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ABSTRACT

We present experimental studies of the effects of disorder on the quantum
phase transitions of antiferromagnetic LiErF4 and of the dynamic behavior of
LiHo0.2Y0.8F4, which hosts a spin glass ground state due to the combination of
substitutional disorder and magnetic frustration. Both compounds are insulating
dipolar-coupled magnets that can be effectively treated as spin ½ systems.

Two distinct quantum phase transitions can be induced in the easy-plane anti-
ferromagnet LiErF4, applying a magnetic field in the plane or perpendicular to it.
The isotopic distribution of natural Er permits us to probe these transitions in the
clean and dirty regimes. 167Er has a natural abundance of 23% and is the only
stable isotope with a non-zero nuclear spin. At low temperatures, the nuclear spin
slaves to the electronic spin and reduces the effective field felt by the electronic spin,
thereby inducing random mass disorder in the dirty (low-temperature) regime. We
use specific heat measurements to identify the temperature scale of the crossover
between the dirty and clean regime as T=150 mK, and make ac magnetic suscep-
tibility measurements to characterize the effects of disorder on the two quantum
phase transitions. When the field is applied along the c-axis, the critical behavior is
consistent with a violation of the Harris criterion in the clean regime and a change
of universality class in the dirty regime. When the field is applied along the a-axis,
the critical behavior is unchanged by the crossover between clean and dirty regimes.

We use ac susceptibility measurements to conduct thermal memory dip experi-
ments on the spin glass state of LiHo0.2Y0.8F4 in zero magnetic field and find no
apparent rejuvenation or memory. We perform an analogous “quantum memory
dip” measurement which uses a transverse magnetic field rather than temperature to
enter the spin glass state, and we find strong rejuvenation. The relaxation rate of the
susceptibility decreases as the transverse field increases. This counterintuitive result
is attributed to an increase in the variance of the random longitudinal field associated
with increasing the transverse field and is supported by simulations. Finally, we per-
form a “negative field cycle” experiment which finds erasure of memory in the spin
glass state. We establish a theoretical framework of quantum resonant tunneling to
explain our results, rather than the conventional picture of a hierarchical free energy
landscape associated with classical spin glasses.
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C h a p t e r 1

INTRODUCTION

1.1 Classical Phase Transitions
Statistical mechanics is the study of taking an astronomically large number of

degrees of freedom and reducing them to a small set of variables that maintain
strong predictive power. Phase transitions have proven to be a particularly rich
subset of this research. Classical phase transitions occur when a high temperature
disordered state transitions to a low temperature ordered state. This phenomenon
can be understood from the basic relation of Helmholtz free energy,

𝐹 = 𝐸 − 𝑇𝑆,

which can be minimized when a system is coupled to a heat bath. Here E is the
internal energy of the system, T is temperature, and S is entropy. Ordered states have
small E and small S, while disordered states have large E and large S. As temperature
is increased, the entropy term most usually dominates over internal energy and the
disordered state becomes energetically favorable.

A deeper understanding of phase transitions is gained by the introduction of
an order parameter. This quantity is zero in the disordered state and finite in
the ordered state. The definition of the order parameter is system specific. In
general, it describes the symmetry of the disordered state that is broken upon
entering the ordered state. The phase transition between ferromagnetic (ordered)
and paramagnetic (disordered) phases provides a conceptually simple system to
demonstrate this concept. In the paramagnetic phase, spins have an equal probability
of pointing in any direction, while in the ferromagnetic phase it is energetically
favored for spins to align. The magnetization, m, is the order parameter for this
transition because it captures this loss of symmetry.

Landau found that when the system is near the critical temperature, Tc, which
separates the ordered and disordered states, an approximation of the free energy
can be made by expanding in powers of the order parameter (Landau et al., 2011).
This theory assumes that the order parameter is uniform across the whole system
and thereby ignores any order parameter fluctuations. Phase transitions where
this approximation is applicable are described as mean field. We now sketch the
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ferromagnetic-paramagnetic phase transition in the Landau framework. The free
energy expansion is given by

𝐹 = 𝑎𝑚 + 𝑏𝑚2 + 𝑐𝑚3 + 𝑑𝑚4.

Here, a, b, c, d are variables that depend on system specific parameters and tempera-
ture and magnetic field conditions. Since the free energy must be independent of the
sign of magnetization when there is no external magnetic field, we can set a=c=0.
We can also set d>0 because d<0 would cause a divergence of the free energy. We
can now solve for the order parameter by minimizing the free energy.

𝐹 = 𝑏𝑚2 + 𝑑𝑚4

0 =
𝑑𝐹

𝑑𝑚
= 2𝑏𝑚 + 4𝑑𝑚3 → 𝑚 = 0,±

√︂
−𝑏
2𝑑

As seen in Fig.1.1, for b<0, m takes a finite value and implies 𝑏 ∼ (𝑇 −𝑇𝑐). We can

Figure 1.1: Plot of the free energy vs. magnetization for T>Tc, T=Tc, and T<Tc.

now describe the magnetization in the ordered state as 𝑚 ∼ (𝑇𝑐 −𝑇)1/2. This power
law functional dependence is characteristic of a type of phase transitions in which
the order parameter smoothly goes to zero called continuous phase transitions.
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The power law behavior is due to the underlying non-analyticity in the free energy
and occurs in all physical quantities near the phase transition. Continuous phase
transitions are of fundamental interest in physics because the critical exponents
are independent of specific microscopic details of the system. Some properties
which do affect the critical exponents are symmetries, dimensionality of the system,
and dimensionality of the order parameter. When phase transitions share these
properties, they are described as belonging to the same universality class which are
defined by their unique set of critical exponents. Whether disorder is a property that
alters a universality class will be the focus of Chapter 3. The critical exponents and
their relationship to physical quantities are defined in Table 1.1.

Exponent Relation
𝛽 𝑚 ∼ |𝑇 − 𝑇𝑐 |𝛽
𝛼 𝐶 ∼ |𝑇 − 𝑇𝑐 |−𝛼
𝛾 𝜒 ∼ |𝑇 − 𝑇𝑐 |−𝛾
𝜈 𝜉 ∼ |𝑇 − 𝑇𝑐 |−𝜈
𝛿 𝑚(𝑇 = 𝑇𝑐) ∼ ℎ1/𝛿

𝜂 lim𝑥→∞𝐺𝑐 (𝑇 = 𝑇𝑐, 𝑥) ∼ 𝑥−𝑑+2−𝜂
𝑧 𝜏 ∼ 𝜉𝑧

Table 1.1: Definitions of critical exponents. Here m is the order parameter, C is
heat capacity, 𝜒 is the susceptibility of the order parameter, 𝜉 is the correlation
length, and 𝜏 is the characteristic time of order parameter fluctuations. 𝐺𝑐 (𝑇, 𝑥) =<
𝑚(𝑇, 𝑥)𝑚(𝑇, 0) > − < 𝑚(𝑇) >2 is the connected correlation function.

The correlation length is a key quantity which diverges at continuous phase
transitions. Fluctuations of the order parameter occur on all length scales less than
the correlation length. When the correlation length diverges, fluctuations occur on
all length scales and the system becomes scale-invariant. This observation justifies
the use of the mathematical machinery of renormalization group theory which
includes the effects of fluctuations and provides several scaling relations between
critical exponents.

𝛾 = 𝛽(𝛿 − 1)

𝛼 + 2𝛽 + 𝛾 = 2

𝛾 = (2 − 𝜂)𝜈

𝜈𝑑 = 2 − 𝛼
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Here the exponents are as defined in Table 1.1, and d is the dimension of the
system. These relations reduce the number of critical exponents needed to define a
universality class.

1.2 Quantum Phase Transitions
Quantum phase transitions are induced by introducing quantum fluctuations into

the system at T=0 (by contrast to thermal fluctuations at a classical phase transition).
This is accomplished by tuning an athermal parameter, g, in a Hamiltonian,

𝐻 = 𝐻1 + 𝑔𝐻2,

with the requirement that [𝐻1, 𝐻2] ≠ 0, preventing 𝐻1 and 𝐻2 from sharing a
common set of eigenstates. A finite g will induce fluctuations, and if g is sufficiently
large, these fluctuations will induce a phase transition. While a quantum phase
transition occurs at zero temperature, the effects of quantum fluctuations persist to
finite temperature. A T-g phase diagram consists of three regimes: the classical
regime where thermal fluctuations dominate, the fan of quantum criticality where
thermal and quantum fluctuations are relevant, and the quantum disordered regime
where quantum fluctuations dominate (Sondhi et al., 1997) (see Fig. 1.2).

Figure 1.2: General phase diagram of a quantum phase transition.
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1.3 Transverse Field Ising Model
Common physical parameters used to tune g include pressure, magnetic field,

and composition. We will use the example of the transverse field Ising model to
further illustrate the properties of quantum phase transitions. In this model, spins
are confined to the Ising axis (z-axis) and a magnetic field is applied along the
x-axis. Its Hamiltonian is expressed as

𝐻𝑡𝑟𝑎𝑛𝑠 =
−𝐴
2

∑︁
𝑖≠ 𝑗

𝜎𝑧
𝑖
𝜎𝑧
𝑗
− ℎ

∑︁
𝑖

𝜎𝑥𝑖 .

Here A is the exchange energy, 𝜎𝑖 are the standard Pauli matrix at site i, and h is the
magnetic field. In this model, h is an athermal tunable parameter since [𝜎𝑧

𝑖
, 𝜎𝑥

𝑖
] ≠ 0.

It is instructive to examine the two limiting cases. For h=0, the ground state will be
the standard ferromagnetic or antiferromagnetic state depending on the sign of A.
In the ferromagnetic case:

|↑⟩𝑔𝑙𝑜𝑏𝑎𝑙 =
∏
𝑖

|↑⟩𝑖 ,

where |↑⟩𝑖 is the eigenstate of𝜎𝑧
𝑖
, and |↑⟩𝑔𝑙𝑜𝑏𝑎𝑙 is the state vector of the entire system.

When ℎ >> 𝐴, the ground state will be a product state of the eigenstates of 𝜎𝑥
𝑖
,

|→⟩𝑔𝑙𝑜𝑏𝑎𝑙 =
∏
𝑖

|→⟩𝑖 =
∏
𝑖

|↑⟩𝑖 − |↓⟩𝑖√
2

.

The paramagnetic nature of |→⟩𝑔𝑙𝑜𝑏𝑎𝑙 can be seen by noting that it maintains spin-
inversion symmetry (i.e. |↑⟩𝑖 ↔ |↓⟩𝑖 does not alter the state). The quantum
paramagnetic state fundamentally differs from a classical paramagnetic state in that
it is coherently fluctuating in a superposition of states, while a classical paramagnetic
state incoherently fluctuates from coupling to a thermal bath.

When h is tuned away from these limiting cases, the spins will become non-
trivially entangled on a length scale, 𝜉 (Sachdev, 2011; Sachdev & Keimer, 2011).
Spins within a correlated volume, 𝜉𝑑 , can be renormalized and treated as an
effective spin. The ground state can be expressed as a simple product state of these
effective spins. Explicitly, this takes the form |↑⟩𝑔𝑙𝑜𝑏𝑎𝑙 =

∏
𝜉 𝑗
|↑⟩𝑒 𝑓 𝑓

𝜉 𝑗
and |→⟩𝑔𝑙𝑜𝑏𝑎𝑙 =∏

𝜉 𝑗
|→⟩𝑒 𝑓 𝑓

𝜉 𝑗
for the ferromagnetic phase and paramagnetic state, respectively. When

h is tuned such that spin-inversion symmetry is lost, a quantum phase transition
occurs. As in the case of the classical phase transition, 𝜉 will diverge at the quantum
critical point, and the entirety of the system will become non-trivially entangled. The
introduction of a finite temperature and consequently thermal fluctuations results in
the quantum critical fan shown in Fig. 1.2. This behavior can be understood by
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considering the effect of incoherence due to thermal fluctuations on the entangled
spins within 𝜉𝑑 . On short length and time scales, the behavior of spins within 𝜉𝑑 is
equivalent to spins truly at the quantum critical point. As temperature is increased
and thermal fluctuations become stronger, the entanglement is cut off at shorter
length and time scales. If this cutoff length scale is smaller than 𝜉, the whole system
will behave as if it is at the quantum critical point.

1.4 Critical Exponents of Quantum Phase Transitions
Quantum phase transitions are also categorized into university classes which

are defined by a set of critical exponents; however, the set of exponents is larger
than classical universality classes because criticality must be considered as a func-
tion of temperature and the athermal tuning parameter. The control parameter
susceptibility,𝜒𝑟 = 𝜕2 𝑓

𝜕𝑟2 , is an additional observable described by a power law rela-
tion and is analogous to the heat capacity of classical phase transitions. For example,
compressibility is the control parameter susceptibility of a pressure-induced quan-
tum phase transition. Its power law behavior is described by two exponents:

𝜒𝑟 (ℎ, 𝑇 = 0) ∼ |ℎ − ℎ𝑐 |−𝛼

𝜒𝑟 (ℎ = ℎ𝑐, 𝑇) ∼ 𝑇−𝛼𝑇 .

For a full description, see the theoretical work developed by Kirkpatrick and Belitz
(Kirkpatrick & Belitz, 2015). In this framework, there are scaling relations that are
analogous to the classical case. Unlike in classical phase transitions, the statics and
dynamics are coupled together in quantum phase transitions as a consequence of the
Heisenberg uncertainty principle. The presence of the dynamical critical exponent z
in some of the quantum scaling relations is an effect of this coupling. Two examples
of this are

𝛼 = 2 − 𝜈(𝑑 + 𝑧)

𝛼𝑇 = 2/𝜈𝑧 − 𝑑/𝑧 − 1.

1.5 Hamiltonian of LiReF4 Material System
To study magnetic systems in the real world, we must choose a material system.

In this work, we focus on the LiReF4 family of materials, where Re is a rare earth
with an electronic moment. These crystals have a scheelite structure (I41/a) (Salaün
et al., 1997). There are four rare earths sites per unit cell with a 4 symmetry. In
particular, we examine materials with rare earths of Holmium and Erbium that
have partially-filled 4f valence states and are therefore strongly localized. The spin
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states of the ions are determined by Hund’s rules and are well described by the
Russel-Saunders coupling scheme.

Rare Earth Valence S L J 𝑔𝐿

Ho 4 𝑓 10 2 6 8 1.25
Er 4 𝑓 11 3/2 6 15/2 1.2

Table 1.2: Description of the spin states of Holmium and Erbium.

The Hamiltonian of these materials is naturally more complicated than the trans-
verse field Ising model previously discussed. It’s given by

𝐻 = 𝐻𝑍 + 𝐻𝑐 𝑓 + 𝐻ℎ 𝑓 + 𝐻𝐷 .

Here 𝐻𝑍 describes the Zeeman energy, 𝐻𝑐 𝑓 describes the crystal field splitting, 𝐻ℎ 𝑓
the hyperfine interaction, and 𝐻𝐷 describes the dipolar-dipolar interaction between
spins. An exchange energy term is omitted because highly localized 4f electrons
have little orbital overlap and therefore a negligibly small exchange interaction.

The Zeeman term, which couples the electronic moment with a magnetic field,
is given by

𝐻𝑧 = −
∑︁
𝑖

𝜇𝐵 (𝐿 (𝑖) + 2𝑆(𝑖)) · 𝐻 = −
∑︁
𝑖

𝑔𝐿𝜇𝐵𝐽 (𝑖) · 𝐻,

where 𝐽 (𝑖) is the total angular momentum at the ith site, 𝜇𝐵 = 0.6717𝐾/𝑇 is the
Bohr magneton, H is an external magnetic field, and 𝑔𝐿 is the Lande g-factor. The
Lande g-factor is given by

𝑔𝐿 =
𝑆(𝑆 + 1) − 𝐿 (𝐿 + 1)

2𝐽 (𝐽 + 1) + 3/2.

The crystal field splitting is due to the effect of the electrostatic field from
neighboring ions:

𝑉𝐶𝐹 (𝑟𝑖) =
1

4𝜖0

∑︁
𝑗

𝑞 𝑗

|𝑟𝑖 − 𝑟 𝑗 |
.

This potential breaks the symmetry of the 4f electron cloud which lifts the 2J+1
degeneracy of the electronic state and induces anisotropy. In the Hamiltonian, the
potential is described using the formalism of Steven’s operators (Stevens, 1952).
The formalism expresses the potential in terms of tesseral harmonics (i.e. real
spherical harmonics) and replaces the Cartesian coordinates with the total angular
momentum spin operators (e.g. 𝑥 → 𝐽𝑥):

𝐻𝑐 𝑓 =
∑︁
𝑖

∑︁
𝑙𝑚

𝐵𝑚𝑙 𝑂
𝑚
𝑙 (𝐽 (𝑖)).
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Here 𝑂𝑚
𝑙

is the spherical harmonic term and 𝐵𝑚
𝑙

is its energy coefficient. 𝐵𝑚
𝑙

is
determined experimentally by inelastic neutron scattering and bulk magnetization
measurements. These parameters are listed for Ho and Er in Table 1.3. The largest
term for both materials is 𝐵0

2 and equals −57.9𝜇eV and 58.1𝜇eV for LiHoF4 and
LiErF4, respectively. Its significance can be seen by considering𝑂0

2 = 3𝐽2
𝑧 −𝐽 (𝐽+1).

The difference in sign of 𝐵0
2 results in 𝐽𝑧 = 𝐽 to be energetically favorable for Ho and

𝐽𝑧 = 0 to be favorable for Er. Accordingly, LiHoF4 is an Ising magnet and LiErF4

is an easy plane magnet. Exact diagonalization of 𝐻𝑐 𝑓 for a single ion using the
parameters listed in Table 1.3 shows that both materials have a ground state doublet
and that the first excited state is separated from the ground state by 11 K and 26 K
for Ho and Er, respectively (see Fig. 1.3). This provides an energy scale in which
the materials can be treated as an Ising and easy plane magnet.

LiHoF4 LiErF4
𝐵0

2 57.9 58.1
𝐵0

4 0.309 0.536
𝐵4

4(𝑐) 3.51 5.53
𝐵0

6 0.540e-3 0.00625e-3
𝐵4

6(𝑐) 63.1e-3 106 e-3
|𝐵4

6(𝑠) | 17.1e-3 23.8e-3

Table 1.3: Crystal field parameters of LiHoF4 and LiErF4 taken from (Babkevich
et al., 2015) in units of 𝜇eV. All original calculations in this work use these crystal
field parameters.

The hyperfine term is only relevant for isotopes with a finite nuclear moment. Ho
has one stable isotope, Ho-163. It has a nuclear spin of I=7/2. Erbium has several
stable isotopes; however, Er-167 is the only stable isotope with a finite nuclear
moment of I=7/2. This isotope has a natural abundance of 23%. The hyperfine
coupling is given by

𝐻ℎ 𝑓 = 𝐴ℎ 𝑓

∑︁
𝑖

𝐽 (𝑖) · 𝐼 (𝑖).

The hyperfine coupling is antiferromagnetic for both systems. The coupling strength
is 40 mK (Magariño et al., 1980) and 6 mK (Sattler & Nemarich, 1971) for Ho and
Er, respectively. At low temperatures, the hybridization of electronic and nuclear
states becomes significant, and the ground state doublet should be thought of as a
manifold of 16 electronuclear states.

Finally, we consider the dipole-dipole interaction which takes the standard form
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of
𝐻𝐷 = −𝐽𝐷

2

∑︁
𝑖≠ 𝑗

𝐷
𝜇𝜈

𝑖 𝑗
𝐽𝜇 (𝑖)𝐽𝜈 ( 𝑗).

Here 𝐽𝐷 =
𝜇0
4𝜋 (𝑔𝐿𝜇𝐵)

2, and 𝐷𝜇𝜈

𝑖 𝑗
=

3(𝑟𝜇
𝑖
−𝑟𝜇

𝑗
) (𝑟𝜈

𝑖
−𝑟𝜈

𝑗
)−|𝑟𝑖−𝑟 𝑗 |2𝛿𝜇𝜈

|𝑟𝑖−𝑟 𝑗 |5
. Dipolar-dipolar cou-

pling is a long-range interaction which falls off as 1/𝑟3 .

Figure 1.3: (left, middle) Calculation of the lowest three eigenstates of a single
ion of Ho and Er in a magnetic and crystal field. (right) The splitting between the
ground state and first excited state which determines the strength of the quantum
fluctuations in the system.

1.6 6 Low Energy Effective Hamiltonian
Now that we have fully characterized the Hamiltonian of the LiReF4 materials, we

can map it to a low energy effective model . This process maps the subspace of the
ground state electronic doublet onto the transverse field Ising model (Chakraborty et
al., 2004). Later extensions were also developed to fully include the electronuclear
levels (McKenzie & Stamp, 2018). We now sketch this process for the simpler
purely electronic case. For a single ion with no hyperfine coupling the Hamiltonian
is given by

𝐻singleion = 𝐻𝑍 + 𝐻𝑐 𝑓 .

This matrix is constructed using the (2J+1)x(2J+1) matrices of the spin operators 𝐽𝑥 ,
𝐽𝑦, and 𝐽𝑧. The lowest three eigenstates are shown in Fig. 1.3 as a function of field.
The effect of including the Zeeman term is to mix the excited states into the ground
state doublet of 𝐻𝑐 𝑓 and thereby induce quantum fluctuations. We can immediately
write down an effective Hamiltonian using the subspace spanned by the two lowest
lying eigenstates. If we define these eigenstates as |←⟩ and |→⟩, the Hamiltonian
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takes the form
𝐻𝑒 𝑓 𝑓 = 𝐸𝐶𝑂𝑀 (𝐻) −

1
2
Δ(𝐻)𝜎𝑥 .

Here 𝐸𝐶𝑂𝑀 (𝐻) = 1/2(𝐸1(𝐻) + 𝐸2(𝐻)), Δ(𝐻) = 𝐸2(𝐻) − 𝐸1(𝐻), and 𝐸1(𝐻) and
𝐸2(𝐻) are the energy of the two lowest lying states at given field. A key difference
between the two materials is the functional dependence of Δ(𝐻). At low fields,
Δ increases quadratically in LiHoF4 and linearly for LiErF4. This difference is an
effect of the ground state of Ho and Er being non-Kramers and Kramers doublets,
respectively (Wendl et al., 2022).

We now cast the dipole-dipole term into this low energy subspace. This is accom-
plished by projecting the spin operators into the subspace, and then substituting these
effective operators into the original dipole-dipole term. First, the unitary transfor-
mation used to diagonalize the single ion Hamiltonian 𝐻𝑠𝑖𝑛𝑔𝑙𝑒𝑖𝑜𝑛 = 𝑈1𝐻𝑠𝑖𝑛𝑔𝑙𝑒𝑖𝑜𝑛𝑈

†
1

is applied to the spin operators 𝐽𝜇 = 𝑈1𝐽
𝜇𝑈
†
1 . These matrices are truncated to a 2x2

subspace, 𝐽𝜇𝑡𝑟𝑢𝑛𝑐, which only includes the two lowest eigenstates. A final rotation
is applied to the truncated operators to diagonalize 𝐽𝑧

𝑓 𝑖𝑛𝑎𝑙
= 𝑈2𝐽

𝑧
𝑡𝑟𝑢𝑛𝑐𝑈

†
2 for LiHoF4

and to diagonalize 𝐽𝑥𝑡𝑟𝑢𝑛𝑐 for LiErF4. It is standard to express these spin operators in
terms of Pauli matrices,

𝐽
𝜇

𝑓 𝑖𝑛𝑎𝑙
= 𝐶𝜇 +

∑︁
𝜈=𝑥,𝑦,𝑧

𝐶𝜇𝜈 (𝐵)𝜎𝜈 .

When these effective operators are substituted into the dipole-dipole term, a good
approximation is found as

𝐻
𝑒 𝑓 𝑓

𝐷
= −𝐽𝐷

2

∑︁
𝑖≠ 𝑗

𝐶𝜇𝜇𝐶𝜈𝜈𝐷
𝜇𝜈

𝑖 𝑗
𝜎𝜇 (𝑖)𝜎𝜈 ( 𝑗).

For the Ising case, this approximation can be further simplified by ignoring the
off-diagonal dipole terms (Chakraborty et al., 2004),

𝐻
𝑒 𝑓 𝑓

𝐷
= −

𝐽𝐷𝐶
2
𝑧𝑧

2

∑︁
𝑖≠ 𝑗

𝐷𝑧𝑧
𝑖 𝑗
𝜎𝑧 (𝑖)𝜎𝑧 ( 𝑗).

The effect of transitioning to this low-energy subspace is to renormalize the elec-
tronic moment and is typically captured by defining an effective g-factor, 𝑔| | =
2𝑔𝐿𝐶𝑧𝑧 and 𝑔 = 𝑔⊥ = 2𝑔𝐿𝐶𝑥𝑥 for LiHoF4 and LiErF4, respectively.

1.7 Phase Diagrams of LiHoF4 and LiErF4

With the full effective electronic Hamiltonian defined, we can now examine the
ordered state of the two materials. While the crystal field term determines the
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anisotropy of the system, it does not define the orientation of the spins within the
Ising axis or easy plane. The symmetry of the ordered state is established by the
dipole-dipole interaction. Since the sign of the coupling is dependent on the relative
orientation of the dipoles and its magnitude on the spacing, the ordering can be non-
trivial. In the case of LiHoF4, the ordered state is an Ising ferromagnet. However,
the ordered state of LiErF4 has a more complex structure, as shown in Fig. 1.4.
When the spins are confined in the a-b plane, ferromagnetic and antiferromagnetic
components of the dipole-dipole interaction are relevant. The ordered state has a
bilayered antiferromagnetic structure which is composed of planes of ferromagnetic
spins that alternate in sign along the c-axis. As seen in Fig. 1.5, the transition

Figure 1.4: Spin structures of the ordered states of LiHoF4 and LiErF4. The black
spheres represent the rare earth ions, and the arrows represent the electronic moment.

temperature is about four times larger for LiHoF4 thanLiErF4. The critical field of
LiHoF4 is larger than LiErF4 by over a factor of 10. This result is in line with the
much stronger field dependence of Δ in LiErF4 seen in Fig. 3.

A key feature in the phase diagram of LiHoF4 is the change in curvature occurring
at ∼ 800mK. Mean field calculations of the phase diagram using only the electronic
degrees of freedom agree with the experimental phase diagram nicely above this
temperature and then underestimate the critical field. Calculations which also
include the nuclear degrees of freedom find agreement for all temperatures. This is
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Figure 1.5: Temperature-field phase diagram of LiHoF4 and LiErF4. Plots are
produced following references (Bitko et al., 1996) and (Kraemer et al., 2012)

a result of the hyperfine coupling reducing the effective field felt by the electronic
spins. The effect of hyperfine coupling on LiErF4 is more subtle and will be the
focus of Chapter 3.

1.8 Spin Glass State in LiHoxY1−xF4

Composition is another knob that can tune the Hamiltonian of the LiReF4 material
family. Y is an ideal element for substitution with Re because its ionic radius is
approximately equal to Ho and Er (Salaün et al., 1997). Therefore, it does not affect
the material symmetry and has negligible effect on its lattice constants. Y has no
electronic moment. The primary effect of its substitution is to increase the average
distance between Re ions, which reduces the average strength of the dipole-dipole
interaction. This behavior can be written more quantitatively as < 𝐷

𝜇𝜈

𝑖 𝑗
>∼ 𝑥,

where x is the concentration of Re in LiRexY1−xF4. The linear dependence on
concentration is due to the dimensionality of the material and the scaling of dipole-
dipole interaction, 𝐷𝜇𝜈

𝑖 𝑗
∼ 1/𝑟3. Substitution will also introduce disorder into the

system that causes random longitudinal and transverse magnetic fields. These fields
are produced by the dipolar interaction. In a pure sample in which all the spins are
aligned, dipolar transverse fields are zero at a given site due to cancellation from
all neighboring spins. When a neighboring spin is missing, this cancelation will be
imperfect. This is sketched in Fig. 1.6.

In this work, we will only focus on the substitution of Y into LiHoF4. A phase
diagram of T-x is shown in Fig. 1.7. As x decreases from 1, the Tc decreases
linearly in x. This follows from 𝑇𝑐 ∼< 𝐷

𝜇𝜈

𝑖 𝑗
>∼ 𝑥. Below 𝑥 ∼ 0.25, the ground
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Figure 1.6: Diagram of ferromagnetically ordered electronic spins (red arrows) and
their dipolar fields (blue arrows) acting on a central spin. (left) Pure sample where
transverse dipolar fields cancel. (right) Sample with Y substitution (black sphere)
where cancelation is incomplete.

state transitions from ferromagnetic state to a spin glass state. In spin glasses, large
amounts of disorder and frustration result in a complex free energy landscape with
many deep local minima. This limits the accessible phase space, and the system
becomes non-ergodic. Accordingly, relaxation occurs on very long time scales.
The spins within the spin glass state are frozen into a random orientation. This
naturally raises the question of what order parameter is capable of distinguishing a
paramagnetic and spin glass state. The frozen behavior can be captured by taking
a time average of a spin state over some time, t, which is long on a microscopic
scale. Then < 𝑆𝑖 >𝑡 , which describes a single spin averaged over this time,
will be non-zero in the glass state and average to zero in the paramagnetic state.
The Edwards-Anderson order parameter is most commonly used to describe the
spin glass state. It takes a thermal ensemble rather than a time average; however,
it essentially captures the same physics being a higher-order correlation function
(Mydosh, 1993). It additionally averages over different realizations of the disorder.
In our system, this would be an average over different configurations of Ho and Y.
The order parameter is expressed as

𝑞𝐸𝐴 =<< 𝑆𝑖 >
2
𝑇>𝑐 .

Here <>𝑇 indicates a thermal average and <>𝑐 indicates a configuration average.
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Figure 1.7: T-x phase diagram of LiHoxY1−xF4 taken from (Ancona-Torres et al.,
2008) Substitution of Y for Ho reduces the critical temperature of the ferromagnetic
state. At x<0.25, the ground state transitions to a spin glass phase.

Finally, we can consider the effect of applying an external transverse field to the
spin glass state. As is in the case of the pure sample, the transverse field introduces
quantum fluctuations which suppress the ordered state. The applied transverse field
acts in combination with intrinsic random transverse fields. The T-H phase diagram
for LiHo0.2Y0.8F4 and LiHo0.17Y0.83F4 are shown in Fig. 1.8. Since the glass
temperature, 𝑇𝑔, of LiHo0.2Y0.8F4 is greater than LiHo0.17Y0.83F4 at zero field, we
would naively expect it to have a larger critical field as well. However, its critical
field is smaller by a factor of two. This implies that the random transverse fields in
LiHo0.2Y0.8F4 are significantly larger. The difference in magnitude of the random
transverse field is due to the greater disorder strength present in LiHo0.17Y0.83F4.
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Figure 1.8: T-H phase diagram for x= 0.167 and x=0.2 taken from (Ancona-Torres
et al., 2008) The transverse field suppresses the ordering temperature of the spin
glass for both concentrations.

1.9 Thesis Outline
In this chapter, I have outlined the general concept of classical phase transitions

and quantum phase transitions and used the transverse field Ising model as an
example to illustrate these concepts. I’ve described the LiReF4 material system, its
full Hamiltonian in a magnetic field for Re= Ho and Er, and how it can be mapped to
a low energy effective Hamiltonian. Finally, I’ve described the effect of introducing
disorder by substituting Re with nonmagnetic Y.

In Chapter 2, I describe theoretical and experimental details of heat capacity and
a.c. magnetic susceptibility measurements, which are the two experimental probes
used in this work.
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In Chapter 3, I discuss the significance of hyperfine coupling on the field-induced
quantum phase transitions of LiErF4 with a natural abundance of isotopes. A natural
abundance of Er has a nuclear moment on 23% of atoms which acts as a source of
disorder in the system. I use heat capacity measurements to establish the temperature
scale of hybridization between the electronic and nuclear states. I use a.c. magnetic
susceptibility measurements to identity a change in the universality class of the
quantum phase transition produced by applying a field parallel to the c-axis. The
change in universality class corresponds to the temperature scale of electronuclear
hybridization, strongly implying disorder as the cause of the change. I also examine
the quantum phase transition produced by applying a field along the a-axis and find
no evidence of a change in universality class.

In Chapter 4, I use a.c. susceptibility to measure magnetic relaxation in
LiHo0.2Y0.8F4. as a function of temperature and transverse magnetic field. I
adapt standard experimental protocols used to study classical glasses for quantum
spin glasses and discuss their results within a theoretical framework of quantum
resonant tunneling rather than a complex free energy landscape picture.

In Chapter 5, I summarize the main conclusions drawn from my work and suggest
directions for future work.
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C h a p t e r 2

EXPERIMENTAL METHODS

Magnetic susceptibility and heat capacity are fundamental measurements used
to characterize magnetic systems. They are most commonly used for the basic task
of identifying phase transitions; however, both methods can give deeper insights
into magnetic systems. The dynamics of the system can be probed with magnetic
susceptibility, and heat capacity illuminates the microscopic degrees of freedom of
the system. Furthermore, the power law behavior of both quantities is essential in
the identification of system’s universality class.

2.1 Magnetic Susceptibility
Theory

Magnetic susceptibility is defined as

𝜒 =
𝜕𝑀

𝜕𝐻
.

Experimentally, susceptibility is measured by applying a finite magnetic field to the
sample and measuring its magnetic response. This can be achieved by applying
a constant field (d.c.) or a time varying probe field (a.c.). A d.c. measurement
generally measures the static response of the system; however, if the system has
very slow dynamics (10−4 Hz to 1 Hz), the dynamics can be captured by quickly
removing or applying a field and observing the time dependence of the magnetic
relaxation (Topping & Blundell, 2018).

In the low frequency limit, the a.c. measurement also probes the static response
of the sample. However, when the relaxation rate of the magnetic system is near
the a.c. frequency, the dynamics of the system begin to be probed. The magnetic
response of the sample may lag behind the probe field and the susceptibility will
gain an out-of-phase dissipative component.

𝜒 = 𝜒′ + 𝑖𝜒′′,

where 𝜒′ is the in phase component and 𝜒′′ the out-of-phase component. This
technique can be employed reliably over a frequency range of 10−1 Hz to 104 Hz.
To study relaxation over longer time scales, a finite d.c. field can be quickly applied,
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and the relaxation process can be monitored through the time-dependent behavior
of the a.c. susceptibility (Vincent, 2007).

Implementation
We employ a gradiometer technique to make a.c. susceptibility measurements

in this work. The sample is placed in two concentric solenoids. An a.c. current is
applied to the drive coil, the outer solenoid, to induce a magnetic response from the
sample. The alternating drive field causes a time varying magnetic flux across the
pick-up coil, the inner solenoid (see Fig. 2.1).

Figure 2.1: (left) pick-up coil form wrapped with 1000 turns of copper wire (∼
10 layers) with a 0.0003" diameter. Drive coil form wrapped with 630 turns of
superconducting wire (∼ 2 layers) with a 0.004" diameter. (right) Copper mount for
sample and reference coil sets.

The pick-up and drive coil forms were machined out of PEEK (polyetheretherke-
tone). An insulating material is chosen to limit eddy current from the a.c. magnetic
field. Furthermore, it has a similar thermal expansion coefficient to the LiReF4 fam-
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ily of materials, which reduces the chance of fracturing the sample when cooling.
The length of the drive coils was ∼ 3 times the length of the pick-up to ensure a
uniform a.c. field across the sample. The pick-up coil forms were wrapped with
oxygen-free high thermal conductivity copper because it remains nonmagnetic at
sub-Kelvin temperatures. The drive coils were wrapped with superconducting wire
to eliminate resistive heating.

The flux across the pick-up coil is given by

Φ = 𝑁𝐴(𝐻𝐴𝐶 + 4𝜋𝑀),

where Φ is the flux, M is the magnetization of the sample, N is the number of turns
of the pick-up coil, A is the area of the pick-up coil, and 𝐻𝐴𝐶 is the drive field.
Accordingly, the voltage response across the pick-up coil is given by

Δ𝑉 = −𝑑Φ
𝑑𝑡

= −𝑁𝐴( 𝑑𝐻𝐴𝐶

𝑑𝑡
+4𝜋 𝑑𝑀

𝑑𝑡
) = −𝑁𝐴𝑑𝐻𝐴𝐶

𝑑𝑡
(1+4𝜋 𝜕𝑀

𝜕𝐻
) = −𝑖𝜔𝑁𝐴𝐻𝐴𝐶 (1+4𝜋𝜒).

In principle, a single pick-up and drive coil are all that are necessary to measure
susceptibility; however, it is often the case that 4𝜋𝜒 << 1. Considerable improve-
ment to signal to noise is gained by using an identical pair of drive and pick-up coils
with no sample as a reference. When a differential measurement is taken across the
sample and reference pick-up coils, only the sample response remains.

Δ𝑉𝑠𝑎𝑚𝑝𝑙𝑒 − Δ𝑉𝑟𝑒 𝑓 = −𝑖𝜔𝑁𝐴𝐻𝐴𝐶 (1 + 4𝜋𝜒) − −𝑖𝜔𝑁𝐴𝐻𝐴𝐶 = −𝑖𝜔𝑁𝐴𝐻𝐴𝐶4𝜋𝜒.

Furthermore, an additional measurement across only the reference pick-up coil can
be made to eliminate all prefactors to the susceptibility.

Δ𝑉𝑠𝑎𝑚𝑝𝑙𝑒 − Δ𝑉𝑟𝑒 𝑓
Δ𝑉𝑟𝑒 𝑓

= 4𝜋𝜒.

A circuit diagram demonstrating our implementation of this technique can be
seen in Fig. 2.2. An alternating voltage source from a lockin amplifier is used as
a current source to drive the coils. A limiting resistor at room temperature, with
𝑅𝑙𝑖𝑚 >> 𝑅𝑑𝑟𝑖𝑣𝑒, ensures that temperature variation in the resistance of the wires
in a cryogenic environment does not strongly alter the magnitude of the current.
A voltage measurement is also taken across a shunt resistor to monitor the current
supplied to the drive coils. Sample and reference coils are wired antiparallel to each
other to cancel each other. The differential signal across both coils and the signal
from the reference coil are run through SR560 preamplifiers before a measurement
is made with SR830 lockin amplifiers.
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Figure 2.2: Circuit diagram used to measure the sample’s a.c. susceptibility.

2.2 Heat Capacity
Theory

Heat capacity is a measurement that is conceptually easy to understand, and
experimentally difficult to perform. It is simply the amount of heat, Q, required to
cause a unit change in temperature.

𝐶 =
𝑑𝑄

𝑑𝑇

It can be expressed equivalently in terms of entropy via the first law of thermody-
namics, 𝑑𝑄 = 𝑑𝐸 + 𝑝𝑑𝑉 .

𝐶𝑣 =
𝑑𝐸

𝑑𝑇
=
𝜕𝐸

𝜕𝑆

𝜕𝑆

𝜕𝑇
= 𝑇

𝜕𝑆

𝜕𝑇

Then a measurement of C as a function of temperature can be used to extract a
change in entropy.

Δ𝑆 =

∫ 𝑇2

𝑇1

𝜕𝑆

𝜕𝑇
𝑑𝑇 =

∫ 𝑇2

𝑇1

𝐶𝑣

𝑇
𝑑𝑇

This relation makes heat capacity a powerful probe to investigate microscopic
degrees of freedom of a system. In practice, it can be difficult to distinguish entropic
contributions from all of the degrees of freedom present in a real material. For
experimental work at sub-Kelvin temperatures, effects from phonons, and crystal
field splitting have typically frozen out, and we are left with only contributions
from electronic and nuclear degrees of freedom. We need to model the nuclear
contribution to isolate the electronic contribution. The nuclear spins obey a Schottky
relation. For a two-level system with energy gap, Δ, and N spins, this relation can
be easily derived.

𝐸𝑡𝑤𝑜−𝑙𝑒𝑣𝑒𝑙 = 𝑁
Δ𝑒−𝛽Δ

1 + 𝑒−𝛽Δ
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𝐶𝑡𝑤𝑜−𝑙𝑒𝑣𝑒𝑙 =
𝑑𝐸𝑡𝑤𝑜−𝑙𝑒𝑣𝑒𝑙

𝑑𝑇
=

𝑁

𝑘𝐵𝑇
2

Δ2𝑒−Δ/𝑘𝐵𝑇

(1 + 𝑒−Δ/𝑘𝐵𝑇 )2

Figure 2.3: (top) Occupation probability of the ground state and excited state of a
two-level system as a function of temperature. (bottom) Heat capacity for a two-level
system which peaks as the occupation of the ground state begins to saturate.

The Schottky relation can be generalized to an n-level system that corresponds
to the nuclear spin present in any system of interest. Independent of n, for 𝑇 >> Δ,
this relation simplifies to 𝐶 ∼ 1/𝑇2 (Phillips, 1971).

We subtract the nuclear contribution from the total heat capacity to isolate the
electronic contribution. This is the quantity of interest for investigating magnetic
ordering in our systems. The exact functional dependence of the electronic con-
tribution within the ordered state is non-trivial to calculate; however, for a second
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order phase transition, the electronic heat capacity will obey a power law near the
transition.

Implementation
A standard experimental procedure to measure heat capacity of a material is to

start with a sample at a well-defined temperature, use a heater to apply a heat pulse,
and measure the sample’s temperature response with a thermometer. To extract the
heat capacity from the temperature dependence of the sample, a thermal model must
be assumed for how the heater and sample are coupled to the sample and how the
sample is coupled to the thermal bath. Couplings are chosen such that the simplest
possible thermal model is valid. In practice, this means the sample and heater are
strongly coupled to the sample, and the sample is weakly coupled to the bath. We
use a commercial calorimeter system produced by Quantum Design to achieve these
requirements (see Fig.2.4 ). The fridge is thermally linked to a sample platform with
a heater and thermometer deposited on it by their wires. The sample is coupled to
this platform by N-Apzieon grease. We ensure this coupling is strong by measuring
a sample that is as thin as possible ∼ 20 𝜇. A thin sample (∼ tens of microns) also
helps limit the time constant of the response at low temperatures, which can grow
rapidly in the milliKelvin regime.

Figure 2.4: Diagram of Quantum Design calorimeter. The sapphire platform has a
heater and thermometer on the bottom. The wires of the heater and thermometer are
used to hold the platform in free space. The sample environment is held at vacuum
to ensure that these wires are the only link to the thermal bath.

The simplest possible model treats the sample and platform as a lump sum (see
Fig. 2.5). In this case, the sample response is governed by the equation
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𝐶𝑡𝑜𝑡𝑎𝑙
𝑑𝑇

𝑑𝑡
= −𝐾𝑤 (𝑇 (𝑡) − 𝑇𝑏) + 𝑃(𝑡),

where 𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑠𝑎𝑚𝑝𝑙𝑒 +𝐶𝑝𝑙𝑎𝑡 𝑓 𝑜𝑟𝑚, 𝐾𝑤 is the thermal conductance of the heater and
thermometer wires, T is the platform and sample temperature, 𝑇𝑏 is the constant
temperature of the bath, and 𝑃(𝑡) is the power of the heat pulse. The solution to this
differential equation is a simple exponential.

𝑇 (𝑡) = Δ𝑇𝑒𝑥𝑝(−(𝐾𝑤/𝐶𝑡𝑜𝑡𝑎𝑙)𝑡) + 𝑇𝑏,

where Δ𝑇 is the difference between the max temperature during the pulse and 𝑇𝑏.
When the coupling between the sample and platform is weaker, a more complicated
model must be used (see Fig. 2.5).

Figure 2.5: Schematic of two thermal models to describe a calorimeter. The simple
model assumes the temperature of the platform and sample are equal, while the
two-tau model considers the effect of a thermal resistance between the sample and
platform.

𝐶𝑝𝑙𝑎𝑡 𝑓 𝑜𝑟𝑚
𝑑𝑇𝑝

𝑑𝑡
= 𝑃(𝑡) − 𝐾𝑤 (𝑇𝑝 (𝑡) − 𝑇𝑏) + 𝐾𝑔 (𝑇𝑠 (𝑡) − 𝑇𝑝 (𝑡))

𝐶𝑠𝑎𝑚𝑝𝑙𝑒
𝑑𝑇𝑠

𝑑𝑡
= −𝐾𝑔 (𝑇𝑠 (𝑡) − 𝑇𝑝 (𝑡)),

where 𝐾𝑔 is the thermal conductance of the grease, 𝑇𝑝 is the platform temperature,
and 𝑇𝑠 the sample temperature. The solution to these equations is a sum of two



24

exponentials that reduces to the simple model in the limit 𝐾𝑔 >> 𝐾𝑤 (Hwang et al.,
1997).

Both of these models assume that the heat capacity is constant over the temper-
ature change induced by the heat pulse. This is a problem near phase transitions,
where heat capacity varies rapidly with temperature. Alternatively, we can assume
that the heat capacity of the simple model varies with temperature and find

𝐶𝑡𝑜𝑡𝑎𝑙 (𝑇) =
−𝐾𝑤 (𝑇) (𝑇 − 𝑇𝑏) + 𝑃(𝑇)

𝑑𝑇
𝑑𝑡

.

This relation is especially useful for studying power law behavior because data
points need to be taken at high density near the transition.
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C h a p t e r 3

EXPERIMENTAL CONSEQUENCES OF DISORDER AT AN
ANTIFERROMAGNETIC QUANTUM PHASE TRANSITION

3.1 Introduction
The introduction of disorder can have many effects on a classical phase transition

(Vojta, 2019), including altering the universality class of a continuous transition
(Pelissetto & Vicari, 2000), converting a transition from first to second order (Sang
et al., 2014), and even changing the ground state of the system (Alba et al., 1982).
Quantum phase transitions (QPT)s are expected to be affected more profoundly by
disorder, with consequences for both the static and dynamical behavior (Bao et al.,
1998; Jaramillo et al., 2010). When a d-dimensional quantum system is mapped to
a (d+z) dimensional classical system, where z is the dynamical critical exponent,
quenched disorder becomes correlated in the imaginary time dimension. However,
systematic approaches to characterizing this hypersensitivity to disorder at a QPT
pose distinct theoretical and experimental challenges.

Varying the importance of disorder typically entails studying a sequence of
separate samples with a range of disorder, which can be difficult to synthesize
controllably. Here, we adopt an alternate approach by investigating an erbium-based
quantum magnet with quenched disorder provided by isotopic variation. Er-167, at
23% natural abundance, is the only stable isotope with non-zero nuclear spin. The
energy scale of the hyperfine coupling makes it possible to vary the influence of the
quenched disorder simply by changing the temperature.

LiErF4 is an insulating tetragonal crystal with four erbium ions per unit cell (Fig.
3.1 left). Erbium’s 4f electrons (J=15/2) provide large localized moments that are
dipolar-coupled. The electronic ground state of an erbium ion is a Kramers doublet
with a 26 K energy gap to its first excited state. This subspace can be treated as an
effective spin- ½ system. The crystal field induces strong easy plane anisotropy with
(𝑔⊥/𝑔| |)2 = 13.8. In-plane anisotropy, originating from order by disorder, causes
the moments to point along the a or b-axis (Kraemer et al., 2012). These symmetries
correspond to the 𝑋𝑌/ℎ4 universality class.

LiErF4 orders antiferromagnetically (Beauvillain et al., 1977) with a bilayer
structure at 𝑇𝑁 = 373(5) mK (Kraemer et al., 2012). The observed 𝑇𝑁 is approxi-
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Figure 3.1: (left) Body-centered tetragonal unit cell of LiErF4. Lattice constants are
a = 5.162 Å, c=10.70 Å. Er sites are represented as black spheres; Li and F sites are
not shown. Arrows represent the double layer antiferromagnetic spin structure of the
ordered state. (right) The data points mark the measured phase diagram as a function
of temperature and c-axis magnetic field, obtained by sweeping temperature (open
circles) and field (filled circles). Imagemap shows the susceptibility data from Fig.
3.3.

mately half of mean-field predictions, and its critical exponents have been reported
as 𝛽 = 0.15(2) and 𝛼 = −0.28(4). These exponents are consistent with a 2D
quasi-Ising description where the exponents lie in a universal window bounded by
the exponents of the 2D Ising (𝛽 = 0.125) and XY (𝛽 = 0.23) models. The strength
of the in-plane anisotropy tunes between these bounds (Taroni et al., 2008). This re-
duction in dimensionality is surprising for a material whose 2D nature is not evident
from its structure; however, it has been observed in similar materials (Babkevich
et al., 2016).

3.2 Quantum Phase Transition with H||c
A QPT is induced by applying a magnetic field of order 4 kOe along the c-axis

(Fig. 3.1 right). 𝛽𝐻 = 0.31(2) was reported for this QPT which is near the values of
both the 3D Ising (𝛽𝐻 = 0.3265(3)) and XY (𝛽𝐻 = 0.349(2)) models. This agrees
with a d+1 mapping from the classical phase transition. Mean field calculations
of the critical field are sensitive to which crystal field parameters are used; values
ranging from 5.75 kOe (Kraemer et al., 2012) to 9.5 kOe (Babkevich et al., 2016)
have been reported. However, all calculations overestimate the experimentally
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observed critical field, 𝐻𝑐, and along with the dimensional reduction and the non-
mean field critical exponents, point to the role of spin fluctuations at the transition.

For erbium sites occupied by Er-167 atoms, the nuclear moment (I=7/2) couples
antiferromagnetically to the electronic moment with strength 𝐴ℎ 𝑓 =6 mK (Sattler &
Nemarich, 1971). This coupling splits the Kramers doublet into a multiplet. At
the level of a single ion calculation, these states have a span of 160 mK (see Fig.
3.2). In LiHoF4, an Ising ferromagnet within the same family of materials, the
hyperfine coupling slaves the nuclear spins to the electronic spins at sufficiently low
temperature, increasing the critical field (Bitko et al., 1996) and allowing a new class
of low energy, electronuclear excitations (Libersky et al., 2021), but does not alter
its universality class (McKenzie & Stamp, 2018). The increase in 𝐻𝑐 is a general
effect due to a reduction in effective field felt by the electronic spins (Chakraborty
et al., 2004). Since Ho has only one stable isotope, no disorder is introduced by the
nuclear moment.

Mean field calculations on LiErF4 that include nuclear moments on 23% of sites
find a similar increase in Hc of ∼ 500 Oe (Babkevich et al., 2015; Kraemer et al.,
2012). The choice of crystal field parameters does not strongly impact the change in
𝐻𝑐. Since the nuclear spin locks with the electronic spin, the local 𝑋𝑌/ℎ4 symmetry
of the system is unbroken by the disorder and belongs to the category of random-
mass (also referred to as random-𝑇𝑐) disorder (Vojta, 2019). Random field disorder
is a stronger form of disorder which breaks the local symmetry. Previous work on
LiErF4 examined the effect of random-field disorder by substituting Er with Ho and
found a reentrant glassy state with 6% substitution (Piatek et al., 2013).

3.3 Results
We plot in Fig. 3.3 field sweeps of the ac magnetic susceptibility in the lin-

ear and zero-frequency limits along the c-axis on a needle crystal with dimensions
(0.35x0.35x1.65mm3) at a series of temperatures. Susceptibility measurements
were made using a commercial susceptometer (PPMS DR, Quantum Design). Mea-
surements were taken in the linear regime with a drive field of 0.5 Oe and with
frequencies of 1 kHz (power law fits) and 10 kHz (phase diagram). No variation in
𝐻𝑐 was observed between these frequencies. We note that our reported critical field,
𝐻𝑐 (𝑇 = 0) = 3645(6) Oe, is 10% lower than a reported value of 𝐻𝑐 (𝑇 = 0) = 4000
Oe (Kraemer et al., 2012). We attribute this discrepancy to demagnetization effects
(see material quality/geometry section). At temperatures above 150 mK (Fig. 3.3
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Figure 3.2: Single ion calculation of the energy levels of the lowest lying multiplet
of erbium-167 in zero field. Energies are calculated by an exact diagonalization
of all 128 states. The lowest and highest electronuclear levels are single states
(blue); all other states are doubly degenerate (red). Experimental parameters used
in the calculation for the crystal field and hyperfine coupling are taken from Ref.
(Babkevich et al., 2015) and Ref. (Sattler & Nemarich, 1971), respectively.

top), we observe steadily increasing critical divergence as the temperature drops,
corresponding to the diminishing strength of thermal fluctuations. Below 150 mK
(Fig. 3.3 middle), the opposite trend is observed: the sharpness of the transition
is reduced continuously as the temperature decreases. This evolution in the shape
of the divergence can be parameterized by the full width of the peak at 90% of its
maximum for each T (Fig. 3.3 bottom). This heuristic metric reinforces the trend
apparent in the raw data of two qualitatively distinct regimes separated at T=150
mK. In a conventional description of a QPT, thermal broadening is expected and
can be understood as a finite size effect in the imaginary time dimension (Sondhi
et al., 1997). The unexpected broadening in the low temperature regime suggests
that a new degree of freedom emerges at the lower energy scale.

To elucidate the nature of the 𝑇 → 0 behavior, we measured the specific heat,
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Figure 3.3: Ac magnetic susceptibility of LiErF4 at 0.5 Oe drive field and 10
kHz frequency vs. c-axis magnetic field at a series of fixed temperatures above
(top) and below (middle) T = 150 mK. (bottom) Width of the peak at 90% of
its maximum value. Red and blue shading identify the high and low temperature
regimes, respectively.

𝐶 (𝑇, 𝐻), on a single-crystal thin plate (1x1x0.04mm3) of LiErF4 (Fig. 3.4). Data
was collected over a temperature range of 0.055 K to 4 K and at fields parallel to c up
to 4.25 kOe. These measurements were taken to lower temperatures and higher fields
than previously reported (Kraemer et al., 2012; Mennenga et al., 1984), and allow
us to fully characterize the specific heat through the QPT. Within this temperature
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range, contributions from phonons are negligible (Kraemer et al., 2012).

Figure 3.4: Specific heat vs. temperature for a series of magnetic fields along the
c-axis. (inset) Total and purely electronic heat capacities at zero field. Arrow at T
= 150 mK marks where the disordered nuclear spin bath couples to the electronic
spins.

Measurements were made on a plate sample (1x1x0.04mm3) cut from sample 1
using a commercial sub-Kelvin calorimeter (PPMS DR, Quantum Design) operating
in a standard relaxation mode. Away from the phase boundary, data were taken in
discrete steps using small thermal pulses ( Δ𝑇

𝑇
= 0.02) fit to a two-tau model. Near

the transition, measurements were made with a large pulse (Δ𝑇
𝑇

= 0.15) to obtain
higher point density, and the specific heat was extracted by analyzing the evolution
of the slope of the 𝑇 (𝑡) response of the calorimeter (Riegel & Weber, 1986).
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The high-T upturn in 𝐶 (𝑇) is due to the crystal field splitting and is negligible in
the temperature range of the magnetic ordering. The peak at the ordering transition
is well described by a power law of the form:

𝐶 (𝑇) = 𝐴± |𝑇 − 𝑇𝑁
𝑇𝑁

|−𝛼 + 𝐷,

where 𝐴+ and 𝐴− are the amplitudes in the paramagnetic and anitiferromagnetic
states, respectively, and 𝐷 is a non-critical background. We find that the specific
heat exponent agrees within error of the previously reported value 𝛼 = −0.28(4)
(Kraemer et al., 2012). As seen in Fig. 3.4, at the lowest temperatures there is
an additional upturn in the specific heat, attributable to a Schottky contribution
(Mennenga et al., 1984). The Schottky anomaly occurs when the coupling between
nuclear and electronic spins begins to dominate over thermal fluctuations. We ac-
count for the Schottky contribution by assuming the standard 𝑇−2 high-temperature
form (Phillips, 1971). This allows us to subtract off the Schottky contribution to
the specific heat and isolate the purely electronic contribution (Fig. 3.4 inset). The
electronic and total heat capacities begin to separate at 150 mK, coincident with the
broadening of the divergence of the magnetic susceptibility, pointing to the naturally
occurring isotopic abundance as the relevant source of disorder. Furthermore, an
integration of the electronic specific heat gives entropy S=Rln(2) for all fields. The
lack of excess entropy rules out a more exotic ground state, such as a quantum spin
liquid, as a source of the broadening.
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Figure 3.5: Critical behavior of the ac susceptibility of LiErF4 in the paramagnet
(PM) and antiferromagnet (AFM). (top) Susceptibility at T=50 mK (black) and fits
to a critical divergence form with Gaussian field broadening (see text for details).
Red and blue denote 𝐻 < 𝐻𝑐 and 𝐻 > 𝐻𝑐, respectively. (inset) Susceptibility vs
magnetic field at T=50 mK. The scale bar marks absolute units of emu/Oe. The
data is well described by a pure power law over 0.8 decades. Near the transition,
deviations from linearity occur due to the Gaussian convolution. (bottom) Temper-
ature dependence of the amplitude ratio and critical exponent describing the control
parameter susceptibility and a transition between universality classes. Error bars
are estimated by refitting with a fit range varied by ±5% of a decade.
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We present in Fig. 3.5 a power law analysis of the susceptibility field sweeps to
probe the low-temperature critical behavior. The order parameter of an antiferro-
magnet is the staggered magnetization, and the critical behavior of the susceptibility
along the c-axis does not correspond to a conventional 𝛾 exponent. However, it
can be understood under the general theory of critical scaling at QPTs developed by
Belitz and Kirkpatrick (Kirkpatrick & Belitz, 2015). In this framework, a “control-
parameter susceptibility” is defined as

𝜒𝑟 = −
𝜕2 𝑓

𝜕𝑟2 ,

where f is the free energy and r is the athermal tuning parameter that induces the QPT.
Two critical exponents are defined for this susceptibility: one at zero temperature as
a function of field,

𝜒𝑟 (𝐻,𝑇 = 0) = 𝐵± |𝐻 − 𝐻𝑐
𝐻𝑐

|−𝛼𝐻 + 𝜒0.

and the other at H=Hc as a function of temperature,

𝜒𝑟 (𝐻 = 𝐻𝑐, 𝑇) = 𝑎𝑇−𝛼𝑇 ,

where B+ and B- are the amplitudes in the paramagnetic and anitiferromagnetic
states, respectively, 𝜒0 is a non-critical background, and a is the amplitude at the
critical field. Here the notation 𝛼 is used because, in the case of r = T, the control
parameter susceptibility is given by C/T. For a QPT induced by a magnetic field
along the c-axis, 𝜒𝑟 corresponds to 𝜒𝑐, the magnetic susceptibility along the c-axis.

We model a macroscopic distribution of 𝐻𝑐s with width 𝛿𝐻𝑐, most likely arising
from demagnetization fields due to shape effects, by convolving the power law with
a Gaussian. The convolution allows us to fit the susceptibility through the transition
and improves the fit stability of the amplitude and critical exponent (Wosnitza,
2007). Our fit gives 𝛿𝐻𝑐 ∼ 30Oe → 𝛿𝐻𝑐

𝐻𝑐
= 8 × 10−3. The data is well fit

by this functional form over a range of reduced fields spanning -0.8 to 0.8 for
temperatures up to at least 260 mK. The error in the fit parameters is dominated
by the systematic error associated with the fit range. At high temperatures, 𝛼𝐻
increases rapidly as temperature decreases. It begins to saturate at T ∼ 150 mK and
reaches 𝛼𝐻 = −0.32(2) in the 𝑇 → 0 limit. The amplitude ratio 𝐵 + /𝐵− begins to
increase at 150 mK and captures the same behavior as the heuristic width metric in
Fig. 3.3. At our base temperature of 50 mK, 𝐵 + /𝐵− has not saturated, but we can
establish a lower bound of 𝐵 + /𝐵− > 5 at T = 0.
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3.4 Discussion
The amplitude ratio, 𝐵+/𝐵−, typically marks a particular universality class(Pelissetto

& Vicari, 2002). The rapid increase in the ratio at low temperatures indicates that
the universality class changes as the nuclear and electronic spins lock. Further
evidence that the change in amplitude ratio is due to the nuclear spins is seen in a
comparison between field sweeps taken on LiErF4 samples with a natural isotopic
abundance and with isotopically pure erbium-168 (Nikseresht Ghanepour, 2012).
The isotopically pure sample has a much sharper peak than the natural sample at 35
mK, reaffirming the role of nuclear spins.

The Harris criterion 𝑑𝜈 > 2 is a necessary condition for a universality class
to be unchanged by random mass disorder, where 𝜈 is the critical exponent of the
correlation length(Brooks, 2016; Harris, 1974). The Harris criterion determines if
the correlation length grows rapidly enough for the effective strength of disorder to
go to zero at the transition. Since only dimensions with random disorder contribute
to the Harris criterion, QPTs obey 𝑑𝜈 > 2 rather than (𝑑 + 𝑧)𝜈 > 2. Hence QPTs
require a larger 𝜈 relative to an analogous classical transition as a manifestation of
their sensitivity to disorder (Vojta, 2019).

Given that 𝛽𝐻 is far from the mean field value (𝛽𝑀𝐹 = 0.5) and that mean field
calculations overestimate 𝐻𝑐, we assume that the dimensionality of the system is
below its upper critical dimension and that a hyperscaling relation is valid. Under
this assumption, we can express the Harris criterion in terms of the critical exponents
of the control parameter susceptibility using Eqs. 2.23a and 2.23b of Belitz and
Kirkpatrick (Kirkpatrick & Belitz, 2015):

𝑑𝜈 =
2𝛼𝑇 − 𝛼𝐻 (1 + 𝛼𝑇 )

𝛼𝑇
> 2.

When 𝛼𝑇 > 0, this inequality can be simplified to

𝛼𝐻 < 0,

which is analogous to the standard form of the Harris criterion expressed in terms
of the classical critical exponent, 𝛼 < 0. The Harris criterion pertains to the
critical exponents of clean systems. Since 𝛼𝑇 remains positive in both the clean
and disordered universality classes (Kraemer et al., 2012), we can focus solely on
the sign of 𝛼𝐻 in the clean universality class to determine the validity of the Harris
criterion in the present measurements. The rapid change of 𝛼𝐻 in the clean regime
is cut off by the disorder and prevents us from definitively characterizing 𝛼𝑐𝑙𝑒𝑎𝑛

𝐻
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in the zero-temperature limit. A linear extrapolation of the clean regime to T=0
finds 𝛼𝑐𝑙𝑒𝑎𝑛

𝐻
= 0.06(10), (see Fig. 3.6) which is consistent within error bars with a

specific heat exponent for both the classical 3D Ising (𝛼 = 0.110(1)) and 3D XY
(𝛼 = −0.015(1)) models. However, a change in universality implies that the Harris
criterion was violated, 𝛼𝑐𝑙𝑒𝑎𝑛

𝐻
> 0 at T=0, and the operative universality class is

classical 3D Ising. The critical exponents of all universality classes with a finite
effective disorder strength at a phase transition follow the Chayes-Chayes-Fisher-
Spencer relation 𝑑𝜈𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟 > 2 (Chayes et al., 1986). This relation differs from the
Harris criterion in that it uses the critical exponents of the disordered universality
class. We find that our disordered universality class is consistent with this relation
because 𝛼𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟

𝐻
< 0.

Figure 3.6: Critical field exponent replotted from Fig. 3.5, showing a linear extrap-
olation to T=0 of the data in the clean, high-temperature limit (red points). Shaded
region shows the 1𝜎 error band of the extrapolation.

In conclusion, magnetic susceptibility and specific heat measurements reveal that
the QPT in antiferromagnetic LiErF4 is affected profoundly by naturally-occurring
isotopic disorder. At temperatures below 150 mK, nuclear spins slave to electronic
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spins, reducing the effective field and introducing random mass disorder. We identify
𝜒𝑐 as a relevant observable to study the critical behavior of a field-induced QPT and
relate its critical exponents to the Harris criterion and the Chayes-Chayes-Fisher-
Spencer relation. Our data is consistent with a violation of the Harris criterion in the
clean high-temperature regime, above the energy scale of the hyperfine coupling,
and a change in universality class when disorder becomes manifest at low T. The
critical exponents of the disordered universality class obey the Chayes-Chayes-
Fisher-Spencer relation.

The unconventional power behavior of the susceptibility in the disordered uni-
versality class that characterizes LiErF4 may well point to Griffiths physics and
motivates further studies of the paramagnetic regime. More generally, nuclear mo-
ments present a well-characterized platform to manipulate disorder in situ, with
sensitivity to temperature and magnetic field, and potential tunability of the low-T
electronuclear spectrum itself.

3.5 Note on effects of material quality and sample geometry
Two parent single crystal samples were obtained from commercial sources. 𝑇𝑁

at zero field was used to determine sample quality. Susceptibility measurements
found sample 1 and sample 2 had 𝑇𝑁 ‘s of 361 mK and 333 mK, respectively.
Hence sample 1 was used for susceptibility, and heat capacity, while sample 2 was
characterized with susceptibility measurements for comparison. Measurements in
the needle limit (0.35x0.35x1.65mm3) and plate limit (3x3x0.4mm3) were made
on samples cut from sample 1 to investigate demagnetization effects on 𝐻𝑐 when
H||c. At T=50 mK, 𝐻𝑐 was measured as 3560 Oe and 4669 Oe for the needle and
plate, respectively. The geometry had no effect on 𝑇𝑁 at zero field. Additionally,
measurements were made on a needle (1.25x1.25x6mm3) cut from sample 2. An
𝐻𝑐 of 3223 Oe with H||c was measured at T=50 mK, corresponding to a reduction
of ∼10% in 𝐻𝑐 and 𝑇𝑁 relative to sample 1. Broadening was observed at T=150 mK
regardless of geometry or parent sample, substantiating the critical role ascribed to
nuclear spin disorder.

3.6 Quantum Phase Transition with H||a
We now turn to an alternative parameter to tune the ordered state to a quantum

phase transition. If a sufficiently large magnetic field is applied along the a-axis, it
will become energetically favorable for the spins to rotate within the easy plane and
align with the magnetic field. A quantum phase transition occurs when all the spins
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align, and the staggered magnetization goes to zero. The QPT induced by a field
applied along the a-axis fundamentally differs from a field applied along the c-axis.
When the field is applied along the c-axis, the spins are left fluctuating in the easy
plane and retain spin-inversion symmetry. This is not the case for the field applied
along the a-axis. This naturally leads to the question of the relevance of disorder in
this QPT.

The only previous experimental work on this QPT was a neutron scattering
study (Kraemer, 2009; Kraemer et al., 2012). They reported that a field of 300 Oe
suppressed domains with spins aligned with the b-axis and formed a mono-domain
of spins aligned with the a-axis. They found that the intensity at 𝑄 = (0, 0, 3),
which tracks the staggered magnetization, is sharply suppressed with field up to
𝐻 = 2.0(2) kOe and has a long tail which persists to 𝐻 = 4 kOe. Additionally, they
performed inelastic scattering experiments at 𝑄 = (0, 0, 2.9) to track the evolution
of the soft mode of the quantum phase transition. The gap of the soft mode
closes at 𝐻 ∼ 900 Oe, indicating a quantum phase transition. The inconsistency
between these field scales could be due to different sample shapes and accordingly
different demagnetization fields. A large distribution of demagnetization fields
could also explain the long tail in the inelastic scattering experiments. A mean-field
calculation of the critical field considering only electronic degrees of freedom found
𝐻𝑐 = 3.25 kOe (Kraemer, 2009). The overestimate of 𝐻𝑐 indicates the significance
of fluctuations in this QPT as well.

We characterize the QPT by measuring susceptibility along the a-axis, which is
its control parameter susceptibility. These measurements were performed using the
susceptometer discussed in Chapter 2. The sample was cut from sample 1 and has
dimensions of (6.12x0.66x0.66mm3) to ensure minimal demagnetization effects.
Field sweeps were taken with a drive field of 40 mOe and at a frequency of 40 Hz.
A lower drive field must be used in this apparatus because the sample is thermally
linked to the copper mount, which can be heated by strong eddy currents. The real
and imaginary parts of the susceptibility are shown in Fig. 3.7. In the ordered state,
the real susceptibility increases with field up to 200 Oe, and then flattens. This
feature corresponds to the previously reported formation of a mono-domain. The
peak at 𝐻𝑐 = 962(1) Oe in both the real and imaginary susceptibility corresponds
to the phase transition. The behavior of this peak strongly contrasts with that of
the QPT with H||c. Both peaks remain sharp at T<150 mK and have no obvious
response to the slaving of the nuclear spins to the electronic spins. The full width at
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Figure 3.7: Field sweeps along the a-axis of (left) real susceptibility and (right)
imaginary susceptibility.

90% maximum of the real susceptibility is shown for both QPTs in Fig 3.8.

Figure 3.8: Full width at 90% maximum of the QPTs induced by H||a and H||c. (right)
The data points mark the measured phase diagram as a function of temperature and
a-axis magnetic field (filled circles). Imagemap shows the real susceptibility data
from Fig. 3.7.

We consider two potential explanations for the apparent insensitivity to nuclear
disorder: (1) The hyperfine coupling does not affect the effective field along the
a-axis and thus does not act as random mass disorder. While the hyperfine cou-
pling is isotropic within the full LiErF4 Hamiltonian, in the truncated subspace, its
anisotropy is proportional to the electronic anisotropy 𝐴⊥

𝐴 | |
=
𝑔⊥
𝑔 | |

= 3.7. Accordingly,
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we may expect a lower temperature scale, T=∼ 41 mK, for the dirty regime in this
QPT. As seen in Fig. 3.8, we take field sweeps down to T=12 mK and still see no
broadening, discounting this hypothesis. (2) The universality class of the QPT sat-
isfies the Harris criterion, meaning no changes are expected. A test of this potential
explanation requires a power law analysis of the control parameter susceptibility. If
𝛼𝐻 > 0, the Harris criterion is valid, and the disorder is not expected to affect criti-
cality. We were unable to fit a power law to our present data over sufficiently large
field range to confidently claim a value for the critical exponent 𝛼𝐻 . A power law
analysis may be possible for measurements with a higher field resolution and using a
multi-axis magnet to null out any field along the c-axis due to sample misalignment.
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C h a p t e r 4

QUANTUM RELAXATION IN A SPIN GLASS

4.1 Introduction
Spin glasses are a long-standing problem in condensed matter physics, with

applications to computation, economics, engineering, and neuroscience, among
other areas of inquiry. Disorder and frustration cause spins to freeze into a non-
ergodic state and accordingly, have very slow magnetic relaxation(Mydosh, 1993).
This is challenging problem theoretically because the usual approaches of statistical
mechanics do not apply. Systems with quenched disorder require sophisticated
techniques to solve analytically (Mezard et al., 2004) or numerically (Zhang et al.,
2021) The problem is also difficult experimentally because relaxation times are
long on a laboratory timescale and highly specific experimental procedures must be
used to acquire reproducible results (Vincent et al., 1997). While great strides have
been made in understanding classical spin glasses, there has been limited progress
in the understanding of quantum spin glasses (QSG) (Mydosh, 2015). In a QSG,
quantum fluctuations are introduced by a non-thermal tuning parameter which cause
relaxation via tunneling rather than thermal relaxation. Previous work on quantum
spin glasses has focused on equilibrium properties (Schechter & Stamp, 2005; Tabei
et al., 2006; Wu et al., 1991, 1993). The dynamic behavior of classical spin glasses
has produced unexpected results and informative insights. In this work, we extend
the investigation of spin glass dynamics to the quantum regime.

Phenomena in classical glasses are typically understood within the theoretical
framework of a hierarchical free energy landscape of metastable states. This the-
oretical picture was developed from the mean field solution of the infinite-range
Sherrington-Kirkpatrick model; however, it is more broadly used to form an in-
tuitive understanding of glassy physics. Furthermore, various phenomenological
models have been inspired from this theory (Zhang et al., 2021). In this picture,
an effective free energy landscape is defined as a function of temperature. At each
temperature, the free energy landscape is defined by the set of accessible free energy
valleys. As the temperature decreases, each valley subdivides into new valleys. Val-
leys and their sub-valleys form a branching tree hierarchy where sub-valleys form
a lower level of the tree. Two key dynamic properties which are explained by this
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model are rejuvenation and memory. Rejuvenation occurs when a small decrease
in temperature restarts the relaxation process. When temperature decreases and the
system forms new sub-valleys, the process of finding a minimum in this new set
of valleys is described as rejuvenation. Memory occurs when a system relaxes at
a constant temperature for a time. Lowering the temperature and later returning
it to the original value causes the system to resume relaxation from its previous
state. Within the hierarchy picture, this results from the sub-valleys reverting to
their parent valleys and relaxation resuming in this original valley.

This theoretical framework is not appropriate for QSGs. In analogous quantum
experiments, a non-thermal tuning parameter changes instead of temperature. This
alters the true energy levels of the system rather than an effective free energy
landscape. Instead, we use a more fundamental description of resonant interactions
between two-level systems to describe relaxation. This process is governed by an
equation of motion where spins have some bias energy, 𝜉 = 𝐸↑−𝐸↓, and are coupled
to a bath (Prokof’ev & Stamp, 1996, 1998). This relation is given by

𝑃𝛼 (𝜉, 𝑟)
𝑑𝑡

= −Λ(𝜉) [𝑃𝛼 (𝜉, 𝑟) − 𝑃−𝛼 (𝜉, 𝑟)]−∑︁
𝛼′

∫
𝑑𝑟′

∫
𝑑𝜉′Λ(𝜉′) × [𝑃(2)

𝛼𝛼′ (𝜉, 𝜉
′, 𝑟, 𝑟′) − 𝑃(2)

𝛼𝛼′ (𝜉 −𝑉𝐷 (𝑟 − 𝑟
′), 𝜉′, 𝑟, 𝑟′)] .

Here, Λ(𝜉) is the transition matrix element whose form is dependent on the nature
of the coupled bath. 𝑃𝛼 (𝜉, 𝑟) is a one spin probability distribution function for a
spin in state |𝛼⟩ at position r with bias energy 𝜉. This distribution governs local spin
flip events. 𝑉𝐷 is the spin-spin interaction energy. 𝑃(2)

𝛼𝛼′ is a two-spin distribution
function for spins at site r and r’ and states |𝛼⟩ and |𝛼′⟩. This distribution governs
co-flipping events between spins which are brought into resonance by a pairwise
interaction 𝑉𝐷 . It is important to note that this theory truncates higher order spin
correlations, and a more accurate, but considerably more complex extension could
be developed to include them.

Many experimental procedures have been used to study dynamic behavior in
classical spin glasses with variants that monitor magnetic relaxation via the magne-
tization (Refregier et al., 1987) or a.c. susceptibility (Dupuis et al., 2001). Here, we
focus on a.c. susceptibility variants of the memory dip procedure. This is a standard
procedure that has been fruitful in uncovering the properties of rejuvenation and
memory. In the memory dip procedure, the sample begins at a temperature well
above its freezing temperature, 𝑇 𝑓 . The sample is cooled at a slow rate to some
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temperature, 𝑇𝑤, where 𝑇𝑤 < 𝑇 𝑓 . The sample relaxes at 𝑇𝑤 for a set time and is then
cooled to base temperature, 𝑇𝑏𝑎𝑠𝑒. A separate reference measurement is performed
without the relaxation step. The susceptibility peaks at 𝑇 𝑓 , and then decreases
monotonically with temperature until the relaxation step. During relaxation, the
susceptibility continues to decrease with time. When temperature is decreased after
the relaxation step, the standard response is that the susceptibility rapidly increases
until it merges with the reference curve, and then begins to decrease with temper-
ature. This rapid increase in susceptibility is interpretated as rejuvenation. After
reaching 𝑇𝑏𝑎𝑠𝑒, a common extension to this procedure is to slowly increase temper-
ature above 𝑇𝑔. The susceptibility of both the reference and relaxation procedure
increase with temperature; however, the susceptibility of the relaxation procedure
will temporarily remain constant or decrease with temperature at 𝑇𝑤. This is an
example of memory. In this work, we develop an analogous procedure for a quan-
tum memory dip experiment where transverse field is used to introduce quantum
fluctuations that suppress the spin glass state.

We use the LiHoxY1−xF4 material system as an experimental platform for this
study. Substitution of Ho with non-magnetic Y introduces disorder and frustration
into the system. The system orders as a spin glass in the concentration range of
x<0.25 (Quilliam et al., 2012). In this work, we investigate a concentration of x=0.20,
which has a 𝑇𝑔 = 0.145 K (Ancona-Torres et al., 2008). Application of a transverse
field introduces quantum fluctuations that suppress the spin glass phase to T=0 at
𝐻𝑔 = 5 kOe. At this concentration, the average dipolar coupling strength is compa-
rable to the hyperfine coupling, and fully hybridized electronuclear states must be
considered. The longitudinal component of the hyperfine coupling, 𝐴ℎ 𝑓 𝐽𝑧 𝐼𝑧, splits
each electronic state into a multiplet of 8 states with a separation ∼ 205 mK (Giraud
et al., 2001). The electronuclear doublet ground state is |𝑚𝐽 = ±1/2, 𝑚𝐼 = ∓7/2⟩.
The transverse field no longer directly mixes the doublet state, and tunneling oc-
curs via the transverse component of the hyperfine coupling, 𝐴ℎ 𝑓 (𝐽+𝐼− + 𝐽−𝐼+)/2
(Schechter & Stamp, 2005). In this manifold, each electronuclear doublet will have
its own tunneling amplitude where |𝑚𝐽 = +1/2, 𝑚𝐼 = −7/2,−5/2,−3/2,−1/2⟩ ↔
|𝑚𝐽 = −1/2, 𝑚𝐼 = +7/2, +5/2, +3/2, +1/2⟩ corresponds toΔ7/2,Δ5/2,Δ3/2,Δ3/2, re-
spectively (Schechter & Stamp, 2008). We take temperature effects into account by
taking a Boltzmann average over all tunneling matrix elements in this manifold to
calculate an effective tunneling matrix element, Δ𝑒 𝑓 𝑓 (𝑇, 𝐻𝑇 ). This nuclear blocking
process results in significant reduction in tunneling amplitude relative to a purely
electronic system where Δ ≈ 2.7 mK (𝐵/𝑘𝐺)2.
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Figure 4.1: (left) Tunneling matrix element between electronuclear states in the
lowest energy manifold. (right) Boltzmann average of the tunneling matrix element
at several representative temperatures.

4.2 Memory Dip
As seen in Fig. 4.2, we employ the classical thermal memory dip procedure on

our system to provide a baseline for the quantum memory dip behavior. We start at
𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙=250 mK and decrease the temperature at a rate of 0.5 mK/min to 𝑇𝑤 (blue
trace). We wait eight hours to ensure that the system fully relaxes (green trace),
and then cool to base temperature 𝑇𝑏𝑎𝑠𝑒 = 35 mK (blue trace). The temperature
is then returned to 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (red trace). A reference curve was taken with the same
𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑇𝑏𝑎𝑠𝑒, and rate (black trace). Two striking features are the lack of increase in
susceptibility after relaxing at 𝑇𝑤, and the lack of any anomaly at 𝑇𝑤 in the warming
trace. This system shows no apparent rejuvenation or memory effects in the thermal
memory dip procedure. The time dependence of susceptibility during the relaxation
stage is well described by an exponential.

In the quantum memory dip procedure, the transverse field is ramped to 𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙
=12 kOe, and then cooled to 𝑇𝑏𝑎𝑠𝑒. The field is decreased to the waiting field,
𝐻𝑤, at a rate of 16 Oe/min. The system relaxes for ten hours and then the field
is decreased to zero. A reference curve is taken using the same procedure with
the omission of the relaxation stage. Again, the time dependence of susceptibility
during the relaxation stage is well described by an exponential. Unlike the thermal
memory dip experiment, the susceptibility strongly increases after the relaxation
stage. Moreover, it cuts through the reference curve.

A key aspect to understand this behavior is the non-trivial random fields produced
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Figure 4.2: (left) Thermal memory dip procedure. (right) Quantum memory dip
procedure. Both plots have four separate memory dip runs plotted that differ by
𝑇𝑤 and 𝐻𝑤 and have a shared reference curve. Susceptibility measurements are
performed on a sample with dimensions (0.76x1.78x5.11mm3) at a frequency of 5
Hz with an a.c. drive field of 40 mOe.

when diluting a dipolar-coupled system. The dipolar interaction is given by

𝐻𝑑𝑖𝑝𝑜𝑙𝑎𝑟 =
∑︁
𝑖, 𝑗 ,𝛼,𝛽

𝑉
𝛼,𝛽

𝑖, 𝑗
𝐽𝛼𝑖 𝐽

𝛽

𝑗
.

Here 𝑉𝛼,𝛽
𝑖, 𝑗

is the dipolar interaction between sites i j. 𝛼 and 𝛽 are the axes on sites
i and j, respectively. When a neighboring spin is replaced by non-magnetic Y, the
transverse component of the dipolar field will no longer cancel due to symmetry.
The transverse field at Ho site i is then dependent on the configuration of Ho and Y
atoms and is given by

𝐻𝑖⊥ = 𝐻0
⊥ + 𝐻𝑖⊥.

Here 𝐻𝑖⊥ is the transverse field at site i, 𝐻0
⊥ is the applied field, and 𝐻𝑖⊥ is the

transverse field due to off-diagonal terms at site i (Schechter & Stamp, 2008). 𝐻𝑖⊥
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will follow a probability distribution centered around zero field. As a first-order
approximation, we assume it takes a Gaussian form. The standard deviation of
this distribution, 𝜎(𝐻𝑖⊥), is non-trivial to calculate. We make a rough estimate by
considering a reported calculation of the phase diagram of LiHoxY1−xF4 with con-
centration x=0.17(Schechter & Stamp, 2005). This mean-field calculation assumes
the effect of the random transverse field is equivalent to a uniform 𝐻𝑖⊥ across all
sites. 𝐻𝑖⊥ is used as a free parameter to match the calculated phase diagram with
experimental results. The best agreement is found with 𝐻𝑖⊥=0.65 T. Since disorder
is stronger for a concentration of x=0.2, we expect an even larger field. There also
will be a random longitudinal field simply because the spins are not aligned in the
glass phase. Furthermore, the application of a transverse field will result in a finite
magnetization along the transverse axis (i.e. 𝐽𝑥 ≠ 0), which will scale linearly with
𝐻0
⊥. The off diagonal dipolar terms will then give an additional contribution to the

random longitudinal field. When 𝑆𝐻0
⊥ ≪ Ω0, the random field is well approximated

by

𝐻𝑖| | =
2𝑆𝐻0

⊥
Ω0

∑︁
𝑗

𝑉 𝑧𝑥
𝑖 𝑗
.

Here S is the effective magnitude of the Ho spin , and Ω0 is the energy of the first
excited electronic state (Schechter & Stamp, 2008). The distribution of the random
longitudinal field will broaden linearly with 𝐻0

⊥. As seen in Fig. 4.3, we use these
relations to model the evolution of the random transverse field distribution and the
random longitudinal field distribution with applied transverse field.

We employ the equations of motion previously discussed to describe the memory
dip experiments with the assumption of coupling to a nuclear spin bath. In this
treatment, we assume that the dipolar and hyperfine fields are quasi-static except for
a rapidly fluctuating hyperfine component. Then relaxation by a nuclear spin bath
follows:

Λ𝑆𝐵 (Δ, 𝜉) = 𝑇2Δ
2𝑒𝑥𝑝(−𝜉/𝜉0),

where𝑇2 is the spin-spin relaxation time, Δ is the tunneling matrix element, and 𝜉0 is
the energy scale of the hyperfine bias field (i.e. 𝜉0 ∼ 𝑇−1

2 )(Prokof’ev & Stamp, 1998).
Since there is a distribution of longitudinal and transverse fields for our system and
thereby a distribution of bias energies and tunneling matrix elements, the equations
of motion must be generalized to average over these distributions. The distribution
of tunneling matrix elements follows from the transverse field distribution and the
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relation between 𝐻0
⊥ and Δ,

𝑓Δ(Δ) = 𝑃( |𝐻𝑇 |) (𝑑𝐻0
⊥/𝑑Δ𝑒 𝑓 𝑓 (𝑇, 𝐻𝑇 )).

In this case, we have chosen 𝑇 =35 mK to match with our experimental conditions.
The longitudinal field distribution is converted to a bias energy distribution by the
relationship 𝜉 = 2𝑔| |𝜇𝐵𝑆𝐻𝑖| |. The final averaged rate that should be compared to our
experimentally observed rates is

Λ =

∫ ∞

−∞

∫ ∞

0
𝑃(𝜉) 𝑓Δ(Δ)Λ(Δ, 𝜉)𝑑Δ𝑑𝜉.

For the case of a coupling to a spin bath with a normally distributed longitudinal
field distribution, the expression can be evaluated analytically as

Λ = 𝑒𝑥𝑝(
𝜎(𝐻| |)2

2𝜉2
0
)𝑒𝑟 𝑓 𝑐(

𝜎(𝐻| |)√
2𝜉0
)
∫ ∞

0
Δ2 𝑓Δ(Δ)𝑑Δ.

We note that this formalism predicts a square root time dependence (Prokof’ev and
Stamp 1998). However, this assumes a single value forΔ . We attribute our observed
exponential time dependence to the widely distributed Δ𝑒 𝑓 𝑓 for a thermodynamic
concentration of spins.

We first focus our discussion on the simpler case of the quantum memory dip
experiment. As seen in Fig. 4.3, the relaxation rate decreases as 𝐻0

⊥ increases. This
behavior is very non-intuitive. One would naively expect an increase in the average
tunneling matrix element to increase the relaxation rate. The decrease follows
from the transverse field dependence of the random longitudinal and transverse
fields. While increasing 𝐻0

⊥ rapidly increases Δ𝑒 𝑓 𝑓 at low fields, at 𝐻0
⊥>12 kOe

the rate is substantially reduced. If we assume a transverse field distribution with
𝜎(𝐻⊥) ∼ 12 kOe, as suggested by mean field calculations, the average Δ𝑒 𝑓 𝑓 will not
vary significantly over experimentally relevant fields. Furthermore, the broadening
of the longitudinal field distribution will reduce the fraction of spins which are
near resonance and can relax through quantum tunneling. At small 𝐻0

⊥, the effect
from random longitudinal fields dominates over random transverse fields and the
relaxation rate decreases. As seen in Fig. 4.3, a calculation of the relaxation rate
with parameters that characterize the field distributions and their transverse field
dependence demonstrates this effect. Both the sign and functional dependence
of the relaxation is well-captured by the theory, and opposite to the effects seen
classically. However, we note that the calculated rates are a factor of 1010 greater
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than our experimentally observed rates. We propose that this discrepancy results
from failing to consider the cluster nature of the glass. The larger length scale of
spin clusters will result in a many order of magnitude longer time scale.

Figure 4.3: (left top, left bottom) Transverse and longitudinal field distribution used
to calculate relaxation rates at several representative fields. (center) Experimentally
measured relaxation rates. (right) Spin-spin relaxation rates calculated by averaging
over random transverse and longitudinal field distributions. The parameters used
in this calculation are 𝜎(𝐻⊥) = 12 kOe, 𝑇2 = 10−6 s, 𝜎(𝐻| |) =500 Oe +0.1𝐻0

⊥.
Thermal relaxation rates (red) increase with temperature, while quantum relaxation
rates (blue) decrease with transverse field.

The strong rejuvenation seen in the quantum memory dip procedure also can be
understood through the field dependence of the random longitudinal field. When
waiting at 𝐻𝑤, there are an initial set of spins that are nearly in resonance and can
relax via quantum tunneling. However, when 𝐻0

⊥ is reduced and the longitudinal
field distribution is reduced, new spins are brought into resonance and the relaxation
process restarts.

In the thermal memory dip experiment, quantum fluctuations are still expected
to have a large affect because a significant fraction of spins will have a large enough
random transverse field to cause appreciable tunneling. This relaxation will occur in
combination with any possible purely thermal relaxation process. Furthermore, we
expect temperature dependence in the resonant tunneling process through Δ𝑒 𝑓 𝑓 (𝑇)
as seen in Fig. 4.1. We again calculate the relaxation rate using the same parameters
used in the quantum memory dip calculations (see Fig. 4.2), but now vary Δ𝑒 𝑓 𝑓 (𝑇).
We find the relative change in rate to qualitatively agree with experimental results,
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which suggests the dominant relaxation channel is quantum tunneling. The lack of
rejuvenation or memory in the thermal memory dip experiment further points to
the limited predictive power of the hierarchy landscape picture for QSGs. Strong
rejuvenation is not expected from the quantum resonant tunneling process because
the longitudinal field distribution will not vary rapidly with temperature, and no
additional spins will be brought into resonance.

4.3 Negative Field Cycle
We now turn our attention to another commonly used experimental procedure,

the “negative temperature cycle”. The goal of this procedure is to achieve a more
quantitative understanding of memory in the glass at the cost of a more complicated
procedure. The classical procedure is to quench to some temperature, 𝑇𝑤1, and
wait time 𝑡1 and then decrease the temperature to, 𝑇𝑤2, and wait time 𝑡2. Finally,
the temperature is returned to 𝑇𝑤1 and relaxes for time 𝑡3. An additional reference
curve is taken where the system is quenched to 𝑇𝑤1 and relaxes for time 𝑡1 + 𝑡2 + 𝑡3.
In the case of perfect memory, the third relaxation stage should evolve as is if the
relaxation period at 𝑇𝑤2 did not occur. The data is analyzed by shifting the third
relaxation stage in time by Δ𝑡 to match the reference curve. Perfect memory would
then correspond to Δ𝑡 = −𝑡2. An effective wait time is defined as 𝑡𝑒 𝑓 𝑓 = 𝑡2 +Δ𝑡, and
should be thought of as the relaxation time at the second stage which contributes to
relaxation during the third stage. Typically, perfect memory occurs (i.e. 𝑡𝑒 𝑓 𝑓 = 0)
when Δ𝑇 = 𝑇𝑤1 − 𝑇𝑤2 is sufficiently large (Dupuis et al., 2001).

In this work, we employ a negative field cycle experiment using an analogous
procedure where temperature variation is replaced by transverse field variation. The
transverse field is ramped to 𝐻𝑇 = 12 kOe, well above 𝐻𝑔. The sample is cooled
to 𝑇𝑏𝑎𝑠𝑒=35 mK. The transverse field is ramped to 𝐻𝑤1 =5 kOe and relaxes for
𝑡1=1800 s. The field is ramped to 𝐻𝑤2 and relaxes for 𝑡2=1800 s. Finally, the field
is returned to 𝐻𝑤1 and relaxes for 𝑡3=8 hours. This procedure was done for several
𝐻𝑤2, as seen in Fig. 4.4. The insets show the third relaxation stage shifted in time
to agree with the reference curve. This analysis shows a negative 𝑡𝑒 𝑓 𝑓 for all Δ𝐻𝑇
which grows more negative with increasing Δ𝐻. This surprising result is not seen
in classical negative temperature cycle experiments. The negative effective time
implies memory of relaxation from the first stage is lost.

This unusual behavior again can be understood within the framework of resonant
tunneling. When the system relaxes during its first stage, spins in resonance at the
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Figure 4.4: Negative field cycle experiments at various fields. Colored curves are
susceptibility from the field cycle procedure and the black curved is a reference with
the second stage of relaxation omitted. The insets show the third stage of relaxation
shifted in time to agree with the reference curved, including a small offset.

initial longitudinal field distribution relax. When the system relaxes at the second
stage with a narrower field distribution, new spins are in resonance. The co-flipping
events that occur during the second stage of relaxation act to randomize the spin
orientations of spins which are not in resonance. During the third stage of relaxation,
this randomization removes the memory of relaxation during the first stage. Larger
Δ𝐻𝑇 results in more memory loss because the fraction of spins in resonance at both
𝐻𝑤1 and 𝐻𝑤2 fields is reduced.

We have for the first time investigated the dynamic response of quantum spin
glass. This was the accomplished by the development of quantum analogues of
standard experiments used investigate rejuvenation and memory. In doing so, we
have found behavior that fundamentally differs from a classical spin glass and cannot
be explained by a hierarchical free energy landscape. We develop a framework
centered on quantum resonant tunneling as an appropriate theoretical picture to
describe the data.
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C h a p t e r 5

CONCLUSION

5.1 Summary
We study the effects of disorder on quantum phase transitions and quantum

dynamics. We use the LiReF4 material family as a platform for this study. Since
a deep understanding of its Hamiltonian has been developed, it is a model system
to study the effects of quantum fluctuations on magnetism. Because its spins are
dipolar coupled, the energy scale of the ordering is ∼1 K. It is possible to produce
magnetic fields in a laboratory setting that are of a comparable energy scale which
can induce QPTs and profoundly alter the systems dynamics. The internal crystal
field splitting induces strong anisotropy which provides a platform to study spins
with Ising and XY symmetry for Re=Ho and Re=Er, respectively. The existence
of isotopes with non-zero nuclear spins provides the opportunity to study the effect
of hyperfine coupling on criticality. Disorder can be introduced into the system
by using a selection of isotopes, some with and some without hyperfine coupling.
Disorder also can be introduced into the system by substituting the Re ion with a
non-magnetic Y ion. We study both cases.

LiErF4 hosts an antiferromagnetic state at zero field. Its thermal phase transition
to a paramagnetic state belongs to the 2D 𝑋𝑌/ℎ4 universality class. This state can
be tuned to a quantum critical point by applying a magnetic field either along the
crystallographic a-axis or c-axis. When H||c, the critical exponents of the QPT agree
with a 3D Ising or 3D XY universality class. Er-167 is erbium’s only stable isotope
with a non-zero nuclear spin and has an antiferromagnetic hyperfine coupling. At
temperatures low enough for the nuclear spins to slave to the electronic spins, the
hyperfine coupling is known to reduce the effective field felt by the electronic spins.

We investigate LiErF4 with a natural abundance of Er isotopes and, for the first
time, consider the isotopic variation in hyperfine coupling as a source of disorder
in the system. We use heat capacity measurements to determine the temperature
scale at which the nuclear spins slave to the electronic spins as T=150 mK. In the
clean regime above this temperature, the isotopic variation does not disorder the
system. In the dirty regime below this temperature, the isotopic variation acts as
a source of random mass disorder. We characterize the electronic response to this



51

disorder by measuring the “control parameter” susceptibility which is analogous to
the heat capacity of a thermal phase transition. For the QPT induced by H||c, we
find that the peak in the susceptibility corresponding to the phase transition strongly
broadens upon entering the dirty regime. A power law analysis of the control
parameter susceptibility is consistent with a violation of the Harris criterion in the
clean regime, and a change in universality class upon entering the dirty regime. For
the QPT induced by H||a, we do not observe any difference between the clean and
dirty regimes in the control parameter susceptibility. We posit this QPT belongs
to a different universality class which obeys the Harris criterion. Accordingly, the
critical behavior would be unaffected by random mass disorder.

When enough disorder is introduced into LiHoF4 via the substitution of Ho with
Y, the ground state of the system transitions from a ferromagnet to a spin glass.
The spin glass state has a complex free energy landscape with very slow magnetic
relaxation. We characterize the dynamics of the spin glass state of LiHo0.2Y0.8F4

by performing a thermal memory dip experiment. The dynamic response shows no
apparent memory or rejuvenation, which are standard spin glass phenomena, but
can be difficult to observe at milliKelvin temperatures when thermal equilibration
times are long. The relaxation rate decreased as the waiting temperature decreased
as expected. We performed a quantum memory dip experiment by an analogous
procedure in which the transverse field was varied rather than temperature and saw
strong rejuvenation. The relaxation rate decreased as the waiting transverse field
increased.

These observations were explained within a newly-developed theoretical frame-
work of quantum resonant tunneling which describes the time evolution of spins
with a given bias energy that are coupled to a spin bath. This tunneling process is
affected both by the introduction of quantum fluctuations and by altering the bias
energy. The transverse field not only affects the strength of the quantum fluctuations,
but also the bias energy through its coupling to the random longitudinal field via the
off-diagonal dipolar coupling. These effects compete with each other, and at low
fields, result in a decrease in the relaxation rate with transverse field. The change in
the random longitudinal field also brings new spins into resonance and produces the
rejuvenation effect. Changing the temperature alters only the strength of quantum
fluctuations via the thermal population of the electronuclear levels. Accordingly,
the relaxation rate decreases with temperature and shows no rejuvenation effect.
Finally, we performed a “negative field cycle” procedure and observed erasure of
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memory. This behavior was attributed to the randomization that occurs to spins
which are not in resonance via co-flipping events.

5.2 Future Directions for LiErF4

The most straightforward extension of this work is to study samples with isotopi-
cally pure erbium. Er-166 with no-nuclear spin would provide a platform to study
a disorder free, purely electronic QCP. When H||c, we expect 𝛼𝐻 < 0 in the low
temperature limit, consistent with a violation of the Harris criterion and no change
in critical behavior at 𝑇=150 mK. These results would categorically demonstrate
hyperfine coupling as the cause of the low temperature behavior described in this
thesis. Furthermore, the absence of the Schottky contribution would make it pos-
sible to study the electronic critical behavior of the heat capacity. The validity of
the Harris criterion alternatively can be determined by the heat capacity’s critical
exponents and their associated scaling relations. A comparison would provide a
self-consistency check on the validity of the scaling relations of Kirkpatrick and
Belitz.

In addition to altering the universality class of a phase transition, disorder can
also induce Griffiths physics. Near the QPT, rare spatial regions with a low con-
centration of disorder favor ordering locally. Whether these regions contribute to
the bulk thermodynamics of the system is dependent on 𝑑𝑅𝑅, the dimensionality of
correlation in the disorder, and 𝑑𝑐−, the lower critical dimension of the spin symme-
try. In the case of an Ising QPT with random disorder, 𝑑𝑅𝑅=1, and 𝑑𝑐−=1 because
disorder is correlated in the imaginary time dimension. This equality corresponds to
an infinite-randomness quantum critical point (Vojta, 2010). This QPT is predicted
to have a non-universal 𝛼𝑇 that varies with the tuning parameter and approaches 1 at
the QPT. This has been observed experimentally in some materials (Ubaid-Kassis
et al., 2010); however, in many cases an exponent less than one is observed at the
QPT (Stewart, 2001). We suggest Griffiths physics as a possible explanation to
the unconventional exponent, 𝛼𝑇=0.70, reported for LiErF4. A measurement of the
evolution of 𝛼𝑇 with H||c would determine the relevance of Griffiths physics.

5.3 Future Directions for LiHoxY1−xF4

A better understanding of the relaxation in the spin glass state could be found be
repeating the experiments presented in this thesis on LiHo0.17Y0.83F4. This material
is known to have a smaller variance in its random longitudinal field distribution
and random transverse field distribution. Within our theoretical framework, the
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reduction in random field strength would cause the relaxation rate to increase with
transverse field at a much lower field scale. We also expect that the system would
exhibit weaker rejuvenation and memory erasure in the quantum memory dip and
negative field cycle experiments, respectively.



54

BIBLIOGRAPHY

Alba, M., Hammann, J., & Nogues, M. (1982). Phase diagrams of two dilute insulat-
ing systems with competing interactions: CdCr2xin2-2xs4 and ZnCr2xal2-
2xs4. Journal of Physics C: Solid State Physics, 15(26), 5441. https://doi.
org/10.1088/0022-3719/15/26/022

Ancona-Torres, C., Silevitch, D. M., Aeppli, G., & Rosenbaum, T. F. (2008). Quan-
tum and classical glass transitions in LiHo x y 1 x f 4. Physical Review
Letters, 101(5), 057201. https://doi.org/10.1103/PhysRevLett.101.057201

Babkevich, P., Finco, A., Jeong, M., Dalla Piazza, B., Kovacevic, I., Klughertz, G.,
Krämer, K. W., Kraemer, C., Adroja, D. T., Goremychkin, E., Unruh, T.,
Strässle, T., Di Lieto, A., Jensen, J., & Rønnow, H. M. (2015). Neutron
spectroscopic study of crystal-field excitations and the effect of the crystal
field on dipolar magnetism in li r f 4 ( r = gd , ho, er, tm, and yb). Physical
Review B, 92(14), 144422. https://doi.org/10.1103/PhysRevB.92.144422

Babkevich, P., Jeong, M., Matsumoto, Y., Kovacevic, I., Finco, A., Toft-Petersen,
R., Ritter, C., Månsson, M., Nakatsuji, S., & Rønnow, H. M. (2016). Di-
mensional reduction in quantum dipolar antiferromagnets. Physical Review
Letters, 116(19), 197202. https://doi.org/10.1103/PhysRevLett.116.197202

Bao, W., Broholm, C., Aeppli, G., Carter, S. A., Dai, P., Rosenbaum, T. F., Honig,
J. M., Metcalf, P., & Trevino, S. F. (1998). Magnetic correlations and quan-
tum criticality in the insulating antiferromagnetic, insulating spin liquid,
renormalized fermi liquid, and metallic antiferromagnetic phases of the
mott system v 2 o 3. Physical Review B, 58(19), 12727–12748. https :
//doi.org/10.1103/PhysRevB.58.12727

Beauvillain, P., Renard, J.-P., & Hansen, P.-E. (1977). Low-temperature magnetic
susceptibility of LiErF4: Evidence of antiferromagnetic ordering at 0.38k.
Journal of Physics C: Solid State Physics, 10(24), L709. https://doi.org/10.
1088/0022-3719/10/24/007

Bitko, D., Rosenbaum, T. F., & Aeppli, G. (1996). Quantum critical behavior for a
model magnet. Physical Review Letters, 77(5), 940–943. https://doi.org/10.
1103/PhysRevLett.77.940

Brooks, H. A. (2016). The ‘harris criterion’ lives on [Publisher: IOP Publishing].
Journal of Physics: Condensed Matter, 28(42), 421006. https://doi.org/10.
1088/0953-8984/28/42/421006

Chakraborty, P. B., Henelius, P., Kjønsberg, H., Sandvik, A. W., & Girvin, S. M.
(2004). Theory of the magnetic phase diagram of li ho f 4. Physical Review
B, 70(14), 144411. https://doi.org/10.1103/PhysRevB.70.144411



55

Chayes, J. T., Chayes, L., Fisher, D. S., & Spencer, T. (1986). Finite-size scaling and
correlation lengths for disordered systems. Physical Review Letters, 57(24),
2999–3002. https://doi.org/10.1103/PhysRevLett.57.2999

Dupuis, V., Vincent, E., Bouchaud, J.-P., Hammann, J., Ito, A., & Katori, H. A.
(2001). Aging, rejuvenation, and memory effects in ising and heisenberg
spin glasses [Publisher: American Physical Society]. Physical Review B,
64(17), 174204. https://doi.org/10.1103/PhysRevB.64.174204

Giraud, R., Wernsdorfer, W., Tkachuk, A. M., Mailly, D., & Barbara, B. (2001).
Nuclear spin driven quantum relaxation in LiY 0.998 ho 0.002 f 4. Physical
Review Letters, 87(5), 057203. https://doi.org/10.1103/PhysRevLett.87.
057203

Harris, A. B. (1974). Effect of random defects on the critical behaviour of ising
models. Journal of Physics C: Solid State Physics, 7(9), 1671–1692. https:
//doi.org/10.1088/0022-3719/7/9/009

Hwang, J. S., Lin, K. J., & Tien, C. (1997). Measurement of heat capacity by
fitting the whole temperature response of a heat-pulse calorimeter. Review
of Scientific Instruments, 68(1), 94–101. https://doi.org/10.1063/1.1147722

Jaramillo, R., Feng, Y., Wang, J., & Rosenbaum, T. F. (2010). Signatures of quantum
criticality in pure cr at high pressure [Publisher: Proceedings of the National
Academy of Sciences]. Proceedings of the National Academy of Sciences,
107(31), 13631–13635. https://doi.org/10.1073/pnas.1005036107

Kirkpatrick, T. R., & Belitz, D. (2015). Exponent relations at quantum phase transi-
tions with applications to metallic quantum ferromagnets. Physical Review
B, 91(21), 214407. https://doi.org/10.1103/PhysRevB.91.214407

Kraemer, C. (2009). Quantum phase transitions in a magnetic model system [Doc-
toral]. ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE.

Kraemer, C., Nikseresht, N., Piatek, J. O., Tsyrulin, N., Piazza, B. D., Kiefer,
K., Klemke, B., Rosenbaum, T. F., Aeppli, G., Gannarelli, C., Prokes, K.,
Podlesnyak, A., Strässle, T., Keller, L., Zaharko, O., Krämer, K. W., &
Rønnow, H. M. (2012). Dipolar antiferromagnetism and quantum criticality
in LiErF 4. Science, 336(6087), 1416–1419. https://doi.org/10.1126/science.
1221878

Landau, L. D., Lifšic, E. M., & Pitaevskĳ, L. P. (2011). Statistical physics. 1 (3. ed.,
repr). Elsevier Butterworth Heinemann.

Libersky, M., McKenzie, R. D., Silevitch, D. M., Stamp, P. C. E., & Rosenbaum,
T. F. (2021). Direct observation of collective electronuclear modes about
a quantum critical point. Physical Review Letters, 127(20), 207202. https:
//doi.org/10.1103/PhysRevLett.127.207202



56

Magariño, J., Tuchendler, J., Beauvillain, P., & Laursen, I. (1980). EPR experiments
in LiTb f 4 , LiHo f 4 , and LiEr f 4 at submillimeter frequencies. Physical
Review B, 21(1), 18–28. https://doi.org/10.1103/PhysRevB.21.18

McKenzie, R. D., & Stamp, P. C. E. (2018). Thermodynamics of a quantum ising sys-
tem coupled to a spin bath [Publisher: American Physical Society]. Physical
Review B, 97(21), 214430. https://doi.org/10.1103/PhysRevB.97.214430

Mennenga, G., Jongh, L. J., Huiskamp, W., & Laursen, I. (1984). A comparative
study of the magnetic ordering specific heats of four s = 1/2 dipolar magnets:
LiRF4 (r = er, dy, ho, tb). Journal of Magnetism and Magnetic Materials
- J MAGN MAGN MATER, 44, 48–58. https : / / doi . org / 10 .1016 / 0304 -
8853(84)90046-5

Mezard, M., Parisi, G., & Virasoro, M. A. (2004). Spin glass theory and beyond
(Reprinted). World Scientific.

Mydosh, J. A. (1993). Spin glasses: An experimental introduction [OCLC: 70764093].
Taylor & Francis.

Mydosh, J. A. (2015). Spin glasses: Redux: An updated experimental/materials
survey [Publisher: IOP Publishing]. Reports on Progress in Physics, 78(5),
052501. https://doi.org/10.1088/0034-4885/78/5/052501

Nikseresht Ghanepour, N. (2012, June 18). Classical and quantum critical phe-
nomena in the dipolar antiferromagnet LiErF4 [Doctoral]. ÉCOLE POLY-
TECHNIQUE FÉDÉRALE DE LAUSANNE. Retrieved March 13, 2024,
from https://infoscience.epfl.ch/record/178304

Pelissetto, A., & Vicari, E. (2000). Randomly dilute spin models: A six-loop field-
theoretic study. Physical Review B, 62(10), 6393–6409. https://doi.org/10.
1103/PhysRevB.62.6393

Pelissetto, A., & Vicari, E. (2002). Critical phenomena and renormalization-group
theory. Physics Reports, 368(6), 549–727. https://doi.org/10.1016/S0370-
1573(02)00219-3

Phillips, N. E. (1971). Low-temperature heat capacity of metals [Publisher: Tay-
lor & Francis _eprint: https://doi.org/10.1080/10408437108243546]. C R C
Critical Reviews in Solid State Sciences, 2(4), 467–553. https://doi.org/10.
1080/10408437108243546

Piatek, J. O., Dalla Piazza, B., Nikseresht, N., Tsyrulin, N., Živković, I., Krämer,
K. W., Laver, M., Prokes, K., Mataš, S., Christensen, N. B., & Rønnow,
H. M. (2013). Phase diagram with an enhanced spin-glass region of the
mixed ising– x y magnet LiHo x er 1 x f 4. Physical Review B, 88(1),
014408. https://doi.org/10.1103/PhysRevB.88.014408

Prokof’ev, N. V., & Stamp, P. C. E. (1996). Quantum relaxation of magnetisation in
magnetic particles. Journal of Low Temperature Physics, 104(3), 143–209.
https://doi.org/10.1007/BF00754094



57

Prokof’ev, N. V., & Stamp, P. C. E. (1998). Low-temperature quantum relaxation in a
system of magnetic nanomolecules [Publisher: American Physical Society].
Physical Review Letters, 80(26), 5794–5797. https : / / doi . org / 10 . 1103 /
PhysRevLett.80.5794

Quilliam, J. A., Meng, S., & Kycia, J. B. (2012). Experimental phase diagram
and dynamics of a dilute dipolar-coupled ising system. Physical Review B,
85(18), 184415. https://doi.org/10.1103/PhysRevB.85.184415

Refregier, P., Vincent, E., Hammann, J., & Ocio, M. (1987). Ageing phenomena
in a spin-glass : Effect of temperature changes below tg [Publisher: Société
Française de Physique]. Journal de Physique, 48(9), 1533–1539. https://doi.
org/10.1051/jphys:019870048090153300

Riegel, S., & Weber, G. (1986). A dual-slope method for specific heat measurements.
Journal of Physics E: Scientific Instruments, 19(10), 790–791. https://doi.
org/10.1088/0022-3735/19/10/006

Sachdev, S. (2011). Quantum phase transitions (Second edition). Cambridge Uni-
versity Press.

Sachdev, S., & Keimer, B. (2011). Quantum criticality. Physics Today, 64(2), 29–35.
https://doi.org/10.1063/1.3554314

Salaün, S., Fornoni, M. T., Bulou, A., Rousseau, M., Simon, P., & Gesland, J. Y.
(1997). Lattice dynamics of fluoride scheelites: I. raman and infrared study
of and ( and yb). Journal of Physics: Condensed Matter, 9(32), 6941. https:
//doi.org/10.1088/0953-8984/9/32/016

Sang, Y., Belitz, D., & Kirkpatrick, T. R. (2014). Disorder dependence of the
ferromagnetic quantum phase transition. Physical Review Letters, 113(20),
207201. https://doi.org/10.1103/PhysRevLett.113.207201

Sattler, J. P., & Nemarich, J. (1971). Electron-paramagnetic-resonance spectra of nd
3 + , dy 3 + , er 3 + , and yb 3 + in lithium yttrium fluoride. Physical Review
B, 4(1), 1–5. https://doi.org/10.1103/PhysRevB.4.1

Schechter, M., & Stamp, P. C. E. (2005). Significance of the hyperfine interactions in
the phase diagram of ${\mathrm{LiHo}}_{x}{\mathrm{y}}_{1\ensuremath{-
}x}{\mathrm{f}}_{4}$ [Publisher: American Physical Society]. Physical
Review Letters, 95(26), 267208. https://doi.org/10.1103/PhysRevLett.95.
267208

Schechter, M., & Stamp, P. C. E. (2008). Derivation of the low- t phase diagram
of LiHo x y 1 x f 4 : A dipolar quantum ising magnet. Physical Review B,
78(5), 054438. https://doi.org/10.1103/PhysRevB.78.054438

Sondhi, S. L., Girvin, S. M., Carini, J. P., & Shahar, D. (1997). Continuous quantum
phase transitions. Reviews of Modern Physics, 69(1), 315–333. https://doi.
org/10.1103/RevModPhys.69.315



58

Stevens, K. W. H. (1952). Matrix elements and operator equivalents connected
with the magnetic properties of rare earth ions. Proceedings of the Physical
Society. Section A, 65(3), 209. https://doi.org/10.1088/0370-1298/65/3/308

Stewart, G. R. (2001). Non-fermi-liquid behavior in $d$- and $f$-electron metals
[Publisher: American Physical Society]. Reviews of Modern Physics, 73(4),
797–855. https://doi.org/10.1103/RevModPhys.73.797

Tabei, S. M. A., Gingras, M. J. P., Kao, Y.-J., Stasiak, P., & Fortin, J.-Y. (2006).
Induced random fields in the LiHo x y 1 x f 4 quantum ising magnet
in a transverse magnetic field. Physical Review Letters, 97(23), 237203.
https://doi.org/10.1103/PhysRevLett.97.237203

Taroni, A., Bramwell, S. T., & Holdsworth, P. C. W. (2008). Universal window for
two-dimensional critical exponents. Journal of Physics: Condensed Matter,
20(27), 275233. https://doi.org/10.1088/0953-8984/20/27/275233

Topping, C. V., & Blundell, S. J. (2018). A.c. susceptibility as a probe of low-
frequency magnetic dynamics [Publisher: IOP Publishing]. Journal of Physics:
Condensed Matter, 31(1), 013001. https://doi.org/10.1088/1361-648X/
aaed96

Ubaid-Kassis, S., Vojta, T., & Schroeder, A. (2010). Quantum griffiths phase in
the weak itinerant ferromagnetic alloy ni 1 x v x. Physical Review Letters,
104(6), 066402. https://doi.org/10.1103/PhysRevLett.104.066402

Vincent, E. (2007). Ageing, rejuvenation and memory: The example of spin-glasses.
In M. Henkel, M. Pleimling, & R. Sanctuary (Eds.), Ageing and the glass
transition (pp. 7–60). Springer. https://doi.org/10.1007/3-540-69684-9_2

Vincent, E., Hammann, J., Ocio, M., Bouchaud, J.-P., & Cugliandolo, L. F. (1997).
Slow dynamics and aging in spin glasses. In M. Rubí & C. Pérez-Vicente
(Eds.), Complex behaviour of glassy systems (pp. 184–219). Springer. https:
//doi.org/10.1007/BFb0104827

Vojta, T. (2010). Quantum griffiths effects and smeared phase transitions in metals:
Theory and experiment. Journal of Low Temperature Physics, 161(1), 299–
323. https://doi.org/10.1007/s10909-010-0205-4

Vojta, T. (2019). Disorder in quantum many-body systems [_eprint: https://doi.org/10.1146/annurev-
conmatphys-031218-013433]. Annual Review of Condensed Matter Physics,
10(1), 233–252. https: / /doi .org/10.1146/annurev- conmatphys- 031218-
013433

Wendl, A., Eisenlohr, H., Rucker, F., Duvinage, C., Kleinhans, M., Vojta, M., &
Pfleiderer, C. (2022). Emergence of mesoscale quantum phase transitions
in a ferromagnet [Publisher: Nature Publishing Group]. Nature, 609(7925),
65–70. https://doi.org/10.1038/s41586-022-04995-5



59

Wosnitza, J. (2007). From thermodynamically driven phase transitions to quantum
critical phenomena. Journal of Low Temperature Physics, 147(3), 249–278.
https://doi.org/10.1007/s10909-007-9309-x

Wu, W., Bitko, D., Rosenbaum, T. F., & Aeppli, G. (1993). Quenching of the
nonlinear susceptibility at a T =0 spin glass transition. Physical Review
Letters, 71(12), 1919–1922. https://doi.org/10.1103/PhysRevLett.71.1919

Wu, W., Ellman, B., Rosenbaum, T., Aeppli, G., & Reich, D. (1991). From classical
to quantum glass. Physical Review Letters, 67(15), 2076–2079. https://doi.
org/10.1103/PhysRevLett.67.2076

Zhang, D., Chen, T., Vucelja, M., Lee, S.-H., & Chern, G.-W. (2021). Memory effect
and phase transition in a hierarchical trap model for spin glasses. Physical
Review E, 104(6), 064105. https://doi.org/10.1103/PhysRevE.104.064105


