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ABSTRACT

Optical frequency division (OFD) coherently transfers the high spectral purity of
optical transitions down to a microwave tone. This coherence transfer makes pos-
sible numerous modern technologies, including microwave synthesizing, optical
atomic clocks, time and frequency transfer, optical frequency synthesizing, etc.
In this thesis, I present advancements in using photonic-chip-based components
to perform the OFD with high-performance. Along this pathway, chip-integrated,
low-SWaP optical frequency combs are developed using coupled ring resonators.
The key features include efficient dispersion tuning using the Moiré speedup effect
and ultra-high 𝑄 factor up to 108 for an energy-efficient microcomb operation. To
illustrate, recording low-noise microwave among those using integrated photonics
are demonstrated. In moving towards a deliverable assembly, hybrid system packag-
ing is demonstrated with characterized long-term stability. Ultrafast tuning control
using integrated piezoelectric actuation simplifies the system architecture. In partic-
ular, an integrated, low-noise PDH locking system, and a full frequency-stabilized
microcomb are demonstrated.
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and blue lines) plotted versus relative mode number 𝜇. b, Cross-
sectional view of simulated electric field amplitudes in the coupled
region at mode numbers indicated in panel a by the black points. The
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wavelength near the zero GVD point. Arrows correspond to the pump
wavelengths shown in panel a. Errorbar denotes standard deviation
from the third-order polynomial fitting. c-f, Left panels: optical
spectra of the microcomb when pumped near the zero-dispersion
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dashed black curve. The dispersive wave position from panel a is
marked by arrows. Right panel: measured microcomb temporal
waveform during one round trip for the pumping wavelength given
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optimized 𝜖 . a, The measured integrated dispersion is plotted versus
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4.1 Differential temperature tuning using integrated heaters. (A),
Details of the heater routing. The electrodes (gray rectangles) are
wire bonded to an external circuit board to apply the heating current.
Heaters (red) are located at the arcs of the racetrack and are elec-
trically connected with a wider electrical trace (yellow). The wider
trace has less electrical resistance and thus reduces the heating effect
at the coupling section of the two rings. This design improves the
differential thermal tuning efficiency. All three parts (red, yellow
and gray) are deposited with the same Pt layer thickness. (B), Prin-
ciple of integrated heater frequency response characterization. (C),
Heater frequency response characterization setup. (D), Measured
frequency response of the heater transfer function. The dashed line
is a Lorentzian fitting where the 6 dB bandwidth is 2.67 ± 0.05 kHz. 59
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4.2 A hybridly integrated microresonator and optical pump can be
operated as a Brillouin laser, bright microcomb, or dark pulse
microcomb source with on-demand electrical control and at a
user-defined wavelength across C-band. (A), Illustration of the re-
configurable hybridly integrated device. Si3N4 coupled rings (CRs)
are directly pumped by an integrated III-V laser. Dispersion of the
CRs is tuned by differential tuning of the rings using integrated re-
sistive heaters. The III-V laser and the heaters are wire-bonded to
printed circuit boards for electrical control. (B), Photograph of the
integrated device depicted in panel A. (C), Zoom-in image of the cou-
pled racetrack ring resonator. Resistive heaters are deposited atop the
chip and offset from the Si3N4 waveguide by 8 𝜇m to avoid metal-
induced optical absorption. (D-F), Optical spectra for on-demand
operation of the Brillouin laser (panel D), bright microcomb (panel
E) and dark pulse microcomb (panel F), all operated at the same III-
V laser pumping wavelength 𝜆0=1548.4 nm per the system layout in
panel B. In each case, dispersion is reconfigured via simple electrical
tuning. In panel E the black curve denotes the sech2 envelope and
gives an optical pulse width of 800 fs. Left insets: schematic draw-
ings of Brillouin emission between symmetric and antisymmetric
hybrid modes (panel D) and pulse shape temporal waveforms inside
the coupled rings (panels E and F). Right insets: RF beatnote (panel
D) between the pump laser and Brillouin laser (resolution bandwidth
is 100 kHz). Repetition rate tone (panels E, F) confirming mode
locking (resolution bandwidth is 10 kHz). . . . . . . . . . . . . . . 61
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4.3 Measurement of Moiré speedup of the dispersion spectrum. (A),
Illustration of the Moirépattern formed by mode frequencies in ring A
and ring B resonators. A large shiftΔ 𝑓o of Moirépattern is caused by a
small uniform shift Δ 𝑓diff of the ring B frequencies. Brighter regions
in the pattern correspond to degeneracy of the local ring modes and
lead to strong modal hybridization. Here ring A is assumed stationary
(stat.), while ring B is tuned and illustrated before and after the
differential tuning. (B), Each color shows the measured (bold) and
fitted (fine solid line) dispersion spectra for the two frequency bands
of the system. Mode number 𝑚o = 0 corresponds to 1550 nm. The
red spectra result from differential heating. (C), Dispersion tuning
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C h a p t e r 1

INTRODUCTION: HIGH-𝑄 OPTICAL MICRORESONATORS
AND THEIR LOW-NOISE APPLICATIONS

The true nobility is in being
superior to your previous self.

Ernest Hemingway

1.1 Ultra-high-𝑄 optical microresonator
Optical resonators are the tuning forks of light. Practically, they confine light in
the optical modes, resulting in narrow resonances in the frequency domain (Vahala,
2003). These features help in both the territory of linear and nonlinear optics.
In linear optical systems, resonators enable applications such as laser frequency
stabilization and enhanced cavity–atom interactions. In nonlinear optics, they reduce
the power threshold required to access various nonlinear phenomena by increasing
the intracavity field intensity. Depending on the order of the nonlinear process (𝜒(2)

or 𝜒(3)), the enhancement is either proportional to the square or cube of the𝑄 factor,
respectively.

To date, three major classes of ultra-high-𝑄 microresonators (those with 𝑄 > 108)
have been demonstrated. Fabry–Pérot cavities are among the most mature, achiev-
ing 𝑄 factors up to ∼10 billion. However, their bulk nature limits integration
and miniaturization, making them unsuitable for large-scale photonic integration.
Whispering-gallery-mode (WGM) microresonators offer comparable performance,
with demonstrated 𝑄 factors exceeding 109. However, they typically require more
specialized materials and fabrication processes. For instance, crystalline WGM
microresonators have achieved intrinsic 𝑄 factors as high as 1011 (Savchenkov et
al., 2007), but rely on time-intensive mechanical polishing and lack scalability for
wafer-level production. Silica wedge microresonators simplifies the fabrication pro-
cess by using chemical etching, with beyond-billion 𝑄 factor (H. Lee, Chen, et al.,
2012; L. Wu et al., 2020). More recently, waveguide-based integrated microres-
onators have emerged as a promising platform. These devices can be fabricated in
a planar geometry compatible with photonic integration. Notably, a 𝑄 factor of 700
million was recently demonstrated in a silicon nitride (Si3N4) waveguide resonator
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(Kaikai Liu, N. Jin, et al., 2022), marking a significant advancement in scalable,
ultra-low-loss integrated photonics.
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Figure 1.1: Summary of microresonator platforms. Inset: Schematic showing
optical loss channels for high-𝑄 integrated optical microresonators. The intrinsic
loss rate is characterized by the intrinsic 𝑄 factor (𝑄0). Bus waveguide coupling
also introduces loss that is characterized by the external coupling 𝑄 factor (𝑄ex).
Main panel: The references are: Silica micro-sphere (Braginsky, Gorodetsky, and
V. S. Ilchenko, 1989; Vernooy et al., 1998); CaF2 (Savchenkov et al., 2007); Silica
wedge (H. Lee, Chen, et al., 2012; L. Wu et al., 2020); Silica rod (Del’Haye, Scott
A Diddams, and Papp, 2013; L. Yao et al., 2022); Silica ridge (2018) (K. Y. Yang
et al., 2018); AlGaAs (2020) (Pu et al., 2016; W. Xie et al., 2020); High confinement
Si3N4 (Xingchen Ji et al., 2017; Pfeiffer, J. Liu, Raja, et al., 2018; J. Liu, Huang,
et al., 2021); Low-confinement Si3N4 (Spencer et al., 2014; Puckett et al., 2021;
W. Jin et al., 2021; Kaikai Liu, N. Jin, et al., 2022); thin-film lithium tantalate
(Chengli Wang et al., 2024); thin-film lithium niobate (Cheng Wang et al., 2019);
AlN (Pernice, C. Xiong, and Tang, 2012; X. Liu et al., 2017; Kewei Liu et al.,
2022); Tantala (Jung et al., 2021).
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The quality factor (𝑄) of a ring resonator is defined as 𝑄 = 𝜔0/𝜅, where 𝜔0 is
the resonant angular frequency, and 𝜅 is the full-width-half maximum linewidth of
the resonance in angular frequency. The 𝑄 factor can also be interpreted in two
equivalent ways: (1) In terms of energy, it represents the ratio of the energy stored
in the resonator to the energy lost per optical cycle. (2) It is also proportional to the
decay time constant of optical energy within the cavity. Another common metric
of the resonator is its finesse F ≡ 2𝜋𝐹𝑆𝑅/𝜅 ≡ 𝑄(2𝜋𝐹𝑆𝑅)/𝜔0, where 𝐹𝑆𝑅 is the
free-spectral-range of the resonator.

The common loss mechanisms of a microresonator are summarized in the inset of
Figure 1.1. The 𝑄 factor is governed by material absorption, radiation losses (due
to scattering and bending), and coupling to external waveguides (cavity loading).

Intrinsic material absorption ultimately limits the achievable 𝑄 factor. Impurities
such as water, hydrogen, and trace metal ions have been identified as significant
absorption sources (Gorodetsky, Savchenkov, and V. S. Ilchenko, 1996; Rokhsari,
Spillane, and Vahala, 2004; J. Liu, Raja, et al., 2018; Puckett et al., 2021; Pfeiffer, J.
Liu, Raja, et al., 2018). Other mechanisms, including surface and interfacial states,
can also contribute to excess loss (Parrain et al., 2015; Guha et al., 2017).

To increase the 𝑄 factor, significant effort has gone into developing fabrication
techniques and design strategies that reduce scattering losses caused by sidewall
and interface roughness (Vernooy et al., 1998; Armani et al., 2003; H. Lee, Chen,
et al., 2012; Xingchen Ji et al., 2017; Pfeiffer, J. Liu, Raja, et al., 2018). Coupling
non-idealities can also degrade the𝑄 factor, but can be mitigated through optimized
coupling structures, such as pulley couplers (Pfeiffer, J. Liu, Geiselmann, et al.,
2017; Spencer et al., 2014). Bending loss is another important factor, particularly in
low-confinement platforms where tight bends lead to radiation losses (W. Jin et al.,
2021; Kaikai Liu, N. Jin, et al., 2022).

Chromatic dispersion of a microresonator
The propagation of light inside a waveguide resonator can be described by the
Helmholtz equation,

(∇2 − 𝑛2

𝑐2
𝜕2

𝜕𝑡2
)𝐸 (𝑥, 𝑦, 𝑧, 𝑡) = 0. (1.1)

For transverse modes in a photonic waveguide, we assume light propagates along
the 𝑧-direction and the longitudinal electric field component is negligible (𝐸𝑧 = 0).
We consider a field of the form 𝐸 (𝑥, 𝑦, 𝑧, 𝑡) = 𝐸 (𝑥, 𝑦)𝑒𝑖(𝜔𝑡−𝛽𝑧) .
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Dispersion describes how the effective refractive index of an optical structure, com-
posed of specific materials and geometry, varies with optical frequency. The propa-
gation constant 𝛽(𝜔) can be expanded in a Taylor series around a central frequency
𝜔0:

𝛽(𝜔) = 𝛽(𝜔0) + 𝛽1(𝜔 − 𝜔0) +
𝛽2

2
(𝜔 − 𝜔0)2 + ..., (1.2)

where 𝛽1 is the inverse of the group velocity, 𝛽2 is the group velocity dispersion,
typically expressed in units of ps2/km. Equivalently, the resonance frequencies of a
set of modes within a single mode family (e.g., TE0) can be expressed as:

𝜔𝑚 = 𝜔0 + 𝐷1(𝑚 − 𝑚0) +
𝐷2

2
(𝑚 − 𝑚0)2 + · · · , (1.3)

where 𝑚 − 𝑚0 is the mode number relative to the mode at 𝜔0 = 𝑚0𝛽0𝑐, 𝐷1/2𝜋 is
the free-spectral-range (𝐹𝑆𝑅), and 𝐷2 is the group velocity dispersion parameter.
The propagation and dispersion constants are related by:

𝜔𝑚 =
2𝜋𝑚𝑐
𝑛eff𝐿

, 𝛽1 =
𝑑𝛽

𝑑𝜔
=
𝑑 (2𝜋𝑚/𝐿)
𝑑𝜔𝑚

=
2𝜋
𝐿𝐷1

, (1.4)

𝛽2 =
𝑑2𝛽

𝑑𝜔2
𝑚

= − 2𝜋
𝐿𝐷2

1

𝑑𝐷1

𝑑𝜔𝑚
= −𝑛eff𝐷2

𝑐𝐷2
1
. (1.5)

Current material platforms of microresonators
Over the past three decades, advances in micro- and nano-fabrication technologies
have enabled the realization of integrated optical resonators (microresonators), as
summarized in Figure 1.1. In particular, efforts have focused on achieving low op-
tical propagation loss (i.e., high 𝑄 factors), while also allowing for precise control
of device properties, either defined during fabrication or through post-fabrication
tuning. The first generations of high-𝑄 microresonators were demonstrated by Bra-
ginsky, Gorodetsky and Ilchenko (Braginsky, Gorodetsky, and V. S. Ilchenko, 1989).
Subsequently, high-𝑄 factors (hundreds of millions to a billion) were achieved on
silicon substrates using surface-tension-assisted reflow (Spillane, Kippenberg, and
Vahala, 2002), and later simplified via chemical etching techniques (H. Lee, Chen,
et al., 2012; K. Y. Yang et al., 2018; L. Wu et al., 2020). More recently, high-𝑄 res-
onators have been integrated into photonic circuits, offering improved control over
geometry and dispersion. However, these integrated devices typically exhibited 𝑄
factors at least an order of magnitude lower (i.e., in the range of a few million to
tens of millions) compared to discrete counterparts, particularly prior to the time of
this thesis. Significant breakthroughs occurred around the beginning of this PhD
work, when foundry-based fabrication processes enabled dramatic improvements in
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𝑄 factors—reaching values close to or exceeding 100 million... (W. Jin et al., 2021;
Puckett et al., 2021; J. Liu, Huang, et al., 2021). The platform developed in these
works, referred to in this thesis as the low-confinement Si3N4 platform, has since
become central to the research and will be detailed in the following section.

1.2 CMOS-ready, ultra-low-loss Si3N4 platform
Very recently, a new kind of ultra-low-loss integrated photonic platform has emerged,
named the low-confinement Si3N4 platform (Spencer et al., 2014). The system
supports 𝑄 factors as high as 700 million (corresponding to propagation loss below
0.03 dB/m) (Kaikai Liu, N. Jin, et al., 2022). Moreover, it can be fabricated on
8-inch wafers in a CMOS foundry with high yield (W. Jin et al., 2021).
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Figure 1.2: The CMOS-ready, ultra-low-loss Si3N4 platform. a, Photograph
showing a fully fabricated, 8-inch (200 mm) wafer with ultra-low-loss Si3N4 circuit.
b, Schematic of cross-section of the structure. Panels a-b are reproduced from
(W. Jin et al., 2021). c, Photograph of a two-coupled-ring resonator device. d,
Simulated TE mode of the resonator with 𝑄 factor measurement (two identical
waveguide couplers are present). The ring resonator is with 16 GHz 𝐹𝑆𝑅 and
20 𝜇m waveguide width. e, Simulated TM mode of the resonator with 𝑄 factor
measurement (credit to Jin-Yu Liu at Caltech). f, Group velocity dispersion (GVD)
parameter 𝐷2 of the ultra-low-loss Si3N4 platform. Strong GVD is present. Upper
panel: from left to right, the waveguide width is 2.8 𝜇m, 20 𝜇m and 2.8 𝜇m,
respectively. Lower panel: the waveguide width is 20 𝜇m (data credit to Jin-Yu Liu
at Caltech).

An optical photograph of the low-confinement Si3N4 platform is shown in Fig-
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ure 1.2a. A schematic of the cross-sectional structure is shown in Figure 1.2b. The
cross-section features a high-aspect-ratio rectangular waveguide, where the height
is 100 nm versus the width (several 𝜇m). The waveguide core is fully buried in SiO2

cladding, providing environmental protection. The high aspect ratio minimizes the
overlap between the sidewalls and the electric field, thereby reducing scattering
loss caused by lithographically defined sidewall roughness—a major contributor to
propagation loss in integrated photonic circuits. In addition, a large fraction of the
optical energy resides in the SiO2 cladding, which further reduces propagation loss,
as the material absorption in SiO2 is typically lower than in Si3N4 (Gao et al., 2022).
The simulated electric field profile of the fundamental TE (TM) mode is shown in
Figure 1.2d (e). For the TE (TM) mode, the typical highest intrinsic𝑄 is beyond 200
(600) million. It is also noted that the effective index of the modes is low (compared
with the silica index of 1.44). This makes it difficult to make tight bends using the
platform, especially for the TM mode.

The major drawback of the low-confinement Si3N4 platform is its high and inflexible
group velocity dispersion (GVD). The dispersion cannot be efficiently tuned through
waveguide width variation, a common strategy in integrated photonics. As shown in
Figure 1.2f, for the fundamental TE mode, the dispersion parameter 𝐷2 of various
devices—despite differences in free spectral range (FSR) and waveguide width—lies
along a trend corresponding to a fixed waveguide GVD of 𝛽2 = 540 ps2/km. This
value is approximately 20 times larger than the GVD of fused silica (𝛽2 = 26 ps2/km).
A similar trend is observed for the TM mode. The elevated and rigid dispersion
profile significantly limits applications that rely on engineered dispersion, such as
Kerr microcomb generation.

1.3 Applications of high-𝑄 optical microresonators
The common applications of high-𝑄 optical microresonators are high-coherence
lasers, optical frequency comb generation and low-noise microwave source. The
three applications are usually coupled with each other.

Application in high-coherence lasers
The invention of lasers has revolutionized modern science and technology. Cur-
rently, electromagnetic waves at optical frequencies exhibit high spectral purity
(100 THz to 800 THz), and can propagate through optical fibers with remarkably
low loss. These features enable applications in precise sensing, optical communica-
tions, spectroscopy, medical technologies, etc. The spectral purity of a laser can be
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boosted by stabilizing the laser to an optical transition (either an atomic transition or
an optical cavity), achieving fractional frequency stability as good as 10−19 (Aeppli
et al., 2024). This has enabled the study of quantum atomic systems to become a
ubiquitous tool. However, these highly stable laser systems are usually bulky with
high power consumption, thus confined to laboratory environments.

Integrated photonics can potentially reduce the SWaP (Size, Weight and Power) of
such systems, and eventually address the demands of field-deployable applications.
The idea of generating low-noise optical fields is to stabilize a laser to the resonance
of the microresonator. The frequency stability of the microresonator ultimately
determines the laser stability. The performance of the locking technique governs
how closely the laser inherits this stability.

To create a low-noise optical oscillator, a high-performance reference cavity is
crucial. In recent years, the miniaturization of such references has advanced signif-
icantly. Fabry–Pérot cavities offer exceptional stability, though they are difficult to
integrate. Vacuum-gap Fabry–Pérot cavities significantly reduce thermorefractive
noise (N. Jin et al., 2022) and can be miniaturized to millimeter scales. Dielectric
materials can also be used to construct FP cavities, but this typically involves trade-
offs in either volume or frequency stability (W. Zhang et al., 2020). Whispering-
gallery-mode (WGM) cavities offer a compromise between miniaturization and
performance, but pose significant challenges for photonic integration and mass pro-
duction (Liang, V. S. Ilchenko, Savchenkov, et al., 2010; Liang, V. S. Ilchenko,
Eliyahu, et al., 2015; H. Lee, Suh, et al., 2013). Waveguide-based integrated res-
onators (e.g., spiral resonators) are monolithically fabricated on silicon chips, but
tend to exhibit broader linewidths and lower frequency stability (B. Li et al., 2021;
Kaikai Liu, Chauhan, et al., 2022). Table 1.1 summarizes these comparisons.

There are several methods to stabilize a laser to an optical resonance. Pound–Drever–Hall
(PDH) locking (Drever et al., 1983) remains the most robust, employing an electro-
optic modulator and active feedback to precisely control the laser frequency. An
alternative is H"ansch–Couillaud locking (Hänsch and Couillaud, 1980). Self-
injection locking (SIL) (Hemmerich et al., 1990) uses optical feedback within the
cavity to stabilize the laser passively, reducing complexity by eliminating active
electronics. However, SIL provides limited control at low offset frequencies and
offers fewer monitoring capabilities. Nonlinear processes can also contribute to
passive noise suppression, including Brillouin lasers (J. Li, H. Lee, Chen, et al.,
2012; Lai et al., 2020; Gundavarapu et al., 2019; Loh et al., 2020), Kerr parametric
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oscillators (Black et al., 2022; Y. Zhao et al., 2024), and Raman lasers (P.-J. Zhang
et al., 2021; Kewei Liu et al., 2022). Such nonlinear mechanisms require resonant
pumping and are often combined with auxiliary locking techniques to stabilize the
pump laser. Table 1.2 compares these stabilization methods.

Reference cavity type Fabry–Pérot cavity WGM cavity waveguide resonator
Stability best good okay
Cavity linewidth good good okay
Integration very difficult difficult chip integrated

Table 1.1: Comparison between different miniaturized reference cavities.

Locking technique PDH locking self-injection locking frequency conversion
Stability good okay okay
Operation locking feedback feedback phase sensitive built-in noise reduction
Hardware EOM and servo phase tuner case-dependent

Table 1.2: Comparison between different laser stabilization techniques.

Application in optical frequency comb generation
Optical frequency combs are spectra composed of equidistant laser lines, character-
ized by a uniform frequency spacing—known as the repetition rate—with spacing
uniformity at the level of 10−19 (Predehl et al., 2012). Traditionally, these combs are
generated using mode-locked lasers, such as solid-state Ti:sapphire or erbium-doped
fiber lasers, and are now commercially available.

Recently, frequency combs have been demonstrated using photonic integrated cir-
cuits, giving rise to the concept of microcombs. In particular, microcombs based
on Kerr nonlinearity have garnered significant attention due to their low threshold
power, high coherence, and potential for complete on-chip integration.

Kerr microcombs have been thoroughly reviewed in the literature (Kippenberg,
Holzwarth, and S. Diddams, 2011; Kippenberg, Gaeta, et al., 2018), so only the
most relevant concepts are summarized here. In essence, a Kerr microcomb is
generated by pumping a high-𝑄 resonance with a continuous-wave laser. The
Kerr nonlinearity facilitates frequency conversion via parametric four-wave mixing,
which generates new comb lines. When properly engineered, the Kerr nonlinearity
can compensate for group velocity dispersion, enabling soliton formation and phase
coherence across the comb. In this regime, the intracavity field adopts a stable
pulse-like waveform, and its periodic extraction via a bus waveguide produces a
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frequency comb. The repetition rate is approximately equal to the resonator’s free
spectral range (𝐹𝑆𝑅), though slight shifts can occur due to nonlinear and dispersive
effects.

This elegant generation mechanism is well-suited for integration, especially when
combined with high-𝑄 resonators that allow operation at ultra-low pump powers.
As such, Kerr microcombs are regarded as one of the most promising pathways
toward fully integrated optical frequency comb systems (Stern et al., 2018; Shen
et al., 2020; Xiang et al., 2021; Q.-X. Ji, P. Liu, et al., 2024).

Application in low-noise microwave generation
Photonic techniques offer a compelling pathway for generating microwave and
millimeter-wave signals with exceptional spectral purity and compact form fac-
tors. One foundational approach relies on photo-detection of optical frequency
differences—typically between two narrow-linewidth lasers or between comb lines
in an optical frequency comb. This method enables access to microwave frequen-
cies that are otherwise difficult to reach electronically, while maintaining low phase
noise and excellent frequency stability (Marpaung, J. Yao, and Capmany, 2019).

Several photonic-chip-based implementations have demonstrated this concept. These
include opto-electronic oscillators (OEOs) (Maleki, 2011), direct heterodyne detec-
tion between two cavity-stabilized lasers (J. Li, H. Lee, and Vahala, 2013; Gun-
davarapu et al., 2019), and detection of the repetition rate from a stabilized micro-
comb (Liang, V. S. Ilchenko, Eliyahu, et al., 2015; Yi, Q.-F. Yang, K. Y. Yang, et al.,
2015; Yi, Q.-F. Yang, X. Zhang, et al., 2017; Lucas et al., 2020; Q.-F. Yang et al.,
2021; L. Yao et al., 2022).

In fact, the world’s lowest phase noise microwave signals have been generated via
optical frequency division (OFD), a process in which the stability of an optical
oscillator is transferred to the microwave domain using an optical frequency comb
(Swann et al., 2011; Fortier et al., 2011; X. Xie et al., 2017). The OFD approach
achieves orders-of-magnitude improvement in phase noise compared to even the
best electronic oscillators, leveraging the high carrier frequency of optical light to
suppress thermal noise sources upon division.

Importantly, OFD combines three core photonic technologies: (1) a highly stable op-
tical reference (typically a laser locked to a high-finesse cavity), (2) a coherent optical
frequency comb that acts as the phase-preserving divider, and (3) a low-noise photo-
detection system to convert the optical pulse train into an electrical signal. Integrated
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photonics now makes it possible to shrink all three components onto chip-scale com-
ponents, opening the door to compact, ultra-low-noise microwave generators with
applications in radar, communications, and timing systems. In this thesis, I demon-
strate microwave generation via OFD using chip-based microcombs and resonators.
The microcomb and the reference laser are jointly engineered as a coupled system
to achieve optimal phase coherence and thermal-noise suppression. Furthermore,
significant improvements to the individual components—such as linewidth reduc-
tion in chip-scale lasers and enhanced comb coherence—provide benefits beyond
microwave generation, including optical metrology and time-frequency transfer.

1.4 Organization of the thesis
The thesis is organized as follows. In Chapter 2, I present results on low-noise
microwave generation via optical frequency division (Kudelin et al., 2024; Q.-X. Ji,
W. Zhang, L. Wu, et al., 2024; Q.-X. Ji, W. Zhang, Savchenkov, et al., 2025). The
key outcome is the record-low phase noise achieved among photonic-chip-based
platforms: −152 dBc/Hz at 10 kHz offset from a 10 GHz carrier. The design
and demonstration of the optical frequency divider (the microcomb) are detailed in
Chapters 3 through 5. These chapters include: A near-zero group velocity dispersion
(GVD) microcomb realized using a two-coupled-ring resonator (Q.-X. Ji, W. Jin, et
al., 2023); Techniques for mode and dispersion control via tuning and multi-modality
operation (Q.-X. Ji, P. Liu, et al., 2024); A dispersive-wave-agile microcomb in a
three-coupled-ring resonator platform for extended spectral reach (Q.-X. Ji, W.
Zhang, Savchenkov, et al., 2025). The pathway toward full system integration is
presented in Chapter 6. Preliminary results include: A hybrid-packaged microcomb
with improved long-term frequency stability; Integrated piezoelectric tuning for
dynamic control and demonstration of stable PDH locking and chip-scale optical
frequency division. Supplementary theoretical modeling is included in Appendix
A, and additional technical details and measurement data are provided in Appendix
B.
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C h a p t e r 2

PHOTONIC CHIP-BASED LOW-NOISE OPTICAL FREQUENCY
DIVISION

Never measure anything but
frequency!

Arthur Schawlow

In this chapter, I discuss the development of a photonic-chip-based low-noise mi-
crowave source using optical frequency division. The primary focus is on identifying
and mitigating key noise sources in the system, including those originating from
both the optical reference lasers and the microcomb. For the microcomb subsystem,
the discussion is centered on two experimentally demonstrated platforms. The first
is a self-injection-locked dark-pulse microcomb, reported in (Kudelin et al., 2024;
Ji, W. Zhang, Wu, et al., 2024). The second is a bright soliton microcomb featuring
an agile dispersive wave, published in (Ji, W. Zhang, Savchenkov, et al., 2025).

2.1 Two-point optical frequency division
Frequencies of electromagnetic waves represent the most precisely measurable phys-
ical quantities known to science. Today, the highest-precision measurements rely on
frequency spectroscopy—echoing Arthur Schawlow’s maxim: “Never measure any-
thing but frequency” (Hänsch, 2006). State-of-the-art oscillators based on cooled
atomic transitions now routinely achieve precision exceeding 19 significant digits
(Aeppli et al., 2024). And the precision can be harnessed with electronics via the
process called the optical frequency division (OFD), using an octave-spanning, self-
referenced optical frequency comb (Diddams et al., 2000; Jones et al., 2000). The
self-referenced optical frequency combs have enabled several unprecedented appli-
cations, including time and frequency transfer (Giorgetta et al., 2013; Deschênes
et al., 2016; Q. Shen et al., 2022; Caldwell et al., 2023), frequency ratio measure-
ment between optical atomic transitions (Rosenband et al., 2008), and the potential
re-definition of a second (Le Targat et al., 2013).

Two-point optical frequency division (2P-OFD) trades a portion of this ultimate pre-
cision for reduced system complexity, by using a non-self-referenced (i.e., narrower
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Figure 2.1: Scheme of two-point optical frequency division, with selected pub-
lications during my PhD. Microcomb: A dark pulse microcomb (Ji, W. Jin, et al.,
2023; Ji, P. Liu, et al., 2024) and a bright soliton microcomb with agile disper-
sive wave (Ji, W. Zhang, Savchenkov, et al., 2025). Reference cavity: A compact
Fabry–Pérot cavity in high-vacuum (Ji, W. Zhang, Wu, et al., 2024) and a vacuum-
free bulk Fabry–Pérot cavity (W. Zhang, Kittlaus, et al., 2024). System actuation
and integration: a hybrid-packaged microcomb with a III-V laser pump (Ji, W.
Zhang, Savchenkov, et al., 2025), and an integrated microcomb with piezoelectric
tuner.

spectral span) frequency comb (Swann et al., 2011). This tradeoff enables more
compact and practical microwave sources, including commercial systems based on
electro-optic combs (J. Li and K. J. Vahala, 2023). Prior to the start of my PhD,
several demonstrations of chip-based 2P-OFD had been reported (J. Li, Yi, et al.,
2014; Kwon et al., 2022). During my PhD, I contributed to two systems that signifi-
cantly extended performance into the ultralow phase-noise regime while advancing
photonic integration (Kudelin et al., 2024; Ji, W. Zhang, Savchenkov, et al., 2025).
In parallel, other research groups have also reported photonic 2P-OFD implemen-
tations (Zhao et al., 2024; Sun, B. Wang, et al., 2024; X. Jin et al., 2024; Sun,
Mark W. Harrington, et al., 2024; Y. He et al., 2024).

In a microcomb-based 2P-OFD system (illustrated in Fig. 2.1), spectral endpoints
of the comb (orange box) are interfaced to two lasers stabilized to optical references
(gray box), such as FP cavity resonances. Electrical mixing eliminates the optical
carrier frequency of the microcomb, and generates error signal 𝑓IF related to (𝑛−𝑚)
times the repetition rate, Locking actuation of the microcomb stabilizes 𝑓IF to a local
oscillator 𝑓LO with negligible additive phase noise (orange arrow in Figure 2.1). The
repetition rate is accordingly stabilized, where 𝑓rep = (𝜈2 − 𝜈1 + 𝑓IF)/(𝑛 − 𝑚). This
effectively transfers the optical reference stability to the comb repetition rate, which
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can be photodetected to generate a spectrally pure microwave signal. The single-
sideband (SSB) phase noise spectrum of the resulting microwave tone is given
by:

𝑆rep( 𝑓 ) =
𝑆𝜈2−𝜈1 ( 𝑓 ) + 𝑆IF( 𝑓 )

(𝑛 − 𝑚)2 + 𝑆SNR( 𝑓 ) + 𝑆PD( 𝑓 ), (2.1)

where 𝑆𝜈2−𝜈1 ( 𝑓 ) is the relative frequency noise of the two optical reference lasers,
𝑆IF( 𝑓 ) is the locking residual noise of the microcomb locking system, 𝑆SNR( 𝑓 ) is
the contribution from signal-to-noise ratio limitations in the locking electronics, and
𝑆PD( 𝑓 ) is the noise floor set by photo-detection. In the remainder of this chapter, each
of these contributions is examined in detail through real system implementations.

2.2 Miniaturized, low-noise optical references
In this section, the approach used to reduce 𝑆𝜈2−𝜈1 ( 𝑓 ), which represents the differ-
ential noise between the two optical references, is discussed.

The principle of the Pound Drever Hall (PDH) technique can be summarized as:
“We will quickly measure what the laser actually is doing, compared with our
desired behavior, and then use feedback onto suitable actuators to control the laser’s
frequency. If we can make the corrections quickly enough and accurately enough,
then the controlled laser will very closely approximate the ideal frequency stable
laser we need” (John L. Hall, 2006).

Figure 2.2a shows the full experimental setup for PDH locking of two continuous
wave (CW) lasers used in the two point optical frequency division system. It com-
prises two individual PDH subsystems along with additional optical and electronic
components for laser multiplexing and de-multiplexing. In addition, residual ampli-
tude modulation (RAM) control loops are implemented for both lasers (Wong and
John L. Hall, 1985; W. Zhang, Martin, et al., 2014), although these may be omitted
depending on system requirements.

Optimization of the PDH locking system
The PDH locking technique operates by phase-modulating the laser light to generate
frequency sidebands, which, unlike the carrier, do not couple into the cavity and
are predominantly reflected. The interference between the reflected sidebands and
the carrier encodes phase information about the laser’s detuning from the cavity
resonance. This reflected signal is detected and demodulated to produce an error
signal that is highly sensitive to frequency deviations. Because the PDH method
uses phase-sensitive detection and is largely immune to amplitude noise, it enables
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Figure 2.2: PDH locking setup. a, Experimental setup of the PDH locking subsys-
tem for the two point optical frequency division system. ISO: isolator. ILP: in-line
polarizer. EOM: electro-optic modulator. BPF: bandpass filter. PBS: polarization
beam splitter. b, Ideal PDH error signal in the absence of experimental noise.
c, Illustration of a realistic PDH error signal with typical experimental noise. d,
Zoomed in view of the PDH error signal near the locking point. The laser frequency
fluctuation Δ 𝑓 is plotted against the corresponding voltage error signal Δ𝑉 . The
local slope (dashed line) determines the frequency to voltage conversion.

ultra-low-noise frequency stabilization.

Figure 2.2b gives an (ideal) example of the error signal, when the laser’s frequency
is scanned across the resonance of the reference cavity. The three zero crossings
(intersection of the dashed line and the error signal) correspond to the position
where the blue sideband, the carrier and the red sideband matches the resonance,
respectively. Typically, the zero-crossing corresponding to the carrier is used as the
locking point, for maximum signal-to-noise ratio (SNR).

When a laser is PDH stabilized to an optical transition, its noise spectrum is calcu-
lated as

𝑆𝜈 ( 𝑓 ) = 𝑆cavity( 𝑓 ) + 𝑆in−loop( 𝑓 ) + 𝑆add( 𝑓 ), (2.2)

where 𝑆cavity( 𝑓 ) is the cavity noise (mostly thermal noise), 𝑆in−loop is the PDH lock-
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Figure 2.3: Comparison of laser noise under different PDH locking configura-
tions. a, Comparison of laser relative phase noise when PDH locked to two FP
cavities with different cavity linewidth 𝛿𝜈C. b, Comparison of laser relative phase
noise when PDH locked to the same FP cavity, but using different photo detectors
to generate the PDH error signal.

ing residual (in-loop noise), and 𝑆add( 𝑓 ) is additional noise contribution (residual
amplitude modulation, PDH error signal-to-noise, etc.). An example of a non-ideal
error signal that includes these effects is shown in Figure 2.2c.

With known 𝑆cavity( 𝑓 ) contributed from the cavity, we aim at reducing the noise in
𝑆in−loop( 𝑓 ) and 𝑆add( 𝑓 ). The cavity linewidth 𝛿𝜈C is critically important, since all
the noises are initially electrical error and later converted to the optical frequency
error via the slope Δ𝑉/Δ 𝑓 = −𝛼PD8

√
𝑃carrier𝑃sideband/𝛿𝜈C ≡ 𝛼PD𝐷PDH, where

𝐷PDH ≡ −8
√
𝑃carrier𝑃sideband/𝛿𝜈C is called the frequency discriminant (Black, 2001),

with 𝛼PD the photo detector responsivity in volt per Watt, 𝑃carrier the carrier optical
power, 𝑃sideband the sideband optical power. A smaller cavity linewidth leads to
a larger 𝐷PDH and is thus preferred for higher sensitivity. Figure 2.3a shows a
comparison using two different cavities (I and II) with different cavity linewidths.

𝑆in−loop( 𝑓 ) is also greatly affected by the free-running frequency noise of the laser,
as well as how fast the laser can be tuned (which determines the achievable locking
gain). For better free-running frequency noise of the laser, fiber lasers, self-injection
locked semiconductor lasers (W. Jin et al., 2021; B. Li, W. Jin, et al., 2021), or high-
end semiconductor lasers (e.g., RIO PLANEX lasers) are possible solutions. For
faster tuning control, laser current modulation and frequency tuning using external
AOMs are possible. Integrated piezoelectric tuning control is also explored in this
thesis (Chapter 6).
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The SNR of the PDH error signal is also a limiting factor in noise reduction. Proper
selection and use of the photodetector is essential. The incident power to the detector
should be right below the saturation power. Additionally, it is important to consider
the noise figure and its frequency dependence for the chosen detector. For example, a
Thorlabs PDA05CF2 detector offers better performance than a Thorlabs avalanche
detector (Thorlabs APD130C), as plotted in Figure 2.3b. In this measurement, FP
cavity I is used.

Locking two lasers to the same FP cavity
When locking two lasers to the same cavity, the signals reflecting different lasers
should be properly separated. The method used in this case is modulation and
demodulation at different frequencies (Figure 2.2a). The choices of the frequencies
are not unique, but care must be taken to ensure the harmonics do not interfere with
each other.

When locking two lasers to the same cavity separated by a certain amount of optical
frequency, the resonant frequencies of the two modes share a certain amount of
extra coherence, especially if they belong to the same mode family. This may bring
the relative frequency jitter of the two modes lower than the thermal fluctuation of
a single optical resonance, where the suppression is referred to as common mode
suppression. A more detailed measurement is in (Groman et al., 2024).

2.3 Engineering of the microcomb for 2P-OFD
Larger division factor (𝑛 − 𝑚)
Targeting low-noise microwave/mm-wave generation, photonic chip-based optical
frequency combs (microcombs) are another key component in the optical frequency
division system. There are several different kinds of microcombs demonstrated
to be able to serve as the divider. These include (bright) soliton microcombs
(Zhao et al., 2024; Sun, B. Wang, et al., 2024; Sun, Mark W. Harrington, et
al., 2024), dark pulse microcombs (part of this work) (Kudelin et al., 2024), and
electro-optic microcombs (Y. He et al., 2024). Before these recent demonstrations
of optical frequency division, photonic chip-based frequency combs have also been
demonstrated in the territory of a clockwork for the miniaturization of optical clocks
(Papp et al., 2014; Del’Haye et al., 2014; Newman et al., 2019; Drake et al., 2019).

To build a portable or integrated OFD system, one needs to involve as few “bulky”
components and as little power consumption as possible. Electro-optic microcombs
have the simplest generating mechanism, but simultaneously require a consider-
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ably high-power and stable microwave drive. The fabrication of Lithium Niobate
waveguides, which is currently the prominent platform in generating electro-optic
combs, is also much more difficult to fabricate yet. The generation of bright soliton
microcombs traditionally requires a specific tuning scheme to overcome the thermal
problem and access the mode-locked state (Yi, Q.-F. Yang, K. Y. Yang, and K. Va-
hala, 2016; Stone et al., 2018), which involves an acoustic-optic modulator (AOM),
a quadrature phase-shift keying (QPSK), or a secondary powerful laser. Although
it is recently simplified under the self-injection lock scheme (Pavlov et al., 2018;
B. Shen et al., 2020), it still experimentally suffers from stabilizing a single bright
soliton unless other specific designs are added (Ulanov et al., 2024). Besides, the
line power drops exponentially when getting away from the pump center, which
corrupts the SNR when used in the OFD. Dark pulse microcombs have compli-
cated generation mechanism (H. Wang et al., 2022) and associated “unpredictable”
properties (such as line power and temporal profile), but they generally mode-lock
easily and stably under an isolated III-V pump (W. Jin et al., 2021). The optical line
power at the spectral endpoints is high, so is the generated microwave power when
photodetected.

There are significant challenges in generating microcombs using the ultra-low-
loss Si3N4 platform for the 2P-OFD. (1) The spectral coverage of the comb is
narrow, because of the large GVD of the used platform (Figure 1.2). During
my PhD, two separate strategies are adapted, including near-zero group velocity
dispersion microcomb generation using two-coupled-ring resonator and dispersive
wave formation in a three-coupled-ring resonator, which will be introduced in the
next two chapters. (2) To achieve low-noise OFD, effective control of the repetition
rate is required. This is approached in the next section of the chapter.

Low-noise actuation of the microcomb (smaller 𝑆IF( 𝑓 ))
For a low-noise 2P-OFD system, fast actuation is required to reduce 𝑆IF( 𝑓 ), so that
𝑓IF closely follows the low-noise 𝑓LO in Figure 2.1. In a typical servo system with
integration gain, the in-loop noise is reduced from the free-running level by 20 or 40
dB per decade toward lower offset frequencies, starting from the corner frequency of
the servo loop. As a result, a higher corner frequency is always preferred. Since the
achievable corner frequency is ultimately limited by the actuator, faster actuation is
essential for reducing 𝑆IL( 𝑓 ).

A quiet free-running state of the microcomb is important. Operating the microcomb
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near its “quiet point” can help achieve this (Yi, Q.-F. Yang, X. Zhang, et al., 2017;
Lucas et al., 2020; Q.-F. Yang et al., 2021). Specifically, under the pump laser self-
injection locking mode, excess 1/ 𝑓 frequency noise is widely observed for bright
solitons (Voloshin et al., 2021), dark pulse microcomb (Ji, W. Jin, et al., 2023;
Lihachev et al., 2022), second harmonic generation (B. Li, Yuan, et al., 2023) and
Brillouin laser (Ji, P. Liu, et al., 2024). The origin of this noise is yet not understood.

It is also worth noting that, in the case of 2P-OFD, only the repetition rate ( 𝑓rep)
is stabilized and actuated, while the optical carrier frequency ( 𝑓0) remains free-
running. In some applications, both 𝑓rep and 𝑓0 must be stabilized, which requires a
second actuator. Ideally, a good actuator should allow for independent control of 𝑓rep

and 𝑓0 (Newbury and Swann, 2007; W. Zhang, Lours, et al., 2012). However, this
remains challenging, as changes in 𝑓rep and 𝑓0 are strongly correlated in microcombs
(Lei et al., 2022).

Improvement of SNR in the 2P-OFD (lower 𝑆SNR( 𝑓 ))
The limited signal-to-noise ratio (SNR) of microcomb locking imposes a floor—typically
in the form of white phase noise—on the stabilized 𝑓rep. To reduce 𝑆SNR( 𝑓 ), it is
critically important to control both the optical power and the frequency of the comb
lines at the spectral endpoints used in the 2P-OFD. High optical power at these end-
points is necessary for generating low-phase-noise microwave signals upon photo-
detection, while accurate frequency positioning is essential for coarse alignment
with the reference laser frequencies. Achieving both conditions simultaneously
presents a significant challenge in microcomb systems. Careful handling of the
beatnote signals in the electronic feedback loop is also essential. As illustrated in
Figure 2.4, two low-pass filters are employed to suppress harmonic distortion in
the electrical mixing. The power levels of the beatnotes must be properly condi-
tioned, either amplified using low-noise amplifiers or attenuated—to meet the input
specifications of the electrical mixer. After mixing, the output is passed through
a band-pass filter that selects the intermediate frequency ( 𝑓1 + 𝑓2), which is then
amplified to approximately 0 dBm.

Characterization of the 2P-OFD results
The primary goal of the 2P-OFD system is to generate a low-noise microwave
tone, whose noise spectrum should be precisely measured. This is a rather specific
topic, and is briefed in detail in Chapter B.4. In addition, several intermediate
measurements are useful for diagnosing the performance limits of the system, as
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indicated by the gray dashed arrows in Figure 2.4. These relate to the terms in
Equation 2.1:

(1) 𝑆PD( 𝑓 ) typically manifests as white phase noise and can be inferred from the
phase noise floor of the free-running 𝑓rep.

(2) 𝑆SNR( 𝑓 ) is also generally white phase noise and should be monitored at several
points by inspecting beatnotes using an electrical signal analyzer (ESA). A
typical setup involves centering the ESA around the beatnote with a 10 MHz
span and a resolution bandwidth (RBW) of 10 kHz or 100 kHz. The resulting
noise limit due to finite SNR is given by:

𝑆SNR =
1

SNR × RBW
× 1

(𝑛 − 𝑚)2 .

For example, if the SNR is 60 dB with a 10 kHz RBW and (𝑛 − 𝑚)2 = 104,
then 𝑆SNR = −140 dBc/Hz for 𝑓rep.

(3) 𝑆IF( 𝑓 ) can be characterized either by measuring the phase noise of 𝑓IF =

𝑓1 + 𝑓2 directly, or by monitoring the residual error signal from the servo loop.
Caution is needed, as the error monitor often contains a built-in low-pass filter
that may distort the true error spectrum.

(4) The relative phase noise between the two lasers, 𝑆𝜈2−𝜈1 ( 𝑓 ), is difficult to mea-
sure directly at THz frequencies. As an approximation, the lasers can be tuned
to be separated by one or more FSRs of the FP cavity and locked with iden-
tical PDH parameters. Their beatnote—now in the microwave domain—can
be measured using standard microwave phase noise techniques (similar to
Figure 2.3), and the result scaled down by (𝑛 − 𝑚)2.
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2.4 Dark pulse microcombs in two-coupled-ring resonator
The self-injection-locked (SIL) dark pulse microcomb operating near the zero
second-order dispersion regime (Ji, W. Jin, et al., 2023) is used in the 2P-OFD
system (Kudelin et al., 2024; Ji, W. Zhang, Wu, et al., 2024), based on the two-
coupled-ring (2CR) design. Zero second-order dispersion is used to spectrally
broaden the microcomb, offering larger division factor (𝑛 − 𝑚)2 and high SNR in
the 2P-OFD. The experiental optical spectrum is in Figure 2.5a (detailed in Chapter
3). Besides, the microcomb is with high pump-to-comb power conversion efficiency
(as in Figure 2.5a, with no extra pump attenuation is present). With this optical
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spectrum, division across 1 THz frequency span (50 comb lines) is expected.

The actuation of a self-injection locked microcomb is based on the current modu-
lation of the DFB laser. Recall that the repetition rate is mostly determined by the
pump-cavity detuning. Naively, the SIL laser-resonator system can be view as a non-
linear resonator plus a single-mode laser rate equation, plus the reflection coupling.
Theoretical analysis shows that, the laser-cavity detuning is ideally determined by
the feedback phase of the SIL, while tuning of pump laser makes little contribution.
However, experimentally the SIL laser-resonator system behaves much more com-
plicated than the picture, with behavior including coherence collapse, dual-mode
lasing (Galiev et al., 2018), etc.

Experimentally, it is reasonably efficient to control the laser-cavity detuning 𝛿𝜔 (thus
the microcomb’s repetition rate) via direct current modulation. The real mechanism
is not well-understood yet, and is believed to be a combination of thermal effect, Kerr
nonlinearity and internal laser dynamics. With laser cavity detuning 𝛿𝜔 controlled
by the applied current on the pumping DFB laser, a fast feedback loop with laser
current as an actuator can be used to stabilize the microcomb’s repetition rate. Below
are the details of how the modulation of the current on the DFB laser disciplines
the microcomb’s repetition rate to an external reference, mostly via control of the
laser-cavity detuning 𝛿𝜔. A measurement of the response in the repetition rate
tuning when the pump current is modulated is depicted in Figure 2.5b.

In the repetition rate locking experiment (Figure 2.6a), the microcomb’s repetition
rate is detected at the resonator drop port by a fast photo detector, and analyzed by a
signal analyzer (R&S FSUP). Pumping is at 1559.22 nm. The detected repetition rate
tone is simultaneously split by a directional coupler after electrical amplification and
mixed with a local oscillator which serves as the reference (R&S SMB 100A). The
mixed-down signal is sent to a servo controller and fed back to the current supply
(LDX-3620B, DC modulation response bandwidth <1 MHz) of the DFB laser to
provide fine tuning control of the pump-laser cavity detuning frequency. The gap
distance between the bus waveguide facet and the DFB laser head is regulated
by a closed loop piezo (PZT) with a built-in strain gauge displacement sensor
(Thorlabs MAX311D).

The measured phase noise of the detected repetition rate tone under open-loop
and disciplined (locked) conditions is shown in Figure 2.6b. The phase noise
of the microwave reference is shown in gray. The phase noise of the disciplined
repetition rate follows that of the microwave reference within the feedback bandwidth
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> 50 dB

Figure 2.7: Microcomb phase noise characterization. Single side-band (SSB)
phase noise scaled to 10 GHz of free-running 20 GHz microcomb (blue), locked 20
GHz microwave (red), and locked 20 GHz microwave after regenerative frequency
division by 2 (green).

of approximately 100 kHz (as defined by the offset frequency where a “bump”
is observed in its frequency spectrum). The microwave spectra of the SIL and
disciplined comb are plotted in inset of Figure 2.6b. The repetition rate could be
tuned by 60 kHz through tuning of the microwave reference (Figure 2.6c).

Figure 2.7 shows measured phase noise of the microcomb at NIST, under the 2P-
OFD. Results credit to Kudelin and Groman.

2.5 Bright soliton microcomb with agile dispersive waves
2P-OFD is also demonstrated using a bright soliton microcomb with spectral end-
points that are both high in power and frequency tunable (Ji, W. Zhang, Savchenkov,
et al., 2025). These features in combination with the spectral reach of microcomb
achieve optical division noise reduction to a detectable microwave signal. For bright
solitons, the 𝑓rep is mainly determined by the laser-pump detuning, through the mech-
anisms including stimulated Raman self-frequency shift and dispersive wave recoil
(Yi, Q.-F. Yang, X. Zhang, et al., 2017). The mechanism happens within the cavity
life time (> MHz bandwidth), thus is fast enough for repetition rate actuation. Then
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Figure 2.8: 2P-OFD Details. a, Optical spectral of bright soliton microcomb
showing tuning of the dispersive waves. 2P-OFD across 3 THz is possible. b,
Experimental setup for bright bright soliton microcomb generation. A c.w. laser
(Orbits lightwave) near 1565 nm is isolated (ISO), frequency-shifted by a quadrature
phase shift key modulator (QPSK), and amplified by an Erbium-doped fiber amplifier
(EDFA). The light is then bandpass filtered to reduce the amplified spontaneous
emission noise and coupled to the resonator chip using a lensed fiber. The coupled
on-chip power is ∼150 mW. Most of the soliton power is routed to the 2P-OFD
system (see text). A small portion is monitored by an optical spectrum analyzer.
c, Phase noise spectra summary of the generated microwave signal in the 2P-OFD
experiment. All noise levels are scaled to a 10 GHz carrier.

it comes to the fast control of either the pump laser frequency, or the cavity resonant
frequency. In this work, it is achieved by tuning the pump laser frequency using a
quadrature phase-shift keying (QPSK); in the future, it could potentially be replaced
with monolithic-integrated piezo-electric control (J. Liu, Tian, et al., 2020).

As detailed in Figure 2.8, a fiber laser (Orbits Lightwave) is isolated and
frequency-shifted by a QPSK (KG), where a sideband serves as pump. The QPSK is
driven by a voltage-controlled oscillator (Hittite 108646-1), whose tuning range
is artificially reduced (by adding attenuation to Vtune) to 9-11 GHz to reduce its
phase noise. The pump is amplified by an erbium-doped fiber amplifier (EDFA,
IPG Photonics) and filtered by a notch filter to reduce the amplified spontaneous
emission noise. The microcomb is triggered using the method described in (Stone
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laser (𝜈1) and comb line (𝜈𝑚), where 𝑓1 is 507.4 MHz. An SNR of 65 dB is measured
with resolution bandwidth of 100 kHz. b, Measured beanote between the stabilized
c.w. laser (𝜈2) and the dispersive wave (𝜈𝑛). An SNR of 60 dB is measured with
resolution bandwidth of 100 kHz. 𝑓2 is 743.6 MHz for the case with dispersive
wave, and 𝑓2 = 979.9 MHz for the case without the dispersive wave. A 30 dB
improvement in SNR is demonstrated with the dispersive wave.

et al., 2018), and is stable without feedback for a while. The output of the mi-
crocomb is collected at the drop port to reject the pump, and amplified by another
EDFA (Armonics) to about 60 mW. 75 % of the amplified power is split evenly
and filtered by two optical bandpass filters to select two desired comb lines. These
are combined with their respective stabilized c.w. laser, and detected by two photo
detectors (New Focus 1611) to generate beatnotes at frequencies f1 and f2. The
formation of the dispersive wave improves the signal to noise ratio (SNR) of this
beatnote by 30 dB (Figure 2.9). This enhancement makes possible 2P-OFD over this
broader comb span of 3 THz (i.e., 𝜈𝑛- 𝜈𝑚). The two beatnote signals are electrically
amplified before mixing to generate their frequency-summed signal. This signal at
frequency fLO is amplified and mixed with a local oscillator at 1.25 GHz to generate
the error signal. The error signal is processed by a servo (Vescent D2-125) for
feedback to the microcomb to control its repetition rate. This closed loop thereby
implements 2P-OFD.

2.6 Conclusion and summary
Confirmation of microcomb spectral coherence
Equation 2.1 is confirmed experimentally (Ji, W. Zhang, Wu, et al., 2024). We
measure the relative phase noise of the two CW lasers (𝑆𝜈2−𝜈1 ( 𝑓 )) and repetition
rate phase noise of the microcomb (𝑆rep( 𝑓 )) for different OFD ratios (𝑛 − 𝑚)2.
In the measurement of 𝑆𝜈2−𝜈1 ( 𝑓 ), the two lasers are separated by one 𝐹𝑆𝑅 of the
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Figure 2.10: Phase noise spectrum measurement of optical and microwave tones
confirming the coherent optical-to-microwave link. (a), Gray line: measured
SSB phase noise of the relative phase noise of the two lasers. The other lines are
measured phase noise of the generated 20 GHz microwave tone using the 2P-OFD.
From top to bottom, the division ratio (𝑛 − 𝑚) is 4, 8, 12, 33, 49, respectively. (b),
Measured phase noise versus the division ratio at different offset frequencies. From
top to bottom, the frequency offset (whose color corresponds to the vertical dashed
lines in panel (b)) is 100 Hz, 300 Hz, 1 kHz, 2 kHz, 5 kHz and 10 kHz. The dashed
line denotes the theoretical predictions from Equation 2.1.

Fabry–Pérot resonator, and their beating at 16 GHz is detected by a fast photode-
tector (Thorlabs) followed by characterization with an electrical signal analyzer
(R&S FSWP). This relative phase noise of the optical reference is plotted as the up-
per (grey) curve in Figure 2.10(a). Note that spurs are suppressed in this plot as
discussed in the Appendix.

Next, the frequency of the laser at 𝜈1 (RIO PLANEX) is held fixed while the other laser
at 𝜈2 (Toptica DLC pro) is tuned to other resonances of the Fabry–Pérot cavity.
The microcomb is stabilized for each tuning via the aforementioned 2P-OFD scheme,
and its detected repetition rate tone is characterized using the signal analyzer. The
corresponding phase noise spectra are presented in Figure 2.10(a) for a series of
(𝑛 − 𝑚) values: 4, 8, 12, 33, 49. Here, the exact (𝑛 − 𝑚) values are chosen so that
the frequency 𝑓I is lower than 1.5 GHz as required by the electronics used for signal
processing. From 101 to 104 Hz in offset frequency, the microcomb-repetition-rate
tone phase noise relative to the optical reference noise scales inversely with the
square of the division ratio (𝑛 − 𝑚)2, as depicted in Figure 2.10(b). The dashed
lines in the plots are the theoretical phase-noise scaling. Each phase noise value is
calculated by averaging the phase noise around 20 nearby points in the phase noise
trace, with the error bar denoting standard deviation of the averaging.
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Figure 2.11: Phase noise comparison of microwave generations based on mi-
crocomb, scaled to 10 GHz. a, Single-sideband phase noise spectrum measure-
ment with carrier frequency near 20 GHz (red). The instrumental measurement
floor is the gray shaded area. For comparison, the phase noise is scaled by
L𝜙,10GHz = L𝜙, 𝑓rep −20× log10( 𝑓rep/10 GHz), and plotted in black. b, The platforms
are categorized based on the integration capability of microcomb generator and the
reference laser source, excluding the inter-connecting optical/electrical parts. Filled
(blank) squares are based on the OFD (stand-alone microcomb) approach. (i) 22
GHz silica microcomb (Yi, Q.-F. Yang, K. Y. Yang, Suh, et al., 2015), (ii) 5 GHz
Si3N4 microcomb (W. Jin et al., 2021), (iii) 10.8 GHz Si3N4 microcomb (J. Liu,
Lucas, et al., 2020), (iv) 22 GHz microcomb (J. Li, H. Lee, et al., 2012), (v) MgF2
microcomb (Liang et al., 2015), (vi) 100 GHz Si3N4 microcomb (Sun, B. Wang, et
al., 2024), (vii) 22 GHz fibre-stabilised SiO2 microcomb (Kwon et al., 2022), (viii)
MgF2 microcomb (Matsko et al., 2016), (ix) 14 GHz MgF2 microcomb pumped
by an ultrastable laser (Weng et al., 2019), (x) 14 GHz microcomb-based transfer
oscillator (Lucas et al., 2020).

Phase noise performance
Figure 2.11a shows the results obtained in (Ji, W. Zhang, Savchenkov, et al., 2025),
which could be viewed as the state-of-the-art phase noise results among those using
integrated photonics. Figure 2.11b places the level of phase noise we achieve in con-
text with other photonic approaches, including recent works based on microcombs
and mode-locked laser frequency combs. The comparison is classified by level of
photonic integration of the microcomb source and pumping/reference lasers, as ap-
plicable. It is also noted that some of the microcomb systems require the assistance
of a fiber-based frequency comb (Figure 2.11 (ix), (x) (Weng et al., 2019; Lucas
et al., 2020)). The phase noise performance of other systems, which could be chip
integrated (Figure 2.11 (ii), (iii) (W. Jin et al., 2021; J. Liu, Lucas, et al., 2020)),
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is more than 30 dB greater than the results we present, with the exception of the
recent work by Sun, et al. (vi) (Sun, B. Wang, et al., 2024). Other notable works
on low-noise microwave generation in a low-SWaP systems, which are not shown
in Figure 2.11, include ‘quite point’ operation (Yi, Q.-F. Yang, X. Zhang, et al.,
2017; Lucas et al., 2020; Q.-F. Yang et al., 2021; Yao et al., 2022), single laser
optical frequency division (Zhao et al., 2024), and high-end commercial products
(Hi-Q X-band OEO n.d.; J. Li and K. J. Vahala, 2023; Ultra-Low-Noise Microwave
Oscillator n.d.).
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C h a p t e r 3

DISPERSION ENGINEERING USING COUPLED RING
RESONATORS

More is different.

P.W. Anderson

The concept of coupled ring resonators dates back to early studies of supermodes
in coupled optical waveguides (Yariv et al., 1999). More recently, it has been
extended to the ultra-high-𝑄 regime, notably in coupled toroidal microresonator
designs (Grudinin et al., 2010). Applications of two coupled rings (2CR) span a
range of physical phenomena and technologies, including Brillouin lasers (Grudinin
et al., 2010), non-Hermitian physics and exceptional points (Peng et al., 2014).

In the context of microcomb generation, the 2CR platform offers several key advan-
tages. These include the ability to engineer significant and broadband dispersion
modifications for spectral shaping (Kim et al., 2017), introduce controlled mode
splitting to facilitate soliton turn-on dynamics (Xue, Xuan, et al., 2015; Helgason,
Arteaga-Sierra, et al., 2021), enhance power conversion efficiency (Xue, Zheng, and
Zhou, 2019; Helgason, Girardi, et al., 2023), and enable topological protection of
soliton states (Tikan et al., 2022).

In this chapter, I present the theoretical framework for dispersion engineering using
a pair of Vernier-coupled microring resonators, hereafter referred to as the 2CR
platform. This theoretical development is based on work presented in (Ji, W. Jin,
et al., 2023; Yuan et al., 2023). I then describe the experimental realization of
near-zero group velocity dispersion (GVD) in this system, along with microcomb
generation in the integrated 2CR device (Ji, W. Jin, et al., 2023).

3.1 Theoretical dispersion of two-coupled-ring resonator
In this section, dispersion of a pair of Vernierly coupled ring resonator (hereafter
referred to as 2CR) is derived. The results are published in (Yuan et al., 2023),
where the theoretical calculation is credit to H. Wang and Y. Yu. Earlier work on
the calculation of eigen-modes in coupled resonators using similar methods are also
present (Boeck et al., 2010). The resonator schematic is shown in Figure 3.1. For
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later simplicity, we denote the round trip optical path length of ring A(B) as 𝐿A and
𝐿B, respectively. We now assume that light with a single frequency is propagating
in the system. The propagation illustrated in Figure 3.1 is also based on the optical
path length, instead of the in the real space. At the points opposite to the coupling
region, the field amplitude in each ring is denoted as𝜓I,A and𝜓I,B. These amplitudes
can be assembled into a vector as 𝜓I = (𝜓I,A, 𝜓I,B)T, where T denotes the transpose
of a vector or matrix. Similarly, the field just before the coupling part can be found
as (

𝜓II,A

𝜓II,B

)
=

(
𝑒𝑖𝜔(𝐿A−𝐿co)/(2𝑐) 0

0 𝑒𝑖𝜔(𝐿B−𝐿co)/(2𝑐)

) (
𝜓I,A

𝜓I,B

)
. (3.1)

For the coupling section, we denote the coupling rate per unit optical path length as
𝑔co. The coupling depends on 𝜔, and is assumed to be uniform along the coupling
section (i.e., boundary effects from adiabatic bends are included in the effective
coupling length). The field after the coupling section can be expressed with a
matrix exponential:(

𝜓III,A

𝜓III,B

)
= exp

{[
𝑖𝐿co

(
𝜔/𝑐 𝑔co

𝑔co 𝜔/𝑐

)]} (
𝜓II,A

𝜓II,B

)
. (3.2)

Finally, returning to the points opposite to the coupling region, the field reads(
𝜓IV,A

𝜓IV,B

)
=

(
𝑒𝑖𝜔(𝐿A−𝐿co)/(2𝑐) 0

0 𝑒𝑖𝜔(𝐿B−𝐿co)/(2𝑐)

) (
𝜓III,A

𝜓III,B

)
. (3.3)

For modes in the system, we require the state to reproduce itself after one round trip:

𝜓IV = 𝑒𝑖Θ𝜓I. (3.4)
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Figure 3.1: Schematic of the two-ring coupled resonator. Left panel: Top view
of the coupled resonator with key points marked. Right panel: Schematic of the
resonator with straightened waveguides (not to scale). Segment lengths and field
amplitudes have been marked.
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Figure 3.2: Eigenfrequency plots for the two-ring coupled resonator. a-c Relative
frequency (normalized to 𝐷1,𝑚), relative FSR (normalized to 𝜖𝐷1,𝑚) and relative
𝐷2 (normalized to 𝜖2𝐷1,𝑚) plots for 𝑔co𝐿co = 0.3. d-f Similar plots but with
𝑔co𝐿co = 1.0. The horizontal axis is defined as 𝜙𝑚 = 2𝜋𝜖𝑚. Relative mode
frequency, FSR and 𝐷2 for individual rings before coupling have been superimposed
(black dashed lines). The relative FSR is found by differentiating the relative
frequency, and the relative 𝐷2 is found by differentiating the relative FSR.

This requires finding the eigenvalues of the roundtrip transfer matrix 𝑇 , which is the
product of the previous three transfer matrices:

𝜓IV = 𝑇𝜓I, 𝑇 = 𝑒𝑖𝜔𝐿/𝑐
(
𝑒−𝑖𝜔Δ𝐿/𝑐 cos(𝑔co𝐿co) 𝑖 sin(𝑔co𝐿co)

𝑖 sin(𝑔co𝐿co) 𝑒𝑖𝜔Δ𝐿/𝑐 cos(𝑔co𝐿co)

)
, (3.5)

where 𝐿 = (𝐿A + 𝐿B)/2 and Δ𝐿 = (𝐿B − 𝐿A)/2. Each one of the two eigenvalues
defines a transverse mode family of the system. Furthermore, when the accumulated
phase Θ equals an integer multiple of 2𝜋, a longitudinal mode can be found at the
corresponding frequency. Diagonalizing the 𝑇 matrix gives

Θ = 𝜔𝐿/𝑐 ∓ arccos[cos(𝑔co𝐿co) cos(𝜔Δ𝐿/𝑐)] . (3.6)

Now we define a mode number associated with the average length of the rings:

𝑚 ≡ 𝜔𝐿

2𝜋𝑐
. (3.7)

The relation can be inverted to give a solution of 𝜔𝑚 dependent on 𝑚. When 𝑚 is
an integer, 𝜔𝑚 would be the mode frequencies for a ring resonator with length 𝐿.
As 𝑔co ≪ 𝜔/𝑐 and Δ𝐿 ≪ 𝐿, the phase contribution related to the coupling varies
slowly compared to the 𝜔𝐿/𝑐 part. This allows us to approximate the coupled mode
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frequencies using 𝜔𝑚, and the eigenfrequencies 𝜔𝑚,± can be solved as:

2𝜋𝑚 = 𝜔𝑚,±𝐿/𝑐 ∓ arccos[cos(𝑔co𝐿co) cos
(
𝜔𝑚,±Δ𝐿/𝑐

)
]

≈ 𝜔𝑚,±𝐿/𝑐 ∓ arccos[cos(𝑔co𝐿co) cos(𝜔𝑚Δ𝐿/𝑐)], (3.8)

𝜔𝑚,± = 𝜔𝑚 ± 𝑐

𝐿
arccos

[
cos(𝑔co𝐿co) cos

(
2𝜋

Δ𝐿

𝐿
𝑚

)]
= 𝜔𝑚 ± 𝐷1,𝑚

2𝜋
arccos [cos(𝑔co𝐿co) cos (2𝜋𝜖𝑚)] , (3.9)

where 𝐷1.𝑚 is the local FSR that depends on𝜔𝑚 and 𝜖 = Δ𝐿/𝐿 is the length contrast
of the rings. The result shows that the mode structure can be seen as splitting off
from the length-averaged resonator modes, where the splitting gap is determined by
𝑔co and modulated with respect to mode number with period 𝜖−1.

To gain insight into the model, Figure 3.2 plots mode frequency, FSR and the second-
order dispersion parameter 𝐷2 relative to 𝜔𝑚 for different values of 𝑔co as predicted
by Equation (3.9). In these plots𝜔𝑚 has been subtracted from the mode frequencies,
and only the contributions associated with FSR difference of the two rings and the
coupling are considered. The 𝐷1,𝑚 is also approximated as a constant. The 𝐹𝑆𝑅s of
the transverse modes show a typical avoided crossing behavior as shown in Figure
3.2b and 3.2e. The FSR of one mode continuously transitions to the other mode at
the avoided crossing, and similar to the coupling itself, this process is also periodic
in the frequency domain. The calculated 𝐷2 shows spikes at the avoided crossing
center, and the positive spike can be used to counter the normal dispersion present in
the averaged resonator dispersion. Smaller 𝑔co leads to higher peak 𝐷2 with smaller
crossing bandwidth. To get a larger crossing bandwidth, 𝑔co could be increased at
the expense of lower 𝐷2, but the maximum bandwidth is half the modulation period
(i.e., the Vernier FSR) as the effect of the neighboring crossings set in and shifts the
𝐷2 in the opposite direction.

In addition to the mode frequency, the mode compositions can also be derived
from the transfer matrix 𝑇 . As the change of mode profile is large enough across the
measured optical bandwidth, the mode compositions has an impact on soliton power
distribution in the rings, and complements FSRs and dispersions when describing
the dispersion characteristics. The eigenvectors of 𝑇 read,

𝜓I ∝
(√︄

sin(𝛼 ± 𝜙𝑚)
2 sin𝛼 cos 𝜙𝑚

, ∓

√︄
sin(𝛼 ∓ 𝜙𝑚)

2 sin𝛼 cos 𝜙𝑚

)T

, 𝜙𝑚 = 2𝜋𝜖𝑚, 𝛼 = arccos [cos(𝑔co𝐿co) cos 𝜙𝑚] .

(3.10)
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Figure 3.3: Illustration of mode hybridization in the coupling region. a, Fitted
optical resonance frequency dispersion of the coupled resonator (solid curves) and
fitted mode frequency dispersion of the single rings (red and blue lines) plotted
versus relative mode number 𝜇. b, Cross-sectional view of simulated electric field
amplitudes in the coupled region at mode numbers indicated in panel a by the black
points. The right (left) waveguide belongs to ring A (B). At the crossing center (I,
II, V and VI), two waveguides have the same field intensity and the opposite (same)
phase for the anti-symmetric (symmetric) mode. When hybrid mode frequencies
meet the single-ring resonances (III and IV), the electrical field at the coupled region
is contributed by a single ring.

This gives the relative field intensities in the non-coupled regions of the rings for a
particular mode. Another point of interest is the center of the coupled region. Here
the field can be found as

𝜓co ∝
(

cos(𝑔co𝐿co/2) 𝑖 sin(𝑔co𝐿co/2)
𝑖 sin(𝑔co𝐿co/2) cos(𝑔co𝐿co/2)

) (
𝑒−𝑖𝜙𝑚/2 0

0 𝑒𝑖𝜙𝑚/2

)
𝜓I ∝

(√︂
sin𝛼 ± sin 𝜙𝑚

2 sin𝛼
, ∓

√︂
sin𝛼 ∓ sin 𝜙𝑚

2 sin𝛼

)T

.

(3.11)

Similarly, the optical field at any point 𝑧 in the rings can be calculated and is denoted
as 𝜓A(B) (𝑧). The fractional energy contribution from ring A (𝜂A) reads as

𝜂A =

∫
A |𝜓A(𝑧) |2𝑑𝑧∫

A |𝜓A(𝑧) |2𝑑𝑧 +
∫

B |𝜓B(𝑧) |2𝑑𝑧
. (3.12)

There are some special cases of 𝜙𝑚 that lead to simplified field distributions and are
demonstrated in Figure 3.3. For example, if 𝜙𝑚/𝜋 is an integer (crossing centers),
the modes become purely symmetrical and anti-symmetrical:

𝜓I ∝ (
√︁

1/2,∓
√︁

1/2)T, 𝜓co ∝ (
√︁

1/2,∓
√︁

1/2)T. (3.13)

Points I, II, V, and VI in Figure 3.3b belong to these cases. Points II and V are
symmetric modes formed by the two rings, with equal mode intensities and the
same phase. On the other hand, points I and VI are anti-symmetric modes, with
equal mode intensities but opposite phase. These results happen to agree with
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coupled-mode calculations when only the pair of degenerate longitudinal modes
from each ring are considered. However, while the energy is equally distributed in
the two rings in the same way as the reduced coupled-mode theory predicted, other
longitudinal modes still participate in the coupling because the wavevector in the
coupled region differs from that in the uncoupled region. On the other hand, if 𝜙𝑚/𝜋
is a half-integer (halfway between crossing centers), then at the center of coupling
position the field is entirely within a single ring:

𝜓I ∝ (cos(𝑔co𝐿co/2),∓ sin(𝑔co𝐿co/2))T, 𝜓co ∝ (1, 0)T, (3.14)

or,
𝜓I ∝ (sin(𝑔co𝐿co/2),± cos(𝑔co𝐿co/2))T, 𝜓co ∝ (0,−1)T, (3.15)

Points III and IV in Figure 3.3b belong to these cases.

An interesting feature of the field distribution is that, for a single continuous branch,
the field compositions exchange parity at the next degeneracy point, and the anti-
symmetric mode now becomes the symmetric mode (from point I to V) and vice
versa (from point II to VI). The change of parity shows that the modes repeat
themselves every two Vernier periods (every two degeneracy points) instead of one,
in agreement with Eq. (3.9). While the parity exchange is obvious after plotting the
dispersion (Figure 3.3a), it can also be understood from a mode number argument.
We consider the total phase accumulated in ring A for a specific mode divided by
2𝜋, which should be an integer and denoted as 𝑚A. This is the “mode number” for
ring A for the specific mode. Similarly 𝑚B could be defined. These two numbers
equal to the respective mode numbers of the closest uncoupled modes, which can
be seen by adiabatically turning off the coupling. For a single Vernier period,
the total mode number changes by an odd number. However, going to the next
longitudinal mode by changing the frequency alone changes both 𝑚A and 𝑚B by
one. The only way to induce a separate mode number change is to create a zero
in the field amplitude somewhere in the respective ring, which is indeed the case
for points III and IV shown in Figure 3.3b. Considering that the individual mode
numbers are about equally distributed around the averaged-length mode number 𝑚
(e.g., | (𝑚B − 𝑚) − (𝑚 − 𝑚A) | ≤ 1), the extra increment of 𝑚B and decrement of
𝑚A should have taken place alternatively between the Vernier periods, indicating
the mode branch switches mode compositions for each Vernier period.

3.2 Device design and characterization
Design and tape-out of the first 2CR device is credit to Warren Jin at UCSB.
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Design of the Vernier ring coupling
Based on the theoretical framework in Chapter 3.1, the key design parameters for
the two-coupled-ring (2CR) device are the dimensionless coupling strength 𝑔co𝐿co

and the optical path length contrast 𝜖 between the rings. The design is implemented
on a 100-nm-thick Si3N4 platform, operating in the TE polarization. The waveguide
width is chosen to be 2.8 𝜇m, the widest geometry that still supports single-TE-mode
operation.

The design proceeds as follows:
1. The coupling strength 𝑔co𝐿co is initially set to 𝜋/4. This ensures sufficiently
strong coupling to allow for significant dispersion modification.
2. With 𝑔co𝐿co fixed, the arched sections of the racetrack resonators are designed
with large bending radii to minimize bending losses. This determines 𝐿−𝐿co, where
𝐿 is the average ring length.
3. The target average free spectral range (FSR) is set to 19.95 GHz, which fixes
the value of 𝐿. Given step (2), this then determines 𝐿co, and in turn the coupling
coefficient 𝑔co.
4. Using COMSOL simulations, 𝑔co is mapped to the physical gap spacing between
the two resonators at the coupling section. The result is a designed gap of 2.4 𝜇m.
5. The path length contrast 𝜖 is chosen such that the resulting mode hybridization
period, given by 𝐹𝑆𝑅/(2𝜖), is both measurable in dispersion characterization and
sufficiently large to allow a practical window for microcomb generation. A value of
𝜖 = 1/400 yields a periodicity of approximately 4 THz.

This design process does not converge to a single optimal set of parameters, but rather
represents a compromise among coupling strength, bending loss minimization, and
chip-level routing constraints.

After fabrication, the measured coupling strength is 𝑔co𝐿co = 0.954, which is over
10% higher than the nominal design value of 0.785. This discrepancy is attributed to
fabrication variations, such as thinner Si3N4 layer thickness or lower-than-expected
refractive index. Furthermore, the coupling strength exhibits a 5.5% increase per 10
nm toward longer wavelengths. The path length contrast 𝜖 is precisely controlled by
lithographic mask design, and its deviation is estimated to be on the order of 10−5.

Light propagation loss
The sidewall roughness of a 100-nm-thickness, 2.8-𝜇m-width, single ring resonator
generally limits the 𝑄0 to 100-150 million. In the case of the 2CR, under the
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Figure 3.4: Loss characterization of the 2CR resonator.

coupled-mode theory, if the two rings are individually with the same 𝑄0, then the
𝑄0 should not be modified for the supermodes, under conservative mode couplings.
In reality, the coupling section 𝐿co is considerably long (compared with the round-
trip 𝐿). Resultantly, the light in a ring resonator can be efficiently scattered by the
sidewall of the other ring resonator at the coupling section, and the 𝑄0 factor of
the supermodes is experimentally reduced to 80 − 120 million level. With this, the
coupling 𝑄ex is designed to be around 100 million for critical coupling to a single
racetrack resonator. More details of the bus waveguide design can be found in the
PhD thesis of Warren Jin (W. Jin, 2022).

As in Figure 3.4, the 𝑄 factor of the 2CR is measured by coupling light into port
1 (2) and measuring the transmission at the corresponding port 1 (2), while the
laser’s frequency is scanned and calibrated. By fitting using a Lorentzian lineshape
with back scattering-induced mode splitting (W. Jin et al., 2021), the bus waveguide
coupling 𝜅ex,1 and 𝜅ex,2 are extracted, and the intrinsic loss rate 𝜅0 (intrinsic quality
factor 𝑄0) is calculated using 𝜅0 = 𝜅 − 𝜅ex,1 − 𝜅ex,2 and 𝑄0 = 𝜔0/𝜅0. Note that the
two bus waveguide coupler is designed to be identical in geometry, and the different
𝜅ex,1 and 𝜅ex,2 are due to mode hybridization, that the energy distributes unequally
inside the two rings (see Figure 3.3).

3.3 Integrated near-zero-GVD microcomb operation
Soliton mode locking in optical microresonators is receiving intense interest for chip-
scale integration of frequency comb systems (Kippenberg et al., 2018; Diddams, K. J.
Vahala, and Udem, 2020). An important advancement has been the realization of
microcombs that are directly pumped by semiconductor lasers without amplification
(Stern et al., 2018; Boqiang Shen et al., 2020; W. Jin et al., 2021; Xiang et al., 2021).
These systems have resulted from steady progress in boosting of resonator 𝑄 factor
so as to lower pumping power, especially in detectable-rate microcombs (Herr et al.,
2014; Yi, Q.-F. Yang, K. Y. Yang, Suh, et al., 2015; Liang et al., 2015; Suh and
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Figure 3.5: Self-injection-locked zero-dispersion microcomb using a coupled-
ring resonator. a, Photograph of the coupled ring resonators showing DFB pump
laser. The two rings are nearly degenerate (𝐹𝑆𝑅 difference is ∼ 100 MHz). b,
Lower panel shows the coupled rings pumped by a DFB laser which is self-injection
locked to a resonator mode. Periodic pulse trains (light red arrow) are generated.
Upper panel shows the cross-sectional waveguide geometry of the ring coupling
region (2.8 𝜇m wavegudie width and 2.4 𝜇m waveguide gap). c, Measured group
velocity dispersion (GVD) parameter 𝐷2 of the mode resonances versus wavelength.
Zero dispersion is achieved near 1542 nm and 1559 nm. d, Optical spectra of the
generated frequency comb when pumped near the two zero dispersion points. For
the comb pumped at 1541 nm (gray), the span is 9.2 nm (as marked by the arrows).
For the comb pumped at 1559 nm (orange), the span is 9.9 nm. The dashed
line indicates the estimated on-chip line power of 1 𝜇W. e,f, Measured microwave
frequency spectrum of the detected microcomb output when pumped at 1542nm (e)
and 1560 nm (f). The resolution bandwidth is 10 kHz.

K. Vahala, 2018; K. Y. Yang et al., 2018; J. Liu et al., 2020; W. Jin et al., 2021). The
directly pumped sytems benefit from self-injection-locking (SIL) of the pump by
feedback from the microcomb resonator (Kondratiev et al., 2017; Pavlov et al., 2017).
SIL operation simplifies integration by eliminating the optical isolator component
between pump and microcomb, and it also narrows the pump line. Critically, it has
also been shown that SIL tends to simplify the soliton turn-on process, making it
deterministic (or turnkey) for bright solitons (Boqiang Shen et al., 2020).

Normal GVD dispersion microcombs (Xue, Xuan, et al., 2015) have also been shown
to benefit from SIL operation (W. Jin et al., 2021; H. Wang et al., 2022; Lihachev et
al., 2022). Not only does the pulse triggering become deterministic, but switching-
wave stability dynamics that normally favor large or very small duty cycles, are
overcome and pulse duty cycle lies closer to the ideal 50% for maximal comb
power and efficiency (H. Wang et al., 2022). This is advantageous for microwave
generation as well as for use of the microcomb as a WDM communications source
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give the integrated dispersion, defined as 𝐷int = 𝜔𝜇 −𝜔0 − 𝐷1𝜇 (right-hand side of
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Measured GVD parameter 𝐷2 versus wavelength near the zero GVD point. Arrows
correspond to the pump wavelengths shown in panel a. Errorbar denotes standard
deviation from the third-order polynomial fitting. c-f, Left panels: optical spectra of
the microcomb when pumped near the zero-dispersion wavelength (specific pumping
wavelength indicated and correspond to values in panel a). Simulated optical
spectrum is plotted as the dashed black curve. The dispersive wave position from
panel a is marked by arrows. Right panel: measured microcomb temporal waveform
during one round trip for the pumping wavelength given in left panel.
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(Fülöp et al., 2018). Despite these useful properties of the normal GVD SIL
microcombs, the spectral width of these systems is limited. For example, in high-𝑄
CMOS-ready resonators, comb lines extend to about 4 nm due to the strong normal
chromatic dispersion of the low-confinement waveguides (W. Jin et al., 2021). An
intriguing approach to extend bandwidth has been to drive microcombs near the zero
GVD wavelength where pulse formation is influenced by higher-order dispersion
(Anderson, Weng, et al., 2022; S. Zhang, Bi, and Del’Haye, 2023; Z. Li, Xu, Todd,
et al., 2021). Besides permitting a range of new pulse behaviors as the system
is operated above, below, or near the zero-dispersion wavelength, flattening in the
dispersion spectrum is generally possible, which broadens the comb span. Under
pulsed pumped operation near octave span detectable repetition rates have been
possible (Anderson, Weng, et al., 2022).

Here, dual coupled-ring (CR) resonators are used to produce near-zero-GVD mi-
crocombs using the normal dispersion CMOS-ready platform. While prior zero-
GVD systems have used pulse pumping or optical amplification of continuous-wave
sources, the CR resonators feature high intrinsic 𝑄 factors over 100 million (the
highest of any CR resonator system), enabling SIL operation of the microcombs
with a heterogeneously-integrated III-V laser. This is also the first application of the
SIL mode of operation to zero-GVD on-chip systems and it is observed to provide the
turnkey benefit previously observed for anomalous and normal dispersion systems,
including high efficiency comb operation (H. Wang et al., 2022). Comb bandwidth
up to 9.9 nm (1.22 THz) is set by design for application in a two-point optical
frequency division system (Papp et al., 2014; J. Li et al., 2014). This significantly
improves upon prior CMOS-ready designs and also offers high comb line powers
required in the division system. To our knowledge, the number of combs lines
generated is a record for non-amplified and non-pulse-pumped zero-GVD systems.
The precise stepper-lithography-defined geometry of the CMOS-ready system also
enables good control of the zero-GVD wavelength. By tuning the pumping laser
near the zero-dispersion point, various mode-locked comb states at microwave rates
are observed. And by utilizing the linear optical sampling technique assisted with
an electro-optic frequency comb (Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, 2018),
the temporal profiles of these states are measured for the first time including soli-
ton molecules (Anderson, Weng, et al., 2022; S. Zhang, Bi, and Del’Haye, 2023),
switching waves (Lihachev et al., 2022; H. Wang et al., 2022) and their hybrids (An-
derson, Weng, et al., 2022). Numerical modeling is in agreement with the optical
spectra as well as the measured temporal profiles. Servo locking of the microcomb
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repetition rate to a microwave reference is also demonstrated and stabilized the comb
repetition rate, offset frequency and temporal waveform.

3.4 Dispersion and SIL microcomb spectra
In the measurement, a DFB laser operating in the vicinity of one of the two zero-
dispersion wavelengths is butt-coupled to the resonator with ∼ 30 − 40 mW power
coupled onto the waveguide (Figure 3.5a,b). Rayleigh scattering inside the resonator
reflects ∼ 2% of the power into the pumping laser. An Emcore Corp. DFB laser is
used for pumping near 1559 nm and a PhotonX Inc. DFB laser is used for pumping
near 1541 nm. Temperature tuning of the DFB lasers allows fine tuning control of
the pumping wavelength for access to slightly anomalous, near-zero, and slightly
normal dispersion wavelengths of the resonator. Figure 3.6a shows measurements of
integrated dispersion of the resonator for pumping at specific wavelengths (provided
in the legend) near 1559 nm. In the plots, 𝜇 = 0 corresponds to the pump line. The
dispersion curves are measured using a radio-frequency calibrated interferometer
reference (Yi, Q.-F. Yang, K. Y. Yang, Suh, et al., 2015).

When pumped at near-zero dispersion, the comb spectral span is strongly influenced
by comb radiation into a dispersive wave, which corresponds to cavity modes that
are nearly resonant with comb lines. The mode number 𝜇dw of the dispersive wave
is given as the solution to the equation (Z. Li, Xu, Coen, et al., 2020),

−𝛿𝜔 + 2𝑔𝑃0 + 𝛿𝜔rep𝜇dw =
𝐷2

2
𝜇2

dw + 𝐷3

6
𝜇3

dw, (3.16)

where 𝛿𝜔 is the pump-laser cavity detuning as regulated by the self-injection feed-
back, 𝑔 is Kerr nonlinear coefficient, 𝑃0 is photon number of the pumped cavity res-
onance, 𝛿𝜔rep is the difference between comb repetition rate and cavity free-spectral
range (𝐷1), and 𝐷2 and 𝐷3 are second- and third-order dispersion parameters, re-
spectively. Figure 3.6b gives the measured second-order dispersion (𝐷2) parameter
at these same pumping wavelengths, and 𝐷3 = 7.5 kHz is used for all pumping
wavelengths. The left side of Equation 3.16 corresponds to the frequency comb
lines and is plotted as the colored dashed lines in Figure 3.6a. In making these these
line plots, 𝛿𝜔 and 𝛿𝜔rep are numerically simulated. The right side of Equation 3.16
is the integrated dispersion and fitted to the experimentally measured dispersion as
noted above. At each pumping wavelength, the dispersive wave mode number 𝜇dw

can be obtained as the intercept between the comb frequencies (dashed lines) and
the corresponding integrated dispersion curve (solid lines).
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The dispersive wave position is marked with an arrow in the left panel of Figure
3.6 c-f, which show measured spectra for SIL pumping at the wavelengths in Figure
3.6a. The arrow position provides a trend of measured comb span for negative mode
numbers. Overall comb spectral span tends to be determined by this dispersive
wave. Note that in Figure 3.6, the third dispersive wave (after mode number ∼50)
is absent in both the measured and simulated optical spectrum, which is a result of
insufficient pump power. The comb spectrum in Figure 3.5d spans 9.9 nm (1.22
THz) and features on-chip comb-line power higher than 1 𝜇W, marked with arrows.
This comb has superior spectral coverage compared to previous SIL operated normal
GVD microcombs (W. Jin et al., 2021; Lihachev et al., 2022). It also features an
increased number of comb lines compared with higher repetition rate non-bright
combs directly III-V pumped with optical isolation (Shu et al., 2023). When pumped
at 1541 nm near the other zero-dispersion wavelength, a microcomb spanning 9.2
nm (1.16 THz) is realized. The comb states both feature pump power conversion
efficiency as high as 26%. These comb spectra are plotted in Figure 3.5d.

3.5 Imaging of mode-locked microcomb states
While the temporal envelope of pulses produced by normal GVD combs has been
measured using cross-correlation (Xue, Xuan, et al., 2015), near-zero-GVD oper-
ation allows access to a wider variety of comb states including soliton molecules
(bounded bright solitons) and switching waves (Garbin et al., 2017; Z. Li, Xu, Coen,
et al., 2020). These interesting states have been analyzed numerically (Parra-Rivas,
Damià Gomila, et al., 2014; Parra-Rivas, Damia Gomila, and Gelens, 2017; An-
derson, Weng, et al., 2022), but they have so far not been observed in the time
domain. This is result of current zero-dispersion systems being generated with a
pulsed pump where the comb waveform is influenced by the pump pulse waveform
or at challenging high repetition rates (Anderson, Leo, et al., 2016; S. Zhang, Bi,
and Del’Haye, 2023; Xiao et al., 2021). Here, the linear optical sampling tech-
nique assisted with an electro-optic frequency comb is implemented to image the
temporal profile of the various comb states (Yi, Q.-F. Yang, K. Y. Yang, and K.
Vahala, 2018; H. Wang et al., 2022). The sampling EO comb spans ∼ 5 nm with
33 lines, corresponding to a ∼ 1.5 ps pulse in the time domain, and its repetition
rate is set to be slightly higher than the zero-dispersion microcomb. Note that the
temporal duration of the soliton pulse (for example, 2.6 ps FWHM in Figure3.6d
for the left pulse in measurement) is close to the pulse width of the EO-comb (∼ 1.5
ps), thus the imaging result may not perfectly resolve fine structure in the temporal
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waveforms. By combining the EO comb and the generated comb at the “drop” port,
and detecting with a fast photodetector, the sampled microcomb signal is recorded
by an oscilloscope for processing.

Experimental results are presented in the right panels of Figures 3.6c,d,e,f. At the
anomalous side (𝐷2 > 0) of the near-zero GVD wavelength, the strong dispersive
wave binds several solitons into soliton clusters, as observed in Figure 3.6c (right
panel). The interference between the pulses creates the multiple fringes that are
apparent in the optical spectrum (left panel). Numerically simulated time domain
and spectra are also presented as dashed curves in Figure 3.6c,d,e,f. The clustered
soliton formation is preserved for near-vanishing GVD (𝐷2/2𝜋 = −1.5 kHz) as
shown in Figure 3.6d, where a soliton dimer is imaged. The corresponding optical
spectrum is shown in the left panel of Figure 3.6d. For the pumping wavelength
with normal dispersion, the resulting waveforms are often called switching waves
or “platicons” (Lihachev et al., 2022; H. Wang et al., 2022). Here, the waveform
evolves towards a square pulse as the dispersion becomes more normal (𝐷2 < 0)
(Figure 3.6e-f, right panels). The present results experimentally demonstrate the
evolution of comb states in the near zero GVD regime with different GVD sign, and
are consistent with a previous numerical study (Anderson, Weng, et al., 2022).

Generally, operation of the comb with a small amount of normal dispersion (e.g. the
state in Figure 3.6e, pumped at 1559.2 nm) provides both good spectral coverage as
well as a temporal and spectral waveform that is more regular in shape. Furthermore,
the square pulse nature of these states (apparent in Figure 3.6e-f, right panels) offers
an increased duty cycle, which boosts comb power conversion efficiency. As a
result, the microwave and optical performance of the comb state in Figure 3.6e is
further studied and adapted for optical frequency division, as detailed in the last
chapter.

3.6 Discussion and summary
We have demonstrated a microwave-rate mode-locked microcomb near zero GVD
using a CMOS-ready coupled ring resonators. The reduced GVD enables broader
microcomb operation using integrated photonics with high conversion efficiency,
while maintaining the benefits of the self-injection feedback, including turnkey
operation and optical linewidth reduction. A record number of comb lines is
generated for non-amplified and non-pulse-pumped operation of a normal dispersion
microcomb. The dispersion engineering scheme in this paper can be extended to



51

other wavelengths and different photonic platforms.

The results reported here are lately used in a two-point optical frequency division
system (Kudelin et al., 2024; Ji, W. Zhang, et al., 2024) for low-noise microwave
synthesis, as mentioned in chapter 2.

Repeatability of the dispersion engineering among different devices
Besides, the dispersion curves are observed to be very repeatable between the
different devices, while the zero-GVD wavelengths vary between different devices.
This is because the envelope depends on the FSR ratio of the two rings which to
be 1.005. This ratio corresponds to a 50 𝜇m difference in roundtrip lengths of ring
A and ring B, which is extremely well controlled by the sub-micron lithographic
precision.

On the other hand, the mode degenerate wavelength 𝜆0 is determined by the vernier
matching condition that 𝜆0 =

𝑛eff,A𝐿A
𝑚A

=
𝑛eff,B𝐿B
𝑚B

, where 𝑛eff,A and 𝑛eff,B are effective
mode index of the two rings, respectively, 𝑚A and 𝑚B are integers. Here 𝑛eff,A

and 𝑛eff,B can vary in two ways: (1) from chip-to-chip as a result of SiN layer
thickness variation, and (2) from device-to-device on the same chip as a result of
slight fabrication errors that produce variations in local dimensions. The latter of
these variations is expected to be much smaller. The above two kinds of fabrication
imperfection influence the 𝜆0 in two ways. (1) Suppose that 𝑛eff,A and 𝑛eff,B are
simultaneously perturbed by Δ𝑛 where 𝑛eff,A ≈ 𝑛eff,B ≡ 𝑛eff , then Δ𝜆0 = 𝜆0Δ𝑛/𝑛eff .
With a realistic Δ𝑛/𝑛eff = 0.01, Δ𝜆0 ≈ 16 nm. (2) Suppose that 𝑛eff,B is perturbed
by Δ𝑛eff,B while 𝑛eff,A is not changed, while the mode number for 𝜆0 is accordingly
changed by Δ𝑚, such that 𝑛eff,A/(𝑚A + Δ𝑚) = (𝑛eff,B + Δ𝑛eff,B)/(𝑚B + Δ𝑚). Δ𝑚

(Δ𝜆0) is then given by,

Δ𝜆0

𝜆0
= −Δ𝑚

𝑚B
= −

𝑛eff,B

𝑛eff,A − 𝑛eff,B

Δ𝑛eff,B

𝑛eff,B
= −200

Δ𝑛eff,B

𝑛eff,B
. (3.17)

As a result, when the effective index of the waveguides is separately perturbed by
fabrication errors, the change in the degenerate wavelength is magnified by 200
times compared with a single ring case (due to the vernier effect). The above two
effects both contribute uncertainty in degenerate wavelength 𝜆0. Since the zero-
GVD wavelength shifts with the degenerate wavelength 𝜆0, it is also less controlled.
This inconvenience is lately overcome (or even upgraded) via the differential heater
tuning method, as detailed in the next chapter.
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Figure 3.7: Dispersion and microcomb generation of the 2CR device with opti-
mized 𝜖 . a, The measured integrated dispersion is plotted versus mode number. b,
Experimentally measured microcomb spectrum under laser SIL.

The optimum parameters for near-zero-GVD microcomb operation
The parameters 𝑔co𝐿co and 𝜖 used in Section 3.2 are not optimized for dispersion
cancellation over a broad bandwidth for microcomb generation. In an ideal scenario,
the mode-coupling-induced group velocity dispersion (GVD) should exactly cancel
the intrinsic second-order dispersion of the waveguide, 𝐷2o/2𝜋 = −284 kHz. Under
this condition, the third-order dispersion 𝐷3 also vanishes.

The optimal value of 𝜖 can be analytically derived. The free spectral range (FSR)
of the hybridized supermodes 𝜔𝑚,± is obtained by differentiating with respect to the
mode index 𝑚:

𝐹𝑆𝑅𝑚,± = 𝐹𝑆𝑅𝑚 ± 𝜖𝐹𝑆𝑅 cos (𝑔co𝐿co) sin (2𝜋𝜖𝑚)√︁
1 − cos2 (𝑔co𝐿co) cos2 (2𝜋𝜖𝑚)

, (3.18)

where 𝐹𝑆𝑅𝑚 = (𝜕𝜔𝑚,±/𝜕𝑚)/2𝜋 is the baseline FSR, and the dispersion of the
coupling coefficient (𝜕𝑔co/𝜕𝑚) is neglected for simplicity.

The corresponding second-order dispersion parameter 𝐷2,± can be evaluated as:

𝐷2,± − 𝐷2o = ±𝐷1 ×
2𝜋𝜖2 cos (𝑔co𝐿co) sin2 (𝑔co𝐿co) cos (2𝜋𝜖𝑚)[

1 − cos2 (𝑔co𝐿co) cos2 (2𝜋𝜖𝑚)
]3/2 ≡ 𝐷2c,±. (3.19)

Optimal dispersion cancellation is achieved when 𝐷2,+ = 0 at the dispersion center,
corresponding to cos (2𝜋𝜖𝑚) = 1. This yields the condition:

2𝜋𝜖2 tan−1 (𝑔co𝐿co) = −𝐷2o.

Substituting 𝑔co𝐿co = 0.954 results in an optimum 𝜖 of 0.0016, corresponding to a
60 MHz FSR difference between the two rings near the average 𝐹𝑆𝑅 of 19.95 GHz.

To accommodate fabrication variability, three sets of devices were fabricated with
FSR differences of 50 MHz, 60 MHz, and 70 MHz (tape-out is by Joel Guo). In
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this batch, the actual measured 𝑔co𝐿co was 0.917. The best dispersion flattening
was observed in the device with a 70 MHz 𝐹𝑆𝑅 difference (𝜖 = 0.00175), shown
in Figure 3.7a. A flat dispersion profile spanning more than 100 modes (>2 THz)
was measured. As shown in Figure 3.7b, the resulting microcomb also spans over
2 THz. This is significantly broader than the 1 THz span achieved under self-
injection locking (SIL) conditions using the same pump power (Figure 3.5).
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C h a p t e r 4

DISPERSION TUNING OF THE COUPLED-RING RESONATOR
AND MULTI-MODALITY OPERATION

The motivation of the work in this chapter originates from the problem that the
zero-GVD wavelengths of the 2CR devices in the previous chapter are not well-
controlled. With this, screening a number of devices is necessary to find the one
with correct operation wavelength. The Vernier differential tuning of the 2CR de-
vice was originally conceived to solve this problem, and consequently the operation
wavelength can be conveniently re-located for the near-zero-GVD microcomb op-
eration. The tuning was lately found so simple but powerful, and combined with
the high-𝑄 property of the ultra-low-loss Si3N4 platform, Brillouin laser, bright
soliton microcomb, and dark-pulse microcomb can be demonstrated using the same
device under a III-V laser direct pump. This ability, referred to as “multi-modality”
operation, is unprecedented in integrated photonics and found interesting by journal
referees (Ji, P. Liu, et al., 2024).

4.1 Theory of Moiré-enhanced dispersion tuning
In this section, we discuss the theory that describes the Moiréspeedup of the dis-
persion spectrum when the two rings are differentially tuned. Calculation of the
dispersion in the Vernier-coupled ring resonators is detailed in (Yuan, Gao, et al.,
2023) (also in Chapter 2 of this thesis). Briefly, a transfer matrix, 𝑇 , is used to
propagate a 2-component wave function through a round trip,

𝑇 = 𝑒𝑖𝜔±𝐿/𝑐
(
𝑒−𝑖𝜔Δ𝐿/𝑐 cos(𝑔co𝐿co) 𝑖 sin(𝑔co𝐿co)

𝑖 sin(𝑔co𝐿co) 𝑒𝑖𝜔Δ𝐿/𝑐 cos(𝑔co𝐿co)

)
. (4.1)

The resulting secular equation gives the eigenfrequencies, 𝜔𝑚,±, of the two mode
families (see plots in Figure 4.3B and Figure 4.3C),

𝜔𝑚,± − 𝜔𝑚 = ±𝐷1,𝑚

2𝜋
arccos [cos(𝑔co𝐿co) cos (2𝜋𝜖𝑚)] ≡ 𝐷int,c, (4.2)

where m is mode number, 𝜖 = Δ𝐿/𝐿 is the optical path length contrast of the rings
(𝐿 ≡ (𝑛wg,A𝑙A + 𝑛wg,B𝑙B)/2 is the averaged optical path length of the two rings, and
Δ𝐿 ≡ (𝑛wg,A𝑙A − 𝑛wg,B𝑙B)/2), 𝑔co is the coupling strength per unit length, 𝐿co is the
length of the coupling section, 𝜔𝑚 = 2𝜋𝑚𝑐/𝐿 with 𝑐 the speed of light in vacuum,
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and 𝐷1,𝑚 ≡ 𝜕𝜔𝑚/𝜕𝑚. The coupling strength 𝑔co𝐿co has a weak dependence on m
(and wavelength), decreasing by 4.1% per 1 THz towards higher optical frequencies
in the current design. This results from the wavelength dependence of the evanescent
field coupling between the two rings.

Free spectral range 𝐹𝑆𝑅𝑚,± of the two bands is obtained by calculating derivative
of 𝜔𝑚,± with respect to 𝑚:

𝐹𝑆𝑅𝑚,± = 𝐹𝑆𝑅𝑚 ± 𝜖𝐹𝑆𝑅o
cos (𝑔co𝐿co) sin (2𝜋𝜖𝑚)√︁

1 − cos2 (𝑔co𝐿co) cos2 (2𝜋𝜖𝑚)
, (4.3)

where dispersion of the mode coupling strength 𝜕𝑔co/𝜕𝑚 is neglected in the calcu-
lation, and where 𝐹𝑆𝑅𝑚 = 𝐷1,𝑚/2𝜋 and 𝐹𝑆𝑅o = 𝑐/𝐿 = 𝐷1/2𝜋. The group velocity
dispersion parameter 𝐷2,c (as plotted in Figure 4.4C) is obtained by calculating the
derivative of 𝐹𝑆𝑅𝑚,± with respect to 𝑚,

𝐷2,𝑚,± − 𝐷2,o ≈ ±𝐷1
2𝜋𝜖2 cos (𝑔co𝐿co) sin2 (𝑔co𝐿co) cos (2𝜋𝜖𝑚)[

1 − cos2 (𝑔co𝐿co) cos2 (2𝜋𝜖𝑚)
]3/2 ≡ 𝐷2,c, (4.4)

where again 𝜕𝑔co/𝜕𝑚 is neglected, and 𝐷2,o/2𝜋 = 𝜕𝐹𝑆𝑅𝑚/𝜕𝑚 is the GVD param-
eter of the uncoupled resonator waveguide. The r.h.s. of Eqn. (4.4) vanishes when
2𝜖𝑚 = 𝑁 + 1

2 where 𝑁 is an integer.

Equation (4.4) also predicts the accessible dispersion regime when the two rings are
differentially tuned,

|𝐷2,c | ≡ |𝐷2,𝑚,± − 𝐷2,o | ≤ 2𝜋𝜖2𝐷1 cot (𝑔co𝐿co). (4.5)

The r.h.s. of Eqn. (4.5) corresponds to the shaded orange area in Figure 4.4C.

Note that 2𝜖𝑚 = 𝑁 (where N is an integer) corresponds to the mode numbers m
where the ring frequencies overlap and hybridize. The broadband nature of the
Moirépattern modulation results from the separation of these mode numbers (Δ𝑚 ∼
1/𝜖) being large. In the present system Δ𝑚 = 200. Also, note that 2𝜖𝑚 = 𝑁 + 1/2
corresponds to frequencies where mode resonances in the two rings interleave.
Differential temperature tuning varies 𝜖 , thereby shifting the mode number locations
where strong hybridization occurs (as well as the overall Moirépattern). To calculate
the corresponding shift in frequency, consider the change 𝛿 𝑓o in optical frequency
at a given overlap frequency 𝑓o (or an interleave frequency) as given by,

𝛿 𝑓o

𝑓o
=
𝛿𝑚

𝑚
= −𝛿𝜖

𝜖
= − 1

2𝜖
𝛿(𝐿A − 𝐿B)

𝐿
≡ −𝑅𝛿(𝐿A − 𝐿B)

𝐿
, (4.6)
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Figure 4.1: Differential temperature tuning using integrated heaters. (A),
Details of the heater routing. The electrodes (gray rectangles) are wire bonded to
an external circuit board to apply the heating current. Heaters (red) are located at
the arcs of the racetrack and are electrically connected with a wider electrical trace
(yellow). The wider trace has less electrical resistance and thus reduces the heating
effect at the coupling section of the two rings. This design improves the differential
thermal tuning efficiency. All three parts (red, yellow and gray) are deposited
with the same Pt layer thickness. (B), Principle of integrated heater frequency
response characterization. (C), Heater frequency response characterization setup.
(D), Measured frequency response of the heater transfer function. The dashed line
is a Lorentzian fitting where the 6 dB bandwidth is 2.67 ± 0.05 kHz.

where 𝑅 ≡ 1/(2𝜖) is the Vernier ratio. A simple relation between the differential
ring tuning 𝛿(𝐿A−𝐿B) and tuning of the dispersion spectrum 𝛿 𝑓o is thus established.
On the other hand, the mode resonance tuning of a single ring via optical path length
change is given by,

𝛿 𝑓

𝑓
= −𝛿𝐿

𝐿
, (4.7)

from which it follows that the Vernier tuning scheme enhances the tuning rate by a
factor of 𝑅. This is also the speedup factor of the Moirépattern (Gabrielyan, 2007).

4.2 Differential temperature tuning control
A pair of metallic resistance heaters (platinum with titanium as an adhesion layer)
are deposited using Ebeam evaporation and liftoff. As shown in Figure 4.2C, the
metal is offset from the SiN waveguides by 8 µm to avoid metal-induced optical
absorption. To suppress cross-talk heating is minimized near the coupling section
between the two rings as described in Figure 4.1A. The heaters are wire-bonded
to a printed circuit board to apply direct-current voltages. The chip is attached to
a copper submount using thermal-conductive epoxy. A thermistor and a ceramic
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heater are used in combination with a PID control loop to stabilize temperature
within < 1 mK error, while ∼10 mK temperature variation is generally allowed for
the device operation. The metallic heaters are used for differential tuning. The
common temperature is varied using the ceramic heater.

The frequency response of the metallic heater tuners was also measured. The
principle of the measurement approach is shown in Figure 4.1B. A single frequency
probe laser (red line) is tuned into a mode resonance of the coupled rings. One of
the heaters is then modulated by a vector network analyzer (VNA) which causes
modulation of the mode resonant frequency. The laser’s frequency is fixed so that
the thermal-induced mode resonance modulation is transferred as modulation of
transmitted laser power on the bus waveguide. The modulated power is monitored
by a photodetector and measured by the VNA to determine the frequency response
|𝐻 ( 𝑓 ) |.

The experimental setup is shown in Figure 4.1C. A CW Toptica ECDL is coupled
into the bus waveguide using a lensed fiber, and the power transmission signal
is collected by a Newport 1811 photodetector. The laser is loosely stabilized
(feedback bandwidth < 10 Hz) to the cavity resonance by locking to a certain
transmitted power. The measured |𝐻 ( 𝑓 ) | is given in Figure 4.1D where the 6
dB bandwidth is 2.67 ± 0.05 kHz, when fitted by a Lorentzian response (Panuski,
Englund, and Hamerly, 2020).

4.3 Multi-modality operation
The Vernier effect, used in measurement instruments such as calipers and microm-
eters, overlays two scales or rulings with slightly different divisions to improve
accuracy. Its analog in optical resonators overlays two frequency scales with differ-
ent divisions set by the free spectral range, 𝐹𝑆𝑅, of two resonators. The coupling
of such resonators is mediated by the frequency Vernier and creates useful tuning
effects that benefit optical add-drop filters (Little et al., 1997), semiconductor lasers
(Hulme, Doylend, and John E. Bowers, 2013), and frequency microcombs (Xue,
Xuan, P.-H. Wang, et al., 2015; Helgason, Arteaga-Sierra, et al., 2021; Okawachi
et al., 2022; Helgason, Girardi, et al., 2023; Ji, W. Jin, et al., 2023; Yuan, Gao, et al.,
2023). Verniers feature a larger scale periodicity associated with the Moirépattern
(Oster and Nishĳima, 1963) they form when overlaid. And this Moirépattern ex-
hibits a speedup effect when either scale in the Vernier is shifted. That is, when
the two sets of scales are displaced differentially, the collective movement of the
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Figure 4.2: A hybridly integrated microresonator and optical pump can be op-
erated as a Brillouin laser, bright microcomb, or dark pulse microcomb source
with on-demand electrical control and at a user-defined wavelength across C-
band. (A), Illustration of the reconfigurable hybridly integrated device. Si3N4
coupled rings (CRs) are directly pumped by an integrated III-V laser. Dispersion
of the CRs is tuned by differential tuning of the rings using integrated resistive
heaters. The III-V laser and the heaters are wire-bonded to printed circuit boards
for electrical control. (B), Photograph of the integrated device depicted in panel
A. (C), Zoom-in image of the coupled racetrack ring resonator. Resistive heaters
are deposited atop the chip and offset from the Si3N4 waveguide by 8 𝜇m to avoid
metal-induced optical absorption. (D-F), Optical spectra for on-demand operation
of the Brillouin laser (panel D), bright microcomb (panel E) and dark pulse micro-
comb (panel F), all operated at the same III-V laser pumping wavelength 𝜆0=1548.4
nm per the system layout in panel B. In each case, dispersion is reconfigured via
simple electrical tuning. In panel E the black curve denotes the sech2 envelope
and gives an optical pulse width of 800 fs. Left insets: schematic drawings of
Brillouin emission between symmetric and antisymmetric hybrid modes (panel D)
and pulse shape temporal waveforms inside the coupled rings (panels E and F).
Right insets: RF beatnote (panel D) between the pump laser and Brillouin laser
(resolution bandwidth is 100 kHz). Repetition rate tone (panels E, F) confirming
mode locking (resolution bandwidth is 10 kHz).

Moirépattern is multiplied by the Vernier ratio (𝑅) (Gabrielyan, 2007; Oster and
Nishĳima, 1963). Here, the speedup effect is adapted to demonstrate broadband
electrical control (via differential thermal tuning) of dispersion.
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Figure 4.3: Measurement of Moiré speedup of the dispersion spectrum. (A),
Illustration of the Moirépattern formed by mode frequencies in ring A and ring B
resonators. A large shift Δ 𝑓o of Moirépattern is caused by a small uniform shift
Δ 𝑓diff of the ring B frequencies. Brighter regions in the pattern correspond to
degeneracy of the local ring modes and lead to strong modal hybridization. Here
ring A is assumed stationary (stat.), while ring B is tuned and illustrated before and
after the differential tuning. (B), Each color shows the measured (bold) and fitted
(fine solid line) dispersion spectra for the two frequency bands of the system. Mode
number 𝑚o = 0 corresponds to 1550 nm. The red spectra result from differential
heating. (C), Dispersion tuning for non-differential heating (i.e., common mode
tuning) by 10 K (blue and red). No dispersion change is observed and the curves
have been intentionally offset by 2 GHz for comparison. (D), Measurement of the
Moiréspeedup effect wherein dispersion tuning of the circled dots in panel (A) are
measured versus differential heating. Solid lines give a linear fit with Vernier ratio
𝑅 = 0.2 THz/GHz. The three colors correspond to different reference points when
evaluating the dispersion tuning, as illustrated in panel (A): S band (light purple),
C band (light blue) and L band (light red). Inset: calibration of mode resonant
frequency shift versus chip temperature: 𝛿 𝑓m/𝛿𝑇common = 1.561 ± 0.003 GHz/K
(upper band) and 1.558 ± 0.001 GHz/K (lower band).

Generally, anomalous dispersion is necessary for mode-locking of bright soliton
microcombs (Herr et al., 2014), which feature a femtosecond timescale optical
pulse and find applications in various fields such as LiDAR (Suh and Vahala, 2018;
Trocha et al., 2018), dual comb spectroscopy (Suh, Q.-F. Yang, et al., 2016; Bao
et al., 2021), optical frequency synthesis (Spencer et al., 2018), optical clocks
(Newman et al., 2019), and astrocombs (Suh, Yi, et al., 2019; Obrzud et al., 2019).
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Figure 4.4: Broadband operation of the Brillouin laser, bright soliton micro-
comb and dark pulse microcomb. (A), Broadband tuning of the Brillouin phase
matching condition across the optical C band and partial S, L bands. Frequency
spacing between the upper and lower bands in Figure2 is plotted versus relative
mode number (upper scale: wavelength) for two different 𝑇diff . Red and blue curves
are data (bold curve) and model (fine curve). The orange region gives the acces-
sible mode frequency spacing. The gray area denotes the approximate frequencies
where Brillouin gain is possible. (B), Experimental demonstration of reconfigured
Brillouin lasing across the optical C band. (C), Reconfiguration of group velocity
dispersion (GVD) for bright soliton and dark pulse generation. The fitted GVD
parameter 𝐷2𝑐 at two different 𝑇diff is plotted versus mode number (upper scale:
wavelength). Red and blue curves are data fit (dots) and model (fine curve). The
orange region gives the theoretically accessible 𝐷2𝑐 values. The discontinuity of the
red dots at large mode numbers is due to the insufficient bus-ring coupling at shorter
wavelengths, making it challenging to capture and analyze these mode resonances.
(D-E), Experimental demonstration of reconfigured bright soliton microcomb (D)
and dark pulse microcomb (E) under DFB laser self-injection-locked operation at
four different wavelengths. Mode locking is confirmed by the high signal-to-noise
ratio photodetected repetition rate tone.
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On the other hand, normal dispersion microcombs (Xue, Xuan, Y. Liu, et al., 2015),
while having narrower spectral coverage compared to bright microcombs, offer
higher power efficiency and comb line power. These properties are advantageous
for applications like microwave generation via photodetection (Kudelin et al., 2024)
and WDM-based coherent optical communications (Fülöp et al., 2018; Shu et al.,
2022). Finally, Brillouin lasers are known for their high spectral coherence (J. Li,
H. Lee, T. Chen, et al., 2012; Gundavarapu et al., 2019) that is useful in applications
including microwave signal generation (J. Li, H. Lee, and Vahala, 2013), gyroscopes
(Yu-Hung Lai et al., 2020) and clock signal sources (Loh et al., 2020). However, they
require precise phase matching for operation, and this involves setting the frequency
difference between two optical resonances to closely match the phonon frequency
shift. The phase matching condition is normally set during device fabrication by
adjusting the device 𝐹𝑆𝑅 (i.e., device diameter). And, in effect, this permanently
fixes the pump wavelength (i.e., each device has a set pumping wavelength). As
now shown, on-demand operation across C-band is possible for each of these three
modes of operation.

Hybrid integration of the coupled ring chip and III-V laser pump
Our prototype device consists of a pair of coupled, single-mode Si3N4 racetrack-
shaped ring resonators with metallic heaters deposited along their periphery and
wire-bonded to a printed circuit board (PCB) for electrical control (Figure 4.2A-C).
The intrinsic 𝑄 factor is 95 million, the average 𝐹𝑆𝑅 of the two rings is 19.95 GHz
and their 𝐹𝑆𝑅 difference is 𝛿𝐹𝑆𝑅 = 100 MHz so that 𝑅 ≈ 𝐹𝑆𝑅/𝛿𝐹𝑆𝑅 = 200. The
rings couple along a straight section to form hybrid mode frequency bands (Ji, W. Jin,
et al., 2023; Yuan, Gao, et al., 2023) whose dispersion spectra are modulated by the
Moiréeffect. And by applying voltage to one of the ring heaters, the frequency ruling
of the corresponding resonator is shifted, thereby inducing a much larger spectral
shift of the dispersion through the speedup effect. Large changes in dispersion over
frequency spans in excess of the telecom C-band are possible, so that a single device
can be reconfigured on-demand for operation in several different modalities.

To illustrate, Figure 4.2D,E,F show respectively the spectra from a single device
operated as a stimulated Brillouin laser (SBL), a bright pulse microcomb, and a
dark pulse microcomb. Each of these operational modes was set by differential
tuning of the resonators. The beatnote between the pump laser and SBL, as well
as the repetition rates for the microcombs are photodetected and their coherent
electrical spectra are shown in the insets. Moreover, on account of the high optical
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𝑄 of the coupled rings, and correspondingly low turn-on power of these devices,
direct pumping from the same semiconductor laser is possible in a hybrid-integrated
design (see Figure 4.2B).

Real-time switching between a brigth soliton and a dark pulse microcomb state
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Figure 4.5: Real time switching between a bright pulse microcomb and a dark
pulse microcomb. (A), Experimental setup. (B), Measured repetition rate
when the microcomb is switched from a bright pulse microcomb to a dark pulse
microcomb.

A measurement of real-time switching between a bright soliton and dark pulse
microcomb state is presented in Figure 4.5. As an aside, because there is no optical
isolation or amplification of the pumping lasers in these measurements, the setup is
both suitable for integration and also operates in the self-injection locking (turnkey)
mode (Pavlov et al., 2018; Boqiang Shen et al., 2020).

In this measurement, a DFB laser (at around 1548 nm) is self-injection locked to the
coupled rings. Switching is induced with an arbitrary waveform generator (AWG)
whose output was amplified by an electrical waveform amplifier (Amp.) to drive
the heaters for differential thermal tuning. Current applied on the DFB laser is
simultaneously switched to maintain the self-injection lock. Microcomb states are
monitored using an optical spectrum analyzer (OSA), while the repetition rate tone
is mixed down by a local microwave synthesizer near the repetition rate, and then
monitored in real time using a frequency counter (FC). As noted in Figure 4.2E
and Figure 4.2F, the repetition rate frequency of the bright soliton microcomb is
slightly higher than the dark pulse micrcomb (also noted in Figure 4.2E-F). The
measurement results are shown in Figure 4.5B. In this measurement, the bright
soliton state stays stationary for 200 seconds, at which time the microcomb state is
switched. A dark pulse microcomb state emerges in seconds and remains stationary
afterwards for another 200 seconds.
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Dispersion tuning results
The Moiréspeedup effect is depicted in Figure 4.3A where the mode frequencies
within two resonators (ring A and B) are depicted as black lines. The line spacing,
corresponding to the 𝐹𝑆𝑅s are assumed to be slightly different, and their initial
Moirépattern is illustrated by light red shading. As a result of modal coupling
between the two rings, the Moirépattern dictates the mode hybridization and conse-
quently the dispersion characteristics. Lighter regions in the Moirépattern indicate
that ring mode frequencies coincide to form anti-symmetric and symmetric hybrid
modes. Conversely, in the ‘interleaved’ regions where the mode resonant frequen-
cies are spaced by 𝐹𝑆𝑅/2, the mode hybridization is greatly reduced (circled dots
in Figure 4.3A). Next assume that the modes in ring B are collectively tuned by an
optical frequency difference of Δ 𝑓diff relative to ring A modes. The minute adjust-
ment is magnified by the Vernier ratio 𝑅 causing a large shift in the Moirépattern by
Δ 𝑓o (Δ 𝑓o = 𝑅Δ 𝑓diff) that is illustrated by the blue shaded region.

The integrated dispersion of the coupled ring system is measured using a calibrated
Mach-Zehnder interferometer (J. Li, H. Lee, K. Y. Yang, et al., 2012) and is shown
for the two hybridized frequency bands in Figure 4.3B. Here, the quantity plotted is
the integrated dispersion which is defined by 𝐷int,c = 𝜔𝜇 − 𝜔o − 𝐷1𝜇 − 1

2𝐷2,o𝜇
2,

where 𝜔o/2𝜋 is mode resonance frequency at 𝜇 ≡ 𝑚 − 𝑚o = 0, 𝐷1/2𝜋 is average
𝐹𝑆𝑅 of the two rings, and 𝐷2,o is waveguide intrinsic group velocity dispersion.
By differential tuning of the ring 𝐹𝑆𝑅s the second set of dispersion spectra are
measured in Figure 4.3B. Overall, the dispersion curve is shifted by 2.0 THz with
an estimated temperature difference of 6 oC corresponding to a frequency shift by
10 GHz.

In Figure 4.3C dispersion spectra of the upper and lower frequency bands are
again measured except for common-mode (not differential) tuning of the two rings.
There is no measurable change in dispersion under this common mode tuning
(note: the red and blue spectra are shifted vertically for comparison). Finally, to
obtain an approximate value for the applied differential temperature change for the
measurements in Figure 4.3B, common-mode frequency tuning data (inset of Figure
4.3D) is used to infer differential temperature change as shown in Figure 4.3D. Here,
the measured dispersion shift at three points in Figure 4.3A is first plotted versus
frequency by assuming a theoretical 𝑅=200 (expressed as 0.2 THz/GHz in the
figure). Then, this scale is converted to differential temperature (upper horizontal
axis) using the common-mode tuning data (inset data). Comparing the electrical
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power consumption of the heaters, the measured differential tuning efficiency is 19.2
GHz/W, corresponding to phase change of 6.2 × 10−4 /W.

4.4 C-band operation of the same coupled ring device
Besides operation of a single device in three different modalities (see Figure
4.2D,E,F), it is significant to note that operation wavelength in any of these modes
can be broadly tuned to match the requirements of a specific pump laser. For exam-
ple, pumping of the upper band in Figure 4.3B will induce stimulated Brillouin lasing
in the lower band provided that the difference in these frequencies (Δ𝜔) matches the
phonon frequency. The idea is illustrated in Figure 4.4A which plots Δ𝜔 for the two
tuning configurations in Figure 4.3B. A grey band gives the region where Brillouin
phase matching is possible, while the accessible Δ𝜔 range is shaded in orange. The
plots show that Brillouin laser operation over the entire optical C band is possible
using a single device. This is demonstrated in Figure 4.4B where optical spectra
show a series of pump and Brillouin laser operating wavelengths from a single
device where phase matching has been electrically-controlled. In the spectra, the
peak at the lower (higher) optical wavelength corresponds to the pump (Brillouin)
laser. The Brillouin laser has been pumped using a tunable external cavity diode
laser. However, as shown in Figure 4.2D, direct pumping from a hybridly-integrated
semiconductor laser is also possible.

Broadband group velocity dispersion (GVD) tuning for dark and bright pulse gen-
eration at an arbitrary pumping wavelength is also possible. GVD (excluding
single-ring waveguide dispersion, as defined by 𝐷2,c ≡ 𝐷2 − 𝐷2,o) is evaluated by
fitting the dispersion curve with a 3rd order polynomial (Figure 4.4C). The enve-
lope of the dispersion curves sets a boundary of accessible anomalous and normal
dispersion denoted by the shaded area (which is detailed in the next section). Figure
4.4D,E present a series of bright and dark soliton spectra obtained using a single
device that has been directly pumped using the setup in Figure 4.2B. Four different
DFB semiconductor lasers operating at four different wavelengths have been used.
At each pumping wavelength tuning of the resonator dispersion allows operation in
either the bright or dark mode (Yuan, Gao, et al., 2023; Ji, W. Jin, et al., 2023).

4.5 Noise performance
One concern of the system is if the enhanced tuning will simultaneously enhance
the noise, like the case of exceptional point enhanced systems (H. Wang et al.,
2020). The enhanced tuning in this system can make possible magnified fluctuations
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Figure 4.6: Optical frequency noise spectrum of pump (self-injection-locked)
and the Brillouin laser.

in dispersion through differential temperature fluctuations. The exact impact of
such fluctuations is still under investigation, however, some preliminary data and
discussion is presented here.

Noise performance of the Brillouin laser
First, the optical frequency noise of the pump and SBS laser were characterized by
collecting output from the bus waveguide using a lensed fiber. An Erbium-doped
fiber amplifier was then used to boost optical power for measurements, followed by
filtering of the pump (or the Brillouin laser) using a tunable fiber Bragg grating. The
frequency noise spectrum was measured using the method in the reference Yuan,
H. Wang, et al., 2022. Representative frequency noise spectra from the III-V pump
and the Brillouin laser are shown in Figure 4.6.

Noise performance of the microcombs
Second, concerning microcomb repetition rate noise measurements, a similar ver-
sion of the integrated microcomb studied here has been characterized in both free-
running operation and in an optical frequency division (OFD) system. For the
latter, the comb OFD system generated record-low noise microwave signals for a
microcomb system suggesting that the Moiréeffect does not significantly impair this
critical application (Kudelin et al., 2024).

4.6 Conclusion
In conclusion, a single microresonator device is demonstrated to be electrically
reconfigurable for operation as a Brillouin laser, a bright soliton microcomb or
a dark pulse microcomb. This capability allows identical devices from the same
wafer to be used in very different applications, or even mixed-mode operation on the
same photonic chip. Consisting of a hybrid-integrated DFB laser (without optical
isolators or amplifiers) and coupled-ring resonator the module is capable of full
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heterogeneous integration (Xiang et al., 2023). The dispersion reconfiguration is
also compatible with microresonators with larger 𝐹𝑆𝑅s, as well as faster actuators
including piezoelectric (W. Jin et al., 2018; Alexander et al., 2018; J. Liu et al., 2020)
and electro-optic control (C. Wang et al., 2019; Y. He et al., 2023) when required.
Other potential applications that may benefit from the enhanced tunability include
resonant electro-optic frequency combs (M. Zhang et al., 2019) and terahertz wave
generation (Pidgayko et al., 2023; Chermoshentsev et al., 2022).
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C h a p t e r 5

DISPERSION-AGILE THREE-COUPLED-RING RESONATOR

The Moiré speedup effect can be naturally extended to systems of more than two
Vernier-coupled rings. In practice, dispersion tuning in two-coupled-rings (2CR)
devices is primarily limited to second-order dispersion (𝐷2), while the residual
third-order dispersion (𝐷3) often remains significant. This residual dispersion
constrains the range of accessible microcomb states. By introducing a third ring,
an additional degree of freedom is enabled for dispersion control. This allows
for simultaneous tuning of both 𝐷2 and 𝐷3, enabling generation of bright soliton
microcombs with agile dispersive waves and shorter pulse durations. These features
benefit applications such as the 2P-OFD (Q.-X. Ji, W. Zhang, Savchenkov, et al.,
2025) and supercontinuum generation.

Despite its seemingly complex structure, the dispersion tuning process in the three
coupled ring (3CR) resonator is systematic and programmable. Moreover, micro-
combs in this configuration can be generated using pump power levels accessible
to compact III-V distributed feedback (DFB) lasers, paving the way for low-power,
integrated solutions.

5.1 Theory of dispersion tuning in the three-coupled-ring resonator
In this section, the theory that describes the dispersion spectrum of the 3-coupled-
ring resonator is described. Calculation of the dispersion is detailed in (Yuan et
al., 2023). Briefly, a transfer matrix, 𝑇 , is used to propagate a 3-component wave
function through a round trip.

𝑇 = 𝑒𝑖𝜔𝐿/𝑐 ©­­«
𝑒𝑖2𝜋𝑚(−𝜖1+𝜖2 ) cos(𝑔co𝐿co) 𝑖𝑒−𝑖4𝜋𝑚𝜖2 cos(𝑔co𝐿co) sin(𝑔co𝐿co) −𝑒𝑖2𝜋𝑚(𝜖1+𝜖2 ) sin2 (𝑔co𝐿co)
𝑖𝑒𝑖2𝜋𝑚(−𝜖1+𝜖2 ) sin(𝑔co𝐿co) 𝑒−4𝑖 𝜋𝑚𝜖2 cos2 (𝑔co𝐿co) 𝑖𝑒𝑖2𝜋𝑚(𝜖1+𝜖2 ) cos(𝑔co𝐿co) sin(𝑔co𝐿co)

0 𝑖𝑒−𝑖4𝜋𝑚𝜖2 sin(𝑔co𝐿co) 𝑒𝑖2𝜋𝑚(𝜖1+𝜖2 ) cos(𝑔co𝐿co)

ª®®¬ .
(5.1)

The resulting secular equation gives the eigenfrequencies, 𝜔, of the three mode
families (see plot in Figure 5.1a), where 𝑚 is mode number, 𝜖1 ≡ (𝐿B − 𝐿C)/2𝐿,
and 𝜖2 ≡ (𝐿B + 𝐿C − 2𝐿A)/6𝐿. Here, 𝐿 ≡ (𝑛wg,B𝑙B + 𝑛wg,C𝑙C)/2 is the averaged
optical path length of ring B and C (left and right rings), 𝐿i ≡ 𝑛wg,i𝑙i is the round-trip
optical path length of any of the three rings (i=A,B,C), where 𝑛wg,i is the effective
index of the waveguide that forms the ring (which can be tuned via the thermo-optic
effect) and 𝑙𝑖 is the physical round trip length of an individual ring (which can
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Figure 5.1: Dispersion and bright soliton microcomb with electrically tunable
dispersive wave. a, Measured dispersion spectrum showing the 3 dispersion bands
of the 3CR device (blue dots). The theoretical fitting is plotted as the solid curves,
and the inferred dispersion of the uncoupled rings are the shaded lines (red, blue and
gray for ring A, B, and C, respectively). The relative mode number𝑚−𝑚o is plotted
in the upper axis, where 𝑚o corresponds to the intersection of the uncoupled ring
B and ring C dispersion curves. The corresponding wavelength is 𝜆o = 1568 nm
(lower axis). b, Isolated dispersion spectrum for the upper band in panel a. Dashed
horizontal line gives location of the dispersive wave phase matching wavelengths. c,
Optical spectral of bright soliton microcomb showing tuning of the dispersive waves.
Inset: illustration of the dispersion changing when the heaters are differentially fine-
tuned. The arrows indicate the change of the dispersion curves when ring A is
heated.

be tuned via the thermo-elastic effect). 𝑔co𝐿co is the amplitude coupling strength
between the neighboring rings (ring A and B, ring A and C).

The secular equation after a round trip can be simplified to a polynomial equation,

𝑥3 − (𝑒−2𝑖𝜙2 cos(𝑔co𝐿co) + 2𝑒𝑖𝜙2 cos(𝜙1)) cos(𝑔co𝐿co)𝑥2 (5.2)

+ (𝑒2𝑖𝜙2 cos(𝑔co𝐿co) + 2𝑒−𝑖𝜙2 cos(𝜙1)) cos(𝑔co𝐿co)𝑥 − 1 = 0, (5.3)

where 𝑥 ≡ 𝑒𝑖𝜃 and 𝜔 = 𝜔𝑚 − 𝐷1
2𝜋 𝜃, with 𝜔𝑚 = 2𝜋𝑚𝑐/𝐿, 𝐷1/2𝜋 the average 𝐹𝑆𝑅 of

the three rings, and 𝑐 the speed of light in vacuum. 𝜙1 ≡ 2𝜋𝑚𝜖1 and 𝜙2 ≡ 2𝜋𝑚𝜖2

are parameters that govern the dispersion spectrum. Three dispersion bands will be
formed since Equation 5.3 is a third order polynomial of 𝑥.

The above Equation 5.3 does not have a simple solution, but there are still features
that can be inferred in terms of the dispersion spectrum. For example, 𝜙1 =

2𝜋𝜖1𝑚o = 2𝜋𝑁 (𝑁 is an integer) defines the mode number where the dispersion
curves of the uncoupled ring B and ring C will intersect (Figure 5.1a). At this
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Figure 5.2: Dispersion tuning and dispersive wave tuning in the bright soliton
microcomb using electrical heaters. a, Upper panel: measured dispersion spec-
trum of the 3-coupled-ring (3CR) resonator with random heater tuning. Middle
panel: measured dispersion spectrum of the 3CR after tuning 𝜆o closer to the pump
wavelength (1565 nm) by heating ring B. Lower panel: measured dispersion spec-
trum of the 3CR after the local GVD parameter is tuned by heating ring A. b,c,
Measurement of dispersive wave tuning when ring A (B) is fine-tuned. The 1542
nm dispersive wave is plotted in blue, while the 1590 nm dispersive wave is plotted
in red. The corresponding data points in Figure 5.1c and panel d are indicated
by the arrows (matched by the colours). d, Measured optical spectra of the bright
soliton microcomb with three different dispersive wave tunings. Inset: theoretical
dispersion spectra when ring B is tuned. The arrow indicates the change of the
dispersion curves when ring B is heated.

mode number the corresponding wavelength is 𝜆o. For the device used in this study,
𝜖1 ≈ 3×10−3 by design and is measured to be within 1% of this value. 𝜖2 is measured
to be 𝜖2 ∼ 10−5 which is consistent with a design target close to zero. However,
slight fabrication variances modify the dispersion curve and impair soliton mode
locking at the pump wavelength. To acquire dispersion bands that are favorable for
soliton mode locking, heater tuning is applied to tune 𝜆0 (𝑚o) and 𝜙2. After the
heater tuning, the dispersion is as shown in Figure 5.1a wherein the fitted parameters
are 𝜙2 = −0.36, and 𝑔co𝑙co = 0.9 near 𝜆o = 1568 nm (𝑚o ≈ 9567). Further details
on this tuning procedure are given below.

5.2 Dispersion centering and flattening
Based on the analysis in the previous section, the dispersion curve is determined
by two parameters 𝜙1 and 𝜙2. Experimentally, ring B (or C) is thermally tuned to
change 𝜙1 and, in turn, 𝜆o. Ring A is thermally tuned to change 𝜙2 and, in turn,
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can be shown to tune the GVD parameter at 𝜆o. Specifically, differential heating of
ring A increases the curvature of the pumped band near 𝜆o (amount of anomalous
dispersion), as in the inset of Figure 5.1c. These tuning steps are largely independent
and enable a 2-step dispersion tuning protocol described in Figure 5.2a. In the first
step, ring B is tuned (𝜙1 is tuned) such that 𝜆o is tuned close to the pump wavelength
(1565 nm). In the second step, ring A is tuned (𝜙2 is tuned) with 𝜙1 unchanged.
The resulting dispersion is shown in the lower panel of Figure 5.2a (also in Figure
5.1b).

The dispersion tuning is efficient, requiring only a moderate amount of actual
temperature tuning. Tuning of 𝜆o benefits from the Vernier effect as described in
the reference (Q.-X. Ji et al., 2024), and experimentally ∼ 10 oC of differential
temperature tuning is sufficient to tune the pump wavelength 𝜆o across the optical
C band. The local curvature of the dispersion bands (GVD parameter) near 𝜆o is
determined by differential thermal tuning in ring A. The tuning of uncoupled mode
resonance in ring A by one 𝐹𝑆𝑅 (20 GHz) will access all the possible dispersion
configurations. This corresponds to tuning of 𝐿A by 𝐿/𝑚. With a large mode
number 𝑚 ∼ 104 in the optical C band, this corresponds to < 10 oC of differential
temperature tuning.

5.3 Dispersive wave emission and tuning
The upper band is used for microcomb generation and is pumped near 1565 nm.
Concerning the structure of these bands, there is no simple closed-form expression
for the dispersion spectrum, but there are some universal features. The dispersion
spectra of the uncoupled rings are indicated by the colored curves (red, blue and
gray for the three rings, respectively). Where ring A crosses ring B and ring C
curves (indicated by the two arrows) two bandgaps are opened upon introduction of
ring coupling. Also note that ring B and ring C are able to indirectly couple to each
other through their mutual interaction with ring A. This coupling creates another
smaller bandgap. The magnitude of these gaps can be related to coupling strength
and dispersion, as previously discussed.

The dispersion curve of the 3CR system allows generation of double dispersive
waves. These waves form at frequencies where soliton frequency components are
nearly resonant with cavity modes (black arrows in Figure 5.1b). And controlled
electrical (heater) tuning of the dispersive wave wavelength is used for matching to
one of the c.w. lasers in the optical frequency division measurement. This capability
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Figure 5.3: Temporal characterization of the bright soliton microcomb. a,
Optical spectrum of the bright soliton microcomb. b, Autocorrelation trace showing
repetitive pulses with a 50 ps period (20 GHz repetition rate). c, Autocorrelation
data (red dots) with Lorentzian fitting (solid line). The full-width at half-maximum
(FWHM) of the autocorrelation signal is 843 fs, corresponding to a single-pulse
intensity FWHM of approximately 500 fs.

greatly strengthens the beatnote SNR and enables flexible access to a wider range
of c.w. lasers, whose wavelengths may not be widely tunable. Microcomb optical
spectra showing different dispersive wave tunings are plotted in Figure 5.1c. Tuning
of the shorter wavelength dispersive wave by 4 nm and the longer wavelength
dispersive wave by 8 nm is possible (see Figure 5.2). It is also noted that adjusting
the pump laser-microresonator detuning allows tuning of the dispersive wave (Q.-F.
Yang, Yi, et al., 2016), but this provides only limited tuning range (∼ 0.2 nm). As
an aside, the bright soliton microcomb is triggered using the method described in
the reference (Stone et al., 2018).

5.4 Microcomb-pumped mid-infrared light generation
Mid-infrared (mid-IR) light sources are vital for applications such as molecular spec-
troscopy, environmental monitoring, and astrocomb. Optical frequency combs have
been widely used in spectroscopic applications, both in single-comb (Bao, Yuan,
H. Wang, et al., 2020; Stern et al., 2020) and dual-comb (Suh et al., 2016; Dutt
et al., 2018; Q.-F. Yang, Shen, et al., 2019; Bao, Yuan, L. Wu, et al., 2021) schemes.
However, low repetition-rate (∼10 GHz) microcombs typically have limited band-
width around the 1550 nm region, which is suboptimal for broadband molecular
detection in the mid-IR. An alternative approach is to start with a sub-picosecond
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Figure 5.4: Mid-infrared light generation results. a, Experimental setup. EDFA:
erbium-doped fiber amplifier. ND HNLF: normal-dispersion highly nonlinear fiber.
AD HNLF: anomalous-dispersion highly nonlinear fiber. PPLN: periodically poled
lithium niobate. (Materials courtesy of Pooja Sekhar, CU Boulder.)

microcomb pulse and use supercontinuum generation (SCG) to access broader spec-
tral regions. With recent advances in chip-scale supercontinuum waveguides (Oh
et al., 2014; T.-H. Wu et al., 2024), integrated amplifiers (Y. Liu et al., 2022), and
pulse-shaping elements (Cohen et al., 2024), a fully miniaturized broadband mid-IR
source becomes feasible.

The bright soliton microcomb demonstrated earlier in this chapter provides such a
sub-picosecond source. It operates in a self-injection-locked configuration and is
co-packaged with a III-V laser pump for long-term stability (details in Chapter 6.2).
Temporal characterization is shown in Figure 5.3b,c.

The microcomb is delivered to CU Boulder for mid-infrared light generation. The
setup and results are in Figure 5.4. The microcomb output is pre-amplified to 50
mW; a pulse shaper compensates the pre-amplifier dispersion. The other EDFA
amplifies the microcomb to 5 W, and then the pulse is compressed to approximately
60 fs using a combination of normal dispersion highly-nonlinear fiber (ND HNLF)
and PM1550. These compressed pulses are subsequently propagated through hybrid
anomalous dispersion (AD) HNLF, consisting of 19 cm of D = 2 ps/nm/km and 9
cm of D = 4.9 ps/nm/km fiber, for spectral broadening to ∼ 1.16 𝜇m (Figure 5.4b).
After spectral broadening, the average power is measured to be ∼ 1.4 W and the
transform-limited pulse duration is approximately 17 fs. Details on the all-fiber-
integrated temporal compression and nonlinear broadening can be found in (Sekhar
et al., 2023).
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After spectral broadening, the output from HNLF is directly coupled into a period-
ically poled lithium niobate (PPLN) waveguide with a cross-section of 15 𝜇m by
16 𝜇m. The commercial waveguide (NTT) is fabricated from ZnO-doped LN on
a lithium tantalate substrate with poling periods ranging from 20 to 30 𝜇m along
the 10 mm long waveguide (Figure 5.4a). These poling periods are designed to
generate mid-infrared light spanning 3 to 5 𝜇m via intra-pulse difference frequency
generation (IP-DFG). The output mid-infrared light, generated with only 35 pJ of
in-coupled pump pulse energy from the 20 GHz microcomb, is filtered using a
germanium filter and focused onto a Fourier-transform spectrometer (FTIR). The
recorded spectrum, spanning 3.8 - 5.2 𝜇m as shown in Figure 5.4c, measures ap-
proximately 100 𝜇W. Absorbance from atmospheric carbon-dioxide around 4.3 𝜇m
is also observed (Figure 5.4c). The resolution of FTIR is insufficient to resolve the
comb modes.
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C h a p t e r 6

AVENUES OF SYSTEM INTEGRATION

As electronic equipment became
more complex, shortcomings in
this procedure began to appear.
The cost of the equipment
increased more rapidly than the
component count, and equipment
reliability suffered a corresponding
decrease.

Jack S. Kilby

Integrated photonics holds immense promise: high-yield production, low cost, and
superior SWaP (size, weight, and power). Yet, when photonic components are
assembled into a complete, functional system, new challenges arise, and must be
addressed to realize those promises in practice. This is especially true for the
chip-scale 2P-OFD system proposed in this thesis.

This chapter explores paths toward full system integration, with the goal of realizing
a robust, deliverable photonic system. Section 6.1 outlines the vision of integrating
all components on a single silicon chip via heterogeneous integration–a compelling
but ultimately difficult path. Section 6.2 presents progress in hybrid packaging of
key components, demonstrating stable running and good performance in terms of
Allan deviation. Section 6.3 describes early success in incorporating monolithic
piezoelectric tuners, achieving simultaneous locking of both the reference laser and
the microcomb.

6.1 Vision of full system integration in early 2023
In early 2023, a conceptual vision of full integration of the OFD system is presented,
whereas all the components required in Chapter 2 can be integrated to the same chip
(Kudelin et al., 2024). The concept of such a fully integrated system is shown in
Figure 6.1 and would consist of heterogeneously integrated lasers at 1560 nm (Guo,
Charles A. McLemore, et al., 2022), spiral resonators (B. Li et al., 2021) for SIL,
a coupled-ring microcomb resonator (Q.-X. Ji, P. Liu, et al., 2024), photodetectors
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Figure 6.1: Schematic design of a photonic microwave oscillator on a single
chip. The integrated system employs the same key photonic elements used in this
work. Two spiral-resonator SIL lasers are PDH-locked to the same micro FP cavity
with two EOMs in series for each SIL laser—the first for fast phase correction and
the second for PDH sidebands. The right side of the schematic shows the FP cavity
interface, where the two SIL laser paths are fed through an interferometer with an
embedded polarization splitting grating. This serves as a reflection cancellation
circuit while also shaping the planar waveguide mode to match the FP mode (Cheng
et al., 2023). The reflection from the FP cavity is then detected by the right-most
detector. Inset: Photo of the miniature FP cavity, consisted of micro-fabricated
mirrors (N. Jin et al., 2022), with overall volume of ∼1 cm3.

(Zang et al., 2018) and a micro-fabricated FP cavity that does not require high
vacuum (N. Jin et al., 2022; Yifan Liu et al., 2024; W. Zhang et al., 2024).

Previous work already lays out the steps for heterogeneous integration of lasers and
Si3N4 resonators with low loss (Xiang, J. Liu, et al., 2021; Xiang, W. Jin, et al.,
2023), which can be applied to the 100-nm thick Si3N4, coupled ring resonators.
Furthermore, laser integration with modulators and detectors has also been previ-
ously demonstrated (Xie et al., 2019) and can be utilized for full integration of all
the optical components comprising the PDH locking system (Idjadi and Aflatouni,
2017).

In the integration scheme, the laser locking feedback control can be replaced with
a combination of slow feedback to the integrated heaters in the spirals and fast
feedback to DFB current and EOMs (Endo and Schibli, 2018). The thermal tuning
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can reach a bandwidth of a few kilohertz (Xiang, W. Jin, et al., 2023), whereas the
fast feedback with a bandwidth of several megahertz could be provided by the EOM
or current modulation (Idjadi and Aflatouni, 2017; Xie et al., 2019). We estimate
that this combination can provide 40 dB feedback gain at 10 kHz offset frequency
to match the phase noise performance of the presented work. The PDH locking
approach can also be potentially replaced by self-injection locking a III-V DFB laser
to the FP cavity (Savchenkov et al., 2024).

The integration of the active and passive components on a single platform greatly
reduces loss (between fiber and chip) and may remove the need for optical amplifiers
employed in the present work. Besides, photonic integration of SOAs or EDFAs is
feasible (Yang Liu et al., 2022).

Integration of the FP cavity has been an outstanding challenge, but recent develop-
ments in micro-fabricated mirrors (N. Jin et al., 2022) and compact thermal-noise
limited FP designs (Charles A. McLemore et al., 2022) provide new integration
opportunities. Critically, it has been shown that 2P-OFD does not require FP oper-
ation in high-vacuum (Yifan Liu et al., 2024; W. Zhang et al., 2024), significantly
simplifying future integration. Figure 6.1 shows a 1cm3 cavity with fabricated
micro-mirrors and details on an integration strategy with the the SIL lasers and
microcomb. A planar waveguide feeds an inverse-designed polarization splitting
grating embedded in an interferometer, which serves to shape the beam for coupling
light to the cavity while also providing the cavity-reflected PDH locking signal and
laser isolation (Cheng et al., 2023).

The integration scheme presented in Figure 6.1 has been actively pursued into reality
since 2023 to the time of this thesis. However, despite numerous progress, it turns
out a single-chip integration of all the components is overwhelmingly challenging.
The routing between layers of III-V, silicon, Si3N4 also induce unexpected losses
and failure possibility in fabrications. As a result, the avenue of hybrid integration
is chosen as an alternative (Chapter 6.2); monolithic piezoelectric tuning of Si3N4

circuits, instead of routing light across different kinds of optical waveguides, is also
achieving success (Chapter 6.3).

6.2 Hybrid system packaging and Allan deviation results
The high-𝑄 factor property of the 3CR resonator allows low pumping power opera-
tion, enabling direct pumping by a III-V DFB laser under the turnkey self-injection
locking mode (Shen et al., 2020). Here, a hybrid packaged module containing a



83
a

d

1 mm

b
III-V DFB laser Silicon phase section

(w. heater)
3CR chip

(w. integrated heater)

Microlens Collimating fiber

Electrical circuits

Averaging time (s)
100 101

Fr
ac

tio
na

l A
lla

n 
de

vi
at

io
n 

10-110-210-3
10-13

10-12

10-11

3.6×10-13 @ 250 ms

Po
w

er
 (1

0 
dB

/d
iv

)

1540
Wavelength (nm)

1535 15501545 15601555 15701565 1575

Tunable dispersive wave

c

Figure 6.2: Hybrid packaging of the dispersive-wave-tunable microcomb, and
Allan deviation results. a, Photograph of the hybridly packaged 3CR chip with
III-V pump. b, Illustration of the packaging scheme. Output of the DFB laser is
collected by a mirolens, and passes through an anti-reflection coated silicon slab
for feedback phase tuning (via electrical heating). The light is lately focused by
another microlens to be coupled into the Si3N4 waveguide. Heaters are deposited
on the 3CR chip and wire-bonded, and dispersion is tuned to support bright soliton
mode locking. The output beam of the Si3N4 waveguide is shaped by another pair
of microlenses and collected by an optical fiber ferrule. c, Measured optical spectra
from the hybrid-integrated microcomb module showing tuning of the dispersive
wave. d, Allan deviation results. Fractional Allan deviation of 3.6 × 10−13 is
measured at the averaging time of 250 ms. For averaging time > 1 s, a linear drift
of 0.013 Hz/s is removed.

III-V DFB pump and the 3CR is demonstrated (module photograph in Figure 6.2a,
and design concept in Figure 6.2b). A commercial III-V DFB laser (Emcore Cor-
poration) emits ∼ 100 mW laser light, and is collimated by a microlens. The beam
passes through an anti-reflection coated silicon slab for feedback phase tuning in
the self-injection lock process, below which a resistive heater is placed for thermal
tuning. After that, the beam is focused by another microlens onto the 3CR bus
waveguide facet, where ∼30 mW of optical power is estimated on the chip. Disper-
sion of the 3CR resonator is tuned based on the procedure described in the earlier
chapters, and the soliton microcomb with tunable dispersive wave is generated by
approximately tuning the laser current and heating on the silicon phase section. The
output of the 3CR bus waveguide is resized by two microlenses (Figure 6.2b), and



84

collected by a ferrule for fiber-coupled output. The nominal collected power in the
fiber (when the DFB laser is not on resonance of the 3CR resonator) is ∼8 mW. The
collected optical spectra demonstrates the tunable dispersive wave (Figure 6.2c).

The hybrid packaging improves the long-term stability of the microcomb for Allan
deviation characterization of the 2P-OFD system. In the packaging, the DFB and
the 3CR are, respectively, temperature-controlled by a TEC and the thermistor, with
below mK temperature fluctuation. The module assembly in Figure 6.2a is covered
by an aluminum enclosure for passive stabilization. The module is embedded in the
2P-OFD setup (as in Figure 6.2e), by feeding back to the current of the DFB laser
(Q.-X. Ji, W. Jin, et al., 2023; Kudelin et al., 2024). Fractional Allan deviation of
3.6 × 10−13 is measured at the averaging time of 250 ms (Figure 6.2d). It is noted
that the Allan deviation benefits from the common mode suppression by locking the
two C.W. lasers to the same mode family of the FP cavity (Groman et al., 2024).

The demonstrated fractional Allan deviation of the microwave output at 1s is the
lowest reported to date using similar approaches (Papp et al., 2014; Newman et al.,
2019; Kwon et al., 2022; Q.-X. Ji, W. Zhang, Wu, et al., 2024). The low level results
from common mode suppression provided by locking the two lasers to the same
mode of the FP cavity. Specifically, it is lower than the thermorefractive noise limit
by ∼ 20 times. To see this, consider that the thermorefractive noise limit is ∼ 10
Hz in Allan deviation for each individual laser between the averaging times of 100
ms and 1 s (W. Zhang et al., 2024). To estimate the resulting noise limit after the
2P-OFD (without the common mode suppression), the relative Allan deviation of
the two lasers is multiplied by a factor of

√
2, and divided by the 2P-OFD separation

of 2 THz. The fractional Allan deviation is thus 10 Hz ×
√

2/2 THz = 7 × 10−12.
This is ∼ 20 times higher than the measured Allan deviation of 3.6 × 10−13 at 250
ms.

6.3 Monolithic piezoelectric control: preliminary results
The piezoelectric actuators are fabricated using ultra-low-loss Si3N4 (W. Jin, Yang,
et al., 2021; J. Liu et al., 2020). For the design of the piezoelectric actuators, AlN
was chosen for its reasonably high piezoelectric coefficient, as well as its previously
demonstrated low hysteresis compared with PZT. The actuator is deposited on the top
silica cladding (4.25 𝜇m thickness) with >6 𝜇m horizontal offset to mitigate metal-
induced absorption from the bottom electrode. This is illustrated in Figure 6.3a. The
piezo elements wrap around the interior-edge of the ring waveguide circumference.
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Figure 6.3: Tuning of Si3N4 circuits via AlN piezoelectric actuation. a,
Schematic cross section of the chip. Piezoelectric strain induced by an electric
field changes the refractive index of optical waveguides, resulting in resonance
frequency shifts. b, AlN actuator induced stress tensor 𝜎𝑥𝑥 is plotted in color, and
the arrows denote the stress-induced mechanical force. c, Amplitude and phase of
frequency response of the piezoelectric actuator on a single ring. The measurement
used the method similar to Figure 4.1.

When the upper electrode is positively biased relative to the lower electrode, the
electric field compresses the AlN layer vertically via the piezoelectric effect, and the
mechanical strain propagates into the optical waveguide, increasing the refractive
index via the photo-elastic effect (Tian, J. Liu, Attanasio, et al., 2024). This, in turn,
decreases the resonance frequency of the ring. Similarly, the resonance frequency
increases when the electrodes are negatively biased, enabling bidirectional, linear
tuning with AlN actuators. Stress and force distribution upon piezoelectric tuning
was simulated using COMSOL (Figure 6.3b). In this plot, the top electrode of the AlN
actuator is positively biased, and the cross-section of the structure is presented. The
color denotes the stress tensor 𝜎𝑥𝑥 (Tian, J. Liu, Attanasio, et al., 2024) (blue implies
compression while red implies expansion), and the arrows denote the stress-induced
mechanical force.

In general, monolithically integrated piezoelectric actuators offer >MHz-level con-
trol of photonic circuits and resonators (Tian, J. Liu, Attanasio, et al., 2024; W. Jin,
Polcawich, et al., 2018; J. Wang et al., 2022; M. Dong et al., 2022). This is also
experimentally measured for our device (Figure 6.3c). Previously demonstrated
applications include ranging (LiDAR) and quantum optics (Tian, J. Liu, Bin Dong,
et al., 2020; J. Liu et al., 2020; Lihachev et al., 2022; Brydges et al., 2023), and they
outperform hybrid-integrated actuators in mass production (Dale et al., 2014).

In our work, AlN piezoelectric actuators are fabricated based on the procedure in
Figure 6.4. The resonators feature an intrinsic 𝑄 factor greater than 100 million at
1550 nm (the highest𝑄 factor for devices with integrated piezoelectric actuators, to
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Figure 6.4: Detailed AlN piezoelectric tuner fabrication process. a, Photograph
of the fabricated 4-inch wafer. b, Illustration of the fabrication process. (i) The
process starts with the foundry-based Si3N4 ultra-low-loss circuit on an 8-inch
wafer, followed by chemical-mechanical polishing (CMP) to planarize the top silica
cladding. After the wafer is cored to 4-inch wafers, alignment markers are then
etched on the silica cladding using dry etch with Al hard masking. (ii) 100 nm of
Mo (which lately serves as the bottom electrode) and 1 um of AlN are deposited
at an external foundry (AMSystems). (iii) 100 nm of Al is deposited via e-beam
evaporation and lift-off is performed to define the top electrode. (iV) The AlN layer
is plasma etched using a combination of Cl2 and Ar. (v) The AlN layer is plasma
etched using a combination of Cl2 and O2 . (vi) Additional Al pads connected with
the bottom Mo electrodes are fabricated with same process in (iii) to enable wire
bonding (since the Mo electrode is usually not able to be ultrasonic wire-bonded).
(vii) The wafer is baked at 250 ◦C for ∼50 hours to mitigate the induced additional
optical propagation loss during the lithography processes (Guo, Xiang, et al., 2024;
X. Ji et al., 2024).

our knowledge (J. Liu et al., 2020; Lihachev et al., 2022).

In constituting the OFD system, the AlN tuners have three advantages: (1) The
fabrication is based on monolithic integration with high-fidelity, and at low temper-
ature (< 450 ◦𝐶); (2) The light remains in the Si3N4 layer with low propagation loss,
and no worry of insertion loss between different waveguides; (3) Reasonably high
tuning control bandwidth is presented (MHz level).

Piezoelectric control of the reference laser
The Pound–Drever–Hall (PDH) technique generally requires frequency tuning (quasi-
DC) and MHz-rate phase modulation of an optical signal to achieve locking. Inte-
grating these optical components onto a photonic chip reduces operational complex-
ity and facilitates scalable system production (Idjadi and Aflatouni, 2017). Here, we
demonstrate a high-performance and CMOS-ready system for PDH locking. The
device uses a high-Q Si3N4 resonator functionalized with piezoelectric actuation to
both frequency tune and phase modulate a hybridly-integrated DFB laser for PDH
locking to a high-finesse Fabry–Pérot reference cavity.

The III-V DFB laser is self-injection locked (SIL) to the high-𝑄 Si3N4 ring res-



87
a

HBAR@ fm

c e
DFB
laser

SiN resonator w/
piezo actuator

Frequency

SIL locking
SiN cavity
resonance

(tuned by piezo)

E-field

strain Si3N4

Si

SiO2

Quasi-DC tuning 

AC modulation (HBAR)

fm fm

fm

Frequency (Hz)

104 105 106 107

R
es

po
ns

e
(2

0 
dB

/d
iv

)

Measurement limit

db f

R
es

po
ns

e
(2

0 
dB

/d
iv

)

0 10 M 20 M

Figure 6.5: Piezoelectric DC tuning and AC modulation of the self-injection
locked laser. a, Schematic of a III-V DFB laser self-injection locked (SIL) to a
high-𝑄 Si3N4 resonator with AlN piezoelectric tuner atop. A portion of incident
laser light (red arrow) is back-scattered (orange arrow) inside the ring resonator
to the laser. b, SIL operation stabilizes the laser to the Si3N4 ring resonance
which is frequency tunable via piezoelectric tuning. Simultaneous AC piezoelectric
modulation at 𝑓𝑚 creates two frequency modulated sidebands. c, Cross section of the
chip showing how near-DC piezoelectric tuning modifies the Si3N4 ring resonance
via mechanical strain. d, AC piezoelectric modulation at 𝑓𝑚 excites a high-overtone
bulk acoustic resonance (HBAR) for optical phase modulation. e, Frequency tuning
of the SIL laser achieves > 1 MHz response bandwidth. f, An HBAR resonance is
observed near 5.6 MHz.

onator (Figure 6.5a) (Lihachev et al., 2022). Under SIL operation the laser’s output
frequency closely tracks a resonant frequency of the ring resonator. Moreover, the
laser’s frequency noise is reduced (Liang et al., 2010). The piezoelectric tuners
made from aluminum nitride (AlN) are monolithically integrated with the Si3N4

resonator (Figure 6.5c-d). They provide fast tuning (from DC to > 1 MHz) of the
resonator (and in turn the DFB laser) via the photoelastic effect (Figure 6.5b). In
addition, the semiconductor chip supports a high-overtone bulk acoustic resonance
(HBAR) making possible strong piezoelectric modulation at high resonant frequen-
cies 𝑓𝑚 with a CMOS-compatible modulation voltage (Tian, J. Liu, Bin Dong, et al.,
2020) (Figure 6.5d). This provides phase modulation at 𝑓𝑚 to create the PDH optical
sidebands (Figure 6.5b). In Figure 6.5e, the frequency tuning response of the SIL
laser under resonator piezoelectric tuning control is characterized and shows > 1
MHz bandwidth. And in Figure 6.5f, an HBAR acoustic resonance at 5.6 MHz is
identified for generation of the PDH sideband.

The PDH locking setup is shown in Figure 6.6a with the laser and resonator pho-
tographed in Figure 6.6b. The AC modulation for the PDH error signal generation
and the DC actuation for PDH locking are implemented in a single AlN actuator.
A radio-frequency tone at the HBAR frequency 𝑓𝑚 is directed to the AC input of a
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bias tee and applied to the piezoelectric tuner. This generates two phase-modulated
sidebands separated from the carrier by 𝑓𝑚 (as in Figure 6.5b). A frequency tuning
signal is simultaneously applied to the AlN chip via the DC port of the bias tee. On
account of SIL operation, the frequency of the DFB laser tracks the Si3N4 resonator
mode as it is tuned by the mechanical strain induced from the piezoelectric actuator.

The output of the laser-chip assembly is coupled to a high-finesse Fabry–Pérot cavity
with> 8 billion𝑄 factor. The signal reflected from the Fabry–Pérot cavity is detected
by an avalanche photodetector (APD), where it is mixed with the modulation drive
signal at 𝑓𝑚. As illustrated in the upper panel of Figure 6.6c, the modulated laser
is frequency swept across the Fabry–Pérot cavity mode with a ramp signal applied
to the DC tuning port of the AlN actuator. The generated PDH signal is recorded
using an oscilloscope, and plotted in the lower panel of Figure 6.6c. The three
zero-crossings (dashed red lines) correspond to the right sideband, the carrier, and
the left sideband. PDH locking is engaged by replacing the ramp signal with the
output of a servo (Figure 6.6a).
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Figure 6.6: PDH locking the SIL laser to an optical reference via integrated
piezoelectric tuning and modulation. a, Experimental setup. b, Photograph
showing the SIL laser with AlN piezoelectric control. c, Tuning the frequency-
modulated SIL laser across a the Fabry–Pérot cavity resonance (illustrated in upper
panel) to observe the PDH signal (lower panel). d, Allan deviation results. Fractional
frequency stability reaches 1.9 × 10−13 at an averaging time of 200 ms. A linear
drift of 800 Hz/s has been removed (error bar denotes standard deviation). e, Phase
noise characterization.

The performance of the system is characterized by beating the PDH-locked laser with
another stable reference laser. The beatnote is then studied in time and frequency
domains. A fractional frequency stability (Allan deviation) of 1.9×10−13 is attained
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(Figure 6.6d), which is comparable to a previous result using conventional PDH
locking hardware (W. Zhang et al., 2024). Phase noise results are summarized in
Figure 6.6e. Phase noise of the locked laser (solid red line) is in line with the thermal
noise floor of the reference cavity (dashed black line) at low offset frequencies. For
comparison, the SIL laser phase noise without PDH locking (blue), and the phase
noise of the free-running DFB laser are plotted (gray). At 10 kHz offset frequency,
over 100 dB of phase noise reduction relative to the free-running DFB laser is
measured for the PDH-locked SIL laser. Therefore, high-performance PDH locking
is achieved in an integrated form, which shows compact size, robustness, and low
cost.
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Figure 6.7: Integrated separable tuning of microcomb offset and repetition
rate. a, Illustration of the two degrees of frequency control required for comb
operation: offset frequency on left and repetition rate on right. b, Common mode
and differential mode tuning control in a vernier-coupled-ring resonator. Illustration
of integrated dispersion plotted versus relative mode number (𝑚 − 𝑚0). The mode
number 𝑚0 corresponds to a degeneracy frequency of the rings. Left: common-
mode tuning induces a vertical frequency shift of the dispersion curve by 𝛿𝜈comm
so that the optical resonance 𝜈0 → 𝜈0 + 𝛿𝜈comm. Right: differential-mode tuning
shifts the dispersion curve laterally causing the FSR to tune, but having no affect
on 𝜈0. This dispersion shift is magnified by the Vernier factor 𝑅, enhancing the
rate of tuning of the FSR. Integrated dispersion is given by: 𝜈𝑚 − 𝐹𝑆𝑅0(𝑚 −𝑚0) =
𝜈0 + (𝐷2c/2𝜋) (𝑚 −𝑚0)2/2 + .. where 𝜈0, FSR0, 𝐷2c are mode frequency, FSR, and
second-order dispersion (only the resonator coupling contribution) at mode 𝑚0. d,
Photograph of the resonator with piezoelectric actuators and self-injection-locked
DFB laser pump.

The piezoelectric locked microcomb features improved tuning bandwidth, as well as
separable control of offset frequency and repetition rate, using a common/differential-
mode frequency-tuning control in coupled-ring resonators (illustrated in Figure
6.7a,b). Resultantly, full frequency stabilization of the microcomb is achieved. To
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Figure 6.8: Differential and common mode piezoelectric tuning of the coupled
ring resonator. a, Circuit for generation of control signals from servo voltages
𝛿𝑉1 and 𝛿𝑉2 for common mode and differential mode tuning 𝜈0 and 𝑓rep. b, Optical
spectrum of the normal dispersion microcomb (blue). Two reference lasers are
depicted at frequencies 𝜈ref,1 and 𝜈ref,2. c, Measured tuning response for 𝜈0 when
𝛿𝑉1 (red) and 𝛿𝑉2 (gray) are modulated. The tuning crosstalk is suppressed by >
40 dB. d, Measured tuning response for 𝑓rep when 𝛿𝑉1 (gray) and 𝛿𝑉2 (blue) are
modulated. The tuning crosstalk is suppressed by > 40 dB.

emphasis, the bandwidth is more than 10 times larger than the previous result using
DFB laser current modulation (Figure 2.5).

For further details, the free-spectral-range (𝐹𝑆𝑅) of the rings is designed to be
slightly different (Δ𝐹𝑆𝑅 = 70 MHz with an average 𝐹𝑆𝑅 =19.95 GHz) to create a
frequency Vernier in the coupling of resonator modes. This Vernier enables wide-
band tuning of the resonator dispersion through the Moiré speed-up effect (Q.-X. Ji,
P. Liu, et al., 2024). Furthermore, differentially tuned resonators not only achieve
this Moiré-enhanced dispersion tuning, but have negligible offset frequency tuning.
This ability of the Moiré speed-up effect to isolate tuning control has not been
previously recognized, and it enables separable control of comb offset frequency
and repetition rate.

Tuning of optical frequency and FSR at 𝑚 = 𝑚0 (i.e., 𝜈0 and FSR0) is accomplished
using piezoelectric actuation. The tuning is governed by the following matrix,(

𝛿𝜈0

𝛿FSR0

)
=

1
𝑚0

(
𝑚0 0
1 −Γ

) (
𝛿𝜈comm

𝛿𝜈diff

)
(6.1)

where Γ ≡ (𝑚0𝐷2c𝑅)/(2𝜋𝐹𝑆𝑅), and where: 𝑚0 ≈ 9670 and 𝐷2c/2𝜋 = 278 kHz.
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The wavelength location of 𝑚0 and the value of 𝐹𝑆𝑅 are determined by dispersion
measurement, where Γ = 39. Moreover, direct measurement of FSR tuning gives
Γ = 39 ± 4, which compares well with the above value.

Separable tuning control therefore results from the off-diagonal elements in the
above matrix being zero or small compared to the diagonal elements. Moreover, as
noted below, the presence of the zero in this matrix means that fully independent
control is possible (i.e., matrix diagonalized) by simple adjustment of the scale
factor in control of common and differential servo signals. Finally, the value of
𝑚0 is broadly tunable (over L, C and S bands) by differential thermal tuning of the
rings so that matching of 𝑚0 to a desired operating wavelength is straightforward
(Q.-X. Ji, P. Liu, et al., 2024).

Convenient generation of common-mode and differential voltage signals for the
piezoelectric actuators is possible using the circuit shown in Figure 6.8a. Servos
for control of 𝜈0 and FSR generate voltages 𝛿𝑉1 and 𝛿𝑉2, which are coupled to sum
and difference circuits and subsequently amplified by ∼ 2 times to increase the gain
in the servo loop. To test the system, the microcomb is pumped by a commercial
DFB laser (Emcore Corporation, with 120 mW output at 1548 nm) under the self-
injection-locked operation. The comb has a ∼20 GHz repetition rate and ∼2 THz
span. Despite the anomalous dispersion provided by resonator coupling, the overall
dispersion is slightly normal on account of the waveguide dispersion contribution.
The comb spectrum is shown in Figure 6.8b. Operation as a anomalous dispersion
comb is also possible by adjusting the frequency Vernier (Yuan et al., 2023).

Microcomb frequency control bandwidth

To test the frequency response of the separable control system, reference lasers
at frequencies 𝜈ref,1, 𝜈ref,2 are used as illustrated in Figure 6.8b. These lasers are
separately frequency locked to a high-stability Fabry–Pérot cavity (described in
the next section). 𝛿𝑉1,2 are then modulated to induce modulation in 𝜈0 and FSR,
which, in turn, modulate the microcomb offset frequency and repetition rate 𝑓rep.
To measure tuning frequency response, the reference lasers are combined with the
comb light and photodetected to provide beat frequency signals with nearby comb
teeth. For this measurement, one of the reference laser frequencies (𝜈ref,1) is close
in frequency to a mode crossing point (at 𝑚0) so the corresponding response to
modulation (𝛿𝑉1) reflects mainly offset frequency variation (Figure 6.8c). The other
reference laser frequency (𝜈ref,2) is many comb teeth away from the crossing point.
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Its beatnote with a nearby comb tooth will be sensitive to FSR modulation induced
by 𝛿𝑉2. This modulation is also multiplied by the number of comb teeth (𝑁) relative
to the crossing mode (Figure 6.8d). To test isolation of 𝑓rep when offset frequency is
intentionally modulated (gray data in Figure 6.8e) the two beatnotes are electrically
mixed to eliminate the optical carrier frequency in the response measurement.

In each case, the independence of the control can also be tested by measuring the
cross-talk frequency response to the alternate control voltage. To minimize this
cross talk, the ratios of the sum and difference of the voltages in Figure 6.8a can be
fine-tuned. Experimentally, the cross-talk is suppressed by >40 dB (Figure 6.8c,d).

Finally, it is noted that the bandwidth (3-dB bandwidth ≈ 1 MHz) in these measure-
ments is limited by cable-induced delays in the experiment. A direct measurement
of the pure piezo response (see Figure 6.3c) shows that the intrinsic response ≈ 10
MHz. Tighter integration of the control circuits with the microcomb would enable
access to this full control bandwidth. It is also noted that the self-injection locking
process introduces a phase delay that can potentially limit bandwidth. Importantly,
the bandwidth is more than 10 times larger than the previous result using DFB laser
current modulation (Figure 2.5).

Microcomb full frequency stabilization

Full frequency stabilization of the microcomb using the separable control approach
is illustrated in Figure6.9a. The reference lasers (RIO laser at 1550 nm and Toptica
laser at 1555 nm) are stabilized to a high-𝑄 Fabry–Pérot cavity by the Pound-Drever-
Hall (PDH) locking technique (W. Zhang et al., 2024). The microcomb frequency
(𝜈0) is locked to the RIO laser (𝜈ref,1 near the mode crossing point) by feedback to
the actuators under common mode tuning. The repetition rate ( 𝑓rep) is stabilized
using the 2P-OFD by feeding back to actuators under differential mode. Division
of this span by 𝑁 = 31 transfers the reference cavity stability into the microcomb
repetition rate ( 𝑓rep). The choice of the laser operation frequencies (𝜈ref,1, 𝜈ref,2) is
currently limited by the available lasers and optical filters.

Characterization of the stabilized 𝜈0 and 𝑓rep is presented in Figure6.9b-e. The
electrical spectra (resolution bandwidth is 10 Hz) of the beatnote between the
reference laser 𝜈1 and comb line 𝜈0 and the detected microcomb repetition rate
are presented in Figures 6.9b-c, respectively. These spectra verify full frequency
stabilization of the microcomb to the reference cavity. Further evidence of the full
stabilization is provided in Figures 6.9d-e, which give the corresponding phase noise
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Figure 6.9: Microcomb frequency stabilization. a, Illustration of stabilization of
𝑓rep and 𝜈0. Two lasers (frequencies: 𝜈ref,1 and 𝜈ref,2) are stabilized to two modes
of the same Fabry–Pérot cavity (gray spectrum). Comb lines at 𝜈0 and 𝜈𝑁 are
locked to these lasers by first generating photodetector beatnotes (f1 = 𝜈ref,1 − 𝜈0,
f2 = 𝜈ref,2 − 𝜈𝑁 ). 𝜈0 is then locked by locking f1 to the local oscillator at 𝑓LO2
by servo control of the common-mode tuning actuator. To lock 𝜈𝑁 , intermediate
frequency 𝑓1 − 𝑓2 = (𝜈ref,1 − 𝜈ref,2) − 𝑁 𝑓rep is produced and locked to 𝑓LO1 by servo
control of the differential actuator. This also stabilizes the comb repetition rate
( 𝑓rep) by 2-point optical frequency division of the laser spacing (𝜈ref,1 − 𝜈ref,2). b,
The electrical spectrum (RBW 10 Hz) of the stabilized beat note between reference
laser 1 and the comb ( 𝑓1 = 𝜈ref,1 − 𝜈0). c, The electrical spectrum (RBW 10 Hz) of
the stabilized comb repetition rate 𝑓rep. d, Phase noise spectra of the stabilized beat
note between reference laser 1 and the comb when the microcomb is free-running
(gray) and frequency-stabilized (red). e, Phase noise spectra of the 𝑓rep when the
microcomb is free-running (gray) and frequency-stabilized (blue).

spectra for the measurements in Figures 6.9b and c. The phase noise spectra for
the free-running (gray) and locked (red, blue) microcomb cases are measured. The
locking bandwidths for the two phase locking loop are ∼ 100 kHz with locking
corner frequencies located ∼ 200 kHz. The higher corner frequencies (∼ 1 MHz)
are from the reference laser PDH locks. The locked microcomb exhibits low phase
noise levels: at 10 kHz offset frequency, the beatnote 𝜈0 − 𝜈ref,1 attains −106
dBc/Hz (optical rate ≈ 193.4 THz), and 𝑓rep attains −130 dBc/Hz (carrier frequency
∼19.95 GHz). By increasing the phase noise division factor, lower phase noise for
microwave generation is possible (Q.-X. Ji, W. Zhang, Savchenkov, et al., 2025).
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6.4 Conclusion of the thesis
What has been done?
This thesis presents a study of chip-based optical frequency division (OFD) using
high-𝑄 integrated photonic devices. Motivated by developing a microcomb that fits
into the OFD experiment, the key focus is placed on dispersion engineering using
coupled ring resonators. The development of Vernier two-ring (2CR) and three-ring
(3CR) architectures enables precise and programmable control over both second-
and third-order dispersion. These advances allow for the generation microcombs
with wide spectral bandwidth and improved efficiency. Resultantly, a photonic-
chip-based OFD system with lowest phase noise for microwave generation among
those using integrated photonics, is demonstrated.

The thesis also demonstrates system-level progress toward a compact, robust OFD
device. Stable self-injection locking of microcombs to integrated III-V lasers is
achieved and characterized. Early efforts to incorporate piezoelectric tuning ele-
ments monolithically into the photonic platform have shown success in stabilizing
both reference lasers and comb sources. Together, these developments establish
a viable path toward scalable, low-SWaP, and fully integrated OFD systems with
broad relevance for precision timing, frequency synthesis, and spectroscopy.

What is next?
The photonic chip-based OFD assembly

A fully integrated OFD system on chip remains a compelling vision, though it
continues to pose significant engineering challenges. This thesis has demonstrated
functional integration of critical subsystems, including high-𝑄 comb generators,
reference lasers, and hybrid III-V pumping, yet assembling all required elements
onto a single silicon substrate remains elusive. Issues such as thermal crosstalk,
heterogeneous material bonding, waveguide routing, and wafer-level process com-
patibility must be addressed. Intermediate architectures based on hybrid assembly
and co-packaging offer practical paths forward. The creation of modular, portable
OFD systems that blend performance with manufacturability is expected.

A number of sub-components in the photonic chip-based OFD assembly may also
find usage individually. For example, miniaturized stable lasers and frequency comb
sources are generally useful for a wide range of applications.
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New material platforms?

Every leap of integrated photonics is engined by a new material platform, especially
the boosted𝑄 factor for microresonators. The emergence of the low-loss Si3N4 was
pivotal in enabling microcombs and narrow-linewidth lasers, thus the OFD for this
thesis.

Germano-silicate glasses, commonly used in optical fibers, are emerging as candi-
dates for planar integration. Their compatibility with CMOS backends remains a
technical hurdle, but advances in low-temperature deposition and hybrid photonic
platforms may help bridge that gap (Chen et al., 2024).

MgF2 and CaF2, though not easily integrated with standard lithographic processes,
feature the highest 𝑄 factors among known microresonator materials. Their ex-
ceptional transparency from the ultraviolet to the mid-infrared, along with ultra-
low absorption and scattering losses, make them ideal for applications requiring
extreme coherence, such as optical atomic clocks and ultra-low-noise microwave
generation. As micro-machining, polishing, and bonding techniques continue to
evolve, hybrid MgF2/CaF2 on-chip integration may become feasible for specialized
high-performance systems. These materials are also gaining attention as potential
host media for the 229Th nuclear transition, offering a path toward cavity-enhanced
nuclear spectroscopy and new frontiers in precision timekeeping and fundamental
physics (Tiedau et al., 2024).
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A p p e n d i x A

THEORY OF KERR MICROCOMBS

This chapter presents theoretical frameworks for modeling Kerr soliton microcombs,
emphasizing physical understanding and numerical accessibility. We begin with the
Lugiato-Lefever equation (LLE), which forms the basis for describing dissipative
solitons in microresonators. Its use is illustrated in modeling the spectral properties
of microcombs near-zero group velocity dispersion (GVD) (Ji et al., 2023). Next,
an eigenmode approach is introduced to study the physics of breather solitons and
their excitation spectrum. Finally, we then apply a Lagrangian method to analyze
the dynamics of cavity solitons under pulsed optical pumping (J. Li et al., 2022).

A.1 Introduction: The Lugiato-Lefever equation
The Lugiato-Lefever equation (LLE) (Lugiato and Lefever, 1987) is a widely used
model for describing nonlinear dynamics in driven Kerr cavities. Its introduction to
microresonator frequency combs by Chembo and Menyuk (Chembo and Menyuk,
2013) established a framework for studying temporal soliton formation in chip-scale
devices.

The LLE describes the evolution of the intracavity field envelope 𝐸 (𝜃, 𝑇), where 𝜃
is the azimuthal coordinate around the resonator (from 0 to 2𝜋), and 𝑇 is the slow
time describing evolution over many round trips. The equation is written as:

𝜕

𝜕𝑇
𝐸 (𝜃, 𝑇) = (−𝜅

2
−𝑖𝛿𝜔+𝑖𝑔 |𝐸 (𝜃, 𝑇) |2+

∑︁
j≥2

(−𝑖) ( 𝑗+1)𝐷 𝑗

𝑗!
𝜕 𝑗

𝜕𝜃 𝑗
)𝐸 (𝜃, 𝑇) +𝐸in, (A.1)

where 𝜅 is the cavity linewidth, 𝛿𝜔 = 𝜔L − 𝜔C is the laser-cavity detuning, 𝑔 is the
Kerr nonlinear coefficient, 𝐷 𝑗 are the dispersion parameters, and 𝑓 =

√︁
𝜅ext𝑃in/ℏ𝜔o

is the pump input (𝜅ext is the pump bus waveguide coupling rate, 𝑃i𝑛 is the pump
power on the bus waveguide in Watt, ℏ is the reduced Planck constant, 𝜔0/2𝜋 is the
pump laser frequency).

By transforming to the fast time variable 𝑡 = −𝜃/𝐷1, the LLE becomes:

𝜕

𝜕𝑇
𝐸 (𝑡, 𝑇) = (−𝜅

2
− 𝑖𝛿𝜔+ 𝑖𝑔 |𝐸 (𝑡, 𝑇) |2+

∑︁
j≥2

( 𝑖
𝐷1

) ( 𝑗+1)𝐷 𝑗

𝑗!
𝜕 𝑗

𝜕𝑡 𝑗
)𝐸 (𝑡, 𝑇) +𝐸in. (A.2)
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Microcavity symbols Optical fiber community symbols Normalized
Equation A.1 Equation A.3 Equation A.4
photon number |𝐸 (𝜃, 𝑇) |2 optical power |𝐴(𝑡, 𝑇) |2 |𝜓(𝑥, 𝜏) |2
slow time 𝑇 𝑧 =

𝐿𝐷1
2𝜋 𝑇 𝜏 = 𝜅𝑇/2

cavity azimuthal axis 𝜃 𝑡 = − 𝜃
𝐷1

𝜃

cavity linewidth 𝜅 𝛼 = 2𝜋𝜅
𝐷1𝐿

1
laser-cavity detuning 𝛿𝜔 𝛿𝑘0 = 2𝜋𝛿𝜔

𝐷1𝐿
Δ = 2𝛿𝜔

𝜅

Kerr coefficient 𝑔 𝛾 =
4𝜋2ℏ𝜔0
𝐷2

1𝐿
𝑔 1

GVD parameter 𝐷2 𝛽2 = −𝐷2𝑇R
𝐷2

1𝐿
1

pump input 𝐸in
1
𝐿

√
𝜃c𝑃in ℎ =

√︃
𝑃in
𝑃th

Table A.1: Conversion between different forms of LLEs.

Other two forms of the LLE
Alternative Forms of the LLE
Different research communities often use different forms of the LLE. The second
form of the LLE is generally from the fiber soliton community, reads

𝜕

𝜕𝑧
𝐴(𝑡, 𝑧) = (−𝛼

2
−𝑖𝛿𝑘0+𝑖𝛾 |𝐴(𝑡, 𝑧) |2+

∑︁
j≥2

(𝑖) ( 𝑗+1) 𝑘 𝑗
𝑗!
𝜕 𝑗

𝜕𝑡 𝑗
)𝐴(𝑡, 𝑧)+ 1

𝐿

√︁
𝜃c𝑃in, (A.3)

where |𝐴(𝑡, 𝑧) |2 is the circulating power, 𝛼 is the energy loss rate (in dB/m), 𝛾 is the
Kerr nonlinear coefficient, 𝛽 is the dispersion parameter, 𝐿 is the round trip length,
𝜃c is the coupling ratio of the bus waveguide, and 𝑃in is the bus waveguide pump
power.

Finally, the normalized LLE is the easiest one to be manipulated mathematically
and in coding,

𝜕

𝜕𝜏
𝜓(𝑥, 𝜏) = (−1 − 𝑖Δ + 𝑖 |𝜓(𝑥, 𝜏) |2 +

∑︁
j≥2

(−𝑖) ( 𝑗+1) 𝑑 𝑗
𝑗!
𝜕 𝑗

𝜕𝜃 𝑗
)𝜓(𝑥, 𝜏) + ℎ, (A.4)

with 𝑑 𝑗 =
2𝐷 𝑗

𝜅
. Other definition of parameters can be found in Table A.1.

Solitonic solution of the LLE in the anomalous dispersion regime
The most famous and neat solution of the LLE A.2 is the (single) soliton (by
neglecting the higher order dispersion terms). It has an approximated ansatz of (Yi
et al., 2016b; Guo et al., 2017; X. Li et al., 2018)

𝐸 (𝜃, 𝑇) = 𝐵sSech( 𝑡
𝑡s
)𝑒𝑖𝜙𝑠 + 𝐸b, (A.5)
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with 𝐵2
s = 2𝛿𝜔

𝑔
(1 + 5

4𝑥), 𝑡
2
𝑠𝐷

2
1 =

𝐷2
2𝛿𝜔 (1 − 1

2𝑥), cos(𝜙s) = 𝜅
𝜋 |𝐸b |

√︃
2
𝑔𝛿𝜔

≈ 𝜅
𝜋 𝑓

√︃
2𝛿𝜔
𝑔

,
and 𝐸b is the trivial solution of Equation A.1. 𝑥 is a correction fact under a finite
pumping amplitude, and is denoted by 𝑥2 =

𝜋2𝑔 |𝐸b |2𝛿𝜔−2𝜅2

2𝛿𝜔2 ≈ 𝜋2𝑔 𝑓 2−2𝜅2𝛿𝜔

2𝛿𝜔3 . Beyond
which the soliton ceases to exist. This limit reflects the balance required between
nonlinearity, detuning, and dissipation to support a stable soliton in the cavity.

Dark pulse solution of the LLE in the normal dispersion regime
In the regime of small but finite dispersion, the dark pulse can be interpreted as a
pair of domain walls that connect two distinct stable steady states of the LLE: a high-
power background and a low-power intermediate state. These two levels correspond
to different CW solutions of the LLE and are separated by a phase slip and localized
intensity drop. The spatial profile of the pulse includes canonical oscillatory tails
on either side of the intensity dip, reflecting dispersive wave modulation near the
domain wall interface (Wang et al., 2022). Such dark pulse states are stable in the
normal GVD regime and can form either single-pulse or multi-pulse patterns.

A.2 Solving the LLE with the Split-Step Fourier Method
A widely used numerical approach for solving the LLE is the split-step Fourier
method. This method efficiently handles the interplay between nonlinearity and
dispersion by separating the linear and nonlinear components of the evolution equa-
tion and treating them in different domains. In this approach, the derivatives with
respect to the azimuthal coordinate 𝜃 are computed in the Fourier domain, while
the nonlinear Kerr term is evaluated in the time domain. The temporal evolution
(in slow time 𝑇) is then carried out iteratively, either until a steady-state solution is
reached or to observe transient dynamics such as soliton formation and breathing
behavior.

Listing A.1 provides a MATLAB implementation based on the normalized LLE in
Equation A.4. The code simulates the formation of bright dissipative Kerr solitons
in the anomalous dispersion regime.

1 clc; clear

2 %% Parameters definition

3 dt = 1e-3; T_total = 100; M = floor(T_total/dt);

4 t = linspace(0, T_total, M);

5 N = 2048; k = fftshift(-N/2:N/2-1); theta = linspace(-pi, pi, N);

6 h = sqrt(13); d2 = 0.01; d3 = 0;

7 % Initialization

8 E = rand(1, N)*1e-3;
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9 Deltaa_pool = linspace(-5, 20, M);

10 dispersion = d2*k.^2/2 + d3*k.^3/6;

11 Field = zeros(M/100, N); mm = 1;

12 %% LLE numerical

13 for m = 1 : M

14

15 Delta = Deltaa_pool(m);

16

17 E = fft(E);

18 E = exp(-1i*dispersion*dt/2).*E;

19 E = ifft(E);

20 E = exp((-1-1i*Delta+1i*abs(E).^2)*dt).*E + h*dt;

21 E = fft(E);

22 E = exp(-1i*dispersion*dt/2).*E;

23 E = ifft(E);

24 P(m) = sum(abs(E).^2)/N;

25

26 if mod(m, 100) == 0

27 Field(mm, :) = E; mm = mm + 1;

28 end

29

30 end

31 %% Plotting

32 figure

33 plot(theta/pi, abs(E), ’linewidth’, 1);

34 xlabel(’Azimuthal␣angle␣\theta␣(\pi)’); ylabel(’Intensity␣(a.u.)’)

; box on;

35 figure

36 plot(fftshift(k), 10*log10(abs(fftshift(fft(E))).^2/N^2));

37 xlabel(’Mode␣number’); xlim([-100 100]); ylabel(’Power␣(dB)’);

38 figure

39 pcolor(theta.’, t(1:100:end).’, abs(Field).^2); shading interp;

colorbar; colormap jet;

40 xlabel(’Azimuthal␣angle␣(rad)’); ylabel(’Normalized␣time’);

Listing A.1: Solving the LLE with split-step Fourier method.

The split-step Fourier method offers several advantages: it is computationally effi-
cient, conceptually intuitive, and closely mirrors experimental observations of Kerr
comb dynamics. Moreover, the method is highly flexible and can be readily ex-
tended to include additional physical effects by modifying the LLE to incorporate
new terms.
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As a representative example, I present below a simulation of a near-zero-GVD
microcomb under self-injection locking, following the approach described in Ji et
al. (2023).

Modeling of near-zero-GVD microcomb under self-injection locking
The system begins with the LLE as in Equation A.4. Besides, for the self-injection
locking, a backward-propagating field 𝐸B should be modeled with the forward field
𝐸F,

𝜕

𝜕𝑡
𝐸F = (−1 − 𝑖Δ + 𝑑1

𝜕

𝜕𝜃
+ 𝑖 𝑑2

2
𝜕2

𝜕𝜃2 + 𝑑3

6
𝜕3

𝜕𝜃3 + 𝑖 |𝐸F |2 + 2𝑖 |𝐸B |2)𝐸F

+ 𝑖𝑔B𝐸B + ℎ,
(A.6)

where 𝐸F is the normalized intra-cavity field, 𝑑1 = 2𝛿𝜔rep/𝜅 is the normalized
repetition rate change, Δ = 2𝛿𝜔/𝜅 is normalized detuning, 𝑑2 = 2𝐷2/𝜅 is nor-
malized second-order dispersion parameter, 𝑑3 = 2𝐷3/𝜅 is normalized third-order
dispersion parameter, 𝑔B is normalized back-scattering parameter, ℎ =

√︁
𝑃in/𝑃th

is the normalized pumping strength, where 𝑃in is the pump power and 𝑃th is the
parametric threshold power. The back-scattered field 𝐸B here is also described by
the same equation,

𝜕

𝜕𝑡
𝐸B = (−1 − 𝑖Δ + 𝑑1

𝜕

𝜕𝜃
+ 𝑖 𝑑2

2
𝜕2

𝜕𝜃2 + 𝑑3

6
𝜕3

𝜕𝜃3 + 𝑖 |𝐸B |2 + 2𝑖 |𝐸F |2)𝐸B

+ 𝑖𝑔B𝐸F.

(A.7)

In addition, the laser-cavity detuning Δ under the self-injection is described by (Jin
et al., 2021)

Δ = Δ𝐿 + 𝐾Im

[
𝑒𝑖𝜓

𝐸B

ℎ

]
, (A.8)

where ΔL is the normalized laser-cavity detuning without the feedback, 𝐾 is the
feedback strength, and 𝜓 is feedback phase. The MATLAB code is in Listing A.2.

1 clc

2 clear

3 %% Parameters

4 kappa = 7.2e6*2*pi;

5 dt = 1e-3; T_total = 100; M = floor(T_total/dt);

6 t = linspace(0, T_total, M);

7 N = 2048; k = fftshift(-N/2:N/2-1); theta = linspace(-pi, pi, N);

8 gB = 0.1; psi = -pi/6; K = 2700; % SIL parameters

9 h = sqrt(13);
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10 d1 = zeros(M, 1); d2 = 13e3*pi*2/kappa*2; d3 = 7e3*pi*2/kappa*2;

11 E = rand(1, N)*1e-3 + sech(theta/pi/1.5);

12 EB = rand(1, N)*1e-3 + sech(theta/pi/1.5);

13 Delta_pool = linspace(10, 10, M);

14 dispersion = d2*k.^2/2 + d3*k.^3/6;

15 Field = zeros(M/100, N);

16 mm = 1;

17 %% LLE numerical

18 for m = 1 : M

19

20 x(m) = (sum(abs(E).^2.*theta))/(sum(abs(E).^2)); d1(m) = x(m);

21

22 Delta_L = Delta_pool(m);

23 Delta = Delta_L + K*imag(exp(1i*psi)*mean(EB)/h);

24 Delta_SIL(m) = Delta;

25

26 E = fft(E);

27 E = exp(1i*(d1(m)*k-dispersion)*dt/2).*E;

28 E = ifft(E);

29 E = exp((-1-1i*Delta+1i*abs(E).^2 + 2*1i*mean(abs(EB).^2))*dt)

.*E ...

30 + 1i*gB*mean(EB)*dt + h*dt;

31 E = fft(E);

32 E = exp(1i*(d1(m)*k-dispersion)*dt/2).*E;

33 E = ifft(E);

34 P(m) = sum(abs(E).^2)/N;

35

36 EB = fft(EB);

37 EB = exp(1i*(d1(m)*k-dispersion)*dt/2).*EB;

38 EB = ifft(EB);

39 EB = exp((-1-1i*Delta+1i*abs(EB).^2 + 2*1i*mean(abs(E).^2))*dt

).*EB ...

40 + 1i*gB*mean(E)*dt;

41 EB = fft(EB);

42 EB = exp(1i*(d1(m)*k-dispersion)*dt/2).*EB;

43 EB = ifft(EB);

44

45 if mod(m, 100) == 0

46 Field(mm, :) = E;

47 mm = mm + 1;

48 end

49

50 end
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51 %% Plotting

52 figure

53 plot(theta/pi, abs(E), ’linewidth’, 1);

54 xlabel(’Azimuthal␣angle␣\theta␣(\pi)’); ylabel(’Intensity␣(a.u.)’)

;

55 figure

56 plot(fftshift(k), 10*log10(abs(fftshift(fft(E))).^2/N^2));

57 xlabel(’Mode␣number’); xlim([-50 50]); ylabel(’Power␣(dB)’);

58 figure

59 pcolor(theta.’, t(1:100:end).’, abs(Field).^2); shading interp;

colorbar; colormap jet;

60 xlabel(’Azimuthal␣angle␣(rad)’); ylabel(’Normalized␣time’);

Listing A.2: Solving the LLE using split-step Fourier methed, for near-zero-
GVD microcomb under SIL.

Wavelength (nm) 𝐷2/2𝜋 (kHz) 𝜅/2𝜋 (MHz) 𝑔b/2𝜋 (MHz) 𝜅ext
B /𝜅

1558.25 13±2 7.2 1.72 0.49
1558.56 -1.5±0.4 7.5 4.67 0.55
1559.22 -33±4 7.3 2.10 0.54
1561.48 -131±16 7.1 2.14 0.60

Table A.2: Summary of simulation parameters, for self-injection locked, near-
zero GVD microcomb.

In the simulation of Figure 3.6c-e, the pump power is 𝑃in ≈ 35 mW (ℎ ≈
√

13),
which is estimated by assuming identical facet loss for the two waveguide facets.
For pumping at 1561.48 nm (Figure 3.6f), the laser is at its thermal tuning edge (42
degree C), and the on-chip pump power is degraded to an estimated 17 mW.

For the pump wavelengths in Figure 3.6, the dispersion parameters are provided in
Table. A.2. The third-order dispersion parameter is fitted to be 7.5 kHz and does
not change by much within the measured pumping wavelengths. Other parameters,
such as ΔL and the feedback phase 𝜙, are difficult to determine experimentally, and
have been adjusted to match the experimental results. The locking strength 𝐾 is
estimated as 2700 (Jin et al., 2021).

In the simulation, the relative feedback phase 𝜓 is adjusted to fit the duty cycle
of the temporal waveform, and is −0.10𝜋, 0.20𝜋, −0.42𝜋, 0.0𝜋, respectively, for
simulations in Figure 3.6. Also, the steady-state laser cavity detuning 𝛿𝜔/2𝜋 is
simulated to be 18.8 MHz, 19.1 MHz, 21.1 MHz, 19.5 MHz, respectively, for Fig.
2c-f. The steady-state 𝛿𝜔rep/2𝜋 is calculated by iterating 𝛽1 in Equation A.6 and
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Equation A.7 until there’s no drifting in the temporal waveform in the fast frame,
and simulated to be 624 kHz, 445 kHz, 283 kHz, −23 kHz, respectively, for Figure
3.6c-f.

A.3 Excitation diagram analysis of the LLE
The excitation diagram analysis of the Lugiato-Lefever Equation (LLE) originates
from the Newtonian (or perturbative) approach to solving the LLE (Vladimirov,
Tlidi, and Taki, 2021). Although this method is often less numerically stable in
practice, it provides valuable insight into the stability landscape of the dynamical
system.

We begin with the normalized form of the LLE given in Equation A.4. By de-
composing the intracavity field into a continuous-wave (CW) background 𝑎0 and
a localized soliton component 𝐴(𝜃, 𝑡), such that 𝜓 = 𝐴 + 𝑎0, a modified evolution
equation for the soliton component is obtained:

𝜕𝐴

𝜕𝑡
= −(1 + 𝑖Δ)𝐴 + 𝑖𝑑2

𝜕2𝐴

𝜕𝜃2 + 𝑖 |𝑎0 + 𝐴|2(𝑎0 + 𝐴) − 𝑖 |𝑎0 |2𝑎0. (A.9)

To analyze the linear stability and excitation spectrum of the system, we define the
two-component vector |𝜓⟩ = (𝐴, 𝐴∗)𝑇 and cast the dynamics in a Heisenberg-like
form:

𝑖
𝜕

𝜕𝑡
|𝜓⟩ = 𝐻̂ |𝜓⟩ , (A.10)

where the effective Hamiltonian 𝐻̂ comprises contributions from dispersion, linear
loss, and Kerr nonlinearity:

𝐻̂ = 𝐻̂0 + 𝐻̂loss + 𝐻̂ (0)
Kerr + 𝐻̂

(1)
Kerr. (A.11)

The individual components are given as follows. The dispersion and detuning term:

𝐻̂0 = Δ𝐼 − 𝑑2

(
𝜕2

𝜕𝜃2 0
0 𝜕2

𝜕𝜃2

)
, (A.12)

where 𝐼 is the identity operator acting on |𝜓⟩. The linear loss term is:

𝐻̂loss = −𝑖𝐼 . (A.13)

The Hermitian (real) part of the Kerr interaction is:

𝐻̂
(0)
Kerr = −

(
|𝐴|2 + 𝐴𝑎∗0 + 𝐴

∗𝑎0 + 2|𝑎0 |2 0
0 −|𝐴|2 − 𝐴𝑎∗0 − 𝐴

∗𝑎0 − 2|𝑎0 |2

)
. (A.14)
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The non-Hermitian (complex) part of the Kerr interaction is:

𝐻̂
(1)
Kerr = −

(
0 𝑎2

0 + 𝐴𝑎0

−𝑎∗2
0 − 𝐴∗𝑎∗0 0

)
. (A.15)

For clarity, we can group the Hermitian and non-Hermitian components as:

𝐻̂ (0) = 𝐻̂0 + 𝐻̂ (0)
Kerr, 𝐻̂ (1) = 𝐻̂loss + 𝐻̂ (1)

Kerr. (A.16)

This formulation enables direct analysis of the excitation spectrum and provides a
powerful framework for assessing soliton stability and interaction with perturbations.

Heisenberg equation of the system under perturbation
When the system is perturbed around a stationary solution |𝜓0⟩, the dynamics of the
perturbation |𝛿𝜓⟩ are governed by a linearized evolution equation derived from the
Jacobian of the system:

𝑖
𝜕 |𝜓⟩
𝜕𝑡

= 𝐻̂ |𝜓0⟩ + 𝐽 |𝛿𝜓⟩ , (A.17)

where 𝐻̂ is the Hamiltonian introduced previously, and 𝐽 is the Jacobian operator
composed of the following terms:

𝐽 = 𝐽0 + 𝐽loss + 𝐽 (0)Kerr + 𝐽
(1)
Kerr. (A.18)

The components of 𝐽 are given by:

𝐽0 = 𝐻̂0, 𝐽loss = −𝑖𝐼, (A.19)

𝐽
(0)
Kerr = −2

(
|𝐴|2 + 𝐴𝑎∗0 + 𝐴

∗𝑎0 + |𝑎0 |2 0
0 −|𝐴|2 − 𝐴𝑎∗0 − 𝐴

∗𝑎0 − |𝑎0 |2

)
, (A.20)

𝐽
(1)
Kerr = −

(
0 (𝐴 + 𝑎0)2

−(𝐴∗ + 𝑎∗0)
2 0

)
. (A.21)

To obtain a steady-state solution to Equation A.9 via the Newton-Raphson method,
we iteratively update the field using:

|𝜓 𝑗+1⟩ = |𝜓 𝑗 ⟩ − 𝐽−1𝐻̂ |𝜓 𝑗 ⟩ . (A.22)

Starting from an approximate single-soliton ansatz, this procedure typically con-
verges to a stable steady-state solution within 100 iterations. The implementation
of this method is provided in Listing A.3.
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1 clc

2 clear

3 %% Initialization

4 N = 1024; k = fftshift(-N/2:N/2-1); theta = linspace(-pi, pi, N);

5 h = 5; D2 = 0.04; Delta = 10;

6 %% Soliton input

7 B = sqrt(2*Delta); phi_tau = 1/(sqrt(2*Delta/D2));

8 a0 = h/(1+1i*Delta);

9 fun = @(E0) (-1-1i*Delta+1i*abs(E0)^2)*E0+h; a0 = fsolve(fun, a0);

10 A = B*sech((theta)/phi_tau)*exp(1i*acos(2/pi/abs(a0)*sqrt(2/Delta)

));

11 get_F = @(A) ifft(1i*(-D2*k.^2/2).*fft(A))+ ...

12 (-1-1i*Delta)*A + 1i*abs(A+a0).^2.*(A+a0) - 1i*abs(a0)^2*a0;

13 %% Newton metod iterations

14 for m = 1 : 100

15 L0 = get_matrix_L0(Delta, k, a0, D2);

16 L1 = get_matrix_L1(a0, A);

17 rhs = get_F(A);

18 temp = inv(L0+L1)*[rhs.’;, rhs’];

19 A = A - temp(1:N).’;

20 end

21 %% Visualization

22 L0 = get_matrix_L0(Delta, k, a0, D2);

23 L1 = get_matrix_L1(a0, A);

24 figure

25 D = eigs(L0+L1, 100, ’smallestabs’);

26 plot(D, ’.’, ’Markersize’, 10);

27 hold on

28 plot([-5, 5], [Delta, Delta], ’r--’); plot([-5, 5], -[Delta, Delta

], ’r--’);

29 xlabel(’Real␣part’); ylabel(’Imaginary␣part’);

30 legend(’Eigenvalues’, ’Detuning’)

31 xlim([-5 5]); ylim([-Delta, Delta]*1.5);

32 set(gca,’TickDir’,’out’);

33 title([’Eigenvalues␣(single␣soliton),␣detuning:␣’, num2str(Delta)

]);

34 %% Plot eigenmodes

35 [V, ~] = eigs(L0+L1, 100, ’smallestabs’);

36 [~, idx] = mink(abs(imag(D)), 6);

37 s.D = zeros(1, length(idx));

38 s.V = zeros(N, length(idx));

39 for mm = 1 : length(idx)

40 s.D(mm) = D(idx(mm));
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41 s.V(:, mm) = V(1:N, idx(mm));

42 figure

43 plot(theta, real(s.V(:, mm)));

44 xlabel(’\theta’); ylabel(’Real(eigenmode)’);

45 title([’Eigenvalue:␣’, num2str(D(idx(mm)), ’%.2f’)]); set(gca,

’TickDir’,’out’);

46 end

47 %% functions

48 function L0 = get_matrix_L0(delta_omega , k, E0, D2)

49 N = length(k);

50 Diff_2 = -conj(dftmtx(N))/N*diag(k.^2)*dftmtx(N);

51 L0_1 = diag(ones(1, N))*(-1-1i*delta_omega+2*1i*abs(E0)^2) + 1

i*D2/2*Diff_2;

52 L0_2 = diag(ones(1, N))*1i*E0^2;

53 L0 = [L0_1, L0_2; conj(L0_2), conj(L0_1)];

54 end

55 function L1 = get_matrix_L1(E0, e0)

56 L1_1 = 2*1i*conj(E0)*diag(e0) + 2*1i*E0*diag(conj(e0)) + 2*1i*

diag(abs(e0).^2);

57 L1_2 = 2*1i*E0*diag(e0) + 1i*diag(e0.^2);

58 L1 = [L1_1, L1_2; conj(L1_2), conj(L1_1)];

59 end

Listing A.3: Solving the LLE using Newtonian Method.

The excitation diagram
A key feature of the Newtonian method is that the eigenvalues 𝜆 of the operator
𝐿̂ = −𝑖𝐽 can be numerically computed, enabling linear stability analysis of the
steady-state solution. For a stationary solution, the perturbation evolves as

𝜕 |𝛿𝜓⟩
𝜕𝑡

= 𝐿̂ |𝛿𝜓⟩ , (A.23)

and the eigenvalues of 𝐿̂ indicate whether the perturbation grows, decays, or remains
neutral over time.

As an example, for a stable bright soliton solution (Figure A.1a), the excitation
spectrum reveals a ‘neutral mode’ at 𝜆 = 0. This zero eigenvalue reflects the
translational symmetry of the soliton within the cavity: the soliton may move freely
in the angular coordinate 𝜃 without being damped or amplified. In addition, two pairs
of complex-conjugate eigenmodes—known as the S and C resonances—appear
(Figure A.1b,c), consistent with the results reported in (Guo et al., 2017).
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Figure A.1: Excitation spectrum calculation of a single soliton (ℎ = 5). a-c, A
stable soliton state (Δ = 25). d-f, A ‘pre-breather’ state (Δ = 11). g-i, A breather
soliton state (Δ = 10).

The ‘pre-breather’ regime and exceptional point behavior
An intriguing outcome of this analysis is the identification of a ‘pre-breather’ regime.
The breather soliton is a dynamic solution to the LLE in which the soliton’s shape
oscillates periodically in time, typically occurring at small detuning values Δ (Bao
et al., 2016; Lucas, Karpov, et al., 2017; M. Yu et al., 2017).

Excitation diagram analysis reveals that the onset of this breathing behavior arises
from a non-Hermitian coupling between the S and C resonances. As the system
parameters approach a critical point, these two modes coalesce spectrally, forming
a non-Hermitian degeneracy known as an exceptional point (EP) (Miri and Alu,
2019). This phenomenon is illustrated in Figure A.1d–i.

Importantly, this analysis also demonstrates that the soliton dynamics can be largely
described using only a few dominant eigenmodes, rather than requiring full-field
simulations. This insight motivates the Lagrangian analysis presented in the fol-
lowing section, where soliton dynamics are projected onto a small set of collective
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coordinates associated with these dominant modes under various perturbations.

A.4 Lagrangian formula of pulse pumped soliton
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Figure A.2: Pulse pumped microcavity soliton. Pulse pumping of a microcavity
soliton in the presence of the Raman effect. Main panel: illustration of soliton
position relative to the pump pulse under different pump rates and detunings. Inset:
A relatively broad pumping pulse (width 𝜏𝑝) is coupled into a microcavity. A
narrower soliton pulse (width 𝜏𝑠) is generated and trapped by the pump field.

The method of Lagrangian analysis has been used to analysis soliton dynamics in
microresonators (Matsko and Maleki, 2013; Guo et al., 2017; Yi et al., 2016b;
Lucas, Guo, et al., 2017). In a side project of my PhD, the method was used to
analysis the dynamics of a pulse pumped DKS. The analysis was originally used
for improving the energy efficiency of soliton microcomb (J. Li et al., 2022); here,
the results are included as a showcase of the theoretical tool and associated rich
dynamics. The scheme of the pulse pumped soliton is depicted in Figure A.2.
Solitons are generated by a periodic pulsed pump instead of a continuous pump
(Obrzud, Lecomte, and Herr, 2017).

The analysis begins where the LLE with a pulsed input term followed by the notations
in Equation A.2,

𝜕𝐸 (𝑡, 𝑇)
𝜕𝑇

= −
( 𝜅
2
+ 𝑖𝛿𝜔

)
𝐸 (𝑡, 𝑇) − 𝑖 𝐷2

2𝐷2
1

𝜕2𝐸 (𝑡, 𝑇)
𝜕𝑡2

−
𝛿𝜔rep

𝐷1

𝜕𝐸 (𝑡, 𝑇)
𝜕𝑡

+ √
𝜅𝑒𝐸in(𝑡)

+ 𝑖𝑔 |𝐸 (𝑡, 𝑇) |2𝐸 (𝑡, 𝑇) − 𝑖𝑔𝜏R
𝜕 |𝐸 (𝑡, 𝑇) |2

𝜕𝑡
𝐸 (𝑡, 𝑇),

(A.24)
where 𝑔 is the Kerr coefficient, and 𝜏𝑅 ≈ 1.7 fs is the Raman shock time. 𝛿𝜔rep is
the difference between the pump rate and the cavity 𝐹𝑆𝑅.

The intra-cavity field is composed of a Sech-envelope soliton 𝐸s with a background
𝐸b, i.e.,

𝐸 (𝑡, 𝑇) = 𝐸s(𝑡, 𝑇) + 𝐸b(𝑡, 𝑇), (A.25)
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where
𝐸s(𝑡, 𝑇) = 𝐵s Sech( 𝑡 − 𝑡0

𝜏s
)𝑒−𝑖𝛿Ω(𝑡−𝑡0)+𝑖𝜑s . (A.26)

Here 𝐵s is the soliton amplitude, 𝑡0 is the soliton central position in the rotating
pump frame, 𝜏s is the soliton pulse width, 𝛿Ω is the frequency shift of the soliton,
and 𝜑s is the phase of the soliton. Under the weak background approximation
(|𝐸b |2 ≪ |𝐸s |2), we keep only the leading order of 𝐸b. To verify this approximation,
simulations show that |𝐸b |2 is more than 15 times smaller than |𝐸s |2 even for the
weakest loading conditions (i.e., highest 𝑄ex). By substituting Equation A.25 into
Equation A.24, the simplified equation yields

𝑖
𝜕𝐸s

𝜕𝑇
+ 𝑖𝛿𝜔rep

𝜕𝐸s

𝜕𝑡
− 𝐷2

2𝐷2
1

𝜕2𝐸s

𝜕𝑡2
+ 𝑔

[
|𝐸s |2(𝐸s + 2𝐸b) + 𝐸2

s 𝐸
∗
b
]

− 𝛿𝜔𝐸s = −𝑖 𝜅
2
𝐸s + 𝑖𝑔 |𝐸s |2𝐸s + 𝜏𝑅𝑔

𝜕 |𝐸s |2
𝜕𝑡

𝐸s.

(A.27)

Meanwhile, the background 𝐸b is approximated as the trivial solution of the LLE
equation.

With Lagrangian density defined as (Yi et al., 2016a; Lucas, Guo, et al., 2017)

L =
𝑖

2
( 𝜕𝐸s

𝜕𝑇
𝐸∗

s −
𝜕𝐸∗

s
𝜕𝑇

𝐸s) −
𝑖

2
𝛿𝜔rep(

𝜕𝐸s

𝜕𝑡
𝐸∗

s −
𝜕𝐸∗

s
𝜕𝑡

𝐸s) −
𝐷2

2
𝜕𝐸s

𝜕𝑡

𝜕𝐸∗
s

𝜕𝑡

+ 𝑔
2
( |𝐸s |4 + 2|𝐸s |2(𝐸s𝐸

∗
b + 𝐸

∗
s𝐸b)) − 𝛿𝜔 |𝐸s |2,

(A.28)

and a perturbing term defined as

R = −𝑖 𝜅
2
𝐸s + 𝜏R𝑔

𝜕 |𝐸s |2
𝜕𝑡

𝐸s, (A.29)

the dynamics are retrieved by

𝛿L
𝛿𝐸∗

s
=
𝜕L
𝜕𝐸∗

s
+ 𝜕

𝜕𝑇

𝜕L
𝜕 (𝜕𝐸∗

s /𝜕𝑇)
+ 𝜕

𝜕𝑡

𝜕L
𝜕 (𝜕𝐸∗

s /𝜕𝑡)
= R . (A.30)

The overall Lagrangian is thus calculated by 𝐿 =
∫ 𝑡0−𝑇R

𝑡0+𝑇R
L𝑑𝑡 (technically the integral

range is replaced by ±∞), and evaluated to be

𝐿 = 2𝐵2
s𝜏s(−

𝜕𝑡0

𝜕𝑇
𝛿Ω + 𝛿𝜔rep𝛿Ω− 𝜕𝜑𝑠

𝜕𝑇
− 𝛿𝜔 − 𝐷2

2
𝛿Ω2 − 𝐷2

6𝜏2
s
+ 𝑔

3
𝐵2

s ) + 𝐿b, (A.31)

where 𝐿b is the contribution of the background, yielding

𝐿b = 𝜋𝑔𝐵3
s 𝑡0Re

[
𝐸∗

b (𝑇, 𝑡0)𝑒
𝑖𝜑s

]
. (A.32)
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With the equation 𝜕𝐿
𝜕𝑞

− 𝑑
𝑑𝑡
( 𝜕𝐿
𝜕 ¤𝑞 ) =

∫
(R 𝜕𝐴∗

𝜕𝑞
+ R∗ 𝜕𝐴

𝜕𝑞
)𝑑𝑡, we assign 𝑞 to be 𝐵s, 𝜏s, 𝑡0,

𝛿Ω and 𝜑s, accordingly, and the following dynamical equations result:

−𝜕𝑡0
𝜕𝑇

𝛿Ω+𝛿𝜔rep𝛿Ω− 𝜕𝜑𝑠
𝜕𝑇

−𝛿𝜔− 𝐷2

2
𝛿Ω2− 𝐷2

6𝜏2
s
+ 2𝑔

3
𝐵2

s +
3𝜋𝑔

4
Re[𝐸∗

b (𝑇, 𝑡0)𝑒
𝑖𝜑s] = 0,

(A.33)

−𝜕𝑡0
𝜕𝑇

𝛿Ω + 𝛿𝜔rep𝛿Ω− 𝜕𝜑𝑠
𝜕𝑇

− 𝛿𝜔 −𝐷2𝛿Ω
2 − 𝐷2

6𝜏2
s
+ 𝑔

3
𝐵2

s +
𝜋𝑔

2
Re[𝐸∗

b (𝑇, 𝑡0)𝑒
𝑖𝜑s] = 0,

(A.34)
𝜕 (𝐵2

s𝜏s𝛿Ω)
𝜕𝑇

= −𝜅𝐵2
s𝜏s𝛿Ω −

8𝜏R𝑔𝐵
4
s

15𝜏s
−
𝜋𝑔𝐵2

s
2

Re[
𝜕𝐸∗

b
𝜕𝑡0

𝑒𝑖𝜑𝑠 ], (A.35)

𝐷1
𝜕𝑡0

𝜕𝑇
− 𝛿𝜔rep +

𝐷2

𝐷1
𝛿Ω = 0, (A.36)

𝜕 (𝐵2
s𝜏s)
𝜕𝑇

= −𝜅𝐵2
s𝜏s +

𝜋𝑔𝐵3
s𝜏s

2
Im[𝐸∗

b (𝑇, 𝑡0)𝑒
𝑖𝜑𝑠 ] . (A.37)

For the steady-state case, i.e., setting 𝜕/𝜕𝑇 = 0 in Equations A.33, A.34, A.36,
A.37, the following expressions are derived:

𝐵2
s ≈ 2

𝑔
𝛿𝜔(1 + 5

4
𝛼), 𝜏2

s ≈ 𝐷2

2𝐷2
1

1
𝛿𝜔

(1 − 1
2
𝛼), (A.38)

𝛿Ω =
𝐷1

𝐷2
𝛿𝜔rep, (A.39)

Im[𝐸∗
b (𝑡0)𝑒

𝑖𝜑𝑠 ] = 𝜅

𝜋

√︄
2
𝑔𝛿𝜔

, (A.40)

𝛼 =
𝜋𝑔𝐵s

2𝛿𝜔
Re[𝐸∗

𝑏𝑒
𝑖𝜑] =

√︄
𝜋2𝑔 |𝐸b |2𝛿𝜔 − 2𝜅2

2𝛿𝜔2 . (A.41)

It is noted that the rotating frame follows the external pumping pulse, while the
cavity 𝐹𝑆𝑅 remains unchanged. Equation (A.39) reveals that the soliton frequency
shift is determined by the pump rate under pulse pumping.

To determine the background field, Raman and cavity dispersion are ignored and
the following equation is solved,

𝜕𝐸

𝜕𝑇
= −( 𝜅

2
+ 𝑖𝛿𝜔)𝐸 + 𝑖𝑔 |𝐸 |2𝐸 + √

𝜅e𝐸in(𝑡), (A.42)

which yields the solution,

𝐸b =
√
𝜅𝑒

𝐸in(𝑡)
𝜅/2 + 𝑖𝛿𝜔 − 𝑖 |𝐸b |2

. (A.43)

With the exception of the soliton stability analysis below the Kerr effect is not
included. Ignoring the Kerr effect and for real 𝐸in (i.e., minimal or no chirping),
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the phase of 𝐸∗
b can be seen to be approximately 𝜋/2 for large laser-cavity detuning

(i.e., 𝛿𝜔 ≫ 𝜅). With this condition, equation (A.37) can be further approximated
as,

cos 𝜑𝑠 =
𝜅

𝜋 |𝐸b(𝑡0) |

√︄
2
𝑔𝛿𝜔

. (A.44)

Also, since | cos 𝜑𝑠 | < 1, equation (A.44) gives an existence limit on the detuning
𝛿𝜔,

𝛿𝜔max ≈ 𝜋2𝑔𝜅𝑒 |𝐸in(𝑡0) |2
2𝜅2 . (A.45)

Expressing 𝛼 using the normalized detuning 𝜉 (𝜉 = 2𝛿𝜔𝑄/𝜔0) and defining 𝜉0(𝑡0) ≡
2𝛿𝜔max(𝑡0)𝑄/𝜔0, results in the following expression (X. Li et al., 2018),

𝛼 ≈ 2
𝜉3/2

√︁
𝜉0(𝑡0) − 𝜉. (A.46)

Also, by substituting the above results into the steady solution of equation (A.35),

𝛿𝜔rep =
𝐷2

𝐷1
ΩRaman − 𝐾L(𝑡0, 𝛿𝜔), (A.47)

where ΩRaman is Raman self-frequency shift (Yi et al., 2016b),

ΩRaman = −
8𝜏R𝑔𝐵

2
s

15𝜅𝜏2
s

≈ −
32𝜏R𝐷

2
1𝛿𝜔

2

15𝜅𝐷2
(1 + 7

4
𝛼) (A.48)

and where 𝐾L(𝑡0, 𝛿𝜔) is,

𝐾L(𝑡0, 𝛿𝜔) =
𝜋𝐷2

2𝜅𝐷1
Re[

𝜕𝑔𝐵s𝐸
∗
b

𝜕𝑡0
𝑒𝑖𝜑𝑠 ] = 𝜋𝐷2𝑄

𝜔0𝐷1

√︂
𝑔𝛿𝜔

2
Re[

𝜕𝐸∗
b

𝜕𝑡0
𝑒𝑖𝜑𝑠 ] (1 + 5

8
𝛼).
(A.49)

This equation determines the soliton position 𝑡0.

By expressing the background𝐸∗
b as𝐸∗

b = 𝑖 |𝐸b |𝑒−𝑖𝜑𝑏 , we can further write Re[ 𝜕𝐸
∗
b

𝜕𝑡0
𝑒𝑖𝜑𝑠 ] =

− 𝜕 |𝐸b |
𝜕𝑡0

sin (𝜑𝑠 − 𝜑𝑏) + |𝐸b | 𝜕𝜑𝑏𝜕𝑡0
cos (𝜑𝑠 − 𝜑𝑏). 𝐾L can then be separated into an

pump-amplitude-slope contribution (amplitude derivative with respect to 𝑡0) and a
pump-chirp contribution (phase derivative with respect to 𝑡0) by letting𝐾L ≡ 𝐾𝑎+𝐾p

where,

𝐾𝑎 ∝ −𝜕 |𝐸b |
𝜕𝑡0

√︄
1 − 𝜉

𝜉0(𝑡0)
, 𝐾p ∝ |𝐸b |

𝜕𝜑𝑏

𝜕𝑡0

√︄
𝜉

𝜉0(𝑡0)
. (A.50)

In terms of their impact on soliton stability, the amplitude contribution pushes the
soliton away from the pump amplitude maximum, while the phase contribution pulls
the soliton to the pump phase maximum (𝜕𝜙𝑏/𝜕𝑡0 = 0 and 𝜕2𝜙𝑏/𝜕𝑡20 < 0) (Jang
et al., 2015).
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Now consider again Equation A.43. The Kerr effect in this equation induces a chirp
in the pump that contributes to 𝐾p. To assess its importance, we solve Equation
A.43 taking account of the Kerr term as a perturbation. In this case, 𝐸∗

b can be
expressed in the pump power as,

𝐸∗
b ≈ √

𝜅𝑒
𝐸∗

in
𝜅/2 − 𝑖𝜔 (1 + 𝑖 𝑔𝜅𝑒

𝜅/2 − 𝑖𝛿𝜔
|𝐸in |2

𝜅2/4 + 𝛿𝜔2 )
−1. (A.51)

Also, the phase of 𝐸∗
b can be approximately expressed by,

Arg[𝐸∗
b] ≈ Arg[𝐸∗

in] + arctan(2𝛿𝜔
𝜅

) − 𝑔𝜅𝜅e |𝐸in |2
2𝑇𝑅 (𝜅2/4 + 𝛿𝜔2)2 . (A.52)

Using these results, two representative 𝐾L(𝑡0, 𝛿𝜔) are plotted in Figure A.3 for fixed
𝛿𝜔. In this case, 𝐾L features an S-like shape, which is similar to previous reports
(Hendry et al., 2019) using the neutral mode mapping technique (Maggipinto et al.,
2000). Positive (negative) 𝐾L pushes the soliton forward (backward) in the fast time
frame so that for these parameters, the soliton is pushed away from the pumping
maximum. Here, the S-like shape is weakened as a result of reduction of the 𝐾𝑎
contribution to 𝐾L. In this case the soliton can reside at the pump maximum. These
differences in behavior can be understood by examining the impact on 𝐾𝑎 associated
with the term

√︁
1 − 𝜉/𝜉0(𝑡0). When pumped at a power much higher than the soliton

threshold (𝜉0(𝑡0) >> 1), the soliton cannot be trapped near the pump pulse center;
and it lies near the existence boundary. This happens because 𝐾𝑎 is larger (i.e.,
because

√︁
1 − 𝜉/𝜉0(𝑡0) is closer to unity) except at the existence boundary where√︁

1 − 𝜉/𝜉0(𝑡0) goes to 0 (panel a). On the other hand, when pumped with a low
power relative to the threshold, as happens with increased cavity loading, the soliton
can be trapped at the pump center (panel b), because here the relative importance of
𝐾𝑎 is reduced since

√︁
1 − 𝜉/𝜉0(𝑡0) is closer to zero.

It is noted that when evaluating the maximum possible detuning Equation (A.45), the
Kerr contribution is neglected, while in the background phase expression Equation
(A.52), the Kerr contribution is kept. This is because the Kerr effect of the back-
ground field, i.e., 𝑔 |𝐸b |2, is weak compared with the cavity loss rate (𝑔 |𝐸b |2 ≪ 𝜅) so
it is reasonable to neglect it in Equation A.44 where it is not the leading-order term.
However, when evaluating the background field phase 𝜑𝑏, it is the leading-order
term and introduces a non-uniform intracavity phase across the circulating pumping
pulse. The resulting pulse chirp is an essential contribution to 𝐾p (Equation A.50),
and impacts soliton trapping by the pump pulse. Because the Kerr contribution is
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Figure A.3: Representative locking term 𝐾L(𝑡0, 𝛿𝜔). a, Nonlinear locking term
for𝑄ex = 34 million. Detuning 𝛿𝜔/2𝜋 = 27 MHz and 𝛿𝜔max/2𝜋= 59.8 MHz. Area
with positive 𝐾L is shaded in red, while that with negative 𝐾L is shaded with blue.
Positive (negative) 𝐾L pushes the soliton forward (backward) in the fast time frame.
Phase chirp term (𝐾p) and amplitude slope term (𝐾𝑎) contributions of 𝐾L are plotted
with green and red, respectively. b, 𝐾L is plotted under conditions of stronger over-
coupling. The coupling 𝑄ex factor is reduced to 11 million, 𝛿𝜔/2𝜋 = 27 MHz,
𝛿𝜔max/2𝜋= 28.4 MHz, while other parameters are the same as in panel a.
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Figure A.4: Drift speed of the soliton based on the Lagrangian analysis and
numerically simulated steady states. a, The pump offset rate is set as 𝛿𝜔rep = −50
kHz. b, The pump offset rate is set as 𝛿𝜔rep = −50 kHz. Zero drift speed positions
are marked by solid red lines. It is noted that branch II and III are stable trapping
positions, while branch I is unstable. The intersections of branch I and II are marked
by a circle. Gray shading indicates that no soliton solution exists. The simulated
steady-state trapping positions are plotted with blue dots. Tuning direction of the
pump laser frequency in the simulation is illustrated with blue arrows.

weak, the soliton is trapped close to the existence boundary in cases where the cavity
is not overloaded.

Evolution of soliton trapping position
Equations A.34 and A.35 give the dynamics of the trapping position 𝑡0:

𝜕𝑡0

𝜕𝑇
=

1
𝐷1

[𝛿𝜔rep −
𝐷2

𝐷1
ΩRaman + 𝐾L(𝑡0, 𝛿𝜔)] ≡ 𝑣(𝑡0, 𝛿𝜔), (A.53)

where 𝑣(𝑡0, 𝛿𝜔) is the drift speed of the soliton central position in the fast frame,
similar to the definition in reference (Hendry et al., 2019). It is noted that negative
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𝛿𝜔rep contributes a negative component to the drift speed, while the Raman effect
contributes a positive component to the drift speed. A steady trapping is achieved
when the residual drift is compensated by the nonlinear trapping 𝐾L(𝑡0, 𝛿𝜔).

Drift speed when 𝛿𝜔rep/2𝜋 = −50 kHz is plotted in Figure A.4a. Positions with
zero drift speed are marked by red solid lines, and divided into three branches I,
II and III. From the 2D plot, by including a perturbation on the soliton position 𝑡0,
it can be inferred that a soliton sitting on the branch I is unstable, while II and III
provide stable trapping positions.

The 2D drift speed plot also provides insights on evolution of the soliton position
upon pump tuning. By sweeping a laser from blue to red detuned, initially, the
soliton is generated near 𝑡0 = 0, where the Kerr gain reaches its maximum. For
Figure A.4a, the combined negative drift effect 𝑣(𝑡0, 𝛿𝜔) < 0 (as 𝛿𝜔rep is very
negative) pushes the soliton to branch II where the soliton is stably trapped. As
detuning 𝛿𝜔 further increases, contribution from the Raman effect increases (see
Equation (A.47)) and pushes the soliton upwards. At a certain detuning, the unstable
branch I collides with branch II, and is associated with a saddle-node bifurcation.
Beyond this point, the drift speed 𝑣(𝑡0, 𝛿𝜔) > 0, and the soliton ‘jumps’ to the other
stable trapping branch III, which is on the other side of the pump pulse. If detuning
is further increased, the soliton hits the existence boundary and disappears. If the
detuning 𝛿𝜔 is tuned backwards after the ‘jump’, the soliton is still trapped on branch
III, and a hysteresis behavior is observed.

Numerically simulated steady soliton positions with the same parameters are also
plotted in in Figure A.4a for comparison. The detuning scanning direction is
illustrated with blue arrows. As predicted, initially the soliton is trapped at 𝑡0 < 0.
As detuning increases, the soliton loses its stability, travels to the other side of
the pump pulse and eventually disappears. A hysteresis behavior of the trapping
position is also observed when the detuning 𝛿𝜔 is tuned backwards.

Similarly, 2D drift speed when 𝛿𝜔rep/2𝜋 = −20 kHz is plotted in Figure A.4b. In
this case, the soliton is initially generated near the pump pulse center 𝑡0 = 0, where
on the contrary 𝑣 > 0 (as the Raman contribution overrides the small negative 𝛿𝜔rep

from the minimum detuning 𝛿𝜔 where the soliton is generated), and is then trapped
near branch III. As detuning further increases, the soliton encounters the existence
boundary and disappears, and no ‘jump’ behavior is observed.
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A p p e n d i x B

ADDITIONAL EXPERIMENTAL RESULTS

If a workman wants to do his work
well, the tools must be firstly
sharpened.

Confucian Analects

B.1 Setup of the self-injection locked microcomb
While the self-injection locked (SIL) microcomb promises turnkey and robust opera-
tion due to its unique feedback mechanism (Boqiang Shen et al., 2020), preliminary
testing often reveals subtle operational challenges. This section outlines several
practical techniques and considerations that can facilitate reliable SIL microcomb
generation and characterization during initial experimentation.

Packaging of the DFB laser for self-injection locking
The packaging of the DFB laser for butt-coupled self-injection locking was devel-
oped by Leo Wu, based on an original design by Dave Kinghorn (Pro Precision
Process & Reliability LLC).

The process begins with the DFB laser die bonded to a copper submount, as supplied
by the vendor (e.g., PhotonX Inc.; see Figure B.1a). For effective butt-coupling
to the photonic chip, the laser facet should overhang slightly beyond the edge
of the submount. A thermistor is co-mounted on the submount for temperature
monitoring–this may be pre-integrated by the vendor or added in-house.

The submount is then affixed to a modified butterfly case equipped with a thermo-
electric cooler (TEC), as shown in Figure B.1b. The butterfly case is mechanically
modified to allow for direct butt-coupling. Alignment must be carefully maintained
to prevent tilting of the laser facet relative to the case opening. Wire bonding is used
to connect the laser and thermistor to the butterfly package leads, enabling external
electrical access.

Once assembled, the butterfly case is secured to an aluminum heat sink for thermal
stability (Figure B.1c). A close-up view of the wire bonding layout is shown in
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Figure B.1: Packaging of DFB lasers for self-injection locking. a, Schematic of
the DFB laser mounted on a submount with an integrated thermistor. b, Photograph
of the laser on the submount, attached to a thermoelectric cooler (TEC) and wire-
bonded to a butterfly case for electrical interfacing. c, Final package: butterfly case
mounted to an aluminum heat sink. d, Close-up showing the wire bonding within
the butterfly case. e, Pin diagram of the butterfly package. Materials credit to Leo
Wu.

Figure B.1d, and the pin configuration is provided in Figure B.1e.

Robust laser operation requires meticulous attention to both electrical and me-
chanical integration. Epoxy application must be controlled to avoid obstructing
wire bonding pads or the laser aperture. All bonds (both wire and solder) should be
mechanically reinforced to prevent damage during handling and transport. Wire ten-
sion and connector strain must be properly managed. Furthermore, current-carrying
wires should be twisted to suppress electromagnetic pickup, which otherwise may
introduce noise features (e.g., a ∼100 kHz spur) into the RF spectrum.

Assembly of the Si3N4 chip with temperature control
The assembly begins with the construction of the temperature-controlled stage,
which should be firmly built before mounting the photonic chip. While it is possible
to complete this step after wire bonding, doing so risks damaging the bonded wires.

To monitor the chip temperature, a thermistor is inserted into a machined hole in the
top copper plate. To improve thermal contact, thermally conductive pad material
is mashed and packed around the thermistor head inside the hole. The hole is then
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PCB 3001-1

Copper state

Wire bonds
SiN chip

(left edge for butt-coupling)

Thermistor wires

TEC wires

Figure B.2: Assembly of the Si3N4 chip with temperature control.

sealed with epoxy to fix the thermistor in place. A ceramic TEC or resistive heater is
installed between the top and bottom copper plates using thermal conductive epoxy
(8329TCS) to ensure efficient heat transfer.

If the chip includes electrically controlled components (e.g., integrated heaters or
piezoelectric actuators), a printed circuit board (PCB) must be mounted onto the
copper submount beforehand—or concurrently with the chip—so as not to obstruct
later bonding steps. The PCB used here is PCB3001-1, cut in half prior to mounting.
An array of header pins is soldered to the PCB before wire bonding to simplify
subsequent electrical interfacing. To prevent shorting, Kapton tape is applied to the
underside of the PCB to isolate exposed pads from the metal submount. The PCB
is then affixed to the copper stage using the same thermally conductive adhesive.

The Si3N4 photonic chip is mounted onto the same copper submount using the same
adhesive. During placement, the chip should be aligned such that its left edge is
parallel to the submount edge and overhangs by approximately 1 mm for efficient
butt-coupling with the DFB laser. Care should be taken to apply only a thin layer
of adhesive beneath the chip; a clean tweezer can be used to gently press the chip
during curing to ensure good thermal contact and alignment.

Turn-on Procedure for the Self-Injection Locked Microcomb
Prior to initiating comb generation, additional mechanical stabilization of the system
is recommended. Soft electrical wires should be used to route connections from
the laser and chip stage while minimizing mechanical stress. These wires should
be securely fastened to the optical table to reduce the transmission of mechanical
vibrations to both the laser and the chip.
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Both the laser and chip temperatures must be stabilized. The laser temperature
should be maintained above 20 ◦C to prevent water condensation. The temperature
stability of the laser should be better than 1 mK. The chip stage temperature should
be set above room temperature to ease the thermal load on the heat sink.

The next step involves optical alignment. The laser should be positioned within
1 𝜇m of the chip edge to ensure efficient butt-coupling. The fiber lens should be
pre-aligned using visible red light. The laser is then powered on and ramped to a
moderate current (e.g., 200 mA). Alignment of the distributed feedback (DFB) laser
should be optimized by monitoring the transmitted optical power.

Upon completing the alignment procedure, a warm-up period is recommended to
allow the system to reach thermal equilibrium; this process may take several hours.
Once thermal stability is achieved, the self-injection locking process can be initiated.
After measurements are completed, the laser should be retracted from the chip to
minimize the risk of mechanical contact when the system is not in use.

B.2 Observation of interband multicolor solitons
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Figure B.3: Generation of the interband multicolor solitons. a, Conceptual
illustration of interband multicolor solitons generation. b, Photograph of the three-
coupled-ring device used in this study. c, RF spectrum of detected pulse train (10
Hz resolution bandwidth). d,e, Measured autocorrelation traces (blue) and their
Lorentzian fitting curves (red) for the primary and secondary solitons. f, Optical
spectrum of interband multicolor solitons. The lower panel is a zoom-in view of the
gray shaded area in the upper graph. g, Corresponding cavity dispersion spectrum.
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A new class of complex solitary wave in optical microresonators has been theoreti-
cally proposed (Luo, Liang, and Lin, 2016), and referred to as multicolor solitons.
It landscapes that dispersive waves (Cherenkov radiations) from a primary soliton
coherently pump another soliton (or several other solitons) via Kerr parametric gain
at a different optical frequency (or several optical frequencies). The newly gener-
ated solitons coincide with the primary soliton in temporal domain, and share the
same phase with the primary soliton, thus the process is a coherent extension of
the primary soliton optical spectrum to different colors. The occurrence of the phe-
nomenon requires appropriate dispersion condition which is not naturally satisfied
in usual optical microresonators. Here, we report the experimental observation of
multicolor cavity solitons using a single optical pump. As a modification to the
original multicolor solitons proposal (Luo, Liang, and Lin, 2016), the multicolor
solitons is generated inter-dispersion-bands, thus do not naturally share the same
optical phase. The results are the first experimental demonstration of multicolor
solitons in ref. (Luo, Liang, and Lin, 2016) to our knowledge.

The device used in this work is a three-coupled-ring (3CR) ultra-low-loss Si3N4

microresonator (Figure B.3a,b) (Yuan et al., 2023; Ji, W. Zhang, et al., 2025). The
scheme of interband multicolor solitons generation is illustrated in Figure B.3a.
A primary soliton (red) is firstly generated by pumping the microresonator (right
ring in Fig.B.3a) with an amplified CW laser at 𝜈0. The primary soliton induces
Kerr parametric gain and an effective potential well due to cross-phase-modulation
(XPM) at its temporal location. The secondary soliton (blue) forms with a threshold
behavior, through the double balance between parametric gain and cavity loss, as well
as XPM and local anomalous dispersion. An idler sideband (orange) also forms as
a result of the four-wave-mixing between the primary and secondary soliton, which
cannot yield a soliton due to local normal dispersion in this case.

The fact that the secondary soliton shares the same group velocity (repetition rate) is
confirmed by the repetition rate measurement (Figure B.3c). One single high-signal-
to-noise ratio (SNR) tone is observed via photodetection. Temporal pulse nature
of the two solitons is confirmed by auto-correlation measurement (Figure B.3d,e).
The primary soliton features a 688 fs full-width-half-maximum temporal duration,
while that of the secondary soliton is 434 fs. High-resolution optical spectrum
of the generated multicolor soliton is shown in Figure B.3f. The lines from the
primary soliton is colored in red, while that of the secondary soliton (idler) is in
blue (orange). As a modification to the multicolor soliton proposed in ref. (Luo,
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Liang, and Lin, 2016), carrier-offset frequency of two solitons are not necessarily
the same. The lower panel of Figure B.3g is a zoomed-in view of overlapping region
between two solitons indicated by grey shade in the upper panel. Two sets of comb
lines separated by a frequency of 𝑓beat are observed. The results indicate no fixed
phase relationship between the primary and secondary soliton is guaranteed.

The generation of multicolor solitons requires a specific dispersion condition. In
this case, it is addressed by on-demand electrical tuning of the dispersion (Ji, W.
Zhang, et al., 2025). The resonator dispersion spectrum that supports the optical
spectrum in Figure B.3f is shown in Figure B.3g. Three hybrid mode families are
formed, manifested by three bands in the dispersion spectrum. The primary soliton
is pumped at an anomalous dispersion window (𝐷2,p/2𝜋 = 374 kHz) on the middle
band near 1565 nm.

To generate the multicolor solitons (secondary soliton), firstly, phase-matching of
the Cherenkov radiation is required. Here, interband phase-matching of parametric
oscillation is achieved between the three dispersion bands. The parametric process
involves two photons from the middle (pumped) band (whose frequency 𝜈p is near
the cavity resonance at frequency 𝜈p,c), and one photon from each of the upper and
lower bands (whose frequency 𝜈s, 𝜈i is near the corresponding cavity resonance with
frequency 𝜈s,c and 𝜈i,c), respectively, that

𝜈s,c + 𝜈i,c ≈ 2𝜈p,c (B.1)

with the integrated dispersion at these modes 𝐷int,p, 𝐷int,s, 𝐷int,i satisfying

𝐷int,s + 𝐷int,i ≈ 2𝐷int,p (B.2)

for resonant excitation (phase matching). The phase matching frequency is indicated
by the black dashed line in Figure B.3g.

The second requirement for the generation of the multicolor soliton is the group
velocity matching of the primary and secondary soliton, to synchronize (and trap)
the propagation of the two solitons along the resonator. Experimentally, the 𝐹𝑆𝑅s
of the middle and upper band at 𝜈p,c and 𝜈s,c are measured to be near 19.86 GHz
with a slight difference of ∼ 1 MHz. The upper band simultaneously feature local
anomalous dispersion (𝐷2,s/2𝜋 = 39 kHz), suitable for bright soliton mode locking.
On the lower dispersion band, normal dispersion around the phase-matched mode
does not support soliton formation, ending up in a sharp spectral peak (Cherenkov
radiation).
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In conclusion, the generation of multicolor cavity solitons using a single optical
pump is reported in this work. With proper active inter-soliton phase-locking,
the new comb source can realize coherent spectral extension from a single soliton
spectrum. Moreover, the frequency spacing between the solitons falls within THz
range and is tunable via differential heater tuning, which suggests potential in chip-
based terahertz generation.

B.3 Observation of broadband, self-injection locked noisy microcombs near
zero-GVD
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Figure B.4: Optical spectrum of a broadband, noisy microcomb under laser
self-injection locking. The microcomb state is generated from the same 2CR
device in Chapter 3. The optical spectrum spans >2.5 THz, with a noisy RF tone
near 20 GHz.

During the testing of the 2CR device for near-zero-GVD microcomb generation, the
same device generate an interesting microcomb state (Figure B.4). The frequency
spacing between the nearby ‘comb line’ is around 20 GHz (the 2CR 𝐹𝑆𝑅), and
is stable over time in a certain operation regime (combination of laser current and
temperature). The optical coverage is more than two times larger than the coherent
dark pulse microcomb generated from the same device (1 THz) (Ji, Jin, et al.,
2023), when pumped by the same laser under self-injection locking. The state is
believed to be an interplay between the pump DFB multi-mode lasing and Si3N4

resonator nonlinearity. The full mechanism is not understood, but may be related
to the phenomena observed in (Galiev et al., 2018). Broadband noisy microcomb
may find applications in ranging (Lukashchuk et al., 2023; Chen et al., 2023) and
random number generation (Bitao Shen et al., 2023). There may also be a chance
of changing the state to a coherent microcomb state with similar spectral coverage.
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STANDARDS AND MEASUREMENTS OF FREQUENCY
STABILITY

B.4 Microwave phase noise
A signal with certain instability can be expressed as

𝑉 (𝑡) = [𝑉0 + 𝜀(𝑡)] sin [2𝜋𝜈0𝑡 + 𝜙(𝑡)] . (B.3)

For the analysis of frequency stability, the instantaneous frequency is denoted by

𝑣(𝑡) = 𝜈0 +
d𝜙(𝑡)

d𝑡
, (B.4)

and thus the phase fluctuation 𝜙(𝑡) is mostly concerned. In the frequency domain,
the phase noise is derived by

𝑆𝜙 ( 𝑓 ) = |F {𝜙(𝑡)}|2 , (B.5)

where F {...} denotes the Fourier transformation. This is one of the most used
quantity to quantify the phase stability of a microwave signal, and the unit is usually
in the log scale, dBc/Hz. Besides, if the signal is multiplied or divided electrically
(which is common in electrical synthesizers), from a carrier at the frequency 𝜈0 to
another 𝜈1, the phase jitter is also modified to 𝜙1(𝑡) = (𝜈1/𝜈0)𝜙(𝑡). As a result,
for fair stability comparison of phase noise, the phase noise is usually “scaled” to a
certain carrier frequency (e.g., 10 GHz), via

𝑆𝜙,10GHz( 𝑓 ) = 𝑆𝜙 ( 𝑓 ) − 20 × log(𝜈0/10GHz). (B.6)

Another related quantity is the timing jitter. It is related to the phase noise via

Jitter( 𝑓 ) =
𝑆𝜙 ( 𝑓 )
2𝜋2𝜈2

0
, (B.7)

where the unit of the timing jitter is in s2/Hz; the 𝑆𝜙 ( 𝑓 ) is in the single-sideband
definition.
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Figure B.5: Microwave phase noise measurement techniques.
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Measurement
For the measuring of low phase noise, the easiest (but not budget-friendly) way is
to use a high-performance commercial phase noise analyzer. R&S FSWP is with the
highest performance for measurement floor; Keysight offer phase noise analyzer as
well. For the practical setup, the signal under test (SUT, for example near 10 GHz)
can be directed to the phase noise analyzer’s input, as in Figure B.5a.

Another solution is by using a three-cornered hat (sometimes also called a phase
meter, e.g., Microchip 53100A). The three-cornered hat has three inputs, and
records the relative phases between any of the two signal inputs. If a local oscillator
with better phase noise performance than the signal to be tested is present, then the
setup in Figure B.5b can be used. In this setup, the local oscillator’s output is split
and electrically mixed with the SUT. The mixing converts the DUT’s frequency to a
frequency within the measurement range of the three corner hat, whose frequency is
referenced to a 100 MHz quartz oscillator. And the measurement scheme excludes
the influence of the extra noise from the mixer and the amplifier.

Finally, if an LO better than the SUT is not available, the measurement can be done
based on the setup in Figure B.5c. Two LOs (LO1 and LO2) generates microwaves
near SUT, and are mixed with the SUT. Then the common phase noise of the two
down-converted signal is extracted via cross-correlation. The measurement time
is determined by the worse signal source between LO1 and LO2. It is noted that
collapse of the cross-correlation is possible, as in (Nelson, Hati, and Howe, 2014).

B.5 Laser short-term stability
To quantify the stability of a laser, the frequency noise is usually used, and is related
to the phase noise by 𝑆𝜈 ( 𝑓 ) = 𝑓 2𝑆𝜙 ( 𝑓 ).

Measurement
The easiest way to measure the laser frequency noise spectral is by using the delayed
self-heterodyne method (Okoshi, Kikuchi, and Nakayama, 1980). And the method
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is recently upgraded thanks to the improvements in oscilloscope and data processing
with improvements in the measurement floor (caused by the photo detection process)
(Yuan et al., 2022). The setup is depicted in Figure B.6a,b. Especially, the setup
in Figure B.6b is optimized for measuring the fundamental linewidth at high offset
frequencies.

Another method is to down-convert the laser to a microwave tone, and measuring
the microwave phase/frequency noise. This can be done by beating the laser with
a more stable local laser oscillator, as in Figure. B.6c. It is generally much more
difficult to build the reference laser, but gives a better measurement of the laser noise
at low offset frequencies.

Laser linewidth
The intrinsic (fundamental) linewidth is 2𝜋 times the the lowest value in the fre-
quency noise plot at high-offset frequencies (usually at MHz-level). It is mostly
meaningful for coherent optical communications. The integrated linewidth can be
quantified in three ways:
(1) Direct recording of the laser beatnote versus a more stable reference laser, fol-
lowed by Fourier transformation.
(2) Integrating the frequency noise trace by

∫ ∞
Δ𝜈

d 𝑓 𝑆𝜈 ( 𝑓 )/ 𝑓 2 = 1/(2𝜋), where Δ𝜈 is
the laser linewidth. In practice, the upper bond of the integral can be replaced by a
reasonably high cutoff frequency (e.g., 1 MHz).
(3) The 𝛽 separation line (Di Domenico, Schilt, and Thomann, 2010).

In principle, all the three methods should give a similar laser linewidth (with a factor
of 2 or 3).

Experimental example
Below is an example of laser frequency noise measurement as published in (Ji, Jin,
et al., 2023). The measurement compares the laser frequency noise under different
microcomb locking states. Frequency noise of the microcomb line is measured
with a cross-correlation-based self-heterodyne measurement (Yuan et al., 2022)
within the measurement time of 400 ms. Compared with the free running DFB
laser (gray), frequency noise of the pump laser is reduced by 30 dB under SIL
operation (blue) at 10 kHz offset frequency. An integrated linewidth Δ𝜈 of 7.2
kHz is obtained (by using the integral method above). The frequency noise here
is still higher than the thermal noise limit given by the dashed gray curve in Fig.
B.7 (Kondratiev and Gorodetsky, 2018). Finally, with the microcomb’ repetition
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gives the free-running (non SIL) measurement, blue curve is for self injection locked
(SIL) operation, and the red curve is for repetition rate discipline using an external
microwave reference. The thermorefractive noise floor is denoted by the dashed
gray line.

rate locked, its optical offset frequency is stabilized. With the same definition as
above, the calculated integrated linewidth is 2.1 kHz, which is comparable to an
ECDL pumped microcomb (red line) (Lei et al., 2022). In terms of the fundamental
linewidth, the dashed black line shows a floor of 20 Hz2/Hz. Thus the intrinsic
linewidth is 140 Hz.

B.6 Allan deviation
The Allan deviation is the standard method to quantify the oscillators’ long-term
stability. Its rigorous mathematical defoliation can be found in (Riley and Howe,
2008). The concept begins with a repetitive measurement of a quantity 𝑥 (usually
the frequency) versus the real time. Briefly, the Allan deviation 𝜎𝑥 (𝜏), is obtained
by segmenting the data into pieces with a temporal length of 𝜏, and evaluating the
mean value. Next, all the obtained mean values are used to calculate the Allan
deviation “at the averaging time of 𝜏”. Finally, but alternating the averaging time 𝜏
(usually on a log scale), a trace of 𝜎𝑥 (𝜏) versus 𝜏 can be obtained.
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Measurement techniques
Nowadays, the commercial phase noise analyzer and three corner hat offer functions
to directly read the Allan deviation. The setup is similar to those in Figure B.5,
B.6c. However, the raw frequency data is not available, thus adding ambiguity to
the result.

A more tradition (and sometimes reliable) way is to use a frequency counter. In
practice, the microwave tone is amplified to >0 dBm, electrically filtered to reject the
harmonics, and directed to the frequency counter. The sampling rate of the counter
should be properly set, such that the accumulated dead time does not influence the
measurement result. This can be confirmed by changing the sampling rate and see
if the final Allan deviation agrees between measurements. The technical challenge
of this method is the availability of the referencing local oscillator. A signal source
with better stability than the SUT is always required.

Experimental example
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Figure B.8: Allan deviation measurement. a, Experimental setup. b, Summary
of the Allan deviation measurement results. Data are presented as mean values, and
the error bar denotes standard deviation where the sample number is 6096, 6096
and 1200 for the blue, orange and red traces, respectively.

Here the details of Allan deviation measurement of the results published in (Ji,
Zhang, et al., 2025) is presented as an example. In the measurement, the output of
the microcomb (after EDFA amplification) is split and detected by two different fast
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photodetectors (Figure B.8a). The output of photodetector PD1 (U2T XPDV2320R)
is analyzed by an R&S FSWP phase noise analyzer (PNA), which features a low
noise floor (dashed gray line in Figure B.8b). This measurement involves per-
forming a cross-correlation in the PNA. The output of PD2 (Thorlabs DXM30AF)
is directed to a frequency mixer for down conversion to a 30 MHz tone using a
Keysight PSG E8257N as the local reference oscillator. This signal is ampli-
fied, filtered by a 27-33 MHz bandpass filter, and sent to a frequency counter
(Tektronix FCA3120) whose input signal frequency is <300 MHz. This measure-
ment method is faster than the PNA cross correlation, despite being limited by the
noise floor of the Keysight PSG (plotted as the solid gray line in Figure B.8b).

The Allan deviation data presented in Figure 4c in the main text is a combination of
the results using the two methods. Specifically, for averaging time <1 s, the Allan
deviation of the Keysight PSG is higher than the 2P-OFD stabilized microcomb,
and the measurement time of the low-noise PNA is reasonably fast, so Allan deviation
is computed using the PNA (red trace in Figure B.8b). On the other hand, for
averaging time >1 s the cross correlation time of the PNA is too long. Also, the
Allan deviation of the microcomb (as measured by the counter method) is larger
than the Keysight PSG, so the Allan deviation for this range of averaging times is
measured using the frequency counter. The red trace with error bar in Figure B.8b
(error bar is the standard deviation when calculating the Allan deviation) is adjusted
in Figure 4c in the main text to remove a linear drift of 0.013 Hz/s. Without the
linear drift removal, the Allan deviation is the blue trace in Figure B.8b.

The lower limit of the Allan deviation for longer averaging times is attributed to the
two C.W. lasers, which serve as the reference in the 2P-OFD. The inferred noise
limit from the two C.W. lasers is plotted as the dark red curve in Figure B.8b. This
curve is generated by locking the two C.W. lasers to the FP cavity with frequency
separation by one FP cavity 𝐹𝑆𝑅 (4 GHz), followed by measurement of the Allan
deviation of the resulting laser beatnote. In the plot, the Allan deviation is divided by
the 2P-OFD frequency span (2 THz) to infer its impact on the microcomb repetition
rate under 2P-OFD. This noise limit can possibly be reduced by improvements to
system shielding and packaging of the FP cavity subsystem.
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