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ABSTRACT

Gravitational waves now serve as a powerful tool for studying physics of compact
objects, including black holes and neutron stars. When two compact objects merge,
they emit gravitational waves that encode information about their masses, spins,
and orbital dynamics. Ground-based detectors capture these signals, allowing us
not only to measure the properties of individual mergers but also to characterize
the population properties of black holes and neutron stars. In this thesis, I present
a collection of works using real and simulated gravitational wave observations
of compact binary coalescences to study the physics of black holes and neutron
stars, and the implications these observations have on our broader understanding of
astrophysics and fundamental physics.

The first part of this thesis is background material reviewing some of the theory
behind gravitational waves. The second part focuses on measuring the physical prop-
erties of a compact binary coalescence detected in gravitational wave data. This
includes the methods and models used in parameter estimation and a presentation
of the properties of detections in the fourth Gravitational Wave Transient Catalog
(GWTC-4). The third part of this thesis turns to measuring and extracting astrophys-
ical information from the population properties of compact binaries. This features
the astrophysical distributions of binary black holes as inferred from GWTC-3 and
GWTC-4. I also present studies measuring specific aspects of the binary black
hole mass and spin distributions, and the implications these results have for under-
standing binary black hole formation channels and stellar astrophysics. This section
additionally features applications of population inference to studies of large-scale
structure and predictions for the gravitational wave stochastic background, as well
as technical discussions of the methods and custom libraries used to implement
population analyses and potential biases associated with commonly-used methods.
The fourth part explores how properties of dense nuclear matter are encoded in
observations of neutron stars. This section includes studies using our knowledge
of the nuclear equation of state to classify low-mass compact binary mergers, and
results from using gravitational waves and electromagnetic observations of neutron
stars to measure the equation of state and neutron star population properties.
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mass model, assuming a MD redshift model with uncertain 𝑅0 and
𝛾. Current and projected sensitivity curves are included for reference. 192

12.7 Impact of the inclusion of higher order modes in the waveform model
employed to evaluate theΩ𝐺𝑊 spectrum. On the left: 95% confidence
on the spectrum including the uncertainty on the PLPP mass model
and the local merger rate, assuming a fixed MD redshift evolution.
On the right: percent difference %ΔΩ𝐺𝑊 ( 𝑓 ) between Ω𝐺𝑊 spectra
calculated using the same event samples, shown as dashed and dotted
curves on the left panel. . . . . . . . . . . . . . . . . . . . . . . . . 198

13.1 Combined sky localization map of the O3 BBH events considered
in the analysis. The sky localization of each event is generated with
Bayestar [499] from the PE posterior samples for the declination and
the right ascension. The map is created with the Healpy package
[600, 259]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

13.2 Combined sky localization map of the synthetic BBH events that are
used to build the fiducial power spectrum. Their isotropic distribution
in the sky is shown by the map. . . . . . . . . . . . . . . . . . . . . 204

13.3 The observed power spectrum of the O3 BBH events considered in the
analysis (red curve) and the fiducial power spectrum obtained from
the 100 synthetic sets under the isotropic hypothesis (black curve).
The gray-filled regions denote 1 – 3𝜎 deviations from the mean. . . . 206

13.4 The cumulative distribution of observed p-values for the 𝐶𝑙 . The
black solid line indicates the expected distribution under the isotropic
hypothesis. The gray-filled regions correspond to 1 – 3𝜎 deviations
from the expected distribution. . . . . . . . . . . . . . . . . . . . . . 207
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13.5 The observed correlation function of the O3 BBH events (red curve)
and the fiducial correlation function under the isotropic hypothesis
(black curve). The gray-filled regions denote 1 – 3𝜎 deviations from
the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

14.1 𝑝value vs uncertainty in difference in log-likelihood averaged over the
posterior distribution (⟨Δ ln L̂⟩). For unbiased analyses at a given
value of ⟨Δ ln L̂⟩, we expect 𝑝value to follow a uniform distribution in
[0, 1]. The upper panel shows a combined 𝑝value for all the points in
the histogram falling within that range of ⟨Δ ln L̂⟩. We note that this
is satisfied for ⟨Δ ln L̂⟩ ≲ 1, however, when the uncertainty is larger
than that value, the analysis is biased on average. . . . . . . . . . . . 218

14.2 The per-event contribution to the likelihood covariance averaged over
the posterior support for our population hyperparameters. We divide
the events by the year of the observation, approximately correspond-
ing to different observing runs of Advanced LIGO/Advanced Virgo.
We note that there is no obvious trend with time, indicating that we
can reliably consider the average uncertainty 𝜎2

obs = ⟨𝜎2
𝑖
⟩ (shown by

the dashed grey line). . . . . . . . . . . . . . . . . . . . . . . . . . 219
14.3 Scaling of the uncertainty in the log-likelihood averaged over the full

posterior support with the population size for a simple parametric
population model. The dashed vertical lines show the number of
confident binary black hole events in the gravitational-wave transient
catalogue at the time of publication of GWTC-1 [12], GWTC-2 [24],
and GWTC-3 [26]. The gray filled region indicates the projected
number of binary black hole observations during the next observing
run of the international gravitational-wave detector network [423,
307]. The purple shaded region indicates heuristic values for when
the uncertainty in the likelihood is likely to cause noticeable bias
in the analysis. The solid curves show the empirically obtained un-
certainties and the dashed curves are extrapolations based on the
power-law fit to the per-event contribution (orange) and the contri-
bution from the selection function (green). The total uncertainty is
shown in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

14.4 The same a Figure 14.3 but with a more flexible model. We note that
the same general features are present, however, for this model, the
uncertainty grows much more rapidly with population size. . . . . . 221
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14.5 The scaling of the average variance in the log-likelihood with the
number of events per Monte Carlo integral. The solid blue, dashed
orange, and dash-dotted green curves show the results using the full
likelihood, selection function only, and per-observation terms respec-
tively. In the top panel, we show the variance. In the bottom panel,
we show the normalized variance divided the number of samples
per integral. As expected, these quantities scale inversely with the
number of samples. . . . . . . . . . . . . . . . . . . . . . . . . . . 223

14.6 The inferred spin magnitude (top) and primary mass (bottom) dis-
tributions for a range of analysis configurations. The solid curves
show the mean inferred distribution and the shaded regions show the
90% symmetric credible interval. The blue curves show the results
presented in [28]. In orange, we show results obtained using the
same input samples but without performing the ad-hoc constraints
on the number of effective samples per Monte Carlo integral. In red,
we show the results when using more found injections to compute
the selection function. In purple, we show the results obtained when
neglecting the selection function, we note that in this case, we do not
show the inferred mass distribution as that is significantly biased by
neglecting selection effects. In grey, we show the results obtained
using our tailored injection set. . . . . . . . . . . . . . . . . . . . . 224

14.7 Comparison of statistical and systematic uncertainty in our inference
of the distribution of black hole spin magnitudes 𝑎. The solid curves
show the posterior predictive distribution for three of the analysis con-
figurations described in Section 14.4. The dotted curves show the 5th
and 95th percentiles of our statistical uncertainty for the lowest vari-
ance analysis (No Injections). The orange and green dashed curves
show the 5th and 95th percentiles of the additional systematic uncer-
tainty from estimating the selection function. We note that for the
More Injections case the systematic uncertainty is much smaller than
the statistical. However, for the No Convergence case the systematic
uncertainty is comparable to the statistical. . . . . . . . . . . . . . . 227
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15.1 Maximum IFAR across pipelines vs Optimal netowrk SNR in Hanford
and Livingston (as described in Section 15.3). Red line shows where
the hopeless cut was placed and the green line shows the detection
threshold used for the GWTC-3 Populations analysis (IFAR = 1 yr)
[28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

15.2 Selected results from the test described in Section 15.3.1, in which
we perform population inference with iteratively raising the hopeless
SNR cut. Shown are the posterior distributions for the power law
index on the primary mass distribution (𝛼, left), mass ratio distri-
bution (𝛽, middle), and redshift distribution (𝜅, right). We note the
significant systematic bias is most present in the redshift distribution. 239

15.3 Average and standard deviation of the redshift power law index 𝜅 as
a function of hopeless SNR cut. The increased hopeless SNR cut
systematically biases 𝜅 to higher values. . . . . . . . . . . . . . . . . 239

15.4 Two dimensional scatter plots of IFAR and SNR values for the in-
jections in the injection set, along with histograms of the optimal
SNR values along the IFAR bins corresponding to the green horizon-
tal lines. The red dashed line marks the SNR 6 hopeless cut below
which we have no data from the injections. The orange curve is the fit
to the SNR distribution from the KDE and truncated Gaussian. We
plot two example fits for demonstration, but this procedure is done
for 100 IFAR bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

15.5 Same as Figure 15.4, but extrapolating the truncated Gaussian com-
ponent to be bounded on the low end by 𝜌 = 0 rather than 𝜌 = 6.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
15.6 Selected results from the test described in Section 15.4.2, in which we

perform population inference with new IFAR values for the injections
with 𝜌opt < 8 from the injection set in (cite). Shown are the posterior
distributions for the power law index on the primary mass distribution
(𝛼, left), mass ratio distribution (𝛽, middle), and redshift distribution
(𝜅, right). We note no systematic bias in the parameter recovery. . . . 244
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15.7 Posterior distribution on redshift power law index 𝜅 using different
injection sets. In blue, we show the result using the original O3
injections from (cite). In green and orange we plot the equivalent
distribution with including two different realizations of IFAR values
of new injections below the hopeless SNR cut, as outlined in Section
15.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

15.8 Posterior distribution on primary mass power law index 𝛼 using
different injection sets. In blue, we show the result using the original
O3 injections from (cite). In green and orange we plot the equivalent
distribution with including two different realizations of IFAR values
of new injections below the hopeless SNR cut, as outlined in Section
15.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

16.1 (Upper panel) Posterior distribution for the mass and tidal parame-
ters of GW170817 in physical space (before transformation). (Lower
panel) Posterior distribution for GW170817 after transforming sam-
ples into fitting space. Note that the domain of the transformed
samples is much more uniform across parameter space and the sharp
edges both in 1-D and 2-D histograms have been removed. . . . . . . 255

16.2 Average (natural) log likelihood of evaluation samples as a function of
number of components (𝐾) used to generate GMM, using posterior
samples from GW170817. The score flattening out by 𝐾 ≈ 8-10
indicates that the GMM does not provide a better density estimate for
larger 𝐾 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

16.3 4-dimensional posterior distribution for GW170817. Orange is the
posterior samples and blue is from samples of the GMM fit. The
overlap between the two distributions shows the GMM provides a
good density estimate. Plotted in physical (transformed) space in the
upper (lower) panel. . . . . . . . . . . . . . . . . . . . . . . . . . . 259

16.4 Dimensionless tidal deformability (left panel) and tidal deformability
(right panel) as a function of mass. Units of 𝜆 are in seconds to the
fifth power, following the convention in [45]. . . . . . . . . . . . . . 262

16.5 Inferred mass distribution from the full mass + EOS analysis of
37 simulated events. Solid lines represent the posterior predictive
distribution (PPD). The recycled (slow) distribution is colored blue
(red), with shading representing the ±1𝜎 (68%) credible region from
the posterior. Dashed lines show the input distribution. . . . . . . . . 267
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16.6 Inferred mass distribution from the mass-only analysis of 37 sim-
ulated events. Solid lines represent PPD. The recycled (slow) dis-
tribution is colored blue (red), with shading representing the ±1𝜎
(68%) credible region from the posterior. Dashed lines show the
input distribution. Compare to Figure 16.5 to observe the bias in
mass distribution recovery due to not including EOS inference. . . . . 267

16.7 Inferred 𝜆−𝑚 parameter space from the analysis using only low SNR
events (left) and high SNR events (right). Note the better recovery
of EOS parameters from including few high SNR events compare to
many low SNR events. . . . . . . . . . . . . . . . . . . . . . . . . . 268

16.8 Inferred mass distribution from the full mass + EOS analysis of only
low SNR events (left) and only high SNR events (right). Solid lines
represent the posterior predictive distribution (PPD). The recycled
(slow) distribution is colored blue (red), with shading representing
the ±1𝜎 (68%) credible region from the posterior. Dashed lines
show the input distribution. Compare to Figure 16.5 to note the
worse recovery due to not including the full set of events. . . . . . . . 268

16.9 Inferred Λ − 𝑚 (top) and 𝜆 − 𝑚 (bottom) parameter space from the
population + EOS analysis. Shaded region corresponds to ±1𝜎
(68%) region from 𝑐0 and 𝑐1 posterior samples. For reference,
selected EOS curves overplotted. . . . . . . . . . . . . . . . . . . . 269

16.10 Posterior distributions of selected simulated events. Transformed
samples are colored blue, and samples from the Gaussian mixture
model density estimates are in orange. The overlap and consistency
indicates that GMMs provide a good it in transformed space. Con-
tours correspond to standard deviations in 2D space, such that 1-𝜎,
2-𝜎, 3-𝜎 contours are 39%, 86%, and 99% confidence levels, respec-
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

16.11 Inferred hyperparameter distributions for the recycled mass distribu-
tion hyperparameters (top), slow mass distribution hyperparameters
(bottom left), and EOS hyperparameters (bottom right). Contours
correspond to standard deviations in 2D space, such that 1-𝜎, 2-𝜎,
3-𝜎 contours are 39%, 86%, and 99% confidence levels, respectively.
See Table 16.1 for priors on each parameter. . . . . . . . . . . . . . . 277
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16.12 Log likelihood (Equation 16.6) for the true population hyperparame-
ter values as a function of the number of samples 𝑀 from the popula-
tion. Each data point is an average over 100 likelihood iterations and
error bars are ±1𝜎 (68%) uncertainties. By 𝑀 = 15, 000, the Monte
Carlo integration is stable and increased values of 𝑀 only increase
the precision marginally. The red shaded region corresponds to the
68% net uncertainty resulting from using Monte Carlo integration via
reweighting the single-event posterior samples in the mass population
model (see Equation 16.18) . . . . . . . . . . . . . . . . . . . . . . 279

17.1 Posterior on the mass distribution of the GW BNS (orange) and the
Galactic NS (blue) population. We plot the median and 90% highest-
probability credible regions. The EM population is constrained to
much better precision than the GW one due to the low number of GW
BNS detections. With the caveat that they correspond to the astro-
physical BNS and observed Galactic NS distributions respectively,
we find that the two distribution are inconsistent, in agreement with
Ref. [28]. Faint lines are random draws from the GW mass distribu-
tion, illustrating the bimodal uncertainties in the mass distribution. . . 292

17.2 Marginalized posterior for the power-law slope 𝛼 and maximum mass
𝑀pop,GW of the GW population. The slope 𝛼 is poorly constrained and
thus its posterior rails against the upper prior bound, in turn affecting
the 𝑀pop,GW posterior. . . . . . . . . . . . . . . . . . . . . . . . . . 293

17.3 One- and two-dimensional posteriors for select EoS macroscopic
and microscopic parameters: the TOV mass, 𝑀TOV, the radius and
tidal deformability of a canonical 1.4𝑀⊙ NS, 𝑅1.4 and Λ1.4 respec-
tively, the radius of a 1.8𝑀⊙ NS, 𝑅1.8, and the log-base-10 pressure
(divided by the speed of light squared) at twice and 6 times nu-
clear saturation, 𝑝2.0 and 𝑝6.0 respectively, when measured in g/cm3.
Two-dimensional contours denote the boundaries of the 90% credi-
ble regions. We show the prior (black), the posterior from the main
analysis that marginalizes over the mass distribution (blue), and the
analogous posterior that arises from additionally including the mass-
radius measurement of J0437-4715 in the analysis of Ref. [332]. . . 295
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17.4 Mass-radius inference, we show the 90% symmetric credible region
for the radius at each mass. We plot the prior (black), posterior from
the main analysis that marginalizes over the mass distribution (blue),
and posterior from Ref. [332] that fixes the mass distribution to flat
and does not include J0437-4715. The upper limit on the radius
decreases by ∼ 0.5 km for all masses. . . . . . . . . . . . . . . . . . 296

17.5 Mass-central density inference, we show the 90% symmetric credible
region for the NS mass at each value of the central density 𝜌𝑐. We plot
the prior (black), posterior from the main analysis that marginalizes
over the mass distribution (blue), and posterior from Ref. [332] that
fixes the mass distribution to flat and does not include J0437-4715.
Vertical lines denote multiples of the nuclear saturation density. Ma-
roon and red contours mark 1 and 2-𝜎 credible regions, respectively,
for the joint posterior on 𝜌𝑐-𝑀TOV. . . . . . . . . . . . . . . . . . . 296

17.6 Speed of sound-density inference, we show the 90% symmetric credi-
ble region for the speed of sound squared, 𝑐2

𝑠 at each rest-mass density
𝜌. We plot the prior (black), posterior from the main analysis that
marginalizes over the mass distribution (blue), and posterior from
Ref. [332] that fixes the mass distribution to flat and does not include
J0437-4715. Vertical lines denote multiples of the nuclear saturation
density. The speed of sound increases by ∼ 5% around densities 2−3
times saturation density. . . . . . . . . . . . . . . . . . . . . . . . . 297

17.7 Marginalized posterior for the maximum speed of sound squared
inside a stable NS. We plot the prior (black), posterior from the
main analysis that marginalizes over the mass distribution (blue), and
posterior from Ref. [332] that fixes the mass distribution to flat and
does not include J0437-4715. The 90% lower limit on the maximum
speed of sound, marked by dashed vertical lines, increases from∼0.51
to ∼0.59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

17.8 One-and two-dimensional posteriors for 𝑀TOV and the maximum
astrophysical mass 𝑀pop for the Galactic NSs (blue) and the merging
BNSs (orange). The black dashed line represents 𝑀pop = 𝑀TOV,
which is imposed in our analyses as we assume that all objects are
NSs. The TOV mass is consistent with the astrophysical maximum
mass for both populations. Contours are drawn at 50% and 90%
levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
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17.9 One- and two-dimensional posteriors for the mass distribution slope
and maximum mass from 23 simulated BNSs. We plot mass-only
population inference (grey) which defaults to the individual-event-
inference prior on the tidal deformability, joint mass-EoS inference
using the lower-dimensional EoS model (green) and the full mass-
EoS joint inference with the GP EoS model (red). The reweighting
scheme corrects the bias from inferring the mass distribution alone. . 307

17.10 One- and two-dimensional posteriors for recovered EoS properties
𝑀TOV and 𝑅1.4 from 23 simulated BNSs. We plot the prior (black)
and the result from reweighting to a full mass-EoS joint inference
with the GP EoS model (red). The reweighting method is able to
recover the true EoS (blue). . . . . . . . . . . . . . . . . . . . . . . 308

17.11 The effect of NICER constraints on EoS inference. We plot the
prior (grey) and posterior for 𝑅1.4, the radius of a 1.4𝑀⊙ NS with
different subsets of NICER data: all 3 pulsars (blue; main text analy-
sis), excluding J0030+0451 (pink), excluding J0437-4715 (red), and
excluding all NICER observations (purple). . . . . . . . . . . . . . . 309

17.12 Impact of the EM population mass modeling on EoS inference. We
plot the prior (black), the posterior from the full analysis (blue; same
as Figure 17.3), and the posterior when the EM mass distribution
is uniform and independnet of the EoS for J0030+0451 and J0437-
4571 and uniform up to the TOV maximum mass of the EoS for
J0740+6620 and J0348+0432. The posteriors are similar. . . . . . . . 309

17.13 Similar to Figure 17.8 but with a low-spin assumption for GW190425
of < 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

18.1 The𝑚−Λ relation for draws from the EoS posterior from [332] (gray
lines). A red dashed line denotes the SLY9 EoS. An orange solid line
indicates the Λ ∝ 𝑚−6 trend. The posteriors of the masses and tidal
deformabilties of the primary and secondary component of a BBH
simulated signal are shown in light blue and dark blue, respectively.
Despite poorer tidal constraints, the secondary is less consistent with
the EoSs, suggestive of a BH. While this demonstration does not
capture the full 4-dimensional mass-Λ correlations, it sketches the
main classification idea. . . . . . . . . . . . . . . . . . . . . . . . . 315
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18.2 Relevant frequencies for late-inspiral signals: merger (peak strain,
tan) and contact (orbital separation corresponding to objects touch-
ing, light blue) of NSs in equal-mass systems as a function of com-
ponent mass. Shaded regions correspond to marginalization over
the EoS posterior from [332]. Colored lines correspond to the SLy9
EoS [183, 263], which we use to simulate data. Lastly, we display an
approximation for the plunge frequency of a comparable mass BBH
𝑓6𝑀 with a black dash-dot line. . . . . . . . . . . . . . . . . . . . . 318

18.3 One- and two-dimensional marginalized source-frame mass posteri-
ors for the 𝑞 ≡ 𝑚2/𝑚1 = 1 signals. Same-color lines denote systems
with varying total mass 𝑀 with true values marked. For a given
mass, varying line styles denote BBH, NSBH, and BNS systems.
Contours represent two-dimensional 2-𝜎 regions. Given a simulated
mass, similar posteriors across source types shows the subdominant
effect of tides on the inferred masses. . . . . . . . . . . . . . . . . . 321

18.4 Two dimensional marginal posteriors for select parameters for sys-
tems with 𝑞 = 1, with each column referring to a different simulated
total mass. Blue, yellow, and magenta lines outline the 2-𝜎 contours
of the posterior for the BBH, NSBH, and BNS systems, respectively.
We omit the BHNS configuration as it is identical to NSBH for equal-
mass simulations. The left (right) halves of the third row plots are the
posterior of the primary (secondary), and include draws from the EoS
distribution [332] for reference. A decreasing total mass increases
the tidal signature and correspondingly affects all posteriors. . . . . . 322

18.5 Similar to Figure 18.4 but for systems with the same simulated total
mass 𝑀 = 2𝑀⊙, with each column referring to a different simulated
the mass ratio. When relevant, we also include BHNS configurations
in green. The posteriors of all parameters are, weakly sensitive to the
true mass ratio, with the exception of the BHNS cases. . . . . . . . . 323
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18.6 Base-10 logarithm of the odds ratio for each system containing at
least one BH. Monte-Carlo errors for the odds ratios are too small
to be visible in the scale of the figure. Panels correspond to the
system source-frame masses and colors correspond to source type.
The equal-mass panels do not contain BHNS systems as they are
identical to the NSBH ones. Dots (crosses) denote signals with SNR
20(12). Points above log10(OHasBH

BNS ) = 0 (red dashed line) denote
support for the presence of at least one BH in the binary. . . . . . . 325

18.7 Similar to Figure 18.6 but for the odds ratio for each system containing
at least one NS. Points above log10(OHasNS

BBH ) = 0 (red dashed line)
denote support for the presence of at least one NS in the binary.
Triangular markers indicate that the odds ratio lies somewhere above
the y-axis limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

18.8 Similar to Figure 18.6 but for the odds ratio for each system containing
exactly two NSs versus one NS. We only present results for systems
with evidence of at least one NS in Figure 18.7 which includes all
NS-containing systems. Points above log10(OBNS

OneNS) = 0 (red dashed
line) correspond to systems that are more likely to have two NSs than
one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

18.9 Marginal posterior (in brown) for tidal parameters from the BNS
signal with (𝑚1, 𝑚2) = (1.1, 0.9) 𝑀⊙. (Left) Tidal parameters Λ̃

and 𝛿Λ̃, with the prior plotted in grey. (Right) Component tidal
deformabilties Λ1 and Λ2. In both panels, the turquoise distribution
corresponds to the posterior assuming that there is no information
about 𝛿Λ̃. We find that information about 𝛿Λ̃ is nonnegligible, though
insufficient to break the degeneracy between Λ1 and Λ2. . . . . . . . 336
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C h a p t e r 1

MOTIVATION FOR THIS THESIS

The development of general relativity came with predictions for unique phenomena
that were absent in the old Newtonian theory of gravity. Einstein’s theory of special
relativity already revealed that Newtonian mechanics broke down when describing
the behavior of objects moving at velocities approaching the speed of light. General
relativity (GR), on the other hand, revealed the limitations of Newtonian gravity
when describing objects in strong gravitational fields, sufficiently close to a massive,
gravitating body. As a result, the relativistic and Newtonian descriptions diverge
when describing an object that moves very fast or travels deep into a gravitational
potential—regimes now directly accessible through gravitational wave observations.

The coupling between mass and the gravitational field is extremely weak; the grav-
itational force obtained from 𝐺 coupling to typical masses is orders of magnitude
smaller than the electromagnetic coupling obtained from typical electric charges.
Given the relative weakness of gravity, the effects of GR become most apparent
in astrophysical environments, where we observe the motion of objects close to
massive bodies. Crucially, these interactions can happen at small enough distances
just outside the massive source, such that they probe the physics of the strong
gravitational field. Classic tests—explaining Mercury’s perihelion precession and
observing starlight deflection by the Sun in 1919—were early examples; compact
binaries, systems composed of two dense stellar remnants in orbit, probe far stronger
fields and involve objects that are far more exotic and unfamiliar.

A major consequence from replacing Newtonian gravity with GR is that gravity is not
treated like a force in the usual sense, but as a manifestation of curvature in spacetime.
This leads to predictions absent in the Newtonian treatment: as it turns out, GR says
that the spacetime manifold itself can carry wavelike perturbations (ripples) which
carry energy and may be detected by distant observers with sufficiently sensitive
instruments. These ripples, known as gravitational waves, can be generated in
environments where the effects of GR become important: massive bodies with
close gravitational interactions, exerting asymmetric motion. Two-body systems
composed of compact remnants of dead stars, such as neutron stars, black holes,
and white dwarfs, are ideal candidates for producing gravitational waves, as they
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are massive and dense, and can interact deeply in the gravitational potential of the
other.

Gravitational waves encode information about these extreme environments offering
a fundamentally new way to study the Universe—one that complements and in many
cases surpasses other methods. Direct probes of strong gravity environments are
difficult to develop; it is obviously not feasible to send a probe to the vicinity of
such an object, given the distances from Earth and the extreme conditions involved.
Black holes do not directly emit their own electromagnetic radiation; one must rely
on poorly-understood mechanisms of emission and propagation (possibly through
intervening matter) based on interactions with their environments to study them
in traditional astronomy. Gravitational waves are sourced purely by mass-energy
dynamics and travel to Earth virtually unimpeded. This makes them ideal candidates
for probing the strong gravity around compact objects. Detecting them, however,
requires both powerful sources and exquisitely sensitive detectors.

Originally attempted by Joseph Weber in the 1960s, modern gravitational wave
detection was pioneered by the LIGO (Laser Interferometer Gravitational Wave Ob-
servatory) detectors, developed under the leadership of Rainer Weiss, Kip Thorne,
and Ronald Drever. These detectors, located in Livingston, Louisiana and Hanford,
Washington, use laser interferometry to measure the minute changes in distance
between two mirrors suspended in vacuum, separated by 4 km. These make some
of the most precise measurements of any manmade instrument ever created; for
example, the LIGO detectors measure relative changes on the order of 10−23, or
10−19 meters over the distance of its 4 km arms (∼ 1/10, 000th of the width of a
proton).

I began graduate school in 2020, five years after the LIGO detectors made their first
detection of gravitational waves, from the merger of two black holes approximately
30 times the mass of our sun, and located around 400 Mpc (∼ 1.3 billion light-years)
from us. This event, known as GW150914, welcomed a brand new messenger
into astronomy, sending information from the most extreme grasp of spacetime
previously inaccessible to humans. Since then, LIGO, now joined by its European
partner Virgo, has detected hundreds of signals from compact binary coalescences,
most of which have been from black hole mergers. The first two observing runs
(O1-O2) detected 11 events. I joined the field shortly after the end of the third
observing run (O3), participating in the subsequent data analysis, extracting the
astrophysical information contained in the ∼ 100 events observed through then.
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Since then, I have been heavily involved in the analysis of the data collected during
the (ongoing) fourth observing run (O4), which has expanded the total number of
high-significance gravitational wave events to ∼ 300, enriching our census of the
previously-unseen parts of the Universe.

Treating these signals as probes of their sources and of the Universe through which
they propagate allows us to learn information previously out of reach for humans.
Motivated to participate in the development of this new field, my research has been
focused on how to use gravitational waves from black holes and neutron stars as
a tool to learn astrophysics, cosmology, and fundamental physics. In addition to
exploiting new data, while taking advantage of techniques now afforded to us by
modern computation, I have adopted related methods and developed new tools for
conducting analyses on gravitational wave data. My contributions to the field can
largely be fit into addressing the following questions:

• What physical properties of a gravitational wave source do we learn from a
signal appearing in the data collected by a detector?

• What does the population of gravitational wave sources reveal about the
astrophysical properties of the progenitors of compact objects?

• What do gravitational waves tell us about fundamental physics, cosmology,
and the behavior of dense matter?

• How can we best apply modern and novel computational and mathematical
techniques to answer these questions?

I address these questions in this thesis, organized in the following parts:

Background overviews the basic concepts of GR and gravitational waves, including
their generation and detection.

Measuring Properties of Black Holes and Neutron Stars Using Gravitational
Waves from Compact Binary Coalescences covers the methods we use to measure
the physical properties of gravitational wave sources, and includes results from
analyses from O4 that I contributed to.

Astrophysics and Cosmology from the Population of Compact Binaries dis-
cusses how population inference works and what the population of binary black
hole mergers reveals about astrophysics and cosmology.



5

Matter Effects and Equation of State Implications is related to learning and
exploiting effects from nuclear physics in neutron star observations.

Conclusions summarizes the main results of my work and discusses future directions
for the field.
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C h a p t e r 2

INTRODUCTION TO GRAVITATIONAL WAVE THEORY

2.1 General Relativity

In 1905, Albert Einstein upended the Newtonian paradigm that had been the ac-
cepted description of mechanics for hundreds of years, resolving the tension between
mechanics and Maxwell’s equations of electromagnetism. In doing so, he showed
that the correct transformation that can relate inertial reference frames preserves
physical laws and the consistent speed of light, 𝑐. Crucially, special relativity was
applicable for high velocities (relative to 𝑐) and reduced to Newtonian mechanics at
the more familiar lower velocities typical in everyday experience. However, it was
not clear how this described the experience of observers under the effects of gravity,
which then would imply acceleration and therefore being in non-inertial reference
frames. Therefore, it became necessary to figure out how the new theory of relativity
generalized to include effects of gravity. In this section, I review the principles and
consequences of general relativity (GR), under assumption of suitable mathematical
foundations. Introductory reviews can be found in, e.g., [383, 492, 132]

Isaac Newton, Galileo Galilei, and others knew that objects in an uniform gravita-
tional field fall with the same acceleration, regardless of their mass. This is known
as the weak equivalence principle. This is implied by recognizing that inertial
mass (𝑚𝑖), that is, the mass that is accelerated by a force in Newton’s second law,
𝐹 = 𝑚𝑖𝑎, is equal to the gravitational mass 𝑚𝑔 in Newton’s law of gravitation. In
other words, the gravitational mass of the source 𝑀𝑔, sources the field that couples
to the gravitational mass to the probe 𝑚𝑔 as:

𝐹 = 𝑚𝑖𝑎 =
𝐺𝑚𝑔𝑀𝑔

𝑟2 , (2.1)

if𝑚𝑖 = 𝑚𝑔, then the acceleration 𝑎 of an object in a gravitational field is independent
of its mass, consistent with the results of Galileo’s famous experiments.

This has an interesting and important implication: one can recreate the effects of
gravitation by being in an accelerated frame. An observer situated in a small, sealed
room feeling an acceleration 𝑔 = 9.81m/s2 could not tell by dropping objects if they
are on Earth or accelerating at 𝑔 in empty space (say, in a rocket with its engine
on); objects in free fall behave the same, regardless of whether the acceleration
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is caused by gravity or other means. If inertial and gravitational masses were not
equivalent, the object’s acceleration due to gravity would depend on its mass, so the
observer would be able to drop objects of different masses to determine if they are
in a gravitational field.

Taking this a step further, Einstein postulated that there should be no local experiment
an observer can perform to determine whether they are in a gravitational field or in
a uniformly accelerating rocket. In both cases, all local measurements—such as the
ticking rate of a clock or the speed of light—yield the same results.

Because an observer in free fall experiences weightlessness (i.e., they feel no support
force), they do not feel what we would call “acceleration due to gravity”. In Einstein’s
theory, this means that a freely falling observer is actually in an inertial frame, even
though they would appear to accelerate in a Newtonian description. Being in an
inertial frame and unable to determine whether they are under the influence of
gravity, the freely falling observer finds that all local experiments obey the laws of
special relativity.

Using this principle, one can derive the existence of a novel effect — gravitational
redshift. Consider a tower of height ℎ on Earth. An observer at the bottom of the
tower emits a light pulse of frquency 𝑓0, and an observer at the top of the tower
receives the light pulse. Assume ℎ is sufficiently small that the gravitational field
is uniform, so this counts as a “local measurement”. Our goal is to determine the
frequency 𝑓 the observer at the top sees. We can determine how light is affected by
gravity in relativity by examining the system in an equivalent configuration: replace
the tower with a rocket of height ℎ accelerating at 𝑔 in empty space.

The time Δ𝑡 = ℎ/𝑐 elapses between the emission of the light pulse and its arrival at
the top of the tower. In the time between it is emitted and received, the rocket has
changed its velocity by Δ𝑣 = 𝑔Δ𝑡 = 𝑔ℎ/𝑐. Imagine that the observer at the top needs
to receive at least one wavelength of light (equivalently, observe it for one full period)
in order to detect it. If we assume that the velocity of the rocket is approximately
constant over one period of the light wave, then 𝑔/ 𝑓 ≪ 𝑔ℎ/𝑐 → 𝜆 ≪ ℎ, which
is almost certainly the case for practical light sources. In this case, we can enter a
reference frame that is momentarily comoving with the receiver at the top and we
can therefore use regular special relativity to describe their observations during that
moment. In that case, we can recognize that the frequency shift observed by the
receiver is simply the normal special relativistic Doppler effect, which depends only
on the instantaneous velocity. This reduces to the usual Doppler shift for 𝑣 ≪ 𝑐, so
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𝑓 = (1− 𝑣/𝑐) 𝑓0, where we assume 𝑣 ≪ 𝑐, so we can use the normal, nonrelativistic
Doppler expression. If the light was emitted when the rocket was at rest, thenΔ𝑣 = 𝑣
and 𝑓 = (1−𝑔ℎ/𝑐2) 𝑓0 is observed by the observer at the top of the rocket. Under the
Einstein equivalence principle, this is equivalent to the case of the tower of height ℎ
on Earth. Therefore, we conclude gravity should cause redshifting along a vertical
height, given by:

𝑓 = (1 − 𝑔ℎ/𝑐2) 𝑓0, (2.2)

when ℎ is small enough that 𝑔 is treated as constant (𝑔ℎ/𝑐2 ≪ 1).

Now, we can take a step further and show that the equivalence between accelerat-
ing and gravitating systems breaks down for non-local experiments, hinting at the
geometric nature of gravity. Consider the configuration in Figure 2.1. Imagine a
platform (grey box) above a planet of mass 𝑀 . Pretend the platform is attached
to the planet, so it is not in free-fall and anything that stands on the platform is
accelerating. An observer standing on the platform, unable to see through it, will
not be able to do any local experiments to determine if they are above the planet
with mass 𝑀 or if the platform is accelerating through space at the corresponding
acceleration. Let’s see what happens when we do an experiment that we will term
non-local; that is, we will conduct an experiment involving two balls (which will be
used as probes), where the distance between the probes is non-negligible.

An observer on the platform holds two red balls the same distance 𝑑𝑦 above the
platform. He holds them a horizontal distance 𝛿𝑥 apart. We will label the ball in the
center of the platform as 1 and on the right as 2. If he is in a uniformly accelerating
system accelerating at 𝑎, then the balls will take the same time to fall in the observer
coordinate time: 𝑑𝑡21 = 𝑑𝑡22 =

2𝑑𝑦
𝑎

. However, what happens when the observer is
actually under the influence of gravity? In that case the acceleration is non-uniform
(i.e., tidal effects) and the observer will notice differences in the behavior of the two
balls falling if his arms are long enough and 𝛿𝑥 is large.

Specifically, let ®𝑔1 and ®𝑔2 be the acceleration due to gravity of the two balls,
respectively. We know 𝑔 = 𝐺𝑀/𝑟2, so 𝑔2

𝑔1
= ( 𝑅1

𝑅2
)2, determined by the ratio of the

distances between the balls and the planet. Ball 1 is dropped directly above the
planet and thus has no 𝑥-component of acceleration. Ball 2 is dropped a horizontal
distance 𝛿𝑥 away, so ®𝑔2 has both x and y components, labeled 𝑔𝑥 and 𝑔𝑦 (suppressing
the subscript 2, as it is clear this is not referring to components of ®𝑔1).
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Figure 2.1: Thought experiment to illustrate the break down of the equivalence
principle for non-local experiments. An observer on a platform above a planet of
mass 𝑀 holds two balls the same distance 𝑑𝑦 above the platform. He holds them a
horizontal distance 𝛿𝑥 apart. The ball in the center of the platform is labeled 1 and
the one on the right is labeled 2. 𝑅𝑖 is the radial distance from the center of the planet
to the ball 𝑖. The observer cannot see through the platform and therefore cannot tell
visually if they are standing above a planet or if the platform is accelerating.

From trigonometry, one can see that:

𝑔𝑥 = 𝑔2
𝛿𝑥

𝑅2
(2.3)

and
𝑔𝑦 = 𝑔2

𝑅1
𝑅2

= 𝑔1
(𝑅1
𝑅2

)3
. (2.4)

With 𝑅2
2 = 𝑅2

1 + 𝛿𝑥
2, we can expand:

𝑅2 =

√︃
𝑅2

1 + 𝛿𝑥2 = 𝑅1

√︄
1 + 𝛿𝑥2

𝑅2
1
≈ 𝑅1

(
1 + 𝛿𝑥2

2𝑅2
1

)
, (2.5)

so,

(𝑅1
𝑅2

)3 ≈
(
1 + 𝛿𝑥2

2𝑅2
1

)−3 ≈ 1 − 3𝛿𝑥2

2𝑅2
1
. (2.6)
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This immediately leads us to see that the two balls will fall at different rates, as
kinematics tells us:

𝑑𝑡22

𝑑𝑡21
=
𝑔1
𝑔𝑦

≈ (1 − 3𝛿𝑥2

2𝑅2
1
)−1 ≈ 1 + 3𝛿𝑥2

2𝑅2
1
. (2.7)

Therefore, if the observer is sensitive to changes on the order O( 𝛿𝑥
𝑅1
)2, they will be

able to tell that 𝑑𝑡22 ≠ 𝑑𝑡21, and they are therefore not in a uniformly accelerating
frame. Now, to make a tenuous connection to spacetime geometry, consider the
metric distance the observer measures while the ball falls.

The metric distance between two events at (𝑡1, 𝑥1, 𝑦1, 𝑧1) and (𝑡2, 𝑥2, 𝑦2, 𝑧2) is given
by:

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = 𝑔𝑡𝑡𝑑𝑡

2 + 𝑔𝑥𝑥𝑑𝑥2 + 𝑔𝑦𝑦𝑑𝑦2 + 𝑔𝑧𝑧𝑑𝑧2, (2.8)

where (𝑥0, 𝑥1, 𝑥2, 𝑥3) = (𝑡, 𝑥, 𝑦, 𝑧) are coordinates of the events. For flat spacetime,
the metric is the Minkowski metric, 𝑔𝜇𝜈 = 𝜂𝜇𝜈 = diag(-1,1,1,1). Geometry tell
us that locally a (pseudo-)Riemannian manifold can be approximated by a flat
metric, which physically means small enough regions look like flat spacetime with
mechanics described by special relativity. An observer of a local experiment can
always boost into a reference frame where the change of coordinates make 𝑑𝑠2 the
canonical Minkowski result (where constant terms of 𝑔𝜇𝜈 are (−1, 1, 1, 1) and first
derivatives of 𝑔𝜇𝜈 vanish).

Locally, this observer approximate himself in an inertial frame, seeing flat space-
time and therefore calculate 𝑑𝑠2

1 using the familiar Minkowski metric from special
relativity:

𝑑𝑠2
1 = −𝑑𝑡21 + 𝑑𝑦

2, (2.9)

where 𝑑𝑡 and 𝑑𝑦 are the coordinate time and vertical distances measured by the
observer on the platform. He now attempts to do the same for the second ball,
which will also include displacement in the x-direction 𝑑𝑥 = 1

2𝑔𝑥𝑑𝑡
2
2. Using the

expressions for 𝑔𝑥 and 𝑑𝑡2 above, we find 𝑑𝑥2 =
(
𝛿𝑥
𝑅1

)2
𝑑𝑦2. Therefore, for the second

ball dropping:

𝑑𝑠2
2 = −𝑑𝑡22 + 𝑑𝑦

2 + 𝑑𝑥2 = −
(
1 + 3

2
( 𝛿𝑥
𝑅1

)2)𝑑𝑡21 + (
1 + ( 𝛿𝑥

𝑅1
)2)𝑑𝑦2, (2.10)

which differs from 𝑑𝑠2
1 by terms of order O( 𝛿𝑥

𝑅1
)2. One can show that no coordinate

transformation can introduce these quadratic coordinate terms in the metric nec-
essary to make the 𝑑𝑠2 terms equivalent. This is unlike the gravitational redshift
case (see Eq. 2.2), which shows that the gravitational redshift is a first-order effect
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in Δ𝑥 = ℎ for the observer in the small tower. The first order effect can be gauged
away by boosting into a freely-falling frame momentarily, meaning there is a local
inertial frame that does not see any redshift. In this new case, once the tidal terms
can be measured, the observer does not have enough gauge freedom to transform
into a frame that makes the metric agree with the flat 𝑑𝑠2. Because 𝛿𝑥 is finite, one
cannot choose a single locally inertial frame that sets 𝑔𝜇𝜈 = 𝜂𝜇𝜈 and 𝜕𝑔 = 0 at both
events.

Thus, an experiment sensitive to second order deviations in the separation of the two
balls (relative to the distance to the gravitating body), will notice that the spacetime
metric is inconsistent with the flat, Minkowski metric from special relativity. Clearly,
this reduces to the result from special relativity as the observer gets farther from
the gravitating body or drops ball 2 closer to ball 1. The difference between
special relativity and relativity in gravity has something to do with the geometry
of spacetime. Specifically, because in an inertial frame, we can expand the metric
(around a point) as 𝑔𝜇𝜈 = 𝜂𝜇𝜈 − 1

3𝑅𝜇𝜎𝜈𝜌𝑥
𝜎𝑥𝜌 +O(𝑥3), where 𝑅𝜇𝜎𝜈𝜌 the existence of

the terms that deciate from Minkowski by𝑂 (𝑥2) indicates a nonvanishing Riemman
tensor. This signals curvature in the spacetime we are modeling as a manifold.

For the rest of this chapter, I will assume the reader is familiar with other basic
aspects of GR.

2.2 Gravitational Waves

We now examine what happens when the gravitational field varies with time. To
do this we will find solutions to the Einstein field equations 𝐺𝜇𝜈 = 8𝜋𝑇𝜇𝜈 (where
𝑐 = 𝐺 = 1) for linear order perturbations. More thorough derivations can be found
in GR references [132, 383, 492]. We begin by expanding the metric to first order
about the Minkowski metric:

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 . (2.11)

After a lot of manipulation, we find:

𝐺
(1)
𝜇𝜈 = 1

2

(
𝜕𝜎𝜕𝜇ℎ

𝜎
𝜈 + 𝜕𝜎𝜕𝜈ℎ𝜎𝜇 − 𝜕𝜇𝜕𝜈ℎ − □ ℎ𝜇𝜈 − 𝜂𝜇𝜈 𝜕𝛼𝜕𝛽ℎ𝛼𝛽 + 𝜂𝜇𝜈 □ ℎ

)
. (2.12)

We now consider our coordinate freedom and choose to work in a gauge that makes
it simpler to make physical predictions. We first define the trace-reversed metric
perturbation:

ℎ̄𝜇𝜈 = ℎ𝜇𝜈 −
1
2
𝜂𝜇𝜈ℎ, (2.13)
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where ℎ̄ = −ℎ. In electromagnetism, we can write Maxwell’s equations in a particu-
larly simple and convenient form by recognizing the gauge freedom in specifying the
vector potential, specifically by specifying the Lorenz gauge condition. Similarly,
we can impose the equivalent Lorenz gauge1:

𝜕𝜇 ℎ̄𝜇𝜈 = 0, (2.14)

which reduces Eq. 2.12 to:
𝐺𝜇𝜈 = −1

2
□ℎ̄𝜇𝜈 . (2.15)

This makes the (linearized) Einstein equations look like:

□ℎ̄𝜇𝜈 = −16𝜋𝑇𝜇𝜈 . (2.16)

In a vacuum, 𝑇𝜇𝜈 = 0, so □ℎ̄𝜇𝜈 = 0, which admits plane-wave solutions. Expressing
the solution ℎ̄𝜇𝜈 = 𝐴𝜇𝜈𝑒

𝑖𝑘𝛼𝑥
𝛼 (for some tensor components 𝐴𝜇𝜈), 𝑘𝛼𝑘𝛼 = 0, which

means that the wavevector 𝑘𝛼 is null. This means that the gravitational waves
propagate at the speed of light, and, combined with the Lorenz gauge condition, the
oscillations will be orthogonal to the propagation direction: 𝑘𝜇𝐴𝜇𝜈 = 0.

There is still remaining gauge freedom, as certain infinitesimal coordinate transfor-
mations will leave the Lorenz gauge condition satisfied. We can now use up all of
our remaining gauge freedom and impose conditions to express the components of
the perturbation in a particularly convenient form. These conditions are:

𝜂𝜇𝜈𝐴𝜇𝜈 = 𝐴
𝜇
𝜇 = 0,

𝑈𝜇𝐴𝜇𝜈 = 0,
(2.17)

where𝑈𝜇 is a constant, time-like unit vector, which, for example, could represent the
4-velocity of an observer in their rest frame (in which case 𝑈𝜇 = (1, 0, 0, 0)). The
first condition is the “traceles” condition, which sets ℎ̄𝜇𝜇 = 0 meaning ℎ̄𝜇𝜈 = ℎ𝜇𝜈 in
this gauge. Considering an observer’s four velocity in their rest frame, we see that
the second condition enforces 𝐴0𝜈 = 0, so ℎ0𝜈 = ℎ𝜇0 = 0, meaning the perturbation
is only spatial. If we now align the z-axis of the observer with the propagation
direction, 𝑘𝜇 = (𝜔, 0, 0, 𝜔), and recalling 𝑘𝜇𝐴𝜇𝜈 = 0, we find that ℎ3𝜈 = 0, so the
only non-zero perturbations are in the spatial plane orthogonal to the direction of
the wave propagation.

1This seems to be commonly called the Lorentz gauge in much of the literature, but this is likely
due to an unfortunate naming coincidence between the original inventor of the gauge condition,
Ludwig Lorenz, and the better-known physicist Hendrik Lorentz.
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Figure 2.2: Effect on a circular ring of free-falling test particles (grey dotted) due
to a the plus (left) and cross (right) polarized components of a gravitational wave
incident in the 𝑧-direction. Solid and dashed patterns happen half a period apart.
From [292].

Having used up our gauge freedom setting the conditions of the transverse-traceless
(TT) gauge, we are left with two remaining degrees of freedom, which can immedi-
ately associate with the independent physical components of ℎ𝜇𝜈. The transverse-
traceless conditions allow us to express the metric perturbation in the form:

ℎ𝜇𝜈 =

©«
0 0 0 0
0 ℎ11 ℎ12 0
0 ℎ12 −ℎ11 0
0 0 0 0

ª®®®®®¬
, (2.18)

where ℎ11 and ℎ12 are our two degrees of freedom. Examining the response of
a ring of test particles to a gravitational wave incident from overhead reveals the
effect of the two polarizations. Figure 2.2 shows the distortion patterns the ring of
test particles will see from each of the two linearly independent polarization states.
The ℎ11 mode causes the particles oscillate between squeezing along the x-axis and
squeezing along the y-axis, tracing out a “+” pattern over time. The ℎ12 mode
causes the particles to oscillate between squeezing along the diagonals, tracing out
a “×” pattern over time. These two modes are known as the “plus” and “cross”
polarizations of gravitational waves, respectively, so we define:

ℎ+ = ℎ11, ℎ× = ℎ12. (2.19)

In Chapter 3 I discuss the effect that this perturbation will have on an gravitational
wave interferometer such as LIGO.
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2.3 Compact Binaries as a Source of Gravitational Waves

Having shown how gravitational wave are transmitted through spacetime, we now
turn to how they are generated. In general, radiation comes from the acceleration of
a charge, or the time variation of a multipole moment of a configuration of charges.
Since the energy flux through a spherical surface is proportional to the square of the
amplitude (𝐴) of the field, then the total luminosity carried by radiation to a distance
𝑟 is simply 𝐿 ∼ 𝐴(𝑟)2𝑟2. Therefore, the amplitude of the field 𝐴(𝑟) must decrease
as 1/𝑟 in order to carry energy to arbitrarily large 𝑟. We will consider fields that
achieve this property as radiative.

Recall the case for an electric charge. The potential scales like Φ(𝑟, 𝑡) ∝ 𝑄(𝑡)
𝑟

(i.e.,
the Coulomb potential). The amplitude of the corresponding electric field 𝐸 goes
like 𝐸 ∝ ∇Φ ∼ 1

𝑟
∇𝑄(𝑡) + O(1/𝑟2)𝑄(𝑡). The second term scales like 1/𝑟2, so it

decays too fast to carry energy to infinity, and therefore does not contribute to what
we are calling radiation. Now, if we consider the fact that we are a finite distance
from the source and changes in the field propagate at a finite speed (𝑣 = 𝑐 = 1), then
the potential we see is really a function of the retarded time 𝑡𝑟 ≈ 𝑡 − 𝑟, where we
assume 𝑟 ≫ size of the source, and we work only in one spatial dimension. Then
we rewrite the first time of the field amplitude as:

1
𝑟
∇𝑄(𝑡𝑟) =

𝜕𝑄(𝑡𝑟)
𝜕𝑡𝑟

𝜕𝑡𝑟

𝜕𝑟

1
𝑟
=

¤𝑄(𝑡𝑟)
𝑟

. (2.20)

The above argument tells us two important facts about radiation. First, the static
configuration decays too fast with distance to carry energy to infinity. Generically,
the potential from static higher-order terms (dipole, quadrupole, etc.) decay even
faster, with Φ

(𝑠𝑡𝑎𝑡𝑖𝑐)
ℓ

∼ 1
𝑟ℓ+1 , so static charge configurations do not radiate. Second,

we learn that if the monopole has a nonzero first time derivative, then you can get
radiation. However, because charge is conserved, ¤𝑄 = 0, so the monopole cannot
radiate.

In general, you can get a radiative term in the potential from the ℓ-th moment of the
charge distribution:

Φrad
ℓ (𝑡𝑟 , 𝑟) =

1
𝑟

𝜕ℓ𝑄ℓ (𝑡𝑟)
𝜕𝑡ℓ

, (2.21)

which gives a radiative part of the field amplitude 𝐴:

𝐴ℓ ∝
1
𝑟

𝑑ℓ+1𝑄ℓ (𝑡𝑟)
𝑑𝑡ℓ+1 , (2.22)
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where we used the product rule and only kept the part that scaled like 1
𝑟

and includes
an extra time derivative.

From this, we can see that electric dipoles radiate because as there is no conservation
law preventing ¤𝑄1 ≠ 0, where 𝑄1 =

∫
𝜌(®𝑥, 𝑡)®𝑥𝑑3𝑥 is the dipole moment.

Now we can take this analogy to the gravitational field. At ℓ = 0,𝑄0 =
∫
𝜌(®𝑥, 𝑡)𝑑3𝑥 =

𝑀 is simply the total mass-energy of the system, which is conserved, preventing
monopole radiation. At ℓ = 1, we have the dipole moment 𝑄1, the first moment of
the mass distribution, which is just the center of mass(-energy). Conservation of
momentum conserves this and therefore prevents dipole gravitational radiation. At
ℓ = 2, we have the quadrupole moment, which has no corresponding conservation
law. We therefore can expect gravitational radiation to come from changes in the
quadrupole moment of the mass distribution, to leading order.

Using the Green’s function to solve Eq. 2.16 in vacuum, we find a solution for
ℎ(𝑡, ®𝑥), the strain perturbation at some point ®𝑥 at time 𝑡:

ℎ̄𝜇𝜈 (𝑡, ®𝑥) = 4𝐺
∫

𝑑3𝑥′
𝑇𝜇𝜈 (𝑡 − |®𝑥 − ®𝑥′|, ®𝑥′)

|®𝑥 − ®𝑥′| , (2.23)

where it is common to define 𝑡𝑟 = 𝑡 − |®𝑥 − ®𝑥′| as the retarded time. Thus, in order
to get the strain perturbation at (𝑡, ®𝑥), we sum over all of the energy-momentum
contributions from sources at (𝑡𝑟 , ®𝑥′) in the past light cone.

We assume we are far enough from the source, such that our distance to the source
is much larger than the physical size of the source, so we are summing over con-
tributions from a very small region compared to our distance, which we denote 𝑟.
Combined with the assumption that the energy-momentum does not change much
over the light crossing time, we can approximate | ®𝑥 − ®𝑥′| ≈ |®𝑥 | = 𝑟, allowing us to
write:

ℎ̄𝑖 𝑗 (𝑡, ®𝑥) =
4
𝑟

∫
𝑑3𝑥′𝑇 𝑖 𝑗 (𝑡 − 𝑟, ®𝑥′), (2.24)

where we additionally restrict ourselves to the spatial components 𝑖, 𝑗 of the energy-
momentum tensor, as these are the only components that contribute to the gravita-
tional wave strain in the TT gauge.

Enforcing energy-momentum conservation 𝜕𝜇𝑇𝜇𝜈 = 0, one can show that (e.g.,
[233]):

4
𝑟

∫
𝑑3𝑥′𝑇 𝑖 𝑗 =

2
𝑟

𝜕2

𝜕𝑡2

∫
𝑑3𝑥′𝑇00𝑥′𝑖𝑥′ 𝑗 =

2
𝑟

𝜕2

𝜕𝑡2

∫
𝑑3𝑥′𝜌𝑥′𝑖𝑥′ 𝑗 , (2.25)
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where we make the association of 𝑇00 = 𝜌 as the configuration of matter (the mass
density). With the second moment of the mass distribution as:

𝐼𝑖 𝑗 (𝑡) =
∫

𝑑3𝑥′𝜌(𝑡, ®𝑥′)𝑥′𝑖𝑥′ 𝑗 , (2.26)

the strain perturbation can be expressed as:

ℎ̄𝑖 𝑗 (𝑡, ®𝑥) =
2
𝑟

𝜕2𝐼𝑖 𝑗 (𝑡𝑟)
𝜕𝑡2

. (2.27)

To get the TT part of the strain, we simply need to project out the non transverse-
traceless part. We do this by defining the reduced quadrupole moment:

𝐼𝑖 𝑗 (𝑡) =
∫

𝑑3𝑥𝜌(𝑡, ®𝑥) (𝑥𝑖𝑥 𝑗 − 1
3
𝛿𝑖 𝑗 | ®𝑥 |2) = 𝐼𝑖 𝑗 (𝑡) −

1
3
𝛿𝑖 𝑗 𝐼 (𝑡)𝑖𝑖, (2.28)

which subtracts off the trace. Then, we define the projection tensor:

𝑃𝑖 𝑗 ,𝑘𝑙 = 𝑃𝑖𝑘𝑃 𝑗 𝑙 −
1
2
𝑃𝑖 𝑗𝑃𝑘𝑙 , (2.29)

where 𝑃𝑖 𝑗 = 𝛿𝑖 𝑗 − 𝑛𝑖𝑛 𝑗 . This projects out the components parallel to 𝑛𝑖, leaving us
with:

ℎ̄𝑇𝑇𝑖 𝑗 (𝑡, ®𝑥) =
2
𝑟
𝑃𝑖 𝑗 ,𝑘𝑙

𝜕2𝐼 𝑘𝑙 (𝑡𝑟)
𝜕𝑡2

. (2.30)

If we now consider a binary system made of two stars or black holes with masses
𝑚1 and 𝑚2, we can calculate the gravitational wave emission over a circular orbit
with angular frequency Ω. Kepler’s laws tell us this will be:

Ω2 =
𝑀

𝑎3 , (2.31)

when the two bodies are separated by a distance 𝑎. Here, we define 𝑀 = 𝑚1 + 𝑚2

as the total mass of the system. The reduced mass is 𝜇 =
𝑚1𝑚2
𝑀

. If we orient the
system on the x-y plane, so it is face-on with respect to the observer, then we can
write the reduced quadrupole moment as the matrix:

𝐼𝑖 𝑗 = 𝜇𝑎2 ©«
cos2(Ω𝑡) − 1/3 cosΩ𝑡 sinΩ𝑡 0

cosΩ𝑡 sinΩ𝑡 cos2(Ω𝑡) − 1/3 0
0 0 −1/3

ª®®¬ , (2.32)

which has the second time derivative:

𝜕2𝐼𝑖 𝑗

𝜕𝑡2
= −2𝜇𝑎2Ω2 ©«

cos(2Ω𝑡) − sin(2Ω𝑡) 0
− sin(2Ω𝑡) − cos(2Ω𝑡) 0

0 0 0

ª®®¬ . (2.33)
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With this orientation, the projection into TT simply projects out the 𝑧-component,
so we can easily get the strain:

ℎ̄𝑇𝑇𝑖 𝑗 (𝑡) =
4𝑀2/3𝜇Ω2/3

𝑟

©«
cos(2Ω𝑡𝑟) sin(2Ω𝑡𝑟) 0
sin(2Ω𝑡𝑟) − cos(2Ω𝑡𝑟) 0

0 0 0

ª®®¬ , (2.34)

where 𝑎 is replaced using Kepler’s law. Replacing factors of 𝐺 and 𝑐, we can read
off the polarizations:

ℎ+ =
4(𝐺M)5/3Ω2/3

𝑐4𝑟
cos(2Ω𝑡𝑟), ℎ× =

4(𝐺M)5/3Ω2/3

𝑐4𝑟
sin(2Ω𝑡𝑟), (2.35)

where we defined the chirp mass M ≡ (𝑚1𝑚2)3/5

(𝑚1+𝑚2)1/5 = 𝜇3/5𝑀2/5. From here, we
learn that the quadrupole gravitational radiation has a frequency of twice the system
orbital frequency, and that the amplitude of the radiation is controlled by the chirp
mass and our distance to the system. In general, ℎ+ and ℎ× will additionally depend
on the inclination of the line-of-sight to the observer.

While this gives a good idea for the amplitude of a very simple configuration of
a binary system, it leaves out critical details related to the evolution of the system
dynamics which will affect the strain. In particular, since gravitational waves carry
energy, the orbit will shrink, increasing the orbital frequency, making Ω evolve as
a function of time. This is typically solved for by considering the energy carried
away by the gravitational waves at the current frequency. At the leading order, this
is given from Einstein’s quadrupole formula for luminosity when the binary has a
separation 𝑎: (𝑑𝐸GW

𝑑𝑡

)
0
=

32
5
𝐺4

𝑐5
𝜇2𝑀3

𝑎5 . (2.36)

Balancing this with the energy loss from the orbit results in the evolution of the
orbital frequency. For example, the oribital energy is 𝐸orb = −𝐺𝑀𝜇2𝑎 , so, with
𝑑𝐸orb
𝑑𝑡

= − 𝑑𝐸GW
𝑑𝑡

, we find the orbital frequency evolves like:

𝑑𝑓orb
𝑑𝑡

=
𝑑𝑓orb
𝑑𝐸orb

𝑑𝐸orb
𝑑𝑡

=
96𝜋8/3

5𝑐5 (𝐺M)5/3 𝑓
11/3
orb , (2.37)

where Ω = 2𝜋 𝑓orb. Thus, one can evolve of the orbital frequency by tracking the
energy emitted in gravitational waves at that quasi-circular orbit, over which we
assume the frequency remains stable. This allows for one to solve for the time-
frequency relationship to plug into Eq. 2.35 to get a simple function for strain as a
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function of time, ℎ+,×(𝑡). A similar estimate can be made in the Fourier domain,
assuming a stationary phase and using the frequency evolution to solve for the phase.

Whereas this may be a good approximation for a binary system at low velocity
(equivalently, low frequency), we still used the Newtonian/Keplerian formula to
relate the orbital frequency and separation, which we then used in the quadrupole
formula for the luminosity (Eq. 2.36). However, when the bodies get closer to
one another, they undergo stronger gravitational interactions and move at faster
velocities, necessitating relativistic treatment of their equations of motion. This
leads to corrections which show up in powers of the velocity (or, equivalently,
powers of (𝑀/𝑎)1/2 = (𝑀Ω)1/3). The coefficients of these terms beyond the
leading order depend on the other properties of the compact binary system, such
as the mass ratios and the spin configuration. Therefore, signals with content from
higher-order terms (later in the inspiral) give information beyond the system’s chirp
mass and can be used to extract the component masses, spins, and other properties
of the system.
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C h a p t e r 3

MEASURING SOURCE PROPERTIES OF COMPACT BINARY
COALESCENCES

3.1 The Gravitational Wave Likelihood

After detecting a signal in the data, the goal now turns to determining the properties
of the source that generated the signal. In this section, I describe the process of
how we measure physical properties from the data collected by a gravitational wave
detector assuming it saw a signal from a compact binary coalescence (CBC). Several
works in the literature offer thorough reviews of this procedure (e.g., [536, 137, 221,
163]). In practice, we begin by making the following assumptions:

• The (calibrated) data d consist of a signal h and additive noise n.

• The realization of n is from a stationary, Gaussian distribution with zero mean.

I denote the data, noise, and signal strain as vectors in boldface, as they typically
appear as a time- or frequency-series. The description of the noise process is
motivated by the central limit theorem: when there are many small contributions
to the noise (e.g., contributions from seismic motion, instrumental effects, quantum
shot noise, etc.), a noise amplitude is a realization from a Gaussian distribution. We
work under the assumption that we have enough data to describe the noise with a
Gaussian, as the higher moments die off as we collect more data; the maximum-
entropy distribution for a given specified mean and variance is a Gaussian.

The contribution from n is Gaussian with the probability density:

𝑝(n|C) = 1√︁
|2𝜋𝐶 |

exp
(
− 1

2
𝑛𝑖𝐶−1

𝑖 𝑗 𝑛
𝑗
)

(3.1)

where 𝐶𝑖 𝑗 = 𝐸 [𝑛𝑖𝑛 𝑗 ] is the autocorrelation function: the expected product of two
noise amplitudes, which depends on the difference in times of the two data points. “||”
denotes a determinant, and Einstein summation is implied over contracted indices.

Generically, the exponential term in Eq. 3.1 costs O(𝑁2) to compute, for a vector of
𝑁 elements. Assuming stationarity and periodicity, we can recast the distribution
𝑛(𝑡) into the frequency domain �̃�(𝑡) where the Wiener-Kinchin theorem states that
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the covariance matrix becomes diagonal �̃�𝑖 𝑗 = 𝑇𝑆( | 𝑓𝑖 |)
2 𝛿𝑖 𝑗 (see [293, 475] for more

details), allowing the likelihood to be computed O(𝑁). Here, 𝑆( 𝑓𝑖) is the noise
Power Spectral Density (PSD) at the 𝑖th frequency bin and 𝑇 is the duration of the
data. Typically, S is calculated by taking the Fourier transform of data nearby the
signal and then taking a Welch-like average, or by using an on-source estimation
method such as BayesLine [343]. Typically, the noise PSD is considered fixed for
the PE analysis [18].

In the frequency domain, the likelihood for the (complex-valued noise) in the 𝑖th
frequency bin obtained from data with duration 𝑇 becomes (suppressing explicit
frequency-domain notation of �̃�, as it is understood this will all be done in the
frequency domain):

𝑝(𝑛𝑖 |𝑆𝑖) =
2

𝜋𝑇𝑆𝑖
exp

(
− 2|𝑛𝑖 |2

𝑇𝑆𝑖

)
, (3.2)

where we lose the square root in Eq. 3.1 because we enforce that both the real and
imaginary components of 𝑛𝑖 follow the same Gaussian distribution (leading to a
Whittle likelihood [523, 469]).

Define the noise-weighted inner product as (assuming a one-sided PSD):

⟨a|b⟩ ≡ 4Re
∫ ∞

0

�̃�∗( 𝑓 )�̃�( 𝑓 )
𝑆( 𝑓 ) 𝑑𝑓 , (3.3)

which we approximate by evaluating on a grid of 𝑁 frequency bins spaced Δ 𝑓 apart:

⟨a|b⟩ = 4Δ 𝑓
𝑁∑︁
𝑖

Re
[𝑎∗

𝑖
𝑏𝑖

𝑆𝑖

]
. (3.4)

We can now rewrite Eq. 3.2 into:

𝑝(n|S) = 1
| 𝜋𝑇2 S|

exp
(
− 1

2
⟨n|n⟩

)
. (3.5)

We now have a probability distribution for the data residuals in the presence of a
signal, 𝑛( 𝑓 ) = 𝑑 ( 𝑓 ) − ℎ( 𝑓 ). Assuming the signal model ℎ( 𝑓 ) is parameterized by
𝜃, which includes masses, spins, and location of the binary system (and any other
measurable property controlling the predicted signal), we can predict the noise in
the data for a signal with parameters 𝜃: 𝑛( 𝑓 , 𝜃) = 𝑑 ( 𝑓 )−ℎ(𝜃, 𝑓 ). The log likelihood
is then:

log 𝑝(d|𝜃) = −1
2

〈
(d − h)

���(d − h)
〉
− log

(
| 𝜋𝑇

2
S|

)
. (3.6)
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If we assume the noise PSD is fixed, we need only keep the terms that have depen-
dence on the signal model h:

log 𝑝(d|𝜃) = −1
2
(
⟨h|h⟩ − 2⟨d|h⟩

)
+ ..., (3.7)

where the ... denotes terms independent of 𝜃.

When measuring the source parameters 𝜃, we typically want to obtain the probability
for any value of 𝜃 given the data we collected. In the Bayesian inference framework,
we begin with our prior distribution reflecting our prior beliefs on the values of
𝜃 before seeing the data, and then incorporate the likelihood of the data under the
possible values of 𝜃, as calculated in Eq. 3.7. This is the posterior probability of
parameters 𝜃 given the data (Bayes’ theorem):

𝑝(𝜃 |d) = 𝑝(d|𝜃)𝜋(𝜃)
Z , (3.8)

where 𝜋(𝜃) is the prior and Z =
∫
𝑝(d|𝜃)𝜋(𝜃)𝑑𝜃 is the normalization factor known

as the evidence and is sometimes expressed as 𝑝(d), the probability of the data given
the specified model and prior distribution. Computing the posterior probability for
parameters 𝜃 is known as parameter estimation (PE).

Typically, we conduct PE under a relatively agnostic prior distribution, where we
try to impart minimal assumptions in 𝜋(𝜃). For example, we assume uniform prior
distributions for the component masses in the frame of the detector1. Priors on
angular coordinates, such as spin orientations and sky location of the source, are
isotropic. The prior on the magnitudes of the spin vectors is typically uniform just
up to the Kerr limit of 1, with lower prior limits occastionally adopted based on the
source or assumed waveform model. It is worth noting, however, the agnostic choice
that we make is not necessarily the best (or even truly “agnostic”) given the prior
information we actually have from the population or astrophysical expectations. As
explained in Chapter 6, we reweight this prior to a population-informed prior for
many downstream analyses.

Because for CBCs Eq. 3.8 typically involves a vector of 𝜃 with 15+ dimensions, it
is intractable to simply compute the posterior on a multidimensional grid of 𝜃. If
we were only interested in the probability over just the 𝑖th parameter, we would still
need to integrate 𝑝(𝜃𝑘 |d) =

∫
𝑝(𝜃 |d)𝑑𝜃 where 𝜃 refers to the subset of 𝜃 ≠ 𝜃𝑘 .

1Technically, for computational efficiency, we sample in chirp mass and mass ratio coordinates
with a Jacobian that sets a prior effectively uniform in the component masses.
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For example, we may want to know “what is the posterior probability on the spins,
regardless of the mass?”

Stochastic sampling techniques are commonly used to overcome this computational
challenge. These methods work by drawing samples and computing weights for
each sample, ending up with a set of representative samples of {𝜃} ∼ 𝑝(𝜃 |d). This
is in contrast to returning the posterior evaluated at pre-set possible values of 𝜃 (i.e.,
as an alternative to evaluating on a grid of 𝜃). Common stochastic sampling methods
include Markov Chain Monte Carlo (MCMC) sampling and nested sampling. While
nested sampling was originally introduced to compute evidences [500], it also returns
samples from the posterior after it reaches some convergence criteria. Typically, the
nested sampler Dynesty [507] (as implemented in Bilby [67]) is used for sampling
the posterior with the gravitational wave likelihood in PE analyses within the LVK.

Bilby, and the associated automation pipeline Bilby-Pipe, provides a convenient and
user-friendly package for conducting PE analyses, with special features and focus on
gravitational wave data analysis [470, 67]. In particular, the user can specify analysis
settings such as frequency bounds, data duration, priors, and much more, and
Bilby will read data and construct Interferometer objects to represent each chosen
gravitational wave detector in its correct location. It will then accumulate samples
from the posterior by calling a waveform approximant (via, e.g., LALSimulation),
and projecting the signal onto the interferometer to get the predicted strain in the
detector, and calculating the likelihood (Eq. 3.7).

It still remains to be seen how h( 𝑓 , 𝜃) is calculated. Typically, this is done in two
parts:

• A waveform approximant predicts the complex strain in the basis of the allowed
polarizations. In general relativity, these are + and ×, so this corresponds to
generating two vectors h+(𝜃), h×(𝜃), for parameters 𝜃. This is the waveform
that reaches Earth prior to accounting for detector effects.

• The strain is projected onto the antenna response to each polarization 𝑗 , given
a line-of-sight vector ®𝑛 and polarization angle 𝜓: h = 𝐹 𝑗 (®𝑛, 𝜓)ℎ 𝑗 (𝜃)

The functions 𝐹 𝑗 are the antenna pattern functions, quantifying the response of the
detector to a signal with polarization 𝑗 . This depends on the orientation between
the line-of-sight vector to the source and the detector arms. While it is common
in the literature to say 𝐹 is a function of only the celestial coordinates (i.e., right
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ascension 𝛼, declination 𝛿) and polarization angle 𝜓, this does not fully specify ®𝑛
with respect to the detector, as the celestial sphere rotates over time, requiring the
time of the signal to additionally be specified. Specifically, 𝐹 is a function of either
(𝛼, 𝛿, 𝑡, 𝜓) or the spherical coordinates of the source in the detector’s frame.

3.2 The Response of the Detector to a Gravitational Wave

It is convenient to express ℎ𝜇𝜈 in a basis where the two propagating degrees of
freedom contribute only spatial perturbations orthogonal to the wave propagation
vector which we take to be along the 3-axis. In this transverse-traceless (TT) gauge
(see Chapter 2),

ℎ12 = ℎ21

ℎ11 = −ℎ22

ℎ0𝜇 = ℎ𝜈0 = ℎ3𝛼 = ℎ𝛽3 = 0.

After assigning our two degrees of freedom as ℎ12 = ℎ× and ℎ11 = ℎ+ we can write
the basis of each polarization in the transverse spatial subspace (i.e., 𝑥𝑦) as:

e+ =

(
1 0
0 −1

)
, e× =

(
0 1
1 0

)
.

Which is generated by

e+ = 𝑒1𝑒
𝑇
1 − 𝑒2𝑒

𝑇
2 = 𝑒1 ⊗ 𝑒1 − 𝑒2 ⊗ 𝑒2 (3.9)

e× = 𝑒1𝑒
𝑇
2 + 𝑒2𝑒

𝑇
1 = 𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1, (3.10)

where 𝑒𝑖 is the standard 𝑖th cartesian basis vector for the frame of the radiation.

Putting this together, in this gauge, the metric perturbation can be expressed as the
matrix

h = ℎ+e+ + ℎ×e× =

(
ℎ+ ℎ×

ℎ× −ℎ+

)
, (3.11)

specifying the geometry of perturbations from the incoming radiation. It is worth
reiterating here that when expressed in the form above, the components of ℎ𝜇𝜈 refer
to the components in the basis defined by the polarization plane.

We now consider how the detector responds to the presence of a gravitational wave
signal passing.2 We begin by establishing a detector-centered frame whose origin

2See, e.g., [59, 567, 392] for reviews of this procedure.
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is at the beamsplitter, with basis vectors �̂� and 𝑌 , pointing along the 𝑋 and 𝑌
arms of the detector, respectively. For this section, the basis vectors are denoted
�̂� 𝑖 = ( �̂�,𝑌 , �̂�). Note that, in general, �̂� and 𝑌 are not necessarily aligned with 𝑒𝑥
and 𝑒𝑦 and these two frames will be related by a three-dimensional rotation in order
to express ℎ𝜇𝜈 in terms of its components in �̂� , 𝑌 , and �̂� .

In our gauge choice, the coordinates are defined with respect to the positions of the
test masses, fixing their positions. While the coordinate position of the test masses
at the end of either arm does not change due to the passage of a gravitational wave,
the proper length of the arm will change, which is an observable effect. If each
arm has a rest length 𝐿, then the vector pointing to the test mass on the 𝑋 arm is
𝑋 (1) = 𝑋 = (𝐿, 0, 0), and, for the 𝑌 arm, 𝑋 (2) = 𝑌 = (0, 𝐿, 0).

With 𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈, light travels along the null geodesic (with 𝑐 = 1):

𝑑𝑠2 = 0 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = −𝑑𝑡2 + 𝑔𝑖 𝑗𝑑𝑋 𝑖𝑑𝑋 𝑗 = −𝑑𝑡2 + (1 + ℎ𝑖 𝑗 )𝑑𝑋 𝑖𝑑𝑋 𝑗 . (3.12)

So, for example, for light traveling along the 𝑋-arm,

−𝑑𝑡2 + (1 + ℎ𝑋𝑋)𝑑𝑋2 = 0, (3.13)

implies
𝑑𝑡 =

√︁
1 + ℎ𝑋𝑋𝑑𝑋 ≈ (1 + 1

2
ℎ𝑋𝑋)𝑑𝑋, (3.14)

which we can simply integrate from the light traveling from 0 to 𝐿 and back to 0 to
get the round-trip coordinate time in the 𝑋-arm:

𝑇𝑋 =

∫ 𝐿

0
(1 + 1

2
ℎ𝑋𝑋)𝑑𝑋 +

∫ 0

𝐿

(1 + 1
2
ℎ𝑋𝑋)𝑑𝑋 = 2𝐿 (1 + 1

2
ℎ𝑋𝑋), (3.15)

where ℎ𝑋𝑋 is the component of ℎ𝜇𝜈 that lies along the 𝑋 arm, and we recall that the
test masses are at fixed coordinate distance 𝐿.

Here, we assumed the long-wavelength approximation, so that ℎ𝑋𝑋 is constant
over the length of the arm because 𝜆ℎ ≫ 2𝐿 (equivalently, the frequency of the
gravitational wave is much less than the frequency of the round trip light time).
This allowed us to simplify Eq. 3.15 and factor ℎ𝑋𝑋 out of the integral. This is
a good approximation for the frequencies of interest for LIGO and Virgo, which
are typically ∼ 10 Hz to ∼ 1 kHz, meaning 𝜆ℎ ⪆ 104 km, much larger than the
arm length of LIGO (𝐿 = 4 km). See [75] for my contributions to a study testing
parameter estimation on simulated signals in third generation detectors where the
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long-wavelength approximation is not valid and additional time- and frequency-
dependent effects need to be considered.

As we have not yet needed to make an assumption about what coordinate system we
represent ℎ𝜇𝜈, it is worth expressing this in abstract notation, where ℎ𝑎𝑏 represents
the components of ℎ𝜇𝜈 without assuming a basis. In abstract notation, with ℎ𝑖 𝑗 =
ℎ𝑎𝑏 �̂�

𝑖𝑎 �̂� 𝑗 𝑏, the round-trip time for light moving down the arm aligned with �̂� 𝑖 is
𝑇𝑖 ≈ 2𝐿 (1 + 1

2ℎ𝑎𝑏 �̂�
𝑖𝑎 �̂� 𝑖𝑏). If we assume a representation where the basis elements

of ℎ𝜇𝜈 are aligned with those of the detector, then the round-trip time along the 𝑋 𝑖

arm is simply 𝑇𝑖 ≈ 2𝐿 (1 + 1
2ℎ𝑖𝑖), as before.

In LIGO, we measure gravitational wave strain in the difference in light-travel time
down the two arms; this is known as the Differential ARM (DARM) response,
which contains the least laser frequency noise. The difference in roundtrip light
times down the arm aligned with �̂� 𝑖 and the arm aligned with �̂� 𝑗 is simply Δ𝑇 ≡
𝑇𝑖 − 𝑇𝑗 = 𝐿

(
ℎ𝑎𝑏 �̂�

𝑖𝑎 �̂� 𝑖𝑏 − ℎ𝑎𝑏 �̂� 𝑗𝑎 �̂� 𝑗 𝑏). The strain is a fractional change, so:

ℎ =
Δ𝑇

2𝐿
= ℎ𝑎𝑏

�̂� 𝑖𝑎 �̂� 𝑖𝑏 − �̂� 𝑗𝑎 �̂� 𝑗 𝑏

2
= ℎ𝜇𝜈

�̂� 𝑖 ⊗ �̂� 𝑖 − �̂� 𝑗 ⊗ �̂� 𝑗

2
. (3.16)

The final term multiplying ℎ𝑎𝑏 is commonly denoted as the detector tensor 𝑑𝑎𝑏 =

1
2
(
�̂�𝑎 �̂�𝑏 −𝑌 𝑎𝑌 𝑏

)
. Stated again, this can be understood as the object which gives the

fractional difference between the times (or proper lengths) measured by the round
trip of two photons exiting from the beamsplitter simultaneously, with one traveling
up and down the 𝑋1 arm and the other up and down the 𝑋2 arm (e.g., 𝑋1 = 𝑋 and
𝑋2 = 𝑌 ).

In order to actually calculate the strain from the passing gravitational wave signal,
we project the signal into the detector response by contracting ℎ𝑎𝑏 and 𝑑𝑎𝑏:

ℎ = ℎ𝑎𝑏 𝑑
𝑎𝑏 =

(
ℎ+ 𝑒+ 𝑎𝑏 + ℎ× 𝑒× 𝑎𝑏

)
𝑑𝑎𝑏 = ℎ+ 𝐹

+ + ℎ× 𝐹×, (3.17)

where 𝐹+/× is the antenna response factor for the +/× polarization. In order to
actually calculate 𝐹+ = 𝑒+ 𝑎𝑏𝑑

𝑎𝑏 and 𝐹× = 𝑒× 𝑎𝑏𝑑
𝑎𝑏, we need to represent e+/× in

the same basis as 𝑑.

In practice, this can be done by expressing the components of these tensors in a
geocentric, Earth-fixed coordinate system, whose 𝑥, 𝑦, and 𝑧 axes intersect the Earth
surface at (0, 0), (0, 90°E), and (90°N, 0), respectively.

Now we express the components of detector tensor d in this coordinate system. For
a detector with a vertex at latitude 𝜑 and longitude 𝜆, the unit vector for the 𝑖 arm
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with a tilt angle 𝜔𝑖 above the horizontal and angle Ψ𝑖 North of East is (e.g., [59]):

�̂� 𝑖 = (sin𝜔𝑖 cos 𝜑 cos𝜆 − cos𝜔𝑖 cosΨ𝑖 sin𝜆 − cos𝜔𝑖 sinΨ𝑖 sin 𝜑 cos𝜆)𝑥 (3.18)

+ (cos𝜔𝑖 cosΨ𝑖 cos𝜆 − sin 𝜑 sin𝜆 cos𝜔𝑖 sinΨ𝑖 + sin𝜔𝑖 cos 𝜑 sin𝜆) �̂� (3.19)

+ (cos𝜔𝑖 sinΨ𝑖 cos 𝜑 + sin𝜔𝑖 sin 𝜑)𝑧, (3.20)

where each unit vector points from the origin at the geocenter in the direction of �̂� 𝑖.

One can then generate the elements of the gravitational wave polarization tensors in
this same basis by simply expressing polarization plane basis vectors 𝑒𝑥 and 𝑒𝑦 in
the geocentric coordinate system, which has the elements:

𝑒𝑥 = (sin 𝜙 cos𝜓 − sin𝜓 cos 𝜙 cos 𝜃)𝑥 (3.21)

− (cos 𝜙 cos𝜓 + sin𝜓 sin 𝜙 cos 𝜃) �̂� (3.22)

+ sin𝜓 sin 𝜃𝑧 (3.23)

𝑒𝑦 = (− sin 𝜙 sin𝜓 − cos𝜓 cos 𝜙 cos 𝜃)𝑥 (3.24)

+ (cos 𝜙 sin𝜓 − cos𝜓 sin 𝜙 cos 𝜃) �̂� (3.25)

+ sin 𝜃 cos𝜓𝑧, (3.26)

which simply rotates the wavevector a gravitational wave signal aligned with 𝑒𝑧 by
the polar angle 𝜃 (not to be confused with the general single-event source parameters
𝜃) and the azimuthal angle 𝜙, placing �̂� in the correct point over Earth. Then the
polarization plane of the gravitational wave signal is further rotated by 𝜓, aligning
the polarization basis with this coordinate system. So we can now express e+/× in
terms of the geocentric coordinates by plugging the expressions in Eq. 3.21 into
Eq. 3.9. Note that these coordinates are time-dependent as points on the celestial
sphere rotate around the fixed Earth coordinate basis. Given the Greenwhich Mean
Sidereal Time (GMST) of the arrival of the signal, we can relate the coordinates on
the celestial sphere (for local longitude 𝜙 and polar angle–colatitude 𝜃)3:

𝜙 = 𝛼 − GMST (3.27)

𝜃 = 𝜋/2 − 𝛿. (3.28)

The final step for computing the waveform in the detector is simply to perform the
contraction in Eq. 3.17 given the polarizations ℎ+ and ℎ×.

3This follows because the GMST is the Right Ascension on the Greenwich Meridian. Therefore,
at a given time, the position of a star counterclockwise from the 𝑥-axis is the difference between the
Right Ascension and GMST. Declination is measured from the equator so it is offset by standard
spherical coordinate 𝜃 by 90°.
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3.3 Waveform Approximants

Given a set of intrinsic parameters (masses and spins) plus a reference phase and
inclination, a waveform approximant is used to compute the predicted strain po-
larizations ℎ+ and ℎ×. We use a waveform “approximant” to predict the strain ℎ
because there are no generic, closed-form solutions for the CBC strain from a binary
system in general relativity, and solving for the strain in real-time using numerical
simulations is infeasible.

That being said, numerical relativity (NR) simulations solve the Einstein field equa-
tions using numerical methods, giving the most accurate solution currently available
for the strain produced by a CBC in general relativity. Since the first complete
successful BBH merger simulations in 2005 [432, 128, 77], numerical relativity
simulations have provided critical information about CBCs in the highly nonlinear,
strong-field regime, particularly in the final merger and ringdown phases. Each
simulation begins by specifying the mass ratio and the spins of each black hole
(three total parameters for aligned-spin simulations, seven for in-plane precessing
spin components, total mass acts as an overall scale factor). Conducting these sim-
ulations is extremely costly and requires solving coupled differential equations for
the metric and its derivatives on a grid along hypersurface slices. The largest and
most accurate catalogs of NR simulations are produced by the Simulating Extreme
Spacetimes (SXS) collaboration, whose Spectral Einstein Code evolves compact
binary systems via integrating the Einstein equations using spectral methods with
exponential convergence [110]. These simulations are critical for modeling the
strain in the merger and ringdown phases of a CBC, where analytical approaches
valid for low speeds (or large separations) have broken down.

For a fixed initial binary separation, the cost of these simulations scales with the mass
ratio and increases with precessing spin configurations. This can take O(weeks) to
complete a single simulation running in parallel on thousands of cores. However,
during the course of a PE analysis, the stochastic sampler will call the likelihood
typically for more than O(106) configurations of parameters, motivating the use of
faster, but less accurate approximants to compute the strain ℎ(𝜃) for arbitrary 𝜃.

Waveform approximants can generally be classified in three broad categories based
on the strategy used to approximate ℎ(𝜃): numerical relativity surrogate mod-
els (NRSur), effective-one-body models (EOB), and phenomenological inspiral-
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merger-ringdown (IMRPhenom) models.4

Achieving mismatches of ∼ 10−4 − 10−3 to NR simulations, NRSurrogate models
such as NRSur7dq4 [550] are considered the state-of-the-art waveform model where
they are valid and have the least systematic biases. Constructed natively in the time
domain and including higher order mode content, these models essentially quickly
predict ℎ by interpolating from a catalog of NR simulations. They work by creating
a reduced basis of waveforms from hundreds of NR simulations, then interpolating
or fitting coefficients of these basis elements. As an interpolant-based model, the
region of parameter space where these are valid is limited by the coverage of existing
NR simulations the model was trained on and the length of these simulations. For
the precessing surrogate NRSur7dq4, this region of parameter space extends to
precessing spins with magnitudes 𝑎1,2 ≲ 0.8 and mass ratios 1/4 < 𝑞 < 1, although
the authors of this model find that the extrapolation of the model valid down to
𝑞 ≈ 1/6 [550]. Crucially, the parameter space where this model is valid is also
limited by the length of the NR simulations in its training set. For example, the NR
simulations used in training NRSur7dq4 begin 4300𝑀 , ∼ 20 orbits, before merger.
With the mass configuration of the simulation determining the physical separation
or gravitational wave frequency at this time, ℎ is only generated above a minimum
frequency depending on the masses. For NRSur7dq4, the (ℓ, 𝑚) = (2, 2) mode starts
at or below 20 Hz for total masses 𝑀 ≳ 60𝑀⊙. Only some of the events through
the third Graviational Wave Transient Catalog (GWTC3) are confidently within this
region of parameter space, meaning this model is not generally applicable to events
seen by the LVK detectors.

The NRHybSur3dq8 waveform model is an NR surrogate model that circumvents
the total mass restriction by hybridizing, or smoothly stitching, the NR surrogate
waveform at the merger-ringdown to a combined post-Newtonian (PN) and EOB
waveform at the earlier inspiral [549]. This makes this waveform and its higher order
mode content valid for the entire BBH mass range when starting at 20 Hz. However,
this comes at the cost of efficiency and limitations for where in spin parameter
space the model can be used. The hybridization procedure makes NRHybSur3dq8
relatively slow to evaluate, and its limitation to aligned spins makes it not generally
usable for LVK catalog analyses.

The EOB approach models the inspiral-plunge waveform by replacing the two-
body problem with an effective one-body problem of the equivalent reduced mass

4See [137, 349] for recent reviews of waveform approximant families.
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[118]. The dynamics of the system are then evolved according to a Hamiltonian
describing a test mass in a background described by the EOB metric. The evolution
process requires numerically solving a system of differential equations based on this
formulation in order to generate a waveform for a given configuration of compact
binary.

The most popular models in the EOB family are the Spinning Effective One Body
Numerical Relativity (SEOBNR) models [408, 108], which are constructed in the
time domain and include spin effects. The models with “HM” and “P” in their
names include higher order mode content and precession effects, respectively. These
models explicitly separate the waveform into two distinct phases: the inspiral-plunge
phase (computed using the EOB approach described above) followed by a merger-
ringdown phase, which begins at the time of the peak amplitude of the (2, 2) mode.
In SEOBNR, as the inspiral approaches the plunge phase, the waveform additionally
relies on non-quasi-circular corrections and fits to NR. The merger-ringdown phase
is described by a phenomenological model motivated by NR and includes quasi-
normal mode content whose frequencies and damping times are computed from the
remnant properties. The waveform in this phase relies on initially free parameters,
some of which are fit to NR during the waveform construction process and are
constrained to give a smooth and continuous waveform at the transition between the
two phases.

The fitting coefficients used in some of the SEOB models allow for extrapolation
outside the region of parameter space corresponding to the NR simulations used for
fitting. This, combined with the inclusion of perturbative training waveforms for
highly-asymetric systems, allows SEOB models to offer complete coverage across
parameter space for modern ground-based gravitational wave catalogs [408, 444,
427]. While SEOBNRv5PHM and SEOBNRv4PHM give low mismatches to NR across
parameter space, the relatively slow speed of evaluating each waveform can be
burdensome for PE analyses. However, with modern PE pipelines and accelerations,
this model has become more computationally reasonable to adopt. As discussed in
Chapter 4, SEOBNRv5PHM was employed for all events in GWTC4 which passed the
threshold for conducting PE analyses.

The IMR-phenomenological approach separates the frequency domain of a wave-
form into three phases, each with a phenomenological ansatz intended to produce
a faithful representation or approximation of the strain in that phase. These ansatz
functions include fitting parameters which are optimized during training, so the
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model can be used to interpolate through parameter space. The general approach of
these models is to construct a fast, phenomenological waveform that is hybridized
between analytic (PN-based) and NR information where appropriate.

For the IMRPhenom family of models (e.g., [305, 429, 246]), the ansatz for the earliest
phase, the inspiral, is primarily based on the TaylorF2 approximant. TaylorF2
is a simple, analytic PN approximant implemented as a closed-form frequency-
domain expression with terms through 3.5PN order [166, 66, 121, 103]. As a PN
approximation, TaylorF2 is only valid at low velocities (𝑣/𝑐 ≪ 1) and therefore
is only appropriate for the earliest part of the waveform. The inspiral ansatz then
includes additional higher-order terms beyond 3.5PN with coefficients fit to EOB
inspiral waveforms during the construction of the waveform. This offers more
accurate approximations of the strain during the later inspiral, where we do not have
information from PN approximants.

The final parts of the waveform are purely phenomenological fits to NR simulations.
The end of the waveform, the merger-ringdown, consists of a combination of power
laws (for the phase or phase derivative) and a Lorentzian (to capture the quasi-
normal mode behavior), all of which are multiplied by fitting coefficients. Between
the inspiral and merger-ringdown is the intermediate region, which is a simple
function of mostly power laws meant to smoothly stitch the late inspiral to the early
merger-ringdown.

The coefficients are fit at the points in parameter space which have NR simulations
and use a polynomial interpolation (in terms of PN-motivated physical parameters for
mass and spin) to compute the value of the coefficients at arbitrary points in parame-
ter space [305, 51]. The result of this process is an efficient, frequency-domain wave-
form approximant constructed from a mixture of NR, EOB, and PN information. As
with SEOBNR models, the IMRPhenom models with “P” and “HM” suffixes include
precession and higher order mode effects, respectively. Commonly-used aligned-
spin models in this family are IMRPhenomD [305] and IMRPhenomXAS [429], the
latter of which includes additional NR calibration and treatment of unequal-spin ef-
fects. The more complete approximant IMRPhenomXPHM [246, 429] has been widely
used for most or all events in LVK catalogs, including those in GWTC3 and GWTC4.
Time domain versions of IMRPhenom approximants, such as IMRPhenomTPHM, have
been developed and used in the literature [202, 201]. While not generally as accurate
as SEOB and NRSur, these approximants are typically fast to evaluate (O(1-10ms))
and are commonly used in PE analyses for the LVK. They are crucially employed in
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the low-latency PE analyses (discussed in Chapter 4).

As modeling precession (by including non-aligned spin components) increases the
parameter space for the waveform, dramatically increasing the size of the necessary
training (i.e., NR simulation) data, waveform models take advantage of an approxi-
mate mapping between aligned and precessing systems as a shortcut for computing
generic, precessing waveforms. The approximation specifically takes advantage of
the fact that precession has a negligible effect on the rate of the inspiral and the pre-
cession timescale is much slower than the orbital timescale. Therefore, precession
can be treated as a separate effect (a simpler transformation) on top of the inspiral
of an aligned-spin system.

The process of modeling a waveform with precession in this manner relies on first
computing the equivalent aligned-spin waveform, using, for example, IMRPhenomD
or IMRPhenomXAS, which are used for this first step in some of the precessing
waveforms in the IMRPhenom family. Then, this waveform is “twisted up”, in
which a time-dependent rotation is applied to (actively) transform the non-precessing
waveform into the waveform with the correct in-plane (precessing) spin components.

The z-axis of the waveform in the first frame is fixed to track the orbital plane of
the binary and only has spin components aligned with this axis; this frame is known
as the co-precessing frame. The in-plane components of the spins, not included in
the waveform in this step, are tracked in terms of the Euler angles (𝛼, 𝛽, and 𝛾,
all functions of time) which prescribe the rotation between the inertial frame (with
precessing spins) and the co-precessing frame. In the inertial frame, the 𝑧-axis
is aligned with the total angular momentum and the waveform exhibits the effects
of precession. The transformation of the waveform from the coprecessing to the
inertial frame can be expressed in terms of Wigner-𝑑 matrices and the Euler angles
(time dependence is suppressed) [428, 489]:

ℎinertial
ℓm =

ℓ∑︁
m′=−ℓ

𝑒−𝑖𝑚𝛼𝑒−𝑖𝑚
′𝛾𝑑ℓ𝑚𝑚′ (𝛽)ℎcoprecessing

ℓ𝑚′ . (3.29)

Frequency-domain waveforms assume the stationary phase approximation (SPA),
which is formally only valid at lower velocities (lower frequencies, inspiral regime),
in order to calculate the above as a function of gravitational wave frequency, in-
troducing possible biases when using precessing, frequency-domain waveforms to
analyze high-mass signals containing merger-ringdown content [267, 201]. Time
domain waveforms suffer less of a bias when modeling precessing signals in the
merger-ringdown regime, as they do not rely on SPA [201].
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Several prescriptions exist for calculating the evolution of the Euler angles (𝛼(𝑡), 𝛽(𝑡), 𝛾(𝑡)).
The simplest evolution prescription is a single-spin PN expansion considering only
spin-orbit interactions with S2 = 0, with all of the spin on the larger black hole
and the spin-orbit contributions calculated to next-to-next-to-leading-order (this is
employed in IMRPhenomPv2) [305, 267, 490]. A newer multiple scale analysis
approach derives a prescription for evolving the Euler angles by employing an ex-
pansion about the ratios of characteristic timescales in the system, which allows for
solving PN precession equations and includes the ability to model spins on both black
holes [144, 250, 304]. This is the default method employed in IMRPhenomXPHM.
A final, newer method evolves the Euler angles by numerically integrating the ex-
pressions for the motion of the two spin vectors and the binary phasing up to 3PN
and 3.5PN, respectively [152]. This approach, known as SpinTaylor evolution,
tends to be more accurate and is the new default prescription used in the parameter
estimation analyses in GWTC4.
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C h a p t e r 4

PROPERTIES OF GRAVITATIONAL WAVE SOURCES
DETECTED IN GWTC-4

This chapter is intentionally redacted and will be embargoed until August 2025.
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C h a p t e r 5

THE CURIOUS CASE OF GW200129: INTERPLAY BETWEEN
SPIN-PRECESSION INFERENCE AND DATA-QUALITY

ISSUES

Ethan Payne, Sophie Hourihane, Jacob Golomb, et al. “Curious case of
GW200129: Interplay between spin-precession inference and data-quality
issues”. In: Phys. Rev. D 106.10 (2022), p. 104017. doi:10.1103/PhysRevD.
106.104017. arXiv: 2206.11932 [gr-qc].

Abstract

Measurement of spin-precession in black hole binary mergers observed
with gravitational waves is an exciting milestone as it relates to both gen-
eral relativistic dynamics and astrophysical binary formation scenarios.
In this study, we revisit the evidence for spin-precession in GW200129
and localize its origin to data in LIGO Livingston in the 20–50 Hz fre-
quency range where the signal amplitude is lower than expected from a
non-precessing binary given all the other data. These data are subject to
known data quality issues as a glitch was subtracted from the detector’s
strain data. The lack of evidence for spin-precession in LIGO Hanford
leads to a noticeable inconsistency between the inferred binary mass
ratio and precessing spin in the two LIGO detectors, something not ex-
pected from solely different Gaussian noise realizations. We revisit the
LIGO Livingston glitch mitigation and show that the difference between
a spin-precessing and a non-precessing interpretation for GW200129 is
smaller than the statistical and systematic uncertainty of the glitch sub-
traction, finding that the support for spin-precession depends sensitively
on the glitch modeling. We also investigate the signal-to-noise ratio ∼ 7
trigger in the less sensitive Virgo detector. Though not influencing the
spin-precession studies, the Virgo trigger is grossly inconsistent with
the ones in LIGO Hanford and LIGO Livingston as it points to a much
heavier system. We interpret the Virgo data in the context of further
data quality issues. While our results do not disprove the presence
of spin-precession in GW200129, we argue that any such inference is
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contingent upon the statistical and systematic uncertainty of the glitch
mitigation. Our study highlights the role of data quality investigations
when inferring subtle effects such as spin-precession for short signals
such as the ones produced by high-mass systems.
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5.1 Introduction

GW200129_065458 (henceforth GW200129) is a gravitational wave (GW) candi-
date reported in GWTC-3 [26]. The signal was observed by all three LIGO-Virgo
detectors [1, 38] operational during the third observing run (O3) and it is con-
sistent with the coalescence of two black holes (BHs) with source-frame masses
34.5+9.9

−3.2 𝑀⊙ and 28.9+3.4
−9.3 𝑀⊙ at the 90% credible level. Though the masses are typ-

ical within the population of observed events [28], the event’s signal-to-noise-ratio
(SNR) of 26.8+0.2

−0.2 makes it the loudest binary BH (BBH) observed to date. Addi-
tionally, it is one of the loudest triggers in the Virgo detector with a detected SNR
of 6–7 depending on the detection pipeline [26]. The signal temporally overlapped
with a glitch in the LIGO Livingston detector, which was subtracted using informa-
tion from auxiliary channels [169]. The detection and glitch mitigation procedures
for this event are recapped in Appendix 5.A.1.

The interpretation of some events in GWTC-3 was impacted by waveform system-
atics, with GW200129 being one of the most extreme examples. As part of the cata-
log, results were obtained with the IMRPhenomXPHM [428] and SEOBNRv4PHM [408]
waveform models using the parameter inference algorithms Bilby [67, 470] and
RIFT [580] respectively. Both waveforms correspond to quasicircular binary in-
spirals and include high-order radiation modes and the effect of relativistic spin-
precession arising from interactions between the component spins and the orbital
angular momentum. All analyses used the glitch-subtracted LIGO Livingston data.
The IMRPhenomXPHM result was characterized by large spins and a bimodal structure
with peaks at ∼ 0.45 and ∼ 0.9 for the binary mass ratio. The SEOBNRv4PHM results,
on the other hand, pointed to more moderate spins and near equal binary masses.
Both waveforms, however, reported a mass-weighted spin aligned with the Newto-
nian orbital angular momentum of 𝜒eff ∼ 0.1, and thus the inferred large spins with
IMRPhenomXPHM corresponded to spin components in the binary orbital plane and
spin-precession. Such differences between the waveform models are not unexpected
for high SNR signals [435]. Waveform systematics are also likely more prominent
when it comes to spin-precession, as modeling prescriptions vary and are not cali-
brated to numerical relativity simulations featuring spin-precession [428, 430, 408].
Data quality issues could further lead to evidence for spin-precession [69]. Due
to differences in the inference algorithms and waveform systematics, GWTC-3 ar-
gued that definitive conclusions could not be drawn regarding the possibility of
spin-precession in this event [26].
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Stronger conclusions in favor of spin-precession [266] and a merger remnant that
experienced a large recoil velocity [548] were put forward by means of a third
waveform model. NRSur7dq4 [550] is a surrogate to numerical relativity simulations
of merging BHs that is also restricted to quasicircular orbits and models the effect of
high-order modes and spin-precession. This model exhibits the smallest mismatch
against numerical relativity waveforms, sometimes comparable to the numerical
error in the simulations. It is thus expected to generally yield the smallest errors
due to waveform systematics [550]. This fact was exploited in Hannam et al. [266]
to break the waveform systematics tie and argue that the source of GW200129
exhibited relativistic spin-precession with a primary component spin magnitude of
𝜒1 = 0.9+0.1

−0.5 at the 90% credible level.

During a binary inspiral, spin-precession is described through post-Newtonian the-
ory [65, 306]. Spin components that are not aligned with the orbital angular momen-
tum give rise to spin-orbit and spin-spin interactions that cause the orbit to change
direction in space as the binary inspirals, e.g., [120, 119, 489, 488, 267, 143, 144,
250, 303, 445]. The emitted GW signal is modulated in amplitude and phase, and
morphologically resembles the beating between two spin-aligned waveforms [204]
or a spin-aligned waveform that has been “twisted-up” [489, 488]. As the binary
reaches merger, numerical simulations suggest that the direction of peak emission
continues precessing [401]. Parameter estimation analyses using NRSur7dq4 find
that spins and spin-precession can be measured from merger-dominated signals for
certain spin configurations [98], however the lack of analytic understanding of the
phenomenon means that it is not clear how such a measurement is achieved.

The main motivation for this study is to revisit GW200129 and attempt to understand
how spins and spin-precession can be measured from a heavy BBH with a merger-
dominated observed signal. In Sec. 5.2 we use NRSur7dq4 to conclude that the
evidence for spin-precession originates exclusively from the LIGO Livingston data
in the 20–50 Hz frequency range, where the inferred signal amplitude is lower than
what a spin-aligned binary would imply given the rest of the data. This range
coincides with the known data quality issues described in Appendix 5.A.1 and first
identified in GWTC-3 [26]. LIGO Hanford is consistent with a spin-aligned signal,
causing an inconsistency between the inferred mass ratio 𝑞 and precession parameter
𝜒𝑝 inferred from each LIGO detector separately. By means of simulated signals, we
argue that such 𝑞 − 𝜒𝑝 inconsistency is unlikely to be caused solely by the different
Gaussian noise realizations in each detector at the time of the signal, rather pointing
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to remaining data quality issues beyond the original glitch-subtraction [26]. We
also re-analyze the LIGO Livingston data above 50 Hz, (while keeping the original
frequency range of the LIGO Hanford data) and confirm that all evidence for spin-
precession disappears.

In the process, we find that the Virgo trigger, though consistent with a spin-aligned
BBH, is inconsistent with the signal seen in the LIGO Hanford and LIGO Livingston
detectors. Specifically, the Virgo data are pointing to a much heavier BBH that
merges ∼20 ms earlier than the one observed by the LIGO detectors. We discuss
Virgo data quality considerations in Sec. 5.3 within the context of a potential glitch
that affects the inferred binary parameters if unmitigated. As a consequence, we do
not include Virgo data in the sections examining spin-precession unless otherwise
stated. The Virgo-LIGO inconsistency can be resolved if we use BayesWave [154,
343, 155] to simultaneously model a CBC signal and glitches with CBC waveform
models and sine-Gaussian wavelets respectively [139, 286]. The Virgo data are now
consistent with the presence of both a signal that is consistent with the one in the
LIGO detectors and an overlaping glitch with SNR ∼ 4.6.

In Sec. 5.4 we revisit the LIGO Livingston data quality issues and compare the
original glitch-subtraction based on gwsubtract [170, 169] that uses information
from auxiliary channels and the glitch estimate from BayesWave that uses only
strain data. Though the CBC model used in BayesWave does not include the effect
of spin-precession, we show that differences between the reconstructed waveforms
from a non-precessing and spin-precessing analysis for GW200129 are smaller than
the statistical uncertainty in the glitch inference. Such differences can therefore
not be reliably resolved in the presence of the glitch and its subtraction procedure.
The two glitch estimation methods give similar results within their statistical errors,
however gwsubtract yields typically a lower glitch amplitude. We conclude that
any evidence for spin-precession from GW200129 is contingent upon the systematic
and statistical uncertainties of the LIGO Livingston glitch subtraction. Given the low
SNR of the LIGO Livingston glitch and the glitch modeling uncertainties, we can
at present not conclude whether the source of GW200129 exhibited spin-precession
or not.

In Sec. 5.5 we summarize our arguments that remaining data quality issues in LIGO
Livingston cast doubt on the evidence for spin-precession. Besides data quality
studies (i.e., spectrograms, glitch modeling, auxiliary channels), our investigations
are based on comparisons between different detectors as well as different frequency
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Figure 5.1: One- and two-dimensional marginalized posteriors for select intrinsic
binary parameters: detector frame chirp-mass M, mass ratio 𝑞, effective spin 𝜒eff,
and precessing spin 𝜒𝑝. See Table 5.1 for analysis settings and Appendix 5.A.2
for detailed parameter definitions. Two-dimensional panels show 50% and 90%
contours. The black dashed line marks the minimum bound of 𝑞=1/6 inNRSur7dq4’s
region of validity. Shaded regions shows the prior for 𝑞, 𝜒eff, 𝜒𝑝. The M prior
increases monotonically to the maximum allowed value (see Appendix 5.A.2 for
details on choices of priors). Left panel: comparison between analyses that use
solely LIGO Hanford (red; H), LIGO Livingston (blue; L), and Virgo (purple; V)
data. Right panel: comparison between analyses of all three detectors (yellow;
HLV), only LIGO data (green; HL) and only Virgo data (purple; V). The evidence
for spin-precession originates solely from the LIGO Livingston data as the other
detectors give uninformative 𝜒𝑝 posteriors. Additionally, the binary masses inferred
based on Virgo only are inconsistent with those from the LIGO data.

bands of the same detector. We propose that similar investigations in further events
of interest with exceptional inferred properties could help alleviate potential con-
tamination due to data quality issues.

5.2 The origin of the evidence for spin-precession

Our main goal is to pinpoint the parts of the GW200129 data that are inconsistent
with a non-precessing binary and understand the relevant signal morphology. Due
to different orientations, sensitivities, and noise realizations, different detectors in
the network do not observe an identical signal. The detector orientation, especially,
affects the signal polarization content and thus the degree to which spin-precession
might be measurable in each detector. Motivated by this, we begin by examining



41

data using different detector combinations.

We perform parameter estimation using the NRSur7dq4waveform and examine data
from each detector separately (left panel) as well as the relation between the LIGO
and the Virgo data (right panel) and show posteriors for select intrinsic parameters
in Figure 5.1. Analysis settings and details are provided in Appendix 5.A.2 and in all
cases we use the same LIGO Livingston data as GWTC-3 [26] where the glitch has
been subtracted. Though we do not expect the posterior distributions for the various
signal parameters inferred with different detector combinations to be identical, they
should have broadly overlapping regions of support. If the triggers recorded by the
different detectors are indeed consistent, any shift between the posteriors should be
at the level of Gaussian noise fluctuations.

The left panel shows that the evidence for spin-precession arises primarily from
the LIGO Livingston data, whereas the precession parameter 𝜒𝑝 posterior is much
closer to its prior when only LIGO Hanford or Virgo data are considered. A sim-
ilar conclusion was reached in Hannam et al. [266]. There is reasonable overlap
between the two-dimensional distributions that involve the chirp mass M, the mass
ratio 𝑞, and the effective spin 𝜒eff inferred by the two LIGO detectors, as expected
from detectors that observe the same signal under different Gaussian noise real-
izations. The discrepancy between the spin-precession inference in the two LIGO
detectors, however, is evident in the 𝑞 − 𝜒𝑝 panel. The two detectors lead to non
overlapping distributions that point to either unequal masses and spin-precession
(LIGO Livingston), or equal masses and no information for spin-precession (LIGO
Hanford).

Besides an uninformative posterior on 𝜒𝑝, the left panel points to a bigger issue with
the Virgo data: inconsistent inferred masses. The right panel examines the role of
Virgo in more detail in comparison to the LIGO data. Due to the lower SNR in
Virgo, the intrinsic parameter posteriors are essentially identical between the HL
and the HLV analyses. The lower total SNR means that the Virgo-only posteriors
will be wider, but they are still expected to overlap with the ones inferred from the
two LIGO detectors. However, this is not the case for the mass parameters as is
most evident from the two dimensional panels involving the chirp mass. While the
LIGO data are consistent with a typical binary with (detector-frame) chirp mass
30.3+2.5

−1.6 𝑀⊙ at the 90% credible level, the Virgo data point to a much heavier binary
with 66.7+19.7

−22.6 𝑀⊙ at the same credible level.

The role of Virgo data on the inferred binary extrinsic parameters is explored in
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Figure 5.2: Similar to the right panel of Figure 5.1 but for select extrinsic parameters:
luminosity distance 𝑑𝐿 , angle between total angular momentum and line of sight
𝜃jn, right ascension 𝛼, and declination 𝛿. For reference, the median optimal SNR
for each run is HLV: 27.6, HL: 26.9, V: 6.7.

Figure 5.2. In general, Virgo data have a larger influence on the extrinsic than
the intrinsic parameters as the measured time and amplitude helps break existing
degeneracies. The extrinsic parameter posteriors show a large degree of overlap.
The Virgo distance posterior does not rail against the upper prior cut off, suggesting
that this detector does observe some excess power. The HL sky localization also
overlaps with the Virgo-only one, though the latter is merely the antenna pattern
of the detector that excludes the four Virgo “blind spots”. We use the HL results
to calculate the projected waveform in Virgo and calculate the 90% lower limit on
the signal SNR to be 4.2. This suggests that given the LIGO data, Virgo should be
observing a signal with at least that SNR at the 90% level.

In order to track down the cause of the discrepancy in the inferred mass parameters,
we examine the Virgo strain data directly. Figure 5.3 shows the whitened time-
domain reconstruction (left panel) and the spectrum (right panel) of the signal in
Virgo from a Virgo-only and a full 3-detector analysis. Compared to Figs. 5.1
and 5.2, here we only consider a 3-detector analysis as the reconstructed signal
in Virgo inferred from solely LIGO data would not be phase-coherent with the
data, and thus would be uninformative. Given the higher signal SNR in the two
LIGO detectors, the signal reconstruction morphology in Virgo is driven by them,
as evident from the intrinsic parameter posteriors from the right panel of Figure 5.1.
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Figure 5.3: 90% credible intervals for the whitened time-domain reconstruction
(left) and spectrum (right) of the signal in Virgo from a Virgo-only (purple; V) and
a full 3-detector (yellow; HLV) analysis, see Table 5.1 for analysis settings. The
data are shown in gray and the noise PSD in black. The time on the left plot is
relative to GPS 1264316116. The high value of the PSD at ∼ 50 Hz was imposed
due to miscalibration of the relevant data [26]. Vertical shaded regions at each panel
correspond to the 90% credible intervals of the merger time (left; defined as the
time of peak strain amplitude) and merger frequency (right; approximated via the
dominant ringdown mode frequency as computed with qnm [509], merger remnant
properties were computed with surfinBH [551]). The Virgo data point to a heavier
binary that merges ∼ 20ms earlier than the full 3-detector results that are dominated
by the LIGO detectors.

The two reconstructions in Figure 5.3 are morphologically distinct. The 3-detector
inferred signal is dominated by the LIGO data and resembles a typical “chirp” with
increasing amplitude and frequency. This signal is, however, inconsistent with the
Virgo data as it underpredicts the strain at 𝑡 ∼0.382 s in the left panel. The Virgo-
only inferred signal matches the data better by instead placing the merger at earlier
times to capture the increased strain at 𝑡 ∼0.382 s as shown by the shaded vertical
region denoting the merger time. Rather than a “chirp”, the signal is dominated
by the subsequent ringdown phase with an amplitude that decreases slowly over ∼2
cycles. As also concluded from the inferred masses in Figure 5.1, the Virgo data
point to a heavier binary with lower ringdown frequency (vertical regions in the
right panel).

Despite these large inconsistencies, the issues with the Virgo data do not affect our
main goal, which is identifying the origin of the evidence for spin-precession. In
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Figure 5.4: Whitened time-domain reconstruction (left) and spectrum (right) of
GW200129 in LIGO Hanford (top) and LIGO Livingston (bottom). Shaded regions
show the 90% credible intervals for the signal using a spin-precessing (light blue
and red) and a spin-aligned (dark blue and red) analysis based on NRSur7dq4, see
Table 5.1 for run settings. In gray we show the analyzed data where the gwsubtract
estimate for the glitch (black line) has already been subtracted. The black line in the
right panels is the noise PSD. The glitch overlaps with the part of the inferred signal
where the spin-aligned amplitude is on average larger than the spin-precessing one.
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order to avoid further ambiguities for the remainder of this section we restrict to data
from the two LIGO detectors unless otherwise noted. In Figure 5.1 we concluded
that LIGO Livingston alone drives this measurement and here we attempt to further
zero in on the data that support spin-precession by comparing results from a spin-
precessing and a spin-aligned analysis with NRSur7dq4; see Appendix 5.A.2 for
details. Figure 5.4 shows the whitened time-domain reconstruction (left panel) and
the spectrum (right panel) in LIGO Hanford (top) and LIGO Livingston (bottom).
The two reconstructions remain phase-coherent, however there are some differences
in the inferred amplitudes, with the spin-aligned amplitude being slightly larger
at ∼30–50 Hz and slightly smaller for ≳ 100 Hz. Comparison to the estimate for
the glitch that was subtracted from the data based on information from auxiliary
channels with gwsubtract shows that the glitch overlaps with the part of the signal
where the spin-precessing amplitude is smaller than the spin-aligned one. The
glitch subtraction and data quality issues are therefore related to the evidence for
spin-precession.

We confirm that the low-frequency data in LIGO Livingston (in relation to the rest
of the data) are the sole source of the evidence for spin-precession, by carrying out
analyses with a progressively increasing low frequency cutoff in LIGO Livingston
only, while leaving the LIGO Hanford data intact. Figure 5.5 shows the effect on the
posterior for 𝜒𝑝, 𝑞, and 𝜒eff. When we use the full data bandwidth, 𝑓low(𝐿) = 20 Hz,
we find that 𝑞 and 𝜒𝑝 are correlated and their two-dimensional posterior appears
similar to the combination of the individual-detector posteriors from Figure 5.1.
However, as the low frequency cutoff in LIGO Livingston is increased and the
data affected by the glitch are removed, the posterior progressively becomes more
consistent with an equal-mass binary and 𝜒𝑝 approaches its prior. By 𝑓low(𝐿) =

50 Hz, 𝜒𝑝 is similar to its prior and further increasing 𝑓low(𝐿) has a marginal effect.
This confirms that given all the other data, the LIGO Livingston data in 20–50 Hz
drive the inference for spin-precession.

The signal network SNR (i.e., the SNR in both detectors added in quadrature) is
given in the legend for each value of the low frequency cutoff. By 𝑓low(𝐿) = 50 Hz
where all evidence for spin-precession has been eliminated, the SNR reduction is
only 1.5 units, suggesting that the large majority of the signal is consistent with a
non-precessing origin. This might also suggest that 𝜒𝑝 inference is not degraded
solely due to loss of SNR, as the latter is very small. The 𝜒eff posterior is generally
only minimally affected, with a small shift to higher values driven by the 𝑞 − 𝜒eff
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Figure 5.5: One- and two-dimensional marginalized posterior for the mass ratio
𝑞, the precession parameter 𝜒𝑝, and the effective spin parameter 𝜒eff for analyses
using a progressively increasing low frequency cutoff in LIGO Livingston but all
the LIGO Hanford data; see Table 5.1 for details. The median network SNR for
each value of the frequency cutoff is given in the legend. Contours represent 90%
credible regions and the prior is shaded in gray. As the glitch-affected data are
removed from the analysis, the posterior approaches that of an equal-mass binary
and becomes uninformative about 𝜒𝑝. This behavior does not immediately indicate
data quality issues and we only use this increasing- 𝑓low(𝐿) analysis to isolate the
data which contribute the evidence of spin-precession when compared to the rest of
the data to within 20–50 Hz.

correlation [163]. We have verified that these conclusions are robust against re-
including the Virgo data (using their full bandwidth).

The above analysis is not on its own an indication of data quality issues in LIGO
Livingston, but we now turn to an observation that might be more problematic: the
𝑞 − 𝜒𝑝 inconsistency between LIGO Hanford and LIGO Livingston identified in
Figure 5.1. In order to examine whether such an effect could arise from the different
Gaussian noise realizations in each detector, we consider simulated signals. We use
100 posterior samples obtained from analyzing solely the LIGO Livingston data,
make simulated data that include a noise realization with the same noise PSDs as
GW200129, and analyze data from the two LIGO detectors separately. To quantify
the degree to which the LIGO Hanford and LIGO Livingston posteriors overlap, we
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Figure 5.6: 90% contours for the two-dimensional marginalized posteriors for the
mass ratio 𝑞 and the precessing parameter 𝜒𝑝 obtained from analyzing data from
each LIGO detector separately for 10 simulated signals. The signal parameters are
drawn from the posterior for GW200129 when using LIGO Livingston data only
and true values are indicated by black lines. Due to the spin priors disfavoring
large 𝜒𝑝, the injected value is outside the two-dimensional 90% contour in some
cases. We only encounter an inconsistency between LIGO Hanford (red; H) and
LIGO Livingston (blue; L) as observed for GW200129 in Figure 5.1 in O(5/100)
injections.

compute the Bayes factor for overlapping posterior distributions relative to if the
two distributions do not overlap [269, 268],

Boverlapping
not overlapping =

∬
d𝜒𝑝d𝑞

𝑝𝐿 (𝜒𝑝, 𝑞 |𝑑)𝑝𝐻 (𝜒𝑝, 𝑞 |𝑑)
𝜋(𝜒𝑝, 𝑞)

, (5.1)

where we compute the overlap within the 𝑞−𝜒𝑝 plane, 𝑝𝐿 (𝜒𝑝, 𝑞 |𝑑) and 𝑝𝐻 (𝜒𝑝, 𝑞 |𝑑)
are the LIGO Livingston and LIGO Hanford posteriors, and 𝜋(𝜒𝑝, 𝑞) is the prior.
While evaluating this quantity is subject to sizeable sampling uncertainty for events
where the two distributions are more distinct (i.e., the case of GW200129), we find
O(5/100) injections have a similar overlap as GW200129 (Figure 5.1). Figure 5.6
shows a selection of 𝑞−𝜒𝑝 posteriors for 10 injections as inferred from each detector
separately. The posteriors typically overlap, though they are shifted with respect to
each other as expected from the different noise realizations.

We conclude that the evidence for spin-precession originates exclusively from the
LIGO Livingston data that overlapped with a glitch. This causes an inconsistency
between the LIGO Hanford and LIGO Livingston that we typically do not encounter
in simulated signals in pure Gaussian noise. This inconsistency suggests that there
might be residual data quality issues in LIGO Livingston that were not fully resolved
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by the original glitch subtraction. Though inconsequential for the spin-precession
investigation, we also identify severe data quality issues in Virgo. Before returning
to the investigation of spin-precession, we first examine the Virgo data in detail
in Sec. 5.3 and argue that they should be removed from subsequent analyses. We
reprise the spin-precession investigations in Sec. 5.4.

5.3 Data quality issues: Virgo

Having established that the Virgo trigger is coincident but not fully coherent with the
triggers in the two LIGO detectors, we explore potential reasons for this discrepancy.
Figure 5.7 shows a spectrogram of the data in each detector centered around the
time of the event. A clear chirp morphology is visible in the LIGO detectors but
not in Virgo, though this might also be due to the low SNR of the Virgo trigger.
Within a few seconds of the trigger, however, a number of other glitches are also
present in Virgo, mostly assigned to scattered light. We estimate the SNR of the
Virgo trigger without assuming it is a CBC signal (i.e., without using a CBC model)
through Omicron [465] and BayesWave using its glitch model that fits the data
with sine-Gaussian wavelets; see Table 5.2 for run settings1. The former finds a
matched-filter Omicron SNR2 of 7.0, while the latter finds an optimal SNR of 7.3
for the median glitch reconstruction.

Given the prevalence of glitches, the first option is that the Virgo trigger is actually
a detector glitch that happened to coincide with a signal in the LIGO detectors.
To estimate the probability that such a coincidence could happen by chance, we
consider the glitch rate in Virgo. In O3, the median rate of glitches in Virgo was
1.11/min, with significant variation versus time [26]. When we consider the hour
of data around the event, the rate of glitches with Omicron SNR > 6.5 is 10.2/min.
Most of the glitches in Virgo at this time are due to scattered light [37, 346, 347, 40,
506]. While Figure 5.7 shows that there are scattered light glitches in the Virgo data
near the time of GW200129, the excess power from these glitches are concentrated at
frequencies < 30 Hz. To account for the excess power corresponding to GW200129
in Virgo, there must be a different type of glitch present in the data. The rate of
glitches at frequencies similar to the signal is much lower; using data from 4 days

1=The BayesWave analyses described here does not concurrently marginalize over the PSD
uncertainty.

2The SNR reported by Omicron is normalized so that the expectation value of the SNR is 0,
rather than

√
2 [465]. To highlight this difference, we use the phrase “Omicron SNR” whenever a

reported result uses this normalization.
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Figure 5.7: Spectrogram of the data in each detector, plotted using plotted using the
Q-transform [136, 350]. Listed times are with respect to GPS 1264316116. Besides
the clear chirp morphology in LIGO, there is visible excess power ∼ 1 s after the
signal in LIGO Livingston. Virgo demonstrates a high rate of excess power, though
most is due to scattered light and concentrated at frequencies < 30 Hz. The excess
power in Virgo that is coincident with GW200129 does not have a chirp morphology.
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around the event, the rate of glitches with frequency 60-120 Hz is only 0.06/hr.
Given this rate, we calculate the probability that a glitch occurred in Virgo within
a 0.06 s window (roughly corresponding to twice the light-travel time between the
LIGO detectors and Virgo) around a trigger in the LIGO detectors. We find that if
glitches at any frequency are considered, the probability of coincidence per event
is O(0.01), and if only glitches with similar frequencies are considered, the same
probability is O(10−5).

Another option is that the Virgo trigger is a combination of a genuine signal and
a detector glitch. We explore this possibility using BayesWave [154, 343, 155] to
simultaneously model a potential CBC signal that is coherent across the detector net-
work and overlapping glitches that are incoherent [139, 286]. In this “CBC+glitch”
analysis, BayesWavemodels the CBC signal with the IMRPhenomD waveform [290,
305] and glitches with sine-Gaussian wavelets. Details about the models and run set-
tings are provided in Appendix 5.A.3. An important caveat here is that IMRPhenomD
does not include the effects of higher-order modes and spin-precession. A concern
is, therefore, that the CBC model could fail to model precession-induced modu-
lations in the signal amplitude and instead assign them to the glitch model. This
precise scenario is tested in Hourihane et al. [286] where the analysis was shown
to be robust against such systematics. Below we argue that the same is true here
for the Virgo data, especially since they are consistent with a spin-aligned binary as
shown in Figure 5.1.

Figure 5.8 compares BayesWave’s reconstruction in Virgo with the one obtained
with the NRSur7dq4 analysis from Figure 5.3 that ignores a potential glitch but
models spin-precession and higher order modes. All results are obtained using
data from all three detectors. The CBC reconstruction from BayesWave with
IMRPhenomD is consistent with the one from NRSur7dq4 to within the 90% credible
level at all times. This is unsurprising given Figure 5.1 that shows that Virgo data
are consistent with a spin-aligned BBH. Crucially, there is no noticeable difference
between the two CBC reconstructions for times when the inferred glitch is the
loudest. This suggests that the lack of higher-order modes and spin-precession in
IMRPhenomD does not lead to a noticeable difference in the signal reconstruction and
could thus not account for the inferred glitch. The differences between the inferred
signals using IMRPhenomD and NRSur7dq4 are much smaller than the amount of
incoherent power present in Virgo. In fact, the glitch reconstruction is larger than the
signal at the 50% credible level, though not at the 90% level. This result suggests
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Figure 5.8: Whitened time-domain reconstruction of the signal in Virgo obtained
after analysis of data from all three detectors relative to GPS 1264316116. Shaded
regions correspond to 90% and 50% (where applicable) credible intervals. Green
corresponds to the same 3-detector result obtained with NRSur7dq4 as Figure 5.3,
while pink and gold correspond to the CBC and glitch part of the “CBC+glitch”
analysis with BayesWave. See Tables 5.1 and 5.2 for run settings. The two
CBC reconstructions largely overlap, suggesting that the lack of spin-precession
in BayesWave’s analysis does not affect the reconstruction considerably. A glitch
overlapping with the signal is, however, recovered.
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that a potential explanation for the trigger in Virgo is a combination of a signal
consistent with the one in the LIGO detectors and a glitch.

Figure 5.9 summarizes the various SNR estimates for the excess power in Virgo.
We plot an estimate of the SNR in Virgo suggested by LIGO data; in other words it
is the SNR that is consistent with GW200129 as observed by LIGO. In comparison,
we also show the SNR from a Virgo-only analysis and the SNR from BayesWave’s
“glitchOnly” analysis that models the excess power with sine-Gaussian wavelets
without the requirement that it is consistent with a CBC. The fact that the SNR
inferred from HL data is smaller than the other two again suggests that the Virgo
trigger is not consistent with the one seen by LIGO and contains additional power.
BayesWave’s “CBC+glitch” analysis is able to separate the part of the trigger that is
consistent with a CBC and recovers a CBC SNR that is consistent to the one inferred
from LIGO only. The “remaining” power is assigned to a glitch with SNR ∼ 4.6
(computed through the median BayesWave glitch reconstruction).

Based on the glitch SNR calculated by the BayesWave “CBC+glitch” model, we
revisit the probability of overlap with a signal based on the SNR distribution of
Omicron triggers. Since the lowest SNR recorded in Omicron analyses is 5.0, we
fit the SNR distribution of glitches with Omicron SNR > 5.0 with a power-law and
extrapolate to SNR 4.6. We find that the rate of glitches with frequencies similar
to the one in Figure 5.8 with SNR > 4.6 is 0.31/min and the probability of overlap
with a signal in Virgo is O(10−3). Given the 60 events from GWTC-3 that were
identified in Virgo during O3, the overall chance of at least one glitch of this SNR
overlapping a signal is O(0.1).

The above studies suggest that the most likely scenario is that the Virgo trigger
consists of a signal and a glitch. However, due to the low SNR of both, this
interpretation is subject to sizeable statistical uncertainties and we therefore do
not attempt to make glitch-subtracted Virgo data. Such data would be extremely
dependent on which glitch reconstruction we chose to subtract, for example the
median or a fair draw from the BayesWave glitch posterior. For these reasons and
due to its low sensitivity, we do not include Virgo data in what follows.

5.4 Data quality issues: LIGO Livingston

The data quality issues in LIGO Livingston were identified and mitigated in GWTC-
3 [26] through use of information from auxiliary channels [170, 169] and the
gwsubtract pipeline as also described in Appendix 5.A.1. The comparison of
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Figure 5.9: Comparison of optimal SNR estimates for Virgo from different analyses.
In green is the posterior for the expected SNR in Virgo from just the LIGO data using
the NRSur7dq4 waveform (HL analysis of Figure 5.1), while purple corresponds to
the SNR from an analysis of the Virgo data only (V analysis of Figure 5.1). The CBC
and glitch SNR posterior from BayesWave’s full “CBC+glitch” model (Figure 5.8)
are shown in pink and orange respectively. Part of the latter is consistent with
zero, which corresponds to no glitch (as also seen from the 90% credible interval in
Figure 5.8). The SNR posterior from a “glitchOnly” BayesWave is shown in blue.

Figs. 5.1 and 5.6, however, suggest that residual data quality issues might remain,
as the two LIGO detectors result in inconsistent inferred 𝑞 − 𝜒𝑝 parameters beyond
what is expected from typical Gaussian noise fluctuations. Here we revisit the LIGO
Livingston glitch with BayesWave and again model both the CBC and potential
glitches. This analysis offers a point of comparison to gwsubtract as it uses
solely strain data to infer the glitch instead of auxiliary channels. Additionally,
BayesWave computes a posterior for the glitch, rather than a single point estimate,
and thus allows us to explore the statistical uncertainty of the glitch mitigation. In all
analyses involving BayesWave we use the original LIGO Livingston data without
any of the data mitigation described in Appendix 5.A.1.
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Figure 5.10: Whitened time-domain reconstruction of the data in LIGO Livingston
obtained after analysis of data from the two LIGO detectors. Shaded regions
correspond to 90% and 50% (where applicable) credible intervals and gray gives
the original data without any glitch mitigation. Green corresponds to the same
2-detector result obtained with NRSur7dq4 as Figure 5.4, while pink and gold
correspond to the CBC and glitch part of the joint “CBC+glitch” analysis with
BayesWave. The black line shows an estimate for the glitch obtained through
auxiliary channels. All analyses use only LIGO data.
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Figure 5.10 shows BayesWave’s CBC and glitch reconstructions in LIGO Livingston
compared to the one based on the NRSur7dq4 (from glitch-mitigated data) and the
glitch model computed with gwsubstract. All analyses use data from the two
LIGO detectors only. Unsurprisingly, now, the CBC reconstructions based on
IMRPhenomD and NRSur7dq4 do not fully overlap around t=0.3 s, though they are
consistent during the signal merger phase. This is expected from the fact that LIGO
Livingston supports spin-precession as well as Figure 5.4. However, this difference
is smaller than the statistical uncertainty in the inferred glitch from BayesWave
(yellow) and well as differences between the BayesWave and the gwsubtract
glitch estimates. This suggests that even though the BayesWave glitch estimate
might be affected by the lack of spin-precession in its CBC model, this effect is
smaller than the glitch uncertainty.

We also model the signal as a superposition of coherent wavelets in addition to
the incoherent glitch wavelets using BayesWave [154, 343, 155]. This approach
has been previously utilized for glitch subtraction [26]. However, we do not recover
strong evidence for a glitch overlapping the signal in LIGO Livingston when running
with this “signal+glitch” analysis. The “signal+glitch” analysis attempts to describe
both the signal and the glitch with wavelets and hence it is significantly less sensitive
than the “CBC+glitch” model. In the data of interest, both the signal and the glitch
whitened amplitudes are ∼ 1𝜎 and as such they are difficult to separate using
coherent and incoherent wavelets. Given that we know (based on the auxiliary
channel data) that there is some non-Gaussian noise in LIGO Livingston, we find
that the “signal+glitch” analysis is not sensitive enough for our data.

The large statistical uncertainty in the glitch reconstruction (yellow bands in Fig-
ure 5.10) implies that the difference between the spin-precessing and non-precessing
interpretation of GW200129 cannot be reliably resolved. To confirm this, we se-
lect three random samples from the glitch posterior of Figure 5.10, subtract them
from the unmitigated LIGO Livingston data, and repeat the parameter estimation
analysis with NRSur7dq4. The BayesWave glitch-subtracted frames and associ-
ated NRSur7dq4 parameter estimation results are available in [416]. For reference,
we also analyze the original unmitigated data (no glitch subtraction whatsoever).
Figure 5.11 confirms that the spin-precession evidence depends sensitively on the
glitch subtraction. The original unmitigated data and the gwsubtract subtraction
yield the largest evidence for spin-precession, but this is reduced—or completely
eliminated—with different realizations of the BayesWave glitch model. In general,
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larger glitch amplitudes lead to less support for spin-precession, suggesting that the
evidence for spin-precession is increased when the glitch is undersubtracted.

Figure 5.12 compares the corresponding 𝑞 − 𝜒𝑝 posterior inferred from LIGO
Hanford and LIGO Livingston separately under each different estimate for the glitch.
Each of the 3 BayesWave glitch draws results in single-detector posteriors that fully
overlap, thus resolving the inconsistency seen in 𝑞− 𝜒𝑝 when using the gwsubtract
glitch estimate. Due to the lack of spin-precession modeling in the “CBC+glitch”
analysis of Figure 5.10, however, we cannot definitively conclude that any one of the
new glitch-subtracted results is preferable. The 3 BayeWave glitch draws result in
different levels of support for spin-precession, it is therefore possible that GW200129
is still consistent with a spin-precessing system. We do conclude, though, that the
evidence for spin-precession is contingent upon the large statistical uncertainty of
the glitch subtraction.

As a further check of whether the lack of spin-precession in BayesWave’s CBC
model could severely bias a potential glitch recovery, we revisit the 10 simulated
signals from Figure 5.6 and analyze them with the “CBC+glitch” model. These
signals are consistent with GW200129 as inferred from LIGO Livingston data only,
and thus exhibit the largest amount of spin-precession consistent with the signal. In
all cases we find that the glitch part of the “CBC+glitch” model has median and 50%
credible intervals that are consistent with zero at all times. This again confirms that
the differences between the spin-precessing and the spin-aligned inferred signals in
Figure 5.10 is smaller than the uncertainty in the glitch. This tests suggests that the
glitch model is not strongly biased by the lack of spin-precession, however it does
not preclude small biases (within the glitch statistical uncertainty); it is therefore
necessary but not sufficient.

As a final point of comparison between BayesWave’s glitch reconstruction that is
based on strain data and the gwsubtract glitch reconstruction based on auxiliary
channels, we consider a different glitch in LIGO Livingston approximately 1s after
the signal; see Figure 5.7. Studying this glitch offers the advantage of direct
comparison of the two glitch reconstruction methods without contamination from
the CBC signal and uncertainties about its modeling. We analyze the original
data with no previous glitch mitigation around that glitch using BayesWave’s glitch
model and plot the results in Figure 5.13. For the gwsubtract reconstruction we
also include 90% confidence intervals, as described in Appendix 5.A.1.

The two estimates of the glitch are broadly similar but they do not always overlap
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Figure 5.11: Bottom: Whitened, time domain reconstructions of various glitch
reconstructions subtracted from LIGO Livingston data. The green line corresponds
to the glitch reconstruction obtained from auxiliary data using gwsubtract. The
rest are glitch posterior draws from the BayesWave “CBC+Glitch” analysis on
HL unmitigated data. Top: Marginalized posterior distributions corresponding to
parameter estimation performed with the NRSur7dq4 waveform model on HL data
where each respective glitch realization was subtracted from LIGO Livingston (same
colors). Pink corresponds to the original data without any glitch subtraction. Larger
glitch reconstruction amplitudes roughly lead to less informative 𝜒𝑝 posteriors and
eliminate the 𝑞 − 𝜒𝑝 inconsistency between LIGO Hanford and LIGO Livingston.
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Figure 5.12: Two-dimensional posterior distributions for 𝜒𝑝 and 𝑞 (50% and 90%
contours) from single-detector parameter estimation runs. The far left panel shows
the same tension as the LIGO Hanford and LIGO Livingston data plotted in Fig-
ure 5.1 when using the gwsubtract estimate for the glitch. Subsequent figures show
inferred posterior distributions using data where the same three different BayesWave
glitch models as Figure 5.11 have been subtracted. These results show less tension
between the two posterior distributions.



58

1.2 1.3 1.4 1.5 1.6 1.7 1.8

Time [s]

−2

−1

0

1

2

3

W
h
it

en
ed

S
tr

a
in

LIGO Livingston

gwsubtract Glitch Model

BayesWave Glitch from Glitch Only

Figure 5.13: Comparison between the two glitch reconstruction and subtraction
methods for a glitch in LIGO Livingston ∼ 1 s after GW200129, see the middle
panel of Figure 5.7. We plot the original data with no glitch mitigation (grey),
the glitch reconstruction obtained from auxiliary channels with 90% confidence
intervals (black), and the 50% and 90% credible intervals for the glitch obtained
with BayesWave that uses only the strain data (gold).

within their uncertainties. The main disagreement comes from the sharp data
“spike” at 𝑡 = 1.43 s that is missed by gwsubtract, but recovered by BayesWave.
The reason is that the the maximum frequency considered by gwsubtract was
128 Hz and thus cannot capture such a sharp noise feature [169]. Away from the
“spike”, the two glitch estimates are approximately phase-coherent. On average
BayesWave recovers a larger glitch amplitude as the gwsubtract result typically
falls on BayesWave’s lower 90% credible level.

Figures 5.10 and 5.13 broadly suggest that BayesWave recovers a higher-amplitude
glitch. Figure 5.11 shows that the evidence for spin-precession is indeed reduced,
the LIGO Hanford-LIGO Livingston inconsistency is alleviated (Figure 5.12), and
the LIGO Livingston data become more consistent across low and high frequencies
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(Figure 5.5) if the glitch was originally undersubtracted. However, due to the low
SNR of the glitch and other systematic uncertainties it is not straightforward to select
a “preferred” set of glitch-subtracted data. All studies, however, indicate that the
statistical uncertainty of the glitch amplitude is larger than the difference between
the inferred spin-precessing and spin-aligned signals.

5.5 Conclusions

Though it might be possible to infer the presence of spin-precession and large spins
in heavy BBHs, our investigations suggest that in the case of GW200129 any such
evidence is contaminated by data quality issues in the LIGO Livingston detector.
In agreement with [266] we find that the evidence for spin-precession originates
exclusively from data from that detector. However, we go beyond this and also
demonstrate the following.

1. The evidence for spin-precession in LIGO Livingston is localized in the 20–
50 Hz band in comparison to the rest of the data, precisely where the glitch
overlapped the signal. Excluding this frequency range from the analysis, we
find that GW200129 is consistent with an equal-mass BBH with an uninfor-
mative 𝜒𝑝 posterior; it is thus similar to the majority of BBH detections [7,
29, 28]. However, the fact that there is no evidence for spin-precession if
𝑓low(𝐿) > 50 Hz is not on its own cause for concern as it might be due
to Gaussian noise fluctuations or the precise precessional dynamics of the
system.

2. LIGO Hanford is not only uninformative about spin-precession (which again
could be due to Gaussian noise fluctuations or the lower signal SNR in that
detector), but it also yields an inconsistent 𝑞− 𝜒𝑝 posterior compared to LIGO
Livingston. Using simulated signals, we find that the latter, i.e., the 𝑞 − 𝜒𝑝

inconsistency, is larger than O(95%) of results expected from Gaussian noise
fluctuations.

3. Given the LIGO Livingston glitch’s low SNR, the statistical uncertainty in
modeling it is larger than the difference between a spin-precessing and a non-
precessing analysis for GW200129. Inferring the presence of spin-precession
requires reliably resolving this difference, something challenging as we found
by using different realizations of the glitch model from the BayesWave glitch



60

posterior. Crucially, any evidence for spin-precession in GW200129 depends
sensitively on the glitch model and priors employed.

4. Given the large statistical uncertainty in modeling the glitch, evidence for
systematic differences between BayesWave and gwsubtract that use strain
and auxiliary data respectively is tentative. However, the BayesWave estimate
typically predicts a larger glitch amplitude, which would reduce the evidence
for spin-precession and alleviate the tension between LIGO Hanford and LIGO
Livingston. Additionally, we do not recover any support for a glitch when
injecting spin-precessing signals from the LIGO Livingston-only posterior
distribution into Gaussian noise. This indicates that BayesWave is unlikely
to be strongly biasing the glitch recovery due to its lack of spin-precession.

Overall, given the uncertainty surrounding the LIGO Livingston glitch mitigation,
we cannot conclude that the source of GW200129 was spin-precessing. We do not
conclude the opposite either, however. Though we obtain tentative evidence that
the glitch was undersubtracted, we can at present not estimate how much it was
undersubtracted by due to large statistical and potential systematic uncertainties. It
is possible that some evidence for spin-precession remains, albeit reduced given the
glitch statistical uncertainty.

In addition, we verify that this uncertainty in the glitch modeling is larger than uncer-
tainty induced by detector calibration. We repeat select analyses in Appendix Ap-
pendix 5.A.2 and confirm that the inclusion of uncertainty in the calibration of the
gravitational-wave detectors negligibly impacts the spin-precession inference, as
expected. Indeed, the glitch impacts the data at a level comparable to the signal
strain, c.f., Figure 5.10, whereas the calibration uncertainty within 20 to 70 Hz is
only ∼ 5% in amplitude and 5◦ in phase [513]. Therefore, the glitch in LIGO
Livingston’s data dominates over uncertainties about the data calibration.

Though not critical to the discussion and evidence for spin-precession, we also
identified data quality issues in Virgo. The inconsistency between Virgo and the
LIGO detectors is in fact more severe than the one between the two LIGO detectors,
however the Virgo data do not influence the overall signal interpretation due to the
low signal SNR in Virgo. Nonetheless, we argue that the most likely explanation is
that the Virgo data contain both the GW200129 signal and a glitch.

These conclusions are obtained with NRSur7dq4, which is expected to be the
more reliable waveform model including spin-precession and higher-order modes
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in this region of the parameter space [550, 266]. We repeated select analy-
ses with IMRPhenomXPHM which also favored a spin-precessing interpretation for
GW200129 [26]. We found largely consistent but not identical results between
NRSur7dq4 and IMRPhenomXPHM, suggesting that there are additional systematic
differences between the two waveform models. Appendix Appendix 5.B shows
some example results. Nonetheless, our results are directly comparable to the ones
of [266, 548] as they were obtained with the same waveform model.

Our analysis suggests that extra caution is needed when attempting to infer the
role of subdominant physical effects in the detected GW signals, for example spin-
precession or eccentricity. Low-mass signals are dominated by a long inspiral
phase that in principle allows for the detection of multiple spin-precession cycles or
eccentricity-induced modulations. However, the majority of detected events, such
as GW200129, have high masses and are dominated by the merger phase. The
subtlety of the effect of interest and the lack of analytical understanding might make
inference susceptible not only to waveform systematics, but also (as argued in this
study) potential small data quality issues.

Indeed, Figure 5.11 shows that a difference in the glitch amplitude of < 0.5𝜎 can
make the difference between an uninformative 𝜒𝑝 posterior and one that strongly
favors spin-precession. This also demonstrates that low-SNR glitches are capable
of biasing inference of these subtle physical effects. Low-SNR departures from
Gaussian noise have been commonly observed by statistical tests of the residual
power present in the strain data after subtracting the best-fit waveform of events [17,
33, 34]. If indeed such low-SNR glitches are prevalent, they might be individually
indistinguishable from Gaussian noise fluctuations. Potential ways to safeguard
our analyses and conclusions against them are (i) the detector and frequency band
consistency checks performed here, (ii) extending the BayesWave “CBC+glitch”
analysis to account for spin-precession and eccentricity while carefully accounting
for the impact of glitch modeling and priors especially for low SNR glitches, (iii)
and modeling insight on the morphology of subtle physical effects of interest such
as spin-precession and eccentricity in relation to common detector glitch types.
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Appendix 5.A Analysis details

In this appendix we provide details and settings for the analyses presented in the
main text. All data are obtained via the GW Open Science Center [36]. Throughout
we use geometric units, 𝐺 = 𝑐 = 1.

Appendix 5.A.1 Detection and Glitch-subtracted data

GW200129 was identified in low latency [339] by GstLAL [375, 265], cWB [313],
PyCBC Live [395, 165], MBTAOnline [41], and SPIIR [150]. The quoted false
alarm rate of the signal in low latency was approximately 1 in 1023 years, making
this an unambiguous detection. Below we recap the detection and glitch mitigation
process from [26].

Multiple data quality issues were identified in the data surrounding GW200129. As
a part of the rapid response procedures, scattered light noise [37, 40] was identified
in the Virgo data, as seen in Figure 5.7 in the frequency range 10–60 Hz. These
glitches did not overlap the signal, and no mitigation steps were taken with the
Virgo data. During offline investigations of the LIGO Livingston data quality, a
malfunction of the 45 MHz electro-optic modulator system [8] was found to have
caused numerous glitches in the days surrounding GW200129. To help search
pipelines differentiate these types from glitches, a data quality flag was generated
for this noise source [168]. These data quality vetoes are used by some pipelines to
veto any candidates identified during the data quality flag time segments [171]. The
glitches from the electro-optic modulator system directly overlapped GW200129,
meaning that the time of the signal overlapped the time of the data quality flag.

Although clearly an astrophysical signal, the data quality issues present in LIGO
Livingston introduced additional complexities into the estimation of the significance
of this signal [26]. Due to the data quality veto, the signal was not identified in
LIGO Livingston by the PyCBC [396, 167] MBTA [71], and cWB [313] pipelines.
PyCBC was still able to identify GW200129 as a LIGO Hanford – Virgo detection,
but the signal was not identified by MBTA due to the high SNR in LIGO Hanford
and cWB due to post-production cuts. The GstLAL [477, 130] analysis did not
incorporate data quality vetoes in its O3 analyses and was therefore able to identify
the signal in all three detectors.

The excess power from the glitch directly overlapping GW200129 in LIGO Liv-
ingston was subtracted before estimation of the signal’s source properties [26, 169]
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using the gwsubtract algorithm [170]. This method relies on an auxiliary sensor at
LIGO Livingston that also witnesses glitches present in the strain data. The transfer
function between the sensor and the strain data channel is measured using a long
stretch of data by calculating the inner product of the two time series with a high
frequency resolution and then averaging the measured value at nearby frequencies
to produce a transfer function with lower frequency resolution [57]. This transfer
function is convolved with the auxiliary channel time series to estimate the contri-
bution of this particular noise source to the strain data. Therefore, the effectiveness
of this subtraction method is limited by the accuracy of the auxiliary sensor and
the transfer function estimate. This tool was previously used for broadband noise
subtraction with the O2 LIGO dataset [170], but this was the first time it was used
for targeted glitch subtraction. Additional details about the use of gwsubtract for
the GW200129 glitch subtraction can be found in Davis et al. [169].

The gwsubtract glitch model does not include a corresponding interval that ac-
counts for all sources of statistical errors as is done by BayesWave. However, a
confidence interval based on only uncertainties due to random correlations between
the auxiliary channel and the strain data can be computed. For the GW200129
glitch model, this interval is ±0.022 in the whitened strain data [169]. Additional
systematic uncertainties due to time variation in the measured transfer function and
effectiveness of the chosen auxiliary channel are expected to be present but are not
quantified. The relative size of these uncertainties is dependent on the specific noise
source that is being modeled and chosen auxiliary channel.

Appendix 5.A.2 Bilby parameter estimation analyses

Quasicircular BBHs are characterized by 15 parameters, divided into 8 intrinsic and
7 extrinsic parameters. Each component BH has source frame mass 𝑚𝑠

𝑖
, 𝑖 ∈ {1, 2}.

In the main text we mainly use the corresponding detector frame (redshifted) masses
𝑚𝑖 = (1 + 𝑧)𝑚𝑠

𝑖
, where 𝑧 is the redshift, as we are interested in investigating data

quality issues and detector frame quantities better relate to the signal as observed.
Each component BH also has dimensionless spin vector ®𝜒𝑖, and 𝜒𝑖 is the magni-
tude of this vector. We also use parameter combinations that are useful in various
contexts: total mass 𝑀 = 𝑚1 + 𝑚2, mass ratio 𝑞 = 𝑚2/𝑚1 < 1, chirp mass
M = (𝑚1𝑚2)3/5(𝑚1 + 𝑚2)−1/5 [426, 103, 222], effective orbit-aligned spin param-
eter [440, 486, 49]

𝜒eff =
®𝜒1 · ®𝐿 + 𝑞 ®𝜒2 · ®𝐿

1 + 𝑞 , (5.2)



65

Fi
gu

re
(s

)
W

av
ef

or
m

M
od

el
D

et
ec

to
rN

et
w

or
k

G
lit

ch
m

iti
ga

tio
n

𝑓 l
ow

(H
z)

5.
1,

5.
12

N
R
S
u
r
7
d
q
4

H
g
w
s
u
b
t
r
a
c
t

20
5.

1,
5.

12
N
R
S
u
r
7
d
q
4

L
g
w
s
u
b
t
r
a
c
t

20
5.

1,
5.

2,
5.

3
N
R
S
u
r
7
d
q
4

V
g
w
s
u
b
t
r
a
c
t

20
5.

1,
5.

2,
5.

3,
5.

8
N
R
S
u
r
7
d
q
4

H
LV

g
w
s
u
b
t
r
a
c
t

20
5.

1,
5.

2,
5.

4,
5.

10
,5

.1
1,

5.
14

N
R
S
u
r
7
d
q
4

H
L

g
w
s
u
b
t
r
a
c
t

20
5.

4
N
R
S
u
r
7
d
q
4

sp
in

-a
lig

ne
d

H
L

g
w
s
u
b
t
r
a
c
t

20

5.
5

N
R
S
u
r
7
d
q
4

H
L

g
w
s
u
b
t
r
a
c
t

{2
0,

30
,4

0,
50

,6
0,

70
}

in
L,

20
in

H
5.

11
N
R
S
u
r
7
d
q
4

H
L

N
o

m
iti

ga
tio

n
20

5.
11

N
R
S
u
r
7
d
q
4

H
L

B
a
y
e
s
W
a
v
e

fa
ir

dr
aw

s
20

5.
12

N
R
S
u
r
7
d
q
4

L
B
a
y
e
s
W
a
v
e

fa
ir

dr
aw

s
20

5.
14

I
M
R
P
h
e
n
o
m
X
P
H
M

H
L

g
w
s
u
b
t
r
a
c
t

20

Ta
bl

e
5.

1:
Ta

bl
e

of
B
i
l
b
y

ru
ns

an
d

se
tti

ng
s.

A
ll

an
al

ys
es

us
e

4
s

of
da

ta
,a

nd
a

sa
m

pl
in

g
ra

te
of

40
96

H
z.

C
ol

um
ns

co
rr

es
po

nd
to

th
e

m
ai

n
te

xt
fig

ur
es

ea
ch

an
al

ys
is

ap
pe

ar
si

n,
th

e
w

av
ef

or
m

m
od

el
,t

he
de

te
ct

or
ne

tw
or

k
us

ed
(H

:L
IG

O
H

an
fo

rd
,L

:L
IG

O
Li

vi
ng

sto
n,

V:
V

irg
o)

,t
he

ty
pe

of
gl

itc
h

m
iti

ga
tio

n
in

LI
G

O
Li

vi
ng

sto
n,

an
d

th
e

lo
w

fr
eq

ue
nc

y
cu

to
ff

of
th

e
an

al
ys

is
.F

ig
ur

e
5.

6
al

so
pr

es
en

ts
re

su
lts

fo
r

a
se

to
f1

0
in

je
ct

io
ns

dr
aw

n
fr

om
th

e
LI

G
O

Li
vi

ng
sto

n
on

ly
po

ste
rio

rd
ist

rib
ut

io
n

w
ith

𝑓 l
ow
(𝐿

)
=

20
H

z.
Th

es
e

an
al

ys
es

us
e

th
e

sa
m

e
se

tti
ng

sa
sa

bo
ve

w
ith

𝑓 l
ow
(𝐿

)=
20

H
z.



66

where ®𝐿 is the Newtonian orbital angular momentum, and effective precession spin
parameter [267, 490]

𝜒𝑝 = max
(
𝜒1⊥, 𝑞𝜒2⊥

3𝑞 + 4
4𝑞 + 3

)
, (5.3)

where 𝜒1⊥ is the ®𝜒𝑖 component that is perpendicular to ®𝐿. The remaining parameters
are observer dependent, and hence referred to as extrinsic. The right ascension 𝛼
and declination 𝛿 designate the location of the source in the sky, while the luminosity
distance to the source is 𝑑𝐿 . The angle between total angular momentum and the
observer’s line of sight is 𝜃 𝑗𝑛; for systems without perpendicular spins it reduces to
the inclination 𝜄, the angle between the orbital angular momentum and observer’s
line of sight. The time of coalescence 𝑡𝑐 is the geocenter coalescence time of the
binary. The phase of the signal 𝜙 is defined at a given reference frequency, and the
polarization angle 𝜓 completes the geometric description of the sources position
and orientation relative to us; neither of these are used directly in this work.

Parameter estimation results are obtained with parallel Bilby [470, 502, 67]
using the nested sampler, Dynesty [507]. The numerical relativity surrogate,
NRSur7dq4 [550], is used for all main results due to its accuracy over the regime
of highly precessing signals. Its space of validity is limited by the availability of
numerical simulations [110] to 𝑞 > 1/4 and component spin magnitudes 𝜒 < 0.8,
though it maintains reasonable accuracy when extrapolated to 𝑞 > 1/6 and 𝜒 <

1 [550].

The majority of our analyses use the publicly released strain data, including the afore-
mentioned glitch subtraction in LIGO Livingston [169], and noise power spectral
densities (PSDs) [26]. The exception to the publicly released data was the con-
struction of glitch-subtracted strain data using BayesWave for LIGO Livingston, as
discussed in Sec. 5.4. We do not incorporate the impact of uncertainty about the
detector calibration as the SNR of the signal is far below the anticipated regime
where calibration uncertainty is non-negligible [558, 418, 562, 190]. Furthermore,
we confirm that including marginalization of calibration uncertainty does not quali-
tatively change the recovered posterior distributions or our main conclusions by also
directly repeating select runs.

As is done in GWTC-3 [26], we choose a prior that is uniform in detector frame
component masses, while sampling in chirp mass and mass ratio. The mass ratio
prior bounds are 1/6 and 1, where we utilize the extrapolation region of NRSur7dq4.
Since NRSur7dq4 is trained against numerical relativity simulations which typically
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Figure(s) Models Detector Network
5.8, 5.9 CBC+glitch HLV

5.10, 5.11 CBC+glitch HL
5.9 glitch V
5.13 glitch L

Table 5.2: Table of BayesWave runs and settings. All analyses use 4 s of data, a low
frequency cut-off of 𝑓low = 20 Hz, a sampling rate of 2048 Hz, and the IMRPhenomD
waveform when the CBC model is used. Furthermore, all analyses use the original
strain data without the glitch mitigation described in Sec. Appendix 5.A.1. Columns
correspond to the main text figures each analysis appears in, the BayesWavemodels
that are used, and the detector network (H: LIGO Hanford, L: LIGO Livingston,
V: Virgo). While not plotted in any figure, we also performed “CBC+Glitch”
analyses on injections into the HL detector network as a glitch background study on
GW200129-like sources, see Sec. 5.4.

have a short duration, only a limited number of cycles are captured before coales-
cence. With a reduced signal model duration, our analysis is restricted to heavier
systems so that the model has content spanning the frequencies analyzed (20 Hz and
above). We therefore enforce an additional constraint on the total detector-frame
mass to be greater than 60𝑀⊙. We verify that our posteriors reside comfortably
above this lower bound. The luminosity distance prior is chosen to be uniform in
comoving volume. The prior distribution on the sky location is isotropic with a
uniform distribution on the polarization angle. Finally, for most analyses, the prior
on the spin distributions is isotropic in orientation and uniform in spin magnitude
up to 𝜒 = 0.99. For the spin-aligned analyses, a prior is chosen on the aligned spin
to mimic an isotropic and uniform spin magnitude prior. These settings and data
are utilized in conjunction with differing GW detector network configurations and
minimum frequencies in LIGO Livingston. The differences between runs and their
corresponding figures are presented in Tab. 5.1.

Appendix 5.A.3 BayesWave CBC and glitch analyses

BayesWave [154, 343, 155] is a flexible data analysis algorithm that models com-
binations of coherent generic signals, glitches, Gaussian noise, and most recently,
CBC signals that appear in the data [286, 139, 570]. To sample from the multi-
dimensional posterior for all the different models, BayesWave uses a “Gibbs sam-
pler” which cycles between sampling different models while holding the parameters
of the non-sampling model(s) fixed.
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For this analysis, we mainly use the CBC and glitch models (a setting we refer to as
“CBC+Glitch”). The CBC model parameters (see Appendix 5.A.2) are sampled via
a fixed-dimension Markov Chain Monte Carlo sampler (MCMC) using the priors
described in Wijngaarden et al. [570]. The glitch model is based on sine-Gaussian
wavelets and samples over both the parameters of each wavelet (central time, central
frequency, quality factor, amplitude, phase [154]) and the number of wavelets via
a trans-dimensional or Reverse-jump MCMC. In some cases, we also make use of
solely the glitch model (termed “glitchOnly” analyses) that assumes no CBC signal
and the excess power is described only with wavelets. The differences between runs
and the figures in which they appear are presented in Tab. 5.2.

Though BayesWave typically marginalizes over uncertainty in the noise PSD [343],
in this work we use the same fixed PSD as the Bilby runs for more direct compar-
isons. Additionally, we use identical data as Appendix 5.A.2 for the LIGO Hanford
and Virgo detectors. However, when it comes to LIGO Livingston we use the
original (i.e., “unmitigated”, without any glitch subtraction) data in order to inde-
pendently infer the glitch. We do not marginalize over uncertainty in the detector
calibration.

Appendix 5.B Select results with IMRPhenomXPHM

In this appendix, we present select results obtained with the IMRPhenomXPHM [428]
waveform model that also resulted in evidence for spin-precession in GWTC-3 [26].
Even though IMRPhenomXPHM and NRSur7dq4 both support spin-precesion, in con-
trast to SEOBNRv4PHM, there are still noticeable systematic differences between
them. Figure 5.14 shows that while NRSur7dq4 and IMRPhenomXPHM generally
have overlapping regions of posterior support, IMRPhenomXPHM shows slightly
more preference for higher 𝑞 and less support for extreme precession when com-
pared to NRSur7dq4. Waveform systematics are expected to play a significant role
in GW200129’s inference (e.g. Refs. [26, 266, 288]), which motivates utilizing
NRSur7dq4 for all of our main text results.
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Figure 5.14: Similar to Figure 5.1, using data from LIGO Livingston and LIGO Han-
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the evidence for spin-precession.
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C h a p t e r 6

OVERVIEW OF POPULATION INFERENCE

6.1 Measuring Astrophysical and Cosmological Properties from the Popula-
tion of Compact Binaries

Over the past decade, observations of compact binary mergers by the advanced
LIGO and Virgo detectors [1, 38] have provided insight into the processes govern-
ing their formation and evolution, as well as constraints on fundamental physics.
By combining astrophysical information from individual events, we can uncover
the environmental and evolutionary characteristics of compact binary systems and
leverage population properties as tracers of fundamental physics, stellar physics and
cosmology.

Recognizing that our catalog of observations from the past decade forms a biased
sample from a larger, unseen astrophysical population of compact objects, the
process of population inference seeks to combine our observed dataset of CBCs
and correct for known selection effects to constrain the astrophysical distribution
of compact objects. Commonly this is done by learning the distribution of masses,
spins, and redshifts of Compact Binary Coalescences (CBCs) as informed by data
and selection effects.

Measuring population properties requires modeling the astrophysical distribution
(or population model) that individual events are drawn from and estimating the
detectability of the events in the underlying astrophysical distribution. This is
expressed as a probability distribution over the single-event parameters (e.g., masses,
spins) 𝜃, given some hyperparameters Λ (e.g., power law index, cutoffs) controlling
the shape of the population distribution, 𝑝(𝜃 |Λ). Broadly speaking, the population
model can be categorized as either low-dimensional and strongly parametric or
as flexible and highly dimensional (so-called nonparametric, despite the higher
number of hyperparameters), encoding different amounts of prior assumptions in
the population.
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6.1.1 Model Flexibility

In the strongly parametric approach to population inference, 𝑝(𝜃 |Λ) makes rela-
tively strong assumptions about the population, represented with a functional form
with limited flexiblity controlled by few hyperparameters. For example, in a very
simple and unrealistic case, the population model might be a truncated power law
distribution (i.e., for the binary black hole mass distribution) with hyperparameters
controlling the slope and truncation bounds, or it may be a Gaussian whose hy-
perparameters control the mean and standard deviation of the population. Strongly
parametric models are useful in two main regimes: when the data are scarce or
uniformative, or when hyperparameters Λ are meant to be interpreted as describing
underlying physical processes in the context of a particular theory. Populations mea-
sured using strongly parametric models are of course subject to assumptions made
about the functional form of the population and/or the validity of the description
of the underlying physics controlling the population properties. For example, in
GWTC-1 the BBH mass distribution was informed only by 10 events observed in
O1 and O2, and was described as a simple truncated power law, motivated by the
stellar initial mass function (IMF) [7]. Without enough observations to detect finer
features, the approach becomes useful to encode reasonable assumptions (such as
the BBH mass distribution should follow that of the stellar IMF) to learn broader,
global features. As additional observations are made, more features may become
resolvable, and the population model can be made more complex. As the catalog
of gravitational wave sources grew to O(10 − 100) in GWTC-2, GWTC-3, and
GWTC-4, parametric models with additional features have been adopted [29, 28];
Powerlaw + Peak featuring a power law with a Gaussian peak, and Broken Pow-
erlaw, featuring two power laws which transition at a break mass, are examples of
widely-used parametric mass models [524, 28, 29]. Examples of strongly paramet-
ric models used in the population analyses of GWTC-2 and GWTC-3 are shown in
Figure 6.1.

As more event data become available, it becomes reasonable to loosen prior assump-
tions and rely more heavily on data-driven methods for population modeling. Non-
parametric approaches offer a flexible alternative, representing the population model
with a function that includes many adjustable parameters. Since strongly parametric
models directly encode the possible features in the distribution, data-driven models
can resolve new features whose shape and presence were not specifically outlined
in the prior. For example, a strongly parametric approach to modeling a bump or
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Figure 6.1: Examples of four strongly parametric models used in the population
analsyses of GWTC-2 and GWTC-3 [29, 28]. Adopted from [29].

overdensity in the mass distribution may allow for the presence of a Gaussian with
variable location and width, whereas a data-driven fit to the mass distribution would
simply find a rise at the location of the overdensity. Examples of flexible functions
used in the literature for nonparametric population inference include cubic splines
[186, 187, 257], histograms [447], and autoregressive Gaussian process methods
[125].

Whereas data-driven models offer flexibility, strongly-parametric models offer inter-
pretability. Strong priors on the shape of the distribution are commonly physically
motivated; for example, the powerlaw in Powerlaw+Peak is motivated by the stel-
lar IMF, and the Gaussian peak and cutoff was originally introduced in [524] as a
phenomenological signature of the pulsational pair instability supernova mechanism
[578, 576, 210]. When the hyperparameters controlling the population features are
closely associated with underlying motivating physical mechanisms, it is easier to
use population measurements to constrain underlying physics. The downside of
strongly parametric modeling is the risk for model mispecification. Since the as-
sumption is that the underlying population truly follows the prescribed functional
form for the distribution, if the true population is not well-represented by the chosen
model, the resulting measurements and interpretations may be biased. It is therefore
crucial to weigh the need for interpretability versus potential bias due to inflexibility
and model misspecification when choosing a population model.

As discussed in detail in several works in this thesis, (i.e., Chapters 14,10,16),
the other downside of flexible models is the risk of biased likelihood calculations
due to systematic error from poorly-converged Monte Carlo integrals. In essence,
the likelihood used in hierarchical Bayesian inference involves using numerical
methods (Monte Carlo approximations) for solving mutlidimensional integrals. As
any Monte Carlo estimator involves uncertainty, using a finite number of samples to
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estimate the integrals in the likelihood propagates an uncertainty into the resulting
likelihood estimate; this uncertainty is essentially ignored by a stochastic sampler
during inference leading to a resulting systematic bias. For reasons explained in
more detail in Chapter 14, as a population model allows for finer features (relative
to the uncertainty on single-event measurements), the risk of a resulting bias in
the likelihood increases. One way this can be mitigated on the model-level is by
enforcing a correlation length or smoothness of a population model, reducing its
flexibility a priori. Similarly, this can be mitigated for strongly parametric models
by limiting the ability of certain features (e.g., “width” parameters, 𝜎 of a Gaussian
feature, etc.) from getting too narrow.

6.2 Constructing the Hierarchical Likelihood

A population model quantifies the probability of observing the physical parame-
ters (e.g., masses, spins) associated with an event assuming some functional form
for the population model and population hyperparameters governing its shape. In
population inference, we seek to contain the probability of different values for
(i.e., probability of different population configurations), accounting for measure-
ment uncertainties of single-event parameters and observational Malmquist biases
or selection effects. In this section, I construct the likelihood function for the hi-
erarchical Bayesian framework we use for population inference which incorporates
these effects. See, e.g., [359, 560] for more details.

I first define some notation in this section:

• 𝑝(𝑎 |𝑏): The conditional probability of 𝑎 given 𝑏. This probability distribution
gives the probability density of 𝑎 (over which it is normalized), assuming some
parameter(s) 𝑏 which control the conditional shape of the distribution.

• 𝑑𝑖: The data from the 𝑖th event. This is the strain data from the detector.

• {𝑑𝑖}: The set of data from all observations in the catalog.

• 𝜃: Physical (single-event) parameters describing the properties of a source.
This typically refers to quantities such as masses, spins, distances, or locations,
which control the gravitational wave signal and therefore parameterizes the
per-event likelihoods 𝑝(𝑑𝑖 |𝜃).

• 𝑁det: The number of events in the catalog.
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• Λ: The hyperparameters of the population model. This is a set of parameters
which control the shape of the population distribution, such as a power law
index, cutoff masses and truncation bounds, etc.

• 𝑅: The astrophysical merger rate (density), with dimensions of inverse
volume-time.

• 𝑁exp: The number of detections one would expect to make given Λ and the
detection efficiency.

We start by assuming that detection statistics have been assigned to segments of data
throughout an observation period, quantifying the relative chance that a segment
of data contains a real signal. In reality, detection pipelines continually scan the
data and trigger on segments of data that sufficiently match a signal template. The
pipeline then assigns a False Alarm Rate (FAR) to each trigger, quantifying how
often detector noise mimicking a signal would provide at least as good of a match
to a signal template as the trigger did; in other words, the FAR of a trigger says how
often triggers of instrumental origin would be found to be as “real” or “significant”
as a given trigger.

For population analyses, the catalog of observed events is formed from all of the
triggers which are more significant than some threshold 𝜌thresh.

While 𝜌thresh can technically be any detection statistic, such as Signal-to-Noise
Ratio (SNR), we typically use a threshold on FAR, allowing us to control the
purity (or noise contamination) of the catalog by approximating the number of noise
triggers as ≈ Tobs 𝜌thresh𝑁pipelines for a catalog formed from a FAR threshold of
𝜌thresh and 𝑁pipelines operating over an observing time of Tobs. For example, in the
GWTC-3 Astrophysical Distributions paper [28], the BBH population analysis used
𝜌thresh = 1yr−1, resulting in∼ 4 noise triggers in the catalog of 69 BBH observations,
with the ∼ 1 year observing time and ∼ 4 (semi-)independent detection pipelines.

Consider a catalog of 𝑁det observations. The likelihood of observing the data
from the 𝑖th event (𝑑𝑖) given population hyperparameters Λ is simply the posterior
probability and probability of detecting 𝑑𝑖, marginalized over 𝜃:

𝑝(det, 𝑑𝑖 |Λ) =
∫

𝑝(𝑑𝑖 |𝜃)𝑝(𝜃 |Λ)𝑝(det|𝑑𝑖)𝑑𝜃. (6.1)

Note that the product of the first two terms in the integrand is proportional to the
posterior probability where the population model takes the role of the prior. The first
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term is simply the (Gaussian noise) likelihood from Chapter 3, the probability of
observing the strain data given 𝜃. In our detection scheme, 𝑝(det|𝑑𝑖), the probability
of making a detection given 𝑑𝑖, is 1 for all observations meeting the threshold for
detection 𝜌thresh and is 0 otherwise, so it is not technically a properly normalized
probability distribution.1 The measurement uncertainty is explicitly accounted for
in Eq. 6.1 by marginalizing the single-event posterior over all possible values for 𝜃.

Because 𝜃 is typically multidimensional, integral over 𝜃 is not typically computa-
tionally feasible to calculate on a grid over 𝜃 for any given population model 𝑝(𝜃 |Λ).
Instead, we use a Monte Carlo approximation to the integral, in which we reweight
the posterior samples output from the original parameter estimation analysis of each
event to the prior given by 𝑝(𝜃 |Λ). This is generally a reasonable approach when the
posterior samples for each observation were obtained under some relatively broad,
agnostic prior 𝑝0(𝜃), giving the posterior non-zero support across relevant regions
of parameter space, and 𝑝(𝜃 |Λ) is a function that is easy to evaluate. Recalling
that the posterior samples from the per-event parameter estimation are drawn from
𝑝0(𝜃 |𝑑𝑖) ∝ 𝑝(𝑑𝑖 |𝜃)𝑝0(𝜃), we then reweight these posterior samples to calculate
Eq. 6.1 as:

𝑝(det, 𝑑𝑖 |Λ) =
∫

𝑝(𝑑𝑖 |𝜃)𝑝0(𝜃)
𝑝0(𝜃)

𝑝(𝜃 |Λ)𝑝(det|𝑑𝑖)𝑑𝜃

≈ 1
𝑆

∑︁
𝜃 𝑗∼𝑝0 (𝜃 |𝑑𝑖)

𝑝(𝜃 𝑗 |Λ)
𝑝0(𝜃 𝑗 )

(6.2)

where 𝑆 is the number of posterior samples drawn from the original parameter
estimation analysis of the event, and 𝑗 indexes over the samples.

By the rules of conditional probabilities, the likelihood of the data 𝑑𝑖 given Λ is

𝑝(𝑑𝑖 |Λ) =
𝑝(det, 𝑑𝑖 |Λ)
𝑝(det|Λ) . (6.3)

The normalization factor in the denominator of Eq. 6.3 is simply the joint probability
marginalized over 𝑑:

𝑝(det|Λ) =
∫

𝑝(det, 𝑑 |Λ)𝑑𝑑 =

∫
𝑝(𝑑 |𝜃)𝑝(𝜃 |Λ)𝑝(det|𝑑)𝑑𝜃𝑑𝑑. (6.4)

Eq. 6.4 is the probability of making a detection from the population characterized
by Λ, or equivalently the fraction of detectable events in that population. This term

1One could express this as 𝑝(det|𝑑𝑖) = Θ(𝜌(𝑑𝑖) − 𝜌thresh) by identifying 𝜌 with a detection
statistic that increases with detection significance, such as Inverse-FAR. Here, Θ is the Heaviside
step function.
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corrects for the selection effects or Malmquist bias, ensuring that we are inferring
the astrophysical rather than the observed distribution. See Appendix 6.A for a
more detailed discussion of how to compute this term in practice.

The likelihood of the dataset from the 𝑁det observations is simply the joint likelihood
of the individual observations:

𝑝({𝑑𝑖}|Λ) =
𝑁det∏
𝑖

𝑝(𝑑𝑖 |Λ). (6.5)

Note that since Eq. 6.4 depends only on Λ and not the properties of an individual
event 𝑖, it is common to calculate it once for each value of Λ considered and express
Eq. 6.5 in this equivalent factorized form:

𝑝(𝑑𝑖 |Λ) = 𝑝(det|Λ)−𝑁det

𝑁det∏
𝑖

𝑝(det, 𝑑𝑖 |Λ). (6.6)

While Eq. 6.6 looks sufficient for measuring the shape of the population, there is
a missing normalization term necessary for measuring the rate of mergers in the
population of interest. To measure this, we need the likelihood of observing the data
in the catalog and the catalog containing 𝑁det observations.

With the overall (observed and unobserved) number of mergers 𝑁Λ, the number of
detections we expect to make is simply 𝑁exp(Λ) = 𝑁Λ𝑝(det|Λ) = 𝑅⟨𝑉𝑇⟩(Λ), where
⟨𝑉𝑇⟩ is the sensitive four-volume, the detectable four-volume of the search averaged
over sources in the population Λ. We now recognize that the size of our catalog of
𝑁det discrete observations is a realization from a Poisson distribution about 𝑁exp.
The corresponding likelihood for 𝑁det is therefore:

𝑝
(
𝑁det |𝑁exp,Λ

)
=
𝑁
𝑁det
exp 𝑒

−𝑁exp

𝑁det!
. (6.7)

Where I suppressed the dependence of 𝑁exp on Λ. Note that because ⟨𝑉𝑇⟩ is
completely determined by Λ and the detector behavior, only either 𝑁Λ or the merger
rate itself (usually expressed in dimensions of inverse volume-time) needs to be
the free parameter controlling the normalization term/merger rate. They are simply
related by the spacetime volume of the search (known a priori); typically the merger
rate is used as the free parameter in population inference. So we are free to replace
Eq. 6.7 with 𝑝(𝑁det |𝑅,Λ).

The total likelihood is the joint likelihood of Eq. 6.5 and Eq. 6.7:

𝑝({𝑑𝑖}, 𝑁det |Λ, 𝑅) = 𝑝(𝑁det |𝑅,Λ)𝑝(det|Λ)−𝑁det

𝑁det∏
𝑖

𝑝(det, 𝑑𝑖 |Λ), (6.8)
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where it is understood that 𝑅 is used in place of 𝑁Λ, as they share a simple relation.
It is common to not explicitly include the 𝑝(det|𝑑𝑖) term, as it contributes a factor
of 1 for all detections (i.e., see Eq. 6.1).

If we assume a prior on 𝑅 or 𝑁Λ that is uniform-in-log, i.e. 𝑝(𝑅) ∝ 1/𝑅, and that
𝑝(𝑅) will decouple from 𝑝(Λ), we can analytically marginalize over the dependence
on 𝑅 and obtain a simpler likelihood that has one fewer degree of freedom:

𝑝({𝑑𝑖}, 𝑁det |Λ) ∝ 𝑝(det|Λ)−𝑁det

𝑁det∏
𝑖

𝑝(det, 𝑑𝑖 |Λ). (6.9)

See Appendix 6.B for a derivation of this form. Note that this effectively reduces
to the form of the likelihood in Eq. 6.6, but it is due to a convenient choice of prior
on 𝑅. Eq. 6.9 is the likelihood serving as a typical starting point in the population
inference literature.
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Appendix 6.A Computing 𝑝(det|Λ)

The “selection effects” term of the likelihood, Eq. 6.4, acts as a normalization equal
to the fraction of detectable events from the population Λ. The integrand has three
key ingredients: the likelihood of the data (noise model), the likelihood of the
single-event physical parameters 𝜃 assuming the population Λ (population model),
and the detection probability. This is clearly not solvable analytically. For one, while
𝑝(𝜃 |Λ) may be chosen to be a simple function, 𝜃 is typically multidimensional, and
𝑝(𝑑 |𝜃) depends in a very complicated way on 𝜃, due to the details of the detector
response and waveform approximants. We therefore resort to numerical methods
such as Monte Carlo importance sampling to approximate Eq. 6.4 [538, 213].

A Monte Carlo approximation relies on the fact that the average of a quantity 𝑥
assuming some distribution 𝑝(𝑥) can be written as ⟨𝑥⟩ 𝑓 (𝑥) =

∫
𝑥 𝑓 (𝑥)𝑑𝑥. Therefore,

Eq. 6.4 says that 𝑝(det|Λ) is the expectation value of 𝑝(det|𝑑) under the joint
distribution 𝑝(𝑑 |𝜃)𝑝(𝜃 |Λ). Just as ⟨𝑥⟩ 𝑓 (𝑥) can be estimated with 𝑆 samples (like any
average) as ⟨𝑥⟩ 𝑓 (𝑥) ≈ 1

𝑆

∑
𝑥𝑖∼ 𝑓 (𝑥)

𝑝(𝑥), we approximate 𝑝(det|Λ) as a sample-based

average of 𝑆 samples drawn from the population:

𝑝(det|Λ) ≈ 1
𝑆

∑︁
𝑑𝑖∼𝑝(𝑑 |𝜃)𝑝(𝜃 |Λ)

𝑝(det|𝑑𝑖). (6.10)

The above Monte Carlo approximation involves the following procedure:

1. Draw 𝑆 (typically a very large number) samples of 𝜃 from the population
model 𝑝(𝜃 |Λ), 𝜃 ∼ 𝑝(𝜃 |Λ).

2. Add the corresponding simulated signal ℎ(𝜃) to detector noise, real or simu-
lated. As 𝑑 = 𝑛 + ℎ, this is equivalent to drawing 𝑑 ∼ 𝑝(𝑑 |𝜃).

3. Calculate the detection probability 𝑝(det|𝑑𝑖) for each of 𝑆 samples.

4. Take the average of 𝑝(det|𝑑) across samples. This is 𝑝(det|Λ).

Each step above has varying degrees of computational burden. Step 1 can be accom-
plished using rejection sampling or inverse transform sampling from the population.
Step 2 involves generating a waveform 𝑆 times (for each 𝜃) and generating (or read-
ing) noise. Step 3 requires the most computational burden for realistic scenarios,
as the detection statistics must be assigned to the simulated samples consistent with
how it was done for the real data; this therefore requires running detection pipelines
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over the simulated data. With data corresponding to a real observing run, this is
a highly complicated procedure, typically taking months at a time and significant
coordination between teams of detection pipelines. Again, the complexity here is
necessary to k exactly the method used for the real data, or else the 𝑝(det|𝑑) term
in Eq. 6.10 will not match the detection procedure used to make the real catalog
(i.e., Eq. 6.1). As we need to calculate 𝑝(det|Λ) for arbitrary values of Λ during
population inference, it is clearly unfeasible to run the above procedure generically.

We therefore use importance sampling or reweighting as a shortcut for approxi-
mating Eq. 6.10 for arbitrary Λ. Assume we have conducted Steps 1-3 above for
some fiducial population Λ0. Multiplying the integrand in Eq. 6.4 by 𝑝(det|Λ0)

𝑝(det|Λ0) , we
recognize:

𝑝(det|Λ) =
∫

𝑝(𝑑 |𝜃)𝑝(𝜃 |Λ)𝑝(det|𝑑)𝑑𝜃𝑑𝑑

=

∫
𝑝(𝑑 |𝜃) 𝑝(𝜃 |Λ)

𝑝(𝜃 |Λ0)
𝑝(𝜃 |Λ0)𝑝(det|𝑑)𝑑𝜃𝑑𝑑

=

〈 𝑝(𝜃 |Λ)
𝑝(𝜃 |Λ0)

𝑝(det|Λ)
〉
𝑝(𝑑 |𝜃)𝑝(𝜃 |Λ0)

(6.11)

which we approximate as:

𝑝(det|Λ) ≈ 1
𝑆

∑︁
𝑑𝑖 ,𝜃𝑖∼𝑝(𝑑 |𝜃)𝑝(𝜃 |Λ0)

𝑝(𝜃𝑖 |Λ)
𝑝(𝜃𝑖 |Λ0)

𝑝(det|𝑑𝑖), (6.12)

or, in short,
𝑝(det|Λ) ≈ 1

𝑆

∑︁
𝜃found

𝑝(𝜃𝑖 |Λ)
𝑝(𝜃𝑖 |Λ0)

, (6.13)

where we denote 𝜃found as the samples from 𝑝(𝜃 |Λ0) which, when passed through
the data generation step, 𝑝(det|𝑑𝑖) = 1, meaning they were assigned as “found”
by the detection process. In other words, we take samples of 𝜃 from our fiducial
population 𝑝(𝜃 |Λ0), simulate signals and sample (real or simulated) noise, run our
detection procedure and store the values of 𝜃 which pass our detection threshold.
Then, for an arbitrary target population 𝑝(𝜃 |Λ), we simply need to calculate the
“weight”, the ratio of the target to fiducial population.

The key advantage of the above procedure is that the simulation and detection
procedure is only done once, and we can recycle these results to efficiently compute
𝑝(det|Λ) forother values of Λ. This is the exact procedure we use to calculate
the selection effects for rates and population properties from LIGO-Virgo-KAGRA
observations.
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It is worth noting, however, that the above reweighting procedure will return a
biased result for 𝑝(det|Λ) if there is not sufficient overlap in the support between the
fiducial and target distributions. This can be understood as being due to estimating
the average of a distribution with effectively too few samples. We therefore must be
clever in choosing a Λ0 with broad enough support and generate enough detectable
sources to make Eq. 6.13 a sufficient approximation. See Chapter 14 for an in-depth
study of how these poor Monte Carlo approximations translate into biases in the
inferred population.

Appendix 6.B Marginalization over rate

The fact that all terms involving 𝑅 or 𝑁exp in Eq. 6.8 are in a Poisson distribution
allows these terms to be analytically marginalized with a suitable choice of prior
[228]. Consider the two equivalent forms for the likelihood of 𝑁det, and let 𝛼(Λ) ≡
⟨𝑉𝑇⟩ = 𝑝(det|Λ)𝑉𝑇 :

𝑝(𝑁det |𝑁exp) = 𝑁𝑁det
exp 𝑒

−𝑁exp

𝑝(𝑁det |𝑅,Λ) =
(
𝑅𝛼(Λ)

)𝑁det𝑒−𝑅𝛼(Λ) .
(6.14)

If we assume separable priors on 𝑅 and Λ, then the part of the posterior that includes
𝑅 can be written independently as

𝑝(𝑅, 𝑁det |Λ) = 𝑝(𝑅)𝑝(𝑁det |𝑅,Λ). (6.15)

With a convenient choice of prior 𝑝(𝑅), we can analytically marginalize over 𝑅 in
Eq. 6.15, removing the need to include the 𝑅 degree of freedom in the population
inference stochastic sampling process. The distribution for 𝑝(𝑅 |Λ, 𝑁det) can be
reconstructed afterward.

If we choose a uniform-in-log prior such that 𝑝(𝑅) ∝ 1/𝑅, then:

𝑝(𝑅, 𝑁det |Λ) ∝ 𝛼(Λ)𝑁det𝑅𝑁det−1𝑒−𝑅𝛼(Λ) , 2 (6.16)

which has an antiderivative −Γ(𝑁det, 𝛼(Λ)𝑅) + 𝐶, meaning∫ ∞

0
𝑝(𝑅, 𝑁det |Λ)𝑑𝑅 ∝ Γ(𝑁det, 0) = const. (6.17)

The fact that the result of the above marginalization is independent of Λ, means
we can choose the prior 𝑝(𝑅) ∝ 1/𝑅 and simplify the explicit form of Eq. 6.8 into
Eq. 6.9.

2One may recognize this as proportional to the gamma distribution, with “shape” 𝑁det and “rate”
𝛼(Λ).
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C h a p t e r 7

BINARY BLACK HOLE POPULATION THROUGH GWTC-3

This chapter is my own overview of the population properties of compact binary
systems as presented in the LIGO-Virgo-KAGRA GWTC-3 Astrophysical Distri-
butions paper. I have adapted the results from the publication with emphasis on my
contributions.

R. Abbott et al. “Population of Merging Compact Binaries Inferred Us-
ing Gravitational Waves through GWTC-3”. In: Phys. Rev. X 13.1 (2023),
p. 011048. doi: 10.1103/PhysRevX.13.011048. arXiv: 2111.03634
[astro-ph.HE].

7.1 Introduction

The third observing run (O3) of the Advanced LIGO [117] and Advanced Virgo [38]
gravitational wave observatories ran from April 2019 to March 2020, during which
signals were observed from compact binary coalescences comprised of black holes
and neutron stars. The third Gravitational Wave Transient Catalog (GWTC-3) [26]
combines the observations from the second half of O3 (O3b) with those from O1, O2,
and O3a, resulting in a catalog consisting of a cumulative total of 90 gravitational
wave events from compact binary coalescences (CBCs) with significance surpassing
a particular chosen significance threshold [24, 25, 26]. In this paper, we present the
population properties of black holes and neutron stars in binaries as inferred from
the gravitational wave data collected through GWTC-3.

The observations in O3 contain several novel events which have significant properties
in their own right. For example, O3 observations contain the first observations of
a binary system consisting of a neutron star and a black hole (NSBH), the most
massive binary black hole system (BBH) observed to date, and systems made of
binaries of highly asymmetric masses [23, 27, 22]. The presence of these sources
enrich our dataset and provide crucial information for understanding the formation
and evolution of compact binary systems.

By combining the individual observations and correcting for the observational bias
inherent in the detection process, we can measure the astrophysical distribution of

https://doi.org/10.1103/PhysRevX.13.011048
https://arxiv.org/abs/2111.03634
https://arxiv.org/abs/2111.03634
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BBH, NSBH, and binary neutron star (BNS) systems, allowing us to draw conclu-
sions on a population level. These population properties include the merger rate
distributions of masses, spins, and redshifts of CBC sources. By encoding phys-
ical parameterizations and motivations into models, we can constrain underlying
astrophysical processes and formation channels of compact binary systems, as well
as leverage these constraints to measure global environmental and cosmological
properties.

The population analyses in GWTC-2 identified a few features in the BBH mass
distribution such as an overdensity or break in the power law and a nonzero merger
rate for masses ⪆ 45𝑀⊙ [29]. Additionally, it was found that some fraction of
BBHs have spins aligned against the orbital angular momentum and that the spin
distribution has evidence for systems undergoing precession. In this work, we
further explore these findings, utilizing new data and more flexible models which
allow us to search for new features. Furthermore, the inclusion of NSBH events
allows us to conduct the first joint analysis of the entire population of CBCs of
masses between 1 − 100𝑀⊙.

By including the new observations in GWTC-3, we identify or confirm several
features of the BBH population. We identify the presence of new over- and under-
densities in the BBH mass distribution, begging new astrophysical explanations
[180, 70, 84, 508, 174, 390, 467, 310, 371, 63, 593, 79, 278, 496, 363, 405,
113, 357]. We confirm and strengthen earlier findings that the spin components
of BBHs tend to be small but nonzero, with no evidence of a significant rapidly
spinning population. We also find evidence of support for anti-aligned spins in the
population, as well as a correlation between mass ratio and spins of BBH systems;
these findings are unexpected given typical astrophysical models for BBH systems
originating from the collapse of massive stars [126]. Furthermore, for the first time,
we confidently measure an evolution of the BBH merger rate with redshift, a finding
which may be expected from observations of the star formation rate history of the
universe.

For analysis which include NSBH and BNS systems, we adopt a threshold of
FAR < 0.25yr−1, resulting in a total of 67 events, 4 of which contain at least one
NS. Due to the higher number of BBH observations, we loosen the threshold to
FAR < 1yr−1 for the BBH-focused analyses, resulting in 69 confident BBH events
in the bulk population.
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7.2 Data and Inference Methods

7.2.1 Data Collection

The detection pipelines GSTLAL [477, 265, 375], PyCBC [394, 56, 55, 114, 546,
396], MBTA [41], and CWB [314, 313] were used to identify possible signals in
the data, assigning significance estimates to each trigger. By selecting events that
surpass a significance threshold, we put an upper bound on the number of noise
events in the dataset, setting the purity of our catalog. A FAR < 1yr−1 threshold
gives a cumulative total of 76 events, 6 of which contain NSs and one outlier with
ambiguous classification, GW190814. We expect ≲ 5 noise events contaminating
dataset given the ∼ 4 independent detection pipelines operating in the ∼ 1 year
observing time.

For each event in the dataset, we perform Bayesian parameter estimation to measure
its properties. Posterior samples for the properties of each event are obtained
using Bilby [67, 470], LALInference [335], or RIFT [328, 580]. For each event,
we equally-weight posterior samples from published parameter estimation analyses
with waveforms including effects of precession, and using higher order modes where
available. For events in O1, this includes analyses with SEOBNRv3 [525, 411] and
IMRPhenomPv2 [267]. For events detected in O3a reported in GWTC-2, we use
results tagged as PrecessingSpinIMRPHM, which contains results from waveforms
modeling effects of preession and higher order modes. For new events in O3b, we use
equally-weighted results obtained from analyses using IMRPhenomXPHM [428]
and SEOBNRv4PHM [108, 408]. All analyses are performed with a prior uniform
in detector frame component masses, uniform in spin magnitude and isotropic on
the sphere, and proportional to the square of the luminosity distance.

7.2.2 Population Inference

We follow the procedure outlined in Chapter 6 and other chapters in this thesis
in order to infer the parameters describing the population models. Additional
background can be found in [536, 359, 560, 348]. Assuming a uniform-in-log prior
over the rate 𝑅, we obtain the likelihood for the dataset {𝑑} given the population
hyperparameters Λ:

L({𝑑}|Λ) ∝
𝑁∏
𝑖=1

∫
L(𝑑𝑖 |𝜃)𝜋(𝜃 |Λ)𝑑𝜃

𝜉 (Λ) , (7.1)
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where 𝜉 (Λ) is the detection efficiency for the population Λ. See Chapter 6 of this
thesis for a detailed description of the likelihood (i.e., Eq. 6.9) and these terms.
Given that, for each event, we have samples from the posterior distribution which
assumed some fiducial “PE prior” 𝜋0(𝜃), we use importance sampling of these
samples to obtain an estimate for Eq. 7.1:

L({𝑑}|Λ) ∝
𝑁∏
𝑖=1

1
𝜉 (Λ) ⟨

𝜋(𝜃 |Λ)
𝜋0(𝜃)

⟩, (7.2)

where the average is taken over the samples drawn from the posterior of each event.
Several packages implement the functionality of computing Eq. 7.2, but I focus on
reuslts obtained using the package GWPopulation [517, 520, 518].

The detection deficiency quantifies the fraction of sources in Λ that would be
deteactable according to the detection process used to form the dataset of real events.
In order to efficiently evaluate 𝜉 (Λ) for different values of Λ, this is calculated by
importance sampling over samples (or “reweighting”) from an injection-recovery
campaign. In this procedure, we simulate 𝑁inj signals from millions of CBC sources
drawn from a fiducial population model Λ0, add them to real detector noise, and
recover them using the same detection pipeline used to form the dataset. The ratio
of the number of detected injections (i.e., those that pass the FAR threshold) to the
total number of injections gives the detection efficiency 𝜉 (Λ0). We obtain 𝜉 (Λ) for
arbitrary Λ by importance sampling over the detected injections [213, 538]:

𝜉 (Λ) ≈ 1
𝑁inj

𝑁found∑︁
𝑖=1

𝜋(𝜃𝑖 |Λ)
𝜋(𝜃𝑖 |Λ0)

, (7.3)

where 𝑖 runs over the “found”, or detected, injections. Note that the denominator in
Eq. 7.3 is the draw probability of the 𝑖th found injection under the fiducial population
Λ0. See Chapter 6 for details of this component of the likelihood.

The Monte Carlo-based estimate of each integral above has an associated uncertainty
due to using a finite number of samples used in the sum [256, 213, 257, 519].
This uncertainty is always present when using samples to compute an estimator.
To mitigate the bias from likelihoods with unconverged integrals, we only assign
nonzero values of L({𝑑}|Λ) to values of Λ for which we believe the likelihood
integrals are properly converged, as determined by the effective sample size (𝑁eff)
of each Monte Carlo sum. Specifically, we enforce that 𝑁eff > 𝑁det for the average
in Eq. 7.2 and 𝑁eff > 4𝑁det for Eq. 7.3, where 𝑁det is the number of observed events
in the catalog.
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7.2.3 Population Models

In this section, I will summarize a select few of the population models employed in
the GWTC-3 populations analysis [28], with a particular emphasis on the parametric
population models I personally contributed to. All models in this section are assumed
to be factorizable in the following sense:

𝑝(𝑚1, 𝑞, ®𝑠1, ®𝑠2, 𝑧 |Λ) = 𝑝(𝑚1 |Λ)𝑝(𝑞 |𝑚1,Λ)𝑝(®𝑠1 |Λ)𝑝(®𝑠2 |Λ)𝑝(𝑧 |Λ). (7.4)

We adopt several models for the BBH mass distribution 𝑝(𝑚1, 𝑞 |Λ). The exact
functional forms of each model and priors on the population hyperparameters can
be found in Appendix B of [28]. These parametric mass models follow the same
conditional mass ratio distribution:

𝑝(𝑞 |𝑚1, 𝛽𝑞, 𝑚min) ∝

𝑞𝛽𝑞 if 𝑚min < 𝑚2 < 𝑚1

0 otherwise.
(7.5)

The following mass models describe the mass distribution for the primary masses,
𝑝(𝑚1 |Λ).

The simplest model is a truncated power law (Truncated [29, 226]), controlled
with Λ = (𝛼, 𝑚min, 𝑚max), the (negative) power law slope and the minimum and
maximum truncation masses, respectively. Physically, this is motivated by the power
law nature of the stellar initial mass function (IMF) and the expectation of minimum
and maximum BH mass cutoffs.

The Broken Power Law model is similar to the Truncated model, but with two
power law slopes, which transition at a break location 𝑚break.

The default, fiducial mass model adopted in this work (and commonly adopted in
the literature) is the Powerlaw+Peak model [524, 228], which is a mixture of
two components: a power law component and a Gaussian peak. The power law
component is similar to the Truncated model, but features a smooth turn-on (with
width 𝛿𝑚) at low masses to avoid an abrupt, and possibly unphysical, truncation. The
peak component is a Gaussian centered at 𝜇𝑚 with width 𝜎𝑚, and contains a fraction
𝜆𝑝𝑒𝑎𝑘 of the mass distribution. This model was first motivated by the expected
presence of a peak and cutoff in the mass distribution due to the pulsational pair
instability mechanism. While a peak-like feature has been confidently found, its
location determined by this work likely makes it inconsistent with being a signature
from pulsational pair instability remnants.
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The Multipeak model is similar to Powerlaw+Peak, but includes an additional
Gaussian peak, allowing more flexibility in the model to capture additional features.

We define the Default spin model [521] in terms of the magnitudes (𝜒𝑖 ≡ |®𝑠𝑖 |)
and tilt angles (𝜃𝑖) of the spin vectors of each object in a binary. We model spin
magnitudes as a beta distribution [582]:

𝑝(𝜒𝑖 |𝛼𝜒, 𝛽𝜒) ∝ 𝜒
𝛼𝜒−1
𝑖

(1 − 𝜒𝑖)𝛽𝜒−1, (7.6)

where we restrict 𝛼𝜒 > 1 and 𝛽𝜒 > 1 to avoid singular distributions.

Tilt angles are assumed to come from a mixture of two distributions: a uniform
distribution in cos(𝜃𝑖) and a (truncated) Gaussian distribution centered at cos 𝜃𝑖 = 1
with width 𝜎𝑡 :

𝑝(cos 𝜃1, cos 𝜃2 |𝜎𝑡) =
1
4
(1 − 𝜁) + 𝜁N[−1,1] (cos 𝜃1, cos 𝜃2; 1, 𝜎𝑡), (7.7)

where 𝜁 is the mixing fraction between the two distributions andN[−1,1] is a Gaussian
truncated to −1 ≤ cos 𝜃𝑖 ≤ 1. This is meant to be a phenomenological represen-
tation of two formation channels which may contribute to the population. The
isotropic (uniform) component corresponds to the subpopulation of BBHs formed
dynamically, with spins randomly oriented with respect to the orbit. The Gaussian
component is the subpopulation of BBHs formed under common (isolated) evolu-
tion and therefore are expected to have spin tilts preferentially aligned with the orbial
angular momentum. This form assumes that both components of a given binary are
drawn from the same subpopulation.

Motivated by the power law nature of the star formation rate (SFR) [351], we assume
the merger rate (density) 𝑅(𝑧) follows [228]:

𝑅(𝑧 |𝜅) = 𝑅0(1 + 𝑧)𝜅, (7.8)

where 𝑅0 is the local (𝑧 = 0) merger rate in dimensions of inverse volume-time, with
time defined in the frame of the source. The parameter 𝜅 describes the evolution
of the merger rate with redshift, and is expected to be positive due to the increase
in star formation rate with redshift for 𝑧 ≲ 2. Recognizing that 𝑅(𝑧) = 𝑑𝑁

𝑑𝑉𝑐𝑡𝑠
, we

express redshift probability distribution as:

𝑝(𝑧 |𝜅) ∝ 𝑑𝑁

𝑑𝑧
∝ 𝑑𝑁

𝑑𝑉𝑐𝑑𝑡𝑠

𝑑𝑡𝑠

𝑑𝑡𝑑

𝑑𝑉𝑐

𝑑𝑧
∝ (1 + 𝑧)𝜅 1

1 + 𝑧
𝑑𝑉𝑐

𝑑𝑧
, (7.9)

where 𝑑𝑡𝑠/𝑑𝑡𝑑 = 1
1+𝑧 is the time dilation factor and 𝑑𝑉𝑐/𝑑𝑧 is the differential comov-

ing volume element. The proportionality factor is set by the overall normalization
of 𝑝(𝑧 |𝜅).
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7.2.4 Other Population Models

Results for the BBH population presented in [28] also include other population
models, which I did not personally contribute to. Here is a short summary of some
of those models.

Power Law + Spline [186] parameterizes deviations to underlying power law using
cubic splines at knots placed uniformly in 𝑙𝑜𝑔𝑚1-space. By inferring the spline
heights, we can measure over- and under-densities with respect to the power law
across 𝑚1-space. This semiparametric approach allows us to find certain features
that could not be captured with the lower-dimensional parametric models whose
allowable features are fewer and encoded a priori.

Flexible Mixtures [539] models the chirp mass, mass ratio, and aligned compo-
nent spins as a weighted mixture of 11 Gaussians.

Binned Gaussian Process [238, 358] is a histogram-based approach for modeling
the mass distribution. The heights of each bin with predefined locations, are inferred
and correlated with neighnoring bins via a Gaussian process.

7.3 Population Properties of Black Holes in Binaries

Unless otherwise stated, results in this section were obtained by simultaneously
inferring the population according to the Power Law + Peak mass model, Default
spin model, and Power Law redshift model. We use 69 events with FAR < 1yr−1,
not including the outliers GW190814 (𝑞 ∼ 0.11) and GW190917 (possible NSBH).

7.3.1 Mass Distribution

The mass distribution of BBH systems is one of the most important properties to
measure, encoding information about compact binary and stellar evolution, forma-
tion and evolution. We find confidently that the mass distribution has substructures
beyond a simple power law, and the merger rate is monotonically decreasing and
continuous for some range beyond 𝑚 > 50𝑀⊙.

We present the results of the Power Law + Peak model in Figure 7.1. Comparing
the blue and black credible regions, we note broad consistency between the new
results and those obtained from GWTC-2.

We find a power law slope of 𝛼 = 3.5+0.6
−0.56 with a Gaussian peak at 𝜇𝑚 = 34+2.6

−4.0 𝑀⊙,
consistent with the findings from GWTC-2 (𝛼 = 2.6+0.79

−0.63 and 𝜇𝑚 = 33+4.0
−5.6 𝑀⊙). The
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Figure 7.1: Astrophysical distribution for primary mass (left) and mass ratio (right)
obtained with the Power Law + Peak model. The solid lines are the posterior
population distribution (PPD) and the dashed lines envelope the 90% credible region.
The black and blue are GWTC-2 and GWTC-3 results, respectively. From [28].

Gaussian peak has a width of𝜎𝑚 = 4.6+4.1
−2.5 and contains a fraction of 𝜆 = 0.038+0.058

−0.026
sources. While consistent, this peak is slighly less pronounced than what was found
from GWTC-2

(
𝜆 = 0.1+0.14

−0.071 and 𝜎𝑚 = 5.7+3.8
−3.6

)
.

With a higher fraction of low-mass sources in O3b, we find that the mass distribution
decays much faster than what was found in GWTC-2. Specifically, we find the mass
of the 99th percentile is 𝑚99% = 44+9.2

−5.1 𝑀⊙, which is considerably lower than the
99th percentile found in GWTC-2 (which found 𝑚99% = 60+14

−13 𝑀⊙).

We measure a power law slope for 𝑞 which is just slightly less peaked toward
equal-mass binaries than in GWTC-2 (𝛽𝑞 = 1.1+1.7

−1.3 vs 𝛽𝑞 = 1.3+2.4
−1.5).

With the broader set of parametric models, we find that the BBH population is
not consistent with simply a single power law, requiring the presence of a feature at
∼ 35𝑀⊙. With the Broken Power Law model, this feature can be accomodated with
a break around the same location that Power Law + Peak places the Gaussian peak.
With similar evidences between the two cases, we cannot confidently determine
whether the feature at this location is best described by a peak or a break.

The additional observations collected through GWTC-3 help us resolve new sub-
structures in the BBH mass distribution. With the more data-driven models we find
peaks at 𝑚1 ≈ 10𝑀⊙ and the familiar peak at 𝑚1 ≈ 35𝑀⊙, as well as a possible,
less-significant feature at𝑚1 ≈ 17𝑀⊙. This additional structure is clearly illustrated
in the mass distribution recoveries shown in Figure 7.2. The significance of these
features can be quantified according to the deviation parameters in Power Law +
Spline, which favors overdensities at 𝑚1 ≈ 10𝑀⊙ and 𝑚1 ≈ 35𝑀⊙ with 97.8%
and > 99.9% credibility, respectively. This model also finds a potential dip at
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the posterior population distribution (PPD) and the dashed lines envelope the 90%
credible region. The black and blue are GWTC-2 and GWTC-3 results, respectively.
From [28].

𝑚1 ≈ 14𝑀⊙, but at 96.1% credibility.

7.3.2 Spin Distribution

The spins of BBHs can imprint the evolutionary and formation history of the sys-
tem, which, when constrained on a population level, can help us understand the
astrophysical context in which BBH systems form [362, 322, 468, 218, 561, 510,
248, 402]. The magnitudes and directions of black hole spins may carry signatures
of angular momentum transport of the stellar progenitors, prior merger history, and
possibly the strength of supernova kicks. [242, 241, 89, 298, 299, 468, 402, 248,
581, 27] As noted previously, the spin directions cos 𝜃1,2 are of particular interest
for distinguishing isolated from dynamical formation scenarios [362, 468].

In Figure 7.3, we present our constraints on the component spin magnitude and tilt
distributions. Our constraints are considerably better than those from GWTC-21,
finding 𝜒 is preferentially concentrated⪅ 0.4, with half of the support below⪅ 0.25.
There is a tail extending toward high 𝜒, but its contribution to the population is much
less than lower values for 𝜒 are. In terms of the tilt angles, we rule out the case
of perfect spin alignment (𝜁 = 1 and 𝜎𝑡 = 0), finding stronger contribution of the
isotropic spin tilt population. Under this flatter distribution, we find that 44+6

−11% of
black holes have anti-aligned spin components, cos 𝜃 < 0.

1However, this is likely due to consideration of precession in the selection effects.
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Searching for support for anti-aligned spins is of interest due to isolated, common
evolution channels likely being unable to form such systems, unless natal spin kicks
are stronger than expected. In adiditon to the constraints on cos 𝜃 presented above,
we infer the spin distribution under the 𝜒eff − 𝜒𝑝 parameterization [382], finding
support for 𝜒eff < 0 in the population at > 90% credibility, with exact values
depending on the model implementation details. Details of the spin distribution
inferred under the 𝜒eff and 𝜒𝑝 parameterization can be found in [28].

Finally, we find an apparent anti-correlation between the mass ratio and 𝜒eff in the
population [126]. We infer that unequal-mass BBH systems preferentially exhibit
larger 𝜒eff at 97.5% credibility.

7.3.3 Redshift Distribution

Observing BBH mergers across cosmic distances allows us to place constraints on
the evolution of the BBH merger rate [228]. Motivated by the SFR evolution [351],
we assume the merger rate follows a simple power law in redshift, 𝑅(𝑧) ∝ (1 + 𝑧)𝜅.
While the true merger rate evolution may deviate from this trend, this should be
sufficient to find the dominant evolutionary behavior at the redshifts at which we
have observations.

The Power Law 𝑅(𝑧) model reduces to a merger rate that is uniform in comoving
volume and source-frame time for 𝜅 = 0. We measure 𝜅 = 2.9+1.7

−1.8, excluding 𝜅 = 0
at > 99.6% credibility, indicating a confident detection of an evolving merger rate
with redshift. This is in contrast to GWTC-2, which found 𝑅(𝑧) was consistent with
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being non-evolving. This difference, however, is due to an insufficient treatment of
precession when estimating selection effects in GWTC-2, rather than the new data.

We present our measurements for 𝑅(𝑧) in Figure 7.4, comparing with the low-
redshift SFR constraints from Madau-Dickinson, which correspond to 𝜅SFR = 2.7.
We infer an 𝑅(𝑧) consistent with this evolution. Given the delay times between star
formation and merger, the star formation and BBH merger rates are not expected to
be exactly the same.

We make our best measurements for 𝑅(𝑧) at 𝑧 = 0.2, finding 𝑅(𝑧 = 0.2) =

28+14
−8.9 Gpc−3yr−1. Given that our constraints come from these relatively low red-

shifts, we do not seek to constrain the behavior of 𝑅(𝑧 ⪆ 1−1.5), which is expected
to decay after reaching some peak. Given the SFR peaks at 𝑧 ≈ 2, it is likely that
the peak of 𝑅(𝑧) for BBH mergers also lies beyond our detection horizon, but may
be constrained with future observations and stochastic background searches.

7.3.4 Outliers in the BBH Population

For our constraints on the BBH population distribution, have excluded events whose
massses make their classification as BBH systems ambiguous. In particular, we
exclude GW190814 and GW190917, whose secondary masses extend to lower
masses than the bulk of the events in the BBH population. In this section, we
repeat the population analysis with these events included in turn, demonstrating the
subsequent changes to our results.
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In Figure 7.5, we present the inferred lower mass truncation hyperparameter for
the mass distribution 𝑚min for different combinations of inclusion and exclusion of
GW190814 and GW190917. With our default event list, which excludes these two
events, we find 𝑚min = 5.1+0.75

−1.5 𝑀⊙ with a broad turn on 𝛿𝑚 = 5.0+3.3
−3.2𝑀⊙. When we

include these two low-mass events, we find a much lower value of𝑚min = 2.3+0.27
−0.23𝑀⊙

and a sharp turn on of 𝛿𝑚 = 0.39+1.3
−00.36𝑀⊙. This difference is due to the fact that

we force 𝑚min for the primary and secondary mass distributions to be the same;
therefore, the secondary masses of the low- and assymetric- mass BBH systems
drive the changes at the low end of the mass spectrum.

The population inferred when including these events is in signficant significant
tension with that which is inferred when they are excluded, meaning the population
inferred without these events cannot even support the presence of them. We suggest it
is likely that these systems are members of a separate subpopulation, disconnected
from the bulk BBH population, and possibly connected to the newly-identified
population of NSBH systems.
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7.4 Rates

The merger rates of the different populations of compact binary systems are im-
portant for understanding the formation and evolution of these systems, as well as
predicting the number of detectable events in future observing runs. We present the
merger rates for the different populations across the mass spectrum in Table 7.3.4,
and for just the BBH population in Table 7.3.4.

7.5 Conclusions

The observations in GWTC-3 have provided us with a more thorough census of
the population of CBC sources in the universe. With the additional data collected
through O3b, we infer the astrophysical distribution of BBH, BNS, and NSBH
systems, constraining the merger rates of these systems as a function of mass, spin,
and redshift.

We find that the neutron star mass distribution is broad and extends up to 𝑚 ∼ 2𝑀⊙,
contrasting with the distinct narrow Gaussian structure of the Galactic BNS mass
distribution [410]. While the limited data make the tension not significant, it is
possible that the two populations disagree due to differing formation channels or
poorly-understood observational and astrophysical selection effects [11, 481, 471].

We find structure in the BBH mass distribution, notably overdensities over a power
law at𝑚1 ≈ 10𝑀⊙ and≈ 35𝑀⊙. The peak at 10𝑀⊙ needs further investigation as it is
difficult to explain with mainstream astrophysical models. For example, significant
contributions from globular clusters to the BBH population are expected to supress
the merger rate at low masses, resulting in a peak at a mass > 10𝑀⊙. In a cluster
environment, most black holes at these low masses are likely ejected by supernova
kicks and therefore do not contribute significantly to dynamical formation [63, 487,
81, 80]. Models of isolated binary evolution predict peak locations consistent with
10𝑀⊙, albeit with considerable uncertainties due to effects of mass transfer, wind,
and supernova kicks [180, 90, 253, 571, 89]. It therefore may be the case that
isolated formation channels are responsible for the bulk of the BBH population.

The location of the 35𝑀⊙ peak and the lack of a subsequent truncation is inconsistent
with a population of isolated first-generation BBH mergers according to current
understanding of the PPISN process. This peak and the presence of higher-mass
black holes therefore needs a different explanation, possibly involving contributions
from cluster or galactic nucleus environments [589, 371, 236, 516, 516, 249].
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Our finding that black holes spins tend to be low agrees with models of efficient
angular momentum transport in stellar progenitors, forming black holes with litte
spin [242, 241]. It is worth noting, however, that there is possible support in the
tails at higher spins, which may be explained by hierarchical mergers or tidal spin up
[404, 436, 360, 364, 361]. With spin tilts showing a slight preference for alignment,
it may be the case that isolated binaries formed via common evolution make up most
of the BBH population [362, 468, 248]. However, there is evidence for anti- and
non-aligned spins, which may be explained by dynamical formation channels [371,
515].

Our novel finding of the increasing merger rate with redshift may have important
implications for understanding the delay times of binary systems between star for-
mation and merger. As constraints get better, we may be able to use this as a tool
for understanding astrophysical formation scenarios and cosmology.
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GWTC-2 GWTC-3
Model log10 B log10 B

Power Law + Peak 0.0 0.0
Broken Powerlaw + Peak −0.11 −0.46

Multi Peak −0.3 −0.22
Broken Powerlaw −0.92 −2.0

Table 7.3: Bayes factors for each of the previously used phenomenological mass
models relative to the model with highest marginal likelihood, Power Law + Peak.
The previous results from GWTC-2 are shown in the second column with the updated
catalog results in the third column. From [28].

Appendix 7.A Other Mass Distribution Models

In Table 7.3, we present the Bayes factors for previously used phenomenological
mass models relative to the model with highest evidence, Power Law + Peak. The
previous results from GWTC-2 are shown in the second column with the updated
catalog results in the third column. We find that the Power Law + Peak model is
still favored over all other models, but the differences in evidence are mostly modest.

Appendix 7.B Impact of Sensitivity on Redshift Evolution Inference

One change in the sensitivity estimation procedure between this work and our
previous study of GWTC-2 [29] is the use of injections that account for the effect
of precession and as well as updates to our detection pipelines as detailed in [26].
Since precession was not included in the injections used in [29], the full spin
distribution could not be reweighted to calculate the sensitivity via Eq. 7.3, and
thus, for the purposes of sensitivity estimation, an approximation was made that
𝑆𝑥,𝑦 ∈ (−0.5, 0.5). Since we now use precessing injections, we do the reweighting
procedure including the full spin distribution as a function of Λ. To test if this
difference in our sensitivity estimation procedure is responsible for the change in
the inferred redshift evolution, we repeat the population analysis reported as the
main BBH analysis, using our updated sensitivity model, but only including events
analyzed in the GWTC-2 populations study [29]. From this analysis, we infer 𝜅 > 0
at 97.6% credibility, as opposed to the 85% credibility reported previously [29],
indicating a much stronger preference for a merger rate increasing with redshift. We
conclude that the differences between our current results for the evolution of the
BBH merger rate and those reported previously [29] are due to improvements to our
sensitivity model rather than the presence of the additional events in GWTC-3.
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In Figure 7.6 we compare the redshift dependence of our current sensitivity model
to that of the sensitivity model used previously [29]. To make this comparison, we
reweight the injections used previously [29] to the same spin distribution assumed in
that study, and assuming a fiducial Power Law + Peak and Power Law model for
the mass and redshift distributions, respectively. We reweight the current injections
to this same mass and redshift distribution, but reweight them to the median inferred
spin distribution obtained previously [29], to mimic a astrophysically-realistic pop-
ulation. Both injection sets only cover the observing times of the O3a observing
run. Taking the ratio of the corresponding sensitvities, we find our sensitivity has
increased for low redshift events and decreased for high redshift events, relative to
the sensitivity model used in our prior work [29]. We expect to see an increase
in sensitivity between our previous analysis [29] and our current calculation due
to updates to the detection pipelines. The relative decrease in sensitivity at higher
redshifts indicates a bias in the previous sensitivity estimate, implying that the BBH
merger rate at high redshift was underestimated in our earlier study [29]. Accounting
for the shift in sensitivity as a function of redshift causes a relative decrease in local
BBH merger rate and a relative increase in high-redshift BBH merger rate, leading
to a higher inferred value for 𝜅.

One possible explanation for the shift in sensitivity is that the use of precession in
the injections for sensitivity estimation caused a non-trivial change in the inferred
sensitive hypervolume, given that we do observe precession in the BBH population.
Our current detection pipelines use template banks that include only aligned-spin
components; this can result in up to tens of percent reduced sensitivity to a population
of BBHs with spin precession, depending on the degree of precession possible [50,
48, 271]. The farthest precessing sources, which, due to their distances, correspond
to FARs closest to the detection threshold, are therefore the most susceptible to
dropping below the detection threshold with our current pipelines, causing us to
see a decrease in sensitivity to a population of BBHs with precession relative to a
strictly non-precessing population.

Additionally, both the use of population-informed reweighting of the spin distri-
bution to calculate sensitivity to a population and the incorporation of additional
detection pipelines may have contributed to a more accurate estimate of our sensi-
tivity across parameter space.
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Figure 7.6: Comparison of our current BBH merger sensitivity estimate in the O3a
observing run (𝑉𝑇new) to that used in [29] (𝑉𝑇old) as a function of redshift, for
events with chirp masses between 20𝑀⊙ and 50𝑀⊙. Our current sensitivity model
differs from what was used in [29] in two important ways: we use updated detection
pipelines relative to those used in our GWTC-2 [29] and we use injections which
include spin precession. There is a relative increase (decrease) in sensitivity at low
(high) redshift. Computed by reweighting injections to a fiducial population for
each of the two injection sets.
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C h a p t e r 8

BINARY BLACK HOLE POPULATION THROUGH GWTC-4

This chapter is intentionally redacted and will be embargoed until August 2025.
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C h a p t e r 9

GWPOPULATION: HARDWARE AGNOSTIC POPULATION
INFERENCE FOR COMPACT BINARIES AND BEYOND

Colm Talbot, Amanda Farah, Shanika Galaudage, et al. “GWPopulation:
Hardware agnostic population inference for compact binaries and beyond”.
In: J. Open Source Softw. (Sept. 2024). doi: 10.21105/joss.07753.
arXiv: 2409.14143 [astro-ph.IM].

9.1 Introduction

Since the first direct detection of gravitational waves by the LIGO–Virgo collabo-
ration in 2015 [14], the size of the gravitational-wave transient catalog has grown
to nearly 100 events [26], with more than as many observed during the ongo-
ing fourth observing run. Extracting astrophysical/cosmological information from
these observations is a hierarchical Bayesian inference problem. GWPopulation is
designed to provide simple-to-use, robust, and extensible tools for hierarchical in-
ference in gravitational-wave astronomy/cosmology. It has been widely adopted for
gravitational-wave astronomy, including producing flagship results for the LIGO-
Virgo-KAGRA collaborations (e.g., [28, 2]).1 While designed to work with ob-
servations of compact binary coalescences, GWPopulation may be available to a
wider range of hierarchical Bayesian inference problems.

Building on Bilby [67, 470], GWPopulation can easily be used with a range of
stochastic samplers through a standard interface. By providing access to a range of
array backends (numpy [270], JAX [111], and cupy [403] are currently supported)
GWPopulation is hardware agnostic and can leverage hardware acceleration to
meet the growing computational needs of these analyses. Included in the package
are:

• Implementations of the most commonly used likelihood functions in the field.

• Commonly used models for describing the astrophysical population of merg-
ing compact binaries, including the “PowerLaw+Peak” and “PowerLaw+Spline”

1For a full listing of papers using GWPopulation, see the citations for the previous publication
at https://ui.adsabs.harvard.edu/abs/2019PhRvD.100d3030T/citations.

https://doi.org/10.21105/joss.07753
https://arxiv.org/abs/2409.14143
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mass models, “Default” spin model, and “PowerLaw” redshift models used in
the latest LIGO-Virgo-KAGRA collaboration analysis of the compact binary
population.2

• Functionality to simultaneously infer the astrophysical distribution of sources
and cosmic expansion history using the “spectral siren” method [203].

• A standard specification allowing users to define additional models.

9.2 Statement of Need

Hierarchical Bayesian inference is the standard method for inferring parameters
describing the astrophysical population of compact binaries and the cosmic expan-
sion history (e.g., [536, 560]. The first step in the hierarchical inference process
is drawing samples from the posterior distributions for the source parameters of
each event under a fiducial prior distribution along with a set of simulated signals
used to quantify the sensitivity of gravitational-wave searches. Next, these samples
are used to estimate the population likelihood using Monte Carlo integration with
a computational cost that grows quadratically with the size of the observed pop-
ulation. Since evaluating these Monte Carlo integrals is embarrassingly parallel,
this is a prime candidate for hardware acceleration using graphics/tensor processing
units. GWPopulation provides functionality needed to perform this second step
and is extensively used by members of the gravitational-wave astronomy community
including the LIGO-Virgo-KAGRA collaborations.

Maximizing the information we can extract from the gravitational-wave transient
catalog requires a framework where potential population models can be quickly
constrained with the observed data with minimal boilerplate code. Additionally, the
availability of a standard open-source implementation improves the reliability and
reproducibility of published results. GWPopulation addresses all of these points
by providing a standard, open-source, implementation of the functionality needed
to perform population analyses while enabling user-defined models to be provided
by a Python function/class definition. The flexible backend system means hardware
acceleration can be used with minimal coding effort. Using GWPopulation on
Google Colab, it is possible to perform an exploratory analysis with a new pop-
ulation model in minutes and produce production-quality results without needing
high-performance/throughput computing clusters. With access to high throughput

2See [28] for details of these models.
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computing resources, a wide range of potential models can be easily explored using
the associated gwpopulation_pipe [517] package.

9.3 Related Packages

Several other packages are actively used and maintained in the community that can
be used for population inference that operate in complementary ways to GWPopu-
lation.

• GWInferno [187] is a package for hierarchical inference with gravitational-
wave sources intended for use with numpyro [424] targeting high-dimensional
models. GWInferno includes many population models initially adapted from
GWPopulation.

• There are a wide range of packages designed for joint astrophysical and cosmo-
logical inference with gravitational-wave transients including icarogw [370],
gwcosmo [260], MGCosmoPop [354], and CHIMERA [109]. icarogw sup-
ports some harware acceleration using cupy but some cosmological calcu-
lations are limited to CPU support only. chimera is JAX-compatible and
supports flat Lambda-CDM cosmologies along with analysis using galaxy
catalogs.

• vamana [539] models the compact binary distribution as a mixture of Gaus-
sians and power-law distributions, popmodels [583] implements a range of
parametric models for the compact binary distribution and supports sampling
via emcee [237], neither supports hardware acceleration at the time of writing.
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C h a p t e r 10

SEARCHING FOR STRUCTURE IN THE BINARY BLACK
HOLE SPIN DISTRIBUTION

Jacob Golomb and Colm Talbot. “Searching for structure in the binary black
hole spin distribution”. In: Phys. Rev. D 108.10 (2023), p. 103009. doi:
10.1103/PhysRevD.108.103009. arXiv: 2210.12287 [astro-ph.HE].

Abstract

The spins of black holes in merging binaries can reveal information re-
lated to the formation and evolution of these systems. Combining events
to infer the astrophysical distribution of black hole spins allows us to
determine the relative contribution from different formation scenarios
to the population. Many previous works have modelled spin population
distributions using low-dimensional models with statistical or astro-
physical motivations. While these are valuable approaches when the
observed population is small, they make strong assumptions about the
shape of the underlying distribution and are highly susceptible to biases
due to mismodeling. The results obtained with such parametric models
are only valid if the allowed shape of the distribution is well-motivated
(i.e. for astrophysical reasons). Unless the allowed shape of the distribu-
tion is well-motivated (i.e., for astrophysical reasons), results obtained
with such models thus may exhibit systematic biases with respect to the
true underlying astrophysical distribution, along with resulting uncer-
tainties not being reflective of our true uncertainty in the astrophysical
distribution. In this work, we relax these prior assumptions and model
the spin distributions using a more data-driven approach, modelling
these distributions with flexible cubic spline interpolants in order to al-
low for capturing structures that the parametric models cannot. We find
that adding this flexibility to the model substantially increases the un-
certainty in the inferred distributions, but find a general trend for lower
support at high spin magnitude and a spin tilt distribution consistent
with isotropic orientations. We infer that 62-87% of black holes have
spin magnitudes less than 𝑎 = 0.5, and 27-50% (90% credible levels)

https://doi.org/10.1103/PhysRevD.108.103009
https://arxiv.org/abs/2210.12287
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of black holes exhibit negative 𝜒eff. Using the inferred 𝜒eff distribution,
we place a conservative upper limit of 37% for the contribution of hi-
erarchical mergers to the astrophysical BBH population. Additionally,
we find that artifacts from unconverged Monte Carlo integrals in the
likelihood can manifest as spurious peaks and structures in inferred dis-
tributions, mandating the use of a sufficient number of samples when
using Monte Carlo integration for population inference.
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10.1 Introduction

Gravitational waves offer a unique probe into the properties of merging black holes
(BHs) and neutron stars. Since the first such detection in 2015, the LIGO-Virgo
network [16, 1, 38] has reported the detection of ∼ 90 binary black hole (BBH)
mergers, with each gravitational-wave (GW) signal encoding physical information
about the BHs involved, such as their masses and angular momenta (spins) [26, 12,
12]. Extracting this information has has enabled the study of properties of BBH
systems on both an individual and population-level basis. From an astrophysical
perspective, combining GW detections to infer the mass, spin, and redshift distri-
butions of BBH systems can help answer questions ranging from binary formation
and stellar evolution [28, 29] to the expansion rate of the Universe and possible
deviations from general relativity [21, 34].

The spin of the BHs in a BBH system offer insight into the history of the binary.
For example, BH spins can help reveal whether the BHs in a BBH system formed
directly from core collapse of a heavy star or from the previous merger of two lighter
BHs [308, 230, 249, 227]. Although the processes governing the angular momen-
tum transport out of a stellar core during collapse are not well-constrained, recent
modeling work indicates that BHs resulting directly from core collapse supernovae
should have negligible spin magnitudes [241, 437, 273]. While processes such
as tidal interactions and mass transfer can induce higher spins on BHs in binary
systems, it is uncertain how appreciable the resulting spin-ups can be [592, 404,
86, 85]. On the other hand, BHs formed from the merger of two non-spinning BHs
are expected to form a final BH with a relatively high spin magnitude [279, 285,
227], motivating the possibility to use spin magnitude as a tracer of a BHs formation
history.

The direction of the BH spin vectors also encode information related to the formation
history of a BBH system. Models suggest that BBH systems formed from common
evolution, in which the component BHs evolve together from a stellar binary in
an isolated environment free from significant dynamical interactions, should have
component spin vectors nearly aligned with the orbital angular momentum axis, with
any tilt being efficiently brought into alignment by tidal interactions [218, 299]. On
the other hand, BBH systems formed from dynamical encounters are not expected
to have any correlated spins, such that the BH spin vectors are isotropic with respect
to the orbital angular momentum [230, 362, 468].

While only a couple of events in the third gravitational-wave transient catalog
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individually feature confidently high spin magnitudes or anti-alignment (i.e. a
spin vector pointing opposite the angular momentum), hierarchically combining
observations of GW events while folding in selection effects can reveal the degree to
which these parts of spin parameter space contribute to the astrophysical distribution
of BH spins. Previous work has used these inferred contributions to estimate
the fraction of BBH systems in the local Universe which may have been formed
hierarchically, dynamically, and by isolated evolution [179, 230, 308, 28]. However,
recent publications have disagreeing estimates for the contributions of anti-aligned
and non-spinning BBHs to the astrophysical population.

In [28, 29], the authors conclude that the BBH distribution must feature anti-aligned
spins at > 90% credibility, in contrast to the conclusion drawn in [474] that such
anti-alignment is not evident in the population. In addition, [243] finds evidence for
a non-spinning subpopulation of BHs, a conclusion which was challenged by [127].
While technical differences exist between works, a major possible contribution to
some of these differing conclusions is model misspecification (see, e.g. [420, 472]);
that is, different assumptions being imposed on the functional form of the spin
distribution.

The Default model in [28, 29] models the distribution of the magnitude of the
BH spin vector and the tilt angle between the spin vector and the orbital angular
momentum. They adopt a Beta distribution for the spin magnitude model [582, 28],

𝜋(𝑎1,2 |𝛼𝜒, 𝛽𝜒) = Beta(𝑎1,2 |𝛼𝜒, 𝛽𝜒), (10.1)

where 𝑎1 (𝑎2) is the magnitude of the spin vector of the primary (secondary) BH,
and 𝛼𝜒 and 𝛽𝜒 are population hyperparameters determining the structure of the Beta
distribution. The model for the distribution of tilt angles, 𝜃, is motivated by two
subpopulations: one preferentially aligned (cos(𝜃) ≈ 1) and one isotropic [521, 29,
28]. The model is parameterized as:

𝜋(cos 𝜃1,2 |𝜉, 𝜎𝑡) = 𝜉𝐺 𝑡 (cos 𝜃1 |𝜎𝑡)𝐺 𝑡 (cos 𝜃2 |𝜎𝑡) +
1 − 𝜉

4
, (10.2)

where 𝐺 𝑡 is a truncated Gaussian centered at cos 𝜃 = 1 with standard deviation 𝜎𝑡
and bounded in [−1, 1], and 𝜉 is the relative mixing fraction between the subpopula-
tions. The second term corresponds to the contribution from the uniform (isotropic)
distribution.

This population model has been extended in other work to allow for other astrophysically-
motivated features to help draw conclusions related to the different formation sce-
narios present in the astrophysical distribution [243, 474, 127, 557]. Adopting an
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astrophysically-motivated, strongly parametric model necessarily limits the possi-
ble features resolvable in the inferred distribution to what the chosen function can
model. Accordingly, in this work, we consider a strongly parametric model to be
one that has a specific, prior-determined shape as provided by the parameterization
(e.g. a normal distribution), which is then constrained by the data. When using such
a distribution to draw astrophysical conclusions from the inferred population, this
is a reasonable and intended consequence, as the model is chosen to encode prior
beliefs on the parameters that should govern the astrophysical distribution; however,
if additional features exist in the true astrophysical distribution and a strongly para-
metric model cannot account for them, such features can be missed and a biased
result may be obtained.

Previous work has shown that substructures in the BH mass distribution can be cap-
tured by cubic splines acting as a perturbation on top of a simpler parameteric model
[186, 28]. In [186], the authors consider an exponentiated spline perturbation mod-
ulating an underlying power law in the mass distribution. In this work, we model the
spin magnitude and tilt distributions using exponentiated cubic splines modulating
a flat distribution to obtain a more data-driven result for the inferred population of
BH spins. In doing so, we limit the potential bias caused by mismodeling the spin
distribution and allow for the possibility of capturing features not accessible with a
strongly parametric model.

The remainder of the paper is organized as follows. In Section 10.2, we detail
the functional form and implementation of the cubic spline model. We provide
the background of hierarchical Bayesian inference in Section 10.3, as it applies to
population inference with GW sources. In Section 10.4 we present the resulting spin
distributions we obtain for various spline models adopted in this work. Finally, we
use these results to draw conclusions related to the astrophysical distribution of BBH
spins and provide a relevant discussion in Section 10.5. We additionally supply three
appendices; the first provides additional details about an efficient caching technique
for the cubic spline model, the second explores the effect of uncertainty in our
estimation of the selection function, and the third describes robustness of our results
to different choices of prior distribution.

10.2 Models

Following the model for the black hole mass distribution considered in [186], we
fit the distribution of spin magnitudes and cosine tilts using exponentiated cubic
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splines
𝑝(𝑥) ∝ 𝑒 𝑓 (𝑥) . (10.3)

A spline is a piecewise polynomial function defined by a set of node positions, the
value of the function at those nodes, and boundary conditions at the end nodes.
We use a cubic spline as it is the lowest order spline that enforces continuity of the
function and its first derivative everywhere.

10.2.1 Node positions and amplitudes

In this work we consider models with 4, 6, 8, and 10 nodes spaced linearly in
the domain of the parameter space. For the two distributions being modelled with
splines, this gives 16 unique spin models (4 amplitude node placement models ×
4 tilt node placement models). Our choice for the prior on the amplitude of each
node is a unit Gaussian distribution. Comparisons with other node amplitude prior
choices are detailed in Appendix 10.C.

In order to fully characterize a cubic spline, the first and second derivatives must be
determined at each node. For all but the endpoints, these derivatives are specified
by requiring continuity in the spline and its derivative. At the endpoints, there is
no unique way to determine this and a range of boundary conditions are commonly
used. For our implementation, we want the prior distribution of the derivatives at the
endpoints to match that of the internal nodes. This requires providing two additional
free parameters at each end of the spline. In practice, we add two additional nodes
outside each boundary, with amplitudes that are free to vary according to the prior.
Throughout this work, the number of nodes in a model refers to the number of nodes
within the domain (i.e. not including these outside nodes). The spacing between
these nodes is the same as that between nodes within the domain.

10.2.2 Modeling spins with splines

In this work, we use the spline model detailed above to model the population of
spin magnitudes 𝑎 and tilt angles cos 𝜃. Consistent with [29, 28], we model these
parameters as independent and identically distributed. The total spin population
model is

𝜋spin(𝜂 |Λ𝑠) = 𝑝𝑎 (𝑎1)𝑝𝑎 (𝑎2)𝑝𝑡 (cos 𝜃1)𝑝𝑡 (cos 𝜃2), (10.4)

where Λ𝑠 is the set of population hyperparameters controlling the spline node
location and amplitudes, and 𝜂 is the set of single-event parameters. The functions
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𝑝 are determined from Eq. 10.3. The domain of the spin magnitude distribution
extends over 𝑎 ∈ [0, 1] and that of the spin tilt distribution covers cos 𝜃 ∈ [−1, 1].

10.3 Methods

10.3.1 Hierarchical Bayesian Inference

In order to constrain the spin magnitude and tilt distribution, we carry out hierarchical
Bayesian inference in which we calculate the likelihood of the entire observed dataset
given a set of population hyperparametersΛwhile marginalizing over the uncertainty
in the physical parameters of each event. After analytically marginalizing over the
total merger rate 𝑅 with a prior 𝜋(𝑅) ∝ 𝑅−1, we express the likelihood of the
hyperparameters Λ parameterizing the population is expressed as (e.g. [536]):

L({𝑑}|Λ) ∝ 𝑝det(Λ)−𝑁
𝑁∏
𝑖

∫
L(𝑑𝑖 |𝜂𝑖)𝜋(𝜂𝑖 |Λ)𝑑𝜂𝑖 . (10.5)

Here, L(𝑑𝑖 |𝜂𝑖) is the likelihood of observing the data 𝑑 from the 𝑖th event, given
physical (i.e. single-event) parameters 𝜂𝑖. In this work, 𝜂𝑖 consists of masses,
spins, and redshift of the 𝑖th event. The quantity 𝑝det(Λ) encodes the sensitivity of
the search algorithm that identified the signals and is described in more detail in
Sec. 10.3.2.

Our population model 𝜋(𝜂 |Λ) describes the astrophysical distribution of masses,
redshifts, and spins. We model the primary mass distribution with the Powerlaw +
Peak model [524], the mass ratio (𝑞 =

𝑚2
𝑚1

) distribution with a power law, and the
redshift distribution also with a power law, with source-frame comoving merger rate
density 𝑅(𝑧) ∝ (1 + 𝑧)3 [228, 28, 29]. We choose to fix the redshift distribution
because we use our own injection set to estimate sensitivity, thresholding on Signal-
to-Noise Ratio (SNR) rather than False Alarm Rate (FAR) to determine “found”
injections. Since this makes the threshold used to select real events (FAR < 1 yr)
slightly different from that used to threshold sensitivity injections, and the redshift
distribution is particularly sensitive to the near-threshold events, we fix the redshift
distribution in order to avoid biases (see [7] for an example of where a similar
approximation was used). See Section 10.3.2 for details on sensitivity injections.
We list the hyperparameters Λ and their corresponding priors in Table 10.1.

An initial choice that must be made when computing Eq. 10.5 is which events
to include in the analysis. Typically this is done by establishing some detection
threshold on the SNR or FAR and including all events that pass this threshold. We
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Parameter Description Prior

𝛼 Power Law index for 𝑚1 (-4, 12)
𝛽 Power Law index for 𝑞 (-2, 7)

𝑀max Maximum mass (60, 100)
𝑀min Minimum mass (2, 7)
𝜆 Fraction of sources in Gaussian peak (0, 1)
𝑀𝑝𝑝 Location of Gaussian peak (20, 50)
𝜎𝑝𝑝 Standard deviation of Gaussian peak (1, 10)
𝛿𝑚 Minimum mass turn-on length (0, 10)

Table 10.1: Priors for mass distribution used in hierarchical inference, consistent
with those used in [28]. Priors on the spin distribution are described in Section 10.2.
Priors are uniform between the bounds listed in the third column.

choose to include the 59 events in the third observing run (O3) of the LIGO-Virgo
network which have a False Alarm Rate of less than 1 year−1 and are included in the
main BBH analysis of [28]. We limit ourselves to events in O3 for self-consistency,
as the injections we perform to evaluate selection effects (see Section 10.3.2) use
O3a and O3b detector sensitivities.

We compute Eq. 10.5 using the package GWPopulation [520], which constructs a
Monte Carlo approximation of this integral by reweighting samples from the single-
event posteriors into the population model. We use the nested sampling package
Dynesty [507] to obtain hyperparameter samples from the posterior distribution.

10.3.2 Selection Effects

Since the sensitivity to an event is determined by the single-event parameters 𝜂,
the observed population is biased toward events produced by the astrophysical
population that are preferentially observable. To account for the bias arising from
selection effects, we must compute the fraction of signals (𝑝det) that will have a
detection statistic 𝜌 passing our detection threshold 𝜌th by marginalizing over all
possible signals and noise realizations 𝑛 (e.g., [560, 6])

𝑝det(Λ) =
∫

𝑑𝑛

∫
𝑑𝜂𝑝(𝜂 |Λ)𝑝(𝑛)Θ(𝜌 − 𝜌th). (10.6)

Here Θ is the Heaviside step function. In practice, we use Monte Carlo importance
sampling with respect to some simulated fiducial reference populationΛ0 to estimate
Eq. 10.6. This method relies on injecting 𝑁inj sources from this reference population
into detector noise and determining which of these sources pass our detection
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threshold [213]. This is computed as

𝑝det(Λ) =
1
𝑁inj

∑︁
𝜂∼𝜂found

𝜋(𝜂 |Λ)
𝜋(𝜂 |Λ0)

, (10.7)

where 𝜂found corresponds to the single-event parameters of the events from the
injection set that pass detection threshold.

For our sensitivity injection set, we simulate O(5 × 107) sources and inject them
into Gaussian noise corresponding to O3 detector sensitivity specified by the repre-
sentative Power Spectral Densities in [26, 24]. This results in ∼ 900, 000 injections
passing our detection threshold of network optimal SNR greater than 10, where the
square of the network optimal SNR is defined as the quadrature sum of the SNRs
in each detector. We choose this threshold to be a surrogate for the 1 year−1 FAR
threshold used for event selection. While this is not an exact mapping between the
two detection statistics, the effects of spins on sensitivity is subdominant, so we
expect that this approximation will not cause biases.

10.3.3 Uncertainties in the Likelihood

Since we approximate Eq. 10.5 and Eq. 10.7 using Monte Carlo summation, there
exists a resulting statistical uncertainty associated with the use of finite samples
to obtain estimates for the value of the log likelihood [213, 256, 369, 193]. For
each sample of Λ, we compute this associated uncertainty in the log likelihood.
Considering the computed approximation of lnL({𝑑}|Λ) to be a realization from a
distribution that asymptotically tends to a Gaussian distribution we approximate the
covariance of this estimate using Equation 12 in [519]. For uncertainty propagation,
we compute the variance associated with each lnL(𝑑 |Λ) from Equation 7 in [519].

While we do not enforce any threshold directly on the variance (Δ lnL)2, we re-
tain this information for all points in the hyperposterior to investigate correlations
between features in the population and uncertainty in the log likelihood (see Ap-
pendix 10.B).

10.3.4 Uncertainty in the Evidence

The evidence, or marginal likelihood, associated with a particular model is expressed
simply as the expectation value of the likelihood conditioned on the population prior:

Z =

∫
𝑑ΛL({𝑑}|Λ)𝜋(Λ). (10.8)
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Comparing this quantity for two different models allows one to compute a Bayes
factor, which is commonly used as a discriminator between models based on their
relative strength at describing the observed data.

Because Dynesty computes the evidence by iteratively summing over a finite num-
ber of weights, there exists a statistical uncertainty associated with the estimated
evidence. Dynesty reports this uncertainty along with the computed evidence.

Since there is also an uncertainty in the quantity lnL({𝑑}|Λ) used in computing
the evidence, and the evidence is the average of a set of lnL values, we take the
contribution of this uncertainty to the total evidence to be the average uncertainty
in lnL({𝑑}|Λ) over the draws from 𝜋(Λ).

We take these two sources of uncertainty in the evidence to be independent and
compute the total uncertainty in Z by propagation of errors. As a result, we obtain
both the evidence and its uncertainty for each model of a fixed set of spline nodes.
We note that all of the evidences for the spline models are consistent within their
1𝜎 uncertainties, and the Default model has a natural log Bayes Factor of ≈ −1.5
with respect to the overlapping region of uncertainties in the evidences for the spline
models.

10.4 Results

In this section, we present the results from analyzing the population of BBH spin
magnitude and tilts using spline models. We use the standard Gaussian prior on
node amplitudes as described in Section 10.2.1, with nodes placed linearly within
the domain of parameter space. In Figure 10.1, we show the evidences and their
uncertainties for the 16 node combinations we consider in this work. All models
give similar evidences, with no significant preferences considering their associated
uncertainties. The red shaded region shows where all of the evidence estimates
overlap within 1𝜎. This indicates that adding more nodes does not tend to provide
a better fit to the distribution and also does not over-fit it. We therefore cite the
numbers in this section using the most flexible model, with 10 nodes for both the
magnitude and tilt distributions. Unless otherwise noted, the plots of the spin
magnitude (tilt) distributions assume 10 nodes in the tilt (magnitude) distribution.

As a general trend, we notice that the inferred 90% region of parameter space exhibit
oscillating peaks at the location of the spline nodes. As shown in Figure 10.13, these
oscillations appear for uninformative data. With the observations of BH spins being
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Figure 10.1: Comparison of evidences obtained from the different spline node
combinations considered, as well as from the Default model. Uncertainties are
computed by adding the average covariance in the log likelihood (see Eq. 12 in
[519]) in quadrature with the uncertainty in the evidence as reported from Dynesty.
The numbers after “a” and “t” are the number of nodes in the magnitude and tilt
models, respectively. All evidences from the spline models are consistent with lnZ
in the red shaded region at 1𝜎.

weakly informative, we see this effect from the strong influence of the prior on the
posterior distribution of the spline nodes.

10.4.1 The distribution of spin magnitudes

In Figure 10.2 we show the inferred distribution of spin magnitudes for our four
choices of node numbers in spin magnitude, assuming 10 nodes in spin tilt. Although
each model involves different positions and numbers of spline nodes, we note that the
uncertainties (solid lines) and the average line (dot-dashed lines) in the distribution
are comparable between models.

The 90% credible interval of the distribution is relatively broad, making it difficult
to discern obvious trends in spin magnitude. However, we note the general pattern
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of a preference for smaller spin magnitudes in the population and less support for
higher spin magnitudes. Considering the model with 10 magnitude and 10 tilt nodes,
we infer that 77.1%+10.4%

−14.8% of spin magnitudes are below 𝑎 = 0.5, and 50% of spin
magnitudes are below 𝑎 = 0.25+0.16

−0.10 (all uncertainties in this work are reported at
the 90% symmetric credible levels unless otherwise stated).

While the models using fewer spline nodes tend to place increased support around
𝑎 = 0.2, the significance is substantially reduced as we add more spline nodes.
When more spline nodes are added, the model becomes more flexible and more data
are necessary to constrain the distribution. While this feature may be real, it is not
confident enough to remain present as the flexibility of the model increases.

Comparing to Default model (the green shaded region) used in [28], we observe
substantially more uncertainty in the inferred spin magnitude distributions using our
spline models.

As a point of comparison, in Appendix 10.C we show the distribution of spin
magnitudes for different numbers of nodes, this time assuming 4 nodes in the tilt
distribution. We find no significant differences from the distributions assuming 10
nodes in the tilt distribution which indicates that the number of nodes in the tilt
distribution has a negligible effect on the inferred spin magnitude distribution.

10.4.2 The distribution of spin tilts

In Figure 10.3 we show the inferred distribution of spin tilts. Similar to the case
with spin magnitudes, the uncertainties in the distribution are wide, but the average
distributions for the different node combinations agree. In general, the distribution
is consistent with being flat and featureless, but there is a slight trend for an increase
in support for −0.25 < cos 𝜃 < 0.75.

As demonstrated by comparing Figure 10.12 with 10.3, the inferred distribution
of spin tilts is very similar when we model the spin magnitude distribution with 4
nodes. We confirm this invariance for all sets of magnitude nodes tested, suggesting
that the number of spin magnitude nodes does not meaningfully affect the recovered
spin tilt distribution.

We infer that 38.6%+17.3%
−15.6% of spin tilts are below cos 𝜃 = 0, and 50% of spin tilts

are below cos 𝜃 = 0.15+0.22
−0.22. Notably there is no trend for an increase in support

for cos 𝜃 = 1 as would be predicted by a preferentially aligned-spin population (see
Section 10.5).
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Figure 10.2: Distribution of spin magnitudes, with different numbers of nodes
corresponding to different colors. All use 10 nodes in the tilt distribution.

10.4.3 The distribution of 𝜒eff

As an alternative to modeling the component spins, it is common to consider instead
the total spin contribution aligned with the orbital angular momentum, the so-called
“effective” aligned spin parameter. This term is parameterized as

𝜒eff =
𝑎1 cos 𝜃1 + 𝑞𝑎2 cos 𝜃2

1 + 𝑞 . (10.9)

While we do not directly model the distribution of 𝜒eff in this work, we can use the
inferred distributions of 𝑎, cos(𝜃), and 𝑞 to reconstruct a distribution for 𝜒eff (c.f.
[29, 243]).

Figure 10.4 shows this inferred distribution of 𝜒eff as we vary the number of tilt
and magnitude nodes. As a point of comparison, we show the corresponding
reconstruction of 𝜒eff when the distributions of component spin magnitudes and tilts
are inferred using the Default model with same catalog of events. In addition, we
also plot the 𝜒eff distribution recovered from uniformly sampling in 𝑎 and cos(𝜃)
(solid black curve), assuming mass ratios drawn from a power law with an index of 2
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Figure 10.3: Distribution of spin tilts, with different numbers of nodes corresponding
to different colors. All use 10 nodes in the spin magnitude distribution.

(𝑞 consistent with the results in [28]) . The 𝜒eff distribution inferred from the spline
model agrees well with the Default reconstruction, but is a noticeably narrower
distribution than a uniform spin magnitude and tilt distribution would result in.
Using the model with ten magnitude and tilt nodes each, we infer that 38.7%+12.8%

−11.5%
of BBH systems have 𝜒eff < 0.

10.4.4 The distribution of 𝜒𝑝

Another “effective” spin parameter commonly modeled in the gravitational wave
literature is the effective precessing spin parameter, 𝜒𝑝, which quantifies the amount
of in-plane spin present in a BBH merger [490]. Here,

𝜒𝑝 = max
[
𝑎1 sin 𝜃1,

(
3 + 4𝑞
4 + 3𝑞

)
𝑞𝑎2 sin 𝜃2

]
. (10.10)

Similar to the previous subsection, we can reconstruct the distribution of 𝜒𝑝 using
the spline models of 𝑎, cos(𝜃), as well as our inference on the population of 𝑞.

Figure 10.5 shows the inferred distribution of 𝜒𝑝 as a function of different magnitude
and tilt nodes, respectively. We also show the inferred distribution recovered from
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Figure 10.4: Distribution of effective inspiral spin parameter as recovered from the
distributions in Figure 10.3 and Figure 10.2
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butions in Figure 10.3.
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the Default model [29, 28, 521, 582] analysis using the same event list, as well as
the distribution corresponding to uniform distributions in 𝑎 and cos 𝜃. The inferred
distribution of 𝜒𝑝 is consistent with an isotropic distribution, and shows agreement
with the 𝜒𝑝 distribution reconstructed from the Default model. An exception to
this agreement is the slightly increased support at high 𝜒𝑝 that is not present in
the Default reconstruction. The higher support for large 𝑎 and cos(𝜃) ≈ 0 in the
spline model relative to the Default model explains this increased support at high
𝜒𝑝. Similarly, our result allows for more support at high 𝜒𝑝 relative to what is
presented in [28], in which it is assumed that the 𝜒eff and 𝜒𝑝 distributions follow
a multivariate normal distribution [382]. In particular, Figure 16 in [28] shows
vanishing support for 𝜒𝑝 > 0.4 in the population, whereas we find some support
in this region is included at the 90% credibility. We note that varying the number
of nodes in spin magnitude has the largest impact on the averaged recovered 𝜒𝑝

distribution (dash-dotted curves) indicating that this measurement depends on our
choice of prior for the spin magnitude distribution.

10.5 Discussion

Most previous analyses of the astrophysical distribution of merging binary black
hole systems have focused on fitting parametric phenomenological models strongly
constrained by the functional form of the model to the observed data (e.g., [28] and
references therein) or directly compared with detailed simulations (e.g., [593, 575]).
However, more data-driven methods have been employed to infer the binary black
hole mass [358, 539, 463, 186] and spin distributions [539].

In this work, we use cubic splines (a model previously used to fit the black hole mass
distribution [186]) to fit the astrophysical spin magnitude and spin tilt distributions
of black holes as inferred from LIGO-Virgo observations. In doing so, we limit the
influence of prior modelling assumptions on the inferred distribution and present
a more data-driven result. While the uncertainties in the inferred distributions are
large, we are able to interpret trends as they relate to astrophysical mechanisms of
BBH formation.

Models of stellar physics suggest that angular momentum transport out of the core
of a collapsing star is highly efficient, indicating that first generation stellar BHs
should primarily have negligible spin [241]. Based on this, some models tend to
favor nonspinning BHs when born in isolated environments and not susceptible to
tidal spin-up.
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Motivated by the work in [241, 89], the authors of [243, 127, 28, 542] search for
contributions from a nonspinning subpopulation of BHs in the distributions of 𝜒eff

and spin magnitude. Some of this previous work has found support for 𝑎 = 0 when
using low-dimensional parametric spin distribution models that allow for support
at that point [522, 564, 243, 309, 308]. The results of such inference are strongly
model dependent, with the preference for the presence of a non-spinning component
depending on the morphology of that component. We do not confidently recover
such a feature as demonstrated in Figure 10.2. Given the width of the 90% credible
interval at low spin magnitudes, we are unable to rule out the presence of this feature.
This is consistent with what was found in [542, 127, 387], in which the authors find
that there is insufficient data to resolve such a non-spinning subpopulation when
employing a strongly parametric spin model with a spike at 𝑎 = 0.

On the other hand, the merger of equal mass, nonspinning BBH systems are expected
to result in a remnant BH with 𝑎 ∼ 0.7. As a result, population simulations predict
that hierarchical mergers resulting from products of nonspinning first-generation
mergers will leave a signature of a subpopulation of BH spins peaked around 𝑎 ∼ 0.7
with tails extending from 𝑎 ∼ 0.5 to ∼ 0.9 [227]. Referring back to Figure 10.2,
we do not see evidence of an obvious subpopulation in this high-spin region of
interest, but rather some preference for low-spin magnitudes, possibly indicating
that hierarchical mergers are not providing the dominant formation mechanism for
the observed BBHs. The lack of support for a relatively high spin subpopulation
is consistent with the conclusions drawn in [28, 127]. Assuming that BBHs from
hierarchical mergers all have 𝑎 > 0.5, we infer that no more than 23%+14%

−11% of
the astrophysical population of merging BBHs form through a hierarchical merger
channel.

A notable feature in our analysis is the increased uncertainty in the spin magnitude
distribution as compared to that from the Beta distribution in spin magnitude. The
motivation for using a Beta distribution in [582, 29, 28] is not physical but is
statistical: the Beta distribution only has support in the interval [0, 1] and offers a
flexible, parametric fit for the mean and variance of a distribution and has an analytic
form. The spline model introduced in this work offers more flexibility than the Beta
distribution, so lacking a physical motivation for the Beta distribution, we expect
that the uncertainties in the spin magnitude distribution obtained in this work are
more appropriate than those obtained from the Default model. Furthermore, the
Beta distribution used in [29, 28] cannot model structures such as increased support
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for nonspinning BHs or a secondary peak at high spin, making it a suboptimal model
for the astrophysical spin magnitude distribution in the presence of a nonspinning
subpopulation. Comparing to our data-driven approach, we therefore conclude that
the resulting spin distributions presented both in in [28] as well as this work are
partially model-driven.

When dynamical encounters take place within dense environments such as globular
clusters, it is likely that some of the remnant BHs are retained in the cluster and
merge in a subsequent dynamical encounter, contributing to the hierarchical merger
population. The authors of [230] find that, for a broad range of populations consid-
ered, 16% of mergers in the hierarchical merger population have 𝜒eff < −0.3. Using
our inferred 𝜒eff distribution we infer 2.1%+3.9%

−1.5% of BBH mergers have 𝜒eff < −0.3.
Using this interpretation from the 𝜒eff distribution, we place a conservative upper
limit on the contribution of hierarchical mergers to the BBH merger population of
13%+24%

−9% which agrees with the one obtained when using just the spin magnitude
information. This limit broadly agrees with the upper limit of 26% for the fraction of
hierarchical mergers presented in [230], in which the authors use low-dimensional
parametric models to infer the 𝜒eff distribution. This is also consistent with the
results of [308] who found that depending on the escape velocity of the hierar-
chical merger environment up to ≈ 10% of merging black holes may come from
hierarchical mergers.

Mergers of BBH systems which have spins that are isotropic in orientation, as is
expected from dynamical formation scenarios, implies a distribution of 𝜒eff sym-
metric about 0 (see the black line in Figure 10.4). This prediction comes from the
idea that during a dynamical capture, there is no reason to expect that the two BHs
should have correlated spin directions when they randomly encounter each other.
In contrast, spins of BBH systems forming from common evolution are expected
to remain primarily aligned with the orbital angular momentum, resulting in exclu-
sively positive values for 𝜒eff from this population. While the distribution of 𝜒eff we
recover appears symmetric, it is centered at 𝜒eff = 0.033+0.034

−0.038, favoring a positive
central location but consistent with being centered at 𝜒eff = 0 at the 90% level.
This constraint is similar to that obtained by [187], using basis splines to model the
component spin distributions. This result, coupled with the result that 38.7%+12.8%

−11.5%
of events have 𝜒eff < 0, presents the possibility that dynamical encounters are a
significant contribution to the formation mechanisms of BBH merger systems. This
is in contrast to the results reported in [28] that the 𝜒eff distribution is centered at
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0.06 and rules out being centered at 0 at the 90% level; this result is obtained by
modeling the 𝜒eff distribution as a Gaussian with the mean and standard deviation as
free parameters [382, 28]. While we use a largely identical event list in our analyses,
the modeling assumptions for the 𝜒eff distribution made in [28] probably explain
some of the differences in our results. While [474, 127] also find a 𝜒eff distribution
consistent with being centered at zero, [474] does not find any support for 𝜒eff < 0;
such a difference may also be due to different modeling choices for the population
of 𝜒eff.

We see increased uncertainty in cos 𝜃 with respect to those obtained from the
Default model from [28]. While the tilt distribution of the Default model is
astrophysically-motivated, it is incapable of capturing any possible substructure that
may be present at locations other than cos 𝜃 = 1, as it is modeled by a monotonic
function. Given the additional flexibility of the spline model, we notice a trend in
the average line of the cos(𝜃) distribution toward increased support for −0.25 <

cos 𝜃 < 0.5. This trend is of low significance given the uncertainties surrounding it
in the inferred cos 𝜃 parameter space, but may indicate a nontrivial contribution from
BBHs with in-plane spins to the astrophysical population. This trend is consistent
with what is found in [557, 187], in which the authors use more flexible models to
infer the cos 𝜃 distribution. Our result that 38.6%+17.3%

−15.6% of BHs exhibit negative spin
tilts is broadly consistent with previous studies that indicate the need for negative
alignment in the astrophysical population. The presence of support for cos 𝜃 < 0 in
the population was reported in [29] and confirmed in subsequent studies (e.g. [127,
28]).

It is generally considered unlikely for BBH systems formed under common/isolated
evolution scenarios to exhibit spin-orbit misalignment, as any such misalignment
in these systems is expected to be corrected by mass transfer and tidal effects [218,
299]. Lack of confidently-increased support for cos 𝜃 = 1 indicates that aligned-spin
BBH systems do not contribute a statistically resolvable subpopulation of mergers.
A possible explanation for this is a comparable or more significant contribution
of BBH mergers from dynamical encounters in dense environments to the inferred
astrophysical population of BBH mergers, as this would manifest as a more isotropic
distribution in tilts.

Unlike other work which adopts data-driven models but enforce regularization or
smoothing conditions across parameter space (e.g. [127, 187]), we set the correlation
length explicitly by setting the number of spline nodes and their locations a priori.
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While smoothing over the scale of perturbations in parameter space may avoid the
biases noted in Section Appendix 10.B, it also limits the scale of the features that can
be resolved by the model. By controlling for this scale limit on a model-by-model
basis, we can evaluate if we need to resolve finer-scaled features in order to get a
better fit to the data, for example by comparing the model evidences in Figure 10.1.
We believe that the averaging or smoothing adopted in [127, 187] is what prevents
the spurious features noted in Appendix 10.B from being recovered in those works,
at the cost of not being able to resolve fine features in the population distribution.
Nonetheless, as we see from the similar evidence values in Figure 10.1, it is not
important that a model need to be able to resolve such narrow features in the spin
distribution, as they do not seem to inform the posterior to a large extent. We
anticipate that this will not be the case in analyses with future catalogs, as additional
data will become more informative to the structures in the spin distribution, limiting
the out-sized influence of the model prior on the posterior. In this case, data-driven
models may become necessary to best describe the distribution and this will be
reflected by a higher evidence for these models relative to that of the Default
model.

The morphological differences in the recovered spin distributions between models
are a natural outcome of using different models to infer a distribution given un-
informative data, as the prior provides much of the information to the posterior.
We note there are visible differences in the recovered distribution between spline
models and their credible regions in Figures 10.2 and 10.3, such as the locations
of large oscillations which appear depending on node placement. Because of the
comparable evidence values in Figure 10.1, we conclude that none of the spline
models do a significantly better job describing the data than any of the others. We
anticipate that in future studies, additional observations will contribute to resolvable
structure (if present) in the spin distributions; in this case, the spline models which
best describe this structure will have the highest evidences. Similarly, the Bayes
factor between the Default model and the spline model of the lowest evidence is
only ln BF ∼ 1.5 in favor of the spline model, indicating that the Default model
does not provide a significantly worse fit to the data than the spline models. In other
words, the additional flexibility of the spline models presented in this work may not
be necessary to correctly describe the spin distribution, as the lower-dimensional
model provides a fit with similar evidence. We caution against trusting the recovered
features in the resulting distributions as different models with similar evidences can
recover fairly different features in the spin distribution.
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The work presented in this paper motivates the need for more data-driven models
for inferring the BBH spin distribution from GW sources, as there may be features
of astrophysical importance that cannot be captured by currently-used parametric
models. While we cannot confidently discern many trends in the spin magnitude and
tilt distributions, we can place constraints on the support in different parts of spin
parameter space by substantially relaxing modeling assumptions. Using our more
flexible model, we find that substantially increased uncertainties are a necessary cost
to being able to model arbitrary features in the spin distribution, given current GW
data. Data collected from events in future observing runs may help resolve such
features which may exist in the spin distribution, as well as motivate a better choice
of priors to use on these data-driven models.
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Appendix 10.A Efficient evaluation of the spline model

Our model requires evaluating a different spline model at many values during each
likelihood evaluation. This process can be divided into three stages: constructing
the spline model, identifying where each of evaluation points lies in relation to the
nodes, and evaluating the appropriate piece in the spline. The first stage must be
performed at every iteration but does not depend on the number of points that the
spline will be evaluated at. The second stage is independent of the value of the
spline nodes but must be performed for each of the evaluation points. For a uniform
spacing of spline nodes, this can be efficiently evaluated, however, for a generic
spline this can be computationally intensive. At the third stage, we simply combine
the results of the two previous stages. This can be trivially parallelized using a
graphics processing unit (GPU).

For our use case, the locations at which the splines are evaluated and the node points
are the same at every iteration. We can therefore cache the result of the second stage.
We find that for our application the caching method accelerates the evaluation of
the model by a factor of ≳ 100. Our implementation cached_interpolate is
available via pypi and conda-forge.

Appendix 10.B Comparison between injection sets

Sensitivity estimates for Advanced LIGO and Virgo were released along with [26,
28] for the first three observing runs [529, 530, 26]. These sensitivity estimates
consist of injections of simulated sources into detector noise, along with the SNRs
and FARs of these injections as reported by the detection pipelines used in the
LIGO-Virgo observing runs. In this section, we compare the use these injections
to compute the 𝑝det term as written in Eq. 10.7 to the use of our own injections to
compute the same term.

Using a set of injections, we include those which pass a detection threshold in
the summation over the found injections. For the injections provided in [26], we
use a threshold of FAR < 1 yr−1, consistent with the choice made in [28]. We
do not run the detection pipelines to assign a FAR to each of the injections from
our custom injection set in this paper, so we threshold these on an optimal SNR
> 10. We visually check that the distribution of found injections is not biased by
our approximation of the detection threshold in the selection function, such that
the distribution of detection probabilities across parameter space are qualitatively
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Figure 10.6: Distribution of spin magnitude using 10 nodes. Different colors
correspond to different sensitivity injection sets. Injection sets use events from their
corresponding observing runs. Note the peak at around 𝑎 = 0.2 is most pronounced
with using O1+O2+O3 set and least with our custom O3 set.

similar for the different injection sets. Since importance sampling Monte Carlo
integration relies on drawing enough samples from the fiducial distribution that
cover the support of the target distribution, using Eq. 10.7 as a reliable estimator for
Eq. 10.6 requires a suitable number of “found” injections to get a well-converged
estimate (i.e. see [213]). With too few samples being used to compute the Monte
Carlo approximation, the variance of our estimator is large and the resulting estimate
may be a poor approximation of the true log likelihood. The statistical uncertainty in
the log likelihood estimates at each point in parameter space can cause a systematic
bias to appear in the resulting posterior distribution for the population.

The injection sets provided in [26, 28] for the combined O1+O2+O3 sensitivity
and O3 sensitivity respectively contain 41,972 and 81,117 simulated events which
pass our detection threshold. As expected, the use of more samples reduces the
uncertainty in the computed 𝑝det estimate, and is reflected by the distribution of
variances in lnL, as shown in Figure 10.10. We drastically reduce the variances in
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Figure 10.7: Distribution of spin tilt using 6 nodes. Different colors correspond to
different sensitivity injection sets. Injection sets use events from their corresponding
observing runs.

the log likelihood estimates by using our own injection set which contains 911,386
injections passing our detection threshold.

In order to validate that the number of samples used to compute 𝑝det is a cause of
systematic bias in the inferred population (as opposed to the difference in detection
statistic used for the threshold), we repeat the above spin distribution inference but
using injection sets that have been downsampled to have ∼ 40, 000 and ∼ 80, 000
found injections. In Figures 10.8 and 10.9 we note recovery of strongly peaked
features in the spin magnitude and tilt distributions, respectively. The significance
of these features becomes drastically reduced as the number of found injections
increases, indicating that a lower number of effective samples used to compute
Equation 10.7 can lead to biases that propagate into spurious features in the spin
distribution. We therefore infer that a sufficient number of injections is necessary to
recover an unbiased spin distribution using our spline model implementation, moti-
vating our use of the custom injection set with substantially more found injections
than what was released in [530].
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Figure 10.8: Distribution of spin tilt using 6 nodes. Different colors correspond
to a different number of found injections: the 900,000 from the custom injection
set, ∼ 80,000, and ∼ 40,000, where the latter two are close to the number of found
injections in the LVK O3-only and O1+O2+O3 injection sets, respectively.

We quantify the uncertainty in the log likelihood across the parameter space by
calculating the uncertainty in the difference in log likelihoods for all of Λ. In
Fig 10.10, we quantify this uncertainty as the covariance in the log likelihood
between each point Λ and Λ′, the value of Λ that has the lowest variance.

We see in Figure 10.10 that the amplitude of the node at 𝑎 = 0.22 is correlated with
higher statistical variance; as the amplitude of this node increases, the uncertainty
in the log likelihood increases as well, making the log likelihoods computed in
this part of parameter space less trustworthy. As we decrease the variance by
using injection sets with higher 𝑁inj, the uncertainty in the log likelihood estimates
decreases. With better estimates of the log likelihood, the support for the high
amplitude of the node at 𝑎 = 0.22 decreases, indicating that this feature in the
spin magnitude distribution may be an artifact of poorly-converged Monte Carlo
integrals. If this peak were a true feature in the astrophysical population, we
would expect the inferred distribution computed with the custom injections would
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Figure 10.9: Distribution of spin tilt using 6 nodes. Different colors correspond
to a different number of found injections: the 900,000 from the custom injection
set, ∼ 80,000, and ∼ 40,000, where the latter two are close to the number of found
injections in the LVK O3-only and O1+O2+O3 injection sets, respectively.

maintain support for high amplitude at this node, along with reduced uncertainty.
We confirm that this uncertainty is associated with the selection function rather than
associated with reweighting posterior samples in the population model by comparing
the contributions of the uncertainties in both these Monte Carlo summations to the
total propagated uncertainty in the log likelihood; for the models tested in this
paper, we consistently find that the uncertainty associated with the contribution
from Eq 10.7 dominates.

We note that we have noticed several other examples of similar behavior in our
analyses, notably manifesting as spurious peaks in the spin distribution. This
demonstrates the need for sufficient coverage of injections when using importance
sampling to compute sensitivity estimates especially when evaluating a population
distribution that can model narrow peaks.
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Appendix 10.C Effect of priors on inferred distribution

In this work, we adopt a prior on the spline node amplitudes that is a standard normal
distribution. In this appendix, we show the results obtained using different choices
of prior on the node amplitudes and different positions.

In Figure 10.13, we show the distribution of spin magnitudes and tilts from prior
draws only. We note that the average of the distribution is flat, reflecting the lack
of any further structure imposed by the prior on the mean of the distribution. On
the other hand, the upper limit of the 90% credible regions shows considerable
oscillations. These are coincident with the node locations and thus correspond to
where the distribution is informed directly by the spline amplitude sample. These
oscillations are thus an expected feature of the spline model. The regions in between
these oscillations correspond to where the spline provides an interpolation between
node locations.

Figure 10.14 shows the inferred distribution for the 4 tilt node and 4 magnitude node
model for three different choices of prior on the node amplitude and placement: a
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Figure 10.12: Distribution of spin tilts, with different numbers of nodes correspond-
ing to different colors. All use 4 nodes in the spin magnitude distribution.

broader Gaussian (yellow), a narrower Gaussian (magenta), a uniform distribution
in [−3, 3] and the unit Gaussian without the additional end nodes (see, Sec. 10.2.1).
They each result in comparable distributions within the statistical uncertainties,
however, we note that the wider prior distributions leads to wider uncertainty bands,
with the N(0, 0.5) prior giving the tightest constraints. We expect this to also hold
for the other node configurations.
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C h a p t e r 11

PHYSICAL MODELS FOR THE ASTROPHYSICAL
POPULATION OF BLACK HOLES: APPLICATION TO THE

BUMP IN THE MASS DISTRIBUTION OF GRAVITATIONAL
WAVE SOURCES

Jacob Golomb, Maximiliano Isi, and Will M. Farr. “Physical Models for the
Astrophysical Population of Black Holes: Application to the Bump in the
Mass Distribution of Gravitational-wave Sources”. In: Astrophys. J. 976.1
(2024), p. 121. doi: 10.3847/1538-4357/ad8572. arXiv: 2312.03973
[astro-ph.HE].

Abstract

Gravitational wave observations of binary black holes have revealed un-
expected structure in the black hole mass distribution. Previous studies
employ physically-motivated phenomenological models and infer the
parameters that control the features of the mass distribution that are
allowed in their model, associating the constraints on those parameters
with their physical motivations a posteriori. In this work, we take an
alternative approach in which we introduce a model parameterizing the
underlying stellar and core-collapse physics and obtaining the remnant
black hole distribution as a derived byproduct. In doing so, we constrain
the stellar physics necessary to explain the astrophysical distribution of
black hole properties under a given model. We apply this to the map-
ping between initial mass and remnant black hole mass, accounting for
mass-dependent mass loss using a simple parameterized description.
Allowing the parameters of the initial mass-remnant mass relationship
to evolve with redshift permits correlated and physically reasonable
changes to features in the mass function. We find that the current
data are consistent with no redshift evolution in the core-remnant mass
relationship, but place only weak constraints on the change of these
parameters. This procedure can be applied to modeling any physical
process underlying the astrophysical distribution. We illustrate this by
applying our model to the pulsational pair instability supernova (PPISN)

https://doi.org/10.3847/1538-4357/ad8572
https://arxiv.org/abs/2312.03973
https://arxiv.org/abs/2312.03973
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process, previously proposed as an explanation for the observed excess
of black holes at ∼35𝑀⊙. Placing constraints on the reaction rates
necessary to explain the PPISN parameters, we concur with previous
results in the literature that the peak observed at ∼35𝑀⊙ is unlikely to
be a signature from the PPISN process as presently understood.
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11.1 Introduction

Observations of gravitational waves from binary-black-hole (BBH) and binary-
neutron-star (BNS) mergers with the LIGO-Virgo-KAGRA detector network have
provided otherwise inaccessible information on the properties of those compact
objects [16, 1, 38]. While individual events offer a glimpse into the details of
a particular black hole (BH) or neutron star, studying observations collectively
on a population-level allows us to draw inferences about stellar astrophysics, the
formation channels of BHs and neutron stars, the overall rates at which BBH/BNS
mergers occur in the universe, and cosmology [28, 21, 28, 29], as well as tests of
general relativity [34, 417].

Models adopted for population inference of BBHs tend to take one of two major
approaches. The first are so-called parametric methods, in which a phenomeno-
logical model is constructed using relatively few parameters, with these parameters
directly controlling well-defined features encoded in the model. This commonly
involves assuming a functional form for the global structure of the distribution (e.g.,
a truncated power law for the mass distribution), enhanced by features such as a
bump, dip, or break, and jointly fitting for the properties of the global structure and
additional features [524, 29, 28, 317, 226]. The other popular approach consists of
data-driven methods (sometimes called “non-parametric” methods, in spite of their
overabundance of parameters) in which a flexible model is allowed to fit nearly-
arbitrary shapes to the distribution. Such fits have been achieved with tools such
as splines, histograms, and Gaussian process regression [125, 257, 358, 447, 186,
540].

While the latter method is more general and can capture features not explicitly
defined in a model, the former offers the ability to encode signatures from expected
physical processes in parameters controlling the shape of the distribution, making it
possible to interpret the constraints in terms of the underlying physical motivations.
Nevertheless, interpreting the constraints on these parameters as constraints on the
underlying physics can be difficult, as there are often unmodeled assumptions as
to how the underlying physical processes translate into resulting distribution that is
being modeled.

In this work, we provide an alternative approach to prescribing a parametric pop-
ulation model: instead of modeling the BBH distribution directly, we introduce
parameters to describe the underlying astrophysics and the associated mapping to
remnant BH properties and we derive the resulting population distribution as a re-
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sult of these underlying parameters and its associated mapping. Subject to model
assumptions, we more directly infer the physics as informed by BBH properties in
a way that avoids strong phenomenological approximations in the BBH population
model itself. This is related to the “backpropagation” approach in [574] and the
method in [60], except we operate at the population level rather than individual
events and impose a rigid physical mapping from progenitors to remnants.

Previous parametric approaches to modeling the BBH mass distribution have been
particularly useful to place constraints with relatively little data when strong as-
sumptions about the structure of the mass distribution are warranted. For example,
parametric population analyses of the first catalogs of BBH events have revealed
that the mass distribution is well-described by a truncated power law that peaks
at ∼8𝑀⊙, decaying to high masses, and featuring an overdensity (modeled as a
Gaussian bump) at ∼ 35𝑀⊙ [28, 29].

We apply our approach to the overdensity in the mass distribution at ∼35𝑀⊙,
which may or may not be accompanied by a subsequent dip [524, 186]. The
original motivation for looking for this feature was the expected “pile-up” of BHs
that resulted from progenitors that had undergone pair instability pulsations [524].
This pulsational-pair instability supernova (PPISN) process results in a nonlinear
mapping from the masses of progenitors stars to their remnant BHs [576, 577,
578, 210]: for relatively low masses, the mapping is linear; however, it turns
approximately quadratic for higher masses, with a turnover that caps the a maximum
BH mass obtainable from the evolution of an individual star; in BH-mass space,
the beginning of this BH “mass gap” is preceded by a pile-up from the quadratic
turnover. This kind of relationship between progenitor and BH masses can be
directly exploited to bridge parametric models of BBH populations with stellar
physics for improved inference, as we do here.

In this work, we implement a simple model for the initial mass function of stellar
progenitors and the associated map from progenitor mass to remnant mass, motivated
by the type of relationship found from the simulations in [210, 211]. Rather than
informing our model with individual massive sources, we construct a full population
model for the mass distribution, including a subpopulation in the upper mass gap due
to higher-generation mergers. Using data from gravitational wave events from the
third Gravitational Wave Transient Catalog [GWTC-3, 28], we infer the shape of the
initial mass function stellar progenitors, the associated mapping to the remnant BH
distribution, and the relative contribution of sources formed through 1G mergers.
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Baxter et al. [87] also explored the consequences of a similar initial mass-remnant
mass relation to those in Farmer et al. [210] and Farmer et al. [211], but unlike our
work here that directly parameterizes the relation, they used parameterized models
that had been fitted to theoretical BH mass functions.

Having a physically-motivated model for the BH mass distribution facilitates exten-
sions that incorporate richer physics. As an example, here we allow the underlying
physics to evolve with redshift, as may be expected from cosmic history considera-
tions. Such evolution in the underlying physical parameters captures the correlated
changes in shape and height of the bump that must occur in the presence of changing
progenitor to remnant mass relationships. It may be possible to use shape measure-
ments to calibrate changes in the mass scale of the bump with redshift to reduce
or eliminate systematic uncertianities in cosmological parameter inference from the
BBH mass function, sometimes called the “spectral siren” method [215, 203].

While here we apply this approach to modeling the PPISN process underlying the
astrophysical BBH mass distribution, it can more generally be used as a model
to place constraints on any relationship between progenitor mass and remnant BH
mass as informed by gravitational wave observations. The model introduced here
can readily be applied to any process with accelerating mass loss as a function
of progenitor mass, but this method can be useful for inferring the physics of any
arbitrary relationship underlying an observable distribution associated with BBHs
[cf. 231, for a related approach applied to inferring the delay times between binary
formation and merger].

We begin with an overview of hierarchical Bayesian inference in Sec. 11.2. We
then outline the models with and without evolution with redshift in Sec. 11.3. In
Sec. 11.4, we present results for both model configurations, using data from the
third oberseving run (O3) of LIGO-Virgo. We offer interpretations of our results
in Sec. 11.5 and provide concluding remarks in Sec. 11.6. We find that the PPISN
mechanism, as currently predicted by stellar evolution models, cannot predict the
35 𝑀⊙ feature in the BBH mass distribution.

11.2 Hierarchical Bayesian Inference

We conduct our inference on the population parameters Λ with a hierarchical
Bayesian framework, in which we inform our population model with a catalog
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𝑁det events, to compute the likelihood (see, e.g., [359, 536]):

L({𝑑}|Λ) ∝ 𝐾 (Λ)𝑁𝑑𝑒−𝐾 (Λ)

𝑝det(Λ)𝑁𝑑

𝑁det∏
𝑖=1

∫
L(𝑑𝑖 |𝜃)𝜋(𝜃 |Λ)𝑑𝜃 (11.1)

whereL(𝑑𝑖 |𝜃) is the likelihood of the data for the 𝑖th event, given physical parameters
𝜃 (i.e., masses, distances), and 𝜋(𝜃 |Λ) is our population model with a predicted
number of detections 𝐾 . The 𝑝det(Λ) prefactor accounts for the selection effects
associated with observing a catalog biased toward sources with parameters that
favor detectability (i.e., the Malmquist bias). See Appendix 11.A for details on this
likelihood.

Following the approach in [213] and [538], we compute 𝑝det(Λ) with injections of
sources from a fiducial population in detector noise, and assigning weights to each
of the sources that pass our detection threshold. These sensitivity injections are
from the O3 injection set released in [337]. We compute the per-event population
evidence (the integral in Eq. (11.1)) by reweighting samples from individual event
posterior distributions and dividing by the event-specific sampling priors. Since our
population model is written only in terms of masses and distances, we effectively
adopt the prior from parameter estimation for the spin parameters (isotropic in
direction and uniform in spin magnitude).

For our analyses involving third observing run (O3) data, we obtain posterior samples
for each event from [338], using the same BBH events from O3 as in [28]. This
results in 59 events meeting the False Alarm Rate (FAR) threshold of 1 per year.
Throughout this work we assume the best-fit cosmological parameters from the
Planck 2018 release [46].

We sample the population posterior using the No-U-Turn-Sampler (NUTS) in
Numpyro [424, 95], and we write the functions for computing Eq. (11.1) in jax
[111] to take advantage of automatic differentiation when sampling with Hamilto-
nian Monte Carlo [185].

We do not enforce the convergence conditions from [28] for the Monte Carlo integrals
in our likelihood, but we confirm that all points in our posterior have a reasonable
enough number of effective per event posterior samples and injections for good
convergence.
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11.3 Mass Distribution of Black Holes From Progenitor Mass Function

11.3.1 Mass Distribution Model

We begin to construct our mass distribution model by assuming a functional form for
the initial mass function (IMF) of compact object progenitors. Surveys have shown
that the stellar IMF on the main sequence can be well-modeled as a featureless
power law at high masses, with a power law index of approximately −2.3 [see,
e.g., 319, 485, 320]. Recent studies have shown through simulations and analytic
approximations that the there may be an approximately linear relationship between
a high-mass star’s zero-age main-sequence (ZAMS) mass and the mass of its core
before undergoing supernova, although this is uncertain [577, 90]. We therefore
assume that the IMF of compact object progenitors can also be modeled with a power
law to good approximation, but allow for a break at 20𝑀⊙ for additional flexibility
[see, e.g., 491]. Even if this relationship has nontrivial nonlinearities, modelling the
shape of the broken power law should capture the dominant resolvable structure of
the distribution.

We express the distribution of initial progenitor masses, 𝑀I, as

𝑑𝑁

𝑑𝑀I
(𝑀I) ∝


(

𝑀I
20𝑀⊙

)−𝑎
if 𝑀I < 20𝑀⊙ ,(

𝑀I
20𝑀⊙

)−𝑏
if 𝑀I > 20𝑀⊙ .

(11.2)

In order to obtain the resulting BH mass distribution from the progenitor mass
distribution, we require a mapping between 𝑀I for a progenitor and the mass of its
remnant after undergoing core collapse. Here we assume that the mean remnant
mass follows the initial mass for small initial masses, before smoothly transitioning
at black hole masses𝑀tr to a quadratic relationship that exhibits a maximum remnant
mass 𝑀BHmax, eventually decaying to zero remnant masses. We impose throughout
this work a constraint that 𝑀BHmax > 𝑀tr so that our mapping is well-defined. We
express this piecewise mapping through a functional form �̄�BH(𝑀I |𝑀tr, 𝑀BHmax)
given by

�̄�BH(𝑀I |𝑀tr, 𝑀BHmax) =


𝑀I if 𝑀I < 𝑀tr ,

𝑀BHmax + (𝑀I−2𝑀BHmax+𝑀tr)2

4(𝑀tr−𝑀BHmax) if 𝑀tr < 𝑀I < 2𝑀BHmax − 𝑀tr ,

0 otherwise.
(11.3)

Such a simple model will inevitably miss some of the complexity of the initial-final
mass relationship. We introduce scatter in the remnant mass at fixed initial mass to
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account for this missing physics. We simulate such uncertainty in the 𝑀I − 𝑀BH

mapping by treating the natural logarithm of the remnant mass as a realization from
a Gaussian distribution, with standard deviation 𝜎:

𝑝
(
ln(𝑀BH) | �̄�BH, 𝜎

)
= N

[
ln

(
�̄�BH(𝑀I)

)
, 𝜎

]
(ln(𝑀BH)) , (11.4)

where �̄�BH(𝑀I) is given in Eq. (11.3). Since Eq. (11.4) specifies that the logarithm
of 𝑀BH values are normally distributed around with standard deviation 𝜎, the
uncertainty on the physical value of the mass 𝑀BH will grow with 𝑀I for fixed 𝜎.

Any confident measurement of a nonzero value of 𝜎 would mean there is variation
in the 𝑀I − 𝑀BH mapping. This could originate from any number of factors, e.g.
physical properties affecting stellar evolution manifesting differently between black
holes in the catalog. For example, since metallicity is expected to have a slight effect
on the remnant mass given an initial CO core mass in models of the pair instability
[210], resolvable contributions from sources with differing birth metallicities in our
dataset would result in a preferentially nonzero value for 𝜎.

To obtain the mass distribution for stellar-origin (“first generation”) BHs 𝑑𝑁/𝑑𝑀1𝐺 ,
we integrate over progenitor masses,

𝑑𝑁

𝑑𝑀1G

(
𝑀BH | 𝑎, 𝑏, 𝑀tr, 𝑀BH,𝑚𝑎𝑥 , 𝜎

)
=

∫
𝑑𝑀I

𝑑𝑁

𝑑𝑀I
𝑝(𝑀BH | 𝑀I). (11.5)

(Note the implicit Jacobian from the logarithmic mass appearing in Eq. (11.4).) The
turnover in the 𝑀I −𝑀BH relation above 𝑀tr leads to a pile-up of black hole masses
around 𝑀BH,𝑚𝑎𝑥 . This pile-up is usually expressed as a relative overdensity through
a Gaussian bump [524, 29, 28]; in our model, the location, width, height, and
asymmetry of the bump are “naturally” derived from the parameters 𝑀tr, 𝑀BHmax,
and 𝜎. The black hole mass functions in our model (see Figure 11.1) are similar to
those discussed in Baxter et al. [87] (they would agree in the limit of 𝜎 → 0), but
those authors did not attempt to describe the black hole mass function in terms of
the underlying physical processes relating initial to final mass as we do here.

This simple, general parameterized model is deliberately reminiscent of the rela-
tionship expected between CO core mass and remnant BH mass induced by the pair
instability [239, 443]. From simulations with the stellar evolution code MESA [414],
[210] find that 𝑀I prior to core collapse is in fact the dominant variable determining
the remnant mass post core collapse. Figure 4 in [210] shows the resulting 𝑀BH vs
𝑀I relationships obtained for a range of choices of input physics and metallicity. The
authors note that for a given choice of metallicity, this relationship is well-modeled
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by a piecewise map: a linear relationship, turning over to a quadratic at the CO
core mass at which pulsations begin to remove notable mass, followed by a decay to
𝑀BH = 0𝑀⊙, corresponding to the mass at which pulsational pair instability fully
disrupts the star, leaving no remnant. This general trend has been confirmed by
other simulation-based studies [e.g., 374, 576].

When𝑀I reaches𝑀tr, the𝑀I to𝑀BH mapping transitions from its linear relationship
to a nonlinear one. In terms of the pair instability, at this point the pulsation process
causes mass loss whose efficiency increases with the star’s mass [365, 210, 576,
578]. The form of the quadratic function in Eq. (11.3) puts the peak value at𝑀BH,𝑚𝑎𝑥

and enforces that the transition and its derivative be continuous at 𝑀tr. This results
in a BH mass distribution in which remnants between roughly 𝑀tr and 𝑀BH,𝑚𝑎𝑥 can
map back to a wider range of progenitor masses, and each BH mass bin 𝑑𝑀BH in this
range contains more systems than it otherwise would had the 𝑀I −𝑀BH relationship
continued to be linear.

As shown in [210], the map from𝑀I to𝑀BH is sensitive to unknown physics affecting
the core collapse and stellar evolution process, even given a fixed 𝑀tr. We therefore
do not know with certainty of a one-to-one map of 𝑀I to 𝑀BH; this is captured by
our 𝜎 parameter. Even if we knew global physical parameters for the core collapse
process (e.g., reaction rates) with certainty, a given 𝑀I will always have a range of
possible associated remnant masses due to factors such as the unknown metallicity
at formation (see Sec. 11.3.4).

In Figure 11.1, we show how the distribution of 𝑀BH is derived from an initial
distribution of progenitor masses 𝑀I according to our model with some fiducial
values. Each BH in the 1G population is assumed to come from a progenitor from
the 𝑑𝑁/𝑑𝑀I distribution (bottom panel), which is mapped to a remnant BH mass
through the𝑀I−𝑀BH relationship (upper right panel). Finally, the resulting BH mass
distribution 𝑑𝑁/𝑑𝑀BH is obtained by integrating this distribution in the upper right
panel across 𝑀I, weighted by 𝑑𝑁/𝑑𝑀I (Eq. 11.5). This differs from the procedure
in [87], as we directly infer the 𝑑𝑁/𝑑𝑀I and 𝑝(𝑀BH | 𝑀I) distributions, which
uniquely specify 𝑑𝑁/𝑑𝑀1𝐺 rather than inferring a phenomenological representation
of a resulting 𝑑𝑁/𝑑𝑀1𝐺 distribution.
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Figure 11.1: Obtaining a 1G BH mass distribution from the initial mass function.
The progenitor IMF (bottom panel) gets transformed through the𝑀I to𝑀BH mapping
(top right panel), resulting in a distribution for 𝑑𝑁/𝑑𝑀1𝐺 of BHs in 1G systems.
We label parameters underlying the 1G BBH mass distribution: 𝑎 and 𝑏 are the
low-mass and high-mass spectral indices of the progenitor IMF; 𝑀tr and 𝑀BH,𝑚𝑎𝑥
(dashed lines) control the onset of the nonlinearity and the maximum of the quadratic
part of the mapping, respectively. The blue shaded region is the 90% credible region
of the lognormal mapping for our choice of 𝜎 (see Eq 11.5 and preceding equations
for the functional form). We vary these parameters in our fit to the LIGO-Virgo
data, together with the parameters for the 2G population (see Section 11.3.2).

11.3.2 Full Mass Distribution

The model outlined in the previous section is only directly applicable to 1G mergers,
in which 𝑀BH is the remnant mass from the core collapse of one of the sources
from 𝑑𝑁/𝑑𝑀I. Realistically, a catalog of observed gravitational wave sources
could also contain higher-generation merger events—namely, events that involve
BHs who are themselves remnants of previous BH mergers, and therefore not
of stellar origin—although it is commonly assumed that these systems will only
subdominantly contribute to the inferred mass distribution [381, 467, 308, 249].
As the component masses of these events will be approximately (slightly less than)
the sum of the masses of the BHs from its previous mergers, the masses in this
population can exceed 𝑀BH,𝑚𝑎𝑥 and will not follow the same distribution as the 1G
BHs.
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The details of the 2G distribution depend on unknown factors that make it difficult
to prescribe a specific functional form [467, 308, 179]. In order to capture these
events in a relatively agnostic manner, we enhance our model with a power law tail
with a spectral index 𝑐 that smoothly turns on just below 𝑀BH,𝑚𝑎𝑥 , and has a height
𝑓𝑝𝑙 relative to 𝑑𝑁/𝑑𝑀1𝐺 at 𝑀BH,𝑚𝑎𝑥 (see the bottom right panel in Figure 11.2). We
express the full mass distribution as:

𝑑𝑁

𝑑𝑚
=

𝑑𝑁

𝑑𝑀1𝐺
+ 𝛿(𝑚 | 𝑀BH,𝑚𝑎𝑥) 𝑓𝑝𝑙

𝑑𝑁

𝑑𝑀1𝐺

����
𝑀BH,𝑚𝑎𝑥

(
𝑚

𝑀BH,𝑚𝑎𝑥

)−𝑐
, (11.6)

where 𝑑𝑁/𝑑𝑀1𝐺 is given in Eq. (11.5) and 𝛿(𝑚) is an exponential tapering function
that smoothly turns on to 𝑀BH,𝑚𝑎𝑥; the parameter 𝑓𝑝𝑙 controls the relative height
between the peak of the 2G power law and the 1G mass distribution at 𝑀BH,𝑚𝑎𝑥 .
By adopting this two-component model, we can prevent 2G sources from biasing
the inference of the parameters of the 𝑑𝑁/𝑑𝑀1𝐺 distribution, which has a sharp,
log-normal falloff at masses 𝑀BH > 𝑀BHmax. This assumes that the 2G sources
have a minimal contribution to the mass distribution below ∼𝑀BHmax, consistent
with the conclusions from, e.g., [230].

We model both component masses as coming from the same mass distribution
𝑑𝑁/𝑑𝑀BH and include a pairing function with power law slope 𝛽 to get the full mass
distribution:

𝑑𝑁

𝑑𝑚1𝑑𝑚2
(𝑚1, 𝑚2) ∝ (𝑚1 + 𝑚2)𝛽

𝑑𝑁

𝑑𝑚1

𝑑𝑁

𝑑𝑚2
, (11.7)

where each 𝑑𝑁/𝑑𝑚1/2 factor corresponds to a density as in Eq. (11.6). The first
factor in Eq. (11.7) constitutes the pairing function, by which the component masses
do not only inform the mass distribution independently but also by how they pair
together to form a total mass [225, 209]. The parameter 𝛽 is the exponent on the
total mass, such that positive (negative) values for 𝛽 mean that masses pair up to
preferentially form systems of higher (lower) total mass. We choose this form of the
pairing function, first suggested in Fishbach and Holz [225], to permit the possibility
of breaking factorization symmetry, so that when 𝛽 ≠ 0 the joint mass function is
not the product of a function of 𝑚1 and a function of 𝑚2; many of the models
highlighted in [28] are forced to be symmetric in this sense.

Figure 11.2 shows how the mass distribution 𝑑𝑁/𝑑𝑚 changes as a function of
various population hyperparameters. The top left panel shows how 𝑀tr predictably
controls onset of the transition to a peak in the mass distribution by changing where
the 𝑀I − 𝑀BH mapping becomes nonlinear; additionally, as 𝑀tr becomes closer to
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Figure 11.2: BH mass spectrum following our model in Eq. (11.7) for different
choices of (clockwise from top left) 𝑀tr, 𝑀BH,𝑚𝑎𝑥 , 𝑓pl, and 𝜎. For the top left
figure, we consider constant difference between 𝑀tr and 𝑀BH,𝑚𝑎𝑥 . Unless being
varied, we assume the following fiducial parameters: 𝑎 = 2, 𝑏 = 1, 𝑐 = 2.5, 𝑀tr =
35𝑀⊙, 𝑀BH,𝑚𝑎𝑥 = 45𝑀⊙, 𝜎 = 0.05, and 𝑓𝑝𝑙 = 0.04.

𝑀BHmax, the height of the peak decreases as a smaller range of the IMF is contributing
to the peak region. The upper right panel shows how this peak moves to higher
𝑀BH and gets wider as 𝑀BH,𝑚𝑎𝑥 increases for fixed 𝑀tr. The bottom left panel of
Figure 11.2 shows the effect of varying 𝜎 on the resulting mass distribution. As 𝜎
increases, the remnant masses for a given core mass scatter more broadly, smoothing
the remnant mass distribution and softening the peak, as well as making the cutoff
above 𝑀BHmax weaker. Together, these physical parameters govern the location,
strength, and width of the peak in the BH mass distribution, as well as the strength
of its cutoff. The final panel of Figure 11.2 demonstrates the increasing contribution
of the high-mass power law tail when raising 𝑓𝑝𝑙 .

11.3.3 Redshift Model

Studies of cosmic star formation history with astronomical surveys show that the
star formation rate increases to a redshift of 𝑧 ≈ 2, then smoothly decays at high
redshifts, which is well-modeled by a smoothly broken power law [351, 547, 251].
When convolved with a reasonable delay-time distribution, this also gives rise to
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a smoothly broken power law for the merger rate 𝑅(𝑧) [228], i.e., the number
of mergers per comoving volume (𝑉𝑐) per time interval in the source frame (𝑡𝑠).
Accordingly, we assume a redshift distribution such that

𝑑𝑁

𝑑𝑉𝑐𝑑𝑡𝑠
(𝑧) ≡ 𝑅(𝑧) ∝ (1 + 𝑧)𝜆

1 +
(

1+𝑧
1+𝑧peak

) 𝜅 , (11.8)

where, 𝜆 controls the low-redshift merger rate, estimated to be 𝜆 ≈ 3 in current
LIGO/Virgo studies [28]; meanwhile, the parameter 𝑧peak controls the redshift at
which the merger rate peaks and the slope becomes negative.

Both the peak redshift and the high-redshift merger rate are expected to be directly
informed from detections beyond the horizon of current ground-based detectors
or at redshifts where detections are scarce [125, 559, 28]. However, combining
upper-limits from stochastic gravitational wave searches with population inference
studies can place limits on these parameters with current detections [123]. Future
observations with 3G detectors will allow us to significantly constrain the merger
rate history across cosmic time using direct detections of BBH mergers at nearly all
relevant redshifts [391, 355].

The merger rate as a function of redshift in the detector frame is expressed simply
in terms of mergers per redshift 𝑧 per detector-frame time 𝑡det:

𝑑𝑁

𝑑𝑧𝑑𝑡det
(𝑧) = 𝑑𝑁

𝑑𝑉𝑐 𝑑𝑡𝑠

𝑑𝑉𝑐

𝑑𝑧

𝑑𝑡𝑠

𝑑𝑡det
= 𝑅(𝑧) 𝑑𝑉𝑐

𝑑𝑧

1
1 + 𝑧 , (11.9)

where 𝑅(𝑧) is as in Eq. (11.8), and 𝑑𝑉𝑐/𝑑𝑧 is the differential comoving volume per
redshift bin as determined by cosmology.

11.3.4 Allowing the Mass Spectrum to Evolve with Redshift

Studies of stellar evolution predict that stars formed in lower-metallicity environ-
ments can reach higher remnant BH masses before hitting the PISN cutoff. This is
generally attributed to the ability for metal-rich stellar winds to carry off significant
mass, resulting in lower remnant BH masses after undergoing pulsations [504, 365,
210]. While we do not get direct information about the progenitor metallicities of
gravitational-wave sources from the observed data, we can use known correlations
between metallicity and observables in gravitational-wave data to look for this evolu-
tion. Redshift and metallicity are anticorrelated: stars formed earlier in the universe
(i.e., at higher redshift) are metal-poor when compared to those formed more re-
cently (at lower redshift), due to the need for the existence of pre-existing stars to
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deposit metals into the interstellar medium in order to birth further generations of
stars with higher metallicities [353, 90].

Several previous studies have used this trend as motivation to search for redshift-
dependence in the observed BBH mass distribution.1 These studies have typically
adopted phenomenological approaches to modeling this effect, directly encoding
redshift dependence in the location of features in the BBH mass distribution. Such
features include the location of the Gaussian peak and the truncation point of the
mass distribution, allowing these features to vary, for example, linearly with redshift
or with some function of expected metallicity at a particular redshift [480, 228].

We can leverage the physical framework we introduced in Sec. 11.3.2 to model the
redshift dependence in the mapping from 𝑀I to 𝑀BH. This allows us to treat the
redshift evolution in the observed BBH mass distribution as a derived byproduct
from an astrophysical process expected to evolve with redshift, rather than encoding
the redshift dependence in the BBH mass distribution directly.

We express this evolution in term of a linear expansion for the location of the 𝑀tr

turnover in the mass distribution:

𝑀tr(𝑧) = 𝑀tr(𝑧 = 0) + ¤𝑀tr

(
1 − 1

1 + 𝑧

)
, (11.10)

where 𝑀tr and ¤𝑀tr are free parameters which we can interpret as the transition
location at 𝑧 = 0 and the change in this location over a Hubble time, respectively.
In order to maintain the constraint that 𝑀BHmax > 𝑀tr, we apply an equivalent
adjustment to 𝑀BHmax to maintain

𝑀BHmax(𝑧) − 𝑀tr(𝑧) = const (11.11)

at all redshifts. This is an indirect model of the evolution of this feature from
high metallicity (late universe, 𝑧 = 0) to low-metallicity (early universe, 𝑧 = ∞)
environments. One could alternatively construct a more explicit model for 𝑀tr and
𝑀BHmax as a function of metallicity and then metallicity as a function of redshift.

Figure 11.3 shows how our model for 𝑑𝑁/𝑑𝑀1𝐺 appears for different values of
redshift for two choices of ¤𝑀tr. To be consistent with predictions from stellar
models, as described above, we expect a positive value for ¤𝑀tr such that the turnover

1[504] proposes that differing delay time distributions between the high and low mass portions
of the mass distribution may also result in an evolving mass distribution. Unlike evolution due to
birth metalicity, this trend would not be tracked by the evolution in our model.
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Figure 11.3: Model for a redshift-dependent mass distribution evaluated at selected
redshifts assuming ¤𝑀PISN = 5𝑀⊙ in Eq. (11.10). All other parameters are the same
as the fiducial set in Figure 11.2.

to PPISN occurs at higher masses at higher redshifts; equivalently, this means
we expect the bump in the mass distribution moves toward higher mass at higher
redshifts.

11.4 Results

11.4.1 Non-Evolving Mass Distribution

Adopting the non-evolving mass and redshift models introduced in the previous
section, we infer the corresponding hyperparameters using the hierarchical Bayesian
inference approach described in Sec. 11.2 and the priors in Table 11.4.1.

We plot draws from the mass distribution posterior in Figure 11.4, which shows
the inferred decaying power law shape of the mass distribution and the feature at
∼35𝑀⊙. Turning attention to the parameters that most directly control the location
and strength of the peak in the mass distribution, Figure 11.5 shows the posterior
distributions for 𝜎, 𝑀tr, and 𝑀BH,𝑚𝑎𝑥 . The recovered distribution for 𝜎 shows
notable preference for low values, converging toward the lower bound of the prior
(𝜎 = 0.05). This means that the data are consistent with little to no scatter around
the 𝑀I −𝑀BH mapping, while ruling out high values of 𝜎 that would over-smoothen
the peak in the mass distribution (cf. Figure 11.2, bottom panel). By the same token,
the strong support for low values of 𝜎 indicates that the data do allow for a relatively
sharp cutoff in the peak; this is such that a suppression of the high end of the peak
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Figure 11.4: Draws from the non-evolving mass distribution posterior, evaluated at
𝑧 = 0.

need not be compensated by a higher rate in the start of the 2G tail.

With the data supporting a peak at ∼35𝑀⊙, we measure a correlation between
𝑀tr and 𝑀BH,𝑚𝑎𝑥 , driven by the constraint that 𝑀BH,𝑚𝑎𝑥 > 𝑀tr. We note that the
posteriors for 𝑀BH,𝑚𝑎𝑥 and 𝑀tr are different from the prior, indicating that the data
are informing both the location and the width of the bump.

Taking the model at face value, we infer the location of 𝑀BH,𝑚𝑎𝑥 to be much lower
than where stellar nucleosynthesis simulations generally predict the upper mass gap
due to the PISN process to begin; a similar conclusion was reached in Farmer et al.
[211]. For example, [210, 211] finds the lower edge of the PISN mass gap to range
between ∼45−50𝑀⊙, when varying the CO reaction rate within its 1𝜎 uncertainty
(with standard deviation 𝜎𝐶12) with respect to the distribution of reaction rates given
in STARLIB [484]. Using their fit to the start of the mass gap as a function of 𝜎𝐶12,
and extrapolating down to our inferred values of 𝑀BH,𝑚𝑎𝑥 , we infer 𝜎𝐶12 = 4.8+3.1

−2.8
at 90% credible levels.2 In other words, to match the location of our observed peak
would require a ∼ 5𝜎 adjustment in the C12 reaction rate relative to its current
nuclear-physics best-estimate and uncertainty. Further discussion of this point can
be found in Section 11.5.3.

Although the simulation coverage is sparse at these masses and therefore these
constraints are largely extrapolation-driven, the anomalous value inferred for this

2For reaction rates this high, the fraction of carbon in the core is too low (𝑋C ≪ 10−3) to be
considered a CO core. To be consistent with the assumptions stated in [210], 𝑀I can instead be
interpreted as the mass within the convective zone during helium burning.
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contours, enclosing 39% and 86% of the probability respectively. Prior distribution
is shaded grey for reference. We find that widening the prior does not meaningfully
increase the posterior support for the PPISN feature at higher masses.

parameter casts doubt on this PPISN model as a an explanation for the ∼35𝑀⊙ peak
in question. See Sec. 11.5 for further discussion.

In Figure 11.6 we plot the inferred inferred 𝑀I −𝑀BH mapping, the 𝑀I IMF, and 1G
𝑀BH mass distribution. We find that the 𝑀I IMF steeply decreases before the break
at 𝑀I = 20𝑀⊙ and then becomes shallower or flattens out; observations of massive
stars in star forming regions suggest that the high-mass IMF could be shallower
than at lower masses [491]. The 𝑀I −𝑀BH mapping is somewhat uncertain, but the
turnover reliably creates a peak at ∼ 35𝑀⊙.

11.4.2 Evolving Mass Distribution

By adopting the more general model from Sec. 11.3.4 we can relax some of the
assumptions made in the previous sections and now infer the mass distribution in the
presence of an𝑀tr that evolves with redshift. In Figure 11.7, we present the posterior
probability density on several mass distribution parameters from this model. Most
of the events in the O3 catalog lie at relatively low redshift, and therefore do not
provide good coverage across redshift scales to inform ¤𝑀tr meaningfully. Due to
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Figure 11.6: Representation of the 𝑀I −𝑀BH relationship of the non-evolving 𝑑𝑁
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model in Sec. 11.3.2. (Bottom panel) Inferred distribution for the initial mass
function of 𝑀I in merging binaries. (Top right panel) 1-𝜎 credible region of the
95th percentile (higher blue shaded region) and 5th percentile (lower blue shaded
region) for the inferred 𝑀I − 𝑀BH mapping. Dotted line is a single representative
draw from the posterior.

these poor constraints on ¤𝑀tr, we find that the inferred distributions for 𝑀tr and
𝑀BH,𝑚𝑎𝑥 are consistent with those obtained when using the non-evolving model. In
other words, the feature at 𝑀tr is being informed by structure in the data that does not
appear to need to vary with redshift. The resulting mass distribution is consistent
with that from the non-evolving model (plotted below in Figure 11.10).

When we extend the prior on ¤𝑀tr considerably, we find that we only rule out redshift
evolution of the intrinsic mass function for very large values of ¤𝑀tr. In Figure 11.8,
we show the posterior distribution for relevant parameters: constraints on ¤𝑀tr are
broad, encapsulating a 90%-credible region from ¤𝑀tr from −20𝑀⊙ to 36𝑀⊙. This
range is much broader than would be expected from the metallicity dependence of
the onset of pair instability pulsations [210]. While this demonstrates that data rule
out extreme values of ¤𝑀tr, we cannot currently place constraints within a narrower,
more physically-relevant prior range; future observations may change this. The
strong anticorrelation between ¤𝑀tr and 𝑀tr likely indicates that we are observing the
peak from sources in a small range of redshifts, and we therefore cannot constrain
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Figure 11.7: Posterior for selected mass distribution population parameters from
the evolving mass distribution model in Sec. 11.3.4 (magenta). One-dimensional
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both free parameters in Eq. (11.10). In order to break this degeneracy and get
constraints on ¤𝑀tr, we would need additional observations across redshifts. For the
remainder of this section, we present results using the narrower prior for ¤𝑀tr (in
Table 11.4.1).

Also of note is the similarity between the distribution of 𝜎 obtained with this
model and that obtained with the non-evolving mass model (see the comparison in
Figure 11.7). We discuss the implications of this in Sec. 11.5.

We present the distribution for redshift parameters, inferred jointly with the evolving
mass distribution, in Figure 11.9. The parameter best constrained is𝜆, which controls
the evolution of the low-redshift merger rate. We infer 𝜆 = 4.3+1.6

−1.6, preferring a
merger rate that evolves steeper than the low-redshift star formation rate (𝜆 ∼
2.7). However, the evolution of the merger rate is still consistent with that implied
by the star formation rate along with a short delay-time distribution. Narrower
constraints on this parameter may reveal information on different formation channels
contributing to the observed catalog of BBHs.

Additionally, the posterior distribution for 𝑧peak is shifted slightly to the right of the
prior, meaning that we are able to begin to place very conservative lower limits on



158

24

32

40

48

M
tr 

[M
]

24

32

40

48

M
BH

,m
ax

 [M
]

0.1 0.2 0.3

30

0

30

M
tr 

[M
]

24 32 40 48

Mtr [M ]

24 32 40 48

MBH, max [M ]

30 0 30

Mtr [M ]

Figure 11.8: Inferred mass distribution parameters using the evolving mass model
in Sec. 11.3.4, but adopting a wider prior on ¤𝑀tr. Prior distribution is shaded grey
for reference.

3

6

9

12

1.5 3.0 4.5 6.0

1

2

3

z p
ea

k

3 6 9 12 1 2 3

zpeak

Figure 11.9: Redshift distribution parameters inferred with the evolving mass dis-
tribution model in Sec. 11.3.4. Prior distribution is shaded grey for reference.



159

𝑧peak due to the lack of a visible start of a turnover in the inferred 𝑅(𝑧) distribution.
The lack of support at the tails towards higher 𝑧peak is not due to information gained
from the data, but rather from the prior (see Table 11.4.1). These constraints appear
despite having only very little high-redshift information and are therefore very weak
limits.

Given the similarities between the inferred distributions with and without redshift
evolution in the𝑀I to𝑀BH,𝑚𝑎𝑥 map, we do not currently obtain improved constraints
on physical parameters of interest when modifying the model in this way. For
example, we infer𝜎𝐶12 = 5.2+3.4

−2.9, which is similar to what we reported in Sec. 11.4.1.
Future detections at higher redshift may further inform these aspects of the model.

11.5 Interpretation of Results

By adopting the model introduced in this work, we can draw conclusions from
the inferred underlying physics represented in our models and explore how the
population model compares to those reported in other works.

11.5.1 Global Shape of the Mass Distribution

For comparison, we obtain results using the same set of O3 events, adopting the
Powerlaw + Peak mass distribution model, a flat spin magnitude and tilt model,
and a broken power law redshift distribution as implemented in gwpopulation
[520, 524, 228]. Qualitatively, we infer a mass distribution (marignalized over
𝑞) consistent with the Powerlaw + Peak model, with major features such as the
slope at higher BH mass as well as the bump location showing good agreement in
Figure 11.10. This indicates that this overdensity is a confident feature in the data
whose location and prominence is not affected by systematic differences between
these two models. This is reinforced by several other works, which find that models
must include such a feature in order to faithfully capture the observed mass spectrum
[28, 207, 186, 125].

A notable difference is in the merger rate relative to Powerlaw + Peak. While the
90% credible regions overlap in Figure 11.10, their relative heights show that our
model tends to prefer a higher merger rate than what is predicted by Powerlaw +
Peak, particularly at masses above ∼15𝑀⊙.

In our model, 𝑚1 and 𝑚2 both directly inform the physical mass distribution model
(along with the pairing function, see Eq. 11.7). This is in contrast to the Power-



160

20 40 60 80 100
m1[M ]

10 3

10 2

10 1

100

101

102

103

m
1

dN
dm

dV
dt

PPISN Model
Powerlaw + Peak

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

10 3

10 2

10 1

100

101

102

103

104

105

dN
dq

dV
dt

PPISN Model
Powerlaw + Peak

Figure 11.10: Mass spectrum derived from our model (green) with no evolution
of the mass distribution with redshift compared to the Powerlaw + Peak mass
spectrum informed by the same events (blue). We do not include redshift evo-
lution of the mass distribution in this comparison as the models in [28] do not
include mass-redshift correlations. Powerlaw + Peak results were obtained using
GWPopulation [520]. (Top) Comparison of the primary mass distributions. (Bot-
tom) Comparison of the mass ratio distributions.
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law+Peak model which has separate distributions for 𝑝(𝑚1) and 𝑝(𝑞 |𝑚1), such
that 𝑚2 does not directly inform 𝑑𝑁/𝑑𝑚1. As demonstrated in [209], this makes
the mass distribution feature a peak in the joint 𝑚1 − 𝑚2 space, rather than in the
marginal 𝑚1 distribution. Furthermore, in the marginal mass ratio distribution (bot-
tom panel of Figure 11.10), we see that our model prefers a much flatter distribution
in 𝑞 than what is preferred by Powerlaw + Peak, which explicitly models 𝑝(𝑞 |𝑚1)
as a power law. This flat mass ratio distribution is consistent with what is found
in [225] when adopting a pairing function that is a power law in 𝑞. Given that we
infer 𝛽 with a preference for negative values, we find that BHs tend to pair up in
binaries that favor lower total masses; this may cause a relative lack of support at
higher masses in the mass distribution which models both 𝑑𝑁/𝑑𝑚1 and 𝑑𝑁/𝑑𝑚2.
We also note that the inferred local rate 𝑅(𝑧 = 0) is consistent between models.
The Powerlaw + Peak model fits the underlying distribution (i.e., not including
the bump) with a single power law, limiting the possible morphologies. We have
checked that allowing the underlying power law in Powerlaw + Peak to include a
break does not resolve the discrepancy.

The distribution for 𝑝(𝑀I) we infer (see Figure 11.6) disagrees with what one
may expect from an IMF resulting from the ZAMS mass IMF assuming a linear
relationship between ZAMS mass and 𝑀I. While the distribution is consistent with
a decaying power law for low masses, the distribution appears to flatten out above
our break point of 20𝑀⊙. This trend is not strongly correlated with the 𝑀tr and
𝑀BH,𝑚𝑎𝑥 we infer.

Comparing our results to those obtained in [87], we find strong tension with the
maximum BH mass in the 1G channel (the start of the upper mass gap). Moti-
vated by stellar evolution simulations to model the 1G BH mass distribution with
a phenomenological approximation to the shape and location of a overdensity due
to PPISN pileup, [87] finds the PPISN feature and corresponding start of the upper
mass gap to be at ∼46𝑀⊙, in very good agreement with predictions from typical
values of the 12C(𝛼, 𝛾)16O reaction rate. Notably, [87] does not find the feature at
∼35𝑀⊙ we find and is consistently found in the literature.

11.5.2 Evolution of Mass Distribution with Redshift

Our finding that ¤𝑀tr is consistent with zero agrees with other studies that do not
find strong preference for evolution of the BBH mass distribution with redshift. For
example, [223] models the mass distribution as a broken power law where the mass
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at which the power law breaks is allowed to vary with redshift. While this is a very
different model, it should qualitatively reproduce some of the features of our model,
particularly at the ∼35𝑀⊙ feature (see Figure 11.2). We therefore expect that if
[223] had found strong preferences for an evolving mass distribution, we would
confidently find ¤𝑀tr > 0. We also agree that the data are still consistent with a mass
distribution that has some evolution with redshift, but again we do not have positive
evidence that this is the preferred scenario.

[301] also looks for evolution of the mass distribution with redshift. The authors
allow the Gaussian bump in a Powerlaw + Peak-like model to vary with redshift,
where the placement of this peak at a given redshift is determined by the delay time
distribution and a jointly-inferred model for the evolution of (birth) metallicity with
redshift. The value they find for the lower edge of the upper mass gap of ∼44𝑀 ⊙

is nominally in better agreement with the prediction from stellar physics models.
However, this value is cited at low metallicity, and they also find there must be a
very strong evolution of this mass scale with metallicity. Extrapolating their results
to the local universe, they find that the upper mass gap at 𝑧 = 0 starts at ∼30𝑀⊙,
which is closer to the corresponding value we obtain for the start of the 𝑀I−𝑀BH

turnover. This result seems in tension with theoretical predictions given how small
of an effect metallicity is expected to have on 𝑀tr. There are unexplained differences
in our results, however, as such a strong evolution of 𝑀tr with metallicity should
mean that we would infer a positive ¤𝑀tr, assuming delays do not mix events from
many different birth metallicities into similar merger times.

If metallicity evolution effects were causing some of the support for nonzero values
of 𝜎 obtained in the non-evolving mass model (i.e., from scatter in the 𝑀I − 𝑀BH

relation), we would expect 𝜎 to be constrained closer to zero with the evolving
model, as some of that scatter would have been absorbed by the redshift evolution.
Given that this is not the case, we conclude that either (1) birth metallicity effects
fundamentally have a subdominant impact on the 𝑀I−𝑀BH relationship compared
to other physical parameters that vary between BBH systems, or that (2) the birth
metallicities of the systems in our catalog are not strongly correlated with the
redshifts at which they merge. The latter scenario could result from the delay time
distribution between formation and merger having enough support in the long-delay
tails such that we cannot yet discern a strong correlation between birth time and
merger redshift for systems merging at redshifts of 𝑧 ≲ 1.
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11.5.3 Physical Interpretations: PPISN Process

We can take advantage of the physical parameterization of our model to interpret
the implied stellar physics, assuming 𝑀BH,𝑚𝑎𝑥 corresponds to the maximum 1G BH
mass as determined by the PPISN process at a given redshift or metallicity.

Under the PPISN model, the pileup in BH masses around ∼35𝑀⊙ would result from
the remnants of stars with zero-age main-sequence (ZAMS) masses between∼60𝑀⊙

through ∼140𝑀⊙ [442, 578, 576], driven by nuclear processes in the core [239, 443]
For stars with ZAMS masses above this range, similar processes completely disrupt
the star, leaving behind no remnant. Since the PPISN process produces a small range
of remnant BH masses from stars from a wide range of ZAMS masses, it is expected
that the mass distribution will exhibit the bump due to this pileup (sometimes
referred to as the “PPISN graveyard”) followed by a suppression of sources, known
as the upper mass gap [576, 577, 578, 210].

Simulations of stellar evolution [e.g., 210, 374, 206] have explored the relationship
between initial stellar mass (in particular the mass of the Carbon-Oxygen (CO) core,
𝑀I) and the final BH mass (𝑀BH) after core collapse. They have also quantified
the dependence of the location of the lower edge of this mass gap and its associated
mass range on other physical parameters such as nuclear reaction rates, metalicity,
and details of neutrino physics. Previous studies have used this relationship to place
constraints on the astrophysical properties of the pulsational pair instability process,
assuming the most massive sources observed through LIGO are below the upper
mass gap [211, 374, 206, 511]. [87] instead infers the population of BHs coming
from the first-generation (1G) subpopulation below the upper mass gap along with
the subpopulation of higher-generation (2G+) BHs (i.e., BHs that are themselves
the product of past mergers) whose masses can lie within the upper mass gap.

Based on simulations [211, 374, 206], the 12C(𝛼, 𝛾)16O reaction rate is likely
to be the dominant physical factor controlling 𝑀BH,max. Under this assumption,
Figure 11.11 shows the fit for 𝑀BH,𝑚𝑎𝑥 as a function of 𝜎𝐶12 (i.e., the number
of standard deviations from the median reaction rate in [484], in turn, adopted
from [321]), reproduced from the data release in Farmer et al. [211]. While their
simulations only cover the range −3 < 𝜎𝐶12 < 3, there is a clear trend that 𝜎𝐶12 must
rise very steeply to reach a maximum BH mass below ∼45𝑀⊙. We offer details of
this trend in Appendix 11.C.

After translating our inferred 𝑀BH,𝑚𝑎𝑥 into 𝜎𝐶12 via the top of Figure 11.11, we use
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Figure 11.11: (Top) Relationship between 𝜎𝐶12 and lower edge of upper mass
gap, reproduced from data release of [211]. (Center) Posterior distribution of
12C(𝛼, 𝛾)16O reaction rate, in terms of standard deviations away from the median
reaction rate in STARLIB [484]; computed by evaluating the fit in the top panel for
the samples of 𝑀BH,𝑚𝑎𝑥 in the posterior in Fig 11.7. (Bottom) Inferred distribution
of 𝑆300, extrapolated from distribution of 𝜎𝐶12 as calculated from the fit in the top
panel. Constraints on 𝑆300 from [172] plotted for comparison, showing tension with
the values implied from our results.

the method in [211] to estimate corresponding 𝑆-factors.3 We arrive at a value of
the 𝑆-factor at 300 keV of 𝑆300 = 932+1929

−581 keV · barn.

In Figure 11.11, we compare this estimate of 𝑆300 to the value predicted from nuclear
experiments in [172]. That value is in strong tension with our estimate, which rules
it out at > 99.9% credibility.4 Given this, we conclude that at least one of our
assumptions is invalid.

One assumption is that the 12C(𝛼, 𝛾)16O reaction rate is the physical parameter
behind 𝑀BH,𝑚𝑎𝑥 . Multiple studies find that varying the 12C(𝛼, 𝛾)16O reaction rate

3This “astrophysical 𝑆-factor” is the part of the cross section given by the matrix element for the
nuclear reaction itself, ignoring Coulomb repulsion [see 311].

4This is in contrast with [206] and [211], which infer 𝑆300 to be consistent with [172]. However,
those studies only consider the most massive observed BHs and assume they are 1G BBH mergers,
without allowing for contamination from possible 2G mergers.



165

has a much stronger effect on the location of the start of the upper mass gap than
other relevant reaction rates [211, 206]. As these simulations only go up to𝜎𝐶12 = 3,
we cannot confirm the effect that varying other reactions rates when 𝜎𝐶12 is high
has on the location of the lower edge of the upper mass gap. While it is possible that
one of these other reaction rates can be varied within their uncertainties to allow us
to infer a lower 𝜎𝐶12, it would have to change the location of the upper mass gap
substantially to agree with the data [210, 206, 578].

Other assumptions inherent in present models of the PPISN process that could
affect the maximum BH mass include the treatment of convection [458] and the
hydrodynamic treatment of mass ejection from pair instability pulses [457].

Yet another, more fundamental, assumption in this interpretation is that the turnover
in the 𝑀I − 𝑀BH mapping can be associated with the pair-instability process at all.

In fact, our measurement in Figure 11.11 suggests that the observed bump in the
mass distribution is not due to the PPISN turnover.5 Previous studies have suggested
that associating the observed peak in the mass distribution with the PPISN pileup
would be in tension with known stellar physics and observed supernovae rates [274,
578]. Inferring the underlying 𝑀I−𝑀BH mapping that gives rise to the observed BH
mass distribution, this work also provides evidence of such a tension in terms of the
underlying physics that would be necessary to generate a turnover in the 𝑀I − 𝑀BH

map at the correct location. Our model allows us to directly infer this tension from
the GW data.

The cause of the peak in the observed mass distribution at ∼35𝑀⊙ may therefore
requires alternative explanations [274]. Recent studies have proposed that this over-
density could be a signature from a subpopulation of binaries which had undergone
stable mass transfer [113], BBH systems in globular clusters [64], and stars which
have undergone significant wind-driven mass loss. Our model could be used to
describe any mechanism that generates a peak in the high-mass tail of the 1G mass
distribution via a transition to a nonlinear 𝑀I − 𝑀BH relationship.

11.5.4 Model Limitations

Our model has a few additional caveats. For example, our model does not attempt
to fit for the features beyond a power law that we know exist at lower masses [186,

5Mass-loss prescriptions and temporal resolutions of the simulations may introduce an unknown
systematic bias [374, 206, 210]; however varying these settings has a subdominant impact on the
location of the upper mass gap in simulations.
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28, 207]. We have confirmed that neglecting this does not bias the inference in the
higher-mass region that we care about here, and this will be explored further in future
work. We also ignore the effect of spins in our population, but we demonstrate in
Appendix 11.B that this does not cause a notable bias in our results of interest. Given
that certain mass-spin correlations have been found in the BBH population [126], it
may be insightful to use the spins to help distinguish the 1G and 2G subpopulations
(see, e.g., [227, 247, 218].

11.6 Conclusions

Characterizing the population of BBH masses with direct phenomenological or
nonparametric fits can provide insight into the shape of the mass distribution, but
does not provide direct constraints on the underlying physics of BBH masses. With
the method we propose here, we can infer the underlying physics by fitting the implied
(derived) astrophysical BBH distribution to the observed data. We demonstrate the
use of this method by evaluating the role of the PPISN process giving rise to the
1G BH mass distribution and its structure, including an excess (bump) in the mass
distribution at the lower edge of the PPISN mass gap. Fitting this model to the
observed data, we find that the necessary physical parameters to explain the excess
of BHs at ∼35𝑀⊙ are unrealistic from a nuclear physics perspective if we take this
PPISN model at face value. We therefore conclude it is highly unlikely that the
feature at ∼35𝑀⊙ is associated with the PPISN process.

This framework motivates future investigations to better constrain the physics un-
derlying astrophysical populations in general. Future work using additional ob-
servations and enhanced versions of our model may be able to constrain proposed
astrophysical mechanisms underpinning the BBH mass, spin, and redshift distribu-
tions. This approach may offer fruitful applications such as calibration of “spectral
siren” features for cosmology [215], investigating other proposed interpretations of
the bumps in the mass distribution, and understanding progenitor populations by
relating back to population synthesis configurations [574, 60, 594].
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Appendix 11.A Details of the Likelihood and Differential Rate Calculation

Setting 𝜃 to be the set of single-event parameters, we can write the contribution from
i𝑡ℎ-event to the population likelihood as [359]:

𝑝(𝑑𝑖 |Λ) =
∫
𝑑𝜃𝑖 𝑝(𝑑𝑖 |𝜃𝑖) 𝑝(𝜃𝑖 |Λ) 𝑝det(𝜃𝑖, 𝑑𝑖)∫ ∫
𝑑𝑑𝑖 𝑑𝜃𝑖 𝑝(𝑑𝑖 |𝜃𝑖) 𝑝(𝜃𝑖 |Λ) 𝑝det(𝜃𝑖, 𝑑𝑖)

. (11.12)

Recalling that the probability density should be normalized over the arguments on
the left side of the bar, the denominator is included to explicitely normalize the
numerator in terms of the data from the i𝑡ℎ detection, and is commonly known
as the “selection effects” term. We write the detection probability as 𝑝det(𝜃𝑖, 𝑑𝑖) in
order to include the general possiblity of thresholding detection in terms of the event
parameters, which may be implemented when considering, for example, a simulated
catalog. For our purposes, the detection probability depends on the data, as this is
the input to a detection pipeline when assigning a FAR. The normalization in the
denominator also corresponds to the fraction of detectable events expected from the
population given by Λ [213]. We make the following definition of the denominator:

𝜇(Λ) ≡
∫ ∫

𝑑𝑑𝑖 𝑑𝜃𝑖 𝑝(𝑑𝑖 |𝜃𝑖) 𝑝(𝜃𝑖 |Λ) 𝑝det(𝜃𝑖, 𝑑𝑖). (11.13)

The total likelihood comes from considering the probability of the entire dataset
{𝑑𝑖} of 𝑁𝑑 detections (where the i𝑡ℎ event is detected if 𝑝det is 1), given a population
with parameters Λ that predicts 𝑁 total events, 𝑁𝜇 ≡ 𝐾 (Λ) of which are expected
to be detected. The total likelihood is just the product of the contributions from
all the detected events, and the likelihood of detecting 𝑁𝑑 events, considering the
realization of 𝑁𝑑 comes from a Poisson distribution with expected value 𝐾:

𝑝({𝑑}|Λ, 𝐾) = 𝑝(𝑁𝑑 |𝐾 (Λ))
𝑁𝑑∏
𝑖

𝑝(𝑑𝑖 |Λ)

∝ 𝐾 (Λ)𝑁𝑑𝑒−𝐾 (Λ)𝜇(Λ)−𝑁𝑑
𝑁𝑑∏
𝑖

∫
𝑑𝜃𝑖𝑝(𝑑𝑖 |𝜃𝑖)𝑝(𝜃𝑖 |Λ).

(11.14)

If we assume a prior of 𝜋(𝐾) ∝ 1/𝐾 , we can write the posterior over Λ and
analytically integrate out the distribution over 𝐾:
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𝑝(Λ|{𝑑}) ∝ 𝜋(Λ)
∫

𝑑𝐾
𝐾 (Λ)𝑁𝑑𝑒−𝐾 (Λ)

𝐾
𝜇(Λ)−𝑁𝑑

𝑁𝑑∏
𝑖

∫
𝑑𝜃𝑖𝑝(𝑑𝑖 |𝜃𝑖)𝑝(𝜃𝑖 |Λ)

= Γ(𝑁𝑑)𝜋(Λ)𝜇(Λ)−𝑁𝑑
𝑁𝑑∏
𝑖

∫
𝑑𝜃𝑖𝑝(𝑑𝑖 |𝜃𝑖)𝑝(𝜃𝑖 |Λ)

∝ 𝜋(Λ)𝜇(Λ)−𝑁𝑑
𝑁𝑑∏
𝑖

∫
𝑑𝜃𝑖𝑝(𝑑𝑖 |𝜃𝑖)𝑝(𝜃𝑖 |Λ)

(11.15)

where Γ(𝑁𝑑) does not depend on Λ, so marginalizing over 𝐾 (Λ) with this choice
of 𝜋(𝐾) allows us to factorize the above equation, without explicitly considering its
dependence on the Poisson term.

In practice, 𝑝(𝜃 |Λ) does not need to be normalized, as any prefactors will divide out
in Eq. 11.12. We therefore only need to calculate something proportional to 𝑝(𝜃 |Λ).
For reasons that will become apparent, we compute 𝑝(𝜃 |Λ) in terms of something
proportional to 𝑑𝑁

𝑑𝜃
(Λ). We want to define a normalization factor for the population

distribution such that:

1
𝛼(Λ) 𝑚1

𝑑𝑁

𝑑𝑚1𝑑𝑞𝑑𝑉𝑑𝑡𝑠

����
(𝑚ref,𝑞ref,𝑧ref)

= 1 (11.16)

where the differential rate is evaluated at a set of reference parameters.

With the distributions in Sec. 11.3 defined in terms of 𝑑𝑁
𝑑𝑚

and 𝑑𝑁
𝑑𝑉𝑑𝑡𝑠

(i.e. source
frame merger rate density R(𝑧)), we can compute a normalization factor 𝛼(Λ):

𝛼(Λ) = 𝑚1
𝑑𝑁

𝑑𝑚1𝑑𝑞𝑑𝑉𝑑𝑡𝑠
(Λ)

����
(𝑚ref,𝑞ref,𝑧ref)

= 𝑚1
𝑑𝑁

𝑑𝑚1

𝑑𝑁

𝑑𝑚2

𝑑𝑚2
𝑑𝑞

𝑑𝑁

𝑑𝑉𝑑𝑡𝑠

����
(𝑚ref,𝑞ref,𝑧ref)

= 𝑚2
1
𝑑𝑁

𝑑𝑚

𝑑𝑁

𝑑𝑚

𝑑𝑁

𝑑𝑉𝑑𝑡𝑠

����
(𝑚ref,𝑞ref,𝑧ref)

.(11.17)

Technically, we only know the 𝑑𝑁 distributions up to a constant. As we will see
below, we will only be considering ratios of values that share the same unknown
constant, so we are free to leave it out for now.

Instead of computing 𝑝(𝜃 |Λ) as 𝑝(𝜃 |Λ) = 1
𝑁
𝑑𝑁
𝑑𝜃
(Λ) exactly, we instead make the

following transformation in Equations 11.12 and 11.15:

𝑝(𝜃 |Λ) → 1
𝛼(Λ)

𝑑𝑁

𝑑𝜃
(Λ) (11.18)
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which is directly proportional to the differential rate and 𝑝(𝜃 |Λ).

For each draw ofΛ, we have the normalization factor 𝛼(Λ), related to the differential
rate at our reference parameters, as defined in Eq. 11.17. We outline below how
we use this re-expression to construct the rate independent of the likelihood. Note
that this change in Eq. 11.18 does not affect the likelihood, as it only affects 𝜃-
independent prefactors, which factor out of both the numerator and denominator in
Eq. 11.12.

Given the values of 𝛼(Λ) we have calculated, we wish to draw new samples of 𝛼(Λ),
given that the number of detections is a Poisson-distributed realization. Recalling
𝐾 ≡ 𝑁𝜇, Eq. 11.18 means that when we compute the denominator of Eq. 11.12, we
are actually calculating the ratio 𝐾

𝛼
, and not 𝜇. Noting that the K-dependent integrand

of Eq. 11.15 is a Gamma-distribution for 𝐾 with shape parameter 𝑁𝑑 and a scale
parameter of 1, we can make the identification that ⟨𝐾⟩ = 𝑁𝑑 under this distribution.
With 𝐾 ≡ 𝑁𝜇, we can express the expectation value for 𝛼 as ⟨𝛼⟩ =

𝑁𝑑
𝐾/𝛼 .6 As a

final step in post-processing, we can construct the true underlying distribution for
𝛼 by drawing samples 𝛼 ∼ Gamma( 𝑁𝑑

𝐾/𝛼 , 1). This gives us a distribution for the
predicted merger rate at the reference coordinates, given the normalization factor 𝛼
we computed during the hierarchical inference, assuming this is Poisson-distributed
about the true value and assuming a 1

𝐾
prior. With the distribution of 𝛼, we can

scale 𝑑𝑁
𝑑𝜃

to get the differential merger rate at any set of coordinates 𝜃.

Note that we have written everything in this section in terms of 𝜃 as if it is always the
parameters in the population model, suppressing the fact that there will be Jacobians
in Eq. 11.12 to transform from these coordinates to those in the detector-frame (or
the priors from the single-event analyses).

Appendix 11.B Accounting for Spin Distribution

In the analysis presented in the body of this work, we assume the (uninformative)
parameter estimation priors in the population reweighting. Based on population-
level mass-spin and mass-redshift correlations presented in the literature (see, e.g.,
[126, 97, 28]), we may expect the assumed spin distribution can have an effect on
our results. However, with the relatively poor spin constraints in the population, we
empirically demonstrate that this is likely not the case.

6Since ⟨𝐾⟩ = 𝑁𝑑 , it follows that 𝜎2
𝛼 =

𝑁𝑑

(𝐾/𝛼)2
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In Figure 11.12, we compare posteriors obtained from our main analysis ignoring
spins, with those obtained by reweighting the posterior samples from each event
and the sensitivity injections to a fiducial spin distribution. For this fiducial spin
distribution, the spin magnitudes are from a half-Gaussian centered at 𝑎 = 0 with a
standard deviation of 0.3, meant to model the preferentially-small spin mangitudes
inferred in [28]. For the contribution aligned projection of the spin tilt angle
(cos 𝜃), we use the mixture model introduced in [521], with an aligned-spin fraction
of 𝜉 = 0.8 and an aligned-spin spread of 𝜎𝑡 = 1.9, consistent with the results
reported in [28] (see references for definitions of these model parameters). We
find that reweighting to this spin distribution has a negligible effect on our inferred
population.

Appendix 11.C Details on PPISN Interpretation

The physical reason the the anticorrelation between 12C(𝛼, 𝛾)16O and 𝑀BH,𝑚𝑎𝑥 is
that during contraction of the stellar core, hydrostatic equilibrium can be maintained
by convective carbon burning. Higher 12C(𝛼, 𝛾)16O reaction rates lead to cores of
lower carbon fractions, 𝑋𝐶 . When the core gets hot enough to produce electron-
positron pairs, the equation of state softens, leading to a contraction. With little
carbon present to provide convective-driven pressure to stabilize the star, contraction
can continue until it drives thermonuclear ignition of oxygen. This explosive process
leads to an outward-moving shock, removing mass from the star when the shock
reaches the surface with enough velocity. Once this shock breaks through the
surface of the star, contraction begins again. This sequence of pulsations continues
until oxygen in the core is depleted, core elements burn through the normal pre-SN
process, and the star undergoes normal core collapse. If the 12𝐶 (𝛼, 𝛾)16𝑂 reaction
rate is lower, then relatively more carbon is present and able to burn convectively,
counteracting the contractions in a stable manner. As the carbon fraction gets higher,
the star is able to remain stable against pair-production contractions and stably burn
through the core oxygen [211, 576, 577]

The location for the onset of Pair Instability Supernova (PISN) is highly sensitive
to the 12C(𝛼, 𝛾)16O reaction rate. With the core temperature strongly increasing
with stellar mass, there exists a core mass at which the softening of the equation of
state is too extreme to be resisted by available sources of outward pressure. Since
stable outward pressure support at this stage is largely provided by shell carbon-
burning, the lower carbon fraction, 𝑋𝐶 , makes it now easier for a given contraction
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Figure 11.12: Selected population-level parameters from the evolving mass distri-
bution analysis, without reweighting spins (pink, as presented in Section 11.4.2) and
with reweighting spins to a fiducial population estimate (blue). The near-identical
posteriors show that the spin population assumptions in this work do not cause a
bias.



173

to compress and fully ignite the oxygen core, driving a subsequent pulsation so
powerful that further pair production in the core cannot re-soften the equation of
state fast enough to return it to a contraction phase. This is basically equivalent
to a single pulsation during the pulsational pair-instability process blowing away
the total mass of the star [576, 577, 578]. A lower carbon fraction results in this
full disruption of the star (PISN) occurring at lower masses, controlling where the
𝑀I − 𝑀BH map decays to zero after 𝑀BH,𝑚𝑎𝑥 .
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C h a p t e r 12

PROJECTIONS OF THE UNCERTAINTY ON THE COMPACT
BINARY POPULATION BACKGROUND USING POPSTOCK

Arianna I. Renzini and Jacob Golomb. “Projections of the uncertainty on
the compact binary population background using popstock”. In: Astron.
Astrophys. 691 (2024), A238. doi: 10.1051/0004-6361/202451374.
arXiv: 2407.03742 [astro-ph.CO].

Abstract

The LIGO-Virgo-KAGRA collaboration has announced the detection
of almost 100 binary black holes so far, which have been used in several
studies to infer the features of the underlying binary black hole popula-
tion. From these, it is possible to predict the overall gravitational-wave
(GW) fractional energy density contributed by black holes through-
out the Universe, and thus estimate the gravitational-wave background
(GWB) spectrum emitted in the current GW detector band. These pre-
dictions are fundamental in our forecasts for background detection and
characterisation, with both present and future instruments. The uncer-
tainties in the inferred population strongly impact the predicted energy
spectrum, and in this paper we present a new, flexible method to quickly
calculate the energy spectrum for varying black hole population features
such as the mass spectrum and redshift distribution. We implement this
method in an open-access package, popstock, and extensively test
its capabilities. Using popstock, we investigate how uncertainties in
these distributions impact our detection capabilities and present several
caveats for background estimation. In particular, we find that the stan-
dard assumption that the background signal follows a 2/3 power-law
at low frequencies is both waveform and mass-model dependent, and
that the signal power-law is likely shallower than previously modelled,
given the current waveform and population knowledge.

https://doi.org/10.1051/0004-6361/202451374
https://arxiv.org/abs/2407.03742
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12.1 Introduction

The Laser Interferometer Gravitational-wave Observatory (LIGO) [1], Virgo [38],
and KAGRA [53] detectors are progressively uncovering the features of the pop-
ulation of merging stellar-mass binary black holes in our Universe [29, 28]. As
observing runs become more and more sensitive, the detection horizon increases
and a higher number of gravitational-wave (GW) events are positively identified as
binary mergers. The events observed so far lie at distances 𝑧 ≲ 1 [26], while the
vast majority of binary mergers is expected to lie well beyond this horizon, as sug-
gested by both theoretical expectations for the merger rate redshift evolution [181,
90, 466] and its inferred trend from GW data through the Third Gravitational-Wave
Transient Catalogue (GWTC-3) [28]. This knowledge has motivated studies and in-
ference of the sub-threshold, unresolved collection of binaries, treated as an overall
gravitational-wave background (GWB) signal.

Works forecasting the GWB from compact binaries populate the literature: before
the first GW detections, these were based on theoretical models of the binary
population [425, 449, 450], while more recently GW data–informed projections [35]
have become a benchmark for the GW community. An important distinction to
make is between estimates of a specific realisation of the background, for example
used in mock-data challenges [373], and estimates of the ensemble average of
the background, which corresponds to the expectation value of the background
amplitude targeted by GWB searches [598, 579]. In both cases, the calculation
involves the (expected) distributions for the individual binary parameters, such as
mass, distance, and event rate distributions. These population models are often
taken to be simple parametric functions with a well-defined set of hyper-parameters,
which are fixed to fiducial (or assumed) values for the background calculation.
Re-calculating the background signal for varying population hyper-parameters can
become computationally intensive, when employing large sample sets.

Several applications in the literature require marginalising the background signal
over possible population configurations, including forecasting studies, such as those
presented by the LIGO-Virgo-KAGRA (LVK) collaboration in [35, 28], and infer-
ence analyses, such as [123, 35, 544]. As the interest in this type of work grows,
there is a need for efficient and flexible background estimation procedures. In this
paper, we present a method to efficiently carry out these calculations, and make an
open-access code base, popstock, available to the community. The novelty of
our approach is in the design of a re-weighting technique which allows us to sample
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the binary parameter probability distributions and evaluate a corresponding set of
waveform approximants only once, enabling an extremely efficient re-estimation of
the GWB when varying population hyper-parameters. An analogous re-weighting
approach was previously implemented in [544]. Furthermore, we implement the
use of waveform templates imported from the LIGO Scientific Collaboration Algo-
rithm Library (LAL) [335]. To improve efficiency, previous codes have employed
analytic waveform approximations directly embedded in the codebase; with our
CPU–optimised spectral calculations and our GPU–optimised re-weighting tech-
nique, we are able to support a much broader range of waveforms through the
commonly used python library for GW analysis, Bilby [67].

We use popstock to investigate the impact of the uncertainty on the binary pop-
ulation on the detection prospects of the GWB with ground-based interferometers.
In particular, we compare with and extend work done in [28] to include more un-
certainties on the redshift distribution of sources. We also employ the package to
probe the effect of waveform choice on the estimation, and whether this is entirely
degenerate with the population uncertainty. We find that the expected background
amplitude can be significantly boosted, when admitting higher mass mergers and
higher rates of mergers at low-redshift, within current population uncertainties. We
further find that the choice of waveform can have noteworthy effects on background
signal estimates, however these do not dominate current population uncertainties.

This paper is organised as follows: In Sec. 12.2 we introduce the theoretical aspects
behind compact binary GWB calculations; in Sec. 12.3 we define the analytic
models used here to describe the distributions of black hole masses and distances;
in Sec. 12.4 we introduce popstock, our new package for GWB calculations,
outlining its key functionalities; in Sec. 12.5 we present our background calculations
and investigations; and finally we summarise our conclusions in Sec. 12.6.

12.2 The compact binary GW background

The amplitude of the GWB signal is parameterised by the fractional energy density
spectrum emitted by GWs throughout the Universe, Ω𝐺𝑊 ( 𝑓 ), [425]

Ω𝐺𝑊 ( 𝑓 ) = 1
𝜌𝑐

𝑑𝜌gw
𝑑 ln 𝑓

, (12.1)

which is normalised by the critical energy density of the Universe 𝜌𝑐 = 3𝑐2𝐻2
0/8𝜋𝐺.

This is in general the total energy density contributed by GWs throughout the Uni-
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verse, and is not restricted to sub-threshold signals. Calculating a residual back-
ground requires the definition of a detection cutoff, which is detector–dependent1,
while here and elsewhere Ω𝐺𝑊 is considered to be an astrophysical property of the
Universe.

While the GWB spectrum is detector–independent, it is useful to employ the detector
frame to perform calculations. This allows us to immediately relate the intrinsic
signal amplitude with the measured signal in GW detectors. As shown for example
in [372, 451], the energy density spectrum Ω𝐺𝑊 ( 𝑓 ) may be estimated as the average
fractional GW energy density present in a detector during an observation time 𝑇obs,

Ω𝐺𝑊 ( 𝑓 ) = 𝑓 3

𝑇obs

4𝜋2

3𝐻2
0

𝑁𝑖∑︁
𝑖

P𝑑 (Θ𝑖; 𝑓 ) , (12.2)

assuming a finite number of GWs received at the detector, 𝑁𝑖. Here, P𝑑 (Θ𝑖, 𝑓 ) is
the Fourier domain unpolarised power in the detector frame (hence the subscript 𝑑)
associated to a GW with parameters Θ𝑖, defined as

P𝑑 (Θ𝑖; 𝑓 ) = ℎ̃2
+(Θ𝑖; 𝑓 ) + ℎ̃2

×,𝑖 (Θ𝑖; 𝑓 ) , (12.3)

where ℎ̃𝐴 (Θ𝑖; 𝑓 ) is the Fourier transform of the GW waveform evaluated at Θ𝑖2. So
defined, P𝑑 has units 𝑠−2.

In the limit of infinite observation time and infinite events, the Ω𝐺𝑊 spectrum
approaches its ensemble average, Ω̄𝐺𝑊 . While the Ω𝐺𝑊 measured by an experiment
depends on the specific realisation observed throughout the experiment observation
time, Ω̄𝐺𝑊 only depends on the distributions which describe the GW parameters
Θ, which are in turn parameterised via population hyper-parameters Λ [425]. The
Ω̄𝐺𝑊 spectrum is thus a unique population signature, and is targeted in observations
in practice by measuring Ω𝐺𝑊 for large 𝑇obs. The equivalence is easily seen in the
limit of large GW numbers as

1
𝑇obs

𝑁𝑖∑︁
𝑖

P𝑑 (Θ𝑖; 𝑓 ) ≈
𝑁𝑖→∞
𝑇obs→∞

𝑑𝑁

𝑑𝑡

∫
𝑑Θ 𝑝𝑑 (Θ|Λ) P𝑑 (Θ; 𝑓 ) , (12.4)

1For discussions on residual backgrounds, in particular in the context of next generation ground-
based interferometers, we refer the reader to [478, 596, 91], for example.

2In the case of a stochastic signal described as a superposition of plane waves, as is the case
often for cosmological signals, the signal can be thought of as a wave where the Fourier amplitudes
are stochastic fields, the parameters Θ describe the field, and the power is the second-order moment
of the field [455].



178

where 𝑝𝑑 (Θ|Λ) are the (normalised) detector frame probability distributions for the
GW parameters Θ, such that

Ω̄𝐺𝑊 (Λ; 𝑓 ) = 𝑓 3 4𝜋2

3𝐻2
0
𝑅

∫
𝑑Θ 𝑝𝑑 (Θ|Λ) P𝑑 (Θ; 𝑓 ) . (12.5)

Here, 𝑅 ≡ 𝑑𝑁
𝑑𝑡

is the total rate of events per unit detector-frame time. It can
be convenient to isolate the redshift integral in Eq. (12.5), assuming redshift is
independent from other parameters, and incorporate the rate in the redshift evolution
probability 𝑝(𝑧), defining the event rate per unit detector-frame time per redshift
shell,

𝑅(𝑧) = 𝑅 𝑝(𝑧) . (12.6)

The Ω̄𝐺𝑊 spectrum can then be interpreted as an integral over redshift shells of the
average GW power present in each shell, analogously to Eqs. (4) and (5) of [123],

Ω̄𝐺𝑊 (Λ; 𝑓 ) = 𝑓 3 4𝜋2

3𝐻2
0

∫
𝑑𝑧 𝑅(𝑧 |Λ𝑧)⟨ P𝑑 (𝑧, 𝜃; 𝑓 )⟩ , (12.7)

where the ⟨.⟩ brackets imply the GW spectral power samples P𝑑 are averaged over
the ensemble described by the parameter probability distributions, in each redshift
shell. To see how the GW spectral power is related to the energy spectrum, for each
binary, see Appendix 12.A for a pedagogical derivation.

12.3 BBH population models

We illustrate the effect of the population model on Ω𝐺𝑊 by adopting two phe-
nomenological mass distribution models used in [29, 28]. The Powerlaw+Peak
model (PLPP), first introduced in [524], has been widely adopted in the literature
as an astrophysically-motivated mass distribution model. The PLPP model con-
sists simply of a truncated power-law, motivated by the shape of the stellar initial
mass function, and a Gaussian bump (or peak), originally intended to account for
a possible over-density of black holes around a certain mass, as motivated by, e.g.,
pulsational pair instability effects [524, 29, 28] 3. We list the parameters of the
PLPP model in Table 12.1. In addition to PLPP, we also consider a simpler mass
distribution, consisting of a truncated power-law with a break at a particular mass.
While [28] finds that this broken power-law (BPL) model is disfavoured with respect
to the PLPP model, we also consider it for illustration purposes. Parameters used
for the BPL model are described in Table 12.2.



179

Table 12.1: Power-law-plus-peak (PLPP) model parameters.

Parameter Description
𝛼 Slope of the primary mass power-law.
𝛽 Slope of the mass ratio power-law.

𝑚min Minimum mass allowed in the system.
𝑚max Maximum mass allowed in the system.
𝑚pp Location of the Gaussian bump in the

mass distribution.
𝜎pp Width of the Gaussian bump in the

mass distribution.
𝜆 Fraction of sources in the bump.

Table 12.2: Broken-power-law (BPL) model parameters.

Parameter Description
𝛼1 Slope of the primary mass power-law

before the break.
𝛼2 Slope of the primary mass power-law

after the break.
𝑚min Minimum mass allowed in the system.
𝑚max Maximum mass allowed in the system.
𝑚pp Location of the Gaussian bump in the

mass distribution.
𝑏 Fractional distance between 𝑚min and

𝑚max of the break.

We also adopt redshift distribution models commonly used in the literature. For
example, [228] introduced a broken power-law model to describe the merger rate
as a function of redshift. This model is motivated by the observed star formation
rate (SFR) across redshift: a rate rising to and peaking at some redshift (𝑧peak, [361,
228]) then decaying down to high redshift, where the star formation rate was much
lower. A SFR model commonly adopted in the literature is the broken power-law
fit from [351], which is parameterised in terms of a low-redshift power-law index 𝛾,
high-redshift (negative) index 𝜅, and a peak or turn-over redshift parameter 𝑧peak:

RMD(𝑧) ∝
(1 + 𝑧)𝛾

1 +
(

1+𝑧
1+𝑧peak

) 𝜅 . (12.8)

In the following, as in [28] and [35], we use RMD to describe the number of mergers
per unit comoving volume 𝑉𝑐 per unit source-frame time 𝑡𝑠. For brevity, we refer to

3This feature is found in the data, but recent works have cast doubt on whether it can be attributed
to the pulsational pair instability mechanism [255, 274]
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this model as MD. The parameters employed throughout for the MD model and their
default values are shown in Table 12.3. In reality, the merger rate of BBHs from
stellar collapse is a function of the SFR and the delay time between star formation
and merger of the remnant [229, 123, 544]; this may make the number of mergers
per unit comoving volume and source-frame time 𝑅(𝑧) deviate from a SFR-like
broken power-law.

Table 12.3: Broken-power-law Redshift model parameters.

Parameter Description Defaults
𝛾 Low-redshift power-law index. 2.7
𝜅 High-redshift power-law index. 5.6

𝑧peak Redshift of the peak rate. 1.9

Table 12.4: Default values drawn from [228, 123]. This model, including an overall
local-merger-rate normalisation 𝑅0, is referred to as MD throughout.

For illustration, we also adopt a less realistic model in which the merger rate is
constant across cosmic time, R(𝑧) = 𝑅0. This Uniform in Comoving Volume
(UICV) model assumes that the merger rate as measured in the source frame of the
emitter, is constant across redshift.

The redshift of individual compact binary merger events in the detector frame is
drawn from a probability distribution 𝑝(𝑧) which takes into account the comoving
volume per unit redshift gradient, 𝑑𝑉𝑐/𝑑𝑧, and the redshifting of the rate from
source-frame to detector-frame,

𝑝(𝑧) = 1
1 + 𝑧

𝑑𝑉𝑐

𝑑𝑧
R(𝑧) . (12.9)

The 𝑝(𝑧) functions for the MD and UICM rate evolution are illustrated in the left
panel of Figure 12.3.

In this paper, unless otherwise specified we draw uncertainties from the LVK collab-
oration GWTC-3 population posteriors, published in the data release [151] which
accompanied the collaboration results [28]. The release includes samples from the
posterior of population hyperparameters inferred through GWTC-3 (i.e., the popu-
lation parameters governing the shapes of the mass, spin, and redshift distributions).
We use these hyperparameter samples for the corresponding redshift and mass mod-
els described above in the analysis that follows. We use the PLPP mass model and
MD redshift model as fiducial models for our studies. The PLPP model is con-
sidered a good parametric description of the mass spectrum of GWTC-3 [28], also
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confirmed by non-parametric approaches [125], and has been widely used since in
the context of GWB estimation (e.g., [596, 91, 483]), while the MD model is a well-
motivated astrophysical model [228] and has been already employed in stochastic
inference analyses [35].

12.4 popstock

We present popstock4, a python–based open–source package for the rapid com-
putation of background spectra such as Ω𝐺𝑊 , for a given realisation of events,
and Ω̄𝐺𝑊 , for a given set of hyper-parameters Λ. Other than the standard python
scientific libraries numpy [270] and scipy [556], the main dependencies of
the popstock package are: astropy [433], a core python library used by
astronomers; bilby [67], a most popular Bayesian inference library for GW as-
tronomy; and gwpopulation [520], a hierarchical Bayesian inference package
containing a collection of parametric binary black hole mass, redshift, and spin
population models.

The popstock package relies on multiprocessing (included in most python
distributions) to parallelise the computation of Ω𝐺𝑊 for large 𝑁𝑖. The GW wave-
forms required to compute P𝑑 (Θ𝑖; 𝑓 ) in Eq. (12.3) are evaluated at each Θ𝑖 using
the Bilby library, which in turn imports LAL [335]. This allows us to employ a
vast array of modern waveforms in our computations.

To compute Ω̄𝐺𝑊 for a given set of population hyper-parameters Λ and a given
collection of population models, we directly sample the probability distributions
𝑝𝑑 (Θ|Λ) and evaluate Eq. (12.5) via a Monte Carlo simulation. The accuracy of
this evaluation depends on the number of samples employed, as discussed below.
This approach is limited by the long sampling and evaluation times of the GW
waveforms, and is not an optimal tool to perform in-depth studies of the impact
of population uncertainties on the Ω̄𝐺𝑊 spectrum. Hence, popstock includes
a re-weighting technique to compute Ω̄𝐺𝑊 for a new set of Λ parameters without
re-evaluating Eq. (12.5).

The popstock repository includes tutorials with usage instructions and simple
examples. The package’s performance strongly depends on the computing setup
employed (e.g., CPU and GPU availability). We refer the interested reader to the
popstock documentation 5 for further details.

4https://github.com/a-renzini/popstock
5https://a-renzini.github.io/popstock/

https://github.com/a-renzini/popstock
https://a-renzini.github.io/popstock/
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Figure 12.1: Impact of sample variance and re-weighting on the Ω𝐺𝑊 spectrum.
Left: 95% confidence on the spectrum calculated using 105 (106) samples in yellow
(green) drawn from a fixed hyper-parameter distribution, compared to the 95%
confidence on the spectrum including uncertainty on the local merger rate parameter
in brown. Right: sample variance from the left panel compared to re-weighted
estimates of the Ω𝐺𝑊 spectrum. The re-weighted spectra lie neatly within the
sample variance uncertainty bounds, implying that the re-weighted spectrum is
indistinguishable from a regularly sampled spectrum, with these sample numbers.

In the rest of this section, we describe the popstock re-weighting technique and
probe its efficiency and accuracy.

12.4.1 Re-weighting methodology

We lay out a simple method to efficiently calculate Ω̄𝐺𝑊 for different sets of
hyper-parameters Λ𝑖 describing the (detector frame) target population distributions,
𝑝𝑑 (Θ|Λ𝑖). The integral of (12.5) above allows the implementation of an importance
sampling approach or re-weighting6, whereby∫

𝑑Θ 𝑝𝑑 (Θ|Λ1) P𝑑 (Θ) =
∫

𝑑Θ
𝑝𝑑 (Θ|Λ1)
𝑝𝑑 (Θ|Λ0)

𝑝𝑑 (Θ|Λ0) P𝑑 (Θ)

≡
∫

𝑑Θ𝑤0→1(Θ)𝑝𝑑 (Θ|Λ0) P𝑑 (Θ) ,
(12.10)

where 𝑝𝑑 (Θ|Λ0) is chosen as the fiducial distribution, and 𝑤0→1 is the weight
required to “transform” between the fiducial distribution and the target one, relative
to Λ1:

𝑤0→1 =
𝑝𝑑 (Θ|Λ1)
𝑝𝑑 (Θ|Λ0)

. (12.11)

6Reweighting has become a popular tool for efficient Monte Carlo computations in GW astron-
omy. See, e.g., [520, 419, 287, 519] for a review of some applictions of this method in the GW
field.
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In practice, this reweighting approach is more efficient than direct Monte Carlo
integration when 𝑝𝑑 (Θ|Λ1) is hard to sample from but easy to evaluate. Therefore,
we first draw a large set of samples𝚯 from the fiducial populationΛ0 and compute the
probability of drawing those samples 𝑝𝑑 (Θ|Λ0). This is stored as the denominator
in the weights 𝑤. Each time the integral of Eq. 12.10 is evaluated for some different
population Λ1, it is only necessary to evaluate the probability of those fiducial
samples under the target population 𝑝𝑑 (Θ|Λ1), as 𝑤 is the only term that depends on
Λ1. See also App. D of [544] for an analogous re-weighting approach to calculate the
background spectrum; the authors’ approach is technically equivalent, however they
choose to re-weight the approximated event energy spectra calculated using [49], as
opposed to the frequency domain P𝑑 quantity calculated from the event waveform.

The re-weighting operation is directly implemented in the Monte Carlo evaluation
described above, which is valid as long as a sufficient number of samples Θ 𝑗 are
used, ∫

𝑑Θ𝑤0→1(Θ)𝑝𝑑 (Θ|Λ0) P𝑑 (Θ) ≈
∑︁
𝑗

𝑤0→1(Θ 𝑗 )P𝑑 (Θ 𝑗 ) . (12.12)

This allows us to evaluate the (costly) P𝑑 spectra only once, and re-weight the
contribution of each wave according to a desired target distribution.

In practice, we rely on the source-frame population distributions to sample the GW
parameters. To convert these to detector frame, we evaluate the relevant Jacobian
matrix assuming a fixed cosmology,

𝑝𝑑 (Θ|Λ) = 𝑝𝑠 (Θ|Λ) 𝑑Θ𝑠

𝑑Θ𝑑

. (12.13)

12.4.2 Effective sample size and sample variance

As a check of the performance of our re-weighting approach, we estimate the
effective sample size 𝑁eff for different number of samples 𝑁s and different Ω𝐺𝑊

spectra, and ensure 𝑁eff ≫ 1. The effective sample size is calculated from the
weights as 𝑁eff = Σ𝑤2/(Σ𝑤)2. We find that, for a fixed re-weighting set of Λ

hyper-parameters, 𝑁eff ≈ 2 × 104 for 𝑁s = 5 × 104, 𝑁eff ≈ 4 × 104 for 𝑁s = 105, and
𝑁eff ≈ 3 × 105 for 𝑁s = 106. In practice, these numbers will depend on the size of
the parameter space probed by the re-weighting. In all implementations shown in
this paper we use 𝑁s = 1 × 106 unless otherwise stated, and we have checked the
order of magnitude of 𝑁eff reported here remains reliable for all results shown.
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The Ω𝐺𝑊 spectrum is by definition a stochastic observable, and thus presents an
intrinsic sample variance7. In particular, ΩBBH

𝐺𝑊
is dominated by a Poisson process

given the low merger rate of black hole binaries. We estimate the intrinsic variance
of ΩBBH

𝐺𝑊
associated to different number of samples (which can be directly converted

to different observation times, assuming a total merger rate) by calculating the
spectrum using different sample draws from a fixed set of population priors. These
are shown in Figure 12.1 (left panel) using 105 and 106 samples, where the shading
indicates the 95% interval over 1000 sets. In this case, increasing the number
of samples by a factor of 10 decreases the width of the 95% interval by 52% on
average, for frequencies between 20 − 500 Hz. This specific example corresponds
to the following set of hyper-parameters for the PLPP mass model: 𝛼 = 3.5, 𝛽 = 1,
𝛿𝑚 = 4.5, 𝜆 = 0.04, 𝑚max = 100, 𝑚min = 4, 𝑚pp = 34, and 𝜎pp = 4. The redshift
model is fixed to the default MD model defined above with a local merger rate of
𝑅0 = 15 Gpc−3yr−1. In Figure 12.1 we further compare these sample variance
uncertainty bands to the 95% confidence on the spectrum including uncertainty
on the local merger rate 𝑅0, drawn from [28]. Unsurprisingly, when using these
large sample numbers the sample variance is subdominant compared to population
parameter uncertainty.

We compare this intrinsic uncertainty to re-weighting: as may be seen in Figure 12.1
(right panel), re-weighted curves for ΩBBH

𝐺𝑊
for the given set of Λ hyper-parameters

lie within the 95% sample uncertainty on the spectrum, for different values of 𝑁s.
This implies the re-weighted ΩBBH

𝐺𝑊
spectrum for a given population model is within

the intrinsic error on that spectrum, and is thus a fair approximation to make.

As we focus on BBHs in this paper, we drop the BBH subscript from ΩBBH
𝐺𝑊

in what
follows, and assume we refer to the BBH spectrum unless otherwise specified.

12.5 Background projections using popstock

We study the dependence of the amplitude, spectral shape, and uncertainty of Ω𝐺𝑊

on various models and data products. These studies will fundamentally inform
compact binary population parameter estimation campaigns with upcoming GW
datasets, for example in the style of [123, 35], which use constraints on (or, in the
future, measurements of) the Ω𝐺𝑊 spectrum.

7See [324] for an analytic study of the massive black hole background spectral variance, in the
case of a signal in the pulsar timing array detection band.
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Figure 12.2: Impact of the primary mass distribution on the Ω𝐺𝑊 spectrum. On the
left, the two primary mass model probability densities used throughout; on the right,
95% confidence intervals forΩ𝐺𝑊 using the two mass models, including uncertainty
on the local merger rate from [28].
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Figure 12.3: Impact of the merger rate redshift distribution model on the Ω𝐺𝑊

spectrum. On the left, the two redshift evolution model probability densities used
throughout; on the right, 95% confidence intervals for Ω𝐺𝑊 using the two merger
rate models, including uncertainty on the PLPP mass model from [28] as described
in Sec. 12.3.

We consider here a frequency range of 10 − 2000 Hz as this corresponds to the
sensitivity of second generation ground-based GW detectors such as the current
configurations of the LIGO, Virgo, and KAGRA instruments as well as their near-
future improvements.
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12.5.1 Mass and redshift models

With popstock we can rapidly assess the impact of different mass and redshift
models on the projected Ω𝐺𝑊 . Here we compare the PLPP and BPL mass models,
and the UICV and MD redshift models, all introduced in Sec. 12.3. When com-
paring mass models, we fix the mass model hyper-parameters while including the
uncertainty on the local merger rate 𝑅0 from [28]8 assuming the MD redshift evolu-
tion with all other parameters fixed to the values discussed above. When comparing
redshift models, we instead fix the redshift model hyper-parameters while including
the uncertainty from [28] on the PLPP mass model. We deliberately choose values
for certain Λ hyper-parameters which are unrealistic and not favoured by current
data to showcase the effect different mass and redshift models may have on the Ω𝐺𝑊

spectral shape.

A comparison between the PLPP and BPL mass models is shown in Figure 12.2.
The PLPP parameters are fixed to the same set used in Sec. 12.4.2, and BPL to
𝛼1 = −2, 𝛼2 = −1.4, 𝛽 = 1, 𝑏 = 0.4 (see Sec. 12.3 for details on the parameters).
As PLPP is commonly used as a mass model when generating Ω𝐺𝑊 forecasts (as
in [35, 28]), we take this as the fiducial model to produce Ω𝐺𝑊 spectra and compare
those obtained with the BPL mass model against these. Note that in particular the
choice of 𝛼2 > 𝛼1 for BPL here implies a larger amount of high-mass binaries in the
distribution, as seen in the left panel of Figure 12.2, where primary mass probability
distributions are shown. These more massive binaries merge at lower frequencies
and their emission is further redshifted into the lower end of the frequency range
considered here; remember that, for example, we detect an equal-mass binary with
true component masses of 70𝑀⊙ merging around ∼ 60 Hz at 𝑧 = 0 and ∼ 30 Hz
at 𝑧 = 1 (see e.g. [454] for more considerations along this line). As seen in the
right panel of Figure 12.2, this both boosts the amplitude of Ω𝐺𝑊 at all frequencies
below a few hundred Hz, and changes the spectral shape at these frequencies, when
compared to the PLPP mass spectrum. Specifically, the typical “turnover” in the
spectrum corresponding to the frequency at which most binaries have merged is
broken into two turnovers: one for the higher mass binaries (below 100 Hz) and one
for the lower mass ones (around 300 Hz). This is effect is certainly fuelled by the
unrealistic parameter choice made for BPL (𝛼2 > 𝛼1). Comparatively, the PLPP
model gives rise to a single turnover with a plateau between ∼ 100− 400 Hz, which

8Specifically: we employ samples from the posterior fit of the power-law redshift model, as
in [28] no broken-power-law redshift model was used.
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presents small features (“wiggles”) which are related to the redshifting of the peak
at 33𝑀⊙. Futhermore, the spectral index at lower frequencies is more peaked than
that of the PLPP model. A simple broken-power-law fit to the two sets of curves
shown in the right panel of Figure 12.2 yields 𝛼 = 0.61 and 𝛼 = 0.76 for the lower
frequency region of the Ω𝐺𝑊 spectrum corresponding to the PLPP and BPL mass
models, respectively. A broader discussion on data-informed spectral indices is
postponed to Sec. 12.5.3.

The uncertainty on the local rate 𝑅0 implies that there is significant overlap between
the 95% credible envelope of the spectrum from these two mass models, suggesting it
would be challenging to distinguish mass spectrum features from redshift ones from
a measurement of Ω𝐺𝑊 alone. The overlap would be even greater when including
full uncertainty on the redshift model parameters. However, if a large amplitude and
large spectral index (i.e., 𝛼 > 2/3) Ω𝐺𝑊 is observed at low frequencies, we expect
a mass model which admits large mass binaries (such as the BPL one showed here)
to be favoured.

In Figure 12.3 we compare the effect of the UICV and MD redshift models on
Ω𝐺𝑊 . We fix the local merger rate to 𝑅0 = 15 Gpc−3yr−1, and compare a UICV
rate evolution to the default MD evolution (see Sec. 12.3) while we include the
uncertainty on the PLPP mass model from [28]. Most notably, the UICV model
impacts the overall amplitude of the Ω𝐺𝑊 spectrum across all frequencies. In this
test case, the decrease in amplitude when assuming UICV is approximately constant
(and equal to a factor of ∼ 4) between 10 − 100 Hz, and is due to the lower merger
rate between 1 < 𝑧 < 4. This effect is much larger than the impact of the uncertainty
on the mass model, confirming that a measurement of Ω𝐺𝑊 will have significant
information on the merger rate redshift evolution (as also seen in [124, 123, 454]).
The turn-over in the spectrum appears shifted to slightly higher frequencies in UICV,
possibly due to the slightly higher rate fraction at low redshift compared to MD,
which instead increases as a power-law9. Otherwise, the different redshift models do
not appear to cause large variations in the overall shape of the spectrum, suggesting
that the mass spectrum dominates these features.

A natural extension of this study is to consider BBH mass spectra that evolve
with redshift: this will mix the effects seen here when considering independent
contributions, and in principle will need to be appropriately included in parameter

9This is evident in the area on the left panel of Figure 12.3 where the UICV model 𝑝(𝑧) lies
above the MD 𝑝(𝑧), at 𝑧 < 1.
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Figure 12.4: Impact of the waveform model on the Ω𝐺𝑊 spectrum. The shading
indicates the 95% confidence on the spectrum including the uncertainty on the PLPP
mass model and the local merger rate, assuming a fixed MD redshift evolution.

estimation studies to avoid biases.

12.5.2 Waveform approximants

The choice of waveform approximant, while central in certain studies of individual
compact binary merger events, has been explored very little in the context of the
compact binary background signal. In previous work (see e.g. approximations
made in [372, 124, 388]), it was deemed sufficient to capture solely the evolution
of the GW amplitude as a function of frequency, as the background Ω𝐺𝑊 contains
no phase information; this evolution can be tracked analytically up to arbitrary Post-
Newtonian (PN) order, considerably speeding up the calculation of Ω𝐺𝑊 compared
to calculating full waveforms for large sets of events. Specifically, most works
employ the amplitude component of frequency-domain inspiral-merger-ringdown
(IMR) waveforms [47, 49] defined analytically by parts, where the transition of
the GW from one phase to the next is set by the specific intrinsic parameters of
the binary (mass and spin). As the background has remained a weak signal in
the current LVK data, a precise quantification of the systematic differences between
background estimates with different waveform approximants has not been necessary.
However, as detector sensitivities improve and detection becomes a real possibility,
all modelling systematics are important to quantify (see also [596], [505]). Here, we
investigate the effect of the waveform approximant using popstock and confirm
whether it is subdominant to the impact of population uncertainties.

We focus here on the IMRPhenom family of waveforms commonly used in the
literature to compute Ω𝐺𝑊 , as well as an effective-one-body (EOB) numerical-
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relativity (NR) waveform model. In all cases, we omit spin effects, setting both
black hole spins to 0. The specific waveforms used are

• IMRPhenomA [47]: The first IMR waveform, developed for GW data anal-
ysis in the frequency domain for non-spinning binaries. Here the amplitude
is expanded to leading post-Newtonian (0-PN) order, implying the inspiral
phase presents the characteristic 𝑓 2/3 trend (in Ω𝐺𝑊 units).

• IMRPhenomB [49]: A direct successor of IMRPhenomA, this waveform
includes higher order corrections in the amplitude term up to 1.5-PN and
includes non-zero aligned spin. These correct the spectral shape of the wave-
form amplitude, as a function of both mass and spin.

• IMRPhenomD [305]: A recent waveform including corrections up to 3-PN
order in the amplitude and a more sophisticated fit to numerical relativity
compared to IMRPhenomA and B.

• SEOBNRv2 [434]: An EOB NR waveform for spin-aligned BBHs, calculated
numerically in the frequency domain.

A comparison between the Ω𝐺𝑊 spectra calculated for the same BBH population
using the waveforms above is presented in Figure 12.4. We show the 95% confidence
contours on the populationΩ𝐺𝑊 including the uncertainty on the mass model (PLPP)
and the local merger rate 𝑅0 assuming a fixed MD redshift evolution (as defined
above).

We find that when employing the 0-PN IMRPhenomA waveform, the background
signal is overestimated at all frequencies by up to 50% in the range 10 < 𝑓 < 1000
Hz compared to IMRPhenomB; this is due to the missing amplitude corrections to
the inspiral phase (see e.g. the differences in Eq. (4.13) of [47] and Eq. (1) of [49]).
While the amplitude estimates for IMRPhenomA and B agree at 𝑓 ≡ 0, these diverge
for 𝑓 > 0 as the amplitude evolution with frequency is Ω𝐴 ∝ 𝑓 2/3 for IMRPhenomA
andΩ𝐵 ∝ 𝑓 𝛼<2/3 for IMRPhenomB. The trend of 𝛼will depend on the specific mass,
redshift, and spin realisation as discussed in Sec. 12.5.1. This result shows that the
somewhat basic assumption that the compact binary background at frequencies
under ∼ 100 Hz is well-approximated by a 2/3 power-law can be upgraded, and
informed by likely population models to optimise background searches.
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Figure 12.5: Uncertainty on the expected Ω𝐺𝑊 spectrum from BBHs due to un-
certainty on the merger rate evolution parameters. Left: 95% confidence levels on
the projected Ω𝐺𝑊 spectrum including uncertainty on the PLPP mass model and
assuming a MD merger rate model with different levels of uncertainty. The hatched
outline reports previous results published in [28]. Right: a zoomed-in comparison
at low frequencies of the uncertainty on the Ω𝐺𝑊 spectrum when varying 𝑅0 versus
𝑅0 and 𝛾, reporting average spectral indices referred to these two contours.

Differences due to the use of IMRphenomB/D and SEOBNRv2 approximants are
comparable to each other and would be hard to distinguish from population un-
certainties. Nevertheless, we comment that the different NR calibration used in
IMRphenomD compared to B is evident in the impact due to the inspiral phase
on the GWB signal, as the frequency evolution at low frequency is slightly modi-
fied, and SEOBNRv2 estimates an overall lower background than the IMRPhenom
waveforms.

The impact of including higher-order modes in the waveform calculation on the
background spectrum was found to be negligible; a comparison between spectra
calculated with the IMRPhenomD and IMRPhenomXPHM waveforms is included
for completeness in Appendix 12.B.

12.5.3 O3 population samples

We conclude our analyses by combining the uncertainties on the mass and redshift
distributions drawn directly from the LVK GWTC-3 population analysis [28]. We
limit our focus to the MD redshift model for BBHs as this is the only model
we have viable posterior samples for: in the case of the low-redshift merger rate
parameters (𝑅0, 𝛾), we use samples from the power-law redshift inference results
released in [151] for the power-law redshift model, while when including high-
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redshift features (𝑧max, 𝜅) we use results obtained performing inference on the entire
MD model as done in [35].

Results obtained progressively varying the redshift hyper-parameters are shown in
Figure 12.5 (left panel). We include uncertainty over the entire PLPP mass hyper-
parameter space, while varying:

(i) just the local merger rate 𝑅0, assuming a fixed broken-power-law merger rate
evolution with parameters fixed to those discussed in Sec. 12.3;

(ii) both 𝑅0 and the local power-law index 𝛾, keeping the high-redshift parameters
fixed;

(iii) all parameters for the merger rate, including the turn-over redshift 𝑧peak and
high-redshift power-law index 𝜅.

In cases (i) and (ii) samples are drawn from the power-law redshift model posteriors
of [28]. In case (iii), samples are instead drawn from a full GWTC-3, O1–O2–O3
joint stochastic-population analysis (similar to [35], for details on how this analysis
is carried out see [123]) as these also include posteriors on the higher redshift
evolution of 𝑅(𝑧) [122].

We compare the 95% confidence levels on Ω𝐺𝑊 in case (i) with published results
(shown in Figure 12.5 in hatched outline10) and find these to be consistent. Note
that the corresponding LVK contours draw from the same PLPP mass posterior and
local merger rate posterior, but assume a different redshift evolution (see the original
paper discussion [28]), which explains the small differences between the curves at
low frequency and the different turn-over trend at high frequency, which is dominated
by low-redshift effects. Specifically, the redshift model used sampled a time-delay
distribution between binary formation and merger, where binary formation was fixed
to follow the star formation rate of [547], and the time-delay distribution was in the
shape of 𝑝(𝑡𝑑) ∝ 𝑡−1

𝑑
. This model can not be well-approximated with a simple broken

power-law. The LVK contour was calculated assuming the IMRPhenomB analytic
waveform model. Case (ii) and case (iii) give almost identical contours, which
implies that the population analysis [28] and the stochastic constraints [35] carry
little information about the high-redshift evolution of the merger rate. Furthermore,
these show that the uncertainty on the local merger rate evolution alone could

10The hatched outline is exactly the green region highlighted in Figure 23 of [28], which is
publicly available in [151].
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Figure 12.6: Projections of the background Ω𝐺𝑊 spectrum, given our knowledge
on the compact binary population. Shaded regions outline 90% credible bands for
the GWB from BBHs and BNS (in pink), including uncertainty on the mass and
redshift models for these sources using samples released in [28, 151]. For BBHs
we report uncertainty due to two mass models: the PLPP mass model, assuming a
MD redshift model with uncertain local merger rate 𝑅0 (orange), and also uncertain
low-redshift power-law index 𝛾 (green); and the BPL mass model, assuming a MD
redshift model with uncertain 𝑅0 and 𝛾. Current and projected sensitivity curves
are included for reference.

account for an increase of up to a factor of ∼ 5 in the Ω𝐺𝑊 spectrum. This could
have considerable consequences on the detectability of the signal. In the right panel
of Figure 12.5 we zoom into the [20, 200] Hz portion of the (i) and (ii) spectra, and
provide results of single power-law fits to the envelope of Ω𝐺𝑊 curves. The average
𝛼 spectral indices found are consistent with each other, 𝛼(𝑖) = 0.59 ± 0.02 for (i),
and 𝛼(𝑖𝑖) = 0.60± 0.03 for (ii). This confirms 𝛾 has no impact on the low frequency
spectral shape of Ω𝐺𝑊 , but only on its amplitude.

We repeat the Ω𝐺𝑊 calculation varying 𝑅0 and 𝛾 using the BPL mass model, sam-
pling over the joint mass and redshift posteriors obtained by performing population
inference on the GWTC-3 catalogue (samples are publicly available as a part of
the example sample sets in the popstock package repository). We compare these
results with the PLPP results described above in Figure 12.6, overlaying the 2𝜎 LVK
power-law-integrated sensitivity curves [535] already shown in [28]. These track
the present and future upgrades to the LIGO and Virgo facilities, where “O3 sensi-
tivity” is given by the O3 measured spectra, “Design HLV” is produced assuming
projections shown in [16] and is expected to approximate the sensitivity at the end of
the O4 observing run (currently ongoing), and “Design A+” refers to the sensitivity
projected for the next observing run O5 assuming 1 year of continuous data and all
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planned improvements to the detectors are implemented and successful [16].

The BPL mass model predicts a systematically larger background, by a factor of
1.4 on average, which hints at the possibility of a louder signal than previously
projected and thus the prospect of a detection of the stochastic signal before reaching
the Design A+ LIGO–Virgo sensitivity. For completeness, we also include the
expected background signal arising from binary neutron stars (BNS) in Figure 12.6.
This signal is strongly dominated by uncertainties given the very few detections
of BNS mergers [10, 11]. The projection is calculated employing the NRTidalv2
model discussed in [178]. We assume a uniform mass model between 1 − 2.5 𝑀⊙,
as in [28], and a merger rate model corresponding to a time-delayed SFR as used
for projections presented in [35]11. We draw the local merger rate 𝑅0 from the
corresponding posterior samples presented in [28, 151]—for reference, we refer to
the samples that set the 𝑅0 = 105.5+190.2

−83.9 Gpc−3yr−1 upper limit.

12.6 Conclusions

We present a novel method and code-base to rapidly calculate the background
spectrum for inspiralling and coalescing compact binaries starting from a given
population model and hyper-parameter sets.

We quantify the joint uncertainty on the Ω𝐺𝑊 spectrum from both the mass and
redshift distributions of the BBH population, given the most recent results from the
LVK collaboration. Predictably, the uncertainty on the local merger rate and its
evolution (together with the uncertainty on the mass model) dominate the expected
amplitude of the spectrum, and can have significant implications on detectability.

Furthermore, we find that for the preferred mass model (power-law-plus-peak),
the low-frequency spectral index of the stochastic background signal is 𝛼 = 0.6.
Previous detection approaches assumed 𝛼 = 2/3 (for example [35, 30, 453]); this
result was based on the waveform used to calculate the expected GWB and its PN
order expansion, as first seen in [425] and then [493]. We find that, when employing
0-PN order waveforms, there is a tension between projections for Ω𝐺𝑊 from the
presently-observed population which competes with population uncertainty itself.
The mismatch between the treatment of the late inspiral phase in IMR waveforms is

11This model assumes the BNS progenitor formation rate is proportional to the SFR, and the
distribution of time delays between binary formation and merger is inversely proportional to the time
delays distributed between 20 Myr and 13.5 Gyr.
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particularly significant, as it is present throughout the entire Ω𝐺𝑊 spectrum and in
particular at lower frequencies, where current detector sensitivities peak.

Differences between specific background realisations and number of samples also
produce different projections which may give rise to small tensions in the higher
frequency range, where the spectra present a turn-over which is highly dependent
on the binary mass distribution and local features of the merger rate. Current-
generation detectors are not sensitive to this region of the spectrum, however this
will have significant implications for next-generation interferometers.

In conclusion, the specific population properties of the coalescing compact binary
population as well as the specific realisation during our observations will play
a role in detection capabilities. In particular, within current binary black hole
population uncertainties, a low-redshift amplification of the merger rate and a larger
population of higher-mass binaries contribute to a significant boost in the background
amplitude, in the LVK sensitivity band, which could lead to early detection. On
the other hand, more astrophysically-motivated BBH rate evolution models relate
the merger rate to binary progenitor features, and re-parameterise the merger rate
density in terms of, for example, the time-to-merger delay distribution and the host
galaxy metallicity [229, 149]. These models have recently been employed in joint
analyses of the GWTC-3 catalogue and LVK stochastic upper limits [544], and
may provide alternative forecasts of the uncertainty on the Ω𝐺𝑊 spectrum, as we
gather more GW data. These models will progressively be included and updated
in popstock. With popstock, we provide the GW community engaged in GW
source modelling, data analysis, and astrophysical interpretation with a user-friendly
tool for rapid background spectrum evaluation and easy integration of new models
as our understanding of the GW universe expands.

Acknowledgements

We thank Patrick Meyers and Alan Weinstein for invaluable discussions and insight.
We thank Thomas Callister for providing the population samples in [122], and for
carefully reading our work. We thank Nicholas Loutrel for consulting on waveform
models and their features. AIR is supported by the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie grant
agreement No 101064542, and acknowledges support from the NSF award PHY-
1912594. JG is supported by NSF award No. 2207758. The authors are grateful for
computational resources provided by the LIGO Laboratory and supported by Na-



195

tional Science Foundation Grants PHY-0757058 and PHY-0823459. This material
is based upon work supported by NSF’s LIGO Laboratory which is a major facility
fully funded by the National Science Foundation.



196

Appendix 12.A Deriving the Energy In GWs

We derive here the energy spectrum 𝑑𝐸/𝑑𝑓 carried by gravitational waves, in
vacuum. See, for example, [352, 482, 133]. We start by expanding the perturbed
metric 𝑔𝜇𝜈 to second order,

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ(1)𝜇𝜈 + ℎ(2)𝜇𝜈 , (12.14)

where 𝜂𝜇𝜈 is the Minkowski flat metric and it is assumed that the perturbation ℎ(𝑖)𝜇𝜈
is 𝑖th order in some small parameter controlling the scale of ℎ𝜇𝜈. Substituting the
above into the Einstein field equation gives

𝐺𝜇𝜈

[
ℎ(1)

]
+ 𝐺𝜇𝜈

[(
ℎ(1)

)2
]
+ 𝐺𝜇𝜈

[
ℎ(2)

]
= 8𝜋𝐺𝜏𝜇𝜈 , (12.15)

Where the first term is the Einstein tensor linear in the first order perturbation, the
second is the Einstein tensor terms quadratic in the first order perturbation, and
the third term is linear in the second-order perturbation. In vacuum, 𝜏𝜇𝜈 = 0,
and the solution for ℎ(1) (i.e. the plane wave solution) reduces the first term to
𝐺𝜇𝜈

[
ℎ(1)

]
= □ℎ(1)𝜇𝜈 = 0, in the Lorenz gauge. We can therefore rearrange the above

into a form that resembles the Einstein field equation,

𝐺𝜇𝜈

[
ℎ(2)

]
= −𝐺𝜇𝜈

[(
ℎ(1)

)2
]
, (12.16)

where the first-order term ℎ
(1)
𝜇𝜈 squared effectively forms a stress-energy (RHS) that

sources the second order curvature (LHS). In this analogy to the RHS of the Einstein
equation, we can define the effective stress energy (pseudo)-tensor of GWs [291]:

𝜏𝜇𝜈 ≡ − 1
8𝜋𝐺

𝐺𝜇𝜈

[(
ℎ(1)

)2
]
. (12.17)

A nice feature here is that the LHS of Eq. 12.16 satisfies the contracted Bianchi iden-
tities and therefore the RHS is divergence-free and can be interpreted as conserving
energy according to some observer. Expanding out (12.17) gives

𝜏𝜇𝜈 =
𝑐4

32𝜋𝐺
〈
𝜕𝜇ℎ𝛼𝛽𝜕𝜈ℎ

𝛼𝛽
〉
. (12.18)

The conservation law 𝜕𝜇𝑡
𝜇𝜈 = 0 implies

𝜕0𝜏
00 + 𝜕𝑖𝜏𝑖0 = 0 , (12.19)
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where 𝜏00 can be interpreted as a volumetric energy density, such that the energy 𝐸
is defined as 𝐸 =

∫
𝑑3𝑥𝜏00 and therefore the associated power is

𝑑𝐸

𝑑𝑡
= 𝜕0

∫
𝑑3𝑥𝜏00 . (12.20)

Substituting into Eq. 12.19 yields

𝑑𝐸

𝑑𝑡
+

∫
𝑑3𝑥𝜕𝑖𝜏

𝑖0 = 0 , (12.21)

which simplifies to
𝑑𝐸

𝑑𝑡
+

∫
𝑑3𝑥𝜕𝑧𝜏

𝑧0 = 0 (12.22)

for a wave moving along direction 𝑧. We employ the divergence theorem to convert
the volume integral into a surface integral,

𝑑𝐸

𝑑𝑡
+ 𝑧

∫
𝑑𝐴𝜏𝑧0 = 0 , (12.23)

which gives an expression for the energy flux (energy per unit time per unit area):

𝑑𝐸

𝑑𝐴𝑑𝑡
= −𝜏𝑧0𝑧 ≡ −𝜏00𝑧 , (12.24)

as 𝜕0ℎ𝑖 𝑗 = −𝜕𝑧ℎ𝑖 𝑗 = −𝜕0ℎ𝑖 𝑗 holds for a wave solution. Considering our gauge, the
only surviving terms are those for 𝜇, 𝜈 = 1 or 2,

𝜏00 =
𝑐4

32𝜋𝐺
〈
𝜕0ℎ11𝜕0ℎ

11 + 𝜕0ℎ12𝜕0ℎ
12 + 𝜕0ℎ21𝜕0ℎ

21+

+ 𝜕0ℎ22𝜕0ℎ
22〉 , (12.25)

and substituting in the polarization components of the wave ℎ𝜇𝜈 in the TT gauge
yields

𝜏00 =
𝑐2

16𝜋𝐺
〈
| ¤ℎ+ |2 + | ¤ℎ× |2

〉
. (12.26)

Solving for the energy flux of gravitational waves of Eq. (12.23) gives���� 𝑑𝐸𝑑𝐴𝑑𝑡 ���� = − 𝑐3

16𝜋𝐺
〈
| ¤ℎ+ |2 + | ¤ℎ× |2

〉
, (12.27)

where we have switched to the absolute value of this quantity with the understanding
that GWs are removing energy from the system. The surface area energy density is
then defined as

𝑑𝐸

𝑑𝐴
=

∫
𝑑𝑡

𝑐3

16𝜋𝐺
〈 ¤ℎ+(𝑡)2 + ¤ℎ×(𝑡)2〉 . (12.28)
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Figure 12.7: Impact of the inclusion of higher order modes in the waveform model
employed to evaluate the Ω𝐺𝑊 spectrum. On the left: 95% confidence on the
spectrum including the uncertainty on the PLPP mass model and the local merger
rate, assuming a fixed MD redshift evolution. On the right: percent difference
%ΔΩ𝐺𝑊 ( 𝑓 ) between Ω𝐺𝑊 spectra calculated using the same event samples, shown
as dashed and dotted curves on the left panel.

To expand the above we recall that, for a plane wave,

¤̃ℎ( 𝑓 ) =
∫

𝑑𝑡 ¤ℎ(𝑡)𝑒−𝑖𝜔𝑡 = 𝑖𝜔
∫

𝑑𝑡ℎ(𝑡)𝑒−𝑖𝜔𝑡 = 𝑖𝜔ℎ̃( 𝑓 ) , (12.29)

where in the final equivalence we have directly employed the definitaion of a Fourier
transform. Recalling Parseval’s theorem, we can write the surface area energy
density in terms of the Fourier transform ℎ̃( 𝑓 ),

𝑑𝐸

𝑑𝐴
=

∫ ∞

−∞
𝑑𝑓
𝑐3𝜔2

16𝜋𝐺
〈
ℎ̃+( 𝑓 )2 + ℎ̃×( 𝑓 )2〉

=
𝜋𝑐3

2𝐺

∫ ∞

0
𝑑𝑓 𝑓 2 〈

ℎ̃+( 𝑓 )2 + ℎ̃×( 𝑓 )2〉 , (12.30)

where the integral is taken over the sphere surrounding the source. Note that ℎ+ and
ℎ× terms include dependence on inclination 𝜄 and reference phase 𝜙0 (or, equiva-
lently, the observer’s position along the azimuth) and therefore must be included in
the integral over the area.

Appendix 12.B Impact of higher order modes on the GWB spectrum

For the sake of completeness, we append here findings on the impact on the Ω𝐺𝑊

spectrum due to the inclusion of higher order modes in the waveform model. Higher
order modes are subdominant harmonics excited during GW emission, where the
dominant harmonic is the ℓ = 2,𝑚 = 2 mode [345]. We compare the 95% confidence
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bands shown in 12.5.2 for the IMRPhenomD waveform model with bands obtained
using the IMRPhenomXPHM approximant [428], which includes the (ℓ, |𝑚 |) =

(2, 2), (2, 1), (3, 3), (3, 2), (4, 4) modes. As may be seen in Figure 12.7, for the
population of binaries considered in 12.5.2 which in particular is non-spinning and
non-precessing, there are negligible differences between the use of IMRPhenomD
and IMRPhenomXPHM. This is particularly evident when comparing the Ω𝐺𝑊

spectrum calculated using the same event samples employing the two waveforms,
shown as dashed and dotted curves in the left panel of Figure 12.7. The percent
difference between these two curves is reported in the right panel of Figure 12.7,
which remains consistently below 10% across the spectrum and is under 3% for
frequencies below 100 Hz.
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GRAVITATIONAL-WAVE TRANSIENT SOURCES AS A PROBE

OF THE LARGE-SCALE STRUCTURE

Yanyan Zheng, Nikolaos Kouvatsos, Jacob Golomb, et al. “Angular Power
Spectrum of Gravitational-Wave Transient Sources as a Probe of the Large-
Scale Structure”. In: Phys. Rev. Lett. 131.17 (2023), p. 171403. doi: 10.
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Abstract

We present a new, simulation-based inference method to compute the
angular power spectrum of the distribution of foreground gravitational-
wave transient events. As a first application of this method, we use
the binary black hole mergers observed during the LIGO, Virgo, and
KAGRA third observation run to test the spatial distribution of these
sources. We find no evidence for anisotropy in their angular distri-
bution. We discuss further applications of this method to investigate
other gravitational-wave source populations and their correlations to the
cosmological large-scale structure.

https://doi.org/10.1103/PhysRevLett.131.171403
https://doi.org/10.1103/PhysRevLett.131.171403
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13.1 Introduction

Since the first detection of a gravitational wave (GW) signal from a binary black hole
(BBH) coalescence in 2015 [14], LIGO, Virgo, and KAGRA (LVK) have detected
dozens more such signals during the first three observation runs [26]. At the end
of the next two observation runs, the number of detections is expected to reach the
thousands [16]. This abundance of detected events will allow us to continuously
refine our knowledge of the GW emitters.

In this context, an area of growing interest is the measurement of the spatial distri-
bution of GW (SDGW) transient sources and its relation to the large-scale structure
(LSS) of the universe [194, 389, 78, 415]. The SDGW provides a means to test the
LSS that is complementary to electromagnetic measurements as well as dark siren
analyses[5, 21], which rely on cross-referencing GW detections with galaxy cata-
logs and are prone to complications such as catalog incompleteness and selection
bias. Developing a scheme to accurately measure the SDGW constitutes one of the
critical milestones towards precision cosmology with GWs [76].

In this paper, we present a novel, simulation-based inference method to test the
SDGW that borrows from techniques used in electromagnetic precision cosmol-
ogy, in particular the study of the cosmic microwave background radiation (CMB).
Specifically, we show how to calculate the observed angular power spectrum of
foreground GW events and use it to probe the SDGW. This technique provides
complementary information to analogous studies based on the astrophysical GW
background, where the angular power spectrum is derived from the clustering statis-
tics of the BBH host galaxies [297, 295, 296, 93, 92].

As a first application of our method, we test the isotropic source distribution hy-
pothesis for the confident BBH mergers observed during the third LVK observing
run (O3). However, it should be stressed that our approach is not limited to this
specific instance. The technique that we present here can be easily generalized to
various GW sources, future GW searches with additional detections, and different
test hypotheses on the SDGW and its correlation with the LSS.

In the next two sections, we discuss the basics of our method, the selection of
GW events, the generation of synthetic signals to test the isotropic hypothesis, and
the production of sky localization maps via parameter estimation. In the last two
sections, we present the main results and discuss future extensions of this work.
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13.2 Methodology

Our method probes the spatial distribution of BBH merger events by computing their
observed angular power spectrum [135] and comparing it to a fiducial distribution.
In this work, we select the isotropic distribution, which corresponds to testing
whether BBHs are isotropically distributed in the local universe. First, we compute
the power spectrum of observed BBH events from the LVK GW catalogs. We choose
a suitable subset of these events by imposing the selection cuts detailed in the next
section. Then, we compute the power spectra of a number of mock sets obtained
by injecting synthetic signals into real detector data. We sample their parameters
from the latest LVK population analysis posterior distributions [28] and inject the
signals isotropically on the sky. We then select a subset of events by imposing
the same selection cuts used for the observed BBH mergers. The synthetic power
spectra are combined to produce a fiducial distribution of an isotropically distributed
angular power spectrum as would be measured by the LVK detectors. Finally, we
perform a statistical consistency test of the observed BBH angular distribution
with the fiducial isotropic distribution; for each multipole component of the power
spectrum, we compute the p-value that the observed multipole belongs to the fiducial
distribution.

We consider the subset of BBH events detected during the LVK O3 observing run
with a false alarm rate (FAR) smaller than 1 yr−1 as reported in Ref. [28]. We further
restrict our sample to three-detector events. This is required for the generation of a
consistent fiducial angular distribution, as the accuracy of sky localizations depends
on the number of detectors [499]. These conditions restrict the sample of O3
events to 34. These events constitute our catalog of observed signals. To generate
the synthetic signals, we draw their source parameters from their inferred median
population distributions [28], assuming the Power Law + Peak model for the primary
mass [524] with a power law on mass ratio, the Default spin model [521, 582],
and a power law model for redshift evolution [228]. The phase and orientation
parameters are sampled from distributions with isotropic orientations. We inject
the signals into real detector data with an isotropic distribution in the sky. The
times of the injections are uniformly sampled during O3. We then downselect these
times to periods that do not overlap with known non-astrophysical transient noise
[171] and GWTC-3 confident detections [26]. The signals are simulated with the
IMRPhenomPv2 [267, 490] waveform model. Selecting the synthetic events based
on their FAR is computationally expensive, as it requires doing PE for the full set
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of events. To avoid this computational cost, we substitute the FAR selection cut
with a threshold on the optimal network signal-to-noise ratio (SNR) 𝜌𝑁 . We choose
𝜌𝑁 > 10, following the approximate threshold used for the semianalytic sensitivity
estimates in Ref. [28].

We generate a catalog of 3,400 synthetic events. This allows us to produce meaning-
ful statistical results while limiting the computational cost required to perform PE
and generate the sky localization maps. We use the synthetic signals to create 100
random mock sets of 34 events each. These sets provide independent realizations of
what the detectors would observe under the hypothesis that the events are isotropi-
cally distributed in the sky. We use these sets to generate the fiducial distribution.
We perform PE of all observed and synthetic events with bilby pipe [67]. We
use the IMRPhenomPv2 waveform for the signal model and draw the samples from
the posterior distribution with the nested sampler dynesty [507].

We adopt the standard LVK uniform priors on the mass ratio and chirp mass from
Ref. [26]. We restrict the chirp mass to a ±12𝑀⊙ range around the injected values of
the synthetic events and the median values of the O3 observed events. Additionally,
we constrain the priors on the primary and secondary masses to be within the
interval [1, 120] 𝑀⊙. The prior on all other parameters is chosen according to
the uninformative priors adopted in standard LVK analyses [26]. We then use the
posterior samples for the declination and the right ascension to produce sky maps.

13.3 Angular Power Spectrum

Following Ref. [135], we treat the event sky localization error regions as probability
density heat maps. We generate the combined sky localization map of the observed
GW events, 𝑀 (𝜒, 𝜙), by stacking the sky localization density maps of all events
in the observed catalog. Here, 𝜒 and 𝜙 are the polar and azimuthal angles on the
celestial sphere, respectively. Figure 13.1 shows the Mollweide representation of
𝑀 (𝜒, 𝜙). We repeat this procedure to obtain a cumulative sky localization map
for each set of synthetic events. Figure 13.2 shows the combined sky localization
map obtained by stacking the 100 synthetic maps, each made from 34 events. The
map shows that the synthetic events are isotropically distributed in the sky. It also
depicts what the GW sky would look like with 3400 foreground BBH events, a not
too unrealistic scenario in a few years.

We then compute the angular power spectra of the combined sky localization maps
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Figure 13.1: Combined sky localization map of the O3 BBH events considered in
the analysis. The sky localization of each event is generated with Bayestar [499]
from the PE posterior samples for the declination and the right ascension. The map
is created with the Healpy package [600, 259].

Figure 13.2: Combined sky localization map of the synthetic BBH events that are
used to build the fiducial power spectrum. Their isotropic distribution in the sky is
shown by the map.

by expanding each of them into spherical harmonics:

𝑀 (𝜒, 𝜙) =
∑︁
𝑙𝑚

𝛼𝑙𝑚𝑌𝑙𝑚 (𝜒, 𝜙) . (13.1)

The multipole components of the angular power spectrum are obtained by summing
the absolute square of the 𝛼𝑙𝑚 coefficients of the expansion over 𝑚:

𝐶𝑙 =
1

2𝑙 + 1

∑︁
𝑚

|𝛼𝑙𝑚 |2 . (13.2)

The physical information contained in the power spectrum can also be expressed in
terms of the two-dimensional (angular) correlation function (CF). The CF describes
the excess probability of finding two objects in the directions �̂�1 and �̂�2 and angular
separation 𝜃 with respect to a uniform distribution. Given the cumulative sky
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localization map 𝑀 (𝜒, 𝜙), the CF is defined as 𝐶 (𝜃) = ⟨𝑀 (�̂�1) · 𝑀 (�̂�2)⟩21, where
the average is taken over the observed sky with angular separation held fixed [135].
The CF can be written in terms of the power spectrum as

𝐶 (𝜃) = 1
4𝜋

∑︁
𝑙

(1 + 2𝑙)𝐶𝑙𝑃𝑙 (cos 𝜃) , (13.3)

where 𝑃𝑙 (cos 𝜃) denotes the Legendre polynomial of order 𝑙 and argument cos 𝜃.
Typically, the finite beam resolution of the detectors leads to a high-𝑙 cutoff 𝑙max

in Eq.(13.3). This effect can be modeled by introducing a window function 𝑊𝑙 ∝
exp

[
−𝑙 (𝑙 + 1)𝜎2

res
]
, where 𝜎res is the detector resolution [568].

The diffraction-limited angular resolution of the LIGO-Virgo network determines
the high-𝑙 cutoff as 𝑙max ∼ 𝜋/𝜃res, where 𝜃res is the angular resolution. We estimate
𝑙max directly from the distributions of the skymaps. We fit the distribution of the
observed skymap 90% contour regions as a proxy for the square angular resolution
ΔΩres = 2𝜋[1 − cos(𝜃res/2)] with a gamma distribution. We then perform a one-
tailed test and choose ΔΩres such that 90% of the observed events have a larger
localization area than that value. This provides an estimate for the angular resolution
of 𝜃res,𝑜 ∼ 6.95◦, corresponding to 𝑙max,𝑜 ∼ 26. We then repeat the procedure for
the whole set of synthetic events. This yields 𝜃res,𝑠 ∼ 4.83◦, corresponding to
𝑙max,𝑠 ∼ 37. The resolution of the simulated set is better than the resolution of the
observed set. We expect this is due to the larger number of events in the simulated
set compared to the observations. As a consistency check, we also estimate ΔΩres

using the theoretical estimate of Ref. [566]. For a monochromatic GW at frequency
𝑓 , the square angular resolution of a three-detector network is

ΔΩres ≈ 8
(
150Hz
𝑓

10
𝜌N

)2 1017cm2

𝐴N

1/27
𝜌2

1𝜌
2
2𝜌

2
3/𝜌

6
N

√
2/2

|sin 𝑖N |
, (13.4)

where 𝐴𝑁 is the triangular area formed by the three detector sites, 𝑖𝑁 is the angle
between the wave direction and the three-detector plane, 𝜌𝑁 is the network optimal
SNR of the GW signal, and 𝜌𝑖 (𝑖 =1,2,3) are the single-detector SNRs. We consider
a triangular area 𝐴N = 1017cm2 for the LIGO-Virgo network and a mean incidence
angle of 45◦ with the detector plane. We use the posterior sample median values
to estimate the SNRs and approximate 𝑓 with the ISCO frequency obtained from
the posterior median chirp mass and mass ratio. Using the means of the SNRs and
𝑓 in Eq. (13.4), we obtain the angular resolution 𝜃res,𝑜 ∼ 4.04◦ for the observed
events and 𝜃res,𝑠 ∼ 4.44◦ for the synthetic events, corresponding to 𝑙max,𝑜 ∼ 45 and
𝑙max,𝑠 ∼ 41, respectively. The theoretical estimate gives higher bounds than the data
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sets. This is expected, as Eq. (13.4) is derived under optimal assumptions and a
Fisher approximation. In the following, out of an excess of caution, we will use
𝑙max = 26 as a conservative upper bound.

13.4 Results

Figure 13.3 shows the power spectrum of the observed events (red curve) and the
mean spectrum of the 100 synthetic sets (black curve) up to 𝑙max = 26. For each
𝑙, we fit the 𝐶𝑙 distribution from the synthetic sets with a gamma distribution. The
three gray-filled areas in Figure 13.3 (darker to lighter gray) denote the 1 – 3𝜎
confidence level regions from the mean. All observed 𝐶𝑙 values lie within the 2𝜎
band. Therefore, we conclude that the observed angular distribution of observed
BBH events shows no significant inconsistencies relative to an isotropic distribution.
To quantify this statement, we performed two statistical tests. In the first test, we
compute the cumulative distributions of p-values for the observed 𝐶𝑙 under the
hypothesis that the BBH are distributed isotropically in the sky.
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Figure 13.3: The observed power spectrum of the O3 BBH events considered in the
analysis (red curve) and the fiducial power spectrum obtained from the 100 synthetic
sets under the isotropic hypothesis (black curve). The gray-filled regions denote 1
– 3𝜎 deviations from the mean.

Figure 13.4 shows the cumulative distributions of p-values (red dots). The expected
distribution is represented by the black dashed line, with the gray-filled regions
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Figure 13.4: The cumulative distribution of observed p-values for the 𝐶𝑙 . The black
solid line indicates the expected distribution under the isotropic hypothesis. The
gray-filled regions correspond to 1 – 3𝜎 deviations from the expected distribution.

denoting the 1 – 3𝜎 confidence levels. All p-values lie within the 2𝜎 region, in
agreement with the results of Figure 13.3. In the second test, we assess the goodness
of fit of the observed power spectrum with the fiducial spectrum by performing a 𝜒2

test, which yields a p-value of 0.82, in agreement with the null isotropic hypothesis.

Finally, we test the isotropy hypothesis with the CF. Figure 13.5 shows the CF for the
observed set and the fiducial correlation function obtained from the 100 synthetic sets
under the isotropic hypothesis, where we have set the window function resolution
to 𝜎res = 𝑙max. Consistent with the power spectrum result, the observed CF is
in agreement with the fiducial isotropic distribution within 2𝜎. The behavior of
the CF at small scales, 𝐶 (𝜃) = (𝜃/𝜃0)1−𝛾, provides a test of isotropy [135]. We
first compute the power-law slope 𝛾 of each synthetic CF at the minimum angular
resolution 𝜃res,𝑠 with a log-log fit. Averaging the values, we obtain a fiducial value
of 𝛾s = 2.05 ± 0.35, which is consistent with an isotropic distribution (𝛾 = 2). We
then compute the power-law slope for the observed set at the same angular scale.
The observed power-slope is 𝛾o = 1.96. This is in agreement with the null isotropic
hypothesis with a p-value of 0.45.
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Figure 13.5: The observed correlation function of the O3 BBH events (red curve)
and the fiducial correlation function under the isotropic hypothesis (black curve).
The gray-filled regions denote 1 – 3𝜎 deviations from the mean.

13.5 Conclusions

In this paper, we have developed a new, simulation-based inference framework to
probe the spatial distribution of observed, foreground GW events. Our approach
compares the power spectrum of observed GW signals to a fiducial power spec-
trum from a theoretical distribution. As an application of this method, we tested
the isotropy hypothesis of the BBH mergers observed during the O3 LVK observing
run. As foreseen [194, 389, 78, 415], we found no evidence of anisotropy at the 2𝜎
confidence level.

Our method provides a powerful framework for testing the universe’s LSS that
complements current GW background searches [30, 20]. Due to the phase-coherence
of matched-filter searches employed in GWTC-3 [26], we are able to access higher
multipole moments than background searches [456]. Relying on resolved sources
allows us to achieve astrometric resolution at the square degree level [76]. Although
the two approaches essentially target the same signal in the limit of many detections,
our method has a higher resolution and is more sensitive than background analyses.

A first, straightforward extension of this work is to refine the test of BBH isotropy as
more GW events are discovered. Tests of specific theoretical models of anisotropic
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distributions and cross-correlations with astrophysical populations in the EM domain
are two additional applications. Our approach can also be directly extended to
include information about the source distances. Statistical associations between the
observed GW populations and other extragalactic populations may be within reach
of current and next-generation GW detectors. This method will provide a means to
rapidly detect and quantify any such associations.
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C h a p t e r 14

GROWING PAINS: UNDERSTANDING THE IMPACT OF
LIKELIHOOD UNCERTAINTY ON HIERARCHICAL

BAYESIAN INFERENCE FOR GRAVITATIONAL-WAVE
ASTRONOMY

Colm Talbot and Jacob Golomb. “Growing pains: understanding the impact
of likelihood uncertainty on hierarchical Bayesian inference for gravitational-
wave astronomy”. In: Mon. Not. Roy. Astron. Soc. 526.3 (2023), pp. 3495–
3503. doi:10.1093/mnras/stad2968. arXiv:2304.06138[astro-ph.IM].

Abstract

Observations of gravitational waves emitted by merging compact bi-
naries have provided tantalising hints about stellar astrophysics, cos-
mology, and fundamental physics. However, the physical parameters
describing the systems, (mass, spin, distance) used to extract these in-
ferences about the Universe are subject to large uncertainties. The most
widely-used method of performing these analyses requires perform-
ing many Monte Carlo integrals to marginalise over the uncertainty
in the properties of the individual binaries and the survey selection
bias. These Monte Carlo integrals are subject to fundamental statistical
uncertainties. Previous treatments of this statistical uncertainty has fo-
cused on ensuring the precision of the inferred inference is unaffected,
however, these works have neglected the question of whether sufficient
accuracy can also be achieved. In this work, we provide a practical
exploration of the impact of uncertainty in our analyses and provide a
suggested framework for verifying that astrophysical inferences made
with the gravitational-wave transient catalogue are accurate. Applying
our framework to models used by the LIGO-Virgo-KAGRA collabora-
tion and in the wider literature, we find that Monte Carlo uncertainty in
estimating the survey selection bias is the limiting factor in our ability
to probe narrow population models and this will rapidly grow more
problematic as the size of the observed population increases.

https://doi.org/10.1093/mnras/stad2968
https://arxiv.org/abs/2304.06138
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14.1 Introduction

Using data from the first three observing runs of Advanced LIGO [1] and Advanced
Virgo [38] ≈ 70 signals from the merger of compact binary systems have been iden-
tified [26], along with a few tens of less-significant additional candidate events [398,
406]. While individual observations of compact binary mergers provide insights
into astrophysics and cosmology, maximising the physical resolving power using the
catalogue of gravitational-wave transients requires analysing the entire population as
a hierarchical Bayesian inference problem. Due to computational constraints, these
analyses are performed using a multi-stage process to calculate the population-level
likelihood [see, e.g., 28, 536, 560, 359].

First, segments of data that are likely to contain gravitational-wave signals are iden-
tified by search pipelines [e.g., 56]. These pipelines are only sensitive to the loudest
signals and so the observed sample is biased in favour of nearby high-mass binaries
with black hole angular momenta (“spins”) aligned with the orbital angular momen-
tum [129]. This selection bias is typically accounted for by estimating the fraction
of binaries that we expect to observe using simulated “injection” campaigns [193,
538, 213].

Next, the strain data from gravitational-wave detectors containing the observed
transients is analysed with a fiducial reference model for the population (often
referred to as the fiducial prior distribution) in order to obtain samples from the
fiducial posterior probability distribution for the parameters (masses, spins, etc.) of
each binary. While the fiducial prior distribution impacts the fiducial posterior, it is
typically chosen to avoid imprinting astrophysical assumptions on the results. For
example, binaries are assumed to be distributed homogeneously and isotropically
throughout the Universe. The fiducial model for black hole masses is usually
uniform in the mass of each black hole and uniform in spin magnitude and isotropic
in direction.

In the final stage, these fiducial samples are importance sampled (“reweighted”)
using a parameterised model for the underlying population to compute the likelihood
for the observed data given population-level parameters (e.g., the maximum allowed
black hole mass) marginalised over the per-event parameters. For each model for the
underlying population, the fraction of observable binaries is also estimated using
importance sampling on the injected signals from the first stage [e.g., 222, 348,
216].
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The importance sampling step is an example of using Monte Carlo summation to
approximate an integral and as such comes with some intrinsic uncertainty that
enters the analysis as a source of systematic error. Typically, this uncertainty is
ignored when performing the analysis, however, in recent years several attempts
have been made to quantify this uncertainty and theoretically motivated heuristics
have been proposed to estimate and (hopefully) mitigate its impact [213, 193]. In
this work, we perform a data-driven analysis of the potential systematic uncertainties
from our use of Monte Carlo integration. We note that while we apply our formalism
to the problem of population inference for gravitational-wave astronomy, it is widely
applicable to any context in which an approximate estimator of the true likelihood
is used in a Bayesian analysis.

The remainder of this paper is structured as follows. In the next Section, we describe
how uncertainty appears in our estimate of the population likelihood through Monte
Carlo integration and suggest a set of convergence criteria. In Section 14.3, we
analyse a simple toy model to examine the impact of uncertainty on the accuracy of
inference. Using this, we establish a threshold beyond which we expect our results
to be significantly biased. Following this, we take a range of models previously
considered for population analyses and quantify the uncertainty in these results in
Section 14.4. Finally, we provide a closing discussion.

14.2 Uncertainty in the Population Likelihood Approximation

The likelihood function typically employed for an analysis of a population of 𝑁
observed systems with source-dependent selection effects can be written [see, e.g.,
536, 560, 359, for details]

L({𝑑𝑖}|Λ) ∝
𝑁∏
𝑖

L(𝑑𝑖 |Λ)
𝑃det(Λ)

. (14.1)

Here, the {𝑑𝑖} are the data containing the observed signals (indexed by 𝑖). In the
context of gravitational-wave astronomy, this is strain data recorded by gravitational-
wave interferometers. The selection function 𝑃det is the fraction of all signals that
would be observed for a population described by population hyper-parameters Λ.
We note that this likelihood has been marginalised over the overall rate of events
(assuming a uniform-in-log rate prior) and the parameters describing each of the
individual systems.

Each of the terms L(𝑑𝑖 |Λ) and 𝑃det(Λ) are computed by marginalising over 𝜃, the
≈ 15 parameters describing the individual binaries and many more describing the
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noise properties of the interferometers

L(𝑑𝑖 |Λ) =
∫

𝑑𝜃𝑝(𝑑𝑖, 𝜃 |Λ) =
∫

𝑑𝜃L(𝑑𝑖 |𝜃)𝑝(𝜃 |Λ) (14.2)

𝑃det(Λ) =
∫

𝑑𝑑

∫
𝑑𝜃𝑝(𝑑, 𝜃 |Λ)Θ(𝜌(𝑑) − 𝜌∗) (14.3)

=

∫
𝑑𝑑

∫
𝑑𝜃L(𝑑 |𝜃)𝑝(𝜃 |Λ)Θ(𝜌(𝑑) − 𝜌∗). (14.4)

In both expressions, we have expanded the joint distribution for the observed data
and signal parameters into the population model 𝑝(𝜃 |Λ) and the likelihood of
observing data given single-event parameters L(𝑑 |𝜃). The integral over 𝑑 in the
expression for 𝑃det is over all of the data collected by the instrument while the 𝑑𝑖
represents the data around the time of a specific observed signal. The final term
is a Heaviside step function for the detection statistic (e.g., signal-to-noise ratio or
false-alarm rate) 𝜌 with threshold 𝜌∗. In order to minimise the cost of performing
the analysis, these integrals are commonly computed using Monte Carlo estimators
using some reference set of samples from the fiducial posterior distribution. We
denote the estimator of quantity 𝑥 as 𝑥. As a specific example, the estimator of the
log-likelihood (Eq. 14.1) is

ln L̂({𝑑𝑖}|Λ) =
(
𝑁∑︁
𝑖

ln L̂(𝑑𝑖 |Λ)
)
− 𝑁 ln �̂�det(Λ). (14.5)

In practice, these estimates are calculated using Monte Carlo integration:

𝐼 =

∫
𝑑𝑥 𝑓 (𝑥)𝑝(𝑥) ≡ ⟨ 𝑓 ⟩𝑝(𝑥) (14.6)

𝐼 =
1
𝑀

𝑗=𝑀∑︁
𝑥 𝑗∼𝑝(𝑥)

𝑓 (𝑥 𝑗 ). (14.7)

Here 𝐼 is the estimator of the integral 𝐼 and 𝑀 is the number of samples in the Monte
Carlo integral. We note that 𝑝(𝑥) is a normalised probability distribution and 𝑓 (𝑥) is
an arbitrary function of parameters 𝑥. Every Monte Carlo has an intrinsic statistical
uncertainty

𝜎2
𝐼 =

1
𝑀

[
⟨ 𝑓 2⟩𝑝(𝑥) − ⟨ 𝑓 ⟩2

𝑝(𝑥)

]
≡ 1
𝑀
�̄�2
𝐼 . (14.8)

We define the quantity �̄�2
𝐼

as the intrinsic variance between the proposal distribution
𝑝(𝑥) and the target distribution 𝑓 (𝑥)𝑝(𝑥). In general, the uncertainty in a Monte
Carlo integral will be minimised by choosing 𝑝(𝑥) and 𝑓 (𝑥) to minimise �̄�𝐼 . For
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example, for most gravitational-wave population analyses (including this work) we
choose

𝑓 (𝜃) ∼ 𝑝(𝜃 |Λ)
𝑝(𝜃 |∅) , 𝑝(𝜃) ∼ L(𝑑 |𝜃)𝑝(𝜃 |∅),

where 𝑝(𝜃 |∅) is the fiducial prior distribution. However, in some cases it is beneficial
to define [e.g., 582, 256] 𝑓 (𝜃) ∼ L(𝑑 |𝜃), 𝑝(𝜃) ∼ 𝑝(𝜃 |Λ). We also note that the
variance scales inversely with the number of samples. A final quantity related to
Monte Carlo integrals that we will need is the effective number of independent
samples [312]

𝑛eff = 𝑀
⟨ 𝑓 ⟩2

𝑝(𝑥)

⟨ 𝑓 2⟩𝑝(𝑥)
. (14.9)

In [213] the author demonstrates that for small values of 𝑛eff a Gaussian approxima-
tion to the likelihood uncertainty breaks down. In previous works [e.g., 213, 28], 𝑛eff

has been used to assess the convergence of the likelihood estimator and to impose
data-dependent cuts on the allowed parameter space. We prefer to work directly with
the estimated variance and include 𝑛eff here just to compare with previous work.

Since we assume that the reference samples used in each of the Monte Carlo integrals
are independent, the variance in the estimate of the population (log-)likelihood is

𝜎2
ln L̂ (Λ) =

𝑁∑︁
𝑖

𝜎2
ln L̂𝑖

(Λ) + 𝑁2𝜎2
sel(Λ). (14.10)

We note that the contribution to the total variance from the selection function grows
quadratically with the population size, as Var(𝑁𝑥) = 𝑁2Var(𝑥).

Assuming the individual observations are independent and identically distributed
draws from the underlying population, we recast this expression in terms of an
average per-observation uncertainty 𝜎obs to more clearly see the dependence of both
terms with the population size

𝜎2
ln L̂ (Λ) = 𝑁𝜎

2
obs(Λ) + 𝑁

2𝜎2
sel(Λ). (14.11)

We have explicitly retained the dependence of this variance on the hyperparameters.
We justify the assumption that 𝜎obs does not vary with time in Section 14.4.1.

Since we are predominantly interested in differences in log-likelihood for points
with significant posterior support, we need to limit the error in the difference of log-
likelihood estimators, Δ ln L̂. In general, the errors will not be independent, and so
we calculate the variance in this quantity 𝜎2

Δ ln L̂
as defined in Eq. A11 in [193]. We
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assume the error in the estimator of the log-likelihood is Gaussian distributed as the
contribution to the population log-likelihood from the per-event terms is the sum of
𝑁 independently and identically distributed estimators and so by the central limit
theorem follows a normal distribution and in the high effective-sample size limit the
selection function term also follows a normal distribution [213] We therefore write
𝜎2
Δ lnL = 𝜎2

Δ ln L̂
.

If the uncertainties in the estimators are uncorrelated with Λ, we will have 𝜎2
Δ ln L̂

=

𝜎2
ln L̂

. In [193], the authors demonstrate that under certain conditions the variance
in likelihood differences in “local neighbourhoods” avoids the worst-case scaling in
Eq. 14.11 and rather find that

𝜎2
Δ ln L̂ = 𝜎2

obs(Λ) + 𝑁𝜎
2
sel(Λ) (14.12)

for a simple example model due to correlation of the Monte Carlo errors between
points with significant posterior support. It is unclear a priori when the local
neighbourhood approximation is valid, in this work, we numerically test whether
this scaling holds for the specific case of inferring the population properties of
merging binary black hole systems.

14.2.1 Uncertainty as a draw from a Gaussian process

To build an understanding of the impact of uncertainty, we assert that the estimated
difference in log-likelihood is a fair draw from the Gaussian process with mean
function Δ lnL and (potentially non-stationary) kernel function Σ(Λ,Λ′)

Δ ln L̂({𝑑𝑖}|Λ,Λ′) ∼ GP(Δ lnL({𝑑𝑖}|Λ,Λ′), Σ(Λ,Λ′)). (14.13)

Here Σ(Λ,Λ′) = 𝜎2
Δ lnL is the 2𝐷-dimensional covariance matrix, where 𝐷 is the

dimensionality of the population model. In practice, we do not have access to the true
kernel function, and so we approximate it using a numerical covariance matrix using
the covariance between the likelihood estimator at each pair of points we consider.
Specifically, we construct the approximate kernel by numerically calculating

Σ(Λ,Λ′) = 𝜎2
Δ ln L̂ (14.14)
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following Eq. A11 in [193]. We will use this quantity to estimate the average
variance over the posterior for the hyperparameters〈

Δ ln L̂
〉
≡

∫
𝑑Λ

∫
𝑑Λ′𝑝(Λ|{𝑑𝑖})𝑝(Λ′|{𝑑𝑖})Σ(Λ,Λ′) (14.15)

≈ 1
𝐾2

𝑘=𝐾∑︁
𝑘=1

𝑘 ′=𝐾∑︁
𝑘 ′=1

Σ(Λ𝑘 ,Λ𝑘 ′) (14.16)

Λ𝑘 ∼ 𝑝(Λ|{𝑑𝑖}). (14.17)

We note that this is the average of the covariance matrix weighted by the posterior
support.

This is a slightly different statistic than the one considered in Essick and Farr [193],
where the authors replace the integral over Λ′ with a fixed value at the mean of the
hyper-posterior

Λ̄ =

∫
𝑑Λ𝑝(Λ|{𝑑𝑖})Λ.

While the simpler expression used in Essick and Farr [193] likely produces compa-
rable results for posterior distributions with Gaussian uncertainties, for posteriors
with more complex shapes, e.g., multimodality or curving degeneracies, the mean
of the posterior is not in general representative of points with significant posterior
support. In contrast, the full integral over Λ,Λ′ ensures that we accurately represent
the variance between all pairs of points with posterior support.

14.3 How uncertain can we be?

Before turning to real examples, we first motivate an acceptable level of uncertainty
in the log-likelihood estimator. Specifically, we want to know a threshold value of
⟨Δ ln L̂⟩ above which we expect to see significant biases. To test this, we consider
a simple one-dimensional problem where the true posterior distribution is a unit
normal distribution. To verify that the threshold is independent of the structure
of the covariance matrix, we perform this experiment with four analytic kernel
functions: a block-diagonal kernel where each block is fully correlated with a
random number of blocks, a Matérn kernel with 𝜈 = 5/2 and random correlation
length, a completely uncorrelated kernel, and a completely correlated kernel. We
find that the result is independent of the kernel choice.

For 4800 iterations, we choose a covariance matrix using one of our kernels with
a random value of ⟨Δ ln L̂⟩ drawn logarithmically between [10−2, 20]. For each
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covariance matrix, we draw 100 realisations from the covariance matrix Σ(Λ,Λ′)
to generate biased posterior probability distributions. For each of these realisations,
we compute the fraction 𝑓 of the posterior support below a random point drawn
from the true posterior. If there is no bias, 𝑓 should follow a uniform distribution
in [0, 1]. We, therefore, compute a 𝑝value comparing the 100 values of 𝑓 to the
uniform distribution. In Figure 14.1, we show a two-dimensional histogram of the
result of this numerical experiment. We see that when ⟨Δ ln L̂⟩ ≲ 1, the 𝑝value are
uniformly distributed indicating unbiased recovery. However, as the magnitude of
the uncertainty rises, the distribution of 𝑝value skews heavily towards small 𝑝value.
As a final quantitative test, we compare the distribution of 𝑝value in each bin of
⟨Δ ln L̂⟩ to compute a combined 𝑝value. We see that the combined 𝑝value is very
small for ⟨Δ ln L̂⟩ ≳ 1. We will therefore use ⟨Δ ln L̂⟩ ≳ 1 as our heuristic threshold
for significant bias.

14.4 How uncertain are we?

We now turn to a tangible example of uncertainty in the inference performed on the
population of binary black hole mergers observed during the first three observing
runs of Advanced LIGO and Advanced Virgo with a false alarm rate of less than
one per year. The analyses performed in [28] imposed cuts on the convergence
of the Monte Carlo integrals that implicitly limit the variance in the likelihood
to avoid spurious features in the posteriors. All analyses in that work imposed a
condition first proposed in [213] demanding that for the selection function 𝑛eff > 4𝑁 .
Some models also enforced the condition that each marginalization over the single
event posteriors had 𝑛eff > 𝑁 . We consider one of the models that applied both
convergence conditions.

We compute the uncertainty in the estimated likelihood for one of the models used
in the latest LIGO-Virgo-KAGRA analysis. Specifically, we use the PowerLaw +
Peak mass model [524], Default spin model [521, 582], and power-law redshift
model [228]. For our default analysis configuration, we use the same 4278 per-event
posterior samples [151] and injection set [530] used in the equivalent analysis in [28]
and do not apply any constraints on the convergence of the Monte Carlo integrals.

For all of our analyses, we sample the population posterior using the nestle [82]
nested sampling package as implemented inBilby [67]. We useGWPopulation [520]
to compute the likelihood function. We use the same prior distributions as in [28].
For each of the posterior samples, we evaluate the uncertainty in each of the 70 Monte
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Figure 14.1: 𝑝value vs uncertainty in difference in log-likelihood averaged over
the posterior distribution (⟨Δ ln L̂⟩). For unbiased analyses at a given value of
⟨Δ ln L̂⟩, we expect 𝑝value to follow a uniform distribution in [0, 1]. The upper
panel shows a combined 𝑝value for all the points in the histogram falling within that
range of ⟨Δ ln L̂⟩. We note that this is satisfied for ⟨Δ ln L̂⟩ ≲ 1, however, when the
uncertainty is larger than that value, the analysis is biased on average.

Carlo integrals involved (one for each event and the selection function integral).

14.4.1 Evolution of 𝜎obs

We begin by testing our assumption that rewriting the total variance in terms of the
average per-event variance 𝜎obs is reliable. One method in which this could break
down is if the average uncertainty changes as the sensitivities of the observatories
improve. In Figure 14.2, we show the average contribution to the covariance over
the posterior for the hyperparameters for each event ordered by observation date.
The different colours correspond to events observed in different years. There is no
obvious trend over time which validates our approximation of 𝜎2

obs = ⟨𝜎2
𝑖
⟩. We

show this value with the dashed grey line. The event with the largest contribution
to the uncertainty is GW190517, which has masses consistent with the excess at
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Figure 14.2: The per-event contribution to the likelihood covariance averaged over
the posterior support for our population hyperparameters. We divide the events by
the year of the observation, approximately corresponding to different observing runs
of Advanced LIGO/Advanced Virgo. We note that there is no obvious trend with
time, indicating that we can reliably consider the average uncertainty 𝜎2

obs = ⟨𝜎2
𝑖
⟩

(shown by the dashed grey line).

∼ 35𝑀⊙ and large inferred spins.

14.4.2 Scaling with the population size

In order to estimate the scaling of the uncertainty with the size of the catalogue,
we randomly sample observations from the total catalogue to simulate smaller cata-
logues and scale the uncertainty on the selection function appropriately. Specifically,
we consider catalogues with increments of 5 events from 5-65 and all 69 events.
For each catalogue size, we sample from the hyper-posterior and compute the aver-
age variance in the estimated differences of log-likelihood values over the posterior
samples ⟨Δ ln L̂⟩. We do not apply any of the ad-hoc restrictions on Monte Carlo
integral convergence proposed in [213, 28] and described above in these analyses.
We fit a simple model to the uncertainty coming from the per-event terms and the
selection function to obtain fits for the contribution from the individual events and
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Figure 14.3: Scaling of the uncertainty in the log-likelihood averaged over the
full posterior support with the population size for a simple parametric population
model. The dashed vertical lines show the number of confident binary black hole
events in the gravitational-wave transient catalogue at the time of publication of
GWTC-1 [12], GWTC-2 [24], and GWTC-3 [26]. The gray filled region indicates
the projected number of binary black hole observations during the next observing
run of the international gravitational-wave detector network [423, 307]. The purple
shaded region indicates heuristic values for when the uncertainty in the likelihood is
likely to cause noticeable bias in the analysis. The solid curves show the empirically
obtained uncertainties and the dashed curves are extrapolations based on the power-
law fit to the per-event contribution (orange) and the contribution from the selection
function (green). The total uncertainty is shown in blue.

the sensitivity. The model for the total variance is

⟨Δ ln L̂⟩ = 𝜎2
obs𝑁

𝑎 + 𝜎2
sel𝑁

𝑏 . (14.18)

Here, we emphasise that Δ lnL is proportional to the variance in the estimator and
not the standard deviation. We note that Eq. 14.11 implies 𝑎 = 1, 𝑏 = 2 while
if the assumptions from [193] hold we will have 𝑎 = 0, 𝑏 = 1. We perform this
calculation for both the mean variance and the mean covariance over the posterior
support.

In Figure 14.3, we show the total uncertainty (blue) along with the contributions
from the per-event terms (orange) and the selection function (green) as a function
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Figure 14.4: The same a Figure 14.3 but with a more flexible model. We note
that the same general features are present, however, for this model, the uncertainty
grows much more rapidly with population size.

of the number of events with the solid curves. The dashed-coloured curves show
projections for larger populations based on the analytic fit. The dashed grey lines
indicate the number of events in each of the first three gravitational-wave transient
catalogues and the grey-shaded region shows a plausible range of observations
we may expect after the upcoming fourth gravitational-wave observing run [423,
307]. The purple-shaded region shows where, heuristically, we may expect to see
noticeable biases, following the criteria developed in Section 14.3.

We find that in practice, the scaling of the uncertainty lies between the best-case
scenario from [213, 193] and the worst-case scenario in Eq. 14.11. Specifically,
we find 𝑎 = 0.7, 𝑏 = 1.6. The dominant source of uncertainty is from estimating
the selection function when the population is larger than ≈ 10 events. We note
that for populations larger than ≈ 40 events, the uncertainty is consistently in the
purple-shaded region. This is consistent with the fact that ad-hoc cuts on the prior
space or Monte Carlo convergence were needed to avoid significant biases in [29].

To test if this scaling depends on the functional form used to fit the population, we
repeat the above calculation with a more flexible model for the primary mass and
spin parameters. Specifically, we take the exponential-spline-modulated power-law
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mass distribution from [186] and the exponential-spline model for black hole spin
magnitudes and tilt angles from [257]. For the mass distribution, we use ten spline
nodes spaced logarithmically between [2, 100]𝑀⊙ and for the spin parameters we
take six nodes equally spaced over the relevant domain. For all spline nodes, our
prior on the amplitudes is a unit normal distribution, except for the endpoints for the
mass distribution which are fixed to zero.

In Figure 14.4, we show the same as Figure 14.3 with this more flexible model. We
see that the average covariance in both the per-event and selection function terms
grows more rapidly in this case than for the simpler model (a=1.0, b=1.9). The more
extreme scaling may be due to the greater flexibility of the spline model causing the
“local neighbourhood” assumption of [193] to be less appropriate.

14.4.3 Scaling with the size of Monte Carlo integrals

Having established numerically how the size of the uncertainty in the likelihood
estimates varies with the size of the population and configuration settings, we turn
to how the number of samples per Monte Carlo integral impacts the uncertainty for
this concrete example. To address this, we repeat the uncertainty calculation for the
PowerLaw + Peak and Default configuration above ten times, once using all of
the available samples, once with half of the samples, one third of the samples, etc.,
down to one tenth of the samples.

In Figure 14.5, we show the mean variance over the posterior distribution as a
function of the number of samples per Monte Carlo integral in the upper panel.
The solid blue, dashed orange, and dash-dotted green curves show the results using
the full likelihood, selection function only, and per-observation terms respectively.
In the lower panel, we show the variance scaled by the number of samples in the
integral such that it will be constant if the uncertainty scales linearly with the number
of samples. We observe that the variance is consistent with scaling inversely with
the number of samples.

14.4.4 Impact on the inferred astrophysical distributions

To study the impact of the convergence-motivated prior cuts and bias in likelihood
estimates we consider four analysis configurations:

• LVK. The first configuration is the same one used in the LIGO-Virgo-KAGRA
analysis in [28]. This analysis used ∼ 4 × 104 found injections to estimate
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Figure 14.5: The scaling of the average variance in the log-likelihood with the
number of events per Monte Carlo integral. The solid blue, dashed orange, and dash-
dotted green curves show the results using the full likelihood, selection function only,
and per-observation terms respectively. In the top panel, we show the variance. In
the bottom panel, we show the normalized variance divided the number of samples
per integral. As expected, these quantities scale inversely with the number of
samples.

𝑁injections 𝛼 𝑚max 𝑚min 𝛿𝑚 𝜇𝑚 𝜎𝑚 𝜆 ⟨Δ ln L̂⟩
LVK 4 × 104 2 100 2 0 - - 0 0.63

No Convergence 4 × 104 2 100 2 0 - - 0 5.06
Tailored 4 × 104 3.5 105 3 6 33 5 0.04 1.24

More Injections 8 × 105 1 100 2 0 - - 0 0.50
No Injections 0 - - - - - - - 0.42

Table 14.1: Hyperparameters for the injection sets used in each of the analysis
configurations we consider as described in Section 14.4. We additionally list the
average variance in the difference between estimated likelihood values.
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Figure 14.6: The inferred spin magnitude (top) and primary mass (bottom) distribu-
tions for a range of analysis configurations. The solid curves show the mean inferred
distribution and the shaded regions show the 90% symmetric credible interval. The
blue curves show the results presented in [28]. In orange, we show results obtained
using the same input samples but without performing the ad-hoc constraints on the
number of effective samples per Monte Carlo integral. In red, we show the results
when using more found injections to compute the selection function. In purple,
we show the results obtained when neglecting the selection function, we note that
in this case, we do not show the inferred mass distribution as that is significantly
biased by neglecting selection effects. In grey, we show the results obtained using
our tailored injection set.
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the selection function, and 4278 fiducial posterior samples were used for
each event. Specifically, we use the posterior samples released in [151]
and the set of sensitivity injections which combine injections covering the
first three observing runs of Advanced LIGO/Advanced Virgo [530]. For
this configuration, there is the prior cut on 𝑛eff for each of the Monte Carlo
integrals as described at the beginning of this section.

• No Convergence. The second configuration repeats the analysis from [28] but
removes the prior constraints on 𝑛eff in each Monte Carlo integral.

• Tailored Injections. We replace the injection set released by the LVK, we
use synthetic injections drawn using a mass distribution that more closely
matches the observed distribution. Specifically, we set the mass distribution
using the PowerLaw+Peak model using the parameters in Table 14.1. Since
the proposal distribution for our Monte Carlo integral more closely matches the
target distribution, we expect this injection set to lead to smaller uncertainties
with the same number of found injections.

• More Injections. Rather than using the∼ 4×104 found injections used in [28],
we use the∼ 8×105 synthetic found injections used in [257] in order to reduce
the uncertainty in the estimate of the selection function. While this uses many
more injections, we note that the underlying distribution of signals is different
than for the LVK configuration.

• No Injections. Rather than using the ∼ 4 × 104 found injections used in [28],
we ignore the impact of selection effects completely. This will reduce the
uncertainty in the estimated likelihoods at the cost of only estimating the
observed distribution and not the underlying astrophysical distribution.

For both cases where we use synthetic injection sets, we do not repeat the full injec-
tion and recovery using a matched-filter search pipeline due to the large associated
computational cost. Instead, we threshold the simulated signals on the optimal
signal-to-noise ratio of the injected signal in Gaussian noise with PSDs matching
the detector sensitivity during O3 rather than the false-alarm rate [26, 528]. We
anticipate that this difference between the detection thresholds does not significantly
bias the inferred mass and spin distributions [e.g., 7, 29, 28, 257, 192].

In Table 14.1 we summarise the population hyper-parameters describing the mass
distribution used for each injection set. Additionally, we show ⟨Δ ln L̂⟩ computed
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over the respective posterior distributions for the hyperparameters. We find that
the No Convergence case clearly surpasses our threshold. The Tailored injection
set reduces the variance by ≈ 4× by more closely matching the true underlying
distribution but is still in the regime where we expect to see some bias. For the other
cases ⟨Δ ln L̂⟩ < 1 and so we would expect the results to be unimpacted by Monte
Carlo convergence.

In Figure 14.6 we show the inferred distribution for spin magnitude (top panel)
and primary mass (lower panel) with our five analysis configurations. We note
that the No Injections configuration is excluded for the primary mass distribution
as that distribution is strongly biased by not accounting for selection effects. The
solid lines indicate the mean inferred distributions and the dashed curves enclose
the 90% uncertainty region. While the uncertainties of all of the results agree
within their error bars there are visible differences between the inferred results.
Specifically, we find that for both parameters, the width of the peak at 𝑎 ≈ 0.2 and
𝑚1 ≈ 35𝑀⊙ are broadest for the result that imposes cuts on the prior based on Monte
Carlo convergence (blue) and narrowest for the analysis that has the largest average
uncertainties (orange) with the analyses with reduced uncertainty (grey, red, purple)
lying in between. This indicates that for commonly used analysis configurations, the
inferred shape of features in the distribution of black hole mass and spin are notably
impacted by uncertainty in the estimate of the likelihood.

We note that the inferred spin magnitude distributions for the More Injections and
No Injections configurations are the most consistent. This would be the expected
outcome if the impact of the spin magnitude on the selection function is small and
the uncertainty in the likelihood estimates is small. We thus infer that the larger
injection set is sufficient to remove the bias present when using the found injections
released by the LIGO-Virgo-KAGRA collaboration. While the cuts on the number
of effective samples in each Monte Carlo integral in the LVK configuration control
the average uncertainty in the likelihood estimates, the cuts have a visible impact on
the inferred distributions.

14.4.5 Result differences are explainable due to Monte Carlo uncertainty

The posterior predictive distribution (PPD) for the binary parameters is defined as

𝑝(𝜃 |{𝑑}) =
∫

𝑑Λ𝑝(𝜃 |Λ)𝑝(Λ|{𝑑}) ≈ 1
𝑁

𝑁∑︁
Λ𝑖∼𝑝(Λ|{𝑑})

𝑝(𝜃 |Λ𝑖). (14.19)
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Figure 14.7: Comparison of statistical and systematic uncertainty in our inference
of the distribution of black hole spin magnitudes 𝑎. The solid curves show the
posterior predictive distribution for three of the analysis configurations described in
Section 14.4. The dotted curves show the 5th and 95th percentiles of our statistical
uncertainty for the lowest variance analysis (No Injections). The orange and green
dashed curves show the 5th and 95th percentiles of the additional systematic uncer-
tainty from estimating the selection function. We note that for the More Injections
case the systematic uncertainty is much smaller than the statistical. However, for
the No Convergence case the systematic uncertainty is comparable to the statistical.

In Figure 14.6 the solid curves show the PPD using our different analysis setups
(solid curves). While the curves are visibly different, we wish to know whether the
differences can be explained as the result of statistical fluctuations expected due to
the uncertainty in our estimator of the likelihood.

Our aim is to estimate the range of different PPDs we might expect to measure given
the PPD with no systematic uncertainty and a covariance Σ(Λ,Λ′). In the absence
of a ground truth, we take the No Injections case as our reference analysis as it
has the lowest uncertainty estimator of the likelihood and neglect the impact of the
per-event integrals as all analyses use the same set of samples for each event.

We begin by taking the samples Λ𝑖 ∼ 𝑝(Λ|{𝑑}) for the reference case. We then
construct the covariance matrix by numerically calculating the covariance between
the likelihood estimates for every pair of posterior samples. Using this covariance
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matrix, we generate weights for each of the samples 𝛿 ∼ N(0, Σ(Λ,Λ′)). Finally,
we compute the PPD using these weights as

𝑝(𝜃 |{𝑑}) =
⟨𝛿(Λ𝑖)𝑝(𝜃 |Λ𝑖)⟩Λ𝑖∼𝑝(Λ|{𝑑})

⟨𝛿(Λ𝑖)⟩Λ𝑖∼𝑝(Λ|{𝑑})
. (14.20)

By repeating this many times, we can construct the 90% credible interval for the
systematic error.

In Figure 14.7 we show the same PPDs for the No Injections, No Convergence, and
More Injections configurations and the statistical uncertainty for the No injections
configuration (dotted curves) as in Figure 14.6. The estimated systematic uncertainty
is shown by the dashed curves. We note that in both cases, the PPDs with our specific
realisation are entirely consistent with the systematic uncertainty region indicating
that the differences in the PPDs can be fully explained by Monte Carlo uncertainty.
For the No Convergence case, the estimated systematic uncertainty is comparable
to the statistical uncertainty. One limitation of our method is that the realisations
cannot deviate outside the set of samples used for importance sampling and so
cannot accurately resolve cases where the systematic uncertainty is larger than the
statistical uncertainty in the posterior.

14.5 Conclusions

Often when performing Bayesian inference, we cannot calculate the true likelihood
function, but rather a computationally tractable approximation. For example, the
use of Monte Carlo integration to approximate marginal likelihoods is widespread in
population inference in gravitational-wave astronomy and beyond. However, often,
the uncertainty associated with these finite numerical integrals is neglected. We
specifically examine the requirement of performing unbiased population inference
on binary black holes with Monte Carlo integrals used to marginalise over the
parameters of the individual sources. Previous work has claimed that as the size of
the population increases, keeping the allowed uncertainty in each marginal likelihood
constant (e.g., the number of samples used in each Monte Carlo integral doesn’t
have to increase with the population size) is sufficient for precise inference of the
population parameters [193].

In this work, through a series of numerical experiments, we demonstrated that for
models widely used to characterise the population of merging black hole binaries,
this scaling is insufficient and the actual scaling depends on the functional form
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chosen to fit the distribution. Failing to use a larger number of samples per Monte
Carlo integral will result in an increasingly significant bias in the recovery of the
population as the number of observations grows. We recommend that the calcula-
tions described in this work be routinely performed for any population analysis to
identify cases where the inference may be impacted by Monte Carlo uncertainty.
We provide scripts to evaluate this in the accompanying code release.

By considering a model routinely employed to characterise the distribution of masses
and spins of merging compact binaries, we found that the uncertainty in the like-
lihoods estimated as part of population inference on the gravitational-wave tran-
sient catalogue is sufficient to lead to noticeable bias with the current size of the
gravitational-wave transient catalogue. Additionally, by examining the impact of the
specific choice of input samples and convergence requirements we observed changes
in the width of features in the distribution of black hole masses and spin magni-
tudes. While the differences observed here are within the statistical uncertainties,
more significant biases have been observed when using more flexible models, e.g.,
Appendix B of [257].

The results presented in this work are somewhat in conflict with the results from [193].
One difference between this work and theirs is that in [193] the authors only con-
sider population models where the uncertainties on each measurement are smaller
than the width of the population. By contrast, in many of the models considered
here, including the models for the black hole mass and spin, the individual mea-
surements are broader than the underlying population model. The spin magnitudes
of individual black holes are very poorly measured, and so the individual posterior
distributions are inevitably broader than the population for the majority of systems.
For black hole masses, one might think that the total population model is broader
than individual measurements; very few black holes are consistent with masses
ranging from 5 − 80𝑀⊙. However, the relevant quantity is not the whole domain
of the model, but rather than change in the population model over the individual
event posterior support. For events intersecting the Gaussian peak at ∼ 35𝑀⊙ the
uncertainty in the mass is almost always larger than the preferred width of 1− 5𝑀⊙.
We defer detailed investigations into whether this is a relevant difference to future
work.

In the next observing runs, we can conservatively expect the size of the observed
population to double or triple [423]. With a population of this size, we can expect
that if we continue to use the same number of samples per Monte Carlo integral
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the variance in the log-likelihood will reach ∼ 4 − 10 and we will be in danger
of making severely biased inferences. In order to avoid this, we will either need
to use dramatically more samples in our Monte Carlo integrals or consider novel
approaches.

There are a number of questions posed by our results that should be explored in
future work. In Section 14.4, we found an approximate scaling for the growth of
the uncertainty with the population size, developing a theoretical understanding of
this scaling may prove instructive in developing improved methods to deal with
large populations. Ensuring accurate estimation of the population likelihood is an
increasingly complex task as the population size increases, and so we will require
increasingly sophisticated methods.

As shown in Section 14.4, a simple method to reduce the uncertainty in Monte Carlo
integrals is to reduce the divergence between the initial model and the target model.
Fortunately, as the size of the population grows, we can use our existing knowledge to
generate initial models that well approximate the true distribution, e.g., by drawing
our injections to determine the survey sensitivity by our best estimate of the true
population. Additionally, one can recast the Monte Carlo integral using continuous
representations of the per-event likelihoods in order to minimise the uncertainty,
e.g., [582, 256]. Finally, one can limit the analysis to only consider slowly varying
source models, e.g., by imposing smoothing priors on the population model [187,
125]. However, this can lead to missing any sharp features in the distribution.

Each of these improvements is likely to fail eventually, and new methods will be
needed. One possibility is to remove the Monte Carlo integral to determine the
selection function and instead directly model the observed distribution of compact
binaries. If desired, the astrophysical distribution can then be obtained as a post-
processing stage using continuous estimates of the selection function such as those
in, e.g., [554, 522]. Similar approaches have been proposed for analyses of online
polling data [e.g., 189, 344]. Since the contribution of the uncertainty from es-
timating the selection function grows most rapidly with population size, this will
significantly alleviate bias in the inferred distribution.

While we considered uncertainties in the likelihood function used for gravitational-
wave population inference, our analysis holds for any problem where there are
parameter-dependent biases in calculating likelihoods. For example, when char-
acterising individual compact binary coalescences, there are a number of sources
of bias in the likelihood function, including waveform systematics [435], detector
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calibration uncertainty [418, 562], and likelihood acceleration methods [501, 384,
334]. While the specific results in Section 14.4 will not be relevant to these cases,
the general expressions in Sections 14.2.1 and 14.3 are relevant.
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Appendix 14.A Data Availability

This work used publicly available data produced by the LIGO-Virgo-KAGRA col-
laborations [151, 530]. We additionally used a larger synthetic injection set that we
will make available on request. Scripts and Jupyter notebooks required to repro-
duce this analysis are available at github.com/ColmTalbot/monte-carlo-uncertainty-
scaling.

https://github.com/ColmTalbot/monte-carlo-uncertainty-scaling
https://github.com/ColmTalbot/monte-carlo-uncertainty-scaling
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C h a p t e r 15

SYSTEMATIC BIASES FROM USING A HOPELESS SNR CUT
WHEN ESTIMATING SENSITIVITY

This chapter is an unpublished manuscript based on work done in collaboration with
Derek Davis.

15.1 Introduction

Observations of gravitational waves from Binary Black Hole (BBH) mergers have
allowed astrophysicists to infer properties of not only individual black holes, but also
about the population of black holes in the Universe [28, 3, 29]. Scientists use these
population constraints to draw conclusions about BBH system formation scenarios,
stellar astrophysics, and cosmology [21, 28, 3, 29].

A key ingredient when inferring the population properties of astronomical sources is
an understanding of the Malmquist bias, as the catalog of LIGO-Virgo observations
do not by themselves directly reflect the underlying astrophysical distribution of
BBHs. As LIGO-Virgo-KAGRA observations compose a flux-limited survey, the
catalog of GW observations from BBH events preferentially over-represent the
masses, spins, and distances from the most sensitive parts of parameter space with
respect to the true underlying population. For example, properties such as high
masses, large aligned component spins, and small distances all generally increase
the signal-to-noise ratio (SNR, denoted 𝜌) of a source and make it easier to detect.

It is common to quantify this observational bias by injecting a large number of
simulated BBH sources into detector noise, and then determining how many of
these injections pass the detection threshold chosen for the catalog of real events
[538, 213]. Due to the computational expense of this procedure, this is quantified
using a limited set of sources and several approximations are made in the process.
This can lead to biases in the inferred astrophysical distribution if, for example,
the model assumed when generating noise assumed when quanitifying detection
probability is not faithful to the true noise distribution seen in the detector, or if
there are insufficient numbers of injections across parameter space to resolve the
Monte Carlo sum [213, 195, 193, 519]. Finally, if the threshold used to designate
a “found" event in the injection set differs from the threshold for the inclusion of
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real events, the detection probability of a given injected source may not be reflective
of the true data selection and the resulting inferred population may be biased when
taking sensitivity into account [192].

In the LVK population studies, the designation of an event as “detected" or “found"
is made from its False Alarm Rate (FAR), as assigned by the various matched-filter
pipelines searching the data. In short, the FAR is the rate at which a detection
pipeline will falsely identify a candidate with comparable properties when in the
absence of a signal. When creating the set of sensitivity injections, the vast majority
of injected sources will be at low SNRs, as 𝑑𝑁

𝑑𝜌
∼ 𝜌−4 in a Euclidean volume

approximation. In order to avoid the burden of running these detection pipelines on
an unnecessarily large number of injections sampled from a fiducial population, it
is common to place a “hopeless cut" on the injection set, in which only injections
exceeding some SNR are given to the pipelines to be assigned a FAR [21, 28, 192].
It is assumed to be not worth running the pipeline on an injection with an SNR
below this hopeless cut, as it has a negligible chance of being assigned as detected
with a reasonable detection statistic. Therefore, injections with SNRs below this
cut are missing from the injection set released in [531], and are assumed to have
an arbitrarily large FAR. For the GWTC-3 population analysis, this hopeless cut
was placed based on the optimal SNR; that is, the SNR in the absence of added
noise. While this cut was placed at an optimal SNR of 𝜌opt = 6, and the detection
statistic used for designating a real event or an injection as detected was a FAR
< 1yr−1 (equivalently, Inverse FAR (IFAR) > 1yr). By placing a hopeless cut on
the SNR, it is assumed that injections with SNRs less than the hopeless cut will not
be designated as having an IFAR > 1yr by the detection pipelines.

In this work, we show how this hopeless cut effectively introduces a different
threshold on injections and real events, and how artificially increasing this bias
causes systematic biases to the inferred population. Additionally, we outline and
implement a method to generate new FAR values for injections with SNRs below
the hopeless cut, without having to run the detection pipelines. We validate this
fitting and resampling method on existing injections as well as by generating new
injections below the hopeless cut used in [28]. We then apply this method to the
GWTC-3 Population analysis in order to test whether the hopeless cut used in that
work biased any of the reported results.
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15.2 Detection Probability in the Population Likelihood

The Malmquist bias correction is accounted for in the population likelihood in
gravitational wave analyses as a population-dependent weight, quantifying the de-
tectability of a particular population [538, 359, 213]. Assuming a prior on the rate
of BBH mergers 𝜋(𝑅) ∝ 1

𝑅
, it is standard to express the likelihood of the observed

dataset {d} from 𝑁 events given some parameters Λ describing the population as
[536, 357, 228]:

𝑝({𝑑}|Λ) =
𝑁∏
𝑖

∫
𝑑𝜃𝑖L(𝑑𝑖 |𝜃𝑖)𝜋(𝜃𝑖 |Λ)

𝑝det(Λ)
, (15.1)

where 𝜃 is the set of parameters describing the individual events, such as their
masses, spins, and distances.

The term 𝑝det(Λ) is proportional to the sensitive four-volume and fraction of de-
tectable sources of the population described byΛ. In order to calculate this, we must
marginalize over realizations of the data 𝑑 (which includes noise 𝑛) and parameter
configurations from the population:

𝑝det(Λ) =
∫

𝑑𝜃

∫
𝜌(𝑑)>𝜌th

𝑑𝑑𝑝(𝑑 |𝜃)𝑝(𝜃 |Λ)

=

∫
𝑑𝑛

∫
𝑑𝜃𝑝(𝜃 |Λ)𝑝(𝑛)Θ(𝑍 (𝑑, 𝜃) − 𝑍th),

(15.2)

where 𝑍 is some detection statistic, such as the False Alarm Rate (FAR), quantifying
the significance of an event, and 𝑍th is the threshold on 𝑍 which is chosen to
distinguish real events that will make the observed catalog of sources. As denoted
by the Heaviside function in Equation 15.2, anything with a detection significance
exceeding some threshold 𝑍th is taken to be “found" while any source with 𝑍 < 𝑍th

is part of the background.

A straightforward way to approximate Equation 15.2 is to draw 𝑁inj sources, each
with 𝜃 ∼ 𝜋(𝜃 |Λ), and inject these sources into noise realizations following the
known noise distribution of the detectors 𝑝(𝑛). After assigning a detection statistic
to each injection, one can calculate Equation 15.2 simply by 𝑁found divided by 𝑁inj.

While the above Monte Carlo procedure can be an accurate method to calculate
𝑝det, it is computationally infeasible to do this for each iteration of computing
Equation 15.1, which is commonly called by a stochastic sampler millions of times
to evaluate the likelihood for different values ofΛ. A common approach to efficiently
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calculate Equation 15.2 for any Λ is by using importance sampling and reweighting
a single set of injections. This is done by drawing from some fiducial distribution
𝜃 ∼ 𝜋(𝜃 |Λ0), injecting these sources into detector noise, and determining which
sources are found. The injections with 𝑍 (𝜃) > 𝑍th get their corresponding values of
𝜋(𝜃 |Λ0) attached as importance weights, treating 𝜋(𝜃 |Λ0) as a proposal distribution
that can be simply reweighted to calculate the target 𝑝det(Λ) [538, 213]. Only
needing to do the injection-recovery procedure one time, we use the importance
weights to approximate Equation 15.2 as

𝑝det(Λ) ≈
1
𝑁inj

𝑁found∑︁
𝑖

𝜋(𝜃𝑖 |Λ)
𝜋(𝜃𝑖 |Λ0)

, (15.3)

where 𝜃𝑖 are the parameters of the 𝑖th “found" injection. When generating the
injection set from the fiducial population 𝜋(𝜃 |Λ0), it is important that the total
number of injections drawn 𝑁inj is recorded, as well as the probability of drawing
each detectable injection (i.e. the value of 𝜋(𝜃𝑖 |Λ0)), which is stored as a weight to
be used in the above summation.

If 𝑍th is set by the FAR assigned by a detection pipeline, the set of “found" injections
determined by the detection threshold necessarily can only include injections which
actually went through the detection pipeline searches. As this process can be
computationally difficult and the vast majority of injections are much too quiet to be
detected, the set of injections chosen to go through the detection pipeline procedure
are pre-filtered by their optimal SNRs (𝜌opt). When placing this hopeless cut on
𝜌opt, it effectively alters Equation 15.2 to be:

𝑝det(Λ) =
∫

𝑑𝑛

∫
𝑑𝜃𝑝(𝜃 |Λ)𝑝(𝑛)Θ(𝑍 − 𝑍th)Θ(𝜌opt − 𝜌hopeless), (15.4)

where this additional Heaviside function mandates that an injection must pass the
hopeless SNR cut in addition to the detection threshold set by 𝑍 in order to be
counted as “found". Under an ideal choice for the hopeless cut, there would never
be any cases where an injection has both 𝜌 < 𝜌hopeless and 𝑍 > 𝑍th. In other words,
assuming 𝑍th is the same threshold used to include the real events (i.e. from an
event catalog) in the numerator of Equation 15.1, in order to get an unbiased value
for 𝑝det(Λ), the second Heaviside function in Equation 15.4 should never be zero
when the first Heaviside function is one.
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Figure 15.1: Maximum IFAR across pipelines vs Optimal netowrk SNR in Hanford
and Livingston (as described in Section 15.3). Red line shows where the hopeless
cut was placed and the green line shows the detection threshold used for the GWTC-
3 Populations analysis (IFAR = 1 yr) [28].

15.3 Hopeless Cut in the GWTC-3 Injections

In [531], the LVK collaboration released a set of injections from a fiducial popula-
tion for evaluating the sensitivity of the LIGO-Virgo detector network in the third
observing run (O3) [171, 26]. Including only the injections that pass the hopeless
cut, the data release lists the parameters of each of these injections as well as the
detection statistics assigned to them. Not including injections from an Intermediate
Mass Black Hole (IMBH) population, this injection set was created by simulating
∼ 7.4×107 sources in data from O3, with masses, spins, and distances sampled from
a fiducial distribution assuming a power law on source-frame component masses,
isotropic spin orientations with uniform spin magnitudes from 𝑎 = 0 to 1, and a
redshift distribution with a source frame merger rate 𝑅(𝑧) ∝ (1 + 𝑧).

For each injection, 𝜌opt =
√︃
𝜌2

opt, H + 𝜌2
opt, L was calculated, where the subscripts “H"

and “L" refer to the LIGO Hanford and Livingston detectors, respectively. The Virgo
detector was not included in the calculation of 𝜌opt. This resulted in ∼ 2.84 × 105

injections with 𝜌opt > 𝜌hopeless = 6, which were injected into the detection pipelines
to be assigned FAR values. In (pops paper), an event was considered “found" if any
of the matched filter pipelines assigned it an IFAR > 1yr.

In Figure 15.1, we show the maximum IFAR across pipelines plotted against 𝜌opt

for the injections in [531]. Note that there are no points below the hopeless cut
of 𝜌opt = 6 (the red line), as these injections are not included in the data release.
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Injections lying above the green line (IFAR = 1yr) meet the detection threshold used
in [28] and count as “found". Any points in the top left quadrant would correspond
to sources which fall below the hopeless cut, but would have been designated as
found if they had been injected into the detection pipelines. Thus, if 𝜌hopeless were
too high, this would mean that there should be points in the top left quadrant of
Figure 15.1, had these injections been included in the released injection set. While
we do not have access to the hopeless injections, by inspection we hypothesize that
if one were to extrapolate the IFAR-SNR trend in Figure 15.1 below 𝜌hopeless, several
injections would lie in the top left quadrant.

15.3.1 Effects of Raising the Hopeless Cut

As outlined in Section 15.2, enforcing a hopeless cut on the injections before
injecting them into the detection pipelines can effectively introduce a different
detection threshold in the calculation of 𝑝det than what is used to threshold real
observations when forming a catalog. In order to illustrate the bias that can occur if
𝜌hopeless is too high, we infer the population of masses, spins, and redshifts from the
59 BBH events detected in O3, using the same detection threshold as [28], fixing
the observed catalog but raising the SNR of the hopeless cut.

In accordance with model choices from [28], we assume the Power Law + Peak
model [524] for the mass distribution, the Default model [521] for spins, and a
source frame rate density evolving as a power law in (1+ 𝑧) [228]. When calculating
𝑝det for Equation 15.1, we enforce that a “found" injection must satisfy both IFAR
> 1yr and 𝜌opt > 𝜌hopeless.

We present selected results of the population inference in Figure 15.2. While the
populations appear to be in agreement for small changes to the hopeless cut, we
note a noticeably large deviation for the highest hopeless SNR cut in the posterior
distribution for power law indices 𝛼, 𝛽, and 𝜅, corresponding to the primary mass,
mass ratio, and redshift distributions, respectively. We choose these parameters as
examples important for controlling the shape of the population model. The redshift
distribution seems to be most senesitive to changing 𝜌hopeless. For illustration, we
plot the evolution of this distribution as a function of hopeless SNR cut in Figure
15.3 in order to demonstrate the clear systematic trend of the inferred 𝜅 increasing
with hopeless SNR cut. We therefore know that a higher hopeless cut would have
introduced an additional bias.
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Figure 15.2: Selected results from the test described in Section 15.3.1, in which
we perform population inference with iteratively raising the hopeless SNR cut.
Shown are the posterior distributions for the power law index on the primary mass
distribution (𝛼, left), mass ratio distribution (𝛽, middle), and redshift distribution
(𝜅, right). We note the significant systematic bias is most present in the redshift
distribution.
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Figure 15.3: Average and standard deviation of the redshift power law index 𝜅 as
a function of hopeless SNR cut. The increased hopeless SNR cut systematically
biases 𝜅 to higher values.
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15.4 Fitting Below the Hopeless Cut

The main obstacle for conducting a similar test as in the previous section, but
lowering the hopeless cut, is that no information about the injections with 𝜌opt < 6 are
included in [531]. In order to evaluate 𝑝det using the O3 injection set but with a lower
hopeless cut, we introduce a method to add injections with 𝜌opt < 𝜌hopeless along
with corresponding IFAR values, without needing to run the detection pipelines.
We do this by constructing a two-dimensional fit of 𝑑𝑁

𝑑𝜌𝑑IFAR and extrapolating this
fit to SNRs below the hopeless cut, where no data exist in the injection set. In this
way, we can approximate 𝑝det(Λ) including injections with lower SNR.

As a first step, we consider a slice of fixed IFAR in the IFAR-SNR space of the
injections and examine the distribution of SNRs. In Figure 15.4 we plot this two-
dimension parameter space, populated by the injections from the injection set, as
well as a histogram of SNRs in a single bin of IFAR for a few selected IFAR bins. For
a source in Gaussian noise, a given ranking statistic such as IFAR should be normally
distributed around the optimal (noiseless) value. In reality, a ranking statistic such
as IFAR would tend to downrank some events of a given optimal SNR, due to effects
such as template bank sparseness and data quality issues. We therefore expect that
when we look instead at optimal SNRs in a given bin of IFAR, the distribution of
optimal SNRs should behave more Gaussian for lower SNRs, whereas the high SNR
tail contains more events downranked in significance due to the above reasons.

Following these assumptions, we model the bulk (80%) of optimal SNRs in a given
IFAR bin as following a truncated Gaussian distribution, with bounds at the hopeless
SNR cut (𝜌opt = 6 in this case) and the 80𝑡ℎ percentile of the SNRs in the bin. Due
to the above expectation that the high tail does not behave like the tail of a Gaussian,
we simply make a Kernel Density Estimate (KDE) of the top 20% of SNRs in the
IFAR bin. We then stitch the two density estimates together and renormalize by the
total number of injections in the IFAR bin in order to get an approximation for 𝑑𝑁

𝑑𝜌

for 𝜌 > 6. We do this for a total of 99 bins of IFAR, logarithmically spaced in the
range [10−4, 1015] yr. In Figure 15.4, we show the histogram of optimal SNRs and
corresponding fit for several choices of IFAR bins.

In order to extrapolate the model to SNRs below the hopeless SNR cut where we
have no data, we enforce the above assumption that the distribution of lower-SNRs
in an IFAR bin should closely follow a Gaussian. To encode this in the model, we
simply extend the truncated Gaussian component of the fit to 𝜌opt = 0, ensuring a
normalization such that the fit integrated up from 𝜌opt = 6 is consistent with the
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Figure 15.4: Two dimensional scatter plots of IFAR and SNR values for the injections
in the injection set, along with histograms of the optimal SNR values along the IFAR
bins corresponding to the green horizontal lines. The red dashed line marks the
SNR 6 hopeless cut below which we have no data from the injections. The orange
curve is the fit to the SNR distribution from the KDE and truncated Gaussian. We
plot two example fits for demonstration, but this procedure is done for 100 IFAR
bins.

number of injections in the IFAR bin used to make the fit.

In Figure 15.5 we show the same fits at Figure 15.4, including the extrapolation
of the fit below 𝜌opt = 6. Given these optimal SNR fits across IFAR space, we
use a rectangular bivariate spline as implmented in SciPy [556] to construct a
two-dimensional interpolant.

15.4.1 Creating New Injections

The two-dimensional fit to the full SNR-IFAR space provides a function that can
be evaluated to get the differential number of injections at a given SNR and IFAR.
Thus, for a trigger at a given SNR, we can evaluate the interpolant at a fixed SNR
over a grid of IFARs. This is proportional to the probability distribution of IFARs
for a trigger at a given SNR and therefore can be used as a generative model for an
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Figure 15.5: Same as Figure 15.4, but extrapolating the truncated Gaussian compo-
nent to be bounded on the low end by 𝜌 = 0 rather than 𝜌 = 6.

IFAR value given an SNR.

Before assigning an IFAR to an injection of a given SNR, we must first determine
if a detection pipeline triggered on the injection, as the probability of any pipeline
triggering on a given source is never guaranteed.1 In the injection set released in
(cite), if a pipeline does not trigger on an injection, it is assigned an IFAR of 0 years,
whereas the minimum IFAR a pipeline assigns to a trigger is ∼ 10−8 years. We can
therefore assign the probability of the pipeline triggering:

𝑝(trigger|𝜌) = 1
𝑁total(𝜌)

∫ IFARmax

IFARmin

𝑁 (𝜌, IFAR)𝑑IFAR, (15.5)

where 𝑁total(𝜌) is the total number of injections at an SNR of 𝜌.

The first step is to draw samples for the source parameters for injections below the
hopeless SNR cut, such that we get the distribution of SNRs in the region we do not
yet have any data. This also allows us to calculate 𝑁total(𝜌) in Equation 15.5, for

1Note that “triggered" is different than “found". When we discuss triggering on the data, we
mean the pipeline matches the data to a template and assigns it a ranking statistic. After the pipeline
triggers, it may be “found" if the ranking statistic exceeds the chosen threshold.
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𝜌 < 𝜌hopeless. For consistency, we adopt the same fiducial population model used in
(cite pops). We then keep the injections within the SNR range of interest, using the
same optimal SNR calculation used in (cite injections). If these injections are meant
to supplement an existing injection set within a given SNR range, it is important
to generate the appropriate number of injections within this SNR range to be the
correct fraction with respect to the total number of injections.

After generating the new samples and computing their optimal SNR values, we
assign each injection an associated IFAR. First, we use Equation 15.5 to decide
whether each sample gets triggered by a pipeline, based on the condition that a trigger
is defined as an injection with IFAR > 10−8𝑦𝑟. For those that are assigned triggers,
we sample an IFAR value from the two-dimensional IFAR-SNR fit, conditioned
on the source’s optimal SNR. If these are being used as a supplement to another
injection set, they can be straightforwardly combined at this point. As the fit now
extends to SNRs below the hopeless cut, along the low-SNR Gaussian tail, we can
extrapolate to below 𝜌opt = 6.

15.4.2 Fit Validation

Before testing the fit by extrapolating below the hopeless cut, we first test the method
in the region of SNR space where injections already exist, in order to compare
population results using the original injections with those obtained using the fit in a
region of SNR space. This will test whether the method of assigning the IFARs of
injections randomly based on the fit, conditioned on the injection’s SNR, causes a
bias in the recovered population.

We first take all of the injections from (cite) with 6 < 𝜌opt < 8, and remove their
IFAR values. We then reassign the IFAR values for these injections by drawing
samples as outlined in the procedure outlined above. All other injections in the
injection set from (cite) remain unchanged.

We then run our population inference with the same models as in the previous section.
Figure 15.6 shows a selected set of resulting recovered population hyperparameters,
as compared to the population inference run with the original injection set. We note
very good agreement; noteably the power law indices on the redshift and primary
mass distributions, which are most susceptible to biases from the hopeless cut, are
unchanged. Therefore, we conclude that our fit and IFAR resampling method, when
implemented on injections with 6 < 𝜌opt < 8, does not cause a noticeable bias in
the inferred population.
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Figure 15.6: Selected results from the test described in Section 15.4.2, in which we
perform population inference with new IFAR values for the injections with 𝜌opt < 8
from the injection set in (cite). Shown are the posterior distributions for the power
law index on the primary mass distribution (𝛼, left), mass ratio distribution (𝛽,
middle), and redshift distribution (𝜅, right). We note no systematic bias in the
parameter recovery.

15.5 Population Inference with Injections Below the Hopeless SNR Cut

We now move onto addressing the question: how does the inferred population
change if the hopeless SNR cut used in the injection set is lower?

We begin by generating a new set of injections with 4 < 𝜌opt < 6, where the upper
limit is set by the original hopeless cut in the injection set, and is the minimum SNR
of those injections. To be consistent with the population model used to generate the
injections in (cite), along with the total number of samples drawn to generate them
(𝑁total = 73, 957, 576, as reported in (cite)), we calculate that we need to generate
∼ 478, 949 injections with 4 < 𝜌opt < 6.

For each of the new injections, we use the method outlined in the previous section to
assign an IFAR value. Combining these with the original set of injections in (cite)
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Figure 15.7: Posterior distribution on redshift power law index 𝜅 using different
injection sets. In blue, we show the result using the original O3 injections from
(cite). In green and orange we plot the equivalent distribution with including two
different realizations of IFAR values of new injections below the hopeless SNR cut,
as outlined in Section 15.5
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Figure 15.8: Posterior distribution on primary mass power law index 𝛼 using
different injection sets. In blue, we show the result using the original O3 injections
from (cite). In green and orange we plot the equivalent distribution with including
two different realizations of IFAR values of new injections below the hopeless SNR
cut, as outlined in Section 15.5

gives us a larger injection set, which includes injections below the hopeless SNR
cut of 𝜌opt = 6. For demonstration, we plot the combined injections in IFAR-SNR
space in Figure (ref), noting that there are several new injections with IFAR > 1.

In Figure 15.7, we plot the inferred distribution of the population hyperparameters
using this new injection set, compared with the results from using the injection set
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released in (cite). Comparing these two distributions, we notice a slight shift to
increased kappa when including 𝜅 when including the new injections. We repeat
the generate new IFAR values for the new injections by resampling the fit and re-run
our population inference code and plot the distribution of 𝜅 on the same figure.
We confirm that this shift in 𝜅 is stable to new realizations of IFAR values for
these samples, indicating a systematic shift when including these new injections,
indicating that the hopeless cut removed some number of detectable sources.

The direction of the shift is consistent with what would be expected from Figure
15.3: additional found injections tend to decrease the best fit values for 𝜅. Including
these additional injections with 4 < 𝜌opt < 6 makes us infer slightly increased
sensitivity at high redshift. For a fixed catalog of observed events, this leads to a
decrease in the inferred high redshift merger rate, and therefore a lower value for 𝜅.
The fact that this shift in 𝜅 is noticeable and systematic indicates that the slope of the
redshift evolution rate reported in (pops papers) may have been a slight overestimate;
the placement of the hopeless cut may have biased the inferred sensitivity to high
redshift events.

Nevertheless, we find that the confidence at which 𝜅 > 0 does not change signif-
icantly; with the LVK O3 injections (cite), we infer 𝜅 > 0 at 99.5% credibility,
whereas we infer the condition at 99.1% credibility when using our new injection
set. Hence, while the hopeless cut did introduce a bias, this bias was not large
enough to change astrophysical conclusions.

15.6 Conclusions

In this work, we have examined the effects of the approximations made when
implementing the hopeless SNR cut for evaluating sensitivity of the LIGO-Virgo
network to GW sources. In doing so, we illustrate the need to choose this cutoff
carefully and the changes to the inferred population that may result when it is poorly
chosen.

We demonstrate this trend in two ways: by artificially raising the hopeless cut in
order to see how leaving out detectable sensitivity injections biases the inferred
population, and by creating a fit to the sensitivity injections and extrapolating the
fit below the hopeless cut to check if the current placement of the hopeless cut
was too high. The results from the first demonstration are in good agreement with
[192], in that leaving out detectable sources when computing sensitivity causes us
to overestimate the astrophysical rate in regions of parameter space we are least
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sensitive to. The second demonstration allowed us to confirm that the placement of
the hopeless cut only caused a minor bias in the inferred population.
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Matter Effects and EoS Implications
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C h a p t e r 16

HIERARCHICAL INFERENCE OF BINARY NEUTRON STAR
MASS DISTRIBUTION AND EQUATION OF STATE WITH

GRAVITATIONAL WAVES

Jacob Golomb and Colm Talbot. “Hierarchical Inference of Binary Neutron
Star Mass Distribution and Equation of State with Gravitational Waves”.
In: Astrophys. J. 926.1 (2022), p. 79. doi: 10.3847/1538-4357/ac43bc.
arXiv: 2106.15745 [astro-ph.HE].

Abstract

Gravitational wave observations of binary neutron star mergers provide
valuable information about neutron star structure and the equation of
state of dense nuclear matter. Numerous methods have been proposed
to analyze the population of observed neutron stars and previous work
has demonstrated the necessity of jointly fitting the astrophysical dis-
tribution and the equation of state in order to accurately constrain the
equation of state. In this work, we introduce a new framework to simul-
taneously infer the distribution of binary neutron star masses and the
nuclear equation of state using Gaussian mixture model density esti-
mates which mitigates some of the limitations previously-used methods
suffer from. Using our method, we reproduce previous projections for
the expected precision of our joint mass distribution and equation of
state inference with tens of observations. We also show that mismodel-
ing the equation of state can bias our inference of the neutron star mass
distribution. While we focus on neutron star masses and matter effects,
our method is widely applicable to population inference problems.

https://doi.org/10.3847/1538-4357/ac43bc
https://arxiv.org/abs/2106.15745
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16.1 Introduction

Over the past six years, the LIGO-Virgo gravitational wave detectors [1, 38] have
made> 50 observations of black hole and neutron star binary mergers [24], providing
a new way to study some of the most energetic events in the universe. Growing
catalogs of gravitational wave observations allow us to study the populations from
which compact binary systems originate, offering further insights into the physical
nature of these systems [7, 29, 590, 591, 553, 397].

Population inference from gravitational wave observations is performed by compar-
ing catalogs of observed events to models of the astrophysical distribution. These
astrophysical models include strongly physically motivated models (e.g., [593, 575]),
phenomenological models inspired by theoretical predictions and prior observations
(e.g., [219, 584]), or data-driven models (e.g., [540]).

Such population studies are an example of hierarchical Bayesian inference, com-
bining a set of observed events, marginalizing over the single-event parameters for
each event, and extracting global properties that govern the single-event parame-
ters to probe the underlying distribution of events, putting observed properties of
single events into a wider astrophysical context (see, e.g. Thrane and Talbot [536],
Mandel, Farr, and Gair [359], and Vitale et al. [560] for recent reviews.) Using
gravitational wave observations in a hierarchical framework provides a powerful
method of constraining universal properties of merging binary neutron star (BNS)
systems, such as the BNS mass distribution [217, 219] and equation of state (EOS)
of dense nuclear matter [45, 543, 584, 323, 275, 252, 325, 141].

While terrestrial experiments have constrained the EOS of cold nuclear matter for
densities approaching the nuclear saturation density, a complete picture of the micro-
physics of nuclear matter above these densities has yet to be confidently determined.
With central densities reaching several times nuclear saturation density, neutron stars
—observed via kilonovae spectra and light curves, X-ray pulsar measurements, and
gravitational waves —provide a probe of nuclear physics at super-saturation densities
[107, 377, 379, 497, 376, 157].

The first detection of a BNS merger via gravitational waves [10, 15] provided
constraints on the EOS of dense nuclear matter, favoring more “soft” or compressible
EOSs over stiffer EOSs [9]. The second observed binary neutron star merger [11]
did not provide significant constraints on the EOS; however, the relatively high mass
of this system suggests a tension with the galactic population of binary neutron star
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systems [11, 244].

While only two confident detections of BNS mergers have been made by LIGO-
Virgo, further detections in the near future will provide constraints on the EOS of
high-density nuclear matter through the combination of observed events [366, 138].
Unlike gravitational wave signals from binary black hole mergers, signals from
BNS mergers contain information about the neutron star EOS. This information is
primarily encoded by the tidal deformabilities of the two bodies during late-stage
inspiral, with the magnitude of this effect determined by the underlying EOS [283,
94, 595].

Specifically, the EOS directly governs the pressure-density relationship inside the
star, a necessary ingredient for solving the Tolman-Oppenheimer-Volkoff equations
for the mass-radius relationship of neutron stars [595, 341]. For a given EOS, the
mass determines the magnitude of a neutron star’s quadrupole moment induced from
the external field during merger, imprinting a signature in the detected gravitational
wave signal [283, 142, 138, 15, 9, 534]. This imprint is commonly expressed in
terms of dimensionless tidal deformability (Λ), which is defined as [138, 9, 232]

Λ =
𝜆

𝑚5 =
2
3
𝑘2

(
𝑅

𝑚

)5
, (16.1)

where 𝑘2 is the quadrupole Love number, 𝑅 is the radius of the neutron star, and
𝑚 is its mass (we express this formula in units where 𝑐 = 𝐺 = 1). The EOS
determines both 𝑘2 and 𝑅 for a given neutron star mass, resulting in a unique
Λ − 𝑚 relationship for different (hadronic) EOSs [595, 138, 283, 563]. Under
the assumption of a common EOS among neutron stars, we can infer this Λ − 𝑚
relationship by combining observations, constraining the underlying EOS.

Previous work has shown that hierarchical inference can be used to constrain the
neutron star EOS by considering parameterized models of neutron star populations
in conjunction with EOS relations [323, 325, 584]. In [584], the authors emphasize
the importance of simultaneously inferring the mass distribution and EOS, due
to bias that results from independent analyses. In this work, we introduce and
implement a new method of performing a simultaneous hierarchical analysis to infer
mass distribution and EOS. Specifically, we use a Gaussian mixture model (GMM)
as an estimate of single-event posterior probability densities. Using this method, we
demonstrate that mismodeling the EOS can lead to a biased inference of the neutron
star mass distribution.
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The paper is organized as follows. In Section 16.2, we detail the process of our
density estimation procedure and how it can be implemented in general hierarchi-
cal inference problems. We then outline our choice of parameterized BNS mass
population and EOS models in Section 16.3. We follow this in Section 16.4 with
the details of the simulated data we use for the proof-of-concept and a description
of how we apply this method to simultaneous EOS and mass distribution inference.
We review the results of our simulated data study in Section 16.5 and conclude with
takeaways and motivations for future work in Section 16.6.

16.2 Methods

We begin by reviewing Bayesian inference in the context of gravitational wave
data analysis (see, e.g., [536, 560] for recent reviews). In Bayesian inference, one
constructs the posterior distribution 𝑝(Θ|𝑑) for a model with parameters Θ given
some data 𝑑. Bayes’ theorem is typically written as

𝑝(Θ|𝑑) = L(𝑑 |Θ)𝜋(Θ)
𝑍 (𝑑) (16.2)

where L(𝑑 |Θ) is the likelihood of the data given the model parameters, 𝜋(Θ) is the
prior probability distribution, characterizing our prior beliefs on the distribution of
Θ, and 𝑍 (𝑑) is the Bayesian evidence, or the marginal likelihood for the model 1. In
gravitational wave analysis, L(𝑑 |Θ) is typically taken to be a Gaussian likelihood
distribution, whose mean is given by a (frequency domain) gravitational waveform
characterized byΘ and variance given by the detector noise (e.g., [552]). The full set
of Θ typically contains parameters intrinsic to the merger event (such as masses and
spins) as well as the extrinsic parameters, such as position in the sky and luminosity
distance.

Because the set of parameters Θ is typically > 10 dimensional, to recover the pos-
terior distribution, Equation 16.2 is commonly sampled iteratively using a Markov
Chain Monte Carlo (MCMC) sampler or nested sampler (e.g., [552, 67]). Once the
sampler converges, we are left with a set of samples drawn from the posterior distri-
bution. This posterior distribution represents our full knowledge about the physical
parameters of the source of the gravitational wave event with our prior distribution.

Now, we combine multiple events hierarchically and sample the hyperposterior, in
order to learn about the hyperparameters (or population parameters) Ω that describe

1While Equation 16.2 is technically conditioned on a model, we suppress the explicit dependence
in our notation.
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the global distribution of a subset of single-event parameters (e.g., the distribution
of neutron star masses). We denote these single-event parameters of interest as 𝜃, a
vector of length 𝐷, which is a subset of Θ.

We do the combination by replacing the fixed model above with the set of hyperpa-
rameters describing the population model [536, 560].

𝑝(Ω|d) = 𝜋(Ω)L(d|Ω)
𝑍 (d) . (16.3)

In the above notation, 𝜋(Ω) is the hyper-prior, and 𝑍 is the Bayesian evidence for all
the observed data d marginalized over the hyper-prior. Assuming the observed events
are 𝑁 independent draws from the population, we express the (hyper-) likelihood as

L(d|Ω) =
𝑁∏
𝑖=1

∫
L(𝑑𝑖 |𝜃𝑖)𝑝(𝜃𝑖 |Ω)𝑑𝜃𝑖, (16.4)

where for each observed event we marginalize over the single-event parameters 𝜃
conditioned on a population model 𝑝(𝜃 |Ω). The likelihood L(𝑑𝑖 |𝜃) is implicitly
already marginalized over all members of Θ not included in 𝜃.

In order to account for selection effects, we augment Equation 16.4 by including a
selection term:

𝑃det(Ω) =
1
𝑁inj

𝑁found∑︁
𝑖=1

𝑝(𝜃𝑖 |Ω)
𝑝(𝜃𝑖 |Ω0)

. (16.5)

We compute this term by injecting into simulated detector noise 𝑁inj simulated
events from a fiducial source population Ω0, and determining how many of those
events pass our SNR detection threshold (see Section 16.4). In this equation, the
term 𝜃𝑖 consists of the parameters of the 𝑖th “found” injection. Our new total
likelihood is:

L(d|Ω) = 𝑃det(Ω)−𝑁
𝑁∏
𝑖=1

∫
L(𝑑𝑖 |𝜃𝑖)𝑝(𝜃𝑖 |Ω)𝑑𝜃𝑖 . (16.6)

A key challenge in population inference is efficiently evaluating Equation 16.4 for a
large catalog of events as Equation 16.3 is typically also constructed using stochastic
sampling, requiring as many as several million evaluations.

Current techniques to compute this integral via Monte Carlo integration involve
reweighting posterior samples (assuming the fiducial prior) by the corresponding
population likelihood for each sample, for example in the analysis performed in [29].
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This can be efficiently parallelized using graphics processing units (GPUs) [520] to
control the run time. However, this method fails for very narrow distributions, due
to having only limited samples from the posterior.

In this work, we consider the converse weighting for this marginalization step: we
sample from the population model and compute the likelihood of the observed data
for each event given these samples. This requires an efficient method for evaluating
the likelihood at arbitrary points in parameter space. Previous work has used Kernel
Density Estimates (KDEs, [473]) and Gaussian Processes (GPs, [446]) for density
estimation [584, 325, 164]. While KDEs can be made quickly, distributions with
sharp edges and high dimensions can cause the KDE to break down and the com-
plexity of evaluating the KDE scales with the number of samples in the distribution.
Similarly, GPs have been shown to provide good fits in small dimensions, but finite-
binning effects from fitting the histogrammed samples can limit the accuracy of the
density estimate. Another GP method for making density estimates is used in the
parameter estimation code RIFT [328]. However, this requires fixed sets of intrinsic
parameters and can be unsuitable for analyzing relationships between source-frame
parameters, which is needed in this work (see Section 16.3).

While these methods provide estimates of single-event likelihoods, they each involve
assumptions and/or computational complexities which may make them sub-optimal
for any general given hierarchical inference problem [164, 522]. In the next sec-
tion, we make density estimates of single-event likelihoods using GMMs for use
in a hierarchical inference framework. The steps presented here provide a rel-
atively computationally-inexpensive density estimation procedure that avoids the
shortcomings of the methods outlined above.

16.2.1 Density Estimation

We begin with the goal of being able to evaluate the individual likelihoods L(𝑑 |𝜃)
at any arbitrary point in parameter space. To do this we must begin with our 𝑁 sets
of posterior samples (for 𝑁 events) and create a functional form for each likelihood.

As an estimate of the 𝐷-dimensional marginalized likelihood for an observed event,
we model the likelihood as a linear combination of several𝐷-dimensional Gaussians,
where 𝐷 is the number of parameters of interest in each event’s posterior. In such
a Gaussian mixture model (GMM), a density estimate is made from the set of
discrete samples from the single-event posterior, resulting in an analytic model for
the likelihood, allowing for evaluation of 𝑝(𝑑 |𝜃) for any 𝜃.
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Figure 16.1: (Upper panel) Posterior distribution for the mass and tidal parameters
of GW170817 in physical space (before transformation). (Lower panel) Posterior
distribution for GW170817 after transforming samples into fitting space. Note that
the domain of the transformed samples is much more uniform across parameter
space and the sharp edges both in 1-D and 2-D histograms have been removed.
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16.2.1.1 Pre-processing

Realistic posterior distributions for parameters in gravitational wave analysis are
subject to sharp edge effects, widely differing domains between parameters, and
other features which make the raw distribution unsuitable for reliable fitting with
our density estimation method. In the top panel of Figure 16.1 we plot the posterior
distribution for the chirp mass (M), mass ratio (𝑞), and two tidal parameters Λ̃, and
𝛿Λ̃ (see Section 16.4 for descriptions of these parameters) for GW170817 [9]. For
this event, we note the marginal distribution for mass ratio 𝑞 exhibits a hard cutoff
at 𝑞 = 1, and the correlation plot between Λ̃ and 𝛿Λ̃ has a sharp triangular shape.

We follow [522] to map the observed distribution to one that is smoother and on
a better-behaved domain, and use this transformed distribution to train the density
estimate.

First, we map each posterior sample in 𝜃 to the unit interval using the cumulative
distribution function (CDF) 𝐹 of the prior. Next, we transform the samples from
the unit interval to the unit normal distribution. The transformed sample is

𝜃′ = Φ−1(𝐹 (𝜃)), (16.7)

where Φ−1 is the probit function, the inverse CDF of the unit normal distribution
[105] 2.

The result of this transformation on the posterior distribution for GW170817 can
be seen in the lower panel of Figure 16.1. The original posterior distribution (in
physical space) can be compared to the transformed distribution, which has been
made more suitable for fitting to a GMM.

16.2.1.2 Fitting the Distribution

After mapping the samples from the posterior distribution using the method in the
previous section, the transformed samples follow a distribution more suitable to
fitting with a GMM.

We train the model on the posterior samples and determine the maximum likeli-
hood means, covariances, and weights assigned to each component of the GMM.

2Note that if an analytic form of 𝐹 (𝜃) is not known, an interpolant may be necessary to compute
𝐹 (𝜃) for arbitrary values of 𝜃.



257

Mathematically, the density estimate of an observed posterior distribution is

𝑝(𝜃′𝑖 |𝑑𝑖) ≈
𝐾∑︁
𝑘

𝜙𝑖𝑘N(𝜃′𝑖 |𝜇𝑖𝑘 , Σ𝑖𝑘 ), (16.8)

where the 𝑘 𝑡ℎ component of the mixture is a multivariate Gaussian of mean 𝜇𝑘 and
covariance Σ𝑘 , weighted by 𝜙𝑘 . Here,

∑𝐾
𝑘 𝜙𝑖𝑘 = 1 for a 𝐾-component GMM, for

each 𝑖. Note that the index 𝑘 here runs over the components (individual Gaussians)
in the mixture model, not the observed events, as this mixture model is unique to
each event. We use the Gaussian mixture model as implemented in Scikit-Learn
[421], which uses an expectation-maximization method to fit for the 𝜇, Σ, and 𝜙
parameters in Equation 16.8 conditioned on a set of transformed samples from the
posterior distribution of the 𝑖th event.

Since a GMM is a sum of individual weighted Gaussian components, we must deter-
mine how many such components to use to make the optimal fit characterizing the
distribution without overfitting. To determine this, we take a set of posterior samples
from an event and we randomly assign 80% of the transformed posterior samples to
a training set and the other 20% to a testing set. We train the 𝐾-component GMM
using the training data and evaluate the score (sample-wise average log-likelihood)
of the testing samples for the GMM. To determine the optimal number of compo-
nents to use, we vary 𝐾 and repeat this process until the score noticeably flattens,
indicating an increased value of 𝐾 does not better characterize the distribution.
When working with a catalog of observed events, it may be efficient to do this step
using one selected event (possibly corresponding to the most complex posterior
distribution), and use this optimal 𝐾 for all GMM density estimates in the catalog.
However, a more complete fitting method would consist of fitting the for the optimal
𝐾𝑖 for each event 𝑖, rather than using the same 𝐾 for all events. We note that one
could also fit for the optimal 𝐾𝑖 values for each event using a statistic such as the
Bayesian information criterion (BIC) [302]. However, we find that the fits we obtain
from the flattening of the score are sufficient for good recovery of our simulated
distribution, as reported in Section 16.5.

In Figure 16.2, we show this curve using our GMM fits from GW170817. As the
score flattens out by 𝐾 = 8 − 10 components, this represents the optimal number of
components to use in the GMM for this posterior distribution. As an illustration, we
compare the GMM fit to the true posterior distribution using samples drawn from
the GMM and the original transformed samples for GW170817 in Figure 16.3.
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Figure 16.2: Average (natural) log likelihood of evaluation samples as a function of
number of components (𝐾) used to generate GMM, using posterior samples from
GW170817. The score flattening out by 𝐾 ≈ 8-10 indicates that the GMM does not
provide a better density estimate for larger 𝐾 .

Since the GMM is trained on transformed posterior samples, we convert the GMM
density estimate D𝑖 (𝜃′) from the 𝑖th event into a single-event likelihood via:

L𝑖 (𝜃′) =
D𝑖 (𝜃′)

N (𝜃′, 𝜇 = 0, 𝜎 = 1) . (16.9)

This results in the correct likelihood because we used the sampling priors for 𝐹 (𝜃)
in the original transformation 𝜃 → 𝜃′ (see Equation 16.7).

16.2.2 Hierarchical Likelihoods using Density Estimates

For a given population model 𝑝(𝜃 |Ω), we compute the likelihood of the event 𝑖 (for
𝑖 ∈ (1, 𝑁)) as:

L𝑖 (𝑑𝑖 |Ω) =
1
𝑀

∑︁
𝜃∼𝑝(𝜃 |Ω)

L𝑖 (𝜃′), (16.10)

where L𝑖 is the likelihood of the 𝑖th event (Equation 16.9), and 𝑀 samples 𝜃
are drawn from the population model 𝑝(𝜃 |Ω). This is a practical Monte Carlo
integration scheme for the integral in Equation 16.4, dependent on the ability to
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Figure 16.3: 4-dimensional posterior distribution for GW170817. Orange is the
posterior samples and blue is from samples of the GMM fit. The overlap between
the two distributions shows the GMM provides a good density estimate. Plotted in
physical (transformed) space in the upper (lower) panel.
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sample from the population model and evaluate the single-event likelihoods at the
corresponding points in parameter space.

An implicit step in the above hierarchical likelihood equation is the mapping of the
population samples 𝜃 into the corresponding transformed (fitting) space samples 𝜃′

for each density estimate, to match the space of the density estimates.

The total likelihood (i.e. Equation 16.4) for the data from 𝑁 events therefore
becomes:

L(d|Ω) =
𝑁∏
𝑖=1

1
𝑀

∑︁
𝜃∼𝑝(𝜃 |Ω)

L𝑖 (𝜃′). (16.11)

Although Scikit-Learn provides a method of computing the log-likelihood of
samples in a GMM fit, for a single evaluation of the total likelihood, each of
𝑁 GMMs must be evaluated for 𝑀 samples, which can become a computational
burden for large 𝑁 and 𝑀 . When there are many observed events, it becomes more
efficient to extract the best-fit means, covariances, and weights from the GMM fits
and evaluate the likelihood matrices in Equation 16.8 directly on a GPU using CuPy
[403]. This avoids explicitly looping over the 𝑁 GMMs for each evaluation of the
joint likelihood, while efficiently performing computations over the O(𝑁 ×𝑀 × 𝐾)
array using array broadcasting and vectorization on a GPU.

16.3 Models

For the implementation of our GMM-based hierarchical inference method, we let
Ω characterize the mass distribution as well as the EOS relating the Λ and 𝑚

parameters. This requires choosing parameterized models for the mass distribution
and the EOS model.

16.3.1 Mass Population Model

To model the distribution of neutron stars in merging binaries, we consider the
observationally-motivated framework in [219]. In that work, the authors found
evidence based on observations of galactic BNS systems for each companion of
a BNS system being drawn from a separate population distribution. The first
population distribution characterizes the member of the binary that forms first and
spins up due to accretion, known as a recycled neutron star. The other member of
the system is known as the slow neutron star, as it is born second and spins down
quickly after formation. The authors found the model with the best support consists
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of a two-component Gaussian model for the recycled neutron star mass distribution,
and a uniform distribution for the slow neutron star mass.

Adopting this mass distribution model, the subset of Ω describing the mass popula-
tion consists of 8 parameters. The lower-mass Gaussian of the recycled distribution
is described by the parameters (𝜇𝑅,𝑎, 𝜎𝑅,𝑎) and is weighted by 𝛼, and the higher-
mass component is described by (𝜇𝑅,𝑏, 𝜎𝑅,𝑏). The probability of observing a mass
𝑚 from the recycled mass distribution is

𝑝𝑅 (𝑚 |Ω) = 𝛼N(𝑚 |𝜇𝑅,𝑎, 𝜎𝑅,𝑎)
+ (1 − 𝛼)N (𝑚 |𝜇𝑅,𝑏, 𝜎𝑅,𝑏).

(16.12)

For the slow mass distribution, we denote the low and high limits as 𝑚𝑆,𝑙 and 𝑚𝑆,ℎ,
respectively. The maximum mass parameter, 𝑀max represents an absolute cutoff
of both distributions; we truncate the recycled (Equation 16.12) and slow mass
distributions at 𝑀max on the high end and 1 𝑀⊙ on the low end.

By considering the observed galactic BNS systems in the context of binary formation
and evolution models, [597] found that modeling the slow companion as non-
spinning was a robust approximation for gravitational wave data analysis. The
recycled partner, while spun-up from the slow companion, has very little support
for spins of 𝜒 > 0.05 for population and EOS models they considered. We therefore
do not consider spins at all in this work, and model all sources as nonspinning.
Since we neglect spins, we have no way of concretely knowing which component
mass (𝑚1, 𝑚2) represents the slow or recycled mass, so each computation of the
population probability must account for the possibility of either component being
drawn from either distribution, with the constraint that each BNS system consists of
exactly one recycled and one slow neutron star.

16.3.2 EOS Model: The Λ–m Relation

Several nonparametric and parametric models for EOS-sensitive observables exist
in gravitational wave literature, based on the assumption that a neutron star of a
given mass will have a corresponding Λ uniquely determined by its EOS [448, 342,
325]. Therefore, recovering parameters characterizing this mapping between the
two observables, 𝑚 and Λ, may provide a way to recover information about the
underlying nuclear EOS.

To model the EOS-sensitive relationship, we follow the examples of [45, 173] and
consider a simple expansion of 𝜆(𝑚) about the canonical reference value of 1.4 𝑀⊙:
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Figure 16.4: Dimensionless tidal deformability (left panel) and tidal deformability
(right panel) as a function of mass. Units of 𝜆 are in seconds to the fifth power,
following the convention in [45].

𝜆(𝑚 |𝑐0, 𝑐1) = 𝑐0 + 𝑐1

(
𝑚 − 1.4𝑀⊙

𝑀⊙

)
. (16.13)

The expansion coefficients in this model are our EOS-sensitive parameters, with
different combinations approximating different EOSs. Previous work has shown
that with this parameterization, LIGO observations will be unlikely to resolve terms
𝑐 𝑗 for 𝑗 ≳ 1, so we only include these first two terms in our demonstration. With
component masses of observed galactic BNS systems peaking around 1.4 𝑀⊙, this
form for 𝜆(𝑚) can provide meaningful constraints on the EOS, as the expansion is
centered at this value.

For our fiducial choice of EOS to simulate, we use the values of 𝑐0 and 𝑐1 corre-
sponding to the relatively-soft SLy EOS [183]. In Figure 16.4, we show the linear
fit to the true EOS from Equation 16.13 for the Λ − 𝑚 (top) and 𝜆 − 𝑚 (bottom)
relationships. The approximation breaks down for 𝑚 > 1.8𝑀⊙ as previously noted
in, e.g, [138], however, the majority of simulated events considered in this work
are less massive than this. If observed BNS mergers contain high mass compo-
nents, this linear parameterization will not be valid; however, it is sufficient for our
proof-of-principle (see Section 16.6).

This model provides a weak connection between our EOS-sensitive model and
the mass population model. Since 𝑐0 and 𝑐1 are allowed to vary in Equation
16.13, it is possible to arrive at a negative value for Λ, which is unphysical. Since
Λ(𝑚) is a decreasing function with mass, we therefore constrain 𝑀max such that
0 < Λ(𝑀max) < 200, consistent with limits on minimum Λ(𝑚) for commonly-used
EOSs (see Figure 1 in [138]).
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It is worth noting the limited significance of the 𝑀max parameter in this work, as the
constraint 0 < Λ(𝑀max) < 200 is simply a cutoff to keep values of Λ physical. This
does not necessarily correspond to the maximum neutron star mass as determined
by the EOS; this is known as the Tolman-Oppenheimer-Volkoff mass (𝑀TOV), and is
determined from the stability conditions set by a particular EOS [300]. By cutting
off the population model at 𝑀max in this work, we do not associate 𝑀max with the
most massive possible neutron star, but instead 𝑀max is the upper limit on the mass
of neutron stars in merging binaries. Thus, stellar binary evolution and population
channel models play an additional role in the significance of 𝑀max in the population.
A more rigorous approach may be to calculate 𝑀TOV for a given EOS and enforce
the condition 𝑀max < 𝑀TOV.

Although this work is a proof-of-concept for this method, improvements to the EOS
modeling and parameterization can make the results more realistic and applicable
to real observations. The breakdown of our choice of EOS model at high masses
serves to potentially bias the entire inference if a significant number of events are
observed far from the reference mass used in the Taylor expansion of Equation 16.13.
Additionally, previous work has shown that a simple Taylor expansion, such as the
model used in this work, may not be robust to EOS models with phase transitions
to non-hadronic constituents. Therefore, a more general model robust to arbitrary
EOSs without deviations at high masses may be useful for realistic observations.

16.4 Data and Implementation

16.4.1 Data

In order to demonstrate our method, we simulate 100 BNS signals drawn from the
mass distribution characterized by the maximum likelihood estimate in [219]. This
corresponds to the combination of mass distribution parameters listed in Table 16.1.
We specify injected tidal parameters using our linear fit to the SLy EOS, neglecting
spins.

We draw the extrinsic parameters isotropically in position and orientation with dis-
tances uniform in source frame between 20 − 300 Mpc using the cosmology from
the Planck 2015 data release [42].
For each simulated signal, we generate 128𝑠 of colored Gaussian noise correspond-
ing to the three-detector Advanced LIGO-Virgo network operating at their projected
design sensitivities [16]. We employ a GPU-implementation of the TaylorF2 wave-
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form model [121, 520] and analyze data between 20 − 2048 Hz. We simplify our
parameter estimation by marginalizing phase, merger time, and luminosity distance
for sampling the posterior distribution for single-event analyses. We reconstruct
the luminosity distance marginal posterior distribution in post-processing using the
method outlined in [536].

We impose a detection threshold of SNR > 8 in at least one detector. For the 37
events passing our detection threshold, we infer the posterior distribution using the
Bilby [67] implementation of PyMultiNest [116].
We employ a uniform prior on detector-frame chirp mass (M𝑑) of ±0.01𝑀⊙ around
the injected value for each event. Our prior on 𝑞 is uniform from 0.125 to 1. For Λ̃,
defined as [563]

Λ̃ =
8

13

[
(1 + 7𝜂 − 31𝜂2) (Λ1 + Λ2)

+
√︁

1 − 4𝜂(1 + 9𝜂 − 11𝜂2) (Λ1 − Λ2)
]
,

(16.14)

we use a uniform prior from 0 to 5000. Here, 𝜂 ≡ 𝑞(1 + 𝑞)−2 is the symmetric
mass ratio. We construct a conditional sampling prior on 𝛿Λ̃ as follows: for each
sample 𝜃𝑖, we analytically compute the maximum and minimum allowed values of
𝛿Λ̃𝑖 conditioned on 𝑞𝑖 and Λ𝑖. The parameter 𝛿Λ̃ is defined as [563]

𝛿Λ̃(𝑞, Λ̃) = 1
2

[√︁
1 − 4𝜂

(
1 − 13272

1319
𝜂 + 8944

1319
𝜂2

)
(Λ1 + Λ2)

+
(
1 − 15910

1319
𝜂 + 32850

1319
𝜂2 + 3380

1319
𝜂3

)
(Λ1 − Λ2)

]
,

(16.15)

such that 𝛿Λ̃ deviates from 0 as the differences in component tidal deformabilities
increases. It therefore reaches a maximum (minimum) when Λ1 (Λ2) is 0. Thus, we
calculate the bounds of the uniform prior on 𝛿Λ̃ conditioned on a sample of (𝑞, Λ̃),
where Λ1(2) is computed by setting Λ2(1) = 0 for fixed 𝑞 and Λ̃ in Equation 16.14,
and using the resulting value of 𝛿Λ̃ as the upper (lower) bound. We then consider a
uniform prior on 𝛿Λ̃ from these conditions.

WhileM is well-constrained in the detector frame, the hyperparameters we consider
in this work are only relevant to source-frame masses. Therefore, if a given set of
posterior samples only contain M in the detector frame, they must be converted to
source frame via the relationship M𝑑 = (1+ 𝑧)M. We construct our corresponding
prior on M𝑠 as [536],

𝜋(M𝑠) =
∫

𝑑𝑧𝑑M𝑑𝜋(𝑧)𝜋(M𝑑) (1 + 𝑧)𝛿
(
M𝑠 −

M𝑑

(1 + 𝑧)

)
. (16.16)
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This is marginalized over both detector-frame mass and distance. This relation may
be unique to each observed event if a different prior on M𝑑 is used for each event.
We therefore associate a unique prior on M with each GMM 3.

To make the density estimates of each posterior distribution, we follow the method
outlined in the previous section, using our single-event sampling priors for 𝐹 in
Equation 16.7 for the transformation into fitting space for each event’s posterior. As
an example of GMM density estimation on BNS posterior distributions, we show the
fit to GW170817 in Figure 16.1. We observe that BNS posteriors may include strong
correlations between Λ̃ and 𝛿Λ̃ (i.e. the triangular shape in the Λ̃ − 𝛿Λ̃ correlation
plot in Figure 16.1), possibly impacting the quality of the density estimate. Using
the CDF of our conditional prior as 𝐹 (𝜃), the transformation decorrelates Λ̃ and 𝛿Λ̃.
As can be seen in the bottom panel of Figure 16.1, the correlation between the tidal
parameters no longer exists in transformed space when imposing this condition on
the sampling prior.

To motivate our choice for the number of components in our GMMs, we imple-
ment the scoring method described in Section 16.2 on GMM density estimates of
GW170817 and shown in Figure 16.2. Based on this example, we use 10 components
for each GMM density estimate of our simulated BNS events.

16.4.2 Sampling the Hyper-posterior

For each calculation of the likelihood, we sample 𝑀 = 15, 000 masses from the
population model and compute the corresponding tidal deformabilities conditioned
on EOS-sensitive hyperparameters via the relationship in Equation 16.13. We then
convert the 𝑀 samples of (𝑚𝑟 , 𝑚𝑠,Λ𝑟 ,Λ𝑠) to (M, 𝑞, Λ̃, 𝛿Λ̃) and then into the fitting
space for each of the GMMs. While we sample component masses in terms of
recycled and slow mass, we convert (𝑚𝑟 , 𝑚𝑠) to (𝑚1, 𝑚2), adopting the convention
𝑚1 > 𝑚2. Using these transformed samples, we can evaluate Equation 16.11.

To calculate 𝑃det(Ω) we draw 20,000 binaries from a mass distribution that is
uniform in [1, 2.2]𝑀⊙. For each simulated binary, we compute the SNR in an
independent noise realization and keep those that pass our threshold. We neglect
the impact of tidal effects on sensitivity. Since our mass distribution model is in
terms of slow and recycled components, but our analysis can only specify 𝑚1 and
𝑚2, for the purposes of computing 𝑝(𝜃 |Ω) we assume a priori each object is equally

3Note we express M𝑠 = M in this work, with detector-frame chirp mass written explicitly as
M𝑑
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likely to be the recycled or slow companion, with the assumption each binary system
contains exactly one slow and one recycled partner.

Each likelihood evaluation requires O(𝑀×𝑁×𝐾) ∼ 6×106 computations. Running
on an NVIDIA GeForce RTX 3080 GPU, each full likelihood evaluation took ≲

50 ms for our 37 events which is comparable to the evaluation time for the method
currently used to infer binary black hole mass distributions in LIGO-Virgo-KAGRA
analyses [29, 520]. We note that the sampling, transformation, and selection function
steps in the likelihood introduce subdominant effects to computation time relative to
the computation of 𝑀 ×𝑁 ×𝐾 Gaussian likelihoods. We sample the hyper-posterior
using the Bilby wrapper of the nested sampler PyMultinest [116], sampling with
250 live points.

16.5 Results

In Figure 16.5 we show the inferred mass distribution when the mass and EOS
hyperparameters are sampled simultaneously. The solid line shows the posterior
predictive distribution (PPD), the shaded regions show the symmetric 68% credible
region, and the dashed lines show the true simulated distribution. With the priors
on the mass distribution hyperparameters spanning a wide range, the posterior
distribution is relatively well-constrained around the input hyperparameters (see
Figure 16.11) for the full one- and two-dimensional posterior distributions.

Of note, we confidently recover the presence not only of the large peak in recycled
mass distribution at 1.34𝑀⊙, but also the small and wide peak at higher masses, as
shown by the 𝜇𝑅𝑏 and 𝜎𝑅𝑏 panels in Figure 16.11, as well as in the PPD in Figure
16.5. The inferred location of the large peak is 𝜇𝑅𝑎 = 1.32+0.03

−0.03𝑀⊙ (all ranges are
90% credible intervals), constrained to within ∼4% of the input value. It is worth
noting that the hyperparameters associated with the second peak of the recycled-
mass distribution unsurprisingly show the poorest recovery. This is expected as the
second peak in this distribution is very small (i.e. most masses from the recycled
distribution are in the lower-mass peak) and thus very few events coming from these
masses are expected. Nevertheless, we are able to recover evidence of this second
peak around its input location. The presence of a secondary peak in the recycled
mass distribution is favored over a single Gaussian, with a Savage-Dickey density
ratio giving a Bayes factor of 2.6 in favor of a secondary peak (𝛼 ≠ 0 or 𝛼 ≠ 1).

Additionally, the bounds of the slow mass distribution are well-constrained, with
inferred values of 𝑀𝑆ℎ = 1.45+0.08

−0.06𝑀⊙ and 𝑀𝑆𝑙 = 1.17+0.08
−0.04𝑀⊙. Both of these
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Figure 16.5: Inferred mass distribution from the full mass + EOS analysis of 37
simulated events. Solid lines represent the posterior predictive distribution (PPD).
The recycled (slow) distribution is colored blue (red), with shading representing
the ±1𝜎 (68%) credible region from the posterior. Dashed lines show the input
distribution.
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Figure 16.6: Inferred mass distribution from the mass-only analysis of 37 simulated
events. Solid lines represent PPD. The recycled (slow) distribution is colored blue
(red), with shading representing the ±1𝜎 (68%) credible region from the posterior.
Dashed lines show the input distribution. Compare to Figure 16.5 to observe the
bias in mass distribution recovery due to not including EOS inference.

parameters are therefore constrained to within∼ 10% of their input values of 1.42𝑀⊙

and 1.16𝑀⊙, respectively.

Similarly, good recovery is also seen in the EOS parameters (𝑐0 and 𝑐1), around the
values input for our SLy fit which predicts Λ(1.4𝑀⊙) = 313. We infer Λ(1.4𝑀⊙) =
322+27

−25, which is constrained to within ∼17% of the true value from the SLy fit. We
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Figure 16.7: Inferred 𝜆 − 𝑚 parameter space from the analysis using only low
SNR events (left) and high SNR events (right). Note the better recovery of EOS
parameters from including few high SNR events compare to many low SNR events.

1.00 1.25 1.50 1.75 2.00 2.25

Mass (M�)

0

5

10

15

P
D

F

Recycled Mass PPD

Recycled Mass True

Slow Mass PPD

Slow Mass True

1.00 1.25 1.50 1.75 2.00 2.25

Mass (M�)

0.0

2.5

5.0

7.5

10.0

12.5

P
D

F

Recycled Mass PPD

Recycled Mass True

Slow Mass PPD

Slow Mass True

Figure 16.8: Inferred mass distribution from the full mass + EOS analysis of only
low SNR events (left) and only high SNR events (right). Solid lines represent the
posterior predictive distribution (PPD). The recycled (slow) distribution is colored
blue (red), with shading representing the ±1𝜎 (68%) credible region from the
posterior. Dashed lines show the input distribution. Compare to Figure 16.5 to note
the worse recovery due to not including the full set of events.
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Figure 16.9: Inferred Λ − 𝑚 (top) and 𝜆 − 𝑚 (bottom) parameter space from the
population + EOS analysis. Shaded region corresponds to ±1𝜎 (68%) region from
𝑐0 and 𝑐1 posterior samples. For reference, selected EOS curves overplotted.

also recover Λ(1𝑀⊙) = 2282+435
−333 and Λ(2𝑀⊙) = 29+18

−23, the inferred dimensionless
tidal deformability of a 1 𝑀⊙ and 2 𝑀⊙ neutron star, respectively. The relatively
wide credible intervals for these parameters can be understood as a result of the vast
majority of our simulated neutron stars having masses closer to 1.4𝑀⊙, with very
little support in the mass distribution at 1𝑀⊙ or 2𝑀⊙. For reference, we also plot
the Λ − 𝑚 relationship for two other soft EOSs: AP4 [52] and WFF1 [572] which
are EOSs compatible with observations from GW170817 [15]. This way we show
that the recovery can also favor the input EOS over some similar EOSs. Thus, we
will be able to robustly distinguish between these EOSs after observing 37 events.

As noted in Section 16.3, the 𝑀max parameter is fairly insignificant in this work,
with its recovered posterior distribution relatively flat (see Figure 16.11). There is
however a sharp, slanted cutoff in the correlation plot between 𝑐1 and 𝑀max, owing
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to the constraint we impose on Λ(𝑀max) (see Section 16.3).

The recovery of the EOS parameters obtained in this work stands in contrast to
what was found in [45]. Simulating component masses from a narrow Gaussian
peaked at 1.35𝑀⊙, but assuming a flat mass prior, the authors needed O(> 100)
events in their catalog to distinguish their candidate EOSs. In contrast to this
work, those authors aimed to distinguish between soft, moderate, and stiff EOSs,
whereas we only consider three similar soft EOSs, limiting the significance of a
direct comparison between works. Despite comparing more similar EOSs in our
work, we find a substantially lower threshold for distinguishing EOSs than in [45]
by performing population inference simultaneously.

Motivated by [323, 275], we test how well this method can constrain the mass
distribution and EOS hyperparameters from only lower-SNR or higher-SNR events
by repeating the above analysis, but limiting ourselves to a portion of the events.
The low SNR events are the 24 of our simulated events which had a network SNR <
20 (but above our SNR threshold of 8), and the remaining 13 events are the events
with SNR > 20.

Consistent with those studies, we find that EOS-sensitive parameters show defini-
tively worse recovery when only including the low SNR events. The inferred ±1𝜎
parameter space in the left panel of Figure 16.7 in this case is much wider than
when all the events are included, indicating that the SNR > 20 events are providing a
significant amount of the EOS information in this analysis. For instance, when only
considering these low SNR events, we inferΛ(1.4𝑀⊙) = 309+61

−63. On the other hand,
only analyzing the 13 events with SNR > 20 provides Λ(1.4𝑀⊙) = 324+28

−29 (see right
panel of Figure 16.7), constraints comparable to those from the full analysis with all
SNR > 8 events (see left panel of Figure 16.9).

As can be seen in Figure 16.8, the mass distribution recovery is poorer in the low-
SNR case compared to including all events in the analysis. Specifically, we recover
𝜇𝑅𝑎 = 1.33+0.07

−0.11𝑀⊙; while this interval contains the true value of 𝜇𝑅𝑎, it is three
times larger than what we get from the analysis using the full set of events. The 13
high SNR events contribute less information to the mass distribution inference than
the 24 low SNR events, giving an inferred value 𝜇𝑅𝑎 = 1.30+0.07

−0.21𝑀⊙; a credible
interval ∼4.5 times larger than that from the analysis using the full set of events.
Therefore, unlike the case for the EOS, the mass distribution is not preferentially
informed by high SNR events but is most sensitive to the number of events in the
population. Because the mass parameters (chirp mass in particular) tend to be
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relatively well-constrained, several observations of lower-SNR BNS merger events
can provide constraints on the mass distribution of merging neutron stars.

To estimate the bias from not inferring mass distribution and EOS hyperparameters
simultaneously, we conduct the analysis from above but only sample the mass
distribution hyperparameters and make GMM density estimates of M and 𝑞 for our
37 observed events. By only considering the mass parameters in our analysis, we
neglect the Λ − 𝑚 relationship from the EOS and implicitly (mis)model the tidal
parameters as independent draws from the prior distribution used in the single-event
sampling. As seen in Figure 16.6, the mass distribution becomes noticeably biased
at the 68% credible level 4, with the PPD of the mass spectrum shifted from the
input distribution. In this case, we recover 𝜇𝑅𝑎 = 1.32+0.02

−0.09𝑀⊙, a credible interval
which almost does not contain the true value. This bias is due to ignoring the
correlations between the mass parameters (particularly the mass ratio) and the tidal
parameters, which can be seen in the 2d posterior panels between 𝑞 and Λ̃ in single-
event posteriors of our simulated events (see Figure 16.10). Therefore, inferring the
Λ − 𝑚 relationship simultaneously with the mass distribution is necessary for an
unbiased result.

16.6 Discussion

In this work, we demonstrate a new method of hierarchically combining posterior
distributions from BNS merger events and inferring mass distribution and EOS
parameters simultaneously. The initial step of using GMM density estimates in our
transformed space reliably reflects the observed posterior distribution and allows for
the evaluation of single-event likelihoods at arbitrary points in parameter space for
arbitrary subsets of single-parameters efficiently.

We show that our method can recover underlying population model parameters
when combining BNS events simulated with realistic observational parameters and
noise realizations, while also constraining parameters of the neutron star EOS.
Using our new method, we confirm the importance of inferring EOS and mass
distribution parameters simultaneously to avoid potential bias in both the inferred
mass distribution and EOS.

Additionally, we observe that both low-SNR (< 20) and high-SNR (> 20) observa-
tions contribute to mass population inference, with the few high-SNR observations

4The inferred distribution is consistent with the input distribution at the 90% credible level,
however.
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providing the bulk of the EOS constraints. This finding is generally consistent with
the work in [323, 275]. Summarized in Figure 16.9, the EOS recovery from the 37
simulated observations constrains the Λ−𝑚 parameter space around the input EOS.

The fourth observing run of the LIGO-Virgo-KAGRA network is expected to begin
no earlier than Summer 2022 and last one year. At the targeted upgraded sensitivity,
it is estimated that there will be 10+52

−10 BNS detections, significantly raising the
prospects for providing constraints on neutron star EOS and population models
[16].

The method presented in this work is generalizable to arbitrary population models
and can incorporate parameterized models linking population observables to other
single-event observables (i.e. Λ − 𝑚 relationship). Gravitational wave population
analysis using mass and spin models (see [29]) could be similarly evaluated using
this method by making GMM density estimates of mass and spin parameters, and
sampling from the population models used in those studies.

We anticipate that the transformed Gaussian mixture model density estimation
method employed here has additional potential applications, as it is robust to edge
effects and has superior scaling with dimensionality compared to KDE and GP
methods. In addition to being able to handle the delta-function population model
for tidal parameters, this method can be applied to any situation where the uncer-
tainty in individual measurements is much larger than the domain of the population
model, e.g., spin distributions that are not probeable with the method currently
employed by the LIGO/Virgo collaboration analyses [7, 29] (see also [584]). Fur-
ther, Gaussian mixture models are a generative model and can therefore be used to
generate O(105) additional samples per second from the posterior distribution or as
a proposal distribution for subsequent MCMC reanalyses building on the methods
in [212, 68].

While this proof-of-concept study used a simple toy model for the neutron starΛ−𝑚
relation, more sophisticated models can be folded into the method. Additionally, this
method can be extended to include a model for the distribution of neutron star spins.
Further, this study has focused on the situation when there are tens of measurements,
the current population of binary neutron star systems is limited to two. In this small
population regime the specific choice of population model/prior will significantly
impact the inference. We leave these extensions to future work.



273

Acknowledgements

We would like to thank Katerina Chatziioannou and Alan Weinstein for useful
discussions. We would also like to thank Stefano Rinaldi for useful comments on
the manuscript. Finally, we thank the anonymous reviewer for helpful suggestions
and critiques on this manuscript. JG and CT acknowledge the support of the
National Science Foundation, and the LIGO Laboratory. LIGO was constructed by
the California Institute of Technology and Massachusetts Institute of Technology
with funding from the National Science Foundation and operates under cooperative
agreement PHY-1764464. This paper carries LIGO Document Number LIGO-
P2100215.

The authors are grateful for computational resources provided by the LIGO Labora-
tory and supported by National Science Foundation Grants PHY-0757058 and PHY-
0823459. This research has made use of data, software, and/or web tools obtained
from the Gravitational Wave Open Science Center (https://www.gw-openscience.org/)
[36], a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo
Collaboration.



274

Parameter Value Prior Units

𝜇𝑅𝑎 1.34 (1, 2) 𝑀⊙
𝜎𝑅𝑎 0.02 (0.005, 0.5) 𝑀⊙
𝜇𝑅𝑏 1.47 (𝜇𝑅𝑎, 2) 𝑀⊙
𝜎𝑅𝑏 0.15 (0.005, 0.5) 𝑀⊙
𝛼 0.68 (0, 1) N/A
𝑀𝑆𝑙 1.16 (1, 1.7) 𝑀⊙
𝑀𝑆ℎ 1.42 (𝑀𝑆𝑙 , 𝑀max) 𝑀⊙
𝑀max 2.2 (1.9, 2.3) 𝑀⊙

𝑐0/10−24 4.88 (10−1, 10) 𝑠5

𝑐1/10−24 -5.21 (-10, -1) 𝑠5

Table 16.1: Summary of hyperparameters used in demonstration. Value column
indicates the number used to generate the samples, and the prior column is the
bounds of the uniform prior used for sampling. The mass distribution parameters
include the means, 𝜇𝑅, and standard deviations, 𝜎𝑅 of the low-mass Gaussian, a,
and higher-mass Gaussian, b, of the recycled mass distribution, along with a weight
𝛼 (b weighted by (1 − 𝛼)). The slow mass uniform distribution is characterized
by its lower bound 𝑀𝑆𝑙 and upper bound 𝑀𝑆ℎ. See the dashed line in Figure
16.5 for probability density function (PDF) of the input mass distribution. The 𝑐0
and 𝑐1 parameters are the EOS-sensitive parameters in Equation 16.13. All mass
parameters in units of 𝑀⊙.
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Appendix 16.A Single-Event Posteriors

In this Appendix, we show the posterior distribution and samples drawn from the
GMM fits for a range of our simulated events. By overplotting the samples from
the posteriors and the GMM, we show that the GMM accurately characterizes the
posteriors of individual events. We also note that the GMM is able to fit various
features including peaks, correlations, and skews that appear in the transformed
posterior distributions. This demonstrates the strength of using this density estimate
as an analytic approximation of the likelihoods.

The posterior distributions also show the correlations between the tidal parameters
and mass parameters (center panels in Figure 16.10). If the mass distribution is
inferred independently from the tidal parameters, the information in the correlation
(other than the M− 𝑞 plot) is lost, impacting the recovery of the mass distribution.

Appendix 16.B Hyper-Posterior

In Figure 16.11 we plot the recovered posterior distribution for the mass distribution
and EOS hyperparameters inferred from the analysis using the 37 simulated events.

Appendix 16.C Convergence of Monte Carlo Integrals

Population analyses such as those presented here rely on the use of Monte Carlo
integrals to marginalize over the single-event parameters, either by summing over
posterior samples for each event with some fiducial prior, e.g., [29], or by summing
over samples from the population model as in this work. While such Monte Carlo
integrals are asymptotically unbiased estimators, for a finite number of samples
there is a finite uncertainty. This uncertainty is generally neglected in the literature,
although it has been discussed for the integral estimating the sensitivity function,
Equation 16.5 [213]. For a generic Monte Carlo integral of some function 𝑓 over
some set of 𝐾 samples 𝑥𝑘 the expectation is

⟨ 𝑓 ⟩ = 1
𝐾

𝐾∑︁
𝑘

𝑓 (𝑥𝑘 ) (16.17)

and the fractional uncertainty is(
Δ 𝑓

⟨ 𝑓 ⟩

)2
=

1
𝐾

〈
𝑓 2〉 − ⟨ 𝑓 ⟩2

⟨ 𝑓 ⟩2 =

∑𝐾
𝑘 𝑓

2(𝑥𝑘 )(∑𝐾
𝑘 𝑓 (𝑥𝑘 )

)2 − 1
𝐾
. (16.18)
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Figure 16.10: Posterior distributions of selected simulated events. Transformed
samples are colored blue, and samples from the Gaussian mixture model density
estimates are in orange. The overlap and consistency indicates that GMMs provide
a good it in transformed space. Contours correspond to standard deviations in 2D
space, such that 1-𝜎, 2-𝜎, 3-𝜎 contours are 39%, 86%, and 99% confidence levels,
respectively.

We include the two notational forms to highlight the asymptotic form (center) and
the practical method for evaluating the quantity (right). From the asymptotic form,
we note that if the moments of 𝑓 can be analytically computed, we would have an
expected variance that is exactly inversely proportional to the number of samples
being averaged over.

Neglecting the uncertainty in the estimate of the selection function, the uncertainty
in our total likelihood is the logarithm of the product of many Monte Carlo integrals,
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Figure 16.11: Inferred hyperparameter distributions for the recycled mass distribu-
tion hyperparameters (top), slow mass distribution hyperparameters (bottom left),
and EOS hyperparameters (bottom right). Contours correspond to standard devi-
ations in 2D space, such that 1-𝜎, 2-𝜎, 3-𝜎 contours are 39%, 86%, and 99%
confidence levels, respectively. See Table 16.1 for priors on each parameter.
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the standard rules of propagating uncertainties yield

Δ lnL({𝑑𝑖}|Ω) =

√√√
𝑁∑︁
𝑖

(
ΔL𝑖

⟨L𝑖⟩

)2
. (16.19)

Here, the quantity in the sum is the equivalent of Equation 16.18. We emphasize that
we are interested in the absolute uncertainty in the log-likelihood.This uncertainty
will increase with the number of events for fixed per event variance. In order to
maintain a constant uncertainty, the required number of samples per hyperparameter
is proportional to the number of events. Thus the total number of samples required
for constant uncertainty scales like 𝑁2.

Appendix 16.C.1 Population sample weighting

In this work, we draw samples from the population model and evaluate Equation 16.9,
i.e., 𝑓 (𝑥𝑘 ) → L𝑖 (𝜃′). In addition to estimating the statistical uncertainty, we note
that we can directly sample the distribution of lnL by repeatedly evaluating the
likelihood with different realizations of samples from the population model.

In Figure 16.12 we plot the average log likelihood and 1𝜎 uncertainty for 100
trials as a function of increasing number of population samples 𝑀 (blue). This
provides a test of convergence of the Monte Carlo integration, as a converged
integral should be invariant under changes to the number of samples 𝑀 . We note
that using 𝑀 = 15, 000 samples, with an associated Δ lnL = 0.23, is sufficient for
convergence of this likelihood integration. In order to confirm that this integral is
well-behaved for our choice of 𝑀 , we perform a check by computing the likelihood
again for each hyperparameter sample in our posterior distribution and reweight
our original posterior distribution by this new distribution. We do this ten times
to get ten new mock realizations of our posterior distribution. Differences between
each simulated realization should therefore be due to statistical uncertainty when
computing the Monte Carlo integral over random samples from the population
distribution. We confirm qualitatively that these additional realizations are nearly
identical to the original posterior distribution, indicating the Monte Carlo integral
for the likelihood is stable for this choice of 𝑀 .

[584] further reduces the uncertainty in their implementation of the population sam-
ple reweighting method by sampling only from regions in the population model
which have non-vanishing support for mass parameters in the single-event likeli-
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Figure 16.12: Log likelihood (Equation 16.6) for the true population hyperparameter
values as a function of the number of samples 𝑀 from the population. Each
data point is an average over 100 likelihood iterations and error bars are ±1𝜎
(68%) uncertainties. By 𝑀 = 15, 000, the Monte Carlo integration is stable and
increased values of 𝑀 only increase the precision marginally. The red shaded region
corresponds to the 68% net uncertainty resulting from using Monte Carlo integration
via reweighting the single-event posterior samples in the mass population model (see
Equation 16.18)

.

hoods. This increases the number of effective samples per Monte Carlo computation,
presumably resulting in a reduced Δ lnL computed via Equation 16.19.

Appendix 16.C.2 Posterior sampling reweighting

As a comparison, we compute the uncertainty in the calculated likelihood when
reweighting single-event posterior samples in the likelihood. In this case the quan-
tity inside the sum is the ratio of the population model to the fiducial prior distribution
𝑓 (𝑥𝑘 ) → 𝜋(𝜃 |Λ)/𝜋(𝜃 |). For this method, we are restricted to a single set of sam-
ples from the fiducial posterior distribution and so we must rely on the statistical
uncertainty. We are also limited to only using posterior samples from the masses
(no samples from the tidal parameters), as we cannot reweight posterior samples in a
population model which accounts for aΛ(𝑚) relationship. In Figure 16.12, we show
the uncertainty in an equivalent calculation in the red shaded region. We center the
region at the mean estimator using the population model sampling method with
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30,000 population samples for ease of comparison. To calculate this uncertainty we
use 4,480 samples per event. We reiterate here that, while this reweighting method
may give less uncertainty in lnL in this application (i.e., the single-event posteriors
are much narrower than the population model), it cannot account for tidal effects in
the population model, as the distribution for Λ is a delta function for a given mass
(i.e., the single-event posteriors are much wider than the population model).
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C h a p t e r 17

THE INTERPLAY OF ASTROPHYSICS AND NUCLEAR
PHYSICS IN DETERMINING THE PROPERTIES OF NEUTRON

STARS

Jacob Golomb, Isaac Legred, Katerina Chatziioannou, et al. “Interplay of
astrophysics and nuclear physics in determining the properties of neutron
stars”. In: Phys. Rev. D 111.2 (2025), p. 023029. doi: 10.1103/PhysRevD.
111.023029. arXiv: 2410.14597 [astro-ph.HE].

Abstract

Neutron star properties depend on both nuclear physics and astrophys-
ical processes, and thus observations of neutron stars offer constraints
on both large-scale astrophysics and the behavior of cold, dense matter.
In this study, we use astronomical data to jointly infer the universal
equation of state of dense matter along with two distinct astrophysical
populations: Galactic neutron stars observed electromagnetically and
merging neutron stars in binaries observed with gravitational waves.
We place constraints on neutron star properties and quantify the extent
to which they are attributable to macrophysics or microphysics. We
confirm previous results indicating that the Galactic and merging neu-
tron stars have distinct mass distributions. The inferred maximum mass
of both Galactic neutron stars, 𝑀 pop, EM = 2.05+0.11

−0.06 𝑀⊙ (median and
90% symmetric credible interval), and merging neutron star binaries,
𝑀 pop, GW = 1.85+0.39

−0.16 𝑀⊙, are consistent with the maximum mass of
nonrotating neutron stars set by nuclear physics, 𝑀TOV = 2.28+0.41

−0.21 𝑀⊙.
The radius of a 1.4𝑀⊙ neutron star is 12.2+0.8

−0.9 km, consistent with,
though ∼ 20% tighter than, previous results using an identical equation
of state model. Even though observed Galactic and merging neutron
stars originate from populations with distinct properties, there is cur-
rently no evidence that astrophysical processes cannot produce neutron
stars up to the maximum value imposed by nuclear physics.

https://doi.org/10.1103/PhysRevD.111.023029
https://doi.org/10.1103/PhysRevD.111.023029
https://arxiv.org/abs/2410.14597
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17.1 Introduction

The properties of neutron stars (NSs) depend on both the dense-matter physics that
governs their interiors and the astrophysical context in which they form, evolve,
and are observed [330, 410, 138, 140]. This interplay is driven by an apparent
coincidence: the mass scale of maximally-compact matter in its ground state is
comparable to the Chandrasekhar mass. The NS characteristic compactness (defined
as 𝑀/𝑅 with 𝑀 the mass and 𝑅 its radius) is just below the black-hole (BH) limit
of 1/21. This implies 2𝑀/𝑅 ∼ 𝑐2

𝑠 ∼ 1 [479], where 𝑐2
𝑠 is the characteristic speed of

sound squared in the body. In the standard model, cold matter can only achieve such
sound-speeds at densities greater than an atomic nucleus, 𝜌nuc ∼ 2.8 × 1014g/cm3

at high neutron-to-proton ratio. This requirement fixes both the compactness and
density of such a near-maximally compact object, and therefore its mass and radius
scales to 𝑀 ∼ 1𝑀⊙ and 𝑅 ∼ 10 km respectively. The former is remarkably close
to the Chandrasekhar mass, ∼1.4𝑀⊙, the maximum mass that can be supported by
electron degeneracy. As NSs form from cores that are too massive to be supported
by electron degeneracy, this sets another characteristic mass scale for NSs [156].

Substantial uncertainties in the details of NS formation and dense-matter physics
mean it is not immediately clear which of the two drives the distribution of NS
masses. For example, general relativity and the dense-matter equation of state
(EoS) set a maximum mass for nonrotating NSs, the Tolman-Oppenheimer-Volkoff
(TOV) limit𝑀TOV [541, 407]. Originally speculated to be near 0.7𝑀⊙,𝑀TOV is now
understood to be ∼2−3𝑀⊙ [460, 300, 329, 413, 439, 332, 378], but it is unknown
whether astrophysical formation mechanisms can produce NSs up to this mass.
Moreover, NSs form in a variety of ways, including in core-collapse supernovae
and binary mergers, each of which likely results in different natal mass and spin
distributions. Even after formation, NSs are modified via binary interactions: for
instance, “spider” pulsars [464] may achieve large masses and spins via accretion.

Galactic observations have constrained the masses of dozens of NSs in binaries via
pulsar timing [104]. The mass distribution of Galactic NSs with a mass measurement
includes a primary peak at ∼1.35𝑀⊙ preferred at 3:1 over a secondary peak at
∼1.8𝑀⊙ [62, 58, 213]. The observed cutoff in the distribution above ∼2𝑀⊙ [58,
213] may correspond to the TOV mass, or to a different maximum mass imposed
by astrophysical processes; the most general interpretation of the cutoff identifies
it as an astrophysical maximum mass that may differ from 𝑀TOV. The Galactic

1In units where 𝐺 = 𝑐 = 1, which we use unless otherwise stated.
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NS population is broadly consistent with the masses of NS-like compact objects in
wide-period binaries revealed by Gaia astrometry [74, 72]. However, this inferred
mass distribution does not account for selection effects in the various surveys, and
lumps together NSs in different astrophysical systems, e.g., NS–NS binaries (BNS)
and NS–WD binaries, that may have different inherent distributions. Indeed, the
known Galactic BNSs are all contained within the ∼1.35𝑀⊙ component of the
bimodal distribution [219].

A subset of Galactic millisecond pulsars [356] show persistent pulsed X-ray emission
originating from surface hotspots. Detailed modeling of the hotspot emission has
placed constraints on the mass and radius of three pulsars using NICER and XMM-
Newton [377, 461, 378, 462, 148], two of which are in binaries and thus have radio-
based mass constraints. Since two of the NICER targets are known radio pulsars,
they are commonly treated as part of the Galactic NS population. For example, the
properties of PSR J0740+6620, one of the most massive known pulsars [161, 235],
have been inferred simultaneously with the Galactic population [214]. Requiring
PSR J0740+6620 to hail from the bimodal Galactic NS mass distribution revises its
mass downward to 2.03+0.14

−0.11 𝑀⊙ [214].

A different population consists of NSs in merging compact binaries with NSs or
black holes (BHs) observed with gravitational waves (GWs) [28]. Among BNSs,
GW170817 [10] is consistent with the Galactic BNS population with a total mass
of ∼2.7𝑀⊙. GW190425, at a total mass of ∼3.4𝑀⊙ [11], is however an outlier. At-
tempts to explain this discrepancy include selection effects [471, 481] and non-BNS
interpretations [264, 234]. Regardless, this discrepancy suggests that the Galactic
and merging BNS distributions should be treated separately. The distribution of all
NSs observed in merging binaries to date, including both BNSs and likely NSBH
systems [27, 2], is relatively flat with no prominent peak at ∼1.35𝑀⊙ [327, 28].
The population of NSs in BNSs and NSBHs might, however, be different owing
to different formation and evolutionary histories [28, 100]. NS spins are ignored
from these constraints due to large measurement uncertainties [101]; it is therefore
unknown how merging NS spins relate to the well-measured spins of Galactic NSs.
GW-based NS observations (primarily GW170817) also drive constraints on the
EoS through mass and tidal deformability constraints [10, 9, 15].

The picture is much simpler when it comes to the nuclear physics and the EoS
of NSs. Even when originating from different formation mechanisms, cold NSs
are expected to be described by the same universal EoS. This expectation has been
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widely utilized to combine mass, radius, and tidal deformability measurements from
various observations to place constraints on the EoS, e.g. [9, 380, 438, 177, 326,
261, 378, 439, 413, 332, 205, 102]. Even then, assumptions about NS masses have
to be made.

Such assumptions typically include a uniform mass distribution, and whether astro-
physical mechanisms create NSs up to the TOV mass or up to a different predeter-
mined value [326, 332].

In this paper, we study the properties of NSs in binaries with a focus on separating
the impact of nuclear physics and astrophysics. We use radio, X-ray, and GW data
to jointly infer the dense-matter EoS and the NS mass distribution, each with their
own maximum mass. We go beyond considering a single mass distribution for all
NSs that terminates at the TOV mass [102, 205] and separately infer the populations
of Galactic NSs and merging BNSs. Moreover, rather than the TOV mass, we
allow the possibility of the astrophysical mass distribution terminating at a different
“astrophysical maximum mass” that is lower than the TOV mass. Our model and
inference set up allow us to begin to answer whether the maximum mass of NSs in
various subpopulations is limited by the EoS or by astrophysical processes. Beyond
access to such questions, simultaneous inference mitigates biases that can arise
with as few as O(10) GW detections when inferring either the EoS or the mass
distribution alone while making improper assumptions about the other [584, 256].
We also account for GW selection effects, which cause the detected population to be
biased towards higher masses; as the selection effects in the electromagnetic surveys
are unknown, we do not consider them.

The subpopulations, datasets, and models are described in Sec. 17.2. The EoS
is modeled with a mixture of Gaussian processes (GPs) [325, 198], which allows
for a wide range of EoS morphologies including phase transitions [199] and im-
poses minimal intra-density correlations that hamper the flexibility of parametric
models [333]. We consider two subpopulations:

1. The Galactic NS population is modeled with a bimodal distribution with a
maximum mass cutoff [58, 62]. The relevant datasets include radio, optical,
and X-ray observations of pulsars in binaries [58] and X-ray pulse-profile
observations of pulsars J0030+0451 [377, 461], J0740+6620 [378, 462], and
J0437-4715 [148].
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2. The merging BNS population observed with GWs is modeled with a power-
law with a maximum mass cutoff. The dataset consists of GW170817 [10]
and GW190425 [11], both assumed to be BNSs.

Joint inference on the EoS and mass subpopulations is performed with a reweighting
scheme that is described in Sec. 17.3 and Appendix 17.A.

Our results are presented in Sec. 17.4. We find no evidence that the maximum
mass of the two subpopulations is different than the TOV mass. The difference
between the maximum Galactic NS (merging BNS) mass and the TOV mass is
less than 0.53𝑀⊙ (0.73𝑀⊙) at 90% credibility, with zero difference consistent
with the posteriors. Even though the maximum masses are consistent, we confirm
previous results that the mass distributions of Galactic NSs and merging BNSs are
different. The latter possesses no prominent peak at 1.35𝑀⊙, indicating that the
two distributions should be modeled separately in an inference framework and have
the freedom to differ from one another.

For the NS EoS, we infer a sound-speed profile that exceeds the conformal bound
of 1/

√
3 for weakly interacting nucleonic matter [88], in line with a previous study

using the same EoS model [332]: the 90% lower bound on the maximum speed
of sound squared anywhere inside the NS is 0.59. We constrain the radius of a
canonical NS, a proxy for the stiffness of the EoS, to 𝑅1.4 = 12.2+0.8

−0.9 km, and the
TOV mass to 𝑀TOV = 2.28+0.41

−0.21 𝑀⊙. Uncertainties are lower than Legred et al.
[332] due to the recent NICER observation of PSR J0437-4715 and the impact of
the ensemble of Galactic NS mass measurements via the updated treatment of the
maximum mass.

We conclude in Sec. 17.5.

17.2 Modeling the Equation of State and the mass distribution

In this section we describe the data, as well as the EoS and astrophysical populations
we model them with.

17.2.1 Data

The observations that inform the joint inference of the NS EoS and astrophysi-
cal population come from three sources: radio/optical pulsar mass measurements
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(PSR), X-ray pulse profile modeling for pulsar masses and radii (NICER), and GW
constraints on BNS masses and tidal deformabilities (GW).

The PSR dataset includes the 74 Galactic pulsars with a mass measurement from
Ref. [58], minus PSR J0437–4715, which is counted as part of the NICER dataset.2

The PSR observations are heterogeneous, including NSs in various types of binaries
and several different mass determination methods.

The NICER dataset consists of the observations of PSR J0030+0451 [380, 461],
PSR J0740+6620 [378, 462], and PSR J0437–4715 [148]. The constraints on the
masses and radii of these pulsars are sensitive to the details of the X-ray pulse profile
modeling, such as the assumed hotspot geometry and the stochastic sampling of the
multidimensional parameter posterior; thus different interpretations of the NICER
data exist. Here we use results from the three-hotspot model of Ref. [380] for
J0030+0451, the combined NICER-XMM Newton analysis with the two-hotspot
model from Ref. [378] for J0740+6620, and the CST+PDTmodel from Ref. [148] for
J0437–4715. As the NICER analyses for J0740+6620 and J0437–4715 incorporate
pre-existing radio-based mass estimates, we exclude them from the PSR dataset
to avoid double-counting. In Appendix 17.D we quantify the sensitivity of our
inference to alternative data selection choices for the NICER observations.

For the GW dataset, we consider compact binary coalescences from the third Gravita-
tional Wave Transient Catalog [26] of the LIGO-Virgo-KAGRA network [1, 38, 54]
with source-frame chirp massM ≲ 2.176𝑀⊙, corresponding to equal-mass compo-
nent masses below 2.5𝑀⊙. This leaves us with GW170817 [10] and GW190425 [11]
as the only events consistent with BNS mergers. We do not consider the recent ob-
servation of GW230529_181500 [2], which is potentially a BNS merger according
to this criterion, as sensitivity estimates for the fourth observing run do not exist.
For GW170817, we generate new posterior samples with the waveform approximant
IMRPhenomPv2_NRTidal, which includes spin-precession and tidal effects [175],
using the parameter estimation package bilby [67, 470] and the nested sampler
dynesty [507]. We fix the source location to the host galaxy NGC4993 and adopt
spin priors that are isotropic in orientation and uniform in dimensionless magnitude
up to 0.05, motivated by the spin distribution of pulsars in binary systems expected
to merge within a Hubble time [599]. For GW190425, we use the publicly released
parameter estimation samples [336] for the IMRPhenomPv2_NRTidal waveform.

2While J0437–4715 is in the NICER dataset, we use its radio mass measurement to inform the
mass distribution.
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Since GW190425’s total mass is inconsistent with those of Galactic BNSs, we allow
for dimensionless spin magnitudes up to 0.4, roughly corresponding to a 1 ms spin
period [276]. Appendix 17.F investigates the impact of a spin-magnitude upper
limit of 0.05 for both GW170817 and GW190425.

17.2.2 EoS model

The dense-matter EoS, i.e., the pressure-density relation, is described with a model-
agnostic Gaussian process [325, 198], which builds a prior EoS process via a mixture
of GP hyperparameters probing a large range of correlation scales and strengths.
This procedure produces an EoS distribution that is relatively insensitive to the
nuclear models it is conditioned on [198] and imposes minimal model-dependent
correlations between the low- and high-density EoS [333]. The GP flexibility
is particularly important for our goal of disentangling the maximum TOV mass
𝑀TOV and the maximum astrophysical mass. Less flexible parametric EoS models
implicitly correlate the radius or tidal deformability and 𝑀TOV [333] which in
turn translate to model-dependent correlations between 𝑀TOV and the astrophysical
parameters. All NSs are assumed to be described by the same EoS. For efficiency,
we restrict the prior to EoSs with 𝑀TOV > 1.8𝑀⊙.

17.2.3 Astrophysical population models

For the astrophysical mass distribution we use parametric distributions with hy-
perparameters 𝜂. We consider two classes of observations modeled with separate
distributions: Galactic NSs observed via electromagnetic (EM) radiation as part
of the PSR and NICER datasets, and NSs in merging BNSs observed via GWs
constituting the GW dataset.

We restrict to the NS masses while ignoring spins and assume that all objects are
NSs.

17.2.3.1 Galactic neutron stars with radio and X-rays

Motivated by Refs. [62, 58, 214], we model the Galactic NS masses 𝑚 as a mixture
of two Gaussians:

𝜋(𝑚 |𝜂EM) = 𝑓N(𝜇1, 𝜎1) + (1 − 𝑓 )N (𝜇2, 𝜎2) , (17.1)
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for 𝑚 ∈ [𝑀min, 𝑀 pop, EM], and where N(𝜇, 𝜎) is a truncated normal distribu-
tion with mean 𝜇 and standard deviation 𝜎, and 𝑓 is the mixture weight. Fol-
lowing Ref. [58], we fix 𝑀min = 1𝑀⊙ and infer the hyperparameters 𝜂EM =

{𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝑓 , 𝑀 pop, EM} with flat priors: 𝑀 pop, EM ∈ (1.8, 3.0) 𝑀⊙, 𝜇1 ∈
(1, 2) 𝑀⊙, 𝜇2 ∈ (𝜇1, 2.5) 𝑀⊙, 𝑓 ∈ (0, 1), and 𝜎1,2 ∈ (0.05, 1) 𝑀⊙. Since all
analyzed objects are NSs, we impose 𝑀pop,EM < 𝑀TOV.3 This prior restriction leads
to a marginal priors on 𝑀 pop, EM and the EoSs that are not uniform, although the
full multidimensional prior is flat within its domain of support.

Although the PSR and NICER datasets include NSs in different astrophysical
settings, i.e. in binaries with various companions, or in isolation in the case of
J0030+0451, and could in principle hail from different subpopulations, we model
these NSs as a single population for consistency with previous results and due to
the lack of selection effect estimates. (We are not aware of any established methods
to account for selection effects in radio surveys or for NICER’s target selection
procedure [106].) Given the lack of selection effect estimates for the PSR and
NICER datasets, we simply assume the observed mass distribution to be equivalent
to the astrophysical distribution.4 We quantify the impact of this assumption in
Appendix 17.E, where we present results with a fixed uniform mass distribution in
place of Eq. (17.1).

17.2.3.2 Merging neutron stars with gravitational waves

We model BNS masses with a truncated power-law for both binary components 𝑚1

and 𝑚2:
𝜋(𝑚1, 𝑚2 |𝜂𝐺𝑊 ) ∝ 𝑚𝛼1𝑚

𝛼
2 , (17.2)

for 𝑚 ∈ [𝑚min, 𝑀 pop, GW] and random pairing between 𝑚1 and 𝑚2 in the two-
dimensional space. We again fix 𝑚min = 1𝑀⊙ and infer the hyperparameters
𝜂𝐺𝑊 = {𝛼, 𝑀 pop, GW} with flat priors 𝛼 ∈ (−5, 5), 𝑀 pop, GW ∈ (1.6, 2.5) 𝑀⊙.
Since we assume that both GW170817 and GW190425 are BNSs, we again impose
𝑀pop,GW < 𝑀TOV.

3We ignore the impact of pulsar spin on the maximum mass. Using approximate relations to
fourth order in spin magnitude [386, 112], we estimate that the maximum allowed mass will differ
from 𝑀TOV by ≲ 1% compared to statistical uncertainties ∼20 − 30% for the range of pulsar periods
in our dataset, 𝑃 ≳ 2 ms.

4This procedure can result in a bias even for the detected population [195]. Such a bias however
is expected to be small. For example, Figure 4 of [195] shows the bias for ∼800 simulated GW
observations.
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GW selection effects are well understood, and we incorporate them in our inference.
Because the GW data selection procedure involves identifying events as BNSs based
on a component mass cut at 2.5𝑀⊙, our analysis only places constraints on the mass
distribution below 2.5𝑀⊙. The GW selection modeling is described in Sec. 17.3.1.

17.3 Joint inference via reweighting

The joint mass-EoS model is a combination of EoS draws from the GP prior process
and the parametric mass models of Eqs. (17.1) and (17.2). While the joint posterior
could be sampled with standard stochastic sampling methods with pre-computed
GP draws, we instead use a multi-stage reweighting scheme and the GP draws from
Ref. [332].

The reweighting scheme includes the following steps, with technical details relegated
to the Appendices:

1. Use standard stochastic sampling to infer the mass population and the EoS
using Eqs. (17.1) and (17.2) for the mass distribution and a simplified, low-
dimensional EoS model. Details about the EoS model are given in Ap-
pendix 17.B. The EoS model is included here to mitigate potential biases of a
mass-only inference [256].

2. Treat the inferred mass distribution as a proposal distribution. For each
sample from the distribution of 𝜂 = {𝜂EM, 𝜂𝐺𝑊 }, calculate the likelihood for
each pre-computed GP draw. The likelihood form depends on the dataset
considered [327] and is described in Secs. 17.3.1 and 17.3.2 for the GW and
EM data respectively.

3. With these likelihoods, calculate weights from the proposal mass distribution
to the target joint mass-GP EoS distribution as described in Appendix 17.A.

4. Combine the new posterior distributions for each dataset. This procedure
allows us to obtain weighted samples from the joint posterior of the mass
distribution and the GP EoS. We validate the reweighting scheme in Ap-
pendix 17.C with simulated GW observations.

Each of the datasets considered (GW, NICER, and PSR) results in unique constraints
and thus requires a unique formulation of the likelihood [327, 138]. Below we
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discuss each dataset likelihood noting that the full likelihood is the product over the
individual datasets.

17.3.1 GW likelihood

Given 𝑁GW independent events, the likelihood for the EoS 𝜀 and population hyper-
parameters 𝜂𝐺𝑊 is5 [560, 536, 359]

L𝐺𝑊 (𝑑 |𝜀, 𝜂𝐺𝑊 ) ∝ 𝑝 det(𝜂 GW)−𝑁𝐺𝑊×
𝑁𝐺𝑊∏
𝑖

∫
L(𝑑𝑖 |𝑚1, 𝑚2, 𝜀)𝜋(𝑚1, 𝑚2 |𝜂𝐺𝑊 )𝑑𝑚1𝑑𝑚2 ,

(17.3)

where 𝜋(𝑚1, 𝑚2 |𝜂𝐺𝑊 ) is the model of Eq. (17.2) and

L(𝑑𝑖 |𝑚1, 𝑚2, 𝜀) = L(𝑑𝑖 |𝑚1, 𝑚2,Λ(𝑚1, 𝜀)Λ(𝑚2, 𝜀)) , (17.4)

is the 𝑖th individual-event GW likelihood (e.g., [221, 552]) marginalized over all
binary parameters other than the component masses𝑚1, 𝑚2 and tidal deformabilities
Λ1,Λ2. Consistency with the EoS is ensured by calculating the likelihood for
Λ1 = Λ(𝑚1, 𝜀),Λ2 = Λ(𝑚2, 𝜀), i.e., the EoS prediction for the tidal deformability
given the mass. We estimate the individual-event likelihood from the posterior
samples for the source-frame masses and tidal deformabilities using a Gaussian
mixture model [256], and the integral in Eq. (17.3) is computed as a Monte Carlo
sum.

The term 𝑝det(𝜂GW) encodes the selection effect which characterizes how parts of
the parameter space are over-represented in a catalog of GW events, as determined
by the sensitivity of the detectors. Defining 𝑝det(𝑑) as the probability that search
algorithms detect a significant signal in data 𝑑 results in

𝑝det(𝜂𝐺𝑊 ) ≡
∫

D𝑑
∫

𝑑𝜃 𝑝(𝑑 |𝜃)𝜋(𝜃 |𝜂𝐺𝑊 )𝑝det(𝑑)

=

∫
𝑑𝜃 𝜋(𝜃 |𝜂𝐺𝑊 )𝑝det(𝜃) ,

(17.5)

where we identify 𝑝det(𝜃) ≡
∫
D𝑑 𝑝(𝑑 |𝜃)𝑝det(𝑑) as the probability of detecting

an event with parameters 𝜃, marginalized over possible realizations of data 𝑑. For
example, neglecting the specifics of the noise-generating process, the sensitivity
to an event increases with its chirp mass ∼M5/6

𝑐 and decreases inversely with its
5This expression assumes a 1/𝑅 prior on the event rate 𝑅 and marginalizes over it [359, 228].
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distance. We then further marginalize over possible realizations from the population
𝜃 ∼ 𝜋(𝜃 |𝜂𝐺𝑊 ). The presence of 𝑝det(𝜂GW) in Eq. (17.3) ensures that the final result
reflects the true astrophysical population rather than the observed population. In
practice, 𝑝 det(𝜂𝐺𝑊 ) might also depend on the EoS, but Ref. [162] showed that the
effect is negligible except for very stiff EoSs and low-mass NSs: there is a ≲ 2%
change in the match between a template that sets Λ = 0 and the true waveform.

We compute 𝑝 det(𝜂𝐺𝑊 ) by reweighting recovered simulated signals in data from
the first three observing runs, using standard techniques [28, 213, 538].

17.3.2 NICER likelihood

Given 𝑁NICER observations, the likelihood for the EoS 𝜀 and population hyperpa-
rameters 𝜂EM is obtained by marginalizing over the pulsar mass

𝑝NICER(𝑑 |𝜀, 𝜂EM) =
𝑁NICER∏
𝑖

∫
L(𝑑𝑖 |𝑚, 𝜀)𝜋(𝑚 |𝜂EM)𝑑𝑚 , (17.6)

where 𝑖 indexes the NICER observations, 𝜋(𝑚 |𝜂EM) is the mass distribution of
Eq. (17.1), and

L(𝑑𝑖 |𝑚, 𝜀) = L(𝑑𝑖 |𝑚,𝐶 (𝑚, 𝜀)) , (17.7)

is the individual-pulsar likelihood marginalized over all NICER parameters other
than the mass𝑚 and compactness𝐶, which is again evaluated on the EoS prediction.
The likelihoods are described in the publications associated with each observation
[148, 377, 378]. We use a Gaussian mixture model [256] to evaluate Eq. (17.7), and
a Monte Carlo sum for the integral in Eq. (17.6).

The NICER analysis of PSR J0437-4715 in Ref. [148] uses a prior that is flat in
radius, rather than flat in compactness (or inverse compactness) like the analyses of
PSR J0030-0451- [377] and PSR J0770+6620 [378]. We correct for this with the
appropriate Jacobian term to obtain a likelihood function in mass and compactness.
Unlike Eq. (17.3) for the GW observations, the NICER likelihood ignores selection
effects per the discussion in Sec. 17.2.1.

17.3.3 PSR likelihood

Finally, the likelihood for 𝑁PSR pulsar mass measurements is

𝑝PSR(𝑑 |𝜀, 𝜂EM) =
𝑁PSR∏
𝑖

∫
L(𝑑𝑖 |𝑚)𝜋(𝑚 |𝜂EM)𝑑𝑚 , (17.8)
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Figure 17.1: Posterior on the mass distribution of the GW BNS (orange) and the
Galactic NS (blue) population. We plot the median and 90% highest-probability
credible regions. The EM population is constrained to much better precision than
the GW one due to the low number of GW BNS detections. With the caveat that
they correspond to the astrophysical BNS and observed Galactic NS distributions
respectively, we find that the two distribution are inconsistent, in agreement with
Ref. [28]. Faint lines are random draws from the GW mass distribution, illustrating
the bimodal uncertainties in the mass distribution.

where 𝑖 indexes the pulsars and 𝜋(𝑚 |𝜂EM) is the mass distribution of Eq. (17.1). The
form of L(𝑑𝑖 |𝑚) for each observation is prescribed analytically in Refs. [58, 214],
depending on whether the measurement constrains the pulsar mass, the binary mass
function and the total mass, or the binary mass function and the mass ratio. Like the
NICER likelihoods, the PSR likelihoods do not account for selection effects, and
we evaluate the integral in Eq. (17.8) via Monte Carlo.

17.4 Implications of joint mass-EoS inference

In this section, we present results from the joint inference over the EoS and the mass
distribution of two NS populations. We begin with mass-specific and EoS-specific
results in Secs. 17.4.1 and 17.4.2 respectively, before contrasting their impact on NS
properties in Sec. 17.4.3.

17.4.1 Constraints on astrophysical populations

Figure 17.1 shows the inferred mass distribution of merging BNSs observed with
GWs (modeled with a truncated power-law) and the observed distribution of Galactic
NSs observed with EM (modeled with a truncated Gaussian mixture). The BNS
population is consistent with being flat and has large uncertainties due to the now
number of events (a total of 4 NSs). The smallest uncertainty is at ∼1.4𝑀⊙,
corresponding to the relatively well-measured masses on GW170817, while there
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Figure 17.2: Marginalized posterior for the power-law slope 𝛼 and maximum mass
𝑀pop,GW of the GW population. The slope 𝛼 is poorly constrained and thus its
posterior rails against the upper prior bound, in turn affecting the 𝑀pop,GW posterior.

is vanishing support for masses above ∼2.2𝑀⊙ with 𝑀 pop, GW = 1.85+0.39
−0.16 𝑀⊙.

This shape is broadly consistent with the results of Refs. [28, 327] that additionally
considered the two NSs in the NSBH binaries GW200105 and GW200115 and did
not model the EoS. The seemingly “bimodal” shape with peaks at high and low
masses at the 90% level is model-dependent: it is an outcome of the fact that the
distribution is well-measured at ∼1.4𝑀⊙ and we model it with a truncated power-
law. Figure 17.2 indeed shows that the power-law index 𝛼 and the maximum mass,
𝑀 pop, GW, are correlated and the upper limit on 𝑀 pop, GW depends on the 𝛼 prior.
In particular, while the one-dimensional posterior peaks at 𝛼 ≈ 0, 𝛼 ≳ 4 cannot be
ruled out but is only consistent with 𝑀 pop, GW ≲ 2.0𝑀⊙.
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The observed EM population is comparatively better constrained as it is based on
a total of 74 pulsar mass measurements. We find consistent results with Refs. [58,
214] that used the same pulsar mass data but did not infer the EoS with 𝜇1 =

1.35+0.02
−0.02 𝑀⊙ and 𝜇2 = 2.01+0.43

−0.27 𝑀⊙, 𝑓 = 0.65+0.11
−0.13, and 𝜎1 = 0.07+0.02

−0.02 𝑀⊙ and
𝜎2 = 0.39+0.37

−0.22 𝑀⊙. The maximum mass is 𝑀 pop, EM = 2.05+0.11
−0.06 𝑀⊙, compared to

2.12+0.12
−0.17 𝑀⊙ in [58] and 2.25+0.82

−0.26 𝑀⊙ in [214]. Our estimate is lower due to the
fact that we simultaneously infer the EoS and impose 𝑀 pop, EM < 𝑀TOV.

Assuming that the three NICER pulsars are part of the general Galactic NS pop-
ulation leads to updated mass inference. The original mass estimates quoted in
Refs. [377, 378, 148] refer to flat mass priors, while our analysis effectively
updates the prior to be the population distribution [214].6 The mass for each
NICER target under a population-informed (flat) prior is 1.37+0.22

−0.11 (1.44+0.25
−0.23) 𝑀⊙ for

J0030+0451, 1.39+0.08
−0.05 (1.42+0.06

−0.06) 𝑀⊙ for J0437-4715, and 2.01+0.08
−0.09 (2.07+0.11

−0.12) 𝑀⊙

for J0740+6620. The J0740+6620 result is somewhat larger than the value in Farr
and Chatziioannou [214], 2.03+0.17

−0.14 𝑀⊙. The effect is most stark for J0030+0451
whose mass is poorly measured from the X-ray data alone, but now resides in the
dominant peak of the mass distribution.

17.4.2 Constraints on EoS quantities

Figure 17.3 shows the prior and posterior for various macroscopic and microscopic
EoS properties: the TOV mass, 𝑀TOV, the radius and tidal deformability of a
canonical 1.4𝑀⊙ NS, 𝑅1.4 and Λ1.4 respectively, the radius of a 1.8𝑀⊙ NS, Λ1.8,
and the pressure at twice and 6 times nuclear saturation, 𝑝2.0 and 𝑝6.0 respectively.
We infer Λ1.4 = 438+224

−166 and 𝑅1.4 = 12.2+0.8
−0.9 km. For comparison, we also plot

the corresponding analysis from Legred et al. [332] that fixes all mass distributions
to uniform. To isolate the effect of the mass distribution inference, we repeat the
analysis of Ref. [332] while adding the X-ray mass-radius measurement of J0437-
4715 such that the two analyses use the same NICER and GW data. We obtain
largely consistent results: mass-marginalization leads to mild changes in 𝑅1.4 and
Λ1.4, while including spider pulsars in the analysis and introducing an EoS-limited
astrophysical maximum mass leads to a mild increase in the inferred value of 𝑀TOV.

These results are consistent with previous estimates. Legred et al. [332] used the
GP EoS model with the same GW dataset, the first two NICER objects, J0030+0451

6The same is true for the two GW events, but the effect is minimal as the mass distribution
uncertainty is wide and consistent with flat which was the inference prior to begin with.
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Figure 17.3: One- and two-dimensional posteriors for select EoS macroscopic and
microscopic parameters: the TOV mass, 𝑀TOV, the radius and tidal deformability of
a canonical 1.4𝑀⊙ NS, 𝑅1.4 and Λ1.4 respectively, the radius of a 1.8𝑀⊙ NS, 𝑅1.8,
and the log-base-10 pressure (divided by the speed of light squared) at twice and 6
times nuclear saturation, 𝑝2.0 and 𝑝6.0 respectively, when measured in g/cm3. Two-
dimensional contours denote the boundaries of the 90% credible regions. We show
the prior (black), the posterior from the main analysis that marginalizes over the
mass distribution (blue), and the analogous posterior that arises from additionally
including the mass-radius measurement of J0437-4715 in the analysis of Ref. [332].
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Figure 17.4: Mass-radius inference, we show the 90% symmetric credible region for
the radius at each mass. We plot the prior (black), posterior from the main analysis
that marginalizes over the mass distribution (blue), and posterior from Ref. [332]
that fixes the mass distribution to flat and does not include J0437-4715. The upper
limit on the radius decreases by ∼ 0.5 km for all masses.
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Figure 17.5: Mass-central density inference, we show the 90% symmetric credible
region for the NS mass at each value of the central density 𝜌𝑐. We plot the prior
(black), posterior from the main analysis that marginalizes over the mass distribution
(blue), and posterior from Ref. [332] that fixes the mass distribution to flat and does
not include J0437-4715. Vertical lines denote multiples of the nuclear saturation
density. Maroon and red contours mark 1 and 2-𝜎 credible regions, respectively,
for the joint posterior on 𝜌𝑐-𝑀TOV.
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Figure 17.6: Speed of sound-density inference, we show the 90% symmetric credible
region for the speed of sound squared, 𝑐2

𝑠 at each rest-mass density 𝜌. We plot the
prior (black), posterior from the main analysis that marginalizes over the mass
distribution (blue), and posterior from Ref. [332] that fixes the mass distribution to
flat and does not include J0437-4715. Vertical lines denote multiples of the nuclear
saturation density. The speed of sound increases by ∼ 5% around densities 2 − 3
times saturation density.
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Figure 17.7: Marginalized posterior for the maximum speed of sound squared
inside a stable NS. We plot the prior (black), posterior from the main analysis that
marginalizes over the mass distribution (blue), and posterior from Ref. [332] that
fixes the mass distribution to flat and does not include J0437-4715. The 90% lower
limit on the maximum speed of sound, marked by dashed vertical lines, increases
from ∼0.51 to ∼0.59.
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and J0740+6620, and the mass of J0348+0432 (all with a fixed flat mass prior) to
find 𝑅1.4 = 12.6+1.0

−1.1 km and 𝑀TOV = 2.21+0.31
−0.21 𝑀⊙. Our updated radius estimate has

a ∼0.4 km lower median due to the new J0437-4715 data that favor softer EoSs and
a ∼20% smaller uncertainty due to the fact that we use more NICER and massive
pulsar data. Our updated 𝑀TOV estimate of 2.28+0.41

−0.21 𝑀⊙ is marginally larger than
the value found in Legred et al. [332], which can be attributed to the spider pulsars,
and the removal of the EoS Occam penalty for massive pulsar measurements; see
the Appendix of Ref. [332].

The full mass-radius inferred relation is shown in Figure 17.4 which plots the 90%
symmetric credible region for the radius at each mass. We include the prior, the
posterior from our analysis, and compare against the posterior from Legred et al.
[332], i.e., without J0437-4715. While the radius lower limit is broadly consistent
with Ref. [332], we obtain a lower radius upper limit for all masses by ∼500 m,
which we attribute to the new data for the J0437-4715 radius. We additionally plot
credible regions for the relation between the NS mass 𝑚 and its central density 𝜌𝑐 in
Figure 17.5. The upper limit on the mass of a NS with central density four times the
nuclear saturation density (𝜌nuc) increases from ∼2.55𝑀⊙ to ∼2.69𝑀⊙, primarily
due to the removal of the Occam penalty and the inclusion of spider pulsars. The
central density of the maximum mass star is inferred to be 5.53+1.07

−1.24 𝜌nuc (red
contours).

We examine the EoS microscopic properties and specifically the speed of sound as
a function of density in Figure 17.6 and the maximum speed of sound inside NSs in
Figure 17.7.

Compared to Legred et al. [332], our analysis favors a larger speed of sound around
2 − 4𝜌nuc and a larger maximum speed of sound throughout. The 90% lower
limit on the maximum speed of sound, increases from ∼ 0.51 in Ref. [332] to
∼ 0.59 for our analysis. This higher maximum speed of sound is necessary to
explain the high mass of certain Galactic pulsars which, though poorly measured,
can have exceptionally large median values, e.g., J01748-2021B with an estimated
mass of 2.74+0.21

−0.21 𝑀⊙ [240] at 68% credibility. The addition of the NICER radius
measurement J0437-4715 also marginally impacts the inferred maximum sound
speed; removing the radius measurement of J0437-4715, Appendix 17.D, leads to a
maximum 𝑐2

𝑠 value of 0.8+0.19
−0.31.
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Figure 17.8: One-and two-dimensional posteriors for 𝑀TOV and the maximum
astrophysical mass𝑀pop for the Galactic NSs (blue) and the merging BNSs (orange).
The black dashed line represents 𝑀pop = 𝑀TOV, which is imposed in our analyses
as we assume that all objects are NSs. The TOV mass is consistent with the
astrophysical maximum mass for both populations. Contours are drawn at 50% and
90% levels.

17.4.3 Joint constraints on the population and EoS

The joint EoS-mass inference allows us to separate the TOV mass, 𝑀TOV, from the
maximum astrophysical mass in the two subpopulations, 𝑀 pop, EM and 𝑀 pop, GW.
Figure 17.8 shows the joint posterior for 𝑀TOV and the two population maximum
masses, denoted collectively as 𝑀pop. The limit 𝑀TOV = 𝑀pop is marked with
a dashed line; points near the line correspond to maximum population masses
that are equal to the TOV mass. As also evident in Figure 17.1, the two population
maximum masses are consistent with each other within their statistical uncertainties.
The difference between the maximum mass in the EM (GW) population and 𝑀TOV

is less than 0.53𝑀⊙ (0.73𝑀⊙) at 90% credibility.

We therefore have no evidence that the maximum mass of neutron stars formed
astrophysically is different than the maximum mass possible from nuclear physics.

17.5 Conclusions

As a first step toward untangling the properties of NSs that depend on nuclear
physics versus astrophysics, in this study we presented a joint inference of the
dense matter EoS and the NS mass distribution. We considered two subpopulations
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of NSs corresponding to merging BNSs observed with GWs and Galactic NSs
observed with EM. All NSs share the same universal EoS modeled with a flexible GP
mixture. Our results are consistent with existing EoS-only or mass-only inference
where applicable [332, 214, 28]. However, the joint inference scheme allows
us to begin addressing the interplay between nuclear physics and astrophysics in
determining NS observational properties. Focusing on NS masses, we find no
evidence that the maximum mass of NSs observed with either EM or GWs is
different than the maximum mass allowed by nuclear physics. Moreover, we updated
the estimates of the canonical NS radius and the TOV mass to 𝑅1.4 = 12.2+0.8

−0.9 km
and 𝑀TOV = 2.28+0.41

−0.21𝑀⊙, respectively.

17.5.1 Past work

Our results are broadly consistent with comparable studies. Whereas we model
the EoS phenomenologically as a GP, Rutherford et al. [476] used a piecewise-
polytropic EoS model and the same data as Legred et al. [332] plus the radius
measurement of J0437-4715; they found 𝑅1.4 = 12.3+0.5

−0.8 km. Our result has a ∼30%
larger uncertainty likely due to the more flexible EoS model.

Fan et al. [205] simultaneously inferred the mass distribution and the EoS, though
they assumed the same mass distribution for all NSs, and that the upper truncation
mass for the NS population is 𝑀TOV. They used the same data as our study except
the radius measurement of J0437-4715, and included ∼50 additional pulsar mass
measurements. They used a variety of parameteric and nonparametric EoS models,
but recovered similar values of 𝑅1.4 and 𝑀TOV for all models, indicating their non-
parametric models may have limited flexibility (analogous to the “model-informed
prior” of [325, 198]). They further incorporated information from perturbative
quantum chromodynamics (pQCD) at high densities, and chiral perturbation theory
at low densities, both of which strongly informed the estimate of 𝑀TOV due to the
choice of modeling of correlations. They found 𝑀TOV = 2.25+0.08

−0.07 𝑀⊙.

Biswas and Rosswog [102] also simultaneously inferred the population and the EoS,
similarly requiring the NSs to form a single population which is truncated by 𝑀TOV.
For the EoS they used a piecewise-polytropic parameterization, hybridized with a
low-density prescription constrained by chiral effective field theory. They analyzed
the same data as Fan et al. [205], and additionally the PREX-II [43] and CREX [44]
measurements of the neutron skin thickness of 208Pb and 48Ca respectively.

They found 𝑅1.4 = 12.5+0.3
−0.3 km, and 𝑀TOV = 2.27+0.08

−0.09 𝑀⊙. These uncertainties
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are substantially lower than our results. The radius constraint can at least in part
be attributed to information from chiral perturbation theory, while the EoS pa-
rameterization also results in tighter inference throughout due to less modeling
flexibility [200, 333]. Moreover, the use of a single mass distribution places a
very strong prior on the masses of the GW events, with the mass of GW170817
for example likely tightly constrained to be within the primary peak of the bimodal
mass distribution. Such improved mass measurement will translate to tighter tidal
and hence EoS constraints. The impact of pQCD information [315] remains un-
clear [503, 316], though the prescription used in that analysis is likely informative
of 𝑀TOV.

Other studies have obtained multimessenger constraints on the EOS by combining
GW, gamma-ray burst, and kilonova observations surrounding GW170817 with fits
to the EM emission from BNS simulations [441, 157, 159, 412]. While there are
systematic and statistical uncertainties in the models and observations, these studies
infer 𝑅1.4 and Λ1.4 broadly consistent with our results.

17.5.2 Caveats

Our findings depend on several analysis choices and assumptions. In the appendices,
we examine their impact, and here we summarize our conclusions.

In our main analysis, we assume that selection biases in the radio and X-ray surveys
are negligible. In Appendix 17.E we consider the impact that modeling all Galactic
NSs with the same bimodal distribution without taking selection effects into account
has. Compared to an analysis that fixes the pulsar mass distribution to uniform up
to 𝑀TOV [332], inference of the mass distribution leads to an EoS that is marginally
softer at low densities and marginally stiffer at high densities. As a consequence,
the evidence for a violation of the conformal limit 𝑐2

𝑠 = 1/3 increases and the lower
limit on the maximum speed of sound increases by ∼10%.

Data selection further influences our results. In particular, different interpretations
of the NICER observations exist in the literature. Given systematic studies on
the impact of analysis assumptions on NICER measurements [191, 555] we present
results without J0030+0451 and/or J0437-4715 in Appendix 17.D. Excluding J0437-
4715 leads to a stiffer inferred EoS with 𝑅1.4 = 12.5+1.0

−0.9 km and consistent results
with Ref. [332]. Excluding J0030+0451 results in a substantially reduced value
of 𝑅1.4 = 11.6+1.3

−0.9 km. However, all results are consistent with each other at 90%
credibility, see Figure 17.11 in Appendix 17.D.



302

Additionally, our main results assume a fixed spin distribution, extending in mag-
nitude up to 0.05 for GW170817 and 0.4 for GW190425. Assumptions about the
spin affect mass inference through the mass-spin correlation [163] and hence mass
population inference. We explore the impact of restricting the spin of GW190425
further in Appendix 17.F. Imposing an upper limit of 0.05 results in a tighter con-
straint on its mass ratio and a lower primary mass, which correspondingly reduces
the value of 𝑀pop,GW. Consistency between 𝑀 pop, GW and 𝑀TOV is reduced with
their difference less than 0.77𝑀⊙ at 90% credibility. Therefore we still find no
strong evidence that the TOV and the maximum astrophysical mass are different.
Simultaneous inference of the spin distribution [101], along with the EoS and mass
distribution, is reserved for future work.

Finally, in this study, we restricted to two subpopulations of NSs: GW observations
of BNSs and Galactic NSs from radio or X-ray surveys. As a consequence, our
mass distribution inference is only predictive below 2.5𝑀⊙, which we took to be
the (fixed) demarcation between NSs and BHs. Extending to higher masses would
require simultaneously classifying GW events as BNSs, NSBHs, or BBHs within
the analysis framework [197, 141], while introducing a third NS subpopulation asso-
ciated with the NSBH mergers. This would allow us to treat other GW discoveries,
such as GW230529_181500 [2] and GW190814 [23], whose nature is ambiguous.
These and further extensions to the joint inference methodology presented here
will become necessary to fully explore the interplay between nuclear physics and
astrophysics on the properties of NSs as our catalog of informative NS observations
increases in size.
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Appendix 17.A Reweighting scheme for the joint posterior

The joint posterior for the GP EoS 𝜀 and the population hyperparameters 𝜂 =

{𝜂𝐺𝑊 , 𝜂EM} is [326, 138]

𝑝(𝜀, 𝜂 |𝑑) = L(𝑑 |𝜀, 𝜂)𝜋(𝜀, 𝜂)
𝑝(𝑑) , (17.9)

where 𝑑 is the data, L(𝑑 |𝜀, 𝜂) is the likelihood, 𝜋(𝜀, 𝜂) is the prior, and 𝑝(𝑑) is the
evidence. We choose a prior of 𝜋(𝜀, 𝜂) = 𝜋(𝜀)𝜋(𝜂)Θ(𝑀TOV−𝑀 pop, EM)Θ(𝑀TOV−
𝑀 pop, GW), where 𝜋(𝜖), is the model agnostic prior defined in Refs. [325, 198]
(uniform over GP draws), and 𝜋(𝜂) is the prior on the population hyperparameters,
as described in the main text (uniform over all parameters). Since the GW and EM
datasets are independent, the total likelihood factors into individual likelihoods

L(𝑑 |𝜀, 𝜂) = L𝐺𝑊 (𝑑 |𝜀, 𝜂𝐺𝑊 )LNICER(𝑑 |𝜀, 𝜂EM)LPSR(𝑑 |𝜀, 𝜂EM) ,

given in Eqs. (17.3), (17.6), and (17.8) respectively.

We evaluate the likelihood L(𝑑 |𝜀, 𝜂) with a reweighting scheme based on a simpler
lower-dimensional EoS model 𝜀0, details about which are given in Appendix 17.B.
We first obtain samples from the joint posterior for 𝜀0 and 𝜂 using standard stochastic
sampling [67].

𝑝0(𝜀0, 𝜂 |𝑑) =
L0(𝑑 |𝜀0, 𝜂)𝜋0(𝜀0, 𝜂)

𝑝0(𝑑)
. (17.10)

We then use the marginal mass distribution posterior

𝑝0(𝜂 |𝑑) =
∫

𝑝0(𝜀0, 𝜂 |𝑑)𝑑𝜀0 , (17.11)

as a proposal distribution to rewrite Eq. (17.9) as

𝑝(𝜀, 𝜂 |𝑑) ∝ L(𝑑 |𝜀, 𝜂)
𝜋(𝜂)Θ(𝑀TOV − 𝑀pop)

𝑝0(𝜂 |𝑑)
𝑝0(𝜂 |𝑑)𝜋(𝜀) , (17.12)

where we have dropped the normalization 𝑝(𝑑) and defined Θ(𝑀TOV − 𝑀pop) ≡
Θ(𝑀TOV − 𝑀pop,𝐸𝑀)Θ(𝑀TOV − 𝑀pop,𝐺𝑊 ). Reweighting includes

1. Compute a Kernel Density Estimate (KDE) of 𝑝0(𝜂 |𝑑) so that we can directly
evaluate the density for each value of 𝜂.

2. Draw samples 𝜀 ∼ 𝜋(𝜀) and 𝜂 ∼ 𝑝0(𝜂 |𝑑). If 𝑀TOV < 𝑀 pop, EM or 𝑀TOV <

𝑀 pop, GW, reject the sample.
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3. For accepted (𝜀, 𝜂) samples compute the weight

𝑤 = L(𝑑 |𝜀, 𝜂) 𝜋(𝜂)
𝑝0(𝜂 |𝑑)

. (17.13)

The term 𝑝0(𝜂 |𝑑) is computed with the KDE from step #1 and the likelihood
L(𝑑 |𝜀, 𝜂) is computed with a Monte Carlo sum over individual-event posterior
samples.

4. Each sample (𝜀, 𝜂) is a weighted draw from the joint posterior 𝑝(𝜀, 𝜂 |𝑑) with
weight 𝑤.

In practice, we consider the EM likelihood for the two EM datasets

L(𝑑EM |𝜀, 𝜂EM) = L(𝑑NICER |𝜀, 𝜂EM) × L(𝑑PSR |𝜀, 𝜂EM) , (17.14)

and the combined likelihood

L(𝑑 |𝜀, 𝜂) = L(𝑑EM |𝜀, 𝜂EM) × L(𝑑𝐺𝑊 |𝜀, 𝜂 GW) , (17.15)

from Eq. (17.12). In order to calculate the likelihood for the GW population
parameters 𝜂𝐺𝑊 , we approximate

L(𝑑 |𝜂𝐺𝑊 ) =∫
L(𝑑EM |𝜂EM, 𝜀)L(𝑑𝐺𝑊 |𝜂𝐺𝑊 , 𝜀)𝜋(𝜂EM, 𝜀)𝑑𝜀 𝑑𝜂EM

(17.16)

with the Monte Carlo sum:

L(𝑑 |𝜂𝐺𝑊 ) ≈
∑︁
𝜀∼𝜋(𝜀)

L(𝑑𝐺𝑊 |𝜂𝐺𝑊 , 𝜀)×[ ∑︁
𝜂EM∼𝑝0 (𝜂EM)

L(𝑑EM |𝜂EM, 𝜀)
𝑝0(𝜂EM |𝑑) 𝜋(𝜂EM |𝜀)

]
.

(17.17)

The likelihood for the EM population parameters is obtained by by swapping𝐺𝑊 ↔
EM in Eq. (17.17).

Similarly, we compute the likelihood for the EoS 𝜀 as
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L(𝑑 |𝜀) ≈
∑︁

𝜂𝐺𝑊∼𝑝0 (𝜂𝐺𝑊 )

L(𝑑𝐺𝑊 |𝜂𝐺𝑊 , 𝜀)
𝑝0(𝜂𝐺𝑊 |𝑑) 𝜋(𝜂𝐺𝑊 |𝜀)×∑︁

𝜂EM∼𝑝0 (𝜂EM)

L(𝑑EM |𝜂EM, 𝜀)
𝑝0(𝜂EM |𝑑) 𝜋(𝜂EM |𝜀) .

(17.18)

Appendix 17.B Approximate lower-dimensional EoS model

The reweighting scheme of Appendix 17.A utilizes a lower-dimensional EoS model
𝜀0 that gets marginalized away in Eq. (17.11), solely for constructing an efficient
proposal distribution for the hyperparameters 𝜂. The goal of including 𝜀0 in the
first place is to avoid potential systematic biases in 𝑝0(𝜂 |𝑑) if inferred without
any reference to an EoS [256]. Such biases would make it an ineffective proposal
distribution for the reweighting of Eq. (17.12). Our requirement for 𝜀0 is therefore
that it can be evaluated efficiently and that it roughly captures typical EoS behaviors.
Existing parametric models such as the piecewise-polytropic [448], spectral [342],
or speed-of-sound [527, 261] models could play this role. However, we find that
something even simpler suffices.

We take advantage of the simple relation between the NS moment-of-inertia 𝐼 and
mass 𝑚 [587, 199] for hadronic EoSs. For EoSs without rapid changes in the speed
of sound [199],

𝑑 ln 𝐼
𝑑 ln𝑚

∼ 1.6 ± O(10−2) . (17.19)

We therefore define 𝜀0 with a linear relationship between ln 𝐼 and ln𝑚:

ln 𝐼 = 𝑎 ln𝑚 + 𝑏 , (17.20)

where the free parameters 𝑎 and 𝑏 define a specific EoS. From the 𝐼 (𝑚) relation we
can obtain Λ(𝑚) (used for analyzing GW data) and 𝑅(𝑚) (used for analyzing X-ray
data) with the 𝐼-Love [586] and 𝐶-Love [585, 134] universal relations respectively.
Since the model does not have a miscrophysics interpretation, it does not self-
consistently lead to a maximum-mass solution. Instead we define its TOV mass as
Λ(𝑀TOV) = Λthresh = exp(1.89) which empirically produces reasonable values for
𝑀TOV,

We find that this model is inexpensive to sample and accurate enough that that it
leads to an improved reweighting efficiency. However, it would not be a reliable
model for EoS inference due to its simplistic nature.
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Figure 17.9: One- and two-dimensional posteriors for the mass distribution slope
and maximum mass from 23 simulated BNSs. We plot mass-only population
inference (grey) which defaults to the individual-event-inference prior on the tidal
deformability, joint mass-EoS inference using the lower-dimensional EoS model
(green) and the full mass-EoS joint inference with the GP EoS model (red). The
reweighting scheme corrects the bias from inferring the mass distribution alone.

Appendix 17.C Method validation

We demonstrate the validity of the reweighting scheme described in Appendix 17.A
with simulated GW data. We simulate BNS observations from a uniform mass
distribution with 𝛼 = 0 between 1𝑀⊙ and 𝑀pop,GW = 2.25𝑀⊙, assigning positions
and orientations isotropically, and distances according to a merger rate uniform in the
frame of the source across redshifts. Spins are distributed isotropically with uniform
magnitudes up to 0.05. Tidal deformabilities are simulated according to a pre-
selected EoS from the GP prior with 𝑀TOV = 2.34𝑀⊙ and 𝑅1.4 = 12.5 km. After
filtering for events that pass a detectability threshold of signal-to-noise ratio above
8, we obtain posterior samples using bilby [67]. We then follow the procedure of
Appendix 17.A to compute the joint posterior for the mass distribution and the EoS.

In Figure 17.9 we show the inferred population hyperparameters under three anal-
yses. The first (black) models only the mass distribution, which effectively means
that the EoS model defaults to the tidal deformability prior used during sampling.
This is selected to be uninformative to avoid restricting the posterior: flat between
0 and 1.5 × 103. Since this is not in reality how the tidal deformabilities of the
analyzed objects are distributed, i.e., the follow a single EoS, mass inference is
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Figure 17.10: One- and two-dimensional posteriors for recovered EoS properties
𝑀TOV and 𝑅1.4 from 23 simulated BNSs. We plot the prior (black) and the result
from reweighting to a full mass-EoS joint inference with the GP EoS model (red).
The reweighting method is able to recover the true EoS (blue).

slightly biased [256]. The second analysis (green) corresponds to Eq. (17.11) that
infers the mass distribution together with the lower-dimensional EoS model of Ap-
pendix 17.B. The inclusion of even this simple EoS model in the inference reduces
the bias compared to the true parameters. This posterior is then used as a proposal to
reweight to the final mass-EoS inference with the GP EoS model (red), which again
agrees with the injected values. Figure 17.10 further shows that this procedure can
infer the EoS parameters.

Appendix 17.D Effect of NICER observations

In this Appendix we quantify the impact of NICER observations on our inference.
Specifically, we study the impact of J0030+0451 for which there is no concur-
rent radio-based mass measurement and the hotspot model has a large impact on
inference [555] and J0437-4715 for which only one independent analysis is avail-
able [148]. We show results for 𝑅1.4 in Figure 17.11. Removing any NICER
pulsars leads to an increased uncertainty and a shift to lower radii (when removing
J0030+0451) or larger radii (when removing J0437-4715). However, all results are
consistent with each other at the 90% credible level. Using no NICER data leads to
𝑅1.4 = 11.9+1.7

−1.6 km, no J0030+0451 data to 𝑅1.4 = 11.6+1.3
−0.9 km, and no J0437-4715

data to 𝑅1.4 = 12.5+1.0
−0.9 km.
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EoS for J0030+0451 and J0437-4571 and uniform up to the TOV maximum mass
of the EoS for J0740+6620 and J0348+0432. The posteriors are similar.

Appendix 17.E Uniform pulsar population

Since selection effects for pulsar radio surveys are not well quantified, it is not clear
how the observed distribution of NS masses differs from the true distribution. To
examine the impact of the observed EM population inference, we repeat the analysis
using the approach of Ref. [332] for the EM population: it depends only on the
EoS, and not on additional population hyperparameters. The GW population is still
modeled with a truncated powerlaw per Sec. 17.2.3.2. We neglect all pulsars that
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do not contribute directly to the EoS (due to low mass) as well as spider pulsars for
consistency with Ref. [332]. The EM data now include only J0030+0451 and J0437-
4715 [377, 148] with a uniform mass distribution in [1.0−1.9] 𝑀⊙, and J0740+6620
and J0438+0432 [378, 61] with a uniform mass distribution in [1.0−𝑀TOV] 𝑀⊙, with
𝑀TOV given by the EoS model. This choice corresponds to a uniform distribution
up to the maximum mass allowed by the EoS. Because of this choice, EoSs that
predict a larger TOV mass are penalized by an Occam penalty for the two high-mass
pulsars.

Results are shown in Figure 17.12, where we find small changes to the inferred
EoS quantities. In particular, 𝑀TOV is relatively unchanged, 𝑀TOV = 2.27+0.41

−0.20 𝑀⊙

under the fixed population, which we attribute to the cancellation of two effects.
One the one hand, the Occam penalty favors lower values of 𝑀TOV under a fixed
population. On the other hand, under the fixed-population scheme, the mass of
the heaviest pulsars is not informed by lower-mass pulsars, and therefore ends up
higher, which in turn results in a higher 𝑀TOV. The effect of the Occam penalty
and the population-informed mass estimates in practice cancel out. The radius and
tidal deformability change somewhat more, 𝑅1.4 = 12.2+0.9

−1.0 km, with a ∼10% larger
uncertainty than the inferred-population case, and Λ1.4 = 450+247

−175 being slightly
larger than the inferred-population case.

Overall, inferring the EM mass distribution leads to marginally higher 𝑀TOV and
lower 𝑅1.4. Put differently, the high-density EoS is marginally stiffer and the low-
density EoS is marginally softer. As a consequence, the maximum sound-speed is
higher in order to connect the soft(er) low-density EoS to a stiff(er) high-density EoS.
This leads to increased support for violation of the conformal limit, 𝑐2

𝑠 > 1/3. The
natural logarithm of the Bayes factor in favor of conformal violation is lnB𝑐2

𝑠>1/3
𝑐2
𝑠<1/3

=

5.85 ± 0.30 for the fixed population model, and lnB𝑐2
𝑠>1/3
𝑐2
𝑠<1/3

= 7.39 ± 0.52 when the
mass distribution of EM pulsars is inferred.

Appendix 17.F Low spin assumption for GW190425

Assumptions about the spin of GW190425 have an effect on the inferred component
masses [11]. In the main text, we assume that the NSs in GW190425 can have
dimensionless spin magnitudes up to 0.4. However, other studies assume NSs have
spins 0.05, motivated by the spin distribution of pulsars in binary systems expected
to merge within a Hubble time [599]. In Figure 17.13, we present results with a low-
spin assumption for GW190425, enforcing the same assumption in the sensitivity
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Figure 17.13: Similar to Figure 17.8 but with a low-spin assumption for GW190425
of < 0.05.

estimates as well. We find 𝑀TOV = 2.26+0.39
−0.21 𝑀⊙ and 𝑀pop,GW = 1.79+0.32

−0.1 𝑀⊙.
As GW190425 is not the main observation informing 𝑀TOV, it values is consistent
with the main analysis. However, as the low-spin restriction lowers the estimated
masses of GW190425 due to the mass-spin correlation, we obtain a lower value for
𝑀pop,GW, though still consistent with 𝑀TOV.
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C h a p t e r 18

USING EQUATION OF STATE CONSTRAINTS TO CLASSIFY
LOW-MASS COMPACT BINARY MERGERS

Jacob Golomb, Isaac Legred, Katerina Chatziioannou, et al. “Using equation
of state constraints to classify low-mass compact binary mergers”. In: Phys.
Rev. D 110.6 (2024), p. 063014. doi: 10.1103/PhysRevD.110.063014.
arXiv: 2403.07697 [astro-ph.HE].

Abstract

Compact objects observed via gravitational waves are classified as black
holes or neutron stars primarily based on their inferred mass with respect
to stellar evolution expectations. However, astrophysical expectations
for the lowest mass range, ≲ 1.2𝑀⊙, are uncertain. If such low-mass
compact objects exist, ground-based gravitational wave detectors may
observe them in binary mergers. Lacking astrophysical expectations for
classifying such observations, we go beyond the mass and explore the
role of tidal effects. We evaluate how combined mass and tidal inference
can inform whether each binary component is a black hole or a neutron
star based on consistency with the supranuclear-density equation of
state. Low-mass neutron stars experience a large tidal deformation;
its observational identification (or lack thereof) can therefore aid in
determining the nature of the binary components. Using simulated
data, we find that the presence of a sub-solar mass neutron star (black
hole) can be established with odds ∼ 100 : 1 when two neutron stars
(black holes) merge and emit gravitational waves at signal-to-noise ratio
∼ 20. For the same systems, the absence of a black hole (neutron star)
can be established with odds ∼ 10 : 1. For mixed neutron star-black
hole binaries, we can establish that the system contains a neutron star
with odds ≳ 5 : 1. Establishing the presence of a black hole in mixed
neutron star-black hole binaries is more challenging, except for the case
of a ≲ 1𝑀⊙ black hole with a ≳ 1𝑀⊙ neutron star companion. On the
other hand, classifying each individual binary component suffers from
an inherent labeling ambiguity.

https://doi.org/10.1103/PhysRevD.110.063014
https://arxiv.org/abs/2403.07697
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18.1 Introduction

Astronomical observations have revealed a diversity in compact objects with masses
≲ 3𝑀⊙. Classifying these observations as black holes (BHs), neutron stars (NSs), or
white dwarfs (WDs), requires identifying observational signatures that are unique
to each type. For example, pulsars are identified as NSs [254], while unique
electromagnetic spectrum or emission signatures can distinguish between NSs and
BHs even if the mass is unknown, as is the case for accreting X-ray binaries [452,
188, 537]. On the gravitational-wave (GW) side, classification is simplified by the
fact that ground-based GW detectors are only sensitive to objects that do not disrupt
or collide before reaching the detector sensitive band ≳ 10 Hz. For example, a pair
of maximum compactness WDs each with mass 1.3𝑀⊙ and radius 1700 km collide
at a GW frequency of ≈ 1 Hz, see Appendix 18.A for calculation details. However,
even after excluding WDs, distinguishing between NSs and BHs is challenging
because, unlike electromagnetic emission, their GW emission is more similar, as it
is primarily determined by the object’s mass.

GW mass measurements in conjunction with astrophysical and nuclear physics
can lead to preliminary classification indications. Causality limits NS masses ≲

3𝑀⊙ [460, 300]; more massive objects observed in GWs must be BHs. Astronomical
and nuclear constraints suggest that NSs do not reach this theoretical maximum,
however. Estimates of the maximum mass of stable nonrotating NSs [541, 407]
range 2.0 − 2.5𝑀⊙ [332, 459, 177, 413, 439, 235]; rigidly rotating NS can be
∼ 20% more massive [153]. Based on these constraints, Refs. [11, 197, 23] argued
that the GW190425 [11] primary was likely a NS, while the GW190814 [23]
secondary was a BH. However, it is unclear if stellar evolution creates NSs up to
the maximum mass allowed by nuclear physics; little evidence for or against this
scenario is observationally available [28].

Switching to the full mass distribution, Galactic observations indicate that the
observed NS population is strongly peaked at ∼ 1.4𝑀⊙, with a lower (upper)
truncation near 1.1(2.0) 𝑀⊙ [58, 214]. The Galactic BNS population is narrower and
peaked at 1.4𝑀⊙ [58, 494], though the impact of selection effects on these results is
unclear. Neither result is consistent with the GW-observed NS mass distribution that
displays no prominent peak at 1.4𝑀⊙ [141, 327, 28]. Electromagnetic observations
suggest a scarcity or even absence of sub-5𝑀⊙ BHs [409, 318, 217, 495], though
candidates, subject to debate [277, 533, 73], exist [532, 294]. The 2.6𝑀⊙ secondary
in GW190814 [23] as well as galactic observations [83, 145] indicate that if a mass
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gap between NSs and BHs does exist, it is not empty [28]. In the absence of
unambiguous classification for ∼ 2 − 3𝑀⊙ objects, Refs. [224, 28, 208] modeled
the mass distribution of all sub-10𝑀⊙ objects and identified a feature at ∼ 2.4𝑀⊙.
Under the assumption of nonoverlapping NS and BH distributions, such a feature
could signal the transition from the NS to the BH population.

In contrast to these astrophysics- and nuclear physics-informed considerations about
the high end of the NS mass range, the low end remains uncharted. No widely-
accepted astrophysical process results in stellar remnants of either type with masses
≲ 1.2𝑀⊙ [514, 329, 331], although physically cold NSs remain stable down to
O(10−1) 𝑀⊙ [329, 331].1 Radio and X-ray observations have led to NS candidates
with masses ∼ 1.17𝑀⊙ [368] and ∼ 0.8𝑀⊙ [182]. Additionally, masses and eccen-
tricities of Gaia binaries suggest the existence of ∼ 1𝑀⊙ NSs [494]. As for BHs,
while sub-1𝑀⊙ BHs do not form through stellar collapse, early-universe density
fluctuations and sufficiently dissipative dark matter could collapse into primordial
BHs with masses in this range [131, 400]. Searches for subsolar mass compact
objects with GWs have as of yet yielded no detections [31, 32, 399]. If such BHs
do exist, they may be detectable by current and future GW detectors, and properties
such as their masses and spins may be measurable [573, 385].

Given these uncertainties, classification of potential sub-1.2𝑀⊙ GW candidates
requires an additional unique signature: matter effects.2 GWs from mergers involv-
ing NSs carry the imprint of tidal interactions in the signal phase evolution [138,
282, 232]. To leading order3, the effect is quantified by the dimensionless tidal
deformability which depends on the nuclear equation of state (EoS) (𝑐 = 𝐺 = 1):

Λ ≡ 2
3
𝑘2𝐶

−5 , (18.1)

where 𝑘2 is the quadrupole tidal love number, and 𝐶 = 𝑚/𝑅 is the compactness,
the ratio of the NS mass 𝑚 to its radius 𝑅. Tidal interactions enter the GW phase
to leading 5𝑡ℎ Post-Newtonian (PN) order [232, 220] through Λ̃, a mass-weighted
combination of the component tidal deformabilities. BHs in General Relativity have

1The minimum mass of a hot proto-NS is however likely larger than that of a cold NS [498, 331,
512].

2On the electromagnetic side, matter effects manifest as counterparts, such as with
GW170817 [13], proving the presence of at least one NS and a 10:4 preference for two [280,
158, 159]. Absence of a counterpart does not necessarily rule out NSs, as detectability may be
limited by beaming or prompt collapse [11].

3Higher-order effects, such as dynamical tides [281, 431, 245], also affect the waveform and can
aid in distinguishing NSs and BHs.
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Figure 18.1: The 𝑚 −Λ relation for draws from the EoS posterior from [332] (gray
lines). A red dashed line denotes the SLY9 EoS. An orange solid line indicates
the Λ ∝ 𝑚−6 trend. The posteriors of the masses and tidal deformabilties of the
primary and secondary component of a BBH simulated signal are shown in light
blue and dark blue, respectively. Despite poorer tidal constraints, the secondary
is less consistent with the EoSs, suggestive of a BH. While this demonstration
does not capture the full 4-dimensional mass-Λ correlations, it sketches the main
classification idea.

vanishing 𝑘2, making Λ a unique signature of the compact object nature [96, 147]
4. Tidal information has previously suggested the presence of at least one NS in
GW170817 based on disfavoring zero tides [15], EoS-independent relations [19]
and consistency of the tidal measurement with EoS inference [198]. Furthermore,
Ref. [146] showed that lack of tidal signature can be used to identify∼ 1 − 2𝑀⊙ BHs
if they exist, though distinguishing between NSBHs and BBHs is more challenging
if the BH has a higher mass [115].

Tidal deformability becomes an increasingly better discriminator between BHs and
NSs as the object’s mass decreases. For 𝑚 ≳ 1𝑀⊙, 𝑘2 scales as 𝑘2 ∼ 𝑚−1 [595],
resulting in Λ(𝑚) ∼ 𝑚−6, see Figure 18.1, assuming an approximately constant
radius.5 The lowest-mass NSs therefore exhibit the strongest tidal signatures and
differ the most from BHs [162], with Λ ∼ O(104) for 𝑚 ∼ 1𝑀⊙, compared to
Λ ∼ O(10) for 𝑚 ⪆ 2𝑀⊙.

In this work, we leverage the expected large tidal deformabilities of low-mass NSs,
combined with astrophysically-informed EoS constraints to classify compact objects
as either NSs or BHs. Our classification is based on the fact that a compact object’s
tidal deformability must be consistent with the EoS prediction if it is a NS, see the

4Beyond static tides and Λ, Kerr BHs have nonvanishing dynamical tides [422].
5This is a good approximation excluding EoSs with phase transitions [262, 329].
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𝑚 − Λ relation in Figure 18.1, or zero if it is a BH. While the true EoS is unknown,
astronomical observations have placed constraints, giving independent predictions
for the tidal deformability of a NS of a given mass, e.g., [177, 326, 332, 413, 439].
This method expands upon efforts to identify NSs through a Λ̃ > 0 condition [15],
as we additionally require Λ to be consistent with predictions from the dense-matter
EoS, similar to the GW170817 classification of [198]. In other words, our analysis
combines the discriminatory power of two conditions: BHs are consistent with
Λ = 0 and NSs are consistent with Λ = Λ(𝑚) as predicted by the EoS.

We test our classification approach with simulated data from low-mass sources with
signal-to-noise ratios (SNRs) of 20 and 12 at advanced detector sensitivity. Lower
(upper) limits on Λ allow us to rule out a BH-BH (NS-NS) origin when at least
one of the binary components is a NS (BH). Figure 18.1 shows a demonstration of
this idea in the BH-BH case. Though this plot is restricted to two dimensions and
does not capture the strong correlations between Λ1 and Λ2, c.f., Figure 18.4, the
full-dimensional posterior structure is leveraged in the classification scheme laid out
in Sec. 18.2.2. In systems with sufficiently unequal masses, 𝑚2/𝑚1 ≲ 0.8, it might
be possible to conclude that there is only a single NS. We also discuss an ambiguity
in labeling individual objects that makes it difficult to identify the NS in a single-NS
system.

The rest of the paper is organized as follows. In Sec. 18.2, we overview the parameter
estimation methodology and source classification procedure. We present parameter
estimation results on simulated signals in Sec. 18.3. Using these results, we quantify
the evidence of BHs and NSs in Secs. 18.4 and 18.5, respectively. We conclude in
Sec. 18.6.

18.2 Methods

In this section, we describe the classification procedure and the methods for demon-
strating its effectiveness. In Sec. 18.2.1, we describe the simulated low-mass signals
and parameter estimation. In Sec. 18.2.2, we fold in EoS information to quantify
the probability of each source type.

18.2.1 Classification-agnostic Parameter Estimation

We simulate data for binaries with all unique configurations of source-frame masses
(𝑚1, 𝑚2) ∈ {0.8, 0.9, 1.0, 1.1, 1.2}𝑀⊙ with 𝑚1 ≥ 𝑚2 and source type NS-NS,
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BH-NS, NS-BH, and BH-BH, where the first (second) initial corresponds to the
primary (secondary). The lower mass is selected both for computational reasons
and because distinguishability is easier for even lower-mass systems. This results
in 55 total configurations.6 For brevity, we refer to BH-BH as BBH and NS-NS as
BNS. We simulate sources with no spins and two network SNRs, one high-SNR set
with 𝜌net ≈ 20 and another lower-SNR set with 𝜌net ≈ 12. The former corresponds
to an optimistic detection scenario, although still quieter than GW170817 [10], while
the latter is representative of the bulk of detections. Further details are provided in
Appendix 18.B. BHs are simulated with vanishing Λ. For NSs, we assign Λ(𝑚)
according to their mass 𝑚 and the EoS SLY9 [263], chosen as a representative EoS
that is consistent with current astronomical data [332], see Figure 18.1. We adopt
standard priors for all parameters, detailed in Appendix 18.B. We remain agnostic
on source type and adopt a uniform prior between 0 and 20 × 103 for the tidal
deformabilities for all simulated signals.

We simulate data observed by the LIGO-Virgo detector network [16, 1, 38] with a
zero noise realization, corresponding to a geometric mean of many noise realiza-
tions [393]. For the noise Power Spectral Densities (PSDs), we use the LIGO O4
low-sensitivity and O3 Virgo noise curves [16, 117, 39]. Signals are simulated and
modeled with IMRPhenomXAS_NRTidalv3 [4], a phenomenological, frequency-
domain waveform model for the dominant GW emission from the coalescence of
BNS mergers with aligned spin components. The model is based on a BBH GW
model [429], which is then augmented with a closed-form tidal expression [176,
4]. The model incorporates dynamical tidal effects [281] and is calibrated to a
suite of numerical-relativity simulations. Two of these simulations are unequal-
mass systems with a subsolar mass secondary (0.98𝑀⊙ and 0.90𝑀⊙, with tidal
deformabilities ∼ 2600 and ∼ 4600, respectively). The model has also been com-
pared against an unequal-mass system with a subsolar mass component ∼ 0.94𝑀⊙

and a tidal deformability of ∼ 9300 [545]. Its reliability has been checked within
𝑚1,2 ∈ [0.5, 3.0] 𝑀⊙ and Λ1,2 ∈ [0, 20000], a range well-suited for our study.

For illustrative purposes, we show relevant frequencies around the binary merger
as a function of mass in Figure 18.2, see Appendix 18.A for a detailed definition.
We include the merger frequency, defined as the frequency of peak strain [258],
the contact frequency, defined from a binary separation equal to the sum of the
components’ radii, and 𝑓6𝑀 ≡ (63/2(𝑚1 + 𝑚2))−1/(2𝜋), an approximation for the

6The total number of possible systems is 100. Enforcing 𝑚1 > 𝑚2 and taking into account that
equal-mass NS-BH and BH-NS systems are identical reduces this to 55.
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Figure 18.2: Relevant frequencies for late-inspiral signals: merger (peak strain,
tan) and contact (orbital separation corresponding to objects touching, light blue)
of NSs in equal-mass systems as a function of component mass. Shaded regions
correspond to marginalization over the EoS posterior from [332]. Colored lines
correspond to the SLy9 EoS [183, 263], which we use to simulate data. Lastly, we
display an approximation for the plunge frequency of a comparable mass BBH 𝑓6𝑀
with a black dash-dot line.

plunge frequency of BBHs. In the mass range of interest, all frequencies are between
∼ 1 − 3 kHz.

18.2.2 Classifying Compact Binaries using EoS Information

The possible source classes for each detected binary are (𝑇1, 𝑇2) one of
{(BH,BH), (NS,BH), (BH,NS), (NS,NS)}, where 𝑇1 and 𝑇2 refer to the source
type (BH or NS) of the primary (more massive) or secondary (less massive) object,
respectively. For each event, the likelihood given an EoS 𝜖 and source type 𝑇1, 𝑇2 is
obtained by marginalizing over the binary masses and tidal deformabilities:

L(𝑑 |𝜖, 𝑇1, 𝑇2) =
∫

𝑑𝑚1 𝑑𝑚2 𝑑Λ1 𝑑Λ2 L(𝑑 |𝑚1, 𝑚2,Λ1,Λ2)

× 𝜋(𝑚1, 𝑚2)𝜋(Λ1,Λ2 |𝜖, 𝑚1, 𝑚2, 𝑇1, 𝑇2) ,
(18.2)

where L(𝑑 |𝑚1, 𝑚2,Λ1,Λ2) is the GW likelihood over the masses and tidal de-
formabilities, 𝜋(𝑚1, 𝑚2) is the prior on masses, and 𝜋(Λ1,Λ2 |𝜖, 𝑚1, 𝑚2, 𝑇1, 𝑇2) is
the prescription for computing the tidal deformabilities. For EoSs with a single
stable branch7

𝜋(Λ𝑖 |𝜖, 𝑚𝑖, 𝑇𝑖) =

𝛿(Λ𝑖 − Λ(𝑚𝑖 |𝜖)) , if 𝑇𝑖 = NS

𝛿(Λ𝑖) , if 𝑇𝑖 = BH
. (18.3)

7If there are multiple stable branches we use a prior 𝜋(Λ𝑖) =
∑𝑁
𝑗=0

1
𝑁
𝛿(Λ𝑖 −Λ(𝑚𝑖 |𝜖, 𝑗)), where

𝑗 indexes stable branches and Λ(𝑚𝑖 |𝜖, 𝑗) is the tidal deformability on the 𝑗−th branch. A NS of a
given mass is equally likely to be formed on any stable branch.
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Equation (18.3) corresponds to the following prior onΛ𝑖: under the𝑇𝑖 = NS hypoth-
esis, Λ𝑖 is determined by the EoS 𝜖 and 𝑚𝑖, whereas under the 𝑇𝑖 = BH hypothesis,
the object has a vanishing tidal deformability. Equation (18.2) is independent of
the prior on Λ𝑖 and 𝑚𝑖 used in the original single-event analysis of Sec. 18.2.1 as it
only depends on the single-event likelihood. The Λ𝑖 prior in Eq. (18.2) is instead
the EoS-informed prior of Eq. (18.3).

The mass prior is encoded in 𝜋(𝑚1, 𝑚2), which is selected to be uniform in the
joint source-frame component mass space, with 𝑚1, 𝑚2 ∈ [0.5, 1.8] 𝑀⊙. This
uniform prior is chosen for simplicity, as no constraints exist on the mass distribution
of ≤ 1.2𝑀⊙ NSs and BHs. It is nonetheless consistent with constraints on the
∼ 1 − 2𝑀⊙ mass distribution [327, 28]. If a population of low-mass binaries were
discovered, the mass prior would also be inferred via an extension of Eq. (18.2),
e.g, [256, 584].

Whereas Eq. (18.2) is conditioned on a single EoS 𝜖 , the true EoS is unknown. We
instead marginalize over the EoS and compute the likelihood for each classification:

𝑃(𝑑 |𝑇1, 𝑇2) =
∫

L(𝑑 |𝜖, 𝑇1, 𝑇2)𝜋(𝜖 |𝑑aux)𝑑𝜖 , (18.4)

where 𝜋(𝜖 |𝑑aux) is a distribution over EoSs informed by auxiliary data 𝑑aux. We
adopt the posterior from Ref. [332] computed using a model-agnostic prior on
the EoS based on a Gaussian process [325, 198, 333] and informed by radio-
pulsar measurements [235, 61], X-ray pulse-profile [377, 461, 378, 462], and GW
observations [10, 15, 11]. The EoS posterior is consistent with chiral effective
field theory calculations at densities ≲ 1.5 𝜌nuc (where 𝜌nuc is nuclear saturation
density) [565, 272, 527, 184], comparable to the central densities of ∼ 1–1.5𝑀⊙

NSs, though it does not explicitly incorporate this information [200]. It is also
consistent with the existence of strong phase transitions [199].

The main physically relevant questions are

1. whether a source contains at least one BH,

2. whether a source contains at least one NS,

3. and, if so, whether it contains two NSs.

Due to the lack of constraints on the merger rates of different source types in the
relevant mass range we assign equal prior probability on 3 hypotheses H : (i) the
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system has two NSs (BNS), (ii) the system has exactly one NS (OneNS), and (iii)
the system has no NSs (BBH).

The marginal likelihood8 ofH is obtained by integrating over the relevant constituent
source types:

ZH ≡
∫

𝑝(𝑑 |𝑇1, 𝑇2)𝜋(𝑇1, 𝑇2 |H) 𝑑𝑇1 𝑑𝑇2 , (18.5)

where 𝑝(𝑑 |𝑇1, 𝑇2) is given in Eq. (18.4), and 𝜋(𝑇1, 𝑇2 |𝐻) is the normalized prior on
the source types. The hypotheses H = BNS and H = BBH contain a single source
type each, with the trivial priors 𝜋(NS,NS |BNS) = 1, and 𝜋(BH,BH |BBH) = 1
respectively. The hypothesis H = OneNS encompasses two source types, NSBH
and BHNS, which we take to be equally likely a priori, 𝜋(NS,BH |OneNS) =

𝜋(BH,NS |OneNS) = 1/2.

The marginal likelihood for whether the system contains at least one NS (“HasNS”)
is then

ZHasNS = ZOneNS 𝜋(OneNS|HasNS)
+ ZBNS 𝜋(BNS|HasNS) , (18.6)

where 𝜋(OneNS|HasNS) = 𝜋(BNS|HasNS) = 1/2, meaning under the assumption
the system has at least one NS, we assign an equal prior probability that it has one
or two NSs. The marginal likelihood for whether the system contains at least on BH
(“HasBH”) is Eq. (18.6), with BNS → BBH.

In what follows, we present odds ratios between two hypotheses H1 and H2:

OH1
H2

=
ZH1

ZH2

𝜋(H1)
𝜋(H2)

, (18.7)

where 𝜋(H) is the prior on the hypothesis H , with 𝜋(HasNS) = 𝜋(HasBH) =

2𝜋(BNS) = 2/3.

18.3 Measuring the Masses and Tides of Low-mass Compact Binaries

In this section, we present posteriors from simulated signals. We do not assume
we know whether each component is a NS or BH a priori. Throughout, we present
results from simulations with 𝜌 = 20.

8The marginal likelihood is also commonly referred to as the “evidence”, though we use this
term in its colloquial meaning.
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Figure 18.3: One- and two-dimensional marginalized source-frame mass posteriors
for the 𝑞 ≡ 𝑚2/𝑚1 = 1 signals. Same-color lines denote systems with varying total
mass 𝑀 with true values marked. For a given mass, varying line styles denote BBH,
NSBH, and BNS systems. Contours represent two-dimensional 2-𝜎 regions. Given
a simulated mass, similar posteriors across source types shows the subdominant
effect of tides on the inferred masses.

The dominant intrinsic feature of a GW signal is the mass. In Figure 18.3, we present
marginal posteriors for the source-frame masses for select equal-mass systems.
Measurement uncertainties are consistent with those of Ref. [573], c.f., their Figs. 1
and 2, at the same SNR. Same-color lines denote systems with the same total mass,
while varying line styles denote simulated source types. Same-mass signals result
in similar mass posteriors, regardless of the source type, with a minor trend for
longer tails as the tidal effects increase. This is due to the fact that the mass is
primarily measured by the long inspiral phase (thousands of cycles), while tidal
effect are relevant for the last ∼ 20 cycles. We obtain qualitatively similar posteriors
for non-equal mass signals.

Having established that the presence of tides does not strongly impact mass inference,
we now turn to tidal inference. Figures 18.4 and 18.5 show marginal posteriors for
systems with fixed 𝑞 and 𝑀 , respectively, with colors denoting the source type. The
top rows show the marginal 𝑞 − Λ̃ posteriors. All posteriors are consistent with
the true (simulated) values. Within each panel, i.e., for configurations of the same
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Figure 18.4: Two dimensional marginal posteriors for select parameters for systems
with 𝑞 = 1, with each column referring to a different simulated total mass. Blue,
yellow, and magenta lines outline the 2-𝜎 contours of the posterior for the BBH,
NSBH, and BNS systems, respectively. We omit the BHNS configuration as it is
identical to NSBH for equal-mass simulations. The left (right) halves of the third
row plots are the posterior of the primary (secondary), and include draws from the
EoS distribution [332] for reference. A decreasing total mass increases the tidal
signature and correspondingly affects all posteriors.

mass, the posterior moves to higher values as the system contains more NSs and tidal
effects become stronger. The posteriors further show a positive correlation between
𝑞 and Λ̃ which becomes stronger as Λ̃ increases in value, consistent with [15]. An
outcome of the increasing correlation strength is that the uncertainty also increases
as the posterior is more extended both in the 𝑞, see also Figure 18.3, and Λ̃ directions.

The 𝑞 − Λ̃ posterior offers the first evidence about the presence/absence of tides
and thus source classification. For all mass configurations, the BBH signals are
consistent with the true value Λ̃ = 0, and the posteriors are similar for different
masses, c.f., blue contours in Figs. 18.4 and 18.5, left to right. For NS-containing
systems, the posteriors move away from Λ̃ = 0, signaling the presence of tides. As
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Figure 18.5: Similar to Figure 18.4 but for systems with the same simulated total
mass 𝑀 = 2𝑀⊙, with each column referring to a different simulated the mass ratio.
When relevant, we also include BHNS configurations in green. The posteriors of
all parameters are, weakly sensitive to the true mass ratio, with the exception of the
BHNS cases.

expected, signals from lower-𝑀 systems can rule out Λ̃ = 0 with higher credibility
due to their higher true Λ̃ value, c.f., yellow and magenta contours in Figure 18.4,
left to right. At a fixed 𝑀 , the dependence of Λ̃ on the mass ratio is less pronounced,
resulting in similar posteriors and thus ability to detect tides, c.f., yellow, green, and
magenta contours in Figure 18.5, left to right.

Going beyond Λ̃, we turn to the tidal deformability of the individual binary com-
ponents. The second row of Figs. 18.4 and 18.5 shows posteriors for Λ1 − Λ2.
The posteriors span much of the prior and show a strong anticorrelation consistent
with [142, 15, 9]. The direction of the anticorrelation is approximately a con-
stant Λ̃ suggesting that almost all tidal information comes from measuring Λ̃, with
limited higher-order information [563, 220]. This is further demonstrated in Ap-
pendix 18.C. Consequently, Λ1 − Λ2 (second row) does not offer much additional
information about the source type beyond 𝑞 − Λ̃ (first row): exclusion of Λ̃ = 0
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amounts to exclusion of Λ1 = Λ2 = 0. Crucially for source classification, all com-
ponent tidal deformabilities are individually consistent with Λ𝑖 = 0.9 Effectively, a
Λ̃measurement is “spread” betweenΛ1 andΛ2 and the posterior for both parameters
is consistent with high values when either parameter has a high true value.

In the final row of Figs. 18.4 and 18.5, we show the component Λ𝑖 − 𝑚𝑖 posteriors,
where gray lines are draws from the EoS posterior. As expected from the second
row, even in cases where Λ̃ = 0 is confidently ruled out, the posteriors are consistent
with Λ𝑖 = 0. More information can however be obtained by comparing the upper
limit on Λ𝑖 to EoS expectations at the relevant mass. As expected, all BNS poste-
riors (magenta) are consistent with the EoS draws in both (𝑚1,Λ1) and (𝑚2,Λ2).
Switching to the NSBH signals (yellow), the primary is always consistent with being
a NS: for all masses nearly all the EoS draws fall within the yellow posteriors. In
contrast and again for all mass configurations, about half the EoS draws fall within
the posterior for the secondary binary component, indicating decreasing support for
a NS interpretation. Interestingly, this is despite the fact that the upper limit on Λ1

is lower than that of Λ2. The expected tidal deformability increases so rapidly for
lower masses that Λ1 is more consistent with the EoSs than Λ2. The BHNS posteri-
ors (green contours in Figure 18.5) fully overlap with the EoS draws for all masses.
This is because BHNSs have a larger Λ̃ than NSBHs for the same mass, pushing all
upper limits to high enough values that are consistent with EoS predictions.

Finally, for BBH signals the posteriors for both components show some tension with
EoS draws, which decreases with the total mass, c.f., blue contours of Figure 18.4,
left to right. For the lowest mass configuration, c.f., left-most panel of Figure 18.4,
neither binary component overlaps with hardly any EoS draw. In these cases, the
GW data can constrain the tides to values that are too low compared to viable EoSs.
The binary mass ratio, on the other hand, does not strongly impact the overlap
between the posterior and the EoSs, c.f., blue contours in Figure 18.5, left to right.
This is because the Λ𝑖 posterior does not strongly depend on the system mass, what
changes is the EoS prediction which is a strong function of the total mass.

18.4 Determining if a System Contains a Black Hole

Astronomical observations and nuclear physics considerations cannot directly mo-
tivate the nature of potential ≲ 1.2𝑀⊙ GW detections such as the ones studied in

9The only seeming exception is the lowest-mass BNS in Figure 18.4 but this is due to a posterior
railing against the prior upper bound.
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Figure 18.6: Base-10 logarithm of the odds ratio for each system containing at least
one BH. Monte-Carlo errors for the odds ratios are too small to be visible in the
scale of the figure. Panels correspond to the system source-frame masses and colors
correspond to source type. The equal-mass panels do not contain BHNS systems
as they are identical to the NSBH ones. Dots (crosses) denote signals with SNR
20(12). Points above log10(OHasBH

BNS ) = 0 (red dashed line) denote support for the
presence of at least one BH in the binary.
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Sec. 18.3. We undertake signal classification with the fundamental question: does
the signal provide evidence for the presence of a BH, thus establishing the existence
of BHs below the expected astrophysical minimum mass?

We quantify this with the odds ratio OHasBH
BNS , where the “HasBH” hypothesis consists

of the BBH, NSBH, and BHNS source types with equal prior probabilities. The
alternative hypothesis is that the system is a BNS and thus the inferred masses and
tides of both objects must be consistent with the EoS. In practice, the test comes
down to whether the upper bound on the tidal effects is constraining enough to be
in tension with the EoS prediction. We present the base-10 logarithm of the odds
ratio, log10 OHasBH

BNS in Figure 18.6 for the 𝜌 = 20 (solid dots) and the 𝜌 = 12 signals
(crosses). Below we focus on the 𝜌 = 20 results; we obtain qualitatively similar
though weaker constraints when 𝜌 = 12.

The BBH signals (blue) show evidence for the presence of a BH, with odds ≳10:1
for all masses. The evidence is stronger for lower-mass systems, with the odds
ratio increasing from 10:1 to 100:1 between masses 1.2− 1.2𝑀⊙ and 0.8− 0.8𝑀⊙.
This can be understood in the context of the EoS predictions; even though the Λ

posteriors are similar for all masses, c.f., blue contours in Figure 18.4, bottom row,
right to left, the EoS predicts that less massive NSs have much higher Λ values.
As the mass decreases, the EoS predictions move away from the (𝑚,Λ) posterior
support; this brings the data from less massive systems into more tension with the
BNS hypothesis.

NSBH signals (yellow) result in odds ranging between a few to ∼ 10 : 1. For
a given 𝑚2, as 𝑚1 increases (left to right), the odds ratio increases and we can
more confidently infer the presence of a BH. This happens because both the true and
inferred value of Λ̃ are smaller as𝑚1 increases. BothΛ1 andΛ2 are thus inferred to be
smaller, but the estimate for 𝑚2 is essentially unchanged, therefore, the secondary
becomes more consistent with being a BH as the primary mass increases. This
contrasts with the case of increasing the total mass at constant mass ratio (bottom
left to top right) where the inferred value of Λ2 decreases and the inferred value of
𝑚2 increases, so consistency with EoS predictions remains unchanged.

Turning to the BHNS signals (green), we obtain near-equal odds for the presence
of a BH for all masses. This is likely due to the larger tidal effects compared to the
NSBH case (since now the secondary is a NS) and the corresponding higher upper
limits on tidal parameters, c.f., Figure 18.5, allowing both objects to agree with the
EoS predictions. The odds for the presence of a BH decrease as the primary (BH)
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mass increases (left to right), as BHs and NSs become less distinguishable.

Finally, BNSs (magenta) always yield evidence against the presence of a BH, which
decreases with the mass.

18.5 Determining the Neutron Star Content of a System

The complementary question is whether a system contains at least one NS and if
yes, whether it contains two. Here, the evidence comes from both consistency of
each object with EoS predictions and the exclusion of Λ̃ = 0.

18.5.1 Does the System Contain a Neutron Star?

The evidence for whether there is at least one NS in a system is quantified with the
odds ratio OHasNS

BBH , Eq. (18.7). This is not equivalent to solely determining if the
binary contains any matter; we further require the inferred tidal deformabilities to
be consistent with the EoS.

In Figure 18.7, we show log10 OHasNS
BBH . We again focus on the 𝜌 = 20 results as

𝜌 = 12 gives qualitatively similar, though less constraining, conclusions. The log
odds ratios for BBHs are negative, indicating that the data favor the absence of any
NSs. As the mass decreases, so does the odds ratio from OHasNS

BBH ≈ 1/50 for 1.2–
1.2𝑀⊙ to ≈ 2/3 for 0.8–0.8𝑀⊙. It becomes less plausible for the lowest-mass BBH
systems to contain a NS as the signals lack the strong tidal signature that the EoSs
predict for these masses, c.f., blue contours in Figure 18.4 bottom left compared to
bottom right panel. All NS-containing systems yield log10 OHasNS

BBH > 0 though again
the evidence decreases as the NS mass increases. For example, the odds ratio for
𝑚1 = 1.2𝑀⊙, 𝑚2 = 0.8𝑀⊙ is OHasNS

BBH ≈ 4, much lower than the 𝑚1 = 𝑚2 = 0.8𝑀⊙

case which has OHasNS
BBH > 100. At all masses, there is more evidence for a NS in

BHNSs than NSBHs. This is because the predicted tidal deformability of the primary
is smaller than for the secondary, and thus a NS primary is more indistinguishable
from a BH than a NS secondary. For systems containing exactly one ≲ 1𝑀⊙ NS,
we obtain OHasNS

BBH ⪆ 10. The strongest evidence is obtained for the presence of a
NS in the BNS systems, all of which have log10 OHasNS

BBH ⪆ 2. This is consistent with
the BNS posteriors of Figure 18.4 and 18.5 that always rule out Λ̃ = 0.
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18.5.2 Does the System Contain Two Neutron Stars?

Having established the presence of a NS, the next question is whether the source is
a BNS or it contains only one NS. We compare these two hypotheses with the odds
ratio OBNS

OneNS.

We show results in Figure 18.8, restricting to systems with evidence for at least
one NS in Figure 18.7 which in practice is all the NS-containing systems and a few
BBHs with marginal evidence. We again focus on the 𝜌 = 20 results. BNS signals
(pink) favor the presence of two NSs for all masses. As before, this evidence is
stronger for less massive systems with odds ⪆ 10 : 1 when both components are
≲ 1𝑀⊙. NSBHs (yellow) provide stronger evidence against the presence of two
NSs than BHNSs. This is again because determining the nature of the secondary
(least massive) is easier than primary (most massive) component.

However, neither BHNS nor NSBH signals result in odds greater than 10:1 against
the BNS hypothesis; the strongest evidence is obtained for the 1.2–0.8𝑀⊙ NSBH
binary with OBNS

OneNS ∼ 1/8. The reason refers back to the posteriors in Figs. 18.4
and 18.5. The BNS hypothesis requires that the EoS draws overlap with both the
(𝑚1,Λ1) and (𝑚2,Λ2) posteriors. The bottom row of Figs. 18.4 and 18.5 show that
the EoS draws completely overlap the primary posterior for all NSBH (yellow) and
BHNS (green) signals. What is more, the posterior for the secondary is also fully
(BHNS; green) or partially (NSBH; yellow) consistent with the EoS draws.

18.5.3 If the System Contains One Neutron Star, is it the primary or the
secondary?

Though establishing the presence of exactly one NS is challenging at current sen-
sitivity, we look forward to higher-SNR signals and consider how to identify which
binary component it is. Most analyses label objects based on relative mass, e.g., pri-
mary and secondary, hence the most straightforward approach is to examine whether
the primary is a NS or a BH:

ONSBH
BHNS =

ZNSBH
ZBHNS

. (18.8)

However, this suffers from a labeling ambiguity. For example, an equal-mass NSBH
system is equally-well described by assigning the tides on either component. This is
due to the ambiguity in distinguishing binary components based on a property that
is symmetric, i.e., the mass, and also plagues the component spins [99].
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This ambiguity can be resolved by instead labeling the binary components with a
unique property of each object that breaks this symmetry. For example, labeling
binary components based on their tidal deformability would allow us to explore the
properties of the stiffer and softer objects that reflect the NS and BH, respectively.
Such an approach is of course only applicable for systems with measurable tidal
asymmetry. For example, for BNSs, this approach would identify a “stiff” and a
“soft” component, even if the tidal deformabilities are similar. More generally,
there is no guarantee that objects are in fact distinguishable, e.g., an equal-mass
and nonspinning BBH, there is thus no generic strategy for extracting individual
component properties.

18.6 Conclusions

We have explored source classification for low-mass, ≤ 1.2𝑀⊙ compact binary
mergers based on the GW signal they emit and external information about the dense-
matter EoS. The classification is based on the fact that the inferred component mass
and tidal deformability must be consistent with EoS expectations if the object is a
NS. A tidal measurement that is inconsistent with EoS predictions provides evidence
that the object is not a NS, while Λ = 0 provides evidence for the object being a BH.
The method’s distinguishing power increases with decreasing mass, due to the fact
that EoS predictions are a steep function of the mass, Λ ∼ 𝑚−6, and NSs become
indistinguishable to BHs as the mass increases. Similarly, distinguishability is easier
if the true EoS is stiffer as it would predict larger NS tidal deformabilities for all
masses; here we have considered SLy9 that is consistent with the astrophysical data
we employ.

We generally find it is easier to confirm the presence of a BH or NS than to refute
it. For systems with subsolar-mass BHs, their presence can be identified at SNR
𝜌 = 20. In contrast, BNSs strongly disfavor the presence of a BH, with the evidence
growing with decreasing masses. Complimentarily, signals from ≲ 1𝑀⊙ NS-
containing binaries can reveal the NS presence based on compatibility of the mass-
tidal measurement with EoS predictions. In contrast, if the binary does not contain a
NS, its presence is disfavored with the evidence again growing as the mass decreases.
Finally, identifying which object in a binary is a NS (or a BH) is subject to a labeling
ambiguity that could be mitigated by labeling components based on relative tides
rather than mass. Higher-SNR signals due to detector upgrades [16] or tighter EoS
predictions thanks to future data will further strengthen distinguishability.
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If subsolar-mass binaries exist and merge, combined mass and tidal information
can aid in identifying the component nature and lead to constraints on primordial
BH and NS physics. This prospect further motivates numerical simulations [367]
and developing waveform models that can faithfully capture the large tidal effects
of low-mass NSs. It further motivates studies of alternative possibilities to BHs and
standard NSs such as dark matter admixed NSs with lower tidal deformability [284].
Tidal-based classification, as previously explored for higher-mass objects such as
GW170817 [15, 198, 19], is especially promising for sub-solar mass objects whose
nature is not otherwise astrophysically informed.

As this study was nearing completion, a preprint [160] that reached similar con-
clusions about the distinguishability of sub-solar mass BNS systems from BBHs
appeared. Our methods differ in a few ways. The authors of [160] use Fisher ma-
trix estimates (complemented with select full parameter estimation) and a modified
TaylorF2 approximant to account for NS disruption, as compared to our use of
full parameter estimation (with priors that keep Λ1 and Λ2 positive) with the NR-
Tidalv3 waveform that includes appropriate termination conditions. Classification
also differs: while Ref. [160] compares the upper limits on tidal inference to a fixed
NS EoS, we form relevant hypotheses and marginalize over current uncertainty in
the EoS to compute odds ratios. Additionally, we consider mixed NS-BH binaries,
as opposed to only BNS and BBH systems. On the other hand, Ref. [160] also
considers exotic compact objects. Regardless, both studies find that we can tell
apart a sub-solar mass BBH from a BNS at SNR ≳ 12.
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Appendix 18.A Limiting Frequencies

Compact binary inspirals terminate when the objects merge, disrupt each other,
or their surfaces contact. In this Appendix, we quantify how compact binary
components need to be in order to avoid disruption and contact and thus emit
GWs in the sensitive band of ground-based detectors, see, e.g., [588] for a similar
calculation.

The onset of merger is not precisely defined, but a separation of 𝑟 = 6𝑀 = 6(𝑚1+𝑚2)
gives an order-of-magnitude estimate and a Keplerian frequency

𝑓6𝑀 =
1
𝜋

√︄
𝑀

(6𝑀)3 , (18.9)

plotted in Figure 18.2; for 𝑚1 = 𝑚2 = 1𝑀⊙, 𝑓6𝑀 ∼ 2 kHz. Solar-mass compact
objects therefore enter the LIGO-Virgo sensitive band before merger.

However, finite sizes might terminate the inspiral earlier if the objects contact each
other before reaching 𝑟 = 6𝑀 . For objects with radii 𝑅1 and 𝑅2, contact 𝑟 = 𝑅1+𝑅2

occurs at a Keplerian frequency

𝑓cont =

√︄
𝐺 (𝑚1 + 𝑚2)

4𝜋2(𝑅1 + 𝑅2)3 , (18.10)

also plotted in Figure 18.2. For a BNS with𝑚1 = 𝑚2 = 1𝑀⊙ and 𝑅1 = 𝑅2 = 12 km,
𝑓cont ∼ 1.5 kHz. But for a NS-WD binary with an Earth-sized WD, 𝑓cont ∼ 0.2 Hz,
two orders of magnitude below the relevant frequency band.

Another possibility that prematurely ends an inspiral is disruption. The Newtonian
tidal force felt by the secondary binary component due to the primary is

𝐹21 =
𝐺𝑚1𝑚2(𝑟out − 𝑟in) (𝑟out + 𝑟in)

(𝑟out𝑟in)2 , (18.11)

where 𝑟in = 𝑟 − 𝑅2/2 and 𝑟out = 𝑟 + 𝑅2/2 correspond to the distance between the
primary and the outer and inner edge of the secondary, respectively. In the limit of
wide orbital separation, 𝑟 ≫ 𝑅2, Eq. (18.11) simplifies to

𝐹21 ≈ 2𝐺𝑚1𝑚2𝑅2

𝑟3 . (18.12)

The secondary disrupts when 𝐹21 is comparable to its gravitational binding (self-
)force

𝐹21 ≈
𝐺𝑚2

2

𝑅2
2
, (18.13)
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which occurs at

𝑟 ≈
(
2
𝑚1𝑅

3
2

𝑚2

)1/3

, (18.14)

corresponding to a Keplerian orbital frequency of

𝑓dis ≈
√︄
𝐺𝑚2(𝑚1 + 𝑚2)

8𝜋2𝑚1𝑅
3
2

. (18.15)

Therefore, (
𝑓dis
𝑓cont

)2
=
𝑚2(𝑅1 + 𝑅2)3

2𝑚1𝑅
3
2

. (18.16)

For compact objects with comparable radii and masses, 𝑓dis ≈ 2 𝑓cont and thus the
binary contacts before disruption. For a highly compact primary, for example a NS-
WD binary with 𝑅1 ≪ 𝑅2, 𝑓dis < 𝑓cont and thus the binary disrupts before contact.
In any case, for binaries involving WDs, both of these frequencies are well below
the LIGO sensitive band.

Appendix 18.B Injection Properties

In this Appendix we provide more details for the parameter estimation analysis of
Sec. 18.2.1. In Table Appendix 18.B we list the extrinsic parameters of the simulated
signals. We select the luminosity distance unique to each system by scaling it to
reach a target SNR, either 20 or 12.

For the single-event analyses, we sample the parameter posterior using
Dynesty [507] as implemented in Bilby [67, 470], with a prior that is uniform in
component detector-frame masses and aligned spin components. We adopt standard
isotropic priors for position and inclination parameters, and a luminosity distance
prior that is uniform in comoving volume [470]. The prior on the component tidal
deformabilities is uniform and ranges from Λ = 0 to Λ = 2 × 104, the maximum
value the waveform was validated on [4]. In some cases, the Λ posterior distribution
rails against this upper limit, but the simulated values for Λ are always within in the
prior bounds.

We use a multibanding likelihood [384] and analyze 512 or 256 s of data (depending
on the mass) at 8 kHz with lower and upper frequency cutoffs of 20 Hz and 3.5 kHz,
respectively. The upper cutoff is above the inherent waveform termination [4, 258].
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Parameter Label Value

Phase at 20 Hz 𝜙 0.24 rad
Right Ascension 𝛼 0.18 rad

Declination 𝛿 0.62 rad
Inclination 𝜄 2.7 rad

Polarization Angle 𝜓 0.58 rad
Merger time at geocenter 𝑡𝑐 0 sec (GPS)

Table 18.1: Values for extrinsic parameters used for simulating the data.
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Figure 18.9: Marginal posterior (in brown) for tidal parameters from the BNS signal
with (𝑚1, 𝑚2) = (1.1, 0.9) 𝑀⊙. (Left) Tidal parameters Λ̃ and 𝛿Λ̃, with the prior
plotted in grey. (Right) Component tidal deformabilties Λ1 and Λ2. In both panels,
the turquoise distribution corresponds to the posterior assuming that there is no
information about 𝛿Λ̃. We find that information about 𝛿Λ̃ is nonnegligible, though
insufficient to break the degeneracy between Λ1 and Λ2.

Appendix 18.C Impact of measurements of 𝛿Λ̃

In order to constrain the component tidal deformabilities, measurement of an addi-
tional parameter beyond Λ̃, such as 𝛿Λ̃, is required. The parameter 𝛿Λ̃ represents
the tidal contributions to the frequency-domain phase which appear at 6PN and are
not proportional to Λ̃; intuitively it is a measure of the asymmetry in the tidal contri-
butions from the two components [563]. We examine the impact of the constraints
on 𝛿Λ̃ in the tidal parameters from the (𝑚1, 𝑚2) = (1.1, 0.9) 𝑀⊙ BNS signal in
Figure 18.9. In the left panel, we present the induced prior, see Sec. 18.2.1, and the
recovered marginal posterior for Λ̃ and 𝛿Λ̃. We obtain a symmetric 90% credible
interval for Λ̃ ∈ (1804, 4131) with respect to a prior that covers 0 < Λ̃ ≲ 26000.
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In order to break the degeneracy between Λ1 and Λ2, we must measure additional
parameters. However, 𝛿Λ̃ is relatively poorly measured at current sensitivity. The
left panel of Figure 18.9 shows that, even though the 1-d marginal posterior for 𝛿Λ̃
(red) appears to be well constrained relative to the prior (gray), this is primarily
driven by Λ̃, c.f., the 2 − 𝑑 marginal posterior.

In order to investigate how information about 𝛿Λ̃ impacts the component tidal
deformabilities, we approximate an inference where no information about 𝛿Λ̃ exists.
We draw (𝑞, Λ̃) samples from the full posterior and combine them with samples
of 𝛿Λ̃ from its effective prior implied by the given (𝑞, Λ̃), subject to the condition
Λ𝑖 (𝑞, Λ̃, 𝛿Λ̃) > 0. We display the marginal distribution in the left panel panel of
Figure 18.9 (teal). We compare this to the full marginal posterior on Λ1 −Λ2 (red).
We find that while knowledge of 𝛿Λ̃ does change the distribution on Λ1–Λ2, this
information does not substantially change the correlation structure. As expected for
a well-measured parameter, this procedure leaves the Λ̃ posterior unaffected (left).
The measurement of 𝛿Λ̃ itself favors higher values of 𝛿Λ̃ (left), which correspond
to higher values of Λ2 and lower values for Λ1 (right).
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C h a p t e r 19

CONCLUSIONS

Being a part of a new field has been a particularly exciting journey for me, largely
because of the opportunity to contribute to the discovery science. I have been
fortunate to work at the forefront of gravitational wave physics, a field whose
scientific output has grown tremendously during my graduate years. Gravitational
waves are a fascinating messenger from deep space, due to their largely unfamiliar
nature and unique effects. On top of that, I have been fortunate enough to be able to
use these novel tools to study some of the most interesting objects in the universe,
so far removed from human experience: black holes and neutron stars. I have only
been able to do this thanks to extraordinary developments of instrumentation and
data analysis techniques over the past several decades that have recently brought us
into the era of gravitational wave astronomy. The field is still in its infancy, and
there are many exciting opportunities for future work.

Work in this field demands expertise across many areas. To measure source proper-
ties and link them to underlying physics, I have had to learn and refine my knowledge
of topics ranging from general relativity and astrophysics to applied mathematics
and statistics.

In this thesis, I have explored some of the topics I have focused on in graduate school,
weaving three intertwined threads: event-level inference, population constraints, and
effects of dense-matter physics.

After reviewing some of the theory behind gravitational waves, I discussed mea-
suring the properties of compact objects involved in the mergers we detect. In
Chapter 3, I provided an overview of the Bayesian parameter estimation techniques
and waveform models we employ to make the measurements. I then turned to
science results I have been contributing to during the fourth observing run, and, in
Chapter 4, presented brand new results from observations in the fourth Gravitational
Wave Transient Catalog (GWTC4), containing detailed analysis of the properties of
almost 100 compact binary mergers. Results from GWTC4 are set to be released
three months from now, in August of 2025. In Chapter 5, I presented a case study
demonstrating how neglecting subtleties in the data quality can lead to incorrect
conclusions from the analysis of a gravitational wave signal.
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With an understanding of the physical properties of each of our sources and the
sensitivity of our instruments, we can learn a lot of astrophysics and cosmology
by combining observations and studying them on a population level. I provided
an overview in Chapter 6 of population inference, particularly including the use of
hierarchical Bayesian analysis for measuring global properties from the distribution
of compact objects. In Chapter 7 and Chapter 8, I presented the astrophysical distri-
butions and population properties of binary black holes observed through GWTC3
and GWTC4, respectively. These results revealed several novel aspects of the binary
black hole population, including surprising features in the mass distribution such as
peaks in unexpected places, as well as the evolution of the merger rate across red-
shifts. These findings refine our picture of the astrophysical processes and channels
that underpin the formation and evolution of binary black hole systems.

I included a brief description of a population inference software library I have been
involved in developing in Chapter 9; these tools have been employed for obtaining
headline results in LVK collaboration studies, as well as results presented in my
own work and from many other authors. Then, in Chapter 10, I presented a study
of the spin distribution of binary black holes with relaxed prior assumptions for the
shape of the distribution. I showed the that some spin-distribution features may
arise from model misspecification or systematic biases. I then related these back to
the astrophysical conclusions we can draw. I followed this in Chapter 11 with work
on directly relating population measurements to constraints on underlying physics,
specifically applied to the pulsational pair instability mechanism relevant for high-
mass stellar progenitors of binary black hole systems. This work demonstrated how
features from underlying stellar processes manifest as signatures in the binary black
hole mass distribution, and cast serious doubt on the idea that the overdensity of
binary black holes at ∼ 30𝑀⊙ is a signature of pulsational pair instability in stellar
progenitors.

I applied population-level constraints to other questions in astrophysics, including
projections of the gravitational wave stochastic background and large-scale struc-
ture of the Universe in Chapters 12 and 13, respectively. I concluded this part in
Chapter 14 with a detailed investigation into the biases associated with the Monte
Carlo methods we use to infer population properties, and a brief presentation in
Chapter 15 evaluating potential biases from incorrect estimation of detector sensi-
tivities—crucial considerations for robust inference as the catalog grows.

Finally, I turned to both exploiting and learning properties of dense matter in
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gravitational wave observations of neutron stars. In Chapter 16, I demonstrated
the need for simultaneous inference of the nuclear equation of state and neutron
star mass distribution and presented a new technique to do so. I applied this
technique with real data, including from radio and X-ray observations of neutron
stars, in Chapter 17, obtaining constraints on the behavior of nuclear matter and the
distribution of neutron star masses, and investigating how these two properties may
be related. I demonstrated in Chapter 18 how we can use our knowledge of properties
of dense nuclear matter to determine whether the compact objects in a low-mass
merger are neutron stars or black holes. This result showed that, at reasonable
signal-to-noise ratios, we can confirm or rule out a neutron-star component in sub-
solar-mass binaries.

The future of this new, dark side of astrophysics is bright. The data currently being
collected in O4 and in the next observing run will contain numerous observations
that will dramatically increase our understanding of properties of black holes and
neutron stars. Furthermore, as the ever-expanding catalog grows, we will refine our
knowledge of astrophysical context of compact binaries, fundamental physics, and
cosmology. The methods and results in this thesis will be applied and refined by
others in the field in future generations of gravitational wave discoveries.
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