQuant, and Oarfish, with lr-kallisto achieving a CCC of 0.99,
vs 0.90, 0.91, and 0.99, respectively (Pardo-Palacios et al., 2023; Dong et al., 2023).
Furthermore, in the ONT NanoSim R10.4 Simulation (Figure 2.14), lr-kallisto ties
for the highest CCC of 0.97, vs 0.88 and 0.91, respectively.

We performed additional comparative evaluations of Bambu, IsoQuant, lr-kallisto,
and Oarfish on a more extensive set of simulations to understand the strengths and
weaknesses these tools when confronted with different sequencing error challenges
(Figure 2.15). We found that lr-kallisto and IsoQuant were both robust to indel
and substitution profiles simulated to match PacBio sequencing data and uniformly
distributed. IsoQuant was also robust to uniformly distributed sequencing errors
with indel and substitution profiles matched to ONT, whereas lr-kallisto performance
degraded at higher ONT error rates in this simulation (Figure 2.15a). In particular,
this highlights lr-kallisto’s sensitivity to the unrealistic combination of uniform
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Figure 2.12: Comparison of Bambu, IsoQuant, lr-kallisto, and Oarfish on LRGASP
data. (a) abundance estimates as measured by CCC of expression and (b) variability
between isoforms as measured by CCC of isoform CV2, with 90% CI to measure
consistency and reproducibility among replicates between the tools.

sequencing error distribution and higher rate of insertion errors in ONT versus
PacBio.
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Figure 2.13: Evaluation of lr-kallisto, Bambu, IsoQuant and Oarfish according to
LRGASP challenge 2 metrics in Mouse ES cells.

In another ONT simulation generated with NanoSim to produce reads with an 11.2%
error rate (see Data and Code Availability), lr-kallisto achieved a CCC of 0.31 on
all transcripts, outperforming IsoQuant (CCC = 0.28), and underperforming Bambu
(CCC = 0.51), and Oarfish (CCC = 0.55) (Figure 2.15b). This was also the case
at a higher error rate (15.2%), with lr-kallisto continuing to outperform IsoQuant
and underperform Bambu and Oarfish (Bambu CCC = 0.53, IsoQuant CCC = 0.32,
lr-kallisto CCC = 0.34, Oarfish CCC = 0.58) (Figure 2.15c).

The performance of lr-kallisto benefits from quantification with respect to a de
Bruijn graph (Hjörleifsson et al., 2022). We tested whether and to what extent
changing the k-mer length default in lr-kallisto to 63 bp long vs 31 bp long in the
reference transcriptome de Bruijn graph creates a less connected and less complex
structure (Figure 2.16). In this example, of the Pax2 gene, we find that a change
of k-mer length simplifies the T-DBG with the reduction of a single node and 2
edges. However, when we scale this out to just the first 1000 transcripts listed in
the LRGASP basic gencode human annotation, we found a reduction from 3,698
nodes using the 31 k-mer T-DBG to 2,708 nodes using the 63 k-mer T-DBG and
4,687 edges to 3,238 edges, respectively. Furthermore, the largest connected T-
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Figure 2.14: lr-kallisto is highly accurate in simulations with error up to ∼3%.
A comparison of performance of Bambu, IsoQuant, lr-kallisto, and Oarfish on
PacBio (top) and ONT (bottom) simulations with Concordance Correlation Coeffi-
cient (CCC), Normalized Root Mean Squared Error, and Pearson’s and Spearman’s
correlation coefficients reported.

DBG graph component in the 63 k-mer T-DBG is composed of 12.59% of the bp
vs 65.90% in the 31 k-mer T-DBG. We believe that the selection of higher quality,
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Figure 2.15: Extended benchmarks on simulations. a) Benchmarks of Bambu,
IsoQuant, lr-kallisto, and Oarfish on simulations with a range of error parameters.
b) Performance on all annotated transcripts at ONT 11.2% sequencing error rate. c)
Performance on all annotated transcripts at ONT 15.2% sequencing error rate.
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Figure 2.16: lr-kallisto transcript de Bruijn Graph bandage plots.

low sequencing error regions from the reads by the 63 k-mer T-DBG, combined
increasing the probability of uniquely mapping, or at the very least mapping to a
transcript compatibility class with less transcripts, is producing more accurate and
more efficient pseudoalignment.

2.4 Discussion
With Oxford Nanopore sequencing becoming more accessible due to low entry costs
and reduced sequencing error rate (Bloomfield et al., 2024), long-read sequencing
is advancing our ability to decipher the complexity of transcriptomes. Increasing
throughput now makes it possible to not only perform discovery with long-read se-
quencing, but also to accurately quantify transcript abundances, and we have shown
that results comparable to short-read sequencing can be achieved at reasonable cost
with exome capture, and with high accuracy quantification using lr-kallisto. Exome
capture will be especially helpful for filtering out intronic reads that would be other-
wise sequenced in (single-)nucleus data, as nuclei are replete with intron lariats and
partially processed transcripts. lr-kallisto is highly accurate in producing quantifi-
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cation results on data with less than 10% sequencing error rate comparable to those
with short-read sequencing. This makes lr-kallisto immediately useful for current
long-read sequencing transcriptome projects, although performance will not be as
good on legacy higher error long-read sequencing datasets. While even standard
kallisto is now useful and competitive with current long read tools for quantification
on the high accuracy (>99.5%) long reads, demonstrating the suitability of pseu-
doalignment to long reads, lr-kallisto eclipses kallisto in accuracy performance and
alignment rate.

Furthermore, as described in Methods, lr-kallisto is useful for long-read sequenc-
ing of single-cell and single-nucleus RNA-seq libraries when coupled with tools
designed for barcode discovery (Sullivan and Pachter, 2024; Cheng et al., 2024).
Furthermore, lr-kallisto is compatible with translated pseudoalignment, which can
be useful for detection of viruses (Luebbert et al., 2023).

Finally, in this work we have focused on quantification. However, lr-kallisto can
also be used, in principle, for transcript discovery. In particular, reads that do not
pseudoalign with lr-kallisto can be assembled to construct contigs from unanno-
tated, or incompletely annotated, transcripts. While we have not completed our
investigation and benchmarking of this approach, the pseudoalignment algorithm
and distinguishing flanking k-mers combine to allow filtering of unmapped reads
that do not fit within the annotated model set of transcripts.

2.5 Methods
lr-kallisto
Many approaches have been applied to RNA-seq quantification from classical
alignment approaches to pseudoalignment paired with likelihoods and expectation-
maximization (EM). Due to its speed, efficiency, and accuracy, pseudoalignment
with likelihoods and EM has been widely adopted for the mapping of short read
RNA-seq. However, for long-read RNA-seq, minimap2 has become the standard
for aligning long-reads. Minimap2 follows the standard genome alignment method-
ology of seed-chain-align (H. Li, 2018). It creates a reference index in the form
of hashing minimizers into keys for a reference hash table storing the list of ge-
nomic/transcriptomic locations of the minimizer. For each read, minimap2 uses
read minimizers as seeds matching these to the reference hash table and identifies
the optimal collinear chain(s) of matches. While this method is accurate and has
been developed to be highly efficient for the alignment strategy used, it is still time
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and resource expensive with high memory storage demands.

lr-kallisto, building on the existing framework of kallisto and adapting the pseu-
doalignment and expectation-maximization algorithm for long-reads, gives an ac-
curate, fast, and low resource solution for mapping long-reads (Figure 2.17). The
main technical challenge of long-reads lies in the higher sequencing error rates,
though others include the differing rates of substitutions, deletions, and insertions
between long-read sequencing technologies, sequencing length, repetitive regions,
and concatemers. To address the challenge of higher sequencing error, different
methods, including minimap2 (H. Li, 2018), uLTRA (Sahlin and Mäkinen, 2021),
and STAR (Dobin et al., 2013) have utilized various approaches to long-read align-
ment. Minimap2 uses a small k-mer size of 14 and 15 for long-reads, while uLTRA
employs a two-pass chaining algorithm to improve alignment accuracy. Strobemers
have been suggested using fuzzy k-mers that allow error tolerance (Sahlin, 2021). In
lr-kallisto, we, instead, propose a long k-mer length and “chaining” pseudoalignment
for addressing the challenges of long-read alignment.

We must address two points: first, that sequencing length and long-read sequencing
error rates require a different algorithmic approach to pseudoalignment and, second,
the handling of length bias which differs from that of short reads. To address the
first, we propose the following algorithm for pseudoalignment and the change of
index k-mer length to 63, which we discuss after describing the algorithm. Both
of these changes take into consideration the sequencing error rate and repetitive
regions across genes. While this idea is not a direct implementation of the chaining
described in (H. Li, 2018), it can be understood in a similar way. Within kallisto’s
pseudoalignment, a read’s transcript compatibility class is determined. For short
reads, this is accomplished with a strategy that increases efficiency by checking the
transcript compatibility class for the first, middle, and end of k-mers in the read if
the distance to the end of the contig is longer than the read or the first, middle, and
end k-mers of the read within the region that is consistent with the contig in the
transcriptome de Bruijn graph (T-DBG) (to ensure that the read is consistent with
the T-DBG junctions) and then proceeds to the next contig in the read. If they are
all the same, these are the only k-mers checked, while if they differ a more iterative
approach is taken. We then take the intersection of these transcript compatibility
classes. Whereas, in lr-kallisto, if the intersection of transcript compatibility classes
(TCCs) a read maps to is empty, we instead take the most often occurring TCC.
Moreover, if at least one k-mer maps uniquely to a transcript, then we take the most
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Figure 2.17: Overview of biosample to lr-kallisto workflow for long read RNA se-
quencing. To study the complexity of life, we can study the genome, transcriptome,
and proteome. Through long read sequencing, we can achieve greater insight into
both the workings of the genome and the proteome at the individual level and even
the functionality of RNA as a molecule. Therefore, improving our ability to analyze
long read RNA sequences increases our understanding of biology itself. 1. RNA is
extracted from cells and tissues in either single-cell, single-nuclei, or bulk prepara-
tion of RNA creating an RNA sequencing library. 2. The RNA sequencing library is
then sequenced with either PacBio or Oxford Nanopore Sequencing (Nanopore illus-
tration shown). 3. The raw electrical signal from the nanopore or the raw fluorescent
signal from PacBio is then basecalled to create the raw RNA sequenced reads. 4.
The raw RNA sequenced reads are input to lr-kallisto outputting both transcrip-
tome quantification of the tissue or single- cells or nuclei as well as the pseudobam
alignments for the reads. 5. The analysis and visualization of lr-kallisto’s outputs:
single-cell or bulk transcript and gene count matrices and pseudobam (pseudoalign-
ments are output in bam format). Created with https://BioRender.com

often occurring TCC among mapping k-mers that are uniquely mapping to a single
transcript. If there are two uniquely mapping regions of the same length within a read
to two distinct transcripts, then the read is mapped to the TCC of the first occurring
transript in the transcriptome. In the case of the intersection, the intersection can
directly be interpreted as the transcript or set of transcripts that the read has the
longest combined stretches of compatibility with, since the intersection takes the
subset of transcripts that coexist between all k-mers with compatible transcripts.
However, the intersection may be empty in the case of a variant or error creating
an isolated stretch of compatibility with a disjoint transcript compatibility class.
Furthermore, in the case that the intersection is empty and the algorithm switches to
using the mode of transcript compatibility classes with threshold one, the calculated
mode across all transcript compatibility classes that k-mers in the read mapped to is

https://BioRender.com
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Figure 2.18: Overview of lr-kallisto pseudoalignment algorithm. The input consists
of a reference transcriptome and reads from a long read RNA sequencing exper-
iment. (A) An example of two reads (blue and green with unmapping regions
(black) and erroneously mapped regions (purple)) and three (pink, blue, and green)
overlapping transcripts. (B) An index is constructed by creating the transcriptome
de Bruijn Graph (T-DBG) where nodes are k-mers, each transcript corresponds to
a colored path as shown and the path cover of the transcriptome induces transcript
compatibility class (TCC) for each k-mer. (C) Conceptually, the k-mers of a read
are hashed (black nodes) to find the TCC of a read. (D) The TCC of the read is
determined by taking the intersection of the transcript compatibility classes of its
constituent k-mers, if it exists; otherwise, the mode of the TCCs of the k-mers of
the read is taken. Created with https://BioRender.com

the transcript or set of transcripts that again is the “longest chain” of compatibility.

The change of k-mer length to 63 was based on empirical evidence showing improved

https://BioRender.com
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performance over the standard k-mer length of 31 for short reads. We found that
across long-read technologies and simulations there was an improvement in metrics
of Normalized Root Mean Squared Error and Spearman’s correlation between lr-
kallisto quantifications and the simulation’s ground truth (Figure 2.14-2.15). In
real data (both PacBio and ONT), we observed an increased rate of alignment of
reads with a longer k-mer length for PacBio sequencing error rate less than 2%
and for ONT sequencing error rate less than 10%. Moreover, the longer k-mer
length improves the quality of mapping k-mers making it more probable that the
read originates from the transcript compatibility class it maps to. As k increases, the
number of distinct k-mers also increases, but the number of contigs decreases. This
implies that the number of transcripts in a transcript compatibility class decreases
on average with increasing length of k. Overall, the complexity of the T-DBG
decreases (Figure 2.16), increasing the probability of the read originating from the
transcript compatibility class it is mapping to. Furthermore, this also increases
the probability of the intersection of equivalence classes being nonempty, which
increases the overall mapping rate.

To address the second point, we adapted the effective length, 𝑙𝑒, within kallisto to
be transcript specific, i.e., defining the effective transcript length, 𝑙𝑒𝑡 for a transcript
𝑡 to be:

𝑙𝑒𝑡 =

∑
𝑙𝑟𝑡∑
1𝑟𝑡

− 𝑘

where 𝑘 is 𝑘-mer length, 𝑙𝑟𝑡 is the length of a read aligning to transcript 𝑡, and 1𝑟𝑡 is
the boolean function that returns 1 if a read aligns to 𝑡 and 0, otherwise.

We use the first 1 million aligning reads to compute these effective, transcript-specific
lengths. The choice of 1 million reads is to be able to compute this expression for
every transcript expressed in the data, which is achieved with unordered data and
transriptomes of the size of humans and mice. We found that length normalization
was effective at low sequencing error rates (< 2%) when sequencing error is uniform,
providing a slight improvement in results, and was detrimental to performance at
high sequencing error rates and in cases where sequencing error is non-uniform.

Finally, we implemented a change to the expectation-maximization (EM) algorithm
for long-reads. In the default option, we initialize transcript abundances to a uniform
distribution on the multi-mapping counts with the unique counts for each transcript
added to the initialization of a transcript abundance. In the long-read option, we



42

first apportion multi-mapping reads using the EM algorithm starting with a uniform
distribution of multi-mapping reads among those mapped to transcripts, and then
post EM we add the uniquely mapping counts to each transcript. We found that the
latter option works better for the PacBio InDel profile with uniform error in reads in
simulations, but that it has reduced performance with real PacBio and ONT reads
and simulations based on real data such as with NanoSim’s simulations based on
profiling of real data.

Mice and Tissue Collection
Mice were housed at the UC Irvine Transgenic Mouse Facility (TMF) in a temperature-
controlled pathogen-free room under 12-hour light/dark cycles (lights on at 07:00
hr, off at 19:00 hr). The animal experiments were reviewed and approved by the
Institutional Animal Care and Use Committee (IACUC), protocol AUP-21-106,
“Mouse genomic variation at single cell resolution”. Left cerebral cortex tissues of
10-week-old mice were harvested from 4 C57BL/6J and 4 CAST/EiJ (2 males and
2 females per genotype) between the hours of 09:00 to 13:00. Tissues were stored
in 1 mL Bambanker media in cryotubes kept at -80°C until nuclei isolation.

Purification of Nuclei from Mouse Tissues
Tissues were thawed in Bambanker media on ice until the tissue could be extracted
and lysed using Nuclei Extraction Buffer (Miltenyi Biotec cat. #130-128-024).
Using forceps, tissues were transferred to a chilled gentle MACS C Tube (Miltenyi
Biotec cat. #130-093-237) with 2 mL Nuclei Extraction Buffer supplemented with
0.2 U/µL RNase Inhibitor (New England Biolabs cat. M0314L). Nuclei were
dissociated from whole tissue using a gentleMACS Octo Dissociator (Miltenyi
Biotec cat. #130-095-937). The resulting suspension was filtered through a 70 µm
MACS SmartStrainer then a 30 µm strainer (Miltenyi Biotec cat. #130-110-916
and #130-098-458, respectively). Nuclei were resuspended in 3 mL PBS + 7.5%
BSA (Life Technologies cat. #15260037) and 0.2 U/µL RNase inhibitor for manual
counting using a hemocytometer and DAPI stain (Thermo Fisher cat. #R37606).

Nuclei Fixation
After counting, 4 million nuclei per sample were fixed using Parse Biosciences’
Nuclei Fixation Kit v2 (cat. #ECF2003), following the manufacturer’s protocol.
Briefly, nuclei were incubated in fixation solution for 10 minutes on ice, followed
by permeabilization for 3 minutes on ice. The reaction was quenched, then nuclei
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were centrifuged and resuspended in 300 µL Nuclei Buffer (Parse Biosciences cat.
#ECF2003) for a final count. DMSO (Parse Biosciences cat. #ECF2003) was added
before freezing fixed nuclei at -80°C in a Mr. Frosty (Sigma-Aldrich cat. #635639).

Split-Seq Experimental Protocol
Nuclei were barcoded using Parse Biosciences’ WT Kit v2 (cat. #ECW02030),
following the manufacturer’s protocol. Fixed, frozen nuclei were thawed in a 37°C
water bath and added to the Round 1 reverse transcription barcoding plate at 19,500
nuclei per well, with alternating columns in rows A and C containing C57BL/6J
males and females and rows B and D containing CAST/EiJ males and females. In
situ reverse transcription (RT) and annealing of barcode 1 + linker was performed
using a thermocycler (Bio-Rad T100, cat. #1861096). After RT, nuclei were
pooled and distributed in 96 wells of the Round 2 ligation barcoding plate for the
in situ barcode 2 + linker ligation. After Round 2 ligation, nuclei were pooled and
redistributed into 96 wells of the Round 3 ligation barcoding plate for the in situ
barcode 3 + UMI + Illumina adapter ligation. Finally, nuclei were counted using a
hemocytometer and distributed into 8 subpools of 13,000 nuclei. The nuclei in each
subpool were lysed and cDNA was purified using AMPure XP beads (Beckman
Coulter cat. #A63881), then the barcoded cDNA underwent template switching and
amplification. Importantly, for two subpools (“13G” and “13H”) we increased the
number of PCR cycles to 13 cycles from 12, and increased the extension time from
3 minutes to 13 minutes in order to increase the yield of full-length barcoded cDNA.
cDNA from one of the subpools (“13G”) also received exome capture treatment
using Parse Biosciences’ Custom Gene Capture Kit (cat. #GCE1001) and a Mouse
Exome Panel (Twist Bioscience, cat. #102036). 1 µg of cDNA was hybridized
with a blocker solution to block repetitive sequences, then hybridized with the
exome panel overnight. Captured molecules were purified using Streptavidin beads,
then amplified again using the cDNA amplification reagents from the WT Kit v2
(Parse Biosciences cat. #ECW02030). The cDNA for all 8 subpools were cleaned
using AMPure XP beads and quality checked using an Agilent Bioanalyzer before
proceeding to Illumina and Nanopore library preparation. All 8 subpools were
fragmented, size-selected using AMPure XP beads, and Illumina adapters were
ligated. The cDNA fragments were cleaned again using beads and amplified,
adding the fourth barcode and P5/P7 adapters, followed by size selection and quality
checking with a Bioanalyzer. Libraries were sequenced with two runs of the Illumina
NextSeq 2000 sequencer with P3 200 cycles kits (1.1 billion reads) and paired-end
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run configuration 140/86/6/0. Libraries with 5% PhiX spike-in were loaded at 1000
pM for one run and 1100 pM for the second run and sequenced to an average depth
of 301 million reads per library.

Long-Read-Split-Seq Experimental Protocol and Base Calling
Nuclei were barcoded and cDNA was purified as specified in the previous section.
LR-Split-seq libraries were generated using an input of 200 fmol from the amplified,
barcoded Split-seq cDNA before fragmentation (section 2 of the Split-seq protocol).
Libraries were built using Oxford Nanopore Technologies Ligation Sequencing Kit
(SQK-LSK114) and NEBNext Companion Module for Oxford Nanopore Technolo-
gies Ligation Sequencing (E7180L). The Short Fragment Buffer (SFB) from the
Ligation Sequencing Kit (SQK-LSK114) during the second wash step. Libraries
were loaded on R10.4.1 flowcells (FLO-PRO114M, FLO-MIN114) with an input of
20 fmol and 12 fmol, respectively. Sequencing was performed on the GridION and
PromethION 2 Solo instruments using the MinKNOW software.

Bases were called from reads with Oxford Nanopore base-calling software Dorado
v0.5.0 (https://github.com/nanoporetech/dorado) in super-accurate mode
using config file dna_r10.4.1_e8.2_400bps_sup@v4.1.0 for both the exome capture
and non-exome capture data, as well as the MinION and PromethION data.

Long-Read-Split-Seq Preprocessing and Quantification with splitcode and lr-
kallisto
We first used splitcode to find barcodes and umis using linkers and reverse com-
plements of linkers, allowing a total of 3 errors in linkers. We then used a custom
python script to reverse the order of barcodes extracted from reverse strand to be
in the same order as forward strand barcodes. Subsequently, we apply splitcode to
combine and split randO and polyT barcodes from round 1 of Split-Seq barcoding,
allowing 1 substitution or indel per barcode, 39,027,314 out of 105,591,654 raw
reads passed this workflow. We then use lr-kallisto to pseudoalign and quantify the
resulting reads; 22,197,716 of the reads pseudoalign. We performed QC with a 500
UMI threshold per nuclei and filtered to genes present in at least 100 cells.

Error rate estimation
Error rates for the PacBio dataset (Leung et al., 2021) were calculated by analyzing a
subsample of 1/8th of the reads using the NanoSim read characterization module with
the command ‘read_analysis.py transcriptome -i *fastq* -rg references/genome.fa -rt

https://github.com/nanoporetech/dorado
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references/transcriptome.fa -annot references/annotations.gtf -t 8 -o output_folder‘.
Error rates for the LRGASP datasets were also calculated this way, without need for
subsampling.

Benchmarking and comparisons
In benchmarks and comparisons of programs, we used Bambu v3.4.1, IsoQuant
v3.3.0, and Oarfish v0.5.1. For the HCT116 data we also ran Oarfish 0.3.1 so as to be
able to make a direct comparison with the results of (Jousheghani and Patro, 2024).
We ran Oarfish according to the scripts at https://github.com/COMBINE-lab/
lr_quant_benchmarks/blob/0b89465420250d3511044fdc3d988a320aba73c6/

snakemake_rules/isoquant_sim_data/alignment/alignment_transcriptome/

align.snk andhttps://github.com/COMBINE-lab/lr_quant_benchmarks/
blob/0b89465420250d3511044fdc3d988a320aba73c6/snakemake_rules/isoquant_

sim_data/quantification/oarfish_quant/quant.snk. In a previous ver-
sion of this preprint (Loving et al., 2024), Oarfish v0.3.1 and v0.4.0 were used and
the simulation data was run with SAMtools sort as in (Ji and Pertea, 2024). This
appears to have resulted in overcounting that degraded Oarfish’s performance.

Data Simulation
The simulation details for SIRV Set 4, where we generate error free reads uni-
formly expressed across isoforms in SIRV Set 4, are contained in the code for Figure
2 in the GitHub repo https://github.com/pachterlab/LSRRSRLFKOTWMWMP_
2024. To see simulation details for Fig 3, see section Data Simulation in (Prjibelski
et al., 2023), which describes in detail the simulation steps used starting with IsoSe-
qSim and NanoSim as the base simulators and using modifications to NanoSim to
better preserve real ONT characteristics. For simulations presented in Supplement
Figure 4a, we used a custom simulator based solely on error profiles, using ONT
error profile of 38.5% of errors are deletions, 38.5% of errors are substitutions, and
23% of errors are insertions and PacBio error profile of 24.5% of errors are deletions,
52.4% of errors are substitutions, and 23.1% of errors are insertions with uniform
error distribution within the read, which is full-length, available in the GitHub repo
https://github.com/pachterlab/LSRRSRLFKOTWMWMP_2024 with details in-
cluded with the upload at https://zenodo.org/records/11201284. For simu-
lations presented in Supplement Figure 4b-c, we include NanoSim simulation details
with the simulated data deposited at https://zenodo.org/records/11201284.

https://github.com/COMBINE-lab/lr_quant_benchmarks/blob/0b89465420250d3511044fdc3d988a320aba73c6/snakemake_rules/isoquant_sim_data/alignment/alignment_transcriptome/align.snk
https://github.com/COMBINE-lab/lr_quant_benchmarks/blob/0b89465420250d3511044fdc3d988a320aba73c6/snakemake_rules/isoquant_sim_data/alignment/alignment_transcriptome/align.snk
https://github.com/COMBINE-lab/lr_quant_benchmarks/blob/0b89465420250d3511044fdc3d988a320aba73c6/snakemake_rules/isoquant_sim_data/alignment/alignment_transcriptome/align.snk
https://github.com/COMBINE-lab/lr_quant_benchmarks/blob/0b89465420250d3511044fdc3d988a320aba73c6/snakemake_rules/isoquant_sim_data/alignment/alignment_transcriptome/align.snk
https://github.com/COMBINE-lab/lr_quant_benchmarks/blob/0b89465420250d3511044fdc3d988a320aba73c6/snakemake_rules/isoquant_sim_data/quantification/oarfish_quant/quant.snk
https://github.com/COMBINE-lab/lr_quant_benchmarks/blob/0b89465420250d3511044fdc3d988a320aba73c6/snakemake_rules/isoquant_sim_data/quantification/oarfish_quant/quant.snk
https://github.com/COMBINE-lab/lr_quant_benchmarks/blob/0b89465420250d3511044fdc3d988a320aba73c6/snakemake_rules/isoquant_sim_data/quantification/oarfish_quant/quant.snk
https://github.com/pachterlab/LSRRSRLFKOTWMWMP_2024
https://github.com/pachterlab/LSRRSRLFKOTWMWMP_2024
https://github.com/pachterlab/LSRRSRLFKOTWMWMP_2024
https://zenodo.org/records/11201284
https://zenodo.org/records/11201284
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2.6 Data and code availability
The LRGASP data can be accessed from the accessions and ftp links listed in the
data folder of https://github.com/pachterlab/LSRRSRLFKOTWMWMP_2024.
IGVF Bridge exome capture and non-exome capture can be accessed from the IGVF
portal with the accession IDs in the provided table.

Accession ID Subpool Name Read Type
IGVFDS4803WKTQ B01_13G Nanopore
IGVFDS9445YYVB B01_13H Nanopore
IGVFDS9522BMQK B01_13G Illumina
IGVFDS0356VCIO B01_13H Illumina

Table 2.2: IGVF Bridge exome capture and non-exome capture accession IDs.

Accession ID File Name
IGVFDS4705QPIK b01_nanopore_13G_single_cell_k63_both_mm39
IGVFDS7467TPQO b01_nanopore_13G_single_cell_k63_polyT_mm39
IGVFDS3821ZEWS b01_nanopore_13G_single_cell_k63_randO_mm39
IGVFDS1377KBXL b01_next1_13G_single_cell_k31_both_mm39
IGVFDS2498XYWS b01_next1_13G_single_cell_k31_polyT_mm39
IGVFDS9180SYAE b01_next1_13G_single_cell_k31_randO_mm39
IGVFDS4019MYIG b01_nanopore_13G_bulk_k63_casteij
IGVFDS6540HMFT b01_nanopore_13G_bulk_k63_mm39
IGVFDS3833XYEY b01_nanopore_13H_bulk_k63_casteij
IGVFDS5673HQEN b01_nanopore_13H_bulk_k63_mm39
IGVFDS2760LQIX b01_next1_13G_bulk_k31_casteij

IGVFDS9744VNMR b01_next1_13G_bulk_k31_mm39
IGVFDS0231GDWH b01_next1_13H_bulk_k31_casteij
IGVFDS1622ABWA b01_next1_13H_bulk_k31_mm39

Table 2.3: IGVF Bridge exome capture and non-exome capture processed accession
IDs.

The HCT116 cell line SG-NEx data was accessed on March 13, 2024 at https:
//registry.opendata.aws/sg-nex-data. The lr-kallisto method is available
via release 0.51 of kallisto at https://github.com/pachterlab/kallisto.

We used bambu v3.4.1, IsoQuant v3.3.0, and oarfish v0.5.1 (with the exception
of analysis of HCT116 data). In the initial version of the preprint, oarfish (v0.3.1
and v0.4.0) were used and the simulation data was run with samtools sort (genome
coordinate sorting), causing overcounting in oarfish’s performance due to oarfish’s
use of consecutive alignments of the same read filtering; this has been updated in this

https://github.com/pachterlab/LSRRSRLFKOTWMWMP_2024
https://registry.opendata.aws/sg-nex-data
https://registry.opendata.aws/sg-nex-data
https://github.com/pachterlab/kallisto
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version of the manuscript. Simulation data is available at https://zenodo.org/
records/11201284. Processed abundance matrices for Figures 1-3 are available
at https://zenodo.org/records/13755772. Code for reproducing the results
and figures in the manuscript is available at https://github.com/pachterlab/
LSRRSRLFKOTWMWMP_2024.

2.7 Author contributions
The lr-kallisto project was conceived by RKL and LP and the lr-kallisto method
was developed and implemented by RKL. Benchmarking was conducted by RKL.
The exome capture / non-capture experiment was conceived by AM, BWo and BWi.
The experiment, data generation and curation was supervised by AM. Experiments
were conducted by ER, HL, GF, SK and GM. Data curation was performed by FR,
JS, DT and NR. Analysis of the data was conducted by RKL, FR and LP. RKL,
ASB, and DKS streamlined the single-cell workflow using seqspec and splitcode.
Supplementary data analysis was performed by RKL, LP and CO. Software testing
and release was performed by RKL and DKS. The manuscript was drafted by
RKL and LP. LP, RKL, AM, BW, FR, DKS and CO commented on and edited the
manuscript. All authors approved the manuscript. LP supervised the lr-kallisto
project with BW.

2.8 Acknowledgements
This work was partially supported by UM1 HG012077 to A.M., B.J.W., and L.P.
as well as a United States Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research, Department of Energy Computational Sci-
ence Graduate Fellowship under Award Number DE-SC0020347 to R.K.L. D.K.S.
was supported by the UCLA-Caltech Medical Scientist Training Program (NIH
NIGMS training grant T32 GM008042). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.
We thank Zahra Zare Jousheghani, Noor Pratap Singh, and Rob Patro for comments
on consistency and version control following the first version of this manuscript on
bioRxiv.

https://zenodo.org/records/11201284
https://zenodo.org/records/11201284
https://zenodo.org/records/13755772
https://github.com/pachterlab/LSRRSRLFKOTWMWMP_2024
https://github.com/pachterlab/LSRRSRLFKOTWMWMP_2024


48

References

Amarasinghe, Shanika L et al. (2020). “Opportunities and challenges in long-read
sequencing data analysis”. In: Genome Biology 21.1, p. 30.

Bloomfield, Max et al. (2024). “Oxford Nanopore next generation sequencing in
a front-line clinical microbiology laboratory without on-site bioinformaticians”.
In: Pathology 56.3, pp. 444–447.

Bray, Nicolas L et al. (2016). “Near-optimal probabilistic RNA-seq quantification”.
In: Nature Biotechnology 34.5, pp. 525–527.

Castanho, Isabel et al. (2020). “Transcriptional signatures of tau and amyloid neu-
ropathology”. In: Cell Reports 30.6, 2040–2054.e5.

Chen, Ying, Nadia M Davidson, et al. (2021). “A systematic benchmark of nanopore
long read RNA sequencing for transcript level analysis in human cell lines”. In:
bioRxiv. doi: 10.1101/2021.04.21.440736.

Chen, Ying, Andre Sim, et al. (2023). “Context-aware transcript quantification from
long-read RNA-seq data with Bambu”. In: Nature Methods 20.8, pp. 1187–1195.

Cheng, Oliver et al. (2024). “Flexiplex: a versatile demultiplexer and search tool
for omics data”. In: Bioinformatics 40.3. doi: 10.1093/bioinformatics/
btae102.

Consortium, IGVF (2023). “The impact of genomic variation on function (IGVF)
consortium”. In: ArXiv. doi: 10.1101/2023.03.28.533945.

Cook, David E et al. (2019). “Long-read annotation: Automated eukaryotic genome
annotation based on long-read cDNA sequencing”. In: Plant Physiology 179.1,
pp. 38–54.

Delahaye, Clara and Jacques Nicolas (2021). “Sequencing DNA with nanopores:
Troubles and biases”. In: PloS One 16.10, e0257521.

Dobin, Alexander et al. (2013). “STAR: ultrafast universal RNA-seq aligner”. In:
Bioinformatics 29.1, pp. 15–21.

Dong, Xueyi et al. (2023). “Benchmarking long-read RNA-sequencing analysis tools
using in silico mixtures”. In: Nature Methods 20.11, pp. 1810–1821.

Frankish, Adam et al. (2021). “GENCODE 2021”. In: Nucleic Acids Research 49.D1,
pp. D916–D923.

Goodwin, Sara et al. (2015). “Oxford Nanopore sequencing, hybrid error correction,
and de novo assembly of a eukaryotic genome”. In: Genome research 25.11,
pp. 1750–1756.

Hjörleifsson, Kristján Eldjárn et al. (2022). “Accurate quantification of single-
nucleus and single-cell RNA-seq transcripts”. In: bioRxiv. doi: 10.1101/2022.
12.02.518832.

https://doi.org/10.1101/2021.04.21.440736
https://doi.org/10.1093/bioinformatics/btae102
https://doi.org/10.1093/bioinformatics/btae102
https://doi.org/10.1101/2023.03.28.533945
https://doi.org/10.1101/2022.12.02.518832
https://doi.org/10.1101/2022.12.02.518832


49

Ji, Hyun Joo and Mihaela Pertea (2024). “Enhancing transcriptome expression
quantification through accurate assignment of long RNA sequencing reads with
TranSigner”. In: bioRxiv v2, pp. 2024–08.

Jousheghani, Zahra Zare and Rob Patro (Mar. 2024). “Oarfish: Enhanced proba-
bilistic modeling leads to improved accuracy in long read transcriptome quantifi-
cation”. In: bioRxiv. doi: 10.1101/2024.02.28.582591.

Kabza, Michal et al. (2023). “Accurate long-read transcript discovery and quantifi-
cation at single-cell resolution with Isosceles”. In: bioRxiv, pp. 2023–11.

Kaminow, Benjamin, Dinar Yunusov, and Alexander Dobin (2021). “STARsolo: Ac-
curate, fast and versatile mapping/quantification of single-cell and single-nucleus
RNA-seq data”. In: bioRxiv. doi: 10.1101/2021.05.05.442755.

Landrith, Tyler et al. (2020). “Splicing profile by capture RNA-seq identifies pathogenic
germline variants in tumor suppressor genes”. In: NPJ precision oncology 4.1,
p. 4.

Leung, Szi Kay et al. (2021). “Full-length transcript sequencing of human and mouse
cerebral cortex identifies widespread isoform diversity and alternative splicing”.
In: Cell Reports 37.7, p. 110022.

Li, Heng (2018). “Minimap2: Pairwise alignment for nucleotide sequences”. In:
Bioinformatics 34.18, pp. 3094–3100.

Lienhard, Matthias et al. (2023). “IsoTools: a flexible workflow for long-read tran-
scriptome sequencing analysis”. In: Bioinformatics 39.6, btad364.

Loving, Rebekah K et al. (2024). “Long-read sequencing transcriptome quantifica-
tion with lr-kallisto”. In: bioRxiv v1, pp. 2024–07.

Luebbert, Laura et al. (2023). “Efficient and accurate detection of viral sequences at
single-cell resolution reveals novel viruses perturbing host gene expression”. In:
bioRxiv.

Melsted, Páll et al. (2021). “Modular, efficient and constant-memory single-cell
RNA-seq preprocessing”. In: Nature Biotechnology 39.7, pp. 813–818.

Pardo-Palacios, Francisco J et al. (July 2023). “Systematic assessment of long-read
RNA-seq methods for transcript identification and quantification”. In: bioRxiv.
doi: 10.1101/2023.07.25.550582.

Patro, Rob et al. (2017). “Salmon provides fast and bias-aware quantification of
transcript expression”. In: Nature Methods 14.4, pp. 417–419.

Penter, Livius et al. (2024). “Integrative genotyping of cancer and immune pheno-
types by long-read sequencing”. In: Nature Communications 15.1, p. 32.

Prjibelski, Andrey D et al. (2023). “Accurate isoform discovery with IsoQuant using
long reads”. In: Nature Biotechnology 41.7, pp. 915–918.

https://doi.org/10.1101/2024.02.28.582591
https://doi.org/10.1101/2021.05.05.442755
https://doi.org/10.1101/2023.07.25.550582


50

Reese, Fairlie et al. (May 2023). “The ENCODE4 long-read RNA-seq collection
reveals distinct classes of transcript structure diversity”. In: bioRxiv. doi: 10.
1101/2023.05.15.540865.

Sahlin, Kristoffer (2021). “Effective sequence similarity detection with strobemers”.
In: Genome Research 31.11, pp. 2080–2094.

Sahlin, Kristoffer and Veli Mäkinen (2021). “Accurate spliced alignment of long
RNA sequencing reads”. In: Bioinformatics 37.24, pp. 4643–4651.

Sakamoto, Yoshitaka, Sarun Sereewattanawoot, and Ayako Suzuki (2020). “A new
era of long-read sequencing for cancer genomics”. In: Journal of Human Genetics
65.1, pp. 3–10.

Sarkar, Hirak et al. (2020). “Accurate, efficient, and uncertainty-aware expression
quantification of single-cell RNA-seq data”. In: bioRxiv. doi: 10.6084/m9.
figshare.13198100.

Sullivan, Delaney K, Kyung Hoi Joseph Min, et al. (Nov. 2023). “Kallisto, bustools,
and kb-python for quantifying bulk, single-cell, and single-nucleus RNA-seq”.
In: bioRxiv. doi: 10.1101/2023.11.21.568164.

Sullivan, Delaney K and Lior Pachter (2024). “Flexible parsing, interpretation, and
editing of technical sequences with splitcode”. In: Bioinformatics 40.6.

Tang, Alison D et al. (2020). “Full-length transcript characterization of SF3B1
mutation in chronic lymphocytic leukemia reveals downregulation of retained
introns”. In: Nature communications 11.1, p. 1438.

Tian, Luyi et al. (2021). “Comprehensive characterization of single-cell full-length
isoforms in human and mouse with long-read sequencing”. In: Genome biology
22, pp. 1–24.

Wang, Chaoyang et al. (2024). “Single-cell analysis of isoform switching and trans-
posable element expression during preimplantation embryonic development”. In:
PLoS Biology 22.2, e3002505.

Warburton, Peter E and Robert P Sebra (2023). “Long-read DNA sequencing: recent
advances and remaining challenges”. In: Annual Review of Genomics and Human
Genetics 24, pp. 109–132.

Wyman, Dana et al. (2019). “A technology-agnostic long-read analysis pipeline for
transcriptome discovery and quantification”. In: Biorxiv, p. 672931.

Yang, Chen et al. (2017). “NanoSim: nanopore sequence read simulator based on
statistical characterization”. In: GigaScience 6.4, gix010.

Zhang, David et al. (2020). “Incomplete annotation has a disproportionate impact
on our understanding of Mendelian and complex neurogenetic disorders”. In:
Science Advances 6.24. doi: 10.1126/sciadv.aay8299.

https://doi.org/10.1101/2023.05.15.540865
https://doi.org/10.1101/2023.05.15.540865
https://doi.org/10.6084/m9.figshare.13198100
https://doi.org/10.6084/m9.figshare.13198100
https://doi.org/10.1101/2023.11.21.568164
https://doi.org/10.1126/sciadv.aay8299


51

C h a p t e r 3

LONG READ SEQUENCING TRANSCRIPTOME DISCOVERY
WITH lr-kallisto

3.1 Abstract
Accurately generating novel transcript candidates has been an illusive challenge for
long read RNA-seq transcriptomics. In order to accurately generate novel transcript
candidates, accurately detecting already well-annotated transcripts is fundamental.
As demonstrated by the LRGASP consortium, tools vary in detection of already
annotated transcripts (full splice match, FSM), transcripts missing 3’ or 5’ end exons
(incomplete splice match, ISM), transcripts which have novel junctions (novel in
catalogue, NIC) and lastly containing novel junctions that are not yet annotated
(novel not in catalog, NNC) (Pardo-Palacios et al., 2023). Of the tools analyzed
in Pardo-Palacios et al., 2023, the sensitivity of tools to both known and unknown
transcripts in real data with spike-ins is shown to be wanting (Pardo-Palacios et al.,
2023, Fig.2f). In simulation, all are known to return a low percentage of NIC and
NNC with both very low sensitivity and precision. As demonstrated in Chapter 1,
lr-kallisto outperforms the standard tools for long read RNA-seq transcriptomics in
detection and quantification; therefore, the extension of its methods to transcript
discovery is natural although unconventional.

3.2 Introduction
Many methods have been developed for and focus on transcript discovery (Lien-
hard et al., 2023) (Prjibelski et al., 2023) (Kabza et al., 2024) (Chen et al., 2023).
However, it remains a field where even the best tools create false positive novel
annotations that are not backed by reads within the data used for the transcript
discovery. Furthermore, due to the use of machine learning and user-defined pa-
rameters in methods for transcript discovery, it can be hard to determine the source
of true discovery vs false positive annotations (Chen et al., 2023). Here, we present
a completely data-driven and mapping-driven method for transcript discovery that
relies entirely on where reads map within the transcriptome and genome and has
a single parameter, the number of times a novel pattern defining a novel transcript
candudate must be observed to be included in the analysis.
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3.3 Results
Within the analyzed dataset of 793,577 long reads, 123,611 reads were found to
have novel characteristics before any filtering on read support. Here we present a
few reads that are called as novel and the pattern in which they map, which shows
alternative splicing relative to the transcripts which share exons with the novel read.
In Figure 3.1, 3.2 and 3.4, it is clear that alternative splicing has occurred simply
from the graph. However, in Figure 3.2, we would suggest further analysis of
whether or not this is a true positive or due to only error in the reads.

In Figure 3.1, we observe two reads with the same alternatively spliced arrangement
that is a possible novel transcript in the human genome. While the displayed red
exons are all annotated and shared with the transcript directly below the reads, these
reads were not mapped to this transcript due to the d-list, where distinguishing
flanking k-mers between the annotated intronic reion flanking the annotated exons
likely lead to this read not mapping. In this example, there may be enough support
for this candidate novel transcript given that our depth of sequencing is relatively
low at less than 500,000 reads. In Figure 3.2, we observe that 187_unmapped
is a alternatively spliced transcript with exons from multiple different transcripts
that is not yet annotated in the human genome. However, in this example, there
may not be enough support for this candidate novel transcript. In Figure 3.3,
we observe that 146_unmapped appears to be possibly a false positive but still
potentially a alternatively spliced transcript that is not yet annotated in the human
genome; a more detailed analysis of the junctions betweeen 146_unmapped and
ENST00000016171 is needed. However, in this example, there may not be enough
support for this candidate novel transcript anyway. In Figure 3.4, we observe that,
clearly, 49_unmapped is a alternatively spliced transcript that is not yet annotated
in the human genome. However, in this example, there again may not be enough
support for this candidate novel transcript.

3.4 Discussion
Methods for transcript discovery have primarily relied on splice-aware alignment
followed by building intron or exon graphs which are used to detect novel splice sites.
While kallisto is not a traditional splice-aware alignment tool, the distinguishing
flanking k-mers provide a method for determining if a read has regions in it which
are annotated as intronic or are k-mers which are contained in both introinic and
exonic regions. In the latter case, we do not want to determine that these k-mers
directly make the read novel, as these are unlikely true positive novel transcripts.
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Figure 3.1: The top row of this plot displays the read (in blue) and its pseudoaligned
exons (in red) that did not map in the initial pseudoalignment with the d-list, but
now maps in the exon- and fusion- based approach to mapping novel reads. Below
are listed all other transcripts that also contain overlapping exons with the read.

Figure 3.2: The top row of this plot displays the read that did not map in the
initial pseudoalignment with the d-list, but now maps in the exon- and fusion- based
approach to mapping novel reads. Below are listed all other transcripts that also
contain overlapping exons with the read.
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146_unmapped

Novel Reads - Chromosome 10

Figure 3.3: The top row of this plot displays the read that did not map in the
initial pseudoalignment with the d-list, but now maps in the exon- and fusion- based
approach to mapping novel reads. Below are listed all other transcripts that also
contain overlapping exons with the read.
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49_unmapped

Novel Reads - Chromosome 11

Figure 3.4: The top row of this plot displays the read that did not map in the
initial pseudoalignment with the d-list, but now maps in the exon- and fusion- based
approach to mapping novel reads. Below are listed all other transcripts that also
contain overlapping exons with the read.

However, if a read extends into an intron, then either there is intron retention or it
is an incomplete annotation of the UTR. In this case, a different UTR length can be
consequential in the expression of the transcript, so determining if the annotation is,
in fact, incorrect is consequential. Thus, if there is support for an extended UTR for
a transcript, it is an important update to the annotation. Second, within kallisto, we
can also determine when there are disjoint mapping k-mers, i.e. there are k-mers
which must originate from different transcript models, but were found within the
same RNA molecule. This is the case often considered when building intron or exon
graphs. Within dn-kallisto, we can use an exon index without d-listing the genome
to build a proxy for an exon graph. When we align the novel candidates output by
lr-kallisto in this exon t-DBG, we are performing the mapping within the exon graph
to build out any novel annotations. Finally, there is a third option, which is further
described in methods, for detecting when a molecule does not match anywhere in the
transcriptome or d-list for a user-defined threshold of the molecule length. This can
be useful for detecting regions of high variability in the genome where annotations
are not useful for mapping.

3.5 Methods
Within lr-kallisto, distinguishing flanking k-mers have been implemented to increase
the precision of quantification between spliced and unspliced RNAs, as well as virus
contamination and infection within samples and host species. The concept of distin-
guishing flanking k-mers is also very useful in the context of mapping long reads and
detecting when a long read does not map within the annotated transcriptome. There
are many different cases that can occur in the case of unannotated transcripts, such
as unannotated exons, undocumented alternative splicing events, and incorrectly or
differing transcription start sites and transcription end sites. Here we do not attempt
to handle every case of unannotated transcript that exists but describe a workflow
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that determines candidate novel transcripts. This workflow can provide insight on
> 99% of the reads that are not mapped with lr-kallisto and, thus, provide useful
data for both biological and technical discoveries.

There are three steps to performing this analysis:

First, lr-kallisto is used with the –unmapped flag to pseudoalign the reads with a
d-list index, i.e. an index that has been built with a transcriptome as the input and a
genome as the d-list. During this pseudoalignment reads that do not map are filtered
into novel.fastq along with reads that have a disjoint intersection of mapping
k-mers and reads that have too many unmapping k-mers, which is paramater we set
within this work this parameter is set to .8, which we have empirically found to be
useful and will further explore to.

Second, lr-kallisto is used to pseudoalign with option –union to take the union
set of k-mers across the exon compatibilities using two exon-based indices that are
generated with a custom script to extract exonic cdna from the genome where in one
index we again are d-listing the genome and in the other case we do not d-list the
genome and instead use the nascent index. Furthermore, we also use the –fusion
option, which is described in Chapter 5. This results in each read being partitioned
into the non-intersecting regions of transcript compatibility, where the transcript
compatibility set is now exon compatibility set.

Third, we collate the pseudobam results from 2. to create candidates for novel
transcripts. These collated results are then sorted to those of the same structure
being grouped together and filtered by the desired read count cut-off per candidate,
which is a user provided parameter.

3.6 Data and Code Availability
1 ENCSR706ANY gm12878_1_1 gm12878 GM12878 gm12878 blood cell_line

#0798c8 ENCFF596ODX ENCFF475ORL ENCFF234YIJ "https://www.

encodeproject.org/documents/fc272a30-b9a5-4652-b255 -424

b61d4587b/ , https://www.encodeproject.org/documents/7ec9d66a

-3b7e-4183-8677-e1df14770b44/" "’ENCODE PacBio Iso-seq

Analysis Protocol (v.1.0)’, ’ENCODE Long Read RNA-Seq Analysis

Protocol for Human Samples (v.1.0)’" Pacific Biosciences

Sequel FALSE 715140 FALSE RNeasy mini kit SuperScript

II ExoIII and ExoVII to remove failed ligation products "

S M R T b e l l Template Prep Kit 1.0," Protocol 1: non-size-
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selected cDNA libraries v0 pb_cdna

Listing 3.1: "data and metadata"

The code for dn-kallisto is included in the repository for Chapter 5 https:
//github.com/bound-to-love/fugi.git.

3.7 Future Benchmarking and Directions
This is a proof of concept of the application of pseudoalignment to transcript dis-
covery. Further benchmarking is needed to show the real proficiency of this method
in this task. However, we expect what is observed within this preliminary analysis
to stand the test of further data and exploration, due to the prior partial success of
exon structure analysis and splicing analysis in transcript discovery. Thus, the use
of pseudoalignment to perform exon compatibility analysis and then splicing aware-
ness demonstrating efficacy is natural. Furthermore, TCCs have already been used
in transcript discovery and quantification as shown in Isosceles development (Kabza
et al., 2024). dn-kallisto is, therefore, a new approach combining pseudoalignment,
exon compatiblity (instead of transcript compatibility) and fusion analysis for tran-
script discovery, which we will continue to extend and benchmark to provide a
data-forward, unambiguous method of transcript discovery.
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C h a p t e r 4

SINGLE-CELL ANALYSIS WITH lr-kallisto

4.1 Introduction
In this chapter, we will provide a more thorough description of the workflow for
single-cell analysis with lr-kallisto using splitcode and seqspec as well as further
analyze the IGVF Bridge data and the IGVF 8cube data (Rebekah K Loving et
al., 2024; Sullivan and Pachter, 2023; Booeshaghi, Chen, and Pachter, 2024). The
analysis of single-cell long read data, in particular Oxford Nanopore long read data, is
complicated by the fact that the motor protein which guides the sequence through the
nanopore to produce the reads may be in any of the four orientations on the double
stranded DNA producing reads in forward, complement, reverse complement, or
reverse orientation and, moreover, that the existence of concatemers is frequent
( 12% in the data that we present here).

Therefore, we must extract from the reads the barcodes and UMIs in order to perform
single-cell analysis. In order to extract the barcodes and UMIs from the reads, the
structure of the read must be known. A seqspec yaml provides the structural
information for RNA-seq reads. This machine readable seqspec, which specifies
all needed information about the single-cell long reads, can then be used to create
a configuration file specfying the extraction patterns which can then be passed to
splitcode to preprocess the sequences prior to mapping and quantification of
single-cell long reads by lr-kallisto (Booeshaghi, Chen, and Pachter, 2024; Sullivan
and Pachter, 2024; Rebekah K Loving et al., 2024). Thus, this provides a complete
and easily adaptable method for processing single-cell long read RNA-seq to obtain
transcript- and gene-level single-cell RNA-seq expression quantifications.

4.2 Documentation



! Edit on GitHub

" Previous Next #

$ / Pseudoalignment of single-cell long read RNA seq data

Pseudoalignment of single-cell long read RNA seq
data

% Note

Reference: Loving, R, Sullivan, DK, Reese, F, Rebboah, E, Sakr, J, Rezaie, N, Liang, HY, Filimban,
G, Kawauchi, S, Oakes, C, Trout, D, Williams, BA, MacGregor, G, Wold, BJ, Mortazavi, A, Pachter,
L Long-read sequencing transcriptome quan!fica!on with lr-kallisto. bioRxiv
2024.07.19.604364 h"ps://doi.org/10.1101/2024.07.19.604364

kallisto can perform long-read pseudoalignment of nucleo!de sequences against a large k-mer
reference while retaining single-cell (for single-cell RNA sequencing data) or sample (for bulk RNA
seq data) resolu!on. To perform long-read pseudoalignment, first add -k 63  to kb ref  and,
second, add the --long  flag to the kb count  commands.

Long-read pseudoalignment is performed by the longer k-mer length improving the quality of
mapping k-mers in the higher sequencing error rates (rela!ve to short read sequencing), making it
more probable that the read originates from the transcript compa!bility class it maps to. As k
increases, the number of dis!nct k-mers also increases, but the number of con!gs decreases. This
implies that the number of transcripts in a transcript compa!bility class decreases on average with
increasing length of k. Overall, the complexity of the T-DBG decreases (Supplementary Fig. 5),
increasing the probability of the read origina!ng from the transcript compa!bility class it is mapping
to. Furthermore, this also increases the probability of the intersec!on of equivalence classes being
nonempty, which increases the overall mapping rate.

The workflow can be executed in three lines of code, and computa!onal requirements do not
exceed those of a standard laptop. Building on kallisto’s versa!lity, the workflow is compa!ble with
all state-of-the-art single-cell and bulk RNA sequencing methods, including but not limited to
SMART-Seq [add cita!on]_ and SPLiT-Seq [add cita!on]_ (including Parse Biosciences) and
performance is state-of-the-art on both PacBio and Oxford Nanopore Technologies long-read data.

% Note

For long-read single-cell data to be processed with lr-kallisto some preprocessing steps are
required. Here we present the use of seqspec and splitcode to facilitate an automated
processing of LR-SPLiT-Seq [add cita!on]_. seqspec is used to create a configura!on file for
splitcode to extract barcodes, umis, and the biological sequences from the reads. seqspec
requires as input a machine readable specifica!on file for the sample protocol that is in the
seqspec format. splitcode can then be called on the reads with the configura!on file created by
seqspec to extract from the reads the barcodes, umis, and biological sequences. The output of
splitcode can be piped directly into lr-kallisto or output to files that are processed with lr-
kallisto.

The long-read pseudoalignment workflows can be used to align RNA sequencing data to any
transcriptome reference:

1. Install kb-python (op!onal: install gget to fetch the host genome and transcriptome) as well as
seqspec and splitcode:

pip install kb-python gget git+https://github.com/pachterlab/seqspec
git clone https://github.com/pachterlab/splitcode
cd splitcode
mkdir build
cd build
cmake ..
make
make install

2. Create splitcode config file using seqspec:

seqspec index -m rna -s file -t splitcode spec.yaml > seqspec-config.txt

3. Use splitcode to extract barcodes, umis, and biological sequences:

4. Importantly, the extracted sequences may need reorien!ng for the sample to be processed
appropriately; we give an example of this in the case of ONT single-nuclei samples in the
tutorials.

5. Create reference index (using the D-list of human genome):

kb ref \
    -k 63 \
    --d-list $(gget ref --ftp -w dna homo_sapiens) \
    --workflow standard \
    -i index.idx \
    -g t2g.txt \
    -f1 fasta.fa \
    $(gget ref --ftp -w dna,gtf homo_sapiens)

6. Align and quan!fy sequencing reads:

kb count \
    --long \
    -i index.idx \
    -g t2g.txt \
    --parity single \
    --tcc \
    --matrix-to-directories \
    -x '0,0,0:1,0,0:2,0,0' \
    $sample_barcode.fastq.gz $sample_umi.fastq.gz $sample_bioseq.fastq.gz

© Copyright 2024, Pachter Lab.
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splitcode -c seqspec-config.txt $sample_data.fastq.gz -o $sample_data_modified.fastq.gz -t 32

$ kallisto | bustools
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Figure 4.1: Motor protein ligation and the motor protein which engages with the
nanopore determine read orientation. Here we illustrate the effect of where motor
proteins ligate and which motor protein reaches the nanopore determining the orien-
tation of the Oxford Nanopore read output. The circles with tails indicate the motor
proteins and their positions on the double stranded DNA. The red circle (and motor
protein) indicate that the resulting read will be a forward read. The purple circle
(and motor protein) indicate that the resulting read will be a reverse complement
read. The green circle (and motor protein) indicate that the resulting read will be
a complement read. Finally, the yellow circle (and motor protein) indicate that the
resulting read will be a reverse read.

4.3 A deeper dive into each step
1. seqspec (Booeshaghi, Chen, and Pachter, 2024) - seqspec provides three

important characteristics for long read RNA-seq processing. First, it provides
a file format with the complete metadata for the RNA sequencing library
structure information in a machine readable format. This encoding of RNA-
seq libraries can then be validated with seqspec’s validate command to
ensure the file is a valid specification. Lastly, seqspec’s index command can
be used with the seqspec.yaml of a specific RNA-seq library to generate a
configuration file, needed by splitcode, which defines extraction patterns
for the specific RNA-seq library defined within the seqspec. The structure



60

of the single-cell ONT reads can then be processed by splitcode and piped
directly to lr-kallisto.

1 #Given an input seqspec.yaml for the RNA-seq library being

used

2 seqspec index -m rna -s file -t splitcode seqspec.yaml >

splitcode.config

Listing 4.1: running seqspec index

Below we include Figure 1 from Booeshaghi, Chen, and Pachter, 2024 to
elucidate the seqspec file format and then the spec.yaml for the LR-SPLiT-
Seq used in the IGVF Bridge exome capture dataset included in Chapter 1 of
this thesis:



Figure 1: The structure of reads sequenced from genomics libraries. Sequencing libraries
are constructed by combining Atomic Regions to form an adapter-insert-adapter construct. The
seqspec for the assay annotates the construct with Regions and Meta Regions.
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!Assay
seqspec_version: 0.3.0
assay_id: parse-wt-nanopore
name: WT Mega v2 nanopore
doi: https://docs.google.com/presentation/d/
17yKh6xE5b9Mo4DaXx5uPvFZOIHOW0kbK-QsU2ECwx8c/
edit#slide=id.g29abb1440dc_0_500
date: 13 November 2023
description: split-pool ligation-based transcriptome sequencing
modalities:
- rna
lib_struct: ''
library_protocol: Parse Bio Evercode WT Mega v2.2.1 with cDNA Exome 
Capture v1.0.1 
library_kit: Oxford Nanopore Ligation sequencing DNA V14 (SQK-LSK114)
sequence_kit: null
sequence_protocol: Oxford Nanopore PromethION 2 Solo
sequence_spec:
- !Read
  read_id: read.fastq.gz
  name: Nanopore read
  modality: rna
  primer_id: ont-1
  min_len: 177
  max_len: 2000194
  strand: pos
  files:
  - !File
    file_id: read.fastq.gz
    filename: read.fastq.gz
    filetype: ''
    filesize: 0
    url: ''
    urltype: ''
    md5: ''
library_spec:
- !Region
  region_id: rna
  region_type: rna
  name: rna
  sequence_type: joined
  sequence: 
XXXXXXXXXXXXXXXXXXXXXXXXXXXAAGCAGTGGTATCAACGCAGAGTGAATGGGXXXXXXXNNNNNN
NNGTGGCCGATGTTTCGCATCGGCGTACGACTNNNNNNNNATCCACGTGCTTGAGACTGTGGNNNNNNNN
XXXXXXXXXXAGATCGGAAGAGCACACGTCTGAACTCCAGTCACXXXXXXXXXXXXXXXXXXXXXXXXXX
X
  min_len: 211
  max_len: 2000228
  onlist: null
  regions:



  - !Region
    region_id: ont-1
    region_type: custom_primer
    sequence_type: random
    sequence: XXXXXXXXXXXXXXXXXXXXXXXXXXX
    name: ont-2
    min_len: 27
    max_len: 36
    onlist: null
    regions: null
    parent_id: rna
  - !Region
    region_id: truseq_read2
    region_type: truseq_read2
    name: Illumina Read 2
    sequence_type: fixed
    sequence: AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC
    min_len: 34
    max_len: 34
    onlist: null
    regions: null
    parent_id: rna
  - !Region
    region_id: umi
    region_type: umi
    name: umi
    sequence_type: random
    sequence: XXXXXXXXXX
    min_len: 10
    max_len: 10
    onlist: null
    regions: null
    parent_id: rna
  - !Region
    region_id: barcode-3
    region_type: barcode
    name: barcode-3
    sequence_type: onlist
    sequence: NNNNNNNN
    min_len: 8
    max_len: 8
    onlist: !Onlist
      file_id: onlist_bc3.txt
      filename: onlist_bc3.txt
      filetype: txt
      filesize: 864
      url: https://raw.githubusercontent.com/pachterlab/qcbc/main/
tests/parsebio_wtmega96/onlist_bc3.txt
      urltype: https
      md5: 1452e8ef104e6edf686fab8956172072



      location: local
    regions: null
    parent_id: rna
  - !Region
    region_id: linker-1
    region_type: linker
    name: linker-1
    sequence_type: fixed
    sequence: ATCCACGTGCTTGAGACTGTGG
    min_len: 22
    max_len: 22
    onlist: null
    regions: null
    parent_id: rna
  - !Region
    region_id: barcode-2
    region_type: barcode
    name: barcode-2
    sequence_type: onlist
    sequence: NNNNNNNN
    min_len: 8
    max_len: 8
    onlist: !Onlist
      file_id: onlist_bc2.txt
      filename: onlist_bc2.txt
      filetype: txt
      filesize: 864
      url: https://raw.githubusercontent.com/pachterlab/qcbc/main/
tests/parsebio_wtmega96/onlist_bc2.txt
      urltype: https
      md5: 1452e8ef104e6edf686fab8956172072
      location: local
    regions: null
    parent_id: rna
  - !Region
    region_id: linker-2
    region_type: linker
    name: linker-2
    sequence_type: fixed
    sequence: GTGGCCGATGTTTCGCATCGGCGTACGACT
    min_len: 30
    max_len: 30
    onlist: null
    regions: null
    parent_id: rna
  - !Region
    region_id: barcode-1
    region_type: barcode
    name: barcode-1
    sequence_type: onlist



    sequence: NNNNNNNN
    min_len: 8
    max_len: 8
    onlist: !Onlist
      file_id: onlist_bc1.txt
      filename: onlist_bc1.txt
      filetype: txt
      filesize: 1728
      url: https://raw.githubusercontent.com/pachterlab/qcbc/main/
tests/parsebio_wtmega96/onlist_bc1.txt
      urltype: https
      md5: 5c3b70034e9cef5de735dc9d4f3fdbde
      location: local
    regions: null
    parent_id: rna
  - !Region
    region_id: primer
    region_type: custom_primer
    name: primer
    sequence_type: random
    sequence: XXXXXX
    min_len: 6
    max_len: 6
    onlist: null
    regions: null
    parent_id: rna
  - !Region
    region_id: cDNA
    region_type: cdna
    name: cDNA
    sequence_type: random
    sequence: X
    min_len: 1
    max_len: 2000000
    onlist: null
    regions: null
    parent_id: rna
  - !Region
    region_id: tso
    region_type: custom_primer
    name: tso
    sequence_type: fixed
    sequence: AAGCAGTGGTATCAACGCAGAGTGAATGGG
    min_len: 30
    max_len: 30
    onlist: null
    regions: null
    parent_id: rna
  - !Region
    region_id: ont-2



    region_type: custom_primer
    name: ont-1
    sequence_type: random
    sequence: XXXXXXXXXXXXXXXXXXXXXXXXXXX
    min_len: 27
    max_len: 36
    onlist: null
    regions: null
    parent_id: rna
  parent_id: null
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2. splitcode (Sullivan and Pachter, 2023) - splitcode is a very versatile tool for the
manipulation, searching, and extraction of sequences. Within the single-cell
workflow for lr-kallisto, splitcode is utilized to do the extraction of barcodes,
UMIs, and cNDA relative to the location of linkers, which it searches the
read sequence to find. Moreover, due to the sequencing error rates of long
read RNA-sequencing, this search for the linkers between the barcodes must
be done with error tolerance. Further, as described in Figure 4.1, the strand
orientation of the read (and the linkers) can be in any of four orientations,
forward, reverse complement, complement, and reverse, depending on where
the motor proteins ligate onto the double stranded DNA and which of the
motor proteins reaches the nanopore first. Thus, the different orientations of
the linkers with error tolerance must also be taken into account. The barcodes,
UMIs, and cDNA must then be reoriented according to the orientation of the
linker that was found in the read so that all the resulting reads are in the same
orientation for mapping. All of this preprocessing is cleanly executed within
a single configuration file and a single run of splitcode. The resulting
extracted sequences can then be piped directly to splitcode or they can be
written out to files.

1 @extract <^GTGGCCGATGTTTCGCATCGGCGTACGACT^f_read[10]>8{linker

-2f}

2 @extract <f_read[8]>{linker -2f},{linker -2f}<f_read[8]>{linker

-1f},{linker -1f}<f_read[8]>

3 @extract {linker -1f}14<f_read >0:-1

4 @extract <^CACCGGCTACAAAGCGTAGCCGCATGCTGA^c_read[10]>8{linker

-2c}

5 @extract <c_read[8]>{linker -2c},{linker -2c}<c_read[8]>{linker

-1c},{linker -1c}<c_read[8]>

6 @extract {linker -1c}14<c_read >0:-1

7 @extract 0:0<^TCAGCATGCGGCTACGCTTTGTAGCCGGTG^r_read >14{linker

-1r}

8 @extract <r_read[8]>{linker -1r},{linker -1r}<r_read[8]>{linker

-2r},{linker -2r}<r_read[8]>

9 @extract {linker -2r}8<r_read[10]>

10 @extract 0:0<^AGTCGTACGCCGATGCGAAACATCGGCCAC^rc_read >14{

linker -1rc}

11 @extract <rc_read[8]>{linker -1rc},{linker -1rc}<rc_read[8]>{

linker -2rc},{linker -2rc}<rc_read[8]>

12 @extract {linker -2rc}8<rc_read[10]>

13 groups ids tags distances locations

14 group1 linker -2f GTGGCCGATGTTTCGCATCGGCGTACGACT 3:3:3 0:0:0
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15 group1 linker -2c CACCGGCTACAAAGCGTAGCCGCATGCTGA 3:3:3 0:0:0

16 group1 linker -2r TCAGCATGCGGCTACGCTTTGTAGCCGGTG 3:3:3 0:0:0

17 group1 linker -2rc AGTCGTACGCCGATGCGAAACATCGGCCAC 3:3:3

0:0:0

18 group2 linker -1f ATCCACGTGCTTGAGACTGTGG 3:3:3 0:0:0

19 group2 linker -1c TAGGTGCACGAACTCTGACACC 3:3:3 0:0:0

20 group2 linker -1r GGTGTCAGAGTTCGTGCACCTA 3:3:3 0:0:0

21 group2 linker -1rc CCACAGTCTCAAGCACGTGGAT 3:3:3 0:0:0

22

23 @nest

24 @extract {linker -2f}<splitcode_umi_barcode_cDNA >0:-1

25 @extract {linker -2c}<~c~splitcode_umi_barcode_cDNA >1:-1

26 @extract {linker -2r}<~r~splitcode_umi_barcode_cDNA >2:-1

27 @extract {linker -2rc}<~splitcode_umi_barcode_cDNA >3:-1

28 group ids tags distances locations

29 group1 linker -2f GTGGCCGATGTTTCGCATCGGCGTACGACT 3:3:3 0:0:0

30 group1 linker -2c CACCGGCTACAAAGCGTAGCCGCATGCTGA 3:3:3 1:0:0

31 group1 linker -2r TCAGCATGCGGCTACGCTTTGTAGCCGGTG 3:3:3 2:0:0

32 group1 linker -2rc AGTCGTACGCCGATGCGAAACATCGGCCAC 3:3:3

3:0:0

Listing 4.2: example splitcode configuration file for LR-SPLiT-Seq

In this example splitcode configuration file, note that each orientation of
linker is used with error tolerance of 3. Further, note that we insert linker2
in the orientation the read is in into the extraction in the first half of the
configuration file prior to @nest and that the orientation of the reads are
converted to all be forward oriented in the portion of the configuration file
following @nest. Here we use the prefix linker2 to identify the orientation
and then use one of the following to reorient the reads accordingly: with
𝑐 complements the extraction, 𝑟 reverses the extraction, and reverse
complements the extraction.

1 splitcode -c splitcode.config -t 32 input.fastq.gz --x-only

--gzip;

Listing 4.3: running splitcode for barcode

3. lr-kallisto bus (Rebekah K. Loving et al., 2025) - lr-kallisto bus per-
forms the pseudoalignment step of mapping the reads to the transcriptome.
This can be performed on either bulk data (-x bulk) or on single cell data,
where a technology or technology string is needed. For a technology string,
the following format must be followed:
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-x barcode_file#,start_position,end_position:

UMI_file#,start_position,end_position:

cDNA_file#,start_position,end_position.

For example: -x ‘0,10,34:0,0,10:0,0,0’ specifies a barcode of length 24 in the
first file starting at position 10 in each read with a UMI in the first file as well
starting at position 0 with length 10, and that the remainder of the read is
the cDNA. lr-kallisto bus will output the following files: output.bus,
which contains the bus records of the pseudoalignment, novel.fastq, which
contains the reads that did not map and the reads that are considered novel
due to properties of their k-mers that mapped, and run_info.json, which
includes mapping statistics and metainformation regarding the run including
software versions.

1 kallisto bus -x ’1,0,24:2,0,10:0,0,0’ --long --threshold 0.8

--unmapped -i index_k -63.idx -o output_dir -t 4 input.

fastq

Listing 4.4: running lr-kallisto bus

4. lr-kallisto quant –pseudobam –long (Rebekah K. Loving et al., 2025)-
This command allows you to both acquire the bulk-level or pseudobulk-
level quantifications as well as the pseudobam mappings of the alignments.
The outputs are an abundance.tsv with transcript-level quantifications, a
pseudoalignments.bamwith BAM formatted alignments including CIGAR
Strings, novel.fastqwith reads considered novel transcript candidates, and
run_info.json with metadata for the run.

1 kallisto quant -i index_k -63.idx -t 4 --pseudobam --long --

output output_dir input.fastq

Listing 4.5: running lr-kallisto quant

5. kb count (Sullivan, Min, et al., 2023) (Rebekah K. Loving et al., 2025) -
kb is a python wrapper for running kallisto and bustools for either bulk or
single-cell RNA-seq data. Thus, with kb count, we can go from splitcode
processed reads to quantifications in one command. We could even go from
raw reads to quantifications in one command if we used splitcode’s piping.
Here we show the command using the output from splitcode, as having the
saved processed fastq is useful for other purposes.
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1 kb count -k 63 -t 4 --long --threshold 0.8 -i index_k -63.idx

-g ref/index_k -63_t2g.txt -o kb_outdir -x ’

0,10,34:0,0,10:0,0,0’ splitcode_umi_barcode_cDNA.fastq.gz

--opt-off --overwrite --quant-umis --tcc -w onlist.txt --

filter bustools --filter-threshold 150

Listing 4.6: running lr-kallisto with kb count

1 reads=’igvf_b01_13G.fastq.gz’

2 path_to_lr_kallisto=’kallisto_v0.51.0/kallisto/build/src/

kallisto’

3 path_to_bustools=’bustools/build/src/bustools’

4 output=’b01_nanopore_13G_single_cell’

5 ref=’ref/mm39’

6 tech=’1,0,22:1,22,32:0,0,0’

7

8 kb ref-i ${ref}_k-63.idx -k 63 -f1 ${ref}.cdna.fa -g ${ref}.

t2g ${ref}.fa.gz ${ref}.gtf.gz

9

10 ${path_to_lr_kallisto} bus -x ’1,0,24:2,0,10:0,0,0’ --long --

threshold (-r) 0.8 -i ${ref}_k-63.idx -o ${output} -t 4 ${

reads}

11

12 ${path_to_bustools} sort -t 4\

13 ${output}/output.bus \

14 -o ${output}/sorted.bus;

15

16 ${path_to_bustools} whitelist -o ${output}/whitelist.txt \

17 ${output}/sorted.bus;

18

19 ${path_to_bustools} correct -w ${output}/whitelist.txt \

20 -o ${output}/corrected.bus ${output}/sorted.bus;

21

22 ${path_to_bustools} count ${output}/corrected.bus \

23 -t ${output}/transcripts.txt \

24 -e ${output}/matrix.ec \

25 -o ${output}/count -m \

26 -g ${ref}.t2g;

27

28 ${path_to_lr_kallisto} quant-tcc -t 4 \

29 ${output}/count.mtx \

30 -i ${ref}_k-31.idx \

31 -e ${output}/count.ec.txt \

32 -o ${output};



71

33

34 ${path_to_bustools} count ${output}/corrected.bus \

35 -t ${output}/transcripts.txt \

36 -e ${output}/matrix.ec \

37 -o ${output}/gcount --em --genecounts \

38 -g ${ref}.t2g;

Listing 4.7: the commands wrapped in kb count –long

4.4 Future explorations
There are many exciting applications of both lr-kallisto and dn-lr-kallisto to be
explored. Here we present some ideas for applications and analysis that can imme-
diately be pursued with available data.

Exome capture vs non-exome capture in IGVF Bridge data
While we explored some of the differences between exome capture and non-exome
capture in the IGVF Bridge data, this could be extended significantly to fully un-
derstand the impact of exome capture on the created datasets ability to perform
exploratory analysis. This could be done using different versions of annotations to
analyze the differences in expression between exome capture and non-exome cap-
ture, while we showed there is a signficant difference in expression of lnc-RNAs
which we know many of these lnc-RNAs have functional properties, we did not thor-
oughly explore the difference in expression across coding proteins, which would be
a useful analysis to explore the bias that exome capture may be creating even in the
coding sequences. Furthermore, transcript discovery techniques could be applied to
the analysis of exome capture and non-exome capture. An investigation of whether
transcript discovery in protein coding regions improves or degrades with the use of
exome capture would be an impactful result.

Differential transcript expression between cell-types and strains
An exciting next avenue of exploration of the IGVF 8cube data is a classical analysis
of the differential expression between cell-types, tissues, and strains in the long
reads and how it differs from paired short reads from the same cells will be done and
will show the impact of long read RNA-sequencing on transcript-level expression
(Rebboah et al., 2025). We will also show differential expression at the pseudobulked
cell-type level and the pseudobulked tissue level between individuals and between
strains.
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Discovery of novel candidate transcripts in PBMC
Furthermore, we can also apply our dn-lr-kallisto workflow to identify possible novel
transcripts using unmapped reads workflow with passing number of supporting
reads.
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C h a p t e r 5

FUSION GENE AND IMMUNE CELL RECEPTOR SEQUENCE
DISCOVERY

5.1 Abstract
Gene fusions and chimeric RNAs are now known to have important biological
functions as well as critical in the tumorigenesis of cancers. With the reduction of
cost in long read RNA-seq and the advances in liquid biopsies, early and sensitive
detection of cancers is becoming possible. However, with these clinical applications,
the demand for higher accuracy, not only low false negative rate, but also low false
positive rate, gene fusion detection and analysis methods grows. Properly identifying
gene fusions for targeted therapies becomes essential. Immune therapies play a
significant role in current cancer therapeutics. Thus, the simultaneous study and
identification of novel gene fusions and immune receptor sequences in the same
RNA-seq sample and with a standard approach to both analyses that is also efficient
for both bulk and single-cell analysis would be useful. Here, we present fugi a tool
to meet this challenge with preliminary results that we believe will continue with
full benchmarking.

5.2 Introduction
Gene fusions and chimeric RNAs have been found to play an important role in both
healthy and diseased tissue. In particular, gene fusions have been implicated as
playing an important and complex role in both tumorigenesis and tumors (Hanahan
and Weinberg, 2000) (Stratton, Campbell, and Futreal, 2009) (Mertens et al., 2015).
These gene fusions are formed through chromosomal rearrangements and other ab-
berant rearrangements of the genome (Figure 5.1). Long read RNA sequencing in
cancer cells and immune cells is a powerful technique to detect chromosomal rear-
rangements and immune sequence rearrangements, allowing for de novo discovery
of actively expressed fusion genes and immune cell receptor sequences, which have
important implications for personalizing medicine and understanding the fragile
sites in the genome that may be particular susceptible to causing cancer (Yunis
and Soreng, 1984) (Rowley, 1973) (Chin, Andersen, and Futreal, 2011). Here
we focus on the first step of analyzing these important RNA sequences: detecting
gene fusions and immune receptor sequences from raw long read RNA sequenc-



76

ing data. We perform an initial benchmark of gene fusion detection which needs
expanded within pizzly (Melsted et al., 2017), initially designed for short reads,
to determine associated breakpoints. However, from the initial benchmarking of
fusion gene pairs, lr-kallisto+pizzly+extensions (termed fugi for fusion genes and
immune sequence discovery with lr-kallisto) performed 100% accurately with re-
spect to spike-ins, which placed it alongside CTAT-LR-Fusion and pbfusion as the
best at detecting gene fusions in ground truth spike-ins (Qin et al., 2025) (Miller
et al., 2022). Moreover, when neglecting order of pairs (which should be resolved
with full implementation of the workflow within pizzly), fugi achieved greater than
.9 mean F1 score, making it comparable to leading gene fusino tools, in simulation
data for gene fusion pairs with at least 2% sequencing error.

Figure 5.1: pizzly Figure 1 used under CC-BY 4.0 Interntional license.

pizzly and lr-kallisto together then allow for the accurate quantifying of fusion genes
abundances. Building on the pseudoalignment idea that simplifies and accelerates
transcript quantification and extended both accuracy and efficiency to long read
RNA-seq quantification with lr-kallisto, we introduce a novel approach to fusion
detection where we inspect reads that do not pseudoalign due to conflicting matches
of k-mers. We further extend this method to also retrieve immune sequences
and immune sequence rearrangements from immune receptors. The method and
software, called fugi, filters false positives, assembles new transcripts from the fusion
and immune sequence reads, and reports candidate fusions and immune receptor
sequences. With fugi, fusion detection and immune sequence analysis with long
read RNA-Seq reads can scale to the state-of-the-art datasets. fugi’s scalability and
accuracy make it suitable for the analysis of large cancer gene expression databases

https://creativecommons.org/licenses/by/4.0/
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and for clinical use (Li et al., 2009) (Stransky et al., 2014).

5.3 Results
We first performed benchmarking with positive controls, using the high-quality
PacBio spike-in control with SeraCare v4 Fusion Reference Control, fugi detected
all spike-in gene fusions in the PacBio monomer dataset, joining only two other
tools which achieved this, CTAT-LR-Fusion and pbfusion (Qin et al., 2025) (Miller
et al., 2022).

Figure 5.2: Comparison of fusion detection in SeraCare gene fusion spike-in PacBio
Monomer dataset. CTAT-LR-Fusion, lr-kallisto-fugi, and pbfusion are able to detect
all synthetic fusions. However, JAFFAL and FusionSeeker each miss a single
synthetic fusion, while LongGF misses four fusion gene pairs.

We performed benchmarking with data from the CTAT-LR-Fusion paper, including
pbsim simulations of HiFi PacBio data and 98% sequencing accuracy ONT data.
lr-kallisto –fusion, fugi, detected gene fusions with a mean F1 score greater than
.9 in ONT and PacBio simulations using gencode annotation version 22 (Figures
5.2 and 5.3).

Candidate TCRs in PacBio HiFi Kinnex PBMCs
Here we include preliminary results for the discovery of T-cell receptor rearrange-
ments in PacBio HiFi Kinnex PBMCs, where we discovered 17,000 molecules with
TCR-related regions. The alignments clearly indicate the presence of 𝛽 molecules
and 𝛾 molecules with 75% matching in variable regions and 98% in joining regions
with the constant regions between the variable and the joining regions not annotated
but a gap indicated for them. If a read contains an unannotated splice junction
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Figure 5.3: Comparison of fusion detection in pbsim simulated gene fusions in HiFi
PacBio datasets. lr-kallisto-fugi is able to detect gene fusions with a mean F1 score
greater than .9 when allowing reverse; with the addition of pizzly to the workflow,
the mean score for strict ordering of gene pairs should increase to greater than .9
mean F1 score as well.

Figure 5.4: Comparison of fusion detection in pbsim simulated gene fusions 98%
sequencing accuracy ONT datasets. lr-kallisto-fugi is able to detect gene fusions
with a mean F1 score greater than .9 when allowing reverse; with the addition
of pizzly to the workflow, the mean score for strict ordering of gene pairs should
increase to greater than .9 mean F1 score as well.

it is displayed in read for that pseudoalignment, reads that contain only annotated
regions and splices of the genome are shown in blue. On the left hand side of each
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plot, we include the transcript name (gene name). On the right hand side of the plot,
we include the percentage of the covered portion of the read which is an exact match
to the transcript. Thus, the 75% match in variable regions is consistent with these
regions being highly recombined for immune function. Further, we also include the
length of portion of the read consumed by this match as well as starting position in
the read corresponding to matching with the transcript.

Method for Candidate TCRs We begin by extracting the TCR gene sequences from
the reference annotation. We then build an index from the TCR gene sequences
which also d-lists the rest of the genome. We then extract the sequences which
pseudoalign to the TCR gene index.

1

2 cat gencode.v48.chr_patch_hapl_scaff.annotation.gtf | grep "

gene_type \"TR_" > TR_genes.gtf

3

4 kb ref -k 47 -i TR_genes_k -47.idx -g TR_genes_k -47.t2g -f1

TR_genes.cdna.fa GRCh38.p14.genome.fa.gz TR_genes.gtf --opt-

off --overwrite

5

6 kb extract --extract_all_fast -i TR_genes_k -47.idx -g TR_genes_k

-47.t2g -o PBMC_HiFi_3prime_TR_genes_k -47 PBMC_HiFi_3prime.

fastq -k 47 --opt-off

Listing 5.1: building TCR genes indices and extracting TCR sequences

We can now pseudoalign with pseudobam and fusion options the sequences that
were extracted as pseudoaligning to the TCR genes.

1 kallisto_long_pseudobam/kallisto/build/src/kallisto quant -i

TR_genes_k -11.idx --long --fusion --union --pseudobam -o

PBMC_HiFi_3prime_TCR PBMC_HiFi_3prime_TR_genes_k -45/all/1.

fastq.gz

Listing 5.2: using lr-kallisto + pseudobam + fusion to map TCRs

Below we include a subset of the pages of TCR results generated by the workflow
included in the code at https://github.com/bound-to-love/fugi.git for the
PacBio HiFi Kinnex data we analyzed (see Data and Code Availability).

https://github.com/bound-to-love/fugi.git


600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.1%, 512, 0
Read: molecule/8165599

600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.1%, 512, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.3%, 512, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.3%, 512, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.5%, 512, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.5%, 512, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.1%, 512, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.1%, 512, 0

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 44

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 44

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 44

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 44

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 525

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 525

490 500 510 520 530 540
+3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 525

490 500 510 520 530 540
Genomic Position +3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 525



600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.0%, 508, 0
Read: molecule/8167527

600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.0%, 508, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.2%, 508, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.2%, 508, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.4%, 508, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.4%, 508, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.0%, 508, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.0%, 508, 0

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 40

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 40

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 40

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 40

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 522

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 522

490 500 510 520 530 540
+3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 522

490 500 510 520 530 540
Genomic Position +3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 522



600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.0%, 508, 0
Read: molecule/9673287

600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.0%, 508, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.2%, 508, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.2%, 508, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.4%, 508, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.4%, 508, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.0%, 508, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.0%, 508, 0

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 40

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 40

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 40

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 40

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 522

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 522

490 500 510 520 530 540
+3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 522

490 500 510 520 530 540
Genomic Position +3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 522



600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.0%, 508, 0
Read: molecule/10015070

600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.0%, 508, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.2%, 508, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.2%, 508, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.4%, 508, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.4%, 508, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.0%, 508, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.0%, 508, 0

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 40

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 40

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 40

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 40

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 522

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 522

490 500 510 520 530 540
+3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 522

490 500 510 520 530 540
Genomic Position +3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 522



600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.1%, 511, 0
Read: molecule/12110941

600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.1%, 511, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.3%, 511, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.3%, 511, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.5%, 511, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.5%, 511, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.1%, 511, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.1%, 511, 0

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 43

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 43

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 43

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 43

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 525

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 525

490 500 510 520 530 540
+3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 525

490 500 510 520 530 540
Genomic Position +3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 525



400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 67.4%, 387, 0
Read: molecule/17829287

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 67.4%, 387, 0

600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 69.8%, 387, 0

600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 69.8%, 387, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 70.0%, 387, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 70.0%, 387, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 70.3%, 387, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 70.3%, 387, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 71.1%, 387, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 71.1%, 387, 0

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 68.8%, 384, 0

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 68.8%, 384, 0

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 406

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 406

490 500 510 520 530 540
+3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 406

490 500 510 520 530 540
Genomic Position +3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 406



600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.1%, 512, 0
Read: molecule/19492172

600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.1%, 512, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.3%, 512, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.3%, 512, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.5%, 512, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.5%, 512, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.1%, 512, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.1%, 512, 0

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 44

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 44

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 44

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 44

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 526

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 526

490 500 510 520 530 540
+3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 526

490 500 510 520 530 540
Genomic Position +3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 526



400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 71.7%, 446, 0
Read: molecule/19877658

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 71.7%, 446, 0

600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 73.8%, 446, 0

600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 73.8%, 446, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 74.0%, 446, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 74.0%, 446, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 74.2%, 446, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 74.2%, 446, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 74.9%, 446, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 74.9%, 446, 0

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 72.9%, 443, 0

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 72.9%, 443, 0

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 459

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 459

490 500 510 520 530 540
+3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 459

490 500 510 520 530 540
Genomic Position +3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 459



600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.0%, 508, 0
Read: molecule/19879879

600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 77.0%, 508, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.2%, 508, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 77.2%, 508, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.4%, 508, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 77.4%, 508, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.0%, 508, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 78.0%, 508, 0

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 40

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 40

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 40

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 40

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 522

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 522

490 500 510 520 530 540
+3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 522

490 500 510 520 530 540
Genomic Position +3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 522



600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 76.5%, 498, 0
Read: molecule/26064425

600 500 400 300 200 100 0
+3.835e7

ENST00000390344.2 (TRGV5) 76.5%, 498, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 76.7%, 498, 0

3700 3800 3900 4000 4100 4200 4300 4400 4500
+3.835e7

ENST00000390345.2 (TRGV4) 76.7%, 498, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 76.9%, 498, 0

8500 8600 8700 8800 8900 9000 9100
+3.835e7

ENST00000390346.2 (TRGV3) 76.9%, 498, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 77.5%, 498, 0

2900 3000 3100 3200 3300 3400 3500
+3.836e7

ENST00000426402.2 (TRGV2) 77.5%, 498, 0

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 30

400 500 600 700 800 900
+3.833e7

ENST00000390343.2 (TRGV8) 73.1%, 468, 30

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 30

7600 7700 7800 7900 8000 8100
+3.836e7

ENST00000390348.2 (TRGV1) 74.2%, 465, 30

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 512

380 390 400 410 420 430
+3.8253e7

ENST00000390333.1 (TRGJ2) 98.0%, 50, 512

490 500 510 520 530 540
+3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 512

490 500 510 520 530 540
Genomic Position +3.8269e7

ENST00000390337.1 (TRGJ1) 98.0%, 50, 512
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5.4 Methods
Here we describe the implementation of fusion detection in lr-kallisto and pizzly
for long reads, which we term fugi (Loving et al., 2024; Melsted et al., 2017).
First the fusions are detected with lr-kallisto. Since a fusion presents in a long read
as possessing ends mapping to different genes, lr-kallisto can detect these fusions
when the segment of the read belonging to each gene map but the intersection is
empty. The occurrence of all mapping k-mers overlapping between the two genes
in the fusion gene is possible, but highly unlikely. pizzly then takes the fusions
output by lr-kallisto in the fusion.txt and performs an annotation and genome
aware analysis of the associated reads by performing alignment of the read across the
detected junctions. The annotation aware aspect allows pizzly to identify potential
false positives detected from repetitive regions in the genome.

lr-kallisto –fusion stage
The fugi algorithm - fugi is built within the lr-kallisto framework and, thus, builds
on the transcript de Bruijn Graph (t-DBG) and pseudoalignment methods within
kallisto, extending the enhancements already put in place during the development
of pizzly for fusion detection via pseudoalignment. In the development of pizzly,
kallisto’s k-mer based index for the reference transcriptome was exploited for the
first time to detect candidate fusions when computing a pseudoalignment for reads,
if a read did not pseudoalign (Figure 5.6). In kallisto, for each k-mer, the index
is a hash map that records the set of transcripts containing this k-mer, called the
transcript compatibility class (TCC). In general, matching k-mers are supported by
at least one transcript which is the intersection of the TCCs for the read, causing the
intersection to be non-empty and contain the true transcript for the read. In the case
of long reads, this is not always true, due to the higher prevalence of sequencing
errors. Thus, when the intersection is empty, we use the mode of mapping k-mers
instead of the intersection.

However, for long reads when we are in fusion detection mode, we will again use the
intersection instead of the mode for the fusion detection stage. To perform fusion
detection with lr-kallisto, we must again handle reads where the intersection of
mapping k-mers is empty. However, just as in lr-kallisto where the mapping needed
handled slightly differently for long reads vs for short reads, with long read fusion
detection the mapping also must be handled slightly differently. In these instances,
we must search the entirety of the read for mapping k-mers instead of using the
jumping procedure used in short reads, searching the read for disjoint regions which
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Figure 5.5: pizzly Figure 2 used under CC-BY 4.0 Interntional license.

map with non-empty intersections. We accomplish this by using subsequences of
the read, jumping by the length of the subsequences which map to a contig. We
then restart the search at the end of the mapping region until we reach the end
of the read. In the case of fusion searches, we are looking for a single break in
the read which divides it into two mapping regions, mapped to disjoint transcript
compatibility classes. After the initial mapping of the unmapped reads to find fusion
reads, we can then filter the produced pseudobam to increase our true positive rate
and decrease our false positive rate or we can apply pizzly, which we describe next.
In the case of pizzly, for reads or read pairs that span a fusion breakpoint, the TCCs
from each side of the breakpoint will again have a non-empty TCC intersection, but
the intersection of these non-empty TCCs would be empty since they are TCCs for
different genes. Therefore, these reads would typically be discarded from further
consideration by kallisto. However, when running lr-kallisto or kallisto in fusion
finding mode, kallisto identifies reads and read pairs whose intersection of TCCs
is empty, where there are mapping k-mers. These reads become fusion candidates
which are output to fusion.txt when either one of the following holds:

• (1, for paired-end reads): each read has a non-empty TCC intersection sep-
arately, but combined the intersection of the paired-end reads is empty (as

https://creativecommons.org/licenses/by/4.0/
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shown in Figure “paired fusion reads,” where the reads come from opposite
sides of the fusion junction) (Figure 5.6)

• (2, for long read or split case): one of the reads or the long read can be split into
two parts such that the first part of the read has a non-empty TCC intersection
and the remainder of the read, along with the other read from the pair, has a
non-empty EC intersection (this is consistent with Figure “split fusion reads,”
where one of the reads spans the fusion junction). When a potential split of
the reads has been identified, kallisto checks all matching k-mers and requires
that the intersection of the union of TCCs on either side is empty. This last step
lowers the false positive rate that can be increased by reads from unannotated
transcripts resembling fusions between related transcripts. (Figure 5.6)

All read pairs matching these criteria are saved along with supporting information
about the matching transcripts.

pizzly processing of fusion.txt
pizzly can now be applied to fusion.txt to perform a genome annotation aware
analysis of the candidate fusion breakpoints. pizzly uses a transcriptome annotation
in the form of a GTF, which includes functional annotation of genes. For paired-end
reads, the input to pizzly is the set of read pairs that kallisto detected as candidate
fusions and, for long reads or single-end reads, the input is the read.

Figure 5.6: pizzly Figure 3 used under CC-BY 4.0 Interntional license.

https://creativecommons.org/licenses/by/4.0/
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The first step pizzly performs is evaluating each read independently and rejecting
false positives, including reads that map to multiple genomic locations (Figure 5.7).
kallisto and lr-kallisto can also produce false positives that are due to incomplete
annotations, where two distinct transcripts from the same gene are mapped to by
kallisto in a disjoint manner that is due to a novel transcript in the data which
alternatively splices from what is recorded in the annotation. These reads are
discarded from the pizzly analysis. Another class of false positive candidate fusion
can be created by sequencing error (especially in the case of long reads) or by SNPs
or other mutations that create small mismatches which result in the mapping of a
k-mer to a similar gene that is disjoint in TCC from the rest of the read. pizzly
filters these reads not through annotated gene families or groupings, but through
approximate sequence alignment filtering. Matching k-mers from each end of the
read are considered, where instead of considering approximate matches to the whole
genome, only the listed TCCs for each end of the read need to be considered. If
approximate matches are found between the sequences of the transcripts within the
TCCs between the two ends, then the read is discarded as a false positive.

Figure 5.7: pizzly Figure 4 used under CC-BY 4.0 Interntional license.

Next, on either side of the candidate fusion breakpoint, the read or reads must fully
align with their transcript or gene of origin.

After this filtering, the candidate fusions are aggregated on a gene-to-gene fusion
level. The predicted fusions are filtered according to the number of reads supporting
the fusion breakpoint. For split reads (which includes all long reads), the fusion
breakpoint must be within 10 bp of an exon boundary in both genes (Figure 5.8). For
fusion breakpoints that are supported by pairs in paired-end reads, the distance to the
nearest internal exon boundary must be consistent with the insert length provided

https://creativecommons.org/licenses/by/4.0/
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to pizzly. After this final filtering, pizzly reports the number of paired and split
reads supporting each fusion breakpoint as well as each potential transcript fusion
breakpoint, the number of reads supporting the transcript-level fusion as well as the
sequence of the fused transcripts and the original reads which support it.

Figure 5.8: pizzly Figure 5 used under CC-BY 4.0 Interntional license.

In the case of immune cell receptor sequence discovery, we are taking reads which
map to the immune cell receptor sequences and then mapping them with pseudobam
to find the rearrangements. Here we programmatically look for repeated breaks that
divide the receptor sequence into the rearrangement pattern that occurred to create
the unique receptor sequence using the union of disjoint regions of k-mer TCCs.

5.5 Discussion
The accurate and efficient search for immune receptor sequences and gene fusions
in long reads is still a significantly unsolved challenge with CTAT-LR-fusion (Qin
et al., 2025) coming the closest thus far. While fugi is a work in progress, we
have clearly demonstrated its utility to the problem of gene fusions and immune cell
receptor sequence discovery. Moreover, the same methodological approach within
k-mer matches is proving widely useful in a previously unexploited algorithmic
approach to mapping long reads across de novo transcript discovery, fusion gene
discovery, and immune cell receptor discovery. This simple algorithm maps using
the non-empty intersections of “region" compatible segments of the molecule to
find the sequences of origin for V-D-J combinations, unannotated transcripts, or
other genomic rearrangements. While some of the non-empty intersections may be
spurious, spurious non-empty intersections will not have the read count support for
further analysis.

https://creativecommons.org/licenses/by/4.0/
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5.6 Future Directions and Development
While this work needs further development, the current results demonstrate state-of-
the-art performance in gene fusion detection and promise in retrieving and annotat-
ing immune receptor sequences, especially with the extension of improved immune
sequence annotation and addition of klue, an unpublished tool for distinguishing
unique k-mers and de novo assembly of t-DBG, to the workflow for improved clon-
ality analysis. Due to the building of fugi on lr-kallisto and pizzly, this work will
naturally extend to single-cell resolution. Thus, the immune sequence discovery
application will provide an unbiased, broad analysis workflow for immune response
in healthy and diseased scenarios to increase our knowledge of building immunity
and healthy immune response as well as the drivers behind autoimmune diseases
and cancers with joint analysis of gene fusions and immune response facilitated by
fugi with non-specific RNA-seq library preparation of liquid or tissue biopsies.
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5.7 Data and Code Availability
1 README (Last Updated 02/20/2024)

2 from \hyperref{https://downloads.pacbcloud.com/public/dataset/

Kinnex-single-cell-RNA/}

3 ********************

4 INTRODUCTION

5 ********************

6

7 This README file describes the contents in this directory.

8

9 The dataset generated here contains single-cell RNA-Seq data

generated

10 using the MAS-Seq for 10x Single Cell 3’ kit ("MAS") [1] and the

11 KinnexTM single-cell RNA kit ("Kinnex") [2].

12

13 The MAS-Seq libraries were sequenced on the S e q u e l II/IIe and

Revio

14 systems and processed using S M R T Link v11.1 [3] or BioConda [4].

15

16 The Kinnex libraries were sequenced on the Revio system and

processed using

17 SMRT Link v13.1 [5].

18

19 To learn more about Kinnex, visit: https://pacb.com/kinnex

20

21

22 ********************

23 SAMPLE

24 ********************

25

26 All PBMC samples were purchased from BioIVT. Either fresh or

cryopreserved.

27

28 All HG002/GM24385 10k cells were purchased from Coriell.

29

30 All cDNA libraries were generated using the 10x Chromium Next GEM

31 Single Cell 3 kit (v3.1) or Single Cell 5’ kit (v2) with a 10x

Chromium

32 Next GEM Chip G on a 10x Chromium X system.

33

34 Below is a description of the kits, systems, samples used for each

directory.

35
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36 DATA-Revio-Kinnex-PBMC-10x3p : Kinnex kit, Revio, PBMC, 10x 3’ kit

37

38 https://downloads.pacbcloud.com/public/dataset/Kinnex-single-cell-

RNA/DATA-Revio-Kinnex-PBMC-10x3p/2-DeduplicatedReads/scisoseq

.5p--3p.tagged.refined.corrected.sorted.dedup.bam

39

40 bedtools bamtofastq -i scisoseq.5p--3p.tagged.refined.corrected.

sorted.dedup.bam -fq PBMC_HiFi_3prime.fastq

Listing 5.3: Description of PBMC PacBio HiFi Kinnex data and bedtools conversion
command for bamtofastq

The code for fugi is available at https://github.com/bound-to-love/fugi.
git.
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C h a p t e r 6

SUMMARY AND FUTURE DIRECTIONS

6.1 Summary
In this thesis, we have introduced three tools for the analysis of long read RNA-
seq transcriptomics: lr-kallisto for mapping and quantification, dn-kallisto
for de novo transcriptomics, and lr-kallisto+pizzly (fugi) for fusion detection and
immune receptor sequence discovery in long read RNA-seq. Each of these tools
offers a scalable and high fidelity approach to a challenge in long read RNA-seq
analysis. In each case, we have leveraged the advantages of pseudoalignment with
adaptations for long reads, providing innovations to the methodology that provide
solutions to important biological problems. We have confirmed that, just as the
application of pseudoalignment in short reads leads to scalability and efficiency
without sacrificing accuracy, with long-reads scalability is achieved and accuracy is
equivalent, and in some cases even improved in the new lower sequencing error rate
generation of newer long read RNA-sequencing technology.

6.2 Discussion
Recently, there have been significant technological advances in long read RNA-
sequencing increasing the length and quality of reads and improving the machine
learning basecalling algorithms leading to higher sequencing accuracy in addition
to improvements due to advances in chemistry used and consensus sequencing. The
application of these workflows presented in this thesis to both existing data and
new data will have broad impacts across different fields of study as long read RNA-
sequencing is used across various settings from clinical research to developmental
biology to metagenomics.

6.3 Future directions
Future directions for lr-kallisto, dn-kallisto, and fugi include:

1. Applying lr-kallisto to analysis of both single-cell and bulk datasets to perform
more sensitive and accurate differential transcript usage analysis than was pre-
viously possible. This has already started to occur with long read transcrip-
tomics and the application of transcript discovery tools and lr-kallisto
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revealing ancestral bias in the genome annotation (Clavell-Revelles et al.,
2025). lr-kallisto will be highly useful in the reanalysis of long read
RNA-seq in a uniform workflow for true comparison of differential transcript
usage and for transcript discovery in large datasets that many long read tools
have difficulty scaling to.

2. While dn-kallisto requires further benchmarking, we have, however, shown
the usefulness of pseudoalignment for reference-guided transcript discovery.
This approach yields both efficiency and confidence advantages to traditional
approaches to transcript discovery. After a thorough benchmarking is per-
formed, the work we have done will make it possible to perform personalized
transcriptome discovery, which may have significant medical and health ap-
plications.

3. fugi is the first tool analyzing both gene fusions and immune cell receptor
sequencing with pseudoalignment. We have demonstrated its ability to detect
and align gene fusions and T-cell receptor sequences. While more bench-
marking is needed to fully quantify it’s performance across the spectrum of
challenges in these areas, our current results show the feasibility and advan-
tages of the approach. This will allow for a thorough benchmark of various
applications of this tool to gene fusion detection and immune cell receptor de-
tection with simulations and real data. We foresee that a careful analysis of the
biases that may be present in TCR-seq and other methods that select for T-cell
receptor sequences prior to sequencing, will provide further improvements in
accuracy beyond those we have already achieved.
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