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Abstract

The principles of the curved crystal transmission type
spectrometer are discussed with an analysis of the construc-
tional tolerances which are necessary for spectroscopy of
x-rays and gamma radiation to 1,7 Mev., energy. A description
of the spectrometer which was completed and put into opera-
tion is given, The spectrometer has a two-meter focal distance
with a dispersion of one mm, per X. U, at the sine screw and
has a constant resolution equal to 0.1 X. U, The (310) planes
of a quartz plate one mm, thick are used in the transmission
arrangement, The wave~length range is from 7 X, U. to 500
X. U, with a precision of 0,01 X, U, The theoretical results
of the diffraction theory in ideal and real crystals are
summarized., Using these results the absolute intensity in
the diffracted beam (luminosity function) is calculated as
a function of wave-length under certain simplifying assump-
tions. An experimental determination of the luminosity
function between 500 X. U, and 11 X. U, was made; the inte-
grated reflection coefficient was found to be a function
of )\ ? between these limits, These data indicate that a
quartz crystal under an inhomogeneous stress behaves as
would a mosaic crystal. A comparison of the reflection
coefficients with theoretical values shows good agreement,

At 0.4 lev, only 0,3% of the incident quanta are diffracted
by the crystal, Sources of 50 me. or greater are needed
since at present only one quantum in 10° will register in

a spectral line, A precision determination of one gamma-ray
line in the radio=-gold Aul98 spectrum was made with the
result

E = 0.4112 * 0,0002 Mev,

This represents the first precision determination of any

gamma radiation energy. Finally, design requirements and
limitations of the focusing crystal method are discussed

to indicate the range of usefulness and the results which
may be obtained with such an instrument.
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Part I
Theory and Design of a Curved Crystal Focusing Spectrometer
for X or Gamma Radiation

Introduction

' The wide range of application of the crystel diffraction technigue
in x-rays led many to consider this method for the study of more ener=-
getic x-rays or gamma radiation, Several attempts(l’z’B) over a period
of years were made to study the radiation from the natural radioactive
elements by the crystal method, The results were not remerksable, andz
the maximum energies studied were about 0,7 Mev, These early attempts
except for Rutherford and Andrade were all made by rocking a flat crystal
in a very narrow beam of incident radiation and recording the diffracted
radiation by a photographic plate, The sources generally used were
100 to 200 me, of radium., Because of the very low intensity further
investigation was never attempted, in spite of the need for a method
for accurately determining the energy of nuclear gamma radiations,.
The same problem of intensity had arisen in the use of the crystal
method in x-rays, and several people had given the geomebric conditions
necessary for obtaining increased intensity through the focusing action
of curved crystalline plates.* The first one to set down the condi~
tiong for true focusing by a curved crystal was J. W, Mo DuMond(5) in
1930, However, it remained for Cauchois(6’7:8) and Johann(9) to carry
out Dulond's ideas with a curved crystal. In another paper published

by J. W, M, DuMond(lo) is to be found a more complete history of the

*The first suggestion of this type was made by Gouy in 1916.(4)
Following this meny others suggested possible methods, but it should
be noted that the important difference between these and the present
one is that they require slits to determine the resolving power while
the present method has a pair of conjugate foeci,
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development of the ideas as well as a preliminary description of the
instrument which is the subject of this thesis,

The extreme precision of x-ray wave-length measurements suggests
that the method might give comparable results for gamma-ray wave-lengths
and hence tie the whole field of nuclear energy measurements to an
accurate standard, It must be remembered that with the ordinary x-ray
diffraction techniques the x-ray intensities available are equivalent
in numbers of photons to an activity of the order of 104 curies® ex-
pressed in terms of radiocactive disintegrations., The artificial radio=
active sources which one ordinarily has have an activity of the order
of millicuries or possibly curies, Furthermore the photographic plate,
ion chamber and Geiger counter can be made much more sensitive to low
energy x-radiation than %o high energy gamma radiation, Finally,the
problem of dispersion and resolving power becomes more acute as the
energy range of study increases. Hence there are essentially three
problems in the design of this instrument:

1, High luminosity
2. High sensitivity gamma radiation detector
3. High dispersion and resolving power,
Luminogity and resolving power are interrelated and will be considered

again in Part III.

Geometric Optics of the Curved Crystal Focusing Spectrometer

Let us assume that one wishes to make use of a widely divergent
or convergent beam in a crystal diffraction spectrometer., This can

be done by the use of a curved crystalline plate as was suggested by

*¥1 curie represents 3,7 x 1010 disintegrations per second,
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DuMond.(5) If one is to focus x-radiation from a line source by re-
flection from the atomic planes of a crystal, twd conditions must be
satisfied: (a) The angle of deviation for all rays in a bundle must

be constant and fixed by the Bragg relation

g -1(.nA
4 =2 sin™(37)

(b) The angles of incidence and reflection referred to the atomic planes

(1.1)

must be equal. Reference to Fig., 1 will show that these two conditions
are satisfied, in Case R when source and image are both real and in
Case V when either source or image is real while the conjugate focus
is virtual, Condition (a) determines the location of the reflecting
planes, and condition (b) their direction. One can see that if the
source, image and crystal planes all lie on a circle with center at
0, the arc (S7I1) or (SpI2) measures twice the angle of deviation for
all parts of the crystal., Furthermore, if the crystal has as its center
of curvature the point Cy, i. e, in Case R the center of curvature
of all the crystal planes used for Bragg reflection is at Cp, and if
arcs (S70p) and (I3Cp) are equal, then condition (b) will be satisfied
for all parts of the crystal simultaneously. In Case V the crystal
plenes may be imagined to pass through the center Cq; if S is the virtual
source, I will be the real image., I may be the source in which case
S will be a virtuel image point, In this case it is evident that again
conditions (a) and (b) will be satisfied, It is apparent that the
Case V or transmission type will be better suited for use in the short
wave-length region of small Bragg angles €p.

Cauchois(é) nade the first careful analysis of the focusing con=

ditions and showed that the crystel need not be ground out to contact
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the focal circle but could be a section of a right cylinder which was
tangent to the focal circle at Gy, She analyzed the construction tol-
erances and focal caustic due to failure of condition (a), For this
work only part of her analysis will be needed., Referring to Fig, 2
and assuming that the reflection by the crystal planes occurs only
on the neutral axis P'CoP, the dispersion on the focal circle will be
given by the following calculation:
nA =24 sin 6p
n A\ =24 cos 6B 4 68

—SXA— —cot 6g 46

To calculate the dispersion on the focal circle let [ be the distance

measured along its circumference, Then

al=r ag

AN Acot 6g
A4 R
For 6 << 1
A 2d cos
<. = % ~ad (1.2)
AZ" Ha Ra
AA
The other quantity of interest is the resolution E
_A__/\_"_'.' d _é;./ (1.3)
A TRno) )

In any ingtrument Aj is determined by construction tolerances and
perfection of crystal lattice structure as well as source size, bub

it must be noted that the geometric perfection of focus must increase
with increasing energy of radiation if uniform precision is to be main=

tained,

In the transmission type of spectrometer in which the planes are
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approximately normal to the plate surface there is no correction for
the index of refraction of the crystal.,” (See Fige 3.) This is not
true for the reflection type, The change in wave=length at the surface
just compensates for therchange in angle, so the Bragg equation still
holds when referred to the external angles and wave-lengths as long

as the external angles of incidence and reflection are equal,

In Fig, 2 is shown the approximate transmission spectrograph geom=-
etry, Since it is necessary to use a crystal of some thickness and
since the crystal deviates from the focal circle, the image of the
source S will have an aberration width < A 1 on the wave-length scale
corresponding to the width 43/1; on thé focal circle. Assume the neutral
axis of the crystal (P'CZP) lies tangent to the foeal circle at Cp.

By a simple geometric analysis
A/\l_ cos 8g(1l = cos & )
A cos(o¢ + 6p)

(1.4)

6p is the Bragg angle, and X is the half-angle of the aperture, For
O << 1 and X << 1 one obtains for the relative broadening
fEJi.l c:fif
A 2

If one assumes the crystal is perfect throughout its depth and

(1.5)

if the crystal latbice is distorted elastically, the increased lattice

*The dynamical theory of x-ray scattering in crystals predicts
this result, However, a correct expression for the correction can
be obtained by applying Snell's law for refraction at the surface and
Bragg's law in the interior of the crystal., A simple derivation of
Snell's law leads to the relation

Singl_‘a—l
Sinez—Az

which shows that Bragg's law is correct when applied to A 1 and 8.
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consbant on the convex side will compensate so that all rays through
the depth of the crystal will focus at I, The rays diffracted from

the outside edge will suffer a smaller deviation than those from the
inside edge on account of the larger lattice spacing., This effect

is exactly sufficient to cause all rays to pass through the image point
I, If instead the lattice spacing is constant throughout the depth

and if © is the crystal thickness, there will be an additional broad=-

ening
ANy 1t (1+--%% (1.6) *
A 2R cos(8g + o« )
which for the conditions g << 1 and o << 1 reduces to
X E °

Expression (7) will suffice for an analysis of the effect of errors
of placement of the crystal relative to the focal circle provided Cq,
the center of curvature, lies on the focal circle,

The crystal will be assumed curved to a perfect cylinder of radius
R, First, the crystal must lie tangent to the focal circle at Co.
(See Fige 2.) If the crystal is centered on Cp but is rotated by an
angle 4 about Gy, the relative widening will be of the order dX,
g can easily be made less than 5 x 10-4, so this term is much smaller °
than the inherent widening due to the approximate geometry, Second,
if the crystal is displaced by an amount t along CqCp, there will be
a defocusing of &, but again £ may be easily held to 2 x 1074, Finelly,
the focal circle diameter must be set equal to R, the radius of curva=-
ture of the crystal, Suppose D¢ =R*E , then the relative widening

will again be
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A__i:‘ _ 2 _g_. (1.8)

TR

In fact the procedure for assembling and adjusting an instrument requires
that one first set the center of the crystal over the point Cae After
determining the focal distance R, the center 0 is set to bisect the
radius 0105, and finally I is set on the focal circle with center at
O, These various adjustments can be made to 1 part in 1000 if not
better, However, even if these conditions are not met, the aberration
will be given approximately by (8) where &€ is the distance out of
focus in the zero position; this can be checked as will be described
later,

A discussion of the other adjustments and tolerances will be de-
ferred until the instrument is described, However, the bending of the
crystal turns out to be the crucial factor for the success of the methods
The analysis to this point has assumed that the crystal is bent to a
perfect cylinder with no aberration, This will never be the case,

For a transmission spectrograph the crystal planes which are to be
used must lie very nearly normel to the crystasl plate, Small devia=
tions from this condition can be compensated for by setting the zero
of the wave-length scale at the point on the focal circle which is the
intersection of the crystal planes, This point is designated the &
point, The planes must, however, be uniformly oriented with respect
to the external geometry of the plate, and in the bent position the
generators of the cylinder must be accurately parallel, The crystal
plenes need be only approximately parallel to the axis of the cylinder
since a slight tilt will only raise or lower the image normal to the

focal circle by a small amount, It is the accuracy with which the
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crystal planes intersect at one point, i, e. 03 (Fige 2), which will
determine the resolving power as well as the luminosity of the instru-
ment, This aberration is in part a result of non-uniform curvature,

but also in part due to irregularities in the crystal structure, i. e,
mosaic structure, These aberrations must be such that'%%y where A

is the aberration width at the center of curvature, be less than 5 x 1077
if the instrument is to have a resolution of 0.1% around 1 ilev, quantum
energy.

The transmission type spectrograph may be used with either a real
source or a virtual source (Fig, 4). If a virtual source is used, the
true source is placed at A, Those rajs from A which would pass through
V will be diffracted to R as a real image, because they all make the
same angle with the crystal planes, A photographic plate may be placed
along the focal cirele, or a counter and slit may be used to explore
the spectrum, Of course it is necessary to prevent direct radiation
from A reaching R, If the point R is used as a real source, then there
exists its virtual image at V from which all diffracted rays appear
to diverge, In this case a counter or ion chamber must be used as
the detector and must be shielded from the direct beam, There will
be a considerable increase in luminosity of the instrument for this
cese as indicated in the analysis given in Part III, When the Bragg
angle is small as in the case of gamma rays, both arrangemeﬁts require
a collimator to prevent the direct beam from reaching the detector,

It is the collimator which geometrically limits the minimum wave=-lengths
which may be studied,

Description of the Instrument

The mechanical design of this instrument was done by Dr, J. W, i,
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Duliond in 1938, The instrument was complete except for detector and
crystal in 1945, It was decided that a real source and virtual image
would be used, because of the increased intensity afforded by this

arrangement,

Lead Collimator

The collimator was designed to have a window, i, e. to transmit
radiation, of half-width of approximately 0,4° and to cut off all scat-
tered radiation outside this angle., The angle 0.49 represents the
minimum Bragg angle which can be used and corresponds to 1.75 lev,
energy (7 X. U.,). Since there may be a very high radiation density
passing directly through the crystal (Fig. 5), it is desirable to avoid
secondary scattering from the side walls of the collimator, The colli=-
mator is shown in Fig, 5 (not to scale) and by E of Fig. 8, The length
is 31.4 inches, and the faces of the slots taper to intersect at a
distance of 75,5 inches, There are 7 slots, 2 inches in height, spaced
0.R25 inches center to center at the small end and 0,35 inches at the
large ehd; slots and partitions are of equal width, The partitions
and spacers are die-cast of 96% lead and 3% antimony and are assembled
with one inch slabs of lead on each side by clamping between steel
plates, The total weight is 500 pounds., A carriage supports this
collimator, and leveling screws as well as transverse adjustment screws
are provided,

Fig, 6 shows an experimental window curve of the collimator taken
with a source placed at R, This shows that the source is very close
to the true focal distance, The radiation outside the geometric window

is very small and diminishes rapidly as the angle increases, This radia=
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tion is due in part to transmission in the lead and in part to scat=
tering, Note that in Fig, 6 the ordinate scale is changed by the factor
10° between -10 and + 10, The irreducible background as indicated

is due to the local radiation level.*

Kinematic Design

In practice the collimabtor is fixed in orientation., This fixes
the line CV (Fige. 7). Hence the motion of the system must be such that
the angles R'CB and BCV! are equal at all settings and the point R re-
mains on the focal circle, Also it is necessary to allow R to pass {
through V to permit study of reflections from both sides of the crystal
planes, so that the determination of the diffraction angle 6 does not
depend on an exact knowledge of the location of the & point.** This
is extremely important when working at very small diffraction angles,
for the measurements of the diffracted line on both sides of the crystal
planes give the wave-length as well as the location of the & point,
Since the line CV is fixed, the focal circle which is fixed with respect
to the crystal must swing through an angle 8 (relative to the frame
of the instrument) while the source swings through the equal angle 8
with respect to the focal circle and at the same time is constrained
to lie on it by the radius bar OR,.

The instrument consists of the triangular base frame of eight-inch

channels, the corners of which have leveling screws and adjustable

*It is most convenient to plot the collimator transmission curve
as a function of the wave~length screw, Actually the width is twice
the apparent width given by Fig. 6, because only the distance R  (Fig.
5) is represented by the screw reading,

*¥*0nly if the erystal planes were truly normal to the crystalline
plate would the line CO intersect the @ point as indicated in Fig,

7o
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pads. (See Fig., 8.) The pad A carries the main pivot system which de-
termines the axis of the crystal and supports the focal circle bean

F and source beam S, The axes of rotation of these beams are accurately
determined by adjustable cone type bearings while their weight is sup-
ported by ball thrust bearings. The tﬁo rads B and C support the ends
of the track T which is pivoted about the point V., The screw carriage

' Q rides in the track T and is so constructed that the focal circle beam
always passes through its center and always remains normal to it,

Since T is pivoted at V! (Fig. 7), the beam F must be permitted to slide
normally to Q. With the exception of this motion @ and F may be con=
sidered a rigid system pivoted about C to which the focal circle and
hence the crystal are attached. The table L rides on the screw carriage
Q and supports the opposite end of the source beam S to which it is
fixed so that distances R!'C and V!C (Fig., 7) are constrained to be
equal, The source carriage N rides on the source beam and is constrained
to move only along R!'C, The point O, the center of the focal circle,

is connected to the carriage N by a radius bar as shown in Fig. 8,

The displacements of the carriages @ and L are controlled by two screws
of equal piteh driven in opposite directions of rotation inside the
carriage Q. The lower screw runs through a nut fixed at V! and drives
the carriage Q while the upper drives the carriage L through a nut at
R!, These screws have backlash takeups and in addition are soring
loaded to take up any residual backlash, All the bearings are of the
;ntifriction type except the main pivotal location bearings at the
spindle M (Fig. 8),

The screw carriage Q always runs normally to the axis COB (Figo 7) s
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Since the two screws have accurately equal pitches and are driven at
equal rates, the distances R'B and V'B are equal, In addition the dis-
tances R'C and V'C being equal insures that R'V and V!B shall measure
the sines of the equal angles 8, This means that the screw may be
calibrated directly in wave-length units, The distances CR' and CV?!
are such that with the quartz (310) planes the 26 threads per inch pitch
of the screw yields a calibration of almost exactly one X. U, per revo-
lution, The screw is provided with a revolubtion indicator Z and a
vernier W,Y (Fig. 8) to read to 0.001 revolution or 0,001 X, U, The
two screws are precision screws lapped with great care. As a check
they were calibrated by means of a microscope and a standard decimeter
scale, The errors seemed to be periodic with a period of one revolu-
tion, Their maximum value was about 0,005 X, U, which is small enough
to be neglected until experimental results demand otherwise,

The crystal holder is supported on the table P which is rigidly
mounted on the main spindle M. This spindle is free to rotate with
respect to F and S except that F is provided with an arm J which may
be clamped to the crystal spindle and which allows one to make small
angular adjustments of the crystal table with respect to the beam F,
This permits one to set the crystal tangent to the focal circle deter=-
mined by O and then rotate the crystal and circle to set /9 accurately
on the line BC, Then the F? point will be set at the zerc of the wave=-
length scale, The crystal holder teble is provided with screws for
sliding the holder so that the center of the crystal may be set on the
axis of rotation, At the same time the crystal can rotate about a

horizontal exis to set the axis of curvature parallel to the axis of



the spindle M,

The center O may be moved along the arm J so that 0C =R/2 is
the correct focal circle radius (Fige 7). Then the carriage N is rolled
along the beam S until RO =0C =R/2 and clamped to the radius bar,

The principles of M"kinematic design® were used except in a few
instances, The high precision requires that the geometry be precise,
Subsequent experience has shown that what troubles did occur in the
ingtrument arose at those points where the principles were violated,

The instrument was checked throughout after assembly to insure
that no interference would cause mechanical loading and deformation
from the assumed geometry. The base triangle, i, e, the plane defined
by the surfaces of the three corner pads, was carefully leveled to
0,01 inches, The main pivot axis at C (Fig. 7) had to be accurately
normal to the base plane defined by the three pads because, owing to
the fact that the beams F and S pivot at different heights, their centers
of rotation would not otherwise coincide, If the actual geometry lay
in a plane, this problem of alignment would not occur, The only thing

that can be done is to take extreme care in design and construction,

Crystal Clamping Blocks and Crystal

The crystal chosen for this work was quartz because of its mechan-
ical properties and perfect crystal structure, Also crystals of hex-
agonal symmetry have smaller grating spacings than those of any other
class, The planes chosen were the (310) planes because they had been
reported to have a high luminosity, The slabs were cut 3/16 of an
inch thick from a large natural crystal so that the (310) planes lay

within 1° of the normal to the slab and parallel to one set of edges,
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The slabs were then polished optically flat on one face, turned over,
milled to a thickness of 1 mm, and polished to an optical flat again,
Thus, with some precautions to relieve strains set up in working, the
plates were made optically flat, uniformly thick slabs with known
orientation of the crystal planes,

The crystal holder is shown in Fig, 9. Only the convex block de=-
termines the curvature of the quartz plate clamped against it. The
concave block is ground to approximately the same curveture, A thin
rubber diaphragm between it and the plate is sufficient to make the
plate contact the convex block, The assembly is held together with
four screws and compression springs to equalize the pressure, The
central web of the aperture was considered desirable to prevent bowing
of the plate from "anticlastic curvature®,

The clamping blocks were completely machined before any heat treat-
ment or grinding was done., The material was a speciael stainless steel,*
suggested for its stability by C. G. Peters of the National Bureau of
Standards, Fortunately the heat-treated pieces aged for four years
before the final grinding and polishing operation., Since the radius
of curvature chosen for the instrument was two meters, it was a problem
to devise a means to grind a perfect cylinder, the generators of which
were parallel to the side faces of the blocks., This last condition
was necessary in order to orient the focael axis, The procedure for
this figuring has been adequately deseribed elsewhereo(ll) The aper=

ture in the blocks for the radiation tec pass through consists of two

*Composition as follows: Cr 13,5%, C 0.35%, Mn 0,40%, Si 0.50%.
It can be obtained from either Firth Sterling or Allegheny Ludlum Steel
Companies.
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slots 14 mm, high by 44 mm. wide presenting a total area of 1.23 x 103
sqo. mm, This is the limiting aperture of the system.

The quartz crystal and blocks had to be very carefully cleaned
before clamping, because small particles would prevent an optical con-
tact between crystal and convex block, The check of uniformity of
curvature was made by watching the fringes between the plate and the
ribs., After the plate was set up and tested for focus, the plate was
rotated until the planes lay parallel to the generators, The vertical
displacement of a short segment of the line image of a spectral line -
on opposite sides of the & point was measured. From the vertical
separation between images it was possible to calculaste the rotation
necessary. The focal properties of the crystal remained remarkably
constant for a period of over a year, and it was quite easy to repro-

duce the focal length when crystals were exchanged.

Experimental Test of Focus

The check of the crystal focus and incidentally the crystal per=
fection was made by a photographic method first, The nhotographic
film was set up at R (Fig, 7) since a real image was desired. A tungsten
target x-ray tube excited at 70 kv, and 10 ma, was used as a source.
Since the focal spot is small, the tube was moved so that successive
exposures could be made with the zones of the crystal as shown in Fig,
10 by the tungsten K& radiation, All exposures were taken on the same
film by successively covering with lead shields 21l but a narrow hori-
zontel band of film, The position of the line from successive zones
was measured on a comparator and with the corresponding ray direction

was plotted as in Fig, 10, In the figure the scale parallel to the



focal plane is 100 times full scale while normal to the focal plane,
it is full size, Once a focal picture is plotted, the exact position
for best focus is known as well as the width of the focus.

A second method for checking the focus consists of setting up
a very narrow slit (0,025 mm,) at R with the tube behind it and plotting
the diffracted intensity as a function of the angle @ for various zones
of the crystal (defined by appropriate stops). The centers of these
curves determine the S points for the various zones and when plotted
as described sbove form a focal picture similar to Fig. 10, This method
is preferable once the instrument is set up for real sources. A tol-
erance value for the width of focal aberration was set at 0.1 mm, for
a two-meter radius of curvature, This is chiefly determined by the
focal volume necessary for radioactive material, Since the positions
of lines can be located to about 1/10 of their width, this permits
measurements to 0,01 mm, or 0,01 X, U, Actually the focal width could
be made about 0,05 mm,

Since the curvature aberration gives rise to a constant width of
line, the resolving power must diminish for shorter wave-lengths. It
will be instructive to compare aberrations due to other causes to show
the precision necessary in alignment,

(a) Aberration due to finite aperture

AN o2
A T2
Aperture half-width = 22 mm,
Focal distance = 2000 mm,
4N

—X— ".".6 X 10-5
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(b) Aberration due to crystal thickness assuming constant lattice
spacing through the crystal
t =1 mm,

t

R

e

e

5 x 1074

SN

(¢) Failure of crystal to lie tangent to the foecal circle

AN o
At

4 is the angle of rotation of the crystal relative to the focal

circle and cen be made less than 5 x 1074,

Al o X lO"6

-;r-::
(d) Failure to set at true focal point

This leads to a constant aberration for small angles.

NE 2xE where if & is in mm.,
él/\wdll be in X, U,
& = 3 m,
So al =6 x 107 1, U,

From these figures it is evident that a simple focus test will give

the position of best image over all angles as long as the angle is

small, and the aberration due to non-uniform curvature is predominant,

Detection System

The detection of the diffracted radiation is a major problem since
high resolution implies low intensity and thus, means that one must
have high detection efficiency, The possible detectors of radiation

for this purpose are photographic plate, ion chamber, Geiger counters,
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scintillation counters, or crystal counters, Only the last three are
feasible, and of these only the Gelger counters have been developed
to the stage where they could be made to work with certainty although
now the scintillation counter offers considerable promise,

The sensitivity of Geiger counters to gamma radiation has been
discussed by several authors.(lz’lB) In principle only those gquanta
which produce secondary electrons which may reach the active volume
(assumed to be the whole volume of the ordinary cylindrical counter)
can be counted, Assume for the moment that the counter wall is a flat-®
sheet of material, The three modes of production of secondary elec=
trons are (1) photo-effect, (2) Comptonreffect and (3) pair-production.
The range of photo electrons is

R, = R(h?V - Eg) (1.9)
where one takes the range for electrons of energy h?/ - Ex in the
material, For Compton electrons one may take as the average range

Rg =046 Rpax=0.6 R(I'Tmz'?f_ he) (1.10)
meR

and for pair electrons

=~ _ oh?_= 2mc? .
%, = Bl ) (1.11)
Taking as T, , and X the linear absorption coefficients for photo,

Compton, and pair effects respectively the intrinsic sensitivity*

of a counter is

E= 20 (TRt T Ry +2XRx) (1.12)

One may calculate by means of curves such as Bleuler and Zunti(14)

¥By intrinsic sensitivity is meant the fraction of all photons
passing through the counter which register counts.
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have published for the penetration of electrons through matter the
value of the constant C with given geometry. However; equation (1,12)
gives the energy and material dependence of € , and once the curve
of & vs. E and Z is normalized, counters may be designed with known
sensitivity, Fige. 11 is one such curve.(IB) It should be noted that
all sensitivities given are for cylindrical counters of opbtimum wall
thickness, i. e. the thickness just equal to the range of the most
energetic secondary electrons,” Fig, 12 is a range energy curve for
electrons in aluminum, With these curves it is possible to estimate
counter efficiencies and to design a countér of optimum efficiency for
each energye.

For the energy range of interest, i. e. 25 Kev, to 1,7 Mev., only
the photo and Compton processes are of importance., Since 7 varies
as 25, it is advantageous to use plates of high Z, However, at very
low quantum energies, i, e, near the K edge of the absorbing material,
the photo electrons will have little energy so the efficiency falls
off rapidly with decreasing energy. In this case a Xenon filled counter

with a thin window may be used,

Description of the Counter

Two counters were built for this instrument, the one to operate
in the x-ray range and up to about 0.5 llev. and the other to operate
from 0,5 Meve to 1.7 Mev, The wall materials were chosen as a compro-

mise between high Z and ease of construction

*The electrons liberated inside the body of the wall have pre-
ferred directions depending on the process, but they suffer so many
collisions before losing much energy that one may assume they have
spheriecal distribution and diffuse as would a gas out of the wall.
This is true only for low energies (less than 2 lieve),
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The x-ray counter G is shown in Fig, 8 in a cub-away view and
in Fig. 13, Since the beam emerging from the collimator is approxi=-
mately two inches square in cross section, the counter was designed
with a three-inch diameter sensitive section. To gain sensitivity
several identical sections were stacked along the axis so that the
beam passed through all sections. The problem became one of obtaining
a wide plateau and uniformity of threshold for each section so the
over=-all counter would exhibit a flat plateau, The case is made en-
tirely of steel, copper plated and silver soldered together in a
hydrogen furnace. The inside diameter is 37 inches; the length, 8
inches, The one end carries a Stupakoff glass insulator bushiﬁg for
the central wire and a pumping lead., The opposite end carries a grill
which is cut out to match the slots of the collimator to support the
thin foil window, A soft aluminum gasket in a vee groove serves as
the vacuum seal, The clamping ring is a grill identical to the inside
one so that the unit could be pressure tested. This case could be
opened and resealed in a very short time which enabled one to change
the number of units or plate materials,.

The counter sections themselves consist of circular disks or screens
three inches in diameter spaced 5/8 inches apart by rings which just
slip in the cylindrical case. For the x-ray counter 100 mesh 0,005
inch monel wire screens plated with silver to a depth equal to the range
of 70 Kev, electrons (about 0,001 inch) were used., These screens were
punched with a 5/8 inch hole at the center. The wire consisted of
four radial 0,010 inch tungsten wires silver soldered to a monel tube

0,050 inch outside diameter so as to form a four pronged spider, The
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end of each wire was beaded with glass to protect the end from point
discharge., Each spider was etched by A. C, electrolysis in NaOH solu-
tion to clean the wires of all scale and sharp points. A 0,040 inch
drill rod was soldered in the Stupakoff bushing and extended down the
axis of the counter, As each disk was set in the counter, a spider

was slid on the central mounting wire and centered between each pair

of disks, In this manner a maximum of four complete sections was built
up. The free end of the central rod was supported in a glass bushing
to keep the spiders centered in their cells,

The second counter for gamma rays was somewhat different in con-
struction, but the internal geomelry differed only in that the disks
were a 50% Bi, 40% Pb, and 10% Sn alloy for high atomic number and
were 0,015 inches thick, this being the range of 1 llev, electrons in
the material, These plates were given a light silver plating to cut
out alpha contamination from the lead. No other special cleaning or
washing was done except that the parts were freshly plated and never
touched during assembly,

A mixture of 3% petroleum ether and argon gave the best results
as a filling gas., The total pressure was about 20 cm, of Hg which
gave a threshold at 1000 V, The counting range for any one section
was of the order of 300 volts wide, but the counters of 4 sections
showed flat plateaus of from 100 to 200 volts. The counter was set up
at about one meter from a radium needle with adequate shielding on
all sides except for the window, With a beam of radiation of cross

2

section 1 em,” passing through the counter, the counting rate over

the face of the counter remained constant to the geometric edge except
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for the region in the vicinity of the central wire. The relative
counting rate through each slot of the grill was determined by placing
the radium needle in successive slots of the collimator; the data are
shown in Fig. 14. No source of monoenergetic gamma radiation was
available for the range of energies for which the counters were designed,
However, an efficiency calculated from an extrapolated absorption curve
for a radium source yielded an efficiency of 8% for 1 Mev, radistion,
These counters were sufficiently stable and reliable that no trouble

was experienced once the counter was sealed off, If very high efficien=-
cies are desired, it appears that a scintillation counter possessing

a higher intrinsic efficiency per unit volume of counter would be better
than a Geiger counter of many sections because of the impossibility

of completely shielding the counter,

Because of low counting rates every precaution to reduce the counter
background was used, The main detection counter was fitted into the
lead shielding H (Fige. 8) so that the grill in the window end of the
counter matched the slots of the collimator, The lead shielding was
cut away around the top of the main counter to make space for six con=
ventional anticoincidence counters D, Hence the detector was shielded
by three inches of lead on the top semicylinder and by four inches on
the lower as well as on the back end, The lead reduced the local back=-
ground while the anticoincidence counters served to subtract almost
all cosmic ray counts. With this arrangement the background counting
rate was reduced to 33 counts per minute, Without the anticoincidence
counters the rate was 62 counts per minute and without shielding about

150 counts per minute,
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the counting rates are rather slow, no attempt is made to make fast
counting circuits., The value of Ryg sets the dead time at about 500
As, The output is fed directly to a scale of 16 scaler and register,
This circuit insures that all true coincidences will be canceled out.

This is necessary whenever very weak sources are to be used,

Source Holder

The instrument is used for the most part with real sources. On
the source carriage N is mounted a turntable on which the actual source
holder can be set, The turntable permits centering the source so thaﬁ
its axis is vertical and hence parallel to the crystal focal axis,
The table axis coincides with the point R (Fig, 7). Hence the radius
arm connecting R and O insures that the source remains on the focal
cirele., The table may be clamped so that it does not rotate with respect
to the source beam S,or else it may be clamped so that it rotates about
O with the radius arm. The latter arrangement is used only when the
photographic cassette U is mounted on the table, A lead bomb sits on
the table, Within it the source holder K is placed with an adjustment
for proper alignment with respect to the crystal. The lead shield
and cap complete the source bomb so that except in the direction of
the crystal there are three inches of lead on all sides of the source,
The lead tunnel leading from the source to the crystal helps to keep
scattered radiation out of the counters as well as out of the room,
A similer tunnel is used in the case of x-ray photographic specira

with the cassette U to keep the background blackening on the f£ilm low,



Part II

Theoretical Results of Diffraction Theory
as Applied to Crystals

The Elementary Interaction of Radiation with an Atomic System

The treatment of the problem of scattering of radiation by an
atomic system in the non-relativistic theory has been given by several
authors.(16,17)* Their results indicate that the relations for the
scattering of an electromagnetic wave by an atomic system are of the
same form whether calculated by a rigorous quantum mechanical method -
or by a classical method.

The classical method for calculation of the scattering by an elec-
tron assumes that when a plane electromagnetic wave falls on an elas-
tically bound electron, the harmonic oscillation of the electron results

in an oscillating dipole moment of magnitude

Pe = = 2 Eo (2.1)
me
o]
=> > 1wt | . .
where E = Ege is the field the electron experiences because of

the incident wave., From the classical electromagnetic theory the in-

tensity of radiation from a dipole at a large distance is given by
2
_ w . 2
Ie—'8—c;r-(—c%-Pe Slﬂﬁ)

2 s {
® 2
mc<R

The quantity I, is the incident intensity, and ¢ is the angle between
the incident polarization direction and the direction of observation,

Reference to Fig° 16 will show that if the polarization is in the plane

*In this part the treatment given by Zachariasen(ls) in Theory
of X-Ray Diffraction in Crystals is followed in order to have for easy
reference the results of the theory,



26

of the propagation vectors sin ¢ = cos 20, If normal to the plane,
then sin § = 1, If the incident radiation is unpolarized

-5, 2
sin? = L% cos” 20 , and the average scattered intensity is given

2
by ‘
2 \2,1 * cos® 20
I, = = 2,
2
e
Set =5 =-r
mc2 o)
r.. 2 2
Then Is = I (ig) (l-+ cgs 28)

For some purposes it will be convenient to represent the intensity
scattered at the angle 6 in terms of a cross section for scattering,

If the incident intensity is I,, the number of incident photons per

I
second per cm.? is "SL; likewise, 1 is the number scattered into
h?/ h7g

an area of one cm.2 at an angle 8 with incident direction at a distance

2
R from the origin., Now h£§ is the number scattered into a solid angle
s

d{L per second at the angle 6, Then

do _IRR (¥ \ _ (Y. 2(1+ cos? 20
i " 1 (z/s)—(ys)ro (——-—-———-—2 )

is the cross section per unit solid angle for scattering at the angle

8. Since there is no change of frequency, 7/::'0% so

do _ _ 2,1 tcos? 20
dn"r ( 2 ) (204—)

The calculation of the scattering by an atom proceeds in the same
manner except that in this case the different electrons are spread over
the region of space occupied by the atom and at the same time are in
mobion relative to the center of mass, The scattered waves from each
electron with their appropriate phase factors resulting from the dif-

ferent positions of the electrons in the atom must be added together
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and an instantaneous intensity calculated, This intensity must then

be averaged over time and expressed in terms of the spatial electron
distribution functions for the various classes of electrons in the

atom, Let o ; be the probability distribution function for the ith
class of electrons such that 6 ;d7 is the probability of finding the
ith electron in the volume d 7 on the average., Thus if Eg is the ampli-
tude scattered by a single electron, the mean scattered amplitude from

all classes of electrons is

EeZﬂ{i (R.5)°
,

¢{i - /Giels'rd’l“

The exponentisl factor is a phase term in which § is the phase

where

vector (Fig. 16). Let—lZ; and X be incident and scattered wave vectors*;
then the vector equation holds
-k

T is the position of the volume element d7°, The total scattering

15 (731
oot T Ty //ngcj‘ke (3 k)d'Z"jd'l"k

Lot =L + O dihc®) (2.6)
JE K
Notice that both terms I, and the bracket are functions of the angle

will be

of scattering, The coherent scattering will be given by

Z 951‘ = (2.7)

The meaning of the term coherent needs a word of explanation,

Ic. = Ie

From the form of the expression for I it is evident that it is the

square of the mean amplitude and would be calculated on the assumption

*The vector k, has the direction of the incident wave and a mag-

nitude \k,| = l&\— B o
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that all electrons would scatter without change of frequency so there
is a definite phase relation between the scattered amplitudes. Only
then could the amplitudes be additive, Since the charge distribution
for atoms is known at least approximately, one can calculate ;E:di
by the relation ‘

£= 74 = ﬁoei;?d'l‘ (2.8)
/° is the electron density distribution function, and for cases of

spherical symmetry f becomes
sin sr
£ ://o(r)——;r—-— ar (2.9)
o

f is known as the atomic structure factor, tables of which are given
as a function of §i§-§. It is numerically the effective number of
electrons which would scatter in phase., Anomalous dispersion does
not contribute to f for the energies which will be interesting and
hence can be ignored entirely., It will change the scattering only
in the region where the quantum energy is close to the K, L, or I
ionization energies, For the usual crystals of low atomic numbers these
energies are less than 10 Kev, and far below the lowest quantum energies
of interest,

The expression (2.7) for I, has been checked by experiment for
the x-ray region of from 1 to 5 X and found to be correct, It is neceé-
sary, however, to investigate more carefully the results to be expected
if the quantum energy is increased to a value of the order of me?,
Sommerfeld(17) has reproduced Wentzel's treatment of scattering of
x-rays by an atomic system using the perturbation theory of non-rela-

tivistic gquantum mechanics, The problem is to calculate the radiation

scattered by the electrons bound to the atomic system. Physically the
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following phenomenon takes place: The photon may interact with some
electron of the atomic system, but if none of the binding energies are
near the quantum energy, there will be very little photo effect. Hence,
either the electron recoils under the momentum of the photon and Compton
scattering occurs, or else the electron is so tightly bound to the
nucleus that it cannot recoil and hence the nucleus takes up the momentum
while the photon is scattered with unchanged frequency., In the first
case the displaced line shows the momentum distribution of the initial
electron s£ate as well as the recoil momentum imparted by the radiation,
In the second the scattered radiation, having a definite phase rela-
tionship with the incident radiation ahd the same frequency, is coher-
ent with ite In terms of the quantum theory all possible compound
states are formed in which the photon is absorbed by the atom (assuming
the atom is initially in its lowest state). Those which return the
atom to its initial state with the emission of a photon represent co-
herent scattering because of a definite phase relationship between
incident and scattered probebility amplitudes. Those final states for
which the atom is ionized, i, e. the electron is ejected, represent
Compton scattering while those which leave the atom complete but in a
different state represent "Smekal" jumps, The probabilities for the
three types of scattering can be represented as cross sections in the
same manner that the scattering by a single electron is given by the
Thomson cross section,.

Sommerfeld derives the general dispersion formula by the usual
approximation of the radiation field as a perturbation on the atom,

Using this formula he proceeds to calculate the dipole moment corre-
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sponding to the Compton scattered radiation; the coherent or unshifted
radiation is one term in the general expression, The assumptions used
are as follows:

(a) The electron binding energies are much less than the photon
energy, i. e. |B| << h¥,

(b) The recoil energy is small compared with the photon energy,
i. e, |E£l<:< h?, This will certainly be the case for coherent scat-
tering where [E| = |E,\ .

(¢) Non-relativistic wave functions are used throughout, For
atoms of low atomic number this is certainly a valid procedure,

Under these assumptions the moment becémes

S 2 —a ‘—-.—.
P == —= K /Vk*fﬂkels "aT (2.10)
m 4

where it is assumed that the final state of the electron is identical
to its initial state so that there is no change of quantum energy.
Since G'k =‘9%2*94& is the probability distribution function for the
kth electron, one may write for the integral
iy = %{* %ei—;' TaT

With these approximations, which appear valid, the result of the non=-
relativistic celculation for the atomic structure factor turns out to '
be identical with the calculation on a classical basise Franz(lg’zo’Zl)
using the reletivistic equations of Dirac has calculated the coherent
component of scattering with a result which is identical with that-
already obtained for atoms of low Z such as one has in quartz.

The scattering by an atom is given by a relation analogous to
equation (2.3)

r 2
I =T, (E?)2(l *’cgs 29)f2
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where I is the average scattered intensity, I, the incident intensity
of unpolarized radiation, and f the atomic structure factor, The dif-

ferential cross section for scattering is given by:

d6 2
atom _ , 2(L ¥ cog® 26)e2 2,11
d_Q I'o ( 2 ) ( ° )

If one uses the Fermi-Thomas atom model for the distribution function,
gin 8 (22a)
A ®

it is possible to evaluate f as a function of Because

810 8 55 proportional to the momentum given to the electrons, £/2

A
should for constant s%? 8 increase with Z since more electrons are

bound tightly enough to transfer the photon momentum to the nucleus,

aG.
The differential cross section -—a%%?m,for coherent scattering decreases
with )\ because f(Sin e) diminishes rapidly with increasing argument,

A
However, if the scattering is observed at the angle 6 such that E%f—g

is constant as is the case for crystal diffraction from planes of fixed
spacing with fixed order number, then the scattering observed at the
2

angle 8 will remain constant or increase slightly because of the cos™ 28

factor,

The theory of the interaction of radiation with a crystalline
medium has been completely developed on the basis of the electromagnetic

theory by Darwin(23), Ewald(24), Prins(zﬁ) and Kohler(?‘é)° The results

presented in the remainder of this part are teken from Zachariaseno(ls)
For a discussion of the results of the dynamical theory of reflec=
tion in crystals one needs the structure factor for a single cell of

the crystal, Consider a single unit cell of the crystal lattice with

the reference vectors E} (i = 1,2,3) defining the cell, The positions
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cf the atoms in the cell are given by
Tk = Z xk:u.a
0 < xkl <1
The scattering cross section of each of the individual atoms is given

by r, The cross section for scattering by the cell

2(1 t+ cos® 20y, 2
is computed in the same manner as for a single atom except that instead

of the integration over the atom, one integrates over the cell, Hence

_ . 18 Ty, 2
G/c:ell - rOZ(;___c_gg__gg) (g fye rk) (2.12)

P

F = Z SR
Y
The electron distribution in the crystal may also be considered
as a triply periodic continuous function in space and hence may be ex-
panded as a Fourier series, Let Q(I—:) be the electron distribution
function for the cell which may be expanded by the relations
= —12ﬂB ‘
L () Z Sl B (2.13)
ﬂ _ V-:‘L/—Q 1277’BH rdZ‘
The expression for the structure factor in terms of HQET given as
p ,”—‘ ey _ F
Fy :/ﬂelz BH Tar orﬂH = -v-}-l- (2.14)
SH* is the lattice vector in the reciprocel lattice, H represents the
triple of Miller indices for the expansion term and

_Z

000 = YV

Z ig the total number of electrons in the unit cell and V the volume

of the cell,

¥B is related to the vectors a; as follows:

. N

E = Hlbl + H2b2 +H3b3

where (—‘t;i- E}) 2= éij' The volume of the reciprocal cell is just 1/V
and |Bg = 1/dg. dy is the lattice spacing for the H planes,
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The direction of propagation in such a medium is related to the
wave-length of the radiation and the wave-length of the periodicity
of structure, i. e, the place spacing, by the Bragg law

n) = 24 sin 6 (2.15)

and by the condition that the angle of incidence with the crystal planes
equals the angle of diffraction, This law may be expressed more con=
cisely in terms of the reciprocel lattice vectors-ﬁiby the vector equa-
tion

—_—

ky - k= 278y (2.16)-
|Bg| =2
dy

Fig. 17 is the representation of equation (2.16) in the reciprocal
lattice., The lattice points which lie on the sphere correspond to the
allowed directions of propagation in the crystel., It may be necessary
to vary the length of ky, i. e. change the wave-length to satisfy the
vector relation, or rotate the sphere about the point 0O, Changing
k, corresponds to taking a Laue photograph while rotation of a fixed
ko about O corresponds to the Bragg method., This simple law gives the
allowed directions of propagation but says nothing about the intensity
or how it varies when this condition is not satisfied,

The calculation of the expressions for intensity as a function
of the angle of diffraction is rather involved., The liaxwell equations
for the electromagnetic wave incident on the crystalline medium are
set up with appropriate boundary conditions. The index of refraction
of the medium is expressed in terms of the electronic density and fre-
quency, and the Bragg law is introduced to limit the consideration to

only those directions for which propagetion is allowed, This set of
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equations with boundary conditions, when solved, will give the intensity
which will be transmitted as a function of angle and wave-length,

The results which one needs to understand are the factors influ-
encing the width of the diffraction pattern and reflection as a function
of angle both for "thintand Whick! crystals, Whether a crystal is#hin®
or Mhick"will depend on the %extinction distance® due to diffraction
of the energy by the successive crystal planes from the incident beam
into the refiected beam, If the intensity of the incident radiation
igs not appreciably attenuated by such primary extinction in passing
through the crystal, it will be considered ™hin"; if there is complete
extinction, it will be considered hick% WMany crystals have discon-
tinuities or distortions in the lattice so that they are only locelly
periodic, The nature of diffraction by these crystals is not very well
known partially because the nature of the lattice disturbances is not
known, Some ideas about the mosaic structure may result from a study
of the reflection coefficients since the energy dependence of the re-
flection coefficient will give an idea of the size of the domains of
periodicity.

Consider a plane electromagnetic wave incident on the boundary
of a crystal, Due to the small polarization, the dielectric constant °
€ will be different from unity.

EZT 14 4 {2.17)
where X is the polarizability oper unit volume.
Set = hra = Yye FTEET
The polarizability of a single elastically bound electron as cal-

culated by its coherent scattering is given by
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and for a volume distribution of electrons by

2
ToA
K = == > (2.18)
LIT
The Fourier expansion coefficients are
2B
W:-rO,\zlfﬂl”Hr'r (2.19)
But Fy = /ﬂelz’rBH'rd’Z“
r. F 2
= -0 (&
50 Yy =2 (A (2.20)

Now the index of the medium is

n=1+ ¢
and if n is complex, there will be an attenuation or absorption due
to the imaginary part of n; hence n is assumed to be complex to teke
care of the absorption in the crystal by photo or Compton processes.
Then Y=+ i (2.21)
The total absorption coefficient is related to 97" by the expression

= - Z-Z-i'ﬂ (2.22)

However, it is assumed for this work that the crystals have very little
absorption, so /%)Oo

The calculation of the intensity transmitted for any incident wave
vector and for definite boundary conditions yields a result which de=
pends on the function éb'and the boundary conditions. Inside the crystal
only in the neighborhood of those directions for which the Bragg rela=
tions hold can there exist waves which are propagated with appreciable
intensity, One of these directions is the direction corresponding to

the incident beam and the other, that for the diffracted beam, For
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the case of Laue reflection (Fig. 18) when the reflecting planes are
not parallel to the incident face, the wave field consists of the in-
cident beam only, on the side of incidence, As the beam passes through
the crystal, the Ewald theory predicts that the energy is periodically
exchanged between the two allowed directionsg of propagation; the one
beam has its maximum of intensity when the other ig at its minimum,.
For Bragg reflection (the case in which the reflecting planes are varsl-
lel to the entry surface) the energy is shifted to the diffracted beam
and then escapes before it can suffer a multiple reflection, The pa=
rameter which describes the nature of the diffraction pattern best is
the extinction distance measured by the number of atomic planes trav-
ersed, It is the number of planes, which are effective for reflection,
crossed before the incident wave is extinguished by the transfer of its
intensity to the reflected wave and is a function only of the effective
electronic density in those planes,

The analytic results of the diffraction theory are given below,
Two cases are pogsible as shown in Fig., 18, The Laue case for zero
absorption is the one of interest for transmission spectrographs.
The theory as outlined leads to the following results for the Laue
case.(ls) For the case of plane waves the energy flux per second is
Py and Py for incident and reflected beams respectively, i. e.

PH~= SHIH Sy = area of diffracted beam

Py =5010 S, =area of incident beam
. *B =ik, B
Po 1B\ I,

Py _ginflafi+

B, e (2.23)



where T (.24)
| vl 2K “VH‘
k v
b= 2x|Vy ———%—1 (2.25)
(Yol¥p)e
In these expressions
|3
b = =2
VH

where ¥, is the cosine of the angle of incidence and rH;is the cosine
of the angle of diffraction for the beam reflected from the planes (H).
® = 2(eg - 8) sin 205 (2.26)

The angle Op is the Bragg angle of incidence with the crystel planes.
The approximetions made in b and X are that one assumes the propagation
vectors in the crystal have the same direction as thoge outside. K =1
for the case of polarizstion normal to the plane of the incident and
reflected wave vectors, and K = cos 28 for polarization in this plane,
to is the thickness of the crystal slabe

To see the physical meaning of the relations, set b =1 (a good

approximation for the case of crystal planes very nearly normal to the

surface).
Y, = Vg = cos 8
Whence A= 32(9-0%\-%32
But |Wy| = ;—7-0, (ff-—H) A2 | (2.20)
so A=To )\ (-?‘-) c—(f;t—gé (2.27)

24y |
But also by the Bragg relation \ = —= sin 6
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F, Kd, ten 6.t
A =2r, (V'H) .._B_E..f@_q (2.28)

Hence the thickness of the crystal slab is given by equation (2.28)

in terms of the extinction depth bty

n
Ty = T (2.29)
2r (TfH') Kdy ten 6p
Expressed in terms of the number of planes which are effective for

extinction NH

1. tan
& D SB = NH
dy

Ng = L (2.30)
2roK (%11-) R

(6 - ©) sin 26, 7r(8y - ©) sin 28
- |Walx - ro A2 (%ﬂ) K

Using the Bragg relation
_ 7rn cos GE (G]_3 - 8)

y= (2.31)
rodi (-frﬁ) K A
The deviation from the Bragg angle is measured in units of
F F
rodgK (vﬂ) A 2rody K (vli) tan g
wt = =
T'n cos 6p 7 n
or in terms of the number of planes
tan
W' = eB (2.32)

7 Ny

A
Thig result is more understandable if one remembers that %x— = tag?GB

for Bragg reflection so

A _ n_
7 (2.33)

i, e, the resolving power is a function only of the number of planes
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which are operative,

Tc calculate the exact diffraction pattern consider two cases:
Case At A >21, i, e. t 2>ty or the crystal is "thick". The
sinzl:A '1 + yz;] term of equation (2.23) will oscillate rapidly as
a function of y, If A is large enough, the variations in thickness

end finite resolution of experimental apparatus will average over this

term so
E
) 2(l-+-y2)
The half=-width of the pattern will occur at y =1 or
F
I‘odHK(-V-}-I-) ) tan ep
6B - & = wg = = (2.35)

Tn cos 8 iy
For "thick! crystels the diffraction widih is proportional to tan ey
or by the Bragg relation proportional to A for short wave-lengths.,
The parallel polerization component has a smaller half~width because
its extinction distance is longer,
A quentity which will be needed frequently is the integrated re-

flection coefficient, This quantityogs defined as

L,

Ry = = a8 (2.36)
— o0 .

RG represents thearea under the reflection power curve (Fig. 19). Ex=
perimentally if one allowed a beam of divergence, large compared with
the width of the curve shown, to fall on a crystal, only those rays
felling at angles within the curve would contribute to the transmitted
energy. Rg represents the ratio of total reflected power to incident
power per unit solid angle, Rg is therefore dimensionally an angle

and representg the angle over which complete reflection may be assumed
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to occur if a beam of divergence, wide compared to w, falls on the
crystal,
Rg = 5~ wg

F
_ T Wylx _ med(EKA
2 )blyéin 26 2n cos 6p

R

(2.37)

Notice that Rg is a function of A to the first power only., This is
due to the fact that if exbinction is complete, the total energy re-
flected depends only on the width of the pattern,

Cese B: A 4<1, i, e. t <<ty or the crystal is™hin®, In this case’
t, tan 6y
the number of planes that are effective is given by Ny ::__——Ef_——
. H
and will decrease with A . From equations (2.28) and (2.31)

_7rot (85 - 8)
= i

From equation (2.38) it is seen that when A is small, y must become
large for very smell values of 6g - 8, or 7+ 1252 so

P .
£ gin® Ay (2.39)

o ¥
This function mey be replaced by a smoothing function with the same

area and the same maximum value, because the fluctvations can never

be observed,

2 LAY

P P
H - 45T (2.40)
PO

2
The helf-width is given by ﬂf};—?— =1n 2 or

_'/ln 2 Eﬂ_ 2.1
Yo = awr ton (2.41)

The angular width of the pattern will remain constant as a function
of A o OSince there is little extinction, the whole depth of the crysteal

is uniformly irradiated, This being the case the number of planes
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effective for diffraction is proportional to tan g or to A for small
angles, and hence the angular width of the pattern must remain constant.
The integrated reflecting power should decrease as AR since

Py/P, is proportional to A 2, and the width is constant.,

v A |Wh (21,48

® " T \ol%sin 265
Since b = 1
2/ FHv2.2 , 2
I‘o (-V?-) K A dH'bo
Ry = . (2.43)
n cos® 6p

Notice that the reflection coefficient is proportional to the thickness
t, of the crystal, and the width of the pattern is inversely provortional

to t,. When the incident radiation is unpolarized, the value of Rg is

given by
Qt
R = -"—0' 20
e . (2.44)
o Fiy2 A23(1 + cos? 26p)
Q= To (—)
v 2n cos 6g

The cases intermediate between "thick" and Wthin" crystels may
be summarized by giving the value of R in terms of the varieble y as
a function of A, This curve is shown in Fig., 20, This summarizes
the results of the dynamical theory for the purposes at hand, It is
not necessary to consider the results for the cases when absorption
is present, because of the high quantum energies which make absorption
quite negligible, Only in the event that a high atomic number crystal
were used would the results be changed substantially, and intuition

will give qualitative ideas of the effects to be expected.

X=-Ray Diffraction by Real Crystals

The exact nature of the imperfections in any real crystal is not
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known, A great amount of work has been done on this topic by the
analysis of the diffuse x-ray scattering., The problem at hand is to
find how the value of the integrated reflection coefficient will vary
with wave-length and what types of real crystals will be most suited
for use in a curved crystal spectrometer,

Rather than consider the nature of mosaic structure in detail,
assume that there exist limited domains of the crystal over which co=
herent scattering can occur, and furthermore, assume that these domains
may be distributed in angular orientation, These may not necessarily
have sharply defined boundaries such as the so-called "slip planes®
of plastic sclids. Inside these domains of coherence it is assumed
that the crystal has an ideal periodic lattice, Then within these
regions the results of the previous section on perfect crystals may
be applied, These domains will be "thick® or "thin" as the extinction
within them is complete or small, However, the domains may not be
uniform in size or structure factor, so exact calculations of the
reflection coefficient may not be possible. The important facts which
one desires are (a) the integrated reflection coefficient as a function
of A and total crystal plate thickness T, and (b) the diffraction
pattern width or crystal resolution as a function of A and Too

For the purposes of analysis assume that the domaing of coherence
are distributed in angular orientation by a Gaussian distribution about

the average orientation, a4

WA) = —L— e~57(-2

v27rr‘(

A is the angular deviation from the mean orientation of some set of

(2.45)

planes (H) of interest, W(A) gives the probability of finding a domain
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with orientation Q, Let T, be the thickness of the crystal plate,
and assume that To = Y‘H- Also one must assume that the size of the
domaing of coherence is small enough that the distribubtion function
above applies for a very thin slab of the crystal.* The intensity

reflected by a layer df of the crystel is O dl. Let t, be the mean

thickness of the domains, so there will be %-[‘- layers of crystal blocks,
0
The reflection coefficient of one layer will be

o

fN(A) (6 ~eg +&a ) da

For most cases W(A) is wide compared with the function Py/P, in angular

width, so o
P ~
J-W(A) .P_Ii (6 -=eg+A ) dA =w(eg - 8)Rg (2.46)
— 0 0
The reflecting power of the layer dT is
G 4T =V(eg - ©) Rg %2 (2.47)
o

In passing through the layer there will be an attenuation of both in-
cident and reflected beams by absorption and an exchange of energy
as the result of reflection. Let@(T) and @(T) be the power in

each beam, Then

dp~-,a Y‘ -G@dT +GpHdT
F @ p @ (2.48)
dH'—"‘/oHWd-T;I-\'" gat + 9 V oar

for the Laue case, If the boundary conditions are inserted for a flat

slab of thickness T,, the result becomes
?H(To) _ Y *"S)T

m = sho Toe (2.49)

*This method of calculation could not be applied if the size of
the mosaic units were comparesble with the plate thickness,
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The explicit expression for & will depend on the exact nature
of the mosaic structure; an approximate form is given by equation (2.47).
The term &/, + 7',(5':341 is known as the secondary extinction coef-
ficient in contrast to the primary extincbion which is implicitly teken
into account in the function Py/P, given by equation (2.23). If &{,
the true absorption coefficient, is small, Y“OCF'represents the total
extinction, It may be large even though the primary extinction be
small, because it depends on the size of domains and their angular orien-
tation as well as Rge Several different cases are possible, and it

will be interesting to compare the integrated reflection coefficient

_ | Fylz,)
oy = P, (0) %

in these cases and determine the wave-length dependence of both F 8
end the crystal resolution,
Case A: Negligible Primary and Secondary Extinction

This case corresponds to coherence domains, small compared with
the primary extinction distance, so that the power reflected by each
domein is emall and at the same time the power reflected by a layer

of domains is very smell, If these conditions hold,

| rOO’ = l(eg - 8)¢ (2.50)‘
From equation (2.49) N
@(To) e T (l _ e'stO)
~,(0) 2

The true absorption term will be of no interest, If 26T, << 1, then
673 T W -

g(T,) —oT, = (6g - @)ar,
é;?a (0) Y,

The width of the pattern is the width of W and hence independent of

(2.51)
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wave-length, Performing the integration on equation (2.51), one obtains

/?e .. (2.52)

Vo

A?G is independént of the domain size but depends on A e and in general
will be much larger than Re for a perfect crystal of the same thickness,
Case B: Primary Extinction, Small Secondary Extinction

For this case the domains are large enough to give complete ex-
tinction; yet in any slab of thickness dT of the crystal the total
power reflected from the incident beam is small, This simply means
that the whole depth of the crystal is bathed in the incident radia-

tion, As is Case A T
D
ﬁ-RsTOe— Y;

e~ %

but now it is necessary to introduce the proper value of Rg. Since
for large primary extinetion A >>1 where A is calculated for the

individuel crystellites of the mosaic,

RG _m
w! 2 -
Mo o
and A?g =L gpies 1 (2.53)
2 to

The total reflection by each crystallite or domain is independent of
its size once it is large enough to make A >>1. Hence, if the size

of the crystallites increases, i, e. to beéomes larger, it follows that
there can be fewer of them in the slab of thickness T,, so the total
power which is reflected must decrease, Thus /g should vary inversely
as ty, and the width of the pattern is given by W(® - 8g) and is in-
dependent of A o

It will be helpful to compare the values of Rg for a perfect
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thick" and "thin® crystal and the values of /? 8 for Cases A and B of

real crystals,

Table I
Integrated Reflection Half-Width of Diffraction
Type Coefficient Pattern at Half-laximum
F F
3 H H
rodpK(=2)A rodu(==)K A
Thick  — o V' s
2n cosg 6p Trn cos 6
Perfect T
r02(_‘_r_I_I_)2K2/\ 2dHto 4
Thin V g _d
n(cos QB)2 ™ ton
F
ro2 (VE)'QKZ AdeTo
Case A /7"1n 4
n(cos 6g)?
llosaic F
ro(-v}-l-)K A¥s
C B s lﬁn
= 2n cos Bpt, 7 =

T, is the plate thickness; t, is the thickness of the domain of coher=
ence, Any other cases can be analyzed in terms of the two cases that
have been given or by an extension of these., These results will be

applied to the analysis of experimentel results and design of a spec-

trometer in Part IV,

The Effect of Lattice Disorders and Thermal liotion

The effects of lattice disorders and thermal motion can be present
even in the so-called berfect crystel lattice, These disorders are
best described as small variations in the structure of the individual
unit cells, The variations may or may not be periodic in the medium,

In such a crystal the unit cells are assumed to be reproduced, on the
average, throughout the whole crystal so that there is partial coherence

between all parts of the lattice; in the mosaic there was assumed to
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be complete incoherence between the domains., The scattering is expressed
as the sum of two factors; the first is the ordinary Laue (Bragg) dif=
fraction which is subject to the Bragg conditions., The intensity is
described by the relations given previously. The structure factor F

is replaced by the mean structure factor which is calculated on the
assumption that all atoms are frozen in their mean positions, The

second term is a diffuse scattering which is not subject to the Bragg
conditions and is incoherent,

Since the absolute reflectivities for various crystal planes are
known et x-ray wave-lengths, the wave-length dependence of the diffuse
and ccherent scattering is of interest for calculation of reflection
coefficients at short wave-lengths., The effect of thermal motion on
coherent scattering is expressed by the relation for the effective

structure factor F' in terms of F, the factor for a perfect crystal.

Ft = Fe~M
2.2
i = Shsin” 8 p( L) (2.54)
kA2 @ 9

The quantity @ is the characteristic temperature of the crystal,

and T the Kelvin temperature., It is noticed that il is a function of

sin 6p
A

This effect of temperature has been observed for x-rays and in guartz

for any characteristic reflection and thus independent of A o

at room temperatures was found to be very low; hence it should also be
low at all wave-lengths,

The effects of substitution disorders are not well known except
in some few cases, However, the incoherent scattering will be a func-

tion of the mean square deviation of the structure factor and thus of



=8

sin e'
A

due to lattice disorder,

In quartz there should be little or no incoherent scattering



—49_

Part III

Calculation of Luminosity of the Spectrometer

Factors Influencing the Luminogity

The luminosity of the transmission type curved crystal spectrometer
must be estimated for two cases of geometry, Case A: Real source and
virtual image and Case B: Virtual source and real image. The factors
entering in the calculation of the intensity of the diffracted radiation
are four:

1. Source geometry

2+ Spectral distribution. of radiation

3. Focal aberration

4o Crystal diffraction pattern.
Each factor ﬁill be characterized by a distribution function measured
along the focal circle or as is more convenient, in terms of the wave-
length screw of the instrument, The first two profiles define the spectral
character of the source under analysis, while the last two define the
character of the analyzing apparatus, Fig. 21 shows the nature of the
profiles.

The dispersion relation for the instrument together with the factA
that the screw has a linear calibration in terms of wave-length makes
it convenient to refer to all angular widths, wave-lengths, and linear
distances at the focal position directly in terms of screw divisions.

The conversion factor in each case will be obvious.

Source Geometry

The source is assumed to be limited by a rectangular aperture which
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may be defined by slits or may usuelly be just the physical dimension
of the radioactive material placed at the focus of the apparatus,
For the moment assume the geometric aperture of the system is identical
for all points on the vertical axis of the source,” Assume, also,
that the activity per unit width is constant over the width of the
source, For the usual radioactive source in the form of a rectangular
slab which is seen on edge this will be the case, It is also tacitly
assumed that the intensity of radiation emitted by the source is inde-
pendent of the angle of observation, at least within the geometric
cone determined by the crystal aperture, Otherwise the analysis would
become very difficult and impossible to check, If © is the total source
width and Ng is the activity in quanta per second per unit solid angle
when the source is seen on edge, then the source distribution function
becomes

N(x) =:sts(x) (3.1)

t
=0 3 X £ =
’ 2

where £ (x) =4 ; -tgxgd
5(x) ey “2 =
=0 ; x>-§-

if the activity is uniform over the width t, If fs(x) is not constant

over the width, then the fgfction is normalized so that

/fs(x)dx =1 (3.2)

-00
The function fg(x) represents the fractional source strength per unit

width at the setting x.

*The problem of vertical divergence will not be discussed here,
For x-rays it is negligible., For gamma radiation the exact crystal
diffraction pattern will determine whether it will affect the intensity.
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Spectral Distribution of Radiation

The spectral distribution curve for the radiation in any given
line may be approximated with sufficient accuracy by a "witch®", We
wish Yo normalize the distribution over any one line to unity so if
£5(A) is the distribution function, rifi( A ) is the number of quanta
per unit wave-length where ’"1 is the probability that any quantum emitted
by the source corresponds to the line i and

ZY’ fi(X)dA (3.3)

Since z Y = 1, this :unplles ri/ fi(/\)dA = Yi' Rather than

express the distribution in terms of A , we use the dispersion relation

and write o
/f.(x)dx =1
..ool
where x is the screw setting measured from the center of the line,
- A,
fi(X) — 2 " (3.4)

Here A is the full width at helf-maximum in the proper units,

Fécal Aberration

The focal aberration is most conveniently expressed as a distribu-
tion function fg(x) such that in the region of the /A& point, fg(x)dx
represents the fraction o? the crystal aperture from which the crystal
planes intersect in the width dx at x. This expresses the fact that
there exists aberration in the geometric optics of the system in a
quantitative manner, The function fg(x) is normalized to unity, i. e.

Zﬁ:ﬁé(x)dx: 1 (3.5)

the function fg(x) can be determined from the focal picture (Fig, 10)
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together with an areal sensitivity curve such as Fig. 14.” To simplify

the analysis a square form is assumed such that

=0 ; x < = g
I . u

fg(x) =’ 5 = X< 2 (306)
=0 z x> g

where w is the width as given by the focal picture,

Crystal Diffraction Pattern

The crystal "window" or diffraction pattern is extremely difficult
to predict for any given crystal. Siﬁce the crystals are used in the
Laue arrangement and since the crystal is assumed to be nearly perfect,
one may use the theoretical form for the window curve or at least one
which is symmetrical. In general

Tlx) = Tofx(x) (3.7)

where T is the fraction of a plane parallel beam of radiation that would
be reflected by the crystal when the angle of incidence is that corre=-

sponding to the setting x, Notice that
<

J/&(x)dx = Rg

-0
is the integrated reflection coefficient, For aMhick!crystal used

in transmission

fr(x) = —at (3.8)

*Fig. 14 gives only the variation of counter sensitivity due to
geometry, It may happen that all regions of the crystal are not equally
effective for diffraction., A preliminary check of this fact made with
x-rays showed considersble differences over the different regions of
the crystal, A careful experimental determination of fy(x) would be
difficult and would not yield any very valuable informetion,
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where & is the full width of the crystal diffraction pattern at half-
maximum in the proper units. In the case of mosaic crystals this
function might be replaced by a Gaussian distribution function where
T, 1s no longer a constant buf a function of A as is fx(x).

One may write the intensity for any setting of the spectrometer
in terms of these four functions. Let S be the geometric solid angle
and counter efficiency factor, i, e. the fraction of all quanta emitted
by the source which produce counts when the source is lined up with
the crystal and collimator in the zero position, The number of counts
in the direct beam will be

Rp = NgS (3.9)
S may be a function of A due to the change in counter efficiency with

wave-length or energy.

Case A: Real Source and Virtusl Image

For the diffracted beam one must calculate the effective source,
To each point of fg(x) in Fig, 21 there corresponds the spectral dis-
tribution f3(x = § ). The resultant source is given by the fold of

the source and spectral distribution funogtions.

Py(x) = Ngs T3 [fi( f)fg(x - §)af (3.10)
[ -]

To evaluate this integral one may make use of the properties of Fourier

P; (x)

Ng T3

gi(f Ys gs(f ) for fi(x) and fs(x) respectively, then e theorem on

transforms, If Gi(f ) is the Fourier transform of and similarly,

folds* states

G () = Vam g (£)g(f) (3.11)

*This is easily verified by calculating the Fourier transform of
both sides of (3,1C) and comparing. Noie thatf
. | =i¥x
g(f) W[f(x)e ax

- 00
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Calculating gi( f) and g ( ¢ ) one finds

L -1
gi(f)=—7—2——;,,=e (3.42)
1 Siniozi
gs(§ )= Tor I (3.13)
2
T sin%i- "lg.?‘\
S G = g - .
(o) l(f) V-z-;r-' t—zi- e (3 14)
Hence
Lo bE ) =
P(x)='hlJiS il e l * ’eifxdx (3.15)
& 27r t§ .
Lo 2
Evaluating the integral one obtains™
N, V.8
- .8 -1 t% 2x -1t - 2x
Py (x) = T [’can -Z—i—-—+tan _—Ai ] (3.16)

This is the spectral distribution which the spectrometer "sees', x is
measured from the center of the line i as it appears on the wave-length

scale,

The window curve or analyzing function may be calculated in a similar

manner by taking the fold of the functions T(x) and fg(x). To every
part of the crystal there is associated its own diffraction function
T(x). The fold of this function into the profile representing the
geometrical aberration of focus then represents the summstion of the
diffraction patterns over all infinitesimal elements of the crystal,
The window curve is given by -

Wx) = T, [ fx(x - §)p(§)ax (3.17)

. .
The Fourier transforms are:

*See Appendix A,
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gr(§)= }'2—?9
ws

— 1 n‘é’

Hence
[
ws -2
_ l/?f § sin 5= 13
H(S) = ??_ﬁ_e (3.18)
2
and W(x) = 8, tan L X2 4 ponl W= 2x (3.19)
T 2w S S o7

The actual process of analysis of a spectral line consists of sliding
the analyzing window W(x) over the spectral distribution P;(x) and
plotting the resultant intensity as a function of position, The in-
tensity in counts per second at any given setting is given by the
expression oo

Ry(x) = / W(x - £)P;(f)ds (3.20)

12.4(§) is the T Rp(x)

Wf sin LY -l}l("—f‘e{)

sin ==
G(f)=xgsry Ve " g2 2 e <7 (3.21)

(- ‘

s sin 125— sin -'-t‘-g- (Xf*/f/(%ﬁ}

- 00
The integral® is given as two terms
W=t PR e T
5+Ailn( P) i.X)"“( 2 ) +(W+t‘:l:x) 'tan-llq_i_t__:b__.z}s
= N R § ¥y

-l u-t¥x 2x

w-1
- (==t %
( 5 x) tan ; .

where the plus signs are one set of terms to be added to the set with

*See Appendix A for the evaluation of this integral,
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the minus signs. Since it is the maximum of R;(x) that is desired,
set x =0, It is assumed now that x is measured from the position

of the center of the diffracted line.
‘ 2
(S +4)) (w=- )24 (S+ 8)

R,(0) = NS YT +1
4(0) = s l°{ o T w0+ (S +a))?

wtt -1 wtt  _ w-t -1 _w-_t
tsFAT e AT T sra: ™ gial (3.23)
Or setting
w-t _§€ wi¥t
o= d e =

($+a,; 2
RA(O)-—.NSSTJ-_TO\:'S == 1)] zlnfz :i+7t 1y

- fta.n-lf } (3.24)
Now for the x-ray regions the crystal diffraction width & is such
that 4 >>3 for almost all lines, For example
Aic—" 0.1 div, for the WK x line
S = 10-3 div, for a perfect crystal
étglo-2 div, for a mosaic crystal

A . 3 3 -—
Also w = t and in practice one might set w = t; hence

wt 2t
A Ay

o
e

aj

=
o+
[t

0

Also § may be given in terms of Rg, the integrated reflection coefficient,
UE)
From equation (2.37) Rg= T, 5« The 8 which is used here is 2wg

of equation (2.37), but a factor of % is replaced by T,
NgS ¥ Q;
e 4 i 2 4 2%t -1 2t
R, (0) = [Re ] ln(( -) +l) " Ban™ X5 (3.25)

If one calculates the ratio of peak line intensity to direct beam inten-
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sity, i_;, for the line i, then in the general case

Pi [RGM__Z]{zl f 4'1 +’Zta'n 7 ftanlf} (3.26)

T wb 7 2y 1
The factors which depend on energy are Rg, &3, S, £, and 7 »

If one considers the energy range 0.1 - 1,0 llev., & ; will depend
more on the nature of the radiation than on the energy. Since the
crystals are certainly noﬁ perfect, S may be of the order of 431 but
probably much larger; hence assume 5?>>45i. Also since the width
is probably due to mosaic structure or to the fact that only a constant
limited number of crystal planes are effective, the width will remain |
constant, Hence set 5+Ai:5 . Assume w D28, t>>8 , andw- tZ0

so that g = -‘?’-)7 1 and §f = 0, Then

. _ Re S 2ty , 2t Wl ~ Be
1—'W.t2{ln( )+52}_? (3.27)

This expression is true for all lines for which the source has the width
of the geometric source only, It expresses the fact that as the source
width and crystal aberration approach the limit of the diffraction
width, the maximum number of quanta will be diffracted by the crystal
because all rays in the aperture cone will "see®® a part of the crystal

at the Bragg angle 6p.

Cagse B: Virtual Source and Real Image

The luminosity of the speétrometer for the case of a virtual source
and real image depends on the same factors as for the case of a real
source but in a slightly different manner, The relative luminosity
for the two cases is of great interest,

Fig. 4 is a schematic drawing of the geometry for the case of a

virtual source., One may assume that the same total activity is spread
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over the area A such that the whole available aperture of the crystal

is filled with radiation which may be diffracted to R, The solid

angle available to an atom in A will be proportional to Rg, the inte-
grated reflection coefficient, To make a true comparison of the two
cases, it is necessary to express the intensity in the diffracted beam
as a function of the same parameters as were used for Case A; namely

Ng, the total activity of the source; S, the effective solid angle which
the aperture system subtends at the focus taking the counter efficiency
into account; T,, the true reflection coefficient for plane parallel
radiation; and ,.i’ the fraction of the total number of photons in the
line i, Again the aberration and crystal diffraction functions determine

the analyzing tool or "window", Now

S =k 88 (3.28)
o

where k is a factor which includes the counter sensitivity as well as
blocking due to ribs and collimator partitions, h the horizontal aperture,
s the vertical aperture, and r the equivalent distance, Assuming that
the system is symmetric for sources at V or at A, the solid angle for

the atom in A will depend on the resultant window curve and may be ex=
pressed in terms of S, The function fg(x)dx represents the fraction

of the crystal area whose focal planes intersect in the range dx at

the position x of the aberration distribution. The crystal window curve
Tofx(x) represents the fraction of a monochromatic plane parallel beam,
passing through the crystal in such a direction as to intersect the focal
circle at a point in the vicinity of V conjugate to the point x in the

vieinity of R, which would be reflected when the crystal is set for

reflection at some wave-length, Since radiation is falling at all angles
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on the crystal, one takes the product integral of these two functions
to obtain the fraction of all monochromatic quanta emitted by A which
will pass through the slit dx at x. The aberration in this case limits
the fraction of the total activity Ng placed at A which can contribute
at the setting. If there were no aberration, the whole source could
contribute at a given setting just as in Case A any atom in the source
could use the full aperture of the crystal, The vertical aperture h,
the sensitivity and blocking factor k, and the distance r are the same
as for Case A, In performing the product integral one is essentially’
integrating to get the horizontal aperture,

The remaining dependence of the "window" will be on the vertical
aperture and counter sensitivity., These are given by the factor S/h,

The window W(x) becomes s

ST

H(x) = =2 / £ (£ )ig(x = § )af (3.29)

where h and d § must be expressed in the same units., It is convenient
to refer all measurements to screw divisions, so if r, is the factor
converting millimeters at the focal circle to screw divisions, one must

set roh for h, The result is given by equation (3.19), Case 4.

W(x) = =~ S%0 [an-1 wt2x +tan~l Lo 2X (3.30),
roh 2w )

with a transform

¢ |§8 ‘

_ ST .n.ésin—wz -1 a

SRR Pl
2

O R LR

It is again convenient to take the slit at F and the distribution
in A of the radiation as determining the unknown spectrum for analysis.

In this case, however, the function fs(x) is defined so



= t
=0 - -
£ J x< 2
fg(x) =1 - % <X L (3.31)
2 2
=0 t

we

X}E
The reason that fg(x) is different from that for Case A is that one
integrates over any radiation entering the slit,

]”i and f,(x) have the same meaning as before., Hence the spectral

distribution function becomeﬁn

Py(x)= Ng Ty /fi<s>fs<x - §)af (3.32)
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The function Pi(x) represents the total number of quanta in the band of
width t whose center is at the distance x from the center of the line,
The final result in these celculations is independent of the order in
which the folds are calculated., The choice made here seems to be the
best for an understanding of the factors contributing to diffracted in=-
tensity, The window curve then analyzes the source curve P;(x) yielding
the final intensity function, )

Rg(x) = [ W(x - §)Pi(f)af (3.34)

—e0

Solving as in Case A, the final result will be for a setting at the

center of the line i
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RB(X) then represents the total flux passing the analyzing slit
as it is swept over the spectrum., Comparing equations (3.23) and (3,.35)

one sees immediately

= -2 (3.36)

& b

if the same values of w and t are used., Since the screw has a pitch -
of approximately one mm, per revolution and in Fig, 7

Csa = 76,25 in,

CB = 90,5 in.
and the linear aperture of the crystal is about 44 mm,, the value of
the ratio becomes

B4 __(44)(90,5) . _ 559
Rg ~ (0.1)(76.25)

In practice one could concentrate the same activity in a much smaller
area and hence decrease w and t for Case B, The decrease in luminosity
would probably be nearer a factor of 100, and the resolving power would

be increased by a factor of possibly 3 or 4,

Dispersion and Resolving Power

The dispersion of a spectrometer for high energies must be large
to obtain high resolving power, The dispersion is determined solely
by the focal length and lattice spacing., Except in special cases The
first order is best in order to obtain high atomic structure factors,

af - —Bn _ _ R (1.2)
aa 2d cos 8 24
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To get sufficient dispersion it is necessary to pick a crystal with
a lattice spacing of the order of 1 to 2 K. A dispersion of much less
than one mm, per X. U, makes the resolving power diminish to the point
where the advantage of the crystal method, i, e. high precision, is lost,
The resolving power decreases with wave-length since geometric
factors as well as intensity prevent the source width and aberration
width from decreasing beyond a certain limit., The crystal resolving
power is always much smaller than any of the geometric factors. Since
the luminosity varies inversely with w as long as t = w, an improvement
in the focal aberration width would result in considerable increase
in intensity. Hence t could be decreaéed proportionately., For a dis-
persion of one mm, per X, U, and if a resolution of 10-3 is required
at one Mev.,, then w =t =0,01 mm. Actually the experimental resolution
is 1/3 to 1/5 the width of the line so w =+t =0,05 mm, is a good figure
to attempt. In this spectrometer w =t = 0.1 mm., but w has been made
as small as 0,05 mm, The radiation widths for energies above 0.1 liev,
are usually of the order of at most a few volts, i, e. the relative
line width is about 10™° and will not depend in a regular manner on the
energy., This is almost an order of magnitude greater than the best
resolution attainable, For comparison, the theoretical resolution of
a perfect crystal is given by the relations (2.35) or (2.41). Compare
wg for a'™hick"crystal with the angle at which the diffraction occurs,
k() A
"o = 7rn cos 6 (2.35)

If 6y is small, K 1, cos 63 =¥ 1 and sin 265 ¥ 26;; assume n =1,
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This resolving power is much higher than necessary, It is just this
fact that makes the luminosity very low. Only a mosaic crystal can

have a low resolving power and yet have a reasonably large refliection

coefficient,



Part IV

An Experimental Determination of Reflection Coefficients
and the Energy of a Gamma Radiation of Radio-gold, Anl98

Experimental Arrangement for Measurement of Absolute Reflection Co-

efficients with X-Radiation

After a preliminary test with the gamma radiations of 0060, having
energies of 1,1 and 1,3 ilev, respectively, had failed to give a positive
result, the measurement of the integrated reflection coefficient Rg
as a function of A was undertaken in an effort to establish by ex= -
trapolation the source strengths which might be needed. Actually,
the quantity which was measured was r‘i: the ratio of the peak intensity
of the diffracted line corresponding to the wave-length A to the peak

intensity in the direct beam if only the wave=length ,X were present,

M, = Rl (4.1)

* sRp

The reading in the direct beam was made by moving the source to the
position which is the focus of the collimator, Y‘i is the fraction of
all quanta emitted by the source which lie in the line of wave-length

,X. From these data the value of Ry was calculated by means of equations
(3.26) and (3.27); the wave-length dependence of Rg gives considerable
information concerning the nature of the crystal structure,

To make a reliable determination of (11, a source of known composi-
tion was needed, For practical reasons it is also desirable that the
total source intensity be concentrated in a very few lines, In the
x-ray region the fluorescent K radiation from an element of high atomic

number is satisfactory since the continuous background from scattering

can be kept small., Figure 22 shows a schematic drawing of the arrange-



=f5=

ment, The x-ray tube excites in the scatterer its characteristic flu-
orescent radiation as well as the Compton scattered radiation, but very
little of the Compton scattering is directed toward the crystal since
the angle is about 110° and the atomic number is high, Nevertheless,
to eliminate all question as to the effect of continuous scattered
background a procedure uvtilizing the Ross method of balanced filters
was employed, The true source for the spectrometer was the scattering
foil mounted on the lucite support. The dimension 0,1 mm, for the
thickness was chosen because it represents the width of the crystal
aberration, The lucite mounting was milled away so that it touched

the foil at ten points, thus presenting the least amount of matter for
scattering into the spectrometer, The lead jaw was rotated about the
focal axis so that the crystal aperture was just filled with radiation,
Owing to the fact that the radiation emerges from the face of the wedge,
those rays emerging at a more glancing angle will suffer greater self-
absorption, This, however, did not invalidate the results,

The sources were prepared of pure metal foil 0,004 inches thick
by grinding to shape in a special jig, Great care was taken to make
the sources identical in geometrical width as seen by the spectrometer,
This required mounting them so that their projected width was 0,004
inches (0.1 mm,) and no more, They were mounted on the lucite support
by means of stopcock grease which was sufficiently tacky to hold them
firmly in place, yet did not dry and distort the shape., As a matter
of fact the reflection coefficient f~; turned out to be rather insensi-
tive to the exact geometry.

The x-ray tube had to be mounted so that its térget remained at

constant distance from the scatterer, Since the real source of the
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spectrometer must move on a segment of a cardioid with respect to the
room, it was necessary to fasten the tube rigidly to the source carriage
N yet provide that it introduce no undue mechanical loading which might
distort the structure of the instrument, This was done by providing
a track on the side of the beam S along which the tube mounting rolled
as the source carriage moved, In addition an overhead counterbalance
system was provided to balance all gravitational loading,
A preliminary calculation had shown +that an x-ray tube operating
at 150 kvp. 10 ma, would generate sufficient fluorescent radiation
for these measurements, Consequently the transformer, control panel,
and tube were taken from a Philips "Seérchray 150" outfit, The tube
was a Bureka shockproof-mounted x-ray tube., All of the x-ray data
were made running the tube at 155 kvp. 9 ma., and except in the case
of thorium, there was adequate intensity., The tin K radiation was so
soft that the counter sensitivity fell off rather seriously, but the
increased production of characteristic K radiation made-up the difference,
The experimental method was to determine the counting rate at the
zero setting of the spectrometer after first setting the /3 point and
the collimator center on zero, The counting rate in this position was
due to all the radiation from the source, fluorescent as well as con-
tinuous., As mentioned above, the characteristic K radiation was the
main component of this radiatién. Then the reading at the peak of
the K«, line was taken, The ratios of intensities of the K lines of

(22b) were used in the

the elements as given by Compton and Allison
formule (4.1). The data werecorrected for the background counting rate
in every case, and the root mean square deviations of r1i were calculated

from the actusl data, In the case of tin the reflection coefficient
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so measured had to be corrected for continuous scattered radiation

by the use of Ross filters(27)

whose K edges bracketed the K &, and
Xy lines, For higher atomic numbers the correction was shown by this
method to be very small, A set constructed for gold permitted us to
correct the results for tantalum and thorium by extrapolation. These
results are presented in Table II, Two independent determinations at
x=-ray wave-lengths using different sources gave results which were in

complete agreement, The determination of the reflection coefficients

for the nuclear gamma-ray lines was made incidental to their energy

determinations,
Table II
A /s R R
B From e 8
Line X, U, Mev, r}_ theory Xo U, Radians

175 % ,023 2.27 7.70 x 107° 3,28 £0.43 x 10‘2
050 % ,002 3,20 1.56 x 107° 6.63%0,27 x 107C
044, % ,004 3,39 1.30 x 107° 5,52 £0.50 x 1072
017 £.,004 3.62 4.69 x 102 1.99£0.47 x 10~

Sn K, 489,57 0.,0253 0.
Ta K«, 214,88 0,0506 O,
Au Ko, 179,96 0.,0688 O,
Th Ky, 132.3 0.0936 O,

a9 30,09 0.411  0.0030£.0001 8.33 3.60 x 1074 1.53%0.05 x 10~/
of0  11.27 1.10  <42.8 x 1074 8.33 3.4 x 105 <1.4 x 10~

Meagurement of a Nuclear Gamma-Ray Wave-length and Lnergy

The experimental arrangement and method for the measurement of
nuclear gamms ray energles has been completely described except for
the source holder., The source holder for these investigations (see
K of Fig, & or Fig. 22) consists of a set of lead jaws machined so that
a thin foil sitting on edge at the focal position can irradiate only
the crystal aperture. The aluminum inserts at the actual source position,
being of low atomic number, will not scatter appreciably; hence the

source will be truly defined by the foil, The source was set up and
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checked beforehand to see if the axis of the foil was accurately parallel
to the axis of focus. Any deviation would introduce an aberration pro-
portional to the sine of the angle of deviation., The instrument was
previously adjusted for optimum focus; the axis of the source bomb was
centered on the source carriage and leveled with a precision level,
Since the crystal holder blocks were ground with the generators of the
cylinder accurately normal to the horizontal faces, the focal line was
assumed to be accurately vertical when the crystal holder was leveled,
The depth of focus for the instrument determines the depth of the source
within the limits of self-absorption. Reference to Fig., 10 will show
that the depth of focus of 5 mm, will result in a maximum source width
of about 0,1 mm, However, the assumption that the focal aberration is
a rectangular window will no longer hold, The presence of self-absorption
in the source will decrease this aberration. It is evident that rather
careful focusing is necessary if the optimum resolving power is to be
attained,

The sources whiéh were tried were in each case foils of pure metal
5 mn, wide by 30 mm, long by 0,1 mm, thick which had been activated
by neutron bombardment in the pile at Oak Ridge, The disintegration
schemes for gold and cobalt are given as follows:

Gold

At (n, ¥ ) 20198
A 2.7 day half-life

HgL98*
T 0,4112 Mev,
Hgl98

A




Cobalt
€059 (n, ¥ ) €o®0

A 5 year half-life
N3 60

r 1.1 llev,

r 1.3 lev,

I ;60

These schemes indicate only the lines which were of interest for this’
work. In each case the /? spectrum is believed to be simple. The
gamma transitions occur on decay of exﬁited states of the daughter
elements to the ground state., There have been reported(zg) two other
lines in the case of gold at 0,157 ilev, and 0,207 iiev. corresponding
to 15% of the intensity of the 0,41 llev, line, These reactions were
chosen because they had very good yields and the gamma radiations were
fairly well known., The question of half-life is important when the
material has to be shipped an appreciable distance,

The gold source had an activity of one curie when placed in the
instrument, and it decayed through about three half-lives before all
the data were accumulated, Owing to self-absorption the effective source
was of the order of 1/5 of the totel activity. The line profile for
the 0,41 Mev. line was taken by turning the screw by hand from the left
to the right side so that all backlash would be taken up. There was
still a slight shifting of the lines (due to displacement of the
point whose cause was later located), but this did not greatly affect

the spacing between the lines which determines the wave-~length and



energy, At the same time the readings at the central beam were taken
with filters in place to reduce the counting rate sufficiently to permit
its measurement, Fig. 23 shows some sample line profiles and Fig. 6
the profile of the central beam characteristic of our present lead
collimator, The centers of the lines were located by extrapolation
of the straight sides of the profile to an intersection and alsoc by
locating the center of the half-maximum point, These two methods gave
consistent results., The symmetric shepe of the profiles permits a more
accurate location of the line position than would otherwise be possible,
The helf=-width of 0,13 divisions and the shape ere just that to be ex=
pected if the source and analyzer are approximately rectangular windows
of width 0,13 divisions., The background was in part proportional to
the source strength so that the ratio of peak height to background did
not change with decay of the source until the backzround became constant,
The data are given in Table III,

Table III

Preliminary Values of VWave=-length and Energy

Run A s A g hv
Noe Xe Us Clle lewv,
| 30,095 30,156 x 10711 0,41100
2 30,080 30,141 0.41121
3 30,065 30,126 0.41141
L 30,085 30,146 0.41114
5 30,083 30,144 0.41116
30,082 * 0,00 30,143 % 0,004 0.41118 % 0.,00005

The errors given are the probable errors calculated from the statistical
fluctuations of the experimental data only,

The calibration of the screw mey be made by two methods, The one
uses the quartz crystal spacing as measured by Cu K radiation and the

measured values for the mean pitch P of the screw and the distance



CV' of Fige 7.
P =0.038440 * ,000010 inches per turn
. at 25° ¢
CV? = 90,522 * ,010 inches

d31o (180 C) =ll77.64 X, Uo*

24 P
A ~310._ X, U, per revolution
cv?

From which one may obtain

%— = 1.0002 * 0,0003

The other method of calibration is to calibrate the instrument directly
in terms of the Ko 1lines of the heavy elements, These are known
with an accuracy of about one part in 5,000, A somewhat rough calibra-
tion using tungsten Kx, Ke, lines and the lead K &, line yields a

mean value for )‘/T given by

%- = 0.9998 £ 0.0002

The errors in the calibration arise from (a) differences in the coeffi-
cient of thermal expansion of quartz and steel, (b) errors in the standard
micrometer used for the measurements, and (c) errors in the measured
values of x-ray wave-lengths., However, the precision given and the
agreement between the two essen?ially independent methods leads to the
belief that the calibration is sufficiently accurate for the present
measuremnents, TFor further work it apoears desirable to obtain a more

precise determination of tungsten K radiation for calibration,.

*Tge velue of d37p was calculated from dypy by the relation
daj0 = —l'o%_o The value of djpp is given in terms of the Cu K lines
2
by Berq&%g%.(zw The temperature coefficient %f xpangion normal to
the axis is 1.45 x 107°/X, U./deg. from 18° C, 30) " The value parallel
to the axis is 0,90 x 10~5/X, U,/deg. These coefficients were used
to correct the crystal spacing to 23° G, the ambient temperature,
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There may be some very small random errors as well as systematic
errors inherent in the instrument due to misalignment or frictional
loading on the spindle M (Fig, 8). These introduce errors of the order
of one part in 5,000 which should be corrected to take full advantage
of the precision possible, Finally, the periodic correction to the
screw of the order of 0,005 X, U, is indicated by a preliminary cali=-
bration using a standard decimeter, This correction is neglected in
the present work,

The reduction of the data given in Table III was accomplished as
follows: The nominal instrument readings were converted to Siegbahn
X. U, by the factor 1,0000 * 0,0003, The conversion factor from the
Siegbahn to the absolute centimeter scale is 1,00203 and from centi-
meters to energy units in Mev. is 12394.2 = 0,9 x 10~8 (the wave-length
associated with an energy of 1 ev.).(31) With these data the final
precision determination of the energy of this gamma-ray of gold Au198
is reported as

0.4112 + 0,0002 ilev,
The probable deviation for the final result is caused by the lack of
a precision calibration of the instrument and to the small random motion
of the ﬁ? point, If the determination of line position from the experi-
mental data were the limiting factor, a precision of one part in 5,000
could be quoted,

At this time absorption curves were taken with tin and lead since

these data were necessary to reduce the observed data to a reflection
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coefficient determination,” The values of the linear absorption co-
efficients for 0.4112 llev, radiation are measured to be

Aoy = 0,777 em, =+

Mo = 2,28 em,"L
By comparing the peak of the line with the peak of the central beam,
extrapolated to zero absorber, the value of fqg was calculated to be
0,0030 * 0,0001,

The cobalt sample had an activity of about 50 mec, Since the half-
life is very long, a very careful exploration of the lines at 1,10 and-
1.30 liev, was made, No line could be detected, the reflected intensity
being equal to or less than the statistical fluctuations of the back-
ground counting rate, However, a maximum possible value for the re-
flection coefficient could be assigned assuming that one could have
observed a line if its height had been three times the statistical
fluctuation, This led to a value for /11 €2.8 x 1074, These data

are pregented in Table II with the x-ray reflection coefficients.

Interpretation of the Experimentel Reflection Coefficient Data

The experimental determinations of /ﬂi were reduced to Rg by the
use of the expressions calculated in Part III, Case A, The expression.
for /11 has a different form in the x-ray and the gamma-ray regions,
equation (3.26) being correct for x-rays and equation (3.27) for gamme=

rays., With the appropriate approximations equation (3.26) becomes

*The absorption curves were teken with the source turned so that
the effects of self-absorption would not be so large, An abtempt had
been made to observe the lower energy radiation with the spectrometer,
but its very high self-absorption made this observation impossible,
The curve for tin showed a slight upward curvature at zero absorber
thickness; this indicates the presence of a soft component, the energy
or intensity of which was difficult to determine from the absorption
curve alone,



..74-

. =|Be 2] ] . 2t )2 8t . 1 2%

r‘l "[1‘- Wb] 5 1n ((Ai) +1) + Z: tan Z—l' (3.26)
R

and ri = -_-b-e- (3.27)

It is assumed that at 211 times the source width equels the aberration
width, The value of w is taken from the appropriate focal picture made
Jjust before the determination of rﬂi; from it w £0,12 div. The assumption
of a square window for the aberration profile is justified only by lack
of a better assumption and the difficulties in making a calculation of
F’i for other windows, The linear width of the sources used is 0,10 mm,
or, when converted to screw divisions, 0,12 divisions., The values of
A3i were taken from Compton and Allison(zzc) for tungsten and silver,
and by linear interpolation the values for the other scatterers were
calculated, Physically, the difference between equations (3.26) and
(3.27) corresponds to the fact that for x-rays the "window" of the spec-
trometer is greater than the line width while for gamma radiation it

is not., The values of Rg calculated by the expression above are given
in units of screw revolutions, To convert to radians these values must
be divided by (90.5)(26); the screw has 26 threads per inch, and the
distance from the crystal to the screw is 90,5 inches, The values of
Rg in the last column are given in radians and may be compared with
theory, These date are plotted in Fig. 24.

The slope of the curve of Rg versus A ona log log nlot is slightly
greater than two. However, the discrepancy, when compared with a curve
of slope two, is not outside the deviations which might be accounted
for by the assumptions made on the reduction of r1i to Rgs A comparison
with the theoretical values for Rg calculated from equation (2.52) for

the case of a mosaic crystal with small primary and secondary extinction



indicates very good agreement,

o

Ry = 32 (2.52)
o
. Z(FH)Z A d (1 + cos® 293) 5,109

2n cos GB

ro =2.82 x 1075 4

FBIO = 13.8 )
3 from Apnendix B
v =112.0 &
n=l

o}

To =1 mm,

1 —i—cos

The assumption of cos 852 1 and 2% 2 1 will be valid

for all Bragg angles of interest, Hence

_ =512 13,8\2
--Q-5 = (2.82 x 1077) (ﬁ%fﬁ) (1.1776)

= 1ah2 % 101
=1.42 x 1074 )\ ?
o
if A is in A units, The value of Re/)\2 calculated from the experi=

mental data is

:g = 1.5 x 1074
This agreement is much better than should be expected from either ex= '
periment or theory, It is of interest to compare the value of Re/)\
which would obtain had the crystal behaved as a perfect lattice., For

the corresponding range of A the crystal would be "thick®, Hence

F
r.dy (=2)K
EQ_ oH(v)

\  2n cos 6p (2.57)
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-5 13,8
(2.82 x 10 )(1.178)(112.0)
2 :

IR

%o
A
= 2,1 x 107°

Hence, at a wave-length of 0,1 X the mosaic crystal will give about

five times the intensity of the perfect crystal, This curve is plotted
in Fig, 24 also. It cannot be extrapolated below about 50 X, U, because
at short wave-lengths the quartz crystal of one mm, thickness no longer
behaves as a "thick" crystal, so the curve must change to the correspond-
ing curve for a "thin" crystal, i. e. the slope must change from one

to two., By equation (2.,29) the extinction distance for the (310) planes
of quartz is 0.3 mm, at 100 X, U, and 1 mm, at 30 X, U, Hence, beyond
the point of intersection the two curves must be identical, These curves
bring out the interesting fact that for every thickness of ecrystal,

with the assumption of very small extinction, the mosaic crystal will

have the higher reflection coefficient until the curves intersect, For

shorter wave-lengths the reflection ccefficient is identical for either
perfect or mosaic crystals,

The quartz slabs are probably very nearly perfect before bénding.
There may be some rupture of the lattice near the surface during the
polishing of the plates, but it is doubtful whether this affects the
diffraction pattern,® However, the reflection curve definitely indicates
that the curved plate is a mosaic crystal or at least that the domains
over which coherent diffraction takes place are small, This same effect

has been observed by others(Bz) for a quartz plate subjected to inhomo-

*jr, W, West in this laboratory has taken two-crystal antiparallel
rocking curves with platescut from the same piece of quartz and polished
in the same manner, At 707 X, U, the rocking curve width was four sec,
of arc which is strong evidence that there is little or no surface
effect,
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geneous stresses., This is not true for homogeneous stresses however,
No attempt will be made to explain this phenomenon since it is the
subject of further research, These experimental results can be used
to indicate the range of usefulness of the focusing curved crystal

spectrometer and the design requirements,

Design Requirements and Range of the Curved Crystal lethod for Gamma

Radiation Spectroscopy

It is possible to state the conditions which must hold if direct
spectroscopy of gamma radistion is to be a successful tool. All the
factors = dispersion, precision, resolving power, and luminosity - are

related, but it may be well to discuss them as separate factors,

Dispersion

The dispersion equation

A_ 24
ZI- = :.é.—n (102)

shows that a large focal distance and small planar spacing is necessary,
However, a large atomic structure factor requires a small value for

n/d, The atomic structure factors do not decrease as rapidly for high
atomic number as for low with increasing n/d, so it is of considerable
advantage to use an element of rather high 7Z for the scatterer. The
choice of crystal is rather seriously limited, because it must have
planes of rather small spacing yet have a reasonable structure factor,
If the dispersion is to be one X. U,/mm,, which is a minimum value for
'operation to one Mev, and above, %g becomes 1072 if d is in gngstrom
units and R in millimeters., The limitations of physical size force

one to use lattice spacings of one X or smaller,
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Precision

The precision of the spectrometer is controlled by the precision
in the mechanical construction, wave-length screw, front pivot, and
various adjustments, If the dispersion is large, the problems of pre=-
cision are not as great. In an instrument with a disversion of one
X, U.,/mm, it is not difficult to make settings precise to 0,005 mm,
provided care is taken to observe the principles of kinematic design
and the parts are carefully made and assembled., Systematic errors can
be detected by careful calibration; one of these, however, can never
be evaluated, If any one of the four window curves is asymmetrical
and at the same time reflected about the A& point, it will be impossible
to make a precise determination of an energy save by increasing the
resolution, since the line will have an asymmetric profile which is
reflected in the /9 point, The effect of the non-uniform background
can be corrected because in most cases it is small, Assuming the window
curves are symmetric, a precision of one part in 2,000 is possible at
one Mev, with this instrument, The precision is inversely proportional
to the wave-length because the dispersion is counstant, It should be
noted that the precision is not entirely limited by the resolution, but

by the mechanism itself,

Resolving Power

A discussion of resolving power has already been made, The Tresolv-
ing power is limited at present by the geometrical aberration of focus
of the crystal, This may be due to non-uniform curvature of the plate
or to the inherent mosaic structure of the crystal, The crystal one

uses must have a very small angular distribution of the mosaic domains
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and at the same time be very uniform over rather large areas., Few such
crystals, except quartz, exist in large enough pieces, Artificially
grown crystals are large enough, but their mosaic structure makes the
resolving power too low, However, careful testing of crystals with a
two-crystal spectrometer may reveal a suitable one. The problem of
bending a slab is very serious, The stresses set up in a thick quartz
slab bent to a cylinder force the ratio t/R to be less than lO'.3 where
t is the plate thickness, The only method for increasing t is to permit
plastic deformation or to use a multiplicity of superposed plates, It-
may be possible to bend crystals, similar to sodium chloride, by re-
crystalization(BB) in a saturated solution. However, this may destroy
the focusing properties. A geometric focal width of 0,05 mm. is the
minimum width which has been obtained with this instrument. The resolu-

tion at present is of the order of 0,05 X, U, which is adequate.

Luminosity

The effective luminosity of the instrument as it stands is about
10'8, i, e. this represents the fraction of all quanta in a source which
will be registered, This will vary from 107 40 1077 depending on the
energy., The luminosity is closely related to the resolution, and in
general if the resolution is increased, the luminosity must decrease,
This is true only as long as the source which is under investigation
is wide compared with the analyzer., Nuclear line widths are so narrow
that only the physical width of the source contributes to the composite
width, At present the source volume, i. e, the volume in which the
active material may be placed, is fixed by the resolution of the crystal

(geometrical aberration). To increase the volume would decrease the
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resolution and not increase the diffracted intensity. Hence, sources
of high specific activity (one curie per gram) are required. This
is a serious limitation to the application of the instrument especially
for high energy radiation.

The choice of a crystal is the most serious problem., It should
be rather thick (5 mm,) and have the property that when it is bent,
the mosaic structure is not disturbed too much, The relative angular
disorientation of the planes in all parts of the crystal should be
less than 10.sec, of arc with respect to the initially flat face which
is pressed against the defining clamp, At the same time the domains
of the mosaic structure should be large enough to insure primary ex-
tinction, Such a crystal would have a large reflection coefficient
which varies as )\ rather than )\ 2. The luminosity of the present in-
strument can be increased by at most a factor of about two with cer-
tainty; to do better than this requires considerable investigation of
crystals, It should be pointed out that only by incrqasing the reflec-
tivity of the crystal and by redesigning the collimator to decrease
scattering will the line contrast be increased,

The counter sensitivity for Geiger counters may be increased by
a factor of three or four; if higher sensitivity is needed, development
of the scintillation counters must be undertaken. In this case an
increase of sensitivity of five to ten may be possible. Hence, the
over-all effective luminosity may be made 10_7, but until the crystal
can be improved, an increase in the solid angle factor or counter sensi-

tivity will not appreciably affect the luminosity.
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Range of Application

The present luminosity; 10‘8, and small focal volume together
with the present design of the collimator 1limit the instrument to the
determination of a few gamma energies below one lMev, to be used as
standards for the field of nuclear physics., The sources at present
must be 50 mc, or greater in strength with a specific activity of 1000
mnec, per gram, With the improvements suggested it is possible that
sources as low as five me, would be satisfactory., The energy range of
the instrument is from 0,025 to 1,7 lev., but above one liev, the low

contrast due to large background will make measurements very difficult,
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Evaluation of the Integrals of the Luminosity Function
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odd; hence
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The two integrals are identical except for parameter,
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Appendix B

Calculation of Structure Factor for Quartz (310) Planes

X quartz has the space group DBZ" or D36, and the atom centers
are at the following positions in the unit cell:
Si (1,0,0; w,u,1/3; 0,u,2/3)
0 (%,¥,2; ¥ = %X,%X,2 + 1/3
;,x - y,2+ 2/3; x - y,.:);,g
Vs%,% + 2/3; X,y = x,2 + 1/3)

where the parameters as given by Brill et al.(35) are:

§]

u = 0,465 £ .003

x = 0,415  ,003
y = 0,272 * ,003

z = 0,120 = ,002

The coordinates of the atoms in the unit cell are tabulated in the

table, The atomic structure factors are taken from Compton and Allison.(22a>

The factors for Si and O are used because the exact nature of the binding
sin

will not affect the structure factor for the values of ——/\—-— of interest,

sin 6y
B 1
7 o e T Oo
A T 24 455
fo = 2,72
fSi - 6,89

The unit cell for the hexagonal crystal has the constants

a :40903
at 18° C
e = 50393
and contains three 8102 molecules. The crystal structure factor is

given by
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Fy = Z fiels'r

Z’ f.e127r(h1x11+ hgxiz + h3xi3)
= R
¢

for H = (310)

=1 2R 2
|%ﬂ =74+ B
where
A= Z f; cos 2 ’n-(hlxil hZXiZ)
-

. :
The calculated value for ‘F310‘ becomes 13.8, The volume of the unit

cell is given by

V =ca? sin-;!r-= Kzgca2

(o]
vV =1.12 x 10° &°

Structure Factor Calculation for X Quartz
Atom f % X, X3 4 cos 2Xd sin 27g £ cos 2 g £ sin 27d

Si 6.89 0,465 0 0 1,395 0,1750 0,9846
=0,465 -0,465 0,333 -1,860 =-0,2850 =0,9585
0 0.465 0,667 0,465 0.8938  0.4486
0.7838  0.4747 5.400 3271
0 2.72 0,415 0,272 0,120 1,517 0.,0537 0,9985
‘001-43 "'004—15 00453 "0.844 Oo6645 -007473
-0,272 0,143 0,787 -0,673 0,7820 =0,6233
0.143 =0,272 =0,120 0,157 0,9877 0,156
0,272 0,415 0.547 1,231 0.3330 0.9430
=0,415 =-0,143 0.213 -1,388 0,1816 =0,9834

300025 "'002561 8.167 "'00697
713,567 26574
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Fig.2 Geometry of aberrations which may occur in a fcocusing
crystal spectrometer.

L1 - sberration caused by failure of crystal to lie on focal circle.
Lo - aberration ceused by finite crystal thickness,
Ly - aberration csused by improper focusing.



Fige 3»_. Geometry demonstrating the ebsence of correction for refractive
index when the atomic reflecting planss are normal to the exit and entry
faces of the lemina in the transmission type spectrographe
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Fig,6 Transmission profile of collimator for a narrow source placed
on the focal circle. The left scale of ordinates applies to the regions
outside %10 X,U,, while the right scale multiplied by the factor 103
applies within 410 X,U., The dashed line represents the irreducible
background on the left ordinate secale.
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Fig,8 Isometric Drawing of Complete Spectrometer.

Legend
Front pivolt pad

‘} Pads at the rear corners
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Focal circle beam
Main counter
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Small carriage
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Crystal holder table
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Fige 10_. ‘Ray diagram used for determining by successive x-ray exposures
the quality of focussing in the curved crystal transmission spectrometers
The transverse or horizontal scale of this diagram in 100 times the vertical
scales The ten positions in the crystal aperture are shown above,
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Fig. 14 Counter sensitivity over the window slots relative
to the central slot (4).
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Fig. 16
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) SPHERE OF
| REFLECTION

Fiz,17 The Bragg Lew expressed as a vector relstion in the

reciprocal lattice. Note that |k|= )kc,\:_;l\.. ,
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Fig,12 Shows the differences between Laue reflection (etomic
planes normal to plate) and Bragg reflection (atomic planes

parallel to plate). Actually the cases represent a very narrow
beam incident on a "thin" crystal.
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Fig,19 Diffraction pattern for the Laue case of a thick perfect crystal.
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fs(x) f(x)

0 . o 1. 2 3 a XU.
SOURCE PROFILE SPECTRAL LINE

f(x) T(x)
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P(x) | W(x)

o 1 2 3 o XU.
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Fig,21 Plot of the four profiles contributing to the spectrometsr
response. Pj(x) is the fold of the source functions fg(x) and £3(x)
and constitutes the true source under analysis. W(x) is the fold of
fg(x) and T(x) and constitutes the analysing window of the spectro-
méter. The fold of Pi with W yields the actual line profile. The
widths are plotted to true scale for the case of Sn Kot radiation
but the heights are adjusted arbitrarily.
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Fig.24 Experimentally determined reflection coefficient Rg for
quartz (310) pldnes as used in the spectrometer. The ordinate
scale is in radians. The dashed curve shows the theoretical values
for Rg- if the crystal were assumed to be perfect.





