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ABSTRACT

Experimental results are presented for transonic flow past
cone-cylinder, axially symmetric bodies. The drag coefficient, sur-
face Mach number, etc. are studied as the free stream Mach number
is varied and, wherever possible, the experimental results are com-
pared with theoretical predictions. Interferometric results for sev-
eral typical flow configurations are shown and an example of shock-
free supersonic to suhsonic compression is experimentally demon-
strated.

The theoretical problem of transonic flow past finite cones is
discussed briefly and an approximate solution of the axially symmet-

ric transonic equations, valid for a semi-infinite cone, is presented.
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SYMBOLS

velocity of sound for My = 1.00
chord of the cone
cone drag coefficient, reference area is the cone base area

drag coefficient at My = 1.00

pressure coefficient = < {P—s - f]

pressure coefficient at My = 1,00

cone base diameter

Gladstone-Dale constant

free stream Mach number

cone surface Mach number

index of refraction of air

free stream static pressure

stagnation pressure

surface static pressure

interferometric fringe shift

non-dimensional transonic axial-velocity perturbation
non-dimensional transonic radial-velocity perturbation
axial distance downstream of the cone tip

shock wave angle at the cone tip

ratio of specific heats of air =1.400

axial distance from the cone shoulder to the shock wave
cone semi-angle

density of air



I. INTRODUCTION

Transonic flow past certain two-dimensional bodies has been
the subject of several recent papers and the phenomena are well un-
derstood. The theoretical results of Cole {(Ref. 1), Guderley and
Yoshihara (Ref. 2), Vincenti and Wagoner {Ref, 3), and others apply
to two-dimensional symmetrical double wedge airfoils. The experi-
mental results of Bryson (Ref. 4), and Griffith (Ref. 5) substantiate
the theoretical work in a very satisfactory manner. More recently,
Vincenti and Wagoner (Ref. 6), and Guderley and Yoshihara (Ref. 7)
have analyzed the transonic flow past two-dimensional unsymmetrical
sections, that is, lifting double wedge airfoils. Current experiments
on lifting double wedge airfoils (Ref. 8) at GALCIT indicate thatagree-
ment between theoretical and experimental results will again be ob-
tained.

Two-dimensional and axially symmetric transonic flow are of
considerable theoretical and practical interest since these two special-
ized problems are limiting cases of the more complex problem of the
flow about an arbitrary three-dimensional body.

The study of axially symmetric transonic flow is not as complete
as that of two-dimensional flow. In recentyears several papers, no-
tably those of von Karman {(Ref. 9), and Oswatitsch and Berndt (Ref. 10),
have studied the similarity rules of axially symmetric transonic flow.
Also, Yoshihara (Ref. 11) has calculated the flow about a finite cone
at a free stream Mach numbcr of onc by a relaxation technique, and

has obtained some experimental verification of the theoretical result.



The hodograph problemfor general transonic flow pastfinite cones is
discussed in Ref. (8). However, theoretical solutions or experimen-
tal results for the complete transonic regime are not, at present,
available. This reportpresents the results of an experimentalinves-
tigation of the transonic flow past cone-cylinder bodies. A conmical
tip, followed by a cylindrical afterbody, was chosen asthe experimen-
tal model for two primary reasons. (1) The relatively simple geom-
etry of a cone-cylinder body may simplify the theoretical problem.
(2) Viscous effects are minimized; that is, the boundarylayer on the
cone surface is in a region of decreasing or constant pressure gradi-
ent so that the presence of the boundary layer will not greatly alter
the shape of the body forward of the cone shoulder.

Theoretical results for the supersonic flow past a cone were
first presented in 1929 by Busemann (Ref. 12). Busemann's solu-
tion postulates a semi-infinite cone and assumes that the flow is coni-
cal, that is, along rays through the apex of the semi-infinite cone, the
flow parameters such as pressure, velocity, etc. being constant. The
solution is found by a geometrical construction in the hodograph plane
and il is readily apparent that a conical solution existe only so long as
a shock wave is attached to the cone apex and, therefore, the free
stream Mach number is supersonic. It is interesting to note that
Busemann's solution predicts smooth shock-free compression from
supersonic to subsonic flow for particular combinations of cone angle
and free stream Mach number. The conical solution also shows that
for a given cone angle and free stream Mach number, My, the surface

Mach number is always less than the Mach number immediately behind



the conical shock wave; as M, decreases, the surface Mach number
decreases and eventually passes from supersonic to subsonic values.
As was mentioned by Busemann, the conical solution for a semi-in-
finite cone is completely valid for a finite cone so long as the flow is
everywhere supersonic, but when the surface Mach number is less
than sonic, the perturbation due to the corner or shoulder of thefinite
conc is propagated forward through the subsonic portion of the field
destroying the conicity of the flow. Thus, the Busemann solution is
completely valid for a finite cone only so long as My is large enough
so that the surface Mach number is greater than sonic.

Taylor and Maccoll (Ref. 13) in 1933 presented the results of a
numerical integration of the axially symmetric equations of motionfor
conical flow about semi-infinite cones and also presented experimen-
tal verification of their theoretical results. Further experimental
verification by Maccoll (Ref. 14) was published in 1937. Both of the
above papers noted that deviations of the experiments from the theo-
retical predictions, notably in the shape of the shock wave, are appar-
ent when the surface Mach number is subsonic.

As was mentioned previously, Yoshihara (Ref. 11)has computed,
by relaxation methods, the flow about a cone-cylinder at Mg = 1.00
and has experimentally verified the calculation. However, theoreti-
cal solutions do not exist for the complete transonic regime. Solutions
have not beendeveloped for the flow past a finite cone when Mg is sub-
sonic or when My is between sonic and the value of My at which
Busemann's conical solution becomes valid. Drougge (Ref. 15) has

computed the flow field between a detached shock wave and a finite



cone by relaxation methods; however, the position and shape of the de-
tached shock wave was determined initially from schlieren photographs.

The experimental results reported in this paper cover several
interesting features of the transonic flow about finite cones. The de-
viations of the surface Mach number from the values predicted by
conical theory are examined for values of My suchthat the flow field
is transonic in nature. The behavior of the surface Mach number for
subsonic values of My, and as My approaches sonic from subsonic
values, is examined in some detail so that an extrapolation to
M, = 1.00 may be made. The ahove surface Mach number data lead
naturally to the evaluation of the drag coefficient, and experimental
values of the drag coefficient in the transonic regime are presented.

The physical location of the sonic line in a meridianal plane of
the flow about a finite cone is of considerable interest for a theoreti-
cal study of the problem of axially symmetric flow. With this fact in
mind, an interferometric analysis was made at several typical values
of My so as to determine the local Mach number fields about finite
cones. Several examples of supersonic to subsonic, shock-free com-
pression arc cxperimentally demonstrated.

Experimental values of the shock wave angle at the cone tip, par-
ticularly at values of My where the flow field between the shock wave
and the cone surface is transonic or subsonic in nature, are presented
and a comparison with the values from conical theory is shown.

The conical solution for flow about a semi-infinite cone demon-
strates that a conical solution does not exist if, for a given cone angle,

My decreases below a certain minimum Mg. This minimum My is



defined to be the My for which shock wave detachment occurs for a
semi-infinite cone. Whether or not the shock wave detachment Mach
number for a finite cone can be determined from conical theory is of
considerable theoretical interest. Experimental values of the detach-
ment distance of a shock wave from a finite cone tip, the distance ob-
viously being zero at attachment, have been collected from several

sources and the results analyzed in this report.

The transonic equations of motion, and boundary conditions as
derived by von Karman (Ref. 9) for axially symmetric flow, require
several assumptions as to the relative magnitude of various terms in
the exact equations of motion and the related boundary conditions. To
demonstrate that the transonic equations retainthe important features
of the exact equations, an approximate solution of the problem of coni-
cal flow about a semi-infinite cone has been developed employing the
transonic equations and boundary conditions. A comparison of the ex-
act Busemann solution and the approximate transonic solution is pre-
sented in the report.

The author of this reportwishes to expresshis appreciation for
their helpful advice and criticism to Drs. H. W. Liepmann, J. D. Cole,
and A. Roshko of the California Institute of Technology. The investi-
gation was conducted under the sponsorship of the National Advisory

Committee for Aeronautics.



II. EXPERIMENTAL EQUIPMENT
1. Wind Tunnel

The Transonic Wind Tunnel at GALCIT is a continuous flow wind
tunnel. For supersonic testing, the test section Mach number may be
continuously varied over a wide range by altering the shape of one
flexible wall., The test section Mach number is varied by changing
the area of a sonic throat downstream of the test section when sub-
sonic tests are being performed. The test section width is 4 inches
and the height is 9 inches. The design of the flexible test section

wall is discussed in Ref. (16).
2. Interferometer

The interferometer used in the present investigation is of the
Mach-Zehnder type. Both light paths of the interferometer are passed
through the wind tunnel test section, one beampassing through the flow
region under analysis and the other beam passing through the undis-
turbed flow in the test section upstream of the model. The fringe shifts
due to density variations in the boundary layer are eliminated since
both beams pass through the boundary layer on the test section walls
and are affected almost equally. The growth of the boundary layer be-
tween the Lwo beams is not compensated by the above arrangement but
the effect is of secondary importance. A detailed description of the
GALCIT interferometer and a very complete bibliography on interfero-

meter construction is given in Ref. (17).



3. Models

The models were conical-tipped brass cylinders of 200, 259,
and 30° semi-angle. The base diameters were between 0.30 inches
and 0.50 inches. Thus, the Reynolds numbers for the tests, with the
base diameter of the models as the reference dimension, varied from
55, 000 to 143, 000. The tips of the cones were made as sharp as pos-
sible and the maximum tip diameter of the dullest of the models was
approximately 1/3 percent of its base diameter. Also, the models were
black-nickel plated to improve the photographic definition. The angle
of attack and angle of yaw were adjusted to zero by equalizing the

pressure on the cone surface at four annular points.



III. EXPERIMENTAL TECHNIQUES

1. Interferometry

An experimentlal investigation of flow phenuvmena is facilitated
by the employment of an interferometer to determine the densityfields
in gaseous (or liquid) flows. The interferometer technique possesses
the obvious advaniage of eliminaling the need for placing any type of
probe into a flow region where the presence of the probe may com-
pletely alter the undisturbed flow field. A disadvantage is also pres-
ent however, since the values of density are not immediately avail-
able as the test is in progress. A more serious disadvantage is the
fact that the interferometer integrates the density values on its light
paths {see Appendix A) and, thus, the measurement of density is not
localized but is influenced by inhomogeneities in the flow which may
be well removed from the points of interest.

Two general types of flow are amenable to interferometric ana-
lysis, namely two-dimensional and axially symmetric flow. This paper
is concerned solely with axially symmetric flow analysis. A discus-
sion of the method employed to reduce the finite [ringe interferograms,
such as Fig. 2, to density distributions may be found in Appendix A.
The method is essentially that outlined in Ref. (18). An excellentdis-
cussion of axially symmetric data reduction is given inRef. ( 19) where
several references to earlier papers in the field will be found.

These earlier papers are mainly concerned with evaluating the
interferometer data reduction techniques for axially symmetric flow

by investigating the flow about cone-cylinders at Mach numbers and



cone angles where the Busemann conical solution was known to be
valid. Ref. (20) presents some experimental results in the same gen-

eral flow regimes as are investigated in this report,

2. Sonic Line Location by Wave Reflection

The location of the sonic line in a meridianal plane of an axially
symmetric transonic flow can he determined experimentally by at least
three distinct methods. The first method is by static pressure meas-
urements, the second is by interferometric analysis, and the third
method is that of Mach wave reflection from the sonic line. It should
be noted, that at the point of reflection, the Mach wave will be perpen-
dicular to the streamline direction through the sonic line.

To locate the sonic line within the flow about a cone, a small-
diameter probe was placed in the free stream flow outside of the cone
shock wave. The probe was in a position such that the probe shock
wave pierced the cone shock wave and entered the flow field about the
cone. The shock waves formed by the probe closely approximate Mach
waves at large distances from the probe and a typical wave reflection
is shown in Fig. 5. The perturbations in the flow aboutthe cone caused
by the waves do not appreciably affect the position of the sonic line as
shown by Fig. 11 where a comparison is made of the location of the
sonic line as found by interferometric analysis and by the wave reflec-
tion method. The probe method is much more convenient than the pres-
sure measurement or interferometric method since the phenomenon
may be observed with a schlieren system, so that the result is obtained

visually.
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3. Pressure Measurements

The pressure measurements in this investigation were made
either on a micromanometer (accuracy = + 0.01 mm. Hg) or on a

nomograph Mach meter (Ref. 21).
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IV, EXPERIMENTAL RESULTS AND DISCUSSION

1. General Flow Characteristics

An analysis of the flow of a compressible fluid about an axially
symmetric finite cone, that is, a cone-cylinder, indicates that five
distinct regimes of flow are possible. These regimes are:

1. Subsonic flow at infinity with a region of locally supersonic
flow downstream of the cone shoulder. A schlieren photo-
graph of this type of flow is shown in Fig. 1. It should be
noted that an extremely weak shock wave originates at the
cone shoulder and terminates at the downstream '"normal"
shock wave. The forked appearance of the base of the ter-
minating "normal" shock wave is an illusion caused by the
axial symmetry of the flow. The light rays which pass near
the surface of the body, in the region of the rearwardbranch
of the "fork", also pass through the outer portion of the shock
and the spurious rearward branch is caused by the light ray
deflections in the outer portion of the shock wave. A meri-
dianal section of the shock wave actually includes only the
front branch of the fork.

II. Supersonic flow at infinity with a detached shock wave and
subsonic flow between the shock wave and the cone. Fig. 2
is a finite fringe interferogram of this type of flow.

III. Supersonic flow at infinity with an attached curved shock
wave and subsonic flow between the initial portion of the

shock wave and the cone. A schlieren photograph of this



~-12-

flow is shown inFig. 3. Taylor and Maccoll's original paper
on conical flows (Ref. 13) includes a schlieren photograph of
an attached curved shock.

IV. Supersonic flow at infinity with an attached shock wave and
mixed supersonic and subsonic flow between the shock wave
and the cone. A schlieren photograph of this flow is shown
in Fig. 4.

V. Supersonic flow at infinity with completely supersonic flow
between the attached shock wave and the cone surface. The
Busemann solution applies in this regime and has been veri-

fied experimentally in Refs. 13, 14, 19, and 22.
2. Local Mach Number Contours

The local Mach number contours in a meridianal plane for the
flow about a 25° semi-angle cone are shown in Figs. 6, 7, 8, and 9
for flow Regimes II, III, and IV. The local Mach number contours for
a 30° semi-angle cone in Regime II are shown in Fig. 10. These data
were ob£ained by interferometric analysis as discussed in Appendix A.

The local Mach number contours should be normal to the cone
surface since the cone surface is a flat boundary and any pressure
gradient at the surface must be parallel to the flat surface. However,
near the shoulder of the cone-cylinder, the surface is curved by the
effect of the corner expansion on the boundary layer, and thus the local
Mach number contours are not quite perpendicular to the cone surface

immediately ahead of the shoulder.
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3. Sonic Line Location

The location of the sonic line can be determined by interferomet-
ric analysis but a more useful method, in the present investigation, was
the wave reflection method. The location of the sonic line in Regimes
11, III, and IV is discussed bhelow.

Regime II - Examples of the sonic line location in this regime
are shown in Figs. 6 and 7. The sonic line originates at the cone
shoulder and terminates on the detached shock wave. In Fig. 10, it
may be seen that a region of supersonicto subsonic compression ex-
ists on the outer portion of the sonic line. The sonic line actually
originates slig}'1t1y upstream of the cone shoulder. This effect is due
to the rounding of the cone shoulder by the surface boundary layer.

Regime III - Fig. 8 illustrates the case of the flow with a nearly
attached curved shock wave. Again, a small region of supersonic to
subsonic compression is present on the outer portion of the sonicline.
The free stream Mach number is slightly less than the detachment Mg
predicted by the exact conical theory. The question of experimental
detachment Mach number is discussed below.

Regime IV - Several examples of the sonic line location in this
regime are shown on Figs. 9, 11, and 12. Fig. 1l shows the location
as determined by interferometric means and as determined by wave
reflection. The sonic line again originates at the corner and now ter-
minates at the cone tip and not on the shock wave as inRegimes 1l and
III. A shock-free supersonic to subsonic compression occurs on the

forward portion of the sonic line. The location of the sonic line for a
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20° semi-angle cone is shown on Fig. 12. The agreement between the
theoretical and experimental location is satisfactory near the tip of
the cone and for some distance downstream of the tip.>§<

The guestion of smooth shock~free supersonic to subsonic com-
pression has been the subject of much discussion in recentyears. The
above experimental results demonstrate that such a flow is possible,
However, the smooth compression is not of primary importance, but
rather the conditions under which it occurs. These conditions are
that the sonic surface bounds a zone of subsonic flow completely en-
closed by a region of supersonic flow and a solid surface.

As an example of non-shock-free supersonic to subsonic com-
pression, consider the flow past a two-dimensional airfoil at high sub~
sonic speeds. The local supersonic zone on the airfoil is terminated
by a shock wave and smooth compression through sonic velocity does
not occur. In thetwo-dimensional case, however, the supersonic zone
is bounded by a subsonic region and a solid surface. This is the op-
posite arrangement to that in the flow about a cone, in Regime IV,
where shock-free supersonic to subsonic compression does occur.

The above consideralions illustrate that the existence (or sta-
bility) of shock-free compression through sonic velocity may not be a
local phenomenon but may depend on the arrangement of the complete

flow field.

The existence of this type of flow is indicated by ithe experimental re-
sults of Taylor and Maccoll (Refs. 13 and 14) and was also discussed
by Tsien (Ref. 23}).
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4. Shock Wave Angle

The angle of the attached shock wave at the nose of the cone was
determined for a 20° and a 25° semi-angle cone in flow Regimes III,
IV, and V. The values are shown on Fig. 13. Similar experiments
are reported in Refs. 13 and 14. Ref. 22 presents data for one cone
angle at one Mach number in Regime III and one Mach number in
Regime IV. The agreement between the exact theory and the experi-
mental values at the cone tip is very good even in Regimes III and IV

where the exact theory is not applicable for the complete finite comne.
5. Surface Mach Number Distribution

The distribution of the surface Mach number, Mg, on a 25° semi-
angle cone for various M, is shown on Fig. 14 and that of a 20° semi-
angle cone on Fig. 15, Several characteristics of these distributions
are of particular interest.

1. Mg near the shoulder deviates from the Busemann conical
values as soon as Mg = 1.00 is attained. Mg near the cone tip agrees
quite well with the conical values until the theoretical detachment My
occurs. Mg at the corner should, except for boundary layer effects,
always be sonic if Mg forward of the shoulder is subsonic.

2. As M, approaches 1.00 from the subsonic or from the
supersonic regimes, Mg at a particular chordwise station approaches

a constant value. This behavior implies that

dMs
dM oo

Moo = /.00



-16-

The same behavior of Mg on two-dimensional sections was
noted in Ref.(24),and thus the concept of stationary values of Mg at

My, = 1.00 is established for two-dimensional and axially symmetric

)
flow, Since thesetwo cases represent limiting cases of the flow about
general three-dimensional bodies, the stationary Mg concept can
probably be applied quite generally if suitable care is taken in choos-
ing the range of My, about My = 1.00, in which the so-called '"Mg
freeze' is applicable.

3. As My progressesfrom a subsonic value, through Mgy =1.00,
and on to a value inRegime V, the Mg at aparticular chordwise sta-
tion probably varies quite smoothly with no abrupt variations, even at

attachment of the shock wave, except for a region quite near the tip

where large variations may occur when the shock wave attaches.
6. Drag Coefficients

The drag coefficients for the 20° and 25° semi-angle cones are
shown on Fig. 16. The values at My = 1.00 were determined by ex-
trapolating the Mg data on Figs. 14 and 15 to My = 1.00.

Using the concept of stationary values of Mg at My = 1.00, the

drag curve slope, at My = 1.00, becomes (seeRef. 4 and Appendix C)

dc, o 2 o~ 0
- - . 1]
deO Moo ::/00 X‘t"/ 2/7"/

where CD* is the drag coefficient at My = 1.00. The first term,
4/ Z7+/ , of the drag curve slope is derived from thefirst-order term
of the pressure coefficient while the term, (Z/ Yrt) CD* , represents

the contribution of the second-order terms. The magnitude of the
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second-order term, (2/24/) C[)* , is shown by the difference in slope
of the pairs of lines drawn through CD* on Fig. 16.

The experimental results also indicate that

o »
Mg Moo = 100
This them implies (see Appendix C) that
d%Cp (ES + /0 5+ 6 x
amz T wet T aenr 70

P M, = 100
and an estimation can then be made of the range, about Mg = 1.00,

where Eq. (1) is valid.

7. Shock Wave Detachment

Conical flow theory indicates that for a given cone angle of a
semi-infinite cone a certain minimum My is reached below which a
conical solution is no longer possible. This value of My is defined to
be the shock wave detachment Myg. However, a finite cone introduces
a characteristic length into the problem so that curved attached shock
waves, which would provide the necessary pressure gradient to turn
the flow near the cone tip, may exist at My's less than the conical
"detachment" M,,.

Present experimental results indicate only that shock wave de-
tachment, for a given cone angle, does not occur at an M, greater
than that predicted by conical theory. A collection of data from Refs.
(22), {25), (26), and (15) is shown on Figs. 17. The ratio, &§/d, where
6 is the centerline distance from the shock wave to the plane of the

cone shoulder and d is the body diameter at the shoulder, that is, the
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sonic point, is seen to approach asymptotically to the value of &/d at
attachment. The asymptotic behavior of &/d complicates the fairing
of the proper curve of d/d versus My particularly in view of the
paucity of experimental points inthe immediate vicinity of shock wave
attachment,

In Ref. 27 data are presented for the shock wave detachment dis-
tance of several cone angles at My = 2.45. A discrepancy was found
between the experimental and theoretical values of the cone angle at
which shock wave detachment occurs for a fixed My, detachment ap-
pearing to occur at a cone angle slightly greater than that predicted
by the conical theory. This behavior would correspond to shock wave
detachment, for a fixed cone angle, occurring at an My less than the
theoretical conical value of Myg. Again, however, the discrepancy
may be caused by the manner in which the experimental curve was
faired.

Thus, the experimental results appear to indicate onlythat shock
wave detachment for a finite cone occurs at an My either less than or
equal to the value of My predicted by conical theorybutnotat a larger
M. The fact that shock wave detachment does not appear to occur at
an My, greater than that predicted by the conical theory indicates that
the presence of a boundary layer on the cone tip does not affect the co-
nicity of the flow near the cone tip to the extent of precipitating detach-
ment of the shock wave.

Fig. 17 also indicates that when the shock wave detachment dis-
tance is large, the position of the shock wave is dependent only on the

diameter of the cone at the shoulder or sonic point and is independent
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of the cone angle. When the shock wave is quite near the cone tip, how-
ever, the detachment distance is also dependent on the cone angle.
This manner of behavior of the shock wave separation distance was
discussed by Busemann (Ref. 28) and shown experimentally for two-

dimensional wedge sections by Griffith (Ref. 29).

8. Transonic Similarity

The transonic similarity rules for the drag coefficient and pres-
sure coefficient, as derived in Ref. (10), cannot be checked by the ex-
perimental results of this report. The derivation assumes that the
cone surface boundary condition is the approximate tangency condition
which is valid for relatively small angles. A 20° semi-angle cone is
the minimum angle cone for which detached shock wave flow can be
obtained in the Transonic Wind Tunnel, and thus, the experimental
models were ZOO, 250, and 30° semi-angle cones. The experimental
cone-angles are much larger than the cone angles for which the ap-
proximate tangency condition is reasonable, and, therefore the tran-

sonic similarity rules of Ref. (10) are not applicable.
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V. THEORETICAL CONSIDERATIONS

At the present time, theoretical solutions have notbeenfound to
describe the flow about a finite cone for the complete Mach number
range. Theoretical solutions are available for only two Mach number
regimes, namely;

1. Exactconical theory may be applied if the surface Mach num-

ber is greater than sonic.

2. At My =1.00, Yoshihara (Ref. 11) has calculated the flow

about small angle cones by a relaxation technique.

No solutionhasbeen determined if My isless than sonic. How-
ever, Van Dyke's second order supersonic theory and technique
(Ref. 30) possibly can be applied to the subsonic case since, if the ap-
propriate changes of sign are made in the particular solutionifound by
Van Dyke for the supersonic case, the particular solution becomes
valid for the subsonic case.

A solution remains to be found for the regime between My =1.00
and the value of My where Mg becomes equal to 1.00. The problem
would be greatly simplified if the transonic equations could be em-
ployed. To test the feasibility of the approximations inherent in the
transonic equations, an approximate solutionhas been found for coni-
cal flow about a semi~infinite cone using the transonic equz;xticns. The
details of the solution are presented in Appendix B.

The solution is compared with the exactconical theoryinFigs. 18
and 19. Fig. 18 shows the comparison between the shock wave angles

predicted by the exact theory and by the transonic approximation. The
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surface Mach number comparison is shown on Fig. 19. From Fig. 19
it can be seen that the transonic approximation is quite satisfactory
and is probablybetter than slender-body cone thecory, since slender-body
cone theory does not consider the presence of the conical shock wave.
Also, Figs. 18 and 19 show the agreement of the cone angle at shock
wave detachment as found from the transonic solution and from the ex-

act theory.

The above comparison of the exact conical solution and the ap-
proximate solution indicates that the transonic equations contain all
the terms of importance in the exact equations for conical flow about
cones, sothat the transonic equations may be employed with confidence

in the range of My from Mg, = 1.00 to an M, for which Mg = 1.00.
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VIi. CONCILUSIONS

The variation of drag coefficient with My was determined ex-
perimentally. The slope of Cp versus My at My = 1.00 agrees with
the theoretical prediction. The deviation of CD versus My, from the
conical flow value of Cp, when Mg < 1.00 is demonstrated.

The experimental results for the shock wave angle, sonic line
location, and surface Mach number in the region near the cone tip, in-
dicate that the flow is‘ conical near the tip of a finite cone even when
the surface Mach number is less than sonic. The surface Mach num-
bers for the rest of the cone deviate from the exact conical values
when Mg < 1.00. Also, a case of shock-free supersonic to subsonic
compression is demonstrated experimentally.

An approximate solution for transonic conical flow has been de-
veloped and the agreement with the exact conical theory indicates that
the axially symmetric transonic equations retain the important fea-
tures of the exact equations.

Present experimental values of the detachmentdistance of a shock
wave from a finite cone tip do not demonstrate agreement with the de-
tachment Mach number predicted by conical theory for a semi-infinite
cone and the question of shock wave detachment from a finite cone re-

mains undecided.
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APPENDIX A

REDUCTION OF INTERFEROMETER DATA

An interferometer determines the advancement or retardation of
a light wave in a medium with respect to a coherent light wave in a ref-
erence medium. Since the wave velocities are a function of the indices
of refraction of the respective media, and consequently of the densities
of the media, it may be shown that

K -
ds == [\p (£) - oo dl (A-1)

o -

where

p({) = density of the undetermined medium

Or = density of the reference medium

£ = path length

K = Gladstone-Dale constant

A, = wave length in vacuum of the light employed

5 = fringe shift - in the case of finite fringe inter -

ferograms, this is the ratio of the displacement
of a fringe to the interval between undisturbed

fringes

In Eq. (A-1) it has been assumed that the light beams traverse
identical geometrical paths, so that refraction, if present, is neglected.
Also, the relationship between the index of refraction, n , and den-

sity is assumed to be

n=/+Kp (A-2)

If n=/+« where <</ Eq. (A-2)is obtained by linearizing

2
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the Lorentz law.

For the axially symmetric case, the fringe shift for a light path

perpendicular to the axis of symmetry becomes

p o [{y(r) - f,q] rdr
Sty) = £ 7z
Ao [r?- 7]
where J

r = radial distance from the axis of symmetry

to a point on the light path
y = perpendicular distance from lhe axis of
symmetry to the light path
In the present investigation, the density field was bounded by a

shock wave at a distance, yg , from the axis and the refereuce density

was the free stream density, Peo thus

Ys [
3 2K C P(r) - ]poo] rdr
5(y) = Mo ) |:I"2 ~ 5/2] Ya (A-3)

Weyl (Ref. 31) introduced the assumption that 5(y) is a linear func-

tion of yz in a small interval of ¢ .  The validity of this assumption,
for the present investigation,

is indicated by the parabolic nature of
the typical fringe shift curves shown on Fig. 21.

If the substitutions

v o= r?
u = y*

2
Us = Ys

are made, Eq. _(A-3) becomes

o
This is analogous to the solution

Eq. (A-4) for P is

s
R R
Su) = 5y Su N (A-4)

of Abel's problem. The solution of
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Ao (d5/du) du

() ~ = - -
0 Peo - s (A-5)
w
where w = ¢? . A complete proof of the solution may be found in

Ref. (19).
If the region of integration in Eq. (A-5) is divided into equal in-
crements in r of width a , then
r, = (a

where ( is an integer. A numerical evaluation of Eq. (A-5) is,then,

P .
Poo = /zKa()ao Z (5" Ske1) Ak (A-6)
where
rs ='/VCL
and l .
oo et ke
Ki — 2K+

The above solution of the problem is essentially that of Ref. (18) and
a table of Ay ; for fifty intervals will be found in Ref. (18).

From the density ratio determined by Eq. (A-6) the local Mach
number may be computed. An approximate correction to the local
stagnation pressure, pol , downstream of the shock wave was made by
assuming,that on the cone surface, po! was determined by the nose
shock wave angle, and at a given chordwise station pol varied line-
arly to the value on the shock wave at the given station. If the approx-
imate streamlines are calculated, as in Ref. {20), a more refined cor-
rection is obtained. From the experimental values of the local Mach
number, a topographic map was plotted,and from this map the desired

Mach number contours are found.
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1. Conical Fields

If it is desired to determine whether or not a given axially sym-
metric field is conical, a simple test can be made. Returning to

Eq. (A-3)

i [P (r) - Poq] rdr
O(y)y = A % [rz—gﬂ]yz (A-7)

it is assumed that

p=rpr(7)

where

1

r/x

7

x axial distance from the conical origin

Then Eq. (A-7) becomes

/s
Sly) _ 2K & L[)(W“Poo]VdV

x A, 2_pi|lY
where K [7 " ]
ns = tangent of the shock wave angle
p, = y/x
Thus, if the field is truly conical,
o

and a plot of 5(9)/% versus y/x for various values of x will yield
a group of coincident curves. KEwxamples of this technique are shown
in Refs. (19) and (20). It is interesting to note that in Ref. (20),
Fig. 7 indicates conical flow near a cone tip for flow Regime IV, that

is, a 35° semi-angle cone at My = 1.87, using the above technique.



-27 -

2. Subsidiary Considerations

A. Model Size

From Eq. (A-3), it is evident that the fringe shift at a particular
chordwise and radial station is a linear function of the model size, for
fixed values of density. Thus the model should be as large as is com-
patible with the test section dimensions with regard to blocking, etc.

B. Finite Fringe Spacing

T'he tringe spacing in the undisturbed field must be such that a
sufficient number of data points may be determined between the shock
wave and the cone surface at a particular chordwise station. However,
tor a given fringe shitt, S5, the displacement ot the fringe is propor-
tional to the undisturbed fringe spacing, and the accuracy of the fringe
data will be improved by increasing the undisturbed spacing. A com-
promise must be effected between the desire for many fringe shift
points at a given chordwise station and the accuracy of the individual
points. In the present investigation, this compromise precluded a
study by interferometry of the flow properties in the immediate vicin-
ity of the cone tip when the shock wave was attached.

C. Accuracy

The accuracy of the interferometric method is affected by re-
fraction, inhomogeneities in the reference flow, the numerical approxi-
mation, etc. An estimate of the accuracy can be obtained by noting
the comparison of interferometer data and shock reflection data on
Fig. 11 and the values of local Mach number behind the shock wave in-

dicated on Figs. 6, 7, 8, 9, and 10.
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Comprchensive discussions of the accuracy of the method may

be found in Ref. (18) and (19).
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APPENDIX B

TRANSONIC APPROXIMATION FOR CONICAL FLOW

In discussing axially symmetric transonic flow, the following
approximations to the exact equations and boundary conditions are em-
ployed.

It g, is the velocity in the axial or X -direction and 9, is the
velocity in the radial or 1 -direction it is assumed that

g, = a* + ¢7¢
92 = 4)"
where a” is the velocity of sound at Mg = 1.00, ¢ is the perturba-

tion potential and <, , ¢, << &*. Then, defining

v+
U= -— Py

7+
o= 20 4,

the continuity equation is approximated by
/

aax~vr«7w=0 (B-1)
and the condition of irrotationality becomes

Up = Vo =0 (B-2)

The exact tangency condition on the body surface is replaced by

v, = (2+/) 740 & (B-3)

where

V, = V on surface of body

%

i

inclination angle of body surface
The above relations are derived in greater detail in Ref. (9).

To test the feasibility of the approximations inherent in
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Egs. {(B-1), (B-2), and (B-3) an approximate solution for the flow about
a semi-infinite cone will be developed. This approximation will then

be compared with the Busemann solution of the exact equations.

1. Conical Solution

Assuming that « and \ are functions of ¢ where

X
G‘ P
r
Eqgs. (B-1) and (B-2) become
- B-1!
uug + Ve - V=0 ( )
0u0+v3:0 (B-2')
A solution of the form
o= ‘/:(V‘) (B-—4)
will be sought. From Eq. (B-4)
du _ du dv
da dv do
but from Eq. (B-2')
A, e
do do
Therefore
du !
Ty (B-3)
This relationship, Eq. (B-5), is exact (see Ref. 32).
Differentiating Eq. (B-5) with respect to 0 vyields
dr_ 1 (B-6)
C/O 2 d*u
T dee
and therefore
du ! (B-7)
da g dfu
a
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Substituting Eqs. (B-5), (B-6), and (B-7) into Eq. (B-1')the result is

d¥u du du \3
kel 7 - — B-8
Yoave T dn “av/ ( )
The following conditions are imposed on Eq. (B-8):
(a) At the Shock Wave

If 4, and V, are the values of « and ¢ at the shock wave,

then, from the transonic shock polar relation,

Vo= (U - u) a———-m“;u’ (B-1la)

where

The shock wave angle, fs’ , is given by

- V'
cor f2 py—y
hence, from Eq. (B-5)
du Uoo ~ Uy
— == (B-2a)
dv |, vy
{b) On the Cone Surface
The tangency condition must be satiefied, hence
Vo = (¥ +/) TAN & (B-1b)
From Eq. (B-5)
au - - 74N B (B-2b)
dav
o
where
Vo, =  on the cone surface
¢ = cone semi-angle

An exact solution of Eq. (B-8) has not been found. However, if the
right-hand side of Eq. (B-8) is assumed to be small, an iteration solu-

tion may be found.
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2. First Approximation

As a first approximation to the solution, set the right-hand side

of Eq. (B-8) equal to zero; that is,

d———‘; ( , —3—%) =0 (B-9)
The solution of Eq. (B-9) is
u= A tos By (B-10)
Applying conditions (B-la) and (B-2a) to this solution, Eq. (B-10) be-
comes

[
U = U, - (um—-u/) LOG ‘—\";‘ (B—ll)
i

3. Second Approximation

As a second approximation to the solution of Eq. (B-8), the right-
hand side of Eg. (B-8) is assumed to be given with sufficient accuracy

by Eq. (B-11). Hence

3 4
d du Uy (U—oo~u/) (“0"'“1) v
P V‘ = + 5 —— B—lz
dv dv) w3 w3 coe v, ( )
The solution of Eq. (B-12) is
_ 3
u = ﬁ%ﬁi [—u, + (U ~ ) + (Uge = U) Lo6 —ﬁ}ﬁu C o6 Dy (B-13)
{

Applying conditions (B-la) and (B-2a) to this solution, Eq. (B-13) be-

comes
(uoo"u)g vV
u=A————4—;—2—/—— [““/*(“m““/)+(“ao‘a/) Loé 'E]
(Ut Sug) (U= Uy) vos L Mo (Ueo = 5¢) (B-14)
2 (am *+ Uy) vy 2 (Uga + L)

The values of &, and , appearing in Eq. (B-14) are not
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independent of the cone semi-angle & . Applying condition (B-2b) to
Eq. (B-14) and solving for , , the resultis

(> #1) 708 9]2 [Uoo + 5 &)

Loe W o= poc (w+/) TAN O p
(oo + Uy ) (Uoo'““/)j

B u, I Z (x+1)% w? 0 5

Ugo = U, 2 (L(m—d,)4 (B—l )

The transonic shock polar relation also must be satisfied, hence

Uoo + U

VL! :'(aoo*u‘/) Z

(B-16)

Due to the nature of Eq. (B-15), explicit solutions of Eqs. (B-15) and
(B-16) for «, and , in terms of «,, and & have not been found.
However, a solution may be found graphically.

The values of «, and , thus determined for a given & and
U, may be introduced into Eq. (B-14). If the value of ¢« on the sur-
face, u, , is desired, then substitution of

V= V= (41) TAN O

in Eq. (B-14) yields «,.

It should be noted that, for a given & and &, , two sets of
values for «, and v, are found. These correspond to the "strong"

and "weak" shock waves.

4. Comparison of the Second Approxirﬁation and the Busemann

Conical Solution

A. Wave Angle
The wave angle, $ , is determined by the values of «, and v,

since
v

!
cor f= ——
Ugo — U,
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The degree of agreement is apparent on Fig. 18.
B. Surfacec Mach Number

In terms of «, and v, , the surface Mach number is

2 B /
/VISZ = A | ——— (B-17)
¥/ /- x-/ 2

F+/

2 2

r u - v g

A:i/v‘ o 1’“( D)
L ¥+ X+

The usual transonic approximation reduces Eq. (B-17) to

where

/vlsz =/ + U, (B-18)

Eq. (B-17) is shown on Fig. 19. The agreement with the exact theory
is quite satisfactory.

C. Apple Curve

Two sets of values of «, and v, will satisfy Eqs. (B-15) and
(B-16). The two solutions correspond to the "strong' and "weak" shock
wave solutions predicted by Busemann. If the values of u, and Vv, for
all possible cone angles and for both types of solution are plotted inthe
hodograph, the resultant curve is Busemann's "apple" curve. The

"apple'" curve found in the second approximation is shown in Fig. 20.
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APPENDIX C
VARIATION OF PRESSURE AND DRAG COEFFICIENTS

NEAR Mg = 1.00

The pressure coefficient

where

surface static pressure

Ps
Poo

I

free-stream static pressure

may, in transonic flow, be written as
¥~/ 2 ¥w-i

/ PG

2 o
Cp = ¥ ME -1 2 -/ (C-1)
2 | + 7 /Vl5

where M, 1is the surface Mach number. In Eq. (C-1) it has been as-

sumed that
Apo

~ O /MZ-/)3
P ‘

that is, the stagnation pressure loss across any shock waves may be
neglected.

Defining »# and % as

2
7= Mo
g =M

Eq. (C-1) becomes
4 51
2 {+ 2 7
Cp=Flp,8)= — = =1 (C-2)

S KR

N

For a fixed body geometry, M. is a function of M, only, there-

fore

5 = %(p)
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Thus, thefirstand second total derivatives of Cp withrespect to » are

dc
2 e b, e hg 2B (C-3)
d¢ dr;
and
d*Cp dE dg\° d% g
dyp fop + 24pe an *fge E) * g e (C-4)

In general, dZ/dy and 0’2%/0’72 are not known; however, an argument
presented by Liepmann and Bryson (Ref. 24) shows that for » = /.00 ,
df/dy = 0 . The same argument, namely that #/s has a stationary
value at M, = /00 , cannot be used to evaluate dzf/c//fz . However,
an inspection of the experimental data (see Figs. 14 and 15) indicates
that M; versus A, has an inflection point at M, = /.00 and, thus,
d*E/dp*=0 at p= 1.00.

Using Eqs. (C-3) and (C-4) and the above argument, the deriva-

tives of Cp become

dCP ¥ *
( o)
d*Cpy* .

where ( )* indicates evaluation at 4 = .00, that is, at Mew = /00 .

The derivatives of Cp with respectto WM, are then

de * ‘*

(dM ) =2y

dZCP ) ¥* *
(sz') = 4'67,7 + 27“,7

The partial derivatives 7“7,7 and F7 may be calculated from Eq. (C-2)

and thus

dCp )* 4 Fa .

dM.) T gel T e cp (C-3)
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(dsz)* (2o + 4 /0 o + &

*
dME (v +1)? ’ (¥+1)% cp (C-6)

The fore-drag coefficient of a finite cone is given by

i

Cp = cp ) o

o

- (%)

where
z
and

r = local cone radius

R

cone base radius

i

Using Eqgs. (C-5) and (C-6), the derivatives of C, are

dcp \* 4 2 %
- _ (C-7)
(dM,,) ¥+ S+ ©0
and
(dZCD)*:’ /2374 (0F rE
dm,z (w1)2 T (gen® 0 (C-8)

A comparison of Eq. (C-7) and experimental data is shown on
Fig. 16. Egs. (C-5) and (C-7) were given previouslyby Bryson (Ref. 4).
It should be noted that the first term, 4/¥+/ , of (dCp /dMoO)*

may be derived from the linearized transonic Cp (Ref. 1) which is

2 2
Mac "Ms
Cp = 2 T (C-9)

#*
The second term of Eq. (C-5), ~ (2/2”’“/) Cp , is then of the nature
*
of a second-order correction term. However, if (dZCp/o’Mof) is com-

puted from Eq. (C-9), the result does not agree with the first term of

Eq. (C-6) and is, in fact, of opposite sign.
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