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ABSTRACT

Materials-specific predictions of large, realistic molecules and materials with strong
electron correlations have been a long-standing challenge in quantum chemistry.
This dissertation addresses this challenge by leveraging three forms of physical and
mathematical locality—in space, energy, and rank—to develop scalable, efficient,
and accurate electronic structure methods.

In Chapter 2, we use quantum embedding theory that exploits the spatial locality of
electron correlations and reduces the computational cost of accurate correlated elec-
tronic structure methods, enabling accurate ab initio simulation of complicated cor-
related materials. In this work, we study Kondo physics, a prototypical many-body
quantum phenomenon, with a full-cell extension of dynamical mean-field theory
(DMFT). Our ab initio simulation of the Kondo correlations systematically con-
verges towards the exact zero-temperature limit, yielding material-specific Kondo
temperatures that reproduce the subtle exponential trends observed experimentally
and offer new insight into the underlying physics.

Chapter 3 explores the locality in energy in lanthanide single-ion magnets. Their
multi-reference ground and excited states are generally challenging to compute,
but fortunately, the states that govern the spin dynamics are local in the energy
spectrum. We develop a theoretical protocol to compute their spin Hamiltonian
by sampling only relevant states in this reduced Hilbert space, and particularly,
the single-reference states accessible by the efficient density functional theory. This
method surpasses the prohibitive cost of calculating multi-reference eigenstates, and
with its mean-field scaling, enables studying realistic magnets of unprecedentedly
large size at an accuracy comparable to the previous state-of-the-art method.

Chapter 4 focuses on the locality in the rank structure of reduced density matrices
(RDMs). The 1- and 2-RDMs are the crucial ingredients in estimating energies
and observables in many classical and quantum simulation methods. Their intrinsic
low-rank structure makes them compressible and can be exploited to significantly
reduce the measurement cost. We analyze both noiseless and noisy measurement
scenarios, including shot-noise-limited quantum algorithms, and show that in the
context of Gaussian (shot) noise, a low-rank approximate reconstruction of RDMs
effectively removes the high-rank noises and reduces the measurement cost by orders
of magnitude, therefore enabling larger-scale simulations.
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C h a p t e r 1

INTRODUCTION

In 1929, P.A.M. Dirac remarked, "The underlying physical laws necessary for the
mathematical theory of a large part of physics and the whole of chemistry are thus
completely known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble." [1] Since then, various ap-
proximations have been developed to solve the electronic Schrödinger equation: the
Hartree-Fock theory [2] that yields the best single Slater determinant to approximate
the electronic wavefunction; the density functional theory [3–5] that has been the
routine workhorse to study chemical catalysis [6], energy materials [7], biological
problems [8]; and the configurational interaction [9] and coupled cluster [10] expan-
sions that provide a systematically improvable path towards exact solutions beyond
the mean-field.

However, much challenge was sealed in this statement about the "only" difficulty.
Nearly 100 years later, many realistic, strongly correlated materials remain too com-
plicated to simulate. This class spans a wide range of systems, including transition
metal oxides that exhibit high-temperature superconductivity [11] and Fe–S clus-
ters of nitrogenase [12]. A common theme includes heavy elements with partially
occupied 𝑑- or 𝑓 -shells, such as transition metals and lanthanides. Because of this,
their electronic eigenstates are usually of multi-reference characters, meaning that
their eigenstate wavefunctions cannot be well described by a single dominant Slater
determinant and its high-energy excitations and instead have small overlap with
many near-degenerate Slater determinants. Advanced methods such as Complete
Active Space Self-Consistent Field (CASSCF) method [13], complete active space
perturbation theory (CASPT2) [14, 15], 𝑛-electron valence state perturbation the-
ory (NEVPT2) [16, 17] and density matrix renormalization group (DMRG) [18–20]
have been developed to predict their properties with high accuracy. However, they
alone can be prohibitively expensive to study many realistic systems of experimental
interest.

Developing methods to study these challenging systems, especially the realistic
systems of large size and complicated structures, requires more refined approxima-
tions. A key to unlock efficiency from complexity is to tailor the approximation to
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the intrinsic locality in a physical problem, meaning some electrons or electronic
states are “nearer,” by some measure of distance, than others and thus interact more
strongly. Given the spatial locality of electron correlations, as electronic interactions
decay with distance, the distant parts of a system can be more heavily approximated
with little loss of accuracy. Locality can lie in the energy spectrum, where only a
narrow energy band of low-energy states dominates the physics and thus reduces the
size of the Hilbert space for computation. Locality also manifests in the low-rank
structure of the electron density matrices, allowing us to compress the information
of the electronic wavefunction in a low-dimensional core. Taking advantage of these
forms of locality inherent to the chemical systems can provide a unique opportu-
nity to focus the limited computational resources on the most important part of the
problem, overcome the “curse of dimensionality,” and make it possible to simulate
large, strongly correlated systems with accuracy and reduced computational cost.

In this dissertation, we will illustrate how we can take advantage of these three
different types of locality concretely to develop methods that expand the bound-
ary/complexity of systems one can compute. In the following, we will demonstrate
how the spatial locality of the electron correlations allows the development and
application of a quantum embedding theory to the Kondo physics, a many-body
electronic problem in its full ab initio features, without the need to downfold into
a simplified low-energy model. Secondly, we will discuss how the locality in the
energy spectrum reduces the size of the Hilbert space of lanthanide single molec-
ular magnets and thus allows accurate and efficient computation of excited states
of molecular magnets unprecedentedly large. Thirdly, electronic density matrices
usually have low rank; we take advantage of this locality in rank to reduce their
degrees of freedom and thus their measurement cost.

The remaining dissertation is organized as follows. In Chapter 2, we extend the
dynamical mean-field theory, a quantum embedding theory, to study the Kondo
physics and systematically converge towards an exact zero-temperature electronic
treatment of the Kondo correlations. We start by introducing the Kondo problem,
a prototypical many-body electronic phenomenon where the strong electron corre-
lations make simulations challenging, and then describe the numerical strategy to
simulate it ab initio and converge towards the exact solution. We show that this
approach provides chemical-specific predictions of the Kondo temperatures with
quantitative agreement with experimental measurements and further shed light on
their physical origin.
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In Chapter 3, we develop a theoretical protocol to predict low-energy excitations
in correlated lanthanide single-ion magnets with high accuracy comparable to
CASPT2/NEVPT2 but with only the low scaling of HF and DFT. In these systems,
the low-energy physics is dominated by excited states within a narrow spin-orbit
manifold split by the weak crystal field interaction. We utilize the constrained DFT
method to sample Slater determinants only within this local energy space, and then
take advantage of the symmetry structure of this local space to predict the multi-
reference eigenstates from the efficiently sampled non-eigenstates. Benchmarks on
five experimental systems confirm the high accuracy of the method and the efficiency
in studying unprecedentedly large, realistic lanthanide molecular magnets.

In Chapter 4, we take advantage of the low-rank structure of electronic reduced
density matrices to reduce the measurement cost. Many classical and quantum sim-
ulation protocols require measurements of the reduced density matrices to calculate
energies and properties. We study both situations where measurements of reduced
density matrices are noiseless or noisy, and in the context of Gaussian noise, e.g.,
shot noise in quantum simulations, our method brings 1–3 orders of magnitude
reduction in measurement cost.
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C h a p t e r 2

TOWARDS AN EXACT ELECTRONIC QUANTUM
MANY-BODY TREATMENT OF KONDO CORRELATION IN

MAGNETIC IMPURITIES

This chapter is based on the following publication:

1. Zhu†, T., Peng†, L, Zhai, H., Cui, Z.-H. & Chan, G. K.-L. Towards an exact
electronic quantum many-body treatment of Kondo correlation in magnetic
impurities. arXiv preprint arXiv:2405.18709. doi:10.48550/arXiv.2405.
18709 (2024).

† These authors contributed equally to this work.

2.1 Abstract
The Kondo effect is a prototypical quantum phenomenon arising from the interac-
tion between localized electrons in a magnetic impurity and itinerant electrons in
a metallic host. Although it has served as the testing ground for quantum many-
body methods for decades, the precise description of Kondo physics with material
specificity remains challenging. Here, we present a systematic ab initio approach
to converge towards an exact zero-temperature electronic treatment of Kondo cor-
relations. Across a series of 3𝑑 transition metals, we extract Kondo temperatures
matching the subtle experimental trends, with an accuracy exceeding that of stan-
dard models. We further obtain microscopic insight into the origin of these trends.
More broadly, we demonstrate the possibility to start from fully ab initio many-body
simulations and push towards the realm of converged predictions.

2.2 Introduction
The Kondo system of a magnetic impurity embedded in a non-magnetic metallic host
is a foundational quantum many-body materials problem [1–7]. As the temperature
is decreased below a characteristic Kondo temperature 𝑇K, the impurity moment
is screened by the conduction electrons, forming a many-electron singlet state that
manifests as a sharp resonance in the local density of states. Although the physics
involves many-electron correlations in a bulk material, a qualitative understanding
was achieved decades ago through the Anderson impurity model (AIM) [8] and

https://doi.org/10.48550/arXiv.2405.18709
https://doi.org/10.48550/arXiv.2405.18709
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via Wilson’s numerical renormalization group (NRG) solution of the Kondo spin
problem [9]. However, while deeply insightful, these model frameworks are lim-
ited in their quantitative precision due to the uncertainties in the specific model
parameters and the neglect of higher-energy electronic degrees of freedom. In this
work, we show that one can now describe Kondo physics without ever simplify-
ing to such models, starting only with the ab initio many-electron Hamiltonian of
the full material. In so doing, we present a precise material-specific treatment of
the phenomenon, which can in principle be converged towards a numerically exact
solution.

The challenge of the Kondo problem stems from the simultaneous presence of
strong electron correlation leading to local singlet formation, and impurity-metal
hybridization, which requires considering the thermodynamic limit. In addition, the
Kondo energy scale is very small (typically 1 to 500 K). In low-energy models, one
chooses a (small) set of impurity correlated orbitals (e.g., a few 𝑑 or 𝑓 orbitals),
whose interactions are formally described by a downfolded effective Hamiltonian.
Uncertainties, which are large on the Kondo scale, then arise from the choice and
construction of these orbitals [10], the derivation of the effective interactions (and
approximations to treat their complicated frequency dependence [11]), and the use
of double-counting corrections to remove density functional theory (DFT) contri-
butions [12, 13], in lieu of a fully many-body treatment of the local interactions.
As a result, although much qualitative progress has been made in describing Kondo
physics in different realistic settings [14–18], the accurate simulation of Kondo
trends across different magnetic impurities, geometries, or even different calcula-
tions, without reference to experimental data, is challenging [15–17].

We will instead attempt to solve the ab initio many-electron Schrödinger equation
for the Kondo problem without first deriving a low-energy model. This offers
the advantage that it is often easier to quantify (and thus converge) errors in the
approximate solution of a problem, than the error associated with deriving a model.
We build on our work on full cell embedding in the context of dynamical mean-
field theories [19–23] to construct a systematically improvable representation of the
impurity in its metallic host. Solving the many-body problem in this representation,
as we increase the number of orbitals in the parent basis, we eventually obtain
the exact non-relativistic description of the pure electronic problem. In small
molecules [24], as well as in simple materials (such as organic crystals [25]), it has
been established that for the quantities of interest, related strategies can reach an
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accuracy rivalling, or even exceeding, that of experimental measurements. We thus
ask, how far can we go with a similar philosophy for a realistic correlated quantum
materials problem?

A major technical challenge is to solve for the impurity properties given the large
number of electronic orbitals. We achieve this by implementing a highly-parallel
quantum chemistry density matrix renormalization group (DMRG) eigenstate and
Green’s function solver [26, 27]. The use of delocalized (i.e., molecular orbital)
representations reduces the entanglement and allows us to converge the many-body
solvers. Within our framework, we simulate the series of seven 3𝑑 magnetic impuri-
ties (Ti, V, Cr, Mn, Fe, Co, Ni) in a bulk copper host at zero and finite temperatures,
computing quantities such as the local density of states and quasiparticle (QP) renor-
malization, excited states, orbital occupancies, and spin correlations. Using the QP
renormalization and orbital occupancies as sensitive metrics, we demonstrate con-
vergence of our simulations to the parent basis solution, and estimate the remaining
error in the parent basis. Extracting the Kondo temperature from the quasiparticle
renormalization, the converged simulations capture subtle trends across the 3𝑑 se-
ries as seen in experiments (Fig. 2.1b), give new insights into the element-specific
mechanisms, and improve predictions from models that use standard parametriza-
tions by an order of magnitude or more. They thus demonstrate the potential of
approaches based on fully ab initio simulations in the interpretation of complex
correlated electron phenomena.

2.3 Numerical strategy
Our basic plan is to describe the magnetic impurity atom with as complete a basis
of electronic orbitals as practical in an impurity-bath embedding setup (Fig. 2.1a).
As the impurity orbital space is increased, it formally converges to the Hilbert
space of the material and thus to an exact electronic description (i.e., phonon effects
are excluded); for any finite impurity space, the bath approximates the neglected
degrees of freedom in the material. While achieving convergence for bulk properties
would require including orbitals that span the electronic space of all atoms of the
material, here we are focused on observables on the impurity, where convergence of
an impurity-centered basis expansion is more rapid. Converging the representation
in this way means that we do not need to first downfold the Hamiltonian to derive a
model.
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More specifically, we study the series of seven 3𝑑 transition metal impurities (Ti,
V, Cr, Mn, Fe, Co, Ni) in bulk Cu, with associated Kondo temperatures that span
three orders of magnitude. We started from a Gaussian atomic orbital represen-
tation of all atoms: a split-valence double-𝜁 polarization basis (def2-SVP) [28]
for the impurity atoms and a slightly smaller (def2-SV(P)) basis for Cu (which
omits the 4 𝑓 basis shell). The def2-SVP basis for the impurity atoms contains
the 1𝑠2𝑠2𝑝3𝑠3𝑝3𝑑4𝑠4𝑝4𝑑4 𝑓 5𝑠 shells (denoted a 5𝑠3𝑝2𝑑1 𝑓 basis, from the shell-
count) and thus goes significantly beyond the 3𝑑 shell considered in a model Hamilto-
nian treatment. To test the convergence of the results, for a subset of the calculations
we also used a larger cc-pVTZ basis [29] on the impurity atom, corresponding to a
7𝑠6𝑝4𝑑2 𝑓 1𝑔 basis. This further improves the electronic treatment of the impurity.
We will refer to these as the parent bases and below we demonstrate convergence
towards the exact solutions within the parent bases. We estimate the remaining error
of the parent basis by the difference between the def2-SVP and cc-pVTZ results.

Starting from DFT-optimized XCu63 structures (X = impurity), we performed pe-
riodic DFT calculations in the Gaussian atomic orbital bases with the PBE func-
tional [30, 31]. The Gaussian basis functions were then transformed into an orthogo-
nal basis of intrinsic atomic orbitals plus projected atomic orbitals (IAO+PAO) [32].
The impurity IAOs and PAOs are visualized in Fig. 2.1a. The higher shell orbitals in
this picture extend away from the impurity atom onto the neighbours, and because
of the close packing of the atoms, start to capture important electronic degrees of
freedom of the atoms neighbouring the impurity. For example, using the Löwdin
population to measure the spatial extent of the 4𝑠 orbital of an Fe impurity, we find
that it is close to 66% on the neighbouring Cu atoms in FeCu63. The large basis sets
may thus be viewed as forming an “impurity-centered” basis expansion, similar to
well-studied local correlation treatments in quantum chemistry.

The impurity-bath embedding Hamiltonian takes the form

𝐻emb =

imp∑︁
𝑖 𝑗

�̃�𝑖 𝑗𝑎
†
𝑖
𝑎 𝑗 +

1
2

imp∑︁
𝑖 𝑗 𝑘𝑙

(𝑖 𝑗 |𝑘𝑙)𝑎†
𝑖
𝑎
†
𝑘
𝑎𝑙𝑎 𝑗 +

∑︁
𝑖𝑝

𝑉𝑖𝑝 (𝑎†𝑖 𝑐𝑝 + 𝑐
†
𝑝𝑎𝑖) +

∑︁
𝑝

𝜖𝑝𝑐
†
𝑝𝑐𝑝

(2.1)

where the impurity sum extends over all IAOs and PAOs in the impurity basis,
{𝑎 (†)
𝑖

} are creation/annihilation operators for impurity states, and {𝑐(†)𝑝 } are cre-
ation/annihilation operators for bath states. The impurity Coulomb interaction ma-
trix (𝑖 𝑗 |𝑘𝑙) is taken as the bare Coulomb interaction in the IAO+PAO basis, while
the impurity one-particle interaction �̃�𝑖 𝑗 in Eq. 2.1 is defined as the Hartree-Fock
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effective Hamiltonian with the local mean-field potential subtracted (this subtrac-
tion is diagrammatically exact, so there is no double counting). All interactions are
treated non-relativistically (spin-orbit coupling is beyond the scope of this work).
The impurity-metal hybridization function Δ(𝜔) was obtained at the PBE level.
Since we used a Hamiltonian-based impurity solver, we discretized the 3𝑑4𝑠 va-
lence block of the hybridization function on a non-uniform grid along the real
frequency axis [33]

Δ𝑖 𝑗 (𝜔) =
∑︁
𝑝

𝑉𝑖𝑝𝑉 𝑗 𝑝

𝜔 − 𝜖𝑝
, 𝑖 𝑗 ∈ 3𝑑4𝑠 (2.2)

where {𝜖𝑝} and {𝑉𝑖𝑝} are the bath energies and impurity-bath couplings in Eq. 2.1.
We used 49 bath orbitals to couple to each valence impurity orbital. The total
embedding problem thus consisted of 300 electrons in 316 (impurity plus bath)
orbitals using the impurity def2-SVP basis, denoted (300e, 316o), and 300 electrons
in 353 orbitals using the impurity cc-pVTZ basis, denoted (300e, 353o).

To compute and converge the impurity Green’s function, we constructed a series of
smaller orbital spaces (active spaces) that are subspaces of the full orbital space of
the embedding problem. We then monitored the convergence of the eigenstate and
dynamical quantities as a function of the active space size. The active spaces were
defined to span natural orbitals (eigenvectors of the one-particle density matrix)
of an (approximate) ground state of the impurity problem, taking natural orbitals
with the largest orbital entropy (a procedure which has been shown to yield highly
compact orbital subspaces in model impurity problems [35]). We used active spaces
of up to (36e, 52o) for the ground-state problem in the impurity def2-SVP basis and
(46e, 76o) in the impurity cc-pVTZ basis, and up to (26e, 36o) for the dynamical
properties and the finite temperature simulations. We computed ground states and
associated properties (e.g., density matrices and correlation functions), and as many
as several hundred excited states, using ab initio DMRG [26, 27, 36]. For dynamical
properties, we used a new zero-temperature ab initio dynamical DMRG (DDMRG)
solver to compute the impurity self-energy on the real frequency axis [27, 37].
(Benchmarks of the DDMRG solver on the single-impurity Anderson model are
shown in Supplementary Note 2).

2.4 Convergence towards parent basis and an exact simulation
We first consider the Fe impurity to illustrate general features of the results. In
Fig. 2.1c we show the orbital-resolved excitation spectra and self-energies of the
Fe 3𝑑 orbitals. As expected, we see sharp Kondo resonance peaks, also known
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Figure 2.1: Illustration and validation of computational strategy. (a) All-orbital quantum
embedding strategy, where general Coulomb interactions between all valence and high-
virtual orbitals of the impurity atom are treated at the quantum many-body level. The
percentage of orbital extension onto neighbouring Cu atoms is estimated through a Löwdin
population analysis. (b) Experimentally measured Kondo temperatures for 3𝑑 transition
metal impurities in bulk Cu. Each dot corresponds to a distinct measurement, while the
shaded areas illustrate the range of Kondo temperatures from different observables and
their associated measurement uncertainties (where applicable) [34]. The 𝑥-axis shows the
nominal spin (𝑆) of the isolated impurity atoms. (c) Simulated Kondo resonance and self-
energies of the 𝑡2𝑔 and 𝑒𝑔 orbitals of the Fe impurity with an active space of (22e, 22o) in the
def2-SVP basis. (d) Estimated convergence of the quasiparticle renormalization weights and
orbital occupancies of the 𝑡2𝑔 and 𝑒𝑔 orbitals, averaged within each manifold, of Ti, V, and
Fe impurities as the DMRG active space increases in the def2-SVP basis. (e) Comparison
of quasiparticle renormalization weights and orbital occupancies of 3𝑑 orbitals of the Fe
impurity calculated in the def2-SVP basis versus the cc-pVTZ basis.
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as Abrikosov-Suhl resonances [38], around the Fermi level for both the 𝑡2𝑔 and 𝑒𝑔
orbitals, with broad Hubbard shoulder peaks at higher energies. We find that the
Fe-𝑒𝑔 Kondo peak is narrower and smaller than the Fe-𝑡2𝑔 peak from the stronger
QP renormalization, which can also be seen from the real part of the real-axis
self-energies shown in Fig. 2.1c. The imaginary part of the real-axis self-energies
of both the 𝑡2𝑔 and 𝑒𝑔 orbitals approaches zero at the Fermi level (Fig. S5), i.e.,
ImΣ(𝑇 = 0, 𝜔) → 0 as 𝜔 → 0. The splitting of the Hubbard peaks is roughly
2.5 ∼ 3 eV (in the range of the screened interaction for Fe 3𝑑 orbitals [39]) and is
slightly smaller for the 𝑡2𝑔 orbitals than for the 𝑒𝑔 orbitals.

We then examine the convergence of impurity observables towards the parent basis
limit. In Fig. 2.1d, we show the orbital-resolved QP renormalization weight 𝑍

(calculated on the real axis as
[
1− 𝜕Σ(𝜔)

𝜕𝜔

���
𝜔=0

]−1
) and the orbital occupancy 𝑛 of the

3𝑑 orbitals, for the Ti, V, and Fe impurities, as a function of active space size with a
parent def2-SVP basis. Additional convergence data are in the Supplementary Notes
3 and 4, including the convergence with respect to the DMRG bond dimension (for
which the uncertainty is substantially smaller than the uncertainty from the active
space for all cases other than Mn). We observe that the QP weight is clearly more
challenging to converge. Examining the full series of elements (Supplementary
Notes 3 and 4) we conservatively estimate that, with the exception of Mn, 𝑛 is
converged to at least ∼ 0.04 and 𝑍 to at least ∼ 0.05 of the exact parent basis result.
The latter exception arises because it was difficult to fully converge the DMRG
calculations in the largest active spaces for Mn.

Beyond these errors, the primary source of deviation from an exact simulation comes
from the insufficiency of the parent basis itself. To estimate the error from the parent
basis, in Fig. 2.1e we show the change in 𝑍 and 𝑛 as we increase the parent basis
from def2-SVP to cc-pVTZ, for the Fe impurity. We see that both quantities change
by less than ∼ 0.03. Standard quantum chemistry arguments suggest that most
quantities converge like the inverse cube of the cardinal number of the basis [40]
(2 in the case of def2-SVP, 3 for cc-pVTZ), which indicates that 𝑍 and 𝑛 are well
converged with respect to the representation of the electronic degrees of freedom of
the Fe impurity and its close neighbours. Only the contribution from fluctuations
involving long-range Coulomb interactions beyond the closest neighbours remains
outside of our treatment and this error analysis.
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2.5 Detailed Kondo temperature trends and mechanisms
Having examined the convergence of our numerical results, we now study the trends
in Kondo physics across the series of 7 elements. For 3𝑑 magnetic impurities in bulk
Cu, experiments observe an exponential decay in Kondo temperatures moving from
nominally low-spin (e.g., Ti) to high-spin (e.g., Mn) impurities [34]. The estimated
experimental Kondo temperatures for the 3𝑑 magnetic impurities, along with the
nominal spins 𝑆 of the atom, are shown in Fig. 2.1b. Note that the experimental
estimates of 𝑇K involve significant interpretation (for a full discussion see Ref. [34])
and thus a range of characteristic temperatures are obtained depending on the type
of measurement and method to extract 𝑇K.

We estimate theoretical Kondo temperatures from Hewson’s renormalized pertur-
bation theory of the Anderson impurity model [41]

𝑇K = −𝜋
4
𝑍 · ImΔ(0). (2.3)

Here Δ(0) is the hybridization function at the Fermi level and 𝑍 is the QP renor-
malization weight on the real axis (Fig. S4 and Table S6). Hewson’s formula gives
separate estimates of 𝑇K for the 𝑒𝑔 and 𝑡2𝑔 orbitals; the lower of the two Kondo
temperatures is the relevant one for the comparison to measurements (see, e.g.,
Ref. [42] for resistivity).

Our predicted Kondo temperatures for all the studied elements are shown in Fig. 2.2c.
We capture the trend in 𝑇K across the full set of elements in good agreement with
the experimental estimates, and reproduce subtle differences such as the relative
ordering of the lowest Kondo temperatures 𝑇K(Cr), 𝑇K(Mn), 𝑇K(Fe). With the
exception of Cr and Mn, the range of our predicted 𝑇K is within a factor of 2∼3 of
at least one of the experimental estimates of 𝑇K. As our calculations do not include
long-range Coulomb fluctuations (beyond those captured by the basis extending to
neighbouring atoms), this suggests that they do not contribute significantly at this
level of accuracy. On the other hand, Mn, which has the lowest𝑇K, is a system where
we could not achieve numerical convergence of our results to the parent basis. This
is the likely origin of the larger quantitative discrepancy for Mn.

Conventionally, the origin of the observed trend in 𝑇K is ascribed to strong Hund’s
coupling in the impurity spins. In particular, when we represent the system by a
multi-spin Kondo model, in the strong coupling limit the impurity spins are locked,
which reduces the space of fluctuations and the effective exchange coupling 𝐽eff [43,
44] (see Supplementary Note 15 for a brief summary). Fixing the metallic host, and
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Figure 2.2: Trends in impurity DOS, quasiparticle renormalization, spin moment,
Kondo temperature, and orbital character of the lowest triplet excited state. All
results are in the def2-SVP basis with ground-state active space of (36e, 52o) and
Green’s function active space of (22e, 22o). (a) Comparison of DOS of 3𝑑 orbitals of
Cr, Mn, and Fe impurities. (b) Top: Orbital-resolved quasiparticle renormalization
weights 𝑍 . Bottom: Local spin moments of impurity atoms compared to nominal
spins of isolated atoms and experimental values. (c) Kondo temperatures from
all-orbital simulations, estimated by zero-temperature Green’s function calculations
using Hewson’s formula, compared to experimental values [34]. The experimental
trend lines are provided as a visual aid. Symbols for each type of measurement
are: 𝜌: resistivity, 𝜒: susceptibility, 𝐶: specific heat, 𝑆: thermoelectric power. (d)
Orbital-resolved spin-flip transition density matrix for the lowest triplet excited state
|⟨Ψ𝑆=0 |𝑐†𝑖↓𝑐 𝑗↑ |Ψ𝑆=1,𝑆𝑧=1⟩| within the impurity 3𝑑 subspace.

assuming all other effects are the same for different impurities, this Hund’s driven
relation can be simplified to

𝑇K ∝ exp(−1/𝐽eff) ∝ exp(−𝑆), (2.4)

where 𝑆 is the spin of the magnetic atom. The above theoretical form gives qualitative
agreement with the experimental data, as shown by the trend in Fig. 2.1b. However,
it also misses quantitative differences between certain magnetic impurities. For
example, it does not explain why the 𝑇K of Cr (3∼10 K) is lower than the 𝑇K of
Fe (30 K), if we consider both Cr and Fe atoms to have nominal 𝑆 = 2. Given



15

that our ab initio simulations faithfully reproduce the experimental trend in Kondo
temperatures, we can now examine the Hund’s suppression mechanism within our
calculations.

We start with the computed local ground-state properties of the impurity, such as
the 𝑡2𝑔 and 𝑒𝑔 orbital occupancies across the impurity elements (Table S7) and the
effective spin (extracted from ⟨𝑆2⟩) in Fig. 2.2b. (Fig. 2.2a further illustrates the 𝑡2𝑔
and 𝑒𝑔 resolved DOS for Cr, Mn, Fe). Charge transfer takes place to the impurity
atom in all systems, giving negatively charged 3𝑑 shells compared to the isolated
impurities. For instance, we find Fe in bulk Cu to be on average in a 𝑑7 occupancy
(𝑛Fe(3𝑑) = 6.92), in excellent agreement with recent experimental estimates [45].
The strong QP renormalization in Fig. 2.2b tracks the partially-filled nature of the
impurity 3𝑑 orbitals. For example, we obtain 𝑛(𝑡2𝑔) = 0.99 in Cr and 𝑛(𝑒𝑔) = 1.03
in Mn (i.e., very close to half filling), which correlates well with their very small
QP weights.

As a result of the charge transfer, the local spin moments of the magnetic impurities
differ from their isolated-atom values (Fig. 2.2b). For Mn, Fe, Co, and Ni, we predict
𝑆 = 1.99, 1.42, 0.95, 0.48, about 0.5 lower than the isolated-atom spins. These 𝑆
values agree well with the available experimental data for Mn and Fe [34, 45, 46].
Cr has the highest spin moment (𝑆 = 2.23) among all 3𝑑 transition metal impurities,
which deviates from the common understanding of this Kondo series [4], but is also
supported by experimental measurements that suggest Cr is a high-spin impurity
(𝑆 = 5/2) [46, 47].

Taking into account the quantitative differences in the observed 𝑆 in the Kondo
systems and the isolated atoms, our results partially confirm a Hund’s driven sup-
pression mechanism. With the exception of the relative ordering of 𝑇K(Cr) and
𝑇K(Mn), higher observed 𝑆 indeed correlates with lower 𝑇K. For example, account-
ing for the charge transfer to Fe and Cr that modifies their effective spin, we can
predict the observed relation 𝑇K(Cr) < 𝑇K(Fe). The Hund’s picture can further
be confirmed by examining the nature of the lowest triplet excited states which are
associated with the destruction of the Kondo singlet. As seen in Fig. 2.2d, for most
of the elements, the main character of the excitation is a coherent spin-flip of all
the (close to) singly occupied 𝑑 orbitals, as expected in the limit of strong Hund’s
coupling.
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The exception to this is Mn. Note that from the computed effective spin, the
Hund’s mechanism would predict Cr to have a lower 𝑇K than Mn, contrary to the
experimental findings. However, after charge transfer, the Mn ion has an excess
(0.66) electron in the 𝑡2𝑔 shell, which experiences an unfavourable repulsion. We
find that the lowest triplet excitation corresponds to a partial transfer of an electron
from 𝑡2𝑔 to the bath, accompanied by a spin-flip (see Supplementary Note 13).
The low energy of this triplet state recalls the double-exchange mechanism [48],
which favours same-spin alignment to enable charge delocalization. In fact, in our
calculations, other than for Cr (which has a close to exactly half-filled 𝑑-shell when
embedded in Cu) this type of excitation occurs at low energy in all the elements, but
is especially low in energy for Mn. The inclusion of orbital degrees of freedom is
thus an important part of the systematic trends in the Kondo temperatures, not only
through the effective spin, but also through fluctuations.

Some additional insight is provided by examining the detailed contributions to
Hewson’s formula. Because it starts from a Fermi liquid it naturally captures some
effects omitted in the Kondo model, such as the effect of charge fluctuations and
the crystal field splitting. Generally, the lower of the 𝑇K(𝑡2𝑔) and 𝑇K(𝑒𝑔) estimates
corresponds to the shell with the most unpaired electron character, consistent with
a Kondo model where the impurity is replaced by a spin. However, for impurities
where both 𝑡2𝑔 and 𝑒𝑔 have significant unpaired electron character (such as in Cr)
the Hewson formula further identifies which shell gives rise to the lower Kondo
temperature. We find that the Kondo energy scales of Mn, Fe, Co, and Ni are
associated with 𝑒𝑔, while they are associated with 𝑡2𝑔 for Cr, V, and Ti. As Δ(0)
only varies slightly across the series (from −0.59 eV (Ti) to −0.43 eV (Fe) for the
𝑡2𝑔 orbital and from −0.64 eV (Ti) to −0.38 eV (Ni) for the 𝑒𝑔 orbital), the trend
is generated primarily by the QP renormalization weight, which contains both the
Hund’s coupling mechanism as well as the effect of charge fluctuations.

2.6 Comparison to low-energy models
Finally, to place the fidelity of our results in perspective, we check to see if the above
predictions are easily captured within a standard application of the downfolded
model approach. For this, we employ a five-orbital Anderson impurity model using
the Kanamori Hamiltonian [44, 49] with screened Coulomb interaction and exchange
parameters 𝑈 and 𝐽 taken from constrained random phase approximation (cRPA)
calculations [50]. (Note these parameters are also very close to previous parameters
used in other model Kondo studies, e.g., for Co in Cu [15, 18]). We employed the
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Figure 2.3: Comparison of ab initio all-orbital simulations with model simulations
using either the same chemical potentials (“Model”) or fitted chemical potentials to
match the total 3𝑑 orbital occupancy of the all-orbital simulations (“Model (fit 𝜇)”).
(a) Orbital-resolved quasiparticle renormalization weights. (b) Predicted Kondo
temperatures compared to the experimental estimates.

same valence hybridization, bath discretization, and active-space DMRG solvers
described above. The model was tested using both the same chemical potentials
as in the all-orbital calculations, and refitted ones to match the total 3𝑑 orbital
occupancies in the all-orbital results. Further details and analysis are given in
Supplementary Notes 10 and 11. Fig. 2.3 shows the estimated Kondo temperatures
and quasiparticle renormalizations obtained from this model. We find that the
quasiparticle renormalization weights of most magnetic impurities are significantly
overestimated compared to our all-orbital simulations. As a result, the predicted
𝑇K’s do not even show a clear exponential trend, with a large overestimation of𝑇K. In
addition, the relative𝑇K’s of Cr, Mn, and Fe, are not reproduced using either the same
chemical potential as in the ab initio all-orbital calculations, or the refitted chemical
potential. The quantitative improvement in the Kondo temperatures moving from
the model to ab initio calculations is as much as 2 orders of magnitude. Our
standard model includes the density-density, spin-flip, and pair-hopping interactions
in rotationally invariant form. In principle, a model that allows for all possible terms
in the 3𝑑 shell, together with their full frequency dependence, should yield better
estimates of the Kondo temperatures [18]. However, determining such a large
number of downfolded parameters is challenging.
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2.7 Discussion
We have demonstrated the predictive power of ab initio quantum many-body sim-
ulations in the prototypical Kondo physics materials problem, namely, that of 3𝑑
transition metal impurities in bulk copper. By converging the material description
and many-body treatment, we could reach an accuracy for the Kondo temperature
that captures the subtle experimental trends across the 3𝑑 transition metal series.

In contrast to previous approaches, we achieved this accuracy by performing the
quantum many-body simulations of the bare electronic problem with all orbitals,
rather than within a downfolded model. This allows for a straightforward control of
many aspects of converging our results towards an exact description of the phenom-
ena. Within the zero-temperature electronic picture of our work, the physics of very
long-range Coulomb fluctuations remain as an uncontrolled uncertainty, although
these effects appear to be small on the scale of our results. However, our computa-
tional framework does not lie in opposition to model approaches. In particular, we
showed how, after establishing the faithfulness of the physics within our framework,
we can extract understanding in terms of traditional low-energy pictures. Moving
forwards, the accuracy achieved here suggests that with continuing advances, we
may move beyond qualitative descriptions of correlated electron phenomena, to-
wards a systematically improvable simulation of observables directly measured by
experiments.

2.8 Appendix
Computational methods
We generated initial XCu63 (X = Ti, V, Cr, Mn, Fe, Co, Ni) structures by replacing
one Cu atom in a 4 × 4 × 4 supercell of bulk Cu with an impurity atom. We carried
out DFT geometry relaxations for all XCu63 structures with the PBE functional
and projector-augmented-wave (PAW) basis using the Vienna Ab initio Simulation
Package (VASP) [51, 52]. The calculations were performed with a plane wave
cutoff of 400 eV and a Γ-centered 3 × 3 × 3 k-mesh. The forces on each atom were
converged to less than 0.01 eV/Å. With DFT-optimized structures, we performed
single-point DFT calculations with the PBE functional in a periodic Gaussian basis
set using the PySCF quantum chemistry software package [31]. We employed a
split-valence double-𝜁 polarization basis (def2-SVP) for all impurity atoms and a
split-valence double-𝜁 basis (def2-SV(P)) for Cu [28]. The correlation-consistent
polarized triple-𝜁 basis (cc-pVTZ) was also employed for the Fe impurity to test the
parent basis convergence [29]. The libDMET code [20, 22] was used to transform



19

mean-field Fock matrix, density matrix, and electron repulsion integrals to the
intrinsic atomic orbital plus projected atomic orbital (IAO+PAO) basis [32]. 3𝑑4𝑠
atomic orbitals of all metal atoms were used as the predefined valence (minimal)
orbitals in the IAO+PAO construction.

We incorporate the full impurity atom into the embedding problem. In the IAO+PAO
basis, the 3𝑑4𝑠4𝑝4𝑑4 𝑓 5𝑠 (def2-SVP) and 3𝑑4𝑠4𝑝4𝑑4 𝑓 5𝑠5𝑝5𝑑5 𝑓 5𝑔6𝑠6𝑝6𝑑7𝑠7𝑝
(cc-pVTZ) orbitals of the impurity atoms were treated in the many-body impurity
solvers, while the 1𝑠2𝑠2𝑝3𝑠3𝑝 orbitals were frozen at the mean-field level and
left out of the embedding problem. The fcDMFT code [19, 21, 53] was used to
perform the all-orbital calculations. We employed the bare Coulomb interaction
(𝑖 𝑗 |𝑘𝑙) within the impurity as the two-particle interaction matrix in the embedding
Hamiltonian in Eq. 2.1. The one-particle impurity interaction matrix in Eq. 2.1 is
defined as

�̃�𝑖 𝑗 = 𝐹
imp
𝑖 𝑗

−
∑︁
𝑘𝑙∈imp

𝛾
imp
𝑘𝑙

[(𝑖 𝑗 |𝑙𝑘) − 1
2
(𝑖𝑘 |𝑙 𝑗)], (2.5)

where 𝐹 imp is the impurity Fock matrix computed by Hartree-Fock using the PBE
density, and 𝛾imp is the impurity block of PBE density matrix. This definition
ensures that there is no double counting in the impurity Hamiltonian.

The hybridization function for each impurity atom was obtained at the PBE level
using a 4 × 4 × 4 k-point sampling of the XCu63 supercell:

Δ(𝜔 + 𝑖𝛿) = 𝜔 + 𝑖𝛿 − 𝐹imp − 𝐺−1
imp(𝜔 + 𝑖𝛿), (2.6)

where 𝛿 is the broadening factor taken to be 𝛿 = 0.01 Ha. Since Hamiltonian-based
impurity solvers (that require a bath) were employed, we discretized the 3𝑑4𝑠 block
of the hybridization function on a non-uniform grid along the real frequency axis
using a pole-merging direct discretization method [33] to obtain bath energies {𝜖𝑝}
and impurity-bath couplings {𝑉𝑖𝑝} in Eq. 2.1, and 49 bath orbitals were coupled to
each of the 3𝑑4𝑠 valence orbitals. Among these 49 bath orbitals, 5 orbitals were
placed within a 𝜇 ± 0.027 eV energy window, 18 orbitals were placed within the
[𝜇 ± 0.027, 𝜇 ± 0.6] eV energy window, and the remaining 26 orbitals were placed
at a higher energy window of [𝜇± 0.6, 𝜇± 8.0] eV. In total, the embedding problem
contained 22 (impurity) + 294 (bath) = 316 orbitals in the def2-SVP impurity basis
calculations. The same bath discretization procedure was applied to the cc-pVTZ
impurity basis calculation of the Fe impurity, resulting in an embedding problem of
59 (impurity) + 294 (bath) = 353 orbitals.
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To solve the embedding Hamiltonian, we first performed a Hartree-Fock calculation
with the chemical potential fixed at the supercell DFT value, to define the number
of electrons in the embedding problem. We note that the value of the chemical
potential is often chosen to tune the orbital fillings, but we found that the current
strategy gave excellent agreement with experimental occupancies of Mn and Fe.
Following the HF solution, we carried out a configuration interaction with singles
and doubles (CISD) calculation and computed natural orbitals by diagonalizing the
CISD one-particle density matrix. A (36e, 52o) natural-orbital active space was then
derived in the def2-SVP impurity basis calculations ((36e, 46o) for Ni, (46e, 76o) in
the cc-pVTZ impurity basis calculation of Fe), where all kept natural orbitals have
eigenvalues 𝑛𝑖 that satisfy min(𝑛𝑖, 2 − 𝑛𝑖) > 10−7. An ab initio quantum chemistry
DMRG calculation was then conducted on this active space to obtain ground-state
properties including one-particle and two-particle density matrices and spin-spin
correlation functions. The DMRG calculation was done with a bond dimension of
𝑀 = 3500 (𝑀 = 4000 for Mn and Fe) using the block2 code [26, 27], where the
discarded weight was below 2 × 10−5 in all ground-state DMRG calculations. We
further derived a series of smaller natural-orbital active spaces from the DMRG
density matrix (see Supplementary Note 3 for details). The dynamical DMRG
(DDMRG) [37] calculation was carried out for the smaller active spaces with a
bond dimension up to 𝑀 = 1500 along the real axis at zero temperature. Larger
bond dimensions of up to 𝑀 = 4000 were employed for strongly correlated sites
to ensure that the discarded weight in the DDMRG calculations was below 0.02.
To accommodate the non-uniform bath discretization, we used a broadening factor
of 𝜂 = 0.02 eV within the 𝜇 ± 0.25 eV energy window, 𝜂 = 0.05 eV within the
[𝜇 ± 0.25, 𝜇 ± 0.5] eV energy window, 𝜂 = 0.2 eV within the [𝜇 ± 0.5, 𝜇 ± 2.0] eV
energy window, and 𝜂 = 0.6 eV within the [𝜇 ± 2.0, 𝜇 ± 5.0] eV energy window in
the DDMRG calculations.

From the DDMRG calculations, we extracted the self-energy of the active space
ΣDMRG,act(𝜔) as

ΣDMRG,act(𝜔) = 𝐺−1
DFT,act(𝜔) − 𝐺

−1
DMRG,act(𝜔), (2.7)

where𝐺DFT,act was calculated from the effective DFT Hamiltonian rotated to the ac-
tive space. The active-space self-energy was then rotated back to the full embedding
space

ΣDMRG,emb(𝜔) = 𝐶emb,actΣDMRG,act(𝜔) (𝐶emb,act)†, (2.8)
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where 𝐶emb,act = 𝐶CISD𝐶DMRG. Here, 𝐶CISD represents the rotation matrix from
the full embedding space to the natural-orbital active space derived from CISD
calculations, while𝐶DMRG represents the rotation matrix from the CISD active space
to the natural-orbital active space derived from ground-state DMRG calculations.
Finally, the local Green’s function of the impurity was calculated from Dyson’s
equation

𝐺 loc(𝜔) = [𝐺−1
DFT,emb(𝜔) − ΣDMRG,emb(𝜔)]−1. (2.9)

Benchmark of DDMRG solver on Anderson impurity model
We benchmark the accuracy of the active-space DMRG and dynamical DMRG
(DDMRG) solvers on a single-impurity Anderson model (SIAM), the fundamental
model of Kondo physics, where high-accuracy numerical results are available (e.g.,
from NRG [54] or DMRG [55]). The Hamiltonian of the SIAM is

𝐻 =
∑︁
𝜎

𝜖 𝑓 𝑓
†
𝜎 𝑓𝜎 +𝑈 𝑓 †↑ 𝑓↑ 𝑓

†
↓ 𝑓↓ +

∑︁
𝑘𝜎

𝜖𝑘𝑐
†
𝑘𝜎
𝑐𝑘𝜎 +

∑︁
𝑘𝜎

𝑉𝑘 ( 𝑓 †𝜎𝑐𝑘𝜎 + 𝑐†
𝑘𝜎
𝑓𝜎), (2.10)

where 𝑓
(†)
𝜎 are creation/annihilation operators for impurity states with spin 𝜎 and

energy 𝜖 𝑓 , 𝑐(†)𝑘𝜎 are creation/annihilation operators for band states with spin 𝜎 and
energy 𝜖𝑘 ,𝑈 is the impurity on-site Coulomb interaction, and𝑉𝑘 are the 𝑘-dependent
coupling between impurity and band states. We followed Ref. [54] and employed
the flat-band hybridization function:

ImΔ(𝜔 + 𝑖0+) = −0.015𝐷, |𝜔 | < 𝐷 (2.11)

where 2𝐷 is the conduction electron bandwidth. For convenience, we set 𝐷 = 1.
The flat-band hybridization on a logarithmic grid was then discretized along the real
axis to obtain {𝜖𝑘 , 𝑉𝑘 }:

−ImΔ(𝜔 + 𝑖0+) =
∑︁
𝑘

𝑉2
𝑘

𝜔 − 𝜖𝑘
. (2.12)

We coupled 39 bath orbitals to the single impurity orbital. Furthermore, only the
half-filling case was considered, which means 𝜖 𝑓 = −1

2𝑈. We tested our impurity
solver on three interaction strengths: 𝑈 = 0.1, 0.2, 0.3.

We first solved the SIAM Hamiltonian using the Hartree-Fock approximation to
determine an initial set of orbitals. Within this (untruncated basis) we subsequently
carried out a ground-state configuration interaction with single and double exci-
tations (CISD) calculation or a ground-state DMRG calculation. Using these, we
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then derived CISD and DMRG natural-orbital-based active spaces by diagonalizing
the one-particle density matrices. We denote the 𝑛-electron 𝑛-orbital active space
as (𝑛e, 𝑛o). We then solved within the active space using ground-state DMRG
with bond dimension 𝑀 = 1200 and then dynamic DMRG with bond dimension
𝑀 = 800 [26, 27]. To understand the accuracy of this active-space DMRG solver,
we also solved the full 40-orbital SIAM problem using DMRG/DDMRG with the
same bond dimensions.

Figure 2.4: Impurity density of states and self-energy in the single-impurity An-
derson model calculated by full DMRG and active-space DMRG (in CISD natural
orbital basis). 𝑈 = 0.2. (a) (4e, 4o) active space. (b) (8e, 8o) active space. (c) (12e,
12o) active space.

We first present the impurity density of states (DOS) and self-energy at 𝑈 = 0.2
in Fig. 2.4. It shows a sharp Kondo resonance peak and two broad Hubbard bands
in the full DMRG calculation, which agrees quantitatively with previous NRG
results [54]. Compared to the full (40e, 40o) DMRG results (Fig. 2.4a), the CISD
(4e, 4o) active-space result shows multiple spurious oscillations in the DOS and
self-energy. However, we point out that even with this very small CISD (4e, 4o)
active space, the impurity solver correctly predicts the shape of the Kondo resonance
around the Fermi level, which is also confirmed in the self-energy comparison around
𝜔 = 0. We find that the accuracy improves rapidly when the CISD active space is
increased from (4e, 4o) to (8e, 8o) and (12e, 12o). At the (12e, 12o) level, the DOS
and self-energy from active-space DMRG are almost indistinguishable from the full
DMRG results.
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Figure 2.5: Quasiparticle renormalization weight 𝑍 for increasing sizes of active
space in𝑈 = 0.1, 0.2, 0.3 SIAM models. The active spaces consist of CISD natural
orbitals (“CISD-NO”) or DMRG natural orbitals (“DMRG-NO”). The full (40e,
40o) DMRG calculated 𝑍 and analytic (exact) 𝑍 values are shown as horizontal
dashed lines.

In Fig. 2.5, we further compare the quasiparticle renormalization factors 𝑍 defined
as

𝑍 =

[
1 − 𝜕Σ(𝜔)

𝜕𝜔

���
𝜔=0

]−1
(2.13)

using the CISD and DMRG active spaces, denoted “CISD-NO” and “DMRG-NO,”
respectively. At moderate interaction strength (𝑈 = 0.1), the active-space DMRG
predicts 𝑍 = 0.21 at the CISD (16e, 16o) level, in excellent agreement with full
DMRG 𝑍 = 0.20 and the exact 𝑍 = 0.21 [1]. The exact 𝑍 is analytically calculated
from Hewson’s formula 𝑍 = 4𝑇K/𝜋Δ0 (with Δ0 = 0.015) and the 𝑇K for large 𝑈

Δ0
[1]

𝑇K =

√︂
𝑈Δ0

2
exp

(
− 𝜋𝑈

8Δ0
+ 𝜋Δ0

2𝑈

)
. (2.14)

However, at stronger interaction strengths, the CISD active spaces become less
accurate and overestimate 𝑍 . In contrast, the DMRG active spaces are more accurate,
and even with the small (8e, 8o) active space, the computed 𝑍 values are reasonably
close to the full DMRG and exact results: at 𝑈 = 0.2 (𝑈 = 0.3), the active-space
DMRG predicts 𝑍 = 0.012 (𝑍 = 0.0017), while the full DMRG predicts 𝑍 = 0.019
(𝑍 = 0.0019) and the exact result is 𝑍 = 0.020 (𝑍 = 0.0017). With the DMRG (16e,
16o) active space, the computed 𝑍 values are almost indistinguishable from the exact
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results on the scale of Fig. 2.5. This confirms the effectiveness of an active-space
strategy to reduce the number of orbitals needed to represent the properties of the
impurity.

Table 2.1: Orbital occupancy cut-off thresholds for DMRG occupied and virtual
natural orbitals to obtain active spaces of 6-16 orbitals in𝑈 = 0.2 SIAM model.

Active space size Threshold
(occupied)

Threshold (virtual)

6o 2 × 10−3 2 × 10−3

8o 4 × 10−4 4 × 10−4

10o 9 × 10−5 8 × 10−5

16o 2 × 10−6 8 × 10−7

Table 2.2: Orbital occupancy cut-off thresholds for occupied and virtual natural
orbitals to obtain the largest active spaces used in dynamical and finite temperature
calculations (around 28 orbitals) in ab initio calculations of various impurity ele-
ments.

Element Threshold
(occupied)

Threshold (virtual)

Ti 4 × 10−5 4 × 10−4

V 2 × 10−4 7 × 10−4

Cr 4 × 10−4 3 × 10−3

Mn 2 × 10−4 4 × 10−3

Fe 1 × 10−4 4 × 10−3

Co 1 × 10−4 1 × 10−3

Ni 2 × 10−5 2 × 10−3

We cannot rigorously infer the accuracy of the active-space DMRG in the ab initio
Kondo simulations from the SIAM calculations because of the different Hamiltonian.
However, we can assign a rough correspondence to the SIAM problem by dividing
the number of active space orbitals used in the ab initio calculation by the number
of effective singly occupied orbitals in the impurity atom, and using 𝑍 in the ab
initio calculations to define a corresponding effective𝑈. The most difficult systems
are those with the lowest Kondo temperatures, namely Cr, Mn, and Fe, which have
between 3-5 singly occupied orbitals. For Cr and Fe, the largest active space used
in the computation of 𝑍 had 28 orbitals, thus we infer an effective SIAM active
space size of 6-10 orbitals. Similar correspondence can be obtained by comparing
the natural orbital cut-off thresholds used to obtain active spaces in the ab initio
calculations and in the SIAM model (Tables 2.1 and 2.2). The cut-off thresholds in
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ab initio calculations are on the order of 10−4 or 10−3, which are in the range of the
thresholds of SIAM active spaces of 6-10 orbitals. The renormalization factors of
Cr and Fe computed in the largest active space were 0.023 and 0.026, respectively.
These 𝑍 values correspond roughly to 𝑈 = 0.2, where with this effective (CISD)
active space size in the SIAM problem we expect 𝑍 to be overestimated by ∼ 3,
which is similar to the observed overestimation of𝑇K with respect to the experimental
estimates in the ab initio calculations. For Mn, where we could only use a 22-orbital
active space (see below) and 𝑍 ≈ 0.006, corresponding to𝑈 > 0.2 ∼ 0.3, we expect
𝑍 to be overestimated by an order of magnitude. This also roughly agrees with
the larger overestimation of 𝑇K for Mn. The convergence of the SIAM calculations
can thus be seen to be consistent with our ab initio results, and further provide an
estimate of the required resources for more accurate ab initio calculations in the
future.

Convergence of impurity observables towards parent basis limit
In this section, we present detailed benchmarks of the convergence of local impurity
observables in the active-space DMRG calculations towards the parent basis limit.
By diagonalizing the one-particle density matrix obtained from ground-state DMRG
calculations within the (36e, 52o) active space ((36e, 46o) for Ni) in the def2-
SVP basis, we further derived a series of smaller active spaces for performing the
more time-consuming dynamical DMRG (DDMRG) calculations. The tested active
spaces are listed in Table 2.3, where the corresponding orbital occupancies 𝑛 and
quasiparticle (QP) renormalization weights 𝑍 of impurity 3𝑑 orbitals are shown in
Table 2.3 and Fig. 2.6. We find that, with the exception of Mn (where we could not
converge the DDMRG calculation with respect to bond dimension for an active space
larger than (22e, 22o)), 𝑍 and 𝑛 are converged with small errors for all impurities at
an active-space size of (22e, 22o) ((22e, 27o) for Co).
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Table 2.3: Occupancies (𝑛) and quasiparticle renormalization weights (𝑍) of im-
purity 𝑡2𝑔 and 𝑒𝑔 orbitals obtained from different DMRG/DDMRG active-space
simulations. All results are in the def2-SVP basis unless specified.

Impurity Active space 𝑛(𝑡2𝑔) 𝑛(𝑒𝑔) 𝑍 (𝑡2𝑔) 𝑍 (𝑒𝑔)
Ti (10e, 10o) 0.59 0.26 0.64 0.59

(18e, 18o) 0.60 0.30 0.59 0.62
(22e, 22o) 0.60 0.32 0.58 0.58
(30e, 29o) 0.61 0.30 0.60 0.59
(36e, 52o) 0.62 0.32

V (10e, 10o) 0.99 0.19 0.27 0.45
(18e, 18o) 0.93 0.37 0.20 0.47
(22e, 22o) 0.93 0.39 0.19 0.37
(28e, 30o) 0.93 0.38 0.19 0.37
(36e, 52o) 0.95 0.41

Cr (10e, 10o) 0.91 0.82 0.12 0.12
(14e, 16o) 1.10 0.61 0.092 0.16
(22e, 22o) 0.97 0.94 0.017 0.038
(28e, 28o) 0.99 0.93 0.023 0.047
(36e, 52o) 0.99 0.96

Mn (10e, 10o) 1.06 1.07 0.045 0.011
(16e, 16o) 1.16 1.00 0.068 0.018
(22e, 22o) 1.17 1.03 0.071 0.0058
(36e, 52o) 1.22 1.03

Fe (10e, 10o) 1.46 1.14 0.27 0.12
(def2-SVP) (16e, 16o) 1.59 1.03 0.23 0.021

(22e, 22o) 1.58 1.06 0.15 0.028
(28e, 28o) 1.59 1.04 0.15 0.026
(36e, 52o) 1.58 1.08

Co (10e, 10o) 1.85 1.16 0.29 0.11
(16e, 16o) 1.90 1.09 0.37 0.060
(22e, 27o) 1.80 1.26 0.19 0.11
(26e, 36o) 1.79 1.28 0.20 0.11
(36e, 52o) 1.77 1.32

Ni (10e, 10o) 1.77 1.77 0.50 0.47
(16e, 16o) 1.74 1.85 0.48 0.47
(22e, 22o) 1.80 1.80 0.42 0.40
(28e, 28o) 1.78 1.81 0.40 0.38
(36e, 46o) 1.80 1.82

Fe (26e, 29o) 1.54 1.08 0.19 0.039
(cc-pVTZ) (46e, 76o) 1.56 1.08
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Figure 2.6: Convergence of the quasiparticle renormalization weights (left) and
orbital occupancies (right) of the 3𝑑 orbitals of all impurities as the DMRG active
space increases.
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Many-body solver error estimates
We next present an estimate of the errors from two of the approximations in our
calculations: active space size and DMRG bond dimension, which are the main
many-body solver errors with respect to the exact parent-basis limit (in this case,
def2-SVP). First, we analyze the errors in the predicted impurity observables due to
the use of active spaces. As shown in Table 2.4, for orbital occupancies, we estimate
the remaining errors relative to the parent-basis limit by comparing the largest and
second largest ground-state (GS) active-space calculations (assuming (36e, 52o) is
a sufficiently large active space). For example, for Fe, we obtain Δ𝑛(𝑡2𝑔) = 0.010
and Δ𝑛(𝑒𝑔) = 0.045 by comparing the 52o (largest GS) and 28o (second largest
GS) results. Using the maximum Δ𝑛 across all impurities (except Mn), we estimate
that the active space associated orbital occupancy error to be at most 0.045. For
estimating the QP weight errors, we adopt a two-step procedure: (1) Compare the
largest and second largest Green’s function (GF) active-space calculations. For Fe,
we obtain Δ𝑍 (𝑡2𝑔) = 0.009 and Δ𝑛(𝑒𝑔) = 0.002 by taking the difference between
the 28o (largest GF) and 22o (second largest GF) results. (2) Estimate the QP weight
errors between the largest and second largest GS active spaces by assuming a linear
relationship between Δ𝑛 and Δ𝑍:

Δ𝑍 (largest GS vs. 2nd largest GS) = Δ𝑛(largest GS vs. 2nd largest GS)
Δ𝑛(largest GF vs. 2nd largest GF)

× Δ𝑍 (largest GF vs. 2nd largest GF). (2.15)

Following this procedure, we estimate the 𝑍 errors for Fe to be Δ𝑍 (𝑡2𝑔) = 0.008 and
Δ𝑛(𝑒𝑔) = 0.005. Furthermore, using the maximum Δ𝑍 across all impurities (except
Mn), we estimate the active space associated QP weight error to be at most 0.048.

We then analyze the numerical errors due to finite bond dimension in DMRG
calculations. We find that the DMRG predicted orbital occupancies are very well
converged with respect to the bond dimension (𝑀) in all impurities. For example, for
Cr, the orbital occupancy differences between𝑀 = 3000 and𝑀 = 4000 calculations
are negligibly small: Δ𝑛(𝑡2𝑔) = 2 × 10−4 and Δ𝑛(𝑒𝑔) = 1 × 10−4.

We then focus on the DMRG bond dimension associated QP weight errors. In
Table 2.5, we present DDMRG 𝑍 values and discarded weights at various bond
dimensions for V, Cr, Fe, and Co, in their largest GF active-space calculations.
We also performed a two-point linear extrapolation against the discarded weights to
estimate the 𝑍 values at infinite DDMRG bond dimension. By comparing the largest
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Table 2.4: Active-space error analysis of orbital occupancies (𝑛) and quasiparticle
renormalization weights (𝑍) of impurity 3𝑑 impurity orbitals. The “est.” values are
estimated according to Eq. 2.15.

Impurity Comparison btw.
active spaces

Δ𝑛(𝑡2𝑔) Δ𝑛(𝑒𝑔) Δ𝑍 (𝑡2𝑔) Δ𝑍 (𝑒𝑔)

Ti 22o vs. 29o 0.011 0.020 0.015 0.008
29o vs. 52o 0.013 0.015 0.018 (est.) 0.006 (est.)

V 22o vs. 30o 0.002 0.011 0.007 0.001
30o vs. 52o 0.014 0.022 0.048 (est.) 0.001 (est.)

Cr 22o vs. 28o 0.015 0.018 0.005 0.010
28o vs. 52o 0.001 0.030 0.000 (est.) 0.016 (est.)

Fe 22o vs. 28o 0.011 0.019 0.009 0.002
28o vs. 52o 0.010 0.045 0.008 (est.) 0.005 (est.)

Co 22o vs. 36o 0.009 0.022 0.006 0.005
36o vs. 52o 0.013 0.038 0.010 (est.) 0.008 (est.)

Ni 22o vs. 28o 0.011 0.013 0.020 0.024
28o vs. 46o 0.015 0.007 0.029 (est.) 0.013 (est.)

𝑀 results against the extrapolated values, we find that the largest bond dimension
associated 𝑍 error is around 5 × 10−3 (Cr), an order of magnitude smaller than the
largest active space associated 𝑍 error.

In summary, combining the maximum errors from the active space and bond di-
mension error analysis, we conservatively estimate that our predicted 𝑛 values are
converged to at least ∼ 0.04 and 𝑍 values are converged to at least ∼ 0.05 compared
to the exact parent basis result.

DFT hybridization functions
We present DFT-calculated real-axis hybridization functions of magnetic impurity
atoms in bulk Cu in Fig. 2.7. It is observed that the 𝑡2𝑔 hybridization has a greater
magnitude than the 𝑒𝑔 hybridization in all impurities, especially in the range of [3,
6] eV. Meanwhile, we find that the magnitudes of both 𝑡2𝑔 and 𝑒𝑔 hybridization
functions become smaller from Ti to Ni.
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Table 2.5: Error analysis of quasiparticle renormalization weights of impurity 3𝑑
orbitals against DDMRG maximum bond dimensions and discarded weights. The
“extrap.” values are obtained through two-point linear extrapolation against dis-
carded weights.

Impurity Max. bond
dimension

Max. discarded
weight

𝑍 (𝑡2𝑔) 𝑍 (𝑒𝑔)

V 2500 1.52 × 10−2 0.1893 0.3742
(28e,
30o)

4000 9.41 × 10−3 0.1867 0.3736

extrap. 0 0.1825 0.3726
|𝑍(𝑀 =

4000)−𝑍(extrap.)|
4.2 × 10−3 1.0 × 10−3

Cr 2500 2.24 × 10−2 0.0202 0.0473
(28e,
28o)

3500 1.47 × 10−2 0.0226 0.0474

extrap. 0 0.0273 0.0476
|𝑍(𝑀 =

3500)−𝑍(extrap.)|
4.7 × 10−3 1.9 × 10−4

Fe 2500 5.28 × 10−3 0.1538 0.0253
(28e,
28o)

3500 2.97 × 10−3 0.1538 0.0255

extrap. 0 0.1539 0.0258
|𝑍(𝑀 =

3500)−𝑍(extrap.)|
7.3 × 10−5 2.9 × 10−4

Co 1500 3.46 × 10−2 0.2011 0.1088
(26e,
36o)

2500 1.29 × 10−3 0.2003 0.1071

extrap. 0 0.1999 0.1062
|𝑍(𝑀 =

2500)−𝑍(extrap.)|
4.5 × 10−4 9.9 × 10−4

Self-energies of magnetic impurity orbitals
We show real-axis self-energies of Cr, Mn, and Fe impurities in bulk Cu calculated
by all-orbital simulations in Fig. 2.8. When 𝜔 approaches the Fermi level, the
imaginary part of the self-energies of the 3𝑑 orbitals approaches zero, while the
real part of the self-energies of the 3𝑑 orbitals changes linearly with respect to the
frequency, which agrees with the expected Fermi liquid behavior.
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Figure 2.7: Real-axis hybridization function of 3𝑑 orbitals of magnetic impurities
in bulk Cu calculated by DFT with the PBE functional.

Figure 2.8: Real-axis self-energies of Cr, Mn, and Fe impurities from all-orbital
calculations. (a) Real part of the self-energy matrix elements diagonal in the
orbital indices associated with the 𝑡2𝑔 orbitals. (b) Real part of the self-energy
matrix elements diagonal in the orbital indices associated with the 𝑒𝑔 orbitals. (c)
Imaginary part of self-energies of 𝑡2𝑔 orbitals. (d) Imaginary part of self-energies
of 𝑒𝑔 orbitals.

Density of state of magnetic impurity orbitals
We present the local DOS of the 3𝑑 orbitals of the Co impurity in bulk Cu calculated
by all-orbital simulations in Fig. 2.9, in addition to the DOS of Cr, Mn and Fe
impurities in Figure 2. Compared to results from the 5-orbital model calculations in
Ref. [15], the all-orbital DOS exhibits qualitatively similar resonance and shoulder
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Figure 2.9: (a) 𝑡2𝑔 and (b) 𝑒𝑔 resolved DOS of Co impurity in bulk Cu from all-
orbital calculations (“this work”), compared to DOS taken from Ref. [15] (“Surer”).

peaks near the Fermi level. Quantitatively, resonance peaks near the Fermi level from
all-orbital calculations are narrower, especially for the 𝑒𝑔 orbitals. The narrower
widths are consistent with the smaller quasiparticle renormalization weights 𝑍 =
0.19 (𝑡2𝑔) and 0.11 (𝑒𝑔) from our all-orbital calculation compared to the 𝑍 = 0.42
(𝑡2𝑔) and 0.47 (𝑒𝑔) from Ref. [15].

Summary of ground-state and spectral properties
The ground-state and spectral properties of magnetic impurities calculated by all-
orbital simulations are summarized in Table 2.6 and Table 2.7. In Table 2.7,
we include the natural orbital occupancies of 𝑡2𝑔 and 𝑒𝑔 symmetry derived from
the (36e, 52o) active-space DMRG density matrix. We choose to show the most
fractional occupancies with 𝑛nat > 1. We observe that the natural occupancies
in Table 2.7 correlate well with the quasiparticle renormalization 𝑍 in Table 2.6,
i.e., more fractionally occupied orbitals are found to possess stronger quasiparticle
renormalization.

Spin and charge fluctuations in Kondo impurities
The spin fluctuation in all magnetic impurities can be better understood by calculat-
ing the spin-spin correlation within the 3𝑑 shell

𝑆𝑖 𝑗 = ⟨𝑆𝑖𝑆 𝑗 ⟩ − ⟨𝑆𝑖⟩⟨𝑆 𝑗 ⟩. (2.16)
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Table 2.6: Hybridization function values at the Fermi level Δ(0), quasiparticle
renormalization weights 𝑍 , and Kondo temperatures 𝑇K of magnetic impurities in
bulk Cu computed by all-orbital simulations. All results are in the def2-SVP basis
with Green’s function active space of (22e, 22o) ((22e, 27o) for Co).

Impurity Δ(0, 𝑡2𝑔)
(eV)

Δ(0, 𝑒𝑔)
(eV)

𝑍 (𝑡2𝑔) 𝑍 (𝑒𝑔) 𝑇K(𝑡2𝑔)
(K)

𝑇K(𝑒𝑔)
(K)

Ti −0.59 −0.64 0.58 0.58 3144 3412
V −0.52 −0.56 0.19 0.37 924 1895
Cr −0.47 −0.48 0.017 0.038 73 167
Mn −0.44 −0.43 0.071 0.0058 287 23
Fe −0.43 −0.40 0.15 0.028 565 101
Co −0.43 −0.38 0.19 0.11 761 396
Ni −0.44 −0.38 0.42 0.40 1709 1374

Table 2.7: Orbital occupancies 𝑛, natural orbital occupancies 𝑛nat, and spin moments
𝑆 of magnetic impurities in bulk Cu computed by all-orbital simulations. All results
are in the def2-SVP basis with ground-state active space of (36e, 52o) ((36e, 46o)
for Ni).

Impurity 𝑛(𝑡2𝑔) 𝑛(𝑒𝑔) 𝑛nat(𝑡2𝑔) 𝑛nat(𝑒𝑔) 𝑛(3d) 𝑆

Ti 0.62 0.32 1.84 1.93 2.50 0.93
V 0.95 0.40 1.57 1.86 3.65 1.36
Cr 0.99 0.96 1.24 1.21 4.87 2.23
Mn 1.22 1.03 1.46 1.20 5.73 1.98
Fe 1.58 1.09 1.64 1.29 6.92 1.42
Co 1.77 1.31 1.76 1.52 7.94 0.95
Ni 1.80 1.82 1.89 1.89 9.03 0.48

As shown in Fig. 2.10a, Cr has the strongest intra- and inter-orbital spin correlation
among all impurities. From Cr to Co, the intra-orbital spin correlation in 𝑡2𝑔 orbitals
is largely suppressed, while the intra- and inter-orbital spin correlation within the
𝑒𝑔 orbitals stays strong or moderate, which is consistent with the orbital-dependent
trend in quasiparticle renormalization. Fig. 2.10a also reveals that, in the Mn,
Fe, and Co systems, the inter-orbital spin correlations have the following relation:
𝑆𝑖≠ 𝑗 (𝑡2𝑔-𝑡2𝑔) < 𝑆𝑖≠ 𝑗 (𝑡2𝑔-𝑒𝑔) < 𝑆𝑖≠ 𝑗 (𝑒𝑔-𝑒𝑔). We also include the impurity charge
fluctuation in Fig. 2.10b, which is calculated as 𝐶𝑖 𝑗 = ⟨�̂�𝑖�̂� 𝑗 ⟩ − ⟨�̂�𝑖⟩⟨�̂� 𝑗 ⟩.
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Figure 2.10: Orbital-resolved (a) spin and (b) charge correlations for Cr, Mn, Fe,
and Co impurities.

Effective 3𝑑-model calculations
To compare our all-orbital simulations against downfolded effective model calcula-
tions, we derived a multi-orbital Anderson impurity model with Hamiltonian

𝐻 =
∑︁
𝑖 𝑗𝜎

�̃�𝑖 𝑗 𝑓
†
𝑖𝜎
𝑓 𝑗𝜎 + 1

2

∑︁
𝑖 𝑗 𝑘𝑙

∑︁
𝜎𝜎′

𝑈𝑖 𝑗 𝑘𝑙 𝑓
†
𝑖𝜎
𝑓
†
𝑗𝜎′ 𝑓𝑙𝜎′ 𝑓𝑘𝜎

+
∑︁
𝑘𝜎

𝜖𝑘𝑐
†
𝑘𝜎
𝑐𝑘𝜎 +

∑︁
𝑘𝑖𝜎

𝑉𝑖𝑘 ( 𝑓 †𝑖𝜎𝑐𝑘𝜎 + 𝑐†
𝑘𝜎
𝑓𝑖𝜎), (2.17)

where the indices 𝑖, 𝑗 , 𝑘, 𝑙 run over five 3𝑑 orbitals and𝑈𝑖 𝑗 𝑘𝑙 is the screened Coulomb
interaction tensor within the 3𝑑 shell. In practice, approximations such as the
density-density approximation are often employed for the Coulomb interaction ten-
sor. Here, we adopted a Kanamori Hamiltonian [18] that goes beyond the density-
density approximation, where the Coulomb tensor (second term in Eq. 2.17) is
written as

𝐻𝐾 =
∑︁
𝑖

𝑈𝑖𝑖𝑖𝑖�̂�𝑖↑�̂�𝑖↓ +
∑︁
𝑖≠ 𝑗

∑︁
𝜎𝜎′

(𝑈𝑖 𝑗𝑖 𝑗 −𝑈𝑖 𝑗 𝑗𝑖𝛿𝜎𝜎′)�̂�𝑖𝜎�̂� 𝑗𝜎′

+
∑︁
𝑖≠ 𝑗

𝑈𝑖 𝑗 𝑗𝑖 ( 𝑓 †𝑖↑ 𝑓
†
𝑗↓ 𝑓𝑖↓ 𝑓 𝑗↑ − 𝑓

†
𝑖↑ 𝑓

†
𝑖↓ 𝑓 𝑗↑ 𝑓 𝑗↓). (2.18)

We give the Coulomb integrals for 3𝑑 electrons in the basis of cubic harmonics,
where 𝑈𝑖𝑖𝑖𝑖, 𝑈𝑖 𝑗𝑖 𝑗 , and 𝑈𝑖 𝑗 𝑗𝑖 are expressed using parameters 𝑈0, 𝐽1, 𝐽2, 𝐽3, 𝐽4. The
readers are referred to Ref. [18] for the detailed parametrization. The𝑈0, 𝐽1, 𝐽2, 𝐽3, 𝐽4
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parameters can be expressed in terms of Slater integrals 𝐹0, 𝐹2, and 𝐹4:

𝑈0 = 𝐹0 + 8
7

1
14

(𝐹2 + 𝐹4), (2.19)

𝐽1 =
1

49
(3𝐹2 + 20

9
𝐹4), (2.20)

𝐽2 = −2
5
7

1
14

(𝐹2 + 𝐹4) + 3𝐽1, (2.21)

𝐽3 = 6
5
7

1
14

(𝐹2 + 𝐹4) − 5𝐽1, (2.22)

𝐽4 = 4
5
7

1
14

(𝐹2 + 𝐹4) − 3𝐽1. (2.23)

The Slater integrals 𝐹0, 𝐹2, and 𝐹4 are obtained from two parameters𝑈 and 𝐽, where
𝑈 = 𝐹0 and 𝐽 = 1

14 (𝐹
2 + 𝐹4) with a constant ratio 𝐹2/𝐹4 = 0.625. In summary,

the Kanamori Hamiltonian in Eq. 2.18 is fully characterized by two parameters 𝑈
and 𝐽. In Kondo simulation literature, 𝑈 and 𝐽 are usually treated as adjustable
parameters. Here, we took the 𝑈 and 𝐽 values of magnetic impurities from cRPA
calculations in Ref. [50], which are listed in Table 2.8.

Table 2.8: Coulomb interaction parameters in Kanamori Hamiltonian taken from
Ref. [50].

Parameter
(eV)

Ti V Cr Mn Fe Co Ni

𝑈 3.1 3.2 4.4 4.4 3.8 4.3 3.8
𝐽 0.5 0.6 0.7 0.7 0.7 0.8 0.8

Table 2.9: Quasiparticle renormalization weights 𝑍 and Kondo temperatures 𝑇K of
magnetic impurities in bulk Cu from five-orbital model Hamiltonian calculations.

Impurity 𝑍 (𝑡2𝑔) 𝑍 (𝑒𝑔) 𝑇K(𝑡2𝑔) (K) 𝑇K(𝑒𝑔) (K)
Ti 0.92 0.95 4953 5556
V 0.63 0.87 2993 4431
Cr 0.31 0.55 1318 2445
Mn 0.11 0.062 449 243
Fe 0.45 0.11 1769 398
Co 0.71 0.72 2800 2524
Ni 0.99 0.99 3999 3383

The one-particle Hamiltonian in Eq. 2.17 was treated in a similar fashion as in the
all-orbital calculations, where we adopted the Hartree-Fock effective Hamiltonian
for five 3𝑑 orbitals so that the double-counting term can be exactly removed. The 3𝑑
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Table 2.10: Orbital occupancies 𝑛 and natural orbital occupancies 𝑛nat of magnetic
impurities in bulk Cu from five-orbital model Hamiltonian calculations.

Impurity 𝑛(𝑡2𝑔) 𝑛(𝑒𝑔) 𝑛nat(𝑡2𝑔) 𝑛nat(𝑒𝑔) 𝑛(3d)
Ti 0.32 0.13 1.98 1.94 1.23
V 0.75 0.15 1.86 1.89 2.54
Cr 1.23 0.27 1.63 1.85 4.23
Mn 1.26 0.84 1.59 1.50 5.45
Fe 1.60 1.07 1.84 1.52 6.95
Co 1.68 1.74 1.93 1.80 8.51
Ni 1.94 1.97 1.91 1.88 9.76

Table 2.11: Five-orbital model Hamiltonian results after fitting the chemical po-
tential. Shown in the table are the changes in the chemical potential Δ𝜇, orbital
occupancies 𝑛, quasiparticle renormalization weights 𝑍 , and Kondo temperature𝑇K.

Impurity Δ𝜇

(eV)
𝑛(𝑡2𝑔) 𝑛(𝑒𝑔) 𝑛(3d) 𝑍 (𝑡2𝑔) 𝑍 (𝑒𝑔) 𝑇K(𝑡2𝑔)

(K)
𝑇K(𝑒𝑔)

(K)
Ti 4.0 0.73 0.13 2.45 0.77 1.00 4171 5870
V 3.7 1.12 0.15 3.66 0.67 0.79 3183 4003
Cr 2.7 1.44 0.27 4.87 0.62 0.37 2649 1627
Mn 1.1 1.40 0.76 5.72 0.35 0.22 1411 864
Fe −0.1 1.60 1.06 6.93 0.40 0.087 1547 315
Co −1.9 1.56 1.62 7.93 0.47 0.78 1833 2719
Ni −4.4 1.80 1.82 9.03 0.98 0.97 3963 3314

block of the DFT hybridization function was discretized on the same non-uniform
grid to obtain the bath parameters 𝜖𝑘 and 𝑉𝑖𝑘 , which resulted in 49 bath orbitals per
3𝑑 impurity orbital.

To solve the embedding problem consisting of 5 impurity orbitals and 245 bath
orbitals, we employed the same active-space DMRG solver. A Hartree-Fock calcu-
lation with fixed chemical potential at the DFT level was first performed, followed
by a CISD calculation on the full embedding problem. A (40e, 40o) natural-orbital
active space was derived by diagonalizing the CISD density matrix. We then con-
ducted ground-state DMRG calculations with bond dimension 𝑀 = 3500 on the
(40e, 40o) active space and further derived a (20e, 20o) DMRG natural-orbital
active space. Finally, a dynamical DMRG calculation was done on the (20e, 20o)
active space with bond dimension 𝑀 = 1200, and DMRG self-energies were used
to estimate the quasiparticle renormalizations and Kondo temperatures in magnetic
impurities.
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We summarize the Green’s function results obtained using the same chemical po-
tential as in the all-orbital calculations in Table 2.9 and the ground-state properties
in Table 2.10. We find that the natural occupancies in the downfolded model cal-
culations are less close to singly occupied than in the all-orbital calculations. In
the meantime, the quasiparticle renormalization weights and the predicted Kondo
temperatures are much higher in the model calculations compared to the all-orbital
simulations. We also observe that the total 3𝑑 occupancies in the model differ
from those in the all-orbital calculation by up to 1.27 electrons. Because the 3𝑑
occupancy can significantly impact the correlation strength and the Kondo temper-
ature [56], for a fair comparison with the all-orbital calculations, we also performed
the model calculation with chemical potentials 𝜇 fitted such that the total 3𝑑 occu-
pancies match those in the all-orbital calculations in Table 2.7. The model results
with the fitted 𝜇 are shown in Table 2.11. The Kondo temperatures calculated using
the new quasiparticle renormalization weight decrease slightly for a few elements
(e.g., Fe and Co) compared to without the chemical potential fitting, but there is no
consistent improvement in the absolute 𝑇K or its trends. With or without fitting the
chemical potential in the low-energy model calculations, our all-orbital results are
an order of magnitude better.

Specific heat calculation on the Anderson impurity model
We benchmark the accuracy of a specific heat calculation on the symmetric single-
impurity Anderson model (SIAM) (see 2.8 for an introduction) within the numerical
framework of this work. In the symmetric SIAM, for large 𝑈

Δ0
, 𝑇K can be calculated

analytically as a function of the impurity on-site Coulomb interaction𝑈 and the hy-

bridization strength Δ0, 𝑇K =

√︃
𝑈Δ0

2 exp
(
− 𝜋𝑈

8Δ0
+ 𝜋Δ0

2𝑈

)
[1]. Additionally, the specific

heat has been solved exactly through Bethe Ansatz and computed numerically [57,
58]. This allows us to analyze the errors due to the bath discretization and active
space truncation on the peak temperature of the specific heat and also verify the
nature of the excitations that give rise to the Kondo singlet breaking (see 2.8).

To compute the finite temperature properties, we solve for the excited states of the
SIAM in the canonical ensemble using the ground-state DMRG solver with SU(2)
symmetry and a level-shifted Hamiltonian for the 𝑛th eigenstate

�̂�′
𝑛 = �̂� +

𝑛−1∑︁
𝑖=1

𝑐𝑖 |Ψ𝑖⟩⟨Ψ𝑖 | (2.24)
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where �̂� is the original DMRG Hamiltonian, 𝑐𝑖 is the energy shift multiplier, and
|Ψ𝑖⟩ is the 𝑖th converged eigenstate to be projected out [27, 59, 60]. We used 𝑐𝑖 = 5𝐷
for all 𝑖 and a DMRG bond dimension of 𝑀 = 1200. With this bond dimension,
DMRG converged to a small discarded weight of less than 5 × 10−9.

Figure 2.11: Benchmark of finite temperature results from the DMRG solver on
the SIAM with𝑈 = 0.012𝐷 and Δ0 = 0.001𝐷, using the logarithmic discretization
with base 𝑏 = 4 and the procedure to extract impurity specific heat as outlined in
Ref. [61]. Different components of the energy and specific heat are defined the
same as in Fig. 4 of Ref. [61]. The exact 𝑇K (vertical black dotted line) and specific
heat peak temperature from numerical renormalization group results in Ref. [61]
(vertical black dashed line, “Merker”) are included as references.

We benchmarked on the SIAM with the same parameters as in Ref. [61],𝑈 = 0.012𝐷
and a flat-band hybridization ImΔ(𝜔 + 𝑖0+) = −Δ0, |𝜔 | < 𝐷 where Δ0 = 0.001𝐷.
For convenience, we set 𝐷 = 1. We used the same logarithmic discretization,
consistent with the rest of the manuscript, but with 19 orbitals and logarithmic
intervals defined using a larger log base 𝑏 = 4 as used in Ref. [61] to achieve a small
spacing near the Fermi level. Using the procedure to extract the impurity specific
heat contribution as outlined in Ref. [61], we obtained a peak in the impurity specific
heat at 0.22 𝑇K (Fig. 2.11), in good agreement with the peak in Ref. [61] at around
0.28 𝑇K.

In Fig. 2.12 we show the estimated specific heat peak temperatures 𝑇𝐶V as a function
of the (DMRG natural orbital) active space size. We see that the position of the
peak varies by about a factor of 3 as a function of the active space size (and thus the
estimated Kondo temperature also varies by about a factor of 3). This is different
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from the behaviour of the estimated Kondo temperatures from the Hewson formula,
as shown in 2.8, which are already reasonably converged with an active space size
of 8 orbitals. Since the location of the 𝐶V peak depends on different excitations (in
particular the neutral excitations) than those that enter into the self-energy and 𝑍 ,
it is unsurprising that there are different finite size effects. These numerical results
support the use of 𝑇K from the Hewson formula as our primary estimate in the main
text.

Figure 2.12: Specific heat peak temperature (𝑇𝐶V) of SIAM with 𝑈 = 0.012𝐷 and
Δ0 = 0.001𝐷, using active spaces of different numbers of orbitals taken out of the full
space of 20 orbitals, the logarithmic discretization with base 𝑏 = 4 and the procedure
to extract the impurity specific heat as outlined in Ref. [61]. The exact 𝑇K (black
dotted line) and specific heat peak temperature from numerical renormalization
group results in Ref. [61] (black dashed line) are shown as references.

From the excited states, we can also examine the nature of the excitations that give
rise to the peak in the heat capacity. To verify the spin-flip nature of the lowest energy
excitations, we compute the impurity spin-flip weight 𝑤2

𝑖𝑖
= |⟨Ψ𝑆=0 |𝑐†𝑖𝛽𝑐𝑖𝛼 |Ψ𝑆=1⟩|2

where 𝑖 indexes the impurity orbital (here, the 𝑆𝑧 = 1 state of the |Ψ𝑆=1⟩ multiplet
is used as an example). This quantity satisfies 𝑤2

𝑖𝑖
≤ 1 and is equal to 1/2 for a pure

localized impurity spin flip. We show the weights for the lowest excited states, with
their corresponding energies, in Table 2.12.

Ab initio impurity specific heat
We calculated the finite-temperature and excited state properties in the all-electron
simulations within different active spaces, using the procedure outlined in 2.8. We
used a grand canonical formalism and extracted the canonical𝐶V using the relations
in Ref. [62]. The chemical potential was chosen to ensure that the average electron
number of the impurity and bath at 𝑇K (estimated from Hewson’s formula Eq. 2.3)
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Table 2.12: Impurity spin-flip weight 𝑤2
𝑖𝑖
, its normalized value 𝑤2

𝑖𝑖
/∑𝑝𝑞 𝑤

2
𝑝𝑞, and

the excitation energies 𝐸/𝐷 of the lowest singlet-triplet excitations that give rise to
the specific heat peak, calculated in active spaces of different number of orbitals
(𝑁orb).

𝑁orb threshold
(occupied)

threshold
(virtual)

𝑤2
𝑖𝑖

𝑤2
𝑖𝑖
/∑𝑝𝑞 𝑤

2
𝑝𝑞 𝐸/𝐷

20 0 0 0.071 0.123 1.2 × 10−5

14 1 × 10−7 1 × 10−7 0.073 0.105 1.2 × 10−5

10 3 × 10−5 3 × 10−5 0.087 0.138 1.5 × 10−5

8 2 × 10−4 2 × 10−4 0.101 0.169 2.0 × 10−5

6 2 × 10−3 2 × 10−3 0.121 0.210 3.4 × 10−5

matched the electron number of the ground state. The excited states were obtained
in a DMRG active space of up to (26e, 36o) size with maximum DMRG bond
dimension 𝑀 = 4000, converging to a discarded weight of less than 5 × 10−5. In
this way, 449, 129, 83, 44, 42, 38, and 80 excited states in total were calculated for
the Ti, V, Cr, Mn, Fe, Co, and Ni impurities, respectively.

In the SIAM, the impurity contribution to the specific heat was obtained by par-
titioning the energy between the impurity and the bath, as described in Ref. [61].
However, in the case of the ab initio model, the partitioning is ambiguous. This is in
part because energy partitioning is always non-unique (as the only constraint is that
the parts sum up to the same whole), but also because as we converge to the basis
limit of the all-electron basis, the additional impurity orbitals necessarily extend
beyond the impurity atom into the bulk (see discussion in main text). We found that
this either made the estimated 𝐶V sensitive to various choices, or gave unphysical
results (e.g., the impurity specific heat capacity could be negative).

Consequently, to produce a (rough) estimate of 𝑇K, similar to the analysis of the
excitation character of the excited states in 2.8, we quantified the degree of “impurity”
character of each excited state and only included those above a given threshold when
computing the impurity specific heat. Concretely, for the 𝑆𝑧 = 1 component of a
triplet excited state, we computed

𝑤𝑖 𝑗 = ⟨Ψ0 |𝑐†𝑖𝛼𝑐 𝑗 𝛽 |Ψ1⟩ (2.25)
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where 𝑐†
𝑖𝛼
, 𝑐 𝑗 𝛽 are creation and annihilation operators on orbitals that are localized

on the impurity or on the bath, respectively (these orbitals were obtained by a rotation
of the active space). Then, the impurity character is defined as

𝜆 =

∑
𝑖∉bath or 𝑗∉bath 𝑤

2
𝑖 𝑗∑

𝑖 𝑗 𝑤
2
𝑖 𝑗

. (2.26)

A similar analysis was carried out for the quintet excited states. Using a threshold
of 𝜆 > 0.12, we show the estimated 𝑇𝐶V from the impurity specific heat peak in
Fig. 2.13. In the SIAM, the peak of the specific heat is always below𝑇K. We see that
this is true in our calculations for Ti and V, but not for the other impurity elements,
suggesting that 𝑇CV is overestimated in the other cases. Given the strong finite size
effects observed in specific heat capacity calculations in general (as studied in the
SIAM in 2.8), we consider the estimation of 𝑇K from the Hewson formula to be
better converged. However, this rough treatment indicates that similar trends can be
reproduced through the heat capacity (see Fig. 2.14).
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Figure 2.13: Impurity specific heat per mole of magnetic impurities in bulk Cu from
ab initio all-orbital calculations. The Kondo temperatures predicted using Herson’s
formula with the quasiparticle renormalization weights from the Green’s function
calculations (“𝑇K from GF”) are shown for comparison.

Ab initio and model excited state analysis
To illustrate the difference in the excited states in the ab initio all electron treatment
and in the model calculations, we performed excited state model calculations for
Mn in the (20e, 20o) active space with the same chemical potential as in the all-
orbital calculations, and compared those to the excited states seen in the ab initio
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Figure 2.14: The temperatures corresponding to the peak in the impurity specific
heat compared to the Kondo temperatures predicted by Hewson’s formula from ab
initio all-orbital calculations and those measured in experiments.

calculations. As shown in Fig. 2.15, in both the model and ab initio all-orbital
calculations, we observed multiple near-degenerate low-energy triplets that involve
partial transfer of an electron from 𝑡2g to 𝑒𝑔 and to the bath orbitals, accompanied
by a spin-flip (orange), as well as one low-energy triplet that corresponds to a si-
multaneous on-site spin-flip of all fractionally occupied 𝑑 orbitals (purple). The
latter corresponds to the low-energy excitation of a large spin Kondo model. How-
ever, in the model calculations, the charge transfer triplets are higher in energy
than the Kondo model triplet, which is opposite to the all-orbital calculations where
the charge-transfer triplets are the lowest triplets. As discussed in the main text,
correctly capturing the charge-transfer triplet excitations appears to be critical to
reproducing the quantitative Kondo trends, which highlights again the power of the
all-orbital calculations.

Fig. 2.16 further shows the ab initio transition density matrix between the ground-
state and the low-energy triplet state which is dominated by a pure intra-impurity
spin-flip for all the elements, corresponding to the excitation in the multi-orbital
Kondo model. For Ti and V, the singlet-triplet excitation is dominated by the 𝑡2𝑔
intraorbital excitations, while for Fe and Co it is dominated by the 𝑒𝑔 intraorbital
excitations. The excitations in Cr and Mn have significant contributions from both
𝑡2𝑔 and 𝑒𝑔 orbitals.
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Figure 2.15: The excitation energies of triplets associated with on-site spin-flip (pur-
ple) from the ground state and of triplets associated with charge transfer between
different orbitals and spin-flip (orange) from the ground state for the Mn impurity.
The impurity-impurity and impurity-bath blocks of spin-flip transition density ma-
trices |⟨Ψ𝑆=0 |𝑐†𝑖↓𝑐 𝑗↑ |Ψ𝑆=1,𝑆𝑧=1⟩| from the ground state (vertical axis) to the triplet(s)
(horizontal axis) from model calculations and ab initio all-orbital calculations are
shown on the left and right, respectively, to illustrate the on-site spin-flip (purple)
and the charge transfer and spin-flip (orange) process. The bath orbitals are ordered
based on their bath energies 𝜔. The transition density matrices of charge-transfer
triplets are summed over all near-degenerate states.
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Figure 2.16: Orbital resolved spin-flip transition density matrix
|⟨Ψ𝑆=0 |𝑐†𝑖↓𝑐 𝑗↑ |Ψ𝑆=1,𝑆𝑧=1⟩| between the ground state and the lowest triplet ex-
cited state that is dominated by intra-impurity orbital excitations, across the series
of impurities from Ti to Co.

Computational time
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Ground state Green’s function 𝑪𝑽

(36e, 52o) (22e, 22o) (28e, 28o)
Impurity wall time

(h)
core
hours

wall time
(h)

core
hours

wall time
(h)

core
hours

Ti 27 2556 60 5776 1019 119784
V 55 7984 94 18057 733 95274
Cr 64 9215 99 18959 645 50843
Mn 100 14395 105 20088 489 49726
Fe 82 11853 135 25848 237 15174
Co 78 11225 298 71534 171 21884
Ni 49 9407 66 12753 50 3179

Table 2.13: Computational time of various tasks: ground state DMRG calculations
in the largest active space (36e, 52o); Green’s function calculations with DDMRG at
7 frequency points near the Fermi level in active spaces of around (22e, 22o) ((22e,
27o) for Co); and specific heat (𝐶𝑉 ) calculations where we calculated ground and
excited eigenstates in spin manifolds of up to 𝑆 = 8 in the canonical ensemble in
active spaces of around (28e, 28o) ((30e, 29o) for Ti, (28e, 30o) for V, (26e, 36o)
for Co). The ground state and Green’s function calculations were performed on
2–8 nodes with 24 cores per node, while the specific heat calculations in each spin
manifold were performed on 1–8 nodes with 64 cores per node.

Kondo temperature in multi-orbital impurities
The exponential decrease in the Kondo temperature with the spin 𝑆 of the im-
purity [34] has previously been discussed using a mechanism involving Hund’s
coupling [63]. We briefly summarize the literature arguments here.

As a simple example, consider an Anderson model with 𝑙 = 2 conduction electrons
scattering off an impurity with a half-filled 𝑑-shell,

𝐻 =
∑︁
𝒌𝑚𝜎

𝜖𝒌𝑛𝒌𝑚𝜎 +
∑︁
𝒌𝑚𝜎

𝑉𝒌𝑚

(
𝑐
†
𝒌𝜎
𝑓𝑚𝜎 + 𝑓 †𝑚𝜎𝑐𝒌𝜎

)
+ 𝐻imp, (2.27)

where 𝐻imp includes the interaction on impurity sites and 𝑚, 𝜎 are the labels of the
atomic orbital and spin separately.

In the presence of strong on-site electron repulsion and Hund’s coupling, we can
focus solely on the spin degree of freedom of the impurity. The spin configuration
of the impurity is constrained to 𝑆 = 5/2 . Using the Schrieffer-Wolff transforma-
tion [63, 64], the effective Hamiltonian is reduced to the following form:

𝐻 =
∑︁
𝒌𝑚𝜎

𝜖𝒌𝑛𝒌𝑚𝜎 +
∑︁
𝒌𝒌′𝑚

𝐽𝑚𝒌𝒌′𝑺 · 𝑐†
𝒌′𝑚

𝝈

2
𝑐𝒌𝑚. (2.28)
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The orbital angular momentum of the scattering conduction electrons is conserved.
Because the impurity is half-filled, conduction electrons cannot exchange orbital
angular momentum with the impurity. The exchange interaction 𝐽𝑚𝒌𝒌′ is second
order in the hybridization term:

𝐽𝑚𝒌𝒌′ =
𝑉𝒌𝑚𝑉𝒌′𝑚

2𝑆
( 1
𝐸+

+ 1
𝐸−

), (2.29)

where 𝐸+ and 𝐸− represent the additional energy of the virtual process involving the
addition or removal of an electron. The factor of 2𝑆 in the denominator arises from
the representation of the 𝑆 = 5/2 spin operator in terms of five 𝑆 = 1/2 impurity
electron operators.

For an impurity without a half-filled 𝑑-shell, the effective Hamiltonian includes both
orbital and spin exchange. However, if we focus only on the spin degree of freedom
and assume that all singly occupied states are spin-up, with the remaining states either
doubly occupied or empty, the spin dependence of 𝐽𝑚𝒌𝒌′ can be generalized, where
spin corresponds to the spin of the singly occupied orbitals [63]. Although simplistic,
this formula provides a rationalization for the trend of the Kondo temperature 𝑇K of
transition metal impurities within host alloys [4, 34] with

𝑇K ∼ exp(−1/𝐽eff𝜌). (2.30)

Here, 𝐽eff is inversely proportional to the spin 𝑆 as in Eq. 2.29, and consequently,
the Kondo temperature is predicted to exhibit an exponential dependence on 𝑆.

Another way to estimate the Kondo temperature is through the bandwidth of the
Kondo resonance (Abrikosov-Suhl resonance), Δ̃ , at the Fermi level, with

𝑇𝑘 =
𝜋

4
Δ̃. (2.31)

If there is no quantum phase transition between the non-interacting limit and the
finite-interaction case, the low-energy behavior of the interacting system can be
described by a local Fermi liquid theory [65]. The bandwidth Δ̃ in the interacting
case is related to the non-interacting hybridization width Δ through the quasiparticle
renormalization weight 𝑍 :

Δ̃ = 𝑍Δ. (2.32)

The entire effect of the interaction is encapsulated in 𝑍 . If the renormalization weight
𝑍 can be estimated non-perturbatively, this formula can be applied to address the
finite interaction case, which is the basis of the Hewson estimate of the Kondo
temperature used in the main text.
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C h a p t e r 3

ACCURATE CRYSTAL FIELD HAMILTONIANS OF
SINGLE-ION MAGNETS AT MEAN-FIELD COST

This chapter is based on the following publication:

1. Peng, L, Liu, S., Zhang, X., Chen, X., Li, C., Cheng, H.-P. & Chan, G. K.-L.
Accurate crystal field Hamiltonians of single-ion magnets at mean-field cost.
arXiv preprint arXiv:2505.16905. doi:10 . 48550 / arXiv . 2505 . 16905
(2025).

3.1 Abstract
The effective crystal field Hamiltonian provides the key description of the elec-
tronic properties of single-ion magnets, but obtaining its parameters from ab initio
computation is challenging. We introduce a simple approach to derive the effec-
tive crystal field Hamiltonian through density functional calculations of randomly
rotated mean-field states within the low-energy manifold. In benchmarks on five
lanthanide-based complexes, we find that we compute with mean-field cost an ef-
fective crystal field Hamiltonian that matches the state-of-the-art from much more
expensive multi-configurational quantum chemistry methods. In addition, we are
able to reproduce the experimental low-energy spectrum and magnetic properties
with an accuracy exceeding prior attempts. Due to its low cost, our approach pro-
vides a crucial ingredient in the computational design of single-ion magnets with
tailored physical properties and low-energy spectra.

3.2 Introduction
Tuning the electronic properties of single-ion molecular complexes is a goal of
synthetic chemistry for potential applications in areas of molecular magnetism [1,
2], molecular spintronics [3, 4], and in quantum information processing [5–7]. In
these systems, the effective crystal field Hamiltonian �̂�CF provides the theoretical
rationalization of the low-energy properties, such as the excited states and electronic
pathways for decoherence. For lanthanide complexes in particular, to which we
will devote our attention in this work, �̂�CF describes the interplay between the
strong spin-orbit coupling and associated zero-field splitting in the 𝑓 -orbital shell
and the crystal field, leading to a large number of effective parameters that need

https://doi.org/10.48550/arXiv.2505.16905
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to be determined, especially in low-symmetry complexes. This complicates both
experimental and theoretical procedures to accurately estimate �̂�CF in lanthanide
complexes.

From a theory perspective, state-of-the-art procedures aim to determine multiple
electronic eigenstates of the lanthanide complex which are subsequently fitted to the
crystal field Hamiltonian [8–10]. However, the character of these eigenstates involv-
ing the partially filled 4 𝑓 -shell often requires a sophisticated multi-configurational
wavefunction description. Quantitative results can be obtained using the com-
plete active space self-consistent field method (CASSCF) [11–13] augmented by
second-order perturbation theory such as complete active space perturbation theory
(CASPT2) [14, 15] or 𝑛-electron valence state perturbation theory (NEVPT2) [16,
17], or by multi-reference configuration interaction [18–20], but these are pro-
hibitively expensive for many of the lanthanide-based single-ion complexes of ex-
perimental interest.

In this work, we introduce a method to calculate the effective crystal field Hamilto-
nian for lanthanide-based single-ion complexes with an accuracy comparable to the
state-of-the-art multireference theories, but at the cost of (several) mean-field Kohn-
Sham density functional theory calculations. The basic insight is that although
representing the eigenstates of �̂�CF might require a multireference treatment, ob-
taining the parameters of �̂�CF may not, and in particular by considering a sufficient
number of single-reference states Ψ𝑖 (which need not be eigenstates) and their en-
ergies 𝐸𝑖, we can deduce the corresponding parameters of �̂�CF. Similar techniques
are used to derive effective Hamiltonians in other contexts, for example exchange
parameters in spin Hamiltonians, which are often derived from the energies of
broken symmetry spin states [21], and in the context of ligand field theory, the
ligand field Hamiltonian has been derived in a similar procedure involving Slater
determinants with both ground- and excited-occupancies [22]. Here, we choose as
our Ψ𝑖 single-configurational states that are optimized to (approximately) lie within
the lowest spin-orbit coupled |𝐽𝑀⟩ manifold using a variant of constrained density
functional theory (cDFT) [23–27] and we deduce the effective couplings of the
crystal field Hamiltonian from their energies. We therefore refer to this as deriving
the constrained DFT ab initio crystal field Hamiltonian.

Our method captures both the dynamical and static effects of electron correlation on
the crystal field Hamiltonian and, as we shall show below, achieves accuracy on par
with state-of-the-art CASPT2- or NEVPT2- methods in small systems. However, as
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it has the same low computational scaling as density functional theory, it enables the
derivation of the crystal field Hamiltonian in large molecules. As an example of the
latter, we demonstrate our method on the holmium double–decker complex which
has 113 atoms, achieving an accuracy surpassing that of CASSCF and NEVPT2 in
predicting both the energy spectrum and the magnetic properties.

3.3 Constrained DFT ab initio crystal field Hamiltonian

Figure 3.1: An illustration of the origin of the zero-field energy splitting (orange)
in a Ho-based single-ion complex. Energy levels are not drawn to scale.

We will be interested in single-ion complexes where there is a strong spin-orbit
coupling. At the two-component level of treating relativistic effects, this means
that the electronic Hamiltonian �̂� contains a spin-orbit operator and the eigenstates
are no longer eigenfunctions of spin. In addition to the spin-orbit coupling, which
splits the non-relativistic atomic degeneracies, there is also the crystal field of the
ligands. Fig. 3.1 illustrates the structure of the low-energy manifold and the range
of splittings for a typical lanthanide complex.

The effective crystal field Hamiltonian is an operator in the space of the lowest
manifold of states (the right of Fig. 3.1)

�̂�CF =
∑︁

𝐽𝑀𝐽′𝑀 ′
ℎ𝐽𝑀,𝐽′𝑀 ′ |𝐽𝑀⟩⟨𝐽′𝑀′|. (3.1)

Assuming that these derive from a multiplet manifold from a single 𝐽 (which is the
case when the SOC is stronger than the crystal field splitting) the above effective
Hamiltonian can also be written in terms of operators within this |𝐽𝑀⟩ manifold,
known as extended Stevens operator equivalents [28]

�̂�CF(𝐽) =
∑︁
𝑘=2,4,6

𝑘∑︁
𝑞=−𝑘

𝐵
𝑞

𝑘
�̂�
𝑞

𝑘
(𝐽) (3.2)
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where we use the definitions of �̂�𝑞

𝑘
(𝐽) in terms of |𝐽𝑀⟩⟨𝐽𝑀′| following the conven-

tion in Ref. [29–32], and the coefficients 𝐵𝑞
𝑘

are the molecular-specific parameters
to be determined.

Given a set of electronic low-energy states {Ψ𝑖} within the manifold on which �̂�CF

acts, we can determine the coefficients of �̂�CF from

𝐸𝑖 = const + ⟨Ψ𝑖 | �̂�CF(𝐽) |Ψ𝑖⟩, 𝑖 = 1 . . . 𝐷′

Ψ𝑖 =
∑︁
𝐽𝑀

𝐶𝐽𝑀,𝑖Ψ
𝐽𝑀
𝑖

𝐸𝑖 = const +
∑︁

𝐽𝑀𝐽𝑀 ′
𝐶∗
𝐽𝑀,𝑖𝐶𝐽𝑀 ′,𝑖ℎ𝐽𝑀,𝐽𝑀 ′ (3.3)

where const is an energy zero, and the above constitutes a set of linear equations
for the coefficients of �̂�CF (if 𝐷′ = 𝐷 where 𝐷 is the number of symmetry-allowed
nonzero 𝐵𝑞

𝑘
to be determined, generically we expect a unique solution; for 𝐷′ > 𝐷,

the linear equations can be solved in the least squares sense). The key to an efficient
procedure is to use states {Ψ𝑖} for which the energy 𝐸𝑖 can be easily computed.
Note that Ψ𝑖 need not be an eigenstate of the electronic Hamiltonian. Instead, we
can choose {Ψ𝑖} to be low-energy single-configurational states in the manifold of
interest, whose energies can be accurately approximated by affordable electronic
structure methods, such as density functional approximations.

For example, we can consider the case where �̂�CF acts on a single {|𝐽𝑀⟩} manifold
where 𝐽 is the maximal 𝐽 associated with the given occupancy of the 𝑓 -shell. The
azimuthal projection angle is free to be chosen, and we denote the angular momentum
state with projection axis ®𝑛, |𝐽𝑀®𝑛⟩; then states of the form {|𝐽 (𝑀®𝑛 = 𝐽)⟩} are
formed by a single 𝑓 -shell Slater determinant composed of the set of generalized
spin (spinor) orbitals with maximal projected angular momentum, i.e., | 𝑗 (𝑚®𝑛 = 𝑗)⟩,
| 𝑗 (𝑚®𝑛 = 𝑗 − 1)⟩, etc., where the lowercase 𝑗 , 𝑚 denote the single-orbital angular
momenta. There is an infinite number of such single-determinant states, obtained by
rotating the projection axis ®𝑛, and we can use the energies of these states in Eq. 3.3.

In the general case, it may be necessary to partially expand the electronic manifold
outside of the specific manifold of interest where �̂�CF is defined, in order to construct
low energy states of single-determinant character. For example, if �̂�CF acts on a
{|𝐽𝑀⟩} manifold where 𝐽 is not the maximal 𝐽, then we may not find single-
determinant states within the {|𝐽𝑀⟩} manifold (e.g., consider the case where 𝐽 =

0). However, by expanding the manifold to multiple 𝐽’s, {|𝐽𝑀⟩, |𝐽′𝑀′⟩}, we can
construct low-energy single determinant states which are not eigenstates of 𝐽 (i.e.



56

broken symmetry states) but with well defined 𝑀®𝑛 (equal to some specified 𝐽).
These may be used to fit an effective �̂�CF over the expanded manifold and the
effective Hamiltonian can then be restricted to the single manifold of interest after
the fact. This more general procedure is analogous to the use of broken-symmetry
density functional and wavefunction calculations to determine effective Heisenberg
parameters [21, 33, 34].

Formally, the Kohn-Sham density functional energies of the single-determinant
states with 𝑀®𝑛 = 𝐽 are defined through

𝐸 [𝜌] = min
Ψ(𝑀®𝑛=𝐽)→𝜌

[
⟨Ψ| ℎ̂1 + �̂�eff |Ψ⟩

]
(3.4)

where Ψ is a Slater determinant with the azimuthal angular momentum constraint,
ℎ̂1 is the two-component one-electron part of the Hamiltonian in the given spin-orbit
coupling treatment, and �̂�eff includes the Coulomb, exchange, and correlation in a
general Kohn-Sham expressoin. In practice, the constraint can be easily imple-
mented by applying a penalty [35], i.e., we minimize

𝐸 [𝜌, ®𝑛, 𝜆] = min
Ψ→𝜌

[
⟨Ψ| ℎ̂1 + �̂�eff |Ψ⟩ − 𝜆( | ®𝐽 | − ®𝑛 · ®𝐽)

]
(3.5)

where ®𝐽 = (⟨𝐽𝑥⟩, ⟨𝐽𝑦⟩, ⟨𝐽𝑧⟩). Given such a formal definition, we therefore obtain
the energy by minimizing the standard Kohn-Sham density functional energy with
the additional penalty, and we choose 𝜆 sufficiently large such that the constraint is
well satisfied.

Because of the presence of different 𝐽 multiplets in an actual electronic structure
calculation, the result of the above minimization is not a perfect |𝐽 (𝑀®𝑛 = 𝐽)⟩ state,
but contains a small admixture of other 𝐽 states. To expand the determinant into
its |𝐽𝑀⟩ components, we apply the group theoretic projection [36] 𝐶𝐽𝑀 ′,𝑖 |Ψ𝐽𝑀,𝑖⟩ =
𝑃𝐽
𝑀,𝑀 ′ |Ψ𝑖⟩ where 𝐶𝐽𝑀 ′,𝑖 = ⟨Ψ𝐽𝑀 ′,𝑖 |Ψ𝑖⟩, and the operator 𝑃𝐽

𝑀,𝑀 ′ is defined as

𝑃𝐽𝑀,𝑀 ′ =
2𝐽 + 1

8𝜋2

∫
𝑑Ω𝐷𝐽∗

𝑀,𝑀 ′ (Ω) �̂�𝐿 (Ω) �̂�𝑆 (Ω) (3.6)

where Ω = (𝛼, 𝛽, 𝛾) are the Euler angles in z-y-z convention, �̂�𝐿 is the orbital
rotation operator �̂�𝐿 = 𝑒−𝑖𝛼�̂�𝑧𝑒−𝑖𝛽�̂�𝑦𝑒−𝑖𝛾�̂�𝑧 , �̂�𝑆 is the similarly defined spin rotation
operator, and 𝐷𝐽

𝑀,𝑀 ′ (Ω) = ⟨𝐽𝑀 | �̂�(Ω) | 𝐽𝑀′⟩ is the Wigner 𝐷-matrix. The inte-
gration in the above can be efficiently computed by quadrature. Once the |𝐽𝑀⟩
coefficients are obtained, we can solve Eq. 3.3 for ℎ𝐽𝑀,𝐽′𝑀 ′ by least squares. We
refer to the effective crystal field Hamiltonian derived this way as the constrained
DFT ab initio crystal field Hamiltonian.
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3.4 Computational implementation and details
We have implemented the above procedure based on the PySCF quantum chemistry
package [37, 38]. For the SOC treatment, we used the “exact two-component”
Hamiltonian including only the one-electron term (including the one-electron spin-
orbit coupling but not including the two-electron spin-same-orbit and spin-other-
orbit coupling [39, 40]). For the systems we study below (involving Er, Dy, Ho), the
lowest |𝐽𝑀⟩ multiplet is energetically well separated and corresponds to a maximal
𝐽 for the ground-state 𝑓 -shell configuration. We first converged the generalized
Kohn-Sham calculations without any constraint to find the lowest energy spin-orbit
coupled mean-field solution. We then applied spin- and orbital-rotation operators
to rotate the ®𝐽 vector to generate a new initial guess and minimized the energy with
the penalty term 𝜆( ®𝐽 · ®𝑛 − 𝐽) for a given ®𝑛, using 𝜆 = 0.1𝐸ℎ. The set of projection
axes were chosen to be Haar random, and the generalized Kohn-Sham energies were
converged to 10−9 𝐸ℎ. For a fixed target vector ®𝑛 and appropriate functionals (see
below), we found that this procedure converges to constrained determinants within
the ground spin-orbit manifold.

Given these GKS solutions, we evaluated their energies and 𝐶𝐽𝑀,𝑖 coefficients as
outlined above and fitted the crystal field parameters 𝐵𝑞

𝑘
to Eq. 3.3. We only included

𝐵
𝑞

𝑘
up to order 𝑘 = 6 as the higher order terms are conventionally ignored. The

matrix forms of the operators𝑂𝑞

𝑘
in the |𝐽𝑀⟩ basis were calculated with the PyCCE

program [32].

The structures of Er-trensal (H3trensal = 2, 2′, 2′′-
tris(salicylideneimino)triethylamine) (1) [8], Cs2NaDyCl6 (2) [41],
(C(NH2)3)5[Er(CO3)4]·11H2O (3) [42], [(Cp𝑖Pr5)Dy(Cp*)]+ (Cp𝑖Pr5 = penta-
iso-propylcyclopentadienyl; Cp* = pentamethylcyclopentadienyl) (4) [43], and
[HoPc2]− (5) [44] were taken from the literature. The 𝑧 axes of �̂�CF were defined
as the pseudo-𝐶3 symmetry axis, one of the three 𝐶4 axes in the 𝑂ℎ symmetry
group, the pseudo-𝐶2𝑣 symmetry axis, and the main magnetization axis of the
ground Kramers doublet calculated at the CASSCF level with an 𝑓 -shell active
space (because the molecule has no symmetry), and the pseudo-𝐶4 symmetry axis,
respectively.

In the generalized Kohn-Sham calculations, we used the segmented all-electron
relativistically contracted basis of valence triple-zeta quality (SARC-TZV) basis [45]
for the lanthanides and the 6-31G basis [46–49] for the other elements. As discussed
in the results, we performed calculations using pure and hybrid density functionals,
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Functional HF M06 PBE0 B97-D B3LYP PBE r2SCAN

J 7.5 7.3 7.1 7.1 7.1 6.7 5.9
L 5.1 5.1 5.1 5.1 5.1 4.9 4.6
S 2.4 2.4 2.4 2.3 2.4 2.3 2.4

Table 3.1: The approximate J quantum number as defined by 𝐽 (𝐽 + 1) = ⟨𝐽2⟩ and
similarly defined L and S of the lanthanide 𝑓 -shells in the ground state wavefunction
of compound 2, calculated using HF and various DFT functionals.

namely PBE [50], B97-D [51], TPSS [52], r2SCAN [53],B3LYP [54–56], PBE0[57],
M06[58]. It is well known that the ground-spin-state of a metal ion can be strongly
influenced by the choice of functional. In these systems we found that the choice of
functional can have a significant impact on the effective 𝐽 state of the ground-state
ion, as seen in Table 3.1. In particular, we found that although density functionals
(other than, perhaps r2SCAN) give reasonable effective 𝐿 and 𝑆 values for the central
ion, most do not give ground-state 𝐽 values consistent with Hund’s rule (which here
would mean that 𝐽 = 𝐿 + 𝑆). In fact, only the Hartree-Fock functional yielded a
ground-state with an overwhelming weight in the Hund’s rule |𝐽𝑀⟩ manifold (which
is expected to be a well isolated manifold for the ions of interest due to the strong
spin-orbit coupling).

Consequently, we also performed calculations where the Slater determinant was
determined using generalized Hartree-Fock theory, and the energies were subse-
quently computed using a different functional, to avoid the above unphysical nature
of the DFT ground-state, and in the spirit of minimizing density driven errors in
DFT calculations [59]. In the latter case, we refer to the calculation as 𝑋@𝑌 where
𝑋 is the method used to generate the density matrix, and𝑌 is the method use to eval-
uate the energy. For each compound, 80 target orientations were sampled, except
for compound 5 where 120 orientations were used. We estimate that sampling 80
orientations was sufficient to achieve a standard deviation in the relative eigenstate
energies of �̂�CF of less than 5 cm−1, 1 cm−1, and 10 cm−1 for compounds 1, 2, and
3, respectively.

For the Ho compound (compound 5) we generated additional benchmark data using
CASSCF with spin-orbit coupling included via state-interaction (CASSCF-SISO)
and CASSCF/NEVPT2-SISO, which additionally includes dynamical correlations
through NEVPT2, using ORCA version 5.0.4 [60, 61] and subsequently, the effective
crystal field Hamiltonians were calculated with the SINGLE_ANISO program [8,
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62]. In the following, we will refer to the two approaches as CASSCF and NEVPT2,
respectively, and similarly refer to CASSCF/CASPT2-SISO as CASPT2. In these
calculations, the second-order scalar relativistic Douglas–Kroll–Hess (DKH) Hamil-
tonian [63, 64] was used for Ho and the second-order DKH transformation was
applied to the one-electron part of the SOC operator [65, 66] with the two-electron
part of the SOC operator treated by the spin-orbit mean field (SOMF) approxima-
tion. [67] The SARC2-DKH-QZVP basis set [68] was used for the Ho atom, and
the DKH-def2-TZVP basis set [69, 70] was used for all the other atoms. The spin-
orbit interaction was included via quasi-degenerate perturbation theory (QDPT), a
type of state interaction method [12, 13], using 35 lowest-energy quintet roots, 106
lowest-energy triplet roots, 31 lowest-energy singlet roots.

Finally, for compound 5, the finite temperature field-dependent magnetization was
simulated with the program PHI [71].

For compounds 2 and 3, only the central clusters Er(CO3)4 and [DyCl6]− were
treated quantum mechanically. The clusters were embedded in infinite lattices of
classical charges of the remaining atoms to represent the crystal environment [72].
The classical charges were derived from the Bader population analysis of the Γ-
point PBE calculation of the lattices using the VASP program [73–76] with periodic
boundary conditions applied to the primitive unit cells and with the energy converged
to 10−8 eV per cell. These atomic charges were then modeled as Gaussian-distributed
charges on the remaining atoms using ionic radii [77] for Er3+ and Dy3+ and covalent
radii [78] for the other atoms.

3.5 Results and discussion
We now discuss the constrained DFT ab initio �̂�CF derived for five single-ion lan-
thanide magnets: Er-trensal (1), Cs2NaDyCl6 (2), (C(NH2)3)5[Er(CO3)4]·11H2O
(3), [(Cp𝑖Pr5)Dy(Cp*)]+ (4), and [HoPc2]− (5). We compare our results to the ener-
gies and wavefunctions obtained by diagonalizing model Hamiltonians in the litera-
ture, obtained from experiment or multi-configurational methods, and in the case of
compound 5, to additional data computed in this work using multi-configurational
methods.

System 1 [84] is a single-ion magnet (SIM) that has been extensively studied both
experimentally [79, 80] and theoretically [8, 79]. It has an approximate𝐶3 symmetry
and an Er 4𝐼7.5 ground state. Due to the time-reversal symmetry, each eigenstate
is doubly degenerate, forming in total 8 Kramers doublets (KDs) in the ground-
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Figure 3.2: Relative energies of ground and low-energy excited states of 1–4 (a–
d) from �̂�CF using the constrained DFT methodology in this work. Results are
shown for three choices of functionals: HF@HF (pink), PBE0@PBE0 (green), and
PBE0@HF (orange). We compare to spectra from literature CASSCF, CASPT2 or
NEVPT2, and experiments (black) [8, 42, 43, 79–83].
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state 𝐽 = 7.5 manifold. Figure 3.2a shows the energies of the 16 states from
the constrained DFT ab initio crystal field Hamiltonian using the HF, PBE0 [57]
and PBE0@HF mean-field functionals, and from theory and experiments in the
literature. The HF-derived Hamiltonian yields a spectrum comparable to that of
CASSCF, while the PBE0@HF derived �̂�CF yields a spectrum closer to that from
the much more expensive XMS-CASPT2 method using the 11 electrons in 14 orbitals
active space. In fact, the PBE0@HF �̂�CF and the XMS-CASPT2 (11e, 14o active
space) spectrum are in best agreement with the experimentally derived spectrum.
We note that using DFT functionals (beyond HF) to include dynamical correlation
in our procedure is required to correctly order the closely-spaced 3rd and 4th KDs,
and that similarly out of the wavefunction methods only XMS-CASPT2 (11e, 14o
active space) obtains the correct ordering of these states. However, the density-
driven error effect of DFT can be significant. For example, deriving �̂�CF using the
PBE0 density matrix and PBE0 energy leads to worse results, due to the unphysical
nature of the ground-state observed above. In general, we find that neglecting
dynamical correlation in the modeling (e.g., by using HF energies to derive �̂�CF or
by obtaining the spectrum from CASSCF) tends to predict too narrow of a spectral
spread while dynamical correlation (e.g., using our PBE0@HF energies, or from
literature CASPT2 results) results in a larger spread, more comparable to that of
experiment.

Similar observations apply to complexes 2-4: the ab initio crystal field Hamiltonian
derived from Hartree-Fock energies produces a spectrum comparable to the literature
CASSCF derived spectra, while using DFT energies evaluated for the Hartree-
Fock density matrices, such as when using PBE0@HF to derive �̂�CF, yields (for
most functionals) spectra comparable to the best multi-reference perturbation theory
results in the literature, with similarly good agreement with experiment where
available (see Figure 3.2, 3.3, 3.6, and 3.7).

We observe that our ab initio �̂�CF also accurately predicts the |𝐽𝑀⟩ composition of
the crystal field eigenstates. We consider, for example, compound 1. As shown in
Figure 3.4, the �̂�CF derived from the PBE0@HF energies yields |𝐽𝑀⟩ compositions
for the 8 Kramers doublets that deviate from the experimentally derived composi-
tions by only 0.6% on average. To obtain a similar accuracy in a multiconfigurational
calculation requires using a second-order perturbative correction and a large active
space of 14o as neither CASSCF(14o) nor CASPT2(7o) capture the correct energy
ordering, as seen in Figure 3.4.
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Figure 3.3: Relative eigenstate energies of a) 1 and b) 2 from �̂�CF derived from
DFT@HF sampled energies with various DFT functionals [51–58]. We compare to
the best available multireference perturbation theory calculations using CASPT2 [8]
or NEVPT2 [42] (last column). Each color represents a doublet in a) and an energy
level with ideally 2 or 4 degeneracy in b).

Lastly, we investigate a larger complex, the holmium double decker compound
5 [85]. Since its discovery two decades ago as one of the first lanthanide SIMs [85],
multiple experiments and calculations have sought to understand the relative energies
and wavefunctions of the ground-state 𝐽 manifold [44, 85, 86], but have arrived at
different conclusions. The primary challenge in this compound is that the size of
the molecule makes it computationally challenging to apply CASPT2 or NEVPT2
levels of theory in conjunction with (potentially necessary) large active spaces and
large basis sets.

However, the computational efficiency of our method allows it to be readily applied.
Figure 3.5 compares the excitation energies predicted using �̂�CF derived using our
method and PBE0@HF energies, compared to predictions from other techniques.
As shown in Figure 3.5, the excitation energies predicted by our method match
the peaks in the spectrum very well. (Note that the experimental peak near 150
cm−1 is a phonon peak and should be ignored). In contrast, neither the ligand
field model directly fitted to NMR and susceptibility experiments (“Exp fit”) [85]
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Figure 3.4: |𝐽𝑀⟩ compositions, |𝑐𝐽𝑀 |2 where 𝑐𝐽𝑀 = ⟨𝐽𝑀 |Ψ⟩, of each
Kramers doublet (KD) of 1 from diagonalizing �̂�CF. Each panel corresponds
to a different �̂�CF, derived from the constrained DFT methodology using the
HF@HF functional (“HF@HF”) and PBE0@HF functional (“PBE0@HF”), from
experimental measurements [79] (“Exp”), from CASPT2 in a 7-orbital active
space (“CASPT2(7o)”) [8], and from CASPT2 in a 14-orbital active space
(“CASPT2(14o)”) [8], as well as differences between pairs. |𝐽𝑀⟩ compositions
of a KD are calculated as the average |𝑐𝐽𝑀 |2 of the two corresponding degenerate
eigenstates.

nor the parameterized effective point charge model fit to experimental 𝜒𝑇 curves
(“Point charge”) [86] correctly captures the second set of excited quasi-doublets
(purple). The energies predicted by CASSCF (7o) must be rescaled by an empirical
factor 1.3 to match the lowest three observed excited quasi-doublets in the spec-
trum [44] while our method requires no empirical adjustment. We also performed
NEVPT2 calculations using a 7-orbital active space, which, at the CASSCF level,
accurately reproduced the CASSCF (7o) results in the literature [44], and found
that the excitations deviate from the experimental spectrum even more than the
CASSCF results, perhaps due to the small active space, as observed previously
in compound 1. To further compare against experimental observables, we com-
puted the field-dependent magnetization (Figure 3.5b) and temperature-dependent
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Figure 3.5: a) Relative energies of ground and low-energy excited states of 5
from �̂�CF fitted to HF determinants and PBE0 energies (“PBE0@HF”), from �̂�CF
fitted to NMR and susceptibility experiments [85] (“Exp fit [1]”), from a point
charge model [86] (“Point charge [2]”), from CASSCF in an active space of (10e,
14o) [44] (“CASSCF [3]”), and from NEVPT2 in an active space of (10e, 7o), in
comparison with the experimental FIR spectrum [44] (“Exp FIR [3]”). The energy
levels are grouped into quasi-doublets, with each pair–along with the corresponding
experimental peaks (dashed lines)–colored consistently according to their energy
order. The light and dark purple quasi-doublets are both assigned to the broad FIR
peak near 51 cm−1. The peak near 150 cm−1 in the experimental FIR spectrum is
likely phononic instead of magnetic and thus ignored. Experimental FIR spectrum
is reproduced with permission from the reference by Marx, et al. [44]. b) Calculated
magnetization (“PBE0@HF”) as a function of the applied field at 1.8 K on a powder
sample of 5, in comparison with the literature [44]: the experimental measurement
(“Experiment [3]”), the prediction from CASSCF as in a) (“CASSCF [3]”), the
prediction after the CASSCF relative energies are scaled by 1.3 (“CASSCF×1.3
[3]”).

magnetic susceptibility (Figure 3.10) using our ab initio �̂�CF, where we find good
agreement with the experimentally measured curves, improving on the CASSCF
derived curves.

3.6 Conclusion
In conclusion, we have developed a method to determine the effective crystal field
Hamiltonian of single-ion magnets with quantitative accuracy at mean-field cost.
The accuracy of the crystal field Hamiltonian parameters that we obtain is com-
parable to that of the best multi-reference perturbation theory calculations in the
literature, as we have demonstrated on four benchmark literature systems. In ad-
dition, we showcased an application to the large holmium double decker complex
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whose low-energy spectrum has previously been challenging to assign theoretically.
Using our mean-field derived Hamiltonian, we were able to reproduce all low-
energy states measured in the experimental spectra as well as the field-dependent
magnetic susceptibility curve. The low-computational cost and high-accuracy of
our approach will allow for applications to larger and more complex molecules and
thus lays the foundation for future quantitative simulations of the low-energy physics
of single-ion magnets and optimizing their design.

3.7 Appendix
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Figure 3.6: Relative energies of eigenstates of 3 when different DFT functionals
are used to evaluate energy expectation values of cHF determinants in comparison
to values from CASPT2 [82] and experiments [83] (last two columns). Each color
represents a degenerate doublet.
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Figure 3.7: Relative energies of eigenstates of 4 when different DFT functionals are
used to evaluate energy expectation values of cHF determinants in comparison to
values calculated by CASPT2 [43] (last column). Each color represents a degenerate
doublet.
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Figure 3.8: Relative energies of eigenstates of 5 when different DFT functionals are
used to evaluate energy expectation values of cHF determinants in comparison to
values extracted from the experiment [44] (last column). Each color except black
represents a quasi-doublet.
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Figure 3.9: |𝐽𝑀⟩ compositions, |𝑐𝐽𝑀 |2 where 𝑐𝐽𝑀 = ⟨𝐽𝑀 |Ψ⟩, of each eigenstate
of 5 from diagonalizing �̂�CF. Each panel corresponds to a different �̂�CF, derived
from the constrained DFT methodology using HF@HF functional (“HF@HF”) and
PBE0@HF functional (“PBE0@HF”), from CASSCF in an active space of (10e,
14o)(“CASSCF”), and by NEVPT2 in an active space of (10e, 7o) (“NEVPT2”), as
well as differences between pairs.



68

0 100 200 300
T / K

6

8

10

12

14

χ
T 

/ e
m

u 
K 

m
ol

1

PBE0@HF
Experiment [1]
CASSCF [1]
CASSCF×1.3 [1]

101 102

T / K
6

8

10

12

14

Figure 3.10: Calculated magnetic susceptibility (“PBE0@HF”) as a function of
temperature on a powder sample of 5, in comparison with the literature [44]: the
experimental measurement (“Experiment [1]”), the prediction from CASSCF in an
active space of (10e, 14o) (“CASSCF [1]”), the prediction after the CASSCF relative
energies are scaled by 1.3 (“CASSCF×1.3 [1]”). Note: the main mismatch between
the experiment and all theoretical calculations at high temperatures is likely due to
experimental uncertainties because 𝜒𝑇 is expected to change monotonically in the
high temperature regime.
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C h a p t e r 4

FERMIONIC REDUCED DENSITY LOW-RANK MATRIX
COMPLETION, NOISE FILTERING, AND MEASUREMENT

REDUCTION IN QUANTUM SIMULATIONS

This chapter is based on the published article reprinted with permission from:

1. Peng, L, Zhang, X. & Chan, G. K.-L. Fermionic reduced density low-rank
matrix completion, noise filtering, and measurement reduction in quantum
simulations. Journal of Chemical Theory and Computation 19, 9151–9160.
doi:10.1021/acs.jctc.3c00851 (2023).

Copyright 2023 American Chemical Society.

4.1 Abstract
Fermionic reduced density matrices summarize the key observables in fermionic
systems. In electronic systems, the two-particle reduced density matrix (2-RDM) is
sufficient to determine the energy and most physical observables of interest. Here,
we consider the possibility of using matrix completion to reconstruct the two-particle
reduced density matrix to chemical accuracy from partial information. We consider
the case of noiseless matrix completion, where the partial information corresponds
to a subset of the 2-RDM elements, as well as noisy completion, where the partial
information corresponds to both a subset of elements, as well as statistical noise in
their values. Through experiments on a set of 24 molecular systems, we find that the
2-RDM can be efficiently reconstructed from a reduced amount of information. In
the case of noisy completion, this results in multiple orders of magnitude reduction in
the number of measurements needed to determine the 2-RDM to chemical accuracy.
These techniques can be readily applied to both classical and quantum algorithms
for quantum simulations.

4.2 Introduction
Although quantum states live in a Hilbert space that is exponentially large in physical
system size, most information of physical interest can be captured by quantities of
much reduced dimension. For time-independent fermionic observables, the relevant
quantities are the fermionic reduced density matrices (RDMs) [1, 2]. For example,

https://doi.org/10.1021/acs.jctc.3c00851
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the 𝑘-RDM, defined as

𝑘𝑃𝑖1𝑖2...𝑖𝑘 ,𝑖′1𝑖
′
2𝑖
′
𝑘
= ⟨Ψ|𝑎†

𝑖1
𝑎
†
𝑖2
. . . 𝑎

†
𝑖𝑘
𝑎𝑖′

𝑘
. . . 𝑎𝑖′2𝑎𝑖

′
1
|Ψ⟩ (4.1)

where 𝑎†
𝑖
, 𝑎𝑖 denote fermionic creation and annihilation operators in an orbital

basis, contains all information on 𝑘-fermion observables. We will be interested
in electronic systems, where the interparticle interaction is Coulombic, and the
Hamiltonian is thus of two-body form. In this case, the 2-RDM 2𝑃𝑖𝑘, 𝑗 𝑙 = ⟨𝑎†

𝑖
𝑎
†
𝑘
𝑎𝑙𝑎 𝑗 ⟩

is of particular interest, as it determines the electronic energy [3, 4].

Because Ψ can be quite complicated in a correlated electronic state, obtaining
an accurate 𝑘-RDM can be expensive. Here we discuss how to obtain improved
approximations to the 𝑘-RDM (specifically, the 2-RDM 2𝑃, although the procedures
are general) from incomplete information on its elements. We consider two types
of incomplete information. The first is a noiseless setting where we have only
computed a subset of the RDM elements. This situation is relevant to deterministic
algorithms (or stochastic algorithms in a setting where the statistical noise is very
small) when obtaining the full 𝑘-RDM is expensive. The second is a noisy setting,
where the goal is to reduce the total number of measurements. Such a noisy setting
arises in both quantum Monte Carlo algorithms (as a statistical noise) [5–13] and
in quantum simulations (as a measurement shot noise) [14–22]. In the latter case,
measurement reduction [23–47] is especially relevant to hybrid quantum-classical
algorithms [26, 43, 48–65] which rely on feedback from measured quantities. The
quantum shot noise will be the specific noise setting considered in this work.

Various advanced estimators have been developed to reconstruct states and pro-
cesses from tomographically incomplete measurements, including the maximum-
likelihood estimator [66, 67], the maximum-entropy estimator [68, 69], 𝑁-
representability-enforcing estimators [70, 71], basis adaptive measurements [72,
73], and symmetry projected measurements [74]. Here we will use the property
that, in many applications, the RDMs are of low-rank [75–77]. Viewing the RDM
as a matrix, we can then use its low-rank structure to both remove noise and/or fill in
missing entries. This is a type of matrix completion or compressed sensing [78–87],
and in the case where all elements are available with statistical errors, a version of
low-rank noise filtering [88–94]. Similar matrix completion ideas have been used
in quantum state tomography to treat 𝑛-qubit (reduced) density matrices [95–105].
Here we focus instead on the k-fermionic RDMs, and the specific matrix completion
heuristics applicable to an electronic structure setting.



79

Low-rank matrix completion algorithms rely on a number of input parameters. We
first define how such input parameters, such as the target rank, sampling method,
incoherent basis, etc. can be determined in an electronic structure setting. We
further introduce simple postprocessing (or error mitigation) techniques to improve
the results of the completion. We then analyze noiseless and noisy matrix completion
using a testbed of molecules from a subset of the G2 dataset [106]. In general, we find
that with an optimized completion protocol, it is possible to reduce the measurement
cost, either with respect to the number of elements or with respect to the number
of shots, by 1-3 orders of magnitude across our dataset, while retaining a relevant
accuracy to chemistry.

4.3 Theory
Recap of matrix completion and low-rank noise filtering
We briefly recall some relevant aspects of matrix completion. For a more detailed
introduction, we refer to Refs. [79, 82, 107]. We restrict ourselves to square sym-
metric positive semi-definite matrices. The objective is to recover an approximation
to a low-rank 𝑑 × 𝑑 matrix 𝑀 from incomplete information about its elements. We
first consider the case where we can measure the elements exactly (i.e. without
noise) and the incompleteness is from measuring a subset of the elements Ω. Then,
given |Ω| ≡ 𝑁sample elements of matrix 𝑀 , we can solve for a positive low-rank
approximation 𝑀𝑟 through the minimization:

min
�̃�𝑟

∑︁
𝑖 𝑗∈Ω

(�̃�𝑟
𝑖 𝑗 − 𝑀𝑖 𝑗 )2, s.t. rank(�̃�𝑟) = 𝑟, �̃�𝑟 ≽ 0, (4.2)

where �̃�𝑟 is the desired low-rank completion. Because we restrict to square sym-
metric positive definite 𝑀 , we can use the parametrization �̃�𝑟 = 𝐿†𝐿 where 𝐿
is a real 𝑟 × 𝑑 matrix, and then perform minimization over 𝐿 by gradient-based
techniques.

The efficiency of the above matrix completion can be discussed in terms of the
fraction of sampled elements 𝑓sample = 𝑁sample/𝑑2 required to obtain a given distance
between �̃�𝑟 and 𝑀 , such as the relative error (in the Frobenius norm)

𝜖 (�̃�𝑟 , 𝑀) = | |�̃�𝑟 − 𝑀 | |𝐹
| |𝑀 | | . (4.3)

The efficiency clearly depends on the sampling scheme (i.e. the elements in Ω) and
how information about the matrix is distributed in its entries (the matrix coherence).
Assuming a random sampling scheme, successful matrix completion requires infor-
mation to be spread over all matrix elements. For example, a matrix with only one
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nonzero element can only be completed correctly if the nonzero element is sampled.
The distribution of such nonzero information can be quantified by the coherence in
terms of the singular vectors of 𝑀 [79, 107]: for 𝑀 = 𝑈Λ𝑈𝑇 with𝑈 a 𝑑 × 𝑟 matrix,
we define the geometric coherence 𝜇 as

𝜇 =
𝑑

𝑟
max
1≤𝑖≤𝑑

∥𝑒𝑇𝑖 𝑈∥2 (4.4)

where 𝑒𝑖 ∈ R𝑛 is the standard basis. If all elements of 𝑈 have magnitude 1/
√
𝑑,

this yields the minimum coherence 𝜇 = 1, while if the columns of 𝑈 align with the
standard basis, we obtain a maximum coherence 𝜇 = 𝑑/𝑟. The number of elements
required to complete the matrix successfully can be shown to increase linearly with
the coherence as 𝑂 (𝜇𝑟𝑑 poly(log 𝑑)) [79, 107].

In our application, we require two generalizations of the above matrix completion.
The first is that 𝑀 is only approximately low rank, i.e. there are 𝑟 singular values
above some threshold, but also singular values below this threshold. Given some
assumed rank 𝑟 in the matrix completion, we can expect the best recoverable matrix
to be 𝑀𝑟 = 𝑈Λ𝑟𝑈𝑇 (where Λ𝑟 contains the 𝑟 largest singular values) and there
is a remaining rank truncation error

∑
𝑖>𝑟 Λ

2
𝑖

where Λ𝑖 are the singular values in
decreasing order. The best choice of rank 𝑟 is not known ahead of time. We thus
discuss how 𝑟 can be estimated below using an independent approximate model of
𝑀 .

The second generalization is that we consider matrix completion in the presence of
noise. The statistical noise decreases as we increase the number of measurement
shots 𝑚 like 1/

√
𝑚. The efficiency of matrix completion can be assessed as 𝑓𝑚 =

𝑚/𝑚0 where 𝑚0 is the number of shots required in some standard measurement
scheme to achieve a given error in 𝑀 . Matrix completion is a useful technique in
this context because statistical noise does not have a low-rank structure. Thus, if the
noise is not too large, performing low-rank matrix completion filters out the noise.
There are thus two potential gains in noisy matrix completion: one from measuring
fewer distinct elements of the matrix, and one from requiring fewer shots to reduce
the noise.
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The fermionic 2-RDM
The fermionic 2-RDM, which we label 𝑃 for simplicity, determines the electronic
energy of the system. Given 𝑃𝑖𝑘, 𝑗 𝑙 , we obtain the 1-RDM

𝐷𝑖 𝑗 =
∑︁
𝑘𝑙

𝑃𝑖𝑘, 𝑗 𝑙𝛿𝑘𝑙/(𝑁el − 1) (4.5)

where 𝑁el = Tr𝐷 is the number of electrons. The electronic energy is then

𝐸 [𝑃] =
∑︁
𝑖 𝑗

𝑡𝑖 𝑗𝐷𝑖 𝑗 +
1
2

∑︁
𝑖 𝑗 𝑘𝑙

𝑉𝑖𝑘 𝑗 𝑙𝑃𝑖𝑘, 𝑗 𝑙 (4.6)

where 𝑡𝑖 𝑗 and 𝑉𝑖𝑘 𝑗 𝑙 are the one- and two-electron integrals, respectively. We denote
the size of the orbital basis by 𝑛. We will refer to the two-electron part of the energy
as 𝐸2 [𝑃].

The 2-RDM has a number of symmetries. In a real-orbital basis, the 2-RDM has an
8-fold symmetry

𝑃𝑖𝑘, 𝑗 𝑙 = 𝑃 𝑗 𝑙,𝑖𝑘 = −𝑃𝑘𝑖, 𝑗 𝑙 = −𝑃𝑖𝑘,𝑙 𝑗
= −𝑃𝑙 𝑗 ,𝑖𝑘 = −𝑃 𝑗 𝑙,𝑘𝑖 = 𝑃𝑘𝑖,𝑙 𝑗 = 𝑃𝑙 𝑗 ,𝑘𝑖 (4.7)

Further, if 𝑆𝑧 is a good quantum number, and 𝑖𝜎, 𝑗𝜎, 𝑘𝜎, 𝑙𝜎 label 𝛼, 𝛽 spin orbitals,
𝑃 has only 3 unique non-zero spin sectors: 𝑃𝛼𝛼𝛼𝛼

𝑖𝑘, 𝑗 𝑙
, 𝑃𝛽𝛽𝛽𝛽

𝑖𝑘, 𝑗 𝑙
, and 𝑃𝛼𝛽𝛼𝛽

𝑖𝑘, 𝑗 𝑙
. If 𝑆𝑧 = 0,

then we further have 𝑃𝛼𝛼𝛼𝛼
𝑖𝑘, 𝑗 𝑙

= 𝑃
𝛽𝛽𝛽𝛽

𝑖𝑘, 𝑗 𝑙
. 𝑃𝛼𝛼𝛼𝛼

𝑖𝑘, 𝑗 𝑙
, 𝑃𝛽𝛽𝛽𝛽

𝑖𝑘, 𝑗 𝑙
have 8-fold symmetry, thus

it is sufficient to consider symmetric matrices 𝑃𝜎𝜎𝜎𝜎
𝑖>𝑘, 𝑗>𝑙

of dimension 𝑑 × 𝑑 where
𝑑 = 𝑛(𝑛 + 1)/2 and 𝑛 is the number of spatial orbitals. 𝑃

𝛼𝛽𝛼𝛽

𝑖𝑘, 𝑗 𝑙
has only 2-fold

symmetry 𝑃𝑖𝑘, 𝑗 𝑙 = 𝑃 𝑗 𝑙,𝑖𝑘 and is thus represented by a 𝑑 × 𝑑 symmetric matrix with
𝑑 = 𝑛2. We will only sample or measure unique elements (e.g. only the lower
triangular part of 𝑃), and non-zero spin sectors, in our completion tests below,
although for simplicity, we will refer to all spin sectors collectively as 𝑃.

The maximum rank 𝑟 is 𝑑. For orientation, if one assumes the Hartree-Fock density
matrix, where

𝑃𝑖𝑘, 𝑗 𝑙 = 𝐷𝑖 𝑗𝐷𝑘𝑙 − 𝐷𝑖𝑙𝐷𝑘 𝑗 (4.8)

and 𝐷 is idempotent, then 𝑟 (𝑃𝜎𝜎𝜎𝜎
𝑖𝑘, 𝑗 𝑙

) = 𝑁𝜎 (𝑁𝜎−1)/2 and 𝑟 (𝑃𝛼𝛽𝛼𝛽
𝑖𝑘, 𝑗 𝑙

) = 𝑁𝛼𝑁𝛽 where
𝑁𝛼 and 𝑁𝛽 are the number of spin-up and spin-down electrons, respectively. These
are the minimum ranks for an electronic system: if there are electron correlations,
the rank of the 2-RDM increases. In Fig. 4.1, we show the singular values of the spin-
components of 𝑃 for two models of electron correlation: coupled cluster singles and
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doubles (CCSD) and second-order Møller Plesset perturbation theory (MP2) [108–
110]. In both models, the singular value spectrum contains large singular values,
corresponding to the Hartree-Fock piece of the 2-RDM. Beyond these, the singular
values decay approximately exponentially [111].
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Figure 4.1: Singular values of the a) 𝑃𝛼𝛼𝛼𝛼, b) 𝑃𝛼𝛽𝛼𝛽, and c) 𝑃𝛽𝛽𝛽𝛽 sectors of the
(unrestricted) CCSD (solid) and MP2 (dash) 2-RDMs of the HF and CH molecules in
the cc-pVDZ basis. The 𝑥-axis is the rank 𝑟 divided by the rank of the corresponding
Hartree-Fock 2-RDM.
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Noiseless completion of the 2-RDM
We first consider the noiseless completion of the 2-RDM, where we have an in-
complete sampling of the elements. To define the minimization problem in Eq. 4.2
concretely, as described in Sec. 4.3, we must specify (i) how to sample the ele-
ments,(ii) the estimated matrix rank 𝑟, and (iii) the number of elements to sample.

While there are procedures to estimate the approximation rank 𝑟 on the fly [112, 113],
here we use a simpler process that is likely available in many applications. Recall
that we wish to use matrix completion in a setting where obtaining the elements of
𝑃 is expensive. We can determine a less accurate model 2-RDM 𝑃𝑀 via a cheaper
procedure, and use the model to determine the optimal sampling, choice of rank 𝑟,
and the number of elements to sample. We define the rank 𝑟 model approximation
𝑃𝑟
𝑀
= 𝑈Λ𝑟𝑈† and choose 𝑟 such that

𝜖 (𝑃𝑟𝑀 , 𝑃𝑀) < 𝜅𝜖0 (4.9)

where 𝜖0 is our target completion error, and 𝜅 is an empirical constant to account
for the fact that our final error includes not only the rank truncation error arising
from Eq. 4.9 but also a completion error from incomplete sampling. Here we use
𝜅 = 1/2.

Next, we consider the element sampling. Since we have a model available, one might
consider sampling elements in the descending order of magnitude of elements of
𝑃𝑀 in a basis such as the canonical molecular orbital (MO) basis. However, for
the smaller elements necessary to complete 𝑃 to chemical accuracy in energy, we
observe a significant difference between our model 𝑃𝑀 and 𝑃. Thus, sampling in
this order does not give a favorable completion efficiency. As a result, we instead
use uniform random sampling of the elements, which is efficient if the matrix is not
very coherent. To minimize the coherence of the 2-RDM, we optimize orthogonal
matrices 𝐶 such that the coherence of [𝑃′

𝑀
] 𝑝𝑞𝑟𝑠 =

∑
𝑖 𝑗 𝑘𝑙 𝐶𝑝𝑖𝐶𝑞𝑘 [𝑃𝑀]𝑖𝑘 𝑗 𝑙𝐶 𝑗𝑟𝐶𝑙𝑠 is

minimized. See 4.4 for practical implementation. Fig. 4.2 shows the reduction in
the coherence of a model MP2 𝑃𝑀 after such orbital rotations.

To estimate 𝑓sample (the fraction of elements to sample), we perform matrix comple-
tion on the model 𝑃𝑀 for the specified rank 𝑟, and coherence optimized orbitals, and
choose 𝑁sample so 𝜖 (�̃�𝑟

𝑀
, 𝑃𝑀) < 𝜖0. An example of such a model matrix completion

is shown in Fig. 4.3. As the fraction of sampled elements increases, the completion
error saturates at the rank truncation error. However, there is an unusual feature
where the completion error rises near the theoretical information bound (the number
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of elements needed to exactly complete a symmetric matrix with the exact rank of
𝑟). This appears related to the approximate low-rank nature of 𝑃𝑀 , and the non-
trivial feature which is difficult to describe purely theoretically illustrates the value
in having an explicit model 𝑃𝑀 to determine the parameters of matrix completion.
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Figure 4.3: Completion errors of BeH, CH, OH and HF MP2 𝑃𝛼𝛼𝛼𝛼 RDMs in
the cc-pVDZ basis as a function of the fraction of sampled elements 𝑓sample. The
completion rank is chosen according to Eq. 4.9. The theoretical information bound
of (2𝑟𝑑 − 𝑟2 + 𝑟)/(𝑑 (𝑑 +1)) is the ratio of degrees of freedom in a rank-𝑟 symmetric
𝑑 × 𝑑 matrix to that of a rank-𝑑 symmetric matrix.

Measuring the 2-RDM in the quantum setting
We now consider the problem of measuring the 2-RDM with noise, which we will
take to arise from quantum measurements. We choose a Jordan-Wigner encod-
ing of fermions and assume we are measuring Pauli operators. The expectation
value of strings of Pauli operators can then be converted to fermion expectation
values. For a quartet of fermion labels 𝑖, 𝑗 , 𝑘, 𝑙, the 3 fermion expectation values
not related by permutational symmetry ⟨𝑎†

𝑖
𝑎
†
𝑘
𝑎𝑙𝑎 𝑗 ⟩, ⟨𝑎†𝑖 𝑎

†
𝑗
𝑎𝑙𝑎𝑘⟩, and ⟨𝑎†

𝑖
𝑎
†
𝑙
𝑎 𝑗𝑎𝑘⟩

are each determined from linear combinations of the expectation values of 8 Pauli
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strings

⟨𝑎†
𝑖
𝑎
†
𝑘
𝑎𝑙𝑎 𝑗 ⟩,⟨𝑎†𝑖 𝑎

†
𝑗
𝑎𝑙𝑎𝑘⟩, ⟨𝑎†𝑖 𝑎

†
𝑙
𝑎 𝑗𝑎𝑘⟩ ⇔

⟨𝑋𝑖 · 𝑋𝑘𝑋𝑙 · 𝑋 𝑗 ⟩, ⟨𝑋𝑖 · 𝑋𝑘𝑌𝑙 · 𝑌 𝑗 ⟩,
⟨𝑋𝑖 · 𝑌𝑘𝑋𝑙 · 𝑌 𝑗 ⟩, ⟨𝑋𝑖 · 𝑌𝑘𝑌𝑙 · 𝑋 𝑗 ⟩,
⟨𝑌𝑖 · 𝑋𝑘𝑋𝑙 · 𝑌 𝑗 ⟩, ⟨𝑌𝑖 · 𝑋𝑘𝑌𝑙 · 𝑋 𝑗 ⟩,
⟨𝑌𝑖 · 𝑌𝑘𝑋𝑙 · 𝑋 𝑗 ⟩, ⟨𝑌𝑖 · 𝑌𝑘𝑌𝑙 · 𝑌 𝑗 ⟩,

(4.10)

where · indicates additional possible 𝑍 operators in between the 𝑖, 𝑗 , 𝑘, 𝑙 indices.
(Certain simplifications arise if any of the fermion indices 𝑖, 𝑗 , 𝑘, 𝑙 are the same; we
can reconstruct such fermion expectation values using Pauli strings containing 𝑍
operators. We use such simplifications in our implementation and counting below.

Because the quantum state is not in a simultaneous eigenstate of all the measured
operators, there will be statistical errors in (some of) the measurements. Although
there exist a variety of techniques to minimize the number of measurement settings
by grouping simultaneously measurable operators [27, 30, 32], we use the straight-
forward approach of independently measuring each Pauli string and leave potential
improvement by grouping to future work. Thus we sample fermionic terms in sets
of 3 in Eq. 4.10, each set associated with a 𝑖, 𝑗 , 𝑘, 𝑙 quartet and reconstructed from
the same 8 Pauli strings. The measurement variance for the Pauli string 𝑄 is then
obtained from the binomial distribution as 𝜎2 = (1 + ⟨𝑄⟩)(1 − ⟨𝑄⟩)/𝑚Q where 𝑚Q

is the number of measurements of the string.

To define the efficiency of matrix completion, we first need to define a “standard”
measurement procedure, where no matrix completion is performed. In this scheme,
all Pauli strings required for the fermionic 2-RDM are measured with the same
number of shots yielding a noisy �̃�. To estimate the total number of shots 𝑚
required, we measure 𝑃 in the coherence minimized orbital basis, and choose 𝑚
such that 𝜖 (�̃�, 𝑃) < 𝜖0. While in experiment more coherent basis might be used, in
our tests, coherence minimization does not appreciably change the 𝑚 required when
no matrix completion is used, as illustrated on the model 𝑃𝑀 in Fig. 4.4.

Noisy completion of the 2-RDM
We now discuss matrix completion when measurements include statistical errors.
Given our model 𝑃𝑀 , we use the same rank estimation procedure and coherence
minimization procedure as in the noiseless setting. However, we need a differ-
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Figure 4.4: Average variance per Pauli string of MP2 2-RDMs in the aug-cc-pVDZ
basis from a quantum measurement where each Pauli term is measured with 1 shot.
The gray bars labeled “MO” denote measurements in the canonical MOs; the green
bars labeled “incoherent” denote measurements in the coherence minimized orbital
basis.

ent procedure to determine the number of (sets of) fermionic elements 𝑁sample to
measure, as the actual cost we wish to optimize is related to the total number of
measurement shots 𝑚. For simplicity, we assume each Pauli string is being mea-
sured with the same number of shots. For a given 𝑚 we should then search over
𝑁sample to find the number of fermionic elements to measure that complete 𝑃𝑀 with
the lowest completion error; we then increase 𝑚 until the completion error is below
𝜖0.

In Fig. 4.5 we illustrate a typical result from searching for the optimal 𝑁sample. We
see that in this problem, for a given 𝑚 (𝑐 = 0 line) it is in fact optimal to sample
close to 100% of the elements. This means matrix completion is performing almost
entirely as a low-rank noise filter. In the other lines, we illustrate how the cost
balance changes if we introduce a cost to switch the measurement setting when
changing the Pauli strings (in multiples of the measurement cost, 𝑐 = 500, 10000
data; 𝑐 = 500 corresponds to the reported cost to switch measurements for the
Sycamore quantum processor [114]). For a very high measurement setting cost, e.g.
the case of 𝑐 = 10000, there is a benefit to sample fewer elements. However, in
the subsequent calculations, we will neglect the cost of measurement switching and
determine the best 𝑚, 𝑓sample pair assuming 𝑐 = 0.

Post-processing the completed 2-RDM
We can improve the results of matrix completion and noise filtering through post-
processing. In the noisy quantum setting, this can be viewed as a form of error
mitigation. We perform the following steps:
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Figure 4.5: Completion errors of BeH CCSD 𝑃𝛼𝛼𝛼𝛼 in the aug-cc-pVDZ basis
in three settings, each with a different cost 𝑐 to switch the measurement, for a
fixed number of shots per element (1317636). The completion error at each 𝑓sample
is averaged over errors from 1000 different random samplings and the standard
deviation is taken as the error bar.

1. For noiseless completion, we replace sampled terms in the completed 2-RDMs
with their exact values (i.e. giving zero completion error on the sampled
terms).

2. We normalize 𝑃 (for the 3 spin components separately).

3. For noiseless completion, we apply matrix completion to obtain �̃�𝑟
𝑀

, and the
2-RDM error of the model 𝑃𝑀 − �̃�𝑟

𝑀
is added to our completed �̃�𝑟 .

Note this means that the only postprocessing done in the case of noisy completion
is the normalization of the density matrix.

4.4 Computational details
We use 24 small molecular systems from the G2-1 test set [106], including both
singlet (s) and triplet (t) states of CH2 and SiH2 and 20 other molecules (that
include both open-shell radicals and closed-shell systems) in their lowest spin state
for our noiseless completion studies, and a further subset of the 7 smallest ones to
study the basis dependence of noiseless completion and for the noisy completion
studies. (The 7 smallest molecules serve as representative examples for the larger
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set, encompassing both those with the smallest and largest cost reductions in the
noiseless completion results). We used (aug-)cc-pVXZ bases [115–117] throughout
and in CCSD and MP2 calculations froze the lowest energy orbitals (1𝑠 for first row,
1𝑠2𝑠2𝑝 for second row). Completion is thus only performed for the non-core part
of 𝑃. Molecular geometries at the B3LYP/6-31G(2df, p) [118–120] level of theory
were taken from Ref. [121, 122]. We computed unrestricted CCSD density matrices,
as the reference “exact” density matrices. We computed unrelaxed unrestricted MP2
density matrices as the model density matrices. (We note that MP2 represents one of
the simplest correlated density matrices for this purpose. For strongly multireference
problems, other models may be preferable).

For our completion studies, we used a target completion error of 𝜖0 = 1%. Mini-
mizing the geometric coherence corresponds to minimizing

max
𝑝,𝑞

∑︁
𝑠

(𝐶𝑝𝑖𝐶𝑞𝑘𝑈𝑖𝑘,𝑠)2 (4.11)

where𝑈𝑖𝑘,𝑠 are the singular vectors of [𝑃𝑟
𝑀
]𝑖𝑘, 𝑗 𝑙 and𝐶 is the basis rotation matrix to

be optimized. However, this minimization is numerically inconvenient because the
max function is not differentiable everywhere. Instead, we perform the minimization

arg min
𝐶

∑︁
𝑝,𝑞

(∑︁
𝑠

(𝐶𝑝𝑖𝐶𝑞𝑘𝑈𝑖𝑘,𝑠)2

)4

(4.12)

starting from 10 Haar random [123] initial guesses of orthogonal matrices 𝐶. In the
noiseless matrix completion, for the MP2 𝑃𝑀 , we randomly generated 10 different
element samplings for each 𝑓sample, and for each sampling, used a maximum of
15000 iterations in the matrix completion optimization with the L-BFGS-B algo-
rithm [124, 125]. 𝑓sample was chosen so that 𝜖 ≤ 𝜖0 in no less than 90% of the
model completions. The CCSD 2-RDM completion was carried out using the same
10 element samplings as for MP2 2-RDMs. The CCSD completion errors were
then averaged over all 10 trials except for cases where the optimization was not
converged. In the noisy measurement setting, 10 random samplings were generated
for each 𝑓sample to estimate the best 𝑚, 𝑓sample pair.

All quantum chemistry calculations were carried out with PySCF [126, 127], while
the conversion of the fermionic operators to Jordan-Wigner form was carried out
using the OpenFermion package and the OpenFermion-PySCF plugin [126, 128].
The Jordan-Wigner transformations were carried out on the 2-RDM in the coherence
minimized basis.
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Figure 4.6: a) Using MP2 model 𝑃𝑀 to complete the CCSD 2-RDM. A target
completion error 𝜖0 = 1% for 𝑃𝑀 achieves 𝜖 ≈ 1% in the completed CCSD 2-RDM.
b) The absolute error in the two-particle energy 𝐸2 from completed 2-RDMs.
c) Fraction of fermionic terms sampled 𝑓sample used to complete 2-RDMs to the
accuracy in a). d) 𝑓sample is roughly proportional to (𝑁el/𝑛)2.

4.5 Results
Noiseless completion
Fig. 4.6a shows the completion results for 𝜖0 = 1% for 2-RDMs in the cc-pVDZ
basis for the 24 systems, showing both the 2-RDM error and two-particle energy
(𝐸2, for the non-core part of 𝑃) error for the target 2-RDMs from CCSD, as well as
the 2-RDM and two-particle energy error for the MP2 model 2-RDMs. For the MP2
model quantities, 𝜖 < 1%, by design. (We note that LiH and Li2 have anomalously
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size for a set of 7 molecules.

small errors because their RDMs are approximately rank-1). Across the series of
molecules, this translates to approximately 0.02 Ha error in the MP2 two-particle
energy.

The error of the MP2 model translates to the observed errors in the target CCSD
2-RDM matrix completion, with 𝜖 ≤ 1.5%. The CCSD two-particle energy error is
somewhat larger and grows from left to right in the plot. The molecules in the plot
are ordered in terms of increasing 𝑁el/𝑛. For molecules such as BeH, where there
is a significant difference between the singular value of the MP2 model and CCSD
(reflecting the stronger correlation described by CCSD), the main reason for the
increased CCSD completion error comes from the increased rank truncation error.
For such systems where MP2 yields a relatively poor approximation, alternative
models may be used. In Fig. 4.6c, we see that 𝑓sample is roughly proportional to
(𝑁el/𝑛)2. This comes from the rank of the Hartree-Fock 2-RDM as discussed in
section 4.3.

The above suggests that matrix completion is more useful in larger basis sets. We
test this in the subset of 7 molecules in Fig. 4.7. To achieve 1% completion error in
the model MP2 2-RDM, we find that the fraction of samples needed decreases with
basis size as ∼ 1/𝑛2 log0.6(𝑛). To understand this trend, we note that the numerical
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rank for a fixed precision and system varies only slightly with basis, and thus the
relative rank 𝑟/𝑑 decreases almost quadratically with the basis size. The smaller the
relative rank, the larger the cost reduction from low-rank matrix completion. This
trend falls between the fundamental information lower bound of 1/𝑛2 [97, 129],
below which 𝑃 is underdetermined, and the best provable bound of 1/𝑛2 log(𝑛),
which guarantees a high probability to complete 𝑃 to a constant error [102].

100

101

102

No PP
Step 1

Step 1+2
Step 1+2+3

Chemical accuracy
Li 2 LiH Be
H

CH
3

CH
2(s

)
CH

2(t
)

Si
H 2

(s
)

Si
H 2

(t) CH NH
3

NH
2

PH
2

LiF NH CN H 2
O CO N 2 OH NO HF HC

l
O 2 F 2

10 12

10 7

E 2
 a

bs
olu

te
 e

rro
r /

 m
Ha

Figure 4.8: The effect on the two-particle energy 𝐸2 of each post-processing option
as defined in Sec. 4.3, for noiseless completion. Note that almost all the error
reduction is achieved by normalization.

As expected, post-processing reduces the energy error of the completed target 2-
RDMs. In Fig. 4.8 we show the effect of the different steps on the two-particle
energy 𝐸2. Out of the 3 post-processing steps, normalizing the trace of 𝑃 reduces
the error the most, by 1-2 orders of magnitude. This suggests that the majority of
energy error comes from the low-rank approximation, i.e. from truncating small
eigenvalues, which reduces the trace of 𝑃. After all post-processing steps, the
two-particle energy errors are around chemical accuracy (1.6 mHa).

Noisy 2-RDM completion
We now carry out similar numerical experiments in the presence of measurement
noise. In Fig. 4.9a, we report the average number of shots (i.e. number of shots
divided by the number of unique elements of 𝑃, denoted �̄�) in the standard mea-
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Figure 4.9: a) The average number of shots per unique Pauli term �̄� for 7 molecules
needed in the “standard” measurement scheme and when using “matrix completion.”
Their ratio 1/ 𝑓𝑚, i.e., the factor of measurement cost reduction, is reported next to the
bars. b) Fraction of fermionic terms sampled 𝑓sample used in a) “matrix completion.”
c) The measurement cost reduction, 1/ 𝑓𝑚, is proportional to 𝑑/𝑟, where 𝑟 is the
MP2 rank estimate used in matrix completion. (𝑑 and 𝑟 are averaged over the 3 spin
sectors).
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surement scheme and the average number of shots in the matrix completion scheme
required to obtain 𝜖0 = 1% for the subset of 7 molecules in the aug-cc-pVDZ basis.
We see that across all molecules, there is a significant reduction (1/ 𝑓𝑚) in the aver-
age number of shots required compared to the standard measurement scheme; the
total reduction is between 1 to 3 orders of magnitude in the aug-cc-pVDZ basis. For
matrix completion, the associated 𝑓sample used to generate the matrix completion
data in Fig. 4.9a is reported in Fig. 4.9b. Almost all terms are measured for all the
molecules, consistent with Fig. 4.5. Thus, resource reduction primarily comes from
filtering the statistical noise in the measurements. In Fig. 4.9c we show the observed
measurement cost reduction 1/ 𝑓𝑚 to complete to 1% accuracy as a function of the
estimated rank of 𝑃𝑀 . We find 𝑓𝑚 ∼ 𝑟/𝑑 (the relative rank of the 2-RDM), which,
when rescaled for | |𝑃 | | ∼ 𝑟, matches theoretical sample complexities of low-rank
completions performed on normalized density matrices | |�̄� | | = 1 [97, 102]. There-
fore, resource reduction due to high-rank noise filtering is closely related to the
low-rank property of the 2-RDM.
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Figure 4.10: Absolute energy error from the completed 2-RDM before and after
step 2 (trace normalization) of post-processing (PP). After post-processing, the two-
particle energy error is within chemical accuracy (1.6 mHa).

In Fig. 4.10, we show the energy error and 2-RDM error before and after normalizing
𝑃 to the correct number of electrons. After this post-processing, the energy errors
are all within chemical accuracy.
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4.6 Conclusions
We have demonstrated that matrix completions can effectively reduce the effort to
obtain fermionic 𝑘-RDMs of interest in electronic structure, and in particular, the 2-
RDM. This was achieved by exploiting the low-rank structure as well as information
obtained from approximate models of the 2-RDM. After a simple postprocessing
step (normalizing the density matrix) we can reach chemical accuracy, with multiple
orders of magnitude reduction in measurement cost.

The current work has immediate applications in both classical and quantum algo-
rithms to obtain 2-RDMs. In the classical setting, we envision that these techniques
can easily be employed in quantum Monte Carlo simulations. In the hybrid quantum
algorithm setting, there exist other techniques to reduce the measurement resources,
such as optimizing the groups of qubit-wise commuting Pauli terms [30, 32], or
employing classical shadows [27, 29]. It is likely these methods can be employed
in conjunction with the matrix completion technique. In addition, it will be in-
teresting to explore analogs of matrix completion that use the tensor structure of
the 2-RDM [130] or to impose additional constraints, such as 𝑁-representability
conditions [70, 131, 132].
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