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ABSTRACT

The stress concentrations arising in the fillets of fan and
turbine blades, tie down rods, and bolt heads from axially symmetric
centrifugal or static force loadings are treated two dimensionally by
photoelastic and theoretical methods. The effects of the fillet radius,
the height of the base, the mode of application of retention forces, and
the distance between the retention reactions and fillet tangencies are
considered. The stress concentration factor, K, was found to increase
with decreasing radius and decreasing base height and, for small radii,
to decrease at first with the distance between the reaction and fillét
tangency but, in general, to increase with this distance. Comparisons
with other experiments and stress concentration configurations are
also made.

An approximate theoretical solution is derived by selecting a
convenient region from the whole base and replacing, where necessary,
the exact boundary conditions with relaxed or integral conditions. The
problem is formulated in terms of the classical Airy stress function.

Agreement between theory and experiment is reasonable.
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EXPLANATION OF SYMBOLS

overall width of base

narrowest dimension across shank above fillets or narrowest

dimension of tensile specimen
fillet radius
smallest height of base

width of shoulder

distance between center of reaction and fillet tangency point

height of base at load application for recessed fillets
angle of inclination of loading shoulder

principal stresses

thickness of model

fringe number

stress optic coefficient

fringe value in psi shear per fringe per inch thickness
at A = 5460 A

wave length of light in angstroms

R + b/2

R+c

normal stresses in rectangular cartesian coordinates;
positive value ~ tension, negative value — compression
shear stress in rectangular cartesian coordinates
normal stresses in polar coordinates; positive values ~
tension, negative values —~ compression

shear stress in polar coordinates

Airy stress function
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stresses on side of base

sum of horizontal stresses

stress on shoulder due to reaction

applied load in simplified problem

distance from center of fillet circle to centroid of
side load Q

tan -1 e/R

distance between fillet tangency point and region of

uniform tensile stress



1. INTRODUCTION

In order to predict the useful life of a wind-tunnel fan blade and
to design such a blade for maximum life, it is necessary to know the
stress distribution in the fillet near the retention bearing. (Figure 1.)
Due principally to the large centrifugal force and, secondarily, to the
thrust and drag forces on the fan blade in operating conditions, a stress
concentration arises in the fillet which is a function of the geometry of
the butt of the blade and the manner in which the retaining forces are
applied. It was due to a stress concentration of this type that a fatigue
failure occurred at the root of a fan blade at C. W.T. * in 1948, which
resulted in extensive damage to the tunnel and necessitated a lengthy
shutdown. That failure, and the subsequent investigation, prompted
this experimental and theoretical study of the factors which affect the
stress rise.

The retention configuration shown in Figure 2 is only one of
several possible configurations. Due to other design and manu-
facturing requirements, however, this configuration was chosen for
the fan blades of the new supersonic wind tunnel development at C. W, T.
and was consequently studied to the exclusion of other possibilities.

This retention configuration is by no means confined to propellers

and wind-tunnel fan blade butts, but also occurs in helicopter rotor

attachments**, bolt heads, turbine blades, and recently in the tie-down

* Southern California Cooperative Wind Tunnel, Pasadena, California

*% See, for instance, the design details of the British Cierva
"Air Horse'" in Aeroplane, April 8, 1949, pp. 391 and 393.



rods of a 590,000 ton capacity forging press designed for the pro-
duction of aircraft components. (Reference 1.) In all of these appli-
cations the design requirement is maximum fatigue life. Since, in
general, the loading spectrum is only roughly known, the designer

can only choose the configuration which has the lowest maximum stress,
and if possible, treat the surface where the concentration occurs to
delay fatigue cracking.

Some published work on this problem is known by the author.
Following the failure at C. W.'T. , H. D. McGinness of the wind tunnel
staff conducted several experimental studies with both two~ and three-
dimensional models. (References 2, 3, 4, 5, and 6.) It was shown
that the amplitude of vibration of the blade due to the non-uniform flow
coming from lhe upslream siraighlening vanes was negligibly small.
(Reference 6.) In 1949 the N.A.C.A., * Moffett Field, conducted
several two-and three-dimensional strain gage studies but did not
officially publish their findings. (Reference 7.) Professor W. D.
Murray of the Massachusetts Institute of Technology studied recessed
fillets in bolt heads; one of his studies appears on pages 151 and 196
in Reference 8. In the design analysis of a 50,000 ton capacity
forging press, F. T. Morrison and R. G. Sturm made a two-dimen-
sional photoelastic study of eleven configurations. (Reference 1.)

The fatigue problem was also considered at Farnborough in the re-
design of their wind-tunnel fan blades. (Reference 8.)

Little work on turbine blade stress concentrations has been

* National Advisory Committee for Aeronautics.



published and what has come to the author's attention has been in

the classified literature and is not available for publication here. In
the case of relatively short turbine life and the use of ductile-metal
blades, multiple-land or fir-tree retention configurations had

proven satisfactory. Volume production and low cost production of
turbine blades were the important problems together with vibration
and starting shock problems. Higher operating temperatures and
rotational speeds have indicated that brittle fracture materials such
as ceramics, ceramets, etc,, may be used for turbine blades. These
materials are particularly sensitive to stress concentrétions and
unless very small tolerances are adhered to in the production of these
blades, multiple-land configurations fail prematurely due to the local
concentration at one of the lands. This fact has motivated designers
to consider new configurations such as the Dovetail and Interlock;
these resemble the second configuration illustrated in Figure 1.

Undoubtedly much other experimental work has been done by
various companies in determining the strength and fatigue life of
bolts (and rotor attachments) but most of this information has not
been published in the usual journals.

A review of the experimental studies of the N.A,C. A, and
C.W.T. indicated that the factors which affected the stress concentra-
tion were the fillet contour, the depth of lhe base, the distance of the
load from the end of the fillet, and the method of loading. In the case
of a circular arc fillet these factors could be expressed in terms of
dimensionless ratios, R/b, ¢/b, and £/b, the method of loading

being indescribable in terms of a simple ratio. (Figure 2.) The few
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data also indicated that the stress concentration in three dimensions
varied similarly to the two-dimensional concentration as a function
of these ratios but that the magnitude of the stress concentration
factor*® in three dimensions was substantially lower than the two-
dimensional factor for the same R/b, ¢/b, and Z/b ratios. In view
of this observation and the urgent need of C. W, T. for a suitable
configuration for its supersonic tunnel, it was decided to investigate
a series of two~dimensional contours photoelastically to obtain the
apparent optimum design in as short a time as possible, and then,
knowing the behavior of the stress concentration as a function of the
geometrical ratios, to develop a theory which would predict the stress
concentration factor under the C. W.T. operating condition and a
variety of other loadings,

Besides the propeller hub problem, there are many other air-
craft structural problems, such as fittings, which are difficult to treat
by the Theory of Elasticity either because the boundary conditions,
though simple to formulate physically, are not easily expressed
analytically in functions which satisfy equilibrium and compatability
requirements, or because too many variables are present to permit
a reasonably simple analysis. Many of these problems are, however,
amenable to experimental treatment by strain gage and two- or three-
dimensional photoelastic study. (Reference 9.) If experimental

methods, moreover, are first used to investigate a problem, it is

% The stress concentration is the ratio of the maximum fillet stress
to the applied axial load divided by the minimum cross-sectional
area.



not likely that important variables will be overlooked or that
assumptions inconsistent willi experimental fact will be made in a
theoretical analysis, (See Timoshenko's discussion of Navier's
treatment of the "free torsion' problem on page 228, Reference 11.)
It is therefore fitting that the initial approach to these problems be of
an exploratory experimental nature,

In order that the experimental approach be practical it must be
rapid and low cost. Strain gage studies of stress concentrations are
neither rapid nor low cost because the models must be large and
require much time to prepare and instrument. To study a large
number of propeller hubs in three dimensions by strain gage methods
would be very costly and time consuming. Three-dimensional photo-
elastic studies are limited by the materials suitable for "{rozen stress"
studies. The only photoelastic material currently available in large
sizes is Fosterite which is very expensive. Other photoelastic
materials have maximum thicknesses in the order of one inch; use ot
these materials would necessitate very small models and consequently
yield relatively inaccurate experimental results.

In view of these time and cost requirements, a conventional
two-dimensional photoelastic analysis is certainly justified for plane-
stress problems and even relatively justified for axially-symmetric
problems because in certain cases the axially-symmetric distribution
can be obtained directly from the two-dimensional distribution.
Examination of the equilibrium equations shows that the stress distri-
bution in the axially-symmetric case is roughly similar to the two-

dimensional distribution because a transformation of the type
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Any development, furthermore, of the two-dimensional photo-

elastic technique (and three-dimensional technique) would be of value



not only to the author but to many aircraft companies whose problems
warrant a similar approach. Research effort was therefore devoted
to the application of castable plastics to photoelasticity - a study which
was initiated at GALCIT by Roger Matzdorff. (Reference 12.)

From an experimental investigation the important factors may
be determined and as simple a theory as will agree with experimental
results may be developed. This was the underlying motivation of the

stress concentration study which follows.



II. TWO-DIMENSIONAL EXPERIMENTAL PHOTOELASTIC STUDIES

Object and Models

The first object of these experiments was to derive a fan blade
contour and butt shape which would yield the lowest possible fillet
stress for the required loads. It became evident that the optimum
design was one which had no shoulder fillet and to which the retention
forces were applied as shear stresses on the cylindrical end of the
blade. (The blades could not be continuous across the axis of rotation
of the fan because each blade was required to feather.) Since this
configuration was impractical, the configuration shown in Figure 2,
with the possible modifications indicated in Figures 3 and 4, was
chosen as the basic configuration. Since an infinite variety of fillet
contours could be drawn, it was decided to counfine the initial studies
at least to circular-arc contours until the importance of the R/b ratio
on the stress concentration could be determined. Many non-circular -
arc contours could, moreover, in the neighborhood of the stress risc
be approximated by circular arcs. An example would be an elliptical
contour in which the major axis was parallel to the axis of symmetry
of the propeller hub.

The contour classes illustrated in Figures 3 and 4 seemed
promising variations of the basic contour: that of Figure 3 because a
large radius could be obtained and the retention force had a compressive
component to reduce the fillet stress, and that of Figure 4 because

recessed fillets had previously been used in bolt heads.



Loads

The luads which the Lull musl support are due to the centrifugal
force and the thrust and drag forces on the blade. The centrifugal force
was simulated by a uniform axial stress at section A=A, Figures 2, 3,
and 4, a small distance from the fillet. The thrust and drag forces
were simulated by a shear and bending moment at A-A., The stresses
arising from the shear and bending moment were small compared to
the axial stress and were neglected in the two~dimensional studies.

The reactions were developed on the shoulders outboard of the
fillet tangency points. In the case of the axially-symmetric uniform
loading at A-A, these reactions were equal. In case of bending at A~A,
these reactions became unequal, their moment being equal to the
applied bending moment for equilibrium.

Two types of reactions were studied: uniformly distributed
reactions and point load reactions. The first reactions were obtained
by inserting thick cardboard cushions between the shoulder and the
holding rig to distribute the forces evenly over the whole shoulder from
the fillet tangency point to the end of the shoulder. The point load
reactions were developed at the fillet tangency point. Several experi-
ments were designed to show how the stress concentration was affected
by moving the point load away from the fillet tangency point.

One could not hope to study all possible reaction types but several
types at least needed investigation. According to St. Venant's principle
the stress rise is not sufficiently far removed from the point of loading

that the mode of loading has insignificant effect on it.
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Description of Test Equipment

The models were loaded in the loading frame in the photoelastic
laboratory. (Figure 5.) The frame is a conventional loading frame
which may be translated vertically and horizontally so that different
regions of a large model may be brought to the center of the collimated
light field. Two special jigs were built to support the propeller-hub
models and facilitate alignment. The loading frame rests on a table
whose legs have adjusting screws so that the plane of the frame can
easily be made vertical.

The polariscope is a conventional one except that mirrors replace
the collimating lenses. The light source is a General Electri;: 100 watt
AH~4 air-cooled, glass~enclosed lamp which is operated in an upright
position in series with a step=-up transformer, type 89 G 144, and has
an arc length of one and one-fourth inches. The principal visible
radiations of this lamp are the dark violet, 4060A; blue viclet, 4360A;
bright green, 5460A; yellow, 5780A; and a band of red.

The plano-convex lenses, items 2 and 3, Figure 6, are light
collecting lenses. If the light source is considered a point source,
analysis shows that the total flux of useful light falling on the mirror,
itern 8, depends only on the stop diameter, item 6, and the aperture
of the mirror. Since the source is a line source, however, analysis
shows that the best combination of collecting lenses is one in which the
aperture of the second lens, item 3, is the same as that of the mirror,
and that its size and that of the first lens, item 2, is determined to

catch as much light from the source container as possible. The stop
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could not be placed near enough to the light source to collect as much
useful light as the present system does. More light could be obtained
from a BH-6, 1000 watt arc, but this would necessitate water or
forced-air cooling. The 100 watt bulb together with an efficient
collecting lens system provides sufficient intensity at the photographic
plate so that with a sensitive emulsion rapid enough exposures can be
made to stop all normal vibrations. The chief source of vibrations
was the GALCIT 10 Foot Wind Tunnel.

The main light requirement is a large field of collimated light
of high intensity. Amnalysis shows that deviation from perfectly colli-
mated light depends on the ratio of the stop diameter to the mirror
diameter and a function of the aperture of the mirror. The optimum
mirror aperture is near 5 because greater apertures make severe
space demands for small perfections in collimation. As the stop
diameter is reduced the collimation improves, but the flux of useful
light also decreases, so clearly a compromise must be reached. The
spherical aberration of the mirror and a 3/16 inch diameter stop
limit the number of distinct interference fringes to about 20 per inch,
model dimensions, but this proved to be no handicap for this analysis.

The stop, item 6, is located at the focal point of the mirrors
to simulate a point source. The mirrors have an overall diameter of
eight inches and a focal length of thirty-nine inches. The angle which
the mirror makes with the incident light is small so that the effects of
coma are minimized.

The principal law of photoelasticity is the stress-optic law

which states:
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#  is the fringe order of the interference fringe

A is the wave length of light

¢ 1is the stress-optic coefficient for the photoelastic
material

¢ is the thickness of the specimen

#  is the material fringe valuc in psi shecar for a
given wave length of light

Since n is inversely proportional to A, the lowest possible
wave length of light should be used. The GALCIT polariscope, never-
theless, uses the mercury green, 5460A wavelength, because it
facilitates visual work. A Wratten 77A filter which transmits about
half of the incident mercury green and high wave-length red light is
used. The presence of the red light does not affect visual work
because the red light is clearly distinguishable from the green and
black fringes; nor does it affect the photographic work because plates
sensitive only to the 5460 radiation are used.

The polarizer and analyzer are Polaroid sheet and are fixed
into rings which can be rotated. The quarter~-wave plates were also
made by the Polaroid Corporation and are placed in the same ring as
the polarizer and analyzer. These elements were aligned and their
relative axes determined. Most of the experimental work was done

using the quarter-wave plates since they eliminate the isoclinics of
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which there was little need because the stress concentration occurred
on a free boundary.

Shields were placed over most of the optical system to cut down
the scattered light for photographic purposes. A focal plane shutter was
uscd to determine exposures. An exposure of 1/50 sec. was found to
be the longest possible satisfactory exposure because of wind-tunnel
vibrations. The photographic plates were 4 x 5 Kodak Spectroscopic
103~G type plates and were exposed from plate holders held on a
wooden frame. The 103~G Spectroscope plate is sensitive only to the
mercury green radiation and is very suitable for low intensity exposures.

(Reference 13.)

Model Preparation

The models were made from either Paraplex P-43 (Reference 14),
a thermosetting resin manufactured by Rohm and Haas and several other
manutacturers, or CR-39 (References 15 and 16), also a thermally set
plastic developed by the Pittsburgh Plate Glass Company and manu~
factured by the Cast Optics Corporation of Riverside, Connecticut.
Appendix I is a summary of the photoelastic propertics of these mater-
jals. The model contours were laid out on the material and sawed out
roughly on an ordinary band saw. Chipping was not bad if recommended
blades and speeds were used; the band saw cuts were as close as 1/16
inch to the finish line. The models could then have been finished on a
milling machine with a high speed end mill, but in the case of the
propeller-hub model each was finished on a hand router with a high

speed rotary file (10,000 rpm). (Figure 9.) Tolerances on the hand
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router operations are poor compared to those on a mill but are,

nevertheless, quite satisfactory for most photoelastic work.

Test Procedure

After each model was machined it was bolted to pull-off plates.
The plates in turn were bolted to a pull-off rod which was connected
to the lever arm of the loading frame which had been appropriately
counterbalanced so that the load on the model was zero when no
weight was in the pan. (Figure 10.) The model was placed on the
supports on the arms of the loading frame and then adjusted so as to
make it perpendicular to the beam of collimated light by centering
its reflection on the mirror, This alignment operation was conducted
with a small weight in the pan.

The supporting arms were set horizontal and the model was
further aligned by making its centerline vertical and locating it in
the center of the frame by eye and scale. The model was then
partially loaded until a few fringes were observed. Lack of symmetry
in the fringe pattern was corrected by raising or lowering the sup-
porting arms, This adjustment permitted corrections for non~uni-
formly distributed loadings as well. Each model, after being
properly aligned, was then cleaned and loaded to produce a reasonable
number of fringes in the fillet.

Photographs of both fillets of each model were taken - with the
fillet centered in the light field. The Kodak Spectroscopic plate,

103-G, proved very satisfactory for the short, low-intensity

exposures after its development time was pushed to eight minutes.
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The developer used was commercially prepared D-19. The plates
were then fixed for twenty minutes, washed in water for one-half
hour, and air dried. A sampling of over four hundred plates is shown

in Figures 10 to 18 inclusive.

Estimation of Fringe Order

The fillet stress was determined by projecting a several-times
enlarged image of each configuration on a white paper. The point of
maximum fillet stress was observed and a line normal to the fillet
contour at that point was drawn on the paper. The various fringe
were located on this line., Isater the [riuge
orders were plotted directly above this line and extrapolated to the
edge. Results for both fillets of a specimen were averaged to elim-
inate asymmetrical effects.

This method of data reduction or a similar extrapolation was
necessary to obtain readings to the nearest quarter of a fringe in
seven or eight fringes instead of to the nearest half fringe which is
about the best the eye can do on interpolation. It was felt that by
graphical extrapolation the error in estimating the fillet fringe order
could be reduced from 7.0 percent to 3.5 percent. Due to the little
chippings at the edges in the fillet from machine operations the fringes
did not always appear as clear, smooth lines, But if, many times
enlarged, the borders of the fringes were carefully smoothed out and
the centers of the full and half fringes carefully determined and at

these points the appropriate fringe value plotted, a smooth curve could
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be passed through these values such that there was very little scatter
of points about the line, Extrapolation to the edge could therefore be
made using four points whose distances apart were greater than the
distance from the last point to the edge,

In the sketch above, a typical extrapolation plot is presented.
The most unfavorable lines through these fringe orders intersect the
edge at A and D which differ at most by 0.2 fringe orders and differ
from their average by 0.1 fringe order. The error involved in esti~
mating the fringe order is therefore about 1.5 percent at eight fringes.
The edge however is not always an infinitesimally thin line. Due to

the rounding of the edge corners or beveling of them (during layout
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with a scribe) and due to anticlastic curvature which the surface
suffers under large stresses, the edge appears as a line sometimes
as wide as one quarter of the neighboring fringe. This width is indi-
cated in the figure by the line labeled EDGE and the line FE. The
most unfavorable lines intersect the outermost position of the edge at
B and C. At worst, the correct fringe order lies between B and D
which at most are about 0.4 fringe order apart. If the average of

A, D, B, and C is taken as the fringe order, the error is at most
Ty percent. The true position of the edge can be easily determined
however so that the error in estimating the fringe order is less than

4 percent.

Caleculation of Stress Concentration Factor, K

The stress concentration factor K is the ratio of the maximum
fillet stress to the load divided by the nominal minimum cross-
sectional area or,

K = o fillet max

P
tb

Since the applied load P was four times the pan load W, and

O fillet max S calculated from the stress optic law,

fillet max -

2nf
0 t

K, therefore is given by the formula

_ nfb
K=1/2 ~



Discussion of Errors

An estimate of the maximum cumulative error in K may be made

in the following manner:
log K = log 1/2 + logn + log f + logb -~ log W

and

dK - dn  df , db _ dW
K n f b W

The maximum error may be first estimated as

K| |dn| oy (dE] (b, Y]
K n f b W
I%El = 0.04 from the previous discussion. 1%2— is the sum

of the error in the initial fringe determination which is no greater than
0.01 for the data presented because only CR-39 was used for the
models, and the error due to creep which was not accounted for in the

reduction of the data. This is assessed at 0.04 at most; see

Appendix I. ‘-%—-f— = 0.05. %EI is a dimension tolerance
which was less than 0.003. I%%Vl including friction in the loading
frame is <  0.005. I%K’ = 0.04+ 0.05+.003+ 0,005 = 0.098

or ¥ 9. 8 percent.

This error does not include the errors due to tolerances on the
radius or base depth. The tolerances on the base depth were at most
about 0.007 and on the radius about 0.02. An error of 0.02 in the
radius causes an error in K of about 0.015 at R/b = 0.1 and causés

less error if R/b > 0.1, Including these effects the maximum
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possible error is estimated at 12 percent.

lhese errors are reasonably larger than those claimed by other
photoelasticians. Were the models milled to 0. 005 inches the sum of
the tolerance errors could be reduced by 0. 015. If Bakelite were
used, the creep would be substantially less so that the error in‘ ?f—‘
due to creep would be reduced 0. 025. With precision loading rigs,
etc., the error in initial fringe value determination may be reduced

0. 005 making possible a total reduction of 0. 03 in

%f-), and a

of 0. 003. By using special methods, the error in

daw
W
t_%?’may be reduced by 0. 02, The total reduction is 0. 015 + 0. 03

reduction in

+0.01+0.003=0.058 making their maximum error about 5 percent.
This reduction in error is obtained at the expense of model prepara~-
tion time and cost and did not appear justified for the present

experimentation.

Results

The results of the investigation of the basic contour (Figure 2)
with the point load reactions applied at the fillet tangency points are
shown in Figures 19 and 20. It is seen for any R/b ratio in the
range studied that increasing the c/b ratio beyond 0. 6 has little
effect on the stress concentration factor K. It is also seen that the
radius (R/b) has little effect on the stress concentration for R/b

> 0.25. In this range the c/b ratio is the controlling factor.

In the case of the point reactions, the 4 /b ratio corresponds to

the distance between the fillet tangency point and the reaction, and
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also affects the stress rise. For R/b < 0,25 and ¢/b < 0,3, it is
seen that the controlling factors are the R/b and the £ /b ratios.

This seems reasonable because, when R/b is in the neighborhood
of 0.1, the c/b ratio at which ¢/b ceases to affect K should be less than
0.6, most probably near 0,3. It follows therefore that the increase in
K with large R/b for small ¢/b is also reasonable from geometrical
similarity considerations, The fact that the R/b ratio has little effect
on K for these regions implies that other contours whose minimum
radii of curvature are comparable to the R/b ratio of the ¢ircular~arc
fillet to which they correspond would have little eitect on the stress
concentration factor K.

The effect of the Z/b ratio is shown in Figure 20. Due to the
fact that loads had been on the models about an hour before these data
were taken, creep correction was made. The broken line indicates a
day's wait between tests. Agreement at 4/b = 0 with Point Load
Data is reasonably good,

It is not surprising to find that the stress concentration factor
first decreases with £/b in spite of thé fact that the bending moment
on section B~B (Figure 2) increases with 4/b. The reason for this
is shear transfer or shear lag. As /b increases, the shear stress

across B~B becomes more parabolic and the gradient of the shear

stress in the vertical direction decreases, In olher words, - %Zﬁ?-’
- A
decreases as £ /b increases because there is an opportunity for the

load to redistribute itself in the distance £Z/b. But the rate of

change in fillet stress —0;;("— = - %Z—Jx—y— from equilibrium consider=
y X

ations., The fillet stress at the tangency point therefore grows less
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rapidly if # /b is large. Beyond a certain value of . /b, however,
the shear transfer contributes no further favorable effect and the
stress concentration increases as //b increases,

A uniformly distributed loading permits a more favorable shear
distribution along section B-B and therefore causes lower stress
concentrations. (Figure 21) The effect is larger for smaller R/b
ratios, but this is again in accordance with St. Venant's principle.

An investigation of recessed fillets (Figure 4) was also conducted
and the results are presented in Figures 22 and 23. Figure 22 shows
the results of tests in which the R/b, .Z/b, and /b ratios were
held constant and the c/b ratio varied. The work was done visually
so that the error was larger than normal; this fact is indicated in the
figure by shading the region of observation. It is seen that the stress
concentration factor K for a recessed fillet is only slightly lower
than the factor for the corresponding basic contour with the same R/b,

£ /b, and ¢/b ratios. Figure 23 shows the effect of a second {fillet
on K plotted against the R/b ratio for a given c/b ratio but varying

2 /b ratio. It is observed for small R/b ratios that recessing the
fillet reduces the stress concentration. These few tests indicate
that the recessed fillet contours behave in approximately the same way
as the basic contours for the same R/b, ¢/b, and £/b ratios. The
recessed contours should therefore be considered for cases of small
R/b, and large c/b; these conditions are manifest in bolt heads.

Several contours with inclined bearing surfaces were also

studied. (Figures 17 and 18.) For the R/b and ¢/b ratios defined
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according to Figure 3 these contours yielded stress concentrations
about the same or slightly higher than the basic coutours of similar
geometry. The optimum angle X' appears near 20 degrees; if large

ol are employed a large shear stress unfavorable to the fillet
stress may develop to make this configuration inferior to the basic
set.

The main advantage of contours of this class appears when the
dimension a, the overall width of the base is given or required to be
less than a certain value. For a given R/b and c¢/b ratio, the re-
sulting b is always much larger than the corresponding basic contour
b and for a given load, therefore, the resulting fillet stress is lower

than the corresponding basic contour fillet stress.

Discussion

Using the results of the point load and distributed load tests,
curves were faired through the unofficial N.A.C. A. two-dimensional
results. For a ¢/b ratio = 0.5 comparison was made between these
strain gage studies and the photoelastic investigations. (Figure 24.)
The N.A.C.A. data fell between the distributed load and the point
load results. Since the exact mode of loading was not observed all
that can be said is that the strain gage results should fall between the
two limiting cases. Certainly the strain gage results should not
exceed the photoelastic results because the strain gages are finite in
length and integrate over their length; they also may not have been

placed at the exact maximum stress location.
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A comparison between stress concentrations arising in the
propcller-butt two-dimensional configurations, circular notches in
tension, and circular-arc fillets in tension is made in Figure 25.
(References 17 and 18.) The stress concentrations arising in the
fillet with point and distributed loads are substantially higher than
either the semicircular notch concentration or conventional fillet.
To assume that Neuber's notch theory is applicable to the propeller-

hub problem is unjustified.

DESIGN APPLICATIONS

In a design problem, the load that the butt must support is
known, at least approximately, and the allowable stress is known

from fatigue studies. The function b/K = P/ ¢

»

fillet max

K =K (R/b, ¢/b, e/b), must then be determined. If there are no
auxiliary conditions, K may be chosen as low as possible and b can
be determined to satisfy the design requirements. After K has been
chosen, R/b, ¢/b, and e/b can be determined from the figures;
knowing b - R, ¢, and e can be calculated.

If auxiliary conditions such as minimum weight or an overall
dimension are imposed, determination of the optimum design is not
always easy.

If an overall dimension such as the maximum distance, a,
across the base is specified and the bearing surface e is also speci-
fied then the derivation of the optimum configuration is relatively

simple. It is observed that
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d=b+ 2P+ 2e
K'E}

Iritlet = per unit thickness

Kk P Y= K
7. = = S et
Fille t a-z2p-2e a //- 2R ,2_‘2)
a &

For the maximum load P for the given dimension a, the function

ya
(/_ P )must be minimized; K = K (R/b, ¢/b, e/b). e/b

and R/b may be written in terms of R/a and e/a:

e. R. L. R : )
27 a £ a(/~2§,——2_§.:

£ . e 7 . ( )
b a £ a — _
= / zzﬁl 2 &

Since e/a is given, R/b = f (R/a) and e/b = {(R/a). A number

of values for R/a may then be selected and the corresponding values
of R/b and e/b calculated. For these values K(R/b, e/b, c/b
=0.6, 0. 7) may be chosen and the value of the function Placy)
determined and plotted against R/a to determine the maximum value.
If e/a is not given, assume various values of e/a and for each
value determine the proper R/a to maximize P( a 9% )™, These
maxima may then be plotted against e/a and the optimum derived.
In the case of a minimum weight requirement, it is necessary
to maximize the function b/K for smallest volume per unit thickness.
The volume of the base below the fillet tangency point is
V = c(bt 2R + 2e) + 0. 43R% + bR

The most direct procedure to determine the optimum configu-

ration is to choose a number of b's and calculate the required K's,
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For each K, several combinations of R/b, c/b, and e/b are possible.
By holding combinations of two of these fixed and varying the third an
optimum volume may be found. For example, for a given R/b, c¢/b,
vary e/b and determine the minimum volume and the optimum e/b for
that R/b, ¢/b. Then holding ¢/b = e/b optimum,; and ¢/b, vary R/b
until the optimum R/b is found. Then for R/b optimum, and e/b
optimum vary c/b until its optimum is found. Then repeat the whole
process holding R/b = R/b optimum, and ¢/b = ¢/b optimum, and find
e/b optimumz, etc. This must be done for each value of K. The
optimum volume for each configuration may then be plotted against

the K of that combination, and the absolute minimurm volume obtained.
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1II. TWO DIMENSIONAL THEORETICAL ANALYSIS

Notation

The stress concentration which arises in the fillet of a fan blade
hutt may be formulated in two dimensions as a problem in plane stress
without body forces. The only load considered is due to centrifugal
force and it is simulated by a static load evenly distributed across the
shank at a reasonable distance outboard of the fillet and is resisted by
two equal static reactions on the shoulders. For circular arc
fillets, the geometry may be represented, as shown in Figure 26, by
the dimensions R, h, w, and e. R and e correspond to the R and e of
the experimental investigation but w = R + b/2 and h = R + ¢. The
reason for this change in notation will become evident after the

approach to the problem is explained.

Formulation

The differential equations of equilibrium without body forces in

the rectangular cartesian coordinate system x,y are

86;( + aZ;'y_____ o

dx Iy
Ixy | 6y _
ax T oy ¢

The material is assumed homogeneous and isotropic; Hooke's
law therefore applies and the equation of compatibility may be written

in terms of the stresses in the following way:
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& 2
g =0 e, 9 J
\% Céx + 6)/) where U ey + 5v2

This set of simultaneous partial differential equations may be
solved in the classical manner by introducing an Airy stress function

(page 24, Reference 11) p=p(x, y) such that

o°

6_)( = dyfj

_ 2%p

6Y T ox?
lxy= _ 9%
dxIy

By choosing the stress function @ in this way the equilibrium
equations are identically satisfied and the compatibility equation

becomes the classical equation of the theory of elasticity,

vip (x,¥) = O vt e[+ )5 5

Exact Boundary Conditions

A solution to this partial differential equation yielding a unique
stress distribution may be obtained if suitable boundary conditions are
prescribed. Suitable boundary conditions consist of the specification
of the normal and shear stresses on the complete boundary. The
exact boundary conditions of the propeller-hub problem are given

below in the notation of Figure 26.

Due to the symmetry of the stress distribution the stress
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function must be symmetrical about the centerline. A consequence
of this symmetry is that the shear stress must vanish along the

centerline since it is an odd derivative of an even function.
Txy (x,0) =0
The normal stress, ¢, (x,0) » must integrate to the applied
side load. Since this is not an external boundary the normal and shear

stresses should not be prescribed.

The bottom surface is free; therefore
Z’Xy (/7) .Y/ =0

o6x (h,y) =0, —(w+e) £ yz (wre)

The side faces may have normal loadings 0q [K; t(w+e)l | The

boundary conditions are, therefore,
Txy[x) I(”‘/*ej] =0

6y [x, 2 (w+e) =0q

The boundary stresses on the shoulders are

0

ny (/?) )/)
Gy (R, )

1]

23 —(wre)E v E-W, wEy L wre

The boundary conditions in the fillet can best be described by

polar coordinate notation. For the fan blade problem?

6, (R,8) =0

Trg (7,8) =0, vee= Z

* In the case of turbine blades where slightly different retention
methods are used, G, (R, 8) # 0 .
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On the vertical sides between the fillets and the nominal cad of

the shank, the faces are free of stress.

Ty [x, Ziew-R) =0

O’y[,l’}f(/«/"r‘?y';&): —/f)(ﬁO

On the top surface, x=- X, , Where Xo is that

value of x where the disturbance due to the fillet stress concentra-

tions has vanished,

Ty (=%, ¥/ =0

Ox (%0 , %) = S5 0p s ~(W-R)Sy < (W-R)

These boundary conditions present formidable mathematical
difficulties* not only because there are so many parameters but
because the boundaries are hard to describe mathematically. Rather
than solve this problem exactly or even approximately, a simpler

problem which embodies the physics of the exact problem is studied.

* Alternative methods were also considered. Energy methods are
not suited to this problem because the integrations tend to smooth out
the stress conceniration effects. Conformal mappings in general
(Reference 19) present no simplifications either. One possible mapping,
however, is that of the flow in a corner to flow in the half plane but

this mapping has symmetry about the bisector of the corner angle and
restricts the possible configurations to one.

Another approach was also contemplated. Polynomials #» of
order # which satisfy v¥g, =0 possess arbitrary coefficients
which may be determined by application of conditions at selected points
on the boundary. Due to the enormity of the non-self-checking arith-
metical calculations and the large probability of error this approach
is rather impractical.
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Simplified Problem

A geometrically simpler region of interest (Figure 27) is there-
fore considered for the case of axial symmetry and a more convenicnt
choice of axes is made. Motivation for this simplification is the fact*
that a polynomial stress function (X, Y ) to which corresponds
stresses oy 6, and Txy -stresses applicable to the straight
boundaries - can be readily transformed to a stress function gy e)
to which correspond stresses %, 0Jp and Tre , applicable to the
fillet boundary. To this function can be added, from the general solu-
tion in polar coordinates a perturbation 9ﬂ/(fj ©) with the corresponding
stresses o3/,  gg / and Ty; needed to satisfy the exact boundary
conditions at the fillet but still be of such functional form that they
vanish a short distance from the fillet. If the boundary conditions on
the straight boundaries are applied before the perturbation stresses are
added and the perturbation stresses do not tend to zero with / so that
they are zero on the straight boundaries, then the conditions on the
straight boundaries are not satisfied. The pertur’bation stresses are
therefore chosen to vary with 7 7  where is as large as

possible.

Simplified Boundary Conditions

This simplification of geometry implies new and less restrictive

boundary conditions. The centerline is an external boundary in this

* This was essentially the method used to solve the problem of a circu-
lar hole in a tension field. See page 75, Reference 1l.
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simplified problem. Omne stress condition is known along this
boundary, namely,
Coy (4, 0) =0
For equilibrium in the y direction the integral of the normal
stresses over the centerline must equal the sum of the forces in the
horizontal direction applied on either half of the butt and, for no such
forces, the integral must vanish. This may be formulated in the

following way.

h
]Jy(x,w)dx =&

ZX,
or
~0 b
6y (X, w)dx + / 6y (x, wldx =@
Yo
..Xo
where X, is a point X, > O » corresponding to the distance

required for the stress concentration disturbance to vanish.
In the region 0= X £/ | the only horizontal forces that are
theoretically considered are pressures along the sides of the base,
y =0 , and their sum is - Q. The integral [X:dy (x,w)dx g
therefore an estimation of the shear along the top of the region of
interest, jwf}y (o0, v)dy . But sufficiently far from
<2

the top of the fillet, at x = "X the stress is a uniform tension and

w 0
/ ny/"’%;)’)dy:a . The integral /Jy (X)N)dx
g

-Xg

which is equivalent to / xy (o, }’/ dy is therefore an estimation
R

of the shear transfer needed for the perturbation or stress concentra-

tion at the fillet level to vanish.
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w
An estimation of either / Txy (0, ¥) dy or
h 14
f@ (x, w) dx - must be made because these are external forces
4]

in the simplified formulation and affect the fillet stress which is an
interior siress. An estimation of either integral is KSuffiCi,ent if the
equations of equilibrium are satisfied. , .

An approximation of this integral o/d; (x, w)dx= @jx[@ (x, w) dx
may be made with the help of St. Venant's principle. According to his
principle the disturbance must vanish in some characteristic length
which in this caée is £ or w . The photoelastic studies indicate
that « is the characteristic dimension and, therefore x, = W.

For a first approximation,the functional form of a3 (x w) may
be considered linear, - w <x< o© . Photoelastic studies corro~

o
borate this choice, { oy (x, w) dx= 5 woay (o, w)

4
and 75 (x, widxs Q- £ w &y Lo, w), Jy(ow) is not assigned a
<]

specific value as is Q so that this requirement is better expressed by

the equation
Fw ooy (g w) / o, (x, w)dx=@Q
)
If xo = K , the stress concentration factor is not
seriously changed.,* The main effect of changing x, 1is the change in

oy (6, w) which is of little interest in this analysis.

* Subsequent calculations for R/h =0,22, W=h, @=0 show that the
percent change in stress concentration factor due to a change in x,
between w and K was =1 percent but the change in 6y ( 5 w)
was + 56 percent, and in Cylqw)was+ 1 percent based on the former
values. A change in X therefore makes little change in the
integral of the shear stresses along the top edge.
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An alternative formulation of these boundary conditions may be

inferred from the photoelasticity studies. The uniform stress across

the shank is —/— . The stress at the center 64 (0, w,) < ——

wW-rR " W-R
since ¢, (0,R) > 2 and/ Oy (o, v)dy = F . Photoelastic
s

W
studies indicate that cx (o,n) = ©.7 II;‘.O“/? and sy (0, w) =

0.9 [\"/"/?5 . GCalculation of the stress concentration factor may

be made using these requirements instead of the equations

w
j Ox (. v)cdy =~
I4

4
and g/o_y (o, "‘/o Gy (%, wldx = 4)

but then the calculation is only a test of the validity of the assumptions
of the elastic theory and the approximations of the problem. *
The simplified conditions along the centerline and top edge are

therefore Y
Og (’-; }7*7)0'/“ =

Vel

The boundary requirements along the base and the fillet are
exact, For the fan blade fillet

6, (R, 8 =90
e (R, 8) =0

< 77
0-5’5?

* Subsequent calculations show that use of either set of conditions leads
to approximately the same values of K.



6)( (Ayy) =Jd

ley(’e; )/) =0

The shoulder on which the reactions were developed is removed and
the reaction is applied as a shear stress, (o (r, 0) . In view
of this change, hope for accurate theoretical predictions for —/—)@ <</
and € =0 is diminished although paradoxically the requirement
that 77@ <</ is very significant to the radial decay of the per-

turbation stresses, 6r, R 69/ ,l+e - Comparison of theoretical

calculations with experimental evidence corroborated this contention.
The reaction P is distributed as a shear along the edge y = 0,

REXZA such that

A
/ lo (F 0) r =

R

Control over the exact distribution of the horizontal pressures

is sacrificed.

)
/I; o (r,0)dr = @

Together with these integral interpretations, two other conditions

are added to clarify the picture.

A
/mg/r,wdr -~ Pl AR,
7~
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with the assumption that the load center is at Z from the fillet
tangency point. R _ is the distance from the center of the fillet to the
resultant of the side stress integral.
The second condition is, for the case of the distributed load,
) £~

G (R, 0.) =~ 3 sin?g, + gy cos’e,

&y = tan’

Rlo

2

This is an approximation to the condition ¢, (K -€)= g4 . If &
is small then 03 (R 6,) = 6y (K ~e) ; but since it has a
component in the direction of the distributed load, by Mohr's circle

O ( K &, )=~ _eE 5,}72@0/ dp=0, &, verysmall. d,is appro-
ximately zero.*

The point load condition is represented in a similar manner. In
order to apply such a loading physically some small shoulder e is
required outboard of the fillet tangency point. The stress

I (B &) = O where 8, = Fan”’ —é— corresponds to the
condition 0y (KX, —e) =0 . Itis possible that the choice of
€ or &, will affect K and this must be investigated.
A summary of the simplified boundary requirements is presented

here.

1
S

6, (R ©)

o &« I

f
O

Tre (B, 6)

* Calculations show that 0z (& &,)=0 yield higher values for
K than 0’9(@90)?——5’[35/'/1290 for w=h , and

0. /< h@ < 0. 35 . These values differ by five percent at most.
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Sx(h,y) =0

ny (/7/ )/) =0,

Q

IN
X
N
N

Txy Cx,m0)=0

4
*é‘NO'y(O)N)%/ﬁy(X,/A/)C/X: &
24

w

/ 6o (¥, Z)cp = P

~

A
‘/0”‘9 (r,0)ar = Q@
%

4
/\/-J'Q(FJO)C/P‘:'PJ*Q/?U

R

6';9(/?, §G)= «-g Am”’eo # Oq cos < o,

for distributed load

= J‘Q 6052 60

for point load

/

Gy = Fon” 7;



- 36 -

 Analysis

In order to satisfy these boundary requirements a stress
function in the form of a polynomial of sixth order is chosen, Iligher
order terms are omitted because their addition increases the algebraic
complexity of the problem several fold without a corresponding
increase in accuracy. A polynomial in x and y is chosen because it
is readily transformed to polar coordinates by the simple relation-
ships X = rcos®, Y=rsin®, and because the stresses, to satisfy
the conditions on the straight boundaries, can be derived in terms of
symbols which make mathematical representation of the boundaries
simple. The polynomial #(x, y) is the sum of five polynomials

$y, 7 =2,3,4,5, 6:

4
¢(X/ y) = Z 90n [X;y)
=2

where Ly () y) satisfies the equation Vi = o ,» the compati-
bility and equilibrium requirements. From each of the polynomials
of order greater than two, four arbitrary constants are retained, and
trom the second order polynomial all three are retained. The poly-
nomial ¢ (x, y) is
Pl y) = A, x% + A XY + d5¥°
rhx3 b by Xy by XY bs
b x4 XY —3(C rCa )Xy i xyT 4 Cay?

-+~ d//‘/j*)‘“ O/2X4y ”/'"5{/3 ijzw /5&’4, */"G/z)XZys
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—(5d, + ds) xy? + oy y¥
thoxb e Xy # BT =20 ) k% L (o r ) X7 7

+ F(F, =272 ) 2y * L hxy Ty Sa v

The stresses may be derived from this stress function

5x=§.;% = 2aq, * Pbyk + Gbay-6lc, +Cq) X2+ 6CHhy+ 12Ca Y7
+ Pdy ¥~ 6(5ds + o) Xy - 12(Sh rle)xyZ t 2Oy VT
+ 10l 2F) X710 (5 + 5) 2% +» 0% ~25) X%y ?
+ 0 Xyie F0fa y®
-2 Ea, + 6b,x +2byy+ 12C, X% + 6Co Xy ~G(C) +Cq)y?
dxé / & /
# PO, X7+ fEdy Xy r bl Xy S~ 2( 5 + o)y
+ FOL ¥ %1207 X2y % + /O F y*+ 2O 27y 6055 X3P
~ 10 xyT-/0f xy? ~20F % yA
“Z"‘y=didy T Qo Lby X+ Pl F FCo X —12(C ) Xy A3 e

* R Xk G XYy ~G(5a, # I )xy - F (5, )y
+rELxF e F0(la~2H) )y - 15(fo #f3) X%y?
r20(F -2F ) xy? v 555 y#

The boundary condition implying symmetry may then be

applied: — ZJXy (X) N) =0, ~NEXEH This gives rise
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to the following set of equations:

@, +2hhy s B hPy 2 L3 5 L4 -0
2by 1206 +Ce)h+ bdsh® a0 (£- 26 ) h3 -0
3¢ —6(5ds+h )b —r5( L +H) 020

=~ d(5d, ¢ A3+ 20 —2LL)) -0

54y =0

The shear on the bottom must vanishi- 2y, 4 yJ=o, osysw.

a, + 2w + 3l #(5d,+ 0’3/\W3+57C3 w?=0

2h, 1200+ C0) g — (Gt A )02 AL o ) R
“~ 7 N . (,/VV T‘lu(l/ 44'7'4/‘4/' &0

Iy + #0 (44 - 24 )w =0
Shw =o

and the normal stress on the bottom must vanish; % Chy) = O PLYL w.

Zas +2bsh ~ 6(G+ Ca)h2 + 2 K24 10 (£ 26 )5 7= o
by +6Gh - €(Sdatcl )h?—~ to (4 +4£3) b0

/2 Cqg =12 (5d, +ds )b + 60 (L —~24,)h% =0

20 dy + 26454 =0

S0 44 =0
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From these simultaneous equations, all of the arbitrary con-
stants can be expressed in terms of five remaining constants, al, bl’

Cl’ d3, and fl as follows:
Q, =4,
Qs = = 12C, haw ~ EOWITSE ~/FO 0t T, + G h 2,
@Ry = "3C, 5% —F5HPS, r s
b, = b4
bo = bC vt TOS b FOS T
by = 6ChH # TOLHT - PH 2,
by = T R
c, = ¢
Cp = ~Edz 1

Cz = FOF wh

Co = 57457
d, = 2fh - L
ds = SOF w
dz = s
g = O
=7
L= 0
/=0
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P(% ¢) now retains five arbitrary constants and is given by

the following expression:

relations, x = » cosé® s

Pl y) = dx®+ dyxy + As¥Y?
G x2 b by X2y by xyE F by y3
L, (P~ B3x2p2) 4y xBy o+ Gy xp3
# Gy y?- 3x%y%) +d, (X7 Sxy4)
4—0/2()(4}/;)(2}/3) + ds (X3y2~xy4)

+ f (xb-rox%y2 r552y%)

$(x,4) may be transformed to §(/; &) by the

y= r sin &  vyielding

Plre) = Qrios?e + Ay viiosesin® +ds FESinES
+ b, r3005%8 + Lo r P LosTo s © 4+ by Fosesine
F g rism3e+ G r osTO - 3 losie s 20)
+ o tos3o s + C3 cosoOsL3O
+ Cqr ¥ (Sin %6 ~ 3c05%6 S1u4?0)
+ Ay cos 6~ 5 o5& set o)+, Fieos Yo sun o
~ d, ro( 05?0 s 30) + I3 15 (10530 500G ~ St tE cose)

byl ws e - /pws o suute + 5ios?o simte ) |
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By use of trigonometric relationships, p (), g) may be

arranged in the following way:

< 2 7
plre)= (2L s 2 4 hl” "%4/5/79

2 P &
+ (;‘Zb//'j%jéj/'jfaje + (42/” S iay @//5/026

@, +° as;re Y ahd (4/7
< . - o5 28
+(2 > # 5 = <

4, r? bgr? o &
+ Sl - j.f/njé

& = Ex
+ .é/.._/: b-;/” #~ j_ /.0; # Q/fﬁ750539
B

< = Z P

?
(57~ %) anse 4 (G ¢ G 2 eor o

ey £y
+ édzr”j/nia ~ (/—'Z(-{ -+ /.'2-{3/ cos 5&

OFr p(y,8)= A r2r B ricos & » Crisme

where

+ (0,/" s # "/505 28 f@rzfé}/‘ﬂf/n 28

+ (/L;“rv’,a/:;ké:) cos FE +/é:,/-3+§2/”,’75//7 FE
—{—(/7;/“4? /4/9505469.& T T sin ZB

+ A, r¥ cos 58 + M, FF oI 5E + N, Fécos 68
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To this stress function a perturbation function p/(fj &) may be
added. W’(/‘/ &) is chosen from the general solution in polar

coordinates (page 114, Reference 11).

<
@’(/76’): /]‘, /n Ao ifi 50597‘-7{ S0 B

1

2, £
./_(75'_ 7404)605 297‘-/7_—‘;— .,45) S &

“z & 7,
# (7}_ » fz/ (05367‘/7}{ - 7_«5_/ s FE

/—/ 4 s
>~ 7_/55.)505 49+/7_—~§-+ rj s FE

A ’(_ /«’)casfé’f(,.é_f- Sy
Nz | Na
# 77+—;;—)(05éé?

The total stress function % (/’, 9) + 2 ’(/’, &)

called &, (5, 8)  is

, hereinafter

(/' 9) /4 /n /-+4/" +(5//*”’ 5‘)(056+/[, Jf-(:" S &

+(0//-2,1.‘02/~’L. /.2 * 0,,) 60529-/-/{'# LEF% _:;_7«[)5/029
e &
+(/-7/-°:L/f/' ,_.3. /(0536-/»6/- éfff;f;i f_f_‘zyj/ﬂj’@

a ¢ A M ( 2 Jp , Ja
- /7///.7#/_/2‘;- 7,_,;_:’1 ~ /—2)505 49};5‘/“.,1.;% +7..T_/5/” =4

Py fay’ - = /s Ms . s
+(/(/,—¢ ’_,«/__’,)cms' é’f(/i/,ffl_ r =5 =7
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Addition of these perturbation terms destroys exact satisfaction
of the boundary conditions along the straight edges, but if these
pe;turba’cion stresses decay with ¢  their magnitude along the
straight boundaries is small.

The functions p,, (+, &) are of the general form

&, :(e//”* 6L/'”+L+ /5773/-_”7“/24 /_;_—/))_5'//7 7.

P =t

).

#- -5 -
~ 2 (L 2L ) Znfln) 2,1 E ) B - (100) g 7T (1) By
252 #e)

In polar coordinates, Tro = - ;?’;- (_/_L

w\m
GRS

The requirement that 4,4 =, €)=0,059527Z , requires for both

the sine and cosine functions that

(5-1) 50y R0 Gy ) B, R0 i wi) s R 2 (1-00) 120 77 O

2

Furthermore ¢, = 75— —:—{f # ;{1 52?,_ . For the sine functions

and the cosine functions,

- —_p - - <577
Gy = [P G-1) 2, r7% (rr2-12) By 47 11 (7#0) g 77 P (o n Gy ) s T

)

< 77
To satisfy the condition that 0y (<, e)=0 , oze:= 2/-

P01-1) By R0 o220 150 R = 1 (1) g 77 eorn e K72 0

From the preceding equations, “2s and #%; can be
determined in terms of 4, and “%. . Multiplying the first by

and subtracting from the second, we obtain

fe = PR Cran) B R
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Substituting this value into the first equation we have
z
(n-1) PR +n 3 R
and therefore 521, n2 2, can be determined to satisfy the fillet

boundary conditions:

o2 -2 Jsin
” - Vi
Py (r,©) = far [V + (n-1) P 7 ez s €

vor M=o /
2 (re-zeilr)

it

pa(;j@)
O(re) = £ (ri+

pt ) Sin
7-‘ oS5

~

The total stress function is, therefore:

Pr(r8)= A (r3- 28%/my) + B (r3+ = )60.59 + C (r3—/-E Y)sine

$ ¢
+ 1 (r2+% ~2R ) wsze + L, (r*+z % ~3R*)cos 26
£ ( R e
+ £ /’+;——2K)5m29+t (res z & ,,3,24]5,,729
#?
=/ 3, 5 RS £* 5, ., K% R*
2 e "'37)60539 +E(r #3255 - 47)5053@

+6 [r? +2E— -3E )sm 36 +6 (r +3’2 ~ 4 &%) sinze
r

/
+H/r4+3'e 4€)50549+ //, +4i;~5"e: cos 98
v

& 6 /o
-+ J % £ _ £ 5 £ — &
(v * 35 4~——r2)51n49+K, (rev4 s 5§jmsse

00 5 . s &
FM(rEe 2 L ~5&" ) sinse r N, (rérs EZ_ ¢ £” ) cos te
rs r? ré r¢
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The constants Al’ LEEREY in terms of the constants ay, bl’

R become

A, =0%a —/5cCH?-2255 4%+ 1047
B, =0766, »/5C,h+ /7575 5T~ O 754>
C, LGN+ TSH, W+ 1O w15 whe

O, =05q, + /5 h 225 5 - b~

0, =05¢c,-2554"°

£ EmGC, 8 - FO K- ToF, wh T r TSy b2
£y = 05 ot »/0F wh

£ = op5h - /5 b= 175 h e O F Ay
A E 5L - ors

G, TIEC W+ 125 K wh i 105w

G, =25 Fw

H, = 05C, +25 £ 5%
=057

J, = SO0 wh - aefc/jm/
A, ==0/25 7/ hHh — O./720 3
M, =25 F w

N, =057,
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From the stress function @r (,8) a5 may be

derived.
Ez E‘} 24 .
05/,;9):24, (/+7-2)+51(ér+2;§)6059 ’f"C/[éV‘/"Z‘—F})S’”e
g4 pé
-/—DI(Zfé;—(;L)wszg + D, (1242 + )z = ) tos ze

. £, . 6 .
+E,(2+6%)5m29+ E, (1z2rE -/—/zéf)f/ﬂ 2o

@é_ Fai 3 e 4
+F, (6r + 24K 68 )eos3o +F (zor +36 2 ~y;€3.) cos 30

¢ 4y .
+ & (ér+24;§~é%)5nf139+ (zor +3ég.‘gf )5m3e

V4l ¢ -5
+H (12riséo P *24%)@54& ## (3or¥+go E;—:’._ 30L" )cos <8
re

+ f/lzr +éo£~24 k4)5’”49+ K (zor3s 120 &, S —éo j)(os.ﬁ‘e

1z
+ M (2003 #120 % B _to &8 )s;n 58+ (30, +z/o~f— ~/Z0 Em)(as ‘e

The first boundary condition, the integral over the top surface

may then be applied.

w
/ G (rL)dr=F

R
3 4
If terms of the order /2//, 3 and R //z4 are neglected
because ,?/h < !, Ez/hz << , then,

2 2
P=2Aw (i) +Gw (3-2.) - 2Bw—4D, w3
“ 36 w256 wrr g wIrbH, wS + S M - bMNwS

In terms of ags bl’ Cys +oes



- 48 -

P = —Q,W{WJ -C, 4 W(é%‘jv—v‘—/f—) /WA4(90¢45ML/

-f w /40¢7f )+/0/W *c/JWAJ%f,Lz )

The moment cquation is applicd next

@A, - ¢ =/?//“a;(/// o) dr

QR = 2E=Ap L1250 1 - r 2% 0,402 55) 300
TN T FEHT# TN T Sl Sk 2K 5 51 5

and in terms of ajs bl’ e

C?/? 6/ Q/ 2(/'7“22?',‘_/&%)146‘/64(;_3 / /7+4fADL)
IhGnsas il 6755 ey 09000 25t -2 51

The integral of the forces normal to the sides of the base is Q
2

@ = 2Ah(1-RI) + FEB AT+ 20,4 + 405 h7w ZE5 4 TAHT

LI & i T TR AT SN LT

and in terms of ags

4'&24,&(/- /+ b, 4"+ & 3(4—35)7‘/4 (/7375-45;7?

+dyh?( - 1225 - 22’{)
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The boundary condition along the centerline

A
Q= ) oy (x, widx+ L w o5 (o w)
o

may then be applied.
' 2 3 w?
fa;,(x,w)dx: zah +3bh* s gu® (s = +4)
o

2 ¢ zZ
+ LR+ 10t 50T )~ dly b1+ 3%)

gytow) = 28, + bgw?+ 30F wihis 506w

z
twao (gw) = dw + 34w +I/54Ew3h T+ 26 FwS

2 3
g=ahlzr }1“{)7‘35:1727‘ C/h3/4+é££z+32,b%)

2 3
5 w 1274 wF ws
+7§/1 (76 + 70 _-.h?_.,./g..__/ls + 50 ~../l4+ 25 Mh‘)

+dy h (-1~ 324/;)

The final condition concerning the fillet stress is manifest in

several forms.

G, (R o)= 44, +&BR+ £O+29 RZ +29F & +48 5 RS

+EEH L+ E0H, RP 1 S K B3 + 120 42 *

In terms of aj, bl’ e
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Z
G(R ©)= 6G +125R + G h?(6-295 4 56 %)

2
+7/[/1 4/40~25’0;_@ é‘o'/:i +/"0£§ +/oo

+ dgh3( - 4+/z§—~/54, )

When the loading shoulder is small, then dJg (R 6,) =
oy (R, - e) - ) where &, = +an’ % for the case of
the point load but in the case of the distributed load it is assumed that

o3 (R e,)=~ é’?sr'n ‘e, + Jg (os%86, .

G(R&)= 0O ( R h, wa, b,c

'fl) &3} Qa )

1y )

and for each specific case must be calculated from the equation on
page 47

In summary, the equations governing the fillet stress are

: £
U (K 8,) = Oacoszé’om-e’?smzs‘o/ /héél

§Swa/hjmchz/é+3m+/5 ) Lh¥ Fo+ 45 2

2 2
“{Wzéz/40%75§) +/0f,w4w.@~z 4—0[3/1/4..;.2 )

D o zar £ e b s il a3 L)+ Gk e as £)

+dy A° /~/225+zh2)
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z F4
e ———/,2:0,//+z /n4)+c/,(3 3—7,_/n%+4.5.§i)
Z
+E b 145 - 45;'6—5 /n ﬁl + 7.5 %5

/ 22 ,
+dsh> (-0 950 455 /”5“47,@%)

Z 3
f C?//Z+~*)+317,/,+—c,/, [++ 6% 4—37'“.’;

3 4 s
+hh* (16 + 70;; + 15 W4 50 W4 25 27 )

he
+ ds h 3/"/ )

These equations constitute an array of simultaneous linear

algebraic equations which may be represented in matrix form
[ ey [»]=[~]

The solution is

[« ]-[ciJ[A]

The maximum fillet stress may then be determined and the

stress concentration factor determined .

K = €£i1\3+ max.
P
W — K.



- 572 -

IV. COMPARISON BETWEEN THEORY AND EXPERIMENT

In order to compare these theoretical calculations with experi-
ment, a sample case is chosen. It is assumed that w:=h . In order
to simplify the algebra, the following substitutions are made: u«=4h
X = C,h:f y=F4h* and Z=0d35 #° . Under these circumstances,

and for Q@ = 0 the equations reduce to:

2

"Ufi—-x(é+45’ej y(/3o+425' )+z-/4+z'€) —f

3a, + 3u + /I3X +£I76yY — 42 =0

2 /"'“)Q £ 3ut (2 3£)X ry(17975 - 45 % )+Z/—/zzs’+2‘?z =0
(/+ZE /n m)d, + Z2d + X (3 3- /”__ L 4.5 E;)

+ (145 - 45E /n +é75/e )y+2/a7y+4'e/h/f ¢ff)__/‘_3§

g, (R 8) =~ & sine, for distributed load

= 0, for point load

Calculations were made at various R/h values for both distri-
buted and point loads. The distributed conditions were that £ = e/2
and Jg (£, 490)’—‘0, &, = Fau~’ % . The point loads were
characterized by the condition dg (K, & ) = o . The
distributed load calculations are shown in Figure 28.

Another computation for R/h = 0. 33 corresponding to

R/b = 0.25 and ¢/b = 0.5 was made for varying £ /h ratios with point

load reactions. The results are shown in Figure 29.
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One recessed fillet problem was also calculated. Using the
boundary condition g (,?) - ;7;7 = &  for a point load on the center
of the shoulder and for R/b = 0.25, ¢/b= 0.5, f/b=0.75, e/h = 0,09,
Z/b =0.29 a stress concentration factor of 10.3 was calculated.
Experiments indicated a factor of 8. Agreement of this sort is
remarkable considering that no attempt has been made to satisfy

boundary couditions on the outboard side of the loading shoulder.
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V. CRITIQUE

For small values of R/b, the theory and experiment differ by
substantial amounts. Examination of the simplified theory shows its
main weaknesses: namely the non-satisfaction of boundary conditions
along the straight edges if the perturbation stresses do not die
rapidly with r , the assumptions regarding x_, to approximate the
integral of the normal forces along the centerline, the choice of
O (’?,490) = 0y (°, -&) and the lack of higher order terms.

Lack of higher order terms reduces the number of conditions

which may be imposed on the face, y = 0, and limits the shear gradient

27, =
—;;’—2 ;‘ ;’5 at the fillet tangency point. Were one higher order

term added no additional conditions could be imposéd on the problem,
but if two higher order terms were added, then the condition
6y (b} ~—e)=0 could be added together with an integral condition
on one of the straight boundaries to minimize any non~satisfaction of
boundary conditions due to the perturbation st'resses. This condition
with the summation 4/’6{9 (k) 0) dr = ¢ and moment summadtion
[i Op(r,0)dr =-Fr+ @R, would restrict the distribution along
the face y = 0 to a much greater extent than it is now restricted. A
better approximation to the shear gradient at the fillet tangency would
also result, Unfortunately much additional algebra would also result
because at least two higher order terms would have to be added to
permit introduction of the condition 6y (hy~e) =0

The integration along the centerline is only an approximation.

~

For small R/b calculations show 6y (o,w) > 0.7 R

the approximate experimentally observed value and therefore the stress
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w
go (R ,:/zI ) is less than it should be since Rf g (1, “;I Ydvr= P

An alternative formulation of this requirement has been suggested.
Instead of an integral of the normal forces over the centerline, the
deflection in the y direction, v (X, w)=0 . This condition can
not be applied because with stresses having terms up to and including
the fourth order, the deflection would have terms up and including the
fifth order. Were this condition applied six constants including the
constant from integration of the strain field would be required. No
other conditions could then be imposed on the problem.

From each polynomial which satisfies V4'§0= 0, a maxXimum
of four arbitrary constants is supplied. If the final polynomial
chosen is of order N , where N 2 2 , the number of arbitrary
constants supplied is 4N-5. For each application of a straight edge
stress boundary condition, N-1 conditions are imposed and for a
straight edge displacement boundary condition N requirements are
imposed. Whenever N is even, however, one condition for the center-
line shear to vanish is the same as one condition for the base shear to
vanish. If three straight edges are subjected to "exact" boundary
conditions then for N even 3(N-1) -1 constants are required or for
N odd 3 (N-1) constants are required. In the case N =6, 19 arbi-
trary constants are supplied but application of three exact boundary
conditions uses 14 of these leaving tive for approximate conditions,

Were a displacement condition required along the centerline,
then a total of 4(N-1) + 5 = 4N + 1 constants would be required if N is

even and 4N constants if N is odd. Since the total constants supplied
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by a function whose highest order is N is 4N-5, it is impossible for
the supply, 4N-5, to equal the demand 4N + 1 if N is even (or 4N if
N is odd) because there is no real integer value for N which satisfies
the requirement 4N + 1 = 4N - 5 (or 4N = 4N - 5). It is therefore
seen that it is impossible to apply an exact displacement condition
on the centerline unless one of the other exact conditions is omitted.
Relaxing one of the exact conditions along the base to apply the dis~
placement boundary condition shows no promise for increasing the
accuracy for K.

If only one additional condition over the present analysis is
required then 3(N - 1) = 1+ 6 = 4N - 5 for N even or 3(N - 1) + 6
= 4N - 5 for N odd, so N must equal at least 8.

Another reason for disagreement between theory and experi-
ment is now satisfaction of equilibrium since the boundary conditions
on the straight edges were applied before the perturbation stresses
were added to the solution. The perturbation stresses do not com-
pletely vanish on the straight boundaries. This discrepancy is

greatest for large R/b or R/,

h
f ig (1, %r)c/i’ = P for w=h yielded the equation
R

E._gk" 2* / g’ R*
=-0,& x (61458 )y 130449255 )1z (4425;)
By equilibrium considerations

h

/ Ty (1, 0)dr =P
7
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This equation yields the result

Fex(~6r21L0) vy (~150+ 2558) ) o7 (-2 £
2
These equations are identical only in the first order (—/7/-91,4 ~ 0) s
but large R/h terms yield values for P/h which differ by as much as
ten percent. For this reason, experimental and theoretical agree-
~ment is not expected for large R/h.

An investigation of the point load condition shows that when
/b =0 (P applied at the fillet tangency point) the choice of &,
makes a significant effect on K (about 15 percent). (Figure 29.)
When //h >0.03 however and € > A of course, the effect on
K of a change in e is émall. The calculations for point loads are
therefore uncertain by about this amount.

If the theory sheds any light on the experiments, the experi-
mental values must be high for small R/b. One systematic error
which has not been removed from the experimental results is the
error due to creep which at ¢/b = 0.5 should not exceed 5 percent.

In the region where R/b is small the finite width of the edge may have
introduced a systematic or personal calibration error but certainly
of no large percentage. Errors of this sort would make the theory

and experiment more reconcilable.
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V. FURTHER APPLICATIONS

Thermal Stresses

If the member is in a temperature field,additional body force
terms may be added to the present solution and the stress function
modified accordingly. If the temperature gradients and boundary
temperature are known, the effect of these gradients on the stresses in

the fillet may be studied.

Three Dimensional Axially Symmetric Application

Results of this two dimensional analysis indicate that, if an eighth
order polynomial is chosen, the axially symmetric distribution solution
may be obtained in an analogous fashion complicated only by the add-
itional hoop stresses. These stresses arise due to the radial displace-
ments and therefore a crude estimation of them should be possible. If
the hoop stresses can be estimated, then they can be treated as body

forces and the axially symmetric solution obtained.
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APPENDIX I.

The materials from which the models were made are thermo-
setting resins. CR-39 can be purchased in plates of thicknesses less

42 et b
G SEN )

act in the 1
1841 [ H Ie

these materials is entirely new; they have been used commercially for
several years, but their application to photoelasticity is relatively un-
exploited. Since their photoelastic properties are very gnod compared
to conventional materials and since they can be cast or purchased having
surfaces comparable to polished plate glass, their use greatly reduces
model preparation time, one of the deterrents to frequent use of photo-
elastic investigations.

These materials machine readily but develop thermal stresses
along the machined edges unless care is taken to prevent chatter or
vibration between the tool and edge. There is, as for the conventional
materials, a preferred direction of cut called the "inward'" cut. The
tool rotary speed must be either very high or low to minimize these edge
stresses, but the finish cuts may be as deep as 0. 020 inches compared
to a finish cut of 0. 005 inches for Bakelite {page 351, Reference 9).
Models which are as satisfactory as those made from the conventional
materials can therefore be prepared in a matter of hours. Compare
this procedure with that needed for Bakelite models' (Section 10.16,
page 349, and Section 10.21, page 360, Reference 9).

These materials are less susceptible to time-edge-stresses than
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are Bakelite and Catalin. CR-39 may be annealed from time to time
to remove these and other residual stress effects; annealing, however,
has little effect on Bakelite and P-43 stresses.

The main disadvantages of the thermosetting plastics are, in
general, their low fringe values and poor creep characteristics. The
fringe value for the 5460A radiation was measured by a simple tension
test. (Figure 30) Various tensile specimens were placed in universal
joints and subjected to a pure tensile load through these joints. Load
was applied until a given fringe order appeared; then small load in-
crements were added or substracted until maximum darkness or bright-
ness occurred. The load was measured and plotted against the fringe
number; the specimen was then loaded to the next fringe order and the
process repeated. The fringe value in psi shear¥* per fringe per unit

thickness was obtained from the slope of this curve:

2 4w
"[:éAn

Several tests were conducted with P-43 and CR-39 and the
initial fringe values were plotted against room temperature. (Figure 31)
In the case of P-43, there was a slight downward trend of the fringe
value with temperature, but for CR-39 the data was not spread over a

large enough lemperature raunge to determine a trend. The fringe

% The stress optic law is £27 = %{ . £ is here defined in

P9 _
2

psi shear because = T max. + is differentiated from - in

psi which is detined by the equation 2 — 7= %’—{ . £ = 2+,

!
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value for P-43 at room temperature is 82. 0 psi shear per inch thick-
ness per fringe for = 5460A; for CR-39 the fringe value is 44. 5.
The maximum error is about 1 per cent for CR-39, less than 2 per
cent for P-43. The larger error in fringe value for P-43 is due to the
fact that specimens were cut from different castings which in turn had
been annealed in slightly different ways. The fringe value for Bakelite
61-893 is 43.0 (page 348, Reference 9).

The creep characteristics are worse for these materials than
for Bakelite. Several experiments were conducted to verify this fact
and the results are shown in Figures 32, 33, 34 and 35.

In the first experiment, each of several tensile specimens was
loaded until four fringes appeared. The load was left on but adjusted
every half hour to bring the fringe order back to four. This approach
was used because the laboratory was not in possession of a compensator
which would have permitted accurate determination of fractional fringe
orders. It was assumed that reduction of load to maintain a given
fringe order was comparable to measurements of a fractional fringe
order arising under a constant load. The loads were plotted against
time as percentages of the initial fourth fringe load (Figure 32). The
required loads decreased with time.

The results of this experiment pointed out two different concepts
of fringe value: the first was the concept used to determine the material
fringe value - that £ = Z M ; the second, that -[/“ Z ﬂ/—ﬂ"—ii

b 4n b M

Within the accuracy of the load measurements in the initial fringe value
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number. The percent change in £ at 8 or 9 fringe orders should
therefore be somewhat less than the change in £’ at 3 or 4 fringe
orders where the creep tests were conducted. Further evidence to
support this contention is the fact that the change in the load to pro-
duce the first fringe was near 50 per cent in two hours but due to the
fact that these loads were small and could not be measured to less than
# 5 per cent, that evidence is judiciously omitted here,

The creep phenomenon was significant to the model studies
because tests were conducted consecutively on the same basic model.
The initial load application lasted only ten minutes but results of the
creep tests nevertheless indicated that the fringe orders at the fillets
would change by small amounts even in this short time. After a photo-
graph of a loaded model had been taken, the model base height, C
was cut down. This operation took about three-quarters of an hour.
The model was then reloaded and photographed for the fringe order
corresponding to the new configuration. About five configurations were
cul from each basic model. In view of the short loaded time and the
relatively long unloaded time it was assumed that the residual stresses
from loading would have ample time to disappear and that the fringe value
would not vary from test to test. If the total loaded time was the import—‘
ant factor then this assumption was incorrect and creep played an import-
ant role.

To decide which, if either, of these contentions was correct

another experiment was designed and conducted. The fringe values,
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of several tensile models were measured but the fourth fringe load
was left on for about one~half hour. The load was then removed and
the fringe value determined as previously; this procedure was
repeated four times. With regard to the ratio of loaded time to un-
loaded time this test was much more severe than an actual model
loading cycle.

The results showed that the final fringe value ¥ 'decreased with
time (Figure 33) but also that the fringe values £, excluding the zero
point, increased slightly with time (Figure 35. This corroborated
the findings of the uninterrupted creep studies and in view of the fact
that the unloaded fime was small compared to the loaded time this
should have been anticipated.

To further clarify the situation, another experiment was con-
ducted which cleosely simulated actual test conditions. A model of
average &% and C/b ratios was loaded for ten minutes, photographed
and then unloaded for about 50 minutes. This cycle was repeated four
times and the fringe orders in the fillets compared.

The results (Figure 34) indicated that the fringe order near
seven fringes increased about two per cent in four tests. The resultant
final fringe value, £ /, near éeven fringes may therefore be interpreted
as decreasing about two per cent. In the same loaded time at the four
fringe level, the decrease in £ 'was about eight per cent (Figure 33).
It appears therefore that total loaded time is not a significant para-

meter in the model studies but that relaxation time and the effects of
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stress and fringe order on the percentage decay of fringe value are
important., More tests with more precise load and fringe measuring
equipment would have to be made to ascertain the roles that each of
these effects plays in the creep picture; further research in this
direction is recommended.

In another test,tensile models of CR~39 from which fringe value
had been determined were heat treated after testing and allowed to
cool for a day. It was seen that after the second annealing the fringe
value decreased substantially but that if the specimen was permitted
to "rest' for about two weeks, the original fringe value was recovered.

Both P-43 and CR-39 are brittle fracture materials and are
very notch sensitive.

Many other casting and high temperature tests were conducted
with P-43 to determine its suitability to the frozen stress techniques
of three dimensional photoelasticity but these tests will not be reported

here since they have little bearing on the two dimensional study.
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SCHEMATIG OF PHOTOELASTIGITY LABORATORY
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FIGURE 7

POLARISCOPE SHOWING LIGHT SOURGE, CONDENSING
LENSES, POLARIZER, QUARTER WAVE PLATE, STOP
TO WHICH FILTER IS ATTAGHED,AND FIELD MIRROR



FIGURE 8

POLARISCOPE SHOWING MIRROR,FOCAL PLANE SHUTTER,
QUARTER-WAVE PLATE,AND ANALYZER



FIGURE 9
HAND ROUTER WITH JIG AND GUIDE



FIGURE 10

DISTRIBUTED LOAD TEST SHOWING EFFECT OF BASE HEIGHT
ON STRESS GONGENTRATION. Ry =16, ABOVE: %,=.63, BELOW:%= 48



FIGURE I

DISTRIBUTED LOAD TEST SHOWING EFFECT OF RADIUS ON
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FIGURE 2

POINT LOAD TEST SHOWING EFFECT OF BASE HEIGHT ON

R/ =. R/p=.23
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LH



FIGURE 13
POINT LOAD TEST SHOWING EFFECT OF RADIUS ON STRESS

CONGENTRATION. R/ =.23 R/, =.35
ABOVE: P BELOW: P
C/b".s C/b =5



FIGURE 14
POINT LOAD TEST SHOWING EFFECT OF LOAD DISTANCE ON STRESS

CONGENTRATION. &/,=.05

e/, =20
. ABOVE : b
R/p=.18, C/p = & LOAD=70 "

BELOW: #
LOAD =70
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EFFECTS OF RECESSED FILLET WITH POINT LOADS
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FIGURE 29

COMPARISON BETWEEN THEORY AND EXPERIMENT
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FIGURE 30

LOADING FRAME WITH TENSILE SPECIMEN;
TYPICAL FRINGE VALUE TEST
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FIGURE 33

CREEP CHARACTERISTICS OF CR-39

WITH LOAD INTERRUPTION (STRESS NEAR 1500 PSI)
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FIGURE 34

VARIATION OF FRINGE VALUE WITH TIME

2 AW
WHERE f = o ain

LOAD CYCLE IS SHOWN IN FIGURE 33
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FRINGE ORDER IN FILLET IN
%ORIGINAL FRINGE ORDER
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FIGURE 35

VARIATION OF FRINGE ORDER WITH REPEATED TESTS



