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ABSTRACT 

The greenhouse gases carbon dioxide and methane exert a major control on Earth’s climate, and 

their accumulation in the atmosphere is tempered by biological uptake. These biological uptake 

processes—photosynthesis and methanotrophy—are key contributors to the carbon-climate system, 

but their sensitivity to ongoing environmental change remains uncertain. In this thesis, I investigate 

how the ecophysiology of methanotrophy and photosynthesis dictate their response to perturbations 

in atmospheric composition, temperature, and other environmental variables. In Chapter 1, I present 

the first comprehensive compilation of kinetic measurements of methanotrophy in soils, and use this 

dataset to explore how kinetic properties may provide additional constraints to improve global 

models of the soil methane sink. Chapter 2 is a study of soil methane uptake rates in California 

dryland ecosystems and their relationship to local climate, ecology, and edaphic properties. This 

study reveals unique characteristics of dry climate regions that contradict typical assumptions about 

soil methane cycling. In Chapter 3, I present a novel method for position-specific carbon isotope 

analysis of submilligram glucose samples by Orbitrap mass spectrometry, and an application of this 

method to glucose standards isolated from C3 and C4 plants. In Chapter 4, I apply this new method 

to cellulose-derived glucose from tree-ring samples. Measurements of trees grown in climate 

chambers show how 13C-PSIA can disentangle changes in temperature, soil moisture, and tree carbon 

allocation. Finally, in two appendices, I describe methodological progress toward field-portable 

measurements of sedimentary porewater methane and the kinetics of soil methane uptake. Taken 

together, this work makes progress toward a more nuanced understanding of biological greenhouse 

gas uptake processes and their sensitivity to climate change. 
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I n t r o d u c t i o n  

CHALLENGES AND OPPORTUNITIES FOR UNDERSTANDING 

TERRESTRIAL GREENHOUSE GAS SINKS 

Two atmospheric carbon species—carbon dioxide and methane—exert primary control on Earth’s 

climate system  (NOAA Global Monitoring Laboratory 2024). These molecules are also common 

metabolites subject to major biological fluxes. As a result, while over $3 billion was spent last year 

on engineered solutions to remove these species from the atmosphere (Global CCS Institute 2024), 

the terrestrial biosphere is contributing substantially to atmospheric carbon removal of its own 

accord. Roughly 36,000 Tg of fossil carbon dioxide (CO2) are emitted to the atmosphere each year, 

while ~33% of that amount is removed from the atmosphere through photosynthesis to become new 

plant biomass (Friedlingstein et al 2025). Photosynthetic carbon dioxide uptake dwarfs the global 

capacity for engineered carbon capture, which in 2024 was only 51 Tg (Global CCS Institute 2024). 

Meanwhile, human activity adds ~359 Tg of methane to the atmosphere each year (equivalent to 

>10,000 Tg CO2), and ~31 Tg are consumed annually by soil-dwelling bacteria, which oxidize 

methane to obtain energy and build biomass in a metabolic process called methanotrophy (Saunois 

et al 2020). Photosynthesis and methanotrophy are the largest biological sinks for carbon dioxide 

and methane, respectively, and thus play a major role in shaping Earth’s climate. 

Despite their importance to the greenhouse gas budget, estimated global photosynthetic and 

methanotrophic uptake rates are highly uncertain. State-of-the-art models of the land carbon dioxide 

sink produce estimates that vary by >4-fold for a given year (Friedlingstein et al 2020). Similarly, 

bottom-up estimates of global methane uptake by soils also vary by a factor of >4 (Saunois et al 

2020). The uncertainty in estimates of these greenhouse gas sinks presents a challenge for accurately 

predicting ongoing changes in climate and the carbon budget.  

While some of the uncertainty in predictions of global carbon sinks results from extreme events that 

are difficult to project and model, such as fire (Burton et al 2024), models of photosynthetic and 

methanotrophic carbon uptake are also hindered by incomplete understanding of more fundamental 

processes. For example, the effect of increasing atmospheric carbon dioxide abundance (pCO2) on 
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photosynthetic uptake rates is not well-constrained by measurements (Frank et al 2015, Walker et 

al 2021). This response, called the “carbon fertilization effect,” is a key parameter in carbon cycle 

models, but its strength, climate sensitivity, and effect on land carbon stocks is a subject of ongoing 

debate (Bar-On et al 2025, Brienen et al 2015, Chen et al 2022, Li 2024, Yu et al 2022).  

In comparison to the terrestrial carbon dioxide sink, soil methanotrophy is yet more poorly 

understood. In large part this stems from methane’s shorter history of observations: by 1949, 

scientists had already compiled a 79-year record (albeit discontinuous) of atmospheric carbon 

dioxide measurements (Callendar 1949), while methane had only been identified as a component of 

Earth’s atmosphere the year before (Migeotte 1948). Today, fundamental relationships of soil 

methane uptake with environmental parameters like temperature and soil moisture are still not well-

constrained; these relationships are often modeled based on weak correlations drawn from sparse 

datasets (Murguia-Flores 2018). Model parameterizations are built based on regionally-biased or 

scant datasets because biomes other than forests are heavily underrepresented in the literature. For 

example, a 2024 metaanalysis identified only 190 published time series measurements of soil 

methane flux across all global dryland environments, most from arid regions of China (Song et al 

2024), despite the fact that drylands comprise roughly 40% of global land area (Prăvălie 2016).  

Because the terrestrial carbon dioxide and methane are sensitive to processes that span many spatial 

scales—from the water content of soil pore space to the chemical composition of the atmosphere—

building more accurate models will require scientific advances across many subfields. Current 

challenges range from assembling terrestrial methane model ensembles (Saunois et al 2024) to 

tracking specific tree metabolite pools (O’Sullivan et al 2022). In this thesis, I combine 

methodological and analytical advances with strategic sampling of understudied biomes, with the 

goal of contributing to a more nuanced understanding of how biological greenhouse gas uptake 

processes respond (and feed back) to ongoing planetary change. 

Chapter 1: Methanotrophy kinetics contribute to uncertainty in the soil methane sink 

In Chapter 1, I investigate the sensitivity of the soil methane sink to atmospheric methane 

concentrations using the lens of Michaelis-Menten kinetics. I present the first comprehensive 
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compilation of methanotrophy kinetic measurements (n = 542), which reveals extreme variability 

in the measured kinetic properties of soil methane uptake. Although KM and Vmax values both span 

more than six orders of magnitude in environmental samples, the kinetic parameters show a clear 

power-law correlation across these (r2 = 0.44). I discuss possible physiological, evolutionary, and 

environmental explanations for this correlation. Using an idealized calculation of the soil methane 

sink, I explore the effect of kinetic variability on projected methane uptake. While the choice of 

linear vs. Michaelis-Menten kinetic model produces only minor differences in modeled 

methanotrophy rates, the modeled rate is highly sensitive to the choice of kinetic parameters; 

however, accounting for the correlation I observe between parameters constrains the calculated sink 

size by up to 96%. This finding exemplifies how ecophysiological trends provide novel constraints 

that can improve the accuracy of global biogeochemical models. 

Chapter 2: Trends in dryland soil methane uptake highlight knowledge gaps in soil methane 

modeling 

In Chapter 2, I further explore how soil methane uptake rates respond to environmental conditions 

through measurements of understudied dryland ecosystems. I pair 275 measurements of soil methane 

uptake rates across three California sites with soil physical, chemical, and biological analyses at each 

measurement location. These measurements reveal very weak seasonality and climate sensitivity of 

methanotrophy across all sites, which contrasts starkly with observations from temperate, tropical, 

and boreal regions. While methanotrophy is typically assumed to be diffusion-limited, the tenuous 

correlation of net methane flux with soil moisture suggests that both methanotrophy and 

methanogenesis in these dryland soils may be limited by low soil moisture. I additionally show a 

strong stratification of methane flux rates according to local vegetation type, but no corresponding 

association with microbial community composition, which hints at control of methane cycling by 

carbon inputs from vegetation. I additionally present a comparison of measured methane fluxes with 

modeled values. Modeled fluxes are simulated using a simple model modified from a previous work, 

which represents a common approach to parameterizing soil methane cycling. With no variable 

tuning, the model produces reasonable, if elevated, average methane flux estimates for two out of 

three sites. However, the modeled results strongly overestimate the amplitude of seasonal signals. 
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These findings highlight unique characteristics of methane cycling in dryland soils that may require 

modelers to rethink the parameterization of soil biogeochemical models.  

Chapter 3: Position-specific carbon isotope analysis of glucose at natural isotope abundance by 

Orbitrap Mass Spectrometry 

In Chapter 3, I report on a new method I have developed for position-specific isotope analysis (PSIA) 

of submilligram glucose samples. This method was developed to enable PSIA of tree-ring cellulose, 

as applied in Chapter 4. However, it can accommodate glucose from a wide range of natural samples, 

and isotopic measurements of glucose can provide useful insights for environmental, biomedical, 

and food research. In this chapter, I establish the metrics of performance for glucose 13C-PSIA by 

Electrospray-Ionization (ESI)-Orbitrap: I demonstrate that the method is sufficiently sensitive and 

precise to distinguish position-specific signals in natural glucose from C3 and C4 plants, and 

recovers accurate δ13C values at five unique intramolecular sites in the glucose molecule. I also show 

a strong linear response of measured δ13C ratios to relative differences in sample and standard signal 

intensity that provides further insight into best practices for isotopic analysis by Orbitrap. The 

method overcomes the limitations of existing methods for PSIA by NMR, including large sample 

size requirements (>100 mg) and high sensitivity to contaminants. In addition to laying the 

groundwork for the tree-ring measurements in Chapter 4, the work in Chapter 3 paves the way for 

more detailed study of sugar metabolism and provenance in plants and other natural systems.  

Chapter 4: Position-specific 13C analysis of cellulose by Orbitrap uncovers species-specific 

environmental and physiological signals in tree rings 

In Chapter 4, I apply the method described in Chapter 3 to tree-ring samples, with the goal of using 

PSIA to disentangle climate and physiological signals recorded in the δ13C of cellulose. I report 

position-specific δ13C values measured for 23 samples of gymnosperm and angiosperm trees grown 

under varied soil moisture, humidity, and temperature. Using only 33 μg of cellulose per sample, I 

achieve average precision of 1.8‰, measure intramolecular δ¹³C differences up to 21.7‰, and 

accurately match values obtained by traditional compound-specific isotope analysis (CSIA). These 

measurements reveal that signals of temperature and soil moisture are recorded by the C-3 atomic 
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position with greater sensitivity than by molecular-average δ13C measurements, highlighting the 

value of PSIA for more sensitively reconstructing paleoclimate from tree-ring records. The δ13C 

values of most intramolecular positions are uncorrelated with one another across the sample set, 

indicating that each position records unique signals that cannot be independently interpreted via 

CSIA. Species-specific trends at positions C-4–C-6 provide evidence for different carbon allocation 

and climate adaptation strategies between gymnosperm and angiosperm samples. Taken together, 

these results demonstrate the wealth of information available through PSIA of tree-ring cellulose 

that cannot be accessed by traditional compound-specific measurements. Because trees’ carbon 

allocation in response to climate is a key source of uncertainty in models of the land carbon sink 

(O’Sullivan et al., 2022), the ability to reconstruct carbon allocation in trees through time will support 

more accurate carbon cycle models. More broadly, this chapter underlines the utility of innovative 

new methods for providing needed mechanistic insights into biological greenhouse gas uptake 

processes. 

Appendices 

Finally, I include two appendices that describe additional new methods I have developed in the 

course of my research. Appendix I describes a method for measurements of porewater methane using 

a field-portable analyzer. I demonstrate an application of this method to two sediment cores 

recovered from Mono Lake, and a comparison to values measured by a more standard methane 

quantification method. Appendix II outlines a method for field-based characterization of 

methanotrophy kinetics in soil samples, and describes why an improvement in kinetic measurement 

techniques would substantially contribute to our understanding of soil methane cycling.  

Summary and outlook 

The work I present here attempts to close gaps in our ability to understand and predict biological 

greenhouse gas uptake. Modeling the global carbon cycle is a generational challenge for today’s 

researchers (and yesterday’s, and tomorrow’s), and no single approach is sufficient to resolve the 

remaining uncertainties. Nevertheless, these chapters make inroads in better understanding key 

mechanisms: the environmental sensitivities of soil methane uptake and tree carbon allocation. 
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Chapters 1 and 2 inform a clearer understanding of how soil methane fluxes behave under changing 

atmospheric composition and in understudied environments. Together, they show how ecological 

and physiological properties can offer unexpected constraints for global models. In Chapters 3 and 

4, I demonstrate a novel method that holds great promise in resolving trees’ contributions to 

terrestrial carbon pools under climate perturbations in the past and present. These chapters highlight 

how innovative approaches can help disentangle interacting variables in environmental samples. 

While my thesis work offers new insights into carbon metabolism in plants and soils, upscaling this 

type of process understanding for application in planetary-scale models represents a critical hurdle 

still facing biogeochemists—and one that I plan to confront in my postdoctoral research. Ultimately, 

through new methods and analyses this work sets a path for a more nuanced understanding of the 

terrestrial carbon cycle, which I look forward to following in years ahead. 
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C h a p t e r  1  

EVALUATING THE CONTRIBUTION OF METHANOTROPHY KINETICS 

TO UNCERTAINTY IN THE SOIL METHANE SINK 

Dion-Kirschner, H., Nguyen, N. H., Frankenberg, C., & Fischer, W. W. (2024). Evaluating the 

contribution of methanotrophy kinetics to uncertainty in the soil methane sink. Environmental 

Research Letters, 19(6), 064059. https://doi.org/10.1088/1748-9326/ad4c7a 

1.1) Abstract 

The oxidation of atmospheric methane by soil microbes is an important natural sink for a potent 

greenhouse gas. However, estimates of the current and future soil methane sink are highly uncertain. 

Here we assessed the extent to which methanotrophy enzyme kinetics contribute to uncertainty in 

projections of the soil methane sink. We generated a comprehensive compilation of methanotrophy 

kinetic data from modern environments and assessed the patterns in kinetic parameters present in 

natural samples. Our compiled data enabled us to quantify the global soil methane sink through two 

idealized calculations comparing first-order and Michaelis-Menten models of kinetics. We show that 

these two kinetic models diverge only under high atmospheric CH4 scenarios, where first-order rate 

constants slightly overestimate the soil methane sink size, but produce similar predictions at modern 

atmospheric concentrations. Our compilation also shows that the kinetics of methanotrophy in 

natural soil samples is highly variable—both the Vmax (oxidation rate at saturation) and KM (half-

saturation constant) in natural samples span over six orders of magnitude. However, accounting for 

the correlation we observe between Vmax and KM reduces the range of calculated uptake rates by as 

much as 96%. Additionally, our results indicate that variation in enzyme kinetics introduces a similar 

magnitude of variation in the calculated soil methane sink as temperature sensitivity. Systematic 

sampling of methanotroph kinetic parameters at multiple spatial scales should therefore be a key 

objective for closing the budget on the global soil methane sink. 

1.2) Introduction 

https://doi.org/10.1088/1748-9326/ad4c7a
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Aerobic microbial methane oxidation, or methanotrophy, is the only known Earth surface process 

that removes methane from the atmosphere. Today, methanotrophy is thought to account for roughly 

5% of the total sink for atmospheric methane (Saunois et al 2020). However, estimates of the soil 

methane sink size span a wide range: for example, in the range of bottom-up estimates reported by 

Saunois et al. (2020) of 11-49 Tg CH4 yr-1, the low and high estimates differ by almost a factor of 

five. Minimizing the uncertainty in estimates of the global methane cycle, including the soil methane 

sink, is crucial to accurately projecting and effectively managing ongoing climate change. 

Several sources contribute to the uncertainty in estimates of the soil methane sink. Estimates based 

on upscaled field data rely on observations from specific locations at specific times, and these 

datasets may not fully capture the large spatial and temporal heterogeneity that is characteristic of 

biogeochemical processes in soils (Lacroix et al 2023, Nunan et al 2020). Bottom-up estimates also 

hinge on correlations between methane flux and environmental variables such as climate or soil 

properties, but these correlations are often relatively weak. For example, a statistical model 

considering ecosystem type, soil texture, and climatic zone explained at best only 29% of the 

variation in observed methane flux (Dutaur and Verchot 2007). Process-based models estimate 

global methane fluxes by defining mathematical relationships between methane flux and 

environmental conditions based on theoretical considerations or field-based observations, but these 

mathematical definitions are similarly hampered by limited mechanistic understanding and small 

datasets (Murguia-Flores et al 2018). In order to improve ongoing modeling efforts, it therefore is 

important to identify which processes contribute the most to uncertainty in the modeled soil methane 

sink. 

Many existing models of the soil methane sink employ linear rate constants to calculate methane 

uptake rate as a function of atmospheric methane concentration (Curry 2007, Murguia-Flores et al 

2018, Ridgwell et al 1999). The rate constants among three canonical models vary by a factor of ~50 

(Murguia-Flores et al 2018). While these models calculate soil methane uptake rate as a linear 

function of methane availability, many experimental studies have found that methanotrophy in 

natural soils follows Michaelis-Menten kinetics (e.g., Bender & Conrad, 1992, 1993). Accordingly, 

a subset of soil methane sink models implement Michaelis-Menten kinetics (Shu et al 2020). The 
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Michaelis-Menten model supports quantitative descriptions of cellular and ecosystem-level 

processes wherein the rate is sensitive to the concentration of available substrate, but reaches some 

theoretical maximum when the enzyme or community is saturated with substrate (Alvarez-Ramirez 

et al 2019, Liu 2007). In contrast to Michaelis-Menten kinetics, first-order rate constants allow for 

infinitely large oxidation rates as the concentration of substrate (e.g., methane) increases. 

Previous work has shown that methanotrophs have variable kinetic properties. Methanotrophs from 

environments with substantial local methane sources, such as wetlands or landfills, are known to 

have a lower apparent affinity to methane than methanotrophs with reliable access to only 

atmospheric methane (Knief and Dunfield 2005). Studies commonly divide methanotrophs into two 

classes according to their kinetic properties: low-affinity and high-affinity methanotrophs, where 

only the high-affinity populations are capable of oxidizing methane at atmospheric abundance. The 

effect of kinetic variability at the enzymatic and the population level on the soil methane sink has 

not yet been assessed.  

Here, we assessed the potential for variation in methanotrophy kinetics to contribute to uncertainty 

in soil methane sink estimates. We first characterized the variability in kinetic parameters observed 

in natural soil samples through a comprehensive literature compilation. We then performed an 

idealized calculation informed by our literature review to test the sensitivity of the modeled methane 

sink size under different scenarios. We compared the calculated sink size under Michaelis-Menten 

and linear kinetics models to assess whether the assumption of first-order kinetics substantially 

affects model outputs. We also quantified the sensitivity of the calculated sink size to the range of 

kinetic properties observed in natural soils. Finally, we calculated the sink size under future changes 

in methane concentration (via kinetic parameters) and temperature (via Q10 values). Our results 

highlight important considerations for future observations and models of the soil methane sink. 

1.3) Methods 

1.3.1) Literature compilation 
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To evaluate the range of methanotrophy kinetics in Earth surface environments, we generated a 

comprehensive compilation of published Michaelis-Menten kinetic data for methanotrophy in 

natural soils (Dion-Kirschner et al., 2024). The equation to describe Michaelis-Menten kinetics is: 

 𝑉 = 𝑉𝑚𝑎𝑥  
[𝑆]

𝐾𝑀+[𝑆]
 (1.1) 

where V is the reaction rate, Vmax is the maximum reaction rate observed at saturation, [S] is the 

concentration of substrate (in this case methane), and KM is the substrate concentration where ½ Vmax 

is attained. KM values are often discussed in terms of affinity, where low KM values indicate high 

affinity for methane and vice versa.  

We extracted 542 observations of Vmax and/or KM values (Section 1.8.1, Dion-Kirschner et al., 2024). 

At least 1 observation was reported for 5 continents, but the vast majority of these (441) were from 

Europe and North America, exhibiting strong regional bias (Figure 1.1). Observations spanned 

diverse environments including forest, grassland, peat, and shrubland vegetation, although no data 

were available for desert or high-latitude sites. Treatment of the soil samples before and during the 

kinetic incubations varied among studies, as did the units for reported KM and Vmax values (Section 

1.8.1, Dion-Kirschner et al., 2024). To standardize the dataset for analysis, we converted all KM 

values to the mixing ratio of methane in the headspace in units of ppbv and all Vmax values to nmol 

CH4 hour-1 g soil-1 (Section 1.8.1). 
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Figure 1.1: Global map visualizing distribution of methanotrophy kinetic observations. Point size is proportional to the number of 

observations at a given location. Basemap courtesy of NASA. 

1.3.2) Soil methane sink calculations 

We used data from our literature compilation to inform an idealized calculation of the soil methane 

sink size. Our calculation is based on a soil layer of constant thickness covering a fixed percentage 

of Earth’s surface area. In contrast to studies with spatially resolved models (e.g., Curry 2007, 

Murguia-Flores et al 2018, Ridgwell et al 1999, Shu et al 2020), we did not implement diffusion 

limitation within the simulated soil layer for two reasons: First, an accurate model of methane 

diffusion in soils must account for in situ methane production within anoxic microsites and/or below 

the water table, mechanisms that are beyond the scope of this work. Second, and more importantly, 

we are not using this calculation to produce an accurate value for the soil methane sink size, but 

rather to test the sensitivity of the calculated sink size to kinetic parameters. 

We selected the following parameters for our calculation: 1) We assumed an average soil bulk 

density of 1.41 g/cm3 (Sequeira et al 2014). 2) We used MODIS data to estimate the total area of 

Earth’s land surface where methanotrophs contribute to atmospheric methane drawdown (Friedl et 

al 2019). We included all land area from ecosystem types in our dataset without persistent local 

sources of methane: forest, shrubland, grassland/meadow, and cropland (Section 1.8.2). 3) To select 
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default KM and Vmax values for the model, we selected the median values for each ecosystem, and 

weighted them by the global extent of the respective ecosystem to calculate global median values. 

4) We specified the average thickness of the soil layer where methanotrophy may occur as 5.36 cm 

[4.96, 6.30]. We calibrated this value for soil depth to produce a calculated sink size at the modern 

methane mixing ratio (1850 ppbv) of 40 Tg yr-1 (range: 37-47 Tg yr-1), matching the average and 

uncertainty for top-down models in 2017 (Saunois et al 2020). Process-based models of 

methanotrophy have chosen soil depths ranging from 1 to 10 cm (Curry, 2007, 2009; Ridgwell et 

al., 1999 and references therein), while a recent global model allows the depth of methanotrophic 

soils to vary as a function of methane diffusion and uptake rates (Murguia-Flores et al 2018). 

Although methanotrophy may certainly occur at a wider range of depths in natural soils, our 

calibrated value for soil depth partially accounts for the fact that our calculation does not otherwise 

account for limitations on vertical transport. Values for each parameter are summarized in 

Supplementary Table 1.1. 

1.4) Results and discussion 

1.4.1) Compiled KM and Vmax values support physiological or evolutionary adaptation of 

methanotrophs 

In this dataset, KM  and Vmax values each varied over several orders of magnitude: KM from 103.2 to 

109.4 ppbv and Vmax from 10-2.7 to 104.9 nmol CH4 g dry soil-1 h-1 (Figure 1.2). All but 1 of 413 KM 

values exceeded modern atmospheric methane abundance, and the maximum KM value exceeded 

atmospheric abundance by 6 orders of magnitude. These high KM values indicate that soil 

methanotrophy at ambient methane concentration is generally slow, but that rising methane 

availability can stimulate large increases in rate. Both KM  and Vmax values related to the 

environmental source of the sample. Most low-affinity, high-Vmax measurements were from landfill 

or compost soil samples (categorized here as “waste”). These samples come from environments 

where methanotroph communities experience persistently high local methane concentrations. 

Meanwhile, most high-affinity, low-Vmax measurements came from forest and grassland sites. These 

findings align with previous laboratory experiments showing that the methane concentration 

available to an enrichment culture can affect the kinetics displayed by that culture, with lower 
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methane concentrations corresponding with higher-affinity kinetics (Dunfield et al 1999, Dunfield 

and Conrad 2000). 

 However, substantial variation was also evident within each ecosystem type (Figure 1.2). For 

example, KM values spanned 7 orders of magnitude within the full dataset, up to 4 orders of 

magnitude in ecosystems with limited local methane sources (e.g., grasslands), and up to 6 orders of 

magnitude in ecosystems with substantial local methane sources (e.g., peat bogs). Similarly, the 

range of Vmax values within individual ecosystems spanned up to 6 orders of magnitude, an equivalent 

range to the full dataset. Within-ecosystem variability may partially be explained by variability in 

local methane concentrations that is not captured by ecosystem type. Additionally, recent work has 

shown that the kinetics of methanotrophy can also change within a single strain: some methanotroph 

strains harbor two distinct types of the particulate methane monooxygenase enzyme used to mediate 

methane oxidation, each with distinct kinetic properties (Baani and Liesack 2008, Tikhonova et al 

2021). These findings suggest that a single methanotroph community in a single environment may 

express distinct kinetic properties under different conditions, for reasons that are not yet understood. 

The studies included in our data compilation employed varied sample handling strategies before and 

during kinetic analyses (Section 1.8.1). These methodological differences could partially account for 

differences in observed KM and Vmax values between studies. A Mann-Whitney U-test showed a 

statistically significant difference between the KM and Vmax values of samples that underwent 

preincubation, but no significant difference due to amendments. Samples that underwent 

preincubation were also dominantly from waste sites (82%), unlike samples that did not receive 

preincubation treatment (23%), making it impossible to conclude whether preincubation caused the 

observed difference. Other aspects of sample treatment including soil moisture adjustments were not 

reported with sufficient consistency to perform statistical tests. We suggest that the effect of sample 

handling on kinetic measurements is a worthwhile topic for future investigation.  
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Figure 1.2: Compiled Michaelis-Menten kinetic measurements from natural soil samples (Dion-Kirschner et al 2024) sorted by 

environment type. Categories are ordered from low to high median values, which are indicated by heavy gray lines. For termite 

mounds, only KM values were available in the literature. 

Across the wide range of KM and Vmax values in our compiled dataset, we found that the two 

parameters were positively correlated when log10-transformed, demonstrated by a standardized 

major axis (SMA) regression (r2 = 0.44, slope = 10-2.94 nmol g soil-1 h-1 ppbv-1) (Figure 1.3). This 

correlation is not an inherent property of the methods for deriving or measuring KM and Vmax values. 

Few similar compilations of kinetic data are available to investigate the prevalence of this trend; 

however, a study of the kinetics of nitrification did not reveal a correlation between KM and Vmax 

values (Kits et al 2017), indicating that this trend is not ubiquitous in biological systems. A study 

that investigated in vitro kcat and KM values across several thousand enzymes showed a weak 

correlation between these two parameters (r2 = 0.09) (Bar-Even et al 2011). Because Vmax is a 

function of kcat and the concentration of active sites, a similarly weak correlation between KM and 

Vmax values might be expected across diverse enzyme classes. The study noted stronger correlations 

in enzyme classes with simple catalytic mechanisms and particularly low correlations for many 

monooxygenase enzymes. 

The correlation we observed between methanotrophy kinetic parameters may reflect physiological 

or evolutionary processes through which methanotrophs adapt to the availability of methane in their 

ecological niches. A low KM value suggests a high affinity for methane, an advantageous trait in 
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environments where methanotrophs subsist on primarily atmospheric methane, like forests and 

grasslands. Conversely, a high Vmax value paired with a higher KM value implies rapid methane 

oxidation at elevated methane levels, enabling faster methane turnover and possibly faster growth in 

methane-rich environments such as landfills or peatlands. If methanotrophs have adapted their 

enzymatic properties according to substrate availability, they are not alone among biological 

systems. For instance, the oxygen reductase enzyme families involved in aerobic respiration 

demonstrate a tradeoff between oxygen affinity and proton pumping capacity (Han et al 2011). 

Methanotrophy may offer another example where ecological niche partitioning drives enzymatic 

adaptations. This possible evolutionary mechanism, alongside the grouping of variability in kinetic 

parameters by ecosystem type in our dataset, supports that ecosystem type may be a useful constraint 

for predicting methanotrophy kinetics. 

 

Figure 1.3: Compiled Michaelis-Menten kinetic measurements from natural soil samples (Dion-Kirschner et al., 2024). Point shape 

and color correspond to the environment where the measured soil sample was obtained. Dark gray line represents a standardized 

major axis regression performed on the log10-transformed KM and Vmax data using the Python package plyr2 (r2 = 0.44). 

Previous studies have found that laboratory cultures can develop a higher affinity for methane under 

extended incubation with low methane availability (Dunfield et al 1999, Dunfield and Conrad 2000). 

These changes could result from a change in the expression of methane monooxygenase enzymes 

with distinct kinetic properties (Baani and Liesack 2008, Tikhonova et al 2021). In enrichment 

cultures, kinetic changes could also reflect the selective enrichment of taxa with higher methane 
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affinity. However, in these culture studies, the decrease in KM was accompanied by a decrease in 

Vmax values only under starvation conditions (Dunfield and Conrad 2000), and not when samples 

were methane-replete (Dunfield et al 1999). Dunfield and Conrad suggested that concomitant 

decreases in KM and Vmax may have resulted from limitation in a cosubstrate, such as NADH. This 

provides an additional explanation for the correlation between KM and Vmax in natural samples: 

methanotrophs may frequently be limited for substrates other than methane. It may be that 

physiological adaptations, evolutionary adaptations, and cosubstrate limitation all contribute to the 

correlation evident in this compiled dataset. 

1.4.2) Comparing Michaelis-Menten kinetics to linear rate constants 

We calibrated our idealized calculation to yield a methanotrophy sink of 40 Tg yr-1 [37, 47] at 1850 

ppbv methane. By calibrating our parameters to produce a realistic methane sink size under a modern 

methane mixing ratio, we were able to test the effect of different kinetic models and kinetic parameter 

values on the calculated soil methane sink size relative to a reasonable baseline. To test the 

importance of the choice of kinetic model, we quantified the effect of implementing Michaelis-

Menten versus linear kinetics on the calculated soil methane sink size. We identified the first quartile, 

median, and third quartile KM and Vmax values for each ecosystem (Figure 1.2), and calculated area-

weighted average kinetic parameters for each quartile. For each set of KM and Vmax values, we 

calculated the corresponding first-order rate constants by solving Equation 1.1 for [S] = 1850 and 

dividing the result by [S]. 

Both kinetic models agreed closely at modern and historical pCH4 values (Figure 1.4). This results 

from the fact that most KM values substantially exceed the atmospheric abundance of methane: 

Michaelis-Menten kinetics produce a near-linear response when [S] is much smaller than KM. The 

soil methane sink size calculated from the two models diverged most at high pCH4 and low values 

of KM At 4000 ppbv methane, linear kinetics using 1st quartile kinetic values yielded a sink of 75 Tg 

yr-1, while Michaelis-Menten kinetics yielded a sink of 70 Tg yr-1, a 1.1-fold difference. As pCH4 

reached closer values to KM, the linear and Michaelis-Menten models reached a 1.2-fold difference 

of 22 Tg yr-1 at 8000 ppbv. Our findings indicate that under very high-emissions projections such as 

SSP 3-7.0 (Kleinen et al 2021), a linear rate constant may overestimate the size of the soil methane 
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sink. However, in all cases, results of the two kinetic models overlapped when accounting for the 

uncertainty in the modern methane sink size used to calibrate our calculation. The difference between 

the two kinetic models was greatest for the lowest KM values, where Michaelis-Menten kinetics 

produce a saturation effect at lower values of pCH4. Therefore, models focusing on the methane sink 

in forest environments, where KM and Vmax values are typically low (Figure 1.2), may derive a benefit 

from implementing Michaelis-Menten kinetics. Generally, however, differences between the 

calculated soil methane sink size were far more pronounced between quartiles of kinetic values than 

between linear and Michaelis-Menten kinetic models. As a result, the selection of kinetic parameters 

may be more important to accurate modeling results than the choice of kinetic model. 

 

Figure 1.4. Comparison of calculated soil methane sink size for linear and Michaelis-Menten kinetics across a range of atmospheric 

CH4 mixing ratios and quartiles of kinetic data. Shaded regions represent calculated results across the range of soil depth values 

[4.96 cm, 6.30 cm] calibrated to match uncertainty in the soil methane sink [37 Tg yr-1, 47 Tg yr-1] under the modern methane 

mixing ratio, as described in Section 1.3.2. 

1.4.3) Quantifying the effect of kinetic variability 

We found that the soil methane sink size calculated under the Michaelis-Menten model was highly 

sensitive to the KM and Vmax values used as model inputs. We first calculated the sink size across all 

combinations of KM and Vmax values between the 1st and 3rd quartiles for the ecosystem types without 

persistent local methane sources. KM values ranged from 18,000 to 141,000 ppbv and Vmax values 

from 0.71 to 3.83 nmol g soil-1 hour-1. Within this range of kinetic parameters, the calculated soil 
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methane sink varied from 11 [10, 12] to 410 [378, 481] Tg year-1, a 37-fold difference between 

the minimum and maximum values (Figure 1.5).  

 

Figure 1.5. Sensitivity of the modeled methane sink size to the kinetic parameters of methanotrophy. Black points are the kinetic 

measurements from natural soil samples that fall within the interquartile range of the data compilation, shown in greater detail in 

Figure 1.3. Black solid line is a standardized major axis regression on the log10-transformed KM and Vmax values.  

We also tested whether the correlation between KM and Vmax values constrained the possible range 

for the soil methane sink strength. As noted in section 2.4.1, the KM and Vmax values from natural 

samples covaried (r2 for log-transformed data = 0.44). We first calculated the soil methane sink size 

using KM and Vmax values that were limited to ordered pairs from natural samples, including only 

pairs where both KM and Vmax values were between the 1st and 3rd quartile values from low-methane 

ecosystems. The calculated soil methane sink values ranged from 15 [14, 18] to 415 [384, 488] Tg 

year-1, a 28-fold difference between minimum and maximum values. We also calculated the soil 

methane sink size when pairs of KM and Vmax values all fell within the 95% confidence interval of 

the SMA regression slope (10-2.97-10-2.91). This calculation yielded a sink size ranging from 52 [48, 

61] to 76 [70, 89] Tg year-1, a 1.5-fold difference between minimum and maximum predicted sink 

sizes—much smaller than the 37-fold difference where the correlation was not accounted for. This 

finding suggests that the correlation between KM and Vmax values can lend certainty to estimates of 

the soil methane sink, and that a deeper understanding of the controls on methanotroph kinetics can 

support more accurate models. 

1.4.4) Comparing kinetic and temperature sensitivity of the soil methane sink 
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Finally, we compared the sensitivity of our calculated methane sink size to atmospheric methane 

(via kinetics) versus its sensitivity to global temperature. To assess the temperature sensitivity of soil 

methanotrophy, we used a temperature coefficient, or Q10. Q10 values are commonly used to express 

the rate of biological reactions as an exponential function of temperature, including for 

methanotrophy (e.g., Segers 1998). Only 14 studies in our compiled dataset reported Q10 values, of 

which 8 measured exclusively landfill samples, making it difficult to predict expected Q10 values for 

soils globally. For this reason, we elected to use a previously published Q10 value of 1.95 (Murguia-

Flores et al 2018). This value was calculated from a compilation of global methanotrophy rates and 

was used in a recent process-based model of methanotrophy; additionally, it fell within the range of 

observations from low-methane environments in our compiled dataset (Dion-Kirschner et al., 2024). 

We used this Q10 value to calculate the estimated soil methane sink size for 5 Shared Socioeconomic 

Pathways (SSPs) based on the predicted atmospheric methane concentration (McBride et al 2021, 

Riahi et al 2017) and global mean near-surface air temperature increase (Tebaldi et al 2021) for each 

SSP. The methane concentration and temperature data we used as inputs were globally averaged 

projected values for 2100. We performed this calculation by modifying Equation 1.1 as follows: 

 𝑉 =  (𝑉𝑚𝑎𝑥
[𝑆]

𝐾𝑀+[𝑆]
)𝑄10

𝛥𝑇

10  (1.2) 

where ΔT is the projected near-surface air temperature increase (Tebaldi et al 2021). Although 

methanotrophy is located in the soil, where temperatures are often offset from air temperatures, the 

projected changes in air and soil temperatures are expected to be similar in magnitude (e.g., Soong 

et al 2020). 

Our calculations yielded increased soil methane sink values in proportion to both temperature and 

atmospheric methane concentration, as has been found in previous work (Oh et al 2020) (Figure 

1.6). The combined kinetic and temperature response to the SSPs resulted in a 2.8-fold increase in 

the soil methane sink strength from SSP1-1.9 to SSP5-8.5, while the kinetic response alone produced 

a 1.8-fold increase, indicating that kinetics may be of equal or greater importance to future changes 

in the soil methane sink than the temperature response. The variation in soil methanotrophy kinetics 

produced variability in the predicted soil methane sink size across all five SSPs. Further, the 
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variability under each SSP between quartiles of kinetic data was of a similar magnitude to the 

uncertainty introduced by the 90% confidence interval of CMIP6 temperature projections. 

Calculations based on bootstrapped 90% confidence intervals on kinetic median values produced a 

similar range of variability as the range between quartiles, but bootstrapping calculations were 

limited by the sparsity of shrubland data (Figure 1.7). In total, these results support that the 

uncertainty in methanotrophy kinetics may be an important contributor to uncertainty in models of 

the soil methane sink. 

 

Figure 1.6. The combined effects of kinetic variability, globally averaged near-surface air temperature increases, and atmospheric 

methane concentrations from Shared Socioeconomic Pathway projections on the calculated soil  methane sink size for 2100. Bars 

represent uncertainty ranges and lines represent average values for projected global mean near-surface air temperatures from 

CMIP6 (Tebaldi et al 2021). Open circles indicate the effect of atmospheric methane increases in the absence of temperature 

sensitivity. 

1.5) Summary and recommendations 

This work provides the first comprehensive compilation of methanotrophy kinetics, lending support 

to modeling efforts for the soil methane sink which are often data-limited (Murguia-Flores et al 

2018). The compiled dataset revealed a correlation between methanotrophy KM and Vmax values in 

natural samples, which could result from physiological and/or evolutionary adaptations according to 

ambient methane mixing ratios, or from cosubstrate limitation. In an idealized calculation of the soil 

methane sink based on our compiled kinetic data, our results indicated that linear and Michaelis-
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Menten kinetics closely replicate the modeled soil methane sink size over a modest range of CH4 

mixing ratios. In extreme scenarios, linear kinetics overestimate the size of the sink. This 

overestimation is especially important in environments where high-affinity methanotrophy 

dominates, such as forests and grasslands. Nevertheless, the choice of kinetic parameters had a larger 

effect on the calculated soil methane sink size than the choice of kinetic model. Additionally, the 

correlation between KM and Vmax values substantially constrained the range of possible values for the 

calculated soil methane sink, indicating that a clearer understanding of the mechanisms driving 

methanotrophy kinetics can reduce modeling uncertainty. Our calculations comparing the effects of 

future atmospheric methane concentrations and temperature indicated that kinetic variability may 

introduce a significant source of uncertainty into models of the soil methane sink.  

The values reported here are spatially and temporally unresolved, and were calculated using globally 

averaged parameters rather than a process-based model. By taking this simplified approach, we were 

able to efficiently test a wide range of input parameters and understand their impact on the outcomes. 

While a process-based model may amplify or dampen the magnitude of the trends we observe here 

due to interactions between variables, our results illustrate that methanotrophy kinetics are likely to 

exert a significant effect on the projected soil methane sink size. This finding highlights the potential 

value of thoughtfully implementing methanotrophy kinetics in future process-based models. 

Accordingly, we make several recommendations for ongoing work that can build on our findings. 

We recommend that researchers prioritize further kinetic measurements of natural soils, focusing on 

environments that are underrepresented in our data compilation (e.g., high and low latitudes and 

sparsely vegetated environments). Our findings also indicate the importance of ongoing 

experimental work to better determine controls on the kinetics exhibited by methanotroph 

populations, including the effect of sample preparation methods. More complete datasets and 

improved mechanistic understanding will support modelers in selecting appropriate kinetic 

parameters for their models. The choice of linear versus Michaelis-Menten kinetics may be less 

consequential than the selection of accurate kinetic parameters or rate constants, and modelers may 

consider assigning different kinetic parameters for different ecosystems. Overall, our results 

highlight the value in better understanding the mechanisms underlying microbial methane oxidation 
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kinetics, and indicate that a stronger understanding will improve the accuracy of process-based 

models of the methane cycle. 
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1.8) Supplementary information 

1.8.1) Detailed methods for data compilation 

We identified relevant publications using a Google Scholar search with the search terms “soil AND 

kinetic AND Michaelis-Menten OR Monod OR Vmax AND intitle:methane OR intitle:ch4.” Out of 

909 results for these search terms, 67 publications dating from between 1987 and 2023 met our 

requirements for reporting Vmax and/or KM values for natural soils (Dion-Kirschner et al., 2024). 

These 67 publications yielded 542 individual observations of Vmax and/or KM values, predominantly 

from Europe and North America. Land uses in the compiled data included crop land, rice paddies, 

landfills, and fossil fuel extraction sites. Only 36 of 542 observations were from the tropics (7%), 

and 18 from latitudes > 60 degrees (3%).  

Studies in our compiled dataset used variable approaches to measure and calculate sample Vmax and 

KM values. Broadly, kinetic values were measured by exposing soil samples to a range of methane 

concentrations, then taking headspace samples to measure the rate of methane decrease over a period 

of hours to days. Sample treatment before and during kinetic measurements varied among studies. 

In 17 of 67 studies, samples were preincubated in the lab for days or longer at high methane 

concentration; in 10, soil samples were amended with nitrogen species, potassium, or biochar (Dion-

Kirschner et al., 2024). The treatment of sample water content also varied, where some samples were 

adjusted to specific water content values or slurried with water, while others were maintained at their 

original soil moisture values. Instances of preincubation, sample amendment, and adjustment to 

specific moisture levels are noted in Dion-Kirschner et al., 2024. As there is no established standard 

protocol for soil methanotrophy kinetic measurements, we did not attempt to correct or account for 

different treatments among studies. Section 2.4.1 of the main text contains further discussion of 

sample treatment variability. 

We performed unit conversions as needed to harmonize the dataset for analysis. When KM was 

reported as aqueous methane concentration, we assumed that [CH4]aqueous was in equilibrium with 

headspace pCH4 according to Henry’s Law to convert to units of ppbv. Since the most common unit 
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for Vmax values was nmol CH4 hour-1 g soil-1, we converted all other units to match. We used 

reported values for soil bulk density as needed to convert from soil volume to mass. Soil bulk density 

values are reported in Dion-Kirschner et al., 2024.  

1.8.2) Detailed methods for soil methane sink calculations 

Our selected value for soil bulk density was based on the mean value from a National Resource 

Conservation Service database of over 20,000 samples (Sequeira et al 2014). To estimate the total 

land surface area hosting methanotrophs contributing to atmospheric methane drawdown, we 

excluded permanent wetlands, water bodies, and urban and built-up land where drawdown of 

atmospheric methane is expected to be negligible. Additionally, we excluded areas of permanent 

snow and ice and barren or sparsely vegetated land: although some evidence exists for 

methanotrophy in these landscapes (Dion-Kirschner et al 2023; Mosier et al 1997; Sommerfeld et al 

1993; Striegl et al 1992), no kinetic data was available.  

Supplementary Table 1.1 Default input values for soil methane sink calculations.  

Parameter Input value Source 

KM 67,000 ppbv Ecosystem-weighted median value from low-flux 

ecosystems in literature compilation  

Vmax 1.30 nmol CH4 g 

dry soil-1 h-1 

Ecosystem-weighted median value from low-flux 

environments in literature compilation  

Vmax, global 1.43 ppbv CH4 d-1 𝑉𝑚𝑎𝑥 ∗ 24 h d
−1 ∗ 16.04 ∗ 10−9 g CH4 nmol

−1 ∗ 𝜌𝑏 ∗ 𝑍 ∗ 𝐴

1012 ∗ 2.8611 g CH4 ppb
−1

 

ρb (bulk soil density) 1.41 g cm-3 Sequeira et al 2014 

Z (thickness of soil 

methanotrophic 

zone) 

5.36 [4.96, 6.30] 

cm 

Calibrated to average and uncertainty of 2017 top-down 

estimates from Saunois et al 2020 

A (Earth’s surface 

area hosting 

methanotrophy) 

107.806 x 1016 cm2  MODIS (Friedl et al 2019) 

 
Supplementary Table 1.2. Kinetic constant data summary by ecosystem.  

Ecosystem or land use (n) KM mean 

(ppm) 

KM range Vmax mean (nmol dry soil-1 

h-1) 

Vmax range 

Agriculture (70) 1918 12-46,700 243 0-15,300 

Forest (113) 92 2-3,210 26 0-410 
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Fossil fuel exposed soil 

(24) 

11,690 2,000-

70,000 

2356 1-44,500 

Grassland/meadow (30) 847 8-19700 97 0-1,803 

Rice paddy (27) 3,667 24-20200 1056 2-16,000 

Peat (46) 52,960 2-1,272,000 3,796 0-76,300 

Shrubland (3) 60 8-101 1 0-1 

Termite mounds (18) 17,540 1,883-

62,499 

N.D. N.D. 

Waste (211) 58,279 45-

2,700,000 

1313 1-30,729 

 

  
Supplementary Figure 1.7. The combined effects of kinetic variability, globally averaged near-surface air temperature increases, 

and atmospheric methane concentrations from Shared Socioeconomic Pathway projections on the calculated soil methane sink size 

for 2100. Bars represent uncertainty ranges and horizontal gray lines represent average values for projected global mean near-

surface air temperatures from CMIP6 (Tebaldi et al 2021). Open circles indicate the effect of atmospheric methane increases in the 

absence of temperature sensitivity. Vertical blue and gray lines indicate the range of soil methane sink values calculated for the 

90% confidence interval on median kinetic parameters assessed by bootstrapping. Note that bootstrapping results are biased by the 

inadequate number of data points in the shrubland ecosystem (n = 3, see Dion-Kirschner et al., 2024).  

1.8.3) Supplementary material references 

Dion-Kirschner H, Nguyen N, Frankenberg C and Fischer W 2024 A comprehensive compilation of 

Michaelis-Menten kinetic observations of methanotrophy Online: 

https://zenodo.org/records/11225342 

Friedl M and Sulla-Menashe D 2022 (NASA EOSDIS Land Processes Distributed Active Archive 

Center) https://doi.org/10.5067/MODIS/MCD12Q1.061 



 

 

31 

Mosier A R, Delgado J A, Cochran V L, Valentine D W and Parton W J 1997 Impact of agriculture 

on soil consumption of atmospheric CH4 and a comparison of CH4 and N2O flux in 

subarctic, temperate and tropical grasslands 

Saunois M, Stavert A R, Poulter B, Bousquet P, Canadell J G, Jackson R B, Raymond P A, 

Dlugokencky E J, Houweling S, Patra P K, Ciais P, Arora V K, Bastviken D, Bergamaschi 

P, Blake D R, Brailsford G, Bruhwiler L, Carlson K M, Carrol M, Castaldi S, Chandra N, 

Crevoisier C, Crill P M, Covey K, Curry C L, Etiope G, Frankenberg C, Gedney N, Hegglin 

M I, Höglund-Isaksson L, Hugelius G, Ishizawa M, Ito A, Janssens-Maenhout G, Jensen K 

M, Joos F, Kleinen T, Krummel P B, Langenfelds R L, Laruelle G G, Liu L, Machida T, 

Maksyutov S, McDonald K C, McNorton J, Miller P A, Melton J R, Morino I, Müller J, 

Murguia-Flores F, Naik V, Niwa Y, Noce S, O’Doherty S, Parker R J, Peng C, Peng S, Peters 

G P, Prigent C, Prinn R, Ramonet M, Regnier P, Riley W J, Rosentreter J A, Segers A, 

Simpson I J, Shi H, Smith S J, Steele L P, Thornton B F, Tian H, Tohjima Y, Tubiello F N, 

Tsuruta A, Viovy N, Voulgarakis A, Weber T S, van Weele M, van der Werf G R, Weiss R 

F, Worthy D, Wunch D, Yin Y, Yoshida Y, Zhang W, Zhang Z, Zhao Y, Zheng B, Zhu Q, 

Zhu Q and Zhuang Q 2020 The Global Methane Budget 2000–2017 Earth Syst. Sci. Data 12 

1561–623 

Sequeira C H, Wills S A, Seybold C A and West L T 2014 Predicting soil bulk density for incomplete 

databases Geoderma 213 64–73 

Sommerfeld R A, Mosier A R and Musselman R C 1993 CO2, CH4 and N2O flux through a 

Wyoming snowpack and implications for global budgets Nature 361 140–2 

Striegl R G, McConnaughey T A, Thorstenson D C, Weeks E P and Woodward J C 1992 

Consumption of atmospheric methane by desert soils Nature 357 145–7 

Tebaldi C, Debeire K, Eyring V, Fischer E, Fyfe J, Friedlingstein P, Knutti R, Lowe J, O’Neill B, 

Sanderson B, van Vuuren D, Riahi K, Meinshausen M, Nicholls Z, Tokarska K B, Hurtt G, 

Kriegler E, Lamarque J-F, Meehl G, Moss R, Bauer S E, Boucher O, Brovkin V, Byun Y-H, 

Dix M, Gualdi S, Guo H, John J G, Kharin S, Kim Y, Koshiro T, Ma L, Olivié D, Panickal 

S, Qiao F, Rong X, Rosenbloom N, Schupfner M, Séférian R, Sellar A, Semmler T, Shi X, 

Song Z, Steger C, Stouffer R, Swart N, Tachiiri K, Tang Q, Tatebe H, Voldoire A, Volodin 

E, Wyser K, Xin X, Yang S, Yu Y and Ziehn T 2021 Climate model projections from the 

Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6 Earth System Dynamics 

12 253–93 



 

 

32 

C h a p t e r  2  

TRENDS IN DRYLAND SOIL METHANE UPTAKE HIGHLIGHT 

KNOWLEDGE GAPS IN SOIL METHANE MODELING 

Hannah Dion-Kirschner, Katie R. Huy, Elin Larsson, John S. Magyar, Avi Flamholz, Bryn 

Stewart, and Woodward W. Fischer 

2.1) Abstract 

Despite the importance of the soil methane sink to global methane cycling, modeled global 

methanotrophy rates are still highly uncertain. This is especially true for dryland ecosystems, 

which cover over 40% of Earth’s surface, but are drastically underrepresented in soil methane flux 

datasets. Here, we present 275 new field measurements of soil methane fluxes from three 

California dryland sites, paired with soil physical, chemical, and biological analyses. We compare 

these observations to predictions from a simple model that incorporates common model 

parameterizations of soil methane fluxes. While prior studies have often identified strong climate 

sensitivity of soil methane fluxes—especially in response to soil moisture—we find that methane 

uptake’s seasonality and its correlation with soil temperature and moisture are weak or absent at 

these dryland sites. Our findings suggest that both methanogenesis and methanotrophy in dryland 

soils may be moisture-limited, muting seasonal and climatic signals. Methane uptake is most 

significantly stratified by vegetation type; we hypothesize that this relationship is mediated by soil 

organic carbon inputs. Comparing our measured and modeled results, we find that the model 

recapitulates average uptake rates within an order of magnitude at two out of three field sites, even 

when no parameters are tuned to match observations; tuning parameters would allow an exact 

match of average modeled uptake rates. However, the model fails to reproduce the observed lack 

of seasonal trends. We attribute these mismatches to three key factors: inaccurate parameterization 

of climate sensitivity, omission of influential variables like vegetation type, and mismatches 

between the spatial and temporal scales of models and observations. Our findings highlight the 

need for further investigation of the climate and ecological sensitivity of dryland methane fluxes, 

and indicate potential avenues to improve methane cycle models for a widespread climate type. 
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2.2) Introduction 

Methane is responsible for ~31% of anthropogenic climate warming (Forster et al 2021), but only 

one Earth surface process is known to drive meaningful atmospheric methane removal: the aerobic 

oxidation of methane by soil microbes. This process, called methanotrophy, is thought to draw 

down ~35 Tg of methane from the atmosphere annually, accounting for ~5% of the sink for 

atmospheric methane, while atmospheric chemical reactions make up the other ~95% (Saunois et 

al 2020). Although methanotrophy is thus a minority contributor to total methane drawdown, it is 

a biological process and occurs on Earth’s surface; because of these traits, methanotrophy has an 

outsize chance of being usefully leveraged through human land management (e.g., He et al 2024) 

and bioengineering efforts (e.g., He et al 2023) to support climate stability. It is therefore essential 

to understand what conditions are favorable to soil methanotroph activity and how activity might 

respond to ongoing environmental change. 

Despite numerous studies of aerobic microbial methane uptake in culture and in the environment, 

we still have limited ability to accurately predict soil methane uptake rates as a function of 

environmental variables. Laboratory studies of methanotroph cultures or soil samples have often 

produced strong, predictable relationships of methane uptake rate with fundamental variables like 

temperature, methane concentration, and soil moisture (King and Adamsen 1992, Czepiel et al 

1995, Bender and Conrad 1993). However, in recent metaanalysis studies focused on forest 

ecosystems—where the soil methane sink has been most thoroughly studied—regression models 

were able to explain only 34–77% of the variability in observed methane uptake rates (Yu et al 

2017, Gatica et al 2020, Feng et al 2023). These forest methane uptake regression models 

incorporated numerous climatic, edaphic, and/or anthropogenic variables as parameters. However, 

statistical relationships between individual variables and observed in situ methane uptake—

including those variables that have been shown to strongly control methane uptake in lab 

experiments—were often weak or absent.   

Yet less predictive power has been demonstrated by ANOVA or regression models constructed 

from measurements of other, less-studied biomes (Dutaur and Verchot 2007, Yu et al 2017). This 

stems in part from a lack of data. Drylands, in particular, are poorly represented in soil methane 
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flux datasets. A recent review recovered only 21 peer-reviewed publications containing a total 

of 190 published time series measurements of soil methane uptake rates from dryland 

environments around the globe (Song et al 2024). In contrast, a recent meta-analysis of forest soil 

methane uptake included 772 studies (Feng et al 2023). Because of this data sparsity, although 

drylands are estimated to account for over 40% of global land area (Prăvălie 2016) and to support 

methanotrophy at rates near the global average (Song et al 2024), the accuracy of methane uptake 

rates simulated for drylands in global biogeochemical models cannot readily be determined.  

The poor ability of these regression models to predict the measured variability in methane uptake 

rates propagates into global process-based biogeochemical models. Because it remains unclear 

how to accurately parameterize methane fluxes, bottom-up estimates of soil methane uptake have 

a large uncertainty range (Saunois et al 2020). Recent analyses point out that most model 

simulations of the soil methane sink do not accurately match global or regional-scale observations 

(Xu et al 2016 and references therein). We highlight three possible reasons for this mismatch 

between models and observations: first, although laboratory experiments have demonstrated the 

importance of variables like temperature and soil moisture, the model representations of how these 

variables drive differences in methane flux may not be adequate, especially for understudied 

environments. Along this line, a review of 40 terrestrial methane models suggests that models 

could be improved by better simulating the dynamics of methane fluxes in response to soil 

moisture (Xu et al 2016). Second, there may be additional variables important for controlling 

methane fluxes that are not yet considered in most models. For example, field studies have shown 

that methane flux is sensitive to soil texture, nitrogen content, copper content, microbial 

community composition, land use, and/or topography, in addition to moisture and temperature 

(Boeckx et al 1997, Castaldi et al 2006, Courtois et al 2018, D’Imperio et al 2017, Hartmann et al 

2011, Ho et al 2016, Kaiser et al 2018, Smith et al 2000). Finally, because models and 

measurements often represent very different temporal and spatial scales, comparing these different 

scales may lead to disagreement between data types. 

Here, we studied rates of methane uptake in California dryland soils, with two aims: first, to 

contribute more measurements of an understudied climate type; and second, to assess whether 
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common soil methane modeling approaches can adequately simulate trends in dryland methane 

uptake. We collected 275 observations of soil methane fluxes from natural dryland soils, and 

performed physical, chemical, and biological characterization of the soil at each measurement site. 

We additionally constructed a simple model to predict methane flux based on the environmental 

variables most commonly included in global models, and compared the model results to our field 

measurements. Through this analysis, we compared the observed trends in methane uptake rate to 

common model representations. We used our comparison of measured and modeled methane 

uptake as a lens to investigate potential sources of model-data disagreement in terrestrial methane 

cycle simulations for dryland environments. 

2.3) Methods 

2.3.1) Selection of relevant study variables 

We focused our measurements and primary analysis on net soil-atmosphere methane flux and the 

variables that are most widely used to parameterize this flux in global models: temperature and 

soil volumetric water content (VWC). These variables were universally used to model methane 

production and/or consumption in 19 process-based biogeochemical models described in a recent 

review (Xu et al 2016). We also identified soil organic carbon (SOC) content as a model-relevant 

variable, as it is directly or indirectly related to methane production in many but not all recent 

models. To this point, we have measured SOC in a subset of soil samples (1-2 timepoints per 

measurement site); for model input data, we estimated organic carbon content from values reported 

in SoilGrids (Poggio et al 2021), discussed further in Section 2.3.11. 

To identify additional controlling parameters that might improve model accuracy, we measured a 

number of other soil properties that have been indicated as determinants for methanotroph activity 

in natural soils. Soil properties previously indicated as relevant include nitrogen content, pH, 

texture, copper content, and microbial community properties (Benstead and King 2001, Boeckx et 

al 1997, D’Imperio et al 2023, Hartmann et al 2011, Ho et al 2016, Semrau et al 2010). As a result, 

we selected a subset of samples for which we analyzed total and available nitrogen content, pH, 

particle size distribution, copper abundance (as well as the abundance of additional biorelevant 
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elements: iron, zinc, manganese, and phosphorus), and microbial community composition as 

assessed by 16S rRNA sequencing. The methods for soil property analyses are described in section 

2.3.5. 

2.3.2) Field site description 

Three field sites were selected for this study to capture a range of climate characteristics, biomes, 

and land use types typical of California arid and dry-summer landscapes (Figure 2.1), which we 

expected to produce relevant differences in temperature, soil water content, and other soil 

properties. All sites meet the definition for drylands, with aridity index of < 0.65  (Mirzabaev et al 

2019). Mean summer high temperatures among the three sites between 2006–2020 ranged from 

22.6–39.8 °C and winter lows from 2.6–6.1 °C (NOAA National Centers for Environmental 

Information, 2021). Mean annual precipitation ranged from 8.4–80.7 mm, falling primarily in the 

winter months.  

In order to capture seasonal and interannual variation in soil microbial activity, we visited each 

site seasonally (spring, summer, autumn, and winter) for two years, with all field work occurring 

between 11/2021 and 4/2024. During each site visit, we measured soil-atmosphere methane fluxes 

at between 11 and 15 unique measurement locations, which were selected to capture the range of 

vegetation, land use, and topography across the landscape. We revisited the same locations for 

each timepoint: all measurements for a single measurement location occurred within a radius of  ≤ 

8 meters, maintaining consistent topographic context and vegetation while avoiding areas 

disturbed by previous sampling. All measurements were performed during daylight hours. 

Timepoint measurements are absent for some sites and seasons due to extreme weather events that 

prevented access to field sites (flooding, landslides, and/or high temperatures that caused 

instrument failure). In particular, no winter timepoints were collected at the coastal site due to 

landslides that precluded vehicle access to the area. 

The coastal site was located at Jalama Canyon Ranch, Lompoc, Santa Barbara County (34.57, -

120.45, 340 m a.s.l.). Jalama Canyon ranch is located near Point Conception, CA; from at least the 

early 20th century it was a small conventionally-managed ranch with pasture areas subject to 
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continual grazing, and since 2019 it has been regeneratively managed (Terra Genesis 

International 2020). This site is located in a warm dry-summer climate zone and the Southern 

California Coast USDA ecoregion section. This site has an average JJA high temperature of 22.6 

°C and an average DJF low temperature of 6.1 °C, and receives a mean annual precipitation of 324 

mm (NOAA National Centers for Environmental Information, 2021). Soils are sandy or silt loams. 

We performed measurements at 12 locations within the coastal field site, spanning the range of 

vegetation and land use present on the landscape: coastal sage scrub (n = 3), oak woodland (n = 

2), riparian (n = 1), cattle pasture (annual brome grassland, n = 4), vineyard (n = 1), and marginal 

land (n = 1). 

The desert site was located at Afton Canyon, San Bernardino County (35.03, -116.36, 440 m a.s.l.). 

Afton Canyon is located in a hot desert climate zone and the Mojave Desert USDA ecoregion 

section, and the Mojave River intermittently flows aboveground through the canyon. The average 

JJA high temperature measured at the nearest long-term weather station at Barstow Daggett 

Airport (584.8 m a.s.l.) is 39.8 °C, the average DJF low temperature is 2.6 °C, and the mean annual 

precipitation is 83.6 mm. We performed measurements at 12 locations within the desert site, 

spanning the wide range of topography across the landscape: riverbank (n = 2), river floodplain (n 

= 2), wash (n = 4), and hillslope (n = 4). After sieving to 2 mm, soil textures were determined as 

sandy loam or sand (see Section 2.3.5), but gravel dominated the soils by volume at hillslope and 

wash sites. Vegetation, where present, was dominated by riparian plants along the river channel 

and sparse desert scrub vegetation away from the channel. However, much of the study area was 

unvegetated, due in part to geomorphological disturbances of the floodplain, washes, and hillslopes 

occurring with each rain event (James Danoff-Burg and Luis Ramirez 2024).   

The foothills site was located at Hunter Valley, Mariposa, Mariposa County (37.64, -120.25, 480 

m a.s.l.). This site is located in a hot dry-summer climate zone and the Sierra Nevada Foothills 

USDA ecoregion section. Mariposa is located along a strong climate gradient between California’s 

Central Valley and the Sierra Nevada, and the nearest weather stations where long-term data are 

available from NOAA are substantially downslope in Merced and upslope in Yosemite Valley 

(46.9 m a.s.l. and 1538.3 m a.s.l, respectively). At these weather stations, average JJA high 
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temperatures range from 26.4–34.7 °C, average DJF low temperatures from -3.3–2.9 °C, and 

mean annual precipitation from 297–807 mm (NOAA National Centers for Environmental 

Information, 2021). Soil at this site is silt loam. We performed measurements at 15 locations within 

the foothills field site. Six of the measurement locations fell within a Bureau of Land Management 

(BLM) grazing allotment, intermittently accessed by cattle and characterized by non-native annual 

brome grassland vegetation (Menke et al 2011). The other nine measurement locations were 

excluded from grazing, and hosted the California endemic foothill pine woodland vegetation 

alliance (Klein et al 2007).   

 

Figure 2.1: A. Map of California Köppen-Geiger climate regions (Beck et al 2023, Esri 2024) showing the locations of the three 

field sites described in this study. B. Photo of coastal site, showing coastal sage scrub (foreground), pasture (middle distance), and 

oak woodland (background) vegetation types. C. Photo of desert site, showing riparian (foreground) and unvegetated hillslope 

(background) measurement locations. D. Photo of foothills site, showing pine woodland vegetation. 
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Table 2.1:  Field site geospatial, climatic, edaphic, and ecological properties.  

*Temperature and precipitation data for the foothills site were retrieved from the two nearest weather stations where long-term 

weather data is available through NOAA. This site is located along a steep climate gradient between the two stations, so the values 

for both climate stations are provided. See section 2.3.2 for further details. 

Site Coordinates Elevation 

(m asl) 

Average 

DJF low 

temp (° C) 

Average 

JJA high 

temp (° C) 

Mean annual 

precipitation 

(cm) 

Climate 

zone 

USDA 

ecoregion 

section 

Soil type Land 

cover/land use 

type 

Coastal 34.57,  

-120.45 

340 6.1 22.6 32.4 Warm dry-

summer 

Southern 

California 
Coast 

Silt loam, 

sandy loam 

Pasture, coastal 

sage scrub, oak 
woodland, 

riparian 

Desert 35.03,  

-116.36 

440 2.6 39.8 8.36 Hot desert Mojave 

Desert 

Gravel, 

sand, sandy 
loam 

Riparian, 

desert scrub, 
unvegetated/ 

barren 

Foothills 37.64,  

-120.25 

480 -3.3–2.9* 26.4–34.7* 297–807* Hot dry-

summer 

Sierra 

Nevada 
Foothills 

Silt loam Pasture, pine 

woodland 

 

2.3.3) Methane flux measurements 

From 11/2021 to 1/2023, soil-atmosphere methane fluxes were measured using a Picarro GasScouter 

G4302 mobile gas concentration analyzer (Picarro, Santa Clara, CA) with a custom-built flow-

through soil gas flux chamber. The chamber had an internal volume of 8.2 L and a footprint of 0.0307 

m2. Reflective tape was applied to the chamber’s external surfaces and the G4302 analyzer was 

covered in a reflective tarp to prevent overheating in the sun. Prior to each measurement, the chamber 

was inserted 1-2 cm deep into the soil until it was solidly embedded on all sides, and was equipped 

with a Neoprene skirt to improve the seal. Due to instrument malfunctions, in 4/2023, methane 

exchange rates were measured using a Picarro G2401-mc analyzer and the home-built chamber 

described above. During each 10-minute chamber enclosure time, the analyzer operated with a 

sample flow rate of 2 slpm (standard liters per minute) and measured headspace methane 

concentration with a frequency of ~1.2 Hz. Air temperature during the enclosures was measured 

using a thermocouple probe mounted inside the chamber and connected to an Omega HH506A data 

logger (DwyerOmega, Michigan City, IN). Soil temperature was measured with a 10-inch 

penetration thermocouple probe and the same logger. Pressure inside the chamber was assumed 

constant and in equilibrium with local atmospheric pressure due to equivalent inflow and outflow 

rates. Outlier values resulting from instrument artefacts were removed by identifying points that 
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deviated from the detrended average methane concentration by greater than three times the 

interquartile range. Up to 60 seconds at the beginning of the measurement were dropped from 

analysis as deadband time to allow the signal to stabilize, and net soil-atmosphere methane flux was 

then calculated as the slope of a linear regression between time and methane concentration, 

correcting for temperature inside the chamber. For measurements where the 95% confidence interval 

of the slope included 0, the net flux was set to 0. The difficulty of simulating a precise methane flux 

in a porous medium makes it challenging to assess measurement accuracy; however, a negative 

control test using autoclave-sterilized sand produced no measured methane flux. 

From 5/2023 to 4/2024, fluxes were measured using a LI-COR LI-7810 trace gas analyzer and 8200-

01S portable soil gas flux chamber (LI-COR, Lincoln, NE). The 8200-01S chamber had a volume 

of 4.2 L and a footprint of 0.0318 m2, almost identical to the footprint of the lab-built chamber used 

with the Picarro instruments. In sunny weather, the LI-7810 was covered with a reflective tarp to 

prevent overheating. Prior to each measurement, the chamber collar was installed at the measurement 

location to a minimum of 2 cm depth until it was solidly embedded. The internal depth from the top 

of the collar to the soil surface was measured and averaged over four points to track differences in 

internal volume. The chamber was set to automatically perform five chamber enclosures of two 

minutes each, while the LI-7810 analyzer maintained a sample flow rate of 0.25 slpm and measured 

methane headspace concentration with a frequency of 1 Hz. Air temperature during enclosures was 

automatically monitored by a thermistor onboard the 8200-01S chamber.  In between enclosures, the 

chamber lifted to equilibrate the headspace with the atmosphere for 30 seconds. Soil temperature 

during enclosures was measured using the thermocouple probe described above. Constant pressure 

was maintained by the chamber in equilibrium with local atmospheric pressure. The net soil-

atmosphere methane flux was calculated from headspace methane concentration measurements 

using SoilFluxPro version 5.3.1 (LI-COR Biosciences Inc.). Like for data collected with the custom-

built chamber, methane flux measured with the LI-COR chamber and analyzer was calculated as the 

slope of a linear regression between time and methane concentration, using a 25-second deadband 

time and correcting for temperature inside the chamber. Reported flux values are the average of the 

five 2-minute enclosures. For measurements where the 95% confidence interval of the mean flux 
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value included 0, the net flux was set to 0. The accuracy of flux measurements made with the 

8200-01S chamber design has previously been demonstrated (Xu et al 2006).  

In a Mann-Whitney U-test, no statistically significant difference was detected between methane flux 

values recovered between any combination of chamber and analyzer, despite confounding factors 

such as weather variability (p = 0.12–0.25). 

2.3.4) Field sample collection 

At every flux measurement location, soil samples were collected from within the measurement 

footprint for physical, chemical, and biological characterization. Soil samples for physical and 

chemical analyses were collected with a trowel to a depth of 0–10 cm with a typical hole diameter 

of ~15 cm. Soil samples for bulk density and volumetric water content (VWC) measurements were 

collected by inserting a cylindrical metal can or ring of known volume (diameter ~5 cm) horizontally 

into the soil to maintain constant volume and avoid compression. Samples for bulk density and VWC 

could not be collected at 19% of sample locations where soil was too hard to insert the sampling 

tool. In a Mann-Whitney U-test, no statistically significant difference was detected between methane 

fluxes for samples where bulk density samples could or could not be collected (p = 0.21). All samples 

were stored at -20 °C until laboratory analysis. 

At each measurement location, two samples were collected for DNA extraction and analysis: one 

sample of surface soil (< 1 cm depth) and one sample of soil from 0–10 cm, immediately subsampled 

from the collected bulk soil sample. The DNA samples were collected with an isopropanol-cleaned 

spatula. Soil was directly sampled into PowerBead lysis tubes from the DNeasy PowerSoil Pro kit, 

prepared with 800 μL of LifeGuard soil preservation solution to stabilize the samples at room 

temperature (Qiagen, Hilden, Germany), such that the soil sample filled ⅓ of the tube depth (~0.5–

0.8 g soil). DNA samples were stored at room temperature and DNA was extracted within 30 days 

of sample collection. 

2.3.5) Laboratory soil characterization 
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Soil bulk density and volumetric water content (VWC) were determined for every measurement 

location and timepoint. Soil samples for bulk density and volumetric water content were weighed, 

oven-dried at 105 °C for a minimum of 24 hours, and reweighed.  

Additional soil properties—total organic carbon (TOC), total nitrogen (TN), particle size 

distribution, select elemental composition, and nitrogen speciation—were determined at 1–3 

timepoints for each measurement location. Samples for these additional measurements were oven-

dried at 50 °C to constant weight and sieved to 2 mm, breaking apart aggregates as needed and 

removing visible roots > 1 cm.  

To compare these additional soil properties to methane fluxes over time, rather than just at the time 

of sample collection, we tested the assumption that TOC, TN, particle size distribution, and 

elemental composition were relatively invariant on the timescale of 1–2 years and spatial scale of < 

10 m (the time and spatial distances between replicate sampling). We performed measurements of 

these variables for two to three replicate samples collected from seven measurement locations 

spanning all three field sites.  

Inorganic carbon was removed from samples for TOC and TN by decarbonation, incubating samples 

in 1 N HCl for 10 minutes under sonication for 3 rounds or until the sample ceased to produce 

bubbles on HCl addition. Samples were rinsed with deionized water, freeze dried, weighed to ~20 

μg carbon in duplicate, and encapsulated in tin for elemental analysis (EA) (Thermo Fischer 

Scientific, Waltham, MA, USA). The organic carbon and total nitrogen content of each sample was 

calculated in comparison to an 11-point calibration produced using authentic alanine and serine 

standards. TOC and total N values are reported as the average of two duplicate measurements. 

Samples were prepared for particle size analysis by decarbonation of ~100 mg of soil in 1 N HCl at 

60 °C overnight. Decarbonation was followed by removal of organic material in 30% H2O2 at 70 °C 

for 30 mins and subsequently at room temperature overnight. After rinsing, samples were suspended 

in deionized water with 2% sodium hexametaphosphate added as a dispersant and sample particle 

size distribution was measured by laser diffraction using the Mastersizer 3000E (Malvern 

Panalytical, Malvern, England). 
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Soil pH was determined by combining soil samples with MilliQ water at a ratio of 1:1 w/w and 

letting stand for ≥10 minutes, then measuring with a Beckman Coulter Φ350 pH meter and probe 

(Beckman Coulter, Brea, CA, USA). For consistency, the probe was submerged into the supernatant 

for each measurement, avoiding the the underlying soil.  

Soil elemental composition (Fe, Cu, Zn, Mn, and P) and nitrogen speciation (NH4
+ and NO3

- content) 

measurements were made at the Oregon State University Soil Health Lab. Samples for elemental 

composition measurements were extracted in an Anton Paar microwave digestion system (Anton 

Paar GmbH, Graz, Austria), and the digest was diluted, filtered, and measured on an Agilent 5110 

ICP-OES (Agilent, Santa Clara, CA, USA). For nitrogen species determination, samples were 

extracted in 2 M KCl. Nitrogen as NO3
- was measured using Griess reagents on a VWR V-1200 

spectrophotometer (Avantor, Radnor, PA, USA) and nitrogen as NH4
+ was measured on a Lachat 

QuikChem 8500 Series 2 flow injection analyzer (Hach, Loveland, CO, USA). The detection limit 

for nitrogen species was 0.2 ppm. For soil samples where nitrogen species were below detection 

limit, the abundance was set to 0.  

2.3.6) Soil DNA extraction 

After LifeGuard preservant was removed from soil samples by centrifugation, DNA was extracted 

using the Qiagen DNeasy PowerSoil Pro kit following manufacturer instructions. The 515f and 926r 

primer pairs with Illumina adapters were used to amplify the V4 to V5 region of the 16S rRNA gene 

by polymerase chain reaction (PCR) (Parada et al 2016). PCR for each sample was performed in 

duplicate in 15 μL reaction volumes with the Q5 Hot Start High-Fidelity 2x Master Mix (New 

England Biolabs, Ipswich, MA, USA), using an annealing temperature of 54 °C for 30–35 cycles. 

PCR product duplicates were pooled and barcoded with Illumina NexteraXT index 2 primers 

(Illumina, San Diego, CA, USA). Barcoded samples were sent to Laragen (Culver City, CA, USA) 

for sequencing on Illumina’s MiSeq platform. 

DNA samples for the first five of 24 field sampling trips were lysed in LifeGuard preservant rather 

than in the Qiagen-provided lysis buffer. Sequencing data analysis indicated substantially lower yield 

in these samples, so they were excluded from further analysis.  
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2.3.7) 16S sequence data processing 

Amplicon sequence variants (ASVs) were obtained from 16S rRNA sequencing data using the dada2 

R package version 1.28 following the developer’s recommendations (Callahan et al 2016). Reads 

were trimmed to 230 and 200 bp for forward and reverse reads, respectively, excluding reads with 

more than two expected errors. Reads were denoised using the pool = ‘pseudo’ flag to increase the 

sensitivity to rare ASVs. Forward and reverse reads of denoised data were then merged and chimeras 

were removed using default settings. Taxonomic assignment of ASVs used the IdTaxa function from 

the R package DECIPHER version 2.28.0 (Murali et al 2018) and the SILVA 138.2 database. 84 

ASVs were identified as contaminants based on their presence in negative DNA extraction controls 

and removed using the ‘prevalence’ method of the R package decontam version 1.20.0 (Davis et al 

2018) with a threshold of 0.3. 

2.3.8) Soil microbial community analysis 

To visualize differences in soil microbial community structure among field sites, we used non-metric 

multidimensional scaling (NMDS) analysis using the R package vegan version 2.6-8 (Jari Oksanen 

et al 2024). To prepare ASV count data for NMDS analysis, a variance-stabilizing transformation 

(VST) was applied using the R package DESeq2 version 1.40.2. After VST, taxa in the bottom five 

percentile of abundance NMDS plots were generated from normalized and cleaned data using the 

vegan metaMDS function with the Bray-Curtis dissimilarity metric.  

To assess whether differences in soil microbial community structure were associated with different 

soil methane uptake rates, we performed lasso regression using the LassoCV function from the 

Python library scikit-learn. VST-normalized counts were used for lasso regression analysis at the 

family and ASV level. The model L1 penalty parameter (α) was tuned by three-fold cross-validation. 

Model performance was assessed by in-sample and cross-validated r2 values.  

2.3.9) Statistical analysis of uptake rates and soil properties 

To test for significant differences between sites, seasons, and conditions, we applied Welch’s t-test 

using the function ttest_ind and the Mann-Whitney U-test using the function mannwhitneyu, both 
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from the Python library SciPy. The appropriate test was determined based on whether data 

conformed to expectations for a normal distribution (e.g., temperature data was normally distributed, 

while methane fluxes were not). P-values were adjusted to account for multiple hypothesis testing 

using the Benjamini-Hochberg False Discovery Rate correction with the multipletests function from 

the Python module statsmodels. For comparisons of properties across seasons where multiple data 

points were available at the same measurement location, paired t-tests were applied using the SciPy 

function ttest_rel. Linear regression and multiple regression, where described, were performed using 

the ordinary least squares method with the statsmodels OLS function. 

Correlations reported in Section 2.4.4 were calculated using the Spearman methods with the corr 

function in the pandas Python library. P values for correlations were calculated using the SciPy 

function spearmanr and again adjusted using the Benjamini-Hochberg correction. Significance was 

assessed relative to a threshold of 0.05.  

2.3.10) Model and comparison to data 

To assess the performance of existing model frameworks for predicting dryland methane fluxes, we 

compared our flux measurements to a simple model for soil methane uptake. We constructed this 

model to incorporate the most common parameters used across existing methane models: soil 

temperature, water content, and organic carbon content (Xu et al 2016), as discussed in section 2.3.1. 

Our parameterization of methane production and consumption in response to these variables is 

modified from the process-based dynamic land ecosystem model (DLEM) as described in Tian et al 

(2010). The processes simulated are soil methane production, methane oxidation, and diffusive and 

ebullitive methane flux between soil and atmosphere: 

 𝐹𝐶𝐻4 =  𝐹𝐷 + 𝐹𝐸 − (𝐹𝑎𝑖𝑟 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 ∗ 𝐻) [=] g/(m2*s)  (Equation 2.1) 

where FCH4 is net methane flux, FD is flux due to diffusion, FE is ebullitive flux, Fair oxidation is 

methanotrophic uptake in the gas phase, and H is the height of the domain. Methane production is 

modeled as fprod(T, VWC) and oxidation as foxid(T, VWC). 
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The model was run using the COMSOL Multiphysics software version 5.3 (COMSOL, 

Burlington, MA, USA) with a dynamically adjusted timestep. Full model details, including all 

equations, parameters, and boundary conditions, are included in Section 2.8. 

We made minor modifications to the DLEM in order to better match the conditions of our field 

measurements, the data availability for the study sites, and the current state of knowledge for 

methane uptake kinetics. First, because we used our model results to compare to methane flux 

measurements by small-volume chambers, we omitted the DLEM terms for plant-mediated transport 

and oxidation. We expect this omission to minimally affect our results because during most chamber 

enclosures, the chamber contained little or no plant material. Second, we did not include a pH 

dependence of methanotrophy in our simplified model, as the overall effect of pH on soil methane 

uptake is not well-characterized and may be minimal (Born et al 1990, Dunfield et al 1993); 

additionally, methanotrophs have demonstrated wide variability in pH-tolerance among 

environments (Saari et al 2004), so a generalized pH dependence is not likely to be representative. 

Finally, unlike Tian et al (2010), we did not tune the kinetic parameters Vmax or KM of methanotrophy 

to match measured methane fluxes: here, rather than building the most accurate possible model, we 

instead aimed to assess how well an existing model framework fits measured values. Thus, rather 

than using the tuned kinetic parameters reported by Tian et al, we used the median Vmax and KM 

values for low-methane ecosystems (including shrublands and grasslands) from a recent compilation 

of methanotrophy kinetic measurements (Dion-Kirschner et al 2024). Lacking a similar compilation 

for the kinetics of methanogenesis, we maintained the tuned kinetic parameters reported by Tian et 

al.  

2.3.11) Model input data 

Existing models rely on time-continuous soil temperature and VWC data, while our measurements 

were limited to point-in-time measurements during seasonal field visits. Accordingly, we retrieved 

time series for hourly temperature and soil moisture from ERA5 reanalysis data (Hersbach et al 

2023). The ERA5 dataset provides globally gridded estimates of climate variables by integrating 

satellite and in situ observations into a numerical weather prediction system using data assimilation. 

Temperature data were retrieved for air temperature at 2 m above the ground surface and for the soil 
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horizons 0-7, 7-28, and and 28-100 cm, and VWC for 0-7 and 28-100 cm. VWC values for the 7-

28 cm horizon were not available in ERA5 data, so were calculated as an interpolation of values 

from the over- and underlying soil layers. Because ERA5 data is limited to a resolution of 0.25°, soil 

temperature and moisture values were retrieved as the average of values across the grid cell 

containing each field site (coastal, desert, and foothills).  

Soil carbon content is represented in the model by Tian et al (and many similar models) as dissolved 

organic carbon (DOC). In practice, soil DOC is an operationally defined class of water-extractable 

organic carbon separated from bulk soil by centrifugation and/or filtration (Jones and Willett 2006, 

Sullivan et al 2013). We estimated site-averaged values for soil DOC content using soil organic 

carbon (SOC) values retrieved from SoilGrids 2.0 (Poggio et al 2021). Soil organic carbon (SOC) 

values within the bounds of each field site were retrieved and recorded for each site as the mean and 

standard deviation of values reported across all grid cells within the site bounds. Approximate soil 

DOC content was estimated from SOC by assuming that 0.23% of SOC is DOC, the average value 

obtained from a global meta-analysis (Guo et al 2020). 

2.4) Results and discussion 

2.4.1) Site climate data 

In a comparison of in situ measurements and ERA5 estimates of local climate data, air and soil 

temperature values measured at the time and location of each measurement generally corresponded 

closely with the values reported in ERA5 data (Figure 2.2). VWC values from ERA5 in soil level 1 

(0–7 cm) matched measured values well at the desert field site, but were typically higher than values 

we measured at the coastal and foothills field sites. This offset may result from the range of 

topography integrated in the ERA5 grid cell, where local topographic lows could contribute to higher 

estimated soil VWC relative to the actual measurement locations visited for this study. Nevertheless, 

relative trends in VWC as recorded by ERA5 and field-measured data are generally in agreement.  

Comparing ERA5 data with timepoint measurements demonstrates that seasonal timepoints at each 

site effectively captured the typical seasonal range in air and soil temperatures (Figure 2.2). Because 
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of the offset in VWC values at coastal and foothills sites, it is difficult to assess whether the full 

range of expected seasonality in VWC was captured by the field measurements there, but clear 

seasonal trends are apparent, with highest values of soil moisture in the spring and summer at the 

coastal site, and in the fall and winter at the foothills site. Meanwhile, at the desert site, predicted 

highs in VWC from ERA5 data were not captured during our seasonal timepoint measurements. In 

all, the timepoint measurements of methane uptake performed at coastal and foothill sites are 

expected to effectively capture seasonal shifts in temperature and soil moisture; at the desert site, 

seasonal changes in temperature are well-captured, while seasonal changes in soil moisture may not 

be fully represented. 

 

Figure 2.2: Soil temperature, air temperature, and volumetric water content (VWC) data as derived from ERA5 reanalysis data 

(pale green lines; Hersbach et al 2023). Soil data from ERA5 are reported for level 1, 0–7 cm, which corresponds most closely to 

the 0–10 cm horizon measured in this study. Measurement location data are superimposed on ERA5 data as dark green points 
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(indicating the mean value measured at a given site and day) and vertical lines (indicating the range of values among 

measurement locations for that site and day).  

2.4.2) Trends in California dryland methane uptake 

 

Figure 2.3: Net soil methane uptake measured for each time point and field location. Positive values indicate a higher rate of 

atmospheric methane uptake from air into soil; negative values indicate net soil methane efflux. Colors represent landscape features 

(vegetation type and/or topography). Dashed line indicates the global average uptake rate for drylands from Song et al (2024) (34 

± 23 μg m-2 h-1). 

Across all sites and seasons, the average observed soil methane uptake was 21.4 ± 28 μg m-2 h-1 (n 

= 275). This value is lower than, but within error of, the average value of global dryland observations 

of 34 ± 23 μg m-2 h-1 (Song et al 2024); it more closely aligns with the estimated global methane 
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uptake in desert and shrubland from a canonical early model, which produced a value of 20.8 μg 

m-2 h-1 (Curry 2007).  

Of 275 measured flux values, 91% were significantly different from 0 and only 2% indicated net 

methane efflux from the soil to the atmosphere (Figure 2.3). This finding is consistent with the 

common expectation that methane consumption dominates soil methane cycling in oxic soils (Dutaur 

and Verchot 2007; Saunois et al 2020). Net methane efflux was observed at least once at all three 

sites: two instances at the coastal site in fall 2022, two at the desert site in fall 2023, and one at the 

foothills site in summer 2023. Efflux ranged from 0.5 μg m-2 h-1 in the desert riparian zone to 29.2 

μg m-2 h-1 in the foothills pine woodland. Among the five measurements where efflux was observed, 

it averaged 7.4 ± 11.0 μg m-2 h-1. None of these locations were observed to be water-saturated in the 

surface soil, with VWC ranging from 4.6–7.9% in the top 10 cm. Instead, local methane production 

may have derived from anoxic microsites formed by heterogeneous organic carbon and porewater 

distribution within dominantly oxic soils (Lacroix et al 2023).   

2.4.3) Seasonality in methane uptake rates is muted and varies among sites 

Despite strong seasonal trends among measurement timepoints in temperature and VWC (Figure 

2.2), the seasonality in observed methane fluxes at each site was weak or absent (Figure 2.3). In 

paired t-tests comparing matching measurement locations within each site between seasons, most 

comparisons produced p-values indicating no significant seasonal difference in methane flux. At the 

coastal and desert sites, no seasonal differences in methane uptake were statistically significant (p = 

0.09–0.33). This is despite significant differences in VWC and temperature at both sites across most 

seasonal comparisons, and in contrast to previous studies that have found soil moisture to be a 

dominant driver of seasonal methane uptake trends using similar measurement methods (Zhao et al 

2019, Shrestha et al 2012). Further, no statistically significant correlation between methane flux and 

temperature or VWC (via linear or multiple regression) was observed for either site across or within 

seasons. It is possible that the larger shifts in VWC at the desert site estimated in ERA5 data, which 

were not captured by our measurement timepoints, create seasonal signals in methane fluxes not 

captured by our measurements. Nevertheless, despite distinct seasonality in temperature and soil 
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moisture across our measurement timepoints, these environmental variables did not drive any 

significant seasonal signals in measured methane uptake at desert and coastal sites. 

In contrast to the lack of seasonality we observe at the coastal site, substantial seasonal trends in soil-

atmosphere methane fluxes have commonly been observed in previous studies of grassland and 

pasture environments (Shrestha et al 2012, Täumer et al 2022). Seasonal trends at desert sites are 

less consistent; one study found limited variability in methane uptake during two growing seasons, 

but a significant correlation with temperature in a semiarid region of northern China (Hou et al 2012), 

while another found significant seasonal trends and a strong influence of precipitation events in the 

Mojave Desert (Striegl et al 1992).  

At the foothills site, spring methane flux measurements were distinct from all other seasons by 

pairwise comparison of measurement locations (p = 0.0001–0.0497). This difference was driven by 

a small but systematic springtime increase in methane uptake rate across pine woodland 

measurement locations (Figure 2.3). While the highest average air temperatures at pine woodlands 

locations were observed in the spring (p < 0.01), no statistically significant correlation between 

methane flux and temperature or VWC (via linear or multiple regression) was observed for either 

vegetation type at the foothills site across or within seasons. Thus, temperature may drive seasonal 

signals in methane uptake at pine woodland measurement locations, but it is not a dominant control 

on absolute methane uptake rates.  

The relative temporal variability in measured fluxes was fairly consistent among locations. The 

coefficient of variation (CV) of fluxes across all time points was 56 ± 32% among locations at the 

foothills site, 83 ± 19% at the desert site, and 86 ± 36% at the coastal site. The lower CV at the 

foothills site (p  ≤ 0.02)  contrasted with the higher CV in temperature at that site relative to other 

sites (p < 0.01) and higher CV in VWC than at the coastal site (p = 0.01), suggesting that the 

amplitude of climate variability did not determine the amplitude of methane flux variability.  

2.4.4) Methane uptake rates correlate poorly with climatic variables 
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Because the three sites experience unique regional climates and host unique biomes (Section 

2.3.2), we assessed how these distinctions affected trends in methane uptake. For inter-site 

comparisons, we considered only timepoints in spring through fall, since no wintertime 

measurements were possible at the coastal site. Among sites, measured methane fluxes were the 

highest on average at the coastal site (-30.6 ± 42.9), intermediate at the foothills site (-26.1 ± 16.3), 

and lowest at the desert site (-7.9 ± 11.8). Higher average methane uptake fluxes at the coastal site 

were driven by measurement locations with sage vegetation (n=3, discussed further in Section 2.4.5); 

excluding sage locations produced a lower site average value of -20.1 ± 23.8. Uptake rates at the 

desert site were statistically distinct from the other two sites ( p < 0.0001), while the coastal and 

foothills sites were not significantly different from one another (p = 0.08). This overlap in uptake 

rates between coastal and foothill sites was observed despite statistically significant differences in 

VWC and temperature (p = 0.008–0.012).  

To more fully assess the relationship of soil and climate variables with methane uptake rates, we 

calculated the Spearman correlation of these variables with measured methane uptake (Figure 2.4) 

at each site and across all three sites. We assessed the relationship between variables on the basis of 

Spearman rather than Pearson correlation to accommodate the potential for nonlinear relationships 

and extreme outliers. Among air and soil temperature, VWC, and bulk density—properties measured 

at every methane flux measurement location—little or no correlation was observed with methane 

flux  (r2 < 0.14) (Figure 2.4A). VWC and bulk density were not significantly correlated with flux at 

any individual site, but correlated weakly with flux across all sample sites. This likely results from 

systematically lower VWC, higher bulk density, and lower methane uptake rates at the desert site (p 

< 0.0001 for all), and may not indicate mechanistic control of VWC or bulk density on uptake rates 

across sites. In contrast, VWC is often reported to control net methane uptake rates  (Dijkstra et al 

2011, Shrestha et al 2012, Zhao et al 2019), including in dryland environments (Dijkstra et al 2011; 

Hou et al, 2012) and under experimental soil wetting (Castro et al 1994). Previous findings on the 

temperature sensitivity of net soil methane uptake are more equivocal, in part because both 

methanogenesis and methanotrophy are typically stimulated by increased temperature (Feng et al 

2020 and references therein). 
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Figure 2.4: Correlogram showing the Spearman correlation of methane flux with measured soil and climate variables. Correlation 

is shown across all sites (top row) and at each individual site (bottom three rows). Color indicates the r value of correlation; boxes 

are colorless where no statistically significant correlation between variables exists. A: Correlation of net methane uptake rate with 

primary study variables, which were measured for every timepoint and measurement location. VWC, volumetric water content. B: 

Correlation of net methane uptake with auxiliary study variables (soil physical and chemical properties), which were measured for 

only one to two timepoints per measurement location. Dn, the nth percentile of soil particle diameter; SOC, soil organic carbon 

content; C:N, SOC to total N ratio.  

Some stronger correlations were evident among additional physical and chemical characteristics 

measured on one to two timepoint samples per measurement location (Section 2.3.5; Figure 2.4B). 

Among individual sites, the foothills site had the fewest significant correlates with any measured soil 

or climate properties, correlating weakly with air temperature, particle size, and C:N (the mass ratio 

of SOC to total N). At the coastal site, iron (Fe) and manganese (Mn) abundance were the strongest 

correlates of methane uptake (Fe: r2 = 0.43, p = 0.02, n = 13; Mn: r2 = 0.47, p = 0.0001, n = 13). 

Previous studies have shown that iron and manganese decrease soil methane efflux, especially in 

saturated soils, by providing alternative electron acceptors that outcompete methanogenesis and by 

stimulating anaerobic oxidation of methane (AOM) (Miller et al 2015, Zhang et al 2023, Zhang et 

al 2024). While AOM is unlikely to occur in the unsaturated soils we study here, the correlation of 

iron and manganese with net methane uptake at the coastal site may reflect the effects of these 

alternate electron acceptors in limiting methanogenesis, rather than enhancing aerobic 

methanotrophy.  

At the desert site, nitrate (NO3
-) was the strongest correlate of net methane uptake (r2 = 0.50, p < 

0.0001, n = 13). Close ties between methane and nitrogen cycling have long been recognized (Bédard 

and Knowles 1989), although these typically relate to ammonium (NH4
+) metabolism, while here, 
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no significant correlation between ammonium concentration and methane uptake was identified. 

Fewer studies have investigated the effects of nitrate on soil methane uptake, and the existing work 

has found evidence for both stimulatory and inhibitory effects with an unknown mechanism (Wang 

and Ineson 2003, Reay and Nedwell 2004, Jang et al 2011). Hillslope measurement locations at the 

desert site all had below-average nitrate values, and these locations also had significantly higher 

methane uptake rates than other desert measurement locations (p < 0.001), so without additional 

measurements and experiments, it is difficult to attribute the observed relationship to nitrate 

abundance versus topography or some other confounding factor.  

All auxiliary variables had a significant correlation with net methane uptake rate when all sites were 

considered together; however, only D90 (the 90th percentile of soil particle diameter) correlated with 

fluxes at each site individually as well as across all three sites. Soil texture has previously been 

identified as a relevant control on soil methane uptake in some field studies, which is typically 

attributed to the effect of particle size on soil permeability and thus methane and oxygen diffusion 

(Dalal et al 2008). Under this framework, higher methane uptake would be expected in soils with 

higher sand content, and thus higher D90. Instead, here we find a small but systematic correlation 

between lower soil methane uptake and increased D90 (r2 = 0.16, p < 0.0001, n = 46). It is possible 

that at these dryland sites, methanotrophy is moisture-limited, consistent with the weak positive 

correlation of uptake with VWC (r2 = 0.10, p = 0.002). A positive correlation between methane 

uptake and soil moisture has similarly been shown in laboratory experiments when soil water content 

is low (Czepiel et al., 1995). In this case, higher soil particle size might lead to lower soil moisture 

retention, inhibiting microbial activity including methanotrophy. This explanation is consistent with 

a weak positive relationship between D90 and measured VWC (r2 of log-log regression = 0.25, p < 

0.0001). Since VWC measurements were based on timepoint samples, D90 may be a better proxy 

for long-term VWC, indicating that in California dryland environments, methanotrophy rates may 

be limited by low soil moisture. Supporting this possibility, soil moisture-related enhancement of 

methane uptake rates has been shown previously in dryland environments (Striegl et al 1992; 

Dijkstra et al, 2011).  
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The hypothesis of moisture limitation of methanotrophy in dryland soils further provides an 

explanation for the poor correlation of VWC with net soil methane uptake. An analogy can be drawn 

to the case of temperature, where field studies often find a weak relationship of temperature with net 

methane flux: this is attributed to the positive correlation of both methanotrophy and methanogenesis 

with temperature (Feng et al 2020 and references therein). Similarly, if both methanotrophy and 

methanogenesis are stimulated by increased soil moisture in dry soils, the matching trends in gross 

methane production and consumption will produce a muted signal of net moisture sensitivity.  

2.4.5) Influence of vegetation and soil microbiome on methane uptake rates 

When measured methane uptake rates are grouped by the dominant vegetation alliance at the 

measurement location, significant distinctions emerge. Analysis of fluxes by vegetation was limited 

to vegetation alliances that were present at more than one measurement location. Desert vegetation 

types were not statistically distinct from one another  (p > 0.05), and riparian locations at both the 

desert and coastal sites produced similarly low uptake rates (Figure 2.5). Pasture sites, characterized 

by intermediate uptake rates, were statistically different from all other vegetation types (p < 0.02). 

Pine and oak woodlands were statistically indistinct from one another (p = 0.17). Coastal sage scrub, 

the vegetation type with the highest mean and maximum methane uptake rates, was significantly 

different from all other vegetation types except for oak woodlands (p ≤ 0.001). This finding is 

consistent with previous studies that find land cover or land use type an important determinant of 

soil methane uptake (Dutaur and Verchot 2007).  

As the distribution of vegetation types is closely tied to local soil properties and microclimate (e.g., 

Gough et al 2000, Dodd et al 2002, D’Odorico et al 2013, Metzger et al 2017), many possible factors 

could explain distinct uptake rates across vegetation types. First, different vegetation types may be 

associated with particular values of relevant soil or climatic parameters that correlate with uptake 

rate. For example, pasture and pine woodland measurement locations yield distinct methane uptake 

rates; pasture locations also have higher bulk density than pine woodland locations (p = 0.0001), 

which correlates with lower uptake rates (Figure 2.4). Similarly, at the coastal site, iron and 

manganese were found to be the strongest correlates of uptake rates, and are also more abundant in 

coastal sage scrub sites than other vegetation types (p ≤ 0.02). In many such cases, it is difficult to 
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determine which variable is the true driver of differences in methane uptake rate: vegetation or 

soil/climatic properties.  

However, in the case of soil organic carbon content (SOC), significant differences between 

vegetation types closely mirror the observed differences in flux: desert scrub, riparian, and 

unvegetated measurement locations have significantly lower SOC than other vegetation types, and 

SOC at pine woodland locations is significantly lower than coastal sage scrub locations (p ≤ 0.03). 

Given that vegetation is known to profoundly affect SOC content and distribution (Jobbágy and 

Jackson 2000), vegetation control on SOC is a likely contributor to the trends observed here.  

 

Figure 2.5: A. Violin plots of soil methane uptake distributions by vegetation type. For each vegetation type, the central line shows 

the mean value, and top and bottom lines show the minimum and maximum value. B. P-values produced by Mann-Whitney U-

tests in pairwise comparison of vegetation types, adjusted for multiple hypothesis testing via a Benjamini-Hochberg false discovery 

rate (FDR)  correction and rounded to five significant figures.  

To further investigate the effects of ecological differences on soil methane cycling at these field sites, 

we compared soil microbial community composition among sites and its relationship to methane 

uptake rate. We assessed microbial community composition on the basis of 16S rRNA sequence 

abundance data (Section 2.3.8). Of 20 most abundant taxonomic families present at each site, they 
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dominantly belonged to the Actinomycetota, Alphaproteobacteria, and Planctomycetes orders 

(Figure 2.6A), and all three sites shared 9 of 20 families at greatest relative abundance. Among these 

shared most abundant families was Beijerinckiaceae, the family that contains upland soil cluster 

alpha (USC-α), an uncultivated group of taxa that has been associated with high-affinity methane 

uptake in soils (Knief et al 2003, Pratscher et al 2018). However, of known methylotrophic taxa in 

Beijerinckiaceae, only one ASV—Methylobacterium soli—was found at >1% abundance in more 

than five samples. Meanwhile, commonly known methanotrophic taxa including Methylomonas, 

Methylobacter, Methylomicrobium, Methylococcus, and Methylocaldum (Knief et al 2003) were 

universally not detected, occurring at ≤ 1% across all samples. 

Non-metric multidimensional scaling (NMDS) analysis, which uses dimensionality reduction to 

summarize differences in microbial community structure, indicated a systematic difference in the 

microbial community at desert sites relative to coastal and foothills sites (Figure 2.6B). When net 

methane flux was superimposed on NMDS results, no clear relationship between Bray-Curtis 

distance and net methane flux was evident, outside the systematically low fluxes measured at the 

desert site. Additionally, lasso regression indicated that the abundance of microbial taxa (at both 

ASV and family levels) was weakly correlated or uncorrelated with microbial community structure 

as assessed by 16S. For lasso regression of VST-stabilized ASV abundances with methane uptake 

across all sites, the cross-validation (CV) r2 was at best 0.11 when flux outliers were omitted (flux 

values more than 2.5 standard deviations from the dataset average), and predicted methane uptake 

rates were poorly correlated with measured values (Figure 2.6C). Predictive ability did not improve 

at the family level (CV r2 = 0.10). Lasso regressions of abundance data with flux at individual field 

sites produced no significant correlations (CV r2 ≤ 0.03). This suggests that any significant predictive 

ability achieved by lasso regression across all three sites likely results from distinct microbial 

community composition and lower net methane uptake at the desert site. Further, it seems likely that 

the influence of vegetation type on net uptake rates does not result from the enrichment or depletion 

of specific microbial taxa in association with vegetation. Thus, although microbial metabolic activity 

is a key parameter in controlling soil methane flux, large-scale taxonomic structure (as assessed by 

16S sequencing) appears to be a poor proxy for metabolic activity at these sites. This finding is 

consistent with previous work that has found a decoupling of function and taxonomy across a wide 
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range of Earth surface environments (Louca et al 2016, 2018) and in laboratory-assembled 

communities (Goldford et al 2018). Net soil-atmosphere methane flux has previously been found to 

correspond to the abundance of the pmoA gene (Sabrekov et al 2020, Xu et al 2023), so the lack of 

correspondence between methane uptake rates and taxon abundance may indicate that  pmoA 

transcription has no clear relationship with taxonomy in these samples.  

 

Figure 2.6: Analyses of soil microbial community composition, as assessed by 16S rRNA sequencing, and its relationship to site 

and soil methane uptake rates. A. Relative abundance of the top 20 taxonomic families at each site. Families are grouped and 

colored by taxonomic class. B. Non-metric multidimensional scaling (NMDS) analysis of amplicon sequence variant (ASV) data 
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after variance-stabilizing transformation (VST) (stress = 0.13). MDS1 substantially separates desert samples (squares) from 

foothills (circle) and coastal (triangle) samples. Points are colored by net soil methane uptake rate; gray indicates samples for which 

net soil methane uptake measurements were not acquired due to instrument malfunction. C. Lasso regression of VST-stabilized 

ASV data versus net soil methane uptake rate across all sites, excluding outliers where uptake was more than 2.5 standard deviations 

away from the dataset mean. Point shape indicates measurement site. The regression has weak predictive power for soil methane 

uptake rates, and the cross-validation r2 is 0.11. 

2.4.6) Comparison to a simple soil methane flux model 

To assess how common model formulations perform in predicting soil methane fluxes at our dryland 

field sites, we implemented a simplified version of the DLEM model (Tian et al 2010) for each field 

site (Section 2.3.10) and compared modeled and measured methane fluxes. At the coastal site, the 

model predicts high rates of soil methane efflux through most of the year (Figure 2.7A), with an 

average value of over -19,000 μg methane m-2 h-1 between January 2022 and January 2024. Modeled 

periods of maximum efflux correspond with high values of VWC as estimated in ERA5 data 

(Hersbach et al 2023) (Figure 2.2). Because the coastal site is situated adjacent to riverine and 

estuarine areas, robust methane efflux is likely at some locations within the ERA5 grid cell that 

contains this site. However, even considering the possibility for spatial heterogeneity, the modeled 

efflux is certain to overestimate the true rate: it is 3–44 times higher than the average methane efflux 

measured for saturated soil and sediment types at FLUXNET sites (Delwiche et al 2021) (Delwiche 

et al., 2021). As model output is highly sensitive to kinetic parameters (Supplementary Figure 2.8), 

this may indicate that the tuned kinetic parameters for methanogenesis reported by Tian et al (2010) 

are inaccurate for this site. Meanwhile, periods where the coastal site model predicts net methane 

uptake, the modeled uptake rate is 112 ± 36 μg m-2 h-1. This modeled rate exceeds the average 

measured uptake rate (31 ± 43 μg m-2 h-1) by ~3.6-fold. 

In contrast to the coastal site, modeled methane fluxes at the desert and foothills sites agree more 

closely with measured rates (Figure 2.7B–C). At the desert site, modeled methane uptake averages 

48 ± 26 μg m-2 h-1 (1 σ), 6-fold higher than the measured value of 8.1 ± 12 μg m-2 h-1. Meanwhile, at 

the foothills site, modeled uptake is 96 ± 60 μg m-2 h-1, 3.8-fold higher than measured rates of 25 ± 

17 μg m-2 h-1. Given the sensitivity of model outputs to kinetic parameters, an adjustment of KM and 

Vmax of methanotrophy could enable the model to accurately reproduce average values while 

remaining well within natural variability of methanotrophy kinetics (Dion-Kirschner et al 2024). 

Additionally, because of high soil pH at the desert site (9 ± 0.4) and low-growing vegetation at the 
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foothills site, reintroducing pH limitation and plant methane transport to the model could lower 

modeled uptake rates, bringing them closer in line with measured values.  

Across all three sites, the model produces much larger seasonal trends in methane fluxes than what 

was observed in measured values. Modeled seasonality is a function of temperature and VWC 

variability, while in our dataset temperature did not correlate with measured methane fluxes across 

field sites, and VWC correlated only weakly (Figure 2.4). In the case of the desert site, this may be 

due partly to the temporal mismatch between seasonal measurements and transient periods of 

increased VWC. However, the consistency in overestimation of seasonal trends across all field sites 

indicates that the modeled sensitivity of methane uptake to temperature and soil moisture may be 

inflated for these dryland sites, possibly a function of moisture limitation for both methanotrophy 

and methanogenesis. 
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Figure 2.7: Comparison of modeled (pale green lines) and measured (dark green points) soil methane uptake rates for coastal (A), 

desert (B), and foothills (C) sites. Dark green points show the mean value measured at a given field site and day, and dark green 

lines span the range of measured values. Bar charts at right show the average value from modeled (pale green) and measured (dark 

green) uptake rates. 

2.4.7) Possible sources of data-model gaps 

Where modeled methane flux diverges from measured values, several explanations are possible. 

Broadly, possible explanations for model-data gaps can be delineated into three categories: 1) the 

model mechanics may be sufficient, but parameterization inaccurate; 2) the model mechanics may 

be insufficient, excluding important controlling parameters (or including unimportant ones); and/or 

3) a mismatch in the temporal and spatial scales of modeled and measured values may prevent 

meaningful comparison between the two. In Section 2.4.6, we have described how explanation 1 
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might be relevant for this study, given that adjusting the kinetic parameters may adequately match 

average modeled methane uptake with average measured values.  

Meanwhile, explanation 3 may contribute to the large disagreement in the direction and magnitude 

of methane fluxes at the coastal site, because of the topographic variety represented in the ERA5 

grid cell. While, as in this work, many studies of soil-atmosphere methane fluxes are performed as 

point-in-time measurements using a small portable chamber, this measurement strategy may not 

always accurately capture the true spatial and temporal dynamics of methane cycling. Previous 

studies have shown that estimates of ecosystem methane exchange based on chamber measurements 

often disagree with estimates from larger-scale measurements like eddy covariance (Hill and Vargas 

2022, Clement et al 1995). These larger-scale measurements with time-continuous data collection 

may be a more appropriate basis to compare field-collected data to modeled uptake rates. 

On the other hand, the limited spatial resolution of ERA5 data prevents the model from capturing 

the substantial spatial variability in methane flux rates that we have observed across a single site on 

a single day—even though this meter- and hour-scale variability is the main source of variance in 

this study. While it is possible that these differences among measurement locations may average out 

to match modeled values in a grid cell, they may also point to mechanisms that are inadequately 

represented in models and could lead to bias. This aligns with explanation 2 for model-data 

mismatch: the omission of potentially important variables from existing models may prevent models 

from accurately predicting naturally existing variability. 

In this study, we found that many previously identified controls on soil methane uptake rate were 

weak, insignificant, or inconclusive correlates of uptake rates: these include soil nitrogen and metal 

content, pH, and microbial community structure. However, in our dataset, the observed methane 

uptake rates, both within and among sites, were significantly stratified by vegetation type (Figure 

2.5). As discussed in section 2.4.5, the control of vegetation type on methane uptake rates may be a 

function of vegetation soil carbon inputs. Plant exudates could include methanogenic substrates 

(Girkin et al 2018, Waldo et al 2019), inhibitory compounds affecting methanogens and/or 

methanotrophs, and/or substrates supporting facultative methanotroph activity (Dedysh et al 2005). 

Especially given previous findings that soil soluble organic carbon content (reported as DOC) 
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correlates with methane uptake in a dryland environment (Sullivan et al 2013), a systematic study 

of soil methane cycling in response to plant carbon inputs could reveal additional mechanisms that 

might improve model accuracy. 

2.5) Summary and recommendations 

Our measurements of methane uptake in dryland soils present several important considerations for 

modeling efforts. First, we find that despite large ranges in temperature and VWC, seasonal signals 

are weak or absent at each site. We further find that correlations between temperature, VWC, and 

soil methane uptake are weak or absent. This contrasts starkly with many previous studies showing 

that soil methane fluxes are strongly dependent on moisture. Here, the lack of a clear relationship 

with VWC suggests that both methanotrophy and methanogenesis may be moisture-limited: as a 

result, spikes in soil moisture may stimulate both gross methane production and consumption, 

creating a muted response of net flux to moisture. The resulting climate-insensitivity of net methane 

fluxes at these dryland sites drives disagreement in seasonal patterns between measured and modeled 

soil uptake rates. 

Additionally, while many physical and chemical variables are uncorrelated or weakly correlated with 

methane uptake across the three dryland sites, we find a strong stratification of methane fluxes by 

vegetation type. The relationship between vegetation type and methane uptake does not evidently 

correspond with any differences in the soil microbial community, but seems at least partially 

mediated by plant inputs of soil organic carbon (SOC). While most global biogeochemical models 

assign differential soil carbon cycling properties by plant functional type, the specific relationship of 

vegetation types with methane uptake should be more closely investigated to improve model 

accuracy. 

The simple model we implement here overestimates both methane uptake in unsaturated soils and 

methane production in saturated soils. The model-data disagreement we observe in time-averaged 

methane fluxes is likely to be resolved by parameter tuning. Meanwhile, the model overestimates 

seasonal trends and cannot capture small-scale spatial variability in fluxes. These areas of mismatch 

can likely be attributed to all three explanations we advance here: inadequate parameterization of 
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existing relationships (e.g., climate sensitivity), omission of additional important parameters (e.g., 

vegetation type), and mismatch in temporal and spatial scales. Based on these findings, we 

recommend more systematic study of methane fluxes in dryland environments, focusing on the key 

mechanisms of temperature and soil moisture sensitivity and the role of vegetation type. In particular, 

additional measurements may reveal the specific plant litter or exudate components that drive 

differences in methane cycling, enabling better modeling of the soil methane sink according to plant 

functional type. Finally, while we acknowledge the financial and logistical challenges of long-term 

methane flux monitoring, our findings highlight the value of high temporal resolution and large 

spatial scale in situ measurements in comparing measured and modeled soil methane fluxes. Taken 

together, our results reveal unique characteristics of dryland soils that merit focused efforts to 

improve model parameterization for these important earth surface environments. 
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2.8) Supplementary Information. 

2.8.1) Model governing equations. 

Domain: 

2D rectangle (width = 1 m, height = 0.3 m) 

Domain divided into 3 layers (equal width) following available input data: 

Layer 1: 0-5 cm 

Layer 2: 5-15 cm 

Layer 3: 15-30 cm 

 

Boundary conditions: 

No flux through either side or bottom boundaries. 

Top boundary is in equilibrium with atmosphere, where [CH4]g = [CH4]atm = 0.001217 g/m3 = 1.7 

ppmv (Earth Observatory NASA). [DOC]aq = 0. 

 

Key variables and constants: 

ϕ = soil porosity (Coastal = 0.73, Desert = 0.47, Foothills = 0.71) 

vwc = soil volumetric water content [m3/m3] (time series input) 

1-vwc = relative volume of air in pore space 

ϕ*vwc = relative volume of water in total volume 

ϕ*(1-vwc) = relative volume of air in total volume 

[CH4]g = concentration of methane in gas phase 

[CH4]aq = concentration of methane in aqueous phase 

[CH4]aq = [CH4]g*HC; HC = Henry’s law constant or Bunsen solubility coefficient (β=0.0035 ml/ml, 

used in Tian et al., 2010) 

[DOC]aq = concentration of dissolved organic carbon in aqueous phase 

DCH4,g = 2.1e-5 m2/s (Engineering Toolbox, also Langenberg et al., 2020) 

DCH4,aq = 1.6e-9 m2/s (Engineering Toolbox) 

DDOC,aq = 1.9e-10 m2/s (Hendry et al., 2003) 

H = 0.3 m = height of domain 
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Governing Equations 

To solve for CH4 and DOC concentrations, we employ reaction-diffusion equations: 

Evolution of CH4 in air: 

𝜕(𝜙)

𝜕𝑡
=  ∇(𝐷𝐶𝐻4,𝑔𝜙∇[𝐶𝐻4]𝑔) 

Evolution of CH4 in water: 

𝜕(𝑣𝑤𝑐[𝐶𝐻4]𝑎𝑞)

𝜕𝑡
=  ∇(𝐷𝐶𝐻4,𝑎𝑞𝑣𝑤𝑐∇[𝐶𝐻4]𝑎𝑞) +  𝑣𝑤𝑐𝑅𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑣𝑤𝑐𝑅𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 

 

Combined Evolution of CH4: 

Since 𝐷𝐶𝐻4,𝑎𝑞 ≪ 𝐷𝐶𝐻4,𝑔, we neglect diffusion in water 

𝜕((𝜙 + 𝑣𝑤𝑐𝐻𝑐)[𝐶𝐻4]𝑔)

𝜕𝑡
=  ∇(𝐷𝐶𝐻4,𝑔𝜙∇[𝐶𝐻4]𝑔) +  𝑣𝑤𝑐𝐻𝑐(𝑅𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑅𝑠𝑜𝑖𝑙 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛) 

 

Evolution of DOC in water: 

𝜕(𝜙[𝐷𝑂𝐶]𝑎𝑞)

𝜕𝑡
=  ∇(𝐷𝐷𝑂𝐶,𝑎𝑞𝑣𝑤𝑐∇[𝐷𝑂𝐶]𝑎𝑞) − 𝑣𝑤𝑐𝑅𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

Reactions 

Soil Methane Production (aqueous):  

𝑅𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑉𝑚𝑎𝑥,𝑝𝑟𝑜𝑑
[𝐷𝑂𝐶]𝑎𝑞

[𝐷𝑂𝐶]𝑎𝑞+𝐾𝑀,𝑝𝑟𝑜𝑑
𝑓(𝑇)𝑓𝑝𝑟𝑜𝑑(𝑣𝑤𝑐) [=] g/(m3*s) 

Soil Methane Oxidation (aqueous):  

𝑅𝑠𝑜𝑖𝑙 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 =  min (𝑉𝑚𝑎𝑥,𝑠𝑜𝑖𝑙 𝑜𝑥𝑖𝑑
[𝐶𝐻4]𝑎𝑞

[𝐶𝐻4]𝑎𝑞+𝐾𝑀,𝑠𝑜𝑖𝑙 𝑜𝑥𝑖𝑑
𝑓(𝑇)𝑓𝑜𝑥𝑖𝑑(𝑣𝑤𝑐), [𝐶𝐻4]𝑎𝑞) [=] g/(m3*s) 

 

Transport Fluxes 

Atmospheric Methane Oxidation (gas):  

𝐹𝑎𝑖𝑟 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = (𝑉𝑚𝑎𝑥,𝑎𝑖𝑟 𝑜𝑥𝑖𝑑
[𝐶𝐻4]𝑎𝑡𝑚

[𝐶𝐻4]𝑎𝑡𝑚+𝐾𝑀,𝑎𝑖𝑟 𝑜𝑥𝑖𝑑
𝑓(𝑇)𝑓𝑜𝑥𝑖𝑑(𝑣𝑤𝑐)) [=] g/(m3*s) 

Ebullition from water to atmosphere: 

𝐹𝐸 = max ([𝐶𝐻4]𝑎𝑞 − 6, 0) [=] g/(m2*s) 

where: 
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6 is the threshold value above which dissolved CH4 will form bubbles and leave water [g/m3]. 

 

Diffusion from water to atmosphere: 

𝐹𝐷 = 𝑉𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒([𝐶𝐻4]𝑎𝑞 − [𝐶𝐻4]𝑚𝑎𝑥) [=] g/(m2*s) 

where: 

𝑉𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = 0.3
𝑚

𝑑
=exchange coefficient of CH4 through interface of soil pore water to air, 

[𝐶𝐻4]𝑚𝑎𝑥 = [𝐶𝐻4]𝑎𝑡𝑚 ∗ 𝛽 = maximum concentration of CH4 in soil solution [g/m3] 

𝛽 = 0.035
𝑚𝑙

𝑚𝑙
, Bunsen solubility coefficient. 

 

Net Flux of Methane: 

𝐹𝐶𝐻4 = 𝐹𝐷 + 𝐹𝐸 − (𝐹𝑎𝑖𝑟 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 ∗ 𝐻) [=] g/(m2*s) 

 

Environmental Dependencies (as in Tian et al., 2010) 

𝑓(𝑇) =  {

0, 𝑇 <  −5

𝑄10
𝑇−30
10 , 10 > 𝑇 ≥ −5 
1, 𝑇 ≥ 30

 

𝑓𝑝𝑟𝑜𝑑(𝑣𝑤𝑐) =  

{
 
 

 
 

0, 𝑣𝑤𝑐 ≤ 𝑣𝑤𝑐𝑓𝑐

(
𝑣𝑤𝑐 − 𝑣𝑤𝑐𝑓𝑐

𝑣𝑤𝑐𝑠𝑎𝑡 − 𝑣𝑤𝑐𝑓𝑐
)2 × 0.368 × 𝑒

(
𝑣𝑤𝑐−𝑣𝑤𝑐𝑓𝑐
𝑣𝑤𝑐𝑠𝑎𝑡−𝑣𝑤𝑐𝑓𝑐

)
, 𝑣𝑤𝑐𝑓𝑐 < 𝑣𝑤𝑐 < 𝑣𝑤𝑐𝑠𝑎𝑡

1, 𝑣𝑤𝑐 ≥ 𝑣𝑤𝑐𝑠𝑎𝑡

 

𝑓𝑜𝑥𝑖𝑑(𝑣𝑤𝑐) = 1 − 𝑓𝑝𝑟𝑜𝑑(𝑣𝑤𝑐) 

 

Note: Soil VWC is given as time series input for each layer of soil. Data not available for middle 

soil layer—therefore values were derived by linearly interpolating between the top and bottom soil 

layers (using middle of soil depth for each layer). 

 

Initial Values (Concentrations in g/m3): 

Layer CH4 (All Sites)* DOC Coastal DOC Desert DOC Foothills 

1 (0-5 cm) 0.001 1385 156 978 

2 (5-15 cm) 0.0005 1108 125 487 

3 (15-30 cm) 0.0003 423 93 240 
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*Initial CH4 values approximated from Maier et al 2017. 

 

2.8.2) Model parameters 

Supplementary Table 2.1: Parameters used for soil methane model. 

Parameter Site Value Source 

Q10, methanotrophy All 2.5 Song et al 2009 

Q10, methanogenesis All 2.5 Song et al 2009 

VWCfc, coastal Coastal 0.21 Ratliff et al 1983 (sandy loam) 

VWCfc, foothills Foothills 0.30 Ratliff et al 1983 (silt loam) 

VWCfc, desert Desert 0.10 Ratliff et al 1983 (sand) 

VWCsat, coastal Coastal 0.49 SoilGrids (Poggio et al 2021) 

VWCsat, foothills Foothills 0.48 SoilGrids (Poggio et al 2021) 

VWCsat, desert Desert 0.47 SoilGrids (Poggio et al 2021) 

Vexchange All 0.3 m d-1 Happell and Chanton, 1995 

Vsoil, oxid, max All 0.457 g C m-3 d-1 Dion-Kirschner et al 2024 

Vair, oxid, max All 0.457 g C m-3 d-1 Dion-Kirschner et al 2024 

Km, soil, oxid All 62.5 ppm Dion-Kirschner et al 2024 

Km, air, oxid All 62.5 ppm Dion-Kirschner et al 2024 

VCH4, pro, max Desert 0.25 Tian et al 2010 

VCH4, pro, max Coastal and foothills 0.6 Tian et al 2010 

Km CH4, pro All 15 Tian et al 2010 

 

2.8.3) Model sensitivity to kinetic parameters 

To assess the sensitivity of modeled methane fluxes to kinetic parameters, we ran the model with 

low and high values of KM (0.1 to 150 ppm) and Vmax (0.001 to 1 g m-3 d-1) of methanotrophy, 

reflecting the range of these values most commonly observed in soil samples from environments 

similar to the study sites (Dion-Kirschner et al 2024). Model results were highly sensitive to 

changes in both kinetic parameters (Figure 2.8). 
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Supplementary Figure 2.8) Model results for Foothills site under low and high KM and Vmax values, demonstrating the sensitivity to 

kinetic constants used as model parameters. 
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C h a p t e r  3  

POSITION-SPECIFIC CARBON ISOTOPE ANALYSIS OF GLUCOSE AT 

NATURAL ISOTOPE ABUNDANCE BY ORBITRAP MASS 

SPECTROMETRY 

Hannah Dion-Kirschner, Celia Kong-Johnson, Kimberly R. Sharp, Nathan Dalleska, John 

Eiler, and Alex Sessions 

3.1) Abstract 

The isotopic composition of glucose carries the signature of the metabolic processes it undergoes, 

but conventional isotope analysis methods obscure its intramolecular structure. Here, we present 

a new method for position-specific isotope analysis (PSIA) of glucose using Electrospray 

Ionization-Orbitrap mass spectrometry (ESI-Orbitrap MS). This method measures δ13C values at 

five unique intramolecular sites in glucose at natural isotope abundance and requires < 50 μg per 

sample—over four orders of magnitude less than PSIA by NMR. By oxidizing glucose to 

gluconate and measuring with ESI-Orbitrap, we resolve the isotopic composition of the molecular 

ion and four fragment ions with analytical precision of 0.1–0.5‰. Our method recapitulates 

intramolecular δ13C patterns previously demonstrated for natural sugars formed through C3 and 

C4 photosynthetic pathways, while enabling substantially higher throughput and sensitivity. This 

is the first application of Orbitrap-PSIA to a carbohydrate, and it establishes a foundation for 

tracing metabolic fluxes in environmental, biomedical, and ecological systems. Future 

developments could extend the method to the 18O and 2H isotope systems, further enhancing its 

value for investigating glucose dynamics across many natural settings.  

3.2) Introduction 

Glucose is a universally relevant biomolecule, and its carbon isotopic composition in a given 

system carries traces of the metabolic processes it undergoes (Rossmann et al 1991, Tcherkez et 

al 2004). The isotopic signatures of metabolism as recorded by glucose have been used to elucidate 

nutrient flows in plant tissues (Rossmann et al 1991, Gilbert et al 2012), aquatic systems (Teece 
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and Fogel 2007), soils (Hobbie et al 2003, Dungait et al 2009), microbial mats (Gonzalez-

Nayeck et al 2022), and host-parasite systems (Hesse et al 2023), as well as to test food authenticity 

(Guyon et al 2011, 2014, Cabañero et al 2006) and even to track human metabolism (Lefebvre et 

al 1975, Hawley et al 1992).  

The stable carbon isotope composition (δ13C value) of biomolecules, including glucose, primarily 

results from enzymatic reactions acting on those molecules (Hayes 2001). Many enzymatic 

reactions of glucose break and form bonds at specific atomic positions within the glucose 

monomer. The rate of bond breaking and formation is sensitive to isotopic substitutions: for 

example, bonds with 13C are typically less kinetically favorable than bonds with 12C. As a result 

of the difference in rate constants according to isotopic substitutions, enzymatic reactions often 

select for a higher proportion of 12C in the product than in the reactant pool. The isotope effects 

imparted by these enzymatic reactions is concentrated at the atomic positions involved in bond 

breaking or formation. For example, during glycolysis the enzyme aldolase cleaves a 6-carbon 

sugar to two 3-carbon compounds, with strong isotopic selectivity at carbon positions 3 and 4 

where a C-C bond is broken. As a result, the 3-carbon products of aldolase in the glycolysis 

pathway have a lower δ13C value than the pool of 6-carbon reactant (Gleixner and Schmidt 1997). 

Due to the positional selectivity of enzymes like aldolase, previous studies of plant glucose have 

found that its intramolecular 13C composition is typically heterogeneous (Rossmann et al 1991, 

Tcherkez et al 2004; Gilbert et al 2012), with different carbon isotopic composition at different 

atomic positions. Resolving positional differences in the isotopic composition of plant glucose 

(and likely glucose from other sources as well) can therefore reveal information about the enzymes 

with which it has interacted, helping to retrace metabolic fluxes. 

Traditional methods for carbon isotope measurement destroy the spatial isotopic structure of 

biomolecules prior to measurement, making it impossible to resolve positional isotopic 

differences. EA-IRMS and GC-IRMS require conversion of the analyte to gaseous CO2, losing 

information about the positioning of isotopic substitutions. In contrast, methods for position-

specific isotope analysis (PSIA) enable isotopic measurement of intact molecules, retaining more 

nuanced signals of metabolism recorded by the isotopic structure of biomolecules. Previous work 
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has demonstrated 13C-PSIA of glucose using nuclear magnetic resonance (NMR) (Gilbert et al 

2009). While PSIA via NMR is a powerful tool for resolving valuable isotopic information, it is 

limited by large sample size requirements (20-110 mg of glucose) (Wieloch et al 2018), long 

analysis times (23 to >100 hours per sample) (Thomas Wieloch, personal comm.), and substantial 

sensitivity to small (<0.5%) impurities (Gilbert et al 2009). Here, we present a new method for 

13C-PSIA of glucose using Orbitrap mass spectrometry  that enables independent  13C abundance 

measurements of five unique intramolecular sites while overcoming most limitations imposed by 

NMR-PSIA. This method employs Electrospray Ionization (ESI)-Orbitrap, an instrument with 

microgram-level sensitivity that can accommodate typical sample sizes in environmental and 

human health studies.  

Orbitrap-PSIA is made possible through a combination of new sample introduction techniques, 

ultrahigh mass resolution, and tandem mass spectrometry (MS/MS) (Eiler et al 2017, Neubauer et 

al 2023). In the case of ESI-Orbitrap, samples are introduced by electrospray ionization, a soft 

ionization mode that does not induce fragmentation. For this application, we improve the 

efficiency of sample ionization by oxidizing glucose to gluconate prior to sample introduction. 

Once the intact analyte is ionized, a user can select the ion(s) of interest using the quadrupole, 

mitigating the impacts of minor sample impurities. The selected ion or ions are directed to the 

higher-energy collisional dissociation (HCD) cell, where molecular ions are broken into smaller 

fragments. These fragment ions, all descended from the analyte of interest, are subsequently 

introduced into the Orbitrap, where the 13C/12C ratio of every fragment can be observed 

simultaneously (Eiler et al 2017, Hilkert et al 2021). Because each fragment samples a different 

subset of atomic positions from the molecular ion (Figure 3), the isotopic composition at each 

position can be solved using matrix algebra (e.g., Wilkes et al 2022, discussed further in Sections 

3.3.7 and 3.4.2).  

PSIA via Orbitrap has previously been shown for amino acids (Neubauer et al 2018, Weiss et al 

2023, Csernica et al 2023, Chimiak et al 2021), ethyltoluenes (Cesar et al., 2019), and 

methylphosphonic acid (Csernica et al 2025). Here we present the first Orbitrap-based PSIA of a 
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carbohydrate compound at natural isotope abundance, opening the door for more nuanced 

understanding of glucose fluxes across many natural systems. 

3.3) Experimental 

 

Figure 3.1. Schematic illustrating method steps for sample preparation and method verification. 

3.3.1) Standard materials 

We acquired two sodium gluconate standards from commercial suppliers, both >98% purity: 

standard “GlcnA” from Sigma-Aldrich (Lot # SLBT7828), and standard “GlcnB” from VWR Life 

Science (Lot # 21K1056318). These standards were used to produce working solutions with a 

concentration of 10 mM in 18 MΩ deionized water (Milli-Q IQ 7000 Purification) which were 

subsequently filtered to <0.22 μm. Working solutions were stored frozen and subsequent dilutions 

were freshly made for each analytical session. 

We used two glucose standards in this work, both of >95% purity. Standard “MC4” was acquired 

from Mallinckrodt Chemicals (Lot # H17H08) and standard “SC3” from Sigma-Aldrich (Lot # 

BCCD9888). Glucose standards were used to produce working solutions with a concentration of 

10 mM in 18 MΩ deionized water (Milli-Q IQ 7000 Purification), which were stored frozen. Fresh 

dilutions of glucose working solutions were made as needed for each experiment. 

We additionally acquired six glucose standards with positional isotopic labels from Cambridge 

Isotope Laboratories, Inc. Each standard contained 98-99% 13C label at one atomic position (C1: 

Lot #PR-30074, 98-99%; C2: Lot #M-2128, 99%; C3: Lot #I-18488, 99%; C4: Lot #I-19624, 99%; 

C5: Lot #M-1633, 98%; C6: Lot #I-23305, 99%). Each standard was used to create a 10 mM 

working solution in 18 MΩ deionized water (Milli-Q IQ 7000 Purification) which was stored 

frozen. 
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3.3.2) Glucose oxidation 

Glucose was oxidized to gluconate following a method modified from Bunzel and Mathews 

(1909). In brief, 1.1 equivalents of Br2 and 2 equivalents of NaOH were added to 1 equivalent of 

glucose in aqueous solution. The solution was stirred at 300 rpm at room temperature for 5 hours. 

The yield of this reaction was 66±1% (n = 8), and reaction yield did not change after 4 hours (1σ 

= 2%, n = 20). The reaction was confirmed not to impart measurable 13C fractionation as described 

in results section 3.6. 

The reaction product was desalted by passing through a 2.5 mL Dionex OnGuard II Ag/H 

cartridge. Each cartridge was washed with 15 mL of 18 MΩ deionized water prior to sample 

application. Sample was applied to the column and eluted at a rate of 1-2 mL/min. After the eluted 

sample was collected, an additional 1 mL of water was applied to the column and collected in 

order to flush out any remaining product. No gluconate was detected in cartridge backgrounds as 

verified by ion chromatography. Following desalting, gluconate yields were determined by ion 

chromatography. 

3.3.3) Ion chromatography 

The content of gluconate and residual salts in samples was measured with Dionex Integrion HPIC 

(Thermo Fischer) ion chromatography systems, with anion and cation columns operating in 

parallel. Samples were diluted to expected concentrations of 10-100 μM in 18 MΩ water and then 

loaded onto serial anion and cation columns and detectors via a Dionex AS-DV autosampler. The 

instrument was operated as previously described (Speth et al., 2022). The identity of gluconate and 

other anion peaks (Na+, Br-) was verified by comparison to the retention times of authentic 

standards. Chromatographic peaks were integrated using the Cobra algorithm in Chromeleon 

version 7.2.9 and peak area was correlated to concentration by generating 5-point calibration 

curves with authentic standards. The detection limit of gluconate on the instrument was < 1 μM.  

3.3.4) Isotope measurements by Elemental Analyzer-Isotope Ratio Mass Spectrometer 
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Molecular average carbon isotope composition of glucose and gluconate standard materials was 

characterized by an EA IsoLink combustion elemental analyzer system interfaced to a Delta V 

Plus isotope ratio mass spectrometer (EA-IRMS, Thermo Fisher Scientific). Samples were 

weighed to ~20 μg carbon, encapsulated in tin, and combusted at 1020 °C, after which the resulting 

CO2 was analyzed for its carbon isotope composition by electron impact mass spectrometry. 

Measured carbon isotope ratios were calibrated to the VPDB scale against in-house isotope 

standards and international reference materials. The standard deviation of repeat standard 

measurements was < 0.1‰. 

3.3.5) Isotope measurements by Electrospray Ionization-Orbitrap 

Position-specific isotope analysis was performed using a Q Exactive HF Orbitrap mass 

spectrometer (Thermo Fischer Scientific). Samples were introduced to the mass spectrometer via 

a Vanquish Horizon ultra-high performance liquid chromatography (UHPLC) system and Heated 

Electrospray Ionization (HESI-II) probe (Thermo-Fischer Scientific). The UHPLC system was 

used for its autosampling capability and stable continuous sample infusion; it was not equipped 

with a chromatography column and no online separation was performed. The HESI probe was 

fitted with a 34-gauge needle optimized for flow rates of 1-10 μL/minute. Instrument settings for 

the HESI probe and Q Exactive are described in Table 3.1. 

Table 3.1. Instrument settings for Orbitrap position-specific carbon isotope analysis of glucose. 

Condition Value 

HESI probe 

Polarity Negative 

Spray voltage -3.0 kV 

Capillary temperature 200 °C 

Auxiliary gas heater temperature 100 °C 

Auxiliary gas flow rate 3 (arbitrary units) 

Sheath gas flow rate 1 (arbitrary units) 

Sweep gas flow rate 0 (arbitrary units) 

Spray current 0.00 μA 

S-lens RF level 55 (arbitrary units) 

Quadrupole, HCD cell, C-trap, and Orbitrap 

Scan type Parallel Reaction Monitoring 

Inclusion list 195.5±1.4 

Microscans 1 

Fragmentation type Higher-energy collisional dissociation 

Collision energy 17.0 keV CE 

Resolution at 200 m/z (ΔM/M) 60,000 

Automatic Gain Control (AGC) target 3x106  

Maximum inject time 200 ms 
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3.3.6) Orbitrap method overview 

Standard and sample compounds were prepared as 50 μM solutions in LC-MS-grade methanol 

(VWR Life Sciences). The UHPLC was used to autosample and infuse 100-μL injections of 

sample or standard solution into the Orbitrap at a constant flow rate, typically 4 μL min-1. For a 

typical analysis, 6 successive injections were performed to produce a total sample or standard 

analysis time of >120 minutes, accounting for the required 3 minutes of dead time between 

injections for the ion signal to restabilize. Repeat injections were required because our Vanquish 

sample loop and injection module sizes were limited to 100 μL; larger sizes are available. 

Following these successive injections of analyte, the system was rinsed with pure HPLC-grade 

methanol for 10 minutes at a flow rate of 20 μL min-1. This routine was repeated for sample-

standard brackets, with each sample typically measured in triplicate relative to a standard of 

equivalent ion signal intensity, for a total of 7 acquisitions. 

3.3.7) Orbitrap data processing and isotope calculations 

Each continuous Orbitrap measurement of a given sample or standard, termed an “acquisition,” is 

comprised of many unique scans of the image current recorded by the Orbitrap detector. Under the 

instrument conditions described in Section 3.3.5, scan rates are typically ~5 s-1 and an acquisition 

comprises ~32k scans. For each scan, the instrument software converts the image current into the 

intensity of the ion signal across a user-specified range of masses via a Fourier transform. Several 

additional data processing steps are required to convert these measured ion signal intensities into 

final δ13C values for each atomic position.  

Ion signal intensities and other relevant acquisition data were retrieved from the .RAW file format 

generated by the instrument software using IsoX (Kantnerová et al 2024). Ion signal intensity was 

used to estimate the absolute number of ions entering the Orbitrap analyzer (hereafter “counts”) 

following Makarov and Denisov (2009) and Eiler et al (2017). Uncorrected isotope ratios (13R 

values) for each fragment of interest in the mass spectrum were calculated for every scan by taking 

the ratio of the counts of 13C-substituted and unsubstituted ion peaks. For example, for the 

molecular ion with nominal mass 195 and formula C6H11O7: 
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 13R195 = (Counts 13C12C5

1H11
16O7)/(Counts 12C6

1H11
16O7)  (3.1) 

Intervals of dead time in between injections of sample were removed from each acquisition by 

dropping those scans from the dataset. Windows of injection times were then manually verified to 

ensure that small variations in instrument timing did not result in erroneous inclusion of dead time 

in acquisition data. Next, to avoid mass spectrometric artifacts (described in Eiler et al 2017) as 

well as artifacts of data extraction, a given scan was only included in isotope ratio calculations if: 

1) both isotopologues were present for a given scan, 2) peak masses were within 0.3-0.4 mDa of 

the expected values and 10 standard deviations of the acquisition mean mass for that peak, and 3) 

the product of total ion count and injection time was within 3 standard deviations of the mean 

(Chimiak et al 2021). The final uncorrected 13R value for each fragment peak was obtained by 

taking the mean of measured 13R values remaining after the described data culling steps. 

Next, the 13R value for each measured fragment was converted to a δ13C value on the basis of 

repeat sample-standard measurements: 

 δ13CSample-Standard = (13RSample - 
13RStandard) / 

13RStandard  (3.2) 

Calculating δ13C values of sample-standard comparisons allows for consistent reporting of isotopic 

composition, correcting for any potential fractionation or drift imparted by the instrument.  

δ13C values are reported in permil (‰), where 1‰ indicates one part per thousand relative 

difference between the measured sample and standard 13R value. Each reported δ13C value is the 

average of triplicate sample-standard comparisons and error bars represent the standard deviation 

of replicate δ13C measurements, unless otherwise noted. 

While δ13C values are typically reported on the VPDB scale, isotope ratios for ion fragments 

measured by ESI-Orbitrap can only be tied to VPDB by comparing to another standard for which 

position- or fragment-specific δ13CVPDB values have been externally determined. (This is because 

isotopic fractionations imparted during Orbitrap analysis can vary among instrument conditions 

and among fragment ions.) No glucose or gluconate reference materials with known position-
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specific values are currently available. As a result, we report all δ13C values measured by ESI-

Orbitrap relative to the gluconate standard GlcnA, and denote these values as δ13CGlcnA: 

 δ13CGlcnA = (13RSample - 
13RGlcnA) / 13RGlcnA  (3.3) 

 When reporting δ13C values obtained by EA-IRMS and anchored to the VPDB scale, we denote 

these values as δ13CVPDB: 

 δ13CVPDB = 13RSample - 
13RVPDB / 13RVPDB  (3.4) 

When comparing measured isotopic composition between any other combinations of compounds, 

not using the GlcnA standard or the VPDB scale, we report these measurements as Δ13C: 

 Δ13CSample 1–Sample 2 = δ13CSample 1 - δ
13CSample 2  (3.5) 

13R or δ13C values for each fragment ion measured in the Orbitrap represent the combination of 2-

6 individual carbon atomic positions. To convert fragment measurements to position-specific 13R 

or δ13C values, we constructed a matrix of equations representing the carbon atomic positions 

present in each fragment and the fragment carbon isotope composition (Figure 3.7). The matrix 

was constructed as described in Wilkes et al., 2022. In short, 15,000 Monte Carlo simulations were 

performed based on the measured fragment δ13C values and measurement error, and the optimal 

solution for the matrix was calculated for each simulation using the linalg.lstsq function in the 

‘numpy’ python package. The δ13C value and error for each position was reported as the average 

and standard deviation of solutions to the 15,000 simulations. The attribution of each fragment to 

its constituent atomic positions is further described in Section 3.4.2. 

3.4) Results 

3.4.1) Gluconate measurement sensitivity and stability 

The useful ion yield of glucose was low: under the instrument conditions described in section 2.5, 

0.0004% of molecules introduced into the instrument were ionized and counted in the mass 

spectrometer. Gluconate, an oxidation product of glucose, had higher useful ion yield: 0.002% of 
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introduced gluconate molecules counted in the mass spectrometer, a 5x improvement relative to 

glucose. Additionally, gluconate produced an interpretable fragmentation pattern where most 

fragment ions could be clearly related to particular atomic positions—unlike glucose, where the 

relationship between fragment ions and atomic positions was not straightforward. As a result of 

these differences in ionization and fragmentation, we proceeded with gluconate as the analyte for 

this project. 

The useful ion yield of gluconate varied with sample concentration and flow rate. We examined 

ion yield at concentrations ranging from 5 to 100 μM. As expected, the highest total ion count 

(TIC) and highest ion counting rate were observed at the highest gluconate concentration (Figure 

3.2B). However, because of limits on the maximum possible Orbitrap scan rate, useful ion yield 

was maximized at a gluconate concentration of 25 μM. Meanwhile, the relative TIC stability 

(assessed as the relative standard deviation of TIC across scans) was highest at concentrations of 

70-100 μM. Accordingly, we performed measurements at a gluconate concentration of 50 μM in 

order to balance the need for signal stability and sample efficiency.  

We tested the useful ion yield of gluconate for flow rates from 4-15 μL min-1. We observed that 

the gluconate ion counting rate increased only by 1-5% with each 20-40% increase in sample flow 

rate (Figure 3.2B); thus, lower flow rates yield more efficient ionization. Meanwhile, ionization 

stability degraded at flow rates lower than 4 μL min-1. Because our injector module was limited to 

100 μL injections, we performed measurements at a flow rate of 4-5 μL min-1 in order to minimize 

the total number of injections required for a ~120-minute measurement while maintaining a stable 

ion signal. 

For our chosen gluconate concentration and flow rate, TIC for a 123-minute sample acquisition 

typically had a coefficient of variation of ~8-11% after removing intervals of dead time during 

injections. While TIC values throughout an individual acquisition were close to normally 

distributed, their distribution was typically slightly skewed toward higher values, with Fisher-

Pearson skewness coefficients ranging from -0.3 to 1.1 (Figure 3.2A). 13R values were typically 

closer to a normal distribution with skewness coefficients of -0.005 to 0.1. Measured 13R values 
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showed no statistical correlation to TIC within a given acquisition (r2 ≤ 0.01) and there was no 

relationship between the skewness of TIC and the skewness of 13R values.  

In the above method, which infuses 50 μM gluconate solution at a flow rate of 4-5 μL min-1 for 

123 minutes, a single acquisition consumes 5-6 μg of gluconate. Triplicate analysis of each sample 

therefore consumes 15-18 μg of gluconate.  

Because the acquisition duration is set by the desired precision (further detailed in Section 3.4.3), 

a less stringent requirement for measurement precision would enable shorter measurement 

durations and smaller sample sizes. For example, a 2x decrease in measurement precision could 

be achieved in a ~31-minute acquisition, and would consume only ~4 μg of gluconate per triplicate 

analysis. Meanwhile, a 2x increase in precision would require almost 500 minutes per acquisition. 

More substantial improvements in precision (without requiring unacceptably long measurement 

durations) might be possible through more stable infusion conditions that increase the rate of 

sample introduction, and/or with other Orbitrap interfaces that feature MSn options or larger 

analyzers. Meanwhile, further improvements in sensitivity, and therefore sample consumption 

rates, may be possible through additional optimization of sample introduction parameters in the 

ESI source. 

 

Figure 3.2: Metrics of measurement stability and sensitivity. A: Distribution of total ion count (TIC) and 13R values across a 140-

minute acquisition. B: Useful ion yield and TIC variation as a function of gluconate concentration (at 5 μL min-1 flow rate) and 

flow rate (at 50 μM gluconate concentration). 
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3.4.2) Gluconate fragmentation pattern 

The mass spectrum for gluconate under the instrument conditions described in section 2.5 

contained the molecular ion and an additional 17 unique fragments, each with a detectable 13C-

substituted peak (Figure 3.3). In order to calculate position-specific δ13C values from fragment 

δ13C measurements, we sought fragments that met the following criteria: 1) could be clearly 

attributed to a specific set of atomic positions (e.g., a 5-carbon fragment descended from C1–C5 

or C2–C6), and 2) represented unique combinations of atomic positions, where up to six unique 

fragments would allow us to mathematically solve for the six unknown positions. 

For each fragment, we first calculated the molecular formula of each fragment ion (i.e., the number 

of unique C, H, and O atoms) from the ion’s measured atomic mass. The difference between the 

exact mass for the predicted molecular formula and the measured mass was always < 0.6 mDa. 

Fourteen fragments contained between two and five C atoms, enabling the subsampling of 

different combinations of glucose atomic positions.  

Once the molecular formula was known for each fragment ion, we confirmed the distribution of 

glucose atomic positions in each fragment using positionally labeled glucose standards. Each 

standard was diluted with the natural 13C abundance standard GlcnA to contain ~10% 13C label at 

a single atomic position. The positionally labeled standards were oxidized to gluconate as 

described in section 3.3.2 and measured via the Orbitrap. Each labeled standard was measured 

relative to GlcnA. The exact amount of 13C label added was confirmed using the δ13CGlcnA value 

of the gluconate molecular ion: for each positionally labeled standard, the label accounts for one 

of the six C atoms in the intact molecular ion, while the other five positions have identical 13R 

values to GlcnA. Therefore, the δ13CGlcnA value at the labeled position can be calculated as six 

times the δ13CGlcnA value of the molecular ion.  

Once the δ13CGlcnA value at the labeled atomic position was calculated, that value was used to 

determine the contribution of that atomic position to any given fragment. For example, if a 

positionally labeled gluconate standard is 50‰ enriched at the C1 position relative to GlcnA, and 

it produces a two-carbon fragment that is 25‰ enriched, then 100% of that two-carbon fragment 
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contains the C1 atomic position. By performing this calculation for each positionally labeled 

standard and fragment, four fragments in addition to the molecular ion were found to descend from 

a single unique combination of gluconate atomic positions (Figure 3.3), meeting criterion 1 as 

described above; other fragments represented mixtures of two or more combinations of atomic 

positions.  

For this study, only fragment ions representing a single set of atomic positions were used: four 

fragment ions with nominal masses of 75, 87, 99, and 129, as well as the molecular ion with a 

nominal mass of 195. These fragments enable the independent observation of atomic positions C-

3, C-4, C-5, and C-6, according to criterion 2 (Figure 3.3). None of these fragments contained C1 

without C2 or vice versa, so we report (C-1+C-2) as the fifth unique intramolecular site observed 

in this study. We used these five fragments and five intramolecular sites to construct a matrix as 

described in Section 3.3.7 (Figure 3.8). 

In the future it may be possible to independently observe all six carbon atomic positions in glucose, 

because other fragments of gluconate that descend from mixed combinations of atomic positions 

do in some cases exclude C1. However, because different fragmentation pathways may induce 

different isotopic fractionations, further testing is first required to determine whether fragment ions 

descended from a mixture of fragmentation pathways can provide replicable isotope 

measurements.  

 

Figure 3.3: Orbitrap mass spectrum of gluconate, annotated with the molecular structure and atomic position makeup of 4 fragment 

ions and the molecular ion. The right panel shows a portion of the spectrum containing the isotopically unsubstituted molecular ion 

at m/z = 195.05 and the singly 13C-substituted version at 196.05. 
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3.4.3) Intra-analysis precision 

Each Orbitrap acquisition for a given standard or sample is comprised of many unique scans, 

typically ~30,000 individual scans for the instrument conditions described in Section 3.3.5. Each 

scan constitutes a single observation of the 13R value for a given packet of fragment ions (mass 

spectral ‘peak’) or set of peaks. The 13R value for a scan is calculated by dividing the number of 

13C-substituted ions counted by the number of isotopically unsubstituted ions counted. For a given 

peak, ~3,000–100,000 ions may be counted in a typical scan. We characterized the precision of 

these repeat observations of 13R by comparing the relative standard error of the measured 13R value 

across scans to the theoretical limit of precision imposed by counting statistics (i.e., the shot-noise 

limit). We consistently observed that the RSE across scans in an acquisition, termed “acquisition 

error”, decreased in inverse proportion to the square root of the number of ions counted, consistent 

with the behavior of counting statistics. Further, the acquisition error closely tracked the shot-noise 

limit as the number of ions counted increased: typical acquisition errors were within 20-30% above 

the corresponding (theoretical) shot noise error (Figure 3.4). This observation held true for all 

fragments of gluconate. As a result, the precision of 13R measurements of all fragments is set by 

statistical limits rather than instrument stability, and by observing a larger number of ions (e.g., by 

performing a longer measurement), a user can achieve higher levels of intra-analysis precision. 

Further improvements in precision for a given measurement duration could be possible in 

instruments with higher count rates. 
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Figure 3.4: Cumulative precision of fragment 13R values as ions are counted during an acquisition, assessed as the relative 

standard error of 13R values. “Effective counts” is calculated by normalizing the total number of ions by adding isotopically 

substituted and unsubstituted counts in quadrature, following John and Adkins (2010). The shot noise error (i.e., the theoretical 

limit of precision imposed by counting statistics) is plotted as a dashed line. 

3.4.4) Inter-analysis precision 

Inter-analysis precision was assessed by calculating the standard deviation of δ13CGlcnA values 

produced through repeat bracketed measurements of GlcnA and GlcnB. It was separately 

determined that accurate values could be reached by making three successive sample-standard 

comparisons (see Section 3.4.5). Standard deviations of δ13CGlcnA values produced by triplicate 

measurements were typically similar to the propagated acquisition error (i.e., the RSEs for each 

individual acquisition among the replicate measurements added in quadrature) (Figure 3.5B). In a 

test of 8 repeated bracketed comparisons, the cumulative standard deviation of δ13CGlcnA did not 

appreciably improve between 3 and 8 replicates, consistently remaining between 0.4–0.5‰, 

indicating diminishing returns in measurement precision with further replicates. 

3.4.5) Accuracy of molecular average measurement 

Testing the accuracy of PSIA by ESI-Orbitrap is challenging because there are no glucose or 

gluconate reference materials with known position-specific δ13C values. We therefore assessed 

measurement accuracy in two stages: first, we tested the accuracy of the molecular average 

measurement by comparing ESI-Orbitrap measurements of the molecular ion to externally 

measured values, described below. Second, we tested the accuracy of position-specific 

measurements using a positionally-labeled standard, described in section 3.4.6. 

We externally determined the δ13CVPDB values for standards GlcnA and GlcnB using EA-IRMS, a 

method that converts the entire glucose molecule to CO2 and measures the average δ13C value for 

all six C atoms. We used these measured δ13CVPDB values to calculate the δ13C value of GlcnB 

relative to GlcnA, notated as δ13CGlcnA. The δ13CGlcnA value of GlcnB was found to be 0.64±0.08‰ 

(n = 5 for each standard). We then used this externally verified value to benchmark the accuracy 

of ESI-Orbitrap measurements. The gluconate molecular ion (with nominal mass 195) present in 

the ESI-Orbitrap spectrum can be used to measure the δ13C value for intact gluconate, analogous 
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to the molecular average value obtained by EA-IRMS. By comparing δ13CGlcnA values of GlcnB 

obtained by ESI-Orbitrap and EA-IRMS, we were able to assess the accuracy of the molecular ion 

measurement (Figure 3.5). 

We first examined the effects of the instrument Automatic Gain Control (AGC) and resolution 

settings on the accuracy of our measurement. The AGC sets the number of ions that enter the 

Orbitrap for each scan, while resolution determines the length of time that the image current is 

observed during the scan. While a greater number of ions in the analyzer improves statistical 

uncertainty (via counting statistics), previous work has shown that a higher density of ions in the 

analyzer can also impart unwanted isotopic fractionations that might undermine measurement 

accuracy (Eiler et al 2017). Meanwhile, at a lower resolution, more frequent but shorter scans 

ensure that ions are counted more quickly (again improving uncertainty via counting statistics), 

but the failure to separate adjacent peaks can also cause systematic errors in measured isotope 

ratios. We found that δ13CGlcnA values were most accurate when the AGC target was set to its 

maximum value (i.e., the highest possible ion flux into the analyzer) (Figure 3.5A), and the 

resolution to a moderate value of 60,000. This finding suggests that for this measurement 

application, increased ion density does not decrease the accuracy of retrieved δ13C values, and that 

an overlapping 2H peak does not measurably bias 13C measurements. 

To further characterize measurement accuracy at the chosen AGC target and resolution, we 

performed repeat bracketed measurements of GlcnA and GlcnB by ESI-Orbitrap and calculated 

δ13CGlcnA of GlcnB for the molecular ion (Figure 3.5B). For a typical analytical session under stable 

instrument conditions, the average of any series of 3 or more bracketed measurements produced a 

δ13CGlcnA that was within error of the value obtained by EA-IRMS. Typical standard deviations for 

triplicate bracketed measurements of GlcnA vs. GlcnB were <0.7‰. 

3.4.6) TIC-dependence of measurement accuracy 

We found that measurement accuracy was highly sensitive to the ion signal intensity (total ion 

count, or TIC) delivered to the Orbitrap analyzer. TIC is a function of the concentration and flow 

rate of analyte introduced into the instrument (Figure 3.2B) as well as the presence of any 
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additional ions in solution (Kloepfer et al 2005)and the settings and stability of the ESI source 

(Leito et al 2008). As a result, differences in gluconate concentration produced biases in δ13C 

values for all measured ions of up to 23‰ (Figure 3.5C; Figure 3.8). Accurate δ13C values could 

only be recovered when the TICs of subsequent GlcnA standard measurements were identical 

within <15% relative difference.  

Relative differences in the concentration and/or TIC of subsequent measurements might impart 

differences in measured δ13C values through a number of possible mechanisms. First, interactions 

of ions in the ESI source may be a function of concentration, leading to concentration-dependent 

fractionations. For example, there may be a concentration-dependent formation of adduct ions with 

some isotopic preference, where adducts outside the AQS (Advanced Quadrupole Selector) mass 

window (m/z = 195.5 ± 1.4 Da) are then excluded from the Orbitrap measurement. Second, 

fractionation due to nonuniform ion transmission through the AQS is thought to be dependent on 

TIC where TIC exceeds 108  (Eiler et al 2017); these measurements were made at TIC of 2.3×108 

– 1.6×109, exposing them to possible fractionation during quadrupole mass selection. Third, the 

AGC (automatic gain control) is a mechanism that controls the frequency and duration of ion 

injection (injection time, IT) from the C-trap into the Orbitrap following fragmentation in order to 

maintain a user-selected abundance of ions in the Orbitrap. At a set AGC, the IT will necessarily 

vary for different analyte concentrations, with shorter ITs for higher concentrations. Due to 

isotopic fractionations occurring in the C-trap and Orbitrap, longer ITs have been shown to result 

in higher δ values under otherwise identical conditions (Eiler et al 2017). Additional testing is 

required to determine whether one or more of these effects creates the observed TIC-dependency 

of δ13C values measured for gluconate. 

Regardless of the cause of this observed trend, a linear correction of observed δ13C values based 

on relative differences in TIC may be possible. A linear regression of δ13CGlcnA for all measured 

ions of GlcnA vs. relative TIC difference produces a y-intercept of 0.1 (r2 = 0.9902); this value is 

within analytical error of 0, consistent with the idea that measurements with no relative difference 

in TIC produce an accurate δ13C value. By setting the intercept to 0, we obtain r2 of 0.9901 and a 

slope of -40.8 (dotted line shown in Figure 3.5C). When each fragment is assessed separately, 
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slopes range from -41.5 to -40.4, indicating remarkable consistency in the effect of TIC on δ13C 

values across fragments.  

While a linear correction therefore seems like a promising approach to retrieving accurate δ13C 

values across a moderate range of TIC differences, further testing is needed to determine whether 

the relationship between TIC difference and δ13C is consistent over multiple analytical sessions 

for both molecular ion and fragment ion measurements. Additionally, since the effect may be 

specific to the abundance of other ions in the sample matrix (e.g., the gluconate counterion and 

other trace inorganic ions in the sample background) (Eiler et al 2017, Hofmann et al 2020), further 

tests are required to determine whether this correction for reagent-grade sodium gluconate 

standards can be applied to natural samples. As a result, the most reliable way to retrieve accurate 

δ13C values is to carefully match the TIC of samples and standards within ~15% relative difference. 
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Figure 3.5: Metrics of measurement accuracy. A) Accuracy of δ13CGlcnA measurements of GlcnB with different Orbitrap AGC 

(Automatic Gain Control) targets. For A and B, blue shaded region indicates accurate value externally verified by EA-IRMS. B) 

Cumulative average δ13CGlnA values obtained for GlcnB over 10 repeat bracketed measurements. C) Measurement accuracy for all 

five measured ions across different sample-standard TIC differences, assessed by repeat measurements of GlcnA against itself 

(δ13CGlcnA of GlcnA, accurate value = 0‰). Dotted line shows a linear regression with the y-intercept set to 0 (r2 = 0.99), excluding 

measurements with relative difference >70%. D) Accuracy of fragment measurements comparing C-1 labeled (C1L) and unlabeled 

(MC4) standards on ESI-Orbitrap (blue) and EA-IRMS (magenta). Grey points show residuals, which are all within error of 0. 

3.4.7) Accuracy of position-specific isotope measurements 

After verifying the accuracy of the molecular average δ13C values obtained by ESI-Orbitrap, we 

tested the accuracy for δ13C measurements of fragment ions. To do so, we spiked glucose standard 

MC4 (a natural 13C abundance glucose standard with a δ13C value of -10.60‰) with ~0.01% 

glucose standard 13C-labeled at the C-1 position, creating a new standard “C1L”. To verify the 

exact amount of added label, we measured MC4 and C1L by EA-IRMS. The molecular average 

δ13CVPDB of C1L was 2.22‰ VPDB resulting in a calculated Δ13CC1L–MC4 of 12.83 ± 0.37‰ (n = 

5). Since the added label is known to be located entirely at C-1, this implies a Δ13CC1L-MC4 value 

for C-1 in C1L of 76.98‰. 

We next oxidized MC4 and C1L to gluconate following the method described in section 2.2 to 

enable measurement by ESI-Orbitrap. Using the known contribution of C-1 to each fragment 

(described in Section 3.4.2) and the extent of C-1 labeling determined by EA-IRMS (above), we 

predicted the expected Δ13CC1L-CM4 for each fragment, and compared them to the measured values. 

For these predictions,  Δ13CC1L–MC4 was assumed to be 0‰ at positions C-2 through C-6 (since no 

label was added at these positions). For example, the fragment with nominal m/z of 75, composed 

of 50% C-1 and 50% C-2, therefore had an expected Δ13CC1L–MC4 of 38.49‰, and so on. The 

measured Δ13CC1L-CM4 for each fragment by ESI-Orbitrap, using triplicate bracketed acquisitions, 

was within error of the predicted values (Figure 3.5D). Our developed method therefore achieves 

accurate Δ13C values within error (±0.5–0.7 permil) for both the molecular ion and fragment ions, 

without any additional bias introduced by our selected instrument parameters (including AGC 

target and resolution). This result further indicates that no meaningful 13C fractionation occurs 

during preparatory chemistry, including glucose oxidation to gluconate. 

3.4.8) 13C-PSIA comparison of glucose standards from different plant sources by ESI-Orbitrap 
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To illustrate a real-world application of our method, we measured two glucose standards, SC3 

and MC4, that are derived from C3 and C4 plants, respectively. The C3 and C4 photosynthetic 

pathways are named for the number of carbon atoms in their initial CO2 fixation products, and the 

two pathways produce glucose with distinct δ13C values (Bender 1968) due to differences in the 

strongly fractionating initial carboxylation reactions (O’Leary 1988). Accordingly, standard SC3 

had a measured δ13CVPDB of -26.43 ± 0.07‰ and MC4 of -10.99 ± 0.22 as measured by EA-IRMS. 

Previous work has shown that the carbon isotopic differences between C3 and C4 sugars are further 

distinguishable at the level of individual atomic positions (Rossmann et al 1991, Gilbert et al 

2013), and these differences should be apparent using our PSIA method. 

We oxidized both glucose standards to gluconate and measured each one relative to GlcnA in 

triplicate bracketed acquisitions. GlcnA was produced by microbial fermentation of corn glucose, 

a C4 product, and its molecular average δ13CVPDB value was externally measured on EA-IRMS to 

be -11.92 ± 0.03‰. For MC4, triplicate δ13CGlcnA measurements of the four measured fragments 

and the molecular ion produced standard deviations of 0.19–0.49‰ (Figure 3.6A). Standard 

deviations for triplicate δ13CGlcnA measurements of SC3 ions ranged from 0.13–0.48‰.  

Molecular average δ13CVPDB values for both standards were calculated from the δ13CGlcnA of the 

molecular ion and the externally-determined δ13CVPDB of GlcnA. The δ13CVPDB values for MC4 

and SC3 as measured by ESI-Orbitrap were  -13.55 ± 0.49‰ and -29.08 ± 0.20‰, respectively. 

These were offset from the values obtained via EA-IRMS by 2.56–2.65‰, outside of the error of 

the measurement. One possible explanation for the offset in measured δ13C values between EA-

IRMS and Orbitrap could be the effect of relative TIC difference on accuracy as described in 

Section 3.4.6. For SC3, the average relative sample-standard TIC difference was -17%, which may 

have contributed to a systematic offset in the δ13C values retrieved. However, for MC4, the average 

relative difference was only 4%, well within the range where accurate values were measured in 

tests of standards. We showed in Section 3.4.7 that we retrieve accurate δ13C values for each 

fragment after preparatory chemistry when both the standard and the sample have undergone 

glucose oxidation. However, here, we are comparing glucose standards SC3 and MC4, having 

undergone glucose oxidation, to the gluconate standard GlcnA that did not undergo chemical 
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preparation. These results suggest that some fractionation occurs during glucose oxidation to 

gluconate: assuming a normal kinetic isotope effect at the C-1 position could occur with glucose 

oxidation, then incomplete reaction could result in a 13C-depleted gluconate product relative to the 

starting glucose. This fractionation appears to affect all oxidized samples equally, as indicated by 

the results discussed in Section 3.4.7 (Figure 3.5D). Further testing is needed to verify the isotopic 

offset occurring with glucose oxidation and its relationship with reaction yield. However, because 

the offset is nearly identical for SC3 and MC4, we can compare the position-specific measurements 

for the two glucose sources with the expectation that any methodological fractionations would 

affect both equally. 

Error for position-specific δ13C values exceeds error in fragment values when more than one 

fragment is required to solve for a positional value (due to error propagation). For example, the 

δ13C value of C-3 is calculated from the δ13C values of fragments 75 and 87, so error from both 

fragment measurements is propagated to produce the error for C-3. As a result, the standard 

deviation of calculated δ13C values for positions (C-1+C-2) and C-3–C-6 for MC4 were 0.42-

3.10‰, and 0.21–2.33‰ for SC3 (Figure 3.6B).  

Nevertheless, the 13C-PSIA results for MC4 and SC3 show clear differences associated with their 

C4 and C3 plant origins. δ13CGlcnA for SC3 is lower at each intramolecular site by 12.1–31.8‰ 

than for MC4. To compare measurements of the two samples, we calculated the Δδ13C for each 

atomic position: 

 Δδ13CPosition = δ13CPosition-GlcnA - δ13CMolecular average-Glcn A  (3.6) 

Although SC3 has more variable values among intramolecular sites than MC4, both glucose 

standards show broadly similar relative trends in Δδ13C (Figure 3.6B). In both the C3 and C4 

glucose standards, lower values of Δδ13C were observed at (C-1+C-2) and higher values at C-3–

C-4 and C-6. Meanwhile, in SC3 the Δδ13C values at C-5 and C-6 have much larger amplitude 

than in MC4. C-6 has relatively low Δδ13C values in both standards, but in SC3, it is -6.0‰, 

whereas it is only -0.7‰ in MC4. The relative depletion at C-6 has been previously observed in 

studies of C3 and C4 glucose (Rossmann et al 1991, Gilbert et al 2012). In contrast, the strong 
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difference in Δδ13C at C-5 has not previously been identified in existing studies of 

intramolecular isotope composition of C3 and C4 glucose. The δ13C signature at C-5 and C-6 of 

cellulose-derived glucose was recently hypothesized to descend from changes in metabolic flux 

downstream of phosphoenolpyruvate (PEP) (Wieloch et al 2025), which would be expected to 

affect both C-5 and C-6 similarly, and is supported by strong correlation of position-specific δ13C 

signals at C-5 and C-6 in pine tree rings. This hypothesis is inconsistent with the divergent Δδ13C 

values at C-5 and C-6 observed in SC3 here. Little information is available about the provenance 

of standards SC3 and MC4, so it is difficult to predict how plant growth or reagent processing 

conditions may have driven specific intramolecular signals. However, because these signals 

diverge from expectations of tree-ring cellulose-derived glucose, they may point to mechanisms 

affecting plant glucose pools but not cellulose. 

Because the measurements presented here were made in reference to a laboratory standard GlcnA 

rather than on the VPDB scale, relative trends might also be influenced by the composition of 

GlcnA: for example, an unusually 13C enriched value for (C-1+C-2) of GlcnA might lead to the 

lower values of δ13CGlcnA observed for MC4 and SC3 at those positions. Further work is planned 

to externally verify the δ13CVPDB of a glucose standard via NMR-PSIA, which will allow our 

Orbitrap analyses to be anchored to the VPDB scale in the future. Nevertheless, this preliminary 

analysis demonstrates the ability to distinguish molecular-average and intramolecular trends in 

δ13C for natural glucose samples via ESI-Obitrap PSIA. This method for measuring intramolecular 

δ13C variations on μg- to mg-scale samples can enable a more nuanced study of glucose 

metabolism and provenance in many systems, from photosynthesis to food authenticity, microbial 

interactions, and human health.  
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Figure 3.6: Measuring and comparing glucose standards MC4 and SC3 (as gluconate) via ESI-Orbitrap. A) δ13CGlcnA values of 

fragment ions and molecular ion for MC4 and SC3, reported relative to standard GlcnA. B) Δ13C values of five unique atomic 

positions of glucose for MC4 and SC3, reported relative to the molecular average δ13CGlcnA value for each standard. Error bars 

indicate the standard deviation of triplicate measurements. 

3.5) Conclusions 

Here, we have demonstrated a new method for measuring the carbon isotopic composition of 5 

intramolecular sites within glucose at natural isotope abundance. This method consumes < 50 μg 

glucose for triplicate sample analysis, readily accommodating typical sample sizes for 

environmental and human health research. By measuring glucose as gluconate—an oxidation 

product of glucose produced by reaction with Br2 and sodium hydroxide—we can accurately 

measure the δ13C value of the molecular ion and four fragment ions, within analytical error of 

±0.1–0.5‰. Using our new method, we can observe intramolecular trends in δ13C values for 

natural sugars formed through two different photosynthetic pathways, recapitulating patterns 

observed in previous studies while decreasing sample consumption by more than four orders of 

magnitude (Gilbert et al 2009).  

Several future improvements to this method are possible. For example, externally verifying the 

position-specific δ13CVPDB values of a glucose reference material will enable users to anchor 

Orbitrap measurements to the VPDB scale. Further work could also demonstrate the possibility 

for independently measuring δ13C values for the C-1 and C-2 positions by testing the stability of 

isotope measurements for fragments with multiple formation pathways. Applying this method on 
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other Orbitrap analyzers may improve measurement precision without negatively impacting 

measurement duration or sample consumption. Finally, although this work has focused on 13C, 

stable oxygen and hydrogen isotopes can also be measured by ESI-Orbitrap (e.g., Mueller et al 

2022, Hilkert et al 2021), and we expect that further optimization and testing will allow 

measurements of position-specific δ18O and δ2H values in glucose. The position-specific isotope 

measurements we have shown, and the measurements that may soon be possible with further study, 

pave the way for more detailed investigations of sugar fluxes and provenance across a broad range 

of applications. 
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3.8) Supplementary information 

Supplementary Table 3.2. Summary of all ions in the mass spectrum of gluconate when analyzed under the conditions described in 

Table 3.1: ion exact molecular mass, molecular formula, and the difference between measured and known mass immediately 

following Orbitrap mass calibration. 

Exact mass Formula Δ mDa 

195.05044 C6H11O7 0.51090 

177.03977 C6H9O6 0.40618 

159.02904 C6H7O5 0.24037 

141.01841 C6H5O4 0.17581 

129.01829 C5H5O4 0.05980 

119.03399 C4H7O4 0.10543 

111.00767 C5H3O3 -0.002255 

101.02330 C4H5O3 -0.02116 

99.00764 C4H3O3 -0.02759 

89.02328 C3H5O3 -0.03812 

87.00762 C3H3O3 -0.04886 

85.02838 C4H5O2 -0.02764 

75.00758 C2H3O3 -0.08837 

73.02840 C3H5O2 -0.01003 

72.99202 C2HO3 -0.00088 

71.01272 C3H3O2 -0.03744 

59.01270 C2H3O2 -0.05706 

57.03344 C3H5O -0.05087 
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Figure 3.7: Matrix of equations used to calculate the δ13C of five intramolecular positions: Left, fractional contributions of each 

position to each fragment; center, calculated δ13C values for intramolecular positions; right, measured δ13C values of molecular ion 

and fragment ions. The optimal solution for the δ13C at each intramolecular position (center) is calculated through matrix inversion 

using the linalg.lstsq function in the ‘numpy’ python package. 

 

 

Figure 3.8: Measurement accuracy as a function of relative differences in sample-standard concentration, assessed by repeat 

measurements of GlcnA against itself (δ13CGlcnA of GlcnA, accurate value = 0‰).
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C h a p t e r  4  

POSITION-SPECIFIC 13C ANALYSIS OF CELLULOSE BY ORBITRAP 

UNCOVERS SPECIES-SPECIFIC ENVIRONMENTAL AND 

PHYSIOLOGICAL SIGNALS IN TREE RINGS 

Hannah Dion-Kirschner, Marco M. Lehmann, John Eiler, and Alex Sessions 

4.1) Abstract 

Tree-ring δ¹³C records are a cornerstone of paleoclimate and ecophysiology research, but 

conventional compound-specific isotope analysis (CSIA) of tree-ring cellulose provides δ13C 

values that average across multiple environmental and physiological signals. Position-specific 

isotope analysis (PSIA) offers the potential to deconvolve these co-occurring signals by measuring 

δ¹³C values of individual atomic positions. However, existing methods for tree-ring PSIA rely on 

nuclear magnetic resonance (NMR), which requires sample sizes that are prohibitively large for 

most dendrochronological applications. Here, we present the first application of PSIA via Orbitrap 

mass spectrometry to tree-ring cellulose, enabling δ¹³C analysis of individual atomic positions of 

cellulose-derived glucose using only 0.033 mg of cellulose per sample. We applied this method to 

23 tree-ring samples from Fagus sylvatica and Larix decidua grown under varied temperature, 

vapor pressure deficit (VPD), and soil moisture. The method yields average position-specific δ¹³C 

precision of 1.8‰, identifies intramolecular δ¹³C differences up to 21.7‰, and accurately matches 

values obtained by traditional CSIA. δ13C values at individual atomic positions, particularly C-3, 

recorded soil moisture and temperature changes more sensitively than did molecular-average δ¹³C 

values, and provided evidence for species-specific differences in carbon allocation strategies. In 

light of these findings, PSIA by Orbitrap offers a high-sensitivity tool for more detailed 

reconstructions of past climates and investigations of plant physiology. 

4.2) Introduction 

Tree rings are an invaluable, time-resolved archive of past environmental conditions and their 

effects on plant physiology (Speer 2010). Although the carbon isotope compositions (δ13C values) 
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of tree-ring cellulose are often interpreted as primarily reflecting plant water-use efficiency, in 

reality they convolve multiple forcings including vapor pressure deficit (VPD), precipitation 

amount, soil moisture, temperature, irradiance, and tree carbon allocation (Leavitt and Roden 2022 

and references therein). Disentangling these signals from compound-specific cellulose δ13C values 

has not been possible, but there is evidence that they can be separated by measuring δ13C at specific 

molecular positions within the glucose monomers that comprise cellulose (i.e., position-specific 

isotope analysis, PSIA) (Wieloch et al 2018, 2022). To date the only analytical approach for doing 

so has been nuclear magnetic resonance (NMR), which has sample size requirements (20-100 mg 

cellulose per sample) incompatible with work on tree ring records. Here, we apply our recently-

developed method for glucose PSIA to tree-ring cellulose samples at milligram-level sensitivity 

using Orbitrap mass spectrometry, and detail its first application to trees grown under varying 

combinations of vapor pressure deficit, temperature, and soil moisture.  

For hundreds of years, researchers have made use of tree ring records’ visually distinct annual 

increments of growth to learn about past climate (e.g., Du Hamel and De Buffon 1737). The 

application of stable isotope measurements to such records was firmly established via the late 20th-

century development of theoretical models for carbon isotope fractionation during photosynthesis 

in leaves (Farquhar et al 1982, 1989). These models equipped researchers with a conceptual 

framework to interpret temporal shifts in tree-ring δ13C values primarily as a function of plant 

water-use efficiency (WUE). The isotopic signature of WUE is imparted on fresh photosynthate 

as a result of the balance between CO2 supply (diffusion) and demand (fixation), where the free 

diffusion of CO2 under high WUE enables Rubisco to fully express its strong carbon isotope effect 

(α = 1.030) (Roeske and O’Leary 1984), while low WUE limits its expression. As one relevant 

example among many, Frank et al. (2015) recently inferred a shift in plant WUE from tree-ring 

cellulose δ13C values; this shift recorded the response of stomatal conductance to CO2 fertilization 

since 1900.  

Notwithstanding such successes, stable isotope dendroclimatologists have also recognized that 

signals of WUE in tree-ring δ13C are convolved with other climatic and physiological signals 

affecting photosynthesis and post-photosynthetic tree metabolism (Gessler et al 2014, Leavitt and 
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Roden 2022 and references therein), including irradiance, temperature, and metabolic carbon 

allocation. To mitigate the effects of competing variables, most researchers limit their study sites 

to locations where the targeted climate signal is expected to strongly outweigh any competing 

effects (Frank et al 2022, Belmecheri et al 2022). 

PSIA of cellulose offers an opportunity to deconvolve and measure many or all of the separate 

climate and physiological signals recorded in tree-ring δ13C values. While post-photosynthetic 

processes can alter the climate-related δ13C values of fresh photosynthate (Gessler et al 2014), they 

do so through enzymatic processes that impart isotopic fractionations at specific atomic positions 

where bonds are broken and formed. For example, drought can induce higher flux through the 

oxidative pentose phosphate pathway, where oxidation at C-1 is hypothesized to result in a stronger 

drought-related δ13C signal at that position (Wieloch et al 2022, 2025). Meanwhile, the δ13C value 

of C-4 is thought to be poorly correlated with climate variables because photosynthetic signals are 

overprinted by fractionation by the GAPDH enzyme (Wieloch et al 2018, 2025). One study of 

pooled P. nigra samples from Bierhäuselberg, Austria, in combination with a meta-analysis of 

plant physiological studies, indicated that individual atomic positions may independently record 

changes in vapor pressure deficit (VPD), precipitation, temperature, and irradiance (Wieloch et al 

2025). By developing a method to interrogate these position-specific signals that accommodates 

~mg-scale samples, we enable more detailed and nuanced reconstructions of climate variables 

from tree-ring records. 

Conventional measurements of tree-ring cellulose are unable to resolve positional differences in 

δ13C because these isotopic measurements are made on CO2: cellulose samples must be combusted 

prior to measurement, destroying any structural information. When every C position in the 

molecule is averaged prior to measurement, the method can be referred to as “molecular-average” 

or “compound-specific” isotope analysis (CSIA). In contrast, recently-developed methods for 

PSIA enable isotopic measurements on intact molecules. 13C-PSIA of tree-ring glucose has been 

demonstrated via NMR, revealing the signals recorded at atomic positions C-1 and C-4 as 

described above (Wieloch et al 2018, 2022, 2025). These findings highlight how PSIA of tree-ring 

samples can improve the strength of climate reconstructions. However, PSIA via NMR has 
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demanding requirements for sample size (20-110 mg glucose) (Wieloch et al 2018), analysis 

time (23 to >100 hours per sample) (Thomas Wieloch, personal comm.), and sample purity 

(>99.5%) (Gilbert et al 2009). To reap the benefits of PSIA for more nuanced climate 

reconstructions while circumventing analytical challenges, we have developed a new method for 

PSIA via Electrospray Ionization (ESI)-Orbitrap (Chapter 3), and here we apply it to glucose 

derived from tree-ring cellulose for the first time. 

Glucose 13C-PSIA via Orbitrap is made possible by pairing the soft ionization capabilities of ESI 

with the tandem mass spectrometry and ultrahigh mass resolution of Orbitrap mass spectrometry 

(Eiler et al 2017, Neubauer et al 2023). Prior to analysis, we oxidize glucose to gluconate to 

optimize measurement sensitivity and the interpretability of the fragmentation pattern. We are then 

able to introduce gluconate into the mass spectrometer as an intact ion via ESI. Using the 

quadrupole, gluconate is then selected according to its m/z ratio to pass to the higher-energy 

collision dissociation (HCD) cell, while excluding any contaminant ions. In the HCD cell, 

gluconate is fragmented via interactions with nitrogen collision gas. When these fragment ions are 

introduced into the Orbitrap, the 13C/12C ratio of all relevant fragments can be simultaneously 

measured (e.g., Eiler et al 2017, Hilkert et al 2021). Each fragment contains a different 

combination of atomic positions all descended from gluconate, allowing us to solve for the isotopic 

composition at each position using matrix algebra (Wilkes et al 2022) (Figure 3.3, Figure 3.8).  

Here, we present the first application of Orbitrap 13C-PSIA to tree-ring cellulose. We analyzed 23 

tree-ring samples from two tree species grown in a climate chamber under varied temperature, 

VPD, and soil moisture. We describe the preparatory chemistry we have developed to enable PSIA 

on natural wood samples, and demonstrate good agreement between whole-molecule δ13C values 

obtained from traditional compound-specific analysis versus those obtained from Orbitrap 

analysis. We show that PSIA produces good precision of δ13C values among biological replicates, 

and that different intramolecular positions exhibit different sensitivity to the VPD and moisture 

conditions the trees experienced during their growing season. Finally, we discuss avenues for 

future methodological improvements and opportunities to extend our method to other isotope 
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systems. Our results highlight the promise of Orbitrap PSIA for gaining new insights from tree-

ring records about how plants respond to environmental change. 

4.3) Methods 

4.3.1) Standard materials  

The glucose standard used in this work, called “SC3”, is of >95% purity and was obtained from 

Sigma-Aldrich (Lot # BCCD9888). Standard SC3 was derived from wheat, a C3 plant, and has a 

molecular-average δ13C value of -26.43 ± 0.07‰. Cellulose hydrolysis was tested using an α-

cellulose standard from Sigma-Aldrich (Lot # SLCN2412). 

4.3.2) Tree sample description and climate chamber treatment 

To assess the independent effects of tree physiology, temperature, and hydroclimate on position-

specific carbon isotope distribution in cellulose, we obtained tree-ring samples from two 

laboratory-grown tree species subject to different climate chamber treatments. The two tree species 

studied here were selected to capture both functional and phylogenetic diversity. The angiosperm 

Fagus sylvatica L. (European beech) is adapted to maritime and temperate climate regions, while 

the gymnosperm Larix decidua Mill. (European larch) is typically found in subalpine or montane 

environments. Both species have ecological and economic importance in European and North 

American forests. 

During the climate chamber experiment, 3-year-old trees of both species were grown at the 

Phytotron facility at ETH Zürich from May to November 2020. Trees were planted in 3-liter 

containers with a water-retentive soil mixture and distributed across four climate chambers 

(PGV36, Conviron, Canada). After a 5-week acclimation phase, the trees were subject to climate 

manipulation from June to November 2020, which exposed the samples to varied combinations of 

temperature, VPD, and soil moisture (Table 4.1). Chambers were set to a 16-hour daytime 

temperature of 25 °C or 30 °C (nighttime temperatures were 15 °C and 20 °C, respectively). For 

the chambers at 30 °C, one was set to a low daytime VPD of 1.0 ± 0.3 kPa, and the other to a high 

VPD of 2.2 ± 0.3 kPa. For the chambers at 25°C, trees of both species were exposed to either high 
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or low soil moisture (30% or 5% volumetric water content, respectively). Additional 

experimental details are provided in Schönbeck et al (2022). 

Table 4.1. Summary of experimental conditions, tree species, and sample number for climate chamber experiment. 

 

Climate variable Temp = 25 °C Temp = 30 °C 

VPD = 1.0 kPa 

Moist soil 

L. decidua (n = 3) 

F. sylvatica (n = 2) 

L. decidua (n = 3) 

F. sylvatica (n = 3) 

VPD = 1.0 kPa 

Dry soil 

L. decidua (n = 3) 

F. sylvatica (n = 3) 

- 

VPD = 2.2 kPa 

Moist soil 

- L. decidua (n = 3) 

F. sylvatica (n = 3) 

 

Approximately every five weeks during the climate chamber manipulation treatments, tree 

physiological measurements were performed and samples were collected for isotope analysis. Air 

CO2 was collected for measurements of concentration and carbon isotope composition, averaging 

467 ± 12.4 ppm and -10.9 ± 0.4 ‰ across all timepoints and chambers, respectively. At the end of 

the five-month climate chamber manipulations, stem tree-ring samples were collected, transferred 

to paper bags, and dried at 60 °C. To ensure samples represented only the growth that occurred 

during the climate chamber experiment, the youngest ring was separated from the tree stem 

samples prior to cellulose extraction. Tree-ring width was determined with visual examination and 

with scans of wood in thin section (Peters et al 2020) (Peters et al., 2020, Tree Physiology).  

In addition to the analyses described in this work, many other measurements were performed on 

samples from the climate chamber study, including the δ2H, δ13C, and δ18O of leaf and stem starch 

and sugars. We compare those measured properties to the results of PSIA in Section 4.4.5; full 

details of starch and sugar measurements were previously described in Lehmann et al. (2023).  

4.3.3) Cellulose purification 

Cellulose was extracted from tree-ring samples at the Swiss Federal Research Institute WSL as 

described in Schuler et al., 2023 and 2024. In brief, cut wood material was transferred and sealed 

in F57 fibre filter bags (Ankom Technology, Macedon, NY, USA). Sample lipids were removed 

by Soxhlet extraction in 2:1 toluene:ethanol for 8 hours or until solvent extract was colorless, then 
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for another 8 hours in pure ethanol. After drying overnight, samples were placed in an 

Erlenmeyer flask and boiled in deionized water for 3-4 hours to remove sugars. Next, sample 

holocellulose was isolated by bleaching in 7% sodium chlorite (adjusted to pH 4-5 with glacial 

acetic acid) at 60 °C for 30 hours, refreshing the solution every 10 hours. Samples were rinsed 

three times with boiling water and dried. Holocellulose samples were then incubated in 17% w/v 

sodium hydroxide at room temperature for one hour, repeating this step a total of two times before 

rinsing three times with boiling water. Finally, samples were incubated for one hour at room 

temperature in a 10% acetic acid solution and rinsed three more times with boiling water to yield 

purified α-cellulose. The cellulose product was removed from the filters, soaked in deionized 

water, homogenized with ultrasonication (UP200St , Hielscher, Teltow, Germany), and freeze-

dried. The reaction yielded ~10% α-cellulose. 

4.3.4) Cellulose hydrolysis 

To prepare samples for analysis by ESI-Orbitrap, cellulose was first hydrolyzed to its constituent 

glucose monomers in sulfuric acid following standard protocols (Saeman et al 1945, Betson et al 

2006). For each 5 mg of cellulose, 50 μL of 72% (w/w) H2SO4, chilled to 5 °C, was added. Samples 

were vortexed and then briefly spun in a benchtop mini centrifuge to maximize cellulose exposure 

to acid. Samples in screw-top conical polypropylene tubes were incubated in a water bath at 30 °C 

for one hour, vortexing every 15 minutes to mix. Following the one hour incubation, samples were 

diluted by adding 850 μL of water per 5 mg cellulose and then autoclaved at 121 °C for 1 hour. As 

soon as the autoclave cycle was completed, sample tubes were submerged in an ice bath. Solid 

CaCO3 was gradually added to each sample to bring the pH to ~5 (~60 mg per 5 mg cellulose). 

Neutralized samples were vacuum filtered through glass fiber filters. When tested on pure cellulose 

standards, the reaction proceeded with 70-80% yield and produced no discernible 13C fractionation 

between the starting cellulose and the final glucose solution (Supplementary Figure 4.5). Glucose 

yields were determined by high performance liquid chromatography using refractive index 

detection (HPLC-RID) (Section 4.3.5). 

Dissolved inorganic ions, including Ca2+ and SO4
2-, were removed from the filtrate prior to glucose 

oxidation in order to avoid precipitation of evolved gluconate. SO4
2- was first removed by 
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precipitation as solid BaSO4: 15 mg of BaCl were added to each sample per 50 μL H2SO4. 

After a 30 minute incubation at room temperature, samples were passed through a 0.22 μm PES 

filter to remove BaSO4 crystals. The filtrate was further desalted to remove Ca2+, Cl-, and trace 

remaining SO4
2- by passing through a 2.5 mL Dionex OnGuard II Ba/Ag/H cartridge. Each 

cartridge was washed with 15 mL of 18 MΩ deionized water prior to sample application. Sample 

was applied to the column and eluted at a rate of 1-2 mL/min. Following sample elution, an 

additional 1 mL of water was applied to the column and collected in order to flush out any 

remaining product. 

4.3.5) Glucose quantification 

To quantify glucose yield, samples were measured via an Agilent 1100 high-performance liquid 

chromatography (HPLC) system with a refractive index detector (RID). The HPLC was equipped 

with an Aminex HPX-87H column (300 x 7.8 mm) and sample compounds were separated with 

an isocratic method using 0.6 mL min-1 of 4 mM sulfuric acid. Glucose concentrations were 

determined from sample peak areas by comparison to a 4-point calibration curve. The standard 

deviation of repeat measurements was <0.6% of peak area. 

4.3.6) Glucose oxidation and desalting 

Glucose was oxidized to gluconate following (Bunzel and Mathews 1909), as described in Chapter 

3. In brief, the glucose solution produced by cellulose hydrolysis was combined with 1.1 

equivalents of Br2 and 2 equivalents of NaOH and stirred at room temperature for 5 hours. The 

product was desalted using a Dionex OnGuard II Ag/H column, following the same steps as 

described in Section 4.3.4. Gluconate yields were determined by ion chromatography and the 

oxidation method was found to impart no discernible 13C fractionation, as detailed in Chapter 3. 

4.3.7) Compound-specific δ13C measurements 

Compound-specific δ13C values of standards and samples were measured by elemental analyzer-

isotope ratio mass spectrometry (EA-IRMS). Measurements were performed on an EA IsoLink 

combustion elemental analyzer system interfaced to a Delta V Plus IRMS (Thermo Fischer 
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Scientific). Samples were weighed to ~20 μg carbon in tin capsules and combusted at 1020 °C, 

and the evolved CO2 was quantified and analyzed for its carbon isotope composition. Measured 

isotope ratios were calibrated to the VPDB scale using in-house isotope standards and international 

reference materials, and the standard deviation of repeat standard measurements was <0.1‰. 

4.3.8) Orbitrap measurements 

Aqueous gluconate samples were filtered to 0.22 μm with a syringe and PES filter (Tisch 

Scientific, Cleves, OH, USA) and then diluted to 50 μM in LC-MS grade methanol for analysis by 

ESI-Orbitrap. Full details of the Orbitrap measurement are found in Chapter 3. Briefly, samples 

were introduced onto a Q Exactive HF Orbitrap mass spectrometer (Thermo Fischer Scientific) 

using a Vanquish Horizon ultrahigh-performance liquid chromatography (UHPLC) system and a 

Heated Electrospray Ionization (HESI-II) probe (Thermo-Fischer Scientific). The UHPLC was not 

equipped with a column and no online separation occurred. Rather, the UHPLC was used to 

autosample and stably infuse 100-μL injections of sample or standard solution into the Orbitrap at 

a constant flow rate of 4 μL/min. For a typical analysis, 6 successive sample or standard injections 

were performed to produce a total analysis time of  >120 minutes. This ~120-minute measurement 

is termed an “acquisition”. This routine was repeated for sample-standard brackets, and each 

sample was measured in triplicate relative to a standard with matching ion signal intensity. These 

parameters were shown in Chapter 3 to maximize measurement precision and accuracy while 

minimizing sample consumption. Settings for the HESI-II source and the Orbitrap are detailed in 

Chapter 3.  

4.3.9) Data processing 

Several steps of data processing are required to convert Orbitrap .RAW files into molecular-

average and compound-specific δ13C values, outlined in full in Chapter 3. Briefly, ion signal 

intensities first were retrieved from .RAW files using IsoX (Kantnerova et al 2024) and used to 

estimate ion counts following Makarov and Denisov (2009) and Eiler et al (2017). Ion counts were 

used to calculate uncorrected isotope ratios (13R values) for each relevant ion in the mass spectrum 

in each scan, where ~30k scans are collected at a rate of ~5 s-1 during a single acquisition. Scans 
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were dropped from the dataset if they were collected during intervals of dead time between 

injections, or if they did not meet data quality thresholds established for mass accuracy and 

expected Automatic Gain Control behavior (Chapter 3; Eiler et al 2017; Chimiak et al 2021). In a 

typical measurement, >99% of scans met these data quality thresholds. The uncorrected 13R value 

for a sample acquisition was calculated as the mean of 13R values measured across all remaining 

unculled scans. 

4.3.10) Isotope calculations 

The uncorrected 13R value for each measured fragment in a given acquisition was converted to a 

δ13C value on the basis of repeat sample-standard measurements:  

 δ13CSample-Standard = 13RSample - 
13RStandard / 

13RStandard  (4.1) 

δ13C values are reported in permil (‰), indicating parts per thousand relative difference between 

measured sample and standard 13R values. The δ13C values reported here are the average of three 

sample-standard comparisons, and the error bars represent the standard deviation of these 

comparisons, unless otherwise noted. 

While studies usually report δ13C values on the VPDB scale, ESI-Orbitrap measurements can only 

be tied to VPDB by comparing to another standard for which position- or fragment-specific 

δ13CVPDB values have been externally determined. No glucose or gluconate reference materials 

with known position-specific values are currently available. As a result, we report all δ13C values 

measured by ESI-Orbitrap relative to the standard SC3, and denote these values as δ13CSC3: 

 δ13CSC3= (13RSample- 
13RSC3) / 

13RSC3  (4.2) 

When we report δ13C values anchored to the VPDB scale (i.e., those obtained by EA-IRMS), we 

denote these values as δ13CVPDB. 

We converted measured δ13C values for fragment ions to position-specific δ13C values using a 

matrix of equations constructed as previously described (Chapter 3; Wilkes et al 2022). Fragments 
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were attributed to their constituent atomic positions using positionally 13C-labeled standards. 

For each sample, 15,000 Monte Carlo simulations of the matrix of equations were constructed 

based on the measured fragment δ13C values and measurement error, and the optimal solution for 

the matrix was calculated for each simulation using the linalg.lstsq function in the ‘NumPy’ Python 

package. The δ13C value and error for each intramolecular position was reported as the average 

and standard deviation of solutions across the Monte Carlo simulations. However, because 

measurement error is relatively well-correlated among fragments, the error propagated through the 

Monte Carlo simulations likely overestimates the true measurement uncertainty. Measurement 

precision and uncertainty are further discussed in Sections 4.4.3 and 4.4.4. 

4.3.11) Data analysis 

To identify significant correlations among measured variables, we calculated linear regressions by 

ordinary least squares (OLS). Regression p-values were corrected for multiple hypothesis testing 

using the Benjamini-Hochberg false discovery rate correction using the ‘fdrcorrection’ function in 

the Python package ‘statsmodels’. When performing t-tests between different conditions, we 

applied Welch’s t-test to accommodate instances of unequal variance, using the ‘ttest_ind’ function 

from the Python library ‘SciPy’. T-test p-values were similarly adjusted with the Benjamini-

Hochberg correction. 

4.4) Results and discussion 

4.4.1) Sample consumption 

For each measurement, samples were diluted to 50 μM based on the gluconate concentration 

determined by ion chromatography (Section 4.3.6), and 6 100-μL sample injections of 100 μL 

were made for each acquisition. To measure one sample in triplicate therefore consumed a total of 

~18 μg gluconate. According to the yields observed for the preparatory chemistry methods, total 

sample consumption amounts to ~0.033 mg α-cellulose. This compares favorably to the α-cellulose 

consumption reported for traditional (i.e., molecular-average) cellulose 13C analyses, which ranges 

from 0.04 mg to over 1 mg among 285 studies from 2009–2019 (Belmecheri et al 2022), not to 
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mention those for PSIA by NMR (> 100 mg). The sample efficiency of Orbitrap-based PSIA 

highlights its utility for measuring environmental samples, where material is often limited.  

We expect that it is possible to further reduce sample consumption during Orbitrap 13C-PSIA of 

gluconate by lowering analyte concentrations. As shown in Chapter 3, decreasing the analyte 

concentration from 50 to 25 μM causes only a minor loss in signal stability while improving the 

useful ion yield. While we have not yet verified the limits of measurement precision and accuracy 

at lower sample concentration, these early results show promise for further decreasing sample 

requirements for PSIA.  

4.4.2) Accuracy effects of signal intensity 

In Section 3.4, we showed that Orbitrap measurements of gluconate standards can retrieve accurate 

δ13C values for the molecular average and for each fragment ion, enabling accurate calculation of 

position-specific values. However, the δ13C values retrieved for comparisons of subsequent 

acquisitions were strongly dependent on the relative difference in total ion count (TIC) between 

those acquisitions. The TIC-dependent effect we observe is analogous to nonlinearities in isotope 

ratios observed in sector mass spectrometers across a range of signal intensities (e.g., Merritt and 

Hayes 1994), sometimes called a “linearity effect” (e.g., Brand 1998). However, the cause of this 

effect in Orbitrap analyses is not yet known. Several hypotheses could explain the observed TIC-

dependence: possible mechanisms might include sample-matrix interactions in the source or 

nonlinearities in AQS (advanced quadrupole selector) ion transfer at very high ion abundance. 

Because the samples measured here differ from the gluconate standards measured in Chapter 3 in 

both matrix composition and ion abundance, we tested whether the effect observed in gluconate 

standards was replicable for cellulose standards and samples. 

Size effects on δ13C were tested using standard SC3, a reagent-grade glucose standard that we 

oxidized to gluconate and desalted following the protocols outlined in Section 4.3.6. As a result, 

any minor side products and residual salts introduced during glucose oxidation would be present 

in SC3 as in the natural cellulose samples. These include a minor component at nominal mass 193 

with molecular formula C6H9O7 (relative peak height = < 5%) and any Na+ and Br- not fully 
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removed during desalting. SC3 was measured repeatedly relative to itself  (δ13CSC3 of SC3, 

accurate value = 0‰), diluted to different concentrations in order to induce TIC differences. Like 

in  tests of sodium gluconate standards (see Section 3.4.6), this test produced a TIC dependence of 

δ13C values; however, the relationship between relative TIC difference and the bias in δ13C values 

was much more muted and with an opposite sign (slope = 4.7) compared to the relationship we 

found for gluconate standards (slope = -40.8) (Figure 4.1). It is not currently known whether this 

substantial difference in TIC-dependent behavior between standards and samples is related to a 

matrix effect, a TIC effect, or some other mechanism.  

 

Figure 4.1: Measurement accuracy for all five measured ions across a range of relative TIC differences, assessed by repeat 

measurements of SC3 against itself (δ13CSC3 of SC3, accurate value = 0‰). Each point represents a comparison of two acquisitions 

for a given ion; error bars show the relative standard error of 13R among scans propagated from both acquisitions. Dotted lines 

show a linear regression between relative TIC difference and δ13C value for each ion. 

For the molecular ion and all 4 fragments of SC3 measured across 12 different relative differences 

in TIC, the y-intercept of a linear regression between relative TIC difference and δ13C value was 

within or nearly within one relative standard error of zero (-0.31±0.25 to 0.37±0.72; average y-

intercept = 0.07) (Figure 4.1). This finding suggests that an accurate δ13C value of sample-standard 

comparisons can be retrieved by estimating the y-intercept of a linear regression between relative 

TIC difference and measured δ13C.  
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Based on these results, we corrected measured sample δ13C values for each fragment according 

to signal intensity. Standards were prepared to match each sample’s expected TIC (using short test 

measurements to select appropriate standard dilutions); nevertheless, because of unpredictable run-

to-run variability in TIC, the relative sample-standard TIC differences among all 24 measured 

samples ranged from -65% to +94%. To correct for size-dependent errors, measured δ13C values 

were extrapolated back to the y-intercept by linear regression between relative TIC difference and 

δ13C value. The average correction across all 120 fragment ion δ13C measurements was +0.69‰. 

We report uncertainty for each fragment’s δ13C value as the 90% confidence interval of the 

calculated y-intercept. 

Of twenty-three measured samples, four had an average correction larger than 2.5‰ across all five 

measured ions. These samples were not distinguished by unusual TIC values, TIC variability, 

sample-standard TIC differences, or abundance of contaminant ions in the sample matrix. 

Nevertheless, each of these four samples exhibited an unusually high TIC dependence of measured 

δ13C values (slope = 12.8–22.9‰ per 100% relative difference) relative to other samples (average 

slope among other samples = 2.4). These slopes were also markedly higher than the slope of 4.7 

observed for the glucose standard SC3. Although the reason for this trend is not yet known, the 

four samples with unusually large δ13C corrections were flagged as a possible source of error in 

data analysis, discussed further in Section 4.4.3. 

4.4.3) Accuracy of molecular-average δ13C values 

To further assess the accuracy of our measurements on natural samples, we compared the δ13CVPDB 

values measured for the gluconate molecular ion to the molecular-average δ13CVPDB value of 

cellulose obtained by EA-IRMS. (δ13CVPDB of the molecular ion could be determined by Orbitrap 

because the molecular-average δ13CVPDB of the standard, SC3, was externally determined by EA-

IRMS.) Both of these methods report the average δ13CVPDB value across all six carbon atomic 

positions in the glucose monomer of cellulose. A pairwise comparison of the δ13C values retrieved 

from the two methods showed strong agreement, with an average offset of only -0.6‰ (Figure 

4.2). In all, 22 out of 23 molecular-average values measured by Orbitrap were accurate within error 

of values measured by EA-IRMS (1σ). 
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The four samples with the largest TIC correction (Section 4.4.2) also had the largest offset 

between δ13C values measured by EA-IRMS and by Orbitrap. These four samples had an average 

offset of -4.1‰, while the rest of the dataset averaged 0.1‰ (Figure 4.2). A linear regression of 

the Orbitrap and EA-IRMS δ13C values measured for all 23 samples produced a slope of 0.82 and 

an r2 value of 0.30; removing the four flagged samples improves the slope to 0.94 and the r2 value 

to 0.78. This finding suggests that, by identifying and controlling for the factors that induce TIC 

sensitivity in measured δ13C values, measurement accuracy can be further improved. 

Where an offset is observed between molecular-average δ13CVPDB values measured by Orbitrap 

and by EA-IRMS, several explanations are possible. EA-IRMS measurements were performed on 

whole α-cellulose, while Orbitrap measurements were made on cellulose-derived gluconate. 

Isotopic fractionation during preparatory chemistry is therefore a candidate to explain the 

disagreement between measured δ13C values of cellulose and gluconate. We showed in Chapter 3 

that any fractionation occurring during the oxidation of glucose to gluconate affects samples and 

standards equally (Figure 3.5D). Similarly, in tests of cellulose hydrolysis using reagent-grade α-

cellulose standards, EA-IRMS measurements of the cellulose reactant and the glucose product 

produced δ13CVPDB values that were identical within error (1σ, Supplementary Table 4.2). These 

tests support that preparatory chemistry is not a significant source of fractionation for reagent-

grade materials. Nevertheless, some samples may have behaved differently from reagent-grade 

materials due to differences in cellulose particle size, sample matrix components, or other 

properties. 

To further investigate potential sources of isotopic fractionation during sample preparation, we 

measured the molecular-average δ13C of the cellulose hydrolysis product for each natural cellulose 

sample by EA-IRMS. In contrast to the test of reagent-grade cellulose, this test revealed a 

systematic offset between cellulose and glucose δ13C, where glucose was enriched by an average 

of 0.77‰ relative to cellulose (range: -0.01 to 1.74‰) (Supplementary Figure 4.6).  Several 

mechanisms might explain this trend. First, incomplete hydrolysis of α-cellulose to glucose could 

impart an isotopic fractionation. However,  an inverse kinetic isotope effect would be required in 

order to create the observed enrichment of the glucose product relative to the cellulose reactant 
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pool. Inverse isotope effects are uncommon, and hydrolysis of glycosidic bonds was previously 

reported to induce a normal—not inverse—carbon isotope effect (Bennet and Sinnott 1986), 

making incomplete cellulose hydrolysis an unlikely explanation for the 13C enrichment of glucose. 

A second possibility is that the α-cellulose preparation protocol did not fully remove all other 

components of the wood. If the cellulose samples measured by EA-IRMS also contained some 

other component not hydrolyzable to glucose, and that component was 13C-depleted relative to α-

cellulose, this could explain the relative 13C-enrichment of the glucose product we observe here. 

By mass balance calculation, the non-cellulose component of the samples would need to be as 

much as 6.9‰ more 13C-depleted than the colocated cellulose. While previous studies have shown 

that tree-ring lignin and fatty acids are typically 2–4‰ depleted in 13C relative to cellulose (Helle 

et al 2022), a 7‰ offset between components even after thorough α-cellulose purification seems 

unlikely. Additionally, while we would expect the proportion of non-cellulose components like 

resin and lignin to differ substantially between our angiosperm and gymnosperm tree samples 

(Sjöström 1993), a t-test found no statistically significant difference in the δ13C offsets between 

tree species (p = 0.78). A third possible mechanism is that the glucose evolved from cellulose 

hydrolysis might partially degrade under hot and acidic reaction conditions before the reaction is 

quenched, imparting a normal kinetic isotope effect. When we examined the relationship between 

measured hydrolysis yield and the δ13C offset between cellulose and glucose for natural samples, 

we found a weak but statistically significant positive correlation (r2=0.25, p=0.014) 

(Supplementary Figure 4.6). Additionally, samples were hydrolyzed in batches of 6; comparisons 

of the δ13C offset between batches were statistically significant in 5 of 6 possible pairs (p ≤ 0.05). 

In an initial test subjecting reagent-grade glucose to the conditions of our cellulose hydrolysis 

method, no glucose loss was apparent (yield = 100% glucose, n = 2). Nevertheless, the evidence 

for carbon isotopic fractionation of samples due to glucose degradation is otherwise strong, and 

offers the best explanation for the δ13C offset observed between sample cellulose and glucose. 

Previous work has shown that glucose degradation at high temperature and low pH forms 5-

hydroxymethylfurfural, which further degrades to levulinic acid and formic acid (Saeman et al 

1945). While 5-HMF was not detected in sample cellulose hydrolysates by LC-RI or MS, levulinic 

acid was detected at substantial abundance by MS ([C5H8O3 - H
+], m/z = 115.039). The proposed 
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degradation pathway involves oxidation and reduction of functional groups at the C-1 and C-2 

positions (Kang et al 2019) that could impart fractionation against 13C, leaving the remaining 

glucose pool with higher δ13C values. If the isotopic fractionation equally affected the C-1 and C-

2 positions, then a difference of 0.77‰ in the molecular average δ13C value would result in a bias 

at each of those positions of 2.31‰. However, no statistical relationship was found between the 

relative intramolecular enrichment of positions C-1 and C-2 and the hydrolysis yield for a given 

sample (r2 = 0.03, p = 0.40). This result supports that despite possible 13C fractionation during 

cellulose hydrolysis, no strong or systematic bias was imparted in measured position-specific δ13C 

values.  

To further verify the effect of cellulose hydrolysis on position-specific δ13C values, we will expose 

a glucose standard with a known 13C enrichment at C-1 to the conditions of cellulose hydrolysis, 

and compare the product to an unaltered glucose standard by EA-IRMS and Orbitrap. Until the 

results of this test are available, we can interpret the initial PSIA results while keeping in mind that 

the δ13C values measured at C-1 and C-2 might be artificially high in some samples, although no 

systematic difference is present.  
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Figure 4.2: A: Comparison of molecular-average δ13C values as measured by EA-IRMS (x-axis) and Orbitrap (y-axis). Error bars 

show one standard deviation of  δ13C values measured for that sample. Orange points are those for which the TIC correction of the 

δ13C value measured by Orbitrap was > 2.5‰ (Section 4.4.2). Orange line shows a linear regression including those values; green 

line shows a linear regression excluding those values. B: Detail of panel A. Gray line is 1:1 line. 22 of 23 samples are within error 

of 1:1 line (1σ). 

4.4.4) Precision of position-specific values 

For each fragment measurement in each sample, precision was assessed as the 90% confidence 

interval of the y-intercept of a regression between TIC and δ13C, as described in Section 4.4.2. 

Since position-specific δ13C values are calculated using more than one fragment measurement, the 

uncertainty from each measured fragment is propagated, producing larger error bars. For example, 

one sample had uncertainties in fragment δ13C values ranging from 0.09–0.68‰, while the 

uncertainty for atomic position δ13C values ranged from 0.18–3.06‰. Uncertainty was often 

highest for the C-5 and C-6 positions: these positions are measured only in the one or two ions 
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with highest mass (195 and 129), where the signal is diluted by the signal from the four to five 

co-occurring carbon atoms. 

The uncertainties estimated by comparing biological replicates were consistently much smaller 

than those derived from error propagation of the fragment uncertainties. The standard errors of 

position-specific δ13C values among biological triplicates averaged 1.8‰, ranging from 0.1–7.2‰. 

This closely approaches the precision observed for PSIA of glucose standards, which averaged 

1.4‰ (range: 0.21–3.10‰). In other words, sample measurements generally match the limits of 

precision achieved with reagent-grade standards. Meanwhile, the error propagated through our 

Monte Carlo simulations was never better than 3.0‰ and typically exceeded 10‰. The good 

agreement of position-specific values among biological triplicates suggests that propagation of 

fragment uncertainties substantially overestimates the true uncertainty of the measurement. The 

method of error propagation we apply to calculate position-specific δ13C values assumes that each 

source of error is independent of the others. In contrast, errors in δ13C values across fragments are 

likely to be correlated, because they arise from similar effects. For example, we have shown that 

the TIC-dependence of δ13C produces similar trends in all fragments (Figure 4.1). As Orbitrap-

PSIA is further developed, future work should investigate how to accurately characterize 

measurement uncertainty, identifying correlated and uncorrelated sources of error for fragment 

measurements. Here, we report uncertainty on PSIA results as the standard error of biological 

triplicates.  

Overall, our position-specific analyses of tree-ring cellulose samples approach the precision 

achieved by NMR (0.7–1.4‰; Wieloch et al 2018) while consuming over 650 times less sample 

and requiring up to 6-fold less measurement time. While this exceeds the typical uncertainty of 

molecular average δ13C values measured by EA-IRMS, observing the same signal size in a 

molecular-average measurement would in effect require 6x better precision due to dilution by the 

other 5 C atoms—so, for example, 1‰ precision for a single atomic position is analogous to 0.17‰ 

precision for the whole molecule. PSIA additionally offers the substantial advantage of 

independently observing atomic positions, where opposing δ13C trends would counteract each 

other in a molecular-average measurement. Since only one record of position-specific δ13C in tree 
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rings currently exists, it is difficult to anticipate the magnitude of climate signals that can be 

observed by 13C-PSIA in comparison to the precision we achieve here. However, the existing 

record recovers up to 3.37‰ variance in positional δ13C over 34 years (Wieloch et al 2018), which 

already exceeds the typical uncertainty of our position-specific measurements. 

4.4.5) Intramolecular trends in δ13C 

Clear intramolecular trends in δ13C values are visible across our dataset (Figures 4.3 and 4.4). For 

example, the δ13C of C-1+C-2 is consistently more negative than δ13C of C-3, with the difference 

averaging 6.6‰. We measure intramolecular differences in δ13C of up to 21.7‰, with an average 

spread of 11.6‰ within a given experimental condition. These intramolecular differences far 

exceed the uncertainty of our measurement, demonstrating the sensitivity of Orbitrap PSIA for 

detecting intramolecular heterogeneity in natural carbohydrates. Meanwhile, position-specific 

δ13C values were uncorrelated with one another (p > 0.05) except for C-4 and C-6 (p = 0.0001), 

suggesting that each position generally records different signals. 

Because the δ13C values for each atomic position were measured relative to standard SC3—a 

natural glucose standard from a C3 plant, with its own intramolecular pattern—the intramolecular 

differences we detect here are the sum of the patterns in SC3 and in the tree-ring samples, which 

may combine to enhance or diminish the true intramolecular variability in the samples. We can 

estimate samples’ true intramolecular patterns by assuming that SC3 is similar to another glucose 

standard from the same product number that was measured by NMR (Youki Sato, pers. comm.; 

Supplementary Figure 4.7). Under this assumption, we estimate the true intramolecular variability 

to be on average ~13‰. This result closely matches our measured variability of 11.6‰, supporting 

that our measurements accurately represent the true amplitude of intramolecular signals. 

To assess the value added by performing PSIA rather than CSIA alone, we compared the δ13C 

values measured for each position to the molecular-average values obtained by EA-IRMS. Of the 

five measured positions, only C-3 had a significant linear correlation with molecular-average 

values (p = 0.001). (For C-1+C-2, p = 0.090, and for C-4–C-6, p > 0.2.) This indicates that any 

trends observed at positions other than C-3 in this dataset would not likely be observed by 
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traditional compound-specific δ13C measurements. Further, the regression of C-3 δ13C values 

as a function of the molecular average produces a slope of 1.75. This suggests that isotopic signals 

are more strongly recorded at C-3 than in the molecular average, where other atomic positions can 

dilute the signal.  

We also compared positional δ13C values to compound-specific δ2Η, δ13C, and δ18O values 

measured for leaf and stem starch and sugars (Section 4.3.2). C-3 had statistically significant 

correlations with the δ13C of stem starch and sugars and the δ2H of stem sugars, while C-6 was 

significantly correlated with the δ2H of leaf and stem sugars (p = 0.01 for all). No other positions 

correlated with any of the starch or sugar measurements, including the δ13C of starch and sugar, 

despite the fact that cellulose is synthesized from glucose-6-phosphate, which is closely linked to 

plant starch and sugar pools. This finding suggests that the δ13C at positions other than C-3 may 

be altered by metabolic fractionations acting on starch and sugars. For example, C-1 and C-2 of 

cytosolic glucose is predicted to experience 13C fractionation during fluxes through glucose-6-

phosphate isomerase (GPI) and glucose-6-phosphate dehydrogenase (G6PDH) (Wieloch et al 

2025), including at metabolic branchpoints associated with starch synthesis. Variation in carbon 

allocation among metabolic pathways like starch production would therefore be expected to 

change the relationship between the δ13C of sugar, starch, and cellulose pools at atomic positions 

where fractionations occur. Meanwhile, C-3 is not thought to be strongly fractionated by most 

enzymes in plant metabolism (Wieloch et al 2025), which aligns with our observation that its δ13C 

signature is closely related among starch, sugar, and cellulose (r2 = 0.50 for cellulose vs. starch 

and for cellulose vs. sugar).  

4.4.6) Response of position-specific δ13C values in tree-ring cellulose to moisture and temperature 

Using tree-ring samples from the climate chamber experiment, we were able to assess the 

independent effects of air moisture (via vapor pressure deficit, VPD), soil moisture (via soil 

volumetric water content, VWC), and temperature on the position-specific δ13C values of 

cellulose. Each condition produced distinct position-specific signatures, and the two studied tree 

species (F. sylvatica, European beech; and L. decidua, European larch) also exhibited different 

patterns of sensitivity to climate perturbations. 
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In the soil moisture experiment, trees grown at 25 °C and 1 kPa VPD were grown in soil with 

either 5% (low) or 30% (high) volumetric water content. The δ13C value of C-3 was significantly 

correlated with soil moisture (p = 0.004), driven most strongly by 13C enrichment at low soil 

moisture in larch samples (Figure 4.3C and F). Previous work has indicated that the carbon isotopic 

composition of C-3 is imparted primarily during CO2 diffusion and fixation by Rubisco (Wieloch 

et al 2025), where the extent of fractionation is controlled by the balance of stomatal conductance 

and photosynthetic rate (Farquhar et al 1982, 1989). Because all plants in the soil moisture 

experiment grew at equal temperature and illumination, stomatal conductance is expected to be 

the primary control on fractionation during photosynthesis. The relationship we observe between 

C-3 and soil moisture is therefore likely to reflect higher stomatal conductance when more soil 

moisture is available, consistent with plant hydraulic control of leaf gas exchange (Sadras and 

Milroy 1996, Martínez-Vilalta et al 2014). Soil moisture was also significantly correlated with 

molecular-average δ13C of cellulose (p = 0.002), and with the δ13C of stem starch and sugars (p = 

0.001). However, C-3 was roughly twice as sensitive to soil moisture than any molecular-average 

measurement (slope = -0.22 for C-3 vs. -0.10–0.13 for molecular-average measurements), again 

supporting the enhanced sensitivity of PSIA over CSIA for detecting climatic signals. 

Beech and larch samples grown at low soil moisture also exhibited species-specific trends in δ13C 

values: in beech, C-4 was 7.9‰ higher, while in larch, C-3 and C-5 were elevated by 5.7‰ and 

6.3‰, respectively (Figure 4.3C and F). While our results suggest that C-3 records differences in 

stomatal conductance (driven by soil moisture) across all conditions, species-specific signals at C-

4 and C-5 could represent metabolic adjustments each taxon makes in response to soil drought, 

such as fluxes to glycolysis via glyceraldehyde-3-phosphate dehydrogenase (GAPDH) at C-4 

(Canellas and Cleland 1991) or to the tricarboxylic acid cycle or methylerythritol phosphate (MEP) 

pathway at C-5 (Wieloch et al 2025).  

In the air moisture experiment, trees grown at 30 °C and 30% VWC were exposed to VPD of either 

1 or 2.2 kPa. Unlike the soil moisture experiment, here there was no statistically significant effect 

at any intramolecular position (Figure 4.3B and E). Linear regression of VPD against each position 

and against the molecular average produced p values ranging from 0.14–0.91. Similarly, Welch’s 
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t-test showed no significant difference between low and high VPD treatments at any position 

or for the molecular average (p = 0.28–0.90). In the larch samples, C-4 and C-6 have higher δ13C 

values under higher VPD, but the values are within error of the low VPD treatment. These findings 

contrast with a previous study that reported that VPD strongly correlated with C-1, C-2, and 

molecular-average δ13C values (Wieloch et al 2018) at VPD values between 0.35 and 0.75 kPa. It 

is possible that with plentiful soil moisture (VWC = 30%), the plants did not decrease their 

stomatal conductance even under low-humidity conditions. While another study of these climate 

chamber samples showed minor loss of stomatal conductance with VPD increase (Schoenbeck et 

al 2022), these tests of stomatal conductance were performed at elevated irradiance compared to 

climate chamber conditions. Without further study, we cannot conclude why no clear VPD signal 

was observed, but adequate soil moisture availability provides a reasonable explanation. 

In the temperature treatment, trees grown at 1 kPa VPD and 30% soil moisture were exposed to 

daytime temperatures of either 25 or 30 °C (nighttime temperatures were 15 °C and 20 °C, 

respectively). This treatment induced distinct responses in beech and larch samples: beech showed 

a large difference in δ13C of C-3 vs. C-4 at 25 °C that was almost completely muted at 30 °C 

(Figure 4.3 A and D). Meanwhile, larch showed a significantly higher δ13C value at C-6 at 30 °C 

than at 25 °C. C-3 in beech samples was consistently negatively correlated with temperature across 

all experimental treatments (p = 0.005), with a slope of  -0.97‰ per degree C. The opposing trend 

in C-3 and C-4 at lower temperature may derive from flux through aldolase, which exerts a normal 

kinetic isotope effect at C-3 and an inverse isotope effect at C-4 in the direction of bond formation. 

This trend imparted by aldolase on the cytosolic sugar pool is muted with increased glycolytic flux 

through GAPDH (Canellas and Cleland 1991). Thus, if beech samples upregulate glycolysis in 

response to increased temperature, that could explain the isotopic trends we observe at C-3 and C-

4. Meanwhile, no compound-specific δ13C, δ2H, or δ18O measurements of cellulose, starch, or 

sugar were correlated with temperature. It may thus be possible to reconstruct temperature changes 

from a tree-ring cellulose record by comparing the δ13C of C-3 to compound-specific 

measurements. In larch, the positive correlation of C-6 δ13C with temperature is consistent with 

previous predictions, and may relate to temperature-sensitive fluxes to the tricarboxylic acid cycle 

and/or the MEP pathway (Wieloch et al 2025). Increased flux to isoprenoid synthesis via the MEP 
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pathway, which could explain elevated δ13C values at C-6, would be consistent with previous 

observations of high plant isoprenoid emissions at high temperature (Rennenberg et al 2006, 

Sharkey et al 1996, Sharkey and Yeh 2001), including in Larix (Yu and Blande 2021). 

 

Figure 4.3: Position-specific δ13CGlcnA values measured for F. sylvatica (beech: A–C, circle) and L. decidua (larch: D–F, square) 

tree-ring cellulose samples, plotted by climate chamber treatment. A and D, temperature treatment (25 °C vs. 30 °C, VPD = 1 kPa, 

soil moisture = 30% VWC); B and E, VPD (vapor pressure deficit) treatment (1 vs. 2.2 kPa, temperature = 30 °C, soil moisture = 

30% VWC); C and F, soil moisture treatment (30% vs. 5% VWC, temperature = 25 °C, VPD = 1 kPa). Error bars show one standard 

error of δ13CGlcnA values measured among biological replicates.  

4.4.7) Trends in position-specific δ13C between gymnosperm and angiosperm samples 

In addition to the species-specific responses to climate perturbations at C-4–C-6 discussed above, 

the gymnosperm (L. decidua, larch) and angiosperm (F. sylvatica, beech) samples showed unique 

intramolecular trends in δ13C under the same environmental conditions (Figure 4.4). For example, 

C-4 and C-6 in larch samples were 13C-enriched relative to these positions in beech samples (C-4, 

p = 0.045; C-6, 0.018), with a significant difference across all treatments except for low soil 

moisture. Differences at these positions may reflect differences in carbon allocation according to 

growth strategy: for example, a previous study revealed ~2-fold differences in aboveground wood 
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and belowground root growth between gymnosperm and angiosperm species (Rog et al 2021). 

Future work can ascertain what specific metabolic pathways (and their associated 13C 

fractionations) contribute to distinct position-specific isotope distributions among tree taxa. 

 

Figure 4.4: Position-specific δ13CGlcnA values measured for F. sylvatica (beech: circle) and L. decidua (larch: square) tree-ring 

cellulose samples. A-B show soil moisture treatments: A, 30% VWC; B, 5% VWC (temperature = 25 °C, VPD = 1 kPa). C-D show 

vapor pressure deficit (VPD) treatments: C, 1 kPa; D, 2.2 kPa (temperature = 30 °C, soil moisture = 30% VWC). Error bars show 

one standard error of δ13CGlcnA values measured among biological replicates.  

Across treatments, position-specific δ13C values in beech samples at C-1–C-3 were more 

significantly correlated with temperature and soil moisture (r2 = 0.38–0.78) than in larch (r2 = 

0.00–0.55). This indicates that carbon isotope fractionation via stomatal conductance is more 

climate-sensitive in F. sylvatica than in L. decidua. Because F. sylvatica is a temperate and 

maritime-adapted species, while L. decidua inhabits subalpine to alpine environments, L. decidua 

is more likely to experience strong seasonal temperature shifts and rapid soil moisture changes 

(Silvestri et al 2025). Differences in the sensitivity of position-specific δ13C values may therefore 

reflect these species’ climate adaptations: for example, the narrow, waxy needles of L. decidua 
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impart greater desiccation resistance than the broad, soft leaves of F. sylvatica. Meanwhile, the 

δ13C values at C-4–C-6 were more strongly correlated with climate perturbations in L. decidua (r2 

= 0.01–0.42) than in F. sylvatica (r2 = 0.07–0.22). L. decidua may therefore have adapted a more 

flexible metabolic response to climate perturbation than F. sylvatica—for example, through the 

thermoprotective emissions of isoprenoids. Studies across a wider range of tree species can further 

investigate how adaptive strategies manifest in position-specific 13C signatures of cellulose.  

4.5) Conclusions and outlook 

Here, we have demonstrated position-specific carbon isotope analysis of tree-ring cellulose by 

Orbitrap, consuming only 0.033 mg of cellulose for triplicate sample analysis. Our method 

achieves an average precision of 1.8‰ for position-specific values, approaching the precision 

achieved by NMR while improving analytical time by up to 6-fold and sensitivity by 650-fold. In 

the first application of this method, we are able to observe intramolecular differences in δ13C of up 

to 21.7‰. PSIA recovers distinct patterns in response to soil moisture, air moisture, and 

temperature changes, with the potential to offer a nuanced picture of carbon assimilation and 

allocation in gymnosperm and angiosperm records in response to different environmental 

perturbations. Across the dataset, changes in soil moisture and temperature are most consistently 

recorded by the δ13C of C-3; the soil moisture response at C-3 is more than twice as sensitive as in 

the molecular average, while molecular average values have no correlation with temperature, 

demonstrating the utility of PSIA for recovering clearer climate signals from cellulose δ13C 

measurements. Meanwhile, the gymnosperm (L. decidua, larch) and angiosperm (F. sylvatica, 

beech) samples show distinct responses to moisture and temperature at positions C-4–C-6 that may 

indicate species-specific changes in carbon allocation to tasks like glycolysis or isoprenoid 

synthesis. Consistent differences between position-specific δ13C patterns of larch and beech 

samples across treatments may reflect fundamental differences in these species’ strategies for 

growth and adaptation. As a result, comparing position-specific δ13C records from co-located trees 

of different species could produce more detailed climate reconstructions. These findings highlight 

the value of 13C-PSIA for reconstructing more nuanced information about both climate and tree 

physiology from tree-ring records. 
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Several routes are available to further refine the method we present here. The largest source of 

bias in uncorrected δ13C values measured by Orbitrap is the dependence of these values on TIC 

differences between sample and standard, and samples with the smallest TIC correction also 

produced the most accurate and precise δ13C values. Future efforts may refine our method for 

correcting δ13C values based on relative TIC differences, or may develop new approaches to 

minimize TIC variation or its effect on measured values. We have additionally shown that cellulose 

hydrolysis may impart a minor 13C fractionation, likely concentrated at C-1 and C-2. The 

hydrolysis method should be modified to prevent degradative fractionation of glucose: for 

example, tests can determine whether shorter exposure times to high temperature could reduce 

isotopic fractionation while maintaining glucose yields. Finally, the method we employ here does 

not enable independent measurement of C-1 and C-2; we have previously described how future 

tests might determine the possibility for independent measurements of these positions (Chapter 3). 

Using the method described here, 24 samples can readily be prepared in a 5-day work week. 

Meanwhile, measuring the same number of samples in triplicate would require 16 days, not 

including instrument setup time. Because the time required for Orbitrap analysis creates a 

bottleneck, additional efforts should focus on improving the time-efficiency of measurements. For 

example, adjustments to the injection system to increase sample flow rate and decrease the dead 

time between injections could shorten measurement times by ~10-20%. 

Alongside these proposed improvements to our existing method, there are opportunities to expand 

the method to new isotope systems and measurement approaches. The Orbitrap mass spectrometer 

can simultaneously retrieve isotope ratios of multiple elements—13C, 18O, and 2H, in the case of 

glucose. While this work has focused only on 13C-PSIA, we expect that future work will be able 

to establish optimal instrument conditions to enable 18O PSIA and 2H of tree-ring samples as well. 

Further, gluconate measurements by Orbitrap may offer an opportunity to make molecular-average 

δ13C measurements with yet smaller cellulose samples. The Orbitrap enables measurement of the 

intact gluconate molecule without fragmentation, and can thus obtain molecular-average δ13C 

measurements; in bypassing fragmentation, the ion count rates increase by a factor of ~10, 

allowing a user to reach precise values more quickly. This approach could help users measure 
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molecular-average values of δ13C while consuming under 0.01 mg of cellulose. In view of the 

results presented here, as well as the numerous opportunities to improve and expand on our 

method, PSIA by Orbitrap presents a promising frontier for stable isotope dendrochronology. 
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4.8) Supplementary Information 

 
Supplementary Table 4.1. δ13CVPDB of α-cellulose standard and glucose product of hydrolysis by EA-IRMS, showing no discernable 

offset between the reactant and product. (Glucose appears possibly slightly enriched, but the offset is not statistically significant.) 

 

Material Average δ13C value (‰) Standard deviation (‰) 

α-cellulose (pre-hydrolysis) -26.5 0.08 

Glucose (post-hydrolysis) -26.3 0.23 

 

 
Supplementary Figure 4.5 δ13CVPDB of cellulose samples (blue) and the product of sample hydrolysis (orange) by EA-IRMS, 

showing a systematic enrichment of glucose relative to sample cellulose.  

 

 
Supplementary Figure 4.6) Measured Δδ13C of post-hydrolysis glucose product vs. pre-hydrolysis sample cellulose, showing a 

weak but significant correlation between hydrolysis yield and isotopic offset.  
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Supplementary Figure 4.7) Estimated δ13CVPDB of climate chamber tree-ring samples, calculated based on δ13CVPDB values of a 

glucose standard from the same product number (but different batch) as standard SC3. Values measured by Alexis Gilbert and 

provided by Youki Sato.  
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A p p e n d i x  I  

POREWATER METHANE CONCENTRATION MEASUREMENTS BY 

PORTABLE SPECTROSCOPY ANALYZER 

5.1) Benefits of field-portable methane concentration measurement 

Porewater methane concentration is a commonly measured characteristic in studies of microbial 

activity and biogeochemistry across diverse sedimentary settings. Measurements of methane in 

sedimentary porewater have been used to predict the dynamics of methane release with Arctic 

warming (Emerson et al 2021), understand microbial biogeography at hydrothermal vents 

(Orphan et al 2004), and investigate transformations of organic carbon in coastal marine 

environments (Euler et al 2024), among many other applications. Samples for porewater 

methane measurement are typically collected at field sites or even shipboard, with samples then 

requiring transport prior to laboratory-based analysis. Careful sample handling during 

transportation is required to prevent sample alteration, including diffusive methane loss as well 

as further methane production and/or consumption during storage.  

The ability to perform porewater methane measurements with field-portable instrumentation 

circumvents many of the pitfalls of sample storage and transport. Additionally, for multi-day 

field sampling campaigns or cruises, portable porewater concentration analysis introduces the 

possibility for iterative sampling, where researchers can use porewater methane data collected in 

the field to make decisions about additional sample collection. We have developed a method to 

measure porewater methane concentrations using field-portable instrumentation, and used the 

method to collect porewater methane data on the same day that samples were retrieved. The 

preliminary data we collected indicates that our method produces results that are consistent with 

traditional lab-based analyses.  

5.2) Method 

5.2.1) Instrumentation 
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Measurements for this study were performed using the Picarro G4302 portable cavity-

ringdown spectroscopy (CRDS) analyzer (Picarro, Santa Clara, CA, USA), which 

simultaneously measures concentrations of methane, ethane, and water vapor. We equipped the 

analyzer for headspace methane measurement by constructing a sample loop connected to the 

instrument inlet and outlet via Colder coupling bodies, which convert from the instrument’s 

built-in quick-disconnect ports to NPT fittings (Colder Products Company, Arden Hills, MN, 

USA). The sample loop was constructed from copper tubing and an injection port where 

headspace samples could be introduced into the measurement flow path. Flow rate through the 

sample loop and instrument during measurement was 2 slpm (standard liters per minute). 

Because a measurement of the internal volume of the analyzer was not available, the total 

internal volume of the system was determined by calibration (see Section 5.2.6 for details). 

5.2.2) Sampling 

All cores for this project were retrieved from Station 6 in Mono Lake, Mono County, CA 

(37.95739 N, −119.0316 W), a representative site in the deepest section of Mono Lake’s south 

basin. Cores were sampled by gravity coring into core barrels with pre-drilled holes spaced 

throughout the length of the barrel, which were secured with electrical tape prior to core 

collection.  

Sampling campaign 1 occurred on 5/10/22. During campaign 1, half of all samples were 

collected to be measured using our method for porewater methane measurement by field-portable 

CRDS, and the other half were sent to David Valentine and Frank Kinnaman at the University of 

California Santa Barbara (UCSB) for measurement by gas chromatography–flame ionization 

detection (GC-FID). For this campaign, delays between the times of core recovery, sediment 

subsampling, and sample measurement caused some ambiguity in interpreting the dataset. As a 

result, we undertook an additional sampling campaign (campaign 2) on 10/3/2022, where we 

were able to correct for the difficulties encountered during campaign 1. 

5.2.3) Sampling campaign 1 
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At 11 am on 5/10/22, an 89-cm sediment core was recovered in a core barrel with pre-drilled 

holes every ~5 cm. Sediment subsamples were collected from the core at 2 pm on the same day, 

by which time the core had expanded to a length of 93 cm, partially due to gases exsolving from 

solution. One subsample was collected through each hole in the core barrel, retrieving 3 mL of 

sediment with a syringe. Each collected subsample was immediately submerged in 3 mL 

supersaturated sodium chloride solution in nanopure water in a preweighed serum bottle and 

capped with a butyl rubber stopper and crimp camp. Nine samples were collected to be measured 

via CRDS and nine to be measured via GC-FID, with alternating depths assigned to each method 

(i.e., samples from 2.5 and 12.6 cm depth were prepared for measurement by CRDS; samples 

from 7.5 and 17.7 by GC-FID, etc.). 

Because of a malfunction of the portable CRDS analyzer, headspace methane concentration 

measurements by CRDS were performed on 5/16/22, 6 days after sample collection. Samples 

were stored frozen between collection and measurement. Prior to measurement, samples were 

warmed to ~30 °C in a water bath and 0.5 mL of nanopure water was added to increase 

headspace pressure. 0.5 mL of headspace gas was then sampled with a gas-tight gas syringe 

(Restek, Bellefonte, PA, USA) and needle and injected into the sample loop. For campaign 1, the 

sample injection port was constructed from a quick-turn–NPT coupling compatible with Luer 

style syringes (McMaster-Carr, Santa Fe Springs, CA) and plumbed into the sample loop via an 

NPT tee fitting secured with teflon tape.  

After sample injection, methane concentrations were observed for ~5–10 minutes. Following 

each measurement, the sample loop was disconnected from the instrument for at least one minute 

to enable gas concentrations to re-equilibrate with ambient air. 

Sample measurements by GC-FID were performed at UCSB on 5/13/2022 using a Shimadzu 

GC-14a (Shimadzu, Kyoto, Japan). Measured methane concentrations were compared to an 

18/point calibration curve (r2 = 0.99). The relative standard deviation (RSD) of methane 

concentration for replicate sample measurements was 0.02–4.51%. 

5.2.4) Sampling campaign 2 
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At 12:15 pm on 10/3/22, a 104-cm sediment core was recovered into a core barrel with pre-

drilled holes every 3 cm. To avoid the evolution of bubbles by core degassing at ambient 

pressure, subsamples were immediately collected from the core onboard the sampling boat, 

working from top to bottom. ~3 mL subsamples were collected and immediately submerged in 

supersaturated sodium chloride solution in nanopure water in a preweighed 20 mL VOA vial. A 

total of 16 sediment subsamples were collected at 6-cm intervals throughout the core, all within 

30 minutes of core retrieval.  

Sample processing and headspace methane measurement was performed beginning at 4pm on 

10/3/22. Samples were warmed to ~30 °C in a water bath. Prior to sample measurement, 2 mL of 

nanopure water was injected into each sample by syringe and needle through the cap septum. 2 

mL of headspace gas was then retrieved with a gas-tight gas syringe and needle and injected into 

the spectroscopy analyzer sample loop. During campaign 2, a Swagelok Ultra-Torr vacuum 

fitting with a rubber septum was used as the injection port (Swagelok, Solon, OH, USA) and 

connected to the sample loop with a smaller Swagelok tee. This fitting was selected because of 

its shorter length: as a result, headspace samples were injected closer to the sample loop flow 

path and entrained more quickly in the circulating air, enabling faster measurements relative to 

campaign 1.  

After sample injection, methane and ethane concentrations were observed for ~5-10 minutes. 

The sample loop was disconnected from the instrument for a minimum of 30 seconds in between 

measurements to equilibrate internal methane concentration with ambient air.  

5.2.5) Data processing 

The time and volume of each methane injection during standard and sample measurements was 

recorded. At the recorded time of each injection, the local maximum value of methane 

concentration (dry air basis) measured by the CRDS analyzer was detected using the ‘idxmax’ 

function in pandas version 2.2.3 in python. It was manually verified that the detected local 

maximum aligned with the peak of the methane concentration trace following injection (allowing 

a short time for the injected sample to be entrained into the sample loop airflow). The measured 
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methane concentration was averaged over the 30 seconds following the detected local 

maximum. The methane concentration for that injection time was recorded as the average ± the 

standard deviation of measured concentration over the 30-second window. The background 

methane concentration was reported as the average methane concentration over 5–15 seconds 

preceding the injection, so the methane increase associated with each injection was calculated as 

the difference between background and sample (or standard) methane concentration. 

The increase in methane concentration from each injection was converted to moles of methane 

using the calibrated internal volume of the measurement system (see Section 5.2.6) and the ideal 

gas law, accounting for sample temperature and ambient atmospheric pressure (~ 0.96 atm in 

Pasadena; ~0.76 atm in Mammoth Lakes). Porewater methane concentration was calculated from 

moles of methane based on the sample volume and porosity. Porosity was not measured on the 

collected samples, but based on previous measurements of Mono lake sediments, a porosity of 

90% was assumed. In sampling campaign 2, the core bottom contained more consolidated gray-

colored sediment, which has previously been determined in other Mono Lake samples to have an 

approximate porosity of 75%; this porosity value was applied to samples from this sedimentary 

horizon. 

5.2.6) Calibration 

Measurement linearity was confirmed and the internal volume of the measurement apparatus was 

estimated by calibration via injections of 1.998% methane in nitrogen (Air Liquide, Houston, 

TX, USA) at known volume. Repeat injections of between 100 and 800 μL 2% methane 

produced a linear trend in measured methane concentration with r2 = 0.99 (Figure 5.1). The 

relative standard deviation of measured concentrations at each injection volume was 3-5%, with 

uncertainty deriving in large part from the imprecision in the exact volume of injected standard 

as assessed by markings on the by gastight syringe (the relative standard deviation calculated for 

individual injections was on average 1%). 
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Figure 5.1. Measured concentration of methane (in ppm) across 20 injections of a 2% methane standard at known volume (blue 

points). Linear fit between volume of sample injected and measured concentration is shown in orange (r2 = 0.9888).  

As described in Sections 5.2.3 and 5.2.4, the sample loop construction differed slightly between 

sampling campaigns 1 and 2. For each campaign, calculations of the measured concentration as a 

factor of the known amount of injected methane were used to estimate the effective internal 

volume of the sample loop–instrument system. For campaign 1, the effective internal volume of 

the sample loop and instrument together was determined to be 89 ± 10 mL. For campaign 2, the 

effective internal volume was determined to be 103 ± 8 mL. 

5.3) Results 

5.3.1) Campaign 1: Comparison to GC-FID 
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Figure 5.2: Porewater methane concentrations from sampling campaign 1 measured by field-portable cavity ringdown spectroscopy 

(CRDS, blue) and by gas chromatography-flame ionization detection (GC-FID, orange). Error bars show the propagated analytical 

uncertainty and replicate error. 

Porewater methane concentration measurements by field-portable CRDS analyzer and by GC-

FID yielded very similar trends (Figure 5.2). Both methods showed an increase in methane 

concentration from the core top to a depth of 32.5 cm ranging from minimum values of 0.6–1.7 

mM to maximum values of 3.0–3.4 mM. In this region of the core, concentrations measured by 

CRDS were slightly below, but within error of, the values measured by GC-FID for the most 

proximal samples. From 32.5 to 57.2 cm, both methods found a decrease in porewater methane 

concentration; and at depths below 57.2 cm, both measured high and variable concentration. The 

decrease in calculated porewater methane concentration between 32.5 and 57.2 cm may be due to 

the assumption of constant porosity; the deeper sediments may be more compressed, leading to 

artificially low calculated porewater concentrations. The elevated and variable porewater 

methane concentrations measured in the deepest sediments may be attributable to the sampling 

of exsolved methane bubbles when core subsamples were collected; the presence of exsolved gas 

bubbles was physically confirmed when the core was retrieved. No ethane was detected at any 

depth in the core. 

5.3.2) Campaign 2: Same-day measurements 
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Figure 5.3: Porewater methane concentrations from sampling campaign 2 measured by field-portable cavity ringdown spectroscopy 

(CRDS). Error bars show the propagated analytical uncertainty and error of 2–3 replicate measurements. 

During sampling campaign 2, sediment subsamples were collected immediately after core 

retrieval (onboard the boat) in order to minimize bubble exsolution. Additionally, porewater 

headspace was measured on the same day, resolving any possible concerns about sample 

alteration during storage. The measured porewater methane concentrations from campaign 2 

yielded similar results to campaign 1. In particular, a clear rise in methane concentration was 

observed with depth in the core, increasing from 0.5 mM at 0 cm to 2.7 mM (Figure 5.3). This 

increase matched the trends observed from sampling campaign 1, and is likely a result of 

autochthonous biological methane production, diffusing from the area of production at or below 

27.2 cm up into the water column. A further increase was detected from 33.2 to 51.2 cm with a 

concave up curvature, suggesting this may be a zone of active methane production. Alternately, 

it is possible that the methane concentration measured at 51.2 cm was artificially high due to 

sampling inconsistencies; disregarding this point shows a more steady, concave-down increase in 

methane concentration throughout the core. Measured porewater methane concentrations were 

more variable between 57.2 and 99.2 cm depth, although the average concentration measured in 

this zone, 3.5 mM, matches closely to the observed concentration at 45.2 cm of 3.4 mM. Again, 

no ethane was detected at any depth, suggesting that the methane is likely to be primarily 

biological rather than thermogenic in origin. 
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5.3.3) Comparison of timepoints 

A comparison of CRDS measurements of sediment cores from sampling campaigns 1 (spring) 

and 2 (fall) reveals several points of agreement (Figure 4). As discussed above, both cores show 

a steady increase in methane concentration near the core top from 0 to 35 cm, and close 

agreement in absolute methane concentrations, ranging from 0.5 to 4 mM in the porewater. The 

decrease in methane concentration observed at from 32 to 42 cm during campaign 1 was not 

replicated in campaign 2. However, interestingly, both campaigns produced a clear maximum 

concentration of 5.3–5.4 mM at 51.2–52.6 cm. The origin of this local maximum value is 

unclear, but may be identified by comparison to biological and geochemical characterization of 

other cores from Mono Lake station 6. At depths below 53 cm, values measured during 

campaign 2 are much less variable than those measured during campaign 1, clearly illustrating 

the benefit of immediate core subsampling before significant bubble exsolution can occur. 

Overall, the strong agreement of measurements (despite both seasonal changes and different 

sample retrieval methods) indicates that field-portable CRDS enables the user to rapidly and 

accurately measure porewater methane concentrations. 

 

Figure 5.4: Comparison of porewater methane concentrations measured by field-portable cavity ringdown spectroscopy (CRDS) 

during campaigns 1 (orange) and 2 (blue).  

5.3.4) Limit of detection 
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We estimated the limit of detection for our developed method based on the noise in pCH4 

measured by the CRDS analyzer (~45 ppb at ambient methane concentration). In order to 

achieve S/N >2, an injection would need to contain at least ~4.1x10-10 mol methane for a 100-mL 

system volume. Given a 1-mL injection from a 3-mL porewater sample with 10 mL of 

headspace, the porewater methane concentration would need to be at least ~1.4 μM, 500x higher 

than the aqueous methane concentration in equilibrium with the atmosphere. Lower methane 

concentrations might be detected by decreasing the system volume (e.g., by using tubing with 

lower ID) or by increasing the ratio of porewater to headspace volume.  

5.4.) Outlook 

The preliminary results reported here indicate that accurate porewater methane concentration 

measurements can be performed with field-portable equipment. This method holds promise for 

researchers wishing to avoid the logistics associated with gas sample storage, or to make same-

day measurements from samples collected at remote locations.  

Some remaining analyses are required to more accurately calibrate methane abundance values 

retrieved by this method, and therefore to accurately estimate the effective internal volume of the 

measurement apparatus (on which the absolute values reported for porewater methane 

concentration depend). In particular, due to the compressibility of gas, when injections of 2% 

methane are sampled and introduced by gas-tight syringe, the syringe’s internal pressure may not 

be exactly equivalent to atmospheric pressure. This can result in inaccurate estimations of the 

total amount of methane introduced into the sample loop. For example, if the syringe indicates a 

volume of 800 μL, but the internal pressure of the syringe is lower than 1 atm, the amount of 

methane injected will be overestimated. To accurately record the amount of methane injected to 

the system during calibration, the methane standard should be present at a known, constant 

concentration and pressure. This can be achieved by storing gas standards in Teflon film bags, 

which maintain a pressure of 1 atm (John Crounse, pers. comm.). 

The method as reported here depends on measuring an increase in methane abundance in the 

sample loop relative to what is present at atmospheric background. However, the sensitivity of 
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the method to lower methane concentrations may be improved by flushing sample vials and 

the sample loop with a methane-free gas such as zero air. With this adjustment, the method might 

be sensitive to headspace methane concentrations as low as 1 ppm.  
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A p p e n d i x  I I  

TOWARDS FIELD-BASED MEASUREMENTS OF METHANOTROPHY 

KINETICS 

6.1) Current state of the field 

Aerobic methanotrophy, the bacterial oxidation of methane, plays a key role in determining the 

methane budget of terrestrial ecosystems (Saunois et al 2020). Most models of terrestrial 

methane cycling rely on a linear (or Michaelis-Menten) constant describing the kinetic response 

of methanotrophy rates to methane availability in order to simulate methane fluxes (Xu et al 

2016). However, I have shown that the kinetics of methanotrophy in natural soils vary over many 

orders of magnitude (Dion-Kirschner et al 2024), and that this variability may contribute to 

uncertainty in global models. The total number of measurements of methanotrophy kinetics in 

natural soils is limited; my compilation of reported Michaelis-Menten kinetic constants in soils 

identified only 542 measurements published between 1987 and 2023, and over 35% of these 

measurements were from landfill soils, limiting their relevance to global land area. The sparsity 

of data makes it difficult to justify the selection of kinetic parameters for existing global models. 

More thorough characterization of kinetic variability in methanotrophy—and the biological 

controls on this variability across environments—will contribute to more accurate models of 

methane cycling. 

The limited number of measurements of methanotrophy kinetics is understandable in light of the 

effort required to make these measurements. Because Michaelis-Menten kinetics describe a 

nonlinear relationship between substrate concentration and biological rate, these curves are 

typically constructed from more than five points, but not infrequently twenty or more. Here, each 

point is an observed methane uptake rate at a given initial methane concentration. Because each 

point on a kinetic curve is a measurement of uptake rate, it actually represents multiple 

timepoints of methane concentration observed over hours or days after an initial injection of 

elevated methane into the sample headspace. As a result,  the full kinetic characterization of a 
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single soil sample can easily amount to five  or more timepoints of soil samples incubated at 

six or more distinct methane headspace concentrations, for a total of thirty timepoints or more, 

each measured by gas chromatography-flame ionization detection (GC-FID) or GC-thermal 

conductivity detection (GC-TCD).  

Among published studies, no standard practice for soil sample treatment before and during 

kinetic characterization is evident. For example, measurements are variably made on field-moist, 

air-dried, or wetted samples (e.g., Bender and Conrad 1992, 1993, Megraw and Knowles 1987); 

with or without prior incubation at high methane concentration (e.g., Bradford et al 2001); and 

with or without the addition of amendments like nitrate and ammonium (e.g., Chan et al 2005). 

Given the importance of further measurements to our understanding of global methane cycling 

and its likely response to ongoing environmental change, there is strong justification for an easier 

and more standardized method for characterizing the kinetics of soil methanotrophy. To address 

this need, here I present the first efforts to develop a method for field-based characterization of 

methanotrophy kinetics using a portable cavity ringdown spectroscopy (CRDS) analyzer. As 

developed, the method enables the user to characterize soil methane uptake rates across a range 

of headspace methane concentrations in under one hour, while introducing minimal disruption to 

the soil between sampling and characterization. Further method development is needed to 

circumvent methodological problems encountered in early testing, especially the inability of the 

field-portable analyzer to maintain above-ambient methane concentration without diffusive 

methane loss. Nevertheless, initial results indicate the promise of this method, which would 

greatly improve researchers’ capability for high-throughput methanotrophy kinetic 

measurements across a wide range of terrestrial environments.  

6.2) Measurement design 

6.2.1) Instrumentation and materials 

Methane concentrations were measured using a Picarro GasScouter G4302 field-portable cavity 

ringdown spectroscopy (CRDS) analyzer (Picarro, Santa Clara, CA, USA). A leak-tight chamber 
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was constructed in order to contain a soil sample and facilitate injections of methane into the 

headspace while circulating air from the chamber through the CRDS analyzer (Figure 6.1A). 

Materials were selected to be impermeable and unreactive to methane. The chamber top was 

constructed from polycarbonate, with an internal volume of 8.2 L and a footprint of 0.0307 m2. 

The top formed an airtight seal with the chamber base, which was constructed from a ~4-cm 

deep neoprene ring fixed to an acrylic sheet with butyl rubber adhesive, into which the chamber 

top could be fitted (Figure 6.1B). The chamber top was sealed with a butyl rubber stopper, 

through which two lengths of tubing were passed to allow the chamber headspace to flow into 

and out of the CRDS analyzer. During measurements, the analyzer operated at a flow rate of 2 

slpm (standard liters per minute). 

 

Figure 6.1: Components of kinetics measurement system. A: Measurement system during a kinetics measurement. Chamber is 

fitted into the chamber base, with a neoprene skirt covering the juncture between chamber and chamber base. Chamber is connected 

to the field-portable CRDS analyzer inlet and outlet via two lengths of tubing and an inline water trap. B: Detail of chamber base, 

a Neoprene collar fixed to an acrylic sheet with butyl rubber adhesive. 
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To test the response of soil methane uptake rate to ambient methane availability, we 

injected  a standard composed of 1.998% methane in nitrogen (Air Liquide, Houston, TX, USA) 

into the chamber headspace. The measurement process is further described in Section 6.2.2. 

6.2.2) Measurement method 

To prepare for kinetic characterization, ~100-200 g soil was sampled, integrating the top 10 cm 

of the soil profile after the removal of aboveground vegetation. Soil sampling was performed 

with an isopropanol-sterilized trowel, taking care to maintain soil structure as much as possible 

(e.g., not disrupting soil aggregates, root material, etc). The soil sample was transferred from the 

trowel directly into the chamber base. The chamber top was then placed on the chamber base.  

For at least two minutes, the headspace methane concentration in the chamber was observed 

under ambient conditions. After this time, increasingly large volumes of the 1.998% methane 

standard were introduced by injection with a gas-tight syringe and needle through the chamber’s 

butyl rubber stopper. After each injection, the headspace methane concentration was observed 

for at least six minutes. A typical measurement series comprised successive injections of 0.5, 1, 

2, 5, and 10 mL of 2% methane standard. 

After kinetic characterization, the soil sample was collected for laboratory characterization. Soil 

samples were dried at 105 C for at least 24 hours until complete dryness and then weighed. The 

recorded sample dry weights were used to report Vmax values on the basis of soil dry weight. 

6.2.3) Data processing 

The headspace methane concentrations measured by the CRDS analyzer in the minutes following 

each injection were used to calculate the rate of methane drawdown. Data were selected by 

manually identifying peaks in measured methane concentration resulting from each injection, 

and a linear fit was calculated for measured methane abundance (dry air basis) over the ~5-

minute period following each injection. Outlier values (typically an instrument artefact) were 

identified as those that deviated from the detrended mean of a measurement by more than three 

times the interquartile range. The uptake rate for each value of pCH4,initial was recorded as the 



 

 

155 

slope of the linear fit (Figure 6.2), and uncertainty as the 90% confidence interval of the 

slope. Slopes measured in ppm min-1 were converted to uptake rates in nmol methane min-1 as in 

Chapter 2. KM and Vmax values were calculated from the set of measured methane uptake rates 

across 5-6 values of pCH4,initial using the curve_fit function in the Python library SciPy.  

 

Figure 6.2: Example of one kinetic measurement series, showing pCH4 values measured by the CRDS analyzer following each of 

five methane injections into the chamber headspace (blue points). Methane uptake is calculated from the slope of a linear fit of 

pCH4 over time (orange line). 

6.3) Method testing results and preliminary measurements 

6.3.1) Blank measurement and leak characterization 

Extended observation of the closed measurement system with no sample or methane injections 

produced a stable measurement of constant pCH4 value over the course of hours. This result 

indicated that no component of the measurement system was a significant source of offgassed 

methane. 

System leak rates were characterized by injecting the 1.998% methane standard into the closed 

system without any sample in the system and recording changes in the system’s internal pCH4. 

Under these conditions, minor loss of internal methane was observed, with an average leak rate 

of 3.9 × 10-4 percent min-1. The slope of pCH4 over time was linear with respect to ΔpCH4, 

chamber–ambient (r
2 = 0.9944) (Figure 6.3), in line with expectations for diffusive methane loss. To 

identify the source of the leak, the chamber was removed from the measurement flow path and 
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the inlet tubing and outlet tubing were connected to form a loop. Under these conditions, the 

observed leak rate was on average 1.5 × 10-2 percent min-1. In other words, the observed leak rate 

increased significantly as a higher percentage of the measurement system volume comprised the 

instrument itself. This finding suggests that leaks within the measurement system were the 

predominant source of diffusive methane loss. Observed methane loss persisted even after all 

internal instrument fittings were confirmed to be tightly sealed. To further determine the location 

of leaking within the instrument, methane was injected near specific locations on the instrument 

body: the inlet, outlet, fan, solenoid valve, and pump. A large spike in measured pCH4 was 

observed when methane was injected near the pump. This result suggests that diffusive methane 

exchange occurs between the pump and the surrounding air. 

 

Figure 6.3: Measured methane loss rate (in ppm min-1) from the chamber-analyzer system when no soil sample was present, plotted 

against the methane gradient between the chamber interior and the ambient atmosphere (ΔpCH4, ppm). Dotted line represents a 

linear regression of the x and y variables, and the slope and r2 value of the linear fit are shown at top right. An r2 value of 0.9944 

indicates a strong linear relationship between methane concentration gradient and loss rate, supporting that loss is occurring by 

diffusion. 

On different days of testing, we observed that the leak rate for a given condition (i.e., with or 

without the chamber in the flow path) varied. This is consistent with the pump as the primary 

source of the leak, since pump function varies with variables including ambient pressure and 

temperature. Because the leak rate was not predictable over time, we were unable to apply a 

generalized correction to remove the influence of methane leaking from measurement data. 

6.3.2) Preliminary sample measurements 
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We performed preliminary kinetic characterization of soil samples to determine whether the 

signals from sample measurements significantly exceeded the influence of methane leaks. Of 24 

kinetic measurements across three field sites, 8 were indistinguishable from a linear trend 

between methane loss rate and pCH4. A linear trend could be observed either because of 

diffusive methane loss, or because measurements were performed at pCH4 values far below the 

KM value (or some combination of both). Typical methane loss rates observed for these samples 

were only ~2x the typical leak rates measured from the chamber when empty (described in 

section 6.3.1), indicating that diffusive loss contributed substantially to the measured decrease in 

methane. Further, because linear trends were observed most commonly for samples where 

methane uptake under ambient conditions was lowest, a leak is a likelier explanation than high 

values of KM. Nonetheless, future measurements using a measurement system that is secured 

against leaking may reveal a wide range of KM values across field sites, including values well 

above the max pCH4 value of 60 ppm to which samples in this study were exposed; while KM 

values in natural well-oxygenated soils are typically ~10–100 ppm, values above 10,000 ppm 

have sometimes been observed (Dion-Kirschner et al 2024). 

Figure 6.4 shows three example measurements where a Michaelis-Menten-like relationship 

between pCH4 and methane loss rate was observed. The fitted curves fell outside the confidence 

interval of measured rates at low values of pCH4; the failure of curve fitting may be due to an 

increasing contribution of diffusive methane loss to measured rates at higher values of pCH4 as V 

of methanotrophy approaches the community value of Vmax. Nevertheless, these three 

measurements produced reasonable values of both parameters: calculated KM values ranged from 

21.8–43.8 ppm, and Vmax values from 80.5–305.2 nmol methane g dry soil-1 hr-1, all within the 

typical range of values measured in natural soils (Dion-Kirschner et al 2024), suggesting that the 

measurement method may achieve accurate values if leaking is prevented. 
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Figure 6.4: Kinetic characterization of three soil samples. Dark blue points show measured methane uptake (and/or loss) rate for a 

given methane abundance (in ppm). Light blue points show the 90% confidence interval of the uptake rates, which were estimated 

by linear fit. Orange line shows the curve fitted to these values using the curve_fit function from the Python library SciPy. KM and 

Vmax values calculated from the fitted curve are noted in the bottom right of each panel. 

6.4) Outlook 

While instrumentation difficulties still need to be resolved, early results suggest that realistic 

Michaelis-Menten parameters of methane uptake can be recovered from field-based 

measurements of natural soils with less than 60 minutes of total measurement time. With further 

refinement, this method holds great promise in enabling higher-throughput kinetic 

characterization of methanotrophy in soils while simultaneously minimizing disruption to soil 

samples prior to measurement. Better characterizing the range of kinetic variability in natural 

settings will help to improve the accuracy of soil methane models and further illuminate the 

ecophysiology of an important natural greenhouse gas sink. 
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